xref: /freebsd/sys/cddl/boot/zfs/zfsimpl.h (revision 95d45410b5100e07f6f98450bcd841a8945d4726)
1 /*-
2  * Copyright (c) 2002 McAfee, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and McAfee Research,, the Security Research Division of
7  * McAfee, Inc. under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as
8  * part of the DARPA CHATS research program
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 /*
32  * CDDL HEADER START
33  *
34  * The contents of this file are subject to the terms of the
35  * Common Development and Distribution License (the "License").
36  * You may not use this file except in compliance with the License.
37  *
38  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
39  * or http://www.opensolaris.org/os/licensing.
40  * See the License for the specific language governing permissions
41  * and limitations under the License.
42  *
43  * When distributing Covered Code, include this CDDL HEADER in each
44  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
45  * If applicable, add the following below this CDDL HEADER, with the
46  * fields enclosed by brackets "[]" replaced with your own identifying
47  * information: Portions Copyright [yyyy] [name of copyright owner]
48  *
49  * CDDL HEADER END
50  */
51 /*
52  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
53  * Use is subject to license terms.
54  */
55 /*
56  * Copyright 2013 by Saso Kiselkov. All rights reserved.
57  */
58 /*
59  * Copyright (c) 2013 by Delphix. All rights reserved.
60  */
61 
62 #define	MAXNAMELEN	256
63 
64 #define _NOTE(s)
65 
66 /* CRC64 table */
67 #define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
68 
69 /*
70  * Macros for various sorts of alignment and rounding when the alignment
71  * is known to be a power of 2.
72  */
73 #define	P2ALIGN(x, align)		((x) & -(align))
74 #define	P2PHASE(x, align)		((x) & ((align) - 1))
75 #define	P2NPHASE(x, align)		(-(x) & ((align) - 1))
76 #define	P2ROUNDUP(x, align)		(-(-(x) & -(align)))
77 #define	P2END(x, align)			(-(~(x) & -(align)))
78 #define	P2PHASEUP(x, align, phase)	((phase) - (((phase) - (x)) & -(align)))
79 #define	P2BOUNDARY(off, len, align)	(((off) ^ ((off) + (len) - 1)) > (align) - 1)
80 
81 /*
82  * General-purpose 32-bit and 64-bit bitfield encodings.
83  */
84 #define	BF32_DECODE(x, low, len)	P2PHASE((x) >> (low), 1U << (len))
85 #define	BF64_DECODE(x, low, len)	P2PHASE((x) >> (low), 1ULL << (len))
86 #define	BF32_ENCODE(x, low, len)	(P2PHASE((x), 1U << (len)) << (low))
87 #define	BF64_ENCODE(x, low, len)	(P2PHASE((x), 1ULL << (len)) << (low))
88 
89 #define	BF32_GET(x, low, len)		BF32_DECODE(x, low, len)
90 #define	BF64_GET(x, low, len)		BF64_DECODE(x, low, len)
91 
92 #define	BF32_SET(x, low, len, val)	\
93 	((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len))
94 #define	BF64_SET(x, low, len, val)	\
95 	((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len))
96 
97 #define	BF32_GET_SB(x, low, len, shift, bias)	\
98 	((BF32_GET(x, low, len) + (bias)) << (shift))
99 #define	BF64_GET_SB(x, low, len, shift, bias)	\
100 	((BF64_GET(x, low, len) + (bias)) << (shift))
101 
102 #define	BF32_SET_SB(x, low, len, shift, bias, val)	\
103 	BF32_SET(x, low, len, ((val) >> (shift)) - (bias))
104 #define	BF64_SET_SB(x, low, len, shift, bias, val)	\
105 	BF64_SET(x, low, len, ((val) >> (shift)) - (bias))
106 
107 /*
108  * Macros to reverse byte order
109  */
110 #define	BSWAP_8(x)	((x) & 0xff)
111 #define	BSWAP_16(x)	((BSWAP_8(x) << 8) | BSWAP_8((x) >> 8))
112 #define	BSWAP_32(x)	((BSWAP_16(x) << 16) | BSWAP_16((x) >> 16))
113 #define	BSWAP_64(x)	((BSWAP_32(x) << 32) | BSWAP_32((x) >> 32))
114 
115 /*
116  * We currently support nine block sizes, from 512 bytes to 128K.
117  * We could go higher, but the benefits are near-zero and the cost
118  * of COWing a giant block to modify one byte would become excessive.
119  */
120 #define	SPA_MINBLOCKSHIFT	9
121 #define	SPA_MAXBLOCKSHIFT	17
122 #define	SPA_MINBLOCKSIZE	(1ULL << SPA_MINBLOCKSHIFT)
123 #define	SPA_MAXBLOCKSIZE	(1ULL << SPA_MAXBLOCKSHIFT)
124 
125 #define	SPA_BLOCKSIZES		(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)
126 
127 /*
128  * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
129  * The ASIZE encoding should be at least 64 times larger (6 more bits)
130  * to support up to 4-way RAID-Z mirror mode with worst-case gang block
131  * overhead, three DVAs per bp, plus one more bit in case we do anything
132  * else that expands the ASIZE.
133  */
134 #define	SPA_LSIZEBITS		16	/* LSIZE up to 32M (2^16 * 512)	*/
135 #define	SPA_PSIZEBITS		16	/* PSIZE up to 32M (2^16 * 512)	*/
136 #define	SPA_ASIZEBITS		24	/* ASIZE up to 64 times larger	*/
137 
138 /*
139  * All SPA data is represented by 128-bit data virtual addresses (DVAs).
140  * The members of the dva_t should be considered opaque outside the SPA.
141  */
142 typedef struct dva {
143 	uint64_t	dva_word[2];
144 } dva_t;
145 
146 /*
147  * Each block has a 256-bit checksum -- strong enough for cryptographic hashes.
148  */
149 typedef struct zio_cksum {
150 	uint64_t	zc_word[4];
151 } zio_cksum_t;
152 
153 /*
154  * Each block is described by its DVAs, time of birth, checksum, etc.
155  * The word-by-word, bit-by-bit layout of the blkptr is as follows:
156  *
157  *	64	56	48	40	32	24	16	8	0
158  *	+-------+-------+-------+-------+-------+-------+-------+-------+
159  * 0	|		vdev1		| GRID  |	  ASIZE		|
160  *	+-------+-------+-------+-------+-------+-------+-------+-------+
161  * 1	|G|			 offset1				|
162  *	+-------+-------+-------+-------+-------+-------+-------+-------+
163  * 2	|		vdev2		| GRID  |	  ASIZE		|
164  *	+-------+-------+-------+-------+-------+-------+-------+-------+
165  * 3	|G|			 offset2				|
166  *	+-------+-------+-------+-------+-------+-------+-------+-------+
167  * 4	|		vdev3		| GRID  |	  ASIZE		|
168  *	+-------+-------+-------+-------+-------+-------+-------+-------+
169  * 5	|G|			 offset3				|
170  *	+-------+-------+-------+-------+-------+-------+-------+-------+
171  * 6	|BDX|lvl| type	| cksum |E| comp|    PSIZE	|     LSIZE	|
172  *	+-------+-------+-------+-------+-------+-------+-------+-------+
173  * 7	|			padding					|
174  *	+-------+-------+-------+-------+-------+-------+-------+-------+
175  * 8	|			padding					|
176  *	+-------+-------+-------+-------+-------+-------+-------+-------+
177  * 9	|			physical birth txg			|
178  *	+-------+-------+-------+-------+-------+-------+-------+-------+
179  * a	|			logical birth txg			|
180  *	+-------+-------+-------+-------+-------+-------+-------+-------+
181  * b	|			fill count				|
182  *	+-------+-------+-------+-------+-------+-------+-------+-------+
183  * c	|			checksum[0]				|
184  *	+-------+-------+-------+-------+-------+-------+-------+-------+
185  * d	|			checksum[1]				|
186  *	+-------+-------+-------+-------+-------+-------+-------+-------+
187  * e	|			checksum[2]				|
188  *	+-------+-------+-------+-------+-------+-------+-------+-------+
189  * f	|			checksum[3]				|
190  *	+-------+-------+-------+-------+-------+-------+-------+-------+
191  *
192  * Legend:
193  *
194  * vdev		virtual device ID
195  * offset	offset into virtual device
196  * LSIZE	logical size
197  * PSIZE	physical size (after compression)
198  * ASIZE	allocated size (including RAID-Z parity and gang block headers)
199  * GRID		RAID-Z layout information (reserved for future use)
200  * cksum	checksum function
201  * comp		compression function
202  * G		gang block indicator
203  * B		byteorder (endianness)
204  * D		dedup
205  * X		encryption (on version 30, which is not supported)
206  * E		blkptr_t contains embedded data (see below)
207  * lvl		level of indirection
208  * type		DMU object type
209  * phys birth	txg of block allocation; zero if same as logical birth txg
210  * log. birth	transaction group in which the block was logically born
211  * fill count	number of non-zero blocks under this bp
212  * checksum[4]	256-bit checksum of the data this bp describes
213  */
214 
215 /*
216  * "Embedded" blkptr_t's don't actually point to a block, instead they
217  * have a data payload embedded in the blkptr_t itself.  See the comment
218  * in blkptr.c for more details.
219  *
220  * The blkptr_t is laid out as follows:
221  *
222  *	64	56	48	40	32	24	16	8	0
223  *	+-------+-------+-------+-------+-------+-------+-------+-------+
224  * 0	|      payload                                                  |
225  * 1	|      payload                                                  |
226  * 2	|      payload                                                  |
227  * 3	|      payload                                                  |
228  * 4	|      payload                                                  |
229  * 5	|      payload                                                  |
230  *	+-------+-------+-------+-------+-------+-------+-------+-------+
231  * 6	|BDX|lvl| type	| etype |E| comp| PSIZE|              LSIZE	|
232  *	+-------+-------+-------+-------+-------+-------+-------+-------+
233  * 7	|      payload                                                  |
234  * 8	|      payload                                                  |
235  * 9	|      payload                                                  |
236  *	+-------+-------+-------+-------+-------+-------+-------+-------+
237  * a	|			logical birth txg			|
238  *	+-------+-------+-------+-------+-------+-------+-------+-------+
239  * b	|      payload                                                  |
240  * c	|      payload                                                  |
241  * d	|      payload                                                  |
242  * e	|      payload                                                  |
243  * f	|      payload                                                  |
244  *	+-------+-------+-------+-------+-------+-------+-------+-------+
245  *
246  * Legend:
247  *
248  * payload		contains the embedded data
249  * B (byteorder)	byteorder (endianness)
250  * D (dedup)		padding (set to zero)
251  * X			encryption (set to zero; see above)
252  * E (embedded)		set to one
253  * lvl			indirection level
254  * type			DMU object type
255  * etype		how to interpret embedded data (BP_EMBEDDED_TYPE_*)
256  * comp			compression function of payload
257  * PSIZE		size of payload after compression, in bytes
258  * LSIZE		logical size of payload, in bytes
259  *			note that 25 bits is enough to store the largest
260  *			"normal" BP's LSIZE (2^16 * 2^9) in bytes
261  * log. birth		transaction group in which the block was logically born
262  *
263  * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded
264  * bp's they are stored in units of SPA_MINBLOCKSHIFT.
265  * Generally, the generic BP_GET_*() macros can be used on embedded BP's.
266  * The B, D, X, lvl, type, and comp fields are stored the same as with normal
267  * BP's so the BP_SET_* macros can be used with them.  etype, PSIZE, LSIZE must
268  * be set with the BPE_SET_* macros.  BP_SET_EMBEDDED() should be called before
269  * other macros, as they assert that they are only used on BP's of the correct
270  * "embedded-ness".
271  */
272 
273 #define	BPE_GET_ETYPE(bp)	\
274 	(ASSERT(BP_IS_EMBEDDED(bp)), \
275 	BF64_GET((bp)->blk_prop, 40, 8))
276 #define	BPE_SET_ETYPE(bp, t)	do { \
277 	ASSERT(BP_IS_EMBEDDED(bp)); \
278 	BF64_SET((bp)->blk_prop, 40, 8, t); \
279 _NOTE(CONSTCOND) } while (0)
280 
281 #define	BPE_GET_LSIZE(bp)	\
282 	(ASSERT(BP_IS_EMBEDDED(bp)), \
283 	BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1))
284 #define	BPE_SET_LSIZE(bp, x)	do { \
285 	ASSERT(BP_IS_EMBEDDED(bp)); \
286 	BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \
287 _NOTE(CONSTCOND) } while (0)
288 
289 #define	BPE_GET_PSIZE(bp)	\
290 	(ASSERT(BP_IS_EMBEDDED(bp)), \
291 	BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1))
292 #define	BPE_SET_PSIZE(bp, x)	do { \
293 	ASSERT(BP_IS_EMBEDDED(bp)); \
294 	BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \
295 _NOTE(CONSTCOND) } while (0)
296 
297 typedef enum bp_embedded_type {
298 	BP_EMBEDDED_TYPE_DATA,
299 	BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */
300 	NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED
301 } bp_embedded_type_t;
302 
303 #define	BPE_NUM_WORDS 14
304 #define	BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
305 #define	BPE_IS_PAYLOADWORD(bp, wp) \
306 	((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
307 
308 #define	SPA_BLKPTRSHIFT	7		/* blkptr_t is 128 bytes	*/
309 #define	SPA_DVAS_PER_BP	3		/* Number of DVAs in a bp	*/
310 
311 typedef struct blkptr {
312 	dva_t		blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
313 	uint64_t	blk_prop;	/* size, compression, type, etc	    */
314 	uint64_t	blk_pad[2];	/* Extra space for the future	    */
315 	uint64_t	blk_phys_birth;	/* txg when block was allocated	    */
316 	uint64_t	blk_birth;	/* transaction group at birth	    */
317 	uint64_t	blk_fill;	/* fill count			    */
318 	zio_cksum_t	blk_cksum;	/* 256-bit checksum		    */
319 } blkptr_t;
320 
321 /*
322  * Macros to get and set fields in a bp or DVA.
323  */
324 #define	DVA_GET_ASIZE(dva)	\
325 	BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
326 #define	DVA_SET_ASIZE(dva, x)	\
327 	BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
328 	SPA_MINBLOCKSHIFT, 0, x)
329 
330 #define	DVA_GET_GRID(dva)	BF64_GET((dva)->dva_word[0], 24, 8)
331 #define	DVA_SET_GRID(dva, x)	BF64_SET((dva)->dva_word[0], 24, 8, x)
332 
333 #define	DVA_GET_VDEV(dva)	BF64_GET((dva)->dva_word[0], 32, 32)
334 #define	DVA_SET_VDEV(dva, x)	BF64_SET((dva)->dva_word[0], 32, 32, x)
335 
336 #define	DVA_GET_OFFSET(dva)	\
337 	BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
338 #define	DVA_SET_OFFSET(dva, x)	\
339 	BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
340 
341 #define	DVA_GET_GANG(dva)	BF64_GET((dva)->dva_word[1], 63, 1)
342 #define	DVA_SET_GANG(dva, x)	BF64_SET((dva)->dva_word[1], 63, 1, x)
343 
344 #define	BP_GET_LSIZE(bp)	\
345 	(BP_IS_EMBEDDED(bp) ?	\
346 	(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
347 	BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
348 #define	BP_SET_LSIZE(bp, x)	do { \
349 	ASSERT(!BP_IS_EMBEDDED(bp)); \
350 	BF64_SET_SB((bp)->blk_prop, \
351 	    0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
352 _NOTE(CONSTCOND) } while (0)
353 
354 #define	BP_GET_PSIZE(bp)	\
355 	BF64_GET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1)
356 #define	BP_SET_PSIZE(bp, x)	\
357 	BF64_SET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x)
358 
359 #define	BP_GET_COMPRESS(bp)	BF64_GET((bp)->blk_prop, 32, 7)
360 #define	BP_SET_COMPRESS(bp, x)	BF64_SET((bp)->blk_prop, 32, 7, x)
361 
362 #define	BP_GET_CHECKSUM(bp)	BF64_GET((bp)->blk_prop, 40, 8)
363 #define	BP_SET_CHECKSUM(bp, x)	BF64_SET((bp)->blk_prop, 40, 8, x)
364 
365 #define	BP_GET_TYPE(bp)		BF64_GET((bp)->blk_prop, 48, 8)
366 #define	BP_SET_TYPE(bp, x)	BF64_SET((bp)->blk_prop, 48, 8, x)
367 
368 #define	BP_GET_LEVEL(bp)	BF64_GET((bp)->blk_prop, 56, 5)
369 #define	BP_SET_LEVEL(bp, x)	BF64_SET((bp)->blk_prop, 56, 5, x)
370 
371 #define	BP_IS_EMBEDDED(bp)	BF64_GET((bp)->blk_prop, 39, 1)
372 
373 #define	BP_GET_DEDUP(bp)	BF64_GET((bp)->blk_prop, 62, 1)
374 #define	BP_SET_DEDUP(bp, x)	BF64_SET((bp)->blk_prop, 62, 1, x)
375 
376 #define	BP_GET_BYTEORDER(bp)	BF64_GET((bp)->blk_prop, 63, 1)
377 #define	BP_SET_BYTEORDER(bp, x)	BF64_SET((bp)->blk_prop, 63, 1, x)
378 
379 #define	BP_PHYSICAL_BIRTH(bp)		\
380 	((bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth)
381 
382 #define	BP_GET_ASIZE(bp)	\
383 	(DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
384 		DVA_GET_ASIZE(&(bp)->blk_dva[2]))
385 
386 #define	BP_GET_UCSIZE(bp) \
387 	((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \
388 	BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp));
389 
390 #define	BP_GET_NDVAS(bp)	\
391 	(!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
392 	!!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
393 	!!DVA_GET_ASIZE(&(bp)->blk_dva[2]))
394 
395 #define	DVA_EQUAL(dva1, dva2)	\
396 	((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
397 	(dva1)->dva_word[0] == (dva2)->dva_word[0])
398 
399 #define	ZIO_CHECKSUM_EQUAL(zc1, zc2) \
400 	(0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \
401 	((zc1).zc_word[1] - (zc2).zc_word[1]) | \
402 	((zc1).zc_word[2] - (zc2).zc_word[2]) | \
403 	((zc1).zc_word[3] - (zc2).zc_word[3])))
404 
405 
406 #define	DVA_IS_VALID(dva)	(DVA_GET_ASIZE(dva) != 0)
407 
408 #define	ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3)	\
409 {						\
410 	(zcp)->zc_word[0] = w0;			\
411 	(zcp)->zc_word[1] = w1;			\
412 	(zcp)->zc_word[2] = w2;			\
413 	(zcp)->zc_word[3] = w3;			\
414 }
415 
416 #define	BP_IDENTITY(bp)		(&(bp)->blk_dva[0])
417 #define	BP_IS_GANG(bp)		DVA_GET_GANG(BP_IDENTITY(bp))
418 #define	DVA_IS_EMPTY(dva)	((dva)->dva_word[0] == 0ULL &&  \
419 	(dva)->dva_word[1] == 0ULL)
420 #define	BP_IS_HOLE(bp)		DVA_IS_EMPTY(BP_IDENTITY(bp))
421 #define	BP_IS_OLDER(bp, txg)	(!BP_IS_HOLE(bp) && (bp)->blk_birth < (txg))
422 
423 #define	BP_ZERO(bp)				\
424 {						\
425 	(bp)->blk_dva[0].dva_word[0] = 0;	\
426 	(bp)->blk_dva[0].dva_word[1] = 0;	\
427 	(bp)->blk_dva[1].dva_word[0] = 0;	\
428 	(bp)->blk_dva[1].dva_word[1] = 0;	\
429 	(bp)->blk_dva[2].dva_word[0] = 0;	\
430 	(bp)->blk_dva[2].dva_word[1] = 0;	\
431 	(bp)->blk_prop = 0;			\
432 	(bp)->blk_pad[0] = 0;			\
433 	(bp)->blk_pad[1] = 0;			\
434 	(bp)->blk_phys_birth = 0;		\
435 	(bp)->blk_birth = 0;			\
436 	(bp)->blk_fill = 0;			\
437 	ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0);	\
438 }
439 
440 #define	BPE_NUM_WORDS 14
441 #define	BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
442 #define	BPE_IS_PAYLOADWORD(bp, wp) \
443 	((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
444 
445 /*
446  * Embedded checksum
447  */
448 #define	ZEC_MAGIC	0x210da7ab10c7a11ULL
449 
450 typedef struct zio_eck {
451 	uint64_t	zec_magic;	/* for validation, endianness	*/
452 	zio_cksum_t	zec_cksum;	/* 256-bit checksum		*/
453 } zio_eck_t;
454 
455 /*
456  * Gang block headers are self-checksumming and contain an array
457  * of block pointers.
458  */
459 #define	SPA_GANGBLOCKSIZE	SPA_MINBLOCKSIZE
460 #define	SPA_GBH_NBLKPTRS	((SPA_GANGBLOCKSIZE - \
461 	sizeof (zio_eck_t)) / sizeof (blkptr_t))
462 #define	SPA_GBH_FILLER		((SPA_GANGBLOCKSIZE - \
463 	sizeof (zio_eck_t) - \
464 	(SPA_GBH_NBLKPTRS * sizeof (blkptr_t))) /\
465 	sizeof (uint64_t))
466 
467 typedef struct zio_gbh {
468 	blkptr_t		zg_blkptr[SPA_GBH_NBLKPTRS];
469 	uint64_t		zg_filler[SPA_GBH_FILLER];
470 	zio_eck_t		zg_tail;
471 } zio_gbh_phys_t;
472 
473 #define	VDEV_RAIDZ_MAXPARITY	3
474 
475 #define	VDEV_PAD_SIZE		(8 << 10)
476 /* 2 padding areas (vl_pad1 and vl_pad2) to skip */
477 #define	VDEV_SKIP_SIZE		VDEV_PAD_SIZE * 2
478 #define	VDEV_PHYS_SIZE		(112 << 10)
479 #define	VDEV_UBERBLOCK_RING	(128 << 10)
480 
481 #define	VDEV_UBERBLOCK_SHIFT(vd)	\
482 	MAX((vd)->v_top->v_ashift, UBERBLOCK_SHIFT)
483 #define	VDEV_UBERBLOCK_COUNT(vd)	\
484 	(VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd))
485 #define	VDEV_UBERBLOCK_OFFSET(vd, n)	\
486 	offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)])
487 #define	VDEV_UBERBLOCK_SIZE(vd)		(1ULL << VDEV_UBERBLOCK_SHIFT(vd))
488 
489 typedef struct vdev_phys {
490 	char		vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_eck_t)];
491 	zio_eck_t	vp_zbt;
492 } vdev_phys_t;
493 
494 typedef struct vdev_label {
495 	char		vl_pad1[VDEV_PAD_SIZE];			/*  8K  */
496 	char		vl_pad2[VDEV_PAD_SIZE];			/*  8K  */
497 	vdev_phys_t	vl_vdev_phys;				/* 112K	*/
498 	char		vl_uberblock[VDEV_UBERBLOCK_RING];	/* 128K	*/
499 } vdev_label_t;							/* 256K total */
500 
501 /*
502  * vdev_dirty() flags
503  */
504 #define	VDD_METASLAB	0x01
505 #define	VDD_DTL		0x02
506 
507 /*
508  * Size and offset of embedded boot loader region on each label.
509  * The total size of the first two labels plus the boot area is 4MB.
510  */
511 #define	VDEV_BOOT_OFFSET	(2 * sizeof (vdev_label_t))
512 #define	VDEV_BOOT_SIZE		(7ULL << 19)			/* 3.5M	*/
513 
514 /*
515  * Size of label regions at the start and end of each leaf device.
516  */
517 #define	VDEV_LABEL_START_SIZE	(2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE)
518 #define	VDEV_LABEL_END_SIZE	(2 * sizeof (vdev_label_t))
519 #define	VDEV_LABELS		4
520 
521 enum zio_checksum {
522 	ZIO_CHECKSUM_INHERIT = 0,
523 	ZIO_CHECKSUM_ON,
524 	ZIO_CHECKSUM_OFF,
525 	ZIO_CHECKSUM_LABEL,
526 	ZIO_CHECKSUM_GANG_HEADER,
527 	ZIO_CHECKSUM_ZILOG,
528 	ZIO_CHECKSUM_FLETCHER_2,
529 	ZIO_CHECKSUM_FLETCHER_4,
530 	ZIO_CHECKSUM_SHA256,
531 	ZIO_CHECKSUM_ZILOG2,
532 	ZIO_CHECKSUM_FUNCTIONS
533 };
534 
535 #define	ZIO_CHECKSUM_ON_VALUE	ZIO_CHECKSUM_FLETCHER_4
536 #define	ZIO_CHECKSUM_DEFAULT	ZIO_CHECKSUM_ON
537 
538 enum zio_compress {
539 	ZIO_COMPRESS_INHERIT = 0,
540 	ZIO_COMPRESS_ON,
541 	ZIO_COMPRESS_OFF,
542 	ZIO_COMPRESS_LZJB,
543 	ZIO_COMPRESS_EMPTY,
544 	ZIO_COMPRESS_GZIP_1,
545 	ZIO_COMPRESS_GZIP_2,
546 	ZIO_COMPRESS_GZIP_3,
547 	ZIO_COMPRESS_GZIP_4,
548 	ZIO_COMPRESS_GZIP_5,
549 	ZIO_COMPRESS_GZIP_6,
550 	ZIO_COMPRESS_GZIP_7,
551 	ZIO_COMPRESS_GZIP_8,
552 	ZIO_COMPRESS_GZIP_9,
553 	ZIO_COMPRESS_ZLE,
554 	ZIO_COMPRESS_LZ4,
555 	ZIO_COMPRESS_FUNCTIONS
556 };
557 
558 #define	ZIO_COMPRESS_ON_VALUE	ZIO_COMPRESS_LZJB
559 #define	ZIO_COMPRESS_DEFAULT	ZIO_COMPRESS_OFF
560 
561 /* nvlist pack encoding */
562 #define	NV_ENCODE_NATIVE	0
563 #define	NV_ENCODE_XDR		1
564 
565 typedef enum {
566 	DATA_TYPE_UNKNOWN = 0,
567 	DATA_TYPE_BOOLEAN,
568 	DATA_TYPE_BYTE,
569 	DATA_TYPE_INT16,
570 	DATA_TYPE_UINT16,
571 	DATA_TYPE_INT32,
572 	DATA_TYPE_UINT32,
573 	DATA_TYPE_INT64,
574 	DATA_TYPE_UINT64,
575 	DATA_TYPE_STRING,
576 	DATA_TYPE_BYTE_ARRAY,
577 	DATA_TYPE_INT16_ARRAY,
578 	DATA_TYPE_UINT16_ARRAY,
579 	DATA_TYPE_INT32_ARRAY,
580 	DATA_TYPE_UINT32_ARRAY,
581 	DATA_TYPE_INT64_ARRAY,
582 	DATA_TYPE_UINT64_ARRAY,
583 	DATA_TYPE_STRING_ARRAY,
584 	DATA_TYPE_HRTIME,
585 	DATA_TYPE_NVLIST,
586 	DATA_TYPE_NVLIST_ARRAY,
587 	DATA_TYPE_BOOLEAN_VALUE,
588 	DATA_TYPE_INT8,
589 	DATA_TYPE_UINT8,
590 	DATA_TYPE_BOOLEAN_ARRAY,
591 	DATA_TYPE_INT8_ARRAY,
592 	DATA_TYPE_UINT8_ARRAY
593 } data_type_t;
594 
595 /*
596  * On-disk version number.
597  */
598 #define	SPA_VERSION_1			1ULL
599 #define	SPA_VERSION_2			2ULL
600 #define	SPA_VERSION_3			3ULL
601 #define	SPA_VERSION_4			4ULL
602 #define	SPA_VERSION_5			5ULL
603 #define	SPA_VERSION_6			6ULL
604 #define	SPA_VERSION_7			7ULL
605 #define	SPA_VERSION_8			8ULL
606 #define	SPA_VERSION_9			9ULL
607 #define	SPA_VERSION_10			10ULL
608 #define	SPA_VERSION_11			11ULL
609 #define	SPA_VERSION_12			12ULL
610 #define	SPA_VERSION_13			13ULL
611 #define	SPA_VERSION_14			14ULL
612 #define	SPA_VERSION_15			15ULL
613 #define	SPA_VERSION_16			16ULL
614 #define	SPA_VERSION_17			17ULL
615 #define	SPA_VERSION_18			18ULL
616 #define	SPA_VERSION_19			19ULL
617 #define	SPA_VERSION_20			20ULL
618 #define	SPA_VERSION_21			21ULL
619 #define	SPA_VERSION_22			22ULL
620 #define	SPA_VERSION_23			23ULL
621 #define	SPA_VERSION_24			24ULL
622 #define	SPA_VERSION_25			25ULL
623 #define	SPA_VERSION_26			26ULL
624 #define	SPA_VERSION_27			27ULL
625 #define	SPA_VERSION_28			28ULL
626 #define	SPA_VERSION_5000		5000ULL
627 
628 /*
629  * When bumping up SPA_VERSION, make sure GRUB ZFS understands the on-disk
630  * format change. Go to usr/src/grub/grub-0.97/stage2/{zfs-include/, fsys_zfs*},
631  * and do the appropriate changes.  Also bump the version number in
632  * usr/src/grub/capability.
633  */
634 #define	SPA_VERSION			SPA_VERSION_5000
635 #define	SPA_VERSION_STRING		"5000"
636 
637 /*
638  * Symbolic names for the changes that caused a SPA_VERSION switch.
639  * Used in the code when checking for presence or absence of a feature.
640  * Feel free to define multiple symbolic names for each version if there
641  * were multiple changes to on-disk structures during that version.
642  *
643  * NOTE: When checking the current SPA_VERSION in your code, be sure
644  *       to use spa_version() since it reports the version of the
645  *       last synced uberblock.  Checking the in-flight version can
646  *       be dangerous in some cases.
647  */
648 #define	SPA_VERSION_INITIAL		SPA_VERSION_1
649 #define	SPA_VERSION_DITTO_BLOCKS	SPA_VERSION_2
650 #define	SPA_VERSION_SPARES		SPA_VERSION_3
651 #define	SPA_VERSION_RAID6		SPA_VERSION_3
652 #define	SPA_VERSION_BPLIST_ACCOUNT	SPA_VERSION_3
653 #define	SPA_VERSION_RAIDZ_DEFLATE	SPA_VERSION_3
654 #define	SPA_VERSION_DNODE_BYTES		SPA_VERSION_3
655 #define	SPA_VERSION_ZPOOL_HISTORY	SPA_VERSION_4
656 #define	SPA_VERSION_GZIP_COMPRESSION	SPA_VERSION_5
657 #define	SPA_VERSION_BOOTFS		SPA_VERSION_6
658 #define	SPA_VERSION_SLOGS		SPA_VERSION_7
659 #define	SPA_VERSION_DELEGATED_PERMS	SPA_VERSION_8
660 #define	SPA_VERSION_FUID		SPA_VERSION_9
661 #define	SPA_VERSION_REFRESERVATION	SPA_VERSION_9
662 #define	SPA_VERSION_REFQUOTA		SPA_VERSION_9
663 #define	SPA_VERSION_UNIQUE_ACCURATE	SPA_VERSION_9
664 #define	SPA_VERSION_L2CACHE		SPA_VERSION_10
665 #define	SPA_VERSION_NEXT_CLONES		SPA_VERSION_11
666 #define	SPA_VERSION_ORIGIN		SPA_VERSION_11
667 #define	SPA_VERSION_DSL_SCRUB		SPA_VERSION_11
668 #define	SPA_VERSION_SNAP_PROPS		SPA_VERSION_12
669 #define	SPA_VERSION_USED_BREAKDOWN	SPA_VERSION_13
670 #define	SPA_VERSION_PASSTHROUGH_X	SPA_VERSION_14
671 #define SPA_VERSION_USERSPACE		SPA_VERSION_15
672 #define	SPA_VERSION_STMF_PROP		SPA_VERSION_16
673 #define	SPA_VERSION_RAIDZ3		SPA_VERSION_17
674 #define	SPA_VERSION_USERREFS		SPA_VERSION_18
675 #define	SPA_VERSION_HOLES		SPA_VERSION_19
676 #define	SPA_VERSION_ZLE_COMPRESSION	SPA_VERSION_20
677 #define	SPA_VERSION_DEDUP		SPA_VERSION_21
678 #define	SPA_VERSION_RECVD_PROPS		SPA_VERSION_22
679 #define	SPA_VERSION_SLIM_ZIL		SPA_VERSION_23
680 #define	SPA_VERSION_SA			SPA_VERSION_24
681 #define	SPA_VERSION_SCAN		SPA_VERSION_25
682 #define	SPA_VERSION_DIR_CLONES		SPA_VERSION_26
683 #define	SPA_VERSION_DEADLISTS		SPA_VERSION_26
684 #define	SPA_VERSION_FAST_SNAP		SPA_VERSION_27
685 #define	SPA_VERSION_MULTI_REPLACE	SPA_VERSION_28
686 #define	SPA_VERSION_BEFORE_FEATURES	SPA_VERSION_28
687 #define	SPA_VERSION_FEATURES		SPA_VERSION_5000
688 
689 #define	SPA_VERSION_IS_SUPPORTED(v) \
690 	(((v) >= SPA_VERSION_INITIAL && (v) <= SPA_VERSION_BEFORE_FEATURES) || \
691 	((v) >= SPA_VERSION_FEATURES && (v) <= SPA_VERSION))
692 
693 /*
694  * The following are configuration names used in the nvlist describing a pool's
695  * configuration.
696  */
697 #define	ZPOOL_CONFIG_VERSION		"version"
698 #define	ZPOOL_CONFIG_POOL_NAME		"name"
699 #define	ZPOOL_CONFIG_POOL_STATE		"state"
700 #define	ZPOOL_CONFIG_POOL_TXG		"txg"
701 #define	ZPOOL_CONFIG_POOL_GUID		"pool_guid"
702 #define	ZPOOL_CONFIG_CREATE_TXG		"create_txg"
703 #define	ZPOOL_CONFIG_TOP_GUID		"top_guid"
704 #define	ZPOOL_CONFIG_VDEV_TREE		"vdev_tree"
705 #define	ZPOOL_CONFIG_TYPE		"type"
706 #define	ZPOOL_CONFIG_CHILDREN		"children"
707 #define	ZPOOL_CONFIG_ID			"id"
708 #define	ZPOOL_CONFIG_GUID		"guid"
709 #define	ZPOOL_CONFIG_PATH		"path"
710 #define	ZPOOL_CONFIG_DEVID		"devid"
711 #define	ZPOOL_CONFIG_METASLAB_ARRAY	"metaslab_array"
712 #define	ZPOOL_CONFIG_METASLAB_SHIFT	"metaslab_shift"
713 #define	ZPOOL_CONFIG_ASHIFT		"ashift"
714 #define	ZPOOL_CONFIG_ASIZE		"asize"
715 #define	ZPOOL_CONFIG_DTL		"DTL"
716 #define	ZPOOL_CONFIG_STATS		"stats"
717 #define	ZPOOL_CONFIG_WHOLE_DISK		"whole_disk"
718 #define	ZPOOL_CONFIG_ERRCOUNT		"error_count"
719 #define	ZPOOL_CONFIG_NOT_PRESENT	"not_present"
720 #define	ZPOOL_CONFIG_SPARES		"spares"
721 #define	ZPOOL_CONFIG_IS_SPARE		"is_spare"
722 #define	ZPOOL_CONFIG_NPARITY		"nparity"
723 #define	ZPOOL_CONFIG_HOSTID		"hostid"
724 #define	ZPOOL_CONFIG_HOSTNAME		"hostname"
725 #define	ZPOOL_CONFIG_IS_LOG		"is_log"
726 #define	ZPOOL_CONFIG_TIMESTAMP		"timestamp" /* not stored on disk */
727 #define	ZPOOL_CONFIG_FEATURES_FOR_READ	"features_for_read"
728 
729 /*
730  * The persistent vdev state is stored as separate values rather than a single
731  * 'vdev_state' entry.  This is because a device can be in multiple states, such
732  * as offline and degraded.
733  */
734 #define	ZPOOL_CONFIG_OFFLINE            "offline"
735 #define	ZPOOL_CONFIG_FAULTED            "faulted"
736 #define	ZPOOL_CONFIG_DEGRADED           "degraded"
737 #define	ZPOOL_CONFIG_REMOVED            "removed"
738 #define	ZPOOL_CONFIG_FRU		"fru"
739 #define	ZPOOL_CONFIG_AUX_STATE		"aux_state"
740 
741 #define	VDEV_TYPE_ROOT			"root"
742 #define	VDEV_TYPE_MIRROR		"mirror"
743 #define	VDEV_TYPE_REPLACING		"replacing"
744 #define	VDEV_TYPE_RAIDZ			"raidz"
745 #define	VDEV_TYPE_DISK			"disk"
746 #define	VDEV_TYPE_FILE			"file"
747 #define	VDEV_TYPE_MISSING		"missing"
748 #define	VDEV_TYPE_HOLE			"hole"
749 #define	VDEV_TYPE_SPARE			"spare"
750 #define	VDEV_TYPE_LOG			"log"
751 #define	VDEV_TYPE_L2CACHE		"l2cache"
752 
753 /*
754  * This is needed in userland to report the minimum necessary device size.
755  */
756 #define	SPA_MINDEVSIZE		(64ULL << 20)
757 
758 /*
759  * The location of the pool configuration repository, shared between kernel and
760  * userland.
761  */
762 #define	ZPOOL_CACHE		"/boot/zfs/zpool.cache"
763 
764 /*
765  * vdev states are ordered from least to most healthy.
766  * A vdev that's CANT_OPEN or below is considered unusable.
767  */
768 typedef enum vdev_state {
769 	VDEV_STATE_UNKNOWN = 0,	/* Uninitialized vdev			*/
770 	VDEV_STATE_CLOSED,	/* Not currently open			*/
771 	VDEV_STATE_OFFLINE,	/* Not allowed to open			*/
772 	VDEV_STATE_REMOVED,	/* Explicitly removed from system	*/
773 	VDEV_STATE_CANT_OPEN,	/* Tried to open, but failed		*/
774 	VDEV_STATE_FAULTED,	/* External request to fault device	*/
775 	VDEV_STATE_DEGRADED,	/* Replicated vdev with unhealthy kids	*/
776 	VDEV_STATE_HEALTHY	/* Presumed good			*/
777 } vdev_state_t;
778 
779 /*
780  * vdev aux states.  When a vdev is in the CANT_OPEN state, the aux field
781  * of the vdev stats structure uses these constants to distinguish why.
782  */
783 typedef enum vdev_aux {
784 	VDEV_AUX_NONE,		/* no error				*/
785 	VDEV_AUX_OPEN_FAILED,	/* ldi_open_*() or vn_open() failed	*/
786 	VDEV_AUX_CORRUPT_DATA,	/* bad label or disk contents		*/
787 	VDEV_AUX_NO_REPLICAS,	/* insufficient number of replicas	*/
788 	VDEV_AUX_BAD_GUID_SUM,	/* vdev guid sum doesn't match		*/
789 	VDEV_AUX_TOO_SMALL,	/* vdev size is too small		*/
790 	VDEV_AUX_BAD_LABEL,	/* the label is OK but invalid		*/
791 	VDEV_AUX_VERSION_NEWER,	/* on-disk version is too new		*/
792 	VDEV_AUX_VERSION_OLDER,	/* on-disk version is too old		*/
793 	VDEV_AUX_SPARED		/* hot spare used in another pool	*/
794 } vdev_aux_t;
795 
796 /*
797  * pool state.  The following states are written to disk as part of the normal
798  * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE.  The remaining states are
799  * software abstractions used at various levels to communicate pool state.
800  */
801 typedef enum pool_state {
802 	POOL_STATE_ACTIVE = 0,		/* In active use		*/
803 	POOL_STATE_EXPORTED,		/* Explicitly exported		*/
804 	POOL_STATE_DESTROYED,		/* Explicitly destroyed		*/
805 	POOL_STATE_SPARE,		/* Reserved for hot spare use	*/
806 	POOL_STATE_UNINITIALIZED,	/* Internal spa_t state		*/
807 	POOL_STATE_UNAVAIL,		/* Internal libzfs state	*/
808 	POOL_STATE_POTENTIALLY_ACTIVE	/* Internal libzfs state	*/
809 } pool_state_t;
810 
811 /*
812  * The uberblock version is incremented whenever an incompatible on-disk
813  * format change is made to the SPA, DMU, or ZAP.
814  *
815  * Note: the first two fields should never be moved.  When a storage pool
816  * is opened, the uberblock must be read off the disk before the version
817  * can be checked.  If the ub_version field is moved, we may not detect
818  * version mismatch.  If the ub_magic field is moved, applications that
819  * expect the magic number in the first word won't work.
820  */
821 #define	UBERBLOCK_MAGIC		0x00bab10c		/* oo-ba-bloc!	*/
822 #define	UBERBLOCK_SHIFT		10			/* up to 1K	*/
823 
824 struct uberblock {
825 	uint64_t	ub_magic;	/* UBERBLOCK_MAGIC		*/
826 	uint64_t	ub_version;	/* SPA_VERSION			*/
827 	uint64_t	ub_txg;		/* txg of last sync		*/
828 	uint64_t	ub_guid_sum;	/* sum of all vdev guids	*/
829 	uint64_t	ub_timestamp;	/* UTC time of last sync	*/
830 	blkptr_t	ub_rootbp;	/* MOS objset_phys_t		*/
831 };
832 
833 /*
834  * Flags.
835  */
836 #define	DNODE_MUST_BE_ALLOCATED	1
837 #define	DNODE_MUST_BE_FREE	2
838 
839 /*
840  * Fixed constants.
841  */
842 #define	DNODE_SHIFT		9	/* 512 bytes */
843 #define	DN_MIN_INDBLKSHIFT	10	/* 1k */
844 #define	DN_MAX_INDBLKSHIFT	14	/* 16k */
845 #define	DNODE_BLOCK_SHIFT	14	/* 16k */
846 #define	DNODE_CORE_SIZE		64	/* 64 bytes for dnode sans blkptrs */
847 #define	DN_MAX_OBJECT_SHIFT	48	/* 256 trillion (zfs_fid_t limit) */
848 #define	DN_MAX_OFFSET_SHIFT	64	/* 2^64 bytes in a dnode */
849 
850 /*
851  * Derived constants.
852  */
853 #define	DNODE_SIZE	(1 << DNODE_SHIFT)
854 #define	DN_MAX_NBLKPTR	((DNODE_SIZE - DNODE_CORE_SIZE) >> SPA_BLKPTRSHIFT)
855 #define	DN_MAX_BONUSLEN	(DNODE_SIZE - DNODE_CORE_SIZE - (1 << SPA_BLKPTRSHIFT))
856 #define	DN_MAX_OBJECT	(1ULL << DN_MAX_OBJECT_SHIFT)
857 
858 #define	DNODES_PER_BLOCK_SHIFT	(DNODE_BLOCK_SHIFT - DNODE_SHIFT)
859 #define	DNODES_PER_BLOCK	(1ULL << DNODES_PER_BLOCK_SHIFT)
860 #define	DNODES_PER_LEVEL_SHIFT	(DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT)
861 
862 /* The +2 here is a cheesy way to round up */
863 #define	DN_MAX_LEVELS	(2 + ((DN_MAX_OFFSET_SHIFT - SPA_MINBLOCKSHIFT) / \
864 	(DN_MIN_INDBLKSHIFT - SPA_BLKPTRSHIFT)))
865 
866 #define	DN_BONUS(dnp)	((void*)((dnp)->dn_bonus + \
867 	(((dnp)->dn_nblkptr - 1) * sizeof (blkptr_t))))
868 
869 #define	DN_USED_BYTES(dnp) (((dnp)->dn_flags & DNODE_FLAG_USED_BYTES) ? \
870 	(dnp)->dn_used : (dnp)->dn_used << SPA_MINBLOCKSHIFT)
871 
872 #define	EPB(blkshift, typeshift)	(1 << (blkshift - typeshift))
873 
874 /* Is dn_used in bytes?  if not, it's in multiples of SPA_MINBLOCKSIZE */
875 #define	DNODE_FLAG_USED_BYTES		(1<<0)
876 #define	DNODE_FLAG_USERUSED_ACCOUNTED	(1<<1)
877 
878 /* Does dnode have a SA spill blkptr in bonus? */
879 #define	DNODE_FLAG_SPILL_BLKPTR	(1<<2)
880 
881 typedef struct dnode_phys {
882 	uint8_t dn_type;		/* dmu_object_type_t */
883 	uint8_t dn_indblkshift;		/* ln2(indirect block size) */
884 	uint8_t dn_nlevels;		/* 1=dn_blkptr->data blocks */
885 	uint8_t dn_nblkptr;		/* length of dn_blkptr */
886 	uint8_t dn_bonustype;		/* type of data in bonus buffer */
887 	uint8_t	dn_checksum;		/* ZIO_CHECKSUM type */
888 	uint8_t	dn_compress;		/* ZIO_COMPRESS type */
889 	uint8_t dn_flags;		/* DNODE_FLAG_* */
890 	uint16_t dn_datablkszsec;	/* data block size in 512b sectors */
891 	uint16_t dn_bonuslen;		/* length of dn_bonus */
892 	uint8_t dn_pad2[4];
893 
894 	/* accounting is protected by dn_dirty_mtx */
895 	uint64_t dn_maxblkid;		/* largest allocated block ID */
896 	uint64_t dn_used;		/* bytes (or sectors) of disk space */
897 
898 	uint64_t dn_pad3[4];
899 
900 	blkptr_t dn_blkptr[1];
901 	uint8_t dn_bonus[DN_MAX_BONUSLEN - sizeof (blkptr_t)];
902 	blkptr_t dn_spill;
903 } dnode_phys_t;
904 
905 typedef enum dmu_object_type {
906 	DMU_OT_NONE,
907 	/* general: */
908 	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
909 	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
910 	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
911 	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
912 	DMU_OT_BPLIST,			/* UINT64 */
913 	DMU_OT_BPLIST_HDR,		/* UINT64 */
914 	/* spa: */
915 	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
916 	DMU_OT_SPACE_MAP,		/* UINT64 */
917 	/* zil: */
918 	DMU_OT_INTENT_LOG,		/* UINT64 */
919 	/* dmu: */
920 	DMU_OT_DNODE,			/* DNODE */
921 	DMU_OT_OBJSET,			/* OBJSET */
922 	/* dsl: */
923 	DMU_OT_DSL_DIR,			/* UINT64 */
924 	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
925 	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
926 	DMU_OT_DSL_PROPS,		/* ZAP */
927 	DMU_OT_DSL_DATASET,		/* UINT64 */
928 	/* zpl: */
929 	DMU_OT_ZNODE,			/* ZNODE */
930 	DMU_OT_OLDACL,			/* Old ACL */
931 	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
932 	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
933 	DMU_OT_MASTER_NODE,		/* ZAP */
934 	DMU_OT_UNLINKED_SET,		/* ZAP */
935 	/* zvol: */
936 	DMU_OT_ZVOL,			/* UINT8 */
937 	DMU_OT_ZVOL_PROP,		/* ZAP */
938 	/* other; for testing only! */
939 	DMU_OT_PLAIN_OTHER,		/* UINT8 */
940 	DMU_OT_UINT64_OTHER,		/* UINT64 */
941 	DMU_OT_ZAP_OTHER,		/* ZAP */
942 	/* new object types: */
943 	DMU_OT_ERROR_LOG,		/* ZAP */
944 	DMU_OT_SPA_HISTORY,		/* UINT8 */
945 	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
946 	DMU_OT_POOL_PROPS,		/* ZAP */
947 	DMU_OT_DSL_PERMS,		/* ZAP */
948 	DMU_OT_ACL,			/* ACL */
949 	DMU_OT_SYSACL,			/* SYSACL */
950 	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
951 	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
952 	DMU_OT_NEXT_CLONES,		/* ZAP */
953 	DMU_OT_SCAN_QUEUE,		/* ZAP */
954 	DMU_OT_USERGROUP_USED,		/* ZAP */
955 	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
956 	DMU_OT_USERREFS,		/* ZAP */
957 	DMU_OT_DDT_ZAP,			/* ZAP */
958 	DMU_OT_DDT_STATS,		/* ZAP */
959 	DMU_OT_SA,			/* System attr */
960 	DMU_OT_SA_MASTER_NODE,		/* ZAP */
961 	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
962 	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
963 	DMU_OT_SCAN_XLATE,		/* ZAP */
964 	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
965 	DMU_OT_NUMTYPES
966 } dmu_object_type_t;
967 
968 typedef enum dmu_objset_type {
969 	DMU_OST_NONE,
970 	DMU_OST_META,
971 	DMU_OST_ZFS,
972 	DMU_OST_ZVOL,
973 	DMU_OST_OTHER,			/* For testing only! */
974 	DMU_OST_ANY,			/* Be careful! */
975 	DMU_OST_NUMTYPES
976 } dmu_objset_type_t;
977 
978 /*
979  * header for all bonus and spill buffers.
980  * The header has a fixed portion with a variable number
981  * of "lengths" depending on the number of variable sized
982  * attribues which are determined by the "layout number"
983  */
984 
985 #define	SA_MAGIC	0x2F505A  /* ZFS SA */
986 typedef struct sa_hdr_phys {
987 	uint32_t sa_magic;
988 	uint16_t sa_layout_info;  /* Encoded with hdrsize and layout number */
989 	uint16_t sa_lengths[1];	/* optional sizes for variable length attrs */
990 	/* ... Data follows the lengths.  */
991 } sa_hdr_phys_t;
992 
993 /*
994  * sa_hdr_phys -> sa_layout_info
995  *
996  * 16      10       0
997  * +--------+-------+
998  * | hdrsz  |layout |
999  * +--------+-------+
1000  *
1001  * Bits 0-10 are the layout number
1002  * Bits 11-16 are the size of the header.
1003  * The hdrsize is the number * 8
1004  *
1005  * For example.
1006  * hdrsz of 1 ==> 8 byte header
1007  *          2 ==> 16 byte header
1008  *
1009  */
1010 
1011 #define	SA_HDR_LAYOUT_NUM(hdr) BF32_GET(hdr->sa_layout_info, 0, 10)
1012 #define	SA_HDR_SIZE(hdr) BF32_GET_SB(hdr->sa_layout_info, 10, 16, 3, 0)
1013 #define	SA_HDR_LAYOUT_INFO_ENCODE(x, num, size) \
1014 { \
1015 	BF32_SET_SB(x, 10, 6, 3, 0, size); \
1016 	BF32_SET(x, 0, 10, num); \
1017 }
1018 
1019 #define	SA_MODE_OFFSET		0
1020 #define	SA_SIZE_OFFSET		8
1021 #define	SA_GEN_OFFSET		16
1022 #define	SA_UID_OFFSET		24
1023 #define	SA_GID_OFFSET		32
1024 #define	SA_PARENT_OFFSET	40
1025 
1026 /*
1027  * Intent log header - this on disk structure holds fields to manage
1028  * the log.  All fields are 64 bit to easily handle cross architectures.
1029  */
1030 typedef struct zil_header {
1031 	uint64_t zh_claim_txg;	/* txg in which log blocks were claimed */
1032 	uint64_t zh_replay_seq;	/* highest replayed sequence number */
1033 	blkptr_t zh_log;	/* log chain */
1034 	uint64_t zh_claim_seq;	/* highest claimed sequence number */
1035 	uint64_t zh_pad[5];
1036 } zil_header_t;
1037 
1038 #define	OBJSET_PHYS_SIZE 2048
1039 
1040 typedef struct objset_phys {
1041 	dnode_phys_t os_meta_dnode;
1042 	zil_header_t os_zil_header;
1043 	uint64_t os_type;
1044 	uint64_t os_flags;
1045 	char os_pad[OBJSET_PHYS_SIZE - sizeof (dnode_phys_t)*3 -
1046 	    sizeof (zil_header_t) - sizeof (uint64_t)*2];
1047 	dnode_phys_t os_userused_dnode;
1048 	dnode_phys_t os_groupused_dnode;
1049 } objset_phys_t;
1050 
1051 typedef struct dsl_dir_phys {
1052 	uint64_t dd_creation_time; /* not actually used */
1053 	uint64_t dd_head_dataset_obj;
1054 	uint64_t dd_parent_obj;
1055 	uint64_t dd_clone_parent_obj;
1056 	uint64_t dd_child_dir_zapobj;
1057 	/*
1058 	 * how much space our children are accounting for; for leaf
1059 	 * datasets, == physical space used by fs + snaps
1060 	 */
1061 	uint64_t dd_used_bytes;
1062 	uint64_t dd_compressed_bytes;
1063 	uint64_t dd_uncompressed_bytes;
1064 	/* Administrative quota setting */
1065 	uint64_t dd_quota;
1066 	/* Administrative reservation setting */
1067 	uint64_t dd_reserved;
1068 	uint64_t dd_props_zapobj;
1069 	uint64_t dd_pad[21]; /* pad out to 256 bytes for good measure */
1070 } dsl_dir_phys_t;
1071 
1072 typedef struct dsl_dataset_phys {
1073 	uint64_t ds_dir_obj;
1074 	uint64_t ds_prev_snap_obj;
1075 	uint64_t ds_prev_snap_txg;
1076 	uint64_t ds_next_snap_obj;
1077 	uint64_t ds_snapnames_zapobj;	/* zap obj of snaps; ==0 for snaps */
1078 	uint64_t ds_num_children;	/* clone/snap children; ==0 for head */
1079 	uint64_t ds_creation_time;	/* seconds since 1970 */
1080 	uint64_t ds_creation_txg;
1081 	uint64_t ds_deadlist_obj;
1082 	uint64_t ds_used_bytes;
1083 	uint64_t ds_compressed_bytes;
1084 	uint64_t ds_uncompressed_bytes;
1085 	uint64_t ds_unique_bytes;	/* only relevant to snapshots */
1086 	/*
1087 	 * The ds_fsid_guid is a 56-bit ID that can change to avoid
1088 	 * collisions.  The ds_guid is a 64-bit ID that will never
1089 	 * change, so there is a small probability that it will collide.
1090 	 */
1091 	uint64_t ds_fsid_guid;
1092 	uint64_t ds_guid;
1093 	uint64_t ds_flags;
1094 	blkptr_t ds_bp;
1095 	uint64_t ds_pad[8]; /* pad out to 320 bytes for good measure */
1096 } dsl_dataset_phys_t;
1097 
1098 /*
1099  * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
1100  */
1101 #define	DMU_POOL_DIRECTORY_OBJECT	1
1102 #define	DMU_POOL_CONFIG			"config"
1103 #define	DMU_POOL_ROOT_DATASET		"root_dataset"
1104 #define	DMU_POOL_SYNC_BPLIST		"sync_bplist"
1105 #define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
1106 #define	DMU_POOL_ERRLOG_LAST		"errlog_last"
1107 #define	DMU_POOL_SPARES			"spares"
1108 #define	DMU_POOL_DEFLATE		"deflate"
1109 #define	DMU_POOL_HISTORY		"history"
1110 #define	DMU_POOL_PROPS			"pool_props"
1111 
1112 #define	ZAP_MAGIC 0x2F52AB2ABULL
1113 
1114 #define	FZAP_BLOCK_SHIFT(zap)	((zap)->zap_block_shift)
1115 
1116 #define	ZAP_MAXCD		(uint32_t)(-1)
1117 #define	ZAP_HASHBITS		28
1118 #define	MZAP_ENT_LEN		64
1119 #define	MZAP_NAME_LEN		(MZAP_ENT_LEN - 8 - 4 - 2)
1120 #define	MZAP_MAX_BLKSHIFT	SPA_MAXBLOCKSHIFT
1121 #define	MZAP_MAX_BLKSZ		(1 << MZAP_MAX_BLKSHIFT)
1122 
1123 typedef struct mzap_ent_phys {
1124 	uint64_t mze_value;
1125 	uint32_t mze_cd;
1126 	uint16_t mze_pad;	/* in case we want to chain them someday */
1127 	char mze_name[MZAP_NAME_LEN];
1128 } mzap_ent_phys_t;
1129 
1130 typedef struct mzap_phys {
1131 	uint64_t mz_block_type;	/* ZBT_MICRO */
1132 	uint64_t mz_salt;
1133 	uint64_t mz_pad[6];
1134 	mzap_ent_phys_t mz_chunk[1];
1135 	/* actually variable size depending on block size */
1136 } mzap_phys_t;
1137 
1138 /*
1139  * The (fat) zap is stored in one object. It is an array of
1140  * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of:
1141  *
1142  * ptrtbl fits in first block:
1143  * 	[zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ...
1144  *
1145  * ptrtbl too big for first block:
1146  * 	[zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ...
1147  *
1148  */
1149 
1150 #define	ZBT_LEAF		((1ULL << 63) + 0)
1151 #define	ZBT_HEADER		((1ULL << 63) + 1)
1152 #define	ZBT_MICRO		((1ULL << 63) + 3)
1153 /* any other values are ptrtbl blocks */
1154 
1155 /*
1156  * the embedded pointer table takes up half a block:
1157  * block size / entry size (2^3) / 2
1158  */
1159 #define	ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1)
1160 
1161 /*
1162  * The embedded pointer table starts half-way through the block.  Since
1163  * the pointer table itself is half the block, it starts at (64-bit)
1164  * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)).
1165  */
1166 #define	ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \
1167 	((uint64_t *)(zap)->zap_phys) \
1168 	[(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))]
1169 
1170 /*
1171  * TAKE NOTE:
1172  * If zap_phys_t is modified, zap_byteswap() must be modified.
1173  */
1174 typedef struct zap_phys {
1175 	uint64_t zap_block_type;	/* ZBT_HEADER */
1176 	uint64_t zap_magic;		/* ZAP_MAGIC */
1177 
1178 	struct zap_table_phys {
1179 		uint64_t zt_blk;	/* starting block number */
1180 		uint64_t zt_numblks;	/* number of blocks */
1181 		uint64_t zt_shift;	/* bits to index it */
1182 		uint64_t zt_nextblk;	/* next (larger) copy start block */
1183 		uint64_t zt_blks_copied; /* number source blocks copied */
1184 	} zap_ptrtbl;
1185 
1186 	uint64_t zap_freeblk;		/* the next free block */
1187 	uint64_t zap_num_leafs;		/* number of leafs */
1188 	uint64_t zap_num_entries;	/* number of entries */
1189 	uint64_t zap_salt;		/* salt to stir into hash function */
1190 	/*
1191 	 * This structure is followed by padding, and then the embedded
1192 	 * pointer table.  The embedded pointer table takes up second
1193 	 * half of the block.  It is accessed using the
1194 	 * ZAP_EMBEDDED_PTRTBL_ENT() macro.
1195 	 */
1196 } zap_phys_t;
1197 
1198 typedef struct zap_table_phys zap_table_phys_t;
1199 
1200 typedef struct fat_zap {
1201 	int zap_block_shift;			/* block size shift */
1202 	zap_phys_t *zap_phys;
1203 } fat_zap_t;
1204 
1205 #define	ZAP_LEAF_MAGIC 0x2AB1EAF
1206 
1207 /* chunk size = 24 bytes */
1208 #define	ZAP_LEAF_CHUNKSIZE 24
1209 
1210 /*
1211  * The amount of space available for chunks is:
1212  * block size (1<<l->l_bs) - hash entry size (2) * number of hash
1213  * entries - header space (2*chunksize)
1214  */
1215 #define	ZAP_LEAF_NUMCHUNKS(l) \
1216 	(((1<<(l)->l_bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(l)) / \
1217 	ZAP_LEAF_CHUNKSIZE - 2)
1218 
1219 /*
1220  * The amount of space within the chunk available for the array is:
1221  * chunk size - space for type (1) - space for next pointer (2)
1222  */
1223 #define	ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
1224 
1225 #define	ZAP_LEAF_ARRAY_NCHUNKS(bytes) \
1226 	(((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES)
1227 
1228 /*
1229  * Low water mark:  when there are only this many chunks free, start
1230  * growing the ptrtbl.  Ideally, this should be larger than a
1231  * "reasonably-sized" entry.  20 chunks is more than enough for the
1232  * largest directory entry (MAXNAMELEN (256) byte name, 8-byte value),
1233  * while still being only around 3% for 16k blocks.
1234  */
1235 #define	ZAP_LEAF_LOW_WATER (20)
1236 
1237 /*
1238  * The leaf hash table has block size / 2^5 (32) number of entries,
1239  * which should be more than enough for the maximum number of entries,
1240  * which is less than block size / CHUNKSIZE (24) / minimum number of
1241  * chunks per entry (3).
1242  */
1243 #define	ZAP_LEAF_HASH_SHIFT(l) ((l)->l_bs - 5)
1244 #define	ZAP_LEAF_HASH_NUMENTRIES(l) (1 << ZAP_LEAF_HASH_SHIFT(l))
1245 
1246 /*
1247  * The chunks start immediately after the hash table.  The end of the
1248  * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
1249  * chunk_t.
1250  */
1251 #define	ZAP_LEAF_CHUNK(l, idx) \
1252 	((zap_leaf_chunk_t *) \
1253 	((l)->l_phys->l_hash + ZAP_LEAF_HASH_NUMENTRIES(l)))[idx]
1254 #define	ZAP_LEAF_ENTRY(l, idx) (&ZAP_LEAF_CHUNK(l, idx).l_entry)
1255 
1256 typedef enum zap_chunk_type {
1257 	ZAP_CHUNK_FREE = 253,
1258 	ZAP_CHUNK_ENTRY = 252,
1259 	ZAP_CHUNK_ARRAY = 251,
1260 	ZAP_CHUNK_TYPE_MAX = 250
1261 } zap_chunk_type_t;
1262 
1263 /*
1264  * TAKE NOTE:
1265  * If zap_leaf_phys_t is modified, zap_leaf_byteswap() must be modified.
1266  */
1267 typedef struct zap_leaf_phys {
1268 	struct zap_leaf_header {
1269 		uint64_t lh_block_type;		/* ZBT_LEAF */
1270 		uint64_t lh_pad1;
1271 		uint64_t lh_prefix;		/* hash prefix of this leaf */
1272 		uint32_t lh_magic;		/* ZAP_LEAF_MAGIC */
1273 		uint16_t lh_nfree;		/* number free chunks */
1274 		uint16_t lh_nentries;		/* number of entries */
1275 		uint16_t lh_prefix_len;		/* num bits used to id this */
1276 
1277 /* above is accessable to zap, below is zap_leaf private */
1278 
1279 		uint16_t lh_freelist;		/* chunk head of free list */
1280 		uint8_t lh_pad2[12];
1281 	} l_hdr; /* 2 24-byte chunks */
1282 
1283 	/*
1284 	 * The header is followed by a hash table with
1285 	 * ZAP_LEAF_HASH_NUMENTRIES(zap) entries.  The hash table is
1286 	 * followed by an array of ZAP_LEAF_NUMCHUNKS(zap)
1287 	 * zap_leaf_chunk structures.  These structures are accessed
1288 	 * with the ZAP_LEAF_CHUNK() macro.
1289 	 */
1290 
1291 	uint16_t l_hash[1];
1292 } zap_leaf_phys_t;
1293 
1294 typedef union zap_leaf_chunk {
1295 	struct zap_leaf_entry {
1296 		uint8_t le_type; 		/* always ZAP_CHUNK_ENTRY */
1297 		uint8_t le_value_intlen;	/* size of ints */
1298 		uint16_t le_next;		/* next entry in hash chain */
1299 		uint16_t le_name_chunk;		/* first chunk of the name */
1300 		uint16_t le_name_numints;	/* bytes in name, incl null */
1301 		uint16_t le_value_chunk;	/* first chunk of the value */
1302 		uint16_t le_value_numints;	/* value length in ints */
1303 		uint32_t le_cd;			/* collision differentiator */
1304 		uint64_t le_hash;		/* hash value of the name */
1305 	} l_entry;
1306 	struct zap_leaf_array {
1307 		uint8_t la_type;		/* always ZAP_CHUNK_ARRAY */
1308 		uint8_t la_array[ZAP_LEAF_ARRAY_BYTES];
1309 		uint16_t la_next;		/* next blk or CHAIN_END */
1310 	} l_array;
1311 	struct zap_leaf_free {
1312 		uint8_t lf_type;		/* always ZAP_CHUNK_FREE */
1313 		uint8_t lf_pad[ZAP_LEAF_ARRAY_BYTES];
1314 		uint16_t lf_next;	/* next in free list, or CHAIN_END */
1315 	} l_free;
1316 } zap_leaf_chunk_t;
1317 
1318 typedef struct zap_leaf {
1319 	int l_bs;			/* block size shift */
1320 	zap_leaf_phys_t *l_phys;
1321 } zap_leaf_t;
1322 
1323 /*
1324  * Define special zfs pflags
1325  */
1326 #define	ZFS_XATTR	0x1		/* is an extended attribute */
1327 #define	ZFS_INHERIT_ACE	0x2		/* ace has inheritable ACEs */
1328 #define	ZFS_ACL_TRIVIAL 0x4		/* files ACL is trivial */
1329 
1330 #define	MASTER_NODE_OBJ	1
1331 
1332 /*
1333  * special attributes for master node.
1334  */
1335 
1336 #define	ZFS_FSID		"FSID"
1337 #define	ZFS_UNLINKED_SET	"DELETE_QUEUE"
1338 #define	ZFS_ROOT_OBJ		"ROOT"
1339 #define	ZPL_VERSION_OBJ		"VERSION"
1340 #define	ZFS_PROP_BLOCKPERPAGE	"BLOCKPERPAGE"
1341 #define	ZFS_PROP_NOGROWBLOCKS	"NOGROWBLOCKS"
1342 
1343 #define	ZFS_FLAG_BLOCKPERPAGE	0x1
1344 #define	ZFS_FLAG_NOGROWBLOCKS	0x2
1345 
1346 /*
1347  * ZPL version - rev'd whenever an incompatible on-disk format change
1348  * occurs.  Independent of SPA/DMU/ZAP versioning.
1349  */
1350 
1351 #define	ZPL_VERSION		1ULL
1352 
1353 /*
1354  * The directory entry has the type (currently unused on Solaris) in the
1355  * top 4 bits, and the object number in the low 48 bits.  The "middle"
1356  * 12 bits are unused.
1357  */
1358 #define	ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4)
1359 #define	ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48)
1360 #define	ZFS_DIRENT_MAKE(type, obj) (((uint64_t)type << 60) | obj)
1361 
1362 typedef struct ace {
1363 	uid_t		a_who;		/* uid or gid */
1364 	uint32_t	a_access_mask;	/* read,write,... */
1365 	uint16_t	a_flags;	/* see below */
1366 	uint16_t	a_type;		/* allow or deny */
1367 } ace_t;
1368 
1369 #define ACE_SLOT_CNT	6
1370 
1371 typedef struct zfs_znode_acl {
1372 	uint64_t	z_acl_extern_obj;	  /* ext acl pieces */
1373 	uint32_t	z_acl_count;		  /* Number of ACEs */
1374 	uint16_t	z_acl_version;		  /* acl version */
1375 	uint16_t	z_acl_pad;		  /* pad */
1376 	ace_t		z_ace_data[ACE_SLOT_CNT]; /* 6 standard ACEs */
1377 } zfs_znode_acl_t;
1378 
1379 /*
1380  * This is the persistent portion of the znode.  It is stored
1381  * in the "bonus buffer" of the file.  Short symbolic links
1382  * are also stored in the bonus buffer.
1383  */
1384 typedef struct znode_phys {
1385 	uint64_t zp_atime[2];		/*  0 - last file access time */
1386 	uint64_t zp_mtime[2];		/* 16 - last file modification time */
1387 	uint64_t zp_ctime[2];		/* 32 - last file change time */
1388 	uint64_t zp_crtime[2];		/* 48 - creation time */
1389 	uint64_t zp_gen;		/* 64 - generation (txg of creation) */
1390 	uint64_t zp_mode;		/* 72 - file mode bits */
1391 	uint64_t zp_size;		/* 80 - size of file */
1392 	uint64_t zp_parent;		/* 88 - directory parent (`..') */
1393 	uint64_t zp_links;		/* 96 - number of links to file */
1394 	uint64_t zp_xattr;		/* 104 - DMU object for xattrs */
1395 	uint64_t zp_rdev;		/* 112 - dev_t for VBLK & VCHR files */
1396 	uint64_t zp_flags;		/* 120 - persistent flags */
1397 	uint64_t zp_uid;		/* 128 - file owner */
1398 	uint64_t zp_gid;		/* 136 - owning group */
1399 	uint64_t zp_pad[4];		/* 144 - future */
1400 	zfs_znode_acl_t zp_acl;		/* 176 - 263 ACL */
1401 	/*
1402 	 * Data may pad out any remaining bytes in the znode buffer, eg:
1403 	 *
1404 	 * |<---------------------- dnode_phys (512) ------------------------>|
1405 	 * |<-- dnode (192) --->|<----------- "bonus" buffer (320) ---------->|
1406 	 *			|<---- znode (264) ---->|<---- data (56) ---->|
1407 	 *
1408 	 * At present, we only use this space to store symbolic links.
1409 	 */
1410 } znode_phys_t;
1411 
1412 /*
1413  * In-core vdev representation.
1414  */
1415 struct vdev;
1416 typedef int vdev_phys_read_t(struct vdev *vdev, void *priv,
1417     off_t offset, void *buf, size_t bytes);
1418 typedef int vdev_read_t(struct vdev *vdev, const blkptr_t *bp,
1419     void *buf, off_t offset, size_t bytes);
1420 
1421 typedef STAILQ_HEAD(vdev_list, vdev) vdev_list_t;
1422 
1423 typedef struct vdev {
1424 	STAILQ_ENTRY(vdev) v_childlink;	/* link in parent's child list */
1425 	STAILQ_ENTRY(vdev) v_alllink;	/* link in global vdev list */
1426 	vdev_list_t	v_children;	/* children of this vdev */
1427 	const char	*v_name;	/* vdev name */
1428 	uint64_t	v_guid;		/* vdev guid */
1429 	int		v_id;		/* index in parent */
1430 	int		v_ashift;	/* offset to block shift */
1431 	int		v_nparity;	/* # parity for raidz */
1432 	struct vdev	*v_top;		/* parent vdev */
1433 	int		v_nchildren;	/* # children */
1434 	vdev_state_t	v_state;	/* current state */
1435 	vdev_phys_read_t *v_phys_read;	/* read from raw leaf vdev */
1436 	vdev_read_t	*v_read;	/* read from vdev */
1437 	void		*v_read_priv;	/* private data for read function */
1438 } vdev_t;
1439 
1440 /*
1441  * In-core pool representation.
1442  */
1443 typedef STAILQ_HEAD(spa_list, spa) spa_list_t;
1444 
1445 typedef struct spa {
1446 	STAILQ_ENTRY(spa) spa_link;	/* link in global pool list */
1447 	char		*spa_name;	/* pool name */
1448 	uint64_t	spa_guid;	/* pool guid */
1449 	uint64_t	spa_txg;	/* most recent transaction */
1450 	struct uberblock spa_uberblock;	/* best uberblock so far */
1451 	vdev_list_t	spa_vdevs;	/* list of all toplevel vdevs */
1452 	objset_phys_t	spa_mos;	/* MOS for this pool */
1453 	int		spa_inited;	/* initialized */
1454 } spa_t;
1455 
1456 static void decode_embedded_bp_compressed(const blkptr_t *, void *);
1457