1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 * 21 * $FreeBSD$ 22 */ 23 24 /* 25 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 26 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 28 */ 29 30 /* 31 * DTrace - Dynamic Tracing for Solaris 32 * 33 * This is the implementation of the Solaris Dynamic Tracing framework 34 * (DTrace). The user-visible interface to DTrace is described at length in 35 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 36 * library, the in-kernel DTrace framework, and the DTrace providers are 37 * described in the block comments in the <sys/dtrace.h> header file. The 38 * internal architecture of DTrace is described in the block comments in the 39 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 40 * implementation very much assume mastery of all of these sources; if one has 41 * an unanswered question about the implementation, one should consult them 42 * first. 43 * 44 * The functions here are ordered roughly as follows: 45 * 46 * - Probe context functions 47 * - Probe hashing functions 48 * - Non-probe context utility functions 49 * - Matching functions 50 * - Provider-to-Framework API functions 51 * - Probe management functions 52 * - DIF object functions 53 * - Format functions 54 * - Predicate functions 55 * - ECB functions 56 * - Buffer functions 57 * - Enabling functions 58 * - DOF functions 59 * - Anonymous enabling functions 60 * - Consumer state functions 61 * - Helper functions 62 * - Hook functions 63 * - Driver cookbook functions 64 * 65 * Each group of functions begins with a block comment labelled the "DTrace 66 * [Group] Functions", allowing one to find each block by searching forward 67 * on capital-f functions. 68 */ 69 #include <sys/errno.h> 70 #include <sys/param.h> 71 #include <sys/types.h> 72 #ifndef illumos 73 #include <sys/time.h> 74 #endif 75 #include <sys/stat.h> 76 #include <sys/conf.h> 77 #include <sys/systm.h> 78 #include <sys/endian.h> 79 #ifdef illumos 80 #include <sys/ddi.h> 81 #include <sys/sunddi.h> 82 #endif 83 #include <sys/cpuvar.h> 84 #include <sys/kmem.h> 85 #ifdef illumos 86 #include <sys/strsubr.h> 87 #endif 88 #include <sys/sysmacros.h> 89 #include <sys/dtrace_impl.h> 90 #include <sys/atomic.h> 91 #include <sys/cmn_err.h> 92 #ifdef illumos 93 #include <sys/mutex_impl.h> 94 #include <sys/rwlock_impl.h> 95 #endif 96 #include <sys/ctf_api.h> 97 #ifdef illumos 98 #include <sys/panic.h> 99 #include <sys/priv_impl.h> 100 #endif 101 #ifdef illumos 102 #include <sys/cred_impl.h> 103 #include <sys/procfs_isa.h> 104 #endif 105 #include <sys/taskq.h> 106 #ifdef illumos 107 #include <sys/mkdev.h> 108 #include <sys/kdi.h> 109 #endif 110 #include <sys/zone.h> 111 #include <sys/socket.h> 112 #include <netinet/in.h> 113 #include "strtolctype.h" 114 115 /* FreeBSD includes: */ 116 #ifndef illumos 117 #include <sys/callout.h> 118 #include <sys/ctype.h> 119 #include <sys/eventhandler.h> 120 #include <sys/limits.h> 121 #include <sys/linker.h> 122 #include <sys/kdb.h> 123 #include <sys/jail.h> 124 #include <sys/kernel.h> 125 #include <sys/malloc.h> 126 #include <sys/lock.h> 127 #include <sys/mutex.h> 128 #include <sys/ptrace.h> 129 #include <sys/random.h> 130 #include <sys/rwlock.h> 131 #include <sys/sx.h> 132 #include <sys/sysctl.h> 133 134 135 #include <sys/mount.h> 136 #undef AT_UID 137 #undef AT_GID 138 #include <sys/vnode.h> 139 #include <sys/cred.h> 140 141 #include <sys/dtrace_bsd.h> 142 143 #include <netinet/in.h> 144 145 #include "dtrace_cddl.h" 146 #include "dtrace_debug.c" 147 #endif 148 149 #include "dtrace_xoroshiro128_plus.h" 150 151 /* 152 * DTrace Tunable Variables 153 * 154 * The following variables may be tuned by adding a line to /etc/system that 155 * includes both the name of the DTrace module ("dtrace") and the name of the 156 * variable. For example: 157 * 158 * set dtrace:dtrace_destructive_disallow = 1 159 * 160 * In general, the only variables that one should be tuning this way are those 161 * that affect system-wide DTrace behavior, and for which the default behavior 162 * is undesirable. Most of these variables are tunable on a per-consumer 163 * basis using DTrace options, and need not be tuned on a system-wide basis. 164 * When tuning these variables, avoid pathological values; while some attempt 165 * is made to verify the integrity of these variables, they are not considered 166 * part of the supported interface to DTrace, and they are therefore not 167 * checked comprehensively. Further, these variables should not be tuned 168 * dynamically via "mdb -kw" or other means; they should only be tuned via 169 * /etc/system. 170 */ 171 int dtrace_destructive_disallow = 0; 172 #ifndef illumos 173 /* Positive logic version of dtrace_destructive_disallow for loader tunable */ 174 int dtrace_allow_destructive = 1; 175 #endif 176 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 177 size_t dtrace_difo_maxsize = (256 * 1024); 178 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 179 size_t dtrace_statvar_maxsize = (16 * 1024); 180 size_t dtrace_actions_max = (16 * 1024); 181 size_t dtrace_retain_max = 1024; 182 dtrace_optval_t dtrace_helper_actions_max = 128; 183 dtrace_optval_t dtrace_helper_providers_max = 32; 184 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 185 size_t dtrace_strsize_default = 256; 186 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 187 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 188 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 189 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 190 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 191 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 192 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 193 dtrace_optval_t dtrace_nspec_default = 1; 194 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 195 dtrace_optval_t dtrace_stackframes_default = 20; 196 dtrace_optval_t dtrace_ustackframes_default = 20; 197 dtrace_optval_t dtrace_jstackframes_default = 50; 198 dtrace_optval_t dtrace_jstackstrsize_default = 512; 199 int dtrace_msgdsize_max = 128; 200 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 201 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 202 int dtrace_devdepth_max = 32; 203 int dtrace_err_verbose; 204 hrtime_t dtrace_deadman_interval = NANOSEC; 205 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 206 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 207 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 208 #ifndef illumos 209 int dtrace_memstr_max = 4096; 210 int dtrace_bufsize_max_frac = 128; 211 #endif 212 213 /* 214 * DTrace External Variables 215 * 216 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 217 * available to DTrace consumers via the backtick (`) syntax. One of these, 218 * dtrace_zero, is made deliberately so: it is provided as a source of 219 * well-known, zero-filled memory. While this variable is not documented, 220 * it is used by some translators as an implementation detail. 221 */ 222 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 223 224 /* 225 * DTrace Internal Variables 226 */ 227 #ifdef illumos 228 static dev_info_t *dtrace_devi; /* device info */ 229 #endif 230 #ifdef illumos 231 static vmem_t *dtrace_arena; /* probe ID arena */ 232 static vmem_t *dtrace_minor; /* minor number arena */ 233 #else 234 static taskq_t *dtrace_taskq; /* task queue */ 235 static struct unrhdr *dtrace_arena; /* Probe ID number. */ 236 #endif 237 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 238 static int dtrace_nprobes; /* number of probes */ 239 static dtrace_provider_t *dtrace_provider; /* provider list */ 240 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 241 static int dtrace_opens; /* number of opens */ 242 static int dtrace_helpers; /* number of helpers */ 243 static int dtrace_getf; /* number of unpriv getf()s */ 244 #ifdef illumos 245 static void *dtrace_softstate; /* softstate pointer */ 246 #endif 247 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 248 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 249 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 250 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 251 static int dtrace_toxranges; /* number of toxic ranges */ 252 static int dtrace_toxranges_max; /* size of toxic range array */ 253 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 254 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 255 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 256 static kthread_t *dtrace_panicked; /* panicking thread */ 257 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 258 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 259 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 260 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 261 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 262 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 263 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 264 #ifndef illumos 265 static struct mtx dtrace_unr_mtx; 266 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF); 267 static eventhandler_tag dtrace_kld_load_tag; 268 static eventhandler_tag dtrace_kld_unload_try_tag; 269 #endif 270 271 /* 272 * DTrace Locking 273 * DTrace is protected by three (relatively coarse-grained) locks: 274 * 275 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 276 * including enabling state, probes, ECBs, consumer state, helper state, 277 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 278 * probe context is lock-free -- synchronization is handled via the 279 * dtrace_sync() cross call mechanism. 280 * 281 * (2) dtrace_provider_lock is required when manipulating provider state, or 282 * when provider state must be held constant. 283 * 284 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 285 * when meta provider state must be held constant. 286 * 287 * The lock ordering between these three locks is dtrace_meta_lock before 288 * dtrace_provider_lock before dtrace_lock. (In particular, there are 289 * several places where dtrace_provider_lock is held by the framework as it 290 * calls into the providers -- which then call back into the framework, 291 * grabbing dtrace_lock.) 292 * 293 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 294 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 295 * role as a coarse-grained lock; it is acquired before both of these locks. 296 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 297 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 298 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 299 * acquired _between_ dtrace_provider_lock and dtrace_lock. 300 */ 301 static kmutex_t dtrace_lock; /* probe state lock */ 302 static kmutex_t dtrace_provider_lock; /* provider state lock */ 303 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 304 305 #ifndef illumos 306 /* XXX FreeBSD hacks. */ 307 #define cr_suid cr_svuid 308 #define cr_sgid cr_svgid 309 #define ipaddr_t in_addr_t 310 #define mod_modname pathname 311 #define vuprintf vprintf 312 #ifndef crgetzoneid 313 #define crgetzoneid(_a) 0 314 #endif 315 #define ttoproc(_a) ((_a)->td_proc) 316 #define SNOCD 0 317 #define CPU_ON_INTR(_a) 0 318 319 #define PRIV_EFFECTIVE (1 << 0) 320 #define PRIV_DTRACE_KERNEL (1 << 1) 321 #define PRIV_DTRACE_PROC (1 << 2) 322 #define PRIV_DTRACE_USER (1 << 3) 323 #define PRIV_PROC_OWNER (1 << 4) 324 #define PRIV_PROC_ZONE (1 << 5) 325 #define PRIV_ALL ~0 326 327 SYSCTL_DECL(_debug_dtrace); 328 SYSCTL_DECL(_kern_dtrace); 329 #endif 330 331 #ifdef illumos 332 #define curcpu CPU->cpu_id 333 #endif 334 335 336 /* 337 * DTrace Provider Variables 338 * 339 * These are the variables relating to DTrace as a provider (that is, the 340 * provider of the BEGIN, END, and ERROR probes). 341 */ 342 static dtrace_pattr_t dtrace_provider_attr = { 343 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 344 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 345 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 346 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 347 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 348 }; 349 350 static void 351 dtrace_nullop(void) 352 {} 353 354 static dtrace_pops_t dtrace_provider_ops = { 355 .dtps_provide = (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop, 356 .dtps_provide_module = (void (*)(void *, modctl_t *))dtrace_nullop, 357 .dtps_enable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 358 .dtps_disable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 359 .dtps_suspend = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 360 .dtps_resume = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 361 .dtps_getargdesc = NULL, 362 .dtps_getargval = NULL, 363 .dtps_usermode = NULL, 364 .dtps_destroy = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 365 }; 366 367 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 368 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 369 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 370 371 /* 372 * DTrace Helper Tracing Variables 373 * 374 * These variables should be set dynamically to enable helper tracing. The 375 * only variables that should be set are dtrace_helptrace_enable (which should 376 * be set to a non-zero value to allocate helper tracing buffers on the next 377 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 378 * non-zero value to deallocate helper tracing buffers on the next close of 379 * /dev/dtrace). When (and only when) helper tracing is disabled, the 380 * buffer size may also be set via dtrace_helptrace_bufsize. 381 */ 382 int dtrace_helptrace_enable = 0; 383 int dtrace_helptrace_disable = 0; 384 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 385 uint32_t dtrace_helptrace_nlocals; 386 static dtrace_helptrace_t *dtrace_helptrace_buffer; 387 static uint32_t dtrace_helptrace_next = 0; 388 static int dtrace_helptrace_wrapped = 0; 389 390 /* 391 * DTrace Error Hashing 392 * 393 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 394 * table. This is very useful for checking coverage of tests that are 395 * expected to induce DIF or DOF processing errors, and may be useful for 396 * debugging problems in the DIF code generator or in DOF generation . The 397 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 398 */ 399 #ifdef DEBUG 400 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 401 static const char *dtrace_errlast; 402 static kthread_t *dtrace_errthread; 403 static kmutex_t dtrace_errlock; 404 #endif 405 406 /* 407 * DTrace Macros and Constants 408 * 409 * These are various macros that are useful in various spots in the 410 * implementation, along with a few random constants that have no meaning 411 * outside of the implementation. There is no real structure to this cpp 412 * mishmash -- but is there ever? 413 */ 414 #define DTRACE_HASHSTR(hash, probe) \ 415 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 416 417 #define DTRACE_HASHNEXT(hash, probe) \ 418 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 419 420 #define DTRACE_HASHPREV(hash, probe) \ 421 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 422 423 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 424 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 425 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 426 427 #define DTRACE_AGGHASHSIZE_SLEW 17 428 429 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 430 431 /* 432 * The key for a thread-local variable consists of the lower 61 bits of the 433 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 434 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 435 * equal to a variable identifier. This is necessary (but not sufficient) to 436 * assure that global associative arrays never collide with thread-local 437 * variables. To guarantee that they cannot collide, we must also define the 438 * order for keying dynamic variables. That order is: 439 * 440 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 441 * 442 * Because the variable-key and the tls-key are in orthogonal spaces, there is 443 * no way for a global variable key signature to match a thread-local key 444 * signature. 445 */ 446 #ifdef illumos 447 #define DTRACE_TLS_THRKEY(where) { \ 448 uint_t intr = 0; \ 449 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 450 for (; actv; actv >>= 1) \ 451 intr++; \ 452 ASSERT(intr < (1 << 3)); \ 453 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 454 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 455 } 456 #else 457 #define DTRACE_TLS_THRKEY(where) { \ 458 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \ 459 uint_t intr = 0; \ 460 uint_t actv = _c->cpu_intr_actv; \ 461 for (; actv; actv >>= 1) \ 462 intr++; \ 463 ASSERT(intr < (1 << 3)); \ 464 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \ 465 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 466 } 467 #endif 468 469 #define DT_BSWAP_8(x) ((x) & 0xff) 470 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 471 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 472 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 473 474 #define DT_MASK_LO 0x00000000FFFFFFFFULL 475 476 #define DTRACE_STORE(type, tomax, offset, what) \ 477 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 478 479 #if !defined(__x86) && !defined(__aarch64__) 480 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 481 if (addr & (size - 1)) { \ 482 *flags |= CPU_DTRACE_BADALIGN; \ 483 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 484 return (0); \ 485 } 486 #else 487 #define DTRACE_ALIGNCHECK(addr, size, flags) 488 #endif 489 490 /* 491 * Test whether a range of memory starting at testaddr of size testsz falls 492 * within the range of memory described by addr, sz. We take care to avoid 493 * problems with overflow and underflow of the unsigned quantities, and 494 * disallow all negative sizes. Ranges of size 0 are allowed. 495 */ 496 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 497 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 498 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 499 (testaddr) + (testsz) >= (testaddr)) 500 501 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 502 do { \ 503 if ((remp) != NULL) { \ 504 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 505 } \ 506 } while (0) 507 508 509 /* 510 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 511 * alloc_sz on the righthand side of the comparison in order to avoid overflow 512 * or underflow in the comparison with it. This is simpler than the INRANGE 513 * check above, because we know that the dtms_scratch_ptr is valid in the 514 * range. Allocations of size zero are allowed. 515 */ 516 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 517 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 518 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 519 520 #define DTRACE_LOADFUNC(bits) \ 521 /*CSTYLED*/ \ 522 uint##bits##_t \ 523 dtrace_load##bits(uintptr_t addr) \ 524 { \ 525 size_t size = bits / NBBY; \ 526 /*CSTYLED*/ \ 527 uint##bits##_t rval; \ 528 int i; \ 529 volatile uint16_t *flags = (volatile uint16_t *) \ 530 &cpu_core[curcpu].cpuc_dtrace_flags; \ 531 \ 532 DTRACE_ALIGNCHECK(addr, size, flags); \ 533 \ 534 for (i = 0; i < dtrace_toxranges; i++) { \ 535 if (addr >= dtrace_toxrange[i].dtt_limit) \ 536 continue; \ 537 \ 538 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 539 continue; \ 540 \ 541 /* \ 542 * This address falls within a toxic region; return 0. \ 543 */ \ 544 *flags |= CPU_DTRACE_BADADDR; \ 545 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 546 return (0); \ 547 } \ 548 \ 549 *flags |= CPU_DTRACE_NOFAULT; \ 550 /*CSTYLED*/ \ 551 rval = *((volatile uint##bits##_t *)addr); \ 552 *flags &= ~CPU_DTRACE_NOFAULT; \ 553 \ 554 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 555 } 556 557 #ifdef _LP64 558 #define dtrace_loadptr dtrace_load64 559 #else 560 #define dtrace_loadptr dtrace_load32 561 #endif 562 563 #define DTRACE_DYNHASH_FREE 0 564 #define DTRACE_DYNHASH_SINK 1 565 #define DTRACE_DYNHASH_VALID 2 566 567 #define DTRACE_MATCH_NEXT 0 568 #define DTRACE_MATCH_DONE 1 569 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 570 #define DTRACE_STATE_ALIGN 64 571 572 #define DTRACE_FLAGS2FLT(flags) \ 573 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 574 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 575 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 576 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 577 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 578 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 579 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 580 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 581 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 582 DTRACEFLT_UNKNOWN) 583 584 #define DTRACEACT_ISSTRING(act) \ 585 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 586 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 587 588 /* Function prototype definitions: */ 589 static size_t dtrace_strlen(const char *, size_t); 590 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 591 static void dtrace_enabling_provide(dtrace_provider_t *); 592 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 593 static void dtrace_enabling_matchall(void); 594 static void dtrace_enabling_reap(void); 595 static dtrace_state_t *dtrace_anon_grab(void); 596 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 597 dtrace_state_t *, uint64_t, uint64_t); 598 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 599 static void dtrace_buffer_drop(dtrace_buffer_t *); 600 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 601 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 602 dtrace_state_t *, dtrace_mstate_t *); 603 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 604 dtrace_optval_t); 605 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 606 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 607 uint16_t dtrace_load16(uintptr_t); 608 uint32_t dtrace_load32(uintptr_t); 609 uint64_t dtrace_load64(uintptr_t); 610 uint8_t dtrace_load8(uintptr_t); 611 void dtrace_dynvar_clean(dtrace_dstate_t *); 612 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *, 613 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *); 614 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *); 615 static int dtrace_priv_proc(dtrace_state_t *); 616 static void dtrace_getf_barrier(void); 617 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 618 dtrace_mstate_t *, dtrace_vstate_t *); 619 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 620 dtrace_mstate_t *, dtrace_vstate_t *); 621 622 /* 623 * DTrace Probe Context Functions 624 * 625 * These functions are called from probe context. Because probe context is 626 * any context in which C may be called, arbitrarily locks may be held, 627 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 628 * As a result, functions called from probe context may only call other DTrace 629 * support functions -- they may not interact at all with the system at large. 630 * (Note that the ASSERT macro is made probe-context safe by redefining it in 631 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 632 * loads are to be performed from probe context, they _must_ be in terms of 633 * the safe dtrace_load*() variants. 634 * 635 * Some functions in this block are not actually called from probe context; 636 * for these functions, there will be a comment above the function reading 637 * "Note: not called from probe context." 638 */ 639 void 640 dtrace_panic(const char *format, ...) 641 { 642 va_list alist; 643 644 va_start(alist, format); 645 #ifdef __FreeBSD__ 646 vpanic(format, alist); 647 #else 648 dtrace_vpanic(format, alist); 649 #endif 650 va_end(alist); 651 } 652 653 int 654 dtrace_assfail(const char *a, const char *f, int l) 655 { 656 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 657 658 /* 659 * We just need something here that even the most clever compiler 660 * cannot optimize away. 661 */ 662 return (a[(uintptr_t)f]); 663 } 664 665 /* 666 * Atomically increment a specified error counter from probe context. 667 */ 668 static void 669 dtrace_error(uint32_t *counter) 670 { 671 /* 672 * Most counters stored to in probe context are per-CPU counters. 673 * However, there are some error conditions that are sufficiently 674 * arcane that they don't merit per-CPU storage. If these counters 675 * are incremented concurrently on different CPUs, scalability will be 676 * adversely affected -- but we don't expect them to be white-hot in a 677 * correctly constructed enabling... 678 */ 679 uint32_t oval, nval; 680 681 do { 682 oval = *counter; 683 684 if ((nval = oval + 1) == 0) { 685 /* 686 * If the counter would wrap, set it to 1 -- assuring 687 * that the counter is never zero when we have seen 688 * errors. (The counter must be 32-bits because we 689 * aren't guaranteed a 64-bit compare&swap operation.) 690 * To save this code both the infamy of being fingered 691 * by a priggish news story and the indignity of being 692 * the target of a neo-puritan witch trial, we're 693 * carefully avoiding any colorful description of the 694 * likelihood of this condition -- but suffice it to 695 * say that it is only slightly more likely than the 696 * overflow of predicate cache IDs, as discussed in 697 * dtrace_predicate_create(). 698 */ 699 nval = 1; 700 } 701 } while (dtrace_cas32(counter, oval, nval) != oval); 702 } 703 704 /* 705 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 706 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 707 */ 708 /* BEGIN CSTYLED */ 709 DTRACE_LOADFUNC(8) 710 DTRACE_LOADFUNC(16) 711 DTRACE_LOADFUNC(32) 712 DTRACE_LOADFUNC(64) 713 /* END CSTYLED */ 714 715 static int 716 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 717 { 718 if (dest < mstate->dtms_scratch_base) 719 return (0); 720 721 if (dest + size < dest) 722 return (0); 723 724 if (dest + size > mstate->dtms_scratch_ptr) 725 return (0); 726 727 return (1); 728 } 729 730 static int 731 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 732 dtrace_statvar_t **svars, int nsvars) 733 { 734 int i; 735 size_t maxglobalsize, maxlocalsize; 736 737 if (nsvars == 0) 738 return (0); 739 740 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 741 maxlocalsize = maxglobalsize * NCPU; 742 743 for (i = 0; i < nsvars; i++) { 744 dtrace_statvar_t *svar = svars[i]; 745 uint8_t scope; 746 size_t size; 747 748 if (svar == NULL || (size = svar->dtsv_size) == 0) 749 continue; 750 751 scope = svar->dtsv_var.dtdv_scope; 752 753 /* 754 * We verify that our size is valid in the spirit of providing 755 * defense in depth: we want to prevent attackers from using 756 * DTrace to escalate an orthogonal kernel heap corruption bug 757 * into the ability to store to arbitrary locations in memory. 758 */ 759 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 760 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 761 762 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 763 svar->dtsv_size)) { 764 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 765 svar->dtsv_size); 766 return (1); 767 } 768 } 769 770 return (0); 771 } 772 773 /* 774 * Check to see if the address is within a memory region to which a store may 775 * be issued. This includes the DTrace scratch areas, and any DTrace variable 776 * region. The caller of dtrace_canstore() is responsible for performing any 777 * alignment checks that are needed before stores are actually executed. 778 */ 779 static int 780 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 781 dtrace_vstate_t *vstate) 782 { 783 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 784 } 785 786 /* 787 * Implementation of dtrace_canstore which communicates the upper bound of the 788 * allowed memory region. 789 */ 790 static int 791 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 792 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 793 { 794 /* 795 * First, check to see if the address is in scratch space... 796 */ 797 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 798 mstate->dtms_scratch_size)) { 799 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 800 mstate->dtms_scratch_size); 801 return (1); 802 } 803 804 /* 805 * Now check to see if it's a dynamic variable. This check will pick 806 * up both thread-local variables and any global dynamically-allocated 807 * variables. 808 */ 809 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 810 vstate->dtvs_dynvars.dtds_size)) { 811 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 812 uintptr_t base = (uintptr_t)dstate->dtds_base + 813 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 814 uintptr_t chunkoffs; 815 dtrace_dynvar_t *dvar; 816 817 /* 818 * Before we assume that we can store here, we need to make 819 * sure that it isn't in our metadata -- storing to our 820 * dynamic variable metadata would corrupt our state. For 821 * the range to not include any dynamic variable metadata, 822 * it must: 823 * 824 * (1) Start above the hash table that is at the base of 825 * the dynamic variable space 826 * 827 * (2) Have a starting chunk offset that is beyond the 828 * dtrace_dynvar_t that is at the base of every chunk 829 * 830 * (3) Not span a chunk boundary 831 * 832 * (4) Not be in the tuple space of a dynamic variable 833 * 834 */ 835 if (addr < base) 836 return (0); 837 838 chunkoffs = (addr - base) % dstate->dtds_chunksize; 839 840 if (chunkoffs < sizeof (dtrace_dynvar_t)) 841 return (0); 842 843 if (chunkoffs + sz > dstate->dtds_chunksize) 844 return (0); 845 846 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 847 848 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 849 return (0); 850 851 if (chunkoffs < sizeof (dtrace_dynvar_t) + 852 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 853 return (0); 854 855 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 856 return (1); 857 } 858 859 /* 860 * Finally, check the static local and global variables. These checks 861 * take the longest, so we perform them last. 862 */ 863 if (dtrace_canstore_statvar(addr, sz, remain, 864 vstate->dtvs_locals, vstate->dtvs_nlocals)) 865 return (1); 866 867 if (dtrace_canstore_statvar(addr, sz, remain, 868 vstate->dtvs_globals, vstate->dtvs_nglobals)) 869 return (1); 870 871 return (0); 872 } 873 874 875 /* 876 * Convenience routine to check to see if the address is within a memory 877 * region in which a load may be issued given the user's privilege level; 878 * if not, it sets the appropriate error flags and loads 'addr' into the 879 * illegal value slot. 880 * 881 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 882 * appropriate memory access protection. 883 */ 884 static int 885 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 886 dtrace_vstate_t *vstate) 887 { 888 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 889 } 890 891 /* 892 * Implementation of dtrace_canload which communicates the uppoer bound of the 893 * allowed memory region. 894 */ 895 static int 896 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 897 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 898 { 899 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 900 file_t *fp; 901 902 /* 903 * If we hold the privilege to read from kernel memory, then 904 * everything is readable. 905 */ 906 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 907 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 908 return (1); 909 } 910 911 /* 912 * You can obviously read that which you can store. 913 */ 914 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 915 return (1); 916 917 /* 918 * We're allowed to read from our own string table. 919 */ 920 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 921 mstate->dtms_difo->dtdo_strlen)) { 922 DTRACE_RANGE_REMAIN(remain, addr, 923 mstate->dtms_difo->dtdo_strtab, 924 mstate->dtms_difo->dtdo_strlen); 925 return (1); 926 } 927 928 if (vstate->dtvs_state != NULL && 929 dtrace_priv_proc(vstate->dtvs_state)) { 930 proc_t *p; 931 932 /* 933 * When we have privileges to the current process, there are 934 * several context-related kernel structures that are safe to 935 * read, even absent the privilege to read from kernel memory. 936 * These reads are safe because these structures contain only 937 * state that (1) we're permitted to read, (2) is harmless or 938 * (3) contains pointers to additional kernel state that we're 939 * not permitted to read (and as such, do not present an 940 * opportunity for privilege escalation). Finally (and 941 * critically), because of the nature of their relation with 942 * the current thread context, the memory associated with these 943 * structures cannot change over the duration of probe context, 944 * and it is therefore impossible for this memory to be 945 * deallocated and reallocated as something else while it's 946 * being operated upon. 947 */ 948 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 949 DTRACE_RANGE_REMAIN(remain, addr, curthread, 950 sizeof (kthread_t)); 951 return (1); 952 } 953 954 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 955 sz, curthread->t_procp, sizeof (proc_t))) { 956 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 957 sizeof (proc_t)); 958 return (1); 959 } 960 961 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 962 curthread->t_cred, sizeof (cred_t))) { 963 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 964 sizeof (cred_t)); 965 return (1); 966 } 967 968 #ifdef illumos 969 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 970 &(p->p_pidp->pid_id), sizeof (pid_t))) { 971 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 972 sizeof (pid_t)); 973 return (1); 974 } 975 976 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 977 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 978 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 979 offsetof(cpu_t, cpu_pause_thread)); 980 return (1); 981 } 982 #endif 983 } 984 985 if ((fp = mstate->dtms_getf) != NULL) { 986 uintptr_t psz = sizeof (void *); 987 vnode_t *vp; 988 vnodeops_t *op; 989 990 /* 991 * When getf() returns a file_t, the enabling is implicitly 992 * granted the (transient) right to read the returned file_t 993 * as well as the v_path and v_op->vnop_name of the underlying 994 * vnode. These accesses are allowed after a successful 995 * getf() because the members that they refer to cannot change 996 * once set -- and the barrier logic in the kernel's closef() 997 * path assures that the file_t and its referenced vode_t 998 * cannot themselves be stale (that is, it impossible for 999 * either dtms_getf itself or its f_vnode member to reference 1000 * freed memory). 1001 */ 1002 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 1003 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 1004 return (1); 1005 } 1006 1007 if ((vp = fp->f_vnode) != NULL) { 1008 size_t slen; 1009 #ifdef illumos 1010 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 1011 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 1012 psz); 1013 return (1); 1014 } 1015 slen = strlen(vp->v_path) + 1; 1016 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 1017 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 1018 slen); 1019 return (1); 1020 } 1021 #endif 1022 1023 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 1024 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 1025 psz); 1026 return (1); 1027 } 1028 1029 #ifdef illumos 1030 if ((op = vp->v_op) != NULL && 1031 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 1032 DTRACE_RANGE_REMAIN(remain, addr, 1033 &op->vnop_name, psz); 1034 return (1); 1035 } 1036 1037 if (op != NULL && op->vnop_name != NULL && 1038 DTRACE_INRANGE(addr, sz, op->vnop_name, 1039 (slen = strlen(op->vnop_name) + 1))) { 1040 DTRACE_RANGE_REMAIN(remain, addr, 1041 op->vnop_name, slen); 1042 return (1); 1043 } 1044 #endif 1045 } 1046 } 1047 1048 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 1049 *illval = addr; 1050 return (0); 1051 } 1052 1053 /* 1054 * Convenience routine to check to see if a given string is within a memory 1055 * region in which a load may be issued given the user's privilege level; 1056 * this exists so that we don't need to issue unnecessary dtrace_strlen() 1057 * calls in the event that the user has all privileges. 1058 */ 1059 static int 1060 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 1061 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1062 { 1063 size_t rsize; 1064 1065 /* 1066 * If we hold the privilege to read from kernel memory, then 1067 * everything is readable. 1068 */ 1069 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1070 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 1071 return (1); 1072 } 1073 1074 /* 1075 * Even if the caller is uninterested in querying the remaining valid 1076 * range, it is required to ensure that the access is allowed. 1077 */ 1078 if (remain == NULL) { 1079 remain = &rsize; 1080 } 1081 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 1082 size_t strsz; 1083 /* 1084 * Perform the strlen after determining the length of the 1085 * memory region which is accessible. This prevents timing 1086 * information from being used to find NULs in memory which is 1087 * not accessible to the caller. 1088 */ 1089 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 1090 MIN(sz, *remain)); 1091 if (strsz <= *remain) { 1092 return (1); 1093 } 1094 } 1095 1096 return (0); 1097 } 1098 1099 /* 1100 * Convenience routine to check to see if a given variable is within a memory 1101 * region in which a load may be issued given the user's privilege level. 1102 */ 1103 static int 1104 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 1105 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1106 { 1107 size_t sz; 1108 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1109 1110 /* 1111 * Calculate the max size before performing any checks since even 1112 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 1113 * return the max length via 'remain'. 1114 */ 1115 if (type->dtdt_kind == DIF_TYPE_STRING) { 1116 dtrace_state_t *state = vstate->dtvs_state; 1117 1118 if (state != NULL) { 1119 sz = state->dts_options[DTRACEOPT_STRSIZE]; 1120 } else { 1121 /* 1122 * In helper context, we have a NULL state; fall back 1123 * to using the system-wide default for the string size 1124 * in this case. 1125 */ 1126 sz = dtrace_strsize_default; 1127 } 1128 } else { 1129 sz = type->dtdt_size; 1130 } 1131 1132 /* 1133 * If we hold the privilege to read from kernel memory, then 1134 * everything is readable. 1135 */ 1136 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1137 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1138 return (1); 1139 } 1140 1141 if (type->dtdt_kind == DIF_TYPE_STRING) { 1142 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1143 vstate)); 1144 } 1145 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1146 vstate)); 1147 } 1148 1149 /* 1150 * Convert a string to a signed integer using safe loads. 1151 * 1152 * NOTE: This function uses various macros from strtolctype.h to manipulate 1153 * digit values, etc -- these have all been checked to ensure they make 1154 * no additional function calls. 1155 */ 1156 static int64_t 1157 dtrace_strtoll(char *input, int base, size_t limit) 1158 { 1159 uintptr_t pos = (uintptr_t)input; 1160 int64_t val = 0; 1161 int x; 1162 boolean_t neg = B_FALSE; 1163 char c, cc, ccc; 1164 uintptr_t end = pos + limit; 1165 1166 /* 1167 * Consume any whitespace preceding digits. 1168 */ 1169 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1170 pos++; 1171 1172 /* 1173 * Handle an explicit sign if one is present. 1174 */ 1175 if (c == '-' || c == '+') { 1176 if (c == '-') 1177 neg = B_TRUE; 1178 c = dtrace_load8(++pos); 1179 } 1180 1181 /* 1182 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1183 * if present. 1184 */ 1185 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1186 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1187 pos += 2; 1188 c = ccc; 1189 } 1190 1191 /* 1192 * Read in contiguous digits until the first non-digit character. 1193 */ 1194 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1195 c = dtrace_load8(++pos)) 1196 val = val * base + x; 1197 1198 return (neg ? -val : val); 1199 } 1200 1201 /* 1202 * Compare two strings using safe loads. 1203 */ 1204 static int 1205 dtrace_strncmp(char *s1, char *s2, size_t limit) 1206 { 1207 uint8_t c1, c2; 1208 volatile uint16_t *flags; 1209 1210 if (s1 == s2 || limit == 0) 1211 return (0); 1212 1213 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1214 1215 do { 1216 if (s1 == NULL) { 1217 c1 = '\0'; 1218 } else { 1219 c1 = dtrace_load8((uintptr_t)s1++); 1220 } 1221 1222 if (s2 == NULL) { 1223 c2 = '\0'; 1224 } else { 1225 c2 = dtrace_load8((uintptr_t)s2++); 1226 } 1227 1228 if (c1 != c2) 1229 return (c1 - c2); 1230 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1231 1232 return (0); 1233 } 1234 1235 /* 1236 * Compute strlen(s) for a string using safe memory accesses. The additional 1237 * len parameter is used to specify a maximum length to ensure completion. 1238 */ 1239 static size_t 1240 dtrace_strlen(const char *s, size_t lim) 1241 { 1242 uint_t len; 1243 1244 for (len = 0; len != lim; len++) { 1245 if (dtrace_load8((uintptr_t)s++) == '\0') 1246 break; 1247 } 1248 1249 return (len); 1250 } 1251 1252 /* 1253 * Check if an address falls within a toxic region. 1254 */ 1255 static int 1256 dtrace_istoxic(uintptr_t kaddr, size_t size) 1257 { 1258 uintptr_t taddr, tsize; 1259 int i; 1260 1261 for (i = 0; i < dtrace_toxranges; i++) { 1262 taddr = dtrace_toxrange[i].dtt_base; 1263 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1264 1265 if (kaddr - taddr < tsize) { 1266 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1267 cpu_core[curcpu].cpuc_dtrace_illval = kaddr; 1268 return (1); 1269 } 1270 1271 if (taddr - kaddr < size) { 1272 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1273 cpu_core[curcpu].cpuc_dtrace_illval = taddr; 1274 return (1); 1275 } 1276 } 1277 1278 return (0); 1279 } 1280 1281 /* 1282 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1283 * memory specified by the DIF program. The dst is assumed to be safe memory 1284 * that we can store to directly because it is managed by DTrace. As with 1285 * standard bcopy, overlapping copies are handled properly. 1286 */ 1287 static void 1288 dtrace_bcopy(const void *src, void *dst, size_t len) 1289 { 1290 if (len != 0) { 1291 uint8_t *s1 = dst; 1292 const uint8_t *s2 = src; 1293 1294 if (s1 <= s2) { 1295 do { 1296 *s1++ = dtrace_load8((uintptr_t)s2++); 1297 } while (--len != 0); 1298 } else { 1299 s2 += len; 1300 s1 += len; 1301 1302 do { 1303 *--s1 = dtrace_load8((uintptr_t)--s2); 1304 } while (--len != 0); 1305 } 1306 } 1307 } 1308 1309 /* 1310 * Copy src to dst using safe memory accesses, up to either the specified 1311 * length, or the point that a nul byte is encountered. The src is assumed to 1312 * be unsafe memory specified by the DIF program. The dst is assumed to be 1313 * safe memory that we can store to directly because it is managed by DTrace. 1314 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1315 */ 1316 static void 1317 dtrace_strcpy(const void *src, void *dst, size_t len) 1318 { 1319 if (len != 0) { 1320 uint8_t *s1 = dst, c; 1321 const uint8_t *s2 = src; 1322 1323 do { 1324 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1325 } while (--len != 0 && c != '\0'); 1326 } 1327 } 1328 1329 /* 1330 * Copy src to dst, deriving the size and type from the specified (BYREF) 1331 * variable type. The src is assumed to be unsafe memory specified by the DIF 1332 * program. The dst is assumed to be DTrace variable memory that is of the 1333 * specified type; we assume that we can store to directly. 1334 */ 1335 static void 1336 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1337 { 1338 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1339 1340 if (type->dtdt_kind == DIF_TYPE_STRING) { 1341 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1342 } else { 1343 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1344 } 1345 } 1346 1347 /* 1348 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1349 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1350 * safe memory that we can access directly because it is managed by DTrace. 1351 */ 1352 static int 1353 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1354 { 1355 volatile uint16_t *flags; 1356 1357 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1358 1359 if (s1 == s2) 1360 return (0); 1361 1362 if (s1 == NULL || s2 == NULL) 1363 return (1); 1364 1365 if (s1 != s2 && len != 0) { 1366 const uint8_t *ps1 = s1; 1367 const uint8_t *ps2 = s2; 1368 1369 do { 1370 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1371 return (1); 1372 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1373 } 1374 return (0); 1375 } 1376 1377 /* 1378 * Zero the specified region using a simple byte-by-byte loop. Note that this 1379 * is for safe DTrace-managed memory only. 1380 */ 1381 static void 1382 dtrace_bzero(void *dst, size_t len) 1383 { 1384 uchar_t *cp; 1385 1386 for (cp = dst; len != 0; len--) 1387 *cp++ = 0; 1388 } 1389 1390 static void 1391 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1392 { 1393 uint64_t result[2]; 1394 1395 result[0] = addend1[0] + addend2[0]; 1396 result[1] = addend1[1] + addend2[1] + 1397 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1398 1399 sum[0] = result[0]; 1400 sum[1] = result[1]; 1401 } 1402 1403 /* 1404 * Shift the 128-bit value in a by b. If b is positive, shift left. 1405 * If b is negative, shift right. 1406 */ 1407 static void 1408 dtrace_shift_128(uint64_t *a, int b) 1409 { 1410 uint64_t mask; 1411 1412 if (b == 0) 1413 return; 1414 1415 if (b < 0) { 1416 b = -b; 1417 if (b >= 64) { 1418 a[0] = a[1] >> (b - 64); 1419 a[1] = 0; 1420 } else { 1421 a[0] >>= b; 1422 mask = 1LL << (64 - b); 1423 mask -= 1; 1424 a[0] |= ((a[1] & mask) << (64 - b)); 1425 a[1] >>= b; 1426 } 1427 } else { 1428 if (b >= 64) { 1429 a[1] = a[0] << (b - 64); 1430 a[0] = 0; 1431 } else { 1432 a[1] <<= b; 1433 mask = a[0] >> (64 - b); 1434 a[1] |= mask; 1435 a[0] <<= b; 1436 } 1437 } 1438 } 1439 1440 /* 1441 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1442 * use native multiplication on those, and then re-combine into the 1443 * resulting 128-bit value. 1444 * 1445 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1446 * hi1 * hi2 << 64 + 1447 * hi1 * lo2 << 32 + 1448 * hi2 * lo1 << 32 + 1449 * lo1 * lo2 1450 */ 1451 static void 1452 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1453 { 1454 uint64_t hi1, hi2, lo1, lo2; 1455 uint64_t tmp[2]; 1456 1457 hi1 = factor1 >> 32; 1458 hi2 = factor2 >> 32; 1459 1460 lo1 = factor1 & DT_MASK_LO; 1461 lo2 = factor2 & DT_MASK_LO; 1462 1463 product[0] = lo1 * lo2; 1464 product[1] = hi1 * hi2; 1465 1466 tmp[0] = hi1 * lo2; 1467 tmp[1] = 0; 1468 dtrace_shift_128(tmp, 32); 1469 dtrace_add_128(product, tmp, product); 1470 1471 tmp[0] = hi2 * lo1; 1472 tmp[1] = 0; 1473 dtrace_shift_128(tmp, 32); 1474 dtrace_add_128(product, tmp, product); 1475 } 1476 1477 /* 1478 * This privilege check should be used by actions and subroutines to 1479 * verify that the user credentials of the process that enabled the 1480 * invoking ECB match the target credentials 1481 */ 1482 static int 1483 dtrace_priv_proc_common_user(dtrace_state_t *state) 1484 { 1485 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1486 1487 /* 1488 * We should always have a non-NULL state cred here, since if cred 1489 * is null (anonymous tracing), we fast-path bypass this routine. 1490 */ 1491 ASSERT(s_cr != NULL); 1492 1493 if ((cr = CRED()) != NULL && 1494 s_cr->cr_uid == cr->cr_uid && 1495 s_cr->cr_uid == cr->cr_ruid && 1496 s_cr->cr_uid == cr->cr_suid && 1497 s_cr->cr_gid == cr->cr_gid && 1498 s_cr->cr_gid == cr->cr_rgid && 1499 s_cr->cr_gid == cr->cr_sgid) 1500 return (1); 1501 1502 return (0); 1503 } 1504 1505 /* 1506 * This privilege check should be used by actions and subroutines to 1507 * verify that the zone of the process that enabled the invoking ECB 1508 * matches the target credentials 1509 */ 1510 static int 1511 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1512 { 1513 #ifdef illumos 1514 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1515 1516 /* 1517 * We should always have a non-NULL state cred here, since if cred 1518 * is null (anonymous tracing), we fast-path bypass this routine. 1519 */ 1520 ASSERT(s_cr != NULL); 1521 1522 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1523 return (1); 1524 1525 return (0); 1526 #else 1527 return (1); 1528 #endif 1529 } 1530 1531 /* 1532 * This privilege check should be used by actions and subroutines to 1533 * verify that the process has not setuid or changed credentials. 1534 */ 1535 static int 1536 dtrace_priv_proc_common_nocd(void) 1537 { 1538 proc_t *proc; 1539 1540 if ((proc = ttoproc(curthread)) != NULL && 1541 !(proc->p_flag & SNOCD)) 1542 return (1); 1543 1544 return (0); 1545 } 1546 1547 static int 1548 dtrace_priv_proc_destructive(dtrace_state_t *state) 1549 { 1550 int action = state->dts_cred.dcr_action; 1551 1552 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1553 dtrace_priv_proc_common_zone(state) == 0) 1554 goto bad; 1555 1556 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1557 dtrace_priv_proc_common_user(state) == 0) 1558 goto bad; 1559 1560 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1561 dtrace_priv_proc_common_nocd() == 0) 1562 goto bad; 1563 1564 return (1); 1565 1566 bad: 1567 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1568 1569 return (0); 1570 } 1571 1572 static int 1573 dtrace_priv_proc_control(dtrace_state_t *state) 1574 { 1575 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1576 return (1); 1577 1578 if (dtrace_priv_proc_common_zone(state) && 1579 dtrace_priv_proc_common_user(state) && 1580 dtrace_priv_proc_common_nocd()) 1581 return (1); 1582 1583 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1584 1585 return (0); 1586 } 1587 1588 static int 1589 dtrace_priv_proc(dtrace_state_t *state) 1590 { 1591 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1592 return (1); 1593 1594 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1595 1596 return (0); 1597 } 1598 1599 static int 1600 dtrace_priv_kernel(dtrace_state_t *state) 1601 { 1602 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1603 return (1); 1604 1605 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1606 1607 return (0); 1608 } 1609 1610 static int 1611 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1612 { 1613 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1614 return (1); 1615 1616 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1617 1618 return (0); 1619 } 1620 1621 /* 1622 * Determine if the dte_cond of the specified ECB allows for processing of 1623 * the current probe to continue. Note that this routine may allow continued 1624 * processing, but with access(es) stripped from the mstate's dtms_access 1625 * field. 1626 */ 1627 static int 1628 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1629 dtrace_ecb_t *ecb) 1630 { 1631 dtrace_probe_t *probe = ecb->dte_probe; 1632 dtrace_provider_t *prov = probe->dtpr_provider; 1633 dtrace_pops_t *pops = &prov->dtpv_pops; 1634 int mode = DTRACE_MODE_NOPRIV_DROP; 1635 1636 ASSERT(ecb->dte_cond); 1637 1638 #ifdef illumos 1639 if (pops->dtps_mode != NULL) { 1640 mode = pops->dtps_mode(prov->dtpv_arg, 1641 probe->dtpr_id, probe->dtpr_arg); 1642 1643 ASSERT((mode & DTRACE_MODE_USER) || 1644 (mode & DTRACE_MODE_KERNEL)); 1645 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1646 (mode & DTRACE_MODE_NOPRIV_DROP)); 1647 } 1648 1649 /* 1650 * If the dte_cond bits indicate that this consumer is only allowed to 1651 * see user-mode firings of this probe, call the provider's dtps_mode() 1652 * entry point to check that the probe was fired while in a user 1653 * context. If that's not the case, use the policy specified by the 1654 * provider to determine if we drop the probe or merely restrict 1655 * operation. 1656 */ 1657 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1658 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1659 1660 if (!(mode & DTRACE_MODE_USER)) { 1661 if (mode & DTRACE_MODE_NOPRIV_DROP) 1662 return (0); 1663 1664 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1665 } 1666 } 1667 #endif 1668 1669 /* 1670 * This is more subtle than it looks. We have to be absolutely certain 1671 * that CRED() isn't going to change out from under us so it's only 1672 * legit to examine that structure if we're in constrained situations. 1673 * Currently, the only times we'll this check is if a non-super-user 1674 * has enabled the profile or syscall providers -- providers that 1675 * allow visibility of all processes. For the profile case, the check 1676 * above will ensure that we're examining a user context. 1677 */ 1678 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1679 cred_t *cr; 1680 cred_t *s_cr = state->dts_cred.dcr_cred; 1681 proc_t *proc; 1682 1683 ASSERT(s_cr != NULL); 1684 1685 if ((cr = CRED()) == NULL || 1686 s_cr->cr_uid != cr->cr_uid || 1687 s_cr->cr_uid != cr->cr_ruid || 1688 s_cr->cr_uid != cr->cr_suid || 1689 s_cr->cr_gid != cr->cr_gid || 1690 s_cr->cr_gid != cr->cr_rgid || 1691 s_cr->cr_gid != cr->cr_sgid || 1692 (proc = ttoproc(curthread)) == NULL || 1693 (proc->p_flag & SNOCD)) { 1694 if (mode & DTRACE_MODE_NOPRIV_DROP) 1695 return (0); 1696 1697 #ifdef illumos 1698 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1699 #endif 1700 } 1701 } 1702 1703 #ifdef illumos 1704 /* 1705 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1706 * in our zone, check to see if our mode policy is to restrict rather 1707 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1708 * and DTRACE_ACCESS_ARGS 1709 */ 1710 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1711 cred_t *cr; 1712 cred_t *s_cr = state->dts_cred.dcr_cred; 1713 1714 ASSERT(s_cr != NULL); 1715 1716 if ((cr = CRED()) == NULL || 1717 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1718 if (mode & DTRACE_MODE_NOPRIV_DROP) 1719 return (0); 1720 1721 mstate->dtms_access &= 1722 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1723 } 1724 } 1725 #endif 1726 1727 return (1); 1728 } 1729 1730 /* 1731 * Note: not called from probe context. This function is called 1732 * asynchronously (and at a regular interval) from outside of probe context to 1733 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1734 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1735 */ 1736 void 1737 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1738 { 1739 dtrace_dynvar_t *dirty; 1740 dtrace_dstate_percpu_t *dcpu; 1741 dtrace_dynvar_t **rinsep; 1742 int i, j, work = 0; 1743 1744 for (i = 0; i < NCPU; i++) { 1745 dcpu = &dstate->dtds_percpu[i]; 1746 rinsep = &dcpu->dtdsc_rinsing; 1747 1748 /* 1749 * If the dirty list is NULL, there is no dirty work to do. 1750 */ 1751 if (dcpu->dtdsc_dirty == NULL) 1752 continue; 1753 1754 if (dcpu->dtdsc_rinsing != NULL) { 1755 /* 1756 * If the rinsing list is non-NULL, then it is because 1757 * this CPU was selected to accept another CPU's 1758 * dirty list -- and since that time, dirty buffers 1759 * have accumulated. This is a highly unlikely 1760 * condition, but we choose to ignore the dirty 1761 * buffers -- they'll be picked up a future cleanse. 1762 */ 1763 continue; 1764 } 1765 1766 if (dcpu->dtdsc_clean != NULL) { 1767 /* 1768 * If the clean list is non-NULL, then we're in a 1769 * situation where a CPU has done deallocations (we 1770 * have a non-NULL dirty list) but no allocations (we 1771 * also have a non-NULL clean list). We can't simply 1772 * move the dirty list into the clean list on this 1773 * CPU, yet we also don't want to allow this condition 1774 * to persist, lest a short clean list prevent a 1775 * massive dirty list from being cleaned (which in 1776 * turn could lead to otherwise avoidable dynamic 1777 * drops). To deal with this, we look for some CPU 1778 * with a NULL clean list, NULL dirty list, and NULL 1779 * rinsing list -- and then we borrow this CPU to 1780 * rinse our dirty list. 1781 */ 1782 for (j = 0; j < NCPU; j++) { 1783 dtrace_dstate_percpu_t *rinser; 1784 1785 rinser = &dstate->dtds_percpu[j]; 1786 1787 if (rinser->dtdsc_rinsing != NULL) 1788 continue; 1789 1790 if (rinser->dtdsc_dirty != NULL) 1791 continue; 1792 1793 if (rinser->dtdsc_clean != NULL) 1794 continue; 1795 1796 rinsep = &rinser->dtdsc_rinsing; 1797 break; 1798 } 1799 1800 if (j == NCPU) { 1801 /* 1802 * We were unable to find another CPU that 1803 * could accept this dirty list -- we are 1804 * therefore unable to clean it now. 1805 */ 1806 dtrace_dynvar_failclean++; 1807 continue; 1808 } 1809 } 1810 1811 work = 1; 1812 1813 /* 1814 * Atomically move the dirty list aside. 1815 */ 1816 do { 1817 dirty = dcpu->dtdsc_dirty; 1818 1819 /* 1820 * Before we zap the dirty list, set the rinsing list. 1821 * (This allows for a potential assertion in 1822 * dtrace_dynvar(): if a free dynamic variable appears 1823 * on a hash chain, either the dirty list or the 1824 * rinsing list for some CPU must be non-NULL.) 1825 */ 1826 *rinsep = dirty; 1827 dtrace_membar_producer(); 1828 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1829 dirty, NULL) != dirty); 1830 } 1831 1832 if (!work) { 1833 /* 1834 * We have no work to do; we can simply return. 1835 */ 1836 return; 1837 } 1838 1839 dtrace_sync(); 1840 1841 for (i = 0; i < NCPU; i++) { 1842 dcpu = &dstate->dtds_percpu[i]; 1843 1844 if (dcpu->dtdsc_rinsing == NULL) 1845 continue; 1846 1847 /* 1848 * We are now guaranteed that no hash chain contains a pointer 1849 * into this dirty list; we can make it clean. 1850 */ 1851 ASSERT(dcpu->dtdsc_clean == NULL); 1852 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1853 dcpu->dtdsc_rinsing = NULL; 1854 } 1855 1856 /* 1857 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1858 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1859 * This prevents a race whereby a CPU incorrectly decides that 1860 * the state should be something other than DTRACE_DSTATE_CLEAN 1861 * after dtrace_dynvar_clean() has completed. 1862 */ 1863 dtrace_sync(); 1864 1865 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1866 } 1867 1868 /* 1869 * Depending on the value of the op parameter, this function looks-up, 1870 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1871 * allocation is requested, this function will return a pointer to a 1872 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1873 * variable can be allocated. If NULL is returned, the appropriate counter 1874 * will be incremented. 1875 */ 1876 dtrace_dynvar_t * 1877 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1878 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1879 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1880 { 1881 uint64_t hashval = DTRACE_DYNHASH_VALID; 1882 dtrace_dynhash_t *hash = dstate->dtds_hash; 1883 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1884 processorid_t me = curcpu, cpu = me; 1885 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1886 size_t bucket, ksize; 1887 size_t chunksize = dstate->dtds_chunksize; 1888 uintptr_t kdata, lock, nstate; 1889 uint_t i; 1890 1891 ASSERT(nkeys != 0); 1892 1893 /* 1894 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1895 * algorithm. For the by-value portions, we perform the algorithm in 1896 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1897 * bit, and seems to have only a minute effect on distribution. For 1898 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1899 * over each referenced byte. It's painful to do this, but it's much 1900 * better than pathological hash distribution. The efficacy of the 1901 * hashing algorithm (and a comparison with other algorithms) may be 1902 * found by running the ::dtrace_dynstat MDB dcmd. 1903 */ 1904 for (i = 0; i < nkeys; i++) { 1905 if (key[i].dttk_size == 0) { 1906 uint64_t val = key[i].dttk_value; 1907 1908 hashval += (val >> 48) & 0xffff; 1909 hashval += (hashval << 10); 1910 hashval ^= (hashval >> 6); 1911 1912 hashval += (val >> 32) & 0xffff; 1913 hashval += (hashval << 10); 1914 hashval ^= (hashval >> 6); 1915 1916 hashval += (val >> 16) & 0xffff; 1917 hashval += (hashval << 10); 1918 hashval ^= (hashval >> 6); 1919 1920 hashval += val & 0xffff; 1921 hashval += (hashval << 10); 1922 hashval ^= (hashval >> 6); 1923 } else { 1924 /* 1925 * This is incredibly painful, but it beats the hell 1926 * out of the alternative. 1927 */ 1928 uint64_t j, size = key[i].dttk_size; 1929 uintptr_t base = (uintptr_t)key[i].dttk_value; 1930 1931 if (!dtrace_canload(base, size, mstate, vstate)) 1932 break; 1933 1934 for (j = 0; j < size; j++) { 1935 hashval += dtrace_load8(base + j); 1936 hashval += (hashval << 10); 1937 hashval ^= (hashval >> 6); 1938 } 1939 } 1940 } 1941 1942 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1943 return (NULL); 1944 1945 hashval += (hashval << 3); 1946 hashval ^= (hashval >> 11); 1947 hashval += (hashval << 15); 1948 1949 /* 1950 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1951 * comes out to be one of our two sentinel hash values. If this 1952 * actually happens, we set the hashval to be a value known to be a 1953 * non-sentinel value. 1954 */ 1955 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1956 hashval = DTRACE_DYNHASH_VALID; 1957 1958 /* 1959 * Yes, it's painful to do a divide here. If the cycle count becomes 1960 * important here, tricks can be pulled to reduce it. (However, it's 1961 * critical that hash collisions be kept to an absolute minimum; 1962 * they're much more painful than a divide.) It's better to have a 1963 * solution that generates few collisions and still keeps things 1964 * relatively simple. 1965 */ 1966 bucket = hashval % dstate->dtds_hashsize; 1967 1968 if (op == DTRACE_DYNVAR_DEALLOC) { 1969 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1970 1971 for (;;) { 1972 while ((lock = *lockp) & 1) 1973 continue; 1974 1975 if (dtrace_casptr((volatile void *)lockp, 1976 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock) 1977 break; 1978 } 1979 1980 dtrace_membar_producer(); 1981 } 1982 1983 top: 1984 prev = NULL; 1985 lock = hash[bucket].dtdh_lock; 1986 1987 dtrace_membar_consumer(); 1988 1989 start = hash[bucket].dtdh_chain; 1990 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1991 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1992 op != DTRACE_DYNVAR_DEALLOC)); 1993 1994 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1995 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1996 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1997 1998 if (dvar->dtdv_hashval != hashval) { 1999 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 2000 /* 2001 * We've reached the sink, and therefore the 2002 * end of the hash chain; we can kick out of 2003 * the loop knowing that we have seen a valid 2004 * snapshot of state. 2005 */ 2006 ASSERT(dvar->dtdv_next == NULL); 2007 ASSERT(dvar == &dtrace_dynhash_sink); 2008 break; 2009 } 2010 2011 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 2012 /* 2013 * We've gone off the rails: somewhere along 2014 * the line, one of the members of this hash 2015 * chain was deleted. Note that we could also 2016 * detect this by simply letting this loop run 2017 * to completion, as we would eventually hit 2018 * the end of the dirty list. However, we 2019 * want to avoid running the length of the 2020 * dirty list unnecessarily (it might be quite 2021 * long), so we catch this as early as 2022 * possible by detecting the hash marker. In 2023 * this case, we simply set dvar to NULL and 2024 * break; the conditional after the loop will 2025 * send us back to top. 2026 */ 2027 dvar = NULL; 2028 break; 2029 } 2030 2031 goto next; 2032 } 2033 2034 if (dtuple->dtt_nkeys != nkeys) 2035 goto next; 2036 2037 for (i = 0; i < nkeys; i++, dkey++) { 2038 if (dkey->dttk_size != key[i].dttk_size) 2039 goto next; /* size or type mismatch */ 2040 2041 if (dkey->dttk_size != 0) { 2042 if (dtrace_bcmp( 2043 (void *)(uintptr_t)key[i].dttk_value, 2044 (void *)(uintptr_t)dkey->dttk_value, 2045 dkey->dttk_size)) 2046 goto next; 2047 } else { 2048 if (dkey->dttk_value != key[i].dttk_value) 2049 goto next; 2050 } 2051 } 2052 2053 if (op != DTRACE_DYNVAR_DEALLOC) 2054 return (dvar); 2055 2056 ASSERT(dvar->dtdv_next == NULL || 2057 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 2058 2059 if (prev != NULL) { 2060 ASSERT(hash[bucket].dtdh_chain != dvar); 2061 ASSERT(start != dvar); 2062 ASSERT(prev->dtdv_next == dvar); 2063 prev->dtdv_next = dvar->dtdv_next; 2064 } else { 2065 if (dtrace_casptr(&hash[bucket].dtdh_chain, 2066 start, dvar->dtdv_next) != start) { 2067 /* 2068 * We have failed to atomically swing the 2069 * hash table head pointer, presumably because 2070 * of a conflicting allocation on another CPU. 2071 * We need to reread the hash chain and try 2072 * again. 2073 */ 2074 goto top; 2075 } 2076 } 2077 2078 dtrace_membar_producer(); 2079 2080 /* 2081 * Now set the hash value to indicate that it's free. 2082 */ 2083 ASSERT(hash[bucket].dtdh_chain != dvar); 2084 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2085 2086 dtrace_membar_producer(); 2087 2088 /* 2089 * Set the next pointer to point at the dirty list, and 2090 * atomically swing the dirty pointer to the newly freed dvar. 2091 */ 2092 do { 2093 next = dcpu->dtdsc_dirty; 2094 dvar->dtdv_next = next; 2095 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 2096 2097 /* 2098 * Finally, unlock this hash bucket. 2099 */ 2100 ASSERT(hash[bucket].dtdh_lock == lock); 2101 ASSERT(lock & 1); 2102 hash[bucket].dtdh_lock++; 2103 2104 return (NULL); 2105 next: 2106 prev = dvar; 2107 continue; 2108 } 2109 2110 if (dvar == NULL) { 2111 /* 2112 * If dvar is NULL, it is because we went off the rails: 2113 * one of the elements that we traversed in the hash chain 2114 * was deleted while we were traversing it. In this case, 2115 * we assert that we aren't doing a dealloc (deallocs lock 2116 * the hash bucket to prevent themselves from racing with 2117 * one another), and retry the hash chain traversal. 2118 */ 2119 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 2120 goto top; 2121 } 2122 2123 if (op != DTRACE_DYNVAR_ALLOC) { 2124 /* 2125 * If we are not to allocate a new variable, we want to 2126 * return NULL now. Before we return, check that the value 2127 * of the lock word hasn't changed. If it has, we may have 2128 * seen an inconsistent snapshot. 2129 */ 2130 if (op == DTRACE_DYNVAR_NOALLOC) { 2131 if (hash[bucket].dtdh_lock != lock) 2132 goto top; 2133 } else { 2134 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2135 ASSERT(hash[bucket].dtdh_lock == lock); 2136 ASSERT(lock & 1); 2137 hash[bucket].dtdh_lock++; 2138 } 2139 2140 return (NULL); 2141 } 2142 2143 /* 2144 * We need to allocate a new dynamic variable. The size we need is the 2145 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2146 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2147 * the size of any referred-to data (dsize). We then round the final 2148 * size up to the chunksize for allocation. 2149 */ 2150 for (ksize = 0, i = 0; i < nkeys; i++) 2151 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2152 2153 /* 2154 * This should be pretty much impossible, but could happen if, say, 2155 * strange DIF specified the tuple. Ideally, this should be an 2156 * assertion and not an error condition -- but that requires that the 2157 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2158 * bullet-proof. (That is, it must not be able to be fooled by 2159 * malicious DIF.) Given the lack of backwards branches in DIF, 2160 * solving this would presumably not amount to solving the Halting 2161 * Problem -- but it still seems awfully hard. 2162 */ 2163 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2164 ksize + dsize > chunksize) { 2165 dcpu->dtdsc_drops++; 2166 return (NULL); 2167 } 2168 2169 nstate = DTRACE_DSTATE_EMPTY; 2170 2171 do { 2172 retry: 2173 free = dcpu->dtdsc_free; 2174 2175 if (free == NULL) { 2176 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2177 void *rval; 2178 2179 if (clean == NULL) { 2180 /* 2181 * We're out of dynamic variable space on 2182 * this CPU. Unless we have tried all CPUs, 2183 * we'll try to allocate from a different 2184 * CPU. 2185 */ 2186 switch (dstate->dtds_state) { 2187 case DTRACE_DSTATE_CLEAN: { 2188 void *sp = &dstate->dtds_state; 2189 2190 if (++cpu >= NCPU) 2191 cpu = 0; 2192 2193 if (dcpu->dtdsc_dirty != NULL && 2194 nstate == DTRACE_DSTATE_EMPTY) 2195 nstate = DTRACE_DSTATE_DIRTY; 2196 2197 if (dcpu->dtdsc_rinsing != NULL) 2198 nstate = DTRACE_DSTATE_RINSING; 2199 2200 dcpu = &dstate->dtds_percpu[cpu]; 2201 2202 if (cpu != me) 2203 goto retry; 2204 2205 (void) dtrace_cas32(sp, 2206 DTRACE_DSTATE_CLEAN, nstate); 2207 2208 /* 2209 * To increment the correct bean 2210 * counter, take another lap. 2211 */ 2212 goto retry; 2213 } 2214 2215 case DTRACE_DSTATE_DIRTY: 2216 dcpu->dtdsc_dirty_drops++; 2217 break; 2218 2219 case DTRACE_DSTATE_RINSING: 2220 dcpu->dtdsc_rinsing_drops++; 2221 break; 2222 2223 case DTRACE_DSTATE_EMPTY: 2224 dcpu->dtdsc_drops++; 2225 break; 2226 } 2227 2228 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2229 return (NULL); 2230 } 2231 2232 /* 2233 * The clean list appears to be non-empty. We want to 2234 * move the clean list to the free list; we start by 2235 * moving the clean pointer aside. 2236 */ 2237 if (dtrace_casptr(&dcpu->dtdsc_clean, 2238 clean, NULL) != clean) { 2239 /* 2240 * We are in one of two situations: 2241 * 2242 * (a) The clean list was switched to the 2243 * free list by another CPU. 2244 * 2245 * (b) The clean list was added to by the 2246 * cleansing cyclic. 2247 * 2248 * In either of these situations, we can 2249 * just reattempt the free list allocation. 2250 */ 2251 goto retry; 2252 } 2253 2254 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2255 2256 /* 2257 * Now we'll move the clean list to our free list. 2258 * It's impossible for this to fail: the only way 2259 * the free list can be updated is through this 2260 * code path, and only one CPU can own the clean list. 2261 * Thus, it would only be possible for this to fail if 2262 * this code were racing with dtrace_dynvar_clean(). 2263 * (That is, if dtrace_dynvar_clean() updated the clean 2264 * list, and we ended up racing to update the free 2265 * list.) This race is prevented by the dtrace_sync() 2266 * in dtrace_dynvar_clean() -- which flushes the 2267 * owners of the clean lists out before resetting 2268 * the clean lists. 2269 */ 2270 dcpu = &dstate->dtds_percpu[me]; 2271 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2272 ASSERT(rval == NULL); 2273 goto retry; 2274 } 2275 2276 dvar = free; 2277 new_free = dvar->dtdv_next; 2278 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2279 2280 /* 2281 * We have now allocated a new chunk. We copy the tuple keys into the 2282 * tuple array and copy any referenced key data into the data space 2283 * following the tuple array. As we do this, we relocate dttk_value 2284 * in the final tuple to point to the key data address in the chunk. 2285 */ 2286 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2287 dvar->dtdv_data = (void *)(kdata + ksize); 2288 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2289 2290 for (i = 0; i < nkeys; i++) { 2291 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2292 size_t kesize = key[i].dttk_size; 2293 2294 if (kesize != 0) { 2295 dtrace_bcopy( 2296 (const void *)(uintptr_t)key[i].dttk_value, 2297 (void *)kdata, kesize); 2298 dkey->dttk_value = kdata; 2299 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2300 } else { 2301 dkey->dttk_value = key[i].dttk_value; 2302 } 2303 2304 dkey->dttk_size = kesize; 2305 } 2306 2307 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2308 dvar->dtdv_hashval = hashval; 2309 dvar->dtdv_next = start; 2310 2311 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2312 return (dvar); 2313 2314 /* 2315 * The cas has failed. Either another CPU is adding an element to 2316 * this hash chain, or another CPU is deleting an element from this 2317 * hash chain. The simplest way to deal with both of these cases 2318 * (though not necessarily the most efficient) is to free our 2319 * allocated block and re-attempt it all. Note that the free is 2320 * to the dirty list and _not_ to the free list. This is to prevent 2321 * races with allocators, above. 2322 */ 2323 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2324 2325 dtrace_membar_producer(); 2326 2327 do { 2328 free = dcpu->dtdsc_dirty; 2329 dvar->dtdv_next = free; 2330 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2331 2332 goto top; 2333 } 2334 2335 /*ARGSUSED*/ 2336 static void 2337 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2338 { 2339 if ((int64_t)nval < (int64_t)*oval) 2340 *oval = nval; 2341 } 2342 2343 /*ARGSUSED*/ 2344 static void 2345 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2346 { 2347 if ((int64_t)nval > (int64_t)*oval) 2348 *oval = nval; 2349 } 2350 2351 static void 2352 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2353 { 2354 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2355 int64_t val = (int64_t)nval; 2356 2357 if (val < 0) { 2358 for (i = 0; i < zero; i++) { 2359 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2360 quanta[i] += incr; 2361 return; 2362 } 2363 } 2364 } else { 2365 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2366 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2367 quanta[i - 1] += incr; 2368 return; 2369 } 2370 } 2371 2372 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2373 return; 2374 } 2375 2376 ASSERT(0); 2377 } 2378 2379 static void 2380 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2381 { 2382 uint64_t arg = *lquanta++; 2383 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2384 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2385 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2386 int32_t val = (int32_t)nval, level; 2387 2388 ASSERT(step != 0); 2389 ASSERT(levels != 0); 2390 2391 if (val < base) { 2392 /* 2393 * This is an underflow. 2394 */ 2395 lquanta[0] += incr; 2396 return; 2397 } 2398 2399 level = (val - base) / step; 2400 2401 if (level < levels) { 2402 lquanta[level + 1] += incr; 2403 return; 2404 } 2405 2406 /* 2407 * This is an overflow. 2408 */ 2409 lquanta[levels + 1] += incr; 2410 } 2411 2412 static int 2413 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2414 uint16_t high, uint16_t nsteps, int64_t value) 2415 { 2416 int64_t this = 1, last, next; 2417 int base = 1, order; 2418 2419 ASSERT(factor <= nsteps); 2420 ASSERT(nsteps % factor == 0); 2421 2422 for (order = 0; order < low; order++) 2423 this *= factor; 2424 2425 /* 2426 * If our value is less than our factor taken to the power of the 2427 * low order of magnitude, it goes into the zeroth bucket. 2428 */ 2429 if (value < (last = this)) 2430 return (0); 2431 2432 for (this *= factor; order <= high; order++) { 2433 int nbuckets = this > nsteps ? nsteps : this; 2434 2435 if ((next = this * factor) < this) { 2436 /* 2437 * We should not generally get log/linear quantizations 2438 * with a high magnitude that allows 64-bits to 2439 * overflow, but we nonetheless protect against this 2440 * by explicitly checking for overflow, and clamping 2441 * our value accordingly. 2442 */ 2443 value = this - 1; 2444 } 2445 2446 if (value < this) { 2447 /* 2448 * If our value lies within this order of magnitude, 2449 * determine its position by taking the offset within 2450 * the order of magnitude, dividing by the bucket 2451 * width, and adding to our (accumulated) base. 2452 */ 2453 return (base + (value - last) / (this / nbuckets)); 2454 } 2455 2456 base += nbuckets - (nbuckets / factor); 2457 last = this; 2458 this = next; 2459 } 2460 2461 /* 2462 * Our value is greater than or equal to our factor taken to the 2463 * power of one plus the high magnitude -- return the top bucket. 2464 */ 2465 return (base); 2466 } 2467 2468 static void 2469 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2470 { 2471 uint64_t arg = *llquanta++; 2472 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2473 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2474 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2475 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2476 2477 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2478 low, high, nsteps, nval)] += incr; 2479 } 2480 2481 /*ARGSUSED*/ 2482 static void 2483 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2484 { 2485 data[0]++; 2486 data[1] += nval; 2487 } 2488 2489 /*ARGSUSED*/ 2490 static void 2491 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2492 { 2493 int64_t snval = (int64_t)nval; 2494 uint64_t tmp[2]; 2495 2496 data[0]++; 2497 data[1] += nval; 2498 2499 /* 2500 * What we want to say here is: 2501 * 2502 * data[2] += nval * nval; 2503 * 2504 * But given that nval is 64-bit, we could easily overflow, so 2505 * we do this as 128-bit arithmetic. 2506 */ 2507 if (snval < 0) 2508 snval = -snval; 2509 2510 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2511 dtrace_add_128(data + 2, tmp, data + 2); 2512 } 2513 2514 /*ARGSUSED*/ 2515 static void 2516 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2517 { 2518 *oval = *oval + 1; 2519 } 2520 2521 /*ARGSUSED*/ 2522 static void 2523 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2524 { 2525 *oval += nval; 2526 } 2527 2528 /* 2529 * Aggregate given the tuple in the principal data buffer, and the aggregating 2530 * action denoted by the specified dtrace_aggregation_t. The aggregation 2531 * buffer is specified as the buf parameter. This routine does not return 2532 * failure; if there is no space in the aggregation buffer, the data will be 2533 * dropped, and a corresponding counter incremented. 2534 */ 2535 static void 2536 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2537 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2538 { 2539 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2540 uint32_t i, ndx, size, fsize; 2541 uint32_t align = sizeof (uint64_t) - 1; 2542 dtrace_aggbuffer_t *agb; 2543 dtrace_aggkey_t *key; 2544 uint32_t hashval = 0, limit, isstr; 2545 caddr_t tomax, data, kdata; 2546 dtrace_actkind_t action; 2547 dtrace_action_t *act; 2548 uintptr_t offs; 2549 2550 if (buf == NULL) 2551 return; 2552 2553 if (!agg->dtag_hasarg) { 2554 /* 2555 * Currently, only quantize() and lquantize() take additional 2556 * arguments, and they have the same semantics: an increment 2557 * value that defaults to 1 when not present. If additional 2558 * aggregating actions take arguments, the setting of the 2559 * default argument value will presumably have to become more 2560 * sophisticated... 2561 */ 2562 arg = 1; 2563 } 2564 2565 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2566 size = rec->dtrd_offset - agg->dtag_base; 2567 fsize = size + rec->dtrd_size; 2568 2569 ASSERT(dbuf->dtb_tomax != NULL); 2570 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2571 2572 if ((tomax = buf->dtb_tomax) == NULL) { 2573 dtrace_buffer_drop(buf); 2574 return; 2575 } 2576 2577 /* 2578 * The metastructure is always at the bottom of the buffer. 2579 */ 2580 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2581 sizeof (dtrace_aggbuffer_t)); 2582 2583 if (buf->dtb_offset == 0) { 2584 /* 2585 * We just kludge up approximately 1/8th of the size to be 2586 * buckets. If this guess ends up being routinely 2587 * off-the-mark, we may need to dynamically readjust this 2588 * based on past performance. 2589 */ 2590 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2591 2592 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2593 (uintptr_t)tomax || hashsize == 0) { 2594 /* 2595 * We've been given a ludicrously small buffer; 2596 * increment our drop count and leave. 2597 */ 2598 dtrace_buffer_drop(buf); 2599 return; 2600 } 2601 2602 /* 2603 * And now, a pathetic attempt to try to get a an odd (or 2604 * perchance, a prime) hash size for better hash distribution. 2605 */ 2606 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2607 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2608 2609 agb->dtagb_hashsize = hashsize; 2610 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2611 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2612 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2613 2614 for (i = 0; i < agb->dtagb_hashsize; i++) 2615 agb->dtagb_hash[i] = NULL; 2616 } 2617 2618 ASSERT(agg->dtag_first != NULL); 2619 ASSERT(agg->dtag_first->dta_intuple); 2620 2621 /* 2622 * Calculate the hash value based on the key. Note that we _don't_ 2623 * include the aggid in the hashing (but we will store it as part of 2624 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2625 * algorithm: a simple, quick algorithm that has no known funnels, and 2626 * gets good distribution in practice. The efficacy of the hashing 2627 * algorithm (and a comparison with other algorithms) may be found by 2628 * running the ::dtrace_aggstat MDB dcmd. 2629 */ 2630 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2631 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2632 limit = i + act->dta_rec.dtrd_size; 2633 ASSERT(limit <= size); 2634 isstr = DTRACEACT_ISSTRING(act); 2635 2636 for (; i < limit; i++) { 2637 hashval += data[i]; 2638 hashval += (hashval << 10); 2639 hashval ^= (hashval >> 6); 2640 2641 if (isstr && data[i] == '\0') 2642 break; 2643 } 2644 } 2645 2646 hashval += (hashval << 3); 2647 hashval ^= (hashval >> 11); 2648 hashval += (hashval << 15); 2649 2650 /* 2651 * Yes, the divide here is expensive -- but it's generally the least 2652 * of the performance issues given the amount of data that we iterate 2653 * over to compute hash values, compare data, etc. 2654 */ 2655 ndx = hashval % agb->dtagb_hashsize; 2656 2657 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2658 ASSERT((caddr_t)key >= tomax); 2659 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2660 2661 if (hashval != key->dtak_hashval || key->dtak_size != size) 2662 continue; 2663 2664 kdata = key->dtak_data; 2665 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2666 2667 for (act = agg->dtag_first; act->dta_intuple; 2668 act = act->dta_next) { 2669 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2670 limit = i + act->dta_rec.dtrd_size; 2671 ASSERT(limit <= size); 2672 isstr = DTRACEACT_ISSTRING(act); 2673 2674 for (; i < limit; i++) { 2675 if (kdata[i] != data[i]) 2676 goto next; 2677 2678 if (isstr && data[i] == '\0') 2679 break; 2680 } 2681 } 2682 2683 if (action != key->dtak_action) { 2684 /* 2685 * We are aggregating on the same value in the same 2686 * aggregation with two different aggregating actions. 2687 * (This should have been picked up in the compiler, 2688 * so we may be dealing with errant or devious DIF.) 2689 * This is an error condition; we indicate as much, 2690 * and return. 2691 */ 2692 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2693 return; 2694 } 2695 2696 /* 2697 * This is a hit: we need to apply the aggregator to 2698 * the value at this key. 2699 */ 2700 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2701 return; 2702 next: 2703 continue; 2704 } 2705 2706 /* 2707 * We didn't find it. We need to allocate some zero-filled space, 2708 * link it into the hash table appropriately, and apply the aggregator 2709 * to the (zero-filled) value. 2710 */ 2711 offs = buf->dtb_offset; 2712 while (offs & (align - 1)) 2713 offs += sizeof (uint32_t); 2714 2715 /* 2716 * If we don't have enough room to both allocate a new key _and_ 2717 * its associated data, increment the drop count and return. 2718 */ 2719 if ((uintptr_t)tomax + offs + fsize > 2720 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2721 dtrace_buffer_drop(buf); 2722 return; 2723 } 2724 2725 /*CONSTCOND*/ 2726 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2727 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2728 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2729 2730 key->dtak_data = kdata = tomax + offs; 2731 buf->dtb_offset = offs + fsize; 2732 2733 /* 2734 * Now copy the data across. 2735 */ 2736 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2737 2738 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2739 kdata[i] = data[i]; 2740 2741 /* 2742 * Because strings are not zeroed out by default, we need to iterate 2743 * looking for actions that store strings, and we need to explicitly 2744 * pad these strings out with zeroes. 2745 */ 2746 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2747 int nul; 2748 2749 if (!DTRACEACT_ISSTRING(act)) 2750 continue; 2751 2752 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2753 limit = i + act->dta_rec.dtrd_size; 2754 ASSERT(limit <= size); 2755 2756 for (nul = 0; i < limit; i++) { 2757 if (nul) { 2758 kdata[i] = '\0'; 2759 continue; 2760 } 2761 2762 if (data[i] != '\0') 2763 continue; 2764 2765 nul = 1; 2766 } 2767 } 2768 2769 for (i = size; i < fsize; i++) 2770 kdata[i] = 0; 2771 2772 key->dtak_hashval = hashval; 2773 key->dtak_size = size; 2774 key->dtak_action = action; 2775 key->dtak_next = agb->dtagb_hash[ndx]; 2776 agb->dtagb_hash[ndx] = key; 2777 2778 /* 2779 * Finally, apply the aggregator. 2780 */ 2781 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2782 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2783 } 2784 2785 /* 2786 * Given consumer state, this routine finds a speculation in the INACTIVE 2787 * state and transitions it into the ACTIVE state. If there is no speculation 2788 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2789 * incremented -- it is up to the caller to take appropriate action. 2790 */ 2791 static int 2792 dtrace_speculation(dtrace_state_t *state) 2793 { 2794 int i = 0; 2795 dtrace_speculation_state_t curstate; 2796 uint32_t *stat = &state->dts_speculations_unavail, count; 2797 2798 while (i < state->dts_nspeculations) { 2799 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2800 2801 curstate = spec->dtsp_state; 2802 2803 if (curstate != DTRACESPEC_INACTIVE) { 2804 if (curstate == DTRACESPEC_COMMITTINGMANY || 2805 curstate == DTRACESPEC_COMMITTING || 2806 curstate == DTRACESPEC_DISCARDING) 2807 stat = &state->dts_speculations_busy; 2808 i++; 2809 continue; 2810 } 2811 2812 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2813 curstate, DTRACESPEC_ACTIVE) == curstate) 2814 return (i + 1); 2815 } 2816 2817 /* 2818 * We couldn't find a speculation. If we found as much as a single 2819 * busy speculation buffer, we'll attribute this failure as "busy" 2820 * instead of "unavail". 2821 */ 2822 do { 2823 count = *stat; 2824 } while (dtrace_cas32(stat, count, count + 1) != count); 2825 2826 return (0); 2827 } 2828 2829 /* 2830 * This routine commits an active speculation. If the specified speculation 2831 * is not in a valid state to perform a commit(), this routine will silently do 2832 * nothing. The state of the specified speculation is transitioned according 2833 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2834 */ 2835 static void 2836 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2837 dtrace_specid_t which) 2838 { 2839 dtrace_speculation_t *spec; 2840 dtrace_buffer_t *src, *dest; 2841 uintptr_t daddr, saddr, dlimit, slimit; 2842 dtrace_speculation_state_t curstate, new = 0; 2843 intptr_t offs; 2844 uint64_t timestamp; 2845 2846 if (which == 0) 2847 return; 2848 2849 if (which > state->dts_nspeculations) { 2850 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2851 return; 2852 } 2853 2854 spec = &state->dts_speculations[which - 1]; 2855 src = &spec->dtsp_buffer[cpu]; 2856 dest = &state->dts_buffer[cpu]; 2857 2858 do { 2859 curstate = spec->dtsp_state; 2860 2861 if (curstate == DTRACESPEC_COMMITTINGMANY) 2862 break; 2863 2864 switch (curstate) { 2865 case DTRACESPEC_INACTIVE: 2866 case DTRACESPEC_DISCARDING: 2867 return; 2868 2869 case DTRACESPEC_COMMITTING: 2870 /* 2871 * This is only possible if we are (a) commit()'ing 2872 * without having done a prior speculate() on this CPU 2873 * and (b) racing with another commit() on a different 2874 * CPU. There's nothing to do -- we just assert that 2875 * our offset is 0. 2876 */ 2877 ASSERT(src->dtb_offset == 0); 2878 return; 2879 2880 case DTRACESPEC_ACTIVE: 2881 new = DTRACESPEC_COMMITTING; 2882 break; 2883 2884 case DTRACESPEC_ACTIVEONE: 2885 /* 2886 * This speculation is active on one CPU. If our 2887 * buffer offset is non-zero, we know that the one CPU 2888 * must be us. Otherwise, we are committing on a 2889 * different CPU from the speculate(), and we must 2890 * rely on being asynchronously cleaned. 2891 */ 2892 if (src->dtb_offset != 0) { 2893 new = DTRACESPEC_COMMITTING; 2894 break; 2895 } 2896 /*FALLTHROUGH*/ 2897 2898 case DTRACESPEC_ACTIVEMANY: 2899 new = DTRACESPEC_COMMITTINGMANY; 2900 break; 2901 2902 default: 2903 ASSERT(0); 2904 } 2905 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2906 curstate, new) != curstate); 2907 2908 /* 2909 * We have set the state to indicate that we are committing this 2910 * speculation. Now reserve the necessary space in the destination 2911 * buffer. 2912 */ 2913 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2914 sizeof (uint64_t), state, NULL)) < 0) { 2915 dtrace_buffer_drop(dest); 2916 goto out; 2917 } 2918 2919 /* 2920 * We have sufficient space to copy the speculative buffer into the 2921 * primary buffer. First, modify the speculative buffer, filling 2922 * in the timestamp of all entries with the curstate time. The data 2923 * must have the commit() time rather than the time it was traced, 2924 * so that all entries in the primary buffer are in timestamp order. 2925 */ 2926 timestamp = dtrace_gethrtime(); 2927 saddr = (uintptr_t)src->dtb_tomax; 2928 slimit = saddr + src->dtb_offset; 2929 while (saddr < slimit) { 2930 size_t size; 2931 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2932 2933 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2934 saddr += sizeof (dtrace_epid_t); 2935 continue; 2936 } 2937 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2938 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2939 2940 ASSERT3U(saddr + size, <=, slimit); 2941 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2942 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2943 2944 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2945 2946 saddr += size; 2947 } 2948 2949 /* 2950 * Copy the buffer across. (Note that this is a 2951 * highly subobtimal bcopy(); in the unlikely event that this becomes 2952 * a serious performance issue, a high-performance DTrace-specific 2953 * bcopy() should obviously be invented.) 2954 */ 2955 daddr = (uintptr_t)dest->dtb_tomax + offs; 2956 dlimit = daddr + src->dtb_offset; 2957 saddr = (uintptr_t)src->dtb_tomax; 2958 2959 /* 2960 * First, the aligned portion. 2961 */ 2962 while (dlimit - daddr >= sizeof (uint64_t)) { 2963 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2964 2965 daddr += sizeof (uint64_t); 2966 saddr += sizeof (uint64_t); 2967 } 2968 2969 /* 2970 * Now any left-over bit... 2971 */ 2972 while (dlimit - daddr) 2973 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2974 2975 /* 2976 * Finally, commit the reserved space in the destination buffer. 2977 */ 2978 dest->dtb_offset = offs + src->dtb_offset; 2979 2980 out: 2981 /* 2982 * If we're lucky enough to be the only active CPU on this speculation 2983 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2984 */ 2985 if (curstate == DTRACESPEC_ACTIVE || 2986 (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2987 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2988 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2989 2990 ASSERT(rval == DTRACESPEC_COMMITTING); 2991 } 2992 2993 src->dtb_offset = 0; 2994 src->dtb_xamot_drops += src->dtb_drops; 2995 src->dtb_drops = 0; 2996 } 2997 2998 /* 2999 * This routine discards an active speculation. If the specified speculation 3000 * is not in a valid state to perform a discard(), this routine will silently 3001 * do nothing. The state of the specified speculation is transitioned 3002 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 3003 */ 3004 static void 3005 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 3006 dtrace_specid_t which) 3007 { 3008 dtrace_speculation_t *spec; 3009 dtrace_speculation_state_t curstate, new = 0; 3010 dtrace_buffer_t *buf; 3011 3012 if (which == 0) 3013 return; 3014 3015 if (which > state->dts_nspeculations) { 3016 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3017 return; 3018 } 3019 3020 spec = &state->dts_speculations[which - 1]; 3021 buf = &spec->dtsp_buffer[cpu]; 3022 3023 do { 3024 curstate = spec->dtsp_state; 3025 3026 switch (curstate) { 3027 case DTRACESPEC_INACTIVE: 3028 case DTRACESPEC_COMMITTINGMANY: 3029 case DTRACESPEC_COMMITTING: 3030 case DTRACESPEC_DISCARDING: 3031 return; 3032 3033 case DTRACESPEC_ACTIVE: 3034 case DTRACESPEC_ACTIVEMANY: 3035 new = DTRACESPEC_DISCARDING; 3036 break; 3037 3038 case DTRACESPEC_ACTIVEONE: 3039 if (buf->dtb_offset != 0) { 3040 new = DTRACESPEC_INACTIVE; 3041 } else { 3042 new = DTRACESPEC_DISCARDING; 3043 } 3044 break; 3045 3046 default: 3047 ASSERT(0); 3048 } 3049 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3050 curstate, new) != curstate); 3051 3052 buf->dtb_offset = 0; 3053 buf->dtb_drops = 0; 3054 } 3055 3056 /* 3057 * Note: not called from probe context. This function is called 3058 * asynchronously from cross call context to clean any speculations that are 3059 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 3060 * transitioned back to the INACTIVE state until all CPUs have cleaned the 3061 * speculation. 3062 */ 3063 static void 3064 dtrace_speculation_clean_here(dtrace_state_t *state) 3065 { 3066 dtrace_icookie_t cookie; 3067 processorid_t cpu = curcpu; 3068 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 3069 dtrace_specid_t i; 3070 3071 cookie = dtrace_interrupt_disable(); 3072 3073 if (dest->dtb_tomax == NULL) { 3074 dtrace_interrupt_enable(cookie); 3075 return; 3076 } 3077 3078 for (i = 0; i < state->dts_nspeculations; i++) { 3079 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3080 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 3081 3082 if (src->dtb_tomax == NULL) 3083 continue; 3084 3085 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 3086 src->dtb_offset = 0; 3087 continue; 3088 } 3089 3090 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3091 continue; 3092 3093 if (src->dtb_offset == 0) 3094 continue; 3095 3096 dtrace_speculation_commit(state, cpu, i + 1); 3097 } 3098 3099 dtrace_interrupt_enable(cookie); 3100 } 3101 3102 /* 3103 * Note: not called from probe context. This function is called 3104 * asynchronously (and at a regular interval) to clean any speculations that 3105 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 3106 * is work to be done, it cross calls all CPUs to perform that work; 3107 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 3108 * INACTIVE state until they have been cleaned by all CPUs. 3109 */ 3110 static void 3111 dtrace_speculation_clean(dtrace_state_t *state) 3112 { 3113 int work = 0, rv; 3114 dtrace_specid_t i; 3115 3116 for (i = 0; i < state->dts_nspeculations; i++) { 3117 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3118 3119 ASSERT(!spec->dtsp_cleaning); 3120 3121 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 3122 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3123 continue; 3124 3125 work++; 3126 spec->dtsp_cleaning = 1; 3127 } 3128 3129 if (!work) 3130 return; 3131 3132 dtrace_xcall(DTRACE_CPUALL, 3133 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3134 3135 /* 3136 * We now know that all CPUs have committed or discarded their 3137 * speculation buffers, as appropriate. We can now set the state 3138 * to inactive. 3139 */ 3140 for (i = 0; i < state->dts_nspeculations; i++) { 3141 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3142 dtrace_speculation_state_t curstate, new; 3143 3144 if (!spec->dtsp_cleaning) 3145 continue; 3146 3147 curstate = spec->dtsp_state; 3148 ASSERT(curstate == DTRACESPEC_DISCARDING || 3149 curstate == DTRACESPEC_COMMITTINGMANY); 3150 3151 new = DTRACESPEC_INACTIVE; 3152 3153 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new); 3154 ASSERT(rv == curstate); 3155 spec->dtsp_cleaning = 0; 3156 } 3157 } 3158 3159 /* 3160 * Called as part of a speculate() to get the speculative buffer associated 3161 * with a given speculation. Returns NULL if the specified speculation is not 3162 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3163 * the active CPU is not the specified CPU -- the speculation will be 3164 * atomically transitioned into the ACTIVEMANY state. 3165 */ 3166 static dtrace_buffer_t * 3167 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3168 dtrace_specid_t which) 3169 { 3170 dtrace_speculation_t *spec; 3171 dtrace_speculation_state_t curstate, new = 0; 3172 dtrace_buffer_t *buf; 3173 3174 if (which == 0) 3175 return (NULL); 3176 3177 if (which > state->dts_nspeculations) { 3178 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3179 return (NULL); 3180 } 3181 3182 spec = &state->dts_speculations[which - 1]; 3183 buf = &spec->dtsp_buffer[cpuid]; 3184 3185 do { 3186 curstate = spec->dtsp_state; 3187 3188 switch (curstate) { 3189 case DTRACESPEC_INACTIVE: 3190 case DTRACESPEC_COMMITTINGMANY: 3191 case DTRACESPEC_DISCARDING: 3192 return (NULL); 3193 3194 case DTRACESPEC_COMMITTING: 3195 ASSERT(buf->dtb_offset == 0); 3196 return (NULL); 3197 3198 case DTRACESPEC_ACTIVEONE: 3199 /* 3200 * This speculation is currently active on one CPU. 3201 * Check the offset in the buffer; if it's non-zero, 3202 * that CPU must be us (and we leave the state alone). 3203 * If it's zero, assume that we're starting on a new 3204 * CPU -- and change the state to indicate that the 3205 * speculation is active on more than one CPU. 3206 */ 3207 if (buf->dtb_offset != 0) 3208 return (buf); 3209 3210 new = DTRACESPEC_ACTIVEMANY; 3211 break; 3212 3213 case DTRACESPEC_ACTIVEMANY: 3214 return (buf); 3215 3216 case DTRACESPEC_ACTIVE: 3217 new = DTRACESPEC_ACTIVEONE; 3218 break; 3219 3220 default: 3221 ASSERT(0); 3222 } 3223 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3224 curstate, new) != curstate); 3225 3226 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3227 return (buf); 3228 } 3229 3230 /* 3231 * Return a string. In the event that the user lacks the privilege to access 3232 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3233 * don't fail access checking. 3234 * 3235 * dtrace_dif_variable() uses this routine as a helper for various 3236 * builtin values such as 'execname' and 'probefunc.' 3237 */ 3238 uintptr_t 3239 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3240 dtrace_mstate_t *mstate) 3241 { 3242 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3243 uintptr_t ret; 3244 size_t strsz; 3245 3246 /* 3247 * The easy case: this probe is allowed to read all of memory, so 3248 * we can just return this as a vanilla pointer. 3249 */ 3250 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3251 return (addr); 3252 3253 /* 3254 * This is the tougher case: we copy the string in question from 3255 * kernel memory into scratch memory and return it that way: this 3256 * ensures that we won't trip up when access checking tests the 3257 * BYREF return value. 3258 */ 3259 strsz = dtrace_strlen((char *)addr, size) + 1; 3260 3261 if (mstate->dtms_scratch_ptr + strsz > 3262 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3263 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3264 return (0); 3265 } 3266 3267 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3268 strsz); 3269 ret = mstate->dtms_scratch_ptr; 3270 mstate->dtms_scratch_ptr += strsz; 3271 return (ret); 3272 } 3273 3274 /* 3275 * Return a string from a memoy address which is known to have one or 3276 * more concatenated, individually zero terminated, sub-strings. 3277 * In the event that the user lacks the privilege to access 3278 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3279 * don't fail access checking. 3280 * 3281 * dtrace_dif_variable() uses this routine as a helper for various 3282 * builtin values such as 'execargs'. 3283 */ 3284 static uintptr_t 3285 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state, 3286 dtrace_mstate_t *mstate) 3287 { 3288 char *p; 3289 size_t i; 3290 uintptr_t ret; 3291 3292 if (mstate->dtms_scratch_ptr + strsz > 3293 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3294 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3295 return (0); 3296 } 3297 3298 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3299 strsz); 3300 3301 /* Replace sub-string termination characters with a space. */ 3302 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1; 3303 p++, i++) 3304 if (*p == '\0') 3305 *p = ' '; 3306 3307 ret = mstate->dtms_scratch_ptr; 3308 mstate->dtms_scratch_ptr += strsz; 3309 return (ret); 3310 } 3311 3312 /* 3313 * This function implements the DIF emulator's variable lookups. The emulator 3314 * passes a reserved variable identifier and optional built-in array index. 3315 */ 3316 static uint64_t 3317 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3318 uint64_t ndx) 3319 { 3320 /* 3321 * If we're accessing one of the uncached arguments, we'll turn this 3322 * into a reference in the args array. 3323 */ 3324 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3325 ndx = v - DIF_VAR_ARG0; 3326 v = DIF_VAR_ARGS; 3327 } 3328 3329 switch (v) { 3330 case DIF_VAR_ARGS: 3331 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3332 if (ndx >= sizeof (mstate->dtms_arg) / 3333 sizeof (mstate->dtms_arg[0])) { 3334 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3335 dtrace_provider_t *pv; 3336 uint64_t val; 3337 3338 pv = mstate->dtms_probe->dtpr_provider; 3339 if (pv->dtpv_pops.dtps_getargval != NULL) 3340 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3341 mstate->dtms_probe->dtpr_id, 3342 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3343 else 3344 val = dtrace_getarg(ndx, aframes); 3345 3346 /* 3347 * This is regrettably required to keep the compiler 3348 * from tail-optimizing the call to dtrace_getarg(). 3349 * The condition always evaluates to true, but the 3350 * compiler has no way of figuring that out a priori. 3351 * (None of this would be necessary if the compiler 3352 * could be relied upon to _always_ tail-optimize 3353 * the call to dtrace_getarg() -- but it can't.) 3354 */ 3355 if (mstate->dtms_probe != NULL) 3356 return (val); 3357 3358 ASSERT(0); 3359 } 3360 3361 return (mstate->dtms_arg[ndx]); 3362 3363 #ifdef illumos 3364 case DIF_VAR_UREGS: { 3365 klwp_t *lwp; 3366 3367 if (!dtrace_priv_proc(state)) 3368 return (0); 3369 3370 if ((lwp = curthread->t_lwp) == NULL) { 3371 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3372 cpu_core[curcpu].cpuc_dtrace_illval = NULL; 3373 return (0); 3374 } 3375 3376 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3377 return (0); 3378 } 3379 #else 3380 case DIF_VAR_UREGS: { 3381 struct trapframe *tframe; 3382 3383 if (!dtrace_priv_proc(state)) 3384 return (0); 3385 3386 if ((tframe = curthread->td_frame) == NULL) { 3387 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3388 cpu_core[curcpu].cpuc_dtrace_illval = 0; 3389 return (0); 3390 } 3391 3392 return (dtrace_getreg(tframe, ndx)); 3393 } 3394 #endif 3395 3396 case DIF_VAR_CURTHREAD: 3397 if (!dtrace_priv_proc(state)) 3398 return (0); 3399 return ((uint64_t)(uintptr_t)curthread); 3400 3401 case DIF_VAR_TIMESTAMP: 3402 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3403 mstate->dtms_timestamp = dtrace_gethrtime(); 3404 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3405 } 3406 return (mstate->dtms_timestamp); 3407 3408 case DIF_VAR_VTIMESTAMP: 3409 ASSERT(dtrace_vtime_references != 0); 3410 return (curthread->t_dtrace_vtime); 3411 3412 case DIF_VAR_WALLTIMESTAMP: 3413 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3414 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3415 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3416 } 3417 return (mstate->dtms_walltimestamp); 3418 3419 #ifdef illumos 3420 case DIF_VAR_IPL: 3421 if (!dtrace_priv_kernel(state)) 3422 return (0); 3423 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3424 mstate->dtms_ipl = dtrace_getipl(); 3425 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3426 } 3427 return (mstate->dtms_ipl); 3428 #endif 3429 3430 case DIF_VAR_EPID: 3431 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3432 return (mstate->dtms_epid); 3433 3434 case DIF_VAR_ID: 3435 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3436 return (mstate->dtms_probe->dtpr_id); 3437 3438 case DIF_VAR_STACKDEPTH: 3439 if (!dtrace_priv_kernel(state)) 3440 return (0); 3441 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3442 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3443 3444 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3445 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3446 } 3447 return (mstate->dtms_stackdepth); 3448 3449 case DIF_VAR_USTACKDEPTH: 3450 if (!dtrace_priv_proc(state)) 3451 return (0); 3452 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3453 /* 3454 * See comment in DIF_VAR_PID. 3455 */ 3456 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3457 CPU_ON_INTR(CPU)) { 3458 mstate->dtms_ustackdepth = 0; 3459 } else { 3460 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3461 mstate->dtms_ustackdepth = 3462 dtrace_getustackdepth(); 3463 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3464 } 3465 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3466 } 3467 return (mstate->dtms_ustackdepth); 3468 3469 case DIF_VAR_CALLER: 3470 if (!dtrace_priv_kernel(state)) 3471 return (0); 3472 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3473 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3474 3475 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3476 /* 3477 * If this is an unanchored probe, we are 3478 * required to go through the slow path: 3479 * dtrace_caller() only guarantees correct 3480 * results for anchored probes. 3481 */ 3482 pc_t caller[2] = {0, 0}; 3483 3484 dtrace_getpcstack(caller, 2, aframes, 3485 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3486 mstate->dtms_caller = caller[1]; 3487 } else if ((mstate->dtms_caller = 3488 dtrace_caller(aframes)) == -1) { 3489 /* 3490 * We have failed to do this the quick way; 3491 * we must resort to the slower approach of 3492 * calling dtrace_getpcstack(). 3493 */ 3494 pc_t caller = 0; 3495 3496 dtrace_getpcstack(&caller, 1, aframes, NULL); 3497 mstate->dtms_caller = caller; 3498 } 3499 3500 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3501 } 3502 return (mstate->dtms_caller); 3503 3504 case DIF_VAR_UCALLER: 3505 if (!dtrace_priv_proc(state)) 3506 return (0); 3507 3508 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3509 uint64_t ustack[3]; 3510 3511 /* 3512 * dtrace_getupcstack() fills in the first uint64_t 3513 * with the current PID. The second uint64_t will 3514 * be the program counter at user-level. The third 3515 * uint64_t will contain the caller, which is what 3516 * we're after. 3517 */ 3518 ustack[2] = 0; 3519 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3520 dtrace_getupcstack(ustack, 3); 3521 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3522 mstate->dtms_ucaller = ustack[2]; 3523 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3524 } 3525 3526 return (mstate->dtms_ucaller); 3527 3528 case DIF_VAR_PROBEPROV: 3529 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3530 return (dtrace_dif_varstr( 3531 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3532 state, mstate)); 3533 3534 case DIF_VAR_PROBEMOD: 3535 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3536 return (dtrace_dif_varstr( 3537 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3538 state, mstate)); 3539 3540 case DIF_VAR_PROBEFUNC: 3541 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3542 return (dtrace_dif_varstr( 3543 (uintptr_t)mstate->dtms_probe->dtpr_func, 3544 state, mstate)); 3545 3546 case DIF_VAR_PROBENAME: 3547 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3548 return (dtrace_dif_varstr( 3549 (uintptr_t)mstate->dtms_probe->dtpr_name, 3550 state, mstate)); 3551 3552 case DIF_VAR_PID: 3553 if (!dtrace_priv_proc(state)) 3554 return (0); 3555 3556 #ifdef illumos 3557 /* 3558 * Note that we are assuming that an unanchored probe is 3559 * always due to a high-level interrupt. (And we're assuming 3560 * that there is only a single high level interrupt.) 3561 */ 3562 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3563 return (pid0.pid_id); 3564 3565 /* 3566 * It is always safe to dereference one's own t_procp pointer: 3567 * it always points to a valid, allocated proc structure. 3568 * Further, it is always safe to dereference the p_pidp member 3569 * of one's own proc structure. (These are truisms becuase 3570 * threads and processes don't clean up their own state -- 3571 * they leave that task to whomever reaps them.) 3572 */ 3573 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3574 #else 3575 return ((uint64_t)curproc->p_pid); 3576 #endif 3577 3578 case DIF_VAR_PPID: 3579 if (!dtrace_priv_proc(state)) 3580 return (0); 3581 3582 #ifdef illumos 3583 /* 3584 * See comment in DIF_VAR_PID. 3585 */ 3586 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3587 return (pid0.pid_id); 3588 3589 /* 3590 * It is always safe to dereference one's own t_procp pointer: 3591 * it always points to a valid, allocated proc structure. 3592 * (This is true because threads don't clean up their own 3593 * state -- they leave that task to whomever reaps them.) 3594 */ 3595 return ((uint64_t)curthread->t_procp->p_ppid); 3596 #else 3597 if (curproc->p_pid == proc0.p_pid) 3598 return (curproc->p_pid); 3599 else 3600 return (curproc->p_pptr->p_pid); 3601 #endif 3602 3603 case DIF_VAR_TID: 3604 #ifdef illumos 3605 /* 3606 * See comment in DIF_VAR_PID. 3607 */ 3608 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3609 return (0); 3610 #endif 3611 3612 return ((uint64_t)curthread->t_tid); 3613 3614 case DIF_VAR_EXECARGS: { 3615 struct pargs *p_args = curthread->td_proc->p_args; 3616 3617 if (p_args == NULL) 3618 return(0); 3619 3620 return (dtrace_dif_varstrz( 3621 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate)); 3622 } 3623 3624 case DIF_VAR_EXECNAME: 3625 #ifdef illumos 3626 if (!dtrace_priv_proc(state)) 3627 return (0); 3628 3629 /* 3630 * See comment in DIF_VAR_PID. 3631 */ 3632 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3633 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3634 3635 /* 3636 * It is always safe to dereference one's own t_procp pointer: 3637 * it always points to a valid, allocated proc structure. 3638 * (This is true because threads don't clean up their own 3639 * state -- they leave that task to whomever reaps them.) 3640 */ 3641 return (dtrace_dif_varstr( 3642 (uintptr_t)curthread->t_procp->p_user.u_comm, 3643 state, mstate)); 3644 #else 3645 return (dtrace_dif_varstr( 3646 (uintptr_t) curthread->td_proc->p_comm, state, mstate)); 3647 #endif 3648 3649 case DIF_VAR_ZONENAME: 3650 #ifdef illumos 3651 if (!dtrace_priv_proc(state)) 3652 return (0); 3653 3654 /* 3655 * See comment in DIF_VAR_PID. 3656 */ 3657 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3658 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3659 3660 /* 3661 * It is always safe to dereference one's own t_procp pointer: 3662 * it always points to a valid, allocated proc structure. 3663 * (This is true because threads don't clean up their own 3664 * state -- they leave that task to whomever reaps them.) 3665 */ 3666 return (dtrace_dif_varstr( 3667 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3668 state, mstate)); 3669 #elif defined(__FreeBSD__) 3670 /* 3671 * On FreeBSD, we introduce compatibility to zonename by falling through 3672 * into jailname. 3673 */ 3674 case DIF_VAR_JAILNAME: 3675 if (!dtrace_priv_kernel(state)) 3676 return (0); 3677 3678 return (dtrace_dif_varstr( 3679 (uintptr_t)curthread->td_ucred->cr_prison->pr_name, 3680 state, mstate)); 3681 3682 case DIF_VAR_JID: 3683 if (!dtrace_priv_kernel(state)) 3684 return (0); 3685 3686 return ((uint64_t)curthread->td_ucred->cr_prison->pr_id); 3687 #else 3688 return (0); 3689 #endif 3690 3691 case DIF_VAR_UID: 3692 if (!dtrace_priv_proc(state)) 3693 return (0); 3694 3695 #ifdef illumos 3696 /* 3697 * See comment in DIF_VAR_PID. 3698 */ 3699 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3700 return ((uint64_t)p0.p_cred->cr_uid); 3701 3702 /* 3703 * It is always safe to dereference one's own t_procp pointer: 3704 * it always points to a valid, allocated proc structure. 3705 * (This is true because threads don't clean up their own 3706 * state -- they leave that task to whomever reaps them.) 3707 * 3708 * Additionally, it is safe to dereference one's own process 3709 * credential, since this is never NULL after process birth. 3710 */ 3711 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3712 #else 3713 return ((uint64_t)curthread->td_ucred->cr_uid); 3714 #endif 3715 3716 case DIF_VAR_GID: 3717 if (!dtrace_priv_proc(state)) 3718 return (0); 3719 3720 #ifdef illumos 3721 /* 3722 * See comment in DIF_VAR_PID. 3723 */ 3724 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3725 return ((uint64_t)p0.p_cred->cr_gid); 3726 3727 /* 3728 * It is always safe to dereference one's own t_procp pointer: 3729 * it always points to a valid, allocated proc structure. 3730 * (This is true because threads don't clean up their own 3731 * state -- they leave that task to whomever reaps them.) 3732 * 3733 * Additionally, it is safe to dereference one's own process 3734 * credential, since this is never NULL after process birth. 3735 */ 3736 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3737 #else 3738 return ((uint64_t)curthread->td_ucred->cr_gid); 3739 #endif 3740 3741 case DIF_VAR_ERRNO: { 3742 #ifdef illumos 3743 klwp_t *lwp; 3744 if (!dtrace_priv_proc(state)) 3745 return (0); 3746 3747 /* 3748 * See comment in DIF_VAR_PID. 3749 */ 3750 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3751 return (0); 3752 3753 /* 3754 * It is always safe to dereference one's own t_lwp pointer in 3755 * the event that this pointer is non-NULL. (This is true 3756 * because threads and lwps don't clean up their own state -- 3757 * they leave that task to whomever reaps them.) 3758 */ 3759 if ((lwp = curthread->t_lwp) == NULL) 3760 return (0); 3761 3762 return ((uint64_t)lwp->lwp_errno); 3763 #else 3764 return (curthread->td_errno); 3765 #endif 3766 } 3767 #ifndef illumos 3768 case DIF_VAR_CPU: { 3769 return curcpu; 3770 } 3771 #endif 3772 default: 3773 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3774 return (0); 3775 } 3776 } 3777 3778 3779 typedef enum dtrace_json_state { 3780 DTRACE_JSON_REST = 1, 3781 DTRACE_JSON_OBJECT, 3782 DTRACE_JSON_STRING, 3783 DTRACE_JSON_STRING_ESCAPE, 3784 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3785 DTRACE_JSON_COLON, 3786 DTRACE_JSON_COMMA, 3787 DTRACE_JSON_VALUE, 3788 DTRACE_JSON_IDENTIFIER, 3789 DTRACE_JSON_NUMBER, 3790 DTRACE_JSON_NUMBER_FRAC, 3791 DTRACE_JSON_NUMBER_EXP, 3792 DTRACE_JSON_COLLECT_OBJECT 3793 } dtrace_json_state_t; 3794 3795 /* 3796 * This function possesses just enough knowledge about JSON to extract a single 3797 * value from a JSON string and store it in the scratch buffer. It is able 3798 * to extract nested object values, and members of arrays by index. 3799 * 3800 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3801 * be looked up as we descend into the object tree. e.g. 3802 * 3803 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3804 * with nelems = 5. 3805 * 3806 * The run time of this function must be bounded above by strsize to limit the 3807 * amount of work done in probe context. As such, it is implemented as a 3808 * simple state machine, reading one character at a time using safe loads 3809 * until we find the requested element, hit a parsing error or run off the 3810 * end of the object or string. 3811 * 3812 * As there is no way for a subroutine to return an error without interrupting 3813 * clause execution, we simply return NULL in the event of a missing key or any 3814 * other error condition. Each NULL return in this function is commented with 3815 * the error condition it represents -- parsing or otherwise. 3816 * 3817 * The set of states for the state machine closely matches the JSON 3818 * specification (http://json.org/). Briefly: 3819 * 3820 * DTRACE_JSON_REST: 3821 * Skip whitespace until we find either a top-level Object, moving 3822 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3823 * 3824 * DTRACE_JSON_OBJECT: 3825 * Locate the next key String in an Object. Sets a flag to denote 3826 * the next String as a key string and moves to DTRACE_JSON_STRING. 3827 * 3828 * DTRACE_JSON_COLON: 3829 * Skip whitespace until we find the colon that separates key Strings 3830 * from their values. Once found, move to DTRACE_JSON_VALUE. 3831 * 3832 * DTRACE_JSON_VALUE: 3833 * Detects the type of the next value (String, Number, Identifier, Object 3834 * or Array) and routes to the states that process that type. Here we also 3835 * deal with the element selector list if we are requested to traverse down 3836 * into the object tree. 3837 * 3838 * DTRACE_JSON_COMMA: 3839 * Skip whitespace until we find the comma that separates key-value pairs 3840 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3841 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3842 * states return to this state at the end of their value, unless otherwise 3843 * noted. 3844 * 3845 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3846 * Processes a Number literal from the JSON, including any exponent 3847 * component that may be present. Numbers are returned as strings, which 3848 * may be passed to strtoll() if an integer is required. 3849 * 3850 * DTRACE_JSON_IDENTIFIER: 3851 * Processes a "true", "false" or "null" literal in the JSON. 3852 * 3853 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3854 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3855 * Processes a String literal from the JSON, whether the String denotes 3856 * a key, a value or part of a larger Object. Handles all escape sequences 3857 * present in the specification, including four-digit unicode characters, 3858 * but merely includes the escape sequence without converting it to the 3859 * actual escaped character. If the String is flagged as a key, we 3860 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3861 * 3862 * DTRACE_JSON_COLLECT_OBJECT: 3863 * This state collects an entire Object (or Array), correctly handling 3864 * embedded strings. If the full element selector list matches this nested 3865 * object, we return the Object in full as a string. If not, we use this 3866 * state to skip to the next value at this level and continue processing. 3867 * 3868 * NOTE: This function uses various macros from strtolctype.h to manipulate 3869 * digit values, etc -- these have all been checked to ensure they make 3870 * no additional function calls. 3871 */ 3872 static char * 3873 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3874 char *dest) 3875 { 3876 dtrace_json_state_t state = DTRACE_JSON_REST; 3877 int64_t array_elem = INT64_MIN; 3878 int64_t array_pos = 0; 3879 uint8_t escape_unicount = 0; 3880 boolean_t string_is_key = B_FALSE; 3881 boolean_t collect_object = B_FALSE; 3882 boolean_t found_key = B_FALSE; 3883 boolean_t in_array = B_FALSE; 3884 uint32_t braces = 0, brackets = 0; 3885 char *elem = elemlist; 3886 char *dd = dest; 3887 uintptr_t cur; 3888 3889 for (cur = json; cur < json + size; cur++) { 3890 char cc = dtrace_load8(cur); 3891 if (cc == '\0') 3892 return (NULL); 3893 3894 switch (state) { 3895 case DTRACE_JSON_REST: 3896 if (isspace(cc)) 3897 break; 3898 3899 if (cc == '{') { 3900 state = DTRACE_JSON_OBJECT; 3901 break; 3902 } 3903 3904 if (cc == '[') { 3905 in_array = B_TRUE; 3906 array_pos = 0; 3907 array_elem = dtrace_strtoll(elem, 10, size); 3908 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3909 state = DTRACE_JSON_VALUE; 3910 break; 3911 } 3912 3913 /* 3914 * ERROR: expected to find a top-level object or array. 3915 */ 3916 return (NULL); 3917 case DTRACE_JSON_OBJECT: 3918 if (isspace(cc)) 3919 break; 3920 3921 if (cc == '"') { 3922 state = DTRACE_JSON_STRING; 3923 string_is_key = B_TRUE; 3924 break; 3925 } 3926 3927 /* 3928 * ERROR: either the object did not start with a key 3929 * string, or we've run off the end of the object 3930 * without finding the requested key. 3931 */ 3932 return (NULL); 3933 case DTRACE_JSON_STRING: 3934 if (cc == '\\') { 3935 *dd++ = '\\'; 3936 state = DTRACE_JSON_STRING_ESCAPE; 3937 break; 3938 } 3939 3940 if (cc == '"') { 3941 if (collect_object) { 3942 /* 3943 * We don't reset the dest here, as 3944 * the string is part of a larger 3945 * object being collected. 3946 */ 3947 *dd++ = cc; 3948 collect_object = B_FALSE; 3949 state = DTRACE_JSON_COLLECT_OBJECT; 3950 break; 3951 } 3952 *dd = '\0'; 3953 dd = dest; /* reset string buffer */ 3954 if (string_is_key) { 3955 if (dtrace_strncmp(dest, elem, 3956 size) == 0) 3957 found_key = B_TRUE; 3958 } else if (found_key) { 3959 if (nelems > 1) { 3960 /* 3961 * We expected an object, not 3962 * this string. 3963 */ 3964 return (NULL); 3965 } 3966 return (dest); 3967 } 3968 state = string_is_key ? DTRACE_JSON_COLON : 3969 DTRACE_JSON_COMMA; 3970 string_is_key = B_FALSE; 3971 break; 3972 } 3973 3974 *dd++ = cc; 3975 break; 3976 case DTRACE_JSON_STRING_ESCAPE: 3977 *dd++ = cc; 3978 if (cc == 'u') { 3979 escape_unicount = 0; 3980 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3981 } else { 3982 state = DTRACE_JSON_STRING; 3983 } 3984 break; 3985 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3986 if (!isxdigit(cc)) { 3987 /* 3988 * ERROR: invalid unicode escape, expected 3989 * four valid hexidecimal digits. 3990 */ 3991 return (NULL); 3992 } 3993 3994 *dd++ = cc; 3995 if (++escape_unicount == 4) 3996 state = DTRACE_JSON_STRING; 3997 break; 3998 case DTRACE_JSON_COLON: 3999 if (isspace(cc)) 4000 break; 4001 4002 if (cc == ':') { 4003 state = DTRACE_JSON_VALUE; 4004 break; 4005 } 4006 4007 /* 4008 * ERROR: expected a colon. 4009 */ 4010 return (NULL); 4011 case DTRACE_JSON_COMMA: 4012 if (isspace(cc)) 4013 break; 4014 4015 if (cc == ',') { 4016 if (in_array) { 4017 state = DTRACE_JSON_VALUE; 4018 if (++array_pos == array_elem) 4019 found_key = B_TRUE; 4020 } else { 4021 state = DTRACE_JSON_OBJECT; 4022 } 4023 break; 4024 } 4025 4026 /* 4027 * ERROR: either we hit an unexpected character, or 4028 * we reached the end of the object or array without 4029 * finding the requested key. 4030 */ 4031 return (NULL); 4032 case DTRACE_JSON_IDENTIFIER: 4033 if (islower(cc)) { 4034 *dd++ = cc; 4035 break; 4036 } 4037 4038 *dd = '\0'; 4039 dd = dest; /* reset string buffer */ 4040 4041 if (dtrace_strncmp(dest, "true", 5) == 0 || 4042 dtrace_strncmp(dest, "false", 6) == 0 || 4043 dtrace_strncmp(dest, "null", 5) == 0) { 4044 if (found_key) { 4045 if (nelems > 1) { 4046 /* 4047 * ERROR: We expected an object, 4048 * not this identifier. 4049 */ 4050 return (NULL); 4051 } 4052 return (dest); 4053 } else { 4054 cur--; 4055 state = DTRACE_JSON_COMMA; 4056 break; 4057 } 4058 } 4059 4060 /* 4061 * ERROR: we did not recognise the identifier as one 4062 * of those in the JSON specification. 4063 */ 4064 return (NULL); 4065 case DTRACE_JSON_NUMBER: 4066 if (cc == '.') { 4067 *dd++ = cc; 4068 state = DTRACE_JSON_NUMBER_FRAC; 4069 break; 4070 } 4071 4072 if (cc == 'x' || cc == 'X') { 4073 /* 4074 * ERROR: specification explicitly excludes 4075 * hexidecimal or octal numbers. 4076 */ 4077 return (NULL); 4078 } 4079 4080 /* FALLTHRU */ 4081 case DTRACE_JSON_NUMBER_FRAC: 4082 if (cc == 'e' || cc == 'E') { 4083 *dd++ = cc; 4084 state = DTRACE_JSON_NUMBER_EXP; 4085 break; 4086 } 4087 4088 if (cc == '+' || cc == '-') { 4089 /* 4090 * ERROR: expect sign as part of exponent only. 4091 */ 4092 return (NULL); 4093 } 4094 /* FALLTHRU */ 4095 case DTRACE_JSON_NUMBER_EXP: 4096 if (isdigit(cc) || cc == '+' || cc == '-') { 4097 *dd++ = cc; 4098 break; 4099 } 4100 4101 *dd = '\0'; 4102 dd = dest; /* reset string buffer */ 4103 if (found_key) { 4104 if (nelems > 1) { 4105 /* 4106 * ERROR: We expected an object, not 4107 * this number. 4108 */ 4109 return (NULL); 4110 } 4111 return (dest); 4112 } 4113 4114 cur--; 4115 state = DTRACE_JSON_COMMA; 4116 break; 4117 case DTRACE_JSON_VALUE: 4118 if (isspace(cc)) 4119 break; 4120 4121 if (cc == '{' || cc == '[') { 4122 if (nelems > 1 && found_key) { 4123 in_array = cc == '[' ? B_TRUE : B_FALSE; 4124 /* 4125 * If our element selector directs us 4126 * to descend into this nested object, 4127 * then move to the next selector 4128 * element in the list and restart the 4129 * state machine. 4130 */ 4131 while (*elem != '\0') 4132 elem++; 4133 elem++; /* skip the inter-element NUL */ 4134 nelems--; 4135 dd = dest; 4136 if (in_array) { 4137 state = DTRACE_JSON_VALUE; 4138 array_pos = 0; 4139 array_elem = dtrace_strtoll( 4140 elem, 10, size); 4141 found_key = array_elem == 0 ? 4142 B_TRUE : B_FALSE; 4143 } else { 4144 found_key = B_FALSE; 4145 state = DTRACE_JSON_OBJECT; 4146 } 4147 break; 4148 } 4149 4150 /* 4151 * Otherwise, we wish to either skip this 4152 * nested object or return it in full. 4153 */ 4154 if (cc == '[') 4155 brackets = 1; 4156 else 4157 braces = 1; 4158 *dd++ = cc; 4159 state = DTRACE_JSON_COLLECT_OBJECT; 4160 break; 4161 } 4162 4163 if (cc == '"') { 4164 state = DTRACE_JSON_STRING; 4165 break; 4166 } 4167 4168 if (islower(cc)) { 4169 /* 4170 * Here we deal with true, false and null. 4171 */ 4172 *dd++ = cc; 4173 state = DTRACE_JSON_IDENTIFIER; 4174 break; 4175 } 4176 4177 if (cc == '-' || isdigit(cc)) { 4178 *dd++ = cc; 4179 state = DTRACE_JSON_NUMBER; 4180 break; 4181 } 4182 4183 /* 4184 * ERROR: unexpected character at start of value. 4185 */ 4186 return (NULL); 4187 case DTRACE_JSON_COLLECT_OBJECT: 4188 if (cc == '\0') 4189 /* 4190 * ERROR: unexpected end of input. 4191 */ 4192 return (NULL); 4193 4194 *dd++ = cc; 4195 if (cc == '"') { 4196 collect_object = B_TRUE; 4197 state = DTRACE_JSON_STRING; 4198 break; 4199 } 4200 4201 if (cc == ']') { 4202 if (brackets-- == 0) { 4203 /* 4204 * ERROR: unbalanced brackets. 4205 */ 4206 return (NULL); 4207 } 4208 } else if (cc == '}') { 4209 if (braces-- == 0) { 4210 /* 4211 * ERROR: unbalanced braces. 4212 */ 4213 return (NULL); 4214 } 4215 } else if (cc == '{') { 4216 braces++; 4217 } else if (cc == '[') { 4218 brackets++; 4219 } 4220 4221 if (brackets == 0 && braces == 0) { 4222 if (found_key) { 4223 *dd = '\0'; 4224 return (dest); 4225 } 4226 dd = dest; /* reset string buffer */ 4227 state = DTRACE_JSON_COMMA; 4228 } 4229 break; 4230 } 4231 } 4232 return (NULL); 4233 } 4234 4235 /* 4236 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4237 * Notice that we don't bother validating the proper number of arguments or 4238 * their types in the tuple stack. This isn't needed because all argument 4239 * interpretation is safe because of our load safety -- the worst that can 4240 * happen is that a bogus program can obtain bogus results. 4241 */ 4242 static void 4243 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4244 dtrace_key_t *tupregs, int nargs, 4245 dtrace_mstate_t *mstate, dtrace_state_t *state) 4246 { 4247 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 4248 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 4249 dtrace_vstate_t *vstate = &state->dts_vstate; 4250 4251 #ifdef illumos 4252 union { 4253 mutex_impl_t mi; 4254 uint64_t mx; 4255 } m; 4256 4257 union { 4258 krwlock_t ri; 4259 uintptr_t rw; 4260 } r; 4261 #else 4262 struct thread *lowner; 4263 union { 4264 struct lock_object *li; 4265 uintptr_t lx; 4266 } l; 4267 #endif 4268 4269 switch (subr) { 4270 case DIF_SUBR_RAND: 4271 regs[rd] = dtrace_xoroshiro128_plus_next( 4272 state->dts_rstate[curcpu]); 4273 break; 4274 4275 #ifdef illumos 4276 case DIF_SUBR_MUTEX_OWNED: 4277 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4278 mstate, vstate)) { 4279 regs[rd] = 0; 4280 break; 4281 } 4282 4283 m.mx = dtrace_load64(tupregs[0].dttk_value); 4284 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4285 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4286 else 4287 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4288 break; 4289 4290 case DIF_SUBR_MUTEX_OWNER: 4291 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4292 mstate, vstate)) { 4293 regs[rd] = 0; 4294 break; 4295 } 4296 4297 m.mx = dtrace_load64(tupregs[0].dttk_value); 4298 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4299 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4300 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4301 else 4302 regs[rd] = 0; 4303 break; 4304 4305 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4306 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4307 mstate, vstate)) { 4308 regs[rd] = 0; 4309 break; 4310 } 4311 4312 m.mx = dtrace_load64(tupregs[0].dttk_value); 4313 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4314 break; 4315 4316 case DIF_SUBR_MUTEX_TYPE_SPIN: 4317 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4318 mstate, vstate)) { 4319 regs[rd] = 0; 4320 break; 4321 } 4322 4323 m.mx = dtrace_load64(tupregs[0].dttk_value); 4324 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4325 break; 4326 4327 case DIF_SUBR_RW_READ_HELD: { 4328 uintptr_t tmp; 4329 4330 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4331 mstate, vstate)) { 4332 regs[rd] = 0; 4333 break; 4334 } 4335 4336 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4337 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4338 break; 4339 } 4340 4341 case DIF_SUBR_RW_WRITE_HELD: 4342 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4343 mstate, vstate)) { 4344 regs[rd] = 0; 4345 break; 4346 } 4347 4348 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4349 regs[rd] = _RW_WRITE_HELD(&r.ri); 4350 break; 4351 4352 case DIF_SUBR_RW_ISWRITER: 4353 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4354 mstate, vstate)) { 4355 regs[rd] = 0; 4356 break; 4357 } 4358 4359 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4360 regs[rd] = _RW_ISWRITER(&r.ri); 4361 break; 4362 4363 #else /* !illumos */ 4364 case DIF_SUBR_MUTEX_OWNED: 4365 if (!dtrace_canload(tupregs[0].dttk_value, 4366 sizeof (struct lock_object), mstate, vstate)) { 4367 regs[rd] = 0; 4368 break; 4369 } 4370 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4371 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4372 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4373 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4374 break; 4375 4376 case DIF_SUBR_MUTEX_OWNER: 4377 if (!dtrace_canload(tupregs[0].dttk_value, 4378 sizeof (struct lock_object), mstate, vstate)) { 4379 regs[rd] = 0; 4380 break; 4381 } 4382 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4383 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4384 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4385 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4386 regs[rd] = (uintptr_t)lowner; 4387 break; 4388 4389 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4390 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4391 mstate, vstate)) { 4392 regs[rd] = 0; 4393 break; 4394 } 4395 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4396 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4397 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0; 4398 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4399 break; 4400 4401 case DIF_SUBR_MUTEX_TYPE_SPIN: 4402 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4403 mstate, vstate)) { 4404 regs[rd] = 0; 4405 break; 4406 } 4407 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4408 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4409 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0; 4410 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4411 break; 4412 4413 case DIF_SUBR_RW_READ_HELD: 4414 case DIF_SUBR_SX_SHARED_HELD: 4415 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4416 mstate, vstate)) { 4417 regs[rd] = 0; 4418 break; 4419 } 4420 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4421 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4422 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4423 lowner == NULL; 4424 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4425 break; 4426 4427 case DIF_SUBR_RW_WRITE_HELD: 4428 case DIF_SUBR_SX_EXCLUSIVE_HELD: 4429 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4430 mstate, vstate)) { 4431 regs[rd] = 0; 4432 break; 4433 } 4434 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4435 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4436 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4437 lowner != NULL; 4438 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4439 break; 4440 4441 case DIF_SUBR_RW_ISWRITER: 4442 case DIF_SUBR_SX_ISEXCLUSIVE: 4443 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4444 mstate, vstate)) { 4445 regs[rd] = 0; 4446 break; 4447 } 4448 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4449 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4450 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4451 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4452 regs[rd] = (lowner == curthread); 4453 break; 4454 #endif /* illumos */ 4455 4456 case DIF_SUBR_BCOPY: { 4457 /* 4458 * We need to be sure that the destination is in the scratch 4459 * region -- no other region is allowed. 4460 */ 4461 uintptr_t src = tupregs[0].dttk_value; 4462 uintptr_t dest = tupregs[1].dttk_value; 4463 size_t size = tupregs[2].dttk_value; 4464 4465 if (!dtrace_inscratch(dest, size, mstate)) { 4466 *flags |= CPU_DTRACE_BADADDR; 4467 *illval = regs[rd]; 4468 break; 4469 } 4470 4471 if (!dtrace_canload(src, size, mstate, vstate)) { 4472 regs[rd] = 0; 4473 break; 4474 } 4475 4476 dtrace_bcopy((void *)src, (void *)dest, size); 4477 break; 4478 } 4479 4480 case DIF_SUBR_ALLOCA: 4481 case DIF_SUBR_COPYIN: { 4482 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4483 uint64_t size = 4484 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4485 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4486 4487 /* 4488 * This action doesn't require any credential checks since 4489 * probes will not activate in user contexts to which the 4490 * enabling user does not have permissions. 4491 */ 4492 4493 /* 4494 * Rounding up the user allocation size could have overflowed 4495 * a large, bogus allocation (like -1ULL) to 0. 4496 */ 4497 if (scratch_size < size || 4498 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4499 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4500 regs[rd] = 0; 4501 break; 4502 } 4503 4504 if (subr == DIF_SUBR_COPYIN) { 4505 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4506 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4507 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4508 } 4509 4510 mstate->dtms_scratch_ptr += scratch_size; 4511 regs[rd] = dest; 4512 break; 4513 } 4514 4515 case DIF_SUBR_COPYINTO: { 4516 uint64_t size = tupregs[1].dttk_value; 4517 uintptr_t dest = tupregs[2].dttk_value; 4518 4519 /* 4520 * This action doesn't require any credential checks since 4521 * probes will not activate in user contexts to which the 4522 * enabling user does not have permissions. 4523 */ 4524 if (!dtrace_inscratch(dest, size, mstate)) { 4525 *flags |= CPU_DTRACE_BADADDR; 4526 *illval = regs[rd]; 4527 break; 4528 } 4529 4530 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4531 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4532 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4533 break; 4534 } 4535 4536 case DIF_SUBR_COPYINSTR: { 4537 uintptr_t dest = mstate->dtms_scratch_ptr; 4538 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4539 4540 if (nargs > 1 && tupregs[1].dttk_value < size) 4541 size = tupregs[1].dttk_value + 1; 4542 4543 /* 4544 * This action doesn't require any credential checks since 4545 * probes will not activate in user contexts to which the 4546 * enabling user does not have permissions. 4547 */ 4548 if (!DTRACE_INSCRATCH(mstate, size)) { 4549 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4550 regs[rd] = 0; 4551 break; 4552 } 4553 4554 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4555 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4556 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4557 4558 ((char *)dest)[size - 1] = '\0'; 4559 mstate->dtms_scratch_ptr += size; 4560 regs[rd] = dest; 4561 break; 4562 } 4563 4564 #ifdef illumos 4565 case DIF_SUBR_MSGSIZE: 4566 case DIF_SUBR_MSGDSIZE: { 4567 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4568 uintptr_t wptr, rptr; 4569 size_t count = 0; 4570 int cont = 0; 4571 4572 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4573 4574 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4575 vstate)) { 4576 regs[rd] = 0; 4577 break; 4578 } 4579 4580 wptr = dtrace_loadptr(baddr + 4581 offsetof(mblk_t, b_wptr)); 4582 4583 rptr = dtrace_loadptr(baddr + 4584 offsetof(mblk_t, b_rptr)); 4585 4586 if (wptr < rptr) { 4587 *flags |= CPU_DTRACE_BADADDR; 4588 *illval = tupregs[0].dttk_value; 4589 break; 4590 } 4591 4592 daddr = dtrace_loadptr(baddr + 4593 offsetof(mblk_t, b_datap)); 4594 4595 baddr = dtrace_loadptr(baddr + 4596 offsetof(mblk_t, b_cont)); 4597 4598 /* 4599 * We want to prevent against denial-of-service here, 4600 * so we're only going to search the list for 4601 * dtrace_msgdsize_max mblks. 4602 */ 4603 if (cont++ > dtrace_msgdsize_max) { 4604 *flags |= CPU_DTRACE_ILLOP; 4605 break; 4606 } 4607 4608 if (subr == DIF_SUBR_MSGDSIZE) { 4609 if (dtrace_load8(daddr + 4610 offsetof(dblk_t, db_type)) != M_DATA) 4611 continue; 4612 } 4613 4614 count += wptr - rptr; 4615 } 4616 4617 if (!(*flags & CPU_DTRACE_FAULT)) 4618 regs[rd] = count; 4619 4620 break; 4621 } 4622 #endif 4623 4624 case DIF_SUBR_PROGENYOF: { 4625 pid_t pid = tupregs[0].dttk_value; 4626 proc_t *p; 4627 int rval = 0; 4628 4629 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4630 4631 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4632 #ifdef illumos 4633 if (p->p_pidp->pid_id == pid) { 4634 #else 4635 if (p->p_pid == pid) { 4636 #endif 4637 rval = 1; 4638 break; 4639 } 4640 } 4641 4642 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4643 4644 regs[rd] = rval; 4645 break; 4646 } 4647 4648 case DIF_SUBR_SPECULATION: 4649 regs[rd] = dtrace_speculation(state); 4650 break; 4651 4652 case DIF_SUBR_COPYOUT: { 4653 uintptr_t kaddr = tupregs[0].dttk_value; 4654 uintptr_t uaddr = tupregs[1].dttk_value; 4655 uint64_t size = tupregs[2].dttk_value; 4656 4657 if (!dtrace_destructive_disallow && 4658 dtrace_priv_proc_control(state) && 4659 !dtrace_istoxic(kaddr, size) && 4660 dtrace_canload(kaddr, size, mstate, vstate)) { 4661 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4662 dtrace_copyout(kaddr, uaddr, size, flags); 4663 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4664 } 4665 break; 4666 } 4667 4668 case DIF_SUBR_COPYOUTSTR: { 4669 uintptr_t kaddr = tupregs[0].dttk_value; 4670 uintptr_t uaddr = tupregs[1].dttk_value; 4671 uint64_t size = tupregs[2].dttk_value; 4672 size_t lim; 4673 4674 if (!dtrace_destructive_disallow && 4675 dtrace_priv_proc_control(state) && 4676 !dtrace_istoxic(kaddr, size) && 4677 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4678 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4679 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4680 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4681 } 4682 break; 4683 } 4684 4685 case DIF_SUBR_STRLEN: { 4686 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4687 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4688 size_t lim; 4689 4690 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4691 regs[rd] = 0; 4692 break; 4693 } 4694 4695 regs[rd] = dtrace_strlen((char *)addr, lim); 4696 break; 4697 } 4698 4699 case DIF_SUBR_STRCHR: 4700 case DIF_SUBR_STRRCHR: { 4701 /* 4702 * We're going to iterate over the string looking for the 4703 * specified character. We will iterate until we have reached 4704 * the string length or we have found the character. If this 4705 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4706 * of the specified character instead of the first. 4707 */ 4708 uintptr_t addr = tupregs[0].dttk_value; 4709 uintptr_t addr_limit; 4710 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4711 size_t lim; 4712 char c, target = (char)tupregs[1].dttk_value; 4713 4714 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4715 regs[rd] = 0; 4716 break; 4717 } 4718 addr_limit = addr + lim; 4719 4720 for (regs[rd] = 0; addr < addr_limit; addr++) { 4721 if ((c = dtrace_load8(addr)) == target) { 4722 regs[rd] = addr; 4723 4724 if (subr == DIF_SUBR_STRCHR) 4725 break; 4726 } 4727 4728 if (c == '\0') 4729 break; 4730 } 4731 break; 4732 } 4733 4734 case DIF_SUBR_STRSTR: 4735 case DIF_SUBR_INDEX: 4736 case DIF_SUBR_RINDEX: { 4737 /* 4738 * We're going to iterate over the string looking for the 4739 * specified string. We will iterate until we have reached 4740 * the string length or we have found the string. (Yes, this 4741 * is done in the most naive way possible -- but considering 4742 * that the string we're searching for is likely to be 4743 * relatively short, the complexity of Rabin-Karp or similar 4744 * hardly seems merited.) 4745 */ 4746 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4747 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4748 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4749 size_t len = dtrace_strlen(addr, size); 4750 size_t sublen = dtrace_strlen(substr, size); 4751 char *limit = addr + len, *orig = addr; 4752 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4753 int inc = 1; 4754 4755 regs[rd] = notfound; 4756 4757 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4758 regs[rd] = 0; 4759 break; 4760 } 4761 4762 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4763 vstate)) { 4764 regs[rd] = 0; 4765 break; 4766 } 4767 4768 /* 4769 * strstr() and index()/rindex() have similar semantics if 4770 * both strings are the empty string: strstr() returns a 4771 * pointer to the (empty) string, and index() and rindex() 4772 * both return index 0 (regardless of any position argument). 4773 */ 4774 if (sublen == 0 && len == 0) { 4775 if (subr == DIF_SUBR_STRSTR) 4776 regs[rd] = (uintptr_t)addr; 4777 else 4778 regs[rd] = 0; 4779 break; 4780 } 4781 4782 if (subr != DIF_SUBR_STRSTR) { 4783 if (subr == DIF_SUBR_RINDEX) { 4784 limit = orig - 1; 4785 addr += len; 4786 inc = -1; 4787 } 4788 4789 /* 4790 * Both index() and rindex() take an optional position 4791 * argument that denotes the starting position. 4792 */ 4793 if (nargs == 3) { 4794 int64_t pos = (int64_t)tupregs[2].dttk_value; 4795 4796 /* 4797 * If the position argument to index() is 4798 * negative, Perl implicitly clamps it at 4799 * zero. This semantic is a little surprising 4800 * given the special meaning of negative 4801 * positions to similar Perl functions like 4802 * substr(), but it appears to reflect a 4803 * notion that index() can start from a 4804 * negative index and increment its way up to 4805 * the string. Given this notion, Perl's 4806 * rindex() is at least self-consistent in 4807 * that it implicitly clamps positions greater 4808 * than the string length to be the string 4809 * length. Where Perl completely loses 4810 * coherence, however, is when the specified 4811 * substring is the empty string (""). In 4812 * this case, even if the position is 4813 * negative, rindex() returns 0 -- and even if 4814 * the position is greater than the length, 4815 * index() returns the string length. These 4816 * semantics violate the notion that index() 4817 * should never return a value less than the 4818 * specified position and that rindex() should 4819 * never return a value greater than the 4820 * specified position. (One assumes that 4821 * these semantics are artifacts of Perl's 4822 * implementation and not the results of 4823 * deliberate design -- it beggars belief that 4824 * even Larry Wall could desire such oddness.) 4825 * While in the abstract one would wish for 4826 * consistent position semantics across 4827 * substr(), index() and rindex() -- or at the 4828 * very least self-consistent position 4829 * semantics for index() and rindex() -- we 4830 * instead opt to keep with the extant Perl 4831 * semantics, in all their broken glory. (Do 4832 * we have more desire to maintain Perl's 4833 * semantics than Perl does? Probably.) 4834 */ 4835 if (subr == DIF_SUBR_RINDEX) { 4836 if (pos < 0) { 4837 if (sublen == 0) 4838 regs[rd] = 0; 4839 break; 4840 } 4841 4842 if (pos > len) 4843 pos = len; 4844 } else { 4845 if (pos < 0) 4846 pos = 0; 4847 4848 if (pos >= len) { 4849 if (sublen == 0) 4850 regs[rd] = len; 4851 break; 4852 } 4853 } 4854 4855 addr = orig + pos; 4856 } 4857 } 4858 4859 for (regs[rd] = notfound; addr != limit; addr += inc) { 4860 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4861 if (subr != DIF_SUBR_STRSTR) { 4862 /* 4863 * As D index() and rindex() are 4864 * modeled on Perl (and not on awk), 4865 * we return a zero-based (and not a 4866 * one-based) index. (For you Perl 4867 * weenies: no, we're not going to add 4868 * $[ -- and shouldn't you be at a con 4869 * or something?) 4870 */ 4871 regs[rd] = (uintptr_t)(addr - orig); 4872 break; 4873 } 4874 4875 ASSERT(subr == DIF_SUBR_STRSTR); 4876 regs[rd] = (uintptr_t)addr; 4877 break; 4878 } 4879 } 4880 4881 break; 4882 } 4883 4884 case DIF_SUBR_STRTOK: { 4885 uintptr_t addr = tupregs[0].dttk_value; 4886 uintptr_t tokaddr = tupregs[1].dttk_value; 4887 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4888 uintptr_t limit, toklimit; 4889 size_t clim; 4890 uint8_t c = 0, tokmap[32]; /* 256 / 8 */ 4891 char *dest = (char *)mstate->dtms_scratch_ptr; 4892 int i; 4893 4894 /* 4895 * Check both the token buffer and (later) the input buffer, 4896 * since both could be non-scratch addresses. 4897 */ 4898 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 4899 regs[rd] = 0; 4900 break; 4901 } 4902 toklimit = tokaddr + clim; 4903 4904 if (!DTRACE_INSCRATCH(mstate, size)) { 4905 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4906 regs[rd] = 0; 4907 break; 4908 } 4909 4910 if (addr == 0) { 4911 /* 4912 * If the address specified is NULL, we use our saved 4913 * strtok pointer from the mstate. Note that this 4914 * means that the saved strtok pointer is _only_ 4915 * valid within multiple enablings of the same probe -- 4916 * it behaves like an implicit clause-local variable. 4917 */ 4918 addr = mstate->dtms_strtok; 4919 limit = mstate->dtms_strtok_limit; 4920 } else { 4921 /* 4922 * If the user-specified address is non-NULL we must 4923 * access check it. This is the only time we have 4924 * a chance to do so, since this address may reside 4925 * in the string table of this clause-- future calls 4926 * (when we fetch addr from mstate->dtms_strtok) 4927 * would fail this access check. 4928 */ 4929 if (!dtrace_strcanload(addr, size, &clim, mstate, 4930 vstate)) { 4931 regs[rd] = 0; 4932 break; 4933 } 4934 limit = addr + clim; 4935 } 4936 4937 /* 4938 * First, zero the token map, and then process the token 4939 * string -- setting a bit in the map for every character 4940 * found in the token string. 4941 */ 4942 for (i = 0; i < sizeof (tokmap); i++) 4943 tokmap[i] = 0; 4944 4945 for (; tokaddr < toklimit; tokaddr++) { 4946 if ((c = dtrace_load8(tokaddr)) == '\0') 4947 break; 4948 4949 ASSERT((c >> 3) < sizeof (tokmap)); 4950 tokmap[c >> 3] |= (1 << (c & 0x7)); 4951 } 4952 4953 for (; addr < limit; addr++) { 4954 /* 4955 * We're looking for a character that is _not_ 4956 * contained in the token string. 4957 */ 4958 if ((c = dtrace_load8(addr)) == '\0') 4959 break; 4960 4961 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4962 break; 4963 } 4964 4965 if (c == '\0') { 4966 /* 4967 * We reached the end of the string without finding 4968 * any character that was not in the token string. 4969 * We return NULL in this case, and we set the saved 4970 * address to NULL as well. 4971 */ 4972 regs[rd] = 0; 4973 mstate->dtms_strtok = 0; 4974 mstate->dtms_strtok_limit = 0; 4975 break; 4976 } 4977 4978 /* 4979 * From here on, we're copying into the destination string. 4980 */ 4981 for (i = 0; addr < limit && i < size - 1; addr++) { 4982 if ((c = dtrace_load8(addr)) == '\0') 4983 break; 4984 4985 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4986 break; 4987 4988 ASSERT(i < size); 4989 dest[i++] = c; 4990 } 4991 4992 ASSERT(i < size); 4993 dest[i] = '\0'; 4994 regs[rd] = (uintptr_t)dest; 4995 mstate->dtms_scratch_ptr += size; 4996 mstate->dtms_strtok = addr; 4997 mstate->dtms_strtok_limit = limit; 4998 break; 4999 } 5000 5001 case DIF_SUBR_SUBSTR: { 5002 uintptr_t s = tupregs[0].dttk_value; 5003 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5004 char *d = (char *)mstate->dtms_scratch_ptr; 5005 int64_t index = (int64_t)tupregs[1].dttk_value; 5006 int64_t remaining = (int64_t)tupregs[2].dttk_value; 5007 size_t len = dtrace_strlen((char *)s, size); 5008 int64_t i; 5009 5010 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5011 regs[rd] = 0; 5012 break; 5013 } 5014 5015 if (!DTRACE_INSCRATCH(mstate, size)) { 5016 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5017 regs[rd] = 0; 5018 break; 5019 } 5020 5021 if (nargs <= 2) 5022 remaining = (int64_t)size; 5023 5024 if (index < 0) { 5025 index += len; 5026 5027 if (index < 0 && index + remaining > 0) { 5028 remaining += index; 5029 index = 0; 5030 } 5031 } 5032 5033 if (index >= len || index < 0) { 5034 remaining = 0; 5035 } else if (remaining < 0) { 5036 remaining += len - index; 5037 } else if (index + remaining > size) { 5038 remaining = size - index; 5039 } 5040 5041 for (i = 0; i < remaining; i++) { 5042 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 5043 break; 5044 } 5045 5046 d[i] = '\0'; 5047 5048 mstate->dtms_scratch_ptr += size; 5049 regs[rd] = (uintptr_t)d; 5050 break; 5051 } 5052 5053 case DIF_SUBR_JSON: { 5054 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5055 uintptr_t json = tupregs[0].dttk_value; 5056 size_t jsonlen = dtrace_strlen((char *)json, size); 5057 uintptr_t elem = tupregs[1].dttk_value; 5058 size_t elemlen = dtrace_strlen((char *)elem, size); 5059 5060 char *dest = (char *)mstate->dtms_scratch_ptr; 5061 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 5062 char *ee = elemlist; 5063 int nelems = 1; 5064 uintptr_t cur; 5065 5066 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 5067 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 5068 regs[rd] = 0; 5069 break; 5070 } 5071 5072 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 5073 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5074 regs[rd] = 0; 5075 break; 5076 } 5077 5078 /* 5079 * Read the element selector and split it up into a packed list 5080 * of strings. 5081 */ 5082 for (cur = elem; cur < elem + elemlen; cur++) { 5083 char cc = dtrace_load8(cur); 5084 5085 if (cur == elem && cc == '[') { 5086 /* 5087 * If the first element selector key is 5088 * actually an array index then ignore the 5089 * bracket. 5090 */ 5091 continue; 5092 } 5093 5094 if (cc == ']') 5095 continue; 5096 5097 if (cc == '.' || cc == '[') { 5098 nelems++; 5099 cc = '\0'; 5100 } 5101 5102 *ee++ = cc; 5103 } 5104 *ee++ = '\0'; 5105 5106 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 5107 nelems, dest)) != 0) 5108 mstate->dtms_scratch_ptr += jsonlen + 1; 5109 break; 5110 } 5111 5112 case DIF_SUBR_TOUPPER: 5113 case DIF_SUBR_TOLOWER: { 5114 uintptr_t s = tupregs[0].dttk_value; 5115 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5116 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5117 size_t len = dtrace_strlen((char *)s, size); 5118 char lower, upper, convert; 5119 int64_t i; 5120 5121 if (subr == DIF_SUBR_TOUPPER) { 5122 lower = 'a'; 5123 upper = 'z'; 5124 convert = 'A'; 5125 } else { 5126 lower = 'A'; 5127 upper = 'Z'; 5128 convert = 'a'; 5129 } 5130 5131 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5132 regs[rd] = 0; 5133 break; 5134 } 5135 5136 if (!DTRACE_INSCRATCH(mstate, size)) { 5137 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5138 regs[rd] = 0; 5139 break; 5140 } 5141 5142 for (i = 0; i < size - 1; i++) { 5143 if ((c = dtrace_load8(s + i)) == '\0') 5144 break; 5145 5146 if (c >= lower && c <= upper) 5147 c = convert + (c - lower); 5148 5149 dest[i] = c; 5150 } 5151 5152 ASSERT(i < size); 5153 dest[i] = '\0'; 5154 regs[rd] = (uintptr_t)dest; 5155 mstate->dtms_scratch_ptr += size; 5156 break; 5157 } 5158 5159 #ifdef illumos 5160 case DIF_SUBR_GETMAJOR: 5161 #ifdef _LP64 5162 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 5163 #else 5164 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 5165 #endif 5166 break; 5167 5168 case DIF_SUBR_GETMINOR: 5169 #ifdef _LP64 5170 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 5171 #else 5172 regs[rd] = tupregs[0].dttk_value & MAXMIN; 5173 #endif 5174 break; 5175 5176 case DIF_SUBR_DDI_PATHNAME: { 5177 /* 5178 * This one is a galactic mess. We are going to roughly 5179 * emulate ddi_pathname(), but it's made more complicated 5180 * by the fact that we (a) want to include the minor name and 5181 * (b) must proceed iteratively instead of recursively. 5182 */ 5183 uintptr_t dest = mstate->dtms_scratch_ptr; 5184 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5185 char *start = (char *)dest, *end = start + size - 1; 5186 uintptr_t daddr = tupregs[0].dttk_value; 5187 int64_t minor = (int64_t)tupregs[1].dttk_value; 5188 char *s; 5189 int i, len, depth = 0; 5190 5191 /* 5192 * Due to all the pointer jumping we do and context we must 5193 * rely upon, we just mandate that the user must have kernel 5194 * read privileges to use this routine. 5195 */ 5196 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 5197 *flags |= CPU_DTRACE_KPRIV; 5198 *illval = daddr; 5199 regs[rd] = 0; 5200 } 5201 5202 if (!DTRACE_INSCRATCH(mstate, size)) { 5203 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5204 regs[rd] = 0; 5205 break; 5206 } 5207 5208 *end = '\0'; 5209 5210 /* 5211 * We want to have a name for the minor. In order to do this, 5212 * we need to walk the minor list from the devinfo. We want 5213 * to be sure that we don't infinitely walk a circular list, 5214 * so we check for circularity by sending a scout pointer 5215 * ahead two elements for every element that we iterate over; 5216 * if the list is circular, these will ultimately point to the 5217 * same element. You may recognize this little trick as the 5218 * answer to a stupid interview question -- one that always 5219 * seems to be asked by those who had to have it laboriously 5220 * explained to them, and who can't even concisely describe 5221 * the conditions under which one would be forced to resort to 5222 * this technique. Needless to say, those conditions are 5223 * found here -- and probably only here. Is this the only use 5224 * of this infamous trick in shipping, production code? If it 5225 * isn't, it probably should be... 5226 */ 5227 if (minor != -1) { 5228 uintptr_t maddr = dtrace_loadptr(daddr + 5229 offsetof(struct dev_info, devi_minor)); 5230 5231 uintptr_t next = offsetof(struct ddi_minor_data, next); 5232 uintptr_t name = offsetof(struct ddi_minor_data, 5233 d_minor) + offsetof(struct ddi_minor, name); 5234 uintptr_t dev = offsetof(struct ddi_minor_data, 5235 d_minor) + offsetof(struct ddi_minor, dev); 5236 uintptr_t scout; 5237 5238 if (maddr != NULL) 5239 scout = dtrace_loadptr(maddr + next); 5240 5241 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5242 uint64_t m; 5243 #ifdef _LP64 5244 m = dtrace_load64(maddr + dev) & MAXMIN64; 5245 #else 5246 m = dtrace_load32(maddr + dev) & MAXMIN; 5247 #endif 5248 if (m != minor) { 5249 maddr = dtrace_loadptr(maddr + next); 5250 5251 if (scout == NULL) 5252 continue; 5253 5254 scout = dtrace_loadptr(scout + next); 5255 5256 if (scout == NULL) 5257 continue; 5258 5259 scout = dtrace_loadptr(scout + next); 5260 5261 if (scout == NULL) 5262 continue; 5263 5264 if (scout == maddr) { 5265 *flags |= CPU_DTRACE_ILLOP; 5266 break; 5267 } 5268 5269 continue; 5270 } 5271 5272 /* 5273 * We have the minor data. Now we need to 5274 * copy the minor's name into the end of the 5275 * pathname. 5276 */ 5277 s = (char *)dtrace_loadptr(maddr + name); 5278 len = dtrace_strlen(s, size); 5279 5280 if (*flags & CPU_DTRACE_FAULT) 5281 break; 5282 5283 if (len != 0) { 5284 if ((end -= (len + 1)) < start) 5285 break; 5286 5287 *end = ':'; 5288 } 5289 5290 for (i = 1; i <= len; i++) 5291 end[i] = dtrace_load8((uintptr_t)s++); 5292 break; 5293 } 5294 } 5295 5296 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5297 ddi_node_state_t devi_state; 5298 5299 devi_state = dtrace_load32(daddr + 5300 offsetof(struct dev_info, devi_node_state)); 5301 5302 if (*flags & CPU_DTRACE_FAULT) 5303 break; 5304 5305 if (devi_state >= DS_INITIALIZED) { 5306 s = (char *)dtrace_loadptr(daddr + 5307 offsetof(struct dev_info, devi_addr)); 5308 len = dtrace_strlen(s, size); 5309 5310 if (*flags & CPU_DTRACE_FAULT) 5311 break; 5312 5313 if (len != 0) { 5314 if ((end -= (len + 1)) < start) 5315 break; 5316 5317 *end = '@'; 5318 } 5319 5320 for (i = 1; i <= len; i++) 5321 end[i] = dtrace_load8((uintptr_t)s++); 5322 } 5323 5324 /* 5325 * Now for the node name... 5326 */ 5327 s = (char *)dtrace_loadptr(daddr + 5328 offsetof(struct dev_info, devi_node_name)); 5329 5330 daddr = dtrace_loadptr(daddr + 5331 offsetof(struct dev_info, devi_parent)); 5332 5333 /* 5334 * If our parent is NULL (that is, if we're the root 5335 * node), we're going to use the special path 5336 * "devices". 5337 */ 5338 if (daddr == 0) 5339 s = "devices"; 5340 5341 len = dtrace_strlen(s, size); 5342 if (*flags & CPU_DTRACE_FAULT) 5343 break; 5344 5345 if ((end -= (len + 1)) < start) 5346 break; 5347 5348 for (i = 1; i <= len; i++) 5349 end[i] = dtrace_load8((uintptr_t)s++); 5350 *end = '/'; 5351 5352 if (depth++ > dtrace_devdepth_max) { 5353 *flags |= CPU_DTRACE_ILLOP; 5354 break; 5355 } 5356 } 5357 5358 if (end < start) 5359 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5360 5361 if (daddr == 0) { 5362 regs[rd] = (uintptr_t)end; 5363 mstate->dtms_scratch_ptr += size; 5364 } 5365 5366 break; 5367 } 5368 #endif 5369 5370 case DIF_SUBR_STRJOIN: { 5371 char *d = (char *)mstate->dtms_scratch_ptr; 5372 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5373 uintptr_t s1 = tupregs[0].dttk_value; 5374 uintptr_t s2 = tupregs[1].dttk_value; 5375 int i = 0, j = 0; 5376 size_t lim1, lim2; 5377 char c; 5378 5379 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5380 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5381 regs[rd] = 0; 5382 break; 5383 } 5384 5385 if (!DTRACE_INSCRATCH(mstate, size)) { 5386 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5387 regs[rd] = 0; 5388 break; 5389 } 5390 5391 for (;;) { 5392 if (i >= size) { 5393 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5394 regs[rd] = 0; 5395 break; 5396 } 5397 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5398 if ((d[i++] = c) == '\0') { 5399 i--; 5400 break; 5401 } 5402 } 5403 5404 for (;;) { 5405 if (i >= size) { 5406 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5407 regs[rd] = 0; 5408 break; 5409 } 5410 5411 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5412 if ((d[i++] = c) == '\0') 5413 break; 5414 } 5415 5416 if (i < size) { 5417 mstate->dtms_scratch_ptr += i; 5418 regs[rd] = (uintptr_t)d; 5419 } 5420 5421 break; 5422 } 5423 5424 case DIF_SUBR_STRTOLL: { 5425 uintptr_t s = tupregs[0].dttk_value; 5426 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5427 size_t lim; 5428 int base = 10; 5429 5430 if (nargs > 1) { 5431 if ((base = tupregs[1].dttk_value) <= 1 || 5432 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5433 *flags |= CPU_DTRACE_ILLOP; 5434 break; 5435 } 5436 } 5437 5438 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5439 regs[rd] = INT64_MIN; 5440 break; 5441 } 5442 5443 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5444 break; 5445 } 5446 5447 case DIF_SUBR_LLTOSTR: { 5448 int64_t i = (int64_t)tupregs[0].dttk_value; 5449 uint64_t val, digit; 5450 uint64_t size = 65; /* enough room for 2^64 in binary */ 5451 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5452 int base = 10; 5453 5454 if (nargs > 1) { 5455 if ((base = tupregs[1].dttk_value) <= 1 || 5456 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5457 *flags |= CPU_DTRACE_ILLOP; 5458 break; 5459 } 5460 } 5461 5462 val = (base == 10 && i < 0) ? i * -1 : i; 5463 5464 if (!DTRACE_INSCRATCH(mstate, size)) { 5465 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5466 regs[rd] = 0; 5467 break; 5468 } 5469 5470 for (*end-- = '\0'; val; val /= base) { 5471 if ((digit = val % base) <= '9' - '0') { 5472 *end-- = '0' + digit; 5473 } else { 5474 *end-- = 'a' + (digit - ('9' - '0') - 1); 5475 } 5476 } 5477 5478 if (i == 0 && base == 16) 5479 *end-- = '0'; 5480 5481 if (base == 16) 5482 *end-- = 'x'; 5483 5484 if (i == 0 || base == 8 || base == 16) 5485 *end-- = '0'; 5486 5487 if (i < 0 && base == 10) 5488 *end-- = '-'; 5489 5490 regs[rd] = (uintptr_t)end + 1; 5491 mstate->dtms_scratch_ptr += size; 5492 break; 5493 } 5494 5495 case DIF_SUBR_HTONS: 5496 case DIF_SUBR_NTOHS: 5497 #if BYTE_ORDER == BIG_ENDIAN 5498 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5499 #else 5500 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5501 #endif 5502 break; 5503 5504 5505 case DIF_SUBR_HTONL: 5506 case DIF_SUBR_NTOHL: 5507 #if BYTE_ORDER == BIG_ENDIAN 5508 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5509 #else 5510 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5511 #endif 5512 break; 5513 5514 5515 case DIF_SUBR_HTONLL: 5516 case DIF_SUBR_NTOHLL: 5517 #if BYTE_ORDER == BIG_ENDIAN 5518 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5519 #else 5520 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5521 #endif 5522 break; 5523 5524 5525 case DIF_SUBR_DIRNAME: 5526 case DIF_SUBR_BASENAME: { 5527 char *dest = (char *)mstate->dtms_scratch_ptr; 5528 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5529 uintptr_t src = tupregs[0].dttk_value; 5530 int i, j, len = dtrace_strlen((char *)src, size); 5531 int lastbase = -1, firstbase = -1, lastdir = -1; 5532 int start, end; 5533 5534 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5535 regs[rd] = 0; 5536 break; 5537 } 5538 5539 if (!DTRACE_INSCRATCH(mstate, size)) { 5540 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5541 regs[rd] = 0; 5542 break; 5543 } 5544 5545 /* 5546 * The basename and dirname for a zero-length string is 5547 * defined to be "." 5548 */ 5549 if (len == 0) { 5550 len = 1; 5551 src = (uintptr_t)"."; 5552 } 5553 5554 /* 5555 * Start from the back of the string, moving back toward the 5556 * front until we see a character that isn't a slash. That 5557 * character is the last character in the basename. 5558 */ 5559 for (i = len - 1; i >= 0; i--) { 5560 if (dtrace_load8(src + i) != '/') 5561 break; 5562 } 5563 5564 if (i >= 0) 5565 lastbase = i; 5566 5567 /* 5568 * Starting from the last character in the basename, move 5569 * towards the front until we find a slash. The character 5570 * that we processed immediately before that is the first 5571 * character in the basename. 5572 */ 5573 for (; i >= 0; i--) { 5574 if (dtrace_load8(src + i) == '/') 5575 break; 5576 } 5577 5578 if (i >= 0) 5579 firstbase = i + 1; 5580 5581 /* 5582 * Now keep going until we find a non-slash character. That 5583 * character is the last character in the dirname. 5584 */ 5585 for (; i >= 0; i--) { 5586 if (dtrace_load8(src + i) != '/') 5587 break; 5588 } 5589 5590 if (i >= 0) 5591 lastdir = i; 5592 5593 ASSERT(!(lastbase == -1 && firstbase != -1)); 5594 ASSERT(!(firstbase == -1 && lastdir != -1)); 5595 5596 if (lastbase == -1) { 5597 /* 5598 * We didn't find a non-slash character. We know that 5599 * the length is non-zero, so the whole string must be 5600 * slashes. In either the dirname or the basename 5601 * case, we return '/'. 5602 */ 5603 ASSERT(firstbase == -1); 5604 firstbase = lastbase = lastdir = 0; 5605 } 5606 5607 if (firstbase == -1) { 5608 /* 5609 * The entire string consists only of a basename 5610 * component. If we're looking for dirname, we need 5611 * to change our string to be just "."; if we're 5612 * looking for a basename, we'll just set the first 5613 * character of the basename to be 0. 5614 */ 5615 if (subr == DIF_SUBR_DIRNAME) { 5616 ASSERT(lastdir == -1); 5617 src = (uintptr_t)"."; 5618 lastdir = 0; 5619 } else { 5620 firstbase = 0; 5621 } 5622 } 5623 5624 if (subr == DIF_SUBR_DIRNAME) { 5625 if (lastdir == -1) { 5626 /* 5627 * We know that we have a slash in the name -- 5628 * or lastdir would be set to 0, above. And 5629 * because lastdir is -1, we know that this 5630 * slash must be the first character. (That 5631 * is, the full string must be of the form 5632 * "/basename".) In this case, the last 5633 * character of the directory name is 0. 5634 */ 5635 lastdir = 0; 5636 } 5637 5638 start = 0; 5639 end = lastdir; 5640 } else { 5641 ASSERT(subr == DIF_SUBR_BASENAME); 5642 ASSERT(firstbase != -1 && lastbase != -1); 5643 start = firstbase; 5644 end = lastbase; 5645 } 5646 5647 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5648 dest[j] = dtrace_load8(src + i); 5649 5650 dest[j] = '\0'; 5651 regs[rd] = (uintptr_t)dest; 5652 mstate->dtms_scratch_ptr += size; 5653 break; 5654 } 5655 5656 case DIF_SUBR_GETF: { 5657 uintptr_t fd = tupregs[0].dttk_value; 5658 struct filedesc *fdp; 5659 file_t *fp; 5660 5661 if (!dtrace_priv_proc(state)) { 5662 regs[rd] = 0; 5663 break; 5664 } 5665 fdp = curproc->p_fd; 5666 FILEDESC_SLOCK(fdp); 5667 fp = fget_locked(fdp, fd); 5668 mstate->dtms_getf = fp; 5669 regs[rd] = (uintptr_t)fp; 5670 FILEDESC_SUNLOCK(fdp); 5671 break; 5672 } 5673 5674 case DIF_SUBR_CLEANPATH: { 5675 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5676 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5677 uintptr_t src = tupregs[0].dttk_value; 5678 size_t lim; 5679 int i = 0, j = 0; 5680 #ifdef illumos 5681 zone_t *z; 5682 #endif 5683 5684 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5685 regs[rd] = 0; 5686 break; 5687 } 5688 5689 if (!DTRACE_INSCRATCH(mstate, size)) { 5690 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5691 regs[rd] = 0; 5692 break; 5693 } 5694 5695 /* 5696 * Move forward, loading each character. 5697 */ 5698 do { 5699 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5700 next: 5701 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5702 break; 5703 5704 if (c != '/') { 5705 dest[j++] = c; 5706 continue; 5707 } 5708 5709 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5710 5711 if (c == '/') { 5712 /* 5713 * We have two slashes -- we can just advance 5714 * to the next character. 5715 */ 5716 goto next; 5717 } 5718 5719 if (c != '.') { 5720 /* 5721 * This is not "." and it's not ".." -- we can 5722 * just store the "/" and this character and 5723 * drive on. 5724 */ 5725 dest[j++] = '/'; 5726 dest[j++] = c; 5727 continue; 5728 } 5729 5730 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5731 5732 if (c == '/') { 5733 /* 5734 * This is a "/./" component. We're not going 5735 * to store anything in the destination buffer; 5736 * we're just going to go to the next component. 5737 */ 5738 goto next; 5739 } 5740 5741 if (c != '.') { 5742 /* 5743 * This is not ".." -- we can just store the 5744 * "/." and this character and continue 5745 * processing. 5746 */ 5747 dest[j++] = '/'; 5748 dest[j++] = '.'; 5749 dest[j++] = c; 5750 continue; 5751 } 5752 5753 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5754 5755 if (c != '/' && c != '\0') { 5756 /* 5757 * This is not ".." -- it's "..[mumble]". 5758 * We'll store the "/.." and this character 5759 * and continue processing. 5760 */ 5761 dest[j++] = '/'; 5762 dest[j++] = '.'; 5763 dest[j++] = '.'; 5764 dest[j++] = c; 5765 continue; 5766 } 5767 5768 /* 5769 * This is "/../" or "/..\0". We need to back up 5770 * our destination pointer until we find a "/". 5771 */ 5772 i--; 5773 while (j != 0 && dest[--j] != '/') 5774 continue; 5775 5776 if (c == '\0') 5777 dest[++j] = '/'; 5778 } while (c != '\0'); 5779 5780 dest[j] = '\0'; 5781 5782 #ifdef illumos 5783 if (mstate->dtms_getf != NULL && 5784 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5785 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5786 /* 5787 * If we've done a getf() as a part of this ECB and we 5788 * don't have kernel access (and we're not in the global 5789 * zone), check if the path we cleaned up begins with 5790 * the zone's root path, and trim it off if so. Note 5791 * that this is an output cleanliness issue, not a 5792 * security issue: knowing one's zone root path does 5793 * not enable privilege escalation. 5794 */ 5795 if (strstr(dest, z->zone_rootpath) == dest) 5796 dest += strlen(z->zone_rootpath) - 1; 5797 } 5798 #endif 5799 5800 regs[rd] = (uintptr_t)dest; 5801 mstate->dtms_scratch_ptr += size; 5802 break; 5803 } 5804 5805 case DIF_SUBR_INET_NTOA: 5806 case DIF_SUBR_INET_NTOA6: 5807 case DIF_SUBR_INET_NTOP: { 5808 size_t size; 5809 int af, argi, i; 5810 char *base, *end; 5811 5812 if (subr == DIF_SUBR_INET_NTOP) { 5813 af = (int)tupregs[0].dttk_value; 5814 argi = 1; 5815 } else { 5816 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5817 argi = 0; 5818 } 5819 5820 if (af == AF_INET) { 5821 ipaddr_t ip4; 5822 uint8_t *ptr8, val; 5823 5824 if (!dtrace_canload(tupregs[argi].dttk_value, 5825 sizeof (ipaddr_t), mstate, vstate)) { 5826 regs[rd] = 0; 5827 break; 5828 } 5829 5830 /* 5831 * Safely load the IPv4 address. 5832 */ 5833 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5834 5835 /* 5836 * Check an IPv4 string will fit in scratch. 5837 */ 5838 size = INET_ADDRSTRLEN; 5839 if (!DTRACE_INSCRATCH(mstate, size)) { 5840 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5841 regs[rd] = 0; 5842 break; 5843 } 5844 base = (char *)mstate->dtms_scratch_ptr; 5845 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5846 5847 /* 5848 * Stringify as a dotted decimal quad. 5849 */ 5850 *end-- = '\0'; 5851 ptr8 = (uint8_t *)&ip4; 5852 for (i = 3; i >= 0; i--) { 5853 val = ptr8[i]; 5854 5855 if (val == 0) { 5856 *end-- = '0'; 5857 } else { 5858 for (; val; val /= 10) { 5859 *end-- = '0' + (val % 10); 5860 } 5861 } 5862 5863 if (i > 0) 5864 *end-- = '.'; 5865 } 5866 ASSERT(end + 1 >= base); 5867 5868 } else if (af == AF_INET6) { 5869 struct in6_addr ip6; 5870 int firstzero, tryzero, numzero, v6end; 5871 uint16_t val; 5872 const char digits[] = "0123456789abcdef"; 5873 5874 /* 5875 * Stringify using RFC 1884 convention 2 - 16 bit 5876 * hexadecimal values with a zero-run compression. 5877 * Lower case hexadecimal digits are used. 5878 * eg, fe80::214:4fff:fe0b:76c8. 5879 * The IPv4 embedded form is returned for inet_ntop, 5880 * just the IPv4 string is returned for inet_ntoa6. 5881 */ 5882 5883 if (!dtrace_canload(tupregs[argi].dttk_value, 5884 sizeof (struct in6_addr), mstate, vstate)) { 5885 regs[rd] = 0; 5886 break; 5887 } 5888 5889 /* 5890 * Safely load the IPv6 address. 5891 */ 5892 dtrace_bcopy( 5893 (void *)(uintptr_t)tupregs[argi].dttk_value, 5894 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5895 5896 /* 5897 * Check an IPv6 string will fit in scratch. 5898 */ 5899 size = INET6_ADDRSTRLEN; 5900 if (!DTRACE_INSCRATCH(mstate, size)) { 5901 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5902 regs[rd] = 0; 5903 break; 5904 } 5905 base = (char *)mstate->dtms_scratch_ptr; 5906 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5907 *end-- = '\0'; 5908 5909 /* 5910 * Find the longest run of 16 bit zero values 5911 * for the single allowed zero compression - "::". 5912 */ 5913 firstzero = -1; 5914 tryzero = -1; 5915 numzero = 1; 5916 for (i = 0; i < sizeof (struct in6_addr); i++) { 5917 #ifdef illumos 5918 if (ip6._S6_un._S6_u8[i] == 0 && 5919 #else 5920 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5921 #endif 5922 tryzero == -1 && i % 2 == 0) { 5923 tryzero = i; 5924 continue; 5925 } 5926 5927 if (tryzero != -1 && 5928 #ifdef illumos 5929 (ip6._S6_un._S6_u8[i] != 0 || 5930 #else 5931 (ip6.__u6_addr.__u6_addr8[i] != 0 || 5932 #endif 5933 i == sizeof (struct in6_addr) - 1)) { 5934 5935 if (i - tryzero <= numzero) { 5936 tryzero = -1; 5937 continue; 5938 } 5939 5940 firstzero = tryzero; 5941 numzero = i - i % 2 - tryzero; 5942 tryzero = -1; 5943 5944 #ifdef illumos 5945 if (ip6._S6_un._S6_u8[i] == 0 && 5946 #else 5947 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5948 #endif 5949 i == sizeof (struct in6_addr) - 1) 5950 numzero += 2; 5951 } 5952 } 5953 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5954 5955 /* 5956 * Check for an IPv4 embedded address. 5957 */ 5958 v6end = sizeof (struct in6_addr) - 2; 5959 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5960 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5961 for (i = sizeof (struct in6_addr) - 1; 5962 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5963 ASSERT(end >= base); 5964 5965 #ifdef illumos 5966 val = ip6._S6_un._S6_u8[i]; 5967 #else 5968 val = ip6.__u6_addr.__u6_addr8[i]; 5969 #endif 5970 5971 if (val == 0) { 5972 *end-- = '0'; 5973 } else { 5974 for (; val; val /= 10) { 5975 *end-- = '0' + val % 10; 5976 } 5977 } 5978 5979 if (i > DTRACE_V4MAPPED_OFFSET) 5980 *end-- = '.'; 5981 } 5982 5983 if (subr == DIF_SUBR_INET_NTOA6) 5984 goto inetout; 5985 5986 /* 5987 * Set v6end to skip the IPv4 address that 5988 * we have already stringified. 5989 */ 5990 v6end = 10; 5991 } 5992 5993 /* 5994 * Build the IPv6 string by working through the 5995 * address in reverse. 5996 */ 5997 for (i = v6end; i >= 0; i -= 2) { 5998 ASSERT(end >= base); 5999 6000 if (i == firstzero + numzero - 2) { 6001 *end-- = ':'; 6002 *end-- = ':'; 6003 i -= numzero - 2; 6004 continue; 6005 } 6006 6007 if (i < 14 && i != firstzero - 2) 6008 *end-- = ':'; 6009 6010 #ifdef illumos 6011 val = (ip6._S6_un._S6_u8[i] << 8) + 6012 ip6._S6_un._S6_u8[i + 1]; 6013 #else 6014 val = (ip6.__u6_addr.__u6_addr8[i] << 8) + 6015 ip6.__u6_addr.__u6_addr8[i + 1]; 6016 #endif 6017 6018 if (val == 0) { 6019 *end-- = '0'; 6020 } else { 6021 for (; val; val /= 16) { 6022 *end-- = digits[val % 16]; 6023 } 6024 } 6025 } 6026 ASSERT(end + 1 >= base); 6027 6028 } else { 6029 /* 6030 * The user didn't use AH_INET or AH_INET6. 6031 */ 6032 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6033 regs[rd] = 0; 6034 break; 6035 } 6036 6037 inetout: regs[rd] = (uintptr_t)end + 1; 6038 mstate->dtms_scratch_ptr += size; 6039 break; 6040 } 6041 6042 case DIF_SUBR_MEMREF: { 6043 uintptr_t size = 2 * sizeof(uintptr_t); 6044 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 6045 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size; 6046 6047 /* address and length */ 6048 memref[0] = tupregs[0].dttk_value; 6049 memref[1] = tupregs[1].dttk_value; 6050 6051 regs[rd] = (uintptr_t) memref; 6052 mstate->dtms_scratch_ptr += scratch_size; 6053 break; 6054 } 6055 6056 #ifndef illumos 6057 case DIF_SUBR_MEMSTR: { 6058 char *str = (char *)mstate->dtms_scratch_ptr; 6059 uintptr_t mem = tupregs[0].dttk_value; 6060 char c = tupregs[1].dttk_value; 6061 size_t size = tupregs[2].dttk_value; 6062 uint8_t n; 6063 int i; 6064 6065 regs[rd] = 0; 6066 6067 if (size == 0) 6068 break; 6069 6070 if (!dtrace_canload(mem, size - 1, mstate, vstate)) 6071 break; 6072 6073 if (!DTRACE_INSCRATCH(mstate, size)) { 6074 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6075 break; 6076 } 6077 6078 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) { 6079 *flags |= CPU_DTRACE_ILLOP; 6080 break; 6081 } 6082 6083 for (i = 0; i < size - 1; i++) { 6084 n = dtrace_load8(mem++); 6085 str[i] = (n == 0) ? c : n; 6086 } 6087 str[size - 1] = 0; 6088 6089 regs[rd] = (uintptr_t)str; 6090 mstate->dtms_scratch_ptr += size; 6091 break; 6092 } 6093 #endif 6094 } 6095 } 6096 6097 /* 6098 * Emulate the execution of DTrace IR instructions specified by the given 6099 * DIF object. This function is deliberately void of assertions as all of 6100 * the necessary checks are handled by a call to dtrace_difo_validate(). 6101 */ 6102 static uint64_t 6103 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 6104 dtrace_vstate_t *vstate, dtrace_state_t *state) 6105 { 6106 const dif_instr_t *text = difo->dtdo_buf; 6107 const uint_t textlen = difo->dtdo_len; 6108 const char *strtab = difo->dtdo_strtab; 6109 const uint64_t *inttab = difo->dtdo_inttab; 6110 6111 uint64_t rval = 0; 6112 dtrace_statvar_t *svar; 6113 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 6114 dtrace_difv_t *v; 6115 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 6116 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 6117 6118 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 6119 uint64_t regs[DIF_DIR_NREGS]; 6120 uint64_t *tmp; 6121 6122 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 6123 int64_t cc_r; 6124 uint_t pc = 0, id, opc = 0; 6125 uint8_t ttop = 0; 6126 dif_instr_t instr; 6127 uint_t r1, r2, rd; 6128 6129 /* 6130 * We stash the current DIF object into the machine state: we need it 6131 * for subsequent access checking. 6132 */ 6133 mstate->dtms_difo = difo; 6134 6135 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 6136 6137 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 6138 opc = pc; 6139 6140 instr = text[pc++]; 6141 r1 = DIF_INSTR_R1(instr); 6142 r2 = DIF_INSTR_R2(instr); 6143 rd = DIF_INSTR_RD(instr); 6144 6145 switch (DIF_INSTR_OP(instr)) { 6146 case DIF_OP_OR: 6147 regs[rd] = regs[r1] | regs[r2]; 6148 break; 6149 case DIF_OP_XOR: 6150 regs[rd] = regs[r1] ^ regs[r2]; 6151 break; 6152 case DIF_OP_AND: 6153 regs[rd] = regs[r1] & regs[r2]; 6154 break; 6155 case DIF_OP_SLL: 6156 regs[rd] = regs[r1] << regs[r2]; 6157 break; 6158 case DIF_OP_SRL: 6159 regs[rd] = regs[r1] >> regs[r2]; 6160 break; 6161 case DIF_OP_SUB: 6162 regs[rd] = regs[r1] - regs[r2]; 6163 break; 6164 case DIF_OP_ADD: 6165 regs[rd] = regs[r1] + regs[r2]; 6166 break; 6167 case DIF_OP_MUL: 6168 regs[rd] = regs[r1] * regs[r2]; 6169 break; 6170 case DIF_OP_SDIV: 6171 if (regs[r2] == 0) { 6172 regs[rd] = 0; 6173 *flags |= CPU_DTRACE_DIVZERO; 6174 } else { 6175 regs[rd] = (int64_t)regs[r1] / 6176 (int64_t)regs[r2]; 6177 } 6178 break; 6179 6180 case DIF_OP_UDIV: 6181 if (regs[r2] == 0) { 6182 regs[rd] = 0; 6183 *flags |= CPU_DTRACE_DIVZERO; 6184 } else { 6185 regs[rd] = regs[r1] / regs[r2]; 6186 } 6187 break; 6188 6189 case DIF_OP_SREM: 6190 if (regs[r2] == 0) { 6191 regs[rd] = 0; 6192 *flags |= CPU_DTRACE_DIVZERO; 6193 } else { 6194 regs[rd] = (int64_t)regs[r1] % 6195 (int64_t)regs[r2]; 6196 } 6197 break; 6198 6199 case DIF_OP_UREM: 6200 if (regs[r2] == 0) { 6201 regs[rd] = 0; 6202 *flags |= CPU_DTRACE_DIVZERO; 6203 } else { 6204 regs[rd] = regs[r1] % regs[r2]; 6205 } 6206 break; 6207 6208 case DIF_OP_NOT: 6209 regs[rd] = ~regs[r1]; 6210 break; 6211 case DIF_OP_MOV: 6212 regs[rd] = regs[r1]; 6213 break; 6214 case DIF_OP_CMP: 6215 cc_r = regs[r1] - regs[r2]; 6216 cc_n = cc_r < 0; 6217 cc_z = cc_r == 0; 6218 cc_v = 0; 6219 cc_c = regs[r1] < regs[r2]; 6220 break; 6221 case DIF_OP_TST: 6222 cc_n = cc_v = cc_c = 0; 6223 cc_z = regs[r1] == 0; 6224 break; 6225 case DIF_OP_BA: 6226 pc = DIF_INSTR_LABEL(instr); 6227 break; 6228 case DIF_OP_BE: 6229 if (cc_z) 6230 pc = DIF_INSTR_LABEL(instr); 6231 break; 6232 case DIF_OP_BNE: 6233 if (cc_z == 0) 6234 pc = DIF_INSTR_LABEL(instr); 6235 break; 6236 case DIF_OP_BG: 6237 if ((cc_z | (cc_n ^ cc_v)) == 0) 6238 pc = DIF_INSTR_LABEL(instr); 6239 break; 6240 case DIF_OP_BGU: 6241 if ((cc_c | cc_z) == 0) 6242 pc = DIF_INSTR_LABEL(instr); 6243 break; 6244 case DIF_OP_BGE: 6245 if ((cc_n ^ cc_v) == 0) 6246 pc = DIF_INSTR_LABEL(instr); 6247 break; 6248 case DIF_OP_BGEU: 6249 if (cc_c == 0) 6250 pc = DIF_INSTR_LABEL(instr); 6251 break; 6252 case DIF_OP_BL: 6253 if (cc_n ^ cc_v) 6254 pc = DIF_INSTR_LABEL(instr); 6255 break; 6256 case DIF_OP_BLU: 6257 if (cc_c) 6258 pc = DIF_INSTR_LABEL(instr); 6259 break; 6260 case DIF_OP_BLE: 6261 if (cc_z | (cc_n ^ cc_v)) 6262 pc = DIF_INSTR_LABEL(instr); 6263 break; 6264 case DIF_OP_BLEU: 6265 if (cc_c | cc_z) 6266 pc = DIF_INSTR_LABEL(instr); 6267 break; 6268 case DIF_OP_RLDSB: 6269 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6270 break; 6271 /*FALLTHROUGH*/ 6272 case DIF_OP_LDSB: 6273 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 6274 break; 6275 case DIF_OP_RLDSH: 6276 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6277 break; 6278 /*FALLTHROUGH*/ 6279 case DIF_OP_LDSH: 6280 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 6281 break; 6282 case DIF_OP_RLDSW: 6283 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6284 break; 6285 /*FALLTHROUGH*/ 6286 case DIF_OP_LDSW: 6287 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 6288 break; 6289 case DIF_OP_RLDUB: 6290 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6291 break; 6292 /*FALLTHROUGH*/ 6293 case DIF_OP_LDUB: 6294 regs[rd] = dtrace_load8(regs[r1]); 6295 break; 6296 case DIF_OP_RLDUH: 6297 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6298 break; 6299 /*FALLTHROUGH*/ 6300 case DIF_OP_LDUH: 6301 regs[rd] = dtrace_load16(regs[r1]); 6302 break; 6303 case DIF_OP_RLDUW: 6304 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6305 break; 6306 /*FALLTHROUGH*/ 6307 case DIF_OP_LDUW: 6308 regs[rd] = dtrace_load32(regs[r1]); 6309 break; 6310 case DIF_OP_RLDX: 6311 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 6312 break; 6313 /*FALLTHROUGH*/ 6314 case DIF_OP_LDX: 6315 regs[rd] = dtrace_load64(regs[r1]); 6316 break; 6317 case DIF_OP_ULDSB: 6318 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6319 regs[rd] = (int8_t) 6320 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6321 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6322 break; 6323 case DIF_OP_ULDSH: 6324 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6325 regs[rd] = (int16_t) 6326 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6327 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6328 break; 6329 case DIF_OP_ULDSW: 6330 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6331 regs[rd] = (int32_t) 6332 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6333 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6334 break; 6335 case DIF_OP_ULDUB: 6336 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6337 regs[rd] = 6338 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6339 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6340 break; 6341 case DIF_OP_ULDUH: 6342 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6343 regs[rd] = 6344 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6345 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6346 break; 6347 case DIF_OP_ULDUW: 6348 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6349 regs[rd] = 6350 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6351 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6352 break; 6353 case DIF_OP_ULDX: 6354 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6355 regs[rd] = 6356 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 6357 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6358 break; 6359 case DIF_OP_RET: 6360 rval = regs[rd]; 6361 pc = textlen; 6362 break; 6363 case DIF_OP_NOP: 6364 break; 6365 case DIF_OP_SETX: 6366 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6367 break; 6368 case DIF_OP_SETS: 6369 regs[rd] = (uint64_t)(uintptr_t) 6370 (strtab + DIF_INSTR_STRING(instr)); 6371 break; 6372 case DIF_OP_SCMP: { 6373 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6374 uintptr_t s1 = regs[r1]; 6375 uintptr_t s2 = regs[r2]; 6376 size_t lim1, lim2; 6377 6378 /* 6379 * If one of the strings is NULL then the limit becomes 6380 * 0 which compares 0 characters in dtrace_strncmp() 6381 * resulting in a false positive. dtrace_strncmp() 6382 * treats a NULL as an empty 1-char string. 6383 */ 6384 lim1 = lim2 = 1; 6385 6386 if (s1 != 0 && 6387 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 6388 break; 6389 if (s2 != 0 && 6390 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 6391 break; 6392 6393 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 6394 MIN(lim1, lim2)); 6395 6396 cc_n = cc_r < 0; 6397 cc_z = cc_r == 0; 6398 cc_v = cc_c = 0; 6399 break; 6400 } 6401 case DIF_OP_LDGA: 6402 regs[rd] = dtrace_dif_variable(mstate, state, 6403 r1, regs[r2]); 6404 break; 6405 case DIF_OP_LDGS: 6406 id = DIF_INSTR_VAR(instr); 6407 6408 if (id >= DIF_VAR_OTHER_UBASE) { 6409 uintptr_t a; 6410 6411 id -= DIF_VAR_OTHER_UBASE; 6412 svar = vstate->dtvs_globals[id]; 6413 ASSERT(svar != NULL); 6414 v = &svar->dtsv_var; 6415 6416 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6417 regs[rd] = svar->dtsv_data; 6418 break; 6419 } 6420 6421 a = (uintptr_t)svar->dtsv_data; 6422 6423 if (*(uint8_t *)a == UINT8_MAX) { 6424 /* 6425 * If the 0th byte is set to UINT8_MAX 6426 * then this is to be treated as a 6427 * reference to a NULL variable. 6428 */ 6429 regs[rd] = 0; 6430 } else { 6431 regs[rd] = a + sizeof (uint64_t); 6432 } 6433 6434 break; 6435 } 6436 6437 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6438 break; 6439 6440 case DIF_OP_STGS: 6441 id = DIF_INSTR_VAR(instr); 6442 6443 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6444 id -= DIF_VAR_OTHER_UBASE; 6445 6446 VERIFY(id < vstate->dtvs_nglobals); 6447 svar = vstate->dtvs_globals[id]; 6448 ASSERT(svar != NULL); 6449 v = &svar->dtsv_var; 6450 6451 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6452 uintptr_t a = (uintptr_t)svar->dtsv_data; 6453 size_t lim; 6454 6455 ASSERT(a != 0); 6456 ASSERT(svar->dtsv_size != 0); 6457 6458 if (regs[rd] == 0) { 6459 *(uint8_t *)a = UINT8_MAX; 6460 break; 6461 } else { 6462 *(uint8_t *)a = 0; 6463 a += sizeof (uint64_t); 6464 } 6465 if (!dtrace_vcanload( 6466 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6467 &lim, mstate, vstate)) 6468 break; 6469 6470 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6471 (void *)a, &v->dtdv_type, lim); 6472 break; 6473 } 6474 6475 svar->dtsv_data = regs[rd]; 6476 break; 6477 6478 case DIF_OP_LDTA: 6479 /* 6480 * There are no DTrace built-in thread-local arrays at 6481 * present. This opcode is saved for future work. 6482 */ 6483 *flags |= CPU_DTRACE_ILLOP; 6484 regs[rd] = 0; 6485 break; 6486 6487 case DIF_OP_LDLS: 6488 id = DIF_INSTR_VAR(instr); 6489 6490 if (id < DIF_VAR_OTHER_UBASE) { 6491 /* 6492 * For now, this has no meaning. 6493 */ 6494 regs[rd] = 0; 6495 break; 6496 } 6497 6498 id -= DIF_VAR_OTHER_UBASE; 6499 6500 ASSERT(id < vstate->dtvs_nlocals); 6501 ASSERT(vstate->dtvs_locals != NULL); 6502 6503 svar = vstate->dtvs_locals[id]; 6504 ASSERT(svar != NULL); 6505 v = &svar->dtsv_var; 6506 6507 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6508 uintptr_t a = (uintptr_t)svar->dtsv_data; 6509 size_t sz = v->dtdv_type.dtdt_size; 6510 size_t lim; 6511 6512 sz += sizeof (uint64_t); 6513 ASSERT(svar->dtsv_size == NCPU * sz); 6514 a += curcpu * sz; 6515 6516 if (*(uint8_t *)a == UINT8_MAX) { 6517 /* 6518 * If the 0th byte is set to UINT8_MAX 6519 * then this is to be treated as a 6520 * reference to a NULL variable. 6521 */ 6522 regs[rd] = 0; 6523 } else { 6524 regs[rd] = a + sizeof (uint64_t); 6525 } 6526 6527 break; 6528 } 6529 6530 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6531 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6532 regs[rd] = tmp[curcpu]; 6533 break; 6534 6535 case DIF_OP_STLS: 6536 id = DIF_INSTR_VAR(instr); 6537 6538 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6539 id -= DIF_VAR_OTHER_UBASE; 6540 VERIFY(id < vstate->dtvs_nlocals); 6541 6542 ASSERT(vstate->dtvs_locals != NULL); 6543 svar = vstate->dtvs_locals[id]; 6544 ASSERT(svar != NULL); 6545 v = &svar->dtsv_var; 6546 6547 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6548 uintptr_t a = (uintptr_t)svar->dtsv_data; 6549 size_t sz = v->dtdv_type.dtdt_size; 6550 size_t lim; 6551 6552 sz += sizeof (uint64_t); 6553 ASSERT(svar->dtsv_size == NCPU * sz); 6554 a += curcpu * sz; 6555 6556 if (regs[rd] == 0) { 6557 *(uint8_t *)a = UINT8_MAX; 6558 break; 6559 } else { 6560 *(uint8_t *)a = 0; 6561 a += sizeof (uint64_t); 6562 } 6563 6564 if (!dtrace_vcanload( 6565 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6566 &lim, mstate, vstate)) 6567 break; 6568 6569 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6570 (void *)a, &v->dtdv_type, lim); 6571 break; 6572 } 6573 6574 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6575 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6576 tmp[curcpu] = regs[rd]; 6577 break; 6578 6579 case DIF_OP_LDTS: { 6580 dtrace_dynvar_t *dvar; 6581 dtrace_key_t *key; 6582 6583 id = DIF_INSTR_VAR(instr); 6584 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6585 id -= DIF_VAR_OTHER_UBASE; 6586 v = &vstate->dtvs_tlocals[id]; 6587 6588 key = &tupregs[DIF_DTR_NREGS]; 6589 key[0].dttk_value = (uint64_t)id; 6590 key[0].dttk_size = 0; 6591 DTRACE_TLS_THRKEY(key[1].dttk_value); 6592 key[1].dttk_size = 0; 6593 6594 dvar = dtrace_dynvar(dstate, 2, key, 6595 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6596 mstate, vstate); 6597 6598 if (dvar == NULL) { 6599 regs[rd] = 0; 6600 break; 6601 } 6602 6603 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6604 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6605 } else { 6606 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6607 } 6608 6609 break; 6610 } 6611 6612 case DIF_OP_STTS: { 6613 dtrace_dynvar_t *dvar; 6614 dtrace_key_t *key; 6615 6616 id = DIF_INSTR_VAR(instr); 6617 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6618 id -= DIF_VAR_OTHER_UBASE; 6619 VERIFY(id < vstate->dtvs_ntlocals); 6620 6621 key = &tupregs[DIF_DTR_NREGS]; 6622 key[0].dttk_value = (uint64_t)id; 6623 key[0].dttk_size = 0; 6624 DTRACE_TLS_THRKEY(key[1].dttk_value); 6625 key[1].dttk_size = 0; 6626 v = &vstate->dtvs_tlocals[id]; 6627 6628 dvar = dtrace_dynvar(dstate, 2, key, 6629 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6630 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6631 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6632 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6633 6634 /* 6635 * Given that we're storing to thread-local data, 6636 * we need to flush our predicate cache. 6637 */ 6638 curthread->t_predcache = 0; 6639 6640 if (dvar == NULL) 6641 break; 6642 6643 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6644 size_t lim; 6645 6646 if (!dtrace_vcanload( 6647 (void *)(uintptr_t)regs[rd], 6648 &v->dtdv_type, &lim, mstate, vstate)) 6649 break; 6650 6651 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6652 dvar->dtdv_data, &v->dtdv_type, lim); 6653 } else { 6654 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6655 } 6656 6657 break; 6658 } 6659 6660 case DIF_OP_SRA: 6661 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6662 break; 6663 6664 case DIF_OP_CALL: 6665 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6666 regs, tupregs, ttop, mstate, state); 6667 break; 6668 6669 case DIF_OP_PUSHTR: 6670 if (ttop == DIF_DTR_NREGS) { 6671 *flags |= CPU_DTRACE_TUPOFLOW; 6672 break; 6673 } 6674 6675 if (r1 == DIF_TYPE_STRING) { 6676 /* 6677 * If this is a string type and the size is 0, 6678 * we'll use the system-wide default string 6679 * size. Note that we are _not_ looking at 6680 * the value of the DTRACEOPT_STRSIZE option; 6681 * had this been set, we would expect to have 6682 * a non-zero size value in the "pushtr". 6683 */ 6684 tupregs[ttop].dttk_size = 6685 dtrace_strlen((char *)(uintptr_t)regs[rd], 6686 regs[r2] ? regs[r2] : 6687 dtrace_strsize_default) + 1; 6688 } else { 6689 if (regs[r2] > LONG_MAX) { 6690 *flags |= CPU_DTRACE_ILLOP; 6691 break; 6692 } 6693 6694 tupregs[ttop].dttk_size = regs[r2]; 6695 } 6696 6697 tupregs[ttop++].dttk_value = regs[rd]; 6698 break; 6699 6700 case DIF_OP_PUSHTV: 6701 if (ttop == DIF_DTR_NREGS) { 6702 *flags |= CPU_DTRACE_TUPOFLOW; 6703 break; 6704 } 6705 6706 tupregs[ttop].dttk_value = regs[rd]; 6707 tupregs[ttop++].dttk_size = 0; 6708 break; 6709 6710 case DIF_OP_POPTS: 6711 if (ttop != 0) 6712 ttop--; 6713 break; 6714 6715 case DIF_OP_FLUSHTS: 6716 ttop = 0; 6717 break; 6718 6719 case DIF_OP_LDGAA: 6720 case DIF_OP_LDTAA: { 6721 dtrace_dynvar_t *dvar; 6722 dtrace_key_t *key = tupregs; 6723 uint_t nkeys = ttop; 6724 6725 id = DIF_INSTR_VAR(instr); 6726 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6727 id -= DIF_VAR_OTHER_UBASE; 6728 6729 key[nkeys].dttk_value = (uint64_t)id; 6730 key[nkeys++].dttk_size = 0; 6731 6732 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6733 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6734 key[nkeys++].dttk_size = 0; 6735 VERIFY(id < vstate->dtvs_ntlocals); 6736 v = &vstate->dtvs_tlocals[id]; 6737 } else { 6738 VERIFY(id < vstate->dtvs_nglobals); 6739 v = &vstate->dtvs_globals[id]->dtsv_var; 6740 } 6741 6742 dvar = dtrace_dynvar(dstate, nkeys, key, 6743 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6744 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6745 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6746 6747 if (dvar == NULL) { 6748 regs[rd] = 0; 6749 break; 6750 } 6751 6752 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6753 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6754 } else { 6755 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6756 } 6757 6758 break; 6759 } 6760 6761 case DIF_OP_STGAA: 6762 case DIF_OP_STTAA: { 6763 dtrace_dynvar_t *dvar; 6764 dtrace_key_t *key = tupregs; 6765 uint_t nkeys = ttop; 6766 6767 id = DIF_INSTR_VAR(instr); 6768 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6769 id -= DIF_VAR_OTHER_UBASE; 6770 6771 key[nkeys].dttk_value = (uint64_t)id; 6772 key[nkeys++].dttk_size = 0; 6773 6774 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6775 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6776 key[nkeys++].dttk_size = 0; 6777 VERIFY(id < vstate->dtvs_ntlocals); 6778 v = &vstate->dtvs_tlocals[id]; 6779 } else { 6780 VERIFY(id < vstate->dtvs_nglobals); 6781 v = &vstate->dtvs_globals[id]->dtsv_var; 6782 } 6783 6784 dvar = dtrace_dynvar(dstate, nkeys, key, 6785 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6786 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6787 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6788 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6789 6790 if (dvar == NULL) 6791 break; 6792 6793 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6794 size_t lim; 6795 6796 if (!dtrace_vcanload( 6797 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6798 &lim, mstate, vstate)) 6799 break; 6800 6801 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6802 dvar->dtdv_data, &v->dtdv_type, lim); 6803 } else { 6804 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6805 } 6806 6807 break; 6808 } 6809 6810 case DIF_OP_ALLOCS: { 6811 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6812 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6813 6814 /* 6815 * Rounding up the user allocation size could have 6816 * overflowed large, bogus allocations (like -1ULL) to 6817 * 0. 6818 */ 6819 if (size < regs[r1] || 6820 !DTRACE_INSCRATCH(mstate, size)) { 6821 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6822 regs[rd] = 0; 6823 break; 6824 } 6825 6826 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6827 mstate->dtms_scratch_ptr += size; 6828 regs[rd] = ptr; 6829 break; 6830 } 6831 6832 case DIF_OP_COPYS: 6833 if (!dtrace_canstore(regs[rd], regs[r2], 6834 mstate, vstate)) { 6835 *flags |= CPU_DTRACE_BADADDR; 6836 *illval = regs[rd]; 6837 break; 6838 } 6839 6840 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6841 break; 6842 6843 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6844 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6845 break; 6846 6847 case DIF_OP_STB: 6848 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6849 *flags |= CPU_DTRACE_BADADDR; 6850 *illval = regs[rd]; 6851 break; 6852 } 6853 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6854 break; 6855 6856 case DIF_OP_STH: 6857 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6858 *flags |= CPU_DTRACE_BADADDR; 6859 *illval = regs[rd]; 6860 break; 6861 } 6862 if (regs[rd] & 1) { 6863 *flags |= CPU_DTRACE_BADALIGN; 6864 *illval = regs[rd]; 6865 break; 6866 } 6867 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6868 break; 6869 6870 case DIF_OP_STW: 6871 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6872 *flags |= CPU_DTRACE_BADADDR; 6873 *illval = regs[rd]; 6874 break; 6875 } 6876 if (regs[rd] & 3) { 6877 *flags |= CPU_DTRACE_BADALIGN; 6878 *illval = regs[rd]; 6879 break; 6880 } 6881 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6882 break; 6883 6884 case DIF_OP_STX: 6885 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6886 *flags |= CPU_DTRACE_BADADDR; 6887 *illval = regs[rd]; 6888 break; 6889 } 6890 if (regs[rd] & 7) { 6891 *flags |= CPU_DTRACE_BADALIGN; 6892 *illval = regs[rd]; 6893 break; 6894 } 6895 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6896 break; 6897 } 6898 } 6899 6900 if (!(*flags & CPU_DTRACE_FAULT)) 6901 return (rval); 6902 6903 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6904 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6905 6906 return (0); 6907 } 6908 6909 static void 6910 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6911 { 6912 dtrace_probe_t *probe = ecb->dte_probe; 6913 dtrace_provider_t *prov = probe->dtpr_provider; 6914 char c[DTRACE_FULLNAMELEN + 80], *str; 6915 char *msg = "dtrace: breakpoint action at probe "; 6916 char *ecbmsg = " (ecb "; 6917 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6918 uintptr_t val = (uintptr_t)ecb; 6919 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6920 6921 if (dtrace_destructive_disallow) 6922 return; 6923 6924 /* 6925 * It's impossible to be taking action on the NULL probe. 6926 */ 6927 ASSERT(probe != NULL); 6928 6929 /* 6930 * This is a poor man's (destitute man's?) sprintf(): we want to 6931 * print the provider name, module name, function name and name of 6932 * the probe, along with the hex address of the ECB with the breakpoint 6933 * action -- all of which we must place in the character buffer by 6934 * hand. 6935 */ 6936 while (*msg != '\0') 6937 c[i++] = *msg++; 6938 6939 for (str = prov->dtpv_name; *str != '\0'; str++) 6940 c[i++] = *str; 6941 c[i++] = ':'; 6942 6943 for (str = probe->dtpr_mod; *str != '\0'; str++) 6944 c[i++] = *str; 6945 c[i++] = ':'; 6946 6947 for (str = probe->dtpr_func; *str != '\0'; str++) 6948 c[i++] = *str; 6949 c[i++] = ':'; 6950 6951 for (str = probe->dtpr_name; *str != '\0'; str++) 6952 c[i++] = *str; 6953 6954 while (*ecbmsg != '\0') 6955 c[i++] = *ecbmsg++; 6956 6957 while (shift >= 0) { 6958 mask = (uintptr_t)0xf << shift; 6959 6960 if (val >= ((uintptr_t)1 << shift)) 6961 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6962 shift -= 4; 6963 } 6964 6965 c[i++] = ')'; 6966 c[i] = '\0'; 6967 6968 #ifdef illumos 6969 debug_enter(c); 6970 #else 6971 kdb_enter(KDB_WHY_DTRACE, "breakpoint action"); 6972 #endif 6973 } 6974 6975 static void 6976 dtrace_action_panic(dtrace_ecb_t *ecb) 6977 { 6978 dtrace_probe_t *probe = ecb->dte_probe; 6979 6980 /* 6981 * It's impossible to be taking action on the NULL probe. 6982 */ 6983 ASSERT(probe != NULL); 6984 6985 if (dtrace_destructive_disallow) 6986 return; 6987 6988 if (dtrace_panicked != NULL) 6989 return; 6990 6991 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6992 return; 6993 6994 /* 6995 * We won the right to panic. (We want to be sure that only one 6996 * thread calls panic() from dtrace_probe(), and that panic() is 6997 * called exactly once.) 6998 */ 6999 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 7000 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 7001 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 7002 } 7003 7004 static void 7005 dtrace_action_raise(uint64_t sig) 7006 { 7007 if (dtrace_destructive_disallow) 7008 return; 7009 7010 if (sig >= NSIG) { 7011 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 7012 return; 7013 } 7014 7015 #ifdef illumos 7016 /* 7017 * raise() has a queue depth of 1 -- we ignore all subsequent 7018 * invocations of the raise() action. 7019 */ 7020 if (curthread->t_dtrace_sig == 0) 7021 curthread->t_dtrace_sig = (uint8_t)sig; 7022 7023 curthread->t_sig_check = 1; 7024 aston(curthread); 7025 #else 7026 struct proc *p = curproc; 7027 PROC_LOCK(p); 7028 kern_psignal(p, sig); 7029 PROC_UNLOCK(p); 7030 #endif 7031 } 7032 7033 static void 7034 dtrace_action_stop(void) 7035 { 7036 if (dtrace_destructive_disallow) 7037 return; 7038 7039 #ifdef illumos 7040 if (!curthread->t_dtrace_stop) { 7041 curthread->t_dtrace_stop = 1; 7042 curthread->t_sig_check = 1; 7043 aston(curthread); 7044 } 7045 #else 7046 struct proc *p = curproc; 7047 PROC_LOCK(p); 7048 kern_psignal(p, SIGSTOP); 7049 PROC_UNLOCK(p); 7050 #endif 7051 } 7052 7053 static void 7054 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 7055 { 7056 hrtime_t now; 7057 volatile uint16_t *flags; 7058 #ifdef illumos 7059 cpu_t *cpu = CPU; 7060 #else 7061 cpu_t *cpu = &solaris_cpu[curcpu]; 7062 #endif 7063 7064 if (dtrace_destructive_disallow) 7065 return; 7066 7067 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7068 7069 now = dtrace_gethrtime(); 7070 7071 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 7072 /* 7073 * We need to advance the mark to the current time. 7074 */ 7075 cpu->cpu_dtrace_chillmark = now; 7076 cpu->cpu_dtrace_chilled = 0; 7077 } 7078 7079 /* 7080 * Now check to see if the requested chill time would take us over 7081 * the maximum amount of time allowed in the chill interval. (Or 7082 * worse, if the calculation itself induces overflow.) 7083 */ 7084 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 7085 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 7086 *flags |= CPU_DTRACE_ILLOP; 7087 return; 7088 } 7089 7090 while (dtrace_gethrtime() - now < val) 7091 continue; 7092 7093 /* 7094 * Normally, we assure that the value of the variable "timestamp" does 7095 * not change within an ECB. The presence of chill() represents an 7096 * exception to this rule, however. 7097 */ 7098 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 7099 cpu->cpu_dtrace_chilled += val; 7100 } 7101 7102 static void 7103 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 7104 uint64_t *buf, uint64_t arg) 7105 { 7106 int nframes = DTRACE_USTACK_NFRAMES(arg); 7107 int strsize = DTRACE_USTACK_STRSIZE(arg); 7108 uint64_t *pcs = &buf[1], *fps; 7109 char *str = (char *)&pcs[nframes]; 7110 int size, offs = 0, i, j; 7111 size_t rem; 7112 uintptr_t old = mstate->dtms_scratch_ptr, saved; 7113 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 7114 char *sym; 7115 7116 /* 7117 * Should be taking a faster path if string space has not been 7118 * allocated. 7119 */ 7120 ASSERT(strsize != 0); 7121 7122 /* 7123 * We will first allocate some temporary space for the frame pointers. 7124 */ 7125 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 7126 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 7127 (nframes * sizeof (uint64_t)); 7128 7129 if (!DTRACE_INSCRATCH(mstate, size)) { 7130 /* 7131 * Not enough room for our frame pointers -- need to indicate 7132 * that we ran out of scratch space. 7133 */ 7134 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 7135 return; 7136 } 7137 7138 mstate->dtms_scratch_ptr += size; 7139 saved = mstate->dtms_scratch_ptr; 7140 7141 /* 7142 * Now get a stack with both program counters and frame pointers. 7143 */ 7144 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7145 dtrace_getufpstack(buf, fps, nframes + 1); 7146 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7147 7148 /* 7149 * If that faulted, we're cooked. 7150 */ 7151 if (*flags & CPU_DTRACE_FAULT) 7152 goto out; 7153 7154 /* 7155 * Now we want to walk up the stack, calling the USTACK helper. For 7156 * each iteration, we restore the scratch pointer. 7157 */ 7158 for (i = 0; i < nframes; i++) { 7159 mstate->dtms_scratch_ptr = saved; 7160 7161 if (offs >= strsize) 7162 break; 7163 7164 sym = (char *)(uintptr_t)dtrace_helper( 7165 DTRACE_HELPER_ACTION_USTACK, 7166 mstate, state, pcs[i], fps[i]); 7167 7168 /* 7169 * If we faulted while running the helper, we're going to 7170 * clear the fault and null out the corresponding string. 7171 */ 7172 if (*flags & CPU_DTRACE_FAULT) { 7173 *flags &= ~CPU_DTRACE_FAULT; 7174 str[offs++] = '\0'; 7175 continue; 7176 } 7177 7178 if (sym == NULL) { 7179 str[offs++] = '\0'; 7180 continue; 7181 } 7182 7183 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 7184 &(state->dts_vstate))) { 7185 str[offs++] = '\0'; 7186 continue; 7187 } 7188 7189 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7190 7191 /* 7192 * Now copy in the string that the helper returned to us. 7193 */ 7194 for (j = 0; offs + j < strsize && j < rem; j++) { 7195 if ((str[offs + j] = sym[j]) == '\0') 7196 break; 7197 } 7198 7199 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7200 7201 offs += j + 1; 7202 } 7203 7204 if (offs >= strsize) { 7205 /* 7206 * If we didn't have room for all of the strings, we don't 7207 * abort processing -- this needn't be a fatal error -- but we 7208 * still want to increment a counter (dts_stkstroverflows) to 7209 * allow this condition to be warned about. (If this is from 7210 * a jstack() action, it is easily tuned via jstackstrsize.) 7211 */ 7212 dtrace_error(&state->dts_stkstroverflows); 7213 } 7214 7215 while (offs < strsize) 7216 str[offs++] = '\0'; 7217 7218 out: 7219 mstate->dtms_scratch_ptr = old; 7220 } 7221 7222 static void 7223 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 7224 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 7225 { 7226 volatile uint16_t *flags; 7227 uint64_t val = *valp; 7228 size_t valoffs = *valoffsp; 7229 7230 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7231 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 7232 7233 /* 7234 * If this is a string, we're going to only load until we find the zero 7235 * byte -- after which we'll store zero bytes. 7236 */ 7237 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 7238 char c = '\0' + 1; 7239 size_t s; 7240 7241 for (s = 0; s < size; s++) { 7242 if (c != '\0' && dtkind == DIF_TF_BYREF) { 7243 c = dtrace_load8(val++); 7244 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 7245 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7246 c = dtrace_fuword8((void *)(uintptr_t)val++); 7247 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7248 if (*flags & CPU_DTRACE_FAULT) 7249 break; 7250 } 7251 7252 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 7253 7254 if (c == '\0' && intuple) 7255 break; 7256 } 7257 } else { 7258 uint8_t c; 7259 while (valoffs < end) { 7260 if (dtkind == DIF_TF_BYREF) { 7261 c = dtrace_load8(val++); 7262 } else if (dtkind == DIF_TF_BYUREF) { 7263 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7264 c = dtrace_fuword8((void *)(uintptr_t)val++); 7265 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7266 if (*flags & CPU_DTRACE_FAULT) 7267 break; 7268 } 7269 7270 DTRACE_STORE(uint8_t, tomax, 7271 valoffs++, c); 7272 } 7273 } 7274 7275 *valp = val; 7276 *valoffsp = valoffs; 7277 } 7278 7279 /* 7280 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is 7281 * defined, we also assert that we are not recursing unless the probe ID is an 7282 * error probe. 7283 */ 7284 static dtrace_icookie_t 7285 dtrace_probe_enter(dtrace_id_t id) 7286 { 7287 dtrace_icookie_t cookie; 7288 7289 cookie = dtrace_interrupt_disable(); 7290 7291 /* 7292 * Unless this is an ERROR probe, we are not allowed to recurse in 7293 * dtrace_probe(). Recursing into DTrace probe usually means that a 7294 * function is instrumented that should not have been instrumented or 7295 * that the ordering guarantee of the records will be violated, 7296 * resulting in unexpected output. If there is an exception to this 7297 * assertion, a new case should be added. 7298 */ 7299 ASSERT(curthread->t_dtrace_inprobe == 0 || 7300 id == dtrace_probeid_error); 7301 curthread->t_dtrace_inprobe = 1; 7302 7303 return (cookie); 7304 } 7305 7306 /* 7307 * Clears the per-thread inprobe flag and enables interrupts. 7308 */ 7309 static void 7310 dtrace_probe_exit(dtrace_icookie_t cookie) 7311 { 7312 7313 curthread->t_dtrace_inprobe = 0; 7314 dtrace_interrupt_enable(cookie); 7315 } 7316 7317 /* 7318 * If you're looking for the epicenter of DTrace, you just found it. This 7319 * is the function called by the provider to fire a probe -- from which all 7320 * subsequent probe-context DTrace activity emanates. 7321 */ 7322 void 7323 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 7324 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 7325 { 7326 processorid_t cpuid; 7327 dtrace_icookie_t cookie; 7328 dtrace_probe_t *probe; 7329 dtrace_mstate_t mstate; 7330 dtrace_ecb_t *ecb; 7331 dtrace_action_t *act; 7332 intptr_t offs; 7333 size_t size; 7334 int vtime, onintr; 7335 volatile uint16_t *flags; 7336 hrtime_t now; 7337 7338 if (panicstr != NULL) 7339 return; 7340 7341 #ifdef illumos 7342 /* 7343 * Kick out immediately if this CPU is still being born (in which case 7344 * curthread will be set to -1) or the current thread can't allow 7345 * probes in its current context. 7346 */ 7347 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 7348 return; 7349 #endif 7350 7351 cookie = dtrace_probe_enter(id); 7352 probe = dtrace_probes[id - 1]; 7353 cpuid = curcpu; 7354 onintr = CPU_ON_INTR(CPU); 7355 7356 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 7357 probe->dtpr_predcache == curthread->t_predcache) { 7358 /* 7359 * We have hit in the predicate cache; we know that 7360 * this predicate would evaluate to be false. 7361 */ 7362 dtrace_probe_exit(cookie); 7363 return; 7364 } 7365 7366 #ifdef illumos 7367 if (panic_quiesce) { 7368 #else 7369 if (panicstr != NULL) { 7370 #endif 7371 /* 7372 * We don't trace anything if we're panicking. 7373 */ 7374 dtrace_probe_exit(cookie); 7375 return; 7376 } 7377 7378 now = mstate.dtms_timestamp = dtrace_gethrtime(); 7379 mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP; 7380 vtime = dtrace_vtime_references != 0; 7381 7382 if (vtime && curthread->t_dtrace_start) 7383 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 7384 7385 mstate.dtms_difo = NULL; 7386 mstate.dtms_probe = probe; 7387 mstate.dtms_strtok = 0; 7388 mstate.dtms_arg[0] = arg0; 7389 mstate.dtms_arg[1] = arg1; 7390 mstate.dtms_arg[2] = arg2; 7391 mstate.dtms_arg[3] = arg3; 7392 mstate.dtms_arg[4] = arg4; 7393 7394 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 7395 7396 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 7397 dtrace_predicate_t *pred = ecb->dte_predicate; 7398 dtrace_state_t *state = ecb->dte_state; 7399 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 7400 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 7401 dtrace_vstate_t *vstate = &state->dts_vstate; 7402 dtrace_provider_t *prov = probe->dtpr_provider; 7403 uint64_t tracememsize = 0; 7404 int committed = 0; 7405 caddr_t tomax; 7406 7407 /* 7408 * A little subtlety with the following (seemingly innocuous) 7409 * declaration of the automatic 'val': by looking at the 7410 * code, you might think that it could be declared in the 7411 * action processing loop, below. (That is, it's only used in 7412 * the action processing loop.) However, it must be declared 7413 * out of that scope because in the case of DIF expression 7414 * arguments to aggregating actions, one iteration of the 7415 * action loop will use the last iteration's value. 7416 */ 7417 uint64_t val = 0; 7418 7419 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 7420 mstate.dtms_getf = NULL; 7421 7422 *flags &= ~CPU_DTRACE_ERROR; 7423 7424 if (prov == dtrace_provider) { 7425 /* 7426 * If dtrace itself is the provider of this probe, 7427 * we're only going to continue processing the ECB if 7428 * arg0 (the dtrace_state_t) is equal to the ECB's 7429 * creating state. (This prevents disjoint consumers 7430 * from seeing one another's metaprobes.) 7431 */ 7432 if (arg0 != (uint64_t)(uintptr_t)state) 7433 continue; 7434 } 7435 7436 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7437 /* 7438 * We're not currently active. If our provider isn't 7439 * the dtrace pseudo provider, we're not interested. 7440 */ 7441 if (prov != dtrace_provider) 7442 continue; 7443 7444 /* 7445 * Now we must further check if we are in the BEGIN 7446 * probe. If we are, we will only continue processing 7447 * if we're still in WARMUP -- if one BEGIN enabling 7448 * has invoked the exit() action, we don't want to 7449 * evaluate subsequent BEGIN enablings. 7450 */ 7451 if (probe->dtpr_id == dtrace_probeid_begin && 7452 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7453 ASSERT(state->dts_activity == 7454 DTRACE_ACTIVITY_DRAINING); 7455 continue; 7456 } 7457 } 7458 7459 if (ecb->dte_cond) { 7460 /* 7461 * If the dte_cond bits indicate that this 7462 * consumer is only allowed to see user-mode firings 7463 * of this probe, call the provider's dtps_usermode() 7464 * entry point to check that the probe was fired 7465 * while in a user context. Skip this ECB if that's 7466 * not the case. 7467 */ 7468 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 7469 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 7470 probe->dtpr_id, probe->dtpr_arg) == 0) 7471 continue; 7472 7473 #ifdef illumos 7474 /* 7475 * This is more subtle than it looks. We have to be 7476 * absolutely certain that CRED() isn't going to 7477 * change out from under us so it's only legit to 7478 * examine that structure if we're in constrained 7479 * situations. Currently, the only times we'll this 7480 * check is if a non-super-user has enabled the 7481 * profile or syscall providers -- providers that 7482 * allow visibility of all processes. For the 7483 * profile case, the check above will ensure that 7484 * we're examining a user context. 7485 */ 7486 if (ecb->dte_cond & DTRACE_COND_OWNER) { 7487 cred_t *cr; 7488 cred_t *s_cr = 7489 ecb->dte_state->dts_cred.dcr_cred; 7490 proc_t *proc; 7491 7492 ASSERT(s_cr != NULL); 7493 7494 if ((cr = CRED()) == NULL || 7495 s_cr->cr_uid != cr->cr_uid || 7496 s_cr->cr_uid != cr->cr_ruid || 7497 s_cr->cr_uid != cr->cr_suid || 7498 s_cr->cr_gid != cr->cr_gid || 7499 s_cr->cr_gid != cr->cr_rgid || 7500 s_cr->cr_gid != cr->cr_sgid || 7501 (proc = ttoproc(curthread)) == NULL || 7502 (proc->p_flag & SNOCD)) 7503 continue; 7504 } 7505 7506 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 7507 cred_t *cr; 7508 cred_t *s_cr = 7509 ecb->dte_state->dts_cred.dcr_cred; 7510 7511 ASSERT(s_cr != NULL); 7512 7513 if ((cr = CRED()) == NULL || 7514 s_cr->cr_zone->zone_id != 7515 cr->cr_zone->zone_id) 7516 continue; 7517 } 7518 #endif 7519 } 7520 7521 if (now - state->dts_alive > dtrace_deadman_timeout) { 7522 /* 7523 * We seem to be dead. Unless we (a) have kernel 7524 * destructive permissions (b) have explicitly enabled 7525 * destructive actions and (c) destructive actions have 7526 * not been disabled, we're going to transition into 7527 * the KILLED state, from which no further processing 7528 * on this state will be performed. 7529 */ 7530 if (!dtrace_priv_kernel_destructive(state) || 7531 !state->dts_cred.dcr_destructive || 7532 dtrace_destructive_disallow) { 7533 void *activity = &state->dts_activity; 7534 dtrace_activity_t curstate; 7535 7536 do { 7537 curstate = state->dts_activity; 7538 } while (dtrace_cas32(activity, curstate, 7539 DTRACE_ACTIVITY_KILLED) != curstate); 7540 7541 continue; 7542 } 7543 } 7544 7545 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7546 ecb->dte_alignment, state, &mstate)) < 0) 7547 continue; 7548 7549 tomax = buf->dtb_tomax; 7550 ASSERT(tomax != NULL); 7551 7552 if (ecb->dte_size != 0) { 7553 dtrace_rechdr_t dtrh; 7554 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7555 mstate.dtms_timestamp = dtrace_gethrtime(); 7556 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7557 } 7558 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7559 dtrh.dtrh_epid = ecb->dte_epid; 7560 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7561 mstate.dtms_timestamp); 7562 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7563 } 7564 7565 mstate.dtms_epid = ecb->dte_epid; 7566 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7567 7568 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7569 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 7570 else 7571 mstate.dtms_access = 0; 7572 7573 if (pred != NULL) { 7574 dtrace_difo_t *dp = pred->dtp_difo; 7575 uint64_t rval; 7576 7577 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7578 7579 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7580 dtrace_cacheid_t cid = probe->dtpr_predcache; 7581 7582 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7583 /* 7584 * Update the predicate cache... 7585 */ 7586 ASSERT(cid == pred->dtp_cacheid); 7587 curthread->t_predcache = cid; 7588 } 7589 7590 continue; 7591 } 7592 } 7593 7594 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7595 act != NULL; act = act->dta_next) { 7596 size_t valoffs; 7597 dtrace_difo_t *dp; 7598 dtrace_recdesc_t *rec = &act->dta_rec; 7599 7600 size = rec->dtrd_size; 7601 valoffs = offs + rec->dtrd_offset; 7602 7603 if (DTRACEACT_ISAGG(act->dta_kind)) { 7604 uint64_t v = 0xbad; 7605 dtrace_aggregation_t *agg; 7606 7607 agg = (dtrace_aggregation_t *)act; 7608 7609 if ((dp = act->dta_difo) != NULL) 7610 v = dtrace_dif_emulate(dp, 7611 &mstate, vstate, state); 7612 7613 if (*flags & CPU_DTRACE_ERROR) 7614 continue; 7615 7616 /* 7617 * Note that we always pass the expression 7618 * value from the previous iteration of the 7619 * action loop. This value will only be used 7620 * if there is an expression argument to the 7621 * aggregating action, denoted by the 7622 * dtag_hasarg field. 7623 */ 7624 dtrace_aggregate(agg, buf, 7625 offs, aggbuf, v, val); 7626 continue; 7627 } 7628 7629 switch (act->dta_kind) { 7630 case DTRACEACT_STOP: 7631 if (dtrace_priv_proc_destructive(state)) 7632 dtrace_action_stop(); 7633 continue; 7634 7635 case DTRACEACT_BREAKPOINT: 7636 if (dtrace_priv_kernel_destructive(state)) 7637 dtrace_action_breakpoint(ecb); 7638 continue; 7639 7640 case DTRACEACT_PANIC: 7641 if (dtrace_priv_kernel_destructive(state)) 7642 dtrace_action_panic(ecb); 7643 continue; 7644 7645 case DTRACEACT_STACK: 7646 if (!dtrace_priv_kernel(state)) 7647 continue; 7648 7649 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7650 size / sizeof (pc_t), probe->dtpr_aframes, 7651 DTRACE_ANCHORED(probe) ? NULL : 7652 (uint32_t *)arg0); 7653 continue; 7654 7655 case DTRACEACT_JSTACK: 7656 case DTRACEACT_USTACK: 7657 if (!dtrace_priv_proc(state)) 7658 continue; 7659 7660 /* 7661 * See comment in DIF_VAR_PID. 7662 */ 7663 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7664 CPU_ON_INTR(CPU)) { 7665 int depth = DTRACE_USTACK_NFRAMES( 7666 rec->dtrd_arg) + 1; 7667 7668 dtrace_bzero((void *)(tomax + valoffs), 7669 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7670 + depth * sizeof (uint64_t)); 7671 7672 continue; 7673 } 7674 7675 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7676 curproc->p_dtrace_helpers != NULL) { 7677 /* 7678 * This is the slow path -- we have 7679 * allocated string space, and we're 7680 * getting the stack of a process that 7681 * has helpers. Call into a separate 7682 * routine to perform this processing. 7683 */ 7684 dtrace_action_ustack(&mstate, state, 7685 (uint64_t *)(tomax + valoffs), 7686 rec->dtrd_arg); 7687 continue; 7688 } 7689 7690 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7691 dtrace_getupcstack((uint64_t *) 7692 (tomax + valoffs), 7693 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7694 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7695 continue; 7696 7697 default: 7698 break; 7699 } 7700 7701 dp = act->dta_difo; 7702 ASSERT(dp != NULL); 7703 7704 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7705 7706 if (*flags & CPU_DTRACE_ERROR) 7707 continue; 7708 7709 switch (act->dta_kind) { 7710 case DTRACEACT_SPECULATE: { 7711 dtrace_rechdr_t *dtrh; 7712 7713 ASSERT(buf == &state->dts_buffer[cpuid]); 7714 buf = dtrace_speculation_buffer(state, 7715 cpuid, val); 7716 7717 if (buf == NULL) { 7718 *flags |= CPU_DTRACE_DROP; 7719 continue; 7720 } 7721 7722 offs = dtrace_buffer_reserve(buf, 7723 ecb->dte_needed, ecb->dte_alignment, 7724 state, NULL); 7725 7726 if (offs < 0) { 7727 *flags |= CPU_DTRACE_DROP; 7728 continue; 7729 } 7730 7731 tomax = buf->dtb_tomax; 7732 ASSERT(tomax != NULL); 7733 7734 if (ecb->dte_size == 0) 7735 continue; 7736 7737 ASSERT3U(ecb->dte_size, >=, 7738 sizeof (dtrace_rechdr_t)); 7739 dtrh = ((void *)(tomax + offs)); 7740 dtrh->dtrh_epid = ecb->dte_epid; 7741 /* 7742 * When the speculation is committed, all of 7743 * the records in the speculative buffer will 7744 * have their timestamps set to the commit 7745 * time. Until then, it is set to a sentinel 7746 * value, for debugability. 7747 */ 7748 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7749 continue; 7750 } 7751 7752 case DTRACEACT_PRINTM: { 7753 /* The DIF returns a 'memref'. */ 7754 uintptr_t *memref = (uintptr_t *)(uintptr_t) val; 7755 7756 /* Get the size from the memref. */ 7757 size = memref[1]; 7758 7759 /* 7760 * Check if the size exceeds the allocated 7761 * buffer size. 7762 */ 7763 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) { 7764 /* Flag a drop! */ 7765 *flags |= CPU_DTRACE_DROP; 7766 continue; 7767 } 7768 7769 /* Store the size in the buffer first. */ 7770 DTRACE_STORE(uintptr_t, tomax, 7771 valoffs, size); 7772 7773 /* 7774 * Offset the buffer address to the start 7775 * of the data. 7776 */ 7777 valoffs += sizeof(uintptr_t); 7778 7779 /* 7780 * Reset to the memory address rather than 7781 * the memref array, then let the BYREF 7782 * code below do the work to store the 7783 * memory data in the buffer. 7784 */ 7785 val = memref[0]; 7786 break; 7787 } 7788 7789 case DTRACEACT_CHILL: 7790 if (dtrace_priv_kernel_destructive(state)) 7791 dtrace_action_chill(&mstate, val); 7792 continue; 7793 7794 case DTRACEACT_RAISE: 7795 if (dtrace_priv_proc_destructive(state)) 7796 dtrace_action_raise(val); 7797 continue; 7798 7799 case DTRACEACT_COMMIT: 7800 ASSERT(!committed); 7801 7802 /* 7803 * We need to commit our buffer state. 7804 */ 7805 if (ecb->dte_size) 7806 buf->dtb_offset = offs + ecb->dte_size; 7807 buf = &state->dts_buffer[cpuid]; 7808 dtrace_speculation_commit(state, cpuid, val); 7809 committed = 1; 7810 continue; 7811 7812 case DTRACEACT_DISCARD: 7813 dtrace_speculation_discard(state, cpuid, val); 7814 continue; 7815 7816 case DTRACEACT_DIFEXPR: 7817 case DTRACEACT_LIBACT: 7818 case DTRACEACT_PRINTF: 7819 case DTRACEACT_PRINTA: 7820 case DTRACEACT_SYSTEM: 7821 case DTRACEACT_FREOPEN: 7822 case DTRACEACT_TRACEMEM: 7823 break; 7824 7825 case DTRACEACT_TRACEMEM_DYNSIZE: 7826 tracememsize = val; 7827 break; 7828 7829 case DTRACEACT_SYM: 7830 case DTRACEACT_MOD: 7831 if (!dtrace_priv_kernel(state)) 7832 continue; 7833 break; 7834 7835 case DTRACEACT_USYM: 7836 case DTRACEACT_UMOD: 7837 case DTRACEACT_UADDR: { 7838 #ifdef illumos 7839 struct pid *pid = curthread->t_procp->p_pidp; 7840 #endif 7841 7842 if (!dtrace_priv_proc(state)) 7843 continue; 7844 7845 DTRACE_STORE(uint64_t, tomax, 7846 #ifdef illumos 7847 valoffs, (uint64_t)pid->pid_id); 7848 #else 7849 valoffs, (uint64_t) curproc->p_pid); 7850 #endif 7851 DTRACE_STORE(uint64_t, tomax, 7852 valoffs + sizeof (uint64_t), val); 7853 7854 continue; 7855 } 7856 7857 case DTRACEACT_EXIT: { 7858 /* 7859 * For the exit action, we are going to attempt 7860 * to atomically set our activity to be 7861 * draining. If this fails (either because 7862 * another CPU has beat us to the exit action, 7863 * or because our current activity is something 7864 * other than ACTIVE or WARMUP), we will 7865 * continue. This assures that the exit action 7866 * can be successfully recorded at most once 7867 * when we're in the ACTIVE state. If we're 7868 * encountering the exit() action while in 7869 * COOLDOWN, however, we want to honor the new 7870 * status code. (We know that we're the only 7871 * thread in COOLDOWN, so there is no race.) 7872 */ 7873 void *activity = &state->dts_activity; 7874 dtrace_activity_t curstate = state->dts_activity; 7875 7876 if (curstate == DTRACE_ACTIVITY_COOLDOWN) 7877 break; 7878 7879 if (curstate != DTRACE_ACTIVITY_WARMUP) 7880 curstate = DTRACE_ACTIVITY_ACTIVE; 7881 7882 if (dtrace_cas32(activity, curstate, 7883 DTRACE_ACTIVITY_DRAINING) != curstate) { 7884 *flags |= CPU_DTRACE_DROP; 7885 continue; 7886 } 7887 7888 break; 7889 } 7890 7891 default: 7892 ASSERT(0); 7893 } 7894 7895 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7896 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7897 uintptr_t end = valoffs + size; 7898 7899 if (tracememsize != 0 && 7900 valoffs + tracememsize < end) { 7901 end = valoffs + tracememsize; 7902 tracememsize = 0; 7903 } 7904 7905 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7906 !dtrace_vcanload((void *)(uintptr_t)val, 7907 &dp->dtdo_rtype, NULL, &mstate, vstate)) 7908 continue; 7909 7910 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7911 &val, end, act->dta_intuple, 7912 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7913 DIF_TF_BYREF: DIF_TF_BYUREF); 7914 continue; 7915 } 7916 7917 switch (size) { 7918 case 0: 7919 break; 7920 7921 case sizeof (uint8_t): 7922 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7923 break; 7924 case sizeof (uint16_t): 7925 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7926 break; 7927 case sizeof (uint32_t): 7928 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7929 break; 7930 case sizeof (uint64_t): 7931 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7932 break; 7933 default: 7934 /* 7935 * Any other size should have been returned by 7936 * reference, not by value. 7937 */ 7938 ASSERT(0); 7939 break; 7940 } 7941 } 7942 7943 if (*flags & CPU_DTRACE_DROP) 7944 continue; 7945 7946 if (*flags & CPU_DTRACE_FAULT) { 7947 int ndx; 7948 dtrace_action_t *err; 7949 7950 buf->dtb_errors++; 7951 7952 if (probe->dtpr_id == dtrace_probeid_error) { 7953 /* 7954 * There's nothing we can do -- we had an 7955 * error on the error probe. We bump an 7956 * error counter to at least indicate that 7957 * this condition happened. 7958 */ 7959 dtrace_error(&state->dts_dblerrors); 7960 continue; 7961 } 7962 7963 if (vtime) { 7964 /* 7965 * Before recursing on dtrace_probe(), we 7966 * need to explicitly clear out our start 7967 * time to prevent it from being accumulated 7968 * into t_dtrace_vtime. 7969 */ 7970 curthread->t_dtrace_start = 0; 7971 } 7972 7973 /* 7974 * Iterate over the actions to figure out which action 7975 * we were processing when we experienced the error. 7976 * Note that act points _past_ the faulting action; if 7977 * act is ecb->dte_action, the fault was in the 7978 * predicate, if it's ecb->dte_action->dta_next it's 7979 * in action #1, and so on. 7980 */ 7981 for (err = ecb->dte_action, ndx = 0; 7982 err != act; err = err->dta_next, ndx++) 7983 continue; 7984 7985 dtrace_probe_error(state, ecb->dte_epid, ndx, 7986 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7987 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7988 cpu_core[cpuid].cpuc_dtrace_illval); 7989 7990 continue; 7991 } 7992 7993 if (!committed) 7994 buf->dtb_offset = offs + ecb->dte_size; 7995 } 7996 7997 if (vtime) 7998 curthread->t_dtrace_start = dtrace_gethrtime(); 7999 8000 dtrace_probe_exit(cookie); 8001 } 8002 8003 /* 8004 * DTrace Probe Hashing Functions 8005 * 8006 * The functions in this section (and indeed, the functions in remaining 8007 * sections) are not _called_ from probe context. (Any exceptions to this are 8008 * marked with a "Note:".) Rather, they are called from elsewhere in the 8009 * DTrace framework to look-up probes in, add probes to and remove probes from 8010 * the DTrace probe hashes. (Each probe is hashed by each element of the 8011 * probe tuple -- allowing for fast lookups, regardless of what was 8012 * specified.) 8013 */ 8014 static uint_t 8015 dtrace_hash_str(const char *p) 8016 { 8017 unsigned int g; 8018 uint_t hval = 0; 8019 8020 while (*p) { 8021 hval = (hval << 4) + *p++; 8022 if ((g = (hval & 0xf0000000)) != 0) 8023 hval ^= g >> 24; 8024 hval &= ~g; 8025 } 8026 return (hval); 8027 } 8028 8029 static dtrace_hash_t * 8030 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 8031 { 8032 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 8033 8034 hash->dth_stroffs = stroffs; 8035 hash->dth_nextoffs = nextoffs; 8036 hash->dth_prevoffs = prevoffs; 8037 8038 hash->dth_size = 1; 8039 hash->dth_mask = hash->dth_size - 1; 8040 8041 hash->dth_tab = kmem_zalloc(hash->dth_size * 8042 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 8043 8044 return (hash); 8045 } 8046 8047 static void 8048 dtrace_hash_destroy(dtrace_hash_t *hash) 8049 { 8050 #ifdef DEBUG 8051 int i; 8052 8053 for (i = 0; i < hash->dth_size; i++) 8054 ASSERT(hash->dth_tab[i] == NULL); 8055 #endif 8056 8057 kmem_free(hash->dth_tab, 8058 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 8059 kmem_free(hash, sizeof (dtrace_hash_t)); 8060 } 8061 8062 static void 8063 dtrace_hash_resize(dtrace_hash_t *hash) 8064 { 8065 int size = hash->dth_size, i, ndx; 8066 int new_size = hash->dth_size << 1; 8067 int new_mask = new_size - 1; 8068 dtrace_hashbucket_t **new_tab, *bucket, *next; 8069 8070 ASSERT((new_size & new_mask) == 0); 8071 8072 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 8073 8074 for (i = 0; i < size; i++) { 8075 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 8076 dtrace_probe_t *probe = bucket->dthb_chain; 8077 8078 ASSERT(probe != NULL); 8079 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 8080 8081 next = bucket->dthb_next; 8082 bucket->dthb_next = new_tab[ndx]; 8083 new_tab[ndx] = bucket; 8084 } 8085 } 8086 8087 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 8088 hash->dth_tab = new_tab; 8089 hash->dth_size = new_size; 8090 hash->dth_mask = new_mask; 8091 } 8092 8093 static void 8094 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 8095 { 8096 int hashval = DTRACE_HASHSTR(hash, new); 8097 int ndx = hashval & hash->dth_mask; 8098 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8099 dtrace_probe_t **nextp, **prevp; 8100 8101 for (; bucket != NULL; bucket = bucket->dthb_next) { 8102 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 8103 goto add; 8104 } 8105 8106 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 8107 dtrace_hash_resize(hash); 8108 dtrace_hash_add(hash, new); 8109 return; 8110 } 8111 8112 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 8113 bucket->dthb_next = hash->dth_tab[ndx]; 8114 hash->dth_tab[ndx] = bucket; 8115 hash->dth_nbuckets++; 8116 8117 add: 8118 nextp = DTRACE_HASHNEXT(hash, new); 8119 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 8120 *nextp = bucket->dthb_chain; 8121 8122 if (bucket->dthb_chain != NULL) { 8123 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 8124 ASSERT(*prevp == NULL); 8125 *prevp = new; 8126 } 8127 8128 bucket->dthb_chain = new; 8129 bucket->dthb_len++; 8130 } 8131 8132 static dtrace_probe_t * 8133 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 8134 { 8135 int hashval = DTRACE_HASHSTR(hash, template); 8136 int ndx = hashval & hash->dth_mask; 8137 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8138 8139 for (; bucket != NULL; bucket = bucket->dthb_next) { 8140 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8141 return (bucket->dthb_chain); 8142 } 8143 8144 return (NULL); 8145 } 8146 8147 static int 8148 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 8149 { 8150 int hashval = DTRACE_HASHSTR(hash, template); 8151 int ndx = hashval & hash->dth_mask; 8152 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8153 8154 for (; bucket != NULL; bucket = bucket->dthb_next) { 8155 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8156 return (bucket->dthb_len); 8157 } 8158 8159 return (0); 8160 } 8161 8162 static void 8163 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 8164 { 8165 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 8166 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8167 8168 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 8169 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 8170 8171 /* 8172 * Find the bucket that we're removing this probe from. 8173 */ 8174 for (; bucket != NULL; bucket = bucket->dthb_next) { 8175 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 8176 break; 8177 } 8178 8179 ASSERT(bucket != NULL); 8180 8181 if (*prevp == NULL) { 8182 if (*nextp == NULL) { 8183 /* 8184 * The removed probe was the only probe on this 8185 * bucket; we need to remove the bucket. 8186 */ 8187 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 8188 8189 ASSERT(bucket->dthb_chain == probe); 8190 ASSERT(b != NULL); 8191 8192 if (b == bucket) { 8193 hash->dth_tab[ndx] = bucket->dthb_next; 8194 } else { 8195 while (b->dthb_next != bucket) 8196 b = b->dthb_next; 8197 b->dthb_next = bucket->dthb_next; 8198 } 8199 8200 ASSERT(hash->dth_nbuckets > 0); 8201 hash->dth_nbuckets--; 8202 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 8203 return; 8204 } 8205 8206 bucket->dthb_chain = *nextp; 8207 } else { 8208 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 8209 } 8210 8211 if (*nextp != NULL) 8212 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 8213 } 8214 8215 /* 8216 * DTrace Utility Functions 8217 * 8218 * These are random utility functions that are _not_ called from probe context. 8219 */ 8220 static int 8221 dtrace_badattr(const dtrace_attribute_t *a) 8222 { 8223 return (a->dtat_name > DTRACE_STABILITY_MAX || 8224 a->dtat_data > DTRACE_STABILITY_MAX || 8225 a->dtat_class > DTRACE_CLASS_MAX); 8226 } 8227 8228 /* 8229 * Return a duplicate copy of a string. If the specified string is NULL, 8230 * this function returns a zero-length string. 8231 */ 8232 static char * 8233 dtrace_strdup(const char *str) 8234 { 8235 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 8236 8237 if (str != NULL) 8238 (void) strcpy(new, str); 8239 8240 return (new); 8241 } 8242 8243 #define DTRACE_ISALPHA(c) \ 8244 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 8245 8246 static int 8247 dtrace_badname(const char *s) 8248 { 8249 char c; 8250 8251 if (s == NULL || (c = *s++) == '\0') 8252 return (0); 8253 8254 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 8255 return (1); 8256 8257 while ((c = *s++) != '\0') { 8258 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 8259 c != '-' && c != '_' && c != '.' && c != '`') 8260 return (1); 8261 } 8262 8263 return (0); 8264 } 8265 8266 static void 8267 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 8268 { 8269 uint32_t priv; 8270 8271 #ifdef illumos 8272 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 8273 /* 8274 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 8275 */ 8276 priv = DTRACE_PRIV_ALL; 8277 } else { 8278 *uidp = crgetuid(cr); 8279 *zoneidp = crgetzoneid(cr); 8280 8281 priv = 0; 8282 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 8283 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 8284 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 8285 priv |= DTRACE_PRIV_USER; 8286 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 8287 priv |= DTRACE_PRIV_PROC; 8288 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 8289 priv |= DTRACE_PRIV_OWNER; 8290 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 8291 priv |= DTRACE_PRIV_ZONEOWNER; 8292 } 8293 #else 8294 priv = DTRACE_PRIV_ALL; 8295 #endif 8296 8297 *privp = priv; 8298 } 8299 8300 #ifdef DTRACE_ERRDEBUG 8301 static void 8302 dtrace_errdebug(const char *str) 8303 { 8304 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; 8305 int occupied = 0; 8306 8307 mutex_enter(&dtrace_errlock); 8308 dtrace_errlast = str; 8309 dtrace_errthread = curthread; 8310 8311 while (occupied++ < DTRACE_ERRHASHSZ) { 8312 if (dtrace_errhash[hval].dter_msg == str) { 8313 dtrace_errhash[hval].dter_count++; 8314 goto out; 8315 } 8316 8317 if (dtrace_errhash[hval].dter_msg != NULL) { 8318 hval = (hval + 1) % DTRACE_ERRHASHSZ; 8319 continue; 8320 } 8321 8322 dtrace_errhash[hval].dter_msg = str; 8323 dtrace_errhash[hval].dter_count = 1; 8324 goto out; 8325 } 8326 8327 panic("dtrace: undersized error hash"); 8328 out: 8329 mutex_exit(&dtrace_errlock); 8330 } 8331 #endif 8332 8333 /* 8334 * DTrace Matching Functions 8335 * 8336 * These functions are used to match groups of probes, given some elements of 8337 * a probe tuple, or some globbed expressions for elements of a probe tuple. 8338 */ 8339 static int 8340 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 8341 zoneid_t zoneid) 8342 { 8343 if (priv != DTRACE_PRIV_ALL) { 8344 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 8345 uint32_t match = priv & ppriv; 8346 8347 /* 8348 * No PRIV_DTRACE_* privileges... 8349 */ 8350 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 8351 DTRACE_PRIV_KERNEL)) == 0) 8352 return (0); 8353 8354 /* 8355 * No matching bits, but there were bits to match... 8356 */ 8357 if (match == 0 && ppriv != 0) 8358 return (0); 8359 8360 /* 8361 * Need to have permissions to the process, but don't... 8362 */ 8363 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 8364 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 8365 return (0); 8366 } 8367 8368 /* 8369 * Need to be in the same zone unless we possess the 8370 * privilege to examine all zones. 8371 */ 8372 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 8373 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 8374 return (0); 8375 } 8376 } 8377 8378 return (1); 8379 } 8380 8381 /* 8382 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 8383 * consists of input pattern strings and an ops-vector to evaluate them. 8384 * This function returns >0 for match, 0 for no match, and <0 for error. 8385 */ 8386 static int 8387 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 8388 uint32_t priv, uid_t uid, zoneid_t zoneid) 8389 { 8390 dtrace_provider_t *pvp = prp->dtpr_provider; 8391 int rv; 8392 8393 if (pvp->dtpv_defunct) 8394 return (0); 8395 8396 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 8397 return (rv); 8398 8399 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 8400 return (rv); 8401 8402 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 8403 return (rv); 8404 8405 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 8406 return (rv); 8407 8408 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 8409 return (0); 8410 8411 return (rv); 8412 } 8413 8414 /* 8415 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 8416 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 8417 * libc's version, the kernel version only applies to 8-bit ASCII strings. 8418 * In addition, all of the recursion cases except for '*' matching have been 8419 * unwound. For '*', we still implement recursive evaluation, but a depth 8420 * counter is maintained and matching is aborted if we recurse too deep. 8421 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 8422 */ 8423 static int 8424 dtrace_match_glob(const char *s, const char *p, int depth) 8425 { 8426 const char *olds; 8427 char s1, c; 8428 int gs; 8429 8430 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 8431 return (-1); 8432 8433 if (s == NULL) 8434 s = ""; /* treat NULL as empty string */ 8435 8436 top: 8437 olds = s; 8438 s1 = *s++; 8439 8440 if (p == NULL) 8441 return (0); 8442 8443 if ((c = *p++) == '\0') 8444 return (s1 == '\0'); 8445 8446 switch (c) { 8447 case '[': { 8448 int ok = 0, notflag = 0; 8449 char lc = '\0'; 8450 8451 if (s1 == '\0') 8452 return (0); 8453 8454 if (*p == '!') { 8455 notflag = 1; 8456 p++; 8457 } 8458 8459 if ((c = *p++) == '\0') 8460 return (0); 8461 8462 do { 8463 if (c == '-' && lc != '\0' && *p != ']') { 8464 if ((c = *p++) == '\0') 8465 return (0); 8466 if (c == '\\' && (c = *p++) == '\0') 8467 return (0); 8468 8469 if (notflag) { 8470 if (s1 < lc || s1 > c) 8471 ok++; 8472 else 8473 return (0); 8474 } else if (lc <= s1 && s1 <= c) 8475 ok++; 8476 8477 } else if (c == '\\' && (c = *p++) == '\0') 8478 return (0); 8479 8480 lc = c; /* save left-hand 'c' for next iteration */ 8481 8482 if (notflag) { 8483 if (s1 != c) 8484 ok++; 8485 else 8486 return (0); 8487 } else if (s1 == c) 8488 ok++; 8489 8490 if ((c = *p++) == '\0') 8491 return (0); 8492 8493 } while (c != ']'); 8494 8495 if (ok) 8496 goto top; 8497 8498 return (0); 8499 } 8500 8501 case '\\': 8502 if ((c = *p++) == '\0') 8503 return (0); 8504 /*FALLTHRU*/ 8505 8506 default: 8507 if (c != s1) 8508 return (0); 8509 /*FALLTHRU*/ 8510 8511 case '?': 8512 if (s1 != '\0') 8513 goto top; 8514 return (0); 8515 8516 case '*': 8517 while (*p == '*') 8518 p++; /* consecutive *'s are identical to a single one */ 8519 8520 if (*p == '\0') 8521 return (1); 8522 8523 for (s = olds; *s != '\0'; s++) { 8524 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8525 return (gs); 8526 } 8527 8528 return (0); 8529 } 8530 } 8531 8532 /*ARGSUSED*/ 8533 static int 8534 dtrace_match_string(const char *s, const char *p, int depth) 8535 { 8536 return (s != NULL && strcmp(s, p) == 0); 8537 } 8538 8539 /*ARGSUSED*/ 8540 static int 8541 dtrace_match_nul(const char *s, const char *p, int depth) 8542 { 8543 return (1); /* always match the empty pattern */ 8544 } 8545 8546 /*ARGSUSED*/ 8547 static int 8548 dtrace_match_nonzero(const char *s, const char *p, int depth) 8549 { 8550 return (s != NULL && s[0] != '\0'); 8551 } 8552 8553 static int 8554 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8555 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8556 { 8557 dtrace_probe_t template, *probe; 8558 dtrace_hash_t *hash = NULL; 8559 int len, best = INT_MAX, nmatched = 0; 8560 dtrace_id_t i; 8561 8562 ASSERT(MUTEX_HELD(&dtrace_lock)); 8563 8564 /* 8565 * If the probe ID is specified in the key, just lookup by ID and 8566 * invoke the match callback once if a matching probe is found. 8567 */ 8568 if (pkp->dtpk_id != DTRACE_IDNONE) { 8569 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8570 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8571 (void) (*matched)(probe, arg); 8572 nmatched++; 8573 } 8574 return (nmatched); 8575 } 8576 8577 template.dtpr_mod = (char *)pkp->dtpk_mod; 8578 template.dtpr_func = (char *)pkp->dtpk_func; 8579 template.dtpr_name = (char *)pkp->dtpk_name; 8580 8581 /* 8582 * We want to find the most distinct of the module name, function 8583 * name, and name. So for each one that is not a glob pattern or 8584 * empty string, we perform a lookup in the corresponding hash and 8585 * use the hash table with the fewest collisions to do our search. 8586 */ 8587 if (pkp->dtpk_mmatch == &dtrace_match_string && 8588 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8589 best = len; 8590 hash = dtrace_bymod; 8591 } 8592 8593 if (pkp->dtpk_fmatch == &dtrace_match_string && 8594 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8595 best = len; 8596 hash = dtrace_byfunc; 8597 } 8598 8599 if (pkp->dtpk_nmatch == &dtrace_match_string && 8600 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8601 best = len; 8602 hash = dtrace_byname; 8603 } 8604 8605 /* 8606 * If we did not select a hash table, iterate over every probe and 8607 * invoke our callback for each one that matches our input probe key. 8608 */ 8609 if (hash == NULL) { 8610 for (i = 0; i < dtrace_nprobes; i++) { 8611 if ((probe = dtrace_probes[i]) == NULL || 8612 dtrace_match_probe(probe, pkp, priv, uid, 8613 zoneid) <= 0) 8614 continue; 8615 8616 nmatched++; 8617 8618 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8619 break; 8620 } 8621 8622 return (nmatched); 8623 } 8624 8625 /* 8626 * If we selected a hash table, iterate over each probe of the same key 8627 * name and invoke the callback for every probe that matches the other 8628 * attributes of our input probe key. 8629 */ 8630 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8631 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8632 8633 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8634 continue; 8635 8636 nmatched++; 8637 8638 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8639 break; 8640 } 8641 8642 return (nmatched); 8643 } 8644 8645 /* 8646 * Return the function pointer dtrace_probecmp() should use to compare the 8647 * specified pattern with a string. For NULL or empty patterns, we select 8648 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8649 * For non-empty non-glob strings, we use dtrace_match_string(). 8650 */ 8651 static dtrace_probekey_f * 8652 dtrace_probekey_func(const char *p) 8653 { 8654 char c; 8655 8656 if (p == NULL || *p == '\0') 8657 return (&dtrace_match_nul); 8658 8659 while ((c = *p++) != '\0') { 8660 if (c == '[' || c == '?' || c == '*' || c == '\\') 8661 return (&dtrace_match_glob); 8662 } 8663 8664 return (&dtrace_match_string); 8665 } 8666 8667 /* 8668 * Build a probe comparison key for use with dtrace_match_probe() from the 8669 * given probe description. By convention, a null key only matches anchored 8670 * probes: if each field is the empty string, reset dtpk_fmatch to 8671 * dtrace_match_nonzero(). 8672 */ 8673 static void 8674 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8675 { 8676 pkp->dtpk_prov = pdp->dtpd_provider; 8677 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8678 8679 pkp->dtpk_mod = pdp->dtpd_mod; 8680 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8681 8682 pkp->dtpk_func = pdp->dtpd_func; 8683 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8684 8685 pkp->dtpk_name = pdp->dtpd_name; 8686 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8687 8688 pkp->dtpk_id = pdp->dtpd_id; 8689 8690 if (pkp->dtpk_id == DTRACE_IDNONE && 8691 pkp->dtpk_pmatch == &dtrace_match_nul && 8692 pkp->dtpk_mmatch == &dtrace_match_nul && 8693 pkp->dtpk_fmatch == &dtrace_match_nul && 8694 pkp->dtpk_nmatch == &dtrace_match_nul) 8695 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8696 } 8697 8698 /* 8699 * DTrace Provider-to-Framework API Functions 8700 * 8701 * These functions implement much of the Provider-to-Framework API, as 8702 * described in <sys/dtrace.h>. The parts of the API not in this section are 8703 * the functions in the API for probe management (found below), and 8704 * dtrace_probe() itself (found above). 8705 */ 8706 8707 /* 8708 * Register the calling provider with the DTrace framework. This should 8709 * generally be called by DTrace providers in their attach(9E) entry point. 8710 */ 8711 int 8712 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8713 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8714 { 8715 dtrace_provider_t *provider; 8716 8717 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8718 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8719 "arguments", name ? name : "<NULL>"); 8720 return (EINVAL); 8721 } 8722 8723 if (name[0] == '\0' || dtrace_badname(name)) { 8724 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8725 "provider name", name); 8726 return (EINVAL); 8727 } 8728 8729 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8730 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8731 pops->dtps_destroy == NULL || 8732 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8733 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8734 "provider ops", name); 8735 return (EINVAL); 8736 } 8737 8738 if (dtrace_badattr(&pap->dtpa_provider) || 8739 dtrace_badattr(&pap->dtpa_mod) || 8740 dtrace_badattr(&pap->dtpa_func) || 8741 dtrace_badattr(&pap->dtpa_name) || 8742 dtrace_badattr(&pap->dtpa_args)) { 8743 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8744 "provider attributes", name); 8745 return (EINVAL); 8746 } 8747 8748 if (priv & ~DTRACE_PRIV_ALL) { 8749 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8750 "privilege attributes", name); 8751 return (EINVAL); 8752 } 8753 8754 if ((priv & DTRACE_PRIV_KERNEL) && 8755 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8756 pops->dtps_usermode == NULL) { 8757 cmn_err(CE_WARN, "failed to register provider '%s': need " 8758 "dtps_usermode() op for given privilege attributes", name); 8759 return (EINVAL); 8760 } 8761 8762 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8763 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8764 (void) strcpy(provider->dtpv_name, name); 8765 8766 provider->dtpv_attr = *pap; 8767 provider->dtpv_priv.dtpp_flags = priv; 8768 if (cr != NULL) { 8769 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8770 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8771 } 8772 provider->dtpv_pops = *pops; 8773 8774 if (pops->dtps_provide == NULL) { 8775 ASSERT(pops->dtps_provide_module != NULL); 8776 provider->dtpv_pops.dtps_provide = 8777 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop; 8778 } 8779 8780 if (pops->dtps_provide_module == NULL) { 8781 ASSERT(pops->dtps_provide != NULL); 8782 provider->dtpv_pops.dtps_provide_module = 8783 (void (*)(void *, modctl_t *))dtrace_nullop; 8784 } 8785 8786 if (pops->dtps_suspend == NULL) { 8787 ASSERT(pops->dtps_resume == NULL); 8788 provider->dtpv_pops.dtps_suspend = 8789 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8790 provider->dtpv_pops.dtps_resume = 8791 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8792 } 8793 8794 provider->dtpv_arg = arg; 8795 *idp = (dtrace_provider_id_t)provider; 8796 8797 if (pops == &dtrace_provider_ops) { 8798 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8799 ASSERT(MUTEX_HELD(&dtrace_lock)); 8800 ASSERT(dtrace_anon.dta_enabling == NULL); 8801 8802 /* 8803 * We make sure that the DTrace provider is at the head of 8804 * the provider chain. 8805 */ 8806 provider->dtpv_next = dtrace_provider; 8807 dtrace_provider = provider; 8808 return (0); 8809 } 8810 8811 mutex_enter(&dtrace_provider_lock); 8812 mutex_enter(&dtrace_lock); 8813 8814 /* 8815 * If there is at least one provider registered, we'll add this 8816 * provider after the first provider. 8817 */ 8818 if (dtrace_provider != NULL) { 8819 provider->dtpv_next = dtrace_provider->dtpv_next; 8820 dtrace_provider->dtpv_next = provider; 8821 } else { 8822 dtrace_provider = provider; 8823 } 8824 8825 if (dtrace_retained != NULL) { 8826 dtrace_enabling_provide(provider); 8827 8828 /* 8829 * Now we need to call dtrace_enabling_matchall() -- which 8830 * will acquire cpu_lock and dtrace_lock. We therefore need 8831 * to drop all of our locks before calling into it... 8832 */ 8833 mutex_exit(&dtrace_lock); 8834 mutex_exit(&dtrace_provider_lock); 8835 dtrace_enabling_matchall(); 8836 8837 return (0); 8838 } 8839 8840 mutex_exit(&dtrace_lock); 8841 mutex_exit(&dtrace_provider_lock); 8842 8843 return (0); 8844 } 8845 8846 /* 8847 * Unregister the specified provider from the DTrace framework. This should 8848 * generally be called by DTrace providers in their detach(9E) entry point. 8849 */ 8850 int 8851 dtrace_unregister(dtrace_provider_id_t id) 8852 { 8853 dtrace_provider_t *old = (dtrace_provider_t *)id; 8854 dtrace_provider_t *prev = NULL; 8855 int i, self = 0, noreap = 0; 8856 dtrace_probe_t *probe, *first = NULL; 8857 8858 if (old->dtpv_pops.dtps_enable == 8859 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 8860 /* 8861 * If DTrace itself is the provider, we're called with locks 8862 * already held. 8863 */ 8864 ASSERT(old == dtrace_provider); 8865 #ifdef illumos 8866 ASSERT(dtrace_devi != NULL); 8867 #endif 8868 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8869 ASSERT(MUTEX_HELD(&dtrace_lock)); 8870 self = 1; 8871 8872 if (dtrace_provider->dtpv_next != NULL) { 8873 /* 8874 * There's another provider here; return failure. 8875 */ 8876 return (EBUSY); 8877 } 8878 } else { 8879 mutex_enter(&dtrace_provider_lock); 8880 #ifdef illumos 8881 mutex_enter(&mod_lock); 8882 #endif 8883 mutex_enter(&dtrace_lock); 8884 } 8885 8886 /* 8887 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8888 * probes, we refuse to let providers slither away, unless this 8889 * provider has already been explicitly invalidated. 8890 */ 8891 if (!old->dtpv_defunct && 8892 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8893 dtrace_anon.dta_state->dts_necbs > 0))) { 8894 if (!self) { 8895 mutex_exit(&dtrace_lock); 8896 #ifdef illumos 8897 mutex_exit(&mod_lock); 8898 #endif 8899 mutex_exit(&dtrace_provider_lock); 8900 } 8901 return (EBUSY); 8902 } 8903 8904 /* 8905 * Attempt to destroy the probes associated with this provider. 8906 */ 8907 for (i = 0; i < dtrace_nprobes; i++) { 8908 if ((probe = dtrace_probes[i]) == NULL) 8909 continue; 8910 8911 if (probe->dtpr_provider != old) 8912 continue; 8913 8914 if (probe->dtpr_ecb == NULL) 8915 continue; 8916 8917 /* 8918 * If we are trying to unregister a defunct provider, and the 8919 * provider was made defunct within the interval dictated by 8920 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8921 * attempt to reap our enablings. To denote that the provider 8922 * should reattempt to unregister itself at some point in the 8923 * future, we will return a differentiable error code (EAGAIN 8924 * instead of EBUSY) in this case. 8925 */ 8926 if (dtrace_gethrtime() - old->dtpv_defunct > 8927 dtrace_unregister_defunct_reap) 8928 noreap = 1; 8929 8930 if (!self) { 8931 mutex_exit(&dtrace_lock); 8932 #ifdef illumos 8933 mutex_exit(&mod_lock); 8934 #endif 8935 mutex_exit(&dtrace_provider_lock); 8936 } 8937 8938 if (noreap) 8939 return (EBUSY); 8940 8941 (void) taskq_dispatch(dtrace_taskq, 8942 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8943 8944 return (EAGAIN); 8945 } 8946 8947 /* 8948 * All of the probes for this provider are disabled; we can safely 8949 * remove all of them from their hash chains and from the probe array. 8950 */ 8951 for (i = 0; i < dtrace_nprobes; i++) { 8952 if ((probe = dtrace_probes[i]) == NULL) 8953 continue; 8954 8955 if (probe->dtpr_provider != old) 8956 continue; 8957 8958 dtrace_probes[i] = NULL; 8959 8960 dtrace_hash_remove(dtrace_bymod, probe); 8961 dtrace_hash_remove(dtrace_byfunc, probe); 8962 dtrace_hash_remove(dtrace_byname, probe); 8963 8964 if (first == NULL) { 8965 first = probe; 8966 probe->dtpr_nextmod = NULL; 8967 } else { 8968 probe->dtpr_nextmod = first; 8969 first = probe; 8970 } 8971 } 8972 8973 /* 8974 * The provider's probes have been removed from the hash chains and 8975 * from the probe array. Now issue a dtrace_sync() to be sure that 8976 * everyone has cleared out from any probe array processing. 8977 */ 8978 dtrace_sync(); 8979 8980 for (probe = first; probe != NULL; probe = first) { 8981 first = probe->dtpr_nextmod; 8982 8983 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8984 probe->dtpr_arg); 8985 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8986 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8987 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8988 #ifdef illumos 8989 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8990 #else 8991 free_unr(dtrace_arena, probe->dtpr_id); 8992 #endif 8993 kmem_free(probe, sizeof (dtrace_probe_t)); 8994 } 8995 8996 if ((prev = dtrace_provider) == old) { 8997 #ifdef illumos 8998 ASSERT(self || dtrace_devi == NULL); 8999 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 9000 #endif 9001 dtrace_provider = old->dtpv_next; 9002 } else { 9003 while (prev != NULL && prev->dtpv_next != old) 9004 prev = prev->dtpv_next; 9005 9006 if (prev == NULL) { 9007 panic("attempt to unregister non-existent " 9008 "dtrace provider %p\n", (void *)id); 9009 } 9010 9011 prev->dtpv_next = old->dtpv_next; 9012 } 9013 9014 if (!self) { 9015 mutex_exit(&dtrace_lock); 9016 #ifdef illumos 9017 mutex_exit(&mod_lock); 9018 #endif 9019 mutex_exit(&dtrace_provider_lock); 9020 } 9021 9022 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 9023 kmem_free(old, sizeof (dtrace_provider_t)); 9024 9025 return (0); 9026 } 9027 9028 /* 9029 * Invalidate the specified provider. All subsequent probe lookups for the 9030 * specified provider will fail, but its probes will not be removed. 9031 */ 9032 void 9033 dtrace_invalidate(dtrace_provider_id_t id) 9034 { 9035 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 9036 9037 ASSERT(pvp->dtpv_pops.dtps_enable != 9038 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9039 9040 mutex_enter(&dtrace_provider_lock); 9041 mutex_enter(&dtrace_lock); 9042 9043 pvp->dtpv_defunct = dtrace_gethrtime(); 9044 9045 mutex_exit(&dtrace_lock); 9046 mutex_exit(&dtrace_provider_lock); 9047 } 9048 9049 /* 9050 * Indicate whether or not DTrace has attached. 9051 */ 9052 int 9053 dtrace_attached(void) 9054 { 9055 /* 9056 * dtrace_provider will be non-NULL iff the DTrace driver has 9057 * attached. (It's non-NULL because DTrace is always itself a 9058 * provider.) 9059 */ 9060 return (dtrace_provider != NULL); 9061 } 9062 9063 /* 9064 * Remove all the unenabled probes for the given provider. This function is 9065 * not unlike dtrace_unregister(), except that it doesn't remove the provider 9066 * -- just as many of its associated probes as it can. 9067 */ 9068 int 9069 dtrace_condense(dtrace_provider_id_t id) 9070 { 9071 dtrace_provider_t *prov = (dtrace_provider_t *)id; 9072 int i; 9073 dtrace_probe_t *probe; 9074 9075 /* 9076 * Make sure this isn't the dtrace provider itself. 9077 */ 9078 ASSERT(prov->dtpv_pops.dtps_enable != 9079 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9080 9081 mutex_enter(&dtrace_provider_lock); 9082 mutex_enter(&dtrace_lock); 9083 9084 /* 9085 * Attempt to destroy the probes associated with this provider. 9086 */ 9087 for (i = 0; i < dtrace_nprobes; i++) { 9088 if ((probe = dtrace_probes[i]) == NULL) 9089 continue; 9090 9091 if (probe->dtpr_provider != prov) 9092 continue; 9093 9094 if (probe->dtpr_ecb != NULL) 9095 continue; 9096 9097 dtrace_probes[i] = NULL; 9098 9099 dtrace_hash_remove(dtrace_bymod, probe); 9100 dtrace_hash_remove(dtrace_byfunc, probe); 9101 dtrace_hash_remove(dtrace_byname, probe); 9102 9103 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 9104 probe->dtpr_arg); 9105 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 9106 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 9107 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 9108 kmem_free(probe, sizeof (dtrace_probe_t)); 9109 #ifdef illumos 9110 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 9111 #else 9112 free_unr(dtrace_arena, i + 1); 9113 #endif 9114 } 9115 9116 mutex_exit(&dtrace_lock); 9117 mutex_exit(&dtrace_provider_lock); 9118 9119 return (0); 9120 } 9121 9122 /* 9123 * DTrace Probe Management Functions 9124 * 9125 * The functions in this section perform the DTrace probe management, 9126 * including functions to create probes, look-up probes, and call into the 9127 * providers to request that probes be provided. Some of these functions are 9128 * in the Provider-to-Framework API; these functions can be identified by the 9129 * fact that they are not declared "static". 9130 */ 9131 9132 /* 9133 * Create a probe with the specified module name, function name, and name. 9134 */ 9135 dtrace_id_t 9136 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 9137 const char *func, const char *name, int aframes, void *arg) 9138 { 9139 dtrace_probe_t *probe, **probes; 9140 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 9141 dtrace_id_t id; 9142 9143 if (provider == dtrace_provider) { 9144 ASSERT(MUTEX_HELD(&dtrace_lock)); 9145 } else { 9146 mutex_enter(&dtrace_lock); 9147 } 9148 9149 #ifdef illumos 9150 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 9151 VM_BESTFIT | VM_SLEEP); 9152 #else 9153 id = alloc_unr(dtrace_arena); 9154 #endif 9155 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 9156 9157 probe->dtpr_id = id; 9158 probe->dtpr_gen = dtrace_probegen++; 9159 probe->dtpr_mod = dtrace_strdup(mod); 9160 probe->dtpr_func = dtrace_strdup(func); 9161 probe->dtpr_name = dtrace_strdup(name); 9162 probe->dtpr_arg = arg; 9163 probe->dtpr_aframes = aframes; 9164 probe->dtpr_provider = provider; 9165 9166 dtrace_hash_add(dtrace_bymod, probe); 9167 dtrace_hash_add(dtrace_byfunc, probe); 9168 dtrace_hash_add(dtrace_byname, probe); 9169 9170 if (id - 1 >= dtrace_nprobes) { 9171 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 9172 size_t nsize = osize << 1; 9173 9174 if (nsize == 0) { 9175 ASSERT(osize == 0); 9176 ASSERT(dtrace_probes == NULL); 9177 nsize = sizeof (dtrace_probe_t *); 9178 } 9179 9180 probes = kmem_zalloc(nsize, KM_SLEEP); 9181 9182 if (dtrace_probes == NULL) { 9183 ASSERT(osize == 0); 9184 dtrace_probes = probes; 9185 dtrace_nprobes = 1; 9186 } else { 9187 dtrace_probe_t **oprobes = dtrace_probes; 9188 9189 bcopy(oprobes, probes, osize); 9190 dtrace_membar_producer(); 9191 dtrace_probes = probes; 9192 9193 dtrace_sync(); 9194 9195 /* 9196 * All CPUs are now seeing the new probes array; we can 9197 * safely free the old array. 9198 */ 9199 kmem_free(oprobes, osize); 9200 dtrace_nprobes <<= 1; 9201 } 9202 9203 ASSERT(id - 1 < dtrace_nprobes); 9204 } 9205 9206 ASSERT(dtrace_probes[id - 1] == NULL); 9207 dtrace_probes[id - 1] = probe; 9208 9209 if (provider != dtrace_provider) 9210 mutex_exit(&dtrace_lock); 9211 9212 return (id); 9213 } 9214 9215 static dtrace_probe_t * 9216 dtrace_probe_lookup_id(dtrace_id_t id) 9217 { 9218 ASSERT(MUTEX_HELD(&dtrace_lock)); 9219 9220 if (id == 0 || id > dtrace_nprobes) 9221 return (NULL); 9222 9223 return (dtrace_probes[id - 1]); 9224 } 9225 9226 static int 9227 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 9228 { 9229 *((dtrace_id_t *)arg) = probe->dtpr_id; 9230 9231 return (DTRACE_MATCH_DONE); 9232 } 9233 9234 /* 9235 * Look up a probe based on provider and one or more of module name, function 9236 * name and probe name. 9237 */ 9238 dtrace_id_t 9239 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod, 9240 char *func, char *name) 9241 { 9242 dtrace_probekey_t pkey; 9243 dtrace_id_t id; 9244 int match; 9245 9246 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 9247 pkey.dtpk_pmatch = &dtrace_match_string; 9248 pkey.dtpk_mod = mod; 9249 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 9250 pkey.dtpk_func = func; 9251 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 9252 pkey.dtpk_name = name; 9253 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 9254 pkey.dtpk_id = DTRACE_IDNONE; 9255 9256 mutex_enter(&dtrace_lock); 9257 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 9258 dtrace_probe_lookup_match, &id); 9259 mutex_exit(&dtrace_lock); 9260 9261 ASSERT(match == 1 || match == 0); 9262 return (match ? id : 0); 9263 } 9264 9265 /* 9266 * Returns the probe argument associated with the specified probe. 9267 */ 9268 void * 9269 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 9270 { 9271 dtrace_probe_t *probe; 9272 void *rval = NULL; 9273 9274 mutex_enter(&dtrace_lock); 9275 9276 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 9277 probe->dtpr_provider == (dtrace_provider_t *)id) 9278 rval = probe->dtpr_arg; 9279 9280 mutex_exit(&dtrace_lock); 9281 9282 return (rval); 9283 } 9284 9285 /* 9286 * Copy a probe into a probe description. 9287 */ 9288 static void 9289 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 9290 { 9291 bzero(pdp, sizeof (dtrace_probedesc_t)); 9292 pdp->dtpd_id = prp->dtpr_id; 9293 9294 (void) strncpy(pdp->dtpd_provider, 9295 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 9296 9297 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 9298 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 9299 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 9300 } 9301 9302 /* 9303 * Called to indicate that a probe -- or probes -- should be provided by a 9304 * specfied provider. If the specified description is NULL, the provider will 9305 * be told to provide all of its probes. (This is done whenever a new 9306 * consumer comes along, or whenever a retained enabling is to be matched.) If 9307 * the specified description is non-NULL, the provider is given the 9308 * opportunity to dynamically provide the specified probe, allowing providers 9309 * to support the creation of probes on-the-fly. (So-called _autocreated_ 9310 * probes.) If the provider is NULL, the operations will be applied to all 9311 * providers; if the provider is non-NULL the operations will only be applied 9312 * to the specified provider. The dtrace_provider_lock must be held, and the 9313 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 9314 * will need to grab the dtrace_lock when it reenters the framework through 9315 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 9316 */ 9317 static void 9318 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 9319 { 9320 #ifdef illumos 9321 modctl_t *ctl; 9322 #endif 9323 int all = 0; 9324 9325 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 9326 9327 if (prv == NULL) { 9328 all = 1; 9329 prv = dtrace_provider; 9330 } 9331 9332 do { 9333 /* 9334 * First, call the blanket provide operation. 9335 */ 9336 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 9337 9338 #ifdef illumos 9339 /* 9340 * Now call the per-module provide operation. We will grab 9341 * mod_lock to prevent the list from being modified. Note 9342 * that this also prevents the mod_busy bits from changing. 9343 * (mod_busy can only be changed with mod_lock held.) 9344 */ 9345 mutex_enter(&mod_lock); 9346 9347 ctl = &modules; 9348 do { 9349 if (ctl->mod_busy || ctl->mod_mp == NULL) 9350 continue; 9351 9352 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 9353 9354 } while ((ctl = ctl->mod_next) != &modules); 9355 9356 mutex_exit(&mod_lock); 9357 #endif 9358 } while (all && (prv = prv->dtpv_next) != NULL); 9359 } 9360 9361 #ifdef illumos 9362 /* 9363 * Iterate over each probe, and call the Framework-to-Provider API function 9364 * denoted by offs. 9365 */ 9366 static void 9367 dtrace_probe_foreach(uintptr_t offs) 9368 { 9369 dtrace_provider_t *prov; 9370 void (*func)(void *, dtrace_id_t, void *); 9371 dtrace_probe_t *probe; 9372 dtrace_icookie_t cookie; 9373 int i; 9374 9375 /* 9376 * We disable interrupts to walk through the probe array. This is 9377 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 9378 * won't see stale data. 9379 */ 9380 cookie = dtrace_interrupt_disable(); 9381 9382 for (i = 0; i < dtrace_nprobes; i++) { 9383 if ((probe = dtrace_probes[i]) == NULL) 9384 continue; 9385 9386 if (probe->dtpr_ecb == NULL) { 9387 /* 9388 * This probe isn't enabled -- don't call the function. 9389 */ 9390 continue; 9391 } 9392 9393 prov = probe->dtpr_provider; 9394 func = *((void(**)(void *, dtrace_id_t, void *)) 9395 ((uintptr_t)&prov->dtpv_pops + offs)); 9396 9397 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 9398 } 9399 9400 dtrace_interrupt_enable(cookie); 9401 } 9402 #endif 9403 9404 static int 9405 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 9406 { 9407 dtrace_probekey_t pkey; 9408 uint32_t priv; 9409 uid_t uid; 9410 zoneid_t zoneid; 9411 9412 ASSERT(MUTEX_HELD(&dtrace_lock)); 9413 dtrace_ecb_create_cache = NULL; 9414 9415 if (desc == NULL) { 9416 /* 9417 * If we're passed a NULL description, we're being asked to 9418 * create an ECB with a NULL probe. 9419 */ 9420 (void) dtrace_ecb_create_enable(NULL, enab); 9421 return (0); 9422 } 9423 9424 dtrace_probekey(desc, &pkey); 9425 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 9426 &priv, &uid, &zoneid); 9427 9428 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 9429 enab)); 9430 } 9431 9432 /* 9433 * DTrace Helper Provider Functions 9434 */ 9435 static void 9436 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 9437 { 9438 attr->dtat_name = DOF_ATTR_NAME(dofattr); 9439 attr->dtat_data = DOF_ATTR_DATA(dofattr); 9440 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 9441 } 9442 9443 static void 9444 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 9445 const dof_provider_t *dofprov, char *strtab) 9446 { 9447 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 9448 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 9449 dofprov->dofpv_provattr); 9450 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 9451 dofprov->dofpv_modattr); 9452 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 9453 dofprov->dofpv_funcattr); 9454 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 9455 dofprov->dofpv_nameattr); 9456 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 9457 dofprov->dofpv_argsattr); 9458 } 9459 9460 static void 9461 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9462 { 9463 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9464 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9465 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 9466 dof_provider_t *provider; 9467 dof_probe_t *probe; 9468 uint32_t *off, *enoff; 9469 uint8_t *arg; 9470 char *strtab; 9471 uint_t i, nprobes; 9472 dtrace_helper_provdesc_t dhpv; 9473 dtrace_helper_probedesc_t dhpb; 9474 dtrace_meta_t *meta = dtrace_meta_pid; 9475 dtrace_mops_t *mops = &meta->dtm_mops; 9476 void *parg; 9477 9478 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9479 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9480 provider->dofpv_strtab * dof->dofh_secsize); 9481 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9482 provider->dofpv_probes * dof->dofh_secsize); 9483 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9484 provider->dofpv_prargs * dof->dofh_secsize); 9485 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9486 provider->dofpv_proffs * dof->dofh_secsize); 9487 9488 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9489 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 9490 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 9491 enoff = NULL; 9492 9493 /* 9494 * See dtrace_helper_provider_validate(). 9495 */ 9496 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 9497 provider->dofpv_prenoffs != DOF_SECT_NONE) { 9498 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9499 provider->dofpv_prenoffs * dof->dofh_secsize); 9500 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 9501 } 9502 9503 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 9504 9505 /* 9506 * Create the provider. 9507 */ 9508 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9509 9510 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 9511 return; 9512 9513 meta->dtm_count++; 9514 9515 /* 9516 * Create the probes. 9517 */ 9518 for (i = 0; i < nprobes; i++) { 9519 probe = (dof_probe_t *)(uintptr_t)(daddr + 9520 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 9521 9522 /* See the check in dtrace_helper_provider_validate(). */ 9523 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) 9524 continue; 9525 9526 dhpb.dthpb_mod = dhp->dofhp_mod; 9527 dhpb.dthpb_func = strtab + probe->dofpr_func; 9528 dhpb.dthpb_name = strtab + probe->dofpr_name; 9529 dhpb.dthpb_base = probe->dofpr_addr; 9530 dhpb.dthpb_offs = off + probe->dofpr_offidx; 9531 dhpb.dthpb_noffs = probe->dofpr_noffs; 9532 if (enoff != NULL) { 9533 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 9534 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9535 } else { 9536 dhpb.dthpb_enoffs = NULL; 9537 dhpb.dthpb_nenoffs = 0; 9538 } 9539 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9540 dhpb.dthpb_nargc = probe->dofpr_nargc; 9541 dhpb.dthpb_xargc = probe->dofpr_xargc; 9542 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9543 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9544 9545 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9546 } 9547 } 9548 9549 static void 9550 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9551 { 9552 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9553 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9554 int i; 9555 9556 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9557 9558 for (i = 0; i < dof->dofh_secnum; i++) { 9559 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9560 dof->dofh_secoff + i * dof->dofh_secsize); 9561 9562 if (sec->dofs_type != DOF_SECT_PROVIDER) 9563 continue; 9564 9565 dtrace_helper_provide_one(dhp, sec, pid); 9566 } 9567 9568 /* 9569 * We may have just created probes, so we must now rematch against 9570 * any retained enablings. Note that this call will acquire both 9571 * cpu_lock and dtrace_lock; the fact that we are holding 9572 * dtrace_meta_lock now is what defines the ordering with respect to 9573 * these three locks. 9574 */ 9575 dtrace_enabling_matchall(); 9576 } 9577 9578 static void 9579 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9580 { 9581 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9582 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9583 dof_sec_t *str_sec; 9584 dof_provider_t *provider; 9585 char *strtab; 9586 dtrace_helper_provdesc_t dhpv; 9587 dtrace_meta_t *meta = dtrace_meta_pid; 9588 dtrace_mops_t *mops = &meta->dtm_mops; 9589 9590 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9591 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9592 provider->dofpv_strtab * dof->dofh_secsize); 9593 9594 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9595 9596 /* 9597 * Create the provider. 9598 */ 9599 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9600 9601 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9602 9603 meta->dtm_count--; 9604 } 9605 9606 static void 9607 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9608 { 9609 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9610 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9611 int i; 9612 9613 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9614 9615 for (i = 0; i < dof->dofh_secnum; i++) { 9616 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9617 dof->dofh_secoff + i * dof->dofh_secsize); 9618 9619 if (sec->dofs_type != DOF_SECT_PROVIDER) 9620 continue; 9621 9622 dtrace_helper_provider_remove_one(dhp, sec, pid); 9623 } 9624 } 9625 9626 /* 9627 * DTrace Meta Provider-to-Framework API Functions 9628 * 9629 * These functions implement the Meta Provider-to-Framework API, as described 9630 * in <sys/dtrace.h>. 9631 */ 9632 int 9633 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9634 dtrace_meta_provider_id_t *idp) 9635 { 9636 dtrace_meta_t *meta; 9637 dtrace_helpers_t *help, *next; 9638 int i; 9639 9640 *idp = DTRACE_METAPROVNONE; 9641 9642 /* 9643 * We strictly don't need the name, but we hold onto it for 9644 * debuggability. All hail error queues! 9645 */ 9646 if (name == NULL) { 9647 cmn_err(CE_WARN, "failed to register meta-provider: " 9648 "invalid name"); 9649 return (EINVAL); 9650 } 9651 9652 if (mops == NULL || 9653 mops->dtms_create_probe == NULL || 9654 mops->dtms_provide_pid == NULL || 9655 mops->dtms_remove_pid == NULL) { 9656 cmn_err(CE_WARN, "failed to register meta-register %s: " 9657 "invalid ops", name); 9658 return (EINVAL); 9659 } 9660 9661 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9662 meta->dtm_mops = *mops; 9663 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9664 (void) strcpy(meta->dtm_name, name); 9665 meta->dtm_arg = arg; 9666 9667 mutex_enter(&dtrace_meta_lock); 9668 mutex_enter(&dtrace_lock); 9669 9670 if (dtrace_meta_pid != NULL) { 9671 mutex_exit(&dtrace_lock); 9672 mutex_exit(&dtrace_meta_lock); 9673 cmn_err(CE_WARN, "failed to register meta-register %s: " 9674 "user-land meta-provider exists", name); 9675 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9676 kmem_free(meta, sizeof (dtrace_meta_t)); 9677 return (EINVAL); 9678 } 9679 9680 dtrace_meta_pid = meta; 9681 *idp = (dtrace_meta_provider_id_t)meta; 9682 9683 /* 9684 * If there are providers and probes ready to go, pass them 9685 * off to the new meta provider now. 9686 */ 9687 9688 help = dtrace_deferred_pid; 9689 dtrace_deferred_pid = NULL; 9690 9691 mutex_exit(&dtrace_lock); 9692 9693 while (help != NULL) { 9694 for (i = 0; i < help->dthps_nprovs; i++) { 9695 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9696 help->dthps_pid); 9697 } 9698 9699 next = help->dthps_next; 9700 help->dthps_next = NULL; 9701 help->dthps_prev = NULL; 9702 help->dthps_deferred = 0; 9703 help = next; 9704 } 9705 9706 mutex_exit(&dtrace_meta_lock); 9707 9708 return (0); 9709 } 9710 9711 int 9712 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9713 { 9714 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9715 9716 mutex_enter(&dtrace_meta_lock); 9717 mutex_enter(&dtrace_lock); 9718 9719 if (old == dtrace_meta_pid) { 9720 pp = &dtrace_meta_pid; 9721 } else { 9722 panic("attempt to unregister non-existent " 9723 "dtrace meta-provider %p\n", (void *)old); 9724 } 9725 9726 if (old->dtm_count != 0) { 9727 mutex_exit(&dtrace_lock); 9728 mutex_exit(&dtrace_meta_lock); 9729 return (EBUSY); 9730 } 9731 9732 *pp = NULL; 9733 9734 mutex_exit(&dtrace_lock); 9735 mutex_exit(&dtrace_meta_lock); 9736 9737 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9738 kmem_free(old, sizeof (dtrace_meta_t)); 9739 9740 return (0); 9741 } 9742 9743 9744 /* 9745 * DTrace DIF Object Functions 9746 */ 9747 static int 9748 dtrace_difo_err(uint_t pc, const char *format, ...) 9749 { 9750 if (dtrace_err_verbose) { 9751 va_list alist; 9752 9753 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9754 va_start(alist, format); 9755 (void) vuprintf(format, alist); 9756 va_end(alist); 9757 } 9758 9759 #ifdef DTRACE_ERRDEBUG 9760 dtrace_errdebug(format); 9761 #endif 9762 return (1); 9763 } 9764 9765 /* 9766 * Validate a DTrace DIF object by checking the IR instructions. The following 9767 * rules are currently enforced by dtrace_difo_validate(): 9768 * 9769 * 1. Each instruction must have a valid opcode 9770 * 2. Each register, string, variable, or subroutine reference must be valid 9771 * 3. No instruction can modify register %r0 (must be zero) 9772 * 4. All instruction reserved bits must be set to zero 9773 * 5. The last instruction must be a "ret" instruction 9774 * 6. All branch targets must reference a valid instruction _after_ the branch 9775 */ 9776 static int 9777 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9778 cred_t *cr) 9779 { 9780 int err = 0, i; 9781 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9782 int kcheckload; 9783 uint_t pc; 9784 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9785 9786 kcheckload = cr == NULL || 9787 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9788 9789 dp->dtdo_destructive = 0; 9790 9791 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9792 dif_instr_t instr = dp->dtdo_buf[pc]; 9793 9794 uint_t r1 = DIF_INSTR_R1(instr); 9795 uint_t r2 = DIF_INSTR_R2(instr); 9796 uint_t rd = DIF_INSTR_RD(instr); 9797 uint_t rs = DIF_INSTR_RS(instr); 9798 uint_t label = DIF_INSTR_LABEL(instr); 9799 uint_t v = DIF_INSTR_VAR(instr); 9800 uint_t subr = DIF_INSTR_SUBR(instr); 9801 uint_t type = DIF_INSTR_TYPE(instr); 9802 uint_t op = DIF_INSTR_OP(instr); 9803 9804 switch (op) { 9805 case DIF_OP_OR: 9806 case DIF_OP_XOR: 9807 case DIF_OP_AND: 9808 case DIF_OP_SLL: 9809 case DIF_OP_SRL: 9810 case DIF_OP_SRA: 9811 case DIF_OP_SUB: 9812 case DIF_OP_ADD: 9813 case DIF_OP_MUL: 9814 case DIF_OP_SDIV: 9815 case DIF_OP_UDIV: 9816 case DIF_OP_SREM: 9817 case DIF_OP_UREM: 9818 case DIF_OP_COPYS: 9819 if (r1 >= nregs) 9820 err += efunc(pc, "invalid register %u\n", r1); 9821 if (r2 >= nregs) 9822 err += efunc(pc, "invalid register %u\n", r2); 9823 if (rd >= nregs) 9824 err += efunc(pc, "invalid register %u\n", rd); 9825 if (rd == 0) 9826 err += efunc(pc, "cannot write to %r0\n"); 9827 break; 9828 case DIF_OP_NOT: 9829 case DIF_OP_MOV: 9830 case DIF_OP_ALLOCS: 9831 if (r1 >= nregs) 9832 err += efunc(pc, "invalid register %u\n", r1); 9833 if (r2 != 0) 9834 err += efunc(pc, "non-zero reserved bits\n"); 9835 if (rd >= nregs) 9836 err += efunc(pc, "invalid register %u\n", rd); 9837 if (rd == 0) 9838 err += efunc(pc, "cannot write to %r0\n"); 9839 break; 9840 case DIF_OP_LDSB: 9841 case DIF_OP_LDSH: 9842 case DIF_OP_LDSW: 9843 case DIF_OP_LDUB: 9844 case DIF_OP_LDUH: 9845 case DIF_OP_LDUW: 9846 case DIF_OP_LDX: 9847 if (r1 >= nregs) 9848 err += efunc(pc, "invalid register %u\n", r1); 9849 if (r2 != 0) 9850 err += efunc(pc, "non-zero reserved bits\n"); 9851 if (rd >= nregs) 9852 err += efunc(pc, "invalid register %u\n", rd); 9853 if (rd == 0) 9854 err += efunc(pc, "cannot write to %r0\n"); 9855 if (kcheckload) 9856 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9857 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9858 break; 9859 case DIF_OP_RLDSB: 9860 case DIF_OP_RLDSH: 9861 case DIF_OP_RLDSW: 9862 case DIF_OP_RLDUB: 9863 case DIF_OP_RLDUH: 9864 case DIF_OP_RLDUW: 9865 case DIF_OP_RLDX: 9866 if (r1 >= nregs) 9867 err += efunc(pc, "invalid register %u\n", r1); 9868 if (r2 != 0) 9869 err += efunc(pc, "non-zero reserved bits\n"); 9870 if (rd >= nregs) 9871 err += efunc(pc, "invalid register %u\n", rd); 9872 if (rd == 0) 9873 err += efunc(pc, "cannot write to %r0\n"); 9874 break; 9875 case DIF_OP_ULDSB: 9876 case DIF_OP_ULDSH: 9877 case DIF_OP_ULDSW: 9878 case DIF_OP_ULDUB: 9879 case DIF_OP_ULDUH: 9880 case DIF_OP_ULDUW: 9881 case DIF_OP_ULDX: 9882 if (r1 >= nregs) 9883 err += efunc(pc, "invalid register %u\n", r1); 9884 if (r2 != 0) 9885 err += efunc(pc, "non-zero reserved bits\n"); 9886 if (rd >= nregs) 9887 err += efunc(pc, "invalid register %u\n", rd); 9888 if (rd == 0) 9889 err += efunc(pc, "cannot write to %r0\n"); 9890 break; 9891 case DIF_OP_STB: 9892 case DIF_OP_STH: 9893 case DIF_OP_STW: 9894 case DIF_OP_STX: 9895 if (r1 >= nregs) 9896 err += efunc(pc, "invalid register %u\n", r1); 9897 if (r2 != 0) 9898 err += efunc(pc, "non-zero reserved bits\n"); 9899 if (rd >= nregs) 9900 err += efunc(pc, "invalid register %u\n", rd); 9901 if (rd == 0) 9902 err += efunc(pc, "cannot write to 0 address\n"); 9903 break; 9904 case DIF_OP_CMP: 9905 case DIF_OP_SCMP: 9906 if (r1 >= nregs) 9907 err += efunc(pc, "invalid register %u\n", r1); 9908 if (r2 >= nregs) 9909 err += efunc(pc, "invalid register %u\n", r2); 9910 if (rd != 0) 9911 err += efunc(pc, "non-zero reserved bits\n"); 9912 break; 9913 case DIF_OP_TST: 9914 if (r1 >= nregs) 9915 err += efunc(pc, "invalid register %u\n", r1); 9916 if (r2 != 0 || rd != 0) 9917 err += efunc(pc, "non-zero reserved bits\n"); 9918 break; 9919 case DIF_OP_BA: 9920 case DIF_OP_BE: 9921 case DIF_OP_BNE: 9922 case DIF_OP_BG: 9923 case DIF_OP_BGU: 9924 case DIF_OP_BGE: 9925 case DIF_OP_BGEU: 9926 case DIF_OP_BL: 9927 case DIF_OP_BLU: 9928 case DIF_OP_BLE: 9929 case DIF_OP_BLEU: 9930 if (label >= dp->dtdo_len) { 9931 err += efunc(pc, "invalid branch target %u\n", 9932 label); 9933 } 9934 if (label <= pc) { 9935 err += efunc(pc, "backward branch to %u\n", 9936 label); 9937 } 9938 break; 9939 case DIF_OP_RET: 9940 if (r1 != 0 || r2 != 0) 9941 err += efunc(pc, "non-zero reserved bits\n"); 9942 if (rd >= nregs) 9943 err += efunc(pc, "invalid register %u\n", rd); 9944 break; 9945 case DIF_OP_NOP: 9946 case DIF_OP_POPTS: 9947 case DIF_OP_FLUSHTS: 9948 if (r1 != 0 || r2 != 0 || rd != 0) 9949 err += efunc(pc, "non-zero reserved bits\n"); 9950 break; 9951 case DIF_OP_SETX: 9952 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9953 err += efunc(pc, "invalid integer ref %u\n", 9954 DIF_INSTR_INTEGER(instr)); 9955 } 9956 if (rd >= nregs) 9957 err += efunc(pc, "invalid register %u\n", rd); 9958 if (rd == 0) 9959 err += efunc(pc, "cannot write to %r0\n"); 9960 break; 9961 case DIF_OP_SETS: 9962 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9963 err += efunc(pc, "invalid string ref %u\n", 9964 DIF_INSTR_STRING(instr)); 9965 } 9966 if (rd >= nregs) 9967 err += efunc(pc, "invalid register %u\n", rd); 9968 if (rd == 0) 9969 err += efunc(pc, "cannot write to %r0\n"); 9970 break; 9971 case DIF_OP_LDGA: 9972 case DIF_OP_LDTA: 9973 if (r1 > DIF_VAR_ARRAY_MAX) 9974 err += efunc(pc, "invalid array %u\n", r1); 9975 if (r2 >= nregs) 9976 err += efunc(pc, "invalid register %u\n", r2); 9977 if (rd >= nregs) 9978 err += efunc(pc, "invalid register %u\n", rd); 9979 if (rd == 0) 9980 err += efunc(pc, "cannot write to %r0\n"); 9981 break; 9982 case DIF_OP_LDGS: 9983 case DIF_OP_LDTS: 9984 case DIF_OP_LDLS: 9985 case DIF_OP_LDGAA: 9986 case DIF_OP_LDTAA: 9987 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9988 err += efunc(pc, "invalid variable %u\n", v); 9989 if (rd >= nregs) 9990 err += efunc(pc, "invalid register %u\n", rd); 9991 if (rd == 0) 9992 err += efunc(pc, "cannot write to %r0\n"); 9993 break; 9994 case DIF_OP_STGS: 9995 case DIF_OP_STTS: 9996 case DIF_OP_STLS: 9997 case DIF_OP_STGAA: 9998 case DIF_OP_STTAA: 9999 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 10000 err += efunc(pc, "invalid variable %u\n", v); 10001 if (rs >= nregs) 10002 err += efunc(pc, "invalid register %u\n", rd); 10003 break; 10004 case DIF_OP_CALL: 10005 if (subr > DIF_SUBR_MAX) 10006 err += efunc(pc, "invalid subr %u\n", subr); 10007 if (rd >= nregs) 10008 err += efunc(pc, "invalid register %u\n", rd); 10009 if (rd == 0) 10010 err += efunc(pc, "cannot write to %r0\n"); 10011 10012 if (subr == DIF_SUBR_COPYOUT || 10013 subr == DIF_SUBR_COPYOUTSTR) { 10014 dp->dtdo_destructive = 1; 10015 } 10016 10017 if (subr == DIF_SUBR_GETF) { 10018 #ifdef __FreeBSD__ 10019 err += efunc(pc, "getf() not supported"); 10020 #else 10021 /* 10022 * If we have a getf() we need to record that 10023 * in our state. Note that our state can be 10024 * NULL if this is a helper -- but in that 10025 * case, the call to getf() is itself illegal, 10026 * and will be caught (slightly later) when 10027 * the helper is validated. 10028 */ 10029 if (vstate->dtvs_state != NULL) 10030 vstate->dtvs_state->dts_getf++; 10031 #endif 10032 } 10033 10034 break; 10035 case DIF_OP_PUSHTR: 10036 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 10037 err += efunc(pc, "invalid ref type %u\n", type); 10038 if (r2 >= nregs) 10039 err += efunc(pc, "invalid register %u\n", r2); 10040 if (rs >= nregs) 10041 err += efunc(pc, "invalid register %u\n", rs); 10042 break; 10043 case DIF_OP_PUSHTV: 10044 if (type != DIF_TYPE_CTF) 10045 err += efunc(pc, "invalid val type %u\n", type); 10046 if (r2 >= nregs) 10047 err += efunc(pc, "invalid register %u\n", r2); 10048 if (rs >= nregs) 10049 err += efunc(pc, "invalid register %u\n", rs); 10050 break; 10051 default: 10052 err += efunc(pc, "invalid opcode %u\n", 10053 DIF_INSTR_OP(instr)); 10054 } 10055 } 10056 10057 if (dp->dtdo_len != 0 && 10058 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 10059 err += efunc(dp->dtdo_len - 1, 10060 "expected 'ret' as last DIF instruction\n"); 10061 } 10062 10063 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 10064 /* 10065 * If we're not returning by reference, the size must be either 10066 * 0 or the size of one of the base types. 10067 */ 10068 switch (dp->dtdo_rtype.dtdt_size) { 10069 case 0: 10070 case sizeof (uint8_t): 10071 case sizeof (uint16_t): 10072 case sizeof (uint32_t): 10073 case sizeof (uint64_t): 10074 break; 10075 10076 default: 10077 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 10078 } 10079 } 10080 10081 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 10082 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 10083 dtrace_diftype_t *vt, *et; 10084 uint_t id, ndx; 10085 10086 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 10087 v->dtdv_scope != DIFV_SCOPE_THREAD && 10088 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 10089 err += efunc(i, "unrecognized variable scope %d\n", 10090 v->dtdv_scope); 10091 break; 10092 } 10093 10094 if (v->dtdv_kind != DIFV_KIND_ARRAY && 10095 v->dtdv_kind != DIFV_KIND_SCALAR) { 10096 err += efunc(i, "unrecognized variable type %d\n", 10097 v->dtdv_kind); 10098 break; 10099 } 10100 10101 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 10102 err += efunc(i, "%d exceeds variable id limit\n", id); 10103 break; 10104 } 10105 10106 if (id < DIF_VAR_OTHER_UBASE) 10107 continue; 10108 10109 /* 10110 * For user-defined variables, we need to check that this 10111 * definition is identical to any previous definition that we 10112 * encountered. 10113 */ 10114 ndx = id - DIF_VAR_OTHER_UBASE; 10115 10116 switch (v->dtdv_scope) { 10117 case DIFV_SCOPE_GLOBAL: 10118 if (maxglobal == -1 || ndx > maxglobal) 10119 maxglobal = ndx; 10120 10121 if (ndx < vstate->dtvs_nglobals) { 10122 dtrace_statvar_t *svar; 10123 10124 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 10125 existing = &svar->dtsv_var; 10126 } 10127 10128 break; 10129 10130 case DIFV_SCOPE_THREAD: 10131 if (maxtlocal == -1 || ndx > maxtlocal) 10132 maxtlocal = ndx; 10133 10134 if (ndx < vstate->dtvs_ntlocals) 10135 existing = &vstate->dtvs_tlocals[ndx]; 10136 break; 10137 10138 case DIFV_SCOPE_LOCAL: 10139 if (maxlocal == -1 || ndx > maxlocal) 10140 maxlocal = ndx; 10141 10142 if (ndx < vstate->dtvs_nlocals) { 10143 dtrace_statvar_t *svar; 10144 10145 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 10146 existing = &svar->dtsv_var; 10147 } 10148 10149 break; 10150 } 10151 10152 vt = &v->dtdv_type; 10153 10154 if (vt->dtdt_flags & DIF_TF_BYREF) { 10155 if (vt->dtdt_size == 0) { 10156 err += efunc(i, "zero-sized variable\n"); 10157 break; 10158 } 10159 10160 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 10161 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 10162 vt->dtdt_size > dtrace_statvar_maxsize) { 10163 err += efunc(i, "oversized by-ref static\n"); 10164 break; 10165 } 10166 } 10167 10168 if (existing == NULL || existing->dtdv_id == 0) 10169 continue; 10170 10171 ASSERT(existing->dtdv_id == v->dtdv_id); 10172 ASSERT(existing->dtdv_scope == v->dtdv_scope); 10173 10174 if (existing->dtdv_kind != v->dtdv_kind) 10175 err += efunc(i, "%d changed variable kind\n", id); 10176 10177 et = &existing->dtdv_type; 10178 10179 if (vt->dtdt_flags != et->dtdt_flags) { 10180 err += efunc(i, "%d changed variable type flags\n", id); 10181 break; 10182 } 10183 10184 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 10185 err += efunc(i, "%d changed variable type size\n", id); 10186 break; 10187 } 10188 } 10189 10190 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 10191 dif_instr_t instr = dp->dtdo_buf[pc]; 10192 10193 uint_t v = DIF_INSTR_VAR(instr); 10194 uint_t op = DIF_INSTR_OP(instr); 10195 10196 switch (op) { 10197 case DIF_OP_LDGS: 10198 case DIF_OP_LDGAA: 10199 case DIF_OP_STGS: 10200 case DIF_OP_STGAA: 10201 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 10202 err += efunc(pc, "invalid variable %u\n", v); 10203 break; 10204 case DIF_OP_LDTS: 10205 case DIF_OP_LDTAA: 10206 case DIF_OP_STTS: 10207 case DIF_OP_STTAA: 10208 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 10209 err += efunc(pc, "invalid variable %u\n", v); 10210 break; 10211 case DIF_OP_LDLS: 10212 case DIF_OP_STLS: 10213 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 10214 err += efunc(pc, "invalid variable %u\n", v); 10215 break; 10216 default: 10217 break; 10218 } 10219 } 10220 10221 return (err); 10222 } 10223 10224 /* 10225 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 10226 * are much more constrained than normal DIFOs. Specifically, they may 10227 * not: 10228 * 10229 * 1. Make calls to subroutines other than copyin(), copyinstr() or 10230 * miscellaneous string routines 10231 * 2. Access DTrace variables other than the args[] array, and the 10232 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 10233 * 3. Have thread-local variables. 10234 * 4. Have dynamic variables. 10235 */ 10236 static int 10237 dtrace_difo_validate_helper(dtrace_difo_t *dp) 10238 { 10239 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 10240 int err = 0; 10241 uint_t pc; 10242 10243 for (pc = 0; pc < dp->dtdo_len; pc++) { 10244 dif_instr_t instr = dp->dtdo_buf[pc]; 10245 10246 uint_t v = DIF_INSTR_VAR(instr); 10247 uint_t subr = DIF_INSTR_SUBR(instr); 10248 uint_t op = DIF_INSTR_OP(instr); 10249 10250 switch (op) { 10251 case DIF_OP_OR: 10252 case DIF_OP_XOR: 10253 case DIF_OP_AND: 10254 case DIF_OP_SLL: 10255 case DIF_OP_SRL: 10256 case DIF_OP_SRA: 10257 case DIF_OP_SUB: 10258 case DIF_OP_ADD: 10259 case DIF_OP_MUL: 10260 case DIF_OP_SDIV: 10261 case DIF_OP_UDIV: 10262 case DIF_OP_SREM: 10263 case DIF_OP_UREM: 10264 case DIF_OP_COPYS: 10265 case DIF_OP_NOT: 10266 case DIF_OP_MOV: 10267 case DIF_OP_RLDSB: 10268 case DIF_OP_RLDSH: 10269 case DIF_OP_RLDSW: 10270 case DIF_OP_RLDUB: 10271 case DIF_OP_RLDUH: 10272 case DIF_OP_RLDUW: 10273 case DIF_OP_RLDX: 10274 case DIF_OP_ULDSB: 10275 case DIF_OP_ULDSH: 10276 case DIF_OP_ULDSW: 10277 case DIF_OP_ULDUB: 10278 case DIF_OP_ULDUH: 10279 case DIF_OP_ULDUW: 10280 case DIF_OP_ULDX: 10281 case DIF_OP_STB: 10282 case DIF_OP_STH: 10283 case DIF_OP_STW: 10284 case DIF_OP_STX: 10285 case DIF_OP_ALLOCS: 10286 case DIF_OP_CMP: 10287 case DIF_OP_SCMP: 10288 case DIF_OP_TST: 10289 case DIF_OP_BA: 10290 case DIF_OP_BE: 10291 case DIF_OP_BNE: 10292 case DIF_OP_BG: 10293 case DIF_OP_BGU: 10294 case DIF_OP_BGE: 10295 case DIF_OP_BGEU: 10296 case DIF_OP_BL: 10297 case DIF_OP_BLU: 10298 case DIF_OP_BLE: 10299 case DIF_OP_BLEU: 10300 case DIF_OP_RET: 10301 case DIF_OP_NOP: 10302 case DIF_OP_POPTS: 10303 case DIF_OP_FLUSHTS: 10304 case DIF_OP_SETX: 10305 case DIF_OP_SETS: 10306 case DIF_OP_LDGA: 10307 case DIF_OP_LDLS: 10308 case DIF_OP_STGS: 10309 case DIF_OP_STLS: 10310 case DIF_OP_PUSHTR: 10311 case DIF_OP_PUSHTV: 10312 break; 10313 10314 case DIF_OP_LDGS: 10315 if (v >= DIF_VAR_OTHER_UBASE) 10316 break; 10317 10318 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 10319 break; 10320 10321 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 10322 v == DIF_VAR_PPID || v == DIF_VAR_TID || 10323 v == DIF_VAR_EXECARGS || 10324 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 10325 v == DIF_VAR_UID || v == DIF_VAR_GID) 10326 break; 10327 10328 err += efunc(pc, "illegal variable %u\n", v); 10329 break; 10330 10331 case DIF_OP_LDTA: 10332 case DIF_OP_LDTS: 10333 case DIF_OP_LDGAA: 10334 case DIF_OP_LDTAA: 10335 err += efunc(pc, "illegal dynamic variable load\n"); 10336 break; 10337 10338 case DIF_OP_STTS: 10339 case DIF_OP_STGAA: 10340 case DIF_OP_STTAA: 10341 err += efunc(pc, "illegal dynamic variable store\n"); 10342 break; 10343 10344 case DIF_OP_CALL: 10345 if (subr == DIF_SUBR_ALLOCA || 10346 subr == DIF_SUBR_BCOPY || 10347 subr == DIF_SUBR_COPYIN || 10348 subr == DIF_SUBR_COPYINTO || 10349 subr == DIF_SUBR_COPYINSTR || 10350 subr == DIF_SUBR_INDEX || 10351 subr == DIF_SUBR_INET_NTOA || 10352 subr == DIF_SUBR_INET_NTOA6 || 10353 subr == DIF_SUBR_INET_NTOP || 10354 subr == DIF_SUBR_JSON || 10355 subr == DIF_SUBR_LLTOSTR || 10356 subr == DIF_SUBR_STRTOLL || 10357 subr == DIF_SUBR_RINDEX || 10358 subr == DIF_SUBR_STRCHR || 10359 subr == DIF_SUBR_STRJOIN || 10360 subr == DIF_SUBR_STRRCHR || 10361 subr == DIF_SUBR_STRSTR || 10362 subr == DIF_SUBR_HTONS || 10363 subr == DIF_SUBR_HTONL || 10364 subr == DIF_SUBR_HTONLL || 10365 subr == DIF_SUBR_NTOHS || 10366 subr == DIF_SUBR_NTOHL || 10367 subr == DIF_SUBR_NTOHLL || 10368 subr == DIF_SUBR_MEMREF) 10369 break; 10370 #ifdef __FreeBSD__ 10371 if (subr == DIF_SUBR_MEMSTR) 10372 break; 10373 #endif 10374 10375 err += efunc(pc, "invalid subr %u\n", subr); 10376 break; 10377 10378 default: 10379 err += efunc(pc, "invalid opcode %u\n", 10380 DIF_INSTR_OP(instr)); 10381 } 10382 } 10383 10384 return (err); 10385 } 10386 10387 /* 10388 * Returns 1 if the expression in the DIF object can be cached on a per-thread 10389 * basis; 0 if not. 10390 */ 10391 static int 10392 dtrace_difo_cacheable(dtrace_difo_t *dp) 10393 { 10394 int i; 10395 10396 if (dp == NULL) 10397 return (0); 10398 10399 for (i = 0; i < dp->dtdo_varlen; i++) { 10400 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10401 10402 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 10403 continue; 10404 10405 switch (v->dtdv_id) { 10406 case DIF_VAR_CURTHREAD: 10407 case DIF_VAR_PID: 10408 case DIF_VAR_TID: 10409 case DIF_VAR_EXECARGS: 10410 case DIF_VAR_EXECNAME: 10411 case DIF_VAR_ZONENAME: 10412 break; 10413 10414 default: 10415 return (0); 10416 } 10417 } 10418 10419 /* 10420 * This DIF object may be cacheable. Now we need to look for any 10421 * array loading instructions, any memory loading instructions, or 10422 * any stores to thread-local variables. 10423 */ 10424 for (i = 0; i < dp->dtdo_len; i++) { 10425 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 10426 10427 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 10428 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 10429 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 10430 op == DIF_OP_LDGA || op == DIF_OP_STTS) 10431 return (0); 10432 } 10433 10434 return (1); 10435 } 10436 10437 static void 10438 dtrace_difo_hold(dtrace_difo_t *dp) 10439 { 10440 int i; 10441 10442 ASSERT(MUTEX_HELD(&dtrace_lock)); 10443 10444 dp->dtdo_refcnt++; 10445 ASSERT(dp->dtdo_refcnt != 0); 10446 10447 /* 10448 * We need to check this DIF object for references to the variable 10449 * DIF_VAR_VTIMESTAMP. 10450 */ 10451 for (i = 0; i < dp->dtdo_varlen; i++) { 10452 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10453 10454 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10455 continue; 10456 10457 if (dtrace_vtime_references++ == 0) 10458 dtrace_vtime_enable(); 10459 } 10460 } 10461 10462 /* 10463 * This routine calculates the dynamic variable chunksize for a given DIF 10464 * object. The calculation is not fool-proof, and can probably be tricked by 10465 * malicious DIF -- but it works for all compiler-generated DIF. Because this 10466 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 10467 * if a dynamic variable size exceeds the chunksize. 10468 */ 10469 static void 10470 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10471 { 10472 uint64_t sval = 0; 10473 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 10474 const dif_instr_t *text = dp->dtdo_buf; 10475 uint_t pc, srd = 0; 10476 uint_t ttop = 0; 10477 size_t size, ksize; 10478 uint_t id, i; 10479 10480 for (pc = 0; pc < dp->dtdo_len; pc++) { 10481 dif_instr_t instr = text[pc]; 10482 uint_t op = DIF_INSTR_OP(instr); 10483 uint_t rd = DIF_INSTR_RD(instr); 10484 uint_t r1 = DIF_INSTR_R1(instr); 10485 uint_t nkeys = 0; 10486 uchar_t scope = 0; 10487 10488 dtrace_key_t *key = tupregs; 10489 10490 switch (op) { 10491 case DIF_OP_SETX: 10492 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 10493 srd = rd; 10494 continue; 10495 10496 case DIF_OP_STTS: 10497 key = &tupregs[DIF_DTR_NREGS]; 10498 key[0].dttk_size = 0; 10499 key[1].dttk_size = 0; 10500 nkeys = 2; 10501 scope = DIFV_SCOPE_THREAD; 10502 break; 10503 10504 case DIF_OP_STGAA: 10505 case DIF_OP_STTAA: 10506 nkeys = ttop; 10507 10508 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 10509 key[nkeys++].dttk_size = 0; 10510 10511 key[nkeys++].dttk_size = 0; 10512 10513 if (op == DIF_OP_STTAA) { 10514 scope = DIFV_SCOPE_THREAD; 10515 } else { 10516 scope = DIFV_SCOPE_GLOBAL; 10517 } 10518 10519 break; 10520 10521 case DIF_OP_PUSHTR: 10522 if (ttop == DIF_DTR_NREGS) 10523 return; 10524 10525 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10526 /* 10527 * If the register for the size of the "pushtr" 10528 * is %r0 (or the value is 0) and the type is 10529 * a string, we'll use the system-wide default 10530 * string size. 10531 */ 10532 tupregs[ttop++].dttk_size = 10533 dtrace_strsize_default; 10534 } else { 10535 if (srd == 0) 10536 return; 10537 10538 if (sval > LONG_MAX) 10539 return; 10540 10541 tupregs[ttop++].dttk_size = sval; 10542 } 10543 10544 break; 10545 10546 case DIF_OP_PUSHTV: 10547 if (ttop == DIF_DTR_NREGS) 10548 return; 10549 10550 tupregs[ttop++].dttk_size = 0; 10551 break; 10552 10553 case DIF_OP_FLUSHTS: 10554 ttop = 0; 10555 break; 10556 10557 case DIF_OP_POPTS: 10558 if (ttop != 0) 10559 ttop--; 10560 break; 10561 } 10562 10563 sval = 0; 10564 srd = 0; 10565 10566 if (nkeys == 0) 10567 continue; 10568 10569 /* 10570 * We have a dynamic variable allocation; calculate its size. 10571 */ 10572 for (ksize = 0, i = 0; i < nkeys; i++) 10573 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10574 10575 size = sizeof (dtrace_dynvar_t); 10576 size += sizeof (dtrace_key_t) * (nkeys - 1); 10577 size += ksize; 10578 10579 /* 10580 * Now we need to determine the size of the stored data. 10581 */ 10582 id = DIF_INSTR_VAR(instr); 10583 10584 for (i = 0; i < dp->dtdo_varlen; i++) { 10585 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10586 10587 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10588 size += v->dtdv_type.dtdt_size; 10589 break; 10590 } 10591 } 10592 10593 if (i == dp->dtdo_varlen) 10594 return; 10595 10596 /* 10597 * We have the size. If this is larger than the chunk size 10598 * for our dynamic variable state, reset the chunk size. 10599 */ 10600 size = P2ROUNDUP(size, sizeof (uint64_t)); 10601 10602 /* 10603 * Before setting the chunk size, check that we're not going 10604 * to set it to a negative value... 10605 */ 10606 if (size > LONG_MAX) 10607 return; 10608 10609 /* 10610 * ...and make certain that we didn't badly overflow. 10611 */ 10612 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10613 return; 10614 10615 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10616 vstate->dtvs_dynvars.dtds_chunksize = size; 10617 } 10618 } 10619 10620 static void 10621 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10622 { 10623 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10624 uint_t id; 10625 10626 ASSERT(MUTEX_HELD(&dtrace_lock)); 10627 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10628 10629 for (i = 0; i < dp->dtdo_varlen; i++) { 10630 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10631 dtrace_statvar_t *svar, ***svarp = NULL; 10632 size_t dsize = 0; 10633 uint8_t scope = v->dtdv_scope; 10634 int *np = NULL; 10635 10636 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10637 continue; 10638 10639 id -= DIF_VAR_OTHER_UBASE; 10640 10641 switch (scope) { 10642 case DIFV_SCOPE_THREAD: 10643 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10644 dtrace_difv_t *tlocals; 10645 10646 if ((ntlocals = (otlocals << 1)) == 0) 10647 ntlocals = 1; 10648 10649 osz = otlocals * sizeof (dtrace_difv_t); 10650 nsz = ntlocals * sizeof (dtrace_difv_t); 10651 10652 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10653 10654 if (osz != 0) { 10655 bcopy(vstate->dtvs_tlocals, 10656 tlocals, osz); 10657 kmem_free(vstate->dtvs_tlocals, osz); 10658 } 10659 10660 vstate->dtvs_tlocals = tlocals; 10661 vstate->dtvs_ntlocals = ntlocals; 10662 } 10663 10664 vstate->dtvs_tlocals[id] = *v; 10665 continue; 10666 10667 case DIFV_SCOPE_LOCAL: 10668 np = &vstate->dtvs_nlocals; 10669 svarp = &vstate->dtvs_locals; 10670 10671 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10672 dsize = NCPU * (v->dtdv_type.dtdt_size + 10673 sizeof (uint64_t)); 10674 else 10675 dsize = NCPU * sizeof (uint64_t); 10676 10677 break; 10678 10679 case DIFV_SCOPE_GLOBAL: 10680 np = &vstate->dtvs_nglobals; 10681 svarp = &vstate->dtvs_globals; 10682 10683 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10684 dsize = v->dtdv_type.dtdt_size + 10685 sizeof (uint64_t); 10686 10687 break; 10688 10689 default: 10690 ASSERT(0); 10691 } 10692 10693 while (id >= (oldsvars = *np)) { 10694 dtrace_statvar_t **statics; 10695 int newsvars, oldsize, newsize; 10696 10697 if ((newsvars = (oldsvars << 1)) == 0) 10698 newsvars = 1; 10699 10700 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10701 newsize = newsvars * sizeof (dtrace_statvar_t *); 10702 10703 statics = kmem_zalloc(newsize, KM_SLEEP); 10704 10705 if (oldsize != 0) { 10706 bcopy(*svarp, statics, oldsize); 10707 kmem_free(*svarp, oldsize); 10708 } 10709 10710 *svarp = statics; 10711 *np = newsvars; 10712 } 10713 10714 if ((svar = (*svarp)[id]) == NULL) { 10715 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10716 svar->dtsv_var = *v; 10717 10718 if ((svar->dtsv_size = dsize) != 0) { 10719 svar->dtsv_data = (uint64_t)(uintptr_t) 10720 kmem_zalloc(dsize, KM_SLEEP); 10721 } 10722 10723 (*svarp)[id] = svar; 10724 } 10725 10726 svar->dtsv_refcnt++; 10727 } 10728 10729 dtrace_difo_chunksize(dp, vstate); 10730 dtrace_difo_hold(dp); 10731 } 10732 10733 static dtrace_difo_t * 10734 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10735 { 10736 dtrace_difo_t *new; 10737 size_t sz; 10738 10739 ASSERT(dp->dtdo_buf != NULL); 10740 ASSERT(dp->dtdo_refcnt != 0); 10741 10742 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10743 10744 ASSERT(dp->dtdo_buf != NULL); 10745 sz = dp->dtdo_len * sizeof (dif_instr_t); 10746 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10747 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10748 new->dtdo_len = dp->dtdo_len; 10749 10750 if (dp->dtdo_strtab != NULL) { 10751 ASSERT(dp->dtdo_strlen != 0); 10752 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10753 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10754 new->dtdo_strlen = dp->dtdo_strlen; 10755 } 10756 10757 if (dp->dtdo_inttab != NULL) { 10758 ASSERT(dp->dtdo_intlen != 0); 10759 sz = dp->dtdo_intlen * sizeof (uint64_t); 10760 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10761 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10762 new->dtdo_intlen = dp->dtdo_intlen; 10763 } 10764 10765 if (dp->dtdo_vartab != NULL) { 10766 ASSERT(dp->dtdo_varlen != 0); 10767 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10768 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10769 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10770 new->dtdo_varlen = dp->dtdo_varlen; 10771 } 10772 10773 dtrace_difo_init(new, vstate); 10774 return (new); 10775 } 10776 10777 static void 10778 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10779 { 10780 int i; 10781 10782 ASSERT(dp->dtdo_refcnt == 0); 10783 10784 for (i = 0; i < dp->dtdo_varlen; i++) { 10785 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10786 dtrace_statvar_t *svar, **svarp = NULL; 10787 uint_t id; 10788 uint8_t scope = v->dtdv_scope; 10789 int *np = NULL; 10790 10791 switch (scope) { 10792 case DIFV_SCOPE_THREAD: 10793 continue; 10794 10795 case DIFV_SCOPE_LOCAL: 10796 np = &vstate->dtvs_nlocals; 10797 svarp = vstate->dtvs_locals; 10798 break; 10799 10800 case DIFV_SCOPE_GLOBAL: 10801 np = &vstate->dtvs_nglobals; 10802 svarp = vstate->dtvs_globals; 10803 break; 10804 10805 default: 10806 ASSERT(0); 10807 } 10808 10809 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10810 continue; 10811 10812 id -= DIF_VAR_OTHER_UBASE; 10813 ASSERT(id < *np); 10814 10815 svar = svarp[id]; 10816 ASSERT(svar != NULL); 10817 ASSERT(svar->dtsv_refcnt > 0); 10818 10819 if (--svar->dtsv_refcnt > 0) 10820 continue; 10821 10822 if (svar->dtsv_size != 0) { 10823 ASSERT(svar->dtsv_data != 0); 10824 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10825 svar->dtsv_size); 10826 } 10827 10828 kmem_free(svar, sizeof (dtrace_statvar_t)); 10829 svarp[id] = NULL; 10830 } 10831 10832 if (dp->dtdo_buf != NULL) 10833 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10834 if (dp->dtdo_inttab != NULL) 10835 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10836 if (dp->dtdo_strtab != NULL) 10837 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10838 if (dp->dtdo_vartab != NULL) 10839 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10840 10841 kmem_free(dp, sizeof (dtrace_difo_t)); 10842 } 10843 10844 static void 10845 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10846 { 10847 int i; 10848 10849 ASSERT(MUTEX_HELD(&dtrace_lock)); 10850 ASSERT(dp->dtdo_refcnt != 0); 10851 10852 for (i = 0; i < dp->dtdo_varlen; i++) { 10853 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10854 10855 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10856 continue; 10857 10858 ASSERT(dtrace_vtime_references > 0); 10859 if (--dtrace_vtime_references == 0) 10860 dtrace_vtime_disable(); 10861 } 10862 10863 if (--dp->dtdo_refcnt == 0) 10864 dtrace_difo_destroy(dp, vstate); 10865 } 10866 10867 /* 10868 * DTrace Format Functions 10869 */ 10870 static uint16_t 10871 dtrace_format_add(dtrace_state_t *state, char *str) 10872 { 10873 char *fmt, **new; 10874 uint16_t ndx, len = strlen(str) + 1; 10875 10876 fmt = kmem_zalloc(len, KM_SLEEP); 10877 bcopy(str, fmt, len); 10878 10879 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10880 if (state->dts_formats[ndx] == NULL) { 10881 state->dts_formats[ndx] = fmt; 10882 return (ndx + 1); 10883 } 10884 } 10885 10886 if (state->dts_nformats == USHRT_MAX) { 10887 /* 10888 * This is only likely if a denial-of-service attack is being 10889 * attempted. As such, it's okay to fail silently here. 10890 */ 10891 kmem_free(fmt, len); 10892 return (0); 10893 } 10894 10895 /* 10896 * For simplicity, we always resize the formats array to be exactly the 10897 * number of formats. 10898 */ 10899 ndx = state->dts_nformats++; 10900 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10901 10902 if (state->dts_formats != NULL) { 10903 ASSERT(ndx != 0); 10904 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10905 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10906 } 10907 10908 state->dts_formats = new; 10909 state->dts_formats[ndx] = fmt; 10910 10911 return (ndx + 1); 10912 } 10913 10914 static void 10915 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10916 { 10917 char *fmt; 10918 10919 ASSERT(state->dts_formats != NULL); 10920 ASSERT(format <= state->dts_nformats); 10921 ASSERT(state->dts_formats[format - 1] != NULL); 10922 10923 fmt = state->dts_formats[format - 1]; 10924 kmem_free(fmt, strlen(fmt) + 1); 10925 state->dts_formats[format - 1] = NULL; 10926 } 10927 10928 static void 10929 dtrace_format_destroy(dtrace_state_t *state) 10930 { 10931 int i; 10932 10933 if (state->dts_nformats == 0) { 10934 ASSERT(state->dts_formats == NULL); 10935 return; 10936 } 10937 10938 ASSERT(state->dts_formats != NULL); 10939 10940 for (i = 0; i < state->dts_nformats; i++) { 10941 char *fmt = state->dts_formats[i]; 10942 10943 if (fmt == NULL) 10944 continue; 10945 10946 kmem_free(fmt, strlen(fmt) + 1); 10947 } 10948 10949 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10950 state->dts_nformats = 0; 10951 state->dts_formats = NULL; 10952 } 10953 10954 /* 10955 * DTrace Predicate Functions 10956 */ 10957 static dtrace_predicate_t * 10958 dtrace_predicate_create(dtrace_difo_t *dp) 10959 { 10960 dtrace_predicate_t *pred; 10961 10962 ASSERT(MUTEX_HELD(&dtrace_lock)); 10963 ASSERT(dp->dtdo_refcnt != 0); 10964 10965 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10966 pred->dtp_difo = dp; 10967 pred->dtp_refcnt = 1; 10968 10969 if (!dtrace_difo_cacheable(dp)) 10970 return (pred); 10971 10972 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10973 /* 10974 * This is only theoretically possible -- we have had 2^32 10975 * cacheable predicates on this machine. We cannot allow any 10976 * more predicates to become cacheable: as unlikely as it is, 10977 * there may be a thread caching a (now stale) predicate cache 10978 * ID. (N.B.: the temptation is being successfully resisted to 10979 * have this cmn_err() "Holy shit -- we executed this code!") 10980 */ 10981 return (pred); 10982 } 10983 10984 pred->dtp_cacheid = dtrace_predcache_id++; 10985 10986 return (pred); 10987 } 10988 10989 static void 10990 dtrace_predicate_hold(dtrace_predicate_t *pred) 10991 { 10992 ASSERT(MUTEX_HELD(&dtrace_lock)); 10993 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10994 ASSERT(pred->dtp_refcnt > 0); 10995 10996 pred->dtp_refcnt++; 10997 } 10998 10999 static void 11000 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 11001 { 11002 dtrace_difo_t *dp = pred->dtp_difo; 11003 11004 ASSERT(MUTEX_HELD(&dtrace_lock)); 11005 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 11006 ASSERT(pred->dtp_refcnt > 0); 11007 11008 if (--pred->dtp_refcnt == 0) { 11009 dtrace_difo_release(pred->dtp_difo, vstate); 11010 kmem_free(pred, sizeof (dtrace_predicate_t)); 11011 } 11012 } 11013 11014 /* 11015 * DTrace Action Description Functions 11016 */ 11017 static dtrace_actdesc_t * 11018 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 11019 uint64_t uarg, uint64_t arg) 11020 { 11021 dtrace_actdesc_t *act; 11022 11023 #ifdef illumos 11024 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 11025 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 11026 #endif 11027 11028 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 11029 act->dtad_kind = kind; 11030 act->dtad_ntuple = ntuple; 11031 act->dtad_uarg = uarg; 11032 act->dtad_arg = arg; 11033 act->dtad_refcnt = 1; 11034 11035 return (act); 11036 } 11037 11038 static void 11039 dtrace_actdesc_hold(dtrace_actdesc_t *act) 11040 { 11041 ASSERT(act->dtad_refcnt >= 1); 11042 act->dtad_refcnt++; 11043 } 11044 11045 static void 11046 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 11047 { 11048 dtrace_actkind_t kind = act->dtad_kind; 11049 dtrace_difo_t *dp; 11050 11051 ASSERT(act->dtad_refcnt >= 1); 11052 11053 if (--act->dtad_refcnt != 0) 11054 return; 11055 11056 if ((dp = act->dtad_difo) != NULL) 11057 dtrace_difo_release(dp, vstate); 11058 11059 if (DTRACEACT_ISPRINTFLIKE(kind)) { 11060 char *str = (char *)(uintptr_t)act->dtad_arg; 11061 11062 #ifdef illumos 11063 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 11064 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 11065 #endif 11066 11067 if (str != NULL) 11068 kmem_free(str, strlen(str) + 1); 11069 } 11070 11071 kmem_free(act, sizeof (dtrace_actdesc_t)); 11072 } 11073 11074 /* 11075 * DTrace ECB Functions 11076 */ 11077 static dtrace_ecb_t * 11078 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 11079 { 11080 dtrace_ecb_t *ecb; 11081 dtrace_epid_t epid; 11082 11083 ASSERT(MUTEX_HELD(&dtrace_lock)); 11084 11085 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 11086 ecb->dte_predicate = NULL; 11087 ecb->dte_probe = probe; 11088 11089 /* 11090 * The default size is the size of the default action: recording 11091 * the header. 11092 */ 11093 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 11094 ecb->dte_alignment = sizeof (dtrace_epid_t); 11095 11096 epid = state->dts_epid++; 11097 11098 if (epid - 1 >= state->dts_necbs) { 11099 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 11100 int necbs = state->dts_necbs << 1; 11101 11102 ASSERT(epid == state->dts_necbs + 1); 11103 11104 if (necbs == 0) { 11105 ASSERT(oecbs == NULL); 11106 necbs = 1; 11107 } 11108 11109 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 11110 11111 if (oecbs != NULL) 11112 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 11113 11114 dtrace_membar_producer(); 11115 state->dts_ecbs = ecbs; 11116 11117 if (oecbs != NULL) { 11118 /* 11119 * If this state is active, we must dtrace_sync() 11120 * before we can free the old dts_ecbs array: we're 11121 * coming in hot, and there may be active ring 11122 * buffer processing (which indexes into the dts_ecbs 11123 * array) on another CPU. 11124 */ 11125 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 11126 dtrace_sync(); 11127 11128 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 11129 } 11130 11131 dtrace_membar_producer(); 11132 state->dts_necbs = necbs; 11133 } 11134 11135 ecb->dte_state = state; 11136 11137 ASSERT(state->dts_ecbs[epid - 1] == NULL); 11138 dtrace_membar_producer(); 11139 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 11140 11141 return (ecb); 11142 } 11143 11144 static void 11145 dtrace_ecb_enable(dtrace_ecb_t *ecb) 11146 { 11147 dtrace_probe_t *probe = ecb->dte_probe; 11148 11149 ASSERT(MUTEX_HELD(&cpu_lock)); 11150 ASSERT(MUTEX_HELD(&dtrace_lock)); 11151 ASSERT(ecb->dte_next == NULL); 11152 11153 if (probe == NULL) { 11154 /* 11155 * This is the NULL probe -- there's nothing to do. 11156 */ 11157 return; 11158 } 11159 11160 if (probe->dtpr_ecb == NULL) { 11161 dtrace_provider_t *prov = probe->dtpr_provider; 11162 11163 /* 11164 * We're the first ECB on this probe. 11165 */ 11166 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 11167 11168 if (ecb->dte_predicate != NULL) 11169 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 11170 11171 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 11172 probe->dtpr_id, probe->dtpr_arg); 11173 } else { 11174 /* 11175 * This probe is already active. Swing the last pointer to 11176 * point to the new ECB, and issue a dtrace_sync() to assure 11177 * that all CPUs have seen the change. 11178 */ 11179 ASSERT(probe->dtpr_ecb_last != NULL); 11180 probe->dtpr_ecb_last->dte_next = ecb; 11181 probe->dtpr_ecb_last = ecb; 11182 probe->dtpr_predcache = 0; 11183 11184 dtrace_sync(); 11185 } 11186 } 11187 11188 static int 11189 dtrace_ecb_resize(dtrace_ecb_t *ecb) 11190 { 11191 dtrace_action_t *act; 11192 uint32_t curneeded = UINT32_MAX; 11193 uint32_t aggbase = UINT32_MAX; 11194 11195 /* 11196 * If we record anything, we always record the dtrace_rechdr_t. (And 11197 * we always record it first.) 11198 */ 11199 ecb->dte_size = sizeof (dtrace_rechdr_t); 11200 ecb->dte_alignment = sizeof (dtrace_epid_t); 11201 11202 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11203 dtrace_recdesc_t *rec = &act->dta_rec; 11204 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 11205 11206 ecb->dte_alignment = MAX(ecb->dte_alignment, 11207 rec->dtrd_alignment); 11208 11209 if (DTRACEACT_ISAGG(act->dta_kind)) { 11210 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11211 11212 ASSERT(rec->dtrd_size != 0); 11213 ASSERT(agg->dtag_first != NULL); 11214 ASSERT(act->dta_prev->dta_intuple); 11215 ASSERT(aggbase != UINT32_MAX); 11216 ASSERT(curneeded != UINT32_MAX); 11217 11218 agg->dtag_base = aggbase; 11219 11220 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11221 rec->dtrd_offset = curneeded; 11222 if (curneeded + rec->dtrd_size < curneeded) 11223 return (EINVAL); 11224 curneeded += rec->dtrd_size; 11225 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 11226 11227 aggbase = UINT32_MAX; 11228 curneeded = UINT32_MAX; 11229 } else if (act->dta_intuple) { 11230 if (curneeded == UINT32_MAX) { 11231 /* 11232 * This is the first record in a tuple. Align 11233 * curneeded to be at offset 4 in an 8-byte 11234 * aligned block. 11235 */ 11236 ASSERT(act->dta_prev == NULL || 11237 !act->dta_prev->dta_intuple); 11238 ASSERT3U(aggbase, ==, UINT32_MAX); 11239 curneeded = P2PHASEUP(ecb->dte_size, 11240 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 11241 11242 aggbase = curneeded - sizeof (dtrace_aggid_t); 11243 ASSERT(IS_P2ALIGNED(aggbase, 11244 sizeof (uint64_t))); 11245 } 11246 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11247 rec->dtrd_offset = curneeded; 11248 if (curneeded + rec->dtrd_size < curneeded) 11249 return (EINVAL); 11250 curneeded += rec->dtrd_size; 11251 } else { 11252 /* tuples must be followed by an aggregation */ 11253 ASSERT(act->dta_prev == NULL || 11254 !act->dta_prev->dta_intuple); 11255 11256 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 11257 rec->dtrd_alignment); 11258 rec->dtrd_offset = ecb->dte_size; 11259 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 11260 return (EINVAL); 11261 ecb->dte_size += rec->dtrd_size; 11262 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 11263 } 11264 } 11265 11266 if ((act = ecb->dte_action) != NULL && 11267 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 11268 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 11269 /* 11270 * If the size is still sizeof (dtrace_rechdr_t), then all 11271 * actions store no data; set the size to 0. 11272 */ 11273 ecb->dte_size = 0; 11274 } 11275 11276 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 11277 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 11278 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 11279 ecb->dte_needed); 11280 return (0); 11281 } 11282 11283 static dtrace_action_t * 11284 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11285 { 11286 dtrace_aggregation_t *agg; 11287 size_t size = sizeof (uint64_t); 11288 int ntuple = desc->dtad_ntuple; 11289 dtrace_action_t *act; 11290 dtrace_recdesc_t *frec; 11291 dtrace_aggid_t aggid; 11292 dtrace_state_t *state = ecb->dte_state; 11293 11294 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 11295 agg->dtag_ecb = ecb; 11296 11297 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 11298 11299 switch (desc->dtad_kind) { 11300 case DTRACEAGG_MIN: 11301 agg->dtag_initial = INT64_MAX; 11302 agg->dtag_aggregate = dtrace_aggregate_min; 11303 break; 11304 11305 case DTRACEAGG_MAX: 11306 agg->dtag_initial = INT64_MIN; 11307 agg->dtag_aggregate = dtrace_aggregate_max; 11308 break; 11309 11310 case DTRACEAGG_COUNT: 11311 agg->dtag_aggregate = dtrace_aggregate_count; 11312 break; 11313 11314 case DTRACEAGG_QUANTIZE: 11315 agg->dtag_aggregate = dtrace_aggregate_quantize; 11316 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 11317 sizeof (uint64_t); 11318 break; 11319 11320 case DTRACEAGG_LQUANTIZE: { 11321 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 11322 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 11323 11324 agg->dtag_initial = desc->dtad_arg; 11325 agg->dtag_aggregate = dtrace_aggregate_lquantize; 11326 11327 if (step == 0 || levels == 0) 11328 goto err; 11329 11330 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 11331 break; 11332 } 11333 11334 case DTRACEAGG_LLQUANTIZE: { 11335 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 11336 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 11337 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 11338 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 11339 int64_t v; 11340 11341 agg->dtag_initial = desc->dtad_arg; 11342 agg->dtag_aggregate = dtrace_aggregate_llquantize; 11343 11344 if (factor < 2 || low >= high || nsteps < factor) 11345 goto err; 11346 11347 /* 11348 * Now check that the number of steps evenly divides a power 11349 * of the factor. (This assures both integer bucket size and 11350 * linearity within each magnitude.) 11351 */ 11352 for (v = factor; v < nsteps; v *= factor) 11353 continue; 11354 11355 if ((v % nsteps) || (nsteps % factor)) 11356 goto err; 11357 11358 size = (dtrace_aggregate_llquantize_bucket(factor, 11359 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 11360 break; 11361 } 11362 11363 case DTRACEAGG_AVG: 11364 agg->dtag_aggregate = dtrace_aggregate_avg; 11365 size = sizeof (uint64_t) * 2; 11366 break; 11367 11368 case DTRACEAGG_STDDEV: 11369 agg->dtag_aggregate = dtrace_aggregate_stddev; 11370 size = sizeof (uint64_t) * 4; 11371 break; 11372 11373 case DTRACEAGG_SUM: 11374 agg->dtag_aggregate = dtrace_aggregate_sum; 11375 break; 11376 11377 default: 11378 goto err; 11379 } 11380 11381 agg->dtag_action.dta_rec.dtrd_size = size; 11382 11383 if (ntuple == 0) 11384 goto err; 11385 11386 /* 11387 * We must make sure that we have enough actions for the n-tuple. 11388 */ 11389 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 11390 if (DTRACEACT_ISAGG(act->dta_kind)) 11391 break; 11392 11393 if (--ntuple == 0) { 11394 /* 11395 * This is the action with which our n-tuple begins. 11396 */ 11397 agg->dtag_first = act; 11398 goto success; 11399 } 11400 } 11401 11402 /* 11403 * This n-tuple is short by ntuple elements. Return failure. 11404 */ 11405 ASSERT(ntuple != 0); 11406 err: 11407 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11408 return (NULL); 11409 11410 success: 11411 /* 11412 * If the last action in the tuple has a size of zero, it's actually 11413 * an expression argument for the aggregating action. 11414 */ 11415 ASSERT(ecb->dte_action_last != NULL); 11416 act = ecb->dte_action_last; 11417 11418 if (act->dta_kind == DTRACEACT_DIFEXPR) { 11419 ASSERT(act->dta_difo != NULL); 11420 11421 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 11422 agg->dtag_hasarg = 1; 11423 } 11424 11425 /* 11426 * We need to allocate an id for this aggregation. 11427 */ 11428 #ifdef illumos 11429 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 11430 VM_BESTFIT | VM_SLEEP); 11431 #else 11432 aggid = alloc_unr(state->dts_aggid_arena); 11433 #endif 11434 11435 if (aggid - 1 >= state->dts_naggregations) { 11436 dtrace_aggregation_t **oaggs = state->dts_aggregations; 11437 dtrace_aggregation_t **aggs; 11438 int naggs = state->dts_naggregations << 1; 11439 int onaggs = state->dts_naggregations; 11440 11441 ASSERT(aggid == state->dts_naggregations + 1); 11442 11443 if (naggs == 0) { 11444 ASSERT(oaggs == NULL); 11445 naggs = 1; 11446 } 11447 11448 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 11449 11450 if (oaggs != NULL) { 11451 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 11452 kmem_free(oaggs, onaggs * sizeof (*aggs)); 11453 } 11454 11455 state->dts_aggregations = aggs; 11456 state->dts_naggregations = naggs; 11457 } 11458 11459 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 11460 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 11461 11462 frec = &agg->dtag_first->dta_rec; 11463 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 11464 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 11465 11466 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 11467 ASSERT(!act->dta_intuple); 11468 act->dta_intuple = 1; 11469 } 11470 11471 return (&agg->dtag_action); 11472 } 11473 11474 static void 11475 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 11476 { 11477 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11478 dtrace_state_t *state = ecb->dte_state; 11479 dtrace_aggid_t aggid = agg->dtag_id; 11480 11481 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 11482 #ifdef illumos 11483 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 11484 #else 11485 free_unr(state->dts_aggid_arena, aggid); 11486 #endif 11487 11488 ASSERT(state->dts_aggregations[aggid - 1] == agg); 11489 state->dts_aggregations[aggid - 1] = NULL; 11490 11491 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11492 } 11493 11494 static int 11495 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11496 { 11497 dtrace_action_t *action, *last; 11498 dtrace_difo_t *dp = desc->dtad_difo; 11499 uint32_t size = 0, align = sizeof (uint8_t), mask; 11500 uint16_t format = 0; 11501 dtrace_recdesc_t *rec; 11502 dtrace_state_t *state = ecb->dte_state; 11503 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize; 11504 uint64_t arg = desc->dtad_arg; 11505 11506 ASSERT(MUTEX_HELD(&dtrace_lock)); 11507 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 11508 11509 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 11510 /* 11511 * If this is an aggregating action, there must be neither 11512 * a speculate nor a commit on the action chain. 11513 */ 11514 dtrace_action_t *act; 11515 11516 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11517 if (act->dta_kind == DTRACEACT_COMMIT) 11518 return (EINVAL); 11519 11520 if (act->dta_kind == DTRACEACT_SPECULATE) 11521 return (EINVAL); 11522 } 11523 11524 action = dtrace_ecb_aggregation_create(ecb, desc); 11525 11526 if (action == NULL) 11527 return (EINVAL); 11528 } else { 11529 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 11530 (desc->dtad_kind == DTRACEACT_DIFEXPR && 11531 dp != NULL && dp->dtdo_destructive)) { 11532 state->dts_destructive = 1; 11533 } 11534 11535 switch (desc->dtad_kind) { 11536 case DTRACEACT_PRINTF: 11537 case DTRACEACT_PRINTA: 11538 case DTRACEACT_SYSTEM: 11539 case DTRACEACT_FREOPEN: 11540 case DTRACEACT_DIFEXPR: 11541 /* 11542 * We know that our arg is a string -- turn it into a 11543 * format. 11544 */ 11545 if (arg == 0) { 11546 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11547 desc->dtad_kind == DTRACEACT_DIFEXPR); 11548 format = 0; 11549 } else { 11550 ASSERT(arg != 0); 11551 #ifdef illumos 11552 ASSERT(arg > KERNELBASE); 11553 #endif 11554 format = dtrace_format_add(state, 11555 (char *)(uintptr_t)arg); 11556 } 11557 11558 /*FALLTHROUGH*/ 11559 case DTRACEACT_LIBACT: 11560 case DTRACEACT_TRACEMEM: 11561 case DTRACEACT_TRACEMEM_DYNSIZE: 11562 if (dp == NULL) 11563 return (EINVAL); 11564 11565 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11566 break; 11567 11568 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11569 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11570 return (EINVAL); 11571 11572 size = opt[DTRACEOPT_STRSIZE]; 11573 } 11574 11575 break; 11576 11577 case DTRACEACT_STACK: 11578 if ((nframes = arg) == 0) { 11579 nframes = opt[DTRACEOPT_STACKFRAMES]; 11580 ASSERT(nframes > 0); 11581 arg = nframes; 11582 } 11583 11584 size = nframes * sizeof (pc_t); 11585 break; 11586 11587 case DTRACEACT_JSTACK: 11588 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11589 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11590 11591 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11592 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11593 11594 arg = DTRACE_USTACK_ARG(nframes, strsize); 11595 11596 /*FALLTHROUGH*/ 11597 case DTRACEACT_USTACK: 11598 if (desc->dtad_kind != DTRACEACT_JSTACK && 11599 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11600 strsize = DTRACE_USTACK_STRSIZE(arg); 11601 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11602 ASSERT(nframes > 0); 11603 arg = DTRACE_USTACK_ARG(nframes, strsize); 11604 } 11605 11606 /* 11607 * Save a slot for the pid. 11608 */ 11609 size = (nframes + 1) * sizeof (uint64_t); 11610 size += DTRACE_USTACK_STRSIZE(arg); 11611 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11612 11613 break; 11614 11615 case DTRACEACT_SYM: 11616 case DTRACEACT_MOD: 11617 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11618 sizeof (uint64_t)) || 11619 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11620 return (EINVAL); 11621 break; 11622 11623 case DTRACEACT_USYM: 11624 case DTRACEACT_UMOD: 11625 case DTRACEACT_UADDR: 11626 if (dp == NULL || 11627 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11628 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11629 return (EINVAL); 11630 11631 /* 11632 * We have a slot for the pid, plus a slot for the 11633 * argument. To keep things simple (aligned with 11634 * bitness-neutral sizing), we store each as a 64-bit 11635 * quantity. 11636 */ 11637 size = 2 * sizeof (uint64_t); 11638 break; 11639 11640 case DTRACEACT_STOP: 11641 case DTRACEACT_BREAKPOINT: 11642 case DTRACEACT_PANIC: 11643 break; 11644 11645 case DTRACEACT_CHILL: 11646 case DTRACEACT_DISCARD: 11647 case DTRACEACT_RAISE: 11648 if (dp == NULL) 11649 return (EINVAL); 11650 break; 11651 11652 case DTRACEACT_EXIT: 11653 if (dp == NULL || 11654 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11655 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11656 return (EINVAL); 11657 break; 11658 11659 case DTRACEACT_SPECULATE: 11660 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11661 return (EINVAL); 11662 11663 if (dp == NULL) 11664 return (EINVAL); 11665 11666 state->dts_speculates = 1; 11667 break; 11668 11669 case DTRACEACT_PRINTM: 11670 size = dp->dtdo_rtype.dtdt_size; 11671 break; 11672 11673 case DTRACEACT_COMMIT: { 11674 dtrace_action_t *act = ecb->dte_action; 11675 11676 for (; act != NULL; act = act->dta_next) { 11677 if (act->dta_kind == DTRACEACT_COMMIT) 11678 return (EINVAL); 11679 } 11680 11681 if (dp == NULL) 11682 return (EINVAL); 11683 break; 11684 } 11685 11686 default: 11687 return (EINVAL); 11688 } 11689 11690 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11691 /* 11692 * If this is a data-storing action or a speculate, 11693 * we must be sure that there isn't a commit on the 11694 * action chain. 11695 */ 11696 dtrace_action_t *act = ecb->dte_action; 11697 11698 for (; act != NULL; act = act->dta_next) { 11699 if (act->dta_kind == DTRACEACT_COMMIT) 11700 return (EINVAL); 11701 } 11702 } 11703 11704 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11705 action->dta_rec.dtrd_size = size; 11706 } 11707 11708 action->dta_refcnt = 1; 11709 rec = &action->dta_rec; 11710 size = rec->dtrd_size; 11711 11712 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11713 if (!(size & mask)) { 11714 align = mask + 1; 11715 break; 11716 } 11717 } 11718 11719 action->dta_kind = desc->dtad_kind; 11720 11721 if ((action->dta_difo = dp) != NULL) 11722 dtrace_difo_hold(dp); 11723 11724 rec->dtrd_action = action->dta_kind; 11725 rec->dtrd_arg = arg; 11726 rec->dtrd_uarg = desc->dtad_uarg; 11727 rec->dtrd_alignment = (uint16_t)align; 11728 rec->dtrd_format = format; 11729 11730 if ((last = ecb->dte_action_last) != NULL) { 11731 ASSERT(ecb->dte_action != NULL); 11732 action->dta_prev = last; 11733 last->dta_next = action; 11734 } else { 11735 ASSERT(ecb->dte_action == NULL); 11736 ecb->dte_action = action; 11737 } 11738 11739 ecb->dte_action_last = action; 11740 11741 return (0); 11742 } 11743 11744 static void 11745 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11746 { 11747 dtrace_action_t *act = ecb->dte_action, *next; 11748 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11749 dtrace_difo_t *dp; 11750 uint16_t format; 11751 11752 if (act != NULL && act->dta_refcnt > 1) { 11753 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11754 act->dta_refcnt--; 11755 } else { 11756 for (; act != NULL; act = next) { 11757 next = act->dta_next; 11758 ASSERT(next != NULL || act == ecb->dte_action_last); 11759 ASSERT(act->dta_refcnt == 1); 11760 11761 if ((format = act->dta_rec.dtrd_format) != 0) 11762 dtrace_format_remove(ecb->dte_state, format); 11763 11764 if ((dp = act->dta_difo) != NULL) 11765 dtrace_difo_release(dp, vstate); 11766 11767 if (DTRACEACT_ISAGG(act->dta_kind)) { 11768 dtrace_ecb_aggregation_destroy(ecb, act); 11769 } else { 11770 kmem_free(act, sizeof (dtrace_action_t)); 11771 } 11772 } 11773 } 11774 11775 ecb->dte_action = NULL; 11776 ecb->dte_action_last = NULL; 11777 ecb->dte_size = 0; 11778 } 11779 11780 static void 11781 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11782 { 11783 /* 11784 * We disable the ECB by removing it from its probe. 11785 */ 11786 dtrace_ecb_t *pecb, *prev = NULL; 11787 dtrace_probe_t *probe = ecb->dte_probe; 11788 11789 ASSERT(MUTEX_HELD(&dtrace_lock)); 11790 11791 if (probe == NULL) { 11792 /* 11793 * This is the NULL probe; there is nothing to disable. 11794 */ 11795 return; 11796 } 11797 11798 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11799 if (pecb == ecb) 11800 break; 11801 prev = pecb; 11802 } 11803 11804 ASSERT(pecb != NULL); 11805 11806 if (prev == NULL) { 11807 probe->dtpr_ecb = ecb->dte_next; 11808 } else { 11809 prev->dte_next = ecb->dte_next; 11810 } 11811 11812 if (ecb == probe->dtpr_ecb_last) { 11813 ASSERT(ecb->dte_next == NULL); 11814 probe->dtpr_ecb_last = prev; 11815 } 11816 11817 /* 11818 * The ECB has been disconnected from the probe; now sync to assure 11819 * that all CPUs have seen the change before returning. 11820 */ 11821 dtrace_sync(); 11822 11823 if (probe->dtpr_ecb == NULL) { 11824 /* 11825 * That was the last ECB on the probe; clear the predicate 11826 * cache ID for the probe, disable it and sync one more time 11827 * to assure that we'll never hit it again. 11828 */ 11829 dtrace_provider_t *prov = probe->dtpr_provider; 11830 11831 ASSERT(ecb->dte_next == NULL); 11832 ASSERT(probe->dtpr_ecb_last == NULL); 11833 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11834 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11835 probe->dtpr_id, probe->dtpr_arg); 11836 dtrace_sync(); 11837 } else { 11838 /* 11839 * There is at least one ECB remaining on the probe. If there 11840 * is _exactly_ one, set the probe's predicate cache ID to be 11841 * the predicate cache ID of the remaining ECB. 11842 */ 11843 ASSERT(probe->dtpr_ecb_last != NULL); 11844 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11845 11846 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11847 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11848 11849 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11850 11851 if (p != NULL) 11852 probe->dtpr_predcache = p->dtp_cacheid; 11853 } 11854 11855 ecb->dte_next = NULL; 11856 } 11857 } 11858 11859 static void 11860 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11861 { 11862 dtrace_state_t *state = ecb->dte_state; 11863 dtrace_vstate_t *vstate = &state->dts_vstate; 11864 dtrace_predicate_t *pred; 11865 dtrace_epid_t epid = ecb->dte_epid; 11866 11867 ASSERT(MUTEX_HELD(&dtrace_lock)); 11868 ASSERT(ecb->dte_next == NULL); 11869 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11870 11871 if ((pred = ecb->dte_predicate) != NULL) 11872 dtrace_predicate_release(pred, vstate); 11873 11874 dtrace_ecb_action_remove(ecb); 11875 11876 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11877 state->dts_ecbs[epid - 1] = NULL; 11878 11879 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11880 } 11881 11882 static dtrace_ecb_t * 11883 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11884 dtrace_enabling_t *enab) 11885 { 11886 dtrace_ecb_t *ecb; 11887 dtrace_predicate_t *pred; 11888 dtrace_actdesc_t *act; 11889 dtrace_provider_t *prov; 11890 dtrace_ecbdesc_t *desc = enab->dten_current; 11891 11892 ASSERT(MUTEX_HELD(&dtrace_lock)); 11893 ASSERT(state != NULL); 11894 11895 ecb = dtrace_ecb_add(state, probe); 11896 ecb->dte_uarg = desc->dted_uarg; 11897 11898 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11899 dtrace_predicate_hold(pred); 11900 ecb->dte_predicate = pred; 11901 } 11902 11903 if (probe != NULL) { 11904 /* 11905 * If the provider shows more leg than the consumer is old 11906 * enough to see, we need to enable the appropriate implicit 11907 * predicate bits to prevent the ecb from activating at 11908 * revealing times. 11909 * 11910 * Providers specifying DTRACE_PRIV_USER at register time 11911 * are stating that they need the /proc-style privilege 11912 * model to be enforced, and this is what DTRACE_COND_OWNER 11913 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11914 */ 11915 prov = probe->dtpr_provider; 11916 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11917 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11918 ecb->dte_cond |= DTRACE_COND_OWNER; 11919 11920 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11921 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11922 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11923 11924 /* 11925 * If the provider shows us kernel innards and the user 11926 * is lacking sufficient privilege, enable the 11927 * DTRACE_COND_USERMODE implicit predicate. 11928 */ 11929 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11930 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11931 ecb->dte_cond |= DTRACE_COND_USERMODE; 11932 } 11933 11934 if (dtrace_ecb_create_cache != NULL) { 11935 /* 11936 * If we have a cached ecb, we'll use its action list instead 11937 * of creating our own (saving both time and space). 11938 */ 11939 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11940 dtrace_action_t *act = cached->dte_action; 11941 11942 if (act != NULL) { 11943 ASSERT(act->dta_refcnt > 0); 11944 act->dta_refcnt++; 11945 ecb->dte_action = act; 11946 ecb->dte_action_last = cached->dte_action_last; 11947 ecb->dte_needed = cached->dte_needed; 11948 ecb->dte_size = cached->dte_size; 11949 ecb->dte_alignment = cached->dte_alignment; 11950 } 11951 11952 return (ecb); 11953 } 11954 11955 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11956 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11957 dtrace_ecb_destroy(ecb); 11958 return (NULL); 11959 } 11960 } 11961 11962 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 11963 dtrace_ecb_destroy(ecb); 11964 return (NULL); 11965 } 11966 11967 return (dtrace_ecb_create_cache = ecb); 11968 } 11969 11970 static int 11971 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11972 { 11973 dtrace_ecb_t *ecb; 11974 dtrace_enabling_t *enab = arg; 11975 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11976 11977 ASSERT(state != NULL); 11978 11979 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11980 /* 11981 * This probe was created in a generation for which this 11982 * enabling has previously created ECBs; we don't want to 11983 * enable it again, so just kick out. 11984 */ 11985 return (DTRACE_MATCH_NEXT); 11986 } 11987 11988 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11989 return (DTRACE_MATCH_DONE); 11990 11991 dtrace_ecb_enable(ecb); 11992 return (DTRACE_MATCH_NEXT); 11993 } 11994 11995 static dtrace_ecb_t * 11996 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11997 { 11998 dtrace_ecb_t *ecb; 11999 12000 ASSERT(MUTEX_HELD(&dtrace_lock)); 12001 12002 if (id == 0 || id > state->dts_necbs) 12003 return (NULL); 12004 12005 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 12006 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 12007 12008 return (state->dts_ecbs[id - 1]); 12009 } 12010 12011 static dtrace_aggregation_t * 12012 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 12013 { 12014 dtrace_aggregation_t *agg; 12015 12016 ASSERT(MUTEX_HELD(&dtrace_lock)); 12017 12018 if (id == 0 || id > state->dts_naggregations) 12019 return (NULL); 12020 12021 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 12022 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 12023 agg->dtag_id == id); 12024 12025 return (state->dts_aggregations[id - 1]); 12026 } 12027 12028 /* 12029 * DTrace Buffer Functions 12030 * 12031 * The following functions manipulate DTrace buffers. Most of these functions 12032 * are called in the context of establishing or processing consumer state; 12033 * exceptions are explicitly noted. 12034 */ 12035 12036 /* 12037 * Note: called from cross call context. This function switches the two 12038 * buffers on a given CPU. The atomicity of this operation is assured by 12039 * disabling interrupts while the actual switch takes place; the disabling of 12040 * interrupts serializes the execution with any execution of dtrace_probe() on 12041 * the same CPU. 12042 */ 12043 static void 12044 dtrace_buffer_switch(dtrace_buffer_t *buf) 12045 { 12046 caddr_t tomax = buf->dtb_tomax; 12047 caddr_t xamot = buf->dtb_xamot; 12048 dtrace_icookie_t cookie; 12049 hrtime_t now; 12050 12051 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12052 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 12053 12054 cookie = dtrace_interrupt_disable(); 12055 now = dtrace_gethrtime(); 12056 buf->dtb_tomax = xamot; 12057 buf->dtb_xamot = tomax; 12058 buf->dtb_xamot_drops = buf->dtb_drops; 12059 buf->dtb_xamot_offset = buf->dtb_offset; 12060 buf->dtb_xamot_errors = buf->dtb_errors; 12061 buf->dtb_xamot_flags = buf->dtb_flags; 12062 buf->dtb_offset = 0; 12063 buf->dtb_drops = 0; 12064 buf->dtb_errors = 0; 12065 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 12066 buf->dtb_interval = now - buf->dtb_switched; 12067 buf->dtb_switched = now; 12068 dtrace_interrupt_enable(cookie); 12069 } 12070 12071 /* 12072 * Note: called from cross call context. This function activates a buffer 12073 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 12074 * is guaranteed by the disabling of interrupts. 12075 */ 12076 static void 12077 dtrace_buffer_activate(dtrace_state_t *state) 12078 { 12079 dtrace_buffer_t *buf; 12080 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 12081 12082 buf = &state->dts_buffer[curcpu]; 12083 12084 if (buf->dtb_tomax != NULL) { 12085 /* 12086 * We might like to assert that the buffer is marked inactive, 12087 * but this isn't necessarily true: the buffer for the CPU 12088 * that processes the BEGIN probe has its buffer activated 12089 * manually. In this case, we take the (harmless) action 12090 * re-clearing the bit INACTIVE bit. 12091 */ 12092 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 12093 } 12094 12095 dtrace_interrupt_enable(cookie); 12096 } 12097 12098 #ifdef __FreeBSD__ 12099 /* 12100 * Activate the specified per-CPU buffer. This is used instead of 12101 * dtrace_buffer_activate() when APs have not yet started, i.e. when 12102 * activating anonymous state. 12103 */ 12104 static void 12105 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu) 12106 { 12107 12108 if (state->dts_buffer[cpu].dtb_tomax != NULL) 12109 state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12110 } 12111 #endif 12112 12113 static int 12114 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 12115 processorid_t cpu, int *factor) 12116 { 12117 #ifdef illumos 12118 cpu_t *cp; 12119 #endif 12120 dtrace_buffer_t *buf; 12121 int allocated = 0, desired = 0; 12122 12123 #ifdef illumos 12124 ASSERT(MUTEX_HELD(&cpu_lock)); 12125 ASSERT(MUTEX_HELD(&dtrace_lock)); 12126 12127 *factor = 1; 12128 12129 if (size > dtrace_nonroot_maxsize && 12130 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 12131 return (EFBIG); 12132 12133 cp = cpu_list; 12134 12135 do { 12136 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12137 continue; 12138 12139 buf = &bufs[cp->cpu_id]; 12140 12141 /* 12142 * If there is already a buffer allocated for this CPU, it 12143 * is only possible that this is a DR event. In this case, 12144 */ 12145 if (buf->dtb_tomax != NULL) { 12146 ASSERT(buf->dtb_size == size); 12147 continue; 12148 } 12149 12150 ASSERT(buf->dtb_xamot == NULL); 12151 12152 if ((buf->dtb_tomax = kmem_zalloc(size, 12153 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12154 goto err; 12155 12156 buf->dtb_size = size; 12157 buf->dtb_flags = flags; 12158 buf->dtb_offset = 0; 12159 buf->dtb_drops = 0; 12160 12161 if (flags & DTRACEBUF_NOSWITCH) 12162 continue; 12163 12164 if ((buf->dtb_xamot = kmem_zalloc(size, 12165 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12166 goto err; 12167 } while ((cp = cp->cpu_next) != cpu_list); 12168 12169 return (0); 12170 12171 err: 12172 cp = cpu_list; 12173 12174 do { 12175 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12176 continue; 12177 12178 buf = &bufs[cp->cpu_id]; 12179 desired += 2; 12180 12181 if (buf->dtb_xamot != NULL) { 12182 ASSERT(buf->dtb_tomax != NULL); 12183 ASSERT(buf->dtb_size == size); 12184 kmem_free(buf->dtb_xamot, size); 12185 allocated++; 12186 } 12187 12188 if (buf->dtb_tomax != NULL) { 12189 ASSERT(buf->dtb_size == size); 12190 kmem_free(buf->dtb_tomax, size); 12191 allocated++; 12192 } 12193 12194 buf->dtb_tomax = NULL; 12195 buf->dtb_xamot = NULL; 12196 buf->dtb_size = 0; 12197 } while ((cp = cp->cpu_next) != cpu_list); 12198 #else 12199 int i; 12200 12201 *factor = 1; 12202 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 12203 defined(__mips__) || defined(__powerpc__) || defined(__riscv) 12204 /* 12205 * FreeBSD isn't good at limiting the amount of memory we 12206 * ask to malloc, so let's place a limit here before trying 12207 * to do something that might well end in tears at bedtime. 12208 */ 12209 int bufsize_percpu_frac = dtrace_bufsize_max_frac * mp_ncpus; 12210 if (size > physmem * PAGE_SIZE / bufsize_percpu_frac) 12211 return (ENOMEM); 12212 #endif 12213 12214 ASSERT(MUTEX_HELD(&dtrace_lock)); 12215 CPU_FOREACH(i) { 12216 if (cpu != DTRACE_CPUALL && cpu != i) 12217 continue; 12218 12219 buf = &bufs[i]; 12220 12221 /* 12222 * If there is already a buffer allocated for this CPU, it 12223 * is only possible that this is a DR event. In this case, 12224 * the buffer size must match our specified size. 12225 */ 12226 if (buf->dtb_tomax != NULL) { 12227 ASSERT(buf->dtb_size == size); 12228 continue; 12229 } 12230 12231 ASSERT(buf->dtb_xamot == NULL); 12232 12233 if ((buf->dtb_tomax = kmem_zalloc(size, 12234 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12235 goto err; 12236 12237 buf->dtb_size = size; 12238 buf->dtb_flags = flags; 12239 buf->dtb_offset = 0; 12240 buf->dtb_drops = 0; 12241 12242 if (flags & DTRACEBUF_NOSWITCH) 12243 continue; 12244 12245 if ((buf->dtb_xamot = kmem_zalloc(size, 12246 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12247 goto err; 12248 } 12249 12250 return (0); 12251 12252 err: 12253 /* 12254 * Error allocating memory, so free the buffers that were 12255 * allocated before the failed allocation. 12256 */ 12257 CPU_FOREACH(i) { 12258 if (cpu != DTRACE_CPUALL && cpu != i) 12259 continue; 12260 12261 buf = &bufs[i]; 12262 desired += 2; 12263 12264 if (buf->dtb_xamot != NULL) { 12265 ASSERT(buf->dtb_tomax != NULL); 12266 ASSERT(buf->dtb_size == size); 12267 kmem_free(buf->dtb_xamot, size); 12268 allocated++; 12269 } 12270 12271 if (buf->dtb_tomax != NULL) { 12272 ASSERT(buf->dtb_size == size); 12273 kmem_free(buf->dtb_tomax, size); 12274 allocated++; 12275 } 12276 12277 buf->dtb_tomax = NULL; 12278 buf->dtb_xamot = NULL; 12279 buf->dtb_size = 0; 12280 12281 } 12282 #endif 12283 *factor = desired / (allocated > 0 ? allocated : 1); 12284 12285 return (ENOMEM); 12286 } 12287 12288 /* 12289 * Note: called from probe context. This function just increments the drop 12290 * count on a buffer. It has been made a function to allow for the 12291 * possibility of understanding the source of mysterious drop counts. (A 12292 * problem for which one may be particularly disappointed that DTrace cannot 12293 * be used to understand DTrace.) 12294 */ 12295 static void 12296 dtrace_buffer_drop(dtrace_buffer_t *buf) 12297 { 12298 buf->dtb_drops++; 12299 } 12300 12301 /* 12302 * Note: called from probe context. This function is called to reserve space 12303 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 12304 * mstate. Returns the new offset in the buffer, or a negative value if an 12305 * error has occurred. 12306 */ 12307 static intptr_t 12308 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 12309 dtrace_state_t *state, dtrace_mstate_t *mstate) 12310 { 12311 intptr_t offs = buf->dtb_offset, soffs; 12312 intptr_t woffs; 12313 caddr_t tomax; 12314 size_t total; 12315 12316 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 12317 return (-1); 12318 12319 if ((tomax = buf->dtb_tomax) == NULL) { 12320 dtrace_buffer_drop(buf); 12321 return (-1); 12322 } 12323 12324 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 12325 while (offs & (align - 1)) { 12326 /* 12327 * Assert that our alignment is off by a number which 12328 * is itself sizeof (uint32_t) aligned. 12329 */ 12330 ASSERT(!((align - (offs & (align - 1))) & 12331 (sizeof (uint32_t) - 1))); 12332 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12333 offs += sizeof (uint32_t); 12334 } 12335 12336 if ((soffs = offs + needed) > buf->dtb_size) { 12337 dtrace_buffer_drop(buf); 12338 return (-1); 12339 } 12340 12341 if (mstate == NULL) 12342 return (offs); 12343 12344 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 12345 mstate->dtms_scratch_size = buf->dtb_size - soffs; 12346 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12347 12348 return (offs); 12349 } 12350 12351 if (buf->dtb_flags & DTRACEBUF_FILL) { 12352 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 12353 (buf->dtb_flags & DTRACEBUF_FULL)) 12354 return (-1); 12355 goto out; 12356 } 12357 12358 total = needed + (offs & (align - 1)); 12359 12360 /* 12361 * For a ring buffer, life is quite a bit more complicated. Before 12362 * we can store any padding, we need to adjust our wrapping offset. 12363 * (If we've never before wrapped or we're not about to, no adjustment 12364 * is required.) 12365 */ 12366 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 12367 offs + total > buf->dtb_size) { 12368 woffs = buf->dtb_xamot_offset; 12369 12370 if (offs + total > buf->dtb_size) { 12371 /* 12372 * We can't fit in the end of the buffer. First, a 12373 * sanity check that we can fit in the buffer at all. 12374 */ 12375 if (total > buf->dtb_size) { 12376 dtrace_buffer_drop(buf); 12377 return (-1); 12378 } 12379 12380 /* 12381 * We're going to be storing at the top of the buffer, 12382 * so now we need to deal with the wrapped offset. We 12383 * only reset our wrapped offset to 0 if it is 12384 * currently greater than the current offset. If it 12385 * is less than the current offset, it is because a 12386 * previous allocation induced a wrap -- but the 12387 * allocation didn't subsequently take the space due 12388 * to an error or false predicate evaluation. In this 12389 * case, we'll just leave the wrapped offset alone: if 12390 * the wrapped offset hasn't been advanced far enough 12391 * for this allocation, it will be adjusted in the 12392 * lower loop. 12393 */ 12394 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 12395 if (woffs >= offs) 12396 woffs = 0; 12397 } else { 12398 woffs = 0; 12399 } 12400 12401 /* 12402 * Now we know that we're going to be storing to the 12403 * top of the buffer and that there is room for us 12404 * there. We need to clear the buffer from the current 12405 * offset to the end (there may be old gunk there). 12406 */ 12407 while (offs < buf->dtb_size) 12408 tomax[offs++] = 0; 12409 12410 /* 12411 * We need to set our offset to zero. And because we 12412 * are wrapping, we need to set the bit indicating as 12413 * much. We can also adjust our needed space back 12414 * down to the space required by the ECB -- we know 12415 * that the top of the buffer is aligned. 12416 */ 12417 offs = 0; 12418 total = needed; 12419 buf->dtb_flags |= DTRACEBUF_WRAPPED; 12420 } else { 12421 /* 12422 * There is room for us in the buffer, so we simply 12423 * need to check the wrapped offset. 12424 */ 12425 if (woffs < offs) { 12426 /* 12427 * The wrapped offset is less than the offset. 12428 * This can happen if we allocated buffer space 12429 * that induced a wrap, but then we didn't 12430 * subsequently take the space due to an error 12431 * or false predicate evaluation. This is 12432 * okay; we know that _this_ allocation isn't 12433 * going to induce a wrap. We still can't 12434 * reset the wrapped offset to be zero, 12435 * however: the space may have been trashed in 12436 * the previous failed probe attempt. But at 12437 * least the wrapped offset doesn't need to 12438 * be adjusted at all... 12439 */ 12440 goto out; 12441 } 12442 } 12443 12444 while (offs + total > woffs) { 12445 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 12446 size_t size; 12447 12448 if (epid == DTRACE_EPIDNONE) { 12449 size = sizeof (uint32_t); 12450 } else { 12451 ASSERT3U(epid, <=, state->dts_necbs); 12452 ASSERT(state->dts_ecbs[epid - 1] != NULL); 12453 12454 size = state->dts_ecbs[epid - 1]->dte_size; 12455 } 12456 12457 ASSERT(woffs + size <= buf->dtb_size); 12458 ASSERT(size != 0); 12459 12460 if (woffs + size == buf->dtb_size) { 12461 /* 12462 * We've reached the end of the buffer; we want 12463 * to set the wrapped offset to 0 and break 12464 * out. However, if the offs is 0, then we're 12465 * in a strange edge-condition: the amount of 12466 * space that we want to reserve plus the size 12467 * of the record that we're overwriting is 12468 * greater than the size of the buffer. This 12469 * is problematic because if we reserve the 12470 * space but subsequently don't consume it (due 12471 * to a failed predicate or error) the wrapped 12472 * offset will be 0 -- yet the EPID at offset 0 12473 * will not be committed. This situation is 12474 * relatively easy to deal with: if we're in 12475 * this case, the buffer is indistinguishable 12476 * from one that hasn't wrapped; we need only 12477 * finish the job by clearing the wrapped bit, 12478 * explicitly setting the offset to be 0, and 12479 * zero'ing out the old data in the buffer. 12480 */ 12481 if (offs == 0) { 12482 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 12483 buf->dtb_offset = 0; 12484 woffs = total; 12485 12486 while (woffs < buf->dtb_size) 12487 tomax[woffs++] = 0; 12488 } 12489 12490 woffs = 0; 12491 break; 12492 } 12493 12494 woffs += size; 12495 } 12496 12497 /* 12498 * We have a wrapped offset. It may be that the wrapped offset 12499 * has become zero -- that's okay. 12500 */ 12501 buf->dtb_xamot_offset = woffs; 12502 } 12503 12504 out: 12505 /* 12506 * Now we can plow the buffer with any necessary padding. 12507 */ 12508 while (offs & (align - 1)) { 12509 /* 12510 * Assert that our alignment is off by a number which 12511 * is itself sizeof (uint32_t) aligned. 12512 */ 12513 ASSERT(!((align - (offs & (align - 1))) & 12514 (sizeof (uint32_t) - 1))); 12515 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12516 offs += sizeof (uint32_t); 12517 } 12518 12519 if (buf->dtb_flags & DTRACEBUF_FILL) { 12520 if (offs + needed > buf->dtb_size - state->dts_reserve) { 12521 buf->dtb_flags |= DTRACEBUF_FULL; 12522 return (-1); 12523 } 12524 } 12525 12526 if (mstate == NULL) 12527 return (offs); 12528 12529 /* 12530 * For ring buffers and fill buffers, the scratch space is always 12531 * the inactive buffer. 12532 */ 12533 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 12534 mstate->dtms_scratch_size = buf->dtb_size; 12535 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12536 12537 return (offs); 12538 } 12539 12540 static void 12541 dtrace_buffer_polish(dtrace_buffer_t *buf) 12542 { 12543 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 12544 ASSERT(MUTEX_HELD(&dtrace_lock)); 12545 12546 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 12547 return; 12548 12549 /* 12550 * We need to polish the ring buffer. There are three cases: 12551 * 12552 * - The first (and presumably most common) is that there is no gap 12553 * between the buffer offset and the wrapped offset. In this case, 12554 * there is nothing in the buffer that isn't valid data; we can 12555 * mark the buffer as polished and return. 12556 * 12557 * - The second (less common than the first but still more common 12558 * than the third) is that there is a gap between the buffer offset 12559 * and the wrapped offset, and the wrapped offset is larger than the 12560 * buffer offset. This can happen because of an alignment issue, or 12561 * can happen because of a call to dtrace_buffer_reserve() that 12562 * didn't subsequently consume the buffer space. In this case, 12563 * we need to zero the data from the buffer offset to the wrapped 12564 * offset. 12565 * 12566 * - The third (and least common) is that there is a gap between the 12567 * buffer offset and the wrapped offset, but the wrapped offset is 12568 * _less_ than the buffer offset. This can only happen because a 12569 * call to dtrace_buffer_reserve() induced a wrap, but the space 12570 * was not subsequently consumed. In this case, we need to zero the 12571 * space from the offset to the end of the buffer _and_ from the 12572 * top of the buffer to the wrapped offset. 12573 */ 12574 if (buf->dtb_offset < buf->dtb_xamot_offset) { 12575 bzero(buf->dtb_tomax + buf->dtb_offset, 12576 buf->dtb_xamot_offset - buf->dtb_offset); 12577 } 12578 12579 if (buf->dtb_offset > buf->dtb_xamot_offset) { 12580 bzero(buf->dtb_tomax + buf->dtb_offset, 12581 buf->dtb_size - buf->dtb_offset); 12582 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 12583 } 12584 } 12585 12586 /* 12587 * This routine determines if data generated at the specified time has likely 12588 * been entirely consumed at user-level. This routine is called to determine 12589 * if an ECB on a defunct probe (but for an active enabling) can be safely 12590 * disabled and destroyed. 12591 */ 12592 static int 12593 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 12594 { 12595 int i; 12596 12597 for (i = 0; i < NCPU; i++) { 12598 dtrace_buffer_t *buf = &bufs[i]; 12599 12600 if (buf->dtb_size == 0) 12601 continue; 12602 12603 if (buf->dtb_flags & DTRACEBUF_RING) 12604 return (0); 12605 12606 if (!buf->dtb_switched && buf->dtb_offset != 0) 12607 return (0); 12608 12609 if (buf->dtb_switched - buf->dtb_interval < when) 12610 return (0); 12611 } 12612 12613 return (1); 12614 } 12615 12616 static void 12617 dtrace_buffer_free(dtrace_buffer_t *bufs) 12618 { 12619 int i; 12620 12621 for (i = 0; i < NCPU; i++) { 12622 dtrace_buffer_t *buf = &bufs[i]; 12623 12624 if (buf->dtb_tomax == NULL) { 12625 ASSERT(buf->dtb_xamot == NULL); 12626 ASSERT(buf->dtb_size == 0); 12627 continue; 12628 } 12629 12630 if (buf->dtb_xamot != NULL) { 12631 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12632 kmem_free(buf->dtb_xamot, buf->dtb_size); 12633 } 12634 12635 kmem_free(buf->dtb_tomax, buf->dtb_size); 12636 buf->dtb_size = 0; 12637 buf->dtb_tomax = NULL; 12638 buf->dtb_xamot = NULL; 12639 } 12640 } 12641 12642 /* 12643 * DTrace Enabling Functions 12644 */ 12645 static dtrace_enabling_t * 12646 dtrace_enabling_create(dtrace_vstate_t *vstate) 12647 { 12648 dtrace_enabling_t *enab; 12649 12650 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12651 enab->dten_vstate = vstate; 12652 12653 return (enab); 12654 } 12655 12656 static void 12657 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12658 { 12659 dtrace_ecbdesc_t **ndesc; 12660 size_t osize, nsize; 12661 12662 /* 12663 * We can't add to enablings after we've enabled them, or after we've 12664 * retained them. 12665 */ 12666 ASSERT(enab->dten_probegen == 0); 12667 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12668 12669 if (enab->dten_ndesc < enab->dten_maxdesc) { 12670 enab->dten_desc[enab->dten_ndesc++] = ecb; 12671 return; 12672 } 12673 12674 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12675 12676 if (enab->dten_maxdesc == 0) { 12677 enab->dten_maxdesc = 1; 12678 } else { 12679 enab->dten_maxdesc <<= 1; 12680 } 12681 12682 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12683 12684 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12685 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12686 bcopy(enab->dten_desc, ndesc, osize); 12687 if (enab->dten_desc != NULL) 12688 kmem_free(enab->dten_desc, osize); 12689 12690 enab->dten_desc = ndesc; 12691 enab->dten_desc[enab->dten_ndesc++] = ecb; 12692 } 12693 12694 static void 12695 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12696 dtrace_probedesc_t *pd) 12697 { 12698 dtrace_ecbdesc_t *new; 12699 dtrace_predicate_t *pred; 12700 dtrace_actdesc_t *act; 12701 12702 /* 12703 * We're going to create a new ECB description that matches the 12704 * specified ECB in every way, but has the specified probe description. 12705 */ 12706 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12707 12708 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12709 dtrace_predicate_hold(pred); 12710 12711 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12712 dtrace_actdesc_hold(act); 12713 12714 new->dted_action = ecb->dted_action; 12715 new->dted_pred = ecb->dted_pred; 12716 new->dted_probe = *pd; 12717 new->dted_uarg = ecb->dted_uarg; 12718 12719 dtrace_enabling_add(enab, new); 12720 } 12721 12722 static void 12723 dtrace_enabling_dump(dtrace_enabling_t *enab) 12724 { 12725 int i; 12726 12727 for (i = 0; i < enab->dten_ndesc; i++) { 12728 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12729 12730 #ifdef __FreeBSD__ 12731 printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i, 12732 desc->dtpd_provider, desc->dtpd_mod, 12733 desc->dtpd_func, desc->dtpd_name); 12734 #else 12735 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12736 desc->dtpd_provider, desc->dtpd_mod, 12737 desc->dtpd_func, desc->dtpd_name); 12738 #endif 12739 } 12740 } 12741 12742 static void 12743 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12744 { 12745 int i; 12746 dtrace_ecbdesc_t *ep; 12747 dtrace_vstate_t *vstate = enab->dten_vstate; 12748 12749 ASSERT(MUTEX_HELD(&dtrace_lock)); 12750 12751 for (i = 0; i < enab->dten_ndesc; i++) { 12752 dtrace_actdesc_t *act, *next; 12753 dtrace_predicate_t *pred; 12754 12755 ep = enab->dten_desc[i]; 12756 12757 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12758 dtrace_predicate_release(pred, vstate); 12759 12760 for (act = ep->dted_action; act != NULL; act = next) { 12761 next = act->dtad_next; 12762 dtrace_actdesc_release(act, vstate); 12763 } 12764 12765 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12766 } 12767 12768 if (enab->dten_desc != NULL) 12769 kmem_free(enab->dten_desc, 12770 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12771 12772 /* 12773 * If this was a retained enabling, decrement the dts_nretained count 12774 * and take it off of the dtrace_retained list. 12775 */ 12776 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12777 dtrace_retained == enab) { 12778 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12779 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12780 enab->dten_vstate->dtvs_state->dts_nretained--; 12781 dtrace_retained_gen++; 12782 } 12783 12784 if (enab->dten_prev == NULL) { 12785 if (dtrace_retained == enab) { 12786 dtrace_retained = enab->dten_next; 12787 12788 if (dtrace_retained != NULL) 12789 dtrace_retained->dten_prev = NULL; 12790 } 12791 } else { 12792 ASSERT(enab != dtrace_retained); 12793 ASSERT(dtrace_retained != NULL); 12794 enab->dten_prev->dten_next = enab->dten_next; 12795 } 12796 12797 if (enab->dten_next != NULL) { 12798 ASSERT(dtrace_retained != NULL); 12799 enab->dten_next->dten_prev = enab->dten_prev; 12800 } 12801 12802 kmem_free(enab, sizeof (dtrace_enabling_t)); 12803 } 12804 12805 static int 12806 dtrace_enabling_retain(dtrace_enabling_t *enab) 12807 { 12808 dtrace_state_t *state; 12809 12810 ASSERT(MUTEX_HELD(&dtrace_lock)); 12811 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12812 ASSERT(enab->dten_vstate != NULL); 12813 12814 state = enab->dten_vstate->dtvs_state; 12815 ASSERT(state != NULL); 12816 12817 /* 12818 * We only allow each state to retain dtrace_retain_max enablings. 12819 */ 12820 if (state->dts_nretained >= dtrace_retain_max) 12821 return (ENOSPC); 12822 12823 state->dts_nretained++; 12824 dtrace_retained_gen++; 12825 12826 if (dtrace_retained == NULL) { 12827 dtrace_retained = enab; 12828 return (0); 12829 } 12830 12831 enab->dten_next = dtrace_retained; 12832 dtrace_retained->dten_prev = enab; 12833 dtrace_retained = enab; 12834 12835 return (0); 12836 } 12837 12838 static int 12839 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12840 dtrace_probedesc_t *create) 12841 { 12842 dtrace_enabling_t *new, *enab; 12843 int found = 0, err = ENOENT; 12844 12845 ASSERT(MUTEX_HELD(&dtrace_lock)); 12846 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12847 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12848 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12849 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12850 12851 new = dtrace_enabling_create(&state->dts_vstate); 12852 12853 /* 12854 * Iterate over all retained enablings, looking for enablings that 12855 * match the specified state. 12856 */ 12857 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12858 int i; 12859 12860 /* 12861 * dtvs_state can only be NULL for helper enablings -- and 12862 * helper enablings can't be retained. 12863 */ 12864 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12865 12866 if (enab->dten_vstate->dtvs_state != state) 12867 continue; 12868 12869 /* 12870 * Now iterate over each probe description; we're looking for 12871 * an exact match to the specified probe description. 12872 */ 12873 for (i = 0; i < enab->dten_ndesc; i++) { 12874 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12875 dtrace_probedesc_t *pd = &ep->dted_probe; 12876 12877 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12878 continue; 12879 12880 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12881 continue; 12882 12883 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12884 continue; 12885 12886 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12887 continue; 12888 12889 /* 12890 * We have a winning probe! Add it to our growing 12891 * enabling. 12892 */ 12893 found = 1; 12894 dtrace_enabling_addlike(new, ep, create); 12895 } 12896 } 12897 12898 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12899 dtrace_enabling_destroy(new); 12900 return (err); 12901 } 12902 12903 return (0); 12904 } 12905 12906 static void 12907 dtrace_enabling_retract(dtrace_state_t *state) 12908 { 12909 dtrace_enabling_t *enab, *next; 12910 12911 ASSERT(MUTEX_HELD(&dtrace_lock)); 12912 12913 /* 12914 * Iterate over all retained enablings, destroy the enablings retained 12915 * for the specified state. 12916 */ 12917 for (enab = dtrace_retained; enab != NULL; enab = next) { 12918 next = enab->dten_next; 12919 12920 /* 12921 * dtvs_state can only be NULL for helper enablings -- and 12922 * helper enablings can't be retained. 12923 */ 12924 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12925 12926 if (enab->dten_vstate->dtvs_state == state) { 12927 ASSERT(state->dts_nretained > 0); 12928 dtrace_enabling_destroy(enab); 12929 } 12930 } 12931 12932 ASSERT(state->dts_nretained == 0); 12933 } 12934 12935 static int 12936 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12937 { 12938 int i = 0; 12939 int matched = 0; 12940 12941 ASSERT(MUTEX_HELD(&cpu_lock)); 12942 ASSERT(MUTEX_HELD(&dtrace_lock)); 12943 12944 for (i = 0; i < enab->dten_ndesc; i++) { 12945 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12946 12947 enab->dten_current = ep; 12948 enab->dten_error = 0; 12949 12950 matched += dtrace_probe_enable(&ep->dted_probe, enab); 12951 12952 if (enab->dten_error != 0) { 12953 /* 12954 * If we get an error half-way through enabling the 12955 * probes, we kick out -- perhaps with some number of 12956 * them enabled. Leaving enabled probes enabled may 12957 * be slightly confusing for user-level, but we expect 12958 * that no one will attempt to actually drive on in 12959 * the face of such errors. If this is an anonymous 12960 * enabling (indicated with a NULL nmatched pointer), 12961 * we cmn_err() a message. We aren't expecting to 12962 * get such an error -- such as it can exist at all, 12963 * it would be a result of corrupted DOF in the driver 12964 * properties. 12965 */ 12966 if (nmatched == NULL) { 12967 cmn_err(CE_WARN, "dtrace_enabling_match() " 12968 "error on %p: %d", (void *)ep, 12969 enab->dten_error); 12970 } 12971 12972 return (enab->dten_error); 12973 } 12974 } 12975 12976 enab->dten_probegen = dtrace_probegen; 12977 if (nmatched != NULL) 12978 *nmatched = matched; 12979 12980 return (0); 12981 } 12982 12983 static void 12984 dtrace_enabling_matchall(void) 12985 { 12986 dtrace_enabling_t *enab; 12987 12988 mutex_enter(&cpu_lock); 12989 mutex_enter(&dtrace_lock); 12990 12991 /* 12992 * Iterate over all retained enablings to see if any probes match 12993 * against them. We only perform this operation on enablings for which 12994 * we have sufficient permissions by virtue of being in the global zone 12995 * or in the same zone as the DTrace client. Because we can be called 12996 * after dtrace_detach() has been called, we cannot assert that there 12997 * are retained enablings. We can safely load from dtrace_retained, 12998 * however: the taskq_destroy() at the end of dtrace_detach() will 12999 * block pending our completion. 13000 */ 13001 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13002 #ifdef illumos 13003 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 13004 13005 if (INGLOBALZONE(curproc) || 13006 cr != NULL && getzoneid() == crgetzoneid(cr)) 13007 #endif 13008 (void) dtrace_enabling_match(enab, NULL); 13009 } 13010 13011 mutex_exit(&dtrace_lock); 13012 mutex_exit(&cpu_lock); 13013 } 13014 13015 /* 13016 * If an enabling is to be enabled without having matched probes (that is, if 13017 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 13018 * enabling must be _primed_ by creating an ECB for every ECB description. 13019 * This must be done to assure that we know the number of speculations, the 13020 * number of aggregations, the minimum buffer size needed, etc. before we 13021 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 13022 * enabling any probes, we create ECBs for every ECB decription, but with a 13023 * NULL probe -- which is exactly what this function does. 13024 */ 13025 static void 13026 dtrace_enabling_prime(dtrace_state_t *state) 13027 { 13028 dtrace_enabling_t *enab; 13029 int i; 13030 13031 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13032 ASSERT(enab->dten_vstate->dtvs_state != NULL); 13033 13034 if (enab->dten_vstate->dtvs_state != state) 13035 continue; 13036 13037 /* 13038 * We don't want to prime an enabling more than once, lest 13039 * we allow a malicious user to induce resource exhaustion. 13040 * (The ECBs that result from priming an enabling aren't 13041 * leaked -- but they also aren't deallocated until the 13042 * consumer state is destroyed.) 13043 */ 13044 if (enab->dten_primed) 13045 continue; 13046 13047 for (i = 0; i < enab->dten_ndesc; i++) { 13048 enab->dten_current = enab->dten_desc[i]; 13049 (void) dtrace_probe_enable(NULL, enab); 13050 } 13051 13052 enab->dten_primed = 1; 13053 } 13054 } 13055 13056 /* 13057 * Called to indicate that probes should be provided due to retained 13058 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 13059 * must take an initial lap through the enabling calling the dtps_provide() 13060 * entry point explicitly to allow for autocreated probes. 13061 */ 13062 static void 13063 dtrace_enabling_provide(dtrace_provider_t *prv) 13064 { 13065 int i, all = 0; 13066 dtrace_probedesc_t desc; 13067 dtrace_genid_t gen; 13068 13069 ASSERT(MUTEX_HELD(&dtrace_lock)); 13070 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 13071 13072 if (prv == NULL) { 13073 all = 1; 13074 prv = dtrace_provider; 13075 } 13076 13077 do { 13078 dtrace_enabling_t *enab; 13079 void *parg = prv->dtpv_arg; 13080 13081 retry: 13082 gen = dtrace_retained_gen; 13083 for (enab = dtrace_retained; enab != NULL; 13084 enab = enab->dten_next) { 13085 for (i = 0; i < enab->dten_ndesc; i++) { 13086 desc = enab->dten_desc[i]->dted_probe; 13087 mutex_exit(&dtrace_lock); 13088 prv->dtpv_pops.dtps_provide(parg, &desc); 13089 mutex_enter(&dtrace_lock); 13090 /* 13091 * Process the retained enablings again if 13092 * they have changed while we weren't holding 13093 * dtrace_lock. 13094 */ 13095 if (gen != dtrace_retained_gen) 13096 goto retry; 13097 } 13098 } 13099 } while (all && (prv = prv->dtpv_next) != NULL); 13100 13101 mutex_exit(&dtrace_lock); 13102 dtrace_probe_provide(NULL, all ? NULL : prv); 13103 mutex_enter(&dtrace_lock); 13104 } 13105 13106 /* 13107 * Called to reap ECBs that are attached to probes from defunct providers. 13108 */ 13109 static void 13110 dtrace_enabling_reap(void) 13111 { 13112 dtrace_provider_t *prov; 13113 dtrace_probe_t *probe; 13114 dtrace_ecb_t *ecb; 13115 hrtime_t when; 13116 int i; 13117 13118 mutex_enter(&cpu_lock); 13119 mutex_enter(&dtrace_lock); 13120 13121 for (i = 0; i < dtrace_nprobes; i++) { 13122 if ((probe = dtrace_probes[i]) == NULL) 13123 continue; 13124 13125 if (probe->dtpr_ecb == NULL) 13126 continue; 13127 13128 prov = probe->dtpr_provider; 13129 13130 if ((when = prov->dtpv_defunct) == 0) 13131 continue; 13132 13133 /* 13134 * We have ECBs on a defunct provider: we want to reap these 13135 * ECBs to allow the provider to unregister. The destruction 13136 * of these ECBs must be done carefully: if we destroy the ECB 13137 * and the consumer later wishes to consume an EPID that 13138 * corresponds to the destroyed ECB (and if the EPID metadata 13139 * has not been previously consumed), the consumer will abort 13140 * processing on the unknown EPID. To reduce (but not, sadly, 13141 * eliminate) the possibility of this, we will only destroy an 13142 * ECB for a defunct provider if, for the state that 13143 * corresponds to the ECB: 13144 * 13145 * (a) There is no speculative tracing (which can effectively 13146 * cache an EPID for an arbitrary amount of time). 13147 * 13148 * (b) The principal buffers have been switched twice since the 13149 * provider became defunct. 13150 * 13151 * (c) The aggregation buffers are of zero size or have been 13152 * switched twice since the provider became defunct. 13153 * 13154 * We use dts_speculates to determine (a) and call a function 13155 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 13156 * that as soon as we've been unable to destroy one of the ECBs 13157 * associated with the probe, we quit trying -- reaping is only 13158 * fruitful in as much as we can destroy all ECBs associated 13159 * with the defunct provider's probes. 13160 */ 13161 while ((ecb = probe->dtpr_ecb) != NULL) { 13162 dtrace_state_t *state = ecb->dte_state; 13163 dtrace_buffer_t *buf = state->dts_buffer; 13164 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 13165 13166 if (state->dts_speculates) 13167 break; 13168 13169 if (!dtrace_buffer_consumed(buf, when)) 13170 break; 13171 13172 if (!dtrace_buffer_consumed(aggbuf, when)) 13173 break; 13174 13175 dtrace_ecb_disable(ecb); 13176 ASSERT(probe->dtpr_ecb != ecb); 13177 dtrace_ecb_destroy(ecb); 13178 } 13179 } 13180 13181 mutex_exit(&dtrace_lock); 13182 mutex_exit(&cpu_lock); 13183 } 13184 13185 /* 13186 * DTrace DOF Functions 13187 */ 13188 /*ARGSUSED*/ 13189 static void 13190 dtrace_dof_error(dof_hdr_t *dof, const char *str) 13191 { 13192 if (dtrace_err_verbose) 13193 cmn_err(CE_WARN, "failed to process DOF: %s", str); 13194 13195 #ifdef DTRACE_ERRDEBUG 13196 dtrace_errdebug(str); 13197 #endif 13198 } 13199 13200 /* 13201 * Create DOF out of a currently enabled state. Right now, we only create 13202 * DOF containing the run-time options -- but this could be expanded to create 13203 * complete DOF representing the enabled state. 13204 */ 13205 static dof_hdr_t * 13206 dtrace_dof_create(dtrace_state_t *state) 13207 { 13208 dof_hdr_t *dof; 13209 dof_sec_t *sec; 13210 dof_optdesc_t *opt; 13211 int i, len = sizeof (dof_hdr_t) + 13212 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 13213 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13214 13215 ASSERT(MUTEX_HELD(&dtrace_lock)); 13216 13217 dof = kmem_zalloc(len, KM_SLEEP); 13218 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 13219 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 13220 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 13221 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 13222 13223 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 13224 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 13225 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 13226 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 13227 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 13228 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 13229 13230 dof->dofh_flags = 0; 13231 dof->dofh_hdrsize = sizeof (dof_hdr_t); 13232 dof->dofh_secsize = sizeof (dof_sec_t); 13233 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 13234 dof->dofh_secoff = sizeof (dof_hdr_t); 13235 dof->dofh_loadsz = len; 13236 dof->dofh_filesz = len; 13237 dof->dofh_pad = 0; 13238 13239 /* 13240 * Fill in the option section header... 13241 */ 13242 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 13243 sec->dofs_type = DOF_SECT_OPTDESC; 13244 sec->dofs_align = sizeof (uint64_t); 13245 sec->dofs_flags = DOF_SECF_LOAD; 13246 sec->dofs_entsize = sizeof (dof_optdesc_t); 13247 13248 opt = (dof_optdesc_t *)((uintptr_t)sec + 13249 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 13250 13251 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 13252 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13253 13254 for (i = 0; i < DTRACEOPT_MAX; i++) { 13255 opt[i].dofo_option = i; 13256 opt[i].dofo_strtab = DOF_SECIDX_NONE; 13257 opt[i].dofo_value = state->dts_options[i]; 13258 } 13259 13260 return (dof); 13261 } 13262 13263 static dof_hdr_t * 13264 dtrace_dof_copyin(uintptr_t uarg, int *errp) 13265 { 13266 dof_hdr_t hdr, *dof; 13267 13268 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13269 13270 /* 13271 * First, we're going to copyin() the sizeof (dof_hdr_t). 13272 */ 13273 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 13274 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13275 *errp = EFAULT; 13276 return (NULL); 13277 } 13278 13279 /* 13280 * Now we'll allocate the entire DOF and copy it in -- provided 13281 * that the length isn't outrageous. 13282 */ 13283 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13284 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13285 *errp = E2BIG; 13286 return (NULL); 13287 } 13288 13289 if (hdr.dofh_loadsz < sizeof (hdr)) { 13290 dtrace_dof_error(&hdr, "invalid load size"); 13291 *errp = EINVAL; 13292 return (NULL); 13293 } 13294 13295 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 13296 13297 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 13298 dof->dofh_loadsz != hdr.dofh_loadsz) { 13299 kmem_free(dof, hdr.dofh_loadsz); 13300 *errp = EFAULT; 13301 return (NULL); 13302 } 13303 13304 return (dof); 13305 } 13306 13307 #ifdef __FreeBSD__ 13308 static dof_hdr_t * 13309 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp) 13310 { 13311 dof_hdr_t hdr, *dof; 13312 struct thread *td; 13313 size_t loadsz; 13314 13315 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13316 13317 td = curthread; 13318 13319 /* 13320 * First, we're going to copyin() the sizeof (dof_hdr_t). 13321 */ 13322 if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) { 13323 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13324 *errp = EFAULT; 13325 return (NULL); 13326 } 13327 13328 /* 13329 * Now we'll allocate the entire DOF and copy it in -- provided 13330 * that the length isn't outrageous. 13331 */ 13332 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13333 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13334 *errp = E2BIG; 13335 return (NULL); 13336 } 13337 loadsz = (size_t)hdr.dofh_loadsz; 13338 13339 if (loadsz < sizeof (hdr)) { 13340 dtrace_dof_error(&hdr, "invalid load size"); 13341 *errp = EINVAL; 13342 return (NULL); 13343 } 13344 13345 dof = kmem_alloc(loadsz, KM_SLEEP); 13346 13347 if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz || 13348 dof->dofh_loadsz != loadsz) { 13349 kmem_free(dof, hdr.dofh_loadsz); 13350 *errp = EFAULT; 13351 return (NULL); 13352 } 13353 13354 return (dof); 13355 } 13356 13357 static __inline uchar_t 13358 dtrace_dof_char(char c) 13359 { 13360 13361 switch (c) { 13362 case '0': 13363 case '1': 13364 case '2': 13365 case '3': 13366 case '4': 13367 case '5': 13368 case '6': 13369 case '7': 13370 case '8': 13371 case '9': 13372 return (c - '0'); 13373 case 'A': 13374 case 'B': 13375 case 'C': 13376 case 'D': 13377 case 'E': 13378 case 'F': 13379 return (c - 'A' + 10); 13380 case 'a': 13381 case 'b': 13382 case 'c': 13383 case 'd': 13384 case 'e': 13385 case 'f': 13386 return (c - 'a' + 10); 13387 } 13388 /* Should not reach here. */ 13389 return (UCHAR_MAX); 13390 } 13391 #endif /* __FreeBSD__ */ 13392 13393 static dof_hdr_t * 13394 dtrace_dof_property(const char *name) 13395 { 13396 #ifdef __FreeBSD__ 13397 uint8_t *dofbuf; 13398 u_char *data, *eol; 13399 caddr_t doffile; 13400 size_t bytes, len, i; 13401 dof_hdr_t *dof; 13402 u_char c1, c2; 13403 13404 dof = NULL; 13405 13406 doffile = preload_search_by_type("dtrace_dof"); 13407 if (doffile == NULL) 13408 return (NULL); 13409 13410 data = preload_fetch_addr(doffile); 13411 len = preload_fetch_size(doffile); 13412 for (;;) { 13413 /* Look for the end of the line. All lines end in a newline. */ 13414 eol = memchr(data, '\n', len); 13415 if (eol == NULL) 13416 return (NULL); 13417 13418 if (strncmp(name, data, strlen(name)) == 0) 13419 break; 13420 13421 eol++; /* skip past the newline */ 13422 len -= eol - data; 13423 data = eol; 13424 } 13425 13426 /* We've found the data corresponding to the specified key. */ 13427 13428 data += strlen(name) + 1; /* skip past the '=' */ 13429 len = eol - data; 13430 if (len % 2 != 0) { 13431 dtrace_dof_error(NULL, "invalid DOF encoding length"); 13432 goto doferr; 13433 } 13434 bytes = len / 2; 13435 if (bytes < sizeof(dof_hdr_t)) { 13436 dtrace_dof_error(NULL, "truncated header"); 13437 goto doferr; 13438 } 13439 13440 /* 13441 * Each byte is represented by the two ASCII characters in its hex 13442 * representation. 13443 */ 13444 dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK); 13445 for (i = 0; i < bytes; i++) { 13446 c1 = dtrace_dof_char(data[i * 2]); 13447 c2 = dtrace_dof_char(data[i * 2 + 1]); 13448 if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) { 13449 dtrace_dof_error(NULL, "invalid hex char in DOF"); 13450 goto doferr; 13451 } 13452 dofbuf[i] = c1 * 16 + c2; 13453 } 13454 13455 dof = (dof_hdr_t *)dofbuf; 13456 if (bytes < dof->dofh_loadsz) { 13457 dtrace_dof_error(NULL, "truncated DOF"); 13458 goto doferr; 13459 } 13460 13461 if (dof->dofh_loadsz >= dtrace_dof_maxsize) { 13462 dtrace_dof_error(NULL, "oversized DOF"); 13463 goto doferr; 13464 } 13465 13466 return (dof); 13467 13468 doferr: 13469 free(dof, M_SOLARIS); 13470 return (NULL); 13471 #else /* __FreeBSD__ */ 13472 uchar_t *buf; 13473 uint64_t loadsz; 13474 unsigned int len, i; 13475 dof_hdr_t *dof; 13476 13477 /* 13478 * Unfortunately, array of values in .conf files are always (and 13479 * only) interpreted to be integer arrays. We must read our DOF 13480 * as an integer array, and then squeeze it into a byte array. 13481 */ 13482 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 13483 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 13484 return (NULL); 13485 13486 for (i = 0; i < len; i++) 13487 buf[i] = (uchar_t)(((int *)buf)[i]); 13488 13489 if (len < sizeof (dof_hdr_t)) { 13490 ddi_prop_free(buf); 13491 dtrace_dof_error(NULL, "truncated header"); 13492 return (NULL); 13493 } 13494 13495 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 13496 ddi_prop_free(buf); 13497 dtrace_dof_error(NULL, "truncated DOF"); 13498 return (NULL); 13499 } 13500 13501 if (loadsz >= dtrace_dof_maxsize) { 13502 ddi_prop_free(buf); 13503 dtrace_dof_error(NULL, "oversized DOF"); 13504 return (NULL); 13505 } 13506 13507 dof = kmem_alloc(loadsz, KM_SLEEP); 13508 bcopy(buf, dof, loadsz); 13509 ddi_prop_free(buf); 13510 13511 return (dof); 13512 #endif /* !__FreeBSD__ */ 13513 } 13514 13515 static void 13516 dtrace_dof_destroy(dof_hdr_t *dof) 13517 { 13518 kmem_free(dof, dof->dofh_loadsz); 13519 } 13520 13521 /* 13522 * Return the dof_sec_t pointer corresponding to a given section index. If the 13523 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 13524 * a type other than DOF_SECT_NONE is specified, the header is checked against 13525 * this type and NULL is returned if the types do not match. 13526 */ 13527 static dof_sec_t * 13528 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 13529 { 13530 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 13531 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 13532 13533 if (i >= dof->dofh_secnum) { 13534 dtrace_dof_error(dof, "referenced section index is invalid"); 13535 return (NULL); 13536 } 13537 13538 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 13539 dtrace_dof_error(dof, "referenced section is not loadable"); 13540 return (NULL); 13541 } 13542 13543 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 13544 dtrace_dof_error(dof, "referenced section is the wrong type"); 13545 return (NULL); 13546 } 13547 13548 return (sec); 13549 } 13550 13551 static dtrace_probedesc_t * 13552 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 13553 { 13554 dof_probedesc_t *probe; 13555 dof_sec_t *strtab; 13556 uintptr_t daddr = (uintptr_t)dof; 13557 uintptr_t str; 13558 size_t size; 13559 13560 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 13561 dtrace_dof_error(dof, "invalid probe section"); 13562 return (NULL); 13563 } 13564 13565 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13566 dtrace_dof_error(dof, "bad alignment in probe description"); 13567 return (NULL); 13568 } 13569 13570 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 13571 dtrace_dof_error(dof, "truncated probe description"); 13572 return (NULL); 13573 } 13574 13575 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 13576 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 13577 13578 if (strtab == NULL) 13579 return (NULL); 13580 13581 str = daddr + strtab->dofs_offset; 13582 size = strtab->dofs_size; 13583 13584 if (probe->dofp_provider >= strtab->dofs_size) { 13585 dtrace_dof_error(dof, "corrupt probe provider"); 13586 return (NULL); 13587 } 13588 13589 (void) strncpy(desc->dtpd_provider, 13590 (char *)(str + probe->dofp_provider), 13591 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 13592 13593 if (probe->dofp_mod >= strtab->dofs_size) { 13594 dtrace_dof_error(dof, "corrupt probe module"); 13595 return (NULL); 13596 } 13597 13598 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 13599 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 13600 13601 if (probe->dofp_func >= strtab->dofs_size) { 13602 dtrace_dof_error(dof, "corrupt probe function"); 13603 return (NULL); 13604 } 13605 13606 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 13607 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 13608 13609 if (probe->dofp_name >= strtab->dofs_size) { 13610 dtrace_dof_error(dof, "corrupt probe name"); 13611 return (NULL); 13612 } 13613 13614 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 13615 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 13616 13617 return (desc); 13618 } 13619 13620 static dtrace_difo_t * 13621 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13622 cred_t *cr) 13623 { 13624 dtrace_difo_t *dp; 13625 size_t ttl = 0; 13626 dof_difohdr_t *dofd; 13627 uintptr_t daddr = (uintptr_t)dof; 13628 size_t max = dtrace_difo_maxsize; 13629 int i, l, n; 13630 13631 static const struct { 13632 int section; 13633 int bufoffs; 13634 int lenoffs; 13635 int entsize; 13636 int align; 13637 const char *msg; 13638 } difo[] = { 13639 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 13640 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 13641 sizeof (dif_instr_t), "multiple DIF sections" }, 13642 13643 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 13644 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 13645 sizeof (uint64_t), "multiple integer tables" }, 13646 13647 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 13648 offsetof(dtrace_difo_t, dtdo_strlen), 0, 13649 sizeof (char), "multiple string tables" }, 13650 13651 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 13652 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 13653 sizeof (uint_t), "multiple variable tables" }, 13654 13655 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 13656 }; 13657 13658 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 13659 dtrace_dof_error(dof, "invalid DIFO header section"); 13660 return (NULL); 13661 } 13662 13663 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13664 dtrace_dof_error(dof, "bad alignment in DIFO header"); 13665 return (NULL); 13666 } 13667 13668 if (sec->dofs_size < sizeof (dof_difohdr_t) || 13669 sec->dofs_size % sizeof (dof_secidx_t)) { 13670 dtrace_dof_error(dof, "bad size in DIFO header"); 13671 return (NULL); 13672 } 13673 13674 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13675 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 13676 13677 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 13678 dp->dtdo_rtype = dofd->dofd_rtype; 13679 13680 for (l = 0; l < n; l++) { 13681 dof_sec_t *subsec; 13682 void **bufp; 13683 uint32_t *lenp; 13684 13685 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 13686 dofd->dofd_links[l])) == NULL) 13687 goto err; /* invalid section link */ 13688 13689 if (ttl + subsec->dofs_size > max) { 13690 dtrace_dof_error(dof, "exceeds maximum size"); 13691 goto err; 13692 } 13693 13694 ttl += subsec->dofs_size; 13695 13696 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 13697 if (subsec->dofs_type != difo[i].section) 13698 continue; 13699 13700 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 13701 dtrace_dof_error(dof, "section not loaded"); 13702 goto err; 13703 } 13704 13705 if (subsec->dofs_align != difo[i].align) { 13706 dtrace_dof_error(dof, "bad alignment"); 13707 goto err; 13708 } 13709 13710 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 13711 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 13712 13713 if (*bufp != NULL) { 13714 dtrace_dof_error(dof, difo[i].msg); 13715 goto err; 13716 } 13717 13718 if (difo[i].entsize != subsec->dofs_entsize) { 13719 dtrace_dof_error(dof, "entry size mismatch"); 13720 goto err; 13721 } 13722 13723 if (subsec->dofs_entsize != 0 && 13724 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 13725 dtrace_dof_error(dof, "corrupt entry size"); 13726 goto err; 13727 } 13728 13729 *lenp = subsec->dofs_size; 13730 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 13731 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 13732 *bufp, subsec->dofs_size); 13733 13734 if (subsec->dofs_entsize != 0) 13735 *lenp /= subsec->dofs_entsize; 13736 13737 break; 13738 } 13739 13740 /* 13741 * If we encounter a loadable DIFO sub-section that is not 13742 * known to us, assume this is a broken program and fail. 13743 */ 13744 if (difo[i].section == DOF_SECT_NONE && 13745 (subsec->dofs_flags & DOF_SECF_LOAD)) { 13746 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 13747 goto err; 13748 } 13749 } 13750 13751 if (dp->dtdo_buf == NULL) { 13752 /* 13753 * We can't have a DIF object without DIF text. 13754 */ 13755 dtrace_dof_error(dof, "missing DIF text"); 13756 goto err; 13757 } 13758 13759 /* 13760 * Before we validate the DIF object, run through the variable table 13761 * looking for the strings -- if any of their size are under, we'll set 13762 * their size to be the system-wide default string size. Note that 13763 * this should _not_ happen if the "strsize" option has been set -- 13764 * in this case, the compiler should have set the size to reflect the 13765 * setting of the option. 13766 */ 13767 for (i = 0; i < dp->dtdo_varlen; i++) { 13768 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 13769 dtrace_diftype_t *t = &v->dtdv_type; 13770 13771 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 13772 continue; 13773 13774 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 13775 t->dtdt_size = dtrace_strsize_default; 13776 } 13777 13778 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 13779 goto err; 13780 13781 dtrace_difo_init(dp, vstate); 13782 return (dp); 13783 13784 err: 13785 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 13786 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 13787 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 13788 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 13789 13790 kmem_free(dp, sizeof (dtrace_difo_t)); 13791 return (NULL); 13792 } 13793 13794 static dtrace_predicate_t * 13795 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13796 cred_t *cr) 13797 { 13798 dtrace_difo_t *dp; 13799 13800 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 13801 return (NULL); 13802 13803 return (dtrace_predicate_create(dp)); 13804 } 13805 13806 static dtrace_actdesc_t * 13807 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13808 cred_t *cr) 13809 { 13810 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 13811 dof_actdesc_t *desc; 13812 dof_sec_t *difosec; 13813 size_t offs; 13814 uintptr_t daddr = (uintptr_t)dof; 13815 uint64_t arg; 13816 dtrace_actkind_t kind; 13817 13818 if (sec->dofs_type != DOF_SECT_ACTDESC) { 13819 dtrace_dof_error(dof, "invalid action section"); 13820 return (NULL); 13821 } 13822 13823 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 13824 dtrace_dof_error(dof, "truncated action description"); 13825 return (NULL); 13826 } 13827 13828 if (sec->dofs_align != sizeof (uint64_t)) { 13829 dtrace_dof_error(dof, "bad alignment in action description"); 13830 return (NULL); 13831 } 13832 13833 if (sec->dofs_size < sec->dofs_entsize) { 13834 dtrace_dof_error(dof, "section entry size exceeds total size"); 13835 return (NULL); 13836 } 13837 13838 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13839 dtrace_dof_error(dof, "bad entry size in action description"); 13840 return (NULL); 13841 } 13842 13843 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13844 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13845 return (NULL); 13846 } 13847 13848 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13849 desc = (dof_actdesc_t *)(daddr + 13850 (uintptr_t)sec->dofs_offset + offs); 13851 kind = (dtrace_actkind_t)desc->dofa_kind; 13852 13853 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13854 (kind != DTRACEACT_PRINTA || 13855 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13856 (kind == DTRACEACT_DIFEXPR && 13857 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13858 dof_sec_t *strtab; 13859 char *str, *fmt; 13860 uint64_t i; 13861 13862 /* 13863 * The argument to these actions is an index into the 13864 * DOF string table. For printf()-like actions, this 13865 * is the format string. For print(), this is the 13866 * CTF type of the expression result. 13867 */ 13868 if ((strtab = dtrace_dof_sect(dof, 13869 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13870 goto err; 13871 13872 str = (char *)((uintptr_t)dof + 13873 (uintptr_t)strtab->dofs_offset); 13874 13875 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13876 if (str[i] == '\0') 13877 break; 13878 } 13879 13880 if (i >= strtab->dofs_size) { 13881 dtrace_dof_error(dof, "bogus format string"); 13882 goto err; 13883 } 13884 13885 if (i == desc->dofa_arg) { 13886 dtrace_dof_error(dof, "empty format string"); 13887 goto err; 13888 } 13889 13890 i -= desc->dofa_arg; 13891 fmt = kmem_alloc(i + 1, KM_SLEEP); 13892 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13893 arg = (uint64_t)(uintptr_t)fmt; 13894 } else { 13895 if (kind == DTRACEACT_PRINTA) { 13896 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13897 arg = 0; 13898 } else { 13899 arg = desc->dofa_arg; 13900 } 13901 } 13902 13903 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13904 desc->dofa_uarg, arg); 13905 13906 if (last != NULL) { 13907 last->dtad_next = act; 13908 } else { 13909 first = act; 13910 } 13911 13912 last = act; 13913 13914 if (desc->dofa_difo == DOF_SECIDX_NONE) 13915 continue; 13916 13917 if ((difosec = dtrace_dof_sect(dof, 13918 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13919 goto err; 13920 13921 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13922 13923 if (act->dtad_difo == NULL) 13924 goto err; 13925 } 13926 13927 ASSERT(first != NULL); 13928 return (first); 13929 13930 err: 13931 for (act = first; act != NULL; act = next) { 13932 next = act->dtad_next; 13933 dtrace_actdesc_release(act, vstate); 13934 } 13935 13936 return (NULL); 13937 } 13938 13939 static dtrace_ecbdesc_t * 13940 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13941 cred_t *cr) 13942 { 13943 dtrace_ecbdesc_t *ep; 13944 dof_ecbdesc_t *ecb; 13945 dtrace_probedesc_t *desc; 13946 dtrace_predicate_t *pred = NULL; 13947 13948 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13949 dtrace_dof_error(dof, "truncated ECB description"); 13950 return (NULL); 13951 } 13952 13953 if (sec->dofs_align != sizeof (uint64_t)) { 13954 dtrace_dof_error(dof, "bad alignment in ECB description"); 13955 return (NULL); 13956 } 13957 13958 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13959 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13960 13961 if (sec == NULL) 13962 return (NULL); 13963 13964 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13965 ep->dted_uarg = ecb->dofe_uarg; 13966 desc = &ep->dted_probe; 13967 13968 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13969 goto err; 13970 13971 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13972 if ((sec = dtrace_dof_sect(dof, 13973 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13974 goto err; 13975 13976 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13977 goto err; 13978 13979 ep->dted_pred.dtpdd_predicate = pred; 13980 } 13981 13982 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 13983 if ((sec = dtrace_dof_sect(dof, 13984 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 13985 goto err; 13986 13987 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 13988 13989 if (ep->dted_action == NULL) 13990 goto err; 13991 } 13992 13993 return (ep); 13994 13995 err: 13996 if (pred != NULL) 13997 dtrace_predicate_release(pred, vstate); 13998 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 13999 return (NULL); 14000 } 14001 14002 /* 14003 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 14004 * specified DOF. SETX relocations are computed using 'ubase', the base load 14005 * address of the object containing the DOF, and DOFREL relocations are relative 14006 * to the relocation offset within the DOF. 14007 */ 14008 static int 14009 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase, 14010 uint64_t udaddr) 14011 { 14012 uintptr_t daddr = (uintptr_t)dof; 14013 uintptr_t ts_end; 14014 dof_relohdr_t *dofr = 14015 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 14016 dof_sec_t *ss, *rs, *ts; 14017 dof_relodesc_t *r; 14018 uint_t i, n; 14019 14020 if (sec->dofs_size < sizeof (dof_relohdr_t) || 14021 sec->dofs_align != sizeof (dof_secidx_t)) { 14022 dtrace_dof_error(dof, "invalid relocation header"); 14023 return (-1); 14024 } 14025 14026 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 14027 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 14028 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 14029 ts_end = (uintptr_t)ts + sizeof (dof_sec_t); 14030 14031 if (ss == NULL || rs == NULL || ts == NULL) 14032 return (-1); /* dtrace_dof_error() has been called already */ 14033 14034 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 14035 rs->dofs_align != sizeof (uint64_t)) { 14036 dtrace_dof_error(dof, "invalid relocation section"); 14037 return (-1); 14038 } 14039 14040 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 14041 n = rs->dofs_size / rs->dofs_entsize; 14042 14043 for (i = 0; i < n; i++) { 14044 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 14045 14046 switch (r->dofr_type) { 14047 case DOF_RELO_NONE: 14048 break; 14049 case DOF_RELO_SETX: 14050 case DOF_RELO_DOFREL: 14051 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 14052 sizeof (uint64_t) > ts->dofs_size) { 14053 dtrace_dof_error(dof, "bad relocation offset"); 14054 return (-1); 14055 } 14056 14057 if (taddr >= (uintptr_t)ts && taddr < ts_end) { 14058 dtrace_dof_error(dof, "bad relocation offset"); 14059 return (-1); 14060 } 14061 14062 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 14063 dtrace_dof_error(dof, "misaligned setx relo"); 14064 return (-1); 14065 } 14066 14067 if (r->dofr_type == DOF_RELO_SETX) 14068 *(uint64_t *)taddr += ubase; 14069 else 14070 *(uint64_t *)taddr += 14071 udaddr + ts->dofs_offset + r->dofr_offset; 14072 break; 14073 default: 14074 dtrace_dof_error(dof, "invalid relocation type"); 14075 return (-1); 14076 } 14077 14078 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 14079 } 14080 14081 return (0); 14082 } 14083 14084 /* 14085 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 14086 * header: it should be at the front of a memory region that is at least 14087 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 14088 * size. It need not be validated in any other way. 14089 */ 14090 static int 14091 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 14092 dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes) 14093 { 14094 uint64_t len = dof->dofh_loadsz, seclen; 14095 uintptr_t daddr = (uintptr_t)dof; 14096 dtrace_ecbdesc_t *ep; 14097 dtrace_enabling_t *enab; 14098 uint_t i; 14099 14100 ASSERT(MUTEX_HELD(&dtrace_lock)); 14101 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 14102 14103 /* 14104 * Check the DOF header identification bytes. In addition to checking 14105 * valid settings, we also verify that unused bits/bytes are zeroed so 14106 * we can use them later without fear of regressing existing binaries. 14107 */ 14108 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 14109 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 14110 dtrace_dof_error(dof, "DOF magic string mismatch"); 14111 return (-1); 14112 } 14113 14114 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 14115 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 14116 dtrace_dof_error(dof, "DOF has invalid data model"); 14117 return (-1); 14118 } 14119 14120 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 14121 dtrace_dof_error(dof, "DOF encoding mismatch"); 14122 return (-1); 14123 } 14124 14125 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14126 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 14127 dtrace_dof_error(dof, "DOF version mismatch"); 14128 return (-1); 14129 } 14130 14131 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 14132 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 14133 return (-1); 14134 } 14135 14136 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 14137 dtrace_dof_error(dof, "DOF uses too many integer registers"); 14138 return (-1); 14139 } 14140 14141 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 14142 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 14143 return (-1); 14144 } 14145 14146 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 14147 if (dof->dofh_ident[i] != 0) { 14148 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 14149 return (-1); 14150 } 14151 } 14152 14153 if (dof->dofh_flags & ~DOF_FL_VALID) { 14154 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 14155 return (-1); 14156 } 14157 14158 if (dof->dofh_secsize == 0) { 14159 dtrace_dof_error(dof, "zero section header size"); 14160 return (-1); 14161 } 14162 14163 /* 14164 * Check that the section headers don't exceed the amount of DOF 14165 * data. Note that we cast the section size and number of sections 14166 * to uint64_t's to prevent possible overflow in the multiplication. 14167 */ 14168 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 14169 14170 if (dof->dofh_secoff > len || seclen > len || 14171 dof->dofh_secoff + seclen > len) { 14172 dtrace_dof_error(dof, "truncated section headers"); 14173 return (-1); 14174 } 14175 14176 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 14177 dtrace_dof_error(dof, "misaligned section headers"); 14178 return (-1); 14179 } 14180 14181 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 14182 dtrace_dof_error(dof, "misaligned section size"); 14183 return (-1); 14184 } 14185 14186 /* 14187 * Take an initial pass through the section headers to be sure that 14188 * the headers don't have stray offsets. If the 'noprobes' flag is 14189 * set, do not permit sections relating to providers, probes, or args. 14190 */ 14191 for (i = 0; i < dof->dofh_secnum; i++) { 14192 dof_sec_t *sec = (dof_sec_t *)(daddr + 14193 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14194 14195 if (noprobes) { 14196 switch (sec->dofs_type) { 14197 case DOF_SECT_PROVIDER: 14198 case DOF_SECT_PROBES: 14199 case DOF_SECT_PRARGS: 14200 case DOF_SECT_PROFFS: 14201 dtrace_dof_error(dof, "illegal sections " 14202 "for enabling"); 14203 return (-1); 14204 } 14205 } 14206 14207 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 14208 !(sec->dofs_flags & DOF_SECF_LOAD)) { 14209 dtrace_dof_error(dof, "loadable section with load " 14210 "flag unset"); 14211 return (-1); 14212 } 14213 14214 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14215 continue; /* just ignore non-loadable sections */ 14216 14217 if (!ISP2(sec->dofs_align)) { 14218 dtrace_dof_error(dof, "bad section alignment"); 14219 return (-1); 14220 } 14221 14222 if (sec->dofs_offset & (sec->dofs_align - 1)) { 14223 dtrace_dof_error(dof, "misaligned section"); 14224 return (-1); 14225 } 14226 14227 if (sec->dofs_offset > len || sec->dofs_size > len || 14228 sec->dofs_offset + sec->dofs_size > len) { 14229 dtrace_dof_error(dof, "corrupt section header"); 14230 return (-1); 14231 } 14232 14233 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 14234 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 14235 dtrace_dof_error(dof, "non-terminating string table"); 14236 return (-1); 14237 } 14238 } 14239 14240 /* 14241 * Take a second pass through the sections and locate and perform any 14242 * relocations that are present. We do this after the first pass to 14243 * be sure that all sections have had their headers validated. 14244 */ 14245 for (i = 0; i < dof->dofh_secnum; i++) { 14246 dof_sec_t *sec = (dof_sec_t *)(daddr + 14247 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14248 14249 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14250 continue; /* skip sections that are not loadable */ 14251 14252 switch (sec->dofs_type) { 14253 case DOF_SECT_URELHDR: 14254 if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0) 14255 return (-1); 14256 break; 14257 } 14258 } 14259 14260 if ((enab = *enabp) == NULL) 14261 enab = *enabp = dtrace_enabling_create(vstate); 14262 14263 for (i = 0; i < dof->dofh_secnum; i++) { 14264 dof_sec_t *sec = (dof_sec_t *)(daddr + 14265 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14266 14267 if (sec->dofs_type != DOF_SECT_ECBDESC) 14268 continue; 14269 14270 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 14271 dtrace_enabling_destroy(enab); 14272 *enabp = NULL; 14273 return (-1); 14274 } 14275 14276 dtrace_enabling_add(enab, ep); 14277 } 14278 14279 return (0); 14280 } 14281 14282 /* 14283 * Process DOF for any options. This routine assumes that the DOF has been 14284 * at least processed by dtrace_dof_slurp(). 14285 */ 14286 static int 14287 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 14288 { 14289 int i, rval; 14290 uint32_t entsize; 14291 size_t offs; 14292 dof_optdesc_t *desc; 14293 14294 for (i = 0; i < dof->dofh_secnum; i++) { 14295 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 14296 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14297 14298 if (sec->dofs_type != DOF_SECT_OPTDESC) 14299 continue; 14300 14301 if (sec->dofs_align != sizeof (uint64_t)) { 14302 dtrace_dof_error(dof, "bad alignment in " 14303 "option description"); 14304 return (EINVAL); 14305 } 14306 14307 if ((entsize = sec->dofs_entsize) == 0) { 14308 dtrace_dof_error(dof, "zeroed option entry size"); 14309 return (EINVAL); 14310 } 14311 14312 if (entsize < sizeof (dof_optdesc_t)) { 14313 dtrace_dof_error(dof, "bad option entry size"); 14314 return (EINVAL); 14315 } 14316 14317 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 14318 desc = (dof_optdesc_t *)((uintptr_t)dof + 14319 (uintptr_t)sec->dofs_offset + offs); 14320 14321 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 14322 dtrace_dof_error(dof, "non-zero option string"); 14323 return (EINVAL); 14324 } 14325 14326 if (desc->dofo_value == DTRACEOPT_UNSET) { 14327 dtrace_dof_error(dof, "unset option"); 14328 return (EINVAL); 14329 } 14330 14331 if ((rval = dtrace_state_option(state, 14332 desc->dofo_option, desc->dofo_value)) != 0) { 14333 dtrace_dof_error(dof, "rejected option"); 14334 return (rval); 14335 } 14336 } 14337 } 14338 14339 return (0); 14340 } 14341 14342 /* 14343 * DTrace Consumer State Functions 14344 */ 14345 static int 14346 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 14347 { 14348 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 14349 void *base; 14350 uintptr_t limit; 14351 dtrace_dynvar_t *dvar, *next, *start; 14352 int i; 14353 14354 ASSERT(MUTEX_HELD(&dtrace_lock)); 14355 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 14356 14357 bzero(dstate, sizeof (dtrace_dstate_t)); 14358 14359 if ((dstate->dtds_chunksize = chunksize) == 0) 14360 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 14361 14362 VERIFY(dstate->dtds_chunksize < LONG_MAX); 14363 14364 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 14365 size = min; 14366 14367 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 14368 return (ENOMEM); 14369 14370 dstate->dtds_size = size; 14371 dstate->dtds_base = base; 14372 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 14373 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 14374 14375 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 14376 14377 if (hashsize != 1 && (hashsize & 1)) 14378 hashsize--; 14379 14380 dstate->dtds_hashsize = hashsize; 14381 dstate->dtds_hash = dstate->dtds_base; 14382 14383 /* 14384 * Set all of our hash buckets to point to the single sink, and (if 14385 * it hasn't already been set), set the sink's hash value to be the 14386 * sink sentinel value. The sink is needed for dynamic variable 14387 * lookups to know that they have iterated over an entire, valid hash 14388 * chain. 14389 */ 14390 for (i = 0; i < hashsize; i++) 14391 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 14392 14393 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 14394 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 14395 14396 /* 14397 * Determine number of active CPUs. Divide free list evenly among 14398 * active CPUs. 14399 */ 14400 start = (dtrace_dynvar_t *) 14401 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 14402 limit = (uintptr_t)base + size; 14403 14404 VERIFY((uintptr_t)start < limit); 14405 VERIFY((uintptr_t)start >= (uintptr_t)base); 14406 14407 maxper = (limit - (uintptr_t)start) / NCPU; 14408 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 14409 14410 #ifndef illumos 14411 CPU_FOREACH(i) { 14412 #else 14413 for (i = 0; i < NCPU; i++) { 14414 #endif 14415 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 14416 14417 /* 14418 * If we don't even have enough chunks to make it once through 14419 * NCPUs, we're just going to allocate everything to the first 14420 * CPU. And if we're on the last CPU, we're going to allocate 14421 * whatever is left over. In either case, we set the limit to 14422 * be the limit of the dynamic variable space. 14423 */ 14424 if (maxper == 0 || i == NCPU - 1) { 14425 limit = (uintptr_t)base + size; 14426 start = NULL; 14427 } else { 14428 limit = (uintptr_t)start + maxper; 14429 start = (dtrace_dynvar_t *)limit; 14430 } 14431 14432 VERIFY(limit <= (uintptr_t)base + size); 14433 14434 for (;;) { 14435 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 14436 dstate->dtds_chunksize); 14437 14438 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 14439 break; 14440 14441 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 14442 (uintptr_t)dvar <= (uintptr_t)base + size); 14443 dvar->dtdv_next = next; 14444 dvar = next; 14445 } 14446 14447 if (maxper == 0) 14448 break; 14449 } 14450 14451 return (0); 14452 } 14453 14454 static void 14455 dtrace_dstate_fini(dtrace_dstate_t *dstate) 14456 { 14457 ASSERT(MUTEX_HELD(&cpu_lock)); 14458 14459 if (dstate->dtds_base == NULL) 14460 return; 14461 14462 kmem_free(dstate->dtds_base, dstate->dtds_size); 14463 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 14464 } 14465 14466 static void 14467 dtrace_vstate_fini(dtrace_vstate_t *vstate) 14468 { 14469 /* 14470 * Logical XOR, where are you? 14471 */ 14472 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 14473 14474 if (vstate->dtvs_nglobals > 0) { 14475 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 14476 sizeof (dtrace_statvar_t *)); 14477 } 14478 14479 if (vstate->dtvs_ntlocals > 0) { 14480 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 14481 sizeof (dtrace_difv_t)); 14482 } 14483 14484 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 14485 14486 if (vstate->dtvs_nlocals > 0) { 14487 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 14488 sizeof (dtrace_statvar_t *)); 14489 } 14490 } 14491 14492 #ifdef illumos 14493 static void 14494 dtrace_state_clean(dtrace_state_t *state) 14495 { 14496 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14497 return; 14498 14499 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14500 dtrace_speculation_clean(state); 14501 } 14502 14503 static void 14504 dtrace_state_deadman(dtrace_state_t *state) 14505 { 14506 hrtime_t now; 14507 14508 dtrace_sync(); 14509 14510 now = dtrace_gethrtime(); 14511 14512 if (state != dtrace_anon.dta_state && 14513 now - state->dts_laststatus >= dtrace_deadman_user) 14514 return; 14515 14516 /* 14517 * We must be sure that dts_alive never appears to be less than the 14518 * value upon entry to dtrace_state_deadman(), and because we lack a 14519 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14520 * store INT64_MAX to it, followed by a memory barrier, followed by 14521 * the new value. This assures that dts_alive never appears to be 14522 * less than its true value, regardless of the order in which the 14523 * stores to the underlying storage are issued. 14524 */ 14525 state->dts_alive = INT64_MAX; 14526 dtrace_membar_producer(); 14527 state->dts_alive = now; 14528 } 14529 #else /* !illumos */ 14530 static void 14531 dtrace_state_clean(void *arg) 14532 { 14533 dtrace_state_t *state = arg; 14534 dtrace_optval_t *opt = state->dts_options; 14535 14536 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14537 return; 14538 14539 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14540 dtrace_speculation_clean(state); 14541 14542 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 14543 dtrace_state_clean, state); 14544 } 14545 14546 static void 14547 dtrace_state_deadman(void *arg) 14548 { 14549 dtrace_state_t *state = arg; 14550 hrtime_t now; 14551 14552 dtrace_sync(); 14553 14554 dtrace_debug_output(); 14555 14556 now = dtrace_gethrtime(); 14557 14558 if (state != dtrace_anon.dta_state && 14559 now - state->dts_laststatus >= dtrace_deadman_user) 14560 return; 14561 14562 /* 14563 * We must be sure that dts_alive never appears to be less than the 14564 * value upon entry to dtrace_state_deadman(), and because we lack a 14565 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14566 * store INT64_MAX to it, followed by a memory barrier, followed by 14567 * the new value. This assures that dts_alive never appears to be 14568 * less than its true value, regardless of the order in which the 14569 * stores to the underlying storage are issued. 14570 */ 14571 state->dts_alive = INT64_MAX; 14572 dtrace_membar_producer(); 14573 state->dts_alive = now; 14574 14575 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 14576 dtrace_state_deadman, state); 14577 } 14578 #endif /* illumos */ 14579 14580 static dtrace_state_t * 14581 #ifdef illumos 14582 dtrace_state_create(dev_t *devp, cred_t *cr) 14583 #else 14584 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused) 14585 #endif 14586 { 14587 #ifdef illumos 14588 minor_t minor; 14589 major_t major; 14590 #else 14591 cred_t *cr = NULL; 14592 int m = 0; 14593 #endif 14594 char c[30]; 14595 dtrace_state_t *state; 14596 dtrace_optval_t *opt; 14597 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 14598 int cpu_it; 14599 14600 ASSERT(MUTEX_HELD(&dtrace_lock)); 14601 ASSERT(MUTEX_HELD(&cpu_lock)); 14602 14603 #ifdef illumos 14604 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 14605 VM_BESTFIT | VM_SLEEP); 14606 14607 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 14608 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14609 return (NULL); 14610 } 14611 14612 state = ddi_get_soft_state(dtrace_softstate, minor); 14613 #else 14614 if (dev != NULL) { 14615 cr = dev->si_cred; 14616 m = dev2unit(dev); 14617 } 14618 14619 /* Allocate memory for the state. */ 14620 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP); 14621 #endif 14622 14623 state->dts_epid = DTRACE_EPIDNONE + 1; 14624 14625 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m); 14626 #ifdef illumos 14627 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 14628 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14629 14630 if (devp != NULL) { 14631 major = getemajor(*devp); 14632 } else { 14633 major = ddi_driver_major(dtrace_devi); 14634 } 14635 14636 state->dts_dev = makedevice(major, minor); 14637 14638 if (devp != NULL) 14639 *devp = state->dts_dev; 14640 #else 14641 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx); 14642 state->dts_dev = dev; 14643 #endif 14644 14645 /* 14646 * We allocate NCPU buffers. On the one hand, this can be quite 14647 * a bit of memory per instance (nearly 36K on a Starcat). On the 14648 * other hand, it saves an additional memory reference in the probe 14649 * path. 14650 */ 14651 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 14652 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 14653 14654 /* 14655 * Allocate and initialise the per-process per-CPU random state. 14656 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is 14657 * assumed to be seeded at this point (if from Fortuna seed file). 14658 */ 14659 arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t)); 14660 for (cpu_it = 1; cpu_it < NCPU; cpu_it++) { 14661 /* 14662 * Each CPU is assigned a 2^64 period, non-overlapping 14663 * subsequence. 14664 */ 14665 dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it-1], 14666 state->dts_rstate[cpu_it]); 14667 } 14668 14669 #ifdef illumos 14670 state->dts_cleaner = CYCLIC_NONE; 14671 state->dts_deadman = CYCLIC_NONE; 14672 #else 14673 callout_init(&state->dts_cleaner, 1); 14674 callout_init(&state->dts_deadman, 1); 14675 #endif 14676 state->dts_vstate.dtvs_state = state; 14677 14678 for (i = 0; i < DTRACEOPT_MAX; i++) 14679 state->dts_options[i] = DTRACEOPT_UNSET; 14680 14681 /* 14682 * Set the default options. 14683 */ 14684 opt = state->dts_options; 14685 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 14686 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 14687 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 14688 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 14689 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 14690 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 14691 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 14692 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 14693 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 14694 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 14695 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 14696 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 14697 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 14698 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 14699 14700 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 14701 14702 /* 14703 * Depending on the user credentials, we set flag bits which alter probe 14704 * visibility or the amount of destructiveness allowed. In the case of 14705 * actual anonymous tracing, or the possession of all privileges, all of 14706 * the normal checks are bypassed. 14707 */ 14708 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 14709 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 14710 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 14711 } else { 14712 /* 14713 * Set up the credentials for this instantiation. We take a 14714 * hold on the credential to prevent it from disappearing on 14715 * us; this in turn prevents the zone_t referenced by this 14716 * credential from disappearing. This means that we can 14717 * examine the credential and the zone from probe context. 14718 */ 14719 crhold(cr); 14720 state->dts_cred.dcr_cred = cr; 14721 14722 /* 14723 * CRA_PROC means "we have *some* privilege for dtrace" and 14724 * unlocks the use of variables like pid, zonename, etc. 14725 */ 14726 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 14727 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14728 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 14729 } 14730 14731 /* 14732 * dtrace_user allows use of syscall and profile providers. 14733 * If the user also has proc_owner and/or proc_zone, we 14734 * extend the scope to include additional visibility and 14735 * destructive power. 14736 */ 14737 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 14738 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 14739 state->dts_cred.dcr_visible |= 14740 DTRACE_CRV_ALLPROC; 14741 14742 state->dts_cred.dcr_action |= 14743 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14744 } 14745 14746 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 14747 state->dts_cred.dcr_visible |= 14748 DTRACE_CRV_ALLZONE; 14749 14750 state->dts_cred.dcr_action |= 14751 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14752 } 14753 14754 /* 14755 * If we have all privs in whatever zone this is, 14756 * we can do destructive things to processes which 14757 * have altered credentials. 14758 */ 14759 #ifdef illumos 14760 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14761 cr->cr_zone->zone_privset)) { 14762 state->dts_cred.dcr_action |= 14763 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14764 } 14765 #endif 14766 } 14767 14768 /* 14769 * Holding the dtrace_kernel privilege also implies that 14770 * the user has the dtrace_user privilege from a visibility 14771 * perspective. But without further privileges, some 14772 * destructive actions are not available. 14773 */ 14774 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 14775 /* 14776 * Make all probes in all zones visible. However, 14777 * this doesn't mean that all actions become available 14778 * to all zones. 14779 */ 14780 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 14781 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 14782 14783 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 14784 DTRACE_CRA_PROC; 14785 /* 14786 * Holding proc_owner means that destructive actions 14787 * for *this* zone are allowed. 14788 */ 14789 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14790 state->dts_cred.dcr_action |= 14791 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14792 14793 /* 14794 * Holding proc_zone means that destructive actions 14795 * for this user/group ID in all zones is allowed. 14796 */ 14797 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14798 state->dts_cred.dcr_action |= 14799 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14800 14801 #ifdef illumos 14802 /* 14803 * If we have all privs in whatever zone this is, 14804 * we can do destructive things to processes which 14805 * have altered credentials. 14806 */ 14807 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14808 cr->cr_zone->zone_privset)) { 14809 state->dts_cred.dcr_action |= 14810 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14811 } 14812 #endif 14813 } 14814 14815 /* 14816 * Holding the dtrace_proc privilege gives control over fasttrap 14817 * and pid providers. We need to grant wider destructive 14818 * privileges in the event that the user has proc_owner and/or 14819 * proc_zone. 14820 */ 14821 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14822 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14823 state->dts_cred.dcr_action |= 14824 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14825 14826 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14827 state->dts_cred.dcr_action |= 14828 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14829 } 14830 } 14831 14832 return (state); 14833 } 14834 14835 static int 14836 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 14837 { 14838 dtrace_optval_t *opt = state->dts_options, size; 14839 processorid_t cpu = 0; 14840 int flags = 0, rval, factor, divisor = 1; 14841 14842 ASSERT(MUTEX_HELD(&dtrace_lock)); 14843 ASSERT(MUTEX_HELD(&cpu_lock)); 14844 ASSERT(which < DTRACEOPT_MAX); 14845 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 14846 (state == dtrace_anon.dta_state && 14847 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 14848 14849 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 14850 return (0); 14851 14852 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 14853 cpu = opt[DTRACEOPT_CPU]; 14854 14855 if (which == DTRACEOPT_SPECSIZE) 14856 flags |= DTRACEBUF_NOSWITCH; 14857 14858 if (which == DTRACEOPT_BUFSIZE) { 14859 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 14860 flags |= DTRACEBUF_RING; 14861 14862 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 14863 flags |= DTRACEBUF_FILL; 14864 14865 if (state != dtrace_anon.dta_state || 14866 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14867 flags |= DTRACEBUF_INACTIVE; 14868 } 14869 14870 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 14871 /* 14872 * The size must be 8-byte aligned. If the size is not 8-byte 14873 * aligned, drop it down by the difference. 14874 */ 14875 if (size & (sizeof (uint64_t) - 1)) 14876 size -= size & (sizeof (uint64_t) - 1); 14877 14878 if (size < state->dts_reserve) { 14879 /* 14880 * Buffers always must be large enough to accommodate 14881 * their prereserved space. We return E2BIG instead 14882 * of ENOMEM in this case to allow for user-level 14883 * software to differentiate the cases. 14884 */ 14885 return (E2BIG); 14886 } 14887 14888 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 14889 14890 if (rval != ENOMEM) { 14891 opt[which] = size; 14892 return (rval); 14893 } 14894 14895 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14896 return (rval); 14897 14898 for (divisor = 2; divisor < factor; divisor <<= 1) 14899 continue; 14900 } 14901 14902 return (ENOMEM); 14903 } 14904 14905 static int 14906 dtrace_state_buffers(dtrace_state_t *state) 14907 { 14908 dtrace_speculation_t *spec = state->dts_speculations; 14909 int rval, i; 14910 14911 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 14912 DTRACEOPT_BUFSIZE)) != 0) 14913 return (rval); 14914 14915 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 14916 DTRACEOPT_AGGSIZE)) != 0) 14917 return (rval); 14918 14919 for (i = 0; i < state->dts_nspeculations; i++) { 14920 if ((rval = dtrace_state_buffer(state, 14921 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 14922 return (rval); 14923 } 14924 14925 return (0); 14926 } 14927 14928 static void 14929 dtrace_state_prereserve(dtrace_state_t *state) 14930 { 14931 dtrace_ecb_t *ecb; 14932 dtrace_probe_t *probe; 14933 14934 state->dts_reserve = 0; 14935 14936 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 14937 return; 14938 14939 /* 14940 * If our buffer policy is a "fill" buffer policy, we need to set the 14941 * prereserved space to be the space required by the END probes. 14942 */ 14943 probe = dtrace_probes[dtrace_probeid_end - 1]; 14944 ASSERT(probe != NULL); 14945 14946 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14947 if (ecb->dte_state != state) 14948 continue; 14949 14950 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14951 } 14952 } 14953 14954 static int 14955 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14956 { 14957 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14958 dtrace_speculation_t *spec; 14959 dtrace_buffer_t *buf; 14960 #ifdef illumos 14961 cyc_handler_t hdlr; 14962 cyc_time_t when; 14963 #endif 14964 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14965 dtrace_icookie_t cookie; 14966 14967 mutex_enter(&cpu_lock); 14968 mutex_enter(&dtrace_lock); 14969 14970 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14971 rval = EBUSY; 14972 goto out; 14973 } 14974 14975 /* 14976 * Before we can perform any checks, we must prime all of the 14977 * retained enablings that correspond to this state. 14978 */ 14979 dtrace_enabling_prime(state); 14980 14981 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 14982 rval = EACCES; 14983 goto out; 14984 } 14985 14986 dtrace_state_prereserve(state); 14987 14988 /* 14989 * Now we want to do is try to allocate our speculations. 14990 * We do not automatically resize the number of speculations; if 14991 * this fails, we will fail the operation. 14992 */ 14993 nspec = opt[DTRACEOPT_NSPEC]; 14994 ASSERT(nspec != DTRACEOPT_UNSET); 14995 14996 if (nspec > INT_MAX) { 14997 rval = ENOMEM; 14998 goto out; 14999 } 15000 15001 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 15002 KM_NOSLEEP | KM_NORMALPRI); 15003 15004 if (spec == NULL) { 15005 rval = ENOMEM; 15006 goto out; 15007 } 15008 15009 state->dts_speculations = spec; 15010 state->dts_nspeculations = (int)nspec; 15011 15012 for (i = 0; i < nspec; i++) { 15013 if ((buf = kmem_zalloc(bufsize, 15014 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 15015 rval = ENOMEM; 15016 goto err; 15017 } 15018 15019 spec[i].dtsp_buffer = buf; 15020 } 15021 15022 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 15023 if (dtrace_anon.dta_state == NULL) { 15024 rval = ENOENT; 15025 goto out; 15026 } 15027 15028 if (state->dts_necbs != 0) { 15029 rval = EALREADY; 15030 goto out; 15031 } 15032 15033 state->dts_anon = dtrace_anon_grab(); 15034 ASSERT(state->dts_anon != NULL); 15035 state = state->dts_anon; 15036 15037 /* 15038 * We want "grabanon" to be set in the grabbed state, so we'll 15039 * copy that option value from the grabbing state into the 15040 * grabbed state. 15041 */ 15042 state->dts_options[DTRACEOPT_GRABANON] = 15043 opt[DTRACEOPT_GRABANON]; 15044 15045 *cpu = dtrace_anon.dta_beganon; 15046 15047 /* 15048 * If the anonymous state is active (as it almost certainly 15049 * is if the anonymous enabling ultimately matched anything), 15050 * we don't allow any further option processing -- but we 15051 * don't return failure. 15052 */ 15053 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15054 goto out; 15055 } 15056 15057 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 15058 opt[DTRACEOPT_AGGSIZE] != 0) { 15059 if (state->dts_aggregations == NULL) { 15060 /* 15061 * We're not going to create an aggregation buffer 15062 * because we don't have any ECBs that contain 15063 * aggregations -- set this option to 0. 15064 */ 15065 opt[DTRACEOPT_AGGSIZE] = 0; 15066 } else { 15067 /* 15068 * If we have an aggregation buffer, we must also have 15069 * a buffer to use as scratch. 15070 */ 15071 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 15072 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 15073 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 15074 } 15075 } 15076 } 15077 15078 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 15079 opt[DTRACEOPT_SPECSIZE] != 0) { 15080 if (!state->dts_speculates) { 15081 /* 15082 * We're not going to create speculation buffers 15083 * because we don't have any ECBs that actually 15084 * speculate -- set the speculation size to 0. 15085 */ 15086 opt[DTRACEOPT_SPECSIZE] = 0; 15087 } 15088 } 15089 15090 /* 15091 * The bare minimum size for any buffer that we're actually going to 15092 * do anything to is sizeof (uint64_t). 15093 */ 15094 sz = sizeof (uint64_t); 15095 15096 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 15097 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 15098 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 15099 /* 15100 * A buffer size has been explicitly set to 0 (or to a size 15101 * that will be adjusted to 0) and we need the space -- we 15102 * need to return failure. We return ENOSPC to differentiate 15103 * it from failing to allocate a buffer due to failure to meet 15104 * the reserve (for which we return E2BIG). 15105 */ 15106 rval = ENOSPC; 15107 goto out; 15108 } 15109 15110 if ((rval = dtrace_state_buffers(state)) != 0) 15111 goto err; 15112 15113 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 15114 sz = dtrace_dstate_defsize; 15115 15116 do { 15117 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 15118 15119 if (rval == 0) 15120 break; 15121 15122 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 15123 goto err; 15124 } while (sz >>= 1); 15125 15126 opt[DTRACEOPT_DYNVARSIZE] = sz; 15127 15128 if (rval != 0) 15129 goto err; 15130 15131 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 15132 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 15133 15134 if (opt[DTRACEOPT_CLEANRATE] == 0) 15135 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15136 15137 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 15138 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 15139 15140 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 15141 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15142 15143 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 15144 #ifdef illumos 15145 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 15146 hdlr.cyh_arg = state; 15147 hdlr.cyh_level = CY_LOW_LEVEL; 15148 15149 when.cyt_when = 0; 15150 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 15151 15152 state->dts_cleaner = cyclic_add(&hdlr, &when); 15153 15154 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 15155 hdlr.cyh_arg = state; 15156 hdlr.cyh_level = CY_LOW_LEVEL; 15157 15158 when.cyt_when = 0; 15159 when.cyt_interval = dtrace_deadman_interval; 15160 15161 state->dts_deadman = cyclic_add(&hdlr, &when); 15162 #else 15163 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 15164 dtrace_state_clean, state); 15165 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 15166 dtrace_state_deadman, state); 15167 #endif 15168 15169 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 15170 15171 #ifdef illumos 15172 if (state->dts_getf != 0 && 15173 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15174 /* 15175 * We don't have kernel privs but we have at least one call 15176 * to getf(); we need to bump our zone's count, and (if 15177 * this is the first enabling to have an unprivileged call 15178 * to getf()) we need to hook into closef(). 15179 */ 15180 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 15181 15182 if (dtrace_getf++ == 0) { 15183 ASSERT(dtrace_closef == NULL); 15184 dtrace_closef = dtrace_getf_barrier; 15185 } 15186 } 15187 #endif 15188 15189 /* 15190 * Now it's time to actually fire the BEGIN probe. We need to disable 15191 * interrupts here both to record the CPU on which we fired the BEGIN 15192 * probe (the data from this CPU will be processed first at user 15193 * level) and to manually activate the buffer for this CPU. 15194 */ 15195 cookie = dtrace_interrupt_disable(); 15196 *cpu = curcpu; 15197 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 15198 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 15199 15200 dtrace_probe(dtrace_probeid_begin, 15201 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15202 dtrace_interrupt_enable(cookie); 15203 /* 15204 * We may have had an exit action from a BEGIN probe; only change our 15205 * state to ACTIVE if we're still in WARMUP. 15206 */ 15207 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 15208 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 15209 15210 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 15211 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 15212 15213 #ifdef __FreeBSD__ 15214 /* 15215 * We enable anonymous tracing before APs are started, so we must 15216 * activate buffers using the current CPU. 15217 */ 15218 if (state == dtrace_anon.dta_state) 15219 for (int i = 0; i < NCPU; i++) 15220 dtrace_buffer_activate_cpu(state, i); 15221 else 15222 dtrace_xcall(DTRACE_CPUALL, 15223 (dtrace_xcall_t)dtrace_buffer_activate, state); 15224 #else 15225 /* 15226 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 15227 * want each CPU to transition its principal buffer out of the 15228 * INACTIVE state. Doing this assures that no CPU will suddenly begin 15229 * processing an ECB halfway down a probe's ECB chain; all CPUs will 15230 * atomically transition from processing none of a state's ECBs to 15231 * processing all of them. 15232 */ 15233 dtrace_xcall(DTRACE_CPUALL, 15234 (dtrace_xcall_t)dtrace_buffer_activate, state); 15235 #endif 15236 goto out; 15237 15238 err: 15239 dtrace_buffer_free(state->dts_buffer); 15240 dtrace_buffer_free(state->dts_aggbuffer); 15241 15242 if ((nspec = state->dts_nspeculations) == 0) { 15243 ASSERT(state->dts_speculations == NULL); 15244 goto out; 15245 } 15246 15247 spec = state->dts_speculations; 15248 ASSERT(spec != NULL); 15249 15250 for (i = 0; i < state->dts_nspeculations; i++) { 15251 if ((buf = spec[i].dtsp_buffer) == NULL) 15252 break; 15253 15254 dtrace_buffer_free(buf); 15255 kmem_free(buf, bufsize); 15256 } 15257 15258 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15259 state->dts_nspeculations = 0; 15260 state->dts_speculations = NULL; 15261 15262 out: 15263 mutex_exit(&dtrace_lock); 15264 mutex_exit(&cpu_lock); 15265 15266 return (rval); 15267 } 15268 15269 static int 15270 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 15271 { 15272 dtrace_icookie_t cookie; 15273 15274 ASSERT(MUTEX_HELD(&dtrace_lock)); 15275 15276 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 15277 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 15278 return (EINVAL); 15279 15280 /* 15281 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 15282 * to be sure that every CPU has seen it. See below for the details 15283 * on why this is done. 15284 */ 15285 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 15286 dtrace_sync(); 15287 15288 /* 15289 * By this point, it is impossible for any CPU to be still processing 15290 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 15291 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 15292 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 15293 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 15294 * iff we're in the END probe. 15295 */ 15296 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 15297 dtrace_sync(); 15298 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 15299 15300 /* 15301 * Finally, we can release the reserve and call the END probe. We 15302 * disable interrupts across calling the END probe to allow us to 15303 * return the CPU on which we actually called the END probe. This 15304 * allows user-land to be sure that this CPU's principal buffer is 15305 * processed last. 15306 */ 15307 state->dts_reserve = 0; 15308 15309 cookie = dtrace_interrupt_disable(); 15310 *cpu = curcpu; 15311 dtrace_probe(dtrace_probeid_end, 15312 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15313 dtrace_interrupt_enable(cookie); 15314 15315 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 15316 dtrace_sync(); 15317 15318 #ifdef illumos 15319 if (state->dts_getf != 0 && 15320 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15321 /* 15322 * We don't have kernel privs but we have at least one call 15323 * to getf(); we need to lower our zone's count, and (if 15324 * this is the last enabling to have an unprivileged call 15325 * to getf()) we need to clear the closef() hook. 15326 */ 15327 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 15328 ASSERT(dtrace_closef == dtrace_getf_barrier); 15329 ASSERT(dtrace_getf > 0); 15330 15331 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 15332 15333 if (--dtrace_getf == 0) 15334 dtrace_closef = NULL; 15335 } 15336 #endif 15337 15338 return (0); 15339 } 15340 15341 static int 15342 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 15343 dtrace_optval_t val) 15344 { 15345 ASSERT(MUTEX_HELD(&dtrace_lock)); 15346 15347 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15348 return (EBUSY); 15349 15350 if (option >= DTRACEOPT_MAX) 15351 return (EINVAL); 15352 15353 if (option != DTRACEOPT_CPU && val < 0) 15354 return (EINVAL); 15355 15356 switch (option) { 15357 case DTRACEOPT_DESTRUCTIVE: 15358 if (dtrace_destructive_disallow) 15359 return (EACCES); 15360 15361 state->dts_cred.dcr_destructive = 1; 15362 break; 15363 15364 case DTRACEOPT_BUFSIZE: 15365 case DTRACEOPT_DYNVARSIZE: 15366 case DTRACEOPT_AGGSIZE: 15367 case DTRACEOPT_SPECSIZE: 15368 case DTRACEOPT_STRSIZE: 15369 if (val < 0) 15370 return (EINVAL); 15371 15372 if (val >= LONG_MAX) { 15373 /* 15374 * If this is an otherwise negative value, set it to 15375 * the highest multiple of 128m less than LONG_MAX. 15376 * Technically, we're adjusting the size without 15377 * regard to the buffer resizing policy, but in fact, 15378 * this has no effect -- if we set the buffer size to 15379 * ~LONG_MAX and the buffer policy is ultimately set to 15380 * be "manual", the buffer allocation is guaranteed to 15381 * fail, if only because the allocation requires two 15382 * buffers. (We set the the size to the highest 15383 * multiple of 128m because it ensures that the size 15384 * will remain a multiple of a megabyte when 15385 * repeatedly halved -- all the way down to 15m.) 15386 */ 15387 val = LONG_MAX - (1 << 27) + 1; 15388 } 15389 } 15390 15391 state->dts_options[option] = val; 15392 15393 return (0); 15394 } 15395 15396 static void 15397 dtrace_state_destroy(dtrace_state_t *state) 15398 { 15399 dtrace_ecb_t *ecb; 15400 dtrace_vstate_t *vstate = &state->dts_vstate; 15401 #ifdef illumos 15402 minor_t minor = getminor(state->dts_dev); 15403 #endif 15404 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 15405 dtrace_speculation_t *spec = state->dts_speculations; 15406 int nspec = state->dts_nspeculations; 15407 uint32_t match; 15408 15409 ASSERT(MUTEX_HELD(&dtrace_lock)); 15410 ASSERT(MUTEX_HELD(&cpu_lock)); 15411 15412 /* 15413 * First, retract any retained enablings for this state. 15414 */ 15415 dtrace_enabling_retract(state); 15416 ASSERT(state->dts_nretained == 0); 15417 15418 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 15419 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 15420 /* 15421 * We have managed to come into dtrace_state_destroy() on a 15422 * hot enabling -- almost certainly because of a disorderly 15423 * shutdown of a consumer. (That is, a consumer that is 15424 * exiting without having called dtrace_stop().) In this case, 15425 * we're going to set our activity to be KILLED, and then 15426 * issue a sync to be sure that everyone is out of probe 15427 * context before we start blowing away ECBs. 15428 */ 15429 state->dts_activity = DTRACE_ACTIVITY_KILLED; 15430 dtrace_sync(); 15431 } 15432 15433 /* 15434 * Release the credential hold we took in dtrace_state_create(). 15435 */ 15436 if (state->dts_cred.dcr_cred != NULL) 15437 crfree(state->dts_cred.dcr_cred); 15438 15439 /* 15440 * Now we can safely disable and destroy any enabled probes. Because 15441 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 15442 * (especially if they're all enabled), we take two passes through the 15443 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 15444 * in the second we disable whatever is left over. 15445 */ 15446 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 15447 for (i = 0; i < state->dts_necbs; i++) { 15448 if ((ecb = state->dts_ecbs[i]) == NULL) 15449 continue; 15450 15451 if (match && ecb->dte_probe != NULL) { 15452 dtrace_probe_t *probe = ecb->dte_probe; 15453 dtrace_provider_t *prov = probe->dtpr_provider; 15454 15455 if (!(prov->dtpv_priv.dtpp_flags & match)) 15456 continue; 15457 } 15458 15459 dtrace_ecb_disable(ecb); 15460 dtrace_ecb_destroy(ecb); 15461 } 15462 15463 if (!match) 15464 break; 15465 } 15466 15467 /* 15468 * Before we free the buffers, perform one more sync to assure that 15469 * every CPU is out of probe context. 15470 */ 15471 dtrace_sync(); 15472 15473 dtrace_buffer_free(state->dts_buffer); 15474 dtrace_buffer_free(state->dts_aggbuffer); 15475 15476 for (i = 0; i < nspec; i++) 15477 dtrace_buffer_free(spec[i].dtsp_buffer); 15478 15479 #ifdef illumos 15480 if (state->dts_cleaner != CYCLIC_NONE) 15481 cyclic_remove(state->dts_cleaner); 15482 15483 if (state->dts_deadman != CYCLIC_NONE) 15484 cyclic_remove(state->dts_deadman); 15485 #else 15486 callout_stop(&state->dts_cleaner); 15487 callout_drain(&state->dts_cleaner); 15488 callout_stop(&state->dts_deadman); 15489 callout_drain(&state->dts_deadman); 15490 #endif 15491 15492 dtrace_dstate_fini(&vstate->dtvs_dynvars); 15493 dtrace_vstate_fini(vstate); 15494 if (state->dts_ecbs != NULL) 15495 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 15496 15497 if (state->dts_aggregations != NULL) { 15498 #ifdef DEBUG 15499 for (i = 0; i < state->dts_naggregations; i++) 15500 ASSERT(state->dts_aggregations[i] == NULL); 15501 #endif 15502 ASSERT(state->dts_naggregations > 0); 15503 kmem_free(state->dts_aggregations, 15504 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 15505 } 15506 15507 kmem_free(state->dts_buffer, bufsize); 15508 kmem_free(state->dts_aggbuffer, bufsize); 15509 15510 for (i = 0; i < nspec; i++) 15511 kmem_free(spec[i].dtsp_buffer, bufsize); 15512 15513 if (spec != NULL) 15514 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15515 15516 dtrace_format_destroy(state); 15517 15518 if (state->dts_aggid_arena != NULL) { 15519 #ifdef illumos 15520 vmem_destroy(state->dts_aggid_arena); 15521 #else 15522 delete_unrhdr(state->dts_aggid_arena); 15523 #endif 15524 state->dts_aggid_arena = NULL; 15525 } 15526 #ifdef illumos 15527 ddi_soft_state_free(dtrace_softstate, minor); 15528 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 15529 #endif 15530 } 15531 15532 /* 15533 * DTrace Anonymous Enabling Functions 15534 */ 15535 static dtrace_state_t * 15536 dtrace_anon_grab(void) 15537 { 15538 dtrace_state_t *state; 15539 15540 ASSERT(MUTEX_HELD(&dtrace_lock)); 15541 15542 if ((state = dtrace_anon.dta_state) == NULL) { 15543 ASSERT(dtrace_anon.dta_enabling == NULL); 15544 return (NULL); 15545 } 15546 15547 ASSERT(dtrace_anon.dta_enabling != NULL); 15548 ASSERT(dtrace_retained != NULL); 15549 15550 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 15551 dtrace_anon.dta_enabling = NULL; 15552 dtrace_anon.dta_state = NULL; 15553 15554 return (state); 15555 } 15556 15557 static void 15558 dtrace_anon_property(void) 15559 { 15560 int i, rv; 15561 dtrace_state_t *state; 15562 dof_hdr_t *dof; 15563 char c[32]; /* enough for "dof-data-" + digits */ 15564 15565 ASSERT(MUTEX_HELD(&dtrace_lock)); 15566 ASSERT(MUTEX_HELD(&cpu_lock)); 15567 15568 for (i = 0; ; i++) { 15569 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 15570 15571 dtrace_err_verbose = 1; 15572 15573 if ((dof = dtrace_dof_property(c)) == NULL) { 15574 dtrace_err_verbose = 0; 15575 break; 15576 } 15577 15578 #ifdef illumos 15579 /* 15580 * We want to create anonymous state, so we need to transition 15581 * the kernel debugger to indicate that DTrace is active. If 15582 * this fails (e.g. because the debugger has modified text in 15583 * some way), we won't continue with the processing. 15584 */ 15585 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15586 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 15587 "enabling ignored."); 15588 dtrace_dof_destroy(dof); 15589 break; 15590 } 15591 #endif 15592 15593 /* 15594 * If we haven't allocated an anonymous state, we'll do so now. 15595 */ 15596 if ((state = dtrace_anon.dta_state) == NULL) { 15597 state = dtrace_state_create(NULL, NULL); 15598 dtrace_anon.dta_state = state; 15599 15600 if (state == NULL) { 15601 /* 15602 * This basically shouldn't happen: the only 15603 * failure mode from dtrace_state_create() is a 15604 * failure of ddi_soft_state_zalloc() that 15605 * itself should never happen. Still, the 15606 * interface allows for a failure mode, and 15607 * we want to fail as gracefully as possible: 15608 * we'll emit an error message and cease 15609 * processing anonymous state in this case. 15610 */ 15611 cmn_err(CE_WARN, "failed to create " 15612 "anonymous state"); 15613 dtrace_dof_destroy(dof); 15614 break; 15615 } 15616 } 15617 15618 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 15619 &dtrace_anon.dta_enabling, 0, 0, B_TRUE); 15620 15621 if (rv == 0) 15622 rv = dtrace_dof_options(dof, state); 15623 15624 dtrace_err_verbose = 0; 15625 dtrace_dof_destroy(dof); 15626 15627 if (rv != 0) { 15628 /* 15629 * This is malformed DOF; chuck any anonymous state 15630 * that we created. 15631 */ 15632 ASSERT(dtrace_anon.dta_enabling == NULL); 15633 dtrace_state_destroy(state); 15634 dtrace_anon.dta_state = NULL; 15635 break; 15636 } 15637 15638 ASSERT(dtrace_anon.dta_enabling != NULL); 15639 } 15640 15641 if (dtrace_anon.dta_enabling != NULL) { 15642 int rval; 15643 15644 /* 15645 * dtrace_enabling_retain() can only fail because we are 15646 * trying to retain more enablings than are allowed -- but 15647 * we only have one anonymous enabling, and we are guaranteed 15648 * to be allowed at least one retained enabling; we assert 15649 * that dtrace_enabling_retain() returns success. 15650 */ 15651 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 15652 ASSERT(rval == 0); 15653 15654 dtrace_enabling_dump(dtrace_anon.dta_enabling); 15655 } 15656 } 15657 15658 /* 15659 * DTrace Helper Functions 15660 */ 15661 static void 15662 dtrace_helper_trace(dtrace_helper_action_t *helper, 15663 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 15664 { 15665 uint32_t size, next, nnext, i; 15666 dtrace_helptrace_t *ent, *buffer; 15667 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags; 15668 15669 if ((buffer = dtrace_helptrace_buffer) == NULL) 15670 return; 15671 15672 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 15673 15674 /* 15675 * What would a tracing framework be without its own tracing 15676 * framework? (Well, a hell of a lot simpler, for starters...) 15677 */ 15678 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 15679 sizeof (uint64_t) - sizeof (uint64_t); 15680 15681 /* 15682 * Iterate until we can allocate a slot in the trace buffer. 15683 */ 15684 do { 15685 next = dtrace_helptrace_next; 15686 15687 if (next + size < dtrace_helptrace_bufsize) { 15688 nnext = next + size; 15689 } else { 15690 nnext = size; 15691 } 15692 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 15693 15694 /* 15695 * We have our slot; fill it in. 15696 */ 15697 if (nnext == size) { 15698 dtrace_helptrace_wrapped++; 15699 next = 0; 15700 } 15701 15702 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 15703 ent->dtht_helper = helper; 15704 ent->dtht_where = where; 15705 ent->dtht_nlocals = vstate->dtvs_nlocals; 15706 15707 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 15708 mstate->dtms_fltoffs : -1; 15709 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 15710 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval; 15711 15712 for (i = 0; i < vstate->dtvs_nlocals; i++) { 15713 dtrace_statvar_t *svar; 15714 15715 if ((svar = vstate->dtvs_locals[i]) == NULL) 15716 continue; 15717 15718 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 15719 ent->dtht_locals[i] = 15720 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu]; 15721 } 15722 } 15723 15724 static uint64_t 15725 dtrace_helper(int which, dtrace_mstate_t *mstate, 15726 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 15727 { 15728 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 15729 uint64_t sarg0 = mstate->dtms_arg[0]; 15730 uint64_t sarg1 = mstate->dtms_arg[1]; 15731 uint64_t rval = 0; 15732 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 15733 dtrace_helper_action_t *helper; 15734 dtrace_vstate_t *vstate; 15735 dtrace_difo_t *pred; 15736 int i, trace = dtrace_helptrace_buffer != NULL; 15737 15738 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 15739 15740 if (helpers == NULL) 15741 return (0); 15742 15743 if ((helper = helpers->dthps_actions[which]) == NULL) 15744 return (0); 15745 15746 vstate = &helpers->dthps_vstate; 15747 mstate->dtms_arg[0] = arg0; 15748 mstate->dtms_arg[1] = arg1; 15749 15750 /* 15751 * Now iterate over each helper. If its predicate evaluates to 'true', 15752 * we'll call the corresponding actions. Note that the below calls 15753 * to dtrace_dif_emulate() may set faults in machine state. This is 15754 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 15755 * the stored DIF offset with its own (which is the desired behavior). 15756 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 15757 * from machine state; this is okay, too. 15758 */ 15759 for (; helper != NULL; helper = helper->dtha_next) { 15760 if ((pred = helper->dtha_predicate) != NULL) { 15761 if (trace) 15762 dtrace_helper_trace(helper, mstate, vstate, 0); 15763 15764 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 15765 goto next; 15766 15767 if (*flags & CPU_DTRACE_FAULT) 15768 goto err; 15769 } 15770 15771 for (i = 0; i < helper->dtha_nactions; i++) { 15772 if (trace) 15773 dtrace_helper_trace(helper, 15774 mstate, vstate, i + 1); 15775 15776 rval = dtrace_dif_emulate(helper->dtha_actions[i], 15777 mstate, vstate, state); 15778 15779 if (*flags & CPU_DTRACE_FAULT) 15780 goto err; 15781 } 15782 15783 next: 15784 if (trace) 15785 dtrace_helper_trace(helper, mstate, vstate, 15786 DTRACE_HELPTRACE_NEXT); 15787 } 15788 15789 if (trace) 15790 dtrace_helper_trace(helper, mstate, vstate, 15791 DTRACE_HELPTRACE_DONE); 15792 15793 /* 15794 * Restore the arg0 that we saved upon entry. 15795 */ 15796 mstate->dtms_arg[0] = sarg0; 15797 mstate->dtms_arg[1] = sarg1; 15798 15799 return (rval); 15800 15801 err: 15802 if (trace) 15803 dtrace_helper_trace(helper, mstate, vstate, 15804 DTRACE_HELPTRACE_ERR); 15805 15806 /* 15807 * Restore the arg0 that we saved upon entry. 15808 */ 15809 mstate->dtms_arg[0] = sarg0; 15810 mstate->dtms_arg[1] = sarg1; 15811 15812 return (0); 15813 } 15814 15815 static void 15816 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 15817 dtrace_vstate_t *vstate) 15818 { 15819 int i; 15820 15821 if (helper->dtha_predicate != NULL) 15822 dtrace_difo_release(helper->dtha_predicate, vstate); 15823 15824 for (i = 0; i < helper->dtha_nactions; i++) { 15825 ASSERT(helper->dtha_actions[i] != NULL); 15826 dtrace_difo_release(helper->dtha_actions[i], vstate); 15827 } 15828 15829 kmem_free(helper->dtha_actions, 15830 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 15831 kmem_free(helper, sizeof (dtrace_helper_action_t)); 15832 } 15833 15834 static int 15835 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen) 15836 { 15837 proc_t *p = curproc; 15838 dtrace_vstate_t *vstate; 15839 int i; 15840 15841 if (help == NULL) 15842 help = p->p_dtrace_helpers; 15843 15844 ASSERT(MUTEX_HELD(&dtrace_lock)); 15845 15846 if (help == NULL || gen > help->dthps_generation) 15847 return (EINVAL); 15848 15849 vstate = &help->dthps_vstate; 15850 15851 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15852 dtrace_helper_action_t *last = NULL, *h, *next; 15853 15854 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15855 next = h->dtha_next; 15856 15857 if (h->dtha_generation == gen) { 15858 if (last != NULL) { 15859 last->dtha_next = next; 15860 } else { 15861 help->dthps_actions[i] = next; 15862 } 15863 15864 dtrace_helper_action_destroy(h, vstate); 15865 } else { 15866 last = h; 15867 } 15868 } 15869 } 15870 15871 /* 15872 * Interate until we've cleared out all helper providers with the 15873 * given generation number. 15874 */ 15875 for (;;) { 15876 dtrace_helper_provider_t *prov; 15877 15878 /* 15879 * Look for a helper provider with the right generation. We 15880 * have to start back at the beginning of the list each time 15881 * because we drop dtrace_lock. It's unlikely that we'll make 15882 * more than two passes. 15883 */ 15884 for (i = 0; i < help->dthps_nprovs; i++) { 15885 prov = help->dthps_provs[i]; 15886 15887 if (prov->dthp_generation == gen) 15888 break; 15889 } 15890 15891 /* 15892 * If there were no matches, we're done. 15893 */ 15894 if (i == help->dthps_nprovs) 15895 break; 15896 15897 /* 15898 * Move the last helper provider into this slot. 15899 */ 15900 help->dthps_nprovs--; 15901 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 15902 help->dthps_provs[help->dthps_nprovs] = NULL; 15903 15904 mutex_exit(&dtrace_lock); 15905 15906 /* 15907 * If we have a meta provider, remove this helper provider. 15908 */ 15909 mutex_enter(&dtrace_meta_lock); 15910 if (dtrace_meta_pid != NULL) { 15911 ASSERT(dtrace_deferred_pid == NULL); 15912 dtrace_helper_provider_remove(&prov->dthp_prov, 15913 p->p_pid); 15914 } 15915 mutex_exit(&dtrace_meta_lock); 15916 15917 dtrace_helper_provider_destroy(prov); 15918 15919 mutex_enter(&dtrace_lock); 15920 } 15921 15922 return (0); 15923 } 15924 15925 static int 15926 dtrace_helper_validate(dtrace_helper_action_t *helper) 15927 { 15928 int err = 0, i; 15929 dtrace_difo_t *dp; 15930 15931 if ((dp = helper->dtha_predicate) != NULL) 15932 err += dtrace_difo_validate_helper(dp); 15933 15934 for (i = 0; i < helper->dtha_nactions; i++) 15935 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 15936 15937 return (err == 0); 15938 } 15939 15940 static int 15941 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep, 15942 dtrace_helpers_t *help) 15943 { 15944 dtrace_helper_action_t *helper, *last; 15945 dtrace_actdesc_t *act; 15946 dtrace_vstate_t *vstate; 15947 dtrace_predicate_t *pred; 15948 int count = 0, nactions = 0, i; 15949 15950 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 15951 return (EINVAL); 15952 15953 last = help->dthps_actions[which]; 15954 vstate = &help->dthps_vstate; 15955 15956 for (count = 0; last != NULL; last = last->dtha_next) { 15957 count++; 15958 if (last->dtha_next == NULL) 15959 break; 15960 } 15961 15962 /* 15963 * If we already have dtrace_helper_actions_max helper actions for this 15964 * helper action type, we'll refuse to add a new one. 15965 */ 15966 if (count >= dtrace_helper_actions_max) 15967 return (ENOSPC); 15968 15969 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 15970 helper->dtha_generation = help->dthps_generation; 15971 15972 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 15973 ASSERT(pred->dtp_difo != NULL); 15974 dtrace_difo_hold(pred->dtp_difo); 15975 helper->dtha_predicate = pred->dtp_difo; 15976 } 15977 15978 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 15979 if (act->dtad_kind != DTRACEACT_DIFEXPR) 15980 goto err; 15981 15982 if (act->dtad_difo == NULL) 15983 goto err; 15984 15985 nactions++; 15986 } 15987 15988 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 15989 (helper->dtha_nactions = nactions), KM_SLEEP); 15990 15991 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 15992 dtrace_difo_hold(act->dtad_difo); 15993 helper->dtha_actions[i++] = act->dtad_difo; 15994 } 15995 15996 if (!dtrace_helper_validate(helper)) 15997 goto err; 15998 15999 if (last == NULL) { 16000 help->dthps_actions[which] = helper; 16001 } else { 16002 last->dtha_next = helper; 16003 } 16004 16005 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 16006 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 16007 dtrace_helptrace_next = 0; 16008 } 16009 16010 return (0); 16011 err: 16012 dtrace_helper_action_destroy(helper, vstate); 16013 return (EINVAL); 16014 } 16015 16016 static void 16017 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 16018 dof_helper_t *dofhp) 16019 { 16020 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 16021 16022 mutex_enter(&dtrace_meta_lock); 16023 mutex_enter(&dtrace_lock); 16024 16025 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 16026 /* 16027 * If the dtrace module is loaded but not attached, or if 16028 * there aren't isn't a meta provider registered to deal with 16029 * these provider descriptions, we need to postpone creating 16030 * the actual providers until later. 16031 */ 16032 16033 if (help->dthps_next == NULL && help->dthps_prev == NULL && 16034 dtrace_deferred_pid != help) { 16035 help->dthps_deferred = 1; 16036 help->dthps_pid = p->p_pid; 16037 help->dthps_next = dtrace_deferred_pid; 16038 help->dthps_prev = NULL; 16039 if (dtrace_deferred_pid != NULL) 16040 dtrace_deferred_pid->dthps_prev = help; 16041 dtrace_deferred_pid = help; 16042 } 16043 16044 mutex_exit(&dtrace_lock); 16045 16046 } else if (dofhp != NULL) { 16047 /* 16048 * If the dtrace module is loaded and we have a particular 16049 * helper provider description, pass that off to the 16050 * meta provider. 16051 */ 16052 16053 mutex_exit(&dtrace_lock); 16054 16055 dtrace_helper_provide(dofhp, p->p_pid); 16056 16057 } else { 16058 /* 16059 * Otherwise, just pass all the helper provider descriptions 16060 * off to the meta provider. 16061 */ 16062 16063 int i; 16064 mutex_exit(&dtrace_lock); 16065 16066 for (i = 0; i < help->dthps_nprovs; i++) { 16067 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 16068 p->p_pid); 16069 } 16070 } 16071 16072 mutex_exit(&dtrace_meta_lock); 16073 } 16074 16075 static int 16076 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen) 16077 { 16078 dtrace_helper_provider_t *hprov, **tmp_provs; 16079 uint_t tmp_maxprovs, i; 16080 16081 ASSERT(MUTEX_HELD(&dtrace_lock)); 16082 ASSERT(help != NULL); 16083 16084 /* 16085 * If we already have dtrace_helper_providers_max helper providers, 16086 * we're refuse to add a new one. 16087 */ 16088 if (help->dthps_nprovs >= dtrace_helper_providers_max) 16089 return (ENOSPC); 16090 16091 /* 16092 * Check to make sure this isn't a duplicate. 16093 */ 16094 for (i = 0; i < help->dthps_nprovs; i++) { 16095 if (dofhp->dofhp_addr == 16096 help->dthps_provs[i]->dthp_prov.dofhp_addr) 16097 return (EALREADY); 16098 } 16099 16100 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 16101 hprov->dthp_prov = *dofhp; 16102 hprov->dthp_ref = 1; 16103 hprov->dthp_generation = gen; 16104 16105 /* 16106 * Allocate a bigger table for helper providers if it's already full. 16107 */ 16108 if (help->dthps_maxprovs == help->dthps_nprovs) { 16109 tmp_maxprovs = help->dthps_maxprovs; 16110 tmp_provs = help->dthps_provs; 16111 16112 if (help->dthps_maxprovs == 0) 16113 help->dthps_maxprovs = 2; 16114 else 16115 help->dthps_maxprovs *= 2; 16116 if (help->dthps_maxprovs > dtrace_helper_providers_max) 16117 help->dthps_maxprovs = dtrace_helper_providers_max; 16118 16119 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 16120 16121 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 16122 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16123 16124 if (tmp_provs != NULL) { 16125 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 16126 sizeof (dtrace_helper_provider_t *)); 16127 kmem_free(tmp_provs, tmp_maxprovs * 16128 sizeof (dtrace_helper_provider_t *)); 16129 } 16130 } 16131 16132 help->dthps_provs[help->dthps_nprovs] = hprov; 16133 help->dthps_nprovs++; 16134 16135 return (0); 16136 } 16137 16138 static void 16139 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 16140 { 16141 mutex_enter(&dtrace_lock); 16142 16143 if (--hprov->dthp_ref == 0) { 16144 dof_hdr_t *dof; 16145 mutex_exit(&dtrace_lock); 16146 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 16147 dtrace_dof_destroy(dof); 16148 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 16149 } else { 16150 mutex_exit(&dtrace_lock); 16151 } 16152 } 16153 16154 static int 16155 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 16156 { 16157 uintptr_t daddr = (uintptr_t)dof; 16158 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 16159 dof_provider_t *provider; 16160 dof_probe_t *probe; 16161 uint8_t *arg; 16162 char *strtab, *typestr; 16163 dof_stridx_t typeidx; 16164 size_t typesz; 16165 uint_t nprobes, j, k; 16166 16167 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 16168 16169 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 16170 dtrace_dof_error(dof, "misaligned section offset"); 16171 return (-1); 16172 } 16173 16174 /* 16175 * The section needs to be large enough to contain the DOF provider 16176 * structure appropriate for the given version. 16177 */ 16178 if (sec->dofs_size < 16179 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 16180 offsetof(dof_provider_t, dofpv_prenoffs) : 16181 sizeof (dof_provider_t))) { 16182 dtrace_dof_error(dof, "provider section too small"); 16183 return (-1); 16184 } 16185 16186 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 16187 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 16188 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 16189 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 16190 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 16191 16192 if (str_sec == NULL || prb_sec == NULL || 16193 arg_sec == NULL || off_sec == NULL) 16194 return (-1); 16195 16196 enoff_sec = NULL; 16197 16198 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 16199 provider->dofpv_prenoffs != DOF_SECT_NONE && 16200 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 16201 provider->dofpv_prenoffs)) == NULL) 16202 return (-1); 16203 16204 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 16205 16206 if (provider->dofpv_name >= str_sec->dofs_size || 16207 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 16208 dtrace_dof_error(dof, "invalid provider name"); 16209 return (-1); 16210 } 16211 16212 if (prb_sec->dofs_entsize == 0 || 16213 prb_sec->dofs_entsize > prb_sec->dofs_size) { 16214 dtrace_dof_error(dof, "invalid entry size"); 16215 return (-1); 16216 } 16217 16218 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 16219 dtrace_dof_error(dof, "misaligned entry size"); 16220 return (-1); 16221 } 16222 16223 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 16224 dtrace_dof_error(dof, "invalid entry size"); 16225 return (-1); 16226 } 16227 16228 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 16229 dtrace_dof_error(dof, "misaligned section offset"); 16230 return (-1); 16231 } 16232 16233 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 16234 dtrace_dof_error(dof, "invalid entry size"); 16235 return (-1); 16236 } 16237 16238 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 16239 16240 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 16241 16242 /* 16243 * Take a pass through the probes to check for errors. 16244 */ 16245 for (j = 0; j < nprobes; j++) { 16246 probe = (dof_probe_t *)(uintptr_t)(daddr + 16247 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 16248 16249 if (probe->dofpr_func >= str_sec->dofs_size) { 16250 dtrace_dof_error(dof, "invalid function name"); 16251 return (-1); 16252 } 16253 16254 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 16255 dtrace_dof_error(dof, "function name too long"); 16256 /* 16257 * Keep going if the function name is too long. 16258 * Unlike provider and probe names, we cannot reasonably 16259 * impose restrictions on function names, since they're 16260 * a property of the code being instrumented. We will 16261 * skip this probe in dtrace_helper_provide_one(). 16262 */ 16263 } 16264 16265 if (probe->dofpr_name >= str_sec->dofs_size || 16266 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 16267 dtrace_dof_error(dof, "invalid probe name"); 16268 return (-1); 16269 } 16270 16271 /* 16272 * The offset count must not wrap the index, and the offsets 16273 * must also not overflow the section's data. 16274 */ 16275 if (probe->dofpr_offidx + probe->dofpr_noffs < 16276 probe->dofpr_offidx || 16277 (probe->dofpr_offidx + probe->dofpr_noffs) * 16278 off_sec->dofs_entsize > off_sec->dofs_size) { 16279 dtrace_dof_error(dof, "invalid probe offset"); 16280 return (-1); 16281 } 16282 16283 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 16284 /* 16285 * If there's no is-enabled offset section, make sure 16286 * there aren't any is-enabled offsets. Otherwise 16287 * perform the same checks as for probe offsets 16288 * (immediately above). 16289 */ 16290 if (enoff_sec == NULL) { 16291 if (probe->dofpr_enoffidx != 0 || 16292 probe->dofpr_nenoffs != 0) { 16293 dtrace_dof_error(dof, "is-enabled " 16294 "offsets with null section"); 16295 return (-1); 16296 } 16297 } else if (probe->dofpr_enoffidx + 16298 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 16299 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 16300 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 16301 dtrace_dof_error(dof, "invalid is-enabled " 16302 "offset"); 16303 return (-1); 16304 } 16305 16306 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 16307 dtrace_dof_error(dof, "zero probe and " 16308 "is-enabled offsets"); 16309 return (-1); 16310 } 16311 } else if (probe->dofpr_noffs == 0) { 16312 dtrace_dof_error(dof, "zero probe offsets"); 16313 return (-1); 16314 } 16315 16316 if (probe->dofpr_argidx + probe->dofpr_xargc < 16317 probe->dofpr_argidx || 16318 (probe->dofpr_argidx + probe->dofpr_xargc) * 16319 arg_sec->dofs_entsize > arg_sec->dofs_size) { 16320 dtrace_dof_error(dof, "invalid args"); 16321 return (-1); 16322 } 16323 16324 typeidx = probe->dofpr_nargv; 16325 typestr = strtab + probe->dofpr_nargv; 16326 for (k = 0; k < probe->dofpr_nargc; k++) { 16327 if (typeidx >= str_sec->dofs_size) { 16328 dtrace_dof_error(dof, "bad " 16329 "native argument type"); 16330 return (-1); 16331 } 16332 16333 typesz = strlen(typestr) + 1; 16334 if (typesz > DTRACE_ARGTYPELEN) { 16335 dtrace_dof_error(dof, "native " 16336 "argument type too long"); 16337 return (-1); 16338 } 16339 typeidx += typesz; 16340 typestr += typesz; 16341 } 16342 16343 typeidx = probe->dofpr_xargv; 16344 typestr = strtab + probe->dofpr_xargv; 16345 for (k = 0; k < probe->dofpr_xargc; k++) { 16346 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 16347 dtrace_dof_error(dof, "bad " 16348 "native argument index"); 16349 return (-1); 16350 } 16351 16352 if (typeidx >= str_sec->dofs_size) { 16353 dtrace_dof_error(dof, "bad " 16354 "translated argument type"); 16355 return (-1); 16356 } 16357 16358 typesz = strlen(typestr) + 1; 16359 if (typesz > DTRACE_ARGTYPELEN) { 16360 dtrace_dof_error(dof, "translated argument " 16361 "type too long"); 16362 return (-1); 16363 } 16364 16365 typeidx += typesz; 16366 typestr += typesz; 16367 } 16368 } 16369 16370 return (0); 16371 } 16372 16373 static int 16374 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p) 16375 { 16376 dtrace_helpers_t *help; 16377 dtrace_vstate_t *vstate; 16378 dtrace_enabling_t *enab = NULL; 16379 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 16380 uintptr_t daddr = (uintptr_t)dof; 16381 16382 ASSERT(MUTEX_HELD(&dtrace_lock)); 16383 16384 if ((help = p->p_dtrace_helpers) == NULL) 16385 help = dtrace_helpers_create(p); 16386 16387 vstate = &help->dthps_vstate; 16388 16389 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr, 16390 dhp->dofhp_dof, B_FALSE)) != 0) { 16391 dtrace_dof_destroy(dof); 16392 return (rv); 16393 } 16394 16395 /* 16396 * Look for helper providers and validate their descriptions. 16397 */ 16398 for (i = 0; i < dof->dofh_secnum; i++) { 16399 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 16400 dof->dofh_secoff + i * dof->dofh_secsize); 16401 16402 if (sec->dofs_type != DOF_SECT_PROVIDER) 16403 continue; 16404 16405 if (dtrace_helper_provider_validate(dof, sec) != 0) { 16406 dtrace_enabling_destroy(enab); 16407 dtrace_dof_destroy(dof); 16408 return (-1); 16409 } 16410 16411 nprovs++; 16412 } 16413 16414 /* 16415 * Now we need to walk through the ECB descriptions in the enabling. 16416 */ 16417 for (i = 0; i < enab->dten_ndesc; i++) { 16418 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 16419 dtrace_probedesc_t *desc = &ep->dted_probe; 16420 16421 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 16422 continue; 16423 16424 if (strcmp(desc->dtpd_mod, "helper") != 0) 16425 continue; 16426 16427 if (strcmp(desc->dtpd_func, "ustack") != 0) 16428 continue; 16429 16430 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 16431 ep, help)) != 0) { 16432 /* 16433 * Adding this helper action failed -- we are now going 16434 * to rip out the entire generation and return failure. 16435 */ 16436 (void) dtrace_helper_destroygen(help, 16437 help->dthps_generation); 16438 dtrace_enabling_destroy(enab); 16439 dtrace_dof_destroy(dof); 16440 return (-1); 16441 } 16442 16443 nhelpers++; 16444 } 16445 16446 if (nhelpers < enab->dten_ndesc) 16447 dtrace_dof_error(dof, "unmatched helpers"); 16448 16449 gen = help->dthps_generation++; 16450 dtrace_enabling_destroy(enab); 16451 16452 if (nprovs > 0) { 16453 /* 16454 * Now that this is in-kernel, we change the sense of the 16455 * members: dofhp_dof denotes the in-kernel copy of the DOF 16456 * and dofhp_addr denotes the address at user-level. 16457 */ 16458 dhp->dofhp_addr = dhp->dofhp_dof; 16459 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 16460 16461 if (dtrace_helper_provider_add(dhp, help, gen) == 0) { 16462 mutex_exit(&dtrace_lock); 16463 dtrace_helper_provider_register(p, help, dhp); 16464 mutex_enter(&dtrace_lock); 16465 16466 destroy = 0; 16467 } 16468 } 16469 16470 if (destroy) 16471 dtrace_dof_destroy(dof); 16472 16473 return (gen); 16474 } 16475 16476 static dtrace_helpers_t * 16477 dtrace_helpers_create(proc_t *p) 16478 { 16479 dtrace_helpers_t *help; 16480 16481 ASSERT(MUTEX_HELD(&dtrace_lock)); 16482 ASSERT(p->p_dtrace_helpers == NULL); 16483 16484 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 16485 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 16486 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 16487 16488 p->p_dtrace_helpers = help; 16489 dtrace_helpers++; 16490 16491 return (help); 16492 } 16493 16494 #ifdef illumos 16495 static 16496 #endif 16497 void 16498 dtrace_helpers_destroy(proc_t *p) 16499 { 16500 dtrace_helpers_t *help; 16501 dtrace_vstate_t *vstate; 16502 #ifdef illumos 16503 proc_t *p = curproc; 16504 #endif 16505 int i; 16506 16507 mutex_enter(&dtrace_lock); 16508 16509 ASSERT(p->p_dtrace_helpers != NULL); 16510 ASSERT(dtrace_helpers > 0); 16511 16512 help = p->p_dtrace_helpers; 16513 vstate = &help->dthps_vstate; 16514 16515 /* 16516 * We're now going to lose the help from this process. 16517 */ 16518 p->p_dtrace_helpers = NULL; 16519 dtrace_sync(); 16520 16521 /* 16522 * Destory the helper actions. 16523 */ 16524 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16525 dtrace_helper_action_t *h, *next; 16526 16527 for (h = help->dthps_actions[i]; h != NULL; h = next) { 16528 next = h->dtha_next; 16529 dtrace_helper_action_destroy(h, vstate); 16530 h = next; 16531 } 16532 } 16533 16534 mutex_exit(&dtrace_lock); 16535 16536 /* 16537 * Destroy the helper providers. 16538 */ 16539 if (help->dthps_maxprovs > 0) { 16540 mutex_enter(&dtrace_meta_lock); 16541 if (dtrace_meta_pid != NULL) { 16542 ASSERT(dtrace_deferred_pid == NULL); 16543 16544 for (i = 0; i < help->dthps_nprovs; i++) { 16545 dtrace_helper_provider_remove( 16546 &help->dthps_provs[i]->dthp_prov, p->p_pid); 16547 } 16548 } else { 16549 mutex_enter(&dtrace_lock); 16550 ASSERT(help->dthps_deferred == 0 || 16551 help->dthps_next != NULL || 16552 help->dthps_prev != NULL || 16553 help == dtrace_deferred_pid); 16554 16555 /* 16556 * Remove the helper from the deferred list. 16557 */ 16558 if (help->dthps_next != NULL) 16559 help->dthps_next->dthps_prev = help->dthps_prev; 16560 if (help->dthps_prev != NULL) 16561 help->dthps_prev->dthps_next = help->dthps_next; 16562 if (dtrace_deferred_pid == help) { 16563 dtrace_deferred_pid = help->dthps_next; 16564 ASSERT(help->dthps_prev == NULL); 16565 } 16566 16567 mutex_exit(&dtrace_lock); 16568 } 16569 16570 mutex_exit(&dtrace_meta_lock); 16571 16572 for (i = 0; i < help->dthps_nprovs; i++) { 16573 dtrace_helper_provider_destroy(help->dthps_provs[i]); 16574 } 16575 16576 kmem_free(help->dthps_provs, help->dthps_maxprovs * 16577 sizeof (dtrace_helper_provider_t *)); 16578 } 16579 16580 mutex_enter(&dtrace_lock); 16581 16582 dtrace_vstate_fini(&help->dthps_vstate); 16583 kmem_free(help->dthps_actions, 16584 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 16585 kmem_free(help, sizeof (dtrace_helpers_t)); 16586 16587 --dtrace_helpers; 16588 mutex_exit(&dtrace_lock); 16589 } 16590 16591 #ifdef illumos 16592 static 16593 #endif 16594 void 16595 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 16596 { 16597 dtrace_helpers_t *help, *newhelp; 16598 dtrace_helper_action_t *helper, *new, *last; 16599 dtrace_difo_t *dp; 16600 dtrace_vstate_t *vstate; 16601 int i, j, sz, hasprovs = 0; 16602 16603 mutex_enter(&dtrace_lock); 16604 ASSERT(from->p_dtrace_helpers != NULL); 16605 ASSERT(dtrace_helpers > 0); 16606 16607 help = from->p_dtrace_helpers; 16608 newhelp = dtrace_helpers_create(to); 16609 ASSERT(to->p_dtrace_helpers != NULL); 16610 16611 newhelp->dthps_generation = help->dthps_generation; 16612 vstate = &newhelp->dthps_vstate; 16613 16614 /* 16615 * Duplicate the helper actions. 16616 */ 16617 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16618 if ((helper = help->dthps_actions[i]) == NULL) 16619 continue; 16620 16621 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 16622 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 16623 KM_SLEEP); 16624 new->dtha_generation = helper->dtha_generation; 16625 16626 if ((dp = helper->dtha_predicate) != NULL) { 16627 dp = dtrace_difo_duplicate(dp, vstate); 16628 new->dtha_predicate = dp; 16629 } 16630 16631 new->dtha_nactions = helper->dtha_nactions; 16632 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 16633 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 16634 16635 for (j = 0; j < new->dtha_nactions; j++) { 16636 dtrace_difo_t *dp = helper->dtha_actions[j]; 16637 16638 ASSERT(dp != NULL); 16639 dp = dtrace_difo_duplicate(dp, vstate); 16640 new->dtha_actions[j] = dp; 16641 } 16642 16643 if (last != NULL) { 16644 last->dtha_next = new; 16645 } else { 16646 newhelp->dthps_actions[i] = new; 16647 } 16648 16649 last = new; 16650 } 16651 } 16652 16653 /* 16654 * Duplicate the helper providers and register them with the 16655 * DTrace framework. 16656 */ 16657 if (help->dthps_nprovs > 0) { 16658 newhelp->dthps_nprovs = help->dthps_nprovs; 16659 newhelp->dthps_maxprovs = help->dthps_nprovs; 16660 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 16661 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16662 for (i = 0; i < newhelp->dthps_nprovs; i++) { 16663 newhelp->dthps_provs[i] = help->dthps_provs[i]; 16664 newhelp->dthps_provs[i]->dthp_ref++; 16665 } 16666 16667 hasprovs = 1; 16668 } 16669 16670 mutex_exit(&dtrace_lock); 16671 16672 if (hasprovs) 16673 dtrace_helper_provider_register(to, newhelp, NULL); 16674 } 16675 16676 /* 16677 * DTrace Hook Functions 16678 */ 16679 static void 16680 dtrace_module_loaded(modctl_t *ctl) 16681 { 16682 dtrace_provider_t *prv; 16683 16684 mutex_enter(&dtrace_provider_lock); 16685 #ifdef illumos 16686 mutex_enter(&mod_lock); 16687 #endif 16688 16689 #ifdef illumos 16690 ASSERT(ctl->mod_busy); 16691 #endif 16692 16693 /* 16694 * We're going to call each providers per-module provide operation 16695 * specifying only this module. 16696 */ 16697 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 16698 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 16699 16700 #ifdef illumos 16701 mutex_exit(&mod_lock); 16702 #endif 16703 mutex_exit(&dtrace_provider_lock); 16704 16705 /* 16706 * If we have any retained enablings, we need to match against them. 16707 * Enabling probes requires that cpu_lock be held, and we cannot hold 16708 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 16709 * module. (In particular, this happens when loading scheduling 16710 * classes.) So if we have any retained enablings, we need to dispatch 16711 * our task queue to do the match for us. 16712 */ 16713 mutex_enter(&dtrace_lock); 16714 16715 if (dtrace_retained == NULL) { 16716 mutex_exit(&dtrace_lock); 16717 return; 16718 } 16719 16720 (void) taskq_dispatch(dtrace_taskq, 16721 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 16722 16723 mutex_exit(&dtrace_lock); 16724 16725 /* 16726 * And now, for a little heuristic sleaze: in general, we want to 16727 * match modules as soon as they load. However, we cannot guarantee 16728 * this, because it would lead us to the lock ordering violation 16729 * outlined above. The common case, of course, is that cpu_lock is 16730 * _not_ held -- so we delay here for a clock tick, hoping that that's 16731 * long enough for the task queue to do its work. If it's not, it's 16732 * not a serious problem -- it just means that the module that we 16733 * just loaded may not be immediately instrumentable. 16734 */ 16735 delay(1); 16736 } 16737 16738 static void 16739 #ifdef illumos 16740 dtrace_module_unloaded(modctl_t *ctl) 16741 #else 16742 dtrace_module_unloaded(modctl_t *ctl, int *error) 16743 #endif 16744 { 16745 dtrace_probe_t template, *probe, *first, *next; 16746 dtrace_provider_t *prov; 16747 #ifndef illumos 16748 char modname[DTRACE_MODNAMELEN]; 16749 size_t len; 16750 #endif 16751 16752 #ifdef illumos 16753 template.dtpr_mod = ctl->mod_modname; 16754 #else 16755 /* Handle the fact that ctl->filename may end in ".ko". */ 16756 strlcpy(modname, ctl->filename, sizeof(modname)); 16757 len = strlen(ctl->filename); 16758 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0) 16759 modname[len - 3] = '\0'; 16760 template.dtpr_mod = modname; 16761 #endif 16762 16763 mutex_enter(&dtrace_provider_lock); 16764 #ifdef illumos 16765 mutex_enter(&mod_lock); 16766 #endif 16767 mutex_enter(&dtrace_lock); 16768 16769 #ifndef illumos 16770 if (ctl->nenabled > 0) { 16771 /* Don't allow unloads if a probe is enabled. */ 16772 mutex_exit(&dtrace_provider_lock); 16773 mutex_exit(&dtrace_lock); 16774 *error = -1; 16775 printf( 16776 "kldunload: attempt to unload module that has DTrace probes enabled\n"); 16777 return; 16778 } 16779 #endif 16780 16781 if (dtrace_bymod == NULL) { 16782 /* 16783 * The DTrace module is loaded (obviously) but not attached; 16784 * we don't have any work to do. 16785 */ 16786 mutex_exit(&dtrace_provider_lock); 16787 #ifdef illumos 16788 mutex_exit(&mod_lock); 16789 #endif 16790 mutex_exit(&dtrace_lock); 16791 return; 16792 } 16793 16794 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 16795 probe != NULL; probe = probe->dtpr_nextmod) { 16796 if (probe->dtpr_ecb != NULL) { 16797 mutex_exit(&dtrace_provider_lock); 16798 #ifdef illumos 16799 mutex_exit(&mod_lock); 16800 #endif 16801 mutex_exit(&dtrace_lock); 16802 16803 /* 16804 * This shouldn't _actually_ be possible -- we're 16805 * unloading a module that has an enabled probe in it. 16806 * (It's normally up to the provider to make sure that 16807 * this can't happen.) However, because dtps_enable() 16808 * doesn't have a failure mode, there can be an 16809 * enable/unload race. Upshot: we don't want to 16810 * assert, but we're not going to disable the 16811 * probe, either. 16812 */ 16813 if (dtrace_err_verbose) { 16814 #ifdef illumos 16815 cmn_err(CE_WARN, "unloaded module '%s' had " 16816 "enabled probes", ctl->mod_modname); 16817 #else 16818 cmn_err(CE_WARN, "unloaded module '%s' had " 16819 "enabled probes", modname); 16820 #endif 16821 } 16822 16823 return; 16824 } 16825 } 16826 16827 probe = first; 16828 16829 for (first = NULL; probe != NULL; probe = next) { 16830 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 16831 16832 dtrace_probes[probe->dtpr_id - 1] = NULL; 16833 16834 next = probe->dtpr_nextmod; 16835 dtrace_hash_remove(dtrace_bymod, probe); 16836 dtrace_hash_remove(dtrace_byfunc, probe); 16837 dtrace_hash_remove(dtrace_byname, probe); 16838 16839 if (first == NULL) { 16840 first = probe; 16841 probe->dtpr_nextmod = NULL; 16842 } else { 16843 probe->dtpr_nextmod = first; 16844 first = probe; 16845 } 16846 } 16847 16848 /* 16849 * We've removed all of the module's probes from the hash chains and 16850 * from the probe array. Now issue a dtrace_sync() to be sure that 16851 * everyone has cleared out from any probe array processing. 16852 */ 16853 dtrace_sync(); 16854 16855 for (probe = first; probe != NULL; probe = first) { 16856 first = probe->dtpr_nextmod; 16857 prov = probe->dtpr_provider; 16858 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 16859 probe->dtpr_arg); 16860 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 16861 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 16862 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 16863 #ifdef illumos 16864 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 16865 #else 16866 free_unr(dtrace_arena, probe->dtpr_id); 16867 #endif 16868 kmem_free(probe, sizeof (dtrace_probe_t)); 16869 } 16870 16871 mutex_exit(&dtrace_lock); 16872 #ifdef illumos 16873 mutex_exit(&mod_lock); 16874 #endif 16875 mutex_exit(&dtrace_provider_lock); 16876 } 16877 16878 #ifndef illumos 16879 static void 16880 dtrace_kld_load(void *arg __unused, linker_file_t lf) 16881 { 16882 16883 dtrace_module_loaded(lf); 16884 } 16885 16886 static void 16887 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error) 16888 { 16889 16890 if (*error != 0) 16891 /* We already have an error, so don't do anything. */ 16892 return; 16893 dtrace_module_unloaded(lf, error); 16894 } 16895 #endif 16896 16897 #ifdef illumos 16898 static void 16899 dtrace_suspend(void) 16900 { 16901 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 16902 } 16903 16904 static void 16905 dtrace_resume(void) 16906 { 16907 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 16908 } 16909 #endif 16910 16911 static int 16912 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 16913 { 16914 ASSERT(MUTEX_HELD(&cpu_lock)); 16915 mutex_enter(&dtrace_lock); 16916 16917 switch (what) { 16918 case CPU_CONFIG: { 16919 dtrace_state_t *state; 16920 dtrace_optval_t *opt, rs, c; 16921 16922 /* 16923 * For now, we only allocate a new buffer for anonymous state. 16924 */ 16925 if ((state = dtrace_anon.dta_state) == NULL) 16926 break; 16927 16928 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 16929 break; 16930 16931 opt = state->dts_options; 16932 c = opt[DTRACEOPT_CPU]; 16933 16934 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 16935 break; 16936 16937 /* 16938 * Regardless of what the actual policy is, we're going to 16939 * temporarily set our resize policy to be manual. We're 16940 * also going to temporarily set our CPU option to denote 16941 * the newly configured CPU. 16942 */ 16943 rs = opt[DTRACEOPT_BUFRESIZE]; 16944 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 16945 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 16946 16947 (void) dtrace_state_buffers(state); 16948 16949 opt[DTRACEOPT_BUFRESIZE] = rs; 16950 opt[DTRACEOPT_CPU] = c; 16951 16952 break; 16953 } 16954 16955 case CPU_UNCONFIG: 16956 /* 16957 * We don't free the buffer in the CPU_UNCONFIG case. (The 16958 * buffer will be freed when the consumer exits.) 16959 */ 16960 break; 16961 16962 default: 16963 break; 16964 } 16965 16966 mutex_exit(&dtrace_lock); 16967 return (0); 16968 } 16969 16970 #ifdef illumos 16971 static void 16972 dtrace_cpu_setup_initial(processorid_t cpu) 16973 { 16974 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 16975 } 16976 #endif 16977 16978 static void 16979 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 16980 { 16981 if (dtrace_toxranges >= dtrace_toxranges_max) { 16982 int osize, nsize; 16983 dtrace_toxrange_t *range; 16984 16985 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16986 16987 if (osize == 0) { 16988 ASSERT(dtrace_toxrange == NULL); 16989 ASSERT(dtrace_toxranges_max == 0); 16990 dtrace_toxranges_max = 1; 16991 } else { 16992 dtrace_toxranges_max <<= 1; 16993 } 16994 16995 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16996 range = kmem_zalloc(nsize, KM_SLEEP); 16997 16998 if (dtrace_toxrange != NULL) { 16999 ASSERT(osize != 0); 17000 bcopy(dtrace_toxrange, range, osize); 17001 kmem_free(dtrace_toxrange, osize); 17002 } 17003 17004 dtrace_toxrange = range; 17005 } 17006 17007 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); 17008 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); 17009 17010 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 17011 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 17012 dtrace_toxranges++; 17013 } 17014 17015 static void 17016 dtrace_getf_barrier() 17017 { 17018 #ifdef illumos 17019 /* 17020 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 17021 * that contain calls to getf(), this routine will be called on every 17022 * closef() before either the underlying vnode is released or the 17023 * file_t itself is freed. By the time we are here, it is essential 17024 * that the file_t can no longer be accessed from a call to getf() 17025 * in probe context -- that assures that a dtrace_sync() can be used 17026 * to clear out any enablings referring to the old structures. 17027 */ 17028 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 17029 kcred->cr_zone->zone_dtrace_getf != 0) 17030 dtrace_sync(); 17031 #endif 17032 } 17033 17034 /* 17035 * DTrace Driver Cookbook Functions 17036 */ 17037 #ifdef illumos 17038 /*ARGSUSED*/ 17039 static int 17040 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 17041 { 17042 dtrace_provider_id_t id; 17043 dtrace_state_t *state = NULL; 17044 dtrace_enabling_t *enab; 17045 17046 mutex_enter(&cpu_lock); 17047 mutex_enter(&dtrace_provider_lock); 17048 mutex_enter(&dtrace_lock); 17049 17050 if (ddi_soft_state_init(&dtrace_softstate, 17051 sizeof (dtrace_state_t), 0) != 0) { 17052 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 17053 mutex_exit(&cpu_lock); 17054 mutex_exit(&dtrace_provider_lock); 17055 mutex_exit(&dtrace_lock); 17056 return (DDI_FAILURE); 17057 } 17058 17059 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 17060 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 17061 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 17062 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 17063 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 17064 ddi_remove_minor_node(devi, NULL); 17065 ddi_soft_state_fini(&dtrace_softstate); 17066 mutex_exit(&cpu_lock); 17067 mutex_exit(&dtrace_provider_lock); 17068 mutex_exit(&dtrace_lock); 17069 return (DDI_FAILURE); 17070 } 17071 17072 ddi_report_dev(devi); 17073 dtrace_devi = devi; 17074 17075 dtrace_modload = dtrace_module_loaded; 17076 dtrace_modunload = dtrace_module_unloaded; 17077 dtrace_cpu_init = dtrace_cpu_setup_initial; 17078 dtrace_helpers_cleanup = dtrace_helpers_destroy; 17079 dtrace_helpers_fork = dtrace_helpers_duplicate; 17080 dtrace_cpustart_init = dtrace_suspend; 17081 dtrace_cpustart_fini = dtrace_resume; 17082 dtrace_debugger_init = dtrace_suspend; 17083 dtrace_debugger_fini = dtrace_resume; 17084 17085 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17086 17087 ASSERT(MUTEX_HELD(&cpu_lock)); 17088 17089 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 17090 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 17091 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 17092 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 17093 VM_SLEEP | VMC_IDENTIFIER); 17094 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 17095 1, INT_MAX, 0); 17096 17097 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 17098 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 17099 NULL, NULL, NULL, NULL, NULL, 0); 17100 17101 ASSERT(MUTEX_HELD(&cpu_lock)); 17102 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 17103 offsetof(dtrace_probe_t, dtpr_nextmod), 17104 offsetof(dtrace_probe_t, dtpr_prevmod)); 17105 17106 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 17107 offsetof(dtrace_probe_t, dtpr_nextfunc), 17108 offsetof(dtrace_probe_t, dtpr_prevfunc)); 17109 17110 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 17111 offsetof(dtrace_probe_t, dtpr_nextname), 17112 offsetof(dtrace_probe_t, dtpr_prevname)); 17113 17114 if (dtrace_retain_max < 1) { 17115 cmn_err(CE_WARN, "illegal value (%zu) for dtrace_retain_max; " 17116 "setting to 1", dtrace_retain_max); 17117 dtrace_retain_max = 1; 17118 } 17119 17120 /* 17121 * Now discover our toxic ranges. 17122 */ 17123 dtrace_toxic_ranges(dtrace_toxrange_add); 17124 17125 /* 17126 * Before we register ourselves as a provider to our own framework, 17127 * we would like to assert that dtrace_provider is NULL -- but that's 17128 * not true if we were loaded as a dependency of a DTrace provider. 17129 * Once we've registered, we can assert that dtrace_provider is our 17130 * pseudo provider. 17131 */ 17132 (void) dtrace_register("dtrace", &dtrace_provider_attr, 17133 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 17134 17135 ASSERT(dtrace_provider != NULL); 17136 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 17137 17138 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 17139 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 17140 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 17141 dtrace_provider, NULL, NULL, "END", 0, NULL); 17142 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 17143 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 17144 17145 dtrace_anon_property(); 17146 mutex_exit(&cpu_lock); 17147 17148 /* 17149 * If there are already providers, we must ask them to provide their 17150 * probes, and then match any anonymous enabling against them. Note 17151 * that there should be no other retained enablings at this time: 17152 * the only retained enablings at this time should be the anonymous 17153 * enabling. 17154 */ 17155 if (dtrace_anon.dta_enabling != NULL) { 17156 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 17157 17158 dtrace_enabling_provide(NULL); 17159 state = dtrace_anon.dta_state; 17160 17161 /* 17162 * We couldn't hold cpu_lock across the above call to 17163 * dtrace_enabling_provide(), but we must hold it to actually 17164 * enable the probes. We have to drop all of our locks, pick 17165 * up cpu_lock, and regain our locks before matching the 17166 * retained anonymous enabling. 17167 */ 17168 mutex_exit(&dtrace_lock); 17169 mutex_exit(&dtrace_provider_lock); 17170 17171 mutex_enter(&cpu_lock); 17172 mutex_enter(&dtrace_provider_lock); 17173 mutex_enter(&dtrace_lock); 17174 17175 if ((enab = dtrace_anon.dta_enabling) != NULL) 17176 (void) dtrace_enabling_match(enab, NULL); 17177 17178 mutex_exit(&cpu_lock); 17179 } 17180 17181 mutex_exit(&dtrace_lock); 17182 mutex_exit(&dtrace_provider_lock); 17183 17184 if (state != NULL) { 17185 /* 17186 * If we created any anonymous state, set it going now. 17187 */ 17188 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 17189 } 17190 17191 return (DDI_SUCCESS); 17192 } 17193 #endif /* illumos */ 17194 17195 #ifndef illumos 17196 static void dtrace_dtr(void *); 17197 #endif 17198 17199 /*ARGSUSED*/ 17200 static int 17201 #ifdef illumos 17202 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 17203 #else 17204 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 17205 #endif 17206 { 17207 dtrace_state_t *state; 17208 uint32_t priv; 17209 uid_t uid; 17210 zoneid_t zoneid; 17211 17212 #ifdef illumos 17213 if (getminor(*devp) == DTRACEMNRN_HELPER) 17214 return (0); 17215 17216 /* 17217 * If this wasn't an open with the "helper" minor, then it must be 17218 * the "dtrace" minor. 17219 */ 17220 if (getminor(*devp) == DTRACEMNRN_DTRACE) 17221 return (ENXIO); 17222 #else 17223 cred_t *cred_p = NULL; 17224 cred_p = dev->si_cred; 17225 17226 /* 17227 * If no DTRACE_PRIV_* bits are set in the credential, then the 17228 * caller lacks sufficient permission to do anything with DTrace. 17229 */ 17230 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 17231 if (priv == DTRACE_PRIV_NONE) { 17232 #endif 17233 17234 return (EACCES); 17235 } 17236 17237 /* 17238 * Ask all providers to provide all their probes. 17239 */ 17240 mutex_enter(&dtrace_provider_lock); 17241 dtrace_probe_provide(NULL, NULL); 17242 mutex_exit(&dtrace_provider_lock); 17243 17244 mutex_enter(&cpu_lock); 17245 mutex_enter(&dtrace_lock); 17246 dtrace_opens++; 17247 dtrace_membar_producer(); 17248 17249 #ifdef illumos 17250 /* 17251 * If the kernel debugger is active (that is, if the kernel debugger 17252 * modified text in some way), we won't allow the open. 17253 */ 17254 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 17255 dtrace_opens--; 17256 mutex_exit(&cpu_lock); 17257 mutex_exit(&dtrace_lock); 17258 return (EBUSY); 17259 } 17260 17261 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 17262 /* 17263 * If DTrace helper tracing is enabled, we need to allocate the 17264 * trace buffer and initialize the values. 17265 */ 17266 dtrace_helptrace_buffer = 17267 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 17268 dtrace_helptrace_next = 0; 17269 dtrace_helptrace_wrapped = 0; 17270 dtrace_helptrace_enable = 0; 17271 } 17272 17273 state = dtrace_state_create(devp, cred_p); 17274 #else 17275 state = dtrace_state_create(dev, NULL); 17276 devfs_set_cdevpriv(state, dtrace_dtr); 17277 #endif 17278 17279 mutex_exit(&cpu_lock); 17280 17281 if (state == NULL) { 17282 #ifdef illumos 17283 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17284 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17285 #else 17286 --dtrace_opens; 17287 #endif 17288 mutex_exit(&dtrace_lock); 17289 return (EAGAIN); 17290 } 17291 17292 mutex_exit(&dtrace_lock); 17293 17294 return (0); 17295 } 17296 17297 /*ARGSUSED*/ 17298 #ifdef illumos 17299 static int 17300 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 17301 #else 17302 static void 17303 dtrace_dtr(void *data) 17304 #endif 17305 { 17306 #ifdef illumos 17307 minor_t minor = getminor(dev); 17308 dtrace_state_t *state; 17309 #endif 17310 dtrace_helptrace_t *buf = NULL; 17311 17312 #ifdef illumos 17313 if (minor == DTRACEMNRN_HELPER) 17314 return (0); 17315 17316 state = ddi_get_soft_state(dtrace_softstate, minor); 17317 #else 17318 dtrace_state_t *state = data; 17319 #endif 17320 17321 mutex_enter(&cpu_lock); 17322 mutex_enter(&dtrace_lock); 17323 17324 #ifdef illumos 17325 if (state->dts_anon) 17326 #else 17327 if (state != NULL && state->dts_anon) 17328 #endif 17329 { 17330 /* 17331 * There is anonymous state. Destroy that first. 17332 */ 17333 ASSERT(dtrace_anon.dta_state == NULL); 17334 dtrace_state_destroy(state->dts_anon); 17335 } 17336 17337 if (dtrace_helptrace_disable) { 17338 /* 17339 * If we have been told to disable helper tracing, set the 17340 * buffer to NULL before calling into dtrace_state_destroy(); 17341 * we take advantage of its dtrace_sync() to know that no 17342 * CPU is in probe context with enabled helper tracing 17343 * after it returns. 17344 */ 17345 buf = dtrace_helptrace_buffer; 17346 dtrace_helptrace_buffer = NULL; 17347 } 17348 17349 #ifdef illumos 17350 dtrace_state_destroy(state); 17351 #else 17352 if (state != NULL) { 17353 dtrace_state_destroy(state); 17354 kmem_free(state, 0); 17355 } 17356 #endif 17357 ASSERT(dtrace_opens > 0); 17358 17359 #ifdef illumos 17360 /* 17361 * Only relinquish control of the kernel debugger interface when there 17362 * are no consumers and no anonymous enablings. 17363 */ 17364 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17365 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17366 #else 17367 --dtrace_opens; 17368 #endif 17369 17370 if (buf != NULL) { 17371 kmem_free(buf, dtrace_helptrace_bufsize); 17372 dtrace_helptrace_disable = 0; 17373 } 17374 17375 mutex_exit(&dtrace_lock); 17376 mutex_exit(&cpu_lock); 17377 17378 #ifdef illumos 17379 return (0); 17380 #endif 17381 } 17382 17383 #ifdef illumos 17384 /*ARGSUSED*/ 17385 static int 17386 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 17387 { 17388 int rval; 17389 dof_helper_t help, *dhp = NULL; 17390 17391 switch (cmd) { 17392 case DTRACEHIOC_ADDDOF: 17393 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 17394 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 17395 return (EFAULT); 17396 } 17397 17398 dhp = &help; 17399 arg = (intptr_t)help.dofhp_dof; 17400 /*FALLTHROUGH*/ 17401 17402 case DTRACEHIOC_ADD: { 17403 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 17404 17405 if (dof == NULL) 17406 return (rval); 17407 17408 mutex_enter(&dtrace_lock); 17409 17410 /* 17411 * dtrace_helper_slurp() takes responsibility for the dof -- 17412 * it may free it now or it may save it and free it later. 17413 */ 17414 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 17415 *rv = rval; 17416 rval = 0; 17417 } else { 17418 rval = EINVAL; 17419 } 17420 17421 mutex_exit(&dtrace_lock); 17422 return (rval); 17423 } 17424 17425 case DTRACEHIOC_REMOVE: { 17426 mutex_enter(&dtrace_lock); 17427 rval = dtrace_helper_destroygen(NULL, arg); 17428 mutex_exit(&dtrace_lock); 17429 17430 return (rval); 17431 } 17432 17433 default: 17434 break; 17435 } 17436 17437 return (ENOTTY); 17438 } 17439 17440 /*ARGSUSED*/ 17441 static int 17442 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 17443 { 17444 minor_t minor = getminor(dev); 17445 dtrace_state_t *state; 17446 int rval; 17447 17448 if (minor == DTRACEMNRN_HELPER) 17449 return (dtrace_ioctl_helper(cmd, arg, rv)); 17450 17451 state = ddi_get_soft_state(dtrace_softstate, minor); 17452 17453 if (state->dts_anon) { 17454 ASSERT(dtrace_anon.dta_state == NULL); 17455 state = state->dts_anon; 17456 } 17457 17458 switch (cmd) { 17459 case DTRACEIOC_PROVIDER: { 17460 dtrace_providerdesc_t pvd; 17461 dtrace_provider_t *pvp; 17462 17463 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 17464 return (EFAULT); 17465 17466 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 17467 mutex_enter(&dtrace_provider_lock); 17468 17469 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 17470 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 17471 break; 17472 } 17473 17474 mutex_exit(&dtrace_provider_lock); 17475 17476 if (pvp == NULL) 17477 return (ESRCH); 17478 17479 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 17480 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 17481 17482 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 17483 return (EFAULT); 17484 17485 return (0); 17486 } 17487 17488 case DTRACEIOC_EPROBE: { 17489 dtrace_eprobedesc_t epdesc; 17490 dtrace_ecb_t *ecb; 17491 dtrace_action_t *act; 17492 void *buf; 17493 size_t size; 17494 uintptr_t dest; 17495 int nrecs; 17496 17497 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 17498 return (EFAULT); 17499 17500 mutex_enter(&dtrace_lock); 17501 17502 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 17503 mutex_exit(&dtrace_lock); 17504 return (EINVAL); 17505 } 17506 17507 if (ecb->dte_probe == NULL) { 17508 mutex_exit(&dtrace_lock); 17509 return (EINVAL); 17510 } 17511 17512 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 17513 epdesc.dtepd_uarg = ecb->dte_uarg; 17514 epdesc.dtepd_size = ecb->dte_size; 17515 17516 nrecs = epdesc.dtepd_nrecs; 17517 epdesc.dtepd_nrecs = 0; 17518 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17519 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17520 continue; 17521 17522 epdesc.dtepd_nrecs++; 17523 } 17524 17525 /* 17526 * Now that we have the size, we need to allocate a temporary 17527 * buffer in which to store the complete description. We need 17528 * the temporary buffer to be able to drop dtrace_lock() 17529 * across the copyout(), below. 17530 */ 17531 size = sizeof (dtrace_eprobedesc_t) + 17532 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 17533 17534 buf = kmem_alloc(size, KM_SLEEP); 17535 dest = (uintptr_t)buf; 17536 17537 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 17538 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 17539 17540 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17541 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17542 continue; 17543 17544 if (nrecs-- == 0) 17545 break; 17546 17547 bcopy(&act->dta_rec, (void *)dest, 17548 sizeof (dtrace_recdesc_t)); 17549 dest += sizeof (dtrace_recdesc_t); 17550 } 17551 17552 mutex_exit(&dtrace_lock); 17553 17554 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17555 kmem_free(buf, size); 17556 return (EFAULT); 17557 } 17558 17559 kmem_free(buf, size); 17560 return (0); 17561 } 17562 17563 case DTRACEIOC_AGGDESC: { 17564 dtrace_aggdesc_t aggdesc; 17565 dtrace_action_t *act; 17566 dtrace_aggregation_t *agg; 17567 int nrecs; 17568 uint32_t offs; 17569 dtrace_recdesc_t *lrec; 17570 void *buf; 17571 size_t size; 17572 uintptr_t dest; 17573 17574 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 17575 return (EFAULT); 17576 17577 mutex_enter(&dtrace_lock); 17578 17579 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 17580 mutex_exit(&dtrace_lock); 17581 return (EINVAL); 17582 } 17583 17584 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 17585 17586 nrecs = aggdesc.dtagd_nrecs; 17587 aggdesc.dtagd_nrecs = 0; 17588 17589 offs = agg->dtag_base; 17590 lrec = &agg->dtag_action.dta_rec; 17591 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 17592 17593 for (act = agg->dtag_first; ; act = act->dta_next) { 17594 ASSERT(act->dta_intuple || 17595 DTRACEACT_ISAGG(act->dta_kind)); 17596 17597 /* 17598 * If this action has a record size of zero, it 17599 * denotes an argument to the aggregating action. 17600 * Because the presence of this record doesn't (or 17601 * shouldn't) affect the way the data is interpreted, 17602 * we don't copy it out to save user-level the 17603 * confusion of dealing with a zero-length record. 17604 */ 17605 if (act->dta_rec.dtrd_size == 0) { 17606 ASSERT(agg->dtag_hasarg); 17607 continue; 17608 } 17609 17610 aggdesc.dtagd_nrecs++; 17611 17612 if (act == &agg->dtag_action) 17613 break; 17614 } 17615 17616 /* 17617 * Now that we have the size, we need to allocate a temporary 17618 * buffer in which to store the complete description. We need 17619 * the temporary buffer to be able to drop dtrace_lock() 17620 * across the copyout(), below. 17621 */ 17622 size = sizeof (dtrace_aggdesc_t) + 17623 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 17624 17625 buf = kmem_alloc(size, KM_SLEEP); 17626 dest = (uintptr_t)buf; 17627 17628 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 17629 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 17630 17631 for (act = agg->dtag_first; ; act = act->dta_next) { 17632 dtrace_recdesc_t rec = act->dta_rec; 17633 17634 /* 17635 * See the comment in the above loop for why we pass 17636 * over zero-length records. 17637 */ 17638 if (rec.dtrd_size == 0) { 17639 ASSERT(agg->dtag_hasarg); 17640 continue; 17641 } 17642 17643 if (nrecs-- == 0) 17644 break; 17645 17646 rec.dtrd_offset -= offs; 17647 bcopy(&rec, (void *)dest, sizeof (rec)); 17648 dest += sizeof (dtrace_recdesc_t); 17649 17650 if (act == &agg->dtag_action) 17651 break; 17652 } 17653 17654 mutex_exit(&dtrace_lock); 17655 17656 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17657 kmem_free(buf, size); 17658 return (EFAULT); 17659 } 17660 17661 kmem_free(buf, size); 17662 return (0); 17663 } 17664 17665 case DTRACEIOC_ENABLE: { 17666 dof_hdr_t *dof; 17667 dtrace_enabling_t *enab = NULL; 17668 dtrace_vstate_t *vstate; 17669 int err = 0; 17670 17671 *rv = 0; 17672 17673 /* 17674 * If a NULL argument has been passed, we take this as our 17675 * cue to reevaluate our enablings. 17676 */ 17677 if (arg == NULL) { 17678 dtrace_enabling_matchall(); 17679 17680 return (0); 17681 } 17682 17683 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 17684 return (rval); 17685 17686 mutex_enter(&cpu_lock); 17687 mutex_enter(&dtrace_lock); 17688 vstate = &state->dts_vstate; 17689 17690 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 17691 mutex_exit(&dtrace_lock); 17692 mutex_exit(&cpu_lock); 17693 dtrace_dof_destroy(dof); 17694 return (EBUSY); 17695 } 17696 17697 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 17698 mutex_exit(&dtrace_lock); 17699 mutex_exit(&cpu_lock); 17700 dtrace_dof_destroy(dof); 17701 return (EINVAL); 17702 } 17703 17704 if ((rval = dtrace_dof_options(dof, state)) != 0) { 17705 dtrace_enabling_destroy(enab); 17706 mutex_exit(&dtrace_lock); 17707 mutex_exit(&cpu_lock); 17708 dtrace_dof_destroy(dof); 17709 return (rval); 17710 } 17711 17712 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 17713 err = dtrace_enabling_retain(enab); 17714 } else { 17715 dtrace_enabling_destroy(enab); 17716 } 17717 17718 mutex_exit(&cpu_lock); 17719 mutex_exit(&dtrace_lock); 17720 dtrace_dof_destroy(dof); 17721 17722 return (err); 17723 } 17724 17725 case DTRACEIOC_REPLICATE: { 17726 dtrace_repldesc_t desc; 17727 dtrace_probedesc_t *match = &desc.dtrpd_match; 17728 dtrace_probedesc_t *create = &desc.dtrpd_create; 17729 int err; 17730 17731 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17732 return (EFAULT); 17733 17734 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17735 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17736 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17737 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17738 17739 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17740 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17741 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17742 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17743 17744 mutex_enter(&dtrace_lock); 17745 err = dtrace_enabling_replicate(state, match, create); 17746 mutex_exit(&dtrace_lock); 17747 17748 return (err); 17749 } 17750 17751 case DTRACEIOC_PROBEMATCH: 17752 case DTRACEIOC_PROBES: { 17753 dtrace_probe_t *probe = NULL; 17754 dtrace_probedesc_t desc; 17755 dtrace_probekey_t pkey; 17756 dtrace_id_t i; 17757 int m = 0; 17758 uint32_t priv; 17759 uid_t uid; 17760 zoneid_t zoneid; 17761 17762 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17763 return (EFAULT); 17764 17765 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17766 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17767 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17768 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17769 17770 /* 17771 * Before we attempt to match this probe, we want to give 17772 * all providers the opportunity to provide it. 17773 */ 17774 if (desc.dtpd_id == DTRACE_IDNONE) { 17775 mutex_enter(&dtrace_provider_lock); 17776 dtrace_probe_provide(&desc, NULL); 17777 mutex_exit(&dtrace_provider_lock); 17778 desc.dtpd_id++; 17779 } 17780 17781 if (cmd == DTRACEIOC_PROBEMATCH) { 17782 dtrace_probekey(&desc, &pkey); 17783 pkey.dtpk_id = DTRACE_IDNONE; 17784 } 17785 17786 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 17787 17788 mutex_enter(&dtrace_lock); 17789 17790 if (cmd == DTRACEIOC_PROBEMATCH) { 17791 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17792 if ((probe = dtrace_probes[i - 1]) != NULL && 17793 (m = dtrace_match_probe(probe, &pkey, 17794 priv, uid, zoneid)) != 0) 17795 break; 17796 } 17797 17798 if (m < 0) { 17799 mutex_exit(&dtrace_lock); 17800 return (EINVAL); 17801 } 17802 17803 } else { 17804 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17805 if ((probe = dtrace_probes[i - 1]) != NULL && 17806 dtrace_match_priv(probe, priv, uid, zoneid)) 17807 break; 17808 } 17809 } 17810 17811 if (probe == NULL) { 17812 mutex_exit(&dtrace_lock); 17813 return (ESRCH); 17814 } 17815 17816 dtrace_probe_description(probe, &desc); 17817 mutex_exit(&dtrace_lock); 17818 17819 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17820 return (EFAULT); 17821 17822 return (0); 17823 } 17824 17825 case DTRACEIOC_PROBEARG: { 17826 dtrace_argdesc_t desc; 17827 dtrace_probe_t *probe; 17828 dtrace_provider_t *prov; 17829 17830 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17831 return (EFAULT); 17832 17833 if (desc.dtargd_id == DTRACE_IDNONE) 17834 return (EINVAL); 17835 17836 if (desc.dtargd_ndx == DTRACE_ARGNONE) 17837 return (EINVAL); 17838 17839 mutex_enter(&dtrace_provider_lock); 17840 mutex_enter(&mod_lock); 17841 mutex_enter(&dtrace_lock); 17842 17843 if (desc.dtargd_id > dtrace_nprobes) { 17844 mutex_exit(&dtrace_lock); 17845 mutex_exit(&mod_lock); 17846 mutex_exit(&dtrace_provider_lock); 17847 return (EINVAL); 17848 } 17849 17850 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 17851 mutex_exit(&dtrace_lock); 17852 mutex_exit(&mod_lock); 17853 mutex_exit(&dtrace_provider_lock); 17854 return (EINVAL); 17855 } 17856 17857 mutex_exit(&dtrace_lock); 17858 17859 prov = probe->dtpr_provider; 17860 17861 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 17862 /* 17863 * There isn't any typed information for this probe. 17864 * Set the argument number to DTRACE_ARGNONE. 17865 */ 17866 desc.dtargd_ndx = DTRACE_ARGNONE; 17867 } else { 17868 desc.dtargd_native[0] = '\0'; 17869 desc.dtargd_xlate[0] = '\0'; 17870 desc.dtargd_mapping = desc.dtargd_ndx; 17871 17872 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 17873 probe->dtpr_id, probe->dtpr_arg, &desc); 17874 } 17875 17876 mutex_exit(&mod_lock); 17877 mutex_exit(&dtrace_provider_lock); 17878 17879 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17880 return (EFAULT); 17881 17882 return (0); 17883 } 17884 17885 case DTRACEIOC_GO: { 17886 processorid_t cpuid; 17887 rval = dtrace_state_go(state, &cpuid); 17888 17889 if (rval != 0) 17890 return (rval); 17891 17892 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17893 return (EFAULT); 17894 17895 return (0); 17896 } 17897 17898 case DTRACEIOC_STOP: { 17899 processorid_t cpuid; 17900 17901 mutex_enter(&dtrace_lock); 17902 rval = dtrace_state_stop(state, &cpuid); 17903 mutex_exit(&dtrace_lock); 17904 17905 if (rval != 0) 17906 return (rval); 17907 17908 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17909 return (EFAULT); 17910 17911 return (0); 17912 } 17913 17914 case DTRACEIOC_DOFGET: { 17915 dof_hdr_t hdr, *dof; 17916 uint64_t len; 17917 17918 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 17919 return (EFAULT); 17920 17921 mutex_enter(&dtrace_lock); 17922 dof = dtrace_dof_create(state); 17923 mutex_exit(&dtrace_lock); 17924 17925 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 17926 rval = copyout(dof, (void *)arg, len); 17927 dtrace_dof_destroy(dof); 17928 17929 return (rval == 0 ? 0 : EFAULT); 17930 } 17931 17932 case DTRACEIOC_AGGSNAP: 17933 case DTRACEIOC_BUFSNAP: { 17934 dtrace_bufdesc_t desc; 17935 caddr_t cached; 17936 dtrace_buffer_t *buf; 17937 17938 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17939 return (EFAULT); 17940 17941 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 17942 return (EINVAL); 17943 17944 mutex_enter(&dtrace_lock); 17945 17946 if (cmd == DTRACEIOC_BUFSNAP) { 17947 buf = &state->dts_buffer[desc.dtbd_cpu]; 17948 } else { 17949 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 17950 } 17951 17952 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 17953 size_t sz = buf->dtb_offset; 17954 17955 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 17956 mutex_exit(&dtrace_lock); 17957 return (EBUSY); 17958 } 17959 17960 /* 17961 * If this buffer has already been consumed, we're 17962 * going to indicate that there's nothing left here 17963 * to consume. 17964 */ 17965 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 17966 mutex_exit(&dtrace_lock); 17967 17968 desc.dtbd_size = 0; 17969 desc.dtbd_drops = 0; 17970 desc.dtbd_errors = 0; 17971 desc.dtbd_oldest = 0; 17972 sz = sizeof (desc); 17973 17974 if (copyout(&desc, (void *)arg, sz) != 0) 17975 return (EFAULT); 17976 17977 return (0); 17978 } 17979 17980 /* 17981 * If this is a ring buffer that has wrapped, we want 17982 * to copy the whole thing out. 17983 */ 17984 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 17985 dtrace_buffer_polish(buf); 17986 sz = buf->dtb_size; 17987 } 17988 17989 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 17990 mutex_exit(&dtrace_lock); 17991 return (EFAULT); 17992 } 17993 17994 desc.dtbd_size = sz; 17995 desc.dtbd_drops = buf->dtb_drops; 17996 desc.dtbd_errors = buf->dtb_errors; 17997 desc.dtbd_oldest = buf->dtb_xamot_offset; 17998 desc.dtbd_timestamp = dtrace_gethrtime(); 17999 18000 mutex_exit(&dtrace_lock); 18001 18002 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18003 return (EFAULT); 18004 18005 buf->dtb_flags |= DTRACEBUF_CONSUMED; 18006 18007 return (0); 18008 } 18009 18010 if (buf->dtb_tomax == NULL) { 18011 ASSERT(buf->dtb_xamot == NULL); 18012 mutex_exit(&dtrace_lock); 18013 return (ENOENT); 18014 } 18015 18016 cached = buf->dtb_tomax; 18017 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 18018 18019 dtrace_xcall(desc.dtbd_cpu, 18020 (dtrace_xcall_t)dtrace_buffer_switch, buf); 18021 18022 state->dts_errors += buf->dtb_xamot_errors; 18023 18024 /* 18025 * If the buffers did not actually switch, then the cross call 18026 * did not take place -- presumably because the given CPU is 18027 * not in the ready set. If this is the case, we'll return 18028 * ENOENT. 18029 */ 18030 if (buf->dtb_tomax == cached) { 18031 ASSERT(buf->dtb_xamot != cached); 18032 mutex_exit(&dtrace_lock); 18033 return (ENOENT); 18034 } 18035 18036 ASSERT(cached == buf->dtb_xamot); 18037 18038 /* 18039 * We have our snapshot; now copy it out. 18040 */ 18041 if (copyout(buf->dtb_xamot, desc.dtbd_data, 18042 buf->dtb_xamot_offset) != 0) { 18043 mutex_exit(&dtrace_lock); 18044 return (EFAULT); 18045 } 18046 18047 desc.dtbd_size = buf->dtb_xamot_offset; 18048 desc.dtbd_drops = buf->dtb_xamot_drops; 18049 desc.dtbd_errors = buf->dtb_xamot_errors; 18050 desc.dtbd_oldest = 0; 18051 desc.dtbd_timestamp = buf->dtb_switched; 18052 18053 mutex_exit(&dtrace_lock); 18054 18055 /* 18056 * Finally, copy out the buffer description. 18057 */ 18058 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18059 return (EFAULT); 18060 18061 return (0); 18062 } 18063 18064 case DTRACEIOC_CONF: { 18065 dtrace_conf_t conf; 18066 18067 bzero(&conf, sizeof (conf)); 18068 conf.dtc_difversion = DIF_VERSION; 18069 conf.dtc_difintregs = DIF_DIR_NREGS; 18070 conf.dtc_diftupregs = DIF_DTR_NREGS; 18071 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 18072 18073 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 18074 return (EFAULT); 18075 18076 return (0); 18077 } 18078 18079 case DTRACEIOC_STATUS: { 18080 dtrace_status_t stat; 18081 dtrace_dstate_t *dstate; 18082 int i, j; 18083 uint64_t nerrs; 18084 18085 /* 18086 * See the comment in dtrace_state_deadman() for the reason 18087 * for setting dts_laststatus to INT64_MAX before setting 18088 * it to the correct value. 18089 */ 18090 state->dts_laststatus = INT64_MAX; 18091 dtrace_membar_producer(); 18092 state->dts_laststatus = dtrace_gethrtime(); 18093 18094 bzero(&stat, sizeof (stat)); 18095 18096 mutex_enter(&dtrace_lock); 18097 18098 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 18099 mutex_exit(&dtrace_lock); 18100 return (ENOENT); 18101 } 18102 18103 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 18104 stat.dtst_exiting = 1; 18105 18106 nerrs = state->dts_errors; 18107 dstate = &state->dts_vstate.dtvs_dynvars; 18108 18109 for (i = 0; i < NCPU; i++) { 18110 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 18111 18112 stat.dtst_dyndrops += dcpu->dtdsc_drops; 18113 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 18114 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 18115 18116 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 18117 stat.dtst_filled++; 18118 18119 nerrs += state->dts_buffer[i].dtb_errors; 18120 18121 for (j = 0; j < state->dts_nspeculations; j++) { 18122 dtrace_speculation_t *spec; 18123 dtrace_buffer_t *buf; 18124 18125 spec = &state->dts_speculations[j]; 18126 buf = &spec->dtsp_buffer[i]; 18127 stat.dtst_specdrops += buf->dtb_xamot_drops; 18128 } 18129 } 18130 18131 stat.dtst_specdrops_busy = state->dts_speculations_busy; 18132 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 18133 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 18134 stat.dtst_dblerrors = state->dts_dblerrors; 18135 stat.dtst_killed = 18136 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 18137 stat.dtst_errors = nerrs; 18138 18139 mutex_exit(&dtrace_lock); 18140 18141 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 18142 return (EFAULT); 18143 18144 return (0); 18145 } 18146 18147 case DTRACEIOC_FORMAT: { 18148 dtrace_fmtdesc_t fmt; 18149 char *str; 18150 int len; 18151 18152 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 18153 return (EFAULT); 18154 18155 mutex_enter(&dtrace_lock); 18156 18157 if (fmt.dtfd_format == 0 || 18158 fmt.dtfd_format > state->dts_nformats) { 18159 mutex_exit(&dtrace_lock); 18160 return (EINVAL); 18161 } 18162 18163 /* 18164 * Format strings are allocated contiguously and they are 18165 * never freed; if a format index is less than the number 18166 * of formats, we can assert that the format map is non-NULL 18167 * and that the format for the specified index is non-NULL. 18168 */ 18169 ASSERT(state->dts_formats != NULL); 18170 str = state->dts_formats[fmt.dtfd_format - 1]; 18171 ASSERT(str != NULL); 18172 18173 len = strlen(str) + 1; 18174 18175 if (len > fmt.dtfd_length) { 18176 fmt.dtfd_length = len; 18177 18178 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 18179 mutex_exit(&dtrace_lock); 18180 return (EINVAL); 18181 } 18182 } else { 18183 if (copyout(str, fmt.dtfd_string, len) != 0) { 18184 mutex_exit(&dtrace_lock); 18185 return (EINVAL); 18186 } 18187 } 18188 18189 mutex_exit(&dtrace_lock); 18190 return (0); 18191 } 18192 18193 default: 18194 break; 18195 } 18196 18197 return (ENOTTY); 18198 } 18199 18200 /*ARGSUSED*/ 18201 static int 18202 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 18203 { 18204 dtrace_state_t *state; 18205 18206 switch (cmd) { 18207 case DDI_DETACH: 18208 break; 18209 18210 case DDI_SUSPEND: 18211 return (DDI_SUCCESS); 18212 18213 default: 18214 return (DDI_FAILURE); 18215 } 18216 18217 mutex_enter(&cpu_lock); 18218 mutex_enter(&dtrace_provider_lock); 18219 mutex_enter(&dtrace_lock); 18220 18221 ASSERT(dtrace_opens == 0); 18222 18223 if (dtrace_helpers > 0) { 18224 mutex_exit(&dtrace_provider_lock); 18225 mutex_exit(&dtrace_lock); 18226 mutex_exit(&cpu_lock); 18227 return (DDI_FAILURE); 18228 } 18229 18230 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 18231 mutex_exit(&dtrace_provider_lock); 18232 mutex_exit(&dtrace_lock); 18233 mutex_exit(&cpu_lock); 18234 return (DDI_FAILURE); 18235 } 18236 18237 dtrace_provider = NULL; 18238 18239 if ((state = dtrace_anon_grab()) != NULL) { 18240 /* 18241 * If there were ECBs on this state, the provider should 18242 * have not been allowed to detach; assert that there is 18243 * none. 18244 */ 18245 ASSERT(state->dts_necbs == 0); 18246 dtrace_state_destroy(state); 18247 18248 /* 18249 * If we're being detached with anonymous state, we need to 18250 * indicate to the kernel debugger that DTrace is now inactive. 18251 */ 18252 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 18253 } 18254 18255 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 18256 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 18257 dtrace_cpu_init = NULL; 18258 dtrace_helpers_cleanup = NULL; 18259 dtrace_helpers_fork = NULL; 18260 dtrace_cpustart_init = NULL; 18261 dtrace_cpustart_fini = NULL; 18262 dtrace_debugger_init = NULL; 18263 dtrace_debugger_fini = NULL; 18264 dtrace_modload = NULL; 18265 dtrace_modunload = NULL; 18266 18267 ASSERT(dtrace_getf == 0); 18268 ASSERT(dtrace_closef == NULL); 18269 18270 mutex_exit(&cpu_lock); 18271 18272 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 18273 dtrace_probes = NULL; 18274 dtrace_nprobes = 0; 18275 18276 dtrace_hash_destroy(dtrace_bymod); 18277 dtrace_hash_destroy(dtrace_byfunc); 18278 dtrace_hash_destroy(dtrace_byname); 18279 dtrace_bymod = NULL; 18280 dtrace_byfunc = NULL; 18281 dtrace_byname = NULL; 18282 18283 kmem_cache_destroy(dtrace_state_cache); 18284 vmem_destroy(dtrace_minor); 18285 vmem_destroy(dtrace_arena); 18286 18287 if (dtrace_toxrange != NULL) { 18288 kmem_free(dtrace_toxrange, 18289 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 18290 dtrace_toxrange = NULL; 18291 dtrace_toxranges = 0; 18292 dtrace_toxranges_max = 0; 18293 } 18294 18295 ddi_remove_minor_node(dtrace_devi, NULL); 18296 dtrace_devi = NULL; 18297 18298 ddi_soft_state_fini(&dtrace_softstate); 18299 18300 ASSERT(dtrace_vtime_references == 0); 18301 ASSERT(dtrace_opens == 0); 18302 ASSERT(dtrace_retained == NULL); 18303 18304 mutex_exit(&dtrace_lock); 18305 mutex_exit(&dtrace_provider_lock); 18306 18307 /* 18308 * We don't destroy the task queue until after we have dropped our 18309 * locks (taskq_destroy() may block on running tasks). To prevent 18310 * attempting to do work after we have effectively detached but before 18311 * the task queue has been destroyed, all tasks dispatched via the 18312 * task queue must check that DTrace is still attached before 18313 * performing any operation. 18314 */ 18315 taskq_destroy(dtrace_taskq); 18316 dtrace_taskq = NULL; 18317 18318 return (DDI_SUCCESS); 18319 } 18320 #endif 18321 18322 #ifdef illumos 18323 /*ARGSUSED*/ 18324 static int 18325 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 18326 { 18327 int error; 18328 18329 switch (infocmd) { 18330 case DDI_INFO_DEVT2DEVINFO: 18331 *result = (void *)dtrace_devi; 18332 error = DDI_SUCCESS; 18333 break; 18334 case DDI_INFO_DEVT2INSTANCE: 18335 *result = (void *)0; 18336 error = DDI_SUCCESS; 18337 break; 18338 default: 18339 error = DDI_FAILURE; 18340 } 18341 return (error); 18342 } 18343 #endif 18344 18345 #ifdef illumos 18346 static struct cb_ops dtrace_cb_ops = { 18347 dtrace_open, /* open */ 18348 dtrace_close, /* close */ 18349 nulldev, /* strategy */ 18350 nulldev, /* print */ 18351 nodev, /* dump */ 18352 nodev, /* read */ 18353 nodev, /* write */ 18354 dtrace_ioctl, /* ioctl */ 18355 nodev, /* devmap */ 18356 nodev, /* mmap */ 18357 nodev, /* segmap */ 18358 nochpoll, /* poll */ 18359 ddi_prop_op, /* cb_prop_op */ 18360 0, /* streamtab */ 18361 D_NEW | D_MP /* Driver compatibility flag */ 18362 }; 18363 18364 static struct dev_ops dtrace_ops = { 18365 DEVO_REV, /* devo_rev */ 18366 0, /* refcnt */ 18367 dtrace_info, /* get_dev_info */ 18368 nulldev, /* identify */ 18369 nulldev, /* probe */ 18370 dtrace_attach, /* attach */ 18371 dtrace_detach, /* detach */ 18372 nodev, /* reset */ 18373 &dtrace_cb_ops, /* driver operations */ 18374 NULL, /* bus operations */ 18375 nodev /* dev power */ 18376 }; 18377 18378 static struct modldrv modldrv = { 18379 &mod_driverops, /* module type (this is a pseudo driver) */ 18380 "Dynamic Tracing", /* name of module */ 18381 &dtrace_ops, /* driver ops */ 18382 }; 18383 18384 static struct modlinkage modlinkage = { 18385 MODREV_1, 18386 (void *)&modldrv, 18387 NULL 18388 }; 18389 18390 int 18391 _init(void) 18392 { 18393 return (mod_install(&modlinkage)); 18394 } 18395 18396 int 18397 _info(struct modinfo *modinfop) 18398 { 18399 return (mod_info(&modlinkage, modinfop)); 18400 } 18401 18402 int 18403 _fini(void) 18404 { 18405 return (mod_remove(&modlinkage)); 18406 } 18407 #else 18408 18409 static d_ioctl_t dtrace_ioctl; 18410 static d_ioctl_t dtrace_ioctl_helper; 18411 static void dtrace_load(void *); 18412 static int dtrace_unload(void); 18413 static struct cdev *dtrace_dev; 18414 static struct cdev *helper_dev; 18415 18416 void dtrace_invop_init(void); 18417 void dtrace_invop_uninit(void); 18418 18419 static struct cdevsw dtrace_cdevsw = { 18420 .d_version = D_VERSION, 18421 .d_ioctl = dtrace_ioctl, 18422 .d_open = dtrace_open, 18423 .d_name = "dtrace", 18424 }; 18425 18426 static struct cdevsw helper_cdevsw = { 18427 .d_version = D_VERSION, 18428 .d_ioctl = dtrace_ioctl_helper, 18429 .d_name = "helper", 18430 }; 18431 18432 #include <dtrace_anon.c> 18433 #include <dtrace_ioctl.c> 18434 #include <dtrace_load.c> 18435 #include <dtrace_modevent.c> 18436 #include <dtrace_sysctl.c> 18437 #include <dtrace_unload.c> 18438 #include <dtrace_vtime.c> 18439 #include <dtrace_hacks.c> 18440 #include <dtrace_isa.c> 18441 18442 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL); 18443 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL); 18444 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL); 18445 18446 DEV_MODULE(dtrace, dtrace_modevent, NULL); 18447 MODULE_VERSION(dtrace, 1); 18448 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1); 18449 #endif 18450