1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 * 21 * $FreeBSD$ 22 */ 23 24 /* 25 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 26 * Use is subject to license terms. 27 */ 28 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * DTrace - Dynamic Tracing for Solaris 33 * 34 * This is the implementation of the Solaris Dynamic Tracing framework 35 * (DTrace). The user-visible interface to DTrace is described at length in 36 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 37 * library, the in-kernel DTrace framework, and the DTrace providers are 38 * described in the block comments in the <sys/dtrace.h> header file. The 39 * internal architecture of DTrace is described in the block comments in the 40 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 41 * implementation very much assume mastery of all of these sources; if one has 42 * an unanswered question about the implementation, one should consult them 43 * first. 44 * 45 * The functions here are ordered roughly as follows: 46 * 47 * - Probe context functions 48 * - Probe hashing functions 49 * - Non-probe context utility functions 50 * - Matching functions 51 * - Provider-to-Framework API functions 52 * - Probe management functions 53 * - DIF object functions 54 * - Format functions 55 * - Predicate functions 56 * - ECB functions 57 * - Buffer functions 58 * - Enabling functions 59 * - DOF functions 60 * - Anonymous enabling functions 61 * - Consumer state functions 62 * - Helper functions 63 * - Hook functions 64 * - Driver cookbook functions 65 * 66 * Each group of functions begins with a block comment labelled the "DTrace 67 * [Group] Functions", allowing one to find each block by searching forward 68 * on capital-f functions. 69 */ 70 #include <sys/errno.h> 71 #if !defined(sun) 72 #include <sys/time.h> 73 #endif 74 #include <sys/stat.h> 75 #include <sys/modctl.h> 76 #include <sys/conf.h> 77 #include <sys/systm.h> 78 #if defined(sun) 79 #include <sys/ddi.h> 80 #include <sys/sunddi.h> 81 #endif 82 #include <sys/cpuvar.h> 83 #include <sys/kmem.h> 84 #if defined(sun) 85 #include <sys/strsubr.h> 86 #endif 87 #include <sys/sysmacros.h> 88 #include <sys/dtrace_impl.h> 89 #include <sys/atomic.h> 90 #include <sys/cmn_err.h> 91 #if defined(sun) 92 #include <sys/mutex_impl.h> 93 #include <sys/rwlock_impl.h> 94 #endif 95 #include <sys/ctf_api.h> 96 #if defined(sun) 97 #include <sys/panic.h> 98 #include <sys/priv_impl.h> 99 #endif 100 #include <sys/policy.h> 101 #if defined(sun) 102 #include <sys/cred_impl.h> 103 #include <sys/procfs_isa.h> 104 #endif 105 #include <sys/taskq.h> 106 #if defined(sun) 107 #include <sys/mkdev.h> 108 #include <sys/kdi.h> 109 #endif 110 #include <sys/zone.h> 111 #include <sys/socket.h> 112 #include <netinet/in.h> 113 114 /* FreeBSD includes: */ 115 #if !defined(sun) 116 #include <sys/callout.h> 117 #include <sys/ctype.h> 118 #include <sys/limits.h> 119 #include <sys/kdb.h> 120 #include <sys/kernel.h> 121 #include <sys/malloc.h> 122 #include <sys/sysctl.h> 123 #include <sys/lock.h> 124 #include <sys/mutex.h> 125 #include <sys/rwlock.h> 126 #include <sys/sx.h> 127 #include <sys/dtrace_bsd.h> 128 #include <netinet/in.h> 129 #include "dtrace_cddl.h" 130 #include "dtrace_debug.c" 131 #endif 132 133 /* 134 * DTrace Tunable Variables 135 * 136 * The following variables may be tuned by adding a line to /etc/system that 137 * includes both the name of the DTrace module ("dtrace") and the name of the 138 * variable. For example: 139 * 140 * set dtrace:dtrace_destructive_disallow = 1 141 * 142 * In general, the only variables that one should be tuning this way are those 143 * that affect system-wide DTrace behavior, and for which the default behavior 144 * is undesirable. Most of these variables are tunable on a per-consumer 145 * basis using DTrace options, and need not be tuned on a system-wide basis. 146 * When tuning these variables, avoid pathological values; while some attempt 147 * is made to verify the integrity of these variables, they are not considered 148 * part of the supported interface to DTrace, and they are therefore not 149 * checked comprehensively. Further, these variables should not be tuned 150 * dynamically via "mdb -kw" or other means; they should only be tuned via 151 * /etc/system. 152 */ 153 int dtrace_destructive_disallow = 0; 154 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 155 size_t dtrace_difo_maxsize = (256 * 1024); 156 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 157 size_t dtrace_global_maxsize = (16 * 1024); 158 size_t dtrace_actions_max = (16 * 1024); 159 size_t dtrace_retain_max = 1024; 160 dtrace_optval_t dtrace_helper_actions_max = 32; 161 dtrace_optval_t dtrace_helper_providers_max = 32; 162 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 163 size_t dtrace_strsize_default = 256; 164 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 165 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 166 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 167 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 168 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 169 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 170 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 171 dtrace_optval_t dtrace_nspec_default = 1; 172 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 173 dtrace_optval_t dtrace_stackframes_default = 20; 174 dtrace_optval_t dtrace_ustackframes_default = 20; 175 dtrace_optval_t dtrace_jstackframes_default = 50; 176 dtrace_optval_t dtrace_jstackstrsize_default = 512; 177 int dtrace_msgdsize_max = 128; 178 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 179 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 180 int dtrace_devdepth_max = 32; 181 int dtrace_err_verbose; 182 hrtime_t dtrace_deadman_interval = NANOSEC; 183 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 184 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 185 186 /* 187 * DTrace External Variables 188 * 189 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 190 * available to DTrace consumers via the backtick (`) syntax. One of these, 191 * dtrace_zero, is made deliberately so: it is provided as a source of 192 * well-known, zero-filled memory. While this variable is not documented, 193 * it is used by some translators as an implementation detail. 194 */ 195 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 196 197 /* 198 * DTrace Internal Variables 199 */ 200 #if defined(sun) 201 static dev_info_t *dtrace_devi; /* device info */ 202 #endif 203 #if defined(sun) 204 static vmem_t *dtrace_arena; /* probe ID arena */ 205 static vmem_t *dtrace_minor; /* minor number arena */ 206 static taskq_t *dtrace_taskq; /* task queue */ 207 #else 208 static struct unrhdr *dtrace_arena; /* Probe ID number. */ 209 #endif 210 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 211 static int dtrace_nprobes; /* number of probes */ 212 static dtrace_provider_t *dtrace_provider; /* provider list */ 213 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 214 static int dtrace_opens; /* number of opens */ 215 static int dtrace_helpers; /* number of helpers */ 216 #if defined(sun) 217 static void *dtrace_softstate; /* softstate pointer */ 218 #endif 219 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 220 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 221 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 222 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 223 static int dtrace_toxranges; /* number of toxic ranges */ 224 static int dtrace_toxranges_max; /* size of toxic range array */ 225 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 226 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 227 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 228 static kthread_t *dtrace_panicked; /* panicking thread */ 229 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 230 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 231 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 232 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 233 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 234 #if !defined(sun) 235 static struct mtx dtrace_unr_mtx; 236 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF); 237 int dtrace_in_probe; /* non-zero if executing a probe */ 238 #if defined(__i386__) || defined(__amd64__) 239 uintptr_t dtrace_in_probe_addr; /* Address of invop when already in probe */ 240 #endif 241 #endif 242 243 /* 244 * DTrace Locking 245 * DTrace is protected by three (relatively coarse-grained) locks: 246 * 247 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 248 * including enabling state, probes, ECBs, consumer state, helper state, 249 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 250 * probe context is lock-free -- synchronization is handled via the 251 * dtrace_sync() cross call mechanism. 252 * 253 * (2) dtrace_provider_lock is required when manipulating provider state, or 254 * when provider state must be held constant. 255 * 256 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 257 * when meta provider state must be held constant. 258 * 259 * The lock ordering between these three locks is dtrace_meta_lock before 260 * dtrace_provider_lock before dtrace_lock. (In particular, there are 261 * several places where dtrace_provider_lock is held by the framework as it 262 * calls into the providers -- which then call back into the framework, 263 * grabbing dtrace_lock.) 264 * 265 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 266 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 267 * role as a coarse-grained lock; it is acquired before both of these locks. 268 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 269 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 270 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 271 * acquired _between_ dtrace_provider_lock and dtrace_lock. 272 */ 273 static kmutex_t dtrace_lock; /* probe state lock */ 274 static kmutex_t dtrace_provider_lock; /* provider state lock */ 275 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 276 277 #if !defined(sun) 278 /* XXX FreeBSD hacks. */ 279 static kmutex_t mod_lock; 280 281 #define cr_suid cr_svuid 282 #define cr_sgid cr_svgid 283 #define ipaddr_t in_addr_t 284 #define mod_modname pathname 285 #define vuprintf vprintf 286 #define ttoproc(_a) ((_a)->td_proc) 287 #define crgetzoneid(_a) 0 288 #define NCPU MAXCPU 289 #define SNOCD 0 290 #define CPU_ON_INTR(_a) 0 291 292 #define PRIV_EFFECTIVE (1 << 0) 293 #define PRIV_DTRACE_KERNEL (1 << 1) 294 #define PRIV_DTRACE_PROC (1 << 2) 295 #define PRIV_DTRACE_USER (1 << 3) 296 #define PRIV_PROC_OWNER (1 << 4) 297 #define PRIV_PROC_ZONE (1 << 5) 298 #define PRIV_ALL ~0 299 300 SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information"); 301 #endif 302 303 #if defined(sun) 304 #define curcpu CPU->cpu_id 305 #endif 306 307 308 /* 309 * DTrace Provider Variables 310 * 311 * These are the variables relating to DTrace as a provider (that is, the 312 * provider of the BEGIN, END, and ERROR probes). 313 */ 314 static dtrace_pattr_t dtrace_provider_attr = { 315 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 316 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 317 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 318 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 319 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 320 }; 321 322 static void 323 dtrace_nullop(void) 324 {} 325 326 static dtrace_pops_t dtrace_provider_ops = { 327 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop, 328 (void (*)(void *, modctl_t *))dtrace_nullop, 329 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 330 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 331 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 332 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 333 NULL, 334 NULL, 335 NULL, 336 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 337 }; 338 339 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 340 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 341 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 342 343 /* 344 * DTrace Helper Tracing Variables 345 */ 346 uint32_t dtrace_helptrace_next = 0; 347 uint32_t dtrace_helptrace_nlocals; 348 char *dtrace_helptrace_buffer; 349 int dtrace_helptrace_bufsize = 512 * 1024; 350 351 #ifdef DEBUG 352 int dtrace_helptrace_enabled = 1; 353 #else 354 int dtrace_helptrace_enabled = 0; 355 #endif 356 357 /* 358 * DTrace Error Hashing 359 * 360 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 361 * table. This is very useful for checking coverage of tests that are 362 * expected to induce DIF or DOF processing errors, and may be useful for 363 * debugging problems in the DIF code generator or in DOF generation . The 364 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 365 */ 366 #ifdef DEBUG 367 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 368 static const char *dtrace_errlast; 369 static kthread_t *dtrace_errthread; 370 static kmutex_t dtrace_errlock; 371 #endif 372 373 /* 374 * DTrace Macros and Constants 375 * 376 * These are various macros that are useful in various spots in the 377 * implementation, along with a few random constants that have no meaning 378 * outside of the implementation. There is no real structure to this cpp 379 * mishmash -- but is there ever? 380 */ 381 #define DTRACE_HASHSTR(hash, probe) \ 382 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 383 384 #define DTRACE_HASHNEXT(hash, probe) \ 385 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 386 387 #define DTRACE_HASHPREV(hash, probe) \ 388 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 389 390 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 391 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 392 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 393 394 #define DTRACE_AGGHASHSIZE_SLEW 17 395 396 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 397 398 /* 399 * The key for a thread-local variable consists of the lower 61 bits of the 400 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 401 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 402 * equal to a variable identifier. This is necessary (but not sufficient) to 403 * assure that global associative arrays never collide with thread-local 404 * variables. To guarantee that they cannot collide, we must also define the 405 * order for keying dynamic variables. That order is: 406 * 407 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 408 * 409 * Because the variable-key and the tls-key are in orthogonal spaces, there is 410 * no way for a global variable key signature to match a thread-local key 411 * signature. 412 */ 413 #if defined(sun) 414 #define DTRACE_TLS_THRKEY(where) { \ 415 uint_t intr = 0; \ 416 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 417 for (; actv; actv >>= 1) \ 418 intr++; \ 419 ASSERT(intr < (1 << 3)); \ 420 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 421 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 422 } 423 #else 424 #define DTRACE_TLS_THRKEY(where) { \ 425 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \ 426 uint_t intr = 0; \ 427 uint_t actv = _c->cpu_intr_actv; \ 428 for (; actv; actv >>= 1) \ 429 intr++; \ 430 ASSERT(intr < (1 << 3)); \ 431 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \ 432 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 433 } 434 #endif 435 436 #define DT_BSWAP_8(x) ((x) & 0xff) 437 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 438 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 439 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 440 441 #define DT_MASK_LO 0x00000000FFFFFFFFULL 442 443 #define DTRACE_STORE(type, tomax, offset, what) \ 444 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 445 446 #ifndef __i386 447 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 448 if (addr & (size - 1)) { \ 449 *flags |= CPU_DTRACE_BADALIGN; \ 450 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 451 return (0); \ 452 } 453 #else 454 #define DTRACE_ALIGNCHECK(addr, size, flags) 455 #endif 456 457 /* 458 * Test whether a range of memory starting at testaddr of size testsz falls 459 * within the range of memory described by addr, sz. We take care to avoid 460 * problems with overflow and underflow of the unsigned quantities, and 461 * disallow all negative sizes. Ranges of size 0 are allowed. 462 */ 463 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 464 ((testaddr) - (baseaddr) < (basesz) && \ 465 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ 466 (testaddr) + (testsz) >= (testaddr)) 467 468 /* 469 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 470 * alloc_sz on the righthand side of the comparison in order to avoid overflow 471 * or underflow in the comparison with it. This is simpler than the INRANGE 472 * check above, because we know that the dtms_scratch_ptr is valid in the 473 * range. Allocations of size zero are allowed. 474 */ 475 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 476 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 477 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 478 479 #define DTRACE_LOADFUNC(bits) \ 480 /*CSTYLED*/ \ 481 uint##bits##_t \ 482 dtrace_load##bits(uintptr_t addr) \ 483 { \ 484 size_t size = bits / NBBY; \ 485 /*CSTYLED*/ \ 486 uint##bits##_t rval; \ 487 int i; \ 488 volatile uint16_t *flags = (volatile uint16_t *) \ 489 &cpu_core[curcpu].cpuc_dtrace_flags; \ 490 \ 491 DTRACE_ALIGNCHECK(addr, size, flags); \ 492 \ 493 for (i = 0; i < dtrace_toxranges; i++) { \ 494 if (addr >= dtrace_toxrange[i].dtt_limit) \ 495 continue; \ 496 \ 497 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 498 continue; \ 499 \ 500 /* \ 501 * This address falls within a toxic region; return 0. \ 502 */ \ 503 *flags |= CPU_DTRACE_BADADDR; \ 504 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 505 return (0); \ 506 } \ 507 \ 508 *flags |= CPU_DTRACE_NOFAULT; \ 509 /*CSTYLED*/ \ 510 rval = *((volatile uint##bits##_t *)addr); \ 511 *flags &= ~CPU_DTRACE_NOFAULT; \ 512 \ 513 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 514 } 515 516 #ifdef _LP64 517 #define dtrace_loadptr dtrace_load64 518 #else 519 #define dtrace_loadptr dtrace_load32 520 #endif 521 522 #define DTRACE_DYNHASH_FREE 0 523 #define DTRACE_DYNHASH_SINK 1 524 #define DTRACE_DYNHASH_VALID 2 525 526 #define DTRACE_MATCH_NEXT 0 527 #define DTRACE_MATCH_DONE 1 528 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 529 #define DTRACE_STATE_ALIGN 64 530 531 #define DTRACE_FLAGS2FLT(flags) \ 532 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 533 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 534 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 535 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 536 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 537 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 538 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 539 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 540 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 541 DTRACEFLT_UNKNOWN) 542 543 #define DTRACEACT_ISSTRING(act) \ 544 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 545 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 546 547 /* Function prototype definitions: */ 548 static size_t dtrace_strlen(const char *, size_t); 549 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 550 static void dtrace_enabling_provide(dtrace_provider_t *); 551 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 552 static void dtrace_enabling_matchall(void); 553 static dtrace_state_t *dtrace_anon_grab(void); 554 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 555 dtrace_state_t *, uint64_t, uint64_t); 556 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 557 static void dtrace_buffer_drop(dtrace_buffer_t *); 558 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 559 dtrace_state_t *, dtrace_mstate_t *); 560 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 561 dtrace_optval_t); 562 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 563 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 564 uint16_t dtrace_load16(uintptr_t); 565 uint32_t dtrace_load32(uintptr_t); 566 uint64_t dtrace_load64(uintptr_t); 567 uint8_t dtrace_load8(uintptr_t); 568 void dtrace_dynvar_clean(dtrace_dstate_t *); 569 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *, 570 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *); 571 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *); 572 573 /* 574 * DTrace Probe Context Functions 575 * 576 * These functions are called from probe context. Because probe context is 577 * any context in which C may be called, arbitrarily locks may be held, 578 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 579 * As a result, functions called from probe context may only call other DTrace 580 * support functions -- they may not interact at all with the system at large. 581 * (Note that the ASSERT macro is made probe-context safe by redefining it in 582 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 583 * loads are to be performed from probe context, they _must_ be in terms of 584 * the safe dtrace_load*() variants. 585 * 586 * Some functions in this block are not actually called from probe context; 587 * for these functions, there will be a comment above the function reading 588 * "Note: not called from probe context." 589 */ 590 void 591 dtrace_panic(const char *format, ...) 592 { 593 va_list alist; 594 595 va_start(alist, format); 596 dtrace_vpanic(format, alist); 597 va_end(alist); 598 } 599 600 int 601 dtrace_assfail(const char *a, const char *f, int l) 602 { 603 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 604 605 /* 606 * We just need something here that even the most clever compiler 607 * cannot optimize away. 608 */ 609 return (a[(uintptr_t)f]); 610 } 611 612 /* 613 * Atomically increment a specified error counter from probe context. 614 */ 615 static void 616 dtrace_error(uint32_t *counter) 617 { 618 /* 619 * Most counters stored to in probe context are per-CPU counters. 620 * However, there are some error conditions that are sufficiently 621 * arcane that they don't merit per-CPU storage. If these counters 622 * are incremented concurrently on different CPUs, scalability will be 623 * adversely affected -- but we don't expect them to be white-hot in a 624 * correctly constructed enabling... 625 */ 626 uint32_t oval, nval; 627 628 do { 629 oval = *counter; 630 631 if ((nval = oval + 1) == 0) { 632 /* 633 * If the counter would wrap, set it to 1 -- assuring 634 * that the counter is never zero when we have seen 635 * errors. (The counter must be 32-bits because we 636 * aren't guaranteed a 64-bit compare&swap operation.) 637 * To save this code both the infamy of being fingered 638 * by a priggish news story and the indignity of being 639 * the target of a neo-puritan witch trial, we're 640 * carefully avoiding any colorful description of the 641 * likelihood of this condition -- but suffice it to 642 * say that it is only slightly more likely than the 643 * overflow of predicate cache IDs, as discussed in 644 * dtrace_predicate_create(). 645 */ 646 nval = 1; 647 } 648 } while (dtrace_cas32(counter, oval, nval) != oval); 649 } 650 651 /* 652 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 653 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 654 */ 655 DTRACE_LOADFUNC(8) 656 DTRACE_LOADFUNC(16) 657 DTRACE_LOADFUNC(32) 658 DTRACE_LOADFUNC(64) 659 660 static int 661 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 662 { 663 if (dest < mstate->dtms_scratch_base) 664 return (0); 665 666 if (dest + size < dest) 667 return (0); 668 669 if (dest + size > mstate->dtms_scratch_ptr) 670 return (0); 671 672 return (1); 673 } 674 675 static int 676 dtrace_canstore_statvar(uint64_t addr, size_t sz, 677 dtrace_statvar_t **svars, int nsvars) 678 { 679 int i; 680 681 for (i = 0; i < nsvars; i++) { 682 dtrace_statvar_t *svar = svars[i]; 683 684 if (svar == NULL || svar->dtsv_size == 0) 685 continue; 686 687 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 688 return (1); 689 } 690 691 return (0); 692 } 693 694 /* 695 * Check to see if the address is within a memory region to which a store may 696 * be issued. This includes the DTrace scratch areas, and any DTrace variable 697 * region. The caller of dtrace_canstore() is responsible for performing any 698 * alignment checks that are needed before stores are actually executed. 699 */ 700 static int 701 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 702 dtrace_vstate_t *vstate) 703 { 704 /* 705 * First, check to see if the address is in scratch space... 706 */ 707 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 708 mstate->dtms_scratch_size)) 709 return (1); 710 711 /* 712 * Now check to see if it's a dynamic variable. This check will pick 713 * up both thread-local variables and any global dynamically-allocated 714 * variables. 715 */ 716 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, 717 vstate->dtvs_dynvars.dtds_size)) { 718 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 719 uintptr_t base = (uintptr_t)dstate->dtds_base + 720 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 721 uintptr_t chunkoffs; 722 723 /* 724 * Before we assume that we can store here, we need to make 725 * sure that it isn't in our metadata -- storing to our 726 * dynamic variable metadata would corrupt our state. For 727 * the range to not include any dynamic variable metadata, 728 * it must: 729 * 730 * (1) Start above the hash table that is at the base of 731 * the dynamic variable space 732 * 733 * (2) Have a starting chunk offset that is beyond the 734 * dtrace_dynvar_t that is at the base of every chunk 735 * 736 * (3) Not span a chunk boundary 737 * 738 */ 739 if (addr < base) 740 return (0); 741 742 chunkoffs = (addr - base) % dstate->dtds_chunksize; 743 744 if (chunkoffs < sizeof (dtrace_dynvar_t)) 745 return (0); 746 747 if (chunkoffs + sz > dstate->dtds_chunksize) 748 return (0); 749 750 return (1); 751 } 752 753 /* 754 * Finally, check the static local and global variables. These checks 755 * take the longest, so we perform them last. 756 */ 757 if (dtrace_canstore_statvar(addr, sz, 758 vstate->dtvs_locals, vstate->dtvs_nlocals)) 759 return (1); 760 761 if (dtrace_canstore_statvar(addr, sz, 762 vstate->dtvs_globals, vstate->dtvs_nglobals)) 763 return (1); 764 765 return (0); 766 } 767 768 769 /* 770 * Convenience routine to check to see if the address is within a memory 771 * region in which a load may be issued given the user's privilege level; 772 * if not, it sets the appropriate error flags and loads 'addr' into the 773 * illegal value slot. 774 * 775 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 776 * appropriate memory access protection. 777 */ 778 static int 779 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 780 dtrace_vstate_t *vstate) 781 { 782 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 783 784 /* 785 * If we hold the privilege to read from kernel memory, then 786 * everything is readable. 787 */ 788 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 789 return (1); 790 791 /* 792 * You can obviously read that which you can store. 793 */ 794 if (dtrace_canstore(addr, sz, mstate, vstate)) 795 return (1); 796 797 /* 798 * We're allowed to read from our own string table. 799 */ 800 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, 801 mstate->dtms_difo->dtdo_strlen)) 802 return (1); 803 804 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 805 *illval = addr; 806 return (0); 807 } 808 809 /* 810 * Convenience routine to check to see if a given string is within a memory 811 * region in which a load may be issued given the user's privilege level; 812 * this exists so that we don't need to issue unnecessary dtrace_strlen() 813 * calls in the event that the user has all privileges. 814 */ 815 static int 816 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 817 dtrace_vstate_t *vstate) 818 { 819 size_t strsz; 820 821 /* 822 * If we hold the privilege to read from kernel memory, then 823 * everything is readable. 824 */ 825 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 826 return (1); 827 828 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 829 if (dtrace_canload(addr, strsz, mstate, vstate)) 830 return (1); 831 832 return (0); 833 } 834 835 /* 836 * Convenience routine to check to see if a given variable is within a memory 837 * region in which a load may be issued given the user's privilege level. 838 */ 839 static int 840 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 841 dtrace_vstate_t *vstate) 842 { 843 size_t sz; 844 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 845 846 /* 847 * If we hold the privilege to read from kernel memory, then 848 * everything is readable. 849 */ 850 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 851 return (1); 852 853 if (type->dtdt_kind == DIF_TYPE_STRING) 854 sz = dtrace_strlen(src, 855 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 856 else 857 sz = type->dtdt_size; 858 859 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 860 } 861 862 /* 863 * Compare two strings using safe loads. 864 */ 865 static int 866 dtrace_strncmp(char *s1, char *s2, size_t limit) 867 { 868 uint8_t c1, c2; 869 volatile uint16_t *flags; 870 871 if (s1 == s2 || limit == 0) 872 return (0); 873 874 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 875 876 do { 877 if (s1 == NULL) { 878 c1 = '\0'; 879 } else { 880 c1 = dtrace_load8((uintptr_t)s1++); 881 } 882 883 if (s2 == NULL) { 884 c2 = '\0'; 885 } else { 886 c2 = dtrace_load8((uintptr_t)s2++); 887 } 888 889 if (c1 != c2) 890 return (c1 - c2); 891 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 892 893 return (0); 894 } 895 896 /* 897 * Compute strlen(s) for a string using safe memory accesses. The additional 898 * len parameter is used to specify a maximum length to ensure completion. 899 */ 900 static size_t 901 dtrace_strlen(const char *s, size_t lim) 902 { 903 uint_t len; 904 905 for (len = 0; len != lim; len++) { 906 if (dtrace_load8((uintptr_t)s++) == '\0') 907 break; 908 } 909 910 return (len); 911 } 912 913 /* 914 * Check if an address falls within a toxic region. 915 */ 916 static int 917 dtrace_istoxic(uintptr_t kaddr, size_t size) 918 { 919 uintptr_t taddr, tsize; 920 int i; 921 922 for (i = 0; i < dtrace_toxranges; i++) { 923 taddr = dtrace_toxrange[i].dtt_base; 924 tsize = dtrace_toxrange[i].dtt_limit - taddr; 925 926 if (kaddr - taddr < tsize) { 927 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 928 cpu_core[curcpu].cpuc_dtrace_illval = kaddr; 929 return (1); 930 } 931 932 if (taddr - kaddr < size) { 933 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 934 cpu_core[curcpu].cpuc_dtrace_illval = taddr; 935 return (1); 936 } 937 } 938 939 return (0); 940 } 941 942 /* 943 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 944 * memory specified by the DIF program. The dst is assumed to be safe memory 945 * that we can store to directly because it is managed by DTrace. As with 946 * standard bcopy, overlapping copies are handled properly. 947 */ 948 static void 949 dtrace_bcopy(const void *src, void *dst, size_t len) 950 { 951 if (len != 0) { 952 uint8_t *s1 = dst; 953 const uint8_t *s2 = src; 954 955 if (s1 <= s2) { 956 do { 957 *s1++ = dtrace_load8((uintptr_t)s2++); 958 } while (--len != 0); 959 } else { 960 s2 += len; 961 s1 += len; 962 963 do { 964 *--s1 = dtrace_load8((uintptr_t)--s2); 965 } while (--len != 0); 966 } 967 } 968 } 969 970 /* 971 * Copy src to dst using safe memory accesses, up to either the specified 972 * length, or the point that a nul byte is encountered. The src is assumed to 973 * be unsafe memory specified by the DIF program. The dst is assumed to be 974 * safe memory that we can store to directly because it is managed by DTrace. 975 * Unlike dtrace_bcopy(), overlapping regions are not handled. 976 */ 977 static void 978 dtrace_strcpy(const void *src, void *dst, size_t len) 979 { 980 if (len != 0) { 981 uint8_t *s1 = dst, c; 982 const uint8_t *s2 = src; 983 984 do { 985 *s1++ = c = dtrace_load8((uintptr_t)s2++); 986 } while (--len != 0 && c != '\0'); 987 } 988 } 989 990 /* 991 * Copy src to dst, deriving the size and type from the specified (BYREF) 992 * variable type. The src is assumed to be unsafe memory specified by the DIF 993 * program. The dst is assumed to be DTrace variable memory that is of the 994 * specified type; we assume that we can store to directly. 995 */ 996 static void 997 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 998 { 999 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1000 1001 if (type->dtdt_kind == DIF_TYPE_STRING) { 1002 dtrace_strcpy(src, dst, type->dtdt_size); 1003 } else { 1004 dtrace_bcopy(src, dst, type->dtdt_size); 1005 } 1006 } 1007 1008 /* 1009 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1010 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1011 * safe memory that we can access directly because it is managed by DTrace. 1012 */ 1013 static int 1014 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1015 { 1016 volatile uint16_t *flags; 1017 1018 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1019 1020 if (s1 == s2) 1021 return (0); 1022 1023 if (s1 == NULL || s2 == NULL) 1024 return (1); 1025 1026 if (s1 != s2 && len != 0) { 1027 const uint8_t *ps1 = s1; 1028 const uint8_t *ps2 = s2; 1029 1030 do { 1031 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1032 return (1); 1033 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1034 } 1035 return (0); 1036 } 1037 1038 /* 1039 * Zero the specified region using a simple byte-by-byte loop. Note that this 1040 * is for safe DTrace-managed memory only. 1041 */ 1042 static void 1043 dtrace_bzero(void *dst, size_t len) 1044 { 1045 uchar_t *cp; 1046 1047 for (cp = dst; len != 0; len--) 1048 *cp++ = 0; 1049 } 1050 1051 static void 1052 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1053 { 1054 uint64_t result[2]; 1055 1056 result[0] = addend1[0] + addend2[0]; 1057 result[1] = addend1[1] + addend2[1] + 1058 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1059 1060 sum[0] = result[0]; 1061 sum[1] = result[1]; 1062 } 1063 1064 /* 1065 * Shift the 128-bit value in a by b. If b is positive, shift left. 1066 * If b is negative, shift right. 1067 */ 1068 static void 1069 dtrace_shift_128(uint64_t *a, int b) 1070 { 1071 uint64_t mask; 1072 1073 if (b == 0) 1074 return; 1075 1076 if (b < 0) { 1077 b = -b; 1078 if (b >= 64) { 1079 a[0] = a[1] >> (b - 64); 1080 a[1] = 0; 1081 } else { 1082 a[0] >>= b; 1083 mask = 1LL << (64 - b); 1084 mask -= 1; 1085 a[0] |= ((a[1] & mask) << (64 - b)); 1086 a[1] >>= b; 1087 } 1088 } else { 1089 if (b >= 64) { 1090 a[1] = a[0] << (b - 64); 1091 a[0] = 0; 1092 } else { 1093 a[1] <<= b; 1094 mask = a[0] >> (64 - b); 1095 a[1] |= mask; 1096 a[0] <<= b; 1097 } 1098 } 1099 } 1100 1101 /* 1102 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1103 * use native multiplication on those, and then re-combine into the 1104 * resulting 128-bit value. 1105 * 1106 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1107 * hi1 * hi2 << 64 + 1108 * hi1 * lo2 << 32 + 1109 * hi2 * lo1 << 32 + 1110 * lo1 * lo2 1111 */ 1112 static void 1113 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1114 { 1115 uint64_t hi1, hi2, lo1, lo2; 1116 uint64_t tmp[2]; 1117 1118 hi1 = factor1 >> 32; 1119 hi2 = factor2 >> 32; 1120 1121 lo1 = factor1 & DT_MASK_LO; 1122 lo2 = factor2 & DT_MASK_LO; 1123 1124 product[0] = lo1 * lo2; 1125 product[1] = hi1 * hi2; 1126 1127 tmp[0] = hi1 * lo2; 1128 tmp[1] = 0; 1129 dtrace_shift_128(tmp, 32); 1130 dtrace_add_128(product, tmp, product); 1131 1132 tmp[0] = hi2 * lo1; 1133 tmp[1] = 0; 1134 dtrace_shift_128(tmp, 32); 1135 dtrace_add_128(product, tmp, product); 1136 } 1137 1138 /* 1139 * This privilege check should be used by actions and subroutines to 1140 * verify that the user credentials of the process that enabled the 1141 * invoking ECB match the target credentials 1142 */ 1143 static int 1144 dtrace_priv_proc_common_user(dtrace_state_t *state) 1145 { 1146 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1147 1148 /* 1149 * We should always have a non-NULL state cred here, since if cred 1150 * is null (anonymous tracing), we fast-path bypass this routine. 1151 */ 1152 ASSERT(s_cr != NULL); 1153 1154 if ((cr = CRED()) != NULL && 1155 s_cr->cr_uid == cr->cr_uid && 1156 s_cr->cr_uid == cr->cr_ruid && 1157 s_cr->cr_uid == cr->cr_suid && 1158 s_cr->cr_gid == cr->cr_gid && 1159 s_cr->cr_gid == cr->cr_rgid && 1160 s_cr->cr_gid == cr->cr_sgid) 1161 return (1); 1162 1163 return (0); 1164 } 1165 1166 /* 1167 * This privilege check should be used by actions and subroutines to 1168 * verify that the zone of the process that enabled the invoking ECB 1169 * matches the target credentials 1170 */ 1171 static int 1172 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1173 { 1174 #if defined(sun) 1175 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1176 1177 /* 1178 * We should always have a non-NULL state cred here, since if cred 1179 * is null (anonymous tracing), we fast-path bypass this routine. 1180 */ 1181 ASSERT(s_cr != NULL); 1182 1183 if ((cr = CRED()) != NULL && 1184 s_cr->cr_zone == cr->cr_zone) 1185 return (1); 1186 1187 return (0); 1188 #else 1189 return (1); 1190 #endif 1191 } 1192 1193 /* 1194 * This privilege check should be used by actions and subroutines to 1195 * verify that the process has not setuid or changed credentials. 1196 */ 1197 static int 1198 dtrace_priv_proc_common_nocd(void) 1199 { 1200 proc_t *proc; 1201 1202 if ((proc = ttoproc(curthread)) != NULL && 1203 !(proc->p_flag & SNOCD)) 1204 return (1); 1205 1206 return (0); 1207 } 1208 1209 static int 1210 dtrace_priv_proc_destructive(dtrace_state_t *state) 1211 { 1212 int action = state->dts_cred.dcr_action; 1213 1214 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1215 dtrace_priv_proc_common_zone(state) == 0) 1216 goto bad; 1217 1218 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1219 dtrace_priv_proc_common_user(state) == 0) 1220 goto bad; 1221 1222 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1223 dtrace_priv_proc_common_nocd() == 0) 1224 goto bad; 1225 1226 return (1); 1227 1228 bad: 1229 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1230 1231 return (0); 1232 } 1233 1234 static int 1235 dtrace_priv_proc_control(dtrace_state_t *state) 1236 { 1237 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1238 return (1); 1239 1240 if (dtrace_priv_proc_common_zone(state) && 1241 dtrace_priv_proc_common_user(state) && 1242 dtrace_priv_proc_common_nocd()) 1243 return (1); 1244 1245 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1246 1247 return (0); 1248 } 1249 1250 static int 1251 dtrace_priv_proc(dtrace_state_t *state) 1252 { 1253 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1254 return (1); 1255 1256 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1257 1258 return (0); 1259 } 1260 1261 static int 1262 dtrace_priv_kernel(dtrace_state_t *state) 1263 { 1264 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1265 return (1); 1266 1267 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1268 1269 return (0); 1270 } 1271 1272 static int 1273 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1274 { 1275 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1276 return (1); 1277 1278 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1279 1280 return (0); 1281 } 1282 1283 /* 1284 * Note: not called from probe context. This function is called 1285 * asynchronously (and at a regular interval) from outside of probe context to 1286 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1287 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1288 */ 1289 void 1290 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1291 { 1292 dtrace_dynvar_t *dirty; 1293 dtrace_dstate_percpu_t *dcpu; 1294 int i, work = 0; 1295 1296 for (i = 0; i < NCPU; i++) { 1297 dcpu = &dstate->dtds_percpu[i]; 1298 1299 ASSERT(dcpu->dtdsc_rinsing == NULL); 1300 1301 /* 1302 * If the dirty list is NULL, there is no dirty work to do. 1303 */ 1304 if (dcpu->dtdsc_dirty == NULL) 1305 continue; 1306 1307 /* 1308 * If the clean list is non-NULL, then we're not going to do 1309 * any work for this CPU -- it means that there has not been 1310 * a dtrace_dynvar() allocation on this CPU (or from this CPU) 1311 * since the last time we cleaned house. 1312 */ 1313 if (dcpu->dtdsc_clean != NULL) 1314 continue; 1315 1316 work = 1; 1317 1318 /* 1319 * Atomically move the dirty list aside. 1320 */ 1321 do { 1322 dirty = dcpu->dtdsc_dirty; 1323 1324 /* 1325 * Before we zap the dirty list, set the rinsing list. 1326 * (This allows for a potential assertion in 1327 * dtrace_dynvar(): if a free dynamic variable appears 1328 * on a hash chain, either the dirty list or the 1329 * rinsing list for some CPU must be non-NULL.) 1330 */ 1331 dcpu->dtdsc_rinsing = dirty; 1332 dtrace_membar_producer(); 1333 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1334 dirty, NULL) != dirty); 1335 } 1336 1337 if (!work) { 1338 /* 1339 * We have no work to do; we can simply return. 1340 */ 1341 return; 1342 } 1343 1344 dtrace_sync(); 1345 1346 for (i = 0; i < NCPU; i++) { 1347 dcpu = &dstate->dtds_percpu[i]; 1348 1349 if (dcpu->dtdsc_rinsing == NULL) 1350 continue; 1351 1352 /* 1353 * We are now guaranteed that no hash chain contains a pointer 1354 * into this dirty list; we can make it clean. 1355 */ 1356 ASSERT(dcpu->dtdsc_clean == NULL); 1357 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1358 dcpu->dtdsc_rinsing = NULL; 1359 } 1360 1361 /* 1362 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1363 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1364 * This prevents a race whereby a CPU incorrectly decides that 1365 * the state should be something other than DTRACE_DSTATE_CLEAN 1366 * after dtrace_dynvar_clean() has completed. 1367 */ 1368 dtrace_sync(); 1369 1370 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1371 } 1372 1373 /* 1374 * Depending on the value of the op parameter, this function looks-up, 1375 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1376 * allocation is requested, this function will return a pointer to a 1377 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1378 * variable can be allocated. If NULL is returned, the appropriate counter 1379 * will be incremented. 1380 */ 1381 dtrace_dynvar_t * 1382 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1383 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1384 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1385 { 1386 uint64_t hashval = DTRACE_DYNHASH_VALID; 1387 dtrace_dynhash_t *hash = dstate->dtds_hash; 1388 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1389 processorid_t me = curcpu, cpu = me; 1390 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1391 size_t bucket, ksize; 1392 size_t chunksize = dstate->dtds_chunksize; 1393 uintptr_t kdata, lock, nstate; 1394 uint_t i; 1395 1396 ASSERT(nkeys != 0); 1397 1398 /* 1399 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1400 * algorithm. For the by-value portions, we perform the algorithm in 1401 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1402 * bit, and seems to have only a minute effect on distribution. For 1403 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1404 * over each referenced byte. It's painful to do this, but it's much 1405 * better than pathological hash distribution. The efficacy of the 1406 * hashing algorithm (and a comparison with other algorithms) may be 1407 * found by running the ::dtrace_dynstat MDB dcmd. 1408 */ 1409 for (i = 0; i < nkeys; i++) { 1410 if (key[i].dttk_size == 0) { 1411 uint64_t val = key[i].dttk_value; 1412 1413 hashval += (val >> 48) & 0xffff; 1414 hashval += (hashval << 10); 1415 hashval ^= (hashval >> 6); 1416 1417 hashval += (val >> 32) & 0xffff; 1418 hashval += (hashval << 10); 1419 hashval ^= (hashval >> 6); 1420 1421 hashval += (val >> 16) & 0xffff; 1422 hashval += (hashval << 10); 1423 hashval ^= (hashval >> 6); 1424 1425 hashval += val & 0xffff; 1426 hashval += (hashval << 10); 1427 hashval ^= (hashval >> 6); 1428 } else { 1429 /* 1430 * This is incredibly painful, but it beats the hell 1431 * out of the alternative. 1432 */ 1433 uint64_t j, size = key[i].dttk_size; 1434 uintptr_t base = (uintptr_t)key[i].dttk_value; 1435 1436 if (!dtrace_canload(base, size, mstate, vstate)) 1437 break; 1438 1439 for (j = 0; j < size; j++) { 1440 hashval += dtrace_load8(base + j); 1441 hashval += (hashval << 10); 1442 hashval ^= (hashval >> 6); 1443 } 1444 } 1445 } 1446 1447 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1448 return (NULL); 1449 1450 hashval += (hashval << 3); 1451 hashval ^= (hashval >> 11); 1452 hashval += (hashval << 15); 1453 1454 /* 1455 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1456 * comes out to be one of our two sentinel hash values. If this 1457 * actually happens, we set the hashval to be a value known to be a 1458 * non-sentinel value. 1459 */ 1460 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1461 hashval = DTRACE_DYNHASH_VALID; 1462 1463 /* 1464 * Yes, it's painful to do a divide here. If the cycle count becomes 1465 * important here, tricks can be pulled to reduce it. (However, it's 1466 * critical that hash collisions be kept to an absolute minimum; 1467 * they're much more painful than a divide.) It's better to have a 1468 * solution that generates few collisions and still keeps things 1469 * relatively simple. 1470 */ 1471 bucket = hashval % dstate->dtds_hashsize; 1472 1473 if (op == DTRACE_DYNVAR_DEALLOC) { 1474 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1475 1476 for (;;) { 1477 while ((lock = *lockp) & 1) 1478 continue; 1479 1480 if (dtrace_casptr((volatile void *)lockp, 1481 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock) 1482 break; 1483 } 1484 1485 dtrace_membar_producer(); 1486 } 1487 1488 top: 1489 prev = NULL; 1490 lock = hash[bucket].dtdh_lock; 1491 1492 dtrace_membar_consumer(); 1493 1494 start = hash[bucket].dtdh_chain; 1495 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1496 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1497 op != DTRACE_DYNVAR_DEALLOC)); 1498 1499 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1500 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1501 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1502 1503 if (dvar->dtdv_hashval != hashval) { 1504 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1505 /* 1506 * We've reached the sink, and therefore the 1507 * end of the hash chain; we can kick out of 1508 * the loop knowing that we have seen a valid 1509 * snapshot of state. 1510 */ 1511 ASSERT(dvar->dtdv_next == NULL); 1512 ASSERT(dvar == &dtrace_dynhash_sink); 1513 break; 1514 } 1515 1516 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1517 /* 1518 * We've gone off the rails: somewhere along 1519 * the line, one of the members of this hash 1520 * chain was deleted. Note that we could also 1521 * detect this by simply letting this loop run 1522 * to completion, as we would eventually hit 1523 * the end of the dirty list. However, we 1524 * want to avoid running the length of the 1525 * dirty list unnecessarily (it might be quite 1526 * long), so we catch this as early as 1527 * possible by detecting the hash marker. In 1528 * this case, we simply set dvar to NULL and 1529 * break; the conditional after the loop will 1530 * send us back to top. 1531 */ 1532 dvar = NULL; 1533 break; 1534 } 1535 1536 goto next; 1537 } 1538 1539 if (dtuple->dtt_nkeys != nkeys) 1540 goto next; 1541 1542 for (i = 0; i < nkeys; i++, dkey++) { 1543 if (dkey->dttk_size != key[i].dttk_size) 1544 goto next; /* size or type mismatch */ 1545 1546 if (dkey->dttk_size != 0) { 1547 if (dtrace_bcmp( 1548 (void *)(uintptr_t)key[i].dttk_value, 1549 (void *)(uintptr_t)dkey->dttk_value, 1550 dkey->dttk_size)) 1551 goto next; 1552 } else { 1553 if (dkey->dttk_value != key[i].dttk_value) 1554 goto next; 1555 } 1556 } 1557 1558 if (op != DTRACE_DYNVAR_DEALLOC) 1559 return (dvar); 1560 1561 ASSERT(dvar->dtdv_next == NULL || 1562 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1563 1564 if (prev != NULL) { 1565 ASSERT(hash[bucket].dtdh_chain != dvar); 1566 ASSERT(start != dvar); 1567 ASSERT(prev->dtdv_next == dvar); 1568 prev->dtdv_next = dvar->dtdv_next; 1569 } else { 1570 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1571 start, dvar->dtdv_next) != start) { 1572 /* 1573 * We have failed to atomically swing the 1574 * hash table head pointer, presumably because 1575 * of a conflicting allocation on another CPU. 1576 * We need to reread the hash chain and try 1577 * again. 1578 */ 1579 goto top; 1580 } 1581 } 1582 1583 dtrace_membar_producer(); 1584 1585 /* 1586 * Now set the hash value to indicate that it's free. 1587 */ 1588 ASSERT(hash[bucket].dtdh_chain != dvar); 1589 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1590 1591 dtrace_membar_producer(); 1592 1593 /* 1594 * Set the next pointer to point at the dirty list, and 1595 * atomically swing the dirty pointer to the newly freed dvar. 1596 */ 1597 do { 1598 next = dcpu->dtdsc_dirty; 1599 dvar->dtdv_next = next; 1600 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1601 1602 /* 1603 * Finally, unlock this hash bucket. 1604 */ 1605 ASSERT(hash[bucket].dtdh_lock == lock); 1606 ASSERT(lock & 1); 1607 hash[bucket].dtdh_lock++; 1608 1609 return (NULL); 1610 next: 1611 prev = dvar; 1612 continue; 1613 } 1614 1615 if (dvar == NULL) { 1616 /* 1617 * If dvar is NULL, it is because we went off the rails: 1618 * one of the elements that we traversed in the hash chain 1619 * was deleted while we were traversing it. In this case, 1620 * we assert that we aren't doing a dealloc (deallocs lock 1621 * the hash bucket to prevent themselves from racing with 1622 * one another), and retry the hash chain traversal. 1623 */ 1624 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1625 goto top; 1626 } 1627 1628 if (op != DTRACE_DYNVAR_ALLOC) { 1629 /* 1630 * If we are not to allocate a new variable, we want to 1631 * return NULL now. Before we return, check that the value 1632 * of the lock word hasn't changed. If it has, we may have 1633 * seen an inconsistent snapshot. 1634 */ 1635 if (op == DTRACE_DYNVAR_NOALLOC) { 1636 if (hash[bucket].dtdh_lock != lock) 1637 goto top; 1638 } else { 1639 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1640 ASSERT(hash[bucket].dtdh_lock == lock); 1641 ASSERT(lock & 1); 1642 hash[bucket].dtdh_lock++; 1643 } 1644 1645 return (NULL); 1646 } 1647 1648 /* 1649 * We need to allocate a new dynamic variable. The size we need is the 1650 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1651 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1652 * the size of any referred-to data (dsize). We then round the final 1653 * size up to the chunksize for allocation. 1654 */ 1655 for (ksize = 0, i = 0; i < nkeys; i++) 1656 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1657 1658 /* 1659 * This should be pretty much impossible, but could happen if, say, 1660 * strange DIF specified the tuple. Ideally, this should be an 1661 * assertion and not an error condition -- but that requires that the 1662 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1663 * bullet-proof. (That is, it must not be able to be fooled by 1664 * malicious DIF.) Given the lack of backwards branches in DIF, 1665 * solving this would presumably not amount to solving the Halting 1666 * Problem -- but it still seems awfully hard. 1667 */ 1668 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1669 ksize + dsize > chunksize) { 1670 dcpu->dtdsc_drops++; 1671 return (NULL); 1672 } 1673 1674 nstate = DTRACE_DSTATE_EMPTY; 1675 1676 do { 1677 retry: 1678 free = dcpu->dtdsc_free; 1679 1680 if (free == NULL) { 1681 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1682 void *rval; 1683 1684 if (clean == NULL) { 1685 /* 1686 * We're out of dynamic variable space on 1687 * this CPU. Unless we have tried all CPUs, 1688 * we'll try to allocate from a different 1689 * CPU. 1690 */ 1691 switch (dstate->dtds_state) { 1692 case DTRACE_DSTATE_CLEAN: { 1693 void *sp = &dstate->dtds_state; 1694 1695 if (++cpu >= NCPU) 1696 cpu = 0; 1697 1698 if (dcpu->dtdsc_dirty != NULL && 1699 nstate == DTRACE_DSTATE_EMPTY) 1700 nstate = DTRACE_DSTATE_DIRTY; 1701 1702 if (dcpu->dtdsc_rinsing != NULL) 1703 nstate = DTRACE_DSTATE_RINSING; 1704 1705 dcpu = &dstate->dtds_percpu[cpu]; 1706 1707 if (cpu != me) 1708 goto retry; 1709 1710 (void) dtrace_cas32(sp, 1711 DTRACE_DSTATE_CLEAN, nstate); 1712 1713 /* 1714 * To increment the correct bean 1715 * counter, take another lap. 1716 */ 1717 goto retry; 1718 } 1719 1720 case DTRACE_DSTATE_DIRTY: 1721 dcpu->dtdsc_dirty_drops++; 1722 break; 1723 1724 case DTRACE_DSTATE_RINSING: 1725 dcpu->dtdsc_rinsing_drops++; 1726 break; 1727 1728 case DTRACE_DSTATE_EMPTY: 1729 dcpu->dtdsc_drops++; 1730 break; 1731 } 1732 1733 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1734 return (NULL); 1735 } 1736 1737 /* 1738 * The clean list appears to be non-empty. We want to 1739 * move the clean list to the free list; we start by 1740 * moving the clean pointer aside. 1741 */ 1742 if (dtrace_casptr(&dcpu->dtdsc_clean, 1743 clean, NULL) != clean) { 1744 /* 1745 * We are in one of two situations: 1746 * 1747 * (a) The clean list was switched to the 1748 * free list by another CPU. 1749 * 1750 * (b) The clean list was added to by the 1751 * cleansing cyclic. 1752 * 1753 * In either of these situations, we can 1754 * just reattempt the free list allocation. 1755 */ 1756 goto retry; 1757 } 1758 1759 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1760 1761 /* 1762 * Now we'll move the clean list to the free list. 1763 * It's impossible for this to fail: the only way 1764 * the free list can be updated is through this 1765 * code path, and only one CPU can own the clean list. 1766 * Thus, it would only be possible for this to fail if 1767 * this code were racing with dtrace_dynvar_clean(). 1768 * (That is, if dtrace_dynvar_clean() updated the clean 1769 * list, and we ended up racing to update the free 1770 * list.) This race is prevented by the dtrace_sync() 1771 * in dtrace_dynvar_clean() -- which flushes the 1772 * owners of the clean lists out before resetting 1773 * the clean lists. 1774 */ 1775 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1776 ASSERT(rval == NULL); 1777 goto retry; 1778 } 1779 1780 dvar = free; 1781 new_free = dvar->dtdv_next; 1782 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1783 1784 /* 1785 * We have now allocated a new chunk. We copy the tuple keys into the 1786 * tuple array and copy any referenced key data into the data space 1787 * following the tuple array. As we do this, we relocate dttk_value 1788 * in the final tuple to point to the key data address in the chunk. 1789 */ 1790 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1791 dvar->dtdv_data = (void *)(kdata + ksize); 1792 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1793 1794 for (i = 0; i < nkeys; i++) { 1795 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1796 size_t kesize = key[i].dttk_size; 1797 1798 if (kesize != 0) { 1799 dtrace_bcopy( 1800 (const void *)(uintptr_t)key[i].dttk_value, 1801 (void *)kdata, kesize); 1802 dkey->dttk_value = kdata; 1803 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1804 } else { 1805 dkey->dttk_value = key[i].dttk_value; 1806 } 1807 1808 dkey->dttk_size = kesize; 1809 } 1810 1811 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1812 dvar->dtdv_hashval = hashval; 1813 dvar->dtdv_next = start; 1814 1815 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1816 return (dvar); 1817 1818 /* 1819 * The cas has failed. Either another CPU is adding an element to 1820 * this hash chain, or another CPU is deleting an element from this 1821 * hash chain. The simplest way to deal with both of these cases 1822 * (though not necessarily the most efficient) is to free our 1823 * allocated block and tail-call ourselves. Note that the free is 1824 * to the dirty list and _not_ to the free list. This is to prevent 1825 * races with allocators, above. 1826 */ 1827 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1828 1829 dtrace_membar_producer(); 1830 1831 do { 1832 free = dcpu->dtdsc_dirty; 1833 dvar->dtdv_next = free; 1834 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1835 1836 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 1837 } 1838 1839 /*ARGSUSED*/ 1840 static void 1841 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1842 { 1843 if ((int64_t)nval < (int64_t)*oval) 1844 *oval = nval; 1845 } 1846 1847 /*ARGSUSED*/ 1848 static void 1849 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1850 { 1851 if ((int64_t)nval > (int64_t)*oval) 1852 *oval = nval; 1853 } 1854 1855 static void 1856 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1857 { 1858 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1859 int64_t val = (int64_t)nval; 1860 1861 if (val < 0) { 1862 for (i = 0; i < zero; i++) { 1863 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1864 quanta[i] += incr; 1865 return; 1866 } 1867 } 1868 } else { 1869 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1870 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1871 quanta[i - 1] += incr; 1872 return; 1873 } 1874 } 1875 1876 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1877 return; 1878 } 1879 1880 ASSERT(0); 1881 } 1882 1883 static void 1884 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1885 { 1886 uint64_t arg = *lquanta++; 1887 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1888 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1889 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1890 int32_t val = (int32_t)nval, level; 1891 1892 ASSERT(step != 0); 1893 ASSERT(levels != 0); 1894 1895 if (val < base) { 1896 /* 1897 * This is an underflow. 1898 */ 1899 lquanta[0] += incr; 1900 return; 1901 } 1902 1903 level = (val - base) / step; 1904 1905 if (level < levels) { 1906 lquanta[level + 1] += incr; 1907 return; 1908 } 1909 1910 /* 1911 * This is an overflow. 1912 */ 1913 lquanta[levels + 1] += incr; 1914 } 1915 1916 /*ARGSUSED*/ 1917 static void 1918 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 1919 { 1920 data[0]++; 1921 data[1] += nval; 1922 } 1923 1924 /*ARGSUSED*/ 1925 static void 1926 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 1927 { 1928 int64_t snval = (int64_t)nval; 1929 uint64_t tmp[2]; 1930 1931 data[0]++; 1932 data[1] += nval; 1933 1934 /* 1935 * What we want to say here is: 1936 * 1937 * data[2] += nval * nval; 1938 * 1939 * But given that nval is 64-bit, we could easily overflow, so 1940 * we do this as 128-bit arithmetic. 1941 */ 1942 if (snval < 0) 1943 snval = -snval; 1944 1945 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 1946 dtrace_add_128(data + 2, tmp, data + 2); 1947 } 1948 1949 /*ARGSUSED*/ 1950 static void 1951 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 1952 { 1953 *oval = *oval + 1; 1954 } 1955 1956 /*ARGSUSED*/ 1957 static void 1958 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 1959 { 1960 *oval += nval; 1961 } 1962 1963 /* 1964 * Aggregate given the tuple in the principal data buffer, and the aggregating 1965 * action denoted by the specified dtrace_aggregation_t. The aggregation 1966 * buffer is specified as the buf parameter. This routine does not return 1967 * failure; if there is no space in the aggregation buffer, the data will be 1968 * dropped, and a corresponding counter incremented. 1969 */ 1970 static void 1971 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 1972 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 1973 { 1974 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 1975 uint32_t i, ndx, size, fsize; 1976 uint32_t align = sizeof (uint64_t) - 1; 1977 dtrace_aggbuffer_t *agb; 1978 dtrace_aggkey_t *key; 1979 uint32_t hashval = 0, limit, isstr; 1980 caddr_t tomax, data, kdata; 1981 dtrace_actkind_t action; 1982 dtrace_action_t *act; 1983 uintptr_t offs; 1984 1985 if (buf == NULL) 1986 return; 1987 1988 if (!agg->dtag_hasarg) { 1989 /* 1990 * Currently, only quantize() and lquantize() take additional 1991 * arguments, and they have the same semantics: an increment 1992 * value that defaults to 1 when not present. If additional 1993 * aggregating actions take arguments, the setting of the 1994 * default argument value will presumably have to become more 1995 * sophisticated... 1996 */ 1997 arg = 1; 1998 } 1999 2000 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2001 size = rec->dtrd_offset - agg->dtag_base; 2002 fsize = size + rec->dtrd_size; 2003 2004 ASSERT(dbuf->dtb_tomax != NULL); 2005 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2006 2007 if ((tomax = buf->dtb_tomax) == NULL) { 2008 dtrace_buffer_drop(buf); 2009 return; 2010 } 2011 2012 /* 2013 * The metastructure is always at the bottom of the buffer. 2014 */ 2015 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2016 sizeof (dtrace_aggbuffer_t)); 2017 2018 if (buf->dtb_offset == 0) { 2019 /* 2020 * We just kludge up approximately 1/8th of the size to be 2021 * buckets. If this guess ends up being routinely 2022 * off-the-mark, we may need to dynamically readjust this 2023 * based on past performance. 2024 */ 2025 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2026 2027 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2028 (uintptr_t)tomax || hashsize == 0) { 2029 /* 2030 * We've been given a ludicrously small buffer; 2031 * increment our drop count and leave. 2032 */ 2033 dtrace_buffer_drop(buf); 2034 return; 2035 } 2036 2037 /* 2038 * And now, a pathetic attempt to try to get a an odd (or 2039 * perchance, a prime) hash size for better hash distribution. 2040 */ 2041 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2042 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2043 2044 agb->dtagb_hashsize = hashsize; 2045 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2046 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2047 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2048 2049 for (i = 0; i < agb->dtagb_hashsize; i++) 2050 agb->dtagb_hash[i] = NULL; 2051 } 2052 2053 ASSERT(agg->dtag_first != NULL); 2054 ASSERT(agg->dtag_first->dta_intuple); 2055 2056 /* 2057 * Calculate the hash value based on the key. Note that we _don't_ 2058 * include the aggid in the hashing (but we will store it as part of 2059 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2060 * algorithm: a simple, quick algorithm that has no known funnels, and 2061 * gets good distribution in practice. The efficacy of the hashing 2062 * algorithm (and a comparison with other algorithms) may be found by 2063 * running the ::dtrace_aggstat MDB dcmd. 2064 */ 2065 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2066 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2067 limit = i + act->dta_rec.dtrd_size; 2068 ASSERT(limit <= size); 2069 isstr = DTRACEACT_ISSTRING(act); 2070 2071 for (; i < limit; i++) { 2072 hashval += data[i]; 2073 hashval += (hashval << 10); 2074 hashval ^= (hashval >> 6); 2075 2076 if (isstr && data[i] == '\0') 2077 break; 2078 } 2079 } 2080 2081 hashval += (hashval << 3); 2082 hashval ^= (hashval >> 11); 2083 hashval += (hashval << 15); 2084 2085 /* 2086 * Yes, the divide here is expensive -- but it's generally the least 2087 * of the performance issues given the amount of data that we iterate 2088 * over to compute hash values, compare data, etc. 2089 */ 2090 ndx = hashval % agb->dtagb_hashsize; 2091 2092 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2093 ASSERT((caddr_t)key >= tomax); 2094 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2095 2096 if (hashval != key->dtak_hashval || key->dtak_size != size) 2097 continue; 2098 2099 kdata = key->dtak_data; 2100 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2101 2102 for (act = agg->dtag_first; act->dta_intuple; 2103 act = act->dta_next) { 2104 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2105 limit = i + act->dta_rec.dtrd_size; 2106 ASSERT(limit <= size); 2107 isstr = DTRACEACT_ISSTRING(act); 2108 2109 for (; i < limit; i++) { 2110 if (kdata[i] != data[i]) 2111 goto next; 2112 2113 if (isstr && data[i] == '\0') 2114 break; 2115 } 2116 } 2117 2118 if (action != key->dtak_action) { 2119 /* 2120 * We are aggregating on the same value in the same 2121 * aggregation with two different aggregating actions. 2122 * (This should have been picked up in the compiler, 2123 * so we may be dealing with errant or devious DIF.) 2124 * This is an error condition; we indicate as much, 2125 * and return. 2126 */ 2127 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2128 return; 2129 } 2130 2131 /* 2132 * This is a hit: we need to apply the aggregator to 2133 * the value at this key. 2134 */ 2135 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2136 return; 2137 next: 2138 continue; 2139 } 2140 2141 /* 2142 * We didn't find it. We need to allocate some zero-filled space, 2143 * link it into the hash table appropriately, and apply the aggregator 2144 * to the (zero-filled) value. 2145 */ 2146 offs = buf->dtb_offset; 2147 while (offs & (align - 1)) 2148 offs += sizeof (uint32_t); 2149 2150 /* 2151 * If we don't have enough room to both allocate a new key _and_ 2152 * its associated data, increment the drop count and return. 2153 */ 2154 if ((uintptr_t)tomax + offs + fsize > 2155 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2156 dtrace_buffer_drop(buf); 2157 return; 2158 } 2159 2160 /*CONSTCOND*/ 2161 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2162 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2163 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2164 2165 key->dtak_data = kdata = tomax + offs; 2166 buf->dtb_offset = offs + fsize; 2167 2168 /* 2169 * Now copy the data across. 2170 */ 2171 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2172 2173 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2174 kdata[i] = data[i]; 2175 2176 /* 2177 * Because strings are not zeroed out by default, we need to iterate 2178 * looking for actions that store strings, and we need to explicitly 2179 * pad these strings out with zeroes. 2180 */ 2181 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2182 int nul; 2183 2184 if (!DTRACEACT_ISSTRING(act)) 2185 continue; 2186 2187 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2188 limit = i + act->dta_rec.dtrd_size; 2189 ASSERT(limit <= size); 2190 2191 for (nul = 0; i < limit; i++) { 2192 if (nul) { 2193 kdata[i] = '\0'; 2194 continue; 2195 } 2196 2197 if (data[i] != '\0') 2198 continue; 2199 2200 nul = 1; 2201 } 2202 } 2203 2204 for (i = size; i < fsize; i++) 2205 kdata[i] = 0; 2206 2207 key->dtak_hashval = hashval; 2208 key->dtak_size = size; 2209 key->dtak_action = action; 2210 key->dtak_next = agb->dtagb_hash[ndx]; 2211 agb->dtagb_hash[ndx] = key; 2212 2213 /* 2214 * Finally, apply the aggregator. 2215 */ 2216 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2217 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2218 } 2219 2220 /* 2221 * Given consumer state, this routine finds a speculation in the INACTIVE 2222 * state and transitions it into the ACTIVE state. If there is no speculation 2223 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2224 * incremented -- it is up to the caller to take appropriate action. 2225 */ 2226 static int 2227 dtrace_speculation(dtrace_state_t *state) 2228 { 2229 int i = 0; 2230 dtrace_speculation_state_t current; 2231 uint32_t *stat = &state->dts_speculations_unavail, count; 2232 2233 while (i < state->dts_nspeculations) { 2234 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2235 2236 current = spec->dtsp_state; 2237 2238 if (current != DTRACESPEC_INACTIVE) { 2239 if (current == DTRACESPEC_COMMITTINGMANY || 2240 current == DTRACESPEC_COMMITTING || 2241 current == DTRACESPEC_DISCARDING) 2242 stat = &state->dts_speculations_busy; 2243 i++; 2244 continue; 2245 } 2246 2247 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2248 current, DTRACESPEC_ACTIVE) == current) 2249 return (i + 1); 2250 } 2251 2252 /* 2253 * We couldn't find a speculation. If we found as much as a single 2254 * busy speculation buffer, we'll attribute this failure as "busy" 2255 * instead of "unavail". 2256 */ 2257 do { 2258 count = *stat; 2259 } while (dtrace_cas32(stat, count, count + 1) != count); 2260 2261 return (0); 2262 } 2263 2264 /* 2265 * This routine commits an active speculation. If the specified speculation 2266 * is not in a valid state to perform a commit(), this routine will silently do 2267 * nothing. The state of the specified speculation is transitioned according 2268 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2269 */ 2270 static void 2271 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2272 dtrace_specid_t which) 2273 { 2274 dtrace_speculation_t *spec; 2275 dtrace_buffer_t *src, *dest; 2276 uintptr_t daddr, saddr, dlimit; 2277 dtrace_speculation_state_t current, new = 0; 2278 intptr_t offs; 2279 2280 if (which == 0) 2281 return; 2282 2283 if (which > state->dts_nspeculations) { 2284 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2285 return; 2286 } 2287 2288 spec = &state->dts_speculations[which - 1]; 2289 src = &spec->dtsp_buffer[cpu]; 2290 dest = &state->dts_buffer[cpu]; 2291 2292 do { 2293 current = spec->dtsp_state; 2294 2295 if (current == DTRACESPEC_COMMITTINGMANY) 2296 break; 2297 2298 switch (current) { 2299 case DTRACESPEC_INACTIVE: 2300 case DTRACESPEC_DISCARDING: 2301 return; 2302 2303 case DTRACESPEC_COMMITTING: 2304 /* 2305 * This is only possible if we are (a) commit()'ing 2306 * without having done a prior speculate() on this CPU 2307 * and (b) racing with another commit() on a different 2308 * CPU. There's nothing to do -- we just assert that 2309 * our offset is 0. 2310 */ 2311 ASSERT(src->dtb_offset == 0); 2312 return; 2313 2314 case DTRACESPEC_ACTIVE: 2315 new = DTRACESPEC_COMMITTING; 2316 break; 2317 2318 case DTRACESPEC_ACTIVEONE: 2319 /* 2320 * This speculation is active on one CPU. If our 2321 * buffer offset is non-zero, we know that the one CPU 2322 * must be us. Otherwise, we are committing on a 2323 * different CPU from the speculate(), and we must 2324 * rely on being asynchronously cleaned. 2325 */ 2326 if (src->dtb_offset != 0) { 2327 new = DTRACESPEC_COMMITTING; 2328 break; 2329 } 2330 /*FALLTHROUGH*/ 2331 2332 case DTRACESPEC_ACTIVEMANY: 2333 new = DTRACESPEC_COMMITTINGMANY; 2334 break; 2335 2336 default: 2337 ASSERT(0); 2338 } 2339 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2340 current, new) != current); 2341 2342 /* 2343 * We have set the state to indicate that we are committing this 2344 * speculation. Now reserve the necessary space in the destination 2345 * buffer. 2346 */ 2347 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2348 sizeof (uint64_t), state, NULL)) < 0) { 2349 dtrace_buffer_drop(dest); 2350 goto out; 2351 } 2352 2353 /* 2354 * We have the space; copy the buffer across. (Note that this is a 2355 * highly subobtimal bcopy(); in the unlikely event that this becomes 2356 * a serious performance issue, a high-performance DTrace-specific 2357 * bcopy() should obviously be invented.) 2358 */ 2359 daddr = (uintptr_t)dest->dtb_tomax + offs; 2360 dlimit = daddr + src->dtb_offset; 2361 saddr = (uintptr_t)src->dtb_tomax; 2362 2363 /* 2364 * First, the aligned portion. 2365 */ 2366 while (dlimit - daddr >= sizeof (uint64_t)) { 2367 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2368 2369 daddr += sizeof (uint64_t); 2370 saddr += sizeof (uint64_t); 2371 } 2372 2373 /* 2374 * Now any left-over bit... 2375 */ 2376 while (dlimit - daddr) 2377 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2378 2379 /* 2380 * Finally, commit the reserved space in the destination buffer. 2381 */ 2382 dest->dtb_offset = offs + src->dtb_offset; 2383 2384 out: 2385 /* 2386 * If we're lucky enough to be the only active CPU on this speculation 2387 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2388 */ 2389 if (current == DTRACESPEC_ACTIVE || 2390 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2391 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2392 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2393 2394 ASSERT(rval == DTRACESPEC_COMMITTING); 2395 } 2396 2397 src->dtb_offset = 0; 2398 src->dtb_xamot_drops += src->dtb_drops; 2399 src->dtb_drops = 0; 2400 } 2401 2402 /* 2403 * This routine discards an active speculation. If the specified speculation 2404 * is not in a valid state to perform a discard(), this routine will silently 2405 * do nothing. The state of the specified speculation is transitioned 2406 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2407 */ 2408 static void 2409 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2410 dtrace_specid_t which) 2411 { 2412 dtrace_speculation_t *spec; 2413 dtrace_speculation_state_t current, new = 0; 2414 dtrace_buffer_t *buf; 2415 2416 if (which == 0) 2417 return; 2418 2419 if (which > state->dts_nspeculations) { 2420 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2421 return; 2422 } 2423 2424 spec = &state->dts_speculations[which - 1]; 2425 buf = &spec->dtsp_buffer[cpu]; 2426 2427 do { 2428 current = spec->dtsp_state; 2429 2430 switch (current) { 2431 case DTRACESPEC_INACTIVE: 2432 case DTRACESPEC_COMMITTINGMANY: 2433 case DTRACESPEC_COMMITTING: 2434 case DTRACESPEC_DISCARDING: 2435 return; 2436 2437 case DTRACESPEC_ACTIVE: 2438 case DTRACESPEC_ACTIVEMANY: 2439 new = DTRACESPEC_DISCARDING; 2440 break; 2441 2442 case DTRACESPEC_ACTIVEONE: 2443 if (buf->dtb_offset != 0) { 2444 new = DTRACESPEC_INACTIVE; 2445 } else { 2446 new = DTRACESPEC_DISCARDING; 2447 } 2448 break; 2449 2450 default: 2451 ASSERT(0); 2452 } 2453 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2454 current, new) != current); 2455 2456 buf->dtb_offset = 0; 2457 buf->dtb_drops = 0; 2458 } 2459 2460 /* 2461 * Note: not called from probe context. This function is called 2462 * asynchronously from cross call context to clean any speculations that are 2463 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2464 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2465 * speculation. 2466 */ 2467 static void 2468 dtrace_speculation_clean_here(dtrace_state_t *state) 2469 { 2470 dtrace_icookie_t cookie; 2471 processorid_t cpu = curcpu; 2472 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2473 dtrace_specid_t i; 2474 2475 cookie = dtrace_interrupt_disable(); 2476 2477 if (dest->dtb_tomax == NULL) { 2478 dtrace_interrupt_enable(cookie); 2479 return; 2480 } 2481 2482 for (i = 0; i < state->dts_nspeculations; i++) { 2483 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2484 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2485 2486 if (src->dtb_tomax == NULL) 2487 continue; 2488 2489 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2490 src->dtb_offset = 0; 2491 continue; 2492 } 2493 2494 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2495 continue; 2496 2497 if (src->dtb_offset == 0) 2498 continue; 2499 2500 dtrace_speculation_commit(state, cpu, i + 1); 2501 } 2502 2503 dtrace_interrupt_enable(cookie); 2504 } 2505 2506 /* 2507 * Note: not called from probe context. This function is called 2508 * asynchronously (and at a regular interval) to clean any speculations that 2509 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2510 * is work to be done, it cross calls all CPUs to perform that work; 2511 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2512 * INACTIVE state until they have been cleaned by all CPUs. 2513 */ 2514 static void 2515 dtrace_speculation_clean(dtrace_state_t *state) 2516 { 2517 int work = 0, rv; 2518 dtrace_specid_t i; 2519 2520 for (i = 0; i < state->dts_nspeculations; i++) { 2521 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2522 2523 ASSERT(!spec->dtsp_cleaning); 2524 2525 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2526 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2527 continue; 2528 2529 work++; 2530 spec->dtsp_cleaning = 1; 2531 } 2532 2533 if (!work) 2534 return; 2535 2536 dtrace_xcall(DTRACE_CPUALL, 2537 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2538 2539 /* 2540 * We now know that all CPUs have committed or discarded their 2541 * speculation buffers, as appropriate. We can now set the state 2542 * to inactive. 2543 */ 2544 for (i = 0; i < state->dts_nspeculations; i++) { 2545 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2546 dtrace_speculation_state_t current, new; 2547 2548 if (!spec->dtsp_cleaning) 2549 continue; 2550 2551 current = spec->dtsp_state; 2552 ASSERT(current == DTRACESPEC_DISCARDING || 2553 current == DTRACESPEC_COMMITTINGMANY); 2554 2555 new = DTRACESPEC_INACTIVE; 2556 2557 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2558 ASSERT(rv == current); 2559 spec->dtsp_cleaning = 0; 2560 } 2561 } 2562 2563 /* 2564 * Called as part of a speculate() to get the speculative buffer associated 2565 * with a given speculation. Returns NULL if the specified speculation is not 2566 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2567 * the active CPU is not the specified CPU -- the speculation will be 2568 * atomically transitioned into the ACTIVEMANY state. 2569 */ 2570 static dtrace_buffer_t * 2571 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2572 dtrace_specid_t which) 2573 { 2574 dtrace_speculation_t *spec; 2575 dtrace_speculation_state_t current, new = 0; 2576 dtrace_buffer_t *buf; 2577 2578 if (which == 0) 2579 return (NULL); 2580 2581 if (which > state->dts_nspeculations) { 2582 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2583 return (NULL); 2584 } 2585 2586 spec = &state->dts_speculations[which - 1]; 2587 buf = &spec->dtsp_buffer[cpuid]; 2588 2589 do { 2590 current = spec->dtsp_state; 2591 2592 switch (current) { 2593 case DTRACESPEC_INACTIVE: 2594 case DTRACESPEC_COMMITTINGMANY: 2595 case DTRACESPEC_DISCARDING: 2596 return (NULL); 2597 2598 case DTRACESPEC_COMMITTING: 2599 ASSERT(buf->dtb_offset == 0); 2600 return (NULL); 2601 2602 case DTRACESPEC_ACTIVEONE: 2603 /* 2604 * This speculation is currently active on one CPU. 2605 * Check the offset in the buffer; if it's non-zero, 2606 * that CPU must be us (and we leave the state alone). 2607 * If it's zero, assume that we're starting on a new 2608 * CPU -- and change the state to indicate that the 2609 * speculation is active on more than one CPU. 2610 */ 2611 if (buf->dtb_offset != 0) 2612 return (buf); 2613 2614 new = DTRACESPEC_ACTIVEMANY; 2615 break; 2616 2617 case DTRACESPEC_ACTIVEMANY: 2618 return (buf); 2619 2620 case DTRACESPEC_ACTIVE: 2621 new = DTRACESPEC_ACTIVEONE; 2622 break; 2623 2624 default: 2625 ASSERT(0); 2626 } 2627 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2628 current, new) != current); 2629 2630 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2631 return (buf); 2632 } 2633 2634 /* 2635 * Return a string. In the event that the user lacks the privilege to access 2636 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2637 * don't fail access checking. 2638 * 2639 * dtrace_dif_variable() uses this routine as a helper for various 2640 * builtin values such as 'execname' and 'probefunc.' 2641 */ 2642 uintptr_t 2643 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2644 dtrace_mstate_t *mstate) 2645 { 2646 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2647 uintptr_t ret; 2648 size_t strsz; 2649 2650 /* 2651 * The easy case: this probe is allowed to read all of memory, so 2652 * we can just return this as a vanilla pointer. 2653 */ 2654 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2655 return (addr); 2656 2657 /* 2658 * This is the tougher case: we copy the string in question from 2659 * kernel memory into scratch memory and return it that way: this 2660 * ensures that we won't trip up when access checking tests the 2661 * BYREF return value. 2662 */ 2663 strsz = dtrace_strlen((char *)addr, size) + 1; 2664 2665 if (mstate->dtms_scratch_ptr + strsz > 2666 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2667 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2668 return (0); 2669 } 2670 2671 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2672 strsz); 2673 ret = mstate->dtms_scratch_ptr; 2674 mstate->dtms_scratch_ptr += strsz; 2675 return (ret); 2676 } 2677 2678 /* 2679 * Return a string from a memoy address which is known to have one or 2680 * more concatenated, individually zero terminated, sub-strings. 2681 * In the event that the user lacks the privilege to access 2682 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2683 * don't fail access checking. 2684 * 2685 * dtrace_dif_variable() uses this routine as a helper for various 2686 * builtin values such as 'execargs'. 2687 */ 2688 static uintptr_t 2689 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state, 2690 dtrace_mstate_t *mstate) 2691 { 2692 char *p; 2693 size_t i; 2694 uintptr_t ret; 2695 2696 if (mstate->dtms_scratch_ptr + strsz > 2697 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2698 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2699 return (0); 2700 } 2701 2702 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2703 strsz); 2704 2705 /* Replace sub-string termination characters with a space. */ 2706 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1; 2707 p++, i++) 2708 if (*p == '\0') 2709 *p = ' '; 2710 2711 ret = mstate->dtms_scratch_ptr; 2712 mstate->dtms_scratch_ptr += strsz; 2713 return (ret); 2714 } 2715 2716 /* 2717 * This function implements the DIF emulator's variable lookups. The emulator 2718 * passes a reserved variable identifier and optional built-in array index. 2719 */ 2720 static uint64_t 2721 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2722 uint64_t ndx) 2723 { 2724 /* 2725 * If we're accessing one of the uncached arguments, we'll turn this 2726 * into a reference in the args array. 2727 */ 2728 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2729 ndx = v - DIF_VAR_ARG0; 2730 v = DIF_VAR_ARGS; 2731 } 2732 2733 switch (v) { 2734 case DIF_VAR_ARGS: 2735 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2736 if (ndx >= sizeof (mstate->dtms_arg) / 2737 sizeof (mstate->dtms_arg[0])) { 2738 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2739 dtrace_provider_t *pv; 2740 uint64_t val; 2741 2742 pv = mstate->dtms_probe->dtpr_provider; 2743 if (pv->dtpv_pops.dtps_getargval != NULL) 2744 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2745 mstate->dtms_probe->dtpr_id, 2746 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2747 else 2748 val = dtrace_getarg(ndx, aframes); 2749 2750 /* 2751 * This is regrettably required to keep the compiler 2752 * from tail-optimizing the call to dtrace_getarg(). 2753 * The condition always evaluates to true, but the 2754 * compiler has no way of figuring that out a priori. 2755 * (None of this would be necessary if the compiler 2756 * could be relied upon to _always_ tail-optimize 2757 * the call to dtrace_getarg() -- but it can't.) 2758 */ 2759 if (mstate->dtms_probe != NULL) 2760 return (val); 2761 2762 ASSERT(0); 2763 } 2764 2765 return (mstate->dtms_arg[ndx]); 2766 2767 #if defined(sun) 2768 case DIF_VAR_UREGS: { 2769 klwp_t *lwp; 2770 2771 if (!dtrace_priv_proc(state)) 2772 return (0); 2773 2774 if ((lwp = curthread->t_lwp) == NULL) { 2775 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2776 cpu_core[curcpu].cpuc_dtrace_illval = NULL; 2777 return (0); 2778 } 2779 2780 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2781 return (0); 2782 } 2783 #else 2784 case DIF_VAR_UREGS: { 2785 struct trapframe *tframe; 2786 2787 if (!dtrace_priv_proc(state)) 2788 return (0); 2789 2790 if ((tframe = curthread->td_frame) == NULL) { 2791 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2792 cpu_core[curcpu].cpuc_dtrace_illval = 0; 2793 return (0); 2794 } 2795 2796 return (dtrace_getreg(tframe, ndx)); 2797 } 2798 #endif 2799 2800 case DIF_VAR_CURTHREAD: 2801 if (!dtrace_priv_kernel(state)) 2802 return (0); 2803 return ((uint64_t)(uintptr_t)curthread); 2804 2805 case DIF_VAR_TIMESTAMP: 2806 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2807 mstate->dtms_timestamp = dtrace_gethrtime(); 2808 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2809 } 2810 return (mstate->dtms_timestamp); 2811 2812 case DIF_VAR_VTIMESTAMP: 2813 ASSERT(dtrace_vtime_references != 0); 2814 return (curthread->t_dtrace_vtime); 2815 2816 case DIF_VAR_WALLTIMESTAMP: 2817 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2818 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2819 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2820 } 2821 return (mstate->dtms_walltimestamp); 2822 2823 #if defined(sun) 2824 case DIF_VAR_IPL: 2825 if (!dtrace_priv_kernel(state)) 2826 return (0); 2827 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2828 mstate->dtms_ipl = dtrace_getipl(); 2829 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2830 } 2831 return (mstate->dtms_ipl); 2832 #endif 2833 2834 case DIF_VAR_EPID: 2835 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2836 return (mstate->dtms_epid); 2837 2838 case DIF_VAR_ID: 2839 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2840 return (mstate->dtms_probe->dtpr_id); 2841 2842 case DIF_VAR_STACKDEPTH: 2843 if (!dtrace_priv_kernel(state)) 2844 return (0); 2845 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2846 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2847 2848 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2849 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2850 } 2851 return (mstate->dtms_stackdepth); 2852 2853 case DIF_VAR_USTACKDEPTH: 2854 if (!dtrace_priv_proc(state)) 2855 return (0); 2856 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2857 /* 2858 * See comment in DIF_VAR_PID. 2859 */ 2860 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2861 CPU_ON_INTR(CPU)) { 2862 mstate->dtms_ustackdepth = 0; 2863 } else { 2864 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2865 mstate->dtms_ustackdepth = 2866 dtrace_getustackdepth(); 2867 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2868 } 2869 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2870 } 2871 return (mstate->dtms_ustackdepth); 2872 2873 case DIF_VAR_CALLER: 2874 if (!dtrace_priv_kernel(state)) 2875 return (0); 2876 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 2877 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2878 2879 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 2880 /* 2881 * If this is an unanchored probe, we are 2882 * required to go through the slow path: 2883 * dtrace_caller() only guarantees correct 2884 * results for anchored probes. 2885 */ 2886 pc_t caller[2] = {0, 0}; 2887 2888 dtrace_getpcstack(caller, 2, aframes, 2889 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 2890 mstate->dtms_caller = caller[1]; 2891 } else if ((mstate->dtms_caller = 2892 dtrace_caller(aframes)) == -1) { 2893 /* 2894 * We have failed to do this the quick way; 2895 * we must resort to the slower approach of 2896 * calling dtrace_getpcstack(). 2897 */ 2898 pc_t caller = 0; 2899 2900 dtrace_getpcstack(&caller, 1, aframes, NULL); 2901 mstate->dtms_caller = caller; 2902 } 2903 2904 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 2905 } 2906 return (mstate->dtms_caller); 2907 2908 case DIF_VAR_UCALLER: 2909 if (!dtrace_priv_proc(state)) 2910 return (0); 2911 2912 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 2913 uint64_t ustack[3]; 2914 2915 /* 2916 * dtrace_getupcstack() fills in the first uint64_t 2917 * with the current PID. The second uint64_t will 2918 * be the program counter at user-level. The third 2919 * uint64_t will contain the caller, which is what 2920 * we're after. 2921 */ 2922 ustack[2] = 0; 2923 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2924 dtrace_getupcstack(ustack, 3); 2925 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2926 mstate->dtms_ucaller = ustack[2]; 2927 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 2928 } 2929 2930 return (mstate->dtms_ucaller); 2931 2932 case DIF_VAR_PROBEPROV: 2933 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2934 return (dtrace_dif_varstr( 2935 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 2936 state, mstate)); 2937 2938 case DIF_VAR_PROBEMOD: 2939 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2940 return (dtrace_dif_varstr( 2941 (uintptr_t)mstate->dtms_probe->dtpr_mod, 2942 state, mstate)); 2943 2944 case DIF_VAR_PROBEFUNC: 2945 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2946 return (dtrace_dif_varstr( 2947 (uintptr_t)mstate->dtms_probe->dtpr_func, 2948 state, mstate)); 2949 2950 case DIF_VAR_PROBENAME: 2951 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2952 return (dtrace_dif_varstr( 2953 (uintptr_t)mstate->dtms_probe->dtpr_name, 2954 state, mstate)); 2955 2956 case DIF_VAR_PID: 2957 if (!dtrace_priv_proc(state)) 2958 return (0); 2959 2960 #if defined(sun) 2961 /* 2962 * Note that we are assuming that an unanchored probe is 2963 * always due to a high-level interrupt. (And we're assuming 2964 * that there is only a single high level interrupt.) 2965 */ 2966 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2967 return (pid0.pid_id); 2968 2969 /* 2970 * It is always safe to dereference one's own t_procp pointer: 2971 * it always points to a valid, allocated proc structure. 2972 * Further, it is always safe to dereference the p_pidp member 2973 * of one's own proc structure. (These are truisms becuase 2974 * threads and processes don't clean up their own state -- 2975 * they leave that task to whomever reaps them.) 2976 */ 2977 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 2978 #else 2979 return ((uint64_t)curproc->p_pid); 2980 #endif 2981 2982 case DIF_VAR_PPID: 2983 if (!dtrace_priv_proc(state)) 2984 return (0); 2985 2986 #if defined(sun) 2987 /* 2988 * See comment in DIF_VAR_PID. 2989 */ 2990 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2991 return (pid0.pid_id); 2992 2993 /* 2994 * It is always safe to dereference one's own t_procp pointer: 2995 * it always points to a valid, allocated proc structure. 2996 * (This is true because threads don't clean up their own 2997 * state -- they leave that task to whomever reaps them.) 2998 */ 2999 return ((uint64_t)curthread->t_procp->p_ppid); 3000 #else 3001 return ((uint64_t)curproc->p_pptr->p_pid); 3002 #endif 3003 3004 case DIF_VAR_TID: 3005 #if defined(sun) 3006 /* 3007 * See comment in DIF_VAR_PID. 3008 */ 3009 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3010 return (0); 3011 #endif 3012 3013 return ((uint64_t)curthread->t_tid); 3014 3015 case DIF_VAR_EXECARGS: { 3016 struct pargs *p_args = curthread->td_proc->p_args; 3017 3018 if (p_args == NULL) 3019 return(0); 3020 3021 return (dtrace_dif_varstrz( 3022 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate)); 3023 } 3024 3025 case DIF_VAR_EXECNAME: 3026 #if defined(sun) 3027 if (!dtrace_priv_proc(state)) 3028 return (0); 3029 3030 /* 3031 * See comment in DIF_VAR_PID. 3032 */ 3033 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3034 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3035 3036 /* 3037 * It is always safe to dereference one's own t_procp pointer: 3038 * it always points to a valid, allocated proc structure. 3039 * (This is true because threads don't clean up their own 3040 * state -- they leave that task to whomever reaps them.) 3041 */ 3042 return (dtrace_dif_varstr( 3043 (uintptr_t)curthread->t_procp->p_user.u_comm, 3044 state, mstate)); 3045 #else 3046 return (dtrace_dif_varstr( 3047 (uintptr_t) curthread->td_proc->p_comm, state, mstate)); 3048 #endif 3049 3050 case DIF_VAR_ZONENAME: 3051 #if defined(sun) 3052 if (!dtrace_priv_proc(state)) 3053 return (0); 3054 3055 /* 3056 * See comment in DIF_VAR_PID. 3057 */ 3058 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3059 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3060 3061 /* 3062 * It is always safe to dereference one's own t_procp pointer: 3063 * it always points to a valid, allocated proc structure. 3064 * (This is true because threads don't clean up their own 3065 * state -- they leave that task to whomever reaps them.) 3066 */ 3067 return (dtrace_dif_varstr( 3068 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3069 state, mstate)); 3070 #else 3071 return (0); 3072 #endif 3073 3074 case DIF_VAR_UID: 3075 if (!dtrace_priv_proc(state)) 3076 return (0); 3077 3078 #if defined(sun) 3079 /* 3080 * See comment in DIF_VAR_PID. 3081 */ 3082 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3083 return ((uint64_t)p0.p_cred->cr_uid); 3084 #endif 3085 3086 /* 3087 * It is always safe to dereference one's own t_procp pointer: 3088 * it always points to a valid, allocated proc structure. 3089 * (This is true because threads don't clean up their own 3090 * state -- they leave that task to whomever reaps them.) 3091 * 3092 * Additionally, it is safe to dereference one's own process 3093 * credential, since this is never NULL after process birth. 3094 */ 3095 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3096 3097 case DIF_VAR_GID: 3098 if (!dtrace_priv_proc(state)) 3099 return (0); 3100 3101 #if defined(sun) 3102 /* 3103 * See comment in DIF_VAR_PID. 3104 */ 3105 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3106 return ((uint64_t)p0.p_cred->cr_gid); 3107 #endif 3108 3109 /* 3110 * It is always safe to dereference one's own t_procp pointer: 3111 * it always points to a valid, allocated proc structure. 3112 * (This is true because threads don't clean up their own 3113 * state -- they leave that task to whomever reaps them.) 3114 * 3115 * Additionally, it is safe to dereference one's own process 3116 * credential, since this is never NULL after process birth. 3117 */ 3118 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3119 3120 case DIF_VAR_ERRNO: { 3121 #if defined(sun) 3122 klwp_t *lwp; 3123 if (!dtrace_priv_proc(state)) 3124 return (0); 3125 3126 /* 3127 * See comment in DIF_VAR_PID. 3128 */ 3129 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3130 return (0); 3131 3132 /* 3133 * It is always safe to dereference one's own t_lwp pointer in 3134 * the event that this pointer is non-NULL. (This is true 3135 * because threads and lwps don't clean up their own state -- 3136 * they leave that task to whomever reaps them.) 3137 */ 3138 if ((lwp = curthread->t_lwp) == NULL) 3139 return (0); 3140 3141 return ((uint64_t)lwp->lwp_errno); 3142 #else 3143 return (curthread->td_errno); 3144 #endif 3145 } 3146 default: 3147 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3148 return (0); 3149 } 3150 } 3151 3152 /* 3153 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 3154 * Notice that we don't bother validating the proper number of arguments or 3155 * their types in the tuple stack. This isn't needed because all argument 3156 * interpretation is safe because of our load safety -- the worst that can 3157 * happen is that a bogus program can obtain bogus results. 3158 */ 3159 static void 3160 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 3161 dtrace_key_t *tupregs, int nargs, 3162 dtrace_mstate_t *mstate, dtrace_state_t *state) 3163 { 3164 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 3165 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 3166 dtrace_vstate_t *vstate = &state->dts_vstate; 3167 3168 #if defined(sun) 3169 union { 3170 mutex_impl_t mi; 3171 uint64_t mx; 3172 } m; 3173 3174 union { 3175 krwlock_t ri; 3176 uintptr_t rw; 3177 } r; 3178 #else 3179 struct thread *lowner; 3180 union { 3181 struct lock_object *li; 3182 uintptr_t lx; 3183 } l; 3184 #endif 3185 3186 switch (subr) { 3187 case DIF_SUBR_RAND: 3188 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 3189 break; 3190 3191 #if defined(sun) 3192 case DIF_SUBR_MUTEX_OWNED: 3193 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3194 mstate, vstate)) { 3195 regs[rd] = 0; 3196 break; 3197 } 3198 3199 m.mx = dtrace_load64(tupregs[0].dttk_value); 3200 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 3201 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 3202 else 3203 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 3204 break; 3205 3206 case DIF_SUBR_MUTEX_OWNER: 3207 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3208 mstate, vstate)) { 3209 regs[rd] = 0; 3210 break; 3211 } 3212 3213 m.mx = dtrace_load64(tupregs[0].dttk_value); 3214 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3215 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3216 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3217 else 3218 regs[rd] = 0; 3219 break; 3220 3221 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3222 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3223 mstate, vstate)) { 3224 regs[rd] = 0; 3225 break; 3226 } 3227 3228 m.mx = dtrace_load64(tupregs[0].dttk_value); 3229 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3230 break; 3231 3232 case DIF_SUBR_MUTEX_TYPE_SPIN: 3233 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3234 mstate, vstate)) { 3235 regs[rd] = 0; 3236 break; 3237 } 3238 3239 m.mx = dtrace_load64(tupregs[0].dttk_value); 3240 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3241 break; 3242 3243 case DIF_SUBR_RW_READ_HELD: { 3244 uintptr_t tmp; 3245 3246 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3247 mstate, vstate)) { 3248 regs[rd] = 0; 3249 break; 3250 } 3251 3252 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3253 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3254 break; 3255 } 3256 3257 case DIF_SUBR_RW_WRITE_HELD: 3258 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3259 mstate, vstate)) { 3260 regs[rd] = 0; 3261 break; 3262 } 3263 3264 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3265 regs[rd] = _RW_WRITE_HELD(&r.ri); 3266 break; 3267 3268 case DIF_SUBR_RW_ISWRITER: 3269 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3270 mstate, vstate)) { 3271 regs[rd] = 0; 3272 break; 3273 } 3274 3275 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3276 regs[rd] = _RW_ISWRITER(&r.ri); 3277 break; 3278 3279 #else 3280 case DIF_SUBR_MUTEX_OWNED: 3281 if (!dtrace_canload(tupregs[0].dttk_value, 3282 sizeof (struct lock_object), mstate, vstate)) { 3283 regs[rd] = 0; 3284 break; 3285 } 3286 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 3287 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 3288 break; 3289 3290 case DIF_SUBR_MUTEX_OWNER: 3291 if (!dtrace_canload(tupregs[0].dttk_value, 3292 sizeof (struct lock_object), mstate, vstate)) { 3293 regs[rd] = 0; 3294 break; 3295 } 3296 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 3297 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 3298 regs[rd] = (uintptr_t)lowner; 3299 break; 3300 3301 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3302 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 3303 mstate, vstate)) { 3304 regs[rd] = 0; 3305 break; 3306 } 3307 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 3308 /* XXX - should be only LC_SLEEPABLE? */ 3309 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & 3310 (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0; 3311 break; 3312 3313 case DIF_SUBR_MUTEX_TYPE_SPIN: 3314 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 3315 mstate, vstate)) { 3316 regs[rd] = 0; 3317 break; 3318 } 3319 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 3320 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0; 3321 break; 3322 3323 case DIF_SUBR_RW_READ_HELD: 3324 case DIF_SUBR_SX_SHARED_HELD: 3325 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3326 mstate, vstate)) { 3327 regs[rd] = 0; 3328 break; 3329 } 3330 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 3331 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 3332 lowner == NULL; 3333 break; 3334 3335 case DIF_SUBR_RW_WRITE_HELD: 3336 case DIF_SUBR_SX_EXCLUSIVE_HELD: 3337 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3338 mstate, vstate)) { 3339 regs[rd] = 0; 3340 break; 3341 } 3342 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 3343 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 3344 regs[rd] = (lowner == curthread); 3345 break; 3346 3347 case DIF_SUBR_RW_ISWRITER: 3348 case DIF_SUBR_SX_ISEXCLUSIVE: 3349 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3350 mstate, vstate)) { 3351 regs[rd] = 0; 3352 break; 3353 } 3354 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 3355 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 3356 lowner != NULL; 3357 break; 3358 #endif /* ! defined(sun) */ 3359 3360 case DIF_SUBR_BCOPY: { 3361 /* 3362 * We need to be sure that the destination is in the scratch 3363 * region -- no other region is allowed. 3364 */ 3365 uintptr_t src = tupregs[0].dttk_value; 3366 uintptr_t dest = tupregs[1].dttk_value; 3367 size_t size = tupregs[2].dttk_value; 3368 3369 if (!dtrace_inscratch(dest, size, mstate)) { 3370 *flags |= CPU_DTRACE_BADADDR; 3371 *illval = regs[rd]; 3372 break; 3373 } 3374 3375 if (!dtrace_canload(src, size, mstate, vstate)) { 3376 regs[rd] = 0; 3377 break; 3378 } 3379 3380 dtrace_bcopy((void *)src, (void *)dest, size); 3381 break; 3382 } 3383 3384 case DIF_SUBR_ALLOCA: 3385 case DIF_SUBR_COPYIN: { 3386 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3387 uint64_t size = 3388 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 3389 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 3390 3391 /* 3392 * This action doesn't require any credential checks since 3393 * probes will not activate in user contexts to which the 3394 * enabling user does not have permissions. 3395 */ 3396 3397 /* 3398 * Rounding up the user allocation size could have overflowed 3399 * a large, bogus allocation (like -1ULL) to 0. 3400 */ 3401 if (scratch_size < size || 3402 !DTRACE_INSCRATCH(mstate, scratch_size)) { 3403 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3404 regs[rd] = 0; 3405 break; 3406 } 3407 3408 if (subr == DIF_SUBR_COPYIN) { 3409 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3410 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3411 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3412 } 3413 3414 mstate->dtms_scratch_ptr += scratch_size; 3415 regs[rd] = dest; 3416 break; 3417 } 3418 3419 case DIF_SUBR_COPYINTO: { 3420 uint64_t size = tupregs[1].dttk_value; 3421 uintptr_t dest = tupregs[2].dttk_value; 3422 3423 /* 3424 * This action doesn't require any credential checks since 3425 * probes will not activate in user contexts to which the 3426 * enabling user does not have permissions. 3427 */ 3428 if (!dtrace_inscratch(dest, size, mstate)) { 3429 *flags |= CPU_DTRACE_BADADDR; 3430 *illval = regs[rd]; 3431 break; 3432 } 3433 3434 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3435 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3436 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3437 break; 3438 } 3439 3440 case DIF_SUBR_COPYINSTR: { 3441 uintptr_t dest = mstate->dtms_scratch_ptr; 3442 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3443 3444 if (nargs > 1 && tupregs[1].dttk_value < size) 3445 size = tupregs[1].dttk_value + 1; 3446 3447 /* 3448 * This action doesn't require any credential checks since 3449 * probes will not activate in user contexts to which the 3450 * enabling user does not have permissions. 3451 */ 3452 if (!DTRACE_INSCRATCH(mstate, size)) { 3453 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3454 regs[rd] = 0; 3455 break; 3456 } 3457 3458 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3459 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3460 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3461 3462 ((char *)dest)[size - 1] = '\0'; 3463 mstate->dtms_scratch_ptr += size; 3464 regs[rd] = dest; 3465 break; 3466 } 3467 3468 #if defined(sun) 3469 case DIF_SUBR_MSGSIZE: 3470 case DIF_SUBR_MSGDSIZE: { 3471 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3472 uintptr_t wptr, rptr; 3473 size_t count = 0; 3474 int cont = 0; 3475 3476 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 3477 3478 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3479 vstate)) { 3480 regs[rd] = 0; 3481 break; 3482 } 3483 3484 wptr = dtrace_loadptr(baddr + 3485 offsetof(mblk_t, b_wptr)); 3486 3487 rptr = dtrace_loadptr(baddr + 3488 offsetof(mblk_t, b_rptr)); 3489 3490 if (wptr < rptr) { 3491 *flags |= CPU_DTRACE_BADADDR; 3492 *illval = tupregs[0].dttk_value; 3493 break; 3494 } 3495 3496 daddr = dtrace_loadptr(baddr + 3497 offsetof(mblk_t, b_datap)); 3498 3499 baddr = dtrace_loadptr(baddr + 3500 offsetof(mblk_t, b_cont)); 3501 3502 /* 3503 * We want to prevent against denial-of-service here, 3504 * so we're only going to search the list for 3505 * dtrace_msgdsize_max mblks. 3506 */ 3507 if (cont++ > dtrace_msgdsize_max) { 3508 *flags |= CPU_DTRACE_ILLOP; 3509 break; 3510 } 3511 3512 if (subr == DIF_SUBR_MSGDSIZE) { 3513 if (dtrace_load8(daddr + 3514 offsetof(dblk_t, db_type)) != M_DATA) 3515 continue; 3516 } 3517 3518 count += wptr - rptr; 3519 } 3520 3521 if (!(*flags & CPU_DTRACE_FAULT)) 3522 regs[rd] = count; 3523 3524 break; 3525 } 3526 #endif 3527 3528 case DIF_SUBR_PROGENYOF: { 3529 pid_t pid = tupregs[0].dttk_value; 3530 proc_t *p; 3531 int rval = 0; 3532 3533 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3534 3535 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 3536 #if defined(sun) 3537 if (p->p_pidp->pid_id == pid) { 3538 #else 3539 if (p->p_pid == pid) { 3540 #endif 3541 rval = 1; 3542 break; 3543 } 3544 } 3545 3546 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3547 3548 regs[rd] = rval; 3549 break; 3550 } 3551 3552 case DIF_SUBR_SPECULATION: 3553 regs[rd] = dtrace_speculation(state); 3554 break; 3555 3556 case DIF_SUBR_COPYOUT: { 3557 uintptr_t kaddr = tupregs[0].dttk_value; 3558 uintptr_t uaddr = tupregs[1].dttk_value; 3559 uint64_t size = tupregs[2].dttk_value; 3560 3561 if (!dtrace_destructive_disallow && 3562 dtrace_priv_proc_control(state) && 3563 !dtrace_istoxic(kaddr, size)) { 3564 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3565 dtrace_copyout(kaddr, uaddr, size, flags); 3566 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3567 } 3568 break; 3569 } 3570 3571 case DIF_SUBR_COPYOUTSTR: { 3572 uintptr_t kaddr = tupregs[0].dttk_value; 3573 uintptr_t uaddr = tupregs[1].dttk_value; 3574 uint64_t size = tupregs[2].dttk_value; 3575 3576 if (!dtrace_destructive_disallow && 3577 dtrace_priv_proc_control(state) && 3578 !dtrace_istoxic(kaddr, size)) { 3579 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3580 dtrace_copyoutstr(kaddr, uaddr, size, flags); 3581 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3582 } 3583 break; 3584 } 3585 3586 case DIF_SUBR_STRLEN: { 3587 size_t sz; 3588 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 3589 sz = dtrace_strlen((char *)addr, 3590 state->dts_options[DTRACEOPT_STRSIZE]); 3591 3592 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 3593 regs[rd] = 0; 3594 break; 3595 } 3596 3597 regs[rd] = sz; 3598 3599 break; 3600 } 3601 3602 case DIF_SUBR_STRCHR: 3603 case DIF_SUBR_STRRCHR: { 3604 /* 3605 * We're going to iterate over the string looking for the 3606 * specified character. We will iterate until we have reached 3607 * the string length or we have found the character. If this 3608 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 3609 * of the specified character instead of the first. 3610 */ 3611 uintptr_t saddr = tupregs[0].dttk_value; 3612 uintptr_t addr = tupregs[0].dttk_value; 3613 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 3614 char c, target = (char)tupregs[1].dttk_value; 3615 3616 for (regs[rd] = 0; addr < limit; addr++) { 3617 if ((c = dtrace_load8(addr)) == target) { 3618 regs[rd] = addr; 3619 3620 if (subr == DIF_SUBR_STRCHR) 3621 break; 3622 } 3623 3624 if (c == '\0') 3625 break; 3626 } 3627 3628 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 3629 regs[rd] = 0; 3630 break; 3631 } 3632 3633 break; 3634 } 3635 3636 case DIF_SUBR_STRSTR: 3637 case DIF_SUBR_INDEX: 3638 case DIF_SUBR_RINDEX: { 3639 /* 3640 * We're going to iterate over the string looking for the 3641 * specified string. We will iterate until we have reached 3642 * the string length or we have found the string. (Yes, this 3643 * is done in the most naive way possible -- but considering 3644 * that the string we're searching for is likely to be 3645 * relatively short, the complexity of Rabin-Karp or similar 3646 * hardly seems merited.) 3647 */ 3648 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 3649 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 3650 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3651 size_t len = dtrace_strlen(addr, size); 3652 size_t sublen = dtrace_strlen(substr, size); 3653 char *limit = addr + len, *orig = addr; 3654 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 3655 int inc = 1; 3656 3657 regs[rd] = notfound; 3658 3659 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 3660 regs[rd] = 0; 3661 break; 3662 } 3663 3664 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 3665 vstate)) { 3666 regs[rd] = 0; 3667 break; 3668 } 3669 3670 /* 3671 * strstr() and index()/rindex() have similar semantics if 3672 * both strings are the empty string: strstr() returns a 3673 * pointer to the (empty) string, and index() and rindex() 3674 * both return index 0 (regardless of any position argument). 3675 */ 3676 if (sublen == 0 && len == 0) { 3677 if (subr == DIF_SUBR_STRSTR) 3678 regs[rd] = (uintptr_t)addr; 3679 else 3680 regs[rd] = 0; 3681 break; 3682 } 3683 3684 if (subr != DIF_SUBR_STRSTR) { 3685 if (subr == DIF_SUBR_RINDEX) { 3686 limit = orig - 1; 3687 addr += len; 3688 inc = -1; 3689 } 3690 3691 /* 3692 * Both index() and rindex() take an optional position 3693 * argument that denotes the starting position. 3694 */ 3695 if (nargs == 3) { 3696 int64_t pos = (int64_t)tupregs[2].dttk_value; 3697 3698 /* 3699 * If the position argument to index() is 3700 * negative, Perl implicitly clamps it at 3701 * zero. This semantic is a little surprising 3702 * given the special meaning of negative 3703 * positions to similar Perl functions like 3704 * substr(), but it appears to reflect a 3705 * notion that index() can start from a 3706 * negative index and increment its way up to 3707 * the string. Given this notion, Perl's 3708 * rindex() is at least self-consistent in 3709 * that it implicitly clamps positions greater 3710 * than the string length to be the string 3711 * length. Where Perl completely loses 3712 * coherence, however, is when the specified 3713 * substring is the empty string (""). In 3714 * this case, even if the position is 3715 * negative, rindex() returns 0 -- and even if 3716 * the position is greater than the length, 3717 * index() returns the string length. These 3718 * semantics violate the notion that index() 3719 * should never return a value less than the 3720 * specified position and that rindex() should 3721 * never return a value greater than the 3722 * specified position. (One assumes that 3723 * these semantics are artifacts of Perl's 3724 * implementation and not the results of 3725 * deliberate design -- it beggars belief that 3726 * even Larry Wall could desire such oddness.) 3727 * While in the abstract one would wish for 3728 * consistent position semantics across 3729 * substr(), index() and rindex() -- or at the 3730 * very least self-consistent position 3731 * semantics for index() and rindex() -- we 3732 * instead opt to keep with the extant Perl 3733 * semantics, in all their broken glory. (Do 3734 * we have more desire to maintain Perl's 3735 * semantics than Perl does? Probably.) 3736 */ 3737 if (subr == DIF_SUBR_RINDEX) { 3738 if (pos < 0) { 3739 if (sublen == 0) 3740 regs[rd] = 0; 3741 break; 3742 } 3743 3744 if (pos > len) 3745 pos = len; 3746 } else { 3747 if (pos < 0) 3748 pos = 0; 3749 3750 if (pos >= len) { 3751 if (sublen == 0) 3752 regs[rd] = len; 3753 break; 3754 } 3755 } 3756 3757 addr = orig + pos; 3758 } 3759 } 3760 3761 for (regs[rd] = notfound; addr != limit; addr += inc) { 3762 if (dtrace_strncmp(addr, substr, sublen) == 0) { 3763 if (subr != DIF_SUBR_STRSTR) { 3764 /* 3765 * As D index() and rindex() are 3766 * modeled on Perl (and not on awk), 3767 * we return a zero-based (and not a 3768 * one-based) index. (For you Perl 3769 * weenies: no, we're not going to add 3770 * $[ -- and shouldn't you be at a con 3771 * or something?) 3772 */ 3773 regs[rd] = (uintptr_t)(addr - orig); 3774 break; 3775 } 3776 3777 ASSERT(subr == DIF_SUBR_STRSTR); 3778 regs[rd] = (uintptr_t)addr; 3779 break; 3780 } 3781 } 3782 3783 break; 3784 } 3785 3786 case DIF_SUBR_STRTOK: { 3787 uintptr_t addr = tupregs[0].dttk_value; 3788 uintptr_t tokaddr = tupregs[1].dttk_value; 3789 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3790 uintptr_t limit, toklimit = tokaddr + size; 3791 uint8_t c = 0, tokmap[32]; /* 256 / 8 */ 3792 char *dest = (char *)mstate->dtms_scratch_ptr; 3793 int i; 3794 3795 /* 3796 * Check both the token buffer and (later) the input buffer, 3797 * since both could be non-scratch addresses. 3798 */ 3799 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 3800 regs[rd] = 0; 3801 break; 3802 } 3803 3804 if (!DTRACE_INSCRATCH(mstate, size)) { 3805 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3806 regs[rd] = 0; 3807 break; 3808 } 3809 3810 if (addr == 0) { 3811 /* 3812 * If the address specified is NULL, we use our saved 3813 * strtok pointer from the mstate. Note that this 3814 * means that the saved strtok pointer is _only_ 3815 * valid within multiple enablings of the same probe -- 3816 * it behaves like an implicit clause-local variable. 3817 */ 3818 addr = mstate->dtms_strtok; 3819 } else { 3820 /* 3821 * If the user-specified address is non-NULL we must 3822 * access check it. This is the only time we have 3823 * a chance to do so, since this address may reside 3824 * in the string table of this clause-- future calls 3825 * (when we fetch addr from mstate->dtms_strtok) 3826 * would fail this access check. 3827 */ 3828 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 3829 regs[rd] = 0; 3830 break; 3831 } 3832 } 3833 3834 /* 3835 * First, zero the token map, and then process the token 3836 * string -- setting a bit in the map for every character 3837 * found in the token string. 3838 */ 3839 for (i = 0; i < sizeof (tokmap); i++) 3840 tokmap[i] = 0; 3841 3842 for (; tokaddr < toklimit; tokaddr++) { 3843 if ((c = dtrace_load8(tokaddr)) == '\0') 3844 break; 3845 3846 ASSERT((c >> 3) < sizeof (tokmap)); 3847 tokmap[c >> 3] |= (1 << (c & 0x7)); 3848 } 3849 3850 for (limit = addr + size; addr < limit; addr++) { 3851 /* 3852 * We're looking for a character that is _not_ contained 3853 * in the token string. 3854 */ 3855 if ((c = dtrace_load8(addr)) == '\0') 3856 break; 3857 3858 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3859 break; 3860 } 3861 3862 if (c == '\0') { 3863 /* 3864 * We reached the end of the string without finding 3865 * any character that was not in the token string. 3866 * We return NULL in this case, and we set the saved 3867 * address to NULL as well. 3868 */ 3869 regs[rd] = 0; 3870 mstate->dtms_strtok = 0; 3871 break; 3872 } 3873 3874 /* 3875 * From here on, we're copying into the destination string. 3876 */ 3877 for (i = 0; addr < limit && i < size - 1; addr++) { 3878 if ((c = dtrace_load8(addr)) == '\0') 3879 break; 3880 3881 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3882 break; 3883 3884 ASSERT(i < size); 3885 dest[i++] = c; 3886 } 3887 3888 ASSERT(i < size); 3889 dest[i] = '\0'; 3890 regs[rd] = (uintptr_t)dest; 3891 mstate->dtms_scratch_ptr += size; 3892 mstate->dtms_strtok = addr; 3893 break; 3894 } 3895 3896 case DIF_SUBR_SUBSTR: { 3897 uintptr_t s = tupregs[0].dttk_value; 3898 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3899 char *d = (char *)mstate->dtms_scratch_ptr; 3900 int64_t index = (int64_t)tupregs[1].dttk_value; 3901 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3902 size_t len = dtrace_strlen((char *)s, size); 3903 int64_t i = 0; 3904 3905 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3906 regs[rd] = 0; 3907 break; 3908 } 3909 3910 if (!DTRACE_INSCRATCH(mstate, size)) { 3911 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3912 regs[rd] = 0; 3913 break; 3914 } 3915 3916 if (nargs <= 2) 3917 remaining = (int64_t)size; 3918 3919 if (index < 0) { 3920 index += len; 3921 3922 if (index < 0 && index + remaining > 0) { 3923 remaining += index; 3924 index = 0; 3925 } 3926 } 3927 3928 if (index >= len || index < 0) { 3929 remaining = 0; 3930 } else if (remaining < 0) { 3931 remaining += len - index; 3932 } else if (index + remaining > size) { 3933 remaining = size - index; 3934 } 3935 3936 for (i = 0; i < remaining; i++) { 3937 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 3938 break; 3939 } 3940 3941 d[i] = '\0'; 3942 3943 mstate->dtms_scratch_ptr += size; 3944 regs[rd] = (uintptr_t)d; 3945 break; 3946 } 3947 3948 #if defined(sun) 3949 case DIF_SUBR_GETMAJOR: 3950 #ifdef _LP64 3951 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3952 #else 3953 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3954 #endif 3955 break; 3956 3957 case DIF_SUBR_GETMINOR: 3958 #ifdef _LP64 3959 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3960 #else 3961 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3962 #endif 3963 break; 3964 3965 case DIF_SUBR_DDI_PATHNAME: { 3966 /* 3967 * This one is a galactic mess. We are going to roughly 3968 * emulate ddi_pathname(), but it's made more complicated 3969 * by the fact that we (a) want to include the minor name and 3970 * (b) must proceed iteratively instead of recursively. 3971 */ 3972 uintptr_t dest = mstate->dtms_scratch_ptr; 3973 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3974 char *start = (char *)dest, *end = start + size - 1; 3975 uintptr_t daddr = tupregs[0].dttk_value; 3976 int64_t minor = (int64_t)tupregs[1].dttk_value; 3977 char *s; 3978 int i, len, depth = 0; 3979 3980 /* 3981 * Due to all the pointer jumping we do and context we must 3982 * rely upon, we just mandate that the user must have kernel 3983 * read privileges to use this routine. 3984 */ 3985 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 3986 *flags |= CPU_DTRACE_KPRIV; 3987 *illval = daddr; 3988 regs[rd] = 0; 3989 } 3990 3991 if (!DTRACE_INSCRATCH(mstate, size)) { 3992 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3993 regs[rd] = 0; 3994 break; 3995 } 3996 3997 *end = '\0'; 3998 3999 /* 4000 * We want to have a name for the minor. In order to do this, 4001 * we need to walk the minor list from the devinfo. We want 4002 * to be sure that we don't infinitely walk a circular list, 4003 * so we check for circularity by sending a scout pointer 4004 * ahead two elements for every element that we iterate over; 4005 * if the list is circular, these will ultimately point to the 4006 * same element. You may recognize this little trick as the 4007 * answer to a stupid interview question -- one that always 4008 * seems to be asked by those who had to have it laboriously 4009 * explained to them, and who can't even concisely describe 4010 * the conditions under which one would be forced to resort to 4011 * this technique. Needless to say, those conditions are 4012 * found here -- and probably only here. Is this the only use 4013 * of this infamous trick in shipping, production code? If it 4014 * isn't, it probably should be... 4015 */ 4016 if (minor != -1) { 4017 uintptr_t maddr = dtrace_loadptr(daddr + 4018 offsetof(struct dev_info, devi_minor)); 4019 4020 uintptr_t next = offsetof(struct ddi_minor_data, next); 4021 uintptr_t name = offsetof(struct ddi_minor_data, 4022 d_minor) + offsetof(struct ddi_minor, name); 4023 uintptr_t dev = offsetof(struct ddi_minor_data, 4024 d_minor) + offsetof(struct ddi_minor, dev); 4025 uintptr_t scout; 4026 4027 if (maddr != NULL) 4028 scout = dtrace_loadptr(maddr + next); 4029 4030 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4031 uint64_t m; 4032 #ifdef _LP64 4033 m = dtrace_load64(maddr + dev) & MAXMIN64; 4034 #else 4035 m = dtrace_load32(maddr + dev) & MAXMIN; 4036 #endif 4037 if (m != minor) { 4038 maddr = dtrace_loadptr(maddr + next); 4039 4040 if (scout == NULL) 4041 continue; 4042 4043 scout = dtrace_loadptr(scout + next); 4044 4045 if (scout == NULL) 4046 continue; 4047 4048 scout = dtrace_loadptr(scout + next); 4049 4050 if (scout == NULL) 4051 continue; 4052 4053 if (scout == maddr) { 4054 *flags |= CPU_DTRACE_ILLOP; 4055 break; 4056 } 4057 4058 continue; 4059 } 4060 4061 /* 4062 * We have the minor data. Now we need to 4063 * copy the minor's name into the end of the 4064 * pathname. 4065 */ 4066 s = (char *)dtrace_loadptr(maddr + name); 4067 len = dtrace_strlen(s, size); 4068 4069 if (*flags & CPU_DTRACE_FAULT) 4070 break; 4071 4072 if (len != 0) { 4073 if ((end -= (len + 1)) < start) 4074 break; 4075 4076 *end = ':'; 4077 } 4078 4079 for (i = 1; i <= len; i++) 4080 end[i] = dtrace_load8((uintptr_t)s++); 4081 break; 4082 } 4083 } 4084 4085 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4086 ddi_node_state_t devi_state; 4087 4088 devi_state = dtrace_load32(daddr + 4089 offsetof(struct dev_info, devi_node_state)); 4090 4091 if (*flags & CPU_DTRACE_FAULT) 4092 break; 4093 4094 if (devi_state >= DS_INITIALIZED) { 4095 s = (char *)dtrace_loadptr(daddr + 4096 offsetof(struct dev_info, devi_addr)); 4097 len = dtrace_strlen(s, size); 4098 4099 if (*flags & CPU_DTRACE_FAULT) 4100 break; 4101 4102 if (len != 0) { 4103 if ((end -= (len + 1)) < start) 4104 break; 4105 4106 *end = '@'; 4107 } 4108 4109 for (i = 1; i <= len; i++) 4110 end[i] = dtrace_load8((uintptr_t)s++); 4111 } 4112 4113 /* 4114 * Now for the node name... 4115 */ 4116 s = (char *)dtrace_loadptr(daddr + 4117 offsetof(struct dev_info, devi_node_name)); 4118 4119 daddr = dtrace_loadptr(daddr + 4120 offsetof(struct dev_info, devi_parent)); 4121 4122 /* 4123 * If our parent is NULL (that is, if we're the root 4124 * node), we're going to use the special path 4125 * "devices". 4126 */ 4127 if (daddr == 0) 4128 s = "devices"; 4129 4130 len = dtrace_strlen(s, size); 4131 if (*flags & CPU_DTRACE_FAULT) 4132 break; 4133 4134 if ((end -= (len + 1)) < start) 4135 break; 4136 4137 for (i = 1; i <= len; i++) 4138 end[i] = dtrace_load8((uintptr_t)s++); 4139 *end = '/'; 4140 4141 if (depth++ > dtrace_devdepth_max) { 4142 *flags |= CPU_DTRACE_ILLOP; 4143 break; 4144 } 4145 } 4146 4147 if (end < start) 4148 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4149 4150 if (daddr == 0) { 4151 regs[rd] = (uintptr_t)end; 4152 mstate->dtms_scratch_ptr += size; 4153 } 4154 4155 break; 4156 } 4157 #endif 4158 4159 case DIF_SUBR_STRJOIN: { 4160 char *d = (char *)mstate->dtms_scratch_ptr; 4161 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4162 uintptr_t s1 = tupregs[0].dttk_value; 4163 uintptr_t s2 = tupregs[1].dttk_value; 4164 int i = 0; 4165 4166 if (!dtrace_strcanload(s1, size, mstate, vstate) || 4167 !dtrace_strcanload(s2, size, mstate, vstate)) { 4168 regs[rd] = 0; 4169 break; 4170 } 4171 4172 if (!DTRACE_INSCRATCH(mstate, size)) { 4173 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4174 regs[rd] = 0; 4175 break; 4176 } 4177 4178 for (;;) { 4179 if (i >= size) { 4180 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4181 regs[rd] = 0; 4182 break; 4183 } 4184 4185 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 4186 i--; 4187 break; 4188 } 4189 } 4190 4191 for (;;) { 4192 if (i >= size) { 4193 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4194 regs[rd] = 0; 4195 break; 4196 } 4197 4198 if ((d[i++] = dtrace_load8(s2++)) == '\0') 4199 break; 4200 } 4201 4202 if (i < size) { 4203 mstate->dtms_scratch_ptr += i; 4204 regs[rd] = (uintptr_t)d; 4205 } 4206 4207 break; 4208 } 4209 4210 case DIF_SUBR_LLTOSTR: { 4211 int64_t i = (int64_t)tupregs[0].dttk_value; 4212 int64_t val = i < 0 ? i * -1 : i; 4213 uint64_t size = 22; /* enough room for 2^64 in decimal */ 4214 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 4215 4216 if (!DTRACE_INSCRATCH(mstate, size)) { 4217 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4218 regs[rd] = 0; 4219 break; 4220 } 4221 4222 for (*end-- = '\0'; val; val /= 10) 4223 *end-- = '0' + (val % 10); 4224 4225 if (i == 0) 4226 *end-- = '0'; 4227 4228 if (i < 0) 4229 *end-- = '-'; 4230 4231 regs[rd] = (uintptr_t)end + 1; 4232 mstate->dtms_scratch_ptr += size; 4233 break; 4234 } 4235 4236 case DIF_SUBR_HTONS: 4237 case DIF_SUBR_NTOHS: 4238 #if BYTE_ORDER == BIG_ENDIAN 4239 regs[rd] = (uint16_t)tupregs[0].dttk_value; 4240 #else 4241 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 4242 #endif 4243 break; 4244 4245 4246 case DIF_SUBR_HTONL: 4247 case DIF_SUBR_NTOHL: 4248 #if BYTE_ORDER == BIG_ENDIAN 4249 regs[rd] = (uint32_t)tupregs[0].dttk_value; 4250 #else 4251 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 4252 #endif 4253 break; 4254 4255 4256 case DIF_SUBR_HTONLL: 4257 case DIF_SUBR_NTOHLL: 4258 #if BYTE_ORDER == BIG_ENDIAN 4259 regs[rd] = (uint64_t)tupregs[0].dttk_value; 4260 #else 4261 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 4262 #endif 4263 break; 4264 4265 4266 case DIF_SUBR_DIRNAME: 4267 case DIF_SUBR_BASENAME: { 4268 char *dest = (char *)mstate->dtms_scratch_ptr; 4269 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4270 uintptr_t src = tupregs[0].dttk_value; 4271 int i, j, len = dtrace_strlen((char *)src, size); 4272 int lastbase = -1, firstbase = -1, lastdir = -1; 4273 int start, end; 4274 4275 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 4276 regs[rd] = 0; 4277 break; 4278 } 4279 4280 if (!DTRACE_INSCRATCH(mstate, size)) { 4281 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4282 regs[rd] = 0; 4283 break; 4284 } 4285 4286 /* 4287 * The basename and dirname for a zero-length string is 4288 * defined to be "." 4289 */ 4290 if (len == 0) { 4291 len = 1; 4292 src = (uintptr_t)"."; 4293 } 4294 4295 /* 4296 * Start from the back of the string, moving back toward the 4297 * front until we see a character that isn't a slash. That 4298 * character is the last character in the basename. 4299 */ 4300 for (i = len - 1; i >= 0; i--) { 4301 if (dtrace_load8(src + i) != '/') 4302 break; 4303 } 4304 4305 if (i >= 0) 4306 lastbase = i; 4307 4308 /* 4309 * Starting from the last character in the basename, move 4310 * towards the front until we find a slash. The character 4311 * that we processed immediately before that is the first 4312 * character in the basename. 4313 */ 4314 for (; i >= 0; i--) { 4315 if (dtrace_load8(src + i) == '/') 4316 break; 4317 } 4318 4319 if (i >= 0) 4320 firstbase = i + 1; 4321 4322 /* 4323 * Now keep going until we find a non-slash character. That 4324 * character is the last character in the dirname. 4325 */ 4326 for (; i >= 0; i--) { 4327 if (dtrace_load8(src + i) != '/') 4328 break; 4329 } 4330 4331 if (i >= 0) 4332 lastdir = i; 4333 4334 ASSERT(!(lastbase == -1 && firstbase != -1)); 4335 ASSERT(!(firstbase == -1 && lastdir != -1)); 4336 4337 if (lastbase == -1) { 4338 /* 4339 * We didn't find a non-slash character. We know that 4340 * the length is non-zero, so the whole string must be 4341 * slashes. In either the dirname or the basename 4342 * case, we return '/'. 4343 */ 4344 ASSERT(firstbase == -1); 4345 firstbase = lastbase = lastdir = 0; 4346 } 4347 4348 if (firstbase == -1) { 4349 /* 4350 * The entire string consists only of a basename 4351 * component. If we're looking for dirname, we need 4352 * to change our string to be just "."; if we're 4353 * looking for a basename, we'll just set the first 4354 * character of the basename to be 0. 4355 */ 4356 if (subr == DIF_SUBR_DIRNAME) { 4357 ASSERT(lastdir == -1); 4358 src = (uintptr_t)"."; 4359 lastdir = 0; 4360 } else { 4361 firstbase = 0; 4362 } 4363 } 4364 4365 if (subr == DIF_SUBR_DIRNAME) { 4366 if (lastdir == -1) { 4367 /* 4368 * We know that we have a slash in the name -- 4369 * or lastdir would be set to 0, above. And 4370 * because lastdir is -1, we know that this 4371 * slash must be the first character. (That 4372 * is, the full string must be of the form 4373 * "/basename".) In this case, the last 4374 * character of the directory name is 0. 4375 */ 4376 lastdir = 0; 4377 } 4378 4379 start = 0; 4380 end = lastdir; 4381 } else { 4382 ASSERT(subr == DIF_SUBR_BASENAME); 4383 ASSERT(firstbase != -1 && lastbase != -1); 4384 start = firstbase; 4385 end = lastbase; 4386 } 4387 4388 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 4389 dest[j] = dtrace_load8(src + i); 4390 4391 dest[j] = '\0'; 4392 regs[rd] = (uintptr_t)dest; 4393 mstate->dtms_scratch_ptr += size; 4394 break; 4395 } 4396 4397 case DIF_SUBR_CLEANPATH: { 4398 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4399 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4400 uintptr_t src = tupregs[0].dttk_value; 4401 int i = 0, j = 0; 4402 4403 if (!dtrace_strcanload(src, size, mstate, vstate)) { 4404 regs[rd] = 0; 4405 break; 4406 } 4407 4408 if (!DTRACE_INSCRATCH(mstate, size)) { 4409 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4410 regs[rd] = 0; 4411 break; 4412 } 4413 4414 /* 4415 * Move forward, loading each character. 4416 */ 4417 do { 4418 c = dtrace_load8(src + i++); 4419 next: 4420 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 4421 break; 4422 4423 if (c != '/') { 4424 dest[j++] = c; 4425 continue; 4426 } 4427 4428 c = dtrace_load8(src + i++); 4429 4430 if (c == '/') { 4431 /* 4432 * We have two slashes -- we can just advance 4433 * to the next character. 4434 */ 4435 goto next; 4436 } 4437 4438 if (c != '.') { 4439 /* 4440 * This is not "." and it's not ".." -- we can 4441 * just store the "/" and this character and 4442 * drive on. 4443 */ 4444 dest[j++] = '/'; 4445 dest[j++] = c; 4446 continue; 4447 } 4448 4449 c = dtrace_load8(src + i++); 4450 4451 if (c == '/') { 4452 /* 4453 * This is a "/./" component. We're not going 4454 * to store anything in the destination buffer; 4455 * we're just going to go to the next component. 4456 */ 4457 goto next; 4458 } 4459 4460 if (c != '.') { 4461 /* 4462 * This is not ".." -- we can just store the 4463 * "/." and this character and continue 4464 * processing. 4465 */ 4466 dest[j++] = '/'; 4467 dest[j++] = '.'; 4468 dest[j++] = c; 4469 continue; 4470 } 4471 4472 c = dtrace_load8(src + i++); 4473 4474 if (c != '/' && c != '\0') { 4475 /* 4476 * This is not ".." -- it's "..[mumble]". 4477 * We'll store the "/.." and this character 4478 * and continue processing. 4479 */ 4480 dest[j++] = '/'; 4481 dest[j++] = '.'; 4482 dest[j++] = '.'; 4483 dest[j++] = c; 4484 continue; 4485 } 4486 4487 /* 4488 * This is "/../" or "/..\0". We need to back up 4489 * our destination pointer until we find a "/". 4490 */ 4491 i--; 4492 while (j != 0 && dest[--j] != '/') 4493 continue; 4494 4495 if (c == '\0') 4496 dest[++j] = '/'; 4497 } while (c != '\0'); 4498 4499 dest[j] = '\0'; 4500 regs[rd] = (uintptr_t)dest; 4501 mstate->dtms_scratch_ptr += size; 4502 break; 4503 } 4504 4505 case DIF_SUBR_INET_NTOA: 4506 case DIF_SUBR_INET_NTOA6: 4507 case DIF_SUBR_INET_NTOP: { 4508 size_t size; 4509 int af, argi, i; 4510 char *base, *end; 4511 4512 if (subr == DIF_SUBR_INET_NTOP) { 4513 af = (int)tupregs[0].dttk_value; 4514 argi = 1; 4515 } else { 4516 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 4517 argi = 0; 4518 } 4519 4520 if (af == AF_INET) { 4521 ipaddr_t ip4; 4522 uint8_t *ptr8, val; 4523 4524 /* 4525 * Safely load the IPv4 address. 4526 */ 4527 ip4 = dtrace_load32(tupregs[argi].dttk_value); 4528 4529 /* 4530 * Check an IPv4 string will fit in scratch. 4531 */ 4532 size = INET_ADDRSTRLEN; 4533 if (!DTRACE_INSCRATCH(mstate, size)) { 4534 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4535 regs[rd] = 0; 4536 break; 4537 } 4538 base = (char *)mstate->dtms_scratch_ptr; 4539 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4540 4541 /* 4542 * Stringify as a dotted decimal quad. 4543 */ 4544 *end-- = '\0'; 4545 ptr8 = (uint8_t *)&ip4; 4546 for (i = 3; i >= 0; i--) { 4547 val = ptr8[i]; 4548 4549 if (val == 0) { 4550 *end-- = '0'; 4551 } else { 4552 for (; val; val /= 10) { 4553 *end-- = '0' + (val % 10); 4554 } 4555 } 4556 4557 if (i > 0) 4558 *end-- = '.'; 4559 } 4560 ASSERT(end + 1 >= base); 4561 4562 } else if (af == AF_INET6) { 4563 struct in6_addr ip6; 4564 int firstzero, tryzero, numzero, v6end; 4565 uint16_t val; 4566 const char digits[] = "0123456789abcdef"; 4567 4568 /* 4569 * Stringify using RFC 1884 convention 2 - 16 bit 4570 * hexadecimal values with a zero-run compression. 4571 * Lower case hexadecimal digits are used. 4572 * eg, fe80::214:4fff:fe0b:76c8. 4573 * The IPv4 embedded form is returned for inet_ntop, 4574 * just the IPv4 string is returned for inet_ntoa6. 4575 */ 4576 4577 /* 4578 * Safely load the IPv6 address. 4579 */ 4580 dtrace_bcopy( 4581 (void *)(uintptr_t)tupregs[argi].dttk_value, 4582 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 4583 4584 /* 4585 * Check an IPv6 string will fit in scratch. 4586 */ 4587 size = INET6_ADDRSTRLEN; 4588 if (!DTRACE_INSCRATCH(mstate, size)) { 4589 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4590 regs[rd] = 0; 4591 break; 4592 } 4593 base = (char *)mstate->dtms_scratch_ptr; 4594 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4595 *end-- = '\0'; 4596 4597 /* 4598 * Find the longest run of 16 bit zero values 4599 * for the single allowed zero compression - "::". 4600 */ 4601 firstzero = -1; 4602 tryzero = -1; 4603 numzero = 1; 4604 for (i = 0; i < sizeof (struct in6_addr); i++) { 4605 #if defined(sun) 4606 if (ip6._S6_un._S6_u8[i] == 0 && 4607 #else 4608 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 4609 #endif 4610 tryzero == -1 && i % 2 == 0) { 4611 tryzero = i; 4612 continue; 4613 } 4614 4615 if (tryzero != -1 && 4616 #if defined(sun) 4617 (ip6._S6_un._S6_u8[i] != 0 || 4618 #else 4619 (ip6.__u6_addr.__u6_addr8[i] != 0 || 4620 #endif 4621 i == sizeof (struct in6_addr) - 1)) { 4622 4623 if (i - tryzero <= numzero) { 4624 tryzero = -1; 4625 continue; 4626 } 4627 4628 firstzero = tryzero; 4629 numzero = i - i % 2 - tryzero; 4630 tryzero = -1; 4631 4632 #if defined(sun) 4633 if (ip6._S6_un._S6_u8[i] == 0 && 4634 #else 4635 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 4636 #endif 4637 i == sizeof (struct in6_addr) - 1) 4638 numzero += 2; 4639 } 4640 } 4641 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 4642 4643 /* 4644 * Check for an IPv4 embedded address. 4645 */ 4646 v6end = sizeof (struct in6_addr) - 2; 4647 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 4648 IN6_IS_ADDR_V4COMPAT(&ip6)) { 4649 for (i = sizeof (struct in6_addr) - 1; 4650 i >= DTRACE_V4MAPPED_OFFSET; i--) { 4651 ASSERT(end >= base); 4652 4653 #if defined(sun) 4654 val = ip6._S6_un._S6_u8[i]; 4655 #else 4656 val = ip6.__u6_addr.__u6_addr8[i]; 4657 #endif 4658 4659 if (val == 0) { 4660 *end-- = '0'; 4661 } else { 4662 for (; val; val /= 10) { 4663 *end-- = '0' + val % 10; 4664 } 4665 } 4666 4667 if (i > DTRACE_V4MAPPED_OFFSET) 4668 *end-- = '.'; 4669 } 4670 4671 if (subr == DIF_SUBR_INET_NTOA6) 4672 goto inetout; 4673 4674 /* 4675 * Set v6end to skip the IPv4 address that 4676 * we have already stringified. 4677 */ 4678 v6end = 10; 4679 } 4680 4681 /* 4682 * Build the IPv6 string by working through the 4683 * address in reverse. 4684 */ 4685 for (i = v6end; i >= 0; i -= 2) { 4686 ASSERT(end >= base); 4687 4688 if (i == firstzero + numzero - 2) { 4689 *end-- = ':'; 4690 *end-- = ':'; 4691 i -= numzero - 2; 4692 continue; 4693 } 4694 4695 if (i < 14 && i != firstzero - 2) 4696 *end-- = ':'; 4697 4698 #if defined(sun) 4699 val = (ip6._S6_un._S6_u8[i] << 8) + 4700 ip6._S6_un._S6_u8[i + 1]; 4701 #else 4702 val = (ip6.__u6_addr.__u6_addr8[i] << 8) + 4703 ip6.__u6_addr.__u6_addr8[i + 1]; 4704 #endif 4705 4706 if (val == 0) { 4707 *end-- = '0'; 4708 } else { 4709 for (; val; val /= 16) { 4710 *end-- = digits[val % 16]; 4711 } 4712 } 4713 } 4714 ASSERT(end + 1 >= base); 4715 4716 } else { 4717 /* 4718 * The user didn't use AH_INET or AH_INET6. 4719 */ 4720 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4721 regs[rd] = 0; 4722 break; 4723 } 4724 4725 inetout: regs[rd] = (uintptr_t)end + 1; 4726 mstate->dtms_scratch_ptr += size; 4727 break; 4728 } 4729 4730 case DIF_SUBR_MEMREF: { 4731 uintptr_t size = 2 * sizeof(uintptr_t); 4732 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 4733 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size; 4734 4735 /* address and length */ 4736 memref[0] = tupregs[0].dttk_value; 4737 memref[1] = tupregs[1].dttk_value; 4738 4739 regs[rd] = (uintptr_t) memref; 4740 mstate->dtms_scratch_ptr += scratch_size; 4741 break; 4742 } 4743 4744 case DIF_SUBR_TYPEREF: { 4745 uintptr_t size = 4 * sizeof(uintptr_t); 4746 uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 4747 size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size; 4748 4749 /* address, num_elements, type_str, type_len */ 4750 typeref[0] = tupregs[0].dttk_value; 4751 typeref[1] = tupregs[1].dttk_value; 4752 typeref[2] = tupregs[2].dttk_value; 4753 typeref[3] = tupregs[3].dttk_value; 4754 4755 regs[rd] = (uintptr_t) typeref; 4756 mstate->dtms_scratch_ptr += scratch_size; 4757 break; 4758 } 4759 } 4760 } 4761 4762 /* 4763 * Emulate the execution of DTrace IR instructions specified by the given 4764 * DIF object. This function is deliberately void of assertions as all of 4765 * the necessary checks are handled by a call to dtrace_difo_validate(). 4766 */ 4767 static uint64_t 4768 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 4769 dtrace_vstate_t *vstate, dtrace_state_t *state) 4770 { 4771 const dif_instr_t *text = difo->dtdo_buf; 4772 const uint_t textlen = difo->dtdo_len; 4773 const char *strtab = difo->dtdo_strtab; 4774 const uint64_t *inttab = difo->dtdo_inttab; 4775 4776 uint64_t rval = 0; 4777 dtrace_statvar_t *svar; 4778 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 4779 dtrace_difv_t *v; 4780 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 4781 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 4782 4783 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 4784 uint64_t regs[DIF_DIR_NREGS]; 4785 uint64_t *tmp; 4786 4787 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 4788 int64_t cc_r; 4789 uint_t pc = 0, id, opc = 0; 4790 uint8_t ttop = 0; 4791 dif_instr_t instr; 4792 uint_t r1, r2, rd; 4793 4794 /* 4795 * We stash the current DIF object into the machine state: we need it 4796 * for subsequent access checking. 4797 */ 4798 mstate->dtms_difo = difo; 4799 4800 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 4801 4802 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 4803 opc = pc; 4804 4805 instr = text[pc++]; 4806 r1 = DIF_INSTR_R1(instr); 4807 r2 = DIF_INSTR_R2(instr); 4808 rd = DIF_INSTR_RD(instr); 4809 4810 switch (DIF_INSTR_OP(instr)) { 4811 case DIF_OP_OR: 4812 regs[rd] = regs[r1] | regs[r2]; 4813 break; 4814 case DIF_OP_XOR: 4815 regs[rd] = regs[r1] ^ regs[r2]; 4816 break; 4817 case DIF_OP_AND: 4818 regs[rd] = regs[r1] & regs[r2]; 4819 break; 4820 case DIF_OP_SLL: 4821 regs[rd] = regs[r1] << regs[r2]; 4822 break; 4823 case DIF_OP_SRL: 4824 regs[rd] = regs[r1] >> regs[r2]; 4825 break; 4826 case DIF_OP_SUB: 4827 regs[rd] = regs[r1] - regs[r2]; 4828 break; 4829 case DIF_OP_ADD: 4830 regs[rd] = regs[r1] + regs[r2]; 4831 break; 4832 case DIF_OP_MUL: 4833 regs[rd] = regs[r1] * regs[r2]; 4834 break; 4835 case DIF_OP_SDIV: 4836 if (regs[r2] == 0) { 4837 regs[rd] = 0; 4838 *flags |= CPU_DTRACE_DIVZERO; 4839 } else { 4840 regs[rd] = (int64_t)regs[r1] / 4841 (int64_t)regs[r2]; 4842 } 4843 break; 4844 4845 case DIF_OP_UDIV: 4846 if (regs[r2] == 0) { 4847 regs[rd] = 0; 4848 *flags |= CPU_DTRACE_DIVZERO; 4849 } else { 4850 regs[rd] = regs[r1] / regs[r2]; 4851 } 4852 break; 4853 4854 case DIF_OP_SREM: 4855 if (regs[r2] == 0) { 4856 regs[rd] = 0; 4857 *flags |= CPU_DTRACE_DIVZERO; 4858 } else { 4859 regs[rd] = (int64_t)regs[r1] % 4860 (int64_t)regs[r2]; 4861 } 4862 break; 4863 4864 case DIF_OP_UREM: 4865 if (regs[r2] == 0) { 4866 regs[rd] = 0; 4867 *flags |= CPU_DTRACE_DIVZERO; 4868 } else { 4869 regs[rd] = regs[r1] % regs[r2]; 4870 } 4871 break; 4872 4873 case DIF_OP_NOT: 4874 regs[rd] = ~regs[r1]; 4875 break; 4876 case DIF_OP_MOV: 4877 regs[rd] = regs[r1]; 4878 break; 4879 case DIF_OP_CMP: 4880 cc_r = regs[r1] - regs[r2]; 4881 cc_n = cc_r < 0; 4882 cc_z = cc_r == 0; 4883 cc_v = 0; 4884 cc_c = regs[r1] < regs[r2]; 4885 break; 4886 case DIF_OP_TST: 4887 cc_n = cc_v = cc_c = 0; 4888 cc_z = regs[r1] == 0; 4889 break; 4890 case DIF_OP_BA: 4891 pc = DIF_INSTR_LABEL(instr); 4892 break; 4893 case DIF_OP_BE: 4894 if (cc_z) 4895 pc = DIF_INSTR_LABEL(instr); 4896 break; 4897 case DIF_OP_BNE: 4898 if (cc_z == 0) 4899 pc = DIF_INSTR_LABEL(instr); 4900 break; 4901 case DIF_OP_BG: 4902 if ((cc_z | (cc_n ^ cc_v)) == 0) 4903 pc = DIF_INSTR_LABEL(instr); 4904 break; 4905 case DIF_OP_BGU: 4906 if ((cc_c | cc_z) == 0) 4907 pc = DIF_INSTR_LABEL(instr); 4908 break; 4909 case DIF_OP_BGE: 4910 if ((cc_n ^ cc_v) == 0) 4911 pc = DIF_INSTR_LABEL(instr); 4912 break; 4913 case DIF_OP_BGEU: 4914 if (cc_c == 0) 4915 pc = DIF_INSTR_LABEL(instr); 4916 break; 4917 case DIF_OP_BL: 4918 if (cc_n ^ cc_v) 4919 pc = DIF_INSTR_LABEL(instr); 4920 break; 4921 case DIF_OP_BLU: 4922 if (cc_c) 4923 pc = DIF_INSTR_LABEL(instr); 4924 break; 4925 case DIF_OP_BLE: 4926 if (cc_z | (cc_n ^ cc_v)) 4927 pc = DIF_INSTR_LABEL(instr); 4928 break; 4929 case DIF_OP_BLEU: 4930 if (cc_c | cc_z) 4931 pc = DIF_INSTR_LABEL(instr); 4932 break; 4933 case DIF_OP_RLDSB: 4934 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4935 *flags |= CPU_DTRACE_KPRIV; 4936 *illval = regs[r1]; 4937 break; 4938 } 4939 /*FALLTHROUGH*/ 4940 case DIF_OP_LDSB: 4941 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 4942 break; 4943 case DIF_OP_RLDSH: 4944 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4945 *flags |= CPU_DTRACE_KPRIV; 4946 *illval = regs[r1]; 4947 break; 4948 } 4949 /*FALLTHROUGH*/ 4950 case DIF_OP_LDSH: 4951 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 4952 break; 4953 case DIF_OP_RLDSW: 4954 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4955 *flags |= CPU_DTRACE_KPRIV; 4956 *illval = regs[r1]; 4957 break; 4958 } 4959 /*FALLTHROUGH*/ 4960 case DIF_OP_LDSW: 4961 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 4962 break; 4963 case DIF_OP_RLDUB: 4964 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4965 *flags |= CPU_DTRACE_KPRIV; 4966 *illval = regs[r1]; 4967 break; 4968 } 4969 /*FALLTHROUGH*/ 4970 case DIF_OP_LDUB: 4971 regs[rd] = dtrace_load8(regs[r1]); 4972 break; 4973 case DIF_OP_RLDUH: 4974 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4975 *flags |= CPU_DTRACE_KPRIV; 4976 *illval = regs[r1]; 4977 break; 4978 } 4979 /*FALLTHROUGH*/ 4980 case DIF_OP_LDUH: 4981 regs[rd] = dtrace_load16(regs[r1]); 4982 break; 4983 case DIF_OP_RLDUW: 4984 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4985 *flags |= CPU_DTRACE_KPRIV; 4986 *illval = regs[r1]; 4987 break; 4988 } 4989 /*FALLTHROUGH*/ 4990 case DIF_OP_LDUW: 4991 regs[rd] = dtrace_load32(regs[r1]); 4992 break; 4993 case DIF_OP_RLDX: 4994 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 4995 *flags |= CPU_DTRACE_KPRIV; 4996 *illval = regs[r1]; 4997 break; 4998 } 4999 /*FALLTHROUGH*/ 5000 case DIF_OP_LDX: 5001 regs[rd] = dtrace_load64(regs[r1]); 5002 break; 5003 case DIF_OP_ULDSB: 5004 regs[rd] = (int8_t) 5005 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5006 break; 5007 case DIF_OP_ULDSH: 5008 regs[rd] = (int16_t) 5009 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5010 break; 5011 case DIF_OP_ULDSW: 5012 regs[rd] = (int32_t) 5013 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5014 break; 5015 case DIF_OP_ULDUB: 5016 regs[rd] = 5017 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5018 break; 5019 case DIF_OP_ULDUH: 5020 regs[rd] = 5021 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5022 break; 5023 case DIF_OP_ULDUW: 5024 regs[rd] = 5025 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5026 break; 5027 case DIF_OP_ULDX: 5028 regs[rd] = 5029 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5030 break; 5031 case DIF_OP_RET: 5032 rval = regs[rd]; 5033 pc = textlen; 5034 break; 5035 case DIF_OP_NOP: 5036 break; 5037 case DIF_OP_SETX: 5038 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 5039 break; 5040 case DIF_OP_SETS: 5041 regs[rd] = (uint64_t)(uintptr_t) 5042 (strtab + DIF_INSTR_STRING(instr)); 5043 break; 5044 case DIF_OP_SCMP: { 5045 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 5046 uintptr_t s1 = regs[r1]; 5047 uintptr_t s2 = regs[r2]; 5048 5049 if (s1 != 0 && 5050 !dtrace_strcanload(s1, sz, mstate, vstate)) 5051 break; 5052 if (s2 != 0 && 5053 !dtrace_strcanload(s2, sz, mstate, vstate)) 5054 break; 5055 5056 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 5057 5058 cc_n = cc_r < 0; 5059 cc_z = cc_r == 0; 5060 cc_v = cc_c = 0; 5061 break; 5062 } 5063 case DIF_OP_LDGA: 5064 regs[rd] = dtrace_dif_variable(mstate, state, 5065 r1, regs[r2]); 5066 break; 5067 case DIF_OP_LDGS: 5068 id = DIF_INSTR_VAR(instr); 5069 5070 if (id >= DIF_VAR_OTHER_UBASE) { 5071 uintptr_t a; 5072 5073 id -= DIF_VAR_OTHER_UBASE; 5074 svar = vstate->dtvs_globals[id]; 5075 ASSERT(svar != NULL); 5076 v = &svar->dtsv_var; 5077 5078 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 5079 regs[rd] = svar->dtsv_data; 5080 break; 5081 } 5082 5083 a = (uintptr_t)svar->dtsv_data; 5084 5085 if (*(uint8_t *)a == UINT8_MAX) { 5086 /* 5087 * If the 0th byte is set to UINT8_MAX 5088 * then this is to be treated as a 5089 * reference to a NULL variable. 5090 */ 5091 regs[rd] = 0; 5092 } else { 5093 regs[rd] = a + sizeof (uint64_t); 5094 } 5095 5096 break; 5097 } 5098 5099 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 5100 break; 5101 5102 case DIF_OP_STGS: 5103 id = DIF_INSTR_VAR(instr); 5104 5105 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5106 id -= DIF_VAR_OTHER_UBASE; 5107 5108 svar = vstate->dtvs_globals[id]; 5109 ASSERT(svar != NULL); 5110 v = &svar->dtsv_var; 5111 5112 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5113 uintptr_t a = (uintptr_t)svar->dtsv_data; 5114 5115 ASSERT(a != 0); 5116 ASSERT(svar->dtsv_size != 0); 5117 5118 if (regs[rd] == 0) { 5119 *(uint8_t *)a = UINT8_MAX; 5120 break; 5121 } else { 5122 *(uint8_t *)a = 0; 5123 a += sizeof (uint64_t); 5124 } 5125 if (!dtrace_vcanload( 5126 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5127 mstate, vstate)) 5128 break; 5129 5130 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5131 (void *)a, &v->dtdv_type); 5132 break; 5133 } 5134 5135 svar->dtsv_data = regs[rd]; 5136 break; 5137 5138 case DIF_OP_LDTA: 5139 /* 5140 * There are no DTrace built-in thread-local arrays at 5141 * present. This opcode is saved for future work. 5142 */ 5143 *flags |= CPU_DTRACE_ILLOP; 5144 regs[rd] = 0; 5145 break; 5146 5147 case DIF_OP_LDLS: 5148 id = DIF_INSTR_VAR(instr); 5149 5150 if (id < DIF_VAR_OTHER_UBASE) { 5151 /* 5152 * For now, this has no meaning. 5153 */ 5154 regs[rd] = 0; 5155 break; 5156 } 5157 5158 id -= DIF_VAR_OTHER_UBASE; 5159 5160 ASSERT(id < vstate->dtvs_nlocals); 5161 ASSERT(vstate->dtvs_locals != NULL); 5162 5163 svar = vstate->dtvs_locals[id]; 5164 ASSERT(svar != NULL); 5165 v = &svar->dtsv_var; 5166 5167 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5168 uintptr_t a = (uintptr_t)svar->dtsv_data; 5169 size_t sz = v->dtdv_type.dtdt_size; 5170 5171 sz += sizeof (uint64_t); 5172 ASSERT(svar->dtsv_size == NCPU * sz); 5173 a += curcpu * sz; 5174 5175 if (*(uint8_t *)a == UINT8_MAX) { 5176 /* 5177 * If the 0th byte is set to UINT8_MAX 5178 * then this is to be treated as a 5179 * reference to a NULL variable. 5180 */ 5181 regs[rd] = 0; 5182 } else { 5183 regs[rd] = a + sizeof (uint64_t); 5184 } 5185 5186 break; 5187 } 5188 5189 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5190 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5191 regs[rd] = tmp[curcpu]; 5192 break; 5193 5194 case DIF_OP_STLS: 5195 id = DIF_INSTR_VAR(instr); 5196 5197 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5198 id -= DIF_VAR_OTHER_UBASE; 5199 ASSERT(id < vstate->dtvs_nlocals); 5200 5201 ASSERT(vstate->dtvs_locals != NULL); 5202 svar = vstate->dtvs_locals[id]; 5203 ASSERT(svar != NULL); 5204 v = &svar->dtsv_var; 5205 5206 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5207 uintptr_t a = (uintptr_t)svar->dtsv_data; 5208 size_t sz = v->dtdv_type.dtdt_size; 5209 5210 sz += sizeof (uint64_t); 5211 ASSERT(svar->dtsv_size == NCPU * sz); 5212 a += curcpu * sz; 5213 5214 if (regs[rd] == 0) { 5215 *(uint8_t *)a = UINT8_MAX; 5216 break; 5217 } else { 5218 *(uint8_t *)a = 0; 5219 a += sizeof (uint64_t); 5220 } 5221 5222 if (!dtrace_vcanload( 5223 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5224 mstate, vstate)) 5225 break; 5226 5227 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5228 (void *)a, &v->dtdv_type); 5229 break; 5230 } 5231 5232 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5233 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5234 tmp[curcpu] = regs[rd]; 5235 break; 5236 5237 case DIF_OP_LDTS: { 5238 dtrace_dynvar_t *dvar; 5239 dtrace_key_t *key; 5240 5241 id = DIF_INSTR_VAR(instr); 5242 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5243 id -= DIF_VAR_OTHER_UBASE; 5244 v = &vstate->dtvs_tlocals[id]; 5245 5246 key = &tupregs[DIF_DTR_NREGS]; 5247 key[0].dttk_value = (uint64_t)id; 5248 key[0].dttk_size = 0; 5249 DTRACE_TLS_THRKEY(key[1].dttk_value); 5250 key[1].dttk_size = 0; 5251 5252 dvar = dtrace_dynvar(dstate, 2, key, 5253 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 5254 mstate, vstate); 5255 5256 if (dvar == NULL) { 5257 regs[rd] = 0; 5258 break; 5259 } 5260 5261 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5262 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5263 } else { 5264 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5265 } 5266 5267 break; 5268 } 5269 5270 case DIF_OP_STTS: { 5271 dtrace_dynvar_t *dvar; 5272 dtrace_key_t *key; 5273 5274 id = DIF_INSTR_VAR(instr); 5275 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5276 id -= DIF_VAR_OTHER_UBASE; 5277 5278 key = &tupregs[DIF_DTR_NREGS]; 5279 key[0].dttk_value = (uint64_t)id; 5280 key[0].dttk_size = 0; 5281 DTRACE_TLS_THRKEY(key[1].dttk_value); 5282 key[1].dttk_size = 0; 5283 v = &vstate->dtvs_tlocals[id]; 5284 5285 dvar = dtrace_dynvar(dstate, 2, key, 5286 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5287 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5288 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5289 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5290 5291 /* 5292 * Given that we're storing to thread-local data, 5293 * we need to flush our predicate cache. 5294 */ 5295 curthread->t_predcache = 0; 5296 5297 if (dvar == NULL) 5298 break; 5299 5300 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5301 if (!dtrace_vcanload( 5302 (void *)(uintptr_t)regs[rd], 5303 &v->dtdv_type, mstate, vstate)) 5304 break; 5305 5306 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5307 dvar->dtdv_data, &v->dtdv_type); 5308 } else { 5309 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5310 } 5311 5312 break; 5313 } 5314 5315 case DIF_OP_SRA: 5316 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 5317 break; 5318 5319 case DIF_OP_CALL: 5320 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 5321 regs, tupregs, ttop, mstate, state); 5322 break; 5323 5324 case DIF_OP_PUSHTR: 5325 if (ttop == DIF_DTR_NREGS) { 5326 *flags |= CPU_DTRACE_TUPOFLOW; 5327 break; 5328 } 5329 5330 if (r1 == DIF_TYPE_STRING) { 5331 /* 5332 * If this is a string type and the size is 0, 5333 * we'll use the system-wide default string 5334 * size. Note that we are _not_ looking at 5335 * the value of the DTRACEOPT_STRSIZE option; 5336 * had this been set, we would expect to have 5337 * a non-zero size value in the "pushtr". 5338 */ 5339 tupregs[ttop].dttk_size = 5340 dtrace_strlen((char *)(uintptr_t)regs[rd], 5341 regs[r2] ? regs[r2] : 5342 dtrace_strsize_default) + 1; 5343 } else { 5344 tupregs[ttop].dttk_size = regs[r2]; 5345 } 5346 5347 tupregs[ttop++].dttk_value = regs[rd]; 5348 break; 5349 5350 case DIF_OP_PUSHTV: 5351 if (ttop == DIF_DTR_NREGS) { 5352 *flags |= CPU_DTRACE_TUPOFLOW; 5353 break; 5354 } 5355 5356 tupregs[ttop].dttk_value = regs[rd]; 5357 tupregs[ttop++].dttk_size = 0; 5358 break; 5359 5360 case DIF_OP_POPTS: 5361 if (ttop != 0) 5362 ttop--; 5363 break; 5364 5365 case DIF_OP_FLUSHTS: 5366 ttop = 0; 5367 break; 5368 5369 case DIF_OP_LDGAA: 5370 case DIF_OP_LDTAA: { 5371 dtrace_dynvar_t *dvar; 5372 dtrace_key_t *key = tupregs; 5373 uint_t nkeys = ttop; 5374 5375 id = DIF_INSTR_VAR(instr); 5376 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5377 id -= DIF_VAR_OTHER_UBASE; 5378 5379 key[nkeys].dttk_value = (uint64_t)id; 5380 key[nkeys++].dttk_size = 0; 5381 5382 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 5383 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5384 key[nkeys++].dttk_size = 0; 5385 v = &vstate->dtvs_tlocals[id]; 5386 } else { 5387 v = &vstate->dtvs_globals[id]->dtsv_var; 5388 } 5389 5390 dvar = dtrace_dynvar(dstate, nkeys, key, 5391 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5392 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5393 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 5394 5395 if (dvar == NULL) { 5396 regs[rd] = 0; 5397 break; 5398 } 5399 5400 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5401 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5402 } else { 5403 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5404 } 5405 5406 break; 5407 } 5408 5409 case DIF_OP_STGAA: 5410 case DIF_OP_STTAA: { 5411 dtrace_dynvar_t *dvar; 5412 dtrace_key_t *key = tupregs; 5413 uint_t nkeys = ttop; 5414 5415 id = DIF_INSTR_VAR(instr); 5416 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5417 id -= DIF_VAR_OTHER_UBASE; 5418 5419 key[nkeys].dttk_value = (uint64_t)id; 5420 key[nkeys++].dttk_size = 0; 5421 5422 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 5423 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5424 key[nkeys++].dttk_size = 0; 5425 v = &vstate->dtvs_tlocals[id]; 5426 } else { 5427 v = &vstate->dtvs_globals[id]->dtsv_var; 5428 } 5429 5430 dvar = dtrace_dynvar(dstate, nkeys, key, 5431 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5432 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5433 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5434 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5435 5436 if (dvar == NULL) 5437 break; 5438 5439 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5440 if (!dtrace_vcanload( 5441 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5442 mstate, vstate)) 5443 break; 5444 5445 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5446 dvar->dtdv_data, &v->dtdv_type); 5447 } else { 5448 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5449 } 5450 5451 break; 5452 } 5453 5454 case DIF_OP_ALLOCS: { 5455 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5456 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 5457 5458 /* 5459 * Rounding up the user allocation size could have 5460 * overflowed large, bogus allocations (like -1ULL) to 5461 * 0. 5462 */ 5463 if (size < regs[r1] || 5464 !DTRACE_INSCRATCH(mstate, size)) { 5465 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5466 regs[rd] = 0; 5467 break; 5468 } 5469 5470 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 5471 mstate->dtms_scratch_ptr += size; 5472 regs[rd] = ptr; 5473 break; 5474 } 5475 5476 case DIF_OP_COPYS: 5477 if (!dtrace_canstore(regs[rd], regs[r2], 5478 mstate, vstate)) { 5479 *flags |= CPU_DTRACE_BADADDR; 5480 *illval = regs[rd]; 5481 break; 5482 } 5483 5484 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 5485 break; 5486 5487 dtrace_bcopy((void *)(uintptr_t)regs[r1], 5488 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 5489 break; 5490 5491 case DIF_OP_STB: 5492 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 5493 *flags |= CPU_DTRACE_BADADDR; 5494 *illval = regs[rd]; 5495 break; 5496 } 5497 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 5498 break; 5499 5500 case DIF_OP_STH: 5501 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 5502 *flags |= CPU_DTRACE_BADADDR; 5503 *illval = regs[rd]; 5504 break; 5505 } 5506 if (regs[rd] & 1) { 5507 *flags |= CPU_DTRACE_BADALIGN; 5508 *illval = regs[rd]; 5509 break; 5510 } 5511 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 5512 break; 5513 5514 case DIF_OP_STW: 5515 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 5516 *flags |= CPU_DTRACE_BADADDR; 5517 *illval = regs[rd]; 5518 break; 5519 } 5520 if (regs[rd] & 3) { 5521 *flags |= CPU_DTRACE_BADALIGN; 5522 *illval = regs[rd]; 5523 break; 5524 } 5525 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 5526 break; 5527 5528 case DIF_OP_STX: 5529 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 5530 *flags |= CPU_DTRACE_BADADDR; 5531 *illval = regs[rd]; 5532 break; 5533 } 5534 if (regs[rd] & 7) { 5535 *flags |= CPU_DTRACE_BADALIGN; 5536 *illval = regs[rd]; 5537 break; 5538 } 5539 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 5540 break; 5541 } 5542 } 5543 5544 if (!(*flags & CPU_DTRACE_FAULT)) 5545 return (rval); 5546 5547 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 5548 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 5549 5550 return (0); 5551 } 5552 5553 static void 5554 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 5555 { 5556 dtrace_probe_t *probe = ecb->dte_probe; 5557 dtrace_provider_t *prov = probe->dtpr_provider; 5558 char c[DTRACE_FULLNAMELEN + 80], *str; 5559 char *msg = "dtrace: breakpoint action at probe "; 5560 char *ecbmsg = " (ecb "; 5561 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 5562 uintptr_t val = (uintptr_t)ecb; 5563 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 5564 5565 if (dtrace_destructive_disallow) 5566 return; 5567 5568 /* 5569 * It's impossible to be taking action on the NULL probe. 5570 */ 5571 ASSERT(probe != NULL); 5572 5573 /* 5574 * This is a poor man's (destitute man's?) sprintf(): we want to 5575 * print the provider name, module name, function name and name of 5576 * the probe, along with the hex address of the ECB with the breakpoint 5577 * action -- all of which we must place in the character buffer by 5578 * hand. 5579 */ 5580 while (*msg != '\0') 5581 c[i++] = *msg++; 5582 5583 for (str = prov->dtpv_name; *str != '\0'; str++) 5584 c[i++] = *str; 5585 c[i++] = ':'; 5586 5587 for (str = probe->dtpr_mod; *str != '\0'; str++) 5588 c[i++] = *str; 5589 c[i++] = ':'; 5590 5591 for (str = probe->dtpr_func; *str != '\0'; str++) 5592 c[i++] = *str; 5593 c[i++] = ':'; 5594 5595 for (str = probe->dtpr_name; *str != '\0'; str++) 5596 c[i++] = *str; 5597 5598 while (*ecbmsg != '\0') 5599 c[i++] = *ecbmsg++; 5600 5601 while (shift >= 0) { 5602 mask = (uintptr_t)0xf << shift; 5603 5604 if (val >= ((uintptr_t)1 << shift)) 5605 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 5606 shift -= 4; 5607 } 5608 5609 c[i++] = ')'; 5610 c[i] = '\0'; 5611 5612 #if defined(sun) 5613 debug_enter(c); 5614 #else 5615 kdb_enter(KDB_WHY_DTRACE, "breakpoint action"); 5616 #endif 5617 } 5618 5619 static void 5620 dtrace_action_panic(dtrace_ecb_t *ecb) 5621 { 5622 dtrace_probe_t *probe = ecb->dte_probe; 5623 5624 /* 5625 * It's impossible to be taking action on the NULL probe. 5626 */ 5627 ASSERT(probe != NULL); 5628 5629 if (dtrace_destructive_disallow) 5630 return; 5631 5632 if (dtrace_panicked != NULL) 5633 return; 5634 5635 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 5636 return; 5637 5638 /* 5639 * We won the right to panic. (We want to be sure that only one 5640 * thread calls panic() from dtrace_probe(), and that panic() is 5641 * called exactly once.) 5642 */ 5643 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 5644 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 5645 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 5646 } 5647 5648 static void 5649 dtrace_action_raise(uint64_t sig) 5650 { 5651 if (dtrace_destructive_disallow) 5652 return; 5653 5654 if (sig >= NSIG) { 5655 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5656 return; 5657 } 5658 5659 #if defined(sun) 5660 /* 5661 * raise() has a queue depth of 1 -- we ignore all subsequent 5662 * invocations of the raise() action. 5663 */ 5664 if (curthread->t_dtrace_sig == 0) 5665 curthread->t_dtrace_sig = (uint8_t)sig; 5666 5667 curthread->t_sig_check = 1; 5668 aston(curthread); 5669 #else 5670 struct proc *p = curproc; 5671 PROC_LOCK(p); 5672 psignal(p, sig); 5673 PROC_UNLOCK(p); 5674 #endif 5675 } 5676 5677 static void 5678 dtrace_action_stop(void) 5679 { 5680 if (dtrace_destructive_disallow) 5681 return; 5682 5683 #if defined(sun) 5684 if (!curthread->t_dtrace_stop) { 5685 curthread->t_dtrace_stop = 1; 5686 curthread->t_sig_check = 1; 5687 aston(curthread); 5688 } 5689 #else 5690 struct proc *p = curproc; 5691 PROC_LOCK(p); 5692 psignal(p, SIGSTOP); 5693 PROC_UNLOCK(p); 5694 #endif 5695 } 5696 5697 static void 5698 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 5699 { 5700 hrtime_t now; 5701 volatile uint16_t *flags; 5702 #if defined(sun) 5703 cpu_t *cpu = CPU; 5704 #else 5705 cpu_t *cpu = &solaris_cpu[curcpu]; 5706 #endif 5707 5708 if (dtrace_destructive_disallow) 5709 return; 5710 5711 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 5712 5713 now = dtrace_gethrtime(); 5714 5715 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 5716 /* 5717 * We need to advance the mark to the current time. 5718 */ 5719 cpu->cpu_dtrace_chillmark = now; 5720 cpu->cpu_dtrace_chilled = 0; 5721 } 5722 5723 /* 5724 * Now check to see if the requested chill time would take us over 5725 * the maximum amount of time allowed in the chill interval. (Or 5726 * worse, if the calculation itself induces overflow.) 5727 */ 5728 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 5729 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 5730 *flags |= CPU_DTRACE_ILLOP; 5731 return; 5732 } 5733 5734 while (dtrace_gethrtime() - now < val) 5735 continue; 5736 5737 /* 5738 * Normally, we assure that the value of the variable "timestamp" does 5739 * not change within an ECB. The presence of chill() represents an 5740 * exception to this rule, however. 5741 */ 5742 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 5743 cpu->cpu_dtrace_chilled += val; 5744 } 5745 5746 static void 5747 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 5748 uint64_t *buf, uint64_t arg) 5749 { 5750 int nframes = DTRACE_USTACK_NFRAMES(arg); 5751 int strsize = DTRACE_USTACK_STRSIZE(arg); 5752 uint64_t *pcs = &buf[1], *fps; 5753 char *str = (char *)&pcs[nframes]; 5754 int size, offs = 0, i, j; 5755 uintptr_t old = mstate->dtms_scratch_ptr, saved; 5756 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 5757 char *sym; 5758 5759 /* 5760 * Should be taking a faster path if string space has not been 5761 * allocated. 5762 */ 5763 ASSERT(strsize != 0); 5764 5765 /* 5766 * We will first allocate some temporary space for the frame pointers. 5767 */ 5768 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5769 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 5770 (nframes * sizeof (uint64_t)); 5771 5772 if (!DTRACE_INSCRATCH(mstate, size)) { 5773 /* 5774 * Not enough room for our frame pointers -- need to indicate 5775 * that we ran out of scratch space. 5776 */ 5777 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5778 return; 5779 } 5780 5781 mstate->dtms_scratch_ptr += size; 5782 saved = mstate->dtms_scratch_ptr; 5783 5784 /* 5785 * Now get a stack with both program counters and frame pointers. 5786 */ 5787 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5788 dtrace_getufpstack(buf, fps, nframes + 1); 5789 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5790 5791 /* 5792 * If that faulted, we're cooked. 5793 */ 5794 if (*flags & CPU_DTRACE_FAULT) 5795 goto out; 5796 5797 /* 5798 * Now we want to walk up the stack, calling the USTACK helper. For 5799 * each iteration, we restore the scratch pointer. 5800 */ 5801 for (i = 0; i < nframes; i++) { 5802 mstate->dtms_scratch_ptr = saved; 5803 5804 if (offs >= strsize) 5805 break; 5806 5807 sym = (char *)(uintptr_t)dtrace_helper( 5808 DTRACE_HELPER_ACTION_USTACK, 5809 mstate, state, pcs[i], fps[i]); 5810 5811 /* 5812 * If we faulted while running the helper, we're going to 5813 * clear the fault and null out the corresponding string. 5814 */ 5815 if (*flags & CPU_DTRACE_FAULT) { 5816 *flags &= ~CPU_DTRACE_FAULT; 5817 str[offs++] = '\0'; 5818 continue; 5819 } 5820 5821 if (sym == NULL) { 5822 str[offs++] = '\0'; 5823 continue; 5824 } 5825 5826 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5827 5828 /* 5829 * Now copy in the string that the helper returned to us. 5830 */ 5831 for (j = 0; offs + j < strsize; j++) { 5832 if ((str[offs + j] = sym[j]) == '\0') 5833 break; 5834 } 5835 5836 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5837 5838 offs += j + 1; 5839 } 5840 5841 if (offs >= strsize) { 5842 /* 5843 * If we didn't have room for all of the strings, we don't 5844 * abort processing -- this needn't be a fatal error -- but we 5845 * still want to increment a counter (dts_stkstroverflows) to 5846 * allow this condition to be warned about. (If this is from 5847 * a jstack() action, it is easily tuned via jstackstrsize.) 5848 */ 5849 dtrace_error(&state->dts_stkstroverflows); 5850 } 5851 5852 while (offs < strsize) 5853 str[offs++] = '\0'; 5854 5855 out: 5856 mstate->dtms_scratch_ptr = old; 5857 } 5858 5859 /* 5860 * If you're looking for the epicenter of DTrace, you just found it. This 5861 * is the function called by the provider to fire a probe -- from which all 5862 * subsequent probe-context DTrace activity emanates. 5863 */ 5864 void 5865 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 5866 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 5867 { 5868 processorid_t cpuid; 5869 dtrace_icookie_t cookie; 5870 dtrace_probe_t *probe; 5871 dtrace_mstate_t mstate; 5872 dtrace_ecb_t *ecb; 5873 dtrace_action_t *act; 5874 intptr_t offs; 5875 size_t size; 5876 int vtime, onintr; 5877 volatile uint16_t *flags; 5878 hrtime_t now; 5879 5880 #if defined(sun) 5881 /* 5882 * Kick out immediately if this CPU is still being born (in which case 5883 * curthread will be set to -1) or the current thread can't allow 5884 * probes in its current context. 5885 */ 5886 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 5887 return; 5888 #endif 5889 5890 cookie = dtrace_interrupt_disable(); 5891 probe = dtrace_probes[id - 1]; 5892 cpuid = curcpu; 5893 onintr = CPU_ON_INTR(CPU); 5894 5895 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 5896 probe->dtpr_predcache == curthread->t_predcache) { 5897 /* 5898 * We have hit in the predicate cache; we know that 5899 * this predicate would evaluate to be false. 5900 */ 5901 dtrace_interrupt_enable(cookie); 5902 return; 5903 } 5904 5905 #if defined(sun) 5906 if (panic_quiesce) { 5907 #else 5908 if (panicstr != NULL) { 5909 #endif 5910 /* 5911 * We don't trace anything if we're panicking. 5912 */ 5913 dtrace_interrupt_enable(cookie); 5914 return; 5915 } 5916 5917 now = dtrace_gethrtime(); 5918 vtime = dtrace_vtime_references != 0; 5919 5920 if (vtime && curthread->t_dtrace_start) 5921 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 5922 5923 mstate.dtms_difo = NULL; 5924 mstate.dtms_probe = probe; 5925 mstate.dtms_strtok = 0; 5926 mstate.dtms_arg[0] = arg0; 5927 mstate.dtms_arg[1] = arg1; 5928 mstate.dtms_arg[2] = arg2; 5929 mstate.dtms_arg[3] = arg3; 5930 mstate.dtms_arg[4] = arg4; 5931 5932 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 5933 5934 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 5935 dtrace_predicate_t *pred = ecb->dte_predicate; 5936 dtrace_state_t *state = ecb->dte_state; 5937 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 5938 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 5939 dtrace_vstate_t *vstate = &state->dts_vstate; 5940 dtrace_provider_t *prov = probe->dtpr_provider; 5941 int committed = 0; 5942 caddr_t tomax; 5943 5944 /* 5945 * A little subtlety with the following (seemingly innocuous) 5946 * declaration of the automatic 'val': by looking at the 5947 * code, you might think that it could be declared in the 5948 * action processing loop, below. (That is, it's only used in 5949 * the action processing loop.) However, it must be declared 5950 * out of that scope because in the case of DIF expression 5951 * arguments to aggregating actions, one iteration of the 5952 * action loop will use the last iteration's value. 5953 */ 5954 uint64_t val = 0; 5955 5956 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 5957 *flags &= ~CPU_DTRACE_ERROR; 5958 5959 if (prov == dtrace_provider) { 5960 /* 5961 * If dtrace itself is the provider of this probe, 5962 * we're only going to continue processing the ECB if 5963 * arg0 (the dtrace_state_t) is equal to the ECB's 5964 * creating state. (This prevents disjoint consumers 5965 * from seeing one another's metaprobes.) 5966 */ 5967 if (arg0 != (uint64_t)(uintptr_t)state) 5968 continue; 5969 } 5970 5971 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 5972 /* 5973 * We're not currently active. If our provider isn't 5974 * the dtrace pseudo provider, we're not interested. 5975 */ 5976 if (prov != dtrace_provider) 5977 continue; 5978 5979 /* 5980 * Now we must further check if we are in the BEGIN 5981 * probe. If we are, we will only continue processing 5982 * if we're still in WARMUP -- if one BEGIN enabling 5983 * has invoked the exit() action, we don't want to 5984 * evaluate subsequent BEGIN enablings. 5985 */ 5986 if (probe->dtpr_id == dtrace_probeid_begin && 5987 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 5988 ASSERT(state->dts_activity == 5989 DTRACE_ACTIVITY_DRAINING); 5990 continue; 5991 } 5992 } 5993 5994 if (ecb->dte_cond) { 5995 /* 5996 * If the dte_cond bits indicate that this 5997 * consumer is only allowed to see user-mode firings 5998 * of this probe, call the provider's dtps_usermode() 5999 * entry point to check that the probe was fired 6000 * while in a user context. Skip this ECB if that's 6001 * not the case. 6002 */ 6003 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 6004 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 6005 probe->dtpr_id, probe->dtpr_arg) == 0) 6006 continue; 6007 6008 #if defined(sun) 6009 /* 6010 * This is more subtle than it looks. We have to be 6011 * absolutely certain that CRED() isn't going to 6012 * change out from under us so it's only legit to 6013 * examine that structure if we're in constrained 6014 * situations. Currently, the only times we'll this 6015 * check is if a non-super-user has enabled the 6016 * profile or syscall providers -- providers that 6017 * allow visibility of all processes. For the 6018 * profile case, the check above will ensure that 6019 * we're examining a user context. 6020 */ 6021 if (ecb->dte_cond & DTRACE_COND_OWNER) { 6022 cred_t *cr; 6023 cred_t *s_cr = 6024 ecb->dte_state->dts_cred.dcr_cred; 6025 proc_t *proc; 6026 6027 ASSERT(s_cr != NULL); 6028 6029 if ((cr = CRED()) == NULL || 6030 s_cr->cr_uid != cr->cr_uid || 6031 s_cr->cr_uid != cr->cr_ruid || 6032 s_cr->cr_uid != cr->cr_suid || 6033 s_cr->cr_gid != cr->cr_gid || 6034 s_cr->cr_gid != cr->cr_rgid || 6035 s_cr->cr_gid != cr->cr_sgid || 6036 (proc = ttoproc(curthread)) == NULL || 6037 (proc->p_flag & SNOCD)) 6038 continue; 6039 } 6040 6041 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 6042 cred_t *cr; 6043 cred_t *s_cr = 6044 ecb->dte_state->dts_cred.dcr_cred; 6045 6046 ASSERT(s_cr != NULL); 6047 6048 if ((cr = CRED()) == NULL || 6049 s_cr->cr_zone->zone_id != 6050 cr->cr_zone->zone_id) 6051 continue; 6052 } 6053 #endif 6054 } 6055 6056 if (now - state->dts_alive > dtrace_deadman_timeout) { 6057 /* 6058 * We seem to be dead. Unless we (a) have kernel 6059 * destructive permissions (b) have expicitly enabled 6060 * destructive actions and (c) destructive actions have 6061 * not been disabled, we're going to transition into 6062 * the KILLED state, from which no further processing 6063 * on this state will be performed. 6064 */ 6065 if (!dtrace_priv_kernel_destructive(state) || 6066 !state->dts_cred.dcr_destructive || 6067 dtrace_destructive_disallow) { 6068 void *activity = &state->dts_activity; 6069 dtrace_activity_t current; 6070 6071 do { 6072 current = state->dts_activity; 6073 } while (dtrace_cas32(activity, current, 6074 DTRACE_ACTIVITY_KILLED) != current); 6075 6076 continue; 6077 } 6078 } 6079 6080 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 6081 ecb->dte_alignment, state, &mstate)) < 0) 6082 continue; 6083 6084 tomax = buf->dtb_tomax; 6085 ASSERT(tomax != NULL); 6086 6087 if (ecb->dte_size != 0) 6088 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); 6089 6090 mstate.dtms_epid = ecb->dte_epid; 6091 mstate.dtms_present |= DTRACE_MSTATE_EPID; 6092 6093 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 6094 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 6095 else 6096 mstate.dtms_access = 0; 6097 6098 if (pred != NULL) { 6099 dtrace_difo_t *dp = pred->dtp_difo; 6100 int rval; 6101 6102 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 6103 6104 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 6105 dtrace_cacheid_t cid = probe->dtpr_predcache; 6106 6107 if (cid != DTRACE_CACHEIDNONE && !onintr) { 6108 /* 6109 * Update the predicate cache... 6110 */ 6111 ASSERT(cid == pred->dtp_cacheid); 6112 curthread->t_predcache = cid; 6113 } 6114 6115 continue; 6116 } 6117 } 6118 6119 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 6120 act != NULL; act = act->dta_next) { 6121 size_t valoffs; 6122 dtrace_difo_t *dp; 6123 dtrace_recdesc_t *rec = &act->dta_rec; 6124 6125 size = rec->dtrd_size; 6126 valoffs = offs + rec->dtrd_offset; 6127 6128 if (DTRACEACT_ISAGG(act->dta_kind)) { 6129 uint64_t v = 0xbad; 6130 dtrace_aggregation_t *agg; 6131 6132 agg = (dtrace_aggregation_t *)act; 6133 6134 if ((dp = act->dta_difo) != NULL) 6135 v = dtrace_dif_emulate(dp, 6136 &mstate, vstate, state); 6137 6138 if (*flags & CPU_DTRACE_ERROR) 6139 continue; 6140 6141 /* 6142 * Note that we always pass the expression 6143 * value from the previous iteration of the 6144 * action loop. This value will only be used 6145 * if there is an expression argument to the 6146 * aggregating action, denoted by the 6147 * dtag_hasarg field. 6148 */ 6149 dtrace_aggregate(agg, buf, 6150 offs, aggbuf, v, val); 6151 continue; 6152 } 6153 6154 switch (act->dta_kind) { 6155 case DTRACEACT_STOP: 6156 if (dtrace_priv_proc_destructive(state)) 6157 dtrace_action_stop(); 6158 continue; 6159 6160 case DTRACEACT_BREAKPOINT: 6161 if (dtrace_priv_kernel_destructive(state)) 6162 dtrace_action_breakpoint(ecb); 6163 continue; 6164 6165 case DTRACEACT_PANIC: 6166 if (dtrace_priv_kernel_destructive(state)) 6167 dtrace_action_panic(ecb); 6168 continue; 6169 6170 case DTRACEACT_STACK: 6171 if (!dtrace_priv_kernel(state)) 6172 continue; 6173 6174 dtrace_getpcstack((pc_t *)(tomax + valoffs), 6175 size / sizeof (pc_t), probe->dtpr_aframes, 6176 DTRACE_ANCHORED(probe) ? NULL : 6177 (uint32_t *)arg0); 6178 continue; 6179 6180 case DTRACEACT_JSTACK: 6181 case DTRACEACT_USTACK: 6182 if (!dtrace_priv_proc(state)) 6183 continue; 6184 6185 /* 6186 * See comment in DIF_VAR_PID. 6187 */ 6188 if (DTRACE_ANCHORED(mstate.dtms_probe) && 6189 CPU_ON_INTR(CPU)) { 6190 int depth = DTRACE_USTACK_NFRAMES( 6191 rec->dtrd_arg) + 1; 6192 6193 dtrace_bzero((void *)(tomax + valoffs), 6194 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 6195 + depth * sizeof (uint64_t)); 6196 6197 continue; 6198 } 6199 6200 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 6201 curproc->p_dtrace_helpers != NULL) { 6202 /* 6203 * This is the slow path -- we have 6204 * allocated string space, and we're 6205 * getting the stack of a process that 6206 * has helpers. Call into a separate 6207 * routine to perform this processing. 6208 */ 6209 dtrace_action_ustack(&mstate, state, 6210 (uint64_t *)(tomax + valoffs), 6211 rec->dtrd_arg); 6212 continue; 6213 } 6214 6215 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6216 dtrace_getupcstack((uint64_t *) 6217 (tomax + valoffs), 6218 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 6219 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6220 continue; 6221 6222 default: 6223 break; 6224 } 6225 6226 dp = act->dta_difo; 6227 ASSERT(dp != NULL); 6228 6229 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 6230 6231 if (*flags & CPU_DTRACE_ERROR) 6232 continue; 6233 6234 switch (act->dta_kind) { 6235 case DTRACEACT_SPECULATE: 6236 ASSERT(buf == &state->dts_buffer[cpuid]); 6237 buf = dtrace_speculation_buffer(state, 6238 cpuid, val); 6239 6240 if (buf == NULL) { 6241 *flags |= CPU_DTRACE_DROP; 6242 continue; 6243 } 6244 6245 offs = dtrace_buffer_reserve(buf, 6246 ecb->dte_needed, ecb->dte_alignment, 6247 state, NULL); 6248 6249 if (offs < 0) { 6250 *flags |= CPU_DTRACE_DROP; 6251 continue; 6252 } 6253 6254 tomax = buf->dtb_tomax; 6255 ASSERT(tomax != NULL); 6256 6257 if (ecb->dte_size != 0) 6258 DTRACE_STORE(uint32_t, tomax, offs, 6259 ecb->dte_epid); 6260 continue; 6261 6262 case DTRACEACT_PRINTM: { 6263 /* The DIF returns a 'memref'. */ 6264 uintptr_t *memref = (uintptr_t *)(uintptr_t) val; 6265 6266 /* Get the size from the memref. */ 6267 size = memref[1]; 6268 6269 /* 6270 * Check if the size exceeds the allocated 6271 * buffer size. 6272 */ 6273 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) { 6274 /* Flag a drop! */ 6275 *flags |= CPU_DTRACE_DROP; 6276 continue; 6277 } 6278 6279 /* Store the size in the buffer first. */ 6280 DTRACE_STORE(uintptr_t, tomax, 6281 valoffs, size); 6282 6283 /* 6284 * Offset the buffer address to the start 6285 * of the data. 6286 */ 6287 valoffs += sizeof(uintptr_t); 6288 6289 /* 6290 * Reset to the memory address rather than 6291 * the memref array, then let the BYREF 6292 * code below do the work to store the 6293 * memory data in the buffer. 6294 */ 6295 val = memref[0]; 6296 break; 6297 } 6298 6299 case DTRACEACT_PRINTT: { 6300 /* The DIF returns a 'typeref'. */ 6301 uintptr_t *typeref = (uintptr_t *)(uintptr_t) val; 6302 char c = '\0' + 1; 6303 size_t s; 6304 6305 /* 6306 * Get the type string length and round it 6307 * up so that the data that follows is 6308 * aligned for easy access. 6309 */ 6310 size_t typs = strlen((char *) typeref[2]) + 1; 6311 typs = roundup(typs, sizeof(uintptr_t)); 6312 6313 /* 6314 *Get the size from the typeref using the 6315 * number of elements and the type size. 6316 */ 6317 size = typeref[1] * typeref[3]; 6318 6319 /* 6320 * Check if the size exceeds the allocated 6321 * buffer size. 6322 */ 6323 if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) { 6324 /* Flag a drop! */ 6325 *flags |= CPU_DTRACE_DROP; 6326 6327 } 6328 6329 /* Store the size in the buffer first. */ 6330 DTRACE_STORE(uintptr_t, tomax, 6331 valoffs, size); 6332 valoffs += sizeof(uintptr_t); 6333 6334 /* Store the type size in the buffer. */ 6335 DTRACE_STORE(uintptr_t, tomax, 6336 valoffs, typeref[3]); 6337 valoffs += sizeof(uintptr_t); 6338 6339 val = typeref[2]; 6340 6341 for (s = 0; s < typs; s++) { 6342 if (c != '\0') 6343 c = dtrace_load8(val++); 6344 6345 DTRACE_STORE(uint8_t, tomax, 6346 valoffs++, c); 6347 } 6348 6349 /* 6350 * Reset to the memory address rather than 6351 * the typeref array, then let the BYREF 6352 * code below do the work to store the 6353 * memory data in the buffer. 6354 */ 6355 val = typeref[0]; 6356 break; 6357 } 6358 6359 case DTRACEACT_CHILL: 6360 if (dtrace_priv_kernel_destructive(state)) 6361 dtrace_action_chill(&mstate, val); 6362 continue; 6363 6364 case DTRACEACT_RAISE: 6365 if (dtrace_priv_proc_destructive(state)) 6366 dtrace_action_raise(val); 6367 continue; 6368 6369 case DTRACEACT_COMMIT: 6370 ASSERT(!committed); 6371 6372 /* 6373 * We need to commit our buffer state. 6374 */ 6375 if (ecb->dte_size) 6376 buf->dtb_offset = offs + ecb->dte_size; 6377 buf = &state->dts_buffer[cpuid]; 6378 dtrace_speculation_commit(state, cpuid, val); 6379 committed = 1; 6380 continue; 6381 6382 case DTRACEACT_DISCARD: 6383 dtrace_speculation_discard(state, cpuid, val); 6384 continue; 6385 6386 case DTRACEACT_DIFEXPR: 6387 case DTRACEACT_LIBACT: 6388 case DTRACEACT_PRINTF: 6389 case DTRACEACT_PRINTA: 6390 case DTRACEACT_SYSTEM: 6391 case DTRACEACT_FREOPEN: 6392 break; 6393 6394 case DTRACEACT_SYM: 6395 case DTRACEACT_MOD: 6396 if (!dtrace_priv_kernel(state)) 6397 continue; 6398 break; 6399 6400 case DTRACEACT_USYM: 6401 case DTRACEACT_UMOD: 6402 case DTRACEACT_UADDR: { 6403 #if defined(sun) 6404 struct pid *pid = curthread->t_procp->p_pidp; 6405 #endif 6406 6407 if (!dtrace_priv_proc(state)) 6408 continue; 6409 6410 DTRACE_STORE(uint64_t, tomax, 6411 #if defined(sun) 6412 valoffs, (uint64_t)pid->pid_id); 6413 #else 6414 valoffs, (uint64_t) curproc->p_pid); 6415 #endif 6416 DTRACE_STORE(uint64_t, tomax, 6417 valoffs + sizeof (uint64_t), val); 6418 6419 continue; 6420 } 6421 6422 case DTRACEACT_EXIT: { 6423 /* 6424 * For the exit action, we are going to attempt 6425 * to atomically set our activity to be 6426 * draining. If this fails (either because 6427 * another CPU has beat us to the exit action, 6428 * or because our current activity is something 6429 * other than ACTIVE or WARMUP), we will 6430 * continue. This assures that the exit action 6431 * can be successfully recorded at most once 6432 * when we're in the ACTIVE state. If we're 6433 * encountering the exit() action while in 6434 * COOLDOWN, however, we want to honor the new 6435 * status code. (We know that we're the only 6436 * thread in COOLDOWN, so there is no race.) 6437 */ 6438 void *activity = &state->dts_activity; 6439 dtrace_activity_t current = state->dts_activity; 6440 6441 if (current == DTRACE_ACTIVITY_COOLDOWN) 6442 break; 6443 6444 if (current != DTRACE_ACTIVITY_WARMUP) 6445 current = DTRACE_ACTIVITY_ACTIVE; 6446 6447 if (dtrace_cas32(activity, current, 6448 DTRACE_ACTIVITY_DRAINING) != current) { 6449 *flags |= CPU_DTRACE_DROP; 6450 continue; 6451 } 6452 6453 break; 6454 } 6455 6456 default: 6457 ASSERT(0); 6458 } 6459 6460 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 6461 uintptr_t end = valoffs + size; 6462 6463 if (!dtrace_vcanload((void *)(uintptr_t)val, 6464 &dp->dtdo_rtype, &mstate, vstate)) 6465 continue; 6466 6467 /* 6468 * If this is a string, we're going to only 6469 * load until we find the zero byte -- after 6470 * which we'll store zero bytes. 6471 */ 6472 if (dp->dtdo_rtype.dtdt_kind == 6473 DIF_TYPE_STRING) { 6474 char c = '\0' + 1; 6475 int intuple = act->dta_intuple; 6476 size_t s; 6477 6478 for (s = 0; s < size; s++) { 6479 if (c != '\0') 6480 c = dtrace_load8(val++); 6481 6482 DTRACE_STORE(uint8_t, tomax, 6483 valoffs++, c); 6484 6485 if (c == '\0' && intuple) 6486 break; 6487 } 6488 6489 continue; 6490 } 6491 6492 while (valoffs < end) { 6493 DTRACE_STORE(uint8_t, tomax, valoffs++, 6494 dtrace_load8(val++)); 6495 } 6496 6497 continue; 6498 } 6499 6500 switch (size) { 6501 case 0: 6502 break; 6503 6504 case sizeof (uint8_t): 6505 DTRACE_STORE(uint8_t, tomax, valoffs, val); 6506 break; 6507 case sizeof (uint16_t): 6508 DTRACE_STORE(uint16_t, tomax, valoffs, val); 6509 break; 6510 case sizeof (uint32_t): 6511 DTRACE_STORE(uint32_t, tomax, valoffs, val); 6512 break; 6513 case sizeof (uint64_t): 6514 DTRACE_STORE(uint64_t, tomax, valoffs, val); 6515 break; 6516 default: 6517 /* 6518 * Any other size should have been returned by 6519 * reference, not by value. 6520 */ 6521 ASSERT(0); 6522 break; 6523 } 6524 } 6525 6526 if (*flags & CPU_DTRACE_DROP) 6527 continue; 6528 6529 if (*flags & CPU_DTRACE_FAULT) { 6530 int ndx; 6531 dtrace_action_t *err; 6532 6533 buf->dtb_errors++; 6534 6535 if (probe->dtpr_id == dtrace_probeid_error) { 6536 /* 6537 * There's nothing we can do -- we had an 6538 * error on the error probe. We bump an 6539 * error counter to at least indicate that 6540 * this condition happened. 6541 */ 6542 dtrace_error(&state->dts_dblerrors); 6543 continue; 6544 } 6545 6546 if (vtime) { 6547 /* 6548 * Before recursing on dtrace_probe(), we 6549 * need to explicitly clear out our start 6550 * time to prevent it from being accumulated 6551 * into t_dtrace_vtime. 6552 */ 6553 curthread->t_dtrace_start = 0; 6554 } 6555 6556 /* 6557 * Iterate over the actions to figure out which action 6558 * we were processing when we experienced the error. 6559 * Note that act points _past_ the faulting action; if 6560 * act is ecb->dte_action, the fault was in the 6561 * predicate, if it's ecb->dte_action->dta_next it's 6562 * in action #1, and so on. 6563 */ 6564 for (err = ecb->dte_action, ndx = 0; 6565 err != act; err = err->dta_next, ndx++) 6566 continue; 6567 6568 dtrace_probe_error(state, ecb->dte_epid, ndx, 6569 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 6570 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 6571 cpu_core[cpuid].cpuc_dtrace_illval); 6572 6573 continue; 6574 } 6575 6576 if (!committed) 6577 buf->dtb_offset = offs + ecb->dte_size; 6578 } 6579 6580 if (vtime) 6581 curthread->t_dtrace_start = dtrace_gethrtime(); 6582 6583 dtrace_interrupt_enable(cookie); 6584 } 6585 6586 /* 6587 * DTrace Probe Hashing Functions 6588 * 6589 * The functions in this section (and indeed, the functions in remaining 6590 * sections) are not _called_ from probe context. (Any exceptions to this are 6591 * marked with a "Note:".) Rather, they are called from elsewhere in the 6592 * DTrace framework to look-up probes in, add probes to and remove probes from 6593 * the DTrace probe hashes. (Each probe is hashed by each element of the 6594 * probe tuple -- allowing for fast lookups, regardless of what was 6595 * specified.) 6596 */ 6597 static uint_t 6598 dtrace_hash_str(const char *p) 6599 { 6600 unsigned int g; 6601 uint_t hval = 0; 6602 6603 while (*p) { 6604 hval = (hval << 4) + *p++; 6605 if ((g = (hval & 0xf0000000)) != 0) 6606 hval ^= g >> 24; 6607 hval &= ~g; 6608 } 6609 return (hval); 6610 } 6611 6612 static dtrace_hash_t * 6613 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 6614 { 6615 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 6616 6617 hash->dth_stroffs = stroffs; 6618 hash->dth_nextoffs = nextoffs; 6619 hash->dth_prevoffs = prevoffs; 6620 6621 hash->dth_size = 1; 6622 hash->dth_mask = hash->dth_size - 1; 6623 6624 hash->dth_tab = kmem_zalloc(hash->dth_size * 6625 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 6626 6627 return (hash); 6628 } 6629 6630 static void 6631 dtrace_hash_destroy(dtrace_hash_t *hash) 6632 { 6633 #ifdef DEBUG 6634 int i; 6635 6636 for (i = 0; i < hash->dth_size; i++) 6637 ASSERT(hash->dth_tab[i] == NULL); 6638 #endif 6639 6640 kmem_free(hash->dth_tab, 6641 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 6642 kmem_free(hash, sizeof (dtrace_hash_t)); 6643 } 6644 6645 static void 6646 dtrace_hash_resize(dtrace_hash_t *hash) 6647 { 6648 int size = hash->dth_size, i, ndx; 6649 int new_size = hash->dth_size << 1; 6650 int new_mask = new_size - 1; 6651 dtrace_hashbucket_t **new_tab, *bucket, *next; 6652 6653 ASSERT((new_size & new_mask) == 0); 6654 6655 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 6656 6657 for (i = 0; i < size; i++) { 6658 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 6659 dtrace_probe_t *probe = bucket->dthb_chain; 6660 6661 ASSERT(probe != NULL); 6662 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 6663 6664 next = bucket->dthb_next; 6665 bucket->dthb_next = new_tab[ndx]; 6666 new_tab[ndx] = bucket; 6667 } 6668 } 6669 6670 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 6671 hash->dth_tab = new_tab; 6672 hash->dth_size = new_size; 6673 hash->dth_mask = new_mask; 6674 } 6675 6676 static void 6677 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 6678 { 6679 int hashval = DTRACE_HASHSTR(hash, new); 6680 int ndx = hashval & hash->dth_mask; 6681 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6682 dtrace_probe_t **nextp, **prevp; 6683 6684 for (; bucket != NULL; bucket = bucket->dthb_next) { 6685 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 6686 goto add; 6687 } 6688 6689 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 6690 dtrace_hash_resize(hash); 6691 dtrace_hash_add(hash, new); 6692 return; 6693 } 6694 6695 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 6696 bucket->dthb_next = hash->dth_tab[ndx]; 6697 hash->dth_tab[ndx] = bucket; 6698 hash->dth_nbuckets++; 6699 6700 add: 6701 nextp = DTRACE_HASHNEXT(hash, new); 6702 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 6703 *nextp = bucket->dthb_chain; 6704 6705 if (bucket->dthb_chain != NULL) { 6706 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 6707 ASSERT(*prevp == NULL); 6708 *prevp = new; 6709 } 6710 6711 bucket->dthb_chain = new; 6712 bucket->dthb_len++; 6713 } 6714 6715 static dtrace_probe_t * 6716 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 6717 { 6718 int hashval = DTRACE_HASHSTR(hash, template); 6719 int ndx = hashval & hash->dth_mask; 6720 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6721 6722 for (; bucket != NULL; bucket = bucket->dthb_next) { 6723 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6724 return (bucket->dthb_chain); 6725 } 6726 6727 return (NULL); 6728 } 6729 6730 static int 6731 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 6732 { 6733 int hashval = DTRACE_HASHSTR(hash, template); 6734 int ndx = hashval & hash->dth_mask; 6735 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6736 6737 for (; bucket != NULL; bucket = bucket->dthb_next) { 6738 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6739 return (bucket->dthb_len); 6740 } 6741 6742 return (0); 6743 } 6744 6745 static void 6746 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 6747 { 6748 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 6749 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6750 6751 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 6752 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 6753 6754 /* 6755 * Find the bucket that we're removing this probe from. 6756 */ 6757 for (; bucket != NULL; bucket = bucket->dthb_next) { 6758 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 6759 break; 6760 } 6761 6762 ASSERT(bucket != NULL); 6763 6764 if (*prevp == NULL) { 6765 if (*nextp == NULL) { 6766 /* 6767 * The removed probe was the only probe on this 6768 * bucket; we need to remove the bucket. 6769 */ 6770 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 6771 6772 ASSERT(bucket->dthb_chain == probe); 6773 ASSERT(b != NULL); 6774 6775 if (b == bucket) { 6776 hash->dth_tab[ndx] = bucket->dthb_next; 6777 } else { 6778 while (b->dthb_next != bucket) 6779 b = b->dthb_next; 6780 b->dthb_next = bucket->dthb_next; 6781 } 6782 6783 ASSERT(hash->dth_nbuckets > 0); 6784 hash->dth_nbuckets--; 6785 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 6786 return; 6787 } 6788 6789 bucket->dthb_chain = *nextp; 6790 } else { 6791 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 6792 } 6793 6794 if (*nextp != NULL) 6795 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 6796 } 6797 6798 /* 6799 * DTrace Utility Functions 6800 * 6801 * These are random utility functions that are _not_ called from probe context. 6802 */ 6803 static int 6804 dtrace_badattr(const dtrace_attribute_t *a) 6805 { 6806 return (a->dtat_name > DTRACE_STABILITY_MAX || 6807 a->dtat_data > DTRACE_STABILITY_MAX || 6808 a->dtat_class > DTRACE_CLASS_MAX); 6809 } 6810 6811 /* 6812 * Return a duplicate copy of a string. If the specified string is NULL, 6813 * this function returns a zero-length string. 6814 */ 6815 static char * 6816 dtrace_strdup(const char *str) 6817 { 6818 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 6819 6820 if (str != NULL) 6821 (void) strcpy(new, str); 6822 6823 return (new); 6824 } 6825 6826 #define DTRACE_ISALPHA(c) \ 6827 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 6828 6829 static int 6830 dtrace_badname(const char *s) 6831 { 6832 char c; 6833 6834 if (s == NULL || (c = *s++) == '\0') 6835 return (0); 6836 6837 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 6838 return (1); 6839 6840 while ((c = *s++) != '\0') { 6841 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 6842 c != '-' && c != '_' && c != '.' && c != '`') 6843 return (1); 6844 } 6845 6846 return (0); 6847 } 6848 6849 static void 6850 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 6851 { 6852 uint32_t priv; 6853 6854 #if defined(sun) 6855 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 6856 /* 6857 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 6858 */ 6859 priv = DTRACE_PRIV_ALL; 6860 } else { 6861 *uidp = crgetuid(cr); 6862 *zoneidp = crgetzoneid(cr); 6863 6864 priv = 0; 6865 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 6866 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 6867 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 6868 priv |= DTRACE_PRIV_USER; 6869 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 6870 priv |= DTRACE_PRIV_PROC; 6871 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 6872 priv |= DTRACE_PRIV_OWNER; 6873 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 6874 priv |= DTRACE_PRIV_ZONEOWNER; 6875 } 6876 #else 6877 priv = DTRACE_PRIV_ALL; 6878 #endif 6879 6880 *privp = priv; 6881 } 6882 6883 #ifdef DTRACE_ERRDEBUG 6884 static void 6885 dtrace_errdebug(const char *str) 6886 { 6887 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; 6888 int occupied = 0; 6889 6890 mutex_enter(&dtrace_errlock); 6891 dtrace_errlast = str; 6892 dtrace_errthread = curthread; 6893 6894 while (occupied++ < DTRACE_ERRHASHSZ) { 6895 if (dtrace_errhash[hval].dter_msg == str) { 6896 dtrace_errhash[hval].dter_count++; 6897 goto out; 6898 } 6899 6900 if (dtrace_errhash[hval].dter_msg != NULL) { 6901 hval = (hval + 1) % DTRACE_ERRHASHSZ; 6902 continue; 6903 } 6904 6905 dtrace_errhash[hval].dter_msg = str; 6906 dtrace_errhash[hval].dter_count = 1; 6907 goto out; 6908 } 6909 6910 panic("dtrace: undersized error hash"); 6911 out: 6912 mutex_exit(&dtrace_errlock); 6913 } 6914 #endif 6915 6916 /* 6917 * DTrace Matching Functions 6918 * 6919 * These functions are used to match groups of probes, given some elements of 6920 * a probe tuple, or some globbed expressions for elements of a probe tuple. 6921 */ 6922 static int 6923 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6924 zoneid_t zoneid) 6925 { 6926 if (priv != DTRACE_PRIV_ALL) { 6927 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 6928 uint32_t match = priv & ppriv; 6929 6930 /* 6931 * No PRIV_DTRACE_* privileges... 6932 */ 6933 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 6934 DTRACE_PRIV_KERNEL)) == 0) 6935 return (0); 6936 6937 /* 6938 * No matching bits, but there were bits to match... 6939 */ 6940 if (match == 0 && ppriv != 0) 6941 return (0); 6942 6943 /* 6944 * Need to have permissions to the process, but don't... 6945 */ 6946 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 6947 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 6948 return (0); 6949 } 6950 6951 /* 6952 * Need to be in the same zone unless we possess the 6953 * privilege to examine all zones. 6954 */ 6955 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 6956 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 6957 return (0); 6958 } 6959 } 6960 6961 return (1); 6962 } 6963 6964 /* 6965 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 6966 * consists of input pattern strings and an ops-vector to evaluate them. 6967 * This function returns >0 for match, 0 for no match, and <0 for error. 6968 */ 6969 static int 6970 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 6971 uint32_t priv, uid_t uid, zoneid_t zoneid) 6972 { 6973 dtrace_provider_t *pvp = prp->dtpr_provider; 6974 int rv; 6975 6976 if (pvp->dtpv_defunct) 6977 return (0); 6978 6979 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 6980 return (rv); 6981 6982 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 6983 return (rv); 6984 6985 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 6986 return (rv); 6987 6988 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 6989 return (rv); 6990 6991 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 6992 return (0); 6993 6994 return (rv); 6995 } 6996 6997 /* 6998 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 6999 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 7000 * libc's version, the kernel version only applies to 8-bit ASCII strings. 7001 * In addition, all of the recursion cases except for '*' matching have been 7002 * unwound. For '*', we still implement recursive evaluation, but a depth 7003 * counter is maintained and matching is aborted if we recurse too deep. 7004 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 7005 */ 7006 static int 7007 dtrace_match_glob(const char *s, const char *p, int depth) 7008 { 7009 const char *olds; 7010 char s1, c; 7011 int gs; 7012 7013 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 7014 return (-1); 7015 7016 if (s == NULL) 7017 s = ""; /* treat NULL as empty string */ 7018 7019 top: 7020 olds = s; 7021 s1 = *s++; 7022 7023 if (p == NULL) 7024 return (0); 7025 7026 if ((c = *p++) == '\0') 7027 return (s1 == '\0'); 7028 7029 switch (c) { 7030 case '[': { 7031 int ok = 0, notflag = 0; 7032 char lc = '\0'; 7033 7034 if (s1 == '\0') 7035 return (0); 7036 7037 if (*p == '!') { 7038 notflag = 1; 7039 p++; 7040 } 7041 7042 if ((c = *p++) == '\0') 7043 return (0); 7044 7045 do { 7046 if (c == '-' && lc != '\0' && *p != ']') { 7047 if ((c = *p++) == '\0') 7048 return (0); 7049 if (c == '\\' && (c = *p++) == '\0') 7050 return (0); 7051 7052 if (notflag) { 7053 if (s1 < lc || s1 > c) 7054 ok++; 7055 else 7056 return (0); 7057 } else if (lc <= s1 && s1 <= c) 7058 ok++; 7059 7060 } else if (c == '\\' && (c = *p++) == '\0') 7061 return (0); 7062 7063 lc = c; /* save left-hand 'c' for next iteration */ 7064 7065 if (notflag) { 7066 if (s1 != c) 7067 ok++; 7068 else 7069 return (0); 7070 } else if (s1 == c) 7071 ok++; 7072 7073 if ((c = *p++) == '\0') 7074 return (0); 7075 7076 } while (c != ']'); 7077 7078 if (ok) 7079 goto top; 7080 7081 return (0); 7082 } 7083 7084 case '\\': 7085 if ((c = *p++) == '\0') 7086 return (0); 7087 /*FALLTHRU*/ 7088 7089 default: 7090 if (c != s1) 7091 return (0); 7092 /*FALLTHRU*/ 7093 7094 case '?': 7095 if (s1 != '\0') 7096 goto top; 7097 return (0); 7098 7099 case '*': 7100 while (*p == '*') 7101 p++; /* consecutive *'s are identical to a single one */ 7102 7103 if (*p == '\0') 7104 return (1); 7105 7106 for (s = olds; *s != '\0'; s++) { 7107 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 7108 return (gs); 7109 } 7110 7111 return (0); 7112 } 7113 } 7114 7115 /*ARGSUSED*/ 7116 static int 7117 dtrace_match_string(const char *s, const char *p, int depth) 7118 { 7119 return (s != NULL && strcmp(s, p) == 0); 7120 } 7121 7122 /*ARGSUSED*/ 7123 static int 7124 dtrace_match_nul(const char *s, const char *p, int depth) 7125 { 7126 return (1); /* always match the empty pattern */ 7127 } 7128 7129 /*ARGSUSED*/ 7130 static int 7131 dtrace_match_nonzero(const char *s, const char *p, int depth) 7132 { 7133 return (s != NULL && s[0] != '\0'); 7134 } 7135 7136 static int 7137 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 7138 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 7139 { 7140 dtrace_probe_t template, *probe; 7141 dtrace_hash_t *hash = NULL; 7142 int len, best = INT_MAX, nmatched = 0; 7143 dtrace_id_t i; 7144 7145 ASSERT(MUTEX_HELD(&dtrace_lock)); 7146 7147 /* 7148 * If the probe ID is specified in the key, just lookup by ID and 7149 * invoke the match callback once if a matching probe is found. 7150 */ 7151 if (pkp->dtpk_id != DTRACE_IDNONE) { 7152 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 7153 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 7154 (void) (*matched)(probe, arg); 7155 nmatched++; 7156 } 7157 return (nmatched); 7158 } 7159 7160 template.dtpr_mod = (char *)pkp->dtpk_mod; 7161 template.dtpr_func = (char *)pkp->dtpk_func; 7162 template.dtpr_name = (char *)pkp->dtpk_name; 7163 7164 /* 7165 * We want to find the most distinct of the module name, function 7166 * name, and name. So for each one that is not a glob pattern or 7167 * empty string, we perform a lookup in the corresponding hash and 7168 * use the hash table with the fewest collisions to do our search. 7169 */ 7170 if (pkp->dtpk_mmatch == &dtrace_match_string && 7171 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 7172 best = len; 7173 hash = dtrace_bymod; 7174 } 7175 7176 if (pkp->dtpk_fmatch == &dtrace_match_string && 7177 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 7178 best = len; 7179 hash = dtrace_byfunc; 7180 } 7181 7182 if (pkp->dtpk_nmatch == &dtrace_match_string && 7183 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 7184 best = len; 7185 hash = dtrace_byname; 7186 } 7187 7188 /* 7189 * If we did not select a hash table, iterate over every probe and 7190 * invoke our callback for each one that matches our input probe key. 7191 */ 7192 if (hash == NULL) { 7193 for (i = 0; i < dtrace_nprobes; i++) { 7194 if ((probe = dtrace_probes[i]) == NULL || 7195 dtrace_match_probe(probe, pkp, priv, uid, 7196 zoneid) <= 0) 7197 continue; 7198 7199 nmatched++; 7200 7201 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 7202 break; 7203 } 7204 7205 return (nmatched); 7206 } 7207 7208 /* 7209 * If we selected a hash table, iterate over each probe of the same key 7210 * name and invoke the callback for every probe that matches the other 7211 * attributes of our input probe key. 7212 */ 7213 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 7214 probe = *(DTRACE_HASHNEXT(hash, probe))) { 7215 7216 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 7217 continue; 7218 7219 nmatched++; 7220 7221 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 7222 break; 7223 } 7224 7225 return (nmatched); 7226 } 7227 7228 /* 7229 * Return the function pointer dtrace_probecmp() should use to compare the 7230 * specified pattern with a string. For NULL or empty patterns, we select 7231 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 7232 * For non-empty non-glob strings, we use dtrace_match_string(). 7233 */ 7234 static dtrace_probekey_f * 7235 dtrace_probekey_func(const char *p) 7236 { 7237 char c; 7238 7239 if (p == NULL || *p == '\0') 7240 return (&dtrace_match_nul); 7241 7242 while ((c = *p++) != '\0') { 7243 if (c == '[' || c == '?' || c == '*' || c == '\\') 7244 return (&dtrace_match_glob); 7245 } 7246 7247 return (&dtrace_match_string); 7248 } 7249 7250 /* 7251 * Build a probe comparison key for use with dtrace_match_probe() from the 7252 * given probe description. By convention, a null key only matches anchored 7253 * probes: if each field is the empty string, reset dtpk_fmatch to 7254 * dtrace_match_nonzero(). 7255 */ 7256 static void 7257 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 7258 { 7259 pkp->dtpk_prov = pdp->dtpd_provider; 7260 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 7261 7262 pkp->dtpk_mod = pdp->dtpd_mod; 7263 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 7264 7265 pkp->dtpk_func = pdp->dtpd_func; 7266 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 7267 7268 pkp->dtpk_name = pdp->dtpd_name; 7269 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 7270 7271 pkp->dtpk_id = pdp->dtpd_id; 7272 7273 if (pkp->dtpk_id == DTRACE_IDNONE && 7274 pkp->dtpk_pmatch == &dtrace_match_nul && 7275 pkp->dtpk_mmatch == &dtrace_match_nul && 7276 pkp->dtpk_fmatch == &dtrace_match_nul && 7277 pkp->dtpk_nmatch == &dtrace_match_nul) 7278 pkp->dtpk_fmatch = &dtrace_match_nonzero; 7279 } 7280 7281 /* 7282 * DTrace Provider-to-Framework API Functions 7283 * 7284 * These functions implement much of the Provider-to-Framework API, as 7285 * described in <sys/dtrace.h>. The parts of the API not in this section are 7286 * the functions in the API for probe management (found below), and 7287 * dtrace_probe() itself (found above). 7288 */ 7289 7290 /* 7291 * Register the calling provider with the DTrace framework. This should 7292 * generally be called by DTrace providers in their attach(9E) entry point. 7293 */ 7294 int 7295 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 7296 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 7297 { 7298 dtrace_provider_t *provider; 7299 7300 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 7301 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7302 "arguments", name ? name : "<NULL>"); 7303 return (EINVAL); 7304 } 7305 7306 if (name[0] == '\0' || dtrace_badname(name)) { 7307 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7308 "provider name", name); 7309 return (EINVAL); 7310 } 7311 7312 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 7313 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 7314 pops->dtps_destroy == NULL || 7315 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 7316 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7317 "provider ops", name); 7318 return (EINVAL); 7319 } 7320 7321 if (dtrace_badattr(&pap->dtpa_provider) || 7322 dtrace_badattr(&pap->dtpa_mod) || 7323 dtrace_badattr(&pap->dtpa_func) || 7324 dtrace_badattr(&pap->dtpa_name) || 7325 dtrace_badattr(&pap->dtpa_args)) { 7326 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7327 "provider attributes", name); 7328 return (EINVAL); 7329 } 7330 7331 if (priv & ~DTRACE_PRIV_ALL) { 7332 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7333 "privilege attributes", name); 7334 return (EINVAL); 7335 } 7336 7337 if ((priv & DTRACE_PRIV_KERNEL) && 7338 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 7339 pops->dtps_usermode == NULL) { 7340 cmn_err(CE_WARN, "failed to register provider '%s': need " 7341 "dtps_usermode() op for given privilege attributes", name); 7342 return (EINVAL); 7343 } 7344 7345 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 7346 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7347 (void) strcpy(provider->dtpv_name, name); 7348 7349 provider->dtpv_attr = *pap; 7350 provider->dtpv_priv.dtpp_flags = priv; 7351 if (cr != NULL) { 7352 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 7353 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 7354 } 7355 provider->dtpv_pops = *pops; 7356 7357 if (pops->dtps_provide == NULL) { 7358 ASSERT(pops->dtps_provide_module != NULL); 7359 provider->dtpv_pops.dtps_provide = 7360 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop; 7361 } 7362 7363 if (pops->dtps_provide_module == NULL) { 7364 ASSERT(pops->dtps_provide != NULL); 7365 provider->dtpv_pops.dtps_provide_module = 7366 (void (*)(void *, modctl_t *))dtrace_nullop; 7367 } 7368 7369 if (pops->dtps_suspend == NULL) { 7370 ASSERT(pops->dtps_resume == NULL); 7371 provider->dtpv_pops.dtps_suspend = 7372 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7373 provider->dtpv_pops.dtps_resume = 7374 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7375 } 7376 7377 provider->dtpv_arg = arg; 7378 *idp = (dtrace_provider_id_t)provider; 7379 7380 if (pops == &dtrace_provider_ops) { 7381 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7382 ASSERT(MUTEX_HELD(&dtrace_lock)); 7383 ASSERT(dtrace_anon.dta_enabling == NULL); 7384 7385 /* 7386 * We make sure that the DTrace provider is at the head of 7387 * the provider chain. 7388 */ 7389 provider->dtpv_next = dtrace_provider; 7390 dtrace_provider = provider; 7391 return (0); 7392 } 7393 7394 mutex_enter(&dtrace_provider_lock); 7395 mutex_enter(&dtrace_lock); 7396 7397 /* 7398 * If there is at least one provider registered, we'll add this 7399 * provider after the first provider. 7400 */ 7401 if (dtrace_provider != NULL) { 7402 provider->dtpv_next = dtrace_provider->dtpv_next; 7403 dtrace_provider->dtpv_next = provider; 7404 } else { 7405 dtrace_provider = provider; 7406 } 7407 7408 if (dtrace_retained != NULL) { 7409 dtrace_enabling_provide(provider); 7410 7411 /* 7412 * Now we need to call dtrace_enabling_matchall() -- which 7413 * will acquire cpu_lock and dtrace_lock. We therefore need 7414 * to drop all of our locks before calling into it... 7415 */ 7416 mutex_exit(&dtrace_lock); 7417 mutex_exit(&dtrace_provider_lock); 7418 dtrace_enabling_matchall(); 7419 7420 return (0); 7421 } 7422 7423 mutex_exit(&dtrace_lock); 7424 mutex_exit(&dtrace_provider_lock); 7425 7426 return (0); 7427 } 7428 7429 /* 7430 * Unregister the specified provider from the DTrace framework. This should 7431 * generally be called by DTrace providers in their detach(9E) entry point. 7432 */ 7433 int 7434 dtrace_unregister(dtrace_provider_id_t id) 7435 { 7436 dtrace_provider_t *old = (dtrace_provider_t *)id; 7437 dtrace_provider_t *prev = NULL; 7438 int i, self = 0; 7439 dtrace_probe_t *probe, *first = NULL; 7440 7441 if (old->dtpv_pops.dtps_enable == 7442 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 7443 /* 7444 * If DTrace itself is the provider, we're called with locks 7445 * already held. 7446 */ 7447 ASSERT(old == dtrace_provider); 7448 #if defined(sun) 7449 ASSERT(dtrace_devi != NULL); 7450 #endif 7451 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7452 ASSERT(MUTEX_HELD(&dtrace_lock)); 7453 self = 1; 7454 7455 if (dtrace_provider->dtpv_next != NULL) { 7456 /* 7457 * There's another provider here; return failure. 7458 */ 7459 return (EBUSY); 7460 } 7461 } else { 7462 mutex_enter(&dtrace_provider_lock); 7463 mutex_enter(&mod_lock); 7464 mutex_enter(&dtrace_lock); 7465 } 7466 7467 /* 7468 * If anyone has /dev/dtrace open, or if there are anonymous enabled 7469 * probes, we refuse to let providers slither away, unless this 7470 * provider has already been explicitly invalidated. 7471 */ 7472 if (!old->dtpv_defunct && 7473 (dtrace_opens || (dtrace_anon.dta_state != NULL && 7474 dtrace_anon.dta_state->dts_necbs > 0))) { 7475 if (!self) { 7476 mutex_exit(&dtrace_lock); 7477 mutex_exit(&mod_lock); 7478 mutex_exit(&dtrace_provider_lock); 7479 } 7480 return (EBUSY); 7481 } 7482 7483 /* 7484 * Attempt to destroy the probes associated with this provider. 7485 */ 7486 for (i = 0; i < dtrace_nprobes; i++) { 7487 if ((probe = dtrace_probes[i]) == NULL) 7488 continue; 7489 7490 if (probe->dtpr_provider != old) 7491 continue; 7492 7493 if (probe->dtpr_ecb == NULL) 7494 continue; 7495 7496 /* 7497 * We have at least one ECB; we can't remove this provider. 7498 */ 7499 if (!self) { 7500 mutex_exit(&dtrace_lock); 7501 mutex_exit(&mod_lock); 7502 mutex_exit(&dtrace_provider_lock); 7503 } 7504 return (EBUSY); 7505 } 7506 7507 /* 7508 * All of the probes for this provider are disabled; we can safely 7509 * remove all of them from their hash chains and from the probe array. 7510 */ 7511 for (i = 0; i < dtrace_nprobes; i++) { 7512 if ((probe = dtrace_probes[i]) == NULL) 7513 continue; 7514 7515 if (probe->dtpr_provider != old) 7516 continue; 7517 7518 dtrace_probes[i] = NULL; 7519 7520 dtrace_hash_remove(dtrace_bymod, probe); 7521 dtrace_hash_remove(dtrace_byfunc, probe); 7522 dtrace_hash_remove(dtrace_byname, probe); 7523 7524 if (first == NULL) { 7525 first = probe; 7526 probe->dtpr_nextmod = NULL; 7527 } else { 7528 probe->dtpr_nextmod = first; 7529 first = probe; 7530 } 7531 } 7532 7533 /* 7534 * The provider's probes have been removed from the hash chains and 7535 * from the probe array. Now issue a dtrace_sync() to be sure that 7536 * everyone has cleared out from any probe array processing. 7537 */ 7538 dtrace_sync(); 7539 7540 for (probe = first; probe != NULL; probe = first) { 7541 first = probe->dtpr_nextmod; 7542 7543 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 7544 probe->dtpr_arg); 7545 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7546 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7547 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7548 #if defined(sun) 7549 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 7550 #else 7551 free_unr(dtrace_arena, probe->dtpr_id); 7552 #endif 7553 kmem_free(probe, sizeof (dtrace_probe_t)); 7554 } 7555 7556 if ((prev = dtrace_provider) == old) { 7557 #if defined(sun) 7558 ASSERT(self || dtrace_devi == NULL); 7559 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 7560 #endif 7561 dtrace_provider = old->dtpv_next; 7562 } else { 7563 while (prev != NULL && prev->dtpv_next != old) 7564 prev = prev->dtpv_next; 7565 7566 if (prev == NULL) { 7567 panic("attempt to unregister non-existent " 7568 "dtrace provider %p\n", (void *)id); 7569 } 7570 7571 prev->dtpv_next = old->dtpv_next; 7572 } 7573 7574 if (!self) { 7575 mutex_exit(&dtrace_lock); 7576 mutex_exit(&mod_lock); 7577 mutex_exit(&dtrace_provider_lock); 7578 } 7579 7580 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 7581 kmem_free(old, sizeof (dtrace_provider_t)); 7582 7583 return (0); 7584 } 7585 7586 /* 7587 * Invalidate the specified provider. All subsequent probe lookups for the 7588 * specified provider will fail, but its probes will not be removed. 7589 */ 7590 void 7591 dtrace_invalidate(dtrace_provider_id_t id) 7592 { 7593 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 7594 7595 ASSERT(pvp->dtpv_pops.dtps_enable != 7596 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 7597 7598 mutex_enter(&dtrace_provider_lock); 7599 mutex_enter(&dtrace_lock); 7600 7601 pvp->dtpv_defunct = 1; 7602 7603 mutex_exit(&dtrace_lock); 7604 mutex_exit(&dtrace_provider_lock); 7605 } 7606 7607 /* 7608 * Indicate whether or not DTrace has attached. 7609 */ 7610 int 7611 dtrace_attached(void) 7612 { 7613 /* 7614 * dtrace_provider will be non-NULL iff the DTrace driver has 7615 * attached. (It's non-NULL because DTrace is always itself a 7616 * provider.) 7617 */ 7618 return (dtrace_provider != NULL); 7619 } 7620 7621 /* 7622 * Remove all the unenabled probes for the given provider. This function is 7623 * not unlike dtrace_unregister(), except that it doesn't remove the provider 7624 * -- just as many of its associated probes as it can. 7625 */ 7626 int 7627 dtrace_condense(dtrace_provider_id_t id) 7628 { 7629 dtrace_provider_t *prov = (dtrace_provider_t *)id; 7630 int i; 7631 dtrace_probe_t *probe; 7632 7633 /* 7634 * Make sure this isn't the dtrace provider itself. 7635 */ 7636 ASSERT(prov->dtpv_pops.dtps_enable != 7637 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 7638 7639 mutex_enter(&dtrace_provider_lock); 7640 mutex_enter(&dtrace_lock); 7641 7642 /* 7643 * Attempt to destroy the probes associated with this provider. 7644 */ 7645 for (i = 0; i < dtrace_nprobes; i++) { 7646 if ((probe = dtrace_probes[i]) == NULL) 7647 continue; 7648 7649 if (probe->dtpr_provider != prov) 7650 continue; 7651 7652 if (probe->dtpr_ecb != NULL) 7653 continue; 7654 7655 dtrace_probes[i] = NULL; 7656 7657 dtrace_hash_remove(dtrace_bymod, probe); 7658 dtrace_hash_remove(dtrace_byfunc, probe); 7659 dtrace_hash_remove(dtrace_byname, probe); 7660 7661 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 7662 probe->dtpr_arg); 7663 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7664 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7665 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7666 kmem_free(probe, sizeof (dtrace_probe_t)); 7667 #if defined(sun) 7668 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 7669 #else 7670 free_unr(dtrace_arena, i + 1); 7671 #endif 7672 } 7673 7674 mutex_exit(&dtrace_lock); 7675 mutex_exit(&dtrace_provider_lock); 7676 7677 return (0); 7678 } 7679 7680 /* 7681 * DTrace Probe Management Functions 7682 * 7683 * The functions in this section perform the DTrace probe management, 7684 * including functions to create probes, look-up probes, and call into the 7685 * providers to request that probes be provided. Some of these functions are 7686 * in the Provider-to-Framework API; these functions can be identified by the 7687 * fact that they are not declared "static". 7688 */ 7689 7690 /* 7691 * Create a probe with the specified module name, function name, and name. 7692 */ 7693 dtrace_id_t 7694 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 7695 const char *func, const char *name, int aframes, void *arg) 7696 { 7697 dtrace_probe_t *probe, **probes; 7698 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 7699 dtrace_id_t id; 7700 7701 if (provider == dtrace_provider) { 7702 ASSERT(MUTEX_HELD(&dtrace_lock)); 7703 } else { 7704 mutex_enter(&dtrace_lock); 7705 } 7706 7707 #if defined(sun) 7708 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 7709 VM_BESTFIT | VM_SLEEP); 7710 #else 7711 id = alloc_unr(dtrace_arena); 7712 #endif 7713 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 7714 7715 probe->dtpr_id = id; 7716 probe->dtpr_gen = dtrace_probegen++; 7717 probe->dtpr_mod = dtrace_strdup(mod); 7718 probe->dtpr_func = dtrace_strdup(func); 7719 probe->dtpr_name = dtrace_strdup(name); 7720 probe->dtpr_arg = arg; 7721 probe->dtpr_aframes = aframes; 7722 probe->dtpr_provider = provider; 7723 7724 dtrace_hash_add(dtrace_bymod, probe); 7725 dtrace_hash_add(dtrace_byfunc, probe); 7726 dtrace_hash_add(dtrace_byname, probe); 7727 7728 if (id - 1 >= dtrace_nprobes) { 7729 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 7730 size_t nsize = osize << 1; 7731 7732 if (nsize == 0) { 7733 ASSERT(osize == 0); 7734 ASSERT(dtrace_probes == NULL); 7735 nsize = sizeof (dtrace_probe_t *); 7736 } 7737 7738 probes = kmem_zalloc(nsize, KM_SLEEP); 7739 7740 if (dtrace_probes == NULL) { 7741 ASSERT(osize == 0); 7742 dtrace_probes = probes; 7743 dtrace_nprobes = 1; 7744 } else { 7745 dtrace_probe_t **oprobes = dtrace_probes; 7746 7747 bcopy(oprobes, probes, osize); 7748 dtrace_membar_producer(); 7749 dtrace_probes = probes; 7750 7751 dtrace_sync(); 7752 7753 /* 7754 * All CPUs are now seeing the new probes array; we can 7755 * safely free the old array. 7756 */ 7757 kmem_free(oprobes, osize); 7758 dtrace_nprobes <<= 1; 7759 } 7760 7761 ASSERT(id - 1 < dtrace_nprobes); 7762 } 7763 7764 ASSERT(dtrace_probes[id - 1] == NULL); 7765 dtrace_probes[id - 1] = probe; 7766 7767 if (provider != dtrace_provider) 7768 mutex_exit(&dtrace_lock); 7769 7770 return (id); 7771 } 7772 7773 static dtrace_probe_t * 7774 dtrace_probe_lookup_id(dtrace_id_t id) 7775 { 7776 ASSERT(MUTEX_HELD(&dtrace_lock)); 7777 7778 if (id == 0 || id > dtrace_nprobes) 7779 return (NULL); 7780 7781 return (dtrace_probes[id - 1]); 7782 } 7783 7784 static int 7785 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 7786 { 7787 *((dtrace_id_t *)arg) = probe->dtpr_id; 7788 7789 return (DTRACE_MATCH_DONE); 7790 } 7791 7792 /* 7793 * Look up a probe based on provider and one or more of module name, function 7794 * name and probe name. 7795 */ 7796 dtrace_id_t 7797 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod, 7798 char *func, char *name) 7799 { 7800 dtrace_probekey_t pkey; 7801 dtrace_id_t id; 7802 int match; 7803 7804 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 7805 pkey.dtpk_pmatch = &dtrace_match_string; 7806 pkey.dtpk_mod = mod; 7807 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 7808 pkey.dtpk_func = func; 7809 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 7810 pkey.dtpk_name = name; 7811 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 7812 pkey.dtpk_id = DTRACE_IDNONE; 7813 7814 mutex_enter(&dtrace_lock); 7815 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 7816 dtrace_probe_lookup_match, &id); 7817 mutex_exit(&dtrace_lock); 7818 7819 ASSERT(match == 1 || match == 0); 7820 return (match ? id : 0); 7821 } 7822 7823 /* 7824 * Returns the probe argument associated with the specified probe. 7825 */ 7826 void * 7827 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 7828 { 7829 dtrace_probe_t *probe; 7830 void *rval = NULL; 7831 7832 mutex_enter(&dtrace_lock); 7833 7834 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 7835 probe->dtpr_provider == (dtrace_provider_t *)id) 7836 rval = probe->dtpr_arg; 7837 7838 mutex_exit(&dtrace_lock); 7839 7840 return (rval); 7841 } 7842 7843 /* 7844 * Copy a probe into a probe description. 7845 */ 7846 static void 7847 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 7848 { 7849 bzero(pdp, sizeof (dtrace_probedesc_t)); 7850 pdp->dtpd_id = prp->dtpr_id; 7851 7852 (void) strncpy(pdp->dtpd_provider, 7853 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 7854 7855 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 7856 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 7857 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 7858 } 7859 7860 #if !defined(sun) 7861 static int 7862 dtrace_probe_provide_cb(linker_file_t lf, void *arg) 7863 { 7864 dtrace_provider_t *prv = (dtrace_provider_t *) arg; 7865 7866 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf); 7867 7868 return(0); 7869 } 7870 #endif 7871 7872 7873 /* 7874 * Called to indicate that a probe -- or probes -- should be provided by a 7875 * specfied provider. If the specified description is NULL, the provider will 7876 * be told to provide all of its probes. (This is done whenever a new 7877 * consumer comes along, or whenever a retained enabling is to be matched.) If 7878 * the specified description is non-NULL, the provider is given the 7879 * opportunity to dynamically provide the specified probe, allowing providers 7880 * to support the creation of probes on-the-fly. (So-called _autocreated_ 7881 * probes.) If the provider is NULL, the operations will be applied to all 7882 * providers; if the provider is non-NULL the operations will only be applied 7883 * to the specified provider. The dtrace_provider_lock must be held, and the 7884 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 7885 * will need to grab the dtrace_lock when it reenters the framework through 7886 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 7887 */ 7888 static void 7889 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 7890 { 7891 #if defined(sun) 7892 modctl_t *ctl; 7893 #endif 7894 int all = 0; 7895 7896 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7897 7898 if (prv == NULL) { 7899 all = 1; 7900 prv = dtrace_provider; 7901 } 7902 7903 do { 7904 /* 7905 * First, call the blanket provide operation. 7906 */ 7907 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 7908 7909 /* 7910 * Now call the per-module provide operation. We will grab 7911 * mod_lock to prevent the list from being modified. Note 7912 * that this also prevents the mod_busy bits from changing. 7913 * (mod_busy can only be changed with mod_lock held.) 7914 */ 7915 mutex_enter(&mod_lock); 7916 7917 #if defined(sun) 7918 ctl = &modules; 7919 do { 7920 if (ctl->mod_busy || ctl->mod_mp == NULL) 7921 continue; 7922 7923 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 7924 7925 } while ((ctl = ctl->mod_next) != &modules); 7926 #else 7927 (void) linker_file_foreach(dtrace_probe_provide_cb, prv); 7928 #endif 7929 7930 mutex_exit(&mod_lock); 7931 } while (all && (prv = prv->dtpv_next) != NULL); 7932 } 7933 7934 #if defined(sun) 7935 /* 7936 * Iterate over each probe, and call the Framework-to-Provider API function 7937 * denoted by offs. 7938 */ 7939 static void 7940 dtrace_probe_foreach(uintptr_t offs) 7941 { 7942 dtrace_provider_t *prov; 7943 void (*func)(void *, dtrace_id_t, void *); 7944 dtrace_probe_t *probe; 7945 dtrace_icookie_t cookie; 7946 int i; 7947 7948 /* 7949 * We disable interrupts to walk through the probe array. This is 7950 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 7951 * won't see stale data. 7952 */ 7953 cookie = dtrace_interrupt_disable(); 7954 7955 for (i = 0; i < dtrace_nprobes; i++) { 7956 if ((probe = dtrace_probes[i]) == NULL) 7957 continue; 7958 7959 if (probe->dtpr_ecb == NULL) { 7960 /* 7961 * This probe isn't enabled -- don't call the function. 7962 */ 7963 continue; 7964 } 7965 7966 prov = probe->dtpr_provider; 7967 func = *((void(**)(void *, dtrace_id_t, void *)) 7968 ((uintptr_t)&prov->dtpv_pops + offs)); 7969 7970 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 7971 } 7972 7973 dtrace_interrupt_enable(cookie); 7974 } 7975 #endif 7976 7977 static int 7978 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 7979 { 7980 dtrace_probekey_t pkey; 7981 uint32_t priv; 7982 uid_t uid; 7983 zoneid_t zoneid; 7984 7985 ASSERT(MUTEX_HELD(&dtrace_lock)); 7986 dtrace_ecb_create_cache = NULL; 7987 7988 if (desc == NULL) { 7989 /* 7990 * If we're passed a NULL description, we're being asked to 7991 * create an ECB with a NULL probe. 7992 */ 7993 (void) dtrace_ecb_create_enable(NULL, enab); 7994 return (0); 7995 } 7996 7997 dtrace_probekey(desc, &pkey); 7998 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 7999 &priv, &uid, &zoneid); 8000 8001 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 8002 enab)); 8003 } 8004 8005 /* 8006 * DTrace Helper Provider Functions 8007 */ 8008 static void 8009 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 8010 { 8011 attr->dtat_name = DOF_ATTR_NAME(dofattr); 8012 attr->dtat_data = DOF_ATTR_DATA(dofattr); 8013 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 8014 } 8015 8016 static void 8017 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 8018 const dof_provider_t *dofprov, char *strtab) 8019 { 8020 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 8021 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 8022 dofprov->dofpv_provattr); 8023 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 8024 dofprov->dofpv_modattr); 8025 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 8026 dofprov->dofpv_funcattr); 8027 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 8028 dofprov->dofpv_nameattr); 8029 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 8030 dofprov->dofpv_argsattr); 8031 } 8032 8033 static void 8034 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8035 { 8036 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8037 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8038 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8039 dof_provider_t *provider; 8040 dof_probe_t *probe; 8041 uint32_t *off, *enoff; 8042 uint8_t *arg; 8043 char *strtab; 8044 uint_t i, nprobes; 8045 dtrace_helper_provdesc_t dhpv; 8046 dtrace_helper_probedesc_t dhpb; 8047 dtrace_meta_t *meta = dtrace_meta_pid; 8048 dtrace_mops_t *mops = &meta->dtm_mops; 8049 void *parg; 8050 8051 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8052 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8053 provider->dofpv_strtab * dof->dofh_secsize); 8054 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8055 provider->dofpv_probes * dof->dofh_secsize); 8056 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8057 provider->dofpv_prargs * dof->dofh_secsize); 8058 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8059 provider->dofpv_proffs * dof->dofh_secsize); 8060 8061 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8062 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 8063 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 8064 enoff = NULL; 8065 8066 /* 8067 * See dtrace_helper_provider_validate(). 8068 */ 8069 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 8070 provider->dofpv_prenoffs != DOF_SECT_NONE) { 8071 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8072 provider->dofpv_prenoffs * dof->dofh_secsize); 8073 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 8074 } 8075 8076 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 8077 8078 /* 8079 * Create the provider. 8080 */ 8081 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8082 8083 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 8084 return; 8085 8086 meta->dtm_count++; 8087 8088 /* 8089 * Create the probes. 8090 */ 8091 for (i = 0; i < nprobes; i++) { 8092 probe = (dof_probe_t *)(uintptr_t)(daddr + 8093 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 8094 8095 dhpb.dthpb_mod = dhp->dofhp_mod; 8096 dhpb.dthpb_func = strtab + probe->dofpr_func; 8097 dhpb.dthpb_name = strtab + probe->dofpr_name; 8098 dhpb.dthpb_base = probe->dofpr_addr; 8099 dhpb.dthpb_offs = off + probe->dofpr_offidx; 8100 dhpb.dthpb_noffs = probe->dofpr_noffs; 8101 if (enoff != NULL) { 8102 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 8103 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 8104 } else { 8105 dhpb.dthpb_enoffs = NULL; 8106 dhpb.dthpb_nenoffs = 0; 8107 } 8108 dhpb.dthpb_args = arg + probe->dofpr_argidx; 8109 dhpb.dthpb_nargc = probe->dofpr_nargc; 8110 dhpb.dthpb_xargc = probe->dofpr_xargc; 8111 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 8112 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 8113 8114 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 8115 } 8116 } 8117 8118 static void 8119 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 8120 { 8121 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8122 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8123 int i; 8124 8125 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8126 8127 for (i = 0; i < dof->dofh_secnum; i++) { 8128 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8129 dof->dofh_secoff + i * dof->dofh_secsize); 8130 8131 if (sec->dofs_type != DOF_SECT_PROVIDER) 8132 continue; 8133 8134 dtrace_helper_provide_one(dhp, sec, pid); 8135 } 8136 8137 /* 8138 * We may have just created probes, so we must now rematch against 8139 * any retained enablings. Note that this call will acquire both 8140 * cpu_lock and dtrace_lock; the fact that we are holding 8141 * dtrace_meta_lock now is what defines the ordering with respect to 8142 * these three locks. 8143 */ 8144 dtrace_enabling_matchall(); 8145 } 8146 8147 static void 8148 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8149 { 8150 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8151 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8152 dof_sec_t *str_sec; 8153 dof_provider_t *provider; 8154 char *strtab; 8155 dtrace_helper_provdesc_t dhpv; 8156 dtrace_meta_t *meta = dtrace_meta_pid; 8157 dtrace_mops_t *mops = &meta->dtm_mops; 8158 8159 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8160 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8161 provider->dofpv_strtab * dof->dofh_secsize); 8162 8163 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8164 8165 /* 8166 * Create the provider. 8167 */ 8168 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8169 8170 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 8171 8172 meta->dtm_count--; 8173 } 8174 8175 static void 8176 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 8177 { 8178 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8179 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8180 int i; 8181 8182 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8183 8184 for (i = 0; i < dof->dofh_secnum; i++) { 8185 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8186 dof->dofh_secoff + i * dof->dofh_secsize); 8187 8188 if (sec->dofs_type != DOF_SECT_PROVIDER) 8189 continue; 8190 8191 dtrace_helper_provider_remove_one(dhp, sec, pid); 8192 } 8193 } 8194 8195 /* 8196 * DTrace Meta Provider-to-Framework API Functions 8197 * 8198 * These functions implement the Meta Provider-to-Framework API, as described 8199 * in <sys/dtrace.h>. 8200 */ 8201 int 8202 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 8203 dtrace_meta_provider_id_t *idp) 8204 { 8205 dtrace_meta_t *meta; 8206 dtrace_helpers_t *help, *next; 8207 int i; 8208 8209 *idp = DTRACE_METAPROVNONE; 8210 8211 /* 8212 * We strictly don't need the name, but we hold onto it for 8213 * debuggability. All hail error queues! 8214 */ 8215 if (name == NULL) { 8216 cmn_err(CE_WARN, "failed to register meta-provider: " 8217 "invalid name"); 8218 return (EINVAL); 8219 } 8220 8221 if (mops == NULL || 8222 mops->dtms_create_probe == NULL || 8223 mops->dtms_provide_pid == NULL || 8224 mops->dtms_remove_pid == NULL) { 8225 cmn_err(CE_WARN, "failed to register meta-register %s: " 8226 "invalid ops", name); 8227 return (EINVAL); 8228 } 8229 8230 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 8231 meta->dtm_mops = *mops; 8232 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8233 (void) strcpy(meta->dtm_name, name); 8234 meta->dtm_arg = arg; 8235 8236 mutex_enter(&dtrace_meta_lock); 8237 mutex_enter(&dtrace_lock); 8238 8239 if (dtrace_meta_pid != NULL) { 8240 mutex_exit(&dtrace_lock); 8241 mutex_exit(&dtrace_meta_lock); 8242 cmn_err(CE_WARN, "failed to register meta-register %s: " 8243 "user-land meta-provider exists", name); 8244 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 8245 kmem_free(meta, sizeof (dtrace_meta_t)); 8246 return (EINVAL); 8247 } 8248 8249 dtrace_meta_pid = meta; 8250 *idp = (dtrace_meta_provider_id_t)meta; 8251 8252 /* 8253 * If there are providers and probes ready to go, pass them 8254 * off to the new meta provider now. 8255 */ 8256 8257 help = dtrace_deferred_pid; 8258 dtrace_deferred_pid = NULL; 8259 8260 mutex_exit(&dtrace_lock); 8261 8262 while (help != NULL) { 8263 for (i = 0; i < help->dthps_nprovs; i++) { 8264 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 8265 help->dthps_pid); 8266 } 8267 8268 next = help->dthps_next; 8269 help->dthps_next = NULL; 8270 help->dthps_prev = NULL; 8271 help->dthps_deferred = 0; 8272 help = next; 8273 } 8274 8275 mutex_exit(&dtrace_meta_lock); 8276 8277 return (0); 8278 } 8279 8280 int 8281 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 8282 { 8283 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 8284 8285 mutex_enter(&dtrace_meta_lock); 8286 mutex_enter(&dtrace_lock); 8287 8288 if (old == dtrace_meta_pid) { 8289 pp = &dtrace_meta_pid; 8290 } else { 8291 panic("attempt to unregister non-existent " 8292 "dtrace meta-provider %p\n", (void *)old); 8293 } 8294 8295 if (old->dtm_count != 0) { 8296 mutex_exit(&dtrace_lock); 8297 mutex_exit(&dtrace_meta_lock); 8298 return (EBUSY); 8299 } 8300 8301 *pp = NULL; 8302 8303 mutex_exit(&dtrace_lock); 8304 mutex_exit(&dtrace_meta_lock); 8305 8306 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 8307 kmem_free(old, sizeof (dtrace_meta_t)); 8308 8309 return (0); 8310 } 8311 8312 8313 /* 8314 * DTrace DIF Object Functions 8315 */ 8316 static int 8317 dtrace_difo_err(uint_t pc, const char *format, ...) 8318 { 8319 if (dtrace_err_verbose) { 8320 va_list alist; 8321 8322 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 8323 va_start(alist, format); 8324 (void) vuprintf(format, alist); 8325 va_end(alist); 8326 } 8327 8328 #ifdef DTRACE_ERRDEBUG 8329 dtrace_errdebug(format); 8330 #endif 8331 return (1); 8332 } 8333 8334 /* 8335 * Validate a DTrace DIF object by checking the IR instructions. The following 8336 * rules are currently enforced by dtrace_difo_validate(): 8337 * 8338 * 1. Each instruction must have a valid opcode 8339 * 2. Each register, string, variable, or subroutine reference must be valid 8340 * 3. No instruction can modify register %r0 (must be zero) 8341 * 4. All instruction reserved bits must be set to zero 8342 * 5. The last instruction must be a "ret" instruction 8343 * 6. All branch targets must reference a valid instruction _after_ the branch 8344 */ 8345 static int 8346 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 8347 cred_t *cr) 8348 { 8349 int err = 0, i; 8350 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8351 int kcheckload; 8352 uint_t pc; 8353 8354 kcheckload = cr == NULL || 8355 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 8356 8357 dp->dtdo_destructive = 0; 8358 8359 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 8360 dif_instr_t instr = dp->dtdo_buf[pc]; 8361 8362 uint_t r1 = DIF_INSTR_R1(instr); 8363 uint_t r2 = DIF_INSTR_R2(instr); 8364 uint_t rd = DIF_INSTR_RD(instr); 8365 uint_t rs = DIF_INSTR_RS(instr); 8366 uint_t label = DIF_INSTR_LABEL(instr); 8367 uint_t v = DIF_INSTR_VAR(instr); 8368 uint_t subr = DIF_INSTR_SUBR(instr); 8369 uint_t type = DIF_INSTR_TYPE(instr); 8370 uint_t op = DIF_INSTR_OP(instr); 8371 8372 switch (op) { 8373 case DIF_OP_OR: 8374 case DIF_OP_XOR: 8375 case DIF_OP_AND: 8376 case DIF_OP_SLL: 8377 case DIF_OP_SRL: 8378 case DIF_OP_SRA: 8379 case DIF_OP_SUB: 8380 case DIF_OP_ADD: 8381 case DIF_OP_MUL: 8382 case DIF_OP_SDIV: 8383 case DIF_OP_UDIV: 8384 case DIF_OP_SREM: 8385 case DIF_OP_UREM: 8386 case DIF_OP_COPYS: 8387 if (r1 >= nregs) 8388 err += efunc(pc, "invalid register %u\n", r1); 8389 if (r2 >= nregs) 8390 err += efunc(pc, "invalid register %u\n", r2); 8391 if (rd >= nregs) 8392 err += efunc(pc, "invalid register %u\n", rd); 8393 if (rd == 0) 8394 err += efunc(pc, "cannot write to %r0\n"); 8395 break; 8396 case DIF_OP_NOT: 8397 case DIF_OP_MOV: 8398 case DIF_OP_ALLOCS: 8399 if (r1 >= nregs) 8400 err += efunc(pc, "invalid register %u\n", r1); 8401 if (r2 != 0) 8402 err += efunc(pc, "non-zero reserved bits\n"); 8403 if (rd >= nregs) 8404 err += efunc(pc, "invalid register %u\n", rd); 8405 if (rd == 0) 8406 err += efunc(pc, "cannot write to %r0\n"); 8407 break; 8408 case DIF_OP_LDSB: 8409 case DIF_OP_LDSH: 8410 case DIF_OP_LDSW: 8411 case DIF_OP_LDUB: 8412 case DIF_OP_LDUH: 8413 case DIF_OP_LDUW: 8414 case DIF_OP_LDX: 8415 if (r1 >= nregs) 8416 err += efunc(pc, "invalid register %u\n", r1); 8417 if (r2 != 0) 8418 err += efunc(pc, "non-zero reserved bits\n"); 8419 if (rd >= nregs) 8420 err += efunc(pc, "invalid register %u\n", rd); 8421 if (rd == 0) 8422 err += efunc(pc, "cannot write to %r0\n"); 8423 if (kcheckload) 8424 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 8425 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 8426 break; 8427 case DIF_OP_RLDSB: 8428 case DIF_OP_RLDSH: 8429 case DIF_OP_RLDSW: 8430 case DIF_OP_RLDUB: 8431 case DIF_OP_RLDUH: 8432 case DIF_OP_RLDUW: 8433 case DIF_OP_RLDX: 8434 if (r1 >= nregs) 8435 err += efunc(pc, "invalid register %u\n", r1); 8436 if (r2 != 0) 8437 err += efunc(pc, "non-zero reserved bits\n"); 8438 if (rd >= nregs) 8439 err += efunc(pc, "invalid register %u\n", rd); 8440 if (rd == 0) 8441 err += efunc(pc, "cannot write to %r0\n"); 8442 break; 8443 case DIF_OP_ULDSB: 8444 case DIF_OP_ULDSH: 8445 case DIF_OP_ULDSW: 8446 case DIF_OP_ULDUB: 8447 case DIF_OP_ULDUH: 8448 case DIF_OP_ULDUW: 8449 case DIF_OP_ULDX: 8450 if (r1 >= nregs) 8451 err += efunc(pc, "invalid register %u\n", r1); 8452 if (r2 != 0) 8453 err += efunc(pc, "non-zero reserved bits\n"); 8454 if (rd >= nregs) 8455 err += efunc(pc, "invalid register %u\n", rd); 8456 if (rd == 0) 8457 err += efunc(pc, "cannot write to %r0\n"); 8458 break; 8459 case DIF_OP_STB: 8460 case DIF_OP_STH: 8461 case DIF_OP_STW: 8462 case DIF_OP_STX: 8463 if (r1 >= nregs) 8464 err += efunc(pc, "invalid register %u\n", r1); 8465 if (r2 != 0) 8466 err += efunc(pc, "non-zero reserved bits\n"); 8467 if (rd >= nregs) 8468 err += efunc(pc, "invalid register %u\n", rd); 8469 if (rd == 0) 8470 err += efunc(pc, "cannot write to 0 address\n"); 8471 break; 8472 case DIF_OP_CMP: 8473 case DIF_OP_SCMP: 8474 if (r1 >= nregs) 8475 err += efunc(pc, "invalid register %u\n", r1); 8476 if (r2 >= nregs) 8477 err += efunc(pc, "invalid register %u\n", r2); 8478 if (rd != 0) 8479 err += efunc(pc, "non-zero reserved bits\n"); 8480 break; 8481 case DIF_OP_TST: 8482 if (r1 >= nregs) 8483 err += efunc(pc, "invalid register %u\n", r1); 8484 if (r2 != 0 || rd != 0) 8485 err += efunc(pc, "non-zero reserved bits\n"); 8486 break; 8487 case DIF_OP_BA: 8488 case DIF_OP_BE: 8489 case DIF_OP_BNE: 8490 case DIF_OP_BG: 8491 case DIF_OP_BGU: 8492 case DIF_OP_BGE: 8493 case DIF_OP_BGEU: 8494 case DIF_OP_BL: 8495 case DIF_OP_BLU: 8496 case DIF_OP_BLE: 8497 case DIF_OP_BLEU: 8498 if (label >= dp->dtdo_len) { 8499 err += efunc(pc, "invalid branch target %u\n", 8500 label); 8501 } 8502 if (label <= pc) { 8503 err += efunc(pc, "backward branch to %u\n", 8504 label); 8505 } 8506 break; 8507 case DIF_OP_RET: 8508 if (r1 != 0 || r2 != 0) 8509 err += efunc(pc, "non-zero reserved bits\n"); 8510 if (rd >= nregs) 8511 err += efunc(pc, "invalid register %u\n", rd); 8512 break; 8513 case DIF_OP_NOP: 8514 case DIF_OP_POPTS: 8515 case DIF_OP_FLUSHTS: 8516 if (r1 != 0 || r2 != 0 || rd != 0) 8517 err += efunc(pc, "non-zero reserved bits\n"); 8518 break; 8519 case DIF_OP_SETX: 8520 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 8521 err += efunc(pc, "invalid integer ref %u\n", 8522 DIF_INSTR_INTEGER(instr)); 8523 } 8524 if (rd >= nregs) 8525 err += efunc(pc, "invalid register %u\n", rd); 8526 if (rd == 0) 8527 err += efunc(pc, "cannot write to %r0\n"); 8528 break; 8529 case DIF_OP_SETS: 8530 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 8531 err += efunc(pc, "invalid string ref %u\n", 8532 DIF_INSTR_STRING(instr)); 8533 } 8534 if (rd >= nregs) 8535 err += efunc(pc, "invalid register %u\n", rd); 8536 if (rd == 0) 8537 err += efunc(pc, "cannot write to %r0\n"); 8538 break; 8539 case DIF_OP_LDGA: 8540 case DIF_OP_LDTA: 8541 if (r1 > DIF_VAR_ARRAY_MAX) 8542 err += efunc(pc, "invalid array %u\n", r1); 8543 if (r2 >= nregs) 8544 err += efunc(pc, "invalid register %u\n", r2); 8545 if (rd >= nregs) 8546 err += efunc(pc, "invalid register %u\n", rd); 8547 if (rd == 0) 8548 err += efunc(pc, "cannot write to %r0\n"); 8549 break; 8550 case DIF_OP_LDGS: 8551 case DIF_OP_LDTS: 8552 case DIF_OP_LDLS: 8553 case DIF_OP_LDGAA: 8554 case DIF_OP_LDTAA: 8555 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 8556 err += efunc(pc, "invalid variable %u\n", v); 8557 if (rd >= nregs) 8558 err += efunc(pc, "invalid register %u\n", rd); 8559 if (rd == 0) 8560 err += efunc(pc, "cannot write to %r0\n"); 8561 break; 8562 case DIF_OP_STGS: 8563 case DIF_OP_STTS: 8564 case DIF_OP_STLS: 8565 case DIF_OP_STGAA: 8566 case DIF_OP_STTAA: 8567 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 8568 err += efunc(pc, "invalid variable %u\n", v); 8569 if (rs >= nregs) 8570 err += efunc(pc, "invalid register %u\n", rd); 8571 break; 8572 case DIF_OP_CALL: 8573 if (subr > DIF_SUBR_MAX) 8574 err += efunc(pc, "invalid subr %u\n", subr); 8575 if (rd >= nregs) 8576 err += efunc(pc, "invalid register %u\n", rd); 8577 if (rd == 0) 8578 err += efunc(pc, "cannot write to %r0\n"); 8579 8580 if (subr == DIF_SUBR_COPYOUT || 8581 subr == DIF_SUBR_COPYOUTSTR) { 8582 dp->dtdo_destructive = 1; 8583 } 8584 break; 8585 case DIF_OP_PUSHTR: 8586 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 8587 err += efunc(pc, "invalid ref type %u\n", type); 8588 if (r2 >= nregs) 8589 err += efunc(pc, "invalid register %u\n", r2); 8590 if (rs >= nregs) 8591 err += efunc(pc, "invalid register %u\n", rs); 8592 break; 8593 case DIF_OP_PUSHTV: 8594 if (type != DIF_TYPE_CTF) 8595 err += efunc(pc, "invalid val type %u\n", type); 8596 if (r2 >= nregs) 8597 err += efunc(pc, "invalid register %u\n", r2); 8598 if (rs >= nregs) 8599 err += efunc(pc, "invalid register %u\n", rs); 8600 break; 8601 default: 8602 err += efunc(pc, "invalid opcode %u\n", 8603 DIF_INSTR_OP(instr)); 8604 } 8605 } 8606 8607 if (dp->dtdo_len != 0 && 8608 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 8609 err += efunc(dp->dtdo_len - 1, 8610 "expected 'ret' as last DIF instruction\n"); 8611 } 8612 8613 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 8614 /* 8615 * If we're not returning by reference, the size must be either 8616 * 0 or the size of one of the base types. 8617 */ 8618 switch (dp->dtdo_rtype.dtdt_size) { 8619 case 0: 8620 case sizeof (uint8_t): 8621 case sizeof (uint16_t): 8622 case sizeof (uint32_t): 8623 case sizeof (uint64_t): 8624 break; 8625 8626 default: 8627 err += efunc(dp->dtdo_len - 1, "bad return size"); 8628 } 8629 } 8630 8631 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 8632 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 8633 dtrace_diftype_t *vt, *et; 8634 uint_t id, ndx; 8635 8636 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 8637 v->dtdv_scope != DIFV_SCOPE_THREAD && 8638 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 8639 err += efunc(i, "unrecognized variable scope %d\n", 8640 v->dtdv_scope); 8641 break; 8642 } 8643 8644 if (v->dtdv_kind != DIFV_KIND_ARRAY && 8645 v->dtdv_kind != DIFV_KIND_SCALAR) { 8646 err += efunc(i, "unrecognized variable type %d\n", 8647 v->dtdv_kind); 8648 break; 8649 } 8650 8651 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 8652 err += efunc(i, "%d exceeds variable id limit\n", id); 8653 break; 8654 } 8655 8656 if (id < DIF_VAR_OTHER_UBASE) 8657 continue; 8658 8659 /* 8660 * For user-defined variables, we need to check that this 8661 * definition is identical to any previous definition that we 8662 * encountered. 8663 */ 8664 ndx = id - DIF_VAR_OTHER_UBASE; 8665 8666 switch (v->dtdv_scope) { 8667 case DIFV_SCOPE_GLOBAL: 8668 if (ndx < vstate->dtvs_nglobals) { 8669 dtrace_statvar_t *svar; 8670 8671 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 8672 existing = &svar->dtsv_var; 8673 } 8674 8675 break; 8676 8677 case DIFV_SCOPE_THREAD: 8678 if (ndx < vstate->dtvs_ntlocals) 8679 existing = &vstate->dtvs_tlocals[ndx]; 8680 break; 8681 8682 case DIFV_SCOPE_LOCAL: 8683 if (ndx < vstate->dtvs_nlocals) { 8684 dtrace_statvar_t *svar; 8685 8686 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 8687 existing = &svar->dtsv_var; 8688 } 8689 8690 break; 8691 } 8692 8693 vt = &v->dtdv_type; 8694 8695 if (vt->dtdt_flags & DIF_TF_BYREF) { 8696 if (vt->dtdt_size == 0) { 8697 err += efunc(i, "zero-sized variable\n"); 8698 break; 8699 } 8700 8701 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 8702 vt->dtdt_size > dtrace_global_maxsize) { 8703 err += efunc(i, "oversized by-ref global\n"); 8704 break; 8705 } 8706 } 8707 8708 if (existing == NULL || existing->dtdv_id == 0) 8709 continue; 8710 8711 ASSERT(existing->dtdv_id == v->dtdv_id); 8712 ASSERT(existing->dtdv_scope == v->dtdv_scope); 8713 8714 if (existing->dtdv_kind != v->dtdv_kind) 8715 err += efunc(i, "%d changed variable kind\n", id); 8716 8717 et = &existing->dtdv_type; 8718 8719 if (vt->dtdt_flags != et->dtdt_flags) { 8720 err += efunc(i, "%d changed variable type flags\n", id); 8721 break; 8722 } 8723 8724 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 8725 err += efunc(i, "%d changed variable type size\n", id); 8726 break; 8727 } 8728 } 8729 8730 return (err); 8731 } 8732 8733 /* 8734 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 8735 * are much more constrained than normal DIFOs. Specifically, they may 8736 * not: 8737 * 8738 * 1. Make calls to subroutines other than copyin(), copyinstr() or 8739 * miscellaneous string routines 8740 * 2. Access DTrace variables other than the args[] array, and the 8741 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 8742 * 3. Have thread-local variables. 8743 * 4. Have dynamic variables. 8744 */ 8745 static int 8746 dtrace_difo_validate_helper(dtrace_difo_t *dp) 8747 { 8748 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8749 int err = 0; 8750 uint_t pc; 8751 8752 for (pc = 0; pc < dp->dtdo_len; pc++) { 8753 dif_instr_t instr = dp->dtdo_buf[pc]; 8754 8755 uint_t v = DIF_INSTR_VAR(instr); 8756 uint_t subr = DIF_INSTR_SUBR(instr); 8757 uint_t op = DIF_INSTR_OP(instr); 8758 8759 switch (op) { 8760 case DIF_OP_OR: 8761 case DIF_OP_XOR: 8762 case DIF_OP_AND: 8763 case DIF_OP_SLL: 8764 case DIF_OP_SRL: 8765 case DIF_OP_SRA: 8766 case DIF_OP_SUB: 8767 case DIF_OP_ADD: 8768 case DIF_OP_MUL: 8769 case DIF_OP_SDIV: 8770 case DIF_OP_UDIV: 8771 case DIF_OP_SREM: 8772 case DIF_OP_UREM: 8773 case DIF_OP_COPYS: 8774 case DIF_OP_NOT: 8775 case DIF_OP_MOV: 8776 case DIF_OP_RLDSB: 8777 case DIF_OP_RLDSH: 8778 case DIF_OP_RLDSW: 8779 case DIF_OP_RLDUB: 8780 case DIF_OP_RLDUH: 8781 case DIF_OP_RLDUW: 8782 case DIF_OP_RLDX: 8783 case DIF_OP_ULDSB: 8784 case DIF_OP_ULDSH: 8785 case DIF_OP_ULDSW: 8786 case DIF_OP_ULDUB: 8787 case DIF_OP_ULDUH: 8788 case DIF_OP_ULDUW: 8789 case DIF_OP_ULDX: 8790 case DIF_OP_STB: 8791 case DIF_OP_STH: 8792 case DIF_OP_STW: 8793 case DIF_OP_STX: 8794 case DIF_OP_ALLOCS: 8795 case DIF_OP_CMP: 8796 case DIF_OP_SCMP: 8797 case DIF_OP_TST: 8798 case DIF_OP_BA: 8799 case DIF_OP_BE: 8800 case DIF_OP_BNE: 8801 case DIF_OP_BG: 8802 case DIF_OP_BGU: 8803 case DIF_OP_BGE: 8804 case DIF_OP_BGEU: 8805 case DIF_OP_BL: 8806 case DIF_OP_BLU: 8807 case DIF_OP_BLE: 8808 case DIF_OP_BLEU: 8809 case DIF_OP_RET: 8810 case DIF_OP_NOP: 8811 case DIF_OP_POPTS: 8812 case DIF_OP_FLUSHTS: 8813 case DIF_OP_SETX: 8814 case DIF_OP_SETS: 8815 case DIF_OP_LDGA: 8816 case DIF_OP_LDLS: 8817 case DIF_OP_STGS: 8818 case DIF_OP_STLS: 8819 case DIF_OP_PUSHTR: 8820 case DIF_OP_PUSHTV: 8821 break; 8822 8823 case DIF_OP_LDGS: 8824 if (v >= DIF_VAR_OTHER_UBASE) 8825 break; 8826 8827 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 8828 break; 8829 8830 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 8831 v == DIF_VAR_PPID || v == DIF_VAR_TID || 8832 v == DIF_VAR_EXECARGS || 8833 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 8834 v == DIF_VAR_UID || v == DIF_VAR_GID) 8835 break; 8836 8837 err += efunc(pc, "illegal variable %u\n", v); 8838 break; 8839 8840 case DIF_OP_LDTA: 8841 case DIF_OP_LDTS: 8842 case DIF_OP_LDGAA: 8843 case DIF_OP_LDTAA: 8844 err += efunc(pc, "illegal dynamic variable load\n"); 8845 break; 8846 8847 case DIF_OP_STTS: 8848 case DIF_OP_STGAA: 8849 case DIF_OP_STTAA: 8850 err += efunc(pc, "illegal dynamic variable store\n"); 8851 break; 8852 8853 case DIF_OP_CALL: 8854 if (subr == DIF_SUBR_ALLOCA || 8855 subr == DIF_SUBR_BCOPY || 8856 subr == DIF_SUBR_COPYIN || 8857 subr == DIF_SUBR_COPYINTO || 8858 subr == DIF_SUBR_COPYINSTR || 8859 subr == DIF_SUBR_INDEX || 8860 subr == DIF_SUBR_INET_NTOA || 8861 subr == DIF_SUBR_INET_NTOA6 || 8862 subr == DIF_SUBR_INET_NTOP || 8863 subr == DIF_SUBR_LLTOSTR || 8864 subr == DIF_SUBR_RINDEX || 8865 subr == DIF_SUBR_STRCHR || 8866 subr == DIF_SUBR_STRJOIN || 8867 subr == DIF_SUBR_STRRCHR || 8868 subr == DIF_SUBR_STRSTR || 8869 subr == DIF_SUBR_HTONS || 8870 subr == DIF_SUBR_HTONL || 8871 subr == DIF_SUBR_HTONLL || 8872 subr == DIF_SUBR_NTOHS || 8873 subr == DIF_SUBR_NTOHL || 8874 subr == DIF_SUBR_NTOHLL || 8875 subr == DIF_SUBR_MEMREF || 8876 subr == DIF_SUBR_TYPEREF) 8877 break; 8878 8879 err += efunc(pc, "invalid subr %u\n", subr); 8880 break; 8881 8882 default: 8883 err += efunc(pc, "invalid opcode %u\n", 8884 DIF_INSTR_OP(instr)); 8885 } 8886 } 8887 8888 return (err); 8889 } 8890 8891 /* 8892 * Returns 1 if the expression in the DIF object can be cached on a per-thread 8893 * basis; 0 if not. 8894 */ 8895 static int 8896 dtrace_difo_cacheable(dtrace_difo_t *dp) 8897 { 8898 int i; 8899 8900 if (dp == NULL) 8901 return (0); 8902 8903 for (i = 0; i < dp->dtdo_varlen; i++) { 8904 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8905 8906 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 8907 continue; 8908 8909 switch (v->dtdv_id) { 8910 case DIF_VAR_CURTHREAD: 8911 case DIF_VAR_PID: 8912 case DIF_VAR_TID: 8913 case DIF_VAR_EXECARGS: 8914 case DIF_VAR_EXECNAME: 8915 case DIF_VAR_ZONENAME: 8916 break; 8917 8918 default: 8919 return (0); 8920 } 8921 } 8922 8923 /* 8924 * This DIF object may be cacheable. Now we need to look for any 8925 * array loading instructions, any memory loading instructions, or 8926 * any stores to thread-local variables. 8927 */ 8928 for (i = 0; i < dp->dtdo_len; i++) { 8929 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 8930 8931 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 8932 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 8933 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 8934 op == DIF_OP_LDGA || op == DIF_OP_STTS) 8935 return (0); 8936 } 8937 8938 return (1); 8939 } 8940 8941 static void 8942 dtrace_difo_hold(dtrace_difo_t *dp) 8943 { 8944 int i; 8945 8946 ASSERT(MUTEX_HELD(&dtrace_lock)); 8947 8948 dp->dtdo_refcnt++; 8949 ASSERT(dp->dtdo_refcnt != 0); 8950 8951 /* 8952 * We need to check this DIF object for references to the variable 8953 * DIF_VAR_VTIMESTAMP. 8954 */ 8955 for (i = 0; i < dp->dtdo_varlen; i++) { 8956 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8957 8958 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8959 continue; 8960 8961 if (dtrace_vtime_references++ == 0) 8962 dtrace_vtime_enable(); 8963 } 8964 } 8965 8966 /* 8967 * This routine calculates the dynamic variable chunksize for a given DIF 8968 * object. The calculation is not fool-proof, and can probably be tricked by 8969 * malicious DIF -- but it works for all compiler-generated DIF. Because this 8970 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 8971 * if a dynamic variable size exceeds the chunksize. 8972 */ 8973 static void 8974 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8975 { 8976 uint64_t sval = 0; 8977 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 8978 const dif_instr_t *text = dp->dtdo_buf; 8979 uint_t pc, srd = 0; 8980 uint_t ttop = 0; 8981 size_t size, ksize; 8982 uint_t id, i; 8983 8984 for (pc = 0; pc < dp->dtdo_len; pc++) { 8985 dif_instr_t instr = text[pc]; 8986 uint_t op = DIF_INSTR_OP(instr); 8987 uint_t rd = DIF_INSTR_RD(instr); 8988 uint_t r1 = DIF_INSTR_R1(instr); 8989 uint_t nkeys = 0; 8990 uchar_t scope = 0; 8991 8992 dtrace_key_t *key = tupregs; 8993 8994 switch (op) { 8995 case DIF_OP_SETX: 8996 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 8997 srd = rd; 8998 continue; 8999 9000 case DIF_OP_STTS: 9001 key = &tupregs[DIF_DTR_NREGS]; 9002 key[0].dttk_size = 0; 9003 key[1].dttk_size = 0; 9004 nkeys = 2; 9005 scope = DIFV_SCOPE_THREAD; 9006 break; 9007 9008 case DIF_OP_STGAA: 9009 case DIF_OP_STTAA: 9010 nkeys = ttop; 9011 9012 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 9013 key[nkeys++].dttk_size = 0; 9014 9015 key[nkeys++].dttk_size = 0; 9016 9017 if (op == DIF_OP_STTAA) { 9018 scope = DIFV_SCOPE_THREAD; 9019 } else { 9020 scope = DIFV_SCOPE_GLOBAL; 9021 } 9022 9023 break; 9024 9025 case DIF_OP_PUSHTR: 9026 if (ttop == DIF_DTR_NREGS) 9027 return; 9028 9029 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 9030 /* 9031 * If the register for the size of the "pushtr" 9032 * is %r0 (or the value is 0) and the type is 9033 * a string, we'll use the system-wide default 9034 * string size. 9035 */ 9036 tupregs[ttop++].dttk_size = 9037 dtrace_strsize_default; 9038 } else { 9039 if (srd == 0) 9040 return; 9041 9042 tupregs[ttop++].dttk_size = sval; 9043 } 9044 9045 break; 9046 9047 case DIF_OP_PUSHTV: 9048 if (ttop == DIF_DTR_NREGS) 9049 return; 9050 9051 tupregs[ttop++].dttk_size = 0; 9052 break; 9053 9054 case DIF_OP_FLUSHTS: 9055 ttop = 0; 9056 break; 9057 9058 case DIF_OP_POPTS: 9059 if (ttop != 0) 9060 ttop--; 9061 break; 9062 } 9063 9064 sval = 0; 9065 srd = 0; 9066 9067 if (nkeys == 0) 9068 continue; 9069 9070 /* 9071 * We have a dynamic variable allocation; calculate its size. 9072 */ 9073 for (ksize = 0, i = 0; i < nkeys; i++) 9074 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 9075 9076 size = sizeof (dtrace_dynvar_t); 9077 size += sizeof (dtrace_key_t) * (nkeys - 1); 9078 size += ksize; 9079 9080 /* 9081 * Now we need to determine the size of the stored data. 9082 */ 9083 id = DIF_INSTR_VAR(instr); 9084 9085 for (i = 0; i < dp->dtdo_varlen; i++) { 9086 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9087 9088 if (v->dtdv_id == id && v->dtdv_scope == scope) { 9089 size += v->dtdv_type.dtdt_size; 9090 break; 9091 } 9092 } 9093 9094 if (i == dp->dtdo_varlen) 9095 return; 9096 9097 /* 9098 * We have the size. If this is larger than the chunk size 9099 * for our dynamic variable state, reset the chunk size. 9100 */ 9101 size = P2ROUNDUP(size, sizeof (uint64_t)); 9102 9103 if (size > vstate->dtvs_dynvars.dtds_chunksize) 9104 vstate->dtvs_dynvars.dtds_chunksize = size; 9105 } 9106 } 9107 9108 static void 9109 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9110 { 9111 int i, oldsvars, osz, nsz, otlocals, ntlocals; 9112 uint_t id; 9113 9114 ASSERT(MUTEX_HELD(&dtrace_lock)); 9115 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 9116 9117 for (i = 0; i < dp->dtdo_varlen; i++) { 9118 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9119 dtrace_statvar_t *svar, ***svarp = NULL; 9120 size_t dsize = 0; 9121 uint8_t scope = v->dtdv_scope; 9122 int *np = NULL; 9123 9124 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9125 continue; 9126 9127 id -= DIF_VAR_OTHER_UBASE; 9128 9129 switch (scope) { 9130 case DIFV_SCOPE_THREAD: 9131 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 9132 dtrace_difv_t *tlocals; 9133 9134 if ((ntlocals = (otlocals << 1)) == 0) 9135 ntlocals = 1; 9136 9137 osz = otlocals * sizeof (dtrace_difv_t); 9138 nsz = ntlocals * sizeof (dtrace_difv_t); 9139 9140 tlocals = kmem_zalloc(nsz, KM_SLEEP); 9141 9142 if (osz != 0) { 9143 bcopy(vstate->dtvs_tlocals, 9144 tlocals, osz); 9145 kmem_free(vstate->dtvs_tlocals, osz); 9146 } 9147 9148 vstate->dtvs_tlocals = tlocals; 9149 vstate->dtvs_ntlocals = ntlocals; 9150 } 9151 9152 vstate->dtvs_tlocals[id] = *v; 9153 continue; 9154 9155 case DIFV_SCOPE_LOCAL: 9156 np = &vstate->dtvs_nlocals; 9157 svarp = &vstate->dtvs_locals; 9158 9159 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9160 dsize = NCPU * (v->dtdv_type.dtdt_size + 9161 sizeof (uint64_t)); 9162 else 9163 dsize = NCPU * sizeof (uint64_t); 9164 9165 break; 9166 9167 case DIFV_SCOPE_GLOBAL: 9168 np = &vstate->dtvs_nglobals; 9169 svarp = &vstate->dtvs_globals; 9170 9171 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9172 dsize = v->dtdv_type.dtdt_size + 9173 sizeof (uint64_t); 9174 9175 break; 9176 9177 default: 9178 ASSERT(0); 9179 } 9180 9181 while (id >= (oldsvars = *np)) { 9182 dtrace_statvar_t **statics; 9183 int newsvars, oldsize, newsize; 9184 9185 if ((newsvars = (oldsvars << 1)) == 0) 9186 newsvars = 1; 9187 9188 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 9189 newsize = newsvars * sizeof (dtrace_statvar_t *); 9190 9191 statics = kmem_zalloc(newsize, KM_SLEEP); 9192 9193 if (oldsize != 0) { 9194 bcopy(*svarp, statics, oldsize); 9195 kmem_free(*svarp, oldsize); 9196 } 9197 9198 *svarp = statics; 9199 *np = newsvars; 9200 } 9201 9202 if ((svar = (*svarp)[id]) == NULL) { 9203 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 9204 svar->dtsv_var = *v; 9205 9206 if ((svar->dtsv_size = dsize) != 0) { 9207 svar->dtsv_data = (uint64_t)(uintptr_t) 9208 kmem_zalloc(dsize, KM_SLEEP); 9209 } 9210 9211 (*svarp)[id] = svar; 9212 } 9213 9214 svar->dtsv_refcnt++; 9215 } 9216 9217 dtrace_difo_chunksize(dp, vstate); 9218 dtrace_difo_hold(dp); 9219 } 9220 9221 static dtrace_difo_t * 9222 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9223 { 9224 dtrace_difo_t *new; 9225 size_t sz; 9226 9227 ASSERT(dp->dtdo_buf != NULL); 9228 ASSERT(dp->dtdo_refcnt != 0); 9229 9230 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 9231 9232 ASSERT(dp->dtdo_buf != NULL); 9233 sz = dp->dtdo_len * sizeof (dif_instr_t); 9234 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 9235 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 9236 new->dtdo_len = dp->dtdo_len; 9237 9238 if (dp->dtdo_strtab != NULL) { 9239 ASSERT(dp->dtdo_strlen != 0); 9240 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 9241 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 9242 new->dtdo_strlen = dp->dtdo_strlen; 9243 } 9244 9245 if (dp->dtdo_inttab != NULL) { 9246 ASSERT(dp->dtdo_intlen != 0); 9247 sz = dp->dtdo_intlen * sizeof (uint64_t); 9248 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 9249 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 9250 new->dtdo_intlen = dp->dtdo_intlen; 9251 } 9252 9253 if (dp->dtdo_vartab != NULL) { 9254 ASSERT(dp->dtdo_varlen != 0); 9255 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 9256 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 9257 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 9258 new->dtdo_varlen = dp->dtdo_varlen; 9259 } 9260 9261 dtrace_difo_init(new, vstate); 9262 return (new); 9263 } 9264 9265 static void 9266 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9267 { 9268 int i; 9269 9270 ASSERT(dp->dtdo_refcnt == 0); 9271 9272 for (i = 0; i < dp->dtdo_varlen; i++) { 9273 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9274 dtrace_statvar_t *svar, **svarp = NULL; 9275 uint_t id; 9276 uint8_t scope = v->dtdv_scope; 9277 int *np = NULL; 9278 9279 switch (scope) { 9280 case DIFV_SCOPE_THREAD: 9281 continue; 9282 9283 case DIFV_SCOPE_LOCAL: 9284 np = &vstate->dtvs_nlocals; 9285 svarp = vstate->dtvs_locals; 9286 break; 9287 9288 case DIFV_SCOPE_GLOBAL: 9289 np = &vstate->dtvs_nglobals; 9290 svarp = vstate->dtvs_globals; 9291 break; 9292 9293 default: 9294 ASSERT(0); 9295 } 9296 9297 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9298 continue; 9299 9300 id -= DIF_VAR_OTHER_UBASE; 9301 ASSERT(id < *np); 9302 9303 svar = svarp[id]; 9304 ASSERT(svar != NULL); 9305 ASSERT(svar->dtsv_refcnt > 0); 9306 9307 if (--svar->dtsv_refcnt > 0) 9308 continue; 9309 9310 if (svar->dtsv_size != 0) { 9311 ASSERT(svar->dtsv_data != 0); 9312 kmem_free((void *)(uintptr_t)svar->dtsv_data, 9313 svar->dtsv_size); 9314 } 9315 9316 kmem_free(svar, sizeof (dtrace_statvar_t)); 9317 svarp[id] = NULL; 9318 } 9319 9320 if (dp->dtdo_buf != NULL) 9321 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 9322 if (dp->dtdo_inttab != NULL) 9323 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 9324 if (dp->dtdo_strtab != NULL) 9325 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 9326 if (dp->dtdo_vartab != NULL) 9327 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 9328 9329 kmem_free(dp, sizeof (dtrace_difo_t)); 9330 } 9331 9332 static void 9333 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9334 { 9335 int i; 9336 9337 ASSERT(MUTEX_HELD(&dtrace_lock)); 9338 ASSERT(dp->dtdo_refcnt != 0); 9339 9340 for (i = 0; i < dp->dtdo_varlen; i++) { 9341 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9342 9343 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9344 continue; 9345 9346 ASSERT(dtrace_vtime_references > 0); 9347 if (--dtrace_vtime_references == 0) 9348 dtrace_vtime_disable(); 9349 } 9350 9351 if (--dp->dtdo_refcnt == 0) 9352 dtrace_difo_destroy(dp, vstate); 9353 } 9354 9355 /* 9356 * DTrace Format Functions 9357 */ 9358 static uint16_t 9359 dtrace_format_add(dtrace_state_t *state, char *str) 9360 { 9361 char *fmt, **new; 9362 uint16_t ndx, len = strlen(str) + 1; 9363 9364 fmt = kmem_zalloc(len, KM_SLEEP); 9365 bcopy(str, fmt, len); 9366 9367 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 9368 if (state->dts_formats[ndx] == NULL) { 9369 state->dts_formats[ndx] = fmt; 9370 return (ndx + 1); 9371 } 9372 } 9373 9374 if (state->dts_nformats == USHRT_MAX) { 9375 /* 9376 * This is only likely if a denial-of-service attack is being 9377 * attempted. As such, it's okay to fail silently here. 9378 */ 9379 kmem_free(fmt, len); 9380 return (0); 9381 } 9382 9383 /* 9384 * For simplicity, we always resize the formats array to be exactly the 9385 * number of formats. 9386 */ 9387 ndx = state->dts_nformats++; 9388 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 9389 9390 if (state->dts_formats != NULL) { 9391 ASSERT(ndx != 0); 9392 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 9393 kmem_free(state->dts_formats, ndx * sizeof (char *)); 9394 } 9395 9396 state->dts_formats = new; 9397 state->dts_formats[ndx] = fmt; 9398 9399 return (ndx + 1); 9400 } 9401 9402 static void 9403 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 9404 { 9405 char *fmt; 9406 9407 ASSERT(state->dts_formats != NULL); 9408 ASSERT(format <= state->dts_nformats); 9409 ASSERT(state->dts_formats[format - 1] != NULL); 9410 9411 fmt = state->dts_formats[format - 1]; 9412 kmem_free(fmt, strlen(fmt) + 1); 9413 state->dts_formats[format - 1] = NULL; 9414 } 9415 9416 static void 9417 dtrace_format_destroy(dtrace_state_t *state) 9418 { 9419 int i; 9420 9421 if (state->dts_nformats == 0) { 9422 ASSERT(state->dts_formats == NULL); 9423 return; 9424 } 9425 9426 ASSERT(state->dts_formats != NULL); 9427 9428 for (i = 0; i < state->dts_nformats; i++) { 9429 char *fmt = state->dts_formats[i]; 9430 9431 if (fmt == NULL) 9432 continue; 9433 9434 kmem_free(fmt, strlen(fmt) + 1); 9435 } 9436 9437 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 9438 state->dts_nformats = 0; 9439 state->dts_formats = NULL; 9440 } 9441 9442 /* 9443 * DTrace Predicate Functions 9444 */ 9445 static dtrace_predicate_t * 9446 dtrace_predicate_create(dtrace_difo_t *dp) 9447 { 9448 dtrace_predicate_t *pred; 9449 9450 ASSERT(MUTEX_HELD(&dtrace_lock)); 9451 ASSERT(dp->dtdo_refcnt != 0); 9452 9453 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 9454 pred->dtp_difo = dp; 9455 pred->dtp_refcnt = 1; 9456 9457 if (!dtrace_difo_cacheable(dp)) 9458 return (pred); 9459 9460 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 9461 /* 9462 * This is only theoretically possible -- we have had 2^32 9463 * cacheable predicates on this machine. We cannot allow any 9464 * more predicates to become cacheable: as unlikely as it is, 9465 * there may be a thread caching a (now stale) predicate cache 9466 * ID. (N.B.: the temptation is being successfully resisted to 9467 * have this cmn_err() "Holy shit -- we executed this code!") 9468 */ 9469 return (pred); 9470 } 9471 9472 pred->dtp_cacheid = dtrace_predcache_id++; 9473 9474 return (pred); 9475 } 9476 9477 static void 9478 dtrace_predicate_hold(dtrace_predicate_t *pred) 9479 { 9480 ASSERT(MUTEX_HELD(&dtrace_lock)); 9481 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 9482 ASSERT(pred->dtp_refcnt > 0); 9483 9484 pred->dtp_refcnt++; 9485 } 9486 9487 static void 9488 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 9489 { 9490 dtrace_difo_t *dp = pred->dtp_difo; 9491 9492 ASSERT(MUTEX_HELD(&dtrace_lock)); 9493 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 9494 ASSERT(pred->dtp_refcnt > 0); 9495 9496 if (--pred->dtp_refcnt == 0) { 9497 dtrace_difo_release(pred->dtp_difo, vstate); 9498 kmem_free(pred, sizeof (dtrace_predicate_t)); 9499 } 9500 } 9501 9502 /* 9503 * DTrace Action Description Functions 9504 */ 9505 static dtrace_actdesc_t * 9506 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 9507 uint64_t uarg, uint64_t arg) 9508 { 9509 dtrace_actdesc_t *act; 9510 9511 #if defined(sun) 9512 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 9513 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 9514 #endif 9515 9516 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 9517 act->dtad_kind = kind; 9518 act->dtad_ntuple = ntuple; 9519 act->dtad_uarg = uarg; 9520 act->dtad_arg = arg; 9521 act->dtad_refcnt = 1; 9522 9523 return (act); 9524 } 9525 9526 static void 9527 dtrace_actdesc_hold(dtrace_actdesc_t *act) 9528 { 9529 ASSERT(act->dtad_refcnt >= 1); 9530 act->dtad_refcnt++; 9531 } 9532 9533 static void 9534 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 9535 { 9536 dtrace_actkind_t kind = act->dtad_kind; 9537 dtrace_difo_t *dp; 9538 9539 ASSERT(act->dtad_refcnt >= 1); 9540 9541 if (--act->dtad_refcnt != 0) 9542 return; 9543 9544 if ((dp = act->dtad_difo) != NULL) 9545 dtrace_difo_release(dp, vstate); 9546 9547 if (DTRACEACT_ISPRINTFLIKE(kind)) { 9548 char *str = (char *)(uintptr_t)act->dtad_arg; 9549 9550 #if defined(sun) 9551 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 9552 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 9553 #endif 9554 9555 if (str != NULL) 9556 kmem_free(str, strlen(str) + 1); 9557 } 9558 9559 kmem_free(act, sizeof (dtrace_actdesc_t)); 9560 } 9561 9562 /* 9563 * DTrace ECB Functions 9564 */ 9565 static dtrace_ecb_t * 9566 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 9567 { 9568 dtrace_ecb_t *ecb; 9569 dtrace_epid_t epid; 9570 9571 ASSERT(MUTEX_HELD(&dtrace_lock)); 9572 9573 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 9574 ecb->dte_predicate = NULL; 9575 ecb->dte_probe = probe; 9576 9577 /* 9578 * The default size is the size of the default action: recording 9579 * the epid. 9580 */ 9581 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9582 ecb->dte_alignment = sizeof (dtrace_epid_t); 9583 9584 epid = state->dts_epid++; 9585 9586 if (epid - 1 >= state->dts_necbs) { 9587 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 9588 int necbs = state->dts_necbs << 1; 9589 9590 ASSERT(epid == state->dts_necbs + 1); 9591 9592 if (necbs == 0) { 9593 ASSERT(oecbs == NULL); 9594 necbs = 1; 9595 } 9596 9597 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 9598 9599 if (oecbs != NULL) 9600 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 9601 9602 dtrace_membar_producer(); 9603 state->dts_ecbs = ecbs; 9604 9605 if (oecbs != NULL) { 9606 /* 9607 * If this state is active, we must dtrace_sync() 9608 * before we can free the old dts_ecbs array: we're 9609 * coming in hot, and there may be active ring 9610 * buffer processing (which indexes into the dts_ecbs 9611 * array) on another CPU. 9612 */ 9613 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 9614 dtrace_sync(); 9615 9616 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 9617 } 9618 9619 dtrace_membar_producer(); 9620 state->dts_necbs = necbs; 9621 } 9622 9623 ecb->dte_state = state; 9624 9625 ASSERT(state->dts_ecbs[epid - 1] == NULL); 9626 dtrace_membar_producer(); 9627 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 9628 9629 return (ecb); 9630 } 9631 9632 static void 9633 dtrace_ecb_enable(dtrace_ecb_t *ecb) 9634 { 9635 dtrace_probe_t *probe = ecb->dte_probe; 9636 9637 ASSERT(MUTEX_HELD(&cpu_lock)); 9638 ASSERT(MUTEX_HELD(&dtrace_lock)); 9639 ASSERT(ecb->dte_next == NULL); 9640 9641 if (probe == NULL) { 9642 /* 9643 * This is the NULL probe -- there's nothing to do. 9644 */ 9645 return; 9646 } 9647 9648 if (probe->dtpr_ecb == NULL) { 9649 dtrace_provider_t *prov = probe->dtpr_provider; 9650 9651 /* 9652 * We're the first ECB on this probe. 9653 */ 9654 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 9655 9656 if (ecb->dte_predicate != NULL) 9657 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 9658 9659 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 9660 probe->dtpr_id, probe->dtpr_arg); 9661 } else { 9662 /* 9663 * This probe is already active. Swing the last pointer to 9664 * point to the new ECB, and issue a dtrace_sync() to assure 9665 * that all CPUs have seen the change. 9666 */ 9667 ASSERT(probe->dtpr_ecb_last != NULL); 9668 probe->dtpr_ecb_last->dte_next = ecb; 9669 probe->dtpr_ecb_last = ecb; 9670 probe->dtpr_predcache = 0; 9671 9672 dtrace_sync(); 9673 } 9674 } 9675 9676 static void 9677 dtrace_ecb_resize(dtrace_ecb_t *ecb) 9678 { 9679 uint32_t maxalign = sizeof (dtrace_epid_t); 9680 uint32_t align = sizeof (uint8_t), offs, diff; 9681 dtrace_action_t *act; 9682 int wastuple = 0; 9683 uint32_t aggbase = UINT32_MAX; 9684 dtrace_state_t *state = ecb->dte_state; 9685 9686 /* 9687 * If we record anything, we always record the epid. (And we always 9688 * record it first.) 9689 */ 9690 offs = sizeof (dtrace_epid_t); 9691 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9692 9693 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9694 dtrace_recdesc_t *rec = &act->dta_rec; 9695 9696 if ((align = rec->dtrd_alignment) > maxalign) 9697 maxalign = align; 9698 9699 if (!wastuple && act->dta_intuple) { 9700 /* 9701 * This is the first record in a tuple. Align the 9702 * offset to be at offset 4 in an 8-byte aligned 9703 * block. 9704 */ 9705 diff = offs + sizeof (dtrace_aggid_t); 9706 9707 if ((diff = (diff & (sizeof (uint64_t) - 1)))) 9708 offs += sizeof (uint64_t) - diff; 9709 9710 aggbase = offs - sizeof (dtrace_aggid_t); 9711 ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); 9712 } 9713 9714 /*LINTED*/ 9715 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { 9716 /* 9717 * The current offset is not properly aligned; align it. 9718 */ 9719 offs += align - diff; 9720 } 9721 9722 rec->dtrd_offset = offs; 9723 9724 if (offs + rec->dtrd_size > ecb->dte_needed) { 9725 ecb->dte_needed = offs + rec->dtrd_size; 9726 9727 if (ecb->dte_needed > state->dts_needed) 9728 state->dts_needed = ecb->dte_needed; 9729 } 9730 9731 if (DTRACEACT_ISAGG(act->dta_kind)) { 9732 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9733 dtrace_action_t *first = agg->dtag_first, *prev; 9734 9735 ASSERT(rec->dtrd_size != 0 && first != NULL); 9736 ASSERT(wastuple); 9737 ASSERT(aggbase != UINT32_MAX); 9738 9739 agg->dtag_base = aggbase; 9740 9741 while ((prev = first->dta_prev) != NULL && 9742 DTRACEACT_ISAGG(prev->dta_kind)) { 9743 agg = (dtrace_aggregation_t *)prev; 9744 first = agg->dtag_first; 9745 } 9746 9747 if (prev != NULL) { 9748 offs = prev->dta_rec.dtrd_offset + 9749 prev->dta_rec.dtrd_size; 9750 } else { 9751 offs = sizeof (dtrace_epid_t); 9752 } 9753 wastuple = 0; 9754 } else { 9755 if (!act->dta_intuple) 9756 ecb->dte_size = offs + rec->dtrd_size; 9757 9758 offs += rec->dtrd_size; 9759 } 9760 9761 wastuple = act->dta_intuple; 9762 } 9763 9764 if ((act = ecb->dte_action) != NULL && 9765 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 9766 ecb->dte_size == sizeof (dtrace_epid_t)) { 9767 /* 9768 * If the size is still sizeof (dtrace_epid_t), then all 9769 * actions store no data; set the size to 0. 9770 */ 9771 ecb->dte_alignment = maxalign; 9772 ecb->dte_size = 0; 9773 9774 /* 9775 * If the needed space is still sizeof (dtrace_epid_t), then 9776 * all actions need no additional space; set the needed 9777 * size to 0. 9778 */ 9779 if (ecb->dte_needed == sizeof (dtrace_epid_t)) 9780 ecb->dte_needed = 0; 9781 9782 return; 9783 } 9784 9785 /* 9786 * Set our alignment, and make sure that the dte_size and dte_needed 9787 * are aligned to the size of an EPID. 9788 */ 9789 ecb->dte_alignment = maxalign; 9790 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & 9791 ~(sizeof (dtrace_epid_t) - 1); 9792 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & 9793 ~(sizeof (dtrace_epid_t) - 1); 9794 ASSERT(ecb->dte_size <= ecb->dte_needed); 9795 } 9796 9797 static dtrace_action_t * 9798 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9799 { 9800 dtrace_aggregation_t *agg; 9801 size_t size = sizeof (uint64_t); 9802 int ntuple = desc->dtad_ntuple; 9803 dtrace_action_t *act; 9804 dtrace_recdesc_t *frec; 9805 dtrace_aggid_t aggid; 9806 dtrace_state_t *state = ecb->dte_state; 9807 9808 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 9809 agg->dtag_ecb = ecb; 9810 9811 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 9812 9813 switch (desc->dtad_kind) { 9814 case DTRACEAGG_MIN: 9815 agg->dtag_initial = INT64_MAX; 9816 agg->dtag_aggregate = dtrace_aggregate_min; 9817 break; 9818 9819 case DTRACEAGG_MAX: 9820 agg->dtag_initial = INT64_MIN; 9821 agg->dtag_aggregate = dtrace_aggregate_max; 9822 break; 9823 9824 case DTRACEAGG_COUNT: 9825 agg->dtag_aggregate = dtrace_aggregate_count; 9826 break; 9827 9828 case DTRACEAGG_QUANTIZE: 9829 agg->dtag_aggregate = dtrace_aggregate_quantize; 9830 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 9831 sizeof (uint64_t); 9832 break; 9833 9834 case DTRACEAGG_LQUANTIZE: { 9835 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 9836 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 9837 9838 agg->dtag_initial = desc->dtad_arg; 9839 agg->dtag_aggregate = dtrace_aggregate_lquantize; 9840 9841 if (step == 0 || levels == 0) 9842 goto err; 9843 9844 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 9845 break; 9846 } 9847 9848 case DTRACEAGG_AVG: 9849 agg->dtag_aggregate = dtrace_aggregate_avg; 9850 size = sizeof (uint64_t) * 2; 9851 break; 9852 9853 case DTRACEAGG_STDDEV: 9854 agg->dtag_aggregate = dtrace_aggregate_stddev; 9855 size = sizeof (uint64_t) * 4; 9856 break; 9857 9858 case DTRACEAGG_SUM: 9859 agg->dtag_aggregate = dtrace_aggregate_sum; 9860 break; 9861 9862 default: 9863 goto err; 9864 } 9865 9866 agg->dtag_action.dta_rec.dtrd_size = size; 9867 9868 if (ntuple == 0) 9869 goto err; 9870 9871 /* 9872 * We must make sure that we have enough actions for the n-tuple. 9873 */ 9874 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 9875 if (DTRACEACT_ISAGG(act->dta_kind)) 9876 break; 9877 9878 if (--ntuple == 0) { 9879 /* 9880 * This is the action with which our n-tuple begins. 9881 */ 9882 agg->dtag_first = act; 9883 goto success; 9884 } 9885 } 9886 9887 /* 9888 * This n-tuple is short by ntuple elements. Return failure. 9889 */ 9890 ASSERT(ntuple != 0); 9891 err: 9892 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9893 return (NULL); 9894 9895 success: 9896 /* 9897 * If the last action in the tuple has a size of zero, it's actually 9898 * an expression argument for the aggregating action. 9899 */ 9900 ASSERT(ecb->dte_action_last != NULL); 9901 act = ecb->dte_action_last; 9902 9903 if (act->dta_kind == DTRACEACT_DIFEXPR) { 9904 ASSERT(act->dta_difo != NULL); 9905 9906 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 9907 agg->dtag_hasarg = 1; 9908 } 9909 9910 /* 9911 * We need to allocate an id for this aggregation. 9912 */ 9913 #if defined(sun) 9914 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 9915 VM_BESTFIT | VM_SLEEP); 9916 #else 9917 aggid = alloc_unr(state->dts_aggid_arena); 9918 #endif 9919 9920 if (aggid - 1 >= state->dts_naggregations) { 9921 dtrace_aggregation_t **oaggs = state->dts_aggregations; 9922 dtrace_aggregation_t **aggs; 9923 int naggs = state->dts_naggregations << 1; 9924 int onaggs = state->dts_naggregations; 9925 9926 ASSERT(aggid == state->dts_naggregations + 1); 9927 9928 if (naggs == 0) { 9929 ASSERT(oaggs == NULL); 9930 naggs = 1; 9931 } 9932 9933 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 9934 9935 if (oaggs != NULL) { 9936 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 9937 kmem_free(oaggs, onaggs * sizeof (*aggs)); 9938 } 9939 9940 state->dts_aggregations = aggs; 9941 state->dts_naggregations = naggs; 9942 } 9943 9944 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 9945 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 9946 9947 frec = &agg->dtag_first->dta_rec; 9948 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 9949 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 9950 9951 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 9952 ASSERT(!act->dta_intuple); 9953 act->dta_intuple = 1; 9954 } 9955 9956 return (&agg->dtag_action); 9957 } 9958 9959 static void 9960 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 9961 { 9962 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9963 dtrace_state_t *state = ecb->dte_state; 9964 dtrace_aggid_t aggid = agg->dtag_id; 9965 9966 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 9967 #if defined(sun) 9968 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 9969 #else 9970 free_unr(state->dts_aggid_arena, aggid); 9971 #endif 9972 9973 ASSERT(state->dts_aggregations[aggid - 1] == agg); 9974 state->dts_aggregations[aggid - 1] = NULL; 9975 9976 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9977 } 9978 9979 static int 9980 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9981 { 9982 dtrace_action_t *action, *last; 9983 dtrace_difo_t *dp = desc->dtad_difo; 9984 uint32_t size = 0, align = sizeof (uint8_t), mask; 9985 uint16_t format = 0; 9986 dtrace_recdesc_t *rec; 9987 dtrace_state_t *state = ecb->dte_state; 9988 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize; 9989 uint64_t arg = desc->dtad_arg; 9990 9991 ASSERT(MUTEX_HELD(&dtrace_lock)); 9992 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 9993 9994 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 9995 /* 9996 * If this is an aggregating action, there must be neither 9997 * a speculate nor a commit on the action chain. 9998 */ 9999 dtrace_action_t *act; 10000 10001 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10002 if (act->dta_kind == DTRACEACT_COMMIT) 10003 return (EINVAL); 10004 10005 if (act->dta_kind == DTRACEACT_SPECULATE) 10006 return (EINVAL); 10007 } 10008 10009 action = dtrace_ecb_aggregation_create(ecb, desc); 10010 10011 if (action == NULL) 10012 return (EINVAL); 10013 } else { 10014 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 10015 (desc->dtad_kind == DTRACEACT_DIFEXPR && 10016 dp != NULL && dp->dtdo_destructive)) { 10017 state->dts_destructive = 1; 10018 } 10019 10020 switch (desc->dtad_kind) { 10021 case DTRACEACT_PRINTF: 10022 case DTRACEACT_PRINTA: 10023 case DTRACEACT_SYSTEM: 10024 case DTRACEACT_FREOPEN: 10025 /* 10026 * We know that our arg is a string -- turn it into a 10027 * format. 10028 */ 10029 if (arg == 0) { 10030 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA); 10031 format = 0; 10032 } else { 10033 ASSERT(arg != 0); 10034 #if defined(sun) 10035 ASSERT(arg > KERNELBASE); 10036 #endif 10037 format = dtrace_format_add(state, 10038 (char *)(uintptr_t)arg); 10039 } 10040 10041 /*FALLTHROUGH*/ 10042 case DTRACEACT_LIBACT: 10043 case DTRACEACT_DIFEXPR: 10044 if (dp == NULL) 10045 return (EINVAL); 10046 10047 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 10048 break; 10049 10050 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 10051 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10052 return (EINVAL); 10053 10054 size = opt[DTRACEOPT_STRSIZE]; 10055 } 10056 10057 break; 10058 10059 case DTRACEACT_STACK: 10060 if ((nframes = arg) == 0) { 10061 nframes = opt[DTRACEOPT_STACKFRAMES]; 10062 ASSERT(nframes > 0); 10063 arg = nframes; 10064 } 10065 10066 size = nframes * sizeof (pc_t); 10067 break; 10068 10069 case DTRACEACT_JSTACK: 10070 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 10071 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 10072 10073 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 10074 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 10075 10076 arg = DTRACE_USTACK_ARG(nframes, strsize); 10077 10078 /*FALLTHROUGH*/ 10079 case DTRACEACT_USTACK: 10080 if (desc->dtad_kind != DTRACEACT_JSTACK && 10081 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 10082 strsize = DTRACE_USTACK_STRSIZE(arg); 10083 nframes = opt[DTRACEOPT_USTACKFRAMES]; 10084 ASSERT(nframes > 0); 10085 arg = DTRACE_USTACK_ARG(nframes, strsize); 10086 } 10087 10088 /* 10089 * Save a slot for the pid. 10090 */ 10091 size = (nframes + 1) * sizeof (uint64_t); 10092 size += DTRACE_USTACK_STRSIZE(arg); 10093 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 10094 10095 break; 10096 10097 case DTRACEACT_SYM: 10098 case DTRACEACT_MOD: 10099 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 10100 sizeof (uint64_t)) || 10101 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10102 return (EINVAL); 10103 break; 10104 10105 case DTRACEACT_USYM: 10106 case DTRACEACT_UMOD: 10107 case DTRACEACT_UADDR: 10108 if (dp == NULL || 10109 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 10110 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10111 return (EINVAL); 10112 10113 /* 10114 * We have a slot for the pid, plus a slot for the 10115 * argument. To keep things simple (aligned with 10116 * bitness-neutral sizing), we store each as a 64-bit 10117 * quantity. 10118 */ 10119 size = 2 * sizeof (uint64_t); 10120 break; 10121 10122 case DTRACEACT_STOP: 10123 case DTRACEACT_BREAKPOINT: 10124 case DTRACEACT_PANIC: 10125 break; 10126 10127 case DTRACEACT_CHILL: 10128 case DTRACEACT_DISCARD: 10129 case DTRACEACT_RAISE: 10130 if (dp == NULL) 10131 return (EINVAL); 10132 break; 10133 10134 case DTRACEACT_EXIT: 10135 if (dp == NULL || 10136 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 10137 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10138 return (EINVAL); 10139 break; 10140 10141 case DTRACEACT_SPECULATE: 10142 if (ecb->dte_size > sizeof (dtrace_epid_t)) 10143 return (EINVAL); 10144 10145 if (dp == NULL) 10146 return (EINVAL); 10147 10148 state->dts_speculates = 1; 10149 break; 10150 10151 case DTRACEACT_PRINTM: 10152 size = dp->dtdo_rtype.dtdt_size; 10153 break; 10154 10155 case DTRACEACT_PRINTT: 10156 size = dp->dtdo_rtype.dtdt_size; 10157 break; 10158 10159 case DTRACEACT_COMMIT: { 10160 dtrace_action_t *act = ecb->dte_action; 10161 10162 for (; act != NULL; act = act->dta_next) { 10163 if (act->dta_kind == DTRACEACT_COMMIT) 10164 return (EINVAL); 10165 } 10166 10167 if (dp == NULL) 10168 return (EINVAL); 10169 break; 10170 } 10171 10172 default: 10173 return (EINVAL); 10174 } 10175 10176 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 10177 /* 10178 * If this is a data-storing action or a speculate, 10179 * we must be sure that there isn't a commit on the 10180 * action chain. 10181 */ 10182 dtrace_action_t *act = ecb->dte_action; 10183 10184 for (; act != NULL; act = act->dta_next) { 10185 if (act->dta_kind == DTRACEACT_COMMIT) 10186 return (EINVAL); 10187 } 10188 } 10189 10190 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 10191 action->dta_rec.dtrd_size = size; 10192 } 10193 10194 action->dta_refcnt = 1; 10195 rec = &action->dta_rec; 10196 size = rec->dtrd_size; 10197 10198 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 10199 if (!(size & mask)) { 10200 align = mask + 1; 10201 break; 10202 } 10203 } 10204 10205 action->dta_kind = desc->dtad_kind; 10206 10207 if ((action->dta_difo = dp) != NULL) 10208 dtrace_difo_hold(dp); 10209 10210 rec->dtrd_action = action->dta_kind; 10211 rec->dtrd_arg = arg; 10212 rec->dtrd_uarg = desc->dtad_uarg; 10213 rec->dtrd_alignment = (uint16_t)align; 10214 rec->dtrd_format = format; 10215 10216 if ((last = ecb->dte_action_last) != NULL) { 10217 ASSERT(ecb->dte_action != NULL); 10218 action->dta_prev = last; 10219 last->dta_next = action; 10220 } else { 10221 ASSERT(ecb->dte_action == NULL); 10222 ecb->dte_action = action; 10223 } 10224 10225 ecb->dte_action_last = action; 10226 10227 return (0); 10228 } 10229 10230 static void 10231 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 10232 { 10233 dtrace_action_t *act = ecb->dte_action, *next; 10234 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 10235 dtrace_difo_t *dp; 10236 uint16_t format; 10237 10238 if (act != NULL && act->dta_refcnt > 1) { 10239 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 10240 act->dta_refcnt--; 10241 } else { 10242 for (; act != NULL; act = next) { 10243 next = act->dta_next; 10244 ASSERT(next != NULL || act == ecb->dte_action_last); 10245 ASSERT(act->dta_refcnt == 1); 10246 10247 if ((format = act->dta_rec.dtrd_format) != 0) 10248 dtrace_format_remove(ecb->dte_state, format); 10249 10250 if ((dp = act->dta_difo) != NULL) 10251 dtrace_difo_release(dp, vstate); 10252 10253 if (DTRACEACT_ISAGG(act->dta_kind)) { 10254 dtrace_ecb_aggregation_destroy(ecb, act); 10255 } else { 10256 kmem_free(act, sizeof (dtrace_action_t)); 10257 } 10258 } 10259 } 10260 10261 ecb->dte_action = NULL; 10262 ecb->dte_action_last = NULL; 10263 ecb->dte_size = sizeof (dtrace_epid_t); 10264 } 10265 10266 static void 10267 dtrace_ecb_disable(dtrace_ecb_t *ecb) 10268 { 10269 /* 10270 * We disable the ECB by removing it from its probe. 10271 */ 10272 dtrace_ecb_t *pecb, *prev = NULL; 10273 dtrace_probe_t *probe = ecb->dte_probe; 10274 10275 ASSERT(MUTEX_HELD(&dtrace_lock)); 10276 10277 if (probe == NULL) { 10278 /* 10279 * This is the NULL probe; there is nothing to disable. 10280 */ 10281 return; 10282 } 10283 10284 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 10285 if (pecb == ecb) 10286 break; 10287 prev = pecb; 10288 } 10289 10290 ASSERT(pecb != NULL); 10291 10292 if (prev == NULL) { 10293 probe->dtpr_ecb = ecb->dte_next; 10294 } else { 10295 prev->dte_next = ecb->dte_next; 10296 } 10297 10298 if (ecb == probe->dtpr_ecb_last) { 10299 ASSERT(ecb->dte_next == NULL); 10300 probe->dtpr_ecb_last = prev; 10301 } 10302 10303 /* 10304 * The ECB has been disconnected from the probe; now sync to assure 10305 * that all CPUs have seen the change before returning. 10306 */ 10307 dtrace_sync(); 10308 10309 if (probe->dtpr_ecb == NULL) { 10310 /* 10311 * That was the last ECB on the probe; clear the predicate 10312 * cache ID for the probe, disable it and sync one more time 10313 * to assure that we'll never hit it again. 10314 */ 10315 dtrace_provider_t *prov = probe->dtpr_provider; 10316 10317 ASSERT(ecb->dte_next == NULL); 10318 ASSERT(probe->dtpr_ecb_last == NULL); 10319 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 10320 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 10321 probe->dtpr_id, probe->dtpr_arg); 10322 dtrace_sync(); 10323 } else { 10324 /* 10325 * There is at least one ECB remaining on the probe. If there 10326 * is _exactly_ one, set the probe's predicate cache ID to be 10327 * the predicate cache ID of the remaining ECB. 10328 */ 10329 ASSERT(probe->dtpr_ecb_last != NULL); 10330 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 10331 10332 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 10333 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 10334 10335 ASSERT(probe->dtpr_ecb->dte_next == NULL); 10336 10337 if (p != NULL) 10338 probe->dtpr_predcache = p->dtp_cacheid; 10339 } 10340 10341 ecb->dte_next = NULL; 10342 } 10343 } 10344 10345 static void 10346 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 10347 { 10348 dtrace_state_t *state = ecb->dte_state; 10349 dtrace_vstate_t *vstate = &state->dts_vstate; 10350 dtrace_predicate_t *pred; 10351 dtrace_epid_t epid = ecb->dte_epid; 10352 10353 ASSERT(MUTEX_HELD(&dtrace_lock)); 10354 ASSERT(ecb->dte_next == NULL); 10355 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 10356 10357 if ((pred = ecb->dte_predicate) != NULL) 10358 dtrace_predicate_release(pred, vstate); 10359 10360 dtrace_ecb_action_remove(ecb); 10361 10362 ASSERT(state->dts_ecbs[epid - 1] == ecb); 10363 state->dts_ecbs[epid - 1] = NULL; 10364 10365 kmem_free(ecb, sizeof (dtrace_ecb_t)); 10366 } 10367 10368 static dtrace_ecb_t * 10369 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 10370 dtrace_enabling_t *enab) 10371 { 10372 dtrace_ecb_t *ecb; 10373 dtrace_predicate_t *pred; 10374 dtrace_actdesc_t *act; 10375 dtrace_provider_t *prov; 10376 dtrace_ecbdesc_t *desc = enab->dten_current; 10377 10378 ASSERT(MUTEX_HELD(&dtrace_lock)); 10379 ASSERT(state != NULL); 10380 10381 ecb = dtrace_ecb_add(state, probe); 10382 ecb->dte_uarg = desc->dted_uarg; 10383 10384 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 10385 dtrace_predicate_hold(pred); 10386 ecb->dte_predicate = pred; 10387 } 10388 10389 if (probe != NULL) { 10390 /* 10391 * If the provider shows more leg than the consumer is old 10392 * enough to see, we need to enable the appropriate implicit 10393 * predicate bits to prevent the ecb from activating at 10394 * revealing times. 10395 * 10396 * Providers specifying DTRACE_PRIV_USER at register time 10397 * are stating that they need the /proc-style privilege 10398 * model to be enforced, and this is what DTRACE_COND_OWNER 10399 * and DTRACE_COND_ZONEOWNER will then do at probe time. 10400 */ 10401 prov = probe->dtpr_provider; 10402 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 10403 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10404 ecb->dte_cond |= DTRACE_COND_OWNER; 10405 10406 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 10407 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10408 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 10409 10410 /* 10411 * If the provider shows us kernel innards and the user 10412 * is lacking sufficient privilege, enable the 10413 * DTRACE_COND_USERMODE implicit predicate. 10414 */ 10415 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 10416 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 10417 ecb->dte_cond |= DTRACE_COND_USERMODE; 10418 } 10419 10420 if (dtrace_ecb_create_cache != NULL) { 10421 /* 10422 * If we have a cached ecb, we'll use its action list instead 10423 * of creating our own (saving both time and space). 10424 */ 10425 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 10426 dtrace_action_t *act = cached->dte_action; 10427 10428 if (act != NULL) { 10429 ASSERT(act->dta_refcnt > 0); 10430 act->dta_refcnt++; 10431 ecb->dte_action = act; 10432 ecb->dte_action_last = cached->dte_action_last; 10433 ecb->dte_needed = cached->dte_needed; 10434 ecb->dte_size = cached->dte_size; 10435 ecb->dte_alignment = cached->dte_alignment; 10436 } 10437 10438 return (ecb); 10439 } 10440 10441 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 10442 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 10443 dtrace_ecb_destroy(ecb); 10444 return (NULL); 10445 } 10446 } 10447 10448 dtrace_ecb_resize(ecb); 10449 10450 return (dtrace_ecb_create_cache = ecb); 10451 } 10452 10453 static int 10454 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 10455 { 10456 dtrace_ecb_t *ecb; 10457 dtrace_enabling_t *enab = arg; 10458 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 10459 10460 ASSERT(state != NULL); 10461 10462 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 10463 /* 10464 * This probe was created in a generation for which this 10465 * enabling has previously created ECBs; we don't want to 10466 * enable it again, so just kick out. 10467 */ 10468 return (DTRACE_MATCH_NEXT); 10469 } 10470 10471 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 10472 return (DTRACE_MATCH_DONE); 10473 10474 dtrace_ecb_enable(ecb); 10475 return (DTRACE_MATCH_NEXT); 10476 } 10477 10478 static dtrace_ecb_t * 10479 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 10480 { 10481 dtrace_ecb_t *ecb; 10482 10483 ASSERT(MUTEX_HELD(&dtrace_lock)); 10484 10485 if (id == 0 || id > state->dts_necbs) 10486 return (NULL); 10487 10488 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 10489 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 10490 10491 return (state->dts_ecbs[id - 1]); 10492 } 10493 10494 static dtrace_aggregation_t * 10495 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 10496 { 10497 dtrace_aggregation_t *agg; 10498 10499 ASSERT(MUTEX_HELD(&dtrace_lock)); 10500 10501 if (id == 0 || id > state->dts_naggregations) 10502 return (NULL); 10503 10504 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 10505 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 10506 agg->dtag_id == id); 10507 10508 return (state->dts_aggregations[id - 1]); 10509 } 10510 10511 /* 10512 * DTrace Buffer Functions 10513 * 10514 * The following functions manipulate DTrace buffers. Most of these functions 10515 * are called in the context of establishing or processing consumer state; 10516 * exceptions are explicitly noted. 10517 */ 10518 10519 /* 10520 * Note: called from cross call context. This function switches the two 10521 * buffers on a given CPU. The atomicity of this operation is assured by 10522 * disabling interrupts while the actual switch takes place; the disabling of 10523 * interrupts serializes the execution with any execution of dtrace_probe() on 10524 * the same CPU. 10525 */ 10526 static void 10527 dtrace_buffer_switch(dtrace_buffer_t *buf) 10528 { 10529 caddr_t tomax = buf->dtb_tomax; 10530 caddr_t xamot = buf->dtb_xamot; 10531 dtrace_icookie_t cookie; 10532 10533 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10534 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 10535 10536 cookie = dtrace_interrupt_disable(); 10537 buf->dtb_tomax = xamot; 10538 buf->dtb_xamot = tomax; 10539 buf->dtb_xamot_drops = buf->dtb_drops; 10540 buf->dtb_xamot_offset = buf->dtb_offset; 10541 buf->dtb_xamot_errors = buf->dtb_errors; 10542 buf->dtb_xamot_flags = buf->dtb_flags; 10543 buf->dtb_offset = 0; 10544 buf->dtb_drops = 0; 10545 buf->dtb_errors = 0; 10546 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 10547 dtrace_interrupt_enable(cookie); 10548 } 10549 10550 /* 10551 * Note: called from cross call context. This function activates a buffer 10552 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 10553 * is guaranteed by the disabling of interrupts. 10554 */ 10555 static void 10556 dtrace_buffer_activate(dtrace_state_t *state) 10557 { 10558 dtrace_buffer_t *buf; 10559 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 10560 10561 buf = &state->dts_buffer[curcpu]; 10562 10563 if (buf->dtb_tomax != NULL) { 10564 /* 10565 * We might like to assert that the buffer is marked inactive, 10566 * but this isn't necessarily true: the buffer for the CPU 10567 * that processes the BEGIN probe has its buffer activated 10568 * manually. In this case, we take the (harmless) action 10569 * re-clearing the bit INACTIVE bit. 10570 */ 10571 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 10572 } 10573 10574 dtrace_interrupt_enable(cookie); 10575 } 10576 10577 static int 10578 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 10579 processorid_t cpu) 10580 { 10581 #if defined(sun) 10582 cpu_t *cp; 10583 #endif 10584 dtrace_buffer_t *buf; 10585 10586 #if defined(sun) 10587 ASSERT(MUTEX_HELD(&cpu_lock)); 10588 ASSERT(MUTEX_HELD(&dtrace_lock)); 10589 10590 if (size > dtrace_nonroot_maxsize && 10591 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 10592 return (EFBIG); 10593 10594 cp = cpu_list; 10595 10596 do { 10597 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10598 continue; 10599 10600 buf = &bufs[cp->cpu_id]; 10601 10602 /* 10603 * If there is already a buffer allocated for this CPU, it 10604 * is only possible that this is a DR event. In this case, 10605 */ 10606 if (buf->dtb_tomax != NULL) { 10607 ASSERT(buf->dtb_size == size); 10608 continue; 10609 } 10610 10611 ASSERT(buf->dtb_xamot == NULL); 10612 10613 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 10614 goto err; 10615 10616 buf->dtb_size = size; 10617 buf->dtb_flags = flags; 10618 buf->dtb_offset = 0; 10619 buf->dtb_drops = 0; 10620 10621 if (flags & DTRACEBUF_NOSWITCH) 10622 continue; 10623 10624 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 10625 goto err; 10626 } while ((cp = cp->cpu_next) != cpu_list); 10627 10628 return (0); 10629 10630 err: 10631 cp = cpu_list; 10632 10633 do { 10634 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10635 continue; 10636 10637 buf = &bufs[cp->cpu_id]; 10638 10639 if (buf->dtb_xamot != NULL) { 10640 ASSERT(buf->dtb_tomax != NULL); 10641 ASSERT(buf->dtb_size == size); 10642 kmem_free(buf->dtb_xamot, size); 10643 } 10644 10645 if (buf->dtb_tomax != NULL) { 10646 ASSERT(buf->dtb_size == size); 10647 kmem_free(buf->dtb_tomax, size); 10648 } 10649 10650 buf->dtb_tomax = NULL; 10651 buf->dtb_xamot = NULL; 10652 buf->dtb_size = 0; 10653 } while ((cp = cp->cpu_next) != cpu_list); 10654 10655 return (ENOMEM); 10656 #else 10657 int i; 10658 10659 #if defined(__amd64__) 10660 /* 10661 * FreeBSD isn't good at limiting the amount of memory we 10662 * ask to malloc, so let's place a limit here before trying 10663 * to do something that might well end in tears at bedtime. 10664 */ 10665 if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1))) 10666 return(ENOMEM); 10667 #endif 10668 10669 ASSERT(MUTEX_HELD(&dtrace_lock)); 10670 CPU_FOREACH(i) { 10671 if (cpu != DTRACE_CPUALL && cpu != i) 10672 continue; 10673 10674 buf = &bufs[i]; 10675 10676 /* 10677 * If there is already a buffer allocated for this CPU, it 10678 * is only possible that this is a DR event. In this case, 10679 * the buffer size must match our specified size. 10680 */ 10681 if (buf->dtb_tomax != NULL) { 10682 ASSERT(buf->dtb_size == size); 10683 continue; 10684 } 10685 10686 ASSERT(buf->dtb_xamot == NULL); 10687 10688 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 10689 goto err; 10690 10691 buf->dtb_size = size; 10692 buf->dtb_flags = flags; 10693 buf->dtb_offset = 0; 10694 buf->dtb_drops = 0; 10695 10696 if (flags & DTRACEBUF_NOSWITCH) 10697 continue; 10698 10699 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 10700 goto err; 10701 } 10702 10703 return (0); 10704 10705 err: 10706 /* 10707 * Error allocating memory, so free the buffers that were 10708 * allocated before the failed allocation. 10709 */ 10710 CPU_FOREACH(i) { 10711 if (cpu != DTRACE_CPUALL && cpu != i) 10712 continue; 10713 10714 buf = &bufs[i]; 10715 10716 if (buf->dtb_xamot != NULL) { 10717 ASSERT(buf->dtb_tomax != NULL); 10718 ASSERT(buf->dtb_size == size); 10719 kmem_free(buf->dtb_xamot, size); 10720 } 10721 10722 if (buf->dtb_tomax != NULL) { 10723 ASSERT(buf->dtb_size == size); 10724 kmem_free(buf->dtb_tomax, size); 10725 } 10726 10727 buf->dtb_tomax = NULL; 10728 buf->dtb_xamot = NULL; 10729 buf->dtb_size = 0; 10730 10731 } 10732 10733 return (ENOMEM); 10734 #endif 10735 } 10736 10737 /* 10738 * Note: called from probe context. This function just increments the drop 10739 * count on a buffer. It has been made a function to allow for the 10740 * possibility of understanding the source of mysterious drop counts. (A 10741 * problem for which one may be particularly disappointed that DTrace cannot 10742 * be used to understand DTrace.) 10743 */ 10744 static void 10745 dtrace_buffer_drop(dtrace_buffer_t *buf) 10746 { 10747 buf->dtb_drops++; 10748 } 10749 10750 /* 10751 * Note: called from probe context. This function is called to reserve space 10752 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 10753 * mstate. Returns the new offset in the buffer, or a negative value if an 10754 * error has occurred. 10755 */ 10756 static intptr_t 10757 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 10758 dtrace_state_t *state, dtrace_mstate_t *mstate) 10759 { 10760 intptr_t offs = buf->dtb_offset, soffs; 10761 intptr_t woffs; 10762 caddr_t tomax; 10763 size_t total; 10764 10765 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 10766 return (-1); 10767 10768 if ((tomax = buf->dtb_tomax) == NULL) { 10769 dtrace_buffer_drop(buf); 10770 return (-1); 10771 } 10772 10773 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 10774 while (offs & (align - 1)) { 10775 /* 10776 * Assert that our alignment is off by a number which 10777 * is itself sizeof (uint32_t) aligned. 10778 */ 10779 ASSERT(!((align - (offs & (align - 1))) & 10780 (sizeof (uint32_t) - 1))); 10781 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10782 offs += sizeof (uint32_t); 10783 } 10784 10785 if ((soffs = offs + needed) > buf->dtb_size) { 10786 dtrace_buffer_drop(buf); 10787 return (-1); 10788 } 10789 10790 if (mstate == NULL) 10791 return (offs); 10792 10793 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 10794 mstate->dtms_scratch_size = buf->dtb_size - soffs; 10795 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10796 10797 return (offs); 10798 } 10799 10800 if (buf->dtb_flags & DTRACEBUF_FILL) { 10801 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 10802 (buf->dtb_flags & DTRACEBUF_FULL)) 10803 return (-1); 10804 goto out; 10805 } 10806 10807 total = needed + (offs & (align - 1)); 10808 10809 /* 10810 * For a ring buffer, life is quite a bit more complicated. Before 10811 * we can store any padding, we need to adjust our wrapping offset. 10812 * (If we've never before wrapped or we're not about to, no adjustment 10813 * is required.) 10814 */ 10815 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 10816 offs + total > buf->dtb_size) { 10817 woffs = buf->dtb_xamot_offset; 10818 10819 if (offs + total > buf->dtb_size) { 10820 /* 10821 * We can't fit in the end of the buffer. First, a 10822 * sanity check that we can fit in the buffer at all. 10823 */ 10824 if (total > buf->dtb_size) { 10825 dtrace_buffer_drop(buf); 10826 return (-1); 10827 } 10828 10829 /* 10830 * We're going to be storing at the top of the buffer, 10831 * so now we need to deal with the wrapped offset. We 10832 * only reset our wrapped offset to 0 if it is 10833 * currently greater than the current offset. If it 10834 * is less than the current offset, it is because a 10835 * previous allocation induced a wrap -- but the 10836 * allocation didn't subsequently take the space due 10837 * to an error or false predicate evaluation. In this 10838 * case, we'll just leave the wrapped offset alone: if 10839 * the wrapped offset hasn't been advanced far enough 10840 * for this allocation, it will be adjusted in the 10841 * lower loop. 10842 */ 10843 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 10844 if (woffs >= offs) 10845 woffs = 0; 10846 } else { 10847 woffs = 0; 10848 } 10849 10850 /* 10851 * Now we know that we're going to be storing to the 10852 * top of the buffer and that there is room for us 10853 * there. We need to clear the buffer from the current 10854 * offset to the end (there may be old gunk there). 10855 */ 10856 while (offs < buf->dtb_size) 10857 tomax[offs++] = 0; 10858 10859 /* 10860 * We need to set our offset to zero. And because we 10861 * are wrapping, we need to set the bit indicating as 10862 * much. We can also adjust our needed space back 10863 * down to the space required by the ECB -- we know 10864 * that the top of the buffer is aligned. 10865 */ 10866 offs = 0; 10867 total = needed; 10868 buf->dtb_flags |= DTRACEBUF_WRAPPED; 10869 } else { 10870 /* 10871 * There is room for us in the buffer, so we simply 10872 * need to check the wrapped offset. 10873 */ 10874 if (woffs < offs) { 10875 /* 10876 * The wrapped offset is less than the offset. 10877 * This can happen if we allocated buffer space 10878 * that induced a wrap, but then we didn't 10879 * subsequently take the space due to an error 10880 * or false predicate evaluation. This is 10881 * okay; we know that _this_ allocation isn't 10882 * going to induce a wrap. We still can't 10883 * reset the wrapped offset to be zero, 10884 * however: the space may have been trashed in 10885 * the previous failed probe attempt. But at 10886 * least the wrapped offset doesn't need to 10887 * be adjusted at all... 10888 */ 10889 goto out; 10890 } 10891 } 10892 10893 while (offs + total > woffs) { 10894 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 10895 size_t size; 10896 10897 if (epid == DTRACE_EPIDNONE) { 10898 size = sizeof (uint32_t); 10899 } else { 10900 ASSERT(epid <= state->dts_necbs); 10901 ASSERT(state->dts_ecbs[epid - 1] != NULL); 10902 10903 size = state->dts_ecbs[epid - 1]->dte_size; 10904 } 10905 10906 ASSERT(woffs + size <= buf->dtb_size); 10907 ASSERT(size != 0); 10908 10909 if (woffs + size == buf->dtb_size) { 10910 /* 10911 * We've reached the end of the buffer; we want 10912 * to set the wrapped offset to 0 and break 10913 * out. However, if the offs is 0, then we're 10914 * in a strange edge-condition: the amount of 10915 * space that we want to reserve plus the size 10916 * of the record that we're overwriting is 10917 * greater than the size of the buffer. This 10918 * is problematic because if we reserve the 10919 * space but subsequently don't consume it (due 10920 * to a failed predicate or error) the wrapped 10921 * offset will be 0 -- yet the EPID at offset 0 10922 * will not be committed. This situation is 10923 * relatively easy to deal with: if we're in 10924 * this case, the buffer is indistinguishable 10925 * from one that hasn't wrapped; we need only 10926 * finish the job by clearing the wrapped bit, 10927 * explicitly setting the offset to be 0, and 10928 * zero'ing out the old data in the buffer. 10929 */ 10930 if (offs == 0) { 10931 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 10932 buf->dtb_offset = 0; 10933 woffs = total; 10934 10935 while (woffs < buf->dtb_size) 10936 tomax[woffs++] = 0; 10937 } 10938 10939 woffs = 0; 10940 break; 10941 } 10942 10943 woffs += size; 10944 } 10945 10946 /* 10947 * We have a wrapped offset. It may be that the wrapped offset 10948 * has become zero -- that's okay. 10949 */ 10950 buf->dtb_xamot_offset = woffs; 10951 } 10952 10953 out: 10954 /* 10955 * Now we can plow the buffer with any necessary padding. 10956 */ 10957 while (offs & (align - 1)) { 10958 /* 10959 * Assert that our alignment is off by a number which 10960 * is itself sizeof (uint32_t) aligned. 10961 */ 10962 ASSERT(!((align - (offs & (align - 1))) & 10963 (sizeof (uint32_t) - 1))); 10964 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10965 offs += sizeof (uint32_t); 10966 } 10967 10968 if (buf->dtb_flags & DTRACEBUF_FILL) { 10969 if (offs + needed > buf->dtb_size - state->dts_reserve) { 10970 buf->dtb_flags |= DTRACEBUF_FULL; 10971 return (-1); 10972 } 10973 } 10974 10975 if (mstate == NULL) 10976 return (offs); 10977 10978 /* 10979 * For ring buffers and fill buffers, the scratch space is always 10980 * the inactive buffer. 10981 */ 10982 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 10983 mstate->dtms_scratch_size = buf->dtb_size; 10984 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10985 10986 return (offs); 10987 } 10988 10989 static void 10990 dtrace_buffer_polish(dtrace_buffer_t *buf) 10991 { 10992 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 10993 ASSERT(MUTEX_HELD(&dtrace_lock)); 10994 10995 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 10996 return; 10997 10998 /* 10999 * We need to polish the ring buffer. There are three cases: 11000 * 11001 * - The first (and presumably most common) is that there is no gap 11002 * between the buffer offset and the wrapped offset. In this case, 11003 * there is nothing in the buffer that isn't valid data; we can 11004 * mark the buffer as polished and return. 11005 * 11006 * - The second (less common than the first but still more common 11007 * than the third) is that there is a gap between the buffer offset 11008 * and the wrapped offset, and the wrapped offset is larger than the 11009 * buffer offset. This can happen because of an alignment issue, or 11010 * can happen because of a call to dtrace_buffer_reserve() that 11011 * didn't subsequently consume the buffer space. In this case, 11012 * we need to zero the data from the buffer offset to the wrapped 11013 * offset. 11014 * 11015 * - The third (and least common) is that there is a gap between the 11016 * buffer offset and the wrapped offset, but the wrapped offset is 11017 * _less_ than the buffer offset. This can only happen because a 11018 * call to dtrace_buffer_reserve() induced a wrap, but the space 11019 * was not subsequently consumed. In this case, we need to zero the 11020 * space from the offset to the end of the buffer _and_ from the 11021 * top of the buffer to the wrapped offset. 11022 */ 11023 if (buf->dtb_offset < buf->dtb_xamot_offset) { 11024 bzero(buf->dtb_tomax + buf->dtb_offset, 11025 buf->dtb_xamot_offset - buf->dtb_offset); 11026 } 11027 11028 if (buf->dtb_offset > buf->dtb_xamot_offset) { 11029 bzero(buf->dtb_tomax + buf->dtb_offset, 11030 buf->dtb_size - buf->dtb_offset); 11031 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 11032 } 11033 } 11034 11035 static void 11036 dtrace_buffer_free(dtrace_buffer_t *bufs) 11037 { 11038 int i; 11039 11040 for (i = 0; i < NCPU; i++) { 11041 dtrace_buffer_t *buf = &bufs[i]; 11042 11043 if (buf->dtb_tomax == NULL) { 11044 ASSERT(buf->dtb_xamot == NULL); 11045 ASSERT(buf->dtb_size == 0); 11046 continue; 11047 } 11048 11049 if (buf->dtb_xamot != NULL) { 11050 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11051 kmem_free(buf->dtb_xamot, buf->dtb_size); 11052 } 11053 11054 kmem_free(buf->dtb_tomax, buf->dtb_size); 11055 buf->dtb_size = 0; 11056 buf->dtb_tomax = NULL; 11057 buf->dtb_xamot = NULL; 11058 } 11059 } 11060 11061 /* 11062 * DTrace Enabling Functions 11063 */ 11064 static dtrace_enabling_t * 11065 dtrace_enabling_create(dtrace_vstate_t *vstate) 11066 { 11067 dtrace_enabling_t *enab; 11068 11069 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 11070 enab->dten_vstate = vstate; 11071 11072 return (enab); 11073 } 11074 11075 static void 11076 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 11077 { 11078 dtrace_ecbdesc_t **ndesc; 11079 size_t osize, nsize; 11080 11081 /* 11082 * We can't add to enablings after we've enabled them, or after we've 11083 * retained them. 11084 */ 11085 ASSERT(enab->dten_probegen == 0); 11086 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11087 11088 if (enab->dten_ndesc < enab->dten_maxdesc) { 11089 enab->dten_desc[enab->dten_ndesc++] = ecb; 11090 return; 11091 } 11092 11093 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11094 11095 if (enab->dten_maxdesc == 0) { 11096 enab->dten_maxdesc = 1; 11097 } else { 11098 enab->dten_maxdesc <<= 1; 11099 } 11100 11101 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 11102 11103 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11104 ndesc = kmem_zalloc(nsize, KM_SLEEP); 11105 bcopy(enab->dten_desc, ndesc, osize); 11106 if (enab->dten_desc != NULL) 11107 kmem_free(enab->dten_desc, osize); 11108 11109 enab->dten_desc = ndesc; 11110 enab->dten_desc[enab->dten_ndesc++] = ecb; 11111 } 11112 11113 static void 11114 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 11115 dtrace_probedesc_t *pd) 11116 { 11117 dtrace_ecbdesc_t *new; 11118 dtrace_predicate_t *pred; 11119 dtrace_actdesc_t *act; 11120 11121 /* 11122 * We're going to create a new ECB description that matches the 11123 * specified ECB in every way, but has the specified probe description. 11124 */ 11125 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11126 11127 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 11128 dtrace_predicate_hold(pred); 11129 11130 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 11131 dtrace_actdesc_hold(act); 11132 11133 new->dted_action = ecb->dted_action; 11134 new->dted_pred = ecb->dted_pred; 11135 new->dted_probe = *pd; 11136 new->dted_uarg = ecb->dted_uarg; 11137 11138 dtrace_enabling_add(enab, new); 11139 } 11140 11141 static void 11142 dtrace_enabling_dump(dtrace_enabling_t *enab) 11143 { 11144 int i; 11145 11146 for (i = 0; i < enab->dten_ndesc; i++) { 11147 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 11148 11149 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 11150 desc->dtpd_provider, desc->dtpd_mod, 11151 desc->dtpd_func, desc->dtpd_name); 11152 } 11153 } 11154 11155 static void 11156 dtrace_enabling_destroy(dtrace_enabling_t *enab) 11157 { 11158 int i; 11159 dtrace_ecbdesc_t *ep; 11160 dtrace_vstate_t *vstate = enab->dten_vstate; 11161 11162 ASSERT(MUTEX_HELD(&dtrace_lock)); 11163 11164 for (i = 0; i < enab->dten_ndesc; i++) { 11165 dtrace_actdesc_t *act, *next; 11166 dtrace_predicate_t *pred; 11167 11168 ep = enab->dten_desc[i]; 11169 11170 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 11171 dtrace_predicate_release(pred, vstate); 11172 11173 for (act = ep->dted_action; act != NULL; act = next) { 11174 next = act->dtad_next; 11175 dtrace_actdesc_release(act, vstate); 11176 } 11177 11178 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11179 } 11180 11181 if (enab->dten_desc != NULL) 11182 kmem_free(enab->dten_desc, 11183 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 11184 11185 /* 11186 * If this was a retained enabling, decrement the dts_nretained count 11187 * and take it off of the dtrace_retained list. 11188 */ 11189 if (enab->dten_prev != NULL || enab->dten_next != NULL || 11190 dtrace_retained == enab) { 11191 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11192 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 11193 enab->dten_vstate->dtvs_state->dts_nretained--; 11194 } 11195 11196 if (enab->dten_prev == NULL) { 11197 if (dtrace_retained == enab) { 11198 dtrace_retained = enab->dten_next; 11199 11200 if (dtrace_retained != NULL) 11201 dtrace_retained->dten_prev = NULL; 11202 } 11203 } else { 11204 ASSERT(enab != dtrace_retained); 11205 ASSERT(dtrace_retained != NULL); 11206 enab->dten_prev->dten_next = enab->dten_next; 11207 } 11208 11209 if (enab->dten_next != NULL) { 11210 ASSERT(dtrace_retained != NULL); 11211 enab->dten_next->dten_prev = enab->dten_prev; 11212 } 11213 11214 kmem_free(enab, sizeof (dtrace_enabling_t)); 11215 } 11216 11217 static int 11218 dtrace_enabling_retain(dtrace_enabling_t *enab) 11219 { 11220 dtrace_state_t *state; 11221 11222 ASSERT(MUTEX_HELD(&dtrace_lock)); 11223 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11224 ASSERT(enab->dten_vstate != NULL); 11225 11226 state = enab->dten_vstate->dtvs_state; 11227 ASSERT(state != NULL); 11228 11229 /* 11230 * We only allow each state to retain dtrace_retain_max enablings. 11231 */ 11232 if (state->dts_nretained >= dtrace_retain_max) 11233 return (ENOSPC); 11234 11235 state->dts_nretained++; 11236 11237 if (dtrace_retained == NULL) { 11238 dtrace_retained = enab; 11239 return (0); 11240 } 11241 11242 enab->dten_next = dtrace_retained; 11243 dtrace_retained->dten_prev = enab; 11244 dtrace_retained = enab; 11245 11246 return (0); 11247 } 11248 11249 static int 11250 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 11251 dtrace_probedesc_t *create) 11252 { 11253 dtrace_enabling_t *new, *enab; 11254 int found = 0, err = ENOENT; 11255 11256 ASSERT(MUTEX_HELD(&dtrace_lock)); 11257 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 11258 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 11259 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 11260 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 11261 11262 new = dtrace_enabling_create(&state->dts_vstate); 11263 11264 /* 11265 * Iterate over all retained enablings, looking for enablings that 11266 * match the specified state. 11267 */ 11268 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11269 int i; 11270 11271 /* 11272 * dtvs_state can only be NULL for helper enablings -- and 11273 * helper enablings can't be retained. 11274 */ 11275 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11276 11277 if (enab->dten_vstate->dtvs_state != state) 11278 continue; 11279 11280 /* 11281 * Now iterate over each probe description; we're looking for 11282 * an exact match to the specified probe description. 11283 */ 11284 for (i = 0; i < enab->dten_ndesc; i++) { 11285 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11286 dtrace_probedesc_t *pd = &ep->dted_probe; 11287 11288 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 11289 continue; 11290 11291 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 11292 continue; 11293 11294 if (strcmp(pd->dtpd_func, match->dtpd_func)) 11295 continue; 11296 11297 if (strcmp(pd->dtpd_name, match->dtpd_name)) 11298 continue; 11299 11300 /* 11301 * We have a winning probe! Add it to our growing 11302 * enabling. 11303 */ 11304 found = 1; 11305 dtrace_enabling_addlike(new, ep, create); 11306 } 11307 } 11308 11309 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 11310 dtrace_enabling_destroy(new); 11311 return (err); 11312 } 11313 11314 return (0); 11315 } 11316 11317 static void 11318 dtrace_enabling_retract(dtrace_state_t *state) 11319 { 11320 dtrace_enabling_t *enab, *next; 11321 11322 ASSERT(MUTEX_HELD(&dtrace_lock)); 11323 11324 /* 11325 * Iterate over all retained enablings, destroy the enablings retained 11326 * for the specified state. 11327 */ 11328 for (enab = dtrace_retained; enab != NULL; enab = next) { 11329 next = enab->dten_next; 11330 11331 /* 11332 * dtvs_state can only be NULL for helper enablings -- and 11333 * helper enablings can't be retained. 11334 */ 11335 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11336 11337 if (enab->dten_vstate->dtvs_state == state) { 11338 ASSERT(state->dts_nretained > 0); 11339 dtrace_enabling_destroy(enab); 11340 } 11341 } 11342 11343 ASSERT(state->dts_nretained == 0); 11344 } 11345 11346 static int 11347 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 11348 { 11349 int i = 0; 11350 int matched = 0; 11351 11352 ASSERT(MUTEX_HELD(&cpu_lock)); 11353 ASSERT(MUTEX_HELD(&dtrace_lock)); 11354 11355 for (i = 0; i < enab->dten_ndesc; i++) { 11356 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11357 11358 enab->dten_current = ep; 11359 enab->dten_error = 0; 11360 11361 matched += dtrace_probe_enable(&ep->dted_probe, enab); 11362 11363 if (enab->dten_error != 0) { 11364 /* 11365 * If we get an error half-way through enabling the 11366 * probes, we kick out -- perhaps with some number of 11367 * them enabled. Leaving enabled probes enabled may 11368 * be slightly confusing for user-level, but we expect 11369 * that no one will attempt to actually drive on in 11370 * the face of such errors. If this is an anonymous 11371 * enabling (indicated with a NULL nmatched pointer), 11372 * we cmn_err() a message. We aren't expecting to 11373 * get such an error -- such as it can exist at all, 11374 * it would be a result of corrupted DOF in the driver 11375 * properties. 11376 */ 11377 if (nmatched == NULL) { 11378 cmn_err(CE_WARN, "dtrace_enabling_match() " 11379 "error on %p: %d", (void *)ep, 11380 enab->dten_error); 11381 } 11382 11383 return (enab->dten_error); 11384 } 11385 } 11386 11387 enab->dten_probegen = dtrace_probegen; 11388 if (nmatched != NULL) 11389 *nmatched = matched; 11390 11391 return (0); 11392 } 11393 11394 static void 11395 dtrace_enabling_matchall(void) 11396 { 11397 dtrace_enabling_t *enab; 11398 11399 mutex_enter(&cpu_lock); 11400 mutex_enter(&dtrace_lock); 11401 11402 /* 11403 * Iterate over all retained enablings to see if any probes match 11404 * against them. We only perform this operation on enablings for which 11405 * we have sufficient permissions by virtue of being in the global zone 11406 * or in the same zone as the DTrace client. Because we can be called 11407 * after dtrace_detach() has been called, we cannot assert that there 11408 * are retained enablings. We can safely load from dtrace_retained, 11409 * however: the taskq_destroy() at the end of dtrace_detach() will 11410 * block pending our completion. 11411 */ 11412 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11413 #if defined(sun) 11414 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 11415 11416 if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr)) 11417 #endif 11418 (void) dtrace_enabling_match(enab, NULL); 11419 } 11420 11421 mutex_exit(&dtrace_lock); 11422 mutex_exit(&cpu_lock); 11423 } 11424 11425 /* 11426 * If an enabling is to be enabled without having matched probes (that is, if 11427 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 11428 * enabling must be _primed_ by creating an ECB for every ECB description. 11429 * This must be done to assure that we know the number of speculations, the 11430 * number of aggregations, the minimum buffer size needed, etc. before we 11431 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 11432 * enabling any probes, we create ECBs for every ECB decription, but with a 11433 * NULL probe -- which is exactly what this function does. 11434 */ 11435 static void 11436 dtrace_enabling_prime(dtrace_state_t *state) 11437 { 11438 dtrace_enabling_t *enab; 11439 int i; 11440 11441 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11442 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11443 11444 if (enab->dten_vstate->dtvs_state != state) 11445 continue; 11446 11447 /* 11448 * We don't want to prime an enabling more than once, lest 11449 * we allow a malicious user to induce resource exhaustion. 11450 * (The ECBs that result from priming an enabling aren't 11451 * leaked -- but they also aren't deallocated until the 11452 * consumer state is destroyed.) 11453 */ 11454 if (enab->dten_primed) 11455 continue; 11456 11457 for (i = 0; i < enab->dten_ndesc; i++) { 11458 enab->dten_current = enab->dten_desc[i]; 11459 (void) dtrace_probe_enable(NULL, enab); 11460 } 11461 11462 enab->dten_primed = 1; 11463 } 11464 } 11465 11466 /* 11467 * Called to indicate that probes should be provided due to retained 11468 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 11469 * must take an initial lap through the enabling calling the dtps_provide() 11470 * entry point explicitly to allow for autocreated probes. 11471 */ 11472 static void 11473 dtrace_enabling_provide(dtrace_provider_t *prv) 11474 { 11475 int i, all = 0; 11476 dtrace_probedesc_t desc; 11477 11478 ASSERT(MUTEX_HELD(&dtrace_lock)); 11479 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 11480 11481 if (prv == NULL) { 11482 all = 1; 11483 prv = dtrace_provider; 11484 } 11485 11486 do { 11487 dtrace_enabling_t *enab = dtrace_retained; 11488 void *parg = prv->dtpv_arg; 11489 11490 for (; enab != NULL; enab = enab->dten_next) { 11491 for (i = 0; i < enab->dten_ndesc; i++) { 11492 desc = enab->dten_desc[i]->dted_probe; 11493 mutex_exit(&dtrace_lock); 11494 prv->dtpv_pops.dtps_provide(parg, &desc); 11495 mutex_enter(&dtrace_lock); 11496 } 11497 } 11498 } while (all && (prv = prv->dtpv_next) != NULL); 11499 11500 mutex_exit(&dtrace_lock); 11501 dtrace_probe_provide(NULL, all ? NULL : prv); 11502 mutex_enter(&dtrace_lock); 11503 } 11504 11505 /* 11506 * DTrace DOF Functions 11507 */ 11508 /*ARGSUSED*/ 11509 static void 11510 dtrace_dof_error(dof_hdr_t *dof, const char *str) 11511 { 11512 if (dtrace_err_verbose) 11513 cmn_err(CE_WARN, "failed to process DOF: %s", str); 11514 11515 #ifdef DTRACE_ERRDEBUG 11516 dtrace_errdebug(str); 11517 #endif 11518 } 11519 11520 /* 11521 * Create DOF out of a currently enabled state. Right now, we only create 11522 * DOF containing the run-time options -- but this could be expanded to create 11523 * complete DOF representing the enabled state. 11524 */ 11525 static dof_hdr_t * 11526 dtrace_dof_create(dtrace_state_t *state) 11527 { 11528 dof_hdr_t *dof; 11529 dof_sec_t *sec; 11530 dof_optdesc_t *opt; 11531 int i, len = sizeof (dof_hdr_t) + 11532 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 11533 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 11534 11535 ASSERT(MUTEX_HELD(&dtrace_lock)); 11536 11537 dof = kmem_zalloc(len, KM_SLEEP); 11538 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 11539 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 11540 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 11541 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 11542 11543 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 11544 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 11545 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 11546 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 11547 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 11548 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 11549 11550 dof->dofh_flags = 0; 11551 dof->dofh_hdrsize = sizeof (dof_hdr_t); 11552 dof->dofh_secsize = sizeof (dof_sec_t); 11553 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 11554 dof->dofh_secoff = sizeof (dof_hdr_t); 11555 dof->dofh_loadsz = len; 11556 dof->dofh_filesz = len; 11557 dof->dofh_pad = 0; 11558 11559 /* 11560 * Fill in the option section header... 11561 */ 11562 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 11563 sec->dofs_type = DOF_SECT_OPTDESC; 11564 sec->dofs_align = sizeof (uint64_t); 11565 sec->dofs_flags = DOF_SECF_LOAD; 11566 sec->dofs_entsize = sizeof (dof_optdesc_t); 11567 11568 opt = (dof_optdesc_t *)((uintptr_t)sec + 11569 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 11570 11571 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 11572 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 11573 11574 for (i = 0; i < DTRACEOPT_MAX; i++) { 11575 opt[i].dofo_option = i; 11576 opt[i].dofo_strtab = DOF_SECIDX_NONE; 11577 opt[i].dofo_value = state->dts_options[i]; 11578 } 11579 11580 return (dof); 11581 } 11582 11583 static dof_hdr_t * 11584 dtrace_dof_copyin(uintptr_t uarg, int *errp) 11585 { 11586 dof_hdr_t hdr, *dof; 11587 11588 ASSERT(!MUTEX_HELD(&dtrace_lock)); 11589 11590 /* 11591 * First, we're going to copyin() the sizeof (dof_hdr_t). 11592 */ 11593 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 11594 dtrace_dof_error(NULL, "failed to copyin DOF header"); 11595 *errp = EFAULT; 11596 return (NULL); 11597 } 11598 11599 /* 11600 * Now we'll allocate the entire DOF and copy it in -- provided 11601 * that the length isn't outrageous. 11602 */ 11603 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 11604 dtrace_dof_error(&hdr, "load size exceeds maximum"); 11605 *errp = E2BIG; 11606 return (NULL); 11607 } 11608 11609 if (hdr.dofh_loadsz < sizeof (hdr)) { 11610 dtrace_dof_error(&hdr, "invalid load size"); 11611 *errp = EINVAL; 11612 return (NULL); 11613 } 11614 11615 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 11616 11617 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) { 11618 kmem_free(dof, hdr.dofh_loadsz); 11619 *errp = EFAULT; 11620 return (NULL); 11621 } 11622 11623 return (dof); 11624 } 11625 11626 #if !defined(sun) 11627 static __inline uchar_t 11628 dtrace_dof_char(char c) { 11629 switch (c) { 11630 case '0': 11631 case '1': 11632 case '2': 11633 case '3': 11634 case '4': 11635 case '5': 11636 case '6': 11637 case '7': 11638 case '8': 11639 case '9': 11640 return (c - '0'); 11641 case 'A': 11642 case 'B': 11643 case 'C': 11644 case 'D': 11645 case 'E': 11646 case 'F': 11647 return (c - 'A' + 10); 11648 case 'a': 11649 case 'b': 11650 case 'c': 11651 case 'd': 11652 case 'e': 11653 case 'f': 11654 return (c - 'a' + 10); 11655 } 11656 /* Should not reach here. */ 11657 return (0); 11658 } 11659 #endif 11660 11661 static dof_hdr_t * 11662 dtrace_dof_property(const char *name) 11663 { 11664 uchar_t *buf; 11665 uint64_t loadsz; 11666 unsigned int len, i; 11667 dof_hdr_t *dof; 11668 11669 #if defined(sun) 11670 /* 11671 * Unfortunately, array of values in .conf files are always (and 11672 * only) interpreted to be integer arrays. We must read our DOF 11673 * as an integer array, and then squeeze it into a byte array. 11674 */ 11675 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 11676 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 11677 return (NULL); 11678 11679 for (i = 0; i < len; i++) 11680 buf[i] = (uchar_t)(((int *)buf)[i]); 11681 11682 if (len < sizeof (dof_hdr_t)) { 11683 ddi_prop_free(buf); 11684 dtrace_dof_error(NULL, "truncated header"); 11685 return (NULL); 11686 } 11687 11688 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 11689 ddi_prop_free(buf); 11690 dtrace_dof_error(NULL, "truncated DOF"); 11691 return (NULL); 11692 } 11693 11694 if (loadsz >= dtrace_dof_maxsize) { 11695 ddi_prop_free(buf); 11696 dtrace_dof_error(NULL, "oversized DOF"); 11697 return (NULL); 11698 } 11699 11700 dof = kmem_alloc(loadsz, KM_SLEEP); 11701 bcopy(buf, dof, loadsz); 11702 ddi_prop_free(buf); 11703 #else 11704 char *p; 11705 char *p_env; 11706 11707 if ((p_env = getenv(name)) == NULL) 11708 return (NULL); 11709 11710 len = strlen(p_env) / 2; 11711 11712 buf = kmem_alloc(len, KM_SLEEP); 11713 11714 dof = (dof_hdr_t *) buf; 11715 11716 p = p_env; 11717 11718 for (i = 0; i < len; i++) { 11719 buf[i] = (dtrace_dof_char(p[0]) << 4) | 11720 dtrace_dof_char(p[1]); 11721 p += 2; 11722 } 11723 11724 freeenv(p_env); 11725 11726 if (len < sizeof (dof_hdr_t)) { 11727 kmem_free(buf, 0); 11728 dtrace_dof_error(NULL, "truncated header"); 11729 return (NULL); 11730 } 11731 11732 if (len < (loadsz = dof->dofh_loadsz)) { 11733 kmem_free(buf, 0); 11734 dtrace_dof_error(NULL, "truncated DOF"); 11735 return (NULL); 11736 } 11737 11738 if (loadsz >= dtrace_dof_maxsize) { 11739 kmem_free(buf, 0); 11740 dtrace_dof_error(NULL, "oversized DOF"); 11741 return (NULL); 11742 } 11743 #endif 11744 11745 return (dof); 11746 } 11747 11748 static void 11749 dtrace_dof_destroy(dof_hdr_t *dof) 11750 { 11751 kmem_free(dof, dof->dofh_loadsz); 11752 } 11753 11754 /* 11755 * Return the dof_sec_t pointer corresponding to a given section index. If the 11756 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 11757 * a type other than DOF_SECT_NONE is specified, the header is checked against 11758 * this type and NULL is returned if the types do not match. 11759 */ 11760 static dof_sec_t * 11761 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 11762 { 11763 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 11764 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 11765 11766 if (i >= dof->dofh_secnum) { 11767 dtrace_dof_error(dof, "referenced section index is invalid"); 11768 return (NULL); 11769 } 11770 11771 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 11772 dtrace_dof_error(dof, "referenced section is not loadable"); 11773 return (NULL); 11774 } 11775 11776 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 11777 dtrace_dof_error(dof, "referenced section is the wrong type"); 11778 return (NULL); 11779 } 11780 11781 return (sec); 11782 } 11783 11784 static dtrace_probedesc_t * 11785 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 11786 { 11787 dof_probedesc_t *probe; 11788 dof_sec_t *strtab; 11789 uintptr_t daddr = (uintptr_t)dof; 11790 uintptr_t str; 11791 size_t size; 11792 11793 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 11794 dtrace_dof_error(dof, "invalid probe section"); 11795 return (NULL); 11796 } 11797 11798 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11799 dtrace_dof_error(dof, "bad alignment in probe description"); 11800 return (NULL); 11801 } 11802 11803 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 11804 dtrace_dof_error(dof, "truncated probe description"); 11805 return (NULL); 11806 } 11807 11808 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 11809 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 11810 11811 if (strtab == NULL) 11812 return (NULL); 11813 11814 str = daddr + strtab->dofs_offset; 11815 size = strtab->dofs_size; 11816 11817 if (probe->dofp_provider >= strtab->dofs_size) { 11818 dtrace_dof_error(dof, "corrupt probe provider"); 11819 return (NULL); 11820 } 11821 11822 (void) strncpy(desc->dtpd_provider, 11823 (char *)(str + probe->dofp_provider), 11824 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 11825 11826 if (probe->dofp_mod >= strtab->dofs_size) { 11827 dtrace_dof_error(dof, "corrupt probe module"); 11828 return (NULL); 11829 } 11830 11831 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 11832 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 11833 11834 if (probe->dofp_func >= strtab->dofs_size) { 11835 dtrace_dof_error(dof, "corrupt probe function"); 11836 return (NULL); 11837 } 11838 11839 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 11840 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 11841 11842 if (probe->dofp_name >= strtab->dofs_size) { 11843 dtrace_dof_error(dof, "corrupt probe name"); 11844 return (NULL); 11845 } 11846 11847 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 11848 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 11849 11850 return (desc); 11851 } 11852 11853 static dtrace_difo_t * 11854 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11855 cred_t *cr) 11856 { 11857 dtrace_difo_t *dp; 11858 size_t ttl = 0; 11859 dof_difohdr_t *dofd; 11860 uintptr_t daddr = (uintptr_t)dof; 11861 size_t max = dtrace_difo_maxsize; 11862 int i, l, n; 11863 11864 static const struct { 11865 int section; 11866 int bufoffs; 11867 int lenoffs; 11868 int entsize; 11869 int align; 11870 const char *msg; 11871 } difo[] = { 11872 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 11873 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 11874 sizeof (dif_instr_t), "multiple DIF sections" }, 11875 11876 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 11877 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 11878 sizeof (uint64_t), "multiple integer tables" }, 11879 11880 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 11881 offsetof(dtrace_difo_t, dtdo_strlen), 0, 11882 sizeof (char), "multiple string tables" }, 11883 11884 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 11885 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 11886 sizeof (uint_t), "multiple variable tables" }, 11887 11888 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 11889 }; 11890 11891 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 11892 dtrace_dof_error(dof, "invalid DIFO header section"); 11893 return (NULL); 11894 } 11895 11896 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11897 dtrace_dof_error(dof, "bad alignment in DIFO header"); 11898 return (NULL); 11899 } 11900 11901 if (sec->dofs_size < sizeof (dof_difohdr_t) || 11902 sec->dofs_size % sizeof (dof_secidx_t)) { 11903 dtrace_dof_error(dof, "bad size in DIFO header"); 11904 return (NULL); 11905 } 11906 11907 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11908 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 11909 11910 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 11911 dp->dtdo_rtype = dofd->dofd_rtype; 11912 11913 for (l = 0; l < n; l++) { 11914 dof_sec_t *subsec; 11915 void **bufp; 11916 uint32_t *lenp; 11917 11918 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 11919 dofd->dofd_links[l])) == NULL) 11920 goto err; /* invalid section link */ 11921 11922 if (ttl + subsec->dofs_size > max) { 11923 dtrace_dof_error(dof, "exceeds maximum size"); 11924 goto err; 11925 } 11926 11927 ttl += subsec->dofs_size; 11928 11929 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 11930 if (subsec->dofs_type != difo[i].section) 11931 continue; 11932 11933 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 11934 dtrace_dof_error(dof, "section not loaded"); 11935 goto err; 11936 } 11937 11938 if (subsec->dofs_align != difo[i].align) { 11939 dtrace_dof_error(dof, "bad alignment"); 11940 goto err; 11941 } 11942 11943 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 11944 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 11945 11946 if (*bufp != NULL) { 11947 dtrace_dof_error(dof, difo[i].msg); 11948 goto err; 11949 } 11950 11951 if (difo[i].entsize != subsec->dofs_entsize) { 11952 dtrace_dof_error(dof, "entry size mismatch"); 11953 goto err; 11954 } 11955 11956 if (subsec->dofs_entsize != 0 && 11957 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 11958 dtrace_dof_error(dof, "corrupt entry size"); 11959 goto err; 11960 } 11961 11962 *lenp = subsec->dofs_size; 11963 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 11964 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 11965 *bufp, subsec->dofs_size); 11966 11967 if (subsec->dofs_entsize != 0) 11968 *lenp /= subsec->dofs_entsize; 11969 11970 break; 11971 } 11972 11973 /* 11974 * If we encounter a loadable DIFO sub-section that is not 11975 * known to us, assume this is a broken program and fail. 11976 */ 11977 if (difo[i].section == DOF_SECT_NONE && 11978 (subsec->dofs_flags & DOF_SECF_LOAD)) { 11979 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 11980 goto err; 11981 } 11982 } 11983 11984 if (dp->dtdo_buf == NULL) { 11985 /* 11986 * We can't have a DIF object without DIF text. 11987 */ 11988 dtrace_dof_error(dof, "missing DIF text"); 11989 goto err; 11990 } 11991 11992 /* 11993 * Before we validate the DIF object, run through the variable table 11994 * looking for the strings -- if any of their size are under, we'll set 11995 * their size to be the system-wide default string size. Note that 11996 * this should _not_ happen if the "strsize" option has been set -- 11997 * in this case, the compiler should have set the size to reflect the 11998 * setting of the option. 11999 */ 12000 for (i = 0; i < dp->dtdo_varlen; i++) { 12001 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 12002 dtrace_diftype_t *t = &v->dtdv_type; 12003 12004 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 12005 continue; 12006 12007 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 12008 t->dtdt_size = dtrace_strsize_default; 12009 } 12010 12011 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 12012 goto err; 12013 12014 dtrace_difo_init(dp, vstate); 12015 return (dp); 12016 12017 err: 12018 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 12019 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 12020 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 12021 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 12022 12023 kmem_free(dp, sizeof (dtrace_difo_t)); 12024 return (NULL); 12025 } 12026 12027 static dtrace_predicate_t * 12028 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12029 cred_t *cr) 12030 { 12031 dtrace_difo_t *dp; 12032 12033 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 12034 return (NULL); 12035 12036 return (dtrace_predicate_create(dp)); 12037 } 12038 12039 static dtrace_actdesc_t * 12040 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12041 cred_t *cr) 12042 { 12043 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 12044 dof_actdesc_t *desc; 12045 dof_sec_t *difosec; 12046 size_t offs; 12047 uintptr_t daddr = (uintptr_t)dof; 12048 uint64_t arg; 12049 dtrace_actkind_t kind; 12050 12051 if (sec->dofs_type != DOF_SECT_ACTDESC) { 12052 dtrace_dof_error(dof, "invalid action section"); 12053 return (NULL); 12054 } 12055 12056 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 12057 dtrace_dof_error(dof, "truncated action description"); 12058 return (NULL); 12059 } 12060 12061 if (sec->dofs_align != sizeof (uint64_t)) { 12062 dtrace_dof_error(dof, "bad alignment in action description"); 12063 return (NULL); 12064 } 12065 12066 if (sec->dofs_size < sec->dofs_entsize) { 12067 dtrace_dof_error(dof, "section entry size exceeds total size"); 12068 return (NULL); 12069 } 12070 12071 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 12072 dtrace_dof_error(dof, "bad entry size in action description"); 12073 return (NULL); 12074 } 12075 12076 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 12077 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 12078 return (NULL); 12079 } 12080 12081 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 12082 desc = (dof_actdesc_t *)(daddr + 12083 (uintptr_t)sec->dofs_offset + offs); 12084 kind = (dtrace_actkind_t)desc->dofa_kind; 12085 12086 if (DTRACEACT_ISPRINTFLIKE(kind) && 12087 (kind != DTRACEACT_PRINTA || 12088 desc->dofa_strtab != DOF_SECIDX_NONE)) { 12089 dof_sec_t *strtab; 12090 char *str, *fmt; 12091 uint64_t i; 12092 12093 /* 12094 * printf()-like actions must have a format string. 12095 */ 12096 if ((strtab = dtrace_dof_sect(dof, 12097 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 12098 goto err; 12099 12100 str = (char *)((uintptr_t)dof + 12101 (uintptr_t)strtab->dofs_offset); 12102 12103 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 12104 if (str[i] == '\0') 12105 break; 12106 } 12107 12108 if (i >= strtab->dofs_size) { 12109 dtrace_dof_error(dof, "bogus format string"); 12110 goto err; 12111 } 12112 12113 if (i == desc->dofa_arg) { 12114 dtrace_dof_error(dof, "empty format string"); 12115 goto err; 12116 } 12117 12118 i -= desc->dofa_arg; 12119 fmt = kmem_alloc(i + 1, KM_SLEEP); 12120 bcopy(&str[desc->dofa_arg], fmt, i + 1); 12121 arg = (uint64_t)(uintptr_t)fmt; 12122 } else { 12123 if (kind == DTRACEACT_PRINTA) { 12124 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 12125 arg = 0; 12126 } else { 12127 arg = desc->dofa_arg; 12128 } 12129 } 12130 12131 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 12132 desc->dofa_uarg, arg); 12133 12134 if (last != NULL) { 12135 last->dtad_next = act; 12136 } else { 12137 first = act; 12138 } 12139 12140 last = act; 12141 12142 if (desc->dofa_difo == DOF_SECIDX_NONE) 12143 continue; 12144 12145 if ((difosec = dtrace_dof_sect(dof, 12146 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 12147 goto err; 12148 12149 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 12150 12151 if (act->dtad_difo == NULL) 12152 goto err; 12153 } 12154 12155 ASSERT(first != NULL); 12156 return (first); 12157 12158 err: 12159 for (act = first; act != NULL; act = next) { 12160 next = act->dtad_next; 12161 dtrace_actdesc_release(act, vstate); 12162 } 12163 12164 return (NULL); 12165 } 12166 12167 static dtrace_ecbdesc_t * 12168 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12169 cred_t *cr) 12170 { 12171 dtrace_ecbdesc_t *ep; 12172 dof_ecbdesc_t *ecb; 12173 dtrace_probedesc_t *desc; 12174 dtrace_predicate_t *pred = NULL; 12175 12176 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 12177 dtrace_dof_error(dof, "truncated ECB description"); 12178 return (NULL); 12179 } 12180 12181 if (sec->dofs_align != sizeof (uint64_t)) { 12182 dtrace_dof_error(dof, "bad alignment in ECB description"); 12183 return (NULL); 12184 } 12185 12186 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 12187 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 12188 12189 if (sec == NULL) 12190 return (NULL); 12191 12192 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12193 ep->dted_uarg = ecb->dofe_uarg; 12194 desc = &ep->dted_probe; 12195 12196 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 12197 goto err; 12198 12199 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 12200 if ((sec = dtrace_dof_sect(dof, 12201 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 12202 goto err; 12203 12204 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 12205 goto err; 12206 12207 ep->dted_pred.dtpdd_predicate = pred; 12208 } 12209 12210 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 12211 if ((sec = dtrace_dof_sect(dof, 12212 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 12213 goto err; 12214 12215 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 12216 12217 if (ep->dted_action == NULL) 12218 goto err; 12219 } 12220 12221 return (ep); 12222 12223 err: 12224 if (pred != NULL) 12225 dtrace_predicate_release(pred, vstate); 12226 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12227 return (NULL); 12228 } 12229 12230 /* 12231 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 12232 * specified DOF. At present, this amounts to simply adding 'ubase' to the 12233 * site of any user SETX relocations to account for load object base address. 12234 * In the future, if we need other relocations, this function can be extended. 12235 */ 12236 static int 12237 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 12238 { 12239 uintptr_t daddr = (uintptr_t)dof; 12240 dof_relohdr_t *dofr = 12241 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12242 dof_sec_t *ss, *rs, *ts; 12243 dof_relodesc_t *r; 12244 uint_t i, n; 12245 12246 if (sec->dofs_size < sizeof (dof_relohdr_t) || 12247 sec->dofs_align != sizeof (dof_secidx_t)) { 12248 dtrace_dof_error(dof, "invalid relocation header"); 12249 return (-1); 12250 } 12251 12252 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 12253 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 12254 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 12255 12256 if (ss == NULL || rs == NULL || ts == NULL) 12257 return (-1); /* dtrace_dof_error() has been called already */ 12258 12259 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 12260 rs->dofs_align != sizeof (uint64_t)) { 12261 dtrace_dof_error(dof, "invalid relocation section"); 12262 return (-1); 12263 } 12264 12265 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 12266 n = rs->dofs_size / rs->dofs_entsize; 12267 12268 for (i = 0; i < n; i++) { 12269 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 12270 12271 switch (r->dofr_type) { 12272 case DOF_RELO_NONE: 12273 break; 12274 case DOF_RELO_SETX: 12275 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 12276 sizeof (uint64_t) > ts->dofs_size) { 12277 dtrace_dof_error(dof, "bad relocation offset"); 12278 return (-1); 12279 } 12280 12281 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 12282 dtrace_dof_error(dof, "misaligned setx relo"); 12283 return (-1); 12284 } 12285 12286 *(uint64_t *)taddr += ubase; 12287 break; 12288 default: 12289 dtrace_dof_error(dof, "invalid relocation type"); 12290 return (-1); 12291 } 12292 12293 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 12294 } 12295 12296 return (0); 12297 } 12298 12299 /* 12300 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 12301 * header: it should be at the front of a memory region that is at least 12302 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 12303 * size. It need not be validated in any other way. 12304 */ 12305 static int 12306 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 12307 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 12308 { 12309 uint64_t len = dof->dofh_loadsz, seclen; 12310 uintptr_t daddr = (uintptr_t)dof; 12311 dtrace_ecbdesc_t *ep; 12312 dtrace_enabling_t *enab; 12313 uint_t i; 12314 12315 ASSERT(MUTEX_HELD(&dtrace_lock)); 12316 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 12317 12318 /* 12319 * Check the DOF header identification bytes. In addition to checking 12320 * valid settings, we also verify that unused bits/bytes are zeroed so 12321 * we can use them later without fear of regressing existing binaries. 12322 */ 12323 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 12324 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 12325 dtrace_dof_error(dof, "DOF magic string mismatch"); 12326 return (-1); 12327 } 12328 12329 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 12330 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 12331 dtrace_dof_error(dof, "DOF has invalid data model"); 12332 return (-1); 12333 } 12334 12335 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 12336 dtrace_dof_error(dof, "DOF encoding mismatch"); 12337 return (-1); 12338 } 12339 12340 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 12341 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 12342 dtrace_dof_error(dof, "DOF version mismatch"); 12343 return (-1); 12344 } 12345 12346 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 12347 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 12348 return (-1); 12349 } 12350 12351 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 12352 dtrace_dof_error(dof, "DOF uses too many integer registers"); 12353 return (-1); 12354 } 12355 12356 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 12357 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 12358 return (-1); 12359 } 12360 12361 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 12362 if (dof->dofh_ident[i] != 0) { 12363 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 12364 return (-1); 12365 } 12366 } 12367 12368 if (dof->dofh_flags & ~DOF_FL_VALID) { 12369 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 12370 return (-1); 12371 } 12372 12373 if (dof->dofh_secsize == 0) { 12374 dtrace_dof_error(dof, "zero section header size"); 12375 return (-1); 12376 } 12377 12378 /* 12379 * Check that the section headers don't exceed the amount of DOF 12380 * data. Note that we cast the section size and number of sections 12381 * to uint64_t's to prevent possible overflow in the multiplication. 12382 */ 12383 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 12384 12385 if (dof->dofh_secoff > len || seclen > len || 12386 dof->dofh_secoff + seclen > len) { 12387 dtrace_dof_error(dof, "truncated section headers"); 12388 return (-1); 12389 } 12390 12391 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 12392 dtrace_dof_error(dof, "misaligned section headers"); 12393 return (-1); 12394 } 12395 12396 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 12397 dtrace_dof_error(dof, "misaligned section size"); 12398 return (-1); 12399 } 12400 12401 /* 12402 * Take an initial pass through the section headers to be sure that 12403 * the headers don't have stray offsets. If the 'noprobes' flag is 12404 * set, do not permit sections relating to providers, probes, or args. 12405 */ 12406 for (i = 0; i < dof->dofh_secnum; i++) { 12407 dof_sec_t *sec = (dof_sec_t *)(daddr + 12408 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12409 12410 if (noprobes) { 12411 switch (sec->dofs_type) { 12412 case DOF_SECT_PROVIDER: 12413 case DOF_SECT_PROBES: 12414 case DOF_SECT_PRARGS: 12415 case DOF_SECT_PROFFS: 12416 dtrace_dof_error(dof, "illegal sections " 12417 "for enabling"); 12418 return (-1); 12419 } 12420 } 12421 12422 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12423 continue; /* just ignore non-loadable sections */ 12424 12425 if (sec->dofs_align & (sec->dofs_align - 1)) { 12426 dtrace_dof_error(dof, "bad section alignment"); 12427 return (-1); 12428 } 12429 12430 if (sec->dofs_offset & (sec->dofs_align - 1)) { 12431 dtrace_dof_error(dof, "misaligned section"); 12432 return (-1); 12433 } 12434 12435 if (sec->dofs_offset > len || sec->dofs_size > len || 12436 sec->dofs_offset + sec->dofs_size > len) { 12437 dtrace_dof_error(dof, "corrupt section header"); 12438 return (-1); 12439 } 12440 12441 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 12442 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 12443 dtrace_dof_error(dof, "non-terminating string table"); 12444 return (-1); 12445 } 12446 } 12447 12448 /* 12449 * Take a second pass through the sections and locate and perform any 12450 * relocations that are present. We do this after the first pass to 12451 * be sure that all sections have had their headers validated. 12452 */ 12453 for (i = 0; i < dof->dofh_secnum; i++) { 12454 dof_sec_t *sec = (dof_sec_t *)(daddr + 12455 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12456 12457 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12458 continue; /* skip sections that are not loadable */ 12459 12460 switch (sec->dofs_type) { 12461 case DOF_SECT_URELHDR: 12462 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 12463 return (-1); 12464 break; 12465 } 12466 } 12467 12468 if ((enab = *enabp) == NULL) 12469 enab = *enabp = dtrace_enabling_create(vstate); 12470 12471 for (i = 0; i < dof->dofh_secnum; i++) { 12472 dof_sec_t *sec = (dof_sec_t *)(daddr + 12473 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12474 12475 if (sec->dofs_type != DOF_SECT_ECBDESC) 12476 continue; 12477 12478 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 12479 dtrace_enabling_destroy(enab); 12480 *enabp = NULL; 12481 return (-1); 12482 } 12483 12484 dtrace_enabling_add(enab, ep); 12485 } 12486 12487 return (0); 12488 } 12489 12490 /* 12491 * Process DOF for any options. This routine assumes that the DOF has been 12492 * at least processed by dtrace_dof_slurp(). 12493 */ 12494 static int 12495 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 12496 { 12497 int i, rval; 12498 uint32_t entsize; 12499 size_t offs; 12500 dof_optdesc_t *desc; 12501 12502 for (i = 0; i < dof->dofh_secnum; i++) { 12503 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 12504 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12505 12506 if (sec->dofs_type != DOF_SECT_OPTDESC) 12507 continue; 12508 12509 if (sec->dofs_align != sizeof (uint64_t)) { 12510 dtrace_dof_error(dof, "bad alignment in " 12511 "option description"); 12512 return (EINVAL); 12513 } 12514 12515 if ((entsize = sec->dofs_entsize) == 0) { 12516 dtrace_dof_error(dof, "zeroed option entry size"); 12517 return (EINVAL); 12518 } 12519 12520 if (entsize < sizeof (dof_optdesc_t)) { 12521 dtrace_dof_error(dof, "bad option entry size"); 12522 return (EINVAL); 12523 } 12524 12525 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 12526 desc = (dof_optdesc_t *)((uintptr_t)dof + 12527 (uintptr_t)sec->dofs_offset + offs); 12528 12529 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 12530 dtrace_dof_error(dof, "non-zero option string"); 12531 return (EINVAL); 12532 } 12533 12534 if (desc->dofo_value == DTRACEOPT_UNSET) { 12535 dtrace_dof_error(dof, "unset option"); 12536 return (EINVAL); 12537 } 12538 12539 if ((rval = dtrace_state_option(state, 12540 desc->dofo_option, desc->dofo_value)) != 0) { 12541 dtrace_dof_error(dof, "rejected option"); 12542 return (rval); 12543 } 12544 } 12545 } 12546 12547 return (0); 12548 } 12549 12550 /* 12551 * DTrace Consumer State Functions 12552 */ 12553 static int 12554 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 12555 { 12556 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 12557 void *base; 12558 uintptr_t limit; 12559 dtrace_dynvar_t *dvar, *next, *start; 12560 int i; 12561 12562 ASSERT(MUTEX_HELD(&dtrace_lock)); 12563 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 12564 12565 bzero(dstate, sizeof (dtrace_dstate_t)); 12566 12567 if ((dstate->dtds_chunksize = chunksize) == 0) 12568 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 12569 12570 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 12571 size = min; 12572 12573 if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 12574 return (ENOMEM); 12575 12576 dstate->dtds_size = size; 12577 dstate->dtds_base = base; 12578 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 12579 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 12580 12581 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 12582 12583 if (hashsize != 1 && (hashsize & 1)) 12584 hashsize--; 12585 12586 dstate->dtds_hashsize = hashsize; 12587 dstate->dtds_hash = dstate->dtds_base; 12588 12589 /* 12590 * Set all of our hash buckets to point to the single sink, and (if 12591 * it hasn't already been set), set the sink's hash value to be the 12592 * sink sentinel value. The sink is needed for dynamic variable 12593 * lookups to know that they have iterated over an entire, valid hash 12594 * chain. 12595 */ 12596 for (i = 0; i < hashsize; i++) 12597 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 12598 12599 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 12600 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 12601 12602 /* 12603 * Determine number of active CPUs. Divide free list evenly among 12604 * active CPUs. 12605 */ 12606 start = (dtrace_dynvar_t *) 12607 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 12608 limit = (uintptr_t)base + size; 12609 12610 maxper = (limit - (uintptr_t)start) / NCPU; 12611 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 12612 12613 #if !defined(sun) 12614 CPU_FOREACH(i) { 12615 #else 12616 for (i = 0; i < NCPU; i++) { 12617 #endif 12618 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 12619 12620 /* 12621 * If we don't even have enough chunks to make it once through 12622 * NCPUs, we're just going to allocate everything to the first 12623 * CPU. And if we're on the last CPU, we're going to allocate 12624 * whatever is left over. In either case, we set the limit to 12625 * be the limit of the dynamic variable space. 12626 */ 12627 if (maxper == 0 || i == NCPU - 1) { 12628 limit = (uintptr_t)base + size; 12629 start = NULL; 12630 } else { 12631 limit = (uintptr_t)start + maxper; 12632 start = (dtrace_dynvar_t *)limit; 12633 } 12634 12635 ASSERT(limit <= (uintptr_t)base + size); 12636 12637 for (;;) { 12638 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 12639 dstate->dtds_chunksize); 12640 12641 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 12642 break; 12643 12644 dvar->dtdv_next = next; 12645 dvar = next; 12646 } 12647 12648 if (maxper == 0) 12649 break; 12650 } 12651 12652 return (0); 12653 } 12654 12655 static void 12656 dtrace_dstate_fini(dtrace_dstate_t *dstate) 12657 { 12658 ASSERT(MUTEX_HELD(&cpu_lock)); 12659 12660 if (dstate->dtds_base == NULL) 12661 return; 12662 12663 kmem_free(dstate->dtds_base, dstate->dtds_size); 12664 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 12665 } 12666 12667 static void 12668 dtrace_vstate_fini(dtrace_vstate_t *vstate) 12669 { 12670 /* 12671 * Logical XOR, where are you? 12672 */ 12673 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 12674 12675 if (vstate->dtvs_nglobals > 0) { 12676 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 12677 sizeof (dtrace_statvar_t *)); 12678 } 12679 12680 if (vstate->dtvs_ntlocals > 0) { 12681 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 12682 sizeof (dtrace_difv_t)); 12683 } 12684 12685 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 12686 12687 if (vstate->dtvs_nlocals > 0) { 12688 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 12689 sizeof (dtrace_statvar_t *)); 12690 } 12691 } 12692 12693 #if defined(sun) 12694 static void 12695 dtrace_state_clean(dtrace_state_t *state) 12696 { 12697 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 12698 return; 12699 12700 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 12701 dtrace_speculation_clean(state); 12702 } 12703 12704 static void 12705 dtrace_state_deadman(dtrace_state_t *state) 12706 { 12707 hrtime_t now; 12708 12709 dtrace_sync(); 12710 12711 now = dtrace_gethrtime(); 12712 12713 if (state != dtrace_anon.dta_state && 12714 now - state->dts_laststatus >= dtrace_deadman_user) 12715 return; 12716 12717 /* 12718 * We must be sure that dts_alive never appears to be less than the 12719 * value upon entry to dtrace_state_deadman(), and because we lack a 12720 * dtrace_cas64(), we cannot store to it atomically. We thus instead 12721 * store INT64_MAX to it, followed by a memory barrier, followed by 12722 * the new value. This assures that dts_alive never appears to be 12723 * less than its true value, regardless of the order in which the 12724 * stores to the underlying storage are issued. 12725 */ 12726 state->dts_alive = INT64_MAX; 12727 dtrace_membar_producer(); 12728 state->dts_alive = now; 12729 } 12730 #else 12731 static void 12732 dtrace_state_clean(void *arg) 12733 { 12734 dtrace_state_t *state = arg; 12735 dtrace_optval_t *opt = state->dts_options; 12736 12737 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 12738 return; 12739 12740 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 12741 dtrace_speculation_clean(state); 12742 12743 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 12744 dtrace_state_clean, state); 12745 } 12746 12747 static void 12748 dtrace_state_deadman(void *arg) 12749 { 12750 dtrace_state_t *state = arg; 12751 hrtime_t now; 12752 12753 dtrace_sync(); 12754 12755 dtrace_debug_output(); 12756 12757 now = dtrace_gethrtime(); 12758 12759 if (state != dtrace_anon.dta_state && 12760 now - state->dts_laststatus >= dtrace_deadman_user) 12761 return; 12762 12763 /* 12764 * We must be sure that dts_alive never appears to be less than the 12765 * value upon entry to dtrace_state_deadman(), and because we lack a 12766 * dtrace_cas64(), we cannot store to it atomically. We thus instead 12767 * store INT64_MAX to it, followed by a memory barrier, followed by 12768 * the new value. This assures that dts_alive never appears to be 12769 * less than its true value, regardless of the order in which the 12770 * stores to the underlying storage are issued. 12771 */ 12772 state->dts_alive = INT64_MAX; 12773 dtrace_membar_producer(); 12774 state->dts_alive = now; 12775 12776 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 12777 dtrace_state_deadman, state); 12778 } 12779 #endif 12780 12781 static dtrace_state_t * 12782 #if defined(sun) 12783 dtrace_state_create(dev_t *devp, cred_t *cr) 12784 #else 12785 dtrace_state_create(struct cdev *dev) 12786 #endif 12787 { 12788 #if defined(sun) 12789 minor_t minor; 12790 major_t major; 12791 #else 12792 cred_t *cr = NULL; 12793 int m = 0; 12794 #endif 12795 char c[30]; 12796 dtrace_state_t *state; 12797 dtrace_optval_t *opt; 12798 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 12799 12800 ASSERT(MUTEX_HELD(&dtrace_lock)); 12801 ASSERT(MUTEX_HELD(&cpu_lock)); 12802 12803 #if defined(sun) 12804 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 12805 VM_BESTFIT | VM_SLEEP); 12806 12807 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 12808 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12809 return (NULL); 12810 } 12811 12812 state = ddi_get_soft_state(dtrace_softstate, minor); 12813 #else 12814 if (dev != NULL) { 12815 cr = dev->si_cred; 12816 m = dev2unit(dev); 12817 } 12818 12819 /* Allocate memory for the state. */ 12820 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP); 12821 #endif 12822 12823 state->dts_epid = DTRACE_EPIDNONE + 1; 12824 12825 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m); 12826 #if defined(sun) 12827 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 12828 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 12829 12830 if (devp != NULL) { 12831 major = getemajor(*devp); 12832 } else { 12833 major = ddi_driver_major(dtrace_devi); 12834 } 12835 12836 state->dts_dev = makedevice(major, minor); 12837 12838 if (devp != NULL) 12839 *devp = state->dts_dev; 12840 #else 12841 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx); 12842 state->dts_dev = dev; 12843 #endif 12844 12845 /* 12846 * We allocate NCPU buffers. On the one hand, this can be quite 12847 * a bit of memory per instance (nearly 36K on a Starcat). On the 12848 * other hand, it saves an additional memory reference in the probe 12849 * path. 12850 */ 12851 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 12852 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 12853 12854 #if defined(sun) 12855 state->dts_cleaner = CYCLIC_NONE; 12856 state->dts_deadman = CYCLIC_NONE; 12857 #else 12858 callout_init(&state->dts_cleaner, CALLOUT_MPSAFE); 12859 callout_init(&state->dts_deadman, CALLOUT_MPSAFE); 12860 #endif 12861 state->dts_vstate.dtvs_state = state; 12862 12863 for (i = 0; i < DTRACEOPT_MAX; i++) 12864 state->dts_options[i] = DTRACEOPT_UNSET; 12865 12866 /* 12867 * Set the default options. 12868 */ 12869 opt = state->dts_options; 12870 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 12871 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 12872 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 12873 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 12874 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 12875 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 12876 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 12877 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 12878 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 12879 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 12880 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 12881 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 12882 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 12883 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 12884 12885 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 12886 12887 /* 12888 * Depending on the user credentials, we set flag bits which alter probe 12889 * visibility or the amount of destructiveness allowed. In the case of 12890 * actual anonymous tracing, or the possession of all privileges, all of 12891 * the normal checks are bypassed. 12892 */ 12893 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 12894 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 12895 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 12896 } else { 12897 /* 12898 * Set up the credentials for this instantiation. We take a 12899 * hold on the credential to prevent it from disappearing on 12900 * us; this in turn prevents the zone_t referenced by this 12901 * credential from disappearing. This means that we can 12902 * examine the credential and the zone from probe context. 12903 */ 12904 crhold(cr); 12905 state->dts_cred.dcr_cred = cr; 12906 12907 /* 12908 * CRA_PROC means "we have *some* privilege for dtrace" and 12909 * unlocks the use of variables like pid, zonename, etc. 12910 */ 12911 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 12912 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12913 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 12914 } 12915 12916 /* 12917 * dtrace_user allows use of syscall and profile providers. 12918 * If the user also has proc_owner and/or proc_zone, we 12919 * extend the scope to include additional visibility and 12920 * destructive power. 12921 */ 12922 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 12923 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 12924 state->dts_cred.dcr_visible |= 12925 DTRACE_CRV_ALLPROC; 12926 12927 state->dts_cred.dcr_action |= 12928 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12929 } 12930 12931 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 12932 state->dts_cred.dcr_visible |= 12933 DTRACE_CRV_ALLZONE; 12934 12935 state->dts_cred.dcr_action |= 12936 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12937 } 12938 12939 /* 12940 * If we have all privs in whatever zone this is, 12941 * we can do destructive things to processes which 12942 * have altered credentials. 12943 */ 12944 #if defined(sun) 12945 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12946 cr->cr_zone->zone_privset)) { 12947 state->dts_cred.dcr_action |= 12948 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12949 } 12950 #endif 12951 } 12952 12953 /* 12954 * Holding the dtrace_kernel privilege also implies that 12955 * the user has the dtrace_user privilege from a visibility 12956 * perspective. But without further privileges, some 12957 * destructive actions are not available. 12958 */ 12959 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 12960 /* 12961 * Make all probes in all zones visible. However, 12962 * this doesn't mean that all actions become available 12963 * to all zones. 12964 */ 12965 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 12966 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 12967 12968 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 12969 DTRACE_CRA_PROC; 12970 /* 12971 * Holding proc_owner means that destructive actions 12972 * for *this* zone are allowed. 12973 */ 12974 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12975 state->dts_cred.dcr_action |= 12976 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12977 12978 /* 12979 * Holding proc_zone means that destructive actions 12980 * for this user/group ID in all zones is allowed. 12981 */ 12982 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12983 state->dts_cred.dcr_action |= 12984 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12985 12986 #if defined(sun) 12987 /* 12988 * If we have all privs in whatever zone this is, 12989 * we can do destructive things to processes which 12990 * have altered credentials. 12991 */ 12992 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12993 cr->cr_zone->zone_privset)) { 12994 state->dts_cred.dcr_action |= 12995 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12996 } 12997 #endif 12998 } 12999 13000 /* 13001 * Holding the dtrace_proc privilege gives control over fasttrap 13002 * and pid providers. We need to grant wider destructive 13003 * privileges in the event that the user has proc_owner and/or 13004 * proc_zone. 13005 */ 13006 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13007 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13008 state->dts_cred.dcr_action |= 13009 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13010 13011 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13012 state->dts_cred.dcr_action |= 13013 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13014 } 13015 } 13016 13017 return (state); 13018 } 13019 13020 static int 13021 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 13022 { 13023 dtrace_optval_t *opt = state->dts_options, size; 13024 processorid_t cpu = 0;; 13025 int flags = 0, rval; 13026 13027 ASSERT(MUTEX_HELD(&dtrace_lock)); 13028 ASSERT(MUTEX_HELD(&cpu_lock)); 13029 ASSERT(which < DTRACEOPT_MAX); 13030 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 13031 (state == dtrace_anon.dta_state && 13032 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 13033 13034 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 13035 return (0); 13036 13037 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 13038 cpu = opt[DTRACEOPT_CPU]; 13039 13040 if (which == DTRACEOPT_SPECSIZE) 13041 flags |= DTRACEBUF_NOSWITCH; 13042 13043 if (which == DTRACEOPT_BUFSIZE) { 13044 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 13045 flags |= DTRACEBUF_RING; 13046 13047 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 13048 flags |= DTRACEBUF_FILL; 13049 13050 if (state != dtrace_anon.dta_state || 13051 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13052 flags |= DTRACEBUF_INACTIVE; 13053 } 13054 13055 for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) { 13056 /* 13057 * The size must be 8-byte aligned. If the size is not 8-byte 13058 * aligned, drop it down by the difference. 13059 */ 13060 if (size & (sizeof (uint64_t) - 1)) 13061 size -= size & (sizeof (uint64_t) - 1); 13062 13063 if (size < state->dts_reserve) { 13064 /* 13065 * Buffers always must be large enough to accommodate 13066 * their prereserved space. We return E2BIG instead 13067 * of ENOMEM in this case to allow for user-level 13068 * software to differentiate the cases. 13069 */ 13070 return (E2BIG); 13071 } 13072 13073 rval = dtrace_buffer_alloc(buf, size, flags, cpu); 13074 13075 if (rval != ENOMEM) { 13076 opt[which] = size; 13077 return (rval); 13078 } 13079 13080 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13081 return (rval); 13082 } 13083 13084 return (ENOMEM); 13085 } 13086 13087 static int 13088 dtrace_state_buffers(dtrace_state_t *state) 13089 { 13090 dtrace_speculation_t *spec = state->dts_speculations; 13091 int rval, i; 13092 13093 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 13094 DTRACEOPT_BUFSIZE)) != 0) 13095 return (rval); 13096 13097 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 13098 DTRACEOPT_AGGSIZE)) != 0) 13099 return (rval); 13100 13101 for (i = 0; i < state->dts_nspeculations; i++) { 13102 if ((rval = dtrace_state_buffer(state, 13103 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 13104 return (rval); 13105 } 13106 13107 return (0); 13108 } 13109 13110 static void 13111 dtrace_state_prereserve(dtrace_state_t *state) 13112 { 13113 dtrace_ecb_t *ecb; 13114 dtrace_probe_t *probe; 13115 13116 state->dts_reserve = 0; 13117 13118 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 13119 return; 13120 13121 /* 13122 * If our buffer policy is a "fill" buffer policy, we need to set the 13123 * prereserved space to be the space required by the END probes. 13124 */ 13125 probe = dtrace_probes[dtrace_probeid_end - 1]; 13126 ASSERT(probe != NULL); 13127 13128 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 13129 if (ecb->dte_state != state) 13130 continue; 13131 13132 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 13133 } 13134 } 13135 13136 static int 13137 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 13138 { 13139 dtrace_optval_t *opt = state->dts_options, sz, nspec; 13140 dtrace_speculation_t *spec; 13141 dtrace_buffer_t *buf; 13142 #if defined(sun) 13143 cyc_handler_t hdlr; 13144 cyc_time_t when; 13145 #endif 13146 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13147 dtrace_icookie_t cookie; 13148 13149 mutex_enter(&cpu_lock); 13150 mutex_enter(&dtrace_lock); 13151 13152 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 13153 rval = EBUSY; 13154 goto out; 13155 } 13156 13157 /* 13158 * Before we can perform any checks, we must prime all of the 13159 * retained enablings that correspond to this state. 13160 */ 13161 dtrace_enabling_prime(state); 13162 13163 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 13164 rval = EACCES; 13165 goto out; 13166 } 13167 13168 dtrace_state_prereserve(state); 13169 13170 /* 13171 * Now we want to do is try to allocate our speculations. 13172 * We do not automatically resize the number of speculations; if 13173 * this fails, we will fail the operation. 13174 */ 13175 nspec = opt[DTRACEOPT_NSPEC]; 13176 ASSERT(nspec != DTRACEOPT_UNSET); 13177 13178 if (nspec > INT_MAX) { 13179 rval = ENOMEM; 13180 goto out; 13181 } 13182 13183 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP); 13184 13185 if (spec == NULL) { 13186 rval = ENOMEM; 13187 goto out; 13188 } 13189 13190 state->dts_speculations = spec; 13191 state->dts_nspeculations = (int)nspec; 13192 13193 for (i = 0; i < nspec; i++) { 13194 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) { 13195 rval = ENOMEM; 13196 goto err; 13197 } 13198 13199 spec[i].dtsp_buffer = buf; 13200 } 13201 13202 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 13203 if (dtrace_anon.dta_state == NULL) { 13204 rval = ENOENT; 13205 goto out; 13206 } 13207 13208 if (state->dts_necbs != 0) { 13209 rval = EALREADY; 13210 goto out; 13211 } 13212 13213 state->dts_anon = dtrace_anon_grab(); 13214 ASSERT(state->dts_anon != NULL); 13215 state = state->dts_anon; 13216 13217 /* 13218 * We want "grabanon" to be set in the grabbed state, so we'll 13219 * copy that option value from the grabbing state into the 13220 * grabbed state. 13221 */ 13222 state->dts_options[DTRACEOPT_GRABANON] = 13223 opt[DTRACEOPT_GRABANON]; 13224 13225 *cpu = dtrace_anon.dta_beganon; 13226 13227 /* 13228 * If the anonymous state is active (as it almost certainly 13229 * is if the anonymous enabling ultimately matched anything), 13230 * we don't allow any further option processing -- but we 13231 * don't return failure. 13232 */ 13233 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13234 goto out; 13235 } 13236 13237 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 13238 opt[DTRACEOPT_AGGSIZE] != 0) { 13239 if (state->dts_aggregations == NULL) { 13240 /* 13241 * We're not going to create an aggregation buffer 13242 * because we don't have any ECBs that contain 13243 * aggregations -- set this option to 0. 13244 */ 13245 opt[DTRACEOPT_AGGSIZE] = 0; 13246 } else { 13247 /* 13248 * If we have an aggregation buffer, we must also have 13249 * a buffer to use as scratch. 13250 */ 13251 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 13252 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 13253 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 13254 } 13255 } 13256 } 13257 13258 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 13259 opt[DTRACEOPT_SPECSIZE] != 0) { 13260 if (!state->dts_speculates) { 13261 /* 13262 * We're not going to create speculation buffers 13263 * because we don't have any ECBs that actually 13264 * speculate -- set the speculation size to 0. 13265 */ 13266 opt[DTRACEOPT_SPECSIZE] = 0; 13267 } 13268 } 13269 13270 /* 13271 * The bare minimum size for any buffer that we're actually going to 13272 * do anything to is sizeof (uint64_t). 13273 */ 13274 sz = sizeof (uint64_t); 13275 13276 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 13277 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 13278 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 13279 /* 13280 * A buffer size has been explicitly set to 0 (or to a size 13281 * that will be adjusted to 0) and we need the space -- we 13282 * need to return failure. We return ENOSPC to differentiate 13283 * it from failing to allocate a buffer due to failure to meet 13284 * the reserve (for which we return E2BIG). 13285 */ 13286 rval = ENOSPC; 13287 goto out; 13288 } 13289 13290 if ((rval = dtrace_state_buffers(state)) != 0) 13291 goto err; 13292 13293 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 13294 sz = dtrace_dstate_defsize; 13295 13296 do { 13297 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 13298 13299 if (rval == 0) 13300 break; 13301 13302 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13303 goto err; 13304 } while (sz >>= 1); 13305 13306 opt[DTRACEOPT_DYNVARSIZE] = sz; 13307 13308 if (rval != 0) 13309 goto err; 13310 13311 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 13312 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 13313 13314 if (opt[DTRACEOPT_CLEANRATE] == 0) 13315 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13316 13317 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 13318 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 13319 13320 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 13321 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13322 13323 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 13324 #if defined(sun) 13325 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 13326 hdlr.cyh_arg = state; 13327 hdlr.cyh_level = CY_LOW_LEVEL; 13328 13329 when.cyt_when = 0; 13330 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 13331 13332 state->dts_cleaner = cyclic_add(&hdlr, &when); 13333 13334 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 13335 hdlr.cyh_arg = state; 13336 hdlr.cyh_level = CY_LOW_LEVEL; 13337 13338 when.cyt_when = 0; 13339 when.cyt_interval = dtrace_deadman_interval; 13340 13341 state->dts_deadman = cyclic_add(&hdlr, &when); 13342 #else 13343 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 13344 dtrace_state_clean, state); 13345 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 13346 dtrace_state_deadman, state); 13347 #endif 13348 13349 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 13350 13351 /* 13352 * Now it's time to actually fire the BEGIN probe. We need to disable 13353 * interrupts here both to record the CPU on which we fired the BEGIN 13354 * probe (the data from this CPU will be processed first at user 13355 * level) and to manually activate the buffer for this CPU. 13356 */ 13357 cookie = dtrace_interrupt_disable(); 13358 *cpu = curcpu; 13359 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 13360 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 13361 13362 dtrace_probe(dtrace_probeid_begin, 13363 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13364 dtrace_interrupt_enable(cookie); 13365 /* 13366 * We may have had an exit action from a BEGIN probe; only change our 13367 * state to ACTIVE if we're still in WARMUP. 13368 */ 13369 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 13370 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 13371 13372 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 13373 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 13374 13375 /* 13376 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 13377 * want each CPU to transition its principal buffer out of the 13378 * INACTIVE state. Doing this assures that no CPU will suddenly begin 13379 * processing an ECB halfway down a probe's ECB chain; all CPUs will 13380 * atomically transition from processing none of a state's ECBs to 13381 * processing all of them. 13382 */ 13383 dtrace_xcall(DTRACE_CPUALL, 13384 (dtrace_xcall_t)dtrace_buffer_activate, state); 13385 goto out; 13386 13387 err: 13388 dtrace_buffer_free(state->dts_buffer); 13389 dtrace_buffer_free(state->dts_aggbuffer); 13390 13391 if ((nspec = state->dts_nspeculations) == 0) { 13392 ASSERT(state->dts_speculations == NULL); 13393 goto out; 13394 } 13395 13396 spec = state->dts_speculations; 13397 ASSERT(spec != NULL); 13398 13399 for (i = 0; i < state->dts_nspeculations; i++) { 13400 if ((buf = spec[i].dtsp_buffer) == NULL) 13401 break; 13402 13403 dtrace_buffer_free(buf); 13404 kmem_free(buf, bufsize); 13405 } 13406 13407 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13408 state->dts_nspeculations = 0; 13409 state->dts_speculations = NULL; 13410 13411 out: 13412 mutex_exit(&dtrace_lock); 13413 mutex_exit(&cpu_lock); 13414 13415 return (rval); 13416 } 13417 13418 static int 13419 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 13420 { 13421 dtrace_icookie_t cookie; 13422 13423 ASSERT(MUTEX_HELD(&dtrace_lock)); 13424 13425 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 13426 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 13427 return (EINVAL); 13428 13429 /* 13430 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 13431 * to be sure that every CPU has seen it. See below for the details 13432 * on why this is done. 13433 */ 13434 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 13435 dtrace_sync(); 13436 13437 /* 13438 * By this point, it is impossible for any CPU to be still processing 13439 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 13440 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 13441 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 13442 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 13443 * iff we're in the END probe. 13444 */ 13445 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 13446 dtrace_sync(); 13447 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 13448 13449 /* 13450 * Finally, we can release the reserve and call the END probe. We 13451 * disable interrupts across calling the END probe to allow us to 13452 * return the CPU on which we actually called the END probe. This 13453 * allows user-land to be sure that this CPU's principal buffer is 13454 * processed last. 13455 */ 13456 state->dts_reserve = 0; 13457 13458 cookie = dtrace_interrupt_disable(); 13459 *cpu = curcpu; 13460 dtrace_probe(dtrace_probeid_end, 13461 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13462 dtrace_interrupt_enable(cookie); 13463 13464 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 13465 dtrace_sync(); 13466 13467 return (0); 13468 } 13469 13470 static int 13471 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 13472 dtrace_optval_t val) 13473 { 13474 ASSERT(MUTEX_HELD(&dtrace_lock)); 13475 13476 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13477 return (EBUSY); 13478 13479 if (option >= DTRACEOPT_MAX) 13480 return (EINVAL); 13481 13482 if (option != DTRACEOPT_CPU && val < 0) 13483 return (EINVAL); 13484 13485 switch (option) { 13486 case DTRACEOPT_DESTRUCTIVE: 13487 if (dtrace_destructive_disallow) 13488 return (EACCES); 13489 13490 state->dts_cred.dcr_destructive = 1; 13491 break; 13492 13493 case DTRACEOPT_BUFSIZE: 13494 case DTRACEOPT_DYNVARSIZE: 13495 case DTRACEOPT_AGGSIZE: 13496 case DTRACEOPT_SPECSIZE: 13497 case DTRACEOPT_STRSIZE: 13498 if (val < 0) 13499 return (EINVAL); 13500 13501 if (val >= LONG_MAX) { 13502 /* 13503 * If this is an otherwise negative value, set it to 13504 * the highest multiple of 128m less than LONG_MAX. 13505 * Technically, we're adjusting the size without 13506 * regard to the buffer resizing policy, but in fact, 13507 * this has no effect -- if we set the buffer size to 13508 * ~LONG_MAX and the buffer policy is ultimately set to 13509 * be "manual", the buffer allocation is guaranteed to 13510 * fail, if only because the allocation requires two 13511 * buffers. (We set the the size to the highest 13512 * multiple of 128m because it ensures that the size 13513 * will remain a multiple of a megabyte when 13514 * repeatedly halved -- all the way down to 15m.) 13515 */ 13516 val = LONG_MAX - (1 << 27) + 1; 13517 } 13518 } 13519 13520 state->dts_options[option] = val; 13521 13522 return (0); 13523 } 13524 13525 static void 13526 dtrace_state_destroy(dtrace_state_t *state) 13527 { 13528 dtrace_ecb_t *ecb; 13529 dtrace_vstate_t *vstate = &state->dts_vstate; 13530 #if defined(sun) 13531 minor_t minor = getminor(state->dts_dev); 13532 #endif 13533 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13534 dtrace_speculation_t *spec = state->dts_speculations; 13535 int nspec = state->dts_nspeculations; 13536 uint32_t match; 13537 13538 ASSERT(MUTEX_HELD(&dtrace_lock)); 13539 ASSERT(MUTEX_HELD(&cpu_lock)); 13540 13541 /* 13542 * First, retract any retained enablings for this state. 13543 */ 13544 dtrace_enabling_retract(state); 13545 ASSERT(state->dts_nretained == 0); 13546 13547 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 13548 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 13549 /* 13550 * We have managed to come into dtrace_state_destroy() on a 13551 * hot enabling -- almost certainly because of a disorderly 13552 * shutdown of a consumer. (That is, a consumer that is 13553 * exiting without having called dtrace_stop().) In this case, 13554 * we're going to set our activity to be KILLED, and then 13555 * issue a sync to be sure that everyone is out of probe 13556 * context before we start blowing away ECBs. 13557 */ 13558 state->dts_activity = DTRACE_ACTIVITY_KILLED; 13559 dtrace_sync(); 13560 } 13561 13562 /* 13563 * Release the credential hold we took in dtrace_state_create(). 13564 */ 13565 if (state->dts_cred.dcr_cred != NULL) 13566 crfree(state->dts_cred.dcr_cred); 13567 13568 /* 13569 * Now we can safely disable and destroy any enabled probes. Because 13570 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 13571 * (especially if they're all enabled), we take two passes through the 13572 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 13573 * in the second we disable whatever is left over. 13574 */ 13575 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 13576 for (i = 0; i < state->dts_necbs; i++) { 13577 if ((ecb = state->dts_ecbs[i]) == NULL) 13578 continue; 13579 13580 if (match && ecb->dte_probe != NULL) { 13581 dtrace_probe_t *probe = ecb->dte_probe; 13582 dtrace_provider_t *prov = probe->dtpr_provider; 13583 13584 if (!(prov->dtpv_priv.dtpp_flags & match)) 13585 continue; 13586 } 13587 13588 dtrace_ecb_disable(ecb); 13589 dtrace_ecb_destroy(ecb); 13590 } 13591 13592 if (!match) 13593 break; 13594 } 13595 13596 /* 13597 * Before we free the buffers, perform one more sync to assure that 13598 * every CPU is out of probe context. 13599 */ 13600 dtrace_sync(); 13601 13602 dtrace_buffer_free(state->dts_buffer); 13603 dtrace_buffer_free(state->dts_aggbuffer); 13604 13605 for (i = 0; i < nspec; i++) 13606 dtrace_buffer_free(spec[i].dtsp_buffer); 13607 13608 #if defined(sun) 13609 if (state->dts_cleaner != CYCLIC_NONE) 13610 cyclic_remove(state->dts_cleaner); 13611 13612 if (state->dts_deadman != CYCLIC_NONE) 13613 cyclic_remove(state->dts_deadman); 13614 #else 13615 callout_stop(&state->dts_cleaner); 13616 callout_drain(&state->dts_cleaner); 13617 callout_stop(&state->dts_deadman); 13618 callout_drain(&state->dts_deadman); 13619 #endif 13620 13621 dtrace_dstate_fini(&vstate->dtvs_dynvars); 13622 dtrace_vstate_fini(vstate); 13623 if (state->dts_ecbs != NULL) 13624 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 13625 13626 if (state->dts_aggregations != NULL) { 13627 #ifdef DEBUG 13628 for (i = 0; i < state->dts_naggregations; i++) 13629 ASSERT(state->dts_aggregations[i] == NULL); 13630 #endif 13631 ASSERT(state->dts_naggregations > 0); 13632 kmem_free(state->dts_aggregations, 13633 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 13634 } 13635 13636 kmem_free(state->dts_buffer, bufsize); 13637 kmem_free(state->dts_aggbuffer, bufsize); 13638 13639 for (i = 0; i < nspec; i++) 13640 kmem_free(spec[i].dtsp_buffer, bufsize); 13641 13642 if (spec != NULL) 13643 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13644 13645 dtrace_format_destroy(state); 13646 13647 if (state->dts_aggid_arena != NULL) { 13648 #if defined(sun) 13649 vmem_destroy(state->dts_aggid_arena); 13650 #else 13651 delete_unrhdr(state->dts_aggid_arena); 13652 #endif 13653 state->dts_aggid_arena = NULL; 13654 } 13655 #if defined(sun) 13656 ddi_soft_state_free(dtrace_softstate, minor); 13657 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13658 #endif 13659 } 13660 13661 /* 13662 * DTrace Anonymous Enabling Functions 13663 */ 13664 static dtrace_state_t * 13665 dtrace_anon_grab(void) 13666 { 13667 dtrace_state_t *state; 13668 13669 ASSERT(MUTEX_HELD(&dtrace_lock)); 13670 13671 if ((state = dtrace_anon.dta_state) == NULL) { 13672 ASSERT(dtrace_anon.dta_enabling == NULL); 13673 return (NULL); 13674 } 13675 13676 ASSERT(dtrace_anon.dta_enabling != NULL); 13677 ASSERT(dtrace_retained != NULL); 13678 13679 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 13680 dtrace_anon.dta_enabling = NULL; 13681 dtrace_anon.dta_state = NULL; 13682 13683 return (state); 13684 } 13685 13686 static void 13687 dtrace_anon_property(void) 13688 { 13689 int i, rv; 13690 dtrace_state_t *state; 13691 dof_hdr_t *dof; 13692 char c[32]; /* enough for "dof-data-" + digits */ 13693 13694 ASSERT(MUTEX_HELD(&dtrace_lock)); 13695 ASSERT(MUTEX_HELD(&cpu_lock)); 13696 13697 for (i = 0; ; i++) { 13698 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 13699 13700 dtrace_err_verbose = 1; 13701 13702 if ((dof = dtrace_dof_property(c)) == NULL) { 13703 dtrace_err_verbose = 0; 13704 break; 13705 } 13706 13707 #if defined(sun) 13708 /* 13709 * We want to create anonymous state, so we need to transition 13710 * the kernel debugger to indicate that DTrace is active. If 13711 * this fails (e.g. because the debugger has modified text in 13712 * some way), we won't continue with the processing. 13713 */ 13714 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 13715 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 13716 "enabling ignored."); 13717 dtrace_dof_destroy(dof); 13718 break; 13719 } 13720 #endif 13721 13722 /* 13723 * If we haven't allocated an anonymous state, we'll do so now. 13724 */ 13725 if ((state = dtrace_anon.dta_state) == NULL) { 13726 #if defined(sun) 13727 state = dtrace_state_create(NULL, NULL); 13728 #else 13729 state = dtrace_state_create(NULL); 13730 #endif 13731 dtrace_anon.dta_state = state; 13732 13733 if (state == NULL) { 13734 /* 13735 * This basically shouldn't happen: the only 13736 * failure mode from dtrace_state_create() is a 13737 * failure of ddi_soft_state_zalloc() that 13738 * itself should never happen. Still, the 13739 * interface allows for a failure mode, and 13740 * we want to fail as gracefully as possible: 13741 * we'll emit an error message and cease 13742 * processing anonymous state in this case. 13743 */ 13744 cmn_err(CE_WARN, "failed to create " 13745 "anonymous state"); 13746 dtrace_dof_destroy(dof); 13747 break; 13748 } 13749 } 13750 13751 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 13752 &dtrace_anon.dta_enabling, 0, B_TRUE); 13753 13754 if (rv == 0) 13755 rv = dtrace_dof_options(dof, state); 13756 13757 dtrace_err_verbose = 0; 13758 dtrace_dof_destroy(dof); 13759 13760 if (rv != 0) { 13761 /* 13762 * This is malformed DOF; chuck any anonymous state 13763 * that we created. 13764 */ 13765 ASSERT(dtrace_anon.dta_enabling == NULL); 13766 dtrace_state_destroy(state); 13767 dtrace_anon.dta_state = NULL; 13768 break; 13769 } 13770 13771 ASSERT(dtrace_anon.dta_enabling != NULL); 13772 } 13773 13774 if (dtrace_anon.dta_enabling != NULL) { 13775 int rval; 13776 13777 /* 13778 * dtrace_enabling_retain() can only fail because we are 13779 * trying to retain more enablings than are allowed -- but 13780 * we only have one anonymous enabling, and we are guaranteed 13781 * to be allowed at least one retained enabling; we assert 13782 * that dtrace_enabling_retain() returns success. 13783 */ 13784 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 13785 ASSERT(rval == 0); 13786 13787 dtrace_enabling_dump(dtrace_anon.dta_enabling); 13788 } 13789 } 13790 13791 /* 13792 * DTrace Helper Functions 13793 */ 13794 static void 13795 dtrace_helper_trace(dtrace_helper_action_t *helper, 13796 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 13797 { 13798 uint32_t size, next, nnext, i; 13799 dtrace_helptrace_t *ent; 13800 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags; 13801 13802 if (!dtrace_helptrace_enabled) 13803 return; 13804 13805 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 13806 13807 /* 13808 * What would a tracing framework be without its own tracing 13809 * framework? (Well, a hell of a lot simpler, for starters...) 13810 */ 13811 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 13812 sizeof (uint64_t) - sizeof (uint64_t); 13813 13814 /* 13815 * Iterate until we can allocate a slot in the trace buffer. 13816 */ 13817 do { 13818 next = dtrace_helptrace_next; 13819 13820 if (next + size < dtrace_helptrace_bufsize) { 13821 nnext = next + size; 13822 } else { 13823 nnext = size; 13824 } 13825 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 13826 13827 /* 13828 * We have our slot; fill it in. 13829 */ 13830 if (nnext == size) 13831 next = 0; 13832 13833 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 13834 ent->dtht_helper = helper; 13835 ent->dtht_where = where; 13836 ent->dtht_nlocals = vstate->dtvs_nlocals; 13837 13838 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 13839 mstate->dtms_fltoffs : -1; 13840 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 13841 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval; 13842 13843 for (i = 0; i < vstate->dtvs_nlocals; i++) { 13844 dtrace_statvar_t *svar; 13845 13846 if ((svar = vstate->dtvs_locals[i]) == NULL) 13847 continue; 13848 13849 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 13850 ent->dtht_locals[i] = 13851 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu]; 13852 } 13853 } 13854 13855 static uint64_t 13856 dtrace_helper(int which, dtrace_mstate_t *mstate, 13857 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 13858 { 13859 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 13860 uint64_t sarg0 = mstate->dtms_arg[0]; 13861 uint64_t sarg1 = mstate->dtms_arg[1]; 13862 uint64_t rval = 0; 13863 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 13864 dtrace_helper_action_t *helper; 13865 dtrace_vstate_t *vstate; 13866 dtrace_difo_t *pred; 13867 int i, trace = dtrace_helptrace_enabled; 13868 13869 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 13870 13871 if (helpers == NULL) 13872 return (0); 13873 13874 if ((helper = helpers->dthps_actions[which]) == NULL) 13875 return (0); 13876 13877 vstate = &helpers->dthps_vstate; 13878 mstate->dtms_arg[0] = arg0; 13879 mstate->dtms_arg[1] = arg1; 13880 13881 /* 13882 * Now iterate over each helper. If its predicate evaluates to 'true', 13883 * we'll call the corresponding actions. Note that the below calls 13884 * to dtrace_dif_emulate() may set faults in machine state. This is 13885 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 13886 * the stored DIF offset with its own (which is the desired behavior). 13887 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 13888 * from machine state; this is okay, too. 13889 */ 13890 for (; helper != NULL; helper = helper->dtha_next) { 13891 if ((pred = helper->dtha_predicate) != NULL) { 13892 if (trace) 13893 dtrace_helper_trace(helper, mstate, vstate, 0); 13894 13895 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 13896 goto next; 13897 13898 if (*flags & CPU_DTRACE_FAULT) 13899 goto err; 13900 } 13901 13902 for (i = 0; i < helper->dtha_nactions; i++) { 13903 if (trace) 13904 dtrace_helper_trace(helper, 13905 mstate, vstate, i + 1); 13906 13907 rval = dtrace_dif_emulate(helper->dtha_actions[i], 13908 mstate, vstate, state); 13909 13910 if (*flags & CPU_DTRACE_FAULT) 13911 goto err; 13912 } 13913 13914 next: 13915 if (trace) 13916 dtrace_helper_trace(helper, mstate, vstate, 13917 DTRACE_HELPTRACE_NEXT); 13918 } 13919 13920 if (trace) 13921 dtrace_helper_trace(helper, mstate, vstate, 13922 DTRACE_HELPTRACE_DONE); 13923 13924 /* 13925 * Restore the arg0 that we saved upon entry. 13926 */ 13927 mstate->dtms_arg[0] = sarg0; 13928 mstate->dtms_arg[1] = sarg1; 13929 13930 return (rval); 13931 13932 err: 13933 if (trace) 13934 dtrace_helper_trace(helper, mstate, vstate, 13935 DTRACE_HELPTRACE_ERR); 13936 13937 /* 13938 * Restore the arg0 that we saved upon entry. 13939 */ 13940 mstate->dtms_arg[0] = sarg0; 13941 mstate->dtms_arg[1] = sarg1; 13942 13943 return (0); 13944 } 13945 13946 static void 13947 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 13948 dtrace_vstate_t *vstate) 13949 { 13950 int i; 13951 13952 if (helper->dtha_predicate != NULL) 13953 dtrace_difo_release(helper->dtha_predicate, vstate); 13954 13955 for (i = 0; i < helper->dtha_nactions; i++) { 13956 ASSERT(helper->dtha_actions[i] != NULL); 13957 dtrace_difo_release(helper->dtha_actions[i], vstate); 13958 } 13959 13960 kmem_free(helper->dtha_actions, 13961 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 13962 kmem_free(helper, sizeof (dtrace_helper_action_t)); 13963 } 13964 13965 static int 13966 dtrace_helper_destroygen(int gen) 13967 { 13968 proc_t *p = curproc; 13969 dtrace_helpers_t *help = p->p_dtrace_helpers; 13970 dtrace_vstate_t *vstate; 13971 int i; 13972 13973 ASSERT(MUTEX_HELD(&dtrace_lock)); 13974 13975 if (help == NULL || gen > help->dthps_generation) 13976 return (EINVAL); 13977 13978 vstate = &help->dthps_vstate; 13979 13980 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13981 dtrace_helper_action_t *last = NULL, *h, *next; 13982 13983 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13984 next = h->dtha_next; 13985 13986 if (h->dtha_generation == gen) { 13987 if (last != NULL) { 13988 last->dtha_next = next; 13989 } else { 13990 help->dthps_actions[i] = next; 13991 } 13992 13993 dtrace_helper_action_destroy(h, vstate); 13994 } else { 13995 last = h; 13996 } 13997 } 13998 } 13999 14000 /* 14001 * Interate until we've cleared out all helper providers with the 14002 * given generation number. 14003 */ 14004 for (;;) { 14005 dtrace_helper_provider_t *prov; 14006 14007 /* 14008 * Look for a helper provider with the right generation. We 14009 * have to start back at the beginning of the list each time 14010 * because we drop dtrace_lock. It's unlikely that we'll make 14011 * more than two passes. 14012 */ 14013 for (i = 0; i < help->dthps_nprovs; i++) { 14014 prov = help->dthps_provs[i]; 14015 14016 if (prov->dthp_generation == gen) 14017 break; 14018 } 14019 14020 /* 14021 * If there were no matches, we're done. 14022 */ 14023 if (i == help->dthps_nprovs) 14024 break; 14025 14026 /* 14027 * Move the last helper provider into this slot. 14028 */ 14029 help->dthps_nprovs--; 14030 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 14031 help->dthps_provs[help->dthps_nprovs] = NULL; 14032 14033 mutex_exit(&dtrace_lock); 14034 14035 /* 14036 * If we have a meta provider, remove this helper provider. 14037 */ 14038 mutex_enter(&dtrace_meta_lock); 14039 if (dtrace_meta_pid != NULL) { 14040 ASSERT(dtrace_deferred_pid == NULL); 14041 dtrace_helper_provider_remove(&prov->dthp_prov, 14042 p->p_pid); 14043 } 14044 mutex_exit(&dtrace_meta_lock); 14045 14046 dtrace_helper_provider_destroy(prov); 14047 14048 mutex_enter(&dtrace_lock); 14049 } 14050 14051 return (0); 14052 } 14053 14054 static int 14055 dtrace_helper_validate(dtrace_helper_action_t *helper) 14056 { 14057 int err = 0, i; 14058 dtrace_difo_t *dp; 14059 14060 if ((dp = helper->dtha_predicate) != NULL) 14061 err += dtrace_difo_validate_helper(dp); 14062 14063 for (i = 0; i < helper->dtha_nactions; i++) 14064 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 14065 14066 return (err == 0); 14067 } 14068 14069 static int 14070 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 14071 { 14072 dtrace_helpers_t *help; 14073 dtrace_helper_action_t *helper, *last; 14074 dtrace_actdesc_t *act; 14075 dtrace_vstate_t *vstate; 14076 dtrace_predicate_t *pred; 14077 int count = 0, nactions = 0, i; 14078 14079 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 14080 return (EINVAL); 14081 14082 help = curproc->p_dtrace_helpers; 14083 last = help->dthps_actions[which]; 14084 vstate = &help->dthps_vstate; 14085 14086 for (count = 0; last != NULL; last = last->dtha_next) { 14087 count++; 14088 if (last->dtha_next == NULL) 14089 break; 14090 } 14091 14092 /* 14093 * If we already have dtrace_helper_actions_max helper actions for this 14094 * helper action type, we'll refuse to add a new one. 14095 */ 14096 if (count >= dtrace_helper_actions_max) 14097 return (ENOSPC); 14098 14099 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 14100 helper->dtha_generation = help->dthps_generation; 14101 14102 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 14103 ASSERT(pred->dtp_difo != NULL); 14104 dtrace_difo_hold(pred->dtp_difo); 14105 helper->dtha_predicate = pred->dtp_difo; 14106 } 14107 14108 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 14109 if (act->dtad_kind != DTRACEACT_DIFEXPR) 14110 goto err; 14111 14112 if (act->dtad_difo == NULL) 14113 goto err; 14114 14115 nactions++; 14116 } 14117 14118 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 14119 (helper->dtha_nactions = nactions), KM_SLEEP); 14120 14121 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 14122 dtrace_difo_hold(act->dtad_difo); 14123 helper->dtha_actions[i++] = act->dtad_difo; 14124 } 14125 14126 if (!dtrace_helper_validate(helper)) 14127 goto err; 14128 14129 if (last == NULL) { 14130 help->dthps_actions[which] = helper; 14131 } else { 14132 last->dtha_next = helper; 14133 } 14134 14135 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 14136 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 14137 dtrace_helptrace_next = 0; 14138 } 14139 14140 return (0); 14141 err: 14142 dtrace_helper_action_destroy(helper, vstate); 14143 return (EINVAL); 14144 } 14145 14146 static void 14147 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 14148 dof_helper_t *dofhp) 14149 { 14150 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 14151 14152 mutex_enter(&dtrace_meta_lock); 14153 mutex_enter(&dtrace_lock); 14154 14155 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 14156 /* 14157 * If the dtrace module is loaded but not attached, or if 14158 * there aren't isn't a meta provider registered to deal with 14159 * these provider descriptions, we need to postpone creating 14160 * the actual providers until later. 14161 */ 14162 14163 if (help->dthps_next == NULL && help->dthps_prev == NULL && 14164 dtrace_deferred_pid != help) { 14165 help->dthps_deferred = 1; 14166 help->dthps_pid = p->p_pid; 14167 help->dthps_next = dtrace_deferred_pid; 14168 help->dthps_prev = NULL; 14169 if (dtrace_deferred_pid != NULL) 14170 dtrace_deferred_pid->dthps_prev = help; 14171 dtrace_deferred_pid = help; 14172 } 14173 14174 mutex_exit(&dtrace_lock); 14175 14176 } else if (dofhp != NULL) { 14177 /* 14178 * If the dtrace module is loaded and we have a particular 14179 * helper provider description, pass that off to the 14180 * meta provider. 14181 */ 14182 14183 mutex_exit(&dtrace_lock); 14184 14185 dtrace_helper_provide(dofhp, p->p_pid); 14186 14187 } else { 14188 /* 14189 * Otherwise, just pass all the helper provider descriptions 14190 * off to the meta provider. 14191 */ 14192 14193 int i; 14194 mutex_exit(&dtrace_lock); 14195 14196 for (i = 0; i < help->dthps_nprovs; i++) { 14197 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 14198 p->p_pid); 14199 } 14200 } 14201 14202 mutex_exit(&dtrace_meta_lock); 14203 } 14204 14205 static int 14206 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 14207 { 14208 dtrace_helpers_t *help; 14209 dtrace_helper_provider_t *hprov, **tmp_provs; 14210 uint_t tmp_maxprovs, i; 14211 14212 ASSERT(MUTEX_HELD(&dtrace_lock)); 14213 14214 help = curproc->p_dtrace_helpers; 14215 ASSERT(help != NULL); 14216 14217 /* 14218 * If we already have dtrace_helper_providers_max helper providers, 14219 * we're refuse to add a new one. 14220 */ 14221 if (help->dthps_nprovs >= dtrace_helper_providers_max) 14222 return (ENOSPC); 14223 14224 /* 14225 * Check to make sure this isn't a duplicate. 14226 */ 14227 for (i = 0; i < help->dthps_nprovs; i++) { 14228 if (dofhp->dofhp_addr == 14229 help->dthps_provs[i]->dthp_prov.dofhp_addr) 14230 return (EALREADY); 14231 } 14232 14233 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 14234 hprov->dthp_prov = *dofhp; 14235 hprov->dthp_ref = 1; 14236 hprov->dthp_generation = gen; 14237 14238 /* 14239 * Allocate a bigger table for helper providers if it's already full. 14240 */ 14241 if (help->dthps_maxprovs == help->dthps_nprovs) { 14242 tmp_maxprovs = help->dthps_maxprovs; 14243 tmp_provs = help->dthps_provs; 14244 14245 if (help->dthps_maxprovs == 0) 14246 help->dthps_maxprovs = 2; 14247 else 14248 help->dthps_maxprovs *= 2; 14249 if (help->dthps_maxprovs > dtrace_helper_providers_max) 14250 help->dthps_maxprovs = dtrace_helper_providers_max; 14251 14252 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 14253 14254 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 14255 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14256 14257 if (tmp_provs != NULL) { 14258 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 14259 sizeof (dtrace_helper_provider_t *)); 14260 kmem_free(tmp_provs, tmp_maxprovs * 14261 sizeof (dtrace_helper_provider_t *)); 14262 } 14263 } 14264 14265 help->dthps_provs[help->dthps_nprovs] = hprov; 14266 help->dthps_nprovs++; 14267 14268 return (0); 14269 } 14270 14271 static void 14272 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 14273 { 14274 mutex_enter(&dtrace_lock); 14275 14276 if (--hprov->dthp_ref == 0) { 14277 dof_hdr_t *dof; 14278 mutex_exit(&dtrace_lock); 14279 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 14280 dtrace_dof_destroy(dof); 14281 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 14282 } else { 14283 mutex_exit(&dtrace_lock); 14284 } 14285 } 14286 14287 static int 14288 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 14289 { 14290 uintptr_t daddr = (uintptr_t)dof; 14291 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 14292 dof_provider_t *provider; 14293 dof_probe_t *probe; 14294 uint8_t *arg; 14295 char *strtab, *typestr; 14296 dof_stridx_t typeidx; 14297 size_t typesz; 14298 uint_t nprobes, j, k; 14299 14300 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 14301 14302 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 14303 dtrace_dof_error(dof, "misaligned section offset"); 14304 return (-1); 14305 } 14306 14307 /* 14308 * The section needs to be large enough to contain the DOF provider 14309 * structure appropriate for the given version. 14310 */ 14311 if (sec->dofs_size < 14312 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 14313 offsetof(dof_provider_t, dofpv_prenoffs) : 14314 sizeof (dof_provider_t))) { 14315 dtrace_dof_error(dof, "provider section too small"); 14316 return (-1); 14317 } 14318 14319 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 14320 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 14321 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 14322 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 14323 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 14324 14325 if (str_sec == NULL || prb_sec == NULL || 14326 arg_sec == NULL || off_sec == NULL) 14327 return (-1); 14328 14329 enoff_sec = NULL; 14330 14331 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14332 provider->dofpv_prenoffs != DOF_SECT_NONE && 14333 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 14334 provider->dofpv_prenoffs)) == NULL) 14335 return (-1); 14336 14337 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 14338 14339 if (provider->dofpv_name >= str_sec->dofs_size || 14340 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 14341 dtrace_dof_error(dof, "invalid provider name"); 14342 return (-1); 14343 } 14344 14345 if (prb_sec->dofs_entsize == 0 || 14346 prb_sec->dofs_entsize > prb_sec->dofs_size) { 14347 dtrace_dof_error(dof, "invalid entry size"); 14348 return (-1); 14349 } 14350 14351 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 14352 dtrace_dof_error(dof, "misaligned entry size"); 14353 return (-1); 14354 } 14355 14356 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 14357 dtrace_dof_error(dof, "invalid entry size"); 14358 return (-1); 14359 } 14360 14361 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 14362 dtrace_dof_error(dof, "misaligned section offset"); 14363 return (-1); 14364 } 14365 14366 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 14367 dtrace_dof_error(dof, "invalid entry size"); 14368 return (-1); 14369 } 14370 14371 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 14372 14373 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 14374 14375 /* 14376 * Take a pass through the probes to check for errors. 14377 */ 14378 for (j = 0; j < nprobes; j++) { 14379 probe = (dof_probe_t *)(uintptr_t)(daddr + 14380 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 14381 14382 if (probe->dofpr_func >= str_sec->dofs_size) { 14383 dtrace_dof_error(dof, "invalid function name"); 14384 return (-1); 14385 } 14386 14387 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 14388 dtrace_dof_error(dof, "function name too long"); 14389 return (-1); 14390 } 14391 14392 if (probe->dofpr_name >= str_sec->dofs_size || 14393 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 14394 dtrace_dof_error(dof, "invalid probe name"); 14395 return (-1); 14396 } 14397 14398 /* 14399 * The offset count must not wrap the index, and the offsets 14400 * must also not overflow the section's data. 14401 */ 14402 if (probe->dofpr_offidx + probe->dofpr_noffs < 14403 probe->dofpr_offidx || 14404 (probe->dofpr_offidx + probe->dofpr_noffs) * 14405 off_sec->dofs_entsize > off_sec->dofs_size) { 14406 dtrace_dof_error(dof, "invalid probe offset"); 14407 return (-1); 14408 } 14409 14410 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 14411 /* 14412 * If there's no is-enabled offset section, make sure 14413 * there aren't any is-enabled offsets. Otherwise 14414 * perform the same checks as for probe offsets 14415 * (immediately above). 14416 */ 14417 if (enoff_sec == NULL) { 14418 if (probe->dofpr_enoffidx != 0 || 14419 probe->dofpr_nenoffs != 0) { 14420 dtrace_dof_error(dof, "is-enabled " 14421 "offsets with null section"); 14422 return (-1); 14423 } 14424 } else if (probe->dofpr_enoffidx + 14425 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 14426 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 14427 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 14428 dtrace_dof_error(dof, "invalid is-enabled " 14429 "offset"); 14430 return (-1); 14431 } 14432 14433 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 14434 dtrace_dof_error(dof, "zero probe and " 14435 "is-enabled offsets"); 14436 return (-1); 14437 } 14438 } else if (probe->dofpr_noffs == 0) { 14439 dtrace_dof_error(dof, "zero probe offsets"); 14440 return (-1); 14441 } 14442 14443 if (probe->dofpr_argidx + probe->dofpr_xargc < 14444 probe->dofpr_argidx || 14445 (probe->dofpr_argidx + probe->dofpr_xargc) * 14446 arg_sec->dofs_entsize > arg_sec->dofs_size) { 14447 dtrace_dof_error(dof, "invalid args"); 14448 return (-1); 14449 } 14450 14451 typeidx = probe->dofpr_nargv; 14452 typestr = strtab + probe->dofpr_nargv; 14453 for (k = 0; k < probe->dofpr_nargc; k++) { 14454 if (typeidx >= str_sec->dofs_size) { 14455 dtrace_dof_error(dof, "bad " 14456 "native argument type"); 14457 return (-1); 14458 } 14459 14460 typesz = strlen(typestr) + 1; 14461 if (typesz > DTRACE_ARGTYPELEN) { 14462 dtrace_dof_error(dof, "native " 14463 "argument type too long"); 14464 return (-1); 14465 } 14466 typeidx += typesz; 14467 typestr += typesz; 14468 } 14469 14470 typeidx = probe->dofpr_xargv; 14471 typestr = strtab + probe->dofpr_xargv; 14472 for (k = 0; k < probe->dofpr_xargc; k++) { 14473 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 14474 dtrace_dof_error(dof, "bad " 14475 "native argument index"); 14476 return (-1); 14477 } 14478 14479 if (typeidx >= str_sec->dofs_size) { 14480 dtrace_dof_error(dof, "bad " 14481 "translated argument type"); 14482 return (-1); 14483 } 14484 14485 typesz = strlen(typestr) + 1; 14486 if (typesz > DTRACE_ARGTYPELEN) { 14487 dtrace_dof_error(dof, "translated argument " 14488 "type too long"); 14489 return (-1); 14490 } 14491 14492 typeidx += typesz; 14493 typestr += typesz; 14494 } 14495 } 14496 14497 return (0); 14498 } 14499 14500 static int 14501 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 14502 { 14503 dtrace_helpers_t *help; 14504 dtrace_vstate_t *vstate; 14505 dtrace_enabling_t *enab = NULL; 14506 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 14507 uintptr_t daddr = (uintptr_t)dof; 14508 14509 ASSERT(MUTEX_HELD(&dtrace_lock)); 14510 14511 if ((help = curproc->p_dtrace_helpers) == NULL) 14512 help = dtrace_helpers_create(curproc); 14513 14514 vstate = &help->dthps_vstate; 14515 14516 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 14517 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 14518 dtrace_dof_destroy(dof); 14519 return (rv); 14520 } 14521 14522 /* 14523 * Look for helper providers and validate their descriptions. 14524 */ 14525 if (dhp != NULL) { 14526 for (i = 0; i < dof->dofh_secnum; i++) { 14527 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 14528 dof->dofh_secoff + i * dof->dofh_secsize); 14529 14530 if (sec->dofs_type != DOF_SECT_PROVIDER) 14531 continue; 14532 14533 if (dtrace_helper_provider_validate(dof, sec) != 0) { 14534 dtrace_enabling_destroy(enab); 14535 dtrace_dof_destroy(dof); 14536 return (-1); 14537 } 14538 14539 nprovs++; 14540 } 14541 } 14542 14543 /* 14544 * Now we need to walk through the ECB descriptions in the enabling. 14545 */ 14546 for (i = 0; i < enab->dten_ndesc; i++) { 14547 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 14548 dtrace_probedesc_t *desc = &ep->dted_probe; 14549 14550 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 14551 continue; 14552 14553 if (strcmp(desc->dtpd_mod, "helper") != 0) 14554 continue; 14555 14556 if (strcmp(desc->dtpd_func, "ustack") != 0) 14557 continue; 14558 14559 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 14560 ep)) != 0) { 14561 /* 14562 * Adding this helper action failed -- we are now going 14563 * to rip out the entire generation and return failure. 14564 */ 14565 (void) dtrace_helper_destroygen(help->dthps_generation); 14566 dtrace_enabling_destroy(enab); 14567 dtrace_dof_destroy(dof); 14568 return (-1); 14569 } 14570 14571 nhelpers++; 14572 } 14573 14574 if (nhelpers < enab->dten_ndesc) 14575 dtrace_dof_error(dof, "unmatched helpers"); 14576 14577 gen = help->dthps_generation++; 14578 dtrace_enabling_destroy(enab); 14579 14580 if (dhp != NULL && nprovs > 0) { 14581 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 14582 if (dtrace_helper_provider_add(dhp, gen) == 0) { 14583 mutex_exit(&dtrace_lock); 14584 dtrace_helper_provider_register(curproc, help, dhp); 14585 mutex_enter(&dtrace_lock); 14586 14587 destroy = 0; 14588 } 14589 } 14590 14591 if (destroy) 14592 dtrace_dof_destroy(dof); 14593 14594 return (gen); 14595 } 14596 14597 static dtrace_helpers_t * 14598 dtrace_helpers_create(proc_t *p) 14599 { 14600 dtrace_helpers_t *help; 14601 14602 ASSERT(MUTEX_HELD(&dtrace_lock)); 14603 ASSERT(p->p_dtrace_helpers == NULL); 14604 14605 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 14606 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 14607 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 14608 14609 p->p_dtrace_helpers = help; 14610 dtrace_helpers++; 14611 14612 return (help); 14613 } 14614 14615 #if defined(sun) 14616 static 14617 #endif 14618 void 14619 dtrace_helpers_destroy(proc_t *p) 14620 { 14621 dtrace_helpers_t *help; 14622 dtrace_vstate_t *vstate; 14623 #if defined(sun) 14624 proc_t *p = curproc; 14625 #endif 14626 int i; 14627 14628 mutex_enter(&dtrace_lock); 14629 14630 ASSERT(p->p_dtrace_helpers != NULL); 14631 ASSERT(dtrace_helpers > 0); 14632 14633 help = p->p_dtrace_helpers; 14634 vstate = &help->dthps_vstate; 14635 14636 /* 14637 * We're now going to lose the help from this process. 14638 */ 14639 p->p_dtrace_helpers = NULL; 14640 dtrace_sync(); 14641 14642 /* 14643 * Destory the helper actions. 14644 */ 14645 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14646 dtrace_helper_action_t *h, *next; 14647 14648 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14649 next = h->dtha_next; 14650 dtrace_helper_action_destroy(h, vstate); 14651 h = next; 14652 } 14653 } 14654 14655 mutex_exit(&dtrace_lock); 14656 14657 /* 14658 * Destroy the helper providers. 14659 */ 14660 if (help->dthps_maxprovs > 0) { 14661 mutex_enter(&dtrace_meta_lock); 14662 if (dtrace_meta_pid != NULL) { 14663 ASSERT(dtrace_deferred_pid == NULL); 14664 14665 for (i = 0; i < help->dthps_nprovs; i++) { 14666 dtrace_helper_provider_remove( 14667 &help->dthps_provs[i]->dthp_prov, p->p_pid); 14668 } 14669 } else { 14670 mutex_enter(&dtrace_lock); 14671 ASSERT(help->dthps_deferred == 0 || 14672 help->dthps_next != NULL || 14673 help->dthps_prev != NULL || 14674 help == dtrace_deferred_pid); 14675 14676 /* 14677 * Remove the helper from the deferred list. 14678 */ 14679 if (help->dthps_next != NULL) 14680 help->dthps_next->dthps_prev = help->dthps_prev; 14681 if (help->dthps_prev != NULL) 14682 help->dthps_prev->dthps_next = help->dthps_next; 14683 if (dtrace_deferred_pid == help) { 14684 dtrace_deferred_pid = help->dthps_next; 14685 ASSERT(help->dthps_prev == NULL); 14686 } 14687 14688 mutex_exit(&dtrace_lock); 14689 } 14690 14691 mutex_exit(&dtrace_meta_lock); 14692 14693 for (i = 0; i < help->dthps_nprovs; i++) { 14694 dtrace_helper_provider_destroy(help->dthps_provs[i]); 14695 } 14696 14697 kmem_free(help->dthps_provs, help->dthps_maxprovs * 14698 sizeof (dtrace_helper_provider_t *)); 14699 } 14700 14701 mutex_enter(&dtrace_lock); 14702 14703 dtrace_vstate_fini(&help->dthps_vstate); 14704 kmem_free(help->dthps_actions, 14705 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 14706 kmem_free(help, sizeof (dtrace_helpers_t)); 14707 14708 --dtrace_helpers; 14709 mutex_exit(&dtrace_lock); 14710 } 14711 14712 #if defined(sun) 14713 static 14714 #endif 14715 void 14716 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 14717 { 14718 dtrace_helpers_t *help, *newhelp; 14719 dtrace_helper_action_t *helper, *new, *last; 14720 dtrace_difo_t *dp; 14721 dtrace_vstate_t *vstate; 14722 int i, j, sz, hasprovs = 0; 14723 14724 mutex_enter(&dtrace_lock); 14725 ASSERT(from->p_dtrace_helpers != NULL); 14726 ASSERT(dtrace_helpers > 0); 14727 14728 help = from->p_dtrace_helpers; 14729 newhelp = dtrace_helpers_create(to); 14730 ASSERT(to->p_dtrace_helpers != NULL); 14731 14732 newhelp->dthps_generation = help->dthps_generation; 14733 vstate = &newhelp->dthps_vstate; 14734 14735 /* 14736 * Duplicate the helper actions. 14737 */ 14738 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14739 if ((helper = help->dthps_actions[i]) == NULL) 14740 continue; 14741 14742 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 14743 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 14744 KM_SLEEP); 14745 new->dtha_generation = helper->dtha_generation; 14746 14747 if ((dp = helper->dtha_predicate) != NULL) { 14748 dp = dtrace_difo_duplicate(dp, vstate); 14749 new->dtha_predicate = dp; 14750 } 14751 14752 new->dtha_nactions = helper->dtha_nactions; 14753 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 14754 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 14755 14756 for (j = 0; j < new->dtha_nactions; j++) { 14757 dtrace_difo_t *dp = helper->dtha_actions[j]; 14758 14759 ASSERT(dp != NULL); 14760 dp = dtrace_difo_duplicate(dp, vstate); 14761 new->dtha_actions[j] = dp; 14762 } 14763 14764 if (last != NULL) { 14765 last->dtha_next = new; 14766 } else { 14767 newhelp->dthps_actions[i] = new; 14768 } 14769 14770 last = new; 14771 } 14772 } 14773 14774 /* 14775 * Duplicate the helper providers and register them with the 14776 * DTrace framework. 14777 */ 14778 if (help->dthps_nprovs > 0) { 14779 newhelp->dthps_nprovs = help->dthps_nprovs; 14780 newhelp->dthps_maxprovs = help->dthps_nprovs; 14781 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 14782 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14783 for (i = 0; i < newhelp->dthps_nprovs; i++) { 14784 newhelp->dthps_provs[i] = help->dthps_provs[i]; 14785 newhelp->dthps_provs[i]->dthp_ref++; 14786 } 14787 14788 hasprovs = 1; 14789 } 14790 14791 mutex_exit(&dtrace_lock); 14792 14793 if (hasprovs) 14794 dtrace_helper_provider_register(to, newhelp, NULL); 14795 } 14796 14797 #if defined(sun) 14798 /* 14799 * DTrace Hook Functions 14800 */ 14801 static void 14802 dtrace_module_loaded(modctl_t *ctl) 14803 { 14804 dtrace_provider_t *prv; 14805 14806 mutex_enter(&dtrace_provider_lock); 14807 mutex_enter(&mod_lock); 14808 14809 ASSERT(ctl->mod_busy); 14810 14811 /* 14812 * We're going to call each providers per-module provide operation 14813 * specifying only this module. 14814 */ 14815 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 14816 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 14817 14818 mutex_exit(&mod_lock); 14819 mutex_exit(&dtrace_provider_lock); 14820 14821 /* 14822 * If we have any retained enablings, we need to match against them. 14823 * Enabling probes requires that cpu_lock be held, and we cannot hold 14824 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 14825 * module. (In particular, this happens when loading scheduling 14826 * classes.) So if we have any retained enablings, we need to dispatch 14827 * our task queue to do the match for us. 14828 */ 14829 mutex_enter(&dtrace_lock); 14830 14831 if (dtrace_retained == NULL) { 14832 mutex_exit(&dtrace_lock); 14833 return; 14834 } 14835 14836 (void) taskq_dispatch(dtrace_taskq, 14837 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 14838 14839 mutex_exit(&dtrace_lock); 14840 14841 /* 14842 * And now, for a little heuristic sleaze: in general, we want to 14843 * match modules as soon as they load. However, we cannot guarantee 14844 * this, because it would lead us to the lock ordering violation 14845 * outlined above. The common case, of course, is that cpu_lock is 14846 * _not_ held -- so we delay here for a clock tick, hoping that that's 14847 * long enough for the task queue to do its work. If it's not, it's 14848 * not a serious problem -- it just means that the module that we 14849 * just loaded may not be immediately instrumentable. 14850 */ 14851 delay(1); 14852 } 14853 14854 static void 14855 dtrace_module_unloaded(modctl_t *ctl) 14856 { 14857 dtrace_probe_t template, *probe, *first, *next; 14858 dtrace_provider_t *prov; 14859 14860 template.dtpr_mod = ctl->mod_modname; 14861 14862 mutex_enter(&dtrace_provider_lock); 14863 mutex_enter(&mod_lock); 14864 mutex_enter(&dtrace_lock); 14865 14866 if (dtrace_bymod == NULL) { 14867 /* 14868 * The DTrace module is loaded (obviously) but not attached; 14869 * we don't have any work to do. 14870 */ 14871 mutex_exit(&dtrace_provider_lock); 14872 mutex_exit(&mod_lock); 14873 mutex_exit(&dtrace_lock); 14874 return; 14875 } 14876 14877 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 14878 probe != NULL; probe = probe->dtpr_nextmod) { 14879 if (probe->dtpr_ecb != NULL) { 14880 mutex_exit(&dtrace_provider_lock); 14881 mutex_exit(&mod_lock); 14882 mutex_exit(&dtrace_lock); 14883 14884 /* 14885 * This shouldn't _actually_ be possible -- we're 14886 * unloading a module that has an enabled probe in it. 14887 * (It's normally up to the provider to make sure that 14888 * this can't happen.) However, because dtps_enable() 14889 * doesn't have a failure mode, there can be an 14890 * enable/unload race. Upshot: we don't want to 14891 * assert, but we're not going to disable the 14892 * probe, either. 14893 */ 14894 if (dtrace_err_verbose) { 14895 cmn_err(CE_WARN, "unloaded module '%s' had " 14896 "enabled probes", ctl->mod_modname); 14897 } 14898 14899 return; 14900 } 14901 } 14902 14903 probe = first; 14904 14905 for (first = NULL; probe != NULL; probe = next) { 14906 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 14907 14908 dtrace_probes[probe->dtpr_id - 1] = NULL; 14909 14910 next = probe->dtpr_nextmod; 14911 dtrace_hash_remove(dtrace_bymod, probe); 14912 dtrace_hash_remove(dtrace_byfunc, probe); 14913 dtrace_hash_remove(dtrace_byname, probe); 14914 14915 if (first == NULL) { 14916 first = probe; 14917 probe->dtpr_nextmod = NULL; 14918 } else { 14919 probe->dtpr_nextmod = first; 14920 first = probe; 14921 } 14922 } 14923 14924 /* 14925 * We've removed all of the module's probes from the hash chains and 14926 * from the probe array. Now issue a dtrace_sync() to be sure that 14927 * everyone has cleared out from any probe array processing. 14928 */ 14929 dtrace_sync(); 14930 14931 for (probe = first; probe != NULL; probe = first) { 14932 first = probe->dtpr_nextmod; 14933 prov = probe->dtpr_provider; 14934 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 14935 probe->dtpr_arg); 14936 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 14937 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 14938 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 14939 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 14940 kmem_free(probe, sizeof (dtrace_probe_t)); 14941 } 14942 14943 mutex_exit(&dtrace_lock); 14944 mutex_exit(&mod_lock); 14945 mutex_exit(&dtrace_provider_lock); 14946 } 14947 14948 static void 14949 dtrace_suspend(void) 14950 { 14951 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 14952 } 14953 14954 static void 14955 dtrace_resume(void) 14956 { 14957 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 14958 } 14959 #endif 14960 14961 static int 14962 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 14963 { 14964 ASSERT(MUTEX_HELD(&cpu_lock)); 14965 mutex_enter(&dtrace_lock); 14966 14967 switch (what) { 14968 case CPU_CONFIG: { 14969 dtrace_state_t *state; 14970 dtrace_optval_t *opt, rs, c; 14971 14972 /* 14973 * For now, we only allocate a new buffer for anonymous state. 14974 */ 14975 if ((state = dtrace_anon.dta_state) == NULL) 14976 break; 14977 14978 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14979 break; 14980 14981 opt = state->dts_options; 14982 c = opt[DTRACEOPT_CPU]; 14983 14984 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 14985 break; 14986 14987 /* 14988 * Regardless of what the actual policy is, we're going to 14989 * temporarily set our resize policy to be manual. We're 14990 * also going to temporarily set our CPU option to denote 14991 * the newly configured CPU. 14992 */ 14993 rs = opt[DTRACEOPT_BUFRESIZE]; 14994 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 14995 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 14996 14997 (void) dtrace_state_buffers(state); 14998 14999 opt[DTRACEOPT_BUFRESIZE] = rs; 15000 opt[DTRACEOPT_CPU] = c; 15001 15002 break; 15003 } 15004 15005 case CPU_UNCONFIG: 15006 /* 15007 * We don't free the buffer in the CPU_UNCONFIG case. (The 15008 * buffer will be freed when the consumer exits.) 15009 */ 15010 break; 15011 15012 default: 15013 break; 15014 } 15015 15016 mutex_exit(&dtrace_lock); 15017 return (0); 15018 } 15019 15020 #if defined(sun) 15021 static void 15022 dtrace_cpu_setup_initial(processorid_t cpu) 15023 { 15024 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 15025 } 15026 #endif 15027 15028 static void 15029 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 15030 { 15031 if (dtrace_toxranges >= dtrace_toxranges_max) { 15032 int osize, nsize; 15033 dtrace_toxrange_t *range; 15034 15035 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15036 15037 if (osize == 0) { 15038 ASSERT(dtrace_toxrange == NULL); 15039 ASSERT(dtrace_toxranges_max == 0); 15040 dtrace_toxranges_max = 1; 15041 } else { 15042 dtrace_toxranges_max <<= 1; 15043 } 15044 15045 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15046 range = kmem_zalloc(nsize, KM_SLEEP); 15047 15048 if (dtrace_toxrange != NULL) { 15049 ASSERT(osize != 0); 15050 bcopy(dtrace_toxrange, range, osize); 15051 kmem_free(dtrace_toxrange, osize); 15052 } 15053 15054 dtrace_toxrange = range; 15055 } 15056 15057 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); 15058 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); 15059 15060 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 15061 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 15062 dtrace_toxranges++; 15063 } 15064 15065 /* 15066 * DTrace Driver Cookbook Functions 15067 */ 15068 #if defined(sun) 15069 /*ARGSUSED*/ 15070 static int 15071 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 15072 { 15073 dtrace_provider_id_t id; 15074 dtrace_state_t *state = NULL; 15075 dtrace_enabling_t *enab; 15076 15077 mutex_enter(&cpu_lock); 15078 mutex_enter(&dtrace_provider_lock); 15079 mutex_enter(&dtrace_lock); 15080 15081 if (ddi_soft_state_init(&dtrace_softstate, 15082 sizeof (dtrace_state_t), 0) != 0) { 15083 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 15084 mutex_exit(&cpu_lock); 15085 mutex_exit(&dtrace_provider_lock); 15086 mutex_exit(&dtrace_lock); 15087 return (DDI_FAILURE); 15088 } 15089 15090 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 15091 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 15092 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 15093 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 15094 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 15095 ddi_remove_minor_node(devi, NULL); 15096 ddi_soft_state_fini(&dtrace_softstate); 15097 mutex_exit(&cpu_lock); 15098 mutex_exit(&dtrace_provider_lock); 15099 mutex_exit(&dtrace_lock); 15100 return (DDI_FAILURE); 15101 } 15102 15103 ddi_report_dev(devi); 15104 dtrace_devi = devi; 15105 15106 dtrace_modload = dtrace_module_loaded; 15107 dtrace_modunload = dtrace_module_unloaded; 15108 dtrace_cpu_init = dtrace_cpu_setup_initial; 15109 dtrace_helpers_cleanup = dtrace_helpers_destroy; 15110 dtrace_helpers_fork = dtrace_helpers_duplicate; 15111 dtrace_cpustart_init = dtrace_suspend; 15112 dtrace_cpustart_fini = dtrace_resume; 15113 dtrace_debugger_init = dtrace_suspend; 15114 dtrace_debugger_fini = dtrace_resume; 15115 15116 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15117 15118 ASSERT(MUTEX_HELD(&cpu_lock)); 15119 15120 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 15121 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 15122 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 15123 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 15124 VM_SLEEP | VMC_IDENTIFIER); 15125 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 15126 1, INT_MAX, 0); 15127 15128 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 15129 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 15130 NULL, NULL, NULL, NULL, NULL, 0); 15131 15132 ASSERT(MUTEX_HELD(&cpu_lock)); 15133 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 15134 offsetof(dtrace_probe_t, dtpr_nextmod), 15135 offsetof(dtrace_probe_t, dtpr_prevmod)); 15136 15137 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 15138 offsetof(dtrace_probe_t, dtpr_nextfunc), 15139 offsetof(dtrace_probe_t, dtpr_prevfunc)); 15140 15141 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 15142 offsetof(dtrace_probe_t, dtpr_nextname), 15143 offsetof(dtrace_probe_t, dtpr_prevname)); 15144 15145 if (dtrace_retain_max < 1) { 15146 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 15147 "setting to 1", dtrace_retain_max); 15148 dtrace_retain_max = 1; 15149 } 15150 15151 /* 15152 * Now discover our toxic ranges. 15153 */ 15154 dtrace_toxic_ranges(dtrace_toxrange_add); 15155 15156 /* 15157 * Before we register ourselves as a provider to our own framework, 15158 * we would like to assert that dtrace_provider is NULL -- but that's 15159 * not true if we were loaded as a dependency of a DTrace provider. 15160 * Once we've registered, we can assert that dtrace_provider is our 15161 * pseudo provider. 15162 */ 15163 (void) dtrace_register("dtrace", &dtrace_provider_attr, 15164 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 15165 15166 ASSERT(dtrace_provider != NULL); 15167 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 15168 15169 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 15170 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 15171 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 15172 dtrace_provider, NULL, NULL, "END", 0, NULL); 15173 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 15174 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 15175 15176 dtrace_anon_property(); 15177 mutex_exit(&cpu_lock); 15178 15179 /* 15180 * If DTrace helper tracing is enabled, we need to allocate the 15181 * trace buffer and initialize the values. 15182 */ 15183 if (dtrace_helptrace_enabled) { 15184 ASSERT(dtrace_helptrace_buffer == NULL); 15185 dtrace_helptrace_buffer = 15186 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 15187 dtrace_helptrace_next = 0; 15188 } 15189 15190 /* 15191 * If there are already providers, we must ask them to provide their 15192 * probes, and then match any anonymous enabling against them. Note 15193 * that there should be no other retained enablings at this time: 15194 * the only retained enablings at this time should be the anonymous 15195 * enabling. 15196 */ 15197 if (dtrace_anon.dta_enabling != NULL) { 15198 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 15199 15200 dtrace_enabling_provide(NULL); 15201 state = dtrace_anon.dta_state; 15202 15203 /* 15204 * We couldn't hold cpu_lock across the above call to 15205 * dtrace_enabling_provide(), but we must hold it to actually 15206 * enable the probes. We have to drop all of our locks, pick 15207 * up cpu_lock, and regain our locks before matching the 15208 * retained anonymous enabling. 15209 */ 15210 mutex_exit(&dtrace_lock); 15211 mutex_exit(&dtrace_provider_lock); 15212 15213 mutex_enter(&cpu_lock); 15214 mutex_enter(&dtrace_provider_lock); 15215 mutex_enter(&dtrace_lock); 15216 15217 if ((enab = dtrace_anon.dta_enabling) != NULL) 15218 (void) dtrace_enabling_match(enab, NULL); 15219 15220 mutex_exit(&cpu_lock); 15221 } 15222 15223 mutex_exit(&dtrace_lock); 15224 mutex_exit(&dtrace_provider_lock); 15225 15226 if (state != NULL) { 15227 /* 15228 * If we created any anonymous state, set it going now. 15229 */ 15230 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 15231 } 15232 15233 return (DDI_SUCCESS); 15234 } 15235 #endif 15236 15237 #if !defined(sun) 15238 #if __FreeBSD_version >= 800039 15239 static void 15240 dtrace_dtr(void *data __unused) 15241 { 15242 } 15243 #endif 15244 #endif 15245 15246 /*ARGSUSED*/ 15247 static int 15248 #if defined(sun) 15249 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 15250 #else 15251 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 15252 #endif 15253 { 15254 dtrace_state_t *state; 15255 uint32_t priv; 15256 uid_t uid; 15257 zoneid_t zoneid; 15258 15259 #if defined(sun) 15260 if (getminor(*devp) == DTRACEMNRN_HELPER) 15261 return (0); 15262 15263 /* 15264 * If this wasn't an open with the "helper" minor, then it must be 15265 * the "dtrace" minor. 15266 */ 15267 ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE); 15268 #else 15269 cred_t *cred_p = NULL; 15270 15271 #if __FreeBSD_version < 800039 15272 /* 15273 * The first minor device is the one that is cloned so there is 15274 * nothing more to do here. 15275 */ 15276 if (dev2unit(dev) == 0) 15277 return 0; 15278 15279 /* 15280 * Devices are cloned, so if the DTrace state has already 15281 * been allocated, that means this device belongs to a 15282 * different client. Each client should open '/dev/dtrace' 15283 * to get a cloned device. 15284 */ 15285 if (dev->si_drv1 != NULL) 15286 return (EBUSY); 15287 #endif 15288 15289 cred_p = dev->si_cred; 15290 #endif 15291 15292 /* 15293 * If no DTRACE_PRIV_* bits are set in the credential, then the 15294 * caller lacks sufficient permission to do anything with DTrace. 15295 */ 15296 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 15297 if (priv == DTRACE_PRIV_NONE) { 15298 #if !defined(sun) 15299 #if __FreeBSD_version < 800039 15300 /* Destroy the cloned device. */ 15301 destroy_dev(dev); 15302 #endif 15303 #endif 15304 15305 return (EACCES); 15306 } 15307 15308 /* 15309 * Ask all providers to provide all their probes. 15310 */ 15311 mutex_enter(&dtrace_provider_lock); 15312 dtrace_probe_provide(NULL, NULL); 15313 mutex_exit(&dtrace_provider_lock); 15314 15315 mutex_enter(&cpu_lock); 15316 mutex_enter(&dtrace_lock); 15317 dtrace_opens++; 15318 dtrace_membar_producer(); 15319 15320 #if defined(sun) 15321 /* 15322 * If the kernel debugger is active (that is, if the kernel debugger 15323 * modified text in some way), we won't allow the open. 15324 */ 15325 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15326 dtrace_opens--; 15327 mutex_exit(&cpu_lock); 15328 mutex_exit(&dtrace_lock); 15329 return (EBUSY); 15330 } 15331 15332 state = dtrace_state_create(devp, cred_p); 15333 #else 15334 state = dtrace_state_create(dev); 15335 #if __FreeBSD_version < 800039 15336 dev->si_drv1 = state; 15337 #else 15338 devfs_set_cdevpriv(state, dtrace_dtr); 15339 #endif 15340 #endif 15341 15342 mutex_exit(&cpu_lock); 15343 15344 if (state == NULL) { 15345 #if defined(sun) 15346 if (--dtrace_opens == 0) 15347 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15348 #else 15349 --dtrace_opens; 15350 #endif 15351 mutex_exit(&dtrace_lock); 15352 #if !defined(sun) 15353 #if __FreeBSD_version < 800039 15354 /* Destroy the cloned device. */ 15355 destroy_dev(dev); 15356 #endif 15357 #endif 15358 return (EAGAIN); 15359 } 15360 15361 mutex_exit(&dtrace_lock); 15362 15363 return (0); 15364 } 15365 15366 /*ARGSUSED*/ 15367 static int 15368 #if defined(sun) 15369 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 15370 #else 15371 dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td) 15372 #endif 15373 { 15374 #if defined(sun) 15375 minor_t minor = getminor(dev); 15376 dtrace_state_t *state; 15377 15378 if (minor == DTRACEMNRN_HELPER) 15379 return (0); 15380 15381 state = ddi_get_soft_state(dtrace_softstate, minor); 15382 #else 15383 #if __FreeBSD_version < 800039 15384 dtrace_state_t *state = dev->si_drv1; 15385 15386 /* Check if this is not a cloned device. */ 15387 if (dev2unit(dev) == 0) 15388 return (0); 15389 #else 15390 dtrace_state_t *state; 15391 devfs_get_cdevpriv((void **) &state); 15392 #endif 15393 15394 #endif 15395 15396 mutex_enter(&cpu_lock); 15397 mutex_enter(&dtrace_lock); 15398 15399 if (state != NULL) { 15400 if (state->dts_anon) { 15401 /* 15402 * There is anonymous state. Destroy that first. 15403 */ 15404 ASSERT(dtrace_anon.dta_state == NULL); 15405 dtrace_state_destroy(state->dts_anon); 15406 } 15407 15408 dtrace_state_destroy(state); 15409 15410 #if !defined(sun) 15411 kmem_free(state, 0); 15412 #if __FreeBSD_version < 800039 15413 dev->si_drv1 = NULL; 15414 #else 15415 devfs_clear_cdevpriv(); 15416 #endif 15417 #endif 15418 } 15419 15420 ASSERT(dtrace_opens > 0); 15421 #if defined(sun) 15422 if (--dtrace_opens == 0) 15423 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15424 #else 15425 --dtrace_opens; 15426 #endif 15427 15428 mutex_exit(&dtrace_lock); 15429 mutex_exit(&cpu_lock); 15430 15431 #if __FreeBSD_version < 800039 15432 /* Schedule this cloned device to be destroyed. */ 15433 destroy_dev_sched(dev); 15434 #endif 15435 15436 return (0); 15437 } 15438 15439 #if defined(sun) 15440 /*ARGSUSED*/ 15441 static int 15442 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 15443 { 15444 int rval; 15445 dof_helper_t help, *dhp = NULL; 15446 15447 switch (cmd) { 15448 case DTRACEHIOC_ADDDOF: 15449 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 15450 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 15451 return (EFAULT); 15452 } 15453 15454 dhp = &help; 15455 arg = (intptr_t)help.dofhp_dof; 15456 /*FALLTHROUGH*/ 15457 15458 case DTRACEHIOC_ADD: { 15459 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 15460 15461 if (dof == NULL) 15462 return (rval); 15463 15464 mutex_enter(&dtrace_lock); 15465 15466 /* 15467 * dtrace_helper_slurp() takes responsibility for the dof -- 15468 * it may free it now or it may save it and free it later. 15469 */ 15470 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 15471 *rv = rval; 15472 rval = 0; 15473 } else { 15474 rval = EINVAL; 15475 } 15476 15477 mutex_exit(&dtrace_lock); 15478 return (rval); 15479 } 15480 15481 case DTRACEHIOC_REMOVE: { 15482 mutex_enter(&dtrace_lock); 15483 rval = dtrace_helper_destroygen(arg); 15484 mutex_exit(&dtrace_lock); 15485 15486 return (rval); 15487 } 15488 15489 default: 15490 break; 15491 } 15492 15493 return (ENOTTY); 15494 } 15495 15496 /*ARGSUSED*/ 15497 static int 15498 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 15499 { 15500 minor_t minor = getminor(dev); 15501 dtrace_state_t *state; 15502 int rval; 15503 15504 if (minor == DTRACEMNRN_HELPER) 15505 return (dtrace_ioctl_helper(cmd, arg, rv)); 15506 15507 state = ddi_get_soft_state(dtrace_softstate, minor); 15508 15509 if (state->dts_anon) { 15510 ASSERT(dtrace_anon.dta_state == NULL); 15511 state = state->dts_anon; 15512 } 15513 15514 switch (cmd) { 15515 case DTRACEIOC_PROVIDER: { 15516 dtrace_providerdesc_t pvd; 15517 dtrace_provider_t *pvp; 15518 15519 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 15520 return (EFAULT); 15521 15522 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 15523 mutex_enter(&dtrace_provider_lock); 15524 15525 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 15526 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 15527 break; 15528 } 15529 15530 mutex_exit(&dtrace_provider_lock); 15531 15532 if (pvp == NULL) 15533 return (ESRCH); 15534 15535 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 15536 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 15537 15538 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 15539 return (EFAULT); 15540 15541 return (0); 15542 } 15543 15544 case DTRACEIOC_EPROBE: { 15545 dtrace_eprobedesc_t epdesc; 15546 dtrace_ecb_t *ecb; 15547 dtrace_action_t *act; 15548 void *buf; 15549 size_t size; 15550 uintptr_t dest; 15551 int nrecs; 15552 15553 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 15554 return (EFAULT); 15555 15556 mutex_enter(&dtrace_lock); 15557 15558 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 15559 mutex_exit(&dtrace_lock); 15560 return (EINVAL); 15561 } 15562 15563 if (ecb->dte_probe == NULL) { 15564 mutex_exit(&dtrace_lock); 15565 return (EINVAL); 15566 } 15567 15568 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 15569 epdesc.dtepd_uarg = ecb->dte_uarg; 15570 epdesc.dtepd_size = ecb->dte_size; 15571 15572 nrecs = epdesc.dtepd_nrecs; 15573 epdesc.dtepd_nrecs = 0; 15574 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15575 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15576 continue; 15577 15578 epdesc.dtepd_nrecs++; 15579 } 15580 15581 /* 15582 * Now that we have the size, we need to allocate a temporary 15583 * buffer in which to store the complete description. We need 15584 * the temporary buffer to be able to drop dtrace_lock() 15585 * across the copyout(), below. 15586 */ 15587 size = sizeof (dtrace_eprobedesc_t) + 15588 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 15589 15590 buf = kmem_alloc(size, KM_SLEEP); 15591 dest = (uintptr_t)buf; 15592 15593 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 15594 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 15595 15596 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15597 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15598 continue; 15599 15600 if (nrecs-- == 0) 15601 break; 15602 15603 bcopy(&act->dta_rec, (void *)dest, 15604 sizeof (dtrace_recdesc_t)); 15605 dest += sizeof (dtrace_recdesc_t); 15606 } 15607 15608 mutex_exit(&dtrace_lock); 15609 15610 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 15611 kmem_free(buf, size); 15612 return (EFAULT); 15613 } 15614 15615 kmem_free(buf, size); 15616 return (0); 15617 } 15618 15619 case DTRACEIOC_AGGDESC: { 15620 dtrace_aggdesc_t aggdesc; 15621 dtrace_action_t *act; 15622 dtrace_aggregation_t *agg; 15623 int nrecs; 15624 uint32_t offs; 15625 dtrace_recdesc_t *lrec; 15626 void *buf; 15627 size_t size; 15628 uintptr_t dest; 15629 15630 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 15631 return (EFAULT); 15632 15633 mutex_enter(&dtrace_lock); 15634 15635 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 15636 mutex_exit(&dtrace_lock); 15637 return (EINVAL); 15638 } 15639 15640 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 15641 15642 nrecs = aggdesc.dtagd_nrecs; 15643 aggdesc.dtagd_nrecs = 0; 15644 15645 offs = agg->dtag_base; 15646 lrec = &agg->dtag_action.dta_rec; 15647 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 15648 15649 for (act = agg->dtag_first; ; act = act->dta_next) { 15650 ASSERT(act->dta_intuple || 15651 DTRACEACT_ISAGG(act->dta_kind)); 15652 15653 /* 15654 * If this action has a record size of zero, it 15655 * denotes an argument to the aggregating action. 15656 * Because the presence of this record doesn't (or 15657 * shouldn't) affect the way the data is interpreted, 15658 * we don't copy it out to save user-level the 15659 * confusion of dealing with a zero-length record. 15660 */ 15661 if (act->dta_rec.dtrd_size == 0) { 15662 ASSERT(agg->dtag_hasarg); 15663 continue; 15664 } 15665 15666 aggdesc.dtagd_nrecs++; 15667 15668 if (act == &agg->dtag_action) 15669 break; 15670 } 15671 15672 /* 15673 * Now that we have the size, we need to allocate a temporary 15674 * buffer in which to store the complete description. We need 15675 * the temporary buffer to be able to drop dtrace_lock() 15676 * across the copyout(), below. 15677 */ 15678 size = sizeof (dtrace_aggdesc_t) + 15679 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 15680 15681 buf = kmem_alloc(size, KM_SLEEP); 15682 dest = (uintptr_t)buf; 15683 15684 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 15685 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 15686 15687 for (act = agg->dtag_first; ; act = act->dta_next) { 15688 dtrace_recdesc_t rec = act->dta_rec; 15689 15690 /* 15691 * See the comment in the above loop for why we pass 15692 * over zero-length records. 15693 */ 15694 if (rec.dtrd_size == 0) { 15695 ASSERT(agg->dtag_hasarg); 15696 continue; 15697 } 15698 15699 if (nrecs-- == 0) 15700 break; 15701 15702 rec.dtrd_offset -= offs; 15703 bcopy(&rec, (void *)dest, sizeof (rec)); 15704 dest += sizeof (dtrace_recdesc_t); 15705 15706 if (act == &agg->dtag_action) 15707 break; 15708 } 15709 15710 mutex_exit(&dtrace_lock); 15711 15712 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 15713 kmem_free(buf, size); 15714 return (EFAULT); 15715 } 15716 15717 kmem_free(buf, size); 15718 return (0); 15719 } 15720 15721 case DTRACEIOC_ENABLE: { 15722 dof_hdr_t *dof; 15723 dtrace_enabling_t *enab = NULL; 15724 dtrace_vstate_t *vstate; 15725 int err = 0; 15726 15727 *rv = 0; 15728 15729 /* 15730 * If a NULL argument has been passed, we take this as our 15731 * cue to reevaluate our enablings. 15732 */ 15733 if (arg == NULL) { 15734 dtrace_enabling_matchall(); 15735 15736 return (0); 15737 } 15738 15739 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 15740 return (rval); 15741 15742 mutex_enter(&cpu_lock); 15743 mutex_enter(&dtrace_lock); 15744 vstate = &state->dts_vstate; 15745 15746 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 15747 mutex_exit(&dtrace_lock); 15748 mutex_exit(&cpu_lock); 15749 dtrace_dof_destroy(dof); 15750 return (EBUSY); 15751 } 15752 15753 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 15754 mutex_exit(&dtrace_lock); 15755 mutex_exit(&cpu_lock); 15756 dtrace_dof_destroy(dof); 15757 return (EINVAL); 15758 } 15759 15760 if ((rval = dtrace_dof_options(dof, state)) != 0) { 15761 dtrace_enabling_destroy(enab); 15762 mutex_exit(&dtrace_lock); 15763 mutex_exit(&cpu_lock); 15764 dtrace_dof_destroy(dof); 15765 return (rval); 15766 } 15767 15768 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 15769 err = dtrace_enabling_retain(enab); 15770 } else { 15771 dtrace_enabling_destroy(enab); 15772 } 15773 15774 mutex_exit(&cpu_lock); 15775 mutex_exit(&dtrace_lock); 15776 dtrace_dof_destroy(dof); 15777 15778 return (err); 15779 } 15780 15781 case DTRACEIOC_REPLICATE: { 15782 dtrace_repldesc_t desc; 15783 dtrace_probedesc_t *match = &desc.dtrpd_match; 15784 dtrace_probedesc_t *create = &desc.dtrpd_create; 15785 int err; 15786 15787 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15788 return (EFAULT); 15789 15790 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15791 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15792 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15793 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15794 15795 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15796 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15797 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15798 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15799 15800 mutex_enter(&dtrace_lock); 15801 err = dtrace_enabling_replicate(state, match, create); 15802 mutex_exit(&dtrace_lock); 15803 15804 return (err); 15805 } 15806 15807 case DTRACEIOC_PROBEMATCH: 15808 case DTRACEIOC_PROBES: { 15809 dtrace_probe_t *probe = NULL; 15810 dtrace_probedesc_t desc; 15811 dtrace_probekey_t pkey; 15812 dtrace_id_t i; 15813 int m = 0; 15814 uint32_t priv; 15815 uid_t uid; 15816 zoneid_t zoneid; 15817 15818 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15819 return (EFAULT); 15820 15821 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15822 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15823 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15824 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15825 15826 /* 15827 * Before we attempt to match this probe, we want to give 15828 * all providers the opportunity to provide it. 15829 */ 15830 if (desc.dtpd_id == DTRACE_IDNONE) { 15831 mutex_enter(&dtrace_provider_lock); 15832 dtrace_probe_provide(&desc, NULL); 15833 mutex_exit(&dtrace_provider_lock); 15834 desc.dtpd_id++; 15835 } 15836 15837 if (cmd == DTRACEIOC_PROBEMATCH) { 15838 dtrace_probekey(&desc, &pkey); 15839 pkey.dtpk_id = DTRACE_IDNONE; 15840 } 15841 15842 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 15843 15844 mutex_enter(&dtrace_lock); 15845 15846 if (cmd == DTRACEIOC_PROBEMATCH) { 15847 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 15848 if ((probe = dtrace_probes[i - 1]) != NULL && 15849 (m = dtrace_match_probe(probe, &pkey, 15850 priv, uid, zoneid)) != 0) 15851 break; 15852 } 15853 15854 if (m < 0) { 15855 mutex_exit(&dtrace_lock); 15856 return (EINVAL); 15857 } 15858 15859 } else { 15860 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 15861 if ((probe = dtrace_probes[i - 1]) != NULL && 15862 dtrace_match_priv(probe, priv, uid, zoneid)) 15863 break; 15864 } 15865 } 15866 15867 if (probe == NULL) { 15868 mutex_exit(&dtrace_lock); 15869 return (ESRCH); 15870 } 15871 15872 dtrace_probe_description(probe, &desc); 15873 mutex_exit(&dtrace_lock); 15874 15875 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15876 return (EFAULT); 15877 15878 return (0); 15879 } 15880 15881 case DTRACEIOC_PROBEARG: { 15882 dtrace_argdesc_t desc; 15883 dtrace_probe_t *probe; 15884 dtrace_provider_t *prov; 15885 15886 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15887 return (EFAULT); 15888 15889 if (desc.dtargd_id == DTRACE_IDNONE) 15890 return (EINVAL); 15891 15892 if (desc.dtargd_ndx == DTRACE_ARGNONE) 15893 return (EINVAL); 15894 15895 mutex_enter(&dtrace_provider_lock); 15896 mutex_enter(&mod_lock); 15897 mutex_enter(&dtrace_lock); 15898 15899 if (desc.dtargd_id > dtrace_nprobes) { 15900 mutex_exit(&dtrace_lock); 15901 mutex_exit(&mod_lock); 15902 mutex_exit(&dtrace_provider_lock); 15903 return (EINVAL); 15904 } 15905 15906 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 15907 mutex_exit(&dtrace_lock); 15908 mutex_exit(&mod_lock); 15909 mutex_exit(&dtrace_provider_lock); 15910 return (EINVAL); 15911 } 15912 15913 mutex_exit(&dtrace_lock); 15914 15915 prov = probe->dtpr_provider; 15916 15917 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 15918 /* 15919 * There isn't any typed information for this probe. 15920 * Set the argument number to DTRACE_ARGNONE. 15921 */ 15922 desc.dtargd_ndx = DTRACE_ARGNONE; 15923 } else { 15924 desc.dtargd_native[0] = '\0'; 15925 desc.dtargd_xlate[0] = '\0'; 15926 desc.dtargd_mapping = desc.dtargd_ndx; 15927 15928 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 15929 probe->dtpr_id, probe->dtpr_arg, &desc); 15930 } 15931 15932 mutex_exit(&mod_lock); 15933 mutex_exit(&dtrace_provider_lock); 15934 15935 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15936 return (EFAULT); 15937 15938 return (0); 15939 } 15940 15941 case DTRACEIOC_GO: { 15942 processorid_t cpuid; 15943 rval = dtrace_state_go(state, &cpuid); 15944 15945 if (rval != 0) 15946 return (rval); 15947 15948 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15949 return (EFAULT); 15950 15951 return (0); 15952 } 15953 15954 case DTRACEIOC_STOP: { 15955 processorid_t cpuid; 15956 15957 mutex_enter(&dtrace_lock); 15958 rval = dtrace_state_stop(state, &cpuid); 15959 mutex_exit(&dtrace_lock); 15960 15961 if (rval != 0) 15962 return (rval); 15963 15964 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15965 return (EFAULT); 15966 15967 return (0); 15968 } 15969 15970 case DTRACEIOC_DOFGET: { 15971 dof_hdr_t hdr, *dof; 15972 uint64_t len; 15973 15974 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 15975 return (EFAULT); 15976 15977 mutex_enter(&dtrace_lock); 15978 dof = dtrace_dof_create(state); 15979 mutex_exit(&dtrace_lock); 15980 15981 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 15982 rval = copyout(dof, (void *)arg, len); 15983 dtrace_dof_destroy(dof); 15984 15985 return (rval == 0 ? 0 : EFAULT); 15986 } 15987 15988 case DTRACEIOC_AGGSNAP: 15989 case DTRACEIOC_BUFSNAP: { 15990 dtrace_bufdesc_t desc; 15991 caddr_t cached; 15992 dtrace_buffer_t *buf; 15993 15994 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15995 return (EFAULT); 15996 15997 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 15998 return (EINVAL); 15999 16000 mutex_enter(&dtrace_lock); 16001 16002 if (cmd == DTRACEIOC_BUFSNAP) { 16003 buf = &state->dts_buffer[desc.dtbd_cpu]; 16004 } else { 16005 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 16006 } 16007 16008 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 16009 size_t sz = buf->dtb_offset; 16010 16011 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 16012 mutex_exit(&dtrace_lock); 16013 return (EBUSY); 16014 } 16015 16016 /* 16017 * If this buffer has already been consumed, we're 16018 * going to indicate that there's nothing left here 16019 * to consume. 16020 */ 16021 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 16022 mutex_exit(&dtrace_lock); 16023 16024 desc.dtbd_size = 0; 16025 desc.dtbd_drops = 0; 16026 desc.dtbd_errors = 0; 16027 desc.dtbd_oldest = 0; 16028 sz = sizeof (desc); 16029 16030 if (copyout(&desc, (void *)arg, sz) != 0) 16031 return (EFAULT); 16032 16033 return (0); 16034 } 16035 16036 /* 16037 * If this is a ring buffer that has wrapped, we want 16038 * to copy the whole thing out. 16039 */ 16040 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 16041 dtrace_buffer_polish(buf); 16042 sz = buf->dtb_size; 16043 } 16044 16045 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 16046 mutex_exit(&dtrace_lock); 16047 return (EFAULT); 16048 } 16049 16050 desc.dtbd_size = sz; 16051 desc.dtbd_drops = buf->dtb_drops; 16052 desc.dtbd_errors = buf->dtb_errors; 16053 desc.dtbd_oldest = buf->dtb_xamot_offset; 16054 16055 mutex_exit(&dtrace_lock); 16056 16057 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16058 return (EFAULT); 16059 16060 buf->dtb_flags |= DTRACEBUF_CONSUMED; 16061 16062 return (0); 16063 } 16064 16065 if (buf->dtb_tomax == NULL) { 16066 ASSERT(buf->dtb_xamot == NULL); 16067 mutex_exit(&dtrace_lock); 16068 return (ENOENT); 16069 } 16070 16071 cached = buf->dtb_tomax; 16072 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 16073 16074 dtrace_xcall(desc.dtbd_cpu, 16075 (dtrace_xcall_t)dtrace_buffer_switch, buf); 16076 16077 state->dts_errors += buf->dtb_xamot_errors; 16078 16079 /* 16080 * If the buffers did not actually switch, then the cross call 16081 * did not take place -- presumably because the given CPU is 16082 * not in the ready set. If this is the case, we'll return 16083 * ENOENT. 16084 */ 16085 if (buf->dtb_tomax == cached) { 16086 ASSERT(buf->dtb_xamot != cached); 16087 mutex_exit(&dtrace_lock); 16088 return (ENOENT); 16089 } 16090 16091 ASSERT(cached == buf->dtb_xamot); 16092 16093 /* 16094 * We have our snapshot; now copy it out. 16095 */ 16096 if (copyout(buf->dtb_xamot, desc.dtbd_data, 16097 buf->dtb_xamot_offset) != 0) { 16098 mutex_exit(&dtrace_lock); 16099 return (EFAULT); 16100 } 16101 16102 desc.dtbd_size = buf->dtb_xamot_offset; 16103 desc.dtbd_drops = buf->dtb_xamot_drops; 16104 desc.dtbd_errors = buf->dtb_xamot_errors; 16105 desc.dtbd_oldest = 0; 16106 16107 mutex_exit(&dtrace_lock); 16108 16109 /* 16110 * Finally, copy out the buffer description. 16111 */ 16112 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16113 return (EFAULT); 16114 16115 return (0); 16116 } 16117 16118 case DTRACEIOC_CONF: { 16119 dtrace_conf_t conf; 16120 16121 bzero(&conf, sizeof (conf)); 16122 conf.dtc_difversion = DIF_VERSION; 16123 conf.dtc_difintregs = DIF_DIR_NREGS; 16124 conf.dtc_diftupregs = DIF_DTR_NREGS; 16125 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 16126 16127 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 16128 return (EFAULT); 16129 16130 return (0); 16131 } 16132 16133 case DTRACEIOC_STATUS: { 16134 dtrace_status_t stat; 16135 dtrace_dstate_t *dstate; 16136 int i, j; 16137 uint64_t nerrs; 16138 16139 /* 16140 * See the comment in dtrace_state_deadman() for the reason 16141 * for setting dts_laststatus to INT64_MAX before setting 16142 * it to the correct value. 16143 */ 16144 state->dts_laststatus = INT64_MAX; 16145 dtrace_membar_producer(); 16146 state->dts_laststatus = dtrace_gethrtime(); 16147 16148 bzero(&stat, sizeof (stat)); 16149 16150 mutex_enter(&dtrace_lock); 16151 16152 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 16153 mutex_exit(&dtrace_lock); 16154 return (ENOENT); 16155 } 16156 16157 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 16158 stat.dtst_exiting = 1; 16159 16160 nerrs = state->dts_errors; 16161 dstate = &state->dts_vstate.dtvs_dynvars; 16162 16163 for (i = 0; i < NCPU; i++) { 16164 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 16165 16166 stat.dtst_dyndrops += dcpu->dtdsc_drops; 16167 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 16168 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 16169 16170 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 16171 stat.dtst_filled++; 16172 16173 nerrs += state->dts_buffer[i].dtb_errors; 16174 16175 for (j = 0; j < state->dts_nspeculations; j++) { 16176 dtrace_speculation_t *spec; 16177 dtrace_buffer_t *buf; 16178 16179 spec = &state->dts_speculations[j]; 16180 buf = &spec->dtsp_buffer[i]; 16181 stat.dtst_specdrops += buf->dtb_xamot_drops; 16182 } 16183 } 16184 16185 stat.dtst_specdrops_busy = state->dts_speculations_busy; 16186 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 16187 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 16188 stat.dtst_dblerrors = state->dts_dblerrors; 16189 stat.dtst_killed = 16190 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 16191 stat.dtst_errors = nerrs; 16192 16193 mutex_exit(&dtrace_lock); 16194 16195 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 16196 return (EFAULT); 16197 16198 return (0); 16199 } 16200 16201 case DTRACEIOC_FORMAT: { 16202 dtrace_fmtdesc_t fmt; 16203 char *str; 16204 int len; 16205 16206 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 16207 return (EFAULT); 16208 16209 mutex_enter(&dtrace_lock); 16210 16211 if (fmt.dtfd_format == 0 || 16212 fmt.dtfd_format > state->dts_nformats) { 16213 mutex_exit(&dtrace_lock); 16214 return (EINVAL); 16215 } 16216 16217 /* 16218 * Format strings are allocated contiguously and they are 16219 * never freed; if a format index is less than the number 16220 * of formats, we can assert that the format map is non-NULL 16221 * and that the format for the specified index is non-NULL. 16222 */ 16223 ASSERT(state->dts_formats != NULL); 16224 str = state->dts_formats[fmt.dtfd_format - 1]; 16225 ASSERT(str != NULL); 16226 16227 len = strlen(str) + 1; 16228 16229 if (len > fmt.dtfd_length) { 16230 fmt.dtfd_length = len; 16231 16232 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 16233 mutex_exit(&dtrace_lock); 16234 return (EINVAL); 16235 } 16236 } else { 16237 if (copyout(str, fmt.dtfd_string, len) != 0) { 16238 mutex_exit(&dtrace_lock); 16239 return (EINVAL); 16240 } 16241 } 16242 16243 mutex_exit(&dtrace_lock); 16244 return (0); 16245 } 16246 16247 default: 16248 break; 16249 } 16250 16251 return (ENOTTY); 16252 } 16253 16254 /*ARGSUSED*/ 16255 static int 16256 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 16257 { 16258 dtrace_state_t *state; 16259 16260 switch (cmd) { 16261 case DDI_DETACH: 16262 break; 16263 16264 case DDI_SUSPEND: 16265 return (DDI_SUCCESS); 16266 16267 default: 16268 return (DDI_FAILURE); 16269 } 16270 16271 mutex_enter(&cpu_lock); 16272 mutex_enter(&dtrace_provider_lock); 16273 mutex_enter(&dtrace_lock); 16274 16275 ASSERT(dtrace_opens == 0); 16276 16277 if (dtrace_helpers > 0) { 16278 mutex_exit(&dtrace_provider_lock); 16279 mutex_exit(&dtrace_lock); 16280 mutex_exit(&cpu_lock); 16281 return (DDI_FAILURE); 16282 } 16283 16284 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 16285 mutex_exit(&dtrace_provider_lock); 16286 mutex_exit(&dtrace_lock); 16287 mutex_exit(&cpu_lock); 16288 return (DDI_FAILURE); 16289 } 16290 16291 dtrace_provider = NULL; 16292 16293 if ((state = dtrace_anon_grab()) != NULL) { 16294 /* 16295 * If there were ECBs on this state, the provider should 16296 * have not been allowed to detach; assert that there is 16297 * none. 16298 */ 16299 ASSERT(state->dts_necbs == 0); 16300 dtrace_state_destroy(state); 16301 16302 /* 16303 * If we're being detached with anonymous state, we need to 16304 * indicate to the kernel debugger that DTrace is now inactive. 16305 */ 16306 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16307 } 16308 16309 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 16310 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 16311 dtrace_cpu_init = NULL; 16312 dtrace_helpers_cleanup = NULL; 16313 dtrace_helpers_fork = NULL; 16314 dtrace_cpustart_init = NULL; 16315 dtrace_cpustart_fini = NULL; 16316 dtrace_debugger_init = NULL; 16317 dtrace_debugger_fini = NULL; 16318 dtrace_modload = NULL; 16319 dtrace_modunload = NULL; 16320 16321 mutex_exit(&cpu_lock); 16322 16323 if (dtrace_helptrace_enabled) { 16324 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 16325 dtrace_helptrace_buffer = NULL; 16326 } 16327 16328 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 16329 dtrace_probes = NULL; 16330 dtrace_nprobes = 0; 16331 16332 dtrace_hash_destroy(dtrace_bymod); 16333 dtrace_hash_destroy(dtrace_byfunc); 16334 dtrace_hash_destroy(dtrace_byname); 16335 dtrace_bymod = NULL; 16336 dtrace_byfunc = NULL; 16337 dtrace_byname = NULL; 16338 16339 kmem_cache_destroy(dtrace_state_cache); 16340 vmem_destroy(dtrace_minor); 16341 vmem_destroy(dtrace_arena); 16342 16343 if (dtrace_toxrange != NULL) { 16344 kmem_free(dtrace_toxrange, 16345 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 16346 dtrace_toxrange = NULL; 16347 dtrace_toxranges = 0; 16348 dtrace_toxranges_max = 0; 16349 } 16350 16351 ddi_remove_minor_node(dtrace_devi, NULL); 16352 dtrace_devi = NULL; 16353 16354 ddi_soft_state_fini(&dtrace_softstate); 16355 16356 ASSERT(dtrace_vtime_references == 0); 16357 ASSERT(dtrace_opens == 0); 16358 ASSERT(dtrace_retained == NULL); 16359 16360 mutex_exit(&dtrace_lock); 16361 mutex_exit(&dtrace_provider_lock); 16362 16363 /* 16364 * We don't destroy the task queue until after we have dropped our 16365 * locks (taskq_destroy() may block on running tasks). To prevent 16366 * attempting to do work after we have effectively detached but before 16367 * the task queue has been destroyed, all tasks dispatched via the 16368 * task queue must check that DTrace is still attached before 16369 * performing any operation. 16370 */ 16371 taskq_destroy(dtrace_taskq); 16372 dtrace_taskq = NULL; 16373 16374 return (DDI_SUCCESS); 16375 } 16376 #endif 16377 16378 #if defined(sun) 16379 /*ARGSUSED*/ 16380 static int 16381 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 16382 { 16383 int error; 16384 16385 switch (infocmd) { 16386 case DDI_INFO_DEVT2DEVINFO: 16387 *result = (void *)dtrace_devi; 16388 error = DDI_SUCCESS; 16389 break; 16390 case DDI_INFO_DEVT2INSTANCE: 16391 *result = (void *)0; 16392 error = DDI_SUCCESS; 16393 break; 16394 default: 16395 error = DDI_FAILURE; 16396 } 16397 return (error); 16398 } 16399 #endif 16400 16401 #if defined(sun) 16402 static struct cb_ops dtrace_cb_ops = { 16403 dtrace_open, /* open */ 16404 dtrace_close, /* close */ 16405 nulldev, /* strategy */ 16406 nulldev, /* print */ 16407 nodev, /* dump */ 16408 nodev, /* read */ 16409 nodev, /* write */ 16410 dtrace_ioctl, /* ioctl */ 16411 nodev, /* devmap */ 16412 nodev, /* mmap */ 16413 nodev, /* segmap */ 16414 nochpoll, /* poll */ 16415 ddi_prop_op, /* cb_prop_op */ 16416 0, /* streamtab */ 16417 D_NEW | D_MP /* Driver compatibility flag */ 16418 }; 16419 16420 static struct dev_ops dtrace_ops = { 16421 DEVO_REV, /* devo_rev */ 16422 0, /* refcnt */ 16423 dtrace_info, /* get_dev_info */ 16424 nulldev, /* identify */ 16425 nulldev, /* probe */ 16426 dtrace_attach, /* attach */ 16427 dtrace_detach, /* detach */ 16428 nodev, /* reset */ 16429 &dtrace_cb_ops, /* driver operations */ 16430 NULL, /* bus operations */ 16431 nodev /* dev power */ 16432 }; 16433 16434 static struct modldrv modldrv = { 16435 &mod_driverops, /* module type (this is a pseudo driver) */ 16436 "Dynamic Tracing", /* name of module */ 16437 &dtrace_ops, /* driver ops */ 16438 }; 16439 16440 static struct modlinkage modlinkage = { 16441 MODREV_1, 16442 (void *)&modldrv, 16443 NULL 16444 }; 16445 16446 int 16447 _init(void) 16448 { 16449 return (mod_install(&modlinkage)); 16450 } 16451 16452 int 16453 _info(struct modinfo *modinfop) 16454 { 16455 return (mod_info(&modlinkage, modinfop)); 16456 } 16457 16458 int 16459 _fini(void) 16460 { 16461 return (mod_remove(&modlinkage)); 16462 } 16463 #else 16464 16465 static d_ioctl_t dtrace_ioctl; 16466 static d_ioctl_t dtrace_ioctl_helper; 16467 static void dtrace_load(void *); 16468 static int dtrace_unload(void); 16469 #if __FreeBSD_version < 800039 16470 static void dtrace_clone(void *, struct ucred *, char *, int , struct cdev **); 16471 static struct clonedevs *dtrace_clones; /* Ptr to the array of cloned devices. */ 16472 static eventhandler_tag eh_tag; /* Event handler tag. */ 16473 #else 16474 static struct cdev *dtrace_dev; 16475 static struct cdev *helper_dev; 16476 #endif 16477 16478 void dtrace_invop_init(void); 16479 void dtrace_invop_uninit(void); 16480 16481 static struct cdevsw dtrace_cdevsw = { 16482 .d_version = D_VERSION, 16483 .d_flags = D_TRACKCLOSE | D_NEEDMINOR, 16484 .d_close = dtrace_close, 16485 .d_ioctl = dtrace_ioctl, 16486 .d_open = dtrace_open, 16487 .d_name = "dtrace", 16488 }; 16489 16490 static struct cdevsw helper_cdevsw = { 16491 .d_version = D_VERSION, 16492 .d_flags = D_TRACKCLOSE | D_NEEDMINOR, 16493 .d_ioctl = dtrace_ioctl_helper, 16494 .d_name = "helper", 16495 }; 16496 16497 #include <dtrace_anon.c> 16498 #if __FreeBSD_version < 800039 16499 #include <dtrace_clone.c> 16500 #endif 16501 #include <dtrace_ioctl.c> 16502 #include <dtrace_load.c> 16503 #include <dtrace_modevent.c> 16504 #include <dtrace_sysctl.c> 16505 #include <dtrace_unload.c> 16506 #include <dtrace_vtime.c> 16507 #include <dtrace_hacks.c> 16508 #include <dtrace_isa.c> 16509 16510 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL); 16511 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL); 16512 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL); 16513 16514 DEV_MODULE(dtrace, dtrace_modevent, NULL); 16515 MODULE_VERSION(dtrace, 1); 16516 MODULE_DEPEND(dtrace, cyclic, 1, 1, 1); 16517 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1); 16518 #endif 16519