xref: /freebsd/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c (revision 10b9d77bf1ccf2f3affafa6261692cb92cf7e992)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23 
24 /*
25  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 /*
32  * DTrace - Dynamic Tracing for Solaris
33  *
34  * This is the implementation of the Solaris Dynamic Tracing framework
35  * (DTrace).  The user-visible interface to DTrace is described at length in
36  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37  * library, the in-kernel DTrace framework, and the DTrace providers are
38  * described in the block comments in the <sys/dtrace.h> header file.  The
39  * internal architecture of DTrace is described in the block comments in the
40  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41  * implementation very much assume mastery of all of these sources; if one has
42  * an unanswered question about the implementation, one should consult them
43  * first.
44  *
45  * The functions here are ordered roughly as follows:
46  *
47  *   - Probe context functions
48  *   - Probe hashing functions
49  *   - Non-probe context utility functions
50  *   - Matching functions
51  *   - Provider-to-Framework API functions
52  *   - Probe management functions
53  *   - DIF object functions
54  *   - Format functions
55  *   - Predicate functions
56  *   - ECB functions
57  *   - Buffer functions
58  *   - Enabling functions
59  *   - DOF functions
60  *   - Anonymous enabling functions
61  *   - Consumer state functions
62  *   - Helper functions
63  *   - Hook functions
64  *   - Driver cookbook functions
65  *
66  * Each group of functions begins with a block comment labelled the "DTrace
67  * [Group] Functions", allowing one to find each block by searching forward
68  * on capital-f functions.
69  */
70 #include <sys/errno.h>
71 #if !defined(sun)
72 #include <sys/time.h>
73 #endif
74 #include <sys/stat.h>
75 #include <sys/modctl.h>
76 #include <sys/conf.h>
77 #include <sys/systm.h>
78 #if defined(sun)
79 #include <sys/ddi.h>
80 #include <sys/sunddi.h>
81 #endif
82 #include <sys/cpuvar.h>
83 #include <sys/kmem.h>
84 #if defined(sun)
85 #include <sys/strsubr.h>
86 #endif
87 #include <sys/sysmacros.h>
88 #include <sys/dtrace_impl.h>
89 #include <sys/atomic.h>
90 #include <sys/cmn_err.h>
91 #if defined(sun)
92 #include <sys/mutex_impl.h>
93 #include <sys/rwlock_impl.h>
94 #endif
95 #include <sys/ctf_api.h>
96 #if defined(sun)
97 #include <sys/panic.h>
98 #include <sys/priv_impl.h>
99 #endif
100 #include <sys/policy.h>
101 #if defined(sun)
102 #include <sys/cred_impl.h>
103 #include <sys/procfs_isa.h>
104 #endif
105 #include <sys/taskq.h>
106 #if defined(sun)
107 #include <sys/mkdev.h>
108 #include <sys/kdi.h>
109 #endif
110 #include <sys/zone.h>
111 #include <sys/socket.h>
112 #include <netinet/in.h>
113 
114 /* FreeBSD includes: */
115 #if !defined(sun)
116 #include <sys/callout.h>
117 #include <sys/ctype.h>
118 #include <sys/limits.h>
119 #include <sys/kdb.h>
120 #include <sys/kernel.h>
121 #include <sys/malloc.h>
122 #include <sys/sysctl.h>
123 #include <sys/lock.h>
124 #include <sys/mutex.h>
125 #include <sys/rwlock.h>
126 #include <sys/sx.h>
127 #include <sys/dtrace_bsd.h>
128 #include <netinet/in.h>
129 #include "dtrace_cddl.h"
130 #include "dtrace_debug.c"
131 #endif
132 
133 /*
134  * DTrace Tunable Variables
135  *
136  * The following variables may be tuned by adding a line to /etc/system that
137  * includes both the name of the DTrace module ("dtrace") and the name of the
138  * variable.  For example:
139  *
140  *   set dtrace:dtrace_destructive_disallow = 1
141  *
142  * In general, the only variables that one should be tuning this way are those
143  * that affect system-wide DTrace behavior, and for which the default behavior
144  * is undesirable.  Most of these variables are tunable on a per-consumer
145  * basis using DTrace options, and need not be tuned on a system-wide basis.
146  * When tuning these variables, avoid pathological values; while some attempt
147  * is made to verify the integrity of these variables, they are not considered
148  * part of the supported interface to DTrace, and they are therefore not
149  * checked comprehensively.  Further, these variables should not be tuned
150  * dynamically via "mdb -kw" or other means; they should only be tuned via
151  * /etc/system.
152  */
153 int		dtrace_destructive_disallow = 0;
154 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
155 size_t		dtrace_difo_maxsize = (256 * 1024);
156 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
157 size_t		dtrace_global_maxsize = (16 * 1024);
158 size_t		dtrace_actions_max = (16 * 1024);
159 size_t		dtrace_retain_max = 1024;
160 dtrace_optval_t	dtrace_helper_actions_max = 32;
161 dtrace_optval_t	dtrace_helper_providers_max = 32;
162 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
163 size_t		dtrace_strsize_default = 256;
164 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
165 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
166 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
167 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
168 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
169 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
170 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
171 dtrace_optval_t	dtrace_nspec_default = 1;
172 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
173 dtrace_optval_t dtrace_stackframes_default = 20;
174 dtrace_optval_t dtrace_ustackframes_default = 20;
175 dtrace_optval_t dtrace_jstackframes_default = 50;
176 dtrace_optval_t dtrace_jstackstrsize_default = 512;
177 int		dtrace_msgdsize_max = 128;
178 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
179 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
180 int		dtrace_devdepth_max = 32;
181 int		dtrace_err_verbose;
182 hrtime_t	dtrace_deadman_interval = NANOSEC;
183 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
184 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
185 
186 /*
187  * DTrace External Variables
188  *
189  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
190  * available to DTrace consumers via the backtick (`) syntax.  One of these,
191  * dtrace_zero, is made deliberately so:  it is provided as a source of
192  * well-known, zero-filled memory.  While this variable is not documented,
193  * it is used by some translators as an implementation detail.
194  */
195 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
196 
197 /*
198  * DTrace Internal Variables
199  */
200 #if defined(sun)
201 static dev_info_t	*dtrace_devi;		/* device info */
202 #endif
203 #if defined(sun)
204 static vmem_t		*dtrace_arena;		/* probe ID arena */
205 static vmem_t		*dtrace_minor;		/* minor number arena */
206 static taskq_t		*dtrace_taskq;		/* task queue */
207 #else
208 static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
209 #endif
210 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
211 static int		dtrace_nprobes;		/* number of probes */
212 static dtrace_provider_t *dtrace_provider;	/* provider list */
213 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
214 static int		dtrace_opens;		/* number of opens */
215 static int		dtrace_helpers;		/* number of helpers */
216 #if defined(sun)
217 static void		*dtrace_softstate;	/* softstate pointer */
218 #endif
219 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
220 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
221 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
222 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
223 static int		dtrace_toxranges;	/* number of toxic ranges */
224 static int		dtrace_toxranges_max;	/* size of toxic range array */
225 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
226 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
227 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
228 static kthread_t	*dtrace_panicked;	/* panicking thread */
229 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
230 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
231 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
232 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
233 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
234 #if !defined(sun)
235 static struct mtx	dtrace_unr_mtx;
236 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
237 int		dtrace_in_probe;	/* non-zero if executing a probe */
238 #if defined(__i386__) || defined(__amd64__)
239 uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
240 #endif
241 #endif
242 
243 /*
244  * DTrace Locking
245  * DTrace is protected by three (relatively coarse-grained) locks:
246  *
247  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
248  *     including enabling state, probes, ECBs, consumer state, helper state,
249  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
250  *     probe context is lock-free -- synchronization is handled via the
251  *     dtrace_sync() cross call mechanism.
252  *
253  * (2) dtrace_provider_lock is required when manipulating provider state, or
254  *     when provider state must be held constant.
255  *
256  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
257  *     when meta provider state must be held constant.
258  *
259  * The lock ordering between these three locks is dtrace_meta_lock before
260  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
261  * several places where dtrace_provider_lock is held by the framework as it
262  * calls into the providers -- which then call back into the framework,
263  * grabbing dtrace_lock.)
264  *
265  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
266  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
267  * role as a coarse-grained lock; it is acquired before both of these locks.
268  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
269  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
270  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
271  * acquired _between_ dtrace_provider_lock and dtrace_lock.
272  */
273 static kmutex_t		dtrace_lock;		/* probe state lock */
274 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
275 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
276 
277 #if !defined(sun)
278 /* XXX FreeBSD hacks. */
279 static kmutex_t		mod_lock;
280 
281 #define cr_suid		cr_svuid
282 #define cr_sgid		cr_svgid
283 #define	ipaddr_t	in_addr_t
284 #define mod_modname	pathname
285 #define vuprintf	vprintf
286 #define ttoproc(_a)	((_a)->td_proc)
287 #define crgetzoneid(_a)	0
288 #define	NCPU		MAXCPU
289 #define SNOCD		0
290 #define CPU_ON_INTR(_a)	0
291 
292 #define PRIV_EFFECTIVE		(1 << 0)
293 #define PRIV_DTRACE_KERNEL	(1 << 1)
294 #define PRIV_DTRACE_PROC	(1 << 2)
295 #define PRIV_DTRACE_USER	(1 << 3)
296 #define PRIV_PROC_OWNER		(1 << 4)
297 #define PRIV_PROC_ZONE		(1 << 5)
298 #define PRIV_ALL		~0
299 
300 SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
301 #endif
302 
303 #if defined(sun)
304 #define curcpu	CPU->cpu_id
305 #endif
306 
307 
308 /*
309  * DTrace Provider Variables
310  *
311  * These are the variables relating to DTrace as a provider (that is, the
312  * provider of the BEGIN, END, and ERROR probes).
313  */
314 static dtrace_pattr_t	dtrace_provider_attr = {
315 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
316 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
317 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
318 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
319 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
320 };
321 
322 static void
323 dtrace_nullop(void)
324 {}
325 
326 static dtrace_pops_t	dtrace_provider_ops = {
327 	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
328 	(void (*)(void *, modctl_t *))dtrace_nullop,
329 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
330 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
331 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
332 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
333 	NULL,
334 	NULL,
335 	NULL,
336 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
337 };
338 
339 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
340 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
341 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
342 
343 /*
344  * DTrace Helper Tracing Variables
345  */
346 uint32_t dtrace_helptrace_next = 0;
347 uint32_t dtrace_helptrace_nlocals;
348 char	*dtrace_helptrace_buffer;
349 int	dtrace_helptrace_bufsize = 512 * 1024;
350 
351 #ifdef DEBUG
352 int	dtrace_helptrace_enabled = 1;
353 #else
354 int	dtrace_helptrace_enabled = 0;
355 #endif
356 
357 /*
358  * DTrace Error Hashing
359  *
360  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
361  * table.  This is very useful for checking coverage of tests that are
362  * expected to induce DIF or DOF processing errors, and may be useful for
363  * debugging problems in the DIF code generator or in DOF generation .  The
364  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
365  */
366 #ifdef DEBUG
367 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
368 static const char *dtrace_errlast;
369 static kthread_t *dtrace_errthread;
370 static kmutex_t dtrace_errlock;
371 #endif
372 
373 /*
374  * DTrace Macros and Constants
375  *
376  * These are various macros that are useful in various spots in the
377  * implementation, along with a few random constants that have no meaning
378  * outside of the implementation.  There is no real structure to this cpp
379  * mishmash -- but is there ever?
380  */
381 #define	DTRACE_HASHSTR(hash, probe)	\
382 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
383 
384 #define	DTRACE_HASHNEXT(hash, probe)	\
385 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
386 
387 #define	DTRACE_HASHPREV(hash, probe)	\
388 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
389 
390 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
391 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
392 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
393 
394 #define	DTRACE_AGGHASHSIZE_SLEW		17
395 
396 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
397 
398 /*
399  * The key for a thread-local variable consists of the lower 61 bits of the
400  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
401  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
402  * equal to a variable identifier.  This is necessary (but not sufficient) to
403  * assure that global associative arrays never collide with thread-local
404  * variables.  To guarantee that they cannot collide, we must also define the
405  * order for keying dynamic variables.  That order is:
406  *
407  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
408  *
409  * Because the variable-key and the tls-key are in orthogonal spaces, there is
410  * no way for a global variable key signature to match a thread-local key
411  * signature.
412  */
413 #if defined(sun)
414 #define	DTRACE_TLS_THRKEY(where) { \
415 	uint_t intr = 0; \
416 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
417 	for (; actv; actv >>= 1) \
418 		intr++; \
419 	ASSERT(intr < (1 << 3)); \
420 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
421 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
422 }
423 #else
424 #define	DTRACE_TLS_THRKEY(where) { \
425 	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
426 	uint_t intr = 0; \
427 	uint_t actv = _c->cpu_intr_actv; \
428 	for (; actv; actv >>= 1) \
429 		intr++; \
430 	ASSERT(intr < (1 << 3)); \
431 	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
432 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
433 }
434 #endif
435 
436 #define	DT_BSWAP_8(x)	((x) & 0xff)
437 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
438 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
439 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
440 
441 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
442 
443 #define	DTRACE_STORE(type, tomax, offset, what) \
444 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
445 
446 #ifndef __i386
447 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
448 	if (addr & (size - 1)) {					\
449 		*flags |= CPU_DTRACE_BADALIGN;				\
450 		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
451 		return (0);						\
452 	}
453 #else
454 #define	DTRACE_ALIGNCHECK(addr, size, flags)
455 #endif
456 
457 /*
458  * Test whether a range of memory starting at testaddr of size testsz falls
459  * within the range of memory described by addr, sz.  We take care to avoid
460  * problems with overflow and underflow of the unsigned quantities, and
461  * disallow all negative sizes.  Ranges of size 0 are allowed.
462  */
463 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
464 	((testaddr) - (baseaddr) < (basesz) && \
465 	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
466 	(testaddr) + (testsz) >= (testaddr))
467 
468 /*
469  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
470  * alloc_sz on the righthand side of the comparison in order to avoid overflow
471  * or underflow in the comparison with it.  This is simpler than the INRANGE
472  * check above, because we know that the dtms_scratch_ptr is valid in the
473  * range.  Allocations of size zero are allowed.
474  */
475 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
476 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
477 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
478 
479 #define	DTRACE_LOADFUNC(bits)						\
480 /*CSTYLED*/								\
481 uint##bits##_t								\
482 dtrace_load##bits(uintptr_t addr)					\
483 {									\
484 	size_t size = bits / NBBY;					\
485 	/*CSTYLED*/							\
486 	uint##bits##_t rval;						\
487 	int i;								\
488 	volatile uint16_t *flags = (volatile uint16_t *)		\
489 	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
490 									\
491 	DTRACE_ALIGNCHECK(addr, size, flags);				\
492 									\
493 	for (i = 0; i < dtrace_toxranges; i++) {			\
494 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
495 			continue;					\
496 									\
497 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
498 			continue;					\
499 									\
500 		/*							\
501 		 * This address falls within a toxic region; return 0.	\
502 		 */							\
503 		*flags |= CPU_DTRACE_BADADDR;				\
504 		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
505 		return (0);						\
506 	}								\
507 									\
508 	*flags |= CPU_DTRACE_NOFAULT;					\
509 	/*CSTYLED*/							\
510 	rval = *((volatile uint##bits##_t *)addr);			\
511 	*flags &= ~CPU_DTRACE_NOFAULT;					\
512 									\
513 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
514 }
515 
516 #ifdef _LP64
517 #define	dtrace_loadptr	dtrace_load64
518 #else
519 #define	dtrace_loadptr	dtrace_load32
520 #endif
521 
522 #define	DTRACE_DYNHASH_FREE	0
523 #define	DTRACE_DYNHASH_SINK	1
524 #define	DTRACE_DYNHASH_VALID	2
525 
526 #define	DTRACE_MATCH_NEXT	0
527 #define	DTRACE_MATCH_DONE	1
528 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
529 #define	DTRACE_STATE_ALIGN	64
530 
531 #define	DTRACE_FLAGS2FLT(flags)						\
532 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
533 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
534 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
535 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
536 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
537 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
538 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
539 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
540 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
541 	DTRACEFLT_UNKNOWN)
542 
543 #define	DTRACEACT_ISSTRING(act)						\
544 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
545 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
546 
547 /* Function prototype definitions: */
548 static size_t dtrace_strlen(const char *, size_t);
549 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
550 static void dtrace_enabling_provide(dtrace_provider_t *);
551 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
552 static void dtrace_enabling_matchall(void);
553 static dtrace_state_t *dtrace_anon_grab(void);
554 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
555     dtrace_state_t *, uint64_t, uint64_t);
556 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
557 static void dtrace_buffer_drop(dtrace_buffer_t *);
558 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
559     dtrace_state_t *, dtrace_mstate_t *);
560 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
561     dtrace_optval_t);
562 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
563 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
564 uint16_t dtrace_load16(uintptr_t);
565 uint32_t dtrace_load32(uintptr_t);
566 uint64_t dtrace_load64(uintptr_t);
567 uint8_t dtrace_load8(uintptr_t);
568 void dtrace_dynvar_clean(dtrace_dstate_t *);
569 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
570     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
571 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
572 
573 /*
574  * DTrace Probe Context Functions
575  *
576  * These functions are called from probe context.  Because probe context is
577  * any context in which C may be called, arbitrarily locks may be held,
578  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
579  * As a result, functions called from probe context may only call other DTrace
580  * support functions -- they may not interact at all with the system at large.
581  * (Note that the ASSERT macro is made probe-context safe by redefining it in
582  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
583  * loads are to be performed from probe context, they _must_ be in terms of
584  * the safe dtrace_load*() variants.
585  *
586  * Some functions in this block are not actually called from probe context;
587  * for these functions, there will be a comment above the function reading
588  * "Note:  not called from probe context."
589  */
590 void
591 dtrace_panic(const char *format, ...)
592 {
593 	va_list alist;
594 
595 	va_start(alist, format);
596 	dtrace_vpanic(format, alist);
597 	va_end(alist);
598 }
599 
600 int
601 dtrace_assfail(const char *a, const char *f, int l)
602 {
603 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
604 
605 	/*
606 	 * We just need something here that even the most clever compiler
607 	 * cannot optimize away.
608 	 */
609 	return (a[(uintptr_t)f]);
610 }
611 
612 /*
613  * Atomically increment a specified error counter from probe context.
614  */
615 static void
616 dtrace_error(uint32_t *counter)
617 {
618 	/*
619 	 * Most counters stored to in probe context are per-CPU counters.
620 	 * However, there are some error conditions that are sufficiently
621 	 * arcane that they don't merit per-CPU storage.  If these counters
622 	 * are incremented concurrently on different CPUs, scalability will be
623 	 * adversely affected -- but we don't expect them to be white-hot in a
624 	 * correctly constructed enabling...
625 	 */
626 	uint32_t oval, nval;
627 
628 	do {
629 		oval = *counter;
630 
631 		if ((nval = oval + 1) == 0) {
632 			/*
633 			 * If the counter would wrap, set it to 1 -- assuring
634 			 * that the counter is never zero when we have seen
635 			 * errors.  (The counter must be 32-bits because we
636 			 * aren't guaranteed a 64-bit compare&swap operation.)
637 			 * To save this code both the infamy of being fingered
638 			 * by a priggish news story and the indignity of being
639 			 * the target of a neo-puritan witch trial, we're
640 			 * carefully avoiding any colorful description of the
641 			 * likelihood of this condition -- but suffice it to
642 			 * say that it is only slightly more likely than the
643 			 * overflow of predicate cache IDs, as discussed in
644 			 * dtrace_predicate_create().
645 			 */
646 			nval = 1;
647 		}
648 	} while (dtrace_cas32(counter, oval, nval) != oval);
649 }
650 
651 /*
652  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
653  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
654  */
655 DTRACE_LOADFUNC(8)
656 DTRACE_LOADFUNC(16)
657 DTRACE_LOADFUNC(32)
658 DTRACE_LOADFUNC(64)
659 
660 static int
661 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
662 {
663 	if (dest < mstate->dtms_scratch_base)
664 		return (0);
665 
666 	if (dest + size < dest)
667 		return (0);
668 
669 	if (dest + size > mstate->dtms_scratch_ptr)
670 		return (0);
671 
672 	return (1);
673 }
674 
675 static int
676 dtrace_canstore_statvar(uint64_t addr, size_t sz,
677     dtrace_statvar_t **svars, int nsvars)
678 {
679 	int i;
680 
681 	for (i = 0; i < nsvars; i++) {
682 		dtrace_statvar_t *svar = svars[i];
683 
684 		if (svar == NULL || svar->dtsv_size == 0)
685 			continue;
686 
687 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
688 			return (1);
689 	}
690 
691 	return (0);
692 }
693 
694 /*
695  * Check to see if the address is within a memory region to which a store may
696  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
697  * region.  The caller of dtrace_canstore() is responsible for performing any
698  * alignment checks that are needed before stores are actually executed.
699  */
700 static int
701 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
702     dtrace_vstate_t *vstate)
703 {
704 	/*
705 	 * First, check to see if the address is in scratch space...
706 	 */
707 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
708 	    mstate->dtms_scratch_size))
709 		return (1);
710 
711 	/*
712 	 * Now check to see if it's a dynamic variable.  This check will pick
713 	 * up both thread-local variables and any global dynamically-allocated
714 	 * variables.
715 	 */
716 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
717 	    vstate->dtvs_dynvars.dtds_size)) {
718 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
719 		uintptr_t base = (uintptr_t)dstate->dtds_base +
720 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
721 		uintptr_t chunkoffs;
722 
723 		/*
724 		 * Before we assume that we can store here, we need to make
725 		 * sure that it isn't in our metadata -- storing to our
726 		 * dynamic variable metadata would corrupt our state.  For
727 		 * the range to not include any dynamic variable metadata,
728 		 * it must:
729 		 *
730 		 *	(1) Start above the hash table that is at the base of
731 		 *	the dynamic variable space
732 		 *
733 		 *	(2) Have a starting chunk offset that is beyond the
734 		 *	dtrace_dynvar_t that is at the base of every chunk
735 		 *
736 		 *	(3) Not span a chunk boundary
737 		 *
738 		 */
739 		if (addr < base)
740 			return (0);
741 
742 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
743 
744 		if (chunkoffs < sizeof (dtrace_dynvar_t))
745 			return (0);
746 
747 		if (chunkoffs + sz > dstate->dtds_chunksize)
748 			return (0);
749 
750 		return (1);
751 	}
752 
753 	/*
754 	 * Finally, check the static local and global variables.  These checks
755 	 * take the longest, so we perform them last.
756 	 */
757 	if (dtrace_canstore_statvar(addr, sz,
758 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
759 		return (1);
760 
761 	if (dtrace_canstore_statvar(addr, sz,
762 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
763 		return (1);
764 
765 	return (0);
766 }
767 
768 
769 /*
770  * Convenience routine to check to see if the address is within a memory
771  * region in which a load may be issued given the user's privilege level;
772  * if not, it sets the appropriate error flags and loads 'addr' into the
773  * illegal value slot.
774  *
775  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
776  * appropriate memory access protection.
777  */
778 static int
779 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
780     dtrace_vstate_t *vstate)
781 {
782 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
783 
784 	/*
785 	 * If we hold the privilege to read from kernel memory, then
786 	 * everything is readable.
787 	 */
788 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
789 		return (1);
790 
791 	/*
792 	 * You can obviously read that which you can store.
793 	 */
794 	if (dtrace_canstore(addr, sz, mstate, vstate))
795 		return (1);
796 
797 	/*
798 	 * We're allowed to read from our own string table.
799 	 */
800 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
801 	    mstate->dtms_difo->dtdo_strlen))
802 		return (1);
803 
804 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
805 	*illval = addr;
806 	return (0);
807 }
808 
809 /*
810  * Convenience routine to check to see if a given string is within a memory
811  * region in which a load may be issued given the user's privilege level;
812  * this exists so that we don't need to issue unnecessary dtrace_strlen()
813  * calls in the event that the user has all privileges.
814  */
815 static int
816 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
817     dtrace_vstate_t *vstate)
818 {
819 	size_t strsz;
820 
821 	/*
822 	 * If we hold the privilege to read from kernel memory, then
823 	 * everything is readable.
824 	 */
825 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
826 		return (1);
827 
828 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
829 	if (dtrace_canload(addr, strsz, mstate, vstate))
830 		return (1);
831 
832 	return (0);
833 }
834 
835 /*
836  * Convenience routine to check to see if a given variable is within a memory
837  * region in which a load may be issued given the user's privilege level.
838  */
839 static int
840 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
841     dtrace_vstate_t *vstate)
842 {
843 	size_t sz;
844 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
845 
846 	/*
847 	 * If we hold the privilege to read from kernel memory, then
848 	 * everything is readable.
849 	 */
850 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
851 		return (1);
852 
853 	if (type->dtdt_kind == DIF_TYPE_STRING)
854 		sz = dtrace_strlen(src,
855 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
856 	else
857 		sz = type->dtdt_size;
858 
859 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
860 }
861 
862 /*
863  * Compare two strings using safe loads.
864  */
865 static int
866 dtrace_strncmp(char *s1, char *s2, size_t limit)
867 {
868 	uint8_t c1, c2;
869 	volatile uint16_t *flags;
870 
871 	if (s1 == s2 || limit == 0)
872 		return (0);
873 
874 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
875 
876 	do {
877 		if (s1 == NULL) {
878 			c1 = '\0';
879 		} else {
880 			c1 = dtrace_load8((uintptr_t)s1++);
881 		}
882 
883 		if (s2 == NULL) {
884 			c2 = '\0';
885 		} else {
886 			c2 = dtrace_load8((uintptr_t)s2++);
887 		}
888 
889 		if (c1 != c2)
890 			return (c1 - c2);
891 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
892 
893 	return (0);
894 }
895 
896 /*
897  * Compute strlen(s) for a string using safe memory accesses.  The additional
898  * len parameter is used to specify a maximum length to ensure completion.
899  */
900 static size_t
901 dtrace_strlen(const char *s, size_t lim)
902 {
903 	uint_t len;
904 
905 	for (len = 0; len != lim; len++) {
906 		if (dtrace_load8((uintptr_t)s++) == '\0')
907 			break;
908 	}
909 
910 	return (len);
911 }
912 
913 /*
914  * Check if an address falls within a toxic region.
915  */
916 static int
917 dtrace_istoxic(uintptr_t kaddr, size_t size)
918 {
919 	uintptr_t taddr, tsize;
920 	int i;
921 
922 	for (i = 0; i < dtrace_toxranges; i++) {
923 		taddr = dtrace_toxrange[i].dtt_base;
924 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
925 
926 		if (kaddr - taddr < tsize) {
927 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
928 			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
929 			return (1);
930 		}
931 
932 		if (taddr - kaddr < size) {
933 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
934 			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
935 			return (1);
936 		}
937 	}
938 
939 	return (0);
940 }
941 
942 /*
943  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
944  * memory specified by the DIF program.  The dst is assumed to be safe memory
945  * that we can store to directly because it is managed by DTrace.  As with
946  * standard bcopy, overlapping copies are handled properly.
947  */
948 static void
949 dtrace_bcopy(const void *src, void *dst, size_t len)
950 {
951 	if (len != 0) {
952 		uint8_t *s1 = dst;
953 		const uint8_t *s2 = src;
954 
955 		if (s1 <= s2) {
956 			do {
957 				*s1++ = dtrace_load8((uintptr_t)s2++);
958 			} while (--len != 0);
959 		} else {
960 			s2 += len;
961 			s1 += len;
962 
963 			do {
964 				*--s1 = dtrace_load8((uintptr_t)--s2);
965 			} while (--len != 0);
966 		}
967 	}
968 }
969 
970 /*
971  * Copy src to dst using safe memory accesses, up to either the specified
972  * length, or the point that a nul byte is encountered.  The src is assumed to
973  * be unsafe memory specified by the DIF program.  The dst is assumed to be
974  * safe memory that we can store to directly because it is managed by DTrace.
975  * Unlike dtrace_bcopy(), overlapping regions are not handled.
976  */
977 static void
978 dtrace_strcpy(const void *src, void *dst, size_t len)
979 {
980 	if (len != 0) {
981 		uint8_t *s1 = dst, c;
982 		const uint8_t *s2 = src;
983 
984 		do {
985 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
986 		} while (--len != 0 && c != '\0');
987 	}
988 }
989 
990 /*
991  * Copy src to dst, deriving the size and type from the specified (BYREF)
992  * variable type.  The src is assumed to be unsafe memory specified by the DIF
993  * program.  The dst is assumed to be DTrace variable memory that is of the
994  * specified type; we assume that we can store to directly.
995  */
996 static void
997 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
998 {
999 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1000 
1001 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1002 		dtrace_strcpy(src, dst, type->dtdt_size);
1003 	} else {
1004 		dtrace_bcopy(src, dst, type->dtdt_size);
1005 	}
1006 }
1007 
1008 /*
1009  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1010  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1011  * safe memory that we can access directly because it is managed by DTrace.
1012  */
1013 static int
1014 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1015 {
1016 	volatile uint16_t *flags;
1017 
1018 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1019 
1020 	if (s1 == s2)
1021 		return (0);
1022 
1023 	if (s1 == NULL || s2 == NULL)
1024 		return (1);
1025 
1026 	if (s1 != s2 && len != 0) {
1027 		const uint8_t *ps1 = s1;
1028 		const uint8_t *ps2 = s2;
1029 
1030 		do {
1031 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1032 				return (1);
1033 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1034 	}
1035 	return (0);
1036 }
1037 
1038 /*
1039  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1040  * is for safe DTrace-managed memory only.
1041  */
1042 static void
1043 dtrace_bzero(void *dst, size_t len)
1044 {
1045 	uchar_t *cp;
1046 
1047 	for (cp = dst; len != 0; len--)
1048 		*cp++ = 0;
1049 }
1050 
1051 static void
1052 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1053 {
1054 	uint64_t result[2];
1055 
1056 	result[0] = addend1[0] + addend2[0];
1057 	result[1] = addend1[1] + addend2[1] +
1058 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1059 
1060 	sum[0] = result[0];
1061 	sum[1] = result[1];
1062 }
1063 
1064 /*
1065  * Shift the 128-bit value in a by b. If b is positive, shift left.
1066  * If b is negative, shift right.
1067  */
1068 static void
1069 dtrace_shift_128(uint64_t *a, int b)
1070 {
1071 	uint64_t mask;
1072 
1073 	if (b == 0)
1074 		return;
1075 
1076 	if (b < 0) {
1077 		b = -b;
1078 		if (b >= 64) {
1079 			a[0] = a[1] >> (b - 64);
1080 			a[1] = 0;
1081 		} else {
1082 			a[0] >>= b;
1083 			mask = 1LL << (64 - b);
1084 			mask -= 1;
1085 			a[0] |= ((a[1] & mask) << (64 - b));
1086 			a[1] >>= b;
1087 		}
1088 	} else {
1089 		if (b >= 64) {
1090 			a[1] = a[0] << (b - 64);
1091 			a[0] = 0;
1092 		} else {
1093 			a[1] <<= b;
1094 			mask = a[0] >> (64 - b);
1095 			a[1] |= mask;
1096 			a[0] <<= b;
1097 		}
1098 	}
1099 }
1100 
1101 /*
1102  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1103  * use native multiplication on those, and then re-combine into the
1104  * resulting 128-bit value.
1105  *
1106  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1107  *     hi1 * hi2 << 64 +
1108  *     hi1 * lo2 << 32 +
1109  *     hi2 * lo1 << 32 +
1110  *     lo1 * lo2
1111  */
1112 static void
1113 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1114 {
1115 	uint64_t hi1, hi2, lo1, lo2;
1116 	uint64_t tmp[2];
1117 
1118 	hi1 = factor1 >> 32;
1119 	hi2 = factor2 >> 32;
1120 
1121 	lo1 = factor1 & DT_MASK_LO;
1122 	lo2 = factor2 & DT_MASK_LO;
1123 
1124 	product[0] = lo1 * lo2;
1125 	product[1] = hi1 * hi2;
1126 
1127 	tmp[0] = hi1 * lo2;
1128 	tmp[1] = 0;
1129 	dtrace_shift_128(tmp, 32);
1130 	dtrace_add_128(product, tmp, product);
1131 
1132 	tmp[0] = hi2 * lo1;
1133 	tmp[1] = 0;
1134 	dtrace_shift_128(tmp, 32);
1135 	dtrace_add_128(product, tmp, product);
1136 }
1137 
1138 /*
1139  * This privilege check should be used by actions and subroutines to
1140  * verify that the user credentials of the process that enabled the
1141  * invoking ECB match the target credentials
1142  */
1143 static int
1144 dtrace_priv_proc_common_user(dtrace_state_t *state)
1145 {
1146 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1147 
1148 	/*
1149 	 * We should always have a non-NULL state cred here, since if cred
1150 	 * is null (anonymous tracing), we fast-path bypass this routine.
1151 	 */
1152 	ASSERT(s_cr != NULL);
1153 
1154 	if ((cr = CRED()) != NULL &&
1155 	    s_cr->cr_uid == cr->cr_uid &&
1156 	    s_cr->cr_uid == cr->cr_ruid &&
1157 	    s_cr->cr_uid == cr->cr_suid &&
1158 	    s_cr->cr_gid == cr->cr_gid &&
1159 	    s_cr->cr_gid == cr->cr_rgid &&
1160 	    s_cr->cr_gid == cr->cr_sgid)
1161 		return (1);
1162 
1163 	return (0);
1164 }
1165 
1166 /*
1167  * This privilege check should be used by actions and subroutines to
1168  * verify that the zone of the process that enabled the invoking ECB
1169  * matches the target credentials
1170  */
1171 static int
1172 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1173 {
1174 #if defined(sun)
1175 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1176 
1177 	/*
1178 	 * We should always have a non-NULL state cred here, since if cred
1179 	 * is null (anonymous tracing), we fast-path bypass this routine.
1180 	 */
1181 	ASSERT(s_cr != NULL);
1182 
1183 	if ((cr = CRED()) != NULL &&
1184 	    s_cr->cr_zone == cr->cr_zone)
1185 		return (1);
1186 
1187 	return (0);
1188 #else
1189 	return (1);
1190 #endif
1191 }
1192 
1193 /*
1194  * This privilege check should be used by actions and subroutines to
1195  * verify that the process has not setuid or changed credentials.
1196  */
1197 static int
1198 dtrace_priv_proc_common_nocd(void)
1199 {
1200 	proc_t *proc;
1201 
1202 	if ((proc = ttoproc(curthread)) != NULL &&
1203 	    !(proc->p_flag & SNOCD))
1204 		return (1);
1205 
1206 	return (0);
1207 }
1208 
1209 static int
1210 dtrace_priv_proc_destructive(dtrace_state_t *state)
1211 {
1212 	int action = state->dts_cred.dcr_action;
1213 
1214 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1215 	    dtrace_priv_proc_common_zone(state) == 0)
1216 		goto bad;
1217 
1218 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1219 	    dtrace_priv_proc_common_user(state) == 0)
1220 		goto bad;
1221 
1222 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1223 	    dtrace_priv_proc_common_nocd() == 0)
1224 		goto bad;
1225 
1226 	return (1);
1227 
1228 bad:
1229 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1230 
1231 	return (0);
1232 }
1233 
1234 static int
1235 dtrace_priv_proc_control(dtrace_state_t *state)
1236 {
1237 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1238 		return (1);
1239 
1240 	if (dtrace_priv_proc_common_zone(state) &&
1241 	    dtrace_priv_proc_common_user(state) &&
1242 	    dtrace_priv_proc_common_nocd())
1243 		return (1);
1244 
1245 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1246 
1247 	return (0);
1248 }
1249 
1250 static int
1251 dtrace_priv_proc(dtrace_state_t *state)
1252 {
1253 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1254 		return (1);
1255 
1256 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1257 
1258 	return (0);
1259 }
1260 
1261 static int
1262 dtrace_priv_kernel(dtrace_state_t *state)
1263 {
1264 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1265 		return (1);
1266 
1267 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1268 
1269 	return (0);
1270 }
1271 
1272 static int
1273 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1274 {
1275 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1276 		return (1);
1277 
1278 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1279 
1280 	return (0);
1281 }
1282 
1283 /*
1284  * Note:  not called from probe context.  This function is called
1285  * asynchronously (and at a regular interval) from outside of probe context to
1286  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1287  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1288  */
1289 void
1290 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1291 {
1292 	dtrace_dynvar_t *dirty;
1293 	dtrace_dstate_percpu_t *dcpu;
1294 	int i, work = 0;
1295 
1296 	for (i = 0; i < NCPU; i++) {
1297 		dcpu = &dstate->dtds_percpu[i];
1298 
1299 		ASSERT(dcpu->dtdsc_rinsing == NULL);
1300 
1301 		/*
1302 		 * If the dirty list is NULL, there is no dirty work to do.
1303 		 */
1304 		if (dcpu->dtdsc_dirty == NULL)
1305 			continue;
1306 
1307 		/*
1308 		 * If the clean list is non-NULL, then we're not going to do
1309 		 * any work for this CPU -- it means that there has not been
1310 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1311 		 * since the last time we cleaned house.
1312 		 */
1313 		if (dcpu->dtdsc_clean != NULL)
1314 			continue;
1315 
1316 		work = 1;
1317 
1318 		/*
1319 		 * Atomically move the dirty list aside.
1320 		 */
1321 		do {
1322 			dirty = dcpu->dtdsc_dirty;
1323 
1324 			/*
1325 			 * Before we zap the dirty list, set the rinsing list.
1326 			 * (This allows for a potential assertion in
1327 			 * dtrace_dynvar():  if a free dynamic variable appears
1328 			 * on a hash chain, either the dirty list or the
1329 			 * rinsing list for some CPU must be non-NULL.)
1330 			 */
1331 			dcpu->dtdsc_rinsing = dirty;
1332 			dtrace_membar_producer();
1333 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1334 		    dirty, NULL) != dirty);
1335 	}
1336 
1337 	if (!work) {
1338 		/*
1339 		 * We have no work to do; we can simply return.
1340 		 */
1341 		return;
1342 	}
1343 
1344 	dtrace_sync();
1345 
1346 	for (i = 0; i < NCPU; i++) {
1347 		dcpu = &dstate->dtds_percpu[i];
1348 
1349 		if (dcpu->dtdsc_rinsing == NULL)
1350 			continue;
1351 
1352 		/*
1353 		 * We are now guaranteed that no hash chain contains a pointer
1354 		 * into this dirty list; we can make it clean.
1355 		 */
1356 		ASSERT(dcpu->dtdsc_clean == NULL);
1357 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1358 		dcpu->dtdsc_rinsing = NULL;
1359 	}
1360 
1361 	/*
1362 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1363 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1364 	 * This prevents a race whereby a CPU incorrectly decides that
1365 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1366 	 * after dtrace_dynvar_clean() has completed.
1367 	 */
1368 	dtrace_sync();
1369 
1370 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1371 }
1372 
1373 /*
1374  * Depending on the value of the op parameter, this function looks-up,
1375  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1376  * allocation is requested, this function will return a pointer to a
1377  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1378  * variable can be allocated.  If NULL is returned, the appropriate counter
1379  * will be incremented.
1380  */
1381 dtrace_dynvar_t *
1382 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1383     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1384     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1385 {
1386 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1387 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1388 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1389 	processorid_t me = curcpu, cpu = me;
1390 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1391 	size_t bucket, ksize;
1392 	size_t chunksize = dstate->dtds_chunksize;
1393 	uintptr_t kdata, lock, nstate;
1394 	uint_t i;
1395 
1396 	ASSERT(nkeys != 0);
1397 
1398 	/*
1399 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1400 	 * algorithm.  For the by-value portions, we perform the algorithm in
1401 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1402 	 * bit, and seems to have only a minute effect on distribution.  For
1403 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1404 	 * over each referenced byte.  It's painful to do this, but it's much
1405 	 * better than pathological hash distribution.  The efficacy of the
1406 	 * hashing algorithm (and a comparison with other algorithms) may be
1407 	 * found by running the ::dtrace_dynstat MDB dcmd.
1408 	 */
1409 	for (i = 0; i < nkeys; i++) {
1410 		if (key[i].dttk_size == 0) {
1411 			uint64_t val = key[i].dttk_value;
1412 
1413 			hashval += (val >> 48) & 0xffff;
1414 			hashval += (hashval << 10);
1415 			hashval ^= (hashval >> 6);
1416 
1417 			hashval += (val >> 32) & 0xffff;
1418 			hashval += (hashval << 10);
1419 			hashval ^= (hashval >> 6);
1420 
1421 			hashval += (val >> 16) & 0xffff;
1422 			hashval += (hashval << 10);
1423 			hashval ^= (hashval >> 6);
1424 
1425 			hashval += val & 0xffff;
1426 			hashval += (hashval << 10);
1427 			hashval ^= (hashval >> 6);
1428 		} else {
1429 			/*
1430 			 * This is incredibly painful, but it beats the hell
1431 			 * out of the alternative.
1432 			 */
1433 			uint64_t j, size = key[i].dttk_size;
1434 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1435 
1436 			if (!dtrace_canload(base, size, mstate, vstate))
1437 				break;
1438 
1439 			for (j = 0; j < size; j++) {
1440 				hashval += dtrace_load8(base + j);
1441 				hashval += (hashval << 10);
1442 				hashval ^= (hashval >> 6);
1443 			}
1444 		}
1445 	}
1446 
1447 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1448 		return (NULL);
1449 
1450 	hashval += (hashval << 3);
1451 	hashval ^= (hashval >> 11);
1452 	hashval += (hashval << 15);
1453 
1454 	/*
1455 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1456 	 * comes out to be one of our two sentinel hash values.  If this
1457 	 * actually happens, we set the hashval to be a value known to be a
1458 	 * non-sentinel value.
1459 	 */
1460 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1461 		hashval = DTRACE_DYNHASH_VALID;
1462 
1463 	/*
1464 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1465 	 * important here, tricks can be pulled to reduce it.  (However, it's
1466 	 * critical that hash collisions be kept to an absolute minimum;
1467 	 * they're much more painful than a divide.)  It's better to have a
1468 	 * solution that generates few collisions and still keeps things
1469 	 * relatively simple.
1470 	 */
1471 	bucket = hashval % dstate->dtds_hashsize;
1472 
1473 	if (op == DTRACE_DYNVAR_DEALLOC) {
1474 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1475 
1476 		for (;;) {
1477 			while ((lock = *lockp) & 1)
1478 				continue;
1479 
1480 			if (dtrace_casptr((volatile void *)lockp,
1481 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1482 				break;
1483 		}
1484 
1485 		dtrace_membar_producer();
1486 	}
1487 
1488 top:
1489 	prev = NULL;
1490 	lock = hash[bucket].dtdh_lock;
1491 
1492 	dtrace_membar_consumer();
1493 
1494 	start = hash[bucket].dtdh_chain;
1495 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1496 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1497 	    op != DTRACE_DYNVAR_DEALLOC));
1498 
1499 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1500 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1501 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1502 
1503 		if (dvar->dtdv_hashval != hashval) {
1504 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1505 				/*
1506 				 * We've reached the sink, and therefore the
1507 				 * end of the hash chain; we can kick out of
1508 				 * the loop knowing that we have seen a valid
1509 				 * snapshot of state.
1510 				 */
1511 				ASSERT(dvar->dtdv_next == NULL);
1512 				ASSERT(dvar == &dtrace_dynhash_sink);
1513 				break;
1514 			}
1515 
1516 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1517 				/*
1518 				 * We've gone off the rails:  somewhere along
1519 				 * the line, one of the members of this hash
1520 				 * chain was deleted.  Note that we could also
1521 				 * detect this by simply letting this loop run
1522 				 * to completion, as we would eventually hit
1523 				 * the end of the dirty list.  However, we
1524 				 * want to avoid running the length of the
1525 				 * dirty list unnecessarily (it might be quite
1526 				 * long), so we catch this as early as
1527 				 * possible by detecting the hash marker.  In
1528 				 * this case, we simply set dvar to NULL and
1529 				 * break; the conditional after the loop will
1530 				 * send us back to top.
1531 				 */
1532 				dvar = NULL;
1533 				break;
1534 			}
1535 
1536 			goto next;
1537 		}
1538 
1539 		if (dtuple->dtt_nkeys != nkeys)
1540 			goto next;
1541 
1542 		for (i = 0; i < nkeys; i++, dkey++) {
1543 			if (dkey->dttk_size != key[i].dttk_size)
1544 				goto next; /* size or type mismatch */
1545 
1546 			if (dkey->dttk_size != 0) {
1547 				if (dtrace_bcmp(
1548 				    (void *)(uintptr_t)key[i].dttk_value,
1549 				    (void *)(uintptr_t)dkey->dttk_value,
1550 				    dkey->dttk_size))
1551 					goto next;
1552 			} else {
1553 				if (dkey->dttk_value != key[i].dttk_value)
1554 					goto next;
1555 			}
1556 		}
1557 
1558 		if (op != DTRACE_DYNVAR_DEALLOC)
1559 			return (dvar);
1560 
1561 		ASSERT(dvar->dtdv_next == NULL ||
1562 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1563 
1564 		if (prev != NULL) {
1565 			ASSERT(hash[bucket].dtdh_chain != dvar);
1566 			ASSERT(start != dvar);
1567 			ASSERT(prev->dtdv_next == dvar);
1568 			prev->dtdv_next = dvar->dtdv_next;
1569 		} else {
1570 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1571 			    start, dvar->dtdv_next) != start) {
1572 				/*
1573 				 * We have failed to atomically swing the
1574 				 * hash table head pointer, presumably because
1575 				 * of a conflicting allocation on another CPU.
1576 				 * We need to reread the hash chain and try
1577 				 * again.
1578 				 */
1579 				goto top;
1580 			}
1581 		}
1582 
1583 		dtrace_membar_producer();
1584 
1585 		/*
1586 		 * Now set the hash value to indicate that it's free.
1587 		 */
1588 		ASSERT(hash[bucket].dtdh_chain != dvar);
1589 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1590 
1591 		dtrace_membar_producer();
1592 
1593 		/*
1594 		 * Set the next pointer to point at the dirty list, and
1595 		 * atomically swing the dirty pointer to the newly freed dvar.
1596 		 */
1597 		do {
1598 			next = dcpu->dtdsc_dirty;
1599 			dvar->dtdv_next = next;
1600 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1601 
1602 		/*
1603 		 * Finally, unlock this hash bucket.
1604 		 */
1605 		ASSERT(hash[bucket].dtdh_lock == lock);
1606 		ASSERT(lock & 1);
1607 		hash[bucket].dtdh_lock++;
1608 
1609 		return (NULL);
1610 next:
1611 		prev = dvar;
1612 		continue;
1613 	}
1614 
1615 	if (dvar == NULL) {
1616 		/*
1617 		 * If dvar is NULL, it is because we went off the rails:
1618 		 * one of the elements that we traversed in the hash chain
1619 		 * was deleted while we were traversing it.  In this case,
1620 		 * we assert that we aren't doing a dealloc (deallocs lock
1621 		 * the hash bucket to prevent themselves from racing with
1622 		 * one another), and retry the hash chain traversal.
1623 		 */
1624 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1625 		goto top;
1626 	}
1627 
1628 	if (op != DTRACE_DYNVAR_ALLOC) {
1629 		/*
1630 		 * If we are not to allocate a new variable, we want to
1631 		 * return NULL now.  Before we return, check that the value
1632 		 * of the lock word hasn't changed.  If it has, we may have
1633 		 * seen an inconsistent snapshot.
1634 		 */
1635 		if (op == DTRACE_DYNVAR_NOALLOC) {
1636 			if (hash[bucket].dtdh_lock != lock)
1637 				goto top;
1638 		} else {
1639 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1640 			ASSERT(hash[bucket].dtdh_lock == lock);
1641 			ASSERT(lock & 1);
1642 			hash[bucket].dtdh_lock++;
1643 		}
1644 
1645 		return (NULL);
1646 	}
1647 
1648 	/*
1649 	 * We need to allocate a new dynamic variable.  The size we need is the
1650 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1651 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1652 	 * the size of any referred-to data (dsize).  We then round the final
1653 	 * size up to the chunksize for allocation.
1654 	 */
1655 	for (ksize = 0, i = 0; i < nkeys; i++)
1656 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1657 
1658 	/*
1659 	 * This should be pretty much impossible, but could happen if, say,
1660 	 * strange DIF specified the tuple.  Ideally, this should be an
1661 	 * assertion and not an error condition -- but that requires that the
1662 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1663 	 * bullet-proof.  (That is, it must not be able to be fooled by
1664 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1665 	 * solving this would presumably not amount to solving the Halting
1666 	 * Problem -- but it still seems awfully hard.
1667 	 */
1668 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1669 	    ksize + dsize > chunksize) {
1670 		dcpu->dtdsc_drops++;
1671 		return (NULL);
1672 	}
1673 
1674 	nstate = DTRACE_DSTATE_EMPTY;
1675 
1676 	do {
1677 retry:
1678 		free = dcpu->dtdsc_free;
1679 
1680 		if (free == NULL) {
1681 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1682 			void *rval;
1683 
1684 			if (clean == NULL) {
1685 				/*
1686 				 * We're out of dynamic variable space on
1687 				 * this CPU.  Unless we have tried all CPUs,
1688 				 * we'll try to allocate from a different
1689 				 * CPU.
1690 				 */
1691 				switch (dstate->dtds_state) {
1692 				case DTRACE_DSTATE_CLEAN: {
1693 					void *sp = &dstate->dtds_state;
1694 
1695 					if (++cpu >= NCPU)
1696 						cpu = 0;
1697 
1698 					if (dcpu->dtdsc_dirty != NULL &&
1699 					    nstate == DTRACE_DSTATE_EMPTY)
1700 						nstate = DTRACE_DSTATE_DIRTY;
1701 
1702 					if (dcpu->dtdsc_rinsing != NULL)
1703 						nstate = DTRACE_DSTATE_RINSING;
1704 
1705 					dcpu = &dstate->dtds_percpu[cpu];
1706 
1707 					if (cpu != me)
1708 						goto retry;
1709 
1710 					(void) dtrace_cas32(sp,
1711 					    DTRACE_DSTATE_CLEAN, nstate);
1712 
1713 					/*
1714 					 * To increment the correct bean
1715 					 * counter, take another lap.
1716 					 */
1717 					goto retry;
1718 				}
1719 
1720 				case DTRACE_DSTATE_DIRTY:
1721 					dcpu->dtdsc_dirty_drops++;
1722 					break;
1723 
1724 				case DTRACE_DSTATE_RINSING:
1725 					dcpu->dtdsc_rinsing_drops++;
1726 					break;
1727 
1728 				case DTRACE_DSTATE_EMPTY:
1729 					dcpu->dtdsc_drops++;
1730 					break;
1731 				}
1732 
1733 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1734 				return (NULL);
1735 			}
1736 
1737 			/*
1738 			 * The clean list appears to be non-empty.  We want to
1739 			 * move the clean list to the free list; we start by
1740 			 * moving the clean pointer aside.
1741 			 */
1742 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1743 			    clean, NULL) != clean) {
1744 				/*
1745 				 * We are in one of two situations:
1746 				 *
1747 				 *  (a)	The clean list was switched to the
1748 				 *	free list by another CPU.
1749 				 *
1750 				 *  (b)	The clean list was added to by the
1751 				 *	cleansing cyclic.
1752 				 *
1753 				 * In either of these situations, we can
1754 				 * just reattempt the free list allocation.
1755 				 */
1756 				goto retry;
1757 			}
1758 
1759 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1760 
1761 			/*
1762 			 * Now we'll move the clean list to the free list.
1763 			 * It's impossible for this to fail:  the only way
1764 			 * the free list can be updated is through this
1765 			 * code path, and only one CPU can own the clean list.
1766 			 * Thus, it would only be possible for this to fail if
1767 			 * this code were racing with dtrace_dynvar_clean().
1768 			 * (That is, if dtrace_dynvar_clean() updated the clean
1769 			 * list, and we ended up racing to update the free
1770 			 * list.)  This race is prevented by the dtrace_sync()
1771 			 * in dtrace_dynvar_clean() -- which flushes the
1772 			 * owners of the clean lists out before resetting
1773 			 * the clean lists.
1774 			 */
1775 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1776 			ASSERT(rval == NULL);
1777 			goto retry;
1778 		}
1779 
1780 		dvar = free;
1781 		new_free = dvar->dtdv_next;
1782 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1783 
1784 	/*
1785 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1786 	 * tuple array and copy any referenced key data into the data space
1787 	 * following the tuple array.  As we do this, we relocate dttk_value
1788 	 * in the final tuple to point to the key data address in the chunk.
1789 	 */
1790 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1791 	dvar->dtdv_data = (void *)(kdata + ksize);
1792 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1793 
1794 	for (i = 0; i < nkeys; i++) {
1795 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1796 		size_t kesize = key[i].dttk_size;
1797 
1798 		if (kesize != 0) {
1799 			dtrace_bcopy(
1800 			    (const void *)(uintptr_t)key[i].dttk_value,
1801 			    (void *)kdata, kesize);
1802 			dkey->dttk_value = kdata;
1803 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1804 		} else {
1805 			dkey->dttk_value = key[i].dttk_value;
1806 		}
1807 
1808 		dkey->dttk_size = kesize;
1809 	}
1810 
1811 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1812 	dvar->dtdv_hashval = hashval;
1813 	dvar->dtdv_next = start;
1814 
1815 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1816 		return (dvar);
1817 
1818 	/*
1819 	 * The cas has failed.  Either another CPU is adding an element to
1820 	 * this hash chain, or another CPU is deleting an element from this
1821 	 * hash chain.  The simplest way to deal with both of these cases
1822 	 * (though not necessarily the most efficient) is to free our
1823 	 * allocated block and tail-call ourselves.  Note that the free is
1824 	 * to the dirty list and _not_ to the free list.  This is to prevent
1825 	 * races with allocators, above.
1826 	 */
1827 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1828 
1829 	dtrace_membar_producer();
1830 
1831 	do {
1832 		free = dcpu->dtdsc_dirty;
1833 		dvar->dtdv_next = free;
1834 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1835 
1836 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1837 }
1838 
1839 /*ARGSUSED*/
1840 static void
1841 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1842 {
1843 	if ((int64_t)nval < (int64_t)*oval)
1844 		*oval = nval;
1845 }
1846 
1847 /*ARGSUSED*/
1848 static void
1849 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1850 {
1851 	if ((int64_t)nval > (int64_t)*oval)
1852 		*oval = nval;
1853 }
1854 
1855 static void
1856 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1857 {
1858 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1859 	int64_t val = (int64_t)nval;
1860 
1861 	if (val < 0) {
1862 		for (i = 0; i < zero; i++) {
1863 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1864 				quanta[i] += incr;
1865 				return;
1866 			}
1867 		}
1868 	} else {
1869 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1870 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1871 				quanta[i - 1] += incr;
1872 				return;
1873 			}
1874 		}
1875 
1876 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1877 		return;
1878 	}
1879 
1880 	ASSERT(0);
1881 }
1882 
1883 static void
1884 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1885 {
1886 	uint64_t arg = *lquanta++;
1887 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1888 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1889 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1890 	int32_t val = (int32_t)nval, level;
1891 
1892 	ASSERT(step != 0);
1893 	ASSERT(levels != 0);
1894 
1895 	if (val < base) {
1896 		/*
1897 		 * This is an underflow.
1898 		 */
1899 		lquanta[0] += incr;
1900 		return;
1901 	}
1902 
1903 	level = (val - base) / step;
1904 
1905 	if (level < levels) {
1906 		lquanta[level + 1] += incr;
1907 		return;
1908 	}
1909 
1910 	/*
1911 	 * This is an overflow.
1912 	 */
1913 	lquanta[levels + 1] += incr;
1914 }
1915 
1916 /*ARGSUSED*/
1917 static void
1918 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1919 {
1920 	data[0]++;
1921 	data[1] += nval;
1922 }
1923 
1924 /*ARGSUSED*/
1925 static void
1926 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1927 {
1928 	int64_t snval = (int64_t)nval;
1929 	uint64_t tmp[2];
1930 
1931 	data[0]++;
1932 	data[1] += nval;
1933 
1934 	/*
1935 	 * What we want to say here is:
1936 	 *
1937 	 * data[2] += nval * nval;
1938 	 *
1939 	 * But given that nval is 64-bit, we could easily overflow, so
1940 	 * we do this as 128-bit arithmetic.
1941 	 */
1942 	if (snval < 0)
1943 		snval = -snval;
1944 
1945 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
1946 	dtrace_add_128(data + 2, tmp, data + 2);
1947 }
1948 
1949 /*ARGSUSED*/
1950 static void
1951 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1952 {
1953 	*oval = *oval + 1;
1954 }
1955 
1956 /*ARGSUSED*/
1957 static void
1958 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1959 {
1960 	*oval += nval;
1961 }
1962 
1963 /*
1964  * Aggregate given the tuple in the principal data buffer, and the aggregating
1965  * action denoted by the specified dtrace_aggregation_t.  The aggregation
1966  * buffer is specified as the buf parameter.  This routine does not return
1967  * failure; if there is no space in the aggregation buffer, the data will be
1968  * dropped, and a corresponding counter incremented.
1969  */
1970 static void
1971 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1972     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1973 {
1974 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1975 	uint32_t i, ndx, size, fsize;
1976 	uint32_t align = sizeof (uint64_t) - 1;
1977 	dtrace_aggbuffer_t *agb;
1978 	dtrace_aggkey_t *key;
1979 	uint32_t hashval = 0, limit, isstr;
1980 	caddr_t tomax, data, kdata;
1981 	dtrace_actkind_t action;
1982 	dtrace_action_t *act;
1983 	uintptr_t offs;
1984 
1985 	if (buf == NULL)
1986 		return;
1987 
1988 	if (!agg->dtag_hasarg) {
1989 		/*
1990 		 * Currently, only quantize() and lquantize() take additional
1991 		 * arguments, and they have the same semantics:  an increment
1992 		 * value that defaults to 1 when not present.  If additional
1993 		 * aggregating actions take arguments, the setting of the
1994 		 * default argument value will presumably have to become more
1995 		 * sophisticated...
1996 		 */
1997 		arg = 1;
1998 	}
1999 
2000 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2001 	size = rec->dtrd_offset - agg->dtag_base;
2002 	fsize = size + rec->dtrd_size;
2003 
2004 	ASSERT(dbuf->dtb_tomax != NULL);
2005 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2006 
2007 	if ((tomax = buf->dtb_tomax) == NULL) {
2008 		dtrace_buffer_drop(buf);
2009 		return;
2010 	}
2011 
2012 	/*
2013 	 * The metastructure is always at the bottom of the buffer.
2014 	 */
2015 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2016 	    sizeof (dtrace_aggbuffer_t));
2017 
2018 	if (buf->dtb_offset == 0) {
2019 		/*
2020 		 * We just kludge up approximately 1/8th of the size to be
2021 		 * buckets.  If this guess ends up being routinely
2022 		 * off-the-mark, we may need to dynamically readjust this
2023 		 * based on past performance.
2024 		 */
2025 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2026 
2027 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2028 		    (uintptr_t)tomax || hashsize == 0) {
2029 			/*
2030 			 * We've been given a ludicrously small buffer;
2031 			 * increment our drop count and leave.
2032 			 */
2033 			dtrace_buffer_drop(buf);
2034 			return;
2035 		}
2036 
2037 		/*
2038 		 * And now, a pathetic attempt to try to get a an odd (or
2039 		 * perchance, a prime) hash size for better hash distribution.
2040 		 */
2041 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2042 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2043 
2044 		agb->dtagb_hashsize = hashsize;
2045 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2046 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2047 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2048 
2049 		for (i = 0; i < agb->dtagb_hashsize; i++)
2050 			agb->dtagb_hash[i] = NULL;
2051 	}
2052 
2053 	ASSERT(agg->dtag_first != NULL);
2054 	ASSERT(agg->dtag_first->dta_intuple);
2055 
2056 	/*
2057 	 * Calculate the hash value based on the key.  Note that we _don't_
2058 	 * include the aggid in the hashing (but we will store it as part of
2059 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2060 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2061 	 * gets good distribution in practice.  The efficacy of the hashing
2062 	 * algorithm (and a comparison with other algorithms) may be found by
2063 	 * running the ::dtrace_aggstat MDB dcmd.
2064 	 */
2065 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2066 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2067 		limit = i + act->dta_rec.dtrd_size;
2068 		ASSERT(limit <= size);
2069 		isstr = DTRACEACT_ISSTRING(act);
2070 
2071 		for (; i < limit; i++) {
2072 			hashval += data[i];
2073 			hashval += (hashval << 10);
2074 			hashval ^= (hashval >> 6);
2075 
2076 			if (isstr && data[i] == '\0')
2077 				break;
2078 		}
2079 	}
2080 
2081 	hashval += (hashval << 3);
2082 	hashval ^= (hashval >> 11);
2083 	hashval += (hashval << 15);
2084 
2085 	/*
2086 	 * Yes, the divide here is expensive -- but it's generally the least
2087 	 * of the performance issues given the amount of data that we iterate
2088 	 * over to compute hash values, compare data, etc.
2089 	 */
2090 	ndx = hashval % agb->dtagb_hashsize;
2091 
2092 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2093 		ASSERT((caddr_t)key >= tomax);
2094 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2095 
2096 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2097 			continue;
2098 
2099 		kdata = key->dtak_data;
2100 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2101 
2102 		for (act = agg->dtag_first; act->dta_intuple;
2103 		    act = act->dta_next) {
2104 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2105 			limit = i + act->dta_rec.dtrd_size;
2106 			ASSERT(limit <= size);
2107 			isstr = DTRACEACT_ISSTRING(act);
2108 
2109 			for (; i < limit; i++) {
2110 				if (kdata[i] != data[i])
2111 					goto next;
2112 
2113 				if (isstr && data[i] == '\0')
2114 					break;
2115 			}
2116 		}
2117 
2118 		if (action != key->dtak_action) {
2119 			/*
2120 			 * We are aggregating on the same value in the same
2121 			 * aggregation with two different aggregating actions.
2122 			 * (This should have been picked up in the compiler,
2123 			 * so we may be dealing with errant or devious DIF.)
2124 			 * This is an error condition; we indicate as much,
2125 			 * and return.
2126 			 */
2127 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2128 			return;
2129 		}
2130 
2131 		/*
2132 		 * This is a hit:  we need to apply the aggregator to
2133 		 * the value at this key.
2134 		 */
2135 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2136 		return;
2137 next:
2138 		continue;
2139 	}
2140 
2141 	/*
2142 	 * We didn't find it.  We need to allocate some zero-filled space,
2143 	 * link it into the hash table appropriately, and apply the aggregator
2144 	 * to the (zero-filled) value.
2145 	 */
2146 	offs = buf->dtb_offset;
2147 	while (offs & (align - 1))
2148 		offs += sizeof (uint32_t);
2149 
2150 	/*
2151 	 * If we don't have enough room to both allocate a new key _and_
2152 	 * its associated data, increment the drop count and return.
2153 	 */
2154 	if ((uintptr_t)tomax + offs + fsize >
2155 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2156 		dtrace_buffer_drop(buf);
2157 		return;
2158 	}
2159 
2160 	/*CONSTCOND*/
2161 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2162 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2163 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2164 
2165 	key->dtak_data = kdata = tomax + offs;
2166 	buf->dtb_offset = offs + fsize;
2167 
2168 	/*
2169 	 * Now copy the data across.
2170 	 */
2171 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2172 
2173 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2174 		kdata[i] = data[i];
2175 
2176 	/*
2177 	 * Because strings are not zeroed out by default, we need to iterate
2178 	 * looking for actions that store strings, and we need to explicitly
2179 	 * pad these strings out with zeroes.
2180 	 */
2181 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2182 		int nul;
2183 
2184 		if (!DTRACEACT_ISSTRING(act))
2185 			continue;
2186 
2187 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2188 		limit = i + act->dta_rec.dtrd_size;
2189 		ASSERT(limit <= size);
2190 
2191 		for (nul = 0; i < limit; i++) {
2192 			if (nul) {
2193 				kdata[i] = '\0';
2194 				continue;
2195 			}
2196 
2197 			if (data[i] != '\0')
2198 				continue;
2199 
2200 			nul = 1;
2201 		}
2202 	}
2203 
2204 	for (i = size; i < fsize; i++)
2205 		kdata[i] = 0;
2206 
2207 	key->dtak_hashval = hashval;
2208 	key->dtak_size = size;
2209 	key->dtak_action = action;
2210 	key->dtak_next = agb->dtagb_hash[ndx];
2211 	agb->dtagb_hash[ndx] = key;
2212 
2213 	/*
2214 	 * Finally, apply the aggregator.
2215 	 */
2216 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2217 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2218 }
2219 
2220 /*
2221  * Given consumer state, this routine finds a speculation in the INACTIVE
2222  * state and transitions it into the ACTIVE state.  If there is no speculation
2223  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2224  * incremented -- it is up to the caller to take appropriate action.
2225  */
2226 static int
2227 dtrace_speculation(dtrace_state_t *state)
2228 {
2229 	int i = 0;
2230 	dtrace_speculation_state_t current;
2231 	uint32_t *stat = &state->dts_speculations_unavail, count;
2232 
2233 	while (i < state->dts_nspeculations) {
2234 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2235 
2236 		current = spec->dtsp_state;
2237 
2238 		if (current != DTRACESPEC_INACTIVE) {
2239 			if (current == DTRACESPEC_COMMITTINGMANY ||
2240 			    current == DTRACESPEC_COMMITTING ||
2241 			    current == DTRACESPEC_DISCARDING)
2242 				stat = &state->dts_speculations_busy;
2243 			i++;
2244 			continue;
2245 		}
2246 
2247 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2248 		    current, DTRACESPEC_ACTIVE) == current)
2249 			return (i + 1);
2250 	}
2251 
2252 	/*
2253 	 * We couldn't find a speculation.  If we found as much as a single
2254 	 * busy speculation buffer, we'll attribute this failure as "busy"
2255 	 * instead of "unavail".
2256 	 */
2257 	do {
2258 		count = *stat;
2259 	} while (dtrace_cas32(stat, count, count + 1) != count);
2260 
2261 	return (0);
2262 }
2263 
2264 /*
2265  * This routine commits an active speculation.  If the specified speculation
2266  * is not in a valid state to perform a commit(), this routine will silently do
2267  * nothing.  The state of the specified speculation is transitioned according
2268  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2269  */
2270 static void
2271 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2272     dtrace_specid_t which)
2273 {
2274 	dtrace_speculation_t *spec;
2275 	dtrace_buffer_t *src, *dest;
2276 	uintptr_t daddr, saddr, dlimit;
2277 	dtrace_speculation_state_t current, new = 0;
2278 	intptr_t offs;
2279 
2280 	if (which == 0)
2281 		return;
2282 
2283 	if (which > state->dts_nspeculations) {
2284 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2285 		return;
2286 	}
2287 
2288 	spec = &state->dts_speculations[which - 1];
2289 	src = &spec->dtsp_buffer[cpu];
2290 	dest = &state->dts_buffer[cpu];
2291 
2292 	do {
2293 		current = spec->dtsp_state;
2294 
2295 		if (current == DTRACESPEC_COMMITTINGMANY)
2296 			break;
2297 
2298 		switch (current) {
2299 		case DTRACESPEC_INACTIVE:
2300 		case DTRACESPEC_DISCARDING:
2301 			return;
2302 
2303 		case DTRACESPEC_COMMITTING:
2304 			/*
2305 			 * This is only possible if we are (a) commit()'ing
2306 			 * without having done a prior speculate() on this CPU
2307 			 * and (b) racing with another commit() on a different
2308 			 * CPU.  There's nothing to do -- we just assert that
2309 			 * our offset is 0.
2310 			 */
2311 			ASSERT(src->dtb_offset == 0);
2312 			return;
2313 
2314 		case DTRACESPEC_ACTIVE:
2315 			new = DTRACESPEC_COMMITTING;
2316 			break;
2317 
2318 		case DTRACESPEC_ACTIVEONE:
2319 			/*
2320 			 * This speculation is active on one CPU.  If our
2321 			 * buffer offset is non-zero, we know that the one CPU
2322 			 * must be us.  Otherwise, we are committing on a
2323 			 * different CPU from the speculate(), and we must
2324 			 * rely on being asynchronously cleaned.
2325 			 */
2326 			if (src->dtb_offset != 0) {
2327 				new = DTRACESPEC_COMMITTING;
2328 				break;
2329 			}
2330 			/*FALLTHROUGH*/
2331 
2332 		case DTRACESPEC_ACTIVEMANY:
2333 			new = DTRACESPEC_COMMITTINGMANY;
2334 			break;
2335 
2336 		default:
2337 			ASSERT(0);
2338 		}
2339 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2340 	    current, new) != current);
2341 
2342 	/*
2343 	 * We have set the state to indicate that we are committing this
2344 	 * speculation.  Now reserve the necessary space in the destination
2345 	 * buffer.
2346 	 */
2347 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2348 	    sizeof (uint64_t), state, NULL)) < 0) {
2349 		dtrace_buffer_drop(dest);
2350 		goto out;
2351 	}
2352 
2353 	/*
2354 	 * We have the space; copy the buffer across.  (Note that this is a
2355 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2356 	 * a serious performance issue, a high-performance DTrace-specific
2357 	 * bcopy() should obviously be invented.)
2358 	 */
2359 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2360 	dlimit = daddr + src->dtb_offset;
2361 	saddr = (uintptr_t)src->dtb_tomax;
2362 
2363 	/*
2364 	 * First, the aligned portion.
2365 	 */
2366 	while (dlimit - daddr >= sizeof (uint64_t)) {
2367 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2368 
2369 		daddr += sizeof (uint64_t);
2370 		saddr += sizeof (uint64_t);
2371 	}
2372 
2373 	/*
2374 	 * Now any left-over bit...
2375 	 */
2376 	while (dlimit - daddr)
2377 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2378 
2379 	/*
2380 	 * Finally, commit the reserved space in the destination buffer.
2381 	 */
2382 	dest->dtb_offset = offs + src->dtb_offset;
2383 
2384 out:
2385 	/*
2386 	 * If we're lucky enough to be the only active CPU on this speculation
2387 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2388 	 */
2389 	if (current == DTRACESPEC_ACTIVE ||
2390 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2391 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2392 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2393 
2394 		ASSERT(rval == DTRACESPEC_COMMITTING);
2395 	}
2396 
2397 	src->dtb_offset = 0;
2398 	src->dtb_xamot_drops += src->dtb_drops;
2399 	src->dtb_drops = 0;
2400 }
2401 
2402 /*
2403  * This routine discards an active speculation.  If the specified speculation
2404  * is not in a valid state to perform a discard(), this routine will silently
2405  * do nothing.  The state of the specified speculation is transitioned
2406  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2407  */
2408 static void
2409 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2410     dtrace_specid_t which)
2411 {
2412 	dtrace_speculation_t *spec;
2413 	dtrace_speculation_state_t current, new = 0;
2414 	dtrace_buffer_t *buf;
2415 
2416 	if (which == 0)
2417 		return;
2418 
2419 	if (which > state->dts_nspeculations) {
2420 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2421 		return;
2422 	}
2423 
2424 	spec = &state->dts_speculations[which - 1];
2425 	buf = &spec->dtsp_buffer[cpu];
2426 
2427 	do {
2428 		current = spec->dtsp_state;
2429 
2430 		switch (current) {
2431 		case DTRACESPEC_INACTIVE:
2432 		case DTRACESPEC_COMMITTINGMANY:
2433 		case DTRACESPEC_COMMITTING:
2434 		case DTRACESPEC_DISCARDING:
2435 			return;
2436 
2437 		case DTRACESPEC_ACTIVE:
2438 		case DTRACESPEC_ACTIVEMANY:
2439 			new = DTRACESPEC_DISCARDING;
2440 			break;
2441 
2442 		case DTRACESPEC_ACTIVEONE:
2443 			if (buf->dtb_offset != 0) {
2444 				new = DTRACESPEC_INACTIVE;
2445 			} else {
2446 				new = DTRACESPEC_DISCARDING;
2447 			}
2448 			break;
2449 
2450 		default:
2451 			ASSERT(0);
2452 		}
2453 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2454 	    current, new) != current);
2455 
2456 	buf->dtb_offset = 0;
2457 	buf->dtb_drops = 0;
2458 }
2459 
2460 /*
2461  * Note:  not called from probe context.  This function is called
2462  * asynchronously from cross call context to clean any speculations that are
2463  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2464  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2465  * speculation.
2466  */
2467 static void
2468 dtrace_speculation_clean_here(dtrace_state_t *state)
2469 {
2470 	dtrace_icookie_t cookie;
2471 	processorid_t cpu = curcpu;
2472 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2473 	dtrace_specid_t i;
2474 
2475 	cookie = dtrace_interrupt_disable();
2476 
2477 	if (dest->dtb_tomax == NULL) {
2478 		dtrace_interrupt_enable(cookie);
2479 		return;
2480 	}
2481 
2482 	for (i = 0; i < state->dts_nspeculations; i++) {
2483 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2484 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2485 
2486 		if (src->dtb_tomax == NULL)
2487 			continue;
2488 
2489 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2490 			src->dtb_offset = 0;
2491 			continue;
2492 		}
2493 
2494 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2495 			continue;
2496 
2497 		if (src->dtb_offset == 0)
2498 			continue;
2499 
2500 		dtrace_speculation_commit(state, cpu, i + 1);
2501 	}
2502 
2503 	dtrace_interrupt_enable(cookie);
2504 }
2505 
2506 /*
2507  * Note:  not called from probe context.  This function is called
2508  * asynchronously (and at a regular interval) to clean any speculations that
2509  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2510  * is work to be done, it cross calls all CPUs to perform that work;
2511  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2512  * INACTIVE state until they have been cleaned by all CPUs.
2513  */
2514 static void
2515 dtrace_speculation_clean(dtrace_state_t *state)
2516 {
2517 	int work = 0, rv;
2518 	dtrace_specid_t i;
2519 
2520 	for (i = 0; i < state->dts_nspeculations; i++) {
2521 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2522 
2523 		ASSERT(!spec->dtsp_cleaning);
2524 
2525 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2526 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2527 			continue;
2528 
2529 		work++;
2530 		spec->dtsp_cleaning = 1;
2531 	}
2532 
2533 	if (!work)
2534 		return;
2535 
2536 	dtrace_xcall(DTRACE_CPUALL,
2537 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2538 
2539 	/*
2540 	 * We now know that all CPUs have committed or discarded their
2541 	 * speculation buffers, as appropriate.  We can now set the state
2542 	 * to inactive.
2543 	 */
2544 	for (i = 0; i < state->dts_nspeculations; i++) {
2545 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2546 		dtrace_speculation_state_t current, new;
2547 
2548 		if (!spec->dtsp_cleaning)
2549 			continue;
2550 
2551 		current = spec->dtsp_state;
2552 		ASSERT(current == DTRACESPEC_DISCARDING ||
2553 		    current == DTRACESPEC_COMMITTINGMANY);
2554 
2555 		new = DTRACESPEC_INACTIVE;
2556 
2557 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2558 		ASSERT(rv == current);
2559 		spec->dtsp_cleaning = 0;
2560 	}
2561 }
2562 
2563 /*
2564  * Called as part of a speculate() to get the speculative buffer associated
2565  * with a given speculation.  Returns NULL if the specified speculation is not
2566  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2567  * the active CPU is not the specified CPU -- the speculation will be
2568  * atomically transitioned into the ACTIVEMANY state.
2569  */
2570 static dtrace_buffer_t *
2571 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2572     dtrace_specid_t which)
2573 {
2574 	dtrace_speculation_t *spec;
2575 	dtrace_speculation_state_t current, new = 0;
2576 	dtrace_buffer_t *buf;
2577 
2578 	if (which == 0)
2579 		return (NULL);
2580 
2581 	if (which > state->dts_nspeculations) {
2582 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2583 		return (NULL);
2584 	}
2585 
2586 	spec = &state->dts_speculations[which - 1];
2587 	buf = &spec->dtsp_buffer[cpuid];
2588 
2589 	do {
2590 		current = spec->dtsp_state;
2591 
2592 		switch (current) {
2593 		case DTRACESPEC_INACTIVE:
2594 		case DTRACESPEC_COMMITTINGMANY:
2595 		case DTRACESPEC_DISCARDING:
2596 			return (NULL);
2597 
2598 		case DTRACESPEC_COMMITTING:
2599 			ASSERT(buf->dtb_offset == 0);
2600 			return (NULL);
2601 
2602 		case DTRACESPEC_ACTIVEONE:
2603 			/*
2604 			 * This speculation is currently active on one CPU.
2605 			 * Check the offset in the buffer; if it's non-zero,
2606 			 * that CPU must be us (and we leave the state alone).
2607 			 * If it's zero, assume that we're starting on a new
2608 			 * CPU -- and change the state to indicate that the
2609 			 * speculation is active on more than one CPU.
2610 			 */
2611 			if (buf->dtb_offset != 0)
2612 				return (buf);
2613 
2614 			new = DTRACESPEC_ACTIVEMANY;
2615 			break;
2616 
2617 		case DTRACESPEC_ACTIVEMANY:
2618 			return (buf);
2619 
2620 		case DTRACESPEC_ACTIVE:
2621 			new = DTRACESPEC_ACTIVEONE;
2622 			break;
2623 
2624 		default:
2625 			ASSERT(0);
2626 		}
2627 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2628 	    current, new) != current);
2629 
2630 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2631 	return (buf);
2632 }
2633 
2634 /*
2635  * Return a string.  In the event that the user lacks the privilege to access
2636  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2637  * don't fail access checking.
2638  *
2639  * dtrace_dif_variable() uses this routine as a helper for various
2640  * builtin values such as 'execname' and 'probefunc.'
2641  */
2642 uintptr_t
2643 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2644     dtrace_mstate_t *mstate)
2645 {
2646 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2647 	uintptr_t ret;
2648 	size_t strsz;
2649 
2650 	/*
2651 	 * The easy case: this probe is allowed to read all of memory, so
2652 	 * we can just return this as a vanilla pointer.
2653 	 */
2654 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2655 		return (addr);
2656 
2657 	/*
2658 	 * This is the tougher case: we copy the string in question from
2659 	 * kernel memory into scratch memory and return it that way: this
2660 	 * ensures that we won't trip up when access checking tests the
2661 	 * BYREF return value.
2662 	 */
2663 	strsz = dtrace_strlen((char *)addr, size) + 1;
2664 
2665 	if (mstate->dtms_scratch_ptr + strsz >
2666 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2667 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2668 		return (0);
2669 	}
2670 
2671 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2672 	    strsz);
2673 	ret = mstate->dtms_scratch_ptr;
2674 	mstate->dtms_scratch_ptr += strsz;
2675 	return (ret);
2676 }
2677 
2678 /*
2679  * Return a string from a memoy address which is known to have one or
2680  * more concatenated, individually zero terminated, sub-strings.
2681  * In the event that the user lacks the privilege to access
2682  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2683  * don't fail access checking.
2684  *
2685  * dtrace_dif_variable() uses this routine as a helper for various
2686  * builtin values such as 'execargs'.
2687  */
2688 static uintptr_t
2689 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2690     dtrace_mstate_t *mstate)
2691 {
2692 	char *p;
2693 	size_t i;
2694 	uintptr_t ret;
2695 
2696 	if (mstate->dtms_scratch_ptr + strsz >
2697 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2698 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2699 		return (0);
2700 	}
2701 
2702 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2703 	    strsz);
2704 
2705 	/* Replace sub-string termination characters with a space. */
2706 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2707 	    p++, i++)
2708 		if (*p == '\0')
2709 			*p = ' ';
2710 
2711 	ret = mstate->dtms_scratch_ptr;
2712 	mstate->dtms_scratch_ptr += strsz;
2713 	return (ret);
2714 }
2715 
2716 /*
2717  * This function implements the DIF emulator's variable lookups.  The emulator
2718  * passes a reserved variable identifier and optional built-in array index.
2719  */
2720 static uint64_t
2721 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2722     uint64_t ndx)
2723 {
2724 	/*
2725 	 * If we're accessing one of the uncached arguments, we'll turn this
2726 	 * into a reference in the args array.
2727 	 */
2728 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2729 		ndx = v - DIF_VAR_ARG0;
2730 		v = DIF_VAR_ARGS;
2731 	}
2732 
2733 	switch (v) {
2734 	case DIF_VAR_ARGS:
2735 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2736 		if (ndx >= sizeof (mstate->dtms_arg) /
2737 		    sizeof (mstate->dtms_arg[0])) {
2738 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2739 			dtrace_provider_t *pv;
2740 			uint64_t val;
2741 
2742 			pv = mstate->dtms_probe->dtpr_provider;
2743 			if (pv->dtpv_pops.dtps_getargval != NULL)
2744 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2745 				    mstate->dtms_probe->dtpr_id,
2746 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2747 			else
2748 				val = dtrace_getarg(ndx, aframes);
2749 
2750 			/*
2751 			 * This is regrettably required to keep the compiler
2752 			 * from tail-optimizing the call to dtrace_getarg().
2753 			 * The condition always evaluates to true, but the
2754 			 * compiler has no way of figuring that out a priori.
2755 			 * (None of this would be necessary if the compiler
2756 			 * could be relied upon to _always_ tail-optimize
2757 			 * the call to dtrace_getarg() -- but it can't.)
2758 			 */
2759 			if (mstate->dtms_probe != NULL)
2760 				return (val);
2761 
2762 			ASSERT(0);
2763 		}
2764 
2765 		return (mstate->dtms_arg[ndx]);
2766 
2767 #if defined(sun)
2768 	case DIF_VAR_UREGS: {
2769 		klwp_t *lwp;
2770 
2771 		if (!dtrace_priv_proc(state))
2772 			return (0);
2773 
2774 		if ((lwp = curthread->t_lwp) == NULL) {
2775 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2776 			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2777 			return (0);
2778 		}
2779 
2780 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2781 		return (0);
2782 	}
2783 #else
2784 	case DIF_VAR_UREGS: {
2785 		struct trapframe *tframe;
2786 
2787 		if (!dtrace_priv_proc(state))
2788 			return (0);
2789 
2790 		if ((tframe = curthread->td_frame) == NULL) {
2791 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2792 			cpu_core[curcpu].cpuc_dtrace_illval = 0;
2793 			return (0);
2794 		}
2795 
2796 		return (dtrace_getreg(tframe, ndx));
2797 	}
2798 #endif
2799 
2800 	case DIF_VAR_CURTHREAD:
2801 		if (!dtrace_priv_kernel(state))
2802 			return (0);
2803 		return ((uint64_t)(uintptr_t)curthread);
2804 
2805 	case DIF_VAR_TIMESTAMP:
2806 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2807 			mstate->dtms_timestamp = dtrace_gethrtime();
2808 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2809 		}
2810 		return (mstate->dtms_timestamp);
2811 
2812 	case DIF_VAR_VTIMESTAMP:
2813 		ASSERT(dtrace_vtime_references != 0);
2814 		return (curthread->t_dtrace_vtime);
2815 
2816 	case DIF_VAR_WALLTIMESTAMP:
2817 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2818 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2819 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2820 		}
2821 		return (mstate->dtms_walltimestamp);
2822 
2823 #if defined(sun)
2824 	case DIF_VAR_IPL:
2825 		if (!dtrace_priv_kernel(state))
2826 			return (0);
2827 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2828 			mstate->dtms_ipl = dtrace_getipl();
2829 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2830 		}
2831 		return (mstate->dtms_ipl);
2832 #endif
2833 
2834 	case DIF_VAR_EPID:
2835 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2836 		return (mstate->dtms_epid);
2837 
2838 	case DIF_VAR_ID:
2839 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2840 		return (mstate->dtms_probe->dtpr_id);
2841 
2842 	case DIF_VAR_STACKDEPTH:
2843 		if (!dtrace_priv_kernel(state))
2844 			return (0);
2845 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2846 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2847 
2848 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2849 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2850 		}
2851 		return (mstate->dtms_stackdepth);
2852 
2853 	case DIF_VAR_USTACKDEPTH:
2854 		if (!dtrace_priv_proc(state))
2855 			return (0);
2856 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2857 			/*
2858 			 * See comment in DIF_VAR_PID.
2859 			 */
2860 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2861 			    CPU_ON_INTR(CPU)) {
2862 				mstate->dtms_ustackdepth = 0;
2863 			} else {
2864 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2865 				mstate->dtms_ustackdepth =
2866 				    dtrace_getustackdepth();
2867 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2868 			}
2869 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2870 		}
2871 		return (mstate->dtms_ustackdepth);
2872 
2873 	case DIF_VAR_CALLER:
2874 		if (!dtrace_priv_kernel(state))
2875 			return (0);
2876 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2877 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2878 
2879 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2880 				/*
2881 				 * If this is an unanchored probe, we are
2882 				 * required to go through the slow path:
2883 				 * dtrace_caller() only guarantees correct
2884 				 * results for anchored probes.
2885 				 */
2886 				pc_t caller[2] = {0, 0};
2887 
2888 				dtrace_getpcstack(caller, 2, aframes,
2889 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2890 				mstate->dtms_caller = caller[1];
2891 			} else if ((mstate->dtms_caller =
2892 			    dtrace_caller(aframes)) == -1) {
2893 				/*
2894 				 * We have failed to do this the quick way;
2895 				 * we must resort to the slower approach of
2896 				 * calling dtrace_getpcstack().
2897 				 */
2898 				pc_t caller = 0;
2899 
2900 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2901 				mstate->dtms_caller = caller;
2902 			}
2903 
2904 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2905 		}
2906 		return (mstate->dtms_caller);
2907 
2908 	case DIF_VAR_UCALLER:
2909 		if (!dtrace_priv_proc(state))
2910 			return (0);
2911 
2912 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2913 			uint64_t ustack[3];
2914 
2915 			/*
2916 			 * dtrace_getupcstack() fills in the first uint64_t
2917 			 * with the current PID.  The second uint64_t will
2918 			 * be the program counter at user-level.  The third
2919 			 * uint64_t will contain the caller, which is what
2920 			 * we're after.
2921 			 */
2922 			ustack[2] = 0;
2923 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2924 			dtrace_getupcstack(ustack, 3);
2925 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2926 			mstate->dtms_ucaller = ustack[2];
2927 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2928 		}
2929 
2930 		return (mstate->dtms_ucaller);
2931 
2932 	case DIF_VAR_PROBEPROV:
2933 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2934 		return (dtrace_dif_varstr(
2935 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2936 		    state, mstate));
2937 
2938 	case DIF_VAR_PROBEMOD:
2939 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2940 		return (dtrace_dif_varstr(
2941 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2942 		    state, mstate));
2943 
2944 	case DIF_VAR_PROBEFUNC:
2945 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2946 		return (dtrace_dif_varstr(
2947 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2948 		    state, mstate));
2949 
2950 	case DIF_VAR_PROBENAME:
2951 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2952 		return (dtrace_dif_varstr(
2953 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
2954 		    state, mstate));
2955 
2956 	case DIF_VAR_PID:
2957 		if (!dtrace_priv_proc(state))
2958 			return (0);
2959 
2960 #if defined(sun)
2961 		/*
2962 		 * Note that we are assuming that an unanchored probe is
2963 		 * always due to a high-level interrupt.  (And we're assuming
2964 		 * that there is only a single high level interrupt.)
2965 		 */
2966 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2967 			return (pid0.pid_id);
2968 
2969 		/*
2970 		 * It is always safe to dereference one's own t_procp pointer:
2971 		 * it always points to a valid, allocated proc structure.
2972 		 * Further, it is always safe to dereference the p_pidp member
2973 		 * of one's own proc structure.  (These are truisms becuase
2974 		 * threads and processes don't clean up their own state --
2975 		 * they leave that task to whomever reaps them.)
2976 		 */
2977 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2978 #else
2979 		return ((uint64_t)curproc->p_pid);
2980 #endif
2981 
2982 	case DIF_VAR_PPID:
2983 		if (!dtrace_priv_proc(state))
2984 			return (0);
2985 
2986 #if defined(sun)
2987 		/*
2988 		 * See comment in DIF_VAR_PID.
2989 		 */
2990 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2991 			return (pid0.pid_id);
2992 
2993 		/*
2994 		 * It is always safe to dereference one's own t_procp pointer:
2995 		 * it always points to a valid, allocated proc structure.
2996 		 * (This is true because threads don't clean up their own
2997 		 * state -- they leave that task to whomever reaps them.)
2998 		 */
2999 		return ((uint64_t)curthread->t_procp->p_ppid);
3000 #else
3001 		return ((uint64_t)curproc->p_pptr->p_pid);
3002 #endif
3003 
3004 	case DIF_VAR_TID:
3005 #if defined(sun)
3006 		/*
3007 		 * See comment in DIF_VAR_PID.
3008 		 */
3009 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3010 			return (0);
3011 #endif
3012 
3013 		return ((uint64_t)curthread->t_tid);
3014 
3015 	case DIF_VAR_EXECARGS: {
3016 		struct pargs *p_args = curthread->td_proc->p_args;
3017 
3018 		if (p_args == NULL)
3019 			return(0);
3020 
3021 		return (dtrace_dif_varstrz(
3022 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3023 	}
3024 
3025 	case DIF_VAR_EXECNAME:
3026 #if defined(sun)
3027 		if (!dtrace_priv_proc(state))
3028 			return (0);
3029 
3030 		/*
3031 		 * See comment in DIF_VAR_PID.
3032 		 */
3033 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3034 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3035 
3036 		/*
3037 		 * It is always safe to dereference one's own t_procp pointer:
3038 		 * it always points to a valid, allocated proc structure.
3039 		 * (This is true because threads don't clean up their own
3040 		 * state -- they leave that task to whomever reaps them.)
3041 		 */
3042 		return (dtrace_dif_varstr(
3043 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3044 		    state, mstate));
3045 #else
3046 		return (dtrace_dif_varstr(
3047 		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3048 #endif
3049 
3050 	case DIF_VAR_ZONENAME:
3051 #if defined(sun)
3052 		if (!dtrace_priv_proc(state))
3053 			return (0);
3054 
3055 		/*
3056 		 * See comment in DIF_VAR_PID.
3057 		 */
3058 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3059 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3060 
3061 		/*
3062 		 * It is always safe to dereference one's own t_procp pointer:
3063 		 * it always points to a valid, allocated proc structure.
3064 		 * (This is true because threads don't clean up their own
3065 		 * state -- they leave that task to whomever reaps them.)
3066 		 */
3067 		return (dtrace_dif_varstr(
3068 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3069 		    state, mstate));
3070 #else
3071 		return (0);
3072 #endif
3073 
3074 	case DIF_VAR_UID:
3075 		if (!dtrace_priv_proc(state))
3076 			return (0);
3077 
3078 #if defined(sun)
3079 		/*
3080 		 * See comment in DIF_VAR_PID.
3081 		 */
3082 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3083 			return ((uint64_t)p0.p_cred->cr_uid);
3084 #endif
3085 
3086 		/*
3087 		 * It is always safe to dereference one's own t_procp pointer:
3088 		 * it always points to a valid, allocated proc structure.
3089 		 * (This is true because threads don't clean up their own
3090 		 * state -- they leave that task to whomever reaps them.)
3091 		 *
3092 		 * Additionally, it is safe to dereference one's own process
3093 		 * credential, since this is never NULL after process birth.
3094 		 */
3095 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3096 
3097 	case DIF_VAR_GID:
3098 		if (!dtrace_priv_proc(state))
3099 			return (0);
3100 
3101 #if defined(sun)
3102 		/*
3103 		 * See comment in DIF_VAR_PID.
3104 		 */
3105 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3106 			return ((uint64_t)p0.p_cred->cr_gid);
3107 #endif
3108 
3109 		/*
3110 		 * It is always safe to dereference one's own t_procp pointer:
3111 		 * it always points to a valid, allocated proc structure.
3112 		 * (This is true because threads don't clean up their own
3113 		 * state -- they leave that task to whomever reaps them.)
3114 		 *
3115 		 * Additionally, it is safe to dereference one's own process
3116 		 * credential, since this is never NULL after process birth.
3117 		 */
3118 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3119 
3120 	case DIF_VAR_ERRNO: {
3121 #if defined(sun)
3122 		klwp_t *lwp;
3123 		if (!dtrace_priv_proc(state))
3124 			return (0);
3125 
3126 		/*
3127 		 * See comment in DIF_VAR_PID.
3128 		 */
3129 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3130 			return (0);
3131 
3132 		/*
3133 		 * It is always safe to dereference one's own t_lwp pointer in
3134 		 * the event that this pointer is non-NULL.  (This is true
3135 		 * because threads and lwps don't clean up their own state --
3136 		 * they leave that task to whomever reaps them.)
3137 		 */
3138 		if ((lwp = curthread->t_lwp) == NULL)
3139 			return (0);
3140 
3141 		return ((uint64_t)lwp->lwp_errno);
3142 #else
3143 		return (curthread->td_errno);
3144 #endif
3145 	}
3146 	default:
3147 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3148 		return (0);
3149 	}
3150 }
3151 
3152 /*
3153  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3154  * Notice that we don't bother validating the proper number of arguments or
3155  * their types in the tuple stack.  This isn't needed because all argument
3156  * interpretation is safe because of our load safety -- the worst that can
3157  * happen is that a bogus program can obtain bogus results.
3158  */
3159 static void
3160 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3161     dtrace_key_t *tupregs, int nargs,
3162     dtrace_mstate_t *mstate, dtrace_state_t *state)
3163 {
3164 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3165 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3166 	dtrace_vstate_t *vstate = &state->dts_vstate;
3167 
3168 #if defined(sun)
3169 	union {
3170 		mutex_impl_t mi;
3171 		uint64_t mx;
3172 	} m;
3173 
3174 	union {
3175 		krwlock_t ri;
3176 		uintptr_t rw;
3177 	} r;
3178 #else
3179 	struct thread *lowner;
3180 	union {
3181 		struct lock_object *li;
3182 		uintptr_t lx;
3183 	} l;
3184 #endif
3185 
3186 	switch (subr) {
3187 	case DIF_SUBR_RAND:
3188 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3189 		break;
3190 
3191 #if defined(sun)
3192 	case DIF_SUBR_MUTEX_OWNED:
3193 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3194 		    mstate, vstate)) {
3195 			regs[rd] = 0;
3196 			break;
3197 		}
3198 
3199 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3200 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3201 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3202 		else
3203 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3204 		break;
3205 
3206 	case DIF_SUBR_MUTEX_OWNER:
3207 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3208 		    mstate, vstate)) {
3209 			regs[rd] = 0;
3210 			break;
3211 		}
3212 
3213 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3214 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3215 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3216 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3217 		else
3218 			regs[rd] = 0;
3219 		break;
3220 
3221 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3222 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3223 		    mstate, vstate)) {
3224 			regs[rd] = 0;
3225 			break;
3226 		}
3227 
3228 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3229 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3230 		break;
3231 
3232 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3233 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3234 		    mstate, vstate)) {
3235 			regs[rd] = 0;
3236 			break;
3237 		}
3238 
3239 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3240 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3241 		break;
3242 
3243 	case DIF_SUBR_RW_READ_HELD: {
3244 		uintptr_t tmp;
3245 
3246 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3247 		    mstate, vstate)) {
3248 			regs[rd] = 0;
3249 			break;
3250 		}
3251 
3252 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3253 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3254 		break;
3255 	}
3256 
3257 	case DIF_SUBR_RW_WRITE_HELD:
3258 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3259 		    mstate, vstate)) {
3260 			regs[rd] = 0;
3261 			break;
3262 		}
3263 
3264 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3265 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3266 		break;
3267 
3268 	case DIF_SUBR_RW_ISWRITER:
3269 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3270 		    mstate, vstate)) {
3271 			regs[rd] = 0;
3272 			break;
3273 		}
3274 
3275 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3276 		regs[rd] = _RW_ISWRITER(&r.ri);
3277 		break;
3278 
3279 #else
3280 	case DIF_SUBR_MUTEX_OWNED:
3281 		if (!dtrace_canload(tupregs[0].dttk_value,
3282 			sizeof (struct lock_object), mstate, vstate)) {
3283 			regs[rd] = 0;
3284 			break;
3285 		}
3286 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3287 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3288 		break;
3289 
3290 	case DIF_SUBR_MUTEX_OWNER:
3291 		if (!dtrace_canload(tupregs[0].dttk_value,
3292 			sizeof (struct lock_object), mstate, vstate)) {
3293 			regs[rd] = 0;
3294 			break;
3295 		}
3296 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3297 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3298 		regs[rd] = (uintptr_t)lowner;
3299 		break;
3300 
3301 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3302 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3303 		    mstate, vstate)) {
3304 			regs[rd] = 0;
3305 			break;
3306 		}
3307 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3308 		/* XXX - should be only LC_SLEEPABLE? */
3309 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3310 		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3311 		break;
3312 
3313 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3314 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3315 		    mstate, vstate)) {
3316 			regs[rd] = 0;
3317 			break;
3318 		}
3319 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3320 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3321 		break;
3322 
3323 	case DIF_SUBR_RW_READ_HELD:
3324 	case DIF_SUBR_SX_SHARED_HELD:
3325 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3326 		    mstate, vstate)) {
3327 			regs[rd] = 0;
3328 			break;
3329 		}
3330 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3331 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3332 		    lowner == NULL;
3333 		break;
3334 
3335 	case DIF_SUBR_RW_WRITE_HELD:
3336 	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3337 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3338 		    mstate, vstate)) {
3339 			regs[rd] = 0;
3340 			break;
3341 		}
3342 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3343 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3344 		regs[rd] = (lowner == curthread);
3345 		break;
3346 
3347 	case DIF_SUBR_RW_ISWRITER:
3348 	case DIF_SUBR_SX_ISEXCLUSIVE:
3349 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3350 		    mstate, vstate)) {
3351 			regs[rd] = 0;
3352 			break;
3353 		}
3354 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3355 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3356 		    lowner != NULL;
3357 		break;
3358 #endif /* ! defined(sun) */
3359 
3360 	case DIF_SUBR_BCOPY: {
3361 		/*
3362 		 * We need to be sure that the destination is in the scratch
3363 		 * region -- no other region is allowed.
3364 		 */
3365 		uintptr_t src = tupregs[0].dttk_value;
3366 		uintptr_t dest = tupregs[1].dttk_value;
3367 		size_t size = tupregs[2].dttk_value;
3368 
3369 		if (!dtrace_inscratch(dest, size, mstate)) {
3370 			*flags |= CPU_DTRACE_BADADDR;
3371 			*illval = regs[rd];
3372 			break;
3373 		}
3374 
3375 		if (!dtrace_canload(src, size, mstate, vstate)) {
3376 			regs[rd] = 0;
3377 			break;
3378 		}
3379 
3380 		dtrace_bcopy((void *)src, (void *)dest, size);
3381 		break;
3382 	}
3383 
3384 	case DIF_SUBR_ALLOCA:
3385 	case DIF_SUBR_COPYIN: {
3386 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3387 		uint64_t size =
3388 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3389 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3390 
3391 		/*
3392 		 * This action doesn't require any credential checks since
3393 		 * probes will not activate in user contexts to which the
3394 		 * enabling user does not have permissions.
3395 		 */
3396 
3397 		/*
3398 		 * Rounding up the user allocation size could have overflowed
3399 		 * a large, bogus allocation (like -1ULL) to 0.
3400 		 */
3401 		if (scratch_size < size ||
3402 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3403 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3404 			regs[rd] = 0;
3405 			break;
3406 		}
3407 
3408 		if (subr == DIF_SUBR_COPYIN) {
3409 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3410 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3411 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3412 		}
3413 
3414 		mstate->dtms_scratch_ptr += scratch_size;
3415 		regs[rd] = dest;
3416 		break;
3417 	}
3418 
3419 	case DIF_SUBR_COPYINTO: {
3420 		uint64_t size = tupregs[1].dttk_value;
3421 		uintptr_t dest = tupregs[2].dttk_value;
3422 
3423 		/*
3424 		 * This action doesn't require any credential checks since
3425 		 * probes will not activate in user contexts to which the
3426 		 * enabling user does not have permissions.
3427 		 */
3428 		if (!dtrace_inscratch(dest, size, mstate)) {
3429 			*flags |= CPU_DTRACE_BADADDR;
3430 			*illval = regs[rd];
3431 			break;
3432 		}
3433 
3434 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3435 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3436 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3437 		break;
3438 	}
3439 
3440 	case DIF_SUBR_COPYINSTR: {
3441 		uintptr_t dest = mstate->dtms_scratch_ptr;
3442 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3443 
3444 		if (nargs > 1 && tupregs[1].dttk_value < size)
3445 			size = tupregs[1].dttk_value + 1;
3446 
3447 		/*
3448 		 * This action doesn't require any credential checks since
3449 		 * probes will not activate in user contexts to which the
3450 		 * enabling user does not have permissions.
3451 		 */
3452 		if (!DTRACE_INSCRATCH(mstate, size)) {
3453 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3454 			regs[rd] = 0;
3455 			break;
3456 		}
3457 
3458 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3459 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3460 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3461 
3462 		((char *)dest)[size - 1] = '\0';
3463 		mstate->dtms_scratch_ptr += size;
3464 		regs[rd] = dest;
3465 		break;
3466 	}
3467 
3468 #if defined(sun)
3469 	case DIF_SUBR_MSGSIZE:
3470 	case DIF_SUBR_MSGDSIZE: {
3471 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3472 		uintptr_t wptr, rptr;
3473 		size_t count = 0;
3474 		int cont = 0;
3475 
3476 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3477 
3478 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3479 			    vstate)) {
3480 				regs[rd] = 0;
3481 				break;
3482 			}
3483 
3484 			wptr = dtrace_loadptr(baddr +
3485 			    offsetof(mblk_t, b_wptr));
3486 
3487 			rptr = dtrace_loadptr(baddr +
3488 			    offsetof(mblk_t, b_rptr));
3489 
3490 			if (wptr < rptr) {
3491 				*flags |= CPU_DTRACE_BADADDR;
3492 				*illval = tupregs[0].dttk_value;
3493 				break;
3494 			}
3495 
3496 			daddr = dtrace_loadptr(baddr +
3497 			    offsetof(mblk_t, b_datap));
3498 
3499 			baddr = dtrace_loadptr(baddr +
3500 			    offsetof(mblk_t, b_cont));
3501 
3502 			/*
3503 			 * We want to prevent against denial-of-service here,
3504 			 * so we're only going to search the list for
3505 			 * dtrace_msgdsize_max mblks.
3506 			 */
3507 			if (cont++ > dtrace_msgdsize_max) {
3508 				*flags |= CPU_DTRACE_ILLOP;
3509 				break;
3510 			}
3511 
3512 			if (subr == DIF_SUBR_MSGDSIZE) {
3513 				if (dtrace_load8(daddr +
3514 				    offsetof(dblk_t, db_type)) != M_DATA)
3515 					continue;
3516 			}
3517 
3518 			count += wptr - rptr;
3519 		}
3520 
3521 		if (!(*flags & CPU_DTRACE_FAULT))
3522 			regs[rd] = count;
3523 
3524 		break;
3525 	}
3526 #endif
3527 
3528 	case DIF_SUBR_PROGENYOF: {
3529 		pid_t pid = tupregs[0].dttk_value;
3530 		proc_t *p;
3531 		int rval = 0;
3532 
3533 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3534 
3535 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3536 #if defined(sun)
3537 			if (p->p_pidp->pid_id == pid) {
3538 #else
3539 			if (p->p_pid == pid) {
3540 #endif
3541 				rval = 1;
3542 				break;
3543 			}
3544 		}
3545 
3546 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3547 
3548 		regs[rd] = rval;
3549 		break;
3550 	}
3551 
3552 	case DIF_SUBR_SPECULATION:
3553 		regs[rd] = dtrace_speculation(state);
3554 		break;
3555 
3556 	case DIF_SUBR_COPYOUT: {
3557 		uintptr_t kaddr = tupregs[0].dttk_value;
3558 		uintptr_t uaddr = tupregs[1].dttk_value;
3559 		uint64_t size = tupregs[2].dttk_value;
3560 
3561 		if (!dtrace_destructive_disallow &&
3562 		    dtrace_priv_proc_control(state) &&
3563 		    !dtrace_istoxic(kaddr, size)) {
3564 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3565 			dtrace_copyout(kaddr, uaddr, size, flags);
3566 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3567 		}
3568 		break;
3569 	}
3570 
3571 	case DIF_SUBR_COPYOUTSTR: {
3572 		uintptr_t kaddr = tupregs[0].dttk_value;
3573 		uintptr_t uaddr = tupregs[1].dttk_value;
3574 		uint64_t size = tupregs[2].dttk_value;
3575 
3576 		if (!dtrace_destructive_disallow &&
3577 		    dtrace_priv_proc_control(state) &&
3578 		    !dtrace_istoxic(kaddr, size)) {
3579 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3580 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3581 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3582 		}
3583 		break;
3584 	}
3585 
3586 	case DIF_SUBR_STRLEN: {
3587 		size_t sz;
3588 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3589 		sz = dtrace_strlen((char *)addr,
3590 		    state->dts_options[DTRACEOPT_STRSIZE]);
3591 
3592 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3593 			regs[rd] = 0;
3594 			break;
3595 		}
3596 
3597 		regs[rd] = sz;
3598 
3599 		break;
3600 	}
3601 
3602 	case DIF_SUBR_STRCHR:
3603 	case DIF_SUBR_STRRCHR: {
3604 		/*
3605 		 * We're going to iterate over the string looking for the
3606 		 * specified character.  We will iterate until we have reached
3607 		 * the string length or we have found the character.  If this
3608 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3609 		 * of the specified character instead of the first.
3610 		 */
3611 		uintptr_t saddr = tupregs[0].dttk_value;
3612 		uintptr_t addr = tupregs[0].dttk_value;
3613 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3614 		char c, target = (char)tupregs[1].dttk_value;
3615 
3616 		for (regs[rd] = 0; addr < limit; addr++) {
3617 			if ((c = dtrace_load8(addr)) == target) {
3618 				regs[rd] = addr;
3619 
3620 				if (subr == DIF_SUBR_STRCHR)
3621 					break;
3622 			}
3623 
3624 			if (c == '\0')
3625 				break;
3626 		}
3627 
3628 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3629 			regs[rd] = 0;
3630 			break;
3631 		}
3632 
3633 		break;
3634 	}
3635 
3636 	case DIF_SUBR_STRSTR:
3637 	case DIF_SUBR_INDEX:
3638 	case DIF_SUBR_RINDEX: {
3639 		/*
3640 		 * We're going to iterate over the string looking for the
3641 		 * specified string.  We will iterate until we have reached
3642 		 * the string length or we have found the string.  (Yes, this
3643 		 * is done in the most naive way possible -- but considering
3644 		 * that the string we're searching for is likely to be
3645 		 * relatively short, the complexity of Rabin-Karp or similar
3646 		 * hardly seems merited.)
3647 		 */
3648 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3649 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3650 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3651 		size_t len = dtrace_strlen(addr, size);
3652 		size_t sublen = dtrace_strlen(substr, size);
3653 		char *limit = addr + len, *orig = addr;
3654 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3655 		int inc = 1;
3656 
3657 		regs[rd] = notfound;
3658 
3659 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3660 			regs[rd] = 0;
3661 			break;
3662 		}
3663 
3664 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3665 		    vstate)) {
3666 			regs[rd] = 0;
3667 			break;
3668 		}
3669 
3670 		/*
3671 		 * strstr() and index()/rindex() have similar semantics if
3672 		 * both strings are the empty string: strstr() returns a
3673 		 * pointer to the (empty) string, and index() and rindex()
3674 		 * both return index 0 (regardless of any position argument).
3675 		 */
3676 		if (sublen == 0 && len == 0) {
3677 			if (subr == DIF_SUBR_STRSTR)
3678 				regs[rd] = (uintptr_t)addr;
3679 			else
3680 				regs[rd] = 0;
3681 			break;
3682 		}
3683 
3684 		if (subr != DIF_SUBR_STRSTR) {
3685 			if (subr == DIF_SUBR_RINDEX) {
3686 				limit = orig - 1;
3687 				addr += len;
3688 				inc = -1;
3689 			}
3690 
3691 			/*
3692 			 * Both index() and rindex() take an optional position
3693 			 * argument that denotes the starting position.
3694 			 */
3695 			if (nargs == 3) {
3696 				int64_t pos = (int64_t)tupregs[2].dttk_value;
3697 
3698 				/*
3699 				 * If the position argument to index() is
3700 				 * negative, Perl implicitly clamps it at
3701 				 * zero.  This semantic is a little surprising
3702 				 * given the special meaning of negative
3703 				 * positions to similar Perl functions like
3704 				 * substr(), but it appears to reflect a
3705 				 * notion that index() can start from a
3706 				 * negative index and increment its way up to
3707 				 * the string.  Given this notion, Perl's
3708 				 * rindex() is at least self-consistent in
3709 				 * that it implicitly clamps positions greater
3710 				 * than the string length to be the string
3711 				 * length.  Where Perl completely loses
3712 				 * coherence, however, is when the specified
3713 				 * substring is the empty string ("").  In
3714 				 * this case, even if the position is
3715 				 * negative, rindex() returns 0 -- and even if
3716 				 * the position is greater than the length,
3717 				 * index() returns the string length.  These
3718 				 * semantics violate the notion that index()
3719 				 * should never return a value less than the
3720 				 * specified position and that rindex() should
3721 				 * never return a value greater than the
3722 				 * specified position.  (One assumes that
3723 				 * these semantics are artifacts of Perl's
3724 				 * implementation and not the results of
3725 				 * deliberate design -- it beggars belief that
3726 				 * even Larry Wall could desire such oddness.)
3727 				 * While in the abstract one would wish for
3728 				 * consistent position semantics across
3729 				 * substr(), index() and rindex() -- or at the
3730 				 * very least self-consistent position
3731 				 * semantics for index() and rindex() -- we
3732 				 * instead opt to keep with the extant Perl
3733 				 * semantics, in all their broken glory.  (Do
3734 				 * we have more desire to maintain Perl's
3735 				 * semantics than Perl does?  Probably.)
3736 				 */
3737 				if (subr == DIF_SUBR_RINDEX) {
3738 					if (pos < 0) {
3739 						if (sublen == 0)
3740 							regs[rd] = 0;
3741 						break;
3742 					}
3743 
3744 					if (pos > len)
3745 						pos = len;
3746 				} else {
3747 					if (pos < 0)
3748 						pos = 0;
3749 
3750 					if (pos >= len) {
3751 						if (sublen == 0)
3752 							regs[rd] = len;
3753 						break;
3754 					}
3755 				}
3756 
3757 				addr = orig + pos;
3758 			}
3759 		}
3760 
3761 		for (regs[rd] = notfound; addr != limit; addr += inc) {
3762 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3763 				if (subr != DIF_SUBR_STRSTR) {
3764 					/*
3765 					 * As D index() and rindex() are
3766 					 * modeled on Perl (and not on awk),
3767 					 * we return a zero-based (and not a
3768 					 * one-based) index.  (For you Perl
3769 					 * weenies: no, we're not going to add
3770 					 * $[ -- and shouldn't you be at a con
3771 					 * or something?)
3772 					 */
3773 					regs[rd] = (uintptr_t)(addr - orig);
3774 					break;
3775 				}
3776 
3777 				ASSERT(subr == DIF_SUBR_STRSTR);
3778 				regs[rd] = (uintptr_t)addr;
3779 				break;
3780 			}
3781 		}
3782 
3783 		break;
3784 	}
3785 
3786 	case DIF_SUBR_STRTOK: {
3787 		uintptr_t addr = tupregs[0].dttk_value;
3788 		uintptr_t tokaddr = tupregs[1].dttk_value;
3789 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3790 		uintptr_t limit, toklimit = tokaddr + size;
3791 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3792 		char *dest = (char *)mstate->dtms_scratch_ptr;
3793 		int i;
3794 
3795 		/*
3796 		 * Check both the token buffer and (later) the input buffer,
3797 		 * since both could be non-scratch addresses.
3798 		 */
3799 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3800 			regs[rd] = 0;
3801 			break;
3802 		}
3803 
3804 		if (!DTRACE_INSCRATCH(mstate, size)) {
3805 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3806 			regs[rd] = 0;
3807 			break;
3808 		}
3809 
3810 		if (addr == 0) {
3811 			/*
3812 			 * If the address specified is NULL, we use our saved
3813 			 * strtok pointer from the mstate.  Note that this
3814 			 * means that the saved strtok pointer is _only_
3815 			 * valid within multiple enablings of the same probe --
3816 			 * it behaves like an implicit clause-local variable.
3817 			 */
3818 			addr = mstate->dtms_strtok;
3819 		} else {
3820 			/*
3821 			 * If the user-specified address is non-NULL we must
3822 			 * access check it.  This is the only time we have
3823 			 * a chance to do so, since this address may reside
3824 			 * in the string table of this clause-- future calls
3825 			 * (when we fetch addr from mstate->dtms_strtok)
3826 			 * would fail this access check.
3827 			 */
3828 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3829 				regs[rd] = 0;
3830 				break;
3831 			}
3832 		}
3833 
3834 		/*
3835 		 * First, zero the token map, and then process the token
3836 		 * string -- setting a bit in the map for every character
3837 		 * found in the token string.
3838 		 */
3839 		for (i = 0; i < sizeof (tokmap); i++)
3840 			tokmap[i] = 0;
3841 
3842 		for (; tokaddr < toklimit; tokaddr++) {
3843 			if ((c = dtrace_load8(tokaddr)) == '\0')
3844 				break;
3845 
3846 			ASSERT((c >> 3) < sizeof (tokmap));
3847 			tokmap[c >> 3] |= (1 << (c & 0x7));
3848 		}
3849 
3850 		for (limit = addr + size; addr < limit; addr++) {
3851 			/*
3852 			 * We're looking for a character that is _not_ contained
3853 			 * in the token string.
3854 			 */
3855 			if ((c = dtrace_load8(addr)) == '\0')
3856 				break;
3857 
3858 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3859 				break;
3860 		}
3861 
3862 		if (c == '\0') {
3863 			/*
3864 			 * We reached the end of the string without finding
3865 			 * any character that was not in the token string.
3866 			 * We return NULL in this case, and we set the saved
3867 			 * address to NULL as well.
3868 			 */
3869 			regs[rd] = 0;
3870 			mstate->dtms_strtok = 0;
3871 			break;
3872 		}
3873 
3874 		/*
3875 		 * From here on, we're copying into the destination string.
3876 		 */
3877 		for (i = 0; addr < limit && i < size - 1; addr++) {
3878 			if ((c = dtrace_load8(addr)) == '\0')
3879 				break;
3880 
3881 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3882 				break;
3883 
3884 			ASSERT(i < size);
3885 			dest[i++] = c;
3886 		}
3887 
3888 		ASSERT(i < size);
3889 		dest[i] = '\0';
3890 		regs[rd] = (uintptr_t)dest;
3891 		mstate->dtms_scratch_ptr += size;
3892 		mstate->dtms_strtok = addr;
3893 		break;
3894 	}
3895 
3896 	case DIF_SUBR_SUBSTR: {
3897 		uintptr_t s = tupregs[0].dttk_value;
3898 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3899 		char *d = (char *)mstate->dtms_scratch_ptr;
3900 		int64_t index = (int64_t)tupregs[1].dttk_value;
3901 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3902 		size_t len = dtrace_strlen((char *)s, size);
3903 		int64_t i = 0;
3904 
3905 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3906 			regs[rd] = 0;
3907 			break;
3908 		}
3909 
3910 		if (!DTRACE_INSCRATCH(mstate, size)) {
3911 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3912 			regs[rd] = 0;
3913 			break;
3914 		}
3915 
3916 		if (nargs <= 2)
3917 			remaining = (int64_t)size;
3918 
3919 		if (index < 0) {
3920 			index += len;
3921 
3922 			if (index < 0 && index + remaining > 0) {
3923 				remaining += index;
3924 				index = 0;
3925 			}
3926 		}
3927 
3928 		if (index >= len || index < 0) {
3929 			remaining = 0;
3930 		} else if (remaining < 0) {
3931 			remaining += len - index;
3932 		} else if (index + remaining > size) {
3933 			remaining = size - index;
3934 		}
3935 
3936 		for (i = 0; i < remaining; i++) {
3937 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
3938 				break;
3939 		}
3940 
3941 		d[i] = '\0';
3942 
3943 		mstate->dtms_scratch_ptr += size;
3944 		regs[rd] = (uintptr_t)d;
3945 		break;
3946 	}
3947 
3948 #if defined(sun)
3949 	case DIF_SUBR_GETMAJOR:
3950 #ifdef _LP64
3951 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
3952 #else
3953 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
3954 #endif
3955 		break;
3956 
3957 	case DIF_SUBR_GETMINOR:
3958 #ifdef _LP64
3959 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
3960 #else
3961 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
3962 #endif
3963 		break;
3964 
3965 	case DIF_SUBR_DDI_PATHNAME: {
3966 		/*
3967 		 * This one is a galactic mess.  We are going to roughly
3968 		 * emulate ddi_pathname(), but it's made more complicated
3969 		 * by the fact that we (a) want to include the minor name and
3970 		 * (b) must proceed iteratively instead of recursively.
3971 		 */
3972 		uintptr_t dest = mstate->dtms_scratch_ptr;
3973 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3974 		char *start = (char *)dest, *end = start + size - 1;
3975 		uintptr_t daddr = tupregs[0].dttk_value;
3976 		int64_t minor = (int64_t)tupregs[1].dttk_value;
3977 		char *s;
3978 		int i, len, depth = 0;
3979 
3980 		/*
3981 		 * Due to all the pointer jumping we do and context we must
3982 		 * rely upon, we just mandate that the user must have kernel
3983 		 * read privileges to use this routine.
3984 		 */
3985 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
3986 			*flags |= CPU_DTRACE_KPRIV;
3987 			*illval = daddr;
3988 			regs[rd] = 0;
3989 		}
3990 
3991 		if (!DTRACE_INSCRATCH(mstate, size)) {
3992 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3993 			regs[rd] = 0;
3994 			break;
3995 		}
3996 
3997 		*end = '\0';
3998 
3999 		/*
4000 		 * We want to have a name for the minor.  In order to do this,
4001 		 * we need to walk the minor list from the devinfo.  We want
4002 		 * to be sure that we don't infinitely walk a circular list,
4003 		 * so we check for circularity by sending a scout pointer
4004 		 * ahead two elements for every element that we iterate over;
4005 		 * if the list is circular, these will ultimately point to the
4006 		 * same element.  You may recognize this little trick as the
4007 		 * answer to a stupid interview question -- one that always
4008 		 * seems to be asked by those who had to have it laboriously
4009 		 * explained to them, and who can't even concisely describe
4010 		 * the conditions under which one would be forced to resort to
4011 		 * this technique.  Needless to say, those conditions are
4012 		 * found here -- and probably only here.  Is this the only use
4013 		 * of this infamous trick in shipping, production code?  If it
4014 		 * isn't, it probably should be...
4015 		 */
4016 		if (minor != -1) {
4017 			uintptr_t maddr = dtrace_loadptr(daddr +
4018 			    offsetof(struct dev_info, devi_minor));
4019 
4020 			uintptr_t next = offsetof(struct ddi_minor_data, next);
4021 			uintptr_t name = offsetof(struct ddi_minor_data,
4022 			    d_minor) + offsetof(struct ddi_minor, name);
4023 			uintptr_t dev = offsetof(struct ddi_minor_data,
4024 			    d_minor) + offsetof(struct ddi_minor, dev);
4025 			uintptr_t scout;
4026 
4027 			if (maddr != NULL)
4028 				scout = dtrace_loadptr(maddr + next);
4029 
4030 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4031 				uint64_t m;
4032 #ifdef _LP64
4033 				m = dtrace_load64(maddr + dev) & MAXMIN64;
4034 #else
4035 				m = dtrace_load32(maddr + dev) & MAXMIN;
4036 #endif
4037 				if (m != minor) {
4038 					maddr = dtrace_loadptr(maddr + next);
4039 
4040 					if (scout == NULL)
4041 						continue;
4042 
4043 					scout = dtrace_loadptr(scout + next);
4044 
4045 					if (scout == NULL)
4046 						continue;
4047 
4048 					scout = dtrace_loadptr(scout + next);
4049 
4050 					if (scout == NULL)
4051 						continue;
4052 
4053 					if (scout == maddr) {
4054 						*flags |= CPU_DTRACE_ILLOP;
4055 						break;
4056 					}
4057 
4058 					continue;
4059 				}
4060 
4061 				/*
4062 				 * We have the minor data.  Now we need to
4063 				 * copy the minor's name into the end of the
4064 				 * pathname.
4065 				 */
4066 				s = (char *)dtrace_loadptr(maddr + name);
4067 				len = dtrace_strlen(s, size);
4068 
4069 				if (*flags & CPU_DTRACE_FAULT)
4070 					break;
4071 
4072 				if (len != 0) {
4073 					if ((end -= (len + 1)) < start)
4074 						break;
4075 
4076 					*end = ':';
4077 				}
4078 
4079 				for (i = 1; i <= len; i++)
4080 					end[i] = dtrace_load8((uintptr_t)s++);
4081 				break;
4082 			}
4083 		}
4084 
4085 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4086 			ddi_node_state_t devi_state;
4087 
4088 			devi_state = dtrace_load32(daddr +
4089 			    offsetof(struct dev_info, devi_node_state));
4090 
4091 			if (*flags & CPU_DTRACE_FAULT)
4092 				break;
4093 
4094 			if (devi_state >= DS_INITIALIZED) {
4095 				s = (char *)dtrace_loadptr(daddr +
4096 				    offsetof(struct dev_info, devi_addr));
4097 				len = dtrace_strlen(s, size);
4098 
4099 				if (*flags & CPU_DTRACE_FAULT)
4100 					break;
4101 
4102 				if (len != 0) {
4103 					if ((end -= (len + 1)) < start)
4104 						break;
4105 
4106 					*end = '@';
4107 				}
4108 
4109 				for (i = 1; i <= len; i++)
4110 					end[i] = dtrace_load8((uintptr_t)s++);
4111 			}
4112 
4113 			/*
4114 			 * Now for the node name...
4115 			 */
4116 			s = (char *)dtrace_loadptr(daddr +
4117 			    offsetof(struct dev_info, devi_node_name));
4118 
4119 			daddr = dtrace_loadptr(daddr +
4120 			    offsetof(struct dev_info, devi_parent));
4121 
4122 			/*
4123 			 * If our parent is NULL (that is, if we're the root
4124 			 * node), we're going to use the special path
4125 			 * "devices".
4126 			 */
4127 			if (daddr == 0)
4128 				s = "devices";
4129 
4130 			len = dtrace_strlen(s, size);
4131 			if (*flags & CPU_DTRACE_FAULT)
4132 				break;
4133 
4134 			if ((end -= (len + 1)) < start)
4135 				break;
4136 
4137 			for (i = 1; i <= len; i++)
4138 				end[i] = dtrace_load8((uintptr_t)s++);
4139 			*end = '/';
4140 
4141 			if (depth++ > dtrace_devdepth_max) {
4142 				*flags |= CPU_DTRACE_ILLOP;
4143 				break;
4144 			}
4145 		}
4146 
4147 		if (end < start)
4148 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4149 
4150 		if (daddr == 0) {
4151 			regs[rd] = (uintptr_t)end;
4152 			mstate->dtms_scratch_ptr += size;
4153 		}
4154 
4155 		break;
4156 	}
4157 #endif
4158 
4159 	case DIF_SUBR_STRJOIN: {
4160 		char *d = (char *)mstate->dtms_scratch_ptr;
4161 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4162 		uintptr_t s1 = tupregs[0].dttk_value;
4163 		uintptr_t s2 = tupregs[1].dttk_value;
4164 		int i = 0;
4165 
4166 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4167 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4168 			regs[rd] = 0;
4169 			break;
4170 		}
4171 
4172 		if (!DTRACE_INSCRATCH(mstate, size)) {
4173 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4174 			regs[rd] = 0;
4175 			break;
4176 		}
4177 
4178 		for (;;) {
4179 			if (i >= size) {
4180 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4181 				regs[rd] = 0;
4182 				break;
4183 			}
4184 
4185 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4186 				i--;
4187 				break;
4188 			}
4189 		}
4190 
4191 		for (;;) {
4192 			if (i >= size) {
4193 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4194 				regs[rd] = 0;
4195 				break;
4196 			}
4197 
4198 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4199 				break;
4200 		}
4201 
4202 		if (i < size) {
4203 			mstate->dtms_scratch_ptr += i;
4204 			regs[rd] = (uintptr_t)d;
4205 		}
4206 
4207 		break;
4208 	}
4209 
4210 	case DIF_SUBR_LLTOSTR: {
4211 		int64_t i = (int64_t)tupregs[0].dttk_value;
4212 		int64_t val = i < 0 ? i * -1 : i;
4213 		uint64_t size = 22;	/* enough room for 2^64 in decimal */
4214 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4215 
4216 		if (!DTRACE_INSCRATCH(mstate, size)) {
4217 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4218 			regs[rd] = 0;
4219 			break;
4220 		}
4221 
4222 		for (*end-- = '\0'; val; val /= 10)
4223 			*end-- = '0' + (val % 10);
4224 
4225 		if (i == 0)
4226 			*end-- = '0';
4227 
4228 		if (i < 0)
4229 			*end-- = '-';
4230 
4231 		regs[rd] = (uintptr_t)end + 1;
4232 		mstate->dtms_scratch_ptr += size;
4233 		break;
4234 	}
4235 
4236 	case DIF_SUBR_HTONS:
4237 	case DIF_SUBR_NTOHS:
4238 #if BYTE_ORDER == BIG_ENDIAN
4239 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4240 #else
4241 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4242 #endif
4243 		break;
4244 
4245 
4246 	case DIF_SUBR_HTONL:
4247 	case DIF_SUBR_NTOHL:
4248 #if BYTE_ORDER == BIG_ENDIAN
4249 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4250 #else
4251 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4252 #endif
4253 		break;
4254 
4255 
4256 	case DIF_SUBR_HTONLL:
4257 	case DIF_SUBR_NTOHLL:
4258 #if BYTE_ORDER == BIG_ENDIAN
4259 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4260 #else
4261 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4262 #endif
4263 		break;
4264 
4265 
4266 	case DIF_SUBR_DIRNAME:
4267 	case DIF_SUBR_BASENAME: {
4268 		char *dest = (char *)mstate->dtms_scratch_ptr;
4269 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4270 		uintptr_t src = tupregs[0].dttk_value;
4271 		int i, j, len = dtrace_strlen((char *)src, size);
4272 		int lastbase = -1, firstbase = -1, lastdir = -1;
4273 		int start, end;
4274 
4275 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4276 			regs[rd] = 0;
4277 			break;
4278 		}
4279 
4280 		if (!DTRACE_INSCRATCH(mstate, size)) {
4281 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4282 			regs[rd] = 0;
4283 			break;
4284 		}
4285 
4286 		/*
4287 		 * The basename and dirname for a zero-length string is
4288 		 * defined to be "."
4289 		 */
4290 		if (len == 0) {
4291 			len = 1;
4292 			src = (uintptr_t)".";
4293 		}
4294 
4295 		/*
4296 		 * Start from the back of the string, moving back toward the
4297 		 * front until we see a character that isn't a slash.  That
4298 		 * character is the last character in the basename.
4299 		 */
4300 		for (i = len - 1; i >= 0; i--) {
4301 			if (dtrace_load8(src + i) != '/')
4302 				break;
4303 		}
4304 
4305 		if (i >= 0)
4306 			lastbase = i;
4307 
4308 		/*
4309 		 * Starting from the last character in the basename, move
4310 		 * towards the front until we find a slash.  The character
4311 		 * that we processed immediately before that is the first
4312 		 * character in the basename.
4313 		 */
4314 		for (; i >= 0; i--) {
4315 			if (dtrace_load8(src + i) == '/')
4316 				break;
4317 		}
4318 
4319 		if (i >= 0)
4320 			firstbase = i + 1;
4321 
4322 		/*
4323 		 * Now keep going until we find a non-slash character.  That
4324 		 * character is the last character in the dirname.
4325 		 */
4326 		for (; i >= 0; i--) {
4327 			if (dtrace_load8(src + i) != '/')
4328 				break;
4329 		}
4330 
4331 		if (i >= 0)
4332 			lastdir = i;
4333 
4334 		ASSERT(!(lastbase == -1 && firstbase != -1));
4335 		ASSERT(!(firstbase == -1 && lastdir != -1));
4336 
4337 		if (lastbase == -1) {
4338 			/*
4339 			 * We didn't find a non-slash character.  We know that
4340 			 * the length is non-zero, so the whole string must be
4341 			 * slashes.  In either the dirname or the basename
4342 			 * case, we return '/'.
4343 			 */
4344 			ASSERT(firstbase == -1);
4345 			firstbase = lastbase = lastdir = 0;
4346 		}
4347 
4348 		if (firstbase == -1) {
4349 			/*
4350 			 * The entire string consists only of a basename
4351 			 * component.  If we're looking for dirname, we need
4352 			 * to change our string to be just "."; if we're
4353 			 * looking for a basename, we'll just set the first
4354 			 * character of the basename to be 0.
4355 			 */
4356 			if (subr == DIF_SUBR_DIRNAME) {
4357 				ASSERT(lastdir == -1);
4358 				src = (uintptr_t)".";
4359 				lastdir = 0;
4360 			} else {
4361 				firstbase = 0;
4362 			}
4363 		}
4364 
4365 		if (subr == DIF_SUBR_DIRNAME) {
4366 			if (lastdir == -1) {
4367 				/*
4368 				 * We know that we have a slash in the name --
4369 				 * or lastdir would be set to 0, above.  And
4370 				 * because lastdir is -1, we know that this
4371 				 * slash must be the first character.  (That
4372 				 * is, the full string must be of the form
4373 				 * "/basename".)  In this case, the last
4374 				 * character of the directory name is 0.
4375 				 */
4376 				lastdir = 0;
4377 			}
4378 
4379 			start = 0;
4380 			end = lastdir;
4381 		} else {
4382 			ASSERT(subr == DIF_SUBR_BASENAME);
4383 			ASSERT(firstbase != -1 && lastbase != -1);
4384 			start = firstbase;
4385 			end = lastbase;
4386 		}
4387 
4388 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4389 			dest[j] = dtrace_load8(src + i);
4390 
4391 		dest[j] = '\0';
4392 		regs[rd] = (uintptr_t)dest;
4393 		mstate->dtms_scratch_ptr += size;
4394 		break;
4395 	}
4396 
4397 	case DIF_SUBR_CLEANPATH: {
4398 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4399 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4400 		uintptr_t src = tupregs[0].dttk_value;
4401 		int i = 0, j = 0;
4402 
4403 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4404 			regs[rd] = 0;
4405 			break;
4406 		}
4407 
4408 		if (!DTRACE_INSCRATCH(mstate, size)) {
4409 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4410 			regs[rd] = 0;
4411 			break;
4412 		}
4413 
4414 		/*
4415 		 * Move forward, loading each character.
4416 		 */
4417 		do {
4418 			c = dtrace_load8(src + i++);
4419 next:
4420 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4421 				break;
4422 
4423 			if (c != '/') {
4424 				dest[j++] = c;
4425 				continue;
4426 			}
4427 
4428 			c = dtrace_load8(src + i++);
4429 
4430 			if (c == '/') {
4431 				/*
4432 				 * We have two slashes -- we can just advance
4433 				 * to the next character.
4434 				 */
4435 				goto next;
4436 			}
4437 
4438 			if (c != '.') {
4439 				/*
4440 				 * This is not "." and it's not ".." -- we can
4441 				 * just store the "/" and this character and
4442 				 * drive on.
4443 				 */
4444 				dest[j++] = '/';
4445 				dest[j++] = c;
4446 				continue;
4447 			}
4448 
4449 			c = dtrace_load8(src + i++);
4450 
4451 			if (c == '/') {
4452 				/*
4453 				 * This is a "/./" component.  We're not going
4454 				 * to store anything in the destination buffer;
4455 				 * we're just going to go to the next component.
4456 				 */
4457 				goto next;
4458 			}
4459 
4460 			if (c != '.') {
4461 				/*
4462 				 * This is not ".." -- we can just store the
4463 				 * "/." and this character and continue
4464 				 * processing.
4465 				 */
4466 				dest[j++] = '/';
4467 				dest[j++] = '.';
4468 				dest[j++] = c;
4469 				continue;
4470 			}
4471 
4472 			c = dtrace_load8(src + i++);
4473 
4474 			if (c != '/' && c != '\0') {
4475 				/*
4476 				 * This is not ".." -- it's "..[mumble]".
4477 				 * We'll store the "/.." and this character
4478 				 * and continue processing.
4479 				 */
4480 				dest[j++] = '/';
4481 				dest[j++] = '.';
4482 				dest[j++] = '.';
4483 				dest[j++] = c;
4484 				continue;
4485 			}
4486 
4487 			/*
4488 			 * This is "/../" or "/..\0".  We need to back up
4489 			 * our destination pointer until we find a "/".
4490 			 */
4491 			i--;
4492 			while (j != 0 && dest[--j] != '/')
4493 				continue;
4494 
4495 			if (c == '\0')
4496 				dest[++j] = '/';
4497 		} while (c != '\0');
4498 
4499 		dest[j] = '\0';
4500 		regs[rd] = (uintptr_t)dest;
4501 		mstate->dtms_scratch_ptr += size;
4502 		break;
4503 	}
4504 
4505 	case DIF_SUBR_INET_NTOA:
4506 	case DIF_SUBR_INET_NTOA6:
4507 	case DIF_SUBR_INET_NTOP: {
4508 		size_t size;
4509 		int af, argi, i;
4510 		char *base, *end;
4511 
4512 		if (subr == DIF_SUBR_INET_NTOP) {
4513 			af = (int)tupregs[0].dttk_value;
4514 			argi = 1;
4515 		} else {
4516 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4517 			argi = 0;
4518 		}
4519 
4520 		if (af == AF_INET) {
4521 			ipaddr_t ip4;
4522 			uint8_t *ptr8, val;
4523 
4524 			/*
4525 			 * Safely load the IPv4 address.
4526 			 */
4527 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4528 
4529 			/*
4530 			 * Check an IPv4 string will fit in scratch.
4531 			 */
4532 			size = INET_ADDRSTRLEN;
4533 			if (!DTRACE_INSCRATCH(mstate, size)) {
4534 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4535 				regs[rd] = 0;
4536 				break;
4537 			}
4538 			base = (char *)mstate->dtms_scratch_ptr;
4539 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4540 
4541 			/*
4542 			 * Stringify as a dotted decimal quad.
4543 			 */
4544 			*end-- = '\0';
4545 			ptr8 = (uint8_t *)&ip4;
4546 			for (i = 3; i >= 0; i--) {
4547 				val = ptr8[i];
4548 
4549 				if (val == 0) {
4550 					*end-- = '0';
4551 				} else {
4552 					for (; val; val /= 10) {
4553 						*end-- = '0' + (val % 10);
4554 					}
4555 				}
4556 
4557 				if (i > 0)
4558 					*end-- = '.';
4559 			}
4560 			ASSERT(end + 1 >= base);
4561 
4562 		} else if (af == AF_INET6) {
4563 			struct in6_addr ip6;
4564 			int firstzero, tryzero, numzero, v6end;
4565 			uint16_t val;
4566 			const char digits[] = "0123456789abcdef";
4567 
4568 			/*
4569 			 * Stringify using RFC 1884 convention 2 - 16 bit
4570 			 * hexadecimal values with a zero-run compression.
4571 			 * Lower case hexadecimal digits are used.
4572 			 * 	eg, fe80::214:4fff:fe0b:76c8.
4573 			 * The IPv4 embedded form is returned for inet_ntop,
4574 			 * just the IPv4 string is returned for inet_ntoa6.
4575 			 */
4576 
4577 			/*
4578 			 * Safely load the IPv6 address.
4579 			 */
4580 			dtrace_bcopy(
4581 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4582 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4583 
4584 			/*
4585 			 * Check an IPv6 string will fit in scratch.
4586 			 */
4587 			size = INET6_ADDRSTRLEN;
4588 			if (!DTRACE_INSCRATCH(mstate, size)) {
4589 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4590 				regs[rd] = 0;
4591 				break;
4592 			}
4593 			base = (char *)mstate->dtms_scratch_ptr;
4594 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4595 			*end-- = '\0';
4596 
4597 			/*
4598 			 * Find the longest run of 16 bit zero values
4599 			 * for the single allowed zero compression - "::".
4600 			 */
4601 			firstzero = -1;
4602 			tryzero = -1;
4603 			numzero = 1;
4604 			for (i = 0; i < sizeof (struct in6_addr); i++) {
4605 #if defined(sun)
4606 				if (ip6._S6_un._S6_u8[i] == 0 &&
4607 #else
4608 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4609 #endif
4610 				    tryzero == -1 && i % 2 == 0) {
4611 					tryzero = i;
4612 					continue;
4613 				}
4614 
4615 				if (tryzero != -1 &&
4616 #if defined(sun)
4617 				    (ip6._S6_un._S6_u8[i] != 0 ||
4618 #else
4619 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4620 #endif
4621 				    i == sizeof (struct in6_addr) - 1)) {
4622 
4623 					if (i - tryzero <= numzero) {
4624 						tryzero = -1;
4625 						continue;
4626 					}
4627 
4628 					firstzero = tryzero;
4629 					numzero = i - i % 2 - tryzero;
4630 					tryzero = -1;
4631 
4632 #if defined(sun)
4633 					if (ip6._S6_un._S6_u8[i] == 0 &&
4634 #else
4635 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4636 #endif
4637 					    i == sizeof (struct in6_addr) - 1)
4638 						numzero += 2;
4639 				}
4640 			}
4641 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4642 
4643 			/*
4644 			 * Check for an IPv4 embedded address.
4645 			 */
4646 			v6end = sizeof (struct in6_addr) - 2;
4647 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4648 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4649 				for (i = sizeof (struct in6_addr) - 1;
4650 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4651 					ASSERT(end >= base);
4652 
4653 #if defined(sun)
4654 					val = ip6._S6_un._S6_u8[i];
4655 #else
4656 					val = ip6.__u6_addr.__u6_addr8[i];
4657 #endif
4658 
4659 					if (val == 0) {
4660 						*end-- = '0';
4661 					} else {
4662 						for (; val; val /= 10) {
4663 							*end-- = '0' + val % 10;
4664 						}
4665 					}
4666 
4667 					if (i > DTRACE_V4MAPPED_OFFSET)
4668 						*end-- = '.';
4669 				}
4670 
4671 				if (subr == DIF_SUBR_INET_NTOA6)
4672 					goto inetout;
4673 
4674 				/*
4675 				 * Set v6end to skip the IPv4 address that
4676 				 * we have already stringified.
4677 				 */
4678 				v6end = 10;
4679 			}
4680 
4681 			/*
4682 			 * Build the IPv6 string by working through the
4683 			 * address in reverse.
4684 			 */
4685 			for (i = v6end; i >= 0; i -= 2) {
4686 				ASSERT(end >= base);
4687 
4688 				if (i == firstzero + numzero - 2) {
4689 					*end-- = ':';
4690 					*end-- = ':';
4691 					i -= numzero - 2;
4692 					continue;
4693 				}
4694 
4695 				if (i < 14 && i != firstzero - 2)
4696 					*end-- = ':';
4697 
4698 #if defined(sun)
4699 				val = (ip6._S6_un._S6_u8[i] << 8) +
4700 				    ip6._S6_un._S6_u8[i + 1];
4701 #else
4702 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4703 				    ip6.__u6_addr.__u6_addr8[i + 1];
4704 #endif
4705 
4706 				if (val == 0) {
4707 					*end-- = '0';
4708 				} else {
4709 					for (; val; val /= 16) {
4710 						*end-- = digits[val % 16];
4711 					}
4712 				}
4713 			}
4714 			ASSERT(end + 1 >= base);
4715 
4716 		} else {
4717 			/*
4718 			 * The user didn't use AH_INET or AH_INET6.
4719 			 */
4720 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4721 			regs[rd] = 0;
4722 			break;
4723 		}
4724 
4725 inetout:	regs[rd] = (uintptr_t)end + 1;
4726 		mstate->dtms_scratch_ptr += size;
4727 		break;
4728 	}
4729 
4730 	case DIF_SUBR_MEMREF: {
4731 		uintptr_t size = 2 * sizeof(uintptr_t);
4732 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4733 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4734 
4735 		/* address and length */
4736 		memref[0] = tupregs[0].dttk_value;
4737 		memref[1] = tupregs[1].dttk_value;
4738 
4739 		regs[rd] = (uintptr_t) memref;
4740 		mstate->dtms_scratch_ptr += scratch_size;
4741 		break;
4742 	}
4743 
4744 	case DIF_SUBR_TYPEREF: {
4745 		uintptr_t size = 4 * sizeof(uintptr_t);
4746 		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4747 		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4748 
4749 		/* address, num_elements, type_str, type_len */
4750 		typeref[0] = tupregs[0].dttk_value;
4751 		typeref[1] = tupregs[1].dttk_value;
4752 		typeref[2] = tupregs[2].dttk_value;
4753 		typeref[3] = tupregs[3].dttk_value;
4754 
4755 		regs[rd] = (uintptr_t) typeref;
4756 		mstate->dtms_scratch_ptr += scratch_size;
4757 		break;
4758 	}
4759 	}
4760 }
4761 
4762 /*
4763  * Emulate the execution of DTrace IR instructions specified by the given
4764  * DIF object.  This function is deliberately void of assertions as all of
4765  * the necessary checks are handled by a call to dtrace_difo_validate().
4766  */
4767 static uint64_t
4768 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4769     dtrace_vstate_t *vstate, dtrace_state_t *state)
4770 {
4771 	const dif_instr_t *text = difo->dtdo_buf;
4772 	const uint_t textlen = difo->dtdo_len;
4773 	const char *strtab = difo->dtdo_strtab;
4774 	const uint64_t *inttab = difo->dtdo_inttab;
4775 
4776 	uint64_t rval = 0;
4777 	dtrace_statvar_t *svar;
4778 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4779 	dtrace_difv_t *v;
4780 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4781 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4782 
4783 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4784 	uint64_t regs[DIF_DIR_NREGS];
4785 	uint64_t *tmp;
4786 
4787 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4788 	int64_t cc_r;
4789 	uint_t pc = 0, id, opc = 0;
4790 	uint8_t ttop = 0;
4791 	dif_instr_t instr;
4792 	uint_t r1, r2, rd;
4793 
4794 	/*
4795 	 * We stash the current DIF object into the machine state: we need it
4796 	 * for subsequent access checking.
4797 	 */
4798 	mstate->dtms_difo = difo;
4799 
4800 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4801 
4802 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4803 		opc = pc;
4804 
4805 		instr = text[pc++];
4806 		r1 = DIF_INSTR_R1(instr);
4807 		r2 = DIF_INSTR_R2(instr);
4808 		rd = DIF_INSTR_RD(instr);
4809 
4810 		switch (DIF_INSTR_OP(instr)) {
4811 		case DIF_OP_OR:
4812 			regs[rd] = regs[r1] | regs[r2];
4813 			break;
4814 		case DIF_OP_XOR:
4815 			regs[rd] = regs[r1] ^ regs[r2];
4816 			break;
4817 		case DIF_OP_AND:
4818 			regs[rd] = regs[r1] & regs[r2];
4819 			break;
4820 		case DIF_OP_SLL:
4821 			regs[rd] = regs[r1] << regs[r2];
4822 			break;
4823 		case DIF_OP_SRL:
4824 			regs[rd] = regs[r1] >> regs[r2];
4825 			break;
4826 		case DIF_OP_SUB:
4827 			regs[rd] = regs[r1] - regs[r2];
4828 			break;
4829 		case DIF_OP_ADD:
4830 			regs[rd] = regs[r1] + regs[r2];
4831 			break;
4832 		case DIF_OP_MUL:
4833 			regs[rd] = regs[r1] * regs[r2];
4834 			break;
4835 		case DIF_OP_SDIV:
4836 			if (regs[r2] == 0) {
4837 				regs[rd] = 0;
4838 				*flags |= CPU_DTRACE_DIVZERO;
4839 			} else {
4840 				regs[rd] = (int64_t)regs[r1] /
4841 				    (int64_t)regs[r2];
4842 			}
4843 			break;
4844 
4845 		case DIF_OP_UDIV:
4846 			if (regs[r2] == 0) {
4847 				regs[rd] = 0;
4848 				*flags |= CPU_DTRACE_DIVZERO;
4849 			} else {
4850 				regs[rd] = regs[r1] / regs[r2];
4851 			}
4852 			break;
4853 
4854 		case DIF_OP_SREM:
4855 			if (regs[r2] == 0) {
4856 				regs[rd] = 0;
4857 				*flags |= CPU_DTRACE_DIVZERO;
4858 			} else {
4859 				regs[rd] = (int64_t)regs[r1] %
4860 				    (int64_t)regs[r2];
4861 			}
4862 			break;
4863 
4864 		case DIF_OP_UREM:
4865 			if (regs[r2] == 0) {
4866 				regs[rd] = 0;
4867 				*flags |= CPU_DTRACE_DIVZERO;
4868 			} else {
4869 				regs[rd] = regs[r1] % regs[r2];
4870 			}
4871 			break;
4872 
4873 		case DIF_OP_NOT:
4874 			regs[rd] = ~regs[r1];
4875 			break;
4876 		case DIF_OP_MOV:
4877 			regs[rd] = regs[r1];
4878 			break;
4879 		case DIF_OP_CMP:
4880 			cc_r = regs[r1] - regs[r2];
4881 			cc_n = cc_r < 0;
4882 			cc_z = cc_r == 0;
4883 			cc_v = 0;
4884 			cc_c = regs[r1] < regs[r2];
4885 			break;
4886 		case DIF_OP_TST:
4887 			cc_n = cc_v = cc_c = 0;
4888 			cc_z = regs[r1] == 0;
4889 			break;
4890 		case DIF_OP_BA:
4891 			pc = DIF_INSTR_LABEL(instr);
4892 			break;
4893 		case DIF_OP_BE:
4894 			if (cc_z)
4895 				pc = DIF_INSTR_LABEL(instr);
4896 			break;
4897 		case DIF_OP_BNE:
4898 			if (cc_z == 0)
4899 				pc = DIF_INSTR_LABEL(instr);
4900 			break;
4901 		case DIF_OP_BG:
4902 			if ((cc_z | (cc_n ^ cc_v)) == 0)
4903 				pc = DIF_INSTR_LABEL(instr);
4904 			break;
4905 		case DIF_OP_BGU:
4906 			if ((cc_c | cc_z) == 0)
4907 				pc = DIF_INSTR_LABEL(instr);
4908 			break;
4909 		case DIF_OP_BGE:
4910 			if ((cc_n ^ cc_v) == 0)
4911 				pc = DIF_INSTR_LABEL(instr);
4912 			break;
4913 		case DIF_OP_BGEU:
4914 			if (cc_c == 0)
4915 				pc = DIF_INSTR_LABEL(instr);
4916 			break;
4917 		case DIF_OP_BL:
4918 			if (cc_n ^ cc_v)
4919 				pc = DIF_INSTR_LABEL(instr);
4920 			break;
4921 		case DIF_OP_BLU:
4922 			if (cc_c)
4923 				pc = DIF_INSTR_LABEL(instr);
4924 			break;
4925 		case DIF_OP_BLE:
4926 			if (cc_z | (cc_n ^ cc_v))
4927 				pc = DIF_INSTR_LABEL(instr);
4928 			break;
4929 		case DIF_OP_BLEU:
4930 			if (cc_c | cc_z)
4931 				pc = DIF_INSTR_LABEL(instr);
4932 			break;
4933 		case DIF_OP_RLDSB:
4934 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4935 				*flags |= CPU_DTRACE_KPRIV;
4936 				*illval = regs[r1];
4937 				break;
4938 			}
4939 			/*FALLTHROUGH*/
4940 		case DIF_OP_LDSB:
4941 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
4942 			break;
4943 		case DIF_OP_RLDSH:
4944 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4945 				*flags |= CPU_DTRACE_KPRIV;
4946 				*illval = regs[r1];
4947 				break;
4948 			}
4949 			/*FALLTHROUGH*/
4950 		case DIF_OP_LDSH:
4951 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
4952 			break;
4953 		case DIF_OP_RLDSW:
4954 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4955 				*flags |= CPU_DTRACE_KPRIV;
4956 				*illval = regs[r1];
4957 				break;
4958 			}
4959 			/*FALLTHROUGH*/
4960 		case DIF_OP_LDSW:
4961 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
4962 			break;
4963 		case DIF_OP_RLDUB:
4964 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
4965 				*flags |= CPU_DTRACE_KPRIV;
4966 				*illval = regs[r1];
4967 				break;
4968 			}
4969 			/*FALLTHROUGH*/
4970 		case DIF_OP_LDUB:
4971 			regs[rd] = dtrace_load8(regs[r1]);
4972 			break;
4973 		case DIF_OP_RLDUH:
4974 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
4975 				*flags |= CPU_DTRACE_KPRIV;
4976 				*illval = regs[r1];
4977 				break;
4978 			}
4979 			/*FALLTHROUGH*/
4980 		case DIF_OP_LDUH:
4981 			regs[rd] = dtrace_load16(regs[r1]);
4982 			break;
4983 		case DIF_OP_RLDUW:
4984 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
4985 				*flags |= CPU_DTRACE_KPRIV;
4986 				*illval = regs[r1];
4987 				break;
4988 			}
4989 			/*FALLTHROUGH*/
4990 		case DIF_OP_LDUW:
4991 			regs[rd] = dtrace_load32(regs[r1]);
4992 			break;
4993 		case DIF_OP_RLDX:
4994 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
4995 				*flags |= CPU_DTRACE_KPRIV;
4996 				*illval = regs[r1];
4997 				break;
4998 			}
4999 			/*FALLTHROUGH*/
5000 		case DIF_OP_LDX:
5001 			regs[rd] = dtrace_load64(regs[r1]);
5002 			break;
5003 		case DIF_OP_ULDSB:
5004 			regs[rd] = (int8_t)
5005 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5006 			break;
5007 		case DIF_OP_ULDSH:
5008 			regs[rd] = (int16_t)
5009 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5010 			break;
5011 		case DIF_OP_ULDSW:
5012 			regs[rd] = (int32_t)
5013 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5014 			break;
5015 		case DIF_OP_ULDUB:
5016 			regs[rd] =
5017 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5018 			break;
5019 		case DIF_OP_ULDUH:
5020 			regs[rd] =
5021 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5022 			break;
5023 		case DIF_OP_ULDUW:
5024 			regs[rd] =
5025 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5026 			break;
5027 		case DIF_OP_ULDX:
5028 			regs[rd] =
5029 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5030 			break;
5031 		case DIF_OP_RET:
5032 			rval = regs[rd];
5033 			pc = textlen;
5034 			break;
5035 		case DIF_OP_NOP:
5036 			break;
5037 		case DIF_OP_SETX:
5038 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5039 			break;
5040 		case DIF_OP_SETS:
5041 			regs[rd] = (uint64_t)(uintptr_t)
5042 			    (strtab + DIF_INSTR_STRING(instr));
5043 			break;
5044 		case DIF_OP_SCMP: {
5045 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5046 			uintptr_t s1 = regs[r1];
5047 			uintptr_t s2 = regs[r2];
5048 
5049 			if (s1 != 0 &&
5050 			    !dtrace_strcanload(s1, sz, mstate, vstate))
5051 				break;
5052 			if (s2 != 0 &&
5053 			    !dtrace_strcanload(s2, sz, mstate, vstate))
5054 				break;
5055 
5056 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5057 
5058 			cc_n = cc_r < 0;
5059 			cc_z = cc_r == 0;
5060 			cc_v = cc_c = 0;
5061 			break;
5062 		}
5063 		case DIF_OP_LDGA:
5064 			regs[rd] = dtrace_dif_variable(mstate, state,
5065 			    r1, regs[r2]);
5066 			break;
5067 		case DIF_OP_LDGS:
5068 			id = DIF_INSTR_VAR(instr);
5069 
5070 			if (id >= DIF_VAR_OTHER_UBASE) {
5071 				uintptr_t a;
5072 
5073 				id -= DIF_VAR_OTHER_UBASE;
5074 				svar = vstate->dtvs_globals[id];
5075 				ASSERT(svar != NULL);
5076 				v = &svar->dtsv_var;
5077 
5078 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5079 					regs[rd] = svar->dtsv_data;
5080 					break;
5081 				}
5082 
5083 				a = (uintptr_t)svar->dtsv_data;
5084 
5085 				if (*(uint8_t *)a == UINT8_MAX) {
5086 					/*
5087 					 * If the 0th byte is set to UINT8_MAX
5088 					 * then this is to be treated as a
5089 					 * reference to a NULL variable.
5090 					 */
5091 					regs[rd] = 0;
5092 				} else {
5093 					regs[rd] = a + sizeof (uint64_t);
5094 				}
5095 
5096 				break;
5097 			}
5098 
5099 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5100 			break;
5101 
5102 		case DIF_OP_STGS:
5103 			id = DIF_INSTR_VAR(instr);
5104 
5105 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5106 			id -= DIF_VAR_OTHER_UBASE;
5107 
5108 			svar = vstate->dtvs_globals[id];
5109 			ASSERT(svar != NULL);
5110 			v = &svar->dtsv_var;
5111 
5112 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5113 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5114 
5115 				ASSERT(a != 0);
5116 				ASSERT(svar->dtsv_size != 0);
5117 
5118 				if (regs[rd] == 0) {
5119 					*(uint8_t *)a = UINT8_MAX;
5120 					break;
5121 				} else {
5122 					*(uint8_t *)a = 0;
5123 					a += sizeof (uint64_t);
5124 				}
5125 				if (!dtrace_vcanload(
5126 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5127 				    mstate, vstate))
5128 					break;
5129 
5130 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5131 				    (void *)a, &v->dtdv_type);
5132 				break;
5133 			}
5134 
5135 			svar->dtsv_data = regs[rd];
5136 			break;
5137 
5138 		case DIF_OP_LDTA:
5139 			/*
5140 			 * There are no DTrace built-in thread-local arrays at
5141 			 * present.  This opcode is saved for future work.
5142 			 */
5143 			*flags |= CPU_DTRACE_ILLOP;
5144 			regs[rd] = 0;
5145 			break;
5146 
5147 		case DIF_OP_LDLS:
5148 			id = DIF_INSTR_VAR(instr);
5149 
5150 			if (id < DIF_VAR_OTHER_UBASE) {
5151 				/*
5152 				 * For now, this has no meaning.
5153 				 */
5154 				regs[rd] = 0;
5155 				break;
5156 			}
5157 
5158 			id -= DIF_VAR_OTHER_UBASE;
5159 
5160 			ASSERT(id < vstate->dtvs_nlocals);
5161 			ASSERT(vstate->dtvs_locals != NULL);
5162 
5163 			svar = vstate->dtvs_locals[id];
5164 			ASSERT(svar != NULL);
5165 			v = &svar->dtsv_var;
5166 
5167 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5168 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5169 				size_t sz = v->dtdv_type.dtdt_size;
5170 
5171 				sz += sizeof (uint64_t);
5172 				ASSERT(svar->dtsv_size == NCPU * sz);
5173 				a += curcpu * sz;
5174 
5175 				if (*(uint8_t *)a == UINT8_MAX) {
5176 					/*
5177 					 * If the 0th byte is set to UINT8_MAX
5178 					 * then this is to be treated as a
5179 					 * reference to a NULL variable.
5180 					 */
5181 					regs[rd] = 0;
5182 				} else {
5183 					regs[rd] = a + sizeof (uint64_t);
5184 				}
5185 
5186 				break;
5187 			}
5188 
5189 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5190 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5191 			regs[rd] = tmp[curcpu];
5192 			break;
5193 
5194 		case DIF_OP_STLS:
5195 			id = DIF_INSTR_VAR(instr);
5196 
5197 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5198 			id -= DIF_VAR_OTHER_UBASE;
5199 			ASSERT(id < vstate->dtvs_nlocals);
5200 
5201 			ASSERT(vstate->dtvs_locals != NULL);
5202 			svar = vstate->dtvs_locals[id];
5203 			ASSERT(svar != NULL);
5204 			v = &svar->dtsv_var;
5205 
5206 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5207 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5208 				size_t sz = v->dtdv_type.dtdt_size;
5209 
5210 				sz += sizeof (uint64_t);
5211 				ASSERT(svar->dtsv_size == NCPU * sz);
5212 				a += curcpu * sz;
5213 
5214 				if (regs[rd] == 0) {
5215 					*(uint8_t *)a = UINT8_MAX;
5216 					break;
5217 				} else {
5218 					*(uint8_t *)a = 0;
5219 					a += sizeof (uint64_t);
5220 				}
5221 
5222 				if (!dtrace_vcanload(
5223 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5224 				    mstate, vstate))
5225 					break;
5226 
5227 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5228 				    (void *)a, &v->dtdv_type);
5229 				break;
5230 			}
5231 
5232 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5233 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5234 			tmp[curcpu] = regs[rd];
5235 			break;
5236 
5237 		case DIF_OP_LDTS: {
5238 			dtrace_dynvar_t *dvar;
5239 			dtrace_key_t *key;
5240 
5241 			id = DIF_INSTR_VAR(instr);
5242 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5243 			id -= DIF_VAR_OTHER_UBASE;
5244 			v = &vstate->dtvs_tlocals[id];
5245 
5246 			key = &tupregs[DIF_DTR_NREGS];
5247 			key[0].dttk_value = (uint64_t)id;
5248 			key[0].dttk_size = 0;
5249 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5250 			key[1].dttk_size = 0;
5251 
5252 			dvar = dtrace_dynvar(dstate, 2, key,
5253 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5254 			    mstate, vstate);
5255 
5256 			if (dvar == NULL) {
5257 				regs[rd] = 0;
5258 				break;
5259 			}
5260 
5261 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5262 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5263 			} else {
5264 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5265 			}
5266 
5267 			break;
5268 		}
5269 
5270 		case DIF_OP_STTS: {
5271 			dtrace_dynvar_t *dvar;
5272 			dtrace_key_t *key;
5273 
5274 			id = DIF_INSTR_VAR(instr);
5275 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5276 			id -= DIF_VAR_OTHER_UBASE;
5277 
5278 			key = &tupregs[DIF_DTR_NREGS];
5279 			key[0].dttk_value = (uint64_t)id;
5280 			key[0].dttk_size = 0;
5281 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5282 			key[1].dttk_size = 0;
5283 			v = &vstate->dtvs_tlocals[id];
5284 
5285 			dvar = dtrace_dynvar(dstate, 2, key,
5286 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5287 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5288 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5289 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5290 
5291 			/*
5292 			 * Given that we're storing to thread-local data,
5293 			 * we need to flush our predicate cache.
5294 			 */
5295 			curthread->t_predcache = 0;
5296 
5297 			if (dvar == NULL)
5298 				break;
5299 
5300 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5301 				if (!dtrace_vcanload(
5302 				    (void *)(uintptr_t)regs[rd],
5303 				    &v->dtdv_type, mstate, vstate))
5304 					break;
5305 
5306 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5307 				    dvar->dtdv_data, &v->dtdv_type);
5308 			} else {
5309 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5310 			}
5311 
5312 			break;
5313 		}
5314 
5315 		case DIF_OP_SRA:
5316 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5317 			break;
5318 
5319 		case DIF_OP_CALL:
5320 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5321 			    regs, tupregs, ttop, mstate, state);
5322 			break;
5323 
5324 		case DIF_OP_PUSHTR:
5325 			if (ttop == DIF_DTR_NREGS) {
5326 				*flags |= CPU_DTRACE_TUPOFLOW;
5327 				break;
5328 			}
5329 
5330 			if (r1 == DIF_TYPE_STRING) {
5331 				/*
5332 				 * If this is a string type and the size is 0,
5333 				 * we'll use the system-wide default string
5334 				 * size.  Note that we are _not_ looking at
5335 				 * the value of the DTRACEOPT_STRSIZE option;
5336 				 * had this been set, we would expect to have
5337 				 * a non-zero size value in the "pushtr".
5338 				 */
5339 				tupregs[ttop].dttk_size =
5340 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5341 				    regs[r2] ? regs[r2] :
5342 				    dtrace_strsize_default) + 1;
5343 			} else {
5344 				tupregs[ttop].dttk_size = regs[r2];
5345 			}
5346 
5347 			tupregs[ttop++].dttk_value = regs[rd];
5348 			break;
5349 
5350 		case DIF_OP_PUSHTV:
5351 			if (ttop == DIF_DTR_NREGS) {
5352 				*flags |= CPU_DTRACE_TUPOFLOW;
5353 				break;
5354 			}
5355 
5356 			tupregs[ttop].dttk_value = regs[rd];
5357 			tupregs[ttop++].dttk_size = 0;
5358 			break;
5359 
5360 		case DIF_OP_POPTS:
5361 			if (ttop != 0)
5362 				ttop--;
5363 			break;
5364 
5365 		case DIF_OP_FLUSHTS:
5366 			ttop = 0;
5367 			break;
5368 
5369 		case DIF_OP_LDGAA:
5370 		case DIF_OP_LDTAA: {
5371 			dtrace_dynvar_t *dvar;
5372 			dtrace_key_t *key = tupregs;
5373 			uint_t nkeys = ttop;
5374 
5375 			id = DIF_INSTR_VAR(instr);
5376 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5377 			id -= DIF_VAR_OTHER_UBASE;
5378 
5379 			key[nkeys].dttk_value = (uint64_t)id;
5380 			key[nkeys++].dttk_size = 0;
5381 
5382 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5383 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5384 				key[nkeys++].dttk_size = 0;
5385 				v = &vstate->dtvs_tlocals[id];
5386 			} else {
5387 				v = &vstate->dtvs_globals[id]->dtsv_var;
5388 			}
5389 
5390 			dvar = dtrace_dynvar(dstate, nkeys, key,
5391 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5392 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5393 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5394 
5395 			if (dvar == NULL) {
5396 				regs[rd] = 0;
5397 				break;
5398 			}
5399 
5400 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5401 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5402 			} else {
5403 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5404 			}
5405 
5406 			break;
5407 		}
5408 
5409 		case DIF_OP_STGAA:
5410 		case DIF_OP_STTAA: {
5411 			dtrace_dynvar_t *dvar;
5412 			dtrace_key_t *key = tupregs;
5413 			uint_t nkeys = ttop;
5414 
5415 			id = DIF_INSTR_VAR(instr);
5416 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5417 			id -= DIF_VAR_OTHER_UBASE;
5418 
5419 			key[nkeys].dttk_value = (uint64_t)id;
5420 			key[nkeys++].dttk_size = 0;
5421 
5422 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5423 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5424 				key[nkeys++].dttk_size = 0;
5425 				v = &vstate->dtvs_tlocals[id];
5426 			} else {
5427 				v = &vstate->dtvs_globals[id]->dtsv_var;
5428 			}
5429 
5430 			dvar = dtrace_dynvar(dstate, nkeys, key,
5431 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5432 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5433 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5434 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5435 
5436 			if (dvar == NULL)
5437 				break;
5438 
5439 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5440 				if (!dtrace_vcanload(
5441 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5442 				    mstate, vstate))
5443 					break;
5444 
5445 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5446 				    dvar->dtdv_data, &v->dtdv_type);
5447 			} else {
5448 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5449 			}
5450 
5451 			break;
5452 		}
5453 
5454 		case DIF_OP_ALLOCS: {
5455 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5456 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5457 
5458 			/*
5459 			 * Rounding up the user allocation size could have
5460 			 * overflowed large, bogus allocations (like -1ULL) to
5461 			 * 0.
5462 			 */
5463 			if (size < regs[r1] ||
5464 			    !DTRACE_INSCRATCH(mstate, size)) {
5465 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5466 				regs[rd] = 0;
5467 				break;
5468 			}
5469 
5470 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5471 			mstate->dtms_scratch_ptr += size;
5472 			regs[rd] = ptr;
5473 			break;
5474 		}
5475 
5476 		case DIF_OP_COPYS:
5477 			if (!dtrace_canstore(regs[rd], regs[r2],
5478 			    mstate, vstate)) {
5479 				*flags |= CPU_DTRACE_BADADDR;
5480 				*illval = regs[rd];
5481 				break;
5482 			}
5483 
5484 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5485 				break;
5486 
5487 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5488 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5489 			break;
5490 
5491 		case DIF_OP_STB:
5492 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5493 				*flags |= CPU_DTRACE_BADADDR;
5494 				*illval = regs[rd];
5495 				break;
5496 			}
5497 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5498 			break;
5499 
5500 		case DIF_OP_STH:
5501 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5502 				*flags |= CPU_DTRACE_BADADDR;
5503 				*illval = regs[rd];
5504 				break;
5505 			}
5506 			if (regs[rd] & 1) {
5507 				*flags |= CPU_DTRACE_BADALIGN;
5508 				*illval = regs[rd];
5509 				break;
5510 			}
5511 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5512 			break;
5513 
5514 		case DIF_OP_STW:
5515 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5516 				*flags |= CPU_DTRACE_BADADDR;
5517 				*illval = regs[rd];
5518 				break;
5519 			}
5520 			if (regs[rd] & 3) {
5521 				*flags |= CPU_DTRACE_BADALIGN;
5522 				*illval = regs[rd];
5523 				break;
5524 			}
5525 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5526 			break;
5527 
5528 		case DIF_OP_STX:
5529 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5530 				*flags |= CPU_DTRACE_BADADDR;
5531 				*illval = regs[rd];
5532 				break;
5533 			}
5534 			if (regs[rd] & 7) {
5535 				*flags |= CPU_DTRACE_BADALIGN;
5536 				*illval = regs[rd];
5537 				break;
5538 			}
5539 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5540 			break;
5541 		}
5542 	}
5543 
5544 	if (!(*flags & CPU_DTRACE_FAULT))
5545 		return (rval);
5546 
5547 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5548 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5549 
5550 	return (0);
5551 }
5552 
5553 static void
5554 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5555 {
5556 	dtrace_probe_t *probe = ecb->dte_probe;
5557 	dtrace_provider_t *prov = probe->dtpr_provider;
5558 	char c[DTRACE_FULLNAMELEN + 80], *str;
5559 	char *msg = "dtrace: breakpoint action at probe ";
5560 	char *ecbmsg = " (ecb ";
5561 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5562 	uintptr_t val = (uintptr_t)ecb;
5563 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5564 
5565 	if (dtrace_destructive_disallow)
5566 		return;
5567 
5568 	/*
5569 	 * It's impossible to be taking action on the NULL probe.
5570 	 */
5571 	ASSERT(probe != NULL);
5572 
5573 	/*
5574 	 * This is a poor man's (destitute man's?) sprintf():  we want to
5575 	 * print the provider name, module name, function name and name of
5576 	 * the probe, along with the hex address of the ECB with the breakpoint
5577 	 * action -- all of which we must place in the character buffer by
5578 	 * hand.
5579 	 */
5580 	while (*msg != '\0')
5581 		c[i++] = *msg++;
5582 
5583 	for (str = prov->dtpv_name; *str != '\0'; str++)
5584 		c[i++] = *str;
5585 	c[i++] = ':';
5586 
5587 	for (str = probe->dtpr_mod; *str != '\0'; str++)
5588 		c[i++] = *str;
5589 	c[i++] = ':';
5590 
5591 	for (str = probe->dtpr_func; *str != '\0'; str++)
5592 		c[i++] = *str;
5593 	c[i++] = ':';
5594 
5595 	for (str = probe->dtpr_name; *str != '\0'; str++)
5596 		c[i++] = *str;
5597 
5598 	while (*ecbmsg != '\0')
5599 		c[i++] = *ecbmsg++;
5600 
5601 	while (shift >= 0) {
5602 		mask = (uintptr_t)0xf << shift;
5603 
5604 		if (val >= ((uintptr_t)1 << shift))
5605 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5606 		shift -= 4;
5607 	}
5608 
5609 	c[i++] = ')';
5610 	c[i] = '\0';
5611 
5612 #if defined(sun)
5613 	debug_enter(c);
5614 #else
5615 	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5616 #endif
5617 }
5618 
5619 static void
5620 dtrace_action_panic(dtrace_ecb_t *ecb)
5621 {
5622 	dtrace_probe_t *probe = ecb->dte_probe;
5623 
5624 	/*
5625 	 * It's impossible to be taking action on the NULL probe.
5626 	 */
5627 	ASSERT(probe != NULL);
5628 
5629 	if (dtrace_destructive_disallow)
5630 		return;
5631 
5632 	if (dtrace_panicked != NULL)
5633 		return;
5634 
5635 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5636 		return;
5637 
5638 	/*
5639 	 * We won the right to panic.  (We want to be sure that only one
5640 	 * thread calls panic() from dtrace_probe(), and that panic() is
5641 	 * called exactly once.)
5642 	 */
5643 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5644 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5645 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5646 }
5647 
5648 static void
5649 dtrace_action_raise(uint64_t sig)
5650 {
5651 	if (dtrace_destructive_disallow)
5652 		return;
5653 
5654 	if (sig >= NSIG) {
5655 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5656 		return;
5657 	}
5658 
5659 #if defined(sun)
5660 	/*
5661 	 * raise() has a queue depth of 1 -- we ignore all subsequent
5662 	 * invocations of the raise() action.
5663 	 */
5664 	if (curthread->t_dtrace_sig == 0)
5665 		curthread->t_dtrace_sig = (uint8_t)sig;
5666 
5667 	curthread->t_sig_check = 1;
5668 	aston(curthread);
5669 #else
5670 	struct proc *p = curproc;
5671 	PROC_LOCK(p);
5672 	psignal(p, sig);
5673 	PROC_UNLOCK(p);
5674 #endif
5675 }
5676 
5677 static void
5678 dtrace_action_stop(void)
5679 {
5680 	if (dtrace_destructive_disallow)
5681 		return;
5682 
5683 #if defined(sun)
5684 	if (!curthread->t_dtrace_stop) {
5685 		curthread->t_dtrace_stop = 1;
5686 		curthread->t_sig_check = 1;
5687 		aston(curthread);
5688 	}
5689 #else
5690 	struct proc *p = curproc;
5691 	PROC_LOCK(p);
5692 	psignal(p, SIGSTOP);
5693 	PROC_UNLOCK(p);
5694 #endif
5695 }
5696 
5697 static void
5698 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5699 {
5700 	hrtime_t now;
5701 	volatile uint16_t *flags;
5702 #if defined(sun)
5703 	cpu_t *cpu = CPU;
5704 #else
5705 	cpu_t *cpu = &solaris_cpu[curcpu];
5706 #endif
5707 
5708 	if (dtrace_destructive_disallow)
5709 		return;
5710 
5711 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5712 
5713 	now = dtrace_gethrtime();
5714 
5715 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5716 		/*
5717 		 * We need to advance the mark to the current time.
5718 		 */
5719 		cpu->cpu_dtrace_chillmark = now;
5720 		cpu->cpu_dtrace_chilled = 0;
5721 	}
5722 
5723 	/*
5724 	 * Now check to see if the requested chill time would take us over
5725 	 * the maximum amount of time allowed in the chill interval.  (Or
5726 	 * worse, if the calculation itself induces overflow.)
5727 	 */
5728 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5729 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5730 		*flags |= CPU_DTRACE_ILLOP;
5731 		return;
5732 	}
5733 
5734 	while (dtrace_gethrtime() - now < val)
5735 		continue;
5736 
5737 	/*
5738 	 * Normally, we assure that the value of the variable "timestamp" does
5739 	 * not change within an ECB.  The presence of chill() represents an
5740 	 * exception to this rule, however.
5741 	 */
5742 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5743 	cpu->cpu_dtrace_chilled += val;
5744 }
5745 
5746 static void
5747 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5748     uint64_t *buf, uint64_t arg)
5749 {
5750 	int nframes = DTRACE_USTACK_NFRAMES(arg);
5751 	int strsize = DTRACE_USTACK_STRSIZE(arg);
5752 	uint64_t *pcs = &buf[1], *fps;
5753 	char *str = (char *)&pcs[nframes];
5754 	int size, offs = 0, i, j;
5755 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5756 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5757 	char *sym;
5758 
5759 	/*
5760 	 * Should be taking a faster path if string space has not been
5761 	 * allocated.
5762 	 */
5763 	ASSERT(strsize != 0);
5764 
5765 	/*
5766 	 * We will first allocate some temporary space for the frame pointers.
5767 	 */
5768 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5769 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5770 	    (nframes * sizeof (uint64_t));
5771 
5772 	if (!DTRACE_INSCRATCH(mstate, size)) {
5773 		/*
5774 		 * Not enough room for our frame pointers -- need to indicate
5775 		 * that we ran out of scratch space.
5776 		 */
5777 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5778 		return;
5779 	}
5780 
5781 	mstate->dtms_scratch_ptr += size;
5782 	saved = mstate->dtms_scratch_ptr;
5783 
5784 	/*
5785 	 * Now get a stack with both program counters and frame pointers.
5786 	 */
5787 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5788 	dtrace_getufpstack(buf, fps, nframes + 1);
5789 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5790 
5791 	/*
5792 	 * If that faulted, we're cooked.
5793 	 */
5794 	if (*flags & CPU_DTRACE_FAULT)
5795 		goto out;
5796 
5797 	/*
5798 	 * Now we want to walk up the stack, calling the USTACK helper.  For
5799 	 * each iteration, we restore the scratch pointer.
5800 	 */
5801 	for (i = 0; i < nframes; i++) {
5802 		mstate->dtms_scratch_ptr = saved;
5803 
5804 		if (offs >= strsize)
5805 			break;
5806 
5807 		sym = (char *)(uintptr_t)dtrace_helper(
5808 		    DTRACE_HELPER_ACTION_USTACK,
5809 		    mstate, state, pcs[i], fps[i]);
5810 
5811 		/*
5812 		 * If we faulted while running the helper, we're going to
5813 		 * clear the fault and null out the corresponding string.
5814 		 */
5815 		if (*flags & CPU_DTRACE_FAULT) {
5816 			*flags &= ~CPU_DTRACE_FAULT;
5817 			str[offs++] = '\0';
5818 			continue;
5819 		}
5820 
5821 		if (sym == NULL) {
5822 			str[offs++] = '\0';
5823 			continue;
5824 		}
5825 
5826 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5827 
5828 		/*
5829 		 * Now copy in the string that the helper returned to us.
5830 		 */
5831 		for (j = 0; offs + j < strsize; j++) {
5832 			if ((str[offs + j] = sym[j]) == '\0')
5833 				break;
5834 		}
5835 
5836 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5837 
5838 		offs += j + 1;
5839 	}
5840 
5841 	if (offs >= strsize) {
5842 		/*
5843 		 * If we didn't have room for all of the strings, we don't
5844 		 * abort processing -- this needn't be a fatal error -- but we
5845 		 * still want to increment a counter (dts_stkstroverflows) to
5846 		 * allow this condition to be warned about.  (If this is from
5847 		 * a jstack() action, it is easily tuned via jstackstrsize.)
5848 		 */
5849 		dtrace_error(&state->dts_stkstroverflows);
5850 	}
5851 
5852 	while (offs < strsize)
5853 		str[offs++] = '\0';
5854 
5855 out:
5856 	mstate->dtms_scratch_ptr = old;
5857 }
5858 
5859 /*
5860  * If you're looking for the epicenter of DTrace, you just found it.  This
5861  * is the function called by the provider to fire a probe -- from which all
5862  * subsequent probe-context DTrace activity emanates.
5863  */
5864 void
5865 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5866     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5867 {
5868 	processorid_t cpuid;
5869 	dtrace_icookie_t cookie;
5870 	dtrace_probe_t *probe;
5871 	dtrace_mstate_t mstate;
5872 	dtrace_ecb_t *ecb;
5873 	dtrace_action_t *act;
5874 	intptr_t offs;
5875 	size_t size;
5876 	int vtime, onintr;
5877 	volatile uint16_t *flags;
5878 	hrtime_t now;
5879 
5880 #if defined(sun)
5881 	/*
5882 	 * Kick out immediately if this CPU is still being born (in which case
5883 	 * curthread will be set to -1) or the current thread can't allow
5884 	 * probes in its current context.
5885 	 */
5886 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5887 		return;
5888 #endif
5889 
5890 	cookie = dtrace_interrupt_disable();
5891 	probe = dtrace_probes[id - 1];
5892 	cpuid = curcpu;
5893 	onintr = CPU_ON_INTR(CPU);
5894 
5895 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5896 	    probe->dtpr_predcache == curthread->t_predcache) {
5897 		/*
5898 		 * We have hit in the predicate cache; we know that
5899 		 * this predicate would evaluate to be false.
5900 		 */
5901 		dtrace_interrupt_enable(cookie);
5902 		return;
5903 	}
5904 
5905 #if defined(sun)
5906 	if (panic_quiesce) {
5907 #else
5908 	if (panicstr != NULL) {
5909 #endif
5910 		/*
5911 		 * We don't trace anything if we're panicking.
5912 		 */
5913 		dtrace_interrupt_enable(cookie);
5914 		return;
5915 	}
5916 
5917 	now = dtrace_gethrtime();
5918 	vtime = dtrace_vtime_references != 0;
5919 
5920 	if (vtime && curthread->t_dtrace_start)
5921 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5922 
5923 	mstate.dtms_difo = NULL;
5924 	mstate.dtms_probe = probe;
5925 	mstate.dtms_strtok = 0;
5926 	mstate.dtms_arg[0] = arg0;
5927 	mstate.dtms_arg[1] = arg1;
5928 	mstate.dtms_arg[2] = arg2;
5929 	mstate.dtms_arg[3] = arg3;
5930 	mstate.dtms_arg[4] = arg4;
5931 
5932 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
5933 
5934 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
5935 		dtrace_predicate_t *pred = ecb->dte_predicate;
5936 		dtrace_state_t *state = ecb->dte_state;
5937 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
5938 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
5939 		dtrace_vstate_t *vstate = &state->dts_vstate;
5940 		dtrace_provider_t *prov = probe->dtpr_provider;
5941 		int committed = 0;
5942 		caddr_t tomax;
5943 
5944 		/*
5945 		 * A little subtlety with the following (seemingly innocuous)
5946 		 * declaration of the automatic 'val':  by looking at the
5947 		 * code, you might think that it could be declared in the
5948 		 * action processing loop, below.  (That is, it's only used in
5949 		 * the action processing loop.)  However, it must be declared
5950 		 * out of that scope because in the case of DIF expression
5951 		 * arguments to aggregating actions, one iteration of the
5952 		 * action loop will use the last iteration's value.
5953 		 */
5954 		uint64_t val = 0;
5955 
5956 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
5957 		*flags &= ~CPU_DTRACE_ERROR;
5958 
5959 		if (prov == dtrace_provider) {
5960 			/*
5961 			 * If dtrace itself is the provider of this probe,
5962 			 * we're only going to continue processing the ECB if
5963 			 * arg0 (the dtrace_state_t) is equal to the ECB's
5964 			 * creating state.  (This prevents disjoint consumers
5965 			 * from seeing one another's metaprobes.)
5966 			 */
5967 			if (arg0 != (uint64_t)(uintptr_t)state)
5968 				continue;
5969 		}
5970 
5971 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
5972 			/*
5973 			 * We're not currently active.  If our provider isn't
5974 			 * the dtrace pseudo provider, we're not interested.
5975 			 */
5976 			if (prov != dtrace_provider)
5977 				continue;
5978 
5979 			/*
5980 			 * Now we must further check if we are in the BEGIN
5981 			 * probe.  If we are, we will only continue processing
5982 			 * if we're still in WARMUP -- if one BEGIN enabling
5983 			 * has invoked the exit() action, we don't want to
5984 			 * evaluate subsequent BEGIN enablings.
5985 			 */
5986 			if (probe->dtpr_id == dtrace_probeid_begin &&
5987 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
5988 				ASSERT(state->dts_activity ==
5989 				    DTRACE_ACTIVITY_DRAINING);
5990 				continue;
5991 			}
5992 		}
5993 
5994 		if (ecb->dte_cond) {
5995 			/*
5996 			 * If the dte_cond bits indicate that this
5997 			 * consumer is only allowed to see user-mode firings
5998 			 * of this probe, call the provider's dtps_usermode()
5999 			 * entry point to check that the probe was fired
6000 			 * while in a user context. Skip this ECB if that's
6001 			 * not the case.
6002 			 */
6003 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6004 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6005 			    probe->dtpr_id, probe->dtpr_arg) == 0)
6006 				continue;
6007 
6008 #if defined(sun)
6009 			/*
6010 			 * This is more subtle than it looks. We have to be
6011 			 * absolutely certain that CRED() isn't going to
6012 			 * change out from under us so it's only legit to
6013 			 * examine that structure if we're in constrained
6014 			 * situations. Currently, the only times we'll this
6015 			 * check is if a non-super-user has enabled the
6016 			 * profile or syscall providers -- providers that
6017 			 * allow visibility of all processes. For the
6018 			 * profile case, the check above will ensure that
6019 			 * we're examining a user context.
6020 			 */
6021 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6022 				cred_t *cr;
6023 				cred_t *s_cr =
6024 				    ecb->dte_state->dts_cred.dcr_cred;
6025 				proc_t *proc;
6026 
6027 				ASSERT(s_cr != NULL);
6028 
6029 				if ((cr = CRED()) == NULL ||
6030 				    s_cr->cr_uid != cr->cr_uid ||
6031 				    s_cr->cr_uid != cr->cr_ruid ||
6032 				    s_cr->cr_uid != cr->cr_suid ||
6033 				    s_cr->cr_gid != cr->cr_gid ||
6034 				    s_cr->cr_gid != cr->cr_rgid ||
6035 				    s_cr->cr_gid != cr->cr_sgid ||
6036 				    (proc = ttoproc(curthread)) == NULL ||
6037 				    (proc->p_flag & SNOCD))
6038 					continue;
6039 			}
6040 
6041 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6042 				cred_t *cr;
6043 				cred_t *s_cr =
6044 				    ecb->dte_state->dts_cred.dcr_cred;
6045 
6046 				ASSERT(s_cr != NULL);
6047 
6048 				if ((cr = CRED()) == NULL ||
6049 				    s_cr->cr_zone->zone_id !=
6050 				    cr->cr_zone->zone_id)
6051 					continue;
6052 			}
6053 #endif
6054 		}
6055 
6056 		if (now - state->dts_alive > dtrace_deadman_timeout) {
6057 			/*
6058 			 * We seem to be dead.  Unless we (a) have kernel
6059 			 * destructive permissions (b) have expicitly enabled
6060 			 * destructive actions and (c) destructive actions have
6061 			 * not been disabled, we're going to transition into
6062 			 * the KILLED state, from which no further processing
6063 			 * on this state will be performed.
6064 			 */
6065 			if (!dtrace_priv_kernel_destructive(state) ||
6066 			    !state->dts_cred.dcr_destructive ||
6067 			    dtrace_destructive_disallow) {
6068 				void *activity = &state->dts_activity;
6069 				dtrace_activity_t current;
6070 
6071 				do {
6072 					current = state->dts_activity;
6073 				} while (dtrace_cas32(activity, current,
6074 				    DTRACE_ACTIVITY_KILLED) != current);
6075 
6076 				continue;
6077 			}
6078 		}
6079 
6080 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6081 		    ecb->dte_alignment, state, &mstate)) < 0)
6082 			continue;
6083 
6084 		tomax = buf->dtb_tomax;
6085 		ASSERT(tomax != NULL);
6086 
6087 		if (ecb->dte_size != 0)
6088 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6089 
6090 		mstate.dtms_epid = ecb->dte_epid;
6091 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6092 
6093 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6094 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6095 		else
6096 			mstate.dtms_access = 0;
6097 
6098 		if (pred != NULL) {
6099 			dtrace_difo_t *dp = pred->dtp_difo;
6100 			int rval;
6101 
6102 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6103 
6104 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6105 				dtrace_cacheid_t cid = probe->dtpr_predcache;
6106 
6107 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6108 					/*
6109 					 * Update the predicate cache...
6110 					 */
6111 					ASSERT(cid == pred->dtp_cacheid);
6112 					curthread->t_predcache = cid;
6113 				}
6114 
6115 				continue;
6116 			}
6117 		}
6118 
6119 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6120 		    act != NULL; act = act->dta_next) {
6121 			size_t valoffs;
6122 			dtrace_difo_t *dp;
6123 			dtrace_recdesc_t *rec = &act->dta_rec;
6124 
6125 			size = rec->dtrd_size;
6126 			valoffs = offs + rec->dtrd_offset;
6127 
6128 			if (DTRACEACT_ISAGG(act->dta_kind)) {
6129 				uint64_t v = 0xbad;
6130 				dtrace_aggregation_t *agg;
6131 
6132 				agg = (dtrace_aggregation_t *)act;
6133 
6134 				if ((dp = act->dta_difo) != NULL)
6135 					v = dtrace_dif_emulate(dp,
6136 					    &mstate, vstate, state);
6137 
6138 				if (*flags & CPU_DTRACE_ERROR)
6139 					continue;
6140 
6141 				/*
6142 				 * Note that we always pass the expression
6143 				 * value from the previous iteration of the
6144 				 * action loop.  This value will only be used
6145 				 * if there is an expression argument to the
6146 				 * aggregating action, denoted by the
6147 				 * dtag_hasarg field.
6148 				 */
6149 				dtrace_aggregate(agg, buf,
6150 				    offs, aggbuf, v, val);
6151 				continue;
6152 			}
6153 
6154 			switch (act->dta_kind) {
6155 			case DTRACEACT_STOP:
6156 				if (dtrace_priv_proc_destructive(state))
6157 					dtrace_action_stop();
6158 				continue;
6159 
6160 			case DTRACEACT_BREAKPOINT:
6161 				if (dtrace_priv_kernel_destructive(state))
6162 					dtrace_action_breakpoint(ecb);
6163 				continue;
6164 
6165 			case DTRACEACT_PANIC:
6166 				if (dtrace_priv_kernel_destructive(state))
6167 					dtrace_action_panic(ecb);
6168 				continue;
6169 
6170 			case DTRACEACT_STACK:
6171 				if (!dtrace_priv_kernel(state))
6172 					continue;
6173 
6174 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6175 				    size / sizeof (pc_t), probe->dtpr_aframes,
6176 				    DTRACE_ANCHORED(probe) ? NULL :
6177 				    (uint32_t *)arg0);
6178 				continue;
6179 
6180 			case DTRACEACT_JSTACK:
6181 			case DTRACEACT_USTACK:
6182 				if (!dtrace_priv_proc(state))
6183 					continue;
6184 
6185 				/*
6186 				 * See comment in DIF_VAR_PID.
6187 				 */
6188 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6189 				    CPU_ON_INTR(CPU)) {
6190 					int depth = DTRACE_USTACK_NFRAMES(
6191 					    rec->dtrd_arg) + 1;
6192 
6193 					dtrace_bzero((void *)(tomax + valoffs),
6194 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6195 					    + depth * sizeof (uint64_t));
6196 
6197 					continue;
6198 				}
6199 
6200 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6201 				    curproc->p_dtrace_helpers != NULL) {
6202 					/*
6203 					 * This is the slow path -- we have
6204 					 * allocated string space, and we're
6205 					 * getting the stack of a process that
6206 					 * has helpers.  Call into a separate
6207 					 * routine to perform this processing.
6208 					 */
6209 					dtrace_action_ustack(&mstate, state,
6210 					    (uint64_t *)(tomax + valoffs),
6211 					    rec->dtrd_arg);
6212 					continue;
6213 				}
6214 
6215 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6216 				dtrace_getupcstack((uint64_t *)
6217 				    (tomax + valoffs),
6218 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6219 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6220 				continue;
6221 
6222 			default:
6223 				break;
6224 			}
6225 
6226 			dp = act->dta_difo;
6227 			ASSERT(dp != NULL);
6228 
6229 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6230 
6231 			if (*flags & CPU_DTRACE_ERROR)
6232 				continue;
6233 
6234 			switch (act->dta_kind) {
6235 			case DTRACEACT_SPECULATE:
6236 				ASSERT(buf == &state->dts_buffer[cpuid]);
6237 				buf = dtrace_speculation_buffer(state,
6238 				    cpuid, val);
6239 
6240 				if (buf == NULL) {
6241 					*flags |= CPU_DTRACE_DROP;
6242 					continue;
6243 				}
6244 
6245 				offs = dtrace_buffer_reserve(buf,
6246 				    ecb->dte_needed, ecb->dte_alignment,
6247 				    state, NULL);
6248 
6249 				if (offs < 0) {
6250 					*flags |= CPU_DTRACE_DROP;
6251 					continue;
6252 				}
6253 
6254 				tomax = buf->dtb_tomax;
6255 				ASSERT(tomax != NULL);
6256 
6257 				if (ecb->dte_size != 0)
6258 					DTRACE_STORE(uint32_t, tomax, offs,
6259 					    ecb->dte_epid);
6260 				continue;
6261 
6262 			case DTRACEACT_PRINTM: {
6263 				/* The DIF returns a 'memref'. */
6264 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6265 
6266 				/* Get the size from the memref. */
6267 				size = memref[1];
6268 
6269 				/*
6270 				 * Check if the size exceeds the allocated
6271 				 * buffer size.
6272 				 */
6273 				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6274 					/* Flag a drop! */
6275 					*flags |= CPU_DTRACE_DROP;
6276 					continue;
6277 				}
6278 
6279 				/* Store the size in the buffer first. */
6280 				DTRACE_STORE(uintptr_t, tomax,
6281 				    valoffs, size);
6282 
6283 				/*
6284 				 * Offset the buffer address to the start
6285 				 * of the data.
6286 				 */
6287 				valoffs += sizeof(uintptr_t);
6288 
6289 				/*
6290 				 * Reset to the memory address rather than
6291 				 * the memref array, then let the BYREF
6292 				 * code below do the work to store the
6293 				 * memory data in the buffer.
6294 				 */
6295 				val = memref[0];
6296 				break;
6297 			}
6298 
6299 			case DTRACEACT_PRINTT: {
6300 				/* The DIF returns a 'typeref'. */
6301 				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6302 				char c = '\0' + 1;
6303 				size_t s;
6304 
6305 				/*
6306 				 * Get the type string length and round it
6307 				 * up so that the data that follows is
6308 				 * aligned for easy access.
6309 				 */
6310 				size_t typs = strlen((char *) typeref[2]) + 1;
6311 				typs = roundup(typs,  sizeof(uintptr_t));
6312 
6313 				/*
6314 				 *Get the size from the typeref using the
6315 				 * number of elements and the type size.
6316 				 */
6317 				size = typeref[1] * typeref[3];
6318 
6319 				/*
6320 				 * Check if the size exceeds the allocated
6321 				 * buffer size.
6322 				 */
6323 				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6324 					/* Flag a drop! */
6325 					*flags |= CPU_DTRACE_DROP;
6326 
6327 				}
6328 
6329 				/* Store the size in the buffer first. */
6330 				DTRACE_STORE(uintptr_t, tomax,
6331 				    valoffs, size);
6332 				valoffs += sizeof(uintptr_t);
6333 
6334 				/* Store the type size in the buffer. */
6335 				DTRACE_STORE(uintptr_t, tomax,
6336 				    valoffs, typeref[3]);
6337 				valoffs += sizeof(uintptr_t);
6338 
6339 				val = typeref[2];
6340 
6341 				for (s = 0; s < typs; s++) {
6342 					if (c != '\0')
6343 						c = dtrace_load8(val++);
6344 
6345 					DTRACE_STORE(uint8_t, tomax,
6346 					    valoffs++, c);
6347 				}
6348 
6349 				/*
6350 				 * Reset to the memory address rather than
6351 				 * the typeref array, then let the BYREF
6352 				 * code below do the work to store the
6353 				 * memory data in the buffer.
6354 				 */
6355 				val = typeref[0];
6356 				break;
6357 			}
6358 
6359 			case DTRACEACT_CHILL:
6360 				if (dtrace_priv_kernel_destructive(state))
6361 					dtrace_action_chill(&mstate, val);
6362 				continue;
6363 
6364 			case DTRACEACT_RAISE:
6365 				if (dtrace_priv_proc_destructive(state))
6366 					dtrace_action_raise(val);
6367 				continue;
6368 
6369 			case DTRACEACT_COMMIT:
6370 				ASSERT(!committed);
6371 
6372 				/*
6373 				 * We need to commit our buffer state.
6374 				 */
6375 				if (ecb->dte_size)
6376 					buf->dtb_offset = offs + ecb->dte_size;
6377 				buf = &state->dts_buffer[cpuid];
6378 				dtrace_speculation_commit(state, cpuid, val);
6379 				committed = 1;
6380 				continue;
6381 
6382 			case DTRACEACT_DISCARD:
6383 				dtrace_speculation_discard(state, cpuid, val);
6384 				continue;
6385 
6386 			case DTRACEACT_DIFEXPR:
6387 			case DTRACEACT_LIBACT:
6388 			case DTRACEACT_PRINTF:
6389 			case DTRACEACT_PRINTA:
6390 			case DTRACEACT_SYSTEM:
6391 			case DTRACEACT_FREOPEN:
6392 				break;
6393 
6394 			case DTRACEACT_SYM:
6395 			case DTRACEACT_MOD:
6396 				if (!dtrace_priv_kernel(state))
6397 					continue;
6398 				break;
6399 
6400 			case DTRACEACT_USYM:
6401 			case DTRACEACT_UMOD:
6402 			case DTRACEACT_UADDR: {
6403 #if defined(sun)
6404 				struct pid *pid = curthread->t_procp->p_pidp;
6405 #endif
6406 
6407 				if (!dtrace_priv_proc(state))
6408 					continue;
6409 
6410 				DTRACE_STORE(uint64_t, tomax,
6411 #if defined(sun)
6412 				    valoffs, (uint64_t)pid->pid_id);
6413 #else
6414 				    valoffs, (uint64_t) curproc->p_pid);
6415 #endif
6416 				DTRACE_STORE(uint64_t, tomax,
6417 				    valoffs + sizeof (uint64_t), val);
6418 
6419 				continue;
6420 			}
6421 
6422 			case DTRACEACT_EXIT: {
6423 				/*
6424 				 * For the exit action, we are going to attempt
6425 				 * to atomically set our activity to be
6426 				 * draining.  If this fails (either because
6427 				 * another CPU has beat us to the exit action,
6428 				 * or because our current activity is something
6429 				 * other than ACTIVE or WARMUP), we will
6430 				 * continue.  This assures that the exit action
6431 				 * can be successfully recorded at most once
6432 				 * when we're in the ACTIVE state.  If we're
6433 				 * encountering the exit() action while in
6434 				 * COOLDOWN, however, we want to honor the new
6435 				 * status code.  (We know that we're the only
6436 				 * thread in COOLDOWN, so there is no race.)
6437 				 */
6438 				void *activity = &state->dts_activity;
6439 				dtrace_activity_t current = state->dts_activity;
6440 
6441 				if (current == DTRACE_ACTIVITY_COOLDOWN)
6442 					break;
6443 
6444 				if (current != DTRACE_ACTIVITY_WARMUP)
6445 					current = DTRACE_ACTIVITY_ACTIVE;
6446 
6447 				if (dtrace_cas32(activity, current,
6448 				    DTRACE_ACTIVITY_DRAINING) != current) {
6449 					*flags |= CPU_DTRACE_DROP;
6450 					continue;
6451 				}
6452 
6453 				break;
6454 			}
6455 
6456 			default:
6457 				ASSERT(0);
6458 			}
6459 
6460 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6461 				uintptr_t end = valoffs + size;
6462 
6463 				if (!dtrace_vcanload((void *)(uintptr_t)val,
6464 				    &dp->dtdo_rtype, &mstate, vstate))
6465 					continue;
6466 
6467 				/*
6468 				 * If this is a string, we're going to only
6469 				 * load until we find the zero byte -- after
6470 				 * which we'll store zero bytes.
6471 				 */
6472 				if (dp->dtdo_rtype.dtdt_kind ==
6473 				    DIF_TYPE_STRING) {
6474 					char c = '\0' + 1;
6475 					int intuple = act->dta_intuple;
6476 					size_t s;
6477 
6478 					for (s = 0; s < size; s++) {
6479 						if (c != '\0')
6480 							c = dtrace_load8(val++);
6481 
6482 						DTRACE_STORE(uint8_t, tomax,
6483 						    valoffs++, c);
6484 
6485 						if (c == '\0' && intuple)
6486 							break;
6487 					}
6488 
6489 					continue;
6490 				}
6491 
6492 				while (valoffs < end) {
6493 					DTRACE_STORE(uint8_t, tomax, valoffs++,
6494 					    dtrace_load8(val++));
6495 				}
6496 
6497 				continue;
6498 			}
6499 
6500 			switch (size) {
6501 			case 0:
6502 				break;
6503 
6504 			case sizeof (uint8_t):
6505 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6506 				break;
6507 			case sizeof (uint16_t):
6508 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6509 				break;
6510 			case sizeof (uint32_t):
6511 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6512 				break;
6513 			case sizeof (uint64_t):
6514 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6515 				break;
6516 			default:
6517 				/*
6518 				 * Any other size should have been returned by
6519 				 * reference, not by value.
6520 				 */
6521 				ASSERT(0);
6522 				break;
6523 			}
6524 		}
6525 
6526 		if (*flags & CPU_DTRACE_DROP)
6527 			continue;
6528 
6529 		if (*flags & CPU_DTRACE_FAULT) {
6530 			int ndx;
6531 			dtrace_action_t *err;
6532 
6533 			buf->dtb_errors++;
6534 
6535 			if (probe->dtpr_id == dtrace_probeid_error) {
6536 				/*
6537 				 * There's nothing we can do -- we had an
6538 				 * error on the error probe.  We bump an
6539 				 * error counter to at least indicate that
6540 				 * this condition happened.
6541 				 */
6542 				dtrace_error(&state->dts_dblerrors);
6543 				continue;
6544 			}
6545 
6546 			if (vtime) {
6547 				/*
6548 				 * Before recursing on dtrace_probe(), we
6549 				 * need to explicitly clear out our start
6550 				 * time to prevent it from being accumulated
6551 				 * into t_dtrace_vtime.
6552 				 */
6553 				curthread->t_dtrace_start = 0;
6554 			}
6555 
6556 			/*
6557 			 * Iterate over the actions to figure out which action
6558 			 * we were processing when we experienced the error.
6559 			 * Note that act points _past_ the faulting action; if
6560 			 * act is ecb->dte_action, the fault was in the
6561 			 * predicate, if it's ecb->dte_action->dta_next it's
6562 			 * in action #1, and so on.
6563 			 */
6564 			for (err = ecb->dte_action, ndx = 0;
6565 			    err != act; err = err->dta_next, ndx++)
6566 				continue;
6567 
6568 			dtrace_probe_error(state, ecb->dte_epid, ndx,
6569 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6570 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6571 			    cpu_core[cpuid].cpuc_dtrace_illval);
6572 
6573 			continue;
6574 		}
6575 
6576 		if (!committed)
6577 			buf->dtb_offset = offs + ecb->dte_size;
6578 	}
6579 
6580 	if (vtime)
6581 		curthread->t_dtrace_start = dtrace_gethrtime();
6582 
6583 	dtrace_interrupt_enable(cookie);
6584 }
6585 
6586 /*
6587  * DTrace Probe Hashing Functions
6588  *
6589  * The functions in this section (and indeed, the functions in remaining
6590  * sections) are not _called_ from probe context.  (Any exceptions to this are
6591  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6592  * DTrace framework to look-up probes in, add probes to and remove probes from
6593  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6594  * probe tuple -- allowing for fast lookups, regardless of what was
6595  * specified.)
6596  */
6597 static uint_t
6598 dtrace_hash_str(const char *p)
6599 {
6600 	unsigned int g;
6601 	uint_t hval = 0;
6602 
6603 	while (*p) {
6604 		hval = (hval << 4) + *p++;
6605 		if ((g = (hval & 0xf0000000)) != 0)
6606 			hval ^= g >> 24;
6607 		hval &= ~g;
6608 	}
6609 	return (hval);
6610 }
6611 
6612 static dtrace_hash_t *
6613 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6614 {
6615 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6616 
6617 	hash->dth_stroffs = stroffs;
6618 	hash->dth_nextoffs = nextoffs;
6619 	hash->dth_prevoffs = prevoffs;
6620 
6621 	hash->dth_size = 1;
6622 	hash->dth_mask = hash->dth_size - 1;
6623 
6624 	hash->dth_tab = kmem_zalloc(hash->dth_size *
6625 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6626 
6627 	return (hash);
6628 }
6629 
6630 static void
6631 dtrace_hash_destroy(dtrace_hash_t *hash)
6632 {
6633 #ifdef DEBUG
6634 	int i;
6635 
6636 	for (i = 0; i < hash->dth_size; i++)
6637 		ASSERT(hash->dth_tab[i] == NULL);
6638 #endif
6639 
6640 	kmem_free(hash->dth_tab,
6641 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6642 	kmem_free(hash, sizeof (dtrace_hash_t));
6643 }
6644 
6645 static void
6646 dtrace_hash_resize(dtrace_hash_t *hash)
6647 {
6648 	int size = hash->dth_size, i, ndx;
6649 	int new_size = hash->dth_size << 1;
6650 	int new_mask = new_size - 1;
6651 	dtrace_hashbucket_t **new_tab, *bucket, *next;
6652 
6653 	ASSERT((new_size & new_mask) == 0);
6654 
6655 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6656 
6657 	for (i = 0; i < size; i++) {
6658 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6659 			dtrace_probe_t *probe = bucket->dthb_chain;
6660 
6661 			ASSERT(probe != NULL);
6662 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6663 
6664 			next = bucket->dthb_next;
6665 			bucket->dthb_next = new_tab[ndx];
6666 			new_tab[ndx] = bucket;
6667 		}
6668 	}
6669 
6670 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6671 	hash->dth_tab = new_tab;
6672 	hash->dth_size = new_size;
6673 	hash->dth_mask = new_mask;
6674 }
6675 
6676 static void
6677 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6678 {
6679 	int hashval = DTRACE_HASHSTR(hash, new);
6680 	int ndx = hashval & hash->dth_mask;
6681 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6682 	dtrace_probe_t **nextp, **prevp;
6683 
6684 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6685 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6686 			goto add;
6687 	}
6688 
6689 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6690 		dtrace_hash_resize(hash);
6691 		dtrace_hash_add(hash, new);
6692 		return;
6693 	}
6694 
6695 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6696 	bucket->dthb_next = hash->dth_tab[ndx];
6697 	hash->dth_tab[ndx] = bucket;
6698 	hash->dth_nbuckets++;
6699 
6700 add:
6701 	nextp = DTRACE_HASHNEXT(hash, new);
6702 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6703 	*nextp = bucket->dthb_chain;
6704 
6705 	if (bucket->dthb_chain != NULL) {
6706 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6707 		ASSERT(*prevp == NULL);
6708 		*prevp = new;
6709 	}
6710 
6711 	bucket->dthb_chain = new;
6712 	bucket->dthb_len++;
6713 }
6714 
6715 static dtrace_probe_t *
6716 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6717 {
6718 	int hashval = DTRACE_HASHSTR(hash, template);
6719 	int ndx = hashval & hash->dth_mask;
6720 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6721 
6722 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6723 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6724 			return (bucket->dthb_chain);
6725 	}
6726 
6727 	return (NULL);
6728 }
6729 
6730 static int
6731 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6732 {
6733 	int hashval = DTRACE_HASHSTR(hash, template);
6734 	int ndx = hashval & hash->dth_mask;
6735 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6736 
6737 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6738 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6739 			return (bucket->dthb_len);
6740 	}
6741 
6742 	return (0);
6743 }
6744 
6745 static void
6746 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6747 {
6748 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6749 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6750 
6751 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6752 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6753 
6754 	/*
6755 	 * Find the bucket that we're removing this probe from.
6756 	 */
6757 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6758 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6759 			break;
6760 	}
6761 
6762 	ASSERT(bucket != NULL);
6763 
6764 	if (*prevp == NULL) {
6765 		if (*nextp == NULL) {
6766 			/*
6767 			 * The removed probe was the only probe on this
6768 			 * bucket; we need to remove the bucket.
6769 			 */
6770 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6771 
6772 			ASSERT(bucket->dthb_chain == probe);
6773 			ASSERT(b != NULL);
6774 
6775 			if (b == bucket) {
6776 				hash->dth_tab[ndx] = bucket->dthb_next;
6777 			} else {
6778 				while (b->dthb_next != bucket)
6779 					b = b->dthb_next;
6780 				b->dthb_next = bucket->dthb_next;
6781 			}
6782 
6783 			ASSERT(hash->dth_nbuckets > 0);
6784 			hash->dth_nbuckets--;
6785 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6786 			return;
6787 		}
6788 
6789 		bucket->dthb_chain = *nextp;
6790 	} else {
6791 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6792 	}
6793 
6794 	if (*nextp != NULL)
6795 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6796 }
6797 
6798 /*
6799  * DTrace Utility Functions
6800  *
6801  * These are random utility functions that are _not_ called from probe context.
6802  */
6803 static int
6804 dtrace_badattr(const dtrace_attribute_t *a)
6805 {
6806 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6807 	    a->dtat_data > DTRACE_STABILITY_MAX ||
6808 	    a->dtat_class > DTRACE_CLASS_MAX);
6809 }
6810 
6811 /*
6812  * Return a duplicate copy of a string.  If the specified string is NULL,
6813  * this function returns a zero-length string.
6814  */
6815 static char *
6816 dtrace_strdup(const char *str)
6817 {
6818 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6819 
6820 	if (str != NULL)
6821 		(void) strcpy(new, str);
6822 
6823 	return (new);
6824 }
6825 
6826 #define	DTRACE_ISALPHA(c)	\
6827 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6828 
6829 static int
6830 dtrace_badname(const char *s)
6831 {
6832 	char c;
6833 
6834 	if (s == NULL || (c = *s++) == '\0')
6835 		return (0);
6836 
6837 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6838 		return (1);
6839 
6840 	while ((c = *s++) != '\0') {
6841 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6842 		    c != '-' && c != '_' && c != '.' && c != '`')
6843 			return (1);
6844 	}
6845 
6846 	return (0);
6847 }
6848 
6849 static void
6850 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6851 {
6852 	uint32_t priv;
6853 
6854 #if defined(sun)
6855 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6856 		/*
6857 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
6858 		 */
6859 		priv = DTRACE_PRIV_ALL;
6860 	} else {
6861 		*uidp = crgetuid(cr);
6862 		*zoneidp = crgetzoneid(cr);
6863 
6864 		priv = 0;
6865 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6866 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6867 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6868 			priv |= DTRACE_PRIV_USER;
6869 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6870 			priv |= DTRACE_PRIV_PROC;
6871 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6872 			priv |= DTRACE_PRIV_OWNER;
6873 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6874 			priv |= DTRACE_PRIV_ZONEOWNER;
6875 	}
6876 #else
6877 	priv = DTRACE_PRIV_ALL;
6878 #endif
6879 
6880 	*privp = priv;
6881 }
6882 
6883 #ifdef DTRACE_ERRDEBUG
6884 static void
6885 dtrace_errdebug(const char *str)
6886 {
6887 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
6888 	int occupied = 0;
6889 
6890 	mutex_enter(&dtrace_errlock);
6891 	dtrace_errlast = str;
6892 	dtrace_errthread = curthread;
6893 
6894 	while (occupied++ < DTRACE_ERRHASHSZ) {
6895 		if (dtrace_errhash[hval].dter_msg == str) {
6896 			dtrace_errhash[hval].dter_count++;
6897 			goto out;
6898 		}
6899 
6900 		if (dtrace_errhash[hval].dter_msg != NULL) {
6901 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6902 			continue;
6903 		}
6904 
6905 		dtrace_errhash[hval].dter_msg = str;
6906 		dtrace_errhash[hval].dter_count = 1;
6907 		goto out;
6908 	}
6909 
6910 	panic("dtrace: undersized error hash");
6911 out:
6912 	mutex_exit(&dtrace_errlock);
6913 }
6914 #endif
6915 
6916 /*
6917  * DTrace Matching Functions
6918  *
6919  * These functions are used to match groups of probes, given some elements of
6920  * a probe tuple, or some globbed expressions for elements of a probe tuple.
6921  */
6922 static int
6923 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
6924     zoneid_t zoneid)
6925 {
6926 	if (priv != DTRACE_PRIV_ALL) {
6927 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
6928 		uint32_t match = priv & ppriv;
6929 
6930 		/*
6931 		 * No PRIV_DTRACE_* privileges...
6932 		 */
6933 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
6934 		    DTRACE_PRIV_KERNEL)) == 0)
6935 			return (0);
6936 
6937 		/*
6938 		 * No matching bits, but there were bits to match...
6939 		 */
6940 		if (match == 0 && ppriv != 0)
6941 			return (0);
6942 
6943 		/*
6944 		 * Need to have permissions to the process, but don't...
6945 		 */
6946 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
6947 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
6948 			return (0);
6949 		}
6950 
6951 		/*
6952 		 * Need to be in the same zone unless we possess the
6953 		 * privilege to examine all zones.
6954 		 */
6955 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
6956 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
6957 			return (0);
6958 		}
6959 	}
6960 
6961 	return (1);
6962 }
6963 
6964 /*
6965  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
6966  * consists of input pattern strings and an ops-vector to evaluate them.
6967  * This function returns >0 for match, 0 for no match, and <0 for error.
6968  */
6969 static int
6970 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
6971     uint32_t priv, uid_t uid, zoneid_t zoneid)
6972 {
6973 	dtrace_provider_t *pvp = prp->dtpr_provider;
6974 	int rv;
6975 
6976 	if (pvp->dtpv_defunct)
6977 		return (0);
6978 
6979 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
6980 		return (rv);
6981 
6982 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
6983 		return (rv);
6984 
6985 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
6986 		return (rv);
6987 
6988 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
6989 		return (rv);
6990 
6991 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
6992 		return (0);
6993 
6994 	return (rv);
6995 }
6996 
6997 /*
6998  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
6999  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7000  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7001  * In addition, all of the recursion cases except for '*' matching have been
7002  * unwound.  For '*', we still implement recursive evaluation, but a depth
7003  * counter is maintained and matching is aborted if we recurse too deep.
7004  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7005  */
7006 static int
7007 dtrace_match_glob(const char *s, const char *p, int depth)
7008 {
7009 	const char *olds;
7010 	char s1, c;
7011 	int gs;
7012 
7013 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7014 		return (-1);
7015 
7016 	if (s == NULL)
7017 		s = ""; /* treat NULL as empty string */
7018 
7019 top:
7020 	olds = s;
7021 	s1 = *s++;
7022 
7023 	if (p == NULL)
7024 		return (0);
7025 
7026 	if ((c = *p++) == '\0')
7027 		return (s1 == '\0');
7028 
7029 	switch (c) {
7030 	case '[': {
7031 		int ok = 0, notflag = 0;
7032 		char lc = '\0';
7033 
7034 		if (s1 == '\0')
7035 			return (0);
7036 
7037 		if (*p == '!') {
7038 			notflag = 1;
7039 			p++;
7040 		}
7041 
7042 		if ((c = *p++) == '\0')
7043 			return (0);
7044 
7045 		do {
7046 			if (c == '-' && lc != '\0' && *p != ']') {
7047 				if ((c = *p++) == '\0')
7048 					return (0);
7049 				if (c == '\\' && (c = *p++) == '\0')
7050 					return (0);
7051 
7052 				if (notflag) {
7053 					if (s1 < lc || s1 > c)
7054 						ok++;
7055 					else
7056 						return (0);
7057 				} else if (lc <= s1 && s1 <= c)
7058 					ok++;
7059 
7060 			} else if (c == '\\' && (c = *p++) == '\0')
7061 				return (0);
7062 
7063 			lc = c; /* save left-hand 'c' for next iteration */
7064 
7065 			if (notflag) {
7066 				if (s1 != c)
7067 					ok++;
7068 				else
7069 					return (0);
7070 			} else if (s1 == c)
7071 				ok++;
7072 
7073 			if ((c = *p++) == '\0')
7074 				return (0);
7075 
7076 		} while (c != ']');
7077 
7078 		if (ok)
7079 			goto top;
7080 
7081 		return (0);
7082 	}
7083 
7084 	case '\\':
7085 		if ((c = *p++) == '\0')
7086 			return (0);
7087 		/*FALLTHRU*/
7088 
7089 	default:
7090 		if (c != s1)
7091 			return (0);
7092 		/*FALLTHRU*/
7093 
7094 	case '?':
7095 		if (s1 != '\0')
7096 			goto top;
7097 		return (0);
7098 
7099 	case '*':
7100 		while (*p == '*')
7101 			p++; /* consecutive *'s are identical to a single one */
7102 
7103 		if (*p == '\0')
7104 			return (1);
7105 
7106 		for (s = olds; *s != '\0'; s++) {
7107 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7108 				return (gs);
7109 		}
7110 
7111 		return (0);
7112 	}
7113 }
7114 
7115 /*ARGSUSED*/
7116 static int
7117 dtrace_match_string(const char *s, const char *p, int depth)
7118 {
7119 	return (s != NULL && strcmp(s, p) == 0);
7120 }
7121 
7122 /*ARGSUSED*/
7123 static int
7124 dtrace_match_nul(const char *s, const char *p, int depth)
7125 {
7126 	return (1); /* always match the empty pattern */
7127 }
7128 
7129 /*ARGSUSED*/
7130 static int
7131 dtrace_match_nonzero(const char *s, const char *p, int depth)
7132 {
7133 	return (s != NULL && s[0] != '\0');
7134 }
7135 
7136 static int
7137 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7138     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7139 {
7140 	dtrace_probe_t template, *probe;
7141 	dtrace_hash_t *hash = NULL;
7142 	int len, best = INT_MAX, nmatched = 0;
7143 	dtrace_id_t i;
7144 
7145 	ASSERT(MUTEX_HELD(&dtrace_lock));
7146 
7147 	/*
7148 	 * If the probe ID is specified in the key, just lookup by ID and
7149 	 * invoke the match callback once if a matching probe is found.
7150 	 */
7151 	if (pkp->dtpk_id != DTRACE_IDNONE) {
7152 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7153 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7154 			(void) (*matched)(probe, arg);
7155 			nmatched++;
7156 		}
7157 		return (nmatched);
7158 	}
7159 
7160 	template.dtpr_mod = (char *)pkp->dtpk_mod;
7161 	template.dtpr_func = (char *)pkp->dtpk_func;
7162 	template.dtpr_name = (char *)pkp->dtpk_name;
7163 
7164 	/*
7165 	 * We want to find the most distinct of the module name, function
7166 	 * name, and name.  So for each one that is not a glob pattern or
7167 	 * empty string, we perform a lookup in the corresponding hash and
7168 	 * use the hash table with the fewest collisions to do our search.
7169 	 */
7170 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7171 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7172 		best = len;
7173 		hash = dtrace_bymod;
7174 	}
7175 
7176 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7177 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7178 		best = len;
7179 		hash = dtrace_byfunc;
7180 	}
7181 
7182 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7183 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7184 		best = len;
7185 		hash = dtrace_byname;
7186 	}
7187 
7188 	/*
7189 	 * If we did not select a hash table, iterate over every probe and
7190 	 * invoke our callback for each one that matches our input probe key.
7191 	 */
7192 	if (hash == NULL) {
7193 		for (i = 0; i < dtrace_nprobes; i++) {
7194 			if ((probe = dtrace_probes[i]) == NULL ||
7195 			    dtrace_match_probe(probe, pkp, priv, uid,
7196 			    zoneid) <= 0)
7197 				continue;
7198 
7199 			nmatched++;
7200 
7201 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7202 				break;
7203 		}
7204 
7205 		return (nmatched);
7206 	}
7207 
7208 	/*
7209 	 * If we selected a hash table, iterate over each probe of the same key
7210 	 * name and invoke the callback for every probe that matches the other
7211 	 * attributes of our input probe key.
7212 	 */
7213 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7214 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7215 
7216 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7217 			continue;
7218 
7219 		nmatched++;
7220 
7221 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7222 			break;
7223 	}
7224 
7225 	return (nmatched);
7226 }
7227 
7228 /*
7229  * Return the function pointer dtrace_probecmp() should use to compare the
7230  * specified pattern with a string.  For NULL or empty patterns, we select
7231  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7232  * For non-empty non-glob strings, we use dtrace_match_string().
7233  */
7234 static dtrace_probekey_f *
7235 dtrace_probekey_func(const char *p)
7236 {
7237 	char c;
7238 
7239 	if (p == NULL || *p == '\0')
7240 		return (&dtrace_match_nul);
7241 
7242 	while ((c = *p++) != '\0') {
7243 		if (c == '[' || c == '?' || c == '*' || c == '\\')
7244 			return (&dtrace_match_glob);
7245 	}
7246 
7247 	return (&dtrace_match_string);
7248 }
7249 
7250 /*
7251  * Build a probe comparison key for use with dtrace_match_probe() from the
7252  * given probe description.  By convention, a null key only matches anchored
7253  * probes: if each field is the empty string, reset dtpk_fmatch to
7254  * dtrace_match_nonzero().
7255  */
7256 static void
7257 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7258 {
7259 	pkp->dtpk_prov = pdp->dtpd_provider;
7260 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7261 
7262 	pkp->dtpk_mod = pdp->dtpd_mod;
7263 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7264 
7265 	pkp->dtpk_func = pdp->dtpd_func;
7266 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7267 
7268 	pkp->dtpk_name = pdp->dtpd_name;
7269 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7270 
7271 	pkp->dtpk_id = pdp->dtpd_id;
7272 
7273 	if (pkp->dtpk_id == DTRACE_IDNONE &&
7274 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7275 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7276 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7277 	    pkp->dtpk_nmatch == &dtrace_match_nul)
7278 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7279 }
7280 
7281 /*
7282  * DTrace Provider-to-Framework API Functions
7283  *
7284  * These functions implement much of the Provider-to-Framework API, as
7285  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7286  * the functions in the API for probe management (found below), and
7287  * dtrace_probe() itself (found above).
7288  */
7289 
7290 /*
7291  * Register the calling provider with the DTrace framework.  This should
7292  * generally be called by DTrace providers in their attach(9E) entry point.
7293  */
7294 int
7295 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7296     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7297 {
7298 	dtrace_provider_t *provider;
7299 
7300 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7301 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7302 		    "arguments", name ? name : "<NULL>");
7303 		return (EINVAL);
7304 	}
7305 
7306 	if (name[0] == '\0' || dtrace_badname(name)) {
7307 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7308 		    "provider name", name);
7309 		return (EINVAL);
7310 	}
7311 
7312 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7313 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7314 	    pops->dtps_destroy == NULL ||
7315 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7316 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7317 		    "provider ops", name);
7318 		return (EINVAL);
7319 	}
7320 
7321 	if (dtrace_badattr(&pap->dtpa_provider) ||
7322 	    dtrace_badattr(&pap->dtpa_mod) ||
7323 	    dtrace_badattr(&pap->dtpa_func) ||
7324 	    dtrace_badattr(&pap->dtpa_name) ||
7325 	    dtrace_badattr(&pap->dtpa_args)) {
7326 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7327 		    "provider attributes", name);
7328 		return (EINVAL);
7329 	}
7330 
7331 	if (priv & ~DTRACE_PRIV_ALL) {
7332 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7333 		    "privilege attributes", name);
7334 		return (EINVAL);
7335 	}
7336 
7337 	if ((priv & DTRACE_PRIV_KERNEL) &&
7338 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7339 	    pops->dtps_usermode == NULL) {
7340 		cmn_err(CE_WARN, "failed to register provider '%s': need "
7341 		    "dtps_usermode() op for given privilege attributes", name);
7342 		return (EINVAL);
7343 	}
7344 
7345 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7346 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7347 	(void) strcpy(provider->dtpv_name, name);
7348 
7349 	provider->dtpv_attr = *pap;
7350 	provider->dtpv_priv.dtpp_flags = priv;
7351 	if (cr != NULL) {
7352 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7353 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7354 	}
7355 	provider->dtpv_pops = *pops;
7356 
7357 	if (pops->dtps_provide == NULL) {
7358 		ASSERT(pops->dtps_provide_module != NULL);
7359 		provider->dtpv_pops.dtps_provide =
7360 		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7361 	}
7362 
7363 	if (pops->dtps_provide_module == NULL) {
7364 		ASSERT(pops->dtps_provide != NULL);
7365 		provider->dtpv_pops.dtps_provide_module =
7366 		    (void (*)(void *, modctl_t *))dtrace_nullop;
7367 	}
7368 
7369 	if (pops->dtps_suspend == NULL) {
7370 		ASSERT(pops->dtps_resume == NULL);
7371 		provider->dtpv_pops.dtps_suspend =
7372 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7373 		provider->dtpv_pops.dtps_resume =
7374 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7375 	}
7376 
7377 	provider->dtpv_arg = arg;
7378 	*idp = (dtrace_provider_id_t)provider;
7379 
7380 	if (pops == &dtrace_provider_ops) {
7381 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7382 		ASSERT(MUTEX_HELD(&dtrace_lock));
7383 		ASSERT(dtrace_anon.dta_enabling == NULL);
7384 
7385 		/*
7386 		 * We make sure that the DTrace provider is at the head of
7387 		 * the provider chain.
7388 		 */
7389 		provider->dtpv_next = dtrace_provider;
7390 		dtrace_provider = provider;
7391 		return (0);
7392 	}
7393 
7394 	mutex_enter(&dtrace_provider_lock);
7395 	mutex_enter(&dtrace_lock);
7396 
7397 	/*
7398 	 * If there is at least one provider registered, we'll add this
7399 	 * provider after the first provider.
7400 	 */
7401 	if (dtrace_provider != NULL) {
7402 		provider->dtpv_next = dtrace_provider->dtpv_next;
7403 		dtrace_provider->dtpv_next = provider;
7404 	} else {
7405 		dtrace_provider = provider;
7406 	}
7407 
7408 	if (dtrace_retained != NULL) {
7409 		dtrace_enabling_provide(provider);
7410 
7411 		/*
7412 		 * Now we need to call dtrace_enabling_matchall() -- which
7413 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7414 		 * to drop all of our locks before calling into it...
7415 		 */
7416 		mutex_exit(&dtrace_lock);
7417 		mutex_exit(&dtrace_provider_lock);
7418 		dtrace_enabling_matchall();
7419 
7420 		return (0);
7421 	}
7422 
7423 	mutex_exit(&dtrace_lock);
7424 	mutex_exit(&dtrace_provider_lock);
7425 
7426 	return (0);
7427 }
7428 
7429 /*
7430  * Unregister the specified provider from the DTrace framework.  This should
7431  * generally be called by DTrace providers in their detach(9E) entry point.
7432  */
7433 int
7434 dtrace_unregister(dtrace_provider_id_t id)
7435 {
7436 	dtrace_provider_t *old = (dtrace_provider_t *)id;
7437 	dtrace_provider_t *prev = NULL;
7438 	int i, self = 0;
7439 	dtrace_probe_t *probe, *first = NULL;
7440 
7441 	if (old->dtpv_pops.dtps_enable ==
7442 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7443 		/*
7444 		 * If DTrace itself is the provider, we're called with locks
7445 		 * already held.
7446 		 */
7447 		ASSERT(old == dtrace_provider);
7448 #if defined(sun)
7449 		ASSERT(dtrace_devi != NULL);
7450 #endif
7451 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7452 		ASSERT(MUTEX_HELD(&dtrace_lock));
7453 		self = 1;
7454 
7455 		if (dtrace_provider->dtpv_next != NULL) {
7456 			/*
7457 			 * There's another provider here; return failure.
7458 			 */
7459 			return (EBUSY);
7460 		}
7461 	} else {
7462 		mutex_enter(&dtrace_provider_lock);
7463 		mutex_enter(&mod_lock);
7464 		mutex_enter(&dtrace_lock);
7465 	}
7466 
7467 	/*
7468 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7469 	 * probes, we refuse to let providers slither away, unless this
7470 	 * provider has already been explicitly invalidated.
7471 	 */
7472 	if (!old->dtpv_defunct &&
7473 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7474 	    dtrace_anon.dta_state->dts_necbs > 0))) {
7475 		if (!self) {
7476 			mutex_exit(&dtrace_lock);
7477 			mutex_exit(&mod_lock);
7478 			mutex_exit(&dtrace_provider_lock);
7479 		}
7480 		return (EBUSY);
7481 	}
7482 
7483 	/*
7484 	 * Attempt to destroy the probes associated with this provider.
7485 	 */
7486 	for (i = 0; i < dtrace_nprobes; i++) {
7487 		if ((probe = dtrace_probes[i]) == NULL)
7488 			continue;
7489 
7490 		if (probe->dtpr_provider != old)
7491 			continue;
7492 
7493 		if (probe->dtpr_ecb == NULL)
7494 			continue;
7495 
7496 		/*
7497 		 * We have at least one ECB; we can't remove this provider.
7498 		 */
7499 		if (!self) {
7500 			mutex_exit(&dtrace_lock);
7501 			mutex_exit(&mod_lock);
7502 			mutex_exit(&dtrace_provider_lock);
7503 		}
7504 		return (EBUSY);
7505 	}
7506 
7507 	/*
7508 	 * All of the probes for this provider are disabled; we can safely
7509 	 * remove all of them from their hash chains and from the probe array.
7510 	 */
7511 	for (i = 0; i < dtrace_nprobes; i++) {
7512 		if ((probe = dtrace_probes[i]) == NULL)
7513 			continue;
7514 
7515 		if (probe->dtpr_provider != old)
7516 			continue;
7517 
7518 		dtrace_probes[i] = NULL;
7519 
7520 		dtrace_hash_remove(dtrace_bymod, probe);
7521 		dtrace_hash_remove(dtrace_byfunc, probe);
7522 		dtrace_hash_remove(dtrace_byname, probe);
7523 
7524 		if (first == NULL) {
7525 			first = probe;
7526 			probe->dtpr_nextmod = NULL;
7527 		} else {
7528 			probe->dtpr_nextmod = first;
7529 			first = probe;
7530 		}
7531 	}
7532 
7533 	/*
7534 	 * The provider's probes have been removed from the hash chains and
7535 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7536 	 * everyone has cleared out from any probe array processing.
7537 	 */
7538 	dtrace_sync();
7539 
7540 	for (probe = first; probe != NULL; probe = first) {
7541 		first = probe->dtpr_nextmod;
7542 
7543 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7544 		    probe->dtpr_arg);
7545 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7546 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7547 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7548 #if defined(sun)
7549 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7550 #else
7551 		free_unr(dtrace_arena, probe->dtpr_id);
7552 #endif
7553 		kmem_free(probe, sizeof (dtrace_probe_t));
7554 	}
7555 
7556 	if ((prev = dtrace_provider) == old) {
7557 #if defined(sun)
7558 		ASSERT(self || dtrace_devi == NULL);
7559 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7560 #endif
7561 		dtrace_provider = old->dtpv_next;
7562 	} else {
7563 		while (prev != NULL && prev->dtpv_next != old)
7564 			prev = prev->dtpv_next;
7565 
7566 		if (prev == NULL) {
7567 			panic("attempt to unregister non-existent "
7568 			    "dtrace provider %p\n", (void *)id);
7569 		}
7570 
7571 		prev->dtpv_next = old->dtpv_next;
7572 	}
7573 
7574 	if (!self) {
7575 		mutex_exit(&dtrace_lock);
7576 		mutex_exit(&mod_lock);
7577 		mutex_exit(&dtrace_provider_lock);
7578 	}
7579 
7580 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7581 	kmem_free(old, sizeof (dtrace_provider_t));
7582 
7583 	return (0);
7584 }
7585 
7586 /*
7587  * Invalidate the specified provider.  All subsequent probe lookups for the
7588  * specified provider will fail, but its probes will not be removed.
7589  */
7590 void
7591 dtrace_invalidate(dtrace_provider_id_t id)
7592 {
7593 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7594 
7595 	ASSERT(pvp->dtpv_pops.dtps_enable !=
7596 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7597 
7598 	mutex_enter(&dtrace_provider_lock);
7599 	mutex_enter(&dtrace_lock);
7600 
7601 	pvp->dtpv_defunct = 1;
7602 
7603 	mutex_exit(&dtrace_lock);
7604 	mutex_exit(&dtrace_provider_lock);
7605 }
7606 
7607 /*
7608  * Indicate whether or not DTrace has attached.
7609  */
7610 int
7611 dtrace_attached(void)
7612 {
7613 	/*
7614 	 * dtrace_provider will be non-NULL iff the DTrace driver has
7615 	 * attached.  (It's non-NULL because DTrace is always itself a
7616 	 * provider.)
7617 	 */
7618 	return (dtrace_provider != NULL);
7619 }
7620 
7621 /*
7622  * Remove all the unenabled probes for the given provider.  This function is
7623  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7624  * -- just as many of its associated probes as it can.
7625  */
7626 int
7627 dtrace_condense(dtrace_provider_id_t id)
7628 {
7629 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7630 	int i;
7631 	dtrace_probe_t *probe;
7632 
7633 	/*
7634 	 * Make sure this isn't the dtrace provider itself.
7635 	 */
7636 	ASSERT(prov->dtpv_pops.dtps_enable !=
7637 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7638 
7639 	mutex_enter(&dtrace_provider_lock);
7640 	mutex_enter(&dtrace_lock);
7641 
7642 	/*
7643 	 * Attempt to destroy the probes associated with this provider.
7644 	 */
7645 	for (i = 0; i < dtrace_nprobes; i++) {
7646 		if ((probe = dtrace_probes[i]) == NULL)
7647 			continue;
7648 
7649 		if (probe->dtpr_provider != prov)
7650 			continue;
7651 
7652 		if (probe->dtpr_ecb != NULL)
7653 			continue;
7654 
7655 		dtrace_probes[i] = NULL;
7656 
7657 		dtrace_hash_remove(dtrace_bymod, probe);
7658 		dtrace_hash_remove(dtrace_byfunc, probe);
7659 		dtrace_hash_remove(dtrace_byname, probe);
7660 
7661 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7662 		    probe->dtpr_arg);
7663 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7664 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7665 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7666 		kmem_free(probe, sizeof (dtrace_probe_t));
7667 #if defined(sun)
7668 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7669 #else
7670 		free_unr(dtrace_arena, i + 1);
7671 #endif
7672 	}
7673 
7674 	mutex_exit(&dtrace_lock);
7675 	mutex_exit(&dtrace_provider_lock);
7676 
7677 	return (0);
7678 }
7679 
7680 /*
7681  * DTrace Probe Management Functions
7682  *
7683  * The functions in this section perform the DTrace probe management,
7684  * including functions to create probes, look-up probes, and call into the
7685  * providers to request that probes be provided.  Some of these functions are
7686  * in the Provider-to-Framework API; these functions can be identified by the
7687  * fact that they are not declared "static".
7688  */
7689 
7690 /*
7691  * Create a probe with the specified module name, function name, and name.
7692  */
7693 dtrace_id_t
7694 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7695     const char *func, const char *name, int aframes, void *arg)
7696 {
7697 	dtrace_probe_t *probe, **probes;
7698 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7699 	dtrace_id_t id;
7700 
7701 	if (provider == dtrace_provider) {
7702 		ASSERT(MUTEX_HELD(&dtrace_lock));
7703 	} else {
7704 		mutex_enter(&dtrace_lock);
7705 	}
7706 
7707 #if defined(sun)
7708 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7709 	    VM_BESTFIT | VM_SLEEP);
7710 #else
7711 	id = alloc_unr(dtrace_arena);
7712 #endif
7713 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7714 
7715 	probe->dtpr_id = id;
7716 	probe->dtpr_gen = dtrace_probegen++;
7717 	probe->dtpr_mod = dtrace_strdup(mod);
7718 	probe->dtpr_func = dtrace_strdup(func);
7719 	probe->dtpr_name = dtrace_strdup(name);
7720 	probe->dtpr_arg = arg;
7721 	probe->dtpr_aframes = aframes;
7722 	probe->dtpr_provider = provider;
7723 
7724 	dtrace_hash_add(dtrace_bymod, probe);
7725 	dtrace_hash_add(dtrace_byfunc, probe);
7726 	dtrace_hash_add(dtrace_byname, probe);
7727 
7728 	if (id - 1 >= dtrace_nprobes) {
7729 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7730 		size_t nsize = osize << 1;
7731 
7732 		if (nsize == 0) {
7733 			ASSERT(osize == 0);
7734 			ASSERT(dtrace_probes == NULL);
7735 			nsize = sizeof (dtrace_probe_t *);
7736 		}
7737 
7738 		probes = kmem_zalloc(nsize, KM_SLEEP);
7739 
7740 		if (dtrace_probes == NULL) {
7741 			ASSERT(osize == 0);
7742 			dtrace_probes = probes;
7743 			dtrace_nprobes = 1;
7744 		} else {
7745 			dtrace_probe_t **oprobes = dtrace_probes;
7746 
7747 			bcopy(oprobes, probes, osize);
7748 			dtrace_membar_producer();
7749 			dtrace_probes = probes;
7750 
7751 			dtrace_sync();
7752 
7753 			/*
7754 			 * All CPUs are now seeing the new probes array; we can
7755 			 * safely free the old array.
7756 			 */
7757 			kmem_free(oprobes, osize);
7758 			dtrace_nprobes <<= 1;
7759 		}
7760 
7761 		ASSERT(id - 1 < dtrace_nprobes);
7762 	}
7763 
7764 	ASSERT(dtrace_probes[id - 1] == NULL);
7765 	dtrace_probes[id - 1] = probe;
7766 
7767 	if (provider != dtrace_provider)
7768 		mutex_exit(&dtrace_lock);
7769 
7770 	return (id);
7771 }
7772 
7773 static dtrace_probe_t *
7774 dtrace_probe_lookup_id(dtrace_id_t id)
7775 {
7776 	ASSERT(MUTEX_HELD(&dtrace_lock));
7777 
7778 	if (id == 0 || id > dtrace_nprobes)
7779 		return (NULL);
7780 
7781 	return (dtrace_probes[id - 1]);
7782 }
7783 
7784 static int
7785 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7786 {
7787 	*((dtrace_id_t *)arg) = probe->dtpr_id;
7788 
7789 	return (DTRACE_MATCH_DONE);
7790 }
7791 
7792 /*
7793  * Look up a probe based on provider and one or more of module name, function
7794  * name and probe name.
7795  */
7796 dtrace_id_t
7797 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7798     char *func, char *name)
7799 {
7800 	dtrace_probekey_t pkey;
7801 	dtrace_id_t id;
7802 	int match;
7803 
7804 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7805 	pkey.dtpk_pmatch = &dtrace_match_string;
7806 	pkey.dtpk_mod = mod;
7807 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7808 	pkey.dtpk_func = func;
7809 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7810 	pkey.dtpk_name = name;
7811 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7812 	pkey.dtpk_id = DTRACE_IDNONE;
7813 
7814 	mutex_enter(&dtrace_lock);
7815 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7816 	    dtrace_probe_lookup_match, &id);
7817 	mutex_exit(&dtrace_lock);
7818 
7819 	ASSERT(match == 1 || match == 0);
7820 	return (match ? id : 0);
7821 }
7822 
7823 /*
7824  * Returns the probe argument associated with the specified probe.
7825  */
7826 void *
7827 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7828 {
7829 	dtrace_probe_t *probe;
7830 	void *rval = NULL;
7831 
7832 	mutex_enter(&dtrace_lock);
7833 
7834 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7835 	    probe->dtpr_provider == (dtrace_provider_t *)id)
7836 		rval = probe->dtpr_arg;
7837 
7838 	mutex_exit(&dtrace_lock);
7839 
7840 	return (rval);
7841 }
7842 
7843 /*
7844  * Copy a probe into a probe description.
7845  */
7846 static void
7847 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7848 {
7849 	bzero(pdp, sizeof (dtrace_probedesc_t));
7850 	pdp->dtpd_id = prp->dtpr_id;
7851 
7852 	(void) strncpy(pdp->dtpd_provider,
7853 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7854 
7855 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7856 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7857 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7858 }
7859 
7860 #if !defined(sun)
7861 static int
7862 dtrace_probe_provide_cb(linker_file_t lf, void *arg)
7863 {
7864 	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
7865 
7866 	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
7867 
7868 	return(0);
7869 }
7870 #endif
7871 
7872 
7873 /*
7874  * Called to indicate that a probe -- or probes -- should be provided by a
7875  * specfied provider.  If the specified description is NULL, the provider will
7876  * be told to provide all of its probes.  (This is done whenever a new
7877  * consumer comes along, or whenever a retained enabling is to be matched.) If
7878  * the specified description is non-NULL, the provider is given the
7879  * opportunity to dynamically provide the specified probe, allowing providers
7880  * to support the creation of probes on-the-fly.  (So-called _autocreated_
7881  * probes.)  If the provider is NULL, the operations will be applied to all
7882  * providers; if the provider is non-NULL the operations will only be applied
7883  * to the specified provider.  The dtrace_provider_lock must be held, and the
7884  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7885  * will need to grab the dtrace_lock when it reenters the framework through
7886  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7887  */
7888 static void
7889 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7890 {
7891 #if defined(sun)
7892 	modctl_t *ctl;
7893 #endif
7894 	int all = 0;
7895 
7896 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7897 
7898 	if (prv == NULL) {
7899 		all = 1;
7900 		prv = dtrace_provider;
7901 	}
7902 
7903 	do {
7904 		/*
7905 		 * First, call the blanket provide operation.
7906 		 */
7907 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
7908 
7909 		/*
7910 		 * Now call the per-module provide operation.  We will grab
7911 		 * mod_lock to prevent the list from being modified.  Note
7912 		 * that this also prevents the mod_busy bits from changing.
7913 		 * (mod_busy can only be changed with mod_lock held.)
7914 		 */
7915 		mutex_enter(&mod_lock);
7916 
7917 #if defined(sun)
7918 		ctl = &modules;
7919 		do {
7920 			if (ctl->mod_busy || ctl->mod_mp == NULL)
7921 				continue;
7922 
7923 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
7924 
7925 		} while ((ctl = ctl->mod_next) != &modules);
7926 #else
7927 		(void) linker_file_foreach(dtrace_probe_provide_cb, prv);
7928 #endif
7929 
7930 		mutex_exit(&mod_lock);
7931 	} while (all && (prv = prv->dtpv_next) != NULL);
7932 }
7933 
7934 #if defined(sun)
7935 /*
7936  * Iterate over each probe, and call the Framework-to-Provider API function
7937  * denoted by offs.
7938  */
7939 static void
7940 dtrace_probe_foreach(uintptr_t offs)
7941 {
7942 	dtrace_provider_t *prov;
7943 	void (*func)(void *, dtrace_id_t, void *);
7944 	dtrace_probe_t *probe;
7945 	dtrace_icookie_t cookie;
7946 	int i;
7947 
7948 	/*
7949 	 * We disable interrupts to walk through the probe array.  This is
7950 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
7951 	 * won't see stale data.
7952 	 */
7953 	cookie = dtrace_interrupt_disable();
7954 
7955 	for (i = 0; i < dtrace_nprobes; i++) {
7956 		if ((probe = dtrace_probes[i]) == NULL)
7957 			continue;
7958 
7959 		if (probe->dtpr_ecb == NULL) {
7960 			/*
7961 			 * This probe isn't enabled -- don't call the function.
7962 			 */
7963 			continue;
7964 		}
7965 
7966 		prov = probe->dtpr_provider;
7967 		func = *((void(**)(void *, dtrace_id_t, void *))
7968 		    ((uintptr_t)&prov->dtpv_pops + offs));
7969 
7970 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
7971 	}
7972 
7973 	dtrace_interrupt_enable(cookie);
7974 }
7975 #endif
7976 
7977 static int
7978 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
7979 {
7980 	dtrace_probekey_t pkey;
7981 	uint32_t priv;
7982 	uid_t uid;
7983 	zoneid_t zoneid;
7984 
7985 	ASSERT(MUTEX_HELD(&dtrace_lock));
7986 	dtrace_ecb_create_cache = NULL;
7987 
7988 	if (desc == NULL) {
7989 		/*
7990 		 * If we're passed a NULL description, we're being asked to
7991 		 * create an ECB with a NULL probe.
7992 		 */
7993 		(void) dtrace_ecb_create_enable(NULL, enab);
7994 		return (0);
7995 	}
7996 
7997 	dtrace_probekey(desc, &pkey);
7998 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
7999 	    &priv, &uid, &zoneid);
8000 
8001 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8002 	    enab));
8003 }
8004 
8005 /*
8006  * DTrace Helper Provider Functions
8007  */
8008 static void
8009 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8010 {
8011 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8012 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8013 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8014 }
8015 
8016 static void
8017 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8018     const dof_provider_t *dofprov, char *strtab)
8019 {
8020 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8021 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8022 	    dofprov->dofpv_provattr);
8023 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8024 	    dofprov->dofpv_modattr);
8025 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8026 	    dofprov->dofpv_funcattr);
8027 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8028 	    dofprov->dofpv_nameattr);
8029 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8030 	    dofprov->dofpv_argsattr);
8031 }
8032 
8033 static void
8034 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8035 {
8036 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8037 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8038 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8039 	dof_provider_t *provider;
8040 	dof_probe_t *probe;
8041 	uint32_t *off, *enoff;
8042 	uint8_t *arg;
8043 	char *strtab;
8044 	uint_t i, nprobes;
8045 	dtrace_helper_provdesc_t dhpv;
8046 	dtrace_helper_probedesc_t dhpb;
8047 	dtrace_meta_t *meta = dtrace_meta_pid;
8048 	dtrace_mops_t *mops = &meta->dtm_mops;
8049 	void *parg;
8050 
8051 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8052 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8053 	    provider->dofpv_strtab * dof->dofh_secsize);
8054 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8055 	    provider->dofpv_probes * dof->dofh_secsize);
8056 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8057 	    provider->dofpv_prargs * dof->dofh_secsize);
8058 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8059 	    provider->dofpv_proffs * dof->dofh_secsize);
8060 
8061 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8062 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8063 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8064 	enoff = NULL;
8065 
8066 	/*
8067 	 * See dtrace_helper_provider_validate().
8068 	 */
8069 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8070 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8071 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8072 		    provider->dofpv_prenoffs * dof->dofh_secsize);
8073 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8074 	}
8075 
8076 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8077 
8078 	/*
8079 	 * Create the provider.
8080 	 */
8081 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8082 
8083 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8084 		return;
8085 
8086 	meta->dtm_count++;
8087 
8088 	/*
8089 	 * Create the probes.
8090 	 */
8091 	for (i = 0; i < nprobes; i++) {
8092 		probe = (dof_probe_t *)(uintptr_t)(daddr +
8093 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8094 
8095 		dhpb.dthpb_mod = dhp->dofhp_mod;
8096 		dhpb.dthpb_func = strtab + probe->dofpr_func;
8097 		dhpb.dthpb_name = strtab + probe->dofpr_name;
8098 		dhpb.dthpb_base = probe->dofpr_addr;
8099 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8100 		dhpb.dthpb_noffs = probe->dofpr_noffs;
8101 		if (enoff != NULL) {
8102 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8103 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8104 		} else {
8105 			dhpb.dthpb_enoffs = NULL;
8106 			dhpb.dthpb_nenoffs = 0;
8107 		}
8108 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8109 		dhpb.dthpb_nargc = probe->dofpr_nargc;
8110 		dhpb.dthpb_xargc = probe->dofpr_xargc;
8111 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8112 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8113 
8114 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8115 	}
8116 }
8117 
8118 static void
8119 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8120 {
8121 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8122 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8123 	int i;
8124 
8125 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8126 
8127 	for (i = 0; i < dof->dofh_secnum; i++) {
8128 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8129 		    dof->dofh_secoff + i * dof->dofh_secsize);
8130 
8131 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8132 			continue;
8133 
8134 		dtrace_helper_provide_one(dhp, sec, pid);
8135 	}
8136 
8137 	/*
8138 	 * We may have just created probes, so we must now rematch against
8139 	 * any retained enablings.  Note that this call will acquire both
8140 	 * cpu_lock and dtrace_lock; the fact that we are holding
8141 	 * dtrace_meta_lock now is what defines the ordering with respect to
8142 	 * these three locks.
8143 	 */
8144 	dtrace_enabling_matchall();
8145 }
8146 
8147 static void
8148 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8149 {
8150 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8151 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8152 	dof_sec_t *str_sec;
8153 	dof_provider_t *provider;
8154 	char *strtab;
8155 	dtrace_helper_provdesc_t dhpv;
8156 	dtrace_meta_t *meta = dtrace_meta_pid;
8157 	dtrace_mops_t *mops = &meta->dtm_mops;
8158 
8159 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8160 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8161 	    provider->dofpv_strtab * dof->dofh_secsize);
8162 
8163 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8164 
8165 	/*
8166 	 * Create the provider.
8167 	 */
8168 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8169 
8170 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8171 
8172 	meta->dtm_count--;
8173 }
8174 
8175 static void
8176 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8177 {
8178 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8179 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8180 	int i;
8181 
8182 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8183 
8184 	for (i = 0; i < dof->dofh_secnum; i++) {
8185 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8186 		    dof->dofh_secoff + i * dof->dofh_secsize);
8187 
8188 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8189 			continue;
8190 
8191 		dtrace_helper_provider_remove_one(dhp, sec, pid);
8192 	}
8193 }
8194 
8195 /*
8196  * DTrace Meta Provider-to-Framework API Functions
8197  *
8198  * These functions implement the Meta Provider-to-Framework API, as described
8199  * in <sys/dtrace.h>.
8200  */
8201 int
8202 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8203     dtrace_meta_provider_id_t *idp)
8204 {
8205 	dtrace_meta_t *meta;
8206 	dtrace_helpers_t *help, *next;
8207 	int i;
8208 
8209 	*idp = DTRACE_METAPROVNONE;
8210 
8211 	/*
8212 	 * We strictly don't need the name, but we hold onto it for
8213 	 * debuggability. All hail error queues!
8214 	 */
8215 	if (name == NULL) {
8216 		cmn_err(CE_WARN, "failed to register meta-provider: "
8217 		    "invalid name");
8218 		return (EINVAL);
8219 	}
8220 
8221 	if (mops == NULL ||
8222 	    mops->dtms_create_probe == NULL ||
8223 	    mops->dtms_provide_pid == NULL ||
8224 	    mops->dtms_remove_pid == NULL) {
8225 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8226 		    "invalid ops", name);
8227 		return (EINVAL);
8228 	}
8229 
8230 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8231 	meta->dtm_mops = *mops;
8232 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8233 	(void) strcpy(meta->dtm_name, name);
8234 	meta->dtm_arg = arg;
8235 
8236 	mutex_enter(&dtrace_meta_lock);
8237 	mutex_enter(&dtrace_lock);
8238 
8239 	if (dtrace_meta_pid != NULL) {
8240 		mutex_exit(&dtrace_lock);
8241 		mutex_exit(&dtrace_meta_lock);
8242 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8243 		    "user-land meta-provider exists", name);
8244 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8245 		kmem_free(meta, sizeof (dtrace_meta_t));
8246 		return (EINVAL);
8247 	}
8248 
8249 	dtrace_meta_pid = meta;
8250 	*idp = (dtrace_meta_provider_id_t)meta;
8251 
8252 	/*
8253 	 * If there are providers and probes ready to go, pass them
8254 	 * off to the new meta provider now.
8255 	 */
8256 
8257 	help = dtrace_deferred_pid;
8258 	dtrace_deferred_pid = NULL;
8259 
8260 	mutex_exit(&dtrace_lock);
8261 
8262 	while (help != NULL) {
8263 		for (i = 0; i < help->dthps_nprovs; i++) {
8264 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8265 			    help->dthps_pid);
8266 		}
8267 
8268 		next = help->dthps_next;
8269 		help->dthps_next = NULL;
8270 		help->dthps_prev = NULL;
8271 		help->dthps_deferred = 0;
8272 		help = next;
8273 	}
8274 
8275 	mutex_exit(&dtrace_meta_lock);
8276 
8277 	return (0);
8278 }
8279 
8280 int
8281 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8282 {
8283 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8284 
8285 	mutex_enter(&dtrace_meta_lock);
8286 	mutex_enter(&dtrace_lock);
8287 
8288 	if (old == dtrace_meta_pid) {
8289 		pp = &dtrace_meta_pid;
8290 	} else {
8291 		panic("attempt to unregister non-existent "
8292 		    "dtrace meta-provider %p\n", (void *)old);
8293 	}
8294 
8295 	if (old->dtm_count != 0) {
8296 		mutex_exit(&dtrace_lock);
8297 		mutex_exit(&dtrace_meta_lock);
8298 		return (EBUSY);
8299 	}
8300 
8301 	*pp = NULL;
8302 
8303 	mutex_exit(&dtrace_lock);
8304 	mutex_exit(&dtrace_meta_lock);
8305 
8306 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8307 	kmem_free(old, sizeof (dtrace_meta_t));
8308 
8309 	return (0);
8310 }
8311 
8312 
8313 /*
8314  * DTrace DIF Object Functions
8315  */
8316 static int
8317 dtrace_difo_err(uint_t pc, const char *format, ...)
8318 {
8319 	if (dtrace_err_verbose) {
8320 		va_list alist;
8321 
8322 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8323 		va_start(alist, format);
8324 		(void) vuprintf(format, alist);
8325 		va_end(alist);
8326 	}
8327 
8328 #ifdef DTRACE_ERRDEBUG
8329 	dtrace_errdebug(format);
8330 #endif
8331 	return (1);
8332 }
8333 
8334 /*
8335  * Validate a DTrace DIF object by checking the IR instructions.  The following
8336  * rules are currently enforced by dtrace_difo_validate():
8337  *
8338  * 1. Each instruction must have a valid opcode
8339  * 2. Each register, string, variable, or subroutine reference must be valid
8340  * 3. No instruction can modify register %r0 (must be zero)
8341  * 4. All instruction reserved bits must be set to zero
8342  * 5. The last instruction must be a "ret" instruction
8343  * 6. All branch targets must reference a valid instruction _after_ the branch
8344  */
8345 static int
8346 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8347     cred_t *cr)
8348 {
8349 	int err = 0, i;
8350 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8351 	int kcheckload;
8352 	uint_t pc;
8353 
8354 	kcheckload = cr == NULL ||
8355 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8356 
8357 	dp->dtdo_destructive = 0;
8358 
8359 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8360 		dif_instr_t instr = dp->dtdo_buf[pc];
8361 
8362 		uint_t r1 = DIF_INSTR_R1(instr);
8363 		uint_t r2 = DIF_INSTR_R2(instr);
8364 		uint_t rd = DIF_INSTR_RD(instr);
8365 		uint_t rs = DIF_INSTR_RS(instr);
8366 		uint_t label = DIF_INSTR_LABEL(instr);
8367 		uint_t v = DIF_INSTR_VAR(instr);
8368 		uint_t subr = DIF_INSTR_SUBR(instr);
8369 		uint_t type = DIF_INSTR_TYPE(instr);
8370 		uint_t op = DIF_INSTR_OP(instr);
8371 
8372 		switch (op) {
8373 		case DIF_OP_OR:
8374 		case DIF_OP_XOR:
8375 		case DIF_OP_AND:
8376 		case DIF_OP_SLL:
8377 		case DIF_OP_SRL:
8378 		case DIF_OP_SRA:
8379 		case DIF_OP_SUB:
8380 		case DIF_OP_ADD:
8381 		case DIF_OP_MUL:
8382 		case DIF_OP_SDIV:
8383 		case DIF_OP_UDIV:
8384 		case DIF_OP_SREM:
8385 		case DIF_OP_UREM:
8386 		case DIF_OP_COPYS:
8387 			if (r1 >= nregs)
8388 				err += efunc(pc, "invalid register %u\n", r1);
8389 			if (r2 >= nregs)
8390 				err += efunc(pc, "invalid register %u\n", r2);
8391 			if (rd >= nregs)
8392 				err += efunc(pc, "invalid register %u\n", rd);
8393 			if (rd == 0)
8394 				err += efunc(pc, "cannot write to %r0\n");
8395 			break;
8396 		case DIF_OP_NOT:
8397 		case DIF_OP_MOV:
8398 		case DIF_OP_ALLOCS:
8399 			if (r1 >= nregs)
8400 				err += efunc(pc, "invalid register %u\n", r1);
8401 			if (r2 != 0)
8402 				err += efunc(pc, "non-zero reserved bits\n");
8403 			if (rd >= nregs)
8404 				err += efunc(pc, "invalid register %u\n", rd);
8405 			if (rd == 0)
8406 				err += efunc(pc, "cannot write to %r0\n");
8407 			break;
8408 		case DIF_OP_LDSB:
8409 		case DIF_OP_LDSH:
8410 		case DIF_OP_LDSW:
8411 		case DIF_OP_LDUB:
8412 		case DIF_OP_LDUH:
8413 		case DIF_OP_LDUW:
8414 		case DIF_OP_LDX:
8415 			if (r1 >= nregs)
8416 				err += efunc(pc, "invalid register %u\n", r1);
8417 			if (r2 != 0)
8418 				err += efunc(pc, "non-zero reserved bits\n");
8419 			if (rd >= nregs)
8420 				err += efunc(pc, "invalid register %u\n", rd);
8421 			if (rd == 0)
8422 				err += efunc(pc, "cannot write to %r0\n");
8423 			if (kcheckload)
8424 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8425 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8426 			break;
8427 		case DIF_OP_RLDSB:
8428 		case DIF_OP_RLDSH:
8429 		case DIF_OP_RLDSW:
8430 		case DIF_OP_RLDUB:
8431 		case DIF_OP_RLDUH:
8432 		case DIF_OP_RLDUW:
8433 		case DIF_OP_RLDX:
8434 			if (r1 >= nregs)
8435 				err += efunc(pc, "invalid register %u\n", r1);
8436 			if (r2 != 0)
8437 				err += efunc(pc, "non-zero reserved bits\n");
8438 			if (rd >= nregs)
8439 				err += efunc(pc, "invalid register %u\n", rd);
8440 			if (rd == 0)
8441 				err += efunc(pc, "cannot write to %r0\n");
8442 			break;
8443 		case DIF_OP_ULDSB:
8444 		case DIF_OP_ULDSH:
8445 		case DIF_OP_ULDSW:
8446 		case DIF_OP_ULDUB:
8447 		case DIF_OP_ULDUH:
8448 		case DIF_OP_ULDUW:
8449 		case DIF_OP_ULDX:
8450 			if (r1 >= nregs)
8451 				err += efunc(pc, "invalid register %u\n", r1);
8452 			if (r2 != 0)
8453 				err += efunc(pc, "non-zero reserved bits\n");
8454 			if (rd >= nregs)
8455 				err += efunc(pc, "invalid register %u\n", rd);
8456 			if (rd == 0)
8457 				err += efunc(pc, "cannot write to %r0\n");
8458 			break;
8459 		case DIF_OP_STB:
8460 		case DIF_OP_STH:
8461 		case DIF_OP_STW:
8462 		case DIF_OP_STX:
8463 			if (r1 >= nregs)
8464 				err += efunc(pc, "invalid register %u\n", r1);
8465 			if (r2 != 0)
8466 				err += efunc(pc, "non-zero reserved bits\n");
8467 			if (rd >= nregs)
8468 				err += efunc(pc, "invalid register %u\n", rd);
8469 			if (rd == 0)
8470 				err += efunc(pc, "cannot write to 0 address\n");
8471 			break;
8472 		case DIF_OP_CMP:
8473 		case DIF_OP_SCMP:
8474 			if (r1 >= nregs)
8475 				err += efunc(pc, "invalid register %u\n", r1);
8476 			if (r2 >= nregs)
8477 				err += efunc(pc, "invalid register %u\n", r2);
8478 			if (rd != 0)
8479 				err += efunc(pc, "non-zero reserved bits\n");
8480 			break;
8481 		case DIF_OP_TST:
8482 			if (r1 >= nregs)
8483 				err += efunc(pc, "invalid register %u\n", r1);
8484 			if (r2 != 0 || rd != 0)
8485 				err += efunc(pc, "non-zero reserved bits\n");
8486 			break;
8487 		case DIF_OP_BA:
8488 		case DIF_OP_BE:
8489 		case DIF_OP_BNE:
8490 		case DIF_OP_BG:
8491 		case DIF_OP_BGU:
8492 		case DIF_OP_BGE:
8493 		case DIF_OP_BGEU:
8494 		case DIF_OP_BL:
8495 		case DIF_OP_BLU:
8496 		case DIF_OP_BLE:
8497 		case DIF_OP_BLEU:
8498 			if (label >= dp->dtdo_len) {
8499 				err += efunc(pc, "invalid branch target %u\n",
8500 				    label);
8501 			}
8502 			if (label <= pc) {
8503 				err += efunc(pc, "backward branch to %u\n",
8504 				    label);
8505 			}
8506 			break;
8507 		case DIF_OP_RET:
8508 			if (r1 != 0 || r2 != 0)
8509 				err += efunc(pc, "non-zero reserved bits\n");
8510 			if (rd >= nregs)
8511 				err += efunc(pc, "invalid register %u\n", rd);
8512 			break;
8513 		case DIF_OP_NOP:
8514 		case DIF_OP_POPTS:
8515 		case DIF_OP_FLUSHTS:
8516 			if (r1 != 0 || r2 != 0 || rd != 0)
8517 				err += efunc(pc, "non-zero reserved bits\n");
8518 			break;
8519 		case DIF_OP_SETX:
8520 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8521 				err += efunc(pc, "invalid integer ref %u\n",
8522 				    DIF_INSTR_INTEGER(instr));
8523 			}
8524 			if (rd >= nregs)
8525 				err += efunc(pc, "invalid register %u\n", rd);
8526 			if (rd == 0)
8527 				err += efunc(pc, "cannot write to %r0\n");
8528 			break;
8529 		case DIF_OP_SETS:
8530 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8531 				err += efunc(pc, "invalid string ref %u\n",
8532 				    DIF_INSTR_STRING(instr));
8533 			}
8534 			if (rd >= nregs)
8535 				err += efunc(pc, "invalid register %u\n", rd);
8536 			if (rd == 0)
8537 				err += efunc(pc, "cannot write to %r0\n");
8538 			break;
8539 		case DIF_OP_LDGA:
8540 		case DIF_OP_LDTA:
8541 			if (r1 > DIF_VAR_ARRAY_MAX)
8542 				err += efunc(pc, "invalid array %u\n", r1);
8543 			if (r2 >= nregs)
8544 				err += efunc(pc, "invalid register %u\n", r2);
8545 			if (rd >= nregs)
8546 				err += efunc(pc, "invalid register %u\n", rd);
8547 			if (rd == 0)
8548 				err += efunc(pc, "cannot write to %r0\n");
8549 			break;
8550 		case DIF_OP_LDGS:
8551 		case DIF_OP_LDTS:
8552 		case DIF_OP_LDLS:
8553 		case DIF_OP_LDGAA:
8554 		case DIF_OP_LDTAA:
8555 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8556 				err += efunc(pc, "invalid variable %u\n", v);
8557 			if (rd >= nregs)
8558 				err += efunc(pc, "invalid register %u\n", rd);
8559 			if (rd == 0)
8560 				err += efunc(pc, "cannot write to %r0\n");
8561 			break;
8562 		case DIF_OP_STGS:
8563 		case DIF_OP_STTS:
8564 		case DIF_OP_STLS:
8565 		case DIF_OP_STGAA:
8566 		case DIF_OP_STTAA:
8567 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8568 				err += efunc(pc, "invalid variable %u\n", v);
8569 			if (rs >= nregs)
8570 				err += efunc(pc, "invalid register %u\n", rd);
8571 			break;
8572 		case DIF_OP_CALL:
8573 			if (subr > DIF_SUBR_MAX)
8574 				err += efunc(pc, "invalid subr %u\n", subr);
8575 			if (rd >= nregs)
8576 				err += efunc(pc, "invalid register %u\n", rd);
8577 			if (rd == 0)
8578 				err += efunc(pc, "cannot write to %r0\n");
8579 
8580 			if (subr == DIF_SUBR_COPYOUT ||
8581 			    subr == DIF_SUBR_COPYOUTSTR) {
8582 				dp->dtdo_destructive = 1;
8583 			}
8584 			break;
8585 		case DIF_OP_PUSHTR:
8586 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8587 				err += efunc(pc, "invalid ref type %u\n", type);
8588 			if (r2 >= nregs)
8589 				err += efunc(pc, "invalid register %u\n", r2);
8590 			if (rs >= nregs)
8591 				err += efunc(pc, "invalid register %u\n", rs);
8592 			break;
8593 		case DIF_OP_PUSHTV:
8594 			if (type != DIF_TYPE_CTF)
8595 				err += efunc(pc, "invalid val type %u\n", type);
8596 			if (r2 >= nregs)
8597 				err += efunc(pc, "invalid register %u\n", r2);
8598 			if (rs >= nregs)
8599 				err += efunc(pc, "invalid register %u\n", rs);
8600 			break;
8601 		default:
8602 			err += efunc(pc, "invalid opcode %u\n",
8603 			    DIF_INSTR_OP(instr));
8604 		}
8605 	}
8606 
8607 	if (dp->dtdo_len != 0 &&
8608 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8609 		err += efunc(dp->dtdo_len - 1,
8610 		    "expected 'ret' as last DIF instruction\n");
8611 	}
8612 
8613 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8614 		/*
8615 		 * If we're not returning by reference, the size must be either
8616 		 * 0 or the size of one of the base types.
8617 		 */
8618 		switch (dp->dtdo_rtype.dtdt_size) {
8619 		case 0:
8620 		case sizeof (uint8_t):
8621 		case sizeof (uint16_t):
8622 		case sizeof (uint32_t):
8623 		case sizeof (uint64_t):
8624 			break;
8625 
8626 		default:
8627 			err += efunc(dp->dtdo_len - 1, "bad return size");
8628 		}
8629 	}
8630 
8631 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8632 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8633 		dtrace_diftype_t *vt, *et;
8634 		uint_t id, ndx;
8635 
8636 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8637 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8638 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8639 			err += efunc(i, "unrecognized variable scope %d\n",
8640 			    v->dtdv_scope);
8641 			break;
8642 		}
8643 
8644 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8645 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8646 			err += efunc(i, "unrecognized variable type %d\n",
8647 			    v->dtdv_kind);
8648 			break;
8649 		}
8650 
8651 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8652 			err += efunc(i, "%d exceeds variable id limit\n", id);
8653 			break;
8654 		}
8655 
8656 		if (id < DIF_VAR_OTHER_UBASE)
8657 			continue;
8658 
8659 		/*
8660 		 * For user-defined variables, we need to check that this
8661 		 * definition is identical to any previous definition that we
8662 		 * encountered.
8663 		 */
8664 		ndx = id - DIF_VAR_OTHER_UBASE;
8665 
8666 		switch (v->dtdv_scope) {
8667 		case DIFV_SCOPE_GLOBAL:
8668 			if (ndx < vstate->dtvs_nglobals) {
8669 				dtrace_statvar_t *svar;
8670 
8671 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8672 					existing = &svar->dtsv_var;
8673 			}
8674 
8675 			break;
8676 
8677 		case DIFV_SCOPE_THREAD:
8678 			if (ndx < vstate->dtvs_ntlocals)
8679 				existing = &vstate->dtvs_tlocals[ndx];
8680 			break;
8681 
8682 		case DIFV_SCOPE_LOCAL:
8683 			if (ndx < vstate->dtvs_nlocals) {
8684 				dtrace_statvar_t *svar;
8685 
8686 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8687 					existing = &svar->dtsv_var;
8688 			}
8689 
8690 			break;
8691 		}
8692 
8693 		vt = &v->dtdv_type;
8694 
8695 		if (vt->dtdt_flags & DIF_TF_BYREF) {
8696 			if (vt->dtdt_size == 0) {
8697 				err += efunc(i, "zero-sized variable\n");
8698 				break;
8699 			}
8700 
8701 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8702 			    vt->dtdt_size > dtrace_global_maxsize) {
8703 				err += efunc(i, "oversized by-ref global\n");
8704 				break;
8705 			}
8706 		}
8707 
8708 		if (existing == NULL || existing->dtdv_id == 0)
8709 			continue;
8710 
8711 		ASSERT(existing->dtdv_id == v->dtdv_id);
8712 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8713 
8714 		if (existing->dtdv_kind != v->dtdv_kind)
8715 			err += efunc(i, "%d changed variable kind\n", id);
8716 
8717 		et = &existing->dtdv_type;
8718 
8719 		if (vt->dtdt_flags != et->dtdt_flags) {
8720 			err += efunc(i, "%d changed variable type flags\n", id);
8721 			break;
8722 		}
8723 
8724 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8725 			err += efunc(i, "%d changed variable type size\n", id);
8726 			break;
8727 		}
8728 	}
8729 
8730 	return (err);
8731 }
8732 
8733 /*
8734  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8735  * are much more constrained than normal DIFOs.  Specifically, they may
8736  * not:
8737  *
8738  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8739  *    miscellaneous string routines
8740  * 2. Access DTrace variables other than the args[] array, and the
8741  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8742  * 3. Have thread-local variables.
8743  * 4. Have dynamic variables.
8744  */
8745 static int
8746 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8747 {
8748 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8749 	int err = 0;
8750 	uint_t pc;
8751 
8752 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8753 		dif_instr_t instr = dp->dtdo_buf[pc];
8754 
8755 		uint_t v = DIF_INSTR_VAR(instr);
8756 		uint_t subr = DIF_INSTR_SUBR(instr);
8757 		uint_t op = DIF_INSTR_OP(instr);
8758 
8759 		switch (op) {
8760 		case DIF_OP_OR:
8761 		case DIF_OP_XOR:
8762 		case DIF_OP_AND:
8763 		case DIF_OP_SLL:
8764 		case DIF_OP_SRL:
8765 		case DIF_OP_SRA:
8766 		case DIF_OP_SUB:
8767 		case DIF_OP_ADD:
8768 		case DIF_OP_MUL:
8769 		case DIF_OP_SDIV:
8770 		case DIF_OP_UDIV:
8771 		case DIF_OP_SREM:
8772 		case DIF_OP_UREM:
8773 		case DIF_OP_COPYS:
8774 		case DIF_OP_NOT:
8775 		case DIF_OP_MOV:
8776 		case DIF_OP_RLDSB:
8777 		case DIF_OP_RLDSH:
8778 		case DIF_OP_RLDSW:
8779 		case DIF_OP_RLDUB:
8780 		case DIF_OP_RLDUH:
8781 		case DIF_OP_RLDUW:
8782 		case DIF_OP_RLDX:
8783 		case DIF_OP_ULDSB:
8784 		case DIF_OP_ULDSH:
8785 		case DIF_OP_ULDSW:
8786 		case DIF_OP_ULDUB:
8787 		case DIF_OP_ULDUH:
8788 		case DIF_OP_ULDUW:
8789 		case DIF_OP_ULDX:
8790 		case DIF_OP_STB:
8791 		case DIF_OP_STH:
8792 		case DIF_OP_STW:
8793 		case DIF_OP_STX:
8794 		case DIF_OP_ALLOCS:
8795 		case DIF_OP_CMP:
8796 		case DIF_OP_SCMP:
8797 		case DIF_OP_TST:
8798 		case DIF_OP_BA:
8799 		case DIF_OP_BE:
8800 		case DIF_OP_BNE:
8801 		case DIF_OP_BG:
8802 		case DIF_OP_BGU:
8803 		case DIF_OP_BGE:
8804 		case DIF_OP_BGEU:
8805 		case DIF_OP_BL:
8806 		case DIF_OP_BLU:
8807 		case DIF_OP_BLE:
8808 		case DIF_OP_BLEU:
8809 		case DIF_OP_RET:
8810 		case DIF_OP_NOP:
8811 		case DIF_OP_POPTS:
8812 		case DIF_OP_FLUSHTS:
8813 		case DIF_OP_SETX:
8814 		case DIF_OP_SETS:
8815 		case DIF_OP_LDGA:
8816 		case DIF_OP_LDLS:
8817 		case DIF_OP_STGS:
8818 		case DIF_OP_STLS:
8819 		case DIF_OP_PUSHTR:
8820 		case DIF_OP_PUSHTV:
8821 			break;
8822 
8823 		case DIF_OP_LDGS:
8824 			if (v >= DIF_VAR_OTHER_UBASE)
8825 				break;
8826 
8827 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8828 				break;
8829 
8830 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8831 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8832 			    v == DIF_VAR_EXECARGS ||
8833 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8834 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8835 				break;
8836 
8837 			err += efunc(pc, "illegal variable %u\n", v);
8838 			break;
8839 
8840 		case DIF_OP_LDTA:
8841 		case DIF_OP_LDTS:
8842 		case DIF_OP_LDGAA:
8843 		case DIF_OP_LDTAA:
8844 			err += efunc(pc, "illegal dynamic variable load\n");
8845 			break;
8846 
8847 		case DIF_OP_STTS:
8848 		case DIF_OP_STGAA:
8849 		case DIF_OP_STTAA:
8850 			err += efunc(pc, "illegal dynamic variable store\n");
8851 			break;
8852 
8853 		case DIF_OP_CALL:
8854 			if (subr == DIF_SUBR_ALLOCA ||
8855 			    subr == DIF_SUBR_BCOPY ||
8856 			    subr == DIF_SUBR_COPYIN ||
8857 			    subr == DIF_SUBR_COPYINTO ||
8858 			    subr == DIF_SUBR_COPYINSTR ||
8859 			    subr == DIF_SUBR_INDEX ||
8860 			    subr == DIF_SUBR_INET_NTOA ||
8861 			    subr == DIF_SUBR_INET_NTOA6 ||
8862 			    subr == DIF_SUBR_INET_NTOP ||
8863 			    subr == DIF_SUBR_LLTOSTR ||
8864 			    subr == DIF_SUBR_RINDEX ||
8865 			    subr == DIF_SUBR_STRCHR ||
8866 			    subr == DIF_SUBR_STRJOIN ||
8867 			    subr == DIF_SUBR_STRRCHR ||
8868 			    subr == DIF_SUBR_STRSTR ||
8869 			    subr == DIF_SUBR_HTONS ||
8870 			    subr == DIF_SUBR_HTONL ||
8871 			    subr == DIF_SUBR_HTONLL ||
8872 			    subr == DIF_SUBR_NTOHS ||
8873 			    subr == DIF_SUBR_NTOHL ||
8874 			    subr == DIF_SUBR_NTOHLL ||
8875 			    subr == DIF_SUBR_MEMREF ||
8876 			    subr == DIF_SUBR_TYPEREF)
8877 				break;
8878 
8879 			err += efunc(pc, "invalid subr %u\n", subr);
8880 			break;
8881 
8882 		default:
8883 			err += efunc(pc, "invalid opcode %u\n",
8884 			    DIF_INSTR_OP(instr));
8885 		}
8886 	}
8887 
8888 	return (err);
8889 }
8890 
8891 /*
8892  * Returns 1 if the expression in the DIF object can be cached on a per-thread
8893  * basis; 0 if not.
8894  */
8895 static int
8896 dtrace_difo_cacheable(dtrace_difo_t *dp)
8897 {
8898 	int i;
8899 
8900 	if (dp == NULL)
8901 		return (0);
8902 
8903 	for (i = 0; i < dp->dtdo_varlen; i++) {
8904 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8905 
8906 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
8907 			continue;
8908 
8909 		switch (v->dtdv_id) {
8910 		case DIF_VAR_CURTHREAD:
8911 		case DIF_VAR_PID:
8912 		case DIF_VAR_TID:
8913 		case DIF_VAR_EXECARGS:
8914 		case DIF_VAR_EXECNAME:
8915 		case DIF_VAR_ZONENAME:
8916 			break;
8917 
8918 		default:
8919 			return (0);
8920 		}
8921 	}
8922 
8923 	/*
8924 	 * This DIF object may be cacheable.  Now we need to look for any
8925 	 * array loading instructions, any memory loading instructions, or
8926 	 * any stores to thread-local variables.
8927 	 */
8928 	for (i = 0; i < dp->dtdo_len; i++) {
8929 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
8930 
8931 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
8932 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
8933 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
8934 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
8935 			return (0);
8936 	}
8937 
8938 	return (1);
8939 }
8940 
8941 static void
8942 dtrace_difo_hold(dtrace_difo_t *dp)
8943 {
8944 	int i;
8945 
8946 	ASSERT(MUTEX_HELD(&dtrace_lock));
8947 
8948 	dp->dtdo_refcnt++;
8949 	ASSERT(dp->dtdo_refcnt != 0);
8950 
8951 	/*
8952 	 * We need to check this DIF object for references to the variable
8953 	 * DIF_VAR_VTIMESTAMP.
8954 	 */
8955 	for (i = 0; i < dp->dtdo_varlen; i++) {
8956 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
8957 
8958 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
8959 			continue;
8960 
8961 		if (dtrace_vtime_references++ == 0)
8962 			dtrace_vtime_enable();
8963 	}
8964 }
8965 
8966 /*
8967  * This routine calculates the dynamic variable chunksize for a given DIF
8968  * object.  The calculation is not fool-proof, and can probably be tricked by
8969  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
8970  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
8971  * if a dynamic variable size exceeds the chunksize.
8972  */
8973 static void
8974 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
8975 {
8976 	uint64_t sval = 0;
8977 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
8978 	const dif_instr_t *text = dp->dtdo_buf;
8979 	uint_t pc, srd = 0;
8980 	uint_t ttop = 0;
8981 	size_t size, ksize;
8982 	uint_t id, i;
8983 
8984 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8985 		dif_instr_t instr = text[pc];
8986 		uint_t op = DIF_INSTR_OP(instr);
8987 		uint_t rd = DIF_INSTR_RD(instr);
8988 		uint_t r1 = DIF_INSTR_R1(instr);
8989 		uint_t nkeys = 0;
8990 		uchar_t scope = 0;
8991 
8992 		dtrace_key_t *key = tupregs;
8993 
8994 		switch (op) {
8995 		case DIF_OP_SETX:
8996 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
8997 			srd = rd;
8998 			continue;
8999 
9000 		case DIF_OP_STTS:
9001 			key = &tupregs[DIF_DTR_NREGS];
9002 			key[0].dttk_size = 0;
9003 			key[1].dttk_size = 0;
9004 			nkeys = 2;
9005 			scope = DIFV_SCOPE_THREAD;
9006 			break;
9007 
9008 		case DIF_OP_STGAA:
9009 		case DIF_OP_STTAA:
9010 			nkeys = ttop;
9011 
9012 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9013 				key[nkeys++].dttk_size = 0;
9014 
9015 			key[nkeys++].dttk_size = 0;
9016 
9017 			if (op == DIF_OP_STTAA) {
9018 				scope = DIFV_SCOPE_THREAD;
9019 			} else {
9020 				scope = DIFV_SCOPE_GLOBAL;
9021 			}
9022 
9023 			break;
9024 
9025 		case DIF_OP_PUSHTR:
9026 			if (ttop == DIF_DTR_NREGS)
9027 				return;
9028 
9029 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9030 				/*
9031 				 * If the register for the size of the "pushtr"
9032 				 * is %r0 (or the value is 0) and the type is
9033 				 * a string, we'll use the system-wide default
9034 				 * string size.
9035 				 */
9036 				tupregs[ttop++].dttk_size =
9037 				    dtrace_strsize_default;
9038 			} else {
9039 				if (srd == 0)
9040 					return;
9041 
9042 				tupregs[ttop++].dttk_size = sval;
9043 			}
9044 
9045 			break;
9046 
9047 		case DIF_OP_PUSHTV:
9048 			if (ttop == DIF_DTR_NREGS)
9049 				return;
9050 
9051 			tupregs[ttop++].dttk_size = 0;
9052 			break;
9053 
9054 		case DIF_OP_FLUSHTS:
9055 			ttop = 0;
9056 			break;
9057 
9058 		case DIF_OP_POPTS:
9059 			if (ttop != 0)
9060 				ttop--;
9061 			break;
9062 		}
9063 
9064 		sval = 0;
9065 		srd = 0;
9066 
9067 		if (nkeys == 0)
9068 			continue;
9069 
9070 		/*
9071 		 * We have a dynamic variable allocation; calculate its size.
9072 		 */
9073 		for (ksize = 0, i = 0; i < nkeys; i++)
9074 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9075 
9076 		size = sizeof (dtrace_dynvar_t);
9077 		size += sizeof (dtrace_key_t) * (nkeys - 1);
9078 		size += ksize;
9079 
9080 		/*
9081 		 * Now we need to determine the size of the stored data.
9082 		 */
9083 		id = DIF_INSTR_VAR(instr);
9084 
9085 		for (i = 0; i < dp->dtdo_varlen; i++) {
9086 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9087 
9088 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9089 				size += v->dtdv_type.dtdt_size;
9090 				break;
9091 			}
9092 		}
9093 
9094 		if (i == dp->dtdo_varlen)
9095 			return;
9096 
9097 		/*
9098 		 * We have the size.  If this is larger than the chunk size
9099 		 * for our dynamic variable state, reset the chunk size.
9100 		 */
9101 		size = P2ROUNDUP(size, sizeof (uint64_t));
9102 
9103 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9104 			vstate->dtvs_dynvars.dtds_chunksize = size;
9105 	}
9106 }
9107 
9108 static void
9109 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9110 {
9111 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9112 	uint_t id;
9113 
9114 	ASSERT(MUTEX_HELD(&dtrace_lock));
9115 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9116 
9117 	for (i = 0; i < dp->dtdo_varlen; i++) {
9118 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9119 		dtrace_statvar_t *svar, ***svarp = NULL;
9120 		size_t dsize = 0;
9121 		uint8_t scope = v->dtdv_scope;
9122 		int *np = NULL;
9123 
9124 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9125 			continue;
9126 
9127 		id -= DIF_VAR_OTHER_UBASE;
9128 
9129 		switch (scope) {
9130 		case DIFV_SCOPE_THREAD:
9131 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9132 				dtrace_difv_t *tlocals;
9133 
9134 				if ((ntlocals = (otlocals << 1)) == 0)
9135 					ntlocals = 1;
9136 
9137 				osz = otlocals * sizeof (dtrace_difv_t);
9138 				nsz = ntlocals * sizeof (dtrace_difv_t);
9139 
9140 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9141 
9142 				if (osz != 0) {
9143 					bcopy(vstate->dtvs_tlocals,
9144 					    tlocals, osz);
9145 					kmem_free(vstate->dtvs_tlocals, osz);
9146 				}
9147 
9148 				vstate->dtvs_tlocals = tlocals;
9149 				vstate->dtvs_ntlocals = ntlocals;
9150 			}
9151 
9152 			vstate->dtvs_tlocals[id] = *v;
9153 			continue;
9154 
9155 		case DIFV_SCOPE_LOCAL:
9156 			np = &vstate->dtvs_nlocals;
9157 			svarp = &vstate->dtvs_locals;
9158 
9159 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9160 				dsize = NCPU * (v->dtdv_type.dtdt_size +
9161 				    sizeof (uint64_t));
9162 			else
9163 				dsize = NCPU * sizeof (uint64_t);
9164 
9165 			break;
9166 
9167 		case DIFV_SCOPE_GLOBAL:
9168 			np = &vstate->dtvs_nglobals;
9169 			svarp = &vstate->dtvs_globals;
9170 
9171 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9172 				dsize = v->dtdv_type.dtdt_size +
9173 				    sizeof (uint64_t);
9174 
9175 			break;
9176 
9177 		default:
9178 			ASSERT(0);
9179 		}
9180 
9181 		while (id >= (oldsvars = *np)) {
9182 			dtrace_statvar_t **statics;
9183 			int newsvars, oldsize, newsize;
9184 
9185 			if ((newsvars = (oldsvars << 1)) == 0)
9186 				newsvars = 1;
9187 
9188 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9189 			newsize = newsvars * sizeof (dtrace_statvar_t *);
9190 
9191 			statics = kmem_zalloc(newsize, KM_SLEEP);
9192 
9193 			if (oldsize != 0) {
9194 				bcopy(*svarp, statics, oldsize);
9195 				kmem_free(*svarp, oldsize);
9196 			}
9197 
9198 			*svarp = statics;
9199 			*np = newsvars;
9200 		}
9201 
9202 		if ((svar = (*svarp)[id]) == NULL) {
9203 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9204 			svar->dtsv_var = *v;
9205 
9206 			if ((svar->dtsv_size = dsize) != 0) {
9207 				svar->dtsv_data = (uint64_t)(uintptr_t)
9208 				    kmem_zalloc(dsize, KM_SLEEP);
9209 			}
9210 
9211 			(*svarp)[id] = svar;
9212 		}
9213 
9214 		svar->dtsv_refcnt++;
9215 	}
9216 
9217 	dtrace_difo_chunksize(dp, vstate);
9218 	dtrace_difo_hold(dp);
9219 }
9220 
9221 static dtrace_difo_t *
9222 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9223 {
9224 	dtrace_difo_t *new;
9225 	size_t sz;
9226 
9227 	ASSERT(dp->dtdo_buf != NULL);
9228 	ASSERT(dp->dtdo_refcnt != 0);
9229 
9230 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9231 
9232 	ASSERT(dp->dtdo_buf != NULL);
9233 	sz = dp->dtdo_len * sizeof (dif_instr_t);
9234 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9235 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9236 	new->dtdo_len = dp->dtdo_len;
9237 
9238 	if (dp->dtdo_strtab != NULL) {
9239 		ASSERT(dp->dtdo_strlen != 0);
9240 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9241 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9242 		new->dtdo_strlen = dp->dtdo_strlen;
9243 	}
9244 
9245 	if (dp->dtdo_inttab != NULL) {
9246 		ASSERT(dp->dtdo_intlen != 0);
9247 		sz = dp->dtdo_intlen * sizeof (uint64_t);
9248 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9249 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9250 		new->dtdo_intlen = dp->dtdo_intlen;
9251 	}
9252 
9253 	if (dp->dtdo_vartab != NULL) {
9254 		ASSERT(dp->dtdo_varlen != 0);
9255 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9256 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9257 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9258 		new->dtdo_varlen = dp->dtdo_varlen;
9259 	}
9260 
9261 	dtrace_difo_init(new, vstate);
9262 	return (new);
9263 }
9264 
9265 static void
9266 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9267 {
9268 	int i;
9269 
9270 	ASSERT(dp->dtdo_refcnt == 0);
9271 
9272 	for (i = 0; i < dp->dtdo_varlen; i++) {
9273 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9274 		dtrace_statvar_t *svar, **svarp = NULL;
9275 		uint_t id;
9276 		uint8_t scope = v->dtdv_scope;
9277 		int *np = NULL;
9278 
9279 		switch (scope) {
9280 		case DIFV_SCOPE_THREAD:
9281 			continue;
9282 
9283 		case DIFV_SCOPE_LOCAL:
9284 			np = &vstate->dtvs_nlocals;
9285 			svarp = vstate->dtvs_locals;
9286 			break;
9287 
9288 		case DIFV_SCOPE_GLOBAL:
9289 			np = &vstate->dtvs_nglobals;
9290 			svarp = vstate->dtvs_globals;
9291 			break;
9292 
9293 		default:
9294 			ASSERT(0);
9295 		}
9296 
9297 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9298 			continue;
9299 
9300 		id -= DIF_VAR_OTHER_UBASE;
9301 		ASSERT(id < *np);
9302 
9303 		svar = svarp[id];
9304 		ASSERT(svar != NULL);
9305 		ASSERT(svar->dtsv_refcnt > 0);
9306 
9307 		if (--svar->dtsv_refcnt > 0)
9308 			continue;
9309 
9310 		if (svar->dtsv_size != 0) {
9311 			ASSERT(svar->dtsv_data != 0);
9312 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9313 			    svar->dtsv_size);
9314 		}
9315 
9316 		kmem_free(svar, sizeof (dtrace_statvar_t));
9317 		svarp[id] = NULL;
9318 	}
9319 
9320 	if (dp->dtdo_buf != NULL)
9321 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9322 	if (dp->dtdo_inttab != NULL)
9323 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9324 	if (dp->dtdo_strtab != NULL)
9325 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9326 	if (dp->dtdo_vartab != NULL)
9327 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9328 
9329 	kmem_free(dp, sizeof (dtrace_difo_t));
9330 }
9331 
9332 static void
9333 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9334 {
9335 	int i;
9336 
9337 	ASSERT(MUTEX_HELD(&dtrace_lock));
9338 	ASSERT(dp->dtdo_refcnt != 0);
9339 
9340 	for (i = 0; i < dp->dtdo_varlen; i++) {
9341 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9342 
9343 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9344 			continue;
9345 
9346 		ASSERT(dtrace_vtime_references > 0);
9347 		if (--dtrace_vtime_references == 0)
9348 			dtrace_vtime_disable();
9349 	}
9350 
9351 	if (--dp->dtdo_refcnt == 0)
9352 		dtrace_difo_destroy(dp, vstate);
9353 }
9354 
9355 /*
9356  * DTrace Format Functions
9357  */
9358 static uint16_t
9359 dtrace_format_add(dtrace_state_t *state, char *str)
9360 {
9361 	char *fmt, **new;
9362 	uint16_t ndx, len = strlen(str) + 1;
9363 
9364 	fmt = kmem_zalloc(len, KM_SLEEP);
9365 	bcopy(str, fmt, len);
9366 
9367 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9368 		if (state->dts_formats[ndx] == NULL) {
9369 			state->dts_formats[ndx] = fmt;
9370 			return (ndx + 1);
9371 		}
9372 	}
9373 
9374 	if (state->dts_nformats == USHRT_MAX) {
9375 		/*
9376 		 * This is only likely if a denial-of-service attack is being
9377 		 * attempted.  As such, it's okay to fail silently here.
9378 		 */
9379 		kmem_free(fmt, len);
9380 		return (0);
9381 	}
9382 
9383 	/*
9384 	 * For simplicity, we always resize the formats array to be exactly the
9385 	 * number of formats.
9386 	 */
9387 	ndx = state->dts_nformats++;
9388 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9389 
9390 	if (state->dts_formats != NULL) {
9391 		ASSERT(ndx != 0);
9392 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9393 		kmem_free(state->dts_formats, ndx * sizeof (char *));
9394 	}
9395 
9396 	state->dts_formats = new;
9397 	state->dts_formats[ndx] = fmt;
9398 
9399 	return (ndx + 1);
9400 }
9401 
9402 static void
9403 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9404 {
9405 	char *fmt;
9406 
9407 	ASSERT(state->dts_formats != NULL);
9408 	ASSERT(format <= state->dts_nformats);
9409 	ASSERT(state->dts_formats[format - 1] != NULL);
9410 
9411 	fmt = state->dts_formats[format - 1];
9412 	kmem_free(fmt, strlen(fmt) + 1);
9413 	state->dts_formats[format - 1] = NULL;
9414 }
9415 
9416 static void
9417 dtrace_format_destroy(dtrace_state_t *state)
9418 {
9419 	int i;
9420 
9421 	if (state->dts_nformats == 0) {
9422 		ASSERT(state->dts_formats == NULL);
9423 		return;
9424 	}
9425 
9426 	ASSERT(state->dts_formats != NULL);
9427 
9428 	for (i = 0; i < state->dts_nformats; i++) {
9429 		char *fmt = state->dts_formats[i];
9430 
9431 		if (fmt == NULL)
9432 			continue;
9433 
9434 		kmem_free(fmt, strlen(fmt) + 1);
9435 	}
9436 
9437 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9438 	state->dts_nformats = 0;
9439 	state->dts_formats = NULL;
9440 }
9441 
9442 /*
9443  * DTrace Predicate Functions
9444  */
9445 static dtrace_predicate_t *
9446 dtrace_predicate_create(dtrace_difo_t *dp)
9447 {
9448 	dtrace_predicate_t *pred;
9449 
9450 	ASSERT(MUTEX_HELD(&dtrace_lock));
9451 	ASSERT(dp->dtdo_refcnt != 0);
9452 
9453 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9454 	pred->dtp_difo = dp;
9455 	pred->dtp_refcnt = 1;
9456 
9457 	if (!dtrace_difo_cacheable(dp))
9458 		return (pred);
9459 
9460 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9461 		/*
9462 		 * This is only theoretically possible -- we have had 2^32
9463 		 * cacheable predicates on this machine.  We cannot allow any
9464 		 * more predicates to become cacheable:  as unlikely as it is,
9465 		 * there may be a thread caching a (now stale) predicate cache
9466 		 * ID. (N.B.: the temptation is being successfully resisted to
9467 		 * have this cmn_err() "Holy shit -- we executed this code!")
9468 		 */
9469 		return (pred);
9470 	}
9471 
9472 	pred->dtp_cacheid = dtrace_predcache_id++;
9473 
9474 	return (pred);
9475 }
9476 
9477 static void
9478 dtrace_predicate_hold(dtrace_predicate_t *pred)
9479 {
9480 	ASSERT(MUTEX_HELD(&dtrace_lock));
9481 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9482 	ASSERT(pred->dtp_refcnt > 0);
9483 
9484 	pred->dtp_refcnt++;
9485 }
9486 
9487 static void
9488 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9489 {
9490 	dtrace_difo_t *dp = pred->dtp_difo;
9491 
9492 	ASSERT(MUTEX_HELD(&dtrace_lock));
9493 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9494 	ASSERT(pred->dtp_refcnt > 0);
9495 
9496 	if (--pred->dtp_refcnt == 0) {
9497 		dtrace_difo_release(pred->dtp_difo, vstate);
9498 		kmem_free(pred, sizeof (dtrace_predicate_t));
9499 	}
9500 }
9501 
9502 /*
9503  * DTrace Action Description Functions
9504  */
9505 static dtrace_actdesc_t *
9506 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9507     uint64_t uarg, uint64_t arg)
9508 {
9509 	dtrace_actdesc_t *act;
9510 
9511 #if defined(sun)
9512 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9513 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9514 #endif
9515 
9516 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9517 	act->dtad_kind = kind;
9518 	act->dtad_ntuple = ntuple;
9519 	act->dtad_uarg = uarg;
9520 	act->dtad_arg = arg;
9521 	act->dtad_refcnt = 1;
9522 
9523 	return (act);
9524 }
9525 
9526 static void
9527 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9528 {
9529 	ASSERT(act->dtad_refcnt >= 1);
9530 	act->dtad_refcnt++;
9531 }
9532 
9533 static void
9534 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9535 {
9536 	dtrace_actkind_t kind = act->dtad_kind;
9537 	dtrace_difo_t *dp;
9538 
9539 	ASSERT(act->dtad_refcnt >= 1);
9540 
9541 	if (--act->dtad_refcnt != 0)
9542 		return;
9543 
9544 	if ((dp = act->dtad_difo) != NULL)
9545 		dtrace_difo_release(dp, vstate);
9546 
9547 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9548 		char *str = (char *)(uintptr_t)act->dtad_arg;
9549 
9550 #if defined(sun)
9551 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9552 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9553 #endif
9554 
9555 		if (str != NULL)
9556 			kmem_free(str, strlen(str) + 1);
9557 	}
9558 
9559 	kmem_free(act, sizeof (dtrace_actdesc_t));
9560 }
9561 
9562 /*
9563  * DTrace ECB Functions
9564  */
9565 static dtrace_ecb_t *
9566 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9567 {
9568 	dtrace_ecb_t *ecb;
9569 	dtrace_epid_t epid;
9570 
9571 	ASSERT(MUTEX_HELD(&dtrace_lock));
9572 
9573 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9574 	ecb->dte_predicate = NULL;
9575 	ecb->dte_probe = probe;
9576 
9577 	/*
9578 	 * The default size is the size of the default action: recording
9579 	 * the epid.
9580 	 */
9581 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9582 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9583 
9584 	epid = state->dts_epid++;
9585 
9586 	if (epid - 1 >= state->dts_necbs) {
9587 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9588 		int necbs = state->dts_necbs << 1;
9589 
9590 		ASSERT(epid == state->dts_necbs + 1);
9591 
9592 		if (necbs == 0) {
9593 			ASSERT(oecbs == NULL);
9594 			necbs = 1;
9595 		}
9596 
9597 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9598 
9599 		if (oecbs != NULL)
9600 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9601 
9602 		dtrace_membar_producer();
9603 		state->dts_ecbs = ecbs;
9604 
9605 		if (oecbs != NULL) {
9606 			/*
9607 			 * If this state is active, we must dtrace_sync()
9608 			 * before we can free the old dts_ecbs array:  we're
9609 			 * coming in hot, and there may be active ring
9610 			 * buffer processing (which indexes into the dts_ecbs
9611 			 * array) on another CPU.
9612 			 */
9613 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9614 				dtrace_sync();
9615 
9616 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9617 		}
9618 
9619 		dtrace_membar_producer();
9620 		state->dts_necbs = necbs;
9621 	}
9622 
9623 	ecb->dte_state = state;
9624 
9625 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9626 	dtrace_membar_producer();
9627 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9628 
9629 	return (ecb);
9630 }
9631 
9632 static void
9633 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9634 {
9635 	dtrace_probe_t *probe = ecb->dte_probe;
9636 
9637 	ASSERT(MUTEX_HELD(&cpu_lock));
9638 	ASSERT(MUTEX_HELD(&dtrace_lock));
9639 	ASSERT(ecb->dte_next == NULL);
9640 
9641 	if (probe == NULL) {
9642 		/*
9643 		 * This is the NULL probe -- there's nothing to do.
9644 		 */
9645 		return;
9646 	}
9647 
9648 	if (probe->dtpr_ecb == NULL) {
9649 		dtrace_provider_t *prov = probe->dtpr_provider;
9650 
9651 		/*
9652 		 * We're the first ECB on this probe.
9653 		 */
9654 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9655 
9656 		if (ecb->dte_predicate != NULL)
9657 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9658 
9659 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9660 		    probe->dtpr_id, probe->dtpr_arg);
9661 	} else {
9662 		/*
9663 		 * This probe is already active.  Swing the last pointer to
9664 		 * point to the new ECB, and issue a dtrace_sync() to assure
9665 		 * that all CPUs have seen the change.
9666 		 */
9667 		ASSERT(probe->dtpr_ecb_last != NULL);
9668 		probe->dtpr_ecb_last->dte_next = ecb;
9669 		probe->dtpr_ecb_last = ecb;
9670 		probe->dtpr_predcache = 0;
9671 
9672 		dtrace_sync();
9673 	}
9674 }
9675 
9676 static void
9677 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9678 {
9679 	uint32_t maxalign = sizeof (dtrace_epid_t);
9680 	uint32_t align = sizeof (uint8_t), offs, diff;
9681 	dtrace_action_t *act;
9682 	int wastuple = 0;
9683 	uint32_t aggbase = UINT32_MAX;
9684 	dtrace_state_t *state = ecb->dte_state;
9685 
9686 	/*
9687 	 * If we record anything, we always record the epid.  (And we always
9688 	 * record it first.)
9689 	 */
9690 	offs = sizeof (dtrace_epid_t);
9691 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9692 
9693 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9694 		dtrace_recdesc_t *rec = &act->dta_rec;
9695 
9696 		if ((align = rec->dtrd_alignment) > maxalign)
9697 			maxalign = align;
9698 
9699 		if (!wastuple && act->dta_intuple) {
9700 			/*
9701 			 * This is the first record in a tuple.  Align the
9702 			 * offset to be at offset 4 in an 8-byte aligned
9703 			 * block.
9704 			 */
9705 			diff = offs + sizeof (dtrace_aggid_t);
9706 
9707 			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9708 				offs += sizeof (uint64_t) - diff;
9709 
9710 			aggbase = offs - sizeof (dtrace_aggid_t);
9711 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9712 		}
9713 
9714 		/*LINTED*/
9715 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9716 			/*
9717 			 * The current offset is not properly aligned; align it.
9718 			 */
9719 			offs += align - diff;
9720 		}
9721 
9722 		rec->dtrd_offset = offs;
9723 
9724 		if (offs + rec->dtrd_size > ecb->dte_needed) {
9725 			ecb->dte_needed = offs + rec->dtrd_size;
9726 
9727 			if (ecb->dte_needed > state->dts_needed)
9728 				state->dts_needed = ecb->dte_needed;
9729 		}
9730 
9731 		if (DTRACEACT_ISAGG(act->dta_kind)) {
9732 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9733 			dtrace_action_t *first = agg->dtag_first, *prev;
9734 
9735 			ASSERT(rec->dtrd_size != 0 && first != NULL);
9736 			ASSERT(wastuple);
9737 			ASSERT(aggbase != UINT32_MAX);
9738 
9739 			agg->dtag_base = aggbase;
9740 
9741 			while ((prev = first->dta_prev) != NULL &&
9742 			    DTRACEACT_ISAGG(prev->dta_kind)) {
9743 				agg = (dtrace_aggregation_t *)prev;
9744 				first = agg->dtag_first;
9745 			}
9746 
9747 			if (prev != NULL) {
9748 				offs = prev->dta_rec.dtrd_offset +
9749 				    prev->dta_rec.dtrd_size;
9750 			} else {
9751 				offs = sizeof (dtrace_epid_t);
9752 			}
9753 			wastuple = 0;
9754 		} else {
9755 			if (!act->dta_intuple)
9756 				ecb->dte_size = offs + rec->dtrd_size;
9757 
9758 			offs += rec->dtrd_size;
9759 		}
9760 
9761 		wastuple = act->dta_intuple;
9762 	}
9763 
9764 	if ((act = ecb->dte_action) != NULL &&
9765 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9766 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9767 		/*
9768 		 * If the size is still sizeof (dtrace_epid_t), then all
9769 		 * actions store no data; set the size to 0.
9770 		 */
9771 		ecb->dte_alignment = maxalign;
9772 		ecb->dte_size = 0;
9773 
9774 		/*
9775 		 * If the needed space is still sizeof (dtrace_epid_t), then
9776 		 * all actions need no additional space; set the needed
9777 		 * size to 0.
9778 		 */
9779 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9780 			ecb->dte_needed = 0;
9781 
9782 		return;
9783 	}
9784 
9785 	/*
9786 	 * Set our alignment, and make sure that the dte_size and dte_needed
9787 	 * are aligned to the size of an EPID.
9788 	 */
9789 	ecb->dte_alignment = maxalign;
9790 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9791 	    ~(sizeof (dtrace_epid_t) - 1);
9792 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9793 	    ~(sizeof (dtrace_epid_t) - 1);
9794 	ASSERT(ecb->dte_size <= ecb->dte_needed);
9795 }
9796 
9797 static dtrace_action_t *
9798 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9799 {
9800 	dtrace_aggregation_t *agg;
9801 	size_t size = sizeof (uint64_t);
9802 	int ntuple = desc->dtad_ntuple;
9803 	dtrace_action_t *act;
9804 	dtrace_recdesc_t *frec;
9805 	dtrace_aggid_t aggid;
9806 	dtrace_state_t *state = ecb->dte_state;
9807 
9808 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9809 	agg->dtag_ecb = ecb;
9810 
9811 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9812 
9813 	switch (desc->dtad_kind) {
9814 	case DTRACEAGG_MIN:
9815 		agg->dtag_initial = INT64_MAX;
9816 		agg->dtag_aggregate = dtrace_aggregate_min;
9817 		break;
9818 
9819 	case DTRACEAGG_MAX:
9820 		agg->dtag_initial = INT64_MIN;
9821 		agg->dtag_aggregate = dtrace_aggregate_max;
9822 		break;
9823 
9824 	case DTRACEAGG_COUNT:
9825 		agg->dtag_aggregate = dtrace_aggregate_count;
9826 		break;
9827 
9828 	case DTRACEAGG_QUANTIZE:
9829 		agg->dtag_aggregate = dtrace_aggregate_quantize;
9830 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9831 		    sizeof (uint64_t);
9832 		break;
9833 
9834 	case DTRACEAGG_LQUANTIZE: {
9835 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9836 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9837 
9838 		agg->dtag_initial = desc->dtad_arg;
9839 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9840 
9841 		if (step == 0 || levels == 0)
9842 			goto err;
9843 
9844 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9845 		break;
9846 	}
9847 
9848 	case DTRACEAGG_AVG:
9849 		agg->dtag_aggregate = dtrace_aggregate_avg;
9850 		size = sizeof (uint64_t) * 2;
9851 		break;
9852 
9853 	case DTRACEAGG_STDDEV:
9854 		agg->dtag_aggregate = dtrace_aggregate_stddev;
9855 		size = sizeof (uint64_t) * 4;
9856 		break;
9857 
9858 	case DTRACEAGG_SUM:
9859 		agg->dtag_aggregate = dtrace_aggregate_sum;
9860 		break;
9861 
9862 	default:
9863 		goto err;
9864 	}
9865 
9866 	agg->dtag_action.dta_rec.dtrd_size = size;
9867 
9868 	if (ntuple == 0)
9869 		goto err;
9870 
9871 	/*
9872 	 * We must make sure that we have enough actions for the n-tuple.
9873 	 */
9874 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9875 		if (DTRACEACT_ISAGG(act->dta_kind))
9876 			break;
9877 
9878 		if (--ntuple == 0) {
9879 			/*
9880 			 * This is the action with which our n-tuple begins.
9881 			 */
9882 			agg->dtag_first = act;
9883 			goto success;
9884 		}
9885 	}
9886 
9887 	/*
9888 	 * This n-tuple is short by ntuple elements.  Return failure.
9889 	 */
9890 	ASSERT(ntuple != 0);
9891 err:
9892 	kmem_free(agg, sizeof (dtrace_aggregation_t));
9893 	return (NULL);
9894 
9895 success:
9896 	/*
9897 	 * If the last action in the tuple has a size of zero, it's actually
9898 	 * an expression argument for the aggregating action.
9899 	 */
9900 	ASSERT(ecb->dte_action_last != NULL);
9901 	act = ecb->dte_action_last;
9902 
9903 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
9904 		ASSERT(act->dta_difo != NULL);
9905 
9906 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
9907 			agg->dtag_hasarg = 1;
9908 	}
9909 
9910 	/*
9911 	 * We need to allocate an id for this aggregation.
9912 	 */
9913 #if defined(sun)
9914 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
9915 	    VM_BESTFIT | VM_SLEEP);
9916 #else
9917 	aggid = alloc_unr(state->dts_aggid_arena);
9918 #endif
9919 
9920 	if (aggid - 1 >= state->dts_naggregations) {
9921 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
9922 		dtrace_aggregation_t **aggs;
9923 		int naggs = state->dts_naggregations << 1;
9924 		int onaggs = state->dts_naggregations;
9925 
9926 		ASSERT(aggid == state->dts_naggregations + 1);
9927 
9928 		if (naggs == 0) {
9929 			ASSERT(oaggs == NULL);
9930 			naggs = 1;
9931 		}
9932 
9933 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
9934 
9935 		if (oaggs != NULL) {
9936 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
9937 			kmem_free(oaggs, onaggs * sizeof (*aggs));
9938 		}
9939 
9940 		state->dts_aggregations = aggs;
9941 		state->dts_naggregations = naggs;
9942 	}
9943 
9944 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
9945 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
9946 
9947 	frec = &agg->dtag_first->dta_rec;
9948 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
9949 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
9950 
9951 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
9952 		ASSERT(!act->dta_intuple);
9953 		act->dta_intuple = 1;
9954 	}
9955 
9956 	return (&agg->dtag_action);
9957 }
9958 
9959 static void
9960 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
9961 {
9962 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9963 	dtrace_state_t *state = ecb->dte_state;
9964 	dtrace_aggid_t aggid = agg->dtag_id;
9965 
9966 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
9967 #if defined(sun)
9968 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
9969 #else
9970 	free_unr(state->dts_aggid_arena, aggid);
9971 #endif
9972 
9973 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
9974 	state->dts_aggregations[aggid - 1] = NULL;
9975 
9976 	kmem_free(agg, sizeof (dtrace_aggregation_t));
9977 }
9978 
9979 static int
9980 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9981 {
9982 	dtrace_action_t *action, *last;
9983 	dtrace_difo_t *dp = desc->dtad_difo;
9984 	uint32_t size = 0, align = sizeof (uint8_t), mask;
9985 	uint16_t format = 0;
9986 	dtrace_recdesc_t *rec;
9987 	dtrace_state_t *state = ecb->dte_state;
9988 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
9989 	uint64_t arg = desc->dtad_arg;
9990 
9991 	ASSERT(MUTEX_HELD(&dtrace_lock));
9992 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
9993 
9994 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
9995 		/*
9996 		 * If this is an aggregating action, there must be neither
9997 		 * a speculate nor a commit on the action chain.
9998 		 */
9999 		dtrace_action_t *act;
10000 
10001 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10002 			if (act->dta_kind == DTRACEACT_COMMIT)
10003 				return (EINVAL);
10004 
10005 			if (act->dta_kind == DTRACEACT_SPECULATE)
10006 				return (EINVAL);
10007 		}
10008 
10009 		action = dtrace_ecb_aggregation_create(ecb, desc);
10010 
10011 		if (action == NULL)
10012 			return (EINVAL);
10013 	} else {
10014 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10015 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10016 		    dp != NULL && dp->dtdo_destructive)) {
10017 			state->dts_destructive = 1;
10018 		}
10019 
10020 		switch (desc->dtad_kind) {
10021 		case DTRACEACT_PRINTF:
10022 		case DTRACEACT_PRINTA:
10023 		case DTRACEACT_SYSTEM:
10024 		case DTRACEACT_FREOPEN:
10025 			/*
10026 			 * We know that our arg is a string -- turn it into a
10027 			 * format.
10028 			 */
10029 			if (arg == 0) {
10030 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
10031 				format = 0;
10032 			} else {
10033 				ASSERT(arg != 0);
10034 #if defined(sun)
10035 				ASSERT(arg > KERNELBASE);
10036 #endif
10037 				format = dtrace_format_add(state,
10038 				    (char *)(uintptr_t)arg);
10039 			}
10040 
10041 			/*FALLTHROUGH*/
10042 		case DTRACEACT_LIBACT:
10043 		case DTRACEACT_DIFEXPR:
10044 			if (dp == NULL)
10045 				return (EINVAL);
10046 
10047 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10048 				break;
10049 
10050 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10051 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10052 					return (EINVAL);
10053 
10054 				size = opt[DTRACEOPT_STRSIZE];
10055 			}
10056 
10057 			break;
10058 
10059 		case DTRACEACT_STACK:
10060 			if ((nframes = arg) == 0) {
10061 				nframes = opt[DTRACEOPT_STACKFRAMES];
10062 				ASSERT(nframes > 0);
10063 				arg = nframes;
10064 			}
10065 
10066 			size = nframes * sizeof (pc_t);
10067 			break;
10068 
10069 		case DTRACEACT_JSTACK:
10070 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10071 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10072 
10073 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10074 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10075 
10076 			arg = DTRACE_USTACK_ARG(nframes, strsize);
10077 
10078 			/*FALLTHROUGH*/
10079 		case DTRACEACT_USTACK:
10080 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10081 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10082 				strsize = DTRACE_USTACK_STRSIZE(arg);
10083 				nframes = opt[DTRACEOPT_USTACKFRAMES];
10084 				ASSERT(nframes > 0);
10085 				arg = DTRACE_USTACK_ARG(nframes, strsize);
10086 			}
10087 
10088 			/*
10089 			 * Save a slot for the pid.
10090 			 */
10091 			size = (nframes + 1) * sizeof (uint64_t);
10092 			size += DTRACE_USTACK_STRSIZE(arg);
10093 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10094 
10095 			break;
10096 
10097 		case DTRACEACT_SYM:
10098 		case DTRACEACT_MOD:
10099 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10100 			    sizeof (uint64_t)) ||
10101 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10102 				return (EINVAL);
10103 			break;
10104 
10105 		case DTRACEACT_USYM:
10106 		case DTRACEACT_UMOD:
10107 		case DTRACEACT_UADDR:
10108 			if (dp == NULL ||
10109 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10110 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10111 				return (EINVAL);
10112 
10113 			/*
10114 			 * We have a slot for the pid, plus a slot for the
10115 			 * argument.  To keep things simple (aligned with
10116 			 * bitness-neutral sizing), we store each as a 64-bit
10117 			 * quantity.
10118 			 */
10119 			size = 2 * sizeof (uint64_t);
10120 			break;
10121 
10122 		case DTRACEACT_STOP:
10123 		case DTRACEACT_BREAKPOINT:
10124 		case DTRACEACT_PANIC:
10125 			break;
10126 
10127 		case DTRACEACT_CHILL:
10128 		case DTRACEACT_DISCARD:
10129 		case DTRACEACT_RAISE:
10130 			if (dp == NULL)
10131 				return (EINVAL);
10132 			break;
10133 
10134 		case DTRACEACT_EXIT:
10135 			if (dp == NULL ||
10136 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10137 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10138 				return (EINVAL);
10139 			break;
10140 
10141 		case DTRACEACT_SPECULATE:
10142 			if (ecb->dte_size > sizeof (dtrace_epid_t))
10143 				return (EINVAL);
10144 
10145 			if (dp == NULL)
10146 				return (EINVAL);
10147 
10148 			state->dts_speculates = 1;
10149 			break;
10150 
10151 		case DTRACEACT_PRINTM:
10152 		    	size = dp->dtdo_rtype.dtdt_size;
10153 			break;
10154 
10155 		case DTRACEACT_PRINTT:
10156 		    	size = dp->dtdo_rtype.dtdt_size;
10157 			break;
10158 
10159 		case DTRACEACT_COMMIT: {
10160 			dtrace_action_t *act = ecb->dte_action;
10161 
10162 			for (; act != NULL; act = act->dta_next) {
10163 				if (act->dta_kind == DTRACEACT_COMMIT)
10164 					return (EINVAL);
10165 			}
10166 
10167 			if (dp == NULL)
10168 				return (EINVAL);
10169 			break;
10170 		}
10171 
10172 		default:
10173 			return (EINVAL);
10174 		}
10175 
10176 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10177 			/*
10178 			 * If this is a data-storing action or a speculate,
10179 			 * we must be sure that there isn't a commit on the
10180 			 * action chain.
10181 			 */
10182 			dtrace_action_t *act = ecb->dte_action;
10183 
10184 			for (; act != NULL; act = act->dta_next) {
10185 				if (act->dta_kind == DTRACEACT_COMMIT)
10186 					return (EINVAL);
10187 			}
10188 		}
10189 
10190 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10191 		action->dta_rec.dtrd_size = size;
10192 	}
10193 
10194 	action->dta_refcnt = 1;
10195 	rec = &action->dta_rec;
10196 	size = rec->dtrd_size;
10197 
10198 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10199 		if (!(size & mask)) {
10200 			align = mask + 1;
10201 			break;
10202 		}
10203 	}
10204 
10205 	action->dta_kind = desc->dtad_kind;
10206 
10207 	if ((action->dta_difo = dp) != NULL)
10208 		dtrace_difo_hold(dp);
10209 
10210 	rec->dtrd_action = action->dta_kind;
10211 	rec->dtrd_arg = arg;
10212 	rec->dtrd_uarg = desc->dtad_uarg;
10213 	rec->dtrd_alignment = (uint16_t)align;
10214 	rec->dtrd_format = format;
10215 
10216 	if ((last = ecb->dte_action_last) != NULL) {
10217 		ASSERT(ecb->dte_action != NULL);
10218 		action->dta_prev = last;
10219 		last->dta_next = action;
10220 	} else {
10221 		ASSERT(ecb->dte_action == NULL);
10222 		ecb->dte_action = action;
10223 	}
10224 
10225 	ecb->dte_action_last = action;
10226 
10227 	return (0);
10228 }
10229 
10230 static void
10231 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10232 {
10233 	dtrace_action_t *act = ecb->dte_action, *next;
10234 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10235 	dtrace_difo_t *dp;
10236 	uint16_t format;
10237 
10238 	if (act != NULL && act->dta_refcnt > 1) {
10239 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10240 		act->dta_refcnt--;
10241 	} else {
10242 		for (; act != NULL; act = next) {
10243 			next = act->dta_next;
10244 			ASSERT(next != NULL || act == ecb->dte_action_last);
10245 			ASSERT(act->dta_refcnt == 1);
10246 
10247 			if ((format = act->dta_rec.dtrd_format) != 0)
10248 				dtrace_format_remove(ecb->dte_state, format);
10249 
10250 			if ((dp = act->dta_difo) != NULL)
10251 				dtrace_difo_release(dp, vstate);
10252 
10253 			if (DTRACEACT_ISAGG(act->dta_kind)) {
10254 				dtrace_ecb_aggregation_destroy(ecb, act);
10255 			} else {
10256 				kmem_free(act, sizeof (dtrace_action_t));
10257 			}
10258 		}
10259 	}
10260 
10261 	ecb->dte_action = NULL;
10262 	ecb->dte_action_last = NULL;
10263 	ecb->dte_size = sizeof (dtrace_epid_t);
10264 }
10265 
10266 static void
10267 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10268 {
10269 	/*
10270 	 * We disable the ECB by removing it from its probe.
10271 	 */
10272 	dtrace_ecb_t *pecb, *prev = NULL;
10273 	dtrace_probe_t *probe = ecb->dte_probe;
10274 
10275 	ASSERT(MUTEX_HELD(&dtrace_lock));
10276 
10277 	if (probe == NULL) {
10278 		/*
10279 		 * This is the NULL probe; there is nothing to disable.
10280 		 */
10281 		return;
10282 	}
10283 
10284 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10285 		if (pecb == ecb)
10286 			break;
10287 		prev = pecb;
10288 	}
10289 
10290 	ASSERT(pecb != NULL);
10291 
10292 	if (prev == NULL) {
10293 		probe->dtpr_ecb = ecb->dte_next;
10294 	} else {
10295 		prev->dte_next = ecb->dte_next;
10296 	}
10297 
10298 	if (ecb == probe->dtpr_ecb_last) {
10299 		ASSERT(ecb->dte_next == NULL);
10300 		probe->dtpr_ecb_last = prev;
10301 	}
10302 
10303 	/*
10304 	 * The ECB has been disconnected from the probe; now sync to assure
10305 	 * that all CPUs have seen the change before returning.
10306 	 */
10307 	dtrace_sync();
10308 
10309 	if (probe->dtpr_ecb == NULL) {
10310 		/*
10311 		 * That was the last ECB on the probe; clear the predicate
10312 		 * cache ID for the probe, disable it and sync one more time
10313 		 * to assure that we'll never hit it again.
10314 		 */
10315 		dtrace_provider_t *prov = probe->dtpr_provider;
10316 
10317 		ASSERT(ecb->dte_next == NULL);
10318 		ASSERT(probe->dtpr_ecb_last == NULL);
10319 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10320 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10321 		    probe->dtpr_id, probe->dtpr_arg);
10322 		dtrace_sync();
10323 	} else {
10324 		/*
10325 		 * There is at least one ECB remaining on the probe.  If there
10326 		 * is _exactly_ one, set the probe's predicate cache ID to be
10327 		 * the predicate cache ID of the remaining ECB.
10328 		 */
10329 		ASSERT(probe->dtpr_ecb_last != NULL);
10330 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10331 
10332 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10333 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10334 
10335 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10336 
10337 			if (p != NULL)
10338 				probe->dtpr_predcache = p->dtp_cacheid;
10339 		}
10340 
10341 		ecb->dte_next = NULL;
10342 	}
10343 }
10344 
10345 static void
10346 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10347 {
10348 	dtrace_state_t *state = ecb->dte_state;
10349 	dtrace_vstate_t *vstate = &state->dts_vstate;
10350 	dtrace_predicate_t *pred;
10351 	dtrace_epid_t epid = ecb->dte_epid;
10352 
10353 	ASSERT(MUTEX_HELD(&dtrace_lock));
10354 	ASSERT(ecb->dte_next == NULL);
10355 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10356 
10357 	if ((pred = ecb->dte_predicate) != NULL)
10358 		dtrace_predicate_release(pred, vstate);
10359 
10360 	dtrace_ecb_action_remove(ecb);
10361 
10362 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10363 	state->dts_ecbs[epid - 1] = NULL;
10364 
10365 	kmem_free(ecb, sizeof (dtrace_ecb_t));
10366 }
10367 
10368 static dtrace_ecb_t *
10369 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10370     dtrace_enabling_t *enab)
10371 {
10372 	dtrace_ecb_t *ecb;
10373 	dtrace_predicate_t *pred;
10374 	dtrace_actdesc_t *act;
10375 	dtrace_provider_t *prov;
10376 	dtrace_ecbdesc_t *desc = enab->dten_current;
10377 
10378 	ASSERT(MUTEX_HELD(&dtrace_lock));
10379 	ASSERT(state != NULL);
10380 
10381 	ecb = dtrace_ecb_add(state, probe);
10382 	ecb->dte_uarg = desc->dted_uarg;
10383 
10384 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10385 		dtrace_predicate_hold(pred);
10386 		ecb->dte_predicate = pred;
10387 	}
10388 
10389 	if (probe != NULL) {
10390 		/*
10391 		 * If the provider shows more leg than the consumer is old
10392 		 * enough to see, we need to enable the appropriate implicit
10393 		 * predicate bits to prevent the ecb from activating at
10394 		 * revealing times.
10395 		 *
10396 		 * Providers specifying DTRACE_PRIV_USER at register time
10397 		 * are stating that they need the /proc-style privilege
10398 		 * model to be enforced, and this is what DTRACE_COND_OWNER
10399 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10400 		 */
10401 		prov = probe->dtpr_provider;
10402 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10403 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10404 			ecb->dte_cond |= DTRACE_COND_OWNER;
10405 
10406 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10407 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10408 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10409 
10410 		/*
10411 		 * If the provider shows us kernel innards and the user
10412 		 * is lacking sufficient privilege, enable the
10413 		 * DTRACE_COND_USERMODE implicit predicate.
10414 		 */
10415 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10416 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10417 			ecb->dte_cond |= DTRACE_COND_USERMODE;
10418 	}
10419 
10420 	if (dtrace_ecb_create_cache != NULL) {
10421 		/*
10422 		 * If we have a cached ecb, we'll use its action list instead
10423 		 * of creating our own (saving both time and space).
10424 		 */
10425 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10426 		dtrace_action_t *act = cached->dte_action;
10427 
10428 		if (act != NULL) {
10429 			ASSERT(act->dta_refcnt > 0);
10430 			act->dta_refcnt++;
10431 			ecb->dte_action = act;
10432 			ecb->dte_action_last = cached->dte_action_last;
10433 			ecb->dte_needed = cached->dte_needed;
10434 			ecb->dte_size = cached->dte_size;
10435 			ecb->dte_alignment = cached->dte_alignment;
10436 		}
10437 
10438 		return (ecb);
10439 	}
10440 
10441 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10442 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10443 			dtrace_ecb_destroy(ecb);
10444 			return (NULL);
10445 		}
10446 	}
10447 
10448 	dtrace_ecb_resize(ecb);
10449 
10450 	return (dtrace_ecb_create_cache = ecb);
10451 }
10452 
10453 static int
10454 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10455 {
10456 	dtrace_ecb_t *ecb;
10457 	dtrace_enabling_t *enab = arg;
10458 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10459 
10460 	ASSERT(state != NULL);
10461 
10462 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10463 		/*
10464 		 * This probe was created in a generation for which this
10465 		 * enabling has previously created ECBs; we don't want to
10466 		 * enable it again, so just kick out.
10467 		 */
10468 		return (DTRACE_MATCH_NEXT);
10469 	}
10470 
10471 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10472 		return (DTRACE_MATCH_DONE);
10473 
10474 	dtrace_ecb_enable(ecb);
10475 	return (DTRACE_MATCH_NEXT);
10476 }
10477 
10478 static dtrace_ecb_t *
10479 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10480 {
10481 	dtrace_ecb_t *ecb;
10482 
10483 	ASSERT(MUTEX_HELD(&dtrace_lock));
10484 
10485 	if (id == 0 || id > state->dts_necbs)
10486 		return (NULL);
10487 
10488 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10489 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10490 
10491 	return (state->dts_ecbs[id - 1]);
10492 }
10493 
10494 static dtrace_aggregation_t *
10495 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10496 {
10497 	dtrace_aggregation_t *agg;
10498 
10499 	ASSERT(MUTEX_HELD(&dtrace_lock));
10500 
10501 	if (id == 0 || id > state->dts_naggregations)
10502 		return (NULL);
10503 
10504 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10505 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10506 	    agg->dtag_id == id);
10507 
10508 	return (state->dts_aggregations[id - 1]);
10509 }
10510 
10511 /*
10512  * DTrace Buffer Functions
10513  *
10514  * The following functions manipulate DTrace buffers.  Most of these functions
10515  * are called in the context of establishing or processing consumer state;
10516  * exceptions are explicitly noted.
10517  */
10518 
10519 /*
10520  * Note:  called from cross call context.  This function switches the two
10521  * buffers on a given CPU.  The atomicity of this operation is assured by
10522  * disabling interrupts while the actual switch takes place; the disabling of
10523  * interrupts serializes the execution with any execution of dtrace_probe() on
10524  * the same CPU.
10525  */
10526 static void
10527 dtrace_buffer_switch(dtrace_buffer_t *buf)
10528 {
10529 	caddr_t tomax = buf->dtb_tomax;
10530 	caddr_t xamot = buf->dtb_xamot;
10531 	dtrace_icookie_t cookie;
10532 
10533 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10534 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10535 
10536 	cookie = dtrace_interrupt_disable();
10537 	buf->dtb_tomax = xamot;
10538 	buf->dtb_xamot = tomax;
10539 	buf->dtb_xamot_drops = buf->dtb_drops;
10540 	buf->dtb_xamot_offset = buf->dtb_offset;
10541 	buf->dtb_xamot_errors = buf->dtb_errors;
10542 	buf->dtb_xamot_flags = buf->dtb_flags;
10543 	buf->dtb_offset = 0;
10544 	buf->dtb_drops = 0;
10545 	buf->dtb_errors = 0;
10546 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10547 	dtrace_interrupt_enable(cookie);
10548 }
10549 
10550 /*
10551  * Note:  called from cross call context.  This function activates a buffer
10552  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10553  * is guaranteed by the disabling of interrupts.
10554  */
10555 static void
10556 dtrace_buffer_activate(dtrace_state_t *state)
10557 {
10558 	dtrace_buffer_t *buf;
10559 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10560 
10561 	buf = &state->dts_buffer[curcpu];
10562 
10563 	if (buf->dtb_tomax != NULL) {
10564 		/*
10565 		 * We might like to assert that the buffer is marked inactive,
10566 		 * but this isn't necessarily true:  the buffer for the CPU
10567 		 * that processes the BEGIN probe has its buffer activated
10568 		 * manually.  In this case, we take the (harmless) action
10569 		 * re-clearing the bit INACTIVE bit.
10570 		 */
10571 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10572 	}
10573 
10574 	dtrace_interrupt_enable(cookie);
10575 }
10576 
10577 static int
10578 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10579     processorid_t cpu)
10580 {
10581 #if defined(sun)
10582 	cpu_t *cp;
10583 #endif
10584 	dtrace_buffer_t *buf;
10585 
10586 #if defined(sun)
10587 	ASSERT(MUTEX_HELD(&cpu_lock));
10588 	ASSERT(MUTEX_HELD(&dtrace_lock));
10589 
10590 	if (size > dtrace_nonroot_maxsize &&
10591 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10592 		return (EFBIG);
10593 
10594 	cp = cpu_list;
10595 
10596 	do {
10597 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10598 			continue;
10599 
10600 		buf = &bufs[cp->cpu_id];
10601 
10602 		/*
10603 		 * If there is already a buffer allocated for this CPU, it
10604 		 * is only possible that this is a DR event.  In this case,
10605 		 */
10606 		if (buf->dtb_tomax != NULL) {
10607 			ASSERT(buf->dtb_size == size);
10608 			continue;
10609 		}
10610 
10611 		ASSERT(buf->dtb_xamot == NULL);
10612 
10613 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10614 			goto err;
10615 
10616 		buf->dtb_size = size;
10617 		buf->dtb_flags = flags;
10618 		buf->dtb_offset = 0;
10619 		buf->dtb_drops = 0;
10620 
10621 		if (flags & DTRACEBUF_NOSWITCH)
10622 			continue;
10623 
10624 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10625 			goto err;
10626 	} while ((cp = cp->cpu_next) != cpu_list);
10627 
10628 	return (0);
10629 
10630 err:
10631 	cp = cpu_list;
10632 
10633 	do {
10634 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10635 			continue;
10636 
10637 		buf = &bufs[cp->cpu_id];
10638 
10639 		if (buf->dtb_xamot != NULL) {
10640 			ASSERT(buf->dtb_tomax != NULL);
10641 			ASSERT(buf->dtb_size == size);
10642 			kmem_free(buf->dtb_xamot, size);
10643 		}
10644 
10645 		if (buf->dtb_tomax != NULL) {
10646 			ASSERT(buf->dtb_size == size);
10647 			kmem_free(buf->dtb_tomax, size);
10648 		}
10649 
10650 		buf->dtb_tomax = NULL;
10651 		buf->dtb_xamot = NULL;
10652 		buf->dtb_size = 0;
10653 	} while ((cp = cp->cpu_next) != cpu_list);
10654 
10655 	return (ENOMEM);
10656 #else
10657 	int i;
10658 
10659 #if defined(__amd64__)
10660 	/*
10661 	 * FreeBSD isn't good at limiting the amount of memory we
10662 	 * ask to malloc, so let's place a limit here before trying
10663 	 * to do something that might well end in tears at bedtime.
10664 	 */
10665 	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10666 		return(ENOMEM);
10667 #endif
10668 
10669 	ASSERT(MUTEX_HELD(&dtrace_lock));
10670 	CPU_FOREACH(i) {
10671 		if (cpu != DTRACE_CPUALL && cpu != i)
10672 			continue;
10673 
10674 		buf = &bufs[i];
10675 
10676 		/*
10677 		 * If there is already a buffer allocated for this CPU, it
10678 		 * is only possible that this is a DR event.  In this case,
10679 		 * the buffer size must match our specified size.
10680 		 */
10681 		if (buf->dtb_tomax != NULL) {
10682 			ASSERT(buf->dtb_size == size);
10683 			continue;
10684 		}
10685 
10686 		ASSERT(buf->dtb_xamot == NULL);
10687 
10688 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10689 			goto err;
10690 
10691 		buf->dtb_size = size;
10692 		buf->dtb_flags = flags;
10693 		buf->dtb_offset = 0;
10694 		buf->dtb_drops = 0;
10695 
10696 		if (flags & DTRACEBUF_NOSWITCH)
10697 			continue;
10698 
10699 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10700 			goto err;
10701 	}
10702 
10703 	return (0);
10704 
10705 err:
10706 	/*
10707 	 * Error allocating memory, so free the buffers that were
10708 	 * allocated before the failed allocation.
10709 	 */
10710 	CPU_FOREACH(i) {
10711 		if (cpu != DTRACE_CPUALL && cpu != i)
10712 			continue;
10713 
10714 		buf = &bufs[i];
10715 
10716 		if (buf->dtb_xamot != NULL) {
10717 			ASSERT(buf->dtb_tomax != NULL);
10718 			ASSERT(buf->dtb_size == size);
10719 			kmem_free(buf->dtb_xamot, size);
10720 		}
10721 
10722 		if (buf->dtb_tomax != NULL) {
10723 			ASSERT(buf->dtb_size == size);
10724 			kmem_free(buf->dtb_tomax, size);
10725 		}
10726 
10727 		buf->dtb_tomax = NULL;
10728 		buf->dtb_xamot = NULL;
10729 		buf->dtb_size = 0;
10730 
10731 	}
10732 
10733 	return (ENOMEM);
10734 #endif
10735 }
10736 
10737 /*
10738  * Note:  called from probe context.  This function just increments the drop
10739  * count on a buffer.  It has been made a function to allow for the
10740  * possibility of understanding the source of mysterious drop counts.  (A
10741  * problem for which one may be particularly disappointed that DTrace cannot
10742  * be used to understand DTrace.)
10743  */
10744 static void
10745 dtrace_buffer_drop(dtrace_buffer_t *buf)
10746 {
10747 	buf->dtb_drops++;
10748 }
10749 
10750 /*
10751  * Note:  called from probe context.  This function is called to reserve space
10752  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10753  * mstate.  Returns the new offset in the buffer, or a negative value if an
10754  * error has occurred.
10755  */
10756 static intptr_t
10757 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10758     dtrace_state_t *state, dtrace_mstate_t *mstate)
10759 {
10760 	intptr_t offs = buf->dtb_offset, soffs;
10761 	intptr_t woffs;
10762 	caddr_t tomax;
10763 	size_t total;
10764 
10765 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10766 		return (-1);
10767 
10768 	if ((tomax = buf->dtb_tomax) == NULL) {
10769 		dtrace_buffer_drop(buf);
10770 		return (-1);
10771 	}
10772 
10773 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10774 		while (offs & (align - 1)) {
10775 			/*
10776 			 * Assert that our alignment is off by a number which
10777 			 * is itself sizeof (uint32_t) aligned.
10778 			 */
10779 			ASSERT(!((align - (offs & (align - 1))) &
10780 			    (sizeof (uint32_t) - 1)));
10781 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10782 			offs += sizeof (uint32_t);
10783 		}
10784 
10785 		if ((soffs = offs + needed) > buf->dtb_size) {
10786 			dtrace_buffer_drop(buf);
10787 			return (-1);
10788 		}
10789 
10790 		if (mstate == NULL)
10791 			return (offs);
10792 
10793 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10794 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10795 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10796 
10797 		return (offs);
10798 	}
10799 
10800 	if (buf->dtb_flags & DTRACEBUF_FILL) {
10801 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10802 		    (buf->dtb_flags & DTRACEBUF_FULL))
10803 			return (-1);
10804 		goto out;
10805 	}
10806 
10807 	total = needed + (offs & (align - 1));
10808 
10809 	/*
10810 	 * For a ring buffer, life is quite a bit more complicated.  Before
10811 	 * we can store any padding, we need to adjust our wrapping offset.
10812 	 * (If we've never before wrapped or we're not about to, no adjustment
10813 	 * is required.)
10814 	 */
10815 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10816 	    offs + total > buf->dtb_size) {
10817 		woffs = buf->dtb_xamot_offset;
10818 
10819 		if (offs + total > buf->dtb_size) {
10820 			/*
10821 			 * We can't fit in the end of the buffer.  First, a
10822 			 * sanity check that we can fit in the buffer at all.
10823 			 */
10824 			if (total > buf->dtb_size) {
10825 				dtrace_buffer_drop(buf);
10826 				return (-1);
10827 			}
10828 
10829 			/*
10830 			 * We're going to be storing at the top of the buffer,
10831 			 * so now we need to deal with the wrapped offset.  We
10832 			 * only reset our wrapped offset to 0 if it is
10833 			 * currently greater than the current offset.  If it
10834 			 * is less than the current offset, it is because a
10835 			 * previous allocation induced a wrap -- but the
10836 			 * allocation didn't subsequently take the space due
10837 			 * to an error or false predicate evaluation.  In this
10838 			 * case, we'll just leave the wrapped offset alone: if
10839 			 * the wrapped offset hasn't been advanced far enough
10840 			 * for this allocation, it will be adjusted in the
10841 			 * lower loop.
10842 			 */
10843 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10844 				if (woffs >= offs)
10845 					woffs = 0;
10846 			} else {
10847 				woffs = 0;
10848 			}
10849 
10850 			/*
10851 			 * Now we know that we're going to be storing to the
10852 			 * top of the buffer and that there is room for us
10853 			 * there.  We need to clear the buffer from the current
10854 			 * offset to the end (there may be old gunk there).
10855 			 */
10856 			while (offs < buf->dtb_size)
10857 				tomax[offs++] = 0;
10858 
10859 			/*
10860 			 * We need to set our offset to zero.  And because we
10861 			 * are wrapping, we need to set the bit indicating as
10862 			 * much.  We can also adjust our needed space back
10863 			 * down to the space required by the ECB -- we know
10864 			 * that the top of the buffer is aligned.
10865 			 */
10866 			offs = 0;
10867 			total = needed;
10868 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10869 		} else {
10870 			/*
10871 			 * There is room for us in the buffer, so we simply
10872 			 * need to check the wrapped offset.
10873 			 */
10874 			if (woffs < offs) {
10875 				/*
10876 				 * The wrapped offset is less than the offset.
10877 				 * This can happen if we allocated buffer space
10878 				 * that induced a wrap, but then we didn't
10879 				 * subsequently take the space due to an error
10880 				 * or false predicate evaluation.  This is
10881 				 * okay; we know that _this_ allocation isn't
10882 				 * going to induce a wrap.  We still can't
10883 				 * reset the wrapped offset to be zero,
10884 				 * however: the space may have been trashed in
10885 				 * the previous failed probe attempt.  But at
10886 				 * least the wrapped offset doesn't need to
10887 				 * be adjusted at all...
10888 				 */
10889 				goto out;
10890 			}
10891 		}
10892 
10893 		while (offs + total > woffs) {
10894 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
10895 			size_t size;
10896 
10897 			if (epid == DTRACE_EPIDNONE) {
10898 				size = sizeof (uint32_t);
10899 			} else {
10900 				ASSERT(epid <= state->dts_necbs);
10901 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
10902 
10903 				size = state->dts_ecbs[epid - 1]->dte_size;
10904 			}
10905 
10906 			ASSERT(woffs + size <= buf->dtb_size);
10907 			ASSERT(size != 0);
10908 
10909 			if (woffs + size == buf->dtb_size) {
10910 				/*
10911 				 * We've reached the end of the buffer; we want
10912 				 * to set the wrapped offset to 0 and break
10913 				 * out.  However, if the offs is 0, then we're
10914 				 * in a strange edge-condition:  the amount of
10915 				 * space that we want to reserve plus the size
10916 				 * of the record that we're overwriting is
10917 				 * greater than the size of the buffer.  This
10918 				 * is problematic because if we reserve the
10919 				 * space but subsequently don't consume it (due
10920 				 * to a failed predicate or error) the wrapped
10921 				 * offset will be 0 -- yet the EPID at offset 0
10922 				 * will not be committed.  This situation is
10923 				 * relatively easy to deal with:  if we're in
10924 				 * this case, the buffer is indistinguishable
10925 				 * from one that hasn't wrapped; we need only
10926 				 * finish the job by clearing the wrapped bit,
10927 				 * explicitly setting the offset to be 0, and
10928 				 * zero'ing out the old data in the buffer.
10929 				 */
10930 				if (offs == 0) {
10931 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
10932 					buf->dtb_offset = 0;
10933 					woffs = total;
10934 
10935 					while (woffs < buf->dtb_size)
10936 						tomax[woffs++] = 0;
10937 				}
10938 
10939 				woffs = 0;
10940 				break;
10941 			}
10942 
10943 			woffs += size;
10944 		}
10945 
10946 		/*
10947 		 * We have a wrapped offset.  It may be that the wrapped offset
10948 		 * has become zero -- that's okay.
10949 		 */
10950 		buf->dtb_xamot_offset = woffs;
10951 	}
10952 
10953 out:
10954 	/*
10955 	 * Now we can plow the buffer with any necessary padding.
10956 	 */
10957 	while (offs & (align - 1)) {
10958 		/*
10959 		 * Assert that our alignment is off by a number which
10960 		 * is itself sizeof (uint32_t) aligned.
10961 		 */
10962 		ASSERT(!((align - (offs & (align - 1))) &
10963 		    (sizeof (uint32_t) - 1)));
10964 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10965 		offs += sizeof (uint32_t);
10966 	}
10967 
10968 	if (buf->dtb_flags & DTRACEBUF_FILL) {
10969 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
10970 			buf->dtb_flags |= DTRACEBUF_FULL;
10971 			return (-1);
10972 		}
10973 	}
10974 
10975 	if (mstate == NULL)
10976 		return (offs);
10977 
10978 	/*
10979 	 * For ring buffers and fill buffers, the scratch space is always
10980 	 * the inactive buffer.
10981 	 */
10982 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
10983 	mstate->dtms_scratch_size = buf->dtb_size;
10984 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10985 
10986 	return (offs);
10987 }
10988 
10989 static void
10990 dtrace_buffer_polish(dtrace_buffer_t *buf)
10991 {
10992 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
10993 	ASSERT(MUTEX_HELD(&dtrace_lock));
10994 
10995 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
10996 		return;
10997 
10998 	/*
10999 	 * We need to polish the ring buffer.  There are three cases:
11000 	 *
11001 	 * - The first (and presumably most common) is that there is no gap
11002 	 *   between the buffer offset and the wrapped offset.  In this case,
11003 	 *   there is nothing in the buffer that isn't valid data; we can
11004 	 *   mark the buffer as polished and return.
11005 	 *
11006 	 * - The second (less common than the first but still more common
11007 	 *   than the third) is that there is a gap between the buffer offset
11008 	 *   and the wrapped offset, and the wrapped offset is larger than the
11009 	 *   buffer offset.  This can happen because of an alignment issue, or
11010 	 *   can happen because of a call to dtrace_buffer_reserve() that
11011 	 *   didn't subsequently consume the buffer space.  In this case,
11012 	 *   we need to zero the data from the buffer offset to the wrapped
11013 	 *   offset.
11014 	 *
11015 	 * - The third (and least common) is that there is a gap between the
11016 	 *   buffer offset and the wrapped offset, but the wrapped offset is
11017 	 *   _less_ than the buffer offset.  This can only happen because a
11018 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11019 	 *   was not subsequently consumed.  In this case, we need to zero the
11020 	 *   space from the offset to the end of the buffer _and_ from the
11021 	 *   top of the buffer to the wrapped offset.
11022 	 */
11023 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11024 		bzero(buf->dtb_tomax + buf->dtb_offset,
11025 		    buf->dtb_xamot_offset - buf->dtb_offset);
11026 	}
11027 
11028 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11029 		bzero(buf->dtb_tomax + buf->dtb_offset,
11030 		    buf->dtb_size - buf->dtb_offset);
11031 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11032 	}
11033 }
11034 
11035 static void
11036 dtrace_buffer_free(dtrace_buffer_t *bufs)
11037 {
11038 	int i;
11039 
11040 	for (i = 0; i < NCPU; i++) {
11041 		dtrace_buffer_t *buf = &bufs[i];
11042 
11043 		if (buf->dtb_tomax == NULL) {
11044 			ASSERT(buf->dtb_xamot == NULL);
11045 			ASSERT(buf->dtb_size == 0);
11046 			continue;
11047 		}
11048 
11049 		if (buf->dtb_xamot != NULL) {
11050 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11051 			kmem_free(buf->dtb_xamot, buf->dtb_size);
11052 		}
11053 
11054 		kmem_free(buf->dtb_tomax, buf->dtb_size);
11055 		buf->dtb_size = 0;
11056 		buf->dtb_tomax = NULL;
11057 		buf->dtb_xamot = NULL;
11058 	}
11059 }
11060 
11061 /*
11062  * DTrace Enabling Functions
11063  */
11064 static dtrace_enabling_t *
11065 dtrace_enabling_create(dtrace_vstate_t *vstate)
11066 {
11067 	dtrace_enabling_t *enab;
11068 
11069 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11070 	enab->dten_vstate = vstate;
11071 
11072 	return (enab);
11073 }
11074 
11075 static void
11076 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11077 {
11078 	dtrace_ecbdesc_t **ndesc;
11079 	size_t osize, nsize;
11080 
11081 	/*
11082 	 * We can't add to enablings after we've enabled them, or after we've
11083 	 * retained them.
11084 	 */
11085 	ASSERT(enab->dten_probegen == 0);
11086 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11087 
11088 	if (enab->dten_ndesc < enab->dten_maxdesc) {
11089 		enab->dten_desc[enab->dten_ndesc++] = ecb;
11090 		return;
11091 	}
11092 
11093 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11094 
11095 	if (enab->dten_maxdesc == 0) {
11096 		enab->dten_maxdesc = 1;
11097 	} else {
11098 		enab->dten_maxdesc <<= 1;
11099 	}
11100 
11101 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11102 
11103 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11104 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11105 	bcopy(enab->dten_desc, ndesc, osize);
11106 	if (enab->dten_desc != NULL)
11107 		kmem_free(enab->dten_desc, osize);
11108 
11109 	enab->dten_desc = ndesc;
11110 	enab->dten_desc[enab->dten_ndesc++] = ecb;
11111 }
11112 
11113 static void
11114 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11115     dtrace_probedesc_t *pd)
11116 {
11117 	dtrace_ecbdesc_t *new;
11118 	dtrace_predicate_t *pred;
11119 	dtrace_actdesc_t *act;
11120 
11121 	/*
11122 	 * We're going to create a new ECB description that matches the
11123 	 * specified ECB in every way, but has the specified probe description.
11124 	 */
11125 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11126 
11127 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11128 		dtrace_predicate_hold(pred);
11129 
11130 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11131 		dtrace_actdesc_hold(act);
11132 
11133 	new->dted_action = ecb->dted_action;
11134 	new->dted_pred = ecb->dted_pred;
11135 	new->dted_probe = *pd;
11136 	new->dted_uarg = ecb->dted_uarg;
11137 
11138 	dtrace_enabling_add(enab, new);
11139 }
11140 
11141 static void
11142 dtrace_enabling_dump(dtrace_enabling_t *enab)
11143 {
11144 	int i;
11145 
11146 	for (i = 0; i < enab->dten_ndesc; i++) {
11147 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11148 
11149 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11150 		    desc->dtpd_provider, desc->dtpd_mod,
11151 		    desc->dtpd_func, desc->dtpd_name);
11152 	}
11153 }
11154 
11155 static void
11156 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11157 {
11158 	int i;
11159 	dtrace_ecbdesc_t *ep;
11160 	dtrace_vstate_t *vstate = enab->dten_vstate;
11161 
11162 	ASSERT(MUTEX_HELD(&dtrace_lock));
11163 
11164 	for (i = 0; i < enab->dten_ndesc; i++) {
11165 		dtrace_actdesc_t *act, *next;
11166 		dtrace_predicate_t *pred;
11167 
11168 		ep = enab->dten_desc[i];
11169 
11170 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11171 			dtrace_predicate_release(pred, vstate);
11172 
11173 		for (act = ep->dted_action; act != NULL; act = next) {
11174 			next = act->dtad_next;
11175 			dtrace_actdesc_release(act, vstate);
11176 		}
11177 
11178 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11179 	}
11180 
11181 	if (enab->dten_desc != NULL)
11182 		kmem_free(enab->dten_desc,
11183 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11184 
11185 	/*
11186 	 * If this was a retained enabling, decrement the dts_nretained count
11187 	 * and take it off of the dtrace_retained list.
11188 	 */
11189 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11190 	    dtrace_retained == enab) {
11191 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11192 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11193 		enab->dten_vstate->dtvs_state->dts_nretained--;
11194 	}
11195 
11196 	if (enab->dten_prev == NULL) {
11197 		if (dtrace_retained == enab) {
11198 			dtrace_retained = enab->dten_next;
11199 
11200 			if (dtrace_retained != NULL)
11201 				dtrace_retained->dten_prev = NULL;
11202 		}
11203 	} else {
11204 		ASSERT(enab != dtrace_retained);
11205 		ASSERT(dtrace_retained != NULL);
11206 		enab->dten_prev->dten_next = enab->dten_next;
11207 	}
11208 
11209 	if (enab->dten_next != NULL) {
11210 		ASSERT(dtrace_retained != NULL);
11211 		enab->dten_next->dten_prev = enab->dten_prev;
11212 	}
11213 
11214 	kmem_free(enab, sizeof (dtrace_enabling_t));
11215 }
11216 
11217 static int
11218 dtrace_enabling_retain(dtrace_enabling_t *enab)
11219 {
11220 	dtrace_state_t *state;
11221 
11222 	ASSERT(MUTEX_HELD(&dtrace_lock));
11223 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11224 	ASSERT(enab->dten_vstate != NULL);
11225 
11226 	state = enab->dten_vstate->dtvs_state;
11227 	ASSERT(state != NULL);
11228 
11229 	/*
11230 	 * We only allow each state to retain dtrace_retain_max enablings.
11231 	 */
11232 	if (state->dts_nretained >= dtrace_retain_max)
11233 		return (ENOSPC);
11234 
11235 	state->dts_nretained++;
11236 
11237 	if (dtrace_retained == NULL) {
11238 		dtrace_retained = enab;
11239 		return (0);
11240 	}
11241 
11242 	enab->dten_next = dtrace_retained;
11243 	dtrace_retained->dten_prev = enab;
11244 	dtrace_retained = enab;
11245 
11246 	return (0);
11247 }
11248 
11249 static int
11250 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11251     dtrace_probedesc_t *create)
11252 {
11253 	dtrace_enabling_t *new, *enab;
11254 	int found = 0, err = ENOENT;
11255 
11256 	ASSERT(MUTEX_HELD(&dtrace_lock));
11257 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11258 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11259 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11260 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11261 
11262 	new = dtrace_enabling_create(&state->dts_vstate);
11263 
11264 	/*
11265 	 * Iterate over all retained enablings, looking for enablings that
11266 	 * match the specified state.
11267 	 */
11268 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11269 		int i;
11270 
11271 		/*
11272 		 * dtvs_state can only be NULL for helper enablings -- and
11273 		 * helper enablings can't be retained.
11274 		 */
11275 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11276 
11277 		if (enab->dten_vstate->dtvs_state != state)
11278 			continue;
11279 
11280 		/*
11281 		 * Now iterate over each probe description; we're looking for
11282 		 * an exact match to the specified probe description.
11283 		 */
11284 		for (i = 0; i < enab->dten_ndesc; i++) {
11285 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11286 			dtrace_probedesc_t *pd = &ep->dted_probe;
11287 
11288 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11289 				continue;
11290 
11291 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11292 				continue;
11293 
11294 			if (strcmp(pd->dtpd_func, match->dtpd_func))
11295 				continue;
11296 
11297 			if (strcmp(pd->dtpd_name, match->dtpd_name))
11298 				continue;
11299 
11300 			/*
11301 			 * We have a winning probe!  Add it to our growing
11302 			 * enabling.
11303 			 */
11304 			found = 1;
11305 			dtrace_enabling_addlike(new, ep, create);
11306 		}
11307 	}
11308 
11309 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11310 		dtrace_enabling_destroy(new);
11311 		return (err);
11312 	}
11313 
11314 	return (0);
11315 }
11316 
11317 static void
11318 dtrace_enabling_retract(dtrace_state_t *state)
11319 {
11320 	dtrace_enabling_t *enab, *next;
11321 
11322 	ASSERT(MUTEX_HELD(&dtrace_lock));
11323 
11324 	/*
11325 	 * Iterate over all retained enablings, destroy the enablings retained
11326 	 * for the specified state.
11327 	 */
11328 	for (enab = dtrace_retained; enab != NULL; enab = next) {
11329 		next = enab->dten_next;
11330 
11331 		/*
11332 		 * dtvs_state can only be NULL for helper enablings -- and
11333 		 * helper enablings can't be retained.
11334 		 */
11335 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11336 
11337 		if (enab->dten_vstate->dtvs_state == state) {
11338 			ASSERT(state->dts_nretained > 0);
11339 			dtrace_enabling_destroy(enab);
11340 		}
11341 	}
11342 
11343 	ASSERT(state->dts_nretained == 0);
11344 }
11345 
11346 static int
11347 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11348 {
11349 	int i = 0;
11350 	int matched = 0;
11351 
11352 	ASSERT(MUTEX_HELD(&cpu_lock));
11353 	ASSERT(MUTEX_HELD(&dtrace_lock));
11354 
11355 	for (i = 0; i < enab->dten_ndesc; i++) {
11356 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11357 
11358 		enab->dten_current = ep;
11359 		enab->dten_error = 0;
11360 
11361 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11362 
11363 		if (enab->dten_error != 0) {
11364 			/*
11365 			 * If we get an error half-way through enabling the
11366 			 * probes, we kick out -- perhaps with some number of
11367 			 * them enabled.  Leaving enabled probes enabled may
11368 			 * be slightly confusing for user-level, but we expect
11369 			 * that no one will attempt to actually drive on in
11370 			 * the face of such errors.  If this is an anonymous
11371 			 * enabling (indicated with a NULL nmatched pointer),
11372 			 * we cmn_err() a message.  We aren't expecting to
11373 			 * get such an error -- such as it can exist at all,
11374 			 * it would be a result of corrupted DOF in the driver
11375 			 * properties.
11376 			 */
11377 			if (nmatched == NULL) {
11378 				cmn_err(CE_WARN, "dtrace_enabling_match() "
11379 				    "error on %p: %d", (void *)ep,
11380 				    enab->dten_error);
11381 			}
11382 
11383 			return (enab->dten_error);
11384 		}
11385 	}
11386 
11387 	enab->dten_probegen = dtrace_probegen;
11388 	if (nmatched != NULL)
11389 		*nmatched = matched;
11390 
11391 	return (0);
11392 }
11393 
11394 static void
11395 dtrace_enabling_matchall(void)
11396 {
11397 	dtrace_enabling_t *enab;
11398 
11399 	mutex_enter(&cpu_lock);
11400 	mutex_enter(&dtrace_lock);
11401 
11402 	/*
11403 	 * Iterate over all retained enablings to see if any probes match
11404 	 * against them.  We only perform this operation on enablings for which
11405 	 * we have sufficient permissions by virtue of being in the global zone
11406 	 * or in the same zone as the DTrace client.  Because we can be called
11407 	 * after dtrace_detach() has been called, we cannot assert that there
11408 	 * are retained enablings.  We can safely load from dtrace_retained,
11409 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11410 	 * block pending our completion.
11411 	 */
11412 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11413 #if defined(sun)
11414 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11415 
11416 		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11417 #endif
11418 			(void) dtrace_enabling_match(enab, NULL);
11419 	}
11420 
11421 	mutex_exit(&dtrace_lock);
11422 	mutex_exit(&cpu_lock);
11423 }
11424 
11425 /*
11426  * If an enabling is to be enabled without having matched probes (that is, if
11427  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11428  * enabling must be _primed_ by creating an ECB for every ECB description.
11429  * This must be done to assure that we know the number of speculations, the
11430  * number of aggregations, the minimum buffer size needed, etc. before we
11431  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11432  * enabling any probes, we create ECBs for every ECB decription, but with a
11433  * NULL probe -- which is exactly what this function does.
11434  */
11435 static void
11436 dtrace_enabling_prime(dtrace_state_t *state)
11437 {
11438 	dtrace_enabling_t *enab;
11439 	int i;
11440 
11441 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11442 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11443 
11444 		if (enab->dten_vstate->dtvs_state != state)
11445 			continue;
11446 
11447 		/*
11448 		 * We don't want to prime an enabling more than once, lest
11449 		 * we allow a malicious user to induce resource exhaustion.
11450 		 * (The ECBs that result from priming an enabling aren't
11451 		 * leaked -- but they also aren't deallocated until the
11452 		 * consumer state is destroyed.)
11453 		 */
11454 		if (enab->dten_primed)
11455 			continue;
11456 
11457 		for (i = 0; i < enab->dten_ndesc; i++) {
11458 			enab->dten_current = enab->dten_desc[i];
11459 			(void) dtrace_probe_enable(NULL, enab);
11460 		}
11461 
11462 		enab->dten_primed = 1;
11463 	}
11464 }
11465 
11466 /*
11467  * Called to indicate that probes should be provided due to retained
11468  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11469  * must take an initial lap through the enabling calling the dtps_provide()
11470  * entry point explicitly to allow for autocreated probes.
11471  */
11472 static void
11473 dtrace_enabling_provide(dtrace_provider_t *prv)
11474 {
11475 	int i, all = 0;
11476 	dtrace_probedesc_t desc;
11477 
11478 	ASSERT(MUTEX_HELD(&dtrace_lock));
11479 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11480 
11481 	if (prv == NULL) {
11482 		all = 1;
11483 		prv = dtrace_provider;
11484 	}
11485 
11486 	do {
11487 		dtrace_enabling_t *enab = dtrace_retained;
11488 		void *parg = prv->dtpv_arg;
11489 
11490 		for (; enab != NULL; enab = enab->dten_next) {
11491 			for (i = 0; i < enab->dten_ndesc; i++) {
11492 				desc = enab->dten_desc[i]->dted_probe;
11493 				mutex_exit(&dtrace_lock);
11494 				prv->dtpv_pops.dtps_provide(parg, &desc);
11495 				mutex_enter(&dtrace_lock);
11496 			}
11497 		}
11498 	} while (all && (prv = prv->dtpv_next) != NULL);
11499 
11500 	mutex_exit(&dtrace_lock);
11501 	dtrace_probe_provide(NULL, all ? NULL : prv);
11502 	mutex_enter(&dtrace_lock);
11503 }
11504 
11505 /*
11506  * DTrace DOF Functions
11507  */
11508 /*ARGSUSED*/
11509 static void
11510 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11511 {
11512 	if (dtrace_err_verbose)
11513 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11514 
11515 #ifdef DTRACE_ERRDEBUG
11516 	dtrace_errdebug(str);
11517 #endif
11518 }
11519 
11520 /*
11521  * Create DOF out of a currently enabled state.  Right now, we only create
11522  * DOF containing the run-time options -- but this could be expanded to create
11523  * complete DOF representing the enabled state.
11524  */
11525 static dof_hdr_t *
11526 dtrace_dof_create(dtrace_state_t *state)
11527 {
11528 	dof_hdr_t *dof;
11529 	dof_sec_t *sec;
11530 	dof_optdesc_t *opt;
11531 	int i, len = sizeof (dof_hdr_t) +
11532 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11533 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11534 
11535 	ASSERT(MUTEX_HELD(&dtrace_lock));
11536 
11537 	dof = kmem_zalloc(len, KM_SLEEP);
11538 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11539 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11540 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11541 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11542 
11543 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11544 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11545 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11546 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11547 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11548 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11549 
11550 	dof->dofh_flags = 0;
11551 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11552 	dof->dofh_secsize = sizeof (dof_sec_t);
11553 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11554 	dof->dofh_secoff = sizeof (dof_hdr_t);
11555 	dof->dofh_loadsz = len;
11556 	dof->dofh_filesz = len;
11557 	dof->dofh_pad = 0;
11558 
11559 	/*
11560 	 * Fill in the option section header...
11561 	 */
11562 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11563 	sec->dofs_type = DOF_SECT_OPTDESC;
11564 	sec->dofs_align = sizeof (uint64_t);
11565 	sec->dofs_flags = DOF_SECF_LOAD;
11566 	sec->dofs_entsize = sizeof (dof_optdesc_t);
11567 
11568 	opt = (dof_optdesc_t *)((uintptr_t)sec +
11569 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11570 
11571 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11572 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11573 
11574 	for (i = 0; i < DTRACEOPT_MAX; i++) {
11575 		opt[i].dofo_option = i;
11576 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11577 		opt[i].dofo_value = state->dts_options[i];
11578 	}
11579 
11580 	return (dof);
11581 }
11582 
11583 static dof_hdr_t *
11584 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11585 {
11586 	dof_hdr_t hdr, *dof;
11587 
11588 	ASSERT(!MUTEX_HELD(&dtrace_lock));
11589 
11590 	/*
11591 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11592 	 */
11593 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11594 		dtrace_dof_error(NULL, "failed to copyin DOF header");
11595 		*errp = EFAULT;
11596 		return (NULL);
11597 	}
11598 
11599 	/*
11600 	 * Now we'll allocate the entire DOF and copy it in -- provided
11601 	 * that the length isn't outrageous.
11602 	 */
11603 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11604 		dtrace_dof_error(&hdr, "load size exceeds maximum");
11605 		*errp = E2BIG;
11606 		return (NULL);
11607 	}
11608 
11609 	if (hdr.dofh_loadsz < sizeof (hdr)) {
11610 		dtrace_dof_error(&hdr, "invalid load size");
11611 		*errp = EINVAL;
11612 		return (NULL);
11613 	}
11614 
11615 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11616 
11617 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11618 		kmem_free(dof, hdr.dofh_loadsz);
11619 		*errp = EFAULT;
11620 		return (NULL);
11621 	}
11622 
11623 	return (dof);
11624 }
11625 
11626 #if !defined(sun)
11627 static __inline uchar_t
11628 dtrace_dof_char(char c) {
11629 	switch (c) {
11630 	case '0':
11631 	case '1':
11632 	case '2':
11633 	case '3':
11634 	case '4':
11635 	case '5':
11636 	case '6':
11637 	case '7':
11638 	case '8':
11639 	case '9':
11640 		return (c - '0');
11641 	case 'A':
11642 	case 'B':
11643 	case 'C':
11644 	case 'D':
11645 	case 'E':
11646 	case 'F':
11647 		return (c - 'A' + 10);
11648 	case 'a':
11649 	case 'b':
11650 	case 'c':
11651 	case 'd':
11652 	case 'e':
11653 	case 'f':
11654 		return (c - 'a' + 10);
11655 	}
11656 	/* Should not reach here. */
11657 	return (0);
11658 }
11659 #endif
11660 
11661 static dof_hdr_t *
11662 dtrace_dof_property(const char *name)
11663 {
11664 	uchar_t *buf;
11665 	uint64_t loadsz;
11666 	unsigned int len, i;
11667 	dof_hdr_t *dof;
11668 
11669 #if defined(sun)
11670 	/*
11671 	 * Unfortunately, array of values in .conf files are always (and
11672 	 * only) interpreted to be integer arrays.  We must read our DOF
11673 	 * as an integer array, and then squeeze it into a byte array.
11674 	 */
11675 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11676 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11677 		return (NULL);
11678 
11679 	for (i = 0; i < len; i++)
11680 		buf[i] = (uchar_t)(((int *)buf)[i]);
11681 
11682 	if (len < sizeof (dof_hdr_t)) {
11683 		ddi_prop_free(buf);
11684 		dtrace_dof_error(NULL, "truncated header");
11685 		return (NULL);
11686 	}
11687 
11688 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11689 		ddi_prop_free(buf);
11690 		dtrace_dof_error(NULL, "truncated DOF");
11691 		return (NULL);
11692 	}
11693 
11694 	if (loadsz >= dtrace_dof_maxsize) {
11695 		ddi_prop_free(buf);
11696 		dtrace_dof_error(NULL, "oversized DOF");
11697 		return (NULL);
11698 	}
11699 
11700 	dof = kmem_alloc(loadsz, KM_SLEEP);
11701 	bcopy(buf, dof, loadsz);
11702 	ddi_prop_free(buf);
11703 #else
11704 	char *p;
11705 	char *p_env;
11706 
11707 	if ((p_env = getenv(name)) == NULL)
11708 		return (NULL);
11709 
11710 	len = strlen(p_env) / 2;
11711 
11712 	buf = kmem_alloc(len, KM_SLEEP);
11713 
11714 	dof = (dof_hdr_t *) buf;
11715 
11716 	p = p_env;
11717 
11718 	for (i = 0; i < len; i++) {
11719 		buf[i] = (dtrace_dof_char(p[0]) << 4) |
11720 		     dtrace_dof_char(p[1]);
11721 		p += 2;
11722 	}
11723 
11724 	freeenv(p_env);
11725 
11726 	if (len < sizeof (dof_hdr_t)) {
11727 		kmem_free(buf, 0);
11728 		dtrace_dof_error(NULL, "truncated header");
11729 		return (NULL);
11730 	}
11731 
11732 	if (len < (loadsz = dof->dofh_loadsz)) {
11733 		kmem_free(buf, 0);
11734 		dtrace_dof_error(NULL, "truncated DOF");
11735 		return (NULL);
11736 	}
11737 
11738 	if (loadsz >= dtrace_dof_maxsize) {
11739 		kmem_free(buf, 0);
11740 		dtrace_dof_error(NULL, "oversized DOF");
11741 		return (NULL);
11742 	}
11743 #endif
11744 
11745 	return (dof);
11746 }
11747 
11748 static void
11749 dtrace_dof_destroy(dof_hdr_t *dof)
11750 {
11751 	kmem_free(dof, dof->dofh_loadsz);
11752 }
11753 
11754 /*
11755  * Return the dof_sec_t pointer corresponding to a given section index.  If the
11756  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11757  * a type other than DOF_SECT_NONE is specified, the header is checked against
11758  * this type and NULL is returned if the types do not match.
11759  */
11760 static dof_sec_t *
11761 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11762 {
11763 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11764 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11765 
11766 	if (i >= dof->dofh_secnum) {
11767 		dtrace_dof_error(dof, "referenced section index is invalid");
11768 		return (NULL);
11769 	}
11770 
11771 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11772 		dtrace_dof_error(dof, "referenced section is not loadable");
11773 		return (NULL);
11774 	}
11775 
11776 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11777 		dtrace_dof_error(dof, "referenced section is the wrong type");
11778 		return (NULL);
11779 	}
11780 
11781 	return (sec);
11782 }
11783 
11784 static dtrace_probedesc_t *
11785 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11786 {
11787 	dof_probedesc_t *probe;
11788 	dof_sec_t *strtab;
11789 	uintptr_t daddr = (uintptr_t)dof;
11790 	uintptr_t str;
11791 	size_t size;
11792 
11793 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11794 		dtrace_dof_error(dof, "invalid probe section");
11795 		return (NULL);
11796 	}
11797 
11798 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11799 		dtrace_dof_error(dof, "bad alignment in probe description");
11800 		return (NULL);
11801 	}
11802 
11803 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11804 		dtrace_dof_error(dof, "truncated probe description");
11805 		return (NULL);
11806 	}
11807 
11808 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11809 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11810 
11811 	if (strtab == NULL)
11812 		return (NULL);
11813 
11814 	str = daddr + strtab->dofs_offset;
11815 	size = strtab->dofs_size;
11816 
11817 	if (probe->dofp_provider >= strtab->dofs_size) {
11818 		dtrace_dof_error(dof, "corrupt probe provider");
11819 		return (NULL);
11820 	}
11821 
11822 	(void) strncpy(desc->dtpd_provider,
11823 	    (char *)(str + probe->dofp_provider),
11824 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11825 
11826 	if (probe->dofp_mod >= strtab->dofs_size) {
11827 		dtrace_dof_error(dof, "corrupt probe module");
11828 		return (NULL);
11829 	}
11830 
11831 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11832 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11833 
11834 	if (probe->dofp_func >= strtab->dofs_size) {
11835 		dtrace_dof_error(dof, "corrupt probe function");
11836 		return (NULL);
11837 	}
11838 
11839 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11840 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11841 
11842 	if (probe->dofp_name >= strtab->dofs_size) {
11843 		dtrace_dof_error(dof, "corrupt probe name");
11844 		return (NULL);
11845 	}
11846 
11847 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11848 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11849 
11850 	return (desc);
11851 }
11852 
11853 static dtrace_difo_t *
11854 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11855     cred_t *cr)
11856 {
11857 	dtrace_difo_t *dp;
11858 	size_t ttl = 0;
11859 	dof_difohdr_t *dofd;
11860 	uintptr_t daddr = (uintptr_t)dof;
11861 	size_t max = dtrace_difo_maxsize;
11862 	int i, l, n;
11863 
11864 	static const struct {
11865 		int section;
11866 		int bufoffs;
11867 		int lenoffs;
11868 		int entsize;
11869 		int align;
11870 		const char *msg;
11871 	} difo[] = {
11872 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
11873 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
11874 		sizeof (dif_instr_t), "multiple DIF sections" },
11875 
11876 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
11877 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
11878 		sizeof (uint64_t), "multiple integer tables" },
11879 
11880 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
11881 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
11882 		sizeof (char), "multiple string tables" },
11883 
11884 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
11885 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
11886 		sizeof (uint_t), "multiple variable tables" },
11887 
11888 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
11889 	};
11890 
11891 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
11892 		dtrace_dof_error(dof, "invalid DIFO header section");
11893 		return (NULL);
11894 	}
11895 
11896 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11897 		dtrace_dof_error(dof, "bad alignment in DIFO header");
11898 		return (NULL);
11899 	}
11900 
11901 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
11902 	    sec->dofs_size % sizeof (dof_secidx_t)) {
11903 		dtrace_dof_error(dof, "bad size in DIFO header");
11904 		return (NULL);
11905 	}
11906 
11907 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
11908 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
11909 
11910 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
11911 	dp->dtdo_rtype = dofd->dofd_rtype;
11912 
11913 	for (l = 0; l < n; l++) {
11914 		dof_sec_t *subsec;
11915 		void **bufp;
11916 		uint32_t *lenp;
11917 
11918 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
11919 		    dofd->dofd_links[l])) == NULL)
11920 			goto err; /* invalid section link */
11921 
11922 		if (ttl + subsec->dofs_size > max) {
11923 			dtrace_dof_error(dof, "exceeds maximum size");
11924 			goto err;
11925 		}
11926 
11927 		ttl += subsec->dofs_size;
11928 
11929 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
11930 			if (subsec->dofs_type != difo[i].section)
11931 				continue;
11932 
11933 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
11934 				dtrace_dof_error(dof, "section not loaded");
11935 				goto err;
11936 			}
11937 
11938 			if (subsec->dofs_align != difo[i].align) {
11939 				dtrace_dof_error(dof, "bad alignment");
11940 				goto err;
11941 			}
11942 
11943 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
11944 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
11945 
11946 			if (*bufp != NULL) {
11947 				dtrace_dof_error(dof, difo[i].msg);
11948 				goto err;
11949 			}
11950 
11951 			if (difo[i].entsize != subsec->dofs_entsize) {
11952 				dtrace_dof_error(dof, "entry size mismatch");
11953 				goto err;
11954 			}
11955 
11956 			if (subsec->dofs_entsize != 0 &&
11957 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
11958 				dtrace_dof_error(dof, "corrupt entry size");
11959 				goto err;
11960 			}
11961 
11962 			*lenp = subsec->dofs_size;
11963 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
11964 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
11965 			    *bufp, subsec->dofs_size);
11966 
11967 			if (subsec->dofs_entsize != 0)
11968 				*lenp /= subsec->dofs_entsize;
11969 
11970 			break;
11971 		}
11972 
11973 		/*
11974 		 * If we encounter a loadable DIFO sub-section that is not
11975 		 * known to us, assume this is a broken program and fail.
11976 		 */
11977 		if (difo[i].section == DOF_SECT_NONE &&
11978 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
11979 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
11980 			goto err;
11981 		}
11982 	}
11983 
11984 	if (dp->dtdo_buf == NULL) {
11985 		/*
11986 		 * We can't have a DIF object without DIF text.
11987 		 */
11988 		dtrace_dof_error(dof, "missing DIF text");
11989 		goto err;
11990 	}
11991 
11992 	/*
11993 	 * Before we validate the DIF object, run through the variable table
11994 	 * looking for the strings -- if any of their size are under, we'll set
11995 	 * their size to be the system-wide default string size.  Note that
11996 	 * this should _not_ happen if the "strsize" option has been set --
11997 	 * in this case, the compiler should have set the size to reflect the
11998 	 * setting of the option.
11999 	 */
12000 	for (i = 0; i < dp->dtdo_varlen; i++) {
12001 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12002 		dtrace_diftype_t *t = &v->dtdv_type;
12003 
12004 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12005 			continue;
12006 
12007 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12008 			t->dtdt_size = dtrace_strsize_default;
12009 	}
12010 
12011 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12012 		goto err;
12013 
12014 	dtrace_difo_init(dp, vstate);
12015 	return (dp);
12016 
12017 err:
12018 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12019 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12020 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12021 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12022 
12023 	kmem_free(dp, sizeof (dtrace_difo_t));
12024 	return (NULL);
12025 }
12026 
12027 static dtrace_predicate_t *
12028 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12029     cred_t *cr)
12030 {
12031 	dtrace_difo_t *dp;
12032 
12033 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12034 		return (NULL);
12035 
12036 	return (dtrace_predicate_create(dp));
12037 }
12038 
12039 static dtrace_actdesc_t *
12040 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12041     cred_t *cr)
12042 {
12043 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12044 	dof_actdesc_t *desc;
12045 	dof_sec_t *difosec;
12046 	size_t offs;
12047 	uintptr_t daddr = (uintptr_t)dof;
12048 	uint64_t arg;
12049 	dtrace_actkind_t kind;
12050 
12051 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12052 		dtrace_dof_error(dof, "invalid action section");
12053 		return (NULL);
12054 	}
12055 
12056 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12057 		dtrace_dof_error(dof, "truncated action description");
12058 		return (NULL);
12059 	}
12060 
12061 	if (sec->dofs_align != sizeof (uint64_t)) {
12062 		dtrace_dof_error(dof, "bad alignment in action description");
12063 		return (NULL);
12064 	}
12065 
12066 	if (sec->dofs_size < sec->dofs_entsize) {
12067 		dtrace_dof_error(dof, "section entry size exceeds total size");
12068 		return (NULL);
12069 	}
12070 
12071 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12072 		dtrace_dof_error(dof, "bad entry size in action description");
12073 		return (NULL);
12074 	}
12075 
12076 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12077 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12078 		return (NULL);
12079 	}
12080 
12081 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12082 		desc = (dof_actdesc_t *)(daddr +
12083 		    (uintptr_t)sec->dofs_offset + offs);
12084 		kind = (dtrace_actkind_t)desc->dofa_kind;
12085 
12086 		if (DTRACEACT_ISPRINTFLIKE(kind) &&
12087 		    (kind != DTRACEACT_PRINTA ||
12088 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12089 			dof_sec_t *strtab;
12090 			char *str, *fmt;
12091 			uint64_t i;
12092 
12093 			/*
12094 			 * printf()-like actions must have a format string.
12095 			 */
12096 			if ((strtab = dtrace_dof_sect(dof,
12097 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12098 				goto err;
12099 
12100 			str = (char *)((uintptr_t)dof +
12101 			    (uintptr_t)strtab->dofs_offset);
12102 
12103 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12104 				if (str[i] == '\0')
12105 					break;
12106 			}
12107 
12108 			if (i >= strtab->dofs_size) {
12109 				dtrace_dof_error(dof, "bogus format string");
12110 				goto err;
12111 			}
12112 
12113 			if (i == desc->dofa_arg) {
12114 				dtrace_dof_error(dof, "empty format string");
12115 				goto err;
12116 			}
12117 
12118 			i -= desc->dofa_arg;
12119 			fmt = kmem_alloc(i + 1, KM_SLEEP);
12120 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12121 			arg = (uint64_t)(uintptr_t)fmt;
12122 		} else {
12123 			if (kind == DTRACEACT_PRINTA) {
12124 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12125 				arg = 0;
12126 			} else {
12127 				arg = desc->dofa_arg;
12128 			}
12129 		}
12130 
12131 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12132 		    desc->dofa_uarg, arg);
12133 
12134 		if (last != NULL) {
12135 			last->dtad_next = act;
12136 		} else {
12137 			first = act;
12138 		}
12139 
12140 		last = act;
12141 
12142 		if (desc->dofa_difo == DOF_SECIDX_NONE)
12143 			continue;
12144 
12145 		if ((difosec = dtrace_dof_sect(dof,
12146 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12147 			goto err;
12148 
12149 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12150 
12151 		if (act->dtad_difo == NULL)
12152 			goto err;
12153 	}
12154 
12155 	ASSERT(first != NULL);
12156 	return (first);
12157 
12158 err:
12159 	for (act = first; act != NULL; act = next) {
12160 		next = act->dtad_next;
12161 		dtrace_actdesc_release(act, vstate);
12162 	}
12163 
12164 	return (NULL);
12165 }
12166 
12167 static dtrace_ecbdesc_t *
12168 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12169     cred_t *cr)
12170 {
12171 	dtrace_ecbdesc_t *ep;
12172 	dof_ecbdesc_t *ecb;
12173 	dtrace_probedesc_t *desc;
12174 	dtrace_predicate_t *pred = NULL;
12175 
12176 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12177 		dtrace_dof_error(dof, "truncated ECB description");
12178 		return (NULL);
12179 	}
12180 
12181 	if (sec->dofs_align != sizeof (uint64_t)) {
12182 		dtrace_dof_error(dof, "bad alignment in ECB description");
12183 		return (NULL);
12184 	}
12185 
12186 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12187 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12188 
12189 	if (sec == NULL)
12190 		return (NULL);
12191 
12192 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12193 	ep->dted_uarg = ecb->dofe_uarg;
12194 	desc = &ep->dted_probe;
12195 
12196 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12197 		goto err;
12198 
12199 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12200 		if ((sec = dtrace_dof_sect(dof,
12201 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12202 			goto err;
12203 
12204 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12205 			goto err;
12206 
12207 		ep->dted_pred.dtpdd_predicate = pred;
12208 	}
12209 
12210 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12211 		if ((sec = dtrace_dof_sect(dof,
12212 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12213 			goto err;
12214 
12215 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12216 
12217 		if (ep->dted_action == NULL)
12218 			goto err;
12219 	}
12220 
12221 	return (ep);
12222 
12223 err:
12224 	if (pred != NULL)
12225 		dtrace_predicate_release(pred, vstate);
12226 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12227 	return (NULL);
12228 }
12229 
12230 /*
12231  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12232  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12233  * site of any user SETX relocations to account for load object base address.
12234  * In the future, if we need other relocations, this function can be extended.
12235  */
12236 static int
12237 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12238 {
12239 	uintptr_t daddr = (uintptr_t)dof;
12240 	dof_relohdr_t *dofr =
12241 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12242 	dof_sec_t *ss, *rs, *ts;
12243 	dof_relodesc_t *r;
12244 	uint_t i, n;
12245 
12246 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12247 	    sec->dofs_align != sizeof (dof_secidx_t)) {
12248 		dtrace_dof_error(dof, "invalid relocation header");
12249 		return (-1);
12250 	}
12251 
12252 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12253 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12254 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12255 
12256 	if (ss == NULL || rs == NULL || ts == NULL)
12257 		return (-1); /* dtrace_dof_error() has been called already */
12258 
12259 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12260 	    rs->dofs_align != sizeof (uint64_t)) {
12261 		dtrace_dof_error(dof, "invalid relocation section");
12262 		return (-1);
12263 	}
12264 
12265 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12266 	n = rs->dofs_size / rs->dofs_entsize;
12267 
12268 	for (i = 0; i < n; i++) {
12269 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12270 
12271 		switch (r->dofr_type) {
12272 		case DOF_RELO_NONE:
12273 			break;
12274 		case DOF_RELO_SETX:
12275 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12276 			    sizeof (uint64_t) > ts->dofs_size) {
12277 				dtrace_dof_error(dof, "bad relocation offset");
12278 				return (-1);
12279 			}
12280 
12281 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12282 				dtrace_dof_error(dof, "misaligned setx relo");
12283 				return (-1);
12284 			}
12285 
12286 			*(uint64_t *)taddr += ubase;
12287 			break;
12288 		default:
12289 			dtrace_dof_error(dof, "invalid relocation type");
12290 			return (-1);
12291 		}
12292 
12293 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12294 	}
12295 
12296 	return (0);
12297 }
12298 
12299 /*
12300  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12301  * header:  it should be at the front of a memory region that is at least
12302  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12303  * size.  It need not be validated in any other way.
12304  */
12305 static int
12306 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12307     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12308 {
12309 	uint64_t len = dof->dofh_loadsz, seclen;
12310 	uintptr_t daddr = (uintptr_t)dof;
12311 	dtrace_ecbdesc_t *ep;
12312 	dtrace_enabling_t *enab;
12313 	uint_t i;
12314 
12315 	ASSERT(MUTEX_HELD(&dtrace_lock));
12316 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12317 
12318 	/*
12319 	 * Check the DOF header identification bytes.  In addition to checking
12320 	 * valid settings, we also verify that unused bits/bytes are zeroed so
12321 	 * we can use them later without fear of regressing existing binaries.
12322 	 */
12323 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12324 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12325 		dtrace_dof_error(dof, "DOF magic string mismatch");
12326 		return (-1);
12327 	}
12328 
12329 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12330 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12331 		dtrace_dof_error(dof, "DOF has invalid data model");
12332 		return (-1);
12333 	}
12334 
12335 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12336 		dtrace_dof_error(dof, "DOF encoding mismatch");
12337 		return (-1);
12338 	}
12339 
12340 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12341 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12342 		dtrace_dof_error(dof, "DOF version mismatch");
12343 		return (-1);
12344 	}
12345 
12346 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12347 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12348 		return (-1);
12349 	}
12350 
12351 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12352 		dtrace_dof_error(dof, "DOF uses too many integer registers");
12353 		return (-1);
12354 	}
12355 
12356 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12357 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12358 		return (-1);
12359 	}
12360 
12361 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12362 		if (dof->dofh_ident[i] != 0) {
12363 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12364 			return (-1);
12365 		}
12366 	}
12367 
12368 	if (dof->dofh_flags & ~DOF_FL_VALID) {
12369 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12370 		return (-1);
12371 	}
12372 
12373 	if (dof->dofh_secsize == 0) {
12374 		dtrace_dof_error(dof, "zero section header size");
12375 		return (-1);
12376 	}
12377 
12378 	/*
12379 	 * Check that the section headers don't exceed the amount of DOF
12380 	 * data.  Note that we cast the section size and number of sections
12381 	 * to uint64_t's to prevent possible overflow in the multiplication.
12382 	 */
12383 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12384 
12385 	if (dof->dofh_secoff > len || seclen > len ||
12386 	    dof->dofh_secoff + seclen > len) {
12387 		dtrace_dof_error(dof, "truncated section headers");
12388 		return (-1);
12389 	}
12390 
12391 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12392 		dtrace_dof_error(dof, "misaligned section headers");
12393 		return (-1);
12394 	}
12395 
12396 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12397 		dtrace_dof_error(dof, "misaligned section size");
12398 		return (-1);
12399 	}
12400 
12401 	/*
12402 	 * Take an initial pass through the section headers to be sure that
12403 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12404 	 * set, do not permit sections relating to providers, probes, or args.
12405 	 */
12406 	for (i = 0; i < dof->dofh_secnum; i++) {
12407 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12408 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12409 
12410 		if (noprobes) {
12411 			switch (sec->dofs_type) {
12412 			case DOF_SECT_PROVIDER:
12413 			case DOF_SECT_PROBES:
12414 			case DOF_SECT_PRARGS:
12415 			case DOF_SECT_PROFFS:
12416 				dtrace_dof_error(dof, "illegal sections "
12417 				    "for enabling");
12418 				return (-1);
12419 			}
12420 		}
12421 
12422 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12423 			continue; /* just ignore non-loadable sections */
12424 
12425 		if (sec->dofs_align & (sec->dofs_align - 1)) {
12426 			dtrace_dof_error(dof, "bad section alignment");
12427 			return (-1);
12428 		}
12429 
12430 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12431 			dtrace_dof_error(dof, "misaligned section");
12432 			return (-1);
12433 		}
12434 
12435 		if (sec->dofs_offset > len || sec->dofs_size > len ||
12436 		    sec->dofs_offset + sec->dofs_size > len) {
12437 			dtrace_dof_error(dof, "corrupt section header");
12438 			return (-1);
12439 		}
12440 
12441 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12442 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12443 			dtrace_dof_error(dof, "non-terminating string table");
12444 			return (-1);
12445 		}
12446 	}
12447 
12448 	/*
12449 	 * Take a second pass through the sections and locate and perform any
12450 	 * relocations that are present.  We do this after the first pass to
12451 	 * be sure that all sections have had their headers validated.
12452 	 */
12453 	for (i = 0; i < dof->dofh_secnum; i++) {
12454 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12455 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12456 
12457 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12458 			continue; /* skip sections that are not loadable */
12459 
12460 		switch (sec->dofs_type) {
12461 		case DOF_SECT_URELHDR:
12462 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12463 				return (-1);
12464 			break;
12465 		}
12466 	}
12467 
12468 	if ((enab = *enabp) == NULL)
12469 		enab = *enabp = dtrace_enabling_create(vstate);
12470 
12471 	for (i = 0; i < dof->dofh_secnum; i++) {
12472 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12473 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12474 
12475 		if (sec->dofs_type != DOF_SECT_ECBDESC)
12476 			continue;
12477 
12478 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12479 			dtrace_enabling_destroy(enab);
12480 			*enabp = NULL;
12481 			return (-1);
12482 		}
12483 
12484 		dtrace_enabling_add(enab, ep);
12485 	}
12486 
12487 	return (0);
12488 }
12489 
12490 /*
12491  * Process DOF for any options.  This routine assumes that the DOF has been
12492  * at least processed by dtrace_dof_slurp().
12493  */
12494 static int
12495 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12496 {
12497 	int i, rval;
12498 	uint32_t entsize;
12499 	size_t offs;
12500 	dof_optdesc_t *desc;
12501 
12502 	for (i = 0; i < dof->dofh_secnum; i++) {
12503 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12504 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12505 
12506 		if (sec->dofs_type != DOF_SECT_OPTDESC)
12507 			continue;
12508 
12509 		if (sec->dofs_align != sizeof (uint64_t)) {
12510 			dtrace_dof_error(dof, "bad alignment in "
12511 			    "option description");
12512 			return (EINVAL);
12513 		}
12514 
12515 		if ((entsize = sec->dofs_entsize) == 0) {
12516 			dtrace_dof_error(dof, "zeroed option entry size");
12517 			return (EINVAL);
12518 		}
12519 
12520 		if (entsize < sizeof (dof_optdesc_t)) {
12521 			dtrace_dof_error(dof, "bad option entry size");
12522 			return (EINVAL);
12523 		}
12524 
12525 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12526 			desc = (dof_optdesc_t *)((uintptr_t)dof +
12527 			    (uintptr_t)sec->dofs_offset + offs);
12528 
12529 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12530 				dtrace_dof_error(dof, "non-zero option string");
12531 				return (EINVAL);
12532 			}
12533 
12534 			if (desc->dofo_value == DTRACEOPT_UNSET) {
12535 				dtrace_dof_error(dof, "unset option");
12536 				return (EINVAL);
12537 			}
12538 
12539 			if ((rval = dtrace_state_option(state,
12540 			    desc->dofo_option, desc->dofo_value)) != 0) {
12541 				dtrace_dof_error(dof, "rejected option");
12542 				return (rval);
12543 			}
12544 		}
12545 	}
12546 
12547 	return (0);
12548 }
12549 
12550 /*
12551  * DTrace Consumer State Functions
12552  */
12553 static int
12554 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12555 {
12556 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12557 	void *base;
12558 	uintptr_t limit;
12559 	dtrace_dynvar_t *dvar, *next, *start;
12560 	int i;
12561 
12562 	ASSERT(MUTEX_HELD(&dtrace_lock));
12563 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12564 
12565 	bzero(dstate, sizeof (dtrace_dstate_t));
12566 
12567 	if ((dstate->dtds_chunksize = chunksize) == 0)
12568 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12569 
12570 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12571 		size = min;
12572 
12573 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12574 		return (ENOMEM);
12575 
12576 	dstate->dtds_size = size;
12577 	dstate->dtds_base = base;
12578 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12579 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12580 
12581 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12582 
12583 	if (hashsize != 1 && (hashsize & 1))
12584 		hashsize--;
12585 
12586 	dstate->dtds_hashsize = hashsize;
12587 	dstate->dtds_hash = dstate->dtds_base;
12588 
12589 	/*
12590 	 * Set all of our hash buckets to point to the single sink, and (if
12591 	 * it hasn't already been set), set the sink's hash value to be the
12592 	 * sink sentinel value.  The sink is needed for dynamic variable
12593 	 * lookups to know that they have iterated over an entire, valid hash
12594 	 * chain.
12595 	 */
12596 	for (i = 0; i < hashsize; i++)
12597 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12598 
12599 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12600 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12601 
12602 	/*
12603 	 * Determine number of active CPUs.  Divide free list evenly among
12604 	 * active CPUs.
12605 	 */
12606 	start = (dtrace_dynvar_t *)
12607 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12608 	limit = (uintptr_t)base + size;
12609 
12610 	maxper = (limit - (uintptr_t)start) / NCPU;
12611 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12612 
12613 #if !defined(sun)
12614 	CPU_FOREACH(i) {
12615 #else
12616 	for (i = 0; i < NCPU; i++) {
12617 #endif
12618 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12619 
12620 		/*
12621 		 * If we don't even have enough chunks to make it once through
12622 		 * NCPUs, we're just going to allocate everything to the first
12623 		 * CPU.  And if we're on the last CPU, we're going to allocate
12624 		 * whatever is left over.  In either case, we set the limit to
12625 		 * be the limit of the dynamic variable space.
12626 		 */
12627 		if (maxper == 0 || i == NCPU - 1) {
12628 			limit = (uintptr_t)base + size;
12629 			start = NULL;
12630 		} else {
12631 			limit = (uintptr_t)start + maxper;
12632 			start = (dtrace_dynvar_t *)limit;
12633 		}
12634 
12635 		ASSERT(limit <= (uintptr_t)base + size);
12636 
12637 		for (;;) {
12638 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12639 			    dstate->dtds_chunksize);
12640 
12641 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12642 				break;
12643 
12644 			dvar->dtdv_next = next;
12645 			dvar = next;
12646 		}
12647 
12648 		if (maxper == 0)
12649 			break;
12650 	}
12651 
12652 	return (0);
12653 }
12654 
12655 static void
12656 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12657 {
12658 	ASSERT(MUTEX_HELD(&cpu_lock));
12659 
12660 	if (dstate->dtds_base == NULL)
12661 		return;
12662 
12663 	kmem_free(dstate->dtds_base, dstate->dtds_size);
12664 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12665 }
12666 
12667 static void
12668 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12669 {
12670 	/*
12671 	 * Logical XOR, where are you?
12672 	 */
12673 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12674 
12675 	if (vstate->dtvs_nglobals > 0) {
12676 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12677 		    sizeof (dtrace_statvar_t *));
12678 	}
12679 
12680 	if (vstate->dtvs_ntlocals > 0) {
12681 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12682 		    sizeof (dtrace_difv_t));
12683 	}
12684 
12685 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12686 
12687 	if (vstate->dtvs_nlocals > 0) {
12688 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12689 		    sizeof (dtrace_statvar_t *));
12690 	}
12691 }
12692 
12693 #if defined(sun)
12694 static void
12695 dtrace_state_clean(dtrace_state_t *state)
12696 {
12697 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12698 		return;
12699 
12700 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12701 	dtrace_speculation_clean(state);
12702 }
12703 
12704 static void
12705 dtrace_state_deadman(dtrace_state_t *state)
12706 {
12707 	hrtime_t now;
12708 
12709 	dtrace_sync();
12710 
12711 	now = dtrace_gethrtime();
12712 
12713 	if (state != dtrace_anon.dta_state &&
12714 	    now - state->dts_laststatus >= dtrace_deadman_user)
12715 		return;
12716 
12717 	/*
12718 	 * We must be sure that dts_alive never appears to be less than the
12719 	 * value upon entry to dtrace_state_deadman(), and because we lack a
12720 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12721 	 * store INT64_MAX to it, followed by a memory barrier, followed by
12722 	 * the new value.  This assures that dts_alive never appears to be
12723 	 * less than its true value, regardless of the order in which the
12724 	 * stores to the underlying storage are issued.
12725 	 */
12726 	state->dts_alive = INT64_MAX;
12727 	dtrace_membar_producer();
12728 	state->dts_alive = now;
12729 }
12730 #else
12731 static void
12732 dtrace_state_clean(void *arg)
12733 {
12734 	dtrace_state_t *state = arg;
12735 	dtrace_optval_t *opt = state->dts_options;
12736 
12737 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12738 		return;
12739 
12740 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12741 	dtrace_speculation_clean(state);
12742 
12743 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
12744 	    dtrace_state_clean, state);
12745 }
12746 
12747 static void
12748 dtrace_state_deadman(void *arg)
12749 {
12750 	dtrace_state_t *state = arg;
12751 	hrtime_t now;
12752 
12753 	dtrace_sync();
12754 
12755 	dtrace_debug_output();
12756 
12757 	now = dtrace_gethrtime();
12758 
12759 	if (state != dtrace_anon.dta_state &&
12760 	    now - state->dts_laststatus >= dtrace_deadman_user)
12761 		return;
12762 
12763 	/*
12764 	 * We must be sure that dts_alive never appears to be less than the
12765 	 * value upon entry to dtrace_state_deadman(), and because we lack a
12766 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12767 	 * store INT64_MAX to it, followed by a memory barrier, followed by
12768 	 * the new value.  This assures that dts_alive never appears to be
12769 	 * less than its true value, regardless of the order in which the
12770 	 * stores to the underlying storage are issued.
12771 	 */
12772 	state->dts_alive = INT64_MAX;
12773 	dtrace_membar_producer();
12774 	state->dts_alive = now;
12775 
12776 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
12777 	    dtrace_state_deadman, state);
12778 }
12779 #endif
12780 
12781 static dtrace_state_t *
12782 #if defined(sun)
12783 dtrace_state_create(dev_t *devp, cred_t *cr)
12784 #else
12785 dtrace_state_create(struct cdev *dev)
12786 #endif
12787 {
12788 #if defined(sun)
12789 	minor_t minor;
12790 	major_t major;
12791 #else
12792 	cred_t *cr = NULL;
12793 	int m = 0;
12794 #endif
12795 	char c[30];
12796 	dtrace_state_t *state;
12797 	dtrace_optval_t *opt;
12798 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12799 
12800 	ASSERT(MUTEX_HELD(&dtrace_lock));
12801 	ASSERT(MUTEX_HELD(&cpu_lock));
12802 
12803 #if defined(sun)
12804 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12805 	    VM_BESTFIT | VM_SLEEP);
12806 
12807 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12808 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12809 		return (NULL);
12810 	}
12811 
12812 	state = ddi_get_soft_state(dtrace_softstate, minor);
12813 #else
12814 	if (dev != NULL) {
12815 		cr = dev->si_cred;
12816 		m = dev2unit(dev);
12817 		}
12818 
12819 	/* Allocate memory for the state. */
12820 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
12821 #endif
12822 
12823 	state->dts_epid = DTRACE_EPIDNONE + 1;
12824 
12825 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
12826 #if defined(sun)
12827 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12828 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12829 
12830 	if (devp != NULL) {
12831 		major = getemajor(*devp);
12832 	} else {
12833 		major = ddi_driver_major(dtrace_devi);
12834 	}
12835 
12836 	state->dts_dev = makedevice(major, minor);
12837 
12838 	if (devp != NULL)
12839 		*devp = state->dts_dev;
12840 #else
12841 	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
12842 	state->dts_dev = dev;
12843 #endif
12844 
12845 	/*
12846 	 * We allocate NCPU buffers.  On the one hand, this can be quite
12847 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12848 	 * other hand, it saves an additional memory reference in the probe
12849 	 * path.
12850 	 */
12851 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12852 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12853 
12854 #if defined(sun)
12855 	state->dts_cleaner = CYCLIC_NONE;
12856 	state->dts_deadman = CYCLIC_NONE;
12857 #else
12858 	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
12859 	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
12860 #endif
12861 	state->dts_vstate.dtvs_state = state;
12862 
12863 	for (i = 0; i < DTRACEOPT_MAX; i++)
12864 		state->dts_options[i] = DTRACEOPT_UNSET;
12865 
12866 	/*
12867 	 * Set the default options.
12868 	 */
12869 	opt = state->dts_options;
12870 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12871 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12872 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12873 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12874 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12875 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12876 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12877 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12878 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12879 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12880 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12881 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12882 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12883 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12884 
12885 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12886 
12887 	/*
12888 	 * Depending on the user credentials, we set flag bits which alter probe
12889 	 * visibility or the amount of destructiveness allowed.  In the case of
12890 	 * actual anonymous tracing, or the possession of all privileges, all of
12891 	 * the normal checks are bypassed.
12892 	 */
12893 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12894 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12895 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12896 	} else {
12897 		/*
12898 		 * Set up the credentials for this instantiation.  We take a
12899 		 * hold on the credential to prevent it from disappearing on
12900 		 * us; this in turn prevents the zone_t referenced by this
12901 		 * credential from disappearing.  This means that we can
12902 		 * examine the credential and the zone from probe context.
12903 		 */
12904 		crhold(cr);
12905 		state->dts_cred.dcr_cred = cr;
12906 
12907 		/*
12908 		 * CRA_PROC means "we have *some* privilege for dtrace" and
12909 		 * unlocks the use of variables like pid, zonename, etc.
12910 		 */
12911 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
12912 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
12913 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
12914 		}
12915 
12916 		/*
12917 		 * dtrace_user allows use of syscall and profile providers.
12918 		 * If the user also has proc_owner and/or proc_zone, we
12919 		 * extend the scope to include additional visibility and
12920 		 * destructive power.
12921 		 */
12922 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
12923 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
12924 				state->dts_cred.dcr_visible |=
12925 				    DTRACE_CRV_ALLPROC;
12926 
12927 				state->dts_cred.dcr_action |=
12928 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12929 			}
12930 
12931 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
12932 				state->dts_cred.dcr_visible |=
12933 				    DTRACE_CRV_ALLZONE;
12934 
12935 				state->dts_cred.dcr_action |=
12936 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12937 			}
12938 
12939 			/*
12940 			 * If we have all privs in whatever zone this is,
12941 			 * we can do destructive things to processes which
12942 			 * have altered credentials.
12943 			 */
12944 #if defined(sun)
12945 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12946 			    cr->cr_zone->zone_privset)) {
12947 				state->dts_cred.dcr_action |=
12948 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12949 			}
12950 #endif
12951 		}
12952 
12953 		/*
12954 		 * Holding the dtrace_kernel privilege also implies that
12955 		 * the user has the dtrace_user privilege from a visibility
12956 		 * perspective.  But without further privileges, some
12957 		 * destructive actions are not available.
12958 		 */
12959 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
12960 			/*
12961 			 * Make all probes in all zones visible.  However,
12962 			 * this doesn't mean that all actions become available
12963 			 * to all zones.
12964 			 */
12965 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
12966 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
12967 
12968 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
12969 			    DTRACE_CRA_PROC;
12970 			/*
12971 			 * Holding proc_owner means that destructive actions
12972 			 * for *this* zone are allowed.
12973 			 */
12974 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
12975 				state->dts_cred.dcr_action |=
12976 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
12977 
12978 			/*
12979 			 * Holding proc_zone means that destructive actions
12980 			 * for this user/group ID in all zones is allowed.
12981 			 */
12982 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
12983 				state->dts_cred.dcr_action |=
12984 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
12985 
12986 #if defined(sun)
12987 			/*
12988 			 * If we have all privs in whatever zone this is,
12989 			 * we can do destructive things to processes which
12990 			 * have altered credentials.
12991 			 */
12992 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
12993 			    cr->cr_zone->zone_privset)) {
12994 				state->dts_cred.dcr_action |=
12995 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
12996 			}
12997 #endif
12998 		}
12999 
13000 		/*
13001 		 * Holding the dtrace_proc privilege gives control over fasttrap
13002 		 * and pid providers.  We need to grant wider destructive
13003 		 * privileges in the event that the user has proc_owner and/or
13004 		 * proc_zone.
13005 		 */
13006 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13007 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13008 				state->dts_cred.dcr_action |=
13009 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13010 
13011 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13012 				state->dts_cred.dcr_action |=
13013 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13014 		}
13015 	}
13016 
13017 	return (state);
13018 }
13019 
13020 static int
13021 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13022 {
13023 	dtrace_optval_t *opt = state->dts_options, size;
13024 	processorid_t cpu = 0;;
13025 	int flags = 0, rval;
13026 
13027 	ASSERT(MUTEX_HELD(&dtrace_lock));
13028 	ASSERT(MUTEX_HELD(&cpu_lock));
13029 	ASSERT(which < DTRACEOPT_MAX);
13030 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13031 	    (state == dtrace_anon.dta_state &&
13032 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13033 
13034 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13035 		return (0);
13036 
13037 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13038 		cpu = opt[DTRACEOPT_CPU];
13039 
13040 	if (which == DTRACEOPT_SPECSIZE)
13041 		flags |= DTRACEBUF_NOSWITCH;
13042 
13043 	if (which == DTRACEOPT_BUFSIZE) {
13044 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13045 			flags |= DTRACEBUF_RING;
13046 
13047 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13048 			flags |= DTRACEBUF_FILL;
13049 
13050 		if (state != dtrace_anon.dta_state ||
13051 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13052 			flags |= DTRACEBUF_INACTIVE;
13053 	}
13054 
13055 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13056 		/*
13057 		 * The size must be 8-byte aligned.  If the size is not 8-byte
13058 		 * aligned, drop it down by the difference.
13059 		 */
13060 		if (size & (sizeof (uint64_t) - 1))
13061 			size -= size & (sizeof (uint64_t) - 1);
13062 
13063 		if (size < state->dts_reserve) {
13064 			/*
13065 			 * Buffers always must be large enough to accommodate
13066 			 * their prereserved space.  We return E2BIG instead
13067 			 * of ENOMEM in this case to allow for user-level
13068 			 * software to differentiate the cases.
13069 			 */
13070 			return (E2BIG);
13071 		}
13072 
13073 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13074 
13075 		if (rval != ENOMEM) {
13076 			opt[which] = size;
13077 			return (rval);
13078 		}
13079 
13080 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13081 			return (rval);
13082 	}
13083 
13084 	return (ENOMEM);
13085 }
13086 
13087 static int
13088 dtrace_state_buffers(dtrace_state_t *state)
13089 {
13090 	dtrace_speculation_t *spec = state->dts_speculations;
13091 	int rval, i;
13092 
13093 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13094 	    DTRACEOPT_BUFSIZE)) != 0)
13095 		return (rval);
13096 
13097 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13098 	    DTRACEOPT_AGGSIZE)) != 0)
13099 		return (rval);
13100 
13101 	for (i = 0; i < state->dts_nspeculations; i++) {
13102 		if ((rval = dtrace_state_buffer(state,
13103 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13104 			return (rval);
13105 	}
13106 
13107 	return (0);
13108 }
13109 
13110 static void
13111 dtrace_state_prereserve(dtrace_state_t *state)
13112 {
13113 	dtrace_ecb_t *ecb;
13114 	dtrace_probe_t *probe;
13115 
13116 	state->dts_reserve = 0;
13117 
13118 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13119 		return;
13120 
13121 	/*
13122 	 * If our buffer policy is a "fill" buffer policy, we need to set the
13123 	 * prereserved space to be the space required by the END probes.
13124 	 */
13125 	probe = dtrace_probes[dtrace_probeid_end - 1];
13126 	ASSERT(probe != NULL);
13127 
13128 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13129 		if (ecb->dte_state != state)
13130 			continue;
13131 
13132 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13133 	}
13134 }
13135 
13136 static int
13137 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13138 {
13139 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13140 	dtrace_speculation_t *spec;
13141 	dtrace_buffer_t *buf;
13142 #if defined(sun)
13143 	cyc_handler_t hdlr;
13144 	cyc_time_t when;
13145 #endif
13146 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13147 	dtrace_icookie_t cookie;
13148 
13149 	mutex_enter(&cpu_lock);
13150 	mutex_enter(&dtrace_lock);
13151 
13152 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13153 		rval = EBUSY;
13154 		goto out;
13155 	}
13156 
13157 	/*
13158 	 * Before we can perform any checks, we must prime all of the
13159 	 * retained enablings that correspond to this state.
13160 	 */
13161 	dtrace_enabling_prime(state);
13162 
13163 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13164 		rval = EACCES;
13165 		goto out;
13166 	}
13167 
13168 	dtrace_state_prereserve(state);
13169 
13170 	/*
13171 	 * Now we want to do is try to allocate our speculations.
13172 	 * We do not automatically resize the number of speculations; if
13173 	 * this fails, we will fail the operation.
13174 	 */
13175 	nspec = opt[DTRACEOPT_NSPEC];
13176 	ASSERT(nspec != DTRACEOPT_UNSET);
13177 
13178 	if (nspec > INT_MAX) {
13179 		rval = ENOMEM;
13180 		goto out;
13181 	}
13182 
13183 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13184 
13185 	if (spec == NULL) {
13186 		rval = ENOMEM;
13187 		goto out;
13188 	}
13189 
13190 	state->dts_speculations = spec;
13191 	state->dts_nspeculations = (int)nspec;
13192 
13193 	for (i = 0; i < nspec; i++) {
13194 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13195 			rval = ENOMEM;
13196 			goto err;
13197 		}
13198 
13199 		spec[i].dtsp_buffer = buf;
13200 	}
13201 
13202 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13203 		if (dtrace_anon.dta_state == NULL) {
13204 			rval = ENOENT;
13205 			goto out;
13206 		}
13207 
13208 		if (state->dts_necbs != 0) {
13209 			rval = EALREADY;
13210 			goto out;
13211 		}
13212 
13213 		state->dts_anon = dtrace_anon_grab();
13214 		ASSERT(state->dts_anon != NULL);
13215 		state = state->dts_anon;
13216 
13217 		/*
13218 		 * We want "grabanon" to be set in the grabbed state, so we'll
13219 		 * copy that option value from the grabbing state into the
13220 		 * grabbed state.
13221 		 */
13222 		state->dts_options[DTRACEOPT_GRABANON] =
13223 		    opt[DTRACEOPT_GRABANON];
13224 
13225 		*cpu = dtrace_anon.dta_beganon;
13226 
13227 		/*
13228 		 * If the anonymous state is active (as it almost certainly
13229 		 * is if the anonymous enabling ultimately matched anything),
13230 		 * we don't allow any further option processing -- but we
13231 		 * don't return failure.
13232 		 */
13233 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13234 			goto out;
13235 	}
13236 
13237 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13238 	    opt[DTRACEOPT_AGGSIZE] != 0) {
13239 		if (state->dts_aggregations == NULL) {
13240 			/*
13241 			 * We're not going to create an aggregation buffer
13242 			 * because we don't have any ECBs that contain
13243 			 * aggregations -- set this option to 0.
13244 			 */
13245 			opt[DTRACEOPT_AGGSIZE] = 0;
13246 		} else {
13247 			/*
13248 			 * If we have an aggregation buffer, we must also have
13249 			 * a buffer to use as scratch.
13250 			 */
13251 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13252 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13253 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13254 			}
13255 		}
13256 	}
13257 
13258 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13259 	    opt[DTRACEOPT_SPECSIZE] != 0) {
13260 		if (!state->dts_speculates) {
13261 			/*
13262 			 * We're not going to create speculation buffers
13263 			 * because we don't have any ECBs that actually
13264 			 * speculate -- set the speculation size to 0.
13265 			 */
13266 			opt[DTRACEOPT_SPECSIZE] = 0;
13267 		}
13268 	}
13269 
13270 	/*
13271 	 * The bare minimum size for any buffer that we're actually going to
13272 	 * do anything to is sizeof (uint64_t).
13273 	 */
13274 	sz = sizeof (uint64_t);
13275 
13276 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13277 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13278 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13279 		/*
13280 		 * A buffer size has been explicitly set to 0 (or to a size
13281 		 * that will be adjusted to 0) and we need the space -- we
13282 		 * need to return failure.  We return ENOSPC to differentiate
13283 		 * it from failing to allocate a buffer due to failure to meet
13284 		 * the reserve (for which we return E2BIG).
13285 		 */
13286 		rval = ENOSPC;
13287 		goto out;
13288 	}
13289 
13290 	if ((rval = dtrace_state_buffers(state)) != 0)
13291 		goto err;
13292 
13293 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13294 		sz = dtrace_dstate_defsize;
13295 
13296 	do {
13297 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13298 
13299 		if (rval == 0)
13300 			break;
13301 
13302 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13303 			goto err;
13304 	} while (sz >>= 1);
13305 
13306 	opt[DTRACEOPT_DYNVARSIZE] = sz;
13307 
13308 	if (rval != 0)
13309 		goto err;
13310 
13311 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13312 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13313 
13314 	if (opt[DTRACEOPT_CLEANRATE] == 0)
13315 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13316 
13317 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13318 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13319 
13320 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13321 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13322 
13323 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13324 #if defined(sun)
13325 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13326 	hdlr.cyh_arg = state;
13327 	hdlr.cyh_level = CY_LOW_LEVEL;
13328 
13329 	when.cyt_when = 0;
13330 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13331 
13332 	state->dts_cleaner = cyclic_add(&hdlr, &when);
13333 
13334 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13335 	hdlr.cyh_arg = state;
13336 	hdlr.cyh_level = CY_LOW_LEVEL;
13337 
13338 	when.cyt_when = 0;
13339 	when.cyt_interval = dtrace_deadman_interval;
13340 
13341 	state->dts_deadman = cyclic_add(&hdlr, &when);
13342 #else
13343 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13344 	    dtrace_state_clean, state);
13345 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13346 	    dtrace_state_deadman, state);
13347 #endif
13348 
13349 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13350 
13351 	/*
13352 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13353 	 * interrupts here both to record the CPU on which we fired the BEGIN
13354 	 * probe (the data from this CPU will be processed first at user
13355 	 * level) and to manually activate the buffer for this CPU.
13356 	 */
13357 	cookie = dtrace_interrupt_disable();
13358 	*cpu = curcpu;
13359 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13360 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13361 
13362 	dtrace_probe(dtrace_probeid_begin,
13363 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13364 	dtrace_interrupt_enable(cookie);
13365 	/*
13366 	 * We may have had an exit action from a BEGIN probe; only change our
13367 	 * state to ACTIVE if we're still in WARMUP.
13368 	 */
13369 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13370 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13371 
13372 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13373 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13374 
13375 	/*
13376 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13377 	 * want each CPU to transition its principal buffer out of the
13378 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13379 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13380 	 * atomically transition from processing none of a state's ECBs to
13381 	 * processing all of them.
13382 	 */
13383 	dtrace_xcall(DTRACE_CPUALL,
13384 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13385 	goto out;
13386 
13387 err:
13388 	dtrace_buffer_free(state->dts_buffer);
13389 	dtrace_buffer_free(state->dts_aggbuffer);
13390 
13391 	if ((nspec = state->dts_nspeculations) == 0) {
13392 		ASSERT(state->dts_speculations == NULL);
13393 		goto out;
13394 	}
13395 
13396 	spec = state->dts_speculations;
13397 	ASSERT(spec != NULL);
13398 
13399 	for (i = 0; i < state->dts_nspeculations; i++) {
13400 		if ((buf = spec[i].dtsp_buffer) == NULL)
13401 			break;
13402 
13403 		dtrace_buffer_free(buf);
13404 		kmem_free(buf, bufsize);
13405 	}
13406 
13407 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13408 	state->dts_nspeculations = 0;
13409 	state->dts_speculations = NULL;
13410 
13411 out:
13412 	mutex_exit(&dtrace_lock);
13413 	mutex_exit(&cpu_lock);
13414 
13415 	return (rval);
13416 }
13417 
13418 static int
13419 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13420 {
13421 	dtrace_icookie_t cookie;
13422 
13423 	ASSERT(MUTEX_HELD(&dtrace_lock));
13424 
13425 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13426 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13427 		return (EINVAL);
13428 
13429 	/*
13430 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13431 	 * to be sure that every CPU has seen it.  See below for the details
13432 	 * on why this is done.
13433 	 */
13434 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13435 	dtrace_sync();
13436 
13437 	/*
13438 	 * By this point, it is impossible for any CPU to be still processing
13439 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13440 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13441 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13442 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13443 	 * iff we're in the END probe.
13444 	 */
13445 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13446 	dtrace_sync();
13447 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13448 
13449 	/*
13450 	 * Finally, we can release the reserve and call the END probe.  We
13451 	 * disable interrupts across calling the END probe to allow us to
13452 	 * return the CPU on which we actually called the END probe.  This
13453 	 * allows user-land to be sure that this CPU's principal buffer is
13454 	 * processed last.
13455 	 */
13456 	state->dts_reserve = 0;
13457 
13458 	cookie = dtrace_interrupt_disable();
13459 	*cpu = curcpu;
13460 	dtrace_probe(dtrace_probeid_end,
13461 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13462 	dtrace_interrupt_enable(cookie);
13463 
13464 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13465 	dtrace_sync();
13466 
13467 	return (0);
13468 }
13469 
13470 static int
13471 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13472     dtrace_optval_t val)
13473 {
13474 	ASSERT(MUTEX_HELD(&dtrace_lock));
13475 
13476 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13477 		return (EBUSY);
13478 
13479 	if (option >= DTRACEOPT_MAX)
13480 		return (EINVAL);
13481 
13482 	if (option != DTRACEOPT_CPU && val < 0)
13483 		return (EINVAL);
13484 
13485 	switch (option) {
13486 	case DTRACEOPT_DESTRUCTIVE:
13487 		if (dtrace_destructive_disallow)
13488 			return (EACCES);
13489 
13490 		state->dts_cred.dcr_destructive = 1;
13491 		break;
13492 
13493 	case DTRACEOPT_BUFSIZE:
13494 	case DTRACEOPT_DYNVARSIZE:
13495 	case DTRACEOPT_AGGSIZE:
13496 	case DTRACEOPT_SPECSIZE:
13497 	case DTRACEOPT_STRSIZE:
13498 		if (val < 0)
13499 			return (EINVAL);
13500 
13501 		if (val >= LONG_MAX) {
13502 			/*
13503 			 * If this is an otherwise negative value, set it to
13504 			 * the highest multiple of 128m less than LONG_MAX.
13505 			 * Technically, we're adjusting the size without
13506 			 * regard to the buffer resizing policy, but in fact,
13507 			 * this has no effect -- if we set the buffer size to
13508 			 * ~LONG_MAX and the buffer policy is ultimately set to
13509 			 * be "manual", the buffer allocation is guaranteed to
13510 			 * fail, if only because the allocation requires two
13511 			 * buffers.  (We set the the size to the highest
13512 			 * multiple of 128m because it ensures that the size
13513 			 * will remain a multiple of a megabyte when
13514 			 * repeatedly halved -- all the way down to 15m.)
13515 			 */
13516 			val = LONG_MAX - (1 << 27) + 1;
13517 		}
13518 	}
13519 
13520 	state->dts_options[option] = val;
13521 
13522 	return (0);
13523 }
13524 
13525 static void
13526 dtrace_state_destroy(dtrace_state_t *state)
13527 {
13528 	dtrace_ecb_t *ecb;
13529 	dtrace_vstate_t *vstate = &state->dts_vstate;
13530 #if defined(sun)
13531 	minor_t minor = getminor(state->dts_dev);
13532 #endif
13533 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13534 	dtrace_speculation_t *spec = state->dts_speculations;
13535 	int nspec = state->dts_nspeculations;
13536 	uint32_t match;
13537 
13538 	ASSERT(MUTEX_HELD(&dtrace_lock));
13539 	ASSERT(MUTEX_HELD(&cpu_lock));
13540 
13541 	/*
13542 	 * First, retract any retained enablings for this state.
13543 	 */
13544 	dtrace_enabling_retract(state);
13545 	ASSERT(state->dts_nretained == 0);
13546 
13547 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13548 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13549 		/*
13550 		 * We have managed to come into dtrace_state_destroy() on a
13551 		 * hot enabling -- almost certainly because of a disorderly
13552 		 * shutdown of a consumer.  (That is, a consumer that is
13553 		 * exiting without having called dtrace_stop().) In this case,
13554 		 * we're going to set our activity to be KILLED, and then
13555 		 * issue a sync to be sure that everyone is out of probe
13556 		 * context before we start blowing away ECBs.
13557 		 */
13558 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13559 		dtrace_sync();
13560 	}
13561 
13562 	/*
13563 	 * Release the credential hold we took in dtrace_state_create().
13564 	 */
13565 	if (state->dts_cred.dcr_cred != NULL)
13566 		crfree(state->dts_cred.dcr_cred);
13567 
13568 	/*
13569 	 * Now we can safely disable and destroy any enabled probes.  Because
13570 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13571 	 * (especially if they're all enabled), we take two passes through the
13572 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13573 	 * in the second we disable whatever is left over.
13574 	 */
13575 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13576 		for (i = 0; i < state->dts_necbs; i++) {
13577 			if ((ecb = state->dts_ecbs[i]) == NULL)
13578 				continue;
13579 
13580 			if (match && ecb->dte_probe != NULL) {
13581 				dtrace_probe_t *probe = ecb->dte_probe;
13582 				dtrace_provider_t *prov = probe->dtpr_provider;
13583 
13584 				if (!(prov->dtpv_priv.dtpp_flags & match))
13585 					continue;
13586 			}
13587 
13588 			dtrace_ecb_disable(ecb);
13589 			dtrace_ecb_destroy(ecb);
13590 		}
13591 
13592 		if (!match)
13593 			break;
13594 	}
13595 
13596 	/*
13597 	 * Before we free the buffers, perform one more sync to assure that
13598 	 * every CPU is out of probe context.
13599 	 */
13600 	dtrace_sync();
13601 
13602 	dtrace_buffer_free(state->dts_buffer);
13603 	dtrace_buffer_free(state->dts_aggbuffer);
13604 
13605 	for (i = 0; i < nspec; i++)
13606 		dtrace_buffer_free(spec[i].dtsp_buffer);
13607 
13608 #if defined(sun)
13609 	if (state->dts_cleaner != CYCLIC_NONE)
13610 		cyclic_remove(state->dts_cleaner);
13611 
13612 	if (state->dts_deadman != CYCLIC_NONE)
13613 		cyclic_remove(state->dts_deadman);
13614 #else
13615 	callout_stop(&state->dts_cleaner);
13616 	callout_drain(&state->dts_cleaner);
13617 	callout_stop(&state->dts_deadman);
13618 	callout_drain(&state->dts_deadman);
13619 #endif
13620 
13621 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13622 	dtrace_vstate_fini(vstate);
13623 	if (state->dts_ecbs != NULL)
13624 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13625 
13626 	if (state->dts_aggregations != NULL) {
13627 #ifdef DEBUG
13628 		for (i = 0; i < state->dts_naggregations; i++)
13629 			ASSERT(state->dts_aggregations[i] == NULL);
13630 #endif
13631 		ASSERT(state->dts_naggregations > 0);
13632 		kmem_free(state->dts_aggregations,
13633 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13634 	}
13635 
13636 	kmem_free(state->dts_buffer, bufsize);
13637 	kmem_free(state->dts_aggbuffer, bufsize);
13638 
13639 	for (i = 0; i < nspec; i++)
13640 		kmem_free(spec[i].dtsp_buffer, bufsize);
13641 
13642 	if (spec != NULL)
13643 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13644 
13645 	dtrace_format_destroy(state);
13646 
13647 	if (state->dts_aggid_arena != NULL) {
13648 #if defined(sun)
13649 		vmem_destroy(state->dts_aggid_arena);
13650 #else
13651 		delete_unrhdr(state->dts_aggid_arena);
13652 #endif
13653 		state->dts_aggid_arena = NULL;
13654 	}
13655 #if defined(sun)
13656 	ddi_soft_state_free(dtrace_softstate, minor);
13657 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13658 #endif
13659 }
13660 
13661 /*
13662  * DTrace Anonymous Enabling Functions
13663  */
13664 static dtrace_state_t *
13665 dtrace_anon_grab(void)
13666 {
13667 	dtrace_state_t *state;
13668 
13669 	ASSERT(MUTEX_HELD(&dtrace_lock));
13670 
13671 	if ((state = dtrace_anon.dta_state) == NULL) {
13672 		ASSERT(dtrace_anon.dta_enabling == NULL);
13673 		return (NULL);
13674 	}
13675 
13676 	ASSERT(dtrace_anon.dta_enabling != NULL);
13677 	ASSERT(dtrace_retained != NULL);
13678 
13679 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13680 	dtrace_anon.dta_enabling = NULL;
13681 	dtrace_anon.dta_state = NULL;
13682 
13683 	return (state);
13684 }
13685 
13686 static void
13687 dtrace_anon_property(void)
13688 {
13689 	int i, rv;
13690 	dtrace_state_t *state;
13691 	dof_hdr_t *dof;
13692 	char c[32];		/* enough for "dof-data-" + digits */
13693 
13694 	ASSERT(MUTEX_HELD(&dtrace_lock));
13695 	ASSERT(MUTEX_HELD(&cpu_lock));
13696 
13697 	for (i = 0; ; i++) {
13698 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13699 
13700 		dtrace_err_verbose = 1;
13701 
13702 		if ((dof = dtrace_dof_property(c)) == NULL) {
13703 			dtrace_err_verbose = 0;
13704 			break;
13705 		}
13706 
13707 #if defined(sun)
13708 		/*
13709 		 * We want to create anonymous state, so we need to transition
13710 		 * the kernel debugger to indicate that DTrace is active.  If
13711 		 * this fails (e.g. because the debugger has modified text in
13712 		 * some way), we won't continue with the processing.
13713 		 */
13714 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13715 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13716 			    "enabling ignored.");
13717 			dtrace_dof_destroy(dof);
13718 			break;
13719 		}
13720 #endif
13721 
13722 		/*
13723 		 * If we haven't allocated an anonymous state, we'll do so now.
13724 		 */
13725 		if ((state = dtrace_anon.dta_state) == NULL) {
13726 #if defined(sun)
13727 			state = dtrace_state_create(NULL, NULL);
13728 #else
13729 			state = dtrace_state_create(NULL);
13730 #endif
13731 			dtrace_anon.dta_state = state;
13732 
13733 			if (state == NULL) {
13734 				/*
13735 				 * This basically shouldn't happen:  the only
13736 				 * failure mode from dtrace_state_create() is a
13737 				 * failure of ddi_soft_state_zalloc() that
13738 				 * itself should never happen.  Still, the
13739 				 * interface allows for a failure mode, and
13740 				 * we want to fail as gracefully as possible:
13741 				 * we'll emit an error message and cease
13742 				 * processing anonymous state in this case.
13743 				 */
13744 				cmn_err(CE_WARN, "failed to create "
13745 				    "anonymous state");
13746 				dtrace_dof_destroy(dof);
13747 				break;
13748 			}
13749 		}
13750 
13751 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13752 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13753 
13754 		if (rv == 0)
13755 			rv = dtrace_dof_options(dof, state);
13756 
13757 		dtrace_err_verbose = 0;
13758 		dtrace_dof_destroy(dof);
13759 
13760 		if (rv != 0) {
13761 			/*
13762 			 * This is malformed DOF; chuck any anonymous state
13763 			 * that we created.
13764 			 */
13765 			ASSERT(dtrace_anon.dta_enabling == NULL);
13766 			dtrace_state_destroy(state);
13767 			dtrace_anon.dta_state = NULL;
13768 			break;
13769 		}
13770 
13771 		ASSERT(dtrace_anon.dta_enabling != NULL);
13772 	}
13773 
13774 	if (dtrace_anon.dta_enabling != NULL) {
13775 		int rval;
13776 
13777 		/*
13778 		 * dtrace_enabling_retain() can only fail because we are
13779 		 * trying to retain more enablings than are allowed -- but
13780 		 * we only have one anonymous enabling, and we are guaranteed
13781 		 * to be allowed at least one retained enabling; we assert
13782 		 * that dtrace_enabling_retain() returns success.
13783 		 */
13784 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13785 		ASSERT(rval == 0);
13786 
13787 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13788 	}
13789 }
13790 
13791 /*
13792  * DTrace Helper Functions
13793  */
13794 static void
13795 dtrace_helper_trace(dtrace_helper_action_t *helper,
13796     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13797 {
13798 	uint32_t size, next, nnext, i;
13799 	dtrace_helptrace_t *ent;
13800 	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
13801 
13802 	if (!dtrace_helptrace_enabled)
13803 		return;
13804 
13805 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13806 
13807 	/*
13808 	 * What would a tracing framework be without its own tracing
13809 	 * framework?  (Well, a hell of a lot simpler, for starters...)
13810 	 */
13811 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13812 	    sizeof (uint64_t) - sizeof (uint64_t);
13813 
13814 	/*
13815 	 * Iterate until we can allocate a slot in the trace buffer.
13816 	 */
13817 	do {
13818 		next = dtrace_helptrace_next;
13819 
13820 		if (next + size < dtrace_helptrace_bufsize) {
13821 			nnext = next + size;
13822 		} else {
13823 			nnext = size;
13824 		}
13825 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13826 
13827 	/*
13828 	 * We have our slot; fill it in.
13829 	 */
13830 	if (nnext == size)
13831 		next = 0;
13832 
13833 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13834 	ent->dtht_helper = helper;
13835 	ent->dtht_where = where;
13836 	ent->dtht_nlocals = vstate->dtvs_nlocals;
13837 
13838 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13839 	    mstate->dtms_fltoffs : -1;
13840 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13841 	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
13842 
13843 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13844 		dtrace_statvar_t *svar;
13845 
13846 		if ((svar = vstate->dtvs_locals[i]) == NULL)
13847 			continue;
13848 
13849 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13850 		ent->dtht_locals[i] =
13851 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
13852 	}
13853 }
13854 
13855 static uint64_t
13856 dtrace_helper(int which, dtrace_mstate_t *mstate,
13857     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13858 {
13859 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
13860 	uint64_t sarg0 = mstate->dtms_arg[0];
13861 	uint64_t sarg1 = mstate->dtms_arg[1];
13862 	uint64_t rval = 0;
13863 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13864 	dtrace_helper_action_t *helper;
13865 	dtrace_vstate_t *vstate;
13866 	dtrace_difo_t *pred;
13867 	int i, trace = dtrace_helptrace_enabled;
13868 
13869 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13870 
13871 	if (helpers == NULL)
13872 		return (0);
13873 
13874 	if ((helper = helpers->dthps_actions[which]) == NULL)
13875 		return (0);
13876 
13877 	vstate = &helpers->dthps_vstate;
13878 	mstate->dtms_arg[0] = arg0;
13879 	mstate->dtms_arg[1] = arg1;
13880 
13881 	/*
13882 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13883 	 * we'll call the corresponding actions.  Note that the below calls
13884 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13885 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13886 	 * the stored DIF offset with its own (which is the desired behavior).
13887 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13888 	 * from machine state; this is okay, too.
13889 	 */
13890 	for (; helper != NULL; helper = helper->dtha_next) {
13891 		if ((pred = helper->dtha_predicate) != NULL) {
13892 			if (trace)
13893 				dtrace_helper_trace(helper, mstate, vstate, 0);
13894 
13895 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13896 				goto next;
13897 
13898 			if (*flags & CPU_DTRACE_FAULT)
13899 				goto err;
13900 		}
13901 
13902 		for (i = 0; i < helper->dtha_nactions; i++) {
13903 			if (trace)
13904 				dtrace_helper_trace(helper,
13905 				    mstate, vstate, i + 1);
13906 
13907 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
13908 			    mstate, vstate, state);
13909 
13910 			if (*flags & CPU_DTRACE_FAULT)
13911 				goto err;
13912 		}
13913 
13914 next:
13915 		if (trace)
13916 			dtrace_helper_trace(helper, mstate, vstate,
13917 			    DTRACE_HELPTRACE_NEXT);
13918 	}
13919 
13920 	if (trace)
13921 		dtrace_helper_trace(helper, mstate, vstate,
13922 		    DTRACE_HELPTRACE_DONE);
13923 
13924 	/*
13925 	 * Restore the arg0 that we saved upon entry.
13926 	 */
13927 	mstate->dtms_arg[0] = sarg0;
13928 	mstate->dtms_arg[1] = sarg1;
13929 
13930 	return (rval);
13931 
13932 err:
13933 	if (trace)
13934 		dtrace_helper_trace(helper, mstate, vstate,
13935 		    DTRACE_HELPTRACE_ERR);
13936 
13937 	/*
13938 	 * Restore the arg0 that we saved upon entry.
13939 	 */
13940 	mstate->dtms_arg[0] = sarg0;
13941 	mstate->dtms_arg[1] = sarg1;
13942 
13943 	return (0);
13944 }
13945 
13946 static void
13947 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
13948     dtrace_vstate_t *vstate)
13949 {
13950 	int i;
13951 
13952 	if (helper->dtha_predicate != NULL)
13953 		dtrace_difo_release(helper->dtha_predicate, vstate);
13954 
13955 	for (i = 0; i < helper->dtha_nactions; i++) {
13956 		ASSERT(helper->dtha_actions[i] != NULL);
13957 		dtrace_difo_release(helper->dtha_actions[i], vstate);
13958 	}
13959 
13960 	kmem_free(helper->dtha_actions,
13961 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
13962 	kmem_free(helper, sizeof (dtrace_helper_action_t));
13963 }
13964 
13965 static int
13966 dtrace_helper_destroygen(int gen)
13967 {
13968 	proc_t *p = curproc;
13969 	dtrace_helpers_t *help = p->p_dtrace_helpers;
13970 	dtrace_vstate_t *vstate;
13971 	int i;
13972 
13973 	ASSERT(MUTEX_HELD(&dtrace_lock));
13974 
13975 	if (help == NULL || gen > help->dthps_generation)
13976 		return (EINVAL);
13977 
13978 	vstate = &help->dthps_vstate;
13979 
13980 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
13981 		dtrace_helper_action_t *last = NULL, *h, *next;
13982 
13983 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
13984 			next = h->dtha_next;
13985 
13986 			if (h->dtha_generation == gen) {
13987 				if (last != NULL) {
13988 					last->dtha_next = next;
13989 				} else {
13990 					help->dthps_actions[i] = next;
13991 				}
13992 
13993 				dtrace_helper_action_destroy(h, vstate);
13994 			} else {
13995 				last = h;
13996 			}
13997 		}
13998 	}
13999 
14000 	/*
14001 	 * Interate until we've cleared out all helper providers with the
14002 	 * given generation number.
14003 	 */
14004 	for (;;) {
14005 		dtrace_helper_provider_t *prov;
14006 
14007 		/*
14008 		 * Look for a helper provider with the right generation. We
14009 		 * have to start back at the beginning of the list each time
14010 		 * because we drop dtrace_lock. It's unlikely that we'll make
14011 		 * more than two passes.
14012 		 */
14013 		for (i = 0; i < help->dthps_nprovs; i++) {
14014 			prov = help->dthps_provs[i];
14015 
14016 			if (prov->dthp_generation == gen)
14017 				break;
14018 		}
14019 
14020 		/*
14021 		 * If there were no matches, we're done.
14022 		 */
14023 		if (i == help->dthps_nprovs)
14024 			break;
14025 
14026 		/*
14027 		 * Move the last helper provider into this slot.
14028 		 */
14029 		help->dthps_nprovs--;
14030 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14031 		help->dthps_provs[help->dthps_nprovs] = NULL;
14032 
14033 		mutex_exit(&dtrace_lock);
14034 
14035 		/*
14036 		 * If we have a meta provider, remove this helper provider.
14037 		 */
14038 		mutex_enter(&dtrace_meta_lock);
14039 		if (dtrace_meta_pid != NULL) {
14040 			ASSERT(dtrace_deferred_pid == NULL);
14041 			dtrace_helper_provider_remove(&prov->dthp_prov,
14042 			    p->p_pid);
14043 		}
14044 		mutex_exit(&dtrace_meta_lock);
14045 
14046 		dtrace_helper_provider_destroy(prov);
14047 
14048 		mutex_enter(&dtrace_lock);
14049 	}
14050 
14051 	return (0);
14052 }
14053 
14054 static int
14055 dtrace_helper_validate(dtrace_helper_action_t *helper)
14056 {
14057 	int err = 0, i;
14058 	dtrace_difo_t *dp;
14059 
14060 	if ((dp = helper->dtha_predicate) != NULL)
14061 		err += dtrace_difo_validate_helper(dp);
14062 
14063 	for (i = 0; i < helper->dtha_nactions; i++)
14064 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14065 
14066 	return (err == 0);
14067 }
14068 
14069 static int
14070 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14071 {
14072 	dtrace_helpers_t *help;
14073 	dtrace_helper_action_t *helper, *last;
14074 	dtrace_actdesc_t *act;
14075 	dtrace_vstate_t *vstate;
14076 	dtrace_predicate_t *pred;
14077 	int count = 0, nactions = 0, i;
14078 
14079 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14080 		return (EINVAL);
14081 
14082 	help = curproc->p_dtrace_helpers;
14083 	last = help->dthps_actions[which];
14084 	vstate = &help->dthps_vstate;
14085 
14086 	for (count = 0; last != NULL; last = last->dtha_next) {
14087 		count++;
14088 		if (last->dtha_next == NULL)
14089 			break;
14090 	}
14091 
14092 	/*
14093 	 * If we already have dtrace_helper_actions_max helper actions for this
14094 	 * helper action type, we'll refuse to add a new one.
14095 	 */
14096 	if (count >= dtrace_helper_actions_max)
14097 		return (ENOSPC);
14098 
14099 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14100 	helper->dtha_generation = help->dthps_generation;
14101 
14102 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14103 		ASSERT(pred->dtp_difo != NULL);
14104 		dtrace_difo_hold(pred->dtp_difo);
14105 		helper->dtha_predicate = pred->dtp_difo;
14106 	}
14107 
14108 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14109 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14110 			goto err;
14111 
14112 		if (act->dtad_difo == NULL)
14113 			goto err;
14114 
14115 		nactions++;
14116 	}
14117 
14118 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14119 	    (helper->dtha_nactions = nactions), KM_SLEEP);
14120 
14121 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14122 		dtrace_difo_hold(act->dtad_difo);
14123 		helper->dtha_actions[i++] = act->dtad_difo;
14124 	}
14125 
14126 	if (!dtrace_helper_validate(helper))
14127 		goto err;
14128 
14129 	if (last == NULL) {
14130 		help->dthps_actions[which] = helper;
14131 	} else {
14132 		last->dtha_next = helper;
14133 	}
14134 
14135 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14136 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14137 		dtrace_helptrace_next = 0;
14138 	}
14139 
14140 	return (0);
14141 err:
14142 	dtrace_helper_action_destroy(helper, vstate);
14143 	return (EINVAL);
14144 }
14145 
14146 static void
14147 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14148     dof_helper_t *dofhp)
14149 {
14150 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14151 
14152 	mutex_enter(&dtrace_meta_lock);
14153 	mutex_enter(&dtrace_lock);
14154 
14155 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14156 		/*
14157 		 * If the dtrace module is loaded but not attached, or if
14158 		 * there aren't isn't a meta provider registered to deal with
14159 		 * these provider descriptions, we need to postpone creating
14160 		 * the actual providers until later.
14161 		 */
14162 
14163 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14164 		    dtrace_deferred_pid != help) {
14165 			help->dthps_deferred = 1;
14166 			help->dthps_pid = p->p_pid;
14167 			help->dthps_next = dtrace_deferred_pid;
14168 			help->dthps_prev = NULL;
14169 			if (dtrace_deferred_pid != NULL)
14170 				dtrace_deferred_pid->dthps_prev = help;
14171 			dtrace_deferred_pid = help;
14172 		}
14173 
14174 		mutex_exit(&dtrace_lock);
14175 
14176 	} else if (dofhp != NULL) {
14177 		/*
14178 		 * If the dtrace module is loaded and we have a particular
14179 		 * helper provider description, pass that off to the
14180 		 * meta provider.
14181 		 */
14182 
14183 		mutex_exit(&dtrace_lock);
14184 
14185 		dtrace_helper_provide(dofhp, p->p_pid);
14186 
14187 	} else {
14188 		/*
14189 		 * Otherwise, just pass all the helper provider descriptions
14190 		 * off to the meta provider.
14191 		 */
14192 
14193 		int i;
14194 		mutex_exit(&dtrace_lock);
14195 
14196 		for (i = 0; i < help->dthps_nprovs; i++) {
14197 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14198 			    p->p_pid);
14199 		}
14200 	}
14201 
14202 	mutex_exit(&dtrace_meta_lock);
14203 }
14204 
14205 static int
14206 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14207 {
14208 	dtrace_helpers_t *help;
14209 	dtrace_helper_provider_t *hprov, **tmp_provs;
14210 	uint_t tmp_maxprovs, i;
14211 
14212 	ASSERT(MUTEX_HELD(&dtrace_lock));
14213 
14214 	help = curproc->p_dtrace_helpers;
14215 	ASSERT(help != NULL);
14216 
14217 	/*
14218 	 * If we already have dtrace_helper_providers_max helper providers,
14219 	 * we're refuse to add a new one.
14220 	 */
14221 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14222 		return (ENOSPC);
14223 
14224 	/*
14225 	 * Check to make sure this isn't a duplicate.
14226 	 */
14227 	for (i = 0; i < help->dthps_nprovs; i++) {
14228 		if (dofhp->dofhp_addr ==
14229 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14230 			return (EALREADY);
14231 	}
14232 
14233 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14234 	hprov->dthp_prov = *dofhp;
14235 	hprov->dthp_ref = 1;
14236 	hprov->dthp_generation = gen;
14237 
14238 	/*
14239 	 * Allocate a bigger table for helper providers if it's already full.
14240 	 */
14241 	if (help->dthps_maxprovs == help->dthps_nprovs) {
14242 		tmp_maxprovs = help->dthps_maxprovs;
14243 		tmp_provs = help->dthps_provs;
14244 
14245 		if (help->dthps_maxprovs == 0)
14246 			help->dthps_maxprovs = 2;
14247 		else
14248 			help->dthps_maxprovs *= 2;
14249 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14250 			help->dthps_maxprovs = dtrace_helper_providers_max;
14251 
14252 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14253 
14254 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14255 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14256 
14257 		if (tmp_provs != NULL) {
14258 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14259 			    sizeof (dtrace_helper_provider_t *));
14260 			kmem_free(tmp_provs, tmp_maxprovs *
14261 			    sizeof (dtrace_helper_provider_t *));
14262 		}
14263 	}
14264 
14265 	help->dthps_provs[help->dthps_nprovs] = hprov;
14266 	help->dthps_nprovs++;
14267 
14268 	return (0);
14269 }
14270 
14271 static void
14272 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14273 {
14274 	mutex_enter(&dtrace_lock);
14275 
14276 	if (--hprov->dthp_ref == 0) {
14277 		dof_hdr_t *dof;
14278 		mutex_exit(&dtrace_lock);
14279 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14280 		dtrace_dof_destroy(dof);
14281 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14282 	} else {
14283 		mutex_exit(&dtrace_lock);
14284 	}
14285 }
14286 
14287 static int
14288 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14289 {
14290 	uintptr_t daddr = (uintptr_t)dof;
14291 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14292 	dof_provider_t *provider;
14293 	dof_probe_t *probe;
14294 	uint8_t *arg;
14295 	char *strtab, *typestr;
14296 	dof_stridx_t typeidx;
14297 	size_t typesz;
14298 	uint_t nprobes, j, k;
14299 
14300 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14301 
14302 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14303 		dtrace_dof_error(dof, "misaligned section offset");
14304 		return (-1);
14305 	}
14306 
14307 	/*
14308 	 * The section needs to be large enough to contain the DOF provider
14309 	 * structure appropriate for the given version.
14310 	 */
14311 	if (sec->dofs_size <
14312 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14313 	    offsetof(dof_provider_t, dofpv_prenoffs) :
14314 	    sizeof (dof_provider_t))) {
14315 		dtrace_dof_error(dof, "provider section too small");
14316 		return (-1);
14317 	}
14318 
14319 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14320 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14321 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14322 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14323 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14324 
14325 	if (str_sec == NULL || prb_sec == NULL ||
14326 	    arg_sec == NULL || off_sec == NULL)
14327 		return (-1);
14328 
14329 	enoff_sec = NULL;
14330 
14331 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14332 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14333 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14334 	    provider->dofpv_prenoffs)) == NULL)
14335 		return (-1);
14336 
14337 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14338 
14339 	if (provider->dofpv_name >= str_sec->dofs_size ||
14340 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14341 		dtrace_dof_error(dof, "invalid provider name");
14342 		return (-1);
14343 	}
14344 
14345 	if (prb_sec->dofs_entsize == 0 ||
14346 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14347 		dtrace_dof_error(dof, "invalid entry size");
14348 		return (-1);
14349 	}
14350 
14351 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14352 		dtrace_dof_error(dof, "misaligned entry size");
14353 		return (-1);
14354 	}
14355 
14356 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14357 		dtrace_dof_error(dof, "invalid entry size");
14358 		return (-1);
14359 	}
14360 
14361 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14362 		dtrace_dof_error(dof, "misaligned section offset");
14363 		return (-1);
14364 	}
14365 
14366 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14367 		dtrace_dof_error(dof, "invalid entry size");
14368 		return (-1);
14369 	}
14370 
14371 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14372 
14373 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14374 
14375 	/*
14376 	 * Take a pass through the probes to check for errors.
14377 	 */
14378 	for (j = 0; j < nprobes; j++) {
14379 		probe = (dof_probe_t *)(uintptr_t)(daddr +
14380 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14381 
14382 		if (probe->dofpr_func >= str_sec->dofs_size) {
14383 			dtrace_dof_error(dof, "invalid function name");
14384 			return (-1);
14385 		}
14386 
14387 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14388 			dtrace_dof_error(dof, "function name too long");
14389 			return (-1);
14390 		}
14391 
14392 		if (probe->dofpr_name >= str_sec->dofs_size ||
14393 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14394 			dtrace_dof_error(dof, "invalid probe name");
14395 			return (-1);
14396 		}
14397 
14398 		/*
14399 		 * The offset count must not wrap the index, and the offsets
14400 		 * must also not overflow the section's data.
14401 		 */
14402 		if (probe->dofpr_offidx + probe->dofpr_noffs <
14403 		    probe->dofpr_offidx ||
14404 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14405 		    off_sec->dofs_entsize > off_sec->dofs_size) {
14406 			dtrace_dof_error(dof, "invalid probe offset");
14407 			return (-1);
14408 		}
14409 
14410 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14411 			/*
14412 			 * If there's no is-enabled offset section, make sure
14413 			 * there aren't any is-enabled offsets. Otherwise
14414 			 * perform the same checks as for probe offsets
14415 			 * (immediately above).
14416 			 */
14417 			if (enoff_sec == NULL) {
14418 				if (probe->dofpr_enoffidx != 0 ||
14419 				    probe->dofpr_nenoffs != 0) {
14420 					dtrace_dof_error(dof, "is-enabled "
14421 					    "offsets with null section");
14422 					return (-1);
14423 				}
14424 			} else if (probe->dofpr_enoffidx +
14425 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14426 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14427 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14428 				dtrace_dof_error(dof, "invalid is-enabled "
14429 				    "offset");
14430 				return (-1);
14431 			}
14432 
14433 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14434 				dtrace_dof_error(dof, "zero probe and "
14435 				    "is-enabled offsets");
14436 				return (-1);
14437 			}
14438 		} else if (probe->dofpr_noffs == 0) {
14439 			dtrace_dof_error(dof, "zero probe offsets");
14440 			return (-1);
14441 		}
14442 
14443 		if (probe->dofpr_argidx + probe->dofpr_xargc <
14444 		    probe->dofpr_argidx ||
14445 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14446 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14447 			dtrace_dof_error(dof, "invalid args");
14448 			return (-1);
14449 		}
14450 
14451 		typeidx = probe->dofpr_nargv;
14452 		typestr = strtab + probe->dofpr_nargv;
14453 		for (k = 0; k < probe->dofpr_nargc; k++) {
14454 			if (typeidx >= str_sec->dofs_size) {
14455 				dtrace_dof_error(dof, "bad "
14456 				    "native argument type");
14457 				return (-1);
14458 			}
14459 
14460 			typesz = strlen(typestr) + 1;
14461 			if (typesz > DTRACE_ARGTYPELEN) {
14462 				dtrace_dof_error(dof, "native "
14463 				    "argument type too long");
14464 				return (-1);
14465 			}
14466 			typeidx += typesz;
14467 			typestr += typesz;
14468 		}
14469 
14470 		typeidx = probe->dofpr_xargv;
14471 		typestr = strtab + probe->dofpr_xargv;
14472 		for (k = 0; k < probe->dofpr_xargc; k++) {
14473 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14474 				dtrace_dof_error(dof, "bad "
14475 				    "native argument index");
14476 				return (-1);
14477 			}
14478 
14479 			if (typeidx >= str_sec->dofs_size) {
14480 				dtrace_dof_error(dof, "bad "
14481 				    "translated argument type");
14482 				return (-1);
14483 			}
14484 
14485 			typesz = strlen(typestr) + 1;
14486 			if (typesz > DTRACE_ARGTYPELEN) {
14487 				dtrace_dof_error(dof, "translated argument "
14488 				    "type too long");
14489 				return (-1);
14490 			}
14491 
14492 			typeidx += typesz;
14493 			typestr += typesz;
14494 		}
14495 	}
14496 
14497 	return (0);
14498 }
14499 
14500 static int
14501 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14502 {
14503 	dtrace_helpers_t *help;
14504 	dtrace_vstate_t *vstate;
14505 	dtrace_enabling_t *enab = NULL;
14506 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14507 	uintptr_t daddr = (uintptr_t)dof;
14508 
14509 	ASSERT(MUTEX_HELD(&dtrace_lock));
14510 
14511 	if ((help = curproc->p_dtrace_helpers) == NULL)
14512 		help = dtrace_helpers_create(curproc);
14513 
14514 	vstate = &help->dthps_vstate;
14515 
14516 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14517 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14518 		dtrace_dof_destroy(dof);
14519 		return (rv);
14520 	}
14521 
14522 	/*
14523 	 * Look for helper providers and validate their descriptions.
14524 	 */
14525 	if (dhp != NULL) {
14526 		for (i = 0; i < dof->dofh_secnum; i++) {
14527 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14528 			    dof->dofh_secoff + i * dof->dofh_secsize);
14529 
14530 			if (sec->dofs_type != DOF_SECT_PROVIDER)
14531 				continue;
14532 
14533 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14534 				dtrace_enabling_destroy(enab);
14535 				dtrace_dof_destroy(dof);
14536 				return (-1);
14537 			}
14538 
14539 			nprovs++;
14540 		}
14541 	}
14542 
14543 	/*
14544 	 * Now we need to walk through the ECB descriptions in the enabling.
14545 	 */
14546 	for (i = 0; i < enab->dten_ndesc; i++) {
14547 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14548 		dtrace_probedesc_t *desc = &ep->dted_probe;
14549 
14550 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14551 			continue;
14552 
14553 		if (strcmp(desc->dtpd_mod, "helper") != 0)
14554 			continue;
14555 
14556 		if (strcmp(desc->dtpd_func, "ustack") != 0)
14557 			continue;
14558 
14559 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14560 		    ep)) != 0) {
14561 			/*
14562 			 * Adding this helper action failed -- we are now going
14563 			 * to rip out the entire generation and return failure.
14564 			 */
14565 			(void) dtrace_helper_destroygen(help->dthps_generation);
14566 			dtrace_enabling_destroy(enab);
14567 			dtrace_dof_destroy(dof);
14568 			return (-1);
14569 		}
14570 
14571 		nhelpers++;
14572 	}
14573 
14574 	if (nhelpers < enab->dten_ndesc)
14575 		dtrace_dof_error(dof, "unmatched helpers");
14576 
14577 	gen = help->dthps_generation++;
14578 	dtrace_enabling_destroy(enab);
14579 
14580 	if (dhp != NULL && nprovs > 0) {
14581 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14582 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14583 			mutex_exit(&dtrace_lock);
14584 			dtrace_helper_provider_register(curproc, help, dhp);
14585 			mutex_enter(&dtrace_lock);
14586 
14587 			destroy = 0;
14588 		}
14589 	}
14590 
14591 	if (destroy)
14592 		dtrace_dof_destroy(dof);
14593 
14594 	return (gen);
14595 }
14596 
14597 static dtrace_helpers_t *
14598 dtrace_helpers_create(proc_t *p)
14599 {
14600 	dtrace_helpers_t *help;
14601 
14602 	ASSERT(MUTEX_HELD(&dtrace_lock));
14603 	ASSERT(p->p_dtrace_helpers == NULL);
14604 
14605 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14606 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14607 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14608 
14609 	p->p_dtrace_helpers = help;
14610 	dtrace_helpers++;
14611 
14612 	return (help);
14613 }
14614 
14615 #if defined(sun)
14616 static
14617 #endif
14618 void
14619 dtrace_helpers_destroy(proc_t *p)
14620 {
14621 	dtrace_helpers_t *help;
14622 	dtrace_vstate_t *vstate;
14623 #if defined(sun)
14624 	proc_t *p = curproc;
14625 #endif
14626 	int i;
14627 
14628 	mutex_enter(&dtrace_lock);
14629 
14630 	ASSERT(p->p_dtrace_helpers != NULL);
14631 	ASSERT(dtrace_helpers > 0);
14632 
14633 	help = p->p_dtrace_helpers;
14634 	vstate = &help->dthps_vstate;
14635 
14636 	/*
14637 	 * We're now going to lose the help from this process.
14638 	 */
14639 	p->p_dtrace_helpers = NULL;
14640 	dtrace_sync();
14641 
14642 	/*
14643 	 * Destory the helper actions.
14644 	 */
14645 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14646 		dtrace_helper_action_t *h, *next;
14647 
14648 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14649 			next = h->dtha_next;
14650 			dtrace_helper_action_destroy(h, vstate);
14651 			h = next;
14652 		}
14653 	}
14654 
14655 	mutex_exit(&dtrace_lock);
14656 
14657 	/*
14658 	 * Destroy the helper providers.
14659 	 */
14660 	if (help->dthps_maxprovs > 0) {
14661 		mutex_enter(&dtrace_meta_lock);
14662 		if (dtrace_meta_pid != NULL) {
14663 			ASSERT(dtrace_deferred_pid == NULL);
14664 
14665 			for (i = 0; i < help->dthps_nprovs; i++) {
14666 				dtrace_helper_provider_remove(
14667 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14668 			}
14669 		} else {
14670 			mutex_enter(&dtrace_lock);
14671 			ASSERT(help->dthps_deferred == 0 ||
14672 			    help->dthps_next != NULL ||
14673 			    help->dthps_prev != NULL ||
14674 			    help == dtrace_deferred_pid);
14675 
14676 			/*
14677 			 * Remove the helper from the deferred list.
14678 			 */
14679 			if (help->dthps_next != NULL)
14680 				help->dthps_next->dthps_prev = help->dthps_prev;
14681 			if (help->dthps_prev != NULL)
14682 				help->dthps_prev->dthps_next = help->dthps_next;
14683 			if (dtrace_deferred_pid == help) {
14684 				dtrace_deferred_pid = help->dthps_next;
14685 				ASSERT(help->dthps_prev == NULL);
14686 			}
14687 
14688 			mutex_exit(&dtrace_lock);
14689 		}
14690 
14691 		mutex_exit(&dtrace_meta_lock);
14692 
14693 		for (i = 0; i < help->dthps_nprovs; i++) {
14694 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14695 		}
14696 
14697 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14698 		    sizeof (dtrace_helper_provider_t *));
14699 	}
14700 
14701 	mutex_enter(&dtrace_lock);
14702 
14703 	dtrace_vstate_fini(&help->dthps_vstate);
14704 	kmem_free(help->dthps_actions,
14705 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14706 	kmem_free(help, sizeof (dtrace_helpers_t));
14707 
14708 	--dtrace_helpers;
14709 	mutex_exit(&dtrace_lock);
14710 }
14711 
14712 #if defined(sun)
14713 static
14714 #endif
14715 void
14716 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14717 {
14718 	dtrace_helpers_t *help, *newhelp;
14719 	dtrace_helper_action_t *helper, *new, *last;
14720 	dtrace_difo_t *dp;
14721 	dtrace_vstate_t *vstate;
14722 	int i, j, sz, hasprovs = 0;
14723 
14724 	mutex_enter(&dtrace_lock);
14725 	ASSERT(from->p_dtrace_helpers != NULL);
14726 	ASSERT(dtrace_helpers > 0);
14727 
14728 	help = from->p_dtrace_helpers;
14729 	newhelp = dtrace_helpers_create(to);
14730 	ASSERT(to->p_dtrace_helpers != NULL);
14731 
14732 	newhelp->dthps_generation = help->dthps_generation;
14733 	vstate = &newhelp->dthps_vstate;
14734 
14735 	/*
14736 	 * Duplicate the helper actions.
14737 	 */
14738 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14739 		if ((helper = help->dthps_actions[i]) == NULL)
14740 			continue;
14741 
14742 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14743 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14744 			    KM_SLEEP);
14745 			new->dtha_generation = helper->dtha_generation;
14746 
14747 			if ((dp = helper->dtha_predicate) != NULL) {
14748 				dp = dtrace_difo_duplicate(dp, vstate);
14749 				new->dtha_predicate = dp;
14750 			}
14751 
14752 			new->dtha_nactions = helper->dtha_nactions;
14753 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14754 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14755 
14756 			for (j = 0; j < new->dtha_nactions; j++) {
14757 				dtrace_difo_t *dp = helper->dtha_actions[j];
14758 
14759 				ASSERT(dp != NULL);
14760 				dp = dtrace_difo_duplicate(dp, vstate);
14761 				new->dtha_actions[j] = dp;
14762 			}
14763 
14764 			if (last != NULL) {
14765 				last->dtha_next = new;
14766 			} else {
14767 				newhelp->dthps_actions[i] = new;
14768 			}
14769 
14770 			last = new;
14771 		}
14772 	}
14773 
14774 	/*
14775 	 * Duplicate the helper providers and register them with the
14776 	 * DTrace framework.
14777 	 */
14778 	if (help->dthps_nprovs > 0) {
14779 		newhelp->dthps_nprovs = help->dthps_nprovs;
14780 		newhelp->dthps_maxprovs = help->dthps_nprovs;
14781 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14782 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14783 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14784 			newhelp->dthps_provs[i] = help->dthps_provs[i];
14785 			newhelp->dthps_provs[i]->dthp_ref++;
14786 		}
14787 
14788 		hasprovs = 1;
14789 	}
14790 
14791 	mutex_exit(&dtrace_lock);
14792 
14793 	if (hasprovs)
14794 		dtrace_helper_provider_register(to, newhelp, NULL);
14795 }
14796 
14797 #if defined(sun)
14798 /*
14799  * DTrace Hook Functions
14800  */
14801 static void
14802 dtrace_module_loaded(modctl_t *ctl)
14803 {
14804 	dtrace_provider_t *prv;
14805 
14806 	mutex_enter(&dtrace_provider_lock);
14807 	mutex_enter(&mod_lock);
14808 
14809 	ASSERT(ctl->mod_busy);
14810 
14811 	/*
14812 	 * We're going to call each providers per-module provide operation
14813 	 * specifying only this module.
14814 	 */
14815 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14816 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14817 
14818 	mutex_exit(&mod_lock);
14819 	mutex_exit(&dtrace_provider_lock);
14820 
14821 	/*
14822 	 * If we have any retained enablings, we need to match against them.
14823 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
14824 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14825 	 * module.  (In particular, this happens when loading scheduling
14826 	 * classes.)  So if we have any retained enablings, we need to dispatch
14827 	 * our task queue to do the match for us.
14828 	 */
14829 	mutex_enter(&dtrace_lock);
14830 
14831 	if (dtrace_retained == NULL) {
14832 		mutex_exit(&dtrace_lock);
14833 		return;
14834 	}
14835 
14836 	(void) taskq_dispatch(dtrace_taskq,
14837 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14838 
14839 	mutex_exit(&dtrace_lock);
14840 
14841 	/*
14842 	 * And now, for a little heuristic sleaze:  in general, we want to
14843 	 * match modules as soon as they load.  However, we cannot guarantee
14844 	 * this, because it would lead us to the lock ordering violation
14845 	 * outlined above.  The common case, of course, is that cpu_lock is
14846 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14847 	 * long enough for the task queue to do its work.  If it's not, it's
14848 	 * not a serious problem -- it just means that the module that we
14849 	 * just loaded may not be immediately instrumentable.
14850 	 */
14851 	delay(1);
14852 }
14853 
14854 static void
14855 dtrace_module_unloaded(modctl_t *ctl)
14856 {
14857 	dtrace_probe_t template, *probe, *first, *next;
14858 	dtrace_provider_t *prov;
14859 
14860 	template.dtpr_mod = ctl->mod_modname;
14861 
14862 	mutex_enter(&dtrace_provider_lock);
14863 	mutex_enter(&mod_lock);
14864 	mutex_enter(&dtrace_lock);
14865 
14866 	if (dtrace_bymod == NULL) {
14867 		/*
14868 		 * The DTrace module is loaded (obviously) but not attached;
14869 		 * we don't have any work to do.
14870 		 */
14871 		mutex_exit(&dtrace_provider_lock);
14872 		mutex_exit(&mod_lock);
14873 		mutex_exit(&dtrace_lock);
14874 		return;
14875 	}
14876 
14877 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14878 	    probe != NULL; probe = probe->dtpr_nextmod) {
14879 		if (probe->dtpr_ecb != NULL) {
14880 			mutex_exit(&dtrace_provider_lock);
14881 			mutex_exit(&mod_lock);
14882 			mutex_exit(&dtrace_lock);
14883 
14884 			/*
14885 			 * This shouldn't _actually_ be possible -- we're
14886 			 * unloading a module that has an enabled probe in it.
14887 			 * (It's normally up to the provider to make sure that
14888 			 * this can't happen.)  However, because dtps_enable()
14889 			 * doesn't have a failure mode, there can be an
14890 			 * enable/unload race.  Upshot:  we don't want to
14891 			 * assert, but we're not going to disable the
14892 			 * probe, either.
14893 			 */
14894 			if (dtrace_err_verbose) {
14895 				cmn_err(CE_WARN, "unloaded module '%s' had "
14896 				    "enabled probes", ctl->mod_modname);
14897 			}
14898 
14899 			return;
14900 		}
14901 	}
14902 
14903 	probe = first;
14904 
14905 	for (first = NULL; probe != NULL; probe = next) {
14906 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14907 
14908 		dtrace_probes[probe->dtpr_id - 1] = NULL;
14909 
14910 		next = probe->dtpr_nextmod;
14911 		dtrace_hash_remove(dtrace_bymod, probe);
14912 		dtrace_hash_remove(dtrace_byfunc, probe);
14913 		dtrace_hash_remove(dtrace_byname, probe);
14914 
14915 		if (first == NULL) {
14916 			first = probe;
14917 			probe->dtpr_nextmod = NULL;
14918 		} else {
14919 			probe->dtpr_nextmod = first;
14920 			first = probe;
14921 		}
14922 	}
14923 
14924 	/*
14925 	 * We've removed all of the module's probes from the hash chains and
14926 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
14927 	 * everyone has cleared out from any probe array processing.
14928 	 */
14929 	dtrace_sync();
14930 
14931 	for (probe = first; probe != NULL; probe = first) {
14932 		first = probe->dtpr_nextmod;
14933 		prov = probe->dtpr_provider;
14934 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
14935 		    probe->dtpr_arg);
14936 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
14937 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
14938 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
14939 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
14940 		kmem_free(probe, sizeof (dtrace_probe_t));
14941 	}
14942 
14943 	mutex_exit(&dtrace_lock);
14944 	mutex_exit(&mod_lock);
14945 	mutex_exit(&dtrace_provider_lock);
14946 }
14947 
14948 static void
14949 dtrace_suspend(void)
14950 {
14951 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
14952 }
14953 
14954 static void
14955 dtrace_resume(void)
14956 {
14957 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
14958 }
14959 #endif
14960 
14961 static int
14962 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
14963 {
14964 	ASSERT(MUTEX_HELD(&cpu_lock));
14965 	mutex_enter(&dtrace_lock);
14966 
14967 	switch (what) {
14968 	case CPU_CONFIG: {
14969 		dtrace_state_t *state;
14970 		dtrace_optval_t *opt, rs, c;
14971 
14972 		/*
14973 		 * For now, we only allocate a new buffer for anonymous state.
14974 		 */
14975 		if ((state = dtrace_anon.dta_state) == NULL)
14976 			break;
14977 
14978 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14979 			break;
14980 
14981 		opt = state->dts_options;
14982 		c = opt[DTRACEOPT_CPU];
14983 
14984 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
14985 			break;
14986 
14987 		/*
14988 		 * Regardless of what the actual policy is, we're going to
14989 		 * temporarily set our resize policy to be manual.  We're
14990 		 * also going to temporarily set our CPU option to denote
14991 		 * the newly configured CPU.
14992 		 */
14993 		rs = opt[DTRACEOPT_BUFRESIZE];
14994 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
14995 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
14996 
14997 		(void) dtrace_state_buffers(state);
14998 
14999 		opt[DTRACEOPT_BUFRESIZE] = rs;
15000 		opt[DTRACEOPT_CPU] = c;
15001 
15002 		break;
15003 	}
15004 
15005 	case CPU_UNCONFIG:
15006 		/*
15007 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15008 		 * buffer will be freed when the consumer exits.)
15009 		 */
15010 		break;
15011 
15012 	default:
15013 		break;
15014 	}
15015 
15016 	mutex_exit(&dtrace_lock);
15017 	return (0);
15018 }
15019 
15020 #if defined(sun)
15021 static void
15022 dtrace_cpu_setup_initial(processorid_t cpu)
15023 {
15024 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15025 }
15026 #endif
15027 
15028 static void
15029 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15030 {
15031 	if (dtrace_toxranges >= dtrace_toxranges_max) {
15032 		int osize, nsize;
15033 		dtrace_toxrange_t *range;
15034 
15035 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15036 
15037 		if (osize == 0) {
15038 			ASSERT(dtrace_toxrange == NULL);
15039 			ASSERT(dtrace_toxranges_max == 0);
15040 			dtrace_toxranges_max = 1;
15041 		} else {
15042 			dtrace_toxranges_max <<= 1;
15043 		}
15044 
15045 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15046 		range = kmem_zalloc(nsize, KM_SLEEP);
15047 
15048 		if (dtrace_toxrange != NULL) {
15049 			ASSERT(osize != 0);
15050 			bcopy(dtrace_toxrange, range, osize);
15051 			kmem_free(dtrace_toxrange, osize);
15052 		}
15053 
15054 		dtrace_toxrange = range;
15055 	}
15056 
15057 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15058 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15059 
15060 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15061 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15062 	dtrace_toxranges++;
15063 }
15064 
15065 /*
15066  * DTrace Driver Cookbook Functions
15067  */
15068 #if defined(sun)
15069 /*ARGSUSED*/
15070 static int
15071 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15072 {
15073 	dtrace_provider_id_t id;
15074 	dtrace_state_t *state = NULL;
15075 	dtrace_enabling_t *enab;
15076 
15077 	mutex_enter(&cpu_lock);
15078 	mutex_enter(&dtrace_provider_lock);
15079 	mutex_enter(&dtrace_lock);
15080 
15081 	if (ddi_soft_state_init(&dtrace_softstate,
15082 	    sizeof (dtrace_state_t), 0) != 0) {
15083 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15084 		mutex_exit(&cpu_lock);
15085 		mutex_exit(&dtrace_provider_lock);
15086 		mutex_exit(&dtrace_lock);
15087 		return (DDI_FAILURE);
15088 	}
15089 
15090 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15091 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15092 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15093 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15094 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15095 		ddi_remove_minor_node(devi, NULL);
15096 		ddi_soft_state_fini(&dtrace_softstate);
15097 		mutex_exit(&cpu_lock);
15098 		mutex_exit(&dtrace_provider_lock);
15099 		mutex_exit(&dtrace_lock);
15100 		return (DDI_FAILURE);
15101 	}
15102 
15103 	ddi_report_dev(devi);
15104 	dtrace_devi = devi;
15105 
15106 	dtrace_modload = dtrace_module_loaded;
15107 	dtrace_modunload = dtrace_module_unloaded;
15108 	dtrace_cpu_init = dtrace_cpu_setup_initial;
15109 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15110 	dtrace_helpers_fork = dtrace_helpers_duplicate;
15111 	dtrace_cpustart_init = dtrace_suspend;
15112 	dtrace_cpustart_fini = dtrace_resume;
15113 	dtrace_debugger_init = dtrace_suspend;
15114 	dtrace_debugger_fini = dtrace_resume;
15115 
15116 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15117 
15118 	ASSERT(MUTEX_HELD(&cpu_lock));
15119 
15120 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15121 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15122 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15123 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15124 	    VM_SLEEP | VMC_IDENTIFIER);
15125 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15126 	    1, INT_MAX, 0);
15127 
15128 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15129 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15130 	    NULL, NULL, NULL, NULL, NULL, 0);
15131 
15132 	ASSERT(MUTEX_HELD(&cpu_lock));
15133 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15134 	    offsetof(dtrace_probe_t, dtpr_nextmod),
15135 	    offsetof(dtrace_probe_t, dtpr_prevmod));
15136 
15137 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15138 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15139 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15140 
15141 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15142 	    offsetof(dtrace_probe_t, dtpr_nextname),
15143 	    offsetof(dtrace_probe_t, dtpr_prevname));
15144 
15145 	if (dtrace_retain_max < 1) {
15146 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15147 		    "setting to 1", dtrace_retain_max);
15148 		dtrace_retain_max = 1;
15149 	}
15150 
15151 	/*
15152 	 * Now discover our toxic ranges.
15153 	 */
15154 	dtrace_toxic_ranges(dtrace_toxrange_add);
15155 
15156 	/*
15157 	 * Before we register ourselves as a provider to our own framework,
15158 	 * we would like to assert that dtrace_provider is NULL -- but that's
15159 	 * not true if we were loaded as a dependency of a DTrace provider.
15160 	 * Once we've registered, we can assert that dtrace_provider is our
15161 	 * pseudo provider.
15162 	 */
15163 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15164 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15165 
15166 	ASSERT(dtrace_provider != NULL);
15167 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15168 
15169 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15170 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15171 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15172 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15173 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15174 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15175 
15176 	dtrace_anon_property();
15177 	mutex_exit(&cpu_lock);
15178 
15179 	/*
15180 	 * If DTrace helper tracing is enabled, we need to allocate the
15181 	 * trace buffer and initialize the values.
15182 	 */
15183 	if (dtrace_helptrace_enabled) {
15184 		ASSERT(dtrace_helptrace_buffer == NULL);
15185 		dtrace_helptrace_buffer =
15186 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15187 		dtrace_helptrace_next = 0;
15188 	}
15189 
15190 	/*
15191 	 * If there are already providers, we must ask them to provide their
15192 	 * probes, and then match any anonymous enabling against them.  Note
15193 	 * that there should be no other retained enablings at this time:
15194 	 * the only retained enablings at this time should be the anonymous
15195 	 * enabling.
15196 	 */
15197 	if (dtrace_anon.dta_enabling != NULL) {
15198 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15199 
15200 		dtrace_enabling_provide(NULL);
15201 		state = dtrace_anon.dta_state;
15202 
15203 		/*
15204 		 * We couldn't hold cpu_lock across the above call to
15205 		 * dtrace_enabling_provide(), but we must hold it to actually
15206 		 * enable the probes.  We have to drop all of our locks, pick
15207 		 * up cpu_lock, and regain our locks before matching the
15208 		 * retained anonymous enabling.
15209 		 */
15210 		mutex_exit(&dtrace_lock);
15211 		mutex_exit(&dtrace_provider_lock);
15212 
15213 		mutex_enter(&cpu_lock);
15214 		mutex_enter(&dtrace_provider_lock);
15215 		mutex_enter(&dtrace_lock);
15216 
15217 		if ((enab = dtrace_anon.dta_enabling) != NULL)
15218 			(void) dtrace_enabling_match(enab, NULL);
15219 
15220 		mutex_exit(&cpu_lock);
15221 	}
15222 
15223 	mutex_exit(&dtrace_lock);
15224 	mutex_exit(&dtrace_provider_lock);
15225 
15226 	if (state != NULL) {
15227 		/*
15228 		 * If we created any anonymous state, set it going now.
15229 		 */
15230 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15231 	}
15232 
15233 	return (DDI_SUCCESS);
15234 }
15235 #endif
15236 
15237 #if !defined(sun)
15238 #if __FreeBSD_version >= 800039
15239 static void
15240 dtrace_dtr(void *data __unused)
15241 {
15242 }
15243 #endif
15244 #endif
15245 
15246 /*ARGSUSED*/
15247 static int
15248 #if defined(sun)
15249 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15250 #else
15251 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15252 #endif
15253 {
15254 	dtrace_state_t *state;
15255 	uint32_t priv;
15256 	uid_t uid;
15257 	zoneid_t zoneid;
15258 
15259 #if defined(sun)
15260 	if (getminor(*devp) == DTRACEMNRN_HELPER)
15261 		return (0);
15262 
15263 	/*
15264 	 * If this wasn't an open with the "helper" minor, then it must be
15265 	 * the "dtrace" minor.
15266 	 */
15267 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15268 #else
15269 	cred_t *cred_p = NULL;
15270 
15271 #if __FreeBSD_version < 800039
15272 	/*
15273 	 * The first minor device is the one that is cloned so there is
15274 	 * nothing more to do here.
15275 	 */
15276 	if (dev2unit(dev) == 0)
15277 		return 0;
15278 
15279 	/*
15280 	 * Devices are cloned, so if the DTrace state has already
15281 	 * been allocated, that means this device belongs to a
15282 	 * different client. Each client should open '/dev/dtrace'
15283 	 * to get a cloned device.
15284 	 */
15285 	if (dev->si_drv1 != NULL)
15286 		return (EBUSY);
15287 #endif
15288 
15289 	cred_p = dev->si_cred;
15290 #endif
15291 
15292 	/*
15293 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15294 	 * caller lacks sufficient permission to do anything with DTrace.
15295 	 */
15296 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15297 	if (priv == DTRACE_PRIV_NONE) {
15298 #if !defined(sun)
15299 #if __FreeBSD_version < 800039
15300 		/* Destroy the cloned device. */
15301                 destroy_dev(dev);
15302 #endif
15303 #endif
15304 
15305 		return (EACCES);
15306 	}
15307 
15308 	/*
15309 	 * Ask all providers to provide all their probes.
15310 	 */
15311 	mutex_enter(&dtrace_provider_lock);
15312 	dtrace_probe_provide(NULL, NULL);
15313 	mutex_exit(&dtrace_provider_lock);
15314 
15315 	mutex_enter(&cpu_lock);
15316 	mutex_enter(&dtrace_lock);
15317 	dtrace_opens++;
15318 	dtrace_membar_producer();
15319 
15320 #if defined(sun)
15321 	/*
15322 	 * If the kernel debugger is active (that is, if the kernel debugger
15323 	 * modified text in some way), we won't allow the open.
15324 	 */
15325 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15326 		dtrace_opens--;
15327 		mutex_exit(&cpu_lock);
15328 		mutex_exit(&dtrace_lock);
15329 		return (EBUSY);
15330 	}
15331 
15332 	state = dtrace_state_create(devp, cred_p);
15333 #else
15334 	state = dtrace_state_create(dev);
15335 #if __FreeBSD_version < 800039
15336 	dev->si_drv1 = state;
15337 #else
15338 	devfs_set_cdevpriv(state, dtrace_dtr);
15339 #endif
15340 #endif
15341 
15342 	mutex_exit(&cpu_lock);
15343 
15344 	if (state == NULL) {
15345 #if defined(sun)
15346 		if (--dtrace_opens == 0)
15347 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15348 #else
15349 		--dtrace_opens;
15350 #endif
15351 		mutex_exit(&dtrace_lock);
15352 #if !defined(sun)
15353 #if __FreeBSD_version < 800039
15354 		/* Destroy the cloned device. */
15355                 destroy_dev(dev);
15356 #endif
15357 #endif
15358 		return (EAGAIN);
15359 	}
15360 
15361 	mutex_exit(&dtrace_lock);
15362 
15363 	return (0);
15364 }
15365 
15366 /*ARGSUSED*/
15367 static int
15368 #if defined(sun)
15369 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15370 #else
15371 dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15372 #endif
15373 {
15374 #if defined(sun)
15375 	minor_t minor = getminor(dev);
15376 	dtrace_state_t *state;
15377 
15378 	if (minor == DTRACEMNRN_HELPER)
15379 		return (0);
15380 
15381 	state = ddi_get_soft_state(dtrace_softstate, minor);
15382 #else
15383 #if __FreeBSD_version < 800039
15384 	dtrace_state_t *state = dev->si_drv1;
15385 
15386 	/* Check if this is not a cloned device. */
15387 	if (dev2unit(dev) == 0)
15388 		return (0);
15389 #else
15390 	dtrace_state_t *state;
15391 	devfs_get_cdevpriv((void **) &state);
15392 #endif
15393 
15394 #endif
15395 
15396 	mutex_enter(&cpu_lock);
15397 	mutex_enter(&dtrace_lock);
15398 
15399 	if (state != NULL) {
15400 		if (state->dts_anon) {
15401 			/*
15402 			 * There is anonymous state. Destroy that first.
15403 			 */
15404 			ASSERT(dtrace_anon.dta_state == NULL);
15405 			dtrace_state_destroy(state->dts_anon);
15406 		}
15407 
15408 		dtrace_state_destroy(state);
15409 
15410 #if !defined(sun)
15411 		kmem_free(state, 0);
15412 #if __FreeBSD_version < 800039
15413 		dev->si_drv1 = NULL;
15414 #else
15415 		devfs_clear_cdevpriv();
15416 #endif
15417 #endif
15418 	}
15419 
15420 	ASSERT(dtrace_opens > 0);
15421 #if defined(sun)
15422 	if (--dtrace_opens == 0)
15423 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15424 #else
15425 	--dtrace_opens;
15426 #endif
15427 
15428 	mutex_exit(&dtrace_lock);
15429 	mutex_exit(&cpu_lock);
15430 
15431 #if __FreeBSD_version < 800039
15432 	/* Schedule this cloned device to be destroyed. */
15433 	destroy_dev_sched(dev);
15434 #endif
15435 
15436 	return (0);
15437 }
15438 
15439 #if defined(sun)
15440 /*ARGSUSED*/
15441 static int
15442 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15443 {
15444 	int rval;
15445 	dof_helper_t help, *dhp = NULL;
15446 
15447 	switch (cmd) {
15448 	case DTRACEHIOC_ADDDOF:
15449 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15450 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15451 			return (EFAULT);
15452 		}
15453 
15454 		dhp = &help;
15455 		arg = (intptr_t)help.dofhp_dof;
15456 		/*FALLTHROUGH*/
15457 
15458 	case DTRACEHIOC_ADD: {
15459 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15460 
15461 		if (dof == NULL)
15462 			return (rval);
15463 
15464 		mutex_enter(&dtrace_lock);
15465 
15466 		/*
15467 		 * dtrace_helper_slurp() takes responsibility for the dof --
15468 		 * it may free it now or it may save it and free it later.
15469 		 */
15470 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15471 			*rv = rval;
15472 			rval = 0;
15473 		} else {
15474 			rval = EINVAL;
15475 		}
15476 
15477 		mutex_exit(&dtrace_lock);
15478 		return (rval);
15479 	}
15480 
15481 	case DTRACEHIOC_REMOVE: {
15482 		mutex_enter(&dtrace_lock);
15483 		rval = dtrace_helper_destroygen(arg);
15484 		mutex_exit(&dtrace_lock);
15485 
15486 		return (rval);
15487 	}
15488 
15489 	default:
15490 		break;
15491 	}
15492 
15493 	return (ENOTTY);
15494 }
15495 
15496 /*ARGSUSED*/
15497 static int
15498 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15499 {
15500 	minor_t minor = getminor(dev);
15501 	dtrace_state_t *state;
15502 	int rval;
15503 
15504 	if (minor == DTRACEMNRN_HELPER)
15505 		return (dtrace_ioctl_helper(cmd, arg, rv));
15506 
15507 	state = ddi_get_soft_state(dtrace_softstate, minor);
15508 
15509 	if (state->dts_anon) {
15510 		ASSERT(dtrace_anon.dta_state == NULL);
15511 		state = state->dts_anon;
15512 	}
15513 
15514 	switch (cmd) {
15515 	case DTRACEIOC_PROVIDER: {
15516 		dtrace_providerdesc_t pvd;
15517 		dtrace_provider_t *pvp;
15518 
15519 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15520 			return (EFAULT);
15521 
15522 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15523 		mutex_enter(&dtrace_provider_lock);
15524 
15525 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15526 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15527 				break;
15528 		}
15529 
15530 		mutex_exit(&dtrace_provider_lock);
15531 
15532 		if (pvp == NULL)
15533 			return (ESRCH);
15534 
15535 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15536 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15537 
15538 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15539 			return (EFAULT);
15540 
15541 		return (0);
15542 	}
15543 
15544 	case DTRACEIOC_EPROBE: {
15545 		dtrace_eprobedesc_t epdesc;
15546 		dtrace_ecb_t *ecb;
15547 		dtrace_action_t *act;
15548 		void *buf;
15549 		size_t size;
15550 		uintptr_t dest;
15551 		int nrecs;
15552 
15553 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15554 			return (EFAULT);
15555 
15556 		mutex_enter(&dtrace_lock);
15557 
15558 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15559 			mutex_exit(&dtrace_lock);
15560 			return (EINVAL);
15561 		}
15562 
15563 		if (ecb->dte_probe == NULL) {
15564 			mutex_exit(&dtrace_lock);
15565 			return (EINVAL);
15566 		}
15567 
15568 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15569 		epdesc.dtepd_uarg = ecb->dte_uarg;
15570 		epdesc.dtepd_size = ecb->dte_size;
15571 
15572 		nrecs = epdesc.dtepd_nrecs;
15573 		epdesc.dtepd_nrecs = 0;
15574 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15575 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15576 				continue;
15577 
15578 			epdesc.dtepd_nrecs++;
15579 		}
15580 
15581 		/*
15582 		 * Now that we have the size, we need to allocate a temporary
15583 		 * buffer in which to store the complete description.  We need
15584 		 * the temporary buffer to be able to drop dtrace_lock()
15585 		 * across the copyout(), below.
15586 		 */
15587 		size = sizeof (dtrace_eprobedesc_t) +
15588 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15589 
15590 		buf = kmem_alloc(size, KM_SLEEP);
15591 		dest = (uintptr_t)buf;
15592 
15593 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15594 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15595 
15596 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15597 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15598 				continue;
15599 
15600 			if (nrecs-- == 0)
15601 				break;
15602 
15603 			bcopy(&act->dta_rec, (void *)dest,
15604 			    sizeof (dtrace_recdesc_t));
15605 			dest += sizeof (dtrace_recdesc_t);
15606 		}
15607 
15608 		mutex_exit(&dtrace_lock);
15609 
15610 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15611 			kmem_free(buf, size);
15612 			return (EFAULT);
15613 		}
15614 
15615 		kmem_free(buf, size);
15616 		return (0);
15617 	}
15618 
15619 	case DTRACEIOC_AGGDESC: {
15620 		dtrace_aggdesc_t aggdesc;
15621 		dtrace_action_t *act;
15622 		dtrace_aggregation_t *agg;
15623 		int nrecs;
15624 		uint32_t offs;
15625 		dtrace_recdesc_t *lrec;
15626 		void *buf;
15627 		size_t size;
15628 		uintptr_t dest;
15629 
15630 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15631 			return (EFAULT);
15632 
15633 		mutex_enter(&dtrace_lock);
15634 
15635 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15636 			mutex_exit(&dtrace_lock);
15637 			return (EINVAL);
15638 		}
15639 
15640 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15641 
15642 		nrecs = aggdesc.dtagd_nrecs;
15643 		aggdesc.dtagd_nrecs = 0;
15644 
15645 		offs = agg->dtag_base;
15646 		lrec = &agg->dtag_action.dta_rec;
15647 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15648 
15649 		for (act = agg->dtag_first; ; act = act->dta_next) {
15650 			ASSERT(act->dta_intuple ||
15651 			    DTRACEACT_ISAGG(act->dta_kind));
15652 
15653 			/*
15654 			 * If this action has a record size of zero, it
15655 			 * denotes an argument to the aggregating action.
15656 			 * Because the presence of this record doesn't (or
15657 			 * shouldn't) affect the way the data is interpreted,
15658 			 * we don't copy it out to save user-level the
15659 			 * confusion of dealing with a zero-length record.
15660 			 */
15661 			if (act->dta_rec.dtrd_size == 0) {
15662 				ASSERT(agg->dtag_hasarg);
15663 				continue;
15664 			}
15665 
15666 			aggdesc.dtagd_nrecs++;
15667 
15668 			if (act == &agg->dtag_action)
15669 				break;
15670 		}
15671 
15672 		/*
15673 		 * Now that we have the size, we need to allocate a temporary
15674 		 * buffer in which to store the complete description.  We need
15675 		 * the temporary buffer to be able to drop dtrace_lock()
15676 		 * across the copyout(), below.
15677 		 */
15678 		size = sizeof (dtrace_aggdesc_t) +
15679 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15680 
15681 		buf = kmem_alloc(size, KM_SLEEP);
15682 		dest = (uintptr_t)buf;
15683 
15684 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15685 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15686 
15687 		for (act = agg->dtag_first; ; act = act->dta_next) {
15688 			dtrace_recdesc_t rec = act->dta_rec;
15689 
15690 			/*
15691 			 * See the comment in the above loop for why we pass
15692 			 * over zero-length records.
15693 			 */
15694 			if (rec.dtrd_size == 0) {
15695 				ASSERT(agg->dtag_hasarg);
15696 				continue;
15697 			}
15698 
15699 			if (nrecs-- == 0)
15700 				break;
15701 
15702 			rec.dtrd_offset -= offs;
15703 			bcopy(&rec, (void *)dest, sizeof (rec));
15704 			dest += sizeof (dtrace_recdesc_t);
15705 
15706 			if (act == &agg->dtag_action)
15707 				break;
15708 		}
15709 
15710 		mutex_exit(&dtrace_lock);
15711 
15712 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15713 			kmem_free(buf, size);
15714 			return (EFAULT);
15715 		}
15716 
15717 		kmem_free(buf, size);
15718 		return (0);
15719 	}
15720 
15721 	case DTRACEIOC_ENABLE: {
15722 		dof_hdr_t *dof;
15723 		dtrace_enabling_t *enab = NULL;
15724 		dtrace_vstate_t *vstate;
15725 		int err = 0;
15726 
15727 		*rv = 0;
15728 
15729 		/*
15730 		 * If a NULL argument has been passed, we take this as our
15731 		 * cue to reevaluate our enablings.
15732 		 */
15733 		if (arg == NULL) {
15734 			dtrace_enabling_matchall();
15735 
15736 			return (0);
15737 		}
15738 
15739 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15740 			return (rval);
15741 
15742 		mutex_enter(&cpu_lock);
15743 		mutex_enter(&dtrace_lock);
15744 		vstate = &state->dts_vstate;
15745 
15746 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15747 			mutex_exit(&dtrace_lock);
15748 			mutex_exit(&cpu_lock);
15749 			dtrace_dof_destroy(dof);
15750 			return (EBUSY);
15751 		}
15752 
15753 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15754 			mutex_exit(&dtrace_lock);
15755 			mutex_exit(&cpu_lock);
15756 			dtrace_dof_destroy(dof);
15757 			return (EINVAL);
15758 		}
15759 
15760 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15761 			dtrace_enabling_destroy(enab);
15762 			mutex_exit(&dtrace_lock);
15763 			mutex_exit(&cpu_lock);
15764 			dtrace_dof_destroy(dof);
15765 			return (rval);
15766 		}
15767 
15768 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15769 			err = dtrace_enabling_retain(enab);
15770 		} else {
15771 			dtrace_enabling_destroy(enab);
15772 		}
15773 
15774 		mutex_exit(&cpu_lock);
15775 		mutex_exit(&dtrace_lock);
15776 		dtrace_dof_destroy(dof);
15777 
15778 		return (err);
15779 	}
15780 
15781 	case DTRACEIOC_REPLICATE: {
15782 		dtrace_repldesc_t desc;
15783 		dtrace_probedesc_t *match = &desc.dtrpd_match;
15784 		dtrace_probedesc_t *create = &desc.dtrpd_create;
15785 		int err;
15786 
15787 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15788 			return (EFAULT);
15789 
15790 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15791 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15792 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15793 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15794 
15795 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15796 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15797 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15798 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15799 
15800 		mutex_enter(&dtrace_lock);
15801 		err = dtrace_enabling_replicate(state, match, create);
15802 		mutex_exit(&dtrace_lock);
15803 
15804 		return (err);
15805 	}
15806 
15807 	case DTRACEIOC_PROBEMATCH:
15808 	case DTRACEIOC_PROBES: {
15809 		dtrace_probe_t *probe = NULL;
15810 		dtrace_probedesc_t desc;
15811 		dtrace_probekey_t pkey;
15812 		dtrace_id_t i;
15813 		int m = 0;
15814 		uint32_t priv;
15815 		uid_t uid;
15816 		zoneid_t zoneid;
15817 
15818 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15819 			return (EFAULT);
15820 
15821 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15822 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15823 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15824 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15825 
15826 		/*
15827 		 * Before we attempt to match this probe, we want to give
15828 		 * all providers the opportunity to provide it.
15829 		 */
15830 		if (desc.dtpd_id == DTRACE_IDNONE) {
15831 			mutex_enter(&dtrace_provider_lock);
15832 			dtrace_probe_provide(&desc, NULL);
15833 			mutex_exit(&dtrace_provider_lock);
15834 			desc.dtpd_id++;
15835 		}
15836 
15837 		if (cmd == DTRACEIOC_PROBEMATCH)  {
15838 			dtrace_probekey(&desc, &pkey);
15839 			pkey.dtpk_id = DTRACE_IDNONE;
15840 		}
15841 
15842 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15843 
15844 		mutex_enter(&dtrace_lock);
15845 
15846 		if (cmd == DTRACEIOC_PROBEMATCH) {
15847 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15848 				if ((probe = dtrace_probes[i - 1]) != NULL &&
15849 				    (m = dtrace_match_probe(probe, &pkey,
15850 				    priv, uid, zoneid)) != 0)
15851 					break;
15852 			}
15853 
15854 			if (m < 0) {
15855 				mutex_exit(&dtrace_lock);
15856 				return (EINVAL);
15857 			}
15858 
15859 		} else {
15860 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15861 				if ((probe = dtrace_probes[i - 1]) != NULL &&
15862 				    dtrace_match_priv(probe, priv, uid, zoneid))
15863 					break;
15864 			}
15865 		}
15866 
15867 		if (probe == NULL) {
15868 			mutex_exit(&dtrace_lock);
15869 			return (ESRCH);
15870 		}
15871 
15872 		dtrace_probe_description(probe, &desc);
15873 		mutex_exit(&dtrace_lock);
15874 
15875 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15876 			return (EFAULT);
15877 
15878 		return (0);
15879 	}
15880 
15881 	case DTRACEIOC_PROBEARG: {
15882 		dtrace_argdesc_t desc;
15883 		dtrace_probe_t *probe;
15884 		dtrace_provider_t *prov;
15885 
15886 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15887 			return (EFAULT);
15888 
15889 		if (desc.dtargd_id == DTRACE_IDNONE)
15890 			return (EINVAL);
15891 
15892 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
15893 			return (EINVAL);
15894 
15895 		mutex_enter(&dtrace_provider_lock);
15896 		mutex_enter(&mod_lock);
15897 		mutex_enter(&dtrace_lock);
15898 
15899 		if (desc.dtargd_id > dtrace_nprobes) {
15900 			mutex_exit(&dtrace_lock);
15901 			mutex_exit(&mod_lock);
15902 			mutex_exit(&dtrace_provider_lock);
15903 			return (EINVAL);
15904 		}
15905 
15906 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
15907 			mutex_exit(&dtrace_lock);
15908 			mutex_exit(&mod_lock);
15909 			mutex_exit(&dtrace_provider_lock);
15910 			return (EINVAL);
15911 		}
15912 
15913 		mutex_exit(&dtrace_lock);
15914 
15915 		prov = probe->dtpr_provider;
15916 
15917 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
15918 			/*
15919 			 * There isn't any typed information for this probe.
15920 			 * Set the argument number to DTRACE_ARGNONE.
15921 			 */
15922 			desc.dtargd_ndx = DTRACE_ARGNONE;
15923 		} else {
15924 			desc.dtargd_native[0] = '\0';
15925 			desc.dtargd_xlate[0] = '\0';
15926 			desc.dtargd_mapping = desc.dtargd_ndx;
15927 
15928 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
15929 			    probe->dtpr_id, probe->dtpr_arg, &desc);
15930 		}
15931 
15932 		mutex_exit(&mod_lock);
15933 		mutex_exit(&dtrace_provider_lock);
15934 
15935 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15936 			return (EFAULT);
15937 
15938 		return (0);
15939 	}
15940 
15941 	case DTRACEIOC_GO: {
15942 		processorid_t cpuid;
15943 		rval = dtrace_state_go(state, &cpuid);
15944 
15945 		if (rval != 0)
15946 			return (rval);
15947 
15948 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15949 			return (EFAULT);
15950 
15951 		return (0);
15952 	}
15953 
15954 	case DTRACEIOC_STOP: {
15955 		processorid_t cpuid;
15956 
15957 		mutex_enter(&dtrace_lock);
15958 		rval = dtrace_state_stop(state, &cpuid);
15959 		mutex_exit(&dtrace_lock);
15960 
15961 		if (rval != 0)
15962 			return (rval);
15963 
15964 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
15965 			return (EFAULT);
15966 
15967 		return (0);
15968 	}
15969 
15970 	case DTRACEIOC_DOFGET: {
15971 		dof_hdr_t hdr, *dof;
15972 		uint64_t len;
15973 
15974 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
15975 			return (EFAULT);
15976 
15977 		mutex_enter(&dtrace_lock);
15978 		dof = dtrace_dof_create(state);
15979 		mutex_exit(&dtrace_lock);
15980 
15981 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
15982 		rval = copyout(dof, (void *)arg, len);
15983 		dtrace_dof_destroy(dof);
15984 
15985 		return (rval == 0 ? 0 : EFAULT);
15986 	}
15987 
15988 	case DTRACEIOC_AGGSNAP:
15989 	case DTRACEIOC_BUFSNAP: {
15990 		dtrace_bufdesc_t desc;
15991 		caddr_t cached;
15992 		dtrace_buffer_t *buf;
15993 
15994 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15995 			return (EFAULT);
15996 
15997 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
15998 			return (EINVAL);
15999 
16000 		mutex_enter(&dtrace_lock);
16001 
16002 		if (cmd == DTRACEIOC_BUFSNAP) {
16003 			buf = &state->dts_buffer[desc.dtbd_cpu];
16004 		} else {
16005 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16006 		}
16007 
16008 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16009 			size_t sz = buf->dtb_offset;
16010 
16011 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16012 				mutex_exit(&dtrace_lock);
16013 				return (EBUSY);
16014 			}
16015 
16016 			/*
16017 			 * If this buffer has already been consumed, we're
16018 			 * going to indicate that there's nothing left here
16019 			 * to consume.
16020 			 */
16021 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16022 				mutex_exit(&dtrace_lock);
16023 
16024 				desc.dtbd_size = 0;
16025 				desc.dtbd_drops = 0;
16026 				desc.dtbd_errors = 0;
16027 				desc.dtbd_oldest = 0;
16028 				sz = sizeof (desc);
16029 
16030 				if (copyout(&desc, (void *)arg, sz) != 0)
16031 					return (EFAULT);
16032 
16033 				return (0);
16034 			}
16035 
16036 			/*
16037 			 * If this is a ring buffer that has wrapped, we want
16038 			 * to copy the whole thing out.
16039 			 */
16040 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16041 				dtrace_buffer_polish(buf);
16042 				sz = buf->dtb_size;
16043 			}
16044 
16045 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16046 				mutex_exit(&dtrace_lock);
16047 				return (EFAULT);
16048 			}
16049 
16050 			desc.dtbd_size = sz;
16051 			desc.dtbd_drops = buf->dtb_drops;
16052 			desc.dtbd_errors = buf->dtb_errors;
16053 			desc.dtbd_oldest = buf->dtb_xamot_offset;
16054 
16055 			mutex_exit(&dtrace_lock);
16056 
16057 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16058 				return (EFAULT);
16059 
16060 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16061 
16062 			return (0);
16063 		}
16064 
16065 		if (buf->dtb_tomax == NULL) {
16066 			ASSERT(buf->dtb_xamot == NULL);
16067 			mutex_exit(&dtrace_lock);
16068 			return (ENOENT);
16069 		}
16070 
16071 		cached = buf->dtb_tomax;
16072 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16073 
16074 		dtrace_xcall(desc.dtbd_cpu,
16075 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16076 
16077 		state->dts_errors += buf->dtb_xamot_errors;
16078 
16079 		/*
16080 		 * If the buffers did not actually switch, then the cross call
16081 		 * did not take place -- presumably because the given CPU is
16082 		 * not in the ready set.  If this is the case, we'll return
16083 		 * ENOENT.
16084 		 */
16085 		if (buf->dtb_tomax == cached) {
16086 			ASSERT(buf->dtb_xamot != cached);
16087 			mutex_exit(&dtrace_lock);
16088 			return (ENOENT);
16089 		}
16090 
16091 		ASSERT(cached == buf->dtb_xamot);
16092 
16093 		/*
16094 		 * We have our snapshot; now copy it out.
16095 		 */
16096 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16097 		    buf->dtb_xamot_offset) != 0) {
16098 			mutex_exit(&dtrace_lock);
16099 			return (EFAULT);
16100 		}
16101 
16102 		desc.dtbd_size = buf->dtb_xamot_offset;
16103 		desc.dtbd_drops = buf->dtb_xamot_drops;
16104 		desc.dtbd_errors = buf->dtb_xamot_errors;
16105 		desc.dtbd_oldest = 0;
16106 
16107 		mutex_exit(&dtrace_lock);
16108 
16109 		/*
16110 		 * Finally, copy out the buffer description.
16111 		 */
16112 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16113 			return (EFAULT);
16114 
16115 		return (0);
16116 	}
16117 
16118 	case DTRACEIOC_CONF: {
16119 		dtrace_conf_t conf;
16120 
16121 		bzero(&conf, sizeof (conf));
16122 		conf.dtc_difversion = DIF_VERSION;
16123 		conf.dtc_difintregs = DIF_DIR_NREGS;
16124 		conf.dtc_diftupregs = DIF_DTR_NREGS;
16125 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16126 
16127 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16128 			return (EFAULT);
16129 
16130 		return (0);
16131 	}
16132 
16133 	case DTRACEIOC_STATUS: {
16134 		dtrace_status_t stat;
16135 		dtrace_dstate_t *dstate;
16136 		int i, j;
16137 		uint64_t nerrs;
16138 
16139 		/*
16140 		 * See the comment in dtrace_state_deadman() for the reason
16141 		 * for setting dts_laststatus to INT64_MAX before setting
16142 		 * it to the correct value.
16143 		 */
16144 		state->dts_laststatus = INT64_MAX;
16145 		dtrace_membar_producer();
16146 		state->dts_laststatus = dtrace_gethrtime();
16147 
16148 		bzero(&stat, sizeof (stat));
16149 
16150 		mutex_enter(&dtrace_lock);
16151 
16152 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16153 			mutex_exit(&dtrace_lock);
16154 			return (ENOENT);
16155 		}
16156 
16157 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16158 			stat.dtst_exiting = 1;
16159 
16160 		nerrs = state->dts_errors;
16161 		dstate = &state->dts_vstate.dtvs_dynvars;
16162 
16163 		for (i = 0; i < NCPU; i++) {
16164 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16165 
16166 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16167 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16168 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16169 
16170 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16171 				stat.dtst_filled++;
16172 
16173 			nerrs += state->dts_buffer[i].dtb_errors;
16174 
16175 			for (j = 0; j < state->dts_nspeculations; j++) {
16176 				dtrace_speculation_t *spec;
16177 				dtrace_buffer_t *buf;
16178 
16179 				spec = &state->dts_speculations[j];
16180 				buf = &spec->dtsp_buffer[i];
16181 				stat.dtst_specdrops += buf->dtb_xamot_drops;
16182 			}
16183 		}
16184 
16185 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16186 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16187 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16188 		stat.dtst_dblerrors = state->dts_dblerrors;
16189 		stat.dtst_killed =
16190 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16191 		stat.dtst_errors = nerrs;
16192 
16193 		mutex_exit(&dtrace_lock);
16194 
16195 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16196 			return (EFAULT);
16197 
16198 		return (0);
16199 	}
16200 
16201 	case DTRACEIOC_FORMAT: {
16202 		dtrace_fmtdesc_t fmt;
16203 		char *str;
16204 		int len;
16205 
16206 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16207 			return (EFAULT);
16208 
16209 		mutex_enter(&dtrace_lock);
16210 
16211 		if (fmt.dtfd_format == 0 ||
16212 		    fmt.dtfd_format > state->dts_nformats) {
16213 			mutex_exit(&dtrace_lock);
16214 			return (EINVAL);
16215 		}
16216 
16217 		/*
16218 		 * Format strings are allocated contiguously and they are
16219 		 * never freed; if a format index is less than the number
16220 		 * of formats, we can assert that the format map is non-NULL
16221 		 * and that the format for the specified index is non-NULL.
16222 		 */
16223 		ASSERT(state->dts_formats != NULL);
16224 		str = state->dts_formats[fmt.dtfd_format - 1];
16225 		ASSERT(str != NULL);
16226 
16227 		len = strlen(str) + 1;
16228 
16229 		if (len > fmt.dtfd_length) {
16230 			fmt.dtfd_length = len;
16231 
16232 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16233 				mutex_exit(&dtrace_lock);
16234 				return (EINVAL);
16235 			}
16236 		} else {
16237 			if (copyout(str, fmt.dtfd_string, len) != 0) {
16238 				mutex_exit(&dtrace_lock);
16239 				return (EINVAL);
16240 			}
16241 		}
16242 
16243 		mutex_exit(&dtrace_lock);
16244 		return (0);
16245 	}
16246 
16247 	default:
16248 		break;
16249 	}
16250 
16251 	return (ENOTTY);
16252 }
16253 
16254 /*ARGSUSED*/
16255 static int
16256 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16257 {
16258 	dtrace_state_t *state;
16259 
16260 	switch (cmd) {
16261 	case DDI_DETACH:
16262 		break;
16263 
16264 	case DDI_SUSPEND:
16265 		return (DDI_SUCCESS);
16266 
16267 	default:
16268 		return (DDI_FAILURE);
16269 	}
16270 
16271 	mutex_enter(&cpu_lock);
16272 	mutex_enter(&dtrace_provider_lock);
16273 	mutex_enter(&dtrace_lock);
16274 
16275 	ASSERT(dtrace_opens == 0);
16276 
16277 	if (dtrace_helpers > 0) {
16278 		mutex_exit(&dtrace_provider_lock);
16279 		mutex_exit(&dtrace_lock);
16280 		mutex_exit(&cpu_lock);
16281 		return (DDI_FAILURE);
16282 	}
16283 
16284 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16285 		mutex_exit(&dtrace_provider_lock);
16286 		mutex_exit(&dtrace_lock);
16287 		mutex_exit(&cpu_lock);
16288 		return (DDI_FAILURE);
16289 	}
16290 
16291 	dtrace_provider = NULL;
16292 
16293 	if ((state = dtrace_anon_grab()) != NULL) {
16294 		/*
16295 		 * If there were ECBs on this state, the provider should
16296 		 * have not been allowed to detach; assert that there is
16297 		 * none.
16298 		 */
16299 		ASSERT(state->dts_necbs == 0);
16300 		dtrace_state_destroy(state);
16301 
16302 		/*
16303 		 * If we're being detached with anonymous state, we need to
16304 		 * indicate to the kernel debugger that DTrace is now inactive.
16305 		 */
16306 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16307 	}
16308 
16309 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16310 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16311 	dtrace_cpu_init = NULL;
16312 	dtrace_helpers_cleanup = NULL;
16313 	dtrace_helpers_fork = NULL;
16314 	dtrace_cpustart_init = NULL;
16315 	dtrace_cpustart_fini = NULL;
16316 	dtrace_debugger_init = NULL;
16317 	dtrace_debugger_fini = NULL;
16318 	dtrace_modload = NULL;
16319 	dtrace_modunload = NULL;
16320 
16321 	mutex_exit(&cpu_lock);
16322 
16323 	if (dtrace_helptrace_enabled) {
16324 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16325 		dtrace_helptrace_buffer = NULL;
16326 	}
16327 
16328 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16329 	dtrace_probes = NULL;
16330 	dtrace_nprobes = 0;
16331 
16332 	dtrace_hash_destroy(dtrace_bymod);
16333 	dtrace_hash_destroy(dtrace_byfunc);
16334 	dtrace_hash_destroy(dtrace_byname);
16335 	dtrace_bymod = NULL;
16336 	dtrace_byfunc = NULL;
16337 	dtrace_byname = NULL;
16338 
16339 	kmem_cache_destroy(dtrace_state_cache);
16340 	vmem_destroy(dtrace_minor);
16341 	vmem_destroy(dtrace_arena);
16342 
16343 	if (dtrace_toxrange != NULL) {
16344 		kmem_free(dtrace_toxrange,
16345 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16346 		dtrace_toxrange = NULL;
16347 		dtrace_toxranges = 0;
16348 		dtrace_toxranges_max = 0;
16349 	}
16350 
16351 	ddi_remove_minor_node(dtrace_devi, NULL);
16352 	dtrace_devi = NULL;
16353 
16354 	ddi_soft_state_fini(&dtrace_softstate);
16355 
16356 	ASSERT(dtrace_vtime_references == 0);
16357 	ASSERT(dtrace_opens == 0);
16358 	ASSERT(dtrace_retained == NULL);
16359 
16360 	mutex_exit(&dtrace_lock);
16361 	mutex_exit(&dtrace_provider_lock);
16362 
16363 	/*
16364 	 * We don't destroy the task queue until after we have dropped our
16365 	 * locks (taskq_destroy() may block on running tasks).  To prevent
16366 	 * attempting to do work after we have effectively detached but before
16367 	 * the task queue has been destroyed, all tasks dispatched via the
16368 	 * task queue must check that DTrace is still attached before
16369 	 * performing any operation.
16370 	 */
16371 	taskq_destroy(dtrace_taskq);
16372 	dtrace_taskq = NULL;
16373 
16374 	return (DDI_SUCCESS);
16375 }
16376 #endif
16377 
16378 #if defined(sun)
16379 /*ARGSUSED*/
16380 static int
16381 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16382 {
16383 	int error;
16384 
16385 	switch (infocmd) {
16386 	case DDI_INFO_DEVT2DEVINFO:
16387 		*result = (void *)dtrace_devi;
16388 		error = DDI_SUCCESS;
16389 		break;
16390 	case DDI_INFO_DEVT2INSTANCE:
16391 		*result = (void *)0;
16392 		error = DDI_SUCCESS;
16393 		break;
16394 	default:
16395 		error = DDI_FAILURE;
16396 	}
16397 	return (error);
16398 }
16399 #endif
16400 
16401 #if defined(sun)
16402 static struct cb_ops dtrace_cb_ops = {
16403 	dtrace_open,		/* open */
16404 	dtrace_close,		/* close */
16405 	nulldev,		/* strategy */
16406 	nulldev,		/* print */
16407 	nodev,			/* dump */
16408 	nodev,			/* read */
16409 	nodev,			/* write */
16410 	dtrace_ioctl,		/* ioctl */
16411 	nodev,			/* devmap */
16412 	nodev,			/* mmap */
16413 	nodev,			/* segmap */
16414 	nochpoll,		/* poll */
16415 	ddi_prop_op,		/* cb_prop_op */
16416 	0,			/* streamtab  */
16417 	D_NEW | D_MP		/* Driver compatibility flag */
16418 };
16419 
16420 static struct dev_ops dtrace_ops = {
16421 	DEVO_REV,		/* devo_rev */
16422 	0,			/* refcnt */
16423 	dtrace_info,		/* get_dev_info */
16424 	nulldev,		/* identify */
16425 	nulldev,		/* probe */
16426 	dtrace_attach,		/* attach */
16427 	dtrace_detach,		/* detach */
16428 	nodev,			/* reset */
16429 	&dtrace_cb_ops,		/* driver operations */
16430 	NULL,			/* bus operations */
16431 	nodev			/* dev power */
16432 };
16433 
16434 static struct modldrv modldrv = {
16435 	&mod_driverops,		/* module type (this is a pseudo driver) */
16436 	"Dynamic Tracing",	/* name of module */
16437 	&dtrace_ops,		/* driver ops */
16438 };
16439 
16440 static struct modlinkage modlinkage = {
16441 	MODREV_1,
16442 	(void *)&modldrv,
16443 	NULL
16444 };
16445 
16446 int
16447 _init(void)
16448 {
16449 	return (mod_install(&modlinkage));
16450 }
16451 
16452 int
16453 _info(struct modinfo *modinfop)
16454 {
16455 	return (mod_info(&modlinkage, modinfop));
16456 }
16457 
16458 int
16459 _fini(void)
16460 {
16461 	return (mod_remove(&modlinkage));
16462 }
16463 #else
16464 
16465 static d_ioctl_t	dtrace_ioctl;
16466 static d_ioctl_t	dtrace_ioctl_helper;
16467 static void		dtrace_load(void *);
16468 static int		dtrace_unload(void);
16469 #if __FreeBSD_version < 800039
16470 static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16471 static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16472 static eventhandler_tag	eh_tag;			/* Event handler tag. */
16473 #else
16474 static struct cdev	*dtrace_dev;
16475 static struct cdev	*helper_dev;
16476 #endif
16477 
16478 void dtrace_invop_init(void);
16479 void dtrace_invop_uninit(void);
16480 
16481 static struct cdevsw dtrace_cdevsw = {
16482 	.d_version	= D_VERSION,
16483 	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16484 	.d_close	= dtrace_close,
16485 	.d_ioctl	= dtrace_ioctl,
16486 	.d_open		= dtrace_open,
16487 	.d_name		= "dtrace",
16488 };
16489 
16490 static struct cdevsw helper_cdevsw = {
16491 	.d_version	= D_VERSION,
16492 	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16493 	.d_ioctl	= dtrace_ioctl_helper,
16494 	.d_name		= "helper",
16495 };
16496 
16497 #include <dtrace_anon.c>
16498 #if __FreeBSD_version < 800039
16499 #include <dtrace_clone.c>
16500 #endif
16501 #include <dtrace_ioctl.c>
16502 #include <dtrace_load.c>
16503 #include <dtrace_modevent.c>
16504 #include <dtrace_sysctl.c>
16505 #include <dtrace_unload.c>
16506 #include <dtrace_vtime.c>
16507 #include <dtrace_hacks.c>
16508 #include <dtrace_isa.c>
16509 
16510 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16511 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16512 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16513 
16514 DEV_MODULE(dtrace, dtrace_modevent, NULL);
16515 MODULE_VERSION(dtrace, 1);
16516 MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16517 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16518 #endif
16519