1 /*- 2 * Copyright (c) 2002 McAfee, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and McAfee Research,, the Security Research Division of 7 * McAfee, Inc. under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as 8 * part of the DARPA CHATS research program 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 /* 32 * CDDL HEADER START 33 * 34 * The contents of this file are subject to the terms of the 35 * Common Development and Distribution License (the "License"). 36 * You may not use this file except in compliance with the License. 37 * 38 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 39 * or http://www.opensolaris.org/os/licensing. 40 * See the License for the specific language governing permissions 41 * and limitations under the License. 42 * 43 * When distributing Covered Code, include this CDDL HEADER in each 44 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 45 * If applicable, add the following below this CDDL HEADER, with the 46 * fields enclosed by brackets "[]" replaced with your own identifying 47 * information: Portions Copyright [yyyy] [name of copyright owner] 48 * 49 * CDDL HEADER END 50 */ 51 /* 52 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 53 * Use is subject to license terms. 54 */ 55 56 /* CRC64 table */ 57 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ 58 59 /* 60 * Macros for various sorts of alignment and rounding when the alignment 61 * is known to be a power of 2. 62 */ 63 #define P2ALIGN(x, align) ((x) & -(align)) 64 #define P2PHASE(x, align) ((x) & ((align) - 1)) 65 #define P2NPHASE(x, align) (-(x) & ((align) - 1)) 66 #define P2ROUNDUP(x, align) (-(-(x) & -(align))) 67 #define P2END(x, align) (-(~(x) & -(align))) 68 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align))) 69 #define P2CROSS(x, y, align) (((x) ^ (y)) > (align) - 1) 70 71 /* 72 * General-purpose 32-bit and 64-bit bitfield encodings. 73 */ 74 #define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len)) 75 #define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len)) 76 #define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low)) 77 #define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low)) 78 79 #define BF32_GET(x, low, len) BF32_DECODE(x, low, len) 80 #define BF64_GET(x, low, len) BF64_DECODE(x, low, len) 81 82 #define BF32_SET(x, low, len, val) \ 83 ((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len)) 84 #define BF64_SET(x, low, len, val) \ 85 ((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len)) 86 87 #define BF32_GET_SB(x, low, len, shift, bias) \ 88 ((BF32_GET(x, low, len) + (bias)) << (shift)) 89 #define BF64_GET_SB(x, low, len, shift, bias) \ 90 ((BF64_GET(x, low, len) + (bias)) << (shift)) 91 92 #define BF32_SET_SB(x, low, len, shift, bias, val) \ 93 BF32_SET(x, low, len, ((val) >> (shift)) - (bias)) 94 #define BF64_SET_SB(x, low, len, shift, bias, val) \ 95 BF64_SET(x, low, len, ((val) >> (shift)) - (bias)) 96 97 /* 98 * We currently support nine block sizes, from 512 bytes to 128K. 99 * We could go higher, but the benefits are near-zero and the cost 100 * of COWing a giant block to modify one byte would become excessive. 101 */ 102 #define SPA_MINBLOCKSHIFT 9 103 #define SPA_MAXBLOCKSHIFT 17 104 #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT) 105 #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT) 106 107 #define SPA_BLOCKSIZES (SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1) 108 109 /* 110 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB. 111 * The ASIZE encoding should be at least 64 times larger (6 more bits) 112 * to support up to 4-way RAID-Z mirror mode with worst-case gang block 113 * overhead, three DVAs per bp, plus one more bit in case we do anything 114 * else that expands the ASIZE. 115 */ 116 #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */ 117 #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */ 118 #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */ 119 120 /* 121 * All SPA data is represented by 128-bit data virtual addresses (DVAs). 122 * The members of the dva_t should be considered opaque outside the SPA. 123 */ 124 typedef struct dva { 125 uint64_t dva_word[2]; 126 } dva_t; 127 128 /* 129 * Each block has a 256-bit checksum -- strong enough for cryptographic hashes. 130 */ 131 typedef struct zio_cksum { 132 uint64_t zc_word[4]; 133 } zio_cksum_t; 134 135 /* 136 * Each block is described by its DVAs, time of birth, checksum, etc. 137 * The word-by-word, bit-by-bit layout of the blkptr is as follows: 138 * 139 * 64 56 48 40 32 24 16 8 0 140 * +-------+-------+-------+-------+-------+-------+-------+-------+ 141 * 0 | vdev1 | GRID | ASIZE | 142 * +-------+-------+-------+-------+-------+-------+-------+-------+ 143 * 1 |G| offset1 | 144 * +-------+-------+-------+-------+-------+-------+-------+-------+ 145 * 2 | vdev2 | GRID | ASIZE | 146 * +-------+-------+-------+-------+-------+-------+-------+-------+ 147 * 3 |G| offset2 | 148 * +-------+-------+-------+-------+-------+-------+-------+-------+ 149 * 4 | vdev3 | GRID | ASIZE | 150 * +-------+-------+-------+-------+-------+-------+-------+-------+ 151 * 5 |G| offset3 | 152 * +-------+-------+-------+-------+-------+-------+-------+-------+ 153 * 6 |E| lvl | type | cksum | comp | PSIZE | LSIZE | 154 * +-------+-------+-------+-------+-------+-------+-------+-------+ 155 * 7 | padding | 156 * +-------+-------+-------+-------+-------+-------+-------+-------+ 157 * 8 | padding | 158 * +-------+-------+-------+-------+-------+-------+-------+-------+ 159 * 9 | padding | 160 * +-------+-------+-------+-------+-------+-------+-------+-------+ 161 * a | birth txg | 162 * +-------+-------+-------+-------+-------+-------+-------+-------+ 163 * b | fill count | 164 * +-------+-------+-------+-------+-------+-------+-------+-------+ 165 * c | checksum[0] | 166 * +-------+-------+-------+-------+-------+-------+-------+-------+ 167 * d | checksum[1] | 168 * +-------+-------+-------+-------+-------+-------+-------+-------+ 169 * e | checksum[2] | 170 * +-------+-------+-------+-------+-------+-------+-------+-------+ 171 * f | checksum[3] | 172 * +-------+-------+-------+-------+-------+-------+-------+-------+ 173 * 174 * Legend: 175 * 176 * vdev virtual device ID 177 * offset offset into virtual device 178 * LSIZE logical size 179 * PSIZE physical size (after compression) 180 * ASIZE allocated size (including RAID-Z parity and gang block headers) 181 * GRID RAID-Z layout information (reserved for future use) 182 * cksum checksum function 183 * comp compression function 184 * G gang block indicator 185 * E endianness 186 * type DMU object type 187 * lvl level of indirection 188 * birth txg transaction group in which the block was born 189 * fill count number of non-zero blocks under this bp 190 * checksum[4] 256-bit checksum of the data this bp describes 191 */ 192 typedef struct blkptr { 193 dva_t blk_dva[3]; /* 128-bit Data Virtual Address */ 194 uint64_t blk_prop; /* size, compression, type, etc */ 195 uint64_t blk_pad[3]; /* Extra space for the future */ 196 uint64_t blk_birth; /* transaction group at birth */ 197 uint64_t blk_fill; /* fill count */ 198 zio_cksum_t blk_cksum; /* 256-bit checksum */ 199 } blkptr_t; 200 201 #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */ 202 #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */ 203 204 /* 205 * Macros to get and set fields in a bp or DVA. 206 */ 207 #define DVA_GET_ASIZE(dva) \ 208 BF64_GET_SB((dva)->dva_word[0], 0, 24, SPA_MINBLOCKSHIFT, 0) 209 #define DVA_SET_ASIZE(dva, x) \ 210 BF64_SET_SB((dva)->dva_word[0], 0, 24, SPA_MINBLOCKSHIFT, 0, x) 211 212 #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8) 213 #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x) 214 215 #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, 32) 216 #define DVA_SET_VDEV(dva, x) BF64_SET((dva)->dva_word[0], 32, 32, x) 217 218 #define DVA_GET_OFFSET(dva) \ 219 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0) 220 #define DVA_SET_OFFSET(dva, x) \ 221 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x) 222 223 #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1) 224 #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x) 225 226 #define BP_GET_LSIZE(bp) \ 227 (BP_IS_HOLE(bp) ? 0 : \ 228 BF64_GET_SB((bp)->blk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1)) 229 #define BP_SET_LSIZE(bp, x) \ 230 BF64_SET_SB((bp)->blk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1, x) 231 232 #define BP_GET_PSIZE(bp) \ 233 BF64_GET_SB((bp)->blk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1) 234 #define BP_SET_PSIZE(bp, x) \ 235 BF64_SET_SB((bp)->blk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1, x) 236 237 #define BP_GET_COMPRESS(bp) BF64_GET((bp)->blk_prop, 32, 8) 238 #define BP_SET_COMPRESS(bp, x) BF64_SET((bp)->blk_prop, 32, 8, x) 239 240 #define BP_GET_CHECKSUM(bp) BF64_GET((bp)->blk_prop, 40, 8) 241 #define BP_SET_CHECKSUM(bp, x) BF64_SET((bp)->blk_prop, 40, 8, x) 242 243 #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8) 244 #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x) 245 246 #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5) 247 #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x) 248 249 #define BP_GET_BYTEORDER(bp) (0 - BF64_GET((bp)->blk_prop, 63, 1)) 250 #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x) 251 252 #define BP_GET_ASIZE(bp) \ 253 (DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ 254 DVA_GET_ASIZE(&(bp)->blk_dva[2])) 255 256 #define BP_GET_UCSIZE(bp) \ 257 ((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \ 258 BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp)); 259 260 #define BP_GET_NDVAS(bp) \ 261 (!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ 262 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ 263 !!DVA_GET_ASIZE(&(bp)->blk_dva[2])) 264 265 #define BP_COUNT_GANG(bp) \ 266 (DVA_GET_GANG(&(bp)->blk_dva[0]) + \ 267 DVA_GET_GANG(&(bp)->blk_dva[1]) + \ 268 DVA_GET_GANG(&(bp)->blk_dva[2])) 269 270 #define DVA_EQUAL(dva1, dva2) \ 271 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \ 272 (dva1)->dva_word[0] == (dva2)->dva_word[0]) 273 274 #define ZIO_CHECKSUM_EQUAL(zc1, zc2) \ 275 (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \ 276 ((zc1).zc_word[1] - (zc2).zc_word[1]) | \ 277 ((zc1).zc_word[2] - (zc2).zc_word[2]) | \ 278 ((zc1).zc_word[3] - (zc2).zc_word[3]))) 279 280 281 #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0) 282 283 #define ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3) \ 284 { \ 285 (zcp)->zc_word[0] = w0; \ 286 (zcp)->zc_word[1] = w1; \ 287 (zcp)->zc_word[2] = w2; \ 288 (zcp)->zc_word[3] = w3; \ 289 } 290 291 #define BP_IDENTITY(bp) (&(bp)->blk_dva[0]) 292 #define BP_IS_GANG(bp) DVA_GET_GANG(BP_IDENTITY(bp)) 293 #define BP_IS_HOLE(bp) ((bp)->blk_birth == 0) 294 #define BP_IS_OLDER(bp, txg) (!BP_IS_HOLE(bp) && (bp)->blk_birth < (txg)) 295 296 #define BP_ZERO(bp) \ 297 { \ 298 (bp)->blk_dva[0].dva_word[0] = 0; \ 299 (bp)->blk_dva[0].dva_word[1] = 0; \ 300 (bp)->blk_dva[1].dva_word[0] = 0; \ 301 (bp)->blk_dva[1].dva_word[1] = 0; \ 302 (bp)->blk_dva[2].dva_word[0] = 0; \ 303 (bp)->blk_dva[2].dva_word[1] = 0; \ 304 (bp)->blk_prop = 0; \ 305 (bp)->blk_pad[0] = 0; \ 306 (bp)->blk_pad[1] = 0; \ 307 (bp)->blk_pad[2] = 0; \ 308 (bp)->blk_birth = 0; \ 309 (bp)->blk_fill = 0; \ 310 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \ 311 } 312 313 #define ZBT_MAGIC 0x210da7ab10c7a11ULL /* zio data bloc tail */ 314 315 typedef struct zio_block_tail { 316 uint64_t zbt_magic; /* for validation, endianness */ 317 zio_cksum_t zbt_cksum; /* 256-bit checksum */ 318 } zio_block_tail_t; 319 320 #define VDEV_SKIP_SIZE (8 << 10) 321 #define VDEV_BOOT_HEADER_SIZE (8 << 10) 322 #define VDEV_PHYS_SIZE (112 << 10) 323 #define VDEV_UBERBLOCK_RING (128 << 10) 324 325 #define VDEV_UBERBLOCK_SHIFT(vd) \ 326 MAX((vd)->vdev_top->vdev_ashift, UBERBLOCK_SHIFT) 327 #define VDEV_UBERBLOCK_COUNT(vd) \ 328 (VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd)) 329 #define VDEV_UBERBLOCK_OFFSET(vd, n) \ 330 offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)]) 331 #define VDEV_UBERBLOCK_SIZE(vd) (1ULL << VDEV_UBERBLOCK_SHIFT(vd)) 332 333 /* ZFS boot block */ 334 #define VDEV_BOOT_MAGIC 0x2f5b007b10cULL 335 #define VDEV_BOOT_VERSION 1 /* version number */ 336 337 typedef struct vdev_boot_header { 338 uint64_t vb_magic; /* VDEV_BOOT_MAGIC */ 339 uint64_t vb_version; /* VDEV_BOOT_VERSION */ 340 uint64_t vb_offset; /* start offset (bytes) */ 341 uint64_t vb_size; /* size (bytes) */ 342 char vb_pad[VDEV_BOOT_HEADER_SIZE - 4 * sizeof (uint64_t)]; 343 } vdev_boot_header_t; 344 345 typedef struct vdev_phys { 346 char vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_block_tail_t)]; 347 zio_block_tail_t vp_zbt; 348 } vdev_phys_t; 349 350 typedef struct vdev_label { 351 char vl_pad[VDEV_SKIP_SIZE]; /* 8K */ 352 vdev_boot_header_t vl_boot_header; /* 8K */ 353 vdev_phys_t vl_vdev_phys; /* 112K */ 354 char vl_uberblock[VDEV_UBERBLOCK_RING]; /* 128K */ 355 } vdev_label_t; /* 256K total */ 356 357 /* 358 * vdev_dirty() flags 359 */ 360 #define VDD_METASLAB 0x01 361 #define VDD_DTL 0x02 362 363 /* 364 * Size and offset of embedded boot loader region on each label. 365 * The total size of the first two labels plus the boot area is 4MB. 366 */ 367 #define VDEV_BOOT_OFFSET (2 * sizeof (vdev_label_t)) 368 #define VDEV_BOOT_SIZE (7ULL << 19) /* 3.5M */ 369 370 /* 371 * Size of label regions at the start and end of each leaf device. 372 */ 373 #define VDEV_LABEL_START_SIZE (2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE) 374 #define VDEV_LABEL_END_SIZE (2 * sizeof (vdev_label_t)) 375 #define VDEV_LABELS 4 376 377 /* 378 * Gang block headers are self-checksumming and contain an array 379 * of block pointers. 380 */ 381 #define SPA_GANGBLOCKSIZE SPA_MINBLOCKSIZE 382 #define SPA_GBH_NBLKPTRS ((SPA_GANGBLOCKSIZE - \ 383 sizeof (zio_block_tail_t)) / sizeof (blkptr_t)) 384 #define SPA_GBH_FILLER ((SPA_GANGBLOCKSIZE - \ 385 sizeof (zio_block_tail_t) - \ 386 (SPA_GBH_NBLKPTRS * sizeof (blkptr_t))) /\ 387 sizeof (uint64_t)) 388 389 typedef struct zio_gbh { 390 blkptr_t zg_blkptr[SPA_GBH_NBLKPTRS]; 391 uint64_t zg_filler[SPA_GBH_FILLER]; 392 zio_block_tail_t zg_tail; 393 } zio_gbh_phys_t; 394 395 enum zio_checksum { 396 ZIO_CHECKSUM_INHERIT = 0, 397 ZIO_CHECKSUM_ON, 398 ZIO_CHECKSUM_OFF, 399 ZIO_CHECKSUM_LABEL, 400 ZIO_CHECKSUM_GANG_HEADER, 401 ZIO_CHECKSUM_ZILOG, 402 ZIO_CHECKSUM_FLETCHER_2, 403 ZIO_CHECKSUM_FLETCHER_4, 404 ZIO_CHECKSUM_SHA256, 405 ZIO_CHECKSUM_FUNCTIONS 406 }; 407 408 #define ZIO_CHECKSUM_ON_VALUE ZIO_CHECKSUM_FLETCHER_2 409 #define ZIO_CHECKSUM_DEFAULT ZIO_CHECKSUM_ON 410 411 enum zio_compress { 412 ZIO_COMPRESS_INHERIT = 0, 413 ZIO_COMPRESS_ON, 414 ZIO_COMPRESS_OFF, 415 ZIO_COMPRESS_LZJB, 416 ZIO_COMPRESS_EMPTY, 417 ZIO_COMPRESS_GZIP_1, 418 ZIO_COMPRESS_GZIP_2, 419 ZIO_COMPRESS_GZIP_3, 420 ZIO_COMPRESS_GZIP_4, 421 ZIO_COMPRESS_GZIP_5, 422 ZIO_COMPRESS_GZIP_6, 423 ZIO_COMPRESS_GZIP_7, 424 ZIO_COMPRESS_GZIP_8, 425 ZIO_COMPRESS_GZIP_9, 426 ZIO_COMPRESS_FUNCTIONS 427 }; 428 429 #define ZIO_COMPRESS_ON_VALUE ZIO_COMPRESS_LZJB 430 #define ZIO_COMPRESS_DEFAULT ZIO_COMPRESS_OFF 431 432 /* nvlist pack encoding */ 433 #define NV_ENCODE_NATIVE 0 434 #define NV_ENCODE_XDR 1 435 436 typedef enum { 437 DATA_TYPE_UNKNOWN = 0, 438 DATA_TYPE_BOOLEAN, 439 DATA_TYPE_BYTE, 440 DATA_TYPE_INT16, 441 DATA_TYPE_UINT16, 442 DATA_TYPE_INT32, 443 DATA_TYPE_UINT32, 444 DATA_TYPE_INT64, 445 DATA_TYPE_UINT64, 446 DATA_TYPE_STRING, 447 DATA_TYPE_BYTE_ARRAY, 448 DATA_TYPE_INT16_ARRAY, 449 DATA_TYPE_UINT16_ARRAY, 450 DATA_TYPE_INT32_ARRAY, 451 DATA_TYPE_UINT32_ARRAY, 452 DATA_TYPE_INT64_ARRAY, 453 DATA_TYPE_UINT64_ARRAY, 454 DATA_TYPE_STRING_ARRAY, 455 DATA_TYPE_HRTIME, 456 DATA_TYPE_NVLIST, 457 DATA_TYPE_NVLIST_ARRAY, 458 DATA_TYPE_BOOLEAN_VALUE, 459 DATA_TYPE_INT8, 460 DATA_TYPE_UINT8, 461 DATA_TYPE_BOOLEAN_ARRAY, 462 DATA_TYPE_INT8_ARRAY, 463 DATA_TYPE_UINT8_ARRAY 464 } data_type_t; 465 466 /* 467 * On-disk version number. 468 */ 469 #define SPA_VERSION_1 1ULL 470 #define SPA_VERSION_2 2ULL 471 #define SPA_VERSION_3 3ULL 472 #define SPA_VERSION_4 4ULL 473 #define SPA_VERSION_5 5ULL 474 #define SPA_VERSION_6 6ULL 475 #define SPA_VERSION_7 7ULL 476 #define SPA_VERSION_8 8ULL 477 #define SPA_VERSION_9 9ULL 478 #define SPA_VERSION_10 10ULL 479 #define SPA_VERSION_11 11ULL 480 #define SPA_VERSION_12 12ULL 481 #define SPA_VERSION_13 13ULL 482 /* 483 * When bumping up SPA_VERSION, make sure GRUB ZFS understand the on-disk 484 * format change. Go to usr/src/grub/grub-0.95/stage2/{zfs-include/, fsys_zfs*}, 485 * and do the appropriate changes. 486 */ 487 #define SPA_VERSION SPA_VERSION_13 488 #define SPA_VERSION_STRING "13" 489 490 /* 491 * Symbolic names for the changes that caused a SPA_VERSION switch. 492 * Used in the code when checking for presence or absence of a feature. 493 * Feel free to define multiple symbolic names for each version if there 494 * were multiple changes to on-disk structures during that version. 495 * 496 * NOTE: When checking the current SPA_VERSION in your code, be sure 497 * to use spa_version() since it reports the version of the 498 * last synced uberblock. Checking the in-flight version can 499 * be dangerous in some cases. 500 */ 501 #define SPA_VERSION_INITIAL SPA_VERSION_1 502 #define SPA_VERSION_DITTO_BLOCKS SPA_VERSION_2 503 #define SPA_VERSION_SPARES SPA_VERSION_3 504 #define SPA_VERSION_RAID6 SPA_VERSION_3 505 #define SPA_VERSION_BPLIST_ACCOUNT SPA_VERSION_3 506 #define SPA_VERSION_RAIDZ_DEFLATE SPA_VERSION_3 507 #define SPA_VERSION_DNODE_BYTES SPA_VERSION_3 508 #define SPA_VERSION_ZPOOL_HISTORY SPA_VERSION_4 509 #define SPA_VERSION_GZIP_COMPRESSION SPA_VERSION_5 510 #define SPA_VERSION_BOOTFS SPA_VERSION_6 511 #define SPA_VERSION_SLOGS SPA_VERSION_7 512 #define SPA_VERSION_DELEGATED_PERMS SPA_VERSION_8 513 #define SPA_VERSION_FUID SPA_VERSION_9 514 #define SPA_VERSION_REFRESERVATION SPA_VERSION_9 515 #define SPA_VERSION_REFQUOTA SPA_VERSION_9 516 #define SPA_VERSION_UNIQUE_ACCURATE SPA_VERSION_9 517 #define SPA_VERSION_L2CACHE SPA_VERSION_10 518 #define SPA_VERSION_NEXT_CLONES SPA_VERSION_11 519 #define SPA_VERSION_ORIGIN SPA_VERSION_11 520 #define SPA_VERSION_DSL_SCRUB SPA_VERSION_11 521 #define SPA_VERSION_SNAP_PROPS SPA_VERSION_12 522 #define SPA_VERSION_USED_BREAKDOWN SPA_VERSION_13 523 524 /* 525 * The following are configuration names used in the nvlist describing a pool's 526 * configuration. 527 */ 528 #define ZPOOL_CONFIG_VERSION "version" 529 #define ZPOOL_CONFIG_POOL_NAME "name" 530 #define ZPOOL_CONFIG_POOL_STATE "state" 531 #define ZPOOL_CONFIG_POOL_TXG "txg" 532 #define ZPOOL_CONFIG_POOL_GUID "pool_guid" 533 #define ZPOOL_CONFIG_CREATE_TXG "create_txg" 534 #define ZPOOL_CONFIG_TOP_GUID "top_guid" 535 #define ZPOOL_CONFIG_VDEV_TREE "vdev_tree" 536 #define ZPOOL_CONFIG_TYPE "type" 537 #define ZPOOL_CONFIG_CHILDREN "children" 538 #define ZPOOL_CONFIG_ID "id" 539 #define ZPOOL_CONFIG_GUID "guid" 540 #define ZPOOL_CONFIG_PATH "path" 541 #define ZPOOL_CONFIG_DEVID "devid" 542 #define ZPOOL_CONFIG_METASLAB_ARRAY "metaslab_array" 543 #define ZPOOL_CONFIG_METASLAB_SHIFT "metaslab_shift" 544 #define ZPOOL_CONFIG_ASHIFT "ashift" 545 #define ZPOOL_CONFIG_ASIZE "asize" 546 #define ZPOOL_CONFIG_DTL "DTL" 547 #define ZPOOL_CONFIG_STATS "stats" 548 #define ZPOOL_CONFIG_WHOLE_DISK "whole_disk" 549 #define ZPOOL_CONFIG_OFFLINE "offline" 550 #define ZPOOL_CONFIG_ERRCOUNT "error_count" 551 #define ZPOOL_CONFIG_NOT_PRESENT "not_present" 552 #define ZPOOL_CONFIG_SPARES "spares" 553 #define ZPOOL_CONFIG_IS_SPARE "is_spare" 554 #define ZPOOL_CONFIG_NPARITY "nparity" 555 #define ZPOOL_CONFIG_HOSTID "hostid" 556 #define ZPOOL_CONFIG_HOSTNAME "hostname" 557 #define ZPOOL_CONFIG_TIMESTAMP "timestamp" /* not stored on disk */ 558 559 #define VDEV_TYPE_ROOT "root" 560 #define VDEV_TYPE_MIRROR "mirror" 561 #define VDEV_TYPE_REPLACING "replacing" 562 #define VDEV_TYPE_RAIDZ "raidz" 563 #define VDEV_TYPE_DISK "disk" 564 #define VDEV_TYPE_FILE "file" 565 #define VDEV_TYPE_MISSING "missing" 566 #define VDEV_TYPE_SPARE "spare" 567 568 /* 569 * This is needed in userland to report the minimum necessary device size. 570 */ 571 #define SPA_MINDEVSIZE (64ULL << 20) 572 573 /* 574 * The location of the pool configuration repository, shared between kernel and 575 * userland. 576 */ 577 #define ZPOOL_CACHE_DIR "/boot/zfs" 578 #define ZPOOL_CACHE_FILE "zpool.cache" 579 #define ZPOOL_CACHE_TMP ".zpool.cache" 580 581 #define ZPOOL_CACHE ZPOOL_CACHE_DIR "/" ZPOOL_CACHE_FILE 582 583 /* 584 * vdev states are ordered from least to most healthy. 585 * A vdev that's CANT_OPEN or below is considered unusable. 586 */ 587 typedef enum vdev_state { 588 VDEV_STATE_UNKNOWN = 0, /* Uninitialized vdev */ 589 VDEV_STATE_CLOSED, /* Not currently open */ 590 VDEV_STATE_OFFLINE, /* Not allowed to open */ 591 VDEV_STATE_CANT_OPEN, /* Tried to open, but failed */ 592 VDEV_STATE_DEGRADED, /* Replicated vdev with unhealthy kids */ 593 VDEV_STATE_HEALTHY /* Presumed good */ 594 } vdev_state_t; 595 596 /* 597 * vdev aux states. When a vdev is in the CANT_OPEN state, the aux field 598 * of the vdev stats structure uses these constants to distinguish why. 599 */ 600 typedef enum vdev_aux { 601 VDEV_AUX_NONE, /* no error */ 602 VDEV_AUX_OPEN_FAILED, /* ldi_open_*() or vn_open() failed */ 603 VDEV_AUX_CORRUPT_DATA, /* bad label or disk contents */ 604 VDEV_AUX_NO_REPLICAS, /* insufficient number of replicas */ 605 VDEV_AUX_BAD_GUID_SUM, /* vdev guid sum doesn't match */ 606 VDEV_AUX_TOO_SMALL, /* vdev size is too small */ 607 VDEV_AUX_BAD_LABEL, /* the label is OK but invalid */ 608 VDEV_AUX_VERSION_NEWER, /* on-disk version is too new */ 609 VDEV_AUX_VERSION_OLDER, /* on-disk version is too old */ 610 VDEV_AUX_SPARED /* hot spare used in another pool */ 611 } vdev_aux_t; 612 613 /* 614 * pool state. The following states are written to disk as part of the normal 615 * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE. The remaining states are 616 * software abstractions used at various levels to communicate pool state. 617 */ 618 typedef enum pool_state { 619 POOL_STATE_ACTIVE = 0, /* In active use */ 620 POOL_STATE_EXPORTED, /* Explicitly exported */ 621 POOL_STATE_DESTROYED, /* Explicitly destroyed */ 622 POOL_STATE_SPARE, /* Reserved for hot spare use */ 623 POOL_STATE_UNINITIALIZED, /* Internal spa_t state */ 624 POOL_STATE_UNAVAIL, /* Internal libzfs state */ 625 POOL_STATE_POTENTIALLY_ACTIVE /* Internal libzfs state */ 626 } pool_state_t; 627 628 /* 629 * The uberblock version is incremented whenever an incompatible on-disk 630 * format change is made to the SPA, DMU, or ZAP. 631 * 632 * Note: the first two fields should never be moved. When a storage pool 633 * is opened, the uberblock must be read off the disk before the version 634 * can be checked. If the ub_version field is moved, we may not detect 635 * version mismatch. If the ub_magic field is moved, applications that 636 * expect the magic number in the first word won't work. 637 */ 638 #define UBERBLOCK_MAGIC 0x00bab10c /* oo-ba-bloc! */ 639 #define UBERBLOCK_SHIFT 10 /* up to 1K */ 640 641 struct uberblock { 642 uint64_t ub_magic; /* UBERBLOCK_MAGIC */ 643 uint64_t ub_version; /* SPA_VERSION */ 644 uint64_t ub_txg; /* txg of last sync */ 645 uint64_t ub_guid_sum; /* sum of all vdev guids */ 646 uint64_t ub_timestamp; /* UTC time of last sync */ 647 blkptr_t ub_rootbp; /* MOS objset_phys_t */ 648 }; 649 650 /* 651 * Flags. 652 */ 653 #define DNODE_MUST_BE_ALLOCATED 1 654 #define DNODE_MUST_BE_FREE 2 655 656 /* 657 * Fixed constants. 658 */ 659 #define DNODE_SHIFT 9 /* 512 bytes */ 660 #define DN_MIN_INDBLKSHIFT 10 /* 1k */ 661 #define DN_MAX_INDBLKSHIFT 14 /* 16k */ 662 #define DNODE_BLOCK_SHIFT 14 /* 16k */ 663 #define DNODE_CORE_SIZE 64 /* 64 bytes for dnode sans blkptrs */ 664 #define DN_MAX_OBJECT_SHIFT 48 /* 256 trillion (zfs_fid_t limit) */ 665 #define DN_MAX_OFFSET_SHIFT 64 /* 2^64 bytes in a dnode */ 666 667 /* 668 * Derived constants. 669 */ 670 #define DNODE_SIZE (1 << DNODE_SHIFT) 671 #define DN_MAX_NBLKPTR ((DNODE_SIZE - DNODE_CORE_SIZE) >> SPA_BLKPTRSHIFT) 672 #define DN_MAX_BONUSLEN (DNODE_SIZE - DNODE_CORE_SIZE - (1 << SPA_BLKPTRSHIFT)) 673 #define DN_MAX_OBJECT (1ULL << DN_MAX_OBJECT_SHIFT) 674 675 #define DNODES_PER_BLOCK_SHIFT (DNODE_BLOCK_SHIFT - DNODE_SHIFT) 676 #define DNODES_PER_BLOCK (1ULL << DNODES_PER_BLOCK_SHIFT) 677 #define DNODES_PER_LEVEL_SHIFT (DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT) 678 679 /* The +2 here is a cheesy way to round up */ 680 #define DN_MAX_LEVELS (2 + ((DN_MAX_OFFSET_SHIFT - SPA_MINBLOCKSHIFT) / \ 681 (DN_MIN_INDBLKSHIFT - SPA_BLKPTRSHIFT))) 682 683 #define DN_BONUS(dnp) ((void*)((dnp)->dn_bonus + \ 684 (((dnp)->dn_nblkptr - 1) * sizeof (blkptr_t)))) 685 686 #define DN_USED_BYTES(dnp) (((dnp)->dn_flags & DNODE_FLAG_USED_BYTES) ? \ 687 (dnp)->dn_used : (dnp)->dn_used << SPA_MINBLOCKSHIFT) 688 689 #define EPB(blkshift, typeshift) (1 << (blkshift - typeshift)) 690 691 /* Is dn_used in bytes? if not, it's in multiples of SPA_MINBLOCKSIZE */ 692 #define DNODE_FLAG_USED_BYTES (1<<0) 693 694 typedef struct dnode_phys { 695 uint8_t dn_type; /* dmu_object_type_t */ 696 uint8_t dn_indblkshift; /* ln2(indirect block size) */ 697 uint8_t dn_nlevels; /* 1=dn_blkptr->data blocks */ 698 uint8_t dn_nblkptr; /* length of dn_blkptr */ 699 uint8_t dn_bonustype; /* type of data in bonus buffer */ 700 uint8_t dn_checksum; /* ZIO_CHECKSUM type */ 701 uint8_t dn_compress; /* ZIO_COMPRESS type */ 702 uint8_t dn_flags; /* DNODE_FLAG_* */ 703 uint16_t dn_datablkszsec; /* data block size in 512b sectors */ 704 uint16_t dn_bonuslen; /* length of dn_bonus */ 705 uint8_t dn_pad2[4]; 706 707 /* accounting is protected by dn_dirty_mtx */ 708 uint64_t dn_maxblkid; /* largest allocated block ID */ 709 uint64_t dn_used; /* bytes (or sectors) of disk space */ 710 711 uint64_t dn_pad3[4]; 712 713 blkptr_t dn_blkptr[1]; 714 uint8_t dn_bonus[DN_MAX_BONUSLEN]; 715 } dnode_phys_t; 716 717 typedef enum dmu_object_type { 718 DMU_OT_NONE, 719 /* general: */ 720 DMU_OT_OBJECT_DIRECTORY, /* ZAP */ 721 DMU_OT_OBJECT_ARRAY, /* UINT64 */ 722 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ 723 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ 724 DMU_OT_BPLIST, /* UINT64 */ 725 DMU_OT_BPLIST_HDR, /* UINT64 */ 726 /* spa: */ 727 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ 728 DMU_OT_SPACE_MAP, /* UINT64 */ 729 /* zil: */ 730 DMU_OT_INTENT_LOG, /* UINT64 */ 731 /* dmu: */ 732 DMU_OT_DNODE, /* DNODE */ 733 DMU_OT_OBJSET, /* OBJSET */ 734 /* dsl: */ 735 DMU_OT_DSL_DIR, /* UINT64 */ 736 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ 737 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ 738 DMU_OT_DSL_PROPS, /* ZAP */ 739 DMU_OT_DSL_DATASET, /* UINT64 */ 740 /* zpl: */ 741 DMU_OT_ZNODE, /* ZNODE */ 742 DMU_OT_ACL, /* ACL */ 743 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ 744 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ 745 DMU_OT_MASTER_NODE, /* ZAP */ 746 DMU_OT_UNLINKED_SET, /* ZAP */ 747 /* zvol: */ 748 DMU_OT_ZVOL, /* UINT8 */ 749 DMU_OT_ZVOL_PROP, /* ZAP */ 750 /* other; for testing only! */ 751 DMU_OT_PLAIN_OTHER, /* UINT8 */ 752 DMU_OT_UINT64_OTHER, /* UINT64 */ 753 DMU_OT_ZAP_OTHER, /* ZAP */ 754 /* new object types: */ 755 DMU_OT_ERROR_LOG, /* ZAP */ 756 DMU_OT_SPA_HISTORY, /* UINT8 */ 757 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ 758 DMU_OT_POOL_PROPS, /* ZAP */ 759 760 DMU_OT_NUMTYPES 761 } dmu_object_type_t; 762 763 typedef enum dmu_objset_type { 764 DMU_OST_NONE, 765 DMU_OST_META, 766 DMU_OST_ZFS, 767 DMU_OST_ZVOL, 768 DMU_OST_OTHER, /* For testing only! */ 769 DMU_OST_ANY, /* Be careful! */ 770 DMU_OST_NUMTYPES 771 } dmu_objset_type_t; 772 773 /* 774 * Intent log header - this on disk structure holds fields to manage 775 * the log. All fields are 64 bit to easily handle cross architectures. 776 */ 777 typedef struct zil_header { 778 uint64_t zh_claim_txg; /* txg in which log blocks were claimed */ 779 uint64_t zh_replay_seq; /* highest replayed sequence number */ 780 blkptr_t zh_log; /* log chain */ 781 uint64_t zh_claim_seq; /* highest claimed sequence number */ 782 uint64_t zh_pad[5]; 783 } zil_header_t; 784 785 typedef struct objset_phys { 786 dnode_phys_t os_meta_dnode; 787 zil_header_t os_zil_header; 788 uint64_t os_type; 789 char os_pad[1024 - sizeof (dnode_phys_t) - sizeof (zil_header_t) - 790 sizeof (uint64_t)]; 791 } objset_phys_t; 792 793 typedef struct dsl_dir_phys { 794 uint64_t dd_creation_time; /* not actually used */ 795 uint64_t dd_head_dataset_obj; 796 uint64_t dd_parent_obj; 797 uint64_t dd_clone_parent_obj; 798 uint64_t dd_child_dir_zapobj; 799 /* 800 * how much space our children are accounting for; for leaf 801 * datasets, == physical space used by fs + snaps 802 */ 803 uint64_t dd_used_bytes; 804 uint64_t dd_compressed_bytes; 805 uint64_t dd_uncompressed_bytes; 806 /* Administrative quota setting */ 807 uint64_t dd_quota; 808 /* Administrative reservation setting */ 809 uint64_t dd_reserved; 810 uint64_t dd_props_zapobj; 811 uint64_t dd_pad[21]; /* pad out to 256 bytes for good measure */ 812 } dsl_dir_phys_t; 813 814 typedef struct dsl_dataset_phys { 815 uint64_t ds_dir_obj; 816 uint64_t ds_prev_snap_obj; 817 uint64_t ds_prev_snap_txg; 818 uint64_t ds_next_snap_obj; 819 uint64_t ds_snapnames_zapobj; /* zap obj of snaps; ==0 for snaps */ 820 uint64_t ds_num_children; /* clone/snap children; ==0 for head */ 821 uint64_t ds_creation_time; /* seconds since 1970 */ 822 uint64_t ds_creation_txg; 823 uint64_t ds_deadlist_obj; 824 uint64_t ds_used_bytes; 825 uint64_t ds_compressed_bytes; 826 uint64_t ds_uncompressed_bytes; 827 uint64_t ds_unique_bytes; /* only relevant to snapshots */ 828 /* 829 * The ds_fsid_guid is a 56-bit ID that can change to avoid 830 * collisions. The ds_guid is a 64-bit ID that will never 831 * change, so there is a small probability that it will collide. 832 */ 833 uint64_t ds_fsid_guid; 834 uint64_t ds_guid; 835 uint64_t ds_flags; 836 blkptr_t ds_bp; 837 uint64_t ds_pad[8]; /* pad out to 320 bytes for good measure */ 838 } dsl_dataset_phys_t; 839 840 /* 841 * The names of zap entries in the DIRECTORY_OBJECT of the MOS. 842 */ 843 #define DMU_POOL_DIRECTORY_OBJECT 1 844 #define DMU_POOL_CONFIG "config" 845 #define DMU_POOL_ROOT_DATASET "root_dataset" 846 #define DMU_POOL_SYNC_BPLIST "sync_bplist" 847 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" 848 #define DMU_POOL_ERRLOG_LAST "errlog_last" 849 #define DMU_POOL_SPARES "spares" 850 #define DMU_POOL_DEFLATE "deflate" 851 #define DMU_POOL_HISTORY "history" 852 #define DMU_POOL_PROPS "pool_props" 853 854 #define ZAP_MAGIC 0x2F52AB2ABULL 855 856 #define FZAP_BLOCK_SHIFT(zap) ((zap)->zap_block_shift) 857 858 #define ZAP_MAXCD (uint32_t)(-1) 859 #define ZAP_HASHBITS 28 860 #define MZAP_ENT_LEN 64 861 #define MZAP_NAME_LEN (MZAP_ENT_LEN - 8 - 4 - 2) 862 #define MZAP_MAX_BLKSHIFT SPA_MAXBLOCKSHIFT 863 #define MZAP_MAX_BLKSZ (1 << MZAP_MAX_BLKSHIFT) 864 865 typedef struct mzap_ent_phys { 866 uint64_t mze_value; 867 uint32_t mze_cd; 868 uint16_t mze_pad; /* in case we want to chain them someday */ 869 char mze_name[MZAP_NAME_LEN]; 870 } mzap_ent_phys_t; 871 872 typedef struct mzap_phys { 873 uint64_t mz_block_type; /* ZBT_MICRO */ 874 uint64_t mz_salt; 875 uint64_t mz_pad[6]; 876 mzap_ent_phys_t mz_chunk[1]; 877 /* actually variable size depending on block size */ 878 } mzap_phys_t; 879 880 /* 881 * The (fat) zap is stored in one object. It is an array of 882 * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of: 883 * 884 * ptrtbl fits in first block: 885 * [zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ... 886 * 887 * ptrtbl too big for first block: 888 * [zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ... 889 * 890 */ 891 892 #define ZBT_LEAF ((1ULL << 63) + 0) 893 #define ZBT_HEADER ((1ULL << 63) + 1) 894 #define ZBT_MICRO ((1ULL << 63) + 3) 895 /* any other values are ptrtbl blocks */ 896 897 /* 898 * the embedded pointer table takes up half a block: 899 * block size / entry size (2^3) / 2 900 */ 901 #define ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1) 902 903 /* 904 * The embedded pointer table starts half-way through the block. Since 905 * the pointer table itself is half the block, it starts at (64-bit) 906 * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)). 907 */ 908 #define ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \ 909 ((uint64_t *)(zap)->zap_phys) \ 910 [(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))] 911 912 /* 913 * TAKE NOTE: 914 * If zap_phys_t is modified, zap_byteswap() must be modified. 915 */ 916 typedef struct zap_phys { 917 uint64_t zap_block_type; /* ZBT_HEADER */ 918 uint64_t zap_magic; /* ZAP_MAGIC */ 919 920 struct zap_table_phys { 921 uint64_t zt_blk; /* starting block number */ 922 uint64_t zt_numblks; /* number of blocks */ 923 uint64_t zt_shift; /* bits to index it */ 924 uint64_t zt_nextblk; /* next (larger) copy start block */ 925 uint64_t zt_blks_copied; /* number source blocks copied */ 926 } zap_ptrtbl; 927 928 uint64_t zap_freeblk; /* the next free block */ 929 uint64_t zap_num_leafs; /* number of leafs */ 930 uint64_t zap_num_entries; /* number of entries */ 931 uint64_t zap_salt; /* salt to stir into hash function */ 932 /* 933 * This structure is followed by padding, and then the embedded 934 * pointer table. The embedded pointer table takes up second 935 * half of the block. It is accessed using the 936 * ZAP_EMBEDDED_PTRTBL_ENT() macro. 937 */ 938 } zap_phys_t; 939 940 typedef struct zap_table_phys zap_table_phys_t; 941 942 typedef struct fat_zap { 943 int zap_block_shift; /* block size shift */ 944 zap_phys_t *zap_phys; 945 } fat_zap_t; 946 947 #define ZAP_LEAF_MAGIC 0x2AB1EAF 948 949 /* chunk size = 24 bytes */ 950 #define ZAP_LEAF_CHUNKSIZE 24 951 952 /* 953 * The amount of space available for chunks is: 954 * block size (1<<l->l_bs) - hash entry size (2) * number of hash 955 * entries - header space (2*chunksize) 956 */ 957 #define ZAP_LEAF_NUMCHUNKS(l) \ 958 (((1<<(l)->l_bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(l)) / \ 959 ZAP_LEAF_CHUNKSIZE - 2) 960 961 /* 962 * The amount of space within the chunk available for the array is: 963 * chunk size - space for type (1) - space for next pointer (2) 964 */ 965 #define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3) 966 967 #define ZAP_LEAF_ARRAY_NCHUNKS(bytes) \ 968 (((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES) 969 970 /* 971 * Low water mark: when there are only this many chunks free, start 972 * growing the ptrtbl. Ideally, this should be larger than a 973 * "reasonably-sized" entry. 20 chunks is more than enough for the 974 * largest directory entry (MAXNAMELEN (256) byte name, 8-byte value), 975 * while still being only around 3% for 16k blocks. 976 */ 977 #define ZAP_LEAF_LOW_WATER (20) 978 979 /* 980 * The leaf hash table has block size / 2^5 (32) number of entries, 981 * which should be more than enough for the maximum number of entries, 982 * which is less than block size / CHUNKSIZE (24) / minimum number of 983 * chunks per entry (3). 984 */ 985 #define ZAP_LEAF_HASH_SHIFT(l) ((l)->l_bs - 5) 986 #define ZAP_LEAF_HASH_NUMENTRIES(l) (1 << ZAP_LEAF_HASH_SHIFT(l)) 987 988 /* 989 * The chunks start immediately after the hash table. The end of the 990 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a 991 * chunk_t. 992 */ 993 #define ZAP_LEAF_CHUNK(l, idx) \ 994 ((zap_leaf_chunk_t *) \ 995 ((l)->l_phys->l_hash + ZAP_LEAF_HASH_NUMENTRIES(l)))[idx] 996 #define ZAP_LEAF_ENTRY(l, idx) (&ZAP_LEAF_CHUNK(l, idx).l_entry) 997 998 typedef enum zap_chunk_type { 999 ZAP_CHUNK_FREE = 253, 1000 ZAP_CHUNK_ENTRY = 252, 1001 ZAP_CHUNK_ARRAY = 251, 1002 ZAP_CHUNK_TYPE_MAX = 250 1003 } zap_chunk_type_t; 1004 1005 /* 1006 * TAKE NOTE: 1007 * If zap_leaf_phys_t is modified, zap_leaf_byteswap() must be modified. 1008 */ 1009 typedef struct zap_leaf_phys { 1010 struct zap_leaf_header { 1011 uint64_t lh_block_type; /* ZBT_LEAF */ 1012 uint64_t lh_pad1; 1013 uint64_t lh_prefix; /* hash prefix of this leaf */ 1014 uint32_t lh_magic; /* ZAP_LEAF_MAGIC */ 1015 uint16_t lh_nfree; /* number free chunks */ 1016 uint16_t lh_nentries; /* number of entries */ 1017 uint16_t lh_prefix_len; /* num bits used to id this */ 1018 1019 /* above is accessable to zap, below is zap_leaf private */ 1020 1021 uint16_t lh_freelist; /* chunk head of free list */ 1022 uint8_t lh_pad2[12]; 1023 } l_hdr; /* 2 24-byte chunks */ 1024 1025 /* 1026 * The header is followed by a hash table with 1027 * ZAP_LEAF_HASH_NUMENTRIES(zap) entries. The hash table is 1028 * followed by an array of ZAP_LEAF_NUMCHUNKS(zap) 1029 * zap_leaf_chunk structures. These structures are accessed 1030 * with the ZAP_LEAF_CHUNK() macro. 1031 */ 1032 1033 uint16_t l_hash[1]; 1034 } zap_leaf_phys_t; 1035 1036 typedef union zap_leaf_chunk { 1037 struct zap_leaf_entry { 1038 uint8_t le_type; /* always ZAP_CHUNK_ENTRY */ 1039 uint8_t le_int_size; /* size of ints */ 1040 uint16_t le_next; /* next entry in hash chain */ 1041 uint16_t le_name_chunk; /* first chunk of the name */ 1042 uint16_t le_name_length; /* bytes in name, incl null */ 1043 uint16_t le_value_chunk; /* first chunk of the value */ 1044 uint16_t le_value_length; /* value length in ints */ 1045 uint32_t le_cd; /* collision differentiator */ 1046 uint64_t le_hash; /* hash value of the name */ 1047 } l_entry; 1048 struct zap_leaf_array { 1049 uint8_t la_type; /* always ZAP_CHUNK_ARRAY */ 1050 uint8_t la_array[ZAP_LEAF_ARRAY_BYTES]; 1051 uint16_t la_next; /* next blk or CHAIN_END */ 1052 } l_array; 1053 struct zap_leaf_free { 1054 uint8_t lf_type; /* always ZAP_CHUNK_FREE */ 1055 uint8_t lf_pad[ZAP_LEAF_ARRAY_BYTES]; 1056 uint16_t lf_next; /* next in free list, or CHAIN_END */ 1057 } l_free; 1058 } zap_leaf_chunk_t; 1059 1060 typedef struct zap_leaf { 1061 int l_bs; /* block size shift */ 1062 zap_leaf_phys_t *l_phys; 1063 } zap_leaf_t; 1064 1065 /* 1066 * Define special zfs pflags 1067 */ 1068 #define ZFS_XATTR 0x1 /* is an extended attribute */ 1069 #define ZFS_INHERIT_ACE 0x2 /* ace has inheritable ACEs */ 1070 #define ZFS_ACL_TRIVIAL 0x4 /* files ACL is trivial */ 1071 1072 #define MASTER_NODE_OBJ 1 1073 1074 /* 1075 * special attributes for master node. 1076 */ 1077 1078 #define ZFS_FSID "FSID" 1079 #define ZFS_UNLINKED_SET "DELETE_QUEUE" 1080 #define ZFS_ROOT_OBJ "ROOT" 1081 #define ZPL_VERSION_OBJ "VERSION" 1082 #define ZFS_PROP_BLOCKPERPAGE "BLOCKPERPAGE" 1083 #define ZFS_PROP_NOGROWBLOCKS "NOGROWBLOCKS" 1084 1085 #define ZFS_FLAG_BLOCKPERPAGE 0x1 1086 #define ZFS_FLAG_NOGROWBLOCKS 0x2 1087 1088 /* 1089 * ZPL version - rev'd whenever an incompatible on-disk format change 1090 * occurs. Independent of SPA/DMU/ZAP versioning. 1091 */ 1092 1093 #define ZPL_VERSION 1ULL 1094 1095 /* 1096 * The directory entry has the type (currently unused on Solaris) in the 1097 * top 4 bits, and the object number in the low 48 bits. The "middle" 1098 * 12 bits are unused. 1099 */ 1100 #define ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4) 1101 #define ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48) 1102 #define ZFS_DIRENT_MAKE(type, obj) (((uint64_t)type << 60) | obj) 1103 1104 typedef struct ace { 1105 uid_t a_who; /* uid or gid */ 1106 uint32_t a_access_mask; /* read,write,... */ 1107 uint16_t a_flags; /* see below */ 1108 uint16_t a_type; /* allow or deny */ 1109 } ace_t; 1110 1111 #define ACE_SLOT_CNT 6 1112 1113 typedef struct zfs_znode_acl { 1114 uint64_t z_acl_extern_obj; /* ext acl pieces */ 1115 uint32_t z_acl_count; /* Number of ACEs */ 1116 uint16_t z_acl_version; /* acl version */ 1117 uint16_t z_acl_pad; /* pad */ 1118 ace_t z_ace_data[ACE_SLOT_CNT]; /* 6 standard ACEs */ 1119 } zfs_znode_acl_t; 1120 1121 /* 1122 * This is the persistent portion of the znode. It is stored 1123 * in the "bonus buffer" of the file. Short symbolic links 1124 * are also stored in the bonus buffer. 1125 */ 1126 typedef struct znode_phys { 1127 uint64_t zp_atime[2]; /* 0 - last file access time */ 1128 uint64_t zp_mtime[2]; /* 16 - last file modification time */ 1129 uint64_t zp_ctime[2]; /* 32 - last file change time */ 1130 uint64_t zp_crtime[2]; /* 48 - creation time */ 1131 uint64_t zp_gen; /* 64 - generation (txg of creation) */ 1132 uint64_t zp_mode; /* 72 - file mode bits */ 1133 uint64_t zp_size; /* 80 - size of file */ 1134 uint64_t zp_parent; /* 88 - directory parent (`..') */ 1135 uint64_t zp_links; /* 96 - number of links to file */ 1136 uint64_t zp_xattr; /* 104 - DMU object for xattrs */ 1137 uint64_t zp_rdev; /* 112 - dev_t for VBLK & VCHR files */ 1138 uint64_t zp_flags; /* 120 - persistent flags */ 1139 uint64_t zp_uid; /* 128 - file owner */ 1140 uint64_t zp_gid; /* 136 - owning group */ 1141 uint64_t zp_pad[4]; /* 144 - future */ 1142 zfs_znode_acl_t zp_acl; /* 176 - 263 ACL */ 1143 /* 1144 * Data may pad out any remaining bytes in the znode buffer, eg: 1145 * 1146 * |<---------------------- dnode_phys (512) ------------------------>| 1147 * |<-- dnode (192) --->|<----------- "bonus" buffer (320) ---------->| 1148 * |<---- znode (264) ---->|<---- data (56) ---->| 1149 * 1150 * At present, we only use this space to store symbolic links. 1151 */ 1152 } znode_phys_t; 1153 1154 /* 1155 * In-core vdev representation. 1156 */ 1157 struct vdev; 1158 typedef int vdev_phys_read_t(struct vdev *vdev, void *priv, 1159 off_t offset, void *buf, size_t bytes); 1160 typedef int vdev_read_t(struct vdev *vdev, const blkptr_t *bp, 1161 void *buf, off_t offset, size_t bytes); 1162 1163 typedef STAILQ_HEAD(vdev_list, vdev) vdev_list_t; 1164 1165 typedef struct vdev { 1166 STAILQ_ENTRY(vdev) v_childlink; /* link in parent's child list */ 1167 STAILQ_ENTRY(vdev) v_alllink; /* link in global vdev list */ 1168 vdev_list_t v_children; /* children of this vdev */ 1169 char *v_name; /* vdev name */ 1170 uint64_t v_guid; /* vdev guid */ 1171 int v_id; /* index in parent */ 1172 int v_ashift; /* offset to block shift */ 1173 int v_nparity; /* # parity for raidz */ 1174 int v_nchildren; /* # children */ 1175 vdev_state_t v_state; /* current state */ 1176 vdev_phys_read_t *v_phys_read; /* read from raw leaf vdev */ 1177 vdev_read_t *v_read; /* read from vdev */ 1178 void *v_read_priv; /* private data for read function */ 1179 } vdev_t; 1180 1181 /* 1182 * In-core pool representation. 1183 */ 1184 typedef STAILQ_HEAD(spa_list, spa) spa_list_t; 1185 1186 typedef struct spa { 1187 STAILQ_ENTRY(spa) spa_link; /* link in global pool list */ 1188 char *spa_name; /* pool name */ 1189 uint64_t spa_guid; /* pool guid */ 1190 uint64_t spa_txg; /* most recent transaction */ 1191 struct uberblock spa_uberblock; /* best uberblock so far */ 1192 vdev_list_t spa_vdevs; /* list of all toplevel vdevs */ 1193 objset_phys_t spa_mos; /* MOS for this pool */ 1194 objset_phys_t spa_root_objset; /* current mounted ZPL objset */ 1195 } spa_t; 1196