1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/param.h> 69 #include <sys/types.h> 70 #ifndef illumos 71 #include <sys/time.h> 72 #endif 73 #include <sys/stat.h> 74 #include <sys/conf.h> 75 #include <sys/systm.h> 76 #include <sys/endian.h> 77 #ifdef illumos 78 #include <sys/ddi.h> 79 #include <sys/sunddi.h> 80 #endif 81 #include <sys/cpuvar.h> 82 #include <sys/kmem.h> 83 #ifdef illumos 84 #include <sys/strsubr.h> 85 #endif 86 #include <sys/sysmacros.h> 87 #include <sys/dtrace_impl.h> 88 #include <sys/atomic.h> 89 #include <sys/cmn_err.h> 90 #ifdef illumos 91 #include <sys/mutex_impl.h> 92 #include <sys/rwlock_impl.h> 93 #endif 94 #include <sys/ctf_api.h> 95 #ifdef illumos 96 #include <sys/panic.h> 97 #include <sys/priv_impl.h> 98 #endif 99 #ifdef illumos 100 #include <sys/cred_impl.h> 101 #include <sys/procfs_isa.h> 102 #endif 103 #include <sys/taskq.h> 104 #ifdef illumos 105 #include <sys/mkdev.h> 106 #include <sys/kdi.h> 107 #endif 108 #include <sys/zone.h> 109 #include <sys/socket.h> 110 #include <netinet/in.h> 111 #include "strtolctype.h" 112 113 /* FreeBSD includes: */ 114 #ifndef illumos 115 #include <sys/callout.h> 116 #include <sys/ctype.h> 117 #include <sys/eventhandler.h> 118 #include <sys/limits.h> 119 #include <sys/linker.h> 120 #include <sys/kdb.h> 121 #include <sys/jail.h> 122 #include <sys/kernel.h> 123 #include <sys/malloc.h> 124 #include <sys/lock.h> 125 #include <sys/mutex.h> 126 #include <sys/ptrace.h> 127 #include <sys/random.h> 128 #include <sys/rwlock.h> 129 #include <sys/sx.h> 130 #include <sys/sysctl.h> 131 132 133 #include <sys/mount.h> 134 #undef AT_UID 135 #undef AT_GID 136 #include <sys/vnode.h> 137 #include <sys/cred.h> 138 139 #include <sys/dtrace_bsd.h> 140 141 #include <netinet/in.h> 142 143 #include "dtrace_cddl.h" 144 #include "dtrace_debug.c" 145 #endif 146 147 #include "dtrace_xoroshiro128_plus.h" 148 149 /* 150 * DTrace Tunable Variables 151 * 152 * The following variables may be tuned by adding a line to /etc/system that 153 * includes both the name of the DTrace module ("dtrace") and the name of the 154 * variable. For example: 155 * 156 * set dtrace:dtrace_destructive_disallow = 1 157 * 158 * In general, the only variables that one should be tuning this way are those 159 * that affect system-wide DTrace behavior, and for which the default behavior 160 * is undesirable. Most of these variables are tunable on a per-consumer 161 * basis using DTrace options, and need not be tuned on a system-wide basis. 162 * When tuning these variables, avoid pathological values; while some attempt 163 * is made to verify the integrity of these variables, they are not considered 164 * part of the supported interface to DTrace, and they are therefore not 165 * checked comprehensively. Further, these variables should not be tuned 166 * dynamically via "mdb -kw" or other means; they should only be tuned via 167 * /etc/system. 168 */ 169 int dtrace_destructive_disallow = 0; 170 #ifndef illumos 171 /* Positive logic version of dtrace_destructive_disallow for loader tunable */ 172 int dtrace_allow_destructive = 1; 173 #endif 174 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 175 size_t dtrace_difo_maxsize = (256 * 1024); 176 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 177 size_t dtrace_statvar_maxsize = (16 * 1024); 178 size_t dtrace_actions_max = (16 * 1024); 179 size_t dtrace_retain_max = 1024; 180 dtrace_optval_t dtrace_helper_actions_max = 128; 181 dtrace_optval_t dtrace_helper_providers_max = 32; 182 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 183 size_t dtrace_strsize_default = 256; 184 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 185 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 186 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 187 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 188 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 189 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 190 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 191 dtrace_optval_t dtrace_nspec_default = 1; 192 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 193 dtrace_optval_t dtrace_stackframes_default = 20; 194 dtrace_optval_t dtrace_ustackframes_default = 20; 195 dtrace_optval_t dtrace_jstackframes_default = 50; 196 dtrace_optval_t dtrace_jstackstrsize_default = 512; 197 int dtrace_msgdsize_max = 128; 198 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 199 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 200 int dtrace_devdepth_max = 32; 201 int dtrace_err_verbose; 202 hrtime_t dtrace_deadman_interval = NANOSEC; 203 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 204 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 205 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 206 #ifndef illumos 207 int dtrace_memstr_max = 4096; 208 int dtrace_bufsize_max_frac = 128; 209 #endif 210 211 /* 212 * DTrace External Variables 213 * 214 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 215 * available to DTrace consumers via the backtick (`) syntax. One of these, 216 * dtrace_zero, is made deliberately so: it is provided as a source of 217 * well-known, zero-filled memory. While this variable is not documented, 218 * it is used by some translators as an implementation detail. 219 */ 220 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 221 222 /* 223 * DTrace Internal Variables 224 */ 225 #ifdef illumos 226 static dev_info_t *dtrace_devi; /* device info */ 227 #endif 228 #ifdef illumos 229 static vmem_t *dtrace_arena; /* probe ID arena */ 230 static vmem_t *dtrace_minor; /* minor number arena */ 231 #else 232 static taskq_t *dtrace_taskq; /* task queue */ 233 static struct unrhdr *dtrace_arena; /* Probe ID number. */ 234 #endif 235 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 236 static int dtrace_nprobes; /* number of probes */ 237 static dtrace_provider_t *dtrace_provider; /* provider list */ 238 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 239 static int dtrace_opens; /* number of opens */ 240 static int dtrace_helpers; /* number of helpers */ 241 static int dtrace_getf; /* number of unpriv getf()s */ 242 #ifdef illumos 243 static void *dtrace_softstate; /* softstate pointer */ 244 #endif 245 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 246 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 247 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 248 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 249 static int dtrace_toxranges; /* number of toxic ranges */ 250 static int dtrace_toxranges_max; /* size of toxic range array */ 251 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 252 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 253 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 254 static kthread_t *dtrace_panicked; /* panicking thread */ 255 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 256 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 257 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 258 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 259 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 260 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 261 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 262 #ifndef illumos 263 static struct mtx dtrace_unr_mtx; 264 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF); 265 static eventhandler_tag dtrace_kld_load_tag; 266 static eventhandler_tag dtrace_kld_unload_try_tag; 267 #endif 268 269 /* 270 * DTrace Locking 271 * DTrace is protected by three (relatively coarse-grained) locks: 272 * 273 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 274 * including enabling state, probes, ECBs, consumer state, helper state, 275 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 276 * probe context is lock-free -- synchronization is handled via the 277 * dtrace_sync() cross call mechanism. 278 * 279 * (2) dtrace_provider_lock is required when manipulating provider state, or 280 * when provider state must be held constant. 281 * 282 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 283 * when meta provider state must be held constant. 284 * 285 * The lock ordering between these three locks is dtrace_meta_lock before 286 * dtrace_provider_lock before dtrace_lock. (In particular, there are 287 * several places where dtrace_provider_lock is held by the framework as it 288 * calls into the providers -- which then call back into the framework, 289 * grabbing dtrace_lock.) 290 * 291 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 292 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 293 * role as a coarse-grained lock; it is acquired before both of these locks. 294 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 295 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 296 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 297 * acquired _between_ dtrace_provider_lock and dtrace_lock. 298 */ 299 static kmutex_t dtrace_lock; /* probe state lock */ 300 static kmutex_t dtrace_provider_lock; /* provider state lock */ 301 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 302 303 #ifndef illumos 304 /* XXX FreeBSD hacks. */ 305 #define cr_suid cr_svuid 306 #define cr_sgid cr_svgid 307 #define ipaddr_t in_addr_t 308 #define mod_modname pathname 309 #define vuprintf vprintf 310 #ifndef crgetzoneid 311 #define crgetzoneid(_a) 0 312 #endif 313 #define ttoproc(_a) ((_a)->td_proc) 314 #define SNOCD 0 315 #define CPU_ON_INTR(_a) 0 316 317 #define PRIV_EFFECTIVE (1 << 0) 318 #define PRIV_DTRACE_KERNEL (1 << 1) 319 #define PRIV_DTRACE_PROC (1 << 2) 320 #define PRIV_DTRACE_USER (1 << 3) 321 #define PRIV_PROC_OWNER (1 << 4) 322 #define PRIV_PROC_ZONE (1 << 5) 323 #define PRIV_ALL ~0 324 325 SYSCTL_DECL(_debug_dtrace); 326 SYSCTL_DECL(_kern_dtrace); 327 #endif 328 329 #ifdef illumos 330 #define curcpu CPU->cpu_id 331 #endif 332 333 334 /* 335 * DTrace Provider Variables 336 * 337 * These are the variables relating to DTrace as a provider (that is, the 338 * provider of the BEGIN, END, and ERROR probes). 339 */ 340 static dtrace_pattr_t dtrace_provider_attr = { 341 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 342 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 343 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 344 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 345 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 346 }; 347 348 static void 349 dtrace_nullop(void) 350 {} 351 352 static dtrace_pops_t dtrace_provider_ops = { 353 .dtps_provide = (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop, 354 .dtps_provide_module = (void (*)(void *, modctl_t *))dtrace_nullop, 355 .dtps_enable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 356 .dtps_disable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 357 .dtps_suspend = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 358 .dtps_resume = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 359 .dtps_getargdesc = NULL, 360 .dtps_getargval = NULL, 361 .dtps_usermode = NULL, 362 .dtps_destroy = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 363 }; 364 365 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 366 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 367 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 368 369 /* 370 * DTrace Helper Tracing Variables 371 * 372 * These variables should be set dynamically to enable helper tracing. The 373 * only variables that should be set are dtrace_helptrace_enable (which should 374 * be set to a non-zero value to allocate helper tracing buffers on the next 375 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 376 * non-zero value to deallocate helper tracing buffers on the next close of 377 * /dev/dtrace). When (and only when) helper tracing is disabled, the 378 * buffer size may also be set via dtrace_helptrace_bufsize. 379 */ 380 int dtrace_helptrace_enable = 0; 381 int dtrace_helptrace_disable = 0; 382 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 383 uint32_t dtrace_helptrace_nlocals; 384 static dtrace_helptrace_t *dtrace_helptrace_buffer; 385 static uint32_t dtrace_helptrace_next = 0; 386 static int dtrace_helptrace_wrapped = 0; 387 388 /* 389 * DTrace Error Hashing 390 * 391 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 392 * table. This is very useful for checking coverage of tests that are 393 * expected to induce DIF or DOF processing errors, and may be useful for 394 * debugging problems in the DIF code generator or in DOF generation . The 395 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 396 */ 397 #ifdef DEBUG 398 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 399 static const char *dtrace_errlast; 400 static kthread_t *dtrace_errthread; 401 static kmutex_t dtrace_errlock; 402 #endif 403 404 /* 405 * DTrace Macros and Constants 406 * 407 * These are various macros that are useful in various spots in the 408 * implementation, along with a few random constants that have no meaning 409 * outside of the implementation. There is no real structure to this cpp 410 * mishmash -- but is there ever? 411 */ 412 #define DTRACE_HASHSTR(hash, probe) \ 413 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 414 415 #define DTRACE_HASHNEXT(hash, probe) \ 416 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 417 418 #define DTRACE_HASHPREV(hash, probe) \ 419 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 420 421 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 422 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 423 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 424 425 #define DTRACE_AGGHASHSIZE_SLEW 17 426 427 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 428 429 /* 430 * The key for a thread-local variable consists of the lower 61 bits of the 431 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 432 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 433 * equal to a variable identifier. This is necessary (but not sufficient) to 434 * assure that global associative arrays never collide with thread-local 435 * variables. To guarantee that they cannot collide, we must also define the 436 * order for keying dynamic variables. That order is: 437 * 438 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 439 * 440 * Because the variable-key and the tls-key are in orthogonal spaces, there is 441 * no way for a global variable key signature to match a thread-local key 442 * signature. 443 */ 444 #ifdef illumos 445 #define DTRACE_TLS_THRKEY(where) { \ 446 uint_t intr = 0; \ 447 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 448 for (; actv; actv >>= 1) \ 449 intr++; \ 450 ASSERT(intr < (1 << 3)); \ 451 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 452 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 453 } 454 #else 455 #define DTRACE_TLS_THRKEY(where) { \ 456 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \ 457 uint_t intr = 0; \ 458 uint_t actv = _c->cpu_intr_actv; \ 459 for (; actv; actv >>= 1) \ 460 intr++; \ 461 ASSERT(intr < (1 << 3)); \ 462 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \ 463 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 464 } 465 #endif 466 467 #define DT_BSWAP_8(x) ((x) & 0xff) 468 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 469 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 470 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 471 472 #define DT_MASK_LO 0x00000000FFFFFFFFULL 473 474 #define DTRACE_STORE(type, tomax, offset, what) \ 475 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 476 477 #if !defined(__x86) && !defined(__aarch64__) 478 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 479 if (addr & (size - 1)) { \ 480 *flags |= CPU_DTRACE_BADALIGN; \ 481 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 482 return (0); \ 483 } 484 #else 485 #define DTRACE_ALIGNCHECK(addr, size, flags) 486 #endif 487 488 /* 489 * Test whether a range of memory starting at testaddr of size testsz falls 490 * within the range of memory described by addr, sz. We take care to avoid 491 * problems with overflow and underflow of the unsigned quantities, and 492 * disallow all negative sizes. Ranges of size 0 are allowed. 493 */ 494 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 495 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 496 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 497 (testaddr) + (testsz) >= (testaddr)) 498 499 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 500 do { \ 501 if ((remp) != NULL) { \ 502 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 503 } \ 504 } while (0) 505 506 507 /* 508 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 509 * alloc_sz on the righthand side of the comparison in order to avoid overflow 510 * or underflow in the comparison with it. This is simpler than the INRANGE 511 * check above, because we know that the dtms_scratch_ptr is valid in the 512 * range. Allocations of size zero are allowed. 513 */ 514 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 515 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 516 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 517 518 #define DTRACE_LOADFUNC(bits) \ 519 /*CSTYLED*/ \ 520 uint##bits##_t \ 521 dtrace_load##bits(uintptr_t addr) \ 522 { \ 523 size_t size = bits / NBBY; \ 524 /*CSTYLED*/ \ 525 uint##bits##_t rval; \ 526 int i; \ 527 volatile uint16_t *flags = (volatile uint16_t *) \ 528 &cpu_core[curcpu].cpuc_dtrace_flags; \ 529 \ 530 DTRACE_ALIGNCHECK(addr, size, flags); \ 531 \ 532 for (i = 0; i < dtrace_toxranges; i++) { \ 533 if (addr >= dtrace_toxrange[i].dtt_limit) \ 534 continue; \ 535 \ 536 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 537 continue; \ 538 \ 539 /* \ 540 * This address falls within a toxic region; return 0. \ 541 */ \ 542 *flags |= CPU_DTRACE_BADADDR; \ 543 cpu_core[curcpu].cpuc_dtrace_illval = addr; \ 544 return (0); \ 545 } \ 546 \ 547 *flags |= CPU_DTRACE_NOFAULT; \ 548 /*CSTYLED*/ \ 549 rval = *((volatile uint##bits##_t *)addr); \ 550 *flags &= ~CPU_DTRACE_NOFAULT; \ 551 \ 552 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 553 } 554 555 #ifdef _LP64 556 #define dtrace_loadptr dtrace_load64 557 #else 558 #define dtrace_loadptr dtrace_load32 559 #endif 560 561 #define DTRACE_DYNHASH_FREE 0 562 #define DTRACE_DYNHASH_SINK 1 563 #define DTRACE_DYNHASH_VALID 2 564 565 #define DTRACE_MATCH_NEXT 0 566 #define DTRACE_MATCH_DONE 1 567 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 568 #define DTRACE_STATE_ALIGN 64 569 570 #define DTRACE_FLAGS2FLT(flags) \ 571 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 572 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 573 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 574 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 575 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 576 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 577 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 578 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 579 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 580 DTRACEFLT_UNKNOWN) 581 582 #define DTRACEACT_ISSTRING(act) \ 583 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 584 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 585 586 /* Function prototype definitions: */ 587 static size_t dtrace_strlen(const char *, size_t); 588 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 589 static void dtrace_enabling_provide(dtrace_provider_t *); 590 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 591 static void dtrace_enabling_matchall(void); 592 static void dtrace_enabling_reap(void); 593 static dtrace_state_t *dtrace_anon_grab(void); 594 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 595 dtrace_state_t *, uint64_t, uint64_t); 596 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 597 static void dtrace_buffer_drop(dtrace_buffer_t *); 598 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 599 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 600 dtrace_state_t *, dtrace_mstate_t *); 601 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 602 dtrace_optval_t); 603 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 604 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 605 uint16_t dtrace_load16(uintptr_t); 606 uint32_t dtrace_load32(uintptr_t); 607 uint64_t dtrace_load64(uintptr_t); 608 uint8_t dtrace_load8(uintptr_t); 609 void dtrace_dynvar_clean(dtrace_dstate_t *); 610 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *, 611 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *); 612 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *); 613 static int dtrace_priv_proc(dtrace_state_t *); 614 static void dtrace_getf_barrier(void); 615 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 616 dtrace_mstate_t *, dtrace_vstate_t *); 617 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 618 dtrace_mstate_t *, dtrace_vstate_t *); 619 620 /* 621 * DTrace Probe Context Functions 622 * 623 * These functions are called from probe context. Because probe context is 624 * any context in which C may be called, arbitrarily locks may be held, 625 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 626 * As a result, functions called from probe context may only call other DTrace 627 * support functions -- they may not interact at all with the system at large. 628 * (Note that the ASSERT macro is made probe-context safe by redefining it in 629 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 630 * loads are to be performed from probe context, they _must_ be in terms of 631 * the safe dtrace_load*() variants. 632 * 633 * Some functions in this block are not actually called from probe context; 634 * for these functions, there will be a comment above the function reading 635 * "Note: not called from probe context." 636 */ 637 void 638 dtrace_panic(const char *format, ...) 639 { 640 va_list alist; 641 642 va_start(alist, format); 643 #ifdef __FreeBSD__ 644 vpanic(format, alist); 645 #else 646 dtrace_vpanic(format, alist); 647 #endif 648 va_end(alist); 649 } 650 651 int 652 dtrace_assfail(const char *a, const char *f, int l) 653 { 654 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 655 656 /* 657 * We just need something here that even the most clever compiler 658 * cannot optimize away. 659 */ 660 return (a[(uintptr_t)f]); 661 } 662 663 /* 664 * Atomically increment a specified error counter from probe context. 665 */ 666 static void 667 dtrace_error(uint32_t *counter) 668 { 669 /* 670 * Most counters stored to in probe context are per-CPU counters. 671 * However, there are some error conditions that are sufficiently 672 * arcane that they don't merit per-CPU storage. If these counters 673 * are incremented concurrently on different CPUs, scalability will be 674 * adversely affected -- but we don't expect them to be white-hot in a 675 * correctly constructed enabling... 676 */ 677 uint32_t oval, nval; 678 679 do { 680 oval = *counter; 681 682 if ((nval = oval + 1) == 0) { 683 /* 684 * If the counter would wrap, set it to 1 -- assuring 685 * that the counter is never zero when we have seen 686 * errors. (The counter must be 32-bits because we 687 * aren't guaranteed a 64-bit compare&swap operation.) 688 * To save this code both the infamy of being fingered 689 * by a priggish news story and the indignity of being 690 * the target of a neo-puritan witch trial, we're 691 * carefully avoiding any colorful description of the 692 * likelihood of this condition -- but suffice it to 693 * say that it is only slightly more likely than the 694 * overflow of predicate cache IDs, as discussed in 695 * dtrace_predicate_create(). 696 */ 697 nval = 1; 698 } 699 } while (dtrace_cas32(counter, oval, nval) != oval); 700 } 701 702 /* 703 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 704 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 705 */ 706 /* BEGIN CSTYLED */ 707 DTRACE_LOADFUNC(8) 708 DTRACE_LOADFUNC(16) 709 DTRACE_LOADFUNC(32) 710 DTRACE_LOADFUNC(64) 711 /* END CSTYLED */ 712 713 static int 714 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 715 { 716 if (dest < mstate->dtms_scratch_base) 717 return (0); 718 719 if (dest + size < dest) 720 return (0); 721 722 if (dest + size > mstate->dtms_scratch_ptr) 723 return (0); 724 725 return (1); 726 } 727 728 static int 729 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 730 dtrace_statvar_t **svars, int nsvars) 731 { 732 int i; 733 size_t maxglobalsize, maxlocalsize; 734 735 if (nsvars == 0) 736 return (0); 737 738 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 739 maxlocalsize = maxglobalsize * NCPU; 740 741 for (i = 0; i < nsvars; i++) { 742 dtrace_statvar_t *svar = svars[i]; 743 uint8_t scope; 744 size_t size; 745 746 if (svar == NULL || (size = svar->dtsv_size) == 0) 747 continue; 748 749 scope = svar->dtsv_var.dtdv_scope; 750 751 /* 752 * We verify that our size is valid in the spirit of providing 753 * defense in depth: we want to prevent attackers from using 754 * DTrace to escalate an orthogonal kernel heap corruption bug 755 * into the ability to store to arbitrary locations in memory. 756 */ 757 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 758 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 759 760 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 761 svar->dtsv_size)) { 762 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 763 svar->dtsv_size); 764 return (1); 765 } 766 } 767 768 return (0); 769 } 770 771 /* 772 * Check to see if the address is within a memory region to which a store may 773 * be issued. This includes the DTrace scratch areas, and any DTrace variable 774 * region. The caller of dtrace_canstore() is responsible for performing any 775 * alignment checks that are needed before stores are actually executed. 776 */ 777 static int 778 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 779 dtrace_vstate_t *vstate) 780 { 781 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 782 } 783 784 /* 785 * Implementation of dtrace_canstore which communicates the upper bound of the 786 * allowed memory region. 787 */ 788 static int 789 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 790 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 791 { 792 /* 793 * First, check to see if the address is in scratch space... 794 */ 795 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 796 mstate->dtms_scratch_size)) { 797 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 798 mstate->dtms_scratch_size); 799 return (1); 800 } 801 802 /* 803 * Now check to see if it's a dynamic variable. This check will pick 804 * up both thread-local variables and any global dynamically-allocated 805 * variables. 806 */ 807 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 808 vstate->dtvs_dynvars.dtds_size)) { 809 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 810 uintptr_t base = (uintptr_t)dstate->dtds_base + 811 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 812 uintptr_t chunkoffs; 813 dtrace_dynvar_t *dvar; 814 815 /* 816 * Before we assume that we can store here, we need to make 817 * sure that it isn't in our metadata -- storing to our 818 * dynamic variable metadata would corrupt our state. For 819 * the range to not include any dynamic variable metadata, 820 * it must: 821 * 822 * (1) Start above the hash table that is at the base of 823 * the dynamic variable space 824 * 825 * (2) Have a starting chunk offset that is beyond the 826 * dtrace_dynvar_t that is at the base of every chunk 827 * 828 * (3) Not span a chunk boundary 829 * 830 * (4) Not be in the tuple space of a dynamic variable 831 * 832 */ 833 if (addr < base) 834 return (0); 835 836 chunkoffs = (addr - base) % dstate->dtds_chunksize; 837 838 if (chunkoffs < sizeof (dtrace_dynvar_t)) 839 return (0); 840 841 if (chunkoffs + sz > dstate->dtds_chunksize) 842 return (0); 843 844 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 845 846 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 847 return (0); 848 849 if (chunkoffs < sizeof (dtrace_dynvar_t) + 850 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 851 return (0); 852 853 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 854 return (1); 855 } 856 857 /* 858 * Finally, check the static local and global variables. These checks 859 * take the longest, so we perform them last. 860 */ 861 if (dtrace_canstore_statvar(addr, sz, remain, 862 vstate->dtvs_locals, vstate->dtvs_nlocals)) 863 return (1); 864 865 if (dtrace_canstore_statvar(addr, sz, remain, 866 vstate->dtvs_globals, vstate->dtvs_nglobals)) 867 return (1); 868 869 return (0); 870 } 871 872 873 /* 874 * Convenience routine to check to see if the address is within a memory 875 * region in which a load may be issued given the user's privilege level; 876 * if not, it sets the appropriate error flags and loads 'addr' into the 877 * illegal value slot. 878 * 879 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 880 * appropriate memory access protection. 881 */ 882 static int 883 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 884 dtrace_vstate_t *vstate) 885 { 886 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 887 } 888 889 /* 890 * Implementation of dtrace_canload which communicates the uppoer bound of the 891 * allowed memory region. 892 */ 893 static int 894 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 895 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 896 { 897 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 898 file_t *fp; 899 900 /* 901 * If we hold the privilege to read from kernel memory, then 902 * everything is readable. 903 */ 904 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 905 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 906 return (1); 907 } 908 909 /* 910 * You can obviously read that which you can store. 911 */ 912 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 913 return (1); 914 915 /* 916 * We're allowed to read from our own string table. 917 */ 918 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 919 mstate->dtms_difo->dtdo_strlen)) { 920 DTRACE_RANGE_REMAIN(remain, addr, 921 mstate->dtms_difo->dtdo_strtab, 922 mstate->dtms_difo->dtdo_strlen); 923 return (1); 924 } 925 926 if (vstate->dtvs_state != NULL && 927 dtrace_priv_proc(vstate->dtvs_state)) { 928 proc_t *p; 929 930 /* 931 * When we have privileges to the current process, there are 932 * several context-related kernel structures that are safe to 933 * read, even absent the privilege to read from kernel memory. 934 * These reads are safe because these structures contain only 935 * state that (1) we're permitted to read, (2) is harmless or 936 * (3) contains pointers to additional kernel state that we're 937 * not permitted to read (and as such, do not present an 938 * opportunity for privilege escalation). Finally (and 939 * critically), because of the nature of their relation with 940 * the current thread context, the memory associated with these 941 * structures cannot change over the duration of probe context, 942 * and it is therefore impossible for this memory to be 943 * deallocated and reallocated as something else while it's 944 * being operated upon. 945 */ 946 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 947 DTRACE_RANGE_REMAIN(remain, addr, curthread, 948 sizeof (kthread_t)); 949 return (1); 950 } 951 952 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 953 sz, curthread->t_procp, sizeof (proc_t))) { 954 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 955 sizeof (proc_t)); 956 return (1); 957 } 958 959 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 960 curthread->t_cred, sizeof (cred_t))) { 961 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 962 sizeof (cred_t)); 963 return (1); 964 } 965 966 #ifdef illumos 967 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 968 &(p->p_pidp->pid_id), sizeof (pid_t))) { 969 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 970 sizeof (pid_t)); 971 return (1); 972 } 973 974 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 975 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 976 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 977 offsetof(cpu_t, cpu_pause_thread)); 978 return (1); 979 } 980 #endif 981 } 982 983 if ((fp = mstate->dtms_getf) != NULL) { 984 uintptr_t psz = sizeof (void *); 985 vnode_t *vp; 986 vnodeops_t *op; 987 988 /* 989 * When getf() returns a file_t, the enabling is implicitly 990 * granted the (transient) right to read the returned file_t 991 * as well as the v_path and v_op->vnop_name of the underlying 992 * vnode. These accesses are allowed after a successful 993 * getf() because the members that they refer to cannot change 994 * once set -- and the barrier logic in the kernel's closef() 995 * path assures that the file_t and its referenced vode_t 996 * cannot themselves be stale (that is, it impossible for 997 * either dtms_getf itself or its f_vnode member to reference 998 * freed memory). 999 */ 1000 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 1001 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 1002 return (1); 1003 } 1004 1005 if ((vp = fp->f_vnode) != NULL) { 1006 size_t slen; 1007 #ifdef illumos 1008 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 1009 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 1010 psz); 1011 return (1); 1012 } 1013 slen = strlen(vp->v_path) + 1; 1014 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 1015 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 1016 slen); 1017 return (1); 1018 } 1019 #endif 1020 1021 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 1022 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 1023 psz); 1024 return (1); 1025 } 1026 1027 #ifdef illumos 1028 if ((op = vp->v_op) != NULL && 1029 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 1030 DTRACE_RANGE_REMAIN(remain, addr, 1031 &op->vnop_name, psz); 1032 return (1); 1033 } 1034 1035 if (op != NULL && op->vnop_name != NULL && 1036 DTRACE_INRANGE(addr, sz, op->vnop_name, 1037 (slen = strlen(op->vnop_name) + 1))) { 1038 DTRACE_RANGE_REMAIN(remain, addr, 1039 op->vnop_name, slen); 1040 return (1); 1041 } 1042 #endif 1043 } 1044 } 1045 1046 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 1047 *illval = addr; 1048 return (0); 1049 } 1050 1051 /* 1052 * Convenience routine to check to see if a given string is within a memory 1053 * region in which a load may be issued given the user's privilege level; 1054 * this exists so that we don't need to issue unnecessary dtrace_strlen() 1055 * calls in the event that the user has all privileges. 1056 */ 1057 static int 1058 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 1059 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1060 { 1061 size_t rsize; 1062 1063 /* 1064 * If we hold the privilege to read from kernel memory, then 1065 * everything is readable. 1066 */ 1067 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1068 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 1069 return (1); 1070 } 1071 1072 /* 1073 * Even if the caller is uninterested in querying the remaining valid 1074 * range, it is required to ensure that the access is allowed. 1075 */ 1076 if (remain == NULL) { 1077 remain = &rsize; 1078 } 1079 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 1080 size_t strsz; 1081 /* 1082 * Perform the strlen after determining the length of the 1083 * memory region which is accessible. This prevents timing 1084 * information from being used to find NULs in memory which is 1085 * not accessible to the caller. 1086 */ 1087 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 1088 MIN(sz, *remain)); 1089 if (strsz <= *remain) { 1090 return (1); 1091 } 1092 } 1093 1094 return (0); 1095 } 1096 1097 /* 1098 * Convenience routine to check to see if a given variable is within a memory 1099 * region in which a load may be issued given the user's privilege level. 1100 */ 1101 static int 1102 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 1103 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1104 { 1105 size_t sz; 1106 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1107 1108 /* 1109 * Calculate the max size before performing any checks since even 1110 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 1111 * return the max length via 'remain'. 1112 */ 1113 if (type->dtdt_kind == DIF_TYPE_STRING) { 1114 dtrace_state_t *state = vstate->dtvs_state; 1115 1116 if (state != NULL) { 1117 sz = state->dts_options[DTRACEOPT_STRSIZE]; 1118 } else { 1119 /* 1120 * In helper context, we have a NULL state; fall back 1121 * to using the system-wide default for the string size 1122 * in this case. 1123 */ 1124 sz = dtrace_strsize_default; 1125 } 1126 } else { 1127 sz = type->dtdt_size; 1128 } 1129 1130 /* 1131 * If we hold the privilege to read from kernel memory, then 1132 * everything is readable. 1133 */ 1134 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1135 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1136 return (1); 1137 } 1138 1139 if (type->dtdt_kind == DIF_TYPE_STRING) { 1140 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1141 vstate)); 1142 } 1143 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1144 vstate)); 1145 } 1146 1147 /* 1148 * Convert a string to a signed integer using safe loads. 1149 * 1150 * NOTE: This function uses various macros from strtolctype.h to manipulate 1151 * digit values, etc -- these have all been checked to ensure they make 1152 * no additional function calls. 1153 */ 1154 static int64_t 1155 dtrace_strtoll(char *input, int base, size_t limit) 1156 { 1157 uintptr_t pos = (uintptr_t)input; 1158 int64_t val = 0; 1159 int x; 1160 boolean_t neg = B_FALSE; 1161 char c, cc, ccc; 1162 uintptr_t end = pos + limit; 1163 1164 /* 1165 * Consume any whitespace preceding digits. 1166 */ 1167 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1168 pos++; 1169 1170 /* 1171 * Handle an explicit sign if one is present. 1172 */ 1173 if (c == '-' || c == '+') { 1174 if (c == '-') 1175 neg = B_TRUE; 1176 c = dtrace_load8(++pos); 1177 } 1178 1179 /* 1180 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1181 * if present. 1182 */ 1183 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1184 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1185 pos += 2; 1186 c = ccc; 1187 } 1188 1189 /* 1190 * Read in contiguous digits until the first non-digit character. 1191 */ 1192 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1193 c = dtrace_load8(++pos)) 1194 val = val * base + x; 1195 1196 return (neg ? -val : val); 1197 } 1198 1199 /* 1200 * Compare two strings using safe loads. 1201 */ 1202 static int 1203 dtrace_strncmp(char *s1, char *s2, size_t limit) 1204 { 1205 uint8_t c1, c2; 1206 volatile uint16_t *flags; 1207 1208 if (s1 == s2 || limit == 0) 1209 return (0); 1210 1211 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1212 1213 do { 1214 if (s1 == NULL) { 1215 c1 = '\0'; 1216 } else { 1217 c1 = dtrace_load8((uintptr_t)s1++); 1218 } 1219 1220 if (s2 == NULL) { 1221 c2 = '\0'; 1222 } else { 1223 c2 = dtrace_load8((uintptr_t)s2++); 1224 } 1225 1226 if (c1 != c2) 1227 return (c1 - c2); 1228 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1229 1230 return (0); 1231 } 1232 1233 /* 1234 * Compute strlen(s) for a string using safe memory accesses. The additional 1235 * len parameter is used to specify a maximum length to ensure completion. 1236 */ 1237 static size_t 1238 dtrace_strlen(const char *s, size_t lim) 1239 { 1240 uint_t len; 1241 1242 for (len = 0; len != lim; len++) { 1243 if (dtrace_load8((uintptr_t)s++) == '\0') 1244 break; 1245 } 1246 1247 return (len); 1248 } 1249 1250 /* 1251 * Check if an address falls within a toxic region. 1252 */ 1253 static int 1254 dtrace_istoxic(uintptr_t kaddr, size_t size) 1255 { 1256 uintptr_t taddr, tsize; 1257 int i; 1258 1259 for (i = 0; i < dtrace_toxranges; i++) { 1260 taddr = dtrace_toxrange[i].dtt_base; 1261 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1262 1263 if (kaddr - taddr < tsize) { 1264 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1265 cpu_core[curcpu].cpuc_dtrace_illval = kaddr; 1266 return (1); 1267 } 1268 1269 if (taddr - kaddr < size) { 1270 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1271 cpu_core[curcpu].cpuc_dtrace_illval = taddr; 1272 return (1); 1273 } 1274 } 1275 1276 return (0); 1277 } 1278 1279 /* 1280 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1281 * memory specified by the DIF program. The dst is assumed to be safe memory 1282 * that we can store to directly because it is managed by DTrace. As with 1283 * standard bcopy, overlapping copies are handled properly. 1284 */ 1285 static void 1286 dtrace_bcopy(const void *src, void *dst, size_t len) 1287 { 1288 if (len != 0) { 1289 uint8_t *s1 = dst; 1290 const uint8_t *s2 = src; 1291 1292 if (s1 <= s2) { 1293 do { 1294 *s1++ = dtrace_load8((uintptr_t)s2++); 1295 } while (--len != 0); 1296 } else { 1297 s2 += len; 1298 s1 += len; 1299 1300 do { 1301 *--s1 = dtrace_load8((uintptr_t)--s2); 1302 } while (--len != 0); 1303 } 1304 } 1305 } 1306 1307 /* 1308 * Copy src to dst using safe memory accesses, up to either the specified 1309 * length, or the point that a nul byte is encountered. The src is assumed to 1310 * be unsafe memory specified by the DIF program. The dst is assumed to be 1311 * safe memory that we can store to directly because it is managed by DTrace. 1312 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1313 */ 1314 static void 1315 dtrace_strcpy(const void *src, void *dst, size_t len) 1316 { 1317 if (len != 0) { 1318 uint8_t *s1 = dst, c; 1319 const uint8_t *s2 = src; 1320 1321 do { 1322 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1323 } while (--len != 0 && c != '\0'); 1324 } 1325 } 1326 1327 /* 1328 * Copy src to dst, deriving the size and type from the specified (BYREF) 1329 * variable type. The src is assumed to be unsafe memory specified by the DIF 1330 * program. The dst is assumed to be DTrace variable memory that is of the 1331 * specified type; we assume that we can store to directly. 1332 */ 1333 static void 1334 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1335 { 1336 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1337 1338 if (type->dtdt_kind == DIF_TYPE_STRING) { 1339 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1340 } else { 1341 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1342 } 1343 } 1344 1345 /* 1346 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1347 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1348 * safe memory that we can access directly because it is managed by DTrace. 1349 */ 1350 static int 1351 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1352 { 1353 volatile uint16_t *flags; 1354 1355 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 1356 1357 if (s1 == s2) 1358 return (0); 1359 1360 if (s1 == NULL || s2 == NULL) 1361 return (1); 1362 1363 if (s1 != s2 && len != 0) { 1364 const uint8_t *ps1 = s1; 1365 const uint8_t *ps2 = s2; 1366 1367 do { 1368 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1369 return (1); 1370 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1371 } 1372 return (0); 1373 } 1374 1375 /* 1376 * Zero the specified region using a simple byte-by-byte loop. Note that this 1377 * is for safe DTrace-managed memory only. 1378 */ 1379 static void 1380 dtrace_bzero(void *dst, size_t len) 1381 { 1382 uchar_t *cp; 1383 1384 for (cp = dst; len != 0; len--) 1385 *cp++ = 0; 1386 } 1387 1388 static void 1389 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1390 { 1391 uint64_t result[2]; 1392 1393 result[0] = addend1[0] + addend2[0]; 1394 result[1] = addend1[1] + addend2[1] + 1395 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1396 1397 sum[0] = result[0]; 1398 sum[1] = result[1]; 1399 } 1400 1401 /* 1402 * Shift the 128-bit value in a by b. If b is positive, shift left. 1403 * If b is negative, shift right. 1404 */ 1405 static void 1406 dtrace_shift_128(uint64_t *a, int b) 1407 { 1408 uint64_t mask; 1409 1410 if (b == 0) 1411 return; 1412 1413 if (b < 0) { 1414 b = -b; 1415 if (b >= 64) { 1416 a[0] = a[1] >> (b - 64); 1417 a[1] = 0; 1418 } else { 1419 a[0] >>= b; 1420 mask = 1LL << (64 - b); 1421 mask -= 1; 1422 a[0] |= ((a[1] & mask) << (64 - b)); 1423 a[1] >>= b; 1424 } 1425 } else { 1426 if (b >= 64) { 1427 a[1] = a[0] << (b - 64); 1428 a[0] = 0; 1429 } else { 1430 a[1] <<= b; 1431 mask = a[0] >> (64 - b); 1432 a[1] |= mask; 1433 a[0] <<= b; 1434 } 1435 } 1436 } 1437 1438 /* 1439 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1440 * use native multiplication on those, and then re-combine into the 1441 * resulting 128-bit value. 1442 * 1443 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1444 * hi1 * hi2 << 64 + 1445 * hi1 * lo2 << 32 + 1446 * hi2 * lo1 << 32 + 1447 * lo1 * lo2 1448 */ 1449 static void 1450 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1451 { 1452 uint64_t hi1, hi2, lo1, lo2; 1453 uint64_t tmp[2]; 1454 1455 hi1 = factor1 >> 32; 1456 hi2 = factor2 >> 32; 1457 1458 lo1 = factor1 & DT_MASK_LO; 1459 lo2 = factor2 & DT_MASK_LO; 1460 1461 product[0] = lo1 * lo2; 1462 product[1] = hi1 * hi2; 1463 1464 tmp[0] = hi1 * lo2; 1465 tmp[1] = 0; 1466 dtrace_shift_128(tmp, 32); 1467 dtrace_add_128(product, tmp, product); 1468 1469 tmp[0] = hi2 * lo1; 1470 tmp[1] = 0; 1471 dtrace_shift_128(tmp, 32); 1472 dtrace_add_128(product, tmp, product); 1473 } 1474 1475 /* 1476 * This privilege check should be used by actions and subroutines to 1477 * verify that the user credentials of the process that enabled the 1478 * invoking ECB match the target credentials 1479 */ 1480 static int 1481 dtrace_priv_proc_common_user(dtrace_state_t *state) 1482 { 1483 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1484 1485 /* 1486 * We should always have a non-NULL state cred here, since if cred 1487 * is null (anonymous tracing), we fast-path bypass this routine. 1488 */ 1489 ASSERT(s_cr != NULL); 1490 1491 if ((cr = CRED()) != NULL && 1492 s_cr->cr_uid == cr->cr_uid && 1493 s_cr->cr_uid == cr->cr_ruid && 1494 s_cr->cr_uid == cr->cr_suid && 1495 s_cr->cr_gid == cr->cr_gid && 1496 s_cr->cr_gid == cr->cr_rgid && 1497 s_cr->cr_gid == cr->cr_sgid) 1498 return (1); 1499 1500 return (0); 1501 } 1502 1503 /* 1504 * This privilege check should be used by actions and subroutines to 1505 * verify that the zone of the process that enabled the invoking ECB 1506 * matches the target credentials 1507 */ 1508 static int 1509 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1510 { 1511 #ifdef illumos 1512 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1513 1514 /* 1515 * We should always have a non-NULL state cred here, since if cred 1516 * is null (anonymous tracing), we fast-path bypass this routine. 1517 */ 1518 ASSERT(s_cr != NULL); 1519 1520 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1521 return (1); 1522 1523 return (0); 1524 #else 1525 return (1); 1526 #endif 1527 } 1528 1529 /* 1530 * This privilege check should be used by actions and subroutines to 1531 * verify that the process has not setuid or changed credentials. 1532 */ 1533 static int 1534 dtrace_priv_proc_common_nocd(void) 1535 { 1536 proc_t *proc; 1537 1538 if ((proc = ttoproc(curthread)) != NULL && 1539 !(proc->p_flag & SNOCD)) 1540 return (1); 1541 1542 return (0); 1543 } 1544 1545 static int 1546 dtrace_priv_proc_destructive(dtrace_state_t *state) 1547 { 1548 int action = state->dts_cred.dcr_action; 1549 1550 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1551 dtrace_priv_proc_common_zone(state) == 0) 1552 goto bad; 1553 1554 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1555 dtrace_priv_proc_common_user(state) == 0) 1556 goto bad; 1557 1558 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1559 dtrace_priv_proc_common_nocd() == 0) 1560 goto bad; 1561 1562 return (1); 1563 1564 bad: 1565 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1566 1567 return (0); 1568 } 1569 1570 static int 1571 dtrace_priv_proc_control(dtrace_state_t *state) 1572 { 1573 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1574 return (1); 1575 1576 if (dtrace_priv_proc_common_zone(state) && 1577 dtrace_priv_proc_common_user(state) && 1578 dtrace_priv_proc_common_nocd()) 1579 return (1); 1580 1581 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1582 1583 return (0); 1584 } 1585 1586 static int 1587 dtrace_priv_proc(dtrace_state_t *state) 1588 { 1589 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1590 return (1); 1591 1592 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1593 1594 return (0); 1595 } 1596 1597 static int 1598 dtrace_priv_kernel(dtrace_state_t *state) 1599 { 1600 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1601 return (1); 1602 1603 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1604 1605 return (0); 1606 } 1607 1608 static int 1609 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1610 { 1611 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1612 return (1); 1613 1614 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1615 1616 return (0); 1617 } 1618 1619 /* 1620 * Determine if the dte_cond of the specified ECB allows for processing of 1621 * the current probe to continue. Note that this routine may allow continued 1622 * processing, but with access(es) stripped from the mstate's dtms_access 1623 * field. 1624 */ 1625 static int 1626 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1627 dtrace_ecb_t *ecb) 1628 { 1629 dtrace_probe_t *probe = ecb->dte_probe; 1630 dtrace_provider_t *prov = probe->dtpr_provider; 1631 dtrace_pops_t *pops = &prov->dtpv_pops; 1632 int mode = DTRACE_MODE_NOPRIV_DROP; 1633 1634 ASSERT(ecb->dte_cond); 1635 1636 #ifdef illumos 1637 if (pops->dtps_mode != NULL) { 1638 mode = pops->dtps_mode(prov->dtpv_arg, 1639 probe->dtpr_id, probe->dtpr_arg); 1640 1641 ASSERT((mode & DTRACE_MODE_USER) || 1642 (mode & DTRACE_MODE_KERNEL)); 1643 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1644 (mode & DTRACE_MODE_NOPRIV_DROP)); 1645 } 1646 1647 /* 1648 * If the dte_cond bits indicate that this consumer is only allowed to 1649 * see user-mode firings of this probe, call the provider's dtps_mode() 1650 * entry point to check that the probe was fired while in a user 1651 * context. If that's not the case, use the policy specified by the 1652 * provider to determine if we drop the probe or merely restrict 1653 * operation. 1654 */ 1655 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1656 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1657 1658 if (!(mode & DTRACE_MODE_USER)) { 1659 if (mode & DTRACE_MODE_NOPRIV_DROP) 1660 return (0); 1661 1662 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1663 } 1664 } 1665 #endif 1666 1667 /* 1668 * This is more subtle than it looks. We have to be absolutely certain 1669 * that CRED() isn't going to change out from under us so it's only 1670 * legit to examine that structure if we're in constrained situations. 1671 * Currently, the only times we'll this check is if a non-super-user 1672 * has enabled the profile or syscall providers -- providers that 1673 * allow visibility of all processes. For the profile case, the check 1674 * above will ensure that we're examining a user context. 1675 */ 1676 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1677 cred_t *cr; 1678 cred_t *s_cr = state->dts_cred.dcr_cred; 1679 proc_t *proc; 1680 1681 ASSERT(s_cr != NULL); 1682 1683 if ((cr = CRED()) == NULL || 1684 s_cr->cr_uid != cr->cr_uid || 1685 s_cr->cr_uid != cr->cr_ruid || 1686 s_cr->cr_uid != cr->cr_suid || 1687 s_cr->cr_gid != cr->cr_gid || 1688 s_cr->cr_gid != cr->cr_rgid || 1689 s_cr->cr_gid != cr->cr_sgid || 1690 (proc = ttoproc(curthread)) == NULL || 1691 (proc->p_flag & SNOCD)) { 1692 if (mode & DTRACE_MODE_NOPRIV_DROP) 1693 return (0); 1694 1695 #ifdef illumos 1696 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1697 #endif 1698 } 1699 } 1700 1701 #ifdef illumos 1702 /* 1703 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1704 * in our zone, check to see if our mode policy is to restrict rather 1705 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1706 * and DTRACE_ACCESS_ARGS 1707 */ 1708 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1709 cred_t *cr; 1710 cred_t *s_cr = state->dts_cred.dcr_cred; 1711 1712 ASSERT(s_cr != NULL); 1713 1714 if ((cr = CRED()) == NULL || 1715 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1716 if (mode & DTRACE_MODE_NOPRIV_DROP) 1717 return (0); 1718 1719 mstate->dtms_access &= 1720 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1721 } 1722 } 1723 #endif 1724 1725 return (1); 1726 } 1727 1728 /* 1729 * Note: not called from probe context. This function is called 1730 * asynchronously (and at a regular interval) from outside of probe context to 1731 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1732 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1733 */ 1734 void 1735 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1736 { 1737 dtrace_dynvar_t *dirty; 1738 dtrace_dstate_percpu_t *dcpu; 1739 dtrace_dynvar_t **rinsep; 1740 int i, j, work = 0; 1741 1742 for (i = 0; i < NCPU; i++) { 1743 dcpu = &dstate->dtds_percpu[i]; 1744 rinsep = &dcpu->dtdsc_rinsing; 1745 1746 /* 1747 * If the dirty list is NULL, there is no dirty work to do. 1748 */ 1749 if (dcpu->dtdsc_dirty == NULL) 1750 continue; 1751 1752 if (dcpu->dtdsc_rinsing != NULL) { 1753 /* 1754 * If the rinsing list is non-NULL, then it is because 1755 * this CPU was selected to accept another CPU's 1756 * dirty list -- and since that time, dirty buffers 1757 * have accumulated. This is a highly unlikely 1758 * condition, but we choose to ignore the dirty 1759 * buffers -- they'll be picked up a future cleanse. 1760 */ 1761 continue; 1762 } 1763 1764 if (dcpu->dtdsc_clean != NULL) { 1765 /* 1766 * If the clean list is non-NULL, then we're in a 1767 * situation where a CPU has done deallocations (we 1768 * have a non-NULL dirty list) but no allocations (we 1769 * also have a non-NULL clean list). We can't simply 1770 * move the dirty list into the clean list on this 1771 * CPU, yet we also don't want to allow this condition 1772 * to persist, lest a short clean list prevent a 1773 * massive dirty list from being cleaned (which in 1774 * turn could lead to otherwise avoidable dynamic 1775 * drops). To deal with this, we look for some CPU 1776 * with a NULL clean list, NULL dirty list, and NULL 1777 * rinsing list -- and then we borrow this CPU to 1778 * rinse our dirty list. 1779 */ 1780 for (j = 0; j < NCPU; j++) { 1781 dtrace_dstate_percpu_t *rinser; 1782 1783 rinser = &dstate->dtds_percpu[j]; 1784 1785 if (rinser->dtdsc_rinsing != NULL) 1786 continue; 1787 1788 if (rinser->dtdsc_dirty != NULL) 1789 continue; 1790 1791 if (rinser->dtdsc_clean != NULL) 1792 continue; 1793 1794 rinsep = &rinser->dtdsc_rinsing; 1795 break; 1796 } 1797 1798 if (j == NCPU) { 1799 /* 1800 * We were unable to find another CPU that 1801 * could accept this dirty list -- we are 1802 * therefore unable to clean it now. 1803 */ 1804 dtrace_dynvar_failclean++; 1805 continue; 1806 } 1807 } 1808 1809 work = 1; 1810 1811 /* 1812 * Atomically move the dirty list aside. 1813 */ 1814 do { 1815 dirty = dcpu->dtdsc_dirty; 1816 1817 /* 1818 * Before we zap the dirty list, set the rinsing list. 1819 * (This allows for a potential assertion in 1820 * dtrace_dynvar(): if a free dynamic variable appears 1821 * on a hash chain, either the dirty list or the 1822 * rinsing list for some CPU must be non-NULL.) 1823 */ 1824 *rinsep = dirty; 1825 dtrace_membar_producer(); 1826 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1827 dirty, NULL) != dirty); 1828 } 1829 1830 if (!work) { 1831 /* 1832 * We have no work to do; we can simply return. 1833 */ 1834 return; 1835 } 1836 1837 dtrace_sync(); 1838 1839 for (i = 0; i < NCPU; i++) { 1840 dcpu = &dstate->dtds_percpu[i]; 1841 1842 if (dcpu->dtdsc_rinsing == NULL) 1843 continue; 1844 1845 /* 1846 * We are now guaranteed that no hash chain contains a pointer 1847 * into this dirty list; we can make it clean. 1848 */ 1849 ASSERT(dcpu->dtdsc_clean == NULL); 1850 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1851 dcpu->dtdsc_rinsing = NULL; 1852 } 1853 1854 /* 1855 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1856 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1857 * This prevents a race whereby a CPU incorrectly decides that 1858 * the state should be something other than DTRACE_DSTATE_CLEAN 1859 * after dtrace_dynvar_clean() has completed. 1860 */ 1861 dtrace_sync(); 1862 1863 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1864 } 1865 1866 /* 1867 * Depending on the value of the op parameter, this function looks-up, 1868 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1869 * allocation is requested, this function will return a pointer to a 1870 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1871 * variable can be allocated. If NULL is returned, the appropriate counter 1872 * will be incremented. 1873 */ 1874 dtrace_dynvar_t * 1875 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1876 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1877 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1878 { 1879 uint64_t hashval = DTRACE_DYNHASH_VALID; 1880 dtrace_dynhash_t *hash = dstate->dtds_hash; 1881 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1882 processorid_t me = curcpu, cpu = me; 1883 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1884 size_t bucket, ksize; 1885 size_t chunksize = dstate->dtds_chunksize; 1886 uintptr_t kdata, lock, nstate; 1887 uint_t i; 1888 1889 ASSERT(nkeys != 0); 1890 1891 /* 1892 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1893 * algorithm. For the by-value portions, we perform the algorithm in 1894 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1895 * bit, and seems to have only a minute effect on distribution. For 1896 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1897 * over each referenced byte. It's painful to do this, but it's much 1898 * better than pathological hash distribution. The efficacy of the 1899 * hashing algorithm (and a comparison with other algorithms) may be 1900 * found by running the ::dtrace_dynstat MDB dcmd. 1901 */ 1902 for (i = 0; i < nkeys; i++) { 1903 if (key[i].dttk_size == 0) { 1904 uint64_t val = key[i].dttk_value; 1905 1906 hashval += (val >> 48) & 0xffff; 1907 hashval += (hashval << 10); 1908 hashval ^= (hashval >> 6); 1909 1910 hashval += (val >> 32) & 0xffff; 1911 hashval += (hashval << 10); 1912 hashval ^= (hashval >> 6); 1913 1914 hashval += (val >> 16) & 0xffff; 1915 hashval += (hashval << 10); 1916 hashval ^= (hashval >> 6); 1917 1918 hashval += val & 0xffff; 1919 hashval += (hashval << 10); 1920 hashval ^= (hashval >> 6); 1921 } else { 1922 /* 1923 * This is incredibly painful, but it beats the hell 1924 * out of the alternative. 1925 */ 1926 uint64_t j, size = key[i].dttk_size; 1927 uintptr_t base = (uintptr_t)key[i].dttk_value; 1928 1929 if (!dtrace_canload(base, size, mstate, vstate)) 1930 break; 1931 1932 for (j = 0; j < size; j++) { 1933 hashval += dtrace_load8(base + j); 1934 hashval += (hashval << 10); 1935 hashval ^= (hashval >> 6); 1936 } 1937 } 1938 } 1939 1940 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1941 return (NULL); 1942 1943 hashval += (hashval << 3); 1944 hashval ^= (hashval >> 11); 1945 hashval += (hashval << 15); 1946 1947 /* 1948 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1949 * comes out to be one of our two sentinel hash values. If this 1950 * actually happens, we set the hashval to be a value known to be a 1951 * non-sentinel value. 1952 */ 1953 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1954 hashval = DTRACE_DYNHASH_VALID; 1955 1956 /* 1957 * Yes, it's painful to do a divide here. If the cycle count becomes 1958 * important here, tricks can be pulled to reduce it. (However, it's 1959 * critical that hash collisions be kept to an absolute minimum; 1960 * they're much more painful than a divide.) It's better to have a 1961 * solution that generates few collisions and still keeps things 1962 * relatively simple. 1963 */ 1964 bucket = hashval % dstate->dtds_hashsize; 1965 1966 if (op == DTRACE_DYNVAR_DEALLOC) { 1967 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1968 1969 for (;;) { 1970 while ((lock = *lockp) & 1) 1971 continue; 1972 1973 if (dtrace_casptr((volatile void *)lockp, 1974 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock) 1975 break; 1976 } 1977 1978 dtrace_membar_producer(); 1979 } 1980 1981 top: 1982 prev = NULL; 1983 lock = hash[bucket].dtdh_lock; 1984 1985 dtrace_membar_consumer(); 1986 1987 start = hash[bucket].dtdh_chain; 1988 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1989 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1990 op != DTRACE_DYNVAR_DEALLOC)); 1991 1992 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1993 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1994 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1995 1996 if (dvar->dtdv_hashval != hashval) { 1997 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1998 /* 1999 * We've reached the sink, and therefore the 2000 * end of the hash chain; we can kick out of 2001 * the loop knowing that we have seen a valid 2002 * snapshot of state. 2003 */ 2004 ASSERT(dvar->dtdv_next == NULL); 2005 ASSERT(dvar == &dtrace_dynhash_sink); 2006 break; 2007 } 2008 2009 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 2010 /* 2011 * We've gone off the rails: somewhere along 2012 * the line, one of the members of this hash 2013 * chain was deleted. Note that we could also 2014 * detect this by simply letting this loop run 2015 * to completion, as we would eventually hit 2016 * the end of the dirty list. However, we 2017 * want to avoid running the length of the 2018 * dirty list unnecessarily (it might be quite 2019 * long), so we catch this as early as 2020 * possible by detecting the hash marker. In 2021 * this case, we simply set dvar to NULL and 2022 * break; the conditional after the loop will 2023 * send us back to top. 2024 */ 2025 dvar = NULL; 2026 break; 2027 } 2028 2029 goto next; 2030 } 2031 2032 if (dtuple->dtt_nkeys != nkeys) 2033 goto next; 2034 2035 for (i = 0; i < nkeys; i++, dkey++) { 2036 if (dkey->dttk_size != key[i].dttk_size) 2037 goto next; /* size or type mismatch */ 2038 2039 if (dkey->dttk_size != 0) { 2040 if (dtrace_bcmp( 2041 (void *)(uintptr_t)key[i].dttk_value, 2042 (void *)(uintptr_t)dkey->dttk_value, 2043 dkey->dttk_size)) 2044 goto next; 2045 } else { 2046 if (dkey->dttk_value != key[i].dttk_value) 2047 goto next; 2048 } 2049 } 2050 2051 if (op != DTRACE_DYNVAR_DEALLOC) 2052 return (dvar); 2053 2054 ASSERT(dvar->dtdv_next == NULL || 2055 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 2056 2057 if (prev != NULL) { 2058 ASSERT(hash[bucket].dtdh_chain != dvar); 2059 ASSERT(start != dvar); 2060 ASSERT(prev->dtdv_next == dvar); 2061 prev->dtdv_next = dvar->dtdv_next; 2062 } else { 2063 if (dtrace_casptr(&hash[bucket].dtdh_chain, 2064 start, dvar->dtdv_next) != start) { 2065 /* 2066 * We have failed to atomically swing the 2067 * hash table head pointer, presumably because 2068 * of a conflicting allocation on another CPU. 2069 * We need to reread the hash chain and try 2070 * again. 2071 */ 2072 goto top; 2073 } 2074 } 2075 2076 dtrace_membar_producer(); 2077 2078 /* 2079 * Now set the hash value to indicate that it's free. 2080 */ 2081 ASSERT(hash[bucket].dtdh_chain != dvar); 2082 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2083 2084 dtrace_membar_producer(); 2085 2086 /* 2087 * Set the next pointer to point at the dirty list, and 2088 * atomically swing the dirty pointer to the newly freed dvar. 2089 */ 2090 do { 2091 next = dcpu->dtdsc_dirty; 2092 dvar->dtdv_next = next; 2093 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 2094 2095 /* 2096 * Finally, unlock this hash bucket. 2097 */ 2098 ASSERT(hash[bucket].dtdh_lock == lock); 2099 ASSERT(lock & 1); 2100 hash[bucket].dtdh_lock++; 2101 2102 return (NULL); 2103 next: 2104 prev = dvar; 2105 continue; 2106 } 2107 2108 if (dvar == NULL) { 2109 /* 2110 * If dvar is NULL, it is because we went off the rails: 2111 * one of the elements that we traversed in the hash chain 2112 * was deleted while we were traversing it. In this case, 2113 * we assert that we aren't doing a dealloc (deallocs lock 2114 * the hash bucket to prevent themselves from racing with 2115 * one another), and retry the hash chain traversal. 2116 */ 2117 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 2118 goto top; 2119 } 2120 2121 if (op != DTRACE_DYNVAR_ALLOC) { 2122 /* 2123 * If we are not to allocate a new variable, we want to 2124 * return NULL now. Before we return, check that the value 2125 * of the lock word hasn't changed. If it has, we may have 2126 * seen an inconsistent snapshot. 2127 */ 2128 if (op == DTRACE_DYNVAR_NOALLOC) { 2129 if (hash[bucket].dtdh_lock != lock) 2130 goto top; 2131 } else { 2132 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2133 ASSERT(hash[bucket].dtdh_lock == lock); 2134 ASSERT(lock & 1); 2135 hash[bucket].dtdh_lock++; 2136 } 2137 2138 return (NULL); 2139 } 2140 2141 /* 2142 * We need to allocate a new dynamic variable. The size we need is the 2143 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2144 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2145 * the size of any referred-to data (dsize). We then round the final 2146 * size up to the chunksize for allocation. 2147 */ 2148 for (ksize = 0, i = 0; i < nkeys; i++) 2149 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2150 2151 /* 2152 * This should be pretty much impossible, but could happen if, say, 2153 * strange DIF specified the tuple. Ideally, this should be an 2154 * assertion and not an error condition -- but that requires that the 2155 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2156 * bullet-proof. (That is, it must not be able to be fooled by 2157 * malicious DIF.) Given the lack of backwards branches in DIF, 2158 * solving this would presumably not amount to solving the Halting 2159 * Problem -- but it still seems awfully hard. 2160 */ 2161 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2162 ksize + dsize > chunksize) { 2163 dcpu->dtdsc_drops++; 2164 return (NULL); 2165 } 2166 2167 nstate = DTRACE_DSTATE_EMPTY; 2168 2169 do { 2170 retry: 2171 free = dcpu->dtdsc_free; 2172 2173 if (free == NULL) { 2174 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2175 void *rval; 2176 2177 if (clean == NULL) { 2178 /* 2179 * We're out of dynamic variable space on 2180 * this CPU. Unless we have tried all CPUs, 2181 * we'll try to allocate from a different 2182 * CPU. 2183 */ 2184 switch (dstate->dtds_state) { 2185 case DTRACE_DSTATE_CLEAN: { 2186 void *sp = &dstate->dtds_state; 2187 2188 if (++cpu >= NCPU) 2189 cpu = 0; 2190 2191 if (dcpu->dtdsc_dirty != NULL && 2192 nstate == DTRACE_DSTATE_EMPTY) 2193 nstate = DTRACE_DSTATE_DIRTY; 2194 2195 if (dcpu->dtdsc_rinsing != NULL) 2196 nstate = DTRACE_DSTATE_RINSING; 2197 2198 dcpu = &dstate->dtds_percpu[cpu]; 2199 2200 if (cpu != me) 2201 goto retry; 2202 2203 (void) dtrace_cas32(sp, 2204 DTRACE_DSTATE_CLEAN, nstate); 2205 2206 /* 2207 * To increment the correct bean 2208 * counter, take another lap. 2209 */ 2210 goto retry; 2211 } 2212 2213 case DTRACE_DSTATE_DIRTY: 2214 dcpu->dtdsc_dirty_drops++; 2215 break; 2216 2217 case DTRACE_DSTATE_RINSING: 2218 dcpu->dtdsc_rinsing_drops++; 2219 break; 2220 2221 case DTRACE_DSTATE_EMPTY: 2222 dcpu->dtdsc_drops++; 2223 break; 2224 } 2225 2226 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2227 return (NULL); 2228 } 2229 2230 /* 2231 * The clean list appears to be non-empty. We want to 2232 * move the clean list to the free list; we start by 2233 * moving the clean pointer aside. 2234 */ 2235 if (dtrace_casptr(&dcpu->dtdsc_clean, 2236 clean, NULL) != clean) { 2237 /* 2238 * We are in one of two situations: 2239 * 2240 * (a) The clean list was switched to the 2241 * free list by another CPU. 2242 * 2243 * (b) The clean list was added to by the 2244 * cleansing cyclic. 2245 * 2246 * In either of these situations, we can 2247 * just reattempt the free list allocation. 2248 */ 2249 goto retry; 2250 } 2251 2252 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2253 2254 /* 2255 * Now we'll move the clean list to our free list. 2256 * It's impossible for this to fail: the only way 2257 * the free list can be updated is through this 2258 * code path, and only one CPU can own the clean list. 2259 * Thus, it would only be possible for this to fail if 2260 * this code were racing with dtrace_dynvar_clean(). 2261 * (That is, if dtrace_dynvar_clean() updated the clean 2262 * list, and we ended up racing to update the free 2263 * list.) This race is prevented by the dtrace_sync() 2264 * in dtrace_dynvar_clean() -- which flushes the 2265 * owners of the clean lists out before resetting 2266 * the clean lists. 2267 */ 2268 dcpu = &dstate->dtds_percpu[me]; 2269 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2270 ASSERT(rval == NULL); 2271 goto retry; 2272 } 2273 2274 dvar = free; 2275 new_free = dvar->dtdv_next; 2276 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2277 2278 /* 2279 * We have now allocated a new chunk. We copy the tuple keys into the 2280 * tuple array and copy any referenced key data into the data space 2281 * following the tuple array. As we do this, we relocate dttk_value 2282 * in the final tuple to point to the key data address in the chunk. 2283 */ 2284 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2285 dvar->dtdv_data = (void *)(kdata + ksize); 2286 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2287 2288 for (i = 0; i < nkeys; i++) { 2289 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2290 size_t kesize = key[i].dttk_size; 2291 2292 if (kesize != 0) { 2293 dtrace_bcopy( 2294 (const void *)(uintptr_t)key[i].dttk_value, 2295 (void *)kdata, kesize); 2296 dkey->dttk_value = kdata; 2297 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2298 } else { 2299 dkey->dttk_value = key[i].dttk_value; 2300 } 2301 2302 dkey->dttk_size = kesize; 2303 } 2304 2305 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2306 dvar->dtdv_hashval = hashval; 2307 dvar->dtdv_next = start; 2308 2309 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2310 return (dvar); 2311 2312 /* 2313 * The cas has failed. Either another CPU is adding an element to 2314 * this hash chain, or another CPU is deleting an element from this 2315 * hash chain. The simplest way to deal with both of these cases 2316 * (though not necessarily the most efficient) is to free our 2317 * allocated block and re-attempt it all. Note that the free is 2318 * to the dirty list and _not_ to the free list. This is to prevent 2319 * races with allocators, above. 2320 */ 2321 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2322 2323 dtrace_membar_producer(); 2324 2325 do { 2326 free = dcpu->dtdsc_dirty; 2327 dvar->dtdv_next = free; 2328 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2329 2330 goto top; 2331 } 2332 2333 /*ARGSUSED*/ 2334 static void 2335 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2336 { 2337 if ((int64_t)nval < (int64_t)*oval) 2338 *oval = nval; 2339 } 2340 2341 /*ARGSUSED*/ 2342 static void 2343 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2344 { 2345 if ((int64_t)nval > (int64_t)*oval) 2346 *oval = nval; 2347 } 2348 2349 static void 2350 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2351 { 2352 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2353 int64_t val = (int64_t)nval; 2354 2355 if (val < 0) { 2356 for (i = 0; i < zero; i++) { 2357 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2358 quanta[i] += incr; 2359 return; 2360 } 2361 } 2362 } else { 2363 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2364 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2365 quanta[i - 1] += incr; 2366 return; 2367 } 2368 } 2369 2370 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2371 return; 2372 } 2373 2374 ASSERT(0); 2375 } 2376 2377 static void 2378 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2379 { 2380 uint64_t arg = *lquanta++; 2381 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2382 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2383 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2384 int32_t val = (int32_t)nval, level; 2385 2386 ASSERT(step != 0); 2387 ASSERT(levels != 0); 2388 2389 if (val < base) { 2390 /* 2391 * This is an underflow. 2392 */ 2393 lquanta[0] += incr; 2394 return; 2395 } 2396 2397 level = (val - base) / step; 2398 2399 if (level < levels) { 2400 lquanta[level + 1] += incr; 2401 return; 2402 } 2403 2404 /* 2405 * This is an overflow. 2406 */ 2407 lquanta[levels + 1] += incr; 2408 } 2409 2410 static int 2411 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2412 uint16_t high, uint16_t nsteps, int64_t value) 2413 { 2414 int64_t this = 1, last, next; 2415 int base = 1, order; 2416 2417 ASSERT(factor <= nsteps); 2418 ASSERT(nsteps % factor == 0); 2419 2420 for (order = 0; order < low; order++) 2421 this *= factor; 2422 2423 /* 2424 * If our value is less than our factor taken to the power of the 2425 * low order of magnitude, it goes into the zeroth bucket. 2426 */ 2427 if (value < (last = this)) 2428 return (0); 2429 2430 for (this *= factor; order <= high; order++) { 2431 int nbuckets = this > nsteps ? nsteps : this; 2432 2433 if ((next = this * factor) < this) { 2434 /* 2435 * We should not generally get log/linear quantizations 2436 * with a high magnitude that allows 64-bits to 2437 * overflow, but we nonetheless protect against this 2438 * by explicitly checking for overflow, and clamping 2439 * our value accordingly. 2440 */ 2441 value = this - 1; 2442 } 2443 2444 if (value < this) { 2445 /* 2446 * If our value lies within this order of magnitude, 2447 * determine its position by taking the offset within 2448 * the order of magnitude, dividing by the bucket 2449 * width, and adding to our (accumulated) base. 2450 */ 2451 return (base + (value - last) / (this / nbuckets)); 2452 } 2453 2454 base += nbuckets - (nbuckets / factor); 2455 last = this; 2456 this = next; 2457 } 2458 2459 /* 2460 * Our value is greater than or equal to our factor taken to the 2461 * power of one plus the high magnitude -- return the top bucket. 2462 */ 2463 return (base); 2464 } 2465 2466 static void 2467 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2468 { 2469 uint64_t arg = *llquanta++; 2470 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2471 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2472 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2473 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2474 2475 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2476 low, high, nsteps, nval)] += incr; 2477 } 2478 2479 /*ARGSUSED*/ 2480 static void 2481 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2482 { 2483 data[0]++; 2484 data[1] += nval; 2485 } 2486 2487 /*ARGSUSED*/ 2488 static void 2489 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2490 { 2491 int64_t snval = (int64_t)nval; 2492 uint64_t tmp[2]; 2493 2494 data[0]++; 2495 data[1] += nval; 2496 2497 /* 2498 * What we want to say here is: 2499 * 2500 * data[2] += nval * nval; 2501 * 2502 * But given that nval is 64-bit, we could easily overflow, so 2503 * we do this as 128-bit arithmetic. 2504 */ 2505 if (snval < 0) 2506 snval = -snval; 2507 2508 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2509 dtrace_add_128(data + 2, tmp, data + 2); 2510 } 2511 2512 /*ARGSUSED*/ 2513 static void 2514 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2515 { 2516 *oval = *oval + 1; 2517 } 2518 2519 /*ARGSUSED*/ 2520 static void 2521 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2522 { 2523 *oval += nval; 2524 } 2525 2526 /* 2527 * Aggregate given the tuple in the principal data buffer, and the aggregating 2528 * action denoted by the specified dtrace_aggregation_t. The aggregation 2529 * buffer is specified as the buf parameter. This routine does not return 2530 * failure; if there is no space in the aggregation buffer, the data will be 2531 * dropped, and a corresponding counter incremented. 2532 */ 2533 static void 2534 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2535 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2536 { 2537 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2538 uint32_t i, ndx, size, fsize; 2539 uint32_t align = sizeof (uint64_t) - 1; 2540 dtrace_aggbuffer_t *agb; 2541 dtrace_aggkey_t *key; 2542 uint32_t hashval = 0, limit, isstr; 2543 caddr_t tomax, data, kdata; 2544 dtrace_actkind_t action; 2545 dtrace_action_t *act; 2546 uintptr_t offs; 2547 2548 if (buf == NULL) 2549 return; 2550 2551 if (!agg->dtag_hasarg) { 2552 /* 2553 * Currently, only quantize() and lquantize() take additional 2554 * arguments, and they have the same semantics: an increment 2555 * value that defaults to 1 when not present. If additional 2556 * aggregating actions take arguments, the setting of the 2557 * default argument value will presumably have to become more 2558 * sophisticated... 2559 */ 2560 arg = 1; 2561 } 2562 2563 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2564 size = rec->dtrd_offset - agg->dtag_base; 2565 fsize = size + rec->dtrd_size; 2566 2567 ASSERT(dbuf->dtb_tomax != NULL); 2568 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2569 2570 if ((tomax = buf->dtb_tomax) == NULL) { 2571 dtrace_buffer_drop(buf); 2572 return; 2573 } 2574 2575 /* 2576 * The metastructure is always at the bottom of the buffer. 2577 */ 2578 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2579 sizeof (dtrace_aggbuffer_t)); 2580 2581 if (buf->dtb_offset == 0) { 2582 /* 2583 * We just kludge up approximately 1/8th of the size to be 2584 * buckets. If this guess ends up being routinely 2585 * off-the-mark, we may need to dynamically readjust this 2586 * based on past performance. 2587 */ 2588 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2589 2590 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2591 (uintptr_t)tomax || hashsize == 0) { 2592 /* 2593 * We've been given a ludicrously small buffer; 2594 * increment our drop count and leave. 2595 */ 2596 dtrace_buffer_drop(buf); 2597 return; 2598 } 2599 2600 /* 2601 * And now, a pathetic attempt to try to get a an odd (or 2602 * perchance, a prime) hash size for better hash distribution. 2603 */ 2604 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2605 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2606 2607 agb->dtagb_hashsize = hashsize; 2608 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2609 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2610 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2611 2612 for (i = 0; i < agb->dtagb_hashsize; i++) 2613 agb->dtagb_hash[i] = NULL; 2614 } 2615 2616 ASSERT(agg->dtag_first != NULL); 2617 ASSERT(agg->dtag_first->dta_intuple); 2618 2619 /* 2620 * Calculate the hash value based on the key. Note that we _don't_ 2621 * include the aggid in the hashing (but we will store it as part of 2622 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2623 * algorithm: a simple, quick algorithm that has no known funnels, and 2624 * gets good distribution in practice. The efficacy of the hashing 2625 * algorithm (and a comparison with other algorithms) may be found by 2626 * running the ::dtrace_aggstat MDB dcmd. 2627 */ 2628 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2629 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2630 limit = i + act->dta_rec.dtrd_size; 2631 ASSERT(limit <= size); 2632 isstr = DTRACEACT_ISSTRING(act); 2633 2634 for (; i < limit; i++) { 2635 hashval += data[i]; 2636 hashval += (hashval << 10); 2637 hashval ^= (hashval >> 6); 2638 2639 if (isstr && data[i] == '\0') 2640 break; 2641 } 2642 } 2643 2644 hashval += (hashval << 3); 2645 hashval ^= (hashval >> 11); 2646 hashval += (hashval << 15); 2647 2648 /* 2649 * Yes, the divide here is expensive -- but it's generally the least 2650 * of the performance issues given the amount of data that we iterate 2651 * over to compute hash values, compare data, etc. 2652 */ 2653 ndx = hashval % agb->dtagb_hashsize; 2654 2655 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2656 ASSERT((caddr_t)key >= tomax); 2657 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2658 2659 if (hashval != key->dtak_hashval || key->dtak_size != size) 2660 continue; 2661 2662 kdata = key->dtak_data; 2663 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2664 2665 for (act = agg->dtag_first; act->dta_intuple; 2666 act = act->dta_next) { 2667 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2668 limit = i + act->dta_rec.dtrd_size; 2669 ASSERT(limit <= size); 2670 isstr = DTRACEACT_ISSTRING(act); 2671 2672 for (; i < limit; i++) { 2673 if (kdata[i] != data[i]) 2674 goto next; 2675 2676 if (isstr && data[i] == '\0') 2677 break; 2678 } 2679 } 2680 2681 if (action != key->dtak_action) { 2682 /* 2683 * We are aggregating on the same value in the same 2684 * aggregation with two different aggregating actions. 2685 * (This should have been picked up in the compiler, 2686 * so we may be dealing with errant or devious DIF.) 2687 * This is an error condition; we indicate as much, 2688 * and return. 2689 */ 2690 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2691 return; 2692 } 2693 2694 /* 2695 * This is a hit: we need to apply the aggregator to 2696 * the value at this key. 2697 */ 2698 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2699 return; 2700 next: 2701 continue; 2702 } 2703 2704 /* 2705 * We didn't find it. We need to allocate some zero-filled space, 2706 * link it into the hash table appropriately, and apply the aggregator 2707 * to the (zero-filled) value. 2708 */ 2709 offs = buf->dtb_offset; 2710 while (offs & (align - 1)) 2711 offs += sizeof (uint32_t); 2712 2713 /* 2714 * If we don't have enough room to both allocate a new key _and_ 2715 * its associated data, increment the drop count and return. 2716 */ 2717 if ((uintptr_t)tomax + offs + fsize > 2718 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2719 dtrace_buffer_drop(buf); 2720 return; 2721 } 2722 2723 /*CONSTCOND*/ 2724 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2725 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2726 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2727 2728 key->dtak_data = kdata = tomax + offs; 2729 buf->dtb_offset = offs + fsize; 2730 2731 /* 2732 * Now copy the data across. 2733 */ 2734 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2735 2736 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2737 kdata[i] = data[i]; 2738 2739 /* 2740 * Because strings are not zeroed out by default, we need to iterate 2741 * looking for actions that store strings, and we need to explicitly 2742 * pad these strings out with zeroes. 2743 */ 2744 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2745 int nul; 2746 2747 if (!DTRACEACT_ISSTRING(act)) 2748 continue; 2749 2750 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2751 limit = i + act->dta_rec.dtrd_size; 2752 ASSERT(limit <= size); 2753 2754 for (nul = 0; i < limit; i++) { 2755 if (nul) { 2756 kdata[i] = '\0'; 2757 continue; 2758 } 2759 2760 if (data[i] != '\0') 2761 continue; 2762 2763 nul = 1; 2764 } 2765 } 2766 2767 for (i = size; i < fsize; i++) 2768 kdata[i] = 0; 2769 2770 key->dtak_hashval = hashval; 2771 key->dtak_size = size; 2772 key->dtak_action = action; 2773 key->dtak_next = agb->dtagb_hash[ndx]; 2774 agb->dtagb_hash[ndx] = key; 2775 2776 /* 2777 * Finally, apply the aggregator. 2778 */ 2779 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2780 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2781 } 2782 2783 /* 2784 * Given consumer state, this routine finds a speculation in the INACTIVE 2785 * state and transitions it into the ACTIVE state. If there is no speculation 2786 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2787 * incremented -- it is up to the caller to take appropriate action. 2788 */ 2789 static int 2790 dtrace_speculation(dtrace_state_t *state) 2791 { 2792 int i = 0; 2793 dtrace_speculation_state_t curstate; 2794 uint32_t *stat = &state->dts_speculations_unavail, count; 2795 2796 while (i < state->dts_nspeculations) { 2797 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2798 2799 curstate = spec->dtsp_state; 2800 2801 if (curstate != DTRACESPEC_INACTIVE) { 2802 if (curstate == DTRACESPEC_COMMITTINGMANY || 2803 curstate == DTRACESPEC_COMMITTING || 2804 curstate == DTRACESPEC_DISCARDING) 2805 stat = &state->dts_speculations_busy; 2806 i++; 2807 continue; 2808 } 2809 2810 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2811 curstate, DTRACESPEC_ACTIVE) == curstate) 2812 return (i + 1); 2813 } 2814 2815 /* 2816 * We couldn't find a speculation. If we found as much as a single 2817 * busy speculation buffer, we'll attribute this failure as "busy" 2818 * instead of "unavail". 2819 */ 2820 do { 2821 count = *stat; 2822 } while (dtrace_cas32(stat, count, count + 1) != count); 2823 2824 return (0); 2825 } 2826 2827 /* 2828 * This routine commits an active speculation. If the specified speculation 2829 * is not in a valid state to perform a commit(), this routine will silently do 2830 * nothing. The state of the specified speculation is transitioned according 2831 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2832 */ 2833 static void 2834 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2835 dtrace_specid_t which) 2836 { 2837 dtrace_speculation_t *spec; 2838 dtrace_buffer_t *src, *dest; 2839 uintptr_t daddr, saddr, dlimit, slimit; 2840 dtrace_speculation_state_t curstate, new = 0; 2841 intptr_t offs; 2842 uint64_t timestamp; 2843 2844 if (which == 0) 2845 return; 2846 2847 if (which > state->dts_nspeculations) { 2848 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2849 return; 2850 } 2851 2852 spec = &state->dts_speculations[which - 1]; 2853 src = &spec->dtsp_buffer[cpu]; 2854 dest = &state->dts_buffer[cpu]; 2855 2856 do { 2857 curstate = spec->dtsp_state; 2858 2859 if (curstate == DTRACESPEC_COMMITTINGMANY) 2860 break; 2861 2862 switch (curstate) { 2863 case DTRACESPEC_INACTIVE: 2864 case DTRACESPEC_DISCARDING: 2865 return; 2866 2867 case DTRACESPEC_COMMITTING: 2868 /* 2869 * This is only possible if we are (a) commit()'ing 2870 * without having done a prior speculate() on this CPU 2871 * and (b) racing with another commit() on a different 2872 * CPU. There's nothing to do -- we just assert that 2873 * our offset is 0. 2874 */ 2875 ASSERT(src->dtb_offset == 0); 2876 return; 2877 2878 case DTRACESPEC_ACTIVE: 2879 new = DTRACESPEC_COMMITTING; 2880 break; 2881 2882 case DTRACESPEC_ACTIVEONE: 2883 /* 2884 * This speculation is active on one CPU. If our 2885 * buffer offset is non-zero, we know that the one CPU 2886 * must be us. Otherwise, we are committing on a 2887 * different CPU from the speculate(), and we must 2888 * rely on being asynchronously cleaned. 2889 */ 2890 if (src->dtb_offset != 0) { 2891 new = DTRACESPEC_COMMITTING; 2892 break; 2893 } 2894 /*FALLTHROUGH*/ 2895 2896 case DTRACESPEC_ACTIVEMANY: 2897 new = DTRACESPEC_COMMITTINGMANY; 2898 break; 2899 2900 default: 2901 ASSERT(0); 2902 } 2903 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2904 curstate, new) != curstate); 2905 2906 /* 2907 * We have set the state to indicate that we are committing this 2908 * speculation. Now reserve the necessary space in the destination 2909 * buffer. 2910 */ 2911 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2912 sizeof (uint64_t), state, NULL)) < 0) { 2913 dtrace_buffer_drop(dest); 2914 goto out; 2915 } 2916 2917 /* 2918 * We have sufficient space to copy the speculative buffer into the 2919 * primary buffer. First, modify the speculative buffer, filling 2920 * in the timestamp of all entries with the curstate time. The data 2921 * must have the commit() time rather than the time it was traced, 2922 * so that all entries in the primary buffer are in timestamp order. 2923 */ 2924 timestamp = dtrace_gethrtime(); 2925 saddr = (uintptr_t)src->dtb_tomax; 2926 slimit = saddr + src->dtb_offset; 2927 while (saddr < slimit) { 2928 size_t size; 2929 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2930 2931 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2932 saddr += sizeof (dtrace_epid_t); 2933 continue; 2934 } 2935 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2936 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2937 2938 ASSERT3U(saddr + size, <=, slimit); 2939 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2940 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2941 2942 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2943 2944 saddr += size; 2945 } 2946 2947 /* 2948 * Copy the buffer across. (Note that this is a 2949 * highly subobtimal bcopy(); in the unlikely event that this becomes 2950 * a serious performance issue, a high-performance DTrace-specific 2951 * bcopy() should obviously be invented.) 2952 */ 2953 daddr = (uintptr_t)dest->dtb_tomax + offs; 2954 dlimit = daddr + src->dtb_offset; 2955 saddr = (uintptr_t)src->dtb_tomax; 2956 2957 /* 2958 * First, the aligned portion. 2959 */ 2960 while (dlimit - daddr >= sizeof (uint64_t)) { 2961 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2962 2963 daddr += sizeof (uint64_t); 2964 saddr += sizeof (uint64_t); 2965 } 2966 2967 /* 2968 * Now any left-over bit... 2969 */ 2970 while (dlimit - daddr) 2971 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2972 2973 /* 2974 * Finally, commit the reserved space in the destination buffer. 2975 */ 2976 dest->dtb_offset = offs + src->dtb_offset; 2977 2978 out: 2979 /* 2980 * If we're lucky enough to be the only active CPU on this speculation 2981 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2982 */ 2983 if (curstate == DTRACESPEC_ACTIVE || 2984 (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2985 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2986 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2987 2988 ASSERT(rval == DTRACESPEC_COMMITTING); 2989 } 2990 2991 src->dtb_offset = 0; 2992 src->dtb_xamot_drops += src->dtb_drops; 2993 src->dtb_drops = 0; 2994 } 2995 2996 /* 2997 * This routine discards an active speculation. If the specified speculation 2998 * is not in a valid state to perform a discard(), this routine will silently 2999 * do nothing. The state of the specified speculation is transitioned 3000 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 3001 */ 3002 static void 3003 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 3004 dtrace_specid_t which) 3005 { 3006 dtrace_speculation_t *spec; 3007 dtrace_speculation_state_t curstate, new = 0; 3008 dtrace_buffer_t *buf; 3009 3010 if (which == 0) 3011 return; 3012 3013 if (which > state->dts_nspeculations) { 3014 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3015 return; 3016 } 3017 3018 spec = &state->dts_speculations[which - 1]; 3019 buf = &spec->dtsp_buffer[cpu]; 3020 3021 do { 3022 curstate = spec->dtsp_state; 3023 3024 switch (curstate) { 3025 case DTRACESPEC_INACTIVE: 3026 case DTRACESPEC_COMMITTINGMANY: 3027 case DTRACESPEC_COMMITTING: 3028 case DTRACESPEC_DISCARDING: 3029 return; 3030 3031 case DTRACESPEC_ACTIVE: 3032 case DTRACESPEC_ACTIVEMANY: 3033 new = DTRACESPEC_DISCARDING; 3034 break; 3035 3036 case DTRACESPEC_ACTIVEONE: 3037 if (buf->dtb_offset != 0) { 3038 new = DTRACESPEC_INACTIVE; 3039 } else { 3040 new = DTRACESPEC_DISCARDING; 3041 } 3042 break; 3043 3044 default: 3045 ASSERT(0); 3046 } 3047 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3048 curstate, new) != curstate); 3049 3050 buf->dtb_offset = 0; 3051 buf->dtb_drops = 0; 3052 } 3053 3054 /* 3055 * Note: not called from probe context. This function is called 3056 * asynchronously from cross call context to clean any speculations that are 3057 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 3058 * transitioned back to the INACTIVE state until all CPUs have cleaned the 3059 * speculation. 3060 */ 3061 static void 3062 dtrace_speculation_clean_here(dtrace_state_t *state) 3063 { 3064 dtrace_icookie_t cookie; 3065 processorid_t cpu = curcpu; 3066 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 3067 dtrace_specid_t i; 3068 3069 cookie = dtrace_interrupt_disable(); 3070 3071 if (dest->dtb_tomax == NULL) { 3072 dtrace_interrupt_enable(cookie); 3073 return; 3074 } 3075 3076 for (i = 0; i < state->dts_nspeculations; i++) { 3077 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3078 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 3079 3080 if (src->dtb_tomax == NULL) 3081 continue; 3082 3083 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 3084 src->dtb_offset = 0; 3085 continue; 3086 } 3087 3088 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3089 continue; 3090 3091 if (src->dtb_offset == 0) 3092 continue; 3093 3094 dtrace_speculation_commit(state, cpu, i + 1); 3095 } 3096 3097 dtrace_interrupt_enable(cookie); 3098 } 3099 3100 /* 3101 * Note: not called from probe context. This function is called 3102 * asynchronously (and at a regular interval) to clean any speculations that 3103 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 3104 * is work to be done, it cross calls all CPUs to perform that work; 3105 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 3106 * INACTIVE state until they have been cleaned by all CPUs. 3107 */ 3108 static void 3109 dtrace_speculation_clean(dtrace_state_t *state) 3110 { 3111 int work = 0, rv; 3112 dtrace_specid_t i; 3113 3114 for (i = 0; i < state->dts_nspeculations; i++) { 3115 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3116 3117 ASSERT(!spec->dtsp_cleaning); 3118 3119 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 3120 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3121 continue; 3122 3123 work++; 3124 spec->dtsp_cleaning = 1; 3125 } 3126 3127 if (!work) 3128 return; 3129 3130 dtrace_xcall(DTRACE_CPUALL, 3131 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3132 3133 /* 3134 * We now know that all CPUs have committed or discarded their 3135 * speculation buffers, as appropriate. We can now set the state 3136 * to inactive. 3137 */ 3138 for (i = 0; i < state->dts_nspeculations; i++) { 3139 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3140 dtrace_speculation_state_t curstate, new; 3141 3142 if (!spec->dtsp_cleaning) 3143 continue; 3144 3145 curstate = spec->dtsp_state; 3146 ASSERT(curstate == DTRACESPEC_DISCARDING || 3147 curstate == DTRACESPEC_COMMITTINGMANY); 3148 3149 new = DTRACESPEC_INACTIVE; 3150 3151 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new); 3152 ASSERT(rv == curstate); 3153 spec->dtsp_cleaning = 0; 3154 } 3155 } 3156 3157 /* 3158 * Called as part of a speculate() to get the speculative buffer associated 3159 * with a given speculation. Returns NULL if the specified speculation is not 3160 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3161 * the active CPU is not the specified CPU -- the speculation will be 3162 * atomically transitioned into the ACTIVEMANY state. 3163 */ 3164 static dtrace_buffer_t * 3165 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3166 dtrace_specid_t which) 3167 { 3168 dtrace_speculation_t *spec; 3169 dtrace_speculation_state_t curstate, new = 0; 3170 dtrace_buffer_t *buf; 3171 3172 if (which == 0) 3173 return (NULL); 3174 3175 if (which > state->dts_nspeculations) { 3176 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3177 return (NULL); 3178 } 3179 3180 spec = &state->dts_speculations[which - 1]; 3181 buf = &spec->dtsp_buffer[cpuid]; 3182 3183 do { 3184 curstate = spec->dtsp_state; 3185 3186 switch (curstate) { 3187 case DTRACESPEC_INACTIVE: 3188 case DTRACESPEC_COMMITTINGMANY: 3189 case DTRACESPEC_DISCARDING: 3190 return (NULL); 3191 3192 case DTRACESPEC_COMMITTING: 3193 ASSERT(buf->dtb_offset == 0); 3194 return (NULL); 3195 3196 case DTRACESPEC_ACTIVEONE: 3197 /* 3198 * This speculation is currently active on one CPU. 3199 * Check the offset in the buffer; if it's non-zero, 3200 * that CPU must be us (and we leave the state alone). 3201 * If it's zero, assume that we're starting on a new 3202 * CPU -- and change the state to indicate that the 3203 * speculation is active on more than one CPU. 3204 */ 3205 if (buf->dtb_offset != 0) 3206 return (buf); 3207 3208 new = DTRACESPEC_ACTIVEMANY; 3209 break; 3210 3211 case DTRACESPEC_ACTIVEMANY: 3212 return (buf); 3213 3214 case DTRACESPEC_ACTIVE: 3215 new = DTRACESPEC_ACTIVEONE; 3216 break; 3217 3218 default: 3219 ASSERT(0); 3220 } 3221 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3222 curstate, new) != curstate); 3223 3224 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3225 return (buf); 3226 } 3227 3228 /* 3229 * Return a string. In the event that the user lacks the privilege to access 3230 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3231 * don't fail access checking. 3232 * 3233 * dtrace_dif_variable() uses this routine as a helper for various 3234 * builtin values such as 'execname' and 'probefunc.' 3235 */ 3236 uintptr_t 3237 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3238 dtrace_mstate_t *mstate) 3239 { 3240 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3241 uintptr_t ret; 3242 size_t strsz; 3243 3244 /* 3245 * The easy case: this probe is allowed to read all of memory, so 3246 * we can just return this as a vanilla pointer. 3247 */ 3248 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3249 return (addr); 3250 3251 /* 3252 * This is the tougher case: we copy the string in question from 3253 * kernel memory into scratch memory and return it that way: this 3254 * ensures that we won't trip up when access checking tests the 3255 * BYREF return value. 3256 */ 3257 strsz = dtrace_strlen((char *)addr, size) + 1; 3258 3259 if (mstate->dtms_scratch_ptr + strsz > 3260 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3261 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3262 return (0); 3263 } 3264 3265 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3266 strsz); 3267 ret = mstate->dtms_scratch_ptr; 3268 mstate->dtms_scratch_ptr += strsz; 3269 return (ret); 3270 } 3271 3272 /* 3273 * Return a string from a memoy address which is known to have one or 3274 * more concatenated, individually zero terminated, sub-strings. 3275 * In the event that the user lacks the privilege to access 3276 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3277 * don't fail access checking. 3278 * 3279 * dtrace_dif_variable() uses this routine as a helper for various 3280 * builtin values such as 'execargs'. 3281 */ 3282 static uintptr_t 3283 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state, 3284 dtrace_mstate_t *mstate) 3285 { 3286 char *p; 3287 size_t i; 3288 uintptr_t ret; 3289 3290 if (mstate->dtms_scratch_ptr + strsz > 3291 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3292 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3293 return (0); 3294 } 3295 3296 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3297 strsz); 3298 3299 /* Replace sub-string termination characters with a space. */ 3300 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1; 3301 p++, i++) 3302 if (*p == '\0') 3303 *p = ' '; 3304 3305 ret = mstate->dtms_scratch_ptr; 3306 mstate->dtms_scratch_ptr += strsz; 3307 return (ret); 3308 } 3309 3310 /* 3311 * This function implements the DIF emulator's variable lookups. The emulator 3312 * passes a reserved variable identifier and optional built-in array index. 3313 */ 3314 static uint64_t 3315 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3316 uint64_t ndx) 3317 { 3318 /* 3319 * If we're accessing one of the uncached arguments, we'll turn this 3320 * into a reference in the args array. 3321 */ 3322 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3323 ndx = v - DIF_VAR_ARG0; 3324 v = DIF_VAR_ARGS; 3325 } 3326 3327 switch (v) { 3328 case DIF_VAR_ARGS: 3329 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3330 if (ndx >= sizeof (mstate->dtms_arg) / 3331 sizeof (mstate->dtms_arg[0])) { 3332 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3333 dtrace_provider_t *pv; 3334 uint64_t val; 3335 3336 pv = mstate->dtms_probe->dtpr_provider; 3337 if (pv->dtpv_pops.dtps_getargval != NULL) 3338 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3339 mstate->dtms_probe->dtpr_id, 3340 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3341 else 3342 val = dtrace_getarg(ndx, aframes); 3343 3344 /* 3345 * This is regrettably required to keep the compiler 3346 * from tail-optimizing the call to dtrace_getarg(). 3347 * The condition always evaluates to true, but the 3348 * compiler has no way of figuring that out a priori. 3349 * (None of this would be necessary if the compiler 3350 * could be relied upon to _always_ tail-optimize 3351 * the call to dtrace_getarg() -- but it can't.) 3352 */ 3353 if (mstate->dtms_probe != NULL) 3354 return (val); 3355 3356 ASSERT(0); 3357 } 3358 3359 return (mstate->dtms_arg[ndx]); 3360 3361 case DIF_VAR_REGS: 3362 case DIF_VAR_UREGS: { 3363 struct trapframe *tframe; 3364 3365 if (!dtrace_priv_proc(state)) 3366 return (0); 3367 3368 if (v == DIF_VAR_REGS) 3369 tframe = curthread->t_dtrace_trapframe; 3370 else 3371 tframe = curthread->td_frame; 3372 3373 if (tframe == NULL) { 3374 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3375 cpu_core[curcpu].cpuc_dtrace_illval = 0; 3376 return (0); 3377 } 3378 3379 return (dtrace_getreg(tframe, ndx)); 3380 } 3381 3382 case DIF_VAR_CURTHREAD: 3383 if (!dtrace_priv_proc(state)) 3384 return (0); 3385 return ((uint64_t)(uintptr_t)curthread); 3386 3387 case DIF_VAR_TIMESTAMP: 3388 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3389 mstate->dtms_timestamp = dtrace_gethrtime(); 3390 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3391 } 3392 return (mstate->dtms_timestamp); 3393 3394 case DIF_VAR_VTIMESTAMP: 3395 ASSERT(dtrace_vtime_references != 0); 3396 return (curthread->t_dtrace_vtime); 3397 3398 case DIF_VAR_WALLTIMESTAMP: 3399 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3400 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3401 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3402 } 3403 return (mstate->dtms_walltimestamp); 3404 3405 #ifdef illumos 3406 case DIF_VAR_IPL: 3407 if (!dtrace_priv_kernel(state)) 3408 return (0); 3409 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3410 mstate->dtms_ipl = dtrace_getipl(); 3411 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3412 } 3413 return (mstate->dtms_ipl); 3414 #endif 3415 3416 case DIF_VAR_EPID: 3417 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3418 return (mstate->dtms_epid); 3419 3420 case DIF_VAR_ID: 3421 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3422 return (mstate->dtms_probe->dtpr_id); 3423 3424 case DIF_VAR_STACKDEPTH: 3425 if (!dtrace_priv_kernel(state)) 3426 return (0); 3427 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3428 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3429 3430 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3431 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3432 } 3433 return (mstate->dtms_stackdepth); 3434 3435 case DIF_VAR_USTACKDEPTH: 3436 if (!dtrace_priv_proc(state)) 3437 return (0); 3438 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3439 /* 3440 * See comment in DIF_VAR_PID. 3441 */ 3442 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3443 CPU_ON_INTR(CPU)) { 3444 mstate->dtms_ustackdepth = 0; 3445 } else { 3446 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3447 mstate->dtms_ustackdepth = 3448 dtrace_getustackdepth(); 3449 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3450 } 3451 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3452 } 3453 return (mstate->dtms_ustackdepth); 3454 3455 case DIF_VAR_CALLER: 3456 if (!dtrace_priv_kernel(state)) 3457 return (0); 3458 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3459 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3460 3461 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3462 /* 3463 * If this is an unanchored probe, we are 3464 * required to go through the slow path: 3465 * dtrace_caller() only guarantees correct 3466 * results for anchored probes. 3467 */ 3468 pc_t caller[2] = {0, 0}; 3469 3470 dtrace_getpcstack(caller, 2, aframes, 3471 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3472 mstate->dtms_caller = caller[1]; 3473 } else if ((mstate->dtms_caller = 3474 dtrace_caller(aframes)) == -1) { 3475 /* 3476 * We have failed to do this the quick way; 3477 * we must resort to the slower approach of 3478 * calling dtrace_getpcstack(). 3479 */ 3480 pc_t caller = 0; 3481 3482 dtrace_getpcstack(&caller, 1, aframes, NULL); 3483 mstate->dtms_caller = caller; 3484 } 3485 3486 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3487 } 3488 return (mstate->dtms_caller); 3489 3490 case DIF_VAR_UCALLER: 3491 if (!dtrace_priv_proc(state)) 3492 return (0); 3493 3494 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3495 uint64_t ustack[3]; 3496 3497 /* 3498 * dtrace_getupcstack() fills in the first uint64_t 3499 * with the current PID. The second uint64_t will 3500 * be the program counter at user-level. The third 3501 * uint64_t will contain the caller, which is what 3502 * we're after. 3503 */ 3504 ustack[2] = 0; 3505 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3506 dtrace_getupcstack(ustack, 3); 3507 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3508 mstate->dtms_ucaller = ustack[2]; 3509 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3510 } 3511 3512 return (mstate->dtms_ucaller); 3513 3514 case DIF_VAR_PROBEPROV: 3515 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3516 return (dtrace_dif_varstr( 3517 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3518 state, mstate)); 3519 3520 case DIF_VAR_PROBEMOD: 3521 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3522 return (dtrace_dif_varstr( 3523 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3524 state, mstate)); 3525 3526 case DIF_VAR_PROBEFUNC: 3527 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3528 return (dtrace_dif_varstr( 3529 (uintptr_t)mstate->dtms_probe->dtpr_func, 3530 state, mstate)); 3531 3532 case DIF_VAR_PROBENAME: 3533 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3534 return (dtrace_dif_varstr( 3535 (uintptr_t)mstate->dtms_probe->dtpr_name, 3536 state, mstate)); 3537 3538 case DIF_VAR_PID: 3539 if (!dtrace_priv_proc(state)) 3540 return (0); 3541 3542 #ifdef illumos 3543 /* 3544 * Note that we are assuming that an unanchored probe is 3545 * always due to a high-level interrupt. (And we're assuming 3546 * that there is only a single high level interrupt.) 3547 */ 3548 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3549 return (pid0.pid_id); 3550 3551 /* 3552 * It is always safe to dereference one's own t_procp pointer: 3553 * it always points to a valid, allocated proc structure. 3554 * Further, it is always safe to dereference the p_pidp member 3555 * of one's own proc structure. (These are truisms becuase 3556 * threads and processes don't clean up their own state -- 3557 * they leave that task to whomever reaps them.) 3558 */ 3559 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3560 #else 3561 return ((uint64_t)curproc->p_pid); 3562 #endif 3563 3564 case DIF_VAR_PPID: 3565 if (!dtrace_priv_proc(state)) 3566 return (0); 3567 3568 #ifdef illumos 3569 /* 3570 * See comment in DIF_VAR_PID. 3571 */ 3572 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3573 return (pid0.pid_id); 3574 3575 /* 3576 * It is always safe to dereference one's own t_procp pointer: 3577 * it always points to a valid, allocated proc structure. 3578 * (This is true because threads don't clean up their own 3579 * state -- they leave that task to whomever reaps them.) 3580 */ 3581 return ((uint64_t)curthread->t_procp->p_ppid); 3582 #else 3583 if (curproc->p_pid == proc0.p_pid) 3584 return (curproc->p_pid); 3585 else 3586 return (curproc->p_pptr->p_pid); 3587 #endif 3588 3589 case DIF_VAR_TID: 3590 #ifdef illumos 3591 /* 3592 * See comment in DIF_VAR_PID. 3593 */ 3594 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3595 return (0); 3596 #endif 3597 3598 return ((uint64_t)curthread->t_tid); 3599 3600 case DIF_VAR_EXECARGS: { 3601 struct pargs *p_args = curthread->td_proc->p_args; 3602 3603 if (p_args == NULL) 3604 return(0); 3605 3606 return (dtrace_dif_varstrz( 3607 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate)); 3608 } 3609 3610 case DIF_VAR_EXECNAME: 3611 #ifdef illumos 3612 if (!dtrace_priv_proc(state)) 3613 return (0); 3614 3615 /* 3616 * See comment in DIF_VAR_PID. 3617 */ 3618 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3619 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3620 3621 /* 3622 * It is always safe to dereference one's own t_procp pointer: 3623 * it always points to a valid, allocated proc structure. 3624 * (This is true because threads don't clean up their own 3625 * state -- they leave that task to whomever reaps them.) 3626 */ 3627 return (dtrace_dif_varstr( 3628 (uintptr_t)curthread->t_procp->p_user.u_comm, 3629 state, mstate)); 3630 #else 3631 return (dtrace_dif_varstr( 3632 (uintptr_t) curthread->td_proc->p_comm, state, mstate)); 3633 #endif 3634 3635 case DIF_VAR_ZONENAME: 3636 #ifdef illumos 3637 if (!dtrace_priv_proc(state)) 3638 return (0); 3639 3640 /* 3641 * See comment in DIF_VAR_PID. 3642 */ 3643 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3644 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3645 3646 /* 3647 * It is always safe to dereference one's own t_procp pointer: 3648 * it always points to a valid, allocated proc structure. 3649 * (This is true because threads don't clean up their own 3650 * state -- they leave that task to whomever reaps them.) 3651 */ 3652 return (dtrace_dif_varstr( 3653 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3654 state, mstate)); 3655 #elif defined(__FreeBSD__) 3656 /* 3657 * On FreeBSD, we introduce compatibility to zonename by falling through 3658 * into jailname. 3659 */ 3660 case DIF_VAR_JAILNAME: 3661 if (!dtrace_priv_kernel(state)) 3662 return (0); 3663 3664 return (dtrace_dif_varstr( 3665 (uintptr_t)curthread->td_ucred->cr_prison->pr_name, 3666 state, mstate)); 3667 3668 case DIF_VAR_JID: 3669 if (!dtrace_priv_kernel(state)) 3670 return (0); 3671 3672 return ((uint64_t)curthread->td_ucred->cr_prison->pr_id); 3673 #else 3674 return (0); 3675 #endif 3676 3677 case DIF_VAR_UID: 3678 if (!dtrace_priv_proc(state)) 3679 return (0); 3680 3681 #ifdef illumos 3682 /* 3683 * See comment in DIF_VAR_PID. 3684 */ 3685 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3686 return ((uint64_t)p0.p_cred->cr_uid); 3687 3688 /* 3689 * It is always safe to dereference one's own t_procp pointer: 3690 * it always points to a valid, allocated proc structure. 3691 * (This is true because threads don't clean up their own 3692 * state -- they leave that task to whomever reaps them.) 3693 * 3694 * Additionally, it is safe to dereference one's own process 3695 * credential, since this is never NULL after process birth. 3696 */ 3697 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3698 #else 3699 return ((uint64_t)curthread->td_ucred->cr_uid); 3700 #endif 3701 3702 case DIF_VAR_GID: 3703 if (!dtrace_priv_proc(state)) 3704 return (0); 3705 3706 #ifdef illumos 3707 /* 3708 * See comment in DIF_VAR_PID. 3709 */ 3710 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3711 return ((uint64_t)p0.p_cred->cr_gid); 3712 3713 /* 3714 * It is always safe to dereference one's own t_procp pointer: 3715 * it always points to a valid, allocated proc structure. 3716 * (This is true because threads don't clean up their own 3717 * state -- they leave that task to whomever reaps them.) 3718 * 3719 * Additionally, it is safe to dereference one's own process 3720 * credential, since this is never NULL after process birth. 3721 */ 3722 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3723 #else 3724 return ((uint64_t)curthread->td_ucred->cr_gid); 3725 #endif 3726 3727 case DIF_VAR_ERRNO: { 3728 #ifdef illumos 3729 klwp_t *lwp; 3730 if (!dtrace_priv_proc(state)) 3731 return (0); 3732 3733 /* 3734 * See comment in DIF_VAR_PID. 3735 */ 3736 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3737 return (0); 3738 3739 /* 3740 * It is always safe to dereference one's own t_lwp pointer in 3741 * the event that this pointer is non-NULL. (This is true 3742 * because threads and lwps don't clean up their own state -- 3743 * they leave that task to whomever reaps them.) 3744 */ 3745 if ((lwp = curthread->t_lwp) == NULL) 3746 return (0); 3747 3748 return ((uint64_t)lwp->lwp_errno); 3749 #else 3750 return (curthread->td_errno); 3751 #endif 3752 } 3753 #ifndef illumos 3754 case DIF_VAR_CPU: { 3755 return curcpu; 3756 } 3757 #endif 3758 default: 3759 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3760 return (0); 3761 } 3762 } 3763 3764 3765 typedef enum dtrace_json_state { 3766 DTRACE_JSON_REST = 1, 3767 DTRACE_JSON_OBJECT, 3768 DTRACE_JSON_STRING, 3769 DTRACE_JSON_STRING_ESCAPE, 3770 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3771 DTRACE_JSON_COLON, 3772 DTRACE_JSON_COMMA, 3773 DTRACE_JSON_VALUE, 3774 DTRACE_JSON_IDENTIFIER, 3775 DTRACE_JSON_NUMBER, 3776 DTRACE_JSON_NUMBER_FRAC, 3777 DTRACE_JSON_NUMBER_EXP, 3778 DTRACE_JSON_COLLECT_OBJECT 3779 } dtrace_json_state_t; 3780 3781 /* 3782 * This function possesses just enough knowledge about JSON to extract a single 3783 * value from a JSON string and store it in the scratch buffer. It is able 3784 * to extract nested object values, and members of arrays by index. 3785 * 3786 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3787 * be looked up as we descend into the object tree. e.g. 3788 * 3789 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3790 * with nelems = 5. 3791 * 3792 * The run time of this function must be bounded above by strsize to limit the 3793 * amount of work done in probe context. As such, it is implemented as a 3794 * simple state machine, reading one character at a time using safe loads 3795 * until we find the requested element, hit a parsing error or run off the 3796 * end of the object or string. 3797 * 3798 * As there is no way for a subroutine to return an error without interrupting 3799 * clause execution, we simply return NULL in the event of a missing key or any 3800 * other error condition. Each NULL return in this function is commented with 3801 * the error condition it represents -- parsing or otherwise. 3802 * 3803 * The set of states for the state machine closely matches the JSON 3804 * specification (http://json.org/). Briefly: 3805 * 3806 * DTRACE_JSON_REST: 3807 * Skip whitespace until we find either a top-level Object, moving 3808 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3809 * 3810 * DTRACE_JSON_OBJECT: 3811 * Locate the next key String in an Object. Sets a flag to denote 3812 * the next String as a key string and moves to DTRACE_JSON_STRING. 3813 * 3814 * DTRACE_JSON_COLON: 3815 * Skip whitespace until we find the colon that separates key Strings 3816 * from their values. Once found, move to DTRACE_JSON_VALUE. 3817 * 3818 * DTRACE_JSON_VALUE: 3819 * Detects the type of the next value (String, Number, Identifier, Object 3820 * or Array) and routes to the states that process that type. Here we also 3821 * deal with the element selector list if we are requested to traverse down 3822 * into the object tree. 3823 * 3824 * DTRACE_JSON_COMMA: 3825 * Skip whitespace until we find the comma that separates key-value pairs 3826 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3827 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3828 * states return to this state at the end of their value, unless otherwise 3829 * noted. 3830 * 3831 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3832 * Processes a Number literal from the JSON, including any exponent 3833 * component that may be present. Numbers are returned as strings, which 3834 * may be passed to strtoll() if an integer is required. 3835 * 3836 * DTRACE_JSON_IDENTIFIER: 3837 * Processes a "true", "false" or "null" literal in the JSON. 3838 * 3839 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3840 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3841 * Processes a String literal from the JSON, whether the String denotes 3842 * a key, a value or part of a larger Object. Handles all escape sequences 3843 * present in the specification, including four-digit unicode characters, 3844 * but merely includes the escape sequence without converting it to the 3845 * actual escaped character. If the String is flagged as a key, we 3846 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3847 * 3848 * DTRACE_JSON_COLLECT_OBJECT: 3849 * This state collects an entire Object (or Array), correctly handling 3850 * embedded strings. If the full element selector list matches this nested 3851 * object, we return the Object in full as a string. If not, we use this 3852 * state to skip to the next value at this level and continue processing. 3853 * 3854 * NOTE: This function uses various macros from strtolctype.h to manipulate 3855 * digit values, etc -- these have all been checked to ensure they make 3856 * no additional function calls. 3857 */ 3858 static char * 3859 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3860 char *dest) 3861 { 3862 dtrace_json_state_t state = DTRACE_JSON_REST; 3863 int64_t array_elem = INT64_MIN; 3864 int64_t array_pos = 0; 3865 uint8_t escape_unicount = 0; 3866 boolean_t string_is_key = B_FALSE; 3867 boolean_t collect_object = B_FALSE; 3868 boolean_t found_key = B_FALSE; 3869 boolean_t in_array = B_FALSE; 3870 uint32_t braces = 0, brackets = 0; 3871 char *elem = elemlist; 3872 char *dd = dest; 3873 uintptr_t cur; 3874 3875 for (cur = json; cur < json + size; cur++) { 3876 char cc = dtrace_load8(cur); 3877 if (cc == '\0') 3878 return (NULL); 3879 3880 switch (state) { 3881 case DTRACE_JSON_REST: 3882 if (isspace(cc)) 3883 break; 3884 3885 if (cc == '{') { 3886 state = DTRACE_JSON_OBJECT; 3887 break; 3888 } 3889 3890 if (cc == '[') { 3891 in_array = B_TRUE; 3892 array_pos = 0; 3893 array_elem = dtrace_strtoll(elem, 10, size); 3894 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3895 state = DTRACE_JSON_VALUE; 3896 break; 3897 } 3898 3899 /* 3900 * ERROR: expected to find a top-level object or array. 3901 */ 3902 return (NULL); 3903 case DTRACE_JSON_OBJECT: 3904 if (isspace(cc)) 3905 break; 3906 3907 if (cc == '"') { 3908 state = DTRACE_JSON_STRING; 3909 string_is_key = B_TRUE; 3910 break; 3911 } 3912 3913 /* 3914 * ERROR: either the object did not start with a key 3915 * string, or we've run off the end of the object 3916 * without finding the requested key. 3917 */ 3918 return (NULL); 3919 case DTRACE_JSON_STRING: 3920 if (cc == '\\') { 3921 *dd++ = '\\'; 3922 state = DTRACE_JSON_STRING_ESCAPE; 3923 break; 3924 } 3925 3926 if (cc == '"') { 3927 if (collect_object) { 3928 /* 3929 * We don't reset the dest here, as 3930 * the string is part of a larger 3931 * object being collected. 3932 */ 3933 *dd++ = cc; 3934 collect_object = B_FALSE; 3935 state = DTRACE_JSON_COLLECT_OBJECT; 3936 break; 3937 } 3938 *dd = '\0'; 3939 dd = dest; /* reset string buffer */ 3940 if (string_is_key) { 3941 if (dtrace_strncmp(dest, elem, 3942 size) == 0) 3943 found_key = B_TRUE; 3944 } else if (found_key) { 3945 if (nelems > 1) { 3946 /* 3947 * We expected an object, not 3948 * this string. 3949 */ 3950 return (NULL); 3951 } 3952 return (dest); 3953 } 3954 state = string_is_key ? DTRACE_JSON_COLON : 3955 DTRACE_JSON_COMMA; 3956 string_is_key = B_FALSE; 3957 break; 3958 } 3959 3960 *dd++ = cc; 3961 break; 3962 case DTRACE_JSON_STRING_ESCAPE: 3963 *dd++ = cc; 3964 if (cc == 'u') { 3965 escape_unicount = 0; 3966 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3967 } else { 3968 state = DTRACE_JSON_STRING; 3969 } 3970 break; 3971 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3972 if (!isxdigit(cc)) { 3973 /* 3974 * ERROR: invalid unicode escape, expected 3975 * four valid hexidecimal digits. 3976 */ 3977 return (NULL); 3978 } 3979 3980 *dd++ = cc; 3981 if (++escape_unicount == 4) 3982 state = DTRACE_JSON_STRING; 3983 break; 3984 case DTRACE_JSON_COLON: 3985 if (isspace(cc)) 3986 break; 3987 3988 if (cc == ':') { 3989 state = DTRACE_JSON_VALUE; 3990 break; 3991 } 3992 3993 /* 3994 * ERROR: expected a colon. 3995 */ 3996 return (NULL); 3997 case DTRACE_JSON_COMMA: 3998 if (isspace(cc)) 3999 break; 4000 4001 if (cc == ',') { 4002 if (in_array) { 4003 state = DTRACE_JSON_VALUE; 4004 if (++array_pos == array_elem) 4005 found_key = B_TRUE; 4006 } else { 4007 state = DTRACE_JSON_OBJECT; 4008 } 4009 break; 4010 } 4011 4012 /* 4013 * ERROR: either we hit an unexpected character, or 4014 * we reached the end of the object or array without 4015 * finding the requested key. 4016 */ 4017 return (NULL); 4018 case DTRACE_JSON_IDENTIFIER: 4019 if (islower(cc)) { 4020 *dd++ = cc; 4021 break; 4022 } 4023 4024 *dd = '\0'; 4025 dd = dest; /* reset string buffer */ 4026 4027 if (dtrace_strncmp(dest, "true", 5) == 0 || 4028 dtrace_strncmp(dest, "false", 6) == 0 || 4029 dtrace_strncmp(dest, "null", 5) == 0) { 4030 if (found_key) { 4031 if (nelems > 1) { 4032 /* 4033 * ERROR: We expected an object, 4034 * not this identifier. 4035 */ 4036 return (NULL); 4037 } 4038 return (dest); 4039 } else { 4040 cur--; 4041 state = DTRACE_JSON_COMMA; 4042 break; 4043 } 4044 } 4045 4046 /* 4047 * ERROR: we did not recognise the identifier as one 4048 * of those in the JSON specification. 4049 */ 4050 return (NULL); 4051 case DTRACE_JSON_NUMBER: 4052 if (cc == '.') { 4053 *dd++ = cc; 4054 state = DTRACE_JSON_NUMBER_FRAC; 4055 break; 4056 } 4057 4058 if (cc == 'x' || cc == 'X') { 4059 /* 4060 * ERROR: specification explicitly excludes 4061 * hexidecimal or octal numbers. 4062 */ 4063 return (NULL); 4064 } 4065 4066 /* FALLTHRU */ 4067 case DTRACE_JSON_NUMBER_FRAC: 4068 if (cc == 'e' || cc == 'E') { 4069 *dd++ = cc; 4070 state = DTRACE_JSON_NUMBER_EXP; 4071 break; 4072 } 4073 4074 if (cc == '+' || cc == '-') { 4075 /* 4076 * ERROR: expect sign as part of exponent only. 4077 */ 4078 return (NULL); 4079 } 4080 /* FALLTHRU */ 4081 case DTRACE_JSON_NUMBER_EXP: 4082 if (isdigit(cc) || cc == '+' || cc == '-') { 4083 *dd++ = cc; 4084 break; 4085 } 4086 4087 *dd = '\0'; 4088 dd = dest; /* reset string buffer */ 4089 if (found_key) { 4090 if (nelems > 1) { 4091 /* 4092 * ERROR: We expected an object, not 4093 * this number. 4094 */ 4095 return (NULL); 4096 } 4097 return (dest); 4098 } 4099 4100 cur--; 4101 state = DTRACE_JSON_COMMA; 4102 break; 4103 case DTRACE_JSON_VALUE: 4104 if (isspace(cc)) 4105 break; 4106 4107 if (cc == '{' || cc == '[') { 4108 if (nelems > 1 && found_key) { 4109 in_array = cc == '[' ? B_TRUE : B_FALSE; 4110 /* 4111 * If our element selector directs us 4112 * to descend into this nested object, 4113 * then move to the next selector 4114 * element in the list and restart the 4115 * state machine. 4116 */ 4117 while (*elem != '\0') 4118 elem++; 4119 elem++; /* skip the inter-element NUL */ 4120 nelems--; 4121 dd = dest; 4122 if (in_array) { 4123 state = DTRACE_JSON_VALUE; 4124 array_pos = 0; 4125 array_elem = dtrace_strtoll( 4126 elem, 10, size); 4127 found_key = array_elem == 0 ? 4128 B_TRUE : B_FALSE; 4129 } else { 4130 found_key = B_FALSE; 4131 state = DTRACE_JSON_OBJECT; 4132 } 4133 break; 4134 } 4135 4136 /* 4137 * Otherwise, we wish to either skip this 4138 * nested object or return it in full. 4139 */ 4140 if (cc == '[') 4141 brackets = 1; 4142 else 4143 braces = 1; 4144 *dd++ = cc; 4145 state = DTRACE_JSON_COLLECT_OBJECT; 4146 break; 4147 } 4148 4149 if (cc == '"') { 4150 state = DTRACE_JSON_STRING; 4151 break; 4152 } 4153 4154 if (islower(cc)) { 4155 /* 4156 * Here we deal with true, false and null. 4157 */ 4158 *dd++ = cc; 4159 state = DTRACE_JSON_IDENTIFIER; 4160 break; 4161 } 4162 4163 if (cc == '-' || isdigit(cc)) { 4164 *dd++ = cc; 4165 state = DTRACE_JSON_NUMBER; 4166 break; 4167 } 4168 4169 /* 4170 * ERROR: unexpected character at start of value. 4171 */ 4172 return (NULL); 4173 case DTRACE_JSON_COLLECT_OBJECT: 4174 if (cc == '\0') 4175 /* 4176 * ERROR: unexpected end of input. 4177 */ 4178 return (NULL); 4179 4180 *dd++ = cc; 4181 if (cc == '"') { 4182 collect_object = B_TRUE; 4183 state = DTRACE_JSON_STRING; 4184 break; 4185 } 4186 4187 if (cc == ']') { 4188 if (brackets-- == 0) { 4189 /* 4190 * ERROR: unbalanced brackets. 4191 */ 4192 return (NULL); 4193 } 4194 } else if (cc == '}') { 4195 if (braces-- == 0) { 4196 /* 4197 * ERROR: unbalanced braces. 4198 */ 4199 return (NULL); 4200 } 4201 } else if (cc == '{') { 4202 braces++; 4203 } else if (cc == '[') { 4204 brackets++; 4205 } 4206 4207 if (brackets == 0 && braces == 0) { 4208 if (found_key) { 4209 *dd = '\0'; 4210 return (dest); 4211 } 4212 dd = dest; /* reset string buffer */ 4213 state = DTRACE_JSON_COMMA; 4214 } 4215 break; 4216 } 4217 } 4218 return (NULL); 4219 } 4220 4221 /* 4222 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4223 * Notice that we don't bother validating the proper number of arguments or 4224 * their types in the tuple stack. This isn't needed because all argument 4225 * interpretation is safe because of our load safety -- the worst that can 4226 * happen is that a bogus program can obtain bogus results. 4227 */ 4228 static void 4229 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4230 dtrace_key_t *tupregs, int nargs, 4231 dtrace_mstate_t *mstate, dtrace_state_t *state) 4232 { 4233 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 4234 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 4235 dtrace_vstate_t *vstate = &state->dts_vstate; 4236 4237 #ifdef illumos 4238 union { 4239 mutex_impl_t mi; 4240 uint64_t mx; 4241 } m; 4242 4243 union { 4244 krwlock_t ri; 4245 uintptr_t rw; 4246 } r; 4247 #else 4248 struct thread *lowner; 4249 union { 4250 struct lock_object *li; 4251 uintptr_t lx; 4252 } l; 4253 #endif 4254 4255 switch (subr) { 4256 case DIF_SUBR_RAND: 4257 regs[rd] = dtrace_xoroshiro128_plus_next( 4258 state->dts_rstate[curcpu]); 4259 break; 4260 4261 #ifdef illumos 4262 case DIF_SUBR_MUTEX_OWNED: 4263 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4264 mstate, vstate)) { 4265 regs[rd] = 0; 4266 break; 4267 } 4268 4269 m.mx = dtrace_load64(tupregs[0].dttk_value); 4270 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4271 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4272 else 4273 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4274 break; 4275 4276 case DIF_SUBR_MUTEX_OWNER: 4277 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4278 mstate, vstate)) { 4279 regs[rd] = 0; 4280 break; 4281 } 4282 4283 m.mx = dtrace_load64(tupregs[0].dttk_value); 4284 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4285 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4286 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4287 else 4288 regs[rd] = 0; 4289 break; 4290 4291 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4292 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4293 mstate, vstate)) { 4294 regs[rd] = 0; 4295 break; 4296 } 4297 4298 m.mx = dtrace_load64(tupregs[0].dttk_value); 4299 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4300 break; 4301 4302 case DIF_SUBR_MUTEX_TYPE_SPIN: 4303 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4304 mstate, vstate)) { 4305 regs[rd] = 0; 4306 break; 4307 } 4308 4309 m.mx = dtrace_load64(tupregs[0].dttk_value); 4310 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4311 break; 4312 4313 case DIF_SUBR_RW_READ_HELD: { 4314 uintptr_t tmp; 4315 4316 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4317 mstate, vstate)) { 4318 regs[rd] = 0; 4319 break; 4320 } 4321 4322 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4323 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4324 break; 4325 } 4326 4327 case DIF_SUBR_RW_WRITE_HELD: 4328 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4329 mstate, vstate)) { 4330 regs[rd] = 0; 4331 break; 4332 } 4333 4334 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4335 regs[rd] = _RW_WRITE_HELD(&r.ri); 4336 break; 4337 4338 case DIF_SUBR_RW_ISWRITER: 4339 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4340 mstate, vstate)) { 4341 regs[rd] = 0; 4342 break; 4343 } 4344 4345 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4346 regs[rd] = _RW_ISWRITER(&r.ri); 4347 break; 4348 4349 #else /* !illumos */ 4350 case DIF_SUBR_MUTEX_OWNED: 4351 if (!dtrace_canload(tupregs[0].dttk_value, 4352 sizeof (struct lock_object), mstate, vstate)) { 4353 regs[rd] = 0; 4354 break; 4355 } 4356 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4357 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4358 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4359 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4360 break; 4361 4362 case DIF_SUBR_MUTEX_OWNER: 4363 if (!dtrace_canload(tupregs[0].dttk_value, 4364 sizeof (struct lock_object), mstate, vstate)) { 4365 regs[rd] = 0; 4366 break; 4367 } 4368 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4369 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4370 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4371 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4372 regs[rd] = (uintptr_t)lowner; 4373 break; 4374 4375 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4376 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4377 mstate, vstate)) { 4378 regs[rd] = 0; 4379 break; 4380 } 4381 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4382 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4383 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0; 4384 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4385 break; 4386 4387 case DIF_SUBR_MUTEX_TYPE_SPIN: 4388 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx), 4389 mstate, vstate)) { 4390 regs[rd] = 0; 4391 break; 4392 } 4393 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4394 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4395 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0; 4396 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4397 break; 4398 4399 case DIF_SUBR_RW_READ_HELD: 4400 case DIF_SUBR_SX_SHARED_HELD: 4401 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4402 mstate, vstate)) { 4403 regs[rd] = 0; 4404 break; 4405 } 4406 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value); 4407 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4408 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4409 lowner == NULL; 4410 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4411 break; 4412 4413 case DIF_SUBR_RW_WRITE_HELD: 4414 case DIF_SUBR_SX_EXCLUSIVE_HELD: 4415 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4416 mstate, vstate)) { 4417 regs[rd] = 0; 4418 break; 4419 } 4420 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4421 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4422 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) && 4423 lowner != NULL; 4424 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4425 break; 4426 4427 case DIF_SUBR_RW_ISWRITER: 4428 case DIF_SUBR_SX_ISEXCLUSIVE: 4429 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4430 mstate, vstate)) { 4431 regs[rd] = 0; 4432 break; 4433 } 4434 l.lx = dtrace_loadptr(tupregs[0].dttk_value); 4435 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4436 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner); 4437 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4438 regs[rd] = (lowner == curthread); 4439 break; 4440 #endif /* illumos */ 4441 4442 case DIF_SUBR_BCOPY: { 4443 /* 4444 * We need to be sure that the destination is in the scratch 4445 * region -- no other region is allowed. 4446 */ 4447 uintptr_t src = tupregs[0].dttk_value; 4448 uintptr_t dest = tupregs[1].dttk_value; 4449 size_t size = tupregs[2].dttk_value; 4450 4451 if (!dtrace_inscratch(dest, size, mstate)) { 4452 *flags |= CPU_DTRACE_BADADDR; 4453 *illval = regs[rd]; 4454 break; 4455 } 4456 4457 if (!dtrace_canload(src, size, mstate, vstate)) { 4458 regs[rd] = 0; 4459 break; 4460 } 4461 4462 dtrace_bcopy((void *)src, (void *)dest, size); 4463 break; 4464 } 4465 4466 case DIF_SUBR_ALLOCA: 4467 case DIF_SUBR_COPYIN: { 4468 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4469 uint64_t size = 4470 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4471 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4472 4473 /* 4474 * This action doesn't require any credential checks since 4475 * probes will not activate in user contexts to which the 4476 * enabling user does not have permissions. 4477 */ 4478 4479 /* 4480 * Rounding up the user allocation size could have overflowed 4481 * a large, bogus allocation (like -1ULL) to 0. 4482 */ 4483 if (scratch_size < size || 4484 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4485 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4486 regs[rd] = 0; 4487 break; 4488 } 4489 4490 if (subr == DIF_SUBR_COPYIN) { 4491 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4492 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4493 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4494 } 4495 4496 mstate->dtms_scratch_ptr += scratch_size; 4497 regs[rd] = dest; 4498 break; 4499 } 4500 4501 case DIF_SUBR_COPYINTO: { 4502 uint64_t size = tupregs[1].dttk_value; 4503 uintptr_t dest = tupregs[2].dttk_value; 4504 4505 /* 4506 * This action doesn't require any credential checks since 4507 * probes will not activate in user contexts to which the 4508 * enabling user does not have permissions. 4509 */ 4510 if (!dtrace_inscratch(dest, size, mstate)) { 4511 *flags |= CPU_DTRACE_BADADDR; 4512 *illval = regs[rd]; 4513 break; 4514 } 4515 4516 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4517 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4518 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4519 break; 4520 } 4521 4522 case DIF_SUBR_COPYINSTR: { 4523 uintptr_t dest = mstate->dtms_scratch_ptr; 4524 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4525 4526 if (nargs > 1 && tupregs[1].dttk_value < size) 4527 size = tupregs[1].dttk_value + 1; 4528 4529 /* 4530 * This action doesn't require any credential checks since 4531 * probes will not activate in user contexts to which the 4532 * enabling user does not have permissions. 4533 */ 4534 if (!DTRACE_INSCRATCH(mstate, size)) { 4535 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4536 regs[rd] = 0; 4537 break; 4538 } 4539 4540 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4541 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4542 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4543 4544 ((char *)dest)[size - 1] = '\0'; 4545 mstate->dtms_scratch_ptr += size; 4546 regs[rd] = dest; 4547 break; 4548 } 4549 4550 #ifdef illumos 4551 case DIF_SUBR_MSGSIZE: 4552 case DIF_SUBR_MSGDSIZE: { 4553 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4554 uintptr_t wptr, rptr; 4555 size_t count = 0; 4556 int cont = 0; 4557 4558 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4559 4560 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4561 vstate)) { 4562 regs[rd] = 0; 4563 break; 4564 } 4565 4566 wptr = dtrace_loadptr(baddr + 4567 offsetof(mblk_t, b_wptr)); 4568 4569 rptr = dtrace_loadptr(baddr + 4570 offsetof(mblk_t, b_rptr)); 4571 4572 if (wptr < rptr) { 4573 *flags |= CPU_DTRACE_BADADDR; 4574 *illval = tupregs[0].dttk_value; 4575 break; 4576 } 4577 4578 daddr = dtrace_loadptr(baddr + 4579 offsetof(mblk_t, b_datap)); 4580 4581 baddr = dtrace_loadptr(baddr + 4582 offsetof(mblk_t, b_cont)); 4583 4584 /* 4585 * We want to prevent against denial-of-service here, 4586 * so we're only going to search the list for 4587 * dtrace_msgdsize_max mblks. 4588 */ 4589 if (cont++ > dtrace_msgdsize_max) { 4590 *flags |= CPU_DTRACE_ILLOP; 4591 break; 4592 } 4593 4594 if (subr == DIF_SUBR_MSGDSIZE) { 4595 if (dtrace_load8(daddr + 4596 offsetof(dblk_t, db_type)) != M_DATA) 4597 continue; 4598 } 4599 4600 count += wptr - rptr; 4601 } 4602 4603 if (!(*flags & CPU_DTRACE_FAULT)) 4604 regs[rd] = count; 4605 4606 break; 4607 } 4608 #endif 4609 4610 case DIF_SUBR_PROGENYOF: { 4611 pid_t pid = tupregs[0].dttk_value; 4612 proc_t *p; 4613 int rval = 0; 4614 4615 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4616 4617 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4618 #ifdef illumos 4619 if (p->p_pidp->pid_id == pid) { 4620 #else 4621 if (p->p_pid == pid) { 4622 #endif 4623 rval = 1; 4624 break; 4625 } 4626 } 4627 4628 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4629 4630 regs[rd] = rval; 4631 break; 4632 } 4633 4634 case DIF_SUBR_SPECULATION: 4635 regs[rd] = dtrace_speculation(state); 4636 break; 4637 4638 case DIF_SUBR_COPYOUT: { 4639 uintptr_t kaddr = tupregs[0].dttk_value; 4640 uintptr_t uaddr = tupregs[1].dttk_value; 4641 uint64_t size = tupregs[2].dttk_value; 4642 4643 if (!dtrace_destructive_disallow && 4644 dtrace_priv_proc_control(state) && 4645 !dtrace_istoxic(kaddr, size) && 4646 dtrace_canload(kaddr, size, mstate, vstate)) { 4647 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4648 dtrace_copyout(kaddr, uaddr, size, flags); 4649 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4650 } 4651 break; 4652 } 4653 4654 case DIF_SUBR_COPYOUTSTR: { 4655 uintptr_t kaddr = tupregs[0].dttk_value; 4656 uintptr_t uaddr = tupregs[1].dttk_value; 4657 uint64_t size = tupregs[2].dttk_value; 4658 size_t lim; 4659 4660 if (!dtrace_destructive_disallow && 4661 dtrace_priv_proc_control(state) && 4662 !dtrace_istoxic(kaddr, size) && 4663 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4664 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4665 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4666 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4667 } 4668 break; 4669 } 4670 4671 case DIF_SUBR_STRLEN: { 4672 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4673 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4674 size_t lim; 4675 4676 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4677 regs[rd] = 0; 4678 break; 4679 } 4680 4681 regs[rd] = dtrace_strlen((char *)addr, lim); 4682 break; 4683 } 4684 4685 case DIF_SUBR_STRCHR: 4686 case DIF_SUBR_STRRCHR: { 4687 /* 4688 * We're going to iterate over the string looking for the 4689 * specified character. We will iterate until we have reached 4690 * the string length or we have found the character. If this 4691 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4692 * of the specified character instead of the first. 4693 */ 4694 uintptr_t addr = tupregs[0].dttk_value; 4695 uintptr_t addr_limit; 4696 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4697 size_t lim; 4698 char c, target = (char)tupregs[1].dttk_value; 4699 4700 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4701 regs[rd] = 0; 4702 break; 4703 } 4704 addr_limit = addr + lim; 4705 4706 for (regs[rd] = 0; addr < addr_limit; addr++) { 4707 if ((c = dtrace_load8(addr)) == target) { 4708 regs[rd] = addr; 4709 4710 if (subr == DIF_SUBR_STRCHR) 4711 break; 4712 } 4713 4714 if (c == '\0') 4715 break; 4716 } 4717 break; 4718 } 4719 4720 case DIF_SUBR_STRSTR: 4721 case DIF_SUBR_INDEX: 4722 case DIF_SUBR_RINDEX: { 4723 /* 4724 * We're going to iterate over the string looking for the 4725 * specified string. We will iterate until we have reached 4726 * the string length or we have found the string. (Yes, this 4727 * is done in the most naive way possible -- but considering 4728 * that the string we're searching for is likely to be 4729 * relatively short, the complexity of Rabin-Karp or similar 4730 * hardly seems merited.) 4731 */ 4732 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4733 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4734 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4735 size_t len = dtrace_strlen(addr, size); 4736 size_t sublen = dtrace_strlen(substr, size); 4737 char *limit = addr + len, *orig = addr; 4738 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4739 int inc = 1; 4740 4741 regs[rd] = notfound; 4742 4743 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4744 regs[rd] = 0; 4745 break; 4746 } 4747 4748 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4749 vstate)) { 4750 regs[rd] = 0; 4751 break; 4752 } 4753 4754 /* 4755 * strstr() and index()/rindex() have similar semantics if 4756 * both strings are the empty string: strstr() returns a 4757 * pointer to the (empty) string, and index() and rindex() 4758 * both return index 0 (regardless of any position argument). 4759 */ 4760 if (sublen == 0 && len == 0) { 4761 if (subr == DIF_SUBR_STRSTR) 4762 regs[rd] = (uintptr_t)addr; 4763 else 4764 regs[rd] = 0; 4765 break; 4766 } 4767 4768 if (subr != DIF_SUBR_STRSTR) { 4769 if (subr == DIF_SUBR_RINDEX) { 4770 limit = orig - 1; 4771 addr += len; 4772 inc = -1; 4773 } 4774 4775 /* 4776 * Both index() and rindex() take an optional position 4777 * argument that denotes the starting position. 4778 */ 4779 if (nargs == 3) { 4780 int64_t pos = (int64_t)tupregs[2].dttk_value; 4781 4782 /* 4783 * If the position argument to index() is 4784 * negative, Perl implicitly clamps it at 4785 * zero. This semantic is a little surprising 4786 * given the special meaning of negative 4787 * positions to similar Perl functions like 4788 * substr(), but it appears to reflect a 4789 * notion that index() can start from a 4790 * negative index and increment its way up to 4791 * the string. Given this notion, Perl's 4792 * rindex() is at least self-consistent in 4793 * that it implicitly clamps positions greater 4794 * than the string length to be the string 4795 * length. Where Perl completely loses 4796 * coherence, however, is when the specified 4797 * substring is the empty string (""). In 4798 * this case, even if the position is 4799 * negative, rindex() returns 0 -- and even if 4800 * the position is greater than the length, 4801 * index() returns the string length. These 4802 * semantics violate the notion that index() 4803 * should never return a value less than the 4804 * specified position and that rindex() should 4805 * never return a value greater than the 4806 * specified position. (One assumes that 4807 * these semantics are artifacts of Perl's 4808 * implementation and not the results of 4809 * deliberate design -- it beggars belief that 4810 * even Larry Wall could desire such oddness.) 4811 * While in the abstract one would wish for 4812 * consistent position semantics across 4813 * substr(), index() and rindex() -- or at the 4814 * very least self-consistent position 4815 * semantics for index() and rindex() -- we 4816 * instead opt to keep with the extant Perl 4817 * semantics, in all their broken glory. (Do 4818 * we have more desire to maintain Perl's 4819 * semantics than Perl does? Probably.) 4820 */ 4821 if (subr == DIF_SUBR_RINDEX) { 4822 if (pos < 0) { 4823 if (sublen == 0) 4824 regs[rd] = 0; 4825 break; 4826 } 4827 4828 if (pos > len) 4829 pos = len; 4830 } else { 4831 if (pos < 0) 4832 pos = 0; 4833 4834 if (pos >= len) { 4835 if (sublen == 0) 4836 regs[rd] = len; 4837 break; 4838 } 4839 } 4840 4841 addr = orig + pos; 4842 } 4843 } 4844 4845 for (regs[rd] = notfound; addr != limit; addr += inc) { 4846 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4847 if (subr != DIF_SUBR_STRSTR) { 4848 /* 4849 * As D index() and rindex() are 4850 * modeled on Perl (and not on awk), 4851 * we return a zero-based (and not a 4852 * one-based) index. (For you Perl 4853 * weenies: no, we're not going to add 4854 * $[ -- and shouldn't you be at a con 4855 * or something?) 4856 */ 4857 regs[rd] = (uintptr_t)(addr - orig); 4858 break; 4859 } 4860 4861 ASSERT(subr == DIF_SUBR_STRSTR); 4862 regs[rd] = (uintptr_t)addr; 4863 break; 4864 } 4865 } 4866 4867 break; 4868 } 4869 4870 case DIF_SUBR_STRTOK: { 4871 uintptr_t addr = tupregs[0].dttk_value; 4872 uintptr_t tokaddr = tupregs[1].dttk_value; 4873 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4874 uintptr_t limit, toklimit; 4875 size_t clim; 4876 uint8_t c = 0, tokmap[32]; /* 256 / 8 */ 4877 char *dest = (char *)mstate->dtms_scratch_ptr; 4878 int i; 4879 4880 /* 4881 * Check both the token buffer and (later) the input buffer, 4882 * since both could be non-scratch addresses. 4883 */ 4884 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 4885 regs[rd] = 0; 4886 break; 4887 } 4888 toklimit = tokaddr + clim; 4889 4890 if (!DTRACE_INSCRATCH(mstate, size)) { 4891 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4892 regs[rd] = 0; 4893 break; 4894 } 4895 4896 if (addr == 0) { 4897 /* 4898 * If the address specified is NULL, we use our saved 4899 * strtok pointer from the mstate. Note that this 4900 * means that the saved strtok pointer is _only_ 4901 * valid within multiple enablings of the same probe -- 4902 * it behaves like an implicit clause-local variable. 4903 */ 4904 addr = mstate->dtms_strtok; 4905 limit = mstate->dtms_strtok_limit; 4906 } else { 4907 /* 4908 * If the user-specified address is non-NULL we must 4909 * access check it. This is the only time we have 4910 * a chance to do so, since this address may reside 4911 * in the string table of this clause-- future calls 4912 * (when we fetch addr from mstate->dtms_strtok) 4913 * would fail this access check. 4914 */ 4915 if (!dtrace_strcanload(addr, size, &clim, mstate, 4916 vstate)) { 4917 regs[rd] = 0; 4918 break; 4919 } 4920 limit = addr + clim; 4921 } 4922 4923 /* 4924 * First, zero the token map, and then process the token 4925 * string -- setting a bit in the map for every character 4926 * found in the token string. 4927 */ 4928 for (i = 0; i < sizeof (tokmap); i++) 4929 tokmap[i] = 0; 4930 4931 for (; tokaddr < toklimit; tokaddr++) { 4932 if ((c = dtrace_load8(tokaddr)) == '\0') 4933 break; 4934 4935 ASSERT((c >> 3) < sizeof (tokmap)); 4936 tokmap[c >> 3] |= (1 << (c & 0x7)); 4937 } 4938 4939 for (; addr < limit; addr++) { 4940 /* 4941 * We're looking for a character that is _not_ 4942 * contained in the token string. 4943 */ 4944 if ((c = dtrace_load8(addr)) == '\0') 4945 break; 4946 4947 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4948 break; 4949 } 4950 4951 if (c == '\0') { 4952 /* 4953 * We reached the end of the string without finding 4954 * any character that was not in the token string. 4955 * We return NULL in this case, and we set the saved 4956 * address to NULL as well. 4957 */ 4958 regs[rd] = 0; 4959 mstate->dtms_strtok = 0; 4960 mstate->dtms_strtok_limit = 0; 4961 break; 4962 } 4963 4964 /* 4965 * From here on, we're copying into the destination string. 4966 */ 4967 for (i = 0; addr < limit && i < size - 1; addr++) { 4968 if ((c = dtrace_load8(addr)) == '\0') 4969 break; 4970 4971 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4972 break; 4973 4974 ASSERT(i < size); 4975 dest[i++] = c; 4976 } 4977 4978 ASSERT(i < size); 4979 dest[i] = '\0'; 4980 regs[rd] = (uintptr_t)dest; 4981 mstate->dtms_scratch_ptr += size; 4982 mstate->dtms_strtok = addr; 4983 mstate->dtms_strtok_limit = limit; 4984 break; 4985 } 4986 4987 case DIF_SUBR_SUBSTR: { 4988 uintptr_t s = tupregs[0].dttk_value; 4989 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4990 char *d = (char *)mstate->dtms_scratch_ptr; 4991 int64_t index = (int64_t)tupregs[1].dttk_value; 4992 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4993 size_t len = dtrace_strlen((char *)s, size); 4994 int64_t i; 4995 4996 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4997 regs[rd] = 0; 4998 break; 4999 } 5000 5001 if (!DTRACE_INSCRATCH(mstate, size)) { 5002 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5003 regs[rd] = 0; 5004 break; 5005 } 5006 5007 if (nargs <= 2) 5008 remaining = (int64_t)size; 5009 5010 if (index < 0) { 5011 index += len; 5012 5013 if (index < 0 && index + remaining > 0) { 5014 remaining += index; 5015 index = 0; 5016 } 5017 } 5018 5019 if (index >= len || index < 0) { 5020 remaining = 0; 5021 } else if (remaining < 0) { 5022 remaining += len - index; 5023 } else if (index + remaining > size) { 5024 remaining = size - index; 5025 } 5026 5027 for (i = 0; i < remaining; i++) { 5028 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 5029 break; 5030 } 5031 5032 d[i] = '\0'; 5033 5034 mstate->dtms_scratch_ptr += size; 5035 regs[rd] = (uintptr_t)d; 5036 break; 5037 } 5038 5039 case DIF_SUBR_JSON: { 5040 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5041 uintptr_t json = tupregs[0].dttk_value; 5042 size_t jsonlen = dtrace_strlen((char *)json, size); 5043 uintptr_t elem = tupregs[1].dttk_value; 5044 size_t elemlen = dtrace_strlen((char *)elem, size); 5045 5046 char *dest = (char *)mstate->dtms_scratch_ptr; 5047 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 5048 char *ee = elemlist; 5049 int nelems = 1; 5050 uintptr_t cur; 5051 5052 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 5053 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 5054 regs[rd] = 0; 5055 break; 5056 } 5057 5058 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 5059 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5060 regs[rd] = 0; 5061 break; 5062 } 5063 5064 /* 5065 * Read the element selector and split it up into a packed list 5066 * of strings. 5067 */ 5068 for (cur = elem; cur < elem + elemlen; cur++) { 5069 char cc = dtrace_load8(cur); 5070 5071 if (cur == elem && cc == '[') { 5072 /* 5073 * If the first element selector key is 5074 * actually an array index then ignore the 5075 * bracket. 5076 */ 5077 continue; 5078 } 5079 5080 if (cc == ']') 5081 continue; 5082 5083 if (cc == '.' || cc == '[') { 5084 nelems++; 5085 cc = '\0'; 5086 } 5087 5088 *ee++ = cc; 5089 } 5090 *ee++ = '\0'; 5091 5092 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 5093 nelems, dest)) != 0) 5094 mstate->dtms_scratch_ptr += jsonlen + 1; 5095 break; 5096 } 5097 5098 case DIF_SUBR_TOUPPER: 5099 case DIF_SUBR_TOLOWER: { 5100 uintptr_t s = tupregs[0].dttk_value; 5101 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5102 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5103 size_t len = dtrace_strlen((char *)s, size); 5104 char lower, upper, convert; 5105 int64_t i; 5106 5107 if (subr == DIF_SUBR_TOUPPER) { 5108 lower = 'a'; 5109 upper = 'z'; 5110 convert = 'A'; 5111 } else { 5112 lower = 'A'; 5113 upper = 'Z'; 5114 convert = 'a'; 5115 } 5116 5117 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 5118 regs[rd] = 0; 5119 break; 5120 } 5121 5122 if (!DTRACE_INSCRATCH(mstate, size)) { 5123 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5124 regs[rd] = 0; 5125 break; 5126 } 5127 5128 for (i = 0; i < size - 1; i++) { 5129 if ((c = dtrace_load8(s + i)) == '\0') 5130 break; 5131 5132 if (c >= lower && c <= upper) 5133 c = convert + (c - lower); 5134 5135 dest[i] = c; 5136 } 5137 5138 ASSERT(i < size); 5139 dest[i] = '\0'; 5140 regs[rd] = (uintptr_t)dest; 5141 mstate->dtms_scratch_ptr += size; 5142 break; 5143 } 5144 5145 #ifdef illumos 5146 case DIF_SUBR_GETMAJOR: 5147 #ifdef _LP64 5148 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 5149 #else 5150 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 5151 #endif 5152 break; 5153 5154 case DIF_SUBR_GETMINOR: 5155 #ifdef _LP64 5156 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 5157 #else 5158 regs[rd] = tupregs[0].dttk_value & MAXMIN; 5159 #endif 5160 break; 5161 5162 case DIF_SUBR_DDI_PATHNAME: { 5163 /* 5164 * This one is a galactic mess. We are going to roughly 5165 * emulate ddi_pathname(), but it's made more complicated 5166 * by the fact that we (a) want to include the minor name and 5167 * (b) must proceed iteratively instead of recursively. 5168 */ 5169 uintptr_t dest = mstate->dtms_scratch_ptr; 5170 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5171 char *start = (char *)dest, *end = start + size - 1; 5172 uintptr_t daddr = tupregs[0].dttk_value; 5173 int64_t minor = (int64_t)tupregs[1].dttk_value; 5174 char *s; 5175 int i, len, depth = 0; 5176 5177 /* 5178 * Due to all the pointer jumping we do and context we must 5179 * rely upon, we just mandate that the user must have kernel 5180 * read privileges to use this routine. 5181 */ 5182 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 5183 *flags |= CPU_DTRACE_KPRIV; 5184 *illval = daddr; 5185 regs[rd] = 0; 5186 } 5187 5188 if (!DTRACE_INSCRATCH(mstate, size)) { 5189 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5190 regs[rd] = 0; 5191 break; 5192 } 5193 5194 *end = '\0'; 5195 5196 /* 5197 * We want to have a name for the minor. In order to do this, 5198 * we need to walk the minor list from the devinfo. We want 5199 * to be sure that we don't infinitely walk a circular list, 5200 * so we check for circularity by sending a scout pointer 5201 * ahead two elements for every element that we iterate over; 5202 * if the list is circular, these will ultimately point to the 5203 * same element. You may recognize this little trick as the 5204 * answer to a stupid interview question -- one that always 5205 * seems to be asked by those who had to have it laboriously 5206 * explained to them, and who can't even concisely describe 5207 * the conditions under which one would be forced to resort to 5208 * this technique. Needless to say, those conditions are 5209 * found here -- and probably only here. Is this the only use 5210 * of this infamous trick in shipping, production code? If it 5211 * isn't, it probably should be... 5212 */ 5213 if (minor != -1) { 5214 uintptr_t maddr = dtrace_loadptr(daddr + 5215 offsetof(struct dev_info, devi_minor)); 5216 5217 uintptr_t next = offsetof(struct ddi_minor_data, next); 5218 uintptr_t name = offsetof(struct ddi_minor_data, 5219 d_minor) + offsetof(struct ddi_minor, name); 5220 uintptr_t dev = offsetof(struct ddi_minor_data, 5221 d_minor) + offsetof(struct ddi_minor, dev); 5222 uintptr_t scout; 5223 5224 if (maddr != NULL) 5225 scout = dtrace_loadptr(maddr + next); 5226 5227 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5228 uint64_t m; 5229 #ifdef _LP64 5230 m = dtrace_load64(maddr + dev) & MAXMIN64; 5231 #else 5232 m = dtrace_load32(maddr + dev) & MAXMIN; 5233 #endif 5234 if (m != minor) { 5235 maddr = dtrace_loadptr(maddr + next); 5236 5237 if (scout == NULL) 5238 continue; 5239 5240 scout = dtrace_loadptr(scout + next); 5241 5242 if (scout == NULL) 5243 continue; 5244 5245 scout = dtrace_loadptr(scout + next); 5246 5247 if (scout == NULL) 5248 continue; 5249 5250 if (scout == maddr) { 5251 *flags |= CPU_DTRACE_ILLOP; 5252 break; 5253 } 5254 5255 continue; 5256 } 5257 5258 /* 5259 * We have the minor data. Now we need to 5260 * copy the minor's name into the end of the 5261 * pathname. 5262 */ 5263 s = (char *)dtrace_loadptr(maddr + name); 5264 len = dtrace_strlen(s, size); 5265 5266 if (*flags & CPU_DTRACE_FAULT) 5267 break; 5268 5269 if (len != 0) { 5270 if ((end -= (len + 1)) < start) 5271 break; 5272 5273 *end = ':'; 5274 } 5275 5276 for (i = 1; i <= len; i++) 5277 end[i] = dtrace_load8((uintptr_t)s++); 5278 break; 5279 } 5280 } 5281 5282 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 5283 ddi_node_state_t devi_state; 5284 5285 devi_state = dtrace_load32(daddr + 5286 offsetof(struct dev_info, devi_node_state)); 5287 5288 if (*flags & CPU_DTRACE_FAULT) 5289 break; 5290 5291 if (devi_state >= DS_INITIALIZED) { 5292 s = (char *)dtrace_loadptr(daddr + 5293 offsetof(struct dev_info, devi_addr)); 5294 len = dtrace_strlen(s, size); 5295 5296 if (*flags & CPU_DTRACE_FAULT) 5297 break; 5298 5299 if (len != 0) { 5300 if ((end -= (len + 1)) < start) 5301 break; 5302 5303 *end = '@'; 5304 } 5305 5306 for (i = 1; i <= len; i++) 5307 end[i] = dtrace_load8((uintptr_t)s++); 5308 } 5309 5310 /* 5311 * Now for the node name... 5312 */ 5313 s = (char *)dtrace_loadptr(daddr + 5314 offsetof(struct dev_info, devi_node_name)); 5315 5316 daddr = dtrace_loadptr(daddr + 5317 offsetof(struct dev_info, devi_parent)); 5318 5319 /* 5320 * If our parent is NULL (that is, if we're the root 5321 * node), we're going to use the special path 5322 * "devices". 5323 */ 5324 if (daddr == 0) 5325 s = "devices"; 5326 5327 len = dtrace_strlen(s, size); 5328 if (*flags & CPU_DTRACE_FAULT) 5329 break; 5330 5331 if ((end -= (len + 1)) < start) 5332 break; 5333 5334 for (i = 1; i <= len; i++) 5335 end[i] = dtrace_load8((uintptr_t)s++); 5336 *end = '/'; 5337 5338 if (depth++ > dtrace_devdepth_max) { 5339 *flags |= CPU_DTRACE_ILLOP; 5340 break; 5341 } 5342 } 5343 5344 if (end < start) 5345 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5346 5347 if (daddr == 0) { 5348 regs[rd] = (uintptr_t)end; 5349 mstate->dtms_scratch_ptr += size; 5350 } 5351 5352 break; 5353 } 5354 #endif 5355 5356 case DIF_SUBR_STRJOIN: { 5357 char *d = (char *)mstate->dtms_scratch_ptr; 5358 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5359 uintptr_t s1 = tupregs[0].dttk_value; 5360 uintptr_t s2 = tupregs[1].dttk_value; 5361 int i = 0, j = 0; 5362 size_t lim1, lim2; 5363 char c; 5364 5365 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5366 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5367 regs[rd] = 0; 5368 break; 5369 } 5370 5371 if (!DTRACE_INSCRATCH(mstate, size)) { 5372 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5373 regs[rd] = 0; 5374 break; 5375 } 5376 5377 for (;;) { 5378 if (i >= size) { 5379 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5380 regs[rd] = 0; 5381 break; 5382 } 5383 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5384 if ((d[i++] = c) == '\0') { 5385 i--; 5386 break; 5387 } 5388 } 5389 5390 for (;;) { 5391 if (i >= size) { 5392 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5393 regs[rd] = 0; 5394 break; 5395 } 5396 5397 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5398 if ((d[i++] = c) == '\0') 5399 break; 5400 } 5401 5402 if (i < size) { 5403 mstate->dtms_scratch_ptr += i; 5404 regs[rd] = (uintptr_t)d; 5405 } 5406 5407 break; 5408 } 5409 5410 case DIF_SUBR_STRTOLL: { 5411 uintptr_t s = tupregs[0].dttk_value; 5412 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5413 size_t lim; 5414 int base = 10; 5415 5416 if (nargs > 1) { 5417 if ((base = tupregs[1].dttk_value) <= 1 || 5418 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5419 *flags |= CPU_DTRACE_ILLOP; 5420 break; 5421 } 5422 } 5423 5424 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5425 regs[rd] = INT64_MIN; 5426 break; 5427 } 5428 5429 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5430 break; 5431 } 5432 5433 case DIF_SUBR_LLTOSTR: { 5434 int64_t i = (int64_t)tupregs[0].dttk_value; 5435 uint64_t val, digit; 5436 uint64_t size = 65; /* enough room for 2^64 in binary */ 5437 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5438 int base = 10; 5439 5440 if (nargs > 1) { 5441 if ((base = tupregs[1].dttk_value) <= 1 || 5442 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5443 *flags |= CPU_DTRACE_ILLOP; 5444 break; 5445 } 5446 } 5447 5448 val = (base == 10 && i < 0) ? i * -1 : i; 5449 5450 if (!DTRACE_INSCRATCH(mstate, size)) { 5451 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5452 regs[rd] = 0; 5453 break; 5454 } 5455 5456 for (*end-- = '\0'; val; val /= base) { 5457 if ((digit = val % base) <= '9' - '0') { 5458 *end-- = '0' + digit; 5459 } else { 5460 *end-- = 'a' + (digit - ('9' - '0') - 1); 5461 } 5462 } 5463 5464 if (i == 0 && base == 16) 5465 *end-- = '0'; 5466 5467 if (base == 16) 5468 *end-- = 'x'; 5469 5470 if (i == 0 || base == 8 || base == 16) 5471 *end-- = '0'; 5472 5473 if (i < 0 && base == 10) 5474 *end-- = '-'; 5475 5476 regs[rd] = (uintptr_t)end + 1; 5477 mstate->dtms_scratch_ptr += size; 5478 break; 5479 } 5480 5481 case DIF_SUBR_HTONS: 5482 case DIF_SUBR_NTOHS: 5483 #if BYTE_ORDER == BIG_ENDIAN 5484 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5485 #else 5486 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5487 #endif 5488 break; 5489 5490 5491 case DIF_SUBR_HTONL: 5492 case DIF_SUBR_NTOHL: 5493 #if BYTE_ORDER == BIG_ENDIAN 5494 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5495 #else 5496 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5497 #endif 5498 break; 5499 5500 5501 case DIF_SUBR_HTONLL: 5502 case DIF_SUBR_NTOHLL: 5503 #if BYTE_ORDER == BIG_ENDIAN 5504 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5505 #else 5506 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5507 #endif 5508 break; 5509 5510 5511 case DIF_SUBR_DIRNAME: 5512 case DIF_SUBR_BASENAME: { 5513 char *dest = (char *)mstate->dtms_scratch_ptr; 5514 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5515 uintptr_t src = tupregs[0].dttk_value; 5516 int i, j, len = dtrace_strlen((char *)src, size); 5517 int lastbase = -1, firstbase = -1, lastdir = -1; 5518 int start, end; 5519 5520 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5521 regs[rd] = 0; 5522 break; 5523 } 5524 5525 if (!DTRACE_INSCRATCH(mstate, size)) { 5526 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5527 regs[rd] = 0; 5528 break; 5529 } 5530 5531 /* 5532 * The basename and dirname for a zero-length string is 5533 * defined to be "." 5534 */ 5535 if (len == 0) { 5536 len = 1; 5537 src = (uintptr_t)"."; 5538 } 5539 5540 /* 5541 * Start from the back of the string, moving back toward the 5542 * front until we see a character that isn't a slash. That 5543 * character is the last character in the basename. 5544 */ 5545 for (i = len - 1; i >= 0; i--) { 5546 if (dtrace_load8(src + i) != '/') 5547 break; 5548 } 5549 5550 if (i >= 0) 5551 lastbase = i; 5552 5553 /* 5554 * Starting from the last character in the basename, move 5555 * towards the front until we find a slash. The character 5556 * that we processed immediately before that is the first 5557 * character in the basename. 5558 */ 5559 for (; i >= 0; i--) { 5560 if (dtrace_load8(src + i) == '/') 5561 break; 5562 } 5563 5564 if (i >= 0) 5565 firstbase = i + 1; 5566 5567 /* 5568 * Now keep going until we find a non-slash character. That 5569 * character is the last character in the dirname. 5570 */ 5571 for (; i >= 0; i--) { 5572 if (dtrace_load8(src + i) != '/') 5573 break; 5574 } 5575 5576 if (i >= 0) 5577 lastdir = i; 5578 5579 ASSERT(!(lastbase == -1 && firstbase != -1)); 5580 ASSERT(!(firstbase == -1 && lastdir != -1)); 5581 5582 if (lastbase == -1) { 5583 /* 5584 * We didn't find a non-slash character. We know that 5585 * the length is non-zero, so the whole string must be 5586 * slashes. In either the dirname or the basename 5587 * case, we return '/'. 5588 */ 5589 ASSERT(firstbase == -1); 5590 firstbase = lastbase = lastdir = 0; 5591 } 5592 5593 if (firstbase == -1) { 5594 /* 5595 * The entire string consists only of a basename 5596 * component. If we're looking for dirname, we need 5597 * to change our string to be just "."; if we're 5598 * looking for a basename, we'll just set the first 5599 * character of the basename to be 0. 5600 */ 5601 if (subr == DIF_SUBR_DIRNAME) { 5602 ASSERT(lastdir == -1); 5603 src = (uintptr_t)"."; 5604 lastdir = 0; 5605 } else { 5606 firstbase = 0; 5607 } 5608 } 5609 5610 if (subr == DIF_SUBR_DIRNAME) { 5611 if (lastdir == -1) { 5612 /* 5613 * We know that we have a slash in the name -- 5614 * or lastdir would be set to 0, above. And 5615 * because lastdir is -1, we know that this 5616 * slash must be the first character. (That 5617 * is, the full string must be of the form 5618 * "/basename".) In this case, the last 5619 * character of the directory name is 0. 5620 */ 5621 lastdir = 0; 5622 } 5623 5624 start = 0; 5625 end = lastdir; 5626 } else { 5627 ASSERT(subr == DIF_SUBR_BASENAME); 5628 ASSERT(firstbase != -1 && lastbase != -1); 5629 start = firstbase; 5630 end = lastbase; 5631 } 5632 5633 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5634 dest[j] = dtrace_load8(src + i); 5635 5636 dest[j] = '\0'; 5637 regs[rd] = (uintptr_t)dest; 5638 mstate->dtms_scratch_ptr += size; 5639 break; 5640 } 5641 5642 case DIF_SUBR_GETF: { 5643 uintptr_t fd = tupregs[0].dttk_value; 5644 struct filedesc *fdp; 5645 file_t *fp; 5646 5647 if (!dtrace_priv_proc(state)) { 5648 regs[rd] = 0; 5649 break; 5650 } 5651 fdp = curproc->p_fd; 5652 FILEDESC_SLOCK(fdp); 5653 /* 5654 * XXXMJG this looks broken as no ref is taken. 5655 */ 5656 fp = fget_noref(fdp, fd); 5657 mstate->dtms_getf = fp; 5658 regs[rd] = (uintptr_t)fp; 5659 FILEDESC_SUNLOCK(fdp); 5660 break; 5661 } 5662 5663 case DIF_SUBR_CLEANPATH: { 5664 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5665 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5666 uintptr_t src = tupregs[0].dttk_value; 5667 size_t lim; 5668 int i = 0, j = 0; 5669 #ifdef illumos 5670 zone_t *z; 5671 #endif 5672 5673 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5674 regs[rd] = 0; 5675 break; 5676 } 5677 5678 if (!DTRACE_INSCRATCH(mstate, size)) { 5679 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5680 regs[rd] = 0; 5681 break; 5682 } 5683 5684 /* 5685 * Move forward, loading each character. 5686 */ 5687 do { 5688 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5689 next: 5690 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5691 break; 5692 5693 if (c != '/') { 5694 dest[j++] = c; 5695 continue; 5696 } 5697 5698 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5699 5700 if (c == '/') { 5701 /* 5702 * We have two slashes -- we can just advance 5703 * to the next character. 5704 */ 5705 goto next; 5706 } 5707 5708 if (c != '.') { 5709 /* 5710 * This is not "." and it's not ".." -- we can 5711 * just store the "/" and this character and 5712 * drive on. 5713 */ 5714 dest[j++] = '/'; 5715 dest[j++] = c; 5716 continue; 5717 } 5718 5719 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5720 5721 if (c == '/') { 5722 /* 5723 * This is a "/./" component. We're not going 5724 * to store anything in the destination buffer; 5725 * we're just going to go to the next component. 5726 */ 5727 goto next; 5728 } 5729 5730 if (c != '.') { 5731 /* 5732 * This is not ".." -- we can just store the 5733 * "/." and this character and continue 5734 * processing. 5735 */ 5736 dest[j++] = '/'; 5737 dest[j++] = '.'; 5738 dest[j++] = c; 5739 continue; 5740 } 5741 5742 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5743 5744 if (c != '/' && c != '\0') { 5745 /* 5746 * This is not ".." -- it's "..[mumble]". 5747 * We'll store the "/.." and this character 5748 * and continue processing. 5749 */ 5750 dest[j++] = '/'; 5751 dest[j++] = '.'; 5752 dest[j++] = '.'; 5753 dest[j++] = c; 5754 continue; 5755 } 5756 5757 /* 5758 * This is "/../" or "/..\0". We need to back up 5759 * our destination pointer until we find a "/". 5760 */ 5761 i--; 5762 while (j != 0 && dest[--j] != '/') 5763 continue; 5764 5765 if (c == '\0') 5766 dest[++j] = '/'; 5767 } while (c != '\0'); 5768 5769 dest[j] = '\0'; 5770 5771 #ifdef illumos 5772 if (mstate->dtms_getf != NULL && 5773 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5774 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5775 /* 5776 * If we've done a getf() as a part of this ECB and we 5777 * don't have kernel access (and we're not in the global 5778 * zone), check if the path we cleaned up begins with 5779 * the zone's root path, and trim it off if so. Note 5780 * that this is an output cleanliness issue, not a 5781 * security issue: knowing one's zone root path does 5782 * not enable privilege escalation. 5783 */ 5784 if (strstr(dest, z->zone_rootpath) == dest) 5785 dest += strlen(z->zone_rootpath) - 1; 5786 } 5787 #endif 5788 5789 regs[rd] = (uintptr_t)dest; 5790 mstate->dtms_scratch_ptr += size; 5791 break; 5792 } 5793 5794 case DIF_SUBR_INET_NTOA: 5795 case DIF_SUBR_INET_NTOA6: 5796 case DIF_SUBR_INET_NTOP: { 5797 size_t size; 5798 int af, argi, i; 5799 char *base, *end; 5800 5801 if (subr == DIF_SUBR_INET_NTOP) { 5802 af = (int)tupregs[0].dttk_value; 5803 argi = 1; 5804 } else { 5805 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5806 argi = 0; 5807 } 5808 5809 if (af == AF_INET) { 5810 ipaddr_t ip4; 5811 uint8_t *ptr8, val; 5812 5813 if (!dtrace_canload(tupregs[argi].dttk_value, 5814 sizeof (ipaddr_t), mstate, vstate)) { 5815 regs[rd] = 0; 5816 break; 5817 } 5818 5819 /* 5820 * Safely load the IPv4 address. 5821 */ 5822 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5823 5824 /* 5825 * Check an IPv4 string will fit in scratch. 5826 */ 5827 size = INET_ADDRSTRLEN; 5828 if (!DTRACE_INSCRATCH(mstate, size)) { 5829 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5830 regs[rd] = 0; 5831 break; 5832 } 5833 base = (char *)mstate->dtms_scratch_ptr; 5834 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5835 5836 /* 5837 * Stringify as a dotted decimal quad. 5838 */ 5839 *end-- = '\0'; 5840 ptr8 = (uint8_t *)&ip4; 5841 for (i = 3; i >= 0; i--) { 5842 val = ptr8[i]; 5843 5844 if (val == 0) { 5845 *end-- = '0'; 5846 } else { 5847 for (; val; val /= 10) { 5848 *end-- = '0' + (val % 10); 5849 } 5850 } 5851 5852 if (i > 0) 5853 *end-- = '.'; 5854 } 5855 ASSERT(end + 1 >= base); 5856 5857 } else if (af == AF_INET6) { 5858 struct in6_addr ip6; 5859 int firstzero, tryzero, numzero, v6end; 5860 uint16_t val; 5861 const char digits[] = "0123456789abcdef"; 5862 5863 /* 5864 * Stringify using RFC 1884 convention 2 - 16 bit 5865 * hexadecimal values with a zero-run compression. 5866 * Lower case hexadecimal digits are used. 5867 * eg, fe80::214:4fff:fe0b:76c8. 5868 * The IPv4 embedded form is returned for inet_ntop, 5869 * just the IPv4 string is returned for inet_ntoa6. 5870 */ 5871 5872 if (!dtrace_canload(tupregs[argi].dttk_value, 5873 sizeof (struct in6_addr), mstate, vstate)) { 5874 regs[rd] = 0; 5875 break; 5876 } 5877 5878 /* 5879 * Safely load the IPv6 address. 5880 */ 5881 dtrace_bcopy( 5882 (void *)(uintptr_t)tupregs[argi].dttk_value, 5883 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5884 5885 /* 5886 * Check an IPv6 string will fit in scratch. 5887 */ 5888 size = INET6_ADDRSTRLEN; 5889 if (!DTRACE_INSCRATCH(mstate, size)) { 5890 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5891 regs[rd] = 0; 5892 break; 5893 } 5894 base = (char *)mstate->dtms_scratch_ptr; 5895 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5896 *end-- = '\0'; 5897 5898 /* 5899 * Find the longest run of 16 bit zero values 5900 * for the single allowed zero compression - "::". 5901 */ 5902 firstzero = -1; 5903 tryzero = -1; 5904 numzero = 1; 5905 for (i = 0; i < sizeof (struct in6_addr); i++) { 5906 #ifdef illumos 5907 if (ip6._S6_un._S6_u8[i] == 0 && 5908 #else 5909 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5910 #endif 5911 tryzero == -1 && i % 2 == 0) { 5912 tryzero = i; 5913 continue; 5914 } 5915 5916 if (tryzero != -1 && 5917 #ifdef illumos 5918 (ip6._S6_un._S6_u8[i] != 0 || 5919 #else 5920 (ip6.__u6_addr.__u6_addr8[i] != 0 || 5921 #endif 5922 i == sizeof (struct in6_addr) - 1)) { 5923 5924 if (i - tryzero <= numzero) { 5925 tryzero = -1; 5926 continue; 5927 } 5928 5929 firstzero = tryzero; 5930 numzero = i - i % 2 - tryzero; 5931 tryzero = -1; 5932 5933 #ifdef illumos 5934 if (ip6._S6_un._S6_u8[i] == 0 && 5935 #else 5936 if (ip6.__u6_addr.__u6_addr8[i] == 0 && 5937 #endif 5938 i == sizeof (struct in6_addr) - 1) 5939 numzero += 2; 5940 } 5941 } 5942 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5943 5944 /* 5945 * Check for an IPv4 embedded address. 5946 */ 5947 v6end = sizeof (struct in6_addr) - 2; 5948 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5949 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5950 for (i = sizeof (struct in6_addr) - 1; 5951 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5952 ASSERT(end >= base); 5953 5954 #ifdef illumos 5955 val = ip6._S6_un._S6_u8[i]; 5956 #else 5957 val = ip6.__u6_addr.__u6_addr8[i]; 5958 #endif 5959 5960 if (val == 0) { 5961 *end-- = '0'; 5962 } else { 5963 for (; val; val /= 10) { 5964 *end-- = '0' + val % 10; 5965 } 5966 } 5967 5968 if (i > DTRACE_V4MAPPED_OFFSET) 5969 *end-- = '.'; 5970 } 5971 5972 if (subr == DIF_SUBR_INET_NTOA6) 5973 goto inetout; 5974 5975 /* 5976 * Set v6end to skip the IPv4 address that 5977 * we have already stringified. 5978 */ 5979 v6end = 10; 5980 } 5981 5982 /* 5983 * Build the IPv6 string by working through the 5984 * address in reverse. 5985 */ 5986 for (i = v6end; i >= 0; i -= 2) { 5987 ASSERT(end >= base); 5988 5989 if (i == firstzero + numzero - 2) { 5990 *end-- = ':'; 5991 *end-- = ':'; 5992 i -= numzero - 2; 5993 continue; 5994 } 5995 5996 if (i < 14 && i != firstzero - 2) 5997 *end-- = ':'; 5998 5999 #ifdef illumos 6000 val = (ip6._S6_un._S6_u8[i] << 8) + 6001 ip6._S6_un._S6_u8[i + 1]; 6002 #else 6003 val = (ip6.__u6_addr.__u6_addr8[i] << 8) + 6004 ip6.__u6_addr.__u6_addr8[i + 1]; 6005 #endif 6006 6007 if (val == 0) { 6008 *end-- = '0'; 6009 } else { 6010 for (; val; val /= 16) { 6011 *end-- = digits[val % 16]; 6012 } 6013 } 6014 } 6015 ASSERT(end + 1 >= base); 6016 6017 } else { 6018 /* 6019 * The user didn't use AH_INET or AH_INET6. 6020 */ 6021 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6022 regs[rd] = 0; 6023 break; 6024 } 6025 6026 inetout: regs[rd] = (uintptr_t)end + 1; 6027 mstate->dtms_scratch_ptr += size; 6028 break; 6029 } 6030 6031 case DIF_SUBR_MEMREF: { 6032 uintptr_t size = 2 * sizeof(uintptr_t); 6033 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t)); 6034 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size; 6035 6036 /* address and length */ 6037 memref[0] = tupregs[0].dttk_value; 6038 memref[1] = tupregs[1].dttk_value; 6039 6040 regs[rd] = (uintptr_t) memref; 6041 mstate->dtms_scratch_ptr += scratch_size; 6042 break; 6043 } 6044 6045 #ifndef illumos 6046 case DIF_SUBR_MEMSTR: { 6047 char *str = (char *)mstate->dtms_scratch_ptr; 6048 uintptr_t mem = tupregs[0].dttk_value; 6049 char c = tupregs[1].dttk_value; 6050 size_t size = tupregs[2].dttk_value; 6051 uint8_t n; 6052 int i; 6053 6054 regs[rd] = 0; 6055 6056 if (size == 0) 6057 break; 6058 6059 if (!dtrace_canload(mem, size - 1, mstate, vstate)) 6060 break; 6061 6062 if (!DTRACE_INSCRATCH(mstate, size)) { 6063 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6064 break; 6065 } 6066 6067 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) { 6068 *flags |= CPU_DTRACE_ILLOP; 6069 break; 6070 } 6071 6072 for (i = 0; i < size - 1; i++) { 6073 n = dtrace_load8(mem++); 6074 str[i] = (n == 0) ? c : n; 6075 } 6076 str[size - 1] = 0; 6077 6078 regs[rd] = (uintptr_t)str; 6079 mstate->dtms_scratch_ptr += size; 6080 break; 6081 } 6082 #endif 6083 } 6084 } 6085 6086 /* 6087 * Emulate the execution of DTrace IR instructions specified by the given 6088 * DIF object. This function is deliberately void of assertions as all of 6089 * the necessary checks are handled by a call to dtrace_difo_validate(). 6090 */ 6091 static uint64_t 6092 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 6093 dtrace_vstate_t *vstate, dtrace_state_t *state) 6094 { 6095 const dif_instr_t *text = difo->dtdo_buf; 6096 const uint_t textlen = difo->dtdo_len; 6097 const char *strtab = difo->dtdo_strtab; 6098 const uint64_t *inttab = difo->dtdo_inttab; 6099 6100 uint64_t rval = 0; 6101 dtrace_statvar_t *svar; 6102 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 6103 dtrace_difv_t *v; 6104 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 6105 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval; 6106 6107 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 6108 uint64_t regs[DIF_DIR_NREGS]; 6109 uint64_t *tmp; 6110 6111 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 6112 int64_t cc_r; 6113 uint_t pc = 0, id, opc = 0; 6114 uint8_t ttop = 0; 6115 dif_instr_t instr; 6116 uint_t r1, r2, rd; 6117 6118 /* 6119 * We stash the current DIF object into the machine state: we need it 6120 * for subsequent access checking. 6121 */ 6122 mstate->dtms_difo = difo; 6123 6124 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 6125 6126 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 6127 opc = pc; 6128 6129 instr = text[pc++]; 6130 r1 = DIF_INSTR_R1(instr); 6131 r2 = DIF_INSTR_R2(instr); 6132 rd = DIF_INSTR_RD(instr); 6133 6134 switch (DIF_INSTR_OP(instr)) { 6135 case DIF_OP_OR: 6136 regs[rd] = regs[r1] | regs[r2]; 6137 break; 6138 case DIF_OP_XOR: 6139 regs[rd] = regs[r1] ^ regs[r2]; 6140 break; 6141 case DIF_OP_AND: 6142 regs[rd] = regs[r1] & regs[r2]; 6143 break; 6144 case DIF_OP_SLL: 6145 regs[rd] = regs[r1] << regs[r2]; 6146 break; 6147 case DIF_OP_SRL: 6148 regs[rd] = regs[r1] >> regs[r2]; 6149 break; 6150 case DIF_OP_SUB: 6151 regs[rd] = regs[r1] - regs[r2]; 6152 break; 6153 case DIF_OP_ADD: 6154 regs[rd] = regs[r1] + regs[r2]; 6155 break; 6156 case DIF_OP_MUL: 6157 regs[rd] = regs[r1] * regs[r2]; 6158 break; 6159 case DIF_OP_SDIV: 6160 if (regs[r2] == 0) { 6161 regs[rd] = 0; 6162 *flags |= CPU_DTRACE_DIVZERO; 6163 } else { 6164 regs[rd] = (int64_t)regs[r1] / 6165 (int64_t)regs[r2]; 6166 } 6167 break; 6168 6169 case DIF_OP_UDIV: 6170 if (regs[r2] == 0) { 6171 regs[rd] = 0; 6172 *flags |= CPU_DTRACE_DIVZERO; 6173 } else { 6174 regs[rd] = regs[r1] / regs[r2]; 6175 } 6176 break; 6177 6178 case DIF_OP_SREM: 6179 if (regs[r2] == 0) { 6180 regs[rd] = 0; 6181 *flags |= CPU_DTRACE_DIVZERO; 6182 } else { 6183 regs[rd] = (int64_t)regs[r1] % 6184 (int64_t)regs[r2]; 6185 } 6186 break; 6187 6188 case DIF_OP_UREM: 6189 if (regs[r2] == 0) { 6190 regs[rd] = 0; 6191 *flags |= CPU_DTRACE_DIVZERO; 6192 } else { 6193 regs[rd] = regs[r1] % regs[r2]; 6194 } 6195 break; 6196 6197 case DIF_OP_NOT: 6198 regs[rd] = ~regs[r1]; 6199 break; 6200 case DIF_OP_MOV: 6201 regs[rd] = regs[r1]; 6202 break; 6203 case DIF_OP_CMP: 6204 cc_r = regs[r1] - regs[r2]; 6205 cc_n = cc_r < 0; 6206 cc_z = cc_r == 0; 6207 cc_v = 0; 6208 cc_c = regs[r1] < regs[r2]; 6209 break; 6210 case DIF_OP_TST: 6211 cc_n = cc_v = cc_c = 0; 6212 cc_z = regs[r1] == 0; 6213 break; 6214 case DIF_OP_BA: 6215 pc = DIF_INSTR_LABEL(instr); 6216 break; 6217 case DIF_OP_BE: 6218 if (cc_z) 6219 pc = DIF_INSTR_LABEL(instr); 6220 break; 6221 case DIF_OP_BNE: 6222 if (cc_z == 0) 6223 pc = DIF_INSTR_LABEL(instr); 6224 break; 6225 case DIF_OP_BG: 6226 if ((cc_z | (cc_n ^ cc_v)) == 0) 6227 pc = DIF_INSTR_LABEL(instr); 6228 break; 6229 case DIF_OP_BGU: 6230 if ((cc_c | cc_z) == 0) 6231 pc = DIF_INSTR_LABEL(instr); 6232 break; 6233 case DIF_OP_BGE: 6234 if ((cc_n ^ cc_v) == 0) 6235 pc = DIF_INSTR_LABEL(instr); 6236 break; 6237 case DIF_OP_BGEU: 6238 if (cc_c == 0) 6239 pc = DIF_INSTR_LABEL(instr); 6240 break; 6241 case DIF_OP_BL: 6242 if (cc_n ^ cc_v) 6243 pc = DIF_INSTR_LABEL(instr); 6244 break; 6245 case DIF_OP_BLU: 6246 if (cc_c) 6247 pc = DIF_INSTR_LABEL(instr); 6248 break; 6249 case DIF_OP_BLE: 6250 if (cc_z | (cc_n ^ cc_v)) 6251 pc = DIF_INSTR_LABEL(instr); 6252 break; 6253 case DIF_OP_BLEU: 6254 if (cc_c | cc_z) 6255 pc = DIF_INSTR_LABEL(instr); 6256 break; 6257 case DIF_OP_RLDSB: 6258 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6259 break; 6260 /*FALLTHROUGH*/ 6261 case DIF_OP_LDSB: 6262 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 6263 break; 6264 case DIF_OP_RLDSH: 6265 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6266 break; 6267 /*FALLTHROUGH*/ 6268 case DIF_OP_LDSH: 6269 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 6270 break; 6271 case DIF_OP_RLDSW: 6272 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6273 break; 6274 /*FALLTHROUGH*/ 6275 case DIF_OP_LDSW: 6276 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 6277 break; 6278 case DIF_OP_RLDUB: 6279 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 6280 break; 6281 /*FALLTHROUGH*/ 6282 case DIF_OP_LDUB: 6283 regs[rd] = dtrace_load8(regs[r1]); 6284 break; 6285 case DIF_OP_RLDUH: 6286 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 6287 break; 6288 /*FALLTHROUGH*/ 6289 case DIF_OP_LDUH: 6290 regs[rd] = dtrace_load16(regs[r1]); 6291 break; 6292 case DIF_OP_RLDUW: 6293 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 6294 break; 6295 /*FALLTHROUGH*/ 6296 case DIF_OP_LDUW: 6297 regs[rd] = dtrace_load32(regs[r1]); 6298 break; 6299 case DIF_OP_RLDX: 6300 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 6301 break; 6302 /*FALLTHROUGH*/ 6303 case DIF_OP_LDX: 6304 regs[rd] = dtrace_load64(regs[r1]); 6305 break; 6306 case DIF_OP_ULDSB: 6307 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6308 regs[rd] = (int8_t) 6309 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6310 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6311 break; 6312 case DIF_OP_ULDSH: 6313 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6314 regs[rd] = (int16_t) 6315 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6316 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6317 break; 6318 case DIF_OP_ULDSW: 6319 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6320 regs[rd] = (int32_t) 6321 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6322 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6323 break; 6324 case DIF_OP_ULDUB: 6325 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6326 regs[rd] = 6327 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 6328 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6329 break; 6330 case DIF_OP_ULDUH: 6331 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6332 regs[rd] = 6333 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6334 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6335 break; 6336 case DIF_OP_ULDUW: 6337 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6338 regs[rd] = 6339 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6340 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6341 break; 6342 case DIF_OP_ULDX: 6343 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6344 regs[rd] = 6345 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 6346 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6347 break; 6348 case DIF_OP_RET: 6349 rval = regs[rd]; 6350 pc = textlen; 6351 break; 6352 case DIF_OP_NOP: 6353 break; 6354 case DIF_OP_SETX: 6355 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6356 break; 6357 case DIF_OP_SETS: 6358 regs[rd] = (uint64_t)(uintptr_t) 6359 (strtab + DIF_INSTR_STRING(instr)); 6360 break; 6361 case DIF_OP_SCMP: { 6362 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6363 uintptr_t s1 = regs[r1]; 6364 uintptr_t s2 = regs[r2]; 6365 size_t lim1, lim2; 6366 6367 /* 6368 * If one of the strings is NULL then the limit becomes 6369 * 0 which compares 0 characters in dtrace_strncmp() 6370 * resulting in a false positive. dtrace_strncmp() 6371 * treats a NULL as an empty 1-char string. 6372 */ 6373 lim1 = lim2 = 1; 6374 6375 if (s1 != 0 && 6376 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 6377 break; 6378 if (s2 != 0 && 6379 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 6380 break; 6381 6382 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 6383 MIN(lim1, lim2)); 6384 6385 cc_n = cc_r < 0; 6386 cc_z = cc_r == 0; 6387 cc_v = cc_c = 0; 6388 break; 6389 } 6390 case DIF_OP_LDGA: 6391 regs[rd] = dtrace_dif_variable(mstate, state, 6392 r1, regs[r2]); 6393 break; 6394 case DIF_OP_LDGS: 6395 id = DIF_INSTR_VAR(instr); 6396 6397 if (id >= DIF_VAR_OTHER_UBASE) { 6398 uintptr_t a; 6399 6400 id -= DIF_VAR_OTHER_UBASE; 6401 svar = vstate->dtvs_globals[id]; 6402 ASSERT(svar != NULL); 6403 v = &svar->dtsv_var; 6404 6405 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6406 regs[rd] = svar->dtsv_data; 6407 break; 6408 } 6409 6410 a = (uintptr_t)svar->dtsv_data; 6411 6412 if (*(uint8_t *)a == UINT8_MAX) { 6413 /* 6414 * If the 0th byte is set to UINT8_MAX 6415 * then this is to be treated as a 6416 * reference to a NULL variable. 6417 */ 6418 regs[rd] = 0; 6419 } else { 6420 regs[rd] = a + sizeof (uint64_t); 6421 } 6422 6423 break; 6424 } 6425 6426 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6427 break; 6428 6429 case DIF_OP_STGS: 6430 id = DIF_INSTR_VAR(instr); 6431 6432 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6433 id -= DIF_VAR_OTHER_UBASE; 6434 6435 VERIFY(id < vstate->dtvs_nglobals); 6436 svar = vstate->dtvs_globals[id]; 6437 ASSERT(svar != NULL); 6438 v = &svar->dtsv_var; 6439 6440 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6441 uintptr_t a = (uintptr_t)svar->dtsv_data; 6442 size_t lim; 6443 6444 ASSERT(a != 0); 6445 ASSERT(svar->dtsv_size != 0); 6446 6447 if (regs[rd] == 0) { 6448 *(uint8_t *)a = UINT8_MAX; 6449 break; 6450 } else { 6451 *(uint8_t *)a = 0; 6452 a += sizeof (uint64_t); 6453 } 6454 if (!dtrace_vcanload( 6455 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6456 &lim, mstate, vstate)) 6457 break; 6458 6459 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6460 (void *)a, &v->dtdv_type, lim); 6461 break; 6462 } 6463 6464 svar->dtsv_data = regs[rd]; 6465 break; 6466 6467 case DIF_OP_LDTA: 6468 /* 6469 * There are no DTrace built-in thread-local arrays at 6470 * present. This opcode is saved for future work. 6471 */ 6472 *flags |= CPU_DTRACE_ILLOP; 6473 regs[rd] = 0; 6474 break; 6475 6476 case DIF_OP_LDLS: 6477 id = DIF_INSTR_VAR(instr); 6478 6479 if (id < DIF_VAR_OTHER_UBASE) { 6480 /* 6481 * For now, this has no meaning. 6482 */ 6483 regs[rd] = 0; 6484 break; 6485 } 6486 6487 id -= DIF_VAR_OTHER_UBASE; 6488 6489 ASSERT(id < vstate->dtvs_nlocals); 6490 ASSERT(vstate->dtvs_locals != NULL); 6491 6492 svar = vstate->dtvs_locals[id]; 6493 ASSERT(svar != NULL); 6494 v = &svar->dtsv_var; 6495 6496 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6497 uintptr_t a = (uintptr_t)svar->dtsv_data; 6498 size_t sz = v->dtdv_type.dtdt_size; 6499 size_t lim; 6500 6501 sz += sizeof (uint64_t); 6502 ASSERT(svar->dtsv_size == NCPU * sz); 6503 a += curcpu * sz; 6504 6505 if (*(uint8_t *)a == UINT8_MAX) { 6506 /* 6507 * If the 0th byte is set to UINT8_MAX 6508 * then this is to be treated as a 6509 * reference to a NULL variable. 6510 */ 6511 regs[rd] = 0; 6512 } else { 6513 regs[rd] = a + sizeof (uint64_t); 6514 } 6515 6516 break; 6517 } 6518 6519 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6520 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6521 regs[rd] = tmp[curcpu]; 6522 break; 6523 6524 case DIF_OP_STLS: 6525 id = DIF_INSTR_VAR(instr); 6526 6527 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6528 id -= DIF_VAR_OTHER_UBASE; 6529 VERIFY(id < vstate->dtvs_nlocals); 6530 6531 ASSERT(vstate->dtvs_locals != NULL); 6532 svar = vstate->dtvs_locals[id]; 6533 ASSERT(svar != NULL); 6534 v = &svar->dtsv_var; 6535 6536 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6537 uintptr_t a = (uintptr_t)svar->dtsv_data; 6538 size_t sz = v->dtdv_type.dtdt_size; 6539 size_t lim; 6540 6541 sz += sizeof (uint64_t); 6542 ASSERT(svar->dtsv_size == NCPU * sz); 6543 a += curcpu * sz; 6544 6545 if (regs[rd] == 0) { 6546 *(uint8_t *)a = UINT8_MAX; 6547 break; 6548 } else { 6549 *(uint8_t *)a = 0; 6550 a += sizeof (uint64_t); 6551 } 6552 6553 if (!dtrace_vcanload( 6554 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6555 &lim, mstate, vstate)) 6556 break; 6557 6558 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6559 (void *)a, &v->dtdv_type, lim); 6560 break; 6561 } 6562 6563 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6564 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6565 tmp[curcpu] = regs[rd]; 6566 break; 6567 6568 case DIF_OP_LDTS: { 6569 dtrace_dynvar_t *dvar; 6570 dtrace_key_t *key; 6571 6572 id = DIF_INSTR_VAR(instr); 6573 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6574 id -= DIF_VAR_OTHER_UBASE; 6575 v = &vstate->dtvs_tlocals[id]; 6576 6577 key = &tupregs[DIF_DTR_NREGS]; 6578 key[0].dttk_value = (uint64_t)id; 6579 key[0].dttk_size = 0; 6580 DTRACE_TLS_THRKEY(key[1].dttk_value); 6581 key[1].dttk_size = 0; 6582 6583 dvar = dtrace_dynvar(dstate, 2, key, 6584 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6585 mstate, vstate); 6586 6587 if (dvar == NULL) { 6588 regs[rd] = 0; 6589 break; 6590 } 6591 6592 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6593 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6594 } else { 6595 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6596 } 6597 6598 break; 6599 } 6600 6601 case DIF_OP_STTS: { 6602 dtrace_dynvar_t *dvar; 6603 dtrace_key_t *key; 6604 6605 id = DIF_INSTR_VAR(instr); 6606 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6607 id -= DIF_VAR_OTHER_UBASE; 6608 VERIFY(id < vstate->dtvs_ntlocals); 6609 6610 key = &tupregs[DIF_DTR_NREGS]; 6611 key[0].dttk_value = (uint64_t)id; 6612 key[0].dttk_size = 0; 6613 DTRACE_TLS_THRKEY(key[1].dttk_value); 6614 key[1].dttk_size = 0; 6615 v = &vstate->dtvs_tlocals[id]; 6616 6617 dvar = dtrace_dynvar(dstate, 2, key, 6618 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6619 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6620 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6621 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6622 6623 /* 6624 * Given that we're storing to thread-local data, 6625 * we need to flush our predicate cache. 6626 */ 6627 curthread->t_predcache = 0; 6628 6629 if (dvar == NULL) 6630 break; 6631 6632 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6633 size_t lim; 6634 6635 if (!dtrace_vcanload( 6636 (void *)(uintptr_t)regs[rd], 6637 &v->dtdv_type, &lim, mstate, vstate)) 6638 break; 6639 6640 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6641 dvar->dtdv_data, &v->dtdv_type, lim); 6642 } else { 6643 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6644 } 6645 6646 break; 6647 } 6648 6649 case DIF_OP_SRA: 6650 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6651 break; 6652 6653 case DIF_OP_CALL: 6654 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6655 regs, tupregs, ttop, mstate, state); 6656 break; 6657 6658 case DIF_OP_PUSHTR: 6659 if (ttop == DIF_DTR_NREGS) { 6660 *flags |= CPU_DTRACE_TUPOFLOW; 6661 break; 6662 } 6663 6664 if (r1 == DIF_TYPE_STRING) { 6665 /* 6666 * If this is a string type and the size is 0, 6667 * we'll use the system-wide default string 6668 * size. Note that we are _not_ looking at 6669 * the value of the DTRACEOPT_STRSIZE option; 6670 * had this been set, we would expect to have 6671 * a non-zero size value in the "pushtr". 6672 */ 6673 tupregs[ttop].dttk_size = 6674 dtrace_strlen((char *)(uintptr_t)regs[rd], 6675 regs[r2] ? regs[r2] : 6676 dtrace_strsize_default) + 1; 6677 } else { 6678 if (regs[r2] > LONG_MAX) { 6679 *flags |= CPU_DTRACE_ILLOP; 6680 break; 6681 } 6682 6683 tupregs[ttop].dttk_size = regs[r2]; 6684 } 6685 6686 tupregs[ttop++].dttk_value = regs[rd]; 6687 break; 6688 6689 case DIF_OP_PUSHTV: 6690 if (ttop == DIF_DTR_NREGS) { 6691 *flags |= CPU_DTRACE_TUPOFLOW; 6692 break; 6693 } 6694 6695 tupregs[ttop].dttk_value = regs[rd]; 6696 tupregs[ttop++].dttk_size = 0; 6697 break; 6698 6699 case DIF_OP_POPTS: 6700 if (ttop != 0) 6701 ttop--; 6702 break; 6703 6704 case DIF_OP_FLUSHTS: 6705 ttop = 0; 6706 break; 6707 6708 case DIF_OP_LDGAA: 6709 case DIF_OP_LDTAA: { 6710 dtrace_dynvar_t *dvar; 6711 dtrace_key_t *key = tupregs; 6712 uint_t nkeys = ttop; 6713 6714 id = DIF_INSTR_VAR(instr); 6715 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6716 id -= DIF_VAR_OTHER_UBASE; 6717 6718 key[nkeys].dttk_value = (uint64_t)id; 6719 key[nkeys++].dttk_size = 0; 6720 6721 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6722 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6723 key[nkeys++].dttk_size = 0; 6724 VERIFY(id < vstate->dtvs_ntlocals); 6725 v = &vstate->dtvs_tlocals[id]; 6726 } else { 6727 VERIFY(id < vstate->dtvs_nglobals); 6728 v = &vstate->dtvs_globals[id]->dtsv_var; 6729 } 6730 6731 dvar = dtrace_dynvar(dstate, nkeys, key, 6732 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6733 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6734 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6735 6736 if (dvar == NULL) { 6737 regs[rd] = 0; 6738 break; 6739 } 6740 6741 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6742 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6743 } else { 6744 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6745 } 6746 6747 break; 6748 } 6749 6750 case DIF_OP_STGAA: 6751 case DIF_OP_STTAA: { 6752 dtrace_dynvar_t *dvar; 6753 dtrace_key_t *key = tupregs; 6754 uint_t nkeys = ttop; 6755 6756 id = DIF_INSTR_VAR(instr); 6757 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6758 id -= DIF_VAR_OTHER_UBASE; 6759 6760 key[nkeys].dttk_value = (uint64_t)id; 6761 key[nkeys++].dttk_size = 0; 6762 6763 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6764 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6765 key[nkeys++].dttk_size = 0; 6766 VERIFY(id < vstate->dtvs_ntlocals); 6767 v = &vstate->dtvs_tlocals[id]; 6768 } else { 6769 VERIFY(id < vstate->dtvs_nglobals); 6770 v = &vstate->dtvs_globals[id]->dtsv_var; 6771 } 6772 6773 dvar = dtrace_dynvar(dstate, nkeys, key, 6774 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6775 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6776 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6777 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6778 6779 if (dvar == NULL) 6780 break; 6781 6782 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6783 size_t lim; 6784 6785 if (!dtrace_vcanload( 6786 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6787 &lim, mstate, vstate)) 6788 break; 6789 6790 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6791 dvar->dtdv_data, &v->dtdv_type, lim); 6792 } else { 6793 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6794 } 6795 6796 break; 6797 } 6798 6799 case DIF_OP_ALLOCS: { 6800 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6801 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6802 6803 /* 6804 * Rounding up the user allocation size could have 6805 * overflowed large, bogus allocations (like -1ULL) to 6806 * 0. 6807 */ 6808 if (size < regs[r1] || 6809 !DTRACE_INSCRATCH(mstate, size)) { 6810 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6811 regs[rd] = 0; 6812 break; 6813 } 6814 6815 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6816 mstate->dtms_scratch_ptr += size; 6817 regs[rd] = ptr; 6818 break; 6819 } 6820 6821 case DIF_OP_COPYS: 6822 if (!dtrace_canstore(regs[rd], regs[r2], 6823 mstate, vstate)) { 6824 *flags |= CPU_DTRACE_BADADDR; 6825 *illval = regs[rd]; 6826 break; 6827 } 6828 6829 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6830 break; 6831 6832 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6833 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6834 break; 6835 6836 case DIF_OP_STB: 6837 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6838 *flags |= CPU_DTRACE_BADADDR; 6839 *illval = regs[rd]; 6840 break; 6841 } 6842 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6843 break; 6844 6845 case DIF_OP_STH: 6846 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6847 *flags |= CPU_DTRACE_BADADDR; 6848 *illval = regs[rd]; 6849 break; 6850 } 6851 if (regs[rd] & 1) { 6852 *flags |= CPU_DTRACE_BADALIGN; 6853 *illval = regs[rd]; 6854 break; 6855 } 6856 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6857 break; 6858 6859 case DIF_OP_STW: 6860 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6861 *flags |= CPU_DTRACE_BADADDR; 6862 *illval = regs[rd]; 6863 break; 6864 } 6865 if (regs[rd] & 3) { 6866 *flags |= CPU_DTRACE_BADALIGN; 6867 *illval = regs[rd]; 6868 break; 6869 } 6870 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6871 break; 6872 6873 case DIF_OP_STX: 6874 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6875 *flags |= CPU_DTRACE_BADADDR; 6876 *illval = regs[rd]; 6877 break; 6878 } 6879 if (regs[rd] & 7) { 6880 *flags |= CPU_DTRACE_BADALIGN; 6881 *illval = regs[rd]; 6882 break; 6883 } 6884 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6885 break; 6886 } 6887 } 6888 6889 if (!(*flags & CPU_DTRACE_FAULT)) 6890 return (rval); 6891 6892 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6893 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6894 6895 return (0); 6896 } 6897 6898 static void 6899 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6900 { 6901 dtrace_probe_t *probe = ecb->dte_probe; 6902 dtrace_provider_t *prov = probe->dtpr_provider; 6903 char c[DTRACE_FULLNAMELEN + 80], *str; 6904 char *msg = "dtrace: breakpoint action at probe "; 6905 char *ecbmsg = " (ecb "; 6906 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6907 uintptr_t val = (uintptr_t)ecb; 6908 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6909 6910 if (dtrace_destructive_disallow) 6911 return; 6912 6913 /* 6914 * It's impossible to be taking action on the NULL probe. 6915 */ 6916 ASSERT(probe != NULL); 6917 6918 /* 6919 * This is a poor man's (destitute man's?) sprintf(): we want to 6920 * print the provider name, module name, function name and name of 6921 * the probe, along with the hex address of the ECB with the breakpoint 6922 * action -- all of which we must place in the character buffer by 6923 * hand. 6924 */ 6925 while (*msg != '\0') 6926 c[i++] = *msg++; 6927 6928 for (str = prov->dtpv_name; *str != '\0'; str++) 6929 c[i++] = *str; 6930 c[i++] = ':'; 6931 6932 for (str = probe->dtpr_mod; *str != '\0'; str++) 6933 c[i++] = *str; 6934 c[i++] = ':'; 6935 6936 for (str = probe->dtpr_func; *str != '\0'; str++) 6937 c[i++] = *str; 6938 c[i++] = ':'; 6939 6940 for (str = probe->dtpr_name; *str != '\0'; str++) 6941 c[i++] = *str; 6942 6943 while (*ecbmsg != '\0') 6944 c[i++] = *ecbmsg++; 6945 6946 while (shift >= 0) { 6947 mask = (uintptr_t)0xf << shift; 6948 6949 if (val >= ((uintptr_t)1 << shift)) 6950 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6951 shift -= 4; 6952 } 6953 6954 c[i++] = ')'; 6955 c[i] = '\0'; 6956 6957 #ifdef illumos 6958 debug_enter(c); 6959 #else 6960 kdb_enter(KDB_WHY_DTRACE, "breakpoint action"); 6961 #endif 6962 } 6963 6964 static void 6965 dtrace_action_panic(dtrace_ecb_t *ecb) 6966 { 6967 dtrace_probe_t *probe = ecb->dte_probe; 6968 6969 /* 6970 * It's impossible to be taking action on the NULL probe. 6971 */ 6972 ASSERT(probe != NULL); 6973 6974 if (dtrace_destructive_disallow) 6975 return; 6976 6977 if (dtrace_panicked != NULL) 6978 return; 6979 6980 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6981 return; 6982 6983 /* 6984 * We won the right to panic. (We want to be sure that only one 6985 * thread calls panic() from dtrace_probe(), and that panic() is 6986 * called exactly once.) 6987 */ 6988 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6989 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6990 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6991 } 6992 6993 static void 6994 dtrace_action_raise(uint64_t sig) 6995 { 6996 if (dtrace_destructive_disallow) 6997 return; 6998 6999 if (sig >= NSIG) { 7000 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 7001 return; 7002 } 7003 7004 #ifdef illumos 7005 /* 7006 * raise() has a queue depth of 1 -- we ignore all subsequent 7007 * invocations of the raise() action. 7008 */ 7009 if (curthread->t_dtrace_sig == 0) 7010 curthread->t_dtrace_sig = (uint8_t)sig; 7011 7012 curthread->t_sig_check = 1; 7013 aston(curthread); 7014 #else 7015 struct proc *p = curproc; 7016 PROC_LOCK(p); 7017 kern_psignal(p, sig); 7018 PROC_UNLOCK(p); 7019 #endif 7020 } 7021 7022 static void 7023 dtrace_action_stop(void) 7024 { 7025 if (dtrace_destructive_disallow) 7026 return; 7027 7028 #ifdef illumos 7029 if (!curthread->t_dtrace_stop) { 7030 curthread->t_dtrace_stop = 1; 7031 curthread->t_sig_check = 1; 7032 aston(curthread); 7033 } 7034 #else 7035 struct proc *p = curproc; 7036 PROC_LOCK(p); 7037 kern_psignal(p, SIGSTOP); 7038 PROC_UNLOCK(p); 7039 #endif 7040 } 7041 7042 static void 7043 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 7044 { 7045 hrtime_t now; 7046 volatile uint16_t *flags; 7047 #ifdef illumos 7048 cpu_t *cpu = CPU; 7049 #else 7050 cpu_t *cpu = &solaris_cpu[curcpu]; 7051 #endif 7052 7053 if (dtrace_destructive_disallow) 7054 return; 7055 7056 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7057 7058 now = dtrace_gethrtime(); 7059 7060 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 7061 /* 7062 * We need to advance the mark to the current time. 7063 */ 7064 cpu->cpu_dtrace_chillmark = now; 7065 cpu->cpu_dtrace_chilled = 0; 7066 } 7067 7068 /* 7069 * Now check to see if the requested chill time would take us over 7070 * the maximum amount of time allowed in the chill interval. (Or 7071 * worse, if the calculation itself induces overflow.) 7072 */ 7073 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 7074 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 7075 *flags |= CPU_DTRACE_ILLOP; 7076 return; 7077 } 7078 7079 while (dtrace_gethrtime() - now < val) 7080 continue; 7081 7082 /* 7083 * Normally, we assure that the value of the variable "timestamp" does 7084 * not change within an ECB. The presence of chill() represents an 7085 * exception to this rule, however. 7086 */ 7087 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 7088 cpu->cpu_dtrace_chilled += val; 7089 } 7090 7091 static void 7092 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 7093 uint64_t *buf, uint64_t arg) 7094 { 7095 int nframes = DTRACE_USTACK_NFRAMES(arg); 7096 int strsize = DTRACE_USTACK_STRSIZE(arg); 7097 uint64_t *pcs = &buf[1], *fps; 7098 char *str = (char *)&pcs[nframes]; 7099 int size, offs = 0, i, j; 7100 size_t rem; 7101 uintptr_t old = mstate->dtms_scratch_ptr, saved; 7102 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 7103 char *sym; 7104 7105 /* 7106 * Should be taking a faster path if string space has not been 7107 * allocated. 7108 */ 7109 ASSERT(strsize != 0); 7110 7111 /* 7112 * We will first allocate some temporary space for the frame pointers. 7113 */ 7114 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 7115 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 7116 (nframes * sizeof (uint64_t)); 7117 7118 if (!DTRACE_INSCRATCH(mstate, size)) { 7119 /* 7120 * Not enough room for our frame pointers -- need to indicate 7121 * that we ran out of scratch space. 7122 */ 7123 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 7124 return; 7125 } 7126 7127 mstate->dtms_scratch_ptr += size; 7128 saved = mstate->dtms_scratch_ptr; 7129 7130 /* 7131 * Now get a stack with both program counters and frame pointers. 7132 */ 7133 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7134 dtrace_getufpstack(buf, fps, nframes + 1); 7135 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7136 7137 /* 7138 * If that faulted, we're cooked. 7139 */ 7140 if (*flags & CPU_DTRACE_FAULT) 7141 goto out; 7142 7143 /* 7144 * Now we want to walk up the stack, calling the USTACK helper. For 7145 * each iteration, we restore the scratch pointer. 7146 */ 7147 for (i = 0; i < nframes; i++) { 7148 mstate->dtms_scratch_ptr = saved; 7149 7150 if (offs >= strsize) 7151 break; 7152 7153 sym = (char *)(uintptr_t)dtrace_helper( 7154 DTRACE_HELPER_ACTION_USTACK, 7155 mstate, state, pcs[i], fps[i]); 7156 7157 /* 7158 * If we faulted while running the helper, we're going to 7159 * clear the fault and null out the corresponding string. 7160 */ 7161 if (*flags & CPU_DTRACE_FAULT) { 7162 *flags &= ~CPU_DTRACE_FAULT; 7163 str[offs++] = '\0'; 7164 continue; 7165 } 7166 7167 if (sym == NULL) { 7168 str[offs++] = '\0'; 7169 continue; 7170 } 7171 7172 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 7173 &(state->dts_vstate))) { 7174 str[offs++] = '\0'; 7175 continue; 7176 } 7177 7178 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7179 7180 /* 7181 * Now copy in the string that the helper returned to us. 7182 */ 7183 for (j = 0; offs + j < strsize && j < rem; j++) { 7184 if ((str[offs + j] = sym[j]) == '\0') 7185 break; 7186 } 7187 7188 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7189 7190 offs += j + 1; 7191 } 7192 7193 if (offs >= strsize) { 7194 /* 7195 * If we didn't have room for all of the strings, we don't 7196 * abort processing -- this needn't be a fatal error -- but we 7197 * still want to increment a counter (dts_stkstroverflows) to 7198 * allow this condition to be warned about. (If this is from 7199 * a jstack() action, it is easily tuned via jstackstrsize.) 7200 */ 7201 dtrace_error(&state->dts_stkstroverflows); 7202 } 7203 7204 while (offs < strsize) 7205 str[offs++] = '\0'; 7206 7207 out: 7208 mstate->dtms_scratch_ptr = old; 7209 } 7210 7211 static void 7212 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 7213 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 7214 { 7215 volatile uint16_t *flags; 7216 uint64_t val = *valp; 7217 size_t valoffs = *valoffsp; 7218 7219 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags; 7220 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 7221 7222 /* 7223 * If this is a string, we're going to only load until we find the zero 7224 * byte -- after which we'll store zero bytes. 7225 */ 7226 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 7227 char c = '\0' + 1; 7228 size_t s; 7229 7230 for (s = 0; s < size; s++) { 7231 if (c != '\0' && dtkind == DIF_TF_BYREF) { 7232 c = dtrace_load8(val++); 7233 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 7234 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7235 c = dtrace_fuword8((void *)(uintptr_t)val++); 7236 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7237 if (*flags & CPU_DTRACE_FAULT) 7238 break; 7239 } 7240 7241 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 7242 7243 if (c == '\0' && intuple) 7244 break; 7245 } 7246 } else { 7247 uint8_t c; 7248 while (valoffs < end) { 7249 if (dtkind == DIF_TF_BYREF) { 7250 c = dtrace_load8(val++); 7251 } else if (dtkind == DIF_TF_BYUREF) { 7252 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7253 c = dtrace_fuword8((void *)(uintptr_t)val++); 7254 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7255 if (*flags & CPU_DTRACE_FAULT) 7256 break; 7257 } 7258 7259 DTRACE_STORE(uint8_t, tomax, 7260 valoffs++, c); 7261 } 7262 } 7263 7264 *valp = val; 7265 *valoffsp = valoffs; 7266 } 7267 7268 /* 7269 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is 7270 * defined, we also assert that we are not recursing unless the probe ID is an 7271 * error probe. 7272 */ 7273 static dtrace_icookie_t 7274 dtrace_probe_enter(dtrace_id_t id) 7275 { 7276 dtrace_icookie_t cookie; 7277 7278 cookie = dtrace_interrupt_disable(); 7279 7280 /* 7281 * Unless this is an ERROR probe, we are not allowed to recurse in 7282 * dtrace_probe(). Recursing into DTrace probe usually means that a 7283 * function is instrumented that should not have been instrumented or 7284 * that the ordering guarantee of the records will be violated, 7285 * resulting in unexpected output. If there is an exception to this 7286 * assertion, a new case should be added. 7287 */ 7288 ASSERT(curthread->t_dtrace_inprobe == 0 || 7289 id == dtrace_probeid_error); 7290 curthread->t_dtrace_inprobe = 1; 7291 7292 return (cookie); 7293 } 7294 7295 /* 7296 * Clears the per-thread inprobe flag and enables interrupts. 7297 */ 7298 static void 7299 dtrace_probe_exit(dtrace_icookie_t cookie) 7300 { 7301 7302 curthread->t_dtrace_inprobe = 0; 7303 dtrace_interrupt_enable(cookie); 7304 } 7305 7306 /* 7307 * If you're looking for the epicenter of DTrace, you just found it. This 7308 * is the function called by the provider to fire a probe -- from which all 7309 * subsequent probe-context DTrace activity emanates. 7310 */ 7311 void 7312 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 7313 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 7314 { 7315 processorid_t cpuid; 7316 dtrace_icookie_t cookie; 7317 dtrace_probe_t *probe; 7318 dtrace_mstate_t mstate; 7319 dtrace_ecb_t *ecb; 7320 dtrace_action_t *act; 7321 intptr_t offs; 7322 size_t size; 7323 int vtime, onintr; 7324 volatile uint16_t *flags; 7325 hrtime_t now; 7326 7327 if (KERNEL_PANICKED()) 7328 return; 7329 7330 #ifdef illumos 7331 /* 7332 * Kick out immediately if this CPU is still being born (in which case 7333 * curthread will be set to -1) or the current thread can't allow 7334 * probes in its current context. 7335 */ 7336 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 7337 return; 7338 #endif 7339 7340 cookie = dtrace_probe_enter(id); 7341 probe = dtrace_probes[id - 1]; 7342 cpuid = curcpu; 7343 onintr = CPU_ON_INTR(CPU); 7344 7345 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 7346 probe->dtpr_predcache == curthread->t_predcache) { 7347 /* 7348 * We have hit in the predicate cache; we know that 7349 * this predicate would evaluate to be false. 7350 */ 7351 dtrace_probe_exit(cookie); 7352 return; 7353 } 7354 7355 #ifdef illumos 7356 if (panic_quiesce) { 7357 #else 7358 if (KERNEL_PANICKED()) { 7359 #endif 7360 /* 7361 * We don't trace anything if we're panicking. 7362 */ 7363 dtrace_probe_exit(cookie); 7364 return; 7365 } 7366 7367 now = mstate.dtms_timestamp = dtrace_gethrtime(); 7368 mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP; 7369 vtime = dtrace_vtime_references != 0; 7370 7371 if (vtime && curthread->t_dtrace_start) 7372 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 7373 7374 mstate.dtms_difo = NULL; 7375 mstate.dtms_probe = probe; 7376 mstate.dtms_strtok = 0; 7377 mstate.dtms_arg[0] = arg0; 7378 mstate.dtms_arg[1] = arg1; 7379 mstate.dtms_arg[2] = arg2; 7380 mstate.dtms_arg[3] = arg3; 7381 mstate.dtms_arg[4] = arg4; 7382 7383 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 7384 7385 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 7386 dtrace_predicate_t *pred = ecb->dte_predicate; 7387 dtrace_state_t *state = ecb->dte_state; 7388 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 7389 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 7390 dtrace_vstate_t *vstate = &state->dts_vstate; 7391 dtrace_provider_t *prov = probe->dtpr_provider; 7392 uint64_t tracememsize = 0; 7393 int committed = 0; 7394 caddr_t tomax; 7395 7396 /* 7397 * A little subtlety with the following (seemingly innocuous) 7398 * declaration of the automatic 'val': by looking at the 7399 * code, you might think that it could be declared in the 7400 * action processing loop, below. (That is, it's only used in 7401 * the action processing loop.) However, it must be declared 7402 * out of that scope because in the case of DIF expression 7403 * arguments to aggregating actions, one iteration of the 7404 * action loop will use the last iteration's value. 7405 */ 7406 uint64_t val = 0; 7407 7408 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 7409 mstate.dtms_getf = NULL; 7410 7411 *flags &= ~CPU_DTRACE_ERROR; 7412 7413 if (prov == dtrace_provider) { 7414 /* 7415 * If dtrace itself is the provider of this probe, 7416 * we're only going to continue processing the ECB if 7417 * arg0 (the dtrace_state_t) is equal to the ECB's 7418 * creating state. (This prevents disjoint consumers 7419 * from seeing one another's metaprobes.) 7420 */ 7421 if (arg0 != (uint64_t)(uintptr_t)state) 7422 continue; 7423 } 7424 7425 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7426 /* 7427 * We're not currently active. If our provider isn't 7428 * the dtrace pseudo provider, we're not interested. 7429 */ 7430 if (prov != dtrace_provider) 7431 continue; 7432 7433 /* 7434 * Now we must further check if we are in the BEGIN 7435 * probe. If we are, we will only continue processing 7436 * if we're still in WARMUP -- if one BEGIN enabling 7437 * has invoked the exit() action, we don't want to 7438 * evaluate subsequent BEGIN enablings. 7439 */ 7440 if (probe->dtpr_id == dtrace_probeid_begin && 7441 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7442 ASSERT(state->dts_activity == 7443 DTRACE_ACTIVITY_DRAINING); 7444 continue; 7445 } 7446 } 7447 7448 if (ecb->dte_cond) { 7449 /* 7450 * If the dte_cond bits indicate that this 7451 * consumer is only allowed to see user-mode firings 7452 * of this probe, call the provider's dtps_usermode() 7453 * entry point to check that the probe was fired 7454 * while in a user context. Skip this ECB if that's 7455 * not the case. 7456 */ 7457 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 7458 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 7459 probe->dtpr_id, probe->dtpr_arg) == 0) 7460 continue; 7461 7462 #ifdef illumos 7463 /* 7464 * This is more subtle than it looks. We have to be 7465 * absolutely certain that CRED() isn't going to 7466 * change out from under us so it's only legit to 7467 * examine that structure if we're in constrained 7468 * situations. Currently, the only times we'll this 7469 * check is if a non-super-user has enabled the 7470 * profile or syscall providers -- providers that 7471 * allow visibility of all processes. For the 7472 * profile case, the check above will ensure that 7473 * we're examining a user context. 7474 */ 7475 if (ecb->dte_cond & DTRACE_COND_OWNER) { 7476 cred_t *cr; 7477 cred_t *s_cr = 7478 ecb->dte_state->dts_cred.dcr_cred; 7479 proc_t *proc; 7480 7481 ASSERT(s_cr != NULL); 7482 7483 if ((cr = CRED()) == NULL || 7484 s_cr->cr_uid != cr->cr_uid || 7485 s_cr->cr_uid != cr->cr_ruid || 7486 s_cr->cr_uid != cr->cr_suid || 7487 s_cr->cr_gid != cr->cr_gid || 7488 s_cr->cr_gid != cr->cr_rgid || 7489 s_cr->cr_gid != cr->cr_sgid || 7490 (proc = ttoproc(curthread)) == NULL || 7491 (proc->p_flag & SNOCD)) 7492 continue; 7493 } 7494 7495 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 7496 cred_t *cr; 7497 cred_t *s_cr = 7498 ecb->dte_state->dts_cred.dcr_cred; 7499 7500 ASSERT(s_cr != NULL); 7501 7502 if ((cr = CRED()) == NULL || 7503 s_cr->cr_zone->zone_id != 7504 cr->cr_zone->zone_id) 7505 continue; 7506 } 7507 #endif 7508 } 7509 7510 if (now - state->dts_alive > dtrace_deadman_timeout) { 7511 /* 7512 * We seem to be dead. Unless we (a) have kernel 7513 * destructive permissions (b) have explicitly enabled 7514 * destructive actions and (c) destructive actions have 7515 * not been disabled, we're going to transition into 7516 * the KILLED state, from which no further processing 7517 * on this state will be performed. 7518 */ 7519 if (!dtrace_priv_kernel_destructive(state) || 7520 !state->dts_cred.dcr_destructive || 7521 dtrace_destructive_disallow) { 7522 void *activity = &state->dts_activity; 7523 dtrace_activity_t curstate; 7524 7525 do { 7526 curstate = state->dts_activity; 7527 } while (dtrace_cas32(activity, curstate, 7528 DTRACE_ACTIVITY_KILLED) != curstate); 7529 7530 continue; 7531 } 7532 } 7533 7534 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7535 ecb->dte_alignment, state, &mstate)) < 0) 7536 continue; 7537 7538 tomax = buf->dtb_tomax; 7539 ASSERT(tomax != NULL); 7540 7541 if (ecb->dte_size != 0) { 7542 dtrace_rechdr_t dtrh; 7543 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7544 mstate.dtms_timestamp = dtrace_gethrtime(); 7545 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7546 } 7547 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7548 dtrh.dtrh_epid = ecb->dte_epid; 7549 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7550 mstate.dtms_timestamp); 7551 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7552 } 7553 7554 mstate.dtms_epid = ecb->dte_epid; 7555 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7556 7557 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7558 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 7559 else 7560 mstate.dtms_access = 0; 7561 7562 if (pred != NULL) { 7563 dtrace_difo_t *dp = pred->dtp_difo; 7564 uint64_t rval; 7565 7566 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7567 7568 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7569 dtrace_cacheid_t cid = probe->dtpr_predcache; 7570 7571 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7572 /* 7573 * Update the predicate cache... 7574 */ 7575 ASSERT(cid == pred->dtp_cacheid); 7576 curthread->t_predcache = cid; 7577 } 7578 7579 continue; 7580 } 7581 } 7582 7583 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7584 act != NULL; act = act->dta_next) { 7585 size_t valoffs; 7586 dtrace_difo_t *dp; 7587 dtrace_recdesc_t *rec = &act->dta_rec; 7588 7589 size = rec->dtrd_size; 7590 valoffs = offs + rec->dtrd_offset; 7591 7592 if (DTRACEACT_ISAGG(act->dta_kind)) { 7593 uint64_t v = 0xbad; 7594 dtrace_aggregation_t *agg; 7595 7596 agg = (dtrace_aggregation_t *)act; 7597 7598 if ((dp = act->dta_difo) != NULL) 7599 v = dtrace_dif_emulate(dp, 7600 &mstate, vstate, state); 7601 7602 if (*flags & CPU_DTRACE_ERROR) 7603 continue; 7604 7605 /* 7606 * Note that we always pass the expression 7607 * value from the previous iteration of the 7608 * action loop. This value will only be used 7609 * if there is an expression argument to the 7610 * aggregating action, denoted by the 7611 * dtag_hasarg field. 7612 */ 7613 dtrace_aggregate(agg, buf, 7614 offs, aggbuf, v, val); 7615 continue; 7616 } 7617 7618 switch (act->dta_kind) { 7619 case DTRACEACT_STOP: 7620 if (dtrace_priv_proc_destructive(state)) 7621 dtrace_action_stop(); 7622 continue; 7623 7624 case DTRACEACT_BREAKPOINT: 7625 if (dtrace_priv_kernel_destructive(state)) 7626 dtrace_action_breakpoint(ecb); 7627 continue; 7628 7629 case DTRACEACT_PANIC: 7630 if (dtrace_priv_kernel_destructive(state)) 7631 dtrace_action_panic(ecb); 7632 continue; 7633 7634 case DTRACEACT_STACK: 7635 if (!dtrace_priv_kernel(state)) 7636 continue; 7637 7638 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7639 size / sizeof (pc_t), probe->dtpr_aframes, 7640 DTRACE_ANCHORED(probe) ? NULL : 7641 (uint32_t *)arg0); 7642 continue; 7643 7644 case DTRACEACT_JSTACK: 7645 case DTRACEACT_USTACK: 7646 if (!dtrace_priv_proc(state)) 7647 continue; 7648 7649 /* 7650 * See comment in DIF_VAR_PID. 7651 */ 7652 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7653 CPU_ON_INTR(CPU)) { 7654 int depth = DTRACE_USTACK_NFRAMES( 7655 rec->dtrd_arg) + 1; 7656 7657 dtrace_bzero((void *)(tomax + valoffs), 7658 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7659 + depth * sizeof (uint64_t)); 7660 7661 continue; 7662 } 7663 7664 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7665 curproc->p_dtrace_helpers != NULL) { 7666 /* 7667 * This is the slow path -- we have 7668 * allocated string space, and we're 7669 * getting the stack of a process that 7670 * has helpers. Call into a separate 7671 * routine to perform this processing. 7672 */ 7673 dtrace_action_ustack(&mstate, state, 7674 (uint64_t *)(tomax + valoffs), 7675 rec->dtrd_arg); 7676 continue; 7677 } 7678 7679 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7680 dtrace_getupcstack((uint64_t *) 7681 (tomax + valoffs), 7682 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7683 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7684 continue; 7685 7686 default: 7687 break; 7688 } 7689 7690 dp = act->dta_difo; 7691 ASSERT(dp != NULL); 7692 7693 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7694 7695 if (*flags & CPU_DTRACE_ERROR) 7696 continue; 7697 7698 switch (act->dta_kind) { 7699 case DTRACEACT_SPECULATE: { 7700 dtrace_rechdr_t *dtrh; 7701 7702 ASSERT(buf == &state->dts_buffer[cpuid]); 7703 buf = dtrace_speculation_buffer(state, 7704 cpuid, val); 7705 7706 if (buf == NULL) { 7707 *flags |= CPU_DTRACE_DROP; 7708 continue; 7709 } 7710 7711 offs = dtrace_buffer_reserve(buf, 7712 ecb->dte_needed, ecb->dte_alignment, 7713 state, NULL); 7714 7715 if (offs < 0) { 7716 *flags |= CPU_DTRACE_DROP; 7717 continue; 7718 } 7719 7720 tomax = buf->dtb_tomax; 7721 ASSERT(tomax != NULL); 7722 7723 if (ecb->dte_size == 0) 7724 continue; 7725 7726 ASSERT3U(ecb->dte_size, >=, 7727 sizeof (dtrace_rechdr_t)); 7728 dtrh = ((void *)(tomax + offs)); 7729 dtrh->dtrh_epid = ecb->dte_epid; 7730 /* 7731 * When the speculation is committed, all of 7732 * the records in the speculative buffer will 7733 * have their timestamps set to the commit 7734 * time. Until then, it is set to a sentinel 7735 * value, for debugability. 7736 */ 7737 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7738 continue; 7739 } 7740 7741 case DTRACEACT_PRINTM: { 7742 /* The DIF returns a 'memref'. */ 7743 uintptr_t *memref = (uintptr_t *)(uintptr_t) val; 7744 7745 /* Get the size from the memref. */ 7746 size = memref[1]; 7747 7748 /* 7749 * Check if the size exceeds the allocated 7750 * buffer size. 7751 */ 7752 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) { 7753 /* Flag a drop! */ 7754 *flags |= CPU_DTRACE_DROP; 7755 continue; 7756 } 7757 7758 /* Store the size in the buffer first. */ 7759 DTRACE_STORE(uintptr_t, tomax, 7760 valoffs, size); 7761 7762 /* 7763 * Offset the buffer address to the start 7764 * of the data. 7765 */ 7766 valoffs += sizeof(uintptr_t); 7767 7768 /* 7769 * Reset to the memory address rather than 7770 * the memref array, then let the BYREF 7771 * code below do the work to store the 7772 * memory data in the buffer. 7773 */ 7774 val = memref[0]; 7775 break; 7776 } 7777 7778 case DTRACEACT_CHILL: 7779 if (dtrace_priv_kernel_destructive(state)) 7780 dtrace_action_chill(&mstate, val); 7781 continue; 7782 7783 case DTRACEACT_RAISE: 7784 if (dtrace_priv_proc_destructive(state)) 7785 dtrace_action_raise(val); 7786 continue; 7787 7788 case DTRACEACT_COMMIT: 7789 ASSERT(!committed); 7790 7791 /* 7792 * We need to commit our buffer state. 7793 */ 7794 if (ecb->dte_size) 7795 buf->dtb_offset = offs + ecb->dte_size; 7796 buf = &state->dts_buffer[cpuid]; 7797 dtrace_speculation_commit(state, cpuid, val); 7798 committed = 1; 7799 continue; 7800 7801 case DTRACEACT_DISCARD: 7802 dtrace_speculation_discard(state, cpuid, val); 7803 continue; 7804 7805 case DTRACEACT_DIFEXPR: 7806 case DTRACEACT_LIBACT: 7807 case DTRACEACT_PRINTF: 7808 case DTRACEACT_PRINTA: 7809 case DTRACEACT_SYSTEM: 7810 case DTRACEACT_FREOPEN: 7811 case DTRACEACT_TRACEMEM: 7812 break; 7813 7814 case DTRACEACT_TRACEMEM_DYNSIZE: 7815 tracememsize = val; 7816 break; 7817 7818 case DTRACEACT_SYM: 7819 case DTRACEACT_MOD: 7820 if (!dtrace_priv_kernel(state)) 7821 continue; 7822 break; 7823 7824 case DTRACEACT_USYM: 7825 case DTRACEACT_UMOD: 7826 case DTRACEACT_UADDR: { 7827 #ifdef illumos 7828 struct pid *pid = curthread->t_procp->p_pidp; 7829 #endif 7830 7831 if (!dtrace_priv_proc(state)) 7832 continue; 7833 7834 DTRACE_STORE(uint64_t, tomax, 7835 #ifdef illumos 7836 valoffs, (uint64_t)pid->pid_id); 7837 #else 7838 valoffs, (uint64_t) curproc->p_pid); 7839 #endif 7840 DTRACE_STORE(uint64_t, tomax, 7841 valoffs + sizeof (uint64_t), val); 7842 7843 continue; 7844 } 7845 7846 case DTRACEACT_EXIT: { 7847 /* 7848 * For the exit action, we are going to attempt 7849 * to atomically set our activity to be 7850 * draining. If this fails (either because 7851 * another CPU has beat us to the exit action, 7852 * or because our current activity is something 7853 * other than ACTIVE or WARMUP), we will 7854 * continue. This assures that the exit action 7855 * can be successfully recorded at most once 7856 * when we're in the ACTIVE state. If we're 7857 * encountering the exit() action while in 7858 * COOLDOWN, however, we want to honor the new 7859 * status code. (We know that we're the only 7860 * thread in COOLDOWN, so there is no race.) 7861 */ 7862 void *activity = &state->dts_activity; 7863 dtrace_activity_t curstate = state->dts_activity; 7864 7865 if (curstate == DTRACE_ACTIVITY_COOLDOWN) 7866 break; 7867 7868 if (curstate != DTRACE_ACTIVITY_WARMUP) 7869 curstate = DTRACE_ACTIVITY_ACTIVE; 7870 7871 if (dtrace_cas32(activity, curstate, 7872 DTRACE_ACTIVITY_DRAINING) != curstate) { 7873 *flags |= CPU_DTRACE_DROP; 7874 continue; 7875 } 7876 7877 break; 7878 } 7879 7880 default: 7881 ASSERT(0); 7882 } 7883 7884 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7885 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7886 uintptr_t end = valoffs + size; 7887 7888 if (tracememsize != 0 && 7889 valoffs + tracememsize < end) { 7890 end = valoffs + tracememsize; 7891 tracememsize = 0; 7892 } 7893 7894 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7895 !dtrace_vcanload((void *)(uintptr_t)val, 7896 &dp->dtdo_rtype, NULL, &mstate, vstate)) 7897 continue; 7898 7899 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7900 &val, end, act->dta_intuple, 7901 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7902 DIF_TF_BYREF: DIF_TF_BYUREF); 7903 continue; 7904 } 7905 7906 switch (size) { 7907 case 0: 7908 break; 7909 7910 case sizeof (uint8_t): 7911 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7912 break; 7913 case sizeof (uint16_t): 7914 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7915 break; 7916 case sizeof (uint32_t): 7917 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7918 break; 7919 case sizeof (uint64_t): 7920 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7921 break; 7922 default: 7923 /* 7924 * Any other size should have been returned by 7925 * reference, not by value. 7926 */ 7927 ASSERT(0); 7928 break; 7929 } 7930 } 7931 7932 if (*flags & CPU_DTRACE_DROP) 7933 continue; 7934 7935 if (*flags & CPU_DTRACE_FAULT) { 7936 int ndx; 7937 dtrace_action_t *err; 7938 7939 buf->dtb_errors++; 7940 7941 if (probe->dtpr_id == dtrace_probeid_error) { 7942 /* 7943 * There's nothing we can do -- we had an 7944 * error on the error probe. We bump an 7945 * error counter to at least indicate that 7946 * this condition happened. 7947 */ 7948 dtrace_error(&state->dts_dblerrors); 7949 continue; 7950 } 7951 7952 if (vtime) { 7953 /* 7954 * Before recursing on dtrace_probe(), we 7955 * need to explicitly clear out our start 7956 * time to prevent it from being accumulated 7957 * into t_dtrace_vtime. 7958 */ 7959 curthread->t_dtrace_start = 0; 7960 } 7961 7962 /* 7963 * Iterate over the actions to figure out which action 7964 * we were processing when we experienced the error. 7965 * Note that act points _past_ the faulting action; if 7966 * act is ecb->dte_action, the fault was in the 7967 * predicate, if it's ecb->dte_action->dta_next it's 7968 * in action #1, and so on. 7969 */ 7970 for (err = ecb->dte_action, ndx = 0; 7971 err != act; err = err->dta_next, ndx++) 7972 continue; 7973 7974 dtrace_probe_error(state, ecb->dte_epid, ndx, 7975 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7976 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7977 cpu_core[cpuid].cpuc_dtrace_illval); 7978 7979 continue; 7980 } 7981 7982 if (!committed) 7983 buf->dtb_offset = offs + ecb->dte_size; 7984 } 7985 7986 if (vtime) 7987 curthread->t_dtrace_start = dtrace_gethrtime(); 7988 7989 dtrace_probe_exit(cookie); 7990 } 7991 7992 /* 7993 * DTrace Probe Hashing Functions 7994 * 7995 * The functions in this section (and indeed, the functions in remaining 7996 * sections) are not _called_ from probe context. (Any exceptions to this are 7997 * marked with a "Note:".) Rather, they are called from elsewhere in the 7998 * DTrace framework to look-up probes in, add probes to and remove probes from 7999 * the DTrace probe hashes. (Each probe is hashed by each element of the 8000 * probe tuple -- allowing for fast lookups, regardless of what was 8001 * specified.) 8002 */ 8003 static uint_t 8004 dtrace_hash_str(const char *p) 8005 { 8006 unsigned int g; 8007 uint_t hval = 0; 8008 8009 while (*p) { 8010 hval = (hval << 4) + *p++; 8011 if ((g = (hval & 0xf0000000)) != 0) 8012 hval ^= g >> 24; 8013 hval &= ~g; 8014 } 8015 return (hval); 8016 } 8017 8018 static dtrace_hash_t * 8019 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 8020 { 8021 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 8022 8023 hash->dth_stroffs = stroffs; 8024 hash->dth_nextoffs = nextoffs; 8025 hash->dth_prevoffs = prevoffs; 8026 8027 hash->dth_size = 1; 8028 hash->dth_mask = hash->dth_size - 1; 8029 8030 hash->dth_tab = kmem_zalloc(hash->dth_size * 8031 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 8032 8033 return (hash); 8034 } 8035 8036 static void 8037 dtrace_hash_destroy(dtrace_hash_t *hash) 8038 { 8039 #ifdef DEBUG 8040 int i; 8041 8042 for (i = 0; i < hash->dth_size; i++) 8043 ASSERT(hash->dth_tab[i] == NULL); 8044 #endif 8045 8046 kmem_free(hash->dth_tab, 8047 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 8048 kmem_free(hash, sizeof (dtrace_hash_t)); 8049 } 8050 8051 static void 8052 dtrace_hash_resize(dtrace_hash_t *hash) 8053 { 8054 int size = hash->dth_size, i, ndx; 8055 int new_size = hash->dth_size << 1; 8056 int new_mask = new_size - 1; 8057 dtrace_hashbucket_t **new_tab, *bucket, *next; 8058 8059 ASSERT((new_size & new_mask) == 0); 8060 8061 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 8062 8063 for (i = 0; i < size; i++) { 8064 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 8065 dtrace_probe_t *probe = bucket->dthb_chain; 8066 8067 ASSERT(probe != NULL); 8068 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 8069 8070 next = bucket->dthb_next; 8071 bucket->dthb_next = new_tab[ndx]; 8072 new_tab[ndx] = bucket; 8073 } 8074 } 8075 8076 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 8077 hash->dth_tab = new_tab; 8078 hash->dth_size = new_size; 8079 hash->dth_mask = new_mask; 8080 } 8081 8082 static void 8083 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 8084 { 8085 int hashval = DTRACE_HASHSTR(hash, new); 8086 int ndx = hashval & hash->dth_mask; 8087 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8088 dtrace_probe_t **nextp, **prevp; 8089 8090 for (; bucket != NULL; bucket = bucket->dthb_next) { 8091 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 8092 goto add; 8093 } 8094 8095 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 8096 dtrace_hash_resize(hash); 8097 dtrace_hash_add(hash, new); 8098 return; 8099 } 8100 8101 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 8102 bucket->dthb_next = hash->dth_tab[ndx]; 8103 hash->dth_tab[ndx] = bucket; 8104 hash->dth_nbuckets++; 8105 8106 add: 8107 nextp = DTRACE_HASHNEXT(hash, new); 8108 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 8109 *nextp = bucket->dthb_chain; 8110 8111 if (bucket->dthb_chain != NULL) { 8112 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 8113 ASSERT(*prevp == NULL); 8114 *prevp = new; 8115 } 8116 8117 bucket->dthb_chain = new; 8118 bucket->dthb_len++; 8119 } 8120 8121 static dtrace_probe_t * 8122 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 8123 { 8124 int hashval = DTRACE_HASHSTR(hash, template); 8125 int ndx = hashval & hash->dth_mask; 8126 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8127 8128 for (; bucket != NULL; bucket = bucket->dthb_next) { 8129 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8130 return (bucket->dthb_chain); 8131 } 8132 8133 return (NULL); 8134 } 8135 8136 static int 8137 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 8138 { 8139 int hashval = DTRACE_HASHSTR(hash, template); 8140 int ndx = hashval & hash->dth_mask; 8141 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8142 8143 for (; bucket != NULL; bucket = bucket->dthb_next) { 8144 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 8145 return (bucket->dthb_len); 8146 } 8147 8148 return (0); 8149 } 8150 8151 static void 8152 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 8153 { 8154 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 8155 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 8156 8157 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 8158 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 8159 8160 /* 8161 * Find the bucket that we're removing this probe from. 8162 */ 8163 for (; bucket != NULL; bucket = bucket->dthb_next) { 8164 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 8165 break; 8166 } 8167 8168 ASSERT(bucket != NULL); 8169 8170 if (*prevp == NULL) { 8171 if (*nextp == NULL) { 8172 /* 8173 * The removed probe was the only probe on this 8174 * bucket; we need to remove the bucket. 8175 */ 8176 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 8177 8178 ASSERT(bucket->dthb_chain == probe); 8179 ASSERT(b != NULL); 8180 8181 if (b == bucket) { 8182 hash->dth_tab[ndx] = bucket->dthb_next; 8183 } else { 8184 while (b->dthb_next != bucket) 8185 b = b->dthb_next; 8186 b->dthb_next = bucket->dthb_next; 8187 } 8188 8189 ASSERT(hash->dth_nbuckets > 0); 8190 hash->dth_nbuckets--; 8191 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 8192 return; 8193 } 8194 8195 bucket->dthb_chain = *nextp; 8196 } else { 8197 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 8198 } 8199 8200 if (*nextp != NULL) 8201 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 8202 } 8203 8204 /* 8205 * DTrace Utility Functions 8206 * 8207 * These are random utility functions that are _not_ called from probe context. 8208 */ 8209 static int 8210 dtrace_badattr(const dtrace_attribute_t *a) 8211 { 8212 return (a->dtat_name > DTRACE_STABILITY_MAX || 8213 a->dtat_data > DTRACE_STABILITY_MAX || 8214 a->dtat_class > DTRACE_CLASS_MAX); 8215 } 8216 8217 /* 8218 * Return a duplicate copy of a string. If the specified string is NULL, 8219 * this function returns a zero-length string. 8220 */ 8221 static char * 8222 dtrace_strdup(const char *str) 8223 { 8224 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 8225 8226 if (str != NULL) 8227 (void) strcpy(new, str); 8228 8229 return (new); 8230 } 8231 8232 #define DTRACE_ISALPHA(c) \ 8233 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 8234 8235 static int 8236 dtrace_badname(const char *s) 8237 { 8238 char c; 8239 8240 if (s == NULL || (c = *s++) == '\0') 8241 return (0); 8242 8243 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 8244 return (1); 8245 8246 while ((c = *s++) != '\0') { 8247 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 8248 c != '-' && c != '_' && c != '.' && c != '`') 8249 return (1); 8250 } 8251 8252 return (0); 8253 } 8254 8255 static void 8256 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 8257 { 8258 uint32_t priv; 8259 8260 #ifdef illumos 8261 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 8262 /* 8263 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 8264 */ 8265 priv = DTRACE_PRIV_ALL; 8266 } else { 8267 *uidp = crgetuid(cr); 8268 *zoneidp = crgetzoneid(cr); 8269 8270 priv = 0; 8271 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 8272 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 8273 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 8274 priv |= DTRACE_PRIV_USER; 8275 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 8276 priv |= DTRACE_PRIV_PROC; 8277 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 8278 priv |= DTRACE_PRIV_OWNER; 8279 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 8280 priv |= DTRACE_PRIV_ZONEOWNER; 8281 } 8282 #else 8283 priv = DTRACE_PRIV_ALL; 8284 #endif 8285 8286 *privp = priv; 8287 } 8288 8289 #ifdef DTRACE_ERRDEBUG 8290 static void 8291 dtrace_errdebug(const char *str) 8292 { 8293 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; 8294 int occupied = 0; 8295 8296 mutex_enter(&dtrace_errlock); 8297 dtrace_errlast = str; 8298 dtrace_errthread = curthread; 8299 8300 while (occupied++ < DTRACE_ERRHASHSZ) { 8301 if (dtrace_errhash[hval].dter_msg == str) { 8302 dtrace_errhash[hval].dter_count++; 8303 goto out; 8304 } 8305 8306 if (dtrace_errhash[hval].dter_msg != NULL) { 8307 hval = (hval + 1) % DTRACE_ERRHASHSZ; 8308 continue; 8309 } 8310 8311 dtrace_errhash[hval].dter_msg = str; 8312 dtrace_errhash[hval].dter_count = 1; 8313 goto out; 8314 } 8315 8316 panic("dtrace: undersized error hash"); 8317 out: 8318 mutex_exit(&dtrace_errlock); 8319 } 8320 #endif 8321 8322 /* 8323 * DTrace Matching Functions 8324 * 8325 * These functions are used to match groups of probes, given some elements of 8326 * a probe tuple, or some globbed expressions for elements of a probe tuple. 8327 */ 8328 static int 8329 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 8330 zoneid_t zoneid) 8331 { 8332 if (priv != DTRACE_PRIV_ALL) { 8333 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 8334 uint32_t match = priv & ppriv; 8335 8336 /* 8337 * No PRIV_DTRACE_* privileges... 8338 */ 8339 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 8340 DTRACE_PRIV_KERNEL)) == 0) 8341 return (0); 8342 8343 /* 8344 * No matching bits, but there were bits to match... 8345 */ 8346 if (match == 0 && ppriv != 0) 8347 return (0); 8348 8349 /* 8350 * Need to have permissions to the process, but don't... 8351 */ 8352 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 8353 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 8354 return (0); 8355 } 8356 8357 /* 8358 * Need to be in the same zone unless we possess the 8359 * privilege to examine all zones. 8360 */ 8361 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 8362 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 8363 return (0); 8364 } 8365 } 8366 8367 return (1); 8368 } 8369 8370 /* 8371 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 8372 * consists of input pattern strings and an ops-vector to evaluate them. 8373 * This function returns >0 for match, 0 for no match, and <0 for error. 8374 */ 8375 static int 8376 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 8377 uint32_t priv, uid_t uid, zoneid_t zoneid) 8378 { 8379 dtrace_provider_t *pvp = prp->dtpr_provider; 8380 int rv; 8381 8382 if (pvp->dtpv_defunct) 8383 return (0); 8384 8385 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 8386 return (rv); 8387 8388 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 8389 return (rv); 8390 8391 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 8392 return (rv); 8393 8394 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 8395 return (rv); 8396 8397 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 8398 return (0); 8399 8400 return (rv); 8401 } 8402 8403 /* 8404 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 8405 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 8406 * libc's version, the kernel version only applies to 8-bit ASCII strings. 8407 * In addition, all of the recursion cases except for '*' matching have been 8408 * unwound. For '*', we still implement recursive evaluation, but a depth 8409 * counter is maintained and matching is aborted if we recurse too deep. 8410 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 8411 */ 8412 static int 8413 dtrace_match_glob(const char *s, const char *p, int depth) 8414 { 8415 const char *olds; 8416 char s1, c; 8417 int gs; 8418 8419 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 8420 return (-1); 8421 8422 if (s == NULL) 8423 s = ""; /* treat NULL as empty string */ 8424 8425 top: 8426 olds = s; 8427 s1 = *s++; 8428 8429 if (p == NULL) 8430 return (0); 8431 8432 if ((c = *p++) == '\0') 8433 return (s1 == '\0'); 8434 8435 switch (c) { 8436 case '[': { 8437 int ok = 0, notflag = 0; 8438 char lc = '\0'; 8439 8440 if (s1 == '\0') 8441 return (0); 8442 8443 if (*p == '!') { 8444 notflag = 1; 8445 p++; 8446 } 8447 8448 if ((c = *p++) == '\0') 8449 return (0); 8450 8451 do { 8452 if (c == '-' && lc != '\0' && *p != ']') { 8453 if ((c = *p++) == '\0') 8454 return (0); 8455 if (c == '\\' && (c = *p++) == '\0') 8456 return (0); 8457 8458 if (notflag) { 8459 if (s1 < lc || s1 > c) 8460 ok++; 8461 else 8462 return (0); 8463 } else if (lc <= s1 && s1 <= c) 8464 ok++; 8465 8466 } else if (c == '\\' && (c = *p++) == '\0') 8467 return (0); 8468 8469 lc = c; /* save left-hand 'c' for next iteration */ 8470 8471 if (notflag) { 8472 if (s1 != c) 8473 ok++; 8474 else 8475 return (0); 8476 } else if (s1 == c) 8477 ok++; 8478 8479 if ((c = *p++) == '\0') 8480 return (0); 8481 8482 } while (c != ']'); 8483 8484 if (ok) 8485 goto top; 8486 8487 return (0); 8488 } 8489 8490 case '\\': 8491 if ((c = *p++) == '\0') 8492 return (0); 8493 /*FALLTHRU*/ 8494 8495 default: 8496 if (c != s1) 8497 return (0); 8498 /*FALLTHRU*/ 8499 8500 case '?': 8501 if (s1 != '\0') 8502 goto top; 8503 return (0); 8504 8505 case '*': 8506 while (*p == '*') 8507 p++; /* consecutive *'s are identical to a single one */ 8508 8509 if (*p == '\0') 8510 return (1); 8511 8512 for (s = olds; *s != '\0'; s++) { 8513 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8514 return (gs); 8515 } 8516 8517 return (0); 8518 } 8519 } 8520 8521 /*ARGSUSED*/ 8522 static int 8523 dtrace_match_string(const char *s, const char *p, int depth) 8524 { 8525 return (s != NULL && strcmp(s, p) == 0); 8526 } 8527 8528 /*ARGSUSED*/ 8529 static int 8530 dtrace_match_nul(const char *s, const char *p, int depth) 8531 { 8532 return (1); /* always match the empty pattern */ 8533 } 8534 8535 /*ARGSUSED*/ 8536 static int 8537 dtrace_match_nonzero(const char *s, const char *p, int depth) 8538 { 8539 return (s != NULL && s[0] != '\0'); 8540 } 8541 8542 static int 8543 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8544 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8545 { 8546 dtrace_probe_t template, *probe; 8547 dtrace_hash_t *hash = NULL; 8548 int len, best = INT_MAX, nmatched = 0; 8549 dtrace_id_t i; 8550 8551 ASSERT(MUTEX_HELD(&dtrace_lock)); 8552 8553 /* 8554 * If the probe ID is specified in the key, just lookup by ID and 8555 * invoke the match callback once if a matching probe is found. 8556 */ 8557 if (pkp->dtpk_id != DTRACE_IDNONE) { 8558 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8559 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8560 (void) (*matched)(probe, arg); 8561 nmatched++; 8562 } 8563 return (nmatched); 8564 } 8565 8566 template.dtpr_mod = (char *)pkp->dtpk_mod; 8567 template.dtpr_func = (char *)pkp->dtpk_func; 8568 template.dtpr_name = (char *)pkp->dtpk_name; 8569 8570 /* 8571 * We want to find the most distinct of the module name, function 8572 * name, and name. So for each one that is not a glob pattern or 8573 * empty string, we perform a lookup in the corresponding hash and 8574 * use the hash table with the fewest collisions to do our search. 8575 */ 8576 if (pkp->dtpk_mmatch == &dtrace_match_string && 8577 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8578 best = len; 8579 hash = dtrace_bymod; 8580 } 8581 8582 if (pkp->dtpk_fmatch == &dtrace_match_string && 8583 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8584 best = len; 8585 hash = dtrace_byfunc; 8586 } 8587 8588 if (pkp->dtpk_nmatch == &dtrace_match_string && 8589 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8590 best = len; 8591 hash = dtrace_byname; 8592 } 8593 8594 /* 8595 * If we did not select a hash table, iterate over every probe and 8596 * invoke our callback for each one that matches our input probe key. 8597 */ 8598 if (hash == NULL) { 8599 for (i = 0; i < dtrace_nprobes; i++) { 8600 if ((probe = dtrace_probes[i]) == NULL || 8601 dtrace_match_probe(probe, pkp, priv, uid, 8602 zoneid) <= 0) 8603 continue; 8604 8605 nmatched++; 8606 8607 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8608 break; 8609 } 8610 8611 return (nmatched); 8612 } 8613 8614 /* 8615 * If we selected a hash table, iterate over each probe of the same key 8616 * name and invoke the callback for every probe that matches the other 8617 * attributes of our input probe key. 8618 */ 8619 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8620 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8621 8622 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8623 continue; 8624 8625 nmatched++; 8626 8627 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 8628 break; 8629 } 8630 8631 return (nmatched); 8632 } 8633 8634 /* 8635 * Return the function pointer dtrace_probecmp() should use to compare the 8636 * specified pattern with a string. For NULL or empty patterns, we select 8637 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8638 * For non-empty non-glob strings, we use dtrace_match_string(). 8639 */ 8640 static dtrace_probekey_f * 8641 dtrace_probekey_func(const char *p) 8642 { 8643 char c; 8644 8645 if (p == NULL || *p == '\0') 8646 return (&dtrace_match_nul); 8647 8648 while ((c = *p++) != '\0') { 8649 if (c == '[' || c == '?' || c == '*' || c == '\\') 8650 return (&dtrace_match_glob); 8651 } 8652 8653 return (&dtrace_match_string); 8654 } 8655 8656 /* 8657 * Build a probe comparison key for use with dtrace_match_probe() from the 8658 * given probe description. By convention, a null key only matches anchored 8659 * probes: if each field is the empty string, reset dtpk_fmatch to 8660 * dtrace_match_nonzero(). 8661 */ 8662 static void 8663 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8664 { 8665 pkp->dtpk_prov = pdp->dtpd_provider; 8666 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8667 8668 pkp->dtpk_mod = pdp->dtpd_mod; 8669 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8670 8671 pkp->dtpk_func = pdp->dtpd_func; 8672 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8673 8674 pkp->dtpk_name = pdp->dtpd_name; 8675 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8676 8677 pkp->dtpk_id = pdp->dtpd_id; 8678 8679 if (pkp->dtpk_id == DTRACE_IDNONE && 8680 pkp->dtpk_pmatch == &dtrace_match_nul && 8681 pkp->dtpk_mmatch == &dtrace_match_nul && 8682 pkp->dtpk_fmatch == &dtrace_match_nul && 8683 pkp->dtpk_nmatch == &dtrace_match_nul) 8684 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8685 } 8686 8687 /* 8688 * DTrace Provider-to-Framework API Functions 8689 * 8690 * These functions implement much of the Provider-to-Framework API, as 8691 * described in <sys/dtrace.h>. The parts of the API not in this section are 8692 * the functions in the API for probe management (found below), and 8693 * dtrace_probe() itself (found above). 8694 */ 8695 8696 /* 8697 * Register the calling provider with the DTrace framework. This should 8698 * generally be called by DTrace providers in their attach(9E) entry point. 8699 */ 8700 int 8701 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8702 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8703 { 8704 dtrace_provider_t *provider; 8705 8706 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8707 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8708 "arguments", name ? name : "<NULL>"); 8709 return (EINVAL); 8710 } 8711 8712 if (name[0] == '\0' || dtrace_badname(name)) { 8713 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8714 "provider name", name); 8715 return (EINVAL); 8716 } 8717 8718 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8719 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8720 pops->dtps_destroy == NULL || 8721 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8722 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8723 "provider ops", name); 8724 return (EINVAL); 8725 } 8726 8727 if (dtrace_badattr(&pap->dtpa_provider) || 8728 dtrace_badattr(&pap->dtpa_mod) || 8729 dtrace_badattr(&pap->dtpa_func) || 8730 dtrace_badattr(&pap->dtpa_name) || 8731 dtrace_badattr(&pap->dtpa_args)) { 8732 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8733 "provider attributes", name); 8734 return (EINVAL); 8735 } 8736 8737 if (priv & ~DTRACE_PRIV_ALL) { 8738 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8739 "privilege attributes", name); 8740 return (EINVAL); 8741 } 8742 8743 if ((priv & DTRACE_PRIV_KERNEL) && 8744 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8745 pops->dtps_usermode == NULL) { 8746 cmn_err(CE_WARN, "failed to register provider '%s': need " 8747 "dtps_usermode() op for given privilege attributes", name); 8748 return (EINVAL); 8749 } 8750 8751 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8752 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8753 (void) strcpy(provider->dtpv_name, name); 8754 8755 provider->dtpv_attr = *pap; 8756 provider->dtpv_priv.dtpp_flags = priv; 8757 if (cr != NULL) { 8758 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8759 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8760 } 8761 provider->dtpv_pops = *pops; 8762 8763 if (pops->dtps_provide == NULL) { 8764 ASSERT(pops->dtps_provide_module != NULL); 8765 provider->dtpv_pops.dtps_provide = 8766 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop; 8767 } 8768 8769 if (pops->dtps_provide_module == NULL) { 8770 ASSERT(pops->dtps_provide != NULL); 8771 provider->dtpv_pops.dtps_provide_module = 8772 (void (*)(void *, modctl_t *))dtrace_nullop; 8773 } 8774 8775 if (pops->dtps_suspend == NULL) { 8776 ASSERT(pops->dtps_resume == NULL); 8777 provider->dtpv_pops.dtps_suspend = 8778 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8779 provider->dtpv_pops.dtps_resume = 8780 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8781 } 8782 8783 provider->dtpv_arg = arg; 8784 *idp = (dtrace_provider_id_t)provider; 8785 8786 if (pops == &dtrace_provider_ops) { 8787 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8788 ASSERT(MUTEX_HELD(&dtrace_lock)); 8789 ASSERT(dtrace_anon.dta_enabling == NULL); 8790 8791 /* 8792 * We make sure that the DTrace provider is at the head of 8793 * the provider chain. 8794 */ 8795 provider->dtpv_next = dtrace_provider; 8796 dtrace_provider = provider; 8797 return (0); 8798 } 8799 8800 mutex_enter(&dtrace_provider_lock); 8801 mutex_enter(&dtrace_lock); 8802 8803 /* 8804 * If there is at least one provider registered, we'll add this 8805 * provider after the first provider. 8806 */ 8807 if (dtrace_provider != NULL) { 8808 provider->dtpv_next = dtrace_provider->dtpv_next; 8809 dtrace_provider->dtpv_next = provider; 8810 } else { 8811 dtrace_provider = provider; 8812 } 8813 8814 if (dtrace_retained != NULL) { 8815 dtrace_enabling_provide(provider); 8816 8817 /* 8818 * Now we need to call dtrace_enabling_matchall() -- which 8819 * will acquire cpu_lock and dtrace_lock. We therefore need 8820 * to drop all of our locks before calling into it... 8821 */ 8822 mutex_exit(&dtrace_lock); 8823 mutex_exit(&dtrace_provider_lock); 8824 dtrace_enabling_matchall(); 8825 8826 return (0); 8827 } 8828 8829 mutex_exit(&dtrace_lock); 8830 mutex_exit(&dtrace_provider_lock); 8831 8832 return (0); 8833 } 8834 8835 /* 8836 * Unregister the specified provider from the DTrace framework. This should 8837 * generally be called by DTrace providers in their detach(9E) entry point. 8838 */ 8839 int 8840 dtrace_unregister(dtrace_provider_id_t id) 8841 { 8842 dtrace_provider_t *old = (dtrace_provider_t *)id; 8843 dtrace_provider_t *prev = NULL; 8844 int i, self = 0, noreap = 0; 8845 dtrace_probe_t *probe, *first = NULL; 8846 8847 if (old->dtpv_pops.dtps_enable == 8848 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 8849 /* 8850 * If DTrace itself is the provider, we're called with locks 8851 * already held. 8852 */ 8853 ASSERT(old == dtrace_provider); 8854 #ifdef illumos 8855 ASSERT(dtrace_devi != NULL); 8856 #endif 8857 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8858 ASSERT(MUTEX_HELD(&dtrace_lock)); 8859 self = 1; 8860 8861 if (dtrace_provider->dtpv_next != NULL) { 8862 /* 8863 * There's another provider here; return failure. 8864 */ 8865 return (EBUSY); 8866 } 8867 } else { 8868 mutex_enter(&dtrace_provider_lock); 8869 #ifdef illumos 8870 mutex_enter(&mod_lock); 8871 #endif 8872 mutex_enter(&dtrace_lock); 8873 } 8874 8875 /* 8876 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8877 * probes, we refuse to let providers slither away, unless this 8878 * provider has already been explicitly invalidated. 8879 */ 8880 if (!old->dtpv_defunct && 8881 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8882 dtrace_anon.dta_state->dts_necbs > 0))) { 8883 if (!self) { 8884 mutex_exit(&dtrace_lock); 8885 #ifdef illumos 8886 mutex_exit(&mod_lock); 8887 #endif 8888 mutex_exit(&dtrace_provider_lock); 8889 } 8890 return (EBUSY); 8891 } 8892 8893 /* 8894 * Attempt to destroy the probes associated with this provider. 8895 */ 8896 for (i = 0; i < dtrace_nprobes; i++) { 8897 if ((probe = dtrace_probes[i]) == NULL) 8898 continue; 8899 8900 if (probe->dtpr_provider != old) 8901 continue; 8902 8903 if (probe->dtpr_ecb == NULL) 8904 continue; 8905 8906 /* 8907 * If we are trying to unregister a defunct provider, and the 8908 * provider was made defunct within the interval dictated by 8909 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8910 * attempt to reap our enablings. To denote that the provider 8911 * should reattempt to unregister itself at some point in the 8912 * future, we will return a differentiable error code (EAGAIN 8913 * instead of EBUSY) in this case. 8914 */ 8915 if (dtrace_gethrtime() - old->dtpv_defunct > 8916 dtrace_unregister_defunct_reap) 8917 noreap = 1; 8918 8919 if (!self) { 8920 mutex_exit(&dtrace_lock); 8921 #ifdef illumos 8922 mutex_exit(&mod_lock); 8923 #endif 8924 mutex_exit(&dtrace_provider_lock); 8925 } 8926 8927 if (noreap) 8928 return (EBUSY); 8929 8930 (void) taskq_dispatch(dtrace_taskq, 8931 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8932 8933 return (EAGAIN); 8934 } 8935 8936 /* 8937 * All of the probes for this provider are disabled; we can safely 8938 * remove all of them from their hash chains and from the probe array. 8939 */ 8940 for (i = 0; i < dtrace_nprobes; i++) { 8941 if ((probe = dtrace_probes[i]) == NULL) 8942 continue; 8943 8944 if (probe->dtpr_provider != old) 8945 continue; 8946 8947 dtrace_probes[i] = NULL; 8948 8949 dtrace_hash_remove(dtrace_bymod, probe); 8950 dtrace_hash_remove(dtrace_byfunc, probe); 8951 dtrace_hash_remove(dtrace_byname, probe); 8952 8953 if (first == NULL) { 8954 first = probe; 8955 probe->dtpr_nextmod = NULL; 8956 } else { 8957 probe->dtpr_nextmod = first; 8958 first = probe; 8959 } 8960 } 8961 8962 /* 8963 * The provider's probes have been removed from the hash chains and 8964 * from the probe array. Now issue a dtrace_sync() to be sure that 8965 * everyone has cleared out from any probe array processing. 8966 */ 8967 dtrace_sync(); 8968 8969 for (probe = first; probe != NULL; probe = first) { 8970 first = probe->dtpr_nextmod; 8971 8972 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8973 probe->dtpr_arg); 8974 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8975 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8976 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8977 #ifdef illumos 8978 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8979 #else 8980 free_unr(dtrace_arena, probe->dtpr_id); 8981 #endif 8982 kmem_free(probe, sizeof (dtrace_probe_t)); 8983 } 8984 8985 if ((prev = dtrace_provider) == old) { 8986 #ifdef illumos 8987 ASSERT(self || dtrace_devi == NULL); 8988 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8989 #endif 8990 dtrace_provider = old->dtpv_next; 8991 } else { 8992 while (prev != NULL && prev->dtpv_next != old) 8993 prev = prev->dtpv_next; 8994 8995 if (prev == NULL) { 8996 panic("attempt to unregister non-existent " 8997 "dtrace provider %p\n", (void *)id); 8998 } 8999 9000 prev->dtpv_next = old->dtpv_next; 9001 } 9002 9003 if (!self) { 9004 mutex_exit(&dtrace_lock); 9005 #ifdef illumos 9006 mutex_exit(&mod_lock); 9007 #endif 9008 mutex_exit(&dtrace_provider_lock); 9009 } 9010 9011 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 9012 kmem_free(old, sizeof (dtrace_provider_t)); 9013 9014 return (0); 9015 } 9016 9017 /* 9018 * Invalidate the specified provider. All subsequent probe lookups for the 9019 * specified provider will fail, but its probes will not be removed. 9020 */ 9021 void 9022 dtrace_invalidate(dtrace_provider_id_t id) 9023 { 9024 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 9025 9026 ASSERT(pvp->dtpv_pops.dtps_enable != 9027 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9028 9029 mutex_enter(&dtrace_provider_lock); 9030 mutex_enter(&dtrace_lock); 9031 9032 pvp->dtpv_defunct = dtrace_gethrtime(); 9033 9034 mutex_exit(&dtrace_lock); 9035 mutex_exit(&dtrace_provider_lock); 9036 } 9037 9038 /* 9039 * Indicate whether or not DTrace has attached. 9040 */ 9041 int 9042 dtrace_attached(void) 9043 { 9044 /* 9045 * dtrace_provider will be non-NULL iff the DTrace driver has 9046 * attached. (It's non-NULL because DTrace is always itself a 9047 * provider.) 9048 */ 9049 return (dtrace_provider != NULL); 9050 } 9051 9052 /* 9053 * Remove all the unenabled probes for the given provider. This function is 9054 * not unlike dtrace_unregister(), except that it doesn't remove the provider 9055 * -- just as many of its associated probes as it can. 9056 */ 9057 int 9058 dtrace_condense(dtrace_provider_id_t id) 9059 { 9060 dtrace_provider_t *prov = (dtrace_provider_t *)id; 9061 int i; 9062 dtrace_probe_t *probe; 9063 9064 /* 9065 * Make sure this isn't the dtrace provider itself. 9066 */ 9067 ASSERT(prov->dtpv_pops.dtps_enable != 9068 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 9069 9070 mutex_enter(&dtrace_provider_lock); 9071 mutex_enter(&dtrace_lock); 9072 9073 /* 9074 * Attempt to destroy the probes associated with this provider. 9075 */ 9076 for (i = 0; i < dtrace_nprobes; i++) { 9077 if ((probe = dtrace_probes[i]) == NULL) 9078 continue; 9079 9080 if (probe->dtpr_provider != prov) 9081 continue; 9082 9083 if (probe->dtpr_ecb != NULL) 9084 continue; 9085 9086 dtrace_probes[i] = NULL; 9087 9088 dtrace_hash_remove(dtrace_bymod, probe); 9089 dtrace_hash_remove(dtrace_byfunc, probe); 9090 dtrace_hash_remove(dtrace_byname, probe); 9091 9092 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 9093 probe->dtpr_arg); 9094 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 9095 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 9096 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 9097 kmem_free(probe, sizeof (dtrace_probe_t)); 9098 #ifdef illumos 9099 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 9100 #else 9101 free_unr(dtrace_arena, i + 1); 9102 #endif 9103 } 9104 9105 mutex_exit(&dtrace_lock); 9106 mutex_exit(&dtrace_provider_lock); 9107 9108 return (0); 9109 } 9110 9111 /* 9112 * DTrace Probe Management Functions 9113 * 9114 * The functions in this section perform the DTrace probe management, 9115 * including functions to create probes, look-up probes, and call into the 9116 * providers to request that probes be provided. Some of these functions are 9117 * in the Provider-to-Framework API; these functions can be identified by the 9118 * fact that they are not declared "static". 9119 */ 9120 9121 /* 9122 * Create a probe with the specified module name, function name, and name. 9123 */ 9124 dtrace_id_t 9125 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 9126 const char *func, const char *name, int aframes, void *arg) 9127 { 9128 dtrace_probe_t *probe, **probes; 9129 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 9130 dtrace_id_t id; 9131 9132 if (provider == dtrace_provider) { 9133 ASSERT(MUTEX_HELD(&dtrace_lock)); 9134 } else { 9135 mutex_enter(&dtrace_lock); 9136 } 9137 9138 #ifdef illumos 9139 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 9140 VM_BESTFIT | VM_SLEEP); 9141 #else 9142 id = alloc_unr(dtrace_arena); 9143 #endif 9144 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 9145 9146 probe->dtpr_id = id; 9147 probe->dtpr_gen = dtrace_probegen++; 9148 probe->dtpr_mod = dtrace_strdup(mod); 9149 probe->dtpr_func = dtrace_strdup(func); 9150 probe->dtpr_name = dtrace_strdup(name); 9151 probe->dtpr_arg = arg; 9152 probe->dtpr_aframes = aframes; 9153 probe->dtpr_provider = provider; 9154 9155 dtrace_hash_add(dtrace_bymod, probe); 9156 dtrace_hash_add(dtrace_byfunc, probe); 9157 dtrace_hash_add(dtrace_byname, probe); 9158 9159 if (id - 1 >= dtrace_nprobes) { 9160 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 9161 size_t nsize = osize << 1; 9162 9163 if (nsize == 0) { 9164 ASSERT(osize == 0); 9165 ASSERT(dtrace_probes == NULL); 9166 nsize = sizeof (dtrace_probe_t *); 9167 } 9168 9169 probes = kmem_zalloc(nsize, KM_SLEEP); 9170 9171 if (dtrace_probes == NULL) { 9172 ASSERT(osize == 0); 9173 dtrace_probes = probes; 9174 dtrace_nprobes = 1; 9175 } else { 9176 dtrace_probe_t **oprobes = dtrace_probes; 9177 9178 bcopy(oprobes, probes, osize); 9179 dtrace_membar_producer(); 9180 dtrace_probes = probes; 9181 9182 dtrace_sync(); 9183 9184 /* 9185 * All CPUs are now seeing the new probes array; we can 9186 * safely free the old array. 9187 */ 9188 kmem_free(oprobes, osize); 9189 dtrace_nprobes <<= 1; 9190 } 9191 9192 ASSERT(id - 1 < dtrace_nprobes); 9193 } 9194 9195 ASSERT(dtrace_probes[id - 1] == NULL); 9196 dtrace_probes[id - 1] = probe; 9197 9198 if (provider != dtrace_provider) 9199 mutex_exit(&dtrace_lock); 9200 9201 return (id); 9202 } 9203 9204 static dtrace_probe_t * 9205 dtrace_probe_lookup_id(dtrace_id_t id) 9206 { 9207 ASSERT(MUTEX_HELD(&dtrace_lock)); 9208 9209 if (id == 0 || id > dtrace_nprobes) 9210 return (NULL); 9211 9212 return (dtrace_probes[id - 1]); 9213 } 9214 9215 static int 9216 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 9217 { 9218 *((dtrace_id_t *)arg) = probe->dtpr_id; 9219 9220 return (DTRACE_MATCH_DONE); 9221 } 9222 9223 /* 9224 * Look up a probe based on provider and one or more of module name, function 9225 * name and probe name. 9226 */ 9227 dtrace_id_t 9228 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod, 9229 char *func, char *name) 9230 { 9231 dtrace_probekey_t pkey; 9232 dtrace_id_t id; 9233 int match; 9234 9235 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 9236 pkey.dtpk_pmatch = &dtrace_match_string; 9237 pkey.dtpk_mod = mod; 9238 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 9239 pkey.dtpk_func = func; 9240 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 9241 pkey.dtpk_name = name; 9242 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 9243 pkey.dtpk_id = DTRACE_IDNONE; 9244 9245 mutex_enter(&dtrace_lock); 9246 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 9247 dtrace_probe_lookup_match, &id); 9248 mutex_exit(&dtrace_lock); 9249 9250 ASSERT(match == 1 || match == 0); 9251 return (match ? id : 0); 9252 } 9253 9254 /* 9255 * Returns the probe argument associated with the specified probe. 9256 */ 9257 void * 9258 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 9259 { 9260 dtrace_probe_t *probe; 9261 void *rval = NULL; 9262 9263 mutex_enter(&dtrace_lock); 9264 9265 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 9266 probe->dtpr_provider == (dtrace_provider_t *)id) 9267 rval = probe->dtpr_arg; 9268 9269 mutex_exit(&dtrace_lock); 9270 9271 return (rval); 9272 } 9273 9274 /* 9275 * Copy a probe into a probe description. 9276 */ 9277 static void 9278 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 9279 { 9280 bzero(pdp, sizeof (dtrace_probedesc_t)); 9281 pdp->dtpd_id = prp->dtpr_id; 9282 9283 (void) strncpy(pdp->dtpd_provider, 9284 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 9285 9286 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 9287 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 9288 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 9289 } 9290 9291 /* 9292 * Called to indicate that a probe -- or probes -- should be provided by a 9293 * specfied provider. If the specified description is NULL, the provider will 9294 * be told to provide all of its probes. (This is done whenever a new 9295 * consumer comes along, or whenever a retained enabling is to be matched.) If 9296 * the specified description is non-NULL, the provider is given the 9297 * opportunity to dynamically provide the specified probe, allowing providers 9298 * to support the creation of probes on-the-fly. (So-called _autocreated_ 9299 * probes.) If the provider is NULL, the operations will be applied to all 9300 * providers; if the provider is non-NULL the operations will only be applied 9301 * to the specified provider. The dtrace_provider_lock must be held, and the 9302 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 9303 * will need to grab the dtrace_lock when it reenters the framework through 9304 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 9305 */ 9306 static void 9307 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 9308 { 9309 #ifdef illumos 9310 modctl_t *ctl; 9311 #endif 9312 int all = 0; 9313 9314 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 9315 9316 if (prv == NULL) { 9317 all = 1; 9318 prv = dtrace_provider; 9319 } 9320 9321 do { 9322 /* 9323 * First, call the blanket provide operation. 9324 */ 9325 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 9326 9327 #ifdef illumos 9328 /* 9329 * Now call the per-module provide operation. We will grab 9330 * mod_lock to prevent the list from being modified. Note 9331 * that this also prevents the mod_busy bits from changing. 9332 * (mod_busy can only be changed with mod_lock held.) 9333 */ 9334 mutex_enter(&mod_lock); 9335 9336 ctl = &modules; 9337 do { 9338 if (ctl->mod_busy || ctl->mod_mp == NULL) 9339 continue; 9340 9341 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 9342 9343 } while ((ctl = ctl->mod_next) != &modules); 9344 9345 mutex_exit(&mod_lock); 9346 #endif 9347 } while (all && (prv = prv->dtpv_next) != NULL); 9348 } 9349 9350 #ifdef illumos 9351 /* 9352 * Iterate over each probe, and call the Framework-to-Provider API function 9353 * denoted by offs. 9354 */ 9355 static void 9356 dtrace_probe_foreach(uintptr_t offs) 9357 { 9358 dtrace_provider_t *prov; 9359 void (*func)(void *, dtrace_id_t, void *); 9360 dtrace_probe_t *probe; 9361 dtrace_icookie_t cookie; 9362 int i; 9363 9364 /* 9365 * We disable interrupts to walk through the probe array. This is 9366 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 9367 * won't see stale data. 9368 */ 9369 cookie = dtrace_interrupt_disable(); 9370 9371 for (i = 0; i < dtrace_nprobes; i++) { 9372 if ((probe = dtrace_probes[i]) == NULL) 9373 continue; 9374 9375 if (probe->dtpr_ecb == NULL) { 9376 /* 9377 * This probe isn't enabled -- don't call the function. 9378 */ 9379 continue; 9380 } 9381 9382 prov = probe->dtpr_provider; 9383 func = *((void(**)(void *, dtrace_id_t, void *)) 9384 ((uintptr_t)&prov->dtpv_pops + offs)); 9385 9386 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 9387 } 9388 9389 dtrace_interrupt_enable(cookie); 9390 } 9391 #endif 9392 9393 static int 9394 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 9395 { 9396 dtrace_probekey_t pkey; 9397 uint32_t priv; 9398 uid_t uid; 9399 zoneid_t zoneid; 9400 9401 ASSERT(MUTEX_HELD(&dtrace_lock)); 9402 dtrace_ecb_create_cache = NULL; 9403 9404 if (desc == NULL) { 9405 /* 9406 * If we're passed a NULL description, we're being asked to 9407 * create an ECB with a NULL probe. 9408 */ 9409 (void) dtrace_ecb_create_enable(NULL, enab); 9410 return (0); 9411 } 9412 9413 dtrace_probekey(desc, &pkey); 9414 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 9415 &priv, &uid, &zoneid); 9416 9417 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 9418 enab)); 9419 } 9420 9421 /* 9422 * DTrace Helper Provider Functions 9423 */ 9424 static void 9425 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 9426 { 9427 attr->dtat_name = DOF_ATTR_NAME(dofattr); 9428 attr->dtat_data = DOF_ATTR_DATA(dofattr); 9429 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 9430 } 9431 9432 static void 9433 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 9434 const dof_provider_t *dofprov, char *strtab) 9435 { 9436 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 9437 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 9438 dofprov->dofpv_provattr); 9439 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 9440 dofprov->dofpv_modattr); 9441 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 9442 dofprov->dofpv_funcattr); 9443 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 9444 dofprov->dofpv_nameattr); 9445 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 9446 dofprov->dofpv_argsattr); 9447 } 9448 9449 static void 9450 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9451 { 9452 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9453 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9454 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 9455 dof_provider_t *provider; 9456 dof_probe_t *probe; 9457 uint32_t *off, *enoff; 9458 uint8_t *arg; 9459 char *strtab; 9460 uint_t i, nprobes; 9461 dtrace_helper_provdesc_t dhpv; 9462 dtrace_helper_probedesc_t dhpb; 9463 dtrace_meta_t *meta = dtrace_meta_pid; 9464 dtrace_mops_t *mops = &meta->dtm_mops; 9465 void *parg; 9466 9467 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9468 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9469 provider->dofpv_strtab * dof->dofh_secsize); 9470 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9471 provider->dofpv_probes * dof->dofh_secsize); 9472 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9473 provider->dofpv_prargs * dof->dofh_secsize); 9474 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9475 provider->dofpv_proffs * dof->dofh_secsize); 9476 9477 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9478 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 9479 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 9480 enoff = NULL; 9481 9482 /* 9483 * See dtrace_helper_provider_validate(). 9484 */ 9485 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 9486 provider->dofpv_prenoffs != DOF_SECT_NONE) { 9487 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9488 provider->dofpv_prenoffs * dof->dofh_secsize); 9489 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 9490 } 9491 9492 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 9493 9494 /* 9495 * Create the provider. 9496 */ 9497 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9498 9499 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 9500 return; 9501 9502 meta->dtm_count++; 9503 9504 /* 9505 * Create the probes. 9506 */ 9507 for (i = 0; i < nprobes; i++) { 9508 probe = (dof_probe_t *)(uintptr_t)(daddr + 9509 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 9510 9511 /* See the check in dtrace_helper_provider_validate(). */ 9512 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) 9513 continue; 9514 9515 dhpb.dthpb_mod = dhp->dofhp_mod; 9516 dhpb.dthpb_func = strtab + probe->dofpr_func; 9517 dhpb.dthpb_name = strtab + probe->dofpr_name; 9518 dhpb.dthpb_base = probe->dofpr_addr; 9519 dhpb.dthpb_offs = off + probe->dofpr_offidx; 9520 dhpb.dthpb_noffs = probe->dofpr_noffs; 9521 if (enoff != NULL) { 9522 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 9523 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9524 } else { 9525 dhpb.dthpb_enoffs = NULL; 9526 dhpb.dthpb_nenoffs = 0; 9527 } 9528 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9529 dhpb.dthpb_nargc = probe->dofpr_nargc; 9530 dhpb.dthpb_xargc = probe->dofpr_xargc; 9531 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9532 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9533 9534 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9535 } 9536 } 9537 9538 static void 9539 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9540 { 9541 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9542 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9543 int i; 9544 9545 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9546 9547 for (i = 0; i < dof->dofh_secnum; i++) { 9548 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9549 dof->dofh_secoff + i * dof->dofh_secsize); 9550 9551 if (sec->dofs_type != DOF_SECT_PROVIDER) 9552 continue; 9553 9554 dtrace_helper_provide_one(dhp, sec, pid); 9555 } 9556 9557 /* 9558 * We may have just created probes, so we must now rematch against 9559 * any retained enablings. Note that this call will acquire both 9560 * cpu_lock and dtrace_lock; the fact that we are holding 9561 * dtrace_meta_lock now is what defines the ordering with respect to 9562 * these three locks. 9563 */ 9564 dtrace_enabling_matchall(); 9565 } 9566 9567 static void 9568 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9569 { 9570 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9571 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9572 dof_sec_t *str_sec; 9573 dof_provider_t *provider; 9574 char *strtab; 9575 dtrace_helper_provdesc_t dhpv; 9576 dtrace_meta_t *meta = dtrace_meta_pid; 9577 dtrace_mops_t *mops = &meta->dtm_mops; 9578 9579 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9580 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9581 provider->dofpv_strtab * dof->dofh_secsize); 9582 9583 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9584 9585 /* 9586 * Create the provider. 9587 */ 9588 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9589 9590 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9591 9592 meta->dtm_count--; 9593 } 9594 9595 static void 9596 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9597 { 9598 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9599 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9600 int i; 9601 9602 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9603 9604 for (i = 0; i < dof->dofh_secnum; i++) { 9605 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9606 dof->dofh_secoff + i * dof->dofh_secsize); 9607 9608 if (sec->dofs_type != DOF_SECT_PROVIDER) 9609 continue; 9610 9611 dtrace_helper_provider_remove_one(dhp, sec, pid); 9612 } 9613 } 9614 9615 /* 9616 * DTrace Meta Provider-to-Framework API Functions 9617 * 9618 * These functions implement the Meta Provider-to-Framework API, as described 9619 * in <sys/dtrace.h>. 9620 */ 9621 int 9622 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9623 dtrace_meta_provider_id_t *idp) 9624 { 9625 dtrace_meta_t *meta; 9626 dtrace_helpers_t *help, *next; 9627 int i; 9628 9629 *idp = DTRACE_METAPROVNONE; 9630 9631 /* 9632 * We strictly don't need the name, but we hold onto it for 9633 * debuggability. All hail error queues! 9634 */ 9635 if (name == NULL) { 9636 cmn_err(CE_WARN, "failed to register meta-provider: " 9637 "invalid name"); 9638 return (EINVAL); 9639 } 9640 9641 if (mops == NULL || 9642 mops->dtms_create_probe == NULL || 9643 mops->dtms_provide_pid == NULL || 9644 mops->dtms_remove_pid == NULL) { 9645 cmn_err(CE_WARN, "failed to register meta-register %s: " 9646 "invalid ops", name); 9647 return (EINVAL); 9648 } 9649 9650 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9651 meta->dtm_mops = *mops; 9652 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9653 (void) strcpy(meta->dtm_name, name); 9654 meta->dtm_arg = arg; 9655 9656 mutex_enter(&dtrace_meta_lock); 9657 mutex_enter(&dtrace_lock); 9658 9659 if (dtrace_meta_pid != NULL) { 9660 mutex_exit(&dtrace_lock); 9661 mutex_exit(&dtrace_meta_lock); 9662 cmn_err(CE_WARN, "failed to register meta-register %s: " 9663 "user-land meta-provider exists", name); 9664 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9665 kmem_free(meta, sizeof (dtrace_meta_t)); 9666 return (EINVAL); 9667 } 9668 9669 dtrace_meta_pid = meta; 9670 *idp = (dtrace_meta_provider_id_t)meta; 9671 9672 /* 9673 * If there are providers and probes ready to go, pass them 9674 * off to the new meta provider now. 9675 */ 9676 9677 help = dtrace_deferred_pid; 9678 dtrace_deferred_pid = NULL; 9679 9680 mutex_exit(&dtrace_lock); 9681 9682 while (help != NULL) { 9683 for (i = 0; i < help->dthps_nprovs; i++) { 9684 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9685 help->dthps_pid); 9686 } 9687 9688 next = help->dthps_next; 9689 help->dthps_next = NULL; 9690 help->dthps_prev = NULL; 9691 help->dthps_deferred = 0; 9692 help = next; 9693 } 9694 9695 mutex_exit(&dtrace_meta_lock); 9696 9697 return (0); 9698 } 9699 9700 int 9701 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9702 { 9703 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9704 9705 mutex_enter(&dtrace_meta_lock); 9706 mutex_enter(&dtrace_lock); 9707 9708 if (old == dtrace_meta_pid) { 9709 pp = &dtrace_meta_pid; 9710 } else { 9711 panic("attempt to unregister non-existent " 9712 "dtrace meta-provider %p\n", (void *)old); 9713 } 9714 9715 if (old->dtm_count != 0) { 9716 mutex_exit(&dtrace_lock); 9717 mutex_exit(&dtrace_meta_lock); 9718 return (EBUSY); 9719 } 9720 9721 *pp = NULL; 9722 9723 mutex_exit(&dtrace_lock); 9724 mutex_exit(&dtrace_meta_lock); 9725 9726 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9727 kmem_free(old, sizeof (dtrace_meta_t)); 9728 9729 return (0); 9730 } 9731 9732 9733 /* 9734 * DTrace DIF Object Functions 9735 */ 9736 static int 9737 dtrace_difo_err(uint_t pc, const char *format, ...) 9738 { 9739 if (dtrace_err_verbose) { 9740 va_list alist; 9741 9742 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9743 va_start(alist, format); 9744 (void) vuprintf(format, alist); 9745 va_end(alist); 9746 } 9747 9748 #ifdef DTRACE_ERRDEBUG 9749 dtrace_errdebug(format); 9750 #endif 9751 return (1); 9752 } 9753 9754 /* 9755 * Validate a DTrace DIF object by checking the IR instructions. The following 9756 * rules are currently enforced by dtrace_difo_validate(): 9757 * 9758 * 1. Each instruction must have a valid opcode 9759 * 2. Each register, string, variable, or subroutine reference must be valid 9760 * 3. No instruction can modify register %r0 (must be zero) 9761 * 4. All instruction reserved bits must be set to zero 9762 * 5. The last instruction must be a "ret" instruction 9763 * 6. All branch targets must reference a valid instruction _after_ the branch 9764 */ 9765 static int 9766 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9767 cred_t *cr) 9768 { 9769 int err = 0, i; 9770 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9771 int kcheckload; 9772 uint_t pc; 9773 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9774 9775 kcheckload = cr == NULL || 9776 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9777 9778 dp->dtdo_destructive = 0; 9779 9780 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9781 dif_instr_t instr = dp->dtdo_buf[pc]; 9782 9783 uint_t r1 = DIF_INSTR_R1(instr); 9784 uint_t r2 = DIF_INSTR_R2(instr); 9785 uint_t rd = DIF_INSTR_RD(instr); 9786 uint_t rs = DIF_INSTR_RS(instr); 9787 uint_t label = DIF_INSTR_LABEL(instr); 9788 uint_t v = DIF_INSTR_VAR(instr); 9789 uint_t subr = DIF_INSTR_SUBR(instr); 9790 uint_t type = DIF_INSTR_TYPE(instr); 9791 uint_t op = DIF_INSTR_OP(instr); 9792 9793 switch (op) { 9794 case DIF_OP_OR: 9795 case DIF_OP_XOR: 9796 case DIF_OP_AND: 9797 case DIF_OP_SLL: 9798 case DIF_OP_SRL: 9799 case DIF_OP_SRA: 9800 case DIF_OP_SUB: 9801 case DIF_OP_ADD: 9802 case DIF_OP_MUL: 9803 case DIF_OP_SDIV: 9804 case DIF_OP_UDIV: 9805 case DIF_OP_SREM: 9806 case DIF_OP_UREM: 9807 case DIF_OP_COPYS: 9808 if (r1 >= nregs) 9809 err += efunc(pc, "invalid register %u\n", r1); 9810 if (r2 >= nregs) 9811 err += efunc(pc, "invalid register %u\n", r2); 9812 if (rd >= nregs) 9813 err += efunc(pc, "invalid register %u\n", rd); 9814 if (rd == 0) 9815 err += efunc(pc, "cannot write to %%r0\n"); 9816 break; 9817 case DIF_OP_NOT: 9818 case DIF_OP_MOV: 9819 case DIF_OP_ALLOCS: 9820 if (r1 >= nregs) 9821 err += efunc(pc, "invalid register %u\n", r1); 9822 if (r2 != 0) 9823 err += efunc(pc, "non-zero reserved bits\n"); 9824 if (rd >= nregs) 9825 err += efunc(pc, "invalid register %u\n", rd); 9826 if (rd == 0) 9827 err += efunc(pc, "cannot write to %%r0\n"); 9828 break; 9829 case DIF_OP_LDSB: 9830 case DIF_OP_LDSH: 9831 case DIF_OP_LDSW: 9832 case DIF_OP_LDUB: 9833 case DIF_OP_LDUH: 9834 case DIF_OP_LDUW: 9835 case DIF_OP_LDX: 9836 if (r1 >= nregs) 9837 err += efunc(pc, "invalid register %u\n", r1); 9838 if (r2 != 0) 9839 err += efunc(pc, "non-zero reserved bits\n"); 9840 if (rd >= nregs) 9841 err += efunc(pc, "invalid register %u\n", rd); 9842 if (rd == 0) 9843 err += efunc(pc, "cannot write to %%r0\n"); 9844 if (kcheckload) 9845 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9846 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9847 break; 9848 case DIF_OP_RLDSB: 9849 case DIF_OP_RLDSH: 9850 case DIF_OP_RLDSW: 9851 case DIF_OP_RLDUB: 9852 case DIF_OP_RLDUH: 9853 case DIF_OP_RLDUW: 9854 case DIF_OP_RLDX: 9855 if (r1 >= nregs) 9856 err += efunc(pc, "invalid register %u\n", r1); 9857 if (r2 != 0) 9858 err += efunc(pc, "non-zero reserved bits\n"); 9859 if (rd >= nregs) 9860 err += efunc(pc, "invalid register %u\n", rd); 9861 if (rd == 0) 9862 err += efunc(pc, "cannot write to %%r0\n"); 9863 break; 9864 case DIF_OP_ULDSB: 9865 case DIF_OP_ULDSH: 9866 case DIF_OP_ULDSW: 9867 case DIF_OP_ULDUB: 9868 case DIF_OP_ULDUH: 9869 case DIF_OP_ULDUW: 9870 case DIF_OP_ULDX: 9871 if (r1 >= nregs) 9872 err += efunc(pc, "invalid register %u\n", r1); 9873 if (r2 != 0) 9874 err += efunc(pc, "non-zero reserved bits\n"); 9875 if (rd >= nregs) 9876 err += efunc(pc, "invalid register %u\n", rd); 9877 if (rd == 0) 9878 err += efunc(pc, "cannot write to %%r0\n"); 9879 break; 9880 case DIF_OP_STB: 9881 case DIF_OP_STH: 9882 case DIF_OP_STW: 9883 case DIF_OP_STX: 9884 if (r1 >= nregs) 9885 err += efunc(pc, "invalid register %u\n", r1); 9886 if (r2 != 0) 9887 err += efunc(pc, "non-zero reserved bits\n"); 9888 if (rd >= nregs) 9889 err += efunc(pc, "invalid register %u\n", rd); 9890 if (rd == 0) 9891 err += efunc(pc, "cannot write to 0 address\n"); 9892 break; 9893 case DIF_OP_CMP: 9894 case DIF_OP_SCMP: 9895 if (r1 >= nregs) 9896 err += efunc(pc, "invalid register %u\n", r1); 9897 if (r2 >= nregs) 9898 err += efunc(pc, "invalid register %u\n", r2); 9899 if (rd != 0) 9900 err += efunc(pc, "non-zero reserved bits\n"); 9901 break; 9902 case DIF_OP_TST: 9903 if (r1 >= nregs) 9904 err += efunc(pc, "invalid register %u\n", r1); 9905 if (r2 != 0 || rd != 0) 9906 err += efunc(pc, "non-zero reserved bits\n"); 9907 break; 9908 case DIF_OP_BA: 9909 case DIF_OP_BE: 9910 case DIF_OP_BNE: 9911 case DIF_OP_BG: 9912 case DIF_OP_BGU: 9913 case DIF_OP_BGE: 9914 case DIF_OP_BGEU: 9915 case DIF_OP_BL: 9916 case DIF_OP_BLU: 9917 case DIF_OP_BLE: 9918 case DIF_OP_BLEU: 9919 if (label >= dp->dtdo_len) { 9920 err += efunc(pc, "invalid branch target %u\n", 9921 label); 9922 } 9923 if (label <= pc) { 9924 err += efunc(pc, "backward branch to %u\n", 9925 label); 9926 } 9927 break; 9928 case DIF_OP_RET: 9929 if (r1 != 0 || r2 != 0) 9930 err += efunc(pc, "non-zero reserved bits\n"); 9931 if (rd >= nregs) 9932 err += efunc(pc, "invalid register %u\n", rd); 9933 break; 9934 case DIF_OP_NOP: 9935 case DIF_OP_POPTS: 9936 case DIF_OP_FLUSHTS: 9937 if (r1 != 0 || r2 != 0 || rd != 0) 9938 err += efunc(pc, "non-zero reserved bits\n"); 9939 break; 9940 case DIF_OP_SETX: 9941 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9942 err += efunc(pc, "invalid integer ref %u\n", 9943 DIF_INSTR_INTEGER(instr)); 9944 } 9945 if (rd >= nregs) 9946 err += efunc(pc, "invalid register %u\n", rd); 9947 if (rd == 0) 9948 err += efunc(pc, "cannot write to %%r0\n"); 9949 break; 9950 case DIF_OP_SETS: 9951 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9952 err += efunc(pc, "invalid string ref %u\n", 9953 DIF_INSTR_STRING(instr)); 9954 } 9955 if (rd >= nregs) 9956 err += efunc(pc, "invalid register %u\n", rd); 9957 if (rd == 0) 9958 err += efunc(pc, "cannot write to %%r0\n"); 9959 break; 9960 case DIF_OP_LDGA: 9961 case DIF_OP_LDTA: 9962 if (r1 > DIF_VAR_ARRAY_MAX) 9963 err += efunc(pc, "invalid array %u\n", r1); 9964 if (r2 >= nregs) 9965 err += efunc(pc, "invalid register %u\n", r2); 9966 if (rd >= nregs) 9967 err += efunc(pc, "invalid register %u\n", rd); 9968 if (rd == 0) 9969 err += efunc(pc, "cannot write to %%r0\n"); 9970 break; 9971 case DIF_OP_LDGS: 9972 case DIF_OP_LDTS: 9973 case DIF_OP_LDLS: 9974 case DIF_OP_LDGAA: 9975 case DIF_OP_LDTAA: 9976 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9977 err += efunc(pc, "invalid variable %u\n", v); 9978 if (rd >= nregs) 9979 err += efunc(pc, "invalid register %u\n", rd); 9980 if (rd == 0) 9981 err += efunc(pc, "cannot write to %%r0\n"); 9982 break; 9983 case DIF_OP_STGS: 9984 case DIF_OP_STTS: 9985 case DIF_OP_STLS: 9986 case DIF_OP_STGAA: 9987 case DIF_OP_STTAA: 9988 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9989 err += efunc(pc, "invalid variable %u\n", v); 9990 if (rs >= nregs) 9991 err += efunc(pc, "invalid register %u\n", rd); 9992 break; 9993 case DIF_OP_CALL: 9994 if (subr > DIF_SUBR_MAX) 9995 err += efunc(pc, "invalid subr %u\n", subr); 9996 if (rd >= nregs) 9997 err += efunc(pc, "invalid register %u\n", rd); 9998 if (rd == 0) 9999 err += efunc(pc, "cannot write to %%r0\n"); 10000 10001 if (subr == DIF_SUBR_COPYOUT || 10002 subr == DIF_SUBR_COPYOUTSTR) { 10003 dp->dtdo_destructive = 1; 10004 } 10005 10006 if (subr == DIF_SUBR_GETF) { 10007 #ifdef __FreeBSD__ 10008 err += efunc(pc, "getf() not supported"); 10009 #else 10010 /* 10011 * If we have a getf() we need to record that 10012 * in our state. Note that our state can be 10013 * NULL if this is a helper -- but in that 10014 * case, the call to getf() is itself illegal, 10015 * and will be caught (slightly later) when 10016 * the helper is validated. 10017 */ 10018 if (vstate->dtvs_state != NULL) 10019 vstate->dtvs_state->dts_getf++; 10020 #endif 10021 } 10022 10023 break; 10024 case DIF_OP_PUSHTR: 10025 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 10026 err += efunc(pc, "invalid ref type %u\n", type); 10027 if (r2 >= nregs) 10028 err += efunc(pc, "invalid register %u\n", r2); 10029 if (rs >= nregs) 10030 err += efunc(pc, "invalid register %u\n", rs); 10031 break; 10032 case DIF_OP_PUSHTV: 10033 if (type != DIF_TYPE_CTF) 10034 err += efunc(pc, "invalid val type %u\n", type); 10035 if (r2 >= nregs) 10036 err += efunc(pc, "invalid register %u\n", r2); 10037 if (rs >= nregs) 10038 err += efunc(pc, "invalid register %u\n", rs); 10039 break; 10040 default: 10041 err += efunc(pc, "invalid opcode %u\n", 10042 DIF_INSTR_OP(instr)); 10043 } 10044 } 10045 10046 if (dp->dtdo_len != 0 && 10047 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 10048 err += efunc(dp->dtdo_len - 1, 10049 "expected 'ret' as last DIF instruction\n"); 10050 } 10051 10052 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 10053 /* 10054 * If we're not returning by reference, the size must be either 10055 * 0 or the size of one of the base types. 10056 */ 10057 switch (dp->dtdo_rtype.dtdt_size) { 10058 case 0: 10059 case sizeof (uint8_t): 10060 case sizeof (uint16_t): 10061 case sizeof (uint32_t): 10062 case sizeof (uint64_t): 10063 break; 10064 10065 default: 10066 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 10067 } 10068 } 10069 10070 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 10071 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 10072 dtrace_diftype_t *vt, *et; 10073 uint_t id, ndx; 10074 10075 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 10076 v->dtdv_scope != DIFV_SCOPE_THREAD && 10077 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 10078 err += efunc(i, "unrecognized variable scope %d\n", 10079 v->dtdv_scope); 10080 break; 10081 } 10082 10083 if (v->dtdv_kind != DIFV_KIND_ARRAY && 10084 v->dtdv_kind != DIFV_KIND_SCALAR) { 10085 err += efunc(i, "unrecognized variable type %d\n", 10086 v->dtdv_kind); 10087 break; 10088 } 10089 10090 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 10091 err += efunc(i, "%d exceeds variable id limit\n", id); 10092 break; 10093 } 10094 10095 if (id < DIF_VAR_OTHER_UBASE) 10096 continue; 10097 10098 /* 10099 * For user-defined variables, we need to check that this 10100 * definition is identical to any previous definition that we 10101 * encountered. 10102 */ 10103 ndx = id - DIF_VAR_OTHER_UBASE; 10104 10105 switch (v->dtdv_scope) { 10106 case DIFV_SCOPE_GLOBAL: 10107 if (maxglobal == -1 || ndx > maxglobal) 10108 maxglobal = ndx; 10109 10110 if (ndx < vstate->dtvs_nglobals) { 10111 dtrace_statvar_t *svar; 10112 10113 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 10114 existing = &svar->dtsv_var; 10115 } 10116 10117 break; 10118 10119 case DIFV_SCOPE_THREAD: 10120 if (maxtlocal == -1 || ndx > maxtlocal) 10121 maxtlocal = ndx; 10122 10123 if (ndx < vstate->dtvs_ntlocals) 10124 existing = &vstate->dtvs_tlocals[ndx]; 10125 break; 10126 10127 case DIFV_SCOPE_LOCAL: 10128 if (maxlocal == -1 || ndx > maxlocal) 10129 maxlocal = ndx; 10130 10131 if (ndx < vstate->dtvs_nlocals) { 10132 dtrace_statvar_t *svar; 10133 10134 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 10135 existing = &svar->dtsv_var; 10136 } 10137 10138 break; 10139 } 10140 10141 vt = &v->dtdv_type; 10142 10143 if (vt->dtdt_flags & DIF_TF_BYREF) { 10144 if (vt->dtdt_size == 0) { 10145 err += efunc(i, "zero-sized variable\n"); 10146 break; 10147 } 10148 10149 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 10150 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 10151 vt->dtdt_size > dtrace_statvar_maxsize) { 10152 err += efunc(i, "oversized by-ref static\n"); 10153 break; 10154 } 10155 } 10156 10157 if (existing == NULL || existing->dtdv_id == 0) 10158 continue; 10159 10160 ASSERT(existing->dtdv_id == v->dtdv_id); 10161 ASSERT(existing->dtdv_scope == v->dtdv_scope); 10162 10163 if (existing->dtdv_kind != v->dtdv_kind) 10164 err += efunc(i, "%d changed variable kind\n", id); 10165 10166 et = &existing->dtdv_type; 10167 10168 if (vt->dtdt_flags != et->dtdt_flags) { 10169 err += efunc(i, "%d changed variable type flags\n", id); 10170 break; 10171 } 10172 10173 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 10174 err += efunc(i, "%d changed variable type size\n", id); 10175 break; 10176 } 10177 } 10178 10179 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 10180 dif_instr_t instr = dp->dtdo_buf[pc]; 10181 10182 uint_t v = DIF_INSTR_VAR(instr); 10183 uint_t op = DIF_INSTR_OP(instr); 10184 10185 switch (op) { 10186 case DIF_OP_LDGS: 10187 case DIF_OP_LDGAA: 10188 case DIF_OP_STGS: 10189 case DIF_OP_STGAA: 10190 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 10191 err += efunc(pc, "invalid variable %u\n", v); 10192 break; 10193 case DIF_OP_LDTS: 10194 case DIF_OP_LDTAA: 10195 case DIF_OP_STTS: 10196 case DIF_OP_STTAA: 10197 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 10198 err += efunc(pc, "invalid variable %u\n", v); 10199 break; 10200 case DIF_OP_LDLS: 10201 case DIF_OP_STLS: 10202 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 10203 err += efunc(pc, "invalid variable %u\n", v); 10204 break; 10205 default: 10206 break; 10207 } 10208 } 10209 10210 return (err); 10211 } 10212 10213 /* 10214 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 10215 * are much more constrained than normal DIFOs. Specifically, they may 10216 * not: 10217 * 10218 * 1. Make calls to subroutines other than copyin(), copyinstr() or 10219 * miscellaneous string routines 10220 * 2. Access DTrace variables other than the args[] array, and the 10221 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 10222 * 3. Have thread-local variables. 10223 * 4. Have dynamic variables. 10224 */ 10225 static int 10226 dtrace_difo_validate_helper(dtrace_difo_t *dp) 10227 { 10228 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 10229 int err = 0; 10230 uint_t pc; 10231 10232 for (pc = 0; pc < dp->dtdo_len; pc++) { 10233 dif_instr_t instr = dp->dtdo_buf[pc]; 10234 10235 uint_t v = DIF_INSTR_VAR(instr); 10236 uint_t subr = DIF_INSTR_SUBR(instr); 10237 uint_t op = DIF_INSTR_OP(instr); 10238 10239 switch (op) { 10240 case DIF_OP_OR: 10241 case DIF_OP_XOR: 10242 case DIF_OP_AND: 10243 case DIF_OP_SLL: 10244 case DIF_OP_SRL: 10245 case DIF_OP_SRA: 10246 case DIF_OP_SUB: 10247 case DIF_OP_ADD: 10248 case DIF_OP_MUL: 10249 case DIF_OP_SDIV: 10250 case DIF_OP_UDIV: 10251 case DIF_OP_SREM: 10252 case DIF_OP_UREM: 10253 case DIF_OP_COPYS: 10254 case DIF_OP_NOT: 10255 case DIF_OP_MOV: 10256 case DIF_OP_RLDSB: 10257 case DIF_OP_RLDSH: 10258 case DIF_OP_RLDSW: 10259 case DIF_OP_RLDUB: 10260 case DIF_OP_RLDUH: 10261 case DIF_OP_RLDUW: 10262 case DIF_OP_RLDX: 10263 case DIF_OP_ULDSB: 10264 case DIF_OP_ULDSH: 10265 case DIF_OP_ULDSW: 10266 case DIF_OP_ULDUB: 10267 case DIF_OP_ULDUH: 10268 case DIF_OP_ULDUW: 10269 case DIF_OP_ULDX: 10270 case DIF_OP_STB: 10271 case DIF_OP_STH: 10272 case DIF_OP_STW: 10273 case DIF_OP_STX: 10274 case DIF_OP_ALLOCS: 10275 case DIF_OP_CMP: 10276 case DIF_OP_SCMP: 10277 case DIF_OP_TST: 10278 case DIF_OP_BA: 10279 case DIF_OP_BE: 10280 case DIF_OP_BNE: 10281 case DIF_OP_BG: 10282 case DIF_OP_BGU: 10283 case DIF_OP_BGE: 10284 case DIF_OP_BGEU: 10285 case DIF_OP_BL: 10286 case DIF_OP_BLU: 10287 case DIF_OP_BLE: 10288 case DIF_OP_BLEU: 10289 case DIF_OP_RET: 10290 case DIF_OP_NOP: 10291 case DIF_OP_POPTS: 10292 case DIF_OP_FLUSHTS: 10293 case DIF_OP_SETX: 10294 case DIF_OP_SETS: 10295 case DIF_OP_LDGA: 10296 case DIF_OP_LDLS: 10297 case DIF_OP_STGS: 10298 case DIF_OP_STLS: 10299 case DIF_OP_PUSHTR: 10300 case DIF_OP_PUSHTV: 10301 break; 10302 10303 case DIF_OP_LDGS: 10304 if (v >= DIF_VAR_OTHER_UBASE) 10305 break; 10306 10307 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 10308 break; 10309 10310 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 10311 v == DIF_VAR_PPID || v == DIF_VAR_TID || 10312 v == DIF_VAR_EXECARGS || 10313 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 10314 v == DIF_VAR_UID || v == DIF_VAR_GID) 10315 break; 10316 10317 err += efunc(pc, "illegal variable %u\n", v); 10318 break; 10319 10320 case DIF_OP_LDTA: 10321 case DIF_OP_LDTS: 10322 case DIF_OP_LDGAA: 10323 case DIF_OP_LDTAA: 10324 err += efunc(pc, "illegal dynamic variable load\n"); 10325 break; 10326 10327 case DIF_OP_STTS: 10328 case DIF_OP_STGAA: 10329 case DIF_OP_STTAA: 10330 err += efunc(pc, "illegal dynamic variable store\n"); 10331 break; 10332 10333 case DIF_OP_CALL: 10334 if (subr == DIF_SUBR_ALLOCA || 10335 subr == DIF_SUBR_BCOPY || 10336 subr == DIF_SUBR_COPYIN || 10337 subr == DIF_SUBR_COPYINTO || 10338 subr == DIF_SUBR_COPYINSTR || 10339 subr == DIF_SUBR_INDEX || 10340 subr == DIF_SUBR_INET_NTOA || 10341 subr == DIF_SUBR_INET_NTOA6 || 10342 subr == DIF_SUBR_INET_NTOP || 10343 subr == DIF_SUBR_JSON || 10344 subr == DIF_SUBR_LLTOSTR || 10345 subr == DIF_SUBR_STRTOLL || 10346 subr == DIF_SUBR_RINDEX || 10347 subr == DIF_SUBR_STRCHR || 10348 subr == DIF_SUBR_STRJOIN || 10349 subr == DIF_SUBR_STRRCHR || 10350 subr == DIF_SUBR_STRSTR || 10351 subr == DIF_SUBR_HTONS || 10352 subr == DIF_SUBR_HTONL || 10353 subr == DIF_SUBR_HTONLL || 10354 subr == DIF_SUBR_NTOHS || 10355 subr == DIF_SUBR_NTOHL || 10356 subr == DIF_SUBR_NTOHLL || 10357 subr == DIF_SUBR_MEMREF) 10358 break; 10359 #ifdef __FreeBSD__ 10360 if (subr == DIF_SUBR_MEMSTR) 10361 break; 10362 #endif 10363 10364 err += efunc(pc, "invalid subr %u\n", subr); 10365 break; 10366 10367 default: 10368 err += efunc(pc, "invalid opcode %u\n", 10369 DIF_INSTR_OP(instr)); 10370 } 10371 } 10372 10373 return (err); 10374 } 10375 10376 /* 10377 * Returns 1 if the expression in the DIF object can be cached on a per-thread 10378 * basis; 0 if not. 10379 */ 10380 static int 10381 dtrace_difo_cacheable(dtrace_difo_t *dp) 10382 { 10383 int i; 10384 10385 if (dp == NULL) 10386 return (0); 10387 10388 for (i = 0; i < dp->dtdo_varlen; i++) { 10389 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10390 10391 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 10392 continue; 10393 10394 switch (v->dtdv_id) { 10395 case DIF_VAR_CURTHREAD: 10396 case DIF_VAR_PID: 10397 case DIF_VAR_TID: 10398 case DIF_VAR_EXECARGS: 10399 case DIF_VAR_EXECNAME: 10400 case DIF_VAR_ZONENAME: 10401 break; 10402 10403 default: 10404 return (0); 10405 } 10406 } 10407 10408 /* 10409 * This DIF object may be cacheable. Now we need to look for any 10410 * array loading instructions, any memory loading instructions, or 10411 * any stores to thread-local variables. 10412 */ 10413 for (i = 0; i < dp->dtdo_len; i++) { 10414 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 10415 10416 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 10417 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 10418 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 10419 op == DIF_OP_LDGA || op == DIF_OP_STTS) 10420 return (0); 10421 } 10422 10423 return (1); 10424 } 10425 10426 static void 10427 dtrace_difo_hold(dtrace_difo_t *dp) 10428 { 10429 int i; 10430 10431 ASSERT(MUTEX_HELD(&dtrace_lock)); 10432 10433 dp->dtdo_refcnt++; 10434 ASSERT(dp->dtdo_refcnt != 0); 10435 10436 /* 10437 * We need to check this DIF object for references to the variable 10438 * DIF_VAR_VTIMESTAMP. 10439 */ 10440 for (i = 0; i < dp->dtdo_varlen; i++) { 10441 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10442 10443 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10444 continue; 10445 10446 if (dtrace_vtime_references++ == 0) 10447 dtrace_vtime_enable(); 10448 } 10449 } 10450 10451 /* 10452 * This routine calculates the dynamic variable chunksize for a given DIF 10453 * object. The calculation is not fool-proof, and can probably be tricked by 10454 * malicious DIF -- but it works for all compiler-generated DIF. Because this 10455 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 10456 * if a dynamic variable size exceeds the chunksize. 10457 */ 10458 static void 10459 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10460 { 10461 uint64_t sval = 0; 10462 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 10463 const dif_instr_t *text = dp->dtdo_buf; 10464 uint_t pc, srd = 0; 10465 uint_t ttop = 0; 10466 size_t size, ksize; 10467 uint_t id, i; 10468 10469 for (pc = 0; pc < dp->dtdo_len; pc++) { 10470 dif_instr_t instr = text[pc]; 10471 uint_t op = DIF_INSTR_OP(instr); 10472 uint_t rd = DIF_INSTR_RD(instr); 10473 uint_t r1 = DIF_INSTR_R1(instr); 10474 uint_t nkeys = 0; 10475 uchar_t scope = 0; 10476 10477 dtrace_key_t *key = tupregs; 10478 10479 switch (op) { 10480 case DIF_OP_SETX: 10481 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 10482 srd = rd; 10483 continue; 10484 10485 case DIF_OP_STTS: 10486 key = &tupregs[DIF_DTR_NREGS]; 10487 key[0].dttk_size = 0; 10488 key[1].dttk_size = 0; 10489 nkeys = 2; 10490 scope = DIFV_SCOPE_THREAD; 10491 break; 10492 10493 case DIF_OP_STGAA: 10494 case DIF_OP_STTAA: 10495 nkeys = ttop; 10496 10497 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 10498 key[nkeys++].dttk_size = 0; 10499 10500 key[nkeys++].dttk_size = 0; 10501 10502 if (op == DIF_OP_STTAA) { 10503 scope = DIFV_SCOPE_THREAD; 10504 } else { 10505 scope = DIFV_SCOPE_GLOBAL; 10506 } 10507 10508 break; 10509 10510 case DIF_OP_PUSHTR: 10511 if (ttop == DIF_DTR_NREGS) 10512 return; 10513 10514 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10515 /* 10516 * If the register for the size of the "pushtr" 10517 * is %r0 (or the value is 0) and the type is 10518 * a string, we'll use the system-wide default 10519 * string size. 10520 */ 10521 tupregs[ttop++].dttk_size = 10522 dtrace_strsize_default; 10523 } else { 10524 if (srd == 0) 10525 return; 10526 10527 if (sval > LONG_MAX) 10528 return; 10529 10530 tupregs[ttop++].dttk_size = sval; 10531 } 10532 10533 break; 10534 10535 case DIF_OP_PUSHTV: 10536 if (ttop == DIF_DTR_NREGS) 10537 return; 10538 10539 tupregs[ttop++].dttk_size = 0; 10540 break; 10541 10542 case DIF_OP_FLUSHTS: 10543 ttop = 0; 10544 break; 10545 10546 case DIF_OP_POPTS: 10547 if (ttop != 0) 10548 ttop--; 10549 break; 10550 } 10551 10552 sval = 0; 10553 srd = 0; 10554 10555 if (nkeys == 0) 10556 continue; 10557 10558 /* 10559 * We have a dynamic variable allocation; calculate its size. 10560 */ 10561 for (ksize = 0, i = 0; i < nkeys; i++) 10562 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10563 10564 size = sizeof (dtrace_dynvar_t); 10565 size += sizeof (dtrace_key_t) * (nkeys - 1); 10566 size += ksize; 10567 10568 /* 10569 * Now we need to determine the size of the stored data. 10570 */ 10571 id = DIF_INSTR_VAR(instr); 10572 10573 for (i = 0; i < dp->dtdo_varlen; i++) { 10574 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10575 10576 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10577 size += v->dtdv_type.dtdt_size; 10578 break; 10579 } 10580 } 10581 10582 if (i == dp->dtdo_varlen) 10583 return; 10584 10585 /* 10586 * We have the size. If this is larger than the chunk size 10587 * for our dynamic variable state, reset the chunk size. 10588 */ 10589 size = P2ROUNDUP(size, sizeof (uint64_t)); 10590 10591 /* 10592 * Before setting the chunk size, check that we're not going 10593 * to set it to a negative value... 10594 */ 10595 if (size > LONG_MAX) 10596 return; 10597 10598 /* 10599 * ...and make certain that we didn't badly overflow. 10600 */ 10601 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10602 return; 10603 10604 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10605 vstate->dtvs_dynvars.dtds_chunksize = size; 10606 } 10607 } 10608 10609 static void 10610 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10611 { 10612 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10613 uint_t id; 10614 10615 ASSERT(MUTEX_HELD(&dtrace_lock)); 10616 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10617 10618 for (i = 0; i < dp->dtdo_varlen; i++) { 10619 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10620 dtrace_statvar_t *svar, ***svarp = NULL; 10621 size_t dsize = 0; 10622 uint8_t scope = v->dtdv_scope; 10623 int *np = NULL; 10624 10625 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10626 continue; 10627 10628 id -= DIF_VAR_OTHER_UBASE; 10629 10630 switch (scope) { 10631 case DIFV_SCOPE_THREAD: 10632 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10633 dtrace_difv_t *tlocals; 10634 10635 if ((ntlocals = (otlocals << 1)) == 0) 10636 ntlocals = 1; 10637 10638 osz = otlocals * sizeof (dtrace_difv_t); 10639 nsz = ntlocals * sizeof (dtrace_difv_t); 10640 10641 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10642 10643 if (osz != 0) { 10644 bcopy(vstate->dtvs_tlocals, 10645 tlocals, osz); 10646 kmem_free(vstate->dtvs_tlocals, osz); 10647 } 10648 10649 vstate->dtvs_tlocals = tlocals; 10650 vstate->dtvs_ntlocals = ntlocals; 10651 } 10652 10653 vstate->dtvs_tlocals[id] = *v; 10654 continue; 10655 10656 case DIFV_SCOPE_LOCAL: 10657 np = &vstate->dtvs_nlocals; 10658 svarp = &vstate->dtvs_locals; 10659 10660 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10661 dsize = NCPU * (v->dtdv_type.dtdt_size + 10662 sizeof (uint64_t)); 10663 else 10664 dsize = NCPU * sizeof (uint64_t); 10665 10666 break; 10667 10668 case DIFV_SCOPE_GLOBAL: 10669 np = &vstate->dtvs_nglobals; 10670 svarp = &vstate->dtvs_globals; 10671 10672 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10673 dsize = v->dtdv_type.dtdt_size + 10674 sizeof (uint64_t); 10675 10676 break; 10677 10678 default: 10679 ASSERT(0); 10680 } 10681 10682 while (id >= (oldsvars = *np)) { 10683 dtrace_statvar_t **statics; 10684 int newsvars, oldsize, newsize; 10685 10686 if ((newsvars = (oldsvars << 1)) == 0) 10687 newsvars = 1; 10688 10689 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10690 newsize = newsvars * sizeof (dtrace_statvar_t *); 10691 10692 statics = kmem_zalloc(newsize, KM_SLEEP); 10693 10694 if (oldsize != 0) { 10695 bcopy(*svarp, statics, oldsize); 10696 kmem_free(*svarp, oldsize); 10697 } 10698 10699 *svarp = statics; 10700 *np = newsvars; 10701 } 10702 10703 if ((svar = (*svarp)[id]) == NULL) { 10704 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10705 svar->dtsv_var = *v; 10706 10707 if ((svar->dtsv_size = dsize) != 0) { 10708 svar->dtsv_data = (uint64_t)(uintptr_t) 10709 kmem_zalloc(dsize, KM_SLEEP); 10710 } 10711 10712 (*svarp)[id] = svar; 10713 } 10714 10715 svar->dtsv_refcnt++; 10716 } 10717 10718 dtrace_difo_chunksize(dp, vstate); 10719 dtrace_difo_hold(dp); 10720 } 10721 10722 static dtrace_difo_t * 10723 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10724 { 10725 dtrace_difo_t *new; 10726 size_t sz; 10727 10728 ASSERT(dp->dtdo_buf != NULL); 10729 ASSERT(dp->dtdo_refcnt != 0); 10730 10731 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10732 10733 ASSERT(dp->dtdo_buf != NULL); 10734 sz = dp->dtdo_len * sizeof (dif_instr_t); 10735 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10736 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10737 new->dtdo_len = dp->dtdo_len; 10738 10739 if (dp->dtdo_strtab != NULL) { 10740 ASSERT(dp->dtdo_strlen != 0); 10741 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10742 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10743 new->dtdo_strlen = dp->dtdo_strlen; 10744 } 10745 10746 if (dp->dtdo_inttab != NULL) { 10747 ASSERT(dp->dtdo_intlen != 0); 10748 sz = dp->dtdo_intlen * sizeof (uint64_t); 10749 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10750 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10751 new->dtdo_intlen = dp->dtdo_intlen; 10752 } 10753 10754 if (dp->dtdo_vartab != NULL) { 10755 ASSERT(dp->dtdo_varlen != 0); 10756 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10757 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10758 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10759 new->dtdo_varlen = dp->dtdo_varlen; 10760 } 10761 10762 dtrace_difo_init(new, vstate); 10763 return (new); 10764 } 10765 10766 static void 10767 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10768 { 10769 int i; 10770 10771 ASSERT(dp->dtdo_refcnt == 0); 10772 10773 for (i = 0; i < dp->dtdo_varlen; i++) { 10774 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10775 dtrace_statvar_t *svar, **svarp = NULL; 10776 uint_t id; 10777 uint8_t scope = v->dtdv_scope; 10778 int *np = NULL; 10779 10780 switch (scope) { 10781 case DIFV_SCOPE_THREAD: 10782 continue; 10783 10784 case DIFV_SCOPE_LOCAL: 10785 np = &vstate->dtvs_nlocals; 10786 svarp = vstate->dtvs_locals; 10787 break; 10788 10789 case DIFV_SCOPE_GLOBAL: 10790 np = &vstate->dtvs_nglobals; 10791 svarp = vstate->dtvs_globals; 10792 break; 10793 10794 default: 10795 ASSERT(0); 10796 } 10797 10798 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10799 continue; 10800 10801 id -= DIF_VAR_OTHER_UBASE; 10802 ASSERT(id < *np); 10803 10804 svar = svarp[id]; 10805 ASSERT(svar != NULL); 10806 ASSERT(svar->dtsv_refcnt > 0); 10807 10808 if (--svar->dtsv_refcnt > 0) 10809 continue; 10810 10811 if (svar->dtsv_size != 0) { 10812 ASSERT(svar->dtsv_data != 0); 10813 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10814 svar->dtsv_size); 10815 } 10816 10817 kmem_free(svar, sizeof (dtrace_statvar_t)); 10818 svarp[id] = NULL; 10819 } 10820 10821 if (dp->dtdo_buf != NULL) 10822 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10823 if (dp->dtdo_inttab != NULL) 10824 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10825 if (dp->dtdo_strtab != NULL) 10826 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10827 if (dp->dtdo_vartab != NULL) 10828 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10829 10830 kmem_free(dp, sizeof (dtrace_difo_t)); 10831 } 10832 10833 static void 10834 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10835 { 10836 int i; 10837 10838 ASSERT(MUTEX_HELD(&dtrace_lock)); 10839 ASSERT(dp->dtdo_refcnt != 0); 10840 10841 for (i = 0; i < dp->dtdo_varlen; i++) { 10842 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10843 10844 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10845 continue; 10846 10847 ASSERT(dtrace_vtime_references > 0); 10848 if (--dtrace_vtime_references == 0) 10849 dtrace_vtime_disable(); 10850 } 10851 10852 if (--dp->dtdo_refcnt == 0) 10853 dtrace_difo_destroy(dp, vstate); 10854 } 10855 10856 /* 10857 * DTrace Format Functions 10858 */ 10859 static uint16_t 10860 dtrace_format_add(dtrace_state_t *state, char *str) 10861 { 10862 char *fmt, **new; 10863 uint16_t ndx, len = strlen(str) + 1; 10864 10865 fmt = kmem_zalloc(len, KM_SLEEP); 10866 bcopy(str, fmt, len); 10867 10868 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10869 if (state->dts_formats[ndx] == NULL) { 10870 state->dts_formats[ndx] = fmt; 10871 return (ndx + 1); 10872 } 10873 } 10874 10875 if (state->dts_nformats == USHRT_MAX) { 10876 /* 10877 * This is only likely if a denial-of-service attack is being 10878 * attempted. As such, it's okay to fail silently here. 10879 */ 10880 kmem_free(fmt, len); 10881 return (0); 10882 } 10883 10884 /* 10885 * For simplicity, we always resize the formats array to be exactly the 10886 * number of formats. 10887 */ 10888 ndx = state->dts_nformats++; 10889 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10890 10891 if (state->dts_formats != NULL) { 10892 ASSERT(ndx != 0); 10893 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10894 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10895 } 10896 10897 state->dts_formats = new; 10898 state->dts_formats[ndx] = fmt; 10899 10900 return (ndx + 1); 10901 } 10902 10903 static void 10904 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10905 { 10906 char *fmt; 10907 10908 ASSERT(state->dts_formats != NULL); 10909 ASSERT(format <= state->dts_nformats); 10910 ASSERT(state->dts_formats[format - 1] != NULL); 10911 10912 fmt = state->dts_formats[format - 1]; 10913 kmem_free(fmt, strlen(fmt) + 1); 10914 state->dts_formats[format - 1] = NULL; 10915 } 10916 10917 static void 10918 dtrace_format_destroy(dtrace_state_t *state) 10919 { 10920 int i; 10921 10922 if (state->dts_nformats == 0) { 10923 ASSERT(state->dts_formats == NULL); 10924 return; 10925 } 10926 10927 ASSERT(state->dts_formats != NULL); 10928 10929 for (i = 0; i < state->dts_nformats; i++) { 10930 char *fmt = state->dts_formats[i]; 10931 10932 if (fmt == NULL) 10933 continue; 10934 10935 kmem_free(fmt, strlen(fmt) + 1); 10936 } 10937 10938 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10939 state->dts_nformats = 0; 10940 state->dts_formats = NULL; 10941 } 10942 10943 /* 10944 * DTrace Predicate Functions 10945 */ 10946 static dtrace_predicate_t * 10947 dtrace_predicate_create(dtrace_difo_t *dp) 10948 { 10949 dtrace_predicate_t *pred; 10950 10951 ASSERT(MUTEX_HELD(&dtrace_lock)); 10952 ASSERT(dp->dtdo_refcnt != 0); 10953 10954 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10955 pred->dtp_difo = dp; 10956 pred->dtp_refcnt = 1; 10957 10958 if (!dtrace_difo_cacheable(dp)) 10959 return (pred); 10960 10961 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10962 /* 10963 * This is only theoretically possible -- we have had 2^32 10964 * cacheable predicates on this machine. We cannot allow any 10965 * more predicates to become cacheable: as unlikely as it is, 10966 * there may be a thread caching a (now stale) predicate cache 10967 * ID. (N.B.: the temptation is being successfully resisted to 10968 * have this cmn_err() "Holy shit -- we executed this code!") 10969 */ 10970 return (pred); 10971 } 10972 10973 pred->dtp_cacheid = dtrace_predcache_id++; 10974 10975 return (pred); 10976 } 10977 10978 static void 10979 dtrace_predicate_hold(dtrace_predicate_t *pred) 10980 { 10981 ASSERT(MUTEX_HELD(&dtrace_lock)); 10982 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10983 ASSERT(pred->dtp_refcnt > 0); 10984 10985 pred->dtp_refcnt++; 10986 } 10987 10988 static void 10989 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 10990 { 10991 dtrace_difo_t *dp = pred->dtp_difo; 10992 10993 ASSERT(MUTEX_HELD(&dtrace_lock)); 10994 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10995 ASSERT(pred->dtp_refcnt > 0); 10996 10997 if (--pred->dtp_refcnt == 0) { 10998 dtrace_difo_release(pred->dtp_difo, vstate); 10999 kmem_free(pred, sizeof (dtrace_predicate_t)); 11000 } 11001 } 11002 11003 /* 11004 * DTrace Action Description Functions 11005 */ 11006 static dtrace_actdesc_t * 11007 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 11008 uint64_t uarg, uint64_t arg) 11009 { 11010 dtrace_actdesc_t *act; 11011 11012 #ifdef illumos 11013 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 11014 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 11015 #endif 11016 11017 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 11018 act->dtad_kind = kind; 11019 act->dtad_ntuple = ntuple; 11020 act->dtad_uarg = uarg; 11021 act->dtad_arg = arg; 11022 act->dtad_refcnt = 1; 11023 11024 return (act); 11025 } 11026 11027 static void 11028 dtrace_actdesc_hold(dtrace_actdesc_t *act) 11029 { 11030 ASSERT(act->dtad_refcnt >= 1); 11031 act->dtad_refcnt++; 11032 } 11033 11034 static void 11035 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 11036 { 11037 dtrace_actkind_t kind = act->dtad_kind; 11038 dtrace_difo_t *dp; 11039 11040 ASSERT(act->dtad_refcnt >= 1); 11041 11042 if (--act->dtad_refcnt != 0) 11043 return; 11044 11045 if ((dp = act->dtad_difo) != NULL) 11046 dtrace_difo_release(dp, vstate); 11047 11048 if (DTRACEACT_ISPRINTFLIKE(kind)) { 11049 char *str = (char *)(uintptr_t)act->dtad_arg; 11050 11051 #ifdef illumos 11052 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 11053 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 11054 #endif 11055 11056 if (str != NULL) 11057 kmem_free(str, strlen(str) + 1); 11058 } 11059 11060 kmem_free(act, sizeof (dtrace_actdesc_t)); 11061 } 11062 11063 /* 11064 * DTrace ECB Functions 11065 */ 11066 static dtrace_ecb_t * 11067 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 11068 { 11069 dtrace_ecb_t *ecb; 11070 dtrace_epid_t epid; 11071 11072 ASSERT(MUTEX_HELD(&dtrace_lock)); 11073 11074 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 11075 ecb->dte_predicate = NULL; 11076 ecb->dte_probe = probe; 11077 11078 /* 11079 * The default size is the size of the default action: recording 11080 * the header. 11081 */ 11082 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 11083 ecb->dte_alignment = sizeof (dtrace_epid_t); 11084 11085 epid = state->dts_epid++; 11086 11087 if (epid - 1 >= state->dts_necbs) { 11088 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 11089 int necbs = state->dts_necbs << 1; 11090 11091 ASSERT(epid == state->dts_necbs + 1); 11092 11093 if (necbs == 0) { 11094 ASSERT(oecbs == NULL); 11095 necbs = 1; 11096 } 11097 11098 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 11099 11100 if (oecbs != NULL) 11101 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 11102 11103 dtrace_membar_producer(); 11104 state->dts_ecbs = ecbs; 11105 11106 if (oecbs != NULL) { 11107 /* 11108 * If this state is active, we must dtrace_sync() 11109 * before we can free the old dts_ecbs array: we're 11110 * coming in hot, and there may be active ring 11111 * buffer processing (which indexes into the dts_ecbs 11112 * array) on another CPU. 11113 */ 11114 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 11115 dtrace_sync(); 11116 11117 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 11118 } 11119 11120 dtrace_membar_producer(); 11121 state->dts_necbs = necbs; 11122 } 11123 11124 ecb->dte_state = state; 11125 11126 ASSERT(state->dts_ecbs[epid - 1] == NULL); 11127 dtrace_membar_producer(); 11128 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 11129 11130 return (ecb); 11131 } 11132 11133 static void 11134 dtrace_ecb_enable(dtrace_ecb_t *ecb) 11135 { 11136 dtrace_probe_t *probe = ecb->dte_probe; 11137 11138 ASSERT(MUTEX_HELD(&cpu_lock)); 11139 ASSERT(MUTEX_HELD(&dtrace_lock)); 11140 ASSERT(ecb->dte_next == NULL); 11141 11142 if (probe == NULL) { 11143 /* 11144 * This is the NULL probe -- there's nothing to do. 11145 */ 11146 return; 11147 } 11148 11149 if (probe->dtpr_ecb == NULL) { 11150 dtrace_provider_t *prov = probe->dtpr_provider; 11151 11152 /* 11153 * We're the first ECB on this probe. 11154 */ 11155 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 11156 11157 if (ecb->dte_predicate != NULL) 11158 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 11159 11160 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 11161 probe->dtpr_id, probe->dtpr_arg); 11162 } else { 11163 /* 11164 * This probe is already active. Swing the last pointer to 11165 * point to the new ECB, and issue a dtrace_sync() to assure 11166 * that all CPUs have seen the change. 11167 */ 11168 ASSERT(probe->dtpr_ecb_last != NULL); 11169 probe->dtpr_ecb_last->dte_next = ecb; 11170 probe->dtpr_ecb_last = ecb; 11171 probe->dtpr_predcache = 0; 11172 11173 dtrace_sync(); 11174 } 11175 } 11176 11177 static int 11178 dtrace_ecb_resize(dtrace_ecb_t *ecb) 11179 { 11180 dtrace_action_t *act; 11181 uint32_t curneeded = UINT32_MAX; 11182 uint32_t aggbase = UINT32_MAX; 11183 11184 /* 11185 * If we record anything, we always record the dtrace_rechdr_t. (And 11186 * we always record it first.) 11187 */ 11188 ecb->dte_size = sizeof (dtrace_rechdr_t); 11189 ecb->dte_alignment = sizeof (dtrace_epid_t); 11190 11191 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11192 dtrace_recdesc_t *rec = &act->dta_rec; 11193 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 11194 11195 ecb->dte_alignment = MAX(ecb->dte_alignment, 11196 rec->dtrd_alignment); 11197 11198 if (DTRACEACT_ISAGG(act->dta_kind)) { 11199 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11200 11201 ASSERT(rec->dtrd_size != 0); 11202 ASSERT(agg->dtag_first != NULL); 11203 ASSERT(act->dta_prev->dta_intuple); 11204 ASSERT(aggbase != UINT32_MAX); 11205 ASSERT(curneeded != UINT32_MAX); 11206 11207 agg->dtag_base = aggbase; 11208 11209 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11210 rec->dtrd_offset = curneeded; 11211 if (curneeded + rec->dtrd_size < curneeded) 11212 return (EINVAL); 11213 curneeded += rec->dtrd_size; 11214 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 11215 11216 aggbase = UINT32_MAX; 11217 curneeded = UINT32_MAX; 11218 } else if (act->dta_intuple) { 11219 if (curneeded == UINT32_MAX) { 11220 /* 11221 * This is the first record in a tuple. Align 11222 * curneeded to be at offset 4 in an 8-byte 11223 * aligned block. 11224 */ 11225 ASSERT(act->dta_prev == NULL || 11226 !act->dta_prev->dta_intuple); 11227 ASSERT3U(aggbase, ==, UINT32_MAX); 11228 curneeded = P2PHASEUP(ecb->dte_size, 11229 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 11230 11231 aggbase = curneeded - sizeof (dtrace_aggid_t); 11232 ASSERT(IS_P2ALIGNED(aggbase, 11233 sizeof (uint64_t))); 11234 } 11235 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 11236 rec->dtrd_offset = curneeded; 11237 if (curneeded + rec->dtrd_size < curneeded) 11238 return (EINVAL); 11239 curneeded += rec->dtrd_size; 11240 } else { 11241 /* tuples must be followed by an aggregation */ 11242 ASSERT(act->dta_prev == NULL || 11243 !act->dta_prev->dta_intuple); 11244 11245 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 11246 rec->dtrd_alignment); 11247 rec->dtrd_offset = ecb->dte_size; 11248 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 11249 return (EINVAL); 11250 ecb->dte_size += rec->dtrd_size; 11251 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 11252 } 11253 } 11254 11255 if ((act = ecb->dte_action) != NULL && 11256 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 11257 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 11258 /* 11259 * If the size is still sizeof (dtrace_rechdr_t), then all 11260 * actions store no data; set the size to 0. 11261 */ 11262 ecb->dte_size = 0; 11263 } 11264 11265 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 11266 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 11267 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 11268 ecb->dte_needed); 11269 return (0); 11270 } 11271 11272 static dtrace_action_t * 11273 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11274 { 11275 dtrace_aggregation_t *agg; 11276 size_t size = sizeof (uint64_t); 11277 int ntuple = desc->dtad_ntuple; 11278 dtrace_action_t *act; 11279 dtrace_recdesc_t *frec; 11280 dtrace_aggid_t aggid; 11281 dtrace_state_t *state = ecb->dte_state; 11282 11283 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 11284 agg->dtag_ecb = ecb; 11285 11286 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 11287 11288 switch (desc->dtad_kind) { 11289 case DTRACEAGG_MIN: 11290 agg->dtag_initial = INT64_MAX; 11291 agg->dtag_aggregate = dtrace_aggregate_min; 11292 break; 11293 11294 case DTRACEAGG_MAX: 11295 agg->dtag_initial = INT64_MIN; 11296 agg->dtag_aggregate = dtrace_aggregate_max; 11297 break; 11298 11299 case DTRACEAGG_COUNT: 11300 agg->dtag_aggregate = dtrace_aggregate_count; 11301 break; 11302 11303 case DTRACEAGG_QUANTIZE: 11304 agg->dtag_aggregate = dtrace_aggregate_quantize; 11305 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 11306 sizeof (uint64_t); 11307 break; 11308 11309 case DTRACEAGG_LQUANTIZE: { 11310 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 11311 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 11312 11313 agg->dtag_initial = desc->dtad_arg; 11314 agg->dtag_aggregate = dtrace_aggregate_lquantize; 11315 11316 if (step == 0 || levels == 0) 11317 goto err; 11318 11319 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 11320 break; 11321 } 11322 11323 case DTRACEAGG_LLQUANTIZE: { 11324 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 11325 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 11326 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 11327 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 11328 int64_t v; 11329 11330 agg->dtag_initial = desc->dtad_arg; 11331 agg->dtag_aggregate = dtrace_aggregate_llquantize; 11332 11333 if (factor < 2 || low >= high || nsteps < factor) 11334 goto err; 11335 11336 /* 11337 * Now check that the number of steps evenly divides a power 11338 * of the factor. (This assures both integer bucket size and 11339 * linearity within each magnitude.) 11340 */ 11341 for (v = factor; v < nsteps; v *= factor) 11342 continue; 11343 11344 if ((v % nsteps) || (nsteps % factor)) 11345 goto err; 11346 11347 size = (dtrace_aggregate_llquantize_bucket(factor, 11348 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 11349 break; 11350 } 11351 11352 case DTRACEAGG_AVG: 11353 agg->dtag_aggregate = dtrace_aggregate_avg; 11354 size = sizeof (uint64_t) * 2; 11355 break; 11356 11357 case DTRACEAGG_STDDEV: 11358 agg->dtag_aggregate = dtrace_aggregate_stddev; 11359 size = sizeof (uint64_t) * 4; 11360 break; 11361 11362 case DTRACEAGG_SUM: 11363 agg->dtag_aggregate = dtrace_aggregate_sum; 11364 break; 11365 11366 default: 11367 goto err; 11368 } 11369 11370 agg->dtag_action.dta_rec.dtrd_size = size; 11371 11372 if (ntuple == 0) 11373 goto err; 11374 11375 /* 11376 * We must make sure that we have enough actions for the n-tuple. 11377 */ 11378 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 11379 if (DTRACEACT_ISAGG(act->dta_kind)) 11380 break; 11381 11382 if (--ntuple == 0) { 11383 /* 11384 * This is the action with which our n-tuple begins. 11385 */ 11386 agg->dtag_first = act; 11387 goto success; 11388 } 11389 } 11390 11391 /* 11392 * This n-tuple is short by ntuple elements. Return failure. 11393 */ 11394 ASSERT(ntuple != 0); 11395 err: 11396 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11397 return (NULL); 11398 11399 success: 11400 /* 11401 * If the last action in the tuple has a size of zero, it's actually 11402 * an expression argument for the aggregating action. 11403 */ 11404 ASSERT(ecb->dte_action_last != NULL); 11405 act = ecb->dte_action_last; 11406 11407 if (act->dta_kind == DTRACEACT_DIFEXPR) { 11408 ASSERT(act->dta_difo != NULL); 11409 11410 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 11411 agg->dtag_hasarg = 1; 11412 } 11413 11414 /* 11415 * We need to allocate an id for this aggregation. 11416 */ 11417 #ifdef illumos 11418 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 11419 VM_BESTFIT | VM_SLEEP); 11420 #else 11421 aggid = alloc_unr(state->dts_aggid_arena); 11422 #endif 11423 11424 if (aggid - 1 >= state->dts_naggregations) { 11425 dtrace_aggregation_t **oaggs = state->dts_aggregations; 11426 dtrace_aggregation_t **aggs; 11427 int naggs = state->dts_naggregations << 1; 11428 int onaggs = state->dts_naggregations; 11429 11430 ASSERT(aggid == state->dts_naggregations + 1); 11431 11432 if (naggs == 0) { 11433 ASSERT(oaggs == NULL); 11434 naggs = 1; 11435 } 11436 11437 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 11438 11439 if (oaggs != NULL) { 11440 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 11441 kmem_free(oaggs, onaggs * sizeof (*aggs)); 11442 } 11443 11444 state->dts_aggregations = aggs; 11445 state->dts_naggregations = naggs; 11446 } 11447 11448 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 11449 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 11450 11451 frec = &agg->dtag_first->dta_rec; 11452 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 11453 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 11454 11455 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 11456 ASSERT(!act->dta_intuple); 11457 act->dta_intuple = 1; 11458 } 11459 11460 return (&agg->dtag_action); 11461 } 11462 11463 static void 11464 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 11465 { 11466 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 11467 dtrace_state_t *state = ecb->dte_state; 11468 dtrace_aggid_t aggid = agg->dtag_id; 11469 11470 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 11471 #ifdef illumos 11472 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 11473 #else 11474 free_unr(state->dts_aggid_arena, aggid); 11475 #endif 11476 11477 ASSERT(state->dts_aggregations[aggid - 1] == agg); 11478 state->dts_aggregations[aggid - 1] = NULL; 11479 11480 kmem_free(agg, sizeof (dtrace_aggregation_t)); 11481 } 11482 11483 static int 11484 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 11485 { 11486 dtrace_action_t *action, *last; 11487 dtrace_difo_t *dp = desc->dtad_difo; 11488 uint32_t size = 0, align = sizeof (uint8_t), mask; 11489 uint16_t format = 0; 11490 dtrace_recdesc_t *rec; 11491 dtrace_state_t *state = ecb->dte_state; 11492 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize; 11493 uint64_t arg = desc->dtad_arg; 11494 11495 ASSERT(MUTEX_HELD(&dtrace_lock)); 11496 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 11497 11498 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 11499 /* 11500 * If this is an aggregating action, there must be neither 11501 * a speculate nor a commit on the action chain. 11502 */ 11503 dtrace_action_t *act; 11504 11505 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 11506 if (act->dta_kind == DTRACEACT_COMMIT) 11507 return (EINVAL); 11508 11509 if (act->dta_kind == DTRACEACT_SPECULATE) 11510 return (EINVAL); 11511 } 11512 11513 action = dtrace_ecb_aggregation_create(ecb, desc); 11514 11515 if (action == NULL) 11516 return (EINVAL); 11517 } else { 11518 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 11519 (desc->dtad_kind == DTRACEACT_DIFEXPR && 11520 dp != NULL && dp->dtdo_destructive)) { 11521 state->dts_destructive = 1; 11522 } 11523 11524 switch (desc->dtad_kind) { 11525 case DTRACEACT_PRINTF: 11526 case DTRACEACT_PRINTA: 11527 case DTRACEACT_SYSTEM: 11528 case DTRACEACT_FREOPEN: 11529 case DTRACEACT_DIFEXPR: 11530 /* 11531 * We know that our arg is a string -- turn it into a 11532 * format. 11533 */ 11534 if (arg == 0) { 11535 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11536 desc->dtad_kind == DTRACEACT_DIFEXPR); 11537 format = 0; 11538 } else { 11539 ASSERT(arg != 0); 11540 #ifdef illumos 11541 ASSERT(arg > KERNELBASE); 11542 #endif 11543 format = dtrace_format_add(state, 11544 (char *)(uintptr_t)arg); 11545 } 11546 11547 /*FALLTHROUGH*/ 11548 case DTRACEACT_LIBACT: 11549 case DTRACEACT_TRACEMEM: 11550 case DTRACEACT_TRACEMEM_DYNSIZE: 11551 if (dp == NULL) 11552 return (EINVAL); 11553 11554 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11555 break; 11556 11557 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11558 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11559 return (EINVAL); 11560 11561 size = opt[DTRACEOPT_STRSIZE]; 11562 } 11563 11564 break; 11565 11566 case DTRACEACT_STACK: 11567 if ((nframes = arg) == 0) { 11568 nframes = opt[DTRACEOPT_STACKFRAMES]; 11569 ASSERT(nframes > 0); 11570 arg = nframes; 11571 } 11572 11573 size = nframes * sizeof (pc_t); 11574 break; 11575 11576 case DTRACEACT_JSTACK: 11577 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11578 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11579 11580 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11581 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11582 11583 arg = DTRACE_USTACK_ARG(nframes, strsize); 11584 11585 /*FALLTHROUGH*/ 11586 case DTRACEACT_USTACK: 11587 if (desc->dtad_kind != DTRACEACT_JSTACK && 11588 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11589 strsize = DTRACE_USTACK_STRSIZE(arg); 11590 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11591 ASSERT(nframes > 0); 11592 arg = DTRACE_USTACK_ARG(nframes, strsize); 11593 } 11594 11595 /* 11596 * Save a slot for the pid. 11597 */ 11598 size = (nframes + 1) * sizeof (uint64_t); 11599 size += DTRACE_USTACK_STRSIZE(arg); 11600 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11601 11602 break; 11603 11604 case DTRACEACT_SYM: 11605 case DTRACEACT_MOD: 11606 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11607 sizeof (uint64_t)) || 11608 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11609 return (EINVAL); 11610 break; 11611 11612 case DTRACEACT_USYM: 11613 case DTRACEACT_UMOD: 11614 case DTRACEACT_UADDR: 11615 if (dp == NULL || 11616 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11617 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11618 return (EINVAL); 11619 11620 /* 11621 * We have a slot for the pid, plus a slot for the 11622 * argument. To keep things simple (aligned with 11623 * bitness-neutral sizing), we store each as a 64-bit 11624 * quantity. 11625 */ 11626 size = 2 * sizeof (uint64_t); 11627 break; 11628 11629 case DTRACEACT_STOP: 11630 case DTRACEACT_BREAKPOINT: 11631 case DTRACEACT_PANIC: 11632 break; 11633 11634 case DTRACEACT_CHILL: 11635 case DTRACEACT_DISCARD: 11636 case DTRACEACT_RAISE: 11637 if (dp == NULL) 11638 return (EINVAL); 11639 break; 11640 11641 case DTRACEACT_EXIT: 11642 if (dp == NULL || 11643 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11644 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11645 return (EINVAL); 11646 break; 11647 11648 case DTRACEACT_SPECULATE: 11649 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11650 return (EINVAL); 11651 11652 if (dp == NULL) 11653 return (EINVAL); 11654 11655 state->dts_speculates = 1; 11656 break; 11657 11658 case DTRACEACT_PRINTM: 11659 size = dp->dtdo_rtype.dtdt_size; 11660 break; 11661 11662 case DTRACEACT_COMMIT: { 11663 dtrace_action_t *act = ecb->dte_action; 11664 11665 for (; act != NULL; act = act->dta_next) { 11666 if (act->dta_kind == DTRACEACT_COMMIT) 11667 return (EINVAL); 11668 } 11669 11670 if (dp == NULL) 11671 return (EINVAL); 11672 break; 11673 } 11674 11675 default: 11676 return (EINVAL); 11677 } 11678 11679 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11680 /* 11681 * If this is a data-storing action or a speculate, 11682 * we must be sure that there isn't a commit on the 11683 * action chain. 11684 */ 11685 dtrace_action_t *act = ecb->dte_action; 11686 11687 for (; act != NULL; act = act->dta_next) { 11688 if (act->dta_kind == DTRACEACT_COMMIT) 11689 return (EINVAL); 11690 } 11691 } 11692 11693 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11694 action->dta_rec.dtrd_size = size; 11695 } 11696 11697 action->dta_refcnt = 1; 11698 rec = &action->dta_rec; 11699 size = rec->dtrd_size; 11700 11701 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11702 if (!(size & mask)) { 11703 align = mask + 1; 11704 break; 11705 } 11706 } 11707 11708 action->dta_kind = desc->dtad_kind; 11709 11710 if ((action->dta_difo = dp) != NULL) 11711 dtrace_difo_hold(dp); 11712 11713 rec->dtrd_action = action->dta_kind; 11714 rec->dtrd_arg = arg; 11715 rec->dtrd_uarg = desc->dtad_uarg; 11716 rec->dtrd_alignment = (uint16_t)align; 11717 rec->dtrd_format = format; 11718 11719 if ((last = ecb->dte_action_last) != NULL) { 11720 ASSERT(ecb->dte_action != NULL); 11721 action->dta_prev = last; 11722 last->dta_next = action; 11723 } else { 11724 ASSERT(ecb->dte_action == NULL); 11725 ecb->dte_action = action; 11726 } 11727 11728 ecb->dte_action_last = action; 11729 11730 return (0); 11731 } 11732 11733 static void 11734 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11735 { 11736 dtrace_action_t *act = ecb->dte_action, *next; 11737 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11738 dtrace_difo_t *dp; 11739 uint16_t format; 11740 11741 if (act != NULL && act->dta_refcnt > 1) { 11742 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11743 act->dta_refcnt--; 11744 } else { 11745 for (; act != NULL; act = next) { 11746 next = act->dta_next; 11747 ASSERT(next != NULL || act == ecb->dte_action_last); 11748 ASSERT(act->dta_refcnt == 1); 11749 11750 if ((format = act->dta_rec.dtrd_format) != 0) 11751 dtrace_format_remove(ecb->dte_state, format); 11752 11753 if ((dp = act->dta_difo) != NULL) 11754 dtrace_difo_release(dp, vstate); 11755 11756 if (DTRACEACT_ISAGG(act->dta_kind)) { 11757 dtrace_ecb_aggregation_destroy(ecb, act); 11758 } else { 11759 kmem_free(act, sizeof (dtrace_action_t)); 11760 } 11761 } 11762 } 11763 11764 ecb->dte_action = NULL; 11765 ecb->dte_action_last = NULL; 11766 ecb->dte_size = 0; 11767 } 11768 11769 static void 11770 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11771 { 11772 /* 11773 * We disable the ECB by removing it from its probe. 11774 */ 11775 dtrace_ecb_t *pecb, *prev = NULL; 11776 dtrace_probe_t *probe = ecb->dte_probe; 11777 11778 ASSERT(MUTEX_HELD(&dtrace_lock)); 11779 11780 if (probe == NULL) { 11781 /* 11782 * This is the NULL probe; there is nothing to disable. 11783 */ 11784 return; 11785 } 11786 11787 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11788 if (pecb == ecb) 11789 break; 11790 prev = pecb; 11791 } 11792 11793 ASSERT(pecb != NULL); 11794 11795 if (prev == NULL) { 11796 probe->dtpr_ecb = ecb->dte_next; 11797 } else { 11798 prev->dte_next = ecb->dte_next; 11799 } 11800 11801 if (ecb == probe->dtpr_ecb_last) { 11802 ASSERT(ecb->dte_next == NULL); 11803 probe->dtpr_ecb_last = prev; 11804 } 11805 11806 /* 11807 * The ECB has been disconnected from the probe; now sync to assure 11808 * that all CPUs have seen the change before returning. 11809 */ 11810 dtrace_sync(); 11811 11812 if (probe->dtpr_ecb == NULL) { 11813 /* 11814 * That was the last ECB on the probe; clear the predicate 11815 * cache ID for the probe, disable it and sync one more time 11816 * to assure that we'll never hit it again. 11817 */ 11818 dtrace_provider_t *prov = probe->dtpr_provider; 11819 11820 ASSERT(ecb->dte_next == NULL); 11821 ASSERT(probe->dtpr_ecb_last == NULL); 11822 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11823 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11824 probe->dtpr_id, probe->dtpr_arg); 11825 dtrace_sync(); 11826 } else { 11827 /* 11828 * There is at least one ECB remaining on the probe. If there 11829 * is _exactly_ one, set the probe's predicate cache ID to be 11830 * the predicate cache ID of the remaining ECB. 11831 */ 11832 ASSERT(probe->dtpr_ecb_last != NULL); 11833 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11834 11835 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11836 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11837 11838 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11839 11840 if (p != NULL) 11841 probe->dtpr_predcache = p->dtp_cacheid; 11842 } 11843 11844 ecb->dte_next = NULL; 11845 } 11846 } 11847 11848 static void 11849 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11850 { 11851 dtrace_state_t *state = ecb->dte_state; 11852 dtrace_vstate_t *vstate = &state->dts_vstate; 11853 dtrace_predicate_t *pred; 11854 dtrace_epid_t epid = ecb->dte_epid; 11855 11856 ASSERT(MUTEX_HELD(&dtrace_lock)); 11857 ASSERT(ecb->dte_next == NULL); 11858 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11859 11860 if ((pred = ecb->dte_predicate) != NULL) 11861 dtrace_predicate_release(pred, vstate); 11862 11863 dtrace_ecb_action_remove(ecb); 11864 11865 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11866 state->dts_ecbs[epid - 1] = NULL; 11867 11868 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11869 } 11870 11871 static dtrace_ecb_t * 11872 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11873 dtrace_enabling_t *enab) 11874 { 11875 dtrace_ecb_t *ecb; 11876 dtrace_predicate_t *pred; 11877 dtrace_actdesc_t *act; 11878 dtrace_provider_t *prov; 11879 dtrace_ecbdesc_t *desc = enab->dten_current; 11880 11881 ASSERT(MUTEX_HELD(&dtrace_lock)); 11882 ASSERT(state != NULL); 11883 11884 ecb = dtrace_ecb_add(state, probe); 11885 ecb->dte_uarg = desc->dted_uarg; 11886 11887 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11888 dtrace_predicate_hold(pred); 11889 ecb->dte_predicate = pred; 11890 } 11891 11892 if (probe != NULL) { 11893 /* 11894 * If the provider shows more leg than the consumer is old 11895 * enough to see, we need to enable the appropriate implicit 11896 * predicate bits to prevent the ecb from activating at 11897 * revealing times. 11898 * 11899 * Providers specifying DTRACE_PRIV_USER at register time 11900 * are stating that they need the /proc-style privilege 11901 * model to be enforced, and this is what DTRACE_COND_OWNER 11902 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11903 */ 11904 prov = probe->dtpr_provider; 11905 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11906 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11907 ecb->dte_cond |= DTRACE_COND_OWNER; 11908 11909 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11910 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11911 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11912 11913 /* 11914 * If the provider shows us kernel innards and the user 11915 * is lacking sufficient privilege, enable the 11916 * DTRACE_COND_USERMODE implicit predicate. 11917 */ 11918 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11919 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11920 ecb->dte_cond |= DTRACE_COND_USERMODE; 11921 } 11922 11923 if (dtrace_ecb_create_cache != NULL) { 11924 /* 11925 * If we have a cached ecb, we'll use its action list instead 11926 * of creating our own (saving both time and space). 11927 */ 11928 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11929 dtrace_action_t *act = cached->dte_action; 11930 11931 if (act != NULL) { 11932 ASSERT(act->dta_refcnt > 0); 11933 act->dta_refcnt++; 11934 ecb->dte_action = act; 11935 ecb->dte_action_last = cached->dte_action_last; 11936 ecb->dte_needed = cached->dte_needed; 11937 ecb->dte_size = cached->dte_size; 11938 ecb->dte_alignment = cached->dte_alignment; 11939 } 11940 11941 return (ecb); 11942 } 11943 11944 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11945 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11946 dtrace_ecb_destroy(ecb); 11947 return (NULL); 11948 } 11949 } 11950 11951 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 11952 dtrace_ecb_destroy(ecb); 11953 return (NULL); 11954 } 11955 11956 return (dtrace_ecb_create_cache = ecb); 11957 } 11958 11959 static int 11960 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11961 { 11962 dtrace_ecb_t *ecb; 11963 dtrace_enabling_t *enab = arg; 11964 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11965 11966 ASSERT(state != NULL); 11967 11968 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11969 /* 11970 * This probe was created in a generation for which this 11971 * enabling has previously created ECBs; we don't want to 11972 * enable it again, so just kick out. 11973 */ 11974 return (DTRACE_MATCH_NEXT); 11975 } 11976 11977 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11978 return (DTRACE_MATCH_DONE); 11979 11980 dtrace_ecb_enable(ecb); 11981 return (DTRACE_MATCH_NEXT); 11982 } 11983 11984 static dtrace_ecb_t * 11985 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11986 { 11987 dtrace_ecb_t *ecb; 11988 11989 ASSERT(MUTEX_HELD(&dtrace_lock)); 11990 11991 if (id == 0 || id > state->dts_necbs) 11992 return (NULL); 11993 11994 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 11995 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 11996 11997 return (state->dts_ecbs[id - 1]); 11998 } 11999 12000 static dtrace_aggregation_t * 12001 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 12002 { 12003 dtrace_aggregation_t *agg; 12004 12005 ASSERT(MUTEX_HELD(&dtrace_lock)); 12006 12007 if (id == 0 || id > state->dts_naggregations) 12008 return (NULL); 12009 12010 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 12011 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 12012 agg->dtag_id == id); 12013 12014 return (state->dts_aggregations[id - 1]); 12015 } 12016 12017 /* 12018 * DTrace Buffer Functions 12019 * 12020 * The following functions manipulate DTrace buffers. Most of these functions 12021 * are called in the context of establishing or processing consumer state; 12022 * exceptions are explicitly noted. 12023 */ 12024 12025 /* 12026 * Note: called from cross call context. This function switches the two 12027 * buffers on a given CPU. The atomicity of this operation is assured by 12028 * disabling interrupts while the actual switch takes place; the disabling of 12029 * interrupts serializes the execution with any execution of dtrace_probe() on 12030 * the same CPU. 12031 */ 12032 static void 12033 dtrace_buffer_switch(dtrace_buffer_t *buf) 12034 { 12035 caddr_t tomax = buf->dtb_tomax; 12036 caddr_t xamot = buf->dtb_xamot; 12037 dtrace_icookie_t cookie; 12038 hrtime_t now; 12039 12040 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12041 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 12042 12043 cookie = dtrace_interrupt_disable(); 12044 now = dtrace_gethrtime(); 12045 buf->dtb_tomax = xamot; 12046 buf->dtb_xamot = tomax; 12047 buf->dtb_xamot_drops = buf->dtb_drops; 12048 buf->dtb_xamot_offset = buf->dtb_offset; 12049 buf->dtb_xamot_errors = buf->dtb_errors; 12050 buf->dtb_xamot_flags = buf->dtb_flags; 12051 buf->dtb_offset = 0; 12052 buf->dtb_drops = 0; 12053 buf->dtb_errors = 0; 12054 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 12055 buf->dtb_interval = now - buf->dtb_switched; 12056 buf->dtb_switched = now; 12057 dtrace_interrupt_enable(cookie); 12058 } 12059 12060 /* 12061 * Note: called from cross call context. This function activates a buffer 12062 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 12063 * is guaranteed by the disabling of interrupts. 12064 */ 12065 static void 12066 dtrace_buffer_activate(dtrace_state_t *state) 12067 { 12068 dtrace_buffer_t *buf; 12069 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 12070 12071 buf = &state->dts_buffer[curcpu]; 12072 12073 if (buf->dtb_tomax != NULL) { 12074 /* 12075 * We might like to assert that the buffer is marked inactive, 12076 * but this isn't necessarily true: the buffer for the CPU 12077 * that processes the BEGIN probe has its buffer activated 12078 * manually. In this case, we take the (harmless) action 12079 * re-clearing the bit INACTIVE bit. 12080 */ 12081 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 12082 } 12083 12084 dtrace_interrupt_enable(cookie); 12085 } 12086 12087 #ifdef __FreeBSD__ 12088 /* 12089 * Activate the specified per-CPU buffer. This is used instead of 12090 * dtrace_buffer_activate() when APs have not yet started, i.e. when 12091 * activating anonymous state. 12092 */ 12093 static void 12094 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu) 12095 { 12096 12097 if (state->dts_buffer[cpu].dtb_tomax != NULL) 12098 state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12099 } 12100 #endif 12101 12102 static int 12103 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 12104 processorid_t cpu, int *factor) 12105 { 12106 #ifdef illumos 12107 cpu_t *cp; 12108 #endif 12109 dtrace_buffer_t *buf; 12110 int allocated = 0, desired = 0; 12111 12112 #ifdef illumos 12113 ASSERT(MUTEX_HELD(&cpu_lock)); 12114 ASSERT(MUTEX_HELD(&dtrace_lock)); 12115 12116 *factor = 1; 12117 12118 if (size > dtrace_nonroot_maxsize && 12119 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 12120 return (EFBIG); 12121 12122 cp = cpu_list; 12123 12124 do { 12125 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12126 continue; 12127 12128 buf = &bufs[cp->cpu_id]; 12129 12130 /* 12131 * If there is already a buffer allocated for this CPU, it 12132 * is only possible that this is a DR event. In this case, 12133 */ 12134 if (buf->dtb_tomax != NULL) { 12135 ASSERT(buf->dtb_size == size); 12136 continue; 12137 } 12138 12139 ASSERT(buf->dtb_xamot == NULL); 12140 12141 if ((buf->dtb_tomax = kmem_zalloc(size, 12142 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12143 goto err; 12144 12145 buf->dtb_size = size; 12146 buf->dtb_flags = flags; 12147 buf->dtb_offset = 0; 12148 buf->dtb_drops = 0; 12149 12150 if (flags & DTRACEBUF_NOSWITCH) 12151 continue; 12152 12153 if ((buf->dtb_xamot = kmem_zalloc(size, 12154 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12155 goto err; 12156 } while ((cp = cp->cpu_next) != cpu_list); 12157 12158 return (0); 12159 12160 err: 12161 cp = cpu_list; 12162 12163 do { 12164 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 12165 continue; 12166 12167 buf = &bufs[cp->cpu_id]; 12168 desired += 2; 12169 12170 if (buf->dtb_xamot != NULL) { 12171 ASSERT(buf->dtb_tomax != NULL); 12172 ASSERT(buf->dtb_size == size); 12173 kmem_free(buf->dtb_xamot, size); 12174 allocated++; 12175 } 12176 12177 if (buf->dtb_tomax != NULL) { 12178 ASSERT(buf->dtb_size == size); 12179 kmem_free(buf->dtb_tomax, size); 12180 allocated++; 12181 } 12182 12183 buf->dtb_tomax = NULL; 12184 buf->dtb_xamot = NULL; 12185 buf->dtb_size = 0; 12186 } while ((cp = cp->cpu_next) != cpu_list); 12187 #else 12188 int i; 12189 12190 *factor = 1; 12191 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ 12192 defined(__mips__) || defined(__powerpc__) || defined(__riscv) 12193 /* 12194 * FreeBSD isn't good at limiting the amount of memory we 12195 * ask to malloc, so let's place a limit here before trying 12196 * to do something that might well end in tears at bedtime. 12197 */ 12198 int bufsize_percpu_frac = dtrace_bufsize_max_frac * mp_ncpus; 12199 if (size > physmem * PAGE_SIZE / bufsize_percpu_frac) 12200 return (ENOMEM); 12201 #endif 12202 12203 ASSERT(MUTEX_HELD(&dtrace_lock)); 12204 CPU_FOREACH(i) { 12205 if (cpu != DTRACE_CPUALL && cpu != i) 12206 continue; 12207 12208 buf = &bufs[i]; 12209 12210 /* 12211 * If there is already a buffer allocated for this CPU, it 12212 * is only possible that this is a DR event. In this case, 12213 * the buffer size must match our specified size. 12214 */ 12215 if (buf->dtb_tomax != NULL) { 12216 ASSERT(buf->dtb_size == size); 12217 continue; 12218 } 12219 12220 ASSERT(buf->dtb_xamot == NULL); 12221 12222 if ((buf->dtb_tomax = kmem_zalloc(size, 12223 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12224 goto err; 12225 12226 buf->dtb_size = size; 12227 buf->dtb_flags = flags; 12228 buf->dtb_offset = 0; 12229 buf->dtb_drops = 0; 12230 12231 if (flags & DTRACEBUF_NOSWITCH) 12232 continue; 12233 12234 if ((buf->dtb_xamot = kmem_zalloc(size, 12235 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12236 goto err; 12237 } 12238 12239 return (0); 12240 12241 err: 12242 /* 12243 * Error allocating memory, so free the buffers that were 12244 * allocated before the failed allocation. 12245 */ 12246 CPU_FOREACH(i) { 12247 if (cpu != DTRACE_CPUALL && cpu != i) 12248 continue; 12249 12250 buf = &bufs[i]; 12251 desired += 2; 12252 12253 if (buf->dtb_xamot != NULL) { 12254 ASSERT(buf->dtb_tomax != NULL); 12255 ASSERT(buf->dtb_size == size); 12256 kmem_free(buf->dtb_xamot, size); 12257 allocated++; 12258 } 12259 12260 if (buf->dtb_tomax != NULL) { 12261 ASSERT(buf->dtb_size == size); 12262 kmem_free(buf->dtb_tomax, size); 12263 allocated++; 12264 } 12265 12266 buf->dtb_tomax = NULL; 12267 buf->dtb_xamot = NULL; 12268 buf->dtb_size = 0; 12269 12270 } 12271 #endif 12272 *factor = desired / (allocated > 0 ? allocated : 1); 12273 12274 return (ENOMEM); 12275 } 12276 12277 /* 12278 * Note: called from probe context. This function just increments the drop 12279 * count on a buffer. It has been made a function to allow for the 12280 * possibility of understanding the source of mysterious drop counts. (A 12281 * problem for which one may be particularly disappointed that DTrace cannot 12282 * be used to understand DTrace.) 12283 */ 12284 static void 12285 dtrace_buffer_drop(dtrace_buffer_t *buf) 12286 { 12287 buf->dtb_drops++; 12288 } 12289 12290 /* 12291 * Note: called from probe context. This function is called to reserve space 12292 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 12293 * mstate. Returns the new offset in the buffer, or a negative value if an 12294 * error has occurred. 12295 */ 12296 static intptr_t 12297 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 12298 dtrace_state_t *state, dtrace_mstate_t *mstate) 12299 { 12300 intptr_t offs = buf->dtb_offset, soffs; 12301 intptr_t woffs; 12302 caddr_t tomax; 12303 size_t total; 12304 12305 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 12306 return (-1); 12307 12308 if ((tomax = buf->dtb_tomax) == NULL) { 12309 dtrace_buffer_drop(buf); 12310 return (-1); 12311 } 12312 12313 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 12314 while (offs & (align - 1)) { 12315 /* 12316 * Assert that our alignment is off by a number which 12317 * is itself sizeof (uint32_t) aligned. 12318 */ 12319 ASSERT(!((align - (offs & (align - 1))) & 12320 (sizeof (uint32_t) - 1))); 12321 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12322 offs += sizeof (uint32_t); 12323 } 12324 12325 if ((soffs = offs + needed) > buf->dtb_size) { 12326 dtrace_buffer_drop(buf); 12327 return (-1); 12328 } 12329 12330 if (mstate == NULL) 12331 return (offs); 12332 12333 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 12334 mstate->dtms_scratch_size = buf->dtb_size - soffs; 12335 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12336 12337 return (offs); 12338 } 12339 12340 if (buf->dtb_flags & DTRACEBUF_FILL) { 12341 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 12342 (buf->dtb_flags & DTRACEBUF_FULL)) 12343 return (-1); 12344 goto out; 12345 } 12346 12347 total = needed + (offs & (align - 1)); 12348 12349 /* 12350 * For a ring buffer, life is quite a bit more complicated. Before 12351 * we can store any padding, we need to adjust our wrapping offset. 12352 * (If we've never before wrapped or we're not about to, no adjustment 12353 * is required.) 12354 */ 12355 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 12356 offs + total > buf->dtb_size) { 12357 woffs = buf->dtb_xamot_offset; 12358 12359 if (offs + total > buf->dtb_size) { 12360 /* 12361 * We can't fit in the end of the buffer. First, a 12362 * sanity check that we can fit in the buffer at all. 12363 */ 12364 if (total > buf->dtb_size) { 12365 dtrace_buffer_drop(buf); 12366 return (-1); 12367 } 12368 12369 /* 12370 * We're going to be storing at the top of the buffer, 12371 * so now we need to deal with the wrapped offset. We 12372 * only reset our wrapped offset to 0 if it is 12373 * currently greater than the current offset. If it 12374 * is less than the current offset, it is because a 12375 * previous allocation induced a wrap -- but the 12376 * allocation didn't subsequently take the space due 12377 * to an error or false predicate evaluation. In this 12378 * case, we'll just leave the wrapped offset alone: if 12379 * the wrapped offset hasn't been advanced far enough 12380 * for this allocation, it will be adjusted in the 12381 * lower loop. 12382 */ 12383 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 12384 if (woffs >= offs) 12385 woffs = 0; 12386 } else { 12387 woffs = 0; 12388 } 12389 12390 /* 12391 * Now we know that we're going to be storing to the 12392 * top of the buffer and that there is room for us 12393 * there. We need to clear the buffer from the current 12394 * offset to the end (there may be old gunk there). 12395 */ 12396 while (offs < buf->dtb_size) 12397 tomax[offs++] = 0; 12398 12399 /* 12400 * We need to set our offset to zero. And because we 12401 * are wrapping, we need to set the bit indicating as 12402 * much. We can also adjust our needed space back 12403 * down to the space required by the ECB -- we know 12404 * that the top of the buffer is aligned. 12405 */ 12406 offs = 0; 12407 total = needed; 12408 buf->dtb_flags |= DTRACEBUF_WRAPPED; 12409 } else { 12410 /* 12411 * There is room for us in the buffer, so we simply 12412 * need to check the wrapped offset. 12413 */ 12414 if (woffs < offs) { 12415 /* 12416 * The wrapped offset is less than the offset. 12417 * This can happen if we allocated buffer space 12418 * that induced a wrap, but then we didn't 12419 * subsequently take the space due to an error 12420 * or false predicate evaluation. This is 12421 * okay; we know that _this_ allocation isn't 12422 * going to induce a wrap. We still can't 12423 * reset the wrapped offset to be zero, 12424 * however: the space may have been trashed in 12425 * the previous failed probe attempt. But at 12426 * least the wrapped offset doesn't need to 12427 * be adjusted at all... 12428 */ 12429 goto out; 12430 } 12431 } 12432 12433 while (offs + total > woffs) { 12434 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 12435 size_t size; 12436 12437 if (epid == DTRACE_EPIDNONE) { 12438 size = sizeof (uint32_t); 12439 } else { 12440 ASSERT3U(epid, <=, state->dts_necbs); 12441 ASSERT(state->dts_ecbs[epid - 1] != NULL); 12442 12443 size = state->dts_ecbs[epid - 1]->dte_size; 12444 } 12445 12446 ASSERT(woffs + size <= buf->dtb_size); 12447 ASSERT(size != 0); 12448 12449 if (woffs + size == buf->dtb_size) { 12450 /* 12451 * We've reached the end of the buffer; we want 12452 * to set the wrapped offset to 0 and break 12453 * out. However, if the offs is 0, then we're 12454 * in a strange edge-condition: the amount of 12455 * space that we want to reserve plus the size 12456 * of the record that we're overwriting is 12457 * greater than the size of the buffer. This 12458 * is problematic because if we reserve the 12459 * space but subsequently don't consume it (due 12460 * to a failed predicate or error) the wrapped 12461 * offset will be 0 -- yet the EPID at offset 0 12462 * will not be committed. This situation is 12463 * relatively easy to deal with: if we're in 12464 * this case, the buffer is indistinguishable 12465 * from one that hasn't wrapped; we need only 12466 * finish the job by clearing the wrapped bit, 12467 * explicitly setting the offset to be 0, and 12468 * zero'ing out the old data in the buffer. 12469 */ 12470 if (offs == 0) { 12471 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 12472 buf->dtb_offset = 0; 12473 woffs = total; 12474 12475 while (woffs < buf->dtb_size) 12476 tomax[woffs++] = 0; 12477 } 12478 12479 woffs = 0; 12480 break; 12481 } 12482 12483 woffs += size; 12484 } 12485 12486 /* 12487 * We have a wrapped offset. It may be that the wrapped offset 12488 * has become zero -- that's okay. 12489 */ 12490 buf->dtb_xamot_offset = woffs; 12491 } 12492 12493 out: 12494 /* 12495 * Now we can plow the buffer with any necessary padding. 12496 */ 12497 while (offs & (align - 1)) { 12498 /* 12499 * Assert that our alignment is off by a number which 12500 * is itself sizeof (uint32_t) aligned. 12501 */ 12502 ASSERT(!((align - (offs & (align - 1))) & 12503 (sizeof (uint32_t) - 1))); 12504 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 12505 offs += sizeof (uint32_t); 12506 } 12507 12508 if (buf->dtb_flags & DTRACEBUF_FILL) { 12509 if (offs + needed > buf->dtb_size - state->dts_reserve) { 12510 buf->dtb_flags |= DTRACEBUF_FULL; 12511 return (-1); 12512 } 12513 } 12514 12515 if (mstate == NULL) 12516 return (offs); 12517 12518 /* 12519 * For ring buffers and fill buffers, the scratch space is always 12520 * the inactive buffer. 12521 */ 12522 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 12523 mstate->dtms_scratch_size = buf->dtb_size; 12524 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 12525 12526 return (offs); 12527 } 12528 12529 static void 12530 dtrace_buffer_polish(dtrace_buffer_t *buf) 12531 { 12532 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 12533 ASSERT(MUTEX_HELD(&dtrace_lock)); 12534 12535 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 12536 return; 12537 12538 /* 12539 * We need to polish the ring buffer. There are three cases: 12540 * 12541 * - The first (and presumably most common) is that there is no gap 12542 * between the buffer offset and the wrapped offset. In this case, 12543 * there is nothing in the buffer that isn't valid data; we can 12544 * mark the buffer as polished and return. 12545 * 12546 * - The second (less common than the first but still more common 12547 * than the third) is that there is a gap between the buffer offset 12548 * and the wrapped offset, and the wrapped offset is larger than the 12549 * buffer offset. This can happen because of an alignment issue, or 12550 * can happen because of a call to dtrace_buffer_reserve() that 12551 * didn't subsequently consume the buffer space. In this case, 12552 * we need to zero the data from the buffer offset to the wrapped 12553 * offset. 12554 * 12555 * - The third (and least common) is that there is a gap between the 12556 * buffer offset and the wrapped offset, but the wrapped offset is 12557 * _less_ than the buffer offset. This can only happen because a 12558 * call to dtrace_buffer_reserve() induced a wrap, but the space 12559 * was not subsequently consumed. In this case, we need to zero the 12560 * space from the offset to the end of the buffer _and_ from the 12561 * top of the buffer to the wrapped offset. 12562 */ 12563 if (buf->dtb_offset < buf->dtb_xamot_offset) { 12564 bzero(buf->dtb_tomax + buf->dtb_offset, 12565 buf->dtb_xamot_offset - buf->dtb_offset); 12566 } 12567 12568 if (buf->dtb_offset > buf->dtb_xamot_offset) { 12569 bzero(buf->dtb_tomax + buf->dtb_offset, 12570 buf->dtb_size - buf->dtb_offset); 12571 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 12572 } 12573 } 12574 12575 /* 12576 * This routine determines if data generated at the specified time has likely 12577 * been entirely consumed at user-level. This routine is called to determine 12578 * if an ECB on a defunct probe (but for an active enabling) can be safely 12579 * disabled and destroyed. 12580 */ 12581 static int 12582 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 12583 { 12584 int i; 12585 12586 for (i = 0; i < NCPU; i++) { 12587 dtrace_buffer_t *buf = &bufs[i]; 12588 12589 if (buf->dtb_size == 0) 12590 continue; 12591 12592 if (buf->dtb_flags & DTRACEBUF_RING) 12593 return (0); 12594 12595 if (!buf->dtb_switched && buf->dtb_offset != 0) 12596 return (0); 12597 12598 if (buf->dtb_switched - buf->dtb_interval < when) 12599 return (0); 12600 } 12601 12602 return (1); 12603 } 12604 12605 static void 12606 dtrace_buffer_free(dtrace_buffer_t *bufs) 12607 { 12608 int i; 12609 12610 for (i = 0; i < NCPU; i++) { 12611 dtrace_buffer_t *buf = &bufs[i]; 12612 12613 if (buf->dtb_tomax == NULL) { 12614 ASSERT(buf->dtb_xamot == NULL); 12615 ASSERT(buf->dtb_size == 0); 12616 continue; 12617 } 12618 12619 if (buf->dtb_xamot != NULL) { 12620 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12621 kmem_free(buf->dtb_xamot, buf->dtb_size); 12622 } 12623 12624 kmem_free(buf->dtb_tomax, buf->dtb_size); 12625 buf->dtb_size = 0; 12626 buf->dtb_tomax = NULL; 12627 buf->dtb_xamot = NULL; 12628 } 12629 } 12630 12631 /* 12632 * DTrace Enabling Functions 12633 */ 12634 static dtrace_enabling_t * 12635 dtrace_enabling_create(dtrace_vstate_t *vstate) 12636 { 12637 dtrace_enabling_t *enab; 12638 12639 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12640 enab->dten_vstate = vstate; 12641 12642 return (enab); 12643 } 12644 12645 static void 12646 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12647 { 12648 dtrace_ecbdesc_t **ndesc; 12649 size_t osize, nsize; 12650 12651 /* 12652 * We can't add to enablings after we've enabled them, or after we've 12653 * retained them. 12654 */ 12655 ASSERT(enab->dten_probegen == 0); 12656 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12657 12658 if (enab->dten_ndesc < enab->dten_maxdesc) { 12659 enab->dten_desc[enab->dten_ndesc++] = ecb; 12660 return; 12661 } 12662 12663 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12664 12665 if (enab->dten_maxdesc == 0) { 12666 enab->dten_maxdesc = 1; 12667 } else { 12668 enab->dten_maxdesc <<= 1; 12669 } 12670 12671 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12672 12673 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12674 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12675 bcopy(enab->dten_desc, ndesc, osize); 12676 if (enab->dten_desc != NULL) 12677 kmem_free(enab->dten_desc, osize); 12678 12679 enab->dten_desc = ndesc; 12680 enab->dten_desc[enab->dten_ndesc++] = ecb; 12681 } 12682 12683 static void 12684 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12685 dtrace_probedesc_t *pd) 12686 { 12687 dtrace_ecbdesc_t *new; 12688 dtrace_predicate_t *pred; 12689 dtrace_actdesc_t *act; 12690 12691 /* 12692 * We're going to create a new ECB description that matches the 12693 * specified ECB in every way, but has the specified probe description. 12694 */ 12695 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12696 12697 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12698 dtrace_predicate_hold(pred); 12699 12700 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12701 dtrace_actdesc_hold(act); 12702 12703 new->dted_action = ecb->dted_action; 12704 new->dted_pred = ecb->dted_pred; 12705 new->dted_probe = *pd; 12706 new->dted_uarg = ecb->dted_uarg; 12707 12708 dtrace_enabling_add(enab, new); 12709 } 12710 12711 static void 12712 dtrace_enabling_dump(dtrace_enabling_t *enab) 12713 { 12714 int i; 12715 12716 for (i = 0; i < enab->dten_ndesc; i++) { 12717 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12718 12719 #ifdef __FreeBSD__ 12720 printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i, 12721 desc->dtpd_provider, desc->dtpd_mod, 12722 desc->dtpd_func, desc->dtpd_name); 12723 #else 12724 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12725 desc->dtpd_provider, desc->dtpd_mod, 12726 desc->dtpd_func, desc->dtpd_name); 12727 #endif 12728 } 12729 } 12730 12731 static void 12732 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12733 { 12734 int i; 12735 dtrace_ecbdesc_t *ep; 12736 dtrace_vstate_t *vstate = enab->dten_vstate; 12737 12738 ASSERT(MUTEX_HELD(&dtrace_lock)); 12739 12740 for (i = 0; i < enab->dten_ndesc; i++) { 12741 dtrace_actdesc_t *act, *next; 12742 dtrace_predicate_t *pred; 12743 12744 ep = enab->dten_desc[i]; 12745 12746 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12747 dtrace_predicate_release(pred, vstate); 12748 12749 for (act = ep->dted_action; act != NULL; act = next) { 12750 next = act->dtad_next; 12751 dtrace_actdesc_release(act, vstate); 12752 } 12753 12754 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12755 } 12756 12757 if (enab->dten_desc != NULL) 12758 kmem_free(enab->dten_desc, 12759 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12760 12761 /* 12762 * If this was a retained enabling, decrement the dts_nretained count 12763 * and take it off of the dtrace_retained list. 12764 */ 12765 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12766 dtrace_retained == enab) { 12767 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12768 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12769 enab->dten_vstate->dtvs_state->dts_nretained--; 12770 dtrace_retained_gen++; 12771 } 12772 12773 if (enab->dten_prev == NULL) { 12774 if (dtrace_retained == enab) { 12775 dtrace_retained = enab->dten_next; 12776 12777 if (dtrace_retained != NULL) 12778 dtrace_retained->dten_prev = NULL; 12779 } 12780 } else { 12781 ASSERT(enab != dtrace_retained); 12782 ASSERT(dtrace_retained != NULL); 12783 enab->dten_prev->dten_next = enab->dten_next; 12784 } 12785 12786 if (enab->dten_next != NULL) { 12787 ASSERT(dtrace_retained != NULL); 12788 enab->dten_next->dten_prev = enab->dten_prev; 12789 } 12790 12791 kmem_free(enab, sizeof (dtrace_enabling_t)); 12792 } 12793 12794 static int 12795 dtrace_enabling_retain(dtrace_enabling_t *enab) 12796 { 12797 dtrace_state_t *state; 12798 12799 ASSERT(MUTEX_HELD(&dtrace_lock)); 12800 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12801 ASSERT(enab->dten_vstate != NULL); 12802 12803 state = enab->dten_vstate->dtvs_state; 12804 ASSERT(state != NULL); 12805 12806 /* 12807 * We only allow each state to retain dtrace_retain_max enablings. 12808 */ 12809 if (state->dts_nretained >= dtrace_retain_max) 12810 return (ENOSPC); 12811 12812 state->dts_nretained++; 12813 dtrace_retained_gen++; 12814 12815 if (dtrace_retained == NULL) { 12816 dtrace_retained = enab; 12817 return (0); 12818 } 12819 12820 enab->dten_next = dtrace_retained; 12821 dtrace_retained->dten_prev = enab; 12822 dtrace_retained = enab; 12823 12824 return (0); 12825 } 12826 12827 static int 12828 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12829 dtrace_probedesc_t *create) 12830 { 12831 dtrace_enabling_t *new, *enab; 12832 int found = 0, err = ENOENT; 12833 12834 ASSERT(MUTEX_HELD(&dtrace_lock)); 12835 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12836 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12837 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12838 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12839 12840 new = dtrace_enabling_create(&state->dts_vstate); 12841 12842 /* 12843 * Iterate over all retained enablings, looking for enablings that 12844 * match the specified state. 12845 */ 12846 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12847 int i; 12848 12849 /* 12850 * dtvs_state can only be NULL for helper enablings -- and 12851 * helper enablings can't be retained. 12852 */ 12853 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12854 12855 if (enab->dten_vstate->dtvs_state != state) 12856 continue; 12857 12858 /* 12859 * Now iterate over each probe description; we're looking for 12860 * an exact match to the specified probe description. 12861 */ 12862 for (i = 0; i < enab->dten_ndesc; i++) { 12863 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12864 dtrace_probedesc_t *pd = &ep->dted_probe; 12865 12866 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12867 continue; 12868 12869 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12870 continue; 12871 12872 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12873 continue; 12874 12875 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12876 continue; 12877 12878 /* 12879 * We have a winning probe! Add it to our growing 12880 * enabling. 12881 */ 12882 found = 1; 12883 dtrace_enabling_addlike(new, ep, create); 12884 } 12885 } 12886 12887 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12888 dtrace_enabling_destroy(new); 12889 return (err); 12890 } 12891 12892 return (0); 12893 } 12894 12895 static void 12896 dtrace_enabling_retract(dtrace_state_t *state) 12897 { 12898 dtrace_enabling_t *enab, *next; 12899 12900 ASSERT(MUTEX_HELD(&dtrace_lock)); 12901 12902 /* 12903 * Iterate over all retained enablings, destroy the enablings retained 12904 * for the specified state. 12905 */ 12906 for (enab = dtrace_retained; enab != NULL; enab = next) { 12907 next = enab->dten_next; 12908 12909 /* 12910 * dtvs_state can only be NULL for helper enablings -- and 12911 * helper enablings can't be retained. 12912 */ 12913 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12914 12915 if (enab->dten_vstate->dtvs_state == state) { 12916 ASSERT(state->dts_nretained > 0); 12917 dtrace_enabling_destroy(enab); 12918 } 12919 } 12920 12921 ASSERT(state->dts_nretained == 0); 12922 } 12923 12924 static int 12925 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12926 { 12927 int i = 0; 12928 int matched = 0; 12929 12930 ASSERT(MUTEX_HELD(&cpu_lock)); 12931 ASSERT(MUTEX_HELD(&dtrace_lock)); 12932 12933 for (i = 0; i < enab->dten_ndesc; i++) { 12934 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12935 12936 enab->dten_current = ep; 12937 enab->dten_error = 0; 12938 12939 matched += dtrace_probe_enable(&ep->dted_probe, enab); 12940 12941 if (enab->dten_error != 0) { 12942 /* 12943 * If we get an error half-way through enabling the 12944 * probes, we kick out -- perhaps with some number of 12945 * them enabled. Leaving enabled probes enabled may 12946 * be slightly confusing for user-level, but we expect 12947 * that no one will attempt to actually drive on in 12948 * the face of such errors. If this is an anonymous 12949 * enabling (indicated with a NULL nmatched pointer), 12950 * we cmn_err() a message. We aren't expecting to 12951 * get such an error -- such as it can exist at all, 12952 * it would be a result of corrupted DOF in the driver 12953 * properties. 12954 */ 12955 if (nmatched == NULL) { 12956 cmn_err(CE_WARN, "dtrace_enabling_match() " 12957 "error on %p: %d", (void *)ep, 12958 enab->dten_error); 12959 } 12960 12961 return (enab->dten_error); 12962 } 12963 } 12964 12965 enab->dten_probegen = dtrace_probegen; 12966 if (nmatched != NULL) 12967 *nmatched = matched; 12968 12969 return (0); 12970 } 12971 12972 static void 12973 dtrace_enabling_matchall(void) 12974 { 12975 dtrace_enabling_t *enab; 12976 12977 mutex_enter(&cpu_lock); 12978 mutex_enter(&dtrace_lock); 12979 12980 /* 12981 * Iterate over all retained enablings to see if any probes match 12982 * against them. We only perform this operation on enablings for which 12983 * we have sufficient permissions by virtue of being in the global zone 12984 * or in the same zone as the DTrace client. Because we can be called 12985 * after dtrace_detach() has been called, we cannot assert that there 12986 * are retained enablings. We can safely load from dtrace_retained, 12987 * however: the taskq_destroy() at the end of dtrace_detach() will 12988 * block pending our completion. 12989 */ 12990 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12991 #ifdef illumos 12992 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 12993 12994 if (INGLOBALZONE(curproc) || 12995 cr != NULL && getzoneid() == crgetzoneid(cr)) 12996 #endif 12997 (void) dtrace_enabling_match(enab, NULL); 12998 } 12999 13000 mutex_exit(&dtrace_lock); 13001 mutex_exit(&cpu_lock); 13002 } 13003 13004 /* 13005 * If an enabling is to be enabled without having matched probes (that is, if 13006 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 13007 * enabling must be _primed_ by creating an ECB for every ECB description. 13008 * This must be done to assure that we know the number of speculations, the 13009 * number of aggregations, the minimum buffer size needed, etc. before we 13010 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 13011 * enabling any probes, we create ECBs for every ECB decription, but with a 13012 * NULL probe -- which is exactly what this function does. 13013 */ 13014 static void 13015 dtrace_enabling_prime(dtrace_state_t *state) 13016 { 13017 dtrace_enabling_t *enab; 13018 int i; 13019 13020 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 13021 ASSERT(enab->dten_vstate->dtvs_state != NULL); 13022 13023 if (enab->dten_vstate->dtvs_state != state) 13024 continue; 13025 13026 /* 13027 * We don't want to prime an enabling more than once, lest 13028 * we allow a malicious user to induce resource exhaustion. 13029 * (The ECBs that result from priming an enabling aren't 13030 * leaked -- but they also aren't deallocated until the 13031 * consumer state is destroyed.) 13032 */ 13033 if (enab->dten_primed) 13034 continue; 13035 13036 for (i = 0; i < enab->dten_ndesc; i++) { 13037 enab->dten_current = enab->dten_desc[i]; 13038 (void) dtrace_probe_enable(NULL, enab); 13039 } 13040 13041 enab->dten_primed = 1; 13042 } 13043 } 13044 13045 /* 13046 * Called to indicate that probes should be provided due to retained 13047 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 13048 * must take an initial lap through the enabling calling the dtps_provide() 13049 * entry point explicitly to allow for autocreated probes. 13050 */ 13051 static void 13052 dtrace_enabling_provide(dtrace_provider_t *prv) 13053 { 13054 int i, all = 0; 13055 dtrace_probedesc_t desc; 13056 dtrace_genid_t gen; 13057 13058 ASSERT(MUTEX_HELD(&dtrace_lock)); 13059 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 13060 13061 if (prv == NULL) { 13062 all = 1; 13063 prv = dtrace_provider; 13064 } 13065 13066 do { 13067 dtrace_enabling_t *enab; 13068 void *parg = prv->dtpv_arg; 13069 13070 retry: 13071 gen = dtrace_retained_gen; 13072 for (enab = dtrace_retained; enab != NULL; 13073 enab = enab->dten_next) { 13074 for (i = 0; i < enab->dten_ndesc; i++) { 13075 desc = enab->dten_desc[i]->dted_probe; 13076 mutex_exit(&dtrace_lock); 13077 prv->dtpv_pops.dtps_provide(parg, &desc); 13078 mutex_enter(&dtrace_lock); 13079 /* 13080 * Process the retained enablings again if 13081 * they have changed while we weren't holding 13082 * dtrace_lock. 13083 */ 13084 if (gen != dtrace_retained_gen) 13085 goto retry; 13086 } 13087 } 13088 } while (all && (prv = prv->dtpv_next) != NULL); 13089 13090 mutex_exit(&dtrace_lock); 13091 dtrace_probe_provide(NULL, all ? NULL : prv); 13092 mutex_enter(&dtrace_lock); 13093 } 13094 13095 /* 13096 * Called to reap ECBs that are attached to probes from defunct providers. 13097 */ 13098 static void 13099 dtrace_enabling_reap(void) 13100 { 13101 dtrace_provider_t *prov; 13102 dtrace_probe_t *probe; 13103 dtrace_ecb_t *ecb; 13104 hrtime_t when; 13105 int i; 13106 13107 mutex_enter(&cpu_lock); 13108 mutex_enter(&dtrace_lock); 13109 13110 for (i = 0; i < dtrace_nprobes; i++) { 13111 if ((probe = dtrace_probes[i]) == NULL) 13112 continue; 13113 13114 if (probe->dtpr_ecb == NULL) 13115 continue; 13116 13117 prov = probe->dtpr_provider; 13118 13119 if ((when = prov->dtpv_defunct) == 0) 13120 continue; 13121 13122 /* 13123 * We have ECBs on a defunct provider: we want to reap these 13124 * ECBs to allow the provider to unregister. The destruction 13125 * of these ECBs must be done carefully: if we destroy the ECB 13126 * and the consumer later wishes to consume an EPID that 13127 * corresponds to the destroyed ECB (and if the EPID metadata 13128 * has not been previously consumed), the consumer will abort 13129 * processing on the unknown EPID. To reduce (but not, sadly, 13130 * eliminate) the possibility of this, we will only destroy an 13131 * ECB for a defunct provider if, for the state that 13132 * corresponds to the ECB: 13133 * 13134 * (a) There is no speculative tracing (which can effectively 13135 * cache an EPID for an arbitrary amount of time). 13136 * 13137 * (b) The principal buffers have been switched twice since the 13138 * provider became defunct. 13139 * 13140 * (c) The aggregation buffers are of zero size or have been 13141 * switched twice since the provider became defunct. 13142 * 13143 * We use dts_speculates to determine (a) and call a function 13144 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 13145 * that as soon as we've been unable to destroy one of the ECBs 13146 * associated with the probe, we quit trying -- reaping is only 13147 * fruitful in as much as we can destroy all ECBs associated 13148 * with the defunct provider's probes. 13149 */ 13150 while ((ecb = probe->dtpr_ecb) != NULL) { 13151 dtrace_state_t *state = ecb->dte_state; 13152 dtrace_buffer_t *buf = state->dts_buffer; 13153 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 13154 13155 if (state->dts_speculates) 13156 break; 13157 13158 if (!dtrace_buffer_consumed(buf, when)) 13159 break; 13160 13161 if (!dtrace_buffer_consumed(aggbuf, when)) 13162 break; 13163 13164 dtrace_ecb_disable(ecb); 13165 ASSERT(probe->dtpr_ecb != ecb); 13166 dtrace_ecb_destroy(ecb); 13167 } 13168 } 13169 13170 mutex_exit(&dtrace_lock); 13171 mutex_exit(&cpu_lock); 13172 } 13173 13174 /* 13175 * DTrace DOF Functions 13176 */ 13177 /*ARGSUSED*/ 13178 static void 13179 dtrace_dof_error(dof_hdr_t *dof, const char *str) 13180 { 13181 if (dtrace_err_verbose) 13182 cmn_err(CE_WARN, "failed to process DOF: %s", str); 13183 13184 #ifdef DTRACE_ERRDEBUG 13185 dtrace_errdebug(str); 13186 #endif 13187 } 13188 13189 /* 13190 * Create DOF out of a currently enabled state. Right now, we only create 13191 * DOF containing the run-time options -- but this could be expanded to create 13192 * complete DOF representing the enabled state. 13193 */ 13194 static dof_hdr_t * 13195 dtrace_dof_create(dtrace_state_t *state) 13196 { 13197 dof_hdr_t *dof; 13198 dof_sec_t *sec; 13199 dof_optdesc_t *opt; 13200 int i, len = sizeof (dof_hdr_t) + 13201 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 13202 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13203 13204 ASSERT(MUTEX_HELD(&dtrace_lock)); 13205 13206 dof = kmem_zalloc(len, KM_SLEEP); 13207 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 13208 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 13209 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 13210 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 13211 13212 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 13213 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 13214 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 13215 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 13216 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 13217 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 13218 13219 dof->dofh_flags = 0; 13220 dof->dofh_hdrsize = sizeof (dof_hdr_t); 13221 dof->dofh_secsize = sizeof (dof_sec_t); 13222 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 13223 dof->dofh_secoff = sizeof (dof_hdr_t); 13224 dof->dofh_loadsz = len; 13225 dof->dofh_filesz = len; 13226 dof->dofh_pad = 0; 13227 13228 /* 13229 * Fill in the option section header... 13230 */ 13231 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 13232 sec->dofs_type = DOF_SECT_OPTDESC; 13233 sec->dofs_align = sizeof (uint64_t); 13234 sec->dofs_flags = DOF_SECF_LOAD; 13235 sec->dofs_entsize = sizeof (dof_optdesc_t); 13236 13237 opt = (dof_optdesc_t *)((uintptr_t)sec + 13238 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 13239 13240 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 13241 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 13242 13243 for (i = 0; i < DTRACEOPT_MAX; i++) { 13244 opt[i].dofo_option = i; 13245 opt[i].dofo_strtab = DOF_SECIDX_NONE; 13246 opt[i].dofo_value = state->dts_options[i]; 13247 } 13248 13249 return (dof); 13250 } 13251 13252 static dof_hdr_t * 13253 dtrace_dof_copyin(uintptr_t uarg, int *errp) 13254 { 13255 dof_hdr_t hdr, *dof; 13256 13257 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13258 13259 /* 13260 * First, we're going to copyin() the sizeof (dof_hdr_t). 13261 */ 13262 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 13263 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13264 *errp = EFAULT; 13265 return (NULL); 13266 } 13267 13268 /* 13269 * Now we'll allocate the entire DOF and copy it in -- provided 13270 * that the length isn't outrageous. 13271 */ 13272 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13273 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13274 *errp = E2BIG; 13275 return (NULL); 13276 } 13277 13278 if (hdr.dofh_loadsz < sizeof (hdr)) { 13279 dtrace_dof_error(&hdr, "invalid load size"); 13280 *errp = EINVAL; 13281 return (NULL); 13282 } 13283 13284 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 13285 13286 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 13287 dof->dofh_loadsz != hdr.dofh_loadsz) { 13288 kmem_free(dof, hdr.dofh_loadsz); 13289 *errp = EFAULT; 13290 return (NULL); 13291 } 13292 13293 return (dof); 13294 } 13295 13296 #ifdef __FreeBSD__ 13297 static dof_hdr_t * 13298 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp) 13299 { 13300 dof_hdr_t hdr, *dof; 13301 struct thread *td; 13302 size_t loadsz; 13303 13304 ASSERT(!MUTEX_HELD(&dtrace_lock)); 13305 13306 td = curthread; 13307 13308 /* 13309 * First, we're going to copyin() the sizeof (dof_hdr_t). 13310 */ 13311 if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) { 13312 dtrace_dof_error(NULL, "failed to copyin DOF header"); 13313 *errp = EFAULT; 13314 return (NULL); 13315 } 13316 13317 /* 13318 * Now we'll allocate the entire DOF and copy it in -- provided 13319 * that the length isn't outrageous. 13320 */ 13321 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 13322 dtrace_dof_error(&hdr, "load size exceeds maximum"); 13323 *errp = E2BIG; 13324 return (NULL); 13325 } 13326 loadsz = (size_t)hdr.dofh_loadsz; 13327 13328 if (loadsz < sizeof (hdr)) { 13329 dtrace_dof_error(&hdr, "invalid load size"); 13330 *errp = EINVAL; 13331 return (NULL); 13332 } 13333 13334 dof = kmem_alloc(loadsz, KM_SLEEP); 13335 13336 if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz || 13337 dof->dofh_loadsz != loadsz) { 13338 kmem_free(dof, hdr.dofh_loadsz); 13339 *errp = EFAULT; 13340 return (NULL); 13341 } 13342 13343 return (dof); 13344 } 13345 13346 static __inline uchar_t 13347 dtrace_dof_char(char c) 13348 { 13349 13350 switch (c) { 13351 case '0': 13352 case '1': 13353 case '2': 13354 case '3': 13355 case '4': 13356 case '5': 13357 case '6': 13358 case '7': 13359 case '8': 13360 case '9': 13361 return (c - '0'); 13362 case 'A': 13363 case 'B': 13364 case 'C': 13365 case 'D': 13366 case 'E': 13367 case 'F': 13368 return (c - 'A' + 10); 13369 case 'a': 13370 case 'b': 13371 case 'c': 13372 case 'd': 13373 case 'e': 13374 case 'f': 13375 return (c - 'a' + 10); 13376 } 13377 /* Should not reach here. */ 13378 return (UCHAR_MAX); 13379 } 13380 #endif /* __FreeBSD__ */ 13381 13382 static dof_hdr_t * 13383 dtrace_dof_property(const char *name) 13384 { 13385 #ifdef __FreeBSD__ 13386 uint8_t *dofbuf; 13387 u_char *data, *eol; 13388 caddr_t doffile; 13389 size_t bytes, len, i; 13390 dof_hdr_t *dof; 13391 u_char c1, c2; 13392 13393 dof = NULL; 13394 13395 doffile = preload_search_by_type("dtrace_dof"); 13396 if (doffile == NULL) 13397 return (NULL); 13398 13399 data = preload_fetch_addr(doffile); 13400 len = preload_fetch_size(doffile); 13401 for (;;) { 13402 /* Look for the end of the line. All lines end in a newline. */ 13403 eol = memchr(data, '\n', len); 13404 if (eol == NULL) 13405 return (NULL); 13406 13407 if (strncmp(name, data, strlen(name)) == 0) 13408 break; 13409 13410 eol++; /* skip past the newline */ 13411 len -= eol - data; 13412 data = eol; 13413 } 13414 13415 /* We've found the data corresponding to the specified key. */ 13416 13417 data += strlen(name) + 1; /* skip past the '=' */ 13418 len = eol - data; 13419 if (len % 2 != 0) { 13420 dtrace_dof_error(NULL, "invalid DOF encoding length"); 13421 goto doferr; 13422 } 13423 bytes = len / 2; 13424 if (bytes < sizeof(dof_hdr_t)) { 13425 dtrace_dof_error(NULL, "truncated header"); 13426 goto doferr; 13427 } 13428 13429 /* 13430 * Each byte is represented by the two ASCII characters in its hex 13431 * representation. 13432 */ 13433 dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK); 13434 for (i = 0; i < bytes; i++) { 13435 c1 = dtrace_dof_char(data[i * 2]); 13436 c2 = dtrace_dof_char(data[i * 2 + 1]); 13437 if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) { 13438 dtrace_dof_error(NULL, "invalid hex char in DOF"); 13439 goto doferr; 13440 } 13441 dofbuf[i] = c1 * 16 + c2; 13442 } 13443 13444 dof = (dof_hdr_t *)dofbuf; 13445 if (bytes < dof->dofh_loadsz) { 13446 dtrace_dof_error(NULL, "truncated DOF"); 13447 goto doferr; 13448 } 13449 13450 if (dof->dofh_loadsz >= dtrace_dof_maxsize) { 13451 dtrace_dof_error(NULL, "oversized DOF"); 13452 goto doferr; 13453 } 13454 13455 return (dof); 13456 13457 doferr: 13458 free(dof, M_SOLARIS); 13459 return (NULL); 13460 #else /* __FreeBSD__ */ 13461 uchar_t *buf; 13462 uint64_t loadsz; 13463 unsigned int len, i; 13464 dof_hdr_t *dof; 13465 13466 /* 13467 * Unfortunately, array of values in .conf files are always (and 13468 * only) interpreted to be integer arrays. We must read our DOF 13469 * as an integer array, and then squeeze it into a byte array. 13470 */ 13471 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 13472 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 13473 return (NULL); 13474 13475 for (i = 0; i < len; i++) 13476 buf[i] = (uchar_t)(((int *)buf)[i]); 13477 13478 if (len < sizeof (dof_hdr_t)) { 13479 ddi_prop_free(buf); 13480 dtrace_dof_error(NULL, "truncated header"); 13481 return (NULL); 13482 } 13483 13484 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 13485 ddi_prop_free(buf); 13486 dtrace_dof_error(NULL, "truncated DOF"); 13487 return (NULL); 13488 } 13489 13490 if (loadsz >= dtrace_dof_maxsize) { 13491 ddi_prop_free(buf); 13492 dtrace_dof_error(NULL, "oversized DOF"); 13493 return (NULL); 13494 } 13495 13496 dof = kmem_alloc(loadsz, KM_SLEEP); 13497 bcopy(buf, dof, loadsz); 13498 ddi_prop_free(buf); 13499 13500 return (dof); 13501 #endif /* !__FreeBSD__ */ 13502 } 13503 13504 static void 13505 dtrace_dof_destroy(dof_hdr_t *dof) 13506 { 13507 kmem_free(dof, dof->dofh_loadsz); 13508 } 13509 13510 /* 13511 * Return the dof_sec_t pointer corresponding to a given section index. If the 13512 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 13513 * a type other than DOF_SECT_NONE is specified, the header is checked against 13514 * this type and NULL is returned if the types do not match. 13515 */ 13516 static dof_sec_t * 13517 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 13518 { 13519 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 13520 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 13521 13522 if (i >= dof->dofh_secnum) { 13523 dtrace_dof_error(dof, "referenced section index is invalid"); 13524 return (NULL); 13525 } 13526 13527 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 13528 dtrace_dof_error(dof, "referenced section is not loadable"); 13529 return (NULL); 13530 } 13531 13532 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 13533 dtrace_dof_error(dof, "referenced section is the wrong type"); 13534 return (NULL); 13535 } 13536 13537 return (sec); 13538 } 13539 13540 static dtrace_probedesc_t * 13541 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 13542 { 13543 dof_probedesc_t *probe; 13544 dof_sec_t *strtab; 13545 uintptr_t daddr = (uintptr_t)dof; 13546 uintptr_t str; 13547 size_t size; 13548 13549 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 13550 dtrace_dof_error(dof, "invalid probe section"); 13551 return (NULL); 13552 } 13553 13554 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13555 dtrace_dof_error(dof, "bad alignment in probe description"); 13556 return (NULL); 13557 } 13558 13559 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 13560 dtrace_dof_error(dof, "truncated probe description"); 13561 return (NULL); 13562 } 13563 13564 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 13565 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 13566 13567 if (strtab == NULL) 13568 return (NULL); 13569 13570 str = daddr + strtab->dofs_offset; 13571 size = strtab->dofs_size; 13572 13573 if (probe->dofp_provider >= strtab->dofs_size) { 13574 dtrace_dof_error(dof, "corrupt probe provider"); 13575 return (NULL); 13576 } 13577 13578 (void) strncpy(desc->dtpd_provider, 13579 (char *)(str + probe->dofp_provider), 13580 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 13581 13582 if (probe->dofp_mod >= strtab->dofs_size) { 13583 dtrace_dof_error(dof, "corrupt probe module"); 13584 return (NULL); 13585 } 13586 13587 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 13588 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 13589 13590 if (probe->dofp_func >= strtab->dofs_size) { 13591 dtrace_dof_error(dof, "corrupt probe function"); 13592 return (NULL); 13593 } 13594 13595 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 13596 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 13597 13598 if (probe->dofp_name >= strtab->dofs_size) { 13599 dtrace_dof_error(dof, "corrupt probe name"); 13600 return (NULL); 13601 } 13602 13603 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 13604 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 13605 13606 return (desc); 13607 } 13608 13609 static dtrace_difo_t * 13610 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13611 cred_t *cr) 13612 { 13613 dtrace_difo_t *dp; 13614 size_t ttl = 0; 13615 dof_difohdr_t *dofd; 13616 uintptr_t daddr = (uintptr_t)dof; 13617 size_t max = dtrace_difo_maxsize; 13618 int i, l, n; 13619 13620 static const struct { 13621 int section; 13622 int bufoffs; 13623 int lenoffs; 13624 int entsize; 13625 int align; 13626 const char *msg; 13627 } difo[] = { 13628 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 13629 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 13630 sizeof (dif_instr_t), "multiple DIF sections" }, 13631 13632 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 13633 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 13634 sizeof (uint64_t), "multiple integer tables" }, 13635 13636 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 13637 offsetof(dtrace_difo_t, dtdo_strlen), 0, 13638 sizeof (char), "multiple string tables" }, 13639 13640 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 13641 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 13642 sizeof (uint_t), "multiple variable tables" }, 13643 13644 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 13645 }; 13646 13647 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 13648 dtrace_dof_error(dof, "invalid DIFO header section"); 13649 return (NULL); 13650 } 13651 13652 if (sec->dofs_align != sizeof (dof_secidx_t)) { 13653 dtrace_dof_error(dof, "bad alignment in DIFO header"); 13654 return (NULL); 13655 } 13656 13657 if (sec->dofs_size < sizeof (dof_difohdr_t) || 13658 sec->dofs_size % sizeof (dof_secidx_t)) { 13659 dtrace_dof_error(dof, "bad size in DIFO header"); 13660 return (NULL); 13661 } 13662 13663 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13664 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 13665 13666 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 13667 dp->dtdo_rtype = dofd->dofd_rtype; 13668 13669 for (l = 0; l < n; l++) { 13670 dof_sec_t *subsec; 13671 void **bufp; 13672 uint32_t *lenp; 13673 13674 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 13675 dofd->dofd_links[l])) == NULL) 13676 goto err; /* invalid section link */ 13677 13678 if (ttl + subsec->dofs_size > max) { 13679 dtrace_dof_error(dof, "exceeds maximum size"); 13680 goto err; 13681 } 13682 13683 ttl += subsec->dofs_size; 13684 13685 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 13686 if (subsec->dofs_type != difo[i].section) 13687 continue; 13688 13689 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 13690 dtrace_dof_error(dof, "section not loaded"); 13691 goto err; 13692 } 13693 13694 if (subsec->dofs_align != difo[i].align) { 13695 dtrace_dof_error(dof, "bad alignment"); 13696 goto err; 13697 } 13698 13699 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 13700 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 13701 13702 if (*bufp != NULL) { 13703 dtrace_dof_error(dof, difo[i].msg); 13704 goto err; 13705 } 13706 13707 if (difo[i].entsize != subsec->dofs_entsize) { 13708 dtrace_dof_error(dof, "entry size mismatch"); 13709 goto err; 13710 } 13711 13712 if (subsec->dofs_entsize != 0 && 13713 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 13714 dtrace_dof_error(dof, "corrupt entry size"); 13715 goto err; 13716 } 13717 13718 *lenp = subsec->dofs_size; 13719 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 13720 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 13721 *bufp, subsec->dofs_size); 13722 13723 if (subsec->dofs_entsize != 0) 13724 *lenp /= subsec->dofs_entsize; 13725 13726 break; 13727 } 13728 13729 /* 13730 * If we encounter a loadable DIFO sub-section that is not 13731 * known to us, assume this is a broken program and fail. 13732 */ 13733 if (difo[i].section == DOF_SECT_NONE && 13734 (subsec->dofs_flags & DOF_SECF_LOAD)) { 13735 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 13736 goto err; 13737 } 13738 } 13739 13740 if (dp->dtdo_buf == NULL) { 13741 /* 13742 * We can't have a DIF object without DIF text. 13743 */ 13744 dtrace_dof_error(dof, "missing DIF text"); 13745 goto err; 13746 } 13747 13748 /* 13749 * Before we validate the DIF object, run through the variable table 13750 * looking for the strings -- if any of their size are under, we'll set 13751 * their size to be the system-wide default string size. Note that 13752 * this should _not_ happen if the "strsize" option has been set -- 13753 * in this case, the compiler should have set the size to reflect the 13754 * setting of the option. 13755 */ 13756 for (i = 0; i < dp->dtdo_varlen; i++) { 13757 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 13758 dtrace_diftype_t *t = &v->dtdv_type; 13759 13760 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 13761 continue; 13762 13763 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 13764 t->dtdt_size = dtrace_strsize_default; 13765 } 13766 13767 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 13768 goto err; 13769 13770 dtrace_difo_init(dp, vstate); 13771 return (dp); 13772 13773 err: 13774 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 13775 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 13776 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 13777 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 13778 13779 kmem_free(dp, sizeof (dtrace_difo_t)); 13780 return (NULL); 13781 } 13782 13783 static dtrace_predicate_t * 13784 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13785 cred_t *cr) 13786 { 13787 dtrace_difo_t *dp; 13788 13789 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 13790 return (NULL); 13791 13792 return (dtrace_predicate_create(dp)); 13793 } 13794 13795 static dtrace_actdesc_t * 13796 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13797 cred_t *cr) 13798 { 13799 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 13800 dof_actdesc_t *desc; 13801 dof_sec_t *difosec; 13802 size_t offs; 13803 uintptr_t daddr = (uintptr_t)dof; 13804 uint64_t arg; 13805 dtrace_actkind_t kind; 13806 13807 if (sec->dofs_type != DOF_SECT_ACTDESC) { 13808 dtrace_dof_error(dof, "invalid action section"); 13809 return (NULL); 13810 } 13811 13812 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 13813 dtrace_dof_error(dof, "truncated action description"); 13814 return (NULL); 13815 } 13816 13817 if (sec->dofs_align != sizeof (uint64_t)) { 13818 dtrace_dof_error(dof, "bad alignment in action description"); 13819 return (NULL); 13820 } 13821 13822 if (sec->dofs_size < sec->dofs_entsize) { 13823 dtrace_dof_error(dof, "section entry size exceeds total size"); 13824 return (NULL); 13825 } 13826 13827 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13828 dtrace_dof_error(dof, "bad entry size in action description"); 13829 return (NULL); 13830 } 13831 13832 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13833 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13834 return (NULL); 13835 } 13836 13837 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13838 desc = (dof_actdesc_t *)(daddr + 13839 (uintptr_t)sec->dofs_offset + offs); 13840 kind = (dtrace_actkind_t)desc->dofa_kind; 13841 13842 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13843 (kind != DTRACEACT_PRINTA || 13844 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13845 (kind == DTRACEACT_DIFEXPR && 13846 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13847 dof_sec_t *strtab; 13848 char *str, *fmt; 13849 uint64_t i; 13850 13851 /* 13852 * The argument to these actions is an index into the 13853 * DOF string table. For printf()-like actions, this 13854 * is the format string. For print(), this is the 13855 * CTF type of the expression result. 13856 */ 13857 if ((strtab = dtrace_dof_sect(dof, 13858 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13859 goto err; 13860 13861 str = (char *)((uintptr_t)dof + 13862 (uintptr_t)strtab->dofs_offset); 13863 13864 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13865 if (str[i] == '\0') 13866 break; 13867 } 13868 13869 if (i >= strtab->dofs_size) { 13870 dtrace_dof_error(dof, "bogus format string"); 13871 goto err; 13872 } 13873 13874 if (i == desc->dofa_arg) { 13875 dtrace_dof_error(dof, "empty format string"); 13876 goto err; 13877 } 13878 13879 i -= desc->dofa_arg; 13880 fmt = kmem_alloc(i + 1, KM_SLEEP); 13881 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13882 arg = (uint64_t)(uintptr_t)fmt; 13883 } else { 13884 if (kind == DTRACEACT_PRINTA) { 13885 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13886 arg = 0; 13887 } else { 13888 arg = desc->dofa_arg; 13889 } 13890 } 13891 13892 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13893 desc->dofa_uarg, arg); 13894 13895 if (last != NULL) { 13896 last->dtad_next = act; 13897 } else { 13898 first = act; 13899 } 13900 13901 last = act; 13902 13903 if (desc->dofa_difo == DOF_SECIDX_NONE) 13904 continue; 13905 13906 if ((difosec = dtrace_dof_sect(dof, 13907 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13908 goto err; 13909 13910 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13911 13912 if (act->dtad_difo == NULL) 13913 goto err; 13914 } 13915 13916 ASSERT(first != NULL); 13917 return (first); 13918 13919 err: 13920 for (act = first; act != NULL; act = next) { 13921 next = act->dtad_next; 13922 dtrace_actdesc_release(act, vstate); 13923 } 13924 13925 return (NULL); 13926 } 13927 13928 static dtrace_ecbdesc_t * 13929 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13930 cred_t *cr) 13931 { 13932 dtrace_ecbdesc_t *ep; 13933 dof_ecbdesc_t *ecb; 13934 dtrace_probedesc_t *desc; 13935 dtrace_predicate_t *pred = NULL; 13936 13937 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13938 dtrace_dof_error(dof, "truncated ECB description"); 13939 return (NULL); 13940 } 13941 13942 if (sec->dofs_align != sizeof (uint64_t)) { 13943 dtrace_dof_error(dof, "bad alignment in ECB description"); 13944 return (NULL); 13945 } 13946 13947 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13948 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13949 13950 if (sec == NULL) 13951 return (NULL); 13952 13953 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13954 ep->dted_uarg = ecb->dofe_uarg; 13955 desc = &ep->dted_probe; 13956 13957 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13958 goto err; 13959 13960 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13961 if ((sec = dtrace_dof_sect(dof, 13962 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13963 goto err; 13964 13965 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13966 goto err; 13967 13968 ep->dted_pred.dtpdd_predicate = pred; 13969 } 13970 13971 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 13972 if ((sec = dtrace_dof_sect(dof, 13973 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 13974 goto err; 13975 13976 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 13977 13978 if (ep->dted_action == NULL) 13979 goto err; 13980 } 13981 13982 return (ep); 13983 13984 err: 13985 if (pred != NULL) 13986 dtrace_predicate_release(pred, vstate); 13987 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 13988 return (NULL); 13989 } 13990 13991 /* 13992 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 13993 * specified DOF. SETX relocations are computed using 'ubase', the base load 13994 * address of the object containing the DOF, and DOFREL relocations are relative 13995 * to the relocation offset within the DOF. 13996 */ 13997 static int 13998 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase, 13999 uint64_t udaddr) 14000 { 14001 uintptr_t daddr = (uintptr_t)dof; 14002 uintptr_t ts_end; 14003 dof_relohdr_t *dofr = 14004 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 14005 dof_sec_t *ss, *rs, *ts; 14006 dof_relodesc_t *r; 14007 uint_t i, n; 14008 14009 if (sec->dofs_size < sizeof (dof_relohdr_t) || 14010 sec->dofs_align != sizeof (dof_secidx_t)) { 14011 dtrace_dof_error(dof, "invalid relocation header"); 14012 return (-1); 14013 } 14014 14015 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 14016 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 14017 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 14018 ts_end = (uintptr_t)ts + sizeof (dof_sec_t); 14019 14020 if (ss == NULL || rs == NULL || ts == NULL) 14021 return (-1); /* dtrace_dof_error() has been called already */ 14022 14023 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 14024 rs->dofs_align != sizeof (uint64_t)) { 14025 dtrace_dof_error(dof, "invalid relocation section"); 14026 return (-1); 14027 } 14028 14029 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 14030 n = rs->dofs_size / rs->dofs_entsize; 14031 14032 for (i = 0; i < n; i++) { 14033 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 14034 14035 switch (r->dofr_type) { 14036 case DOF_RELO_NONE: 14037 break; 14038 case DOF_RELO_SETX: 14039 case DOF_RELO_DOFREL: 14040 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 14041 sizeof (uint64_t) > ts->dofs_size) { 14042 dtrace_dof_error(dof, "bad relocation offset"); 14043 return (-1); 14044 } 14045 14046 if (taddr >= (uintptr_t)ts && taddr < ts_end) { 14047 dtrace_dof_error(dof, "bad relocation offset"); 14048 return (-1); 14049 } 14050 14051 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 14052 dtrace_dof_error(dof, "misaligned setx relo"); 14053 return (-1); 14054 } 14055 14056 if (r->dofr_type == DOF_RELO_SETX) 14057 *(uint64_t *)taddr += ubase; 14058 else 14059 *(uint64_t *)taddr += 14060 udaddr + ts->dofs_offset + r->dofr_offset; 14061 break; 14062 default: 14063 dtrace_dof_error(dof, "invalid relocation type"); 14064 return (-1); 14065 } 14066 14067 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 14068 } 14069 14070 return (0); 14071 } 14072 14073 /* 14074 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 14075 * header: it should be at the front of a memory region that is at least 14076 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 14077 * size. It need not be validated in any other way. 14078 */ 14079 static int 14080 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 14081 dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes) 14082 { 14083 uint64_t len = dof->dofh_loadsz, seclen; 14084 uintptr_t daddr = (uintptr_t)dof; 14085 dtrace_ecbdesc_t *ep; 14086 dtrace_enabling_t *enab; 14087 uint_t i; 14088 14089 ASSERT(MUTEX_HELD(&dtrace_lock)); 14090 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 14091 14092 /* 14093 * Check the DOF header identification bytes. In addition to checking 14094 * valid settings, we also verify that unused bits/bytes are zeroed so 14095 * we can use them later without fear of regressing existing binaries. 14096 */ 14097 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 14098 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 14099 dtrace_dof_error(dof, "DOF magic string mismatch"); 14100 return (-1); 14101 } 14102 14103 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 14104 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 14105 dtrace_dof_error(dof, "DOF has invalid data model"); 14106 return (-1); 14107 } 14108 14109 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 14110 dtrace_dof_error(dof, "DOF encoding mismatch"); 14111 return (-1); 14112 } 14113 14114 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14115 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 14116 dtrace_dof_error(dof, "DOF version mismatch"); 14117 return (-1); 14118 } 14119 14120 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 14121 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 14122 return (-1); 14123 } 14124 14125 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 14126 dtrace_dof_error(dof, "DOF uses too many integer registers"); 14127 return (-1); 14128 } 14129 14130 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 14131 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 14132 return (-1); 14133 } 14134 14135 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 14136 if (dof->dofh_ident[i] != 0) { 14137 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 14138 return (-1); 14139 } 14140 } 14141 14142 if (dof->dofh_flags & ~DOF_FL_VALID) { 14143 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 14144 return (-1); 14145 } 14146 14147 if (dof->dofh_secsize == 0) { 14148 dtrace_dof_error(dof, "zero section header size"); 14149 return (-1); 14150 } 14151 14152 /* 14153 * Check that the section headers don't exceed the amount of DOF 14154 * data. Note that we cast the section size and number of sections 14155 * to uint64_t's to prevent possible overflow in the multiplication. 14156 */ 14157 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 14158 14159 if (dof->dofh_secoff > len || seclen > len || 14160 dof->dofh_secoff + seclen > len) { 14161 dtrace_dof_error(dof, "truncated section headers"); 14162 return (-1); 14163 } 14164 14165 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 14166 dtrace_dof_error(dof, "misaligned section headers"); 14167 return (-1); 14168 } 14169 14170 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 14171 dtrace_dof_error(dof, "misaligned section size"); 14172 return (-1); 14173 } 14174 14175 /* 14176 * Take an initial pass through the section headers to be sure that 14177 * the headers don't have stray offsets. If the 'noprobes' flag is 14178 * set, do not permit sections relating to providers, probes, or args. 14179 */ 14180 for (i = 0; i < dof->dofh_secnum; i++) { 14181 dof_sec_t *sec = (dof_sec_t *)(daddr + 14182 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14183 14184 if (noprobes) { 14185 switch (sec->dofs_type) { 14186 case DOF_SECT_PROVIDER: 14187 case DOF_SECT_PROBES: 14188 case DOF_SECT_PRARGS: 14189 case DOF_SECT_PROFFS: 14190 dtrace_dof_error(dof, "illegal sections " 14191 "for enabling"); 14192 return (-1); 14193 } 14194 } 14195 14196 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 14197 !(sec->dofs_flags & DOF_SECF_LOAD)) { 14198 dtrace_dof_error(dof, "loadable section with load " 14199 "flag unset"); 14200 return (-1); 14201 } 14202 14203 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14204 continue; /* just ignore non-loadable sections */ 14205 14206 if (!ISP2(sec->dofs_align)) { 14207 dtrace_dof_error(dof, "bad section alignment"); 14208 return (-1); 14209 } 14210 14211 if (sec->dofs_offset & (sec->dofs_align - 1)) { 14212 dtrace_dof_error(dof, "misaligned section"); 14213 return (-1); 14214 } 14215 14216 if (sec->dofs_offset > len || sec->dofs_size > len || 14217 sec->dofs_offset + sec->dofs_size > len) { 14218 dtrace_dof_error(dof, "corrupt section header"); 14219 return (-1); 14220 } 14221 14222 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 14223 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 14224 dtrace_dof_error(dof, "non-terminating string table"); 14225 return (-1); 14226 } 14227 } 14228 14229 /* 14230 * Take a second pass through the sections and locate and perform any 14231 * relocations that are present. We do this after the first pass to 14232 * be sure that all sections have had their headers validated. 14233 */ 14234 for (i = 0; i < dof->dofh_secnum; i++) { 14235 dof_sec_t *sec = (dof_sec_t *)(daddr + 14236 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14237 14238 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 14239 continue; /* skip sections that are not loadable */ 14240 14241 switch (sec->dofs_type) { 14242 case DOF_SECT_URELHDR: 14243 if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0) 14244 return (-1); 14245 break; 14246 } 14247 } 14248 14249 if ((enab = *enabp) == NULL) 14250 enab = *enabp = dtrace_enabling_create(vstate); 14251 14252 for (i = 0; i < dof->dofh_secnum; i++) { 14253 dof_sec_t *sec = (dof_sec_t *)(daddr + 14254 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14255 14256 if (sec->dofs_type != DOF_SECT_ECBDESC) 14257 continue; 14258 14259 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 14260 dtrace_enabling_destroy(enab); 14261 *enabp = NULL; 14262 return (-1); 14263 } 14264 14265 dtrace_enabling_add(enab, ep); 14266 } 14267 14268 return (0); 14269 } 14270 14271 /* 14272 * Process DOF for any options. This routine assumes that the DOF has been 14273 * at least processed by dtrace_dof_slurp(). 14274 */ 14275 static int 14276 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 14277 { 14278 int i, rval; 14279 uint32_t entsize; 14280 size_t offs; 14281 dof_optdesc_t *desc; 14282 14283 for (i = 0; i < dof->dofh_secnum; i++) { 14284 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 14285 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 14286 14287 if (sec->dofs_type != DOF_SECT_OPTDESC) 14288 continue; 14289 14290 if (sec->dofs_align != sizeof (uint64_t)) { 14291 dtrace_dof_error(dof, "bad alignment in " 14292 "option description"); 14293 return (EINVAL); 14294 } 14295 14296 if ((entsize = sec->dofs_entsize) == 0) { 14297 dtrace_dof_error(dof, "zeroed option entry size"); 14298 return (EINVAL); 14299 } 14300 14301 if (entsize < sizeof (dof_optdesc_t)) { 14302 dtrace_dof_error(dof, "bad option entry size"); 14303 return (EINVAL); 14304 } 14305 14306 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 14307 desc = (dof_optdesc_t *)((uintptr_t)dof + 14308 (uintptr_t)sec->dofs_offset + offs); 14309 14310 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 14311 dtrace_dof_error(dof, "non-zero option string"); 14312 return (EINVAL); 14313 } 14314 14315 if (desc->dofo_value == DTRACEOPT_UNSET) { 14316 dtrace_dof_error(dof, "unset option"); 14317 return (EINVAL); 14318 } 14319 14320 if ((rval = dtrace_state_option(state, 14321 desc->dofo_option, desc->dofo_value)) != 0) { 14322 dtrace_dof_error(dof, "rejected option"); 14323 return (rval); 14324 } 14325 } 14326 } 14327 14328 return (0); 14329 } 14330 14331 /* 14332 * DTrace Consumer State Functions 14333 */ 14334 static int 14335 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 14336 { 14337 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 14338 void *base; 14339 uintptr_t limit; 14340 dtrace_dynvar_t *dvar, *next, *start; 14341 int i; 14342 14343 ASSERT(MUTEX_HELD(&dtrace_lock)); 14344 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 14345 14346 bzero(dstate, sizeof (dtrace_dstate_t)); 14347 14348 if ((dstate->dtds_chunksize = chunksize) == 0) 14349 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 14350 14351 VERIFY(dstate->dtds_chunksize < LONG_MAX); 14352 14353 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 14354 size = min; 14355 14356 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 14357 return (ENOMEM); 14358 14359 dstate->dtds_size = size; 14360 dstate->dtds_base = base; 14361 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 14362 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 14363 14364 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 14365 14366 if (hashsize != 1 && (hashsize & 1)) 14367 hashsize--; 14368 14369 dstate->dtds_hashsize = hashsize; 14370 dstate->dtds_hash = dstate->dtds_base; 14371 14372 /* 14373 * Set all of our hash buckets to point to the single sink, and (if 14374 * it hasn't already been set), set the sink's hash value to be the 14375 * sink sentinel value. The sink is needed for dynamic variable 14376 * lookups to know that they have iterated over an entire, valid hash 14377 * chain. 14378 */ 14379 for (i = 0; i < hashsize; i++) 14380 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 14381 14382 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 14383 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 14384 14385 /* 14386 * Determine number of active CPUs. Divide free list evenly among 14387 * active CPUs. 14388 */ 14389 start = (dtrace_dynvar_t *) 14390 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 14391 limit = (uintptr_t)base + size; 14392 14393 VERIFY((uintptr_t)start < limit); 14394 VERIFY((uintptr_t)start >= (uintptr_t)base); 14395 14396 maxper = (limit - (uintptr_t)start) / NCPU; 14397 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 14398 14399 #ifndef illumos 14400 CPU_FOREACH(i) { 14401 #else 14402 for (i = 0; i < NCPU; i++) { 14403 #endif 14404 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 14405 14406 /* 14407 * If we don't even have enough chunks to make it once through 14408 * NCPUs, we're just going to allocate everything to the first 14409 * CPU. And if we're on the last CPU, we're going to allocate 14410 * whatever is left over. In either case, we set the limit to 14411 * be the limit of the dynamic variable space. 14412 */ 14413 if (maxper == 0 || i == NCPU - 1) { 14414 limit = (uintptr_t)base + size; 14415 start = NULL; 14416 } else { 14417 limit = (uintptr_t)start + maxper; 14418 start = (dtrace_dynvar_t *)limit; 14419 } 14420 14421 VERIFY(limit <= (uintptr_t)base + size); 14422 14423 for (;;) { 14424 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 14425 dstate->dtds_chunksize); 14426 14427 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 14428 break; 14429 14430 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 14431 (uintptr_t)dvar <= (uintptr_t)base + size); 14432 dvar->dtdv_next = next; 14433 dvar = next; 14434 } 14435 14436 if (maxper == 0) 14437 break; 14438 } 14439 14440 return (0); 14441 } 14442 14443 static void 14444 dtrace_dstate_fini(dtrace_dstate_t *dstate) 14445 { 14446 ASSERT(MUTEX_HELD(&cpu_lock)); 14447 14448 if (dstate->dtds_base == NULL) 14449 return; 14450 14451 kmem_free(dstate->dtds_base, dstate->dtds_size); 14452 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 14453 } 14454 14455 static void 14456 dtrace_vstate_fini(dtrace_vstate_t *vstate) 14457 { 14458 /* 14459 * Logical XOR, where are you? 14460 */ 14461 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 14462 14463 if (vstate->dtvs_nglobals > 0) { 14464 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 14465 sizeof (dtrace_statvar_t *)); 14466 } 14467 14468 if (vstate->dtvs_ntlocals > 0) { 14469 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 14470 sizeof (dtrace_difv_t)); 14471 } 14472 14473 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 14474 14475 if (vstate->dtvs_nlocals > 0) { 14476 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 14477 sizeof (dtrace_statvar_t *)); 14478 } 14479 } 14480 14481 #ifdef illumos 14482 static void 14483 dtrace_state_clean(dtrace_state_t *state) 14484 { 14485 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14486 return; 14487 14488 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14489 dtrace_speculation_clean(state); 14490 } 14491 14492 static void 14493 dtrace_state_deadman(dtrace_state_t *state) 14494 { 14495 hrtime_t now; 14496 14497 dtrace_sync(); 14498 14499 now = dtrace_gethrtime(); 14500 14501 if (state != dtrace_anon.dta_state && 14502 now - state->dts_laststatus >= dtrace_deadman_user) 14503 return; 14504 14505 /* 14506 * We must be sure that dts_alive never appears to be less than the 14507 * value upon entry to dtrace_state_deadman(), and because we lack a 14508 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14509 * store INT64_MAX to it, followed by a memory barrier, followed by 14510 * the new value. This assures that dts_alive never appears to be 14511 * less than its true value, regardless of the order in which the 14512 * stores to the underlying storage are issued. 14513 */ 14514 state->dts_alive = INT64_MAX; 14515 dtrace_membar_producer(); 14516 state->dts_alive = now; 14517 } 14518 #else /* !illumos */ 14519 static void 14520 dtrace_state_clean(void *arg) 14521 { 14522 dtrace_state_t *state = arg; 14523 dtrace_optval_t *opt = state->dts_options; 14524 14525 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 14526 return; 14527 14528 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 14529 dtrace_speculation_clean(state); 14530 14531 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 14532 dtrace_state_clean, state); 14533 } 14534 14535 static void 14536 dtrace_state_deadman(void *arg) 14537 { 14538 dtrace_state_t *state = arg; 14539 hrtime_t now; 14540 14541 dtrace_sync(); 14542 14543 dtrace_debug_output(); 14544 14545 now = dtrace_gethrtime(); 14546 14547 if (state != dtrace_anon.dta_state && 14548 now - state->dts_laststatus >= dtrace_deadman_user) 14549 return; 14550 14551 /* 14552 * We must be sure that dts_alive never appears to be less than the 14553 * value upon entry to dtrace_state_deadman(), and because we lack a 14554 * dtrace_cas64(), we cannot store to it atomically. We thus instead 14555 * store INT64_MAX to it, followed by a memory barrier, followed by 14556 * the new value. This assures that dts_alive never appears to be 14557 * less than its true value, regardless of the order in which the 14558 * stores to the underlying storage are issued. 14559 */ 14560 state->dts_alive = INT64_MAX; 14561 dtrace_membar_producer(); 14562 state->dts_alive = now; 14563 14564 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 14565 dtrace_state_deadman, state); 14566 } 14567 #endif /* illumos */ 14568 14569 static dtrace_state_t * 14570 #ifdef illumos 14571 dtrace_state_create(dev_t *devp, cred_t *cr) 14572 #else 14573 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused) 14574 #endif 14575 { 14576 #ifdef illumos 14577 minor_t minor; 14578 major_t major; 14579 #else 14580 cred_t *cr = NULL; 14581 int m = 0; 14582 #endif 14583 char c[30]; 14584 dtrace_state_t *state; 14585 dtrace_optval_t *opt; 14586 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 14587 int cpu_it; 14588 14589 ASSERT(MUTEX_HELD(&dtrace_lock)); 14590 ASSERT(MUTEX_HELD(&cpu_lock)); 14591 14592 #ifdef illumos 14593 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 14594 VM_BESTFIT | VM_SLEEP); 14595 14596 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 14597 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14598 return (NULL); 14599 } 14600 14601 state = ddi_get_soft_state(dtrace_softstate, minor); 14602 #else 14603 if (dev != NULL) { 14604 cr = dev->si_cred; 14605 m = dev2unit(dev); 14606 } 14607 14608 /* Allocate memory for the state. */ 14609 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP); 14610 #endif 14611 14612 state->dts_epid = DTRACE_EPIDNONE + 1; 14613 14614 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m); 14615 #ifdef illumos 14616 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 14617 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14618 14619 if (devp != NULL) { 14620 major = getemajor(*devp); 14621 } else { 14622 major = ddi_driver_major(dtrace_devi); 14623 } 14624 14625 state->dts_dev = makedevice(major, minor); 14626 14627 if (devp != NULL) 14628 *devp = state->dts_dev; 14629 #else 14630 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx); 14631 state->dts_dev = dev; 14632 #endif 14633 14634 /* 14635 * We allocate NCPU buffers. On the one hand, this can be quite 14636 * a bit of memory per instance (nearly 36K on a Starcat). On the 14637 * other hand, it saves an additional memory reference in the probe 14638 * path. 14639 */ 14640 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 14641 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 14642 14643 /* 14644 * Allocate and initialise the per-process per-CPU random state. 14645 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is 14646 * assumed to be seeded at this point (if from Fortuna seed file). 14647 */ 14648 arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t)); 14649 for (cpu_it = 1; cpu_it < NCPU; cpu_it++) { 14650 /* 14651 * Each CPU is assigned a 2^64 period, non-overlapping 14652 * subsequence. 14653 */ 14654 dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it-1], 14655 state->dts_rstate[cpu_it]); 14656 } 14657 14658 #ifdef illumos 14659 state->dts_cleaner = CYCLIC_NONE; 14660 state->dts_deadman = CYCLIC_NONE; 14661 #else 14662 callout_init(&state->dts_cleaner, 1); 14663 callout_init(&state->dts_deadman, 1); 14664 #endif 14665 state->dts_vstate.dtvs_state = state; 14666 14667 for (i = 0; i < DTRACEOPT_MAX; i++) 14668 state->dts_options[i] = DTRACEOPT_UNSET; 14669 14670 /* 14671 * Set the default options. 14672 */ 14673 opt = state->dts_options; 14674 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 14675 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 14676 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 14677 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 14678 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 14679 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 14680 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 14681 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 14682 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 14683 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 14684 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 14685 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 14686 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 14687 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 14688 14689 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 14690 14691 /* 14692 * Depending on the user credentials, we set flag bits which alter probe 14693 * visibility or the amount of destructiveness allowed. In the case of 14694 * actual anonymous tracing, or the possession of all privileges, all of 14695 * the normal checks are bypassed. 14696 */ 14697 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 14698 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 14699 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 14700 } else { 14701 /* 14702 * Set up the credentials for this instantiation. We take a 14703 * hold on the credential to prevent it from disappearing on 14704 * us; this in turn prevents the zone_t referenced by this 14705 * credential from disappearing. This means that we can 14706 * examine the credential and the zone from probe context. 14707 */ 14708 crhold(cr); 14709 state->dts_cred.dcr_cred = cr; 14710 14711 /* 14712 * CRA_PROC means "we have *some* privilege for dtrace" and 14713 * unlocks the use of variables like pid, zonename, etc. 14714 */ 14715 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 14716 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14717 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 14718 } 14719 14720 /* 14721 * dtrace_user allows use of syscall and profile providers. 14722 * If the user also has proc_owner and/or proc_zone, we 14723 * extend the scope to include additional visibility and 14724 * destructive power. 14725 */ 14726 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 14727 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 14728 state->dts_cred.dcr_visible |= 14729 DTRACE_CRV_ALLPROC; 14730 14731 state->dts_cred.dcr_action |= 14732 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14733 } 14734 14735 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 14736 state->dts_cred.dcr_visible |= 14737 DTRACE_CRV_ALLZONE; 14738 14739 state->dts_cred.dcr_action |= 14740 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14741 } 14742 14743 /* 14744 * If we have all privs in whatever zone this is, 14745 * we can do destructive things to processes which 14746 * have altered credentials. 14747 */ 14748 #ifdef illumos 14749 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14750 cr->cr_zone->zone_privset)) { 14751 state->dts_cred.dcr_action |= 14752 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14753 } 14754 #endif 14755 } 14756 14757 /* 14758 * Holding the dtrace_kernel privilege also implies that 14759 * the user has the dtrace_user privilege from a visibility 14760 * perspective. But without further privileges, some 14761 * destructive actions are not available. 14762 */ 14763 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 14764 /* 14765 * Make all probes in all zones visible. However, 14766 * this doesn't mean that all actions become available 14767 * to all zones. 14768 */ 14769 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 14770 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 14771 14772 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 14773 DTRACE_CRA_PROC; 14774 /* 14775 * Holding proc_owner means that destructive actions 14776 * for *this* zone are allowed. 14777 */ 14778 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14779 state->dts_cred.dcr_action |= 14780 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14781 14782 /* 14783 * Holding proc_zone means that destructive actions 14784 * for this user/group ID in all zones is allowed. 14785 */ 14786 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14787 state->dts_cred.dcr_action |= 14788 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14789 14790 #ifdef illumos 14791 /* 14792 * If we have all privs in whatever zone this is, 14793 * we can do destructive things to processes which 14794 * have altered credentials. 14795 */ 14796 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 14797 cr->cr_zone->zone_privset)) { 14798 state->dts_cred.dcr_action |= 14799 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 14800 } 14801 #endif 14802 } 14803 14804 /* 14805 * Holding the dtrace_proc privilege gives control over fasttrap 14806 * and pid providers. We need to grant wider destructive 14807 * privileges in the event that the user has proc_owner and/or 14808 * proc_zone. 14809 */ 14810 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 14811 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 14812 state->dts_cred.dcr_action |= 14813 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 14814 14815 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 14816 state->dts_cred.dcr_action |= 14817 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 14818 } 14819 } 14820 14821 return (state); 14822 } 14823 14824 static int 14825 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 14826 { 14827 dtrace_optval_t *opt = state->dts_options, size; 14828 processorid_t cpu = 0; 14829 int flags = 0, rval, factor, divisor = 1; 14830 14831 ASSERT(MUTEX_HELD(&dtrace_lock)); 14832 ASSERT(MUTEX_HELD(&cpu_lock)); 14833 ASSERT(which < DTRACEOPT_MAX); 14834 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 14835 (state == dtrace_anon.dta_state && 14836 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 14837 14838 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 14839 return (0); 14840 14841 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 14842 cpu = opt[DTRACEOPT_CPU]; 14843 14844 if (which == DTRACEOPT_SPECSIZE) 14845 flags |= DTRACEBUF_NOSWITCH; 14846 14847 if (which == DTRACEOPT_BUFSIZE) { 14848 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 14849 flags |= DTRACEBUF_RING; 14850 14851 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 14852 flags |= DTRACEBUF_FILL; 14853 14854 if (state != dtrace_anon.dta_state || 14855 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14856 flags |= DTRACEBUF_INACTIVE; 14857 } 14858 14859 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 14860 /* 14861 * The size must be 8-byte aligned. If the size is not 8-byte 14862 * aligned, drop it down by the difference. 14863 */ 14864 if (size & (sizeof (uint64_t) - 1)) 14865 size -= size & (sizeof (uint64_t) - 1); 14866 14867 if (size < state->dts_reserve) { 14868 /* 14869 * Buffers always must be large enough to accommodate 14870 * their prereserved space. We return E2BIG instead 14871 * of ENOMEM in this case to allow for user-level 14872 * software to differentiate the cases. 14873 */ 14874 return (E2BIG); 14875 } 14876 14877 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 14878 14879 if (rval != ENOMEM) { 14880 opt[which] = size; 14881 return (rval); 14882 } 14883 14884 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14885 return (rval); 14886 14887 for (divisor = 2; divisor < factor; divisor <<= 1) 14888 continue; 14889 } 14890 14891 return (ENOMEM); 14892 } 14893 14894 static int 14895 dtrace_state_buffers(dtrace_state_t *state) 14896 { 14897 dtrace_speculation_t *spec = state->dts_speculations; 14898 int rval, i; 14899 14900 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 14901 DTRACEOPT_BUFSIZE)) != 0) 14902 return (rval); 14903 14904 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 14905 DTRACEOPT_AGGSIZE)) != 0) 14906 return (rval); 14907 14908 for (i = 0; i < state->dts_nspeculations; i++) { 14909 if ((rval = dtrace_state_buffer(state, 14910 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 14911 return (rval); 14912 } 14913 14914 return (0); 14915 } 14916 14917 static void 14918 dtrace_state_prereserve(dtrace_state_t *state) 14919 { 14920 dtrace_ecb_t *ecb; 14921 dtrace_probe_t *probe; 14922 14923 state->dts_reserve = 0; 14924 14925 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 14926 return; 14927 14928 /* 14929 * If our buffer policy is a "fill" buffer policy, we need to set the 14930 * prereserved space to be the space required by the END probes. 14931 */ 14932 probe = dtrace_probes[dtrace_probeid_end - 1]; 14933 ASSERT(probe != NULL); 14934 14935 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14936 if (ecb->dte_state != state) 14937 continue; 14938 14939 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14940 } 14941 } 14942 14943 static int 14944 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14945 { 14946 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14947 dtrace_speculation_t *spec; 14948 dtrace_buffer_t *buf; 14949 #ifdef illumos 14950 cyc_handler_t hdlr; 14951 cyc_time_t when; 14952 #endif 14953 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14954 dtrace_icookie_t cookie; 14955 14956 mutex_enter(&cpu_lock); 14957 mutex_enter(&dtrace_lock); 14958 14959 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14960 rval = EBUSY; 14961 goto out; 14962 } 14963 14964 /* 14965 * Before we can perform any checks, we must prime all of the 14966 * retained enablings that correspond to this state. 14967 */ 14968 dtrace_enabling_prime(state); 14969 14970 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 14971 rval = EACCES; 14972 goto out; 14973 } 14974 14975 dtrace_state_prereserve(state); 14976 14977 /* 14978 * Now we want to do is try to allocate our speculations. 14979 * We do not automatically resize the number of speculations; if 14980 * this fails, we will fail the operation. 14981 */ 14982 nspec = opt[DTRACEOPT_NSPEC]; 14983 ASSERT(nspec != DTRACEOPT_UNSET); 14984 14985 if (nspec > INT_MAX) { 14986 rval = ENOMEM; 14987 goto out; 14988 } 14989 14990 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 14991 KM_NOSLEEP | KM_NORMALPRI); 14992 14993 if (spec == NULL) { 14994 rval = ENOMEM; 14995 goto out; 14996 } 14997 14998 state->dts_speculations = spec; 14999 state->dts_nspeculations = (int)nspec; 15000 15001 for (i = 0; i < nspec; i++) { 15002 if ((buf = kmem_zalloc(bufsize, 15003 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 15004 rval = ENOMEM; 15005 goto err; 15006 } 15007 15008 spec[i].dtsp_buffer = buf; 15009 } 15010 15011 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 15012 if (dtrace_anon.dta_state == NULL) { 15013 rval = ENOENT; 15014 goto out; 15015 } 15016 15017 if (state->dts_necbs != 0) { 15018 rval = EALREADY; 15019 goto out; 15020 } 15021 15022 state->dts_anon = dtrace_anon_grab(); 15023 ASSERT(state->dts_anon != NULL); 15024 state = state->dts_anon; 15025 15026 /* 15027 * We want "grabanon" to be set in the grabbed state, so we'll 15028 * copy that option value from the grabbing state into the 15029 * grabbed state. 15030 */ 15031 state->dts_options[DTRACEOPT_GRABANON] = 15032 opt[DTRACEOPT_GRABANON]; 15033 15034 *cpu = dtrace_anon.dta_beganon; 15035 15036 /* 15037 * If the anonymous state is active (as it almost certainly 15038 * is if the anonymous enabling ultimately matched anything), 15039 * we don't allow any further option processing -- but we 15040 * don't return failure. 15041 */ 15042 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15043 goto out; 15044 } 15045 15046 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 15047 opt[DTRACEOPT_AGGSIZE] != 0) { 15048 if (state->dts_aggregations == NULL) { 15049 /* 15050 * We're not going to create an aggregation buffer 15051 * because we don't have any ECBs that contain 15052 * aggregations -- set this option to 0. 15053 */ 15054 opt[DTRACEOPT_AGGSIZE] = 0; 15055 } else { 15056 /* 15057 * If we have an aggregation buffer, we must also have 15058 * a buffer to use as scratch. 15059 */ 15060 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 15061 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 15062 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 15063 } 15064 } 15065 } 15066 15067 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 15068 opt[DTRACEOPT_SPECSIZE] != 0) { 15069 if (!state->dts_speculates) { 15070 /* 15071 * We're not going to create speculation buffers 15072 * because we don't have any ECBs that actually 15073 * speculate -- set the speculation size to 0. 15074 */ 15075 opt[DTRACEOPT_SPECSIZE] = 0; 15076 } 15077 } 15078 15079 /* 15080 * The bare minimum size for any buffer that we're actually going to 15081 * do anything to is sizeof (uint64_t). 15082 */ 15083 sz = sizeof (uint64_t); 15084 15085 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 15086 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 15087 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 15088 /* 15089 * A buffer size has been explicitly set to 0 (or to a size 15090 * that will be adjusted to 0) and we need the space -- we 15091 * need to return failure. We return ENOSPC to differentiate 15092 * it from failing to allocate a buffer due to failure to meet 15093 * the reserve (for which we return E2BIG). 15094 */ 15095 rval = ENOSPC; 15096 goto out; 15097 } 15098 15099 if ((rval = dtrace_state_buffers(state)) != 0) 15100 goto err; 15101 15102 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 15103 sz = dtrace_dstate_defsize; 15104 15105 do { 15106 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 15107 15108 if (rval == 0) 15109 break; 15110 15111 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 15112 goto err; 15113 } while (sz >>= 1); 15114 15115 opt[DTRACEOPT_DYNVARSIZE] = sz; 15116 15117 if (rval != 0) 15118 goto err; 15119 15120 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 15121 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 15122 15123 if (opt[DTRACEOPT_CLEANRATE] == 0) 15124 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15125 15126 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 15127 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 15128 15129 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 15130 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 15131 15132 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 15133 #ifdef illumos 15134 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 15135 hdlr.cyh_arg = state; 15136 hdlr.cyh_level = CY_LOW_LEVEL; 15137 15138 when.cyt_when = 0; 15139 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 15140 15141 state->dts_cleaner = cyclic_add(&hdlr, &when); 15142 15143 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 15144 hdlr.cyh_arg = state; 15145 hdlr.cyh_level = CY_LOW_LEVEL; 15146 15147 when.cyt_when = 0; 15148 when.cyt_interval = dtrace_deadman_interval; 15149 15150 state->dts_deadman = cyclic_add(&hdlr, &when); 15151 #else 15152 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC, 15153 dtrace_state_clean, state); 15154 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC, 15155 dtrace_state_deadman, state); 15156 #endif 15157 15158 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 15159 15160 #ifdef illumos 15161 if (state->dts_getf != 0 && 15162 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15163 /* 15164 * We don't have kernel privs but we have at least one call 15165 * to getf(); we need to bump our zone's count, and (if 15166 * this is the first enabling to have an unprivileged call 15167 * to getf()) we need to hook into closef(). 15168 */ 15169 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 15170 15171 if (dtrace_getf++ == 0) { 15172 ASSERT(dtrace_closef == NULL); 15173 dtrace_closef = dtrace_getf_barrier; 15174 } 15175 } 15176 #endif 15177 15178 /* 15179 * Now it's time to actually fire the BEGIN probe. We need to disable 15180 * interrupts here both to record the CPU on which we fired the BEGIN 15181 * probe (the data from this CPU will be processed first at user 15182 * level) and to manually activate the buffer for this CPU. 15183 */ 15184 cookie = dtrace_interrupt_disable(); 15185 *cpu = curcpu; 15186 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 15187 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 15188 15189 dtrace_probe(dtrace_probeid_begin, 15190 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15191 dtrace_interrupt_enable(cookie); 15192 /* 15193 * We may have had an exit action from a BEGIN probe; only change our 15194 * state to ACTIVE if we're still in WARMUP. 15195 */ 15196 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 15197 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 15198 15199 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 15200 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 15201 15202 #ifdef __FreeBSD__ 15203 /* 15204 * We enable anonymous tracing before APs are started, so we must 15205 * activate buffers using the current CPU. 15206 */ 15207 if (state == dtrace_anon.dta_state) 15208 for (int i = 0; i < NCPU; i++) 15209 dtrace_buffer_activate_cpu(state, i); 15210 else 15211 dtrace_xcall(DTRACE_CPUALL, 15212 (dtrace_xcall_t)dtrace_buffer_activate, state); 15213 #else 15214 /* 15215 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 15216 * want each CPU to transition its principal buffer out of the 15217 * INACTIVE state. Doing this assures that no CPU will suddenly begin 15218 * processing an ECB halfway down a probe's ECB chain; all CPUs will 15219 * atomically transition from processing none of a state's ECBs to 15220 * processing all of them. 15221 */ 15222 dtrace_xcall(DTRACE_CPUALL, 15223 (dtrace_xcall_t)dtrace_buffer_activate, state); 15224 #endif 15225 goto out; 15226 15227 err: 15228 dtrace_buffer_free(state->dts_buffer); 15229 dtrace_buffer_free(state->dts_aggbuffer); 15230 15231 if ((nspec = state->dts_nspeculations) == 0) { 15232 ASSERT(state->dts_speculations == NULL); 15233 goto out; 15234 } 15235 15236 spec = state->dts_speculations; 15237 ASSERT(spec != NULL); 15238 15239 for (i = 0; i < state->dts_nspeculations; i++) { 15240 if ((buf = spec[i].dtsp_buffer) == NULL) 15241 break; 15242 15243 dtrace_buffer_free(buf); 15244 kmem_free(buf, bufsize); 15245 } 15246 15247 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15248 state->dts_nspeculations = 0; 15249 state->dts_speculations = NULL; 15250 15251 out: 15252 mutex_exit(&dtrace_lock); 15253 mutex_exit(&cpu_lock); 15254 15255 return (rval); 15256 } 15257 15258 static int 15259 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 15260 { 15261 dtrace_icookie_t cookie; 15262 15263 ASSERT(MUTEX_HELD(&dtrace_lock)); 15264 15265 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 15266 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 15267 return (EINVAL); 15268 15269 /* 15270 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 15271 * to be sure that every CPU has seen it. See below for the details 15272 * on why this is done. 15273 */ 15274 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 15275 dtrace_sync(); 15276 15277 /* 15278 * By this point, it is impossible for any CPU to be still processing 15279 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 15280 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 15281 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 15282 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 15283 * iff we're in the END probe. 15284 */ 15285 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 15286 dtrace_sync(); 15287 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 15288 15289 /* 15290 * Finally, we can release the reserve and call the END probe. We 15291 * disable interrupts across calling the END probe to allow us to 15292 * return the CPU on which we actually called the END probe. This 15293 * allows user-land to be sure that this CPU's principal buffer is 15294 * processed last. 15295 */ 15296 state->dts_reserve = 0; 15297 15298 cookie = dtrace_interrupt_disable(); 15299 *cpu = curcpu; 15300 dtrace_probe(dtrace_probeid_end, 15301 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 15302 dtrace_interrupt_enable(cookie); 15303 15304 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 15305 dtrace_sync(); 15306 15307 #ifdef illumos 15308 if (state->dts_getf != 0 && 15309 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 15310 /* 15311 * We don't have kernel privs but we have at least one call 15312 * to getf(); we need to lower our zone's count, and (if 15313 * this is the last enabling to have an unprivileged call 15314 * to getf()) we need to clear the closef() hook. 15315 */ 15316 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 15317 ASSERT(dtrace_closef == dtrace_getf_barrier); 15318 ASSERT(dtrace_getf > 0); 15319 15320 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 15321 15322 if (--dtrace_getf == 0) 15323 dtrace_closef = NULL; 15324 } 15325 #endif 15326 15327 return (0); 15328 } 15329 15330 static int 15331 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 15332 dtrace_optval_t val) 15333 { 15334 ASSERT(MUTEX_HELD(&dtrace_lock)); 15335 15336 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 15337 return (EBUSY); 15338 15339 if (option >= DTRACEOPT_MAX) 15340 return (EINVAL); 15341 15342 if (option != DTRACEOPT_CPU && val < 0) 15343 return (EINVAL); 15344 15345 switch (option) { 15346 case DTRACEOPT_DESTRUCTIVE: 15347 if (dtrace_destructive_disallow) 15348 return (EACCES); 15349 15350 state->dts_cred.dcr_destructive = 1; 15351 break; 15352 15353 case DTRACEOPT_BUFSIZE: 15354 case DTRACEOPT_DYNVARSIZE: 15355 case DTRACEOPT_AGGSIZE: 15356 case DTRACEOPT_SPECSIZE: 15357 case DTRACEOPT_STRSIZE: 15358 if (val < 0) 15359 return (EINVAL); 15360 15361 if (val >= LONG_MAX) { 15362 /* 15363 * If this is an otherwise negative value, set it to 15364 * the highest multiple of 128m less than LONG_MAX. 15365 * Technically, we're adjusting the size without 15366 * regard to the buffer resizing policy, but in fact, 15367 * this has no effect -- if we set the buffer size to 15368 * ~LONG_MAX and the buffer policy is ultimately set to 15369 * be "manual", the buffer allocation is guaranteed to 15370 * fail, if only because the allocation requires two 15371 * buffers. (We set the the size to the highest 15372 * multiple of 128m because it ensures that the size 15373 * will remain a multiple of a megabyte when 15374 * repeatedly halved -- all the way down to 15m.) 15375 */ 15376 val = LONG_MAX - (1 << 27) + 1; 15377 } 15378 } 15379 15380 state->dts_options[option] = val; 15381 15382 return (0); 15383 } 15384 15385 static void 15386 dtrace_state_destroy(dtrace_state_t *state) 15387 { 15388 dtrace_ecb_t *ecb; 15389 dtrace_vstate_t *vstate = &state->dts_vstate; 15390 #ifdef illumos 15391 minor_t minor = getminor(state->dts_dev); 15392 #endif 15393 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 15394 dtrace_speculation_t *spec = state->dts_speculations; 15395 int nspec = state->dts_nspeculations; 15396 uint32_t match; 15397 15398 ASSERT(MUTEX_HELD(&dtrace_lock)); 15399 ASSERT(MUTEX_HELD(&cpu_lock)); 15400 15401 /* 15402 * First, retract any retained enablings for this state. 15403 */ 15404 dtrace_enabling_retract(state); 15405 ASSERT(state->dts_nretained == 0); 15406 15407 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 15408 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 15409 /* 15410 * We have managed to come into dtrace_state_destroy() on a 15411 * hot enabling -- almost certainly because of a disorderly 15412 * shutdown of a consumer. (That is, a consumer that is 15413 * exiting without having called dtrace_stop().) In this case, 15414 * we're going to set our activity to be KILLED, and then 15415 * issue a sync to be sure that everyone is out of probe 15416 * context before we start blowing away ECBs. 15417 */ 15418 state->dts_activity = DTRACE_ACTIVITY_KILLED; 15419 dtrace_sync(); 15420 } 15421 15422 /* 15423 * Release the credential hold we took in dtrace_state_create(). 15424 */ 15425 if (state->dts_cred.dcr_cred != NULL) 15426 crfree(state->dts_cred.dcr_cred); 15427 15428 /* 15429 * Now we can safely disable and destroy any enabled probes. Because 15430 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 15431 * (especially if they're all enabled), we take two passes through the 15432 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 15433 * in the second we disable whatever is left over. 15434 */ 15435 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 15436 for (i = 0; i < state->dts_necbs; i++) { 15437 if ((ecb = state->dts_ecbs[i]) == NULL) 15438 continue; 15439 15440 if (match && ecb->dte_probe != NULL) { 15441 dtrace_probe_t *probe = ecb->dte_probe; 15442 dtrace_provider_t *prov = probe->dtpr_provider; 15443 15444 if (!(prov->dtpv_priv.dtpp_flags & match)) 15445 continue; 15446 } 15447 15448 dtrace_ecb_disable(ecb); 15449 dtrace_ecb_destroy(ecb); 15450 } 15451 15452 if (!match) 15453 break; 15454 } 15455 15456 /* 15457 * Before we free the buffers, perform one more sync to assure that 15458 * every CPU is out of probe context. 15459 */ 15460 dtrace_sync(); 15461 15462 dtrace_buffer_free(state->dts_buffer); 15463 dtrace_buffer_free(state->dts_aggbuffer); 15464 15465 for (i = 0; i < nspec; i++) 15466 dtrace_buffer_free(spec[i].dtsp_buffer); 15467 15468 #ifdef illumos 15469 if (state->dts_cleaner != CYCLIC_NONE) 15470 cyclic_remove(state->dts_cleaner); 15471 15472 if (state->dts_deadman != CYCLIC_NONE) 15473 cyclic_remove(state->dts_deadman); 15474 #else 15475 callout_stop(&state->dts_cleaner); 15476 callout_drain(&state->dts_cleaner); 15477 callout_stop(&state->dts_deadman); 15478 callout_drain(&state->dts_deadman); 15479 #endif 15480 15481 dtrace_dstate_fini(&vstate->dtvs_dynvars); 15482 dtrace_vstate_fini(vstate); 15483 if (state->dts_ecbs != NULL) 15484 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 15485 15486 if (state->dts_aggregations != NULL) { 15487 #ifdef DEBUG 15488 for (i = 0; i < state->dts_naggregations; i++) 15489 ASSERT(state->dts_aggregations[i] == NULL); 15490 #endif 15491 ASSERT(state->dts_naggregations > 0); 15492 kmem_free(state->dts_aggregations, 15493 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 15494 } 15495 15496 kmem_free(state->dts_buffer, bufsize); 15497 kmem_free(state->dts_aggbuffer, bufsize); 15498 15499 for (i = 0; i < nspec; i++) 15500 kmem_free(spec[i].dtsp_buffer, bufsize); 15501 15502 if (spec != NULL) 15503 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 15504 15505 dtrace_format_destroy(state); 15506 15507 if (state->dts_aggid_arena != NULL) { 15508 #ifdef illumos 15509 vmem_destroy(state->dts_aggid_arena); 15510 #else 15511 delete_unrhdr(state->dts_aggid_arena); 15512 #endif 15513 state->dts_aggid_arena = NULL; 15514 } 15515 #ifdef illumos 15516 ddi_soft_state_free(dtrace_softstate, minor); 15517 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 15518 #endif 15519 } 15520 15521 /* 15522 * DTrace Anonymous Enabling Functions 15523 */ 15524 static dtrace_state_t * 15525 dtrace_anon_grab(void) 15526 { 15527 dtrace_state_t *state; 15528 15529 ASSERT(MUTEX_HELD(&dtrace_lock)); 15530 15531 if ((state = dtrace_anon.dta_state) == NULL) { 15532 ASSERT(dtrace_anon.dta_enabling == NULL); 15533 return (NULL); 15534 } 15535 15536 ASSERT(dtrace_anon.dta_enabling != NULL); 15537 ASSERT(dtrace_retained != NULL); 15538 15539 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 15540 dtrace_anon.dta_enabling = NULL; 15541 dtrace_anon.dta_state = NULL; 15542 15543 return (state); 15544 } 15545 15546 static void 15547 dtrace_anon_property(void) 15548 { 15549 int i, rv; 15550 dtrace_state_t *state; 15551 dof_hdr_t *dof; 15552 char c[32]; /* enough for "dof-data-" + digits */ 15553 15554 ASSERT(MUTEX_HELD(&dtrace_lock)); 15555 ASSERT(MUTEX_HELD(&cpu_lock)); 15556 15557 for (i = 0; ; i++) { 15558 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 15559 15560 dtrace_err_verbose = 1; 15561 15562 if ((dof = dtrace_dof_property(c)) == NULL) { 15563 dtrace_err_verbose = 0; 15564 break; 15565 } 15566 15567 #ifdef illumos 15568 /* 15569 * We want to create anonymous state, so we need to transition 15570 * the kernel debugger to indicate that DTrace is active. If 15571 * this fails (e.g. because the debugger has modified text in 15572 * some way), we won't continue with the processing. 15573 */ 15574 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15575 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 15576 "enabling ignored."); 15577 dtrace_dof_destroy(dof); 15578 break; 15579 } 15580 #endif 15581 15582 /* 15583 * If we haven't allocated an anonymous state, we'll do so now. 15584 */ 15585 if ((state = dtrace_anon.dta_state) == NULL) { 15586 state = dtrace_state_create(NULL, NULL); 15587 dtrace_anon.dta_state = state; 15588 15589 if (state == NULL) { 15590 /* 15591 * This basically shouldn't happen: the only 15592 * failure mode from dtrace_state_create() is a 15593 * failure of ddi_soft_state_zalloc() that 15594 * itself should never happen. Still, the 15595 * interface allows for a failure mode, and 15596 * we want to fail as gracefully as possible: 15597 * we'll emit an error message and cease 15598 * processing anonymous state in this case. 15599 */ 15600 cmn_err(CE_WARN, "failed to create " 15601 "anonymous state"); 15602 dtrace_dof_destroy(dof); 15603 break; 15604 } 15605 } 15606 15607 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 15608 &dtrace_anon.dta_enabling, 0, 0, B_TRUE); 15609 15610 if (rv == 0) 15611 rv = dtrace_dof_options(dof, state); 15612 15613 dtrace_err_verbose = 0; 15614 dtrace_dof_destroy(dof); 15615 15616 if (rv != 0) { 15617 /* 15618 * This is malformed DOF; chuck any anonymous state 15619 * that we created. 15620 */ 15621 ASSERT(dtrace_anon.dta_enabling == NULL); 15622 dtrace_state_destroy(state); 15623 dtrace_anon.dta_state = NULL; 15624 break; 15625 } 15626 15627 ASSERT(dtrace_anon.dta_enabling != NULL); 15628 } 15629 15630 if (dtrace_anon.dta_enabling != NULL) { 15631 int rval; 15632 15633 /* 15634 * dtrace_enabling_retain() can only fail because we are 15635 * trying to retain more enablings than are allowed -- but 15636 * we only have one anonymous enabling, and we are guaranteed 15637 * to be allowed at least one retained enabling; we assert 15638 * that dtrace_enabling_retain() returns success. 15639 */ 15640 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 15641 ASSERT(rval == 0); 15642 15643 dtrace_enabling_dump(dtrace_anon.dta_enabling); 15644 } 15645 } 15646 15647 /* 15648 * DTrace Helper Functions 15649 */ 15650 static void 15651 dtrace_helper_trace(dtrace_helper_action_t *helper, 15652 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 15653 { 15654 uint32_t size, next, nnext, i; 15655 dtrace_helptrace_t *ent, *buffer; 15656 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags; 15657 15658 if ((buffer = dtrace_helptrace_buffer) == NULL) 15659 return; 15660 15661 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 15662 15663 /* 15664 * What would a tracing framework be without its own tracing 15665 * framework? (Well, a hell of a lot simpler, for starters...) 15666 */ 15667 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 15668 sizeof (uint64_t) - sizeof (uint64_t); 15669 15670 /* 15671 * Iterate until we can allocate a slot in the trace buffer. 15672 */ 15673 do { 15674 next = dtrace_helptrace_next; 15675 15676 if (next + size < dtrace_helptrace_bufsize) { 15677 nnext = next + size; 15678 } else { 15679 nnext = size; 15680 } 15681 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 15682 15683 /* 15684 * We have our slot; fill it in. 15685 */ 15686 if (nnext == size) { 15687 dtrace_helptrace_wrapped++; 15688 next = 0; 15689 } 15690 15691 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 15692 ent->dtht_helper = helper; 15693 ent->dtht_where = where; 15694 ent->dtht_nlocals = vstate->dtvs_nlocals; 15695 15696 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 15697 mstate->dtms_fltoffs : -1; 15698 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 15699 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval; 15700 15701 for (i = 0; i < vstate->dtvs_nlocals; i++) { 15702 dtrace_statvar_t *svar; 15703 15704 if ((svar = vstate->dtvs_locals[i]) == NULL) 15705 continue; 15706 15707 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 15708 ent->dtht_locals[i] = 15709 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu]; 15710 } 15711 } 15712 15713 static uint64_t 15714 dtrace_helper(int which, dtrace_mstate_t *mstate, 15715 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 15716 { 15717 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags; 15718 uint64_t sarg0 = mstate->dtms_arg[0]; 15719 uint64_t sarg1 = mstate->dtms_arg[1]; 15720 uint64_t rval = 0; 15721 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 15722 dtrace_helper_action_t *helper; 15723 dtrace_vstate_t *vstate; 15724 dtrace_difo_t *pred; 15725 int i, trace = dtrace_helptrace_buffer != NULL; 15726 15727 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 15728 15729 if (helpers == NULL) 15730 return (0); 15731 15732 if ((helper = helpers->dthps_actions[which]) == NULL) 15733 return (0); 15734 15735 vstate = &helpers->dthps_vstate; 15736 mstate->dtms_arg[0] = arg0; 15737 mstate->dtms_arg[1] = arg1; 15738 15739 /* 15740 * Now iterate over each helper. If its predicate evaluates to 'true', 15741 * we'll call the corresponding actions. Note that the below calls 15742 * to dtrace_dif_emulate() may set faults in machine state. This is 15743 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 15744 * the stored DIF offset with its own (which is the desired behavior). 15745 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 15746 * from machine state; this is okay, too. 15747 */ 15748 for (; helper != NULL; helper = helper->dtha_next) { 15749 if ((pred = helper->dtha_predicate) != NULL) { 15750 if (trace) 15751 dtrace_helper_trace(helper, mstate, vstate, 0); 15752 15753 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 15754 goto next; 15755 15756 if (*flags & CPU_DTRACE_FAULT) 15757 goto err; 15758 } 15759 15760 for (i = 0; i < helper->dtha_nactions; i++) { 15761 if (trace) 15762 dtrace_helper_trace(helper, 15763 mstate, vstate, i + 1); 15764 15765 rval = dtrace_dif_emulate(helper->dtha_actions[i], 15766 mstate, vstate, state); 15767 15768 if (*flags & CPU_DTRACE_FAULT) 15769 goto err; 15770 } 15771 15772 next: 15773 if (trace) 15774 dtrace_helper_trace(helper, mstate, vstate, 15775 DTRACE_HELPTRACE_NEXT); 15776 } 15777 15778 if (trace) 15779 dtrace_helper_trace(helper, mstate, vstate, 15780 DTRACE_HELPTRACE_DONE); 15781 15782 /* 15783 * Restore the arg0 that we saved upon entry. 15784 */ 15785 mstate->dtms_arg[0] = sarg0; 15786 mstate->dtms_arg[1] = sarg1; 15787 15788 return (rval); 15789 15790 err: 15791 if (trace) 15792 dtrace_helper_trace(helper, mstate, vstate, 15793 DTRACE_HELPTRACE_ERR); 15794 15795 /* 15796 * Restore the arg0 that we saved upon entry. 15797 */ 15798 mstate->dtms_arg[0] = sarg0; 15799 mstate->dtms_arg[1] = sarg1; 15800 15801 return (0); 15802 } 15803 15804 static void 15805 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 15806 dtrace_vstate_t *vstate) 15807 { 15808 int i; 15809 15810 if (helper->dtha_predicate != NULL) 15811 dtrace_difo_release(helper->dtha_predicate, vstate); 15812 15813 for (i = 0; i < helper->dtha_nactions; i++) { 15814 ASSERT(helper->dtha_actions[i] != NULL); 15815 dtrace_difo_release(helper->dtha_actions[i], vstate); 15816 } 15817 15818 kmem_free(helper->dtha_actions, 15819 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 15820 kmem_free(helper, sizeof (dtrace_helper_action_t)); 15821 } 15822 15823 static int 15824 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen) 15825 { 15826 proc_t *p = curproc; 15827 dtrace_vstate_t *vstate; 15828 int i; 15829 15830 if (help == NULL) 15831 help = p->p_dtrace_helpers; 15832 15833 ASSERT(MUTEX_HELD(&dtrace_lock)); 15834 15835 if (help == NULL || gen > help->dthps_generation) 15836 return (EINVAL); 15837 15838 vstate = &help->dthps_vstate; 15839 15840 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15841 dtrace_helper_action_t *last = NULL, *h, *next; 15842 15843 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15844 next = h->dtha_next; 15845 15846 if (h->dtha_generation == gen) { 15847 if (last != NULL) { 15848 last->dtha_next = next; 15849 } else { 15850 help->dthps_actions[i] = next; 15851 } 15852 15853 dtrace_helper_action_destroy(h, vstate); 15854 } else { 15855 last = h; 15856 } 15857 } 15858 } 15859 15860 /* 15861 * Interate until we've cleared out all helper providers with the 15862 * given generation number. 15863 */ 15864 for (;;) { 15865 dtrace_helper_provider_t *prov; 15866 15867 /* 15868 * Look for a helper provider with the right generation. We 15869 * have to start back at the beginning of the list each time 15870 * because we drop dtrace_lock. It's unlikely that we'll make 15871 * more than two passes. 15872 */ 15873 for (i = 0; i < help->dthps_nprovs; i++) { 15874 prov = help->dthps_provs[i]; 15875 15876 if (prov->dthp_generation == gen) 15877 break; 15878 } 15879 15880 /* 15881 * If there were no matches, we're done. 15882 */ 15883 if (i == help->dthps_nprovs) 15884 break; 15885 15886 /* 15887 * Move the last helper provider into this slot. 15888 */ 15889 help->dthps_nprovs--; 15890 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 15891 help->dthps_provs[help->dthps_nprovs] = NULL; 15892 15893 mutex_exit(&dtrace_lock); 15894 15895 /* 15896 * If we have a meta provider, remove this helper provider. 15897 */ 15898 mutex_enter(&dtrace_meta_lock); 15899 if (dtrace_meta_pid != NULL) { 15900 ASSERT(dtrace_deferred_pid == NULL); 15901 dtrace_helper_provider_remove(&prov->dthp_prov, 15902 p->p_pid); 15903 } 15904 mutex_exit(&dtrace_meta_lock); 15905 15906 dtrace_helper_provider_destroy(prov); 15907 15908 mutex_enter(&dtrace_lock); 15909 } 15910 15911 return (0); 15912 } 15913 15914 static int 15915 dtrace_helper_validate(dtrace_helper_action_t *helper) 15916 { 15917 int err = 0, i; 15918 dtrace_difo_t *dp; 15919 15920 if ((dp = helper->dtha_predicate) != NULL) 15921 err += dtrace_difo_validate_helper(dp); 15922 15923 for (i = 0; i < helper->dtha_nactions; i++) 15924 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 15925 15926 return (err == 0); 15927 } 15928 15929 static int 15930 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep, 15931 dtrace_helpers_t *help) 15932 { 15933 dtrace_helper_action_t *helper, *last; 15934 dtrace_actdesc_t *act; 15935 dtrace_vstate_t *vstate; 15936 dtrace_predicate_t *pred; 15937 int count = 0, nactions = 0, i; 15938 15939 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 15940 return (EINVAL); 15941 15942 last = help->dthps_actions[which]; 15943 vstate = &help->dthps_vstate; 15944 15945 for (count = 0; last != NULL; last = last->dtha_next) { 15946 count++; 15947 if (last->dtha_next == NULL) 15948 break; 15949 } 15950 15951 /* 15952 * If we already have dtrace_helper_actions_max helper actions for this 15953 * helper action type, we'll refuse to add a new one. 15954 */ 15955 if (count >= dtrace_helper_actions_max) 15956 return (ENOSPC); 15957 15958 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 15959 helper->dtha_generation = help->dthps_generation; 15960 15961 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 15962 ASSERT(pred->dtp_difo != NULL); 15963 dtrace_difo_hold(pred->dtp_difo); 15964 helper->dtha_predicate = pred->dtp_difo; 15965 } 15966 15967 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 15968 if (act->dtad_kind != DTRACEACT_DIFEXPR) 15969 goto err; 15970 15971 if (act->dtad_difo == NULL) 15972 goto err; 15973 15974 nactions++; 15975 } 15976 15977 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 15978 (helper->dtha_nactions = nactions), KM_SLEEP); 15979 15980 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 15981 dtrace_difo_hold(act->dtad_difo); 15982 helper->dtha_actions[i++] = act->dtad_difo; 15983 } 15984 15985 if (!dtrace_helper_validate(helper)) 15986 goto err; 15987 15988 if (last == NULL) { 15989 help->dthps_actions[which] = helper; 15990 } else { 15991 last->dtha_next = helper; 15992 } 15993 15994 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 15995 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 15996 dtrace_helptrace_next = 0; 15997 } 15998 15999 return (0); 16000 err: 16001 dtrace_helper_action_destroy(helper, vstate); 16002 return (EINVAL); 16003 } 16004 16005 static void 16006 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 16007 dof_helper_t *dofhp) 16008 { 16009 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 16010 16011 mutex_enter(&dtrace_meta_lock); 16012 mutex_enter(&dtrace_lock); 16013 16014 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 16015 /* 16016 * If the dtrace module is loaded but not attached, or if 16017 * there aren't isn't a meta provider registered to deal with 16018 * these provider descriptions, we need to postpone creating 16019 * the actual providers until later. 16020 */ 16021 16022 if (help->dthps_next == NULL && help->dthps_prev == NULL && 16023 dtrace_deferred_pid != help) { 16024 help->dthps_deferred = 1; 16025 help->dthps_pid = p->p_pid; 16026 help->dthps_next = dtrace_deferred_pid; 16027 help->dthps_prev = NULL; 16028 if (dtrace_deferred_pid != NULL) 16029 dtrace_deferred_pid->dthps_prev = help; 16030 dtrace_deferred_pid = help; 16031 } 16032 16033 mutex_exit(&dtrace_lock); 16034 16035 } else if (dofhp != NULL) { 16036 /* 16037 * If the dtrace module is loaded and we have a particular 16038 * helper provider description, pass that off to the 16039 * meta provider. 16040 */ 16041 16042 mutex_exit(&dtrace_lock); 16043 16044 dtrace_helper_provide(dofhp, p->p_pid); 16045 16046 } else { 16047 /* 16048 * Otherwise, just pass all the helper provider descriptions 16049 * off to the meta provider. 16050 */ 16051 16052 int i; 16053 mutex_exit(&dtrace_lock); 16054 16055 for (i = 0; i < help->dthps_nprovs; i++) { 16056 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 16057 p->p_pid); 16058 } 16059 } 16060 16061 mutex_exit(&dtrace_meta_lock); 16062 } 16063 16064 static int 16065 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen) 16066 { 16067 dtrace_helper_provider_t *hprov, **tmp_provs; 16068 uint_t tmp_maxprovs, i; 16069 16070 ASSERT(MUTEX_HELD(&dtrace_lock)); 16071 ASSERT(help != NULL); 16072 16073 /* 16074 * If we already have dtrace_helper_providers_max helper providers, 16075 * we're refuse to add a new one. 16076 */ 16077 if (help->dthps_nprovs >= dtrace_helper_providers_max) 16078 return (ENOSPC); 16079 16080 /* 16081 * Check to make sure this isn't a duplicate. 16082 */ 16083 for (i = 0; i < help->dthps_nprovs; i++) { 16084 if (dofhp->dofhp_addr == 16085 help->dthps_provs[i]->dthp_prov.dofhp_addr) 16086 return (EALREADY); 16087 } 16088 16089 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 16090 hprov->dthp_prov = *dofhp; 16091 hprov->dthp_ref = 1; 16092 hprov->dthp_generation = gen; 16093 16094 /* 16095 * Allocate a bigger table for helper providers if it's already full. 16096 */ 16097 if (help->dthps_maxprovs == help->dthps_nprovs) { 16098 tmp_maxprovs = help->dthps_maxprovs; 16099 tmp_provs = help->dthps_provs; 16100 16101 if (help->dthps_maxprovs == 0) 16102 help->dthps_maxprovs = 2; 16103 else 16104 help->dthps_maxprovs *= 2; 16105 if (help->dthps_maxprovs > dtrace_helper_providers_max) 16106 help->dthps_maxprovs = dtrace_helper_providers_max; 16107 16108 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 16109 16110 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 16111 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16112 16113 if (tmp_provs != NULL) { 16114 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 16115 sizeof (dtrace_helper_provider_t *)); 16116 kmem_free(tmp_provs, tmp_maxprovs * 16117 sizeof (dtrace_helper_provider_t *)); 16118 } 16119 } 16120 16121 help->dthps_provs[help->dthps_nprovs] = hprov; 16122 help->dthps_nprovs++; 16123 16124 return (0); 16125 } 16126 16127 static void 16128 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 16129 { 16130 mutex_enter(&dtrace_lock); 16131 16132 if (--hprov->dthp_ref == 0) { 16133 dof_hdr_t *dof; 16134 mutex_exit(&dtrace_lock); 16135 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 16136 dtrace_dof_destroy(dof); 16137 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 16138 } else { 16139 mutex_exit(&dtrace_lock); 16140 } 16141 } 16142 16143 static int 16144 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 16145 { 16146 uintptr_t daddr = (uintptr_t)dof; 16147 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 16148 dof_provider_t *provider; 16149 dof_probe_t *probe; 16150 uint8_t *arg; 16151 char *strtab, *typestr; 16152 dof_stridx_t typeidx; 16153 size_t typesz; 16154 uint_t nprobes, j, k; 16155 16156 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 16157 16158 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 16159 dtrace_dof_error(dof, "misaligned section offset"); 16160 return (-1); 16161 } 16162 16163 /* 16164 * The section needs to be large enough to contain the DOF provider 16165 * structure appropriate for the given version. 16166 */ 16167 if (sec->dofs_size < 16168 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 16169 offsetof(dof_provider_t, dofpv_prenoffs) : 16170 sizeof (dof_provider_t))) { 16171 dtrace_dof_error(dof, "provider section too small"); 16172 return (-1); 16173 } 16174 16175 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 16176 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 16177 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 16178 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 16179 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 16180 16181 if (str_sec == NULL || prb_sec == NULL || 16182 arg_sec == NULL || off_sec == NULL) 16183 return (-1); 16184 16185 enoff_sec = NULL; 16186 16187 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 16188 provider->dofpv_prenoffs != DOF_SECT_NONE && 16189 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 16190 provider->dofpv_prenoffs)) == NULL) 16191 return (-1); 16192 16193 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 16194 16195 if (provider->dofpv_name >= str_sec->dofs_size || 16196 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 16197 dtrace_dof_error(dof, "invalid provider name"); 16198 return (-1); 16199 } 16200 16201 if (prb_sec->dofs_entsize == 0 || 16202 prb_sec->dofs_entsize > prb_sec->dofs_size) { 16203 dtrace_dof_error(dof, "invalid entry size"); 16204 return (-1); 16205 } 16206 16207 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 16208 dtrace_dof_error(dof, "misaligned entry size"); 16209 return (-1); 16210 } 16211 16212 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 16213 dtrace_dof_error(dof, "invalid entry size"); 16214 return (-1); 16215 } 16216 16217 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 16218 dtrace_dof_error(dof, "misaligned section offset"); 16219 return (-1); 16220 } 16221 16222 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 16223 dtrace_dof_error(dof, "invalid entry size"); 16224 return (-1); 16225 } 16226 16227 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 16228 16229 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 16230 16231 /* 16232 * Take a pass through the probes to check for errors. 16233 */ 16234 for (j = 0; j < nprobes; j++) { 16235 probe = (dof_probe_t *)(uintptr_t)(daddr + 16236 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 16237 16238 if (probe->dofpr_func >= str_sec->dofs_size) { 16239 dtrace_dof_error(dof, "invalid function name"); 16240 return (-1); 16241 } 16242 16243 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 16244 dtrace_dof_error(dof, "function name too long"); 16245 /* 16246 * Keep going if the function name is too long. 16247 * Unlike provider and probe names, we cannot reasonably 16248 * impose restrictions on function names, since they're 16249 * a property of the code being instrumented. We will 16250 * skip this probe in dtrace_helper_provide_one(). 16251 */ 16252 } 16253 16254 if (probe->dofpr_name >= str_sec->dofs_size || 16255 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 16256 dtrace_dof_error(dof, "invalid probe name"); 16257 return (-1); 16258 } 16259 16260 /* 16261 * The offset count must not wrap the index, and the offsets 16262 * must also not overflow the section's data. 16263 */ 16264 if (probe->dofpr_offidx + probe->dofpr_noffs < 16265 probe->dofpr_offidx || 16266 (probe->dofpr_offidx + probe->dofpr_noffs) * 16267 off_sec->dofs_entsize > off_sec->dofs_size) { 16268 dtrace_dof_error(dof, "invalid probe offset"); 16269 return (-1); 16270 } 16271 16272 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 16273 /* 16274 * If there's no is-enabled offset section, make sure 16275 * there aren't any is-enabled offsets. Otherwise 16276 * perform the same checks as for probe offsets 16277 * (immediately above). 16278 */ 16279 if (enoff_sec == NULL) { 16280 if (probe->dofpr_enoffidx != 0 || 16281 probe->dofpr_nenoffs != 0) { 16282 dtrace_dof_error(dof, "is-enabled " 16283 "offsets with null section"); 16284 return (-1); 16285 } 16286 } else if (probe->dofpr_enoffidx + 16287 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 16288 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 16289 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 16290 dtrace_dof_error(dof, "invalid is-enabled " 16291 "offset"); 16292 return (-1); 16293 } 16294 16295 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 16296 dtrace_dof_error(dof, "zero probe and " 16297 "is-enabled offsets"); 16298 return (-1); 16299 } 16300 } else if (probe->dofpr_noffs == 0) { 16301 dtrace_dof_error(dof, "zero probe offsets"); 16302 return (-1); 16303 } 16304 16305 if (probe->dofpr_argidx + probe->dofpr_xargc < 16306 probe->dofpr_argidx || 16307 (probe->dofpr_argidx + probe->dofpr_xargc) * 16308 arg_sec->dofs_entsize > arg_sec->dofs_size) { 16309 dtrace_dof_error(dof, "invalid args"); 16310 return (-1); 16311 } 16312 16313 typeidx = probe->dofpr_nargv; 16314 typestr = strtab + probe->dofpr_nargv; 16315 for (k = 0; k < probe->dofpr_nargc; k++) { 16316 if (typeidx >= str_sec->dofs_size) { 16317 dtrace_dof_error(dof, "bad " 16318 "native argument type"); 16319 return (-1); 16320 } 16321 16322 typesz = strlen(typestr) + 1; 16323 if (typesz > DTRACE_ARGTYPELEN) { 16324 dtrace_dof_error(dof, "native " 16325 "argument type too long"); 16326 return (-1); 16327 } 16328 typeidx += typesz; 16329 typestr += typesz; 16330 } 16331 16332 typeidx = probe->dofpr_xargv; 16333 typestr = strtab + probe->dofpr_xargv; 16334 for (k = 0; k < probe->dofpr_xargc; k++) { 16335 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 16336 dtrace_dof_error(dof, "bad " 16337 "native argument index"); 16338 return (-1); 16339 } 16340 16341 if (typeidx >= str_sec->dofs_size) { 16342 dtrace_dof_error(dof, "bad " 16343 "translated argument type"); 16344 return (-1); 16345 } 16346 16347 typesz = strlen(typestr) + 1; 16348 if (typesz > DTRACE_ARGTYPELEN) { 16349 dtrace_dof_error(dof, "translated argument " 16350 "type too long"); 16351 return (-1); 16352 } 16353 16354 typeidx += typesz; 16355 typestr += typesz; 16356 } 16357 } 16358 16359 return (0); 16360 } 16361 16362 static int 16363 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p) 16364 { 16365 dtrace_helpers_t *help; 16366 dtrace_vstate_t *vstate; 16367 dtrace_enabling_t *enab = NULL; 16368 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 16369 uintptr_t daddr = (uintptr_t)dof; 16370 16371 ASSERT(MUTEX_HELD(&dtrace_lock)); 16372 16373 if ((help = p->p_dtrace_helpers) == NULL) 16374 help = dtrace_helpers_create(p); 16375 16376 vstate = &help->dthps_vstate; 16377 16378 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr, 16379 dhp->dofhp_dof, B_FALSE)) != 0) { 16380 dtrace_dof_destroy(dof); 16381 return (rv); 16382 } 16383 16384 /* 16385 * Look for helper providers and validate their descriptions. 16386 */ 16387 for (i = 0; i < dof->dofh_secnum; i++) { 16388 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 16389 dof->dofh_secoff + i * dof->dofh_secsize); 16390 16391 if (sec->dofs_type != DOF_SECT_PROVIDER) 16392 continue; 16393 16394 if (dtrace_helper_provider_validate(dof, sec) != 0) { 16395 dtrace_enabling_destroy(enab); 16396 dtrace_dof_destroy(dof); 16397 return (-1); 16398 } 16399 16400 nprovs++; 16401 } 16402 16403 /* 16404 * Now we need to walk through the ECB descriptions in the enabling. 16405 */ 16406 for (i = 0; i < enab->dten_ndesc; i++) { 16407 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 16408 dtrace_probedesc_t *desc = &ep->dted_probe; 16409 16410 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 16411 continue; 16412 16413 if (strcmp(desc->dtpd_mod, "helper") != 0) 16414 continue; 16415 16416 if (strcmp(desc->dtpd_func, "ustack") != 0) 16417 continue; 16418 16419 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 16420 ep, help)) != 0) { 16421 /* 16422 * Adding this helper action failed -- we are now going 16423 * to rip out the entire generation and return failure. 16424 */ 16425 (void) dtrace_helper_destroygen(help, 16426 help->dthps_generation); 16427 dtrace_enabling_destroy(enab); 16428 dtrace_dof_destroy(dof); 16429 return (-1); 16430 } 16431 16432 nhelpers++; 16433 } 16434 16435 if (nhelpers < enab->dten_ndesc) 16436 dtrace_dof_error(dof, "unmatched helpers"); 16437 16438 gen = help->dthps_generation++; 16439 dtrace_enabling_destroy(enab); 16440 16441 if (nprovs > 0) { 16442 /* 16443 * Now that this is in-kernel, we change the sense of the 16444 * members: dofhp_dof denotes the in-kernel copy of the DOF 16445 * and dofhp_addr denotes the address at user-level. 16446 */ 16447 dhp->dofhp_addr = dhp->dofhp_dof; 16448 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 16449 16450 if (dtrace_helper_provider_add(dhp, help, gen) == 0) { 16451 mutex_exit(&dtrace_lock); 16452 dtrace_helper_provider_register(p, help, dhp); 16453 mutex_enter(&dtrace_lock); 16454 16455 destroy = 0; 16456 } 16457 } 16458 16459 if (destroy) 16460 dtrace_dof_destroy(dof); 16461 16462 return (gen); 16463 } 16464 16465 static dtrace_helpers_t * 16466 dtrace_helpers_create(proc_t *p) 16467 { 16468 dtrace_helpers_t *help; 16469 16470 ASSERT(MUTEX_HELD(&dtrace_lock)); 16471 ASSERT(p->p_dtrace_helpers == NULL); 16472 16473 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 16474 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 16475 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 16476 16477 p->p_dtrace_helpers = help; 16478 dtrace_helpers++; 16479 16480 return (help); 16481 } 16482 16483 #ifdef illumos 16484 static 16485 #endif 16486 void 16487 dtrace_helpers_destroy(proc_t *p) 16488 { 16489 dtrace_helpers_t *help; 16490 dtrace_vstate_t *vstate; 16491 #ifdef illumos 16492 proc_t *p = curproc; 16493 #endif 16494 int i; 16495 16496 mutex_enter(&dtrace_lock); 16497 16498 ASSERT(p->p_dtrace_helpers != NULL); 16499 ASSERT(dtrace_helpers > 0); 16500 16501 help = p->p_dtrace_helpers; 16502 vstate = &help->dthps_vstate; 16503 16504 /* 16505 * We're now going to lose the help from this process. 16506 */ 16507 p->p_dtrace_helpers = NULL; 16508 dtrace_sync(); 16509 16510 /* 16511 * Destory the helper actions. 16512 */ 16513 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16514 dtrace_helper_action_t *h, *next; 16515 16516 for (h = help->dthps_actions[i]; h != NULL; h = next) { 16517 next = h->dtha_next; 16518 dtrace_helper_action_destroy(h, vstate); 16519 h = next; 16520 } 16521 } 16522 16523 mutex_exit(&dtrace_lock); 16524 16525 /* 16526 * Destroy the helper providers. 16527 */ 16528 if (help->dthps_maxprovs > 0) { 16529 mutex_enter(&dtrace_meta_lock); 16530 if (dtrace_meta_pid != NULL) { 16531 ASSERT(dtrace_deferred_pid == NULL); 16532 16533 for (i = 0; i < help->dthps_nprovs; i++) { 16534 dtrace_helper_provider_remove( 16535 &help->dthps_provs[i]->dthp_prov, p->p_pid); 16536 } 16537 } else { 16538 mutex_enter(&dtrace_lock); 16539 ASSERT(help->dthps_deferred == 0 || 16540 help->dthps_next != NULL || 16541 help->dthps_prev != NULL || 16542 help == dtrace_deferred_pid); 16543 16544 /* 16545 * Remove the helper from the deferred list. 16546 */ 16547 if (help->dthps_next != NULL) 16548 help->dthps_next->dthps_prev = help->dthps_prev; 16549 if (help->dthps_prev != NULL) 16550 help->dthps_prev->dthps_next = help->dthps_next; 16551 if (dtrace_deferred_pid == help) { 16552 dtrace_deferred_pid = help->dthps_next; 16553 ASSERT(help->dthps_prev == NULL); 16554 } 16555 16556 mutex_exit(&dtrace_lock); 16557 } 16558 16559 mutex_exit(&dtrace_meta_lock); 16560 16561 for (i = 0; i < help->dthps_nprovs; i++) { 16562 dtrace_helper_provider_destroy(help->dthps_provs[i]); 16563 } 16564 16565 kmem_free(help->dthps_provs, help->dthps_maxprovs * 16566 sizeof (dtrace_helper_provider_t *)); 16567 } 16568 16569 mutex_enter(&dtrace_lock); 16570 16571 dtrace_vstate_fini(&help->dthps_vstate); 16572 kmem_free(help->dthps_actions, 16573 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 16574 kmem_free(help, sizeof (dtrace_helpers_t)); 16575 16576 --dtrace_helpers; 16577 mutex_exit(&dtrace_lock); 16578 } 16579 16580 #ifdef illumos 16581 static 16582 #endif 16583 void 16584 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 16585 { 16586 dtrace_helpers_t *help, *newhelp; 16587 dtrace_helper_action_t *helper, *new, *last; 16588 dtrace_difo_t *dp; 16589 dtrace_vstate_t *vstate; 16590 int i, j, sz, hasprovs = 0; 16591 16592 mutex_enter(&dtrace_lock); 16593 ASSERT(from->p_dtrace_helpers != NULL); 16594 ASSERT(dtrace_helpers > 0); 16595 16596 help = from->p_dtrace_helpers; 16597 newhelp = dtrace_helpers_create(to); 16598 ASSERT(to->p_dtrace_helpers != NULL); 16599 16600 newhelp->dthps_generation = help->dthps_generation; 16601 vstate = &newhelp->dthps_vstate; 16602 16603 /* 16604 * Duplicate the helper actions. 16605 */ 16606 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 16607 if ((helper = help->dthps_actions[i]) == NULL) 16608 continue; 16609 16610 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 16611 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 16612 KM_SLEEP); 16613 new->dtha_generation = helper->dtha_generation; 16614 16615 if ((dp = helper->dtha_predicate) != NULL) { 16616 dp = dtrace_difo_duplicate(dp, vstate); 16617 new->dtha_predicate = dp; 16618 } 16619 16620 new->dtha_nactions = helper->dtha_nactions; 16621 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 16622 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 16623 16624 for (j = 0; j < new->dtha_nactions; j++) { 16625 dtrace_difo_t *dp = helper->dtha_actions[j]; 16626 16627 ASSERT(dp != NULL); 16628 dp = dtrace_difo_duplicate(dp, vstate); 16629 new->dtha_actions[j] = dp; 16630 } 16631 16632 if (last != NULL) { 16633 last->dtha_next = new; 16634 } else { 16635 newhelp->dthps_actions[i] = new; 16636 } 16637 16638 last = new; 16639 } 16640 } 16641 16642 /* 16643 * Duplicate the helper providers and register them with the 16644 * DTrace framework. 16645 */ 16646 if (help->dthps_nprovs > 0) { 16647 newhelp->dthps_nprovs = help->dthps_nprovs; 16648 newhelp->dthps_maxprovs = help->dthps_nprovs; 16649 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 16650 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 16651 for (i = 0; i < newhelp->dthps_nprovs; i++) { 16652 newhelp->dthps_provs[i] = help->dthps_provs[i]; 16653 newhelp->dthps_provs[i]->dthp_ref++; 16654 } 16655 16656 hasprovs = 1; 16657 } 16658 16659 mutex_exit(&dtrace_lock); 16660 16661 if (hasprovs) 16662 dtrace_helper_provider_register(to, newhelp, NULL); 16663 } 16664 16665 /* 16666 * DTrace Hook Functions 16667 */ 16668 static void 16669 dtrace_module_loaded(modctl_t *ctl) 16670 { 16671 dtrace_provider_t *prv; 16672 16673 mutex_enter(&dtrace_provider_lock); 16674 #ifdef illumos 16675 mutex_enter(&mod_lock); 16676 #endif 16677 16678 #ifdef illumos 16679 ASSERT(ctl->mod_busy); 16680 #endif 16681 16682 /* 16683 * We're going to call each providers per-module provide operation 16684 * specifying only this module. 16685 */ 16686 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 16687 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 16688 16689 #ifdef illumos 16690 mutex_exit(&mod_lock); 16691 #endif 16692 mutex_exit(&dtrace_provider_lock); 16693 16694 /* 16695 * If we have any retained enablings, we need to match against them. 16696 * Enabling probes requires that cpu_lock be held, and we cannot hold 16697 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 16698 * module. (In particular, this happens when loading scheduling 16699 * classes.) So if we have any retained enablings, we need to dispatch 16700 * our task queue to do the match for us. 16701 */ 16702 mutex_enter(&dtrace_lock); 16703 16704 if (dtrace_retained == NULL) { 16705 mutex_exit(&dtrace_lock); 16706 return; 16707 } 16708 16709 (void) taskq_dispatch(dtrace_taskq, 16710 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 16711 16712 mutex_exit(&dtrace_lock); 16713 16714 /* 16715 * And now, for a little heuristic sleaze: in general, we want to 16716 * match modules as soon as they load. However, we cannot guarantee 16717 * this, because it would lead us to the lock ordering violation 16718 * outlined above. The common case, of course, is that cpu_lock is 16719 * _not_ held -- so we delay here for a clock tick, hoping that that's 16720 * long enough for the task queue to do its work. If it's not, it's 16721 * not a serious problem -- it just means that the module that we 16722 * just loaded may not be immediately instrumentable. 16723 */ 16724 delay(1); 16725 } 16726 16727 static void 16728 #ifdef illumos 16729 dtrace_module_unloaded(modctl_t *ctl) 16730 #else 16731 dtrace_module_unloaded(modctl_t *ctl, int *error) 16732 #endif 16733 { 16734 dtrace_probe_t template, *probe, *first, *next; 16735 dtrace_provider_t *prov; 16736 #ifndef illumos 16737 char modname[DTRACE_MODNAMELEN]; 16738 size_t len; 16739 #endif 16740 16741 #ifdef illumos 16742 template.dtpr_mod = ctl->mod_modname; 16743 #else 16744 /* Handle the fact that ctl->filename may end in ".ko". */ 16745 strlcpy(modname, ctl->filename, sizeof(modname)); 16746 len = strlen(ctl->filename); 16747 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0) 16748 modname[len - 3] = '\0'; 16749 template.dtpr_mod = modname; 16750 #endif 16751 16752 mutex_enter(&dtrace_provider_lock); 16753 #ifdef illumos 16754 mutex_enter(&mod_lock); 16755 #endif 16756 mutex_enter(&dtrace_lock); 16757 16758 #ifndef illumos 16759 if (ctl->nenabled > 0) { 16760 /* Don't allow unloads if a probe is enabled. */ 16761 mutex_exit(&dtrace_provider_lock); 16762 mutex_exit(&dtrace_lock); 16763 *error = -1; 16764 printf( 16765 "kldunload: attempt to unload module that has DTrace probes enabled\n"); 16766 return; 16767 } 16768 #endif 16769 16770 if (dtrace_bymod == NULL) { 16771 /* 16772 * The DTrace module is loaded (obviously) but not attached; 16773 * we don't have any work to do. 16774 */ 16775 mutex_exit(&dtrace_provider_lock); 16776 #ifdef illumos 16777 mutex_exit(&mod_lock); 16778 #endif 16779 mutex_exit(&dtrace_lock); 16780 return; 16781 } 16782 16783 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 16784 probe != NULL; probe = probe->dtpr_nextmod) { 16785 if (probe->dtpr_ecb != NULL) { 16786 mutex_exit(&dtrace_provider_lock); 16787 #ifdef illumos 16788 mutex_exit(&mod_lock); 16789 #endif 16790 mutex_exit(&dtrace_lock); 16791 16792 /* 16793 * This shouldn't _actually_ be possible -- we're 16794 * unloading a module that has an enabled probe in it. 16795 * (It's normally up to the provider to make sure that 16796 * this can't happen.) However, because dtps_enable() 16797 * doesn't have a failure mode, there can be an 16798 * enable/unload race. Upshot: we don't want to 16799 * assert, but we're not going to disable the 16800 * probe, either. 16801 */ 16802 if (dtrace_err_verbose) { 16803 #ifdef illumos 16804 cmn_err(CE_WARN, "unloaded module '%s' had " 16805 "enabled probes", ctl->mod_modname); 16806 #else 16807 cmn_err(CE_WARN, "unloaded module '%s' had " 16808 "enabled probes", modname); 16809 #endif 16810 } 16811 16812 return; 16813 } 16814 } 16815 16816 probe = first; 16817 16818 for (first = NULL; probe != NULL; probe = next) { 16819 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 16820 16821 dtrace_probes[probe->dtpr_id - 1] = NULL; 16822 16823 next = probe->dtpr_nextmod; 16824 dtrace_hash_remove(dtrace_bymod, probe); 16825 dtrace_hash_remove(dtrace_byfunc, probe); 16826 dtrace_hash_remove(dtrace_byname, probe); 16827 16828 if (first == NULL) { 16829 first = probe; 16830 probe->dtpr_nextmod = NULL; 16831 } else { 16832 probe->dtpr_nextmod = first; 16833 first = probe; 16834 } 16835 } 16836 16837 /* 16838 * We've removed all of the module's probes from the hash chains and 16839 * from the probe array. Now issue a dtrace_sync() to be sure that 16840 * everyone has cleared out from any probe array processing. 16841 */ 16842 dtrace_sync(); 16843 16844 for (probe = first; probe != NULL; probe = first) { 16845 first = probe->dtpr_nextmod; 16846 prov = probe->dtpr_provider; 16847 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 16848 probe->dtpr_arg); 16849 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 16850 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 16851 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 16852 #ifdef illumos 16853 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 16854 #else 16855 free_unr(dtrace_arena, probe->dtpr_id); 16856 #endif 16857 kmem_free(probe, sizeof (dtrace_probe_t)); 16858 } 16859 16860 mutex_exit(&dtrace_lock); 16861 #ifdef illumos 16862 mutex_exit(&mod_lock); 16863 #endif 16864 mutex_exit(&dtrace_provider_lock); 16865 } 16866 16867 #ifndef illumos 16868 static void 16869 dtrace_kld_load(void *arg __unused, linker_file_t lf) 16870 { 16871 16872 dtrace_module_loaded(lf); 16873 } 16874 16875 static void 16876 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error) 16877 { 16878 16879 if (*error != 0) 16880 /* We already have an error, so don't do anything. */ 16881 return; 16882 dtrace_module_unloaded(lf, error); 16883 } 16884 #endif 16885 16886 #ifdef illumos 16887 static void 16888 dtrace_suspend(void) 16889 { 16890 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 16891 } 16892 16893 static void 16894 dtrace_resume(void) 16895 { 16896 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 16897 } 16898 #endif 16899 16900 static int 16901 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 16902 { 16903 ASSERT(MUTEX_HELD(&cpu_lock)); 16904 mutex_enter(&dtrace_lock); 16905 16906 switch (what) { 16907 case CPU_CONFIG: { 16908 dtrace_state_t *state; 16909 dtrace_optval_t *opt, rs, c; 16910 16911 /* 16912 * For now, we only allocate a new buffer for anonymous state. 16913 */ 16914 if ((state = dtrace_anon.dta_state) == NULL) 16915 break; 16916 16917 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 16918 break; 16919 16920 opt = state->dts_options; 16921 c = opt[DTRACEOPT_CPU]; 16922 16923 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 16924 break; 16925 16926 /* 16927 * Regardless of what the actual policy is, we're going to 16928 * temporarily set our resize policy to be manual. We're 16929 * also going to temporarily set our CPU option to denote 16930 * the newly configured CPU. 16931 */ 16932 rs = opt[DTRACEOPT_BUFRESIZE]; 16933 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 16934 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 16935 16936 (void) dtrace_state_buffers(state); 16937 16938 opt[DTRACEOPT_BUFRESIZE] = rs; 16939 opt[DTRACEOPT_CPU] = c; 16940 16941 break; 16942 } 16943 16944 case CPU_UNCONFIG: 16945 /* 16946 * We don't free the buffer in the CPU_UNCONFIG case. (The 16947 * buffer will be freed when the consumer exits.) 16948 */ 16949 break; 16950 16951 default: 16952 break; 16953 } 16954 16955 mutex_exit(&dtrace_lock); 16956 return (0); 16957 } 16958 16959 #ifdef illumos 16960 static void 16961 dtrace_cpu_setup_initial(processorid_t cpu) 16962 { 16963 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 16964 } 16965 #endif 16966 16967 static void 16968 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 16969 { 16970 if (dtrace_toxranges >= dtrace_toxranges_max) { 16971 int osize, nsize; 16972 dtrace_toxrange_t *range; 16973 16974 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16975 16976 if (osize == 0) { 16977 ASSERT(dtrace_toxrange == NULL); 16978 ASSERT(dtrace_toxranges_max == 0); 16979 dtrace_toxranges_max = 1; 16980 } else { 16981 dtrace_toxranges_max <<= 1; 16982 } 16983 16984 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16985 range = kmem_zalloc(nsize, KM_SLEEP); 16986 16987 if (dtrace_toxrange != NULL) { 16988 ASSERT(osize != 0); 16989 bcopy(dtrace_toxrange, range, osize); 16990 kmem_free(dtrace_toxrange, osize); 16991 } 16992 16993 dtrace_toxrange = range; 16994 } 16995 16996 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); 16997 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); 16998 16999 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 17000 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 17001 dtrace_toxranges++; 17002 } 17003 17004 static void 17005 dtrace_getf_barrier(void) 17006 { 17007 #ifdef illumos 17008 /* 17009 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 17010 * that contain calls to getf(), this routine will be called on every 17011 * closef() before either the underlying vnode is released or the 17012 * file_t itself is freed. By the time we are here, it is essential 17013 * that the file_t can no longer be accessed from a call to getf() 17014 * in probe context -- that assures that a dtrace_sync() can be used 17015 * to clear out any enablings referring to the old structures. 17016 */ 17017 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 17018 kcred->cr_zone->zone_dtrace_getf != 0) 17019 dtrace_sync(); 17020 #endif 17021 } 17022 17023 /* 17024 * DTrace Driver Cookbook Functions 17025 */ 17026 #ifdef illumos 17027 /*ARGSUSED*/ 17028 static int 17029 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 17030 { 17031 dtrace_provider_id_t id; 17032 dtrace_state_t *state = NULL; 17033 dtrace_enabling_t *enab; 17034 17035 mutex_enter(&cpu_lock); 17036 mutex_enter(&dtrace_provider_lock); 17037 mutex_enter(&dtrace_lock); 17038 17039 if (ddi_soft_state_init(&dtrace_softstate, 17040 sizeof (dtrace_state_t), 0) != 0) { 17041 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 17042 mutex_exit(&cpu_lock); 17043 mutex_exit(&dtrace_provider_lock); 17044 mutex_exit(&dtrace_lock); 17045 return (DDI_FAILURE); 17046 } 17047 17048 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 17049 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 17050 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 17051 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 17052 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 17053 ddi_remove_minor_node(devi, NULL); 17054 ddi_soft_state_fini(&dtrace_softstate); 17055 mutex_exit(&cpu_lock); 17056 mutex_exit(&dtrace_provider_lock); 17057 mutex_exit(&dtrace_lock); 17058 return (DDI_FAILURE); 17059 } 17060 17061 ddi_report_dev(devi); 17062 dtrace_devi = devi; 17063 17064 dtrace_modload = dtrace_module_loaded; 17065 dtrace_modunload = dtrace_module_unloaded; 17066 dtrace_cpu_init = dtrace_cpu_setup_initial; 17067 dtrace_helpers_cleanup = dtrace_helpers_destroy; 17068 dtrace_helpers_fork = dtrace_helpers_duplicate; 17069 dtrace_cpustart_init = dtrace_suspend; 17070 dtrace_cpustart_fini = dtrace_resume; 17071 dtrace_debugger_init = dtrace_suspend; 17072 dtrace_debugger_fini = dtrace_resume; 17073 17074 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17075 17076 ASSERT(MUTEX_HELD(&cpu_lock)); 17077 17078 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 17079 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 17080 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 17081 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 17082 VM_SLEEP | VMC_IDENTIFIER); 17083 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 17084 1, INT_MAX, 0); 17085 17086 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 17087 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 17088 NULL, NULL, NULL, NULL, NULL, 0); 17089 17090 ASSERT(MUTEX_HELD(&cpu_lock)); 17091 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 17092 offsetof(dtrace_probe_t, dtpr_nextmod), 17093 offsetof(dtrace_probe_t, dtpr_prevmod)); 17094 17095 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 17096 offsetof(dtrace_probe_t, dtpr_nextfunc), 17097 offsetof(dtrace_probe_t, dtpr_prevfunc)); 17098 17099 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 17100 offsetof(dtrace_probe_t, dtpr_nextname), 17101 offsetof(dtrace_probe_t, dtpr_prevname)); 17102 17103 if (dtrace_retain_max < 1) { 17104 cmn_err(CE_WARN, "illegal value (%zu) for dtrace_retain_max; " 17105 "setting to 1", dtrace_retain_max); 17106 dtrace_retain_max = 1; 17107 } 17108 17109 /* 17110 * Now discover our toxic ranges. 17111 */ 17112 dtrace_toxic_ranges(dtrace_toxrange_add); 17113 17114 /* 17115 * Before we register ourselves as a provider to our own framework, 17116 * we would like to assert that dtrace_provider is NULL -- but that's 17117 * not true if we were loaded as a dependency of a DTrace provider. 17118 * Once we've registered, we can assert that dtrace_provider is our 17119 * pseudo provider. 17120 */ 17121 (void) dtrace_register("dtrace", &dtrace_provider_attr, 17122 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 17123 17124 ASSERT(dtrace_provider != NULL); 17125 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 17126 17127 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 17128 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 17129 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 17130 dtrace_provider, NULL, NULL, "END", 0, NULL); 17131 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 17132 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 17133 17134 dtrace_anon_property(); 17135 mutex_exit(&cpu_lock); 17136 17137 /* 17138 * If there are already providers, we must ask them to provide their 17139 * probes, and then match any anonymous enabling against them. Note 17140 * that there should be no other retained enablings at this time: 17141 * the only retained enablings at this time should be the anonymous 17142 * enabling. 17143 */ 17144 if (dtrace_anon.dta_enabling != NULL) { 17145 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 17146 17147 dtrace_enabling_provide(NULL); 17148 state = dtrace_anon.dta_state; 17149 17150 /* 17151 * We couldn't hold cpu_lock across the above call to 17152 * dtrace_enabling_provide(), but we must hold it to actually 17153 * enable the probes. We have to drop all of our locks, pick 17154 * up cpu_lock, and regain our locks before matching the 17155 * retained anonymous enabling. 17156 */ 17157 mutex_exit(&dtrace_lock); 17158 mutex_exit(&dtrace_provider_lock); 17159 17160 mutex_enter(&cpu_lock); 17161 mutex_enter(&dtrace_provider_lock); 17162 mutex_enter(&dtrace_lock); 17163 17164 if ((enab = dtrace_anon.dta_enabling) != NULL) 17165 (void) dtrace_enabling_match(enab, NULL); 17166 17167 mutex_exit(&cpu_lock); 17168 } 17169 17170 mutex_exit(&dtrace_lock); 17171 mutex_exit(&dtrace_provider_lock); 17172 17173 if (state != NULL) { 17174 /* 17175 * If we created any anonymous state, set it going now. 17176 */ 17177 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 17178 } 17179 17180 return (DDI_SUCCESS); 17181 } 17182 #endif /* illumos */ 17183 17184 #ifndef illumos 17185 static void dtrace_dtr(void *); 17186 #endif 17187 17188 /*ARGSUSED*/ 17189 static int 17190 #ifdef illumos 17191 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 17192 #else 17193 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 17194 #endif 17195 { 17196 dtrace_state_t *state; 17197 uint32_t priv; 17198 uid_t uid; 17199 zoneid_t zoneid; 17200 17201 #ifdef illumos 17202 if (getminor(*devp) == DTRACEMNRN_HELPER) 17203 return (0); 17204 17205 /* 17206 * If this wasn't an open with the "helper" minor, then it must be 17207 * the "dtrace" minor. 17208 */ 17209 if (getminor(*devp) == DTRACEMNRN_DTRACE) 17210 return (ENXIO); 17211 #else 17212 cred_t *cred_p = NULL; 17213 cred_p = dev->si_cred; 17214 17215 /* 17216 * If no DTRACE_PRIV_* bits are set in the credential, then the 17217 * caller lacks sufficient permission to do anything with DTrace. 17218 */ 17219 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 17220 if (priv == DTRACE_PRIV_NONE) { 17221 #endif 17222 17223 return (EACCES); 17224 } 17225 17226 /* 17227 * Ask all providers to provide all their probes. 17228 */ 17229 mutex_enter(&dtrace_provider_lock); 17230 dtrace_probe_provide(NULL, NULL); 17231 mutex_exit(&dtrace_provider_lock); 17232 17233 mutex_enter(&cpu_lock); 17234 mutex_enter(&dtrace_lock); 17235 dtrace_opens++; 17236 dtrace_membar_producer(); 17237 17238 #ifdef illumos 17239 /* 17240 * If the kernel debugger is active (that is, if the kernel debugger 17241 * modified text in some way), we won't allow the open. 17242 */ 17243 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 17244 dtrace_opens--; 17245 mutex_exit(&cpu_lock); 17246 mutex_exit(&dtrace_lock); 17247 return (EBUSY); 17248 } 17249 17250 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 17251 /* 17252 * If DTrace helper tracing is enabled, we need to allocate the 17253 * trace buffer and initialize the values. 17254 */ 17255 dtrace_helptrace_buffer = 17256 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 17257 dtrace_helptrace_next = 0; 17258 dtrace_helptrace_wrapped = 0; 17259 dtrace_helptrace_enable = 0; 17260 } 17261 17262 state = dtrace_state_create(devp, cred_p); 17263 #else 17264 state = dtrace_state_create(dev, NULL); 17265 devfs_set_cdevpriv(state, dtrace_dtr); 17266 #endif 17267 17268 mutex_exit(&cpu_lock); 17269 17270 if (state == NULL) { 17271 #ifdef illumos 17272 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17273 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17274 #else 17275 --dtrace_opens; 17276 #endif 17277 mutex_exit(&dtrace_lock); 17278 return (EAGAIN); 17279 } 17280 17281 mutex_exit(&dtrace_lock); 17282 17283 return (0); 17284 } 17285 17286 /*ARGSUSED*/ 17287 #ifdef illumos 17288 static int 17289 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 17290 #else 17291 static void 17292 dtrace_dtr(void *data) 17293 #endif 17294 { 17295 #ifdef illumos 17296 minor_t minor = getminor(dev); 17297 dtrace_state_t *state; 17298 #endif 17299 dtrace_helptrace_t *buf = NULL; 17300 17301 #ifdef illumos 17302 if (minor == DTRACEMNRN_HELPER) 17303 return (0); 17304 17305 state = ddi_get_soft_state(dtrace_softstate, minor); 17306 #else 17307 dtrace_state_t *state = data; 17308 #endif 17309 17310 mutex_enter(&cpu_lock); 17311 mutex_enter(&dtrace_lock); 17312 17313 #ifdef illumos 17314 if (state->dts_anon) 17315 #else 17316 if (state != NULL && state->dts_anon) 17317 #endif 17318 { 17319 /* 17320 * There is anonymous state. Destroy that first. 17321 */ 17322 ASSERT(dtrace_anon.dta_state == NULL); 17323 dtrace_state_destroy(state->dts_anon); 17324 } 17325 17326 if (dtrace_helptrace_disable) { 17327 /* 17328 * If we have been told to disable helper tracing, set the 17329 * buffer to NULL before calling into dtrace_state_destroy(); 17330 * we take advantage of its dtrace_sync() to know that no 17331 * CPU is in probe context with enabled helper tracing 17332 * after it returns. 17333 */ 17334 buf = dtrace_helptrace_buffer; 17335 dtrace_helptrace_buffer = NULL; 17336 } 17337 17338 #ifdef illumos 17339 dtrace_state_destroy(state); 17340 #else 17341 if (state != NULL) { 17342 dtrace_state_destroy(state); 17343 kmem_free(state, 0); 17344 } 17345 #endif 17346 ASSERT(dtrace_opens > 0); 17347 17348 #ifdef illumos 17349 /* 17350 * Only relinquish control of the kernel debugger interface when there 17351 * are no consumers and no anonymous enablings. 17352 */ 17353 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 17354 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17355 #else 17356 --dtrace_opens; 17357 #endif 17358 17359 if (buf != NULL) { 17360 kmem_free(buf, dtrace_helptrace_bufsize); 17361 dtrace_helptrace_disable = 0; 17362 } 17363 17364 mutex_exit(&dtrace_lock); 17365 mutex_exit(&cpu_lock); 17366 17367 #ifdef illumos 17368 return (0); 17369 #endif 17370 } 17371 17372 #ifdef illumos 17373 /*ARGSUSED*/ 17374 static int 17375 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 17376 { 17377 int rval; 17378 dof_helper_t help, *dhp = NULL; 17379 17380 switch (cmd) { 17381 case DTRACEHIOC_ADDDOF: 17382 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 17383 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 17384 return (EFAULT); 17385 } 17386 17387 dhp = &help; 17388 arg = (intptr_t)help.dofhp_dof; 17389 /*FALLTHROUGH*/ 17390 17391 case DTRACEHIOC_ADD: { 17392 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 17393 17394 if (dof == NULL) 17395 return (rval); 17396 17397 mutex_enter(&dtrace_lock); 17398 17399 /* 17400 * dtrace_helper_slurp() takes responsibility for the dof -- 17401 * it may free it now or it may save it and free it later. 17402 */ 17403 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 17404 *rv = rval; 17405 rval = 0; 17406 } else { 17407 rval = EINVAL; 17408 } 17409 17410 mutex_exit(&dtrace_lock); 17411 return (rval); 17412 } 17413 17414 case DTRACEHIOC_REMOVE: { 17415 mutex_enter(&dtrace_lock); 17416 rval = dtrace_helper_destroygen(NULL, arg); 17417 mutex_exit(&dtrace_lock); 17418 17419 return (rval); 17420 } 17421 17422 default: 17423 break; 17424 } 17425 17426 return (ENOTTY); 17427 } 17428 17429 /*ARGSUSED*/ 17430 static int 17431 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 17432 { 17433 minor_t minor = getminor(dev); 17434 dtrace_state_t *state; 17435 int rval; 17436 17437 if (minor == DTRACEMNRN_HELPER) 17438 return (dtrace_ioctl_helper(cmd, arg, rv)); 17439 17440 state = ddi_get_soft_state(dtrace_softstate, minor); 17441 17442 if (state->dts_anon) { 17443 ASSERT(dtrace_anon.dta_state == NULL); 17444 state = state->dts_anon; 17445 } 17446 17447 switch (cmd) { 17448 case DTRACEIOC_PROVIDER: { 17449 dtrace_providerdesc_t pvd; 17450 dtrace_provider_t *pvp; 17451 17452 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 17453 return (EFAULT); 17454 17455 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 17456 mutex_enter(&dtrace_provider_lock); 17457 17458 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 17459 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 17460 break; 17461 } 17462 17463 mutex_exit(&dtrace_provider_lock); 17464 17465 if (pvp == NULL) 17466 return (ESRCH); 17467 17468 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 17469 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 17470 17471 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 17472 return (EFAULT); 17473 17474 return (0); 17475 } 17476 17477 case DTRACEIOC_EPROBE: { 17478 dtrace_eprobedesc_t epdesc; 17479 dtrace_ecb_t *ecb; 17480 dtrace_action_t *act; 17481 void *buf; 17482 size_t size; 17483 uintptr_t dest; 17484 int nrecs; 17485 17486 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 17487 return (EFAULT); 17488 17489 mutex_enter(&dtrace_lock); 17490 17491 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 17492 mutex_exit(&dtrace_lock); 17493 return (EINVAL); 17494 } 17495 17496 if (ecb->dte_probe == NULL) { 17497 mutex_exit(&dtrace_lock); 17498 return (EINVAL); 17499 } 17500 17501 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 17502 epdesc.dtepd_uarg = ecb->dte_uarg; 17503 epdesc.dtepd_size = ecb->dte_size; 17504 17505 nrecs = epdesc.dtepd_nrecs; 17506 epdesc.dtepd_nrecs = 0; 17507 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17508 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17509 continue; 17510 17511 epdesc.dtepd_nrecs++; 17512 } 17513 17514 /* 17515 * Now that we have the size, we need to allocate a temporary 17516 * buffer in which to store the complete description. We need 17517 * the temporary buffer to be able to drop dtrace_lock() 17518 * across the copyout(), below. 17519 */ 17520 size = sizeof (dtrace_eprobedesc_t) + 17521 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 17522 17523 buf = kmem_alloc(size, KM_SLEEP); 17524 dest = (uintptr_t)buf; 17525 17526 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 17527 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 17528 17529 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 17530 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 17531 continue; 17532 17533 if (nrecs-- == 0) 17534 break; 17535 17536 bcopy(&act->dta_rec, (void *)dest, 17537 sizeof (dtrace_recdesc_t)); 17538 dest += sizeof (dtrace_recdesc_t); 17539 } 17540 17541 mutex_exit(&dtrace_lock); 17542 17543 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17544 kmem_free(buf, size); 17545 return (EFAULT); 17546 } 17547 17548 kmem_free(buf, size); 17549 return (0); 17550 } 17551 17552 case DTRACEIOC_AGGDESC: { 17553 dtrace_aggdesc_t aggdesc; 17554 dtrace_action_t *act; 17555 dtrace_aggregation_t *agg; 17556 int nrecs; 17557 uint32_t offs; 17558 dtrace_recdesc_t *lrec; 17559 void *buf; 17560 size_t size; 17561 uintptr_t dest; 17562 17563 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 17564 return (EFAULT); 17565 17566 mutex_enter(&dtrace_lock); 17567 17568 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 17569 mutex_exit(&dtrace_lock); 17570 return (EINVAL); 17571 } 17572 17573 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 17574 17575 nrecs = aggdesc.dtagd_nrecs; 17576 aggdesc.dtagd_nrecs = 0; 17577 17578 offs = agg->dtag_base; 17579 lrec = &agg->dtag_action.dta_rec; 17580 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 17581 17582 for (act = agg->dtag_first; ; act = act->dta_next) { 17583 ASSERT(act->dta_intuple || 17584 DTRACEACT_ISAGG(act->dta_kind)); 17585 17586 /* 17587 * If this action has a record size of zero, it 17588 * denotes an argument to the aggregating action. 17589 * Because the presence of this record doesn't (or 17590 * shouldn't) affect the way the data is interpreted, 17591 * we don't copy it out to save user-level the 17592 * confusion of dealing with a zero-length record. 17593 */ 17594 if (act->dta_rec.dtrd_size == 0) { 17595 ASSERT(agg->dtag_hasarg); 17596 continue; 17597 } 17598 17599 aggdesc.dtagd_nrecs++; 17600 17601 if (act == &agg->dtag_action) 17602 break; 17603 } 17604 17605 /* 17606 * Now that we have the size, we need to allocate a temporary 17607 * buffer in which to store the complete description. We need 17608 * the temporary buffer to be able to drop dtrace_lock() 17609 * across the copyout(), below. 17610 */ 17611 size = sizeof (dtrace_aggdesc_t) + 17612 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 17613 17614 buf = kmem_alloc(size, KM_SLEEP); 17615 dest = (uintptr_t)buf; 17616 17617 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 17618 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 17619 17620 for (act = agg->dtag_first; ; act = act->dta_next) { 17621 dtrace_recdesc_t rec = act->dta_rec; 17622 17623 /* 17624 * See the comment in the above loop for why we pass 17625 * over zero-length records. 17626 */ 17627 if (rec.dtrd_size == 0) { 17628 ASSERT(agg->dtag_hasarg); 17629 continue; 17630 } 17631 17632 if (nrecs-- == 0) 17633 break; 17634 17635 rec.dtrd_offset -= offs; 17636 bcopy(&rec, (void *)dest, sizeof (rec)); 17637 dest += sizeof (dtrace_recdesc_t); 17638 17639 if (act == &agg->dtag_action) 17640 break; 17641 } 17642 17643 mutex_exit(&dtrace_lock); 17644 17645 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 17646 kmem_free(buf, size); 17647 return (EFAULT); 17648 } 17649 17650 kmem_free(buf, size); 17651 return (0); 17652 } 17653 17654 case DTRACEIOC_ENABLE: { 17655 dof_hdr_t *dof; 17656 dtrace_enabling_t *enab = NULL; 17657 dtrace_vstate_t *vstate; 17658 int err = 0; 17659 17660 *rv = 0; 17661 17662 /* 17663 * If a NULL argument has been passed, we take this as our 17664 * cue to reevaluate our enablings. 17665 */ 17666 if (arg == NULL) { 17667 dtrace_enabling_matchall(); 17668 17669 return (0); 17670 } 17671 17672 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 17673 return (rval); 17674 17675 mutex_enter(&cpu_lock); 17676 mutex_enter(&dtrace_lock); 17677 vstate = &state->dts_vstate; 17678 17679 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 17680 mutex_exit(&dtrace_lock); 17681 mutex_exit(&cpu_lock); 17682 dtrace_dof_destroy(dof); 17683 return (EBUSY); 17684 } 17685 17686 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 17687 mutex_exit(&dtrace_lock); 17688 mutex_exit(&cpu_lock); 17689 dtrace_dof_destroy(dof); 17690 return (EINVAL); 17691 } 17692 17693 if ((rval = dtrace_dof_options(dof, state)) != 0) { 17694 dtrace_enabling_destroy(enab); 17695 mutex_exit(&dtrace_lock); 17696 mutex_exit(&cpu_lock); 17697 dtrace_dof_destroy(dof); 17698 return (rval); 17699 } 17700 17701 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 17702 err = dtrace_enabling_retain(enab); 17703 } else { 17704 dtrace_enabling_destroy(enab); 17705 } 17706 17707 mutex_exit(&cpu_lock); 17708 mutex_exit(&dtrace_lock); 17709 dtrace_dof_destroy(dof); 17710 17711 return (err); 17712 } 17713 17714 case DTRACEIOC_REPLICATE: { 17715 dtrace_repldesc_t desc; 17716 dtrace_probedesc_t *match = &desc.dtrpd_match; 17717 dtrace_probedesc_t *create = &desc.dtrpd_create; 17718 int err; 17719 17720 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17721 return (EFAULT); 17722 17723 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17724 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17725 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17726 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17727 17728 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17729 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17730 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17731 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17732 17733 mutex_enter(&dtrace_lock); 17734 err = dtrace_enabling_replicate(state, match, create); 17735 mutex_exit(&dtrace_lock); 17736 17737 return (err); 17738 } 17739 17740 case DTRACEIOC_PROBEMATCH: 17741 case DTRACEIOC_PROBES: { 17742 dtrace_probe_t *probe = NULL; 17743 dtrace_probedesc_t desc; 17744 dtrace_probekey_t pkey; 17745 dtrace_id_t i; 17746 int m = 0; 17747 uint32_t priv; 17748 uid_t uid; 17749 zoneid_t zoneid; 17750 17751 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17752 return (EFAULT); 17753 17754 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 17755 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 17756 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 17757 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 17758 17759 /* 17760 * Before we attempt to match this probe, we want to give 17761 * all providers the opportunity to provide it. 17762 */ 17763 if (desc.dtpd_id == DTRACE_IDNONE) { 17764 mutex_enter(&dtrace_provider_lock); 17765 dtrace_probe_provide(&desc, NULL); 17766 mutex_exit(&dtrace_provider_lock); 17767 desc.dtpd_id++; 17768 } 17769 17770 if (cmd == DTRACEIOC_PROBEMATCH) { 17771 dtrace_probekey(&desc, &pkey); 17772 pkey.dtpk_id = DTRACE_IDNONE; 17773 } 17774 17775 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 17776 17777 mutex_enter(&dtrace_lock); 17778 17779 if (cmd == DTRACEIOC_PROBEMATCH) { 17780 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17781 if ((probe = dtrace_probes[i - 1]) != NULL && 17782 (m = dtrace_match_probe(probe, &pkey, 17783 priv, uid, zoneid)) != 0) 17784 break; 17785 } 17786 17787 if (m < 0) { 17788 mutex_exit(&dtrace_lock); 17789 return (EINVAL); 17790 } 17791 17792 } else { 17793 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 17794 if ((probe = dtrace_probes[i - 1]) != NULL && 17795 dtrace_match_priv(probe, priv, uid, zoneid)) 17796 break; 17797 } 17798 } 17799 17800 if (probe == NULL) { 17801 mutex_exit(&dtrace_lock); 17802 return (ESRCH); 17803 } 17804 17805 dtrace_probe_description(probe, &desc); 17806 mutex_exit(&dtrace_lock); 17807 17808 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17809 return (EFAULT); 17810 17811 return (0); 17812 } 17813 17814 case DTRACEIOC_PROBEARG: { 17815 dtrace_argdesc_t desc; 17816 dtrace_probe_t *probe; 17817 dtrace_provider_t *prov; 17818 17819 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17820 return (EFAULT); 17821 17822 if (desc.dtargd_id == DTRACE_IDNONE) 17823 return (EINVAL); 17824 17825 if (desc.dtargd_ndx == DTRACE_ARGNONE) 17826 return (EINVAL); 17827 17828 mutex_enter(&dtrace_provider_lock); 17829 mutex_enter(&mod_lock); 17830 mutex_enter(&dtrace_lock); 17831 17832 if (desc.dtargd_id > dtrace_nprobes) { 17833 mutex_exit(&dtrace_lock); 17834 mutex_exit(&mod_lock); 17835 mutex_exit(&dtrace_provider_lock); 17836 return (EINVAL); 17837 } 17838 17839 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 17840 mutex_exit(&dtrace_lock); 17841 mutex_exit(&mod_lock); 17842 mutex_exit(&dtrace_provider_lock); 17843 return (EINVAL); 17844 } 17845 17846 mutex_exit(&dtrace_lock); 17847 17848 prov = probe->dtpr_provider; 17849 17850 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 17851 /* 17852 * There isn't any typed information for this probe. 17853 * Set the argument number to DTRACE_ARGNONE. 17854 */ 17855 desc.dtargd_ndx = DTRACE_ARGNONE; 17856 } else { 17857 desc.dtargd_native[0] = '\0'; 17858 desc.dtargd_xlate[0] = '\0'; 17859 desc.dtargd_mapping = desc.dtargd_ndx; 17860 17861 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 17862 probe->dtpr_id, probe->dtpr_arg, &desc); 17863 } 17864 17865 mutex_exit(&mod_lock); 17866 mutex_exit(&dtrace_provider_lock); 17867 17868 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17869 return (EFAULT); 17870 17871 return (0); 17872 } 17873 17874 case DTRACEIOC_GO: { 17875 processorid_t cpuid; 17876 rval = dtrace_state_go(state, &cpuid); 17877 17878 if (rval != 0) 17879 return (rval); 17880 17881 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17882 return (EFAULT); 17883 17884 return (0); 17885 } 17886 17887 case DTRACEIOC_STOP: { 17888 processorid_t cpuid; 17889 17890 mutex_enter(&dtrace_lock); 17891 rval = dtrace_state_stop(state, &cpuid); 17892 mutex_exit(&dtrace_lock); 17893 17894 if (rval != 0) 17895 return (rval); 17896 17897 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 17898 return (EFAULT); 17899 17900 return (0); 17901 } 17902 17903 case DTRACEIOC_DOFGET: { 17904 dof_hdr_t hdr, *dof; 17905 uint64_t len; 17906 17907 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 17908 return (EFAULT); 17909 17910 mutex_enter(&dtrace_lock); 17911 dof = dtrace_dof_create(state); 17912 mutex_exit(&dtrace_lock); 17913 17914 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 17915 rval = copyout(dof, (void *)arg, len); 17916 dtrace_dof_destroy(dof); 17917 17918 return (rval == 0 ? 0 : EFAULT); 17919 } 17920 17921 case DTRACEIOC_AGGSNAP: 17922 case DTRACEIOC_BUFSNAP: { 17923 dtrace_bufdesc_t desc; 17924 caddr_t cached; 17925 dtrace_buffer_t *buf; 17926 17927 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 17928 return (EFAULT); 17929 17930 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 17931 return (EINVAL); 17932 17933 mutex_enter(&dtrace_lock); 17934 17935 if (cmd == DTRACEIOC_BUFSNAP) { 17936 buf = &state->dts_buffer[desc.dtbd_cpu]; 17937 } else { 17938 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 17939 } 17940 17941 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 17942 size_t sz = buf->dtb_offset; 17943 17944 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 17945 mutex_exit(&dtrace_lock); 17946 return (EBUSY); 17947 } 17948 17949 /* 17950 * If this buffer has already been consumed, we're 17951 * going to indicate that there's nothing left here 17952 * to consume. 17953 */ 17954 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 17955 mutex_exit(&dtrace_lock); 17956 17957 desc.dtbd_size = 0; 17958 desc.dtbd_drops = 0; 17959 desc.dtbd_errors = 0; 17960 desc.dtbd_oldest = 0; 17961 sz = sizeof (desc); 17962 17963 if (copyout(&desc, (void *)arg, sz) != 0) 17964 return (EFAULT); 17965 17966 return (0); 17967 } 17968 17969 /* 17970 * If this is a ring buffer that has wrapped, we want 17971 * to copy the whole thing out. 17972 */ 17973 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 17974 dtrace_buffer_polish(buf); 17975 sz = buf->dtb_size; 17976 } 17977 17978 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 17979 mutex_exit(&dtrace_lock); 17980 return (EFAULT); 17981 } 17982 17983 desc.dtbd_size = sz; 17984 desc.dtbd_drops = buf->dtb_drops; 17985 desc.dtbd_errors = buf->dtb_errors; 17986 desc.dtbd_oldest = buf->dtb_xamot_offset; 17987 desc.dtbd_timestamp = dtrace_gethrtime(); 17988 17989 mutex_exit(&dtrace_lock); 17990 17991 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17992 return (EFAULT); 17993 17994 buf->dtb_flags |= DTRACEBUF_CONSUMED; 17995 17996 return (0); 17997 } 17998 17999 if (buf->dtb_tomax == NULL) { 18000 ASSERT(buf->dtb_xamot == NULL); 18001 mutex_exit(&dtrace_lock); 18002 return (ENOENT); 18003 } 18004 18005 cached = buf->dtb_tomax; 18006 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 18007 18008 dtrace_xcall(desc.dtbd_cpu, 18009 (dtrace_xcall_t)dtrace_buffer_switch, buf); 18010 18011 state->dts_errors += buf->dtb_xamot_errors; 18012 18013 /* 18014 * If the buffers did not actually switch, then the cross call 18015 * did not take place -- presumably because the given CPU is 18016 * not in the ready set. If this is the case, we'll return 18017 * ENOENT. 18018 */ 18019 if (buf->dtb_tomax == cached) { 18020 ASSERT(buf->dtb_xamot != cached); 18021 mutex_exit(&dtrace_lock); 18022 return (ENOENT); 18023 } 18024 18025 ASSERT(cached == buf->dtb_xamot); 18026 18027 /* 18028 * We have our snapshot; now copy it out. 18029 */ 18030 if (copyout(buf->dtb_xamot, desc.dtbd_data, 18031 buf->dtb_xamot_offset) != 0) { 18032 mutex_exit(&dtrace_lock); 18033 return (EFAULT); 18034 } 18035 18036 desc.dtbd_size = buf->dtb_xamot_offset; 18037 desc.dtbd_drops = buf->dtb_xamot_drops; 18038 desc.dtbd_errors = buf->dtb_xamot_errors; 18039 desc.dtbd_oldest = 0; 18040 desc.dtbd_timestamp = buf->dtb_switched; 18041 18042 mutex_exit(&dtrace_lock); 18043 18044 /* 18045 * Finally, copy out the buffer description. 18046 */ 18047 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 18048 return (EFAULT); 18049 18050 return (0); 18051 } 18052 18053 case DTRACEIOC_CONF: { 18054 dtrace_conf_t conf; 18055 18056 bzero(&conf, sizeof (conf)); 18057 conf.dtc_difversion = DIF_VERSION; 18058 conf.dtc_difintregs = DIF_DIR_NREGS; 18059 conf.dtc_diftupregs = DIF_DTR_NREGS; 18060 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 18061 18062 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 18063 return (EFAULT); 18064 18065 return (0); 18066 } 18067 18068 case DTRACEIOC_STATUS: { 18069 dtrace_status_t stat; 18070 dtrace_dstate_t *dstate; 18071 int i, j; 18072 uint64_t nerrs; 18073 18074 /* 18075 * See the comment in dtrace_state_deadman() for the reason 18076 * for setting dts_laststatus to INT64_MAX before setting 18077 * it to the correct value. 18078 */ 18079 state->dts_laststatus = INT64_MAX; 18080 dtrace_membar_producer(); 18081 state->dts_laststatus = dtrace_gethrtime(); 18082 18083 bzero(&stat, sizeof (stat)); 18084 18085 mutex_enter(&dtrace_lock); 18086 18087 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 18088 mutex_exit(&dtrace_lock); 18089 return (ENOENT); 18090 } 18091 18092 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 18093 stat.dtst_exiting = 1; 18094 18095 nerrs = state->dts_errors; 18096 dstate = &state->dts_vstate.dtvs_dynvars; 18097 18098 for (i = 0; i < NCPU; i++) { 18099 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 18100 18101 stat.dtst_dyndrops += dcpu->dtdsc_drops; 18102 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 18103 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 18104 18105 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 18106 stat.dtst_filled++; 18107 18108 nerrs += state->dts_buffer[i].dtb_errors; 18109 18110 for (j = 0; j < state->dts_nspeculations; j++) { 18111 dtrace_speculation_t *spec; 18112 dtrace_buffer_t *buf; 18113 18114 spec = &state->dts_speculations[j]; 18115 buf = &spec->dtsp_buffer[i]; 18116 stat.dtst_specdrops += buf->dtb_xamot_drops; 18117 } 18118 } 18119 18120 stat.dtst_specdrops_busy = state->dts_speculations_busy; 18121 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 18122 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 18123 stat.dtst_dblerrors = state->dts_dblerrors; 18124 stat.dtst_killed = 18125 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 18126 stat.dtst_errors = nerrs; 18127 18128 mutex_exit(&dtrace_lock); 18129 18130 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 18131 return (EFAULT); 18132 18133 return (0); 18134 } 18135 18136 case DTRACEIOC_FORMAT: { 18137 dtrace_fmtdesc_t fmt; 18138 char *str; 18139 int len; 18140 18141 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 18142 return (EFAULT); 18143 18144 mutex_enter(&dtrace_lock); 18145 18146 if (fmt.dtfd_format == 0 || 18147 fmt.dtfd_format > state->dts_nformats) { 18148 mutex_exit(&dtrace_lock); 18149 return (EINVAL); 18150 } 18151 18152 /* 18153 * Format strings are allocated contiguously and they are 18154 * never freed; if a format index is less than the number 18155 * of formats, we can assert that the format map is non-NULL 18156 * and that the format for the specified index is non-NULL. 18157 */ 18158 ASSERT(state->dts_formats != NULL); 18159 str = state->dts_formats[fmt.dtfd_format - 1]; 18160 ASSERT(str != NULL); 18161 18162 len = strlen(str) + 1; 18163 18164 if (len > fmt.dtfd_length) { 18165 fmt.dtfd_length = len; 18166 18167 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 18168 mutex_exit(&dtrace_lock); 18169 return (EINVAL); 18170 } 18171 } else { 18172 if (copyout(str, fmt.dtfd_string, len) != 0) { 18173 mutex_exit(&dtrace_lock); 18174 return (EINVAL); 18175 } 18176 } 18177 18178 mutex_exit(&dtrace_lock); 18179 return (0); 18180 } 18181 18182 default: 18183 break; 18184 } 18185 18186 return (ENOTTY); 18187 } 18188 18189 /*ARGSUSED*/ 18190 static int 18191 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 18192 { 18193 dtrace_state_t *state; 18194 18195 switch (cmd) { 18196 case DDI_DETACH: 18197 break; 18198 18199 case DDI_SUSPEND: 18200 return (DDI_SUCCESS); 18201 18202 default: 18203 return (DDI_FAILURE); 18204 } 18205 18206 mutex_enter(&cpu_lock); 18207 mutex_enter(&dtrace_provider_lock); 18208 mutex_enter(&dtrace_lock); 18209 18210 ASSERT(dtrace_opens == 0); 18211 18212 if (dtrace_helpers > 0) { 18213 mutex_exit(&dtrace_provider_lock); 18214 mutex_exit(&dtrace_lock); 18215 mutex_exit(&cpu_lock); 18216 return (DDI_FAILURE); 18217 } 18218 18219 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 18220 mutex_exit(&dtrace_provider_lock); 18221 mutex_exit(&dtrace_lock); 18222 mutex_exit(&cpu_lock); 18223 return (DDI_FAILURE); 18224 } 18225 18226 dtrace_provider = NULL; 18227 18228 if ((state = dtrace_anon_grab()) != NULL) { 18229 /* 18230 * If there were ECBs on this state, the provider should 18231 * have not been allowed to detach; assert that there is 18232 * none. 18233 */ 18234 ASSERT(state->dts_necbs == 0); 18235 dtrace_state_destroy(state); 18236 18237 /* 18238 * If we're being detached with anonymous state, we need to 18239 * indicate to the kernel debugger that DTrace is now inactive. 18240 */ 18241 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 18242 } 18243 18244 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 18245 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 18246 dtrace_cpu_init = NULL; 18247 dtrace_helpers_cleanup = NULL; 18248 dtrace_helpers_fork = NULL; 18249 dtrace_cpustart_init = NULL; 18250 dtrace_cpustart_fini = NULL; 18251 dtrace_debugger_init = NULL; 18252 dtrace_debugger_fini = NULL; 18253 dtrace_modload = NULL; 18254 dtrace_modunload = NULL; 18255 18256 ASSERT(dtrace_getf == 0); 18257 ASSERT(dtrace_closef == NULL); 18258 18259 mutex_exit(&cpu_lock); 18260 18261 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 18262 dtrace_probes = NULL; 18263 dtrace_nprobes = 0; 18264 18265 dtrace_hash_destroy(dtrace_bymod); 18266 dtrace_hash_destroy(dtrace_byfunc); 18267 dtrace_hash_destroy(dtrace_byname); 18268 dtrace_bymod = NULL; 18269 dtrace_byfunc = NULL; 18270 dtrace_byname = NULL; 18271 18272 kmem_cache_destroy(dtrace_state_cache); 18273 vmem_destroy(dtrace_minor); 18274 vmem_destroy(dtrace_arena); 18275 18276 if (dtrace_toxrange != NULL) { 18277 kmem_free(dtrace_toxrange, 18278 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 18279 dtrace_toxrange = NULL; 18280 dtrace_toxranges = 0; 18281 dtrace_toxranges_max = 0; 18282 } 18283 18284 ddi_remove_minor_node(dtrace_devi, NULL); 18285 dtrace_devi = NULL; 18286 18287 ddi_soft_state_fini(&dtrace_softstate); 18288 18289 ASSERT(dtrace_vtime_references == 0); 18290 ASSERT(dtrace_opens == 0); 18291 ASSERT(dtrace_retained == NULL); 18292 18293 mutex_exit(&dtrace_lock); 18294 mutex_exit(&dtrace_provider_lock); 18295 18296 /* 18297 * We don't destroy the task queue until after we have dropped our 18298 * locks (taskq_destroy() may block on running tasks). To prevent 18299 * attempting to do work after we have effectively detached but before 18300 * the task queue has been destroyed, all tasks dispatched via the 18301 * task queue must check that DTrace is still attached before 18302 * performing any operation. 18303 */ 18304 taskq_destroy(dtrace_taskq); 18305 dtrace_taskq = NULL; 18306 18307 return (DDI_SUCCESS); 18308 } 18309 #endif 18310 18311 #ifdef illumos 18312 /*ARGSUSED*/ 18313 static int 18314 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 18315 { 18316 int error; 18317 18318 switch (infocmd) { 18319 case DDI_INFO_DEVT2DEVINFO: 18320 *result = (void *)dtrace_devi; 18321 error = DDI_SUCCESS; 18322 break; 18323 case DDI_INFO_DEVT2INSTANCE: 18324 *result = (void *)0; 18325 error = DDI_SUCCESS; 18326 break; 18327 default: 18328 error = DDI_FAILURE; 18329 } 18330 return (error); 18331 } 18332 #endif 18333 18334 #ifdef illumos 18335 static struct cb_ops dtrace_cb_ops = { 18336 dtrace_open, /* open */ 18337 dtrace_close, /* close */ 18338 nulldev, /* strategy */ 18339 nulldev, /* print */ 18340 nodev, /* dump */ 18341 nodev, /* read */ 18342 nodev, /* write */ 18343 dtrace_ioctl, /* ioctl */ 18344 nodev, /* devmap */ 18345 nodev, /* mmap */ 18346 nodev, /* segmap */ 18347 nochpoll, /* poll */ 18348 ddi_prop_op, /* cb_prop_op */ 18349 0, /* streamtab */ 18350 D_NEW | D_MP /* Driver compatibility flag */ 18351 }; 18352 18353 static struct dev_ops dtrace_ops = { 18354 DEVO_REV, /* devo_rev */ 18355 0, /* refcnt */ 18356 dtrace_info, /* get_dev_info */ 18357 nulldev, /* identify */ 18358 nulldev, /* probe */ 18359 dtrace_attach, /* attach */ 18360 dtrace_detach, /* detach */ 18361 nodev, /* reset */ 18362 &dtrace_cb_ops, /* driver operations */ 18363 NULL, /* bus operations */ 18364 nodev /* dev power */ 18365 }; 18366 18367 static struct modldrv modldrv = { 18368 &mod_driverops, /* module type (this is a pseudo driver) */ 18369 "Dynamic Tracing", /* name of module */ 18370 &dtrace_ops, /* driver ops */ 18371 }; 18372 18373 static struct modlinkage modlinkage = { 18374 MODREV_1, 18375 (void *)&modldrv, 18376 NULL 18377 }; 18378 18379 int 18380 _init(void) 18381 { 18382 return (mod_install(&modlinkage)); 18383 } 18384 18385 int 18386 _info(struct modinfo *modinfop) 18387 { 18388 return (mod_info(&modlinkage, modinfop)); 18389 } 18390 18391 int 18392 _fini(void) 18393 { 18394 return (mod_remove(&modlinkage)); 18395 } 18396 #else 18397 18398 static d_ioctl_t dtrace_ioctl; 18399 static d_ioctl_t dtrace_ioctl_helper; 18400 static void dtrace_load(void *); 18401 static int dtrace_unload(void); 18402 static struct cdev *dtrace_dev; 18403 static struct cdev *helper_dev; 18404 18405 void dtrace_invop_init(void); 18406 void dtrace_invop_uninit(void); 18407 18408 static struct cdevsw dtrace_cdevsw = { 18409 .d_version = D_VERSION, 18410 .d_ioctl = dtrace_ioctl, 18411 .d_open = dtrace_open, 18412 .d_name = "dtrace", 18413 }; 18414 18415 static struct cdevsw helper_cdevsw = { 18416 .d_version = D_VERSION, 18417 .d_ioctl = dtrace_ioctl_helper, 18418 .d_name = "helper", 18419 }; 18420 18421 #include <dtrace_anon.c> 18422 #include <dtrace_ioctl.c> 18423 #include <dtrace_load.c> 18424 #include <dtrace_modevent.c> 18425 #include <dtrace_sysctl.c> 18426 #include <dtrace_unload.c> 18427 #include <dtrace_vtime.c> 18428 #include <dtrace_hacks.c> 18429 #include <dtrace_isa.c> 18430 18431 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL); 18432 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL); 18433 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL); 18434 18435 DEV_MODULE(dtrace, dtrace_modevent, NULL); 18436 MODULE_VERSION(dtrace, 1); 18437 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1); 18438 #endif 18439