1 /*- 2 * Copyright (c) 2002 McAfee, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and McAfee Research,, the Security Research Division of 7 * McAfee, Inc. under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as 8 * part of the DARPA CHATS research program 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 /* 32 * CDDL HEADER START 33 * 34 * The contents of this file are subject to the terms of the 35 * Common Development and Distribution License (the "License"). 36 * You may not use this file except in compliance with the License. 37 * 38 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 39 * or http://www.opensolaris.org/os/licensing. 40 * See the License for the specific language governing permissions 41 * and limitations under the License. 42 * 43 * When distributing Covered Code, include this CDDL HEADER in each 44 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 45 * If applicable, add the following below this CDDL HEADER, with the 46 * fields enclosed by brackets "[]" replaced with your own identifying 47 * information: Portions Copyright [yyyy] [name of copyright owner] 48 * 49 * CDDL HEADER END 50 */ 51 /* 52 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 53 * Use is subject to license terms. 54 */ 55 56 /* CRC64 table */ 57 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ 58 59 /* 60 * Macros for various sorts of alignment and rounding when the alignment 61 * is known to be a power of 2. 62 */ 63 #define P2ALIGN(x, align) ((x) & -(align)) 64 #define P2PHASE(x, align) ((x) & ((align) - 1)) 65 #define P2NPHASE(x, align) (-(x) & ((align) - 1)) 66 #define P2ROUNDUP(x, align) (-(-(x) & -(align))) 67 #define P2END(x, align) (-(~(x) & -(align))) 68 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align))) 69 #define P2BOUNDARY(off, len, align) (((off) ^ ((off) + (len) - 1)) > (align) - 1) 70 71 /* 72 * General-purpose 32-bit and 64-bit bitfield encodings. 73 */ 74 #define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len)) 75 #define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len)) 76 #define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low)) 77 #define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low)) 78 79 #define BF32_GET(x, low, len) BF32_DECODE(x, low, len) 80 #define BF64_GET(x, low, len) BF64_DECODE(x, low, len) 81 82 #define BF32_SET(x, low, len, val) \ 83 ((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len)) 84 #define BF64_SET(x, low, len, val) \ 85 ((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len)) 86 87 #define BF32_GET_SB(x, low, len, shift, bias) \ 88 ((BF32_GET(x, low, len) + (bias)) << (shift)) 89 #define BF64_GET_SB(x, low, len, shift, bias) \ 90 ((BF64_GET(x, low, len) + (bias)) << (shift)) 91 92 #define BF32_SET_SB(x, low, len, shift, bias, val) \ 93 BF32_SET(x, low, len, ((val) >> (shift)) - (bias)) 94 #define BF64_SET_SB(x, low, len, shift, bias, val) \ 95 BF64_SET(x, low, len, ((val) >> (shift)) - (bias)) 96 97 /* 98 * Macros to reverse byte order 99 */ 100 #define BSWAP_8(x) ((x) & 0xff) 101 #define BSWAP_16(x) ((BSWAP_8(x) << 8) | BSWAP_8((x) >> 8)) 102 #define BSWAP_32(x) ((BSWAP_16(x) << 16) | BSWAP_16((x) >> 16)) 103 #define BSWAP_64(x) ((BSWAP_32(x) << 32) | BSWAP_32((x) >> 32)) 104 105 /* 106 * We currently support nine block sizes, from 512 bytes to 128K. 107 * We could go higher, but the benefits are near-zero and the cost 108 * of COWing a giant block to modify one byte would become excessive. 109 */ 110 #define SPA_MINBLOCKSHIFT 9 111 #define SPA_MAXBLOCKSHIFT 17 112 #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT) 113 #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT) 114 115 #define SPA_BLOCKSIZES (SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1) 116 117 /* 118 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB. 119 * The ASIZE encoding should be at least 64 times larger (6 more bits) 120 * to support up to 4-way RAID-Z mirror mode with worst-case gang block 121 * overhead, three DVAs per bp, plus one more bit in case we do anything 122 * else that expands the ASIZE. 123 */ 124 #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */ 125 #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */ 126 #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */ 127 128 /* 129 * All SPA data is represented by 128-bit data virtual addresses (DVAs). 130 * The members of the dva_t should be considered opaque outside the SPA. 131 */ 132 typedef struct dva { 133 uint64_t dva_word[2]; 134 } dva_t; 135 136 /* 137 * Each block has a 256-bit checksum -- strong enough for cryptographic hashes. 138 */ 139 typedef struct zio_cksum { 140 uint64_t zc_word[4]; 141 } zio_cksum_t; 142 143 /* 144 * Each block is described by its DVAs, time of birth, checksum, etc. 145 * The word-by-word, bit-by-bit layout of the blkptr is as follows: 146 * 147 * 64 56 48 40 32 24 16 8 0 148 * +-------+-------+-------+-------+-------+-------+-------+-------+ 149 * 0 | vdev1 | GRID | ASIZE | 150 * +-------+-------+-------+-------+-------+-------+-------+-------+ 151 * 1 |G| offset1 | 152 * +-------+-------+-------+-------+-------+-------+-------+-------+ 153 * 2 | vdev2 | GRID | ASIZE | 154 * +-------+-------+-------+-------+-------+-------+-------+-------+ 155 * 3 |G| offset2 | 156 * +-------+-------+-------+-------+-------+-------+-------+-------+ 157 * 4 | vdev3 | GRID | ASIZE | 158 * +-------+-------+-------+-------+-------+-------+-------+-------+ 159 * 5 |G| offset3 | 160 * +-------+-------+-------+-------+-------+-------+-------+-------+ 161 * 6 |BDX|lvl| type | cksum | comp | PSIZE | LSIZE | 162 * +-------+-------+-------+-------+-------+-------+-------+-------+ 163 * 7 | padding | 164 * +-------+-------+-------+-------+-------+-------+-------+-------+ 165 * 8 | padding | 166 * +-------+-------+-------+-------+-------+-------+-------+-------+ 167 * 9 | physical birth txg | 168 * +-------+-------+-------+-------+-------+-------+-------+-------+ 169 * a | logical birth txg | 170 * +-------+-------+-------+-------+-------+-------+-------+-------+ 171 * b | fill count | 172 * +-------+-------+-------+-------+-------+-------+-------+-------+ 173 * c | checksum[0] | 174 * +-------+-------+-------+-------+-------+-------+-------+-------+ 175 * d | checksum[1] | 176 * +-------+-------+-------+-------+-------+-------+-------+-------+ 177 * e | checksum[2] | 178 * +-------+-------+-------+-------+-------+-------+-------+-------+ 179 * f | checksum[3] | 180 * +-------+-------+-------+-------+-------+-------+-------+-------+ 181 * 182 * Legend: 183 * 184 * vdev virtual device ID 185 * offset offset into virtual device 186 * LSIZE logical size 187 * PSIZE physical size (after compression) 188 * ASIZE allocated size (including RAID-Z parity and gang block headers) 189 * GRID RAID-Z layout information (reserved for future use) 190 * cksum checksum function 191 * comp compression function 192 * G gang block indicator 193 * B byteorder (endianness) 194 * D dedup 195 * X unused 196 * lvl level of indirection 197 * type DMU object type 198 * phys birth txg of block allocation; zero if same as logical birth txg 199 * log. birth transaction group in which the block was logically born 200 * fill count number of non-zero blocks under this bp 201 * checksum[4] 256-bit checksum of the data this bp describes 202 */ 203 #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */ 204 #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */ 205 206 typedef struct blkptr { 207 dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */ 208 uint64_t blk_prop; /* size, compression, type, etc */ 209 uint64_t blk_pad[2]; /* Extra space for the future */ 210 uint64_t blk_phys_birth; /* txg when block was allocated */ 211 uint64_t blk_birth; /* transaction group at birth */ 212 uint64_t blk_fill; /* fill count */ 213 zio_cksum_t blk_cksum; /* 256-bit checksum */ 214 } blkptr_t; 215 216 /* 217 * Macros to get and set fields in a bp or DVA. 218 */ 219 #define DVA_GET_ASIZE(dva) \ 220 BF64_GET_SB((dva)->dva_word[0], 0, 24, SPA_MINBLOCKSHIFT, 0) 221 #define DVA_SET_ASIZE(dva, x) \ 222 BF64_SET_SB((dva)->dva_word[0], 0, 24, SPA_MINBLOCKSHIFT, 0, x) 223 224 #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8) 225 #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x) 226 227 #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, 32) 228 #define DVA_SET_VDEV(dva, x) BF64_SET((dva)->dva_word[0], 32, 32, x) 229 230 #define DVA_GET_OFFSET(dva) \ 231 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0) 232 #define DVA_SET_OFFSET(dva, x) \ 233 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x) 234 235 #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1) 236 #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x) 237 238 #define BP_GET_LSIZE(bp) \ 239 (BP_IS_HOLE(bp) ? 0 : \ 240 BF64_GET_SB((bp)->blk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1)) 241 #define BP_SET_LSIZE(bp, x) \ 242 BF64_SET_SB((bp)->blk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1, x) 243 244 #define BP_GET_PSIZE(bp) \ 245 BF64_GET_SB((bp)->blk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1) 246 #define BP_SET_PSIZE(bp, x) \ 247 BF64_SET_SB((bp)->blk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1, x) 248 249 #define BP_GET_COMPRESS(bp) BF64_GET((bp)->blk_prop, 32, 8) 250 #define BP_SET_COMPRESS(bp, x) BF64_SET((bp)->blk_prop, 32, 8, x) 251 252 #define BP_GET_CHECKSUM(bp) BF64_GET((bp)->blk_prop, 40, 8) 253 #define BP_SET_CHECKSUM(bp, x) BF64_SET((bp)->blk_prop, 40, 8, x) 254 255 #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8) 256 #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x) 257 258 #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5) 259 #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x) 260 261 #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1) 262 #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x) 263 264 #define BP_GET_BYTEORDER(bp) (0 - BF64_GET((bp)->blk_prop, 63, 1)) 265 #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x) 266 267 #define BP_PHYSICAL_BIRTH(bp) \ 268 ((bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth) 269 270 #define BP_GET_ASIZE(bp) \ 271 (DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ 272 DVA_GET_ASIZE(&(bp)->blk_dva[2])) 273 274 #define BP_GET_UCSIZE(bp) \ 275 ((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \ 276 BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp)); 277 278 #define BP_GET_NDVAS(bp) \ 279 (!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ 280 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ 281 !!DVA_GET_ASIZE(&(bp)->blk_dva[2])) 282 283 #define BP_COUNT_GANG(bp) \ 284 (DVA_GET_GANG(&(bp)->blk_dva[0]) + \ 285 DVA_GET_GANG(&(bp)->blk_dva[1]) + \ 286 DVA_GET_GANG(&(bp)->blk_dva[2])) 287 288 #define DVA_EQUAL(dva1, dva2) \ 289 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \ 290 (dva1)->dva_word[0] == (dva2)->dva_word[0]) 291 292 #define ZIO_CHECKSUM_EQUAL(zc1, zc2) \ 293 (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \ 294 ((zc1).zc_word[1] - (zc2).zc_word[1]) | \ 295 ((zc1).zc_word[2] - (zc2).zc_word[2]) | \ 296 ((zc1).zc_word[3] - (zc2).zc_word[3]))) 297 298 299 #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0) 300 301 #define ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3) \ 302 { \ 303 (zcp)->zc_word[0] = w0; \ 304 (zcp)->zc_word[1] = w1; \ 305 (zcp)->zc_word[2] = w2; \ 306 (zcp)->zc_word[3] = w3; \ 307 } 308 309 #define BP_IDENTITY(bp) (&(bp)->blk_dva[0]) 310 #define BP_IS_GANG(bp) DVA_GET_GANG(BP_IDENTITY(bp)) 311 #define BP_IS_HOLE(bp) ((bp)->blk_birth == 0) 312 #define BP_IS_OLDER(bp, txg) (!BP_IS_HOLE(bp) && (bp)->blk_birth < (txg)) 313 314 #define BP_ZERO(bp) \ 315 { \ 316 (bp)->blk_dva[0].dva_word[0] = 0; \ 317 (bp)->blk_dva[0].dva_word[1] = 0; \ 318 (bp)->blk_dva[1].dva_word[0] = 0; \ 319 (bp)->blk_dva[1].dva_word[1] = 0; \ 320 (bp)->blk_dva[2].dva_word[0] = 0; \ 321 (bp)->blk_dva[2].dva_word[1] = 0; \ 322 (bp)->blk_prop = 0; \ 323 (bp)->blk_pad[0] = 0; \ 324 (bp)->blk_pad[1] = 0; \ 325 (bp)->blk_phys_birth = 0; \ 326 (bp)->blk_birth = 0; \ 327 (bp)->blk_fill = 0; \ 328 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \ 329 } 330 331 /* 332 * Embedded checksum 333 */ 334 #define ZEC_MAGIC 0x210da7ab10c7a11ULL 335 336 typedef struct zio_eck { 337 uint64_t zec_magic; /* for validation, endianness */ 338 zio_cksum_t zec_cksum; /* 256-bit checksum */ 339 } zio_eck_t; 340 341 /* 342 * Gang block headers are self-checksumming and contain an array 343 * of block pointers. 344 */ 345 #define SPA_GANGBLOCKSIZE SPA_MINBLOCKSIZE 346 #define SPA_GBH_NBLKPTRS ((SPA_GANGBLOCKSIZE - \ 347 sizeof (zio_eck_t)) / sizeof (blkptr_t)) 348 #define SPA_GBH_FILLER ((SPA_GANGBLOCKSIZE - \ 349 sizeof (zio_eck_t) - \ 350 (SPA_GBH_NBLKPTRS * sizeof (blkptr_t))) /\ 351 sizeof (uint64_t)) 352 353 typedef struct zio_gbh { 354 blkptr_t zg_blkptr[SPA_GBH_NBLKPTRS]; 355 uint64_t zg_filler[SPA_GBH_FILLER]; 356 zio_eck_t zg_tail; 357 } zio_gbh_phys_t; 358 359 #define VDEV_RAIDZ_MAXPARITY 3 360 361 #define VDEV_PAD_SIZE (8 << 10) 362 /* 2 padding areas (vl_pad1 and vl_pad2) to skip */ 363 #define VDEV_SKIP_SIZE VDEV_PAD_SIZE * 2 364 #define VDEV_PHYS_SIZE (112 << 10) 365 #define VDEV_UBERBLOCK_RING (128 << 10) 366 367 #define VDEV_UBERBLOCK_SHIFT(vd) \ 368 MAX((vd)->v_top->v_ashift, UBERBLOCK_SHIFT) 369 #define VDEV_UBERBLOCK_COUNT(vd) \ 370 (VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd)) 371 #define VDEV_UBERBLOCK_OFFSET(vd, n) \ 372 offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)]) 373 #define VDEV_UBERBLOCK_SIZE(vd) (1ULL << VDEV_UBERBLOCK_SHIFT(vd)) 374 375 typedef struct vdev_phys { 376 char vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_eck_t)]; 377 zio_eck_t vp_zbt; 378 } vdev_phys_t; 379 380 typedef struct vdev_label { 381 char vl_pad1[VDEV_PAD_SIZE]; /* 8K */ 382 char vl_pad2[VDEV_PAD_SIZE]; /* 8K */ 383 vdev_phys_t vl_vdev_phys; /* 112K */ 384 char vl_uberblock[VDEV_UBERBLOCK_RING]; /* 128K */ 385 } vdev_label_t; /* 256K total */ 386 387 /* 388 * vdev_dirty() flags 389 */ 390 #define VDD_METASLAB 0x01 391 #define VDD_DTL 0x02 392 393 /* 394 * Size and offset of embedded boot loader region on each label. 395 * The total size of the first two labels plus the boot area is 4MB. 396 */ 397 #define VDEV_BOOT_OFFSET (2 * sizeof (vdev_label_t)) 398 #define VDEV_BOOT_SIZE (7ULL << 19) /* 3.5M */ 399 400 /* 401 * Size of label regions at the start and end of each leaf device. 402 */ 403 #define VDEV_LABEL_START_SIZE (2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE) 404 #define VDEV_LABEL_END_SIZE (2 * sizeof (vdev_label_t)) 405 #define VDEV_LABELS 4 406 407 enum zio_checksum { 408 ZIO_CHECKSUM_INHERIT = 0, 409 ZIO_CHECKSUM_ON, 410 ZIO_CHECKSUM_OFF, 411 ZIO_CHECKSUM_LABEL, 412 ZIO_CHECKSUM_GANG_HEADER, 413 ZIO_CHECKSUM_ZILOG, 414 ZIO_CHECKSUM_FLETCHER_2, 415 ZIO_CHECKSUM_FLETCHER_4, 416 ZIO_CHECKSUM_SHA256, 417 ZIO_CHECKSUM_ZILOG2, 418 ZIO_CHECKSUM_FUNCTIONS 419 }; 420 421 #define ZIO_CHECKSUM_ON_VALUE ZIO_CHECKSUM_FLETCHER_4 422 #define ZIO_CHECKSUM_DEFAULT ZIO_CHECKSUM_ON 423 424 enum zio_compress { 425 ZIO_COMPRESS_INHERIT = 0, 426 ZIO_COMPRESS_ON, 427 ZIO_COMPRESS_OFF, 428 ZIO_COMPRESS_LZJB, 429 ZIO_COMPRESS_EMPTY, 430 ZIO_COMPRESS_GZIP_1, 431 ZIO_COMPRESS_GZIP_2, 432 ZIO_COMPRESS_GZIP_3, 433 ZIO_COMPRESS_GZIP_4, 434 ZIO_COMPRESS_GZIP_5, 435 ZIO_COMPRESS_GZIP_6, 436 ZIO_COMPRESS_GZIP_7, 437 ZIO_COMPRESS_GZIP_8, 438 ZIO_COMPRESS_GZIP_9, 439 ZIO_COMPRESS_ZLE, 440 ZIO_COMPRESS_FUNCTIONS 441 }; 442 443 #define ZIO_COMPRESS_ON_VALUE ZIO_COMPRESS_LZJB 444 #define ZIO_COMPRESS_DEFAULT ZIO_COMPRESS_OFF 445 446 /* nvlist pack encoding */ 447 #define NV_ENCODE_NATIVE 0 448 #define NV_ENCODE_XDR 1 449 450 typedef enum { 451 DATA_TYPE_UNKNOWN = 0, 452 DATA_TYPE_BOOLEAN, 453 DATA_TYPE_BYTE, 454 DATA_TYPE_INT16, 455 DATA_TYPE_UINT16, 456 DATA_TYPE_INT32, 457 DATA_TYPE_UINT32, 458 DATA_TYPE_INT64, 459 DATA_TYPE_UINT64, 460 DATA_TYPE_STRING, 461 DATA_TYPE_BYTE_ARRAY, 462 DATA_TYPE_INT16_ARRAY, 463 DATA_TYPE_UINT16_ARRAY, 464 DATA_TYPE_INT32_ARRAY, 465 DATA_TYPE_UINT32_ARRAY, 466 DATA_TYPE_INT64_ARRAY, 467 DATA_TYPE_UINT64_ARRAY, 468 DATA_TYPE_STRING_ARRAY, 469 DATA_TYPE_HRTIME, 470 DATA_TYPE_NVLIST, 471 DATA_TYPE_NVLIST_ARRAY, 472 DATA_TYPE_BOOLEAN_VALUE, 473 DATA_TYPE_INT8, 474 DATA_TYPE_UINT8, 475 DATA_TYPE_BOOLEAN_ARRAY, 476 DATA_TYPE_INT8_ARRAY, 477 DATA_TYPE_UINT8_ARRAY 478 } data_type_t; 479 480 /* 481 * On-disk version number. 482 */ 483 #define SPA_VERSION_1 1ULL 484 #define SPA_VERSION_2 2ULL 485 #define SPA_VERSION_3 3ULL 486 #define SPA_VERSION_4 4ULL 487 #define SPA_VERSION_5 5ULL 488 #define SPA_VERSION_6 6ULL 489 #define SPA_VERSION_7 7ULL 490 #define SPA_VERSION_8 8ULL 491 #define SPA_VERSION_9 9ULL 492 #define SPA_VERSION_10 10ULL 493 #define SPA_VERSION_11 11ULL 494 #define SPA_VERSION_12 12ULL 495 #define SPA_VERSION_13 13ULL 496 #define SPA_VERSION_14 14ULL 497 #define SPA_VERSION_15 15ULL 498 #define SPA_VERSION_16 16ULL 499 #define SPA_VERSION_17 17ULL 500 #define SPA_VERSION_18 18ULL 501 #define SPA_VERSION_19 19ULL 502 #define SPA_VERSION_20 20ULL 503 #define SPA_VERSION_21 21ULL 504 #define SPA_VERSION_22 22ULL 505 #define SPA_VERSION_23 23ULL 506 #define SPA_VERSION_24 24ULL 507 #define SPA_VERSION_25 25ULL 508 #define SPA_VERSION_26 26ULL 509 #define SPA_VERSION_27 27ULL 510 #define SPA_VERSION_28 28ULL 511 512 /* 513 * When bumping up SPA_VERSION, make sure GRUB ZFS understands the on-disk 514 * format change. Go to usr/src/grub/grub-0.97/stage2/{zfs-include/, fsys_zfs*}, 515 * and do the appropriate changes. Also bump the version number in 516 * usr/src/grub/capability. 517 */ 518 #define SPA_VERSION SPA_VERSION_28 519 #define SPA_VERSION_STRING "28" 520 521 /* 522 * Symbolic names for the changes that caused a SPA_VERSION switch. 523 * Used in the code when checking for presence or absence of a feature. 524 * Feel free to define multiple symbolic names for each version if there 525 * were multiple changes to on-disk structures during that version. 526 * 527 * NOTE: When checking the current SPA_VERSION in your code, be sure 528 * to use spa_version() since it reports the version of the 529 * last synced uberblock. Checking the in-flight version can 530 * be dangerous in some cases. 531 */ 532 #define SPA_VERSION_INITIAL SPA_VERSION_1 533 #define SPA_VERSION_DITTO_BLOCKS SPA_VERSION_2 534 #define SPA_VERSION_SPARES SPA_VERSION_3 535 #define SPA_VERSION_RAID6 SPA_VERSION_3 536 #define SPA_VERSION_BPLIST_ACCOUNT SPA_VERSION_3 537 #define SPA_VERSION_RAIDZ_DEFLATE SPA_VERSION_3 538 #define SPA_VERSION_DNODE_BYTES SPA_VERSION_3 539 #define SPA_VERSION_ZPOOL_HISTORY SPA_VERSION_4 540 #define SPA_VERSION_GZIP_COMPRESSION SPA_VERSION_5 541 #define SPA_VERSION_BOOTFS SPA_VERSION_6 542 #define SPA_VERSION_SLOGS SPA_VERSION_7 543 #define SPA_VERSION_DELEGATED_PERMS SPA_VERSION_8 544 #define SPA_VERSION_FUID SPA_VERSION_9 545 #define SPA_VERSION_REFRESERVATION SPA_VERSION_9 546 #define SPA_VERSION_REFQUOTA SPA_VERSION_9 547 #define SPA_VERSION_UNIQUE_ACCURATE SPA_VERSION_9 548 #define SPA_VERSION_L2CACHE SPA_VERSION_10 549 #define SPA_VERSION_NEXT_CLONES SPA_VERSION_11 550 #define SPA_VERSION_ORIGIN SPA_VERSION_11 551 #define SPA_VERSION_DSL_SCRUB SPA_VERSION_11 552 #define SPA_VERSION_SNAP_PROPS SPA_VERSION_12 553 #define SPA_VERSION_USED_BREAKDOWN SPA_VERSION_13 554 #define SPA_VERSION_PASSTHROUGH_X SPA_VERSION_14 555 #define SPA_VERSION_USERSPACE SPA_VERSION_15 556 #define SPA_VERSION_STMF_PROP SPA_VERSION_16 557 #define SPA_VERSION_RAIDZ3 SPA_VERSION_17 558 #define SPA_VERSION_USERREFS SPA_VERSION_18 559 #define SPA_VERSION_HOLES SPA_VERSION_19 560 #define SPA_VERSION_ZLE_COMPRESSION SPA_VERSION_20 561 #define SPA_VERSION_DEDUP SPA_VERSION_21 562 #define SPA_VERSION_RECVD_PROPS SPA_VERSION_22 563 #define SPA_VERSION_SLIM_ZIL SPA_VERSION_23 564 #define SPA_VERSION_SA SPA_VERSION_24 565 #define SPA_VERSION_SCAN SPA_VERSION_25 566 #define SPA_VERSION_DIR_CLONES SPA_VERSION_26 567 #define SPA_VERSION_DEADLISTS SPA_VERSION_26 568 #define SPA_VERSION_FAST_SNAP SPA_VERSION_27 569 #define SPA_VERSION_MULTI_REPLACE SPA_VERSION_28 570 571 /* 572 * The following are configuration names used in the nvlist describing a pool's 573 * configuration. 574 */ 575 #define ZPOOL_CONFIG_VERSION "version" 576 #define ZPOOL_CONFIG_POOL_NAME "name" 577 #define ZPOOL_CONFIG_POOL_STATE "state" 578 #define ZPOOL_CONFIG_POOL_TXG "txg" 579 #define ZPOOL_CONFIG_POOL_GUID "pool_guid" 580 #define ZPOOL_CONFIG_CREATE_TXG "create_txg" 581 #define ZPOOL_CONFIG_TOP_GUID "top_guid" 582 #define ZPOOL_CONFIG_VDEV_TREE "vdev_tree" 583 #define ZPOOL_CONFIG_TYPE "type" 584 #define ZPOOL_CONFIG_CHILDREN "children" 585 #define ZPOOL_CONFIG_ID "id" 586 #define ZPOOL_CONFIG_GUID "guid" 587 #define ZPOOL_CONFIG_PATH "path" 588 #define ZPOOL_CONFIG_DEVID "devid" 589 #define ZPOOL_CONFIG_METASLAB_ARRAY "metaslab_array" 590 #define ZPOOL_CONFIG_METASLAB_SHIFT "metaslab_shift" 591 #define ZPOOL_CONFIG_ASHIFT "ashift" 592 #define ZPOOL_CONFIG_ASIZE "asize" 593 #define ZPOOL_CONFIG_DTL "DTL" 594 #define ZPOOL_CONFIG_STATS "stats" 595 #define ZPOOL_CONFIG_WHOLE_DISK "whole_disk" 596 #define ZPOOL_CONFIG_ERRCOUNT "error_count" 597 #define ZPOOL_CONFIG_NOT_PRESENT "not_present" 598 #define ZPOOL_CONFIG_SPARES "spares" 599 #define ZPOOL_CONFIG_IS_SPARE "is_spare" 600 #define ZPOOL_CONFIG_NPARITY "nparity" 601 #define ZPOOL_CONFIG_HOSTID "hostid" 602 #define ZPOOL_CONFIG_HOSTNAME "hostname" 603 #define ZPOOL_CONFIG_IS_LOG "is_log" 604 #define ZPOOL_CONFIG_TIMESTAMP "timestamp" /* not stored on disk */ 605 606 /* 607 * The persistent vdev state is stored as separate values rather than a single 608 * 'vdev_state' entry. This is because a device can be in multiple states, such 609 * as offline and degraded. 610 */ 611 #define ZPOOL_CONFIG_OFFLINE "offline" 612 #define ZPOOL_CONFIG_FAULTED "faulted" 613 #define ZPOOL_CONFIG_DEGRADED "degraded" 614 #define ZPOOL_CONFIG_REMOVED "removed" 615 #define ZPOOL_CONFIG_FRU "fru" 616 #define ZPOOL_CONFIG_AUX_STATE "aux_state" 617 618 #define VDEV_TYPE_ROOT "root" 619 #define VDEV_TYPE_MIRROR "mirror" 620 #define VDEV_TYPE_REPLACING "replacing" 621 #define VDEV_TYPE_RAIDZ "raidz" 622 #define VDEV_TYPE_DISK "disk" 623 #define VDEV_TYPE_FILE "file" 624 #define VDEV_TYPE_MISSING "missing" 625 #define VDEV_TYPE_HOLE "hole" 626 #define VDEV_TYPE_SPARE "spare" 627 #define VDEV_TYPE_LOG "log" 628 #define VDEV_TYPE_L2CACHE "l2cache" 629 630 /* 631 * This is needed in userland to report the minimum necessary device size. 632 */ 633 #define SPA_MINDEVSIZE (64ULL << 20) 634 635 /* 636 * The location of the pool configuration repository, shared between kernel and 637 * userland. 638 */ 639 #define ZPOOL_CACHE "/boot/zfs/zpool.cache" 640 641 /* 642 * vdev states are ordered from least to most healthy. 643 * A vdev that's CANT_OPEN or below is considered unusable. 644 */ 645 typedef enum vdev_state { 646 VDEV_STATE_UNKNOWN = 0, /* Uninitialized vdev */ 647 VDEV_STATE_CLOSED, /* Not currently open */ 648 VDEV_STATE_OFFLINE, /* Not allowed to open */ 649 VDEV_STATE_REMOVED, /* Explicitly removed from system */ 650 VDEV_STATE_CANT_OPEN, /* Tried to open, but failed */ 651 VDEV_STATE_FAULTED, /* External request to fault device */ 652 VDEV_STATE_DEGRADED, /* Replicated vdev with unhealthy kids */ 653 VDEV_STATE_HEALTHY /* Presumed good */ 654 } vdev_state_t; 655 656 /* 657 * vdev aux states. When a vdev is in the CANT_OPEN state, the aux field 658 * of the vdev stats structure uses these constants to distinguish why. 659 */ 660 typedef enum vdev_aux { 661 VDEV_AUX_NONE, /* no error */ 662 VDEV_AUX_OPEN_FAILED, /* ldi_open_*() or vn_open() failed */ 663 VDEV_AUX_CORRUPT_DATA, /* bad label or disk contents */ 664 VDEV_AUX_NO_REPLICAS, /* insufficient number of replicas */ 665 VDEV_AUX_BAD_GUID_SUM, /* vdev guid sum doesn't match */ 666 VDEV_AUX_TOO_SMALL, /* vdev size is too small */ 667 VDEV_AUX_BAD_LABEL, /* the label is OK but invalid */ 668 VDEV_AUX_VERSION_NEWER, /* on-disk version is too new */ 669 VDEV_AUX_VERSION_OLDER, /* on-disk version is too old */ 670 VDEV_AUX_SPARED /* hot spare used in another pool */ 671 } vdev_aux_t; 672 673 /* 674 * pool state. The following states are written to disk as part of the normal 675 * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE. The remaining states are 676 * software abstractions used at various levels to communicate pool state. 677 */ 678 typedef enum pool_state { 679 POOL_STATE_ACTIVE = 0, /* In active use */ 680 POOL_STATE_EXPORTED, /* Explicitly exported */ 681 POOL_STATE_DESTROYED, /* Explicitly destroyed */ 682 POOL_STATE_SPARE, /* Reserved for hot spare use */ 683 POOL_STATE_UNINITIALIZED, /* Internal spa_t state */ 684 POOL_STATE_UNAVAIL, /* Internal libzfs state */ 685 POOL_STATE_POTENTIALLY_ACTIVE /* Internal libzfs state */ 686 } pool_state_t; 687 688 /* 689 * The uberblock version is incremented whenever an incompatible on-disk 690 * format change is made to the SPA, DMU, or ZAP. 691 * 692 * Note: the first two fields should never be moved. When a storage pool 693 * is opened, the uberblock must be read off the disk before the version 694 * can be checked. If the ub_version field is moved, we may not detect 695 * version mismatch. If the ub_magic field is moved, applications that 696 * expect the magic number in the first word won't work. 697 */ 698 #define UBERBLOCK_MAGIC 0x00bab10c /* oo-ba-bloc! */ 699 #define UBERBLOCK_SHIFT 10 /* up to 1K */ 700 701 struct uberblock { 702 uint64_t ub_magic; /* UBERBLOCK_MAGIC */ 703 uint64_t ub_version; /* SPA_VERSION */ 704 uint64_t ub_txg; /* txg of last sync */ 705 uint64_t ub_guid_sum; /* sum of all vdev guids */ 706 uint64_t ub_timestamp; /* UTC time of last sync */ 707 blkptr_t ub_rootbp; /* MOS objset_phys_t */ 708 }; 709 710 /* 711 * Flags. 712 */ 713 #define DNODE_MUST_BE_ALLOCATED 1 714 #define DNODE_MUST_BE_FREE 2 715 716 /* 717 * Fixed constants. 718 */ 719 #define DNODE_SHIFT 9 /* 512 bytes */ 720 #define DN_MIN_INDBLKSHIFT 10 /* 1k */ 721 #define DN_MAX_INDBLKSHIFT 14 /* 16k */ 722 #define DNODE_BLOCK_SHIFT 14 /* 16k */ 723 #define DNODE_CORE_SIZE 64 /* 64 bytes for dnode sans blkptrs */ 724 #define DN_MAX_OBJECT_SHIFT 48 /* 256 trillion (zfs_fid_t limit) */ 725 #define DN_MAX_OFFSET_SHIFT 64 /* 2^64 bytes in a dnode */ 726 727 /* 728 * Derived constants. 729 */ 730 #define DNODE_SIZE (1 << DNODE_SHIFT) 731 #define DN_MAX_NBLKPTR ((DNODE_SIZE - DNODE_CORE_SIZE) >> SPA_BLKPTRSHIFT) 732 #define DN_MAX_BONUSLEN (DNODE_SIZE - DNODE_CORE_SIZE - (1 << SPA_BLKPTRSHIFT)) 733 #define DN_MAX_OBJECT (1ULL << DN_MAX_OBJECT_SHIFT) 734 735 #define DNODES_PER_BLOCK_SHIFT (DNODE_BLOCK_SHIFT - DNODE_SHIFT) 736 #define DNODES_PER_BLOCK (1ULL << DNODES_PER_BLOCK_SHIFT) 737 #define DNODES_PER_LEVEL_SHIFT (DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT) 738 739 /* The +2 here is a cheesy way to round up */ 740 #define DN_MAX_LEVELS (2 + ((DN_MAX_OFFSET_SHIFT - SPA_MINBLOCKSHIFT) / \ 741 (DN_MIN_INDBLKSHIFT - SPA_BLKPTRSHIFT))) 742 743 #define DN_BONUS(dnp) ((void*)((dnp)->dn_bonus + \ 744 (((dnp)->dn_nblkptr - 1) * sizeof (blkptr_t)))) 745 746 #define DN_USED_BYTES(dnp) (((dnp)->dn_flags & DNODE_FLAG_USED_BYTES) ? \ 747 (dnp)->dn_used : (dnp)->dn_used << SPA_MINBLOCKSHIFT) 748 749 #define EPB(blkshift, typeshift) (1 << (blkshift - typeshift)) 750 751 /* Is dn_used in bytes? if not, it's in multiples of SPA_MINBLOCKSIZE */ 752 #define DNODE_FLAG_USED_BYTES (1<<0) 753 #define DNODE_FLAG_USERUSED_ACCOUNTED (1<<1) 754 755 /* Does dnode have a SA spill blkptr in bonus? */ 756 #define DNODE_FLAG_SPILL_BLKPTR (1<<2) 757 758 typedef struct dnode_phys { 759 uint8_t dn_type; /* dmu_object_type_t */ 760 uint8_t dn_indblkshift; /* ln2(indirect block size) */ 761 uint8_t dn_nlevels; /* 1=dn_blkptr->data blocks */ 762 uint8_t dn_nblkptr; /* length of dn_blkptr */ 763 uint8_t dn_bonustype; /* type of data in bonus buffer */ 764 uint8_t dn_checksum; /* ZIO_CHECKSUM type */ 765 uint8_t dn_compress; /* ZIO_COMPRESS type */ 766 uint8_t dn_flags; /* DNODE_FLAG_* */ 767 uint16_t dn_datablkszsec; /* data block size in 512b sectors */ 768 uint16_t dn_bonuslen; /* length of dn_bonus */ 769 uint8_t dn_pad2[4]; 770 771 /* accounting is protected by dn_dirty_mtx */ 772 uint64_t dn_maxblkid; /* largest allocated block ID */ 773 uint64_t dn_used; /* bytes (or sectors) of disk space */ 774 775 uint64_t dn_pad3[4]; 776 777 blkptr_t dn_blkptr[1]; 778 uint8_t dn_bonus[DN_MAX_BONUSLEN - sizeof (blkptr_t)]; 779 blkptr_t dn_spill; 780 } dnode_phys_t; 781 782 typedef enum dmu_object_type { 783 DMU_OT_NONE, 784 /* general: */ 785 DMU_OT_OBJECT_DIRECTORY, /* ZAP */ 786 DMU_OT_OBJECT_ARRAY, /* UINT64 */ 787 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ 788 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ 789 DMU_OT_BPLIST, /* UINT64 */ 790 DMU_OT_BPLIST_HDR, /* UINT64 */ 791 /* spa: */ 792 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ 793 DMU_OT_SPACE_MAP, /* UINT64 */ 794 /* zil: */ 795 DMU_OT_INTENT_LOG, /* UINT64 */ 796 /* dmu: */ 797 DMU_OT_DNODE, /* DNODE */ 798 DMU_OT_OBJSET, /* OBJSET */ 799 /* dsl: */ 800 DMU_OT_DSL_DIR, /* UINT64 */ 801 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ 802 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ 803 DMU_OT_DSL_PROPS, /* ZAP */ 804 DMU_OT_DSL_DATASET, /* UINT64 */ 805 /* zpl: */ 806 DMU_OT_ZNODE, /* ZNODE */ 807 DMU_OT_OLDACL, /* Old ACL */ 808 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ 809 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ 810 DMU_OT_MASTER_NODE, /* ZAP */ 811 DMU_OT_UNLINKED_SET, /* ZAP */ 812 /* zvol: */ 813 DMU_OT_ZVOL, /* UINT8 */ 814 DMU_OT_ZVOL_PROP, /* ZAP */ 815 /* other; for testing only! */ 816 DMU_OT_PLAIN_OTHER, /* UINT8 */ 817 DMU_OT_UINT64_OTHER, /* UINT64 */ 818 DMU_OT_ZAP_OTHER, /* ZAP */ 819 /* new object types: */ 820 DMU_OT_ERROR_LOG, /* ZAP */ 821 DMU_OT_SPA_HISTORY, /* UINT8 */ 822 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ 823 DMU_OT_POOL_PROPS, /* ZAP */ 824 DMU_OT_DSL_PERMS, /* ZAP */ 825 DMU_OT_ACL, /* ACL */ 826 DMU_OT_SYSACL, /* SYSACL */ 827 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */ 828 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */ 829 DMU_OT_NEXT_CLONES, /* ZAP */ 830 DMU_OT_SCAN_QUEUE, /* ZAP */ 831 DMU_OT_USERGROUP_USED, /* ZAP */ 832 DMU_OT_USERGROUP_QUOTA, /* ZAP */ 833 DMU_OT_USERREFS, /* ZAP */ 834 DMU_OT_DDT_ZAP, /* ZAP */ 835 DMU_OT_DDT_STATS, /* ZAP */ 836 DMU_OT_SA, /* System attr */ 837 DMU_OT_SA_MASTER_NODE, /* ZAP */ 838 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */ 839 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */ 840 DMU_OT_SCAN_XLATE, /* ZAP */ 841 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */ 842 DMU_OT_NUMTYPES 843 } dmu_object_type_t; 844 845 typedef enum dmu_objset_type { 846 DMU_OST_NONE, 847 DMU_OST_META, 848 DMU_OST_ZFS, 849 DMU_OST_ZVOL, 850 DMU_OST_OTHER, /* For testing only! */ 851 DMU_OST_ANY, /* Be careful! */ 852 DMU_OST_NUMTYPES 853 } dmu_objset_type_t; 854 855 /* 856 * header for all bonus and spill buffers. 857 * The header has a fixed portion with a variable number 858 * of "lengths" depending on the number of variable sized 859 * attribues which are determined by the "layout number" 860 */ 861 862 #define SA_MAGIC 0x2F505A /* ZFS SA */ 863 typedef struct sa_hdr_phys { 864 uint32_t sa_magic; 865 uint16_t sa_layout_info; /* Encoded with hdrsize and layout number */ 866 uint16_t sa_lengths[1]; /* optional sizes for variable length attrs */ 867 /* ... Data follows the lengths. */ 868 } sa_hdr_phys_t; 869 870 /* 871 * sa_hdr_phys -> sa_layout_info 872 * 873 * 16 10 0 874 * +--------+-------+ 875 * | hdrsz |layout | 876 * +--------+-------+ 877 * 878 * Bits 0-10 are the layout number 879 * Bits 11-16 are the size of the header. 880 * The hdrsize is the number * 8 881 * 882 * For example. 883 * hdrsz of 1 ==> 8 byte header 884 * 2 ==> 16 byte header 885 * 886 */ 887 888 #define SA_HDR_LAYOUT_NUM(hdr) BF32_GET(hdr->sa_layout_info, 0, 10) 889 #define SA_HDR_SIZE(hdr) BF32_GET_SB(hdr->sa_layout_info, 10, 16, 3, 0) 890 #define SA_HDR_LAYOUT_INFO_ENCODE(x, num, size) \ 891 { \ 892 BF32_SET_SB(x, 10, 6, 3, 0, size); \ 893 BF32_SET(x, 0, 10, num); \ 894 } 895 896 #define SA_MODE_OFFSET 0 897 #define SA_SIZE_OFFSET 8 898 #define SA_GEN_OFFSET 16 899 #define SA_UID_OFFSET 24 900 #define SA_GID_OFFSET 32 901 #define SA_PARENT_OFFSET 40 902 903 /* 904 * Intent log header - this on disk structure holds fields to manage 905 * the log. All fields are 64 bit to easily handle cross architectures. 906 */ 907 typedef struct zil_header { 908 uint64_t zh_claim_txg; /* txg in which log blocks were claimed */ 909 uint64_t zh_replay_seq; /* highest replayed sequence number */ 910 blkptr_t zh_log; /* log chain */ 911 uint64_t zh_claim_seq; /* highest claimed sequence number */ 912 uint64_t zh_pad[5]; 913 } zil_header_t; 914 915 #define OBJSET_PHYS_SIZE 2048 916 917 typedef struct objset_phys { 918 dnode_phys_t os_meta_dnode; 919 zil_header_t os_zil_header; 920 uint64_t os_type; 921 uint64_t os_flags; 922 char os_pad[OBJSET_PHYS_SIZE - sizeof (dnode_phys_t)*3 - 923 sizeof (zil_header_t) - sizeof (uint64_t)*2]; 924 dnode_phys_t os_userused_dnode; 925 dnode_phys_t os_groupused_dnode; 926 } objset_phys_t; 927 928 typedef struct dsl_dir_phys { 929 uint64_t dd_creation_time; /* not actually used */ 930 uint64_t dd_head_dataset_obj; 931 uint64_t dd_parent_obj; 932 uint64_t dd_clone_parent_obj; 933 uint64_t dd_child_dir_zapobj; 934 /* 935 * how much space our children are accounting for; for leaf 936 * datasets, == physical space used by fs + snaps 937 */ 938 uint64_t dd_used_bytes; 939 uint64_t dd_compressed_bytes; 940 uint64_t dd_uncompressed_bytes; 941 /* Administrative quota setting */ 942 uint64_t dd_quota; 943 /* Administrative reservation setting */ 944 uint64_t dd_reserved; 945 uint64_t dd_props_zapobj; 946 uint64_t dd_pad[21]; /* pad out to 256 bytes for good measure */ 947 } dsl_dir_phys_t; 948 949 typedef struct dsl_dataset_phys { 950 uint64_t ds_dir_obj; 951 uint64_t ds_prev_snap_obj; 952 uint64_t ds_prev_snap_txg; 953 uint64_t ds_next_snap_obj; 954 uint64_t ds_snapnames_zapobj; /* zap obj of snaps; ==0 for snaps */ 955 uint64_t ds_num_children; /* clone/snap children; ==0 for head */ 956 uint64_t ds_creation_time; /* seconds since 1970 */ 957 uint64_t ds_creation_txg; 958 uint64_t ds_deadlist_obj; 959 uint64_t ds_used_bytes; 960 uint64_t ds_compressed_bytes; 961 uint64_t ds_uncompressed_bytes; 962 uint64_t ds_unique_bytes; /* only relevant to snapshots */ 963 /* 964 * The ds_fsid_guid is a 56-bit ID that can change to avoid 965 * collisions. The ds_guid is a 64-bit ID that will never 966 * change, so there is a small probability that it will collide. 967 */ 968 uint64_t ds_fsid_guid; 969 uint64_t ds_guid; 970 uint64_t ds_flags; 971 blkptr_t ds_bp; 972 uint64_t ds_pad[8]; /* pad out to 320 bytes for good measure */ 973 } dsl_dataset_phys_t; 974 975 /* 976 * The names of zap entries in the DIRECTORY_OBJECT of the MOS. 977 */ 978 #define DMU_POOL_DIRECTORY_OBJECT 1 979 #define DMU_POOL_CONFIG "config" 980 #define DMU_POOL_ROOT_DATASET "root_dataset" 981 #define DMU_POOL_SYNC_BPLIST "sync_bplist" 982 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" 983 #define DMU_POOL_ERRLOG_LAST "errlog_last" 984 #define DMU_POOL_SPARES "spares" 985 #define DMU_POOL_DEFLATE "deflate" 986 #define DMU_POOL_HISTORY "history" 987 #define DMU_POOL_PROPS "pool_props" 988 989 #define ZAP_MAGIC 0x2F52AB2ABULL 990 991 #define FZAP_BLOCK_SHIFT(zap) ((zap)->zap_block_shift) 992 993 #define ZAP_MAXCD (uint32_t)(-1) 994 #define ZAP_HASHBITS 28 995 #define MZAP_ENT_LEN 64 996 #define MZAP_NAME_LEN (MZAP_ENT_LEN - 8 - 4 - 2) 997 #define MZAP_MAX_BLKSHIFT SPA_MAXBLOCKSHIFT 998 #define MZAP_MAX_BLKSZ (1 << MZAP_MAX_BLKSHIFT) 999 1000 typedef struct mzap_ent_phys { 1001 uint64_t mze_value; 1002 uint32_t mze_cd; 1003 uint16_t mze_pad; /* in case we want to chain them someday */ 1004 char mze_name[MZAP_NAME_LEN]; 1005 } mzap_ent_phys_t; 1006 1007 typedef struct mzap_phys { 1008 uint64_t mz_block_type; /* ZBT_MICRO */ 1009 uint64_t mz_salt; 1010 uint64_t mz_pad[6]; 1011 mzap_ent_phys_t mz_chunk[1]; 1012 /* actually variable size depending on block size */ 1013 } mzap_phys_t; 1014 1015 /* 1016 * The (fat) zap is stored in one object. It is an array of 1017 * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of: 1018 * 1019 * ptrtbl fits in first block: 1020 * [zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ... 1021 * 1022 * ptrtbl too big for first block: 1023 * [zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ... 1024 * 1025 */ 1026 1027 #define ZBT_LEAF ((1ULL << 63) + 0) 1028 #define ZBT_HEADER ((1ULL << 63) + 1) 1029 #define ZBT_MICRO ((1ULL << 63) + 3) 1030 /* any other values are ptrtbl blocks */ 1031 1032 /* 1033 * the embedded pointer table takes up half a block: 1034 * block size / entry size (2^3) / 2 1035 */ 1036 #define ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1) 1037 1038 /* 1039 * The embedded pointer table starts half-way through the block. Since 1040 * the pointer table itself is half the block, it starts at (64-bit) 1041 * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)). 1042 */ 1043 #define ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \ 1044 ((uint64_t *)(zap)->zap_phys) \ 1045 [(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))] 1046 1047 /* 1048 * TAKE NOTE: 1049 * If zap_phys_t is modified, zap_byteswap() must be modified. 1050 */ 1051 typedef struct zap_phys { 1052 uint64_t zap_block_type; /* ZBT_HEADER */ 1053 uint64_t zap_magic; /* ZAP_MAGIC */ 1054 1055 struct zap_table_phys { 1056 uint64_t zt_blk; /* starting block number */ 1057 uint64_t zt_numblks; /* number of blocks */ 1058 uint64_t zt_shift; /* bits to index it */ 1059 uint64_t zt_nextblk; /* next (larger) copy start block */ 1060 uint64_t zt_blks_copied; /* number source blocks copied */ 1061 } zap_ptrtbl; 1062 1063 uint64_t zap_freeblk; /* the next free block */ 1064 uint64_t zap_num_leafs; /* number of leafs */ 1065 uint64_t zap_num_entries; /* number of entries */ 1066 uint64_t zap_salt; /* salt to stir into hash function */ 1067 /* 1068 * This structure is followed by padding, and then the embedded 1069 * pointer table. The embedded pointer table takes up second 1070 * half of the block. It is accessed using the 1071 * ZAP_EMBEDDED_PTRTBL_ENT() macro. 1072 */ 1073 } zap_phys_t; 1074 1075 typedef struct zap_table_phys zap_table_phys_t; 1076 1077 typedef struct fat_zap { 1078 int zap_block_shift; /* block size shift */ 1079 zap_phys_t *zap_phys; 1080 } fat_zap_t; 1081 1082 #define ZAP_LEAF_MAGIC 0x2AB1EAF 1083 1084 /* chunk size = 24 bytes */ 1085 #define ZAP_LEAF_CHUNKSIZE 24 1086 1087 /* 1088 * The amount of space available for chunks is: 1089 * block size (1<<l->l_bs) - hash entry size (2) * number of hash 1090 * entries - header space (2*chunksize) 1091 */ 1092 #define ZAP_LEAF_NUMCHUNKS(l) \ 1093 (((1<<(l)->l_bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(l)) / \ 1094 ZAP_LEAF_CHUNKSIZE - 2) 1095 1096 /* 1097 * The amount of space within the chunk available for the array is: 1098 * chunk size - space for type (1) - space for next pointer (2) 1099 */ 1100 #define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3) 1101 1102 #define ZAP_LEAF_ARRAY_NCHUNKS(bytes) \ 1103 (((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES) 1104 1105 /* 1106 * Low water mark: when there are only this many chunks free, start 1107 * growing the ptrtbl. Ideally, this should be larger than a 1108 * "reasonably-sized" entry. 20 chunks is more than enough for the 1109 * largest directory entry (MAXNAMELEN (256) byte name, 8-byte value), 1110 * while still being only around 3% for 16k blocks. 1111 */ 1112 #define ZAP_LEAF_LOW_WATER (20) 1113 1114 /* 1115 * The leaf hash table has block size / 2^5 (32) number of entries, 1116 * which should be more than enough for the maximum number of entries, 1117 * which is less than block size / CHUNKSIZE (24) / minimum number of 1118 * chunks per entry (3). 1119 */ 1120 #define ZAP_LEAF_HASH_SHIFT(l) ((l)->l_bs - 5) 1121 #define ZAP_LEAF_HASH_NUMENTRIES(l) (1 << ZAP_LEAF_HASH_SHIFT(l)) 1122 1123 /* 1124 * The chunks start immediately after the hash table. The end of the 1125 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a 1126 * chunk_t. 1127 */ 1128 #define ZAP_LEAF_CHUNK(l, idx) \ 1129 ((zap_leaf_chunk_t *) \ 1130 ((l)->l_phys->l_hash + ZAP_LEAF_HASH_NUMENTRIES(l)))[idx] 1131 #define ZAP_LEAF_ENTRY(l, idx) (&ZAP_LEAF_CHUNK(l, idx).l_entry) 1132 1133 typedef enum zap_chunk_type { 1134 ZAP_CHUNK_FREE = 253, 1135 ZAP_CHUNK_ENTRY = 252, 1136 ZAP_CHUNK_ARRAY = 251, 1137 ZAP_CHUNK_TYPE_MAX = 250 1138 } zap_chunk_type_t; 1139 1140 /* 1141 * TAKE NOTE: 1142 * If zap_leaf_phys_t is modified, zap_leaf_byteswap() must be modified. 1143 */ 1144 typedef struct zap_leaf_phys { 1145 struct zap_leaf_header { 1146 uint64_t lh_block_type; /* ZBT_LEAF */ 1147 uint64_t lh_pad1; 1148 uint64_t lh_prefix; /* hash prefix of this leaf */ 1149 uint32_t lh_magic; /* ZAP_LEAF_MAGIC */ 1150 uint16_t lh_nfree; /* number free chunks */ 1151 uint16_t lh_nentries; /* number of entries */ 1152 uint16_t lh_prefix_len; /* num bits used to id this */ 1153 1154 /* above is accessable to zap, below is zap_leaf private */ 1155 1156 uint16_t lh_freelist; /* chunk head of free list */ 1157 uint8_t lh_pad2[12]; 1158 } l_hdr; /* 2 24-byte chunks */ 1159 1160 /* 1161 * The header is followed by a hash table with 1162 * ZAP_LEAF_HASH_NUMENTRIES(zap) entries. The hash table is 1163 * followed by an array of ZAP_LEAF_NUMCHUNKS(zap) 1164 * zap_leaf_chunk structures. These structures are accessed 1165 * with the ZAP_LEAF_CHUNK() macro. 1166 */ 1167 1168 uint16_t l_hash[1]; 1169 } zap_leaf_phys_t; 1170 1171 typedef union zap_leaf_chunk { 1172 struct zap_leaf_entry { 1173 uint8_t le_type; /* always ZAP_CHUNK_ENTRY */ 1174 uint8_t le_int_size; /* size of ints */ 1175 uint16_t le_next; /* next entry in hash chain */ 1176 uint16_t le_name_chunk; /* first chunk of the name */ 1177 uint16_t le_name_length; /* bytes in name, incl null */ 1178 uint16_t le_value_chunk; /* first chunk of the value */ 1179 uint16_t le_value_length; /* value length in ints */ 1180 uint32_t le_cd; /* collision differentiator */ 1181 uint64_t le_hash; /* hash value of the name */ 1182 } l_entry; 1183 struct zap_leaf_array { 1184 uint8_t la_type; /* always ZAP_CHUNK_ARRAY */ 1185 uint8_t la_array[ZAP_LEAF_ARRAY_BYTES]; 1186 uint16_t la_next; /* next blk or CHAIN_END */ 1187 } l_array; 1188 struct zap_leaf_free { 1189 uint8_t lf_type; /* always ZAP_CHUNK_FREE */ 1190 uint8_t lf_pad[ZAP_LEAF_ARRAY_BYTES]; 1191 uint16_t lf_next; /* next in free list, or CHAIN_END */ 1192 } l_free; 1193 } zap_leaf_chunk_t; 1194 1195 typedef struct zap_leaf { 1196 int l_bs; /* block size shift */ 1197 zap_leaf_phys_t *l_phys; 1198 } zap_leaf_t; 1199 1200 /* 1201 * Define special zfs pflags 1202 */ 1203 #define ZFS_XATTR 0x1 /* is an extended attribute */ 1204 #define ZFS_INHERIT_ACE 0x2 /* ace has inheritable ACEs */ 1205 #define ZFS_ACL_TRIVIAL 0x4 /* files ACL is trivial */ 1206 1207 #define MASTER_NODE_OBJ 1 1208 1209 /* 1210 * special attributes for master node. 1211 */ 1212 1213 #define ZFS_FSID "FSID" 1214 #define ZFS_UNLINKED_SET "DELETE_QUEUE" 1215 #define ZFS_ROOT_OBJ "ROOT" 1216 #define ZPL_VERSION_OBJ "VERSION" 1217 #define ZFS_PROP_BLOCKPERPAGE "BLOCKPERPAGE" 1218 #define ZFS_PROP_NOGROWBLOCKS "NOGROWBLOCKS" 1219 1220 #define ZFS_FLAG_BLOCKPERPAGE 0x1 1221 #define ZFS_FLAG_NOGROWBLOCKS 0x2 1222 1223 /* 1224 * ZPL version - rev'd whenever an incompatible on-disk format change 1225 * occurs. Independent of SPA/DMU/ZAP versioning. 1226 */ 1227 1228 #define ZPL_VERSION 1ULL 1229 1230 /* 1231 * The directory entry has the type (currently unused on Solaris) in the 1232 * top 4 bits, and the object number in the low 48 bits. The "middle" 1233 * 12 bits are unused. 1234 */ 1235 #define ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4) 1236 #define ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48) 1237 #define ZFS_DIRENT_MAKE(type, obj) (((uint64_t)type << 60) | obj) 1238 1239 typedef struct ace { 1240 uid_t a_who; /* uid or gid */ 1241 uint32_t a_access_mask; /* read,write,... */ 1242 uint16_t a_flags; /* see below */ 1243 uint16_t a_type; /* allow or deny */ 1244 } ace_t; 1245 1246 #define ACE_SLOT_CNT 6 1247 1248 typedef struct zfs_znode_acl { 1249 uint64_t z_acl_extern_obj; /* ext acl pieces */ 1250 uint32_t z_acl_count; /* Number of ACEs */ 1251 uint16_t z_acl_version; /* acl version */ 1252 uint16_t z_acl_pad; /* pad */ 1253 ace_t z_ace_data[ACE_SLOT_CNT]; /* 6 standard ACEs */ 1254 } zfs_znode_acl_t; 1255 1256 /* 1257 * This is the persistent portion of the znode. It is stored 1258 * in the "bonus buffer" of the file. Short symbolic links 1259 * are also stored in the bonus buffer. 1260 */ 1261 typedef struct znode_phys { 1262 uint64_t zp_atime[2]; /* 0 - last file access time */ 1263 uint64_t zp_mtime[2]; /* 16 - last file modification time */ 1264 uint64_t zp_ctime[2]; /* 32 - last file change time */ 1265 uint64_t zp_crtime[2]; /* 48 - creation time */ 1266 uint64_t zp_gen; /* 64 - generation (txg of creation) */ 1267 uint64_t zp_mode; /* 72 - file mode bits */ 1268 uint64_t zp_size; /* 80 - size of file */ 1269 uint64_t zp_parent; /* 88 - directory parent (`..') */ 1270 uint64_t zp_links; /* 96 - number of links to file */ 1271 uint64_t zp_xattr; /* 104 - DMU object for xattrs */ 1272 uint64_t zp_rdev; /* 112 - dev_t for VBLK & VCHR files */ 1273 uint64_t zp_flags; /* 120 - persistent flags */ 1274 uint64_t zp_uid; /* 128 - file owner */ 1275 uint64_t zp_gid; /* 136 - owning group */ 1276 uint64_t zp_pad[4]; /* 144 - future */ 1277 zfs_znode_acl_t zp_acl; /* 176 - 263 ACL */ 1278 /* 1279 * Data may pad out any remaining bytes in the znode buffer, eg: 1280 * 1281 * |<---------------------- dnode_phys (512) ------------------------>| 1282 * |<-- dnode (192) --->|<----------- "bonus" buffer (320) ---------->| 1283 * |<---- znode (264) ---->|<---- data (56) ---->| 1284 * 1285 * At present, we only use this space to store symbolic links. 1286 */ 1287 } znode_phys_t; 1288 1289 /* 1290 * In-core vdev representation. 1291 */ 1292 struct vdev; 1293 typedef int vdev_phys_read_t(struct vdev *vdev, void *priv, 1294 off_t offset, void *buf, size_t bytes); 1295 typedef int vdev_read_t(struct vdev *vdev, const blkptr_t *bp, 1296 void *buf, off_t offset, size_t bytes); 1297 1298 typedef STAILQ_HEAD(vdev_list, vdev) vdev_list_t; 1299 1300 typedef struct vdev { 1301 STAILQ_ENTRY(vdev) v_childlink; /* link in parent's child list */ 1302 STAILQ_ENTRY(vdev) v_alllink; /* link in global vdev list */ 1303 vdev_list_t v_children; /* children of this vdev */ 1304 const char *v_name; /* vdev name */ 1305 uint64_t v_guid; /* vdev guid */ 1306 int v_id; /* index in parent */ 1307 int v_ashift; /* offset to block shift */ 1308 int v_nparity; /* # parity for raidz */ 1309 struct vdev *v_top; /* parent vdev */ 1310 int v_nchildren; /* # children */ 1311 vdev_state_t v_state; /* current state */ 1312 vdev_phys_read_t *v_phys_read; /* read from raw leaf vdev */ 1313 vdev_read_t *v_read; /* read from vdev */ 1314 void *v_read_priv; /* private data for read function */ 1315 } vdev_t; 1316 1317 /* 1318 * In-core pool representation. 1319 */ 1320 typedef STAILQ_HEAD(spa_list, spa) spa_list_t; 1321 1322 typedef struct spa { 1323 STAILQ_ENTRY(spa) spa_link; /* link in global pool list */ 1324 char *spa_name; /* pool name */ 1325 uint64_t spa_guid; /* pool guid */ 1326 uint64_t spa_txg; /* most recent transaction */ 1327 struct uberblock spa_uberblock; /* best uberblock so far */ 1328 vdev_list_t spa_vdevs; /* list of all toplevel vdevs */ 1329 objset_phys_t spa_mos; /* MOS for this pool */ 1330 objset_phys_t spa_root_objset; /* current mounted ZPL objset */ 1331 } spa_t; 1332