1 /*- 2 * Copyright (c) 2002 McAfee, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and McAfee Research,, the Security Research Division of 7 * McAfee, Inc. under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as 8 * part of the DARPA CHATS research program 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 /* 32 * CDDL HEADER START 33 * 34 * The contents of this file are subject to the terms of the 35 * Common Development and Distribution License (the "License"). 36 * You may not use this file except in compliance with the License. 37 * 38 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 39 * or http://www.opensolaris.org/os/licensing. 40 * See the License for the specific language governing permissions 41 * and limitations under the License. 42 * 43 * When distributing Covered Code, include this CDDL HEADER in each 44 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 45 * If applicable, add the following below this CDDL HEADER, with the 46 * fields enclosed by brackets "[]" replaced with your own identifying 47 * information: Portions Copyright [yyyy] [name of copyright owner] 48 * 49 * CDDL HEADER END 50 */ 51 /* 52 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 53 * Use is subject to license terms. 54 */ 55 /* 56 * Copyright 2013 by Saso Kiselkov. All rights reserved. 57 */ 58 /* 59 * Copyright (c) 2020 by Delphix. All rights reserved. 60 */ 61 62 #include <sys/queue.h> 63 #include <sys/list.h> 64 #include <bootstrap.h> 65 66 #ifndef _ZFSIMPL_H_ 67 #define _ZFSIMPL_H_ 68 69 #define MAXNAMELEN 256 70 71 #define _NOTE(s) 72 73 /* 74 * AVL comparator helpers 75 */ 76 #define AVL_ISIGN(a) (((a) > 0) - ((a) < 0)) 77 #define AVL_CMP(a, b) (((a) > (b)) - ((a) < (b))) 78 #define AVL_PCMP(a, b) \ 79 (((uintptr_t)(a) > (uintptr_t)(b)) - ((uintptr_t)(a) < (uintptr_t)(b))) 80 81 typedef enum { B_FALSE, B_TRUE } boolean_t; 82 83 /* CRC64 table */ 84 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ 85 86 /* 87 * Macros for various sorts of alignment and rounding when the alignment 88 * is known to be a power of 2. 89 */ 90 #define P2ALIGN(x, align) ((x) & -(align)) 91 #define P2PHASE(x, align) ((x) & ((align) - 1)) 92 #define P2NPHASE(x, align) (-(x) & ((align) - 1)) 93 #define P2ROUNDUP(x, align) (-(-(x) & -(align))) 94 #define P2END(x, align) (-(~(x) & -(align))) 95 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align))) 96 #define P2BOUNDARY(off, len, align) (((off) ^ ((off) + (len) - 1)) > (align) - 1) 97 98 /* 99 * General-purpose 32-bit and 64-bit bitfield encodings. 100 */ 101 #define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len)) 102 #define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len)) 103 #define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low)) 104 #define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low)) 105 106 #define BF32_GET(x, low, len) BF32_DECODE(x, low, len) 107 #define BF64_GET(x, low, len) BF64_DECODE(x, low, len) 108 109 #define BF32_SET(x, low, len, val) \ 110 ((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len)) 111 #define BF64_SET(x, low, len, val) \ 112 ((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len)) 113 114 #define BF32_GET_SB(x, low, len, shift, bias) \ 115 ((BF32_GET(x, low, len) + (bias)) << (shift)) 116 #define BF64_GET_SB(x, low, len, shift, bias) \ 117 ((BF64_GET(x, low, len) + (bias)) << (shift)) 118 119 #define BF32_SET_SB(x, low, len, shift, bias, val) \ 120 BF32_SET(x, low, len, ((val) >> (shift)) - (bias)) 121 #define BF64_SET_SB(x, low, len, shift, bias, val) \ 122 BF64_SET(x, low, len, ((val) >> (shift)) - (bias)) 123 124 /* 125 * Macros to reverse byte order 126 */ 127 #define BSWAP_8(x) ((x) & 0xff) 128 #define BSWAP_16(x) ((BSWAP_8(x) << 8) | BSWAP_8((x) >> 8)) 129 #define BSWAP_32(x) ((BSWAP_16(x) << 16) | BSWAP_16((x) >> 16)) 130 #define BSWAP_64(x) ((BSWAP_32(x) << 32) | BSWAP_32((x) >> 32)) 131 132 #define SPA_MINBLOCKSHIFT 9 133 #define SPA_OLDMAXBLOCKSHIFT 17 134 #define SPA_MAXBLOCKSHIFT 24 135 #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT) 136 #define SPA_OLDMAXBLOCKSIZE (1ULL << SPA_OLDMAXBLOCKSHIFT) 137 #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT) 138 139 /* 140 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB. 141 * The ASIZE encoding should be at least 64 times larger (6 more bits) 142 * to support up to 4-way RAID-Z mirror mode with worst-case gang block 143 * overhead, three DVAs per bp, plus one more bit in case we do anything 144 * else that expands the ASIZE. 145 */ 146 #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */ 147 #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */ 148 #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */ 149 150 /* 151 * All SPA data is represented by 128-bit data virtual addresses (DVAs). 152 * The members of the dva_t should be considered opaque outside the SPA. 153 */ 154 typedef struct dva { 155 uint64_t dva_word[2]; 156 } dva_t; 157 158 /* 159 * Each block has a 256-bit checksum -- strong enough for cryptographic hashes. 160 */ 161 typedef struct zio_cksum { 162 uint64_t zc_word[4]; 163 } zio_cksum_t; 164 165 /* 166 * Some checksums/hashes need a 256-bit initialization salt. This salt is kept 167 * secret and is suitable for use in MAC algorithms as the key. 168 */ 169 typedef struct zio_cksum_salt { 170 uint8_t zcs_bytes[32]; 171 } zio_cksum_salt_t; 172 173 /* 174 * Each block is described by its DVAs, time of birth, checksum, etc. 175 * The word-by-word, bit-by-bit layout of the blkptr is as follows: 176 * 177 * 64 56 48 40 32 24 16 8 0 178 * +-------+-------+-------+-------+-------+-------+-------+-------+ 179 * 0 | vdev1 | GRID | ASIZE | 180 * +-------+-------+-------+-------+-------+-------+-------+-------+ 181 * 1 |G| offset1 | 182 * +-------+-------+-------+-------+-------+-------+-------+-------+ 183 * 2 | vdev2 | GRID | ASIZE | 184 * +-------+-------+-------+-------+-------+-------+-------+-------+ 185 * 3 |G| offset2 | 186 * +-------+-------+-------+-------+-------+-------+-------+-------+ 187 * 4 | vdev3 | GRID | ASIZE | 188 * +-------+-------+-------+-------+-------+-------+-------+-------+ 189 * 5 |G| offset3 | 190 * +-------+-------+-------+-------+-------+-------+-------+-------+ 191 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE | 192 * +-------+-------+-------+-------+-------+-------+-------+-------+ 193 * 7 | padding | 194 * +-------+-------+-------+-------+-------+-------+-------+-------+ 195 * 8 | padding | 196 * +-------+-------+-------+-------+-------+-------+-------+-------+ 197 * 9 | physical birth txg | 198 * +-------+-------+-------+-------+-------+-------+-------+-------+ 199 * a | logical birth txg | 200 * +-------+-------+-------+-------+-------+-------+-------+-------+ 201 * b | fill count | 202 * +-------+-------+-------+-------+-------+-------+-------+-------+ 203 * c | checksum[0] | 204 * +-------+-------+-------+-------+-------+-------+-------+-------+ 205 * d | checksum[1] | 206 * +-------+-------+-------+-------+-------+-------+-------+-------+ 207 * e | checksum[2] | 208 * +-------+-------+-------+-------+-------+-------+-------+-------+ 209 * f | checksum[3] | 210 * +-------+-------+-------+-------+-------+-------+-------+-------+ 211 * 212 * Legend: 213 * 214 * vdev virtual device ID 215 * offset offset into virtual device 216 * LSIZE logical size 217 * PSIZE physical size (after compression) 218 * ASIZE allocated size (including RAID-Z parity and gang block headers) 219 * GRID RAID-Z layout information (reserved for future use) 220 * cksum checksum function 221 * comp compression function 222 * G gang block indicator 223 * B byteorder (endianness) 224 * D dedup 225 * X encryption (on version 30, which is not supported) 226 * E blkptr_t contains embedded data (see below) 227 * lvl level of indirection 228 * type DMU object type 229 * phys birth txg of block allocation; zero if same as logical birth txg 230 * log. birth transaction group in which the block was logically born 231 * fill count number of non-zero blocks under this bp 232 * checksum[4] 256-bit checksum of the data this bp describes 233 */ 234 235 /* 236 * "Embedded" blkptr_t's don't actually point to a block, instead they 237 * have a data payload embedded in the blkptr_t itself. See the comment 238 * in blkptr.c for more details. 239 * 240 * The blkptr_t is laid out as follows: 241 * 242 * 64 56 48 40 32 24 16 8 0 243 * +-------+-------+-------+-------+-------+-------+-------+-------+ 244 * 0 | payload | 245 * 1 | payload | 246 * 2 | payload | 247 * 3 | payload | 248 * 4 | payload | 249 * 5 | payload | 250 * +-------+-------+-------+-------+-------+-------+-------+-------+ 251 * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE | 252 * +-------+-------+-------+-------+-------+-------+-------+-------+ 253 * 7 | payload | 254 * 8 | payload | 255 * 9 | payload | 256 * +-------+-------+-------+-------+-------+-------+-------+-------+ 257 * a | logical birth txg | 258 * +-------+-------+-------+-------+-------+-------+-------+-------+ 259 * b | payload | 260 * c | payload | 261 * d | payload | 262 * e | payload | 263 * f | payload | 264 * +-------+-------+-------+-------+-------+-------+-------+-------+ 265 * 266 * Legend: 267 * 268 * payload contains the embedded data 269 * B (byteorder) byteorder (endianness) 270 * D (dedup) padding (set to zero) 271 * X encryption (set to zero; see above) 272 * E (embedded) set to one 273 * lvl indirection level 274 * type DMU object type 275 * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*) 276 * comp compression function of payload 277 * PSIZE size of payload after compression, in bytes 278 * LSIZE logical size of payload, in bytes 279 * note that 25 bits is enough to store the largest 280 * "normal" BP's LSIZE (2^16 * 2^9) in bytes 281 * log. birth transaction group in which the block was logically born 282 * 283 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded 284 * bp's they are stored in units of SPA_MINBLOCKSHIFT. 285 * Generally, the generic BP_GET_*() macros can be used on embedded BP's. 286 * The B, D, X, lvl, type, and comp fields are stored the same as with normal 287 * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must 288 * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before 289 * other macros, as they assert that they are only used on BP's of the correct 290 * "embedded-ness". 291 */ 292 293 #define BPE_GET_ETYPE(bp) \ 294 (ASSERT(BP_IS_EMBEDDED(bp)), \ 295 BF64_GET((bp)->blk_prop, 40, 8)) 296 #define BPE_SET_ETYPE(bp, t) do { \ 297 ASSERT(BP_IS_EMBEDDED(bp)); \ 298 BF64_SET((bp)->blk_prop, 40, 8, t); \ 299 _NOTE(CONSTCOND) } while (0) 300 301 #define BPE_GET_LSIZE(bp) \ 302 (ASSERT(BP_IS_EMBEDDED(bp)), \ 303 BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1)) 304 #define BPE_SET_LSIZE(bp, x) do { \ 305 ASSERT(BP_IS_EMBEDDED(bp)); \ 306 BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \ 307 _NOTE(CONSTCOND) } while (0) 308 309 #define BPE_GET_PSIZE(bp) \ 310 (ASSERT(BP_IS_EMBEDDED(bp)), \ 311 BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1)) 312 #define BPE_SET_PSIZE(bp, x) do { \ 313 ASSERT(BP_IS_EMBEDDED(bp)); \ 314 BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \ 315 _NOTE(CONSTCOND) } while (0) 316 317 typedef enum bp_embedded_type { 318 BP_EMBEDDED_TYPE_DATA, 319 BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */ 320 NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED 321 } bp_embedded_type_t; 322 323 #define BPE_NUM_WORDS 14 324 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t)) 325 #define BPE_IS_PAYLOADWORD(bp, wp) \ 326 ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth) 327 328 #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */ 329 #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */ 330 331 typedef struct blkptr { 332 dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */ 333 uint64_t blk_prop; /* size, compression, type, etc */ 334 uint64_t blk_pad[2]; /* Extra space for the future */ 335 uint64_t blk_phys_birth; /* txg when block was allocated */ 336 uint64_t blk_birth; /* transaction group at birth */ 337 uint64_t blk_fill; /* fill count */ 338 zio_cksum_t blk_cksum; /* 256-bit checksum */ 339 } blkptr_t; 340 341 /* 342 * Macros to get and set fields in a bp or DVA. 343 */ 344 #define DVA_GET_ASIZE(dva) \ 345 BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0) 346 #define DVA_SET_ASIZE(dva, x) \ 347 BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \ 348 SPA_MINBLOCKSHIFT, 0, x) 349 350 #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8) 351 #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x) 352 353 #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, 32) 354 #define DVA_SET_VDEV(dva, x) BF64_SET((dva)->dva_word[0], 32, 32, x) 355 356 #define DVA_GET_OFFSET(dva) \ 357 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0) 358 #define DVA_SET_OFFSET(dva, x) \ 359 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x) 360 361 #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1) 362 #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x) 363 364 #define BP_GET_LSIZE(bp) \ 365 (BP_IS_EMBEDDED(bp) ? \ 366 (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \ 367 BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1)) 368 #define BP_SET_LSIZE(bp, x) do { \ 369 ASSERT(!BP_IS_EMBEDDED(bp)); \ 370 BF64_SET_SB((bp)->blk_prop, \ 371 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \ 372 _NOTE(CONSTCOND) } while (0) 373 374 #define BP_GET_PSIZE(bp) \ 375 BF64_GET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1) 376 #define BP_SET_PSIZE(bp, x) \ 377 BF64_SET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x) 378 379 #define BP_GET_COMPRESS(bp) BF64_GET((bp)->blk_prop, 32, 7) 380 #define BP_SET_COMPRESS(bp, x) BF64_SET((bp)->blk_prop, 32, 7, x) 381 382 #define BP_GET_CHECKSUM(bp) BF64_GET((bp)->blk_prop, 40, 8) 383 #define BP_SET_CHECKSUM(bp, x) BF64_SET((bp)->blk_prop, 40, 8, x) 384 385 #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8) 386 #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x) 387 388 #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5) 389 #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x) 390 391 #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1) 392 393 #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1) 394 #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x) 395 396 #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1) 397 #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x) 398 399 #define BP_PHYSICAL_BIRTH(bp) \ 400 ((bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth) 401 402 #define BP_GET_ASIZE(bp) \ 403 (DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ 404 DVA_GET_ASIZE(&(bp)->blk_dva[2])) 405 406 #define BP_GET_UCSIZE(bp) \ 407 ((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \ 408 BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp)); 409 410 #define BP_GET_NDVAS(bp) \ 411 (!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ 412 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ 413 !!DVA_GET_ASIZE(&(bp)->blk_dva[2])) 414 415 #define DVA_EQUAL(dva1, dva2) \ 416 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \ 417 (dva1)->dva_word[0] == (dva2)->dva_word[0]) 418 419 #define ZIO_CHECKSUM_EQUAL(zc1, zc2) \ 420 (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \ 421 ((zc1).zc_word[1] - (zc2).zc_word[1]) | \ 422 ((zc1).zc_word[2] - (zc2).zc_word[2]) | \ 423 ((zc1).zc_word[3] - (zc2).zc_word[3]))) 424 425 426 #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0) 427 428 #define ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3) \ 429 { \ 430 (zcp)->zc_word[0] = w0; \ 431 (zcp)->zc_word[1] = w1; \ 432 (zcp)->zc_word[2] = w2; \ 433 (zcp)->zc_word[3] = w3; \ 434 } 435 436 #define BP_IDENTITY(bp) (&(bp)->blk_dva[0]) 437 #define BP_IS_GANG(bp) DVA_GET_GANG(BP_IDENTITY(bp)) 438 #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \ 439 (dva)->dva_word[1] == 0ULL) 440 #define BP_IS_HOLE(bp) DVA_IS_EMPTY(BP_IDENTITY(bp)) 441 #define BP_IS_OLDER(bp, txg) (!BP_IS_HOLE(bp) && (bp)->blk_birth < (txg)) 442 443 #define BP_ZERO(bp) \ 444 { \ 445 (bp)->blk_dva[0].dva_word[0] = 0; \ 446 (bp)->blk_dva[0].dva_word[1] = 0; \ 447 (bp)->blk_dva[1].dva_word[0] = 0; \ 448 (bp)->blk_dva[1].dva_word[1] = 0; \ 449 (bp)->blk_dva[2].dva_word[0] = 0; \ 450 (bp)->blk_dva[2].dva_word[1] = 0; \ 451 (bp)->blk_prop = 0; \ 452 (bp)->blk_pad[0] = 0; \ 453 (bp)->blk_pad[1] = 0; \ 454 (bp)->blk_phys_birth = 0; \ 455 (bp)->blk_birth = 0; \ 456 (bp)->blk_fill = 0; \ 457 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \ 458 } 459 460 #if BYTE_ORDER == _BIG_ENDIAN 461 #define ZFS_HOST_BYTEORDER (0ULL) 462 #else 463 #define ZFS_HOST_BYTEORDER (1ULL) 464 #endif 465 466 #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER) 467 #define BPE_NUM_WORDS 14 468 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t)) 469 #define BPE_IS_PAYLOADWORD(bp, wp) \ 470 ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth) 471 472 /* 473 * Embedded checksum 474 */ 475 #define ZEC_MAGIC 0x210da7ab10c7a11ULL 476 477 typedef struct zio_eck { 478 uint64_t zec_magic; /* for validation, endianness */ 479 zio_cksum_t zec_cksum; /* 256-bit checksum */ 480 } zio_eck_t; 481 482 /* 483 * Gang block headers are self-checksumming and contain an array 484 * of block pointers. 485 */ 486 #define SPA_GANGBLOCKSIZE SPA_MINBLOCKSIZE 487 #define SPA_GBH_NBLKPTRS ((SPA_GANGBLOCKSIZE - \ 488 sizeof (zio_eck_t)) / sizeof (blkptr_t)) 489 #define SPA_GBH_FILLER ((SPA_GANGBLOCKSIZE - \ 490 sizeof (zio_eck_t) - \ 491 (SPA_GBH_NBLKPTRS * sizeof (blkptr_t))) /\ 492 sizeof (uint64_t)) 493 494 typedef struct zio_gbh { 495 blkptr_t zg_blkptr[SPA_GBH_NBLKPTRS]; 496 uint64_t zg_filler[SPA_GBH_FILLER]; 497 zio_eck_t zg_tail; 498 } zio_gbh_phys_t; 499 500 #define VDEV_RAIDZ_MAXPARITY 3 501 502 #define VDEV_PAD_SIZE (8 << 10) 503 /* 2 padding areas (vl_pad1 and vl_be) to skip */ 504 #define VDEV_SKIP_SIZE VDEV_PAD_SIZE * 2 505 #define VDEV_PHYS_SIZE (112 << 10) 506 #define VDEV_UBERBLOCK_RING (128 << 10) 507 508 /* 509 * MMP blocks occupy the last MMP_BLOCKS_PER_LABEL slots in the uberblock 510 * ring when MMP is enabled. 511 */ 512 #define MMP_BLOCKS_PER_LABEL 1 513 514 /* The largest uberblock we support is 8k. */ 515 #define MAX_UBERBLOCK_SHIFT (13) 516 #define VDEV_UBERBLOCK_SHIFT(vd) \ 517 MIN(MAX((vd)->v_top->v_ashift, UBERBLOCK_SHIFT), MAX_UBERBLOCK_SHIFT) 518 #define VDEV_UBERBLOCK_COUNT(vd) \ 519 (VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd)) 520 #define VDEV_UBERBLOCK_OFFSET(vd, n) \ 521 offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)]) 522 #define VDEV_UBERBLOCK_SIZE(vd) (1ULL << VDEV_UBERBLOCK_SHIFT(vd)) 523 524 typedef struct vdev_phys { 525 char vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_eck_t)]; 526 zio_eck_t vp_zbt; 527 } vdev_phys_t; 528 529 typedef enum vbe_vers { 530 /* The bootenv file is stored as ascii text in the envblock */ 531 VB_RAW = 0, 532 533 /* 534 * The bootenv file is converted to an nvlist and then packed into the 535 * envblock. 536 */ 537 VB_NVLIST = 1 538 } vbe_vers_t; 539 540 typedef struct vdev_boot_envblock { 541 uint64_t vbe_version; 542 char vbe_bootenv[VDEV_PAD_SIZE - sizeof (uint64_t) - 543 sizeof (zio_eck_t)]; 544 zio_eck_t vbe_zbt; 545 } vdev_boot_envblock_t; 546 547 CTASSERT(sizeof (vdev_boot_envblock_t) == VDEV_PAD_SIZE); 548 549 typedef struct vdev_label { 550 char vl_pad1[VDEV_PAD_SIZE]; /* 8K */ 551 vdev_boot_envblock_t vl_be; /* 8K */ 552 vdev_phys_t vl_vdev_phys; /* 112K */ 553 char vl_uberblock[VDEV_UBERBLOCK_RING]; /* 128K */ 554 } vdev_label_t; /* 256K total */ 555 556 /* 557 * vdev_dirty() flags 558 */ 559 #define VDD_METASLAB 0x01 560 #define VDD_DTL 0x02 561 562 /* 563 * Size and offset of embedded boot loader region on each label. 564 * The total size of the first two labels plus the boot area is 4MB. 565 */ 566 #define VDEV_BOOT_OFFSET (2 * sizeof (vdev_label_t)) 567 #define VDEV_BOOT_SIZE (7ULL << 19) /* 3.5M */ 568 569 /* 570 * Size of label regions at the start and end of each leaf device. 571 */ 572 #define VDEV_LABEL_START_SIZE (2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE) 573 #define VDEV_LABEL_END_SIZE (2 * sizeof (vdev_label_t)) 574 #define VDEV_LABELS 4 575 576 enum zio_checksum { 577 ZIO_CHECKSUM_INHERIT = 0, 578 ZIO_CHECKSUM_ON, 579 ZIO_CHECKSUM_OFF, 580 ZIO_CHECKSUM_LABEL, 581 ZIO_CHECKSUM_GANG_HEADER, 582 ZIO_CHECKSUM_ZILOG, 583 ZIO_CHECKSUM_FLETCHER_2, 584 ZIO_CHECKSUM_FLETCHER_4, 585 ZIO_CHECKSUM_SHA256, 586 ZIO_CHECKSUM_ZILOG2, 587 ZIO_CHECKSUM_NOPARITY, 588 ZIO_CHECKSUM_SHA512, 589 ZIO_CHECKSUM_SKEIN, 590 ZIO_CHECKSUM_EDONR, 591 ZIO_CHECKSUM_FUNCTIONS 592 }; 593 594 #define ZIO_CHECKSUM_ON_VALUE ZIO_CHECKSUM_FLETCHER_4 595 #define ZIO_CHECKSUM_DEFAULT ZIO_CHECKSUM_ON 596 597 enum zio_compress { 598 ZIO_COMPRESS_INHERIT = 0, 599 ZIO_COMPRESS_ON, 600 ZIO_COMPRESS_OFF, 601 ZIO_COMPRESS_LZJB, 602 ZIO_COMPRESS_EMPTY, 603 ZIO_COMPRESS_GZIP_1, 604 ZIO_COMPRESS_GZIP_2, 605 ZIO_COMPRESS_GZIP_3, 606 ZIO_COMPRESS_GZIP_4, 607 ZIO_COMPRESS_GZIP_5, 608 ZIO_COMPRESS_GZIP_6, 609 ZIO_COMPRESS_GZIP_7, 610 ZIO_COMPRESS_GZIP_8, 611 ZIO_COMPRESS_GZIP_9, 612 ZIO_COMPRESS_ZLE, 613 ZIO_COMPRESS_LZ4, 614 ZIO_COMPRESS_ZSTD, 615 ZIO_COMPRESS_FUNCTIONS 616 }; 617 618 enum zio_zstd_levels { 619 ZIO_ZSTD_LEVEL_INHERIT = 0, 620 ZIO_ZSTD_LEVEL_1, 621 #define ZIO_ZSTD_LEVEL_MIN ZIO_ZSTD_LEVEL_1 622 ZIO_ZSTD_LEVEL_2, 623 ZIO_ZSTD_LEVEL_3, 624 #define ZIO_ZSTD_LEVEL_DEFAULT ZIO_ZSTD_LEVEL_3 625 ZIO_ZSTD_LEVEL_4, 626 ZIO_ZSTD_LEVEL_5, 627 ZIO_ZSTD_LEVEL_6, 628 ZIO_ZSTD_LEVEL_7, 629 ZIO_ZSTD_LEVEL_8, 630 ZIO_ZSTD_LEVEL_9, 631 ZIO_ZSTD_LEVEL_10, 632 ZIO_ZSTD_LEVEL_11, 633 ZIO_ZSTD_LEVEL_12, 634 ZIO_ZSTD_LEVEL_13, 635 ZIO_ZSTD_LEVEL_14, 636 ZIO_ZSTD_LEVEL_15, 637 ZIO_ZSTD_LEVEL_16, 638 ZIO_ZSTD_LEVEL_17, 639 ZIO_ZSTD_LEVEL_18, 640 ZIO_ZSTD_LEVEL_19, 641 #define ZIO_ZSTD_LEVEL_MAX ZIO_ZSTD_LEVEL_19 642 ZIO_ZSTD_LEVEL_RESERVE = 101, /* Leave room for new positive levels */ 643 ZIO_ZSTD_LEVEL_FAST, /* Fast levels are negative */ 644 ZIO_ZSTD_LEVEL_FAST_1, 645 #define ZIO_ZSTD_LEVEL_FAST_DEFAULT ZIO_ZSTD_LEVEL_FAST_1 646 ZIO_ZSTD_LEVEL_FAST_2, 647 ZIO_ZSTD_LEVEL_FAST_3, 648 ZIO_ZSTD_LEVEL_FAST_4, 649 ZIO_ZSTD_LEVEL_FAST_5, 650 ZIO_ZSTD_LEVEL_FAST_6, 651 ZIO_ZSTD_LEVEL_FAST_7, 652 ZIO_ZSTD_LEVEL_FAST_8, 653 ZIO_ZSTD_LEVEL_FAST_9, 654 ZIO_ZSTD_LEVEL_FAST_10, 655 ZIO_ZSTD_LEVEL_FAST_20, 656 ZIO_ZSTD_LEVEL_FAST_30, 657 ZIO_ZSTD_LEVEL_FAST_40, 658 ZIO_ZSTD_LEVEL_FAST_50, 659 ZIO_ZSTD_LEVEL_FAST_60, 660 ZIO_ZSTD_LEVEL_FAST_70, 661 ZIO_ZSTD_LEVEL_FAST_80, 662 ZIO_ZSTD_LEVEL_FAST_90, 663 ZIO_ZSTD_LEVEL_FAST_100, 664 ZIO_ZSTD_LEVEL_FAST_500, 665 ZIO_ZSTD_LEVEL_FAST_1000, 666 #define ZIO_ZSTD_LEVEL_FAST_MAX ZIO_ZSTD_LEVEL_FAST_1000 667 ZIO_ZSTD_LEVEL_AUTO = 251, /* Reserved for future use */ 668 ZIO_ZSTD_LEVEL_LEVELS 669 }; 670 671 #define ZIO_COMPRESS_ON_VALUE ZIO_COMPRESS_LZJB 672 #define ZIO_COMPRESS_DEFAULT ZIO_COMPRESS_OFF 673 674 /* nvlist pack encoding */ 675 #define NV_ENCODE_NATIVE 0 676 #define NV_ENCODE_XDR 1 677 678 typedef enum { 679 DATA_TYPE_UNKNOWN = 0, 680 DATA_TYPE_BOOLEAN, 681 DATA_TYPE_BYTE, 682 DATA_TYPE_INT16, 683 DATA_TYPE_UINT16, 684 DATA_TYPE_INT32, 685 DATA_TYPE_UINT32, 686 DATA_TYPE_INT64, 687 DATA_TYPE_UINT64, 688 DATA_TYPE_STRING, 689 DATA_TYPE_BYTE_ARRAY, 690 DATA_TYPE_INT16_ARRAY, 691 DATA_TYPE_UINT16_ARRAY, 692 DATA_TYPE_INT32_ARRAY, 693 DATA_TYPE_UINT32_ARRAY, 694 DATA_TYPE_INT64_ARRAY, 695 DATA_TYPE_UINT64_ARRAY, 696 DATA_TYPE_STRING_ARRAY, 697 DATA_TYPE_HRTIME, 698 DATA_TYPE_NVLIST, 699 DATA_TYPE_NVLIST_ARRAY, 700 DATA_TYPE_BOOLEAN_VALUE, 701 DATA_TYPE_INT8, 702 DATA_TYPE_UINT8, 703 DATA_TYPE_BOOLEAN_ARRAY, 704 DATA_TYPE_INT8_ARRAY, 705 DATA_TYPE_UINT8_ARRAY 706 } data_type_t; 707 708 /* 709 * On-disk version number. 710 */ 711 #define SPA_VERSION_1 1ULL 712 #define SPA_VERSION_2 2ULL 713 #define SPA_VERSION_3 3ULL 714 #define SPA_VERSION_4 4ULL 715 #define SPA_VERSION_5 5ULL 716 #define SPA_VERSION_6 6ULL 717 #define SPA_VERSION_7 7ULL 718 #define SPA_VERSION_8 8ULL 719 #define SPA_VERSION_9 9ULL 720 #define SPA_VERSION_10 10ULL 721 #define SPA_VERSION_11 11ULL 722 #define SPA_VERSION_12 12ULL 723 #define SPA_VERSION_13 13ULL 724 #define SPA_VERSION_14 14ULL 725 #define SPA_VERSION_15 15ULL 726 #define SPA_VERSION_16 16ULL 727 #define SPA_VERSION_17 17ULL 728 #define SPA_VERSION_18 18ULL 729 #define SPA_VERSION_19 19ULL 730 #define SPA_VERSION_20 20ULL 731 #define SPA_VERSION_21 21ULL 732 #define SPA_VERSION_22 22ULL 733 #define SPA_VERSION_23 23ULL 734 #define SPA_VERSION_24 24ULL 735 #define SPA_VERSION_25 25ULL 736 #define SPA_VERSION_26 26ULL 737 #define SPA_VERSION_27 27ULL 738 #define SPA_VERSION_28 28ULL 739 #define SPA_VERSION_5000 5000ULL 740 741 /* 742 * When bumping up SPA_VERSION, make sure GRUB ZFS understands the on-disk 743 * format change. Go to usr/src/grub/grub-0.97/stage2/{zfs-include/, fsys_zfs*}, 744 * and do the appropriate changes. Also bump the version number in 745 * usr/src/grub/capability. 746 */ 747 #define SPA_VERSION SPA_VERSION_5000 748 #define SPA_VERSION_STRING "5000" 749 750 /* 751 * Symbolic names for the changes that caused a SPA_VERSION switch. 752 * Used in the code when checking for presence or absence of a feature. 753 * Feel free to define multiple symbolic names for each version if there 754 * were multiple changes to on-disk structures during that version. 755 * 756 * NOTE: When checking the current SPA_VERSION in your code, be sure 757 * to use spa_version() since it reports the version of the 758 * last synced uberblock. Checking the in-flight version can 759 * be dangerous in some cases. 760 */ 761 #define SPA_VERSION_INITIAL SPA_VERSION_1 762 #define SPA_VERSION_DITTO_BLOCKS SPA_VERSION_2 763 #define SPA_VERSION_SPARES SPA_VERSION_3 764 #define SPA_VERSION_RAID6 SPA_VERSION_3 765 #define SPA_VERSION_BPLIST_ACCOUNT SPA_VERSION_3 766 #define SPA_VERSION_RAIDZ_DEFLATE SPA_VERSION_3 767 #define SPA_VERSION_DNODE_BYTES SPA_VERSION_3 768 #define SPA_VERSION_ZPOOL_HISTORY SPA_VERSION_4 769 #define SPA_VERSION_GZIP_COMPRESSION SPA_VERSION_5 770 #define SPA_VERSION_BOOTFS SPA_VERSION_6 771 #define SPA_VERSION_SLOGS SPA_VERSION_7 772 #define SPA_VERSION_DELEGATED_PERMS SPA_VERSION_8 773 #define SPA_VERSION_FUID SPA_VERSION_9 774 #define SPA_VERSION_REFRESERVATION SPA_VERSION_9 775 #define SPA_VERSION_REFQUOTA SPA_VERSION_9 776 #define SPA_VERSION_UNIQUE_ACCURATE SPA_VERSION_9 777 #define SPA_VERSION_L2CACHE SPA_VERSION_10 778 #define SPA_VERSION_NEXT_CLONES SPA_VERSION_11 779 #define SPA_VERSION_ORIGIN SPA_VERSION_11 780 #define SPA_VERSION_DSL_SCRUB SPA_VERSION_11 781 #define SPA_VERSION_SNAP_PROPS SPA_VERSION_12 782 #define SPA_VERSION_USED_BREAKDOWN SPA_VERSION_13 783 #define SPA_VERSION_PASSTHROUGH_X SPA_VERSION_14 784 #define SPA_VERSION_USERSPACE SPA_VERSION_15 785 #define SPA_VERSION_STMF_PROP SPA_VERSION_16 786 #define SPA_VERSION_RAIDZ3 SPA_VERSION_17 787 #define SPA_VERSION_USERREFS SPA_VERSION_18 788 #define SPA_VERSION_HOLES SPA_VERSION_19 789 #define SPA_VERSION_ZLE_COMPRESSION SPA_VERSION_20 790 #define SPA_VERSION_DEDUP SPA_VERSION_21 791 #define SPA_VERSION_RECVD_PROPS SPA_VERSION_22 792 #define SPA_VERSION_SLIM_ZIL SPA_VERSION_23 793 #define SPA_VERSION_SA SPA_VERSION_24 794 #define SPA_VERSION_SCAN SPA_VERSION_25 795 #define SPA_VERSION_DIR_CLONES SPA_VERSION_26 796 #define SPA_VERSION_DEADLISTS SPA_VERSION_26 797 #define SPA_VERSION_FAST_SNAP SPA_VERSION_27 798 #define SPA_VERSION_MULTI_REPLACE SPA_VERSION_28 799 #define SPA_VERSION_BEFORE_FEATURES SPA_VERSION_28 800 #define SPA_VERSION_FEATURES SPA_VERSION_5000 801 802 #define SPA_VERSION_IS_SUPPORTED(v) \ 803 (((v) >= SPA_VERSION_INITIAL && (v) <= SPA_VERSION_BEFORE_FEATURES) || \ 804 ((v) >= SPA_VERSION_FEATURES && (v) <= SPA_VERSION)) 805 806 /* 807 * The following are configuration names used in the nvlist describing a pool's 808 * configuration. 809 */ 810 #define ZPOOL_CONFIG_VERSION "version" 811 #define ZPOOL_CONFIG_POOL_NAME "name" 812 #define ZPOOL_CONFIG_POOL_STATE "state" 813 #define ZPOOL_CONFIG_POOL_TXG "txg" 814 #define ZPOOL_CONFIG_POOL_GUID "pool_guid" 815 #define ZPOOL_CONFIG_CREATE_TXG "create_txg" 816 #define ZPOOL_CONFIG_TOP_GUID "top_guid" 817 #define ZPOOL_CONFIG_VDEV_TREE "vdev_tree" 818 #define ZPOOL_CONFIG_TYPE "type" 819 #define ZPOOL_CONFIG_CHILDREN "children" 820 #define ZPOOL_CONFIG_ID "id" 821 #define ZPOOL_CONFIG_GUID "guid" 822 #define ZPOOL_CONFIG_INDIRECT_OBJECT "com.delphix:indirect_object" 823 #define ZPOOL_CONFIG_INDIRECT_BIRTHS "com.delphix:indirect_births" 824 #define ZPOOL_CONFIG_PREV_INDIRECT_VDEV "com.delphix:prev_indirect_vdev" 825 #define ZPOOL_CONFIG_PATH "path" 826 #define ZPOOL_CONFIG_DEVID "devid" 827 #define ZPOOL_CONFIG_METASLAB_ARRAY "metaslab_array" 828 #define ZPOOL_CONFIG_METASLAB_SHIFT "metaslab_shift" 829 #define ZPOOL_CONFIG_ASHIFT "ashift" 830 #define ZPOOL_CONFIG_ASIZE "asize" 831 #define ZPOOL_CONFIG_DTL "DTL" 832 #define ZPOOL_CONFIG_STATS "stats" 833 #define ZPOOL_CONFIG_WHOLE_DISK "whole_disk" 834 #define ZPOOL_CONFIG_ERRCOUNT "error_count" 835 #define ZPOOL_CONFIG_NOT_PRESENT "not_present" 836 #define ZPOOL_CONFIG_SPARES "spares" 837 #define ZPOOL_CONFIG_IS_SPARE "is_spare" 838 #define ZPOOL_CONFIG_NPARITY "nparity" 839 #define ZPOOL_CONFIG_HOSTID "hostid" 840 #define ZPOOL_CONFIG_HOSTNAME "hostname" 841 #define ZPOOL_CONFIG_IS_LOG "is_log" 842 #define ZPOOL_CONFIG_TIMESTAMP "timestamp" /* not stored on disk */ 843 #define ZPOOL_CONFIG_FEATURES_FOR_READ "features_for_read" 844 #define ZPOOL_CONFIG_VDEV_CHILDREN "vdev_children" 845 846 /* 847 * The persistent vdev state is stored as separate values rather than a single 848 * 'vdev_state' entry. This is because a device can be in multiple states, such 849 * as offline and degraded. 850 */ 851 #define ZPOOL_CONFIG_OFFLINE "offline" 852 #define ZPOOL_CONFIG_FAULTED "faulted" 853 #define ZPOOL_CONFIG_DEGRADED "degraded" 854 #define ZPOOL_CONFIG_REMOVED "removed" 855 #define ZPOOL_CONFIG_FRU "fru" 856 #define ZPOOL_CONFIG_AUX_STATE "aux_state" 857 858 #define VDEV_TYPE_ROOT "root" 859 #define VDEV_TYPE_MIRROR "mirror" 860 #define VDEV_TYPE_REPLACING "replacing" 861 #define VDEV_TYPE_RAIDZ "raidz" 862 #define VDEV_TYPE_DISK "disk" 863 #define VDEV_TYPE_FILE "file" 864 #define VDEV_TYPE_MISSING "missing" 865 #define VDEV_TYPE_HOLE "hole" 866 #define VDEV_TYPE_SPARE "spare" 867 #define VDEV_TYPE_LOG "log" 868 #define VDEV_TYPE_L2CACHE "l2cache" 869 #define VDEV_TYPE_INDIRECT "indirect" 870 871 /* 872 * This is needed in userland to report the minimum necessary device size. 873 */ 874 #define SPA_MINDEVSIZE (64ULL << 20) 875 876 /* 877 * The location of the pool configuration repository, shared between kernel and 878 * userland. 879 */ 880 #define ZPOOL_CACHE "/boot/zfs/zpool.cache" 881 882 /* 883 * vdev states are ordered from least to most healthy. 884 * A vdev that's CANT_OPEN or below is considered unusable. 885 */ 886 typedef enum vdev_state { 887 VDEV_STATE_UNKNOWN = 0, /* Uninitialized vdev */ 888 VDEV_STATE_CLOSED, /* Not currently open */ 889 VDEV_STATE_OFFLINE, /* Not allowed to open */ 890 VDEV_STATE_REMOVED, /* Explicitly removed from system */ 891 VDEV_STATE_CANT_OPEN, /* Tried to open, but failed */ 892 VDEV_STATE_FAULTED, /* External request to fault device */ 893 VDEV_STATE_DEGRADED, /* Replicated vdev with unhealthy kids */ 894 VDEV_STATE_HEALTHY /* Presumed good */ 895 } vdev_state_t; 896 897 /* 898 * vdev aux states. When a vdev is in the CANT_OPEN state, the aux field 899 * of the vdev stats structure uses these constants to distinguish why. 900 */ 901 typedef enum vdev_aux { 902 VDEV_AUX_NONE, /* no error */ 903 VDEV_AUX_OPEN_FAILED, /* ldi_open_*() or vn_open() failed */ 904 VDEV_AUX_CORRUPT_DATA, /* bad label or disk contents */ 905 VDEV_AUX_NO_REPLICAS, /* insufficient number of replicas */ 906 VDEV_AUX_BAD_GUID_SUM, /* vdev guid sum doesn't match */ 907 VDEV_AUX_TOO_SMALL, /* vdev size is too small */ 908 VDEV_AUX_BAD_LABEL, /* the label is OK but invalid */ 909 VDEV_AUX_VERSION_NEWER, /* on-disk version is too new */ 910 VDEV_AUX_VERSION_OLDER, /* on-disk version is too old */ 911 VDEV_AUX_SPARED /* hot spare used in another pool */ 912 } vdev_aux_t; 913 914 /* 915 * pool state. The following states are written to disk as part of the normal 916 * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE. The remaining states are 917 * software abstractions used at various levels to communicate pool state. 918 */ 919 typedef enum pool_state { 920 POOL_STATE_ACTIVE = 0, /* In active use */ 921 POOL_STATE_EXPORTED, /* Explicitly exported */ 922 POOL_STATE_DESTROYED, /* Explicitly destroyed */ 923 POOL_STATE_SPARE, /* Reserved for hot spare use */ 924 POOL_STATE_UNINITIALIZED, /* Internal spa_t state */ 925 POOL_STATE_UNAVAIL, /* Internal libzfs state */ 926 POOL_STATE_POTENTIALLY_ACTIVE /* Internal libzfs state */ 927 } pool_state_t; 928 929 /* 930 * The uberblock version is incremented whenever an incompatible on-disk 931 * format change is made to the SPA, DMU, or ZAP. 932 * 933 * Note: the first two fields should never be moved. When a storage pool 934 * is opened, the uberblock must be read off the disk before the version 935 * can be checked. If the ub_version field is moved, we may not detect 936 * version mismatch. If the ub_magic field is moved, applications that 937 * expect the magic number in the first word won't work. 938 */ 939 #define UBERBLOCK_MAGIC 0x00bab10c /* oo-ba-bloc! */ 940 #define UBERBLOCK_SHIFT 10 /* up to 1K */ 941 942 #define MMP_MAGIC 0xa11cea11 /* all-see-all */ 943 944 #define MMP_INTERVAL_VALID_BIT 0x01 945 #define MMP_SEQ_VALID_BIT 0x02 946 #define MMP_FAIL_INT_VALID_BIT 0x04 947 948 #define MMP_VALID(ubp) (ubp->ub_magic == UBERBLOCK_MAGIC && \ 949 ubp->ub_mmp_magic == MMP_MAGIC) 950 #define MMP_INTERVAL_VALID(ubp) (MMP_VALID(ubp) && (ubp->ub_mmp_config & \ 951 MMP_INTERVAL_VALID_BIT)) 952 #define MMP_SEQ_VALID(ubp) (MMP_VALID(ubp) && (ubp->ub_mmp_config & \ 953 MMP_SEQ_VALID_BIT)) 954 #define MMP_FAIL_INT_VALID(ubp) (MMP_VALID(ubp) && (ubp->ub_mmp_config & \ 955 MMP_FAIL_INT_VALID_BIT)) 956 957 #define MMP_INTERVAL(ubp) ((ubp->ub_mmp_config & 0x00000000FFFFFF00) \ 958 >> 8) 959 #define MMP_SEQ(ubp) ((ubp->ub_mmp_config & 0x0000FFFF00000000) \ 960 >> 32) 961 #define MMP_FAIL_INT(ubp) ((ubp->ub_mmp_config & 0xFFFF000000000000) \ 962 >> 48) 963 964 typedef struct uberblock { 965 uint64_t ub_magic; /* UBERBLOCK_MAGIC */ 966 uint64_t ub_version; /* SPA_VERSION */ 967 uint64_t ub_txg; /* txg of last sync */ 968 uint64_t ub_guid_sum; /* sum of all vdev guids */ 969 uint64_t ub_timestamp; /* UTC time of last sync */ 970 blkptr_t ub_rootbp; /* MOS objset_phys_t */ 971 /* highest SPA_VERSION supported by software that wrote this txg */ 972 uint64_t ub_software_version; 973 /* Maybe missing in uberblocks we read, but always written */ 974 uint64_t ub_mmp_magic; 975 /* 976 * If ub_mmp_delay == 0 and ub_mmp_magic is valid, MMP is off. 977 * Otherwise, nanosec since last MMP write. 978 */ 979 uint64_t ub_mmp_delay; 980 981 /* 982 * The ub_mmp_config contains the multihost write interval, multihost 983 * fail intervals, sequence number for sub-second granularity, and 984 * valid bit mask. This layout is as follows: 985 * 986 * 64 56 48 40 32 24 16 8 0 987 * +-------+-------+-------+-------+-------+-------+-------+-------+ 988 * 0 | Fail Intervals| Seq | Write Interval (ms) | VALID | 989 * +-------+-------+-------+-------+-------+-------+-------+-------+ 990 * 991 * This allows a write_interval of (2^24/1000)s, over 4.5 hours 992 * 993 * VALID Bits: 994 * - 0x01 - Write Interval (ms) 995 * - 0x02 - Sequence number exists 996 * - 0x04 - Fail Intervals 997 * - 0xf8 - Reserved 998 */ 999 uint64_t ub_mmp_config; 1000 1001 /* 1002 * ub_checkpoint_txg indicates two things about the current uberblock: 1003 * 1004 * 1] If it is not zero then this uberblock is a checkpoint. If it is 1005 * zero, then this uberblock is not a checkpoint. 1006 * 1007 * 2] On checkpointed uberblocks, the value of ub_checkpoint_txg is 1008 * the ub_txg that the uberblock had at the time we moved it to 1009 * the MOS config. 1010 * 1011 * The field is set when we checkpoint the uberblock and continues to 1012 * hold that value even after we've rewound (unlike the ub_txg that 1013 * is reset to a higher value). 1014 * 1015 * Besides checks used to determine whether we are reopening the 1016 * pool from a checkpointed uberblock [see spa_ld_select_uberblock()], 1017 * the value of the field is used to determine which ZIL blocks have 1018 * been allocated according to the ms_sm when we are rewinding to a 1019 * checkpoint. Specifically, if blk_birth > ub_checkpoint_txg, then 1020 * the ZIL block is not allocated [see uses of spa_min_claim_txg()]. 1021 */ 1022 uint64_t ub_checkpoint_txg; 1023 } uberblock_t; 1024 1025 /* 1026 * Flags. 1027 */ 1028 #define DNODE_MUST_BE_ALLOCATED 1 1029 #define DNODE_MUST_BE_FREE 2 1030 1031 /* 1032 * Fixed constants. 1033 */ 1034 #define DNODE_SHIFT 9 /* 512 bytes */ 1035 #define DN_MIN_INDBLKSHIFT 12 /* 4k */ 1036 #define DN_MAX_INDBLKSHIFT 17 /* 128k */ 1037 #define DNODE_BLOCK_SHIFT 14 /* 16k */ 1038 #define DNODE_CORE_SIZE 64 /* 64 bytes for dnode sans blkptrs */ 1039 #define DN_MAX_OBJECT_SHIFT 48 /* 256 trillion (zfs_fid_t limit) */ 1040 #define DN_MAX_OFFSET_SHIFT 64 /* 2^64 bytes in a dnode */ 1041 1042 /* 1043 * Derived constants. 1044 */ 1045 #define DNODE_MIN_SIZE (1 << DNODE_SHIFT) 1046 #define DNODE_MAX_SIZE (1 << DNODE_BLOCK_SHIFT) 1047 #define DNODE_BLOCK_SIZE (1 << DNODE_BLOCK_SHIFT) 1048 #define DNODE_MIN_SLOTS (DNODE_MIN_SIZE >> DNODE_SHIFT) 1049 #define DNODE_MAX_SLOTS (DNODE_MAX_SIZE >> DNODE_SHIFT) 1050 #define DN_BONUS_SIZE(dnsize) ((dnsize) - DNODE_CORE_SIZE - \ 1051 (1 << SPA_BLKPTRSHIFT)) 1052 #define DN_SLOTS_TO_BONUSLEN(slots) DN_BONUS_SIZE((slots) << DNODE_SHIFT) 1053 #define DN_OLD_MAX_BONUSLEN (DN_BONUS_SIZE(DNODE_MIN_SIZE)) 1054 #define DN_MAX_NBLKPTR ((DNODE_MIN_SIZE - DNODE_CORE_SIZE) >> \ 1055 SPA_BLKPTRSHIFT) 1056 #define DN_MAX_OBJECT (1ULL << DN_MAX_OBJECT_SHIFT) 1057 #define DN_ZERO_BONUSLEN (DN_BONUS_SIZE(DNODE_MAX_SIZE) + 1) 1058 1059 #define DNODES_PER_BLOCK_SHIFT (DNODE_BLOCK_SHIFT - DNODE_SHIFT) 1060 #define DNODES_PER_BLOCK (1ULL << DNODES_PER_BLOCK_SHIFT) 1061 #define DNODES_PER_LEVEL_SHIFT (DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT) 1062 1063 /* The +2 here is a cheesy way to round up */ 1064 #define DN_MAX_LEVELS (2 + ((DN_MAX_OFFSET_SHIFT - SPA_MINBLOCKSHIFT) / \ 1065 (DN_MIN_INDBLKSHIFT - SPA_BLKPTRSHIFT))) 1066 1067 #define DN_BONUS(dnp) ((void*)((dnp)->dn_bonus + \ 1068 (((dnp)->dn_nblkptr - 1) * sizeof (blkptr_t)))) 1069 1070 #define DN_USED_BYTES(dnp) (((dnp)->dn_flags & DNODE_FLAG_USED_BYTES) ? \ 1071 (dnp)->dn_used : (dnp)->dn_used << SPA_MINBLOCKSHIFT) 1072 1073 #define EPB(blkshift, typeshift) (1 << (blkshift - typeshift)) 1074 1075 /* Is dn_used in bytes? if not, it's in multiples of SPA_MINBLOCKSIZE */ 1076 #define DNODE_FLAG_USED_BYTES (1<<0) 1077 #define DNODE_FLAG_USERUSED_ACCOUNTED (1<<1) 1078 1079 /* Does dnode have a SA spill blkptr in bonus? */ 1080 #define DNODE_FLAG_SPILL_BLKPTR (1<<2) 1081 1082 typedef struct dnode_phys { 1083 uint8_t dn_type; /* dmu_object_type_t */ 1084 uint8_t dn_indblkshift; /* ln2(indirect block size) */ 1085 uint8_t dn_nlevels; /* 1=dn_blkptr->data blocks */ 1086 uint8_t dn_nblkptr; /* length of dn_blkptr */ 1087 uint8_t dn_bonustype; /* type of data in bonus buffer */ 1088 uint8_t dn_checksum; /* ZIO_CHECKSUM type */ 1089 uint8_t dn_compress; /* ZIO_COMPRESS type */ 1090 uint8_t dn_flags; /* DNODE_FLAG_* */ 1091 uint16_t dn_datablkszsec; /* data block size in 512b sectors */ 1092 uint16_t dn_bonuslen; /* length of dn_bonus */ 1093 uint8_t dn_extra_slots; /* # of subsequent slots consumed */ 1094 uint8_t dn_pad2[3]; 1095 1096 /* accounting is protected by dn_dirty_mtx */ 1097 uint64_t dn_maxblkid; /* largest allocated block ID */ 1098 uint64_t dn_used; /* bytes (or sectors) of disk space */ 1099 1100 uint64_t dn_pad3[4]; 1101 1102 /* 1103 * The tail region is 448 bytes for a 512 byte dnode, and 1104 * correspondingly larger for larger dnode sizes. The spill 1105 * block pointer, when present, is always at the end of the tail 1106 * region. There are three ways this space may be used, using 1107 * a 512 byte dnode for this diagram: 1108 * 1109 * 0 64 128 192 256 320 384 448 (offset) 1110 * +---------------+---------------+---------------+-------+ 1111 * | dn_blkptr[0] | dn_blkptr[1] | dn_blkptr[2] | / | 1112 * +---------------+---------------+---------------+-------+ 1113 * | dn_blkptr[0] | dn_bonus[0..319] | 1114 * +---------------+-----------------------+---------------+ 1115 * | dn_blkptr[0] | dn_bonus[0..191] | dn_spill | 1116 * +---------------+-----------------------+---------------+ 1117 */ 1118 union { 1119 blkptr_t dn_blkptr[1+DN_OLD_MAX_BONUSLEN/sizeof (blkptr_t)]; 1120 struct { 1121 blkptr_t __dn_ignore1; 1122 uint8_t dn_bonus[DN_OLD_MAX_BONUSLEN]; 1123 }; 1124 struct { 1125 blkptr_t __dn_ignore2; 1126 uint8_t __dn_ignore3[DN_OLD_MAX_BONUSLEN - 1127 sizeof (blkptr_t)]; 1128 blkptr_t dn_spill; 1129 }; 1130 }; 1131 } dnode_phys_t; 1132 1133 #define DN_SPILL_BLKPTR(dnp) (blkptr_t *)((char *)(dnp) + \ 1134 (((dnp)->dn_extra_slots + 1) << DNODE_SHIFT) - (1 << SPA_BLKPTRSHIFT)) 1135 1136 typedef enum dmu_object_byteswap { 1137 DMU_BSWAP_UINT8, 1138 DMU_BSWAP_UINT16, 1139 DMU_BSWAP_UINT32, 1140 DMU_BSWAP_UINT64, 1141 DMU_BSWAP_ZAP, 1142 DMU_BSWAP_DNODE, 1143 DMU_BSWAP_OBJSET, 1144 DMU_BSWAP_ZNODE, 1145 DMU_BSWAP_OLDACL, 1146 DMU_BSWAP_ACL, 1147 /* 1148 * Allocating a new byteswap type number makes the on-disk format 1149 * incompatible with any other format that uses the same number. 1150 * 1151 * Data can usually be structured to work with one of the 1152 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types. 1153 */ 1154 DMU_BSWAP_NUMFUNCS 1155 } dmu_object_byteswap_t; 1156 1157 #define DMU_OT_NEWTYPE 0x80 1158 #define DMU_OT_METADATA 0x40 1159 #define DMU_OT_BYTESWAP_MASK 0x3f 1160 1161 /* 1162 * Defines a uint8_t object type. Object types specify if the data 1163 * in the object is metadata (boolean) and how to byteswap the data 1164 * (dmu_object_byteswap_t). 1165 */ 1166 #define DMU_OT(byteswap, metadata) \ 1167 (DMU_OT_NEWTYPE | \ 1168 ((metadata) ? DMU_OT_METADATA : 0) | \ 1169 ((byteswap) & DMU_OT_BYTESWAP_MASK)) 1170 1171 typedef enum dmu_object_type { 1172 DMU_OT_NONE, 1173 /* general: */ 1174 DMU_OT_OBJECT_DIRECTORY, /* ZAP */ 1175 DMU_OT_OBJECT_ARRAY, /* UINT64 */ 1176 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ 1177 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ 1178 DMU_OT_BPLIST, /* UINT64 */ 1179 DMU_OT_BPLIST_HDR, /* UINT64 */ 1180 /* spa: */ 1181 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ 1182 DMU_OT_SPACE_MAP, /* UINT64 */ 1183 /* zil: */ 1184 DMU_OT_INTENT_LOG, /* UINT64 */ 1185 /* dmu: */ 1186 DMU_OT_DNODE, /* DNODE */ 1187 DMU_OT_OBJSET, /* OBJSET */ 1188 /* dsl: */ 1189 DMU_OT_DSL_DIR, /* UINT64 */ 1190 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ 1191 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ 1192 DMU_OT_DSL_PROPS, /* ZAP */ 1193 DMU_OT_DSL_DATASET, /* UINT64 */ 1194 /* zpl: */ 1195 DMU_OT_ZNODE, /* ZNODE */ 1196 DMU_OT_OLDACL, /* Old ACL */ 1197 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ 1198 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ 1199 DMU_OT_MASTER_NODE, /* ZAP */ 1200 DMU_OT_UNLINKED_SET, /* ZAP */ 1201 /* zvol: */ 1202 DMU_OT_ZVOL, /* UINT8 */ 1203 DMU_OT_ZVOL_PROP, /* ZAP */ 1204 /* other; for testing only! */ 1205 DMU_OT_PLAIN_OTHER, /* UINT8 */ 1206 DMU_OT_UINT64_OTHER, /* UINT64 */ 1207 DMU_OT_ZAP_OTHER, /* ZAP */ 1208 /* new object types: */ 1209 DMU_OT_ERROR_LOG, /* ZAP */ 1210 DMU_OT_SPA_HISTORY, /* UINT8 */ 1211 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ 1212 DMU_OT_POOL_PROPS, /* ZAP */ 1213 DMU_OT_DSL_PERMS, /* ZAP */ 1214 DMU_OT_ACL, /* ACL */ 1215 DMU_OT_SYSACL, /* SYSACL */ 1216 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */ 1217 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */ 1218 DMU_OT_NEXT_CLONES, /* ZAP */ 1219 DMU_OT_SCAN_QUEUE, /* ZAP */ 1220 DMU_OT_USERGROUP_USED, /* ZAP */ 1221 DMU_OT_USERGROUP_QUOTA, /* ZAP */ 1222 DMU_OT_USERREFS, /* ZAP */ 1223 DMU_OT_DDT_ZAP, /* ZAP */ 1224 DMU_OT_DDT_STATS, /* ZAP */ 1225 DMU_OT_SA, /* System attr */ 1226 DMU_OT_SA_MASTER_NODE, /* ZAP */ 1227 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */ 1228 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */ 1229 DMU_OT_SCAN_XLATE, /* ZAP */ 1230 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */ 1231 DMU_OT_NUMTYPES, 1232 1233 /* 1234 * Names for valid types declared with DMU_OT(). 1235 */ 1236 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE), 1237 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE), 1238 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE), 1239 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE), 1240 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE), 1241 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE), 1242 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE), 1243 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE), 1244 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE), 1245 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE) 1246 } dmu_object_type_t; 1247 1248 typedef enum dmu_objset_type { 1249 DMU_OST_NONE, 1250 DMU_OST_META, 1251 DMU_OST_ZFS, 1252 DMU_OST_ZVOL, 1253 DMU_OST_OTHER, /* For testing only! */ 1254 DMU_OST_ANY, /* Be careful! */ 1255 DMU_OST_NUMTYPES 1256 } dmu_objset_type_t; 1257 1258 #define ZAP_MAXVALUELEN (1024 * 8) 1259 1260 /* 1261 * header for all bonus and spill buffers. 1262 * The header has a fixed portion with a variable number 1263 * of "lengths" depending on the number of variable sized 1264 * attribues which are determined by the "layout number" 1265 */ 1266 1267 #define SA_MAGIC 0x2F505A /* ZFS SA */ 1268 typedef struct sa_hdr_phys { 1269 uint32_t sa_magic; 1270 uint16_t sa_layout_info; /* Encoded with hdrsize and layout number */ 1271 uint16_t sa_lengths[1]; /* optional sizes for variable length attrs */ 1272 /* ... Data follows the lengths. */ 1273 } sa_hdr_phys_t; 1274 1275 /* 1276 * sa_hdr_phys -> sa_layout_info 1277 * 1278 * 16 10 0 1279 * +--------+-------+ 1280 * | hdrsz |layout | 1281 * +--------+-------+ 1282 * 1283 * Bits 0-10 are the layout number 1284 * Bits 11-16 are the size of the header. 1285 * The hdrsize is the number * 8 1286 * 1287 * For example. 1288 * hdrsz of 1 ==> 8 byte header 1289 * 2 ==> 16 byte header 1290 * 1291 */ 1292 1293 #define SA_HDR_LAYOUT_NUM(hdr) BF32_GET(hdr->sa_layout_info, 0, 10) 1294 #define SA_HDR_SIZE(hdr) BF32_GET_SB(hdr->sa_layout_info, 10, 16, 3, 0) 1295 #define SA_HDR_LAYOUT_INFO_ENCODE(x, num, size) \ 1296 { \ 1297 BF32_SET_SB(x, 10, 6, 3, 0, size); \ 1298 BF32_SET(x, 0, 10, num); \ 1299 } 1300 1301 #define SA_MODE_OFFSET 0 1302 #define SA_SIZE_OFFSET 8 1303 #define SA_GEN_OFFSET 16 1304 #define SA_UID_OFFSET 24 1305 #define SA_GID_OFFSET 32 1306 #define SA_PARENT_OFFSET 40 1307 #define SA_SYMLINK_OFFSET 160 1308 1309 #define ZIO_OBJSET_MAC_LEN 32 1310 1311 /* 1312 * Intent log header - this on disk structure holds fields to manage 1313 * the log. All fields are 64 bit to easily handle cross architectures. 1314 */ 1315 typedef struct zil_header { 1316 uint64_t zh_claim_txg; /* txg in which log blocks were claimed */ 1317 uint64_t zh_replay_seq; /* highest replayed sequence number */ 1318 blkptr_t zh_log; /* log chain */ 1319 uint64_t zh_claim_seq; /* highest claimed sequence number */ 1320 uint64_t zh_pad[5]; 1321 } zil_header_t; 1322 1323 #define OBJSET_PHYS_SIZE_V2 2048 1324 #define OBJSET_PHYS_SIZE_V3 4096 1325 1326 typedef struct objset_phys { 1327 dnode_phys_t os_meta_dnode; 1328 zil_header_t os_zil_header; 1329 uint64_t os_type; 1330 uint64_t os_flags; 1331 uint8_t os_portable_mac[ZIO_OBJSET_MAC_LEN]; 1332 uint8_t os_local_mac[ZIO_OBJSET_MAC_LEN]; 1333 char os_pad0[OBJSET_PHYS_SIZE_V2 - sizeof (dnode_phys_t)*3 - 1334 sizeof (zil_header_t) - sizeof (uint64_t)*2 - 1335 2*ZIO_OBJSET_MAC_LEN]; 1336 dnode_phys_t os_userused_dnode; 1337 dnode_phys_t os_groupused_dnode; 1338 dnode_phys_t os_projectused_dnode; 1339 char os_pad1[OBJSET_PHYS_SIZE_V3 - OBJSET_PHYS_SIZE_V2 - 1340 sizeof (dnode_phys_t)]; 1341 } objset_phys_t; 1342 1343 typedef struct dsl_dir_phys { 1344 uint64_t dd_creation_time; /* not actually used */ 1345 uint64_t dd_head_dataset_obj; 1346 uint64_t dd_parent_obj; 1347 uint64_t dd_clone_parent_obj; 1348 uint64_t dd_child_dir_zapobj; 1349 /* 1350 * how much space our children are accounting for; for leaf 1351 * datasets, == physical space used by fs + snaps 1352 */ 1353 uint64_t dd_used_bytes; 1354 uint64_t dd_compressed_bytes; 1355 uint64_t dd_uncompressed_bytes; 1356 /* Administrative quota setting */ 1357 uint64_t dd_quota; 1358 /* Administrative reservation setting */ 1359 uint64_t dd_reserved; 1360 uint64_t dd_props_zapobj; 1361 uint64_t dd_pad[21]; /* pad out to 256 bytes for good measure */ 1362 } dsl_dir_phys_t; 1363 1364 typedef struct dsl_dataset_phys { 1365 uint64_t ds_dir_obj; 1366 uint64_t ds_prev_snap_obj; 1367 uint64_t ds_prev_snap_txg; 1368 uint64_t ds_next_snap_obj; 1369 uint64_t ds_snapnames_zapobj; /* zap obj of snaps; ==0 for snaps */ 1370 uint64_t ds_num_children; /* clone/snap children; ==0 for head */ 1371 uint64_t ds_creation_time; /* seconds since 1970 */ 1372 uint64_t ds_creation_txg; 1373 uint64_t ds_deadlist_obj; 1374 uint64_t ds_used_bytes; 1375 uint64_t ds_compressed_bytes; 1376 uint64_t ds_uncompressed_bytes; 1377 uint64_t ds_unique_bytes; /* only relevant to snapshots */ 1378 /* 1379 * The ds_fsid_guid is a 56-bit ID that can change to avoid 1380 * collisions. The ds_guid is a 64-bit ID that will never 1381 * change, so there is a small probability that it will collide. 1382 */ 1383 uint64_t ds_fsid_guid; 1384 uint64_t ds_guid; 1385 uint64_t ds_flags; 1386 blkptr_t ds_bp; 1387 uint64_t ds_pad[8]; /* pad out to 320 bytes for good measure */ 1388 } dsl_dataset_phys_t; 1389 1390 /* 1391 * The names of zap entries in the DIRECTORY_OBJECT of the MOS. 1392 */ 1393 #define DMU_POOL_DIRECTORY_OBJECT 1 1394 #define DMU_POOL_CONFIG "config" 1395 #define DMU_POOL_FEATURES_FOR_READ "features_for_read" 1396 #define DMU_POOL_ROOT_DATASET "root_dataset" 1397 #define DMU_POOL_SYNC_BPLIST "sync_bplist" 1398 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" 1399 #define DMU_POOL_ERRLOG_LAST "errlog_last" 1400 #define DMU_POOL_SPARES "spares" 1401 #define DMU_POOL_DEFLATE "deflate" 1402 #define DMU_POOL_HISTORY "history" 1403 #define DMU_POOL_PROPS "pool_props" 1404 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt" 1405 #define DMU_POOL_REMOVING "com.delphix:removing" 1406 #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj" 1407 #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect" 1408 #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint" 1409 1410 #define ZAP_MAGIC 0x2F52AB2ABULL 1411 1412 #define FZAP_BLOCK_SHIFT(zap) ((zap)->zap_block_shift) 1413 1414 #define ZAP_MAXCD (uint32_t)(-1) 1415 #define ZAP_HASHBITS 28 1416 #define MZAP_ENT_LEN 64 1417 #define MZAP_NAME_LEN (MZAP_ENT_LEN - 8 - 4 - 2) 1418 #define MZAP_MAX_BLKSZ SPA_OLD_MAXBLOCKSIZE 1419 1420 typedef struct mzap_ent_phys { 1421 uint64_t mze_value; 1422 uint32_t mze_cd; 1423 uint16_t mze_pad; /* in case we want to chain them someday */ 1424 char mze_name[MZAP_NAME_LEN]; 1425 } mzap_ent_phys_t; 1426 1427 typedef struct mzap_phys { 1428 uint64_t mz_block_type; /* ZBT_MICRO */ 1429 uint64_t mz_salt; 1430 uint64_t mz_normflags; 1431 uint64_t mz_pad[5]; 1432 mzap_ent_phys_t mz_chunk[1]; 1433 /* actually variable size depending on block size */ 1434 } mzap_phys_t; 1435 1436 /* 1437 * The (fat) zap is stored in one object. It is an array of 1438 * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of: 1439 * 1440 * ptrtbl fits in first block: 1441 * [zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ... 1442 * 1443 * ptrtbl too big for first block: 1444 * [zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ... 1445 * 1446 */ 1447 1448 #define ZBT_LEAF ((1ULL << 63) + 0) 1449 #define ZBT_HEADER ((1ULL << 63) + 1) 1450 #define ZBT_MICRO ((1ULL << 63) + 3) 1451 /* any other values are ptrtbl blocks */ 1452 1453 /* 1454 * the embedded pointer table takes up half a block: 1455 * block size / entry size (2^3) / 2 1456 */ 1457 #define ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1) 1458 1459 /* 1460 * The embedded pointer table starts half-way through the block. Since 1461 * the pointer table itself is half the block, it starts at (64-bit) 1462 * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)). 1463 */ 1464 #define ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \ 1465 ((uint64_t *)(zap)->zap_phys) \ 1466 [(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))] 1467 1468 /* 1469 * TAKE NOTE: 1470 * If zap_phys_t is modified, zap_byteswap() must be modified. 1471 */ 1472 typedef struct zap_phys { 1473 uint64_t zap_block_type; /* ZBT_HEADER */ 1474 uint64_t zap_magic; /* ZAP_MAGIC */ 1475 1476 struct zap_table_phys { 1477 uint64_t zt_blk; /* starting block number */ 1478 uint64_t zt_numblks; /* number of blocks */ 1479 uint64_t zt_shift; /* bits to index it */ 1480 uint64_t zt_nextblk; /* next (larger) copy start block */ 1481 uint64_t zt_blks_copied; /* number source blocks copied */ 1482 } zap_ptrtbl; 1483 1484 uint64_t zap_freeblk; /* the next free block */ 1485 uint64_t zap_num_leafs; /* number of leafs */ 1486 uint64_t zap_num_entries; /* number of entries */ 1487 uint64_t zap_salt; /* salt to stir into hash function */ 1488 uint64_t zap_normflags; /* flags for u8_textprep_str() */ 1489 uint64_t zap_flags; /* zap_flags_t */ 1490 /* 1491 * This structure is followed by padding, and then the embedded 1492 * pointer table. The embedded pointer table takes up second 1493 * half of the block. It is accessed using the 1494 * ZAP_EMBEDDED_PTRTBL_ENT() macro. 1495 */ 1496 } zap_phys_t; 1497 1498 typedef struct zap_table_phys zap_table_phys_t; 1499 1500 struct spa; 1501 typedef struct fat_zap { 1502 int zap_block_shift; /* block size shift */ 1503 zap_phys_t *zap_phys; 1504 const struct spa *zap_spa; 1505 const dnode_phys_t *zap_dnode; 1506 } fat_zap_t; 1507 1508 #define ZAP_LEAF_MAGIC 0x2AB1EAF 1509 1510 /* chunk size = 24 bytes */ 1511 #define ZAP_LEAF_CHUNKSIZE 24 1512 1513 /* 1514 * The amount of space available for chunks is: 1515 * block size (1<<l->l_bs) - hash entry size (2) * number of hash 1516 * entries - header space (2*chunksize) 1517 */ 1518 #define ZAP_LEAF_NUMCHUNKS(l) \ 1519 (((1<<(l)->l_bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(l)) / \ 1520 ZAP_LEAF_CHUNKSIZE - 2) 1521 1522 /* 1523 * The amount of space within the chunk available for the array is: 1524 * chunk size - space for type (1) - space for next pointer (2) 1525 */ 1526 #define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3) 1527 1528 #define ZAP_LEAF_ARRAY_NCHUNKS(bytes) \ 1529 (((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES) 1530 1531 /* 1532 * Low water mark: when there are only this many chunks free, start 1533 * growing the ptrtbl. Ideally, this should be larger than a 1534 * "reasonably-sized" entry. 20 chunks is more than enough for the 1535 * largest directory entry (MAXNAMELEN (256) byte name, 8-byte value), 1536 * while still being only around 3% for 16k blocks. 1537 */ 1538 #define ZAP_LEAF_LOW_WATER (20) 1539 1540 /* 1541 * The leaf hash table has block size / 2^5 (32) number of entries, 1542 * which should be more than enough for the maximum number of entries, 1543 * which is less than block size / CHUNKSIZE (24) / minimum number of 1544 * chunks per entry (3). 1545 */ 1546 #define ZAP_LEAF_HASH_SHIFT(l) ((l)->l_bs - 5) 1547 #define ZAP_LEAF_HASH_NUMENTRIES(l) (1 << ZAP_LEAF_HASH_SHIFT(l)) 1548 1549 /* 1550 * The chunks start immediately after the hash table. The end of the 1551 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a 1552 * chunk_t. 1553 */ 1554 #define ZAP_LEAF_CHUNK(l, idx) \ 1555 ((zap_leaf_chunk_t *) \ 1556 ((l)->l_phys->l_hash + ZAP_LEAF_HASH_NUMENTRIES(l)))[idx] 1557 #define ZAP_LEAF_ENTRY(l, idx) (&ZAP_LEAF_CHUNK(l, idx).l_entry) 1558 1559 typedef enum zap_chunk_type { 1560 ZAP_CHUNK_FREE = 253, 1561 ZAP_CHUNK_ENTRY = 252, 1562 ZAP_CHUNK_ARRAY = 251, 1563 ZAP_CHUNK_TYPE_MAX = 250 1564 } zap_chunk_type_t; 1565 1566 /* 1567 * TAKE NOTE: 1568 * If zap_leaf_phys_t is modified, zap_leaf_byteswap() must be modified. 1569 */ 1570 typedef struct zap_leaf_phys { 1571 struct zap_leaf_header { 1572 uint64_t lh_block_type; /* ZBT_LEAF */ 1573 uint64_t lh_pad1; 1574 uint64_t lh_prefix; /* hash prefix of this leaf */ 1575 uint32_t lh_magic; /* ZAP_LEAF_MAGIC */ 1576 uint16_t lh_nfree; /* number free chunks */ 1577 uint16_t lh_nentries; /* number of entries */ 1578 uint16_t lh_prefix_len; /* num bits used to id this */ 1579 1580 /* above is accessable to zap, below is zap_leaf private */ 1581 1582 uint16_t lh_freelist; /* chunk head of free list */ 1583 uint8_t lh_pad2[12]; 1584 } l_hdr; /* 2 24-byte chunks */ 1585 1586 /* 1587 * The header is followed by a hash table with 1588 * ZAP_LEAF_HASH_NUMENTRIES(zap) entries. The hash table is 1589 * followed by an array of ZAP_LEAF_NUMCHUNKS(zap) 1590 * zap_leaf_chunk structures. These structures are accessed 1591 * with the ZAP_LEAF_CHUNK() macro. 1592 */ 1593 1594 uint16_t l_hash[1]; 1595 } zap_leaf_phys_t; 1596 1597 typedef union zap_leaf_chunk { 1598 struct zap_leaf_entry { 1599 uint8_t le_type; /* always ZAP_CHUNK_ENTRY */ 1600 uint8_t le_value_intlen; /* size of ints */ 1601 uint16_t le_next; /* next entry in hash chain */ 1602 uint16_t le_name_chunk; /* first chunk of the name */ 1603 uint16_t le_name_numints; /* bytes in name, incl null */ 1604 uint16_t le_value_chunk; /* first chunk of the value */ 1605 uint16_t le_value_numints; /* value length in ints */ 1606 uint32_t le_cd; /* collision differentiator */ 1607 uint64_t le_hash; /* hash value of the name */ 1608 } l_entry; 1609 struct zap_leaf_array { 1610 uint8_t la_type; /* always ZAP_CHUNK_ARRAY */ 1611 uint8_t la_array[ZAP_LEAF_ARRAY_BYTES]; 1612 uint16_t la_next; /* next blk or CHAIN_END */ 1613 } l_array; 1614 struct zap_leaf_free { 1615 uint8_t lf_type; /* always ZAP_CHUNK_FREE */ 1616 uint8_t lf_pad[ZAP_LEAF_ARRAY_BYTES]; 1617 uint16_t lf_next; /* next in free list, or CHAIN_END */ 1618 } l_free; 1619 } zap_leaf_chunk_t; 1620 1621 typedef struct zap_leaf { 1622 int l_bs; /* block size shift */ 1623 zap_leaf_phys_t *l_phys; 1624 } zap_leaf_t; 1625 1626 /* 1627 * Define special zfs pflags 1628 */ 1629 #define ZFS_XATTR 0x1 /* is an extended attribute */ 1630 #define ZFS_INHERIT_ACE 0x2 /* ace has inheritable ACEs */ 1631 #define ZFS_ACL_TRIVIAL 0x4 /* files ACL is trivial */ 1632 1633 #define MASTER_NODE_OBJ 1 1634 1635 /* 1636 * special attributes for master node. 1637 */ 1638 1639 #define ZFS_FSID "FSID" 1640 #define ZFS_UNLINKED_SET "DELETE_QUEUE" 1641 #define ZFS_ROOT_OBJ "ROOT" 1642 #define ZPL_VERSION_OBJ "VERSION" 1643 #define ZFS_PROP_BLOCKPERPAGE "BLOCKPERPAGE" 1644 #define ZFS_PROP_NOGROWBLOCKS "NOGROWBLOCKS" 1645 1646 #define ZFS_FLAG_BLOCKPERPAGE 0x1 1647 #define ZFS_FLAG_NOGROWBLOCKS 0x2 1648 1649 /* 1650 * ZPL version - rev'd whenever an incompatible on-disk format change 1651 * occurs. Independent of SPA/DMU/ZAP versioning. 1652 */ 1653 1654 #define ZPL_VERSION 1ULL 1655 1656 /* 1657 * The directory entry has the type (currently unused on Solaris) in the 1658 * top 4 bits, and the object number in the low 48 bits. The "middle" 1659 * 12 bits are unused. 1660 */ 1661 #define ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4) 1662 #define ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48) 1663 #define ZFS_DIRENT_MAKE(type, obj) (((uint64_t)type << 60) | obj) 1664 1665 typedef struct ace { 1666 uid_t a_who; /* uid or gid */ 1667 uint32_t a_access_mask; /* read,write,... */ 1668 uint16_t a_flags; /* see below */ 1669 uint16_t a_type; /* allow or deny */ 1670 } ace_t; 1671 1672 #define ACE_SLOT_CNT 6 1673 1674 typedef struct zfs_znode_acl { 1675 uint64_t z_acl_extern_obj; /* ext acl pieces */ 1676 uint32_t z_acl_count; /* Number of ACEs */ 1677 uint16_t z_acl_version; /* acl version */ 1678 uint16_t z_acl_pad; /* pad */ 1679 ace_t z_ace_data[ACE_SLOT_CNT]; /* 6 standard ACEs */ 1680 } zfs_znode_acl_t; 1681 1682 /* 1683 * This is the persistent portion of the znode. It is stored 1684 * in the "bonus buffer" of the file. Short symbolic links 1685 * are also stored in the bonus buffer. 1686 */ 1687 typedef struct znode_phys { 1688 uint64_t zp_atime[2]; /* 0 - last file access time */ 1689 uint64_t zp_mtime[2]; /* 16 - last file modification time */ 1690 uint64_t zp_ctime[2]; /* 32 - last file change time */ 1691 uint64_t zp_crtime[2]; /* 48 - creation time */ 1692 uint64_t zp_gen; /* 64 - generation (txg of creation) */ 1693 uint64_t zp_mode; /* 72 - file mode bits */ 1694 uint64_t zp_size; /* 80 - size of file */ 1695 uint64_t zp_parent; /* 88 - directory parent (`..') */ 1696 uint64_t zp_links; /* 96 - number of links to file */ 1697 uint64_t zp_xattr; /* 104 - DMU object for xattrs */ 1698 uint64_t zp_rdev; /* 112 - dev_t for VBLK & VCHR files */ 1699 uint64_t zp_flags; /* 120 - persistent flags */ 1700 uint64_t zp_uid; /* 128 - file owner */ 1701 uint64_t zp_gid; /* 136 - owning group */ 1702 uint64_t zp_pad[4]; /* 144 - future */ 1703 zfs_znode_acl_t zp_acl; /* 176 - 263 ACL */ 1704 /* 1705 * Data may pad out any remaining bytes in the znode buffer, eg: 1706 * 1707 * |<---------------------- dnode_phys (512) ------------------------>| 1708 * |<-- dnode (192) --->|<----------- "bonus" buffer (320) ---------->| 1709 * |<---- znode (264) ---->|<---- data (56) ---->| 1710 * 1711 * At present, we only use this space to store symbolic links. 1712 */ 1713 } znode_phys_t; 1714 1715 /* 1716 * In-core vdev representation. 1717 */ 1718 struct vdev; 1719 struct spa; 1720 typedef int vdev_phys_read_t(struct vdev *, void *, off_t, void *, size_t); 1721 typedef int vdev_phys_write_t(struct vdev *, off_t, void *, size_t); 1722 typedef int vdev_read_t(struct vdev *, const blkptr_t *, void *, off_t, size_t); 1723 1724 typedef STAILQ_HEAD(vdev_list, vdev) vdev_list_t; 1725 1726 typedef struct vdev_indirect_mapping_entry_phys { 1727 /* 1728 * Decode with DVA_MAPPING_* macros. 1729 * Contains: 1730 * the source offset (low 63 bits) 1731 * the one-bit "mark", used for garbage collection (by zdb) 1732 */ 1733 uint64_t vimep_src; 1734 1735 /* 1736 * Note: the DVA's asize is 24 bits, and can thus store ranges 1737 * up to 8GB. 1738 */ 1739 dva_t vimep_dst; 1740 } vdev_indirect_mapping_entry_phys_t; 1741 1742 #define DVA_MAPPING_GET_SRC_OFFSET(vimep) \ 1743 BF64_GET_SB((vimep)->vimep_src, 0, 63, SPA_MINBLOCKSHIFT, 0) 1744 #define DVA_MAPPING_SET_SRC_OFFSET(vimep, x) \ 1745 BF64_SET_SB((vimep)->vimep_src, 0, 63, SPA_MINBLOCKSHIFT, 0, x) 1746 1747 typedef struct vdev_indirect_mapping_entry { 1748 vdev_indirect_mapping_entry_phys_t vime_mapping; 1749 uint32_t vime_obsolete_count; 1750 list_node_t vime_node; 1751 } vdev_indirect_mapping_entry_t; 1752 1753 /* 1754 * This is stored in the bonus buffer of the mapping object, see comment of 1755 * vdev_indirect_config for more details. 1756 */ 1757 typedef struct vdev_indirect_mapping_phys { 1758 uint64_t vimp_max_offset; 1759 uint64_t vimp_bytes_mapped; 1760 uint64_t vimp_num_entries; /* number of v_i_m_entry_phys_t's */ 1761 1762 /* 1763 * For each entry in the mapping object, this object contains an 1764 * entry representing the number of bytes of that mapping entry 1765 * that were no longer in use by the pool at the time this indirect 1766 * vdev was last condensed. 1767 */ 1768 uint64_t vimp_counts_object; 1769 } vdev_indirect_mapping_phys_t; 1770 1771 #define VDEV_INDIRECT_MAPPING_SIZE_V0 (3 * sizeof (uint64_t)) 1772 1773 typedef struct vdev_indirect_mapping { 1774 uint64_t vim_object; 1775 boolean_t vim_havecounts; 1776 1777 /* vim_entries segment offset currently in memory. */ 1778 uint64_t vim_entry_offset; 1779 /* vim_entries segment size. */ 1780 size_t vim_num_entries; 1781 1782 /* Needed by dnode_read() */ 1783 const void *vim_spa; 1784 dnode_phys_t *vim_dn; 1785 1786 /* 1787 * An ordered array of mapping entries, sorted by source offset. 1788 * Note that vim_entries is needed during a removal (and contains 1789 * mappings that have been synced to disk so far) to handle frees 1790 * from the removing device. 1791 */ 1792 vdev_indirect_mapping_entry_phys_t *vim_entries; 1793 objset_phys_t *vim_objset; 1794 vdev_indirect_mapping_phys_t *vim_phys; 1795 } vdev_indirect_mapping_t; 1796 1797 /* 1798 * On-disk indirect vdev state. 1799 * 1800 * An indirect vdev is described exclusively in the MOS config of a pool. 1801 * The config for an indirect vdev includes several fields, which are 1802 * accessed in memory by a vdev_indirect_config_t. 1803 */ 1804 typedef struct vdev_indirect_config { 1805 /* 1806 * Object (in MOS) which contains the indirect mapping. This object 1807 * contains an array of vdev_indirect_mapping_entry_phys_t ordered by 1808 * vimep_src. The bonus buffer for this object is a 1809 * vdev_indirect_mapping_phys_t. This object is allocated when a vdev 1810 * removal is initiated. 1811 * 1812 * Note that this object can be empty if none of the data on the vdev 1813 * has been copied yet. 1814 */ 1815 uint64_t vic_mapping_object; 1816 1817 /* 1818 * Object (in MOS) which contains the birth times for the mapping 1819 * entries. This object contains an array of 1820 * vdev_indirect_birth_entry_phys_t sorted by vibe_offset. The bonus 1821 * buffer for this object is a vdev_indirect_birth_phys_t. This object 1822 * is allocated when a vdev removal is initiated. 1823 * 1824 * Note that this object can be empty if none of the vdev has yet been 1825 * copied. 1826 */ 1827 uint64_t vic_births_object; 1828 1829 /* 1830 * This is the vdev ID which was removed previous to this vdev, or 1831 * UINT64_MAX if there are no previously removed vdevs. 1832 */ 1833 uint64_t vic_prev_indirect_vdev; 1834 } vdev_indirect_config_t; 1835 1836 typedef struct vdev { 1837 STAILQ_ENTRY(vdev) v_childlink; /* link in parent's child list */ 1838 STAILQ_ENTRY(vdev) v_alllink; /* link in global vdev list */ 1839 vdev_list_t v_children; /* children of this vdev */ 1840 const char *v_name; /* vdev name */ 1841 uint64_t v_guid; /* vdev guid */ 1842 uint64_t v_id; /* index in parent */ 1843 uint64_t v_psize; /* physical device capacity */ 1844 int v_ashift; /* offset to block shift */ 1845 int v_nparity; /* # parity for raidz */ 1846 struct vdev *v_top; /* parent vdev */ 1847 size_t v_nchildren; /* # children */ 1848 vdev_state_t v_state; /* current state */ 1849 vdev_phys_read_t *v_phys_read; /* read from raw leaf vdev */ 1850 vdev_phys_write_t *v_phys_write; /* write to raw leaf vdev */ 1851 vdev_read_t *v_read; /* read from vdev */ 1852 void *v_priv; /* data for read/write function */ 1853 boolean_t v_islog; 1854 struct spa *v_spa; /* link to spa */ 1855 /* 1856 * Values stored in the config for an indirect or removing vdev. 1857 */ 1858 vdev_indirect_config_t vdev_indirect_config; 1859 vdev_indirect_mapping_t *v_mapping; 1860 } vdev_t; 1861 1862 /* 1863 * In-core pool representation. 1864 */ 1865 typedef STAILQ_HEAD(spa_list, spa) spa_list_t; 1866 1867 typedef struct spa { 1868 STAILQ_ENTRY(spa) spa_link; /* link in global pool list */ 1869 char *spa_name; /* pool name */ 1870 uint64_t spa_guid; /* pool guid */ 1871 uint64_t spa_txg; /* most recent transaction */ 1872 struct uberblock *spa_uberblock; /* best uberblock so far */ 1873 vdev_t *spa_root_vdev; /* toplevel vdev container */ 1874 objset_phys_t *spa_mos; /* MOS for this pool */ 1875 zio_cksum_salt_t spa_cksum_salt; /* secret salt for cksum */ 1876 void *spa_cksum_tmpls[ZIO_CHECKSUM_FUNCTIONS]; 1877 boolean_t spa_with_log; /* this pool has log */ 1878 1879 struct uberblock spa_uberblock_master; /* best uberblock so far */ 1880 objset_phys_t spa_mos_master; /* MOS for this pool */ 1881 struct uberblock spa_uberblock_checkpoint; /* checkpoint uberblock */ 1882 objset_phys_t spa_mos_checkpoint; /* Checkpoint MOS */ 1883 void *spa_bootenv; /* bootenv from pool label */ 1884 } spa_t; 1885 1886 /* IO related arguments. */ 1887 typedef struct zio { 1888 spa_t *io_spa; 1889 blkptr_t *io_bp; 1890 void *io_data; 1891 uint64_t io_size; 1892 uint64_t io_offset; 1893 1894 /* Stuff for the vdev stack */ 1895 vdev_t *io_vd; 1896 void *io_vsd; 1897 1898 int io_error; 1899 } zio_t; 1900 1901 static void decode_embedded_bp_compressed(const blkptr_t *, void *); 1902 1903 #endif /* _ZFSIMPL_H_ */ 1904