1 /*- 2 * Copyright (c) 2002 McAfee, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and McAfee Research,, the Security Research Division of 7 * McAfee, Inc. under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as 8 * part of the DARPA CHATS research program 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 /* 32 * CDDL HEADER START 33 * 34 * The contents of this file are subject to the terms of the 35 * Common Development and Distribution License (the "License"). 36 * You may not use this file except in compliance with the License. 37 * 38 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 39 * or http://www.opensolaris.org/os/licensing. 40 * See the License for the specific language governing permissions 41 * and limitations under the License. 42 * 43 * When distributing Covered Code, include this CDDL HEADER in each 44 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 45 * If applicable, add the following below this CDDL HEADER, with the 46 * fields enclosed by brackets "[]" replaced with your own identifying 47 * information: Portions Copyright [yyyy] [name of copyright owner] 48 * 49 * CDDL HEADER END 50 */ 51 /* 52 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 53 * Use is subject to license terms. 54 */ 55 /* 56 * Copyright 2013 by Saso Kiselkov. All rights reserved. 57 */ 58 /* 59 * Copyright (c) 2013 by Delphix. All rights reserved. 60 */ 61 62 #define MAXNAMELEN 256 63 64 #define _NOTE(s) 65 66 typedef enum { B_FALSE, B_TRUE } boolean_t; 67 68 /* CRC64 table */ 69 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ 70 71 /* 72 * Macros for various sorts of alignment and rounding when the alignment 73 * is known to be a power of 2. 74 */ 75 #define P2ALIGN(x, align) ((x) & -(align)) 76 #define P2PHASE(x, align) ((x) & ((align) - 1)) 77 #define P2NPHASE(x, align) (-(x) & ((align) - 1)) 78 #define P2ROUNDUP(x, align) (-(-(x) & -(align))) 79 #define P2END(x, align) (-(~(x) & -(align))) 80 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align))) 81 #define P2BOUNDARY(off, len, align) (((off) ^ ((off) + (len) - 1)) > (align) - 1) 82 83 /* 84 * General-purpose 32-bit and 64-bit bitfield encodings. 85 */ 86 #define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len)) 87 #define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len)) 88 #define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low)) 89 #define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low)) 90 91 #define BF32_GET(x, low, len) BF32_DECODE(x, low, len) 92 #define BF64_GET(x, low, len) BF64_DECODE(x, low, len) 93 94 #define BF32_SET(x, low, len, val) \ 95 ((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len)) 96 #define BF64_SET(x, low, len, val) \ 97 ((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len)) 98 99 #define BF32_GET_SB(x, low, len, shift, bias) \ 100 ((BF32_GET(x, low, len) + (bias)) << (shift)) 101 #define BF64_GET_SB(x, low, len, shift, bias) \ 102 ((BF64_GET(x, low, len) + (bias)) << (shift)) 103 104 #define BF32_SET_SB(x, low, len, shift, bias, val) \ 105 BF32_SET(x, low, len, ((val) >> (shift)) - (bias)) 106 #define BF64_SET_SB(x, low, len, shift, bias, val) \ 107 BF64_SET(x, low, len, ((val) >> (shift)) - (bias)) 108 109 /* 110 * Macros to reverse byte order 111 */ 112 #define BSWAP_8(x) ((x) & 0xff) 113 #define BSWAP_16(x) ((BSWAP_8(x) << 8) | BSWAP_8((x) >> 8)) 114 #define BSWAP_32(x) ((BSWAP_16(x) << 16) | BSWAP_16((x) >> 16)) 115 #define BSWAP_64(x) ((BSWAP_32(x) << 32) | BSWAP_32((x) >> 32)) 116 117 #define SPA_MINBLOCKSHIFT 9 118 #define SPA_OLDMAXBLOCKSHIFT 17 119 #define SPA_MAXBLOCKSHIFT 24 120 #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT) 121 #define SPA_OLDMAXBLOCKSIZE (1ULL << SPA_OLDMAXBLOCKSHIFT) 122 #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT) 123 124 /* 125 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB. 126 * The ASIZE encoding should be at least 64 times larger (6 more bits) 127 * to support up to 4-way RAID-Z mirror mode with worst-case gang block 128 * overhead, three DVAs per bp, plus one more bit in case we do anything 129 * else that expands the ASIZE. 130 */ 131 #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */ 132 #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */ 133 #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */ 134 135 /* 136 * All SPA data is represented by 128-bit data virtual addresses (DVAs). 137 * The members of the dva_t should be considered opaque outside the SPA. 138 */ 139 typedef struct dva { 140 uint64_t dva_word[2]; 141 } dva_t; 142 143 /* 144 * Each block has a 256-bit checksum -- strong enough for cryptographic hashes. 145 */ 146 typedef struct zio_cksum { 147 uint64_t zc_word[4]; 148 } zio_cksum_t; 149 150 /* 151 * Some checksums/hashes need a 256-bit initialization salt. This salt is kept 152 * secret and is suitable for use in MAC algorithms as the key. 153 */ 154 typedef struct zio_cksum_salt { 155 uint8_t zcs_bytes[32]; 156 } zio_cksum_salt_t; 157 158 /* 159 * Each block is described by its DVAs, time of birth, checksum, etc. 160 * The word-by-word, bit-by-bit layout of the blkptr is as follows: 161 * 162 * 64 56 48 40 32 24 16 8 0 163 * +-------+-------+-------+-------+-------+-------+-------+-------+ 164 * 0 | vdev1 | GRID | ASIZE | 165 * +-------+-------+-------+-------+-------+-------+-------+-------+ 166 * 1 |G| offset1 | 167 * +-------+-------+-------+-------+-------+-------+-------+-------+ 168 * 2 | vdev2 | GRID | ASIZE | 169 * +-------+-------+-------+-------+-------+-------+-------+-------+ 170 * 3 |G| offset2 | 171 * +-------+-------+-------+-------+-------+-------+-------+-------+ 172 * 4 | vdev3 | GRID | ASIZE | 173 * +-------+-------+-------+-------+-------+-------+-------+-------+ 174 * 5 |G| offset3 | 175 * +-------+-------+-------+-------+-------+-------+-------+-------+ 176 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE | 177 * +-------+-------+-------+-------+-------+-------+-------+-------+ 178 * 7 | padding | 179 * +-------+-------+-------+-------+-------+-------+-------+-------+ 180 * 8 | padding | 181 * +-------+-------+-------+-------+-------+-------+-------+-------+ 182 * 9 | physical birth txg | 183 * +-------+-------+-------+-------+-------+-------+-------+-------+ 184 * a | logical birth txg | 185 * +-------+-------+-------+-------+-------+-------+-------+-------+ 186 * b | fill count | 187 * +-------+-------+-------+-------+-------+-------+-------+-------+ 188 * c | checksum[0] | 189 * +-------+-------+-------+-------+-------+-------+-------+-------+ 190 * d | checksum[1] | 191 * +-------+-------+-------+-------+-------+-------+-------+-------+ 192 * e | checksum[2] | 193 * +-------+-------+-------+-------+-------+-------+-------+-------+ 194 * f | checksum[3] | 195 * +-------+-------+-------+-------+-------+-------+-------+-------+ 196 * 197 * Legend: 198 * 199 * vdev virtual device ID 200 * offset offset into virtual device 201 * LSIZE logical size 202 * PSIZE physical size (after compression) 203 * ASIZE allocated size (including RAID-Z parity and gang block headers) 204 * GRID RAID-Z layout information (reserved for future use) 205 * cksum checksum function 206 * comp compression function 207 * G gang block indicator 208 * B byteorder (endianness) 209 * D dedup 210 * X encryption (on version 30, which is not supported) 211 * E blkptr_t contains embedded data (see below) 212 * lvl level of indirection 213 * type DMU object type 214 * phys birth txg of block allocation; zero if same as logical birth txg 215 * log. birth transaction group in which the block was logically born 216 * fill count number of non-zero blocks under this bp 217 * checksum[4] 256-bit checksum of the data this bp describes 218 */ 219 220 /* 221 * "Embedded" blkptr_t's don't actually point to a block, instead they 222 * have a data payload embedded in the blkptr_t itself. See the comment 223 * in blkptr.c for more details. 224 * 225 * The blkptr_t is laid out as follows: 226 * 227 * 64 56 48 40 32 24 16 8 0 228 * +-------+-------+-------+-------+-------+-------+-------+-------+ 229 * 0 | payload | 230 * 1 | payload | 231 * 2 | payload | 232 * 3 | payload | 233 * 4 | payload | 234 * 5 | payload | 235 * +-------+-------+-------+-------+-------+-------+-------+-------+ 236 * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE | 237 * +-------+-------+-------+-------+-------+-------+-------+-------+ 238 * 7 | payload | 239 * 8 | payload | 240 * 9 | payload | 241 * +-------+-------+-------+-------+-------+-------+-------+-------+ 242 * a | logical birth txg | 243 * +-------+-------+-------+-------+-------+-------+-------+-------+ 244 * b | payload | 245 * c | payload | 246 * d | payload | 247 * e | payload | 248 * f | payload | 249 * +-------+-------+-------+-------+-------+-------+-------+-------+ 250 * 251 * Legend: 252 * 253 * payload contains the embedded data 254 * B (byteorder) byteorder (endianness) 255 * D (dedup) padding (set to zero) 256 * X encryption (set to zero; see above) 257 * E (embedded) set to one 258 * lvl indirection level 259 * type DMU object type 260 * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*) 261 * comp compression function of payload 262 * PSIZE size of payload after compression, in bytes 263 * LSIZE logical size of payload, in bytes 264 * note that 25 bits is enough to store the largest 265 * "normal" BP's LSIZE (2^16 * 2^9) in bytes 266 * log. birth transaction group in which the block was logically born 267 * 268 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded 269 * bp's they are stored in units of SPA_MINBLOCKSHIFT. 270 * Generally, the generic BP_GET_*() macros can be used on embedded BP's. 271 * The B, D, X, lvl, type, and comp fields are stored the same as with normal 272 * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must 273 * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before 274 * other macros, as they assert that they are only used on BP's of the correct 275 * "embedded-ness". 276 */ 277 278 #define BPE_GET_ETYPE(bp) \ 279 (ASSERT(BP_IS_EMBEDDED(bp)), \ 280 BF64_GET((bp)->blk_prop, 40, 8)) 281 #define BPE_SET_ETYPE(bp, t) do { \ 282 ASSERT(BP_IS_EMBEDDED(bp)); \ 283 BF64_SET((bp)->blk_prop, 40, 8, t); \ 284 _NOTE(CONSTCOND) } while (0) 285 286 #define BPE_GET_LSIZE(bp) \ 287 (ASSERT(BP_IS_EMBEDDED(bp)), \ 288 BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1)) 289 #define BPE_SET_LSIZE(bp, x) do { \ 290 ASSERT(BP_IS_EMBEDDED(bp)); \ 291 BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \ 292 _NOTE(CONSTCOND) } while (0) 293 294 #define BPE_GET_PSIZE(bp) \ 295 (ASSERT(BP_IS_EMBEDDED(bp)), \ 296 BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1)) 297 #define BPE_SET_PSIZE(bp, x) do { \ 298 ASSERT(BP_IS_EMBEDDED(bp)); \ 299 BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \ 300 _NOTE(CONSTCOND) } while (0) 301 302 typedef enum bp_embedded_type { 303 BP_EMBEDDED_TYPE_DATA, 304 BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */ 305 NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED 306 } bp_embedded_type_t; 307 308 #define BPE_NUM_WORDS 14 309 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t)) 310 #define BPE_IS_PAYLOADWORD(bp, wp) \ 311 ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth) 312 313 #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */ 314 #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */ 315 316 typedef struct blkptr { 317 dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */ 318 uint64_t blk_prop; /* size, compression, type, etc */ 319 uint64_t blk_pad[2]; /* Extra space for the future */ 320 uint64_t blk_phys_birth; /* txg when block was allocated */ 321 uint64_t blk_birth; /* transaction group at birth */ 322 uint64_t blk_fill; /* fill count */ 323 zio_cksum_t blk_cksum; /* 256-bit checksum */ 324 } blkptr_t; 325 326 /* 327 * Macros to get and set fields in a bp or DVA. 328 */ 329 #define DVA_GET_ASIZE(dva) \ 330 BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0) 331 #define DVA_SET_ASIZE(dva, x) \ 332 BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \ 333 SPA_MINBLOCKSHIFT, 0, x) 334 335 #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8) 336 #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x) 337 338 #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, 32) 339 #define DVA_SET_VDEV(dva, x) BF64_SET((dva)->dva_word[0], 32, 32, x) 340 341 #define DVA_GET_OFFSET(dva) \ 342 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0) 343 #define DVA_SET_OFFSET(dva, x) \ 344 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x) 345 346 #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1) 347 #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x) 348 349 #define BP_GET_LSIZE(bp) \ 350 (BP_IS_EMBEDDED(bp) ? \ 351 (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \ 352 BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1)) 353 #define BP_SET_LSIZE(bp, x) do { \ 354 ASSERT(!BP_IS_EMBEDDED(bp)); \ 355 BF64_SET_SB((bp)->blk_prop, \ 356 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \ 357 _NOTE(CONSTCOND) } while (0) 358 359 #define BP_GET_PSIZE(bp) \ 360 BF64_GET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1) 361 #define BP_SET_PSIZE(bp, x) \ 362 BF64_SET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x) 363 364 #define BP_GET_COMPRESS(bp) BF64_GET((bp)->blk_prop, 32, 7) 365 #define BP_SET_COMPRESS(bp, x) BF64_SET((bp)->blk_prop, 32, 7, x) 366 367 #define BP_GET_CHECKSUM(bp) BF64_GET((bp)->blk_prop, 40, 8) 368 #define BP_SET_CHECKSUM(bp, x) BF64_SET((bp)->blk_prop, 40, 8, x) 369 370 #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8) 371 #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x) 372 373 #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5) 374 #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x) 375 376 #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1) 377 378 #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1) 379 #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x) 380 381 #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1) 382 #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x) 383 384 #define BP_PHYSICAL_BIRTH(bp) \ 385 ((bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth) 386 387 #define BP_GET_ASIZE(bp) \ 388 (DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ 389 DVA_GET_ASIZE(&(bp)->blk_dva[2])) 390 391 #define BP_GET_UCSIZE(bp) \ 392 ((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \ 393 BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp)); 394 395 #define BP_GET_NDVAS(bp) \ 396 (!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ 397 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ 398 !!DVA_GET_ASIZE(&(bp)->blk_dva[2])) 399 400 #define DVA_EQUAL(dva1, dva2) \ 401 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \ 402 (dva1)->dva_word[0] == (dva2)->dva_word[0]) 403 404 #define ZIO_CHECKSUM_EQUAL(zc1, zc2) \ 405 (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \ 406 ((zc1).zc_word[1] - (zc2).zc_word[1]) | \ 407 ((zc1).zc_word[2] - (zc2).zc_word[2]) | \ 408 ((zc1).zc_word[3] - (zc2).zc_word[3]))) 409 410 411 #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0) 412 413 #define ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3) \ 414 { \ 415 (zcp)->zc_word[0] = w0; \ 416 (zcp)->zc_word[1] = w1; \ 417 (zcp)->zc_word[2] = w2; \ 418 (zcp)->zc_word[3] = w3; \ 419 } 420 421 #define BP_IDENTITY(bp) (&(bp)->blk_dva[0]) 422 #define BP_IS_GANG(bp) DVA_GET_GANG(BP_IDENTITY(bp)) 423 #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \ 424 (dva)->dva_word[1] == 0ULL) 425 #define BP_IS_HOLE(bp) DVA_IS_EMPTY(BP_IDENTITY(bp)) 426 #define BP_IS_OLDER(bp, txg) (!BP_IS_HOLE(bp) && (bp)->blk_birth < (txg)) 427 428 #define BP_ZERO(bp) \ 429 { \ 430 (bp)->blk_dva[0].dva_word[0] = 0; \ 431 (bp)->blk_dva[0].dva_word[1] = 0; \ 432 (bp)->blk_dva[1].dva_word[0] = 0; \ 433 (bp)->blk_dva[1].dva_word[1] = 0; \ 434 (bp)->blk_dva[2].dva_word[0] = 0; \ 435 (bp)->blk_dva[2].dva_word[1] = 0; \ 436 (bp)->blk_prop = 0; \ 437 (bp)->blk_pad[0] = 0; \ 438 (bp)->blk_pad[1] = 0; \ 439 (bp)->blk_phys_birth = 0; \ 440 (bp)->blk_birth = 0; \ 441 (bp)->blk_fill = 0; \ 442 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \ 443 } 444 445 #define BPE_NUM_WORDS 14 446 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t)) 447 #define BPE_IS_PAYLOADWORD(bp, wp) \ 448 ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth) 449 450 /* 451 * Embedded checksum 452 */ 453 #define ZEC_MAGIC 0x210da7ab10c7a11ULL 454 455 typedef struct zio_eck { 456 uint64_t zec_magic; /* for validation, endianness */ 457 zio_cksum_t zec_cksum; /* 256-bit checksum */ 458 } zio_eck_t; 459 460 /* 461 * Gang block headers are self-checksumming and contain an array 462 * of block pointers. 463 */ 464 #define SPA_GANGBLOCKSIZE SPA_MINBLOCKSIZE 465 #define SPA_GBH_NBLKPTRS ((SPA_GANGBLOCKSIZE - \ 466 sizeof (zio_eck_t)) / sizeof (blkptr_t)) 467 #define SPA_GBH_FILLER ((SPA_GANGBLOCKSIZE - \ 468 sizeof (zio_eck_t) - \ 469 (SPA_GBH_NBLKPTRS * sizeof (blkptr_t))) /\ 470 sizeof (uint64_t)) 471 472 typedef struct zio_gbh { 473 blkptr_t zg_blkptr[SPA_GBH_NBLKPTRS]; 474 uint64_t zg_filler[SPA_GBH_FILLER]; 475 zio_eck_t zg_tail; 476 } zio_gbh_phys_t; 477 478 #define VDEV_RAIDZ_MAXPARITY 3 479 480 #define VDEV_PAD_SIZE (8 << 10) 481 /* 2 padding areas (vl_pad1 and vl_pad2) to skip */ 482 #define VDEV_SKIP_SIZE VDEV_PAD_SIZE * 2 483 #define VDEV_PHYS_SIZE (112 << 10) 484 #define VDEV_UBERBLOCK_RING (128 << 10) 485 486 #define VDEV_UBERBLOCK_SHIFT(vd) \ 487 MAX((vd)->v_top->v_ashift, UBERBLOCK_SHIFT) 488 #define VDEV_UBERBLOCK_COUNT(vd) \ 489 (VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd)) 490 #define VDEV_UBERBLOCK_OFFSET(vd, n) \ 491 offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)]) 492 #define VDEV_UBERBLOCK_SIZE(vd) (1ULL << VDEV_UBERBLOCK_SHIFT(vd)) 493 494 typedef struct vdev_phys { 495 char vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_eck_t)]; 496 zio_eck_t vp_zbt; 497 } vdev_phys_t; 498 499 typedef struct vdev_label { 500 char vl_pad1[VDEV_PAD_SIZE]; /* 8K */ 501 char vl_pad2[VDEV_PAD_SIZE]; /* 8K */ 502 vdev_phys_t vl_vdev_phys; /* 112K */ 503 char vl_uberblock[VDEV_UBERBLOCK_RING]; /* 128K */ 504 } vdev_label_t; /* 256K total */ 505 506 /* 507 * vdev_dirty() flags 508 */ 509 #define VDD_METASLAB 0x01 510 #define VDD_DTL 0x02 511 512 /* 513 * Size and offset of embedded boot loader region on each label. 514 * The total size of the first two labels plus the boot area is 4MB. 515 */ 516 #define VDEV_BOOT_OFFSET (2 * sizeof (vdev_label_t)) 517 #define VDEV_BOOT_SIZE (7ULL << 19) /* 3.5M */ 518 519 /* 520 * Size of label regions at the start and end of each leaf device. 521 */ 522 #define VDEV_LABEL_START_SIZE (2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE) 523 #define VDEV_LABEL_END_SIZE (2 * sizeof (vdev_label_t)) 524 #define VDEV_LABELS 4 525 526 enum zio_checksum { 527 ZIO_CHECKSUM_INHERIT = 0, 528 ZIO_CHECKSUM_ON, 529 ZIO_CHECKSUM_OFF, 530 ZIO_CHECKSUM_LABEL, 531 ZIO_CHECKSUM_GANG_HEADER, 532 ZIO_CHECKSUM_ZILOG, 533 ZIO_CHECKSUM_FLETCHER_2, 534 ZIO_CHECKSUM_FLETCHER_4, 535 ZIO_CHECKSUM_SHA256, 536 ZIO_CHECKSUM_ZILOG2, 537 ZIO_CHECKSUM_NOPARITY, 538 ZIO_CHECKSUM_SHA512, 539 ZIO_CHECKSUM_SKEIN, 540 ZIO_CHECKSUM_EDONR, 541 ZIO_CHECKSUM_FUNCTIONS 542 }; 543 544 #define ZIO_CHECKSUM_ON_VALUE ZIO_CHECKSUM_FLETCHER_4 545 #define ZIO_CHECKSUM_DEFAULT ZIO_CHECKSUM_ON 546 547 enum zio_compress { 548 ZIO_COMPRESS_INHERIT = 0, 549 ZIO_COMPRESS_ON, 550 ZIO_COMPRESS_OFF, 551 ZIO_COMPRESS_LZJB, 552 ZIO_COMPRESS_EMPTY, 553 ZIO_COMPRESS_GZIP_1, 554 ZIO_COMPRESS_GZIP_2, 555 ZIO_COMPRESS_GZIP_3, 556 ZIO_COMPRESS_GZIP_4, 557 ZIO_COMPRESS_GZIP_5, 558 ZIO_COMPRESS_GZIP_6, 559 ZIO_COMPRESS_GZIP_7, 560 ZIO_COMPRESS_GZIP_8, 561 ZIO_COMPRESS_GZIP_9, 562 ZIO_COMPRESS_ZLE, 563 ZIO_COMPRESS_LZ4, 564 ZIO_COMPRESS_FUNCTIONS 565 }; 566 567 #define ZIO_COMPRESS_ON_VALUE ZIO_COMPRESS_LZJB 568 #define ZIO_COMPRESS_DEFAULT ZIO_COMPRESS_OFF 569 570 /* nvlist pack encoding */ 571 #define NV_ENCODE_NATIVE 0 572 #define NV_ENCODE_XDR 1 573 574 typedef enum { 575 DATA_TYPE_UNKNOWN = 0, 576 DATA_TYPE_BOOLEAN, 577 DATA_TYPE_BYTE, 578 DATA_TYPE_INT16, 579 DATA_TYPE_UINT16, 580 DATA_TYPE_INT32, 581 DATA_TYPE_UINT32, 582 DATA_TYPE_INT64, 583 DATA_TYPE_UINT64, 584 DATA_TYPE_STRING, 585 DATA_TYPE_BYTE_ARRAY, 586 DATA_TYPE_INT16_ARRAY, 587 DATA_TYPE_UINT16_ARRAY, 588 DATA_TYPE_INT32_ARRAY, 589 DATA_TYPE_UINT32_ARRAY, 590 DATA_TYPE_INT64_ARRAY, 591 DATA_TYPE_UINT64_ARRAY, 592 DATA_TYPE_STRING_ARRAY, 593 DATA_TYPE_HRTIME, 594 DATA_TYPE_NVLIST, 595 DATA_TYPE_NVLIST_ARRAY, 596 DATA_TYPE_BOOLEAN_VALUE, 597 DATA_TYPE_INT8, 598 DATA_TYPE_UINT8, 599 DATA_TYPE_BOOLEAN_ARRAY, 600 DATA_TYPE_INT8_ARRAY, 601 DATA_TYPE_UINT8_ARRAY 602 } data_type_t; 603 604 /* 605 * On-disk version number. 606 */ 607 #define SPA_VERSION_1 1ULL 608 #define SPA_VERSION_2 2ULL 609 #define SPA_VERSION_3 3ULL 610 #define SPA_VERSION_4 4ULL 611 #define SPA_VERSION_5 5ULL 612 #define SPA_VERSION_6 6ULL 613 #define SPA_VERSION_7 7ULL 614 #define SPA_VERSION_8 8ULL 615 #define SPA_VERSION_9 9ULL 616 #define SPA_VERSION_10 10ULL 617 #define SPA_VERSION_11 11ULL 618 #define SPA_VERSION_12 12ULL 619 #define SPA_VERSION_13 13ULL 620 #define SPA_VERSION_14 14ULL 621 #define SPA_VERSION_15 15ULL 622 #define SPA_VERSION_16 16ULL 623 #define SPA_VERSION_17 17ULL 624 #define SPA_VERSION_18 18ULL 625 #define SPA_VERSION_19 19ULL 626 #define SPA_VERSION_20 20ULL 627 #define SPA_VERSION_21 21ULL 628 #define SPA_VERSION_22 22ULL 629 #define SPA_VERSION_23 23ULL 630 #define SPA_VERSION_24 24ULL 631 #define SPA_VERSION_25 25ULL 632 #define SPA_VERSION_26 26ULL 633 #define SPA_VERSION_27 27ULL 634 #define SPA_VERSION_28 28ULL 635 #define SPA_VERSION_5000 5000ULL 636 637 /* 638 * When bumping up SPA_VERSION, make sure GRUB ZFS understands the on-disk 639 * format change. Go to usr/src/grub/grub-0.97/stage2/{zfs-include/, fsys_zfs*}, 640 * and do the appropriate changes. Also bump the version number in 641 * usr/src/grub/capability. 642 */ 643 #define SPA_VERSION SPA_VERSION_5000 644 #define SPA_VERSION_STRING "5000" 645 646 /* 647 * Symbolic names for the changes that caused a SPA_VERSION switch. 648 * Used in the code when checking for presence or absence of a feature. 649 * Feel free to define multiple symbolic names for each version if there 650 * were multiple changes to on-disk structures during that version. 651 * 652 * NOTE: When checking the current SPA_VERSION in your code, be sure 653 * to use spa_version() since it reports the version of the 654 * last synced uberblock. Checking the in-flight version can 655 * be dangerous in some cases. 656 */ 657 #define SPA_VERSION_INITIAL SPA_VERSION_1 658 #define SPA_VERSION_DITTO_BLOCKS SPA_VERSION_2 659 #define SPA_VERSION_SPARES SPA_VERSION_3 660 #define SPA_VERSION_RAID6 SPA_VERSION_3 661 #define SPA_VERSION_BPLIST_ACCOUNT SPA_VERSION_3 662 #define SPA_VERSION_RAIDZ_DEFLATE SPA_VERSION_3 663 #define SPA_VERSION_DNODE_BYTES SPA_VERSION_3 664 #define SPA_VERSION_ZPOOL_HISTORY SPA_VERSION_4 665 #define SPA_VERSION_GZIP_COMPRESSION SPA_VERSION_5 666 #define SPA_VERSION_BOOTFS SPA_VERSION_6 667 #define SPA_VERSION_SLOGS SPA_VERSION_7 668 #define SPA_VERSION_DELEGATED_PERMS SPA_VERSION_8 669 #define SPA_VERSION_FUID SPA_VERSION_9 670 #define SPA_VERSION_REFRESERVATION SPA_VERSION_9 671 #define SPA_VERSION_REFQUOTA SPA_VERSION_9 672 #define SPA_VERSION_UNIQUE_ACCURATE SPA_VERSION_9 673 #define SPA_VERSION_L2CACHE SPA_VERSION_10 674 #define SPA_VERSION_NEXT_CLONES SPA_VERSION_11 675 #define SPA_VERSION_ORIGIN SPA_VERSION_11 676 #define SPA_VERSION_DSL_SCRUB SPA_VERSION_11 677 #define SPA_VERSION_SNAP_PROPS SPA_VERSION_12 678 #define SPA_VERSION_USED_BREAKDOWN SPA_VERSION_13 679 #define SPA_VERSION_PASSTHROUGH_X SPA_VERSION_14 680 #define SPA_VERSION_USERSPACE SPA_VERSION_15 681 #define SPA_VERSION_STMF_PROP SPA_VERSION_16 682 #define SPA_VERSION_RAIDZ3 SPA_VERSION_17 683 #define SPA_VERSION_USERREFS SPA_VERSION_18 684 #define SPA_VERSION_HOLES SPA_VERSION_19 685 #define SPA_VERSION_ZLE_COMPRESSION SPA_VERSION_20 686 #define SPA_VERSION_DEDUP SPA_VERSION_21 687 #define SPA_VERSION_RECVD_PROPS SPA_VERSION_22 688 #define SPA_VERSION_SLIM_ZIL SPA_VERSION_23 689 #define SPA_VERSION_SA SPA_VERSION_24 690 #define SPA_VERSION_SCAN SPA_VERSION_25 691 #define SPA_VERSION_DIR_CLONES SPA_VERSION_26 692 #define SPA_VERSION_DEADLISTS SPA_VERSION_26 693 #define SPA_VERSION_FAST_SNAP SPA_VERSION_27 694 #define SPA_VERSION_MULTI_REPLACE SPA_VERSION_28 695 #define SPA_VERSION_BEFORE_FEATURES SPA_VERSION_28 696 #define SPA_VERSION_FEATURES SPA_VERSION_5000 697 698 #define SPA_VERSION_IS_SUPPORTED(v) \ 699 (((v) >= SPA_VERSION_INITIAL && (v) <= SPA_VERSION_BEFORE_FEATURES) || \ 700 ((v) >= SPA_VERSION_FEATURES && (v) <= SPA_VERSION)) 701 702 /* 703 * The following are configuration names used in the nvlist describing a pool's 704 * configuration. 705 */ 706 #define ZPOOL_CONFIG_VERSION "version" 707 #define ZPOOL_CONFIG_POOL_NAME "name" 708 #define ZPOOL_CONFIG_POOL_STATE "state" 709 #define ZPOOL_CONFIG_POOL_TXG "txg" 710 #define ZPOOL_CONFIG_POOL_GUID "pool_guid" 711 #define ZPOOL_CONFIG_CREATE_TXG "create_txg" 712 #define ZPOOL_CONFIG_TOP_GUID "top_guid" 713 #define ZPOOL_CONFIG_VDEV_TREE "vdev_tree" 714 #define ZPOOL_CONFIG_TYPE "type" 715 #define ZPOOL_CONFIG_CHILDREN "children" 716 #define ZPOOL_CONFIG_ID "id" 717 #define ZPOOL_CONFIG_GUID "guid" 718 #define ZPOOL_CONFIG_PATH "path" 719 #define ZPOOL_CONFIG_DEVID "devid" 720 #define ZPOOL_CONFIG_METASLAB_ARRAY "metaslab_array" 721 #define ZPOOL_CONFIG_METASLAB_SHIFT "metaslab_shift" 722 #define ZPOOL_CONFIG_ASHIFT "ashift" 723 #define ZPOOL_CONFIG_ASIZE "asize" 724 #define ZPOOL_CONFIG_DTL "DTL" 725 #define ZPOOL_CONFIG_STATS "stats" 726 #define ZPOOL_CONFIG_WHOLE_DISK "whole_disk" 727 #define ZPOOL_CONFIG_ERRCOUNT "error_count" 728 #define ZPOOL_CONFIG_NOT_PRESENT "not_present" 729 #define ZPOOL_CONFIG_SPARES "spares" 730 #define ZPOOL_CONFIG_IS_SPARE "is_spare" 731 #define ZPOOL_CONFIG_NPARITY "nparity" 732 #define ZPOOL_CONFIG_HOSTID "hostid" 733 #define ZPOOL_CONFIG_HOSTNAME "hostname" 734 #define ZPOOL_CONFIG_IS_LOG "is_log" 735 #define ZPOOL_CONFIG_TIMESTAMP "timestamp" /* not stored on disk */ 736 #define ZPOOL_CONFIG_FEATURES_FOR_READ "features_for_read" 737 738 /* 739 * The persistent vdev state is stored as separate values rather than a single 740 * 'vdev_state' entry. This is because a device can be in multiple states, such 741 * as offline and degraded. 742 */ 743 #define ZPOOL_CONFIG_OFFLINE "offline" 744 #define ZPOOL_CONFIG_FAULTED "faulted" 745 #define ZPOOL_CONFIG_DEGRADED "degraded" 746 #define ZPOOL_CONFIG_REMOVED "removed" 747 #define ZPOOL_CONFIG_FRU "fru" 748 #define ZPOOL_CONFIG_AUX_STATE "aux_state" 749 750 #define VDEV_TYPE_ROOT "root" 751 #define VDEV_TYPE_MIRROR "mirror" 752 #define VDEV_TYPE_REPLACING "replacing" 753 #define VDEV_TYPE_RAIDZ "raidz" 754 #define VDEV_TYPE_DISK "disk" 755 #define VDEV_TYPE_FILE "file" 756 #define VDEV_TYPE_MISSING "missing" 757 #define VDEV_TYPE_HOLE "hole" 758 #define VDEV_TYPE_SPARE "spare" 759 #define VDEV_TYPE_LOG "log" 760 #define VDEV_TYPE_L2CACHE "l2cache" 761 762 /* 763 * This is needed in userland to report the minimum necessary device size. 764 */ 765 #define SPA_MINDEVSIZE (64ULL << 20) 766 767 /* 768 * The location of the pool configuration repository, shared between kernel and 769 * userland. 770 */ 771 #define ZPOOL_CACHE "/boot/zfs/zpool.cache" 772 773 /* 774 * vdev states are ordered from least to most healthy. 775 * A vdev that's CANT_OPEN or below is considered unusable. 776 */ 777 typedef enum vdev_state { 778 VDEV_STATE_UNKNOWN = 0, /* Uninitialized vdev */ 779 VDEV_STATE_CLOSED, /* Not currently open */ 780 VDEV_STATE_OFFLINE, /* Not allowed to open */ 781 VDEV_STATE_REMOVED, /* Explicitly removed from system */ 782 VDEV_STATE_CANT_OPEN, /* Tried to open, but failed */ 783 VDEV_STATE_FAULTED, /* External request to fault device */ 784 VDEV_STATE_DEGRADED, /* Replicated vdev with unhealthy kids */ 785 VDEV_STATE_HEALTHY /* Presumed good */ 786 } vdev_state_t; 787 788 /* 789 * vdev aux states. When a vdev is in the CANT_OPEN state, the aux field 790 * of the vdev stats structure uses these constants to distinguish why. 791 */ 792 typedef enum vdev_aux { 793 VDEV_AUX_NONE, /* no error */ 794 VDEV_AUX_OPEN_FAILED, /* ldi_open_*() or vn_open() failed */ 795 VDEV_AUX_CORRUPT_DATA, /* bad label or disk contents */ 796 VDEV_AUX_NO_REPLICAS, /* insufficient number of replicas */ 797 VDEV_AUX_BAD_GUID_SUM, /* vdev guid sum doesn't match */ 798 VDEV_AUX_TOO_SMALL, /* vdev size is too small */ 799 VDEV_AUX_BAD_LABEL, /* the label is OK but invalid */ 800 VDEV_AUX_VERSION_NEWER, /* on-disk version is too new */ 801 VDEV_AUX_VERSION_OLDER, /* on-disk version is too old */ 802 VDEV_AUX_SPARED /* hot spare used in another pool */ 803 } vdev_aux_t; 804 805 /* 806 * pool state. The following states are written to disk as part of the normal 807 * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE. The remaining states are 808 * software abstractions used at various levels to communicate pool state. 809 */ 810 typedef enum pool_state { 811 POOL_STATE_ACTIVE = 0, /* In active use */ 812 POOL_STATE_EXPORTED, /* Explicitly exported */ 813 POOL_STATE_DESTROYED, /* Explicitly destroyed */ 814 POOL_STATE_SPARE, /* Reserved for hot spare use */ 815 POOL_STATE_UNINITIALIZED, /* Internal spa_t state */ 816 POOL_STATE_UNAVAIL, /* Internal libzfs state */ 817 POOL_STATE_POTENTIALLY_ACTIVE /* Internal libzfs state */ 818 } pool_state_t; 819 820 /* 821 * The uberblock version is incremented whenever an incompatible on-disk 822 * format change is made to the SPA, DMU, or ZAP. 823 * 824 * Note: the first two fields should never be moved. When a storage pool 825 * is opened, the uberblock must be read off the disk before the version 826 * can be checked. If the ub_version field is moved, we may not detect 827 * version mismatch. If the ub_magic field is moved, applications that 828 * expect the magic number in the first word won't work. 829 */ 830 #define UBERBLOCK_MAGIC 0x00bab10c /* oo-ba-bloc! */ 831 #define UBERBLOCK_SHIFT 10 /* up to 1K */ 832 833 struct uberblock { 834 uint64_t ub_magic; /* UBERBLOCK_MAGIC */ 835 uint64_t ub_version; /* SPA_VERSION */ 836 uint64_t ub_txg; /* txg of last sync */ 837 uint64_t ub_guid_sum; /* sum of all vdev guids */ 838 uint64_t ub_timestamp; /* UTC time of last sync */ 839 blkptr_t ub_rootbp; /* MOS objset_phys_t */ 840 }; 841 842 /* 843 * Flags. 844 */ 845 #define DNODE_MUST_BE_ALLOCATED 1 846 #define DNODE_MUST_BE_FREE 2 847 848 /* 849 * Fixed constants. 850 */ 851 #define DNODE_SHIFT 9 /* 512 bytes */ 852 #define DN_MIN_INDBLKSHIFT 12 /* 4k */ 853 #define DN_MAX_INDBLKSHIFT 14 /* 16k */ 854 #define DNODE_BLOCK_SHIFT 14 /* 16k */ 855 #define DNODE_CORE_SIZE 64 /* 64 bytes for dnode sans blkptrs */ 856 #define DN_MAX_OBJECT_SHIFT 48 /* 256 trillion (zfs_fid_t limit) */ 857 #define DN_MAX_OFFSET_SHIFT 64 /* 2^64 bytes in a dnode */ 858 859 /* 860 * Derived constants. 861 */ 862 #define DNODE_MIN_SIZE (1 << DNODE_SHIFT) 863 #define DNODE_MAX_SIZE (1 << DNODE_BLOCK_SHIFT) 864 #define DNODE_BLOCK_SIZE (1 << DNODE_BLOCK_SHIFT) 865 #define DNODE_MIN_SLOTS (DNODE_MIN_SIZE >> DNODE_SHIFT) 866 #define DNODE_MAX_SLOTS (DNODE_MAX_SIZE >> DNODE_SHIFT) 867 #define DN_BONUS_SIZE(dnsize) ((dnsize) - DNODE_CORE_SIZE - \ 868 (1 << SPA_BLKPTRSHIFT)) 869 #define DN_SLOTS_TO_BONUSLEN(slots) DN_BONUS_SIZE((slots) << DNODE_SHIFT) 870 #define DN_OLD_MAX_BONUSLEN (DN_BONUS_SIZE(DNODE_MIN_SIZE)) 871 #define DN_MAX_NBLKPTR ((DNODE_MIN_SIZE - DNODE_CORE_SIZE) >> \ 872 SPA_BLKPTRSHIFT) 873 #define DN_MAX_OBJECT (1ULL << DN_MAX_OBJECT_SHIFT) 874 #define DN_ZERO_BONUSLEN (DN_BONUS_SIZE(DNODE_MAX_SIZE) + 1) 875 876 #define DNODES_PER_BLOCK_SHIFT (DNODE_BLOCK_SHIFT - DNODE_SHIFT) 877 #define DNODES_PER_BLOCK (1ULL << DNODES_PER_BLOCK_SHIFT) 878 #define DNODES_PER_LEVEL_SHIFT (DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT) 879 880 /* The +2 here is a cheesy way to round up */ 881 #define DN_MAX_LEVELS (2 + ((DN_MAX_OFFSET_SHIFT - SPA_MINBLOCKSHIFT) / \ 882 (DN_MIN_INDBLKSHIFT - SPA_BLKPTRSHIFT))) 883 884 #define DN_BONUS(dnp) ((void*)((dnp)->dn_bonus + \ 885 (((dnp)->dn_nblkptr - 1) * sizeof (blkptr_t)))) 886 887 #define DN_USED_BYTES(dnp) (((dnp)->dn_flags & DNODE_FLAG_USED_BYTES) ? \ 888 (dnp)->dn_used : (dnp)->dn_used << SPA_MINBLOCKSHIFT) 889 890 #define EPB(blkshift, typeshift) (1 << (blkshift - typeshift)) 891 892 /* Is dn_used in bytes? if not, it's in multiples of SPA_MINBLOCKSIZE */ 893 #define DNODE_FLAG_USED_BYTES (1<<0) 894 #define DNODE_FLAG_USERUSED_ACCOUNTED (1<<1) 895 896 /* Does dnode have a SA spill blkptr in bonus? */ 897 #define DNODE_FLAG_SPILL_BLKPTR (1<<2) 898 899 typedef struct dnode_phys { 900 uint8_t dn_type; /* dmu_object_type_t */ 901 uint8_t dn_indblkshift; /* ln2(indirect block size) */ 902 uint8_t dn_nlevels; /* 1=dn_blkptr->data blocks */ 903 uint8_t dn_nblkptr; /* length of dn_blkptr */ 904 uint8_t dn_bonustype; /* type of data in bonus buffer */ 905 uint8_t dn_checksum; /* ZIO_CHECKSUM type */ 906 uint8_t dn_compress; /* ZIO_COMPRESS type */ 907 uint8_t dn_flags; /* DNODE_FLAG_* */ 908 uint16_t dn_datablkszsec; /* data block size in 512b sectors */ 909 uint16_t dn_bonuslen; /* length of dn_bonus */ 910 uint8_t dn_extra_slots; /* # of subsequent slots consumed */ 911 uint8_t dn_pad2[3]; 912 913 /* accounting is protected by dn_dirty_mtx */ 914 uint64_t dn_maxblkid; /* largest allocated block ID */ 915 uint64_t dn_used; /* bytes (or sectors) of disk space */ 916 917 uint64_t dn_pad3[4]; 918 919 /* 920 * The tail region is 448 bytes for a 512 byte dnode, and 921 * correspondingly larger for larger dnode sizes. The spill 922 * block pointer, when present, is always at the end of the tail 923 * region. There are three ways this space may be used, using 924 * a 512 byte dnode for this diagram: 925 * 926 * 0 64 128 192 256 320 384 448 (offset) 927 * +---------------+---------------+---------------+-------+ 928 * | dn_blkptr[0] | dn_blkptr[1] | dn_blkptr[2] | / | 929 * +---------------+---------------+---------------+-------+ 930 * | dn_blkptr[0] | dn_bonus[0..319] | 931 * +---------------+-----------------------+---------------+ 932 * | dn_blkptr[0] | dn_bonus[0..191] | dn_spill | 933 * +---------------+-----------------------+---------------+ 934 */ 935 union { 936 blkptr_t dn_blkptr[1+DN_OLD_MAX_BONUSLEN/sizeof (blkptr_t)]; 937 struct { 938 blkptr_t __dn_ignore1; 939 uint8_t dn_bonus[DN_OLD_MAX_BONUSLEN]; 940 }; 941 struct { 942 blkptr_t __dn_ignore2; 943 uint8_t __dn_ignore3[DN_OLD_MAX_BONUSLEN - 944 sizeof (blkptr_t)]; 945 blkptr_t dn_spill; 946 }; 947 }; 948 } dnode_phys_t; 949 950 #define DN_SPILL_BLKPTR(dnp) (blkptr_t *)((char *)(dnp) + \ 951 (((dnp)->dn_extra_slots + 1) << DNODE_SHIFT) - (1 << SPA_BLKPTRSHIFT)) 952 953 typedef enum dmu_object_byteswap { 954 DMU_BSWAP_UINT8, 955 DMU_BSWAP_UINT16, 956 DMU_BSWAP_UINT32, 957 DMU_BSWAP_UINT64, 958 DMU_BSWAP_ZAP, 959 DMU_BSWAP_DNODE, 960 DMU_BSWAP_OBJSET, 961 DMU_BSWAP_ZNODE, 962 DMU_BSWAP_OLDACL, 963 DMU_BSWAP_ACL, 964 /* 965 * Allocating a new byteswap type number makes the on-disk format 966 * incompatible with any other format that uses the same number. 967 * 968 * Data can usually be structured to work with one of the 969 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types. 970 */ 971 DMU_BSWAP_NUMFUNCS 972 } dmu_object_byteswap_t; 973 974 #define DMU_OT_NEWTYPE 0x80 975 #define DMU_OT_METADATA 0x40 976 #define DMU_OT_BYTESWAP_MASK 0x3f 977 978 /* 979 * Defines a uint8_t object type. Object types specify if the data 980 * in the object is metadata (boolean) and how to byteswap the data 981 * (dmu_object_byteswap_t). 982 */ 983 #define DMU_OT(byteswap, metadata) \ 984 (DMU_OT_NEWTYPE | \ 985 ((metadata) ? DMU_OT_METADATA : 0) | \ 986 ((byteswap) & DMU_OT_BYTESWAP_MASK)) 987 988 typedef enum dmu_object_type { 989 DMU_OT_NONE, 990 /* general: */ 991 DMU_OT_OBJECT_DIRECTORY, /* ZAP */ 992 DMU_OT_OBJECT_ARRAY, /* UINT64 */ 993 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ 994 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ 995 DMU_OT_BPLIST, /* UINT64 */ 996 DMU_OT_BPLIST_HDR, /* UINT64 */ 997 /* spa: */ 998 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ 999 DMU_OT_SPACE_MAP, /* UINT64 */ 1000 /* zil: */ 1001 DMU_OT_INTENT_LOG, /* UINT64 */ 1002 /* dmu: */ 1003 DMU_OT_DNODE, /* DNODE */ 1004 DMU_OT_OBJSET, /* OBJSET */ 1005 /* dsl: */ 1006 DMU_OT_DSL_DIR, /* UINT64 */ 1007 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ 1008 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ 1009 DMU_OT_DSL_PROPS, /* ZAP */ 1010 DMU_OT_DSL_DATASET, /* UINT64 */ 1011 /* zpl: */ 1012 DMU_OT_ZNODE, /* ZNODE */ 1013 DMU_OT_OLDACL, /* Old ACL */ 1014 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ 1015 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ 1016 DMU_OT_MASTER_NODE, /* ZAP */ 1017 DMU_OT_UNLINKED_SET, /* ZAP */ 1018 /* zvol: */ 1019 DMU_OT_ZVOL, /* UINT8 */ 1020 DMU_OT_ZVOL_PROP, /* ZAP */ 1021 /* other; for testing only! */ 1022 DMU_OT_PLAIN_OTHER, /* UINT8 */ 1023 DMU_OT_UINT64_OTHER, /* UINT64 */ 1024 DMU_OT_ZAP_OTHER, /* ZAP */ 1025 /* new object types: */ 1026 DMU_OT_ERROR_LOG, /* ZAP */ 1027 DMU_OT_SPA_HISTORY, /* UINT8 */ 1028 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ 1029 DMU_OT_POOL_PROPS, /* ZAP */ 1030 DMU_OT_DSL_PERMS, /* ZAP */ 1031 DMU_OT_ACL, /* ACL */ 1032 DMU_OT_SYSACL, /* SYSACL */ 1033 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */ 1034 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */ 1035 DMU_OT_NEXT_CLONES, /* ZAP */ 1036 DMU_OT_SCAN_QUEUE, /* ZAP */ 1037 DMU_OT_USERGROUP_USED, /* ZAP */ 1038 DMU_OT_USERGROUP_QUOTA, /* ZAP */ 1039 DMU_OT_USERREFS, /* ZAP */ 1040 DMU_OT_DDT_ZAP, /* ZAP */ 1041 DMU_OT_DDT_STATS, /* ZAP */ 1042 DMU_OT_SA, /* System attr */ 1043 DMU_OT_SA_MASTER_NODE, /* ZAP */ 1044 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */ 1045 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */ 1046 DMU_OT_SCAN_XLATE, /* ZAP */ 1047 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */ 1048 DMU_OT_NUMTYPES, 1049 1050 /* 1051 * Names for valid types declared with DMU_OT(). 1052 */ 1053 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE), 1054 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE), 1055 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE), 1056 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE), 1057 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE), 1058 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE), 1059 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE), 1060 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE), 1061 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE), 1062 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE) 1063 } dmu_object_type_t; 1064 1065 typedef enum dmu_objset_type { 1066 DMU_OST_NONE, 1067 DMU_OST_META, 1068 DMU_OST_ZFS, 1069 DMU_OST_ZVOL, 1070 DMU_OST_OTHER, /* For testing only! */ 1071 DMU_OST_ANY, /* Be careful! */ 1072 DMU_OST_NUMTYPES 1073 } dmu_objset_type_t; 1074 1075 /* 1076 * header for all bonus and spill buffers. 1077 * The header has a fixed portion with a variable number 1078 * of "lengths" depending on the number of variable sized 1079 * attribues which are determined by the "layout number" 1080 */ 1081 1082 #define SA_MAGIC 0x2F505A /* ZFS SA */ 1083 typedef struct sa_hdr_phys { 1084 uint32_t sa_magic; 1085 uint16_t sa_layout_info; /* Encoded with hdrsize and layout number */ 1086 uint16_t sa_lengths[1]; /* optional sizes for variable length attrs */ 1087 /* ... Data follows the lengths. */ 1088 } sa_hdr_phys_t; 1089 1090 /* 1091 * sa_hdr_phys -> sa_layout_info 1092 * 1093 * 16 10 0 1094 * +--------+-------+ 1095 * | hdrsz |layout | 1096 * +--------+-------+ 1097 * 1098 * Bits 0-10 are the layout number 1099 * Bits 11-16 are the size of the header. 1100 * The hdrsize is the number * 8 1101 * 1102 * For example. 1103 * hdrsz of 1 ==> 8 byte header 1104 * 2 ==> 16 byte header 1105 * 1106 */ 1107 1108 #define SA_HDR_LAYOUT_NUM(hdr) BF32_GET(hdr->sa_layout_info, 0, 10) 1109 #define SA_HDR_SIZE(hdr) BF32_GET_SB(hdr->sa_layout_info, 10, 16, 3, 0) 1110 #define SA_HDR_LAYOUT_INFO_ENCODE(x, num, size) \ 1111 { \ 1112 BF32_SET_SB(x, 10, 6, 3, 0, size); \ 1113 BF32_SET(x, 0, 10, num); \ 1114 } 1115 1116 #define SA_MODE_OFFSET 0 1117 #define SA_SIZE_OFFSET 8 1118 #define SA_GEN_OFFSET 16 1119 #define SA_UID_OFFSET 24 1120 #define SA_GID_OFFSET 32 1121 #define SA_PARENT_OFFSET 40 1122 #define SA_SYMLINK_OFFSET 160 1123 1124 #define ZIO_OBJSET_MAC_LEN 32 1125 1126 /* 1127 * Intent log header - this on disk structure holds fields to manage 1128 * the log. All fields are 64 bit to easily handle cross architectures. 1129 */ 1130 typedef struct zil_header { 1131 uint64_t zh_claim_txg; /* txg in which log blocks were claimed */ 1132 uint64_t zh_replay_seq; /* highest replayed sequence number */ 1133 blkptr_t zh_log; /* log chain */ 1134 uint64_t zh_claim_seq; /* highest claimed sequence number */ 1135 uint64_t zh_pad[5]; 1136 } zil_header_t; 1137 1138 #define OBJSET_PHYS_SIZE_V2 2048 1139 #define OBJSET_PHYS_SIZE_V3 4096 1140 1141 typedef struct objset_phys { 1142 dnode_phys_t os_meta_dnode; 1143 zil_header_t os_zil_header; 1144 uint64_t os_type; 1145 uint64_t os_flags; 1146 uint8_t os_portable_mac[ZIO_OBJSET_MAC_LEN]; 1147 uint8_t os_local_mac[ZIO_OBJSET_MAC_LEN]; 1148 char os_pad0[OBJSET_PHYS_SIZE_V2 - sizeof (dnode_phys_t)*3 - 1149 sizeof (zil_header_t) - sizeof (uint64_t)*2 - 1150 2*ZIO_OBJSET_MAC_LEN]; 1151 dnode_phys_t os_userused_dnode; 1152 dnode_phys_t os_groupused_dnode; 1153 dnode_phys_t os_projectused_dnode; 1154 char os_pad1[OBJSET_PHYS_SIZE_V3 - OBJSET_PHYS_SIZE_V2 - 1155 sizeof (dnode_phys_t)]; 1156 } objset_phys_t; 1157 1158 typedef struct dsl_dir_phys { 1159 uint64_t dd_creation_time; /* not actually used */ 1160 uint64_t dd_head_dataset_obj; 1161 uint64_t dd_parent_obj; 1162 uint64_t dd_clone_parent_obj; 1163 uint64_t dd_child_dir_zapobj; 1164 /* 1165 * how much space our children are accounting for; for leaf 1166 * datasets, == physical space used by fs + snaps 1167 */ 1168 uint64_t dd_used_bytes; 1169 uint64_t dd_compressed_bytes; 1170 uint64_t dd_uncompressed_bytes; 1171 /* Administrative quota setting */ 1172 uint64_t dd_quota; 1173 /* Administrative reservation setting */ 1174 uint64_t dd_reserved; 1175 uint64_t dd_props_zapobj; 1176 uint64_t dd_pad[21]; /* pad out to 256 bytes for good measure */ 1177 } dsl_dir_phys_t; 1178 1179 typedef struct dsl_dataset_phys { 1180 uint64_t ds_dir_obj; 1181 uint64_t ds_prev_snap_obj; 1182 uint64_t ds_prev_snap_txg; 1183 uint64_t ds_next_snap_obj; 1184 uint64_t ds_snapnames_zapobj; /* zap obj of snaps; ==0 for snaps */ 1185 uint64_t ds_num_children; /* clone/snap children; ==0 for head */ 1186 uint64_t ds_creation_time; /* seconds since 1970 */ 1187 uint64_t ds_creation_txg; 1188 uint64_t ds_deadlist_obj; 1189 uint64_t ds_used_bytes; 1190 uint64_t ds_compressed_bytes; 1191 uint64_t ds_uncompressed_bytes; 1192 uint64_t ds_unique_bytes; /* only relevant to snapshots */ 1193 /* 1194 * The ds_fsid_guid is a 56-bit ID that can change to avoid 1195 * collisions. The ds_guid is a 64-bit ID that will never 1196 * change, so there is a small probability that it will collide. 1197 */ 1198 uint64_t ds_fsid_guid; 1199 uint64_t ds_guid; 1200 uint64_t ds_flags; 1201 blkptr_t ds_bp; 1202 uint64_t ds_pad[8]; /* pad out to 320 bytes for good measure */ 1203 } dsl_dataset_phys_t; 1204 1205 /* 1206 * The names of zap entries in the DIRECTORY_OBJECT of the MOS. 1207 */ 1208 #define DMU_POOL_DIRECTORY_OBJECT 1 1209 #define DMU_POOL_CONFIG "config" 1210 #define DMU_POOL_FEATURES_FOR_READ "features_for_read" 1211 #define DMU_POOL_ROOT_DATASET "root_dataset" 1212 #define DMU_POOL_SYNC_BPLIST "sync_bplist" 1213 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" 1214 #define DMU_POOL_ERRLOG_LAST "errlog_last" 1215 #define DMU_POOL_SPARES "spares" 1216 #define DMU_POOL_DEFLATE "deflate" 1217 #define DMU_POOL_HISTORY "history" 1218 #define DMU_POOL_PROPS "pool_props" 1219 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt" 1220 1221 #define ZAP_MAGIC 0x2F52AB2ABULL 1222 1223 #define FZAP_BLOCK_SHIFT(zap) ((zap)->zap_block_shift) 1224 1225 #define ZAP_MAXCD (uint32_t)(-1) 1226 #define ZAP_HASHBITS 28 1227 #define MZAP_ENT_LEN 64 1228 #define MZAP_NAME_LEN (MZAP_ENT_LEN - 8 - 4 - 2) 1229 #define MZAP_MAX_BLKSHIFT SPA_MAXBLOCKSHIFT 1230 #define MZAP_MAX_BLKSZ (1 << MZAP_MAX_BLKSHIFT) 1231 1232 typedef struct mzap_ent_phys { 1233 uint64_t mze_value; 1234 uint32_t mze_cd; 1235 uint16_t mze_pad; /* in case we want to chain them someday */ 1236 char mze_name[MZAP_NAME_LEN]; 1237 } mzap_ent_phys_t; 1238 1239 typedef struct mzap_phys { 1240 uint64_t mz_block_type; /* ZBT_MICRO */ 1241 uint64_t mz_salt; 1242 uint64_t mz_pad[6]; 1243 mzap_ent_phys_t mz_chunk[1]; 1244 /* actually variable size depending on block size */ 1245 } mzap_phys_t; 1246 1247 /* 1248 * The (fat) zap is stored in one object. It is an array of 1249 * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of: 1250 * 1251 * ptrtbl fits in first block: 1252 * [zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ... 1253 * 1254 * ptrtbl too big for first block: 1255 * [zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ... 1256 * 1257 */ 1258 1259 #define ZBT_LEAF ((1ULL << 63) + 0) 1260 #define ZBT_HEADER ((1ULL << 63) + 1) 1261 #define ZBT_MICRO ((1ULL << 63) + 3) 1262 /* any other values are ptrtbl blocks */ 1263 1264 /* 1265 * the embedded pointer table takes up half a block: 1266 * block size / entry size (2^3) / 2 1267 */ 1268 #define ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1) 1269 1270 /* 1271 * The embedded pointer table starts half-way through the block. Since 1272 * the pointer table itself is half the block, it starts at (64-bit) 1273 * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)). 1274 */ 1275 #define ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \ 1276 ((uint64_t *)(zap)->zap_phys) \ 1277 [(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))] 1278 1279 /* 1280 * TAKE NOTE: 1281 * If zap_phys_t is modified, zap_byteswap() must be modified. 1282 */ 1283 typedef struct zap_phys { 1284 uint64_t zap_block_type; /* ZBT_HEADER */ 1285 uint64_t zap_magic; /* ZAP_MAGIC */ 1286 1287 struct zap_table_phys { 1288 uint64_t zt_blk; /* starting block number */ 1289 uint64_t zt_numblks; /* number of blocks */ 1290 uint64_t zt_shift; /* bits to index it */ 1291 uint64_t zt_nextblk; /* next (larger) copy start block */ 1292 uint64_t zt_blks_copied; /* number source blocks copied */ 1293 } zap_ptrtbl; 1294 1295 uint64_t zap_freeblk; /* the next free block */ 1296 uint64_t zap_num_leafs; /* number of leafs */ 1297 uint64_t zap_num_entries; /* number of entries */ 1298 uint64_t zap_salt; /* salt to stir into hash function */ 1299 /* 1300 * This structure is followed by padding, and then the embedded 1301 * pointer table. The embedded pointer table takes up second 1302 * half of the block. It is accessed using the 1303 * ZAP_EMBEDDED_PTRTBL_ENT() macro. 1304 */ 1305 } zap_phys_t; 1306 1307 typedef struct zap_table_phys zap_table_phys_t; 1308 1309 typedef struct fat_zap { 1310 int zap_block_shift; /* block size shift */ 1311 zap_phys_t *zap_phys; 1312 } fat_zap_t; 1313 1314 #define ZAP_LEAF_MAGIC 0x2AB1EAF 1315 1316 /* chunk size = 24 bytes */ 1317 #define ZAP_LEAF_CHUNKSIZE 24 1318 1319 /* 1320 * The amount of space available for chunks is: 1321 * block size (1<<l->l_bs) - hash entry size (2) * number of hash 1322 * entries - header space (2*chunksize) 1323 */ 1324 #define ZAP_LEAF_NUMCHUNKS(l) \ 1325 (((1<<(l)->l_bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(l)) / \ 1326 ZAP_LEAF_CHUNKSIZE - 2) 1327 1328 /* 1329 * The amount of space within the chunk available for the array is: 1330 * chunk size - space for type (1) - space for next pointer (2) 1331 */ 1332 #define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3) 1333 1334 #define ZAP_LEAF_ARRAY_NCHUNKS(bytes) \ 1335 (((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES) 1336 1337 /* 1338 * Low water mark: when there are only this many chunks free, start 1339 * growing the ptrtbl. Ideally, this should be larger than a 1340 * "reasonably-sized" entry. 20 chunks is more than enough for the 1341 * largest directory entry (MAXNAMELEN (256) byte name, 8-byte value), 1342 * while still being only around 3% for 16k blocks. 1343 */ 1344 #define ZAP_LEAF_LOW_WATER (20) 1345 1346 /* 1347 * The leaf hash table has block size / 2^5 (32) number of entries, 1348 * which should be more than enough for the maximum number of entries, 1349 * which is less than block size / CHUNKSIZE (24) / minimum number of 1350 * chunks per entry (3). 1351 */ 1352 #define ZAP_LEAF_HASH_SHIFT(l) ((l)->l_bs - 5) 1353 #define ZAP_LEAF_HASH_NUMENTRIES(l) (1 << ZAP_LEAF_HASH_SHIFT(l)) 1354 1355 /* 1356 * The chunks start immediately after the hash table. The end of the 1357 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a 1358 * chunk_t. 1359 */ 1360 #define ZAP_LEAF_CHUNK(l, idx) \ 1361 ((zap_leaf_chunk_t *) \ 1362 ((l)->l_phys->l_hash + ZAP_LEAF_HASH_NUMENTRIES(l)))[idx] 1363 #define ZAP_LEAF_ENTRY(l, idx) (&ZAP_LEAF_CHUNK(l, idx).l_entry) 1364 1365 typedef enum zap_chunk_type { 1366 ZAP_CHUNK_FREE = 253, 1367 ZAP_CHUNK_ENTRY = 252, 1368 ZAP_CHUNK_ARRAY = 251, 1369 ZAP_CHUNK_TYPE_MAX = 250 1370 } zap_chunk_type_t; 1371 1372 /* 1373 * TAKE NOTE: 1374 * If zap_leaf_phys_t is modified, zap_leaf_byteswap() must be modified. 1375 */ 1376 typedef struct zap_leaf_phys { 1377 struct zap_leaf_header { 1378 uint64_t lh_block_type; /* ZBT_LEAF */ 1379 uint64_t lh_pad1; 1380 uint64_t lh_prefix; /* hash prefix of this leaf */ 1381 uint32_t lh_magic; /* ZAP_LEAF_MAGIC */ 1382 uint16_t lh_nfree; /* number free chunks */ 1383 uint16_t lh_nentries; /* number of entries */ 1384 uint16_t lh_prefix_len; /* num bits used to id this */ 1385 1386 /* above is accessable to zap, below is zap_leaf private */ 1387 1388 uint16_t lh_freelist; /* chunk head of free list */ 1389 uint8_t lh_pad2[12]; 1390 } l_hdr; /* 2 24-byte chunks */ 1391 1392 /* 1393 * The header is followed by a hash table with 1394 * ZAP_LEAF_HASH_NUMENTRIES(zap) entries. The hash table is 1395 * followed by an array of ZAP_LEAF_NUMCHUNKS(zap) 1396 * zap_leaf_chunk structures. These structures are accessed 1397 * with the ZAP_LEAF_CHUNK() macro. 1398 */ 1399 1400 uint16_t l_hash[1]; 1401 } zap_leaf_phys_t; 1402 1403 typedef union zap_leaf_chunk { 1404 struct zap_leaf_entry { 1405 uint8_t le_type; /* always ZAP_CHUNK_ENTRY */ 1406 uint8_t le_value_intlen; /* size of ints */ 1407 uint16_t le_next; /* next entry in hash chain */ 1408 uint16_t le_name_chunk; /* first chunk of the name */ 1409 uint16_t le_name_numints; /* bytes in name, incl null */ 1410 uint16_t le_value_chunk; /* first chunk of the value */ 1411 uint16_t le_value_numints; /* value length in ints */ 1412 uint32_t le_cd; /* collision differentiator */ 1413 uint64_t le_hash; /* hash value of the name */ 1414 } l_entry; 1415 struct zap_leaf_array { 1416 uint8_t la_type; /* always ZAP_CHUNK_ARRAY */ 1417 uint8_t la_array[ZAP_LEAF_ARRAY_BYTES]; 1418 uint16_t la_next; /* next blk or CHAIN_END */ 1419 } l_array; 1420 struct zap_leaf_free { 1421 uint8_t lf_type; /* always ZAP_CHUNK_FREE */ 1422 uint8_t lf_pad[ZAP_LEAF_ARRAY_BYTES]; 1423 uint16_t lf_next; /* next in free list, or CHAIN_END */ 1424 } l_free; 1425 } zap_leaf_chunk_t; 1426 1427 typedef struct zap_leaf { 1428 int l_bs; /* block size shift */ 1429 zap_leaf_phys_t *l_phys; 1430 } zap_leaf_t; 1431 1432 /* 1433 * Define special zfs pflags 1434 */ 1435 #define ZFS_XATTR 0x1 /* is an extended attribute */ 1436 #define ZFS_INHERIT_ACE 0x2 /* ace has inheritable ACEs */ 1437 #define ZFS_ACL_TRIVIAL 0x4 /* files ACL is trivial */ 1438 1439 #define MASTER_NODE_OBJ 1 1440 1441 /* 1442 * special attributes for master node. 1443 */ 1444 1445 #define ZFS_FSID "FSID" 1446 #define ZFS_UNLINKED_SET "DELETE_QUEUE" 1447 #define ZFS_ROOT_OBJ "ROOT" 1448 #define ZPL_VERSION_OBJ "VERSION" 1449 #define ZFS_PROP_BLOCKPERPAGE "BLOCKPERPAGE" 1450 #define ZFS_PROP_NOGROWBLOCKS "NOGROWBLOCKS" 1451 1452 #define ZFS_FLAG_BLOCKPERPAGE 0x1 1453 #define ZFS_FLAG_NOGROWBLOCKS 0x2 1454 1455 /* 1456 * ZPL version - rev'd whenever an incompatible on-disk format change 1457 * occurs. Independent of SPA/DMU/ZAP versioning. 1458 */ 1459 1460 #define ZPL_VERSION 1ULL 1461 1462 /* 1463 * The directory entry has the type (currently unused on Solaris) in the 1464 * top 4 bits, and the object number in the low 48 bits. The "middle" 1465 * 12 bits are unused. 1466 */ 1467 #define ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4) 1468 #define ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48) 1469 #define ZFS_DIRENT_MAKE(type, obj) (((uint64_t)type << 60) | obj) 1470 1471 typedef struct ace { 1472 uid_t a_who; /* uid or gid */ 1473 uint32_t a_access_mask; /* read,write,... */ 1474 uint16_t a_flags; /* see below */ 1475 uint16_t a_type; /* allow or deny */ 1476 } ace_t; 1477 1478 #define ACE_SLOT_CNT 6 1479 1480 typedef struct zfs_znode_acl { 1481 uint64_t z_acl_extern_obj; /* ext acl pieces */ 1482 uint32_t z_acl_count; /* Number of ACEs */ 1483 uint16_t z_acl_version; /* acl version */ 1484 uint16_t z_acl_pad; /* pad */ 1485 ace_t z_ace_data[ACE_SLOT_CNT]; /* 6 standard ACEs */ 1486 } zfs_znode_acl_t; 1487 1488 /* 1489 * This is the persistent portion of the znode. It is stored 1490 * in the "bonus buffer" of the file. Short symbolic links 1491 * are also stored in the bonus buffer. 1492 */ 1493 typedef struct znode_phys { 1494 uint64_t zp_atime[2]; /* 0 - last file access time */ 1495 uint64_t zp_mtime[2]; /* 16 - last file modification time */ 1496 uint64_t zp_ctime[2]; /* 32 - last file change time */ 1497 uint64_t zp_crtime[2]; /* 48 - creation time */ 1498 uint64_t zp_gen; /* 64 - generation (txg of creation) */ 1499 uint64_t zp_mode; /* 72 - file mode bits */ 1500 uint64_t zp_size; /* 80 - size of file */ 1501 uint64_t zp_parent; /* 88 - directory parent (`..') */ 1502 uint64_t zp_links; /* 96 - number of links to file */ 1503 uint64_t zp_xattr; /* 104 - DMU object for xattrs */ 1504 uint64_t zp_rdev; /* 112 - dev_t for VBLK & VCHR files */ 1505 uint64_t zp_flags; /* 120 - persistent flags */ 1506 uint64_t zp_uid; /* 128 - file owner */ 1507 uint64_t zp_gid; /* 136 - owning group */ 1508 uint64_t zp_pad[4]; /* 144 - future */ 1509 zfs_znode_acl_t zp_acl; /* 176 - 263 ACL */ 1510 /* 1511 * Data may pad out any remaining bytes in the znode buffer, eg: 1512 * 1513 * |<---------------------- dnode_phys (512) ------------------------>| 1514 * |<-- dnode (192) --->|<----------- "bonus" buffer (320) ---------->| 1515 * |<---- znode (264) ---->|<---- data (56) ---->| 1516 * 1517 * At present, we only use this space to store symbolic links. 1518 */ 1519 } znode_phys_t; 1520 1521 /* 1522 * In-core vdev representation. 1523 */ 1524 struct vdev; 1525 struct spa; 1526 typedef int vdev_phys_read_t(struct vdev *vdev, void *priv, 1527 off_t offset, void *buf, size_t bytes); 1528 typedef int vdev_read_t(struct vdev *vdev, const blkptr_t *bp, 1529 void *buf, off_t offset, size_t bytes); 1530 1531 typedef STAILQ_HEAD(vdev_list, vdev) vdev_list_t; 1532 1533 typedef struct vdev { 1534 STAILQ_ENTRY(vdev) v_childlink; /* link in parent's child list */ 1535 STAILQ_ENTRY(vdev) v_alllink; /* link in global vdev list */ 1536 vdev_list_t v_children; /* children of this vdev */ 1537 const char *v_name; /* vdev name */ 1538 uint64_t v_guid; /* vdev guid */ 1539 int v_id; /* index in parent */ 1540 int v_ashift; /* offset to block shift */ 1541 int v_nparity; /* # parity for raidz */ 1542 struct vdev *v_top; /* parent vdev */ 1543 int v_nchildren; /* # children */ 1544 vdev_state_t v_state; /* current state */ 1545 vdev_phys_read_t *v_phys_read; /* read from raw leaf vdev */ 1546 vdev_read_t *v_read; /* read from vdev */ 1547 void *v_read_priv; /* private data for read function */ 1548 struct spa *spa; /* link to spa */ 1549 } vdev_t; 1550 1551 /* 1552 * In-core pool representation. 1553 */ 1554 typedef STAILQ_HEAD(spa_list, spa) spa_list_t; 1555 1556 typedef struct spa { 1557 STAILQ_ENTRY(spa) spa_link; /* link in global pool list */ 1558 char *spa_name; /* pool name */ 1559 uint64_t spa_guid; /* pool guid */ 1560 uint64_t spa_txg; /* most recent transaction */ 1561 struct uberblock spa_uberblock; /* best uberblock so far */ 1562 vdev_list_t spa_vdevs; /* list of all toplevel vdevs */ 1563 objset_phys_t spa_mos; /* MOS for this pool */ 1564 zio_cksum_salt_t spa_cksum_salt; /* secret salt for cksum */ 1565 void *spa_cksum_tmpls[ZIO_CHECKSUM_FUNCTIONS]; 1566 int spa_inited; /* initialized */ 1567 } spa_t; 1568 1569 static void decode_embedded_bp_compressed(const blkptr_t *, void *); 1570