1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/conf.h> 34 #include <sys/types.h> 35 #include <sys/bio.h> 36 #include <sys/bus.h> 37 #include <sys/devicestat.h> 38 #include <sys/errno.h> 39 #include <sys/fcntl.h> 40 #include <sys/malloc.h> 41 #include <sys/proc.h> 42 #include <sys/poll.h> 43 #include <sys/selinfo.h> 44 #include <sys/sdt.h> 45 #include <sys/sysent.h> 46 #include <sys/taskqueue.h> 47 #include <vm/uma.h> 48 #include <vm/vm.h> 49 #include <vm/vm_extern.h> 50 51 #include <machine/bus.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_periph.h> 56 #include <cam/cam_queue.h> 57 #include <cam/cam_xpt.h> 58 #include <cam/cam_xpt_periph.h> 59 #include <cam/cam_debug.h> 60 #include <cam/cam_compat.h> 61 #include <cam/cam_xpt_periph.h> 62 63 #include <cam/scsi/scsi_pass.h> 64 65 #define PERIPH_NAME "pass" 66 67 typedef enum { 68 PASS_FLAG_OPEN = 0x01, 69 PASS_FLAG_LOCKED = 0x02, 70 PASS_FLAG_INVALID = 0x04, 71 PASS_FLAG_INITIAL_PHYSPATH = 0x08, 72 PASS_FLAG_ZONE_INPROG = 0x10, 73 PASS_FLAG_ZONE_VALID = 0x20, 74 PASS_FLAG_UNMAPPED_CAPABLE = 0x40, 75 PASS_FLAG_ABANDONED_REF_SET = 0x80 76 } pass_flags; 77 78 typedef enum { 79 PASS_STATE_NORMAL 80 } pass_state; 81 82 typedef enum { 83 PASS_CCB_BUFFER_IO, 84 PASS_CCB_QUEUED_IO 85 } pass_ccb_types; 86 87 #define ccb_type ppriv_field0 88 #define ccb_ioreq ppriv_ptr1 89 90 /* 91 * The maximum number of memory segments we preallocate. 92 */ 93 #define PASS_MAX_SEGS 16 94 95 typedef enum { 96 PASS_IO_NONE = 0x00, 97 PASS_IO_USER_SEG_MALLOC = 0x01, 98 PASS_IO_KERN_SEG_MALLOC = 0x02, 99 PASS_IO_ABANDONED = 0x04 100 } pass_io_flags; 101 102 struct pass_io_req { 103 union ccb ccb; 104 union ccb *alloced_ccb; 105 union ccb *user_ccb_ptr; 106 camq_entry user_periph_links; 107 ccb_ppriv_area user_periph_priv; 108 struct cam_periph_map_info mapinfo; 109 pass_io_flags flags; 110 ccb_flags data_flags; 111 int num_user_segs; 112 bus_dma_segment_t user_segs[PASS_MAX_SEGS]; 113 int num_kern_segs; 114 bus_dma_segment_t kern_segs[PASS_MAX_SEGS]; 115 bus_dma_segment_t *user_segptr; 116 bus_dma_segment_t *kern_segptr; 117 int num_bufs; 118 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 119 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 120 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS]; 121 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS]; 122 struct bintime start_time; 123 TAILQ_ENTRY(pass_io_req) links; 124 }; 125 126 struct pass_softc { 127 pass_state state; 128 pass_flags flags; 129 uint8_t pd_type; 130 int open_count; 131 u_int maxio; 132 struct devstat *device_stats; 133 struct cdev *dev; 134 struct cdev *alias_dev; 135 struct task add_physpath_task; 136 struct task shutdown_kqueue_task; 137 struct selinfo read_select; 138 TAILQ_HEAD(, pass_io_req) incoming_queue; 139 TAILQ_HEAD(, pass_io_req) active_queue; 140 TAILQ_HEAD(, pass_io_req) abandoned_queue; 141 TAILQ_HEAD(, pass_io_req) done_queue; 142 struct cam_periph *periph; 143 char zone_name[12]; 144 char io_zone_name[12]; 145 uma_zone_t pass_zone; 146 uma_zone_t pass_io_zone; 147 size_t io_zone_size; 148 }; 149 150 static d_open_t passopen; 151 static d_close_t passclose; 152 static d_ioctl_t passioctl; 153 static d_ioctl_t passdoioctl; 154 static d_poll_t passpoll; 155 static d_kqfilter_t passkqfilter; 156 static void passreadfiltdetach(struct knote *kn); 157 static int passreadfilt(struct knote *kn, long hint); 158 159 static periph_init_t passinit; 160 static periph_ctor_t passregister; 161 static periph_oninv_t passoninvalidate; 162 static periph_dtor_t passcleanup; 163 static periph_start_t passstart; 164 static void pass_shutdown_kqueue(void *context, int pending); 165 static void pass_add_physpath(void *context, int pending); 166 static void passasync(void *callback_arg, uint32_t code, 167 struct cam_path *path, void *arg); 168 static void passdone(struct cam_periph *periph, 169 union ccb *done_ccb); 170 static int passcreatezone(struct cam_periph *periph); 171 static void passiocleanup(struct pass_softc *softc, 172 struct pass_io_req *io_req); 173 static int passcopysglist(struct cam_periph *periph, 174 struct pass_io_req *io_req, 175 ccb_flags direction); 176 static int passmemsetup(struct cam_periph *periph, 177 struct pass_io_req *io_req); 178 static int passmemdone(struct cam_periph *periph, 179 struct pass_io_req *io_req); 180 static int passerror(union ccb *ccb, uint32_t cam_flags, 181 uint32_t sense_flags); 182 static int passsendccb(struct cam_periph *periph, union ccb *ccb, 183 union ccb *inccb); 184 static void passflags(union ccb *ccb, uint32_t *cam_flags, 185 uint32_t *sense_flags); 186 187 static struct periph_driver passdriver = 188 { 189 passinit, PERIPH_NAME, 190 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0 191 }; 192 193 PERIPHDRIVER_DECLARE(pass, passdriver); 194 195 static struct cdevsw pass_cdevsw = { 196 .d_version = D_VERSION, 197 .d_flags = D_TRACKCLOSE, 198 .d_open = passopen, 199 .d_close = passclose, 200 .d_ioctl = passioctl, 201 .d_poll = passpoll, 202 .d_kqfilter = passkqfilter, 203 .d_name = PERIPH_NAME, 204 }; 205 206 static const struct filterops passread_filtops = { 207 .f_isfd = 1, 208 .f_detach = passreadfiltdetach, 209 .f_event = passreadfilt, 210 .f_copy = knote_triv_copy, 211 }; 212 213 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers"); 214 215 static void 216 passinit(void) 217 { 218 cam_status status; 219 220 /* 221 * Install a global async callback. This callback will 222 * receive async callbacks like "new device found". 223 */ 224 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL); 225 226 if (status != CAM_REQ_CMP) { 227 printf("pass: Failed to attach master async callback " 228 "due to status 0x%x!\n", status); 229 } 230 231 } 232 233 static void 234 passrejectios(struct cam_periph *periph) 235 { 236 struct pass_io_req *io_req, *io_req2; 237 struct pass_softc *softc; 238 239 softc = (struct pass_softc *)periph->softc; 240 241 /* 242 * The user can no longer get status for I/O on the done queue, so 243 * clean up all outstanding I/O on the done queue. 244 */ 245 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 246 TAILQ_REMOVE(&softc->done_queue, io_req, links); 247 passiocleanup(softc, io_req); 248 uma_zfree(softc->pass_zone, io_req); 249 } 250 251 /* 252 * The underlying device is gone, so we can't issue these I/Os. 253 * The devfs node has been shut down, so we can't return status to 254 * the user. Free any I/O left on the incoming queue. 255 */ 256 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) { 257 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 258 passiocleanup(softc, io_req); 259 uma_zfree(softc->pass_zone, io_req); 260 } 261 262 /* 263 * Normally we would put I/Os on the abandoned queue and acquire a 264 * reference when we saw the final close. But, the device went 265 * away and devfs may have moved everything off to deadfs by the 266 * time the I/O done callback is called; as a result, we won't see 267 * any more closes. So, if we have any active I/Os, we need to put 268 * them on the abandoned queue. When the abandoned queue is empty, 269 * we'll release the remaining reference (see below) to the peripheral. 270 */ 271 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) { 272 TAILQ_REMOVE(&softc->active_queue, io_req, links); 273 io_req->flags |= PASS_IO_ABANDONED; 274 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links); 275 } 276 277 /* 278 * If we put any I/O on the abandoned queue, acquire a reference. 279 */ 280 if ((!TAILQ_EMPTY(&softc->abandoned_queue)) 281 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) { 282 cam_periph_doacquire(periph); 283 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 284 } 285 } 286 287 static void 288 passdevgonecb(void *arg) 289 { 290 struct cam_periph *periph; 291 struct mtx *mtx; 292 struct pass_softc *softc; 293 int i; 294 295 periph = (struct cam_periph *)arg; 296 mtx = cam_periph_mtx(periph); 297 mtx_lock(mtx); 298 299 softc = (struct pass_softc *)periph->softc; 300 KASSERT(softc->open_count >= 0, ("Negative open count %d", 301 softc->open_count)); 302 303 /* 304 * When we get this callback, we will get no more close calls from 305 * devfs. So if we have any dangling opens, we need to release the 306 * reference held for that particular context. 307 */ 308 for (i = 0; i < softc->open_count; i++) 309 cam_periph_release_locked(periph); 310 311 softc->open_count = 0; 312 313 /* 314 * Release the reference held for the device node, it is gone now. 315 * Accordingly, inform all queued I/Os of their fate. 316 */ 317 cam_periph_release_locked(periph); 318 passrejectios(periph); 319 320 /* 321 * We reference the SIM lock directly here, instead of using 322 * cam_periph_unlock(). The reason is that the final call to 323 * cam_periph_release_locked() above could result in the periph 324 * getting freed. If that is the case, dereferencing the periph 325 * with a cam_periph_unlock() call would cause a page fault. 326 */ 327 mtx_unlock(mtx); 328 329 /* 330 * We have to remove our kqueue context from a thread because it 331 * may sleep. It would be nice if we could get a callback from 332 * kqueue when it is done cleaning up resources. 333 */ 334 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task); 335 } 336 337 static void 338 passoninvalidate(struct cam_periph *periph) 339 { 340 struct pass_softc *softc; 341 342 softc = (struct pass_softc *)periph->softc; 343 344 /* 345 * De-register any async callbacks. 346 */ 347 xpt_register_async(0, passasync, periph, periph->path); 348 349 softc->flags |= PASS_FLAG_INVALID; 350 351 /* 352 * Tell devfs this device has gone away, and ask for a callback 353 * when it has cleaned up its state. 354 */ 355 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph); 356 } 357 358 static void 359 passcleanup(struct cam_periph *periph) 360 { 361 struct pass_softc *softc; 362 363 softc = (struct pass_softc *)periph->softc; 364 365 cam_periph_assert(periph, MA_OWNED); 366 KASSERT(TAILQ_EMPTY(&softc->active_queue), 367 ("%s called when there are commands on the active queue!\n", 368 __func__)); 369 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue), 370 ("%s called when there are commands on the abandoned queue!\n", 371 __func__)); 372 KASSERT(TAILQ_EMPTY(&softc->incoming_queue), 373 ("%s called when there are commands on the incoming queue!\n", 374 __func__)); 375 KASSERT(TAILQ_EMPTY(&softc->done_queue), 376 ("%s called when there are commands on the done queue!\n", 377 __func__)); 378 379 devstat_remove_entry(softc->device_stats); 380 381 cam_periph_unlock(periph); 382 383 /* 384 * We call taskqueue_drain() for the physpath task to make sure it 385 * is complete. We drop the lock because this can potentially 386 * sleep. XXX KDM that is bad. Need a way to get a callback when 387 * a taskqueue is drained. 388 * 389 * Note that we don't drain the kqueue shutdown task queue. This 390 * is because we hold a reference on the periph for kqueue, and 391 * release that reference from the kqueue shutdown task queue. So 392 * we cannot come into this routine unless we've released that 393 * reference. Also, because that could be the last reference, we 394 * could be called from the cam_periph_release() call in 395 * pass_shutdown_kqueue(). In that case, the taskqueue_drain() 396 * would deadlock. It would be preferable if we had a way to 397 * get a callback when a taskqueue is done. 398 */ 399 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task); 400 401 /* 402 * It should be safe to destroy the zones from here, because all 403 * of the references to this peripheral have been freed, and all 404 * I/O has been terminated and freed. We check the zones for NULL 405 * because they may not have been allocated yet if the device went 406 * away before any asynchronous I/O has been issued. 407 */ 408 if (softc->pass_zone != NULL) 409 uma_zdestroy(softc->pass_zone); 410 if (softc->pass_io_zone != NULL) 411 uma_zdestroy(softc->pass_io_zone); 412 413 cam_periph_lock(periph); 414 415 free(softc, M_DEVBUF); 416 } 417 418 static void 419 pass_shutdown_kqueue(void *context, int pending) 420 { 421 struct cam_periph *periph; 422 struct pass_softc *softc; 423 424 periph = context; 425 softc = periph->softc; 426 427 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0); 428 knlist_destroy(&softc->read_select.si_note); 429 430 /* 431 * Release the reference we held for kqueue. 432 */ 433 cam_periph_release(periph); 434 } 435 436 static void 437 pass_add_physpath(void *context, int pending) 438 { 439 struct cam_periph *periph; 440 struct pass_softc *softc; 441 struct mtx *mtx; 442 char *physpath; 443 444 /* 445 * If we have one, create a devfs alias for our 446 * physical path. 447 */ 448 periph = context; 449 softc = periph->softc; 450 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK); 451 mtx = cam_periph_mtx(periph); 452 mtx_lock(mtx); 453 454 if (periph->flags & CAM_PERIPH_INVALID) 455 goto out; 456 457 if (xpt_getattr(physpath, MAXPATHLEN, 458 "GEOM::physpath", periph->path) == 0 459 && strlen(physpath) != 0) { 460 mtx_unlock(mtx); 461 make_dev_physpath_alias(MAKEDEV_WAITOK | MAKEDEV_CHECKNAME, 462 &softc->alias_dev, softc->dev, 463 softc->alias_dev, physpath); 464 mtx_lock(mtx); 465 } 466 467 out: 468 /* 469 * Now that we've made our alias, we no longer have to have a 470 * reference to the device. 471 */ 472 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0) 473 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH; 474 475 /* 476 * We always acquire a reference to the periph before queueing this 477 * task queue function, so it won't go away before we run. 478 */ 479 while (pending-- > 0) 480 cam_periph_release_locked(periph); 481 mtx_unlock(mtx); 482 483 free(physpath, M_DEVBUF); 484 } 485 486 static void 487 passasync(void *callback_arg, uint32_t code, 488 struct cam_path *path, void *arg) 489 { 490 struct cam_periph *periph; 491 492 periph = (struct cam_periph *)callback_arg; 493 494 switch (code) { 495 case AC_FOUND_DEVICE: 496 { 497 struct ccb_getdev *cgd; 498 cam_status status; 499 500 cgd = (struct ccb_getdev *)arg; 501 if (cgd == NULL) 502 break; 503 504 /* 505 * Allocate a peripheral instance for 506 * this device and start the probe 507 * process. 508 */ 509 status = cam_periph_alloc(passregister, passoninvalidate, 510 passcleanup, passstart, PERIPH_NAME, 511 CAM_PERIPH_BIO, path, 512 passasync, AC_FOUND_DEVICE, cgd); 513 514 if (status != CAM_REQ_CMP 515 && status != CAM_REQ_INPROG) { 516 const struct cam_status_entry *entry; 517 518 entry = cam_fetch_status_entry(status); 519 520 printf("passasync: Unable to attach new device " 521 "due to status %#x: %s\n", status, entry ? 522 entry->status_text : "Unknown"); 523 } 524 525 break; 526 } 527 case AC_ADVINFO_CHANGED: 528 { 529 uintptr_t buftype; 530 531 buftype = (uintptr_t)arg; 532 if (buftype == CDAI_TYPE_PHYS_PATH) { 533 struct pass_softc *softc; 534 535 softc = (struct pass_softc *)periph->softc; 536 /* 537 * Acquire a reference to the periph before we 538 * start the taskqueue, so that we don't run into 539 * a situation where the periph goes away before 540 * the task queue has a chance to run. 541 */ 542 if (cam_periph_acquire(periph) != 0) 543 break; 544 545 taskqueue_enqueue(taskqueue_thread, 546 &softc->add_physpath_task); 547 } 548 break; 549 } 550 default: 551 cam_periph_async(periph, code, path, arg); 552 break; 553 } 554 } 555 556 static cam_status 557 passregister(struct cam_periph *periph, void *arg) 558 { 559 struct pass_softc *softc; 560 struct ccb_getdev *cgd; 561 struct ccb_pathinq cpi; 562 struct make_dev_args args; 563 int error, no_tags; 564 565 cgd = (struct ccb_getdev *)arg; 566 if (cgd == NULL) { 567 printf("%s: no getdev CCB, can't register device\n", __func__); 568 return(CAM_REQ_CMP_ERR); 569 } 570 571 softc = (struct pass_softc *)malloc(sizeof(*softc), 572 M_DEVBUF, M_NOWAIT); 573 574 if (softc == NULL) { 575 printf("%s: Unable to probe new device. " 576 "Unable to allocate softc\n", __func__); 577 return(CAM_REQ_CMP_ERR); 578 } 579 580 bzero(softc, sizeof(*softc)); 581 softc->state = PASS_STATE_NORMAL; 582 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI) 583 softc->pd_type = SID_TYPE(&cgd->inq_data); 584 else if (cgd->protocol == PROTO_SATAPM) 585 softc->pd_type = T_ENCLOSURE; 586 else 587 softc->pd_type = T_DIRECT; 588 589 periph->softc = softc; 590 softc->periph = periph; 591 TAILQ_INIT(&softc->incoming_queue); 592 TAILQ_INIT(&softc->active_queue); 593 TAILQ_INIT(&softc->abandoned_queue); 594 TAILQ_INIT(&softc->done_queue); 595 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d", 596 periph->periph_name, periph->unit_number); 597 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO", 598 periph->periph_name, periph->unit_number); 599 softc->io_zone_size = maxphys; 600 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph)); 601 602 xpt_path_inq(&cpi, periph->path); 603 604 if (cpi.maxio == 0) 605 softc->maxio = DFLTPHYS; /* traditional default */ 606 else if (cpi.maxio > maxphys) 607 softc->maxio = maxphys; /* for safety */ 608 else 609 softc->maxio = cpi.maxio; /* real value */ 610 611 if (cpi.hba_misc & PIM_UNMAPPED) 612 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE; 613 614 /* 615 * We pass in 0 for a blocksize, since we don't know what the blocksize 616 * of this device is, if it even has a blocksize. 617 * 618 * Note: no_tags is valid only for SCSI peripherals, but we don't do any 619 * devstat accounting for tags on any other transport. SCSI is the only 620 * transport that uses the tag_action (ata has only vestigial references 621 * to it, others ignore it entirely). 622 */ 623 cam_periph_unlock(periph); 624 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0; 625 softc->device_stats = devstat_new_entry(PERIPH_NAME, 626 periph->unit_number, 0, 627 DEVSTAT_NO_BLOCKSIZE 628 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0), 629 softc->pd_type | 630 XPORT_DEVSTAT_TYPE(cpi.transport) | 631 DEVSTAT_TYPE_PASS, 632 DEVSTAT_PRIORITY_PASS); 633 634 /* 635 * Initialize the taskqueue handler for shutting down kqueue. 636 */ 637 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0, 638 pass_shutdown_kqueue, periph); 639 640 /* 641 * Acquire a reference to the periph that we can release once we've 642 * cleaned up the kqueue. 643 */ 644 if (cam_periph_acquire(periph) != 0) { 645 xpt_print(periph->path, "%s: lost periph during " 646 "registration!\n", __func__); 647 cam_periph_lock(periph); 648 return (CAM_REQ_CMP_ERR); 649 } 650 651 /* 652 * Acquire a reference to the periph before we create the devfs 653 * instance for it. We'll release this reference once the devfs 654 * instance has been freed. 655 */ 656 if (cam_periph_acquire(periph) != 0) { 657 xpt_print(periph->path, "%s: lost periph during " 658 "registration!\n", __func__); 659 cam_periph_lock(periph); 660 return (CAM_REQ_CMP_ERR); 661 } 662 663 /* Register the device */ 664 make_dev_args_init(&args); 665 args.mda_devsw = &pass_cdevsw; 666 args.mda_unit = periph->unit_number; 667 args.mda_uid = UID_ROOT; 668 args.mda_gid = GID_OPERATOR; 669 args.mda_mode = 0600; 670 args.mda_si_drv1 = periph; 671 args.mda_flags = MAKEDEV_NOWAIT; 672 error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name, 673 periph->unit_number); 674 if (error != 0) { 675 cam_periph_lock(periph); 676 cam_periph_release_locked(periph); 677 return (CAM_REQ_CMP_ERR); 678 } 679 680 /* 681 * Hold a reference to the periph before we create the physical 682 * path alias so it can't go away. 683 */ 684 if (cam_periph_acquire(periph) != 0) { 685 xpt_print(periph->path, "%s: lost periph during " 686 "registration!\n", __func__); 687 cam_periph_lock(periph); 688 return (CAM_REQ_CMP_ERR); 689 } 690 691 cam_periph_lock(periph); 692 693 TASK_INIT(&softc->add_physpath_task, /*priority*/0, 694 pass_add_physpath, periph); 695 696 /* 697 * See if physical path information is already available. 698 */ 699 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); 700 701 /* 702 * Add an async callback so that we get notified if 703 * this device goes away or its physical path 704 * (stored in the advanced info data of the EDT) has 705 * changed. 706 */ 707 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED, 708 passasync, periph, periph->path); 709 710 if (bootverbose) 711 xpt_announce_periph(periph, NULL); 712 713 return(CAM_REQ_CMP); 714 } 715 716 static int 717 passopen(struct cdev *dev, int flags, int fmt, struct thread *td) 718 { 719 struct cam_periph *periph; 720 struct pass_softc *softc; 721 int error; 722 723 periph = (struct cam_periph *)dev->si_drv1; 724 if (cam_periph_acquire(periph) != 0) 725 return (ENXIO); 726 727 cam_periph_lock(periph); 728 729 softc = (struct pass_softc *)periph->softc; 730 731 if (softc->flags & PASS_FLAG_INVALID) { 732 cam_periph_release_locked(periph); 733 cam_periph_unlock(periph); 734 return(ENXIO); 735 } 736 737 /* 738 * Don't allow access when we're running at a high securelevel. 739 */ 740 error = securelevel_gt(td->td_ucred, 1); 741 if (error) { 742 cam_periph_release_locked(periph); 743 cam_periph_unlock(periph); 744 return(error); 745 } 746 747 /* 748 * Only allow read-write access. 749 */ 750 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) { 751 cam_periph_release_locked(periph); 752 cam_periph_unlock(periph); 753 return(EPERM); 754 } 755 756 /* 757 * We don't allow nonblocking access. 758 */ 759 if ((flags & O_NONBLOCK) != 0) { 760 xpt_print(periph->path, "can't do nonblocking access\n"); 761 cam_periph_release_locked(periph); 762 cam_periph_unlock(periph); 763 return(EINVAL); 764 } 765 766 softc->open_count++; 767 768 cam_periph_unlock(periph); 769 770 return (error); 771 } 772 773 static int 774 passclose(struct cdev *dev, int flag, int fmt, struct thread *td) 775 { 776 struct cam_periph *periph; 777 struct pass_softc *softc; 778 struct mtx *mtx; 779 780 periph = (struct cam_periph *)dev->si_drv1; 781 mtx = cam_periph_mtx(periph); 782 mtx_lock(mtx); 783 784 softc = periph->softc; 785 softc->open_count--; 786 787 if (softc->open_count == 0) { 788 struct pass_io_req *io_req, *io_req2; 789 790 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 791 TAILQ_REMOVE(&softc->done_queue, io_req, links); 792 passiocleanup(softc, io_req); 793 uma_zfree(softc->pass_zone, io_req); 794 } 795 796 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, 797 io_req2) { 798 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 799 passiocleanup(softc, io_req); 800 uma_zfree(softc->pass_zone, io_req); 801 } 802 803 /* 804 * If there are any active I/Os, we need to forcibly acquire a 805 * reference to the peripheral so that we don't go away 806 * before they complete. We'll release the reference when 807 * the abandoned queue is empty. 808 */ 809 io_req = TAILQ_FIRST(&softc->active_queue); 810 if ((io_req != NULL) 811 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) { 812 cam_periph_doacquire(periph); 813 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 814 } 815 816 /* 817 * Since the I/O in the active queue is not under our 818 * control, just set a flag so that we can clean it up when 819 * it completes and put it on the abandoned queue. This 820 * will prevent our sending spurious completions in the 821 * event that the device is opened again before these I/Os 822 * complete. 823 */ 824 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, 825 io_req2) { 826 TAILQ_REMOVE(&softc->active_queue, io_req, links); 827 io_req->flags |= PASS_IO_ABANDONED; 828 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, 829 links); 830 } 831 } 832 833 cam_periph_release_locked(periph); 834 835 /* 836 * We reference the lock directly here, instead of using 837 * cam_periph_unlock(). The reason is that the call to 838 * cam_periph_release_locked() above could result in the periph 839 * getting freed. If that is the case, dereferencing the periph 840 * with a cam_periph_unlock() call would cause a page fault. 841 * 842 * cam_periph_release() avoids this problem using the same method, 843 * but we're manually acquiring and dropping the lock here to 844 * protect the open count and avoid another lock acquisition and 845 * release. 846 */ 847 mtx_unlock(mtx); 848 849 return (0); 850 } 851 852 static void 853 passstart(struct cam_periph *periph, union ccb *start_ccb) 854 { 855 struct pass_softc *softc; 856 857 softc = (struct pass_softc *)periph->softc; 858 859 switch (softc->state) { 860 case PASS_STATE_NORMAL: { 861 struct pass_io_req *io_req; 862 863 /* 864 * Check for any queued I/O requests that require an 865 * allocated slot. 866 */ 867 io_req = TAILQ_FIRST(&softc->incoming_queue); 868 if (io_req == NULL) { 869 xpt_release_ccb(start_ccb); 870 break; 871 } 872 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 873 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 874 /* 875 * Merge the user's CCB into the allocated CCB. 876 */ 877 xpt_merge_ccb(start_ccb, &io_req->ccb); 878 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO; 879 start_ccb->ccb_h.ccb_ioreq = io_req; 880 start_ccb->ccb_h.cbfcnp = passdone; 881 io_req->alloced_ccb = start_ccb; 882 binuptime(&io_req->start_time); 883 devstat_start_transaction(softc->device_stats, 884 &io_req->start_time); 885 886 xpt_action(start_ccb); 887 888 /* 889 * If we have any more I/O waiting, schedule ourselves again. 890 */ 891 if (!TAILQ_EMPTY(&softc->incoming_queue)) 892 xpt_schedule(periph, CAM_PRIORITY_NORMAL); 893 break; 894 } 895 default: 896 break; 897 } 898 } 899 900 static void 901 passdone(struct cam_periph *periph, union ccb *done_ccb) 902 { 903 struct pass_softc *softc; 904 struct ccb_hdr *hdr; 905 906 softc = (struct pass_softc *)periph->softc; 907 908 cam_periph_assert(periph, MA_OWNED); 909 910 hdr = &done_ccb->ccb_h; 911 switch (hdr->ccb_type) { 912 case PASS_CCB_QUEUED_IO: { 913 struct pass_io_req *io_req; 914 915 io_req = hdr->ccb_ioreq; 916 #if 0 917 xpt_print(periph->path, "%s: called for user CCB %p\n", 918 __func__, io_req->user_ccb_ptr); 919 #endif 920 if (((hdr->status & CAM_STATUS_MASK) != CAM_REQ_CMP) && 921 ((io_req->flags & PASS_IO_ABANDONED) == 0)) { 922 int error; 923 uint32_t cam_flags, sense_flags; 924 925 passflags(done_ccb, &cam_flags, &sense_flags); 926 error = passerror(done_ccb, cam_flags, sense_flags); 927 928 if (error == ERESTART) { 929 KASSERT(((sense_flags & SF_NO_RETRY) == 0), 930 ("passerror returned ERESTART with no retry requested\n")); 931 return; 932 } 933 } 934 935 /* 936 * Copy the allocated CCB contents back to the malloced CCB 937 * so we can give status back to the user when he requests it. 938 */ 939 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb)); 940 941 /* 942 * Log data/transaction completion with devstat(9). 943 */ 944 switch (hdr->func_code) { 945 case XPT_SCSI_IO: 946 devstat_end_transaction(softc->device_stats, 947 done_ccb->csio.dxfer_len - done_ccb->csio.resid, 948 done_ccb->csio.tag_action & 0x3, 949 ((hdr->flags & CAM_DIR_MASK) == 950 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 951 (hdr->flags & CAM_DIR_OUT) ? 952 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 953 &io_req->start_time); 954 break; 955 case XPT_ATA_IO: 956 devstat_end_transaction(softc->device_stats, 957 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid, 958 0, /* Not used in ATA */ 959 ((hdr->flags & CAM_DIR_MASK) == 960 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 961 (hdr->flags & CAM_DIR_OUT) ? 962 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 963 &io_req->start_time); 964 break; 965 case XPT_SMP_IO: 966 /* 967 * XXX KDM this isn't quite right, but there isn't 968 * currently an easy way to represent a bidirectional 969 * transfer in devstat. The only way to do it 970 * and have the byte counts come out right would 971 * mean that we would have to record two 972 * transactions, one for the request and one for the 973 * response. For now, so that we report something, 974 * just treat the entire thing as a read. 975 */ 976 devstat_end_transaction(softc->device_stats, 977 done_ccb->smpio.smp_request_len + 978 done_ccb->smpio.smp_response_len, 979 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL, 980 &io_req->start_time); 981 break; 982 /* XXX XPT_NVME_IO and XPT_NVME_ADMIN need cases here for resid */ 983 default: 984 devstat_end_transaction(softc->device_stats, 0, 985 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL, 986 &io_req->start_time); 987 break; 988 } 989 990 /* 991 * In the normal case, take the completed I/O off of the 992 * active queue and put it on the done queue. Notitfy the 993 * user that we have a completed I/O. 994 */ 995 if ((io_req->flags & PASS_IO_ABANDONED) == 0) { 996 TAILQ_REMOVE(&softc->active_queue, io_req, links); 997 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 998 selwakeuppri(&softc->read_select, PRIBIO); 999 KNOTE_LOCKED(&softc->read_select.si_note, 0); 1000 } else { 1001 /* 1002 * In the case of an abandoned I/O (final close 1003 * without fetching the I/O), take it off of the 1004 * abandoned queue and free it. 1005 */ 1006 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links); 1007 passiocleanup(softc, io_req); 1008 uma_zfree(softc->pass_zone, io_req); 1009 1010 /* 1011 * Release the done_ccb here, since we may wind up 1012 * freeing the peripheral when we decrement the 1013 * reference count below. 1014 */ 1015 xpt_release_ccb(done_ccb); 1016 1017 /* 1018 * If the abandoned queue is empty, we can release 1019 * our reference to the periph since we won't have 1020 * any more completions coming. 1021 */ 1022 if ((TAILQ_EMPTY(&softc->abandoned_queue)) 1023 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) { 1024 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET; 1025 cam_periph_release_locked(periph); 1026 } 1027 1028 /* 1029 * We have already released the CCB, so we can 1030 * return. 1031 */ 1032 return; 1033 } 1034 break; 1035 } 1036 } 1037 xpt_release_ccb(done_ccb); 1038 } 1039 1040 static int 1041 passcreatezone(struct cam_periph *periph) 1042 { 1043 struct pass_softc *softc; 1044 int error; 1045 1046 error = 0; 1047 softc = (struct pass_softc *)periph->softc; 1048 1049 cam_periph_assert(periph, MA_OWNED); 1050 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 1051 ("%s called when the pass(4) zone is valid!\n", __func__)); 1052 KASSERT((softc->pass_zone == NULL), 1053 ("%s called when the pass(4) zone is allocated!\n", __func__)); 1054 1055 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) { 1056 /* 1057 * We're the first context through, so we need to create 1058 * the pass(4) UMA zone for I/O requests. 1059 */ 1060 softc->flags |= PASS_FLAG_ZONE_INPROG; 1061 1062 /* 1063 * uma_zcreate() does a blocking (M_WAITOK) allocation, 1064 * so we cannot hold a mutex while we call it. 1065 */ 1066 cam_periph_unlock(periph); 1067 1068 softc->pass_zone = uma_zcreate(softc->zone_name, 1069 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL, 1070 /*align*/ 0, /*flags*/ 0); 1071 1072 softc->pass_io_zone = uma_zcreate(softc->io_zone_name, 1073 softc->io_zone_size, NULL, NULL, NULL, NULL, 1074 /*align*/ 0, /*flags*/ 0); 1075 1076 cam_periph_lock(periph); 1077 1078 if ((softc->pass_zone == NULL) 1079 || (softc->pass_io_zone == NULL)) { 1080 if (softc->pass_zone == NULL) 1081 xpt_print(periph->path, "unable to allocate " 1082 "IO Req UMA zone\n"); 1083 else 1084 xpt_print(periph->path, "unable to allocate " 1085 "IO UMA zone\n"); 1086 softc->flags &= ~PASS_FLAG_ZONE_INPROG; 1087 goto bailout; 1088 } 1089 1090 /* 1091 * Set the flags appropriately and notify any other waiters. 1092 */ 1093 softc->flags &= ~PASS_FLAG_ZONE_INPROG; 1094 softc->flags |= PASS_FLAG_ZONE_VALID; 1095 wakeup(&softc->pass_zone); 1096 } else { 1097 /* 1098 * In this case, the UMA zone has not yet been created, but 1099 * another context is in the process of creating it. We 1100 * need to sleep until the creation is either done or has 1101 * failed. 1102 */ 1103 while ((softc->flags & PASS_FLAG_ZONE_INPROG) 1104 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) { 1105 error = msleep(&softc->pass_zone, 1106 cam_periph_mtx(periph), PRIBIO, 1107 "paszon", 0); 1108 if (error != 0) 1109 goto bailout; 1110 } 1111 /* 1112 * If the zone creation failed, no luck for the user. 1113 */ 1114 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){ 1115 error = ENOMEM; 1116 goto bailout; 1117 } 1118 } 1119 bailout: 1120 return (error); 1121 } 1122 1123 static void 1124 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req) 1125 { 1126 union ccb *ccb; 1127 struct ccb_hdr *hdr; 1128 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1129 int i, numbufs; 1130 1131 ccb = &io_req->ccb; 1132 hdr = &ccb->ccb_h; 1133 1134 switch (hdr->func_code) { 1135 case XPT_DEV_MATCH: 1136 numbufs = min(io_req->num_bufs, 2); 1137 1138 if (numbufs == 1) { 1139 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches; 1140 } else { 1141 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns; 1142 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches; 1143 } 1144 break; 1145 case XPT_SCSI_IO: 1146 case XPT_CONT_TARGET_IO: 1147 data_ptrs[0] = &ccb->csio.data_ptr; 1148 numbufs = min(io_req->num_bufs, 1); 1149 break; 1150 case XPT_ATA_IO: 1151 data_ptrs[0] = &ccb->ataio.data_ptr; 1152 numbufs = min(io_req->num_bufs, 1); 1153 break; 1154 case XPT_SMP_IO: 1155 numbufs = min(io_req->num_bufs, 2); 1156 data_ptrs[0] = &ccb->smpio.smp_request; 1157 data_ptrs[1] = &ccb->smpio.smp_response; 1158 break; 1159 case XPT_DEV_ADVINFO: 1160 numbufs = min(io_req->num_bufs, 1); 1161 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1162 break; 1163 case XPT_NVME_IO: 1164 case XPT_NVME_ADMIN: 1165 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1166 numbufs = min(io_req->num_bufs, 1); 1167 break; 1168 default: 1169 /* allow ourselves to be swapped once again */ 1170 return; 1171 break; /* NOTREACHED */ 1172 } 1173 1174 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) { 1175 free(io_req->user_segptr, M_SCSIPASS); 1176 io_req->user_segptr = NULL; 1177 } 1178 1179 /* 1180 * We only want to free memory we malloced. 1181 */ 1182 if (io_req->data_flags == CAM_DATA_VADDR) { 1183 for (i = 0; i < io_req->num_bufs; i++) { 1184 if (io_req->kern_bufs[i] == NULL) 1185 continue; 1186 1187 free(io_req->kern_bufs[i], M_SCSIPASS); 1188 io_req->kern_bufs[i] = NULL; 1189 } 1190 } else if (io_req->data_flags == CAM_DATA_SG) { 1191 for (i = 0; i < io_req->num_kern_segs; i++) { 1192 if ((uint8_t *)(uintptr_t) 1193 io_req->kern_segptr[i].ds_addr == NULL) 1194 continue; 1195 1196 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t) 1197 io_req->kern_segptr[i].ds_addr); 1198 io_req->kern_segptr[i].ds_addr = 0; 1199 } 1200 } 1201 1202 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) { 1203 free(io_req->kern_segptr, M_SCSIPASS); 1204 io_req->kern_segptr = NULL; 1205 } 1206 1207 if (io_req->data_flags != CAM_DATA_PADDR) { 1208 for (i = 0; i < numbufs; i++) { 1209 /* 1210 * Restore the user's buffer pointers to their 1211 * previous values. 1212 */ 1213 if (io_req->user_bufs[i] != NULL) 1214 *data_ptrs[i] = io_req->user_bufs[i]; 1215 } 1216 } 1217 1218 } 1219 1220 static int 1221 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req, 1222 ccb_flags direction) 1223 { 1224 bus_size_t kern_watermark, user_watermark, len_to_copy; 1225 bus_dma_segment_t *user_sglist, *kern_sglist; 1226 int i, j, error; 1227 1228 error = 0; 1229 kern_watermark = 0; 1230 user_watermark = 0; 1231 len_to_copy = 0; 1232 user_sglist = io_req->user_segptr; 1233 kern_sglist = io_req->kern_segptr; 1234 1235 for (i = 0, j = 0; i < io_req->num_user_segs && 1236 j < io_req->num_kern_segs;) { 1237 uint8_t *user_ptr, *kern_ptr; 1238 1239 len_to_copy = min(user_sglist[i].ds_len -user_watermark, 1240 kern_sglist[j].ds_len - kern_watermark); 1241 1242 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr; 1243 user_ptr = user_ptr + user_watermark; 1244 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr; 1245 kern_ptr = kern_ptr + kern_watermark; 1246 1247 user_watermark += len_to_copy; 1248 kern_watermark += len_to_copy; 1249 1250 if (direction == CAM_DIR_IN) { 1251 error = copyout(kern_ptr, user_ptr, len_to_copy); 1252 if (error != 0) { 1253 xpt_print(periph->path, "%s: copyout of %u " 1254 "bytes from %p to %p failed with " 1255 "error %d\n", __func__, len_to_copy, 1256 kern_ptr, user_ptr, error); 1257 goto bailout; 1258 } 1259 } else { 1260 error = copyin(user_ptr, kern_ptr, len_to_copy); 1261 if (error != 0) { 1262 xpt_print(periph->path, "%s: copyin of %u " 1263 "bytes from %p to %p failed with " 1264 "error %d\n", __func__, len_to_copy, 1265 user_ptr, kern_ptr, error); 1266 goto bailout; 1267 } 1268 } 1269 1270 if (user_sglist[i].ds_len == user_watermark) { 1271 i++; 1272 user_watermark = 0; 1273 } 1274 1275 if (kern_sglist[j].ds_len == kern_watermark) { 1276 j++; 1277 kern_watermark = 0; 1278 } 1279 } 1280 1281 bailout: 1282 1283 return (error); 1284 } 1285 1286 static int 1287 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req) 1288 { 1289 union ccb *ccb; 1290 struct ccb_hdr *hdr; 1291 struct pass_softc *softc; 1292 int numbufs, i; 1293 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1294 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 1295 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 1296 uint32_t num_segs; 1297 uint16_t *seg_cnt_ptr; 1298 size_t maxmap; 1299 int error; 1300 1301 cam_periph_assert(periph, MA_NOTOWNED); 1302 1303 softc = periph->softc; 1304 1305 error = 0; 1306 ccb = &io_req->ccb; 1307 hdr = &ccb->ccb_h; 1308 maxmap = 0; 1309 num_segs = 0; 1310 seg_cnt_ptr = NULL; 1311 1312 switch(hdr->func_code) { 1313 case XPT_DEV_MATCH: 1314 if (ccb->cdm.match_buf_len == 0) { 1315 printf("%s: invalid match buffer length 0\n", __func__); 1316 return(EINVAL); 1317 } 1318 if (ccb->cdm.pattern_buf_len > 0) { 1319 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns; 1320 lengths[0] = ccb->cdm.pattern_buf_len; 1321 dirs[0] = CAM_DIR_OUT; 1322 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches; 1323 lengths[1] = ccb->cdm.match_buf_len; 1324 dirs[1] = CAM_DIR_IN; 1325 numbufs = 2; 1326 } else { 1327 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches; 1328 lengths[0] = ccb->cdm.match_buf_len; 1329 dirs[0] = CAM_DIR_IN; 1330 numbufs = 1; 1331 } 1332 io_req->data_flags = CAM_DATA_VADDR; 1333 break; 1334 case XPT_SCSI_IO: 1335 case XPT_CONT_TARGET_IO: 1336 if ((hdr->flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1337 return(0); 1338 1339 /* 1340 * The user shouldn't be able to supply a bio. 1341 */ 1342 if ((hdr->flags & CAM_DATA_MASK) == CAM_DATA_BIO) 1343 return (EINVAL); 1344 1345 io_req->data_flags = hdr->flags & CAM_DATA_MASK; 1346 1347 data_ptrs[0] = &ccb->csio.data_ptr; 1348 lengths[0] = ccb->csio.dxfer_len; 1349 dirs[0] = hdr->flags & CAM_DIR_MASK; 1350 num_segs = ccb->csio.sglist_cnt; 1351 seg_cnt_ptr = &ccb->csio.sglist_cnt; 1352 numbufs = 1; 1353 maxmap = softc->maxio; 1354 break; 1355 case XPT_ATA_IO: 1356 if ((hdr->flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1357 return(0); 1358 1359 /* 1360 * We only support a single virtual address for ATA I/O. 1361 */ 1362 if ((hdr->flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 1363 return (EINVAL); 1364 1365 io_req->data_flags = CAM_DATA_VADDR; 1366 1367 data_ptrs[0] = &ccb->ataio.data_ptr; 1368 lengths[0] = ccb->ataio.dxfer_len; 1369 dirs[0] = hdr->flags & CAM_DIR_MASK; 1370 numbufs = 1; 1371 maxmap = softc->maxio; 1372 break; 1373 case XPT_SMP_IO: 1374 io_req->data_flags = CAM_DATA_VADDR; 1375 1376 data_ptrs[0] = &ccb->smpio.smp_request; 1377 lengths[0] = ccb->smpio.smp_request_len; 1378 dirs[0] = CAM_DIR_OUT; 1379 data_ptrs[1] = &ccb->smpio.smp_response; 1380 lengths[1] = ccb->smpio.smp_response_len; 1381 dirs[1] = CAM_DIR_IN; 1382 numbufs = 2; 1383 maxmap = softc->maxio; 1384 break; 1385 case XPT_DEV_ADVINFO: 1386 if (ccb->cdai.bufsiz == 0) 1387 return (0); 1388 1389 io_req->data_flags = CAM_DATA_VADDR; 1390 1391 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1392 lengths[0] = ccb->cdai.bufsiz; 1393 dirs[0] = CAM_DIR_IN; 1394 numbufs = 1; 1395 break; 1396 case XPT_NVME_ADMIN: 1397 case XPT_NVME_IO: 1398 if ((hdr->flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1399 return (0); 1400 1401 io_req->data_flags = hdr->flags & CAM_DATA_MASK; 1402 1403 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1404 lengths[0] = ccb->nvmeio.dxfer_len; 1405 dirs[0] = hdr->flags & CAM_DIR_MASK; 1406 num_segs = ccb->nvmeio.sglist_cnt; 1407 seg_cnt_ptr = &ccb->nvmeio.sglist_cnt; 1408 numbufs = 1; 1409 maxmap = softc->maxio; 1410 break; 1411 default: 1412 return(EINVAL); 1413 break; /* NOTREACHED */ 1414 } 1415 1416 io_req->num_bufs = numbufs; 1417 1418 /* 1419 * If there is a maximum, check to make sure that the user's 1420 * request fits within the limit. In general, we should only have 1421 * a maximum length for requests that go to hardware. Otherwise it 1422 * is whatever we're able to malloc. 1423 */ 1424 for (i = 0; i < numbufs; i++) { 1425 io_req->user_bufs[i] = *data_ptrs[i]; 1426 io_req->dirs[i] = dirs[i]; 1427 io_req->lengths[i] = lengths[i]; 1428 1429 if (maxmap == 0) 1430 continue; 1431 1432 if (lengths[i] <= maxmap) 1433 continue; 1434 1435 xpt_print(periph->path, "%s: data length %u > max allowed %u " 1436 "bytes\n", __func__, lengths[i], maxmap); 1437 error = EINVAL; 1438 goto bailout; 1439 } 1440 1441 switch (io_req->data_flags) { 1442 case CAM_DATA_VADDR: 1443 /* Map or copy the buffer into kernel address space */ 1444 for (i = 0; i < numbufs; i++) { 1445 uint8_t *tmp_buf; 1446 1447 /* 1448 * If for some reason no length is specified, we 1449 * don't need to allocate anything. 1450 */ 1451 if (io_req->lengths[i] == 0) 1452 continue; 1453 1454 tmp_buf = malloc(lengths[i], M_SCSIPASS, 1455 M_WAITOK | M_ZERO); 1456 io_req->kern_bufs[i] = tmp_buf; 1457 *data_ptrs[i] = tmp_buf; 1458 1459 #if 0 1460 xpt_print(periph->path, "%s: malloced %p len %u, user " 1461 "buffer %p, operation: %s\n", __func__, 1462 tmp_buf, lengths[i], io_req->user_bufs[i], 1463 (dirs[i] == CAM_DIR_IN) ? "read" : "write"); 1464 #endif 1465 /* 1466 * We only need to copy in if the user is writing. 1467 */ 1468 if (dirs[i] != CAM_DIR_OUT) 1469 continue; 1470 1471 error = copyin(io_req->user_bufs[i], 1472 io_req->kern_bufs[i], lengths[i]); 1473 if (error != 0) { 1474 xpt_print(periph->path, "%s: copy of user " 1475 "buffer from %p to %p failed with " 1476 "error %d\n", __func__, 1477 io_req->user_bufs[i], 1478 io_req->kern_bufs[i], error); 1479 goto bailout; 1480 } 1481 } 1482 break; 1483 case CAM_DATA_PADDR: 1484 /* Pass down the pointer as-is */ 1485 break; 1486 case CAM_DATA_SG: { 1487 size_t sg_length, size_to_go, alloc_size; 1488 uint32_t num_segs_needed; 1489 1490 /* 1491 * Copy the user S/G list in, and then copy in the 1492 * individual segments. 1493 */ 1494 /* 1495 * We shouldn't see this, but check just in case. 1496 */ 1497 if (numbufs != 1) { 1498 xpt_print(periph->path, "%s: cannot currently handle " 1499 "more than one S/G list per CCB\n", __func__); 1500 error = EINVAL; 1501 goto bailout; 1502 } 1503 1504 /* 1505 * We have to have at least one segment. 1506 */ 1507 if (num_segs == 0) { 1508 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, " 1509 "but sglist_cnt=0!\n", __func__); 1510 error = EINVAL; 1511 goto bailout; 1512 } 1513 1514 /* 1515 * Make sure the user specified the total length and didn't 1516 * just leave it to us to decode the S/G list. 1517 */ 1518 if (lengths[0] == 0) { 1519 xpt_print(periph->path, "%s: no dxfer_len specified, " 1520 "but CAM_DATA_SG flag is set!\n", __func__); 1521 error = EINVAL; 1522 goto bailout; 1523 } 1524 1525 /* 1526 * We allocate buffers in io_zone_size increments for an 1527 * S/G list. This will generally be maxphys. 1528 */ 1529 if (lengths[0] <= softc->io_zone_size) 1530 num_segs_needed = 1; 1531 else { 1532 num_segs_needed = lengths[0] / softc->io_zone_size; 1533 if ((lengths[0] % softc->io_zone_size) != 0) 1534 num_segs_needed++; 1535 } 1536 1537 /* Figure out the size of the S/G list */ 1538 sg_length = num_segs * sizeof(bus_dma_segment_t); 1539 io_req->num_user_segs = num_segs; 1540 io_req->num_kern_segs = num_segs_needed; 1541 1542 /* Save the user's S/G list pointer for later restoration */ 1543 io_req->user_bufs[0] = *data_ptrs[0]; 1544 1545 /* 1546 * If we have enough segments allocated by default to handle 1547 * the length of the user's S/G list, 1548 */ 1549 if (num_segs > PASS_MAX_SEGS) { 1550 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1551 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1552 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1553 } else 1554 io_req->user_segptr = io_req->user_segs; 1555 1556 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1557 if (error != 0) { 1558 xpt_print(periph->path, "%s: copy of user S/G list " 1559 "from %p to %p failed with error %d\n", 1560 __func__, *data_ptrs[0], io_req->user_segptr, 1561 error); 1562 goto bailout; 1563 } 1564 1565 if (num_segs_needed > PASS_MAX_SEGS) { 1566 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) * 1567 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO); 1568 io_req->flags |= PASS_IO_KERN_SEG_MALLOC; 1569 } else { 1570 io_req->kern_segptr = io_req->kern_segs; 1571 } 1572 1573 /* 1574 * Allocate the kernel S/G list. 1575 */ 1576 for (size_to_go = lengths[0], i = 0; 1577 size_to_go > 0 && i < num_segs_needed; 1578 i++, size_to_go -= alloc_size) { 1579 uint8_t *kern_ptr; 1580 1581 alloc_size = min(size_to_go, softc->io_zone_size); 1582 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK); 1583 io_req->kern_segptr[i].ds_addr = 1584 (bus_addr_t)(uintptr_t)kern_ptr; 1585 io_req->kern_segptr[i].ds_len = alloc_size; 1586 } 1587 if (size_to_go > 0) { 1588 printf("%s: size_to_go = %zu, software error!\n", 1589 __func__, size_to_go); 1590 error = EINVAL; 1591 goto bailout; 1592 } 1593 1594 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr; 1595 *seg_cnt_ptr = io_req->num_kern_segs; 1596 1597 /* 1598 * We only need to copy data here if the user is writing. 1599 */ 1600 if (dirs[0] == CAM_DIR_OUT) 1601 error = passcopysglist(periph, io_req, dirs[0]); 1602 break; 1603 } 1604 case CAM_DATA_SG_PADDR: { 1605 size_t sg_length; 1606 1607 /* 1608 * We shouldn't see this, but check just in case. 1609 */ 1610 if (numbufs != 1) { 1611 printf("%s: cannot currently handle more than one " 1612 "S/G list per CCB\n", __func__); 1613 error = EINVAL; 1614 goto bailout; 1615 } 1616 1617 /* 1618 * We have to have at least one segment. 1619 */ 1620 if (num_segs == 0) { 1621 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag " 1622 "set, but sglist_cnt=0!\n", __func__); 1623 error = EINVAL; 1624 goto bailout; 1625 } 1626 1627 /* 1628 * Make sure the user specified the total length and didn't 1629 * just leave it to us to decode the S/G list. 1630 */ 1631 if (lengths[0] == 0) { 1632 xpt_print(periph->path, "%s: no dxfer_len specified, " 1633 "but CAM_DATA_SG flag is set!\n", __func__); 1634 error = EINVAL; 1635 goto bailout; 1636 } 1637 1638 /* Figure out the size of the S/G list */ 1639 sg_length = num_segs * sizeof(bus_dma_segment_t); 1640 io_req->num_user_segs = num_segs; 1641 io_req->num_kern_segs = io_req->num_user_segs; 1642 1643 /* Save the user's S/G list pointer for later restoration */ 1644 io_req->user_bufs[0] = *data_ptrs[0]; 1645 1646 if (num_segs > PASS_MAX_SEGS) { 1647 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1648 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1649 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1650 } else 1651 io_req->user_segptr = io_req->user_segs; 1652 1653 io_req->kern_segptr = io_req->user_segptr; 1654 1655 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1656 if (error != 0) { 1657 xpt_print(periph->path, "%s: copy of user S/G list " 1658 "from %p to %p failed with error %d\n", 1659 __func__, *data_ptrs[0], io_req->user_segptr, 1660 error); 1661 goto bailout; 1662 } 1663 break; 1664 } 1665 default: 1666 case CAM_DATA_BIO: 1667 /* 1668 * A user shouldn't be attaching a bio to the CCB. It 1669 * isn't a user-accessible structure. 1670 */ 1671 error = EINVAL; 1672 break; 1673 } 1674 1675 bailout: 1676 if (error != 0) 1677 passiocleanup(softc, io_req); 1678 1679 return (error); 1680 } 1681 1682 static int 1683 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req) 1684 { 1685 struct pass_softc *softc; 1686 int error; 1687 int i; 1688 1689 error = 0; 1690 softc = (struct pass_softc *)periph->softc; 1691 1692 switch (io_req->data_flags) { 1693 case CAM_DATA_VADDR: 1694 /* 1695 * Copy back to the user buffer if this was a read. 1696 */ 1697 for (i = 0; i < io_req->num_bufs; i++) { 1698 if (io_req->dirs[i] != CAM_DIR_IN) 1699 continue; 1700 1701 error = copyout(io_req->kern_bufs[i], 1702 io_req->user_bufs[i], io_req->lengths[i]); 1703 if (error != 0) { 1704 xpt_print(periph->path, "Unable to copy %u " 1705 "bytes from %p to user address %p\n", 1706 io_req->lengths[i], 1707 io_req->kern_bufs[i], 1708 io_req->user_bufs[i]); 1709 goto bailout; 1710 } 1711 } 1712 break; 1713 case CAM_DATA_PADDR: 1714 /* Do nothing. The pointer is a physical address already */ 1715 break; 1716 case CAM_DATA_SG: 1717 /* 1718 * Copy back to the user buffer if this was a read. 1719 * Restore the user's S/G list buffer pointer. 1720 */ 1721 if (io_req->dirs[0] == CAM_DIR_IN) 1722 error = passcopysglist(periph, io_req, io_req->dirs[0]); 1723 break; 1724 case CAM_DATA_SG_PADDR: 1725 /* 1726 * Restore the user's S/G list buffer pointer. No need to 1727 * copy. 1728 */ 1729 break; 1730 default: 1731 case CAM_DATA_BIO: 1732 error = EINVAL; 1733 break; 1734 } 1735 1736 bailout: 1737 /* 1738 * Reset the user's pointers to their original values and free 1739 * allocated memory. 1740 */ 1741 passiocleanup(softc, io_req); 1742 1743 return (error); 1744 } 1745 1746 static int 1747 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1748 { 1749 int error; 1750 1751 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 1752 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl); 1753 } 1754 return (error); 1755 } 1756 1757 static int 1758 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1759 { 1760 struct cam_periph *periph; 1761 struct pass_softc *softc; 1762 int error; 1763 uint32_t priority; 1764 1765 periph = (struct cam_periph *)dev->si_drv1; 1766 cam_periph_lock(periph); 1767 softc = (struct pass_softc *)periph->softc; 1768 1769 error = 0; 1770 1771 switch (cmd) { 1772 case CAMIOCOMMAND: 1773 { 1774 union ccb *inccb; 1775 union ccb *ccb; 1776 int ccb_malloced; 1777 1778 inccb = (union ccb *)addr; 1779 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1780 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 1781 inccb->csio.bio = NULL; 1782 #endif 1783 1784 if (inccb->ccb_h.flags & CAM_UNLOCKED) { 1785 error = EINVAL; 1786 break; 1787 } 1788 1789 /* 1790 * Some CCB types, like scan bus and scan lun can only go 1791 * through the transport layer device. 1792 */ 1793 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1794 xpt_print(periph->path, "CCB function code %#x is " 1795 "restricted to the XPT device\n", 1796 inccb->ccb_h.func_code); 1797 error = ENODEV; 1798 break; 1799 } 1800 1801 /* Compatibility for RL/priority-unaware code. */ 1802 priority = inccb->ccb_h.pinfo.priority; 1803 if (priority <= CAM_PRIORITY_OOB) 1804 priority += CAM_PRIORITY_OOB + 1; 1805 1806 /* 1807 * Non-immediate CCBs need a CCB from the per-device pool 1808 * of CCBs, which is scheduled by the transport layer. 1809 * Immediate CCBs and user-supplied CCBs should just be 1810 * malloced. 1811 */ 1812 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED) 1813 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) { 1814 ccb = cam_periph_getccb(periph, priority); 1815 ccb_malloced = 0; 1816 } else { 1817 ccb = xpt_alloc_ccb_nowait(); 1818 1819 if (ccb != NULL) 1820 xpt_setup_ccb(&ccb->ccb_h, periph->path, 1821 priority); 1822 ccb_malloced = 1; 1823 } 1824 1825 if (ccb == NULL) { 1826 xpt_print(periph->path, "unable to allocate CCB\n"); 1827 error = ENOMEM; 1828 break; 1829 } 1830 1831 error = passsendccb(periph, ccb, inccb); 1832 1833 if (ccb_malloced) 1834 xpt_free_ccb(ccb); 1835 else 1836 xpt_release_ccb(ccb); 1837 1838 break; 1839 } 1840 case CAMIOQUEUE: 1841 { 1842 struct pass_io_req *io_req; 1843 union ccb **user_ccb, *ccb; 1844 xpt_opcode fc; 1845 1846 #ifdef COMPAT_FREEBSD32 1847 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 1848 error = ENOTTY; 1849 goto bailout; 1850 } 1851 #endif 1852 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) { 1853 error = passcreatezone(periph); 1854 if (error != 0) 1855 goto bailout; 1856 } 1857 1858 /* 1859 * We're going to do a blocking allocation for this I/O 1860 * request, so we have to drop the lock. 1861 */ 1862 cam_periph_unlock(periph); 1863 1864 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO); 1865 ccb = &io_req->ccb; 1866 user_ccb = (union ccb **)addr; 1867 1868 /* 1869 * Unlike the CAMIOCOMMAND ioctl above, we only have a 1870 * pointer to the user's CCB, so we have to copy the whole 1871 * thing in to a buffer we have allocated (above) instead 1872 * of allowing the ioctl code to malloc a buffer and copy 1873 * it in. 1874 * 1875 * This is an advantage for this asynchronous interface, 1876 * since we don't want the memory to get freed while the 1877 * CCB is outstanding. 1878 */ 1879 #if 0 1880 xpt_print(periph->path, "Copying user CCB %p to " 1881 "kernel address %p\n", *user_ccb, ccb); 1882 #endif 1883 error = copyin(*user_ccb, ccb, sizeof(*ccb)); 1884 if (error != 0) { 1885 xpt_print(periph->path, "Copy of user CCB %p to " 1886 "kernel address %p failed with error %d\n", 1887 *user_ccb, ccb, error); 1888 goto camioqueue_error; 1889 } 1890 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1891 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 1892 ccb->csio.bio = NULL; 1893 #endif 1894 1895 if (ccb->ccb_h.flags & CAM_UNLOCKED) { 1896 error = EINVAL; 1897 goto camioqueue_error; 1898 } 1899 1900 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 1901 if (ccb->csio.cdb_len > IOCDBLEN) { 1902 error = EINVAL; 1903 goto camioqueue_error; 1904 } 1905 error = copyin(ccb->csio.cdb_io.cdb_ptr, 1906 ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len); 1907 if (error != 0) 1908 goto camioqueue_error; 1909 ccb->ccb_h.flags &= ~CAM_CDB_POINTER; 1910 } 1911 1912 /* 1913 * Some CCB types, like scan bus and scan lun can only go 1914 * through the transport layer device. 1915 */ 1916 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1917 xpt_print(periph->path, "CCB function code %#x is " 1918 "restricted to the XPT device\n", 1919 ccb->ccb_h.func_code); 1920 error = ENODEV; 1921 goto camioqueue_error; 1922 } 1923 1924 /* 1925 * Save the user's CCB pointer as well as his linked list 1926 * pointers and peripheral private area so that we can 1927 * restore these later. 1928 */ 1929 io_req->user_ccb_ptr = *user_ccb; 1930 io_req->user_periph_links = ccb->ccb_h.periph_links; 1931 io_req->user_periph_priv = ccb->ccb_h.periph_priv; 1932 1933 /* 1934 * Now that we've saved the user's values, we can set our 1935 * own peripheral private entry. 1936 */ 1937 ccb->ccb_h.ccb_ioreq = io_req; 1938 1939 /* Compatibility for RL/priority-unaware code. */ 1940 priority = ccb->ccb_h.pinfo.priority; 1941 if (priority <= CAM_PRIORITY_OOB) 1942 priority += CAM_PRIORITY_OOB + 1; 1943 1944 /* 1945 * Setup fields in the CCB like the path and the priority. 1946 * The path in particular cannot be done in userland, since 1947 * it is a pointer to a kernel data structure. 1948 */ 1949 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority, 1950 ccb->ccb_h.flags); 1951 1952 /* 1953 * Setup our done routine. There is no way for the user to 1954 * have a valid pointer here. 1955 */ 1956 ccb->ccb_h.cbfcnp = passdone; 1957 1958 fc = ccb->ccb_h.func_code; 1959 /* 1960 * If this function code has memory that can be mapped in 1961 * or out, we need to call passmemsetup(). 1962 */ 1963 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) 1964 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH) 1965 || (fc == XPT_DEV_ADVINFO) 1966 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { 1967 error = passmemsetup(periph, io_req); 1968 if (error != 0) 1969 goto camioqueue_error; 1970 } else 1971 io_req->mapinfo.num_bufs_used = 0; 1972 1973 cam_periph_lock(periph); 1974 1975 /* 1976 * Everything goes on the incoming queue initially. 1977 */ 1978 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links); 1979 1980 /* 1981 * If the CCB is queued, and is not a user CCB, then 1982 * we need to allocate a slot for it. Call xpt_schedule() 1983 * so that our start routine will get called when a CCB is 1984 * available. 1985 */ 1986 if ((fc & XPT_FC_QUEUED) 1987 && ((fc & XPT_FC_USER_CCB) == 0)) { 1988 xpt_schedule(periph, priority); 1989 break; 1990 } 1991 1992 /* 1993 * At this point, the CCB in question is either an 1994 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB 1995 * and therefore should be malloced, not allocated via a slot. 1996 * Remove the CCB from the incoming queue and add it to the 1997 * active queue. 1998 */ 1999 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 2000 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 2001 2002 xpt_action(ccb); 2003 2004 /* 2005 * If this is not a queued CCB (i.e. it is an immediate CCB), 2006 * then it is already done. We need to put it on the done 2007 * queue for the user to fetch. 2008 */ 2009 if ((fc & XPT_FC_QUEUED) == 0) { 2010 TAILQ_REMOVE(&softc->active_queue, io_req, links); 2011 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 2012 } 2013 break; 2014 2015 camioqueue_error: 2016 uma_zfree(softc->pass_zone, io_req); 2017 cam_periph_lock(periph); 2018 break; 2019 } 2020 case CAMIOGET: 2021 { 2022 union ccb **user_ccb; 2023 struct pass_io_req *io_req; 2024 int old_error; 2025 2026 #ifdef COMPAT_FREEBSD32 2027 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 2028 error = ENOTTY; 2029 goto bailout; 2030 } 2031 #endif 2032 user_ccb = (union ccb **)addr; 2033 old_error = 0; 2034 2035 io_req = TAILQ_FIRST(&softc->done_queue); 2036 if (io_req == NULL) { 2037 error = ENOENT; 2038 break; 2039 } 2040 2041 /* 2042 * Remove the I/O from the done queue. 2043 */ 2044 TAILQ_REMOVE(&softc->done_queue, io_req, links); 2045 2046 /* 2047 * We have to drop the lock during the copyout because the 2048 * copyout can result in VM faults that require sleeping. 2049 */ 2050 cam_periph_unlock(periph); 2051 2052 /* 2053 * Do any needed copies (e.g. for reads) and revert the 2054 * pointers in the CCB back to the user's pointers. 2055 */ 2056 error = passmemdone(periph, io_req); 2057 2058 old_error = error; 2059 2060 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links; 2061 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv; 2062 2063 #if 0 2064 xpt_print(periph->path, "Copying to user CCB %p from " 2065 "kernel address %p\n", *user_ccb, &io_req->ccb); 2066 #endif 2067 2068 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb)); 2069 if (error != 0) { 2070 xpt_print(periph->path, "Copy to user CCB %p from " 2071 "kernel address %p failed with error %d\n", 2072 *user_ccb, &io_req->ccb, error); 2073 } 2074 2075 /* 2076 * Prefer the first error we got back, and make sure we 2077 * don't overwrite bad status with good. 2078 */ 2079 if (old_error != 0) 2080 error = old_error; 2081 2082 cam_periph_lock(periph); 2083 2084 /* 2085 * At this point, if there was an error, we could potentially 2086 * re-queue the I/O and try again. But why? The error 2087 * would almost certainly happen again. We might as well 2088 * not leak memory. 2089 */ 2090 uma_zfree(softc->pass_zone, io_req); 2091 break; 2092 } 2093 default: 2094 error = cam_periph_ioctl(periph, cmd, addr, passerror); 2095 break; 2096 } 2097 2098 bailout: 2099 cam_periph_unlock(periph); 2100 2101 return(error); 2102 } 2103 2104 static int 2105 passpoll(struct cdev *dev, int poll_events, struct thread *td) 2106 { 2107 struct cam_periph *periph; 2108 struct pass_softc *softc; 2109 int revents; 2110 2111 periph = (struct cam_periph *)dev->si_drv1; 2112 softc = (struct pass_softc *)periph->softc; 2113 2114 revents = poll_events & (POLLOUT | POLLWRNORM); 2115 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) { 2116 cam_periph_lock(periph); 2117 2118 if (!TAILQ_EMPTY(&softc->done_queue)) { 2119 revents |= poll_events & (POLLIN | POLLRDNORM); 2120 } 2121 cam_periph_unlock(periph); 2122 if (revents == 0) 2123 selrecord(td, &softc->read_select); 2124 } 2125 2126 return (revents); 2127 } 2128 2129 static int 2130 passkqfilter(struct cdev *dev, struct knote *kn) 2131 { 2132 struct cam_periph *periph; 2133 struct pass_softc *softc; 2134 2135 periph = (struct cam_periph *)dev->si_drv1; 2136 softc = (struct pass_softc *)periph->softc; 2137 2138 kn->kn_hook = (caddr_t)periph; 2139 kn->kn_fop = &passread_filtops; 2140 knlist_add(&softc->read_select.si_note, kn, 0); 2141 2142 return (0); 2143 } 2144 2145 static void 2146 passreadfiltdetach(struct knote *kn) 2147 { 2148 struct cam_periph *periph; 2149 struct pass_softc *softc; 2150 2151 periph = (struct cam_periph *)kn->kn_hook; 2152 softc = (struct pass_softc *)periph->softc; 2153 2154 knlist_remove(&softc->read_select.si_note, kn, 0); 2155 } 2156 2157 static int 2158 passreadfilt(struct knote *kn, long hint) 2159 { 2160 struct cam_periph *periph; 2161 struct pass_softc *softc; 2162 int retval; 2163 2164 periph = (struct cam_periph *)kn->kn_hook; 2165 softc = (struct pass_softc *)periph->softc; 2166 2167 cam_periph_assert(periph, MA_OWNED); 2168 2169 if (TAILQ_EMPTY(&softc->done_queue)) 2170 retval = 0; 2171 else 2172 retval = 1; 2173 2174 return (retval); 2175 } 2176 2177 /* 2178 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb" 2179 * should be the CCB that is copied in from the user. 2180 */ 2181 static int 2182 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb) 2183 { 2184 struct pass_softc *softc; 2185 struct cam_periph_map_info mapinfo; 2186 uint8_t *cmd; 2187 xpt_opcode fc; 2188 int error; 2189 2190 softc = (struct pass_softc *)periph->softc; 2191 2192 /* 2193 * There are some fields in the CCB header that need to be 2194 * preserved, the rest we get from the user. 2195 */ 2196 xpt_merge_ccb(ccb, inccb); 2197 2198 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 2199 cmd = __builtin_alloca(ccb->csio.cdb_len); 2200 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len); 2201 if (error) 2202 return (error); 2203 ccb->csio.cdb_io.cdb_ptr = cmd; 2204 } 2205 2206 /* 2207 * Let cam_periph_mapmem do a sanity check on the data pointer format. 2208 * Even if no data transfer is needed, it's a cheap check and it 2209 * simplifies the code. 2210 */ 2211 fc = ccb->ccb_h.func_code; 2212 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO) 2213 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO) 2214 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { 2215 bzero(&mapinfo, sizeof(mapinfo)); 2216 2217 /* 2218 * cam_periph_mapmem calls into proc and vm functions that can 2219 * sleep as well as trigger I/O, so we can't hold the lock. 2220 * Dropping it here is reasonably safe. 2221 */ 2222 cam_periph_unlock(periph); 2223 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio); 2224 cam_periph_lock(periph); 2225 2226 /* 2227 * cam_periph_mapmem returned an error, we can't continue. 2228 * Return the error to the user. 2229 */ 2230 if (error) 2231 return(error); 2232 } else 2233 /* Ensure that the unmap call later on is a no-op. */ 2234 mapinfo.num_bufs_used = 0; 2235 2236 /* 2237 * If the user wants us to perform any error recovery, then honor 2238 * that request. Otherwise, it's up to the user to perform any 2239 * error recovery. 2240 */ 2241 { 2242 uint32_t cam_flags, sense_flags; 2243 2244 passflags(ccb, &cam_flags, &sense_flags); 2245 cam_periph_runccb(ccb, passerror, cam_flags, 2246 sense_flags, softc->device_stats); 2247 } 2248 2249 cam_periph_unlock(periph); 2250 error = cam_periph_unmapmem(ccb, &mapinfo); 2251 cam_periph_lock(periph); 2252 2253 ccb->ccb_h.cbfcnp = NULL; 2254 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv; 2255 bcopy(ccb, inccb, sizeof(union ccb)); 2256 2257 return (error); 2258 } 2259 2260 /* 2261 * Set the cam_flags and sense_flags based on whether or not the request wants 2262 * error recovery. In order to log errors via devctl, we need to do at least 2263 * minimal recovery. We do this by not retrying unit attention (we let the 2264 * requester do it, or not, if appropriate) and specifically asking for no 2265 * recovery, like we do during device probing. 2266 */ 2267 static void 2268 passflags(union ccb *ccb, uint32_t *cam_flags, uint32_t *sense_flags) 2269 { 2270 if ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) != 0) { 2271 *cam_flags = CAM_RETRY_SELTO; 2272 *sense_flags = SF_RETRY_UA | SF_NO_PRINT; 2273 } else { 2274 *cam_flags = 0; 2275 *sense_flags = SF_NO_RETRY | SF_NO_RECOVERY | SF_NO_PRINT; 2276 } 2277 } 2278 2279 static int 2280 passerror(union ccb *ccb, uint32_t cam_flags, uint32_t sense_flags) 2281 { 2282 2283 return(cam_periph_error(ccb, cam_flags, sense_flags)); 2284 } 2285