1 /*- 2 * Copyright (c) 2002 McAfee, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and McAfee Research,, the Security Research Division of 7 * McAfee, Inc. under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as 8 * part of the DARPA CHATS research program 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 /* 32 * CDDL HEADER START 33 * 34 * The contents of this file are subject to the terms of the 35 * Common Development and Distribution License (the "License"). 36 * You may not use this file except in compliance with the License. 37 * 38 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 39 * or http://www.opensolaris.org/os/licensing. 40 * See the License for the specific language governing permissions 41 * and limitations under the License. 42 * 43 * When distributing Covered Code, include this CDDL HEADER in each 44 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 45 * If applicable, add the following below this CDDL HEADER, with the 46 * fields enclosed by brackets "[]" replaced with your own identifying 47 * information: Portions Copyright [yyyy] [name of copyright owner] 48 * 49 * CDDL HEADER END 50 */ 51 /* 52 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 53 * Use is subject to license terms. 54 */ 55 /* 56 * Copyright 2013 by Saso Kiselkov. All rights reserved. 57 */ 58 /* 59 * Copyright (c) 2013 by Delphix. All rights reserved. 60 */ 61 62 #define MAXNAMELEN 256 63 64 #define _NOTE(s) 65 66 /* CRC64 table */ 67 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ 68 69 /* 70 * Macros for various sorts of alignment and rounding when the alignment 71 * is known to be a power of 2. 72 */ 73 #define P2ALIGN(x, align) ((x) & -(align)) 74 #define P2PHASE(x, align) ((x) & ((align) - 1)) 75 #define P2NPHASE(x, align) (-(x) & ((align) - 1)) 76 #define P2ROUNDUP(x, align) (-(-(x) & -(align))) 77 #define P2END(x, align) (-(~(x) & -(align))) 78 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align))) 79 #define P2BOUNDARY(off, len, align) (((off) ^ ((off) + (len) - 1)) > (align) - 1) 80 81 /* 82 * General-purpose 32-bit and 64-bit bitfield encodings. 83 */ 84 #define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len)) 85 #define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len)) 86 #define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low)) 87 #define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low)) 88 89 #define BF32_GET(x, low, len) BF32_DECODE(x, low, len) 90 #define BF64_GET(x, low, len) BF64_DECODE(x, low, len) 91 92 #define BF32_SET(x, low, len, val) \ 93 ((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len)) 94 #define BF64_SET(x, low, len, val) \ 95 ((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len)) 96 97 #define BF32_GET_SB(x, low, len, shift, bias) \ 98 ((BF32_GET(x, low, len) + (bias)) << (shift)) 99 #define BF64_GET_SB(x, low, len, shift, bias) \ 100 ((BF64_GET(x, low, len) + (bias)) << (shift)) 101 102 #define BF32_SET_SB(x, low, len, shift, bias, val) \ 103 BF32_SET(x, low, len, ((val) >> (shift)) - (bias)) 104 #define BF64_SET_SB(x, low, len, shift, bias, val) \ 105 BF64_SET(x, low, len, ((val) >> (shift)) - (bias)) 106 107 /* 108 * Macros to reverse byte order 109 */ 110 #define BSWAP_8(x) ((x) & 0xff) 111 #define BSWAP_16(x) ((BSWAP_8(x) << 8) | BSWAP_8((x) >> 8)) 112 #define BSWAP_32(x) ((BSWAP_16(x) << 16) | BSWAP_16((x) >> 16)) 113 #define BSWAP_64(x) ((BSWAP_32(x) << 32) | BSWAP_32((x) >> 32)) 114 115 /* 116 * Note: the boot loader can't actually read blocks larger than 128KB, 117 * due to lack of memory. Therefore its SPA_MAXBLOCKSIZE is still 128KB. 118 */ 119 #define SPA_MINBLOCKSHIFT 9 120 #define SPA_MAXBLOCKSHIFT 17 121 #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT) 122 #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT) 123 124 /* 125 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB. 126 * The ASIZE encoding should be at least 64 times larger (6 more bits) 127 * to support up to 4-way RAID-Z mirror mode with worst-case gang block 128 * overhead, three DVAs per bp, plus one more bit in case we do anything 129 * else that expands the ASIZE. 130 */ 131 #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */ 132 #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */ 133 #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */ 134 135 /* 136 * All SPA data is represented by 128-bit data virtual addresses (DVAs). 137 * The members of the dva_t should be considered opaque outside the SPA. 138 */ 139 typedef struct dva { 140 uint64_t dva_word[2]; 141 } dva_t; 142 143 /* 144 * Each block has a 256-bit checksum -- strong enough for cryptographic hashes. 145 */ 146 typedef struct zio_cksum { 147 uint64_t zc_word[4]; 148 } zio_cksum_t; 149 150 /* 151 * Each block is described by its DVAs, time of birth, checksum, etc. 152 * The word-by-word, bit-by-bit layout of the blkptr is as follows: 153 * 154 * 64 56 48 40 32 24 16 8 0 155 * +-------+-------+-------+-------+-------+-------+-------+-------+ 156 * 0 | vdev1 | GRID | ASIZE | 157 * +-------+-------+-------+-------+-------+-------+-------+-------+ 158 * 1 |G| offset1 | 159 * +-------+-------+-------+-------+-------+-------+-------+-------+ 160 * 2 | vdev2 | GRID | ASIZE | 161 * +-------+-------+-------+-------+-------+-------+-------+-------+ 162 * 3 |G| offset2 | 163 * +-------+-------+-------+-------+-------+-------+-------+-------+ 164 * 4 | vdev3 | GRID | ASIZE | 165 * +-------+-------+-------+-------+-------+-------+-------+-------+ 166 * 5 |G| offset3 | 167 * +-------+-------+-------+-------+-------+-------+-------+-------+ 168 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE | 169 * +-------+-------+-------+-------+-------+-------+-------+-------+ 170 * 7 | padding | 171 * +-------+-------+-------+-------+-------+-------+-------+-------+ 172 * 8 | padding | 173 * +-------+-------+-------+-------+-------+-------+-------+-------+ 174 * 9 | physical birth txg | 175 * +-------+-------+-------+-------+-------+-------+-------+-------+ 176 * a | logical birth txg | 177 * +-------+-------+-------+-------+-------+-------+-------+-------+ 178 * b | fill count | 179 * +-------+-------+-------+-------+-------+-------+-------+-------+ 180 * c | checksum[0] | 181 * +-------+-------+-------+-------+-------+-------+-------+-------+ 182 * d | checksum[1] | 183 * +-------+-------+-------+-------+-------+-------+-------+-------+ 184 * e | checksum[2] | 185 * +-------+-------+-------+-------+-------+-------+-------+-------+ 186 * f | checksum[3] | 187 * +-------+-------+-------+-------+-------+-------+-------+-------+ 188 * 189 * Legend: 190 * 191 * vdev virtual device ID 192 * offset offset into virtual device 193 * LSIZE logical size 194 * PSIZE physical size (after compression) 195 * ASIZE allocated size (including RAID-Z parity and gang block headers) 196 * GRID RAID-Z layout information (reserved for future use) 197 * cksum checksum function 198 * comp compression function 199 * G gang block indicator 200 * B byteorder (endianness) 201 * D dedup 202 * X encryption (on version 30, which is not supported) 203 * E blkptr_t contains embedded data (see below) 204 * lvl level of indirection 205 * type DMU object type 206 * phys birth txg of block allocation; zero if same as logical birth txg 207 * log. birth transaction group in which the block was logically born 208 * fill count number of non-zero blocks under this bp 209 * checksum[4] 256-bit checksum of the data this bp describes 210 */ 211 212 /* 213 * "Embedded" blkptr_t's don't actually point to a block, instead they 214 * have a data payload embedded in the blkptr_t itself. See the comment 215 * in blkptr.c for more details. 216 * 217 * The blkptr_t is laid out as follows: 218 * 219 * 64 56 48 40 32 24 16 8 0 220 * +-------+-------+-------+-------+-------+-------+-------+-------+ 221 * 0 | payload | 222 * 1 | payload | 223 * 2 | payload | 224 * 3 | payload | 225 * 4 | payload | 226 * 5 | payload | 227 * +-------+-------+-------+-------+-------+-------+-------+-------+ 228 * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE | 229 * +-------+-------+-------+-------+-------+-------+-------+-------+ 230 * 7 | payload | 231 * 8 | payload | 232 * 9 | payload | 233 * +-------+-------+-------+-------+-------+-------+-------+-------+ 234 * a | logical birth txg | 235 * +-------+-------+-------+-------+-------+-------+-------+-------+ 236 * b | payload | 237 * c | payload | 238 * d | payload | 239 * e | payload | 240 * f | payload | 241 * +-------+-------+-------+-------+-------+-------+-------+-------+ 242 * 243 * Legend: 244 * 245 * payload contains the embedded data 246 * B (byteorder) byteorder (endianness) 247 * D (dedup) padding (set to zero) 248 * X encryption (set to zero; see above) 249 * E (embedded) set to one 250 * lvl indirection level 251 * type DMU object type 252 * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*) 253 * comp compression function of payload 254 * PSIZE size of payload after compression, in bytes 255 * LSIZE logical size of payload, in bytes 256 * note that 25 bits is enough to store the largest 257 * "normal" BP's LSIZE (2^16 * 2^9) in bytes 258 * log. birth transaction group in which the block was logically born 259 * 260 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded 261 * bp's they are stored in units of SPA_MINBLOCKSHIFT. 262 * Generally, the generic BP_GET_*() macros can be used on embedded BP's. 263 * The B, D, X, lvl, type, and comp fields are stored the same as with normal 264 * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must 265 * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before 266 * other macros, as they assert that they are only used on BP's of the correct 267 * "embedded-ness". 268 */ 269 270 #define BPE_GET_ETYPE(bp) \ 271 (ASSERT(BP_IS_EMBEDDED(bp)), \ 272 BF64_GET((bp)->blk_prop, 40, 8)) 273 #define BPE_SET_ETYPE(bp, t) do { \ 274 ASSERT(BP_IS_EMBEDDED(bp)); \ 275 BF64_SET((bp)->blk_prop, 40, 8, t); \ 276 _NOTE(CONSTCOND) } while (0) 277 278 #define BPE_GET_LSIZE(bp) \ 279 (ASSERT(BP_IS_EMBEDDED(bp)), \ 280 BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1)) 281 #define BPE_SET_LSIZE(bp, x) do { \ 282 ASSERT(BP_IS_EMBEDDED(bp)); \ 283 BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \ 284 _NOTE(CONSTCOND) } while (0) 285 286 #define BPE_GET_PSIZE(bp) \ 287 (ASSERT(BP_IS_EMBEDDED(bp)), \ 288 BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1)) 289 #define BPE_SET_PSIZE(bp, x) do { \ 290 ASSERT(BP_IS_EMBEDDED(bp)); \ 291 BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \ 292 _NOTE(CONSTCOND) } while (0) 293 294 typedef enum bp_embedded_type { 295 BP_EMBEDDED_TYPE_DATA, 296 BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */ 297 NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED 298 } bp_embedded_type_t; 299 300 #define BPE_NUM_WORDS 14 301 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t)) 302 #define BPE_IS_PAYLOADWORD(bp, wp) \ 303 ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth) 304 305 #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */ 306 #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */ 307 308 typedef struct blkptr { 309 dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */ 310 uint64_t blk_prop; /* size, compression, type, etc */ 311 uint64_t blk_pad[2]; /* Extra space for the future */ 312 uint64_t blk_phys_birth; /* txg when block was allocated */ 313 uint64_t blk_birth; /* transaction group at birth */ 314 uint64_t blk_fill; /* fill count */ 315 zio_cksum_t blk_cksum; /* 256-bit checksum */ 316 } blkptr_t; 317 318 /* 319 * Macros to get and set fields in a bp or DVA. 320 */ 321 #define DVA_GET_ASIZE(dva) \ 322 BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0) 323 #define DVA_SET_ASIZE(dva, x) \ 324 BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \ 325 SPA_MINBLOCKSHIFT, 0, x) 326 327 #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8) 328 #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x) 329 330 #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, 32) 331 #define DVA_SET_VDEV(dva, x) BF64_SET((dva)->dva_word[0], 32, 32, x) 332 333 #define DVA_GET_OFFSET(dva) \ 334 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0) 335 #define DVA_SET_OFFSET(dva, x) \ 336 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x) 337 338 #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1) 339 #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x) 340 341 #define BP_GET_LSIZE(bp) \ 342 (BP_IS_EMBEDDED(bp) ? \ 343 (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \ 344 BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1)) 345 #define BP_SET_LSIZE(bp, x) do { \ 346 ASSERT(!BP_IS_EMBEDDED(bp)); \ 347 BF64_SET_SB((bp)->blk_prop, \ 348 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \ 349 _NOTE(CONSTCOND) } while (0) 350 351 #define BP_GET_PSIZE(bp) \ 352 BF64_GET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1) 353 #define BP_SET_PSIZE(bp, x) \ 354 BF64_SET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x) 355 356 #define BP_GET_COMPRESS(bp) BF64_GET((bp)->blk_prop, 32, 7) 357 #define BP_SET_COMPRESS(bp, x) BF64_SET((bp)->blk_prop, 32, 7, x) 358 359 #define BP_GET_CHECKSUM(bp) BF64_GET((bp)->blk_prop, 40, 8) 360 #define BP_SET_CHECKSUM(bp, x) BF64_SET((bp)->blk_prop, 40, 8, x) 361 362 #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8) 363 #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x) 364 365 #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5) 366 #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x) 367 368 #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1) 369 370 #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1) 371 #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x) 372 373 #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1) 374 #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x) 375 376 #define BP_PHYSICAL_BIRTH(bp) \ 377 ((bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth) 378 379 #define BP_GET_ASIZE(bp) \ 380 (DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ 381 DVA_GET_ASIZE(&(bp)->blk_dva[2])) 382 383 #define BP_GET_UCSIZE(bp) \ 384 ((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \ 385 BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp)); 386 387 #define BP_GET_NDVAS(bp) \ 388 (!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ 389 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ 390 !!DVA_GET_ASIZE(&(bp)->blk_dva[2])) 391 392 #define DVA_EQUAL(dva1, dva2) \ 393 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \ 394 (dva1)->dva_word[0] == (dva2)->dva_word[0]) 395 396 #define ZIO_CHECKSUM_EQUAL(zc1, zc2) \ 397 (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \ 398 ((zc1).zc_word[1] - (zc2).zc_word[1]) | \ 399 ((zc1).zc_word[2] - (zc2).zc_word[2]) | \ 400 ((zc1).zc_word[3] - (zc2).zc_word[3]))) 401 402 403 #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0) 404 405 #define ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3) \ 406 { \ 407 (zcp)->zc_word[0] = w0; \ 408 (zcp)->zc_word[1] = w1; \ 409 (zcp)->zc_word[2] = w2; \ 410 (zcp)->zc_word[3] = w3; \ 411 } 412 413 #define BP_IDENTITY(bp) (&(bp)->blk_dva[0]) 414 #define BP_IS_GANG(bp) DVA_GET_GANG(BP_IDENTITY(bp)) 415 #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \ 416 (dva)->dva_word[1] == 0ULL) 417 #define BP_IS_HOLE(bp) DVA_IS_EMPTY(BP_IDENTITY(bp)) 418 #define BP_IS_OLDER(bp, txg) (!BP_IS_HOLE(bp) && (bp)->blk_birth < (txg)) 419 420 #define BP_ZERO(bp) \ 421 { \ 422 (bp)->blk_dva[0].dva_word[0] = 0; \ 423 (bp)->blk_dva[0].dva_word[1] = 0; \ 424 (bp)->blk_dva[1].dva_word[0] = 0; \ 425 (bp)->blk_dva[1].dva_word[1] = 0; \ 426 (bp)->blk_dva[2].dva_word[0] = 0; \ 427 (bp)->blk_dva[2].dva_word[1] = 0; \ 428 (bp)->blk_prop = 0; \ 429 (bp)->blk_pad[0] = 0; \ 430 (bp)->blk_pad[1] = 0; \ 431 (bp)->blk_phys_birth = 0; \ 432 (bp)->blk_birth = 0; \ 433 (bp)->blk_fill = 0; \ 434 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \ 435 } 436 437 #define BPE_NUM_WORDS 14 438 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t)) 439 #define BPE_IS_PAYLOADWORD(bp, wp) \ 440 ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth) 441 442 /* 443 * Embedded checksum 444 */ 445 #define ZEC_MAGIC 0x210da7ab10c7a11ULL 446 447 typedef struct zio_eck { 448 uint64_t zec_magic; /* for validation, endianness */ 449 zio_cksum_t zec_cksum; /* 256-bit checksum */ 450 } zio_eck_t; 451 452 /* 453 * Gang block headers are self-checksumming and contain an array 454 * of block pointers. 455 */ 456 #define SPA_GANGBLOCKSIZE SPA_MINBLOCKSIZE 457 #define SPA_GBH_NBLKPTRS ((SPA_GANGBLOCKSIZE - \ 458 sizeof (zio_eck_t)) / sizeof (blkptr_t)) 459 #define SPA_GBH_FILLER ((SPA_GANGBLOCKSIZE - \ 460 sizeof (zio_eck_t) - \ 461 (SPA_GBH_NBLKPTRS * sizeof (blkptr_t))) /\ 462 sizeof (uint64_t)) 463 464 typedef struct zio_gbh { 465 blkptr_t zg_blkptr[SPA_GBH_NBLKPTRS]; 466 uint64_t zg_filler[SPA_GBH_FILLER]; 467 zio_eck_t zg_tail; 468 } zio_gbh_phys_t; 469 470 #define VDEV_RAIDZ_MAXPARITY 3 471 472 #define VDEV_PAD_SIZE (8 << 10) 473 /* 2 padding areas (vl_pad1 and vl_pad2) to skip */ 474 #define VDEV_SKIP_SIZE VDEV_PAD_SIZE * 2 475 #define VDEV_PHYS_SIZE (112 << 10) 476 #define VDEV_UBERBLOCK_RING (128 << 10) 477 478 #define VDEV_UBERBLOCK_SHIFT(vd) \ 479 MAX((vd)->v_top->v_ashift, UBERBLOCK_SHIFT) 480 #define VDEV_UBERBLOCK_COUNT(vd) \ 481 (VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd)) 482 #define VDEV_UBERBLOCK_OFFSET(vd, n) \ 483 offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)]) 484 #define VDEV_UBERBLOCK_SIZE(vd) (1ULL << VDEV_UBERBLOCK_SHIFT(vd)) 485 486 typedef struct vdev_phys { 487 char vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_eck_t)]; 488 zio_eck_t vp_zbt; 489 } vdev_phys_t; 490 491 typedef struct vdev_label { 492 char vl_pad1[VDEV_PAD_SIZE]; /* 8K */ 493 char vl_pad2[VDEV_PAD_SIZE]; /* 8K */ 494 vdev_phys_t vl_vdev_phys; /* 112K */ 495 char vl_uberblock[VDEV_UBERBLOCK_RING]; /* 128K */ 496 } vdev_label_t; /* 256K total */ 497 498 /* 499 * vdev_dirty() flags 500 */ 501 #define VDD_METASLAB 0x01 502 #define VDD_DTL 0x02 503 504 /* 505 * Size and offset of embedded boot loader region on each label. 506 * The total size of the first two labels plus the boot area is 4MB. 507 */ 508 #define VDEV_BOOT_OFFSET (2 * sizeof (vdev_label_t)) 509 #define VDEV_BOOT_SIZE (7ULL << 19) /* 3.5M */ 510 511 /* 512 * Size of label regions at the start and end of each leaf device. 513 */ 514 #define VDEV_LABEL_START_SIZE (2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE) 515 #define VDEV_LABEL_END_SIZE (2 * sizeof (vdev_label_t)) 516 #define VDEV_LABELS 4 517 518 enum zio_checksum { 519 ZIO_CHECKSUM_INHERIT = 0, 520 ZIO_CHECKSUM_ON, 521 ZIO_CHECKSUM_OFF, 522 ZIO_CHECKSUM_LABEL, 523 ZIO_CHECKSUM_GANG_HEADER, 524 ZIO_CHECKSUM_ZILOG, 525 ZIO_CHECKSUM_FLETCHER_2, 526 ZIO_CHECKSUM_FLETCHER_4, 527 ZIO_CHECKSUM_SHA256, 528 ZIO_CHECKSUM_ZILOG2, 529 ZIO_CHECKSUM_FUNCTIONS 530 }; 531 532 #define ZIO_CHECKSUM_ON_VALUE ZIO_CHECKSUM_FLETCHER_4 533 #define ZIO_CHECKSUM_DEFAULT ZIO_CHECKSUM_ON 534 535 enum zio_compress { 536 ZIO_COMPRESS_INHERIT = 0, 537 ZIO_COMPRESS_ON, 538 ZIO_COMPRESS_OFF, 539 ZIO_COMPRESS_LZJB, 540 ZIO_COMPRESS_EMPTY, 541 ZIO_COMPRESS_GZIP_1, 542 ZIO_COMPRESS_GZIP_2, 543 ZIO_COMPRESS_GZIP_3, 544 ZIO_COMPRESS_GZIP_4, 545 ZIO_COMPRESS_GZIP_5, 546 ZIO_COMPRESS_GZIP_6, 547 ZIO_COMPRESS_GZIP_7, 548 ZIO_COMPRESS_GZIP_8, 549 ZIO_COMPRESS_GZIP_9, 550 ZIO_COMPRESS_ZLE, 551 ZIO_COMPRESS_LZ4, 552 ZIO_COMPRESS_FUNCTIONS 553 }; 554 555 #define ZIO_COMPRESS_ON_VALUE ZIO_COMPRESS_LZJB 556 #define ZIO_COMPRESS_DEFAULT ZIO_COMPRESS_OFF 557 558 /* nvlist pack encoding */ 559 #define NV_ENCODE_NATIVE 0 560 #define NV_ENCODE_XDR 1 561 562 typedef enum { 563 DATA_TYPE_UNKNOWN = 0, 564 DATA_TYPE_BOOLEAN, 565 DATA_TYPE_BYTE, 566 DATA_TYPE_INT16, 567 DATA_TYPE_UINT16, 568 DATA_TYPE_INT32, 569 DATA_TYPE_UINT32, 570 DATA_TYPE_INT64, 571 DATA_TYPE_UINT64, 572 DATA_TYPE_STRING, 573 DATA_TYPE_BYTE_ARRAY, 574 DATA_TYPE_INT16_ARRAY, 575 DATA_TYPE_UINT16_ARRAY, 576 DATA_TYPE_INT32_ARRAY, 577 DATA_TYPE_UINT32_ARRAY, 578 DATA_TYPE_INT64_ARRAY, 579 DATA_TYPE_UINT64_ARRAY, 580 DATA_TYPE_STRING_ARRAY, 581 DATA_TYPE_HRTIME, 582 DATA_TYPE_NVLIST, 583 DATA_TYPE_NVLIST_ARRAY, 584 DATA_TYPE_BOOLEAN_VALUE, 585 DATA_TYPE_INT8, 586 DATA_TYPE_UINT8, 587 DATA_TYPE_BOOLEAN_ARRAY, 588 DATA_TYPE_INT8_ARRAY, 589 DATA_TYPE_UINT8_ARRAY 590 } data_type_t; 591 592 /* 593 * On-disk version number. 594 */ 595 #define SPA_VERSION_1 1ULL 596 #define SPA_VERSION_2 2ULL 597 #define SPA_VERSION_3 3ULL 598 #define SPA_VERSION_4 4ULL 599 #define SPA_VERSION_5 5ULL 600 #define SPA_VERSION_6 6ULL 601 #define SPA_VERSION_7 7ULL 602 #define SPA_VERSION_8 8ULL 603 #define SPA_VERSION_9 9ULL 604 #define SPA_VERSION_10 10ULL 605 #define SPA_VERSION_11 11ULL 606 #define SPA_VERSION_12 12ULL 607 #define SPA_VERSION_13 13ULL 608 #define SPA_VERSION_14 14ULL 609 #define SPA_VERSION_15 15ULL 610 #define SPA_VERSION_16 16ULL 611 #define SPA_VERSION_17 17ULL 612 #define SPA_VERSION_18 18ULL 613 #define SPA_VERSION_19 19ULL 614 #define SPA_VERSION_20 20ULL 615 #define SPA_VERSION_21 21ULL 616 #define SPA_VERSION_22 22ULL 617 #define SPA_VERSION_23 23ULL 618 #define SPA_VERSION_24 24ULL 619 #define SPA_VERSION_25 25ULL 620 #define SPA_VERSION_26 26ULL 621 #define SPA_VERSION_27 27ULL 622 #define SPA_VERSION_28 28ULL 623 #define SPA_VERSION_5000 5000ULL 624 625 /* 626 * When bumping up SPA_VERSION, make sure GRUB ZFS understands the on-disk 627 * format change. Go to usr/src/grub/grub-0.97/stage2/{zfs-include/, fsys_zfs*}, 628 * and do the appropriate changes. Also bump the version number in 629 * usr/src/grub/capability. 630 */ 631 #define SPA_VERSION SPA_VERSION_5000 632 #define SPA_VERSION_STRING "5000" 633 634 /* 635 * Symbolic names for the changes that caused a SPA_VERSION switch. 636 * Used in the code when checking for presence or absence of a feature. 637 * Feel free to define multiple symbolic names for each version if there 638 * were multiple changes to on-disk structures during that version. 639 * 640 * NOTE: When checking the current SPA_VERSION in your code, be sure 641 * to use spa_version() since it reports the version of the 642 * last synced uberblock. Checking the in-flight version can 643 * be dangerous in some cases. 644 */ 645 #define SPA_VERSION_INITIAL SPA_VERSION_1 646 #define SPA_VERSION_DITTO_BLOCKS SPA_VERSION_2 647 #define SPA_VERSION_SPARES SPA_VERSION_3 648 #define SPA_VERSION_RAID6 SPA_VERSION_3 649 #define SPA_VERSION_BPLIST_ACCOUNT SPA_VERSION_3 650 #define SPA_VERSION_RAIDZ_DEFLATE SPA_VERSION_3 651 #define SPA_VERSION_DNODE_BYTES SPA_VERSION_3 652 #define SPA_VERSION_ZPOOL_HISTORY SPA_VERSION_4 653 #define SPA_VERSION_GZIP_COMPRESSION SPA_VERSION_5 654 #define SPA_VERSION_BOOTFS SPA_VERSION_6 655 #define SPA_VERSION_SLOGS SPA_VERSION_7 656 #define SPA_VERSION_DELEGATED_PERMS SPA_VERSION_8 657 #define SPA_VERSION_FUID SPA_VERSION_9 658 #define SPA_VERSION_REFRESERVATION SPA_VERSION_9 659 #define SPA_VERSION_REFQUOTA SPA_VERSION_9 660 #define SPA_VERSION_UNIQUE_ACCURATE SPA_VERSION_9 661 #define SPA_VERSION_L2CACHE SPA_VERSION_10 662 #define SPA_VERSION_NEXT_CLONES SPA_VERSION_11 663 #define SPA_VERSION_ORIGIN SPA_VERSION_11 664 #define SPA_VERSION_DSL_SCRUB SPA_VERSION_11 665 #define SPA_VERSION_SNAP_PROPS SPA_VERSION_12 666 #define SPA_VERSION_USED_BREAKDOWN SPA_VERSION_13 667 #define SPA_VERSION_PASSTHROUGH_X SPA_VERSION_14 668 #define SPA_VERSION_USERSPACE SPA_VERSION_15 669 #define SPA_VERSION_STMF_PROP SPA_VERSION_16 670 #define SPA_VERSION_RAIDZ3 SPA_VERSION_17 671 #define SPA_VERSION_USERREFS SPA_VERSION_18 672 #define SPA_VERSION_HOLES SPA_VERSION_19 673 #define SPA_VERSION_ZLE_COMPRESSION SPA_VERSION_20 674 #define SPA_VERSION_DEDUP SPA_VERSION_21 675 #define SPA_VERSION_RECVD_PROPS SPA_VERSION_22 676 #define SPA_VERSION_SLIM_ZIL SPA_VERSION_23 677 #define SPA_VERSION_SA SPA_VERSION_24 678 #define SPA_VERSION_SCAN SPA_VERSION_25 679 #define SPA_VERSION_DIR_CLONES SPA_VERSION_26 680 #define SPA_VERSION_DEADLISTS SPA_VERSION_26 681 #define SPA_VERSION_FAST_SNAP SPA_VERSION_27 682 #define SPA_VERSION_MULTI_REPLACE SPA_VERSION_28 683 #define SPA_VERSION_BEFORE_FEATURES SPA_VERSION_28 684 #define SPA_VERSION_FEATURES SPA_VERSION_5000 685 686 #define SPA_VERSION_IS_SUPPORTED(v) \ 687 (((v) >= SPA_VERSION_INITIAL && (v) <= SPA_VERSION_BEFORE_FEATURES) || \ 688 ((v) >= SPA_VERSION_FEATURES && (v) <= SPA_VERSION)) 689 690 /* 691 * The following are configuration names used in the nvlist describing a pool's 692 * configuration. 693 */ 694 #define ZPOOL_CONFIG_VERSION "version" 695 #define ZPOOL_CONFIG_POOL_NAME "name" 696 #define ZPOOL_CONFIG_POOL_STATE "state" 697 #define ZPOOL_CONFIG_POOL_TXG "txg" 698 #define ZPOOL_CONFIG_POOL_GUID "pool_guid" 699 #define ZPOOL_CONFIG_CREATE_TXG "create_txg" 700 #define ZPOOL_CONFIG_TOP_GUID "top_guid" 701 #define ZPOOL_CONFIG_VDEV_TREE "vdev_tree" 702 #define ZPOOL_CONFIG_TYPE "type" 703 #define ZPOOL_CONFIG_CHILDREN "children" 704 #define ZPOOL_CONFIG_ID "id" 705 #define ZPOOL_CONFIG_GUID "guid" 706 #define ZPOOL_CONFIG_PATH "path" 707 #define ZPOOL_CONFIG_DEVID "devid" 708 #define ZPOOL_CONFIG_METASLAB_ARRAY "metaslab_array" 709 #define ZPOOL_CONFIG_METASLAB_SHIFT "metaslab_shift" 710 #define ZPOOL_CONFIG_ASHIFT "ashift" 711 #define ZPOOL_CONFIG_ASIZE "asize" 712 #define ZPOOL_CONFIG_DTL "DTL" 713 #define ZPOOL_CONFIG_STATS "stats" 714 #define ZPOOL_CONFIG_WHOLE_DISK "whole_disk" 715 #define ZPOOL_CONFIG_ERRCOUNT "error_count" 716 #define ZPOOL_CONFIG_NOT_PRESENT "not_present" 717 #define ZPOOL_CONFIG_SPARES "spares" 718 #define ZPOOL_CONFIG_IS_SPARE "is_spare" 719 #define ZPOOL_CONFIG_NPARITY "nparity" 720 #define ZPOOL_CONFIG_HOSTID "hostid" 721 #define ZPOOL_CONFIG_HOSTNAME "hostname" 722 #define ZPOOL_CONFIG_IS_LOG "is_log" 723 #define ZPOOL_CONFIG_TIMESTAMP "timestamp" /* not stored on disk */ 724 #define ZPOOL_CONFIG_FEATURES_FOR_READ "features_for_read" 725 726 /* 727 * The persistent vdev state is stored as separate values rather than a single 728 * 'vdev_state' entry. This is because a device can be in multiple states, such 729 * as offline and degraded. 730 */ 731 #define ZPOOL_CONFIG_OFFLINE "offline" 732 #define ZPOOL_CONFIG_FAULTED "faulted" 733 #define ZPOOL_CONFIG_DEGRADED "degraded" 734 #define ZPOOL_CONFIG_REMOVED "removed" 735 #define ZPOOL_CONFIG_FRU "fru" 736 #define ZPOOL_CONFIG_AUX_STATE "aux_state" 737 738 #define VDEV_TYPE_ROOT "root" 739 #define VDEV_TYPE_MIRROR "mirror" 740 #define VDEV_TYPE_REPLACING "replacing" 741 #define VDEV_TYPE_RAIDZ "raidz" 742 #define VDEV_TYPE_DISK "disk" 743 #define VDEV_TYPE_FILE "file" 744 #define VDEV_TYPE_MISSING "missing" 745 #define VDEV_TYPE_HOLE "hole" 746 #define VDEV_TYPE_SPARE "spare" 747 #define VDEV_TYPE_LOG "log" 748 #define VDEV_TYPE_L2CACHE "l2cache" 749 750 /* 751 * This is needed in userland to report the minimum necessary device size. 752 */ 753 #define SPA_MINDEVSIZE (64ULL << 20) 754 755 /* 756 * The location of the pool configuration repository, shared between kernel and 757 * userland. 758 */ 759 #define ZPOOL_CACHE "/boot/zfs/zpool.cache" 760 761 /* 762 * vdev states are ordered from least to most healthy. 763 * A vdev that's CANT_OPEN or below is considered unusable. 764 */ 765 typedef enum vdev_state { 766 VDEV_STATE_UNKNOWN = 0, /* Uninitialized vdev */ 767 VDEV_STATE_CLOSED, /* Not currently open */ 768 VDEV_STATE_OFFLINE, /* Not allowed to open */ 769 VDEV_STATE_REMOVED, /* Explicitly removed from system */ 770 VDEV_STATE_CANT_OPEN, /* Tried to open, but failed */ 771 VDEV_STATE_FAULTED, /* External request to fault device */ 772 VDEV_STATE_DEGRADED, /* Replicated vdev with unhealthy kids */ 773 VDEV_STATE_HEALTHY /* Presumed good */ 774 } vdev_state_t; 775 776 /* 777 * vdev aux states. When a vdev is in the CANT_OPEN state, the aux field 778 * of the vdev stats structure uses these constants to distinguish why. 779 */ 780 typedef enum vdev_aux { 781 VDEV_AUX_NONE, /* no error */ 782 VDEV_AUX_OPEN_FAILED, /* ldi_open_*() or vn_open() failed */ 783 VDEV_AUX_CORRUPT_DATA, /* bad label or disk contents */ 784 VDEV_AUX_NO_REPLICAS, /* insufficient number of replicas */ 785 VDEV_AUX_BAD_GUID_SUM, /* vdev guid sum doesn't match */ 786 VDEV_AUX_TOO_SMALL, /* vdev size is too small */ 787 VDEV_AUX_BAD_LABEL, /* the label is OK but invalid */ 788 VDEV_AUX_VERSION_NEWER, /* on-disk version is too new */ 789 VDEV_AUX_VERSION_OLDER, /* on-disk version is too old */ 790 VDEV_AUX_SPARED /* hot spare used in another pool */ 791 } vdev_aux_t; 792 793 /* 794 * pool state. The following states are written to disk as part of the normal 795 * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE. The remaining states are 796 * software abstractions used at various levels to communicate pool state. 797 */ 798 typedef enum pool_state { 799 POOL_STATE_ACTIVE = 0, /* In active use */ 800 POOL_STATE_EXPORTED, /* Explicitly exported */ 801 POOL_STATE_DESTROYED, /* Explicitly destroyed */ 802 POOL_STATE_SPARE, /* Reserved for hot spare use */ 803 POOL_STATE_UNINITIALIZED, /* Internal spa_t state */ 804 POOL_STATE_UNAVAIL, /* Internal libzfs state */ 805 POOL_STATE_POTENTIALLY_ACTIVE /* Internal libzfs state */ 806 } pool_state_t; 807 808 /* 809 * The uberblock version is incremented whenever an incompatible on-disk 810 * format change is made to the SPA, DMU, or ZAP. 811 * 812 * Note: the first two fields should never be moved. When a storage pool 813 * is opened, the uberblock must be read off the disk before the version 814 * can be checked. If the ub_version field is moved, we may not detect 815 * version mismatch. If the ub_magic field is moved, applications that 816 * expect the magic number in the first word won't work. 817 */ 818 #define UBERBLOCK_MAGIC 0x00bab10c /* oo-ba-bloc! */ 819 #define UBERBLOCK_SHIFT 10 /* up to 1K */ 820 821 struct uberblock { 822 uint64_t ub_magic; /* UBERBLOCK_MAGIC */ 823 uint64_t ub_version; /* SPA_VERSION */ 824 uint64_t ub_txg; /* txg of last sync */ 825 uint64_t ub_guid_sum; /* sum of all vdev guids */ 826 uint64_t ub_timestamp; /* UTC time of last sync */ 827 blkptr_t ub_rootbp; /* MOS objset_phys_t */ 828 }; 829 830 /* 831 * Flags. 832 */ 833 #define DNODE_MUST_BE_ALLOCATED 1 834 #define DNODE_MUST_BE_FREE 2 835 836 /* 837 * Fixed constants. 838 */ 839 #define DNODE_SHIFT 9 /* 512 bytes */ 840 #define DN_MIN_INDBLKSHIFT 12 /* 4k */ 841 #define DN_MAX_INDBLKSHIFT 14 /* 16k */ 842 #define DNODE_BLOCK_SHIFT 14 /* 16k */ 843 #define DNODE_CORE_SIZE 64 /* 64 bytes for dnode sans blkptrs */ 844 #define DN_MAX_OBJECT_SHIFT 48 /* 256 trillion (zfs_fid_t limit) */ 845 #define DN_MAX_OFFSET_SHIFT 64 /* 2^64 bytes in a dnode */ 846 847 /* 848 * Derived constants. 849 */ 850 #define DNODE_SIZE (1 << DNODE_SHIFT) 851 #define DN_MAX_NBLKPTR ((DNODE_SIZE - DNODE_CORE_SIZE) >> SPA_BLKPTRSHIFT) 852 #define DN_MAX_BONUSLEN (DNODE_SIZE - DNODE_CORE_SIZE - (1 << SPA_BLKPTRSHIFT)) 853 #define DN_MAX_OBJECT (1ULL << DN_MAX_OBJECT_SHIFT) 854 855 #define DNODES_PER_BLOCK_SHIFT (DNODE_BLOCK_SHIFT - DNODE_SHIFT) 856 #define DNODES_PER_BLOCK (1ULL << DNODES_PER_BLOCK_SHIFT) 857 #define DNODES_PER_LEVEL_SHIFT (DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT) 858 859 /* The +2 here is a cheesy way to round up */ 860 #define DN_MAX_LEVELS (2 + ((DN_MAX_OFFSET_SHIFT - SPA_MINBLOCKSHIFT) / \ 861 (DN_MIN_INDBLKSHIFT - SPA_BLKPTRSHIFT))) 862 863 #define DN_BONUS(dnp) ((void*)((dnp)->dn_bonus + \ 864 (((dnp)->dn_nblkptr - 1) * sizeof (blkptr_t)))) 865 866 #define DN_USED_BYTES(dnp) (((dnp)->dn_flags & DNODE_FLAG_USED_BYTES) ? \ 867 (dnp)->dn_used : (dnp)->dn_used << SPA_MINBLOCKSHIFT) 868 869 #define EPB(blkshift, typeshift) (1 << (blkshift - typeshift)) 870 871 /* Is dn_used in bytes? if not, it's in multiples of SPA_MINBLOCKSIZE */ 872 #define DNODE_FLAG_USED_BYTES (1<<0) 873 #define DNODE_FLAG_USERUSED_ACCOUNTED (1<<1) 874 875 /* Does dnode have a SA spill blkptr in bonus? */ 876 #define DNODE_FLAG_SPILL_BLKPTR (1<<2) 877 878 typedef struct dnode_phys { 879 uint8_t dn_type; /* dmu_object_type_t */ 880 uint8_t dn_indblkshift; /* ln2(indirect block size) */ 881 uint8_t dn_nlevels; /* 1=dn_blkptr->data blocks */ 882 uint8_t dn_nblkptr; /* length of dn_blkptr */ 883 uint8_t dn_bonustype; /* type of data in bonus buffer */ 884 uint8_t dn_checksum; /* ZIO_CHECKSUM type */ 885 uint8_t dn_compress; /* ZIO_COMPRESS type */ 886 uint8_t dn_flags; /* DNODE_FLAG_* */ 887 uint16_t dn_datablkszsec; /* data block size in 512b sectors */ 888 uint16_t dn_bonuslen; /* length of dn_bonus */ 889 uint8_t dn_pad2[4]; 890 891 /* accounting is protected by dn_dirty_mtx */ 892 uint64_t dn_maxblkid; /* largest allocated block ID */ 893 uint64_t dn_used; /* bytes (or sectors) of disk space */ 894 895 uint64_t dn_pad3[4]; 896 897 blkptr_t dn_blkptr[1]; 898 uint8_t dn_bonus[DN_MAX_BONUSLEN - sizeof (blkptr_t)]; 899 blkptr_t dn_spill; 900 } dnode_phys_t; 901 902 typedef enum dmu_object_type { 903 DMU_OT_NONE, 904 /* general: */ 905 DMU_OT_OBJECT_DIRECTORY, /* ZAP */ 906 DMU_OT_OBJECT_ARRAY, /* UINT64 */ 907 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ 908 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ 909 DMU_OT_BPLIST, /* UINT64 */ 910 DMU_OT_BPLIST_HDR, /* UINT64 */ 911 /* spa: */ 912 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ 913 DMU_OT_SPACE_MAP, /* UINT64 */ 914 /* zil: */ 915 DMU_OT_INTENT_LOG, /* UINT64 */ 916 /* dmu: */ 917 DMU_OT_DNODE, /* DNODE */ 918 DMU_OT_OBJSET, /* OBJSET */ 919 /* dsl: */ 920 DMU_OT_DSL_DIR, /* UINT64 */ 921 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ 922 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ 923 DMU_OT_DSL_PROPS, /* ZAP */ 924 DMU_OT_DSL_DATASET, /* UINT64 */ 925 /* zpl: */ 926 DMU_OT_ZNODE, /* ZNODE */ 927 DMU_OT_OLDACL, /* Old ACL */ 928 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ 929 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ 930 DMU_OT_MASTER_NODE, /* ZAP */ 931 DMU_OT_UNLINKED_SET, /* ZAP */ 932 /* zvol: */ 933 DMU_OT_ZVOL, /* UINT8 */ 934 DMU_OT_ZVOL_PROP, /* ZAP */ 935 /* other; for testing only! */ 936 DMU_OT_PLAIN_OTHER, /* UINT8 */ 937 DMU_OT_UINT64_OTHER, /* UINT64 */ 938 DMU_OT_ZAP_OTHER, /* ZAP */ 939 /* new object types: */ 940 DMU_OT_ERROR_LOG, /* ZAP */ 941 DMU_OT_SPA_HISTORY, /* UINT8 */ 942 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ 943 DMU_OT_POOL_PROPS, /* ZAP */ 944 DMU_OT_DSL_PERMS, /* ZAP */ 945 DMU_OT_ACL, /* ACL */ 946 DMU_OT_SYSACL, /* SYSACL */ 947 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */ 948 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */ 949 DMU_OT_NEXT_CLONES, /* ZAP */ 950 DMU_OT_SCAN_QUEUE, /* ZAP */ 951 DMU_OT_USERGROUP_USED, /* ZAP */ 952 DMU_OT_USERGROUP_QUOTA, /* ZAP */ 953 DMU_OT_USERREFS, /* ZAP */ 954 DMU_OT_DDT_ZAP, /* ZAP */ 955 DMU_OT_DDT_STATS, /* ZAP */ 956 DMU_OT_SA, /* System attr */ 957 DMU_OT_SA_MASTER_NODE, /* ZAP */ 958 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */ 959 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */ 960 DMU_OT_SCAN_XLATE, /* ZAP */ 961 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */ 962 DMU_OT_NUMTYPES 963 } dmu_object_type_t; 964 965 typedef enum dmu_objset_type { 966 DMU_OST_NONE, 967 DMU_OST_META, 968 DMU_OST_ZFS, 969 DMU_OST_ZVOL, 970 DMU_OST_OTHER, /* For testing only! */ 971 DMU_OST_ANY, /* Be careful! */ 972 DMU_OST_NUMTYPES 973 } dmu_objset_type_t; 974 975 /* 976 * header for all bonus and spill buffers. 977 * The header has a fixed portion with a variable number 978 * of "lengths" depending on the number of variable sized 979 * attribues which are determined by the "layout number" 980 */ 981 982 #define SA_MAGIC 0x2F505A /* ZFS SA */ 983 typedef struct sa_hdr_phys { 984 uint32_t sa_magic; 985 uint16_t sa_layout_info; /* Encoded with hdrsize and layout number */ 986 uint16_t sa_lengths[1]; /* optional sizes for variable length attrs */ 987 /* ... Data follows the lengths. */ 988 } sa_hdr_phys_t; 989 990 /* 991 * sa_hdr_phys -> sa_layout_info 992 * 993 * 16 10 0 994 * +--------+-------+ 995 * | hdrsz |layout | 996 * +--------+-------+ 997 * 998 * Bits 0-10 are the layout number 999 * Bits 11-16 are the size of the header. 1000 * The hdrsize is the number * 8 1001 * 1002 * For example. 1003 * hdrsz of 1 ==> 8 byte header 1004 * 2 ==> 16 byte header 1005 * 1006 */ 1007 1008 #define SA_HDR_LAYOUT_NUM(hdr) BF32_GET(hdr->sa_layout_info, 0, 10) 1009 #define SA_HDR_SIZE(hdr) BF32_GET_SB(hdr->sa_layout_info, 10, 16, 3, 0) 1010 #define SA_HDR_LAYOUT_INFO_ENCODE(x, num, size) \ 1011 { \ 1012 BF32_SET_SB(x, 10, 6, 3, 0, size); \ 1013 BF32_SET(x, 0, 10, num); \ 1014 } 1015 1016 #define SA_MODE_OFFSET 0 1017 #define SA_SIZE_OFFSET 8 1018 #define SA_GEN_OFFSET 16 1019 #define SA_UID_OFFSET 24 1020 #define SA_GID_OFFSET 32 1021 #define SA_PARENT_OFFSET 40 1022 1023 /* 1024 * Intent log header - this on disk structure holds fields to manage 1025 * the log. All fields are 64 bit to easily handle cross architectures. 1026 */ 1027 typedef struct zil_header { 1028 uint64_t zh_claim_txg; /* txg in which log blocks were claimed */ 1029 uint64_t zh_replay_seq; /* highest replayed sequence number */ 1030 blkptr_t zh_log; /* log chain */ 1031 uint64_t zh_claim_seq; /* highest claimed sequence number */ 1032 uint64_t zh_pad[5]; 1033 } zil_header_t; 1034 1035 #define OBJSET_PHYS_SIZE 2048 1036 1037 typedef struct objset_phys { 1038 dnode_phys_t os_meta_dnode; 1039 zil_header_t os_zil_header; 1040 uint64_t os_type; 1041 uint64_t os_flags; 1042 char os_pad[OBJSET_PHYS_SIZE - sizeof (dnode_phys_t)*3 - 1043 sizeof (zil_header_t) - sizeof (uint64_t)*2]; 1044 dnode_phys_t os_userused_dnode; 1045 dnode_phys_t os_groupused_dnode; 1046 } objset_phys_t; 1047 1048 typedef struct dsl_dir_phys { 1049 uint64_t dd_creation_time; /* not actually used */ 1050 uint64_t dd_head_dataset_obj; 1051 uint64_t dd_parent_obj; 1052 uint64_t dd_clone_parent_obj; 1053 uint64_t dd_child_dir_zapobj; 1054 /* 1055 * how much space our children are accounting for; for leaf 1056 * datasets, == physical space used by fs + snaps 1057 */ 1058 uint64_t dd_used_bytes; 1059 uint64_t dd_compressed_bytes; 1060 uint64_t dd_uncompressed_bytes; 1061 /* Administrative quota setting */ 1062 uint64_t dd_quota; 1063 /* Administrative reservation setting */ 1064 uint64_t dd_reserved; 1065 uint64_t dd_props_zapobj; 1066 uint64_t dd_pad[21]; /* pad out to 256 bytes for good measure */ 1067 } dsl_dir_phys_t; 1068 1069 typedef struct dsl_dataset_phys { 1070 uint64_t ds_dir_obj; 1071 uint64_t ds_prev_snap_obj; 1072 uint64_t ds_prev_snap_txg; 1073 uint64_t ds_next_snap_obj; 1074 uint64_t ds_snapnames_zapobj; /* zap obj of snaps; ==0 for snaps */ 1075 uint64_t ds_num_children; /* clone/snap children; ==0 for head */ 1076 uint64_t ds_creation_time; /* seconds since 1970 */ 1077 uint64_t ds_creation_txg; 1078 uint64_t ds_deadlist_obj; 1079 uint64_t ds_used_bytes; 1080 uint64_t ds_compressed_bytes; 1081 uint64_t ds_uncompressed_bytes; 1082 uint64_t ds_unique_bytes; /* only relevant to snapshots */ 1083 /* 1084 * The ds_fsid_guid is a 56-bit ID that can change to avoid 1085 * collisions. The ds_guid is a 64-bit ID that will never 1086 * change, so there is a small probability that it will collide. 1087 */ 1088 uint64_t ds_fsid_guid; 1089 uint64_t ds_guid; 1090 uint64_t ds_flags; 1091 blkptr_t ds_bp; 1092 uint64_t ds_pad[8]; /* pad out to 320 bytes for good measure */ 1093 } dsl_dataset_phys_t; 1094 1095 /* 1096 * The names of zap entries in the DIRECTORY_OBJECT of the MOS. 1097 */ 1098 #define DMU_POOL_DIRECTORY_OBJECT 1 1099 #define DMU_POOL_CONFIG "config" 1100 #define DMU_POOL_ROOT_DATASET "root_dataset" 1101 #define DMU_POOL_SYNC_BPLIST "sync_bplist" 1102 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" 1103 #define DMU_POOL_ERRLOG_LAST "errlog_last" 1104 #define DMU_POOL_SPARES "spares" 1105 #define DMU_POOL_DEFLATE "deflate" 1106 #define DMU_POOL_HISTORY "history" 1107 #define DMU_POOL_PROPS "pool_props" 1108 1109 #define ZAP_MAGIC 0x2F52AB2ABULL 1110 1111 #define FZAP_BLOCK_SHIFT(zap) ((zap)->zap_block_shift) 1112 1113 #define ZAP_MAXCD (uint32_t)(-1) 1114 #define ZAP_HASHBITS 28 1115 #define MZAP_ENT_LEN 64 1116 #define MZAP_NAME_LEN (MZAP_ENT_LEN - 8 - 4 - 2) 1117 #define MZAP_MAX_BLKSHIFT SPA_MAXBLOCKSHIFT 1118 #define MZAP_MAX_BLKSZ (1 << MZAP_MAX_BLKSHIFT) 1119 1120 typedef struct mzap_ent_phys { 1121 uint64_t mze_value; 1122 uint32_t mze_cd; 1123 uint16_t mze_pad; /* in case we want to chain them someday */ 1124 char mze_name[MZAP_NAME_LEN]; 1125 } mzap_ent_phys_t; 1126 1127 typedef struct mzap_phys { 1128 uint64_t mz_block_type; /* ZBT_MICRO */ 1129 uint64_t mz_salt; 1130 uint64_t mz_pad[6]; 1131 mzap_ent_phys_t mz_chunk[1]; 1132 /* actually variable size depending on block size */ 1133 } mzap_phys_t; 1134 1135 /* 1136 * The (fat) zap is stored in one object. It is an array of 1137 * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of: 1138 * 1139 * ptrtbl fits in first block: 1140 * [zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ... 1141 * 1142 * ptrtbl too big for first block: 1143 * [zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ... 1144 * 1145 */ 1146 1147 #define ZBT_LEAF ((1ULL << 63) + 0) 1148 #define ZBT_HEADER ((1ULL << 63) + 1) 1149 #define ZBT_MICRO ((1ULL << 63) + 3) 1150 /* any other values are ptrtbl blocks */ 1151 1152 /* 1153 * the embedded pointer table takes up half a block: 1154 * block size / entry size (2^3) / 2 1155 */ 1156 #define ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1) 1157 1158 /* 1159 * The embedded pointer table starts half-way through the block. Since 1160 * the pointer table itself is half the block, it starts at (64-bit) 1161 * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)). 1162 */ 1163 #define ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \ 1164 ((uint64_t *)(zap)->zap_phys) \ 1165 [(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))] 1166 1167 /* 1168 * TAKE NOTE: 1169 * If zap_phys_t is modified, zap_byteswap() must be modified. 1170 */ 1171 typedef struct zap_phys { 1172 uint64_t zap_block_type; /* ZBT_HEADER */ 1173 uint64_t zap_magic; /* ZAP_MAGIC */ 1174 1175 struct zap_table_phys { 1176 uint64_t zt_blk; /* starting block number */ 1177 uint64_t zt_numblks; /* number of blocks */ 1178 uint64_t zt_shift; /* bits to index it */ 1179 uint64_t zt_nextblk; /* next (larger) copy start block */ 1180 uint64_t zt_blks_copied; /* number source blocks copied */ 1181 } zap_ptrtbl; 1182 1183 uint64_t zap_freeblk; /* the next free block */ 1184 uint64_t zap_num_leafs; /* number of leafs */ 1185 uint64_t zap_num_entries; /* number of entries */ 1186 uint64_t zap_salt; /* salt to stir into hash function */ 1187 /* 1188 * This structure is followed by padding, and then the embedded 1189 * pointer table. The embedded pointer table takes up second 1190 * half of the block. It is accessed using the 1191 * ZAP_EMBEDDED_PTRTBL_ENT() macro. 1192 */ 1193 } zap_phys_t; 1194 1195 typedef struct zap_table_phys zap_table_phys_t; 1196 1197 typedef struct fat_zap { 1198 int zap_block_shift; /* block size shift */ 1199 zap_phys_t *zap_phys; 1200 } fat_zap_t; 1201 1202 #define ZAP_LEAF_MAGIC 0x2AB1EAF 1203 1204 /* chunk size = 24 bytes */ 1205 #define ZAP_LEAF_CHUNKSIZE 24 1206 1207 /* 1208 * The amount of space available for chunks is: 1209 * block size (1<<l->l_bs) - hash entry size (2) * number of hash 1210 * entries - header space (2*chunksize) 1211 */ 1212 #define ZAP_LEAF_NUMCHUNKS(l) \ 1213 (((1<<(l)->l_bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(l)) / \ 1214 ZAP_LEAF_CHUNKSIZE - 2) 1215 1216 /* 1217 * The amount of space within the chunk available for the array is: 1218 * chunk size - space for type (1) - space for next pointer (2) 1219 */ 1220 #define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3) 1221 1222 #define ZAP_LEAF_ARRAY_NCHUNKS(bytes) \ 1223 (((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES) 1224 1225 /* 1226 * Low water mark: when there are only this many chunks free, start 1227 * growing the ptrtbl. Ideally, this should be larger than a 1228 * "reasonably-sized" entry. 20 chunks is more than enough for the 1229 * largest directory entry (MAXNAMELEN (256) byte name, 8-byte value), 1230 * while still being only around 3% for 16k blocks. 1231 */ 1232 #define ZAP_LEAF_LOW_WATER (20) 1233 1234 /* 1235 * The leaf hash table has block size / 2^5 (32) number of entries, 1236 * which should be more than enough for the maximum number of entries, 1237 * which is less than block size / CHUNKSIZE (24) / minimum number of 1238 * chunks per entry (3). 1239 */ 1240 #define ZAP_LEAF_HASH_SHIFT(l) ((l)->l_bs - 5) 1241 #define ZAP_LEAF_HASH_NUMENTRIES(l) (1 << ZAP_LEAF_HASH_SHIFT(l)) 1242 1243 /* 1244 * The chunks start immediately after the hash table. The end of the 1245 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a 1246 * chunk_t. 1247 */ 1248 #define ZAP_LEAF_CHUNK(l, idx) \ 1249 ((zap_leaf_chunk_t *) \ 1250 ((l)->l_phys->l_hash + ZAP_LEAF_HASH_NUMENTRIES(l)))[idx] 1251 #define ZAP_LEAF_ENTRY(l, idx) (&ZAP_LEAF_CHUNK(l, idx).l_entry) 1252 1253 typedef enum zap_chunk_type { 1254 ZAP_CHUNK_FREE = 253, 1255 ZAP_CHUNK_ENTRY = 252, 1256 ZAP_CHUNK_ARRAY = 251, 1257 ZAP_CHUNK_TYPE_MAX = 250 1258 } zap_chunk_type_t; 1259 1260 /* 1261 * TAKE NOTE: 1262 * If zap_leaf_phys_t is modified, zap_leaf_byteswap() must be modified. 1263 */ 1264 typedef struct zap_leaf_phys { 1265 struct zap_leaf_header { 1266 uint64_t lh_block_type; /* ZBT_LEAF */ 1267 uint64_t lh_pad1; 1268 uint64_t lh_prefix; /* hash prefix of this leaf */ 1269 uint32_t lh_magic; /* ZAP_LEAF_MAGIC */ 1270 uint16_t lh_nfree; /* number free chunks */ 1271 uint16_t lh_nentries; /* number of entries */ 1272 uint16_t lh_prefix_len; /* num bits used to id this */ 1273 1274 /* above is accessable to zap, below is zap_leaf private */ 1275 1276 uint16_t lh_freelist; /* chunk head of free list */ 1277 uint8_t lh_pad2[12]; 1278 } l_hdr; /* 2 24-byte chunks */ 1279 1280 /* 1281 * The header is followed by a hash table with 1282 * ZAP_LEAF_HASH_NUMENTRIES(zap) entries. The hash table is 1283 * followed by an array of ZAP_LEAF_NUMCHUNKS(zap) 1284 * zap_leaf_chunk structures. These structures are accessed 1285 * with the ZAP_LEAF_CHUNK() macro. 1286 */ 1287 1288 uint16_t l_hash[1]; 1289 } zap_leaf_phys_t; 1290 1291 typedef union zap_leaf_chunk { 1292 struct zap_leaf_entry { 1293 uint8_t le_type; /* always ZAP_CHUNK_ENTRY */ 1294 uint8_t le_value_intlen; /* size of ints */ 1295 uint16_t le_next; /* next entry in hash chain */ 1296 uint16_t le_name_chunk; /* first chunk of the name */ 1297 uint16_t le_name_numints; /* bytes in name, incl null */ 1298 uint16_t le_value_chunk; /* first chunk of the value */ 1299 uint16_t le_value_numints; /* value length in ints */ 1300 uint32_t le_cd; /* collision differentiator */ 1301 uint64_t le_hash; /* hash value of the name */ 1302 } l_entry; 1303 struct zap_leaf_array { 1304 uint8_t la_type; /* always ZAP_CHUNK_ARRAY */ 1305 uint8_t la_array[ZAP_LEAF_ARRAY_BYTES]; 1306 uint16_t la_next; /* next blk or CHAIN_END */ 1307 } l_array; 1308 struct zap_leaf_free { 1309 uint8_t lf_type; /* always ZAP_CHUNK_FREE */ 1310 uint8_t lf_pad[ZAP_LEAF_ARRAY_BYTES]; 1311 uint16_t lf_next; /* next in free list, or CHAIN_END */ 1312 } l_free; 1313 } zap_leaf_chunk_t; 1314 1315 typedef struct zap_leaf { 1316 int l_bs; /* block size shift */ 1317 zap_leaf_phys_t *l_phys; 1318 } zap_leaf_t; 1319 1320 /* 1321 * Define special zfs pflags 1322 */ 1323 #define ZFS_XATTR 0x1 /* is an extended attribute */ 1324 #define ZFS_INHERIT_ACE 0x2 /* ace has inheritable ACEs */ 1325 #define ZFS_ACL_TRIVIAL 0x4 /* files ACL is trivial */ 1326 1327 #define MASTER_NODE_OBJ 1 1328 1329 /* 1330 * special attributes for master node. 1331 */ 1332 1333 #define ZFS_FSID "FSID" 1334 #define ZFS_UNLINKED_SET "DELETE_QUEUE" 1335 #define ZFS_ROOT_OBJ "ROOT" 1336 #define ZPL_VERSION_OBJ "VERSION" 1337 #define ZFS_PROP_BLOCKPERPAGE "BLOCKPERPAGE" 1338 #define ZFS_PROP_NOGROWBLOCKS "NOGROWBLOCKS" 1339 1340 #define ZFS_FLAG_BLOCKPERPAGE 0x1 1341 #define ZFS_FLAG_NOGROWBLOCKS 0x2 1342 1343 /* 1344 * ZPL version - rev'd whenever an incompatible on-disk format change 1345 * occurs. Independent of SPA/DMU/ZAP versioning. 1346 */ 1347 1348 #define ZPL_VERSION 1ULL 1349 1350 /* 1351 * The directory entry has the type (currently unused on Solaris) in the 1352 * top 4 bits, and the object number in the low 48 bits. The "middle" 1353 * 12 bits are unused. 1354 */ 1355 #define ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4) 1356 #define ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48) 1357 #define ZFS_DIRENT_MAKE(type, obj) (((uint64_t)type << 60) | obj) 1358 1359 typedef struct ace { 1360 uid_t a_who; /* uid or gid */ 1361 uint32_t a_access_mask; /* read,write,... */ 1362 uint16_t a_flags; /* see below */ 1363 uint16_t a_type; /* allow or deny */ 1364 } ace_t; 1365 1366 #define ACE_SLOT_CNT 6 1367 1368 typedef struct zfs_znode_acl { 1369 uint64_t z_acl_extern_obj; /* ext acl pieces */ 1370 uint32_t z_acl_count; /* Number of ACEs */ 1371 uint16_t z_acl_version; /* acl version */ 1372 uint16_t z_acl_pad; /* pad */ 1373 ace_t z_ace_data[ACE_SLOT_CNT]; /* 6 standard ACEs */ 1374 } zfs_znode_acl_t; 1375 1376 /* 1377 * This is the persistent portion of the znode. It is stored 1378 * in the "bonus buffer" of the file. Short symbolic links 1379 * are also stored in the bonus buffer. 1380 */ 1381 typedef struct znode_phys { 1382 uint64_t zp_atime[2]; /* 0 - last file access time */ 1383 uint64_t zp_mtime[2]; /* 16 - last file modification time */ 1384 uint64_t zp_ctime[2]; /* 32 - last file change time */ 1385 uint64_t zp_crtime[2]; /* 48 - creation time */ 1386 uint64_t zp_gen; /* 64 - generation (txg of creation) */ 1387 uint64_t zp_mode; /* 72 - file mode bits */ 1388 uint64_t zp_size; /* 80 - size of file */ 1389 uint64_t zp_parent; /* 88 - directory parent (`..') */ 1390 uint64_t zp_links; /* 96 - number of links to file */ 1391 uint64_t zp_xattr; /* 104 - DMU object for xattrs */ 1392 uint64_t zp_rdev; /* 112 - dev_t for VBLK & VCHR files */ 1393 uint64_t zp_flags; /* 120 - persistent flags */ 1394 uint64_t zp_uid; /* 128 - file owner */ 1395 uint64_t zp_gid; /* 136 - owning group */ 1396 uint64_t zp_pad[4]; /* 144 - future */ 1397 zfs_znode_acl_t zp_acl; /* 176 - 263 ACL */ 1398 /* 1399 * Data may pad out any remaining bytes in the znode buffer, eg: 1400 * 1401 * |<---------------------- dnode_phys (512) ------------------------>| 1402 * |<-- dnode (192) --->|<----------- "bonus" buffer (320) ---------->| 1403 * |<---- znode (264) ---->|<---- data (56) ---->| 1404 * 1405 * At present, we only use this space to store symbolic links. 1406 */ 1407 } znode_phys_t; 1408 1409 /* 1410 * In-core vdev representation. 1411 */ 1412 struct vdev; 1413 typedef int vdev_phys_read_t(struct vdev *vdev, void *priv, 1414 off_t offset, void *buf, size_t bytes); 1415 typedef int vdev_read_t(struct vdev *vdev, const blkptr_t *bp, 1416 void *buf, off_t offset, size_t bytes); 1417 1418 typedef STAILQ_HEAD(vdev_list, vdev) vdev_list_t; 1419 1420 typedef struct vdev { 1421 STAILQ_ENTRY(vdev) v_childlink; /* link in parent's child list */ 1422 STAILQ_ENTRY(vdev) v_alllink; /* link in global vdev list */ 1423 vdev_list_t v_children; /* children of this vdev */ 1424 const char *v_name; /* vdev name */ 1425 uint64_t v_guid; /* vdev guid */ 1426 int v_id; /* index in parent */ 1427 int v_ashift; /* offset to block shift */ 1428 int v_nparity; /* # parity for raidz */ 1429 struct vdev *v_top; /* parent vdev */ 1430 int v_nchildren; /* # children */ 1431 vdev_state_t v_state; /* current state */ 1432 vdev_phys_read_t *v_phys_read; /* read from raw leaf vdev */ 1433 vdev_read_t *v_read; /* read from vdev */ 1434 void *v_read_priv; /* private data for read function */ 1435 } vdev_t; 1436 1437 /* 1438 * In-core pool representation. 1439 */ 1440 typedef STAILQ_HEAD(spa_list, spa) spa_list_t; 1441 1442 typedef struct spa { 1443 STAILQ_ENTRY(spa) spa_link; /* link in global pool list */ 1444 char *spa_name; /* pool name */ 1445 uint64_t spa_guid; /* pool guid */ 1446 uint64_t spa_txg; /* most recent transaction */ 1447 struct uberblock spa_uberblock; /* best uberblock so far */ 1448 vdev_list_t spa_vdevs; /* list of all toplevel vdevs */ 1449 objset_phys_t spa_mos; /* MOS for this pool */ 1450 int spa_inited; /* initialized */ 1451 } spa_t; 1452 1453 static void decode_embedded_bp_compressed(const blkptr_t *, void *); 1454