1 /*- 2 * Copyright (c) 2002 McAfee, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and McAfee Research,, the Security Research Division of 7 * McAfee, Inc. under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as 8 * part of the DARPA CHATS research program 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 /* 32 * CDDL HEADER START 33 * 34 * The contents of this file are subject to the terms of the 35 * Common Development and Distribution License (the "License"). 36 * You may not use this file except in compliance with the License. 37 * 38 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 39 * or http://www.opensolaris.org/os/licensing. 40 * See the License for the specific language governing permissions 41 * and limitations under the License. 42 * 43 * When distributing Covered Code, include this CDDL HEADER in each 44 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 45 * If applicable, add the following below this CDDL HEADER, with the 46 * fields enclosed by brackets "[]" replaced with your own identifying 47 * information: Portions Copyright [yyyy] [name of copyright owner] 48 * 49 * CDDL HEADER END 50 */ 51 /* 52 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 53 * Use is subject to license terms. 54 */ 55 /* 56 * Copyright 2013 by Saso Kiselkov. All rights reserved. 57 */ 58 /* 59 * Copyright (c) 2020 by Delphix. All rights reserved. 60 */ 61 62 #include <sys/queue.h> 63 #include <sys/list.h> 64 #include <bootstrap.h> 65 66 #ifndef _ZFSIMPL_H_ 67 #define _ZFSIMPL_H_ 68 69 #define MAXNAMELEN 256 70 71 #define _NOTE(s) 72 73 /* 74 * AVL comparator helpers 75 */ 76 #define AVL_ISIGN(a) (((a) > 0) - ((a) < 0)) 77 #define AVL_CMP(a, b) (((a) > (b)) - ((a) < (b))) 78 #define AVL_PCMP(a, b) \ 79 (((uintptr_t)(a) > (uintptr_t)(b)) - ((uintptr_t)(a) < (uintptr_t)(b))) 80 81 typedef enum { B_FALSE, B_TRUE } boolean_t; 82 83 /* CRC64 table */ 84 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ 85 86 /* 87 * Macros for various sorts of alignment and rounding when the alignment 88 * is known to be a power of 2. 89 */ 90 #define P2ALIGN(x, align) ((x) & -(align)) 91 #define P2PHASE(x, align) ((x) & ((align) - 1)) 92 #define P2NPHASE(x, align) (-(x) & ((align) - 1)) 93 #define P2ROUNDUP(x, align) (-(-(x) & -(align))) 94 #define P2END(x, align) (-(~(x) & -(align))) 95 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align))) 96 #define P2BOUNDARY(off, len, align) (((off) ^ ((off) + (len) - 1)) > (align) - 1) 97 98 /* 99 * General-purpose 32-bit and 64-bit bitfield encodings. 100 */ 101 #define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len)) 102 #define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len)) 103 #define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low)) 104 #define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low)) 105 106 #define BF32_GET(x, low, len) BF32_DECODE(x, low, len) 107 #define BF64_GET(x, low, len) BF64_DECODE(x, low, len) 108 109 #define BF32_SET(x, low, len, val) \ 110 ((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len)) 111 #define BF64_SET(x, low, len, val) \ 112 ((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len)) 113 114 #define BF32_GET_SB(x, low, len, shift, bias) \ 115 ((BF32_GET(x, low, len) + (bias)) << (shift)) 116 #define BF64_GET_SB(x, low, len, shift, bias) \ 117 ((BF64_GET(x, low, len) + (bias)) << (shift)) 118 119 #define BF32_SET_SB(x, low, len, shift, bias, val) \ 120 BF32_SET(x, low, len, ((val) >> (shift)) - (bias)) 121 #define BF64_SET_SB(x, low, len, shift, bias, val) \ 122 BF64_SET(x, low, len, ((val) >> (shift)) - (bias)) 123 124 /* 125 * Macros to reverse byte order 126 */ 127 #define BSWAP_8(x) ((x) & 0xff) 128 #define BSWAP_16(x) ((BSWAP_8(x) << 8) | BSWAP_8((x) >> 8)) 129 #define BSWAP_32(x) ((BSWAP_16(x) << 16) | BSWAP_16((x) >> 16)) 130 #define BSWAP_64(x) ((BSWAP_32(x) << 32) | BSWAP_32((x) >> 32)) 131 132 #define SPA_MINBLOCKSHIFT 9 133 #define SPA_OLDMAXBLOCKSHIFT 17 134 #define SPA_MAXBLOCKSHIFT 24 135 #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT) 136 #define SPA_OLDMAXBLOCKSIZE (1ULL << SPA_OLDMAXBLOCKSHIFT) 137 #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT) 138 139 /* 140 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB. 141 * The ASIZE encoding should be at least 64 times larger (6 more bits) 142 * to support up to 4-way RAID-Z mirror mode with worst-case gang block 143 * overhead, three DVAs per bp, plus one more bit in case we do anything 144 * else that expands the ASIZE. 145 */ 146 #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */ 147 #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */ 148 #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */ 149 150 /* 151 * All SPA data is represented by 128-bit data virtual addresses (DVAs). 152 * The members of the dva_t should be considered opaque outside the SPA. 153 */ 154 typedef struct dva { 155 uint64_t dva_word[2]; 156 } dva_t; 157 158 /* 159 * Each block has a 256-bit checksum -- strong enough for cryptographic hashes. 160 */ 161 typedef struct zio_cksum { 162 uint64_t zc_word[4]; 163 } zio_cksum_t; 164 165 /* 166 * Some checksums/hashes need a 256-bit initialization salt. This salt is kept 167 * secret and is suitable for use in MAC algorithms as the key. 168 */ 169 typedef struct zio_cksum_salt { 170 uint8_t zcs_bytes[32]; 171 } zio_cksum_salt_t; 172 173 /* 174 * Each block is described by its DVAs, time of birth, checksum, etc. 175 * The word-by-word, bit-by-bit layout of the blkptr is as follows: 176 * 177 * 64 56 48 40 32 24 16 8 0 178 * +-------+-------+-------+-------+-------+-------+-------+-------+ 179 * 0 | vdev1 | GRID | ASIZE | 180 * +-------+-------+-------+-------+-------+-------+-------+-------+ 181 * 1 |G| offset1 | 182 * +-------+-------+-------+-------+-------+-------+-------+-------+ 183 * 2 | vdev2 | GRID | ASIZE | 184 * +-------+-------+-------+-------+-------+-------+-------+-------+ 185 * 3 |G| offset2 | 186 * +-------+-------+-------+-------+-------+-------+-------+-------+ 187 * 4 | vdev3 | GRID | ASIZE | 188 * +-------+-------+-------+-------+-------+-------+-------+-------+ 189 * 5 |G| offset3 | 190 * +-------+-------+-------+-------+-------+-------+-------+-------+ 191 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE | 192 * +-------+-------+-------+-------+-------+-------+-------+-------+ 193 * 7 | padding | 194 * +-------+-------+-------+-------+-------+-------+-------+-------+ 195 * 8 | padding | 196 * +-------+-------+-------+-------+-------+-------+-------+-------+ 197 * 9 | physical birth txg | 198 * +-------+-------+-------+-------+-------+-------+-------+-------+ 199 * a | logical birth txg | 200 * +-------+-------+-------+-------+-------+-------+-------+-------+ 201 * b | fill count | 202 * +-------+-------+-------+-------+-------+-------+-------+-------+ 203 * c | checksum[0] | 204 * +-------+-------+-------+-------+-------+-------+-------+-------+ 205 * d | checksum[1] | 206 * +-------+-------+-------+-------+-------+-------+-------+-------+ 207 * e | checksum[2] | 208 * +-------+-------+-------+-------+-------+-------+-------+-------+ 209 * f | checksum[3] | 210 * +-------+-------+-------+-------+-------+-------+-------+-------+ 211 * 212 * Legend: 213 * 214 * vdev virtual device ID 215 * offset offset into virtual device 216 * LSIZE logical size 217 * PSIZE physical size (after compression) 218 * ASIZE allocated size (including RAID-Z parity and gang block headers) 219 * GRID RAID-Z layout information (reserved for future use) 220 * cksum checksum function 221 * comp compression function 222 * G gang block indicator 223 * B byteorder (endianness) 224 * D dedup 225 * X encryption (on version 30, which is not supported) 226 * E blkptr_t contains embedded data (see below) 227 * lvl level of indirection 228 * type DMU object type 229 * phys birth txg of block allocation; zero if same as logical birth txg 230 * log. birth transaction group in which the block was logically born 231 * fill count number of non-zero blocks under this bp 232 * checksum[4] 256-bit checksum of the data this bp describes 233 */ 234 235 /* 236 * "Embedded" blkptr_t's don't actually point to a block, instead they 237 * have a data payload embedded in the blkptr_t itself. See the comment 238 * in blkptr.c for more details. 239 * 240 * The blkptr_t is laid out as follows: 241 * 242 * 64 56 48 40 32 24 16 8 0 243 * +-------+-------+-------+-------+-------+-------+-------+-------+ 244 * 0 | payload | 245 * 1 | payload | 246 * 2 | payload | 247 * 3 | payload | 248 * 4 | payload | 249 * 5 | payload | 250 * +-------+-------+-------+-------+-------+-------+-------+-------+ 251 * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE | 252 * +-------+-------+-------+-------+-------+-------+-------+-------+ 253 * 7 | payload | 254 * 8 | payload | 255 * 9 | payload | 256 * +-------+-------+-------+-------+-------+-------+-------+-------+ 257 * a | logical birth txg | 258 * +-------+-------+-------+-------+-------+-------+-------+-------+ 259 * b | payload | 260 * c | payload | 261 * d | payload | 262 * e | payload | 263 * f | payload | 264 * +-------+-------+-------+-------+-------+-------+-------+-------+ 265 * 266 * Legend: 267 * 268 * payload contains the embedded data 269 * B (byteorder) byteorder (endianness) 270 * D (dedup) padding (set to zero) 271 * X encryption (set to zero; see above) 272 * E (embedded) set to one 273 * lvl indirection level 274 * type DMU object type 275 * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*) 276 * comp compression function of payload 277 * PSIZE size of payload after compression, in bytes 278 * LSIZE logical size of payload, in bytes 279 * note that 25 bits is enough to store the largest 280 * "normal" BP's LSIZE (2^16 * 2^9) in bytes 281 * log. birth transaction group in which the block was logically born 282 * 283 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded 284 * bp's they are stored in units of SPA_MINBLOCKSHIFT. 285 * Generally, the generic BP_GET_*() macros can be used on embedded BP's. 286 * The B, D, X, lvl, type, and comp fields are stored the same as with normal 287 * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must 288 * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before 289 * other macros, as they assert that they are only used on BP's of the correct 290 * "embedded-ness". 291 */ 292 293 #define BPE_GET_ETYPE(bp) \ 294 (ASSERT(BP_IS_EMBEDDED(bp)), \ 295 BF64_GET((bp)->blk_prop, 40, 8)) 296 #define BPE_SET_ETYPE(bp, t) do { \ 297 ASSERT(BP_IS_EMBEDDED(bp)); \ 298 BF64_SET((bp)->blk_prop, 40, 8, t); \ 299 _NOTE(CONSTCOND) } while (0) 300 301 #define BPE_GET_LSIZE(bp) \ 302 (ASSERT(BP_IS_EMBEDDED(bp)), \ 303 BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1)) 304 #define BPE_SET_LSIZE(bp, x) do { \ 305 ASSERT(BP_IS_EMBEDDED(bp)); \ 306 BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \ 307 _NOTE(CONSTCOND) } while (0) 308 309 #define BPE_GET_PSIZE(bp) \ 310 (ASSERT(BP_IS_EMBEDDED(bp)), \ 311 BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1)) 312 #define BPE_SET_PSIZE(bp, x) do { \ 313 ASSERT(BP_IS_EMBEDDED(bp)); \ 314 BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \ 315 _NOTE(CONSTCOND) } while (0) 316 317 typedef enum bp_embedded_type { 318 BP_EMBEDDED_TYPE_DATA, 319 BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */ 320 NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED 321 } bp_embedded_type_t; 322 323 #define BPE_NUM_WORDS 14 324 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t)) 325 #define BPE_IS_PAYLOADWORD(bp, wp) \ 326 ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth) 327 328 #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */ 329 #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */ 330 331 typedef struct blkptr { 332 dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */ 333 uint64_t blk_prop; /* size, compression, type, etc */ 334 uint64_t blk_pad[2]; /* Extra space for the future */ 335 uint64_t blk_phys_birth; /* txg when block was allocated */ 336 uint64_t blk_birth; /* transaction group at birth */ 337 uint64_t blk_fill; /* fill count */ 338 zio_cksum_t blk_cksum; /* 256-bit checksum */ 339 } blkptr_t; 340 341 /* 342 * Macros to get and set fields in a bp or DVA. 343 */ 344 #define DVA_GET_ASIZE(dva) \ 345 BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0) 346 #define DVA_SET_ASIZE(dva, x) \ 347 BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \ 348 SPA_MINBLOCKSHIFT, 0, x) 349 350 #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8) 351 #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x) 352 353 #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, 32) 354 #define DVA_SET_VDEV(dva, x) BF64_SET((dva)->dva_word[0], 32, 32, x) 355 356 #define DVA_GET_OFFSET(dva) \ 357 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0) 358 #define DVA_SET_OFFSET(dva, x) \ 359 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x) 360 361 #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1) 362 #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x) 363 364 #define BP_GET_LSIZE(bp) \ 365 (BP_IS_EMBEDDED(bp) ? \ 366 (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \ 367 BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1)) 368 #define BP_SET_LSIZE(bp, x) do { \ 369 ASSERT(!BP_IS_EMBEDDED(bp)); \ 370 BF64_SET_SB((bp)->blk_prop, \ 371 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \ 372 _NOTE(CONSTCOND) } while (0) 373 374 #define BP_GET_PSIZE(bp) \ 375 BF64_GET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1) 376 #define BP_SET_PSIZE(bp, x) \ 377 BF64_SET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x) 378 379 #define BP_GET_COMPRESS(bp) BF64_GET((bp)->blk_prop, 32, 7) 380 #define BP_SET_COMPRESS(bp, x) BF64_SET((bp)->blk_prop, 32, 7, x) 381 382 #define BP_GET_CHECKSUM(bp) BF64_GET((bp)->blk_prop, 40, 8) 383 #define BP_SET_CHECKSUM(bp, x) BF64_SET((bp)->blk_prop, 40, 8, x) 384 385 #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8) 386 #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x) 387 388 #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5) 389 #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x) 390 391 #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1) 392 393 #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1) 394 #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x) 395 396 #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1) 397 #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x) 398 399 #define BP_PHYSICAL_BIRTH(bp) \ 400 ((bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth) 401 402 #define BP_GET_ASIZE(bp) \ 403 (DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ 404 DVA_GET_ASIZE(&(bp)->blk_dva[2])) 405 406 #define BP_GET_UCSIZE(bp) \ 407 ((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \ 408 BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp)); 409 410 #define BP_GET_NDVAS(bp) \ 411 (!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ 412 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ 413 !!DVA_GET_ASIZE(&(bp)->blk_dva[2])) 414 415 #define DVA_EQUAL(dva1, dva2) \ 416 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \ 417 (dva1)->dva_word[0] == (dva2)->dva_word[0]) 418 419 #define ZIO_CHECKSUM_EQUAL(zc1, zc2) \ 420 (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \ 421 ((zc1).zc_word[1] - (zc2).zc_word[1]) | \ 422 ((zc1).zc_word[2] - (zc2).zc_word[2]) | \ 423 ((zc1).zc_word[3] - (zc2).zc_word[3]))) 424 425 426 #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0) 427 428 #define ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3) \ 429 { \ 430 (zcp)->zc_word[0] = w0; \ 431 (zcp)->zc_word[1] = w1; \ 432 (zcp)->zc_word[2] = w2; \ 433 (zcp)->zc_word[3] = w3; \ 434 } 435 436 #define BP_IDENTITY(bp) (&(bp)->blk_dva[0]) 437 #define BP_IS_GANG(bp) DVA_GET_GANG(BP_IDENTITY(bp)) 438 #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \ 439 (dva)->dva_word[1] == 0ULL) 440 #define BP_IS_HOLE(bp) DVA_IS_EMPTY(BP_IDENTITY(bp)) 441 #define BP_IS_OLDER(bp, txg) (!BP_IS_HOLE(bp) && (bp)->blk_birth < (txg)) 442 443 #define BP_ZERO(bp) \ 444 { \ 445 (bp)->blk_dva[0].dva_word[0] = 0; \ 446 (bp)->blk_dva[0].dva_word[1] = 0; \ 447 (bp)->blk_dva[1].dva_word[0] = 0; \ 448 (bp)->blk_dva[1].dva_word[1] = 0; \ 449 (bp)->blk_dva[2].dva_word[0] = 0; \ 450 (bp)->blk_dva[2].dva_word[1] = 0; \ 451 (bp)->blk_prop = 0; \ 452 (bp)->blk_pad[0] = 0; \ 453 (bp)->blk_pad[1] = 0; \ 454 (bp)->blk_phys_birth = 0; \ 455 (bp)->blk_birth = 0; \ 456 (bp)->blk_fill = 0; \ 457 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \ 458 } 459 460 #if BYTE_ORDER == _BIG_ENDIAN 461 #define ZFS_HOST_BYTEORDER (0ULL) 462 #else 463 #define ZFS_HOST_BYTEORDER (1ULL) 464 #endif 465 466 #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER) 467 #define BPE_NUM_WORDS 14 468 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t)) 469 #define BPE_IS_PAYLOADWORD(bp, wp) \ 470 ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth) 471 472 /* 473 * Embedded checksum 474 */ 475 #define ZEC_MAGIC 0x210da7ab10c7a11ULL 476 477 typedef struct zio_eck { 478 uint64_t zec_magic; /* for validation, endianness */ 479 zio_cksum_t zec_cksum; /* 256-bit checksum */ 480 } zio_eck_t; 481 482 /* 483 * Gang block headers are self-checksumming and contain an array 484 * of block pointers. 485 */ 486 #define SPA_GANGBLOCKSIZE SPA_MINBLOCKSIZE 487 #define SPA_GBH_NBLKPTRS ((SPA_GANGBLOCKSIZE - \ 488 sizeof (zio_eck_t)) / sizeof (blkptr_t)) 489 #define SPA_GBH_FILLER ((SPA_GANGBLOCKSIZE - \ 490 sizeof (zio_eck_t) - \ 491 (SPA_GBH_NBLKPTRS * sizeof (blkptr_t))) /\ 492 sizeof (uint64_t)) 493 494 typedef struct zio_gbh { 495 blkptr_t zg_blkptr[SPA_GBH_NBLKPTRS]; 496 uint64_t zg_filler[SPA_GBH_FILLER]; 497 zio_eck_t zg_tail; 498 } zio_gbh_phys_t; 499 500 #define VDEV_RAIDZ_MAXPARITY 3 501 502 #define VDEV_PAD_SIZE (8 << 10) 503 /* 2 padding areas (vl_pad1 and vl_be) to skip */ 504 #define VDEV_SKIP_SIZE VDEV_PAD_SIZE * 2 505 #define VDEV_PHYS_SIZE (112 << 10) 506 #define VDEV_UBERBLOCK_RING (128 << 10) 507 508 /* 509 * MMP blocks occupy the last MMP_BLOCKS_PER_LABEL slots in the uberblock 510 * ring when MMP is enabled. 511 */ 512 #define MMP_BLOCKS_PER_LABEL 1 513 514 /* The largest uberblock we support is 8k. */ 515 #define MAX_UBERBLOCK_SHIFT (13) 516 #define VDEV_UBERBLOCK_SHIFT(vd) \ 517 MIN(MAX((vd)->v_top->v_ashift, UBERBLOCK_SHIFT), MAX_UBERBLOCK_SHIFT) 518 #define VDEV_UBERBLOCK_COUNT(vd) \ 519 (VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd)) 520 #define VDEV_UBERBLOCK_OFFSET(vd, n) \ 521 offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)]) 522 #define VDEV_UBERBLOCK_SIZE(vd) (1ULL << VDEV_UBERBLOCK_SHIFT(vd)) 523 524 typedef struct vdev_phys { 525 char vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_eck_t)]; 526 zio_eck_t vp_zbt; 527 } vdev_phys_t; 528 529 typedef enum vbe_vers { 530 /* The bootenv file is stored as ascii text in the envblock */ 531 VB_RAW = 0, 532 533 /* 534 * The bootenv file is converted to an nvlist and then packed into the 535 * envblock. 536 */ 537 VB_NVLIST = 1 538 } vbe_vers_t; 539 540 typedef struct vdev_boot_envblock { 541 uint64_t vbe_version; 542 char vbe_bootenv[VDEV_PAD_SIZE - sizeof (uint64_t) - 543 sizeof (zio_eck_t)]; 544 zio_eck_t vbe_zbt; 545 } vdev_boot_envblock_t; 546 547 CTASSERT(sizeof (vdev_boot_envblock_t) == VDEV_PAD_SIZE); 548 549 typedef struct vdev_label { 550 char vl_pad1[VDEV_PAD_SIZE]; /* 8K */ 551 vdev_boot_envblock_t vl_be; /* 8K */ 552 vdev_phys_t vl_vdev_phys; /* 112K */ 553 char vl_uberblock[VDEV_UBERBLOCK_RING]; /* 128K */ 554 } vdev_label_t; /* 256K total */ 555 556 /* 557 * vdev_dirty() flags 558 */ 559 #define VDD_METASLAB 0x01 560 #define VDD_DTL 0x02 561 562 /* 563 * Size and offset of embedded boot loader region on each label. 564 * The total size of the first two labels plus the boot area is 4MB. 565 */ 566 #define VDEV_BOOT_OFFSET (2 * sizeof (vdev_label_t)) 567 #define VDEV_BOOT_SIZE (7ULL << 19) /* 3.5M */ 568 569 /* 570 * Size of label regions at the start and end of each leaf device. 571 */ 572 #define VDEV_LABEL_START_SIZE (2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE) 573 #define VDEV_LABEL_END_SIZE (2 * sizeof (vdev_label_t)) 574 #define VDEV_LABELS 4 575 576 enum zio_checksum { 577 ZIO_CHECKSUM_INHERIT = 0, 578 ZIO_CHECKSUM_ON, 579 ZIO_CHECKSUM_OFF, 580 ZIO_CHECKSUM_LABEL, 581 ZIO_CHECKSUM_GANG_HEADER, 582 ZIO_CHECKSUM_ZILOG, 583 ZIO_CHECKSUM_FLETCHER_2, 584 ZIO_CHECKSUM_FLETCHER_4, 585 ZIO_CHECKSUM_SHA256, 586 ZIO_CHECKSUM_ZILOG2, 587 ZIO_CHECKSUM_NOPARITY, 588 ZIO_CHECKSUM_SHA512, 589 ZIO_CHECKSUM_SKEIN, 590 ZIO_CHECKSUM_EDONR, 591 ZIO_CHECKSUM_FUNCTIONS 592 }; 593 594 #define ZIO_CHECKSUM_ON_VALUE ZIO_CHECKSUM_FLETCHER_4 595 #define ZIO_CHECKSUM_DEFAULT ZIO_CHECKSUM_ON 596 597 enum zio_compress { 598 ZIO_COMPRESS_INHERIT = 0, 599 ZIO_COMPRESS_ON, 600 ZIO_COMPRESS_OFF, 601 ZIO_COMPRESS_LZJB, 602 ZIO_COMPRESS_EMPTY, 603 ZIO_COMPRESS_GZIP_1, 604 ZIO_COMPRESS_GZIP_2, 605 ZIO_COMPRESS_GZIP_3, 606 ZIO_COMPRESS_GZIP_4, 607 ZIO_COMPRESS_GZIP_5, 608 ZIO_COMPRESS_GZIP_6, 609 ZIO_COMPRESS_GZIP_7, 610 ZIO_COMPRESS_GZIP_8, 611 ZIO_COMPRESS_GZIP_9, 612 ZIO_COMPRESS_ZLE, 613 ZIO_COMPRESS_LZ4, 614 ZIO_COMPRESS_FUNCTIONS 615 }; 616 617 #define ZIO_COMPRESS_ON_VALUE ZIO_COMPRESS_LZJB 618 #define ZIO_COMPRESS_DEFAULT ZIO_COMPRESS_OFF 619 620 /* nvlist pack encoding */ 621 #define NV_ENCODE_NATIVE 0 622 #define NV_ENCODE_XDR 1 623 624 typedef enum { 625 DATA_TYPE_UNKNOWN = 0, 626 DATA_TYPE_BOOLEAN, 627 DATA_TYPE_BYTE, 628 DATA_TYPE_INT16, 629 DATA_TYPE_UINT16, 630 DATA_TYPE_INT32, 631 DATA_TYPE_UINT32, 632 DATA_TYPE_INT64, 633 DATA_TYPE_UINT64, 634 DATA_TYPE_STRING, 635 DATA_TYPE_BYTE_ARRAY, 636 DATA_TYPE_INT16_ARRAY, 637 DATA_TYPE_UINT16_ARRAY, 638 DATA_TYPE_INT32_ARRAY, 639 DATA_TYPE_UINT32_ARRAY, 640 DATA_TYPE_INT64_ARRAY, 641 DATA_TYPE_UINT64_ARRAY, 642 DATA_TYPE_STRING_ARRAY, 643 DATA_TYPE_HRTIME, 644 DATA_TYPE_NVLIST, 645 DATA_TYPE_NVLIST_ARRAY, 646 DATA_TYPE_BOOLEAN_VALUE, 647 DATA_TYPE_INT8, 648 DATA_TYPE_UINT8, 649 DATA_TYPE_BOOLEAN_ARRAY, 650 DATA_TYPE_INT8_ARRAY, 651 DATA_TYPE_UINT8_ARRAY 652 } data_type_t; 653 654 /* 655 * On-disk version number. 656 */ 657 #define SPA_VERSION_1 1ULL 658 #define SPA_VERSION_2 2ULL 659 #define SPA_VERSION_3 3ULL 660 #define SPA_VERSION_4 4ULL 661 #define SPA_VERSION_5 5ULL 662 #define SPA_VERSION_6 6ULL 663 #define SPA_VERSION_7 7ULL 664 #define SPA_VERSION_8 8ULL 665 #define SPA_VERSION_9 9ULL 666 #define SPA_VERSION_10 10ULL 667 #define SPA_VERSION_11 11ULL 668 #define SPA_VERSION_12 12ULL 669 #define SPA_VERSION_13 13ULL 670 #define SPA_VERSION_14 14ULL 671 #define SPA_VERSION_15 15ULL 672 #define SPA_VERSION_16 16ULL 673 #define SPA_VERSION_17 17ULL 674 #define SPA_VERSION_18 18ULL 675 #define SPA_VERSION_19 19ULL 676 #define SPA_VERSION_20 20ULL 677 #define SPA_VERSION_21 21ULL 678 #define SPA_VERSION_22 22ULL 679 #define SPA_VERSION_23 23ULL 680 #define SPA_VERSION_24 24ULL 681 #define SPA_VERSION_25 25ULL 682 #define SPA_VERSION_26 26ULL 683 #define SPA_VERSION_27 27ULL 684 #define SPA_VERSION_28 28ULL 685 #define SPA_VERSION_5000 5000ULL 686 687 /* 688 * When bumping up SPA_VERSION, make sure GRUB ZFS understands the on-disk 689 * format change. Go to usr/src/grub/grub-0.97/stage2/{zfs-include/, fsys_zfs*}, 690 * and do the appropriate changes. Also bump the version number in 691 * usr/src/grub/capability. 692 */ 693 #define SPA_VERSION SPA_VERSION_5000 694 #define SPA_VERSION_STRING "5000" 695 696 /* 697 * Symbolic names for the changes that caused a SPA_VERSION switch. 698 * Used in the code when checking for presence or absence of a feature. 699 * Feel free to define multiple symbolic names for each version if there 700 * were multiple changes to on-disk structures during that version. 701 * 702 * NOTE: When checking the current SPA_VERSION in your code, be sure 703 * to use spa_version() since it reports the version of the 704 * last synced uberblock. Checking the in-flight version can 705 * be dangerous in some cases. 706 */ 707 #define SPA_VERSION_INITIAL SPA_VERSION_1 708 #define SPA_VERSION_DITTO_BLOCKS SPA_VERSION_2 709 #define SPA_VERSION_SPARES SPA_VERSION_3 710 #define SPA_VERSION_RAID6 SPA_VERSION_3 711 #define SPA_VERSION_BPLIST_ACCOUNT SPA_VERSION_3 712 #define SPA_VERSION_RAIDZ_DEFLATE SPA_VERSION_3 713 #define SPA_VERSION_DNODE_BYTES SPA_VERSION_3 714 #define SPA_VERSION_ZPOOL_HISTORY SPA_VERSION_4 715 #define SPA_VERSION_GZIP_COMPRESSION SPA_VERSION_5 716 #define SPA_VERSION_BOOTFS SPA_VERSION_6 717 #define SPA_VERSION_SLOGS SPA_VERSION_7 718 #define SPA_VERSION_DELEGATED_PERMS SPA_VERSION_8 719 #define SPA_VERSION_FUID SPA_VERSION_9 720 #define SPA_VERSION_REFRESERVATION SPA_VERSION_9 721 #define SPA_VERSION_REFQUOTA SPA_VERSION_9 722 #define SPA_VERSION_UNIQUE_ACCURATE SPA_VERSION_9 723 #define SPA_VERSION_L2CACHE SPA_VERSION_10 724 #define SPA_VERSION_NEXT_CLONES SPA_VERSION_11 725 #define SPA_VERSION_ORIGIN SPA_VERSION_11 726 #define SPA_VERSION_DSL_SCRUB SPA_VERSION_11 727 #define SPA_VERSION_SNAP_PROPS SPA_VERSION_12 728 #define SPA_VERSION_USED_BREAKDOWN SPA_VERSION_13 729 #define SPA_VERSION_PASSTHROUGH_X SPA_VERSION_14 730 #define SPA_VERSION_USERSPACE SPA_VERSION_15 731 #define SPA_VERSION_STMF_PROP SPA_VERSION_16 732 #define SPA_VERSION_RAIDZ3 SPA_VERSION_17 733 #define SPA_VERSION_USERREFS SPA_VERSION_18 734 #define SPA_VERSION_HOLES SPA_VERSION_19 735 #define SPA_VERSION_ZLE_COMPRESSION SPA_VERSION_20 736 #define SPA_VERSION_DEDUP SPA_VERSION_21 737 #define SPA_VERSION_RECVD_PROPS SPA_VERSION_22 738 #define SPA_VERSION_SLIM_ZIL SPA_VERSION_23 739 #define SPA_VERSION_SA SPA_VERSION_24 740 #define SPA_VERSION_SCAN SPA_VERSION_25 741 #define SPA_VERSION_DIR_CLONES SPA_VERSION_26 742 #define SPA_VERSION_DEADLISTS SPA_VERSION_26 743 #define SPA_VERSION_FAST_SNAP SPA_VERSION_27 744 #define SPA_VERSION_MULTI_REPLACE SPA_VERSION_28 745 #define SPA_VERSION_BEFORE_FEATURES SPA_VERSION_28 746 #define SPA_VERSION_FEATURES SPA_VERSION_5000 747 748 #define SPA_VERSION_IS_SUPPORTED(v) \ 749 (((v) >= SPA_VERSION_INITIAL && (v) <= SPA_VERSION_BEFORE_FEATURES) || \ 750 ((v) >= SPA_VERSION_FEATURES && (v) <= SPA_VERSION)) 751 752 /* 753 * The following are configuration names used in the nvlist describing a pool's 754 * configuration. 755 */ 756 #define ZPOOL_CONFIG_VERSION "version" 757 #define ZPOOL_CONFIG_POOL_NAME "name" 758 #define ZPOOL_CONFIG_POOL_STATE "state" 759 #define ZPOOL_CONFIG_POOL_TXG "txg" 760 #define ZPOOL_CONFIG_POOL_GUID "pool_guid" 761 #define ZPOOL_CONFIG_CREATE_TXG "create_txg" 762 #define ZPOOL_CONFIG_TOP_GUID "top_guid" 763 #define ZPOOL_CONFIG_VDEV_TREE "vdev_tree" 764 #define ZPOOL_CONFIG_TYPE "type" 765 #define ZPOOL_CONFIG_CHILDREN "children" 766 #define ZPOOL_CONFIG_ID "id" 767 #define ZPOOL_CONFIG_GUID "guid" 768 #define ZPOOL_CONFIG_INDIRECT_OBJECT "com.delphix:indirect_object" 769 #define ZPOOL_CONFIG_INDIRECT_BIRTHS "com.delphix:indirect_births" 770 #define ZPOOL_CONFIG_PREV_INDIRECT_VDEV "com.delphix:prev_indirect_vdev" 771 #define ZPOOL_CONFIG_PATH "path" 772 #define ZPOOL_CONFIG_DEVID "devid" 773 #define ZPOOL_CONFIG_METASLAB_ARRAY "metaslab_array" 774 #define ZPOOL_CONFIG_METASLAB_SHIFT "metaslab_shift" 775 #define ZPOOL_CONFIG_ASHIFT "ashift" 776 #define ZPOOL_CONFIG_ASIZE "asize" 777 #define ZPOOL_CONFIG_DTL "DTL" 778 #define ZPOOL_CONFIG_STATS "stats" 779 #define ZPOOL_CONFIG_WHOLE_DISK "whole_disk" 780 #define ZPOOL_CONFIG_ERRCOUNT "error_count" 781 #define ZPOOL_CONFIG_NOT_PRESENT "not_present" 782 #define ZPOOL_CONFIG_SPARES "spares" 783 #define ZPOOL_CONFIG_IS_SPARE "is_spare" 784 #define ZPOOL_CONFIG_NPARITY "nparity" 785 #define ZPOOL_CONFIG_HOSTID "hostid" 786 #define ZPOOL_CONFIG_HOSTNAME "hostname" 787 #define ZPOOL_CONFIG_IS_LOG "is_log" 788 #define ZPOOL_CONFIG_TIMESTAMP "timestamp" /* not stored on disk */ 789 #define ZPOOL_CONFIG_FEATURES_FOR_READ "features_for_read" 790 #define ZPOOL_CONFIG_VDEV_CHILDREN "vdev_children" 791 792 /* 793 * The persistent vdev state is stored as separate values rather than a single 794 * 'vdev_state' entry. This is because a device can be in multiple states, such 795 * as offline and degraded. 796 */ 797 #define ZPOOL_CONFIG_OFFLINE "offline" 798 #define ZPOOL_CONFIG_FAULTED "faulted" 799 #define ZPOOL_CONFIG_DEGRADED "degraded" 800 #define ZPOOL_CONFIG_REMOVED "removed" 801 #define ZPOOL_CONFIG_FRU "fru" 802 #define ZPOOL_CONFIG_AUX_STATE "aux_state" 803 804 #define VDEV_TYPE_ROOT "root" 805 #define VDEV_TYPE_MIRROR "mirror" 806 #define VDEV_TYPE_REPLACING "replacing" 807 #define VDEV_TYPE_RAIDZ "raidz" 808 #define VDEV_TYPE_DISK "disk" 809 #define VDEV_TYPE_FILE "file" 810 #define VDEV_TYPE_MISSING "missing" 811 #define VDEV_TYPE_HOLE "hole" 812 #define VDEV_TYPE_SPARE "spare" 813 #define VDEV_TYPE_LOG "log" 814 #define VDEV_TYPE_L2CACHE "l2cache" 815 #define VDEV_TYPE_INDIRECT "indirect" 816 817 /* 818 * This is needed in userland to report the minimum necessary device size. 819 */ 820 #define SPA_MINDEVSIZE (64ULL << 20) 821 822 /* 823 * The location of the pool configuration repository, shared between kernel and 824 * userland. 825 */ 826 #define ZPOOL_CACHE "/boot/zfs/zpool.cache" 827 828 /* 829 * vdev states are ordered from least to most healthy. 830 * A vdev that's CANT_OPEN or below is considered unusable. 831 */ 832 typedef enum vdev_state { 833 VDEV_STATE_UNKNOWN = 0, /* Uninitialized vdev */ 834 VDEV_STATE_CLOSED, /* Not currently open */ 835 VDEV_STATE_OFFLINE, /* Not allowed to open */ 836 VDEV_STATE_REMOVED, /* Explicitly removed from system */ 837 VDEV_STATE_CANT_OPEN, /* Tried to open, but failed */ 838 VDEV_STATE_FAULTED, /* External request to fault device */ 839 VDEV_STATE_DEGRADED, /* Replicated vdev with unhealthy kids */ 840 VDEV_STATE_HEALTHY /* Presumed good */ 841 } vdev_state_t; 842 843 /* 844 * vdev aux states. When a vdev is in the CANT_OPEN state, the aux field 845 * of the vdev stats structure uses these constants to distinguish why. 846 */ 847 typedef enum vdev_aux { 848 VDEV_AUX_NONE, /* no error */ 849 VDEV_AUX_OPEN_FAILED, /* ldi_open_*() or vn_open() failed */ 850 VDEV_AUX_CORRUPT_DATA, /* bad label or disk contents */ 851 VDEV_AUX_NO_REPLICAS, /* insufficient number of replicas */ 852 VDEV_AUX_BAD_GUID_SUM, /* vdev guid sum doesn't match */ 853 VDEV_AUX_TOO_SMALL, /* vdev size is too small */ 854 VDEV_AUX_BAD_LABEL, /* the label is OK but invalid */ 855 VDEV_AUX_VERSION_NEWER, /* on-disk version is too new */ 856 VDEV_AUX_VERSION_OLDER, /* on-disk version is too old */ 857 VDEV_AUX_SPARED /* hot spare used in another pool */ 858 } vdev_aux_t; 859 860 /* 861 * pool state. The following states are written to disk as part of the normal 862 * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE. The remaining states are 863 * software abstractions used at various levels to communicate pool state. 864 */ 865 typedef enum pool_state { 866 POOL_STATE_ACTIVE = 0, /* In active use */ 867 POOL_STATE_EXPORTED, /* Explicitly exported */ 868 POOL_STATE_DESTROYED, /* Explicitly destroyed */ 869 POOL_STATE_SPARE, /* Reserved for hot spare use */ 870 POOL_STATE_UNINITIALIZED, /* Internal spa_t state */ 871 POOL_STATE_UNAVAIL, /* Internal libzfs state */ 872 POOL_STATE_POTENTIALLY_ACTIVE /* Internal libzfs state */ 873 } pool_state_t; 874 875 /* 876 * The uberblock version is incremented whenever an incompatible on-disk 877 * format change is made to the SPA, DMU, or ZAP. 878 * 879 * Note: the first two fields should never be moved. When a storage pool 880 * is opened, the uberblock must be read off the disk before the version 881 * can be checked. If the ub_version field is moved, we may not detect 882 * version mismatch. If the ub_magic field is moved, applications that 883 * expect the magic number in the first word won't work. 884 */ 885 #define UBERBLOCK_MAGIC 0x00bab10c /* oo-ba-bloc! */ 886 #define UBERBLOCK_SHIFT 10 /* up to 1K */ 887 888 #define MMP_MAGIC 0xa11cea11 /* all-see-all */ 889 890 #define MMP_INTERVAL_VALID_BIT 0x01 891 #define MMP_SEQ_VALID_BIT 0x02 892 #define MMP_FAIL_INT_VALID_BIT 0x04 893 894 #define MMP_VALID(ubp) (ubp->ub_magic == UBERBLOCK_MAGIC && \ 895 ubp->ub_mmp_magic == MMP_MAGIC) 896 #define MMP_INTERVAL_VALID(ubp) (MMP_VALID(ubp) && (ubp->ub_mmp_config & \ 897 MMP_INTERVAL_VALID_BIT)) 898 #define MMP_SEQ_VALID(ubp) (MMP_VALID(ubp) && (ubp->ub_mmp_config & \ 899 MMP_SEQ_VALID_BIT)) 900 #define MMP_FAIL_INT_VALID(ubp) (MMP_VALID(ubp) && (ubp->ub_mmp_config & \ 901 MMP_FAIL_INT_VALID_BIT)) 902 903 #define MMP_INTERVAL(ubp) ((ubp->ub_mmp_config & 0x00000000FFFFFF00) \ 904 >> 8) 905 #define MMP_SEQ(ubp) ((ubp->ub_mmp_config & 0x0000FFFF00000000) \ 906 >> 32) 907 #define MMP_FAIL_INT(ubp) ((ubp->ub_mmp_config & 0xFFFF000000000000) \ 908 >> 48) 909 910 typedef struct uberblock { 911 uint64_t ub_magic; /* UBERBLOCK_MAGIC */ 912 uint64_t ub_version; /* SPA_VERSION */ 913 uint64_t ub_txg; /* txg of last sync */ 914 uint64_t ub_guid_sum; /* sum of all vdev guids */ 915 uint64_t ub_timestamp; /* UTC time of last sync */ 916 blkptr_t ub_rootbp; /* MOS objset_phys_t */ 917 /* highest SPA_VERSION supported by software that wrote this txg */ 918 uint64_t ub_software_version; 919 /* Maybe missing in uberblocks we read, but always written */ 920 uint64_t ub_mmp_magic; 921 /* 922 * If ub_mmp_delay == 0 and ub_mmp_magic is valid, MMP is off. 923 * Otherwise, nanosec since last MMP write. 924 */ 925 uint64_t ub_mmp_delay; 926 927 /* 928 * The ub_mmp_config contains the multihost write interval, multihost 929 * fail intervals, sequence number for sub-second granularity, and 930 * valid bit mask. This layout is as follows: 931 * 932 * 64 56 48 40 32 24 16 8 0 933 * +-------+-------+-------+-------+-------+-------+-------+-------+ 934 * 0 | Fail Intervals| Seq | Write Interval (ms) | VALID | 935 * +-------+-------+-------+-------+-------+-------+-------+-------+ 936 * 937 * This allows a write_interval of (2^24/1000)s, over 4.5 hours 938 * 939 * VALID Bits: 940 * - 0x01 - Write Interval (ms) 941 * - 0x02 - Sequence number exists 942 * - 0x04 - Fail Intervals 943 * - 0xf8 - Reserved 944 */ 945 uint64_t ub_mmp_config; 946 947 /* 948 * ub_checkpoint_txg indicates two things about the current uberblock: 949 * 950 * 1] If it is not zero then this uberblock is a checkpoint. If it is 951 * zero, then this uberblock is not a checkpoint. 952 * 953 * 2] On checkpointed uberblocks, the value of ub_checkpoint_txg is 954 * the ub_txg that the uberblock had at the time we moved it to 955 * the MOS config. 956 * 957 * The field is set when we checkpoint the uberblock and continues to 958 * hold that value even after we've rewound (unlike the ub_txg that 959 * is reset to a higher value). 960 * 961 * Besides checks used to determine whether we are reopening the 962 * pool from a checkpointed uberblock [see spa_ld_select_uberblock()], 963 * the value of the field is used to determine which ZIL blocks have 964 * been allocated according to the ms_sm when we are rewinding to a 965 * checkpoint. Specifically, if blk_birth > ub_checkpoint_txg, then 966 * the ZIL block is not allocated [see uses of spa_min_claim_txg()]. 967 */ 968 uint64_t ub_checkpoint_txg; 969 } uberblock_t; 970 971 /* 972 * Flags. 973 */ 974 #define DNODE_MUST_BE_ALLOCATED 1 975 #define DNODE_MUST_BE_FREE 2 976 977 /* 978 * Fixed constants. 979 */ 980 #define DNODE_SHIFT 9 /* 512 bytes */ 981 #define DN_MIN_INDBLKSHIFT 12 /* 4k */ 982 #define DN_MAX_INDBLKSHIFT 17 /* 128k */ 983 #define DNODE_BLOCK_SHIFT 14 /* 16k */ 984 #define DNODE_CORE_SIZE 64 /* 64 bytes for dnode sans blkptrs */ 985 #define DN_MAX_OBJECT_SHIFT 48 /* 256 trillion (zfs_fid_t limit) */ 986 #define DN_MAX_OFFSET_SHIFT 64 /* 2^64 bytes in a dnode */ 987 988 /* 989 * Derived constants. 990 */ 991 #define DNODE_MIN_SIZE (1 << DNODE_SHIFT) 992 #define DNODE_MAX_SIZE (1 << DNODE_BLOCK_SHIFT) 993 #define DNODE_BLOCK_SIZE (1 << DNODE_BLOCK_SHIFT) 994 #define DNODE_MIN_SLOTS (DNODE_MIN_SIZE >> DNODE_SHIFT) 995 #define DNODE_MAX_SLOTS (DNODE_MAX_SIZE >> DNODE_SHIFT) 996 #define DN_BONUS_SIZE(dnsize) ((dnsize) - DNODE_CORE_SIZE - \ 997 (1 << SPA_BLKPTRSHIFT)) 998 #define DN_SLOTS_TO_BONUSLEN(slots) DN_BONUS_SIZE((slots) << DNODE_SHIFT) 999 #define DN_OLD_MAX_BONUSLEN (DN_BONUS_SIZE(DNODE_MIN_SIZE)) 1000 #define DN_MAX_NBLKPTR ((DNODE_MIN_SIZE - DNODE_CORE_SIZE) >> \ 1001 SPA_BLKPTRSHIFT) 1002 #define DN_MAX_OBJECT (1ULL << DN_MAX_OBJECT_SHIFT) 1003 #define DN_ZERO_BONUSLEN (DN_BONUS_SIZE(DNODE_MAX_SIZE) + 1) 1004 1005 #define DNODES_PER_BLOCK_SHIFT (DNODE_BLOCK_SHIFT - DNODE_SHIFT) 1006 #define DNODES_PER_BLOCK (1ULL << DNODES_PER_BLOCK_SHIFT) 1007 #define DNODES_PER_LEVEL_SHIFT (DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT) 1008 1009 /* The +2 here is a cheesy way to round up */ 1010 #define DN_MAX_LEVELS (2 + ((DN_MAX_OFFSET_SHIFT - SPA_MINBLOCKSHIFT) / \ 1011 (DN_MIN_INDBLKSHIFT - SPA_BLKPTRSHIFT))) 1012 1013 #define DN_BONUS(dnp) ((void*)((dnp)->dn_bonus + \ 1014 (((dnp)->dn_nblkptr - 1) * sizeof (blkptr_t)))) 1015 1016 #define DN_USED_BYTES(dnp) (((dnp)->dn_flags & DNODE_FLAG_USED_BYTES) ? \ 1017 (dnp)->dn_used : (dnp)->dn_used << SPA_MINBLOCKSHIFT) 1018 1019 #define EPB(blkshift, typeshift) (1 << (blkshift - typeshift)) 1020 1021 /* Is dn_used in bytes? if not, it's in multiples of SPA_MINBLOCKSIZE */ 1022 #define DNODE_FLAG_USED_BYTES (1<<0) 1023 #define DNODE_FLAG_USERUSED_ACCOUNTED (1<<1) 1024 1025 /* Does dnode have a SA spill blkptr in bonus? */ 1026 #define DNODE_FLAG_SPILL_BLKPTR (1<<2) 1027 1028 typedef struct dnode_phys { 1029 uint8_t dn_type; /* dmu_object_type_t */ 1030 uint8_t dn_indblkshift; /* ln2(indirect block size) */ 1031 uint8_t dn_nlevels; /* 1=dn_blkptr->data blocks */ 1032 uint8_t dn_nblkptr; /* length of dn_blkptr */ 1033 uint8_t dn_bonustype; /* type of data in bonus buffer */ 1034 uint8_t dn_checksum; /* ZIO_CHECKSUM type */ 1035 uint8_t dn_compress; /* ZIO_COMPRESS type */ 1036 uint8_t dn_flags; /* DNODE_FLAG_* */ 1037 uint16_t dn_datablkszsec; /* data block size in 512b sectors */ 1038 uint16_t dn_bonuslen; /* length of dn_bonus */ 1039 uint8_t dn_extra_slots; /* # of subsequent slots consumed */ 1040 uint8_t dn_pad2[3]; 1041 1042 /* accounting is protected by dn_dirty_mtx */ 1043 uint64_t dn_maxblkid; /* largest allocated block ID */ 1044 uint64_t dn_used; /* bytes (or sectors) of disk space */ 1045 1046 uint64_t dn_pad3[4]; 1047 1048 /* 1049 * The tail region is 448 bytes for a 512 byte dnode, and 1050 * correspondingly larger for larger dnode sizes. The spill 1051 * block pointer, when present, is always at the end of the tail 1052 * region. There are three ways this space may be used, using 1053 * a 512 byte dnode for this diagram: 1054 * 1055 * 0 64 128 192 256 320 384 448 (offset) 1056 * +---------------+---------------+---------------+-------+ 1057 * | dn_blkptr[0] | dn_blkptr[1] | dn_blkptr[2] | / | 1058 * +---------------+---------------+---------------+-------+ 1059 * | dn_blkptr[0] | dn_bonus[0..319] | 1060 * +---------------+-----------------------+---------------+ 1061 * | dn_blkptr[0] | dn_bonus[0..191] | dn_spill | 1062 * +---------------+-----------------------+---------------+ 1063 */ 1064 union { 1065 blkptr_t dn_blkptr[1+DN_OLD_MAX_BONUSLEN/sizeof (blkptr_t)]; 1066 struct { 1067 blkptr_t __dn_ignore1; 1068 uint8_t dn_bonus[DN_OLD_MAX_BONUSLEN]; 1069 }; 1070 struct { 1071 blkptr_t __dn_ignore2; 1072 uint8_t __dn_ignore3[DN_OLD_MAX_BONUSLEN - 1073 sizeof (blkptr_t)]; 1074 blkptr_t dn_spill; 1075 }; 1076 }; 1077 } dnode_phys_t; 1078 1079 #define DN_SPILL_BLKPTR(dnp) (blkptr_t *)((char *)(dnp) + \ 1080 (((dnp)->dn_extra_slots + 1) << DNODE_SHIFT) - (1 << SPA_BLKPTRSHIFT)) 1081 1082 typedef enum dmu_object_byteswap { 1083 DMU_BSWAP_UINT8, 1084 DMU_BSWAP_UINT16, 1085 DMU_BSWAP_UINT32, 1086 DMU_BSWAP_UINT64, 1087 DMU_BSWAP_ZAP, 1088 DMU_BSWAP_DNODE, 1089 DMU_BSWAP_OBJSET, 1090 DMU_BSWAP_ZNODE, 1091 DMU_BSWAP_OLDACL, 1092 DMU_BSWAP_ACL, 1093 /* 1094 * Allocating a new byteswap type number makes the on-disk format 1095 * incompatible with any other format that uses the same number. 1096 * 1097 * Data can usually be structured to work with one of the 1098 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types. 1099 */ 1100 DMU_BSWAP_NUMFUNCS 1101 } dmu_object_byteswap_t; 1102 1103 #define DMU_OT_NEWTYPE 0x80 1104 #define DMU_OT_METADATA 0x40 1105 #define DMU_OT_BYTESWAP_MASK 0x3f 1106 1107 /* 1108 * Defines a uint8_t object type. Object types specify if the data 1109 * in the object is metadata (boolean) and how to byteswap the data 1110 * (dmu_object_byteswap_t). 1111 */ 1112 #define DMU_OT(byteswap, metadata) \ 1113 (DMU_OT_NEWTYPE | \ 1114 ((metadata) ? DMU_OT_METADATA : 0) | \ 1115 ((byteswap) & DMU_OT_BYTESWAP_MASK)) 1116 1117 typedef enum dmu_object_type { 1118 DMU_OT_NONE, 1119 /* general: */ 1120 DMU_OT_OBJECT_DIRECTORY, /* ZAP */ 1121 DMU_OT_OBJECT_ARRAY, /* UINT64 */ 1122 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ 1123 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ 1124 DMU_OT_BPLIST, /* UINT64 */ 1125 DMU_OT_BPLIST_HDR, /* UINT64 */ 1126 /* spa: */ 1127 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ 1128 DMU_OT_SPACE_MAP, /* UINT64 */ 1129 /* zil: */ 1130 DMU_OT_INTENT_LOG, /* UINT64 */ 1131 /* dmu: */ 1132 DMU_OT_DNODE, /* DNODE */ 1133 DMU_OT_OBJSET, /* OBJSET */ 1134 /* dsl: */ 1135 DMU_OT_DSL_DIR, /* UINT64 */ 1136 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ 1137 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ 1138 DMU_OT_DSL_PROPS, /* ZAP */ 1139 DMU_OT_DSL_DATASET, /* UINT64 */ 1140 /* zpl: */ 1141 DMU_OT_ZNODE, /* ZNODE */ 1142 DMU_OT_OLDACL, /* Old ACL */ 1143 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ 1144 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ 1145 DMU_OT_MASTER_NODE, /* ZAP */ 1146 DMU_OT_UNLINKED_SET, /* ZAP */ 1147 /* zvol: */ 1148 DMU_OT_ZVOL, /* UINT8 */ 1149 DMU_OT_ZVOL_PROP, /* ZAP */ 1150 /* other; for testing only! */ 1151 DMU_OT_PLAIN_OTHER, /* UINT8 */ 1152 DMU_OT_UINT64_OTHER, /* UINT64 */ 1153 DMU_OT_ZAP_OTHER, /* ZAP */ 1154 /* new object types: */ 1155 DMU_OT_ERROR_LOG, /* ZAP */ 1156 DMU_OT_SPA_HISTORY, /* UINT8 */ 1157 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ 1158 DMU_OT_POOL_PROPS, /* ZAP */ 1159 DMU_OT_DSL_PERMS, /* ZAP */ 1160 DMU_OT_ACL, /* ACL */ 1161 DMU_OT_SYSACL, /* SYSACL */ 1162 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */ 1163 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */ 1164 DMU_OT_NEXT_CLONES, /* ZAP */ 1165 DMU_OT_SCAN_QUEUE, /* ZAP */ 1166 DMU_OT_USERGROUP_USED, /* ZAP */ 1167 DMU_OT_USERGROUP_QUOTA, /* ZAP */ 1168 DMU_OT_USERREFS, /* ZAP */ 1169 DMU_OT_DDT_ZAP, /* ZAP */ 1170 DMU_OT_DDT_STATS, /* ZAP */ 1171 DMU_OT_SA, /* System attr */ 1172 DMU_OT_SA_MASTER_NODE, /* ZAP */ 1173 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */ 1174 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */ 1175 DMU_OT_SCAN_XLATE, /* ZAP */ 1176 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */ 1177 DMU_OT_NUMTYPES, 1178 1179 /* 1180 * Names for valid types declared with DMU_OT(). 1181 */ 1182 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE), 1183 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE), 1184 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE), 1185 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE), 1186 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE), 1187 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE), 1188 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE), 1189 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE), 1190 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE), 1191 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE) 1192 } dmu_object_type_t; 1193 1194 typedef enum dmu_objset_type { 1195 DMU_OST_NONE, 1196 DMU_OST_META, 1197 DMU_OST_ZFS, 1198 DMU_OST_ZVOL, 1199 DMU_OST_OTHER, /* For testing only! */ 1200 DMU_OST_ANY, /* Be careful! */ 1201 DMU_OST_NUMTYPES 1202 } dmu_objset_type_t; 1203 1204 #define ZAP_MAXVALUELEN (1024 * 8) 1205 1206 /* 1207 * header for all bonus and spill buffers. 1208 * The header has a fixed portion with a variable number 1209 * of "lengths" depending on the number of variable sized 1210 * attribues which are determined by the "layout number" 1211 */ 1212 1213 #define SA_MAGIC 0x2F505A /* ZFS SA */ 1214 typedef struct sa_hdr_phys { 1215 uint32_t sa_magic; 1216 uint16_t sa_layout_info; /* Encoded with hdrsize and layout number */ 1217 uint16_t sa_lengths[1]; /* optional sizes for variable length attrs */ 1218 /* ... Data follows the lengths. */ 1219 } sa_hdr_phys_t; 1220 1221 /* 1222 * sa_hdr_phys -> sa_layout_info 1223 * 1224 * 16 10 0 1225 * +--------+-------+ 1226 * | hdrsz |layout | 1227 * +--------+-------+ 1228 * 1229 * Bits 0-10 are the layout number 1230 * Bits 11-16 are the size of the header. 1231 * The hdrsize is the number * 8 1232 * 1233 * For example. 1234 * hdrsz of 1 ==> 8 byte header 1235 * 2 ==> 16 byte header 1236 * 1237 */ 1238 1239 #define SA_HDR_LAYOUT_NUM(hdr) BF32_GET(hdr->sa_layout_info, 0, 10) 1240 #define SA_HDR_SIZE(hdr) BF32_GET_SB(hdr->sa_layout_info, 10, 16, 3, 0) 1241 #define SA_HDR_LAYOUT_INFO_ENCODE(x, num, size) \ 1242 { \ 1243 BF32_SET_SB(x, 10, 6, 3, 0, size); \ 1244 BF32_SET(x, 0, 10, num); \ 1245 } 1246 1247 #define SA_MODE_OFFSET 0 1248 #define SA_SIZE_OFFSET 8 1249 #define SA_GEN_OFFSET 16 1250 #define SA_UID_OFFSET 24 1251 #define SA_GID_OFFSET 32 1252 #define SA_PARENT_OFFSET 40 1253 #define SA_SYMLINK_OFFSET 160 1254 1255 #define ZIO_OBJSET_MAC_LEN 32 1256 1257 /* 1258 * Intent log header - this on disk structure holds fields to manage 1259 * the log. All fields are 64 bit to easily handle cross architectures. 1260 */ 1261 typedef struct zil_header { 1262 uint64_t zh_claim_txg; /* txg in which log blocks were claimed */ 1263 uint64_t zh_replay_seq; /* highest replayed sequence number */ 1264 blkptr_t zh_log; /* log chain */ 1265 uint64_t zh_claim_seq; /* highest claimed sequence number */ 1266 uint64_t zh_pad[5]; 1267 } zil_header_t; 1268 1269 #define OBJSET_PHYS_SIZE_V2 2048 1270 #define OBJSET_PHYS_SIZE_V3 4096 1271 1272 typedef struct objset_phys { 1273 dnode_phys_t os_meta_dnode; 1274 zil_header_t os_zil_header; 1275 uint64_t os_type; 1276 uint64_t os_flags; 1277 uint8_t os_portable_mac[ZIO_OBJSET_MAC_LEN]; 1278 uint8_t os_local_mac[ZIO_OBJSET_MAC_LEN]; 1279 char os_pad0[OBJSET_PHYS_SIZE_V2 - sizeof (dnode_phys_t)*3 - 1280 sizeof (zil_header_t) - sizeof (uint64_t)*2 - 1281 2*ZIO_OBJSET_MAC_LEN]; 1282 dnode_phys_t os_userused_dnode; 1283 dnode_phys_t os_groupused_dnode; 1284 dnode_phys_t os_projectused_dnode; 1285 char os_pad1[OBJSET_PHYS_SIZE_V3 - OBJSET_PHYS_SIZE_V2 - 1286 sizeof (dnode_phys_t)]; 1287 } objset_phys_t; 1288 1289 typedef struct dsl_dir_phys { 1290 uint64_t dd_creation_time; /* not actually used */ 1291 uint64_t dd_head_dataset_obj; 1292 uint64_t dd_parent_obj; 1293 uint64_t dd_clone_parent_obj; 1294 uint64_t dd_child_dir_zapobj; 1295 /* 1296 * how much space our children are accounting for; for leaf 1297 * datasets, == physical space used by fs + snaps 1298 */ 1299 uint64_t dd_used_bytes; 1300 uint64_t dd_compressed_bytes; 1301 uint64_t dd_uncompressed_bytes; 1302 /* Administrative quota setting */ 1303 uint64_t dd_quota; 1304 /* Administrative reservation setting */ 1305 uint64_t dd_reserved; 1306 uint64_t dd_props_zapobj; 1307 uint64_t dd_pad[21]; /* pad out to 256 bytes for good measure */ 1308 } dsl_dir_phys_t; 1309 1310 typedef struct dsl_dataset_phys { 1311 uint64_t ds_dir_obj; 1312 uint64_t ds_prev_snap_obj; 1313 uint64_t ds_prev_snap_txg; 1314 uint64_t ds_next_snap_obj; 1315 uint64_t ds_snapnames_zapobj; /* zap obj of snaps; ==0 for snaps */ 1316 uint64_t ds_num_children; /* clone/snap children; ==0 for head */ 1317 uint64_t ds_creation_time; /* seconds since 1970 */ 1318 uint64_t ds_creation_txg; 1319 uint64_t ds_deadlist_obj; 1320 uint64_t ds_used_bytes; 1321 uint64_t ds_compressed_bytes; 1322 uint64_t ds_uncompressed_bytes; 1323 uint64_t ds_unique_bytes; /* only relevant to snapshots */ 1324 /* 1325 * The ds_fsid_guid is a 56-bit ID that can change to avoid 1326 * collisions. The ds_guid is a 64-bit ID that will never 1327 * change, so there is a small probability that it will collide. 1328 */ 1329 uint64_t ds_fsid_guid; 1330 uint64_t ds_guid; 1331 uint64_t ds_flags; 1332 blkptr_t ds_bp; 1333 uint64_t ds_pad[8]; /* pad out to 320 bytes for good measure */ 1334 } dsl_dataset_phys_t; 1335 1336 /* 1337 * The names of zap entries in the DIRECTORY_OBJECT of the MOS. 1338 */ 1339 #define DMU_POOL_DIRECTORY_OBJECT 1 1340 #define DMU_POOL_CONFIG "config" 1341 #define DMU_POOL_FEATURES_FOR_READ "features_for_read" 1342 #define DMU_POOL_ROOT_DATASET "root_dataset" 1343 #define DMU_POOL_SYNC_BPLIST "sync_bplist" 1344 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" 1345 #define DMU_POOL_ERRLOG_LAST "errlog_last" 1346 #define DMU_POOL_SPARES "spares" 1347 #define DMU_POOL_DEFLATE "deflate" 1348 #define DMU_POOL_HISTORY "history" 1349 #define DMU_POOL_PROPS "pool_props" 1350 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt" 1351 #define DMU_POOL_REMOVING "com.delphix:removing" 1352 #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj" 1353 #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect" 1354 #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint" 1355 1356 #define ZAP_MAGIC 0x2F52AB2ABULL 1357 1358 #define FZAP_BLOCK_SHIFT(zap) ((zap)->zap_block_shift) 1359 1360 #define ZAP_MAXCD (uint32_t)(-1) 1361 #define ZAP_HASHBITS 28 1362 #define MZAP_ENT_LEN 64 1363 #define MZAP_NAME_LEN (MZAP_ENT_LEN - 8 - 4 - 2) 1364 #define MZAP_MAX_BLKSZ SPA_OLD_MAXBLOCKSIZE 1365 1366 typedef struct mzap_ent_phys { 1367 uint64_t mze_value; 1368 uint32_t mze_cd; 1369 uint16_t mze_pad; /* in case we want to chain them someday */ 1370 char mze_name[MZAP_NAME_LEN]; 1371 } mzap_ent_phys_t; 1372 1373 typedef struct mzap_phys { 1374 uint64_t mz_block_type; /* ZBT_MICRO */ 1375 uint64_t mz_salt; 1376 uint64_t mz_normflags; 1377 uint64_t mz_pad[5]; 1378 mzap_ent_phys_t mz_chunk[1]; 1379 /* actually variable size depending on block size */ 1380 } mzap_phys_t; 1381 1382 /* 1383 * The (fat) zap is stored in one object. It is an array of 1384 * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of: 1385 * 1386 * ptrtbl fits in first block: 1387 * [zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ... 1388 * 1389 * ptrtbl too big for first block: 1390 * [zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ... 1391 * 1392 */ 1393 1394 #define ZBT_LEAF ((1ULL << 63) + 0) 1395 #define ZBT_HEADER ((1ULL << 63) + 1) 1396 #define ZBT_MICRO ((1ULL << 63) + 3) 1397 /* any other values are ptrtbl blocks */ 1398 1399 /* 1400 * the embedded pointer table takes up half a block: 1401 * block size / entry size (2^3) / 2 1402 */ 1403 #define ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1) 1404 1405 /* 1406 * The embedded pointer table starts half-way through the block. Since 1407 * the pointer table itself is half the block, it starts at (64-bit) 1408 * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)). 1409 */ 1410 #define ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \ 1411 ((uint64_t *)(zap)->zap_phys) \ 1412 [(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))] 1413 1414 /* 1415 * TAKE NOTE: 1416 * If zap_phys_t is modified, zap_byteswap() must be modified. 1417 */ 1418 typedef struct zap_phys { 1419 uint64_t zap_block_type; /* ZBT_HEADER */ 1420 uint64_t zap_magic; /* ZAP_MAGIC */ 1421 1422 struct zap_table_phys { 1423 uint64_t zt_blk; /* starting block number */ 1424 uint64_t zt_numblks; /* number of blocks */ 1425 uint64_t zt_shift; /* bits to index it */ 1426 uint64_t zt_nextblk; /* next (larger) copy start block */ 1427 uint64_t zt_blks_copied; /* number source blocks copied */ 1428 } zap_ptrtbl; 1429 1430 uint64_t zap_freeblk; /* the next free block */ 1431 uint64_t zap_num_leafs; /* number of leafs */ 1432 uint64_t zap_num_entries; /* number of entries */ 1433 uint64_t zap_salt; /* salt to stir into hash function */ 1434 uint64_t zap_normflags; /* flags for u8_textprep_str() */ 1435 uint64_t zap_flags; /* zap_flags_t */ 1436 /* 1437 * This structure is followed by padding, and then the embedded 1438 * pointer table. The embedded pointer table takes up second 1439 * half of the block. It is accessed using the 1440 * ZAP_EMBEDDED_PTRTBL_ENT() macro. 1441 */ 1442 } zap_phys_t; 1443 1444 typedef struct zap_table_phys zap_table_phys_t; 1445 1446 struct spa; 1447 typedef struct fat_zap { 1448 int zap_block_shift; /* block size shift */ 1449 zap_phys_t *zap_phys; 1450 const struct spa *zap_spa; 1451 const dnode_phys_t *zap_dnode; 1452 } fat_zap_t; 1453 1454 #define ZAP_LEAF_MAGIC 0x2AB1EAF 1455 1456 /* chunk size = 24 bytes */ 1457 #define ZAP_LEAF_CHUNKSIZE 24 1458 1459 /* 1460 * The amount of space available for chunks is: 1461 * block size (1<<l->l_bs) - hash entry size (2) * number of hash 1462 * entries - header space (2*chunksize) 1463 */ 1464 #define ZAP_LEAF_NUMCHUNKS(l) \ 1465 (((1<<(l)->l_bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(l)) / \ 1466 ZAP_LEAF_CHUNKSIZE - 2) 1467 1468 /* 1469 * The amount of space within the chunk available for the array is: 1470 * chunk size - space for type (1) - space for next pointer (2) 1471 */ 1472 #define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3) 1473 1474 #define ZAP_LEAF_ARRAY_NCHUNKS(bytes) \ 1475 (((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES) 1476 1477 /* 1478 * Low water mark: when there are only this many chunks free, start 1479 * growing the ptrtbl. Ideally, this should be larger than a 1480 * "reasonably-sized" entry. 20 chunks is more than enough for the 1481 * largest directory entry (MAXNAMELEN (256) byte name, 8-byte value), 1482 * while still being only around 3% for 16k blocks. 1483 */ 1484 #define ZAP_LEAF_LOW_WATER (20) 1485 1486 /* 1487 * The leaf hash table has block size / 2^5 (32) number of entries, 1488 * which should be more than enough for the maximum number of entries, 1489 * which is less than block size / CHUNKSIZE (24) / minimum number of 1490 * chunks per entry (3). 1491 */ 1492 #define ZAP_LEAF_HASH_SHIFT(l) ((l)->l_bs - 5) 1493 #define ZAP_LEAF_HASH_NUMENTRIES(l) (1 << ZAP_LEAF_HASH_SHIFT(l)) 1494 1495 /* 1496 * The chunks start immediately after the hash table. The end of the 1497 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a 1498 * chunk_t. 1499 */ 1500 #define ZAP_LEAF_CHUNK(l, idx) \ 1501 ((zap_leaf_chunk_t *) \ 1502 ((l)->l_phys->l_hash + ZAP_LEAF_HASH_NUMENTRIES(l)))[idx] 1503 #define ZAP_LEAF_ENTRY(l, idx) (&ZAP_LEAF_CHUNK(l, idx).l_entry) 1504 1505 typedef enum zap_chunk_type { 1506 ZAP_CHUNK_FREE = 253, 1507 ZAP_CHUNK_ENTRY = 252, 1508 ZAP_CHUNK_ARRAY = 251, 1509 ZAP_CHUNK_TYPE_MAX = 250 1510 } zap_chunk_type_t; 1511 1512 /* 1513 * TAKE NOTE: 1514 * If zap_leaf_phys_t is modified, zap_leaf_byteswap() must be modified. 1515 */ 1516 typedef struct zap_leaf_phys { 1517 struct zap_leaf_header { 1518 uint64_t lh_block_type; /* ZBT_LEAF */ 1519 uint64_t lh_pad1; 1520 uint64_t lh_prefix; /* hash prefix of this leaf */ 1521 uint32_t lh_magic; /* ZAP_LEAF_MAGIC */ 1522 uint16_t lh_nfree; /* number free chunks */ 1523 uint16_t lh_nentries; /* number of entries */ 1524 uint16_t lh_prefix_len; /* num bits used to id this */ 1525 1526 /* above is accessable to zap, below is zap_leaf private */ 1527 1528 uint16_t lh_freelist; /* chunk head of free list */ 1529 uint8_t lh_pad2[12]; 1530 } l_hdr; /* 2 24-byte chunks */ 1531 1532 /* 1533 * The header is followed by a hash table with 1534 * ZAP_LEAF_HASH_NUMENTRIES(zap) entries. The hash table is 1535 * followed by an array of ZAP_LEAF_NUMCHUNKS(zap) 1536 * zap_leaf_chunk structures. These structures are accessed 1537 * with the ZAP_LEAF_CHUNK() macro. 1538 */ 1539 1540 uint16_t l_hash[1]; 1541 } zap_leaf_phys_t; 1542 1543 typedef union zap_leaf_chunk { 1544 struct zap_leaf_entry { 1545 uint8_t le_type; /* always ZAP_CHUNK_ENTRY */ 1546 uint8_t le_value_intlen; /* size of ints */ 1547 uint16_t le_next; /* next entry in hash chain */ 1548 uint16_t le_name_chunk; /* first chunk of the name */ 1549 uint16_t le_name_numints; /* bytes in name, incl null */ 1550 uint16_t le_value_chunk; /* first chunk of the value */ 1551 uint16_t le_value_numints; /* value length in ints */ 1552 uint32_t le_cd; /* collision differentiator */ 1553 uint64_t le_hash; /* hash value of the name */ 1554 } l_entry; 1555 struct zap_leaf_array { 1556 uint8_t la_type; /* always ZAP_CHUNK_ARRAY */ 1557 uint8_t la_array[ZAP_LEAF_ARRAY_BYTES]; 1558 uint16_t la_next; /* next blk or CHAIN_END */ 1559 } l_array; 1560 struct zap_leaf_free { 1561 uint8_t lf_type; /* always ZAP_CHUNK_FREE */ 1562 uint8_t lf_pad[ZAP_LEAF_ARRAY_BYTES]; 1563 uint16_t lf_next; /* next in free list, or CHAIN_END */ 1564 } l_free; 1565 } zap_leaf_chunk_t; 1566 1567 typedef struct zap_leaf { 1568 int l_bs; /* block size shift */ 1569 zap_leaf_phys_t *l_phys; 1570 } zap_leaf_t; 1571 1572 /* 1573 * Define special zfs pflags 1574 */ 1575 #define ZFS_XATTR 0x1 /* is an extended attribute */ 1576 #define ZFS_INHERIT_ACE 0x2 /* ace has inheritable ACEs */ 1577 #define ZFS_ACL_TRIVIAL 0x4 /* files ACL is trivial */ 1578 1579 #define MASTER_NODE_OBJ 1 1580 1581 /* 1582 * special attributes for master node. 1583 */ 1584 1585 #define ZFS_FSID "FSID" 1586 #define ZFS_UNLINKED_SET "DELETE_QUEUE" 1587 #define ZFS_ROOT_OBJ "ROOT" 1588 #define ZPL_VERSION_OBJ "VERSION" 1589 #define ZFS_PROP_BLOCKPERPAGE "BLOCKPERPAGE" 1590 #define ZFS_PROP_NOGROWBLOCKS "NOGROWBLOCKS" 1591 1592 #define ZFS_FLAG_BLOCKPERPAGE 0x1 1593 #define ZFS_FLAG_NOGROWBLOCKS 0x2 1594 1595 /* 1596 * ZPL version - rev'd whenever an incompatible on-disk format change 1597 * occurs. Independent of SPA/DMU/ZAP versioning. 1598 */ 1599 1600 #define ZPL_VERSION 1ULL 1601 1602 /* 1603 * The directory entry has the type (currently unused on Solaris) in the 1604 * top 4 bits, and the object number in the low 48 bits. The "middle" 1605 * 12 bits are unused. 1606 */ 1607 #define ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4) 1608 #define ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48) 1609 #define ZFS_DIRENT_MAKE(type, obj) (((uint64_t)type << 60) | obj) 1610 1611 typedef struct ace { 1612 uid_t a_who; /* uid or gid */ 1613 uint32_t a_access_mask; /* read,write,... */ 1614 uint16_t a_flags; /* see below */ 1615 uint16_t a_type; /* allow or deny */ 1616 } ace_t; 1617 1618 #define ACE_SLOT_CNT 6 1619 1620 typedef struct zfs_znode_acl { 1621 uint64_t z_acl_extern_obj; /* ext acl pieces */ 1622 uint32_t z_acl_count; /* Number of ACEs */ 1623 uint16_t z_acl_version; /* acl version */ 1624 uint16_t z_acl_pad; /* pad */ 1625 ace_t z_ace_data[ACE_SLOT_CNT]; /* 6 standard ACEs */ 1626 } zfs_znode_acl_t; 1627 1628 /* 1629 * This is the persistent portion of the znode. It is stored 1630 * in the "bonus buffer" of the file. Short symbolic links 1631 * are also stored in the bonus buffer. 1632 */ 1633 typedef struct znode_phys { 1634 uint64_t zp_atime[2]; /* 0 - last file access time */ 1635 uint64_t zp_mtime[2]; /* 16 - last file modification time */ 1636 uint64_t zp_ctime[2]; /* 32 - last file change time */ 1637 uint64_t zp_crtime[2]; /* 48 - creation time */ 1638 uint64_t zp_gen; /* 64 - generation (txg of creation) */ 1639 uint64_t zp_mode; /* 72 - file mode bits */ 1640 uint64_t zp_size; /* 80 - size of file */ 1641 uint64_t zp_parent; /* 88 - directory parent (`..') */ 1642 uint64_t zp_links; /* 96 - number of links to file */ 1643 uint64_t zp_xattr; /* 104 - DMU object for xattrs */ 1644 uint64_t zp_rdev; /* 112 - dev_t for VBLK & VCHR files */ 1645 uint64_t zp_flags; /* 120 - persistent flags */ 1646 uint64_t zp_uid; /* 128 - file owner */ 1647 uint64_t zp_gid; /* 136 - owning group */ 1648 uint64_t zp_pad[4]; /* 144 - future */ 1649 zfs_znode_acl_t zp_acl; /* 176 - 263 ACL */ 1650 /* 1651 * Data may pad out any remaining bytes in the znode buffer, eg: 1652 * 1653 * |<---------------------- dnode_phys (512) ------------------------>| 1654 * |<-- dnode (192) --->|<----------- "bonus" buffer (320) ---------->| 1655 * |<---- znode (264) ---->|<---- data (56) ---->| 1656 * 1657 * At present, we only use this space to store symbolic links. 1658 */ 1659 } znode_phys_t; 1660 1661 /* 1662 * In-core vdev representation. 1663 */ 1664 struct vdev; 1665 struct spa; 1666 typedef int vdev_phys_read_t(struct vdev *, void *, off_t, void *, size_t); 1667 typedef int vdev_phys_write_t(struct vdev *, off_t, void *, size_t); 1668 typedef int vdev_read_t(struct vdev *, const blkptr_t *, void *, off_t, size_t); 1669 1670 typedef STAILQ_HEAD(vdev_list, vdev) vdev_list_t; 1671 1672 typedef struct vdev_indirect_mapping_entry_phys { 1673 /* 1674 * Decode with DVA_MAPPING_* macros. 1675 * Contains: 1676 * the source offset (low 63 bits) 1677 * the one-bit "mark", used for garbage collection (by zdb) 1678 */ 1679 uint64_t vimep_src; 1680 1681 /* 1682 * Note: the DVA's asize is 24 bits, and can thus store ranges 1683 * up to 8GB. 1684 */ 1685 dva_t vimep_dst; 1686 } vdev_indirect_mapping_entry_phys_t; 1687 1688 #define DVA_MAPPING_GET_SRC_OFFSET(vimep) \ 1689 BF64_GET_SB((vimep)->vimep_src, 0, 63, SPA_MINBLOCKSHIFT, 0) 1690 #define DVA_MAPPING_SET_SRC_OFFSET(vimep, x) \ 1691 BF64_SET_SB((vimep)->vimep_src, 0, 63, SPA_MINBLOCKSHIFT, 0, x) 1692 1693 typedef struct vdev_indirect_mapping_entry { 1694 vdev_indirect_mapping_entry_phys_t vime_mapping; 1695 uint32_t vime_obsolete_count; 1696 list_node_t vime_node; 1697 } vdev_indirect_mapping_entry_t; 1698 1699 /* 1700 * This is stored in the bonus buffer of the mapping object, see comment of 1701 * vdev_indirect_config for more details. 1702 */ 1703 typedef struct vdev_indirect_mapping_phys { 1704 uint64_t vimp_max_offset; 1705 uint64_t vimp_bytes_mapped; 1706 uint64_t vimp_num_entries; /* number of v_i_m_entry_phys_t's */ 1707 1708 /* 1709 * For each entry in the mapping object, this object contains an 1710 * entry representing the number of bytes of that mapping entry 1711 * that were no longer in use by the pool at the time this indirect 1712 * vdev was last condensed. 1713 */ 1714 uint64_t vimp_counts_object; 1715 } vdev_indirect_mapping_phys_t; 1716 1717 #define VDEV_INDIRECT_MAPPING_SIZE_V0 (3 * sizeof (uint64_t)) 1718 1719 typedef struct vdev_indirect_mapping { 1720 uint64_t vim_object; 1721 boolean_t vim_havecounts; 1722 1723 /* vim_entries segment offset currently in memory. */ 1724 uint64_t vim_entry_offset; 1725 /* vim_entries segment size. */ 1726 size_t vim_num_entries; 1727 1728 /* Needed by dnode_read() */ 1729 const void *vim_spa; 1730 dnode_phys_t *vim_dn; 1731 1732 /* 1733 * An ordered array of mapping entries, sorted by source offset. 1734 * Note that vim_entries is needed during a removal (and contains 1735 * mappings that have been synced to disk so far) to handle frees 1736 * from the removing device. 1737 */ 1738 vdev_indirect_mapping_entry_phys_t *vim_entries; 1739 objset_phys_t *vim_objset; 1740 vdev_indirect_mapping_phys_t *vim_phys; 1741 } vdev_indirect_mapping_t; 1742 1743 /* 1744 * On-disk indirect vdev state. 1745 * 1746 * An indirect vdev is described exclusively in the MOS config of a pool. 1747 * The config for an indirect vdev includes several fields, which are 1748 * accessed in memory by a vdev_indirect_config_t. 1749 */ 1750 typedef struct vdev_indirect_config { 1751 /* 1752 * Object (in MOS) which contains the indirect mapping. This object 1753 * contains an array of vdev_indirect_mapping_entry_phys_t ordered by 1754 * vimep_src. The bonus buffer for this object is a 1755 * vdev_indirect_mapping_phys_t. This object is allocated when a vdev 1756 * removal is initiated. 1757 * 1758 * Note that this object can be empty if none of the data on the vdev 1759 * has been copied yet. 1760 */ 1761 uint64_t vic_mapping_object; 1762 1763 /* 1764 * Object (in MOS) which contains the birth times for the mapping 1765 * entries. This object contains an array of 1766 * vdev_indirect_birth_entry_phys_t sorted by vibe_offset. The bonus 1767 * buffer for this object is a vdev_indirect_birth_phys_t. This object 1768 * is allocated when a vdev removal is initiated. 1769 * 1770 * Note that this object can be empty if none of the vdev has yet been 1771 * copied. 1772 */ 1773 uint64_t vic_births_object; 1774 1775 /* 1776 * This is the vdev ID which was removed previous to this vdev, or 1777 * UINT64_MAX if there are no previously removed vdevs. 1778 */ 1779 uint64_t vic_prev_indirect_vdev; 1780 } vdev_indirect_config_t; 1781 1782 typedef struct vdev { 1783 STAILQ_ENTRY(vdev) v_childlink; /* link in parent's child list */ 1784 STAILQ_ENTRY(vdev) v_alllink; /* link in global vdev list */ 1785 vdev_list_t v_children; /* children of this vdev */ 1786 const char *v_name; /* vdev name */ 1787 uint64_t v_guid; /* vdev guid */ 1788 uint64_t v_id; /* index in parent */ 1789 uint64_t v_psize; /* physical device capacity */ 1790 int v_ashift; /* offset to block shift */ 1791 int v_nparity; /* # parity for raidz */ 1792 struct vdev *v_top; /* parent vdev */ 1793 size_t v_nchildren; /* # children */ 1794 vdev_state_t v_state; /* current state */ 1795 vdev_phys_read_t *v_phys_read; /* read from raw leaf vdev */ 1796 vdev_phys_write_t *v_phys_write; /* write to raw leaf vdev */ 1797 vdev_read_t *v_read; /* read from vdev */ 1798 void *v_priv; /* data for read/write function */ 1799 boolean_t v_islog; 1800 struct spa *v_spa; /* link to spa */ 1801 /* 1802 * Values stored in the config for an indirect or removing vdev. 1803 */ 1804 vdev_indirect_config_t vdev_indirect_config; 1805 vdev_indirect_mapping_t *v_mapping; 1806 } vdev_t; 1807 1808 /* 1809 * In-core pool representation. 1810 */ 1811 typedef STAILQ_HEAD(spa_list, spa) spa_list_t; 1812 1813 typedef struct spa { 1814 STAILQ_ENTRY(spa) spa_link; /* link in global pool list */ 1815 char *spa_name; /* pool name */ 1816 uint64_t spa_guid; /* pool guid */ 1817 uint64_t spa_txg; /* most recent transaction */ 1818 struct uberblock *spa_uberblock; /* best uberblock so far */ 1819 vdev_t *spa_root_vdev; /* toplevel vdev container */ 1820 objset_phys_t *spa_mos; /* MOS for this pool */ 1821 zio_cksum_salt_t spa_cksum_salt; /* secret salt for cksum */ 1822 void *spa_cksum_tmpls[ZIO_CHECKSUM_FUNCTIONS]; 1823 boolean_t spa_with_log; /* this pool has log */ 1824 1825 struct uberblock spa_uberblock_master; /* best uberblock so far */ 1826 objset_phys_t spa_mos_master; /* MOS for this pool */ 1827 struct uberblock spa_uberblock_checkpoint; /* checkpoint uberblock */ 1828 objset_phys_t spa_mos_checkpoint; /* Checkpoint MOS */ 1829 void *spa_bootenv; /* bootenv from pool label */ 1830 } spa_t; 1831 1832 /* IO related arguments. */ 1833 typedef struct zio { 1834 spa_t *io_spa; 1835 blkptr_t *io_bp; 1836 void *io_data; 1837 uint64_t io_size; 1838 uint64_t io_offset; 1839 1840 /* Stuff for the vdev stack */ 1841 vdev_t *io_vd; 1842 void *io_vsd; 1843 1844 int io_error; 1845 } zio_t; 1846 1847 static void decode_embedded_bp_compressed(const blkptr_t *, void *); 1848 1849 #endif /* _ZFSIMPL_H_ */ 1850