1 /*- 2 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs. 3 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions, and the following disclaimer, 11 * without modification, immediately at the beginning of the file. 12 * 2. The name of the author may not be used to endorse or promote products 13 * derived from this software without specific prior written permission. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 19 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_kdtrace.h" 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/kernel.h> 36 #include <sys/conf.h> 37 #include <sys/types.h> 38 #include <sys/bio.h> 39 #include <sys/bus.h> 40 #include <sys/devicestat.h> 41 #include <sys/errno.h> 42 #include <sys/fcntl.h> 43 #include <sys/malloc.h> 44 #include <sys/proc.h> 45 #include <sys/poll.h> 46 #include <sys/selinfo.h> 47 #include <sys/sdt.h> 48 #include <sys/taskqueue.h> 49 #include <vm/uma.h> 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 53 #include <machine/bus.h> 54 55 #include <cam/cam.h> 56 #include <cam/cam_ccb.h> 57 #include <cam/cam_periph.h> 58 #include <cam/cam_queue.h> 59 #include <cam/cam_xpt.h> 60 #include <cam/cam_xpt_periph.h> 61 #include <cam/cam_debug.h> 62 #include <cam/cam_compat.h> 63 #include <cam/cam_xpt_periph.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/scsi/scsi_pass.h> 67 68 typedef enum { 69 PASS_FLAG_OPEN = 0x01, 70 PASS_FLAG_LOCKED = 0x02, 71 PASS_FLAG_INVALID = 0x04, 72 PASS_FLAG_INITIAL_PHYSPATH = 0x08, 73 PASS_FLAG_ZONE_INPROG = 0x10, 74 PASS_FLAG_ZONE_VALID = 0x20, 75 PASS_FLAG_UNMAPPED_CAPABLE = 0x40, 76 PASS_FLAG_ABANDONED_REF_SET = 0x80 77 } pass_flags; 78 79 typedef enum { 80 PASS_STATE_NORMAL 81 } pass_state; 82 83 typedef enum { 84 PASS_CCB_BUFFER_IO, 85 PASS_CCB_QUEUED_IO 86 } pass_ccb_types; 87 88 #define ccb_type ppriv_field0 89 #define ccb_ioreq ppriv_ptr1 90 91 /* 92 * The maximum number of memory segments we preallocate. 93 */ 94 #define PASS_MAX_SEGS 16 95 96 typedef enum { 97 PASS_IO_NONE = 0x00, 98 PASS_IO_USER_SEG_MALLOC = 0x01, 99 PASS_IO_KERN_SEG_MALLOC = 0x02, 100 PASS_IO_ABANDONED = 0x04 101 } pass_io_flags; 102 103 struct pass_io_req { 104 union ccb ccb; 105 union ccb *alloced_ccb; 106 union ccb *user_ccb_ptr; 107 camq_entry user_periph_links; 108 ccb_ppriv_area user_periph_priv; 109 struct cam_periph_map_info mapinfo; 110 pass_io_flags flags; 111 ccb_flags data_flags; 112 int num_user_segs; 113 bus_dma_segment_t user_segs[PASS_MAX_SEGS]; 114 int num_kern_segs; 115 bus_dma_segment_t kern_segs[PASS_MAX_SEGS]; 116 bus_dma_segment_t *user_segptr; 117 bus_dma_segment_t *kern_segptr; 118 int num_bufs; 119 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 120 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 121 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS]; 122 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS]; 123 struct bintime start_time; 124 TAILQ_ENTRY(pass_io_req) links; 125 }; 126 127 struct pass_softc { 128 pass_state state; 129 pass_flags flags; 130 u_int8_t pd_type; 131 union ccb saved_ccb; 132 int open_count; 133 u_int maxio; 134 struct devstat *device_stats; 135 struct cdev *dev; 136 struct cdev *alias_dev; 137 struct task add_physpath_task; 138 struct task shutdown_kqueue_task; 139 struct selinfo read_select; 140 TAILQ_HEAD(, pass_io_req) incoming_queue; 141 TAILQ_HEAD(, pass_io_req) active_queue; 142 TAILQ_HEAD(, pass_io_req) abandoned_queue; 143 TAILQ_HEAD(, pass_io_req) done_queue; 144 struct cam_periph *periph; 145 char zone_name[12]; 146 char io_zone_name[12]; 147 uma_zone_t pass_zone; 148 uma_zone_t pass_io_zone; 149 size_t io_zone_size; 150 }; 151 152 static d_open_t passopen; 153 static d_close_t passclose; 154 static d_ioctl_t passioctl; 155 static d_ioctl_t passdoioctl; 156 static d_poll_t passpoll; 157 static d_kqfilter_t passkqfilter; 158 static void passreadfiltdetach(struct knote *kn); 159 static int passreadfilt(struct knote *kn, long hint); 160 161 static periph_init_t passinit; 162 static periph_ctor_t passregister; 163 static periph_oninv_t passoninvalidate; 164 static periph_dtor_t passcleanup; 165 static periph_start_t passstart; 166 static void pass_shutdown_kqueue(void *context, int pending); 167 static void pass_add_physpath(void *context, int pending); 168 static void passasync(void *callback_arg, u_int32_t code, 169 struct cam_path *path, void *arg); 170 static void passdone(struct cam_periph *periph, 171 union ccb *done_ccb); 172 static int passcreatezone(struct cam_periph *periph); 173 static void passiocleanup(struct pass_softc *softc, 174 struct pass_io_req *io_req); 175 static int passcopysglist(struct cam_periph *periph, 176 struct pass_io_req *io_req, 177 ccb_flags direction); 178 static int passmemsetup(struct cam_periph *periph, 179 struct pass_io_req *io_req); 180 static int passmemdone(struct cam_periph *periph, 181 struct pass_io_req *io_req); 182 static int passerror(union ccb *ccb, u_int32_t cam_flags, 183 u_int32_t sense_flags); 184 static int passsendccb(struct cam_periph *periph, union ccb *ccb, 185 union ccb *inccb); 186 187 static struct periph_driver passdriver = 188 { 189 passinit, "pass", 190 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0 191 }; 192 193 PERIPHDRIVER_DECLARE(pass, passdriver); 194 195 static struct cdevsw pass_cdevsw = { 196 .d_version = D_VERSION, 197 .d_flags = D_TRACKCLOSE, 198 .d_open = passopen, 199 .d_close = passclose, 200 .d_ioctl = passioctl, 201 .d_poll = passpoll, 202 .d_kqfilter = passkqfilter, 203 .d_name = "pass", 204 }; 205 206 static struct filterops passread_filtops = { 207 .f_isfd = 1, 208 .f_detach = passreadfiltdetach, 209 .f_event = passreadfilt 210 }; 211 212 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers"); 213 214 static void 215 passinit(void) 216 { 217 cam_status status; 218 219 /* 220 * Install a global async callback. This callback will 221 * receive async callbacks like "new device found". 222 */ 223 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL); 224 225 if (status != CAM_REQ_CMP) { 226 printf("pass: Failed to attach master async callback " 227 "due to status 0x%x!\n", status); 228 } 229 230 } 231 232 static void 233 passrejectios(struct cam_periph *periph) 234 { 235 struct pass_io_req *io_req, *io_req2; 236 struct pass_softc *softc; 237 238 softc = (struct pass_softc *)periph->softc; 239 240 /* 241 * The user can no longer get status for I/O on the done queue, so 242 * clean up all outstanding I/O on the done queue. 243 */ 244 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 245 TAILQ_REMOVE(&softc->done_queue, io_req, links); 246 passiocleanup(softc, io_req); 247 uma_zfree(softc->pass_zone, io_req); 248 } 249 250 /* 251 * The underlying device is gone, so we can't issue these I/Os. 252 * The devfs node has been shut down, so we can't return status to 253 * the user. Free any I/O left on the incoming queue. 254 */ 255 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) { 256 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 257 passiocleanup(softc, io_req); 258 uma_zfree(softc->pass_zone, io_req); 259 } 260 261 /* 262 * Normally we would put I/Os on the abandoned queue and acquire a 263 * reference when we saw the final close. But, the device went 264 * away and devfs may have moved everything off to deadfs by the 265 * time the I/O done callback is called; as a result, we won't see 266 * any more closes. So, if we have any active I/Os, we need to put 267 * them on the abandoned queue. When the abandoned queue is empty, 268 * we'll release the remaining reference (see below) to the peripheral. 269 */ 270 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) { 271 TAILQ_REMOVE(&softc->active_queue, io_req, links); 272 io_req->flags |= PASS_IO_ABANDONED; 273 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links); 274 } 275 276 /* 277 * If we put any I/O on the abandoned queue, acquire a reference. 278 */ 279 if ((!TAILQ_EMPTY(&softc->abandoned_queue)) 280 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) { 281 cam_periph_doacquire(periph); 282 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 283 } 284 } 285 286 static void 287 passdevgonecb(void *arg) 288 { 289 struct cam_periph *periph; 290 struct mtx *mtx; 291 struct pass_softc *softc; 292 int i; 293 294 periph = (struct cam_periph *)arg; 295 mtx = cam_periph_mtx(periph); 296 mtx_lock(mtx); 297 298 softc = (struct pass_softc *)periph->softc; 299 KASSERT(softc->open_count >= 0, ("Negative open count %d", 300 softc->open_count)); 301 302 /* 303 * When we get this callback, we will get no more close calls from 304 * devfs. So if we have any dangling opens, we need to release the 305 * reference held for that particular context. 306 */ 307 for (i = 0; i < softc->open_count; i++) 308 cam_periph_release_locked(periph); 309 310 softc->open_count = 0; 311 312 /* 313 * Release the reference held for the device node, it is gone now. 314 * Accordingly, inform all queued I/Os of their fate. 315 */ 316 cam_periph_release_locked(periph); 317 passrejectios(periph); 318 319 /* 320 * We reference the SIM lock directly here, instead of using 321 * cam_periph_unlock(). The reason is that the final call to 322 * cam_periph_release_locked() above could result in the periph 323 * getting freed. If that is the case, dereferencing the periph 324 * with a cam_periph_unlock() call would cause a page fault. 325 */ 326 mtx_unlock(mtx); 327 328 /* 329 * We have to remove our kqueue context from a thread because it 330 * may sleep. It would be nice if we could get a callback from 331 * kqueue when it is done cleaning up resources. 332 */ 333 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task); 334 } 335 336 static void 337 passoninvalidate(struct cam_periph *periph) 338 { 339 struct pass_softc *softc; 340 341 softc = (struct pass_softc *)periph->softc; 342 343 /* 344 * De-register any async callbacks. 345 */ 346 xpt_register_async(0, passasync, periph, periph->path); 347 348 softc->flags |= PASS_FLAG_INVALID; 349 350 /* 351 * Tell devfs this device has gone away, and ask for a callback 352 * when it has cleaned up its state. 353 */ 354 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph); 355 } 356 357 static void 358 passcleanup(struct cam_periph *periph) 359 { 360 struct pass_softc *softc; 361 362 softc = (struct pass_softc *)periph->softc; 363 364 cam_periph_assert(periph, MA_OWNED); 365 KASSERT(TAILQ_EMPTY(&softc->active_queue), 366 ("%s called when there are commands on the active queue!\n", 367 __func__)); 368 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue), 369 ("%s called when there are commands on the abandoned queue!\n", 370 __func__)); 371 KASSERT(TAILQ_EMPTY(&softc->incoming_queue), 372 ("%s called when there are commands on the incoming queue!\n", 373 __func__)); 374 KASSERT(TAILQ_EMPTY(&softc->done_queue), 375 ("%s called when there are commands on the done queue!\n", 376 __func__)); 377 378 devstat_remove_entry(softc->device_stats); 379 380 cam_periph_unlock(periph); 381 382 /* 383 * We call taskqueue_drain() for the physpath task to make sure it 384 * is complete. We drop the lock because this can potentially 385 * sleep. XXX KDM that is bad. Need a way to get a callback when 386 * a taskqueue is drained. 387 * 388 * Note that we don't drain the kqueue shutdown task queue. This 389 * is because we hold a reference on the periph for kqueue, and 390 * release that reference from the kqueue shutdown task queue. So 391 * we cannot come into this routine unless we've released that 392 * reference. Also, because that could be the last reference, we 393 * could be called from the cam_periph_release() call in 394 * pass_shutdown_kqueue(). In that case, the taskqueue_drain() 395 * would deadlock. It would be preferable if we had a way to 396 * get a callback when a taskqueue is done. 397 */ 398 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task); 399 400 cam_periph_lock(periph); 401 402 free(softc, M_DEVBUF); 403 } 404 405 static void 406 pass_shutdown_kqueue(void *context, int pending) 407 { 408 struct cam_periph *periph; 409 struct pass_softc *softc; 410 411 periph = context; 412 softc = periph->softc; 413 414 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0); 415 knlist_destroy(&softc->read_select.si_note); 416 417 /* 418 * Release the reference we held for kqueue. 419 */ 420 cam_periph_release(periph); 421 } 422 423 static void 424 pass_add_physpath(void *context, int pending) 425 { 426 struct cam_periph *periph; 427 struct pass_softc *softc; 428 struct mtx *mtx; 429 char *physpath; 430 431 /* 432 * If we have one, create a devfs alias for our 433 * physical path. 434 */ 435 periph = context; 436 softc = periph->softc; 437 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK); 438 mtx = cam_periph_mtx(periph); 439 mtx_lock(mtx); 440 441 if (periph->flags & CAM_PERIPH_INVALID) 442 goto out; 443 444 if (xpt_getattr(physpath, MAXPATHLEN, 445 "GEOM::physpath", periph->path) == 0 446 && strlen(physpath) != 0) { 447 448 mtx_unlock(mtx); 449 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev, 450 softc->dev, softc->alias_dev, physpath); 451 mtx_lock(mtx); 452 } 453 454 out: 455 /* 456 * Now that we've made our alias, we no longer have to have a 457 * reference to the device. 458 */ 459 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0) 460 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH; 461 462 /* 463 * We always acquire a reference to the periph before queueing this 464 * task queue function, so it won't go away before we run. 465 */ 466 while (pending-- > 0) 467 cam_periph_release_locked(periph); 468 mtx_unlock(mtx); 469 470 free(physpath, M_DEVBUF); 471 } 472 473 static void 474 passasync(void *callback_arg, u_int32_t code, 475 struct cam_path *path, void *arg) 476 { 477 struct cam_periph *periph; 478 479 periph = (struct cam_periph *)callback_arg; 480 481 switch (code) { 482 case AC_FOUND_DEVICE: 483 { 484 struct ccb_getdev *cgd; 485 cam_status status; 486 487 cgd = (struct ccb_getdev *)arg; 488 if (cgd == NULL) 489 break; 490 491 /* 492 * Allocate a peripheral instance for 493 * this device and start the probe 494 * process. 495 */ 496 status = cam_periph_alloc(passregister, passoninvalidate, 497 passcleanup, passstart, "pass", 498 CAM_PERIPH_BIO, path, 499 passasync, AC_FOUND_DEVICE, cgd); 500 501 if (status != CAM_REQ_CMP 502 && status != CAM_REQ_INPROG) { 503 const struct cam_status_entry *entry; 504 505 entry = cam_fetch_status_entry(status); 506 507 printf("passasync: Unable to attach new device " 508 "due to status %#x: %s\n", status, entry ? 509 entry->status_text : "Unknown"); 510 } 511 512 break; 513 } 514 case AC_ADVINFO_CHANGED: 515 { 516 uintptr_t buftype; 517 518 buftype = (uintptr_t)arg; 519 if (buftype == CDAI_TYPE_PHYS_PATH) { 520 struct pass_softc *softc; 521 cam_status status; 522 523 softc = (struct pass_softc *)periph->softc; 524 /* 525 * Acquire a reference to the periph before we 526 * start the taskqueue, so that we don't run into 527 * a situation where the periph goes away before 528 * the task queue has a chance to run. 529 */ 530 status = cam_periph_acquire(periph); 531 if (status != CAM_REQ_CMP) 532 break; 533 534 taskqueue_enqueue(taskqueue_thread, 535 &softc->add_physpath_task); 536 } 537 break; 538 } 539 default: 540 cam_periph_async(periph, code, path, arg); 541 break; 542 } 543 } 544 545 static cam_status 546 passregister(struct cam_periph *periph, void *arg) 547 { 548 struct pass_softc *softc; 549 struct ccb_getdev *cgd; 550 struct ccb_pathinq cpi; 551 struct make_dev_args args; 552 int error, no_tags; 553 554 cgd = (struct ccb_getdev *)arg; 555 if (cgd == NULL) { 556 printf("%s: no getdev CCB, can't register device\n", __func__); 557 return(CAM_REQ_CMP_ERR); 558 } 559 560 softc = (struct pass_softc *)malloc(sizeof(*softc), 561 M_DEVBUF, M_NOWAIT); 562 563 if (softc == NULL) { 564 printf("%s: Unable to probe new device. " 565 "Unable to allocate softc\n", __func__); 566 return(CAM_REQ_CMP_ERR); 567 } 568 569 bzero(softc, sizeof(*softc)); 570 softc->state = PASS_STATE_NORMAL; 571 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI) 572 softc->pd_type = SID_TYPE(&cgd->inq_data); 573 else if (cgd->protocol == PROTO_SATAPM) 574 softc->pd_type = T_ENCLOSURE; 575 else 576 softc->pd_type = T_DIRECT; 577 578 periph->softc = softc; 579 softc->periph = periph; 580 TAILQ_INIT(&softc->incoming_queue); 581 TAILQ_INIT(&softc->active_queue); 582 TAILQ_INIT(&softc->abandoned_queue); 583 TAILQ_INIT(&softc->done_queue); 584 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d", 585 periph->periph_name, periph->unit_number); 586 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO", 587 periph->periph_name, periph->unit_number); 588 softc->io_zone_size = MAXPHYS; 589 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph)); 590 591 bzero(&cpi, sizeof(cpi)); 592 xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 593 cpi.ccb_h.func_code = XPT_PATH_INQ; 594 xpt_action((union ccb *)&cpi); 595 596 if (cpi.maxio == 0) 597 softc->maxio = DFLTPHYS; /* traditional default */ 598 else if (cpi.maxio > MAXPHYS) 599 softc->maxio = MAXPHYS; /* for safety */ 600 else 601 softc->maxio = cpi.maxio; /* real value */ 602 603 if (cpi.hba_misc & PIM_UNMAPPED) 604 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE; 605 606 /* 607 * We pass in 0 for a blocksize, since we don't 608 * know what the blocksize of this device is, if 609 * it even has a blocksize. 610 */ 611 cam_periph_unlock(periph); 612 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0; 613 softc->device_stats = devstat_new_entry("pass", 614 periph->unit_number, 0, 615 DEVSTAT_NO_BLOCKSIZE 616 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0), 617 softc->pd_type | 618 XPORT_DEVSTAT_TYPE(cpi.transport) | 619 DEVSTAT_TYPE_PASS, 620 DEVSTAT_PRIORITY_PASS); 621 622 /* 623 * Initialize the taskqueue handler for shutting down kqueue. 624 */ 625 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0, 626 pass_shutdown_kqueue, periph); 627 628 /* 629 * Acquire a reference to the periph that we can release once we've 630 * cleaned up the kqueue. 631 */ 632 if (cam_periph_acquire(periph) != CAM_REQ_CMP) { 633 xpt_print(periph->path, "%s: lost periph during " 634 "registration!\n", __func__); 635 cam_periph_lock(periph); 636 return (CAM_REQ_CMP_ERR); 637 } 638 639 /* 640 * Acquire a reference to the periph before we create the devfs 641 * instance for it. We'll release this reference once the devfs 642 * instance has been freed. 643 */ 644 if (cam_periph_acquire(periph) != CAM_REQ_CMP) { 645 xpt_print(periph->path, "%s: lost periph during " 646 "registration!\n", __func__); 647 cam_periph_lock(periph); 648 return (CAM_REQ_CMP_ERR); 649 } 650 651 /* Register the device */ 652 make_dev_args_init(&args); 653 args.mda_devsw = &pass_cdevsw; 654 args.mda_unit = periph->unit_number; 655 args.mda_uid = UID_ROOT; 656 args.mda_gid = GID_OPERATOR; 657 args.mda_mode = 0600; 658 args.mda_si_drv1 = periph; 659 error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name, 660 periph->unit_number); 661 if (error != 0) { 662 cam_periph_lock(periph); 663 cam_periph_release_locked(periph); 664 return (CAM_REQ_CMP_ERR); 665 } 666 667 /* 668 * Hold a reference to the periph before we create the physical 669 * path alias so it can't go away. 670 */ 671 if (cam_periph_acquire(periph) != CAM_REQ_CMP) { 672 xpt_print(periph->path, "%s: lost periph during " 673 "registration!\n", __func__); 674 cam_periph_lock(periph); 675 return (CAM_REQ_CMP_ERR); 676 } 677 678 cam_periph_lock(periph); 679 680 TASK_INIT(&softc->add_physpath_task, /*priority*/0, 681 pass_add_physpath, periph); 682 683 /* 684 * See if physical path information is already available. 685 */ 686 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); 687 688 /* 689 * Add an async callback so that we get notified if 690 * this device goes away or its physical path 691 * (stored in the advanced info data of the EDT) has 692 * changed. 693 */ 694 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED, 695 passasync, periph, periph->path); 696 697 if (bootverbose) 698 xpt_announce_periph(periph, NULL); 699 700 return(CAM_REQ_CMP); 701 } 702 703 static int 704 passopen(struct cdev *dev, int flags, int fmt, struct thread *td) 705 { 706 struct cam_periph *periph; 707 struct pass_softc *softc; 708 int error; 709 710 periph = (struct cam_periph *)dev->si_drv1; 711 if (cam_periph_acquire(periph) != CAM_REQ_CMP) 712 return (ENXIO); 713 714 cam_periph_lock(periph); 715 716 softc = (struct pass_softc *)periph->softc; 717 718 if (softc->flags & PASS_FLAG_INVALID) { 719 cam_periph_release_locked(periph); 720 cam_periph_unlock(periph); 721 return(ENXIO); 722 } 723 724 /* 725 * Don't allow access when we're running at a high securelevel. 726 */ 727 error = securelevel_gt(td->td_ucred, 1); 728 if (error) { 729 cam_periph_release_locked(periph); 730 cam_periph_unlock(periph); 731 return(error); 732 } 733 734 /* 735 * Only allow read-write access. 736 */ 737 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) { 738 cam_periph_release_locked(periph); 739 cam_periph_unlock(periph); 740 return(EPERM); 741 } 742 743 /* 744 * We don't allow nonblocking access. 745 */ 746 if ((flags & O_NONBLOCK) != 0) { 747 xpt_print(periph->path, "can't do nonblocking access\n"); 748 cam_periph_release_locked(periph); 749 cam_periph_unlock(periph); 750 return(EINVAL); 751 } 752 753 softc->open_count++; 754 755 cam_periph_unlock(periph); 756 757 return (error); 758 } 759 760 static int 761 passclose(struct cdev *dev, int flag, int fmt, struct thread *td) 762 { 763 struct cam_periph *periph; 764 struct pass_softc *softc; 765 struct mtx *mtx; 766 767 periph = (struct cam_periph *)dev->si_drv1; 768 mtx = cam_periph_mtx(periph); 769 mtx_lock(mtx); 770 771 softc = periph->softc; 772 softc->open_count--; 773 774 if (softc->open_count == 0) { 775 struct pass_io_req *io_req, *io_req2; 776 777 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 778 TAILQ_REMOVE(&softc->done_queue, io_req, links); 779 passiocleanup(softc, io_req); 780 uma_zfree(softc->pass_zone, io_req); 781 } 782 783 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, 784 io_req2) { 785 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 786 passiocleanup(softc, io_req); 787 uma_zfree(softc->pass_zone, io_req); 788 } 789 790 /* 791 * If there are any active I/Os, we need to forcibly acquire a 792 * reference to the peripheral so that we don't go away 793 * before they complete. We'll release the reference when 794 * the abandoned queue is empty. 795 */ 796 io_req = TAILQ_FIRST(&softc->active_queue); 797 if ((io_req != NULL) 798 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) { 799 cam_periph_doacquire(periph); 800 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 801 } 802 803 /* 804 * Since the I/O in the active queue is not under our 805 * control, just set a flag so that we can clean it up when 806 * it completes and put it on the abandoned queue. This 807 * will prevent our sending spurious completions in the 808 * event that the device is opened again before these I/Os 809 * complete. 810 */ 811 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, 812 io_req2) { 813 TAILQ_REMOVE(&softc->active_queue, io_req, links); 814 io_req->flags |= PASS_IO_ABANDONED; 815 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, 816 links); 817 } 818 } 819 820 cam_periph_release_locked(periph); 821 822 /* 823 * We reference the lock directly here, instead of using 824 * cam_periph_unlock(). The reason is that the call to 825 * cam_periph_release_locked() above could result in the periph 826 * getting freed. If that is the case, dereferencing the periph 827 * with a cam_periph_unlock() call would cause a page fault. 828 * 829 * cam_periph_release() avoids this problem using the same method, 830 * but we're manually acquiring and dropping the lock here to 831 * protect the open count and avoid another lock acquisition and 832 * release. 833 */ 834 mtx_unlock(mtx); 835 836 return (0); 837 } 838 839 840 static void 841 passstart(struct cam_periph *periph, union ccb *start_ccb) 842 { 843 struct pass_softc *softc; 844 845 softc = (struct pass_softc *)periph->softc; 846 847 switch (softc->state) { 848 case PASS_STATE_NORMAL: { 849 struct pass_io_req *io_req; 850 851 /* 852 * Check for any queued I/O requests that require an 853 * allocated slot. 854 */ 855 io_req = TAILQ_FIRST(&softc->incoming_queue); 856 if (io_req == NULL) { 857 xpt_release_ccb(start_ccb); 858 break; 859 } 860 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 861 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 862 /* 863 * Merge the user's CCB into the allocated CCB. 864 */ 865 xpt_merge_ccb(start_ccb, &io_req->ccb); 866 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO; 867 start_ccb->ccb_h.ccb_ioreq = io_req; 868 start_ccb->ccb_h.cbfcnp = passdone; 869 io_req->alloced_ccb = start_ccb; 870 binuptime(&io_req->start_time); 871 devstat_start_transaction(softc->device_stats, 872 &io_req->start_time); 873 874 xpt_action(start_ccb); 875 876 /* 877 * If we have any more I/O waiting, schedule ourselves again. 878 */ 879 if (!TAILQ_EMPTY(&softc->incoming_queue)) 880 xpt_schedule(periph, CAM_PRIORITY_NORMAL); 881 break; 882 } 883 default: 884 break; 885 } 886 } 887 888 static void 889 passdone(struct cam_periph *periph, union ccb *done_ccb) 890 { 891 struct pass_softc *softc; 892 struct ccb_scsiio *csio; 893 894 softc = (struct pass_softc *)periph->softc; 895 896 cam_periph_assert(periph, MA_OWNED); 897 898 csio = &done_ccb->csio; 899 switch (csio->ccb_h.ccb_type) { 900 case PASS_CCB_QUEUED_IO: { 901 struct pass_io_req *io_req; 902 903 io_req = done_ccb->ccb_h.ccb_ioreq; 904 #if 0 905 xpt_print(periph->path, "%s: called for user CCB %p\n", 906 __func__, io_req->user_ccb_ptr); 907 #endif 908 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) 909 && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) 910 && ((io_req->flags & PASS_IO_ABANDONED) == 0)) { 911 int error; 912 913 error = passerror(done_ccb, CAM_RETRY_SELTO, 914 SF_RETRY_UA | SF_NO_PRINT); 915 916 if (error == ERESTART) { 917 /* 918 * A retry was scheduled, so 919 * just return. 920 */ 921 return; 922 } 923 } 924 925 /* 926 * Copy the allocated CCB contents back to the malloced CCB 927 * so we can give status back to the user when he requests it. 928 */ 929 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb)); 930 931 /* 932 * Log data/transaction completion with devstat(9). 933 */ 934 switch (done_ccb->ccb_h.func_code) { 935 case XPT_SCSI_IO: 936 devstat_end_transaction(softc->device_stats, 937 done_ccb->csio.dxfer_len - done_ccb->csio.resid, 938 done_ccb->csio.tag_action & 0x3, 939 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 940 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 941 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 942 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 943 &io_req->start_time); 944 break; 945 case XPT_ATA_IO: 946 devstat_end_transaction(softc->device_stats, 947 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid, 948 0, /* Not used in ATA */ 949 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 950 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 951 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 952 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 953 &io_req->start_time); 954 break; 955 case XPT_SMP_IO: 956 /* 957 * XXX KDM this isn't quite right, but there isn't 958 * currently an easy way to represent a bidirectional 959 * transfer in devstat. The only way to do it 960 * and have the byte counts come out right would 961 * mean that we would have to record two 962 * transactions, one for the request and one for the 963 * response. For now, so that we report something, 964 * just treat the entire thing as a read. 965 */ 966 devstat_end_transaction(softc->device_stats, 967 done_ccb->smpio.smp_request_len + 968 done_ccb->smpio.smp_response_len, 969 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL, 970 &io_req->start_time); 971 break; 972 default: 973 devstat_end_transaction(softc->device_stats, 0, 974 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL, 975 &io_req->start_time); 976 break; 977 } 978 979 /* 980 * In the normal case, take the completed I/O off of the 981 * active queue and put it on the done queue. Notitfy the 982 * user that we have a completed I/O. 983 */ 984 if ((io_req->flags & PASS_IO_ABANDONED) == 0) { 985 TAILQ_REMOVE(&softc->active_queue, io_req, links); 986 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 987 selwakeuppri(&softc->read_select, PRIBIO); 988 KNOTE_LOCKED(&softc->read_select.si_note, 0); 989 } else { 990 /* 991 * In the case of an abandoned I/O (final close 992 * without fetching the I/O), take it off of the 993 * abandoned queue and free it. 994 */ 995 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links); 996 passiocleanup(softc, io_req); 997 uma_zfree(softc->pass_zone, io_req); 998 999 /* 1000 * Release the done_ccb here, since we may wind up 1001 * freeing the peripheral when we decrement the 1002 * reference count below. 1003 */ 1004 xpt_release_ccb(done_ccb); 1005 1006 /* 1007 * If the abandoned queue is empty, we can release 1008 * our reference to the periph since we won't have 1009 * any more completions coming. 1010 */ 1011 if ((TAILQ_EMPTY(&softc->abandoned_queue)) 1012 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) { 1013 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET; 1014 cam_periph_release_locked(periph); 1015 } 1016 1017 /* 1018 * We have already released the CCB, so we can 1019 * return. 1020 */ 1021 return; 1022 } 1023 break; 1024 } 1025 } 1026 xpt_release_ccb(done_ccb); 1027 } 1028 1029 static int 1030 passcreatezone(struct cam_periph *periph) 1031 { 1032 struct pass_softc *softc; 1033 int error; 1034 1035 error = 0; 1036 softc = (struct pass_softc *)periph->softc; 1037 1038 cam_periph_assert(periph, MA_OWNED); 1039 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 1040 ("%s called when the pass(4) zone is valid!\n", __func__)); 1041 KASSERT((softc->pass_zone == NULL), 1042 ("%s called when the pass(4) zone is allocated!\n", __func__)); 1043 1044 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) { 1045 1046 /* 1047 * We're the first context through, so we need to create 1048 * the pass(4) UMA zone for I/O requests. 1049 */ 1050 softc->flags |= PASS_FLAG_ZONE_INPROG; 1051 1052 /* 1053 * uma_zcreate() does a blocking (M_WAITOK) allocation, 1054 * so we cannot hold a mutex while we call it. 1055 */ 1056 cam_periph_unlock(periph); 1057 1058 softc->pass_zone = uma_zcreate(softc->zone_name, 1059 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL, 1060 /*align*/ 0, /*flags*/ 0); 1061 1062 softc->pass_io_zone = uma_zcreate(softc->io_zone_name, 1063 softc->io_zone_size, NULL, NULL, NULL, NULL, 1064 /*align*/ 0, /*flags*/ 0); 1065 1066 cam_periph_lock(periph); 1067 1068 if ((softc->pass_zone == NULL) 1069 || (softc->pass_io_zone == NULL)) { 1070 if (softc->pass_zone == NULL) 1071 xpt_print(periph->path, "unable to allocate " 1072 "IO Req UMA zone\n"); 1073 else 1074 xpt_print(periph->path, "unable to allocate " 1075 "IO UMA zone\n"); 1076 softc->flags &= ~PASS_FLAG_ZONE_INPROG; 1077 goto bailout; 1078 } 1079 1080 /* 1081 * Set the flags appropriately and notify any other waiters. 1082 */ 1083 softc->flags &= PASS_FLAG_ZONE_INPROG; 1084 softc->flags |= PASS_FLAG_ZONE_VALID; 1085 wakeup(&softc->pass_zone); 1086 } else { 1087 /* 1088 * In this case, the UMA zone has not yet been created, but 1089 * another context is in the process of creating it. We 1090 * need to sleep until the creation is either done or has 1091 * failed. 1092 */ 1093 while ((softc->flags & PASS_FLAG_ZONE_INPROG) 1094 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) { 1095 error = msleep(&softc->pass_zone, 1096 cam_periph_mtx(periph), PRIBIO, 1097 "paszon", 0); 1098 if (error != 0) 1099 goto bailout; 1100 } 1101 /* 1102 * If the zone creation failed, no luck for the user. 1103 */ 1104 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){ 1105 error = ENOMEM; 1106 goto bailout; 1107 } 1108 } 1109 bailout: 1110 return (error); 1111 } 1112 1113 static void 1114 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req) 1115 { 1116 union ccb *ccb; 1117 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1118 int i, numbufs; 1119 1120 ccb = &io_req->ccb; 1121 1122 switch (ccb->ccb_h.func_code) { 1123 case XPT_DEV_MATCH: 1124 numbufs = min(io_req->num_bufs, 2); 1125 1126 if (numbufs == 1) { 1127 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1128 } else { 1129 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1130 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1131 } 1132 break; 1133 case XPT_SCSI_IO: 1134 case XPT_CONT_TARGET_IO: 1135 data_ptrs[0] = &ccb->csio.data_ptr; 1136 numbufs = min(io_req->num_bufs, 1); 1137 break; 1138 case XPT_ATA_IO: 1139 data_ptrs[0] = &ccb->ataio.data_ptr; 1140 numbufs = min(io_req->num_bufs, 1); 1141 break; 1142 case XPT_SMP_IO: 1143 numbufs = min(io_req->num_bufs, 2); 1144 data_ptrs[0] = &ccb->smpio.smp_request; 1145 data_ptrs[1] = &ccb->smpio.smp_response; 1146 break; 1147 case XPT_DEV_ADVINFO: 1148 numbufs = min(io_req->num_bufs, 1); 1149 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1150 break; 1151 default: 1152 /* allow ourselves to be swapped once again */ 1153 return; 1154 break; /* NOTREACHED */ 1155 } 1156 1157 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) { 1158 free(io_req->user_segptr, M_SCSIPASS); 1159 io_req->user_segptr = NULL; 1160 } 1161 1162 /* 1163 * We only want to free memory we malloced. 1164 */ 1165 if (io_req->data_flags == CAM_DATA_VADDR) { 1166 for (i = 0; i < io_req->num_bufs; i++) { 1167 if (io_req->kern_bufs[i] == NULL) 1168 continue; 1169 1170 free(io_req->kern_bufs[i], M_SCSIPASS); 1171 io_req->kern_bufs[i] = NULL; 1172 } 1173 } else if (io_req->data_flags == CAM_DATA_SG) { 1174 for (i = 0; i < io_req->num_kern_segs; i++) { 1175 if ((uint8_t *)(uintptr_t) 1176 io_req->kern_segptr[i].ds_addr == NULL) 1177 continue; 1178 1179 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t) 1180 io_req->kern_segptr[i].ds_addr); 1181 io_req->kern_segptr[i].ds_addr = 0; 1182 } 1183 } 1184 1185 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) { 1186 free(io_req->kern_segptr, M_SCSIPASS); 1187 io_req->kern_segptr = NULL; 1188 } 1189 1190 if (io_req->data_flags != CAM_DATA_PADDR) { 1191 for (i = 0; i < numbufs; i++) { 1192 /* 1193 * Restore the user's buffer pointers to their 1194 * previous values. 1195 */ 1196 if (io_req->user_bufs[i] != NULL) 1197 *data_ptrs[i] = io_req->user_bufs[i]; 1198 } 1199 } 1200 1201 } 1202 1203 static int 1204 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req, 1205 ccb_flags direction) 1206 { 1207 bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy; 1208 bus_dma_segment_t *user_sglist, *kern_sglist; 1209 int i, j, error; 1210 1211 error = 0; 1212 kern_watermark = 0; 1213 user_watermark = 0; 1214 len_to_copy = 0; 1215 len_copied = 0; 1216 user_sglist = io_req->user_segptr; 1217 kern_sglist = io_req->kern_segptr; 1218 1219 for (i = 0, j = 0; i < io_req->num_user_segs && 1220 j < io_req->num_kern_segs;) { 1221 uint8_t *user_ptr, *kern_ptr; 1222 1223 len_to_copy = min(user_sglist[i].ds_len -user_watermark, 1224 kern_sglist[j].ds_len - kern_watermark); 1225 1226 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr; 1227 user_ptr = user_ptr + user_watermark; 1228 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr; 1229 kern_ptr = kern_ptr + kern_watermark; 1230 1231 user_watermark += len_to_copy; 1232 kern_watermark += len_to_copy; 1233 1234 if (!useracc(user_ptr, len_to_copy, 1235 (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) { 1236 xpt_print(periph->path, "%s: unable to access user " 1237 "S/G list element %p len %zu\n", __func__, 1238 user_ptr, len_to_copy); 1239 error = EFAULT; 1240 goto bailout; 1241 } 1242 1243 if (direction == CAM_DIR_IN) { 1244 error = copyout(kern_ptr, user_ptr, len_to_copy); 1245 if (error != 0) { 1246 xpt_print(periph->path, "%s: copyout of %u " 1247 "bytes from %p to %p failed with " 1248 "error %d\n", __func__, len_to_copy, 1249 kern_ptr, user_ptr, error); 1250 goto bailout; 1251 } 1252 } else { 1253 error = copyin(user_ptr, kern_ptr, len_to_copy); 1254 if (error != 0) { 1255 xpt_print(periph->path, "%s: copyin of %u " 1256 "bytes from %p to %p failed with " 1257 "error %d\n", __func__, len_to_copy, 1258 user_ptr, kern_ptr, error); 1259 goto bailout; 1260 } 1261 } 1262 1263 len_copied += len_to_copy; 1264 1265 if (user_sglist[i].ds_len == user_watermark) { 1266 i++; 1267 user_watermark = 0; 1268 } 1269 1270 if (kern_sglist[j].ds_len == kern_watermark) { 1271 j++; 1272 kern_watermark = 0; 1273 } 1274 } 1275 1276 bailout: 1277 1278 return (error); 1279 } 1280 1281 static int 1282 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req) 1283 { 1284 union ccb *ccb; 1285 struct pass_softc *softc; 1286 int numbufs, i; 1287 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1288 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 1289 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 1290 uint32_t num_segs; 1291 uint16_t *seg_cnt_ptr; 1292 size_t maxmap; 1293 int error; 1294 1295 cam_periph_assert(periph, MA_NOTOWNED); 1296 1297 softc = periph->softc; 1298 1299 error = 0; 1300 ccb = &io_req->ccb; 1301 maxmap = 0; 1302 num_segs = 0; 1303 seg_cnt_ptr = NULL; 1304 1305 switch(ccb->ccb_h.func_code) { 1306 case XPT_DEV_MATCH: 1307 if (ccb->cdm.match_buf_len == 0) { 1308 printf("%s: invalid match buffer length 0\n", __func__); 1309 return(EINVAL); 1310 } 1311 if (ccb->cdm.pattern_buf_len > 0) { 1312 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1313 lengths[0] = ccb->cdm.pattern_buf_len; 1314 dirs[0] = CAM_DIR_OUT; 1315 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1316 lengths[1] = ccb->cdm.match_buf_len; 1317 dirs[1] = CAM_DIR_IN; 1318 numbufs = 2; 1319 } else { 1320 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1321 lengths[0] = ccb->cdm.match_buf_len; 1322 dirs[0] = CAM_DIR_IN; 1323 numbufs = 1; 1324 } 1325 io_req->data_flags = CAM_DATA_VADDR; 1326 break; 1327 case XPT_SCSI_IO: 1328 case XPT_CONT_TARGET_IO: 1329 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1330 return(0); 1331 1332 /* 1333 * The user shouldn't be able to supply a bio. 1334 */ 1335 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO) 1336 return (EINVAL); 1337 1338 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1339 1340 data_ptrs[0] = &ccb->csio.data_ptr; 1341 lengths[0] = ccb->csio.dxfer_len; 1342 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1343 num_segs = ccb->csio.sglist_cnt; 1344 seg_cnt_ptr = &ccb->csio.sglist_cnt; 1345 numbufs = 1; 1346 maxmap = softc->maxio; 1347 break; 1348 case XPT_ATA_IO: 1349 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1350 return(0); 1351 1352 /* 1353 * We only support a single virtual address for ATA I/O. 1354 */ 1355 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 1356 return (EINVAL); 1357 1358 io_req->data_flags = CAM_DATA_VADDR; 1359 1360 data_ptrs[0] = &ccb->ataio.data_ptr; 1361 lengths[0] = ccb->ataio.dxfer_len; 1362 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1363 numbufs = 1; 1364 maxmap = softc->maxio; 1365 break; 1366 case XPT_SMP_IO: 1367 io_req->data_flags = CAM_DATA_VADDR; 1368 1369 data_ptrs[0] = &ccb->smpio.smp_request; 1370 lengths[0] = ccb->smpio.smp_request_len; 1371 dirs[0] = CAM_DIR_OUT; 1372 data_ptrs[1] = &ccb->smpio.smp_response; 1373 lengths[1] = ccb->smpio.smp_response_len; 1374 dirs[1] = CAM_DIR_IN; 1375 numbufs = 2; 1376 maxmap = softc->maxio; 1377 break; 1378 case XPT_DEV_ADVINFO: 1379 if (ccb->cdai.bufsiz == 0) 1380 return (0); 1381 1382 io_req->data_flags = CAM_DATA_VADDR; 1383 1384 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1385 lengths[0] = ccb->cdai.bufsiz; 1386 dirs[0] = CAM_DIR_IN; 1387 numbufs = 1; 1388 break; 1389 default: 1390 return(EINVAL); 1391 break; /* NOTREACHED */ 1392 } 1393 1394 io_req->num_bufs = numbufs; 1395 1396 /* 1397 * If there is a maximum, check to make sure that the user's 1398 * request fits within the limit. In general, we should only have 1399 * a maximum length for requests that go to hardware. Otherwise it 1400 * is whatever we're able to malloc. 1401 */ 1402 for (i = 0; i < numbufs; i++) { 1403 io_req->user_bufs[i] = *data_ptrs[i]; 1404 io_req->dirs[i] = dirs[i]; 1405 io_req->lengths[i] = lengths[i]; 1406 1407 if (maxmap == 0) 1408 continue; 1409 1410 if (lengths[i] <= maxmap) 1411 continue; 1412 1413 xpt_print(periph->path, "%s: data length %u > max allowed %u " 1414 "bytes\n", __func__, lengths[i], maxmap); 1415 error = EINVAL; 1416 goto bailout; 1417 } 1418 1419 switch (io_req->data_flags) { 1420 case CAM_DATA_VADDR: 1421 /* Map or copy the buffer into kernel address space */ 1422 for (i = 0; i < numbufs; i++) { 1423 uint8_t *tmp_buf; 1424 1425 /* 1426 * If for some reason no length is specified, we 1427 * don't need to allocate anything. 1428 */ 1429 if (io_req->lengths[i] == 0) 1430 continue; 1431 1432 /* 1433 * Make sure that the user's buffer is accessible 1434 * to that process. 1435 */ 1436 if (!useracc(io_req->user_bufs[i], io_req->lengths[i], 1437 (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE : 1438 VM_PROT_READ)) { 1439 xpt_print(periph->path, "%s: user address %p " 1440 "length %u is not accessible\n", __func__, 1441 io_req->user_bufs[i], io_req->lengths[i]); 1442 error = EFAULT; 1443 goto bailout; 1444 } 1445 1446 tmp_buf = malloc(lengths[i], M_SCSIPASS, 1447 M_WAITOK | M_ZERO); 1448 io_req->kern_bufs[i] = tmp_buf; 1449 *data_ptrs[i] = tmp_buf; 1450 1451 #if 0 1452 xpt_print(periph->path, "%s: malloced %p len %u, user " 1453 "buffer %p, operation: %s\n", __func__, 1454 tmp_buf, lengths[i], io_req->user_bufs[i], 1455 (dirs[i] == CAM_DIR_IN) ? "read" : "write"); 1456 #endif 1457 /* 1458 * We only need to copy in if the user is writing. 1459 */ 1460 if (dirs[i] != CAM_DIR_OUT) 1461 continue; 1462 1463 error = copyin(io_req->user_bufs[i], 1464 io_req->kern_bufs[i], lengths[i]); 1465 if (error != 0) { 1466 xpt_print(periph->path, "%s: copy of user " 1467 "buffer from %p to %p failed with " 1468 "error %d\n", __func__, 1469 io_req->user_bufs[i], 1470 io_req->kern_bufs[i], error); 1471 goto bailout; 1472 } 1473 } 1474 break; 1475 case CAM_DATA_PADDR: 1476 /* Pass down the pointer as-is */ 1477 break; 1478 case CAM_DATA_SG: { 1479 size_t sg_length, size_to_go, alloc_size; 1480 uint32_t num_segs_needed; 1481 1482 /* 1483 * Copy the user S/G list in, and then copy in the 1484 * individual segments. 1485 */ 1486 /* 1487 * We shouldn't see this, but check just in case. 1488 */ 1489 if (numbufs != 1) { 1490 xpt_print(periph->path, "%s: cannot currently handle " 1491 "more than one S/G list per CCB\n", __func__); 1492 error = EINVAL; 1493 goto bailout; 1494 } 1495 1496 /* 1497 * We have to have at least one segment. 1498 */ 1499 if (num_segs == 0) { 1500 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, " 1501 "but sglist_cnt=0!\n", __func__); 1502 error = EINVAL; 1503 goto bailout; 1504 } 1505 1506 /* 1507 * Make sure the user specified the total length and didn't 1508 * just leave it to us to decode the S/G list. 1509 */ 1510 if (lengths[0] == 0) { 1511 xpt_print(periph->path, "%s: no dxfer_len specified, " 1512 "but CAM_DATA_SG flag is set!\n", __func__); 1513 error = EINVAL; 1514 goto bailout; 1515 } 1516 1517 /* 1518 * We allocate buffers in io_zone_size increments for an 1519 * S/G list. This will generally be MAXPHYS. 1520 */ 1521 if (lengths[0] <= softc->io_zone_size) 1522 num_segs_needed = 1; 1523 else { 1524 num_segs_needed = lengths[0] / softc->io_zone_size; 1525 if ((lengths[0] % softc->io_zone_size) != 0) 1526 num_segs_needed++; 1527 } 1528 1529 /* Figure out the size of the S/G list */ 1530 sg_length = num_segs * sizeof(bus_dma_segment_t); 1531 io_req->num_user_segs = num_segs; 1532 io_req->num_kern_segs = num_segs_needed; 1533 1534 /* Save the user's S/G list pointer for later restoration */ 1535 io_req->user_bufs[0] = *data_ptrs[0]; 1536 1537 /* 1538 * If we have enough segments allocated by default to handle 1539 * the length of the user's S/G list, 1540 */ 1541 if (num_segs > PASS_MAX_SEGS) { 1542 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1543 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1544 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1545 } else 1546 io_req->user_segptr = io_req->user_segs; 1547 1548 if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) { 1549 xpt_print(periph->path, "%s: unable to access user " 1550 "S/G list at %p\n", __func__, *data_ptrs[0]); 1551 error = EFAULT; 1552 goto bailout; 1553 } 1554 1555 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1556 if (error != 0) { 1557 xpt_print(periph->path, "%s: copy of user S/G list " 1558 "from %p to %p failed with error %d\n", 1559 __func__, *data_ptrs[0], io_req->user_segptr, 1560 error); 1561 goto bailout; 1562 } 1563 1564 if (num_segs_needed > PASS_MAX_SEGS) { 1565 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) * 1566 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO); 1567 io_req->flags |= PASS_IO_KERN_SEG_MALLOC; 1568 } else { 1569 io_req->kern_segptr = io_req->kern_segs; 1570 } 1571 1572 /* 1573 * Allocate the kernel S/G list. 1574 */ 1575 for (size_to_go = lengths[0], i = 0; 1576 size_to_go > 0 && i < num_segs_needed; 1577 i++, size_to_go -= alloc_size) { 1578 uint8_t *kern_ptr; 1579 1580 alloc_size = min(size_to_go, softc->io_zone_size); 1581 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK); 1582 io_req->kern_segptr[i].ds_addr = 1583 (bus_addr_t)(uintptr_t)kern_ptr; 1584 io_req->kern_segptr[i].ds_len = alloc_size; 1585 } 1586 if (size_to_go > 0) { 1587 printf("%s: size_to_go = %zu, software error!\n", 1588 __func__, size_to_go); 1589 error = EINVAL; 1590 goto bailout; 1591 } 1592 1593 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr; 1594 *seg_cnt_ptr = io_req->num_kern_segs; 1595 1596 /* 1597 * We only need to copy data here if the user is writing. 1598 */ 1599 if (dirs[0] == CAM_DIR_OUT) 1600 error = passcopysglist(periph, io_req, dirs[0]); 1601 break; 1602 } 1603 case CAM_DATA_SG_PADDR: { 1604 size_t sg_length; 1605 1606 /* 1607 * We shouldn't see this, but check just in case. 1608 */ 1609 if (numbufs != 1) { 1610 printf("%s: cannot currently handle more than one " 1611 "S/G list per CCB\n", __func__); 1612 error = EINVAL; 1613 goto bailout; 1614 } 1615 1616 /* 1617 * We have to have at least one segment. 1618 */ 1619 if (num_segs == 0) { 1620 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag " 1621 "set, but sglist_cnt=0!\n", __func__); 1622 error = EINVAL; 1623 goto bailout; 1624 } 1625 1626 /* 1627 * Make sure the user specified the total length and didn't 1628 * just leave it to us to decode the S/G list. 1629 */ 1630 if (lengths[0] == 0) { 1631 xpt_print(periph->path, "%s: no dxfer_len specified, " 1632 "but CAM_DATA_SG flag is set!\n", __func__); 1633 error = EINVAL; 1634 goto bailout; 1635 } 1636 1637 /* Figure out the size of the S/G list */ 1638 sg_length = num_segs * sizeof(bus_dma_segment_t); 1639 io_req->num_user_segs = num_segs; 1640 io_req->num_kern_segs = io_req->num_user_segs; 1641 1642 /* Save the user's S/G list pointer for later restoration */ 1643 io_req->user_bufs[0] = *data_ptrs[0]; 1644 1645 if (num_segs > PASS_MAX_SEGS) { 1646 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1647 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1648 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1649 } else 1650 io_req->user_segptr = io_req->user_segs; 1651 1652 io_req->kern_segptr = io_req->user_segptr; 1653 1654 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1655 if (error != 0) { 1656 xpt_print(periph->path, "%s: copy of user S/G list " 1657 "from %p to %p failed with error %d\n", 1658 __func__, *data_ptrs[0], io_req->user_segptr, 1659 error); 1660 goto bailout; 1661 } 1662 break; 1663 } 1664 default: 1665 case CAM_DATA_BIO: 1666 /* 1667 * A user shouldn't be attaching a bio to the CCB. It 1668 * isn't a user-accessible structure. 1669 */ 1670 error = EINVAL; 1671 break; 1672 } 1673 1674 bailout: 1675 if (error != 0) 1676 passiocleanup(softc, io_req); 1677 1678 return (error); 1679 } 1680 1681 static int 1682 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req) 1683 { 1684 struct pass_softc *softc; 1685 union ccb *ccb; 1686 int error; 1687 int i; 1688 1689 error = 0; 1690 softc = (struct pass_softc *)periph->softc; 1691 ccb = &io_req->ccb; 1692 1693 switch (io_req->data_flags) { 1694 case CAM_DATA_VADDR: 1695 /* 1696 * Copy back to the user buffer if this was a read. 1697 */ 1698 for (i = 0; i < io_req->num_bufs; i++) { 1699 if (io_req->dirs[i] != CAM_DIR_IN) 1700 continue; 1701 1702 error = copyout(io_req->kern_bufs[i], 1703 io_req->user_bufs[i], io_req->lengths[i]); 1704 if (error != 0) { 1705 xpt_print(periph->path, "Unable to copy %u " 1706 "bytes from %p to user address %p\n", 1707 io_req->lengths[i], 1708 io_req->kern_bufs[i], 1709 io_req->user_bufs[i]); 1710 goto bailout; 1711 } 1712 1713 } 1714 break; 1715 case CAM_DATA_PADDR: 1716 /* Do nothing. The pointer is a physical address already */ 1717 break; 1718 case CAM_DATA_SG: 1719 /* 1720 * Copy back to the user buffer if this was a read. 1721 * Restore the user's S/G list buffer pointer. 1722 */ 1723 if (io_req->dirs[0] == CAM_DIR_IN) 1724 error = passcopysglist(periph, io_req, io_req->dirs[0]); 1725 break; 1726 case CAM_DATA_SG_PADDR: 1727 /* 1728 * Restore the user's S/G list buffer pointer. No need to 1729 * copy. 1730 */ 1731 break; 1732 default: 1733 case CAM_DATA_BIO: 1734 error = EINVAL; 1735 break; 1736 } 1737 1738 bailout: 1739 /* 1740 * Reset the user's pointers to their original values and free 1741 * allocated memory. 1742 */ 1743 passiocleanup(softc, io_req); 1744 1745 return (error); 1746 } 1747 1748 static int 1749 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1750 { 1751 int error; 1752 1753 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 1754 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl); 1755 } 1756 return (error); 1757 } 1758 1759 static int 1760 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1761 { 1762 struct cam_periph *periph; 1763 struct pass_softc *softc; 1764 int error; 1765 uint32_t priority; 1766 1767 periph = (struct cam_periph *)dev->si_drv1; 1768 cam_periph_lock(periph); 1769 softc = (struct pass_softc *)periph->softc; 1770 1771 error = 0; 1772 1773 switch (cmd) { 1774 1775 case CAMIOCOMMAND: 1776 { 1777 union ccb *inccb; 1778 union ccb *ccb; 1779 int ccb_malloced; 1780 1781 inccb = (union ccb *)addr; 1782 1783 /* 1784 * Some CCB types, like scan bus and scan lun can only go 1785 * through the transport layer device. 1786 */ 1787 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1788 xpt_print(periph->path, "CCB function code %#x is " 1789 "restricted to the XPT device\n", 1790 inccb->ccb_h.func_code); 1791 error = ENODEV; 1792 break; 1793 } 1794 1795 /* Compatibility for RL/priority-unaware code. */ 1796 priority = inccb->ccb_h.pinfo.priority; 1797 if (priority <= CAM_PRIORITY_OOB) 1798 priority += CAM_PRIORITY_OOB + 1; 1799 1800 /* 1801 * Non-immediate CCBs need a CCB from the per-device pool 1802 * of CCBs, which is scheduled by the transport layer. 1803 * Immediate CCBs and user-supplied CCBs should just be 1804 * malloced. 1805 */ 1806 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED) 1807 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) { 1808 ccb = cam_periph_getccb(periph, priority); 1809 ccb_malloced = 0; 1810 } else { 1811 ccb = xpt_alloc_ccb_nowait(); 1812 1813 if (ccb != NULL) 1814 xpt_setup_ccb(&ccb->ccb_h, periph->path, 1815 priority); 1816 ccb_malloced = 1; 1817 } 1818 1819 if (ccb == NULL) { 1820 xpt_print(periph->path, "unable to allocate CCB\n"); 1821 error = ENOMEM; 1822 break; 1823 } 1824 1825 error = passsendccb(periph, ccb, inccb); 1826 1827 if (ccb_malloced) 1828 xpt_free_ccb(ccb); 1829 else 1830 xpt_release_ccb(ccb); 1831 1832 break; 1833 } 1834 case CAMIOQUEUE: 1835 { 1836 struct pass_io_req *io_req; 1837 union ccb **user_ccb, *ccb; 1838 xpt_opcode fc; 1839 1840 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) { 1841 error = passcreatezone(periph); 1842 if (error != 0) 1843 goto bailout; 1844 } 1845 1846 /* 1847 * We're going to do a blocking allocation for this I/O 1848 * request, so we have to drop the lock. 1849 */ 1850 cam_periph_unlock(periph); 1851 1852 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO); 1853 ccb = &io_req->ccb; 1854 user_ccb = (union ccb **)addr; 1855 1856 /* 1857 * Unlike the CAMIOCOMMAND ioctl above, we only have a 1858 * pointer to the user's CCB, so we have to copy the whole 1859 * thing in to a buffer we have allocated (above) instead 1860 * of allowing the ioctl code to malloc a buffer and copy 1861 * it in. 1862 * 1863 * This is an advantage for this asynchronous interface, 1864 * since we don't want the memory to get freed while the 1865 * CCB is outstanding. 1866 */ 1867 #if 0 1868 xpt_print(periph->path, "Copying user CCB %p to " 1869 "kernel address %p\n", *user_ccb, ccb); 1870 #endif 1871 error = copyin(*user_ccb, ccb, sizeof(*ccb)); 1872 if (error != 0) { 1873 xpt_print(periph->path, "Copy of user CCB %p to " 1874 "kernel address %p failed with error %d\n", 1875 *user_ccb, ccb, error); 1876 uma_zfree(softc->pass_zone, io_req); 1877 cam_periph_lock(periph); 1878 break; 1879 } 1880 1881 /* 1882 * Some CCB types, like scan bus and scan lun can only go 1883 * through the transport layer device. 1884 */ 1885 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1886 xpt_print(periph->path, "CCB function code %#x is " 1887 "restricted to the XPT device\n", 1888 ccb->ccb_h.func_code); 1889 uma_zfree(softc->pass_zone, io_req); 1890 cam_periph_lock(periph); 1891 error = ENODEV; 1892 break; 1893 } 1894 1895 /* 1896 * Save the user's CCB pointer as well as his linked list 1897 * pointers and peripheral private area so that we can 1898 * restore these later. 1899 */ 1900 io_req->user_ccb_ptr = *user_ccb; 1901 io_req->user_periph_links = ccb->ccb_h.periph_links; 1902 io_req->user_periph_priv = ccb->ccb_h.periph_priv; 1903 1904 /* 1905 * Now that we've saved the user's values, we can set our 1906 * own peripheral private entry. 1907 */ 1908 ccb->ccb_h.ccb_ioreq = io_req; 1909 1910 /* Compatibility for RL/priority-unaware code. */ 1911 priority = ccb->ccb_h.pinfo.priority; 1912 if (priority <= CAM_PRIORITY_OOB) 1913 priority += CAM_PRIORITY_OOB + 1; 1914 1915 /* 1916 * Setup fields in the CCB like the path and the priority. 1917 * The path in particular cannot be done in userland, since 1918 * it is a pointer to a kernel data structure. 1919 */ 1920 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority, 1921 ccb->ccb_h.flags); 1922 1923 /* 1924 * Setup our done routine. There is no way for the user to 1925 * have a valid pointer here. 1926 */ 1927 ccb->ccb_h.cbfcnp = passdone; 1928 1929 fc = ccb->ccb_h.func_code; 1930 /* 1931 * If this function code has memory that can be mapped in 1932 * or out, we need to call passmemsetup(). 1933 */ 1934 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) 1935 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH) 1936 || (fc == XPT_DEV_ADVINFO)) { 1937 error = passmemsetup(periph, io_req); 1938 if (error != 0) { 1939 uma_zfree(softc->pass_zone, io_req); 1940 cam_periph_lock(periph); 1941 break; 1942 } 1943 } else 1944 io_req->mapinfo.num_bufs_used = 0; 1945 1946 cam_periph_lock(periph); 1947 1948 /* 1949 * Everything goes on the incoming queue initially. 1950 */ 1951 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links); 1952 1953 /* 1954 * If the CCB is queued, and is not a user CCB, then 1955 * we need to allocate a slot for it. Call xpt_schedule() 1956 * so that our start routine will get called when a CCB is 1957 * available. 1958 */ 1959 if ((fc & XPT_FC_QUEUED) 1960 && ((fc & XPT_FC_USER_CCB) == 0)) { 1961 xpt_schedule(periph, priority); 1962 break; 1963 } 1964 1965 /* 1966 * At this point, the CCB in question is either an 1967 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB 1968 * and therefore should be malloced, not allocated via a slot. 1969 * Remove the CCB from the incoming queue and add it to the 1970 * active queue. 1971 */ 1972 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 1973 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 1974 1975 xpt_action(ccb); 1976 1977 /* 1978 * If this is not a queued CCB (i.e. it is an immediate CCB), 1979 * then it is already done. We need to put it on the done 1980 * queue for the user to fetch. 1981 */ 1982 if ((fc & XPT_FC_QUEUED) == 0) { 1983 TAILQ_REMOVE(&softc->active_queue, io_req, links); 1984 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 1985 } 1986 break; 1987 } 1988 case CAMIOGET: 1989 { 1990 union ccb **user_ccb; 1991 struct pass_io_req *io_req; 1992 int old_error; 1993 1994 user_ccb = (union ccb **)addr; 1995 old_error = 0; 1996 1997 io_req = TAILQ_FIRST(&softc->done_queue); 1998 if (io_req == NULL) { 1999 error = ENOENT; 2000 break; 2001 } 2002 2003 /* 2004 * Remove the I/O from the done queue. 2005 */ 2006 TAILQ_REMOVE(&softc->done_queue, io_req, links); 2007 2008 /* 2009 * We have to drop the lock during the copyout because the 2010 * copyout can result in VM faults that require sleeping. 2011 */ 2012 cam_periph_unlock(periph); 2013 2014 /* 2015 * Do any needed copies (e.g. for reads) and revert the 2016 * pointers in the CCB back to the user's pointers. 2017 */ 2018 error = passmemdone(periph, io_req); 2019 2020 old_error = error; 2021 2022 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links; 2023 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv; 2024 2025 #if 0 2026 xpt_print(periph->path, "Copying to user CCB %p from " 2027 "kernel address %p\n", *user_ccb, &io_req->ccb); 2028 #endif 2029 2030 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb)); 2031 if (error != 0) { 2032 xpt_print(periph->path, "Copy to user CCB %p from " 2033 "kernel address %p failed with error %d\n", 2034 *user_ccb, &io_req->ccb, error); 2035 } 2036 2037 /* 2038 * Prefer the first error we got back, and make sure we 2039 * don't overwrite bad status with good. 2040 */ 2041 if (old_error != 0) 2042 error = old_error; 2043 2044 cam_periph_lock(periph); 2045 2046 /* 2047 * At this point, if there was an error, we could potentially 2048 * re-queue the I/O and try again. But why? The error 2049 * would almost certainly happen again. We might as well 2050 * not leak memory. 2051 */ 2052 uma_zfree(softc->pass_zone, io_req); 2053 break; 2054 } 2055 default: 2056 error = cam_periph_ioctl(periph, cmd, addr, passerror); 2057 break; 2058 } 2059 2060 bailout: 2061 cam_periph_unlock(periph); 2062 2063 return(error); 2064 } 2065 2066 static int 2067 passpoll(struct cdev *dev, int poll_events, struct thread *td) 2068 { 2069 struct cam_periph *periph; 2070 struct pass_softc *softc; 2071 int revents; 2072 2073 periph = (struct cam_periph *)dev->si_drv1; 2074 softc = (struct pass_softc *)periph->softc; 2075 2076 revents = poll_events & (POLLOUT | POLLWRNORM); 2077 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) { 2078 cam_periph_lock(periph); 2079 2080 if (!TAILQ_EMPTY(&softc->done_queue)) { 2081 revents |= poll_events & (POLLIN | POLLRDNORM); 2082 } 2083 cam_periph_unlock(periph); 2084 if (revents == 0) 2085 selrecord(td, &softc->read_select); 2086 } 2087 2088 return (revents); 2089 } 2090 2091 static int 2092 passkqfilter(struct cdev *dev, struct knote *kn) 2093 { 2094 struct cam_periph *periph; 2095 struct pass_softc *softc; 2096 2097 periph = (struct cam_periph *)dev->si_drv1; 2098 softc = (struct pass_softc *)periph->softc; 2099 2100 kn->kn_hook = (caddr_t)periph; 2101 kn->kn_fop = &passread_filtops; 2102 knlist_add(&softc->read_select.si_note, kn, 0); 2103 2104 return (0); 2105 } 2106 2107 static void 2108 passreadfiltdetach(struct knote *kn) 2109 { 2110 struct cam_periph *periph; 2111 struct pass_softc *softc; 2112 2113 periph = (struct cam_periph *)kn->kn_hook; 2114 softc = (struct pass_softc *)periph->softc; 2115 2116 knlist_remove(&softc->read_select.si_note, kn, 0); 2117 } 2118 2119 static int 2120 passreadfilt(struct knote *kn, long hint) 2121 { 2122 struct cam_periph *periph; 2123 struct pass_softc *softc; 2124 int retval; 2125 2126 periph = (struct cam_periph *)kn->kn_hook; 2127 softc = (struct pass_softc *)periph->softc; 2128 2129 cam_periph_assert(periph, MA_OWNED); 2130 2131 if (TAILQ_EMPTY(&softc->done_queue)) 2132 retval = 0; 2133 else 2134 retval = 1; 2135 2136 return (retval); 2137 } 2138 2139 /* 2140 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb" 2141 * should be the CCB that is copied in from the user. 2142 */ 2143 static int 2144 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb) 2145 { 2146 struct pass_softc *softc; 2147 struct cam_periph_map_info mapinfo; 2148 xpt_opcode fc; 2149 int error; 2150 2151 softc = (struct pass_softc *)periph->softc; 2152 2153 /* 2154 * There are some fields in the CCB header that need to be 2155 * preserved, the rest we get from the user. 2156 */ 2157 xpt_merge_ccb(ccb, inccb); 2158 2159 /* 2160 */ 2161 ccb->ccb_h.cbfcnp = passdone; 2162 2163 /* 2164 * Let cam_periph_mapmem do a sanity check on the data pointer format. 2165 * Even if no data transfer is needed, it's a cheap check and it 2166 * simplifies the code. 2167 */ 2168 fc = ccb->ccb_h.func_code; 2169 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO) 2170 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO)) { 2171 bzero(&mapinfo, sizeof(mapinfo)); 2172 2173 /* 2174 * cam_periph_mapmem calls into proc and vm functions that can 2175 * sleep as well as trigger I/O, so we can't hold the lock. 2176 * Dropping it here is reasonably safe. 2177 */ 2178 cam_periph_unlock(periph); 2179 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio); 2180 cam_periph_lock(periph); 2181 2182 /* 2183 * cam_periph_mapmem returned an error, we can't continue. 2184 * Return the error to the user. 2185 */ 2186 if (error) 2187 return(error); 2188 } else 2189 /* Ensure that the unmap call later on is a no-op. */ 2190 mapinfo.num_bufs_used = 0; 2191 2192 /* 2193 * If the user wants us to perform any error recovery, then honor 2194 * that request. Otherwise, it's up to the user to perform any 2195 * error recovery. 2196 */ 2197 cam_periph_runccb(ccb, passerror, /* cam_flags */ CAM_RETRY_SELTO, 2198 /* sense_flags */ ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? 2199 SF_RETRY_UA : SF_NO_RECOVERY) | SF_NO_PRINT, 2200 softc->device_stats); 2201 2202 cam_periph_unmapmem(ccb, &mapinfo); 2203 2204 ccb->ccb_h.cbfcnp = NULL; 2205 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv; 2206 bcopy(ccb, inccb, sizeof(union ccb)); 2207 2208 return(0); 2209 } 2210 2211 static int 2212 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) 2213 { 2214 struct cam_periph *periph; 2215 struct pass_softc *softc; 2216 2217 periph = xpt_path_periph(ccb->ccb_h.path); 2218 softc = (struct pass_softc *)periph->softc; 2219 2220 return(cam_periph_error(ccb, cam_flags, sense_flags, 2221 &softc->saved_ccb)); 2222 } 2223