xref: /freebsd/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c (revision 0bc2abddc8d4abb89a210f2bb113e9e7c2d4ce18)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23 
24 /*
25  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
26  * Copyright (c) 2015, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28  */
29 
30 /*
31  * DTrace - Dynamic Tracing for Solaris
32  *
33  * This is the implementation of the Solaris Dynamic Tracing framework
34  * (DTrace).  The user-visible interface to DTrace is described at length in
35  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
36  * library, the in-kernel DTrace framework, and the DTrace providers are
37  * described in the block comments in the <sys/dtrace.h> header file.  The
38  * internal architecture of DTrace is described in the block comments in the
39  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
40  * implementation very much assume mastery of all of these sources; if one has
41  * an unanswered question about the implementation, one should consult them
42  * first.
43  *
44  * The functions here are ordered roughly as follows:
45  *
46  *   - Probe context functions
47  *   - Probe hashing functions
48  *   - Non-probe context utility functions
49  *   - Matching functions
50  *   - Provider-to-Framework API functions
51  *   - Probe management functions
52  *   - DIF object functions
53  *   - Format functions
54  *   - Predicate functions
55  *   - ECB functions
56  *   - Buffer functions
57  *   - Enabling functions
58  *   - DOF functions
59  *   - Anonymous enabling functions
60  *   - Consumer state functions
61  *   - Helper functions
62  *   - Hook functions
63  *   - Driver cookbook functions
64  *
65  * Each group of functions begins with a block comment labelled the "DTrace
66  * [Group] Functions", allowing one to find each block by searching forward
67  * on capital-f functions.
68  */
69 #include <sys/errno.h>
70 #ifndef illumos
71 #include <sys/time.h>
72 #endif
73 #include <sys/stat.h>
74 #include <sys/modctl.h>
75 #include <sys/conf.h>
76 #include <sys/systm.h>
77 #ifdef illumos
78 #include <sys/ddi.h>
79 #include <sys/sunddi.h>
80 #endif
81 #include <sys/cpuvar.h>
82 #include <sys/kmem.h>
83 #ifdef illumos
84 #include <sys/strsubr.h>
85 #endif
86 #include <sys/sysmacros.h>
87 #include <sys/dtrace_impl.h>
88 #include <sys/atomic.h>
89 #include <sys/cmn_err.h>
90 #ifdef illumos
91 #include <sys/mutex_impl.h>
92 #include <sys/rwlock_impl.h>
93 #endif
94 #include <sys/ctf_api.h>
95 #ifdef illumos
96 #include <sys/panic.h>
97 #include <sys/priv_impl.h>
98 #endif
99 #include <sys/policy.h>
100 #ifdef illumos
101 #include <sys/cred_impl.h>
102 #include <sys/procfs_isa.h>
103 #endif
104 #include <sys/taskq.h>
105 #ifdef illumos
106 #include <sys/mkdev.h>
107 #include <sys/kdi.h>
108 #endif
109 #include <sys/zone.h>
110 #include <sys/socket.h>
111 #include <netinet/in.h>
112 #include "strtolctype.h"
113 
114 /* FreeBSD includes: */
115 #ifndef illumos
116 #include <sys/callout.h>
117 #include <sys/ctype.h>
118 #include <sys/eventhandler.h>
119 #include <sys/limits.h>
120 #include <sys/kdb.h>
121 #include <sys/kernel.h>
122 #include <sys/malloc.h>
123 #include <sys/lock.h>
124 #include <sys/mutex.h>
125 #include <sys/ptrace.h>
126 #include <sys/rwlock.h>
127 #include <sys/sx.h>
128 #include <sys/sysctl.h>
129 
130 #include <sys/dtrace_bsd.h>
131 
132 #include <netinet/in.h>
133 
134 #include "dtrace_cddl.h"
135 #include "dtrace_debug.c"
136 #endif
137 
138 /*
139  * DTrace Tunable Variables
140  *
141  * The following variables may be tuned by adding a line to /etc/system that
142  * includes both the name of the DTrace module ("dtrace") and the name of the
143  * variable.  For example:
144  *
145  *   set dtrace:dtrace_destructive_disallow = 1
146  *
147  * In general, the only variables that one should be tuning this way are those
148  * that affect system-wide DTrace behavior, and for which the default behavior
149  * is undesirable.  Most of these variables are tunable on a per-consumer
150  * basis using DTrace options, and need not be tuned on a system-wide basis.
151  * When tuning these variables, avoid pathological values; while some attempt
152  * is made to verify the integrity of these variables, they are not considered
153  * part of the supported interface to DTrace, and they are therefore not
154  * checked comprehensively.  Further, these variables should not be tuned
155  * dynamically via "mdb -kw" or other means; they should only be tuned via
156  * /etc/system.
157  */
158 int		dtrace_destructive_disallow = 0;
159 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
160 size_t		dtrace_difo_maxsize = (256 * 1024);
161 dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
162 size_t		dtrace_statvar_maxsize = (16 * 1024);
163 size_t		dtrace_actions_max = (16 * 1024);
164 size_t		dtrace_retain_max = 1024;
165 dtrace_optval_t	dtrace_helper_actions_max = 128;
166 dtrace_optval_t	dtrace_helper_providers_max = 32;
167 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
168 size_t		dtrace_strsize_default = 256;
169 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
170 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
171 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
172 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
173 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
174 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
175 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
176 dtrace_optval_t	dtrace_nspec_default = 1;
177 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
178 dtrace_optval_t dtrace_stackframes_default = 20;
179 dtrace_optval_t dtrace_ustackframes_default = 20;
180 dtrace_optval_t dtrace_jstackframes_default = 50;
181 dtrace_optval_t dtrace_jstackstrsize_default = 512;
182 int		dtrace_msgdsize_max = 128;
183 hrtime_t	dtrace_chill_max = MSEC2NSEC(500);		/* 500 ms */
184 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
185 int		dtrace_devdepth_max = 32;
186 int		dtrace_err_verbose;
187 hrtime_t	dtrace_deadman_interval = NANOSEC;
188 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
189 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
190 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
191 #ifndef illumos
192 int		dtrace_memstr_max = 4096;
193 #endif
194 
195 /*
196  * DTrace External Variables
197  *
198  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
199  * available to DTrace consumers via the backtick (`) syntax.  One of these,
200  * dtrace_zero, is made deliberately so:  it is provided as a source of
201  * well-known, zero-filled memory.  While this variable is not documented,
202  * it is used by some translators as an implementation detail.
203  */
204 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
205 
206 /*
207  * DTrace Internal Variables
208  */
209 #ifdef illumos
210 static dev_info_t	*dtrace_devi;		/* device info */
211 #endif
212 #ifdef illumos
213 static vmem_t		*dtrace_arena;		/* probe ID arena */
214 static vmem_t		*dtrace_minor;		/* minor number arena */
215 #else
216 static taskq_t		*dtrace_taskq;		/* task queue */
217 static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
218 #endif
219 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
220 static int		dtrace_nprobes;		/* number of probes */
221 static dtrace_provider_t *dtrace_provider;	/* provider list */
222 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
223 static int		dtrace_opens;		/* number of opens */
224 static int		dtrace_helpers;		/* number of helpers */
225 static int		dtrace_getf;		/* number of unpriv getf()s */
226 #ifdef illumos
227 static void		*dtrace_softstate;	/* softstate pointer */
228 #endif
229 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
230 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
231 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
232 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
233 static int		dtrace_toxranges;	/* number of toxic ranges */
234 static int		dtrace_toxranges_max;	/* size of toxic range array */
235 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
236 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
237 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
238 static kthread_t	*dtrace_panicked;	/* panicking thread */
239 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
240 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
241 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
242 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
243 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
244 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
245 static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
246 #ifndef illumos
247 static struct mtx	dtrace_unr_mtx;
248 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
249 int		dtrace_in_probe;	/* non-zero if executing a probe */
250 #if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
251 uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
252 #endif
253 static eventhandler_tag	dtrace_kld_load_tag;
254 static eventhandler_tag	dtrace_kld_unload_try_tag;
255 #endif
256 
257 /*
258  * DTrace Locking
259  * DTrace is protected by three (relatively coarse-grained) locks:
260  *
261  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
262  *     including enabling state, probes, ECBs, consumer state, helper state,
263  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
264  *     probe context is lock-free -- synchronization is handled via the
265  *     dtrace_sync() cross call mechanism.
266  *
267  * (2) dtrace_provider_lock is required when manipulating provider state, or
268  *     when provider state must be held constant.
269  *
270  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
271  *     when meta provider state must be held constant.
272  *
273  * The lock ordering between these three locks is dtrace_meta_lock before
274  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
275  * several places where dtrace_provider_lock is held by the framework as it
276  * calls into the providers -- which then call back into the framework,
277  * grabbing dtrace_lock.)
278  *
279  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
280  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
281  * role as a coarse-grained lock; it is acquired before both of these locks.
282  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
283  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
284  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
285  * acquired _between_ dtrace_provider_lock and dtrace_lock.
286  */
287 static kmutex_t		dtrace_lock;		/* probe state lock */
288 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
289 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
290 
291 #ifndef illumos
292 /* XXX FreeBSD hacks. */
293 #define cr_suid		cr_svuid
294 #define cr_sgid		cr_svgid
295 #define	ipaddr_t	in_addr_t
296 #define mod_modname	pathname
297 #define vuprintf	vprintf
298 #define ttoproc(_a)	((_a)->td_proc)
299 #define crgetzoneid(_a)	0
300 #define	NCPU		MAXCPU
301 #define SNOCD		0
302 #define CPU_ON_INTR(_a)	0
303 
304 #define PRIV_EFFECTIVE		(1 << 0)
305 #define PRIV_DTRACE_KERNEL	(1 << 1)
306 #define PRIV_DTRACE_PROC	(1 << 2)
307 #define PRIV_DTRACE_USER	(1 << 3)
308 #define PRIV_PROC_OWNER		(1 << 4)
309 #define PRIV_PROC_ZONE		(1 << 5)
310 #define PRIV_ALL		~0
311 
312 SYSCTL_DECL(_debug_dtrace);
313 SYSCTL_DECL(_kern_dtrace);
314 #endif
315 
316 #ifdef illumos
317 #define curcpu	CPU->cpu_id
318 #endif
319 
320 
321 /*
322  * DTrace Provider Variables
323  *
324  * These are the variables relating to DTrace as a provider (that is, the
325  * provider of the BEGIN, END, and ERROR probes).
326  */
327 static dtrace_pattr_t	dtrace_provider_attr = {
328 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
329 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
330 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
331 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
332 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
333 };
334 
335 static void
336 dtrace_nullop(void)
337 {}
338 
339 static dtrace_pops_t	dtrace_provider_ops = {
340 	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
341 	(void (*)(void *, modctl_t *))dtrace_nullop,
342 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
343 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
344 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
345 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
346 	NULL,
347 	NULL,
348 	NULL,
349 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
350 };
351 
352 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
353 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
354 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
355 
356 /*
357  * DTrace Helper Tracing Variables
358  *
359  * These variables should be set dynamically to enable helper tracing.  The
360  * only variables that should be set are dtrace_helptrace_enable (which should
361  * be set to a non-zero value to allocate helper tracing buffers on the next
362  * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
363  * non-zero value to deallocate helper tracing buffers on the next close of
364  * /dev/dtrace).  When (and only when) helper tracing is disabled, the
365  * buffer size may also be set via dtrace_helptrace_bufsize.
366  */
367 int			dtrace_helptrace_enable = 0;
368 int			dtrace_helptrace_disable = 0;
369 int			dtrace_helptrace_bufsize = 16 * 1024 * 1024;
370 uint32_t		dtrace_helptrace_nlocals;
371 static dtrace_helptrace_t *dtrace_helptrace_buffer;
372 static uint32_t		dtrace_helptrace_next = 0;
373 static int		dtrace_helptrace_wrapped = 0;
374 
375 /*
376  * DTrace Error Hashing
377  *
378  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
379  * table.  This is very useful for checking coverage of tests that are
380  * expected to induce DIF or DOF processing errors, and may be useful for
381  * debugging problems in the DIF code generator or in DOF generation .  The
382  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
383  */
384 #ifdef DEBUG
385 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
386 static const char *dtrace_errlast;
387 static kthread_t *dtrace_errthread;
388 static kmutex_t dtrace_errlock;
389 #endif
390 
391 /*
392  * DTrace Macros and Constants
393  *
394  * These are various macros that are useful in various spots in the
395  * implementation, along with a few random constants that have no meaning
396  * outside of the implementation.  There is no real structure to this cpp
397  * mishmash -- but is there ever?
398  */
399 #define	DTRACE_HASHSTR(hash, probe)	\
400 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
401 
402 #define	DTRACE_HASHNEXT(hash, probe)	\
403 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
404 
405 #define	DTRACE_HASHPREV(hash, probe)	\
406 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
407 
408 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
409 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
410 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
411 
412 #define	DTRACE_AGGHASHSIZE_SLEW		17
413 
414 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
415 
416 /*
417  * The key for a thread-local variable consists of the lower 61 bits of the
418  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
419  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
420  * equal to a variable identifier.  This is necessary (but not sufficient) to
421  * assure that global associative arrays never collide with thread-local
422  * variables.  To guarantee that they cannot collide, we must also define the
423  * order for keying dynamic variables.  That order is:
424  *
425  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
426  *
427  * Because the variable-key and the tls-key are in orthogonal spaces, there is
428  * no way for a global variable key signature to match a thread-local key
429  * signature.
430  */
431 #ifdef illumos
432 #define	DTRACE_TLS_THRKEY(where) { \
433 	uint_t intr = 0; \
434 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
435 	for (; actv; actv >>= 1) \
436 		intr++; \
437 	ASSERT(intr < (1 << 3)); \
438 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
439 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
440 }
441 #else
442 #define	DTRACE_TLS_THRKEY(where) { \
443 	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
444 	uint_t intr = 0; \
445 	uint_t actv = _c->cpu_intr_actv; \
446 	for (; actv; actv >>= 1) \
447 		intr++; \
448 	ASSERT(intr < (1 << 3)); \
449 	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
450 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
451 }
452 #endif
453 
454 #define	DT_BSWAP_8(x)	((x) & 0xff)
455 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
456 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
457 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
458 
459 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
460 
461 #define	DTRACE_STORE(type, tomax, offset, what) \
462 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
463 
464 #ifndef __x86
465 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
466 	if (addr & (size - 1)) {					\
467 		*flags |= CPU_DTRACE_BADALIGN;				\
468 		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
469 		return (0);						\
470 	}
471 #else
472 #define	DTRACE_ALIGNCHECK(addr, size, flags)
473 #endif
474 
475 /*
476  * Test whether a range of memory starting at testaddr of size testsz falls
477  * within the range of memory described by addr, sz.  We take care to avoid
478  * problems with overflow and underflow of the unsigned quantities, and
479  * disallow all negative sizes.  Ranges of size 0 are allowed.
480  */
481 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
482 	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
483 	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
484 	(testaddr) + (testsz) >= (testaddr))
485 
486 /*
487  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
488  * alloc_sz on the righthand side of the comparison in order to avoid overflow
489  * or underflow in the comparison with it.  This is simpler than the INRANGE
490  * check above, because we know that the dtms_scratch_ptr is valid in the
491  * range.  Allocations of size zero are allowed.
492  */
493 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
494 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
495 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
496 
497 #define	DTRACE_LOADFUNC(bits)						\
498 /*CSTYLED*/								\
499 uint##bits##_t								\
500 dtrace_load##bits(uintptr_t addr)					\
501 {									\
502 	size_t size = bits / NBBY;					\
503 	/*CSTYLED*/							\
504 	uint##bits##_t rval;						\
505 	int i;								\
506 	volatile uint16_t *flags = (volatile uint16_t *)		\
507 	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
508 									\
509 	DTRACE_ALIGNCHECK(addr, size, flags);				\
510 									\
511 	for (i = 0; i < dtrace_toxranges; i++) {			\
512 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
513 			continue;					\
514 									\
515 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
516 			continue;					\
517 									\
518 		/*							\
519 		 * This address falls within a toxic region; return 0.	\
520 		 */							\
521 		*flags |= CPU_DTRACE_BADADDR;				\
522 		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
523 		return (0);						\
524 	}								\
525 									\
526 	*flags |= CPU_DTRACE_NOFAULT;					\
527 	/*CSTYLED*/							\
528 	rval = *((volatile uint##bits##_t *)addr);			\
529 	*flags &= ~CPU_DTRACE_NOFAULT;					\
530 									\
531 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
532 }
533 
534 #ifdef _LP64
535 #define	dtrace_loadptr	dtrace_load64
536 #else
537 #define	dtrace_loadptr	dtrace_load32
538 #endif
539 
540 #define	DTRACE_DYNHASH_FREE	0
541 #define	DTRACE_DYNHASH_SINK	1
542 #define	DTRACE_DYNHASH_VALID	2
543 
544 #define	DTRACE_MATCH_NEXT	0
545 #define	DTRACE_MATCH_DONE	1
546 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
547 #define	DTRACE_STATE_ALIGN	64
548 
549 #define	DTRACE_FLAGS2FLT(flags)						\
550 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
551 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
552 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
553 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
554 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
555 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
556 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
557 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
558 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
559 	DTRACEFLT_UNKNOWN)
560 
561 #define	DTRACEACT_ISSTRING(act)						\
562 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
563 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
564 
565 /* Function prototype definitions: */
566 static size_t dtrace_strlen(const char *, size_t);
567 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
568 static void dtrace_enabling_provide(dtrace_provider_t *);
569 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
570 static void dtrace_enabling_matchall(void);
571 static void dtrace_enabling_reap(void);
572 static dtrace_state_t *dtrace_anon_grab(void);
573 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
574     dtrace_state_t *, uint64_t, uint64_t);
575 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
576 static void dtrace_buffer_drop(dtrace_buffer_t *);
577 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
578 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
579     dtrace_state_t *, dtrace_mstate_t *);
580 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
581     dtrace_optval_t);
582 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
583 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
584 uint16_t dtrace_load16(uintptr_t);
585 uint32_t dtrace_load32(uintptr_t);
586 uint64_t dtrace_load64(uintptr_t);
587 uint8_t dtrace_load8(uintptr_t);
588 void dtrace_dynvar_clean(dtrace_dstate_t *);
589 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
590     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
591 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
592 static int dtrace_priv_proc(dtrace_state_t *);
593 static void dtrace_getf_barrier(void);
594 
595 /*
596  * DTrace Probe Context Functions
597  *
598  * These functions are called from probe context.  Because probe context is
599  * any context in which C may be called, arbitrarily locks may be held,
600  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
601  * As a result, functions called from probe context may only call other DTrace
602  * support functions -- they may not interact at all with the system at large.
603  * (Note that the ASSERT macro is made probe-context safe by redefining it in
604  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
605  * loads are to be performed from probe context, they _must_ be in terms of
606  * the safe dtrace_load*() variants.
607  *
608  * Some functions in this block are not actually called from probe context;
609  * for these functions, there will be a comment above the function reading
610  * "Note:  not called from probe context."
611  */
612 void
613 dtrace_panic(const char *format, ...)
614 {
615 	va_list alist;
616 
617 	va_start(alist, format);
618 #ifdef __FreeBSD__
619 	vpanic(format, alist);
620 #else
621 	dtrace_vpanic(format, alist);
622 #endif
623 	va_end(alist);
624 }
625 
626 int
627 dtrace_assfail(const char *a, const char *f, int l)
628 {
629 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
630 
631 	/*
632 	 * We just need something here that even the most clever compiler
633 	 * cannot optimize away.
634 	 */
635 	return (a[(uintptr_t)f]);
636 }
637 
638 /*
639  * Atomically increment a specified error counter from probe context.
640  */
641 static void
642 dtrace_error(uint32_t *counter)
643 {
644 	/*
645 	 * Most counters stored to in probe context are per-CPU counters.
646 	 * However, there are some error conditions that are sufficiently
647 	 * arcane that they don't merit per-CPU storage.  If these counters
648 	 * are incremented concurrently on different CPUs, scalability will be
649 	 * adversely affected -- but we don't expect them to be white-hot in a
650 	 * correctly constructed enabling...
651 	 */
652 	uint32_t oval, nval;
653 
654 	do {
655 		oval = *counter;
656 
657 		if ((nval = oval + 1) == 0) {
658 			/*
659 			 * If the counter would wrap, set it to 1 -- assuring
660 			 * that the counter is never zero when we have seen
661 			 * errors.  (The counter must be 32-bits because we
662 			 * aren't guaranteed a 64-bit compare&swap operation.)
663 			 * To save this code both the infamy of being fingered
664 			 * by a priggish news story and the indignity of being
665 			 * the target of a neo-puritan witch trial, we're
666 			 * carefully avoiding any colorful description of the
667 			 * likelihood of this condition -- but suffice it to
668 			 * say that it is only slightly more likely than the
669 			 * overflow of predicate cache IDs, as discussed in
670 			 * dtrace_predicate_create().
671 			 */
672 			nval = 1;
673 		}
674 	} while (dtrace_cas32(counter, oval, nval) != oval);
675 }
676 
677 /*
678  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
679  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
680  */
681 DTRACE_LOADFUNC(8)
682 DTRACE_LOADFUNC(16)
683 DTRACE_LOADFUNC(32)
684 DTRACE_LOADFUNC(64)
685 
686 static int
687 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
688 {
689 	if (dest < mstate->dtms_scratch_base)
690 		return (0);
691 
692 	if (dest + size < dest)
693 		return (0);
694 
695 	if (dest + size > mstate->dtms_scratch_ptr)
696 		return (0);
697 
698 	return (1);
699 }
700 
701 static int
702 dtrace_canstore_statvar(uint64_t addr, size_t sz,
703     dtrace_statvar_t **svars, int nsvars)
704 {
705 	int i;
706 	size_t maxglobalsize, maxlocalsize;
707 
708 	if (nsvars == 0)
709 		return (0);
710 
711 	maxglobalsize = dtrace_statvar_maxsize;
712 	maxlocalsize = (maxglobalsize + sizeof (uint64_t)) * NCPU;
713 
714 	for (i = 0; i < nsvars; i++) {
715 		dtrace_statvar_t *svar = svars[i];
716 		uint8_t scope;
717 		size_t size;
718 
719 		if (svar == NULL || (size = svar->dtsv_size) == 0)
720 			continue;
721 
722 		scope = svar->dtsv_var.dtdv_scope;
723 
724 		/*
725 		 * We verify that our size is valid in the spirit of providing
726 		 * defense in depth:  we want to prevent attackers from using
727 		 * DTrace to escalate an orthogonal kernel heap corruption bug
728 		 * into the ability to store to arbitrary locations in memory.
729 		 */
730 		VERIFY((scope == DIFV_SCOPE_GLOBAL && size < maxglobalsize) ||
731 		    (scope == DIFV_SCOPE_LOCAL && size < maxlocalsize));
732 
733 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
734 			return (1);
735 	}
736 
737 	return (0);
738 }
739 
740 /*
741  * Check to see if the address is within a memory region to which a store may
742  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
743  * region.  The caller of dtrace_canstore() is responsible for performing any
744  * alignment checks that are needed before stores are actually executed.
745  */
746 static int
747 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
748     dtrace_vstate_t *vstate)
749 {
750 	/*
751 	 * First, check to see if the address is in scratch space...
752 	 */
753 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
754 	    mstate->dtms_scratch_size))
755 		return (1);
756 
757 	/*
758 	 * Now check to see if it's a dynamic variable.  This check will pick
759 	 * up both thread-local variables and any global dynamically-allocated
760 	 * variables.
761 	 */
762 	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
763 	    vstate->dtvs_dynvars.dtds_size)) {
764 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
765 		uintptr_t base = (uintptr_t)dstate->dtds_base +
766 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
767 		uintptr_t chunkoffs;
768 
769 		/*
770 		 * Before we assume that we can store here, we need to make
771 		 * sure that it isn't in our metadata -- storing to our
772 		 * dynamic variable metadata would corrupt our state.  For
773 		 * the range to not include any dynamic variable metadata,
774 		 * it must:
775 		 *
776 		 *	(1) Start above the hash table that is at the base of
777 		 *	the dynamic variable space
778 		 *
779 		 *	(2) Have a starting chunk offset that is beyond the
780 		 *	dtrace_dynvar_t that is at the base of every chunk
781 		 *
782 		 *	(3) Not span a chunk boundary
783 		 *
784 		 */
785 		if (addr < base)
786 			return (0);
787 
788 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
789 
790 		if (chunkoffs < sizeof (dtrace_dynvar_t))
791 			return (0);
792 
793 		if (chunkoffs + sz > dstate->dtds_chunksize)
794 			return (0);
795 
796 		return (1);
797 	}
798 
799 	/*
800 	 * Finally, check the static local and global variables.  These checks
801 	 * take the longest, so we perform them last.
802 	 */
803 	if (dtrace_canstore_statvar(addr, sz,
804 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
805 		return (1);
806 
807 	if (dtrace_canstore_statvar(addr, sz,
808 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
809 		return (1);
810 
811 	return (0);
812 }
813 
814 
815 /*
816  * Convenience routine to check to see if the address is within a memory
817  * region in which a load may be issued given the user's privilege level;
818  * if not, it sets the appropriate error flags and loads 'addr' into the
819  * illegal value slot.
820  *
821  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
822  * appropriate memory access protection.
823  */
824 static int
825 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
826     dtrace_vstate_t *vstate)
827 {
828 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
829 	file_t *fp;
830 
831 	/*
832 	 * If we hold the privilege to read from kernel memory, then
833 	 * everything is readable.
834 	 */
835 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
836 		return (1);
837 
838 	/*
839 	 * You can obviously read that which you can store.
840 	 */
841 	if (dtrace_canstore(addr, sz, mstate, vstate))
842 		return (1);
843 
844 	/*
845 	 * We're allowed to read from our own string table.
846 	 */
847 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
848 	    mstate->dtms_difo->dtdo_strlen))
849 		return (1);
850 
851 	if (vstate->dtvs_state != NULL &&
852 	    dtrace_priv_proc(vstate->dtvs_state)) {
853 		proc_t *p;
854 
855 		/*
856 		 * When we have privileges to the current process, there are
857 		 * several context-related kernel structures that are safe to
858 		 * read, even absent the privilege to read from kernel memory.
859 		 * These reads are safe because these structures contain only
860 		 * state that (1) we're permitted to read, (2) is harmless or
861 		 * (3) contains pointers to additional kernel state that we're
862 		 * not permitted to read (and as such, do not present an
863 		 * opportunity for privilege escalation).  Finally (and
864 		 * critically), because of the nature of their relation with
865 		 * the current thread context, the memory associated with these
866 		 * structures cannot change over the duration of probe context,
867 		 * and it is therefore impossible for this memory to be
868 		 * deallocated and reallocated as something else while it's
869 		 * being operated upon.
870 		 */
871 		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
872 			return (1);
873 
874 		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
875 		    sz, curthread->t_procp, sizeof (proc_t))) {
876 			return (1);
877 		}
878 
879 		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
880 		    curthread->t_cred, sizeof (cred_t))) {
881 			return (1);
882 		}
883 
884 #ifdef illumos
885 		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
886 		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
887 			return (1);
888 		}
889 
890 		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
891 		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
892 			return (1);
893 		}
894 #endif
895 	}
896 
897 	if ((fp = mstate->dtms_getf) != NULL) {
898 		uintptr_t psz = sizeof (void *);
899 		vnode_t *vp;
900 		vnodeops_t *op;
901 
902 		/*
903 		 * When getf() returns a file_t, the enabling is implicitly
904 		 * granted the (transient) right to read the returned file_t
905 		 * as well as the v_path and v_op->vnop_name of the underlying
906 		 * vnode.  These accesses are allowed after a successful
907 		 * getf() because the members that they refer to cannot change
908 		 * once set -- and the barrier logic in the kernel's closef()
909 		 * path assures that the file_t and its referenced vode_t
910 		 * cannot themselves be stale (that is, it impossible for
911 		 * either dtms_getf itself or its f_vnode member to reference
912 		 * freed memory).
913 		 */
914 		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
915 			return (1);
916 
917 		if ((vp = fp->f_vnode) != NULL) {
918 #ifdef illumos
919 			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
920 				return (1);
921 			if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
922 			    vp->v_path, strlen(vp->v_path) + 1)) {
923 				return (1);
924 			}
925 #endif
926 
927 			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
928 				return (1);
929 
930 #ifdef illumos
931 			if ((op = vp->v_op) != NULL &&
932 			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
933 				return (1);
934 			}
935 
936 			if (op != NULL && op->vnop_name != NULL &&
937 			    DTRACE_INRANGE(addr, sz, op->vnop_name,
938 			    strlen(op->vnop_name) + 1)) {
939 				return (1);
940 			}
941 #endif
942 		}
943 	}
944 
945 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
946 	*illval = addr;
947 	return (0);
948 }
949 
950 /*
951  * Convenience routine to check to see if a given string is within a memory
952  * region in which a load may be issued given the user's privilege level;
953  * this exists so that we don't need to issue unnecessary dtrace_strlen()
954  * calls in the event that the user has all privileges.
955  */
956 static int
957 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
958     dtrace_vstate_t *vstate)
959 {
960 	size_t strsz;
961 
962 	/*
963 	 * If we hold the privilege to read from kernel memory, then
964 	 * everything is readable.
965 	 */
966 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
967 		return (1);
968 
969 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
970 	if (dtrace_canload(addr, strsz, mstate, vstate))
971 		return (1);
972 
973 	return (0);
974 }
975 
976 /*
977  * Convenience routine to check to see if a given variable is within a memory
978  * region in which a load may be issued given the user's privilege level.
979  */
980 static int
981 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
982     dtrace_vstate_t *vstate)
983 {
984 	size_t sz;
985 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
986 
987 	/*
988 	 * If we hold the privilege to read from kernel memory, then
989 	 * everything is readable.
990 	 */
991 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
992 		return (1);
993 
994 	if (type->dtdt_kind == DIF_TYPE_STRING)
995 		sz = dtrace_strlen(src,
996 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
997 	else
998 		sz = type->dtdt_size;
999 
1000 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
1001 }
1002 
1003 /*
1004  * Convert a string to a signed integer using safe loads.
1005  *
1006  * NOTE: This function uses various macros from strtolctype.h to manipulate
1007  * digit values, etc -- these have all been checked to ensure they make
1008  * no additional function calls.
1009  */
1010 static int64_t
1011 dtrace_strtoll(char *input, int base, size_t limit)
1012 {
1013 	uintptr_t pos = (uintptr_t)input;
1014 	int64_t val = 0;
1015 	int x;
1016 	boolean_t neg = B_FALSE;
1017 	char c, cc, ccc;
1018 	uintptr_t end = pos + limit;
1019 
1020 	/*
1021 	 * Consume any whitespace preceding digits.
1022 	 */
1023 	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1024 		pos++;
1025 
1026 	/*
1027 	 * Handle an explicit sign if one is present.
1028 	 */
1029 	if (c == '-' || c == '+') {
1030 		if (c == '-')
1031 			neg = B_TRUE;
1032 		c = dtrace_load8(++pos);
1033 	}
1034 
1035 	/*
1036 	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1037 	 * if present.
1038 	 */
1039 	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1040 	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1041 		pos += 2;
1042 		c = ccc;
1043 	}
1044 
1045 	/*
1046 	 * Read in contiguous digits until the first non-digit character.
1047 	 */
1048 	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1049 	    c = dtrace_load8(++pos))
1050 		val = val * base + x;
1051 
1052 	return (neg ? -val : val);
1053 }
1054 
1055 /*
1056  * Compare two strings using safe loads.
1057  */
1058 static int
1059 dtrace_strncmp(char *s1, char *s2, size_t limit)
1060 {
1061 	uint8_t c1, c2;
1062 	volatile uint16_t *flags;
1063 
1064 	if (s1 == s2 || limit == 0)
1065 		return (0);
1066 
1067 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1068 
1069 	do {
1070 		if (s1 == NULL) {
1071 			c1 = '\0';
1072 		} else {
1073 			c1 = dtrace_load8((uintptr_t)s1++);
1074 		}
1075 
1076 		if (s2 == NULL) {
1077 			c2 = '\0';
1078 		} else {
1079 			c2 = dtrace_load8((uintptr_t)s2++);
1080 		}
1081 
1082 		if (c1 != c2)
1083 			return (c1 - c2);
1084 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1085 
1086 	return (0);
1087 }
1088 
1089 /*
1090  * Compute strlen(s) for a string using safe memory accesses.  The additional
1091  * len parameter is used to specify a maximum length to ensure completion.
1092  */
1093 static size_t
1094 dtrace_strlen(const char *s, size_t lim)
1095 {
1096 	uint_t len;
1097 
1098 	for (len = 0; len != lim; len++) {
1099 		if (dtrace_load8((uintptr_t)s++) == '\0')
1100 			break;
1101 	}
1102 
1103 	return (len);
1104 }
1105 
1106 /*
1107  * Check if an address falls within a toxic region.
1108  */
1109 static int
1110 dtrace_istoxic(uintptr_t kaddr, size_t size)
1111 {
1112 	uintptr_t taddr, tsize;
1113 	int i;
1114 
1115 	for (i = 0; i < dtrace_toxranges; i++) {
1116 		taddr = dtrace_toxrange[i].dtt_base;
1117 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1118 
1119 		if (kaddr - taddr < tsize) {
1120 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1121 			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1122 			return (1);
1123 		}
1124 
1125 		if (taddr - kaddr < size) {
1126 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1127 			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1128 			return (1);
1129 		}
1130 	}
1131 
1132 	return (0);
1133 }
1134 
1135 /*
1136  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1137  * memory specified by the DIF program.  The dst is assumed to be safe memory
1138  * that we can store to directly because it is managed by DTrace.  As with
1139  * standard bcopy, overlapping copies are handled properly.
1140  */
1141 static void
1142 dtrace_bcopy(const void *src, void *dst, size_t len)
1143 {
1144 	if (len != 0) {
1145 		uint8_t *s1 = dst;
1146 		const uint8_t *s2 = src;
1147 
1148 		if (s1 <= s2) {
1149 			do {
1150 				*s1++ = dtrace_load8((uintptr_t)s2++);
1151 			} while (--len != 0);
1152 		} else {
1153 			s2 += len;
1154 			s1 += len;
1155 
1156 			do {
1157 				*--s1 = dtrace_load8((uintptr_t)--s2);
1158 			} while (--len != 0);
1159 		}
1160 	}
1161 }
1162 
1163 /*
1164  * Copy src to dst using safe memory accesses, up to either the specified
1165  * length, or the point that a nul byte is encountered.  The src is assumed to
1166  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1167  * safe memory that we can store to directly because it is managed by DTrace.
1168  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1169  */
1170 static void
1171 dtrace_strcpy(const void *src, void *dst, size_t len)
1172 {
1173 	if (len != 0) {
1174 		uint8_t *s1 = dst, c;
1175 		const uint8_t *s2 = src;
1176 
1177 		do {
1178 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1179 		} while (--len != 0 && c != '\0');
1180 	}
1181 }
1182 
1183 /*
1184  * Copy src to dst, deriving the size and type from the specified (BYREF)
1185  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1186  * program.  The dst is assumed to be DTrace variable memory that is of the
1187  * specified type; we assume that we can store to directly.
1188  */
1189 static void
1190 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1191 {
1192 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1193 
1194 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1195 		dtrace_strcpy(src, dst, type->dtdt_size);
1196 	} else {
1197 		dtrace_bcopy(src, dst, type->dtdt_size);
1198 	}
1199 }
1200 
1201 /*
1202  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1203  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1204  * safe memory that we can access directly because it is managed by DTrace.
1205  */
1206 static int
1207 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1208 {
1209 	volatile uint16_t *flags;
1210 
1211 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1212 
1213 	if (s1 == s2)
1214 		return (0);
1215 
1216 	if (s1 == NULL || s2 == NULL)
1217 		return (1);
1218 
1219 	if (s1 != s2 && len != 0) {
1220 		const uint8_t *ps1 = s1;
1221 		const uint8_t *ps2 = s2;
1222 
1223 		do {
1224 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1225 				return (1);
1226 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1227 	}
1228 	return (0);
1229 }
1230 
1231 /*
1232  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1233  * is for safe DTrace-managed memory only.
1234  */
1235 static void
1236 dtrace_bzero(void *dst, size_t len)
1237 {
1238 	uchar_t *cp;
1239 
1240 	for (cp = dst; len != 0; len--)
1241 		*cp++ = 0;
1242 }
1243 
1244 static void
1245 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1246 {
1247 	uint64_t result[2];
1248 
1249 	result[0] = addend1[0] + addend2[0];
1250 	result[1] = addend1[1] + addend2[1] +
1251 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1252 
1253 	sum[0] = result[0];
1254 	sum[1] = result[1];
1255 }
1256 
1257 /*
1258  * Shift the 128-bit value in a by b. If b is positive, shift left.
1259  * If b is negative, shift right.
1260  */
1261 static void
1262 dtrace_shift_128(uint64_t *a, int b)
1263 {
1264 	uint64_t mask;
1265 
1266 	if (b == 0)
1267 		return;
1268 
1269 	if (b < 0) {
1270 		b = -b;
1271 		if (b >= 64) {
1272 			a[0] = a[1] >> (b - 64);
1273 			a[1] = 0;
1274 		} else {
1275 			a[0] >>= b;
1276 			mask = 1LL << (64 - b);
1277 			mask -= 1;
1278 			a[0] |= ((a[1] & mask) << (64 - b));
1279 			a[1] >>= b;
1280 		}
1281 	} else {
1282 		if (b >= 64) {
1283 			a[1] = a[0] << (b - 64);
1284 			a[0] = 0;
1285 		} else {
1286 			a[1] <<= b;
1287 			mask = a[0] >> (64 - b);
1288 			a[1] |= mask;
1289 			a[0] <<= b;
1290 		}
1291 	}
1292 }
1293 
1294 /*
1295  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1296  * use native multiplication on those, and then re-combine into the
1297  * resulting 128-bit value.
1298  *
1299  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1300  *     hi1 * hi2 << 64 +
1301  *     hi1 * lo2 << 32 +
1302  *     hi2 * lo1 << 32 +
1303  *     lo1 * lo2
1304  */
1305 static void
1306 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1307 {
1308 	uint64_t hi1, hi2, lo1, lo2;
1309 	uint64_t tmp[2];
1310 
1311 	hi1 = factor1 >> 32;
1312 	hi2 = factor2 >> 32;
1313 
1314 	lo1 = factor1 & DT_MASK_LO;
1315 	lo2 = factor2 & DT_MASK_LO;
1316 
1317 	product[0] = lo1 * lo2;
1318 	product[1] = hi1 * hi2;
1319 
1320 	tmp[0] = hi1 * lo2;
1321 	tmp[1] = 0;
1322 	dtrace_shift_128(tmp, 32);
1323 	dtrace_add_128(product, tmp, product);
1324 
1325 	tmp[0] = hi2 * lo1;
1326 	tmp[1] = 0;
1327 	dtrace_shift_128(tmp, 32);
1328 	dtrace_add_128(product, tmp, product);
1329 }
1330 
1331 /*
1332  * This privilege check should be used by actions and subroutines to
1333  * verify that the user credentials of the process that enabled the
1334  * invoking ECB match the target credentials
1335  */
1336 static int
1337 dtrace_priv_proc_common_user(dtrace_state_t *state)
1338 {
1339 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1340 
1341 	/*
1342 	 * We should always have a non-NULL state cred here, since if cred
1343 	 * is null (anonymous tracing), we fast-path bypass this routine.
1344 	 */
1345 	ASSERT(s_cr != NULL);
1346 
1347 	if ((cr = CRED()) != NULL &&
1348 	    s_cr->cr_uid == cr->cr_uid &&
1349 	    s_cr->cr_uid == cr->cr_ruid &&
1350 	    s_cr->cr_uid == cr->cr_suid &&
1351 	    s_cr->cr_gid == cr->cr_gid &&
1352 	    s_cr->cr_gid == cr->cr_rgid &&
1353 	    s_cr->cr_gid == cr->cr_sgid)
1354 		return (1);
1355 
1356 	return (0);
1357 }
1358 
1359 /*
1360  * This privilege check should be used by actions and subroutines to
1361  * verify that the zone of the process that enabled the invoking ECB
1362  * matches the target credentials
1363  */
1364 static int
1365 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1366 {
1367 #ifdef illumos
1368 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1369 
1370 	/*
1371 	 * We should always have a non-NULL state cred here, since if cred
1372 	 * is null (anonymous tracing), we fast-path bypass this routine.
1373 	 */
1374 	ASSERT(s_cr != NULL);
1375 
1376 	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1377 		return (1);
1378 
1379 	return (0);
1380 #else
1381 	return (1);
1382 #endif
1383 }
1384 
1385 /*
1386  * This privilege check should be used by actions and subroutines to
1387  * verify that the process has not setuid or changed credentials.
1388  */
1389 static int
1390 dtrace_priv_proc_common_nocd(void)
1391 {
1392 	proc_t *proc;
1393 
1394 	if ((proc = ttoproc(curthread)) != NULL &&
1395 	    !(proc->p_flag & SNOCD))
1396 		return (1);
1397 
1398 	return (0);
1399 }
1400 
1401 static int
1402 dtrace_priv_proc_destructive(dtrace_state_t *state)
1403 {
1404 	int action = state->dts_cred.dcr_action;
1405 
1406 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1407 	    dtrace_priv_proc_common_zone(state) == 0)
1408 		goto bad;
1409 
1410 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1411 	    dtrace_priv_proc_common_user(state) == 0)
1412 		goto bad;
1413 
1414 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1415 	    dtrace_priv_proc_common_nocd() == 0)
1416 		goto bad;
1417 
1418 	return (1);
1419 
1420 bad:
1421 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1422 
1423 	return (0);
1424 }
1425 
1426 static int
1427 dtrace_priv_proc_control(dtrace_state_t *state)
1428 {
1429 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1430 		return (1);
1431 
1432 	if (dtrace_priv_proc_common_zone(state) &&
1433 	    dtrace_priv_proc_common_user(state) &&
1434 	    dtrace_priv_proc_common_nocd())
1435 		return (1);
1436 
1437 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1438 
1439 	return (0);
1440 }
1441 
1442 static int
1443 dtrace_priv_proc(dtrace_state_t *state)
1444 {
1445 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1446 		return (1);
1447 
1448 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1449 
1450 	return (0);
1451 }
1452 
1453 static int
1454 dtrace_priv_kernel(dtrace_state_t *state)
1455 {
1456 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1457 		return (1);
1458 
1459 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1460 
1461 	return (0);
1462 }
1463 
1464 static int
1465 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1466 {
1467 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1468 		return (1);
1469 
1470 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1471 
1472 	return (0);
1473 }
1474 
1475 /*
1476  * Determine if the dte_cond of the specified ECB allows for processing of
1477  * the current probe to continue.  Note that this routine may allow continued
1478  * processing, but with access(es) stripped from the mstate's dtms_access
1479  * field.
1480  */
1481 static int
1482 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1483     dtrace_ecb_t *ecb)
1484 {
1485 	dtrace_probe_t *probe = ecb->dte_probe;
1486 	dtrace_provider_t *prov = probe->dtpr_provider;
1487 	dtrace_pops_t *pops = &prov->dtpv_pops;
1488 	int mode = DTRACE_MODE_NOPRIV_DROP;
1489 
1490 	ASSERT(ecb->dte_cond);
1491 
1492 #ifdef illumos
1493 	if (pops->dtps_mode != NULL) {
1494 		mode = pops->dtps_mode(prov->dtpv_arg,
1495 		    probe->dtpr_id, probe->dtpr_arg);
1496 
1497 		ASSERT((mode & DTRACE_MODE_USER) ||
1498 		    (mode & DTRACE_MODE_KERNEL));
1499 		ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1500 		    (mode & DTRACE_MODE_NOPRIV_DROP));
1501 	}
1502 
1503 	/*
1504 	 * If the dte_cond bits indicate that this consumer is only allowed to
1505 	 * see user-mode firings of this probe, call the provider's dtps_mode()
1506 	 * entry point to check that the probe was fired while in a user
1507 	 * context.  If that's not the case, use the policy specified by the
1508 	 * provider to determine if we drop the probe or merely restrict
1509 	 * operation.
1510 	 */
1511 	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1512 		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1513 
1514 		if (!(mode & DTRACE_MODE_USER)) {
1515 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1516 				return (0);
1517 
1518 			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1519 		}
1520 	}
1521 #endif
1522 
1523 	/*
1524 	 * This is more subtle than it looks. We have to be absolutely certain
1525 	 * that CRED() isn't going to change out from under us so it's only
1526 	 * legit to examine that structure if we're in constrained situations.
1527 	 * Currently, the only times we'll this check is if a non-super-user
1528 	 * has enabled the profile or syscall providers -- providers that
1529 	 * allow visibility of all processes. For the profile case, the check
1530 	 * above will ensure that we're examining a user context.
1531 	 */
1532 	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1533 		cred_t *cr;
1534 		cred_t *s_cr = state->dts_cred.dcr_cred;
1535 		proc_t *proc;
1536 
1537 		ASSERT(s_cr != NULL);
1538 
1539 		if ((cr = CRED()) == NULL ||
1540 		    s_cr->cr_uid != cr->cr_uid ||
1541 		    s_cr->cr_uid != cr->cr_ruid ||
1542 		    s_cr->cr_uid != cr->cr_suid ||
1543 		    s_cr->cr_gid != cr->cr_gid ||
1544 		    s_cr->cr_gid != cr->cr_rgid ||
1545 		    s_cr->cr_gid != cr->cr_sgid ||
1546 		    (proc = ttoproc(curthread)) == NULL ||
1547 		    (proc->p_flag & SNOCD)) {
1548 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1549 				return (0);
1550 
1551 #ifdef illumos
1552 			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1553 #endif
1554 		}
1555 	}
1556 
1557 #ifdef illumos
1558 	/*
1559 	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1560 	 * in our zone, check to see if our mode policy is to restrict rather
1561 	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1562 	 * and DTRACE_ACCESS_ARGS
1563 	 */
1564 	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1565 		cred_t *cr;
1566 		cred_t *s_cr = state->dts_cred.dcr_cred;
1567 
1568 		ASSERT(s_cr != NULL);
1569 
1570 		if ((cr = CRED()) == NULL ||
1571 		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1572 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1573 				return (0);
1574 
1575 			mstate->dtms_access &=
1576 			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1577 		}
1578 	}
1579 #endif
1580 
1581 	return (1);
1582 }
1583 
1584 /*
1585  * Note:  not called from probe context.  This function is called
1586  * asynchronously (and at a regular interval) from outside of probe context to
1587  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1588  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1589  */
1590 void
1591 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1592 {
1593 	dtrace_dynvar_t *dirty;
1594 	dtrace_dstate_percpu_t *dcpu;
1595 	dtrace_dynvar_t **rinsep;
1596 	int i, j, work = 0;
1597 
1598 	for (i = 0; i < NCPU; i++) {
1599 		dcpu = &dstate->dtds_percpu[i];
1600 		rinsep = &dcpu->dtdsc_rinsing;
1601 
1602 		/*
1603 		 * If the dirty list is NULL, there is no dirty work to do.
1604 		 */
1605 		if (dcpu->dtdsc_dirty == NULL)
1606 			continue;
1607 
1608 		if (dcpu->dtdsc_rinsing != NULL) {
1609 			/*
1610 			 * If the rinsing list is non-NULL, then it is because
1611 			 * this CPU was selected to accept another CPU's
1612 			 * dirty list -- and since that time, dirty buffers
1613 			 * have accumulated.  This is a highly unlikely
1614 			 * condition, but we choose to ignore the dirty
1615 			 * buffers -- they'll be picked up a future cleanse.
1616 			 */
1617 			continue;
1618 		}
1619 
1620 		if (dcpu->dtdsc_clean != NULL) {
1621 			/*
1622 			 * If the clean list is non-NULL, then we're in a
1623 			 * situation where a CPU has done deallocations (we
1624 			 * have a non-NULL dirty list) but no allocations (we
1625 			 * also have a non-NULL clean list).  We can't simply
1626 			 * move the dirty list into the clean list on this
1627 			 * CPU, yet we also don't want to allow this condition
1628 			 * to persist, lest a short clean list prevent a
1629 			 * massive dirty list from being cleaned (which in
1630 			 * turn could lead to otherwise avoidable dynamic
1631 			 * drops).  To deal with this, we look for some CPU
1632 			 * with a NULL clean list, NULL dirty list, and NULL
1633 			 * rinsing list -- and then we borrow this CPU to
1634 			 * rinse our dirty list.
1635 			 */
1636 			for (j = 0; j < NCPU; j++) {
1637 				dtrace_dstate_percpu_t *rinser;
1638 
1639 				rinser = &dstate->dtds_percpu[j];
1640 
1641 				if (rinser->dtdsc_rinsing != NULL)
1642 					continue;
1643 
1644 				if (rinser->dtdsc_dirty != NULL)
1645 					continue;
1646 
1647 				if (rinser->dtdsc_clean != NULL)
1648 					continue;
1649 
1650 				rinsep = &rinser->dtdsc_rinsing;
1651 				break;
1652 			}
1653 
1654 			if (j == NCPU) {
1655 				/*
1656 				 * We were unable to find another CPU that
1657 				 * could accept this dirty list -- we are
1658 				 * therefore unable to clean it now.
1659 				 */
1660 				dtrace_dynvar_failclean++;
1661 				continue;
1662 			}
1663 		}
1664 
1665 		work = 1;
1666 
1667 		/*
1668 		 * Atomically move the dirty list aside.
1669 		 */
1670 		do {
1671 			dirty = dcpu->dtdsc_dirty;
1672 
1673 			/*
1674 			 * Before we zap the dirty list, set the rinsing list.
1675 			 * (This allows for a potential assertion in
1676 			 * dtrace_dynvar():  if a free dynamic variable appears
1677 			 * on a hash chain, either the dirty list or the
1678 			 * rinsing list for some CPU must be non-NULL.)
1679 			 */
1680 			*rinsep = dirty;
1681 			dtrace_membar_producer();
1682 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1683 		    dirty, NULL) != dirty);
1684 	}
1685 
1686 	if (!work) {
1687 		/*
1688 		 * We have no work to do; we can simply return.
1689 		 */
1690 		return;
1691 	}
1692 
1693 	dtrace_sync();
1694 
1695 	for (i = 0; i < NCPU; i++) {
1696 		dcpu = &dstate->dtds_percpu[i];
1697 
1698 		if (dcpu->dtdsc_rinsing == NULL)
1699 			continue;
1700 
1701 		/*
1702 		 * We are now guaranteed that no hash chain contains a pointer
1703 		 * into this dirty list; we can make it clean.
1704 		 */
1705 		ASSERT(dcpu->dtdsc_clean == NULL);
1706 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1707 		dcpu->dtdsc_rinsing = NULL;
1708 	}
1709 
1710 	/*
1711 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1712 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1713 	 * This prevents a race whereby a CPU incorrectly decides that
1714 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1715 	 * after dtrace_dynvar_clean() has completed.
1716 	 */
1717 	dtrace_sync();
1718 
1719 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1720 }
1721 
1722 /*
1723  * Depending on the value of the op parameter, this function looks-up,
1724  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1725  * allocation is requested, this function will return a pointer to a
1726  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1727  * variable can be allocated.  If NULL is returned, the appropriate counter
1728  * will be incremented.
1729  */
1730 dtrace_dynvar_t *
1731 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1732     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1733     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1734 {
1735 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1736 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1737 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1738 	processorid_t me = curcpu, cpu = me;
1739 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1740 	size_t bucket, ksize;
1741 	size_t chunksize = dstate->dtds_chunksize;
1742 	uintptr_t kdata, lock, nstate;
1743 	uint_t i;
1744 
1745 	ASSERT(nkeys != 0);
1746 
1747 	/*
1748 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1749 	 * algorithm.  For the by-value portions, we perform the algorithm in
1750 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1751 	 * bit, and seems to have only a minute effect on distribution.  For
1752 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1753 	 * over each referenced byte.  It's painful to do this, but it's much
1754 	 * better than pathological hash distribution.  The efficacy of the
1755 	 * hashing algorithm (and a comparison with other algorithms) may be
1756 	 * found by running the ::dtrace_dynstat MDB dcmd.
1757 	 */
1758 	for (i = 0; i < nkeys; i++) {
1759 		if (key[i].dttk_size == 0) {
1760 			uint64_t val = key[i].dttk_value;
1761 
1762 			hashval += (val >> 48) & 0xffff;
1763 			hashval += (hashval << 10);
1764 			hashval ^= (hashval >> 6);
1765 
1766 			hashval += (val >> 32) & 0xffff;
1767 			hashval += (hashval << 10);
1768 			hashval ^= (hashval >> 6);
1769 
1770 			hashval += (val >> 16) & 0xffff;
1771 			hashval += (hashval << 10);
1772 			hashval ^= (hashval >> 6);
1773 
1774 			hashval += val & 0xffff;
1775 			hashval += (hashval << 10);
1776 			hashval ^= (hashval >> 6);
1777 		} else {
1778 			/*
1779 			 * This is incredibly painful, but it beats the hell
1780 			 * out of the alternative.
1781 			 */
1782 			uint64_t j, size = key[i].dttk_size;
1783 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1784 
1785 			if (!dtrace_canload(base, size, mstate, vstate))
1786 				break;
1787 
1788 			for (j = 0; j < size; j++) {
1789 				hashval += dtrace_load8(base + j);
1790 				hashval += (hashval << 10);
1791 				hashval ^= (hashval >> 6);
1792 			}
1793 		}
1794 	}
1795 
1796 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1797 		return (NULL);
1798 
1799 	hashval += (hashval << 3);
1800 	hashval ^= (hashval >> 11);
1801 	hashval += (hashval << 15);
1802 
1803 	/*
1804 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1805 	 * comes out to be one of our two sentinel hash values.  If this
1806 	 * actually happens, we set the hashval to be a value known to be a
1807 	 * non-sentinel value.
1808 	 */
1809 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1810 		hashval = DTRACE_DYNHASH_VALID;
1811 
1812 	/*
1813 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1814 	 * important here, tricks can be pulled to reduce it.  (However, it's
1815 	 * critical that hash collisions be kept to an absolute minimum;
1816 	 * they're much more painful than a divide.)  It's better to have a
1817 	 * solution that generates few collisions and still keeps things
1818 	 * relatively simple.
1819 	 */
1820 	bucket = hashval % dstate->dtds_hashsize;
1821 
1822 	if (op == DTRACE_DYNVAR_DEALLOC) {
1823 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1824 
1825 		for (;;) {
1826 			while ((lock = *lockp) & 1)
1827 				continue;
1828 
1829 			if (dtrace_casptr((volatile void *)lockp,
1830 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1831 				break;
1832 		}
1833 
1834 		dtrace_membar_producer();
1835 	}
1836 
1837 top:
1838 	prev = NULL;
1839 	lock = hash[bucket].dtdh_lock;
1840 
1841 	dtrace_membar_consumer();
1842 
1843 	start = hash[bucket].dtdh_chain;
1844 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1845 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1846 	    op != DTRACE_DYNVAR_DEALLOC));
1847 
1848 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1849 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1850 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1851 
1852 		if (dvar->dtdv_hashval != hashval) {
1853 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1854 				/*
1855 				 * We've reached the sink, and therefore the
1856 				 * end of the hash chain; we can kick out of
1857 				 * the loop knowing that we have seen a valid
1858 				 * snapshot of state.
1859 				 */
1860 				ASSERT(dvar->dtdv_next == NULL);
1861 				ASSERT(dvar == &dtrace_dynhash_sink);
1862 				break;
1863 			}
1864 
1865 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1866 				/*
1867 				 * We've gone off the rails:  somewhere along
1868 				 * the line, one of the members of this hash
1869 				 * chain was deleted.  Note that we could also
1870 				 * detect this by simply letting this loop run
1871 				 * to completion, as we would eventually hit
1872 				 * the end of the dirty list.  However, we
1873 				 * want to avoid running the length of the
1874 				 * dirty list unnecessarily (it might be quite
1875 				 * long), so we catch this as early as
1876 				 * possible by detecting the hash marker.  In
1877 				 * this case, we simply set dvar to NULL and
1878 				 * break; the conditional after the loop will
1879 				 * send us back to top.
1880 				 */
1881 				dvar = NULL;
1882 				break;
1883 			}
1884 
1885 			goto next;
1886 		}
1887 
1888 		if (dtuple->dtt_nkeys != nkeys)
1889 			goto next;
1890 
1891 		for (i = 0; i < nkeys; i++, dkey++) {
1892 			if (dkey->dttk_size != key[i].dttk_size)
1893 				goto next; /* size or type mismatch */
1894 
1895 			if (dkey->dttk_size != 0) {
1896 				if (dtrace_bcmp(
1897 				    (void *)(uintptr_t)key[i].dttk_value,
1898 				    (void *)(uintptr_t)dkey->dttk_value,
1899 				    dkey->dttk_size))
1900 					goto next;
1901 			} else {
1902 				if (dkey->dttk_value != key[i].dttk_value)
1903 					goto next;
1904 			}
1905 		}
1906 
1907 		if (op != DTRACE_DYNVAR_DEALLOC)
1908 			return (dvar);
1909 
1910 		ASSERT(dvar->dtdv_next == NULL ||
1911 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1912 
1913 		if (prev != NULL) {
1914 			ASSERT(hash[bucket].dtdh_chain != dvar);
1915 			ASSERT(start != dvar);
1916 			ASSERT(prev->dtdv_next == dvar);
1917 			prev->dtdv_next = dvar->dtdv_next;
1918 		} else {
1919 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1920 			    start, dvar->dtdv_next) != start) {
1921 				/*
1922 				 * We have failed to atomically swing the
1923 				 * hash table head pointer, presumably because
1924 				 * of a conflicting allocation on another CPU.
1925 				 * We need to reread the hash chain and try
1926 				 * again.
1927 				 */
1928 				goto top;
1929 			}
1930 		}
1931 
1932 		dtrace_membar_producer();
1933 
1934 		/*
1935 		 * Now set the hash value to indicate that it's free.
1936 		 */
1937 		ASSERT(hash[bucket].dtdh_chain != dvar);
1938 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1939 
1940 		dtrace_membar_producer();
1941 
1942 		/*
1943 		 * Set the next pointer to point at the dirty list, and
1944 		 * atomically swing the dirty pointer to the newly freed dvar.
1945 		 */
1946 		do {
1947 			next = dcpu->dtdsc_dirty;
1948 			dvar->dtdv_next = next;
1949 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1950 
1951 		/*
1952 		 * Finally, unlock this hash bucket.
1953 		 */
1954 		ASSERT(hash[bucket].dtdh_lock == lock);
1955 		ASSERT(lock & 1);
1956 		hash[bucket].dtdh_lock++;
1957 
1958 		return (NULL);
1959 next:
1960 		prev = dvar;
1961 		continue;
1962 	}
1963 
1964 	if (dvar == NULL) {
1965 		/*
1966 		 * If dvar is NULL, it is because we went off the rails:
1967 		 * one of the elements that we traversed in the hash chain
1968 		 * was deleted while we were traversing it.  In this case,
1969 		 * we assert that we aren't doing a dealloc (deallocs lock
1970 		 * the hash bucket to prevent themselves from racing with
1971 		 * one another), and retry the hash chain traversal.
1972 		 */
1973 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1974 		goto top;
1975 	}
1976 
1977 	if (op != DTRACE_DYNVAR_ALLOC) {
1978 		/*
1979 		 * If we are not to allocate a new variable, we want to
1980 		 * return NULL now.  Before we return, check that the value
1981 		 * of the lock word hasn't changed.  If it has, we may have
1982 		 * seen an inconsistent snapshot.
1983 		 */
1984 		if (op == DTRACE_DYNVAR_NOALLOC) {
1985 			if (hash[bucket].dtdh_lock != lock)
1986 				goto top;
1987 		} else {
1988 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1989 			ASSERT(hash[bucket].dtdh_lock == lock);
1990 			ASSERT(lock & 1);
1991 			hash[bucket].dtdh_lock++;
1992 		}
1993 
1994 		return (NULL);
1995 	}
1996 
1997 	/*
1998 	 * We need to allocate a new dynamic variable.  The size we need is the
1999 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2000 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2001 	 * the size of any referred-to data (dsize).  We then round the final
2002 	 * size up to the chunksize for allocation.
2003 	 */
2004 	for (ksize = 0, i = 0; i < nkeys; i++)
2005 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2006 
2007 	/*
2008 	 * This should be pretty much impossible, but could happen if, say,
2009 	 * strange DIF specified the tuple.  Ideally, this should be an
2010 	 * assertion and not an error condition -- but that requires that the
2011 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2012 	 * bullet-proof.  (That is, it must not be able to be fooled by
2013 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
2014 	 * solving this would presumably not amount to solving the Halting
2015 	 * Problem -- but it still seems awfully hard.
2016 	 */
2017 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2018 	    ksize + dsize > chunksize) {
2019 		dcpu->dtdsc_drops++;
2020 		return (NULL);
2021 	}
2022 
2023 	nstate = DTRACE_DSTATE_EMPTY;
2024 
2025 	do {
2026 retry:
2027 		free = dcpu->dtdsc_free;
2028 
2029 		if (free == NULL) {
2030 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2031 			void *rval;
2032 
2033 			if (clean == NULL) {
2034 				/*
2035 				 * We're out of dynamic variable space on
2036 				 * this CPU.  Unless we have tried all CPUs,
2037 				 * we'll try to allocate from a different
2038 				 * CPU.
2039 				 */
2040 				switch (dstate->dtds_state) {
2041 				case DTRACE_DSTATE_CLEAN: {
2042 					void *sp = &dstate->dtds_state;
2043 
2044 					if (++cpu >= NCPU)
2045 						cpu = 0;
2046 
2047 					if (dcpu->dtdsc_dirty != NULL &&
2048 					    nstate == DTRACE_DSTATE_EMPTY)
2049 						nstate = DTRACE_DSTATE_DIRTY;
2050 
2051 					if (dcpu->dtdsc_rinsing != NULL)
2052 						nstate = DTRACE_DSTATE_RINSING;
2053 
2054 					dcpu = &dstate->dtds_percpu[cpu];
2055 
2056 					if (cpu != me)
2057 						goto retry;
2058 
2059 					(void) dtrace_cas32(sp,
2060 					    DTRACE_DSTATE_CLEAN, nstate);
2061 
2062 					/*
2063 					 * To increment the correct bean
2064 					 * counter, take another lap.
2065 					 */
2066 					goto retry;
2067 				}
2068 
2069 				case DTRACE_DSTATE_DIRTY:
2070 					dcpu->dtdsc_dirty_drops++;
2071 					break;
2072 
2073 				case DTRACE_DSTATE_RINSING:
2074 					dcpu->dtdsc_rinsing_drops++;
2075 					break;
2076 
2077 				case DTRACE_DSTATE_EMPTY:
2078 					dcpu->dtdsc_drops++;
2079 					break;
2080 				}
2081 
2082 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2083 				return (NULL);
2084 			}
2085 
2086 			/*
2087 			 * The clean list appears to be non-empty.  We want to
2088 			 * move the clean list to the free list; we start by
2089 			 * moving the clean pointer aside.
2090 			 */
2091 			if (dtrace_casptr(&dcpu->dtdsc_clean,
2092 			    clean, NULL) != clean) {
2093 				/*
2094 				 * We are in one of two situations:
2095 				 *
2096 				 *  (a)	The clean list was switched to the
2097 				 *	free list by another CPU.
2098 				 *
2099 				 *  (b)	The clean list was added to by the
2100 				 *	cleansing cyclic.
2101 				 *
2102 				 * In either of these situations, we can
2103 				 * just reattempt the free list allocation.
2104 				 */
2105 				goto retry;
2106 			}
2107 
2108 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2109 
2110 			/*
2111 			 * Now we'll move the clean list to our free list.
2112 			 * It's impossible for this to fail:  the only way
2113 			 * the free list can be updated is through this
2114 			 * code path, and only one CPU can own the clean list.
2115 			 * Thus, it would only be possible for this to fail if
2116 			 * this code were racing with dtrace_dynvar_clean().
2117 			 * (That is, if dtrace_dynvar_clean() updated the clean
2118 			 * list, and we ended up racing to update the free
2119 			 * list.)  This race is prevented by the dtrace_sync()
2120 			 * in dtrace_dynvar_clean() -- which flushes the
2121 			 * owners of the clean lists out before resetting
2122 			 * the clean lists.
2123 			 */
2124 			dcpu = &dstate->dtds_percpu[me];
2125 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2126 			ASSERT(rval == NULL);
2127 			goto retry;
2128 		}
2129 
2130 		dvar = free;
2131 		new_free = dvar->dtdv_next;
2132 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2133 
2134 	/*
2135 	 * We have now allocated a new chunk.  We copy the tuple keys into the
2136 	 * tuple array and copy any referenced key data into the data space
2137 	 * following the tuple array.  As we do this, we relocate dttk_value
2138 	 * in the final tuple to point to the key data address in the chunk.
2139 	 */
2140 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2141 	dvar->dtdv_data = (void *)(kdata + ksize);
2142 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2143 
2144 	for (i = 0; i < nkeys; i++) {
2145 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2146 		size_t kesize = key[i].dttk_size;
2147 
2148 		if (kesize != 0) {
2149 			dtrace_bcopy(
2150 			    (const void *)(uintptr_t)key[i].dttk_value,
2151 			    (void *)kdata, kesize);
2152 			dkey->dttk_value = kdata;
2153 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2154 		} else {
2155 			dkey->dttk_value = key[i].dttk_value;
2156 		}
2157 
2158 		dkey->dttk_size = kesize;
2159 	}
2160 
2161 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2162 	dvar->dtdv_hashval = hashval;
2163 	dvar->dtdv_next = start;
2164 
2165 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2166 		return (dvar);
2167 
2168 	/*
2169 	 * The cas has failed.  Either another CPU is adding an element to
2170 	 * this hash chain, or another CPU is deleting an element from this
2171 	 * hash chain.  The simplest way to deal with both of these cases
2172 	 * (though not necessarily the most efficient) is to free our
2173 	 * allocated block and re-attempt it all.  Note that the free is
2174 	 * to the dirty list and _not_ to the free list.  This is to prevent
2175 	 * races with allocators, above.
2176 	 */
2177 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2178 
2179 	dtrace_membar_producer();
2180 
2181 	do {
2182 		free = dcpu->dtdsc_dirty;
2183 		dvar->dtdv_next = free;
2184 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2185 
2186 	goto top;
2187 }
2188 
2189 /*ARGSUSED*/
2190 static void
2191 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2192 {
2193 	if ((int64_t)nval < (int64_t)*oval)
2194 		*oval = nval;
2195 }
2196 
2197 /*ARGSUSED*/
2198 static void
2199 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2200 {
2201 	if ((int64_t)nval > (int64_t)*oval)
2202 		*oval = nval;
2203 }
2204 
2205 static void
2206 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2207 {
2208 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2209 	int64_t val = (int64_t)nval;
2210 
2211 	if (val < 0) {
2212 		for (i = 0; i < zero; i++) {
2213 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2214 				quanta[i] += incr;
2215 				return;
2216 			}
2217 		}
2218 	} else {
2219 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2220 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2221 				quanta[i - 1] += incr;
2222 				return;
2223 			}
2224 		}
2225 
2226 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2227 		return;
2228 	}
2229 
2230 	ASSERT(0);
2231 }
2232 
2233 static void
2234 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2235 {
2236 	uint64_t arg = *lquanta++;
2237 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2238 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2239 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2240 	int32_t val = (int32_t)nval, level;
2241 
2242 	ASSERT(step != 0);
2243 	ASSERT(levels != 0);
2244 
2245 	if (val < base) {
2246 		/*
2247 		 * This is an underflow.
2248 		 */
2249 		lquanta[0] += incr;
2250 		return;
2251 	}
2252 
2253 	level = (val - base) / step;
2254 
2255 	if (level < levels) {
2256 		lquanta[level + 1] += incr;
2257 		return;
2258 	}
2259 
2260 	/*
2261 	 * This is an overflow.
2262 	 */
2263 	lquanta[levels + 1] += incr;
2264 }
2265 
2266 static int
2267 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2268     uint16_t high, uint16_t nsteps, int64_t value)
2269 {
2270 	int64_t this = 1, last, next;
2271 	int base = 1, order;
2272 
2273 	ASSERT(factor <= nsteps);
2274 	ASSERT(nsteps % factor == 0);
2275 
2276 	for (order = 0; order < low; order++)
2277 		this *= factor;
2278 
2279 	/*
2280 	 * If our value is less than our factor taken to the power of the
2281 	 * low order of magnitude, it goes into the zeroth bucket.
2282 	 */
2283 	if (value < (last = this))
2284 		return (0);
2285 
2286 	for (this *= factor; order <= high; order++) {
2287 		int nbuckets = this > nsteps ? nsteps : this;
2288 
2289 		if ((next = this * factor) < this) {
2290 			/*
2291 			 * We should not generally get log/linear quantizations
2292 			 * with a high magnitude that allows 64-bits to
2293 			 * overflow, but we nonetheless protect against this
2294 			 * by explicitly checking for overflow, and clamping
2295 			 * our value accordingly.
2296 			 */
2297 			value = this - 1;
2298 		}
2299 
2300 		if (value < this) {
2301 			/*
2302 			 * If our value lies within this order of magnitude,
2303 			 * determine its position by taking the offset within
2304 			 * the order of magnitude, dividing by the bucket
2305 			 * width, and adding to our (accumulated) base.
2306 			 */
2307 			return (base + (value - last) / (this / nbuckets));
2308 		}
2309 
2310 		base += nbuckets - (nbuckets / factor);
2311 		last = this;
2312 		this = next;
2313 	}
2314 
2315 	/*
2316 	 * Our value is greater than or equal to our factor taken to the
2317 	 * power of one plus the high magnitude -- return the top bucket.
2318 	 */
2319 	return (base);
2320 }
2321 
2322 static void
2323 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2324 {
2325 	uint64_t arg = *llquanta++;
2326 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2327 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2328 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2329 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2330 
2331 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2332 	    low, high, nsteps, nval)] += incr;
2333 }
2334 
2335 /*ARGSUSED*/
2336 static void
2337 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2338 {
2339 	data[0]++;
2340 	data[1] += nval;
2341 }
2342 
2343 /*ARGSUSED*/
2344 static void
2345 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2346 {
2347 	int64_t snval = (int64_t)nval;
2348 	uint64_t tmp[2];
2349 
2350 	data[0]++;
2351 	data[1] += nval;
2352 
2353 	/*
2354 	 * What we want to say here is:
2355 	 *
2356 	 * data[2] += nval * nval;
2357 	 *
2358 	 * But given that nval is 64-bit, we could easily overflow, so
2359 	 * we do this as 128-bit arithmetic.
2360 	 */
2361 	if (snval < 0)
2362 		snval = -snval;
2363 
2364 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2365 	dtrace_add_128(data + 2, tmp, data + 2);
2366 }
2367 
2368 /*ARGSUSED*/
2369 static void
2370 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2371 {
2372 	*oval = *oval + 1;
2373 }
2374 
2375 /*ARGSUSED*/
2376 static void
2377 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2378 {
2379 	*oval += nval;
2380 }
2381 
2382 /*
2383  * Aggregate given the tuple in the principal data buffer, and the aggregating
2384  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2385  * buffer is specified as the buf parameter.  This routine does not return
2386  * failure; if there is no space in the aggregation buffer, the data will be
2387  * dropped, and a corresponding counter incremented.
2388  */
2389 static void
2390 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2391     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2392 {
2393 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2394 	uint32_t i, ndx, size, fsize;
2395 	uint32_t align = sizeof (uint64_t) - 1;
2396 	dtrace_aggbuffer_t *agb;
2397 	dtrace_aggkey_t *key;
2398 	uint32_t hashval = 0, limit, isstr;
2399 	caddr_t tomax, data, kdata;
2400 	dtrace_actkind_t action;
2401 	dtrace_action_t *act;
2402 	uintptr_t offs;
2403 
2404 	if (buf == NULL)
2405 		return;
2406 
2407 	if (!agg->dtag_hasarg) {
2408 		/*
2409 		 * Currently, only quantize() and lquantize() take additional
2410 		 * arguments, and they have the same semantics:  an increment
2411 		 * value that defaults to 1 when not present.  If additional
2412 		 * aggregating actions take arguments, the setting of the
2413 		 * default argument value will presumably have to become more
2414 		 * sophisticated...
2415 		 */
2416 		arg = 1;
2417 	}
2418 
2419 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2420 	size = rec->dtrd_offset - agg->dtag_base;
2421 	fsize = size + rec->dtrd_size;
2422 
2423 	ASSERT(dbuf->dtb_tomax != NULL);
2424 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2425 
2426 	if ((tomax = buf->dtb_tomax) == NULL) {
2427 		dtrace_buffer_drop(buf);
2428 		return;
2429 	}
2430 
2431 	/*
2432 	 * The metastructure is always at the bottom of the buffer.
2433 	 */
2434 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2435 	    sizeof (dtrace_aggbuffer_t));
2436 
2437 	if (buf->dtb_offset == 0) {
2438 		/*
2439 		 * We just kludge up approximately 1/8th of the size to be
2440 		 * buckets.  If this guess ends up being routinely
2441 		 * off-the-mark, we may need to dynamically readjust this
2442 		 * based on past performance.
2443 		 */
2444 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2445 
2446 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2447 		    (uintptr_t)tomax || hashsize == 0) {
2448 			/*
2449 			 * We've been given a ludicrously small buffer;
2450 			 * increment our drop count and leave.
2451 			 */
2452 			dtrace_buffer_drop(buf);
2453 			return;
2454 		}
2455 
2456 		/*
2457 		 * And now, a pathetic attempt to try to get a an odd (or
2458 		 * perchance, a prime) hash size for better hash distribution.
2459 		 */
2460 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2461 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2462 
2463 		agb->dtagb_hashsize = hashsize;
2464 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2465 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2466 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2467 
2468 		for (i = 0; i < agb->dtagb_hashsize; i++)
2469 			agb->dtagb_hash[i] = NULL;
2470 	}
2471 
2472 	ASSERT(agg->dtag_first != NULL);
2473 	ASSERT(agg->dtag_first->dta_intuple);
2474 
2475 	/*
2476 	 * Calculate the hash value based on the key.  Note that we _don't_
2477 	 * include the aggid in the hashing (but we will store it as part of
2478 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2479 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2480 	 * gets good distribution in practice.  The efficacy of the hashing
2481 	 * algorithm (and a comparison with other algorithms) may be found by
2482 	 * running the ::dtrace_aggstat MDB dcmd.
2483 	 */
2484 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2485 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2486 		limit = i + act->dta_rec.dtrd_size;
2487 		ASSERT(limit <= size);
2488 		isstr = DTRACEACT_ISSTRING(act);
2489 
2490 		for (; i < limit; i++) {
2491 			hashval += data[i];
2492 			hashval += (hashval << 10);
2493 			hashval ^= (hashval >> 6);
2494 
2495 			if (isstr && data[i] == '\0')
2496 				break;
2497 		}
2498 	}
2499 
2500 	hashval += (hashval << 3);
2501 	hashval ^= (hashval >> 11);
2502 	hashval += (hashval << 15);
2503 
2504 	/*
2505 	 * Yes, the divide here is expensive -- but it's generally the least
2506 	 * of the performance issues given the amount of data that we iterate
2507 	 * over to compute hash values, compare data, etc.
2508 	 */
2509 	ndx = hashval % agb->dtagb_hashsize;
2510 
2511 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2512 		ASSERT((caddr_t)key >= tomax);
2513 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2514 
2515 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2516 			continue;
2517 
2518 		kdata = key->dtak_data;
2519 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2520 
2521 		for (act = agg->dtag_first; act->dta_intuple;
2522 		    act = act->dta_next) {
2523 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2524 			limit = i + act->dta_rec.dtrd_size;
2525 			ASSERT(limit <= size);
2526 			isstr = DTRACEACT_ISSTRING(act);
2527 
2528 			for (; i < limit; i++) {
2529 				if (kdata[i] != data[i])
2530 					goto next;
2531 
2532 				if (isstr && data[i] == '\0')
2533 					break;
2534 			}
2535 		}
2536 
2537 		if (action != key->dtak_action) {
2538 			/*
2539 			 * We are aggregating on the same value in the same
2540 			 * aggregation with two different aggregating actions.
2541 			 * (This should have been picked up in the compiler,
2542 			 * so we may be dealing with errant or devious DIF.)
2543 			 * This is an error condition; we indicate as much,
2544 			 * and return.
2545 			 */
2546 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2547 			return;
2548 		}
2549 
2550 		/*
2551 		 * This is a hit:  we need to apply the aggregator to
2552 		 * the value at this key.
2553 		 */
2554 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2555 		return;
2556 next:
2557 		continue;
2558 	}
2559 
2560 	/*
2561 	 * We didn't find it.  We need to allocate some zero-filled space,
2562 	 * link it into the hash table appropriately, and apply the aggregator
2563 	 * to the (zero-filled) value.
2564 	 */
2565 	offs = buf->dtb_offset;
2566 	while (offs & (align - 1))
2567 		offs += sizeof (uint32_t);
2568 
2569 	/*
2570 	 * If we don't have enough room to both allocate a new key _and_
2571 	 * its associated data, increment the drop count and return.
2572 	 */
2573 	if ((uintptr_t)tomax + offs + fsize >
2574 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2575 		dtrace_buffer_drop(buf);
2576 		return;
2577 	}
2578 
2579 	/*CONSTCOND*/
2580 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2581 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2582 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2583 
2584 	key->dtak_data = kdata = tomax + offs;
2585 	buf->dtb_offset = offs + fsize;
2586 
2587 	/*
2588 	 * Now copy the data across.
2589 	 */
2590 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2591 
2592 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2593 		kdata[i] = data[i];
2594 
2595 	/*
2596 	 * Because strings are not zeroed out by default, we need to iterate
2597 	 * looking for actions that store strings, and we need to explicitly
2598 	 * pad these strings out with zeroes.
2599 	 */
2600 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2601 		int nul;
2602 
2603 		if (!DTRACEACT_ISSTRING(act))
2604 			continue;
2605 
2606 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2607 		limit = i + act->dta_rec.dtrd_size;
2608 		ASSERT(limit <= size);
2609 
2610 		for (nul = 0; i < limit; i++) {
2611 			if (nul) {
2612 				kdata[i] = '\0';
2613 				continue;
2614 			}
2615 
2616 			if (data[i] != '\0')
2617 				continue;
2618 
2619 			nul = 1;
2620 		}
2621 	}
2622 
2623 	for (i = size; i < fsize; i++)
2624 		kdata[i] = 0;
2625 
2626 	key->dtak_hashval = hashval;
2627 	key->dtak_size = size;
2628 	key->dtak_action = action;
2629 	key->dtak_next = agb->dtagb_hash[ndx];
2630 	agb->dtagb_hash[ndx] = key;
2631 
2632 	/*
2633 	 * Finally, apply the aggregator.
2634 	 */
2635 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2636 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2637 }
2638 
2639 /*
2640  * Given consumer state, this routine finds a speculation in the INACTIVE
2641  * state and transitions it into the ACTIVE state.  If there is no speculation
2642  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2643  * incremented -- it is up to the caller to take appropriate action.
2644  */
2645 static int
2646 dtrace_speculation(dtrace_state_t *state)
2647 {
2648 	int i = 0;
2649 	dtrace_speculation_state_t current;
2650 	uint32_t *stat = &state->dts_speculations_unavail, count;
2651 
2652 	while (i < state->dts_nspeculations) {
2653 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2654 
2655 		current = spec->dtsp_state;
2656 
2657 		if (current != DTRACESPEC_INACTIVE) {
2658 			if (current == DTRACESPEC_COMMITTINGMANY ||
2659 			    current == DTRACESPEC_COMMITTING ||
2660 			    current == DTRACESPEC_DISCARDING)
2661 				stat = &state->dts_speculations_busy;
2662 			i++;
2663 			continue;
2664 		}
2665 
2666 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2667 		    current, DTRACESPEC_ACTIVE) == current)
2668 			return (i + 1);
2669 	}
2670 
2671 	/*
2672 	 * We couldn't find a speculation.  If we found as much as a single
2673 	 * busy speculation buffer, we'll attribute this failure as "busy"
2674 	 * instead of "unavail".
2675 	 */
2676 	do {
2677 		count = *stat;
2678 	} while (dtrace_cas32(stat, count, count + 1) != count);
2679 
2680 	return (0);
2681 }
2682 
2683 /*
2684  * This routine commits an active speculation.  If the specified speculation
2685  * is not in a valid state to perform a commit(), this routine will silently do
2686  * nothing.  The state of the specified speculation is transitioned according
2687  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2688  */
2689 static void
2690 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2691     dtrace_specid_t which)
2692 {
2693 	dtrace_speculation_t *spec;
2694 	dtrace_buffer_t *src, *dest;
2695 	uintptr_t daddr, saddr, dlimit, slimit;
2696 	dtrace_speculation_state_t current, new = 0;
2697 	intptr_t offs;
2698 	uint64_t timestamp;
2699 
2700 	if (which == 0)
2701 		return;
2702 
2703 	if (which > state->dts_nspeculations) {
2704 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2705 		return;
2706 	}
2707 
2708 	spec = &state->dts_speculations[which - 1];
2709 	src = &spec->dtsp_buffer[cpu];
2710 	dest = &state->dts_buffer[cpu];
2711 
2712 	do {
2713 		current = spec->dtsp_state;
2714 
2715 		if (current == DTRACESPEC_COMMITTINGMANY)
2716 			break;
2717 
2718 		switch (current) {
2719 		case DTRACESPEC_INACTIVE:
2720 		case DTRACESPEC_DISCARDING:
2721 			return;
2722 
2723 		case DTRACESPEC_COMMITTING:
2724 			/*
2725 			 * This is only possible if we are (a) commit()'ing
2726 			 * without having done a prior speculate() on this CPU
2727 			 * and (b) racing with another commit() on a different
2728 			 * CPU.  There's nothing to do -- we just assert that
2729 			 * our offset is 0.
2730 			 */
2731 			ASSERT(src->dtb_offset == 0);
2732 			return;
2733 
2734 		case DTRACESPEC_ACTIVE:
2735 			new = DTRACESPEC_COMMITTING;
2736 			break;
2737 
2738 		case DTRACESPEC_ACTIVEONE:
2739 			/*
2740 			 * This speculation is active on one CPU.  If our
2741 			 * buffer offset is non-zero, we know that the one CPU
2742 			 * must be us.  Otherwise, we are committing on a
2743 			 * different CPU from the speculate(), and we must
2744 			 * rely on being asynchronously cleaned.
2745 			 */
2746 			if (src->dtb_offset != 0) {
2747 				new = DTRACESPEC_COMMITTING;
2748 				break;
2749 			}
2750 			/*FALLTHROUGH*/
2751 
2752 		case DTRACESPEC_ACTIVEMANY:
2753 			new = DTRACESPEC_COMMITTINGMANY;
2754 			break;
2755 
2756 		default:
2757 			ASSERT(0);
2758 		}
2759 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2760 	    current, new) != current);
2761 
2762 	/*
2763 	 * We have set the state to indicate that we are committing this
2764 	 * speculation.  Now reserve the necessary space in the destination
2765 	 * buffer.
2766 	 */
2767 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2768 	    sizeof (uint64_t), state, NULL)) < 0) {
2769 		dtrace_buffer_drop(dest);
2770 		goto out;
2771 	}
2772 
2773 	/*
2774 	 * We have sufficient space to copy the speculative buffer into the
2775 	 * primary buffer.  First, modify the speculative buffer, filling
2776 	 * in the timestamp of all entries with the current time.  The data
2777 	 * must have the commit() time rather than the time it was traced,
2778 	 * so that all entries in the primary buffer are in timestamp order.
2779 	 */
2780 	timestamp = dtrace_gethrtime();
2781 	saddr = (uintptr_t)src->dtb_tomax;
2782 	slimit = saddr + src->dtb_offset;
2783 	while (saddr < slimit) {
2784 		size_t size;
2785 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2786 
2787 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2788 			saddr += sizeof (dtrace_epid_t);
2789 			continue;
2790 		}
2791 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2792 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2793 
2794 		ASSERT3U(saddr + size, <=, slimit);
2795 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2796 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2797 
2798 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2799 
2800 		saddr += size;
2801 	}
2802 
2803 	/*
2804 	 * Copy the buffer across.  (Note that this is a
2805 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2806 	 * a serious performance issue, a high-performance DTrace-specific
2807 	 * bcopy() should obviously be invented.)
2808 	 */
2809 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2810 	dlimit = daddr + src->dtb_offset;
2811 	saddr = (uintptr_t)src->dtb_tomax;
2812 
2813 	/*
2814 	 * First, the aligned portion.
2815 	 */
2816 	while (dlimit - daddr >= sizeof (uint64_t)) {
2817 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2818 
2819 		daddr += sizeof (uint64_t);
2820 		saddr += sizeof (uint64_t);
2821 	}
2822 
2823 	/*
2824 	 * Now any left-over bit...
2825 	 */
2826 	while (dlimit - daddr)
2827 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2828 
2829 	/*
2830 	 * Finally, commit the reserved space in the destination buffer.
2831 	 */
2832 	dest->dtb_offset = offs + src->dtb_offset;
2833 
2834 out:
2835 	/*
2836 	 * If we're lucky enough to be the only active CPU on this speculation
2837 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2838 	 */
2839 	if (current == DTRACESPEC_ACTIVE ||
2840 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2841 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2842 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2843 
2844 		ASSERT(rval == DTRACESPEC_COMMITTING);
2845 	}
2846 
2847 	src->dtb_offset = 0;
2848 	src->dtb_xamot_drops += src->dtb_drops;
2849 	src->dtb_drops = 0;
2850 }
2851 
2852 /*
2853  * This routine discards an active speculation.  If the specified speculation
2854  * is not in a valid state to perform a discard(), this routine will silently
2855  * do nothing.  The state of the specified speculation is transitioned
2856  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2857  */
2858 static void
2859 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2860     dtrace_specid_t which)
2861 {
2862 	dtrace_speculation_t *spec;
2863 	dtrace_speculation_state_t current, new = 0;
2864 	dtrace_buffer_t *buf;
2865 
2866 	if (which == 0)
2867 		return;
2868 
2869 	if (which > state->dts_nspeculations) {
2870 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2871 		return;
2872 	}
2873 
2874 	spec = &state->dts_speculations[which - 1];
2875 	buf = &spec->dtsp_buffer[cpu];
2876 
2877 	do {
2878 		current = spec->dtsp_state;
2879 
2880 		switch (current) {
2881 		case DTRACESPEC_INACTIVE:
2882 		case DTRACESPEC_COMMITTINGMANY:
2883 		case DTRACESPEC_COMMITTING:
2884 		case DTRACESPEC_DISCARDING:
2885 			return;
2886 
2887 		case DTRACESPEC_ACTIVE:
2888 		case DTRACESPEC_ACTIVEMANY:
2889 			new = DTRACESPEC_DISCARDING;
2890 			break;
2891 
2892 		case DTRACESPEC_ACTIVEONE:
2893 			if (buf->dtb_offset != 0) {
2894 				new = DTRACESPEC_INACTIVE;
2895 			} else {
2896 				new = DTRACESPEC_DISCARDING;
2897 			}
2898 			break;
2899 
2900 		default:
2901 			ASSERT(0);
2902 		}
2903 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2904 	    current, new) != current);
2905 
2906 	buf->dtb_offset = 0;
2907 	buf->dtb_drops = 0;
2908 }
2909 
2910 /*
2911  * Note:  not called from probe context.  This function is called
2912  * asynchronously from cross call context to clean any speculations that are
2913  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2914  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2915  * speculation.
2916  */
2917 static void
2918 dtrace_speculation_clean_here(dtrace_state_t *state)
2919 {
2920 	dtrace_icookie_t cookie;
2921 	processorid_t cpu = curcpu;
2922 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2923 	dtrace_specid_t i;
2924 
2925 	cookie = dtrace_interrupt_disable();
2926 
2927 	if (dest->dtb_tomax == NULL) {
2928 		dtrace_interrupt_enable(cookie);
2929 		return;
2930 	}
2931 
2932 	for (i = 0; i < state->dts_nspeculations; i++) {
2933 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2934 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2935 
2936 		if (src->dtb_tomax == NULL)
2937 			continue;
2938 
2939 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2940 			src->dtb_offset = 0;
2941 			continue;
2942 		}
2943 
2944 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2945 			continue;
2946 
2947 		if (src->dtb_offset == 0)
2948 			continue;
2949 
2950 		dtrace_speculation_commit(state, cpu, i + 1);
2951 	}
2952 
2953 	dtrace_interrupt_enable(cookie);
2954 }
2955 
2956 /*
2957  * Note:  not called from probe context.  This function is called
2958  * asynchronously (and at a regular interval) to clean any speculations that
2959  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2960  * is work to be done, it cross calls all CPUs to perform that work;
2961  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2962  * INACTIVE state until they have been cleaned by all CPUs.
2963  */
2964 static void
2965 dtrace_speculation_clean(dtrace_state_t *state)
2966 {
2967 	int work = 0, rv;
2968 	dtrace_specid_t i;
2969 
2970 	for (i = 0; i < state->dts_nspeculations; i++) {
2971 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2972 
2973 		ASSERT(!spec->dtsp_cleaning);
2974 
2975 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2976 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2977 			continue;
2978 
2979 		work++;
2980 		spec->dtsp_cleaning = 1;
2981 	}
2982 
2983 	if (!work)
2984 		return;
2985 
2986 	dtrace_xcall(DTRACE_CPUALL,
2987 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2988 
2989 	/*
2990 	 * We now know that all CPUs have committed or discarded their
2991 	 * speculation buffers, as appropriate.  We can now set the state
2992 	 * to inactive.
2993 	 */
2994 	for (i = 0; i < state->dts_nspeculations; i++) {
2995 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2996 		dtrace_speculation_state_t current, new;
2997 
2998 		if (!spec->dtsp_cleaning)
2999 			continue;
3000 
3001 		current = spec->dtsp_state;
3002 		ASSERT(current == DTRACESPEC_DISCARDING ||
3003 		    current == DTRACESPEC_COMMITTINGMANY);
3004 
3005 		new = DTRACESPEC_INACTIVE;
3006 
3007 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
3008 		ASSERT(rv == current);
3009 		spec->dtsp_cleaning = 0;
3010 	}
3011 }
3012 
3013 /*
3014  * Called as part of a speculate() to get the speculative buffer associated
3015  * with a given speculation.  Returns NULL if the specified speculation is not
3016  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
3017  * the active CPU is not the specified CPU -- the speculation will be
3018  * atomically transitioned into the ACTIVEMANY state.
3019  */
3020 static dtrace_buffer_t *
3021 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3022     dtrace_specid_t which)
3023 {
3024 	dtrace_speculation_t *spec;
3025 	dtrace_speculation_state_t current, new = 0;
3026 	dtrace_buffer_t *buf;
3027 
3028 	if (which == 0)
3029 		return (NULL);
3030 
3031 	if (which > state->dts_nspeculations) {
3032 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3033 		return (NULL);
3034 	}
3035 
3036 	spec = &state->dts_speculations[which - 1];
3037 	buf = &spec->dtsp_buffer[cpuid];
3038 
3039 	do {
3040 		current = spec->dtsp_state;
3041 
3042 		switch (current) {
3043 		case DTRACESPEC_INACTIVE:
3044 		case DTRACESPEC_COMMITTINGMANY:
3045 		case DTRACESPEC_DISCARDING:
3046 			return (NULL);
3047 
3048 		case DTRACESPEC_COMMITTING:
3049 			ASSERT(buf->dtb_offset == 0);
3050 			return (NULL);
3051 
3052 		case DTRACESPEC_ACTIVEONE:
3053 			/*
3054 			 * This speculation is currently active on one CPU.
3055 			 * Check the offset in the buffer; if it's non-zero,
3056 			 * that CPU must be us (and we leave the state alone).
3057 			 * If it's zero, assume that we're starting on a new
3058 			 * CPU -- and change the state to indicate that the
3059 			 * speculation is active on more than one CPU.
3060 			 */
3061 			if (buf->dtb_offset != 0)
3062 				return (buf);
3063 
3064 			new = DTRACESPEC_ACTIVEMANY;
3065 			break;
3066 
3067 		case DTRACESPEC_ACTIVEMANY:
3068 			return (buf);
3069 
3070 		case DTRACESPEC_ACTIVE:
3071 			new = DTRACESPEC_ACTIVEONE;
3072 			break;
3073 
3074 		default:
3075 			ASSERT(0);
3076 		}
3077 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3078 	    current, new) != current);
3079 
3080 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3081 	return (buf);
3082 }
3083 
3084 /*
3085  * Return a string.  In the event that the user lacks the privilege to access
3086  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3087  * don't fail access checking.
3088  *
3089  * dtrace_dif_variable() uses this routine as a helper for various
3090  * builtin values such as 'execname' and 'probefunc.'
3091  */
3092 uintptr_t
3093 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3094     dtrace_mstate_t *mstate)
3095 {
3096 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3097 	uintptr_t ret;
3098 	size_t strsz;
3099 
3100 	/*
3101 	 * The easy case: this probe is allowed to read all of memory, so
3102 	 * we can just return this as a vanilla pointer.
3103 	 */
3104 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3105 		return (addr);
3106 
3107 	/*
3108 	 * This is the tougher case: we copy the string in question from
3109 	 * kernel memory into scratch memory and return it that way: this
3110 	 * ensures that we won't trip up when access checking tests the
3111 	 * BYREF return value.
3112 	 */
3113 	strsz = dtrace_strlen((char *)addr, size) + 1;
3114 
3115 	if (mstate->dtms_scratch_ptr + strsz >
3116 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3117 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3118 		return (0);
3119 	}
3120 
3121 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3122 	    strsz);
3123 	ret = mstate->dtms_scratch_ptr;
3124 	mstate->dtms_scratch_ptr += strsz;
3125 	return (ret);
3126 }
3127 
3128 /*
3129  * Return a string from a memoy address which is known to have one or
3130  * more concatenated, individually zero terminated, sub-strings.
3131  * In the event that the user lacks the privilege to access
3132  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3133  * don't fail access checking.
3134  *
3135  * dtrace_dif_variable() uses this routine as a helper for various
3136  * builtin values such as 'execargs'.
3137  */
3138 static uintptr_t
3139 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3140     dtrace_mstate_t *mstate)
3141 {
3142 	char *p;
3143 	size_t i;
3144 	uintptr_t ret;
3145 
3146 	if (mstate->dtms_scratch_ptr + strsz >
3147 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3148 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3149 		return (0);
3150 	}
3151 
3152 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3153 	    strsz);
3154 
3155 	/* Replace sub-string termination characters with a space. */
3156 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3157 	    p++, i++)
3158 		if (*p == '\0')
3159 			*p = ' ';
3160 
3161 	ret = mstate->dtms_scratch_ptr;
3162 	mstate->dtms_scratch_ptr += strsz;
3163 	return (ret);
3164 }
3165 
3166 /*
3167  * This function implements the DIF emulator's variable lookups.  The emulator
3168  * passes a reserved variable identifier and optional built-in array index.
3169  */
3170 static uint64_t
3171 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3172     uint64_t ndx)
3173 {
3174 	/*
3175 	 * If we're accessing one of the uncached arguments, we'll turn this
3176 	 * into a reference in the args array.
3177 	 */
3178 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3179 		ndx = v - DIF_VAR_ARG0;
3180 		v = DIF_VAR_ARGS;
3181 	}
3182 
3183 	switch (v) {
3184 	case DIF_VAR_ARGS:
3185 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3186 		if (ndx >= sizeof (mstate->dtms_arg) /
3187 		    sizeof (mstate->dtms_arg[0])) {
3188 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3189 			dtrace_provider_t *pv;
3190 			uint64_t val;
3191 
3192 			pv = mstate->dtms_probe->dtpr_provider;
3193 			if (pv->dtpv_pops.dtps_getargval != NULL)
3194 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3195 				    mstate->dtms_probe->dtpr_id,
3196 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3197 			else
3198 				val = dtrace_getarg(ndx, aframes);
3199 
3200 			/*
3201 			 * This is regrettably required to keep the compiler
3202 			 * from tail-optimizing the call to dtrace_getarg().
3203 			 * The condition always evaluates to true, but the
3204 			 * compiler has no way of figuring that out a priori.
3205 			 * (None of this would be necessary if the compiler
3206 			 * could be relied upon to _always_ tail-optimize
3207 			 * the call to dtrace_getarg() -- but it can't.)
3208 			 */
3209 			if (mstate->dtms_probe != NULL)
3210 				return (val);
3211 
3212 			ASSERT(0);
3213 		}
3214 
3215 		return (mstate->dtms_arg[ndx]);
3216 
3217 #ifdef illumos
3218 	case DIF_VAR_UREGS: {
3219 		klwp_t *lwp;
3220 
3221 		if (!dtrace_priv_proc(state))
3222 			return (0);
3223 
3224 		if ((lwp = curthread->t_lwp) == NULL) {
3225 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3226 			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
3227 			return (0);
3228 		}
3229 
3230 		return (dtrace_getreg(lwp->lwp_regs, ndx));
3231 		return (0);
3232 	}
3233 #else
3234 	case DIF_VAR_UREGS: {
3235 		struct trapframe *tframe;
3236 
3237 		if (!dtrace_priv_proc(state))
3238 			return (0);
3239 
3240 		if ((tframe = curthread->td_frame) == NULL) {
3241 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3242 			cpu_core[curcpu].cpuc_dtrace_illval = 0;
3243 			return (0);
3244 		}
3245 
3246 		return (dtrace_getreg(tframe, ndx));
3247 	}
3248 #endif
3249 
3250 	case DIF_VAR_CURTHREAD:
3251 		if (!dtrace_priv_proc(state))
3252 			return (0);
3253 		return ((uint64_t)(uintptr_t)curthread);
3254 
3255 	case DIF_VAR_TIMESTAMP:
3256 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3257 			mstate->dtms_timestamp = dtrace_gethrtime();
3258 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3259 		}
3260 		return (mstate->dtms_timestamp);
3261 
3262 	case DIF_VAR_VTIMESTAMP:
3263 		ASSERT(dtrace_vtime_references != 0);
3264 		return (curthread->t_dtrace_vtime);
3265 
3266 	case DIF_VAR_WALLTIMESTAMP:
3267 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3268 			mstate->dtms_walltimestamp = dtrace_gethrestime();
3269 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3270 		}
3271 		return (mstate->dtms_walltimestamp);
3272 
3273 #ifdef illumos
3274 	case DIF_VAR_IPL:
3275 		if (!dtrace_priv_kernel(state))
3276 			return (0);
3277 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3278 			mstate->dtms_ipl = dtrace_getipl();
3279 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3280 		}
3281 		return (mstate->dtms_ipl);
3282 #endif
3283 
3284 	case DIF_VAR_EPID:
3285 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3286 		return (mstate->dtms_epid);
3287 
3288 	case DIF_VAR_ID:
3289 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3290 		return (mstate->dtms_probe->dtpr_id);
3291 
3292 	case DIF_VAR_STACKDEPTH:
3293 		if (!dtrace_priv_kernel(state))
3294 			return (0);
3295 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3296 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3297 
3298 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3299 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3300 		}
3301 		return (mstate->dtms_stackdepth);
3302 
3303 	case DIF_VAR_USTACKDEPTH:
3304 		if (!dtrace_priv_proc(state))
3305 			return (0);
3306 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3307 			/*
3308 			 * See comment in DIF_VAR_PID.
3309 			 */
3310 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3311 			    CPU_ON_INTR(CPU)) {
3312 				mstate->dtms_ustackdepth = 0;
3313 			} else {
3314 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3315 				mstate->dtms_ustackdepth =
3316 				    dtrace_getustackdepth();
3317 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3318 			}
3319 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3320 		}
3321 		return (mstate->dtms_ustackdepth);
3322 
3323 	case DIF_VAR_CALLER:
3324 		if (!dtrace_priv_kernel(state))
3325 			return (0);
3326 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3327 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3328 
3329 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3330 				/*
3331 				 * If this is an unanchored probe, we are
3332 				 * required to go through the slow path:
3333 				 * dtrace_caller() only guarantees correct
3334 				 * results for anchored probes.
3335 				 */
3336 				pc_t caller[2] = {0, 0};
3337 
3338 				dtrace_getpcstack(caller, 2, aframes,
3339 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3340 				mstate->dtms_caller = caller[1];
3341 			} else if ((mstate->dtms_caller =
3342 			    dtrace_caller(aframes)) == -1) {
3343 				/*
3344 				 * We have failed to do this the quick way;
3345 				 * we must resort to the slower approach of
3346 				 * calling dtrace_getpcstack().
3347 				 */
3348 				pc_t caller = 0;
3349 
3350 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3351 				mstate->dtms_caller = caller;
3352 			}
3353 
3354 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3355 		}
3356 		return (mstate->dtms_caller);
3357 
3358 	case DIF_VAR_UCALLER:
3359 		if (!dtrace_priv_proc(state))
3360 			return (0);
3361 
3362 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3363 			uint64_t ustack[3];
3364 
3365 			/*
3366 			 * dtrace_getupcstack() fills in the first uint64_t
3367 			 * with the current PID.  The second uint64_t will
3368 			 * be the program counter at user-level.  The third
3369 			 * uint64_t will contain the caller, which is what
3370 			 * we're after.
3371 			 */
3372 			ustack[2] = 0;
3373 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3374 			dtrace_getupcstack(ustack, 3);
3375 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3376 			mstate->dtms_ucaller = ustack[2];
3377 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3378 		}
3379 
3380 		return (mstate->dtms_ucaller);
3381 
3382 	case DIF_VAR_PROBEPROV:
3383 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3384 		return (dtrace_dif_varstr(
3385 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3386 		    state, mstate));
3387 
3388 	case DIF_VAR_PROBEMOD:
3389 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3390 		return (dtrace_dif_varstr(
3391 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3392 		    state, mstate));
3393 
3394 	case DIF_VAR_PROBEFUNC:
3395 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3396 		return (dtrace_dif_varstr(
3397 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3398 		    state, mstate));
3399 
3400 	case DIF_VAR_PROBENAME:
3401 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3402 		return (dtrace_dif_varstr(
3403 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3404 		    state, mstate));
3405 
3406 	case DIF_VAR_PID:
3407 		if (!dtrace_priv_proc(state))
3408 			return (0);
3409 
3410 #ifdef illumos
3411 		/*
3412 		 * Note that we are assuming that an unanchored probe is
3413 		 * always due to a high-level interrupt.  (And we're assuming
3414 		 * that there is only a single high level interrupt.)
3415 		 */
3416 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3417 			return (pid0.pid_id);
3418 
3419 		/*
3420 		 * It is always safe to dereference one's own t_procp pointer:
3421 		 * it always points to a valid, allocated proc structure.
3422 		 * Further, it is always safe to dereference the p_pidp member
3423 		 * of one's own proc structure.  (These are truisms becuase
3424 		 * threads and processes don't clean up their own state --
3425 		 * they leave that task to whomever reaps them.)
3426 		 */
3427 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3428 #else
3429 		return ((uint64_t)curproc->p_pid);
3430 #endif
3431 
3432 	case DIF_VAR_PPID:
3433 		if (!dtrace_priv_proc(state))
3434 			return (0);
3435 
3436 #ifdef illumos
3437 		/*
3438 		 * See comment in DIF_VAR_PID.
3439 		 */
3440 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3441 			return (pid0.pid_id);
3442 
3443 		/*
3444 		 * It is always safe to dereference one's own t_procp pointer:
3445 		 * it always points to a valid, allocated proc structure.
3446 		 * (This is true because threads don't clean up their own
3447 		 * state -- they leave that task to whomever reaps them.)
3448 		 */
3449 		return ((uint64_t)curthread->t_procp->p_ppid);
3450 #else
3451 		if (curproc->p_pid == proc0.p_pid)
3452 			return (curproc->p_pid);
3453 		else
3454 			return (curproc->p_pptr->p_pid);
3455 #endif
3456 
3457 	case DIF_VAR_TID:
3458 #ifdef illumos
3459 		/*
3460 		 * See comment in DIF_VAR_PID.
3461 		 */
3462 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3463 			return (0);
3464 #endif
3465 
3466 		return ((uint64_t)curthread->t_tid);
3467 
3468 	case DIF_VAR_EXECARGS: {
3469 		struct pargs *p_args = curthread->td_proc->p_args;
3470 
3471 		if (p_args == NULL)
3472 			return(0);
3473 
3474 		return (dtrace_dif_varstrz(
3475 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3476 	}
3477 
3478 	case DIF_VAR_EXECNAME:
3479 #ifdef illumos
3480 		if (!dtrace_priv_proc(state))
3481 			return (0);
3482 
3483 		/*
3484 		 * See comment in DIF_VAR_PID.
3485 		 */
3486 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3487 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3488 
3489 		/*
3490 		 * It is always safe to dereference one's own t_procp pointer:
3491 		 * it always points to a valid, allocated proc structure.
3492 		 * (This is true because threads don't clean up their own
3493 		 * state -- they leave that task to whomever reaps them.)
3494 		 */
3495 		return (dtrace_dif_varstr(
3496 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3497 		    state, mstate));
3498 #else
3499 		return (dtrace_dif_varstr(
3500 		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3501 #endif
3502 
3503 	case DIF_VAR_ZONENAME:
3504 #ifdef illumos
3505 		if (!dtrace_priv_proc(state))
3506 			return (0);
3507 
3508 		/*
3509 		 * See comment in DIF_VAR_PID.
3510 		 */
3511 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3512 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3513 
3514 		/*
3515 		 * It is always safe to dereference one's own t_procp pointer:
3516 		 * it always points to a valid, allocated proc structure.
3517 		 * (This is true because threads don't clean up their own
3518 		 * state -- they leave that task to whomever reaps them.)
3519 		 */
3520 		return (dtrace_dif_varstr(
3521 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3522 		    state, mstate));
3523 #else
3524 		return (0);
3525 #endif
3526 
3527 	case DIF_VAR_UID:
3528 		if (!dtrace_priv_proc(state))
3529 			return (0);
3530 
3531 #ifdef illumos
3532 		/*
3533 		 * See comment in DIF_VAR_PID.
3534 		 */
3535 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3536 			return ((uint64_t)p0.p_cred->cr_uid);
3537 
3538 		/*
3539 		 * It is always safe to dereference one's own t_procp pointer:
3540 		 * it always points to a valid, allocated proc structure.
3541 		 * (This is true because threads don't clean up their own
3542 		 * state -- they leave that task to whomever reaps them.)
3543 		 *
3544 		 * Additionally, it is safe to dereference one's own process
3545 		 * credential, since this is never NULL after process birth.
3546 		 */
3547 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3548 #else
3549 		return ((uint64_t)curthread->td_ucred->cr_uid);
3550 #endif
3551 
3552 	case DIF_VAR_GID:
3553 		if (!dtrace_priv_proc(state))
3554 			return (0);
3555 
3556 #ifdef illumos
3557 		/*
3558 		 * See comment in DIF_VAR_PID.
3559 		 */
3560 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3561 			return ((uint64_t)p0.p_cred->cr_gid);
3562 
3563 		/*
3564 		 * It is always safe to dereference one's own t_procp pointer:
3565 		 * it always points to a valid, allocated proc structure.
3566 		 * (This is true because threads don't clean up their own
3567 		 * state -- they leave that task to whomever reaps them.)
3568 		 *
3569 		 * Additionally, it is safe to dereference one's own process
3570 		 * credential, since this is never NULL after process birth.
3571 		 */
3572 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3573 #else
3574 		return ((uint64_t)curthread->td_ucred->cr_gid);
3575 #endif
3576 
3577 	case DIF_VAR_ERRNO: {
3578 #ifdef illumos
3579 		klwp_t *lwp;
3580 		if (!dtrace_priv_proc(state))
3581 			return (0);
3582 
3583 		/*
3584 		 * See comment in DIF_VAR_PID.
3585 		 */
3586 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3587 			return (0);
3588 
3589 		/*
3590 		 * It is always safe to dereference one's own t_lwp pointer in
3591 		 * the event that this pointer is non-NULL.  (This is true
3592 		 * because threads and lwps don't clean up their own state --
3593 		 * they leave that task to whomever reaps them.)
3594 		 */
3595 		if ((lwp = curthread->t_lwp) == NULL)
3596 			return (0);
3597 
3598 		return ((uint64_t)lwp->lwp_errno);
3599 #else
3600 		return (curthread->td_errno);
3601 #endif
3602 	}
3603 #ifndef illumos
3604 	case DIF_VAR_CPU: {
3605 		return curcpu;
3606 	}
3607 #endif
3608 	default:
3609 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3610 		return (0);
3611 	}
3612 }
3613 
3614 
3615 typedef enum dtrace_json_state {
3616 	DTRACE_JSON_REST = 1,
3617 	DTRACE_JSON_OBJECT,
3618 	DTRACE_JSON_STRING,
3619 	DTRACE_JSON_STRING_ESCAPE,
3620 	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3621 	DTRACE_JSON_COLON,
3622 	DTRACE_JSON_COMMA,
3623 	DTRACE_JSON_VALUE,
3624 	DTRACE_JSON_IDENTIFIER,
3625 	DTRACE_JSON_NUMBER,
3626 	DTRACE_JSON_NUMBER_FRAC,
3627 	DTRACE_JSON_NUMBER_EXP,
3628 	DTRACE_JSON_COLLECT_OBJECT
3629 } dtrace_json_state_t;
3630 
3631 /*
3632  * This function possesses just enough knowledge about JSON to extract a single
3633  * value from a JSON string and store it in the scratch buffer.  It is able
3634  * to extract nested object values, and members of arrays by index.
3635  *
3636  * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3637  * be looked up as we descend into the object tree.  e.g.
3638  *
3639  *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3640  *       with nelems = 5.
3641  *
3642  * The run time of this function must be bounded above by strsize to limit the
3643  * amount of work done in probe context.  As such, it is implemented as a
3644  * simple state machine, reading one character at a time using safe loads
3645  * until we find the requested element, hit a parsing error or run off the
3646  * end of the object or string.
3647  *
3648  * As there is no way for a subroutine to return an error without interrupting
3649  * clause execution, we simply return NULL in the event of a missing key or any
3650  * other error condition.  Each NULL return in this function is commented with
3651  * the error condition it represents -- parsing or otherwise.
3652  *
3653  * The set of states for the state machine closely matches the JSON
3654  * specification (http://json.org/).  Briefly:
3655  *
3656  *   DTRACE_JSON_REST:
3657  *     Skip whitespace until we find either a top-level Object, moving
3658  *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3659  *
3660  *   DTRACE_JSON_OBJECT:
3661  *     Locate the next key String in an Object.  Sets a flag to denote
3662  *     the next String as a key string and moves to DTRACE_JSON_STRING.
3663  *
3664  *   DTRACE_JSON_COLON:
3665  *     Skip whitespace until we find the colon that separates key Strings
3666  *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3667  *
3668  *   DTRACE_JSON_VALUE:
3669  *     Detects the type of the next value (String, Number, Identifier, Object
3670  *     or Array) and routes to the states that process that type.  Here we also
3671  *     deal with the element selector list if we are requested to traverse down
3672  *     into the object tree.
3673  *
3674  *   DTRACE_JSON_COMMA:
3675  *     Skip whitespace until we find the comma that separates key-value pairs
3676  *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3677  *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3678  *     states return to this state at the end of their value, unless otherwise
3679  *     noted.
3680  *
3681  *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3682  *     Processes a Number literal from the JSON, including any exponent
3683  *     component that may be present.  Numbers are returned as strings, which
3684  *     may be passed to strtoll() if an integer is required.
3685  *
3686  *   DTRACE_JSON_IDENTIFIER:
3687  *     Processes a "true", "false" or "null" literal in the JSON.
3688  *
3689  *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3690  *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3691  *     Processes a String literal from the JSON, whether the String denotes
3692  *     a key, a value or part of a larger Object.  Handles all escape sequences
3693  *     present in the specification, including four-digit unicode characters,
3694  *     but merely includes the escape sequence without converting it to the
3695  *     actual escaped character.  If the String is flagged as a key, we
3696  *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3697  *
3698  *   DTRACE_JSON_COLLECT_OBJECT:
3699  *     This state collects an entire Object (or Array), correctly handling
3700  *     embedded strings.  If the full element selector list matches this nested
3701  *     object, we return the Object in full as a string.  If not, we use this
3702  *     state to skip to the next value at this level and continue processing.
3703  *
3704  * NOTE: This function uses various macros from strtolctype.h to manipulate
3705  * digit values, etc -- these have all been checked to ensure they make
3706  * no additional function calls.
3707  */
3708 static char *
3709 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3710     char *dest)
3711 {
3712 	dtrace_json_state_t state = DTRACE_JSON_REST;
3713 	int64_t array_elem = INT64_MIN;
3714 	int64_t array_pos = 0;
3715 	uint8_t escape_unicount = 0;
3716 	boolean_t string_is_key = B_FALSE;
3717 	boolean_t collect_object = B_FALSE;
3718 	boolean_t found_key = B_FALSE;
3719 	boolean_t in_array = B_FALSE;
3720 	uint32_t braces = 0, brackets = 0;
3721 	char *elem = elemlist;
3722 	char *dd = dest;
3723 	uintptr_t cur;
3724 
3725 	for (cur = json; cur < json + size; cur++) {
3726 		char cc = dtrace_load8(cur);
3727 		if (cc == '\0')
3728 			return (NULL);
3729 
3730 		switch (state) {
3731 		case DTRACE_JSON_REST:
3732 			if (isspace(cc))
3733 				break;
3734 
3735 			if (cc == '{') {
3736 				state = DTRACE_JSON_OBJECT;
3737 				break;
3738 			}
3739 
3740 			if (cc == '[') {
3741 				in_array = B_TRUE;
3742 				array_pos = 0;
3743 				array_elem = dtrace_strtoll(elem, 10, size);
3744 				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3745 				state = DTRACE_JSON_VALUE;
3746 				break;
3747 			}
3748 
3749 			/*
3750 			 * ERROR: expected to find a top-level object or array.
3751 			 */
3752 			return (NULL);
3753 		case DTRACE_JSON_OBJECT:
3754 			if (isspace(cc))
3755 				break;
3756 
3757 			if (cc == '"') {
3758 				state = DTRACE_JSON_STRING;
3759 				string_is_key = B_TRUE;
3760 				break;
3761 			}
3762 
3763 			/*
3764 			 * ERROR: either the object did not start with a key
3765 			 * string, or we've run off the end of the object
3766 			 * without finding the requested key.
3767 			 */
3768 			return (NULL);
3769 		case DTRACE_JSON_STRING:
3770 			if (cc == '\\') {
3771 				*dd++ = '\\';
3772 				state = DTRACE_JSON_STRING_ESCAPE;
3773 				break;
3774 			}
3775 
3776 			if (cc == '"') {
3777 				if (collect_object) {
3778 					/*
3779 					 * We don't reset the dest here, as
3780 					 * the string is part of a larger
3781 					 * object being collected.
3782 					 */
3783 					*dd++ = cc;
3784 					collect_object = B_FALSE;
3785 					state = DTRACE_JSON_COLLECT_OBJECT;
3786 					break;
3787 				}
3788 				*dd = '\0';
3789 				dd = dest; /* reset string buffer */
3790 				if (string_is_key) {
3791 					if (dtrace_strncmp(dest, elem,
3792 					    size) == 0)
3793 						found_key = B_TRUE;
3794 				} else if (found_key) {
3795 					if (nelems > 1) {
3796 						/*
3797 						 * We expected an object, not
3798 						 * this string.
3799 						 */
3800 						return (NULL);
3801 					}
3802 					return (dest);
3803 				}
3804 				state = string_is_key ? DTRACE_JSON_COLON :
3805 				    DTRACE_JSON_COMMA;
3806 				string_is_key = B_FALSE;
3807 				break;
3808 			}
3809 
3810 			*dd++ = cc;
3811 			break;
3812 		case DTRACE_JSON_STRING_ESCAPE:
3813 			*dd++ = cc;
3814 			if (cc == 'u') {
3815 				escape_unicount = 0;
3816 				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3817 			} else {
3818 				state = DTRACE_JSON_STRING;
3819 			}
3820 			break;
3821 		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3822 			if (!isxdigit(cc)) {
3823 				/*
3824 				 * ERROR: invalid unicode escape, expected
3825 				 * four valid hexidecimal digits.
3826 				 */
3827 				return (NULL);
3828 			}
3829 
3830 			*dd++ = cc;
3831 			if (++escape_unicount == 4)
3832 				state = DTRACE_JSON_STRING;
3833 			break;
3834 		case DTRACE_JSON_COLON:
3835 			if (isspace(cc))
3836 				break;
3837 
3838 			if (cc == ':') {
3839 				state = DTRACE_JSON_VALUE;
3840 				break;
3841 			}
3842 
3843 			/*
3844 			 * ERROR: expected a colon.
3845 			 */
3846 			return (NULL);
3847 		case DTRACE_JSON_COMMA:
3848 			if (isspace(cc))
3849 				break;
3850 
3851 			if (cc == ',') {
3852 				if (in_array) {
3853 					state = DTRACE_JSON_VALUE;
3854 					if (++array_pos == array_elem)
3855 						found_key = B_TRUE;
3856 				} else {
3857 					state = DTRACE_JSON_OBJECT;
3858 				}
3859 				break;
3860 			}
3861 
3862 			/*
3863 			 * ERROR: either we hit an unexpected character, or
3864 			 * we reached the end of the object or array without
3865 			 * finding the requested key.
3866 			 */
3867 			return (NULL);
3868 		case DTRACE_JSON_IDENTIFIER:
3869 			if (islower(cc)) {
3870 				*dd++ = cc;
3871 				break;
3872 			}
3873 
3874 			*dd = '\0';
3875 			dd = dest; /* reset string buffer */
3876 
3877 			if (dtrace_strncmp(dest, "true", 5) == 0 ||
3878 			    dtrace_strncmp(dest, "false", 6) == 0 ||
3879 			    dtrace_strncmp(dest, "null", 5) == 0) {
3880 				if (found_key) {
3881 					if (nelems > 1) {
3882 						/*
3883 						 * ERROR: We expected an object,
3884 						 * not this identifier.
3885 						 */
3886 						return (NULL);
3887 					}
3888 					return (dest);
3889 				} else {
3890 					cur--;
3891 					state = DTRACE_JSON_COMMA;
3892 					break;
3893 				}
3894 			}
3895 
3896 			/*
3897 			 * ERROR: we did not recognise the identifier as one
3898 			 * of those in the JSON specification.
3899 			 */
3900 			return (NULL);
3901 		case DTRACE_JSON_NUMBER:
3902 			if (cc == '.') {
3903 				*dd++ = cc;
3904 				state = DTRACE_JSON_NUMBER_FRAC;
3905 				break;
3906 			}
3907 
3908 			if (cc == 'x' || cc == 'X') {
3909 				/*
3910 				 * ERROR: specification explicitly excludes
3911 				 * hexidecimal or octal numbers.
3912 				 */
3913 				return (NULL);
3914 			}
3915 
3916 			/* FALLTHRU */
3917 		case DTRACE_JSON_NUMBER_FRAC:
3918 			if (cc == 'e' || cc == 'E') {
3919 				*dd++ = cc;
3920 				state = DTRACE_JSON_NUMBER_EXP;
3921 				break;
3922 			}
3923 
3924 			if (cc == '+' || cc == '-') {
3925 				/*
3926 				 * ERROR: expect sign as part of exponent only.
3927 				 */
3928 				return (NULL);
3929 			}
3930 			/* FALLTHRU */
3931 		case DTRACE_JSON_NUMBER_EXP:
3932 			if (isdigit(cc) || cc == '+' || cc == '-') {
3933 				*dd++ = cc;
3934 				break;
3935 			}
3936 
3937 			*dd = '\0';
3938 			dd = dest; /* reset string buffer */
3939 			if (found_key) {
3940 				if (nelems > 1) {
3941 					/*
3942 					 * ERROR: We expected an object, not
3943 					 * this number.
3944 					 */
3945 					return (NULL);
3946 				}
3947 				return (dest);
3948 			}
3949 
3950 			cur--;
3951 			state = DTRACE_JSON_COMMA;
3952 			break;
3953 		case DTRACE_JSON_VALUE:
3954 			if (isspace(cc))
3955 				break;
3956 
3957 			if (cc == '{' || cc == '[') {
3958 				if (nelems > 1 && found_key) {
3959 					in_array = cc == '[' ? B_TRUE : B_FALSE;
3960 					/*
3961 					 * If our element selector directs us
3962 					 * to descend into this nested object,
3963 					 * then move to the next selector
3964 					 * element in the list and restart the
3965 					 * state machine.
3966 					 */
3967 					while (*elem != '\0')
3968 						elem++;
3969 					elem++; /* skip the inter-element NUL */
3970 					nelems--;
3971 					dd = dest;
3972 					if (in_array) {
3973 						state = DTRACE_JSON_VALUE;
3974 						array_pos = 0;
3975 						array_elem = dtrace_strtoll(
3976 						    elem, 10, size);
3977 						found_key = array_elem == 0 ?
3978 						    B_TRUE : B_FALSE;
3979 					} else {
3980 						found_key = B_FALSE;
3981 						state = DTRACE_JSON_OBJECT;
3982 					}
3983 					break;
3984 				}
3985 
3986 				/*
3987 				 * Otherwise, we wish to either skip this
3988 				 * nested object or return it in full.
3989 				 */
3990 				if (cc == '[')
3991 					brackets = 1;
3992 				else
3993 					braces = 1;
3994 				*dd++ = cc;
3995 				state = DTRACE_JSON_COLLECT_OBJECT;
3996 				break;
3997 			}
3998 
3999 			if (cc == '"') {
4000 				state = DTRACE_JSON_STRING;
4001 				break;
4002 			}
4003 
4004 			if (islower(cc)) {
4005 				/*
4006 				 * Here we deal with true, false and null.
4007 				 */
4008 				*dd++ = cc;
4009 				state = DTRACE_JSON_IDENTIFIER;
4010 				break;
4011 			}
4012 
4013 			if (cc == '-' || isdigit(cc)) {
4014 				*dd++ = cc;
4015 				state = DTRACE_JSON_NUMBER;
4016 				break;
4017 			}
4018 
4019 			/*
4020 			 * ERROR: unexpected character at start of value.
4021 			 */
4022 			return (NULL);
4023 		case DTRACE_JSON_COLLECT_OBJECT:
4024 			if (cc == '\0')
4025 				/*
4026 				 * ERROR: unexpected end of input.
4027 				 */
4028 				return (NULL);
4029 
4030 			*dd++ = cc;
4031 			if (cc == '"') {
4032 				collect_object = B_TRUE;
4033 				state = DTRACE_JSON_STRING;
4034 				break;
4035 			}
4036 
4037 			if (cc == ']') {
4038 				if (brackets-- == 0) {
4039 					/*
4040 					 * ERROR: unbalanced brackets.
4041 					 */
4042 					return (NULL);
4043 				}
4044 			} else if (cc == '}') {
4045 				if (braces-- == 0) {
4046 					/*
4047 					 * ERROR: unbalanced braces.
4048 					 */
4049 					return (NULL);
4050 				}
4051 			} else if (cc == '{') {
4052 				braces++;
4053 			} else if (cc == '[') {
4054 				brackets++;
4055 			}
4056 
4057 			if (brackets == 0 && braces == 0) {
4058 				if (found_key) {
4059 					*dd = '\0';
4060 					return (dest);
4061 				}
4062 				dd = dest; /* reset string buffer */
4063 				state = DTRACE_JSON_COMMA;
4064 			}
4065 			break;
4066 		}
4067 	}
4068 	return (NULL);
4069 }
4070 
4071 /*
4072  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4073  * Notice that we don't bother validating the proper number of arguments or
4074  * their types in the tuple stack.  This isn't needed because all argument
4075  * interpretation is safe because of our load safety -- the worst that can
4076  * happen is that a bogus program can obtain bogus results.
4077  */
4078 static void
4079 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4080     dtrace_key_t *tupregs, int nargs,
4081     dtrace_mstate_t *mstate, dtrace_state_t *state)
4082 {
4083 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4084 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4085 	dtrace_vstate_t *vstate = &state->dts_vstate;
4086 
4087 #ifdef illumos
4088 	union {
4089 		mutex_impl_t mi;
4090 		uint64_t mx;
4091 	} m;
4092 
4093 	union {
4094 		krwlock_t ri;
4095 		uintptr_t rw;
4096 	} r;
4097 #else
4098 	struct thread *lowner;
4099 	union {
4100 		struct lock_object *li;
4101 		uintptr_t lx;
4102 	} l;
4103 #endif
4104 
4105 	switch (subr) {
4106 	case DIF_SUBR_RAND:
4107 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4108 		break;
4109 
4110 #ifdef illumos
4111 	case DIF_SUBR_MUTEX_OWNED:
4112 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4113 		    mstate, vstate)) {
4114 			regs[rd] = 0;
4115 			break;
4116 		}
4117 
4118 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4119 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4120 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4121 		else
4122 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4123 		break;
4124 
4125 	case DIF_SUBR_MUTEX_OWNER:
4126 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4127 		    mstate, vstate)) {
4128 			regs[rd] = 0;
4129 			break;
4130 		}
4131 
4132 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4133 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4134 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4135 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4136 		else
4137 			regs[rd] = 0;
4138 		break;
4139 
4140 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4141 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4142 		    mstate, vstate)) {
4143 			regs[rd] = 0;
4144 			break;
4145 		}
4146 
4147 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4148 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4149 		break;
4150 
4151 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4152 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4153 		    mstate, vstate)) {
4154 			regs[rd] = 0;
4155 			break;
4156 		}
4157 
4158 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4159 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4160 		break;
4161 
4162 	case DIF_SUBR_RW_READ_HELD: {
4163 		uintptr_t tmp;
4164 
4165 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4166 		    mstate, vstate)) {
4167 			regs[rd] = 0;
4168 			break;
4169 		}
4170 
4171 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4172 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4173 		break;
4174 	}
4175 
4176 	case DIF_SUBR_RW_WRITE_HELD:
4177 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4178 		    mstate, vstate)) {
4179 			regs[rd] = 0;
4180 			break;
4181 		}
4182 
4183 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4184 		regs[rd] = _RW_WRITE_HELD(&r.ri);
4185 		break;
4186 
4187 	case DIF_SUBR_RW_ISWRITER:
4188 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4189 		    mstate, vstate)) {
4190 			regs[rd] = 0;
4191 			break;
4192 		}
4193 
4194 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4195 		regs[rd] = _RW_ISWRITER(&r.ri);
4196 		break;
4197 
4198 #else /* !illumos */
4199 	case DIF_SUBR_MUTEX_OWNED:
4200 		if (!dtrace_canload(tupregs[0].dttk_value,
4201 			sizeof (struct lock_object), mstate, vstate)) {
4202 			regs[rd] = 0;
4203 			break;
4204 		}
4205 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4206 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4207 		break;
4208 
4209 	case DIF_SUBR_MUTEX_OWNER:
4210 		if (!dtrace_canload(tupregs[0].dttk_value,
4211 			sizeof (struct lock_object), mstate, vstate)) {
4212 			regs[rd] = 0;
4213 			break;
4214 		}
4215 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4216 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4217 		regs[rd] = (uintptr_t)lowner;
4218 		break;
4219 
4220 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4221 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4222 		    mstate, vstate)) {
4223 			regs[rd] = 0;
4224 			break;
4225 		}
4226 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4227 		/* XXX - should be only LC_SLEEPABLE? */
4228 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
4229 		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
4230 		break;
4231 
4232 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4233 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4234 		    mstate, vstate)) {
4235 			regs[rd] = 0;
4236 			break;
4237 		}
4238 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4239 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4240 		break;
4241 
4242 	case DIF_SUBR_RW_READ_HELD:
4243 	case DIF_SUBR_SX_SHARED_HELD:
4244 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4245 		    mstate, vstate)) {
4246 			regs[rd] = 0;
4247 			break;
4248 		}
4249 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4250 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4251 		    lowner == NULL;
4252 		break;
4253 
4254 	case DIF_SUBR_RW_WRITE_HELD:
4255 	case DIF_SUBR_SX_EXCLUSIVE_HELD:
4256 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4257 		    mstate, vstate)) {
4258 			regs[rd] = 0;
4259 			break;
4260 		}
4261 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4262 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4263 		regs[rd] = (lowner == curthread);
4264 		break;
4265 
4266 	case DIF_SUBR_RW_ISWRITER:
4267 	case DIF_SUBR_SX_ISEXCLUSIVE:
4268 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4269 		    mstate, vstate)) {
4270 			regs[rd] = 0;
4271 			break;
4272 		}
4273 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4274 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4275 		    lowner != NULL;
4276 		break;
4277 #endif /* illumos */
4278 
4279 	case DIF_SUBR_BCOPY: {
4280 		/*
4281 		 * We need to be sure that the destination is in the scratch
4282 		 * region -- no other region is allowed.
4283 		 */
4284 		uintptr_t src = tupregs[0].dttk_value;
4285 		uintptr_t dest = tupregs[1].dttk_value;
4286 		size_t size = tupregs[2].dttk_value;
4287 
4288 		if (!dtrace_inscratch(dest, size, mstate)) {
4289 			*flags |= CPU_DTRACE_BADADDR;
4290 			*illval = regs[rd];
4291 			break;
4292 		}
4293 
4294 		if (!dtrace_canload(src, size, mstate, vstate)) {
4295 			regs[rd] = 0;
4296 			break;
4297 		}
4298 
4299 		dtrace_bcopy((void *)src, (void *)dest, size);
4300 		break;
4301 	}
4302 
4303 	case DIF_SUBR_ALLOCA:
4304 	case DIF_SUBR_COPYIN: {
4305 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4306 		uint64_t size =
4307 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4308 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4309 
4310 		/*
4311 		 * This action doesn't require any credential checks since
4312 		 * probes will not activate in user contexts to which the
4313 		 * enabling user does not have permissions.
4314 		 */
4315 
4316 		/*
4317 		 * Rounding up the user allocation size could have overflowed
4318 		 * a large, bogus allocation (like -1ULL) to 0.
4319 		 */
4320 		if (scratch_size < size ||
4321 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4322 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4323 			regs[rd] = 0;
4324 			break;
4325 		}
4326 
4327 		if (subr == DIF_SUBR_COPYIN) {
4328 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4329 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4330 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4331 		}
4332 
4333 		mstate->dtms_scratch_ptr += scratch_size;
4334 		regs[rd] = dest;
4335 		break;
4336 	}
4337 
4338 	case DIF_SUBR_COPYINTO: {
4339 		uint64_t size = tupregs[1].dttk_value;
4340 		uintptr_t dest = tupregs[2].dttk_value;
4341 
4342 		/*
4343 		 * This action doesn't require any credential checks since
4344 		 * probes will not activate in user contexts to which the
4345 		 * enabling user does not have permissions.
4346 		 */
4347 		if (!dtrace_inscratch(dest, size, mstate)) {
4348 			*flags |= CPU_DTRACE_BADADDR;
4349 			*illval = regs[rd];
4350 			break;
4351 		}
4352 
4353 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4354 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4355 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4356 		break;
4357 	}
4358 
4359 	case DIF_SUBR_COPYINSTR: {
4360 		uintptr_t dest = mstate->dtms_scratch_ptr;
4361 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4362 
4363 		if (nargs > 1 && tupregs[1].dttk_value < size)
4364 			size = tupregs[1].dttk_value + 1;
4365 
4366 		/*
4367 		 * This action doesn't require any credential checks since
4368 		 * probes will not activate in user contexts to which the
4369 		 * enabling user does not have permissions.
4370 		 */
4371 		if (!DTRACE_INSCRATCH(mstate, size)) {
4372 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4373 			regs[rd] = 0;
4374 			break;
4375 		}
4376 
4377 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4378 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4379 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4380 
4381 		((char *)dest)[size - 1] = '\0';
4382 		mstate->dtms_scratch_ptr += size;
4383 		regs[rd] = dest;
4384 		break;
4385 	}
4386 
4387 #ifdef illumos
4388 	case DIF_SUBR_MSGSIZE:
4389 	case DIF_SUBR_MSGDSIZE: {
4390 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4391 		uintptr_t wptr, rptr;
4392 		size_t count = 0;
4393 		int cont = 0;
4394 
4395 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4396 
4397 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4398 			    vstate)) {
4399 				regs[rd] = 0;
4400 				break;
4401 			}
4402 
4403 			wptr = dtrace_loadptr(baddr +
4404 			    offsetof(mblk_t, b_wptr));
4405 
4406 			rptr = dtrace_loadptr(baddr +
4407 			    offsetof(mblk_t, b_rptr));
4408 
4409 			if (wptr < rptr) {
4410 				*flags |= CPU_DTRACE_BADADDR;
4411 				*illval = tupregs[0].dttk_value;
4412 				break;
4413 			}
4414 
4415 			daddr = dtrace_loadptr(baddr +
4416 			    offsetof(mblk_t, b_datap));
4417 
4418 			baddr = dtrace_loadptr(baddr +
4419 			    offsetof(mblk_t, b_cont));
4420 
4421 			/*
4422 			 * We want to prevent against denial-of-service here,
4423 			 * so we're only going to search the list for
4424 			 * dtrace_msgdsize_max mblks.
4425 			 */
4426 			if (cont++ > dtrace_msgdsize_max) {
4427 				*flags |= CPU_DTRACE_ILLOP;
4428 				break;
4429 			}
4430 
4431 			if (subr == DIF_SUBR_MSGDSIZE) {
4432 				if (dtrace_load8(daddr +
4433 				    offsetof(dblk_t, db_type)) != M_DATA)
4434 					continue;
4435 			}
4436 
4437 			count += wptr - rptr;
4438 		}
4439 
4440 		if (!(*flags & CPU_DTRACE_FAULT))
4441 			regs[rd] = count;
4442 
4443 		break;
4444 	}
4445 #endif
4446 
4447 	case DIF_SUBR_PROGENYOF: {
4448 		pid_t pid = tupregs[0].dttk_value;
4449 		proc_t *p;
4450 		int rval = 0;
4451 
4452 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4453 
4454 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4455 #ifdef illumos
4456 			if (p->p_pidp->pid_id == pid) {
4457 #else
4458 			if (p->p_pid == pid) {
4459 #endif
4460 				rval = 1;
4461 				break;
4462 			}
4463 		}
4464 
4465 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4466 
4467 		regs[rd] = rval;
4468 		break;
4469 	}
4470 
4471 	case DIF_SUBR_SPECULATION:
4472 		regs[rd] = dtrace_speculation(state);
4473 		break;
4474 
4475 	case DIF_SUBR_COPYOUT: {
4476 		uintptr_t kaddr = tupregs[0].dttk_value;
4477 		uintptr_t uaddr = tupregs[1].dttk_value;
4478 		uint64_t size = tupregs[2].dttk_value;
4479 
4480 		if (!dtrace_destructive_disallow &&
4481 		    dtrace_priv_proc_control(state) &&
4482 		    !dtrace_istoxic(kaddr, size) &&
4483 		    dtrace_canload(kaddr, size, mstate, vstate)) {
4484 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4485 			dtrace_copyout(kaddr, uaddr, size, flags);
4486 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4487 		}
4488 		break;
4489 	}
4490 
4491 	case DIF_SUBR_COPYOUTSTR: {
4492 		uintptr_t kaddr = tupregs[0].dttk_value;
4493 		uintptr_t uaddr = tupregs[1].dttk_value;
4494 		uint64_t size = tupregs[2].dttk_value;
4495 
4496 		if (!dtrace_destructive_disallow &&
4497 		    dtrace_priv_proc_control(state) &&
4498 		    !dtrace_istoxic(kaddr, size) &&
4499 		    dtrace_strcanload(kaddr, size, mstate, vstate)) {
4500 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4501 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
4502 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4503 		}
4504 		break;
4505 	}
4506 
4507 	case DIF_SUBR_STRLEN: {
4508 		size_t sz;
4509 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4510 		sz = dtrace_strlen((char *)addr,
4511 		    state->dts_options[DTRACEOPT_STRSIZE]);
4512 
4513 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
4514 			regs[rd] = 0;
4515 			break;
4516 		}
4517 
4518 		regs[rd] = sz;
4519 
4520 		break;
4521 	}
4522 
4523 	case DIF_SUBR_STRCHR:
4524 	case DIF_SUBR_STRRCHR: {
4525 		/*
4526 		 * We're going to iterate over the string looking for the
4527 		 * specified character.  We will iterate until we have reached
4528 		 * the string length or we have found the character.  If this
4529 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4530 		 * of the specified character instead of the first.
4531 		 */
4532 		uintptr_t saddr = tupregs[0].dttk_value;
4533 		uintptr_t addr = tupregs[0].dttk_value;
4534 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
4535 		char c, target = (char)tupregs[1].dttk_value;
4536 
4537 		for (regs[rd] = 0; addr < limit; addr++) {
4538 			if ((c = dtrace_load8(addr)) == target) {
4539 				regs[rd] = addr;
4540 
4541 				if (subr == DIF_SUBR_STRCHR)
4542 					break;
4543 			}
4544 
4545 			if (c == '\0')
4546 				break;
4547 		}
4548 
4549 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
4550 			regs[rd] = 0;
4551 			break;
4552 		}
4553 
4554 		break;
4555 	}
4556 
4557 	case DIF_SUBR_STRSTR:
4558 	case DIF_SUBR_INDEX:
4559 	case DIF_SUBR_RINDEX: {
4560 		/*
4561 		 * We're going to iterate over the string looking for the
4562 		 * specified string.  We will iterate until we have reached
4563 		 * the string length or we have found the string.  (Yes, this
4564 		 * is done in the most naive way possible -- but considering
4565 		 * that the string we're searching for is likely to be
4566 		 * relatively short, the complexity of Rabin-Karp or similar
4567 		 * hardly seems merited.)
4568 		 */
4569 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4570 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4571 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4572 		size_t len = dtrace_strlen(addr, size);
4573 		size_t sublen = dtrace_strlen(substr, size);
4574 		char *limit = addr + len, *orig = addr;
4575 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4576 		int inc = 1;
4577 
4578 		regs[rd] = notfound;
4579 
4580 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4581 			regs[rd] = 0;
4582 			break;
4583 		}
4584 
4585 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4586 		    vstate)) {
4587 			regs[rd] = 0;
4588 			break;
4589 		}
4590 
4591 		/*
4592 		 * strstr() and index()/rindex() have similar semantics if
4593 		 * both strings are the empty string: strstr() returns a
4594 		 * pointer to the (empty) string, and index() and rindex()
4595 		 * both return index 0 (regardless of any position argument).
4596 		 */
4597 		if (sublen == 0 && len == 0) {
4598 			if (subr == DIF_SUBR_STRSTR)
4599 				regs[rd] = (uintptr_t)addr;
4600 			else
4601 				regs[rd] = 0;
4602 			break;
4603 		}
4604 
4605 		if (subr != DIF_SUBR_STRSTR) {
4606 			if (subr == DIF_SUBR_RINDEX) {
4607 				limit = orig - 1;
4608 				addr += len;
4609 				inc = -1;
4610 			}
4611 
4612 			/*
4613 			 * Both index() and rindex() take an optional position
4614 			 * argument that denotes the starting position.
4615 			 */
4616 			if (nargs == 3) {
4617 				int64_t pos = (int64_t)tupregs[2].dttk_value;
4618 
4619 				/*
4620 				 * If the position argument to index() is
4621 				 * negative, Perl implicitly clamps it at
4622 				 * zero.  This semantic is a little surprising
4623 				 * given the special meaning of negative
4624 				 * positions to similar Perl functions like
4625 				 * substr(), but it appears to reflect a
4626 				 * notion that index() can start from a
4627 				 * negative index and increment its way up to
4628 				 * the string.  Given this notion, Perl's
4629 				 * rindex() is at least self-consistent in
4630 				 * that it implicitly clamps positions greater
4631 				 * than the string length to be the string
4632 				 * length.  Where Perl completely loses
4633 				 * coherence, however, is when the specified
4634 				 * substring is the empty string ("").  In
4635 				 * this case, even if the position is
4636 				 * negative, rindex() returns 0 -- and even if
4637 				 * the position is greater than the length,
4638 				 * index() returns the string length.  These
4639 				 * semantics violate the notion that index()
4640 				 * should never return a value less than the
4641 				 * specified position and that rindex() should
4642 				 * never return a value greater than the
4643 				 * specified position.  (One assumes that
4644 				 * these semantics are artifacts of Perl's
4645 				 * implementation and not the results of
4646 				 * deliberate design -- it beggars belief that
4647 				 * even Larry Wall could desire such oddness.)
4648 				 * While in the abstract one would wish for
4649 				 * consistent position semantics across
4650 				 * substr(), index() and rindex() -- or at the
4651 				 * very least self-consistent position
4652 				 * semantics for index() and rindex() -- we
4653 				 * instead opt to keep with the extant Perl
4654 				 * semantics, in all their broken glory.  (Do
4655 				 * we have more desire to maintain Perl's
4656 				 * semantics than Perl does?  Probably.)
4657 				 */
4658 				if (subr == DIF_SUBR_RINDEX) {
4659 					if (pos < 0) {
4660 						if (sublen == 0)
4661 							regs[rd] = 0;
4662 						break;
4663 					}
4664 
4665 					if (pos > len)
4666 						pos = len;
4667 				} else {
4668 					if (pos < 0)
4669 						pos = 0;
4670 
4671 					if (pos >= len) {
4672 						if (sublen == 0)
4673 							regs[rd] = len;
4674 						break;
4675 					}
4676 				}
4677 
4678 				addr = orig + pos;
4679 			}
4680 		}
4681 
4682 		for (regs[rd] = notfound; addr != limit; addr += inc) {
4683 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4684 				if (subr != DIF_SUBR_STRSTR) {
4685 					/*
4686 					 * As D index() and rindex() are
4687 					 * modeled on Perl (and not on awk),
4688 					 * we return a zero-based (and not a
4689 					 * one-based) index.  (For you Perl
4690 					 * weenies: no, we're not going to add
4691 					 * $[ -- and shouldn't you be at a con
4692 					 * or something?)
4693 					 */
4694 					regs[rd] = (uintptr_t)(addr - orig);
4695 					break;
4696 				}
4697 
4698 				ASSERT(subr == DIF_SUBR_STRSTR);
4699 				regs[rd] = (uintptr_t)addr;
4700 				break;
4701 			}
4702 		}
4703 
4704 		break;
4705 	}
4706 
4707 	case DIF_SUBR_STRTOK: {
4708 		uintptr_t addr = tupregs[0].dttk_value;
4709 		uintptr_t tokaddr = tupregs[1].dttk_value;
4710 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4711 		uintptr_t limit, toklimit = tokaddr + size;
4712 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
4713 		char *dest = (char *)mstate->dtms_scratch_ptr;
4714 		int i;
4715 
4716 		/*
4717 		 * Check both the token buffer and (later) the input buffer,
4718 		 * since both could be non-scratch addresses.
4719 		 */
4720 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
4721 			regs[rd] = 0;
4722 			break;
4723 		}
4724 
4725 		if (!DTRACE_INSCRATCH(mstate, size)) {
4726 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4727 			regs[rd] = 0;
4728 			break;
4729 		}
4730 
4731 		if (addr == 0) {
4732 			/*
4733 			 * If the address specified is NULL, we use our saved
4734 			 * strtok pointer from the mstate.  Note that this
4735 			 * means that the saved strtok pointer is _only_
4736 			 * valid within multiple enablings of the same probe --
4737 			 * it behaves like an implicit clause-local variable.
4738 			 */
4739 			addr = mstate->dtms_strtok;
4740 		} else {
4741 			/*
4742 			 * If the user-specified address is non-NULL we must
4743 			 * access check it.  This is the only time we have
4744 			 * a chance to do so, since this address may reside
4745 			 * in the string table of this clause-- future calls
4746 			 * (when we fetch addr from mstate->dtms_strtok)
4747 			 * would fail this access check.
4748 			 */
4749 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
4750 				regs[rd] = 0;
4751 				break;
4752 			}
4753 		}
4754 
4755 		/*
4756 		 * First, zero the token map, and then process the token
4757 		 * string -- setting a bit in the map for every character
4758 		 * found in the token string.
4759 		 */
4760 		for (i = 0; i < sizeof (tokmap); i++)
4761 			tokmap[i] = 0;
4762 
4763 		for (; tokaddr < toklimit; tokaddr++) {
4764 			if ((c = dtrace_load8(tokaddr)) == '\0')
4765 				break;
4766 
4767 			ASSERT((c >> 3) < sizeof (tokmap));
4768 			tokmap[c >> 3] |= (1 << (c & 0x7));
4769 		}
4770 
4771 		for (limit = addr + size; addr < limit; addr++) {
4772 			/*
4773 			 * We're looking for a character that is _not_ contained
4774 			 * in the token string.
4775 			 */
4776 			if ((c = dtrace_load8(addr)) == '\0')
4777 				break;
4778 
4779 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4780 				break;
4781 		}
4782 
4783 		if (c == '\0') {
4784 			/*
4785 			 * We reached the end of the string without finding
4786 			 * any character that was not in the token string.
4787 			 * We return NULL in this case, and we set the saved
4788 			 * address to NULL as well.
4789 			 */
4790 			regs[rd] = 0;
4791 			mstate->dtms_strtok = 0;
4792 			break;
4793 		}
4794 
4795 		/*
4796 		 * From here on, we're copying into the destination string.
4797 		 */
4798 		for (i = 0; addr < limit && i < size - 1; addr++) {
4799 			if ((c = dtrace_load8(addr)) == '\0')
4800 				break;
4801 
4802 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4803 				break;
4804 
4805 			ASSERT(i < size);
4806 			dest[i++] = c;
4807 		}
4808 
4809 		ASSERT(i < size);
4810 		dest[i] = '\0';
4811 		regs[rd] = (uintptr_t)dest;
4812 		mstate->dtms_scratch_ptr += size;
4813 		mstate->dtms_strtok = addr;
4814 		break;
4815 	}
4816 
4817 	case DIF_SUBR_SUBSTR: {
4818 		uintptr_t s = tupregs[0].dttk_value;
4819 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4820 		char *d = (char *)mstate->dtms_scratch_ptr;
4821 		int64_t index = (int64_t)tupregs[1].dttk_value;
4822 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4823 		size_t len = dtrace_strlen((char *)s, size);
4824 		int64_t i;
4825 
4826 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4827 			regs[rd] = 0;
4828 			break;
4829 		}
4830 
4831 		if (!DTRACE_INSCRATCH(mstate, size)) {
4832 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4833 			regs[rd] = 0;
4834 			break;
4835 		}
4836 
4837 		if (nargs <= 2)
4838 			remaining = (int64_t)size;
4839 
4840 		if (index < 0) {
4841 			index += len;
4842 
4843 			if (index < 0 && index + remaining > 0) {
4844 				remaining += index;
4845 				index = 0;
4846 			}
4847 		}
4848 
4849 		if (index >= len || index < 0) {
4850 			remaining = 0;
4851 		} else if (remaining < 0) {
4852 			remaining += len - index;
4853 		} else if (index + remaining > size) {
4854 			remaining = size - index;
4855 		}
4856 
4857 		for (i = 0; i < remaining; i++) {
4858 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4859 				break;
4860 		}
4861 
4862 		d[i] = '\0';
4863 
4864 		mstate->dtms_scratch_ptr += size;
4865 		regs[rd] = (uintptr_t)d;
4866 		break;
4867 	}
4868 
4869 	case DIF_SUBR_JSON: {
4870 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4871 		uintptr_t json = tupregs[0].dttk_value;
4872 		size_t jsonlen = dtrace_strlen((char *)json, size);
4873 		uintptr_t elem = tupregs[1].dttk_value;
4874 		size_t elemlen = dtrace_strlen((char *)elem, size);
4875 
4876 		char *dest = (char *)mstate->dtms_scratch_ptr;
4877 		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4878 		char *ee = elemlist;
4879 		int nelems = 1;
4880 		uintptr_t cur;
4881 
4882 		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4883 		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4884 			regs[rd] = 0;
4885 			break;
4886 		}
4887 
4888 		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4889 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4890 			regs[rd] = 0;
4891 			break;
4892 		}
4893 
4894 		/*
4895 		 * Read the element selector and split it up into a packed list
4896 		 * of strings.
4897 		 */
4898 		for (cur = elem; cur < elem + elemlen; cur++) {
4899 			char cc = dtrace_load8(cur);
4900 
4901 			if (cur == elem && cc == '[') {
4902 				/*
4903 				 * If the first element selector key is
4904 				 * actually an array index then ignore the
4905 				 * bracket.
4906 				 */
4907 				continue;
4908 			}
4909 
4910 			if (cc == ']')
4911 				continue;
4912 
4913 			if (cc == '.' || cc == '[') {
4914 				nelems++;
4915 				cc = '\0';
4916 			}
4917 
4918 			*ee++ = cc;
4919 		}
4920 		*ee++ = '\0';
4921 
4922 		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4923 		    nelems, dest)) != 0)
4924 			mstate->dtms_scratch_ptr += jsonlen + 1;
4925 		break;
4926 	}
4927 
4928 	case DIF_SUBR_TOUPPER:
4929 	case DIF_SUBR_TOLOWER: {
4930 		uintptr_t s = tupregs[0].dttk_value;
4931 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4932 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4933 		size_t len = dtrace_strlen((char *)s, size);
4934 		char lower, upper, convert;
4935 		int64_t i;
4936 
4937 		if (subr == DIF_SUBR_TOUPPER) {
4938 			lower = 'a';
4939 			upper = 'z';
4940 			convert = 'A';
4941 		} else {
4942 			lower = 'A';
4943 			upper = 'Z';
4944 			convert = 'a';
4945 		}
4946 
4947 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4948 			regs[rd] = 0;
4949 			break;
4950 		}
4951 
4952 		if (!DTRACE_INSCRATCH(mstate, size)) {
4953 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4954 			regs[rd] = 0;
4955 			break;
4956 		}
4957 
4958 		for (i = 0; i < size - 1; i++) {
4959 			if ((c = dtrace_load8(s + i)) == '\0')
4960 				break;
4961 
4962 			if (c >= lower && c <= upper)
4963 				c = convert + (c - lower);
4964 
4965 			dest[i] = c;
4966 		}
4967 
4968 		ASSERT(i < size);
4969 		dest[i] = '\0';
4970 		regs[rd] = (uintptr_t)dest;
4971 		mstate->dtms_scratch_ptr += size;
4972 		break;
4973 	}
4974 
4975 #ifdef illumos
4976 	case DIF_SUBR_GETMAJOR:
4977 #ifdef _LP64
4978 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4979 #else
4980 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4981 #endif
4982 		break;
4983 
4984 	case DIF_SUBR_GETMINOR:
4985 #ifdef _LP64
4986 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4987 #else
4988 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4989 #endif
4990 		break;
4991 
4992 	case DIF_SUBR_DDI_PATHNAME: {
4993 		/*
4994 		 * This one is a galactic mess.  We are going to roughly
4995 		 * emulate ddi_pathname(), but it's made more complicated
4996 		 * by the fact that we (a) want to include the minor name and
4997 		 * (b) must proceed iteratively instead of recursively.
4998 		 */
4999 		uintptr_t dest = mstate->dtms_scratch_ptr;
5000 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5001 		char *start = (char *)dest, *end = start + size - 1;
5002 		uintptr_t daddr = tupregs[0].dttk_value;
5003 		int64_t minor = (int64_t)tupregs[1].dttk_value;
5004 		char *s;
5005 		int i, len, depth = 0;
5006 
5007 		/*
5008 		 * Due to all the pointer jumping we do and context we must
5009 		 * rely upon, we just mandate that the user must have kernel
5010 		 * read privileges to use this routine.
5011 		 */
5012 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
5013 			*flags |= CPU_DTRACE_KPRIV;
5014 			*illval = daddr;
5015 			regs[rd] = 0;
5016 		}
5017 
5018 		if (!DTRACE_INSCRATCH(mstate, size)) {
5019 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5020 			regs[rd] = 0;
5021 			break;
5022 		}
5023 
5024 		*end = '\0';
5025 
5026 		/*
5027 		 * We want to have a name for the minor.  In order to do this,
5028 		 * we need to walk the minor list from the devinfo.  We want
5029 		 * to be sure that we don't infinitely walk a circular list,
5030 		 * so we check for circularity by sending a scout pointer
5031 		 * ahead two elements for every element that we iterate over;
5032 		 * if the list is circular, these will ultimately point to the
5033 		 * same element.  You may recognize this little trick as the
5034 		 * answer to a stupid interview question -- one that always
5035 		 * seems to be asked by those who had to have it laboriously
5036 		 * explained to them, and who can't even concisely describe
5037 		 * the conditions under which one would be forced to resort to
5038 		 * this technique.  Needless to say, those conditions are
5039 		 * found here -- and probably only here.  Is this the only use
5040 		 * of this infamous trick in shipping, production code?  If it
5041 		 * isn't, it probably should be...
5042 		 */
5043 		if (minor != -1) {
5044 			uintptr_t maddr = dtrace_loadptr(daddr +
5045 			    offsetof(struct dev_info, devi_minor));
5046 
5047 			uintptr_t next = offsetof(struct ddi_minor_data, next);
5048 			uintptr_t name = offsetof(struct ddi_minor_data,
5049 			    d_minor) + offsetof(struct ddi_minor, name);
5050 			uintptr_t dev = offsetof(struct ddi_minor_data,
5051 			    d_minor) + offsetof(struct ddi_minor, dev);
5052 			uintptr_t scout;
5053 
5054 			if (maddr != NULL)
5055 				scout = dtrace_loadptr(maddr + next);
5056 
5057 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5058 				uint64_t m;
5059 #ifdef _LP64
5060 				m = dtrace_load64(maddr + dev) & MAXMIN64;
5061 #else
5062 				m = dtrace_load32(maddr + dev) & MAXMIN;
5063 #endif
5064 				if (m != minor) {
5065 					maddr = dtrace_loadptr(maddr + next);
5066 
5067 					if (scout == NULL)
5068 						continue;
5069 
5070 					scout = dtrace_loadptr(scout + next);
5071 
5072 					if (scout == NULL)
5073 						continue;
5074 
5075 					scout = dtrace_loadptr(scout + next);
5076 
5077 					if (scout == NULL)
5078 						continue;
5079 
5080 					if (scout == maddr) {
5081 						*flags |= CPU_DTRACE_ILLOP;
5082 						break;
5083 					}
5084 
5085 					continue;
5086 				}
5087 
5088 				/*
5089 				 * We have the minor data.  Now we need to
5090 				 * copy the minor's name into the end of the
5091 				 * pathname.
5092 				 */
5093 				s = (char *)dtrace_loadptr(maddr + name);
5094 				len = dtrace_strlen(s, size);
5095 
5096 				if (*flags & CPU_DTRACE_FAULT)
5097 					break;
5098 
5099 				if (len != 0) {
5100 					if ((end -= (len + 1)) < start)
5101 						break;
5102 
5103 					*end = ':';
5104 				}
5105 
5106 				for (i = 1; i <= len; i++)
5107 					end[i] = dtrace_load8((uintptr_t)s++);
5108 				break;
5109 			}
5110 		}
5111 
5112 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5113 			ddi_node_state_t devi_state;
5114 
5115 			devi_state = dtrace_load32(daddr +
5116 			    offsetof(struct dev_info, devi_node_state));
5117 
5118 			if (*flags & CPU_DTRACE_FAULT)
5119 				break;
5120 
5121 			if (devi_state >= DS_INITIALIZED) {
5122 				s = (char *)dtrace_loadptr(daddr +
5123 				    offsetof(struct dev_info, devi_addr));
5124 				len = dtrace_strlen(s, size);
5125 
5126 				if (*flags & CPU_DTRACE_FAULT)
5127 					break;
5128 
5129 				if (len != 0) {
5130 					if ((end -= (len + 1)) < start)
5131 						break;
5132 
5133 					*end = '@';
5134 				}
5135 
5136 				for (i = 1; i <= len; i++)
5137 					end[i] = dtrace_load8((uintptr_t)s++);
5138 			}
5139 
5140 			/*
5141 			 * Now for the node name...
5142 			 */
5143 			s = (char *)dtrace_loadptr(daddr +
5144 			    offsetof(struct dev_info, devi_node_name));
5145 
5146 			daddr = dtrace_loadptr(daddr +
5147 			    offsetof(struct dev_info, devi_parent));
5148 
5149 			/*
5150 			 * If our parent is NULL (that is, if we're the root
5151 			 * node), we're going to use the special path
5152 			 * "devices".
5153 			 */
5154 			if (daddr == 0)
5155 				s = "devices";
5156 
5157 			len = dtrace_strlen(s, size);
5158 			if (*flags & CPU_DTRACE_FAULT)
5159 				break;
5160 
5161 			if ((end -= (len + 1)) < start)
5162 				break;
5163 
5164 			for (i = 1; i <= len; i++)
5165 				end[i] = dtrace_load8((uintptr_t)s++);
5166 			*end = '/';
5167 
5168 			if (depth++ > dtrace_devdepth_max) {
5169 				*flags |= CPU_DTRACE_ILLOP;
5170 				break;
5171 			}
5172 		}
5173 
5174 		if (end < start)
5175 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5176 
5177 		if (daddr == 0) {
5178 			regs[rd] = (uintptr_t)end;
5179 			mstate->dtms_scratch_ptr += size;
5180 		}
5181 
5182 		break;
5183 	}
5184 #endif
5185 
5186 	case DIF_SUBR_STRJOIN: {
5187 		char *d = (char *)mstate->dtms_scratch_ptr;
5188 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5189 		uintptr_t s1 = tupregs[0].dttk_value;
5190 		uintptr_t s2 = tupregs[1].dttk_value;
5191 		int i = 0;
5192 
5193 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
5194 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
5195 			regs[rd] = 0;
5196 			break;
5197 		}
5198 
5199 		if (!DTRACE_INSCRATCH(mstate, size)) {
5200 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5201 			regs[rd] = 0;
5202 			break;
5203 		}
5204 
5205 		for (;;) {
5206 			if (i >= size) {
5207 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5208 				regs[rd] = 0;
5209 				break;
5210 			}
5211 
5212 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
5213 				i--;
5214 				break;
5215 			}
5216 		}
5217 
5218 		for (;;) {
5219 			if (i >= size) {
5220 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5221 				regs[rd] = 0;
5222 				break;
5223 			}
5224 
5225 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
5226 				break;
5227 		}
5228 
5229 		if (i < size) {
5230 			mstate->dtms_scratch_ptr += i;
5231 			regs[rd] = (uintptr_t)d;
5232 		}
5233 
5234 		break;
5235 	}
5236 
5237 	case DIF_SUBR_STRTOLL: {
5238 		uintptr_t s = tupregs[0].dttk_value;
5239 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5240 		int base = 10;
5241 
5242 		if (nargs > 1) {
5243 			if ((base = tupregs[1].dttk_value) <= 1 ||
5244 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5245 				*flags |= CPU_DTRACE_ILLOP;
5246 				break;
5247 			}
5248 		}
5249 
5250 		if (!dtrace_strcanload(s, size, mstate, vstate)) {
5251 			regs[rd] = INT64_MIN;
5252 			break;
5253 		}
5254 
5255 		regs[rd] = dtrace_strtoll((char *)s, base, size);
5256 		break;
5257 	}
5258 
5259 	case DIF_SUBR_LLTOSTR: {
5260 		int64_t i = (int64_t)tupregs[0].dttk_value;
5261 		uint64_t val, digit;
5262 		uint64_t size = 65;	/* enough room for 2^64 in binary */
5263 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5264 		int base = 10;
5265 
5266 		if (nargs > 1) {
5267 			if ((base = tupregs[1].dttk_value) <= 1 ||
5268 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5269 				*flags |= CPU_DTRACE_ILLOP;
5270 				break;
5271 			}
5272 		}
5273 
5274 		val = (base == 10 && i < 0) ? i * -1 : i;
5275 
5276 		if (!DTRACE_INSCRATCH(mstate, size)) {
5277 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5278 			regs[rd] = 0;
5279 			break;
5280 		}
5281 
5282 		for (*end-- = '\0'; val; val /= base) {
5283 			if ((digit = val % base) <= '9' - '0') {
5284 				*end-- = '0' + digit;
5285 			} else {
5286 				*end-- = 'a' + (digit - ('9' - '0') - 1);
5287 			}
5288 		}
5289 
5290 		if (i == 0 && base == 16)
5291 			*end-- = '0';
5292 
5293 		if (base == 16)
5294 			*end-- = 'x';
5295 
5296 		if (i == 0 || base == 8 || base == 16)
5297 			*end-- = '0';
5298 
5299 		if (i < 0 && base == 10)
5300 			*end-- = '-';
5301 
5302 		regs[rd] = (uintptr_t)end + 1;
5303 		mstate->dtms_scratch_ptr += size;
5304 		break;
5305 	}
5306 
5307 	case DIF_SUBR_HTONS:
5308 	case DIF_SUBR_NTOHS:
5309 #if BYTE_ORDER == BIG_ENDIAN
5310 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5311 #else
5312 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5313 #endif
5314 		break;
5315 
5316 
5317 	case DIF_SUBR_HTONL:
5318 	case DIF_SUBR_NTOHL:
5319 #if BYTE_ORDER == BIG_ENDIAN
5320 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5321 #else
5322 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5323 #endif
5324 		break;
5325 
5326 
5327 	case DIF_SUBR_HTONLL:
5328 	case DIF_SUBR_NTOHLL:
5329 #if BYTE_ORDER == BIG_ENDIAN
5330 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5331 #else
5332 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5333 #endif
5334 		break;
5335 
5336 
5337 	case DIF_SUBR_DIRNAME:
5338 	case DIF_SUBR_BASENAME: {
5339 		char *dest = (char *)mstate->dtms_scratch_ptr;
5340 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5341 		uintptr_t src = tupregs[0].dttk_value;
5342 		int i, j, len = dtrace_strlen((char *)src, size);
5343 		int lastbase = -1, firstbase = -1, lastdir = -1;
5344 		int start, end;
5345 
5346 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5347 			regs[rd] = 0;
5348 			break;
5349 		}
5350 
5351 		if (!DTRACE_INSCRATCH(mstate, size)) {
5352 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5353 			regs[rd] = 0;
5354 			break;
5355 		}
5356 
5357 		/*
5358 		 * The basename and dirname for a zero-length string is
5359 		 * defined to be "."
5360 		 */
5361 		if (len == 0) {
5362 			len = 1;
5363 			src = (uintptr_t)".";
5364 		}
5365 
5366 		/*
5367 		 * Start from the back of the string, moving back toward the
5368 		 * front until we see a character that isn't a slash.  That
5369 		 * character is the last character in the basename.
5370 		 */
5371 		for (i = len - 1; i >= 0; i--) {
5372 			if (dtrace_load8(src + i) != '/')
5373 				break;
5374 		}
5375 
5376 		if (i >= 0)
5377 			lastbase = i;
5378 
5379 		/*
5380 		 * Starting from the last character in the basename, move
5381 		 * towards the front until we find a slash.  The character
5382 		 * that we processed immediately before that is the first
5383 		 * character in the basename.
5384 		 */
5385 		for (; i >= 0; i--) {
5386 			if (dtrace_load8(src + i) == '/')
5387 				break;
5388 		}
5389 
5390 		if (i >= 0)
5391 			firstbase = i + 1;
5392 
5393 		/*
5394 		 * Now keep going until we find a non-slash character.  That
5395 		 * character is the last character in the dirname.
5396 		 */
5397 		for (; i >= 0; i--) {
5398 			if (dtrace_load8(src + i) != '/')
5399 				break;
5400 		}
5401 
5402 		if (i >= 0)
5403 			lastdir = i;
5404 
5405 		ASSERT(!(lastbase == -1 && firstbase != -1));
5406 		ASSERT(!(firstbase == -1 && lastdir != -1));
5407 
5408 		if (lastbase == -1) {
5409 			/*
5410 			 * We didn't find a non-slash character.  We know that
5411 			 * the length is non-zero, so the whole string must be
5412 			 * slashes.  In either the dirname or the basename
5413 			 * case, we return '/'.
5414 			 */
5415 			ASSERT(firstbase == -1);
5416 			firstbase = lastbase = lastdir = 0;
5417 		}
5418 
5419 		if (firstbase == -1) {
5420 			/*
5421 			 * The entire string consists only of a basename
5422 			 * component.  If we're looking for dirname, we need
5423 			 * to change our string to be just "."; if we're
5424 			 * looking for a basename, we'll just set the first
5425 			 * character of the basename to be 0.
5426 			 */
5427 			if (subr == DIF_SUBR_DIRNAME) {
5428 				ASSERT(lastdir == -1);
5429 				src = (uintptr_t)".";
5430 				lastdir = 0;
5431 			} else {
5432 				firstbase = 0;
5433 			}
5434 		}
5435 
5436 		if (subr == DIF_SUBR_DIRNAME) {
5437 			if (lastdir == -1) {
5438 				/*
5439 				 * We know that we have a slash in the name --
5440 				 * or lastdir would be set to 0, above.  And
5441 				 * because lastdir is -1, we know that this
5442 				 * slash must be the first character.  (That
5443 				 * is, the full string must be of the form
5444 				 * "/basename".)  In this case, the last
5445 				 * character of the directory name is 0.
5446 				 */
5447 				lastdir = 0;
5448 			}
5449 
5450 			start = 0;
5451 			end = lastdir;
5452 		} else {
5453 			ASSERT(subr == DIF_SUBR_BASENAME);
5454 			ASSERT(firstbase != -1 && lastbase != -1);
5455 			start = firstbase;
5456 			end = lastbase;
5457 		}
5458 
5459 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5460 			dest[j] = dtrace_load8(src + i);
5461 
5462 		dest[j] = '\0';
5463 		regs[rd] = (uintptr_t)dest;
5464 		mstate->dtms_scratch_ptr += size;
5465 		break;
5466 	}
5467 
5468 	case DIF_SUBR_GETF: {
5469 		uintptr_t fd = tupregs[0].dttk_value;
5470 		struct filedesc *fdp;
5471 		file_t *fp;
5472 
5473 		if (!dtrace_priv_proc(state)) {
5474 			regs[rd] = 0;
5475 			break;
5476 		}
5477 		fdp = curproc->p_fd;
5478 		FILEDESC_SLOCK(fdp);
5479 		fp = fget_locked(fdp, fd);
5480 		mstate->dtms_getf = fp;
5481 		regs[rd] = (uintptr_t)fp;
5482 		FILEDESC_SUNLOCK(fdp);
5483 		break;
5484 	}
5485 
5486 	case DIF_SUBR_CLEANPATH: {
5487 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5488 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5489 		uintptr_t src = tupregs[0].dttk_value;
5490 		int i = 0, j = 0;
5491 #ifdef illumos
5492 		zone_t *z;
5493 #endif
5494 
5495 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
5496 			regs[rd] = 0;
5497 			break;
5498 		}
5499 
5500 		if (!DTRACE_INSCRATCH(mstate, size)) {
5501 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5502 			regs[rd] = 0;
5503 			break;
5504 		}
5505 
5506 		/*
5507 		 * Move forward, loading each character.
5508 		 */
5509 		do {
5510 			c = dtrace_load8(src + i++);
5511 next:
5512 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5513 				break;
5514 
5515 			if (c != '/') {
5516 				dest[j++] = c;
5517 				continue;
5518 			}
5519 
5520 			c = dtrace_load8(src + i++);
5521 
5522 			if (c == '/') {
5523 				/*
5524 				 * We have two slashes -- we can just advance
5525 				 * to the next character.
5526 				 */
5527 				goto next;
5528 			}
5529 
5530 			if (c != '.') {
5531 				/*
5532 				 * This is not "." and it's not ".." -- we can
5533 				 * just store the "/" and this character and
5534 				 * drive on.
5535 				 */
5536 				dest[j++] = '/';
5537 				dest[j++] = c;
5538 				continue;
5539 			}
5540 
5541 			c = dtrace_load8(src + i++);
5542 
5543 			if (c == '/') {
5544 				/*
5545 				 * This is a "/./" component.  We're not going
5546 				 * to store anything in the destination buffer;
5547 				 * we're just going to go to the next component.
5548 				 */
5549 				goto next;
5550 			}
5551 
5552 			if (c != '.') {
5553 				/*
5554 				 * This is not ".." -- we can just store the
5555 				 * "/." and this character and continue
5556 				 * processing.
5557 				 */
5558 				dest[j++] = '/';
5559 				dest[j++] = '.';
5560 				dest[j++] = c;
5561 				continue;
5562 			}
5563 
5564 			c = dtrace_load8(src + i++);
5565 
5566 			if (c != '/' && c != '\0') {
5567 				/*
5568 				 * This is not ".." -- it's "..[mumble]".
5569 				 * We'll store the "/.." and this character
5570 				 * and continue processing.
5571 				 */
5572 				dest[j++] = '/';
5573 				dest[j++] = '.';
5574 				dest[j++] = '.';
5575 				dest[j++] = c;
5576 				continue;
5577 			}
5578 
5579 			/*
5580 			 * This is "/../" or "/..\0".  We need to back up
5581 			 * our destination pointer until we find a "/".
5582 			 */
5583 			i--;
5584 			while (j != 0 && dest[--j] != '/')
5585 				continue;
5586 
5587 			if (c == '\0')
5588 				dest[++j] = '/';
5589 		} while (c != '\0');
5590 
5591 		dest[j] = '\0';
5592 
5593 #ifdef illumos
5594 		if (mstate->dtms_getf != NULL &&
5595 		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5596 		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5597 			/*
5598 			 * If we've done a getf() as a part of this ECB and we
5599 			 * don't have kernel access (and we're not in the global
5600 			 * zone), check if the path we cleaned up begins with
5601 			 * the zone's root path, and trim it off if so.  Note
5602 			 * that this is an output cleanliness issue, not a
5603 			 * security issue: knowing one's zone root path does
5604 			 * not enable privilege escalation.
5605 			 */
5606 			if (strstr(dest, z->zone_rootpath) == dest)
5607 				dest += strlen(z->zone_rootpath) - 1;
5608 		}
5609 #endif
5610 
5611 		regs[rd] = (uintptr_t)dest;
5612 		mstate->dtms_scratch_ptr += size;
5613 		break;
5614 	}
5615 
5616 	case DIF_SUBR_INET_NTOA:
5617 	case DIF_SUBR_INET_NTOA6:
5618 	case DIF_SUBR_INET_NTOP: {
5619 		size_t size;
5620 		int af, argi, i;
5621 		char *base, *end;
5622 
5623 		if (subr == DIF_SUBR_INET_NTOP) {
5624 			af = (int)tupregs[0].dttk_value;
5625 			argi = 1;
5626 		} else {
5627 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5628 			argi = 0;
5629 		}
5630 
5631 		if (af == AF_INET) {
5632 			ipaddr_t ip4;
5633 			uint8_t *ptr8, val;
5634 
5635 			/*
5636 			 * Safely load the IPv4 address.
5637 			 */
5638 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5639 
5640 			/*
5641 			 * Check an IPv4 string will fit in scratch.
5642 			 */
5643 			size = INET_ADDRSTRLEN;
5644 			if (!DTRACE_INSCRATCH(mstate, size)) {
5645 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5646 				regs[rd] = 0;
5647 				break;
5648 			}
5649 			base = (char *)mstate->dtms_scratch_ptr;
5650 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5651 
5652 			/*
5653 			 * Stringify as a dotted decimal quad.
5654 			 */
5655 			*end-- = '\0';
5656 			ptr8 = (uint8_t *)&ip4;
5657 			for (i = 3; i >= 0; i--) {
5658 				val = ptr8[i];
5659 
5660 				if (val == 0) {
5661 					*end-- = '0';
5662 				} else {
5663 					for (; val; val /= 10) {
5664 						*end-- = '0' + (val % 10);
5665 					}
5666 				}
5667 
5668 				if (i > 0)
5669 					*end-- = '.';
5670 			}
5671 			ASSERT(end + 1 >= base);
5672 
5673 		} else if (af == AF_INET6) {
5674 			struct in6_addr ip6;
5675 			int firstzero, tryzero, numzero, v6end;
5676 			uint16_t val;
5677 			const char digits[] = "0123456789abcdef";
5678 
5679 			/*
5680 			 * Stringify using RFC 1884 convention 2 - 16 bit
5681 			 * hexadecimal values with a zero-run compression.
5682 			 * Lower case hexadecimal digits are used.
5683 			 * 	eg, fe80::214:4fff:fe0b:76c8.
5684 			 * The IPv4 embedded form is returned for inet_ntop,
5685 			 * just the IPv4 string is returned for inet_ntoa6.
5686 			 */
5687 
5688 			/*
5689 			 * Safely load the IPv6 address.
5690 			 */
5691 			dtrace_bcopy(
5692 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5693 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5694 
5695 			/*
5696 			 * Check an IPv6 string will fit in scratch.
5697 			 */
5698 			size = INET6_ADDRSTRLEN;
5699 			if (!DTRACE_INSCRATCH(mstate, size)) {
5700 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5701 				regs[rd] = 0;
5702 				break;
5703 			}
5704 			base = (char *)mstate->dtms_scratch_ptr;
5705 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5706 			*end-- = '\0';
5707 
5708 			/*
5709 			 * Find the longest run of 16 bit zero values
5710 			 * for the single allowed zero compression - "::".
5711 			 */
5712 			firstzero = -1;
5713 			tryzero = -1;
5714 			numzero = 1;
5715 			for (i = 0; i < sizeof (struct in6_addr); i++) {
5716 #ifdef illumos
5717 				if (ip6._S6_un._S6_u8[i] == 0 &&
5718 #else
5719 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5720 #endif
5721 				    tryzero == -1 && i % 2 == 0) {
5722 					tryzero = i;
5723 					continue;
5724 				}
5725 
5726 				if (tryzero != -1 &&
5727 #ifdef illumos
5728 				    (ip6._S6_un._S6_u8[i] != 0 ||
5729 #else
5730 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5731 #endif
5732 				    i == sizeof (struct in6_addr) - 1)) {
5733 
5734 					if (i - tryzero <= numzero) {
5735 						tryzero = -1;
5736 						continue;
5737 					}
5738 
5739 					firstzero = tryzero;
5740 					numzero = i - i % 2 - tryzero;
5741 					tryzero = -1;
5742 
5743 #ifdef illumos
5744 					if (ip6._S6_un._S6_u8[i] == 0 &&
5745 #else
5746 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5747 #endif
5748 					    i == sizeof (struct in6_addr) - 1)
5749 						numzero += 2;
5750 				}
5751 			}
5752 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5753 
5754 			/*
5755 			 * Check for an IPv4 embedded address.
5756 			 */
5757 			v6end = sizeof (struct in6_addr) - 2;
5758 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5759 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5760 				for (i = sizeof (struct in6_addr) - 1;
5761 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5762 					ASSERT(end >= base);
5763 
5764 #ifdef illumos
5765 					val = ip6._S6_un._S6_u8[i];
5766 #else
5767 					val = ip6.__u6_addr.__u6_addr8[i];
5768 #endif
5769 
5770 					if (val == 0) {
5771 						*end-- = '0';
5772 					} else {
5773 						for (; val; val /= 10) {
5774 							*end-- = '0' + val % 10;
5775 						}
5776 					}
5777 
5778 					if (i > DTRACE_V4MAPPED_OFFSET)
5779 						*end-- = '.';
5780 				}
5781 
5782 				if (subr == DIF_SUBR_INET_NTOA6)
5783 					goto inetout;
5784 
5785 				/*
5786 				 * Set v6end to skip the IPv4 address that
5787 				 * we have already stringified.
5788 				 */
5789 				v6end = 10;
5790 			}
5791 
5792 			/*
5793 			 * Build the IPv6 string by working through the
5794 			 * address in reverse.
5795 			 */
5796 			for (i = v6end; i >= 0; i -= 2) {
5797 				ASSERT(end >= base);
5798 
5799 				if (i == firstzero + numzero - 2) {
5800 					*end-- = ':';
5801 					*end-- = ':';
5802 					i -= numzero - 2;
5803 					continue;
5804 				}
5805 
5806 				if (i < 14 && i != firstzero - 2)
5807 					*end-- = ':';
5808 
5809 #ifdef illumos
5810 				val = (ip6._S6_un._S6_u8[i] << 8) +
5811 				    ip6._S6_un._S6_u8[i + 1];
5812 #else
5813 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
5814 				    ip6.__u6_addr.__u6_addr8[i + 1];
5815 #endif
5816 
5817 				if (val == 0) {
5818 					*end-- = '0';
5819 				} else {
5820 					for (; val; val /= 16) {
5821 						*end-- = digits[val % 16];
5822 					}
5823 				}
5824 			}
5825 			ASSERT(end + 1 >= base);
5826 
5827 		} else {
5828 			/*
5829 			 * The user didn't use AH_INET or AH_INET6.
5830 			 */
5831 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5832 			regs[rd] = 0;
5833 			break;
5834 		}
5835 
5836 inetout:	regs[rd] = (uintptr_t)end + 1;
5837 		mstate->dtms_scratch_ptr += size;
5838 		break;
5839 	}
5840 
5841 	case DIF_SUBR_MEMREF: {
5842 		uintptr_t size = 2 * sizeof(uintptr_t);
5843 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5844 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
5845 
5846 		/* address and length */
5847 		memref[0] = tupregs[0].dttk_value;
5848 		memref[1] = tupregs[1].dttk_value;
5849 
5850 		regs[rd] = (uintptr_t) memref;
5851 		mstate->dtms_scratch_ptr += scratch_size;
5852 		break;
5853 	}
5854 
5855 #ifndef illumos
5856 	case DIF_SUBR_MEMSTR: {
5857 		char *str = (char *)mstate->dtms_scratch_ptr;
5858 		uintptr_t mem = tupregs[0].dttk_value;
5859 		char c = tupregs[1].dttk_value;
5860 		size_t size = tupregs[2].dttk_value;
5861 		uint8_t n;
5862 		int i;
5863 
5864 		regs[rd] = 0;
5865 
5866 		if (size == 0)
5867 			break;
5868 
5869 		if (!dtrace_canload(mem, size - 1, mstate, vstate))
5870 			break;
5871 
5872 		if (!DTRACE_INSCRATCH(mstate, size)) {
5873 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5874 			break;
5875 		}
5876 
5877 		if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
5878 			*flags |= CPU_DTRACE_ILLOP;
5879 			break;
5880 		}
5881 
5882 		for (i = 0; i < size - 1; i++) {
5883 			n = dtrace_load8(mem++);
5884 			str[i] = (n == 0) ? c : n;
5885 		}
5886 		str[size - 1] = 0;
5887 
5888 		regs[rd] = (uintptr_t)str;
5889 		mstate->dtms_scratch_ptr += size;
5890 		break;
5891 	}
5892 #endif
5893 
5894 	case DIF_SUBR_TYPEREF: {
5895 		uintptr_t size = 4 * sizeof(uintptr_t);
5896 		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
5897 		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
5898 
5899 		/* address, num_elements, type_str, type_len */
5900 		typeref[0] = tupregs[0].dttk_value;
5901 		typeref[1] = tupregs[1].dttk_value;
5902 		typeref[2] = tupregs[2].dttk_value;
5903 		typeref[3] = tupregs[3].dttk_value;
5904 
5905 		regs[rd] = (uintptr_t) typeref;
5906 		mstate->dtms_scratch_ptr += scratch_size;
5907 		break;
5908 	}
5909 	}
5910 }
5911 
5912 /*
5913  * Emulate the execution of DTrace IR instructions specified by the given
5914  * DIF object.  This function is deliberately void of assertions as all of
5915  * the necessary checks are handled by a call to dtrace_difo_validate().
5916  */
5917 static uint64_t
5918 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5919     dtrace_vstate_t *vstate, dtrace_state_t *state)
5920 {
5921 	const dif_instr_t *text = difo->dtdo_buf;
5922 	const uint_t textlen = difo->dtdo_len;
5923 	const char *strtab = difo->dtdo_strtab;
5924 	const uint64_t *inttab = difo->dtdo_inttab;
5925 
5926 	uint64_t rval = 0;
5927 	dtrace_statvar_t *svar;
5928 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5929 	dtrace_difv_t *v;
5930 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5931 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
5932 
5933 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5934 	uint64_t regs[DIF_DIR_NREGS];
5935 	uint64_t *tmp;
5936 
5937 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5938 	int64_t cc_r;
5939 	uint_t pc = 0, id, opc = 0;
5940 	uint8_t ttop = 0;
5941 	dif_instr_t instr;
5942 	uint_t r1, r2, rd;
5943 
5944 	/*
5945 	 * We stash the current DIF object into the machine state: we need it
5946 	 * for subsequent access checking.
5947 	 */
5948 	mstate->dtms_difo = difo;
5949 
5950 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
5951 
5952 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5953 		opc = pc;
5954 
5955 		instr = text[pc++];
5956 		r1 = DIF_INSTR_R1(instr);
5957 		r2 = DIF_INSTR_R2(instr);
5958 		rd = DIF_INSTR_RD(instr);
5959 
5960 		switch (DIF_INSTR_OP(instr)) {
5961 		case DIF_OP_OR:
5962 			regs[rd] = regs[r1] | regs[r2];
5963 			break;
5964 		case DIF_OP_XOR:
5965 			regs[rd] = regs[r1] ^ regs[r2];
5966 			break;
5967 		case DIF_OP_AND:
5968 			regs[rd] = regs[r1] & regs[r2];
5969 			break;
5970 		case DIF_OP_SLL:
5971 			regs[rd] = regs[r1] << regs[r2];
5972 			break;
5973 		case DIF_OP_SRL:
5974 			regs[rd] = regs[r1] >> regs[r2];
5975 			break;
5976 		case DIF_OP_SUB:
5977 			regs[rd] = regs[r1] - regs[r2];
5978 			break;
5979 		case DIF_OP_ADD:
5980 			regs[rd] = regs[r1] + regs[r2];
5981 			break;
5982 		case DIF_OP_MUL:
5983 			regs[rd] = regs[r1] * regs[r2];
5984 			break;
5985 		case DIF_OP_SDIV:
5986 			if (regs[r2] == 0) {
5987 				regs[rd] = 0;
5988 				*flags |= CPU_DTRACE_DIVZERO;
5989 			} else {
5990 				regs[rd] = (int64_t)regs[r1] /
5991 				    (int64_t)regs[r2];
5992 			}
5993 			break;
5994 
5995 		case DIF_OP_UDIV:
5996 			if (regs[r2] == 0) {
5997 				regs[rd] = 0;
5998 				*flags |= CPU_DTRACE_DIVZERO;
5999 			} else {
6000 				regs[rd] = regs[r1] / regs[r2];
6001 			}
6002 			break;
6003 
6004 		case DIF_OP_SREM:
6005 			if (regs[r2] == 0) {
6006 				regs[rd] = 0;
6007 				*flags |= CPU_DTRACE_DIVZERO;
6008 			} else {
6009 				regs[rd] = (int64_t)regs[r1] %
6010 				    (int64_t)regs[r2];
6011 			}
6012 			break;
6013 
6014 		case DIF_OP_UREM:
6015 			if (regs[r2] == 0) {
6016 				regs[rd] = 0;
6017 				*flags |= CPU_DTRACE_DIVZERO;
6018 			} else {
6019 				regs[rd] = regs[r1] % regs[r2];
6020 			}
6021 			break;
6022 
6023 		case DIF_OP_NOT:
6024 			regs[rd] = ~regs[r1];
6025 			break;
6026 		case DIF_OP_MOV:
6027 			regs[rd] = regs[r1];
6028 			break;
6029 		case DIF_OP_CMP:
6030 			cc_r = regs[r1] - regs[r2];
6031 			cc_n = cc_r < 0;
6032 			cc_z = cc_r == 0;
6033 			cc_v = 0;
6034 			cc_c = regs[r1] < regs[r2];
6035 			break;
6036 		case DIF_OP_TST:
6037 			cc_n = cc_v = cc_c = 0;
6038 			cc_z = regs[r1] == 0;
6039 			break;
6040 		case DIF_OP_BA:
6041 			pc = DIF_INSTR_LABEL(instr);
6042 			break;
6043 		case DIF_OP_BE:
6044 			if (cc_z)
6045 				pc = DIF_INSTR_LABEL(instr);
6046 			break;
6047 		case DIF_OP_BNE:
6048 			if (cc_z == 0)
6049 				pc = DIF_INSTR_LABEL(instr);
6050 			break;
6051 		case DIF_OP_BG:
6052 			if ((cc_z | (cc_n ^ cc_v)) == 0)
6053 				pc = DIF_INSTR_LABEL(instr);
6054 			break;
6055 		case DIF_OP_BGU:
6056 			if ((cc_c | cc_z) == 0)
6057 				pc = DIF_INSTR_LABEL(instr);
6058 			break;
6059 		case DIF_OP_BGE:
6060 			if ((cc_n ^ cc_v) == 0)
6061 				pc = DIF_INSTR_LABEL(instr);
6062 			break;
6063 		case DIF_OP_BGEU:
6064 			if (cc_c == 0)
6065 				pc = DIF_INSTR_LABEL(instr);
6066 			break;
6067 		case DIF_OP_BL:
6068 			if (cc_n ^ cc_v)
6069 				pc = DIF_INSTR_LABEL(instr);
6070 			break;
6071 		case DIF_OP_BLU:
6072 			if (cc_c)
6073 				pc = DIF_INSTR_LABEL(instr);
6074 			break;
6075 		case DIF_OP_BLE:
6076 			if (cc_z | (cc_n ^ cc_v))
6077 				pc = DIF_INSTR_LABEL(instr);
6078 			break;
6079 		case DIF_OP_BLEU:
6080 			if (cc_c | cc_z)
6081 				pc = DIF_INSTR_LABEL(instr);
6082 			break;
6083 		case DIF_OP_RLDSB:
6084 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6085 				break;
6086 			/*FALLTHROUGH*/
6087 		case DIF_OP_LDSB:
6088 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6089 			break;
6090 		case DIF_OP_RLDSH:
6091 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6092 				break;
6093 			/*FALLTHROUGH*/
6094 		case DIF_OP_LDSH:
6095 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6096 			break;
6097 		case DIF_OP_RLDSW:
6098 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6099 				break;
6100 			/*FALLTHROUGH*/
6101 		case DIF_OP_LDSW:
6102 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6103 			break;
6104 		case DIF_OP_RLDUB:
6105 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6106 				break;
6107 			/*FALLTHROUGH*/
6108 		case DIF_OP_LDUB:
6109 			regs[rd] = dtrace_load8(regs[r1]);
6110 			break;
6111 		case DIF_OP_RLDUH:
6112 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6113 				break;
6114 			/*FALLTHROUGH*/
6115 		case DIF_OP_LDUH:
6116 			regs[rd] = dtrace_load16(regs[r1]);
6117 			break;
6118 		case DIF_OP_RLDUW:
6119 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6120 				break;
6121 			/*FALLTHROUGH*/
6122 		case DIF_OP_LDUW:
6123 			regs[rd] = dtrace_load32(regs[r1]);
6124 			break;
6125 		case DIF_OP_RLDX:
6126 			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6127 				break;
6128 			/*FALLTHROUGH*/
6129 		case DIF_OP_LDX:
6130 			regs[rd] = dtrace_load64(regs[r1]);
6131 			break;
6132 		case DIF_OP_ULDSB:
6133 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6134 			regs[rd] = (int8_t)
6135 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6136 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6137 			break;
6138 		case DIF_OP_ULDSH:
6139 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6140 			regs[rd] = (int16_t)
6141 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6142 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6143 			break;
6144 		case DIF_OP_ULDSW:
6145 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6146 			regs[rd] = (int32_t)
6147 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6148 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6149 			break;
6150 		case DIF_OP_ULDUB:
6151 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6152 			regs[rd] =
6153 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6154 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6155 			break;
6156 		case DIF_OP_ULDUH:
6157 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6158 			regs[rd] =
6159 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6160 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6161 			break;
6162 		case DIF_OP_ULDUW:
6163 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6164 			regs[rd] =
6165 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6166 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6167 			break;
6168 		case DIF_OP_ULDX:
6169 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6170 			regs[rd] =
6171 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6172 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6173 			break;
6174 		case DIF_OP_RET:
6175 			rval = regs[rd];
6176 			pc = textlen;
6177 			break;
6178 		case DIF_OP_NOP:
6179 			break;
6180 		case DIF_OP_SETX:
6181 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6182 			break;
6183 		case DIF_OP_SETS:
6184 			regs[rd] = (uint64_t)(uintptr_t)
6185 			    (strtab + DIF_INSTR_STRING(instr));
6186 			break;
6187 		case DIF_OP_SCMP: {
6188 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6189 			uintptr_t s1 = regs[r1];
6190 			uintptr_t s2 = regs[r2];
6191 
6192 			if (s1 != 0 &&
6193 			    !dtrace_strcanload(s1, sz, mstate, vstate))
6194 				break;
6195 			if (s2 != 0 &&
6196 			    !dtrace_strcanload(s2, sz, mstate, vstate))
6197 				break;
6198 
6199 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
6200 
6201 			cc_n = cc_r < 0;
6202 			cc_z = cc_r == 0;
6203 			cc_v = cc_c = 0;
6204 			break;
6205 		}
6206 		case DIF_OP_LDGA:
6207 			regs[rd] = dtrace_dif_variable(mstate, state,
6208 			    r1, regs[r2]);
6209 			break;
6210 		case DIF_OP_LDGS:
6211 			id = DIF_INSTR_VAR(instr);
6212 
6213 			if (id >= DIF_VAR_OTHER_UBASE) {
6214 				uintptr_t a;
6215 
6216 				id -= DIF_VAR_OTHER_UBASE;
6217 				svar = vstate->dtvs_globals[id];
6218 				ASSERT(svar != NULL);
6219 				v = &svar->dtsv_var;
6220 
6221 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6222 					regs[rd] = svar->dtsv_data;
6223 					break;
6224 				}
6225 
6226 				a = (uintptr_t)svar->dtsv_data;
6227 
6228 				if (*(uint8_t *)a == UINT8_MAX) {
6229 					/*
6230 					 * If the 0th byte is set to UINT8_MAX
6231 					 * then this is to be treated as a
6232 					 * reference to a NULL variable.
6233 					 */
6234 					regs[rd] = 0;
6235 				} else {
6236 					regs[rd] = a + sizeof (uint64_t);
6237 				}
6238 
6239 				break;
6240 			}
6241 
6242 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6243 			break;
6244 
6245 		case DIF_OP_STGS:
6246 			id = DIF_INSTR_VAR(instr);
6247 
6248 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6249 			id -= DIF_VAR_OTHER_UBASE;
6250 
6251 			svar = vstate->dtvs_globals[id];
6252 			ASSERT(svar != NULL);
6253 			v = &svar->dtsv_var;
6254 
6255 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6256 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6257 
6258 				ASSERT(a != 0);
6259 				ASSERT(svar->dtsv_size != 0);
6260 
6261 				if (regs[rd] == 0) {
6262 					*(uint8_t *)a = UINT8_MAX;
6263 					break;
6264 				} else {
6265 					*(uint8_t *)a = 0;
6266 					a += sizeof (uint64_t);
6267 				}
6268 				if (!dtrace_vcanload(
6269 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6270 				    mstate, vstate))
6271 					break;
6272 
6273 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6274 				    (void *)a, &v->dtdv_type);
6275 				break;
6276 			}
6277 
6278 			svar->dtsv_data = regs[rd];
6279 			break;
6280 
6281 		case DIF_OP_LDTA:
6282 			/*
6283 			 * There are no DTrace built-in thread-local arrays at
6284 			 * present.  This opcode is saved for future work.
6285 			 */
6286 			*flags |= CPU_DTRACE_ILLOP;
6287 			regs[rd] = 0;
6288 			break;
6289 
6290 		case DIF_OP_LDLS:
6291 			id = DIF_INSTR_VAR(instr);
6292 
6293 			if (id < DIF_VAR_OTHER_UBASE) {
6294 				/*
6295 				 * For now, this has no meaning.
6296 				 */
6297 				regs[rd] = 0;
6298 				break;
6299 			}
6300 
6301 			id -= DIF_VAR_OTHER_UBASE;
6302 
6303 			ASSERT(id < vstate->dtvs_nlocals);
6304 			ASSERT(vstate->dtvs_locals != NULL);
6305 
6306 			svar = vstate->dtvs_locals[id];
6307 			ASSERT(svar != NULL);
6308 			v = &svar->dtsv_var;
6309 
6310 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6311 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6312 				size_t sz = v->dtdv_type.dtdt_size;
6313 
6314 				sz += sizeof (uint64_t);
6315 				ASSERT(svar->dtsv_size == NCPU * sz);
6316 				a += curcpu * sz;
6317 
6318 				if (*(uint8_t *)a == UINT8_MAX) {
6319 					/*
6320 					 * If the 0th byte is set to UINT8_MAX
6321 					 * then this is to be treated as a
6322 					 * reference to a NULL variable.
6323 					 */
6324 					regs[rd] = 0;
6325 				} else {
6326 					regs[rd] = a + sizeof (uint64_t);
6327 				}
6328 
6329 				break;
6330 			}
6331 
6332 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6333 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6334 			regs[rd] = tmp[curcpu];
6335 			break;
6336 
6337 		case DIF_OP_STLS:
6338 			id = DIF_INSTR_VAR(instr);
6339 
6340 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6341 			id -= DIF_VAR_OTHER_UBASE;
6342 			ASSERT(id < vstate->dtvs_nlocals);
6343 
6344 			ASSERT(vstate->dtvs_locals != NULL);
6345 			svar = vstate->dtvs_locals[id];
6346 			ASSERT(svar != NULL);
6347 			v = &svar->dtsv_var;
6348 
6349 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6350 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6351 				size_t sz = v->dtdv_type.dtdt_size;
6352 
6353 				sz += sizeof (uint64_t);
6354 				ASSERT(svar->dtsv_size == NCPU * sz);
6355 				a += curcpu * sz;
6356 
6357 				if (regs[rd] == 0) {
6358 					*(uint8_t *)a = UINT8_MAX;
6359 					break;
6360 				} else {
6361 					*(uint8_t *)a = 0;
6362 					a += sizeof (uint64_t);
6363 				}
6364 
6365 				if (!dtrace_vcanload(
6366 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6367 				    mstate, vstate))
6368 					break;
6369 
6370 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6371 				    (void *)a, &v->dtdv_type);
6372 				break;
6373 			}
6374 
6375 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6376 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6377 			tmp[curcpu] = regs[rd];
6378 			break;
6379 
6380 		case DIF_OP_LDTS: {
6381 			dtrace_dynvar_t *dvar;
6382 			dtrace_key_t *key;
6383 
6384 			id = DIF_INSTR_VAR(instr);
6385 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6386 			id -= DIF_VAR_OTHER_UBASE;
6387 			v = &vstate->dtvs_tlocals[id];
6388 
6389 			key = &tupregs[DIF_DTR_NREGS];
6390 			key[0].dttk_value = (uint64_t)id;
6391 			key[0].dttk_size = 0;
6392 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6393 			key[1].dttk_size = 0;
6394 
6395 			dvar = dtrace_dynvar(dstate, 2, key,
6396 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6397 			    mstate, vstate);
6398 
6399 			if (dvar == NULL) {
6400 				regs[rd] = 0;
6401 				break;
6402 			}
6403 
6404 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6405 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6406 			} else {
6407 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6408 			}
6409 
6410 			break;
6411 		}
6412 
6413 		case DIF_OP_STTS: {
6414 			dtrace_dynvar_t *dvar;
6415 			dtrace_key_t *key;
6416 
6417 			id = DIF_INSTR_VAR(instr);
6418 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6419 			id -= DIF_VAR_OTHER_UBASE;
6420 
6421 			key = &tupregs[DIF_DTR_NREGS];
6422 			key[0].dttk_value = (uint64_t)id;
6423 			key[0].dttk_size = 0;
6424 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6425 			key[1].dttk_size = 0;
6426 			v = &vstate->dtvs_tlocals[id];
6427 
6428 			dvar = dtrace_dynvar(dstate, 2, key,
6429 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6430 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6431 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6432 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6433 
6434 			/*
6435 			 * Given that we're storing to thread-local data,
6436 			 * we need to flush our predicate cache.
6437 			 */
6438 			curthread->t_predcache = 0;
6439 
6440 			if (dvar == NULL)
6441 				break;
6442 
6443 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6444 				if (!dtrace_vcanload(
6445 				    (void *)(uintptr_t)regs[rd],
6446 				    &v->dtdv_type, mstate, vstate))
6447 					break;
6448 
6449 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6450 				    dvar->dtdv_data, &v->dtdv_type);
6451 			} else {
6452 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6453 			}
6454 
6455 			break;
6456 		}
6457 
6458 		case DIF_OP_SRA:
6459 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6460 			break;
6461 
6462 		case DIF_OP_CALL:
6463 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6464 			    regs, tupregs, ttop, mstate, state);
6465 			break;
6466 
6467 		case DIF_OP_PUSHTR:
6468 			if (ttop == DIF_DTR_NREGS) {
6469 				*flags |= CPU_DTRACE_TUPOFLOW;
6470 				break;
6471 			}
6472 
6473 			if (r1 == DIF_TYPE_STRING) {
6474 				/*
6475 				 * If this is a string type and the size is 0,
6476 				 * we'll use the system-wide default string
6477 				 * size.  Note that we are _not_ looking at
6478 				 * the value of the DTRACEOPT_STRSIZE option;
6479 				 * had this been set, we would expect to have
6480 				 * a non-zero size value in the "pushtr".
6481 				 */
6482 				tupregs[ttop].dttk_size =
6483 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6484 				    regs[r2] ? regs[r2] :
6485 				    dtrace_strsize_default) + 1;
6486 			} else {
6487 				if (regs[r2] > LONG_MAX) {
6488 					*flags |= CPU_DTRACE_ILLOP;
6489 					break;
6490 				}
6491 
6492 				tupregs[ttop].dttk_size = regs[r2];
6493 			}
6494 
6495 			tupregs[ttop++].dttk_value = regs[rd];
6496 			break;
6497 
6498 		case DIF_OP_PUSHTV:
6499 			if (ttop == DIF_DTR_NREGS) {
6500 				*flags |= CPU_DTRACE_TUPOFLOW;
6501 				break;
6502 			}
6503 
6504 			tupregs[ttop].dttk_value = regs[rd];
6505 			tupregs[ttop++].dttk_size = 0;
6506 			break;
6507 
6508 		case DIF_OP_POPTS:
6509 			if (ttop != 0)
6510 				ttop--;
6511 			break;
6512 
6513 		case DIF_OP_FLUSHTS:
6514 			ttop = 0;
6515 			break;
6516 
6517 		case DIF_OP_LDGAA:
6518 		case DIF_OP_LDTAA: {
6519 			dtrace_dynvar_t *dvar;
6520 			dtrace_key_t *key = tupregs;
6521 			uint_t nkeys = ttop;
6522 
6523 			id = DIF_INSTR_VAR(instr);
6524 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6525 			id -= DIF_VAR_OTHER_UBASE;
6526 
6527 			key[nkeys].dttk_value = (uint64_t)id;
6528 			key[nkeys++].dttk_size = 0;
6529 
6530 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6531 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6532 				key[nkeys++].dttk_size = 0;
6533 				v = &vstate->dtvs_tlocals[id];
6534 			} else {
6535 				v = &vstate->dtvs_globals[id]->dtsv_var;
6536 			}
6537 
6538 			dvar = dtrace_dynvar(dstate, nkeys, key,
6539 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6540 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6541 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6542 
6543 			if (dvar == NULL) {
6544 				regs[rd] = 0;
6545 				break;
6546 			}
6547 
6548 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6549 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6550 			} else {
6551 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6552 			}
6553 
6554 			break;
6555 		}
6556 
6557 		case DIF_OP_STGAA:
6558 		case DIF_OP_STTAA: {
6559 			dtrace_dynvar_t *dvar;
6560 			dtrace_key_t *key = tupregs;
6561 			uint_t nkeys = ttop;
6562 
6563 			id = DIF_INSTR_VAR(instr);
6564 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6565 			id -= DIF_VAR_OTHER_UBASE;
6566 
6567 			key[nkeys].dttk_value = (uint64_t)id;
6568 			key[nkeys++].dttk_size = 0;
6569 
6570 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6571 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6572 				key[nkeys++].dttk_size = 0;
6573 				v = &vstate->dtvs_tlocals[id];
6574 			} else {
6575 				v = &vstate->dtvs_globals[id]->dtsv_var;
6576 			}
6577 
6578 			dvar = dtrace_dynvar(dstate, nkeys, key,
6579 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6580 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6581 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6582 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6583 
6584 			if (dvar == NULL)
6585 				break;
6586 
6587 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6588 				if (!dtrace_vcanload(
6589 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6590 				    mstate, vstate))
6591 					break;
6592 
6593 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6594 				    dvar->dtdv_data, &v->dtdv_type);
6595 			} else {
6596 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6597 			}
6598 
6599 			break;
6600 		}
6601 
6602 		case DIF_OP_ALLOCS: {
6603 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6604 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6605 
6606 			/*
6607 			 * Rounding up the user allocation size could have
6608 			 * overflowed large, bogus allocations (like -1ULL) to
6609 			 * 0.
6610 			 */
6611 			if (size < regs[r1] ||
6612 			    !DTRACE_INSCRATCH(mstate, size)) {
6613 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6614 				regs[rd] = 0;
6615 				break;
6616 			}
6617 
6618 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6619 			mstate->dtms_scratch_ptr += size;
6620 			regs[rd] = ptr;
6621 			break;
6622 		}
6623 
6624 		case DIF_OP_COPYS:
6625 			if (!dtrace_canstore(regs[rd], regs[r2],
6626 			    mstate, vstate)) {
6627 				*flags |= CPU_DTRACE_BADADDR;
6628 				*illval = regs[rd];
6629 				break;
6630 			}
6631 
6632 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6633 				break;
6634 
6635 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6636 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6637 			break;
6638 
6639 		case DIF_OP_STB:
6640 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6641 				*flags |= CPU_DTRACE_BADADDR;
6642 				*illval = regs[rd];
6643 				break;
6644 			}
6645 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6646 			break;
6647 
6648 		case DIF_OP_STH:
6649 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6650 				*flags |= CPU_DTRACE_BADADDR;
6651 				*illval = regs[rd];
6652 				break;
6653 			}
6654 			if (regs[rd] & 1) {
6655 				*flags |= CPU_DTRACE_BADALIGN;
6656 				*illval = regs[rd];
6657 				break;
6658 			}
6659 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6660 			break;
6661 
6662 		case DIF_OP_STW:
6663 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6664 				*flags |= CPU_DTRACE_BADADDR;
6665 				*illval = regs[rd];
6666 				break;
6667 			}
6668 			if (regs[rd] & 3) {
6669 				*flags |= CPU_DTRACE_BADALIGN;
6670 				*illval = regs[rd];
6671 				break;
6672 			}
6673 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6674 			break;
6675 
6676 		case DIF_OP_STX:
6677 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6678 				*flags |= CPU_DTRACE_BADADDR;
6679 				*illval = regs[rd];
6680 				break;
6681 			}
6682 			if (regs[rd] & 7) {
6683 				*flags |= CPU_DTRACE_BADALIGN;
6684 				*illval = regs[rd];
6685 				break;
6686 			}
6687 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6688 			break;
6689 		}
6690 	}
6691 
6692 	if (!(*flags & CPU_DTRACE_FAULT))
6693 		return (rval);
6694 
6695 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6696 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6697 
6698 	return (0);
6699 }
6700 
6701 static void
6702 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6703 {
6704 	dtrace_probe_t *probe = ecb->dte_probe;
6705 	dtrace_provider_t *prov = probe->dtpr_provider;
6706 	char c[DTRACE_FULLNAMELEN + 80], *str;
6707 	char *msg = "dtrace: breakpoint action at probe ";
6708 	char *ecbmsg = " (ecb ";
6709 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6710 	uintptr_t val = (uintptr_t)ecb;
6711 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6712 
6713 	if (dtrace_destructive_disallow)
6714 		return;
6715 
6716 	/*
6717 	 * It's impossible to be taking action on the NULL probe.
6718 	 */
6719 	ASSERT(probe != NULL);
6720 
6721 	/*
6722 	 * This is a poor man's (destitute man's?) sprintf():  we want to
6723 	 * print the provider name, module name, function name and name of
6724 	 * the probe, along with the hex address of the ECB with the breakpoint
6725 	 * action -- all of which we must place in the character buffer by
6726 	 * hand.
6727 	 */
6728 	while (*msg != '\0')
6729 		c[i++] = *msg++;
6730 
6731 	for (str = prov->dtpv_name; *str != '\0'; str++)
6732 		c[i++] = *str;
6733 	c[i++] = ':';
6734 
6735 	for (str = probe->dtpr_mod; *str != '\0'; str++)
6736 		c[i++] = *str;
6737 	c[i++] = ':';
6738 
6739 	for (str = probe->dtpr_func; *str != '\0'; str++)
6740 		c[i++] = *str;
6741 	c[i++] = ':';
6742 
6743 	for (str = probe->dtpr_name; *str != '\0'; str++)
6744 		c[i++] = *str;
6745 
6746 	while (*ecbmsg != '\0')
6747 		c[i++] = *ecbmsg++;
6748 
6749 	while (shift >= 0) {
6750 		mask = (uintptr_t)0xf << shift;
6751 
6752 		if (val >= ((uintptr_t)1 << shift))
6753 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6754 		shift -= 4;
6755 	}
6756 
6757 	c[i++] = ')';
6758 	c[i] = '\0';
6759 
6760 #ifdef illumos
6761 	debug_enter(c);
6762 #else
6763 	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6764 #endif
6765 }
6766 
6767 static void
6768 dtrace_action_panic(dtrace_ecb_t *ecb)
6769 {
6770 	dtrace_probe_t *probe = ecb->dte_probe;
6771 
6772 	/*
6773 	 * It's impossible to be taking action on the NULL probe.
6774 	 */
6775 	ASSERT(probe != NULL);
6776 
6777 	if (dtrace_destructive_disallow)
6778 		return;
6779 
6780 	if (dtrace_panicked != NULL)
6781 		return;
6782 
6783 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6784 		return;
6785 
6786 	/*
6787 	 * We won the right to panic.  (We want to be sure that only one
6788 	 * thread calls panic() from dtrace_probe(), and that panic() is
6789 	 * called exactly once.)
6790 	 */
6791 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6792 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6793 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6794 }
6795 
6796 static void
6797 dtrace_action_raise(uint64_t sig)
6798 {
6799 	if (dtrace_destructive_disallow)
6800 		return;
6801 
6802 	if (sig >= NSIG) {
6803 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6804 		return;
6805 	}
6806 
6807 #ifdef illumos
6808 	/*
6809 	 * raise() has a queue depth of 1 -- we ignore all subsequent
6810 	 * invocations of the raise() action.
6811 	 */
6812 	if (curthread->t_dtrace_sig == 0)
6813 		curthread->t_dtrace_sig = (uint8_t)sig;
6814 
6815 	curthread->t_sig_check = 1;
6816 	aston(curthread);
6817 #else
6818 	struct proc *p = curproc;
6819 	PROC_LOCK(p);
6820 	kern_psignal(p, sig);
6821 	PROC_UNLOCK(p);
6822 #endif
6823 }
6824 
6825 static void
6826 dtrace_action_stop(void)
6827 {
6828 	if (dtrace_destructive_disallow)
6829 		return;
6830 
6831 #ifdef illumos
6832 	if (!curthread->t_dtrace_stop) {
6833 		curthread->t_dtrace_stop = 1;
6834 		curthread->t_sig_check = 1;
6835 		aston(curthread);
6836 	}
6837 #else
6838 	struct proc *p = curproc;
6839 	PROC_LOCK(p);
6840 	kern_psignal(p, SIGSTOP);
6841 	PROC_UNLOCK(p);
6842 #endif
6843 }
6844 
6845 static void
6846 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6847 {
6848 	hrtime_t now;
6849 	volatile uint16_t *flags;
6850 #ifdef illumos
6851 	cpu_t *cpu = CPU;
6852 #else
6853 	cpu_t *cpu = &solaris_cpu[curcpu];
6854 #endif
6855 
6856 	if (dtrace_destructive_disallow)
6857 		return;
6858 
6859 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
6860 
6861 	now = dtrace_gethrtime();
6862 
6863 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6864 		/*
6865 		 * We need to advance the mark to the current time.
6866 		 */
6867 		cpu->cpu_dtrace_chillmark = now;
6868 		cpu->cpu_dtrace_chilled = 0;
6869 	}
6870 
6871 	/*
6872 	 * Now check to see if the requested chill time would take us over
6873 	 * the maximum amount of time allowed in the chill interval.  (Or
6874 	 * worse, if the calculation itself induces overflow.)
6875 	 */
6876 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6877 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6878 		*flags |= CPU_DTRACE_ILLOP;
6879 		return;
6880 	}
6881 
6882 	while (dtrace_gethrtime() - now < val)
6883 		continue;
6884 
6885 	/*
6886 	 * Normally, we assure that the value of the variable "timestamp" does
6887 	 * not change within an ECB.  The presence of chill() represents an
6888 	 * exception to this rule, however.
6889 	 */
6890 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6891 	cpu->cpu_dtrace_chilled += val;
6892 }
6893 
6894 static void
6895 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6896     uint64_t *buf, uint64_t arg)
6897 {
6898 	int nframes = DTRACE_USTACK_NFRAMES(arg);
6899 	int strsize = DTRACE_USTACK_STRSIZE(arg);
6900 	uint64_t *pcs = &buf[1], *fps;
6901 	char *str = (char *)&pcs[nframes];
6902 	int size, offs = 0, i, j;
6903 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
6904 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6905 	char *sym;
6906 
6907 	/*
6908 	 * Should be taking a faster path if string space has not been
6909 	 * allocated.
6910 	 */
6911 	ASSERT(strsize != 0);
6912 
6913 	/*
6914 	 * We will first allocate some temporary space for the frame pointers.
6915 	 */
6916 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6917 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6918 	    (nframes * sizeof (uint64_t));
6919 
6920 	if (!DTRACE_INSCRATCH(mstate, size)) {
6921 		/*
6922 		 * Not enough room for our frame pointers -- need to indicate
6923 		 * that we ran out of scratch space.
6924 		 */
6925 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6926 		return;
6927 	}
6928 
6929 	mstate->dtms_scratch_ptr += size;
6930 	saved = mstate->dtms_scratch_ptr;
6931 
6932 	/*
6933 	 * Now get a stack with both program counters and frame pointers.
6934 	 */
6935 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6936 	dtrace_getufpstack(buf, fps, nframes + 1);
6937 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6938 
6939 	/*
6940 	 * If that faulted, we're cooked.
6941 	 */
6942 	if (*flags & CPU_DTRACE_FAULT)
6943 		goto out;
6944 
6945 	/*
6946 	 * Now we want to walk up the stack, calling the USTACK helper.  For
6947 	 * each iteration, we restore the scratch pointer.
6948 	 */
6949 	for (i = 0; i < nframes; i++) {
6950 		mstate->dtms_scratch_ptr = saved;
6951 
6952 		if (offs >= strsize)
6953 			break;
6954 
6955 		sym = (char *)(uintptr_t)dtrace_helper(
6956 		    DTRACE_HELPER_ACTION_USTACK,
6957 		    mstate, state, pcs[i], fps[i]);
6958 
6959 		/*
6960 		 * If we faulted while running the helper, we're going to
6961 		 * clear the fault and null out the corresponding string.
6962 		 */
6963 		if (*flags & CPU_DTRACE_FAULT) {
6964 			*flags &= ~CPU_DTRACE_FAULT;
6965 			str[offs++] = '\0';
6966 			continue;
6967 		}
6968 
6969 		if (sym == NULL) {
6970 			str[offs++] = '\0';
6971 			continue;
6972 		}
6973 
6974 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6975 
6976 		/*
6977 		 * Now copy in the string that the helper returned to us.
6978 		 */
6979 		for (j = 0; offs + j < strsize; j++) {
6980 			if ((str[offs + j] = sym[j]) == '\0')
6981 				break;
6982 		}
6983 
6984 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6985 
6986 		offs += j + 1;
6987 	}
6988 
6989 	if (offs >= strsize) {
6990 		/*
6991 		 * If we didn't have room for all of the strings, we don't
6992 		 * abort processing -- this needn't be a fatal error -- but we
6993 		 * still want to increment a counter (dts_stkstroverflows) to
6994 		 * allow this condition to be warned about.  (If this is from
6995 		 * a jstack() action, it is easily tuned via jstackstrsize.)
6996 		 */
6997 		dtrace_error(&state->dts_stkstroverflows);
6998 	}
6999 
7000 	while (offs < strsize)
7001 		str[offs++] = '\0';
7002 
7003 out:
7004 	mstate->dtms_scratch_ptr = old;
7005 }
7006 
7007 static void
7008 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
7009     size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
7010 {
7011 	volatile uint16_t *flags;
7012 	uint64_t val = *valp;
7013 	size_t valoffs = *valoffsp;
7014 
7015 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7016 	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
7017 
7018 	/*
7019 	 * If this is a string, we're going to only load until we find the zero
7020 	 * byte -- after which we'll store zero bytes.
7021 	 */
7022 	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
7023 		char c = '\0' + 1;
7024 		size_t s;
7025 
7026 		for (s = 0; s < size; s++) {
7027 			if (c != '\0' && dtkind == DIF_TF_BYREF) {
7028 				c = dtrace_load8(val++);
7029 			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
7030 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7031 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7032 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7033 				if (*flags & CPU_DTRACE_FAULT)
7034 					break;
7035 			}
7036 
7037 			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7038 
7039 			if (c == '\0' && intuple)
7040 				break;
7041 		}
7042 	} else {
7043 		uint8_t c;
7044 		while (valoffs < end) {
7045 			if (dtkind == DIF_TF_BYREF) {
7046 				c = dtrace_load8(val++);
7047 			} else if (dtkind == DIF_TF_BYUREF) {
7048 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7049 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7050 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7051 				if (*flags & CPU_DTRACE_FAULT)
7052 					break;
7053 			}
7054 
7055 			DTRACE_STORE(uint8_t, tomax,
7056 			    valoffs++, c);
7057 		}
7058 	}
7059 
7060 	*valp = val;
7061 	*valoffsp = valoffs;
7062 }
7063 
7064 /*
7065  * If you're looking for the epicenter of DTrace, you just found it.  This
7066  * is the function called by the provider to fire a probe -- from which all
7067  * subsequent probe-context DTrace activity emanates.
7068  */
7069 void
7070 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7071     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7072 {
7073 	processorid_t cpuid;
7074 	dtrace_icookie_t cookie;
7075 	dtrace_probe_t *probe;
7076 	dtrace_mstate_t mstate;
7077 	dtrace_ecb_t *ecb;
7078 	dtrace_action_t *act;
7079 	intptr_t offs;
7080 	size_t size;
7081 	int vtime, onintr;
7082 	volatile uint16_t *flags;
7083 	hrtime_t now;
7084 
7085 	if (panicstr != NULL)
7086 		return;
7087 
7088 #ifdef illumos
7089 	/*
7090 	 * Kick out immediately if this CPU is still being born (in which case
7091 	 * curthread will be set to -1) or the current thread can't allow
7092 	 * probes in its current context.
7093 	 */
7094 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7095 		return;
7096 #endif
7097 
7098 	cookie = dtrace_interrupt_disable();
7099 	probe = dtrace_probes[id - 1];
7100 	cpuid = curcpu;
7101 	onintr = CPU_ON_INTR(CPU);
7102 
7103 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7104 	    probe->dtpr_predcache == curthread->t_predcache) {
7105 		/*
7106 		 * We have hit in the predicate cache; we know that
7107 		 * this predicate would evaluate to be false.
7108 		 */
7109 		dtrace_interrupt_enable(cookie);
7110 		return;
7111 	}
7112 
7113 #ifdef illumos
7114 	if (panic_quiesce) {
7115 #else
7116 	if (panicstr != NULL) {
7117 #endif
7118 		/*
7119 		 * We don't trace anything if we're panicking.
7120 		 */
7121 		dtrace_interrupt_enable(cookie);
7122 		return;
7123 	}
7124 
7125 	now = mstate.dtms_timestamp = dtrace_gethrtime();
7126 	mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7127 	vtime = dtrace_vtime_references != 0;
7128 
7129 	if (vtime && curthread->t_dtrace_start)
7130 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7131 
7132 	mstate.dtms_difo = NULL;
7133 	mstate.dtms_probe = probe;
7134 	mstate.dtms_strtok = 0;
7135 	mstate.dtms_arg[0] = arg0;
7136 	mstate.dtms_arg[1] = arg1;
7137 	mstate.dtms_arg[2] = arg2;
7138 	mstate.dtms_arg[3] = arg3;
7139 	mstate.dtms_arg[4] = arg4;
7140 
7141 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7142 
7143 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7144 		dtrace_predicate_t *pred = ecb->dte_predicate;
7145 		dtrace_state_t *state = ecb->dte_state;
7146 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7147 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7148 		dtrace_vstate_t *vstate = &state->dts_vstate;
7149 		dtrace_provider_t *prov = probe->dtpr_provider;
7150 		uint64_t tracememsize = 0;
7151 		int committed = 0;
7152 		caddr_t tomax;
7153 
7154 		/*
7155 		 * A little subtlety with the following (seemingly innocuous)
7156 		 * declaration of the automatic 'val':  by looking at the
7157 		 * code, you might think that it could be declared in the
7158 		 * action processing loop, below.  (That is, it's only used in
7159 		 * the action processing loop.)  However, it must be declared
7160 		 * out of that scope because in the case of DIF expression
7161 		 * arguments to aggregating actions, one iteration of the
7162 		 * action loop will use the last iteration's value.
7163 		 */
7164 		uint64_t val = 0;
7165 
7166 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7167 		mstate.dtms_getf = NULL;
7168 
7169 		*flags &= ~CPU_DTRACE_ERROR;
7170 
7171 		if (prov == dtrace_provider) {
7172 			/*
7173 			 * If dtrace itself is the provider of this probe,
7174 			 * we're only going to continue processing the ECB if
7175 			 * arg0 (the dtrace_state_t) is equal to the ECB's
7176 			 * creating state.  (This prevents disjoint consumers
7177 			 * from seeing one another's metaprobes.)
7178 			 */
7179 			if (arg0 != (uint64_t)(uintptr_t)state)
7180 				continue;
7181 		}
7182 
7183 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7184 			/*
7185 			 * We're not currently active.  If our provider isn't
7186 			 * the dtrace pseudo provider, we're not interested.
7187 			 */
7188 			if (prov != dtrace_provider)
7189 				continue;
7190 
7191 			/*
7192 			 * Now we must further check if we are in the BEGIN
7193 			 * probe.  If we are, we will only continue processing
7194 			 * if we're still in WARMUP -- if one BEGIN enabling
7195 			 * has invoked the exit() action, we don't want to
7196 			 * evaluate subsequent BEGIN enablings.
7197 			 */
7198 			if (probe->dtpr_id == dtrace_probeid_begin &&
7199 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7200 				ASSERT(state->dts_activity ==
7201 				    DTRACE_ACTIVITY_DRAINING);
7202 				continue;
7203 			}
7204 		}
7205 
7206 		if (ecb->dte_cond) {
7207 			/*
7208 			 * If the dte_cond bits indicate that this
7209 			 * consumer is only allowed to see user-mode firings
7210 			 * of this probe, call the provider's dtps_usermode()
7211 			 * entry point to check that the probe was fired
7212 			 * while in a user context. Skip this ECB if that's
7213 			 * not the case.
7214 			 */
7215 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7216 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7217 			    probe->dtpr_id, probe->dtpr_arg) == 0)
7218 				continue;
7219 
7220 #ifdef illumos
7221 			/*
7222 			 * This is more subtle than it looks. We have to be
7223 			 * absolutely certain that CRED() isn't going to
7224 			 * change out from under us so it's only legit to
7225 			 * examine that structure if we're in constrained
7226 			 * situations. Currently, the only times we'll this
7227 			 * check is if a non-super-user has enabled the
7228 			 * profile or syscall providers -- providers that
7229 			 * allow visibility of all processes. For the
7230 			 * profile case, the check above will ensure that
7231 			 * we're examining a user context.
7232 			 */
7233 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
7234 				cred_t *cr;
7235 				cred_t *s_cr =
7236 				    ecb->dte_state->dts_cred.dcr_cred;
7237 				proc_t *proc;
7238 
7239 				ASSERT(s_cr != NULL);
7240 
7241 				if ((cr = CRED()) == NULL ||
7242 				    s_cr->cr_uid != cr->cr_uid ||
7243 				    s_cr->cr_uid != cr->cr_ruid ||
7244 				    s_cr->cr_uid != cr->cr_suid ||
7245 				    s_cr->cr_gid != cr->cr_gid ||
7246 				    s_cr->cr_gid != cr->cr_rgid ||
7247 				    s_cr->cr_gid != cr->cr_sgid ||
7248 				    (proc = ttoproc(curthread)) == NULL ||
7249 				    (proc->p_flag & SNOCD))
7250 					continue;
7251 			}
7252 
7253 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7254 				cred_t *cr;
7255 				cred_t *s_cr =
7256 				    ecb->dte_state->dts_cred.dcr_cred;
7257 
7258 				ASSERT(s_cr != NULL);
7259 
7260 				if ((cr = CRED()) == NULL ||
7261 				    s_cr->cr_zone->zone_id !=
7262 				    cr->cr_zone->zone_id)
7263 					continue;
7264 			}
7265 #endif
7266 		}
7267 
7268 		if (now - state->dts_alive > dtrace_deadman_timeout) {
7269 			/*
7270 			 * We seem to be dead.  Unless we (a) have kernel
7271 			 * destructive permissions (b) have explicitly enabled
7272 			 * destructive actions and (c) destructive actions have
7273 			 * not been disabled, we're going to transition into
7274 			 * the KILLED state, from which no further processing
7275 			 * on this state will be performed.
7276 			 */
7277 			if (!dtrace_priv_kernel_destructive(state) ||
7278 			    !state->dts_cred.dcr_destructive ||
7279 			    dtrace_destructive_disallow) {
7280 				void *activity = &state->dts_activity;
7281 				dtrace_activity_t current;
7282 
7283 				do {
7284 					current = state->dts_activity;
7285 				} while (dtrace_cas32(activity, current,
7286 				    DTRACE_ACTIVITY_KILLED) != current);
7287 
7288 				continue;
7289 			}
7290 		}
7291 
7292 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7293 		    ecb->dte_alignment, state, &mstate)) < 0)
7294 			continue;
7295 
7296 		tomax = buf->dtb_tomax;
7297 		ASSERT(tomax != NULL);
7298 
7299 		if (ecb->dte_size != 0) {
7300 			dtrace_rechdr_t dtrh;
7301 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7302 				mstate.dtms_timestamp = dtrace_gethrtime();
7303 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7304 			}
7305 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7306 			dtrh.dtrh_epid = ecb->dte_epid;
7307 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7308 			    mstate.dtms_timestamp);
7309 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7310 		}
7311 
7312 		mstate.dtms_epid = ecb->dte_epid;
7313 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7314 
7315 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7316 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7317 		else
7318 			mstate.dtms_access = 0;
7319 
7320 		if (pred != NULL) {
7321 			dtrace_difo_t *dp = pred->dtp_difo;
7322 			int rval;
7323 
7324 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7325 
7326 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7327 				dtrace_cacheid_t cid = probe->dtpr_predcache;
7328 
7329 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7330 					/*
7331 					 * Update the predicate cache...
7332 					 */
7333 					ASSERT(cid == pred->dtp_cacheid);
7334 					curthread->t_predcache = cid;
7335 				}
7336 
7337 				continue;
7338 			}
7339 		}
7340 
7341 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7342 		    act != NULL; act = act->dta_next) {
7343 			size_t valoffs;
7344 			dtrace_difo_t *dp;
7345 			dtrace_recdesc_t *rec = &act->dta_rec;
7346 
7347 			size = rec->dtrd_size;
7348 			valoffs = offs + rec->dtrd_offset;
7349 
7350 			if (DTRACEACT_ISAGG(act->dta_kind)) {
7351 				uint64_t v = 0xbad;
7352 				dtrace_aggregation_t *agg;
7353 
7354 				agg = (dtrace_aggregation_t *)act;
7355 
7356 				if ((dp = act->dta_difo) != NULL)
7357 					v = dtrace_dif_emulate(dp,
7358 					    &mstate, vstate, state);
7359 
7360 				if (*flags & CPU_DTRACE_ERROR)
7361 					continue;
7362 
7363 				/*
7364 				 * Note that we always pass the expression
7365 				 * value from the previous iteration of the
7366 				 * action loop.  This value will only be used
7367 				 * if there is an expression argument to the
7368 				 * aggregating action, denoted by the
7369 				 * dtag_hasarg field.
7370 				 */
7371 				dtrace_aggregate(agg, buf,
7372 				    offs, aggbuf, v, val);
7373 				continue;
7374 			}
7375 
7376 			switch (act->dta_kind) {
7377 			case DTRACEACT_STOP:
7378 				if (dtrace_priv_proc_destructive(state))
7379 					dtrace_action_stop();
7380 				continue;
7381 
7382 			case DTRACEACT_BREAKPOINT:
7383 				if (dtrace_priv_kernel_destructive(state))
7384 					dtrace_action_breakpoint(ecb);
7385 				continue;
7386 
7387 			case DTRACEACT_PANIC:
7388 				if (dtrace_priv_kernel_destructive(state))
7389 					dtrace_action_panic(ecb);
7390 				continue;
7391 
7392 			case DTRACEACT_STACK:
7393 				if (!dtrace_priv_kernel(state))
7394 					continue;
7395 
7396 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7397 				    size / sizeof (pc_t), probe->dtpr_aframes,
7398 				    DTRACE_ANCHORED(probe) ? NULL :
7399 				    (uint32_t *)arg0);
7400 				continue;
7401 
7402 			case DTRACEACT_JSTACK:
7403 			case DTRACEACT_USTACK:
7404 				if (!dtrace_priv_proc(state))
7405 					continue;
7406 
7407 				/*
7408 				 * See comment in DIF_VAR_PID.
7409 				 */
7410 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7411 				    CPU_ON_INTR(CPU)) {
7412 					int depth = DTRACE_USTACK_NFRAMES(
7413 					    rec->dtrd_arg) + 1;
7414 
7415 					dtrace_bzero((void *)(tomax + valoffs),
7416 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7417 					    + depth * sizeof (uint64_t));
7418 
7419 					continue;
7420 				}
7421 
7422 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7423 				    curproc->p_dtrace_helpers != NULL) {
7424 					/*
7425 					 * This is the slow path -- we have
7426 					 * allocated string space, and we're
7427 					 * getting the stack of a process that
7428 					 * has helpers.  Call into a separate
7429 					 * routine to perform this processing.
7430 					 */
7431 					dtrace_action_ustack(&mstate, state,
7432 					    (uint64_t *)(tomax + valoffs),
7433 					    rec->dtrd_arg);
7434 					continue;
7435 				}
7436 
7437 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7438 				dtrace_getupcstack((uint64_t *)
7439 				    (tomax + valoffs),
7440 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7441 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7442 				continue;
7443 
7444 			default:
7445 				break;
7446 			}
7447 
7448 			dp = act->dta_difo;
7449 			ASSERT(dp != NULL);
7450 
7451 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7452 
7453 			if (*flags & CPU_DTRACE_ERROR)
7454 				continue;
7455 
7456 			switch (act->dta_kind) {
7457 			case DTRACEACT_SPECULATE: {
7458 				dtrace_rechdr_t *dtrh;
7459 
7460 				ASSERT(buf == &state->dts_buffer[cpuid]);
7461 				buf = dtrace_speculation_buffer(state,
7462 				    cpuid, val);
7463 
7464 				if (buf == NULL) {
7465 					*flags |= CPU_DTRACE_DROP;
7466 					continue;
7467 				}
7468 
7469 				offs = dtrace_buffer_reserve(buf,
7470 				    ecb->dte_needed, ecb->dte_alignment,
7471 				    state, NULL);
7472 
7473 				if (offs < 0) {
7474 					*flags |= CPU_DTRACE_DROP;
7475 					continue;
7476 				}
7477 
7478 				tomax = buf->dtb_tomax;
7479 				ASSERT(tomax != NULL);
7480 
7481 				if (ecb->dte_size == 0)
7482 					continue;
7483 
7484 				ASSERT3U(ecb->dte_size, >=,
7485 				    sizeof (dtrace_rechdr_t));
7486 				dtrh = ((void *)(tomax + offs));
7487 				dtrh->dtrh_epid = ecb->dte_epid;
7488 				/*
7489 				 * When the speculation is committed, all of
7490 				 * the records in the speculative buffer will
7491 				 * have their timestamps set to the commit
7492 				 * time.  Until then, it is set to a sentinel
7493 				 * value, for debugability.
7494 				 */
7495 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7496 				continue;
7497 			}
7498 
7499 			case DTRACEACT_PRINTM: {
7500 				/* The DIF returns a 'memref'. */
7501 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7502 
7503 				/* Get the size from the memref. */
7504 				size = memref[1];
7505 
7506 				/*
7507 				 * Check if the size exceeds the allocated
7508 				 * buffer size.
7509 				 */
7510 				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7511 					/* Flag a drop! */
7512 					*flags |= CPU_DTRACE_DROP;
7513 					continue;
7514 				}
7515 
7516 				/* Store the size in the buffer first. */
7517 				DTRACE_STORE(uintptr_t, tomax,
7518 				    valoffs, size);
7519 
7520 				/*
7521 				 * Offset the buffer address to the start
7522 				 * of the data.
7523 				 */
7524 				valoffs += sizeof(uintptr_t);
7525 
7526 				/*
7527 				 * Reset to the memory address rather than
7528 				 * the memref array, then let the BYREF
7529 				 * code below do the work to store the
7530 				 * memory data in the buffer.
7531 				 */
7532 				val = memref[0];
7533 				break;
7534 			}
7535 
7536 			case DTRACEACT_PRINTT: {
7537 				/* The DIF returns a 'typeref'. */
7538 				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
7539 				char c = '\0' + 1;
7540 				size_t s;
7541 
7542 				/*
7543 				 * Get the type string length and round it
7544 				 * up so that the data that follows is
7545 				 * aligned for easy access.
7546 				 */
7547 				size_t typs = strlen((char *) typeref[2]) + 1;
7548 				typs = roundup(typs,  sizeof(uintptr_t));
7549 
7550 				/*
7551 				 *Get the size from the typeref using the
7552 				 * number of elements and the type size.
7553 				 */
7554 				size = typeref[1] * typeref[3];
7555 
7556 				/*
7557 				 * Check if the size exceeds the allocated
7558 				 * buffer size.
7559 				 */
7560 				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7561 					/* Flag a drop! */
7562 					*flags |= CPU_DTRACE_DROP;
7563 
7564 				}
7565 
7566 				/* Store the size in the buffer first. */
7567 				DTRACE_STORE(uintptr_t, tomax,
7568 				    valoffs, size);
7569 				valoffs += sizeof(uintptr_t);
7570 
7571 				/* Store the type size in the buffer. */
7572 				DTRACE_STORE(uintptr_t, tomax,
7573 				    valoffs, typeref[3]);
7574 				valoffs += sizeof(uintptr_t);
7575 
7576 				val = typeref[2];
7577 
7578 				for (s = 0; s < typs; s++) {
7579 					if (c != '\0')
7580 						c = dtrace_load8(val++);
7581 
7582 					DTRACE_STORE(uint8_t, tomax,
7583 					    valoffs++, c);
7584 				}
7585 
7586 				/*
7587 				 * Reset to the memory address rather than
7588 				 * the typeref array, then let the BYREF
7589 				 * code below do the work to store the
7590 				 * memory data in the buffer.
7591 				 */
7592 				val = typeref[0];
7593 				break;
7594 			}
7595 
7596 			case DTRACEACT_CHILL:
7597 				if (dtrace_priv_kernel_destructive(state))
7598 					dtrace_action_chill(&mstate, val);
7599 				continue;
7600 
7601 			case DTRACEACT_RAISE:
7602 				if (dtrace_priv_proc_destructive(state))
7603 					dtrace_action_raise(val);
7604 				continue;
7605 
7606 			case DTRACEACT_COMMIT:
7607 				ASSERT(!committed);
7608 
7609 				/*
7610 				 * We need to commit our buffer state.
7611 				 */
7612 				if (ecb->dte_size)
7613 					buf->dtb_offset = offs + ecb->dte_size;
7614 				buf = &state->dts_buffer[cpuid];
7615 				dtrace_speculation_commit(state, cpuid, val);
7616 				committed = 1;
7617 				continue;
7618 
7619 			case DTRACEACT_DISCARD:
7620 				dtrace_speculation_discard(state, cpuid, val);
7621 				continue;
7622 
7623 			case DTRACEACT_DIFEXPR:
7624 			case DTRACEACT_LIBACT:
7625 			case DTRACEACT_PRINTF:
7626 			case DTRACEACT_PRINTA:
7627 			case DTRACEACT_SYSTEM:
7628 			case DTRACEACT_FREOPEN:
7629 			case DTRACEACT_TRACEMEM:
7630 				break;
7631 
7632 			case DTRACEACT_TRACEMEM_DYNSIZE:
7633 				tracememsize = val;
7634 				break;
7635 
7636 			case DTRACEACT_SYM:
7637 			case DTRACEACT_MOD:
7638 				if (!dtrace_priv_kernel(state))
7639 					continue;
7640 				break;
7641 
7642 			case DTRACEACT_USYM:
7643 			case DTRACEACT_UMOD:
7644 			case DTRACEACT_UADDR: {
7645 #ifdef illumos
7646 				struct pid *pid = curthread->t_procp->p_pidp;
7647 #endif
7648 
7649 				if (!dtrace_priv_proc(state))
7650 					continue;
7651 
7652 				DTRACE_STORE(uint64_t, tomax,
7653 #ifdef illumos
7654 				    valoffs, (uint64_t)pid->pid_id);
7655 #else
7656 				    valoffs, (uint64_t) curproc->p_pid);
7657 #endif
7658 				DTRACE_STORE(uint64_t, tomax,
7659 				    valoffs + sizeof (uint64_t), val);
7660 
7661 				continue;
7662 			}
7663 
7664 			case DTRACEACT_EXIT: {
7665 				/*
7666 				 * For the exit action, we are going to attempt
7667 				 * to atomically set our activity to be
7668 				 * draining.  If this fails (either because
7669 				 * another CPU has beat us to the exit action,
7670 				 * or because our current activity is something
7671 				 * other than ACTIVE or WARMUP), we will
7672 				 * continue.  This assures that the exit action
7673 				 * can be successfully recorded at most once
7674 				 * when we're in the ACTIVE state.  If we're
7675 				 * encountering the exit() action while in
7676 				 * COOLDOWN, however, we want to honor the new
7677 				 * status code.  (We know that we're the only
7678 				 * thread in COOLDOWN, so there is no race.)
7679 				 */
7680 				void *activity = &state->dts_activity;
7681 				dtrace_activity_t current = state->dts_activity;
7682 
7683 				if (current == DTRACE_ACTIVITY_COOLDOWN)
7684 					break;
7685 
7686 				if (current != DTRACE_ACTIVITY_WARMUP)
7687 					current = DTRACE_ACTIVITY_ACTIVE;
7688 
7689 				if (dtrace_cas32(activity, current,
7690 				    DTRACE_ACTIVITY_DRAINING) != current) {
7691 					*flags |= CPU_DTRACE_DROP;
7692 					continue;
7693 				}
7694 
7695 				break;
7696 			}
7697 
7698 			default:
7699 				ASSERT(0);
7700 			}
7701 
7702 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7703 			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7704 				uintptr_t end = valoffs + size;
7705 
7706 				if (tracememsize != 0 &&
7707 				    valoffs + tracememsize < end) {
7708 					end = valoffs + tracememsize;
7709 					tracememsize = 0;
7710 				}
7711 
7712 				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7713 				    !dtrace_vcanload((void *)(uintptr_t)val,
7714 				    &dp->dtdo_rtype, &mstate, vstate))
7715 					continue;
7716 
7717 				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7718 				    &val, end, act->dta_intuple,
7719 				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7720 				    DIF_TF_BYREF: DIF_TF_BYUREF);
7721 				continue;
7722 			}
7723 
7724 			switch (size) {
7725 			case 0:
7726 				break;
7727 
7728 			case sizeof (uint8_t):
7729 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7730 				break;
7731 			case sizeof (uint16_t):
7732 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7733 				break;
7734 			case sizeof (uint32_t):
7735 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7736 				break;
7737 			case sizeof (uint64_t):
7738 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7739 				break;
7740 			default:
7741 				/*
7742 				 * Any other size should have been returned by
7743 				 * reference, not by value.
7744 				 */
7745 				ASSERT(0);
7746 				break;
7747 			}
7748 		}
7749 
7750 		if (*flags & CPU_DTRACE_DROP)
7751 			continue;
7752 
7753 		if (*flags & CPU_DTRACE_FAULT) {
7754 			int ndx;
7755 			dtrace_action_t *err;
7756 
7757 			buf->dtb_errors++;
7758 
7759 			if (probe->dtpr_id == dtrace_probeid_error) {
7760 				/*
7761 				 * There's nothing we can do -- we had an
7762 				 * error on the error probe.  We bump an
7763 				 * error counter to at least indicate that
7764 				 * this condition happened.
7765 				 */
7766 				dtrace_error(&state->dts_dblerrors);
7767 				continue;
7768 			}
7769 
7770 			if (vtime) {
7771 				/*
7772 				 * Before recursing on dtrace_probe(), we
7773 				 * need to explicitly clear out our start
7774 				 * time to prevent it from being accumulated
7775 				 * into t_dtrace_vtime.
7776 				 */
7777 				curthread->t_dtrace_start = 0;
7778 			}
7779 
7780 			/*
7781 			 * Iterate over the actions to figure out which action
7782 			 * we were processing when we experienced the error.
7783 			 * Note that act points _past_ the faulting action; if
7784 			 * act is ecb->dte_action, the fault was in the
7785 			 * predicate, if it's ecb->dte_action->dta_next it's
7786 			 * in action #1, and so on.
7787 			 */
7788 			for (err = ecb->dte_action, ndx = 0;
7789 			    err != act; err = err->dta_next, ndx++)
7790 				continue;
7791 
7792 			dtrace_probe_error(state, ecb->dte_epid, ndx,
7793 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7794 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7795 			    cpu_core[cpuid].cpuc_dtrace_illval);
7796 
7797 			continue;
7798 		}
7799 
7800 		if (!committed)
7801 			buf->dtb_offset = offs + ecb->dte_size;
7802 	}
7803 
7804 	if (vtime)
7805 		curthread->t_dtrace_start = dtrace_gethrtime();
7806 
7807 	dtrace_interrupt_enable(cookie);
7808 }
7809 
7810 /*
7811  * DTrace Probe Hashing Functions
7812  *
7813  * The functions in this section (and indeed, the functions in remaining
7814  * sections) are not _called_ from probe context.  (Any exceptions to this are
7815  * marked with a "Note:".)  Rather, they are called from elsewhere in the
7816  * DTrace framework to look-up probes in, add probes to and remove probes from
7817  * the DTrace probe hashes.  (Each probe is hashed by each element of the
7818  * probe tuple -- allowing for fast lookups, regardless of what was
7819  * specified.)
7820  */
7821 static uint_t
7822 dtrace_hash_str(const char *p)
7823 {
7824 	unsigned int g;
7825 	uint_t hval = 0;
7826 
7827 	while (*p) {
7828 		hval = (hval << 4) + *p++;
7829 		if ((g = (hval & 0xf0000000)) != 0)
7830 			hval ^= g >> 24;
7831 		hval &= ~g;
7832 	}
7833 	return (hval);
7834 }
7835 
7836 static dtrace_hash_t *
7837 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7838 {
7839 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7840 
7841 	hash->dth_stroffs = stroffs;
7842 	hash->dth_nextoffs = nextoffs;
7843 	hash->dth_prevoffs = prevoffs;
7844 
7845 	hash->dth_size = 1;
7846 	hash->dth_mask = hash->dth_size - 1;
7847 
7848 	hash->dth_tab = kmem_zalloc(hash->dth_size *
7849 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7850 
7851 	return (hash);
7852 }
7853 
7854 static void
7855 dtrace_hash_destroy(dtrace_hash_t *hash)
7856 {
7857 #ifdef DEBUG
7858 	int i;
7859 
7860 	for (i = 0; i < hash->dth_size; i++)
7861 		ASSERT(hash->dth_tab[i] == NULL);
7862 #endif
7863 
7864 	kmem_free(hash->dth_tab,
7865 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
7866 	kmem_free(hash, sizeof (dtrace_hash_t));
7867 }
7868 
7869 static void
7870 dtrace_hash_resize(dtrace_hash_t *hash)
7871 {
7872 	int size = hash->dth_size, i, ndx;
7873 	int new_size = hash->dth_size << 1;
7874 	int new_mask = new_size - 1;
7875 	dtrace_hashbucket_t **new_tab, *bucket, *next;
7876 
7877 	ASSERT((new_size & new_mask) == 0);
7878 
7879 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7880 
7881 	for (i = 0; i < size; i++) {
7882 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7883 			dtrace_probe_t *probe = bucket->dthb_chain;
7884 
7885 			ASSERT(probe != NULL);
7886 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7887 
7888 			next = bucket->dthb_next;
7889 			bucket->dthb_next = new_tab[ndx];
7890 			new_tab[ndx] = bucket;
7891 		}
7892 	}
7893 
7894 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7895 	hash->dth_tab = new_tab;
7896 	hash->dth_size = new_size;
7897 	hash->dth_mask = new_mask;
7898 }
7899 
7900 static void
7901 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7902 {
7903 	int hashval = DTRACE_HASHSTR(hash, new);
7904 	int ndx = hashval & hash->dth_mask;
7905 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7906 	dtrace_probe_t **nextp, **prevp;
7907 
7908 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7909 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7910 			goto add;
7911 	}
7912 
7913 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7914 		dtrace_hash_resize(hash);
7915 		dtrace_hash_add(hash, new);
7916 		return;
7917 	}
7918 
7919 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7920 	bucket->dthb_next = hash->dth_tab[ndx];
7921 	hash->dth_tab[ndx] = bucket;
7922 	hash->dth_nbuckets++;
7923 
7924 add:
7925 	nextp = DTRACE_HASHNEXT(hash, new);
7926 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7927 	*nextp = bucket->dthb_chain;
7928 
7929 	if (bucket->dthb_chain != NULL) {
7930 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7931 		ASSERT(*prevp == NULL);
7932 		*prevp = new;
7933 	}
7934 
7935 	bucket->dthb_chain = new;
7936 	bucket->dthb_len++;
7937 }
7938 
7939 static dtrace_probe_t *
7940 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7941 {
7942 	int hashval = DTRACE_HASHSTR(hash, template);
7943 	int ndx = hashval & hash->dth_mask;
7944 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7945 
7946 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7947 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7948 			return (bucket->dthb_chain);
7949 	}
7950 
7951 	return (NULL);
7952 }
7953 
7954 static int
7955 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7956 {
7957 	int hashval = DTRACE_HASHSTR(hash, template);
7958 	int ndx = hashval & hash->dth_mask;
7959 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7960 
7961 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7962 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7963 			return (bucket->dthb_len);
7964 	}
7965 
7966 	return (0);
7967 }
7968 
7969 static void
7970 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7971 {
7972 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7973 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7974 
7975 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7976 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7977 
7978 	/*
7979 	 * Find the bucket that we're removing this probe from.
7980 	 */
7981 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7982 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7983 			break;
7984 	}
7985 
7986 	ASSERT(bucket != NULL);
7987 
7988 	if (*prevp == NULL) {
7989 		if (*nextp == NULL) {
7990 			/*
7991 			 * The removed probe was the only probe on this
7992 			 * bucket; we need to remove the bucket.
7993 			 */
7994 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7995 
7996 			ASSERT(bucket->dthb_chain == probe);
7997 			ASSERT(b != NULL);
7998 
7999 			if (b == bucket) {
8000 				hash->dth_tab[ndx] = bucket->dthb_next;
8001 			} else {
8002 				while (b->dthb_next != bucket)
8003 					b = b->dthb_next;
8004 				b->dthb_next = bucket->dthb_next;
8005 			}
8006 
8007 			ASSERT(hash->dth_nbuckets > 0);
8008 			hash->dth_nbuckets--;
8009 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
8010 			return;
8011 		}
8012 
8013 		bucket->dthb_chain = *nextp;
8014 	} else {
8015 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
8016 	}
8017 
8018 	if (*nextp != NULL)
8019 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
8020 }
8021 
8022 /*
8023  * DTrace Utility Functions
8024  *
8025  * These are random utility functions that are _not_ called from probe context.
8026  */
8027 static int
8028 dtrace_badattr(const dtrace_attribute_t *a)
8029 {
8030 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
8031 	    a->dtat_data > DTRACE_STABILITY_MAX ||
8032 	    a->dtat_class > DTRACE_CLASS_MAX);
8033 }
8034 
8035 /*
8036  * Return a duplicate copy of a string.  If the specified string is NULL,
8037  * this function returns a zero-length string.
8038  */
8039 static char *
8040 dtrace_strdup(const char *str)
8041 {
8042 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8043 
8044 	if (str != NULL)
8045 		(void) strcpy(new, str);
8046 
8047 	return (new);
8048 }
8049 
8050 #define	DTRACE_ISALPHA(c)	\
8051 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8052 
8053 static int
8054 dtrace_badname(const char *s)
8055 {
8056 	char c;
8057 
8058 	if (s == NULL || (c = *s++) == '\0')
8059 		return (0);
8060 
8061 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8062 		return (1);
8063 
8064 	while ((c = *s++) != '\0') {
8065 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8066 		    c != '-' && c != '_' && c != '.' && c != '`')
8067 			return (1);
8068 	}
8069 
8070 	return (0);
8071 }
8072 
8073 static void
8074 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8075 {
8076 	uint32_t priv;
8077 
8078 #ifdef illumos
8079 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8080 		/*
8081 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8082 		 */
8083 		priv = DTRACE_PRIV_ALL;
8084 	} else {
8085 		*uidp = crgetuid(cr);
8086 		*zoneidp = crgetzoneid(cr);
8087 
8088 		priv = 0;
8089 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8090 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8091 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8092 			priv |= DTRACE_PRIV_USER;
8093 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8094 			priv |= DTRACE_PRIV_PROC;
8095 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8096 			priv |= DTRACE_PRIV_OWNER;
8097 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8098 			priv |= DTRACE_PRIV_ZONEOWNER;
8099 	}
8100 #else
8101 	priv = DTRACE_PRIV_ALL;
8102 #endif
8103 
8104 	*privp = priv;
8105 }
8106 
8107 #ifdef DTRACE_ERRDEBUG
8108 static void
8109 dtrace_errdebug(const char *str)
8110 {
8111 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8112 	int occupied = 0;
8113 
8114 	mutex_enter(&dtrace_errlock);
8115 	dtrace_errlast = str;
8116 	dtrace_errthread = curthread;
8117 
8118 	while (occupied++ < DTRACE_ERRHASHSZ) {
8119 		if (dtrace_errhash[hval].dter_msg == str) {
8120 			dtrace_errhash[hval].dter_count++;
8121 			goto out;
8122 		}
8123 
8124 		if (dtrace_errhash[hval].dter_msg != NULL) {
8125 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
8126 			continue;
8127 		}
8128 
8129 		dtrace_errhash[hval].dter_msg = str;
8130 		dtrace_errhash[hval].dter_count = 1;
8131 		goto out;
8132 	}
8133 
8134 	panic("dtrace: undersized error hash");
8135 out:
8136 	mutex_exit(&dtrace_errlock);
8137 }
8138 #endif
8139 
8140 /*
8141  * DTrace Matching Functions
8142  *
8143  * These functions are used to match groups of probes, given some elements of
8144  * a probe tuple, or some globbed expressions for elements of a probe tuple.
8145  */
8146 static int
8147 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8148     zoneid_t zoneid)
8149 {
8150 	if (priv != DTRACE_PRIV_ALL) {
8151 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8152 		uint32_t match = priv & ppriv;
8153 
8154 		/*
8155 		 * No PRIV_DTRACE_* privileges...
8156 		 */
8157 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8158 		    DTRACE_PRIV_KERNEL)) == 0)
8159 			return (0);
8160 
8161 		/*
8162 		 * No matching bits, but there were bits to match...
8163 		 */
8164 		if (match == 0 && ppriv != 0)
8165 			return (0);
8166 
8167 		/*
8168 		 * Need to have permissions to the process, but don't...
8169 		 */
8170 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8171 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8172 			return (0);
8173 		}
8174 
8175 		/*
8176 		 * Need to be in the same zone unless we possess the
8177 		 * privilege to examine all zones.
8178 		 */
8179 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8180 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8181 			return (0);
8182 		}
8183 	}
8184 
8185 	return (1);
8186 }
8187 
8188 /*
8189  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8190  * consists of input pattern strings and an ops-vector to evaluate them.
8191  * This function returns >0 for match, 0 for no match, and <0 for error.
8192  */
8193 static int
8194 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8195     uint32_t priv, uid_t uid, zoneid_t zoneid)
8196 {
8197 	dtrace_provider_t *pvp = prp->dtpr_provider;
8198 	int rv;
8199 
8200 	if (pvp->dtpv_defunct)
8201 		return (0);
8202 
8203 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8204 		return (rv);
8205 
8206 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8207 		return (rv);
8208 
8209 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8210 		return (rv);
8211 
8212 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8213 		return (rv);
8214 
8215 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8216 		return (0);
8217 
8218 	return (rv);
8219 }
8220 
8221 /*
8222  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8223  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
8224  * libc's version, the kernel version only applies to 8-bit ASCII strings.
8225  * In addition, all of the recursion cases except for '*' matching have been
8226  * unwound.  For '*', we still implement recursive evaluation, but a depth
8227  * counter is maintained and matching is aborted if we recurse too deep.
8228  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8229  */
8230 static int
8231 dtrace_match_glob(const char *s, const char *p, int depth)
8232 {
8233 	const char *olds;
8234 	char s1, c;
8235 	int gs;
8236 
8237 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8238 		return (-1);
8239 
8240 	if (s == NULL)
8241 		s = ""; /* treat NULL as empty string */
8242 
8243 top:
8244 	olds = s;
8245 	s1 = *s++;
8246 
8247 	if (p == NULL)
8248 		return (0);
8249 
8250 	if ((c = *p++) == '\0')
8251 		return (s1 == '\0');
8252 
8253 	switch (c) {
8254 	case '[': {
8255 		int ok = 0, notflag = 0;
8256 		char lc = '\0';
8257 
8258 		if (s1 == '\0')
8259 			return (0);
8260 
8261 		if (*p == '!') {
8262 			notflag = 1;
8263 			p++;
8264 		}
8265 
8266 		if ((c = *p++) == '\0')
8267 			return (0);
8268 
8269 		do {
8270 			if (c == '-' && lc != '\0' && *p != ']') {
8271 				if ((c = *p++) == '\0')
8272 					return (0);
8273 				if (c == '\\' && (c = *p++) == '\0')
8274 					return (0);
8275 
8276 				if (notflag) {
8277 					if (s1 < lc || s1 > c)
8278 						ok++;
8279 					else
8280 						return (0);
8281 				} else if (lc <= s1 && s1 <= c)
8282 					ok++;
8283 
8284 			} else if (c == '\\' && (c = *p++) == '\0')
8285 				return (0);
8286 
8287 			lc = c; /* save left-hand 'c' for next iteration */
8288 
8289 			if (notflag) {
8290 				if (s1 != c)
8291 					ok++;
8292 				else
8293 					return (0);
8294 			} else if (s1 == c)
8295 				ok++;
8296 
8297 			if ((c = *p++) == '\0')
8298 				return (0);
8299 
8300 		} while (c != ']');
8301 
8302 		if (ok)
8303 			goto top;
8304 
8305 		return (0);
8306 	}
8307 
8308 	case '\\':
8309 		if ((c = *p++) == '\0')
8310 			return (0);
8311 		/*FALLTHRU*/
8312 
8313 	default:
8314 		if (c != s1)
8315 			return (0);
8316 		/*FALLTHRU*/
8317 
8318 	case '?':
8319 		if (s1 != '\0')
8320 			goto top;
8321 		return (0);
8322 
8323 	case '*':
8324 		while (*p == '*')
8325 			p++; /* consecutive *'s are identical to a single one */
8326 
8327 		if (*p == '\0')
8328 			return (1);
8329 
8330 		for (s = olds; *s != '\0'; s++) {
8331 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8332 				return (gs);
8333 		}
8334 
8335 		return (0);
8336 	}
8337 }
8338 
8339 /*ARGSUSED*/
8340 static int
8341 dtrace_match_string(const char *s, const char *p, int depth)
8342 {
8343 	return (s != NULL && strcmp(s, p) == 0);
8344 }
8345 
8346 /*ARGSUSED*/
8347 static int
8348 dtrace_match_nul(const char *s, const char *p, int depth)
8349 {
8350 	return (1); /* always match the empty pattern */
8351 }
8352 
8353 /*ARGSUSED*/
8354 static int
8355 dtrace_match_nonzero(const char *s, const char *p, int depth)
8356 {
8357 	return (s != NULL && s[0] != '\0');
8358 }
8359 
8360 static int
8361 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8362     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8363 {
8364 	dtrace_probe_t template, *probe;
8365 	dtrace_hash_t *hash = NULL;
8366 	int len, best = INT_MAX, nmatched = 0;
8367 	dtrace_id_t i;
8368 
8369 	ASSERT(MUTEX_HELD(&dtrace_lock));
8370 
8371 	/*
8372 	 * If the probe ID is specified in the key, just lookup by ID and
8373 	 * invoke the match callback once if a matching probe is found.
8374 	 */
8375 	if (pkp->dtpk_id != DTRACE_IDNONE) {
8376 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8377 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8378 			(void) (*matched)(probe, arg);
8379 			nmatched++;
8380 		}
8381 		return (nmatched);
8382 	}
8383 
8384 	template.dtpr_mod = (char *)pkp->dtpk_mod;
8385 	template.dtpr_func = (char *)pkp->dtpk_func;
8386 	template.dtpr_name = (char *)pkp->dtpk_name;
8387 
8388 	/*
8389 	 * We want to find the most distinct of the module name, function
8390 	 * name, and name.  So for each one that is not a glob pattern or
8391 	 * empty string, we perform a lookup in the corresponding hash and
8392 	 * use the hash table with the fewest collisions to do our search.
8393 	 */
8394 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8395 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8396 		best = len;
8397 		hash = dtrace_bymod;
8398 	}
8399 
8400 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8401 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8402 		best = len;
8403 		hash = dtrace_byfunc;
8404 	}
8405 
8406 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8407 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8408 		best = len;
8409 		hash = dtrace_byname;
8410 	}
8411 
8412 	/*
8413 	 * If we did not select a hash table, iterate over every probe and
8414 	 * invoke our callback for each one that matches our input probe key.
8415 	 */
8416 	if (hash == NULL) {
8417 		for (i = 0; i < dtrace_nprobes; i++) {
8418 			if ((probe = dtrace_probes[i]) == NULL ||
8419 			    dtrace_match_probe(probe, pkp, priv, uid,
8420 			    zoneid) <= 0)
8421 				continue;
8422 
8423 			nmatched++;
8424 
8425 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8426 				break;
8427 		}
8428 
8429 		return (nmatched);
8430 	}
8431 
8432 	/*
8433 	 * If we selected a hash table, iterate over each probe of the same key
8434 	 * name and invoke the callback for every probe that matches the other
8435 	 * attributes of our input probe key.
8436 	 */
8437 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8438 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8439 
8440 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8441 			continue;
8442 
8443 		nmatched++;
8444 
8445 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8446 			break;
8447 	}
8448 
8449 	return (nmatched);
8450 }
8451 
8452 /*
8453  * Return the function pointer dtrace_probecmp() should use to compare the
8454  * specified pattern with a string.  For NULL or empty patterns, we select
8455  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8456  * For non-empty non-glob strings, we use dtrace_match_string().
8457  */
8458 static dtrace_probekey_f *
8459 dtrace_probekey_func(const char *p)
8460 {
8461 	char c;
8462 
8463 	if (p == NULL || *p == '\0')
8464 		return (&dtrace_match_nul);
8465 
8466 	while ((c = *p++) != '\0') {
8467 		if (c == '[' || c == '?' || c == '*' || c == '\\')
8468 			return (&dtrace_match_glob);
8469 	}
8470 
8471 	return (&dtrace_match_string);
8472 }
8473 
8474 /*
8475  * Build a probe comparison key for use with dtrace_match_probe() from the
8476  * given probe description.  By convention, a null key only matches anchored
8477  * probes: if each field is the empty string, reset dtpk_fmatch to
8478  * dtrace_match_nonzero().
8479  */
8480 static void
8481 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8482 {
8483 	pkp->dtpk_prov = pdp->dtpd_provider;
8484 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8485 
8486 	pkp->dtpk_mod = pdp->dtpd_mod;
8487 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8488 
8489 	pkp->dtpk_func = pdp->dtpd_func;
8490 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8491 
8492 	pkp->dtpk_name = pdp->dtpd_name;
8493 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8494 
8495 	pkp->dtpk_id = pdp->dtpd_id;
8496 
8497 	if (pkp->dtpk_id == DTRACE_IDNONE &&
8498 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8499 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8500 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8501 	    pkp->dtpk_nmatch == &dtrace_match_nul)
8502 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8503 }
8504 
8505 /*
8506  * DTrace Provider-to-Framework API Functions
8507  *
8508  * These functions implement much of the Provider-to-Framework API, as
8509  * described in <sys/dtrace.h>.  The parts of the API not in this section are
8510  * the functions in the API for probe management (found below), and
8511  * dtrace_probe() itself (found above).
8512  */
8513 
8514 /*
8515  * Register the calling provider with the DTrace framework.  This should
8516  * generally be called by DTrace providers in their attach(9E) entry point.
8517  */
8518 int
8519 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8520     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8521 {
8522 	dtrace_provider_t *provider;
8523 
8524 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8525 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8526 		    "arguments", name ? name : "<NULL>");
8527 		return (EINVAL);
8528 	}
8529 
8530 	if (name[0] == '\0' || dtrace_badname(name)) {
8531 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8532 		    "provider name", name);
8533 		return (EINVAL);
8534 	}
8535 
8536 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8537 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8538 	    pops->dtps_destroy == NULL ||
8539 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8540 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8541 		    "provider ops", name);
8542 		return (EINVAL);
8543 	}
8544 
8545 	if (dtrace_badattr(&pap->dtpa_provider) ||
8546 	    dtrace_badattr(&pap->dtpa_mod) ||
8547 	    dtrace_badattr(&pap->dtpa_func) ||
8548 	    dtrace_badattr(&pap->dtpa_name) ||
8549 	    dtrace_badattr(&pap->dtpa_args)) {
8550 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8551 		    "provider attributes", name);
8552 		return (EINVAL);
8553 	}
8554 
8555 	if (priv & ~DTRACE_PRIV_ALL) {
8556 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8557 		    "privilege attributes", name);
8558 		return (EINVAL);
8559 	}
8560 
8561 	if ((priv & DTRACE_PRIV_KERNEL) &&
8562 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8563 	    pops->dtps_usermode == NULL) {
8564 		cmn_err(CE_WARN, "failed to register provider '%s': need "
8565 		    "dtps_usermode() op for given privilege attributes", name);
8566 		return (EINVAL);
8567 	}
8568 
8569 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8570 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8571 	(void) strcpy(provider->dtpv_name, name);
8572 
8573 	provider->dtpv_attr = *pap;
8574 	provider->dtpv_priv.dtpp_flags = priv;
8575 	if (cr != NULL) {
8576 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8577 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8578 	}
8579 	provider->dtpv_pops = *pops;
8580 
8581 	if (pops->dtps_provide == NULL) {
8582 		ASSERT(pops->dtps_provide_module != NULL);
8583 		provider->dtpv_pops.dtps_provide =
8584 		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8585 	}
8586 
8587 	if (pops->dtps_provide_module == NULL) {
8588 		ASSERT(pops->dtps_provide != NULL);
8589 		provider->dtpv_pops.dtps_provide_module =
8590 		    (void (*)(void *, modctl_t *))dtrace_nullop;
8591 	}
8592 
8593 	if (pops->dtps_suspend == NULL) {
8594 		ASSERT(pops->dtps_resume == NULL);
8595 		provider->dtpv_pops.dtps_suspend =
8596 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8597 		provider->dtpv_pops.dtps_resume =
8598 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8599 	}
8600 
8601 	provider->dtpv_arg = arg;
8602 	*idp = (dtrace_provider_id_t)provider;
8603 
8604 	if (pops == &dtrace_provider_ops) {
8605 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8606 		ASSERT(MUTEX_HELD(&dtrace_lock));
8607 		ASSERT(dtrace_anon.dta_enabling == NULL);
8608 
8609 		/*
8610 		 * We make sure that the DTrace provider is at the head of
8611 		 * the provider chain.
8612 		 */
8613 		provider->dtpv_next = dtrace_provider;
8614 		dtrace_provider = provider;
8615 		return (0);
8616 	}
8617 
8618 	mutex_enter(&dtrace_provider_lock);
8619 	mutex_enter(&dtrace_lock);
8620 
8621 	/*
8622 	 * If there is at least one provider registered, we'll add this
8623 	 * provider after the first provider.
8624 	 */
8625 	if (dtrace_provider != NULL) {
8626 		provider->dtpv_next = dtrace_provider->dtpv_next;
8627 		dtrace_provider->dtpv_next = provider;
8628 	} else {
8629 		dtrace_provider = provider;
8630 	}
8631 
8632 	if (dtrace_retained != NULL) {
8633 		dtrace_enabling_provide(provider);
8634 
8635 		/*
8636 		 * Now we need to call dtrace_enabling_matchall() -- which
8637 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8638 		 * to drop all of our locks before calling into it...
8639 		 */
8640 		mutex_exit(&dtrace_lock);
8641 		mutex_exit(&dtrace_provider_lock);
8642 		dtrace_enabling_matchall();
8643 
8644 		return (0);
8645 	}
8646 
8647 	mutex_exit(&dtrace_lock);
8648 	mutex_exit(&dtrace_provider_lock);
8649 
8650 	return (0);
8651 }
8652 
8653 /*
8654  * Unregister the specified provider from the DTrace framework.  This should
8655  * generally be called by DTrace providers in their detach(9E) entry point.
8656  */
8657 int
8658 dtrace_unregister(dtrace_provider_id_t id)
8659 {
8660 	dtrace_provider_t *old = (dtrace_provider_t *)id;
8661 	dtrace_provider_t *prev = NULL;
8662 	int i, self = 0, noreap = 0;
8663 	dtrace_probe_t *probe, *first = NULL;
8664 
8665 	if (old->dtpv_pops.dtps_enable ==
8666 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8667 		/*
8668 		 * If DTrace itself is the provider, we're called with locks
8669 		 * already held.
8670 		 */
8671 		ASSERT(old == dtrace_provider);
8672 #ifdef illumos
8673 		ASSERT(dtrace_devi != NULL);
8674 #endif
8675 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8676 		ASSERT(MUTEX_HELD(&dtrace_lock));
8677 		self = 1;
8678 
8679 		if (dtrace_provider->dtpv_next != NULL) {
8680 			/*
8681 			 * There's another provider here; return failure.
8682 			 */
8683 			return (EBUSY);
8684 		}
8685 	} else {
8686 		mutex_enter(&dtrace_provider_lock);
8687 #ifdef illumos
8688 		mutex_enter(&mod_lock);
8689 #endif
8690 		mutex_enter(&dtrace_lock);
8691 	}
8692 
8693 	/*
8694 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8695 	 * probes, we refuse to let providers slither away, unless this
8696 	 * provider has already been explicitly invalidated.
8697 	 */
8698 	if (!old->dtpv_defunct &&
8699 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8700 	    dtrace_anon.dta_state->dts_necbs > 0))) {
8701 		if (!self) {
8702 			mutex_exit(&dtrace_lock);
8703 #ifdef illumos
8704 			mutex_exit(&mod_lock);
8705 #endif
8706 			mutex_exit(&dtrace_provider_lock);
8707 		}
8708 		return (EBUSY);
8709 	}
8710 
8711 	/*
8712 	 * Attempt to destroy the probes associated with this provider.
8713 	 */
8714 	for (i = 0; i < dtrace_nprobes; i++) {
8715 		if ((probe = dtrace_probes[i]) == NULL)
8716 			continue;
8717 
8718 		if (probe->dtpr_provider != old)
8719 			continue;
8720 
8721 		if (probe->dtpr_ecb == NULL)
8722 			continue;
8723 
8724 		/*
8725 		 * If we are trying to unregister a defunct provider, and the
8726 		 * provider was made defunct within the interval dictated by
8727 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8728 		 * attempt to reap our enablings.  To denote that the provider
8729 		 * should reattempt to unregister itself at some point in the
8730 		 * future, we will return a differentiable error code (EAGAIN
8731 		 * instead of EBUSY) in this case.
8732 		 */
8733 		if (dtrace_gethrtime() - old->dtpv_defunct >
8734 		    dtrace_unregister_defunct_reap)
8735 			noreap = 1;
8736 
8737 		if (!self) {
8738 			mutex_exit(&dtrace_lock);
8739 #ifdef illumos
8740 			mutex_exit(&mod_lock);
8741 #endif
8742 			mutex_exit(&dtrace_provider_lock);
8743 		}
8744 
8745 		if (noreap)
8746 			return (EBUSY);
8747 
8748 		(void) taskq_dispatch(dtrace_taskq,
8749 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8750 
8751 		return (EAGAIN);
8752 	}
8753 
8754 	/*
8755 	 * All of the probes for this provider are disabled; we can safely
8756 	 * remove all of them from their hash chains and from the probe array.
8757 	 */
8758 	for (i = 0; i < dtrace_nprobes; i++) {
8759 		if ((probe = dtrace_probes[i]) == NULL)
8760 			continue;
8761 
8762 		if (probe->dtpr_provider != old)
8763 			continue;
8764 
8765 		dtrace_probes[i] = NULL;
8766 
8767 		dtrace_hash_remove(dtrace_bymod, probe);
8768 		dtrace_hash_remove(dtrace_byfunc, probe);
8769 		dtrace_hash_remove(dtrace_byname, probe);
8770 
8771 		if (first == NULL) {
8772 			first = probe;
8773 			probe->dtpr_nextmod = NULL;
8774 		} else {
8775 			probe->dtpr_nextmod = first;
8776 			first = probe;
8777 		}
8778 	}
8779 
8780 	/*
8781 	 * The provider's probes have been removed from the hash chains and
8782 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8783 	 * everyone has cleared out from any probe array processing.
8784 	 */
8785 	dtrace_sync();
8786 
8787 	for (probe = first; probe != NULL; probe = first) {
8788 		first = probe->dtpr_nextmod;
8789 
8790 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8791 		    probe->dtpr_arg);
8792 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8793 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8794 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8795 #ifdef illumos
8796 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8797 #else
8798 		free_unr(dtrace_arena, probe->dtpr_id);
8799 #endif
8800 		kmem_free(probe, sizeof (dtrace_probe_t));
8801 	}
8802 
8803 	if ((prev = dtrace_provider) == old) {
8804 #ifdef illumos
8805 		ASSERT(self || dtrace_devi == NULL);
8806 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8807 #endif
8808 		dtrace_provider = old->dtpv_next;
8809 	} else {
8810 		while (prev != NULL && prev->dtpv_next != old)
8811 			prev = prev->dtpv_next;
8812 
8813 		if (prev == NULL) {
8814 			panic("attempt to unregister non-existent "
8815 			    "dtrace provider %p\n", (void *)id);
8816 		}
8817 
8818 		prev->dtpv_next = old->dtpv_next;
8819 	}
8820 
8821 	if (!self) {
8822 		mutex_exit(&dtrace_lock);
8823 #ifdef illumos
8824 		mutex_exit(&mod_lock);
8825 #endif
8826 		mutex_exit(&dtrace_provider_lock);
8827 	}
8828 
8829 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8830 	kmem_free(old, sizeof (dtrace_provider_t));
8831 
8832 	return (0);
8833 }
8834 
8835 /*
8836  * Invalidate the specified provider.  All subsequent probe lookups for the
8837  * specified provider will fail, but its probes will not be removed.
8838  */
8839 void
8840 dtrace_invalidate(dtrace_provider_id_t id)
8841 {
8842 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8843 
8844 	ASSERT(pvp->dtpv_pops.dtps_enable !=
8845 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8846 
8847 	mutex_enter(&dtrace_provider_lock);
8848 	mutex_enter(&dtrace_lock);
8849 
8850 	pvp->dtpv_defunct = dtrace_gethrtime();
8851 
8852 	mutex_exit(&dtrace_lock);
8853 	mutex_exit(&dtrace_provider_lock);
8854 }
8855 
8856 /*
8857  * Indicate whether or not DTrace has attached.
8858  */
8859 int
8860 dtrace_attached(void)
8861 {
8862 	/*
8863 	 * dtrace_provider will be non-NULL iff the DTrace driver has
8864 	 * attached.  (It's non-NULL because DTrace is always itself a
8865 	 * provider.)
8866 	 */
8867 	return (dtrace_provider != NULL);
8868 }
8869 
8870 /*
8871  * Remove all the unenabled probes for the given provider.  This function is
8872  * not unlike dtrace_unregister(), except that it doesn't remove the provider
8873  * -- just as many of its associated probes as it can.
8874  */
8875 int
8876 dtrace_condense(dtrace_provider_id_t id)
8877 {
8878 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
8879 	int i;
8880 	dtrace_probe_t *probe;
8881 
8882 	/*
8883 	 * Make sure this isn't the dtrace provider itself.
8884 	 */
8885 	ASSERT(prov->dtpv_pops.dtps_enable !=
8886 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8887 
8888 	mutex_enter(&dtrace_provider_lock);
8889 	mutex_enter(&dtrace_lock);
8890 
8891 	/*
8892 	 * Attempt to destroy the probes associated with this provider.
8893 	 */
8894 	for (i = 0; i < dtrace_nprobes; i++) {
8895 		if ((probe = dtrace_probes[i]) == NULL)
8896 			continue;
8897 
8898 		if (probe->dtpr_provider != prov)
8899 			continue;
8900 
8901 		if (probe->dtpr_ecb != NULL)
8902 			continue;
8903 
8904 		dtrace_probes[i] = NULL;
8905 
8906 		dtrace_hash_remove(dtrace_bymod, probe);
8907 		dtrace_hash_remove(dtrace_byfunc, probe);
8908 		dtrace_hash_remove(dtrace_byname, probe);
8909 
8910 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8911 		    probe->dtpr_arg);
8912 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8913 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8914 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8915 		kmem_free(probe, sizeof (dtrace_probe_t));
8916 #ifdef illumos
8917 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8918 #else
8919 		free_unr(dtrace_arena, i + 1);
8920 #endif
8921 	}
8922 
8923 	mutex_exit(&dtrace_lock);
8924 	mutex_exit(&dtrace_provider_lock);
8925 
8926 	return (0);
8927 }
8928 
8929 /*
8930  * DTrace Probe Management Functions
8931  *
8932  * The functions in this section perform the DTrace probe management,
8933  * including functions to create probes, look-up probes, and call into the
8934  * providers to request that probes be provided.  Some of these functions are
8935  * in the Provider-to-Framework API; these functions can be identified by the
8936  * fact that they are not declared "static".
8937  */
8938 
8939 /*
8940  * Create a probe with the specified module name, function name, and name.
8941  */
8942 dtrace_id_t
8943 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8944     const char *func, const char *name, int aframes, void *arg)
8945 {
8946 	dtrace_probe_t *probe, **probes;
8947 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8948 	dtrace_id_t id;
8949 
8950 	if (provider == dtrace_provider) {
8951 		ASSERT(MUTEX_HELD(&dtrace_lock));
8952 	} else {
8953 		mutex_enter(&dtrace_lock);
8954 	}
8955 
8956 #ifdef illumos
8957 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8958 	    VM_BESTFIT | VM_SLEEP);
8959 #else
8960 	id = alloc_unr(dtrace_arena);
8961 #endif
8962 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8963 
8964 	probe->dtpr_id = id;
8965 	probe->dtpr_gen = dtrace_probegen++;
8966 	probe->dtpr_mod = dtrace_strdup(mod);
8967 	probe->dtpr_func = dtrace_strdup(func);
8968 	probe->dtpr_name = dtrace_strdup(name);
8969 	probe->dtpr_arg = arg;
8970 	probe->dtpr_aframes = aframes;
8971 	probe->dtpr_provider = provider;
8972 
8973 	dtrace_hash_add(dtrace_bymod, probe);
8974 	dtrace_hash_add(dtrace_byfunc, probe);
8975 	dtrace_hash_add(dtrace_byname, probe);
8976 
8977 	if (id - 1 >= dtrace_nprobes) {
8978 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8979 		size_t nsize = osize << 1;
8980 
8981 		if (nsize == 0) {
8982 			ASSERT(osize == 0);
8983 			ASSERT(dtrace_probes == NULL);
8984 			nsize = sizeof (dtrace_probe_t *);
8985 		}
8986 
8987 		probes = kmem_zalloc(nsize, KM_SLEEP);
8988 
8989 		if (dtrace_probes == NULL) {
8990 			ASSERT(osize == 0);
8991 			dtrace_probes = probes;
8992 			dtrace_nprobes = 1;
8993 		} else {
8994 			dtrace_probe_t **oprobes = dtrace_probes;
8995 
8996 			bcopy(oprobes, probes, osize);
8997 			dtrace_membar_producer();
8998 			dtrace_probes = probes;
8999 
9000 			dtrace_sync();
9001 
9002 			/*
9003 			 * All CPUs are now seeing the new probes array; we can
9004 			 * safely free the old array.
9005 			 */
9006 			kmem_free(oprobes, osize);
9007 			dtrace_nprobes <<= 1;
9008 		}
9009 
9010 		ASSERT(id - 1 < dtrace_nprobes);
9011 	}
9012 
9013 	ASSERT(dtrace_probes[id - 1] == NULL);
9014 	dtrace_probes[id - 1] = probe;
9015 
9016 	if (provider != dtrace_provider)
9017 		mutex_exit(&dtrace_lock);
9018 
9019 	return (id);
9020 }
9021 
9022 static dtrace_probe_t *
9023 dtrace_probe_lookup_id(dtrace_id_t id)
9024 {
9025 	ASSERT(MUTEX_HELD(&dtrace_lock));
9026 
9027 	if (id == 0 || id > dtrace_nprobes)
9028 		return (NULL);
9029 
9030 	return (dtrace_probes[id - 1]);
9031 }
9032 
9033 static int
9034 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9035 {
9036 	*((dtrace_id_t *)arg) = probe->dtpr_id;
9037 
9038 	return (DTRACE_MATCH_DONE);
9039 }
9040 
9041 /*
9042  * Look up a probe based on provider and one or more of module name, function
9043  * name and probe name.
9044  */
9045 dtrace_id_t
9046 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9047     char *func, char *name)
9048 {
9049 	dtrace_probekey_t pkey;
9050 	dtrace_id_t id;
9051 	int match;
9052 
9053 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9054 	pkey.dtpk_pmatch = &dtrace_match_string;
9055 	pkey.dtpk_mod = mod;
9056 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9057 	pkey.dtpk_func = func;
9058 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9059 	pkey.dtpk_name = name;
9060 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9061 	pkey.dtpk_id = DTRACE_IDNONE;
9062 
9063 	mutex_enter(&dtrace_lock);
9064 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9065 	    dtrace_probe_lookup_match, &id);
9066 	mutex_exit(&dtrace_lock);
9067 
9068 	ASSERT(match == 1 || match == 0);
9069 	return (match ? id : 0);
9070 }
9071 
9072 /*
9073  * Returns the probe argument associated with the specified probe.
9074  */
9075 void *
9076 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9077 {
9078 	dtrace_probe_t *probe;
9079 	void *rval = NULL;
9080 
9081 	mutex_enter(&dtrace_lock);
9082 
9083 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9084 	    probe->dtpr_provider == (dtrace_provider_t *)id)
9085 		rval = probe->dtpr_arg;
9086 
9087 	mutex_exit(&dtrace_lock);
9088 
9089 	return (rval);
9090 }
9091 
9092 /*
9093  * Copy a probe into a probe description.
9094  */
9095 static void
9096 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9097 {
9098 	bzero(pdp, sizeof (dtrace_probedesc_t));
9099 	pdp->dtpd_id = prp->dtpr_id;
9100 
9101 	(void) strncpy(pdp->dtpd_provider,
9102 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9103 
9104 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9105 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9106 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9107 }
9108 
9109 /*
9110  * Called to indicate that a probe -- or probes -- should be provided by a
9111  * specfied provider.  If the specified description is NULL, the provider will
9112  * be told to provide all of its probes.  (This is done whenever a new
9113  * consumer comes along, or whenever a retained enabling is to be matched.) If
9114  * the specified description is non-NULL, the provider is given the
9115  * opportunity to dynamically provide the specified probe, allowing providers
9116  * to support the creation of probes on-the-fly.  (So-called _autocreated_
9117  * probes.)  If the provider is NULL, the operations will be applied to all
9118  * providers; if the provider is non-NULL the operations will only be applied
9119  * to the specified provider.  The dtrace_provider_lock must be held, and the
9120  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9121  * will need to grab the dtrace_lock when it reenters the framework through
9122  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9123  */
9124 static void
9125 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9126 {
9127 #ifdef illumos
9128 	modctl_t *ctl;
9129 #endif
9130 	int all = 0;
9131 
9132 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9133 
9134 	if (prv == NULL) {
9135 		all = 1;
9136 		prv = dtrace_provider;
9137 	}
9138 
9139 	do {
9140 		/*
9141 		 * First, call the blanket provide operation.
9142 		 */
9143 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9144 
9145 #ifdef illumos
9146 		/*
9147 		 * Now call the per-module provide operation.  We will grab
9148 		 * mod_lock to prevent the list from being modified.  Note
9149 		 * that this also prevents the mod_busy bits from changing.
9150 		 * (mod_busy can only be changed with mod_lock held.)
9151 		 */
9152 		mutex_enter(&mod_lock);
9153 
9154 		ctl = &modules;
9155 		do {
9156 			if (ctl->mod_busy || ctl->mod_mp == NULL)
9157 				continue;
9158 
9159 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9160 
9161 		} while ((ctl = ctl->mod_next) != &modules);
9162 
9163 		mutex_exit(&mod_lock);
9164 #endif
9165 	} while (all && (prv = prv->dtpv_next) != NULL);
9166 }
9167 
9168 #ifdef illumos
9169 /*
9170  * Iterate over each probe, and call the Framework-to-Provider API function
9171  * denoted by offs.
9172  */
9173 static void
9174 dtrace_probe_foreach(uintptr_t offs)
9175 {
9176 	dtrace_provider_t *prov;
9177 	void (*func)(void *, dtrace_id_t, void *);
9178 	dtrace_probe_t *probe;
9179 	dtrace_icookie_t cookie;
9180 	int i;
9181 
9182 	/*
9183 	 * We disable interrupts to walk through the probe array.  This is
9184 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9185 	 * won't see stale data.
9186 	 */
9187 	cookie = dtrace_interrupt_disable();
9188 
9189 	for (i = 0; i < dtrace_nprobes; i++) {
9190 		if ((probe = dtrace_probes[i]) == NULL)
9191 			continue;
9192 
9193 		if (probe->dtpr_ecb == NULL) {
9194 			/*
9195 			 * This probe isn't enabled -- don't call the function.
9196 			 */
9197 			continue;
9198 		}
9199 
9200 		prov = probe->dtpr_provider;
9201 		func = *((void(**)(void *, dtrace_id_t, void *))
9202 		    ((uintptr_t)&prov->dtpv_pops + offs));
9203 
9204 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9205 	}
9206 
9207 	dtrace_interrupt_enable(cookie);
9208 }
9209 #endif
9210 
9211 static int
9212 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9213 {
9214 	dtrace_probekey_t pkey;
9215 	uint32_t priv;
9216 	uid_t uid;
9217 	zoneid_t zoneid;
9218 
9219 	ASSERT(MUTEX_HELD(&dtrace_lock));
9220 	dtrace_ecb_create_cache = NULL;
9221 
9222 	if (desc == NULL) {
9223 		/*
9224 		 * If we're passed a NULL description, we're being asked to
9225 		 * create an ECB with a NULL probe.
9226 		 */
9227 		(void) dtrace_ecb_create_enable(NULL, enab);
9228 		return (0);
9229 	}
9230 
9231 	dtrace_probekey(desc, &pkey);
9232 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9233 	    &priv, &uid, &zoneid);
9234 
9235 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9236 	    enab));
9237 }
9238 
9239 /*
9240  * DTrace Helper Provider Functions
9241  */
9242 static void
9243 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9244 {
9245 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
9246 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
9247 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9248 }
9249 
9250 static void
9251 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9252     const dof_provider_t *dofprov, char *strtab)
9253 {
9254 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9255 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9256 	    dofprov->dofpv_provattr);
9257 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9258 	    dofprov->dofpv_modattr);
9259 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9260 	    dofprov->dofpv_funcattr);
9261 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9262 	    dofprov->dofpv_nameattr);
9263 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9264 	    dofprov->dofpv_argsattr);
9265 }
9266 
9267 static void
9268 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9269 {
9270 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9271 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9272 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9273 	dof_provider_t *provider;
9274 	dof_probe_t *probe;
9275 	uint32_t *off, *enoff;
9276 	uint8_t *arg;
9277 	char *strtab;
9278 	uint_t i, nprobes;
9279 	dtrace_helper_provdesc_t dhpv;
9280 	dtrace_helper_probedesc_t dhpb;
9281 	dtrace_meta_t *meta = dtrace_meta_pid;
9282 	dtrace_mops_t *mops = &meta->dtm_mops;
9283 	void *parg;
9284 
9285 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9286 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9287 	    provider->dofpv_strtab * dof->dofh_secsize);
9288 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9289 	    provider->dofpv_probes * dof->dofh_secsize);
9290 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9291 	    provider->dofpv_prargs * dof->dofh_secsize);
9292 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9293 	    provider->dofpv_proffs * dof->dofh_secsize);
9294 
9295 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9296 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9297 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9298 	enoff = NULL;
9299 
9300 	/*
9301 	 * See dtrace_helper_provider_validate().
9302 	 */
9303 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9304 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
9305 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9306 		    provider->dofpv_prenoffs * dof->dofh_secsize);
9307 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9308 	}
9309 
9310 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9311 
9312 	/*
9313 	 * Create the provider.
9314 	 */
9315 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9316 
9317 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9318 		return;
9319 
9320 	meta->dtm_count++;
9321 
9322 	/*
9323 	 * Create the probes.
9324 	 */
9325 	for (i = 0; i < nprobes; i++) {
9326 		probe = (dof_probe_t *)(uintptr_t)(daddr +
9327 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9328 
9329 		dhpb.dthpb_mod = dhp->dofhp_mod;
9330 		dhpb.dthpb_func = strtab + probe->dofpr_func;
9331 		dhpb.dthpb_name = strtab + probe->dofpr_name;
9332 		dhpb.dthpb_base = probe->dofpr_addr;
9333 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
9334 		dhpb.dthpb_noffs = probe->dofpr_noffs;
9335 		if (enoff != NULL) {
9336 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9337 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9338 		} else {
9339 			dhpb.dthpb_enoffs = NULL;
9340 			dhpb.dthpb_nenoffs = 0;
9341 		}
9342 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9343 		dhpb.dthpb_nargc = probe->dofpr_nargc;
9344 		dhpb.dthpb_xargc = probe->dofpr_xargc;
9345 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9346 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9347 
9348 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9349 	}
9350 }
9351 
9352 static void
9353 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9354 {
9355 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9356 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9357 	int i;
9358 
9359 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9360 
9361 	for (i = 0; i < dof->dofh_secnum; i++) {
9362 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9363 		    dof->dofh_secoff + i * dof->dofh_secsize);
9364 
9365 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9366 			continue;
9367 
9368 		dtrace_helper_provide_one(dhp, sec, pid);
9369 	}
9370 
9371 	/*
9372 	 * We may have just created probes, so we must now rematch against
9373 	 * any retained enablings.  Note that this call will acquire both
9374 	 * cpu_lock and dtrace_lock; the fact that we are holding
9375 	 * dtrace_meta_lock now is what defines the ordering with respect to
9376 	 * these three locks.
9377 	 */
9378 	dtrace_enabling_matchall();
9379 }
9380 
9381 static void
9382 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9383 {
9384 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9385 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9386 	dof_sec_t *str_sec;
9387 	dof_provider_t *provider;
9388 	char *strtab;
9389 	dtrace_helper_provdesc_t dhpv;
9390 	dtrace_meta_t *meta = dtrace_meta_pid;
9391 	dtrace_mops_t *mops = &meta->dtm_mops;
9392 
9393 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9394 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9395 	    provider->dofpv_strtab * dof->dofh_secsize);
9396 
9397 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9398 
9399 	/*
9400 	 * Create the provider.
9401 	 */
9402 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9403 
9404 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9405 
9406 	meta->dtm_count--;
9407 }
9408 
9409 static void
9410 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9411 {
9412 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9413 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9414 	int i;
9415 
9416 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9417 
9418 	for (i = 0; i < dof->dofh_secnum; i++) {
9419 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9420 		    dof->dofh_secoff + i * dof->dofh_secsize);
9421 
9422 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9423 			continue;
9424 
9425 		dtrace_helper_provider_remove_one(dhp, sec, pid);
9426 	}
9427 }
9428 
9429 /*
9430  * DTrace Meta Provider-to-Framework API Functions
9431  *
9432  * These functions implement the Meta Provider-to-Framework API, as described
9433  * in <sys/dtrace.h>.
9434  */
9435 int
9436 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9437     dtrace_meta_provider_id_t *idp)
9438 {
9439 	dtrace_meta_t *meta;
9440 	dtrace_helpers_t *help, *next;
9441 	int i;
9442 
9443 	*idp = DTRACE_METAPROVNONE;
9444 
9445 	/*
9446 	 * We strictly don't need the name, but we hold onto it for
9447 	 * debuggability. All hail error queues!
9448 	 */
9449 	if (name == NULL) {
9450 		cmn_err(CE_WARN, "failed to register meta-provider: "
9451 		    "invalid name");
9452 		return (EINVAL);
9453 	}
9454 
9455 	if (mops == NULL ||
9456 	    mops->dtms_create_probe == NULL ||
9457 	    mops->dtms_provide_pid == NULL ||
9458 	    mops->dtms_remove_pid == NULL) {
9459 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9460 		    "invalid ops", name);
9461 		return (EINVAL);
9462 	}
9463 
9464 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9465 	meta->dtm_mops = *mops;
9466 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9467 	(void) strcpy(meta->dtm_name, name);
9468 	meta->dtm_arg = arg;
9469 
9470 	mutex_enter(&dtrace_meta_lock);
9471 	mutex_enter(&dtrace_lock);
9472 
9473 	if (dtrace_meta_pid != NULL) {
9474 		mutex_exit(&dtrace_lock);
9475 		mutex_exit(&dtrace_meta_lock);
9476 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9477 		    "user-land meta-provider exists", name);
9478 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9479 		kmem_free(meta, sizeof (dtrace_meta_t));
9480 		return (EINVAL);
9481 	}
9482 
9483 	dtrace_meta_pid = meta;
9484 	*idp = (dtrace_meta_provider_id_t)meta;
9485 
9486 	/*
9487 	 * If there are providers and probes ready to go, pass them
9488 	 * off to the new meta provider now.
9489 	 */
9490 
9491 	help = dtrace_deferred_pid;
9492 	dtrace_deferred_pid = NULL;
9493 
9494 	mutex_exit(&dtrace_lock);
9495 
9496 	while (help != NULL) {
9497 		for (i = 0; i < help->dthps_nprovs; i++) {
9498 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9499 			    help->dthps_pid);
9500 		}
9501 
9502 		next = help->dthps_next;
9503 		help->dthps_next = NULL;
9504 		help->dthps_prev = NULL;
9505 		help->dthps_deferred = 0;
9506 		help = next;
9507 	}
9508 
9509 	mutex_exit(&dtrace_meta_lock);
9510 
9511 	return (0);
9512 }
9513 
9514 int
9515 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9516 {
9517 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9518 
9519 	mutex_enter(&dtrace_meta_lock);
9520 	mutex_enter(&dtrace_lock);
9521 
9522 	if (old == dtrace_meta_pid) {
9523 		pp = &dtrace_meta_pid;
9524 	} else {
9525 		panic("attempt to unregister non-existent "
9526 		    "dtrace meta-provider %p\n", (void *)old);
9527 	}
9528 
9529 	if (old->dtm_count != 0) {
9530 		mutex_exit(&dtrace_lock);
9531 		mutex_exit(&dtrace_meta_lock);
9532 		return (EBUSY);
9533 	}
9534 
9535 	*pp = NULL;
9536 
9537 	mutex_exit(&dtrace_lock);
9538 	mutex_exit(&dtrace_meta_lock);
9539 
9540 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9541 	kmem_free(old, sizeof (dtrace_meta_t));
9542 
9543 	return (0);
9544 }
9545 
9546 
9547 /*
9548  * DTrace DIF Object Functions
9549  */
9550 static int
9551 dtrace_difo_err(uint_t pc, const char *format, ...)
9552 {
9553 	if (dtrace_err_verbose) {
9554 		va_list alist;
9555 
9556 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9557 		va_start(alist, format);
9558 		(void) vuprintf(format, alist);
9559 		va_end(alist);
9560 	}
9561 
9562 #ifdef DTRACE_ERRDEBUG
9563 	dtrace_errdebug(format);
9564 #endif
9565 	return (1);
9566 }
9567 
9568 /*
9569  * Validate a DTrace DIF object by checking the IR instructions.  The following
9570  * rules are currently enforced by dtrace_difo_validate():
9571  *
9572  * 1. Each instruction must have a valid opcode
9573  * 2. Each register, string, variable, or subroutine reference must be valid
9574  * 3. No instruction can modify register %r0 (must be zero)
9575  * 4. All instruction reserved bits must be set to zero
9576  * 5. The last instruction must be a "ret" instruction
9577  * 6. All branch targets must reference a valid instruction _after_ the branch
9578  */
9579 static int
9580 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9581     cred_t *cr)
9582 {
9583 	int err = 0, i;
9584 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9585 	int kcheckload;
9586 	uint_t pc;
9587 
9588 	kcheckload = cr == NULL ||
9589 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9590 
9591 	dp->dtdo_destructive = 0;
9592 
9593 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9594 		dif_instr_t instr = dp->dtdo_buf[pc];
9595 
9596 		uint_t r1 = DIF_INSTR_R1(instr);
9597 		uint_t r2 = DIF_INSTR_R2(instr);
9598 		uint_t rd = DIF_INSTR_RD(instr);
9599 		uint_t rs = DIF_INSTR_RS(instr);
9600 		uint_t label = DIF_INSTR_LABEL(instr);
9601 		uint_t v = DIF_INSTR_VAR(instr);
9602 		uint_t subr = DIF_INSTR_SUBR(instr);
9603 		uint_t type = DIF_INSTR_TYPE(instr);
9604 		uint_t op = DIF_INSTR_OP(instr);
9605 
9606 		switch (op) {
9607 		case DIF_OP_OR:
9608 		case DIF_OP_XOR:
9609 		case DIF_OP_AND:
9610 		case DIF_OP_SLL:
9611 		case DIF_OP_SRL:
9612 		case DIF_OP_SRA:
9613 		case DIF_OP_SUB:
9614 		case DIF_OP_ADD:
9615 		case DIF_OP_MUL:
9616 		case DIF_OP_SDIV:
9617 		case DIF_OP_UDIV:
9618 		case DIF_OP_SREM:
9619 		case DIF_OP_UREM:
9620 		case DIF_OP_COPYS:
9621 			if (r1 >= nregs)
9622 				err += efunc(pc, "invalid register %u\n", r1);
9623 			if (r2 >= nregs)
9624 				err += efunc(pc, "invalid register %u\n", r2);
9625 			if (rd >= nregs)
9626 				err += efunc(pc, "invalid register %u\n", rd);
9627 			if (rd == 0)
9628 				err += efunc(pc, "cannot write to %r0\n");
9629 			break;
9630 		case DIF_OP_NOT:
9631 		case DIF_OP_MOV:
9632 		case DIF_OP_ALLOCS:
9633 			if (r1 >= nregs)
9634 				err += efunc(pc, "invalid register %u\n", r1);
9635 			if (r2 != 0)
9636 				err += efunc(pc, "non-zero reserved bits\n");
9637 			if (rd >= nregs)
9638 				err += efunc(pc, "invalid register %u\n", rd);
9639 			if (rd == 0)
9640 				err += efunc(pc, "cannot write to %r0\n");
9641 			break;
9642 		case DIF_OP_LDSB:
9643 		case DIF_OP_LDSH:
9644 		case DIF_OP_LDSW:
9645 		case DIF_OP_LDUB:
9646 		case DIF_OP_LDUH:
9647 		case DIF_OP_LDUW:
9648 		case DIF_OP_LDX:
9649 			if (r1 >= nregs)
9650 				err += efunc(pc, "invalid register %u\n", r1);
9651 			if (r2 != 0)
9652 				err += efunc(pc, "non-zero reserved bits\n");
9653 			if (rd >= nregs)
9654 				err += efunc(pc, "invalid register %u\n", rd);
9655 			if (rd == 0)
9656 				err += efunc(pc, "cannot write to %r0\n");
9657 			if (kcheckload)
9658 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9659 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9660 			break;
9661 		case DIF_OP_RLDSB:
9662 		case DIF_OP_RLDSH:
9663 		case DIF_OP_RLDSW:
9664 		case DIF_OP_RLDUB:
9665 		case DIF_OP_RLDUH:
9666 		case DIF_OP_RLDUW:
9667 		case DIF_OP_RLDX:
9668 			if (r1 >= nregs)
9669 				err += efunc(pc, "invalid register %u\n", r1);
9670 			if (r2 != 0)
9671 				err += efunc(pc, "non-zero reserved bits\n");
9672 			if (rd >= nregs)
9673 				err += efunc(pc, "invalid register %u\n", rd);
9674 			if (rd == 0)
9675 				err += efunc(pc, "cannot write to %r0\n");
9676 			break;
9677 		case DIF_OP_ULDSB:
9678 		case DIF_OP_ULDSH:
9679 		case DIF_OP_ULDSW:
9680 		case DIF_OP_ULDUB:
9681 		case DIF_OP_ULDUH:
9682 		case DIF_OP_ULDUW:
9683 		case DIF_OP_ULDX:
9684 			if (r1 >= nregs)
9685 				err += efunc(pc, "invalid register %u\n", r1);
9686 			if (r2 != 0)
9687 				err += efunc(pc, "non-zero reserved bits\n");
9688 			if (rd >= nregs)
9689 				err += efunc(pc, "invalid register %u\n", rd);
9690 			if (rd == 0)
9691 				err += efunc(pc, "cannot write to %r0\n");
9692 			break;
9693 		case DIF_OP_STB:
9694 		case DIF_OP_STH:
9695 		case DIF_OP_STW:
9696 		case DIF_OP_STX:
9697 			if (r1 >= nregs)
9698 				err += efunc(pc, "invalid register %u\n", r1);
9699 			if (r2 != 0)
9700 				err += efunc(pc, "non-zero reserved bits\n");
9701 			if (rd >= nregs)
9702 				err += efunc(pc, "invalid register %u\n", rd);
9703 			if (rd == 0)
9704 				err += efunc(pc, "cannot write to 0 address\n");
9705 			break;
9706 		case DIF_OP_CMP:
9707 		case DIF_OP_SCMP:
9708 			if (r1 >= nregs)
9709 				err += efunc(pc, "invalid register %u\n", r1);
9710 			if (r2 >= nregs)
9711 				err += efunc(pc, "invalid register %u\n", r2);
9712 			if (rd != 0)
9713 				err += efunc(pc, "non-zero reserved bits\n");
9714 			break;
9715 		case DIF_OP_TST:
9716 			if (r1 >= nregs)
9717 				err += efunc(pc, "invalid register %u\n", r1);
9718 			if (r2 != 0 || rd != 0)
9719 				err += efunc(pc, "non-zero reserved bits\n");
9720 			break;
9721 		case DIF_OP_BA:
9722 		case DIF_OP_BE:
9723 		case DIF_OP_BNE:
9724 		case DIF_OP_BG:
9725 		case DIF_OP_BGU:
9726 		case DIF_OP_BGE:
9727 		case DIF_OP_BGEU:
9728 		case DIF_OP_BL:
9729 		case DIF_OP_BLU:
9730 		case DIF_OP_BLE:
9731 		case DIF_OP_BLEU:
9732 			if (label >= dp->dtdo_len) {
9733 				err += efunc(pc, "invalid branch target %u\n",
9734 				    label);
9735 			}
9736 			if (label <= pc) {
9737 				err += efunc(pc, "backward branch to %u\n",
9738 				    label);
9739 			}
9740 			break;
9741 		case DIF_OP_RET:
9742 			if (r1 != 0 || r2 != 0)
9743 				err += efunc(pc, "non-zero reserved bits\n");
9744 			if (rd >= nregs)
9745 				err += efunc(pc, "invalid register %u\n", rd);
9746 			break;
9747 		case DIF_OP_NOP:
9748 		case DIF_OP_POPTS:
9749 		case DIF_OP_FLUSHTS:
9750 			if (r1 != 0 || r2 != 0 || rd != 0)
9751 				err += efunc(pc, "non-zero reserved bits\n");
9752 			break;
9753 		case DIF_OP_SETX:
9754 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9755 				err += efunc(pc, "invalid integer ref %u\n",
9756 				    DIF_INSTR_INTEGER(instr));
9757 			}
9758 			if (rd >= nregs)
9759 				err += efunc(pc, "invalid register %u\n", rd);
9760 			if (rd == 0)
9761 				err += efunc(pc, "cannot write to %r0\n");
9762 			break;
9763 		case DIF_OP_SETS:
9764 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9765 				err += efunc(pc, "invalid string ref %u\n",
9766 				    DIF_INSTR_STRING(instr));
9767 			}
9768 			if (rd >= nregs)
9769 				err += efunc(pc, "invalid register %u\n", rd);
9770 			if (rd == 0)
9771 				err += efunc(pc, "cannot write to %r0\n");
9772 			break;
9773 		case DIF_OP_LDGA:
9774 		case DIF_OP_LDTA:
9775 			if (r1 > DIF_VAR_ARRAY_MAX)
9776 				err += efunc(pc, "invalid array %u\n", r1);
9777 			if (r2 >= nregs)
9778 				err += efunc(pc, "invalid register %u\n", r2);
9779 			if (rd >= nregs)
9780 				err += efunc(pc, "invalid register %u\n", rd);
9781 			if (rd == 0)
9782 				err += efunc(pc, "cannot write to %r0\n");
9783 			break;
9784 		case DIF_OP_LDGS:
9785 		case DIF_OP_LDTS:
9786 		case DIF_OP_LDLS:
9787 		case DIF_OP_LDGAA:
9788 		case DIF_OP_LDTAA:
9789 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9790 				err += efunc(pc, "invalid variable %u\n", v);
9791 			if (rd >= nregs)
9792 				err += efunc(pc, "invalid register %u\n", rd);
9793 			if (rd == 0)
9794 				err += efunc(pc, "cannot write to %r0\n");
9795 			break;
9796 		case DIF_OP_STGS:
9797 		case DIF_OP_STTS:
9798 		case DIF_OP_STLS:
9799 		case DIF_OP_STGAA:
9800 		case DIF_OP_STTAA:
9801 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9802 				err += efunc(pc, "invalid variable %u\n", v);
9803 			if (rs >= nregs)
9804 				err += efunc(pc, "invalid register %u\n", rd);
9805 			break;
9806 		case DIF_OP_CALL:
9807 			if (subr > DIF_SUBR_MAX)
9808 				err += efunc(pc, "invalid subr %u\n", subr);
9809 			if (rd >= nregs)
9810 				err += efunc(pc, "invalid register %u\n", rd);
9811 			if (rd == 0)
9812 				err += efunc(pc, "cannot write to %r0\n");
9813 
9814 			if (subr == DIF_SUBR_COPYOUT ||
9815 			    subr == DIF_SUBR_COPYOUTSTR) {
9816 				dp->dtdo_destructive = 1;
9817 			}
9818 
9819 			if (subr == DIF_SUBR_GETF) {
9820 				/*
9821 				 * If we have a getf() we need to record that
9822 				 * in our state.  Note that our state can be
9823 				 * NULL if this is a helper -- but in that
9824 				 * case, the call to getf() is itself illegal,
9825 				 * and will be caught (slightly later) when
9826 				 * the helper is validated.
9827 				 */
9828 				if (vstate->dtvs_state != NULL)
9829 					vstate->dtvs_state->dts_getf++;
9830 			}
9831 
9832 			break;
9833 		case DIF_OP_PUSHTR:
9834 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9835 				err += efunc(pc, "invalid ref type %u\n", type);
9836 			if (r2 >= nregs)
9837 				err += efunc(pc, "invalid register %u\n", r2);
9838 			if (rs >= nregs)
9839 				err += efunc(pc, "invalid register %u\n", rs);
9840 			break;
9841 		case DIF_OP_PUSHTV:
9842 			if (type != DIF_TYPE_CTF)
9843 				err += efunc(pc, "invalid val type %u\n", type);
9844 			if (r2 >= nregs)
9845 				err += efunc(pc, "invalid register %u\n", r2);
9846 			if (rs >= nregs)
9847 				err += efunc(pc, "invalid register %u\n", rs);
9848 			break;
9849 		default:
9850 			err += efunc(pc, "invalid opcode %u\n",
9851 			    DIF_INSTR_OP(instr));
9852 		}
9853 	}
9854 
9855 	if (dp->dtdo_len != 0 &&
9856 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9857 		err += efunc(dp->dtdo_len - 1,
9858 		    "expected 'ret' as last DIF instruction\n");
9859 	}
9860 
9861 	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9862 		/*
9863 		 * If we're not returning by reference, the size must be either
9864 		 * 0 or the size of one of the base types.
9865 		 */
9866 		switch (dp->dtdo_rtype.dtdt_size) {
9867 		case 0:
9868 		case sizeof (uint8_t):
9869 		case sizeof (uint16_t):
9870 		case sizeof (uint32_t):
9871 		case sizeof (uint64_t):
9872 			break;
9873 
9874 		default:
9875 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
9876 		}
9877 	}
9878 
9879 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9880 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9881 		dtrace_diftype_t *vt, *et;
9882 		uint_t id, ndx;
9883 
9884 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9885 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
9886 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9887 			err += efunc(i, "unrecognized variable scope %d\n",
9888 			    v->dtdv_scope);
9889 			break;
9890 		}
9891 
9892 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9893 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
9894 			err += efunc(i, "unrecognized variable type %d\n",
9895 			    v->dtdv_kind);
9896 			break;
9897 		}
9898 
9899 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9900 			err += efunc(i, "%d exceeds variable id limit\n", id);
9901 			break;
9902 		}
9903 
9904 		if (id < DIF_VAR_OTHER_UBASE)
9905 			continue;
9906 
9907 		/*
9908 		 * For user-defined variables, we need to check that this
9909 		 * definition is identical to any previous definition that we
9910 		 * encountered.
9911 		 */
9912 		ndx = id - DIF_VAR_OTHER_UBASE;
9913 
9914 		switch (v->dtdv_scope) {
9915 		case DIFV_SCOPE_GLOBAL:
9916 			if (ndx < vstate->dtvs_nglobals) {
9917 				dtrace_statvar_t *svar;
9918 
9919 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9920 					existing = &svar->dtsv_var;
9921 			}
9922 
9923 			break;
9924 
9925 		case DIFV_SCOPE_THREAD:
9926 			if (ndx < vstate->dtvs_ntlocals)
9927 				existing = &vstate->dtvs_tlocals[ndx];
9928 			break;
9929 
9930 		case DIFV_SCOPE_LOCAL:
9931 			if (ndx < vstate->dtvs_nlocals) {
9932 				dtrace_statvar_t *svar;
9933 
9934 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9935 					existing = &svar->dtsv_var;
9936 			}
9937 
9938 			break;
9939 		}
9940 
9941 		vt = &v->dtdv_type;
9942 
9943 		if (vt->dtdt_flags & DIF_TF_BYREF) {
9944 			if (vt->dtdt_size == 0) {
9945 				err += efunc(i, "zero-sized variable\n");
9946 				break;
9947 			}
9948 
9949 			if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
9950 			    v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
9951 			    vt->dtdt_size > dtrace_statvar_maxsize) {
9952 				err += efunc(i, "oversized by-ref static\n");
9953 				break;
9954 			}
9955 		}
9956 
9957 		if (existing == NULL || existing->dtdv_id == 0)
9958 			continue;
9959 
9960 		ASSERT(existing->dtdv_id == v->dtdv_id);
9961 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
9962 
9963 		if (existing->dtdv_kind != v->dtdv_kind)
9964 			err += efunc(i, "%d changed variable kind\n", id);
9965 
9966 		et = &existing->dtdv_type;
9967 
9968 		if (vt->dtdt_flags != et->dtdt_flags) {
9969 			err += efunc(i, "%d changed variable type flags\n", id);
9970 			break;
9971 		}
9972 
9973 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9974 			err += efunc(i, "%d changed variable type size\n", id);
9975 			break;
9976 		}
9977 	}
9978 
9979 	return (err);
9980 }
9981 
9982 /*
9983  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
9984  * are much more constrained than normal DIFOs.  Specifically, they may
9985  * not:
9986  *
9987  * 1. Make calls to subroutines other than copyin(), copyinstr() or
9988  *    miscellaneous string routines
9989  * 2. Access DTrace variables other than the args[] array, and the
9990  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9991  * 3. Have thread-local variables.
9992  * 4. Have dynamic variables.
9993  */
9994 static int
9995 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9996 {
9997 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9998 	int err = 0;
9999 	uint_t pc;
10000 
10001 	for (pc = 0; pc < dp->dtdo_len; pc++) {
10002 		dif_instr_t instr = dp->dtdo_buf[pc];
10003 
10004 		uint_t v = DIF_INSTR_VAR(instr);
10005 		uint_t subr = DIF_INSTR_SUBR(instr);
10006 		uint_t op = DIF_INSTR_OP(instr);
10007 
10008 		switch (op) {
10009 		case DIF_OP_OR:
10010 		case DIF_OP_XOR:
10011 		case DIF_OP_AND:
10012 		case DIF_OP_SLL:
10013 		case DIF_OP_SRL:
10014 		case DIF_OP_SRA:
10015 		case DIF_OP_SUB:
10016 		case DIF_OP_ADD:
10017 		case DIF_OP_MUL:
10018 		case DIF_OP_SDIV:
10019 		case DIF_OP_UDIV:
10020 		case DIF_OP_SREM:
10021 		case DIF_OP_UREM:
10022 		case DIF_OP_COPYS:
10023 		case DIF_OP_NOT:
10024 		case DIF_OP_MOV:
10025 		case DIF_OP_RLDSB:
10026 		case DIF_OP_RLDSH:
10027 		case DIF_OP_RLDSW:
10028 		case DIF_OP_RLDUB:
10029 		case DIF_OP_RLDUH:
10030 		case DIF_OP_RLDUW:
10031 		case DIF_OP_RLDX:
10032 		case DIF_OP_ULDSB:
10033 		case DIF_OP_ULDSH:
10034 		case DIF_OP_ULDSW:
10035 		case DIF_OP_ULDUB:
10036 		case DIF_OP_ULDUH:
10037 		case DIF_OP_ULDUW:
10038 		case DIF_OP_ULDX:
10039 		case DIF_OP_STB:
10040 		case DIF_OP_STH:
10041 		case DIF_OP_STW:
10042 		case DIF_OP_STX:
10043 		case DIF_OP_ALLOCS:
10044 		case DIF_OP_CMP:
10045 		case DIF_OP_SCMP:
10046 		case DIF_OP_TST:
10047 		case DIF_OP_BA:
10048 		case DIF_OP_BE:
10049 		case DIF_OP_BNE:
10050 		case DIF_OP_BG:
10051 		case DIF_OP_BGU:
10052 		case DIF_OP_BGE:
10053 		case DIF_OP_BGEU:
10054 		case DIF_OP_BL:
10055 		case DIF_OP_BLU:
10056 		case DIF_OP_BLE:
10057 		case DIF_OP_BLEU:
10058 		case DIF_OP_RET:
10059 		case DIF_OP_NOP:
10060 		case DIF_OP_POPTS:
10061 		case DIF_OP_FLUSHTS:
10062 		case DIF_OP_SETX:
10063 		case DIF_OP_SETS:
10064 		case DIF_OP_LDGA:
10065 		case DIF_OP_LDLS:
10066 		case DIF_OP_STGS:
10067 		case DIF_OP_STLS:
10068 		case DIF_OP_PUSHTR:
10069 		case DIF_OP_PUSHTV:
10070 			break;
10071 
10072 		case DIF_OP_LDGS:
10073 			if (v >= DIF_VAR_OTHER_UBASE)
10074 				break;
10075 
10076 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10077 				break;
10078 
10079 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10080 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10081 			    v == DIF_VAR_EXECARGS ||
10082 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10083 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
10084 				break;
10085 
10086 			err += efunc(pc, "illegal variable %u\n", v);
10087 			break;
10088 
10089 		case DIF_OP_LDTA:
10090 		case DIF_OP_LDTS:
10091 		case DIF_OP_LDGAA:
10092 		case DIF_OP_LDTAA:
10093 			err += efunc(pc, "illegal dynamic variable load\n");
10094 			break;
10095 
10096 		case DIF_OP_STTS:
10097 		case DIF_OP_STGAA:
10098 		case DIF_OP_STTAA:
10099 			err += efunc(pc, "illegal dynamic variable store\n");
10100 			break;
10101 
10102 		case DIF_OP_CALL:
10103 			if (subr == DIF_SUBR_ALLOCA ||
10104 			    subr == DIF_SUBR_BCOPY ||
10105 			    subr == DIF_SUBR_COPYIN ||
10106 			    subr == DIF_SUBR_COPYINTO ||
10107 			    subr == DIF_SUBR_COPYINSTR ||
10108 			    subr == DIF_SUBR_INDEX ||
10109 			    subr == DIF_SUBR_INET_NTOA ||
10110 			    subr == DIF_SUBR_INET_NTOA6 ||
10111 			    subr == DIF_SUBR_INET_NTOP ||
10112 			    subr == DIF_SUBR_JSON ||
10113 			    subr == DIF_SUBR_LLTOSTR ||
10114 			    subr == DIF_SUBR_STRTOLL ||
10115 			    subr == DIF_SUBR_RINDEX ||
10116 			    subr == DIF_SUBR_STRCHR ||
10117 			    subr == DIF_SUBR_STRJOIN ||
10118 			    subr == DIF_SUBR_STRRCHR ||
10119 			    subr == DIF_SUBR_STRSTR ||
10120 			    subr == DIF_SUBR_HTONS ||
10121 			    subr == DIF_SUBR_HTONL ||
10122 			    subr == DIF_SUBR_HTONLL ||
10123 			    subr == DIF_SUBR_NTOHS ||
10124 			    subr == DIF_SUBR_NTOHL ||
10125 			    subr == DIF_SUBR_NTOHLL ||
10126 			    subr == DIF_SUBR_MEMREF ||
10127 #ifndef illumos
10128 			    subr == DIF_SUBR_MEMSTR ||
10129 #endif
10130 			    subr == DIF_SUBR_TYPEREF)
10131 				break;
10132 
10133 			err += efunc(pc, "invalid subr %u\n", subr);
10134 			break;
10135 
10136 		default:
10137 			err += efunc(pc, "invalid opcode %u\n",
10138 			    DIF_INSTR_OP(instr));
10139 		}
10140 	}
10141 
10142 	return (err);
10143 }
10144 
10145 /*
10146  * Returns 1 if the expression in the DIF object can be cached on a per-thread
10147  * basis; 0 if not.
10148  */
10149 static int
10150 dtrace_difo_cacheable(dtrace_difo_t *dp)
10151 {
10152 	int i;
10153 
10154 	if (dp == NULL)
10155 		return (0);
10156 
10157 	for (i = 0; i < dp->dtdo_varlen; i++) {
10158 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10159 
10160 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10161 			continue;
10162 
10163 		switch (v->dtdv_id) {
10164 		case DIF_VAR_CURTHREAD:
10165 		case DIF_VAR_PID:
10166 		case DIF_VAR_TID:
10167 		case DIF_VAR_EXECARGS:
10168 		case DIF_VAR_EXECNAME:
10169 		case DIF_VAR_ZONENAME:
10170 			break;
10171 
10172 		default:
10173 			return (0);
10174 		}
10175 	}
10176 
10177 	/*
10178 	 * This DIF object may be cacheable.  Now we need to look for any
10179 	 * array loading instructions, any memory loading instructions, or
10180 	 * any stores to thread-local variables.
10181 	 */
10182 	for (i = 0; i < dp->dtdo_len; i++) {
10183 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10184 
10185 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10186 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10187 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10188 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
10189 			return (0);
10190 	}
10191 
10192 	return (1);
10193 }
10194 
10195 static void
10196 dtrace_difo_hold(dtrace_difo_t *dp)
10197 {
10198 	int i;
10199 
10200 	ASSERT(MUTEX_HELD(&dtrace_lock));
10201 
10202 	dp->dtdo_refcnt++;
10203 	ASSERT(dp->dtdo_refcnt != 0);
10204 
10205 	/*
10206 	 * We need to check this DIF object for references to the variable
10207 	 * DIF_VAR_VTIMESTAMP.
10208 	 */
10209 	for (i = 0; i < dp->dtdo_varlen; i++) {
10210 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10211 
10212 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10213 			continue;
10214 
10215 		if (dtrace_vtime_references++ == 0)
10216 			dtrace_vtime_enable();
10217 	}
10218 }
10219 
10220 /*
10221  * This routine calculates the dynamic variable chunksize for a given DIF
10222  * object.  The calculation is not fool-proof, and can probably be tricked by
10223  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
10224  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10225  * if a dynamic variable size exceeds the chunksize.
10226  */
10227 static void
10228 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10229 {
10230 	uint64_t sval = 0;
10231 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10232 	const dif_instr_t *text = dp->dtdo_buf;
10233 	uint_t pc, srd = 0;
10234 	uint_t ttop = 0;
10235 	size_t size, ksize;
10236 	uint_t id, i;
10237 
10238 	for (pc = 0; pc < dp->dtdo_len; pc++) {
10239 		dif_instr_t instr = text[pc];
10240 		uint_t op = DIF_INSTR_OP(instr);
10241 		uint_t rd = DIF_INSTR_RD(instr);
10242 		uint_t r1 = DIF_INSTR_R1(instr);
10243 		uint_t nkeys = 0;
10244 		uchar_t scope = 0;
10245 
10246 		dtrace_key_t *key = tupregs;
10247 
10248 		switch (op) {
10249 		case DIF_OP_SETX:
10250 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10251 			srd = rd;
10252 			continue;
10253 
10254 		case DIF_OP_STTS:
10255 			key = &tupregs[DIF_DTR_NREGS];
10256 			key[0].dttk_size = 0;
10257 			key[1].dttk_size = 0;
10258 			nkeys = 2;
10259 			scope = DIFV_SCOPE_THREAD;
10260 			break;
10261 
10262 		case DIF_OP_STGAA:
10263 		case DIF_OP_STTAA:
10264 			nkeys = ttop;
10265 
10266 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10267 				key[nkeys++].dttk_size = 0;
10268 
10269 			key[nkeys++].dttk_size = 0;
10270 
10271 			if (op == DIF_OP_STTAA) {
10272 				scope = DIFV_SCOPE_THREAD;
10273 			} else {
10274 				scope = DIFV_SCOPE_GLOBAL;
10275 			}
10276 
10277 			break;
10278 
10279 		case DIF_OP_PUSHTR:
10280 			if (ttop == DIF_DTR_NREGS)
10281 				return;
10282 
10283 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10284 				/*
10285 				 * If the register for the size of the "pushtr"
10286 				 * is %r0 (or the value is 0) and the type is
10287 				 * a string, we'll use the system-wide default
10288 				 * string size.
10289 				 */
10290 				tupregs[ttop++].dttk_size =
10291 				    dtrace_strsize_default;
10292 			} else {
10293 				if (srd == 0)
10294 					return;
10295 
10296 				if (sval > LONG_MAX)
10297 					return;
10298 
10299 				tupregs[ttop++].dttk_size = sval;
10300 			}
10301 
10302 			break;
10303 
10304 		case DIF_OP_PUSHTV:
10305 			if (ttop == DIF_DTR_NREGS)
10306 				return;
10307 
10308 			tupregs[ttop++].dttk_size = 0;
10309 			break;
10310 
10311 		case DIF_OP_FLUSHTS:
10312 			ttop = 0;
10313 			break;
10314 
10315 		case DIF_OP_POPTS:
10316 			if (ttop != 0)
10317 				ttop--;
10318 			break;
10319 		}
10320 
10321 		sval = 0;
10322 		srd = 0;
10323 
10324 		if (nkeys == 0)
10325 			continue;
10326 
10327 		/*
10328 		 * We have a dynamic variable allocation; calculate its size.
10329 		 */
10330 		for (ksize = 0, i = 0; i < nkeys; i++)
10331 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10332 
10333 		size = sizeof (dtrace_dynvar_t);
10334 		size += sizeof (dtrace_key_t) * (nkeys - 1);
10335 		size += ksize;
10336 
10337 		/*
10338 		 * Now we need to determine the size of the stored data.
10339 		 */
10340 		id = DIF_INSTR_VAR(instr);
10341 
10342 		for (i = 0; i < dp->dtdo_varlen; i++) {
10343 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10344 
10345 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10346 				size += v->dtdv_type.dtdt_size;
10347 				break;
10348 			}
10349 		}
10350 
10351 		if (i == dp->dtdo_varlen)
10352 			return;
10353 
10354 		/*
10355 		 * We have the size.  If this is larger than the chunk size
10356 		 * for our dynamic variable state, reset the chunk size.
10357 		 */
10358 		size = P2ROUNDUP(size, sizeof (uint64_t));
10359 
10360 		/*
10361 		 * Before setting the chunk size, check that we're not going
10362 		 * to set it to a negative value...
10363 		 */
10364 		if (size > LONG_MAX)
10365 			return;
10366 
10367 		/*
10368 		 * ...and make certain that we didn't badly overflow.
10369 		 */
10370 		if (size < ksize || size < sizeof (dtrace_dynvar_t))
10371 			return;
10372 
10373 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10374 			vstate->dtvs_dynvars.dtds_chunksize = size;
10375 	}
10376 }
10377 
10378 static void
10379 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10380 {
10381 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10382 	uint_t id;
10383 
10384 	ASSERT(MUTEX_HELD(&dtrace_lock));
10385 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10386 
10387 	for (i = 0; i < dp->dtdo_varlen; i++) {
10388 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10389 		dtrace_statvar_t *svar, ***svarp = NULL;
10390 		size_t dsize = 0;
10391 		uint8_t scope = v->dtdv_scope;
10392 		int *np = NULL;
10393 
10394 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10395 			continue;
10396 
10397 		id -= DIF_VAR_OTHER_UBASE;
10398 
10399 		switch (scope) {
10400 		case DIFV_SCOPE_THREAD:
10401 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10402 				dtrace_difv_t *tlocals;
10403 
10404 				if ((ntlocals = (otlocals << 1)) == 0)
10405 					ntlocals = 1;
10406 
10407 				osz = otlocals * sizeof (dtrace_difv_t);
10408 				nsz = ntlocals * sizeof (dtrace_difv_t);
10409 
10410 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10411 
10412 				if (osz != 0) {
10413 					bcopy(vstate->dtvs_tlocals,
10414 					    tlocals, osz);
10415 					kmem_free(vstate->dtvs_tlocals, osz);
10416 				}
10417 
10418 				vstate->dtvs_tlocals = tlocals;
10419 				vstate->dtvs_ntlocals = ntlocals;
10420 			}
10421 
10422 			vstate->dtvs_tlocals[id] = *v;
10423 			continue;
10424 
10425 		case DIFV_SCOPE_LOCAL:
10426 			np = &vstate->dtvs_nlocals;
10427 			svarp = &vstate->dtvs_locals;
10428 
10429 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10430 				dsize = NCPU * (v->dtdv_type.dtdt_size +
10431 				    sizeof (uint64_t));
10432 			else
10433 				dsize = NCPU * sizeof (uint64_t);
10434 
10435 			break;
10436 
10437 		case DIFV_SCOPE_GLOBAL:
10438 			np = &vstate->dtvs_nglobals;
10439 			svarp = &vstate->dtvs_globals;
10440 
10441 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10442 				dsize = v->dtdv_type.dtdt_size +
10443 				    sizeof (uint64_t);
10444 
10445 			break;
10446 
10447 		default:
10448 			ASSERT(0);
10449 		}
10450 
10451 		while (id >= (oldsvars = *np)) {
10452 			dtrace_statvar_t **statics;
10453 			int newsvars, oldsize, newsize;
10454 
10455 			if ((newsvars = (oldsvars << 1)) == 0)
10456 				newsvars = 1;
10457 
10458 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10459 			newsize = newsvars * sizeof (dtrace_statvar_t *);
10460 
10461 			statics = kmem_zalloc(newsize, KM_SLEEP);
10462 
10463 			if (oldsize != 0) {
10464 				bcopy(*svarp, statics, oldsize);
10465 				kmem_free(*svarp, oldsize);
10466 			}
10467 
10468 			*svarp = statics;
10469 			*np = newsvars;
10470 		}
10471 
10472 		if ((svar = (*svarp)[id]) == NULL) {
10473 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10474 			svar->dtsv_var = *v;
10475 
10476 			if ((svar->dtsv_size = dsize) != 0) {
10477 				svar->dtsv_data = (uint64_t)(uintptr_t)
10478 				    kmem_zalloc(dsize, KM_SLEEP);
10479 			}
10480 
10481 			(*svarp)[id] = svar;
10482 		}
10483 
10484 		svar->dtsv_refcnt++;
10485 	}
10486 
10487 	dtrace_difo_chunksize(dp, vstate);
10488 	dtrace_difo_hold(dp);
10489 }
10490 
10491 static dtrace_difo_t *
10492 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10493 {
10494 	dtrace_difo_t *new;
10495 	size_t sz;
10496 
10497 	ASSERT(dp->dtdo_buf != NULL);
10498 	ASSERT(dp->dtdo_refcnt != 0);
10499 
10500 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10501 
10502 	ASSERT(dp->dtdo_buf != NULL);
10503 	sz = dp->dtdo_len * sizeof (dif_instr_t);
10504 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10505 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10506 	new->dtdo_len = dp->dtdo_len;
10507 
10508 	if (dp->dtdo_strtab != NULL) {
10509 		ASSERT(dp->dtdo_strlen != 0);
10510 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10511 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10512 		new->dtdo_strlen = dp->dtdo_strlen;
10513 	}
10514 
10515 	if (dp->dtdo_inttab != NULL) {
10516 		ASSERT(dp->dtdo_intlen != 0);
10517 		sz = dp->dtdo_intlen * sizeof (uint64_t);
10518 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10519 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10520 		new->dtdo_intlen = dp->dtdo_intlen;
10521 	}
10522 
10523 	if (dp->dtdo_vartab != NULL) {
10524 		ASSERT(dp->dtdo_varlen != 0);
10525 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10526 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10527 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10528 		new->dtdo_varlen = dp->dtdo_varlen;
10529 	}
10530 
10531 	dtrace_difo_init(new, vstate);
10532 	return (new);
10533 }
10534 
10535 static void
10536 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10537 {
10538 	int i;
10539 
10540 	ASSERT(dp->dtdo_refcnt == 0);
10541 
10542 	for (i = 0; i < dp->dtdo_varlen; i++) {
10543 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10544 		dtrace_statvar_t *svar, **svarp = NULL;
10545 		uint_t id;
10546 		uint8_t scope = v->dtdv_scope;
10547 		int *np = NULL;
10548 
10549 		switch (scope) {
10550 		case DIFV_SCOPE_THREAD:
10551 			continue;
10552 
10553 		case DIFV_SCOPE_LOCAL:
10554 			np = &vstate->dtvs_nlocals;
10555 			svarp = vstate->dtvs_locals;
10556 			break;
10557 
10558 		case DIFV_SCOPE_GLOBAL:
10559 			np = &vstate->dtvs_nglobals;
10560 			svarp = vstate->dtvs_globals;
10561 			break;
10562 
10563 		default:
10564 			ASSERT(0);
10565 		}
10566 
10567 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10568 			continue;
10569 
10570 		id -= DIF_VAR_OTHER_UBASE;
10571 		ASSERT(id < *np);
10572 
10573 		svar = svarp[id];
10574 		ASSERT(svar != NULL);
10575 		ASSERT(svar->dtsv_refcnt > 0);
10576 
10577 		if (--svar->dtsv_refcnt > 0)
10578 			continue;
10579 
10580 		if (svar->dtsv_size != 0) {
10581 			ASSERT(svar->dtsv_data != 0);
10582 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10583 			    svar->dtsv_size);
10584 		}
10585 
10586 		kmem_free(svar, sizeof (dtrace_statvar_t));
10587 		svarp[id] = NULL;
10588 	}
10589 
10590 	if (dp->dtdo_buf != NULL)
10591 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10592 	if (dp->dtdo_inttab != NULL)
10593 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10594 	if (dp->dtdo_strtab != NULL)
10595 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10596 	if (dp->dtdo_vartab != NULL)
10597 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10598 
10599 	kmem_free(dp, sizeof (dtrace_difo_t));
10600 }
10601 
10602 static void
10603 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10604 {
10605 	int i;
10606 
10607 	ASSERT(MUTEX_HELD(&dtrace_lock));
10608 	ASSERT(dp->dtdo_refcnt != 0);
10609 
10610 	for (i = 0; i < dp->dtdo_varlen; i++) {
10611 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10612 
10613 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10614 			continue;
10615 
10616 		ASSERT(dtrace_vtime_references > 0);
10617 		if (--dtrace_vtime_references == 0)
10618 			dtrace_vtime_disable();
10619 	}
10620 
10621 	if (--dp->dtdo_refcnt == 0)
10622 		dtrace_difo_destroy(dp, vstate);
10623 }
10624 
10625 /*
10626  * DTrace Format Functions
10627  */
10628 static uint16_t
10629 dtrace_format_add(dtrace_state_t *state, char *str)
10630 {
10631 	char *fmt, **new;
10632 	uint16_t ndx, len = strlen(str) + 1;
10633 
10634 	fmt = kmem_zalloc(len, KM_SLEEP);
10635 	bcopy(str, fmt, len);
10636 
10637 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10638 		if (state->dts_formats[ndx] == NULL) {
10639 			state->dts_formats[ndx] = fmt;
10640 			return (ndx + 1);
10641 		}
10642 	}
10643 
10644 	if (state->dts_nformats == USHRT_MAX) {
10645 		/*
10646 		 * This is only likely if a denial-of-service attack is being
10647 		 * attempted.  As such, it's okay to fail silently here.
10648 		 */
10649 		kmem_free(fmt, len);
10650 		return (0);
10651 	}
10652 
10653 	/*
10654 	 * For simplicity, we always resize the formats array to be exactly the
10655 	 * number of formats.
10656 	 */
10657 	ndx = state->dts_nformats++;
10658 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10659 
10660 	if (state->dts_formats != NULL) {
10661 		ASSERT(ndx != 0);
10662 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10663 		kmem_free(state->dts_formats, ndx * sizeof (char *));
10664 	}
10665 
10666 	state->dts_formats = new;
10667 	state->dts_formats[ndx] = fmt;
10668 
10669 	return (ndx + 1);
10670 }
10671 
10672 static void
10673 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10674 {
10675 	char *fmt;
10676 
10677 	ASSERT(state->dts_formats != NULL);
10678 	ASSERT(format <= state->dts_nformats);
10679 	ASSERT(state->dts_formats[format - 1] != NULL);
10680 
10681 	fmt = state->dts_formats[format - 1];
10682 	kmem_free(fmt, strlen(fmt) + 1);
10683 	state->dts_formats[format - 1] = NULL;
10684 }
10685 
10686 static void
10687 dtrace_format_destroy(dtrace_state_t *state)
10688 {
10689 	int i;
10690 
10691 	if (state->dts_nformats == 0) {
10692 		ASSERT(state->dts_formats == NULL);
10693 		return;
10694 	}
10695 
10696 	ASSERT(state->dts_formats != NULL);
10697 
10698 	for (i = 0; i < state->dts_nformats; i++) {
10699 		char *fmt = state->dts_formats[i];
10700 
10701 		if (fmt == NULL)
10702 			continue;
10703 
10704 		kmem_free(fmt, strlen(fmt) + 1);
10705 	}
10706 
10707 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10708 	state->dts_nformats = 0;
10709 	state->dts_formats = NULL;
10710 }
10711 
10712 /*
10713  * DTrace Predicate Functions
10714  */
10715 static dtrace_predicate_t *
10716 dtrace_predicate_create(dtrace_difo_t *dp)
10717 {
10718 	dtrace_predicate_t *pred;
10719 
10720 	ASSERT(MUTEX_HELD(&dtrace_lock));
10721 	ASSERT(dp->dtdo_refcnt != 0);
10722 
10723 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10724 	pred->dtp_difo = dp;
10725 	pred->dtp_refcnt = 1;
10726 
10727 	if (!dtrace_difo_cacheable(dp))
10728 		return (pred);
10729 
10730 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10731 		/*
10732 		 * This is only theoretically possible -- we have had 2^32
10733 		 * cacheable predicates on this machine.  We cannot allow any
10734 		 * more predicates to become cacheable:  as unlikely as it is,
10735 		 * there may be a thread caching a (now stale) predicate cache
10736 		 * ID. (N.B.: the temptation is being successfully resisted to
10737 		 * have this cmn_err() "Holy shit -- we executed this code!")
10738 		 */
10739 		return (pred);
10740 	}
10741 
10742 	pred->dtp_cacheid = dtrace_predcache_id++;
10743 
10744 	return (pred);
10745 }
10746 
10747 static void
10748 dtrace_predicate_hold(dtrace_predicate_t *pred)
10749 {
10750 	ASSERT(MUTEX_HELD(&dtrace_lock));
10751 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10752 	ASSERT(pred->dtp_refcnt > 0);
10753 
10754 	pred->dtp_refcnt++;
10755 }
10756 
10757 static void
10758 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10759 {
10760 	dtrace_difo_t *dp = pred->dtp_difo;
10761 
10762 	ASSERT(MUTEX_HELD(&dtrace_lock));
10763 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10764 	ASSERT(pred->dtp_refcnt > 0);
10765 
10766 	if (--pred->dtp_refcnt == 0) {
10767 		dtrace_difo_release(pred->dtp_difo, vstate);
10768 		kmem_free(pred, sizeof (dtrace_predicate_t));
10769 	}
10770 }
10771 
10772 /*
10773  * DTrace Action Description Functions
10774  */
10775 static dtrace_actdesc_t *
10776 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10777     uint64_t uarg, uint64_t arg)
10778 {
10779 	dtrace_actdesc_t *act;
10780 
10781 #ifdef illumos
10782 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10783 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10784 #endif
10785 
10786 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10787 	act->dtad_kind = kind;
10788 	act->dtad_ntuple = ntuple;
10789 	act->dtad_uarg = uarg;
10790 	act->dtad_arg = arg;
10791 	act->dtad_refcnt = 1;
10792 
10793 	return (act);
10794 }
10795 
10796 static void
10797 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10798 {
10799 	ASSERT(act->dtad_refcnt >= 1);
10800 	act->dtad_refcnt++;
10801 }
10802 
10803 static void
10804 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10805 {
10806 	dtrace_actkind_t kind = act->dtad_kind;
10807 	dtrace_difo_t *dp;
10808 
10809 	ASSERT(act->dtad_refcnt >= 1);
10810 
10811 	if (--act->dtad_refcnt != 0)
10812 		return;
10813 
10814 	if ((dp = act->dtad_difo) != NULL)
10815 		dtrace_difo_release(dp, vstate);
10816 
10817 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
10818 		char *str = (char *)(uintptr_t)act->dtad_arg;
10819 
10820 #ifdef illumos
10821 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10822 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10823 #endif
10824 
10825 		if (str != NULL)
10826 			kmem_free(str, strlen(str) + 1);
10827 	}
10828 
10829 	kmem_free(act, sizeof (dtrace_actdesc_t));
10830 }
10831 
10832 /*
10833  * DTrace ECB Functions
10834  */
10835 static dtrace_ecb_t *
10836 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10837 {
10838 	dtrace_ecb_t *ecb;
10839 	dtrace_epid_t epid;
10840 
10841 	ASSERT(MUTEX_HELD(&dtrace_lock));
10842 
10843 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10844 	ecb->dte_predicate = NULL;
10845 	ecb->dte_probe = probe;
10846 
10847 	/*
10848 	 * The default size is the size of the default action: recording
10849 	 * the header.
10850 	 */
10851 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10852 	ecb->dte_alignment = sizeof (dtrace_epid_t);
10853 
10854 	epid = state->dts_epid++;
10855 
10856 	if (epid - 1 >= state->dts_necbs) {
10857 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10858 		int necbs = state->dts_necbs << 1;
10859 
10860 		ASSERT(epid == state->dts_necbs + 1);
10861 
10862 		if (necbs == 0) {
10863 			ASSERT(oecbs == NULL);
10864 			necbs = 1;
10865 		}
10866 
10867 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10868 
10869 		if (oecbs != NULL)
10870 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10871 
10872 		dtrace_membar_producer();
10873 		state->dts_ecbs = ecbs;
10874 
10875 		if (oecbs != NULL) {
10876 			/*
10877 			 * If this state is active, we must dtrace_sync()
10878 			 * before we can free the old dts_ecbs array:  we're
10879 			 * coming in hot, and there may be active ring
10880 			 * buffer processing (which indexes into the dts_ecbs
10881 			 * array) on another CPU.
10882 			 */
10883 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10884 				dtrace_sync();
10885 
10886 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10887 		}
10888 
10889 		dtrace_membar_producer();
10890 		state->dts_necbs = necbs;
10891 	}
10892 
10893 	ecb->dte_state = state;
10894 
10895 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
10896 	dtrace_membar_producer();
10897 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10898 
10899 	return (ecb);
10900 }
10901 
10902 static void
10903 dtrace_ecb_enable(dtrace_ecb_t *ecb)
10904 {
10905 	dtrace_probe_t *probe = ecb->dte_probe;
10906 
10907 	ASSERT(MUTEX_HELD(&cpu_lock));
10908 	ASSERT(MUTEX_HELD(&dtrace_lock));
10909 	ASSERT(ecb->dte_next == NULL);
10910 
10911 	if (probe == NULL) {
10912 		/*
10913 		 * This is the NULL probe -- there's nothing to do.
10914 		 */
10915 		return;
10916 	}
10917 
10918 	if (probe->dtpr_ecb == NULL) {
10919 		dtrace_provider_t *prov = probe->dtpr_provider;
10920 
10921 		/*
10922 		 * We're the first ECB on this probe.
10923 		 */
10924 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10925 
10926 		if (ecb->dte_predicate != NULL)
10927 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10928 
10929 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10930 		    probe->dtpr_id, probe->dtpr_arg);
10931 	} else {
10932 		/*
10933 		 * This probe is already active.  Swing the last pointer to
10934 		 * point to the new ECB, and issue a dtrace_sync() to assure
10935 		 * that all CPUs have seen the change.
10936 		 */
10937 		ASSERT(probe->dtpr_ecb_last != NULL);
10938 		probe->dtpr_ecb_last->dte_next = ecb;
10939 		probe->dtpr_ecb_last = ecb;
10940 		probe->dtpr_predcache = 0;
10941 
10942 		dtrace_sync();
10943 	}
10944 }
10945 
10946 static void
10947 dtrace_ecb_resize(dtrace_ecb_t *ecb)
10948 {
10949 	dtrace_action_t *act;
10950 	uint32_t curneeded = UINT32_MAX;
10951 	uint32_t aggbase = UINT32_MAX;
10952 
10953 	/*
10954 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
10955 	 * we always record it first.)
10956 	 */
10957 	ecb->dte_size = sizeof (dtrace_rechdr_t);
10958 	ecb->dte_alignment = sizeof (dtrace_epid_t);
10959 
10960 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10961 		dtrace_recdesc_t *rec = &act->dta_rec;
10962 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10963 
10964 		ecb->dte_alignment = MAX(ecb->dte_alignment,
10965 		    rec->dtrd_alignment);
10966 
10967 		if (DTRACEACT_ISAGG(act->dta_kind)) {
10968 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10969 
10970 			ASSERT(rec->dtrd_size != 0);
10971 			ASSERT(agg->dtag_first != NULL);
10972 			ASSERT(act->dta_prev->dta_intuple);
10973 			ASSERT(aggbase != UINT32_MAX);
10974 			ASSERT(curneeded != UINT32_MAX);
10975 
10976 			agg->dtag_base = aggbase;
10977 
10978 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10979 			rec->dtrd_offset = curneeded;
10980 			curneeded += rec->dtrd_size;
10981 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10982 
10983 			aggbase = UINT32_MAX;
10984 			curneeded = UINT32_MAX;
10985 		} else if (act->dta_intuple) {
10986 			if (curneeded == UINT32_MAX) {
10987 				/*
10988 				 * This is the first record in a tuple.  Align
10989 				 * curneeded to be at offset 4 in an 8-byte
10990 				 * aligned block.
10991 				 */
10992 				ASSERT(act->dta_prev == NULL ||
10993 				    !act->dta_prev->dta_intuple);
10994 				ASSERT3U(aggbase, ==, UINT32_MAX);
10995 				curneeded = P2PHASEUP(ecb->dte_size,
10996 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
10997 
10998 				aggbase = curneeded - sizeof (dtrace_aggid_t);
10999 				ASSERT(IS_P2ALIGNED(aggbase,
11000 				    sizeof (uint64_t)));
11001 			}
11002 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11003 			rec->dtrd_offset = curneeded;
11004 			curneeded += rec->dtrd_size;
11005 		} else {
11006 			/* tuples must be followed by an aggregation */
11007 			ASSERT(act->dta_prev == NULL ||
11008 			    !act->dta_prev->dta_intuple);
11009 
11010 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
11011 			    rec->dtrd_alignment);
11012 			rec->dtrd_offset = ecb->dte_size;
11013 			ecb->dte_size += rec->dtrd_size;
11014 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
11015 		}
11016 	}
11017 
11018 	if ((act = ecb->dte_action) != NULL &&
11019 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
11020 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
11021 		/*
11022 		 * If the size is still sizeof (dtrace_rechdr_t), then all
11023 		 * actions store no data; set the size to 0.
11024 		 */
11025 		ecb->dte_size = 0;
11026 	}
11027 
11028 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
11029 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
11030 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
11031 	    ecb->dte_needed);
11032 }
11033 
11034 static dtrace_action_t *
11035 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11036 {
11037 	dtrace_aggregation_t *agg;
11038 	size_t size = sizeof (uint64_t);
11039 	int ntuple = desc->dtad_ntuple;
11040 	dtrace_action_t *act;
11041 	dtrace_recdesc_t *frec;
11042 	dtrace_aggid_t aggid;
11043 	dtrace_state_t *state = ecb->dte_state;
11044 
11045 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
11046 	agg->dtag_ecb = ecb;
11047 
11048 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
11049 
11050 	switch (desc->dtad_kind) {
11051 	case DTRACEAGG_MIN:
11052 		agg->dtag_initial = INT64_MAX;
11053 		agg->dtag_aggregate = dtrace_aggregate_min;
11054 		break;
11055 
11056 	case DTRACEAGG_MAX:
11057 		agg->dtag_initial = INT64_MIN;
11058 		agg->dtag_aggregate = dtrace_aggregate_max;
11059 		break;
11060 
11061 	case DTRACEAGG_COUNT:
11062 		agg->dtag_aggregate = dtrace_aggregate_count;
11063 		break;
11064 
11065 	case DTRACEAGG_QUANTIZE:
11066 		agg->dtag_aggregate = dtrace_aggregate_quantize;
11067 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11068 		    sizeof (uint64_t);
11069 		break;
11070 
11071 	case DTRACEAGG_LQUANTIZE: {
11072 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11073 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11074 
11075 		agg->dtag_initial = desc->dtad_arg;
11076 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
11077 
11078 		if (step == 0 || levels == 0)
11079 			goto err;
11080 
11081 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11082 		break;
11083 	}
11084 
11085 	case DTRACEAGG_LLQUANTIZE: {
11086 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11087 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11088 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11089 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11090 		int64_t v;
11091 
11092 		agg->dtag_initial = desc->dtad_arg;
11093 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
11094 
11095 		if (factor < 2 || low >= high || nsteps < factor)
11096 			goto err;
11097 
11098 		/*
11099 		 * Now check that the number of steps evenly divides a power
11100 		 * of the factor.  (This assures both integer bucket size and
11101 		 * linearity within each magnitude.)
11102 		 */
11103 		for (v = factor; v < nsteps; v *= factor)
11104 			continue;
11105 
11106 		if ((v % nsteps) || (nsteps % factor))
11107 			goto err;
11108 
11109 		size = (dtrace_aggregate_llquantize_bucket(factor,
11110 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11111 		break;
11112 	}
11113 
11114 	case DTRACEAGG_AVG:
11115 		agg->dtag_aggregate = dtrace_aggregate_avg;
11116 		size = sizeof (uint64_t) * 2;
11117 		break;
11118 
11119 	case DTRACEAGG_STDDEV:
11120 		agg->dtag_aggregate = dtrace_aggregate_stddev;
11121 		size = sizeof (uint64_t) * 4;
11122 		break;
11123 
11124 	case DTRACEAGG_SUM:
11125 		agg->dtag_aggregate = dtrace_aggregate_sum;
11126 		break;
11127 
11128 	default:
11129 		goto err;
11130 	}
11131 
11132 	agg->dtag_action.dta_rec.dtrd_size = size;
11133 
11134 	if (ntuple == 0)
11135 		goto err;
11136 
11137 	/*
11138 	 * We must make sure that we have enough actions for the n-tuple.
11139 	 */
11140 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11141 		if (DTRACEACT_ISAGG(act->dta_kind))
11142 			break;
11143 
11144 		if (--ntuple == 0) {
11145 			/*
11146 			 * This is the action with which our n-tuple begins.
11147 			 */
11148 			agg->dtag_first = act;
11149 			goto success;
11150 		}
11151 	}
11152 
11153 	/*
11154 	 * This n-tuple is short by ntuple elements.  Return failure.
11155 	 */
11156 	ASSERT(ntuple != 0);
11157 err:
11158 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11159 	return (NULL);
11160 
11161 success:
11162 	/*
11163 	 * If the last action in the tuple has a size of zero, it's actually
11164 	 * an expression argument for the aggregating action.
11165 	 */
11166 	ASSERT(ecb->dte_action_last != NULL);
11167 	act = ecb->dte_action_last;
11168 
11169 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
11170 		ASSERT(act->dta_difo != NULL);
11171 
11172 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11173 			agg->dtag_hasarg = 1;
11174 	}
11175 
11176 	/*
11177 	 * We need to allocate an id for this aggregation.
11178 	 */
11179 #ifdef illumos
11180 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11181 	    VM_BESTFIT | VM_SLEEP);
11182 #else
11183 	aggid = alloc_unr(state->dts_aggid_arena);
11184 #endif
11185 
11186 	if (aggid - 1 >= state->dts_naggregations) {
11187 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
11188 		dtrace_aggregation_t **aggs;
11189 		int naggs = state->dts_naggregations << 1;
11190 		int onaggs = state->dts_naggregations;
11191 
11192 		ASSERT(aggid == state->dts_naggregations + 1);
11193 
11194 		if (naggs == 0) {
11195 			ASSERT(oaggs == NULL);
11196 			naggs = 1;
11197 		}
11198 
11199 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11200 
11201 		if (oaggs != NULL) {
11202 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11203 			kmem_free(oaggs, onaggs * sizeof (*aggs));
11204 		}
11205 
11206 		state->dts_aggregations = aggs;
11207 		state->dts_naggregations = naggs;
11208 	}
11209 
11210 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11211 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11212 
11213 	frec = &agg->dtag_first->dta_rec;
11214 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11215 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11216 
11217 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11218 		ASSERT(!act->dta_intuple);
11219 		act->dta_intuple = 1;
11220 	}
11221 
11222 	return (&agg->dtag_action);
11223 }
11224 
11225 static void
11226 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11227 {
11228 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11229 	dtrace_state_t *state = ecb->dte_state;
11230 	dtrace_aggid_t aggid = agg->dtag_id;
11231 
11232 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11233 #ifdef illumos
11234 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11235 #else
11236 	free_unr(state->dts_aggid_arena, aggid);
11237 #endif
11238 
11239 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
11240 	state->dts_aggregations[aggid - 1] = NULL;
11241 
11242 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11243 }
11244 
11245 static int
11246 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11247 {
11248 	dtrace_action_t *action, *last;
11249 	dtrace_difo_t *dp = desc->dtad_difo;
11250 	uint32_t size = 0, align = sizeof (uint8_t), mask;
11251 	uint16_t format = 0;
11252 	dtrace_recdesc_t *rec;
11253 	dtrace_state_t *state = ecb->dte_state;
11254 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11255 	uint64_t arg = desc->dtad_arg;
11256 
11257 	ASSERT(MUTEX_HELD(&dtrace_lock));
11258 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11259 
11260 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11261 		/*
11262 		 * If this is an aggregating action, there must be neither
11263 		 * a speculate nor a commit on the action chain.
11264 		 */
11265 		dtrace_action_t *act;
11266 
11267 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11268 			if (act->dta_kind == DTRACEACT_COMMIT)
11269 				return (EINVAL);
11270 
11271 			if (act->dta_kind == DTRACEACT_SPECULATE)
11272 				return (EINVAL);
11273 		}
11274 
11275 		action = dtrace_ecb_aggregation_create(ecb, desc);
11276 
11277 		if (action == NULL)
11278 			return (EINVAL);
11279 	} else {
11280 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11281 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11282 		    dp != NULL && dp->dtdo_destructive)) {
11283 			state->dts_destructive = 1;
11284 		}
11285 
11286 		switch (desc->dtad_kind) {
11287 		case DTRACEACT_PRINTF:
11288 		case DTRACEACT_PRINTA:
11289 		case DTRACEACT_SYSTEM:
11290 		case DTRACEACT_FREOPEN:
11291 		case DTRACEACT_DIFEXPR:
11292 			/*
11293 			 * We know that our arg is a string -- turn it into a
11294 			 * format.
11295 			 */
11296 			if (arg == 0) {
11297 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11298 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11299 				format = 0;
11300 			} else {
11301 				ASSERT(arg != 0);
11302 #ifdef illumos
11303 				ASSERT(arg > KERNELBASE);
11304 #endif
11305 				format = dtrace_format_add(state,
11306 				    (char *)(uintptr_t)arg);
11307 			}
11308 
11309 			/*FALLTHROUGH*/
11310 		case DTRACEACT_LIBACT:
11311 		case DTRACEACT_TRACEMEM:
11312 		case DTRACEACT_TRACEMEM_DYNSIZE:
11313 			if (dp == NULL)
11314 				return (EINVAL);
11315 
11316 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11317 				break;
11318 
11319 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11320 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11321 					return (EINVAL);
11322 
11323 				size = opt[DTRACEOPT_STRSIZE];
11324 			}
11325 
11326 			break;
11327 
11328 		case DTRACEACT_STACK:
11329 			if ((nframes = arg) == 0) {
11330 				nframes = opt[DTRACEOPT_STACKFRAMES];
11331 				ASSERT(nframes > 0);
11332 				arg = nframes;
11333 			}
11334 
11335 			size = nframes * sizeof (pc_t);
11336 			break;
11337 
11338 		case DTRACEACT_JSTACK:
11339 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11340 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11341 
11342 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11343 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11344 
11345 			arg = DTRACE_USTACK_ARG(nframes, strsize);
11346 
11347 			/*FALLTHROUGH*/
11348 		case DTRACEACT_USTACK:
11349 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11350 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11351 				strsize = DTRACE_USTACK_STRSIZE(arg);
11352 				nframes = opt[DTRACEOPT_USTACKFRAMES];
11353 				ASSERT(nframes > 0);
11354 				arg = DTRACE_USTACK_ARG(nframes, strsize);
11355 			}
11356 
11357 			/*
11358 			 * Save a slot for the pid.
11359 			 */
11360 			size = (nframes + 1) * sizeof (uint64_t);
11361 			size += DTRACE_USTACK_STRSIZE(arg);
11362 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11363 
11364 			break;
11365 
11366 		case DTRACEACT_SYM:
11367 		case DTRACEACT_MOD:
11368 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11369 			    sizeof (uint64_t)) ||
11370 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11371 				return (EINVAL);
11372 			break;
11373 
11374 		case DTRACEACT_USYM:
11375 		case DTRACEACT_UMOD:
11376 		case DTRACEACT_UADDR:
11377 			if (dp == NULL ||
11378 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11379 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11380 				return (EINVAL);
11381 
11382 			/*
11383 			 * We have a slot for the pid, plus a slot for the
11384 			 * argument.  To keep things simple (aligned with
11385 			 * bitness-neutral sizing), we store each as a 64-bit
11386 			 * quantity.
11387 			 */
11388 			size = 2 * sizeof (uint64_t);
11389 			break;
11390 
11391 		case DTRACEACT_STOP:
11392 		case DTRACEACT_BREAKPOINT:
11393 		case DTRACEACT_PANIC:
11394 			break;
11395 
11396 		case DTRACEACT_CHILL:
11397 		case DTRACEACT_DISCARD:
11398 		case DTRACEACT_RAISE:
11399 			if (dp == NULL)
11400 				return (EINVAL);
11401 			break;
11402 
11403 		case DTRACEACT_EXIT:
11404 			if (dp == NULL ||
11405 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11406 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11407 				return (EINVAL);
11408 			break;
11409 
11410 		case DTRACEACT_SPECULATE:
11411 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11412 				return (EINVAL);
11413 
11414 			if (dp == NULL)
11415 				return (EINVAL);
11416 
11417 			state->dts_speculates = 1;
11418 			break;
11419 
11420 		case DTRACEACT_PRINTM:
11421 		    	size = dp->dtdo_rtype.dtdt_size;
11422 			break;
11423 
11424 		case DTRACEACT_PRINTT:
11425 		    	size = dp->dtdo_rtype.dtdt_size;
11426 			break;
11427 
11428 		case DTRACEACT_COMMIT: {
11429 			dtrace_action_t *act = ecb->dte_action;
11430 
11431 			for (; act != NULL; act = act->dta_next) {
11432 				if (act->dta_kind == DTRACEACT_COMMIT)
11433 					return (EINVAL);
11434 			}
11435 
11436 			if (dp == NULL)
11437 				return (EINVAL);
11438 			break;
11439 		}
11440 
11441 		default:
11442 			return (EINVAL);
11443 		}
11444 
11445 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11446 			/*
11447 			 * If this is a data-storing action or a speculate,
11448 			 * we must be sure that there isn't a commit on the
11449 			 * action chain.
11450 			 */
11451 			dtrace_action_t *act = ecb->dte_action;
11452 
11453 			for (; act != NULL; act = act->dta_next) {
11454 				if (act->dta_kind == DTRACEACT_COMMIT)
11455 					return (EINVAL);
11456 			}
11457 		}
11458 
11459 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11460 		action->dta_rec.dtrd_size = size;
11461 	}
11462 
11463 	action->dta_refcnt = 1;
11464 	rec = &action->dta_rec;
11465 	size = rec->dtrd_size;
11466 
11467 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11468 		if (!(size & mask)) {
11469 			align = mask + 1;
11470 			break;
11471 		}
11472 	}
11473 
11474 	action->dta_kind = desc->dtad_kind;
11475 
11476 	if ((action->dta_difo = dp) != NULL)
11477 		dtrace_difo_hold(dp);
11478 
11479 	rec->dtrd_action = action->dta_kind;
11480 	rec->dtrd_arg = arg;
11481 	rec->dtrd_uarg = desc->dtad_uarg;
11482 	rec->dtrd_alignment = (uint16_t)align;
11483 	rec->dtrd_format = format;
11484 
11485 	if ((last = ecb->dte_action_last) != NULL) {
11486 		ASSERT(ecb->dte_action != NULL);
11487 		action->dta_prev = last;
11488 		last->dta_next = action;
11489 	} else {
11490 		ASSERT(ecb->dte_action == NULL);
11491 		ecb->dte_action = action;
11492 	}
11493 
11494 	ecb->dte_action_last = action;
11495 
11496 	return (0);
11497 }
11498 
11499 static void
11500 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11501 {
11502 	dtrace_action_t *act = ecb->dte_action, *next;
11503 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11504 	dtrace_difo_t *dp;
11505 	uint16_t format;
11506 
11507 	if (act != NULL && act->dta_refcnt > 1) {
11508 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11509 		act->dta_refcnt--;
11510 	} else {
11511 		for (; act != NULL; act = next) {
11512 			next = act->dta_next;
11513 			ASSERT(next != NULL || act == ecb->dte_action_last);
11514 			ASSERT(act->dta_refcnt == 1);
11515 
11516 			if ((format = act->dta_rec.dtrd_format) != 0)
11517 				dtrace_format_remove(ecb->dte_state, format);
11518 
11519 			if ((dp = act->dta_difo) != NULL)
11520 				dtrace_difo_release(dp, vstate);
11521 
11522 			if (DTRACEACT_ISAGG(act->dta_kind)) {
11523 				dtrace_ecb_aggregation_destroy(ecb, act);
11524 			} else {
11525 				kmem_free(act, sizeof (dtrace_action_t));
11526 			}
11527 		}
11528 	}
11529 
11530 	ecb->dte_action = NULL;
11531 	ecb->dte_action_last = NULL;
11532 	ecb->dte_size = 0;
11533 }
11534 
11535 static void
11536 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11537 {
11538 	/*
11539 	 * We disable the ECB by removing it from its probe.
11540 	 */
11541 	dtrace_ecb_t *pecb, *prev = NULL;
11542 	dtrace_probe_t *probe = ecb->dte_probe;
11543 
11544 	ASSERT(MUTEX_HELD(&dtrace_lock));
11545 
11546 	if (probe == NULL) {
11547 		/*
11548 		 * This is the NULL probe; there is nothing to disable.
11549 		 */
11550 		return;
11551 	}
11552 
11553 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11554 		if (pecb == ecb)
11555 			break;
11556 		prev = pecb;
11557 	}
11558 
11559 	ASSERT(pecb != NULL);
11560 
11561 	if (prev == NULL) {
11562 		probe->dtpr_ecb = ecb->dte_next;
11563 	} else {
11564 		prev->dte_next = ecb->dte_next;
11565 	}
11566 
11567 	if (ecb == probe->dtpr_ecb_last) {
11568 		ASSERT(ecb->dte_next == NULL);
11569 		probe->dtpr_ecb_last = prev;
11570 	}
11571 
11572 	/*
11573 	 * The ECB has been disconnected from the probe; now sync to assure
11574 	 * that all CPUs have seen the change before returning.
11575 	 */
11576 	dtrace_sync();
11577 
11578 	if (probe->dtpr_ecb == NULL) {
11579 		/*
11580 		 * That was the last ECB on the probe; clear the predicate
11581 		 * cache ID for the probe, disable it and sync one more time
11582 		 * to assure that we'll never hit it again.
11583 		 */
11584 		dtrace_provider_t *prov = probe->dtpr_provider;
11585 
11586 		ASSERT(ecb->dte_next == NULL);
11587 		ASSERT(probe->dtpr_ecb_last == NULL);
11588 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11589 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11590 		    probe->dtpr_id, probe->dtpr_arg);
11591 		dtrace_sync();
11592 	} else {
11593 		/*
11594 		 * There is at least one ECB remaining on the probe.  If there
11595 		 * is _exactly_ one, set the probe's predicate cache ID to be
11596 		 * the predicate cache ID of the remaining ECB.
11597 		 */
11598 		ASSERT(probe->dtpr_ecb_last != NULL);
11599 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11600 
11601 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11602 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11603 
11604 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11605 
11606 			if (p != NULL)
11607 				probe->dtpr_predcache = p->dtp_cacheid;
11608 		}
11609 
11610 		ecb->dte_next = NULL;
11611 	}
11612 }
11613 
11614 static void
11615 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11616 {
11617 	dtrace_state_t *state = ecb->dte_state;
11618 	dtrace_vstate_t *vstate = &state->dts_vstate;
11619 	dtrace_predicate_t *pred;
11620 	dtrace_epid_t epid = ecb->dte_epid;
11621 
11622 	ASSERT(MUTEX_HELD(&dtrace_lock));
11623 	ASSERT(ecb->dte_next == NULL);
11624 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11625 
11626 	if ((pred = ecb->dte_predicate) != NULL)
11627 		dtrace_predicate_release(pred, vstate);
11628 
11629 	dtrace_ecb_action_remove(ecb);
11630 
11631 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11632 	state->dts_ecbs[epid - 1] = NULL;
11633 
11634 	kmem_free(ecb, sizeof (dtrace_ecb_t));
11635 }
11636 
11637 static dtrace_ecb_t *
11638 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11639     dtrace_enabling_t *enab)
11640 {
11641 	dtrace_ecb_t *ecb;
11642 	dtrace_predicate_t *pred;
11643 	dtrace_actdesc_t *act;
11644 	dtrace_provider_t *prov;
11645 	dtrace_ecbdesc_t *desc = enab->dten_current;
11646 
11647 	ASSERT(MUTEX_HELD(&dtrace_lock));
11648 	ASSERT(state != NULL);
11649 
11650 	ecb = dtrace_ecb_add(state, probe);
11651 	ecb->dte_uarg = desc->dted_uarg;
11652 
11653 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11654 		dtrace_predicate_hold(pred);
11655 		ecb->dte_predicate = pred;
11656 	}
11657 
11658 	if (probe != NULL) {
11659 		/*
11660 		 * If the provider shows more leg than the consumer is old
11661 		 * enough to see, we need to enable the appropriate implicit
11662 		 * predicate bits to prevent the ecb from activating at
11663 		 * revealing times.
11664 		 *
11665 		 * Providers specifying DTRACE_PRIV_USER at register time
11666 		 * are stating that they need the /proc-style privilege
11667 		 * model to be enforced, and this is what DTRACE_COND_OWNER
11668 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11669 		 */
11670 		prov = probe->dtpr_provider;
11671 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11672 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11673 			ecb->dte_cond |= DTRACE_COND_OWNER;
11674 
11675 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11676 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11677 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11678 
11679 		/*
11680 		 * If the provider shows us kernel innards and the user
11681 		 * is lacking sufficient privilege, enable the
11682 		 * DTRACE_COND_USERMODE implicit predicate.
11683 		 */
11684 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11685 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11686 			ecb->dte_cond |= DTRACE_COND_USERMODE;
11687 	}
11688 
11689 	if (dtrace_ecb_create_cache != NULL) {
11690 		/*
11691 		 * If we have a cached ecb, we'll use its action list instead
11692 		 * of creating our own (saving both time and space).
11693 		 */
11694 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11695 		dtrace_action_t *act = cached->dte_action;
11696 
11697 		if (act != NULL) {
11698 			ASSERT(act->dta_refcnt > 0);
11699 			act->dta_refcnt++;
11700 			ecb->dte_action = act;
11701 			ecb->dte_action_last = cached->dte_action_last;
11702 			ecb->dte_needed = cached->dte_needed;
11703 			ecb->dte_size = cached->dte_size;
11704 			ecb->dte_alignment = cached->dte_alignment;
11705 		}
11706 
11707 		return (ecb);
11708 	}
11709 
11710 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11711 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11712 			dtrace_ecb_destroy(ecb);
11713 			return (NULL);
11714 		}
11715 	}
11716 
11717 	dtrace_ecb_resize(ecb);
11718 
11719 	return (dtrace_ecb_create_cache = ecb);
11720 }
11721 
11722 static int
11723 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11724 {
11725 	dtrace_ecb_t *ecb;
11726 	dtrace_enabling_t *enab = arg;
11727 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11728 
11729 	ASSERT(state != NULL);
11730 
11731 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11732 		/*
11733 		 * This probe was created in a generation for which this
11734 		 * enabling has previously created ECBs; we don't want to
11735 		 * enable it again, so just kick out.
11736 		 */
11737 		return (DTRACE_MATCH_NEXT);
11738 	}
11739 
11740 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11741 		return (DTRACE_MATCH_DONE);
11742 
11743 	dtrace_ecb_enable(ecb);
11744 	return (DTRACE_MATCH_NEXT);
11745 }
11746 
11747 static dtrace_ecb_t *
11748 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11749 {
11750 	dtrace_ecb_t *ecb;
11751 
11752 	ASSERT(MUTEX_HELD(&dtrace_lock));
11753 
11754 	if (id == 0 || id > state->dts_necbs)
11755 		return (NULL);
11756 
11757 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11758 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11759 
11760 	return (state->dts_ecbs[id - 1]);
11761 }
11762 
11763 static dtrace_aggregation_t *
11764 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11765 {
11766 	dtrace_aggregation_t *agg;
11767 
11768 	ASSERT(MUTEX_HELD(&dtrace_lock));
11769 
11770 	if (id == 0 || id > state->dts_naggregations)
11771 		return (NULL);
11772 
11773 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11774 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11775 	    agg->dtag_id == id);
11776 
11777 	return (state->dts_aggregations[id - 1]);
11778 }
11779 
11780 /*
11781  * DTrace Buffer Functions
11782  *
11783  * The following functions manipulate DTrace buffers.  Most of these functions
11784  * are called in the context of establishing or processing consumer state;
11785  * exceptions are explicitly noted.
11786  */
11787 
11788 /*
11789  * Note:  called from cross call context.  This function switches the two
11790  * buffers on a given CPU.  The atomicity of this operation is assured by
11791  * disabling interrupts while the actual switch takes place; the disabling of
11792  * interrupts serializes the execution with any execution of dtrace_probe() on
11793  * the same CPU.
11794  */
11795 static void
11796 dtrace_buffer_switch(dtrace_buffer_t *buf)
11797 {
11798 	caddr_t tomax = buf->dtb_tomax;
11799 	caddr_t xamot = buf->dtb_xamot;
11800 	dtrace_icookie_t cookie;
11801 	hrtime_t now;
11802 
11803 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11804 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11805 
11806 	cookie = dtrace_interrupt_disable();
11807 	now = dtrace_gethrtime();
11808 	buf->dtb_tomax = xamot;
11809 	buf->dtb_xamot = tomax;
11810 	buf->dtb_xamot_drops = buf->dtb_drops;
11811 	buf->dtb_xamot_offset = buf->dtb_offset;
11812 	buf->dtb_xamot_errors = buf->dtb_errors;
11813 	buf->dtb_xamot_flags = buf->dtb_flags;
11814 	buf->dtb_offset = 0;
11815 	buf->dtb_drops = 0;
11816 	buf->dtb_errors = 0;
11817 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11818 	buf->dtb_interval = now - buf->dtb_switched;
11819 	buf->dtb_switched = now;
11820 	dtrace_interrupt_enable(cookie);
11821 }
11822 
11823 /*
11824  * Note:  called from cross call context.  This function activates a buffer
11825  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
11826  * is guaranteed by the disabling of interrupts.
11827  */
11828 static void
11829 dtrace_buffer_activate(dtrace_state_t *state)
11830 {
11831 	dtrace_buffer_t *buf;
11832 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
11833 
11834 	buf = &state->dts_buffer[curcpu];
11835 
11836 	if (buf->dtb_tomax != NULL) {
11837 		/*
11838 		 * We might like to assert that the buffer is marked inactive,
11839 		 * but this isn't necessarily true:  the buffer for the CPU
11840 		 * that processes the BEGIN probe has its buffer activated
11841 		 * manually.  In this case, we take the (harmless) action
11842 		 * re-clearing the bit INACTIVE bit.
11843 		 */
11844 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11845 	}
11846 
11847 	dtrace_interrupt_enable(cookie);
11848 }
11849 
11850 static int
11851 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11852     processorid_t cpu, int *factor)
11853 {
11854 #ifdef illumos
11855 	cpu_t *cp;
11856 #endif
11857 	dtrace_buffer_t *buf;
11858 	int allocated = 0, desired = 0;
11859 
11860 #ifdef illumos
11861 	ASSERT(MUTEX_HELD(&cpu_lock));
11862 	ASSERT(MUTEX_HELD(&dtrace_lock));
11863 
11864 	*factor = 1;
11865 
11866 	if (size > dtrace_nonroot_maxsize &&
11867 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11868 		return (EFBIG);
11869 
11870 	cp = cpu_list;
11871 
11872 	do {
11873 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11874 			continue;
11875 
11876 		buf = &bufs[cp->cpu_id];
11877 
11878 		/*
11879 		 * If there is already a buffer allocated for this CPU, it
11880 		 * is only possible that this is a DR event.  In this case,
11881 		 */
11882 		if (buf->dtb_tomax != NULL) {
11883 			ASSERT(buf->dtb_size == size);
11884 			continue;
11885 		}
11886 
11887 		ASSERT(buf->dtb_xamot == NULL);
11888 
11889 		if ((buf->dtb_tomax = kmem_zalloc(size,
11890 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11891 			goto err;
11892 
11893 		buf->dtb_size = size;
11894 		buf->dtb_flags = flags;
11895 		buf->dtb_offset = 0;
11896 		buf->dtb_drops = 0;
11897 
11898 		if (flags & DTRACEBUF_NOSWITCH)
11899 			continue;
11900 
11901 		if ((buf->dtb_xamot = kmem_zalloc(size,
11902 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11903 			goto err;
11904 	} while ((cp = cp->cpu_next) != cpu_list);
11905 
11906 	return (0);
11907 
11908 err:
11909 	cp = cpu_list;
11910 
11911 	do {
11912 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11913 			continue;
11914 
11915 		buf = &bufs[cp->cpu_id];
11916 		desired += 2;
11917 
11918 		if (buf->dtb_xamot != NULL) {
11919 			ASSERT(buf->dtb_tomax != NULL);
11920 			ASSERT(buf->dtb_size == size);
11921 			kmem_free(buf->dtb_xamot, size);
11922 			allocated++;
11923 		}
11924 
11925 		if (buf->dtb_tomax != NULL) {
11926 			ASSERT(buf->dtb_size == size);
11927 			kmem_free(buf->dtb_tomax, size);
11928 			allocated++;
11929 		}
11930 
11931 		buf->dtb_tomax = NULL;
11932 		buf->dtb_xamot = NULL;
11933 		buf->dtb_size = 0;
11934 	} while ((cp = cp->cpu_next) != cpu_list);
11935 #else
11936 	int i;
11937 
11938 	*factor = 1;
11939 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
11940     defined(__mips__) || defined(__powerpc__)
11941 	/*
11942 	 * FreeBSD isn't good at limiting the amount of memory we
11943 	 * ask to malloc, so let's place a limit here before trying
11944 	 * to do something that might well end in tears at bedtime.
11945 	 */
11946 	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
11947 		return (ENOMEM);
11948 #endif
11949 
11950 	ASSERT(MUTEX_HELD(&dtrace_lock));
11951 	CPU_FOREACH(i) {
11952 		if (cpu != DTRACE_CPUALL && cpu != i)
11953 			continue;
11954 
11955 		buf = &bufs[i];
11956 
11957 		/*
11958 		 * If there is already a buffer allocated for this CPU, it
11959 		 * is only possible that this is a DR event.  In this case,
11960 		 * the buffer size must match our specified size.
11961 		 */
11962 		if (buf->dtb_tomax != NULL) {
11963 			ASSERT(buf->dtb_size == size);
11964 			continue;
11965 		}
11966 
11967 		ASSERT(buf->dtb_xamot == NULL);
11968 
11969 		if ((buf->dtb_tomax = kmem_zalloc(size,
11970 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11971 			goto err;
11972 
11973 		buf->dtb_size = size;
11974 		buf->dtb_flags = flags;
11975 		buf->dtb_offset = 0;
11976 		buf->dtb_drops = 0;
11977 
11978 		if (flags & DTRACEBUF_NOSWITCH)
11979 			continue;
11980 
11981 		if ((buf->dtb_xamot = kmem_zalloc(size,
11982 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11983 			goto err;
11984 	}
11985 
11986 	return (0);
11987 
11988 err:
11989 	/*
11990 	 * Error allocating memory, so free the buffers that were
11991 	 * allocated before the failed allocation.
11992 	 */
11993 	CPU_FOREACH(i) {
11994 		if (cpu != DTRACE_CPUALL && cpu != i)
11995 			continue;
11996 
11997 		buf = &bufs[i];
11998 		desired += 2;
11999 
12000 		if (buf->dtb_xamot != NULL) {
12001 			ASSERT(buf->dtb_tomax != NULL);
12002 			ASSERT(buf->dtb_size == size);
12003 			kmem_free(buf->dtb_xamot, size);
12004 			allocated++;
12005 		}
12006 
12007 		if (buf->dtb_tomax != NULL) {
12008 			ASSERT(buf->dtb_size == size);
12009 			kmem_free(buf->dtb_tomax, size);
12010 			allocated++;
12011 		}
12012 
12013 		buf->dtb_tomax = NULL;
12014 		buf->dtb_xamot = NULL;
12015 		buf->dtb_size = 0;
12016 
12017 	}
12018 #endif
12019 	*factor = desired / (allocated > 0 ? allocated : 1);
12020 
12021 	return (ENOMEM);
12022 }
12023 
12024 /*
12025  * Note:  called from probe context.  This function just increments the drop
12026  * count on a buffer.  It has been made a function to allow for the
12027  * possibility of understanding the source of mysterious drop counts.  (A
12028  * problem for which one may be particularly disappointed that DTrace cannot
12029  * be used to understand DTrace.)
12030  */
12031 static void
12032 dtrace_buffer_drop(dtrace_buffer_t *buf)
12033 {
12034 	buf->dtb_drops++;
12035 }
12036 
12037 /*
12038  * Note:  called from probe context.  This function is called to reserve space
12039  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
12040  * mstate.  Returns the new offset in the buffer, or a negative value if an
12041  * error has occurred.
12042  */
12043 static intptr_t
12044 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
12045     dtrace_state_t *state, dtrace_mstate_t *mstate)
12046 {
12047 	intptr_t offs = buf->dtb_offset, soffs;
12048 	intptr_t woffs;
12049 	caddr_t tomax;
12050 	size_t total;
12051 
12052 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12053 		return (-1);
12054 
12055 	if ((tomax = buf->dtb_tomax) == NULL) {
12056 		dtrace_buffer_drop(buf);
12057 		return (-1);
12058 	}
12059 
12060 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12061 		while (offs & (align - 1)) {
12062 			/*
12063 			 * Assert that our alignment is off by a number which
12064 			 * is itself sizeof (uint32_t) aligned.
12065 			 */
12066 			ASSERT(!((align - (offs & (align - 1))) &
12067 			    (sizeof (uint32_t) - 1)));
12068 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12069 			offs += sizeof (uint32_t);
12070 		}
12071 
12072 		if ((soffs = offs + needed) > buf->dtb_size) {
12073 			dtrace_buffer_drop(buf);
12074 			return (-1);
12075 		}
12076 
12077 		if (mstate == NULL)
12078 			return (offs);
12079 
12080 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12081 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
12082 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12083 
12084 		return (offs);
12085 	}
12086 
12087 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12088 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12089 		    (buf->dtb_flags & DTRACEBUF_FULL))
12090 			return (-1);
12091 		goto out;
12092 	}
12093 
12094 	total = needed + (offs & (align - 1));
12095 
12096 	/*
12097 	 * For a ring buffer, life is quite a bit more complicated.  Before
12098 	 * we can store any padding, we need to adjust our wrapping offset.
12099 	 * (If we've never before wrapped or we're not about to, no adjustment
12100 	 * is required.)
12101 	 */
12102 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12103 	    offs + total > buf->dtb_size) {
12104 		woffs = buf->dtb_xamot_offset;
12105 
12106 		if (offs + total > buf->dtb_size) {
12107 			/*
12108 			 * We can't fit in the end of the buffer.  First, a
12109 			 * sanity check that we can fit in the buffer at all.
12110 			 */
12111 			if (total > buf->dtb_size) {
12112 				dtrace_buffer_drop(buf);
12113 				return (-1);
12114 			}
12115 
12116 			/*
12117 			 * We're going to be storing at the top of the buffer,
12118 			 * so now we need to deal with the wrapped offset.  We
12119 			 * only reset our wrapped offset to 0 if it is
12120 			 * currently greater than the current offset.  If it
12121 			 * is less than the current offset, it is because a
12122 			 * previous allocation induced a wrap -- but the
12123 			 * allocation didn't subsequently take the space due
12124 			 * to an error or false predicate evaluation.  In this
12125 			 * case, we'll just leave the wrapped offset alone: if
12126 			 * the wrapped offset hasn't been advanced far enough
12127 			 * for this allocation, it will be adjusted in the
12128 			 * lower loop.
12129 			 */
12130 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12131 				if (woffs >= offs)
12132 					woffs = 0;
12133 			} else {
12134 				woffs = 0;
12135 			}
12136 
12137 			/*
12138 			 * Now we know that we're going to be storing to the
12139 			 * top of the buffer and that there is room for us
12140 			 * there.  We need to clear the buffer from the current
12141 			 * offset to the end (there may be old gunk there).
12142 			 */
12143 			while (offs < buf->dtb_size)
12144 				tomax[offs++] = 0;
12145 
12146 			/*
12147 			 * We need to set our offset to zero.  And because we
12148 			 * are wrapping, we need to set the bit indicating as
12149 			 * much.  We can also adjust our needed space back
12150 			 * down to the space required by the ECB -- we know
12151 			 * that the top of the buffer is aligned.
12152 			 */
12153 			offs = 0;
12154 			total = needed;
12155 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
12156 		} else {
12157 			/*
12158 			 * There is room for us in the buffer, so we simply
12159 			 * need to check the wrapped offset.
12160 			 */
12161 			if (woffs < offs) {
12162 				/*
12163 				 * The wrapped offset is less than the offset.
12164 				 * This can happen if we allocated buffer space
12165 				 * that induced a wrap, but then we didn't
12166 				 * subsequently take the space due to an error
12167 				 * or false predicate evaluation.  This is
12168 				 * okay; we know that _this_ allocation isn't
12169 				 * going to induce a wrap.  We still can't
12170 				 * reset the wrapped offset to be zero,
12171 				 * however: the space may have been trashed in
12172 				 * the previous failed probe attempt.  But at
12173 				 * least the wrapped offset doesn't need to
12174 				 * be adjusted at all...
12175 				 */
12176 				goto out;
12177 			}
12178 		}
12179 
12180 		while (offs + total > woffs) {
12181 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12182 			size_t size;
12183 
12184 			if (epid == DTRACE_EPIDNONE) {
12185 				size = sizeof (uint32_t);
12186 			} else {
12187 				ASSERT3U(epid, <=, state->dts_necbs);
12188 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
12189 
12190 				size = state->dts_ecbs[epid - 1]->dte_size;
12191 			}
12192 
12193 			ASSERT(woffs + size <= buf->dtb_size);
12194 			ASSERT(size != 0);
12195 
12196 			if (woffs + size == buf->dtb_size) {
12197 				/*
12198 				 * We've reached the end of the buffer; we want
12199 				 * to set the wrapped offset to 0 and break
12200 				 * out.  However, if the offs is 0, then we're
12201 				 * in a strange edge-condition:  the amount of
12202 				 * space that we want to reserve plus the size
12203 				 * of the record that we're overwriting is
12204 				 * greater than the size of the buffer.  This
12205 				 * is problematic because if we reserve the
12206 				 * space but subsequently don't consume it (due
12207 				 * to a failed predicate or error) the wrapped
12208 				 * offset will be 0 -- yet the EPID at offset 0
12209 				 * will not be committed.  This situation is
12210 				 * relatively easy to deal with:  if we're in
12211 				 * this case, the buffer is indistinguishable
12212 				 * from one that hasn't wrapped; we need only
12213 				 * finish the job by clearing the wrapped bit,
12214 				 * explicitly setting the offset to be 0, and
12215 				 * zero'ing out the old data in the buffer.
12216 				 */
12217 				if (offs == 0) {
12218 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12219 					buf->dtb_offset = 0;
12220 					woffs = total;
12221 
12222 					while (woffs < buf->dtb_size)
12223 						tomax[woffs++] = 0;
12224 				}
12225 
12226 				woffs = 0;
12227 				break;
12228 			}
12229 
12230 			woffs += size;
12231 		}
12232 
12233 		/*
12234 		 * We have a wrapped offset.  It may be that the wrapped offset
12235 		 * has become zero -- that's okay.
12236 		 */
12237 		buf->dtb_xamot_offset = woffs;
12238 	}
12239 
12240 out:
12241 	/*
12242 	 * Now we can plow the buffer with any necessary padding.
12243 	 */
12244 	while (offs & (align - 1)) {
12245 		/*
12246 		 * Assert that our alignment is off by a number which
12247 		 * is itself sizeof (uint32_t) aligned.
12248 		 */
12249 		ASSERT(!((align - (offs & (align - 1))) &
12250 		    (sizeof (uint32_t) - 1)));
12251 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12252 		offs += sizeof (uint32_t);
12253 	}
12254 
12255 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12256 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
12257 			buf->dtb_flags |= DTRACEBUF_FULL;
12258 			return (-1);
12259 		}
12260 	}
12261 
12262 	if (mstate == NULL)
12263 		return (offs);
12264 
12265 	/*
12266 	 * For ring buffers and fill buffers, the scratch space is always
12267 	 * the inactive buffer.
12268 	 */
12269 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12270 	mstate->dtms_scratch_size = buf->dtb_size;
12271 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12272 
12273 	return (offs);
12274 }
12275 
12276 static void
12277 dtrace_buffer_polish(dtrace_buffer_t *buf)
12278 {
12279 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12280 	ASSERT(MUTEX_HELD(&dtrace_lock));
12281 
12282 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12283 		return;
12284 
12285 	/*
12286 	 * We need to polish the ring buffer.  There are three cases:
12287 	 *
12288 	 * - The first (and presumably most common) is that there is no gap
12289 	 *   between the buffer offset and the wrapped offset.  In this case,
12290 	 *   there is nothing in the buffer that isn't valid data; we can
12291 	 *   mark the buffer as polished and return.
12292 	 *
12293 	 * - The second (less common than the first but still more common
12294 	 *   than the third) is that there is a gap between the buffer offset
12295 	 *   and the wrapped offset, and the wrapped offset is larger than the
12296 	 *   buffer offset.  This can happen because of an alignment issue, or
12297 	 *   can happen because of a call to dtrace_buffer_reserve() that
12298 	 *   didn't subsequently consume the buffer space.  In this case,
12299 	 *   we need to zero the data from the buffer offset to the wrapped
12300 	 *   offset.
12301 	 *
12302 	 * - The third (and least common) is that there is a gap between the
12303 	 *   buffer offset and the wrapped offset, but the wrapped offset is
12304 	 *   _less_ than the buffer offset.  This can only happen because a
12305 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
12306 	 *   was not subsequently consumed.  In this case, we need to zero the
12307 	 *   space from the offset to the end of the buffer _and_ from the
12308 	 *   top of the buffer to the wrapped offset.
12309 	 */
12310 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
12311 		bzero(buf->dtb_tomax + buf->dtb_offset,
12312 		    buf->dtb_xamot_offset - buf->dtb_offset);
12313 	}
12314 
12315 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
12316 		bzero(buf->dtb_tomax + buf->dtb_offset,
12317 		    buf->dtb_size - buf->dtb_offset);
12318 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12319 	}
12320 }
12321 
12322 /*
12323  * This routine determines if data generated at the specified time has likely
12324  * been entirely consumed at user-level.  This routine is called to determine
12325  * if an ECB on a defunct probe (but for an active enabling) can be safely
12326  * disabled and destroyed.
12327  */
12328 static int
12329 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12330 {
12331 	int i;
12332 
12333 	for (i = 0; i < NCPU; i++) {
12334 		dtrace_buffer_t *buf = &bufs[i];
12335 
12336 		if (buf->dtb_size == 0)
12337 			continue;
12338 
12339 		if (buf->dtb_flags & DTRACEBUF_RING)
12340 			return (0);
12341 
12342 		if (!buf->dtb_switched && buf->dtb_offset != 0)
12343 			return (0);
12344 
12345 		if (buf->dtb_switched - buf->dtb_interval < when)
12346 			return (0);
12347 	}
12348 
12349 	return (1);
12350 }
12351 
12352 static void
12353 dtrace_buffer_free(dtrace_buffer_t *bufs)
12354 {
12355 	int i;
12356 
12357 	for (i = 0; i < NCPU; i++) {
12358 		dtrace_buffer_t *buf = &bufs[i];
12359 
12360 		if (buf->dtb_tomax == NULL) {
12361 			ASSERT(buf->dtb_xamot == NULL);
12362 			ASSERT(buf->dtb_size == 0);
12363 			continue;
12364 		}
12365 
12366 		if (buf->dtb_xamot != NULL) {
12367 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12368 			kmem_free(buf->dtb_xamot, buf->dtb_size);
12369 		}
12370 
12371 		kmem_free(buf->dtb_tomax, buf->dtb_size);
12372 		buf->dtb_size = 0;
12373 		buf->dtb_tomax = NULL;
12374 		buf->dtb_xamot = NULL;
12375 	}
12376 }
12377 
12378 /*
12379  * DTrace Enabling Functions
12380  */
12381 static dtrace_enabling_t *
12382 dtrace_enabling_create(dtrace_vstate_t *vstate)
12383 {
12384 	dtrace_enabling_t *enab;
12385 
12386 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12387 	enab->dten_vstate = vstate;
12388 
12389 	return (enab);
12390 }
12391 
12392 static void
12393 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12394 {
12395 	dtrace_ecbdesc_t **ndesc;
12396 	size_t osize, nsize;
12397 
12398 	/*
12399 	 * We can't add to enablings after we've enabled them, or after we've
12400 	 * retained them.
12401 	 */
12402 	ASSERT(enab->dten_probegen == 0);
12403 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12404 
12405 	if (enab->dten_ndesc < enab->dten_maxdesc) {
12406 		enab->dten_desc[enab->dten_ndesc++] = ecb;
12407 		return;
12408 	}
12409 
12410 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12411 
12412 	if (enab->dten_maxdesc == 0) {
12413 		enab->dten_maxdesc = 1;
12414 	} else {
12415 		enab->dten_maxdesc <<= 1;
12416 	}
12417 
12418 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12419 
12420 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12421 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12422 	bcopy(enab->dten_desc, ndesc, osize);
12423 	if (enab->dten_desc != NULL)
12424 		kmem_free(enab->dten_desc, osize);
12425 
12426 	enab->dten_desc = ndesc;
12427 	enab->dten_desc[enab->dten_ndesc++] = ecb;
12428 }
12429 
12430 static void
12431 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12432     dtrace_probedesc_t *pd)
12433 {
12434 	dtrace_ecbdesc_t *new;
12435 	dtrace_predicate_t *pred;
12436 	dtrace_actdesc_t *act;
12437 
12438 	/*
12439 	 * We're going to create a new ECB description that matches the
12440 	 * specified ECB in every way, but has the specified probe description.
12441 	 */
12442 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12443 
12444 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12445 		dtrace_predicate_hold(pred);
12446 
12447 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12448 		dtrace_actdesc_hold(act);
12449 
12450 	new->dted_action = ecb->dted_action;
12451 	new->dted_pred = ecb->dted_pred;
12452 	new->dted_probe = *pd;
12453 	new->dted_uarg = ecb->dted_uarg;
12454 
12455 	dtrace_enabling_add(enab, new);
12456 }
12457 
12458 static void
12459 dtrace_enabling_dump(dtrace_enabling_t *enab)
12460 {
12461 	int i;
12462 
12463 	for (i = 0; i < enab->dten_ndesc; i++) {
12464 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12465 
12466 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12467 		    desc->dtpd_provider, desc->dtpd_mod,
12468 		    desc->dtpd_func, desc->dtpd_name);
12469 	}
12470 }
12471 
12472 static void
12473 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12474 {
12475 	int i;
12476 	dtrace_ecbdesc_t *ep;
12477 	dtrace_vstate_t *vstate = enab->dten_vstate;
12478 
12479 	ASSERT(MUTEX_HELD(&dtrace_lock));
12480 
12481 	for (i = 0; i < enab->dten_ndesc; i++) {
12482 		dtrace_actdesc_t *act, *next;
12483 		dtrace_predicate_t *pred;
12484 
12485 		ep = enab->dten_desc[i];
12486 
12487 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12488 			dtrace_predicate_release(pred, vstate);
12489 
12490 		for (act = ep->dted_action; act != NULL; act = next) {
12491 			next = act->dtad_next;
12492 			dtrace_actdesc_release(act, vstate);
12493 		}
12494 
12495 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12496 	}
12497 
12498 	if (enab->dten_desc != NULL)
12499 		kmem_free(enab->dten_desc,
12500 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12501 
12502 	/*
12503 	 * If this was a retained enabling, decrement the dts_nretained count
12504 	 * and take it off of the dtrace_retained list.
12505 	 */
12506 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12507 	    dtrace_retained == enab) {
12508 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12509 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12510 		enab->dten_vstate->dtvs_state->dts_nretained--;
12511 		dtrace_retained_gen++;
12512 	}
12513 
12514 	if (enab->dten_prev == NULL) {
12515 		if (dtrace_retained == enab) {
12516 			dtrace_retained = enab->dten_next;
12517 
12518 			if (dtrace_retained != NULL)
12519 				dtrace_retained->dten_prev = NULL;
12520 		}
12521 	} else {
12522 		ASSERT(enab != dtrace_retained);
12523 		ASSERT(dtrace_retained != NULL);
12524 		enab->dten_prev->dten_next = enab->dten_next;
12525 	}
12526 
12527 	if (enab->dten_next != NULL) {
12528 		ASSERT(dtrace_retained != NULL);
12529 		enab->dten_next->dten_prev = enab->dten_prev;
12530 	}
12531 
12532 	kmem_free(enab, sizeof (dtrace_enabling_t));
12533 }
12534 
12535 static int
12536 dtrace_enabling_retain(dtrace_enabling_t *enab)
12537 {
12538 	dtrace_state_t *state;
12539 
12540 	ASSERT(MUTEX_HELD(&dtrace_lock));
12541 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12542 	ASSERT(enab->dten_vstate != NULL);
12543 
12544 	state = enab->dten_vstate->dtvs_state;
12545 	ASSERT(state != NULL);
12546 
12547 	/*
12548 	 * We only allow each state to retain dtrace_retain_max enablings.
12549 	 */
12550 	if (state->dts_nretained >= dtrace_retain_max)
12551 		return (ENOSPC);
12552 
12553 	state->dts_nretained++;
12554 	dtrace_retained_gen++;
12555 
12556 	if (dtrace_retained == NULL) {
12557 		dtrace_retained = enab;
12558 		return (0);
12559 	}
12560 
12561 	enab->dten_next = dtrace_retained;
12562 	dtrace_retained->dten_prev = enab;
12563 	dtrace_retained = enab;
12564 
12565 	return (0);
12566 }
12567 
12568 static int
12569 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12570     dtrace_probedesc_t *create)
12571 {
12572 	dtrace_enabling_t *new, *enab;
12573 	int found = 0, err = ENOENT;
12574 
12575 	ASSERT(MUTEX_HELD(&dtrace_lock));
12576 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12577 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12578 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12579 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12580 
12581 	new = dtrace_enabling_create(&state->dts_vstate);
12582 
12583 	/*
12584 	 * Iterate over all retained enablings, looking for enablings that
12585 	 * match the specified state.
12586 	 */
12587 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12588 		int i;
12589 
12590 		/*
12591 		 * dtvs_state can only be NULL for helper enablings -- and
12592 		 * helper enablings can't be retained.
12593 		 */
12594 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12595 
12596 		if (enab->dten_vstate->dtvs_state != state)
12597 			continue;
12598 
12599 		/*
12600 		 * Now iterate over each probe description; we're looking for
12601 		 * an exact match to the specified probe description.
12602 		 */
12603 		for (i = 0; i < enab->dten_ndesc; i++) {
12604 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12605 			dtrace_probedesc_t *pd = &ep->dted_probe;
12606 
12607 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12608 				continue;
12609 
12610 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12611 				continue;
12612 
12613 			if (strcmp(pd->dtpd_func, match->dtpd_func))
12614 				continue;
12615 
12616 			if (strcmp(pd->dtpd_name, match->dtpd_name))
12617 				continue;
12618 
12619 			/*
12620 			 * We have a winning probe!  Add it to our growing
12621 			 * enabling.
12622 			 */
12623 			found = 1;
12624 			dtrace_enabling_addlike(new, ep, create);
12625 		}
12626 	}
12627 
12628 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12629 		dtrace_enabling_destroy(new);
12630 		return (err);
12631 	}
12632 
12633 	return (0);
12634 }
12635 
12636 static void
12637 dtrace_enabling_retract(dtrace_state_t *state)
12638 {
12639 	dtrace_enabling_t *enab, *next;
12640 
12641 	ASSERT(MUTEX_HELD(&dtrace_lock));
12642 
12643 	/*
12644 	 * Iterate over all retained enablings, destroy the enablings retained
12645 	 * for the specified state.
12646 	 */
12647 	for (enab = dtrace_retained; enab != NULL; enab = next) {
12648 		next = enab->dten_next;
12649 
12650 		/*
12651 		 * dtvs_state can only be NULL for helper enablings -- and
12652 		 * helper enablings can't be retained.
12653 		 */
12654 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12655 
12656 		if (enab->dten_vstate->dtvs_state == state) {
12657 			ASSERT(state->dts_nretained > 0);
12658 			dtrace_enabling_destroy(enab);
12659 		}
12660 	}
12661 
12662 	ASSERT(state->dts_nretained == 0);
12663 }
12664 
12665 static int
12666 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12667 {
12668 	int i = 0;
12669 	int matched = 0;
12670 
12671 	ASSERT(MUTEX_HELD(&cpu_lock));
12672 	ASSERT(MUTEX_HELD(&dtrace_lock));
12673 
12674 	for (i = 0; i < enab->dten_ndesc; i++) {
12675 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12676 
12677 		enab->dten_current = ep;
12678 		enab->dten_error = 0;
12679 
12680 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
12681 
12682 		if (enab->dten_error != 0) {
12683 			/*
12684 			 * If we get an error half-way through enabling the
12685 			 * probes, we kick out -- perhaps with some number of
12686 			 * them enabled.  Leaving enabled probes enabled may
12687 			 * be slightly confusing for user-level, but we expect
12688 			 * that no one will attempt to actually drive on in
12689 			 * the face of such errors.  If this is an anonymous
12690 			 * enabling (indicated with a NULL nmatched pointer),
12691 			 * we cmn_err() a message.  We aren't expecting to
12692 			 * get such an error -- such as it can exist at all,
12693 			 * it would be a result of corrupted DOF in the driver
12694 			 * properties.
12695 			 */
12696 			if (nmatched == NULL) {
12697 				cmn_err(CE_WARN, "dtrace_enabling_match() "
12698 				    "error on %p: %d", (void *)ep,
12699 				    enab->dten_error);
12700 			}
12701 
12702 			return (enab->dten_error);
12703 		}
12704 	}
12705 
12706 	enab->dten_probegen = dtrace_probegen;
12707 	if (nmatched != NULL)
12708 		*nmatched = matched;
12709 
12710 	return (0);
12711 }
12712 
12713 static void
12714 dtrace_enabling_matchall(void)
12715 {
12716 	dtrace_enabling_t *enab;
12717 
12718 	mutex_enter(&cpu_lock);
12719 	mutex_enter(&dtrace_lock);
12720 
12721 	/*
12722 	 * Iterate over all retained enablings to see if any probes match
12723 	 * against them.  We only perform this operation on enablings for which
12724 	 * we have sufficient permissions by virtue of being in the global zone
12725 	 * or in the same zone as the DTrace client.  Because we can be called
12726 	 * after dtrace_detach() has been called, we cannot assert that there
12727 	 * are retained enablings.  We can safely load from dtrace_retained,
12728 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
12729 	 * block pending our completion.
12730 	 */
12731 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12732 #ifdef illumos
12733 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
12734 
12735 		if (INGLOBALZONE(curproc) ||
12736 		    cr != NULL && getzoneid() == crgetzoneid(cr))
12737 #endif
12738 			(void) dtrace_enabling_match(enab, NULL);
12739 	}
12740 
12741 	mutex_exit(&dtrace_lock);
12742 	mutex_exit(&cpu_lock);
12743 }
12744 
12745 /*
12746  * If an enabling is to be enabled without having matched probes (that is, if
12747  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12748  * enabling must be _primed_ by creating an ECB for every ECB description.
12749  * This must be done to assure that we know the number of speculations, the
12750  * number of aggregations, the minimum buffer size needed, etc. before we
12751  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12752  * enabling any probes, we create ECBs for every ECB decription, but with a
12753  * NULL probe -- which is exactly what this function does.
12754  */
12755 static void
12756 dtrace_enabling_prime(dtrace_state_t *state)
12757 {
12758 	dtrace_enabling_t *enab;
12759 	int i;
12760 
12761 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12762 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12763 
12764 		if (enab->dten_vstate->dtvs_state != state)
12765 			continue;
12766 
12767 		/*
12768 		 * We don't want to prime an enabling more than once, lest
12769 		 * we allow a malicious user to induce resource exhaustion.
12770 		 * (The ECBs that result from priming an enabling aren't
12771 		 * leaked -- but they also aren't deallocated until the
12772 		 * consumer state is destroyed.)
12773 		 */
12774 		if (enab->dten_primed)
12775 			continue;
12776 
12777 		for (i = 0; i < enab->dten_ndesc; i++) {
12778 			enab->dten_current = enab->dten_desc[i];
12779 			(void) dtrace_probe_enable(NULL, enab);
12780 		}
12781 
12782 		enab->dten_primed = 1;
12783 	}
12784 }
12785 
12786 /*
12787  * Called to indicate that probes should be provided due to retained
12788  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12789  * must take an initial lap through the enabling calling the dtps_provide()
12790  * entry point explicitly to allow for autocreated probes.
12791  */
12792 static void
12793 dtrace_enabling_provide(dtrace_provider_t *prv)
12794 {
12795 	int i, all = 0;
12796 	dtrace_probedesc_t desc;
12797 	dtrace_genid_t gen;
12798 
12799 	ASSERT(MUTEX_HELD(&dtrace_lock));
12800 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12801 
12802 	if (prv == NULL) {
12803 		all = 1;
12804 		prv = dtrace_provider;
12805 	}
12806 
12807 	do {
12808 		dtrace_enabling_t *enab;
12809 		void *parg = prv->dtpv_arg;
12810 
12811 retry:
12812 		gen = dtrace_retained_gen;
12813 		for (enab = dtrace_retained; enab != NULL;
12814 		    enab = enab->dten_next) {
12815 			for (i = 0; i < enab->dten_ndesc; i++) {
12816 				desc = enab->dten_desc[i]->dted_probe;
12817 				mutex_exit(&dtrace_lock);
12818 				prv->dtpv_pops.dtps_provide(parg, &desc);
12819 				mutex_enter(&dtrace_lock);
12820 				/*
12821 				 * Process the retained enablings again if
12822 				 * they have changed while we weren't holding
12823 				 * dtrace_lock.
12824 				 */
12825 				if (gen != dtrace_retained_gen)
12826 					goto retry;
12827 			}
12828 		}
12829 	} while (all && (prv = prv->dtpv_next) != NULL);
12830 
12831 	mutex_exit(&dtrace_lock);
12832 	dtrace_probe_provide(NULL, all ? NULL : prv);
12833 	mutex_enter(&dtrace_lock);
12834 }
12835 
12836 /*
12837  * Called to reap ECBs that are attached to probes from defunct providers.
12838  */
12839 static void
12840 dtrace_enabling_reap(void)
12841 {
12842 	dtrace_provider_t *prov;
12843 	dtrace_probe_t *probe;
12844 	dtrace_ecb_t *ecb;
12845 	hrtime_t when;
12846 	int i;
12847 
12848 	mutex_enter(&cpu_lock);
12849 	mutex_enter(&dtrace_lock);
12850 
12851 	for (i = 0; i < dtrace_nprobes; i++) {
12852 		if ((probe = dtrace_probes[i]) == NULL)
12853 			continue;
12854 
12855 		if (probe->dtpr_ecb == NULL)
12856 			continue;
12857 
12858 		prov = probe->dtpr_provider;
12859 
12860 		if ((when = prov->dtpv_defunct) == 0)
12861 			continue;
12862 
12863 		/*
12864 		 * We have ECBs on a defunct provider:  we want to reap these
12865 		 * ECBs to allow the provider to unregister.  The destruction
12866 		 * of these ECBs must be done carefully:  if we destroy the ECB
12867 		 * and the consumer later wishes to consume an EPID that
12868 		 * corresponds to the destroyed ECB (and if the EPID metadata
12869 		 * has not been previously consumed), the consumer will abort
12870 		 * processing on the unknown EPID.  To reduce (but not, sadly,
12871 		 * eliminate) the possibility of this, we will only destroy an
12872 		 * ECB for a defunct provider if, for the state that
12873 		 * corresponds to the ECB:
12874 		 *
12875 		 *  (a)	There is no speculative tracing (which can effectively
12876 		 *	cache an EPID for an arbitrary amount of time).
12877 		 *
12878 		 *  (b)	The principal buffers have been switched twice since the
12879 		 *	provider became defunct.
12880 		 *
12881 		 *  (c)	The aggregation buffers are of zero size or have been
12882 		 *	switched twice since the provider became defunct.
12883 		 *
12884 		 * We use dts_speculates to determine (a) and call a function
12885 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
12886 		 * that as soon as we've been unable to destroy one of the ECBs
12887 		 * associated with the probe, we quit trying -- reaping is only
12888 		 * fruitful in as much as we can destroy all ECBs associated
12889 		 * with the defunct provider's probes.
12890 		 */
12891 		while ((ecb = probe->dtpr_ecb) != NULL) {
12892 			dtrace_state_t *state = ecb->dte_state;
12893 			dtrace_buffer_t *buf = state->dts_buffer;
12894 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12895 
12896 			if (state->dts_speculates)
12897 				break;
12898 
12899 			if (!dtrace_buffer_consumed(buf, when))
12900 				break;
12901 
12902 			if (!dtrace_buffer_consumed(aggbuf, when))
12903 				break;
12904 
12905 			dtrace_ecb_disable(ecb);
12906 			ASSERT(probe->dtpr_ecb != ecb);
12907 			dtrace_ecb_destroy(ecb);
12908 		}
12909 	}
12910 
12911 	mutex_exit(&dtrace_lock);
12912 	mutex_exit(&cpu_lock);
12913 }
12914 
12915 /*
12916  * DTrace DOF Functions
12917  */
12918 /*ARGSUSED*/
12919 static void
12920 dtrace_dof_error(dof_hdr_t *dof, const char *str)
12921 {
12922 	if (dtrace_err_verbose)
12923 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
12924 
12925 #ifdef DTRACE_ERRDEBUG
12926 	dtrace_errdebug(str);
12927 #endif
12928 }
12929 
12930 /*
12931  * Create DOF out of a currently enabled state.  Right now, we only create
12932  * DOF containing the run-time options -- but this could be expanded to create
12933  * complete DOF representing the enabled state.
12934  */
12935 static dof_hdr_t *
12936 dtrace_dof_create(dtrace_state_t *state)
12937 {
12938 	dof_hdr_t *dof;
12939 	dof_sec_t *sec;
12940 	dof_optdesc_t *opt;
12941 	int i, len = sizeof (dof_hdr_t) +
12942 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12943 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12944 
12945 	ASSERT(MUTEX_HELD(&dtrace_lock));
12946 
12947 	dof = kmem_zalloc(len, KM_SLEEP);
12948 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12949 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12950 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12951 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12952 
12953 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12954 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12955 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12956 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12957 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12958 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12959 
12960 	dof->dofh_flags = 0;
12961 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
12962 	dof->dofh_secsize = sizeof (dof_sec_t);
12963 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
12964 	dof->dofh_secoff = sizeof (dof_hdr_t);
12965 	dof->dofh_loadsz = len;
12966 	dof->dofh_filesz = len;
12967 	dof->dofh_pad = 0;
12968 
12969 	/*
12970 	 * Fill in the option section header...
12971 	 */
12972 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12973 	sec->dofs_type = DOF_SECT_OPTDESC;
12974 	sec->dofs_align = sizeof (uint64_t);
12975 	sec->dofs_flags = DOF_SECF_LOAD;
12976 	sec->dofs_entsize = sizeof (dof_optdesc_t);
12977 
12978 	opt = (dof_optdesc_t *)((uintptr_t)sec +
12979 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12980 
12981 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12982 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12983 
12984 	for (i = 0; i < DTRACEOPT_MAX; i++) {
12985 		opt[i].dofo_option = i;
12986 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
12987 		opt[i].dofo_value = state->dts_options[i];
12988 	}
12989 
12990 	return (dof);
12991 }
12992 
12993 static dof_hdr_t *
12994 dtrace_dof_copyin(uintptr_t uarg, int *errp)
12995 {
12996 	dof_hdr_t hdr, *dof;
12997 
12998 	ASSERT(!MUTEX_HELD(&dtrace_lock));
12999 
13000 	/*
13001 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13002 	 */
13003 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
13004 		dtrace_dof_error(NULL, "failed to copyin DOF header");
13005 		*errp = EFAULT;
13006 		return (NULL);
13007 	}
13008 
13009 	/*
13010 	 * Now we'll allocate the entire DOF and copy it in -- provided
13011 	 * that the length isn't outrageous.
13012 	 */
13013 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13014 		dtrace_dof_error(&hdr, "load size exceeds maximum");
13015 		*errp = E2BIG;
13016 		return (NULL);
13017 	}
13018 
13019 	if (hdr.dofh_loadsz < sizeof (hdr)) {
13020 		dtrace_dof_error(&hdr, "invalid load size");
13021 		*errp = EINVAL;
13022 		return (NULL);
13023 	}
13024 
13025 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
13026 
13027 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
13028 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
13029 		kmem_free(dof, hdr.dofh_loadsz);
13030 		*errp = EFAULT;
13031 		return (NULL);
13032 	}
13033 
13034 	return (dof);
13035 }
13036 
13037 #ifdef __FreeBSD__
13038 static dof_hdr_t *
13039 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp)
13040 {
13041 	dof_hdr_t hdr, *dof;
13042 	struct thread *td;
13043 	size_t loadsz;
13044 
13045 	ASSERT(!MUTEX_HELD(&dtrace_lock));
13046 
13047 	td = curthread;
13048 
13049 	/*
13050 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13051 	 */
13052 	if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) {
13053 		dtrace_dof_error(NULL, "failed to copyin DOF header");
13054 		*errp = EFAULT;
13055 		return (NULL);
13056 	}
13057 
13058 	/*
13059 	 * Now we'll allocate the entire DOF and copy it in -- provided
13060 	 * that the length isn't outrageous.
13061 	 */
13062 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13063 		dtrace_dof_error(&hdr, "load size exceeds maximum");
13064 		*errp = E2BIG;
13065 		return (NULL);
13066 	}
13067 	loadsz = (size_t)hdr.dofh_loadsz;
13068 
13069 	if (loadsz < sizeof (hdr)) {
13070 		dtrace_dof_error(&hdr, "invalid load size");
13071 		*errp = EINVAL;
13072 		return (NULL);
13073 	}
13074 
13075 	dof = kmem_alloc(loadsz, KM_SLEEP);
13076 
13077 	if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz ||
13078 	    dof->dofh_loadsz != loadsz) {
13079 		kmem_free(dof, hdr.dofh_loadsz);
13080 		*errp = EFAULT;
13081 		return (NULL);
13082 	}
13083 
13084 	return (dof);
13085 }
13086 
13087 static __inline uchar_t
13088 dtrace_dof_char(char c)
13089 {
13090 
13091 	switch (c) {
13092 	case '0':
13093 	case '1':
13094 	case '2':
13095 	case '3':
13096 	case '4':
13097 	case '5':
13098 	case '6':
13099 	case '7':
13100 	case '8':
13101 	case '9':
13102 		return (c - '0');
13103 	case 'A':
13104 	case 'B':
13105 	case 'C':
13106 	case 'D':
13107 	case 'E':
13108 	case 'F':
13109 		return (c - 'A' + 10);
13110 	case 'a':
13111 	case 'b':
13112 	case 'c':
13113 	case 'd':
13114 	case 'e':
13115 	case 'f':
13116 		return (c - 'a' + 10);
13117 	}
13118 	/* Should not reach here. */
13119 	return (0);
13120 }
13121 #endif /* __FreeBSD__ */
13122 
13123 static dof_hdr_t *
13124 dtrace_dof_property(const char *name)
13125 {
13126 	uchar_t *buf;
13127 	uint64_t loadsz;
13128 	unsigned int len, i;
13129 	dof_hdr_t *dof;
13130 
13131 #ifdef illumos
13132 	/*
13133 	 * Unfortunately, array of values in .conf files are always (and
13134 	 * only) interpreted to be integer arrays.  We must read our DOF
13135 	 * as an integer array, and then squeeze it into a byte array.
13136 	 */
13137 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13138 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13139 		return (NULL);
13140 
13141 	for (i = 0; i < len; i++)
13142 		buf[i] = (uchar_t)(((int *)buf)[i]);
13143 
13144 	if (len < sizeof (dof_hdr_t)) {
13145 		ddi_prop_free(buf);
13146 		dtrace_dof_error(NULL, "truncated header");
13147 		return (NULL);
13148 	}
13149 
13150 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13151 		ddi_prop_free(buf);
13152 		dtrace_dof_error(NULL, "truncated DOF");
13153 		return (NULL);
13154 	}
13155 
13156 	if (loadsz >= dtrace_dof_maxsize) {
13157 		ddi_prop_free(buf);
13158 		dtrace_dof_error(NULL, "oversized DOF");
13159 		return (NULL);
13160 	}
13161 
13162 	dof = kmem_alloc(loadsz, KM_SLEEP);
13163 	bcopy(buf, dof, loadsz);
13164 	ddi_prop_free(buf);
13165 #else
13166 	char *p;
13167 	char *p_env;
13168 
13169 	if ((p_env = kern_getenv(name)) == NULL)
13170 		return (NULL);
13171 
13172 	len = strlen(p_env) / 2;
13173 
13174 	buf = kmem_alloc(len, KM_SLEEP);
13175 
13176 	dof = (dof_hdr_t *) buf;
13177 
13178 	p = p_env;
13179 
13180 	for (i = 0; i < len; i++) {
13181 		buf[i] = (dtrace_dof_char(p[0]) << 4) |
13182 		     dtrace_dof_char(p[1]);
13183 		p += 2;
13184 	}
13185 
13186 	freeenv(p_env);
13187 
13188 	if (len < sizeof (dof_hdr_t)) {
13189 		kmem_free(buf, 0);
13190 		dtrace_dof_error(NULL, "truncated header");
13191 		return (NULL);
13192 	}
13193 
13194 	if (len < (loadsz = dof->dofh_loadsz)) {
13195 		kmem_free(buf, 0);
13196 		dtrace_dof_error(NULL, "truncated DOF");
13197 		return (NULL);
13198 	}
13199 
13200 	if (loadsz >= dtrace_dof_maxsize) {
13201 		kmem_free(buf, 0);
13202 		dtrace_dof_error(NULL, "oversized DOF");
13203 		return (NULL);
13204 	}
13205 #endif
13206 
13207 	return (dof);
13208 }
13209 
13210 static void
13211 dtrace_dof_destroy(dof_hdr_t *dof)
13212 {
13213 	kmem_free(dof, dof->dofh_loadsz);
13214 }
13215 
13216 /*
13217  * Return the dof_sec_t pointer corresponding to a given section index.  If the
13218  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
13219  * a type other than DOF_SECT_NONE is specified, the header is checked against
13220  * this type and NULL is returned if the types do not match.
13221  */
13222 static dof_sec_t *
13223 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13224 {
13225 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13226 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13227 
13228 	if (i >= dof->dofh_secnum) {
13229 		dtrace_dof_error(dof, "referenced section index is invalid");
13230 		return (NULL);
13231 	}
13232 
13233 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13234 		dtrace_dof_error(dof, "referenced section is not loadable");
13235 		return (NULL);
13236 	}
13237 
13238 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13239 		dtrace_dof_error(dof, "referenced section is the wrong type");
13240 		return (NULL);
13241 	}
13242 
13243 	return (sec);
13244 }
13245 
13246 static dtrace_probedesc_t *
13247 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13248 {
13249 	dof_probedesc_t *probe;
13250 	dof_sec_t *strtab;
13251 	uintptr_t daddr = (uintptr_t)dof;
13252 	uintptr_t str;
13253 	size_t size;
13254 
13255 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13256 		dtrace_dof_error(dof, "invalid probe section");
13257 		return (NULL);
13258 	}
13259 
13260 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13261 		dtrace_dof_error(dof, "bad alignment in probe description");
13262 		return (NULL);
13263 	}
13264 
13265 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13266 		dtrace_dof_error(dof, "truncated probe description");
13267 		return (NULL);
13268 	}
13269 
13270 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13271 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13272 
13273 	if (strtab == NULL)
13274 		return (NULL);
13275 
13276 	str = daddr + strtab->dofs_offset;
13277 	size = strtab->dofs_size;
13278 
13279 	if (probe->dofp_provider >= strtab->dofs_size) {
13280 		dtrace_dof_error(dof, "corrupt probe provider");
13281 		return (NULL);
13282 	}
13283 
13284 	(void) strncpy(desc->dtpd_provider,
13285 	    (char *)(str + probe->dofp_provider),
13286 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13287 
13288 	if (probe->dofp_mod >= strtab->dofs_size) {
13289 		dtrace_dof_error(dof, "corrupt probe module");
13290 		return (NULL);
13291 	}
13292 
13293 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13294 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13295 
13296 	if (probe->dofp_func >= strtab->dofs_size) {
13297 		dtrace_dof_error(dof, "corrupt probe function");
13298 		return (NULL);
13299 	}
13300 
13301 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13302 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13303 
13304 	if (probe->dofp_name >= strtab->dofs_size) {
13305 		dtrace_dof_error(dof, "corrupt probe name");
13306 		return (NULL);
13307 	}
13308 
13309 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13310 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13311 
13312 	return (desc);
13313 }
13314 
13315 static dtrace_difo_t *
13316 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13317     cred_t *cr)
13318 {
13319 	dtrace_difo_t *dp;
13320 	size_t ttl = 0;
13321 	dof_difohdr_t *dofd;
13322 	uintptr_t daddr = (uintptr_t)dof;
13323 	size_t max = dtrace_difo_maxsize;
13324 	int i, l, n;
13325 
13326 	static const struct {
13327 		int section;
13328 		int bufoffs;
13329 		int lenoffs;
13330 		int entsize;
13331 		int align;
13332 		const char *msg;
13333 	} difo[] = {
13334 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13335 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13336 		sizeof (dif_instr_t), "multiple DIF sections" },
13337 
13338 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13339 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13340 		sizeof (uint64_t), "multiple integer tables" },
13341 
13342 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13343 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
13344 		sizeof (char), "multiple string tables" },
13345 
13346 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13347 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13348 		sizeof (uint_t), "multiple variable tables" },
13349 
13350 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13351 	};
13352 
13353 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13354 		dtrace_dof_error(dof, "invalid DIFO header section");
13355 		return (NULL);
13356 	}
13357 
13358 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13359 		dtrace_dof_error(dof, "bad alignment in DIFO header");
13360 		return (NULL);
13361 	}
13362 
13363 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13364 	    sec->dofs_size % sizeof (dof_secidx_t)) {
13365 		dtrace_dof_error(dof, "bad size in DIFO header");
13366 		return (NULL);
13367 	}
13368 
13369 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13370 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13371 
13372 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13373 	dp->dtdo_rtype = dofd->dofd_rtype;
13374 
13375 	for (l = 0; l < n; l++) {
13376 		dof_sec_t *subsec;
13377 		void **bufp;
13378 		uint32_t *lenp;
13379 
13380 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13381 		    dofd->dofd_links[l])) == NULL)
13382 			goto err; /* invalid section link */
13383 
13384 		if (ttl + subsec->dofs_size > max) {
13385 			dtrace_dof_error(dof, "exceeds maximum size");
13386 			goto err;
13387 		}
13388 
13389 		ttl += subsec->dofs_size;
13390 
13391 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13392 			if (subsec->dofs_type != difo[i].section)
13393 				continue;
13394 
13395 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13396 				dtrace_dof_error(dof, "section not loaded");
13397 				goto err;
13398 			}
13399 
13400 			if (subsec->dofs_align != difo[i].align) {
13401 				dtrace_dof_error(dof, "bad alignment");
13402 				goto err;
13403 			}
13404 
13405 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13406 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13407 
13408 			if (*bufp != NULL) {
13409 				dtrace_dof_error(dof, difo[i].msg);
13410 				goto err;
13411 			}
13412 
13413 			if (difo[i].entsize != subsec->dofs_entsize) {
13414 				dtrace_dof_error(dof, "entry size mismatch");
13415 				goto err;
13416 			}
13417 
13418 			if (subsec->dofs_entsize != 0 &&
13419 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13420 				dtrace_dof_error(dof, "corrupt entry size");
13421 				goto err;
13422 			}
13423 
13424 			*lenp = subsec->dofs_size;
13425 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13426 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13427 			    *bufp, subsec->dofs_size);
13428 
13429 			if (subsec->dofs_entsize != 0)
13430 				*lenp /= subsec->dofs_entsize;
13431 
13432 			break;
13433 		}
13434 
13435 		/*
13436 		 * If we encounter a loadable DIFO sub-section that is not
13437 		 * known to us, assume this is a broken program and fail.
13438 		 */
13439 		if (difo[i].section == DOF_SECT_NONE &&
13440 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
13441 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
13442 			goto err;
13443 		}
13444 	}
13445 
13446 	if (dp->dtdo_buf == NULL) {
13447 		/*
13448 		 * We can't have a DIF object without DIF text.
13449 		 */
13450 		dtrace_dof_error(dof, "missing DIF text");
13451 		goto err;
13452 	}
13453 
13454 	/*
13455 	 * Before we validate the DIF object, run through the variable table
13456 	 * looking for the strings -- if any of their size are under, we'll set
13457 	 * their size to be the system-wide default string size.  Note that
13458 	 * this should _not_ happen if the "strsize" option has been set --
13459 	 * in this case, the compiler should have set the size to reflect the
13460 	 * setting of the option.
13461 	 */
13462 	for (i = 0; i < dp->dtdo_varlen; i++) {
13463 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
13464 		dtrace_diftype_t *t = &v->dtdv_type;
13465 
13466 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13467 			continue;
13468 
13469 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13470 			t->dtdt_size = dtrace_strsize_default;
13471 	}
13472 
13473 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13474 		goto err;
13475 
13476 	dtrace_difo_init(dp, vstate);
13477 	return (dp);
13478 
13479 err:
13480 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13481 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13482 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13483 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13484 
13485 	kmem_free(dp, sizeof (dtrace_difo_t));
13486 	return (NULL);
13487 }
13488 
13489 static dtrace_predicate_t *
13490 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13491     cred_t *cr)
13492 {
13493 	dtrace_difo_t *dp;
13494 
13495 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13496 		return (NULL);
13497 
13498 	return (dtrace_predicate_create(dp));
13499 }
13500 
13501 static dtrace_actdesc_t *
13502 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13503     cred_t *cr)
13504 {
13505 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13506 	dof_actdesc_t *desc;
13507 	dof_sec_t *difosec;
13508 	size_t offs;
13509 	uintptr_t daddr = (uintptr_t)dof;
13510 	uint64_t arg;
13511 	dtrace_actkind_t kind;
13512 
13513 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13514 		dtrace_dof_error(dof, "invalid action section");
13515 		return (NULL);
13516 	}
13517 
13518 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13519 		dtrace_dof_error(dof, "truncated action description");
13520 		return (NULL);
13521 	}
13522 
13523 	if (sec->dofs_align != sizeof (uint64_t)) {
13524 		dtrace_dof_error(dof, "bad alignment in action description");
13525 		return (NULL);
13526 	}
13527 
13528 	if (sec->dofs_size < sec->dofs_entsize) {
13529 		dtrace_dof_error(dof, "section entry size exceeds total size");
13530 		return (NULL);
13531 	}
13532 
13533 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13534 		dtrace_dof_error(dof, "bad entry size in action description");
13535 		return (NULL);
13536 	}
13537 
13538 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13539 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13540 		return (NULL);
13541 	}
13542 
13543 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13544 		desc = (dof_actdesc_t *)(daddr +
13545 		    (uintptr_t)sec->dofs_offset + offs);
13546 		kind = (dtrace_actkind_t)desc->dofa_kind;
13547 
13548 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13549 		    (kind != DTRACEACT_PRINTA ||
13550 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13551 		    (kind == DTRACEACT_DIFEXPR &&
13552 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13553 			dof_sec_t *strtab;
13554 			char *str, *fmt;
13555 			uint64_t i;
13556 
13557 			/*
13558 			 * The argument to these actions is an index into the
13559 			 * DOF string table.  For printf()-like actions, this
13560 			 * is the format string.  For print(), this is the
13561 			 * CTF type of the expression result.
13562 			 */
13563 			if ((strtab = dtrace_dof_sect(dof,
13564 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13565 				goto err;
13566 
13567 			str = (char *)((uintptr_t)dof +
13568 			    (uintptr_t)strtab->dofs_offset);
13569 
13570 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13571 				if (str[i] == '\0')
13572 					break;
13573 			}
13574 
13575 			if (i >= strtab->dofs_size) {
13576 				dtrace_dof_error(dof, "bogus format string");
13577 				goto err;
13578 			}
13579 
13580 			if (i == desc->dofa_arg) {
13581 				dtrace_dof_error(dof, "empty format string");
13582 				goto err;
13583 			}
13584 
13585 			i -= desc->dofa_arg;
13586 			fmt = kmem_alloc(i + 1, KM_SLEEP);
13587 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13588 			arg = (uint64_t)(uintptr_t)fmt;
13589 		} else {
13590 			if (kind == DTRACEACT_PRINTA) {
13591 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13592 				arg = 0;
13593 			} else {
13594 				arg = desc->dofa_arg;
13595 			}
13596 		}
13597 
13598 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13599 		    desc->dofa_uarg, arg);
13600 
13601 		if (last != NULL) {
13602 			last->dtad_next = act;
13603 		} else {
13604 			first = act;
13605 		}
13606 
13607 		last = act;
13608 
13609 		if (desc->dofa_difo == DOF_SECIDX_NONE)
13610 			continue;
13611 
13612 		if ((difosec = dtrace_dof_sect(dof,
13613 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13614 			goto err;
13615 
13616 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13617 
13618 		if (act->dtad_difo == NULL)
13619 			goto err;
13620 	}
13621 
13622 	ASSERT(first != NULL);
13623 	return (first);
13624 
13625 err:
13626 	for (act = first; act != NULL; act = next) {
13627 		next = act->dtad_next;
13628 		dtrace_actdesc_release(act, vstate);
13629 	}
13630 
13631 	return (NULL);
13632 }
13633 
13634 static dtrace_ecbdesc_t *
13635 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13636     cred_t *cr)
13637 {
13638 	dtrace_ecbdesc_t *ep;
13639 	dof_ecbdesc_t *ecb;
13640 	dtrace_probedesc_t *desc;
13641 	dtrace_predicate_t *pred = NULL;
13642 
13643 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13644 		dtrace_dof_error(dof, "truncated ECB description");
13645 		return (NULL);
13646 	}
13647 
13648 	if (sec->dofs_align != sizeof (uint64_t)) {
13649 		dtrace_dof_error(dof, "bad alignment in ECB description");
13650 		return (NULL);
13651 	}
13652 
13653 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13654 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13655 
13656 	if (sec == NULL)
13657 		return (NULL);
13658 
13659 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13660 	ep->dted_uarg = ecb->dofe_uarg;
13661 	desc = &ep->dted_probe;
13662 
13663 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13664 		goto err;
13665 
13666 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13667 		if ((sec = dtrace_dof_sect(dof,
13668 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13669 			goto err;
13670 
13671 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13672 			goto err;
13673 
13674 		ep->dted_pred.dtpdd_predicate = pred;
13675 	}
13676 
13677 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13678 		if ((sec = dtrace_dof_sect(dof,
13679 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13680 			goto err;
13681 
13682 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13683 
13684 		if (ep->dted_action == NULL)
13685 			goto err;
13686 	}
13687 
13688 	return (ep);
13689 
13690 err:
13691 	if (pred != NULL)
13692 		dtrace_predicate_release(pred, vstate);
13693 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13694 	return (NULL);
13695 }
13696 
13697 /*
13698  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13699  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
13700  * site of any user SETX relocations to account for load object base address.
13701  * In the future, if we need other relocations, this function can be extended.
13702  */
13703 static int
13704 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
13705 {
13706 	uintptr_t daddr = (uintptr_t)dof;
13707 	dof_relohdr_t *dofr =
13708 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13709 	dof_sec_t *ss, *rs, *ts;
13710 	dof_relodesc_t *r;
13711 	uint_t i, n;
13712 
13713 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13714 	    sec->dofs_align != sizeof (dof_secidx_t)) {
13715 		dtrace_dof_error(dof, "invalid relocation header");
13716 		return (-1);
13717 	}
13718 
13719 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
13720 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
13721 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
13722 
13723 	if (ss == NULL || rs == NULL || ts == NULL)
13724 		return (-1); /* dtrace_dof_error() has been called already */
13725 
13726 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
13727 	    rs->dofs_align != sizeof (uint64_t)) {
13728 		dtrace_dof_error(dof, "invalid relocation section");
13729 		return (-1);
13730 	}
13731 
13732 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
13733 	n = rs->dofs_size / rs->dofs_entsize;
13734 
13735 	for (i = 0; i < n; i++) {
13736 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
13737 
13738 		switch (r->dofr_type) {
13739 		case DOF_RELO_NONE:
13740 			break;
13741 		case DOF_RELO_SETX:
13742 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13743 			    sizeof (uint64_t) > ts->dofs_size) {
13744 				dtrace_dof_error(dof, "bad relocation offset");
13745 				return (-1);
13746 			}
13747 
13748 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
13749 				dtrace_dof_error(dof, "misaligned setx relo");
13750 				return (-1);
13751 			}
13752 
13753 			*(uint64_t *)taddr += ubase;
13754 			break;
13755 		default:
13756 			dtrace_dof_error(dof, "invalid relocation type");
13757 			return (-1);
13758 		}
13759 
13760 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
13761 	}
13762 
13763 	return (0);
13764 }
13765 
13766 /*
13767  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13768  * header:  it should be at the front of a memory region that is at least
13769  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13770  * size.  It need not be validated in any other way.
13771  */
13772 static int
13773 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
13774     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
13775 {
13776 	uint64_t len = dof->dofh_loadsz, seclen;
13777 	uintptr_t daddr = (uintptr_t)dof;
13778 	dtrace_ecbdesc_t *ep;
13779 	dtrace_enabling_t *enab;
13780 	uint_t i;
13781 
13782 	ASSERT(MUTEX_HELD(&dtrace_lock));
13783 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
13784 
13785 	/*
13786 	 * Check the DOF header identification bytes.  In addition to checking
13787 	 * valid settings, we also verify that unused bits/bytes are zeroed so
13788 	 * we can use them later without fear of regressing existing binaries.
13789 	 */
13790 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
13791 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
13792 		dtrace_dof_error(dof, "DOF magic string mismatch");
13793 		return (-1);
13794 	}
13795 
13796 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
13797 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
13798 		dtrace_dof_error(dof, "DOF has invalid data model");
13799 		return (-1);
13800 	}
13801 
13802 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
13803 		dtrace_dof_error(dof, "DOF encoding mismatch");
13804 		return (-1);
13805 	}
13806 
13807 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13808 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
13809 		dtrace_dof_error(dof, "DOF version mismatch");
13810 		return (-1);
13811 	}
13812 
13813 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
13814 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
13815 		return (-1);
13816 	}
13817 
13818 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
13819 		dtrace_dof_error(dof, "DOF uses too many integer registers");
13820 		return (-1);
13821 	}
13822 
13823 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
13824 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
13825 		return (-1);
13826 	}
13827 
13828 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
13829 		if (dof->dofh_ident[i] != 0) {
13830 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
13831 			return (-1);
13832 		}
13833 	}
13834 
13835 	if (dof->dofh_flags & ~DOF_FL_VALID) {
13836 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
13837 		return (-1);
13838 	}
13839 
13840 	if (dof->dofh_secsize == 0) {
13841 		dtrace_dof_error(dof, "zero section header size");
13842 		return (-1);
13843 	}
13844 
13845 	/*
13846 	 * Check that the section headers don't exceed the amount of DOF
13847 	 * data.  Note that we cast the section size and number of sections
13848 	 * to uint64_t's to prevent possible overflow in the multiplication.
13849 	 */
13850 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
13851 
13852 	if (dof->dofh_secoff > len || seclen > len ||
13853 	    dof->dofh_secoff + seclen > len) {
13854 		dtrace_dof_error(dof, "truncated section headers");
13855 		return (-1);
13856 	}
13857 
13858 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
13859 		dtrace_dof_error(dof, "misaligned section headers");
13860 		return (-1);
13861 	}
13862 
13863 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13864 		dtrace_dof_error(dof, "misaligned section size");
13865 		return (-1);
13866 	}
13867 
13868 	/*
13869 	 * Take an initial pass through the section headers to be sure that
13870 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
13871 	 * set, do not permit sections relating to providers, probes, or args.
13872 	 */
13873 	for (i = 0; i < dof->dofh_secnum; i++) {
13874 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13875 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13876 
13877 		if (noprobes) {
13878 			switch (sec->dofs_type) {
13879 			case DOF_SECT_PROVIDER:
13880 			case DOF_SECT_PROBES:
13881 			case DOF_SECT_PRARGS:
13882 			case DOF_SECT_PROFFS:
13883 				dtrace_dof_error(dof, "illegal sections "
13884 				    "for enabling");
13885 				return (-1);
13886 			}
13887 		}
13888 
13889 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13890 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
13891 			dtrace_dof_error(dof, "loadable section with load "
13892 			    "flag unset");
13893 			return (-1);
13894 		}
13895 
13896 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13897 			continue; /* just ignore non-loadable sections */
13898 
13899 		if (!ISP2(sec->dofs_align)) {
13900 			dtrace_dof_error(dof, "bad section alignment");
13901 			return (-1);
13902 		}
13903 
13904 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
13905 			dtrace_dof_error(dof, "misaligned section");
13906 			return (-1);
13907 		}
13908 
13909 		if (sec->dofs_offset > len || sec->dofs_size > len ||
13910 		    sec->dofs_offset + sec->dofs_size > len) {
13911 			dtrace_dof_error(dof, "corrupt section header");
13912 			return (-1);
13913 		}
13914 
13915 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13916 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13917 			dtrace_dof_error(dof, "non-terminating string table");
13918 			return (-1);
13919 		}
13920 	}
13921 
13922 	/*
13923 	 * Take a second pass through the sections and locate and perform any
13924 	 * relocations that are present.  We do this after the first pass to
13925 	 * be sure that all sections have had their headers validated.
13926 	 */
13927 	for (i = 0; i < dof->dofh_secnum; i++) {
13928 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13929 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13930 
13931 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13932 			continue; /* skip sections that are not loadable */
13933 
13934 		switch (sec->dofs_type) {
13935 		case DOF_SECT_URELHDR:
13936 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13937 				return (-1);
13938 			break;
13939 		}
13940 	}
13941 
13942 	if ((enab = *enabp) == NULL)
13943 		enab = *enabp = dtrace_enabling_create(vstate);
13944 
13945 	for (i = 0; i < dof->dofh_secnum; i++) {
13946 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13947 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13948 
13949 		if (sec->dofs_type != DOF_SECT_ECBDESC)
13950 			continue;
13951 
13952 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13953 			dtrace_enabling_destroy(enab);
13954 			*enabp = NULL;
13955 			return (-1);
13956 		}
13957 
13958 		dtrace_enabling_add(enab, ep);
13959 	}
13960 
13961 	return (0);
13962 }
13963 
13964 /*
13965  * Process DOF for any options.  This routine assumes that the DOF has been
13966  * at least processed by dtrace_dof_slurp().
13967  */
13968 static int
13969 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13970 {
13971 	int i, rval;
13972 	uint32_t entsize;
13973 	size_t offs;
13974 	dof_optdesc_t *desc;
13975 
13976 	for (i = 0; i < dof->dofh_secnum; i++) {
13977 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13978 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13979 
13980 		if (sec->dofs_type != DOF_SECT_OPTDESC)
13981 			continue;
13982 
13983 		if (sec->dofs_align != sizeof (uint64_t)) {
13984 			dtrace_dof_error(dof, "bad alignment in "
13985 			    "option description");
13986 			return (EINVAL);
13987 		}
13988 
13989 		if ((entsize = sec->dofs_entsize) == 0) {
13990 			dtrace_dof_error(dof, "zeroed option entry size");
13991 			return (EINVAL);
13992 		}
13993 
13994 		if (entsize < sizeof (dof_optdesc_t)) {
13995 			dtrace_dof_error(dof, "bad option entry size");
13996 			return (EINVAL);
13997 		}
13998 
13999 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
14000 			desc = (dof_optdesc_t *)((uintptr_t)dof +
14001 			    (uintptr_t)sec->dofs_offset + offs);
14002 
14003 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
14004 				dtrace_dof_error(dof, "non-zero option string");
14005 				return (EINVAL);
14006 			}
14007 
14008 			if (desc->dofo_value == DTRACEOPT_UNSET) {
14009 				dtrace_dof_error(dof, "unset option");
14010 				return (EINVAL);
14011 			}
14012 
14013 			if ((rval = dtrace_state_option(state,
14014 			    desc->dofo_option, desc->dofo_value)) != 0) {
14015 				dtrace_dof_error(dof, "rejected option");
14016 				return (rval);
14017 			}
14018 		}
14019 	}
14020 
14021 	return (0);
14022 }
14023 
14024 /*
14025  * DTrace Consumer State Functions
14026  */
14027 static int
14028 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
14029 {
14030 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
14031 	void *base;
14032 	uintptr_t limit;
14033 	dtrace_dynvar_t *dvar, *next, *start;
14034 	int i;
14035 
14036 	ASSERT(MUTEX_HELD(&dtrace_lock));
14037 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
14038 
14039 	bzero(dstate, sizeof (dtrace_dstate_t));
14040 
14041 	if ((dstate->dtds_chunksize = chunksize) == 0)
14042 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
14043 
14044 	VERIFY(dstate->dtds_chunksize < LONG_MAX);
14045 
14046 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
14047 		size = min;
14048 
14049 	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
14050 		return (ENOMEM);
14051 
14052 	dstate->dtds_size = size;
14053 	dstate->dtds_base = base;
14054 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
14055 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
14056 
14057 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
14058 
14059 	if (hashsize != 1 && (hashsize & 1))
14060 		hashsize--;
14061 
14062 	dstate->dtds_hashsize = hashsize;
14063 	dstate->dtds_hash = dstate->dtds_base;
14064 
14065 	/*
14066 	 * Set all of our hash buckets to point to the single sink, and (if
14067 	 * it hasn't already been set), set the sink's hash value to be the
14068 	 * sink sentinel value.  The sink is needed for dynamic variable
14069 	 * lookups to know that they have iterated over an entire, valid hash
14070 	 * chain.
14071 	 */
14072 	for (i = 0; i < hashsize; i++)
14073 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
14074 
14075 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
14076 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
14077 
14078 	/*
14079 	 * Determine number of active CPUs.  Divide free list evenly among
14080 	 * active CPUs.
14081 	 */
14082 	start = (dtrace_dynvar_t *)
14083 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
14084 	limit = (uintptr_t)base + size;
14085 
14086 	VERIFY((uintptr_t)start < limit);
14087 	VERIFY((uintptr_t)start >= (uintptr_t)base);
14088 
14089 	maxper = (limit - (uintptr_t)start) / NCPU;
14090 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
14091 
14092 #ifndef illumos
14093 	CPU_FOREACH(i) {
14094 #else
14095 	for (i = 0; i < NCPU; i++) {
14096 #endif
14097 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
14098 
14099 		/*
14100 		 * If we don't even have enough chunks to make it once through
14101 		 * NCPUs, we're just going to allocate everything to the first
14102 		 * CPU.  And if we're on the last CPU, we're going to allocate
14103 		 * whatever is left over.  In either case, we set the limit to
14104 		 * be the limit of the dynamic variable space.
14105 		 */
14106 		if (maxper == 0 || i == NCPU - 1) {
14107 			limit = (uintptr_t)base + size;
14108 			start = NULL;
14109 		} else {
14110 			limit = (uintptr_t)start + maxper;
14111 			start = (dtrace_dynvar_t *)limit;
14112 		}
14113 
14114 		VERIFY(limit <= (uintptr_t)base + size);
14115 
14116 		for (;;) {
14117 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14118 			    dstate->dtds_chunksize);
14119 
14120 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14121 				break;
14122 
14123 			VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
14124 			    (uintptr_t)dvar <= (uintptr_t)base + size);
14125 			dvar->dtdv_next = next;
14126 			dvar = next;
14127 		}
14128 
14129 		if (maxper == 0)
14130 			break;
14131 	}
14132 
14133 	return (0);
14134 }
14135 
14136 static void
14137 dtrace_dstate_fini(dtrace_dstate_t *dstate)
14138 {
14139 	ASSERT(MUTEX_HELD(&cpu_lock));
14140 
14141 	if (dstate->dtds_base == NULL)
14142 		return;
14143 
14144 	kmem_free(dstate->dtds_base, dstate->dtds_size);
14145 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14146 }
14147 
14148 static void
14149 dtrace_vstate_fini(dtrace_vstate_t *vstate)
14150 {
14151 	/*
14152 	 * Logical XOR, where are you?
14153 	 */
14154 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14155 
14156 	if (vstate->dtvs_nglobals > 0) {
14157 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14158 		    sizeof (dtrace_statvar_t *));
14159 	}
14160 
14161 	if (vstate->dtvs_ntlocals > 0) {
14162 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14163 		    sizeof (dtrace_difv_t));
14164 	}
14165 
14166 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14167 
14168 	if (vstate->dtvs_nlocals > 0) {
14169 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14170 		    sizeof (dtrace_statvar_t *));
14171 	}
14172 }
14173 
14174 #ifdef illumos
14175 static void
14176 dtrace_state_clean(dtrace_state_t *state)
14177 {
14178 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14179 		return;
14180 
14181 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14182 	dtrace_speculation_clean(state);
14183 }
14184 
14185 static void
14186 dtrace_state_deadman(dtrace_state_t *state)
14187 {
14188 	hrtime_t now;
14189 
14190 	dtrace_sync();
14191 
14192 	now = dtrace_gethrtime();
14193 
14194 	if (state != dtrace_anon.dta_state &&
14195 	    now - state->dts_laststatus >= dtrace_deadman_user)
14196 		return;
14197 
14198 	/*
14199 	 * We must be sure that dts_alive never appears to be less than the
14200 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14201 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14202 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14203 	 * the new value.  This assures that dts_alive never appears to be
14204 	 * less than its true value, regardless of the order in which the
14205 	 * stores to the underlying storage are issued.
14206 	 */
14207 	state->dts_alive = INT64_MAX;
14208 	dtrace_membar_producer();
14209 	state->dts_alive = now;
14210 }
14211 #else	/* !illumos */
14212 static void
14213 dtrace_state_clean(void *arg)
14214 {
14215 	dtrace_state_t *state = arg;
14216 	dtrace_optval_t *opt = state->dts_options;
14217 
14218 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14219 		return;
14220 
14221 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14222 	dtrace_speculation_clean(state);
14223 
14224 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14225 	    dtrace_state_clean, state);
14226 }
14227 
14228 static void
14229 dtrace_state_deadman(void *arg)
14230 {
14231 	dtrace_state_t *state = arg;
14232 	hrtime_t now;
14233 
14234 	dtrace_sync();
14235 
14236 	dtrace_debug_output();
14237 
14238 	now = dtrace_gethrtime();
14239 
14240 	if (state != dtrace_anon.dta_state &&
14241 	    now - state->dts_laststatus >= dtrace_deadman_user)
14242 		return;
14243 
14244 	/*
14245 	 * We must be sure that dts_alive never appears to be less than the
14246 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14247 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14248 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14249 	 * the new value.  This assures that dts_alive never appears to be
14250 	 * less than its true value, regardless of the order in which the
14251 	 * stores to the underlying storage are issued.
14252 	 */
14253 	state->dts_alive = INT64_MAX;
14254 	dtrace_membar_producer();
14255 	state->dts_alive = now;
14256 
14257 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14258 	    dtrace_state_deadman, state);
14259 }
14260 #endif	/* illumos */
14261 
14262 static dtrace_state_t *
14263 #ifdef illumos
14264 dtrace_state_create(dev_t *devp, cred_t *cr)
14265 #else
14266 dtrace_state_create(struct cdev *dev)
14267 #endif
14268 {
14269 #ifdef illumos
14270 	minor_t minor;
14271 	major_t major;
14272 #else
14273 	cred_t *cr = NULL;
14274 	int m = 0;
14275 #endif
14276 	char c[30];
14277 	dtrace_state_t *state;
14278 	dtrace_optval_t *opt;
14279 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
14280 
14281 	ASSERT(MUTEX_HELD(&dtrace_lock));
14282 	ASSERT(MUTEX_HELD(&cpu_lock));
14283 
14284 #ifdef illumos
14285 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14286 	    VM_BESTFIT | VM_SLEEP);
14287 
14288 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14289 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14290 		return (NULL);
14291 	}
14292 
14293 	state = ddi_get_soft_state(dtrace_softstate, minor);
14294 #else
14295 	if (dev != NULL) {
14296 		cr = dev->si_cred;
14297 		m = dev2unit(dev);
14298 	}
14299 
14300 	/* Allocate memory for the state. */
14301 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14302 #endif
14303 
14304 	state->dts_epid = DTRACE_EPIDNONE + 1;
14305 
14306 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14307 #ifdef illumos
14308 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14309 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14310 
14311 	if (devp != NULL) {
14312 		major = getemajor(*devp);
14313 	} else {
14314 		major = ddi_driver_major(dtrace_devi);
14315 	}
14316 
14317 	state->dts_dev = makedevice(major, minor);
14318 
14319 	if (devp != NULL)
14320 		*devp = state->dts_dev;
14321 #else
14322 	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14323 	state->dts_dev = dev;
14324 #endif
14325 
14326 	/*
14327 	 * We allocate NCPU buffers.  On the one hand, this can be quite
14328 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
14329 	 * other hand, it saves an additional memory reference in the probe
14330 	 * path.
14331 	 */
14332 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14333 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14334 
14335 #ifdef illumos
14336 	state->dts_cleaner = CYCLIC_NONE;
14337 	state->dts_deadman = CYCLIC_NONE;
14338 #else
14339 	callout_init(&state->dts_cleaner, 1);
14340 	callout_init(&state->dts_deadman, 1);
14341 #endif
14342 	state->dts_vstate.dtvs_state = state;
14343 
14344 	for (i = 0; i < DTRACEOPT_MAX; i++)
14345 		state->dts_options[i] = DTRACEOPT_UNSET;
14346 
14347 	/*
14348 	 * Set the default options.
14349 	 */
14350 	opt = state->dts_options;
14351 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14352 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14353 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14354 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14355 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14356 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14357 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14358 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14359 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14360 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14361 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14362 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14363 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14364 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14365 
14366 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14367 
14368 	/*
14369 	 * Depending on the user credentials, we set flag bits which alter probe
14370 	 * visibility or the amount of destructiveness allowed.  In the case of
14371 	 * actual anonymous tracing, or the possession of all privileges, all of
14372 	 * the normal checks are bypassed.
14373 	 */
14374 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14375 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14376 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14377 	} else {
14378 		/*
14379 		 * Set up the credentials for this instantiation.  We take a
14380 		 * hold on the credential to prevent it from disappearing on
14381 		 * us; this in turn prevents the zone_t referenced by this
14382 		 * credential from disappearing.  This means that we can
14383 		 * examine the credential and the zone from probe context.
14384 		 */
14385 		crhold(cr);
14386 		state->dts_cred.dcr_cred = cr;
14387 
14388 		/*
14389 		 * CRA_PROC means "we have *some* privilege for dtrace" and
14390 		 * unlocks the use of variables like pid, zonename, etc.
14391 		 */
14392 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14393 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14394 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14395 		}
14396 
14397 		/*
14398 		 * dtrace_user allows use of syscall and profile providers.
14399 		 * If the user also has proc_owner and/or proc_zone, we
14400 		 * extend the scope to include additional visibility and
14401 		 * destructive power.
14402 		 */
14403 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14404 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14405 				state->dts_cred.dcr_visible |=
14406 				    DTRACE_CRV_ALLPROC;
14407 
14408 				state->dts_cred.dcr_action |=
14409 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14410 			}
14411 
14412 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14413 				state->dts_cred.dcr_visible |=
14414 				    DTRACE_CRV_ALLZONE;
14415 
14416 				state->dts_cred.dcr_action |=
14417 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14418 			}
14419 
14420 			/*
14421 			 * If we have all privs in whatever zone this is,
14422 			 * we can do destructive things to processes which
14423 			 * have altered credentials.
14424 			 */
14425 #ifdef illumos
14426 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14427 			    cr->cr_zone->zone_privset)) {
14428 				state->dts_cred.dcr_action |=
14429 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14430 			}
14431 #endif
14432 		}
14433 
14434 		/*
14435 		 * Holding the dtrace_kernel privilege also implies that
14436 		 * the user has the dtrace_user privilege from a visibility
14437 		 * perspective.  But without further privileges, some
14438 		 * destructive actions are not available.
14439 		 */
14440 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14441 			/*
14442 			 * Make all probes in all zones visible.  However,
14443 			 * this doesn't mean that all actions become available
14444 			 * to all zones.
14445 			 */
14446 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14447 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14448 
14449 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14450 			    DTRACE_CRA_PROC;
14451 			/*
14452 			 * Holding proc_owner means that destructive actions
14453 			 * for *this* zone are allowed.
14454 			 */
14455 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14456 				state->dts_cred.dcr_action |=
14457 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14458 
14459 			/*
14460 			 * Holding proc_zone means that destructive actions
14461 			 * for this user/group ID in all zones is allowed.
14462 			 */
14463 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14464 				state->dts_cred.dcr_action |=
14465 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14466 
14467 #ifdef illumos
14468 			/*
14469 			 * If we have all privs in whatever zone this is,
14470 			 * we can do destructive things to processes which
14471 			 * have altered credentials.
14472 			 */
14473 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14474 			    cr->cr_zone->zone_privset)) {
14475 				state->dts_cred.dcr_action |=
14476 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14477 			}
14478 #endif
14479 		}
14480 
14481 		/*
14482 		 * Holding the dtrace_proc privilege gives control over fasttrap
14483 		 * and pid providers.  We need to grant wider destructive
14484 		 * privileges in the event that the user has proc_owner and/or
14485 		 * proc_zone.
14486 		 */
14487 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14488 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14489 				state->dts_cred.dcr_action |=
14490 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14491 
14492 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14493 				state->dts_cred.dcr_action |=
14494 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14495 		}
14496 	}
14497 
14498 	return (state);
14499 }
14500 
14501 static int
14502 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14503 {
14504 	dtrace_optval_t *opt = state->dts_options, size;
14505 	processorid_t cpu = 0;;
14506 	int flags = 0, rval, factor, divisor = 1;
14507 
14508 	ASSERT(MUTEX_HELD(&dtrace_lock));
14509 	ASSERT(MUTEX_HELD(&cpu_lock));
14510 	ASSERT(which < DTRACEOPT_MAX);
14511 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14512 	    (state == dtrace_anon.dta_state &&
14513 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14514 
14515 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14516 		return (0);
14517 
14518 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14519 		cpu = opt[DTRACEOPT_CPU];
14520 
14521 	if (which == DTRACEOPT_SPECSIZE)
14522 		flags |= DTRACEBUF_NOSWITCH;
14523 
14524 	if (which == DTRACEOPT_BUFSIZE) {
14525 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14526 			flags |= DTRACEBUF_RING;
14527 
14528 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14529 			flags |= DTRACEBUF_FILL;
14530 
14531 		if (state != dtrace_anon.dta_state ||
14532 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14533 			flags |= DTRACEBUF_INACTIVE;
14534 	}
14535 
14536 	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14537 		/*
14538 		 * The size must be 8-byte aligned.  If the size is not 8-byte
14539 		 * aligned, drop it down by the difference.
14540 		 */
14541 		if (size & (sizeof (uint64_t) - 1))
14542 			size -= size & (sizeof (uint64_t) - 1);
14543 
14544 		if (size < state->dts_reserve) {
14545 			/*
14546 			 * Buffers always must be large enough to accommodate
14547 			 * their prereserved space.  We return E2BIG instead
14548 			 * of ENOMEM in this case to allow for user-level
14549 			 * software to differentiate the cases.
14550 			 */
14551 			return (E2BIG);
14552 		}
14553 
14554 		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14555 
14556 		if (rval != ENOMEM) {
14557 			opt[which] = size;
14558 			return (rval);
14559 		}
14560 
14561 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14562 			return (rval);
14563 
14564 		for (divisor = 2; divisor < factor; divisor <<= 1)
14565 			continue;
14566 	}
14567 
14568 	return (ENOMEM);
14569 }
14570 
14571 static int
14572 dtrace_state_buffers(dtrace_state_t *state)
14573 {
14574 	dtrace_speculation_t *spec = state->dts_speculations;
14575 	int rval, i;
14576 
14577 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14578 	    DTRACEOPT_BUFSIZE)) != 0)
14579 		return (rval);
14580 
14581 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14582 	    DTRACEOPT_AGGSIZE)) != 0)
14583 		return (rval);
14584 
14585 	for (i = 0; i < state->dts_nspeculations; i++) {
14586 		if ((rval = dtrace_state_buffer(state,
14587 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14588 			return (rval);
14589 	}
14590 
14591 	return (0);
14592 }
14593 
14594 static void
14595 dtrace_state_prereserve(dtrace_state_t *state)
14596 {
14597 	dtrace_ecb_t *ecb;
14598 	dtrace_probe_t *probe;
14599 
14600 	state->dts_reserve = 0;
14601 
14602 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14603 		return;
14604 
14605 	/*
14606 	 * If our buffer policy is a "fill" buffer policy, we need to set the
14607 	 * prereserved space to be the space required by the END probes.
14608 	 */
14609 	probe = dtrace_probes[dtrace_probeid_end - 1];
14610 	ASSERT(probe != NULL);
14611 
14612 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14613 		if (ecb->dte_state != state)
14614 			continue;
14615 
14616 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14617 	}
14618 }
14619 
14620 static int
14621 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14622 {
14623 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14624 	dtrace_speculation_t *spec;
14625 	dtrace_buffer_t *buf;
14626 #ifdef illumos
14627 	cyc_handler_t hdlr;
14628 	cyc_time_t when;
14629 #endif
14630 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14631 	dtrace_icookie_t cookie;
14632 
14633 	mutex_enter(&cpu_lock);
14634 	mutex_enter(&dtrace_lock);
14635 
14636 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14637 		rval = EBUSY;
14638 		goto out;
14639 	}
14640 
14641 	/*
14642 	 * Before we can perform any checks, we must prime all of the
14643 	 * retained enablings that correspond to this state.
14644 	 */
14645 	dtrace_enabling_prime(state);
14646 
14647 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14648 		rval = EACCES;
14649 		goto out;
14650 	}
14651 
14652 	dtrace_state_prereserve(state);
14653 
14654 	/*
14655 	 * Now we want to do is try to allocate our speculations.
14656 	 * We do not automatically resize the number of speculations; if
14657 	 * this fails, we will fail the operation.
14658 	 */
14659 	nspec = opt[DTRACEOPT_NSPEC];
14660 	ASSERT(nspec != DTRACEOPT_UNSET);
14661 
14662 	if (nspec > INT_MAX) {
14663 		rval = ENOMEM;
14664 		goto out;
14665 	}
14666 
14667 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14668 	    KM_NOSLEEP | KM_NORMALPRI);
14669 
14670 	if (spec == NULL) {
14671 		rval = ENOMEM;
14672 		goto out;
14673 	}
14674 
14675 	state->dts_speculations = spec;
14676 	state->dts_nspeculations = (int)nspec;
14677 
14678 	for (i = 0; i < nspec; i++) {
14679 		if ((buf = kmem_zalloc(bufsize,
14680 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14681 			rval = ENOMEM;
14682 			goto err;
14683 		}
14684 
14685 		spec[i].dtsp_buffer = buf;
14686 	}
14687 
14688 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14689 		if (dtrace_anon.dta_state == NULL) {
14690 			rval = ENOENT;
14691 			goto out;
14692 		}
14693 
14694 		if (state->dts_necbs != 0) {
14695 			rval = EALREADY;
14696 			goto out;
14697 		}
14698 
14699 		state->dts_anon = dtrace_anon_grab();
14700 		ASSERT(state->dts_anon != NULL);
14701 		state = state->dts_anon;
14702 
14703 		/*
14704 		 * We want "grabanon" to be set in the grabbed state, so we'll
14705 		 * copy that option value from the grabbing state into the
14706 		 * grabbed state.
14707 		 */
14708 		state->dts_options[DTRACEOPT_GRABANON] =
14709 		    opt[DTRACEOPT_GRABANON];
14710 
14711 		*cpu = dtrace_anon.dta_beganon;
14712 
14713 		/*
14714 		 * If the anonymous state is active (as it almost certainly
14715 		 * is if the anonymous enabling ultimately matched anything),
14716 		 * we don't allow any further option processing -- but we
14717 		 * don't return failure.
14718 		 */
14719 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14720 			goto out;
14721 	}
14722 
14723 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
14724 	    opt[DTRACEOPT_AGGSIZE] != 0) {
14725 		if (state->dts_aggregations == NULL) {
14726 			/*
14727 			 * We're not going to create an aggregation buffer
14728 			 * because we don't have any ECBs that contain
14729 			 * aggregations -- set this option to 0.
14730 			 */
14731 			opt[DTRACEOPT_AGGSIZE] = 0;
14732 		} else {
14733 			/*
14734 			 * If we have an aggregation buffer, we must also have
14735 			 * a buffer to use as scratch.
14736 			 */
14737 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
14738 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
14739 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
14740 			}
14741 		}
14742 	}
14743 
14744 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
14745 	    opt[DTRACEOPT_SPECSIZE] != 0) {
14746 		if (!state->dts_speculates) {
14747 			/*
14748 			 * We're not going to create speculation buffers
14749 			 * because we don't have any ECBs that actually
14750 			 * speculate -- set the speculation size to 0.
14751 			 */
14752 			opt[DTRACEOPT_SPECSIZE] = 0;
14753 		}
14754 	}
14755 
14756 	/*
14757 	 * The bare minimum size for any buffer that we're actually going to
14758 	 * do anything to is sizeof (uint64_t).
14759 	 */
14760 	sz = sizeof (uint64_t);
14761 
14762 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
14763 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
14764 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
14765 		/*
14766 		 * A buffer size has been explicitly set to 0 (or to a size
14767 		 * that will be adjusted to 0) and we need the space -- we
14768 		 * need to return failure.  We return ENOSPC to differentiate
14769 		 * it from failing to allocate a buffer due to failure to meet
14770 		 * the reserve (for which we return E2BIG).
14771 		 */
14772 		rval = ENOSPC;
14773 		goto out;
14774 	}
14775 
14776 	if ((rval = dtrace_state_buffers(state)) != 0)
14777 		goto err;
14778 
14779 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
14780 		sz = dtrace_dstate_defsize;
14781 
14782 	do {
14783 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
14784 
14785 		if (rval == 0)
14786 			break;
14787 
14788 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14789 			goto err;
14790 	} while (sz >>= 1);
14791 
14792 	opt[DTRACEOPT_DYNVARSIZE] = sz;
14793 
14794 	if (rval != 0)
14795 		goto err;
14796 
14797 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
14798 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
14799 
14800 	if (opt[DTRACEOPT_CLEANRATE] == 0)
14801 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14802 
14803 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
14804 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
14805 
14806 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
14807 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14808 
14809 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
14810 #ifdef illumos
14811 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
14812 	hdlr.cyh_arg = state;
14813 	hdlr.cyh_level = CY_LOW_LEVEL;
14814 
14815 	when.cyt_when = 0;
14816 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
14817 
14818 	state->dts_cleaner = cyclic_add(&hdlr, &when);
14819 
14820 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
14821 	hdlr.cyh_arg = state;
14822 	hdlr.cyh_level = CY_LOW_LEVEL;
14823 
14824 	when.cyt_when = 0;
14825 	when.cyt_interval = dtrace_deadman_interval;
14826 
14827 	state->dts_deadman = cyclic_add(&hdlr, &when);
14828 #else
14829 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14830 	    dtrace_state_clean, state);
14831 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14832 	    dtrace_state_deadman, state);
14833 #endif
14834 
14835 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
14836 
14837 #ifdef illumos
14838 	if (state->dts_getf != 0 &&
14839 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14840 		/*
14841 		 * We don't have kernel privs but we have at least one call
14842 		 * to getf(); we need to bump our zone's count, and (if
14843 		 * this is the first enabling to have an unprivileged call
14844 		 * to getf()) we need to hook into closef().
14845 		 */
14846 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
14847 
14848 		if (dtrace_getf++ == 0) {
14849 			ASSERT(dtrace_closef == NULL);
14850 			dtrace_closef = dtrace_getf_barrier;
14851 		}
14852 	}
14853 #endif
14854 
14855 	/*
14856 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
14857 	 * interrupts here both to record the CPU on which we fired the BEGIN
14858 	 * probe (the data from this CPU will be processed first at user
14859 	 * level) and to manually activate the buffer for this CPU.
14860 	 */
14861 	cookie = dtrace_interrupt_disable();
14862 	*cpu = curcpu;
14863 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
14864 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
14865 
14866 	dtrace_probe(dtrace_probeid_begin,
14867 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14868 	dtrace_interrupt_enable(cookie);
14869 	/*
14870 	 * We may have had an exit action from a BEGIN probe; only change our
14871 	 * state to ACTIVE if we're still in WARMUP.
14872 	 */
14873 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
14874 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
14875 
14876 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
14877 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
14878 
14879 	/*
14880 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
14881 	 * want each CPU to transition its principal buffer out of the
14882 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
14883 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
14884 	 * atomically transition from processing none of a state's ECBs to
14885 	 * processing all of them.
14886 	 */
14887 	dtrace_xcall(DTRACE_CPUALL,
14888 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
14889 	goto out;
14890 
14891 err:
14892 	dtrace_buffer_free(state->dts_buffer);
14893 	dtrace_buffer_free(state->dts_aggbuffer);
14894 
14895 	if ((nspec = state->dts_nspeculations) == 0) {
14896 		ASSERT(state->dts_speculations == NULL);
14897 		goto out;
14898 	}
14899 
14900 	spec = state->dts_speculations;
14901 	ASSERT(spec != NULL);
14902 
14903 	for (i = 0; i < state->dts_nspeculations; i++) {
14904 		if ((buf = spec[i].dtsp_buffer) == NULL)
14905 			break;
14906 
14907 		dtrace_buffer_free(buf);
14908 		kmem_free(buf, bufsize);
14909 	}
14910 
14911 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14912 	state->dts_nspeculations = 0;
14913 	state->dts_speculations = NULL;
14914 
14915 out:
14916 	mutex_exit(&dtrace_lock);
14917 	mutex_exit(&cpu_lock);
14918 
14919 	return (rval);
14920 }
14921 
14922 static int
14923 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
14924 {
14925 	dtrace_icookie_t cookie;
14926 
14927 	ASSERT(MUTEX_HELD(&dtrace_lock));
14928 
14929 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
14930 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
14931 		return (EINVAL);
14932 
14933 	/*
14934 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
14935 	 * to be sure that every CPU has seen it.  See below for the details
14936 	 * on why this is done.
14937 	 */
14938 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
14939 	dtrace_sync();
14940 
14941 	/*
14942 	 * By this point, it is impossible for any CPU to be still processing
14943 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
14944 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
14945 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
14946 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
14947 	 * iff we're in the END probe.
14948 	 */
14949 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
14950 	dtrace_sync();
14951 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
14952 
14953 	/*
14954 	 * Finally, we can release the reserve and call the END probe.  We
14955 	 * disable interrupts across calling the END probe to allow us to
14956 	 * return the CPU on which we actually called the END probe.  This
14957 	 * allows user-land to be sure that this CPU's principal buffer is
14958 	 * processed last.
14959 	 */
14960 	state->dts_reserve = 0;
14961 
14962 	cookie = dtrace_interrupt_disable();
14963 	*cpu = curcpu;
14964 	dtrace_probe(dtrace_probeid_end,
14965 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14966 	dtrace_interrupt_enable(cookie);
14967 
14968 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
14969 	dtrace_sync();
14970 
14971 #ifdef illumos
14972 	if (state->dts_getf != 0 &&
14973 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14974 		/*
14975 		 * We don't have kernel privs but we have at least one call
14976 		 * to getf(); we need to lower our zone's count, and (if
14977 		 * this is the last enabling to have an unprivileged call
14978 		 * to getf()) we need to clear the closef() hook.
14979 		 */
14980 		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14981 		ASSERT(dtrace_closef == dtrace_getf_barrier);
14982 		ASSERT(dtrace_getf > 0);
14983 
14984 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14985 
14986 		if (--dtrace_getf == 0)
14987 			dtrace_closef = NULL;
14988 	}
14989 #endif
14990 
14991 	return (0);
14992 }
14993 
14994 static int
14995 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14996     dtrace_optval_t val)
14997 {
14998 	ASSERT(MUTEX_HELD(&dtrace_lock));
14999 
15000 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15001 		return (EBUSY);
15002 
15003 	if (option >= DTRACEOPT_MAX)
15004 		return (EINVAL);
15005 
15006 	if (option != DTRACEOPT_CPU && val < 0)
15007 		return (EINVAL);
15008 
15009 	switch (option) {
15010 	case DTRACEOPT_DESTRUCTIVE:
15011 		if (dtrace_destructive_disallow)
15012 			return (EACCES);
15013 
15014 		state->dts_cred.dcr_destructive = 1;
15015 		break;
15016 
15017 	case DTRACEOPT_BUFSIZE:
15018 	case DTRACEOPT_DYNVARSIZE:
15019 	case DTRACEOPT_AGGSIZE:
15020 	case DTRACEOPT_SPECSIZE:
15021 	case DTRACEOPT_STRSIZE:
15022 		if (val < 0)
15023 			return (EINVAL);
15024 
15025 		if (val >= LONG_MAX) {
15026 			/*
15027 			 * If this is an otherwise negative value, set it to
15028 			 * the highest multiple of 128m less than LONG_MAX.
15029 			 * Technically, we're adjusting the size without
15030 			 * regard to the buffer resizing policy, but in fact,
15031 			 * this has no effect -- if we set the buffer size to
15032 			 * ~LONG_MAX and the buffer policy is ultimately set to
15033 			 * be "manual", the buffer allocation is guaranteed to
15034 			 * fail, if only because the allocation requires two
15035 			 * buffers.  (We set the the size to the highest
15036 			 * multiple of 128m because it ensures that the size
15037 			 * will remain a multiple of a megabyte when
15038 			 * repeatedly halved -- all the way down to 15m.)
15039 			 */
15040 			val = LONG_MAX - (1 << 27) + 1;
15041 		}
15042 	}
15043 
15044 	state->dts_options[option] = val;
15045 
15046 	return (0);
15047 }
15048 
15049 static void
15050 dtrace_state_destroy(dtrace_state_t *state)
15051 {
15052 	dtrace_ecb_t *ecb;
15053 	dtrace_vstate_t *vstate = &state->dts_vstate;
15054 #ifdef illumos
15055 	minor_t minor = getminor(state->dts_dev);
15056 #endif
15057 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
15058 	dtrace_speculation_t *spec = state->dts_speculations;
15059 	int nspec = state->dts_nspeculations;
15060 	uint32_t match;
15061 
15062 	ASSERT(MUTEX_HELD(&dtrace_lock));
15063 	ASSERT(MUTEX_HELD(&cpu_lock));
15064 
15065 	/*
15066 	 * First, retract any retained enablings for this state.
15067 	 */
15068 	dtrace_enabling_retract(state);
15069 	ASSERT(state->dts_nretained == 0);
15070 
15071 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
15072 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
15073 		/*
15074 		 * We have managed to come into dtrace_state_destroy() on a
15075 		 * hot enabling -- almost certainly because of a disorderly
15076 		 * shutdown of a consumer.  (That is, a consumer that is
15077 		 * exiting without having called dtrace_stop().) In this case,
15078 		 * we're going to set our activity to be KILLED, and then
15079 		 * issue a sync to be sure that everyone is out of probe
15080 		 * context before we start blowing away ECBs.
15081 		 */
15082 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
15083 		dtrace_sync();
15084 	}
15085 
15086 	/*
15087 	 * Release the credential hold we took in dtrace_state_create().
15088 	 */
15089 	if (state->dts_cred.dcr_cred != NULL)
15090 		crfree(state->dts_cred.dcr_cred);
15091 
15092 	/*
15093 	 * Now we can safely disable and destroy any enabled probes.  Because
15094 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
15095 	 * (especially if they're all enabled), we take two passes through the
15096 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
15097 	 * in the second we disable whatever is left over.
15098 	 */
15099 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
15100 		for (i = 0; i < state->dts_necbs; i++) {
15101 			if ((ecb = state->dts_ecbs[i]) == NULL)
15102 				continue;
15103 
15104 			if (match && ecb->dte_probe != NULL) {
15105 				dtrace_probe_t *probe = ecb->dte_probe;
15106 				dtrace_provider_t *prov = probe->dtpr_provider;
15107 
15108 				if (!(prov->dtpv_priv.dtpp_flags & match))
15109 					continue;
15110 			}
15111 
15112 			dtrace_ecb_disable(ecb);
15113 			dtrace_ecb_destroy(ecb);
15114 		}
15115 
15116 		if (!match)
15117 			break;
15118 	}
15119 
15120 	/*
15121 	 * Before we free the buffers, perform one more sync to assure that
15122 	 * every CPU is out of probe context.
15123 	 */
15124 	dtrace_sync();
15125 
15126 	dtrace_buffer_free(state->dts_buffer);
15127 	dtrace_buffer_free(state->dts_aggbuffer);
15128 
15129 	for (i = 0; i < nspec; i++)
15130 		dtrace_buffer_free(spec[i].dtsp_buffer);
15131 
15132 #ifdef illumos
15133 	if (state->dts_cleaner != CYCLIC_NONE)
15134 		cyclic_remove(state->dts_cleaner);
15135 
15136 	if (state->dts_deadman != CYCLIC_NONE)
15137 		cyclic_remove(state->dts_deadman);
15138 #else
15139 	callout_stop(&state->dts_cleaner);
15140 	callout_drain(&state->dts_cleaner);
15141 	callout_stop(&state->dts_deadman);
15142 	callout_drain(&state->dts_deadman);
15143 #endif
15144 
15145 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
15146 	dtrace_vstate_fini(vstate);
15147 	if (state->dts_ecbs != NULL)
15148 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15149 
15150 	if (state->dts_aggregations != NULL) {
15151 #ifdef DEBUG
15152 		for (i = 0; i < state->dts_naggregations; i++)
15153 			ASSERT(state->dts_aggregations[i] == NULL);
15154 #endif
15155 		ASSERT(state->dts_naggregations > 0);
15156 		kmem_free(state->dts_aggregations,
15157 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15158 	}
15159 
15160 	kmem_free(state->dts_buffer, bufsize);
15161 	kmem_free(state->dts_aggbuffer, bufsize);
15162 
15163 	for (i = 0; i < nspec; i++)
15164 		kmem_free(spec[i].dtsp_buffer, bufsize);
15165 
15166 	if (spec != NULL)
15167 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15168 
15169 	dtrace_format_destroy(state);
15170 
15171 	if (state->dts_aggid_arena != NULL) {
15172 #ifdef illumos
15173 		vmem_destroy(state->dts_aggid_arena);
15174 #else
15175 		delete_unrhdr(state->dts_aggid_arena);
15176 #endif
15177 		state->dts_aggid_arena = NULL;
15178 	}
15179 #ifdef illumos
15180 	ddi_soft_state_free(dtrace_softstate, minor);
15181 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15182 #endif
15183 }
15184 
15185 /*
15186  * DTrace Anonymous Enabling Functions
15187  */
15188 static dtrace_state_t *
15189 dtrace_anon_grab(void)
15190 {
15191 	dtrace_state_t *state;
15192 
15193 	ASSERT(MUTEX_HELD(&dtrace_lock));
15194 
15195 	if ((state = dtrace_anon.dta_state) == NULL) {
15196 		ASSERT(dtrace_anon.dta_enabling == NULL);
15197 		return (NULL);
15198 	}
15199 
15200 	ASSERT(dtrace_anon.dta_enabling != NULL);
15201 	ASSERT(dtrace_retained != NULL);
15202 
15203 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15204 	dtrace_anon.dta_enabling = NULL;
15205 	dtrace_anon.dta_state = NULL;
15206 
15207 	return (state);
15208 }
15209 
15210 static void
15211 dtrace_anon_property(void)
15212 {
15213 	int i, rv;
15214 	dtrace_state_t *state;
15215 	dof_hdr_t *dof;
15216 	char c[32];		/* enough for "dof-data-" + digits */
15217 
15218 	ASSERT(MUTEX_HELD(&dtrace_lock));
15219 	ASSERT(MUTEX_HELD(&cpu_lock));
15220 
15221 	for (i = 0; ; i++) {
15222 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
15223 
15224 		dtrace_err_verbose = 1;
15225 
15226 		if ((dof = dtrace_dof_property(c)) == NULL) {
15227 			dtrace_err_verbose = 0;
15228 			break;
15229 		}
15230 
15231 #ifdef illumos
15232 		/*
15233 		 * We want to create anonymous state, so we need to transition
15234 		 * the kernel debugger to indicate that DTrace is active.  If
15235 		 * this fails (e.g. because the debugger has modified text in
15236 		 * some way), we won't continue with the processing.
15237 		 */
15238 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15239 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15240 			    "enabling ignored.");
15241 			dtrace_dof_destroy(dof);
15242 			break;
15243 		}
15244 #endif
15245 
15246 		/*
15247 		 * If we haven't allocated an anonymous state, we'll do so now.
15248 		 */
15249 		if ((state = dtrace_anon.dta_state) == NULL) {
15250 #ifdef illumos
15251 			state = dtrace_state_create(NULL, NULL);
15252 #else
15253 			state = dtrace_state_create(NULL);
15254 #endif
15255 			dtrace_anon.dta_state = state;
15256 
15257 			if (state == NULL) {
15258 				/*
15259 				 * This basically shouldn't happen:  the only
15260 				 * failure mode from dtrace_state_create() is a
15261 				 * failure of ddi_soft_state_zalloc() that
15262 				 * itself should never happen.  Still, the
15263 				 * interface allows for a failure mode, and
15264 				 * we want to fail as gracefully as possible:
15265 				 * we'll emit an error message and cease
15266 				 * processing anonymous state in this case.
15267 				 */
15268 				cmn_err(CE_WARN, "failed to create "
15269 				    "anonymous state");
15270 				dtrace_dof_destroy(dof);
15271 				break;
15272 			}
15273 		}
15274 
15275 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15276 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
15277 
15278 		if (rv == 0)
15279 			rv = dtrace_dof_options(dof, state);
15280 
15281 		dtrace_err_verbose = 0;
15282 		dtrace_dof_destroy(dof);
15283 
15284 		if (rv != 0) {
15285 			/*
15286 			 * This is malformed DOF; chuck any anonymous state
15287 			 * that we created.
15288 			 */
15289 			ASSERT(dtrace_anon.dta_enabling == NULL);
15290 			dtrace_state_destroy(state);
15291 			dtrace_anon.dta_state = NULL;
15292 			break;
15293 		}
15294 
15295 		ASSERT(dtrace_anon.dta_enabling != NULL);
15296 	}
15297 
15298 	if (dtrace_anon.dta_enabling != NULL) {
15299 		int rval;
15300 
15301 		/*
15302 		 * dtrace_enabling_retain() can only fail because we are
15303 		 * trying to retain more enablings than are allowed -- but
15304 		 * we only have one anonymous enabling, and we are guaranteed
15305 		 * to be allowed at least one retained enabling; we assert
15306 		 * that dtrace_enabling_retain() returns success.
15307 		 */
15308 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15309 		ASSERT(rval == 0);
15310 
15311 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
15312 	}
15313 }
15314 
15315 /*
15316  * DTrace Helper Functions
15317  */
15318 static void
15319 dtrace_helper_trace(dtrace_helper_action_t *helper,
15320     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15321 {
15322 	uint32_t size, next, nnext, i;
15323 	dtrace_helptrace_t *ent, *buffer;
15324 	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15325 
15326 	if ((buffer = dtrace_helptrace_buffer) == NULL)
15327 		return;
15328 
15329 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15330 
15331 	/*
15332 	 * What would a tracing framework be without its own tracing
15333 	 * framework?  (Well, a hell of a lot simpler, for starters...)
15334 	 */
15335 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15336 	    sizeof (uint64_t) - sizeof (uint64_t);
15337 
15338 	/*
15339 	 * Iterate until we can allocate a slot in the trace buffer.
15340 	 */
15341 	do {
15342 		next = dtrace_helptrace_next;
15343 
15344 		if (next + size < dtrace_helptrace_bufsize) {
15345 			nnext = next + size;
15346 		} else {
15347 			nnext = size;
15348 		}
15349 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15350 
15351 	/*
15352 	 * We have our slot; fill it in.
15353 	 */
15354 	if (nnext == size) {
15355 		dtrace_helptrace_wrapped++;
15356 		next = 0;
15357 	}
15358 
15359 	ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15360 	ent->dtht_helper = helper;
15361 	ent->dtht_where = where;
15362 	ent->dtht_nlocals = vstate->dtvs_nlocals;
15363 
15364 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15365 	    mstate->dtms_fltoffs : -1;
15366 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15367 	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15368 
15369 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
15370 		dtrace_statvar_t *svar;
15371 
15372 		if ((svar = vstate->dtvs_locals[i]) == NULL)
15373 			continue;
15374 
15375 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
15376 		ent->dtht_locals[i] =
15377 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15378 	}
15379 }
15380 
15381 static uint64_t
15382 dtrace_helper(int which, dtrace_mstate_t *mstate,
15383     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15384 {
15385 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15386 	uint64_t sarg0 = mstate->dtms_arg[0];
15387 	uint64_t sarg1 = mstate->dtms_arg[1];
15388 	uint64_t rval = 0;
15389 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15390 	dtrace_helper_action_t *helper;
15391 	dtrace_vstate_t *vstate;
15392 	dtrace_difo_t *pred;
15393 	int i, trace = dtrace_helptrace_buffer != NULL;
15394 
15395 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15396 
15397 	if (helpers == NULL)
15398 		return (0);
15399 
15400 	if ((helper = helpers->dthps_actions[which]) == NULL)
15401 		return (0);
15402 
15403 	vstate = &helpers->dthps_vstate;
15404 	mstate->dtms_arg[0] = arg0;
15405 	mstate->dtms_arg[1] = arg1;
15406 
15407 	/*
15408 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
15409 	 * we'll call the corresponding actions.  Note that the below calls
15410 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
15411 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
15412 	 * the stored DIF offset with its own (which is the desired behavior).
15413 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15414 	 * from machine state; this is okay, too.
15415 	 */
15416 	for (; helper != NULL; helper = helper->dtha_next) {
15417 		if ((pred = helper->dtha_predicate) != NULL) {
15418 			if (trace)
15419 				dtrace_helper_trace(helper, mstate, vstate, 0);
15420 
15421 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15422 				goto next;
15423 
15424 			if (*flags & CPU_DTRACE_FAULT)
15425 				goto err;
15426 		}
15427 
15428 		for (i = 0; i < helper->dtha_nactions; i++) {
15429 			if (trace)
15430 				dtrace_helper_trace(helper,
15431 				    mstate, vstate, i + 1);
15432 
15433 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
15434 			    mstate, vstate, state);
15435 
15436 			if (*flags & CPU_DTRACE_FAULT)
15437 				goto err;
15438 		}
15439 
15440 next:
15441 		if (trace)
15442 			dtrace_helper_trace(helper, mstate, vstate,
15443 			    DTRACE_HELPTRACE_NEXT);
15444 	}
15445 
15446 	if (trace)
15447 		dtrace_helper_trace(helper, mstate, vstate,
15448 		    DTRACE_HELPTRACE_DONE);
15449 
15450 	/*
15451 	 * Restore the arg0 that we saved upon entry.
15452 	 */
15453 	mstate->dtms_arg[0] = sarg0;
15454 	mstate->dtms_arg[1] = sarg1;
15455 
15456 	return (rval);
15457 
15458 err:
15459 	if (trace)
15460 		dtrace_helper_trace(helper, mstate, vstate,
15461 		    DTRACE_HELPTRACE_ERR);
15462 
15463 	/*
15464 	 * Restore the arg0 that we saved upon entry.
15465 	 */
15466 	mstate->dtms_arg[0] = sarg0;
15467 	mstate->dtms_arg[1] = sarg1;
15468 
15469 	return (0);
15470 }
15471 
15472 static void
15473 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15474     dtrace_vstate_t *vstate)
15475 {
15476 	int i;
15477 
15478 	if (helper->dtha_predicate != NULL)
15479 		dtrace_difo_release(helper->dtha_predicate, vstate);
15480 
15481 	for (i = 0; i < helper->dtha_nactions; i++) {
15482 		ASSERT(helper->dtha_actions[i] != NULL);
15483 		dtrace_difo_release(helper->dtha_actions[i], vstate);
15484 	}
15485 
15486 	kmem_free(helper->dtha_actions,
15487 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
15488 	kmem_free(helper, sizeof (dtrace_helper_action_t));
15489 }
15490 
15491 static int
15492 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
15493 {
15494 	proc_t *p = curproc;
15495 	dtrace_vstate_t *vstate;
15496 	int i;
15497 
15498 	if (help == NULL)
15499 		help = p->p_dtrace_helpers;
15500 
15501 	ASSERT(MUTEX_HELD(&dtrace_lock));
15502 
15503 	if (help == NULL || gen > help->dthps_generation)
15504 		return (EINVAL);
15505 
15506 	vstate = &help->dthps_vstate;
15507 
15508 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15509 		dtrace_helper_action_t *last = NULL, *h, *next;
15510 
15511 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15512 			next = h->dtha_next;
15513 
15514 			if (h->dtha_generation == gen) {
15515 				if (last != NULL) {
15516 					last->dtha_next = next;
15517 				} else {
15518 					help->dthps_actions[i] = next;
15519 				}
15520 
15521 				dtrace_helper_action_destroy(h, vstate);
15522 			} else {
15523 				last = h;
15524 			}
15525 		}
15526 	}
15527 
15528 	/*
15529 	 * Interate until we've cleared out all helper providers with the
15530 	 * given generation number.
15531 	 */
15532 	for (;;) {
15533 		dtrace_helper_provider_t *prov;
15534 
15535 		/*
15536 		 * Look for a helper provider with the right generation. We
15537 		 * have to start back at the beginning of the list each time
15538 		 * because we drop dtrace_lock. It's unlikely that we'll make
15539 		 * more than two passes.
15540 		 */
15541 		for (i = 0; i < help->dthps_nprovs; i++) {
15542 			prov = help->dthps_provs[i];
15543 
15544 			if (prov->dthp_generation == gen)
15545 				break;
15546 		}
15547 
15548 		/*
15549 		 * If there were no matches, we're done.
15550 		 */
15551 		if (i == help->dthps_nprovs)
15552 			break;
15553 
15554 		/*
15555 		 * Move the last helper provider into this slot.
15556 		 */
15557 		help->dthps_nprovs--;
15558 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15559 		help->dthps_provs[help->dthps_nprovs] = NULL;
15560 
15561 		mutex_exit(&dtrace_lock);
15562 
15563 		/*
15564 		 * If we have a meta provider, remove this helper provider.
15565 		 */
15566 		mutex_enter(&dtrace_meta_lock);
15567 		if (dtrace_meta_pid != NULL) {
15568 			ASSERT(dtrace_deferred_pid == NULL);
15569 			dtrace_helper_provider_remove(&prov->dthp_prov,
15570 			    p->p_pid);
15571 		}
15572 		mutex_exit(&dtrace_meta_lock);
15573 
15574 		dtrace_helper_provider_destroy(prov);
15575 
15576 		mutex_enter(&dtrace_lock);
15577 	}
15578 
15579 	return (0);
15580 }
15581 
15582 static int
15583 dtrace_helper_validate(dtrace_helper_action_t *helper)
15584 {
15585 	int err = 0, i;
15586 	dtrace_difo_t *dp;
15587 
15588 	if ((dp = helper->dtha_predicate) != NULL)
15589 		err += dtrace_difo_validate_helper(dp);
15590 
15591 	for (i = 0; i < helper->dtha_nactions; i++)
15592 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15593 
15594 	return (err == 0);
15595 }
15596 
15597 static int
15598 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
15599     dtrace_helpers_t *help)
15600 {
15601 	dtrace_helper_action_t *helper, *last;
15602 	dtrace_actdesc_t *act;
15603 	dtrace_vstate_t *vstate;
15604 	dtrace_predicate_t *pred;
15605 	int count = 0, nactions = 0, i;
15606 
15607 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15608 		return (EINVAL);
15609 
15610 	last = help->dthps_actions[which];
15611 	vstate = &help->dthps_vstate;
15612 
15613 	for (count = 0; last != NULL; last = last->dtha_next) {
15614 		count++;
15615 		if (last->dtha_next == NULL)
15616 			break;
15617 	}
15618 
15619 	/*
15620 	 * If we already have dtrace_helper_actions_max helper actions for this
15621 	 * helper action type, we'll refuse to add a new one.
15622 	 */
15623 	if (count >= dtrace_helper_actions_max)
15624 		return (ENOSPC);
15625 
15626 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15627 	helper->dtha_generation = help->dthps_generation;
15628 
15629 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15630 		ASSERT(pred->dtp_difo != NULL);
15631 		dtrace_difo_hold(pred->dtp_difo);
15632 		helper->dtha_predicate = pred->dtp_difo;
15633 	}
15634 
15635 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15636 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
15637 			goto err;
15638 
15639 		if (act->dtad_difo == NULL)
15640 			goto err;
15641 
15642 		nactions++;
15643 	}
15644 
15645 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15646 	    (helper->dtha_nactions = nactions), KM_SLEEP);
15647 
15648 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15649 		dtrace_difo_hold(act->dtad_difo);
15650 		helper->dtha_actions[i++] = act->dtad_difo;
15651 	}
15652 
15653 	if (!dtrace_helper_validate(helper))
15654 		goto err;
15655 
15656 	if (last == NULL) {
15657 		help->dthps_actions[which] = helper;
15658 	} else {
15659 		last->dtha_next = helper;
15660 	}
15661 
15662 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15663 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15664 		dtrace_helptrace_next = 0;
15665 	}
15666 
15667 	return (0);
15668 err:
15669 	dtrace_helper_action_destroy(helper, vstate);
15670 	return (EINVAL);
15671 }
15672 
15673 static void
15674 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15675     dof_helper_t *dofhp)
15676 {
15677 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15678 
15679 	mutex_enter(&dtrace_meta_lock);
15680 	mutex_enter(&dtrace_lock);
15681 
15682 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
15683 		/*
15684 		 * If the dtrace module is loaded but not attached, or if
15685 		 * there aren't isn't a meta provider registered to deal with
15686 		 * these provider descriptions, we need to postpone creating
15687 		 * the actual providers until later.
15688 		 */
15689 
15690 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
15691 		    dtrace_deferred_pid != help) {
15692 			help->dthps_deferred = 1;
15693 			help->dthps_pid = p->p_pid;
15694 			help->dthps_next = dtrace_deferred_pid;
15695 			help->dthps_prev = NULL;
15696 			if (dtrace_deferred_pid != NULL)
15697 				dtrace_deferred_pid->dthps_prev = help;
15698 			dtrace_deferred_pid = help;
15699 		}
15700 
15701 		mutex_exit(&dtrace_lock);
15702 
15703 	} else if (dofhp != NULL) {
15704 		/*
15705 		 * If the dtrace module is loaded and we have a particular
15706 		 * helper provider description, pass that off to the
15707 		 * meta provider.
15708 		 */
15709 
15710 		mutex_exit(&dtrace_lock);
15711 
15712 		dtrace_helper_provide(dofhp, p->p_pid);
15713 
15714 	} else {
15715 		/*
15716 		 * Otherwise, just pass all the helper provider descriptions
15717 		 * off to the meta provider.
15718 		 */
15719 
15720 		int i;
15721 		mutex_exit(&dtrace_lock);
15722 
15723 		for (i = 0; i < help->dthps_nprovs; i++) {
15724 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
15725 			    p->p_pid);
15726 		}
15727 	}
15728 
15729 	mutex_exit(&dtrace_meta_lock);
15730 }
15731 
15732 static int
15733 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
15734 {
15735 	dtrace_helper_provider_t *hprov, **tmp_provs;
15736 	uint_t tmp_maxprovs, i;
15737 
15738 	ASSERT(MUTEX_HELD(&dtrace_lock));
15739 	ASSERT(help != NULL);
15740 
15741 	/*
15742 	 * If we already have dtrace_helper_providers_max helper providers,
15743 	 * we're refuse to add a new one.
15744 	 */
15745 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
15746 		return (ENOSPC);
15747 
15748 	/*
15749 	 * Check to make sure this isn't a duplicate.
15750 	 */
15751 	for (i = 0; i < help->dthps_nprovs; i++) {
15752 		if (dofhp->dofhp_addr ==
15753 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
15754 			return (EALREADY);
15755 	}
15756 
15757 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
15758 	hprov->dthp_prov = *dofhp;
15759 	hprov->dthp_ref = 1;
15760 	hprov->dthp_generation = gen;
15761 
15762 	/*
15763 	 * Allocate a bigger table for helper providers if it's already full.
15764 	 */
15765 	if (help->dthps_maxprovs == help->dthps_nprovs) {
15766 		tmp_maxprovs = help->dthps_maxprovs;
15767 		tmp_provs = help->dthps_provs;
15768 
15769 		if (help->dthps_maxprovs == 0)
15770 			help->dthps_maxprovs = 2;
15771 		else
15772 			help->dthps_maxprovs *= 2;
15773 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
15774 			help->dthps_maxprovs = dtrace_helper_providers_max;
15775 
15776 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
15777 
15778 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
15779 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15780 
15781 		if (tmp_provs != NULL) {
15782 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
15783 			    sizeof (dtrace_helper_provider_t *));
15784 			kmem_free(tmp_provs, tmp_maxprovs *
15785 			    sizeof (dtrace_helper_provider_t *));
15786 		}
15787 	}
15788 
15789 	help->dthps_provs[help->dthps_nprovs] = hprov;
15790 	help->dthps_nprovs++;
15791 
15792 	return (0);
15793 }
15794 
15795 static void
15796 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
15797 {
15798 	mutex_enter(&dtrace_lock);
15799 
15800 	if (--hprov->dthp_ref == 0) {
15801 		dof_hdr_t *dof;
15802 		mutex_exit(&dtrace_lock);
15803 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
15804 		dtrace_dof_destroy(dof);
15805 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
15806 	} else {
15807 		mutex_exit(&dtrace_lock);
15808 	}
15809 }
15810 
15811 static int
15812 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
15813 {
15814 	uintptr_t daddr = (uintptr_t)dof;
15815 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
15816 	dof_provider_t *provider;
15817 	dof_probe_t *probe;
15818 	uint8_t *arg;
15819 	char *strtab, *typestr;
15820 	dof_stridx_t typeidx;
15821 	size_t typesz;
15822 	uint_t nprobes, j, k;
15823 
15824 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
15825 
15826 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
15827 		dtrace_dof_error(dof, "misaligned section offset");
15828 		return (-1);
15829 	}
15830 
15831 	/*
15832 	 * The section needs to be large enough to contain the DOF provider
15833 	 * structure appropriate for the given version.
15834 	 */
15835 	if (sec->dofs_size <
15836 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
15837 	    offsetof(dof_provider_t, dofpv_prenoffs) :
15838 	    sizeof (dof_provider_t))) {
15839 		dtrace_dof_error(dof, "provider section too small");
15840 		return (-1);
15841 	}
15842 
15843 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
15844 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
15845 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
15846 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
15847 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
15848 
15849 	if (str_sec == NULL || prb_sec == NULL ||
15850 	    arg_sec == NULL || off_sec == NULL)
15851 		return (-1);
15852 
15853 	enoff_sec = NULL;
15854 
15855 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
15856 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
15857 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
15858 	    provider->dofpv_prenoffs)) == NULL)
15859 		return (-1);
15860 
15861 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
15862 
15863 	if (provider->dofpv_name >= str_sec->dofs_size ||
15864 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
15865 		dtrace_dof_error(dof, "invalid provider name");
15866 		return (-1);
15867 	}
15868 
15869 	if (prb_sec->dofs_entsize == 0 ||
15870 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
15871 		dtrace_dof_error(dof, "invalid entry size");
15872 		return (-1);
15873 	}
15874 
15875 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
15876 		dtrace_dof_error(dof, "misaligned entry size");
15877 		return (-1);
15878 	}
15879 
15880 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
15881 		dtrace_dof_error(dof, "invalid entry size");
15882 		return (-1);
15883 	}
15884 
15885 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
15886 		dtrace_dof_error(dof, "misaligned section offset");
15887 		return (-1);
15888 	}
15889 
15890 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
15891 		dtrace_dof_error(dof, "invalid entry size");
15892 		return (-1);
15893 	}
15894 
15895 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
15896 
15897 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
15898 
15899 	/*
15900 	 * Take a pass through the probes to check for errors.
15901 	 */
15902 	for (j = 0; j < nprobes; j++) {
15903 		probe = (dof_probe_t *)(uintptr_t)(daddr +
15904 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
15905 
15906 		if (probe->dofpr_func >= str_sec->dofs_size) {
15907 			dtrace_dof_error(dof, "invalid function name");
15908 			return (-1);
15909 		}
15910 
15911 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
15912 			dtrace_dof_error(dof, "function name too long");
15913 			return (-1);
15914 		}
15915 
15916 		if (probe->dofpr_name >= str_sec->dofs_size ||
15917 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
15918 			dtrace_dof_error(dof, "invalid probe name");
15919 			return (-1);
15920 		}
15921 
15922 		/*
15923 		 * The offset count must not wrap the index, and the offsets
15924 		 * must also not overflow the section's data.
15925 		 */
15926 		if (probe->dofpr_offidx + probe->dofpr_noffs <
15927 		    probe->dofpr_offidx ||
15928 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
15929 		    off_sec->dofs_entsize > off_sec->dofs_size) {
15930 			dtrace_dof_error(dof, "invalid probe offset");
15931 			return (-1);
15932 		}
15933 
15934 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
15935 			/*
15936 			 * If there's no is-enabled offset section, make sure
15937 			 * there aren't any is-enabled offsets. Otherwise
15938 			 * perform the same checks as for probe offsets
15939 			 * (immediately above).
15940 			 */
15941 			if (enoff_sec == NULL) {
15942 				if (probe->dofpr_enoffidx != 0 ||
15943 				    probe->dofpr_nenoffs != 0) {
15944 					dtrace_dof_error(dof, "is-enabled "
15945 					    "offsets with null section");
15946 					return (-1);
15947 				}
15948 			} else if (probe->dofpr_enoffidx +
15949 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
15950 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
15951 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
15952 				dtrace_dof_error(dof, "invalid is-enabled "
15953 				    "offset");
15954 				return (-1);
15955 			}
15956 
15957 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
15958 				dtrace_dof_error(dof, "zero probe and "
15959 				    "is-enabled offsets");
15960 				return (-1);
15961 			}
15962 		} else if (probe->dofpr_noffs == 0) {
15963 			dtrace_dof_error(dof, "zero probe offsets");
15964 			return (-1);
15965 		}
15966 
15967 		if (probe->dofpr_argidx + probe->dofpr_xargc <
15968 		    probe->dofpr_argidx ||
15969 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
15970 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
15971 			dtrace_dof_error(dof, "invalid args");
15972 			return (-1);
15973 		}
15974 
15975 		typeidx = probe->dofpr_nargv;
15976 		typestr = strtab + probe->dofpr_nargv;
15977 		for (k = 0; k < probe->dofpr_nargc; k++) {
15978 			if (typeidx >= str_sec->dofs_size) {
15979 				dtrace_dof_error(dof, "bad "
15980 				    "native argument type");
15981 				return (-1);
15982 			}
15983 
15984 			typesz = strlen(typestr) + 1;
15985 			if (typesz > DTRACE_ARGTYPELEN) {
15986 				dtrace_dof_error(dof, "native "
15987 				    "argument type too long");
15988 				return (-1);
15989 			}
15990 			typeidx += typesz;
15991 			typestr += typesz;
15992 		}
15993 
15994 		typeidx = probe->dofpr_xargv;
15995 		typestr = strtab + probe->dofpr_xargv;
15996 		for (k = 0; k < probe->dofpr_xargc; k++) {
15997 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
15998 				dtrace_dof_error(dof, "bad "
15999 				    "native argument index");
16000 				return (-1);
16001 			}
16002 
16003 			if (typeidx >= str_sec->dofs_size) {
16004 				dtrace_dof_error(dof, "bad "
16005 				    "translated argument type");
16006 				return (-1);
16007 			}
16008 
16009 			typesz = strlen(typestr) + 1;
16010 			if (typesz > DTRACE_ARGTYPELEN) {
16011 				dtrace_dof_error(dof, "translated argument "
16012 				    "type too long");
16013 				return (-1);
16014 			}
16015 
16016 			typeidx += typesz;
16017 			typestr += typesz;
16018 		}
16019 	}
16020 
16021 	return (0);
16022 }
16023 
16024 static int
16025 #ifdef __FreeBSD__
16026 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p)
16027 #else
16028 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
16029 #endif
16030 {
16031 	dtrace_helpers_t *help;
16032 	dtrace_vstate_t *vstate;
16033 	dtrace_enabling_t *enab = NULL;
16034 #ifndef __FreeBSD__
16035 	proc_t *p = curproc;
16036 #endif
16037 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
16038 	uintptr_t daddr = (uintptr_t)dof;
16039 
16040 	ASSERT(MUTEX_HELD(&dtrace_lock));
16041 
16042 	if ((help = p->p_dtrace_helpers) == NULL)
16043 		help = dtrace_helpers_create(p);
16044 
16045 	vstate = &help->dthps_vstate;
16046 
16047 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
16048 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
16049 		dtrace_dof_destroy(dof);
16050 		return (rv);
16051 	}
16052 
16053 	/*
16054 	 * Look for helper providers and validate their descriptions.
16055 	 */
16056 	if (dhp != NULL) {
16057 		for (i = 0; i < dof->dofh_secnum; i++) {
16058 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
16059 			    dof->dofh_secoff + i * dof->dofh_secsize);
16060 
16061 			if (sec->dofs_type != DOF_SECT_PROVIDER)
16062 				continue;
16063 
16064 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
16065 				dtrace_enabling_destroy(enab);
16066 				dtrace_dof_destroy(dof);
16067 				return (-1);
16068 			}
16069 
16070 			nprovs++;
16071 		}
16072 	}
16073 
16074 	/*
16075 	 * Now we need to walk through the ECB descriptions in the enabling.
16076 	 */
16077 	for (i = 0; i < enab->dten_ndesc; i++) {
16078 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
16079 		dtrace_probedesc_t *desc = &ep->dted_probe;
16080 
16081 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
16082 			continue;
16083 
16084 		if (strcmp(desc->dtpd_mod, "helper") != 0)
16085 			continue;
16086 
16087 		if (strcmp(desc->dtpd_func, "ustack") != 0)
16088 			continue;
16089 
16090 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
16091 		    ep, help)) != 0) {
16092 			/*
16093 			 * Adding this helper action failed -- we are now going
16094 			 * to rip out the entire generation and return failure.
16095 			 */
16096 			(void) dtrace_helper_destroygen(help,
16097 			    help->dthps_generation);
16098 			dtrace_enabling_destroy(enab);
16099 			dtrace_dof_destroy(dof);
16100 			return (-1);
16101 		}
16102 
16103 		nhelpers++;
16104 	}
16105 
16106 	if (nhelpers < enab->dten_ndesc)
16107 		dtrace_dof_error(dof, "unmatched helpers");
16108 
16109 	gen = help->dthps_generation++;
16110 	dtrace_enabling_destroy(enab);
16111 
16112 	if (dhp != NULL && nprovs > 0) {
16113 		/*
16114 		 * Now that this is in-kernel, we change the sense of the
16115 		 * members:  dofhp_dof denotes the in-kernel copy of the DOF
16116 		 * and dofhp_addr denotes the address at user-level.
16117 		 */
16118 		dhp->dofhp_addr = dhp->dofhp_dof;
16119 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16120 
16121 		if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
16122 			mutex_exit(&dtrace_lock);
16123 			dtrace_helper_provider_register(p, help, dhp);
16124 			mutex_enter(&dtrace_lock);
16125 
16126 			destroy = 0;
16127 		}
16128 	}
16129 
16130 	if (destroy)
16131 		dtrace_dof_destroy(dof);
16132 
16133 	return (gen);
16134 }
16135 
16136 static dtrace_helpers_t *
16137 dtrace_helpers_create(proc_t *p)
16138 {
16139 	dtrace_helpers_t *help;
16140 
16141 	ASSERT(MUTEX_HELD(&dtrace_lock));
16142 	ASSERT(p->p_dtrace_helpers == NULL);
16143 
16144 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16145 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16146 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16147 
16148 	p->p_dtrace_helpers = help;
16149 	dtrace_helpers++;
16150 
16151 	return (help);
16152 }
16153 
16154 #ifdef illumos
16155 static
16156 #endif
16157 void
16158 dtrace_helpers_destroy(proc_t *p)
16159 {
16160 	dtrace_helpers_t *help;
16161 	dtrace_vstate_t *vstate;
16162 #ifdef illumos
16163 	proc_t *p = curproc;
16164 #endif
16165 	int i;
16166 
16167 	mutex_enter(&dtrace_lock);
16168 
16169 	ASSERT(p->p_dtrace_helpers != NULL);
16170 	ASSERT(dtrace_helpers > 0);
16171 
16172 	help = p->p_dtrace_helpers;
16173 	vstate = &help->dthps_vstate;
16174 
16175 	/*
16176 	 * We're now going to lose the help from this process.
16177 	 */
16178 	p->p_dtrace_helpers = NULL;
16179 	dtrace_sync();
16180 
16181 	/*
16182 	 * Destory the helper actions.
16183 	 */
16184 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16185 		dtrace_helper_action_t *h, *next;
16186 
16187 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
16188 			next = h->dtha_next;
16189 			dtrace_helper_action_destroy(h, vstate);
16190 			h = next;
16191 		}
16192 	}
16193 
16194 	mutex_exit(&dtrace_lock);
16195 
16196 	/*
16197 	 * Destroy the helper providers.
16198 	 */
16199 	if (help->dthps_maxprovs > 0) {
16200 		mutex_enter(&dtrace_meta_lock);
16201 		if (dtrace_meta_pid != NULL) {
16202 			ASSERT(dtrace_deferred_pid == NULL);
16203 
16204 			for (i = 0; i < help->dthps_nprovs; i++) {
16205 				dtrace_helper_provider_remove(
16206 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
16207 			}
16208 		} else {
16209 			mutex_enter(&dtrace_lock);
16210 			ASSERT(help->dthps_deferred == 0 ||
16211 			    help->dthps_next != NULL ||
16212 			    help->dthps_prev != NULL ||
16213 			    help == dtrace_deferred_pid);
16214 
16215 			/*
16216 			 * Remove the helper from the deferred list.
16217 			 */
16218 			if (help->dthps_next != NULL)
16219 				help->dthps_next->dthps_prev = help->dthps_prev;
16220 			if (help->dthps_prev != NULL)
16221 				help->dthps_prev->dthps_next = help->dthps_next;
16222 			if (dtrace_deferred_pid == help) {
16223 				dtrace_deferred_pid = help->dthps_next;
16224 				ASSERT(help->dthps_prev == NULL);
16225 			}
16226 
16227 			mutex_exit(&dtrace_lock);
16228 		}
16229 
16230 		mutex_exit(&dtrace_meta_lock);
16231 
16232 		for (i = 0; i < help->dthps_nprovs; i++) {
16233 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
16234 		}
16235 
16236 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
16237 		    sizeof (dtrace_helper_provider_t *));
16238 	}
16239 
16240 	mutex_enter(&dtrace_lock);
16241 
16242 	dtrace_vstate_fini(&help->dthps_vstate);
16243 	kmem_free(help->dthps_actions,
16244 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16245 	kmem_free(help, sizeof (dtrace_helpers_t));
16246 
16247 	--dtrace_helpers;
16248 	mutex_exit(&dtrace_lock);
16249 }
16250 
16251 #ifdef illumos
16252 static
16253 #endif
16254 void
16255 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16256 {
16257 	dtrace_helpers_t *help, *newhelp;
16258 	dtrace_helper_action_t *helper, *new, *last;
16259 	dtrace_difo_t *dp;
16260 	dtrace_vstate_t *vstate;
16261 	int i, j, sz, hasprovs = 0;
16262 
16263 	mutex_enter(&dtrace_lock);
16264 	ASSERT(from->p_dtrace_helpers != NULL);
16265 	ASSERT(dtrace_helpers > 0);
16266 
16267 	help = from->p_dtrace_helpers;
16268 	newhelp = dtrace_helpers_create(to);
16269 	ASSERT(to->p_dtrace_helpers != NULL);
16270 
16271 	newhelp->dthps_generation = help->dthps_generation;
16272 	vstate = &newhelp->dthps_vstate;
16273 
16274 	/*
16275 	 * Duplicate the helper actions.
16276 	 */
16277 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16278 		if ((helper = help->dthps_actions[i]) == NULL)
16279 			continue;
16280 
16281 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16282 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16283 			    KM_SLEEP);
16284 			new->dtha_generation = helper->dtha_generation;
16285 
16286 			if ((dp = helper->dtha_predicate) != NULL) {
16287 				dp = dtrace_difo_duplicate(dp, vstate);
16288 				new->dtha_predicate = dp;
16289 			}
16290 
16291 			new->dtha_nactions = helper->dtha_nactions;
16292 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16293 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16294 
16295 			for (j = 0; j < new->dtha_nactions; j++) {
16296 				dtrace_difo_t *dp = helper->dtha_actions[j];
16297 
16298 				ASSERT(dp != NULL);
16299 				dp = dtrace_difo_duplicate(dp, vstate);
16300 				new->dtha_actions[j] = dp;
16301 			}
16302 
16303 			if (last != NULL) {
16304 				last->dtha_next = new;
16305 			} else {
16306 				newhelp->dthps_actions[i] = new;
16307 			}
16308 
16309 			last = new;
16310 		}
16311 	}
16312 
16313 	/*
16314 	 * Duplicate the helper providers and register them with the
16315 	 * DTrace framework.
16316 	 */
16317 	if (help->dthps_nprovs > 0) {
16318 		newhelp->dthps_nprovs = help->dthps_nprovs;
16319 		newhelp->dthps_maxprovs = help->dthps_nprovs;
16320 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16321 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16322 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
16323 			newhelp->dthps_provs[i] = help->dthps_provs[i];
16324 			newhelp->dthps_provs[i]->dthp_ref++;
16325 		}
16326 
16327 		hasprovs = 1;
16328 	}
16329 
16330 	mutex_exit(&dtrace_lock);
16331 
16332 	if (hasprovs)
16333 		dtrace_helper_provider_register(to, newhelp, NULL);
16334 }
16335 
16336 /*
16337  * DTrace Hook Functions
16338  */
16339 static void
16340 dtrace_module_loaded(modctl_t *ctl)
16341 {
16342 	dtrace_provider_t *prv;
16343 
16344 	mutex_enter(&dtrace_provider_lock);
16345 #ifdef illumos
16346 	mutex_enter(&mod_lock);
16347 #endif
16348 
16349 #ifdef illumos
16350 	ASSERT(ctl->mod_busy);
16351 #endif
16352 
16353 	/*
16354 	 * We're going to call each providers per-module provide operation
16355 	 * specifying only this module.
16356 	 */
16357 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16358 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16359 
16360 #ifdef illumos
16361 	mutex_exit(&mod_lock);
16362 #endif
16363 	mutex_exit(&dtrace_provider_lock);
16364 
16365 	/*
16366 	 * If we have any retained enablings, we need to match against them.
16367 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
16368 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16369 	 * module.  (In particular, this happens when loading scheduling
16370 	 * classes.)  So if we have any retained enablings, we need to dispatch
16371 	 * our task queue to do the match for us.
16372 	 */
16373 	mutex_enter(&dtrace_lock);
16374 
16375 	if (dtrace_retained == NULL) {
16376 		mutex_exit(&dtrace_lock);
16377 		return;
16378 	}
16379 
16380 	(void) taskq_dispatch(dtrace_taskq,
16381 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16382 
16383 	mutex_exit(&dtrace_lock);
16384 
16385 	/*
16386 	 * And now, for a little heuristic sleaze:  in general, we want to
16387 	 * match modules as soon as they load.  However, we cannot guarantee
16388 	 * this, because it would lead us to the lock ordering violation
16389 	 * outlined above.  The common case, of course, is that cpu_lock is
16390 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
16391 	 * long enough for the task queue to do its work.  If it's not, it's
16392 	 * not a serious problem -- it just means that the module that we
16393 	 * just loaded may not be immediately instrumentable.
16394 	 */
16395 	delay(1);
16396 }
16397 
16398 static void
16399 #ifdef illumos
16400 dtrace_module_unloaded(modctl_t *ctl)
16401 #else
16402 dtrace_module_unloaded(modctl_t *ctl, int *error)
16403 #endif
16404 {
16405 	dtrace_probe_t template, *probe, *first, *next;
16406 	dtrace_provider_t *prov;
16407 #ifndef illumos
16408 	char modname[DTRACE_MODNAMELEN];
16409 	size_t len;
16410 #endif
16411 
16412 #ifdef illumos
16413 	template.dtpr_mod = ctl->mod_modname;
16414 #else
16415 	/* Handle the fact that ctl->filename may end in ".ko". */
16416 	strlcpy(modname, ctl->filename, sizeof(modname));
16417 	len = strlen(ctl->filename);
16418 	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16419 		modname[len - 3] = '\0';
16420 	template.dtpr_mod = modname;
16421 #endif
16422 
16423 	mutex_enter(&dtrace_provider_lock);
16424 #ifdef illumos
16425 	mutex_enter(&mod_lock);
16426 #endif
16427 	mutex_enter(&dtrace_lock);
16428 
16429 #ifndef illumos
16430 	if (ctl->nenabled > 0) {
16431 		/* Don't allow unloads if a probe is enabled. */
16432 		mutex_exit(&dtrace_provider_lock);
16433 		mutex_exit(&dtrace_lock);
16434 		*error = -1;
16435 		printf(
16436 	"kldunload: attempt to unload module that has DTrace probes enabled\n");
16437 		return;
16438 	}
16439 #endif
16440 
16441 	if (dtrace_bymod == NULL) {
16442 		/*
16443 		 * The DTrace module is loaded (obviously) but not attached;
16444 		 * we don't have any work to do.
16445 		 */
16446 		mutex_exit(&dtrace_provider_lock);
16447 #ifdef illumos
16448 		mutex_exit(&mod_lock);
16449 #endif
16450 		mutex_exit(&dtrace_lock);
16451 		return;
16452 	}
16453 
16454 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16455 	    probe != NULL; probe = probe->dtpr_nextmod) {
16456 		if (probe->dtpr_ecb != NULL) {
16457 			mutex_exit(&dtrace_provider_lock);
16458 #ifdef illumos
16459 			mutex_exit(&mod_lock);
16460 #endif
16461 			mutex_exit(&dtrace_lock);
16462 
16463 			/*
16464 			 * This shouldn't _actually_ be possible -- we're
16465 			 * unloading a module that has an enabled probe in it.
16466 			 * (It's normally up to the provider to make sure that
16467 			 * this can't happen.)  However, because dtps_enable()
16468 			 * doesn't have a failure mode, there can be an
16469 			 * enable/unload race.  Upshot:  we don't want to
16470 			 * assert, but we're not going to disable the
16471 			 * probe, either.
16472 			 */
16473 			if (dtrace_err_verbose) {
16474 #ifdef illumos
16475 				cmn_err(CE_WARN, "unloaded module '%s' had "
16476 				    "enabled probes", ctl->mod_modname);
16477 #else
16478 				cmn_err(CE_WARN, "unloaded module '%s' had "
16479 				    "enabled probes", modname);
16480 #endif
16481 			}
16482 
16483 			return;
16484 		}
16485 	}
16486 
16487 	probe = first;
16488 
16489 	for (first = NULL; probe != NULL; probe = next) {
16490 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16491 
16492 		dtrace_probes[probe->dtpr_id - 1] = NULL;
16493 
16494 		next = probe->dtpr_nextmod;
16495 		dtrace_hash_remove(dtrace_bymod, probe);
16496 		dtrace_hash_remove(dtrace_byfunc, probe);
16497 		dtrace_hash_remove(dtrace_byname, probe);
16498 
16499 		if (first == NULL) {
16500 			first = probe;
16501 			probe->dtpr_nextmod = NULL;
16502 		} else {
16503 			probe->dtpr_nextmod = first;
16504 			first = probe;
16505 		}
16506 	}
16507 
16508 	/*
16509 	 * We've removed all of the module's probes from the hash chains and
16510 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
16511 	 * everyone has cleared out from any probe array processing.
16512 	 */
16513 	dtrace_sync();
16514 
16515 	for (probe = first; probe != NULL; probe = first) {
16516 		first = probe->dtpr_nextmod;
16517 		prov = probe->dtpr_provider;
16518 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16519 		    probe->dtpr_arg);
16520 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16521 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16522 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16523 #ifdef illumos
16524 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16525 #else
16526 		free_unr(dtrace_arena, probe->dtpr_id);
16527 #endif
16528 		kmem_free(probe, sizeof (dtrace_probe_t));
16529 	}
16530 
16531 	mutex_exit(&dtrace_lock);
16532 #ifdef illumos
16533 	mutex_exit(&mod_lock);
16534 #endif
16535 	mutex_exit(&dtrace_provider_lock);
16536 }
16537 
16538 #ifndef illumos
16539 static void
16540 dtrace_kld_load(void *arg __unused, linker_file_t lf)
16541 {
16542 
16543 	dtrace_module_loaded(lf);
16544 }
16545 
16546 static void
16547 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16548 {
16549 
16550 	if (*error != 0)
16551 		/* We already have an error, so don't do anything. */
16552 		return;
16553 	dtrace_module_unloaded(lf, error);
16554 }
16555 #endif
16556 
16557 #ifdef illumos
16558 static void
16559 dtrace_suspend(void)
16560 {
16561 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16562 }
16563 
16564 static void
16565 dtrace_resume(void)
16566 {
16567 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16568 }
16569 #endif
16570 
16571 static int
16572 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16573 {
16574 	ASSERT(MUTEX_HELD(&cpu_lock));
16575 	mutex_enter(&dtrace_lock);
16576 
16577 	switch (what) {
16578 	case CPU_CONFIG: {
16579 		dtrace_state_t *state;
16580 		dtrace_optval_t *opt, rs, c;
16581 
16582 		/*
16583 		 * For now, we only allocate a new buffer for anonymous state.
16584 		 */
16585 		if ((state = dtrace_anon.dta_state) == NULL)
16586 			break;
16587 
16588 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16589 			break;
16590 
16591 		opt = state->dts_options;
16592 		c = opt[DTRACEOPT_CPU];
16593 
16594 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16595 			break;
16596 
16597 		/*
16598 		 * Regardless of what the actual policy is, we're going to
16599 		 * temporarily set our resize policy to be manual.  We're
16600 		 * also going to temporarily set our CPU option to denote
16601 		 * the newly configured CPU.
16602 		 */
16603 		rs = opt[DTRACEOPT_BUFRESIZE];
16604 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16605 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16606 
16607 		(void) dtrace_state_buffers(state);
16608 
16609 		opt[DTRACEOPT_BUFRESIZE] = rs;
16610 		opt[DTRACEOPT_CPU] = c;
16611 
16612 		break;
16613 	}
16614 
16615 	case CPU_UNCONFIG:
16616 		/*
16617 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
16618 		 * buffer will be freed when the consumer exits.)
16619 		 */
16620 		break;
16621 
16622 	default:
16623 		break;
16624 	}
16625 
16626 	mutex_exit(&dtrace_lock);
16627 	return (0);
16628 }
16629 
16630 #ifdef illumos
16631 static void
16632 dtrace_cpu_setup_initial(processorid_t cpu)
16633 {
16634 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16635 }
16636 #endif
16637 
16638 static void
16639 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16640 {
16641 	if (dtrace_toxranges >= dtrace_toxranges_max) {
16642 		int osize, nsize;
16643 		dtrace_toxrange_t *range;
16644 
16645 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16646 
16647 		if (osize == 0) {
16648 			ASSERT(dtrace_toxrange == NULL);
16649 			ASSERT(dtrace_toxranges_max == 0);
16650 			dtrace_toxranges_max = 1;
16651 		} else {
16652 			dtrace_toxranges_max <<= 1;
16653 		}
16654 
16655 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16656 		range = kmem_zalloc(nsize, KM_SLEEP);
16657 
16658 		if (dtrace_toxrange != NULL) {
16659 			ASSERT(osize != 0);
16660 			bcopy(dtrace_toxrange, range, osize);
16661 			kmem_free(dtrace_toxrange, osize);
16662 		}
16663 
16664 		dtrace_toxrange = range;
16665 	}
16666 
16667 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
16668 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
16669 
16670 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
16671 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
16672 	dtrace_toxranges++;
16673 }
16674 
16675 static void
16676 dtrace_getf_barrier()
16677 {
16678 #ifdef illumos
16679 	/*
16680 	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
16681 	 * that contain calls to getf(), this routine will be called on every
16682 	 * closef() before either the underlying vnode is released or the
16683 	 * file_t itself is freed.  By the time we are here, it is essential
16684 	 * that the file_t can no longer be accessed from a call to getf()
16685 	 * in probe context -- that assures that a dtrace_sync() can be used
16686 	 * to clear out any enablings referring to the old structures.
16687 	 */
16688 	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
16689 	    kcred->cr_zone->zone_dtrace_getf != 0)
16690 		dtrace_sync();
16691 #endif
16692 }
16693 
16694 /*
16695  * DTrace Driver Cookbook Functions
16696  */
16697 #ifdef illumos
16698 /*ARGSUSED*/
16699 static int
16700 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
16701 {
16702 	dtrace_provider_id_t id;
16703 	dtrace_state_t *state = NULL;
16704 	dtrace_enabling_t *enab;
16705 
16706 	mutex_enter(&cpu_lock);
16707 	mutex_enter(&dtrace_provider_lock);
16708 	mutex_enter(&dtrace_lock);
16709 
16710 	if (ddi_soft_state_init(&dtrace_softstate,
16711 	    sizeof (dtrace_state_t), 0) != 0) {
16712 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
16713 		mutex_exit(&cpu_lock);
16714 		mutex_exit(&dtrace_provider_lock);
16715 		mutex_exit(&dtrace_lock);
16716 		return (DDI_FAILURE);
16717 	}
16718 
16719 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
16720 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
16721 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
16722 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
16723 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
16724 		ddi_remove_minor_node(devi, NULL);
16725 		ddi_soft_state_fini(&dtrace_softstate);
16726 		mutex_exit(&cpu_lock);
16727 		mutex_exit(&dtrace_provider_lock);
16728 		mutex_exit(&dtrace_lock);
16729 		return (DDI_FAILURE);
16730 	}
16731 
16732 	ddi_report_dev(devi);
16733 	dtrace_devi = devi;
16734 
16735 	dtrace_modload = dtrace_module_loaded;
16736 	dtrace_modunload = dtrace_module_unloaded;
16737 	dtrace_cpu_init = dtrace_cpu_setup_initial;
16738 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
16739 	dtrace_helpers_fork = dtrace_helpers_duplicate;
16740 	dtrace_cpustart_init = dtrace_suspend;
16741 	dtrace_cpustart_fini = dtrace_resume;
16742 	dtrace_debugger_init = dtrace_suspend;
16743 	dtrace_debugger_fini = dtrace_resume;
16744 
16745 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16746 
16747 	ASSERT(MUTEX_HELD(&cpu_lock));
16748 
16749 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
16750 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
16751 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
16752 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
16753 	    VM_SLEEP | VMC_IDENTIFIER);
16754 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
16755 	    1, INT_MAX, 0);
16756 
16757 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
16758 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
16759 	    NULL, NULL, NULL, NULL, NULL, 0);
16760 
16761 	ASSERT(MUTEX_HELD(&cpu_lock));
16762 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
16763 	    offsetof(dtrace_probe_t, dtpr_nextmod),
16764 	    offsetof(dtrace_probe_t, dtpr_prevmod));
16765 
16766 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
16767 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
16768 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
16769 
16770 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
16771 	    offsetof(dtrace_probe_t, dtpr_nextname),
16772 	    offsetof(dtrace_probe_t, dtpr_prevname));
16773 
16774 	if (dtrace_retain_max < 1) {
16775 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
16776 		    "setting to 1", dtrace_retain_max);
16777 		dtrace_retain_max = 1;
16778 	}
16779 
16780 	/*
16781 	 * Now discover our toxic ranges.
16782 	 */
16783 	dtrace_toxic_ranges(dtrace_toxrange_add);
16784 
16785 	/*
16786 	 * Before we register ourselves as a provider to our own framework,
16787 	 * we would like to assert that dtrace_provider is NULL -- but that's
16788 	 * not true if we were loaded as a dependency of a DTrace provider.
16789 	 * Once we've registered, we can assert that dtrace_provider is our
16790 	 * pseudo provider.
16791 	 */
16792 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
16793 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
16794 
16795 	ASSERT(dtrace_provider != NULL);
16796 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
16797 
16798 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
16799 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
16800 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
16801 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
16802 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
16803 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
16804 
16805 	dtrace_anon_property();
16806 	mutex_exit(&cpu_lock);
16807 
16808 	/*
16809 	 * If there are already providers, we must ask them to provide their
16810 	 * probes, and then match any anonymous enabling against them.  Note
16811 	 * that there should be no other retained enablings at this time:
16812 	 * the only retained enablings at this time should be the anonymous
16813 	 * enabling.
16814 	 */
16815 	if (dtrace_anon.dta_enabling != NULL) {
16816 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
16817 
16818 		dtrace_enabling_provide(NULL);
16819 		state = dtrace_anon.dta_state;
16820 
16821 		/*
16822 		 * We couldn't hold cpu_lock across the above call to
16823 		 * dtrace_enabling_provide(), but we must hold it to actually
16824 		 * enable the probes.  We have to drop all of our locks, pick
16825 		 * up cpu_lock, and regain our locks before matching the
16826 		 * retained anonymous enabling.
16827 		 */
16828 		mutex_exit(&dtrace_lock);
16829 		mutex_exit(&dtrace_provider_lock);
16830 
16831 		mutex_enter(&cpu_lock);
16832 		mutex_enter(&dtrace_provider_lock);
16833 		mutex_enter(&dtrace_lock);
16834 
16835 		if ((enab = dtrace_anon.dta_enabling) != NULL)
16836 			(void) dtrace_enabling_match(enab, NULL);
16837 
16838 		mutex_exit(&cpu_lock);
16839 	}
16840 
16841 	mutex_exit(&dtrace_lock);
16842 	mutex_exit(&dtrace_provider_lock);
16843 
16844 	if (state != NULL) {
16845 		/*
16846 		 * If we created any anonymous state, set it going now.
16847 		 */
16848 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
16849 	}
16850 
16851 	return (DDI_SUCCESS);
16852 }
16853 #endif	/* illumos */
16854 
16855 #ifndef illumos
16856 static void dtrace_dtr(void *);
16857 #endif
16858 
16859 /*ARGSUSED*/
16860 static int
16861 #ifdef illumos
16862 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
16863 #else
16864 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
16865 #endif
16866 {
16867 	dtrace_state_t *state;
16868 	uint32_t priv;
16869 	uid_t uid;
16870 	zoneid_t zoneid;
16871 
16872 #ifdef illumos
16873 	if (getminor(*devp) == DTRACEMNRN_HELPER)
16874 		return (0);
16875 
16876 	/*
16877 	 * If this wasn't an open with the "helper" minor, then it must be
16878 	 * the "dtrace" minor.
16879 	 */
16880 	if (getminor(*devp) == DTRACEMNRN_DTRACE)
16881 		return (ENXIO);
16882 #else
16883 	cred_t *cred_p = NULL;
16884 	cred_p = dev->si_cred;
16885 
16886 	/*
16887 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
16888 	 * caller lacks sufficient permission to do anything with DTrace.
16889 	 */
16890 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
16891 	if (priv == DTRACE_PRIV_NONE) {
16892 #endif
16893 
16894 		return (EACCES);
16895 	}
16896 
16897 	/*
16898 	 * Ask all providers to provide all their probes.
16899 	 */
16900 	mutex_enter(&dtrace_provider_lock);
16901 	dtrace_probe_provide(NULL, NULL);
16902 	mutex_exit(&dtrace_provider_lock);
16903 
16904 	mutex_enter(&cpu_lock);
16905 	mutex_enter(&dtrace_lock);
16906 	dtrace_opens++;
16907 	dtrace_membar_producer();
16908 
16909 #ifdef illumos
16910 	/*
16911 	 * If the kernel debugger is active (that is, if the kernel debugger
16912 	 * modified text in some way), we won't allow the open.
16913 	 */
16914 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
16915 		dtrace_opens--;
16916 		mutex_exit(&cpu_lock);
16917 		mutex_exit(&dtrace_lock);
16918 		return (EBUSY);
16919 	}
16920 
16921 	if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
16922 		/*
16923 		 * If DTrace helper tracing is enabled, we need to allocate the
16924 		 * trace buffer and initialize the values.
16925 		 */
16926 		dtrace_helptrace_buffer =
16927 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
16928 		dtrace_helptrace_next = 0;
16929 		dtrace_helptrace_wrapped = 0;
16930 		dtrace_helptrace_enable = 0;
16931 	}
16932 
16933 	state = dtrace_state_create(devp, cred_p);
16934 #else
16935 	state = dtrace_state_create(dev);
16936 	devfs_set_cdevpriv(state, dtrace_dtr);
16937 #endif
16938 
16939 	mutex_exit(&cpu_lock);
16940 
16941 	if (state == NULL) {
16942 #ifdef illumos
16943 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16944 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16945 #else
16946 		--dtrace_opens;
16947 #endif
16948 		mutex_exit(&dtrace_lock);
16949 		return (EAGAIN);
16950 	}
16951 
16952 	mutex_exit(&dtrace_lock);
16953 
16954 	return (0);
16955 }
16956 
16957 /*ARGSUSED*/
16958 #ifdef illumos
16959 static int
16960 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
16961 #else
16962 static void
16963 dtrace_dtr(void *data)
16964 #endif
16965 {
16966 #ifdef illumos
16967 	minor_t minor = getminor(dev);
16968 	dtrace_state_t *state;
16969 #endif
16970 	dtrace_helptrace_t *buf = NULL;
16971 
16972 #ifdef illumos
16973 	if (minor == DTRACEMNRN_HELPER)
16974 		return (0);
16975 
16976 	state = ddi_get_soft_state(dtrace_softstate, minor);
16977 #else
16978 	dtrace_state_t *state = data;
16979 #endif
16980 
16981 	mutex_enter(&cpu_lock);
16982 	mutex_enter(&dtrace_lock);
16983 
16984 #ifdef illumos
16985 	if (state->dts_anon)
16986 #else
16987 	if (state != NULL && state->dts_anon)
16988 #endif
16989 	{
16990 		/*
16991 		 * There is anonymous state. Destroy that first.
16992 		 */
16993 		ASSERT(dtrace_anon.dta_state == NULL);
16994 		dtrace_state_destroy(state->dts_anon);
16995 	}
16996 
16997 	if (dtrace_helptrace_disable) {
16998 		/*
16999 		 * If we have been told to disable helper tracing, set the
17000 		 * buffer to NULL before calling into dtrace_state_destroy();
17001 		 * we take advantage of its dtrace_sync() to know that no
17002 		 * CPU is in probe context with enabled helper tracing
17003 		 * after it returns.
17004 		 */
17005 		buf = dtrace_helptrace_buffer;
17006 		dtrace_helptrace_buffer = NULL;
17007 	}
17008 
17009 #ifdef illumos
17010 	dtrace_state_destroy(state);
17011 #else
17012 	if (state != NULL) {
17013 		dtrace_state_destroy(state);
17014 		kmem_free(state, 0);
17015 	}
17016 #endif
17017 	ASSERT(dtrace_opens > 0);
17018 
17019 #ifdef illumos
17020 	/*
17021 	 * Only relinquish control of the kernel debugger interface when there
17022 	 * are no consumers and no anonymous enablings.
17023 	 */
17024 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17025 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17026 #else
17027 	--dtrace_opens;
17028 #endif
17029 
17030 	if (buf != NULL) {
17031 		kmem_free(buf, dtrace_helptrace_bufsize);
17032 		dtrace_helptrace_disable = 0;
17033 	}
17034 
17035 	mutex_exit(&dtrace_lock);
17036 	mutex_exit(&cpu_lock);
17037 
17038 #ifdef illumos
17039 	return (0);
17040 #endif
17041 }
17042 
17043 #ifdef illumos
17044 /*ARGSUSED*/
17045 static int
17046 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
17047 {
17048 	int rval;
17049 	dof_helper_t help, *dhp = NULL;
17050 
17051 	switch (cmd) {
17052 	case DTRACEHIOC_ADDDOF:
17053 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
17054 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
17055 			return (EFAULT);
17056 		}
17057 
17058 		dhp = &help;
17059 		arg = (intptr_t)help.dofhp_dof;
17060 		/*FALLTHROUGH*/
17061 
17062 	case DTRACEHIOC_ADD: {
17063 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
17064 
17065 		if (dof == NULL)
17066 			return (rval);
17067 
17068 		mutex_enter(&dtrace_lock);
17069 
17070 		/*
17071 		 * dtrace_helper_slurp() takes responsibility for the dof --
17072 		 * it may free it now or it may save it and free it later.
17073 		 */
17074 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
17075 			*rv = rval;
17076 			rval = 0;
17077 		} else {
17078 			rval = EINVAL;
17079 		}
17080 
17081 		mutex_exit(&dtrace_lock);
17082 		return (rval);
17083 	}
17084 
17085 	case DTRACEHIOC_REMOVE: {
17086 		mutex_enter(&dtrace_lock);
17087 		rval = dtrace_helper_destroygen(NULL, arg);
17088 		mutex_exit(&dtrace_lock);
17089 
17090 		return (rval);
17091 	}
17092 
17093 	default:
17094 		break;
17095 	}
17096 
17097 	return (ENOTTY);
17098 }
17099 
17100 /*ARGSUSED*/
17101 static int
17102 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
17103 {
17104 	minor_t minor = getminor(dev);
17105 	dtrace_state_t *state;
17106 	int rval;
17107 
17108 	if (minor == DTRACEMNRN_HELPER)
17109 		return (dtrace_ioctl_helper(cmd, arg, rv));
17110 
17111 	state = ddi_get_soft_state(dtrace_softstate, minor);
17112 
17113 	if (state->dts_anon) {
17114 		ASSERT(dtrace_anon.dta_state == NULL);
17115 		state = state->dts_anon;
17116 	}
17117 
17118 	switch (cmd) {
17119 	case DTRACEIOC_PROVIDER: {
17120 		dtrace_providerdesc_t pvd;
17121 		dtrace_provider_t *pvp;
17122 
17123 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17124 			return (EFAULT);
17125 
17126 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17127 		mutex_enter(&dtrace_provider_lock);
17128 
17129 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17130 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17131 				break;
17132 		}
17133 
17134 		mutex_exit(&dtrace_provider_lock);
17135 
17136 		if (pvp == NULL)
17137 			return (ESRCH);
17138 
17139 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17140 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17141 
17142 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17143 			return (EFAULT);
17144 
17145 		return (0);
17146 	}
17147 
17148 	case DTRACEIOC_EPROBE: {
17149 		dtrace_eprobedesc_t epdesc;
17150 		dtrace_ecb_t *ecb;
17151 		dtrace_action_t *act;
17152 		void *buf;
17153 		size_t size;
17154 		uintptr_t dest;
17155 		int nrecs;
17156 
17157 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17158 			return (EFAULT);
17159 
17160 		mutex_enter(&dtrace_lock);
17161 
17162 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17163 			mutex_exit(&dtrace_lock);
17164 			return (EINVAL);
17165 		}
17166 
17167 		if (ecb->dte_probe == NULL) {
17168 			mutex_exit(&dtrace_lock);
17169 			return (EINVAL);
17170 		}
17171 
17172 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17173 		epdesc.dtepd_uarg = ecb->dte_uarg;
17174 		epdesc.dtepd_size = ecb->dte_size;
17175 
17176 		nrecs = epdesc.dtepd_nrecs;
17177 		epdesc.dtepd_nrecs = 0;
17178 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17179 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17180 				continue;
17181 
17182 			epdesc.dtepd_nrecs++;
17183 		}
17184 
17185 		/*
17186 		 * Now that we have the size, we need to allocate a temporary
17187 		 * buffer in which to store the complete description.  We need
17188 		 * the temporary buffer to be able to drop dtrace_lock()
17189 		 * across the copyout(), below.
17190 		 */
17191 		size = sizeof (dtrace_eprobedesc_t) +
17192 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17193 
17194 		buf = kmem_alloc(size, KM_SLEEP);
17195 		dest = (uintptr_t)buf;
17196 
17197 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17198 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17199 
17200 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17201 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17202 				continue;
17203 
17204 			if (nrecs-- == 0)
17205 				break;
17206 
17207 			bcopy(&act->dta_rec, (void *)dest,
17208 			    sizeof (dtrace_recdesc_t));
17209 			dest += sizeof (dtrace_recdesc_t);
17210 		}
17211 
17212 		mutex_exit(&dtrace_lock);
17213 
17214 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17215 			kmem_free(buf, size);
17216 			return (EFAULT);
17217 		}
17218 
17219 		kmem_free(buf, size);
17220 		return (0);
17221 	}
17222 
17223 	case DTRACEIOC_AGGDESC: {
17224 		dtrace_aggdesc_t aggdesc;
17225 		dtrace_action_t *act;
17226 		dtrace_aggregation_t *agg;
17227 		int nrecs;
17228 		uint32_t offs;
17229 		dtrace_recdesc_t *lrec;
17230 		void *buf;
17231 		size_t size;
17232 		uintptr_t dest;
17233 
17234 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17235 			return (EFAULT);
17236 
17237 		mutex_enter(&dtrace_lock);
17238 
17239 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17240 			mutex_exit(&dtrace_lock);
17241 			return (EINVAL);
17242 		}
17243 
17244 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17245 
17246 		nrecs = aggdesc.dtagd_nrecs;
17247 		aggdesc.dtagd_nrecs = 0;
17248 
17249 		offs = agg->dtag_base;
17250 		lrec = &agg->dtag_action.dta_rec;
17251 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17252 
17253 		for (act = agg->dtag_first; ; act = act->dta_next) {
17254 			ASSERT(act->dta_intuple ||
17255 			    DTRACEACT_ISAGG(act->dta_kind));
17256 
17257 			/*
17258 			 * If this action has a record size of zero, it
17259 			 * denotes an argument to the aggregating action.
17260 			 * Because the presence of this record doesn't (or
17261 			 * shouldn't) affect the way the data is interpreted,
17262 			 * we don't copy it out to save user-level the
17263 			 * confusion of dealing with a zero-length record.
17264 			 */
17265 			if (act->dta_rec.dtrd_size == 0) {
17266 				ASSERT(agg->dtag_hasarg);
17267 				continue;
17268 			}
17269 
17270 			aggdesc.dtagd_nrecs++;
17271 
17272 			if (act == &agg->dtag_action)
17273 				break;
17274 		}
17275 
17276 		/*
17277 		 * Now that we have the size, we need to allocate a temporary
17278 		 * buffer in which to store the complete description.  We need
17279 		 * the temporary buffer to be able to drop dtrace_lock()
17280 		 * across the copyout(), below.
17281 		 */
17282 		size = sizeof (dtrace_aggdesc_t) +
17283 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17284 
17285 		buf = kmem_alloc(size, KM_SLEEP);
17286 		dest = (uintptr_t)buf;
17287 
17288 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17289 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17290 
17291 		for (act = agg->dtag_first; ; act = act->dta_next) {
17292 			dtrace_recdesc_t rec = act->dta_rec;
17293 
17294 			/*
17295 			 * See the comment in the above loop for why we pass
17296 			 * over zero-length records.
17297 			 */
17298 			if (rec.dtrd_size == 0) {
17299 				ASSERT(agg->dtag_hasarg);
17300 				continue;
17301 			}
17302 
17303 			if (nrecs-- == 0)
17304 				break;
17305 
17306 			rec.dtrd_offset -= offs;
17307 			bcopy(&rec, (void *)dest, sizeof (rec));
17308 			dest += sizeof (dtrace_recdesc_t);
17309 
17310 			if (act == &agg->dtag_action)
17311 				break;
17312 		}
17313 
17314 		mutex_exit(&dtrace_lock);
17315 
17316 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17317 			kmem_free(buf, size);
17318 			return (EFAULT);
17319 		}
17320 
17321 		kmem_free(buf, size);
17322 		return (0);
17323 	}
17324 
17325 	case DTRACEIOC_ENABLE: {
17326 		dof_hdr_t *dof;
17327 		dtrace_enabling_t *enab = NULL;
17328 		dtrace_vstate_t *vstate;
17329 		int err = 0;
17330 
17331 		*rv = 0;
17332 
17333 		/*
17334 		 * If a NULL argument has been passed, we take this as our
17335 		 * cue to reevaluate our enablings.
17336 		 */
17337 		if (arg == NULL) {
17338 			dtrace_enabling_matchall();
17339 
17340 			return (0);
17341 		}
17342 
17343 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17344 			return (rval);
17345 
17346 		mutex_enter(&cpu_lock);
17347 		mutex_enter(&dtrace_lock);
17348 		vstate = &state->dts_vstate;
17349 
17350 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17351 			mutex_exit(&dtrace_lock);
17352 			mutex_exit(&cpu_lock);
17353 			dtrace_dof_destroy(dof);
17354 			return (EBUSY);
17355 		}
17356 
17357 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17358 			mutex_exit(&dtrace_lock);
17359 			mutex_exit(&cpu_lock);
17360 			dtrace_dof_destroy(dof);
17361 			return (EINVAL);
17362 		}
17363 
17364 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
17365 			dtrace_enabling_destroy(enab);
17366 			mutex_exit(&dtrace_lock);
17367 			mutex_exit(&cpu_lock);
17368 			dtrace_dof_destroy(dof);
17369 			return (rval);
17370 		}
17371 
17372 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17373 			err = dtrace_enabling_retain(enab);
17374 		} else {
17375 			dtrace_enabling_destroy(enab);
17376 		}
17377 
17378 		mutex_exit(&cpu_lock);
17379 		mutex_exit(&dtrace_lock);
17380 		dtrace_dof_destroy(dof);
17381 
17382 		return (err);
17383 	}
17384 
17385 	case DTRACEIOC_REPLICATE: {
17386 		dtrace_repldesc_t desc;
17387 		dtrace_probedesc_t *match = &desc.dtrpd_match;
17388 		dtrace_probedesc_t *create = &desc.dtrpd_create;
17389 		int err;
17390 
17391 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17392 			return (EFAULT);
17393 
17394 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17395 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17396 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17397 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17398 
17399 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17400 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17401 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17402 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17403 
17404 		mutex_enter(&dtrace_lock);
17405 		err = dtrace_enabling_replicate(state, match, create);
17406 		mutex_exit(&dtrace_lock);
17407 
17408 		return (err);
17409 	}
17410 
17411 	case DTRACEIOC_PROBEMATCH:
17412 	case DTRACEIOC_PROBES: {
17413 		dtrace_probe_t *probe = NULL;
17414 		dtrace_probedesc_t desc;
17415 		dtrace_probekey_t pkey;
17416 		dtrace_id_t i;
17417 		int m = 0;
17418 		uint32_t priv;
17419 		uid_t uid;
17420 		zoneid_t zoneid;
17421 
17422 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17423 			return (EFAULT);
17424 
17425 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17426 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17427 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17428 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17429 
17430 		/*
17431 		 * Before we attempt to match this probe, we want to give
17432 		 * all providers the opportunity to provide it.
17433 		 */
17434 		if (desc.dtpd_id == DTRACE_IDNONE) {
17435 			mutex_enter(&dtrace_provider_lock);
17436 			dtrace_probe_provide(&desc, NULL);
17437 			mutex_exit(&dtrace_provider_lock);
17438 			desc.dtpd_id++;
17439 		}
17440 
17441 		if (cmd == DTRACEIOC_PROBEMATCH)  {
17442 			dtrace_probekey(&desc, &pkey);
17443 			pkey.dtpk_id = DTRACE_IDNONE;
17444 		}
17445 
17446 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17447 
17448 		mutex_enter(&dtrace_lock);
17449 
17450 		if (cmd == DTRACEIOC_PROBEMATCH) {
17451 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17452 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17453 				    (m = dtrace_match_probe(probe, &pkey,
17454 				    priv, uid, zoneid)) != 0)
17455 					break;
17456 			}
17457 
17458 			if (m < 0) {
17459 				mutex_exit(&dtrace_lock);
17460 				return (EINVAL);
17461 			}
17462 
17463 		} else {
17464 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17465 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17466 				    dtrace_match_priv(probe, priv, uid, zoneid))
17467 					break;
17468 			}
17469 		}
17470 
17471 		if (probe == NULL) {
17472 			mutex_exit(&dtrace_lock);
17473 			return (ESRCH);
17474 		}
17475 
17476 		dtrace_probe_description(probe, &desc);
17477 		mutex_exit(&dtrace_lock);
17478 
17479 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17480 			return (EFAULT);
17481 
17482 		return (0);
17483 	}
17484 
17485 	case DTRACEIOC_PROBEARG: {
17486 		dtrace_argdesc_t desc;
17487 		dtrace_probe_t *probe;
17488 		dtrace_provider_t *prov;
17489 
17490 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17491 			return (EFAULT);
17492 
17493 		if (desc.dtargd_id == DTRACE_IDNONE)
17494 			return (EINVAL);
17495 
17496 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
17497 			return (EINVAL);
17498 
17499 		mutex_enter(&dtrace_provider_lock);
17500 		mutex_enter(&mod_lock);
17501 		mutex_enter(&dtrace_lock);
17502 
17503 		if (desc.dtargd_id > dtrace_nprobes) {
17504 			mutex_exit(&dtrace_lock);
17505 			mutex_exit(&mod_lock);
17506 			mutex_exit(&dtrace_provider_lock);
17507 			return (EINVAL);
17508 		}
17509 
17510 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17511 			mutex_exit(&dtrace_lock);
17512 			mutex_exit(&mod_lock);
17513 			mutex_exit(&dtrace_provider_lock);
17514 			return (EINVAL);
17515 		}
17516 
17517 		mutex_exit(&dtrace_lock);
17518 
17519 		prov = probe->dtpr_provider;
17520 
17521 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17522 			/*
17523 			 * There isn't any typed information for this probe.
17524 			 * Set the argument number to DTRACE_ARGNONE.
17525 			 */
17526 			desc.dtargd_ndx = DTRACE_ARGNONE;
17527 		} else {
17528 			desc.dtargd_native[0] = '\0';
17529 			desc.dtargd_xlate[0] = '\0';
17530 			desc.dtargd_mapping = desc.dtargd_ndx;
17531 
17532 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17533 			    probe->dtpr_id, probe->dtpr_arg, &desc);
17534 		}
17535 
17536 		mutex_exit(&mod_lock);
17537 		mutex_exit(&dtrace_provider_lock);
17538 
17539 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17540 			return (EFAULT);
17541 
17542 		return (0);
17543 	}
17544 
17545 	case DTRACEIOC_GO: {
17546 		processorid_t cpuid;
17547 		rval = dtrace_state_go(state, &cpuid);
17548 
17549 		if (rval != 0)
17550 			return (rval);
17551 
17552 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17553 			return (EFAULT);
17554 
17555 		return (0);
17556 	}
17557 
17558 	case DTRACEIOC_STOP: {
17559 		processorid_t cpuid;
17560 
17561 		mutex_enter(&dtrace_lock);
17562 		rval = dtrace_state_stop(state, &cpuid);
17563 		mutex_exit(&dtrace_lock);
17564 
17565 		if (rval != 0)
17566 			return (rval);
17567 
17568 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17569 			return (EFAULT);
17570 
17571 		return (0);
17572 	}
17573 
17574 	case DTRACEIOC_DOFGET: {
17575 		dof_hdr_t hdr, *dof;
17576 		uint64_t len;
17577 
17578 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17579 			return (EFAULT);
17580 
17581 		mutex_enter(&dtrace_lock);
17582 		dof = dtrace_dof_create(state);
17583 		mutex_exit(&dtrace_lock);
17584 
17585 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17586 		rval = copyout(dof, (void *)arg, len);
17587 		dtrace_dof_destroy(dof);
17588 
17589 		return (rval == 0 ? 0 : EFAULT);
17590 	}
17591 
17592 	case DTRACEIOC_AGGSNAP:
17593 	case DTRACEIOC_BUFSNAP: {
17594 		dtrace_bufdesc_t desc;
17595 		caddr_t cached;
17596 		dtrace_buffer_t *buf;
17597 
17598 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17599 			return (EFAULT);
17600 
17601 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17602 			return (EINVAL);
17603 
17604 		mutex_enter(&dtrace_lock);
17605 
17606 		if (cmd == DTRACEIOC_BUFSNAP) {
17607 			buf = &state->dts_buffer[desc.dtbd_cpu];
17608 		} else {
17609 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17610 		}
17611 
17612 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17613 			size_t sz = buf->dtb_offset;
17614 
17615 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17616 				mutex_exit(&dtrace_lock);
17617 				return (EBUSY);
17618 			}
17619 
17620 			/*
17621 			 * If this buffer has already been consumed, we're
17622 			 * going to indicate that there's nothing left here
17623 			 * to consume.
17624 			 */
17625 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17626 				mutex_exit(&dtrace_lock);
17627 
17628 				desc.dtbd_size = 0;
17629 				desc.dtbd_drops = 0;
17630 				desc.dtbd_errors = 0;
17631 				desc.dtbd_oldest = 0;
17632 				sz = sizeof (desc);
17633 
17634 				if (copyout(&desc, (void *)arg, sz) != 0)
17635 					return (EFAULT);
17636 
17637 				return (0);
17638 			}
17639 
17640 			/*
17641 			 * If this is a ring buffer that has wrapped, we want
17642 			 * to copy the whole thing out.
17643 			 */
17644 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17645 				dtrace_buffer_polish(buf);
17646 				sz = buf->dtb_size;
17647 			}
17648 
17649 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17650 				mutex_exit(&dtrace_lock);
17651 				return (EFAULT);
17652 			}
17653 
17654 			desc.dtbd_size = sz;
17655 			desc.dtbd_drops = buf->dtb_drops;
17656 			desc.dtbd_errors = buf->dtb_errors;
17657 			desc.dtbd_oldest = buf->dtb_xamot_offset;
17658 			desc.dtbd_timestamp = dtrace_gethrtime();
17659 
17660 			mutex_exit(&dtrace_lock);
17661 
17662 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17663 				return (EFAULT);
17664 
17665 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
17666 
17667 			return (0);
17668 		}
17669 
17670 		if (buf->dtb_tomax == NULL) {
17671 			ASSERT(buf->dtb_xamot == NULL);
17672 			mutex_exit(&dtrace_lock);
17673 			return (ENOENT);
17674 		}
17675 
17676 		cached = buf->dtb_tomax;
17677 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
17678 
17679 		dtrace_xcall(desc.dtbd_cpu,
17680 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
17681 
17682 		state->dts_errors += buf->dtb_xamot_errors;
17683 
17684 		/*
17685 		 * If the buffers did not actually switch, then the cross call
17686 		 * did not take place -- presumably because the given CPU is
17687 		 * not in the ready set.  If this is the case, we'll return
17688 		 * ENOENT.
17689 		 */
17690 		if (buf->dtb_tomax == cached) {
17691 			ASSERT(buf->dtb_xamot != cached);
17692 			mutex_exit(&dtrace_lock);
17693 			return (ENOENT);
17694 		}
17695 
17696 		ASSERT(cached == buf->dtb_xamot);
17697 
17698 		/*
17699 		 * We have our snapshot; now copy it out.
17700 		 */
17701 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
17702 		    buf->dtb_xamot_offset) != 0) {
17703 			mutex_exit(&dtrace_lock);
17704 			return (EFAULT);
17705 		}
17706 
17707 		desc.dtbd_size = buf->dtb_xamot_offset;
17708 		desc.dtbd_drops = buf->dtb_xamot_drops;
17709 		desc.dtbd_errors = buf->dtb_xamot_errors;
17710 		desc.dtbd_oldest = 0;
17711 		desc.dtbd_timestamp = buf->dtb_switched;
17712 
17713 		mutex_exit(&dtrace_lock);
17714 
17715 		/*
17716 		 * Finally, copy out the buffer description.
17717 		 */
17718 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17719 			return (EFAULT);
17720 
17721 		return (0);
17722 	}
17723 
17724 	case DTRACEIOC_CONF: {
17725 		dtrace_conf_t conf;
17726 
17727 		bzero(&conf, sizeof (conf));
17728 		conf.dtc_difversion = DIF_VERSION;
17729 		conf.dtc_difintregs = DIF_DIR_NREGS;
17730 		conf.dtc_diftupregs = DIF_DTR_NREGS;
17731 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
17732 
17733 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
17734 			return (EFAULT);
17735 
17736 		return (0);
17737 	}
17738 
17739 	case DTRACEIOC_STATUS: {
17740 		dtrace_status_t stat;
17741 		dtrace_dstate_t *dstate;
17742 		int i, j;
17743 		uint64_t nerrs;
17744 
17745 		/*
17746 		 * See the comment in dtrace_state_deadman() for the reason
17747 		 * for setting dts_laststatus to INT64_MAX before setting
17748 		 * it to the correct value.
17749 		 */
17750 		state->dts_laststatus = INT64_MAX;
17751 		dtrace_membar_producer();
17752 		state->dts_laststatus = dtrace_gethrtime();
17753 
17754 		bzero(&stat, sizeof (stat));
17755 
17756 		mutex_enter(&dtrace_lock);
17757 
17758 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
17759 			mutex_exit(&dtrace_lock);
17760 			return (ENOENT);
17761 		}
17762 
17763 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
17764 			stat.dtst_exiting = 1;
17765 
17766 		nerrs = state->dts_errors;
17767 		dstate = &state->dts_vstate.dtvs_dynvars;
17768 
17769 		for (i = 0; i < NCPU; i++) {
17770 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
17771 
17772 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
17773 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
17774 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
17775 
17776 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
17777 				stat.dtst_filled++;
17778 
17779 			nerrs += state->dts_buffer[i].dtb_errors;
17780 
17781 			for (j = 0; j < state->dts_nspeculations; j++) {
17782 				dtrace_speculation_t *spec;
17783 				dtrace_buffer_t *buf;
17784 
17785 				spec = &state->dts_speculations[j];
17786 				buf = &spec->dtsp_buffer[i];
17787 				stat.dtst_specdrops += buf->dtb_xamot_drops;
17788 			}
17789 		}
17790 
17791 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
17792 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
17793 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
17794 		stat.dtst_dblerrors = state->dts_dblerrors;
17795 		stat.dtst_killed =
17796 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
17797 		stat.dtst_errors = nerrs;
17798 
17799 		mutex_exit(&dtrace_lock);
17800 
17801 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
17802 			return (EFAULT);
17803 
17804 		return (0);
17805 	}
17806 
17807 	case DTRACEIOC_FORMAT: {
17808 		dtrace_fmtdesc_t fmt;
17809 		char *str;
17810 		int len;
17811 
17812 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
17813 			return (EFAULT);
17814 
17815 		mutex_enter(&dtrace_lock);
17816 
17817 		if (fmt.dtfd_format == 0 ||
17818 		    fmt.dtfd_format > state->dts_nformats) {
17819 			mutex_exit(&dtrace_lock);
17820 			return (EINVAL);
17821 		}
17822 
17823 		/*
17824 		 * Format strings are allocated contiguously and they are
17825 		 * never freed; if a format index is less than the number
17826 		 * of formats, we can assert that the format map is non-NULL
17827 		 * and that the format for the specified index is non-NULL.
17828 		 */
17829 		ASSERT(state->dts_formats != NULL);
17830 		str = state->dts_formats[fmt.dtfd_format - 1];
17831 		ASSERT(str != NULL);
17832 
17833 		len = strlen(str) + 1;
17834 
17835 		if (len > fmt.dtfd_length) {
17836 			fmt.dtfd_length = len;
17837 
17838 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
17839 				mutex_exit(&dtrace_lock);
17840 				return (EINVAL);
17841 			}
17842 		} else {
17843 			if (copyout(str, fmt.dtfd_string, len) != 0) {
17844 				mutex_exit(&dtrace_lock);
17845 				return (EINVAL);
17846 			}
17847 		}
17848 
17849 		mutex_exit(&dtrace_lock);
17850 		return (0);
17851 	}
17852 
17853 	default:
17854 		break;
17855 	}
17856 
17857 	return (ENOTTY);
17858 }
17859 
17860 /*ARGSUSED*/
17861 static int
17862 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
17863 {
17864 	dtrace_state_t *state;
17865 
17866 	switch (cmd) {
17867 	case DDI_DETACH:
17868 		break;
17869 
17870 	case DDI_SUSPEND:
17871 		return (DDI_SUCCESS);
17872 
17873 	default:
17874 		return (DDI_FAILURE);
17875 	}
17876 
17877 	mutex_enter(&cpu_lock);
17878 	mutex_enter(&dtrace_provider_lock);
17879 	mutex_enter(&dtrace_lock);
17880 
17881 	ASSERT(dtrace_opens == 0);
17882 
17883 	if (dtrace_helpers > 0) {
17884 		mutex_exit(&dtrace_provider_lock);
17885 		mutex_exit(&dtrace_lock);
17886 		mutex_exit(&cpu_lock);
17887 		return (DDI_FAILURE);
17888 	}
17889 
17890 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
17891 		mutex_exit(&dtrace_provider_lock);
17892 		mutex_exit(&dtrace_lock);
17893 		mutex_exit(&cpu_lock);
17894 		return (DDI_FAILURE);
17895 	}
17896 
17897 	dtrace_provider = NULL;
17898 
17899 	if ((state = dtrace_anon_grab()) != NULL) {
17900 		/*
17901 		 * If there were ECBs on this state, the provider should
17902 		 * have not been allowed to detach; assert that there is
17903 		 * none.
17904 		 */
17905 		ASSERT(state->dts_necbs == 0);
17906 		dtrace_state_destroy(state);
17907 
17908 		/*
17909 		 * If we're being detached with anonymous state, we need to
17910 		 * indicate to the kernel debugger that DTrace is now inactive.
17911 		 */
17912 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17913 	}
17914 
17915 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
17916 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17917 	dtrace_cpu_init = NULL;
17918 	dtrace_helpers_cleanup = NULL;
17919 	dtrace_helpers_fork = NULL;
17920 	dtrace_cpustart_init = NULL;
17921 	dtrace_cpustart_fini = NULL;
17922 	dtrace_debugger_init = NULL;
17923 	dtrace_debugger_fini = NULL;
17924 	dtrace_modload = NULL;
17925 	dtrace_modunload = NULL;
17926 
17927 	ASSERT(dtrace_getf == 0);
17928 	ASSERT(dtrace_closef == NULL);
17929 
17930 	mutex_exit(&cpu_lock);
17931 
17932 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
17933 	dtrace_probes = NULL;
17934 	dtrace_nprobes = 0;
17935 
17936 	dtrace_hash_destroy(dtrace_bymod);
17937 	dtrace_hash_destroy(dtrace_byfunc);
17938 	dtrace_hash_destroy(dtrace_byname);
17939 	dtrace_bymod = NULL;
17940 	dtrace_byfunc = NULL;
17941 	dtrace_byname = NULL;
17942 
17943 	kmem_cache_destroy(dtrace_state_cache);
17944 	vmem_destroy(dtrace_minor);
17945 	vmem_destroy(dtrace_arena);
17946 
17947 	if (dtrace_toxrange != NULL) {
17948 		kmem_free(dtrace_toxrange,
17949 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
17950 		dtrace_toxrange = NULL;
17951 		dtrace_toxranges = 0;
17952 		dtrace_toxranges_max = 0;
17953 	}
17954 
17955 	ddi_remove_minor_node(dtrace_devi, NULL);
17956 	dtrace_devi = NULL;
17957 
17958 	ddi_soft_state_fini(&dtrace_softstate);
17959 
17960 	ASSERT(dtrace_vtime_references == 0);
17961 	ASSERT(dtrace_opens == 0);
17962 	ASSERT(dtrace_retained == NULL);
17963 
17964 	mutex_exit(&dtrace_lock);
17965 	mutex_exit(&dtrace_provider_lock);
17966 
17967 	/*
17968 	 * We don't destroy the task queue until after we have dropped our
17969 	 * locks (taskq_destroy() may block on running tasks).  To prevent
17970 	 * attempting to do work after we have effectively detached but before
17971 	 * the task queue has been destroyed, all tasks dispatched via the
17972 	 * task queue must check that DTrace is still attached before
17973 	 * performing any operation.
17974 	 */
17975 	taskq_destroy(dtrace_taskq);
17976 	dtrace_taskq = NULL;
17977 
17978 	return (DDI_SUCCESS);
17979 }
17980 #endif
17981 
17982 #ifdef illumos
17983 /*ARGSUSED*/
17984 static int
17985 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
17986 {
17987 	int error;
17988 
17989 	switch (infocmd) {
17990 	case DDI_INFO_DEVT2DEVINFO:
17991 		*result = (void *)dtrace_devi;
17992 		error = DDI_SUCCESS;
17993 		break;
17994 	case DDI_INFO_DEVT2INSTANCE:
17995 		*result = (void *)0;
17996 		error = DDI_SUCCESS;
17997 		break;
17998 	default:
17999 		error = DDI_FAILURE;
18000 	}
18001 	return (error);
18002 }
18003 #endif
18004 
18005 #ifdef illumos
18006 static struct cb_ops dtrace_cb_ops = {
18007 	dtrace_open,		/* open */
18008 	dtrace_close,		/* close */
18009 	nulldev,		/* strategy */
18010 	nulldev,		/* print */
18011 	nodev,			/* dump */
18012 	nodev,			/* read */
18013 	nodev,			/* write */
18014 	dtrace_ioctl,		/* ioctl */
18015 	nodev,			/* devmap */
18016 	nodev,			/* mmap */
18017 	nodev,			/* segmap */
18018 	nochpoll,		/* poll */
18019 	ddi_prop_op,		/* cb_prop_op */
18020 	0,			/* streamtab  */
18021 	D_NEW | D_MP		/* Driver compatibility flag */
18022 };
18023 
18024 static struct dev_ops dtrace_ops = {
18025 	DEVO_REV,		/* devo_rev */
18026 	0,			/* refcnt */
18027 	dtrace_info,		/* get_dev_info */
18028 	nulldev,		/* identify */
18029 	nulldev,		/* probe */
18030 	dtrace_attach,		/* attach */
18031 	dtrace_detach,		/* detach */
18032 	nodev,			/* reset */
18033 	&dtrace_cb_ops,		/* driver operations */
18034 	NULL,			/* bus operations */
18035 	nodev			/* dev power */
18036 };
18037 
18038 static struct modldrv modldrv = {
18039 	&mod_driverops,		/* module type (this is a pseudo driver) */
18040 	"Dynamic Tracing",	/* name of module */
18041 	&dtrace_ops,		/* driver ops */
18042 };
18043 
18044 static struct modlinkage modlinkage = {
18045 	MODREV_1,
18046 	(void *)&modldrv,
18047 	NULL
18048 };
18049 
18050 int
18051 _init(void)
18052 {
18053 	return (mod_install(&modlinkage));
18054 }
18055 
18056 int
18057 _info(struct modinfo *modinfop)
18058 {
18059 	return (mod_info(&modlinkage, modinfop));
18060 }
18061 
18062 int
18063 _fini(void)
18064 {
18065 	return (mod_remove(&modlinkage));
18066 }
18067 #else
18068 
18069 static d_ioctl_t	dtrace_ioctl;
18070 static d_ioctl_t	dtrace_ioctl_helper;
18071 static void		dtrace_load(void *);
18072 static int		dtrace_unload(void);
18073 static struct cdev	*dtrace_dev;
18074 static struct cdev	*helper_dev;
18075 
18076 void dtrace_invop_init(void);
18077 void dtrace_invop_uninit(void);
18078 
18079 static struct cdevsw dtrace_cdevsw = {
18080 	.d_version	= D_VERSION,
18081 	.d_ioctl	= dtrace_ioctl,
18082 	.d_open		= dtrace_open,
18083 	.d_name		= "dtrace",
18084 };
18085 
18086 static struct cdevsw helper_cdevsw = {
18087 	.d_version	= D_VERSION,
18088 	.d_ioctl	= dtrace_ioctl_helper,
18089 	.d_name		= "helper",
18090 };
18091 
18092 #include <dtrace_anon.c>
18093 #include <dtrace_ioctl.c>
18094 #include <dtrace_load.c>
18095 #include <dtrace_modevent.c>
18096 #include <dtrace_sysctl.c>
18097 #include <dtrace_unload.c>
18098 #include <dtrace_vtime.c>
18099 #include <dtrace_hacks.c>
18100 #include <dtrace_isa.c>
18101 
18102 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
18103 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
18104 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18105 
18106 DEV_MODULE(dtrace, dtrace_modevent, NULL);
18107 MODULE_VERSION(dtrace, 1);
18108 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18109 #endif
18110