1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/conf.h> 34 #include <sys/types.h> 35 #include <sys/bio.h> 36 #include <sys/bus.h> 37 #include <sys/devicestat.h> 38 #include <sys/errno.h> 39 #include <sys/fcntl.h> 40 #include <sys/malloc.h> 41 #include <sys/proc.h> 42 #include <sys/poll.h> 43 #include <sys/selinfo.h> 44 #include <sys/sdt.h> 45 #include <sys/sysent.h> 46 #include <sys/taskqueue.h> 47 #include <vm/uma.h> 48 #include <vm/vm.h> 49 #include <vm/vm_extern.h> 50 51 #include <machine/bus.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_periph.h> 56 #include <cam/cam_queue.h> 57 #include <cam/cam_xpt.h> 58 #include <cam/cam_xpt_periph.h> 59 #include <cam/cam_debug.h> 60 #include <cam/cam_compat.h> 61 #include <cam/cam_xpt_periph.h> 62 63 #include <cam/scsi/scsi_all.h> 64 #include <cam/scsi/scsi_pass.h> 65 66 typedef enum { 67 PASS_FLAG_OPEN = 0x01, 68 PASS_FLAG_LOCKED = 0x02, 69 PASS_FLAG_INVALID = 0x04, 70 PASS_FLAG_INITIAL_PHYSPATH = 0x08, 71 PASS_FLAG_ZONE_INPROG = 0x10, 72 PASS_FLAG_ZONE_VALID = 0x20, 73 PASS_FLAG_UNMAPPED_CAPABLE = 0x40, 74 PASS_FLAG_ABANDONED_REF_SET = 0x80 75 } pass_flags; 76 77 typedef enum { 78 PASS_STATE_NORMAL 79 } pass_state; 80 81 typedef enum { 82 PASS_CCB_BUFFER_IO, 83 PASS_CCB_QUEUED_IO 84 } pass_ccb_types; 85 86 #define ccb_type ppriv_field0 87 #define ccb_ioreq ppriv_ptr1 88 89 /* 90 * The maximum number of memory segments we preallocate. 91 */ 92 #define PASS_MAX_SEGS 16 93 94 typedef enum { 95 PASS_IO_NONE = 0x00, 96 PASS_IO_USER_SEG_MALLOC = 0x01, 97 PASS_IO_KERN_SEG_MALLOC = 0x02, 98 PASS_IO_ABANDONED = 0x04 99 } pass_io_flags; 100 101 struct pass_io_req { 102 union ccb ccb; 103 union ccb *alloced_ccb; 104 union ccb *user_ccb_ptr; 105 camq_entry user_periph_links; 106 ccb_ppriv_area user_periph_priv; 107 struct cam_periph_map_info mapinfo; 108 pass_io_flags flags; 109 ccb_flags data_flags; 110 int num_user_segs; 111 bus_dma_segment_t user_segs[PASS_MAX_SEGS]; 112 int num_kern_segs; 113 bus_dma_segment_t kern_segs[PASS_MAX_SEGS]; 114 bus_dma_segment_t *user_segptr; 115 bus_dma_segment_t *kern_segptr; 116 int num_bufs; 117 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 118 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 119 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS]; 120 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS]; 121 struct bintime start_time; 122 TAILQ_ENTRY(pass_io_req) links; 123 }; 124 125 struct pass_softc { 126 pass_state state; 127 pass_flags flags; 128 uint8_t pd_type; 129 int open_count; 130 u_int maxio; 131 struct devstat *device_stats; 132 struct cdev *dev; 133 struct cdev *alias_dev; 134 struct task add_physpath_task; 135 struct task shutdown_kqueue_task; 136 struct selinfo read_select; 137 TAILQ_HEAD(, pass_io_req) incoming_queue; 138 TAILQ_HEAD(, pass_io_req) active_queue; 139 TAILQ_HEAD(, pass_io_req) abandoned_queue; 140 TAILQ_HEAD(, pass_io_req) done_queue; 141 struct cam_periph *periph; 142 char zone_name[12]; 143 char io_zone_name[12]; 144 uma_zone_t pass_zone; 145 uma_zone_t pass_io_zone; 146 size_t io_zone_size; 147 }; 148 149 static d_open_t passopen; 150 static d_close_t passclose; 151 static d_ioctl_t passioctl; 152 static d_ioctl_t passdoioctl; 153 static d_poll_t passpoll; 154 static d_kqfilter_t passkqfilter; 155 static void passreadfiltdetach(struct knote *kn); 156 static int passreadfilt(struct knote *kn, long hint); 157 158 static periph_init_t passinit; 159 static periph_ctor_t passregister; 160 static periph_oninv_t passoninvalidate; 161 static periph_dtor_t passcleanup; 162 static periph_start_t passstart; 163 static void pass_shutdown_kqueue(void *context, int pending); 164 static void pass_add_physpath(void *context, int pending); 165 static void passasync(void *callback_arg, uint32_t code, 166 struct cam_path *path, void *arg); 167 static void passdone(struct cam_periph *periph, 168 union ccb *done_ccb); 169 static int passcreatezone(struct cam_periph *periph); 170 static void passiocleanup(struct pass_softc *softc, 171 struct pass_io_req *io_req); 172 static int passcopysglist(struct cam_periph *periph, 173 struct pass_io_req *io_req, 174 ccb_flags direction); 175 static int passmemsetup(struct cam_periph *periph, 176 struct pass_io_req *io_req); 177 static int passmemdone(struct cam_periph *periph, 178 struct pass_io_req *io_req); 179 static int passerror(union ccb *ccb, uint32_t cam_flags, 180 uint32_t sense_flags); 181 static int passsendccb(struct cam_periph *periph, union ccb *ccb, 182 union ccb *inccb); 183 static void passflags(union ccb *ccb, uint32_t *cam_flags, 184 uint32_t *sense_flags); 185 186 static struct periph_driver passdriver = 187 { 188 passinit, "pass", 189 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0 190 }; 191 192 PERIPHDRIVER_DECLARE(pass, passdriver); 193 194 static struct cdevsw pass_cdevsw = { 195 .d_version = D_VERSION, 196 .d_flags = D_TRACKCLOSE, 197 .d_open = passopen, 198 .d_close = passclose, 199 .d_ioctl = passioctl, 200 .d_poll = passpoll, 201 .d_kqfilter = passkqfilter, 202 .d_name = "pass", 203 }; 204 205 static const struct filterops passread_filtops = { 206 .f_isfd = 1, 207 .f_detach = passreadfiltdetach, 208 .f_event = passreadfilt 209 }; 210 211 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers"); 212 213 static void 214 passinit(void) 215 { 216 cam_status status; 217 218 /* 219 * Install a global async callback. This callback will 220 * receive async callbacks like "new device found". 221 */ 222 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL); 223 224 if (status != CAM_REQ_CMP) { 225 printf("pass: Failed to attach master async callback " 226 "due to status 0x%x!\n", status); 227 } 228 229 } 230 231 static void 232 passrejectios(struct cam_periph *periph) 233 { 234 struct pass_io_req *io_req, *io_req2; 235 struct pass_softc *softc; 236 237 softc = (struct pass_softc *)periph->softc; 238 239 /* 240 * The user can no longer get status for I/O on the done queue, so 241 * clean up all outstanding I/O on the done queue. 242 */ 243 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 244 TAILQ_REMOVE(&softc->done_queue, io_req, links); 245 passiocleanup(softc, io_req); 246 uma_zfree(softc->pass_zone, io_req); 247 } 248 249 /* 250 * The underlying device is gone, so we can't issue these I/Os. 251 * The devfs node has been shut down, so we can't return status to 252 * the user. Free any I/O left on the incoming queue. 253 */ 254 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) { 255 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 256 passiocleanup(softc, io_req); 257 uma_zfree(softc->pass_zone, io_req); 258 } 259 260 /* 261 * Normally we would put I/Os on the abandoned queue and acquire a 262 * reference when we saw the final close. But, the device went 263 * away and devfs may have moved everything off to deadfs by the 264 * time the I/O done callback is called; as a result, we won't see 265 * any more closes. So, if we have any active I/Os, we need to put 266 * them on the abandoned queue. When the abandoned queue is empty, 267 * we'll release the remaining reference (see below) to the peripheral. 268 */ 269 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) { 270 TAILQ_REMOVE(&softc->active_queue, io_req, links); 271 io_req->flags |= PASS_IO_ABANDONED; 272 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links); 273 } 274 275 /* 276 * If we put any I/O on the abandoned queue, acquire a reference. 277 */ 278 if ((!TAILQ_EMPTY(&softc->abandoned_queue)) 279 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) { 280 cam_periph_doacquire(periph); 281 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 282 } 283 } 284 285 static void 286 passdevgonecb(void *arg) 287 { 288 struct cam_periph *periph; 289 struct mtx *mtx; 290 struct pass_softc *softc; 291 int i; 292 293 periph = (struct cam_periph *)arg; 294 mtx = cam_periph_mtx(periph); 295 mtx_lock(mtx); 296 297 softc = (struct pass_softc *)periph->softc; 298 KASSERT(softc->open_count >= 0, ("Negative open count %d", 299 softc->open_count)); 300 301 /* 302 * When we get this callback, we will get no more close calls from 303 * devfs. So if we have any dangling opens, we need to release the 304 * reference held for that particular context. 305 */ 306 for (i = 0; i < softc->open_count; i++) 307 cam_periph_release_locked(periph); 308 309 softc->open_count = 0; 310 311 /* 312 * Release the reference held for the device node, it is gone now. 313 * Accordingly, inform all queued I/Os of their fate. 314 */ 315 cam_periph_release_locked(periph); 316 passrejectios(periph); 317 318 /* 319 * We reference the SIM lock directly here, instead of using 320 * cam_periph_unlock(). The reason is that the final call to 321 * cam_periph_release_locked() above could result in the periph 322 * getting freed. If that is the case, dereferencing the periph 323 * with a cam_periph_unlock() call would cause a page fault. 324 */ 325 mtx_unlock(mtx); 326 327 /* 328 * We have to remove our kqueue context from a thread because it 329 * may sleep. It would be nice if we could get a callback from 330 * kqueue when it is done cleaning up resources. 331 */ 332 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task); 333 } 334 335 static void 336 passoninvalidate(struct cam_periph *periph) 337 { 338 struct pass_softc *softc; 339 340 softc = (struct pass_softc *)periph->softc; 341 342 /* 343 * De-register any async callbacks. 344 */ 345 xpt_register_async(0, passasync, periph, periph->path); 346 347 softc->flags |= PASS_FLAG_INVALID; 348 349 /* 350 * Tell devfs this device has gone away, and ask for a callback 351 * when it has cleaned up its state. 352 */ 353 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph); 354 } 355 356 static void 357 passcleanup(struct cam_periph *periph) 358 { 359 struct pass_softc *softc; 360 361 softc = (struct pass_softc *)periph->softc; 362 363 cam_periph_assert(periph, MA_OWNED); 364 KASSERT(TAILQ_EMPTY(&softc->active_queue), 365 ("%s called when there are commands on the active queue!\n", 366 __func__)); 367 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue), 368 ("%s called when there are commands on the abandoned queue!\n", 369 __func__)); 370 KASSERT(TAILQ_EMPTY(&softc->incoming_queue), 371 ("%s called when there are commands on the incoming queue!\n", 372 __func__)); 373 KASSERT(TAILQ_EMPTY(&softc->done_queue), 374 ("%s called when there are commands on the done queue!\n", 375 __func__)); 376 377 devstat_remove_entry(softc->device_stats); 378 379 cam_periph_unlock(periph); 380 381 /* 382 * We call taskqueue_drain() for the physpath task to make sure it 383 * is complete. We drop the lock because this can potentially 384 * sleep. XXX KDM that is bad. Need a way to get a callback when 385 * a taskqueue is drained. 386 * 387 * Note that we don't drain the kqueue shutdown task queue. This 388 * is because we hold a reference on the periph for kqueue, and 389 * release that reference from the kqueue shutdown task queue. So 390 * we cannot come into this routine unless we've released that 391 * reference. Also, because that could be the last reference, we 392 * could be called from the cam_periph_release() call in 393 * pass_shutdown_kqueue(). In that case, the taskqueue_drain() 394 * would deadlock. It would be preferable if we had a way to 395 * get a callback when a taskqueue is done. 396 */ 397 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task); 398 399 /* 400 * It should be safe to destroy the zones from here, because all 401 * of the references to this peripheral have been freed, and all 402 * I/O has been terminated and freed. We check the zones for NULL 403 * because they may not have been allocated yet if the device went 404 * away before any asynchronous I/O has been issued. 405 */ 406 if (softc->pass_zone != NULL) 407 uma_zdestroy(softc->pass_zone); 408 if (softc->pass_io_zone != NULL) 409 uma_zdestroy(softc->pass_io_zone); 410 411 cam_periph_lock(periph); 412 413 free(softc, M_DEVBUF); 414 } 415 416 static void 417 pass_shutdown_kqueue(void *context, int pending) 418 { 419 struct cam_periph *periph; 420 struct pass_softc *softc; 421 422 periph = context; 423 softc = periph->softc; 424 425 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0); 426 knlist_destroy(&softc->read_select.si_note); 427 428 /* 429 * Release the reference we held for kqueue. 430 */ 431 cam_periph_release(periph); 432 } 433 434 static void 435 pass_add_physpath(void *context, int pending) 436 { 437 struct cam_periph *periph; 438 struct pass_softc *softc; 439 struct mtx *mtx; 440 char *physpath; 441 442 /* 443 * If we have one, create a devfs alias for our 444 * physical path. 445 */ 446 periph = context; 447 softc = periph->softc; 448 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK); 449 mtx = cam_periph_mtx(periph); 450 mtx_lock(mtx); 451 452 if (periph->flags & CAM_PERIPH_INVALID) 453 goto out; 454 455 if (xpt_getattr(physpath, MAXPATHLEN, 456 "GEOM::physpath", periph->path) == 0 457 && strlen(physpath) != 0) { 458 mtx_unlock(mtx); 459 make_dev_physpath_alias(MAKEDEV_WAITOK | MAKEDEV_CHECKNAME, 460 &softc->alias_dev, softc->dev, 461 softc->alias_dev, physpath); 462 mtx_lock(mtx); 463 } 464 465 out: 466 /* 467 * Now that we've made our alias, we no longer have to have a 468 * reference to the device. 469 */ 470 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0) 471 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH; 472 473 /* 474 * We always acquire a reference to the periph before queueing this 475 * task queue function, so it won't go away before we run. 476 */ 477 while (pending-- > 0) 478 cam_periph_release_locked(periph); 479 mtx_unlock(mtx); 480 481 free(physpath, M_DEVBUF); 482 } 483 484 static void 485 passasync(void *callback_arg, uint32_t code, 486 struct cam_path *path, void *arg) 487 { 488 struct cam_periph *periph; 489 490 periph = (struct cam_periph *)callback_arg; 491 492 switch (code) { 493 case AC_FOUND_DEVICE: 494 { 495 struct ccb_getdev *cgd; 496 cam_status status; 497 498 cgd = (struct ccb_getdev *)arg; 499 if (cgd == NULL) 500 break; 501 502 /* 503 * Allocate a peripheral instance for 504 * this device and start the probe 505 * process. 506 */ 507 status = cam_periph_alloc(passregister, passoninvalidate, 508 passcleanup, passstart, "pass", 509 CAM_PERIPH_BIO, path, 510 passasync, AC_FOUND_DEVICE, cgd); 511 512 if (status != CAM_REQ_CMP 513 && status != CAM_REQ_INPROG) { 514 const struct cam_status_entry *entry; 515 516 entry = cam_fetch_status_entry(status); 517 518 printf("passasync: Unable to attach new device " 519 "due to status %#x: %s\n", status, entry ? 520 entry->status_text : "Unknown"); 521 } 522 523 break; 524 } 525 case AC_ADVINFO_CHANGED: 526 { 527 uintptr_t buftype; 528 529 buftype = (uintptr_t)arg; 530 if (buftype == CDAI_TYPE_PHYS_PATH) { 531 struct pass_softc *softc; 532 533 softc = (struct pass_softc *)periph->softc; 534 /* 535 * Acquire a reference to the periph before we 536 * start the taskqueue, so that we don't run into 537 * a situation where the periph goes away before 538 * the task queue has a chance to run. 539 */ 540 if (cam_periph_acquire(periph) != 0) 541 break; 542 543 taskqueue_enqueue(taskqueue_thread, 544 &softc->add_physpath_task); 545 } 546 break; 547 } 548 default: 549 cam_periph_async(periph, code, path, arg); 550 break; 551 } 552 } 553 554 static cam_status 555 passregister(struct cam_periph *periph, void *arg) 556 { 557 struct pass_softc *softc; 558 struct ccb_getdev *cgd; 559 struct ccb_pathinq cpi; 560 struct make_dev_args args; 561 int error, no_tags; 562 563 cgd = (struct ccb_getdev *)arg; 564 if (cgd == NULL) { 565 printf("%s: no getdev CCB, can't register device\n", __func__); 566 return(CAM_REQ_CMP_ERR); 567 } 568 569 softc = (struct pass_softc *)malloc(sizeof(*softc), 570 M_DEVBUF, M_NOWAIT); 571 572 if (softc == NULL) { 573 printf("%s: Unable to probe new device. " 574 "Unable to allocate softc\n", __func__); 575 return(CAM_REQ_CMP_ERR); 576 } 577 578 bzero(softc, sizeof(*softc)); 579 softc->state = PASS_STATE_NORMAL; 580 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI) 581 softc->pd_type = SID_TYPE(&cgd->inq_data); 582 else if (cgd->protocol == PROTO_SATAPM) 583 softc->pd_type = T_ENCLOSURE; 584 else 585 softc->pd_type = T_DIRECT; 586 587 periph->softc = softc; 588 softc->periph = periph; 589 TAILQ_INIT(&softc->incoming_queue); 590 TAILQ_INIT(&softc->active_queue); 591 TAILQ_INIT(&softc->abandoned_queue); 592 TAILQ_INIT(&softc->done_queue); 593 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d", 594 periph->periph_name, periph->unit_number); 595 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO", 596 periph->periph_name, periph->unit_number); 597 softc->io_zone_size = maxphys; 598 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph)); 599 600 xpt_path_inq(&cpi, periph->path); 601 602 if (cpi.maxio == 0) 603 softc->maxio = DFLTPHYS; /* traditional default */ 604 else if (cpi.maxio > maxphys) 605 softc->maxio = maxphys; /* for safety */ 606 else 607 softc->maxio = cpi.maxio; /* real value */ 608 609 if (cpi.hba_misc & PIM_UNMAPPED) 610 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE; 611 612 /* 613 * We pass in 0 for a blocksize, since we don't 614 * know what the blocksize of this device is, if 615 * it even has a blocksize. 616 */ 617 cam_periph_unlock(periph); 618 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0; 619 softc->device_stats = devstat_new_entry("pass", 620 periph->unit_number, 0, 621 DEVSTAT_NO_BLOCKSIZE 622 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0), 623 softc->pd_type | 624 XPORT_DEVSTAT_TYPE(cpi.transport) | 625 DEVSTAT_TYPE_PASS, 626 DEVSTAT_PRIORITY_PASS); 627 628 /* 629 * Initialize the taskqueue handler for shutting down kqueue. 630 */ 631 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0, 632 pass_shutdown_kqueue, periph); 633 634 /* 635 * Acquire a reference to the periph that we can release once we've 636 * cleaned up the kqueue. 637 */ 638 if (cam_periph_acquire(periph) != 0) { 639 xpt_print(periph->path, "%s: lost periph during " 640 "registration!\n", __func__); 641 cam_periph_lock(periph); 642 return (CAM_REQ_CMP_ERR); 643 } 644 645 /* 646 * Acquire a reference to the periph before we create the devfs 647 * instance for it. We'll release this reference once the devfs 648 * instance has been freed. 649 */ 650 if (cam_periph_acquire(periph) != 0) { 651 xpt_print(periph->path, "%s: lost periph during " 652 "registration!\n", __func__); 653 cam_periph_lock(periph); 654 return (CAM_REQ_CMP_ERR); 655 } 656 657 /* Register the device */ 658 make_dev_args_init(&args); 659 args.mda_devsw = &pass_cdevsw; 660 args.mda_unit = periph->unit_number; 661 args.mda_uid = UID_ROOT; 662 args.mda_gid = GID_OPERATOR; 663 args.mda_mode = 0600; 664 args.mda_si_drv1 = periph; 665 args.mda_flags = MAKEDEV_NOWAIT; 666 error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name, 667 periph->unit_number); 668 if (error != 0) { 669 cam_periph_lock(periph); 670 cam_periph_release_locked(periph); 671 return (CAM_REQ_CMP_ERR); 672 } 673 674 /* 675 * Hold a reference to the periph before we create the physical 676 * path alias so it can't go away. 677 */ 678 if (cam_periph_acquire(periph) != 0) { 679 xpt_print(periph->path, "%s: lost periph during " 680 "registration!\n", __func__); 681 cam_periph_lock(periph); 682 return (CAM_REQ_CMP_ERR); 683 } 684 685 cam_periph_lock(periph); 686 687 TASK_INIT(&softc->add_physpath_task, /*priority*/0, 688 pass_add_physpath, periph); 689 690 /* 691 * See if physical path information is already available. 692 */ 693 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); 694 695 /* 696 * Add an async callback so that we get notified if 697 * this device goes away or its physical path 698 * (stored in the advanced info data of the EDT) has 699 * changed. 700 */ 701 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED, 702 passasync, periph, periph->path); 703 704 if (bootverbose) 705 xpt_announce_periph(periph, NULL); 706 707 return(CAM_REQ_CMP); 708 } 709 710 static int 711 passopen(struct cdev *dev, int flags, int fmt, struct thread *td) 712 { 713 struct cam_periph *periph; 714 struct pass_softc *softc; 715 int error; 716 717 periph = (struct cam_periph *)dev->si_drv1; 718 if (cam_periph_acquire(periph) != 0) 719 return (ENXIO); 720 721 cam_periph_lock(periph); 722 723 softc = (struct pass_softc *)periph->softc; 724 725 if (softc->flags & PASS_FLAG_INVALID) { 726 cam_periph_release_locked(periph); 727 cam_periph_unlock(periph); 728 return(ENXIO); 729 } 730 731 /* 732 * Don't allow access when we're running at a high securelevel. 733 */ 734 error = securelevel_gt(td->td_ucred, 1); 735 if (error) { 736 cam_periph_release_locked(periph); 737 cam_periph_unlock(periph); 738 return(error); 739 } 740 741 /* 742 * Only allow read-write access. 743 */ 744 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) { 745 cam_periph_release_locked(periph); 746 cam_periph_unlock(periph); 747 return(EPERM); 748 } 749 750 /* 751 * We don't allow nonblocking access. 752 */ 753 if ((flags & O_NONBLOCK) != 0) { 754 xpt_print(periph->path, "can't do nonblocking access\n"); 755 cam_periph_release_locked(periph); 756 cam_periph_unlock(periph); 757 return(EINVAL); 758 } 759 760 softc->open_count++; 761 762 cam_periph_unlock(periph); 763 764 return (error); 765 } 766 767 static int 768 passclose(struct cdev *dev, int flag, int fmt, struct thread *td) 769 { 770 struct cam_periph *periph; 771 struct pass_softc *softc; 772 struct mtx *mtx; 773 774 periph = (struct cam_periph *)dev->si_drv1; 775 mtx = cam_periph_mtx(periph); 776 mtx_lock(mtx); 777 778 softc = periph->softc; 779 softc->open_count--; 780 781 if (softc->open_count == 0) { 782 struct pass_io_req *io_req, *io_req2; 783 784 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 785 TAILQ_REMOVE(&softc->done_queue, io_req, links); 786 passiocleanup(softc, io_req); 787 uma_zfree(softc->pass_zone, io_req); 788 } 789 790 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, 791 io_req2) { 792 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 793 passiocleanup(softc, io_req); 794 uma_zfree(softc->pass_zone, io_req); 795 } 796 797 /* 798 * If there are any active I/Os, we need to forcibly acquire a 799 * reference to the peripheral so that we don't go away 800 * before they complete. We'll release the reference when 801 * the abandoned queue is empty. 802 */ 803 io_req = TAILQ_FIRST(&softc->active_queue); 804 if ((io_req != NULL) 805 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) { 806 cam_periph_doacquire(periph); 807 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 808 } 809 810 /* 811 * Since the I/O in the active queue is not under our 812 * control, just set a flag so that we can clean it up when 813 * it completes and put it on the abandoned queue. This 814 * will prevent our sending spurious completions in the 815 * event that the device is opened again before these I/Os 816 * complete. 817 */ 818 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, 819 io_req2) { 820 TAILQ_REMOVE(&softc->active_queue, io_req, links); 821 io_req->flags |= PASS_IO_ABANDONED; 822 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, 823 links); 824 } 825 } 826 827 cam_periph_release_locked(periph); 828 829 /* 830 * We reference the lock directly here, instead of using 831 * cam_periph_unlock(). The reason is that the call to 832 * cam_periph_release_locked() above could result in the periph 833 * getting freed. If that is the case, dereferencing the periph 834 * with a cam_periph_unlock() call would cause a page fault. 835 * 836 * cam_periph_release() avoids this problem using the same method, 837 * but we're manually acquiring and dropping the lock here to 838 * protect the open count and avoid another lock acquisition and 839 * release. 840 */ 841 mtx_unlock(mtx); 842 843 return (0); 844 } 845 846 static void 847 passstart(struct cam_periph *periph, union ccb *start_ccb) 848 { 849 struct pass_softc *softc; 850 851 softc = (struct pass_softc *)periph->softc; 852 853 switch (softc->state) { 854 case PASS_STATE_NORMAL: { 855 struct pass_io_req *io_req; 856 857 /* 858 * Check for any queued I/O requests that require an 859 * allocated slot. 860 */ 861 io_req = TAILQ_FIRST(&softc->incoming_queue); 862 if (io_req == NULL) { 863 xpt_release_ccb(start_ccb); 864 break; 865 } 866 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 867 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 868 /* 869 * Merge the user's CCB into the allocated CCB. 870 */ 871 xpt_merge_ccb(start_ccb, &io_req->ccb); 872 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO; 873 start_ccb->ccb_h.ccb_ioreq = io_req; 874 start_ccb->ccb_h.cbfcnp = passdone; 875 io_req->alloced_ccb = start_ccb; 876 binuptime(&io_req->start_time); 877 devstat_start_transaction(softc->device_stats, 878 &io_req->start_time); 879 880 xpt_action(start_ccb); 881 882 /* 883 * If we have any more I/O waiting, schedule ourselves again. 884 */ 885 if (!TAILQ_EMPTY(&softc->incoming_queue)) 886 xpt_schedule(periph, CAM_PRIORITY_NORMAL); 887 break; 888 } 889 default: 890 break; 891 } 892 } 893 894 static void 895 passdone(struct cam_periph *periph, union ccb *done_ccb) 896 { 897 struct pass_softc *softc; 898 struct ccb_scsiio *csio; 899 900 softc = (struct pass_softc *)periph->softc; 901 902 cam_periph_assert(periph, MA_OWNED); 903 904 csio = &done_ccb->csio; 905 switch (csio->ccb_h.ccb_type) { 906 case PASS_CCB_QUEUED_IO: { 907 struct pass_io_req *io_req; 908 909 io_req = done_ccb->ccb_h.ccb_ioreq; 910 #if 0 911 xpt_print(periph->path, "%s: called for user CCB %p\n", 912 __func__, io_req->user_ccb_ptr); 913 #endif 914 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) && 915 ((io_req->flags & PASS_IO_ABANDONED) == 0)) { 916 int error; 917 uint32_t cam_flags, sense_flags; 918 919 passflags(done_ccb, &cam_flags, &sense_flags); 920 error = passerror(done_ccb, cam_flags, sense_flags); 921 922 if (error == ERESTART) { 923 KASSERT(((sense_flags & SF_NO_RETRY) == 0), 924 ("passerror returned ERESTART with no retry requested\n")); 925 return; 926 } 927 } 928 929 /* 930 * Copy the allocated CCB contents back to the malloced CCB 931 * so we can give status back to the user when he requests it. 932 */ 933 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb)); 934 935 /* 936 * Log data/transaction completion with devstat(9). 937 */ 938 switch (done_ccb->ccb_h.func_code) { 939 case XPT_SCSI_IO: 940 devstat_end_transaction(softc->device_stats, 941 done_ccb->csio.dxfer_len - done_ccb->csio.resid, 942 done_ccb->csio.tag_action & 0x3, 943 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 944 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 945 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 946 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 947 &io_req->start_time); 948 break; 949 case XPT_ATA_IO: 950 devstat_end_transaction(softc->device_stats, 951 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid, 952 0, /* Not used in ATA */ 953 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 954 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 955 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 956 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 957 &io_req->start_time); 958 break; 959 case XPT_SMP_IO: 960 /* 961 * XXX KDM this isn't quite right, but there isn't 962 * currently an easy way to represent a bidirectional 963 * transfer in devstat. The only way to do it 964 * and have the byte counts come out right would 965 * mean that we would have to record two 966 * transactions, one for the request and one for the 967 * response. For now, so that we report something, 968 * just treat the entire thing as a read. 969 */ 970 devstat_end_transaction(softc->device_stats, 971 done_ccb->smpio.smp_request_len + 972 done_ccb->smpio.smp_response_len, 973 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL, 974 &io_req->start_time); 975 break; 976 default: 977 devstat_end_transaction(softc->device_stats, 0, 978 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL, 979 &io_req->start_time); 980 break; 981 } 982 983 /* 984 * In the normal case, take the completed I/O off of the 985 * active queue and put it on the done queue. Notitfy the 986 * user that we have a completed I/O. 987 */ 988 if ((io_req->flags & PASS_IO_ABANDONED) == 0) { 989 TAILQ_REMOVE(&softc->active_queue, io_req, links); 990 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 991 selwakeuppri(&softc->read_select, PRIBIO); 992 KNOTE_LOCKED(&softc->read_select.si_note, 0); 993 } else { 994 /* 995 * In the case of an abandoned I/O (final close 996 * without fetching the I/O), take it off of the 997 * abandoned queue and free it. 998 */ 999 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links); 1000 passiocleanup(softc, io_req); 1001 uma_zfree(softc->pass_zone, io_req); 1002 1003 /* 1004 * Release the done_ccb here, since we may wind up 1005 * freeing the peripheral when we decrement the 1006 * reference count below. 1007 */ 1008 xpt_release_ccb(done_ccb); 1009 1010 /* 1011 * If the abandoned queue is empty, we can release 1012 * our reference to the periph since we won't have 1013 * any more completions coming. 1014 */ 1015 if ((TAILQ_EMPTY(&softc->abandoned_queue)) 1016 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) { 1017 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET; 1018 cam_periph_release_locked(periph); 1019 } 1020 1021 /* 1022 * We have already released the CCB, so we can 1023 * return. 1024 */ 1025 return; 1026 } 1027 break; 1028 } 1029 } 1030 xpt_release_ccb(done_ccb); 1031 } 1032 1033 static int 1034 passcreatezone(struct cam_periph *periph) 1035 { 1036 struct pass_softc *softc; 1037 int error; 1038 1039 error = 0; 1040 softc = (struct pass_softc *)periph->softc; 1041 1042 cam_periph_assert(periph, MA_OWNED); 1043 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 1044 ("%s called when the pass(4) zone is valid!\n", __func__)); 1045 KASSERT((softc->pass_zone == NULL), 1046 ("%s called when the pass(4) zone is allocated!\n", __func__)); 1047 1048 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) { 1049 /* 1050 * We're the first context through, so we need to create 1051 * the pass(4) UMA zone for I/O requests. 1052 */ 1053 softc->flags |= PASS_FLAG_ZONE_INPROG; 1054 1055 /* 1056 * uma_zcreate() does a blocking (M_WAITOK) allocation, 1057 * so we cannot hold a mutex while we call it. 1058 */ 1059 cam_periph_unlock(periph); 1060 1061 softc->pass_zone = uma_zcreate(softc->zone_name, 1062 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL, 1063 /*align*/ 0, /*flags*/ 0); 1064 1065 softc->pass_io_zone = uma_zcreate(softc->io_zone_name, 1066 softc->io_zone_size, NULL, NULL, NULL, NULL, 1067 /*align*/ 0, /*flags*/ 0); 1068 1069 cam_periph_lock(periph); 1070 1071 if ((softc->pass_zone == NULL) 1072 || (softc->pass_io_zone == NULL)) { 1073 if (softc->pass_zone == NULL) 1074 xpt_print(periph->path, "unable to allocate " 1075 "IO Req UMA zone\n"); 1076 else 1077 xpt_print(periph->path, "unable to allocate " 1078 "IO UMA zone\n"); 1079 softc->flags &= ~PASS_FLAG_ZONE_INPROG; 1080 goto bailout; 1081 } 1082 1083 /* 1084 * Set the flags appropriately and notify any other waiters. 1085 */ 1086 softc->flags &= ~PASS_FLAG_ZONE_INPROG; 1087 softc->flags |= PASS_FLAG_ZONE_VALID; 1088 wakeup(&softc->pass_zone); 1089 } else { 1090 /* 1091 * In this case, the UMA zone has not yet been created, but 1092 * another context is in the process of creating it. We 1093 * need to sleep until the creation is either done or has 1094 * failed. 1095 */ 1096 while ((softc->flags & PASS_FLAG_ZONE_INPROG) 1097 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) { 1098 error = msleep(&softc->pass_zone, 1099 cam_periph_mtx(periph), PRIBIO, 1100 "paszon", 0); 1101 if (error != 0) 1102 goto bailout; 1103 } 1104 /* 1105 * If the zone creation failed, no luck for the user. 1106 */ 1107 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){ 1108 error = ENOMEM; 1109 goto bailout; 1110 } 1111 } 1112 bailout: 1113 return (error); 1114 } 1115 1116 static void 1117 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req) 1118 { 1119 union ccb *ccb; 1120 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1121 int i, numbufs; 1122 1123 ccb = &io_req->ccb; 1124 1125 switch (ccb->ccb_h.func_code) { 1126 case XPT_DEV_MATCH: 1127 numbufs = min(io_req->num_bufs, 2); 1128 1129 if (numbufs == 1) { 1130 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches; 1131 } else { 1132 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns; 1133 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches; 1134 } 1135 break; 1136 case XPT_SCSI_IO: 1137 case XPT_CONT_TARGET_IO: 1138 data_ptrs[0] = &ccb->csio.data_ptr; 1139 numbufs = min(io_req->num_bufs, 1); 1140 break; 1141 case XPT_ATA_IO: 1142 data_ptrs[0] = &ccb->ataio.data_ptr; 1143 numbufs = min(io_req->num_bufs, 1); 1144 break; 1145 case XPT_SMP_IO: 1146 numbufs = min(io_req->num_bufs, 2); 1147 data_ptrs[0] = &ccb->smpio.smp_request; 1148 data_ptrs[1] = &ccb->smpio.smp_response; 1149 break; 1150 case XPT_DEV_ADVINFO: 1151 numbufs = min(io_req->num_bufs, 1); 1152 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1153 break; 1154 case XPT_NVME_IO: 1155 case XPT_NVME_ADMIN: 1156 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1157 numbufs = min(io_req->num_bufs, 1); 1158 break; 1159 default: 1160 /* allow ourselves to be swapped once again */ 1161 return; 1162 break; /* NOTREACHED */ 1163 } 1164 1165 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) { 1166 free(io_req->user_segptr, M_SCSIPASS); 1167 io_req->user_segptr = NULL; 1168 } 1169 1170 /* 1171 * We only want to free memory we malloced. 1172 */ 1173 if (io_req->data_flags == CAM_DATA_VADDR) { 1174 for (i = 0; i < io_req->num_bufs; i++) { 1175 if (io_req->kern_bufs[i] == NULL) 1176 continue; 1177 1178 free(io_req->kern_bufs[i], M_SCSIPASS); 1179 io_req->kern_bufs[i] = NULL; 1180 } 1181 } else if (io_req->data_flags == CAM_DATA_SG) { 1182 for (i = 0; i < io_req->num_kern_segs; i++) { 1183 if ((uint8_t *)(uintptr_t) 1184 io_req->kern_segptr[i].ds_addr == NULL) 1185 continue; 1186 1187 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t) 1188 io_req->kern_segptr[i].ds_addr); 1189 io_req->kern_segptr[i].ds_addr = 0; 1190 } 1191 } 1192 1193 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) { 1194 free(io_req->kern_segptr, M_SCSIPASS); 1195 io_req->kern_segptr = NULL; 1196 } 1197 1198 if (io_req->data_flags != CAM_DATA_PADDR) { 1199 for (i = 0; i < numbufs; i++) { 1200 /* 1201 * Restore the user's buffer pointers to their 1202 * previous values. 1203 */ 1204 if (io_req->user_bufs[i] != NULL) 1205 *data_ptrs[i] = io_req->user_bufs[i]; 1206 } 1207 } 1208 1209 } 1210 1211 static int 1212 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req, 1213 ccb_flags direction) 1214 { 1215 bus_size_t kern_watermark, user_watermark, len_to_copy; 1216 bus_dma_segment_t *user_sglist, *kern_sglist; 1217 int i, j, error; 1218 1219 error = 0; 1220 kern_watermark = 0; 1221 user_watermark = 0; 1222 len_to_copy = 0; 1223 user_sglist = io_req->user_segptr; 1224 kern_sglist = io_req->kern_segptr; 1225 1226 for (i = 0, j = 0; i < io_req->num_user_segs && 1227 j < io_req->num_kern_segs;) { 1228 uint8_t *user_ptr, *kern_ptr; 1229 1230 len_to_copy = min(user_sglist[i].ds_len -user_watermark, 1231 kern_sglist[j].ds_len - kern_watermark); 1232 1233 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr; 1234 user_ptr = user_ptr + user_watermark; 1235 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr; 1236 kern_ptr = kern_ptr + kern_watermark; 1237 1238 user_watermark += len_to_copy; 1239 kern_watermark += len_to_copy; 1240 1241 if (direction == CAM_DIR_IN) { 1242 error = copyout(kern_ptr, user_ptr, len_to_copy); 1243 if (error != 0) { 1244 xpt_print(periph->path, "%s: copyout of %u " 1245 "bytes from %p to %p failed with " 1246 "error %d\n", __func__, len_to_copy, 1247 kern_ptr, user_ptr, error); 1248 goto bailout; 1249 } 1250 } else { 1251 error = copyin(user_ptr, kern_ptr, len_to_copy); 1252 if (error != 0) { 1253 xpt_print(periph->path, "%s: copyin of %u " 1254 "bytes from %p to %p failed with " 1255 "error %d\n", __func__, len_to_copy, 1256 user_ptr, kern_ptr, error); 1257 goto bailout; 1258 } 1259 } 1260 1261 if (user_sglist[i].ds_len == user_watermark) { 1262 i++; 1263 user_watermark = 0; 1264 } 1265 1266 if (kern_sglist[j].ds_len == kern_watermark) { 1267 j++; 1268 kern_watermark = 0; 1269 } 1270 } 1271 1272 bailout: 1273 1274 return (error); 1275 } 1276 1277 static int 1278 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req) 1279 { 1280 union ccb *ccb; 1281 struct pass_softc *softc; 1282 int numbufs, i; 1283 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1284 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 1285 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 1286 uint32_t num_segs; 1287 uint16_t *seg_cnt_ptr; 1288 size_t maxmap; 1289 int error; 1290 1291 cam_periph_assert(periph, MA_NOTOWNED); 1292 1293 softc = periph->softc; 1294 1295 error = 0; 1296 ccb = &io_req->ccb; 1297 maxmap = 0; 1298 num_segs = 0; 1299 seg_cnt_ptr = NULL; 1300 1301 switch(ccb->ccb_h.func_code) { 1302 case XPT_DEV_MATCH: 1303 if (ccb->cdm.match_buf_len == 0) { 1304 printf("%s: invalid match buffer length 0\n", __func__); 1305 return(EINVAL); 1306 } 1307 if (ccb->cdm.pattern_buf_len > 0) { 1308 data_ptrs[0] = (uint8_t **)&ccb->cdm.patterns; 1309 lengths[0] = ccb->cdm.pattern_buf_len; 1310 dirs[0] = CAM_DIR_OUT; 1311 data_ptrs[1] = (uint8_t **)&ccb->cdm.matches; 1312 lengths[1] = ccb->cdm.match_buf_len; 1313 dirs[1] = CAM_DIR_IN; 1314 numbufs = 2; 1315 } else { 1316 data_ptrs[0] = (uint8_t **)&ccb->cdm.matches; 1317 lengths[0] = ccb->cdm.match_buf_len; 1318 dirs[0] = CAM_DIR_IN; 1319 numbufs = 1; 1320 } 1321 io_req->data_flags = CAM_DATA_VADDR; 1322 break; 1323 case XPT_SCSI_IO: 1324 case XPT_CONT_TARGET_IO: 1325 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1326 return(0); 1327 1328 /* 1329 * The user shouldn't be able to supply a bio. 1330 */ 1331 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO) 1332 return (EINVAL); 1333 1334 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1335 1336 data_ptrs[0] = &ccb->csio.data_ptr; 1337 lengths[0] = ccb->csio.dxfer_len; 1338 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1339 num_segs = ccb->csio.sglist_cnt; 1340 seg_cnt_ptr = &ccb->csio.sglist_cnt; 1341 numbufs = 1; 1342 maxmap = softc->maxio; 1343 break; 1344 case XPT_ATA_IO: 1345 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1346 return(0); 1347 1348 /* 1349 * We only support a single virtual address for ATA I/O. 1350 */ 1351 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 1352 return (EINVAL); 1353 1354 io_req->data_flags = CAM_DATA_VADDR; 1355 1356 data_ptrs[0] = &ccb->ataio.data_ptr; 1357 lengths[0] = ccb->ataio.dxfer_len; 1358 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1359 numbufs = 1; 1360 maxmap = softc->maxio; 1361 break; 1362 case XPT_SMP_IO: 1363 io_req->data_flags = CAM_DATA_VADDR; 1364 1365 data_ptrs[0] = &ccb->smpio.smp_request; 1366 lengths[0] = ccb->smpio.smp_request_len; 1367 dirs[0] = CAM_DIR_OUT; 1368 data_ptrs[1] = &ccb->smpio.smp_response; 1369 lengths[1] = ccb->smpio.smp_response_len; 1370 dirs[1] = CAM_DIR_IN; 1371 numbufs = 2; 1372 maxmap = softc->maxio; 1373 break; 1374 case XPT_DEV_ADVINFO: 1375 if (ccb->cdai.bufsiz == 0) 1376 return (0); 1377 1378 io_req->data_flags = CAM_DATA_VADDR; 1379 1380 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1381 lengths[0] = ccb->cdai.bufsiz; 1382 dirs[0] = CAM_DIR_IN; 1383 numbufs = 1; 1384 break; 1385 case XPT_NVME_ADMIN: 1386 case XPT_NVME_IO: 1387 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1388 return (0); 1389 1390 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1391 1392 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1393 lengths[0] = ccb->nvmeio.dxfer_len; 1394 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1395 num_segs = ccb->nvmeio.sglist_cnt; 1396 seg_cnt_ptr = &ccb->nvmeio.sglist_cnt; 1397 numbufs = 1; 1398 maxmap = softc->maxio; 1399 break; 1400 default: 1401 return(EINVAL); 1402 break; /* NOTREACHED */ 1403 } 1404 1405 io_req->num_bufs = numbufs; 1406 1407 /* 1408 * If there is a maximum, check to make sure that the user's 1409 * request fits within the limit. In general, we should only have 1410 * a maximum length for requests that go to hardware. Otherwise it 1411 * is whatever we're able to malloc. 1412 */ 1413 for (i = 0; i < numbufs; i++) { 1414 io_req->user_bufs[i] = *data_ptrs[i]; 1415 io_req->dirs[i] = dirs[i]; 1416 io_req->lengths[i] = lengths[i]; 1417 1418 if (maxmap == 0) 1419 continue; 1420 1421 if (lengths[i] <= maxmap) 1422 continue; 1423 1424 xpt_print(periph->path, "%s: data length %u > max allowed %u " 1425 "bytes\n", __func__, lengths[i], maxmap); 1426 error = EINVAL; 1427 goto bailout; 1428 } 1429 1430 switch (io_req->data_flags) { 1431 case CAM_DATA_VADDR: 1432 /* Map or copy the buffer into kernel address space */ 1433 for (i = 0; i < numbufs; i++) { 1434 uint8_t *tmp_buf; 1435 1436 /* 1437 * If for some reason no length is specified, we 1438 * don't need to allocate anything. 1439 */ 1440 if (io_req->lengths[i] == 0) 1441 continue; 1442 1443 tmp_buf = malloc(lengths[i], M_SCSIPASS, 1444 M_WAITOK | M_ZERO); 1445 io_req->kern_bufs[i] = tmp_buf; 1446 *data_ptrs[i] = tmp_buf; 1447 1448 #if 0 1449 xpt_print(periph->path, "%s: malloced %p len %u, user " 1450 "buffer %p, operation: %s\n", __func__, 1451 tmp_buf, lengths[i], io_req->user_bufs[i], 1452 (dirs[i] == CAM_DIR_IN) ? "read" : "write"); 1453 #endif 1454 /* 1455 * We only need to copy in if the user is writing. 1456 */ 1457 if (dirs[i] != CAM_DIR_OUT) 1458 continue; 1459 1460 error = copyin(io_req->user_bufs[i], 1461 io_req->kern_bufs[i], lengths[i]); 1462 if (error != 0) { 1463 xpt_print(periph->path, "%s: copy of user " 1464 "buffer from %p to %p failed with " 1465 "error %d\n", __func__, 1466 io_req->user_bufs[i], 1467 io_req->kern_bufs[i], error); 1468 goto bailout; 1469 } 1470 } 1471 break; 1472 case CAM_DATA_PADDR: 1473 /* Pass down the pointer as-is */ 1474 break; 1475 case CAM_DATA_SG: { 1476 size_t sg_length, size_to_go, alloc_size; 1477 uint32_t num_segs_needed; 1478 1479 /* 1480 * Copy the user S/G list in, and then copy in the 1481 * individual segments. 1482 */ 1483 /* 1484 * We shouldn't see this, but check just in case. 1485 */ 1486 if (numbufs != 1) { 1487 xpt_print(periph->path, "%s: cannot currently handle " 1488 "more than one S/G list per CCB\n", __func__); 1489 error = EINVAL; 1490 goto bailout; 1491 } 1492 1493 /* 1494 * We have to have at least one segment. 1495 */ 1496 if (num_segs == 0) { 1497 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, " 1498 "but sglist_cnt=0!\n", __func__); 1499 error = EINVAL; 1500 goto bailout; 1501 } 1502 1503 /* 1504 * Make sure the user specified the total length and didn't 1505 * just leave it to us to decode the S/G list. 1506 */ 1507 if (lengths[0] == 0) { 1508 xpt_print(periph->path, "%s: no dxfer_len specified, " 1509 "but CAM_DATA_SG flag is set!\n", __func__); 1510 error = EINVAL; 1511 goto bailout; 1512 } 1513 1514 /* 1515 * We allocate buffers in io_zone_size increments for an 1516 * S/G list. This will generally be maxphys. 1517 */ 1518 if (lengths[0] <= softc->io_zone_size) 1519 num_segs_needed = 1; 1520 else { 1521 num_segs_needed = lengths[0] / softc->io_zone_size; 1522 if ((lengths[0] % softc->io_zone_size) != 0) 1523 num_segs_needed++; 1524 } 1525 1526 /* Figure out the size of the S/G list */ 1527 sg_length = num_segs * sizeof(bus_dma_segment_t); 1528 io_req->num_user_segs = num_segs; 1529 io_req->num_kern_segs = num_segs_needed; 1530 1531 /* Save the user's S/G list pointer for later restoration */ 1532 io_req->user_bufs[0] = *data_ptrs[0]; 1533 1534 /* 1535 * If we have enough segments allocated by default to handle 1536 * the length of the user's S/G list, 1537 */ 1538 if (num_segs > PASS_MAX_SEGS) { 1539 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1540 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1541 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1542 } else 1543 io_req->user_segptr = io_req->user_segs; 1544 1545 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1546 if (error != 0) { 1547 xpt_print(periph->path, "%s: copy of user S/G list " 1548 "from %p to %p failed with error %d\n", 1549 __func__, *data_ptrs[0], io_req->user_segptr, 1550 error); 1551 goto bailout; 1552 } 1553 1554 if (num_segs_needed > PASS_MAX_SEGS) { 1555 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) * 1556 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO); 1557 io_req->flags |= PASS_IO_KERN_SEG_MALLOC; 1558 } else { 1559 io_req->kern_segptr = io_req->kern_segs; 1560 } 1561 1562 /* 1563 * Allocate the kernel S/G list. 1564 */ 1565 for (size_to_go = lengths[0], i = 0; 1566 size_to_go > 0 && i < num_segs_needed; 1567 i++, size_to_go -= alloc_size) { 1568 uint8_t *kern_ptr; 1569 1570 alloc_size = min(size_to_go, softc->io_zone_size); 1571 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK); 1572 io_req->kern_segptr[i].ds_addr = 1573 (bus_addr_t)(uintptr_t)kern_ptr; 1574 io_req->kern_segptr[i].ds_len = alloc_size; 1575 } 1576 if (size_to_go > 0) { 1577 printf("%s: size_to_go = %zu, software error!\n", 1578 __func__, size_to_go); 1579 error = EINVAL; 1580 goto bailout; 1581 } 1582 1583 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr; 1584 *seg_cnt_ptr = io_req->num_kern_segs; 1585 1586 /* 1587 * We only need to copy data here if the user is writing. 1588 */ 1589 if (dirs[0] == CAM_DIR_OUT) 1590 error = passcopysglist(periph, io_req, dirs[0]); 1591 break; 1592 } 1593 case CAM_DATA_SG_PADDR: { 1594 size_t sg_length; 1595 1596 /* 1597 * We shouldn't see this, but check just in case. 1598 */ 1599 if (numbufs != 1) { 1600 printf("%s: cannot currently handle more than one " 1601 "S/G list per CCB\n", __func__); 1602 error = EINVAL; 1603 goto bailout; 1604 } 1605 1606 /* 1607 * We have to have at least one segment. 1608 */ 1609 if (num_segs == 0) { 1610 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag " 1611 "set, but sglist_cnt=0!\n", __func__); 1612 error = EINVAL; 1613 goto bailout; 1614 } 1615 1616 /* 1617 * Make sure the user specified the total length and didn't 1618 * just leave it to us to decode the S/G list. 1619 */ 1620 if (lengths[0] == 0) { 1621 xpt_print(periph->path, "%s: no dxfer_len specified, " 1622 "but CAM_DATA_SG flag is set!\n", __func__); 1623 error = EINVAL; 1624 goto bailout; 1625 } 1626 1627 /* Figure out the size of the S/G list */ 1628 sg_length = num_segs * sizeof(bus_dma_segment_t); 1629 io_req->num_user_segs = num_segs; 1630 io_req->num_kern_segs = io_req->num_user_segs; 1631 1632 /* Save the user's S/G list pointer for later restoration */ 1633 io_req->user_bufs[0] = *data_ptrs[0]; 1634 1635 if (num_segs > PASS_MAX_SEGS) { 1636 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1637 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1638 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1639 } else 1640 io_req->user_segptr = io_req->user_segs; 1641 1642 io_req->kern_segptr = io_req->user_segptr; 1643 1644 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1645 if (error != 0) { 1646 xpt_print(periph->path, "%s: copy of user S/G list " 1647 "from %p to %p failed with error %d\n", 1648 __func__, *data_ptrs[0], io_req->user_segptr, 1649 error); 1650 goto bailout; 1651 } 1652 break; 1653 } 1654 default: 1655 case CAM_DATA_BIO: 1656 /* 1657 * A user shouldn't be attaching a bio to the CCB. It 1658 * isn't a user-accessible structure. 1659 */ 1660 error = EINVAL; 1661 break; 1662 } 1663 1664 bailout: 1665 if (error != 0) 1666 passiocleanup(softc, io_req); 1667 1668 return (error); 1669 } 1670 1671 static int 1672 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req) 1673 { 1674 struct pass_softc *softc; 1675 int error; 1676 int i; 1677 1678 error = 0; 1679 softc = (struct pass_softc *)periph->softc; 1680 1681 switch (io_req->data_flags) { 1682 case CAM_DATA_VADDR: 1683 /* 1684 * Copy back to the user buffer if this was a read. 1685 */ 1686 for (i = 0; i < io_req->num_bufs; i++) { 1687 if (io_req->dirs[i] != CAM_DIR_IN) 1688 continue; 1689 1690 error = copyout(io_req->kern_bufs[i], 1691 io_req->user_bufs[i], io_req->lengths[i]); 1692 if (error != 0) { 1693 xpt_print(periph->path, "Unable to copy %u " 1694 "bytes from %p to user address %p\n", 1695 io_req->lengths[i], 1696 io_req->kern_bufs[i], 1697 io_req->user_bufs[i]); 1698 goto bailout; 1699 } 1700 } 1701 break; 1702 case CAM_DATA_PADDR: 1703 /* Do nothing. The pointer is a physical address already */ 1704 break; 1705 case CAM_DATA_SG: 1706 /* 1707 * Copy back to the user buffer if this was a read. 1708 * Restore the user's S/G list buffer pointer. 1709 */ 1710 if (io_req->dirs[0] == CAM_DIR_IN) 1711 error = passcopysglist(periph, io_req, io_req->dirs[0]); 1712 break; 1713 case CAM_DATA_SG_PADDR: 1714 /* 1715 * Restore the user's S/G list buffer pointer. No need to 1716 * copy. 1717 */ 1718 break; 1719 default: 1720 case CAM_DATA_BIO: 1721 error = EINVAL; 1722 break; 1723 } 1724 1725 bailout: 1726 /* 1727 * Reset the user's pointers to their original values and free 1728 * allocated memory. 1729 */ 1730 passiocleanup(softc, io_req); 1731 1732 return (error); 1733 } 1734 1735 static int 1736 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1737 { 1738 int error; 1739 1740 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 1741 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl); 1742 } 1743 return (error); 1744 } 1745 1746 static int 1747 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1748 { 1749 struct cam_periph *periph; 1750 struct pass_softc *softc; 1751 int error; 1752 uint32_t priority; 1753 1754 periph = (struct cam_periph *)dev->si_drv1; 1755 cam_periph_lock(periph); 1756 softc = (struct pass_softc *)periph->softc; 1757 1758 error = 0; 1759 1760 switch (cmd) { 1761 case CAMIOCOMMAND: 1762 { 1763 union ccb *inccb; 1764 union ccb *ccb; 1765 int ccb_malloced; 1766 1767 inccb = (union ccb *)addr; 1768 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1769 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 1770 inccb->csio.bio = NULL; 1771 #endif 1772 1773 if (inccb->ccb_h.flags & CAM_UNLOCKED) { 1774 error = EINVAL; 1775 break; 1776 } 1777 1778 /* 1779 * Some CCB types, like scan bus and scan lun can only go 1780 * through the transport layer device. 1781 */ 1782 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1783 xpt_print(periph->path, "CCB function code %#x is " 1784 "restricted to the XPT device\n", 1785 inccb->ccb_h.func_code); 1786 error = ENODEV; 1787 break; 1788 } 1789 1790 /* Compatibility for RL/priority-unaware code. */ 1791 priority = inccb->ccb_h.pinfo.priority; 1792 if (priority <= CAM_PRIORITY_OOB) 1793 priority += CAM_PRIORITY_OOB + 1; 1794 1795 /* 1796 * Non-immediate CCBs need a CCB from the per-device pool 1797 * of CCBs, which is scheduled by the transport layer. 1798 * Immediate CCBs and user-supplied CCBs should just be 1799 * malloced. 1800 */ 1801 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED) 1802 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) { 1803 ccb = cam_periph_getccb(periph, priority); 1804 ccb_malloced = 0; 1805 } else { 1806 ccb = xpt_alloc_ccb_nowait(); 1807 1808 if (ccb != NULL) 1809 xpt_setup_ccb(&ccb->ccb_h, periph->path, 1810 priority); 1811 ccb_malloced = 1; 1812 } 1813 1814 if (ccb == NULL) { 1815 xpt_print(periph->path, "unable to allocate CCB\n"); 1816 error = ENOMEM; 1817 break; 1818 } 1819 1820 error = passsendccb(periph, ccb, inccb); 1821 1822 if (ccb_malloced) 1823 xpt_free_ccb(ccb); 1824 else 1825 xpt_release_ccb(ccb); 1826 1827 break; 1828 } 1829 case CAMIOQUEUE: 1830 { 1831 struct pass_io_req *io_req; 1832 union ccb **user_ccb, *ccb; 1833 xpt_opcode fc; 1834 1835 #ifdef COMPAT_FREEBSD32 1836 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 1837 error = ENOTTY; 1838 goto bailout; 1839 } 1840 #endif 1841 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) { 1842 error = passcreatezone(periph); 1843 if (error != 0) 1844 goto bailout; 1845 } 1846 1847 /* 1848 * We're going to do a blocking allocation for this I/O 1849 * request, so we have to drop the lock. 1850 */ 1851 cam_periph_unlock(periph); 1852 1853 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO); 1854 ccb = &io_req->ccb; 1855 user_ccb = (union ccb **)addr; 1856 1857 /* 1858 * Unlike the CAMIOCOMMAND ioctl above, we only have a 1859 * pointer to the user's CCB, so we have to copy the whole 1860 * thing in to a buffer we have allocated (above) instead 1861 * of allowing the ioctl code to malloc a buffer and copy 1862 * it in. 1863 * 1864 * This is an advantage for this asynchronous interface, 1865 * since we don't want the memory to get freed while the 1866 * CCB is outstanding. 1867 */ 1868 #if 0 1869 xpt_print(periph->path, "Copying user CCB %p to " 1870 "kernel address %p\n", *user_ccb, ccb); 1871 #endif 1872 error = copyin(*user_ccb, ccb, sizeof(*ccb)); 1873 if (error != 0) { 1874 xpt_print(periph->path, "Copy of user CCB %p to " 1875 "kernel address %p failed with error %d\n", 1876 *user_ccb, ccb, error); 1877 goto camioqueue_error; 1878 } 1879 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1880 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 1881 ccb->csio.bio = NULL; 1882 #endif 1883 1884 if (ccb->ccb_h.flags & CAM_UNLOCKED) { 1885 error = EINVAL; 1886 goto camioqueue_error; 1887 } 1888 1889 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 1890 if (ccb->csio.cdb_len > IOCDBLEN) { 1891 error = EINVAL; 1892 goto camioqueue_error; 1893 } 1894 error = copyin(ccb->csio.cdb_io.cdb_ptr, 1895 ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len); 1896 if (error != 0) 1897 goto camioqueue_error; 1898 ccb->ccb_h.flags &= ~CAM_CDB_POINTER; 1899 } 1900 1901 /* 1902 * Some CCB types, like scan bus and scan lun can only go 1903 * through the transport layer device. 1904 */ 1905 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1906 xpt_print(periph->path, "CCB function code %#x is " 1907 "restricted to the XPT device\n", 1908 ccb->ccb_h.func_code); 1909 error = ENODEV; 1910 goto camioqueue_error; 1911 } 1912 1913 /* 1914 * Save the user's CCB pointer as well as his linked list 1915 * pointers and peripheral private area so that we can 1916 * restore these later. 1917 */ 1918 io_req->user_ccb_ptr = *user_ccb; 1919 io_req->user_periph_links = ccb->ccb_h.periph_links; 1920 io_req->user_periph_priv = ccb->ccb_h.periph_priv; 1921 1922 /* 1923 * Now that we've saved the user's values, we can set our 1924 * own peripheral private entry. 1925 */ 1926 ccb->ccb_h.ccb_ioreq = io_req; 1927 1928 /* Compatibility for RL/priority-unaware code. */ 1929 priority = ccb->ccb_h.pinfo.priority; 1930 if (priority <= CAM_PRIORITY_OOB) 1931 priority += CAM_PRIORITY_OOB + 1; 1932 1933 /* 1934 * Setup fields in the CCB like the path and the priority. 1935 * The path in particular cannot be done in userland, since 1936 * it is a pointer to a kernel data structure. 1937 */ 1938 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority, 1939 ccb->ccb_h.flags); 1940 1941 /* 1942 * Setup our done routine. There is no way for the user to 1943 * have a valid pointer here. 1944 */ 1945 ccb->ccb_h.cbfcnp = passdone; 1946 1947 fc = ccb->ccb_h.func_code; 1948 /* 1949 * If this function code has memory that can be mapped in 1950 * or out, we need to call passmemsetup(). 1951 */ 1952 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) 1953 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH) 1954 || (fc == XPT_DEV_ADVINFO) 1955 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { 1956 error = passmemsetup(periph, io_req); 1957 if (error != 0) 1958 goto camioqueue_error; 1959 } else 1960 io_req->mapinfo.num_bufs_used = 0; 1961 1962 cam_periph_lock(periph); 1963 1964 /* 1965 * Everything goes on the incoming queue initially. 1966 */ 1967 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links); 1968 1969 /* 1970 * If the CCB is queued, and is not a user CCB, then 1971 * we need to allocate a slot for it. Call xpt_schedule() 1972 * so that our start routine will get called when a CCB is 1973 * available. 1974 */ 1975 if ((fc & XPT_FC_QUEUED) 1976 && ((fc & XPT_FC_USER_CCB) == 0)) { 1977 xpt_schedule(periph, priority); 1978 break; 1979 } 1980 1981 /* 1982 * At this point, the CCB in question is either an 1983 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB 1984 * and therefore should be malloced, not allocated via a slot. 1985 * Remove the CCB from the incoming queue and add it to the 1986 * active queue. 1987 */ 1988 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 1989 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 1990 1991 xpt_action(ccb); 1992 1993 /* 1994 * If this is not a queued CCB (i.e. it is an immediate CCB), 1995 * then it is already done. We need to put it on the done 1996 * queue for the user to fetch. 1997 */ 1998 if ((fc & XPT_FC_QUEUED) == 0) { 1999 TAILQ_REMOVE(&softc->active_queue, io_req, links); 2000 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 2001 } 2002 break; 2003 2004 camioqueue_error: 2005 uma_zfree(softc->pass_zone, io_req); 2006 cam_periph_lock(periph); 2007 break; 2008 } 2009 case CAMIOGET: 2010 { 2011 union ccb **user_ccb; 2012 struct pass_io_req *io_req; 2013 int old_error; 2014 2015 #ifdef COMPAT_FREEBSD32 2016 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 2017 error = ENOTTY; 2018 goto bailout; 2019 } 2020 #endif 2021 user_ccb = (union ccb **)addr; 2022 old_error = 0; 2023 2024 io_req = TAILQ_FIRST(&softc->done_queue); 2025 if (io_req == NULL) { 2026 error = ENOENT; 2027 break; 2028 } 2029 2030 /* 2031 * Remove the I/O from the done queue. 2032 */ 2033 TAILQ_REMOVE(&softc->done_queue, io_req, links); 2034 2035 /* 2036 * We have to drop the lock during the copyout because the 2037 * copyout can result in VM faults that require sleeping. 2038 */ 2039 cam_periph_unlock(periph); 2040 2041 /* 2042 * Do any needed copies (e.g. for reads) and revert the 2043 * pointers in the CCB back to the user's pointers. 2044 */ 2045 error = passmemdone(periph, io_req); 2046 2047 old_error = error; 2048 2049 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links; 2050 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv; 2051 2052 #if 0 2053 xpt_print(periph->path, "Copying to user CCB %p from " 2054 "kernel address %p\n", *user_ccb, &io_req->ccb); 2055 #endif 2056 2057 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb)); 2058 if (error != 0) { 2059 xpt_print(periph->path, "Copy to user CCB %p from " 2060 "kernel address %p failed with error %d\n", 2061 *user_ccb, &io_req->ccb, error); 2062 } 2063 2064 /* 2065 * Prefer the first error we got back, and make sure we 2066 * don't overwrite bad status with good. 2067 */ 2068 if (old_error != 0) 2069 error = old_error; 2070 2071 cam_periph_lock(periph); 2072 2073 /* 2074 * At this point, if there was an error, we could potentially 2075 * re-queue the I/O and try again. But why? The error 2076 * would almost certainly happen again. We might as well 2077 * not leak memory. 2078 */ 2079 uma_zfree(softc->pass_zone, io_req); 2080 break; 2081 } 2082 default: 2083 error = cam_periph_ioctl(periph, cmd, addr, passerror); 2084 break; 2085 } 2086 2087 bailout: 2088 cam_periph_unlock(periph); 2089 2090 return(error); 2091 } 2092 2093 static int 2094 passpoll(struct cdev *dev, int poll_events, struct thread *td) 2095 { 2096 struct cam_periph *periph; 2097 struct pass_softc *softc; 2098 int revents; 2099 2100 periph = (struct cam_periph *)dev->si_drv1; 2101 softc = (struct pass_softc *)periph->softc; 2102 2103 revents = poll_events & (POLLOUT | POLLWRNORM); 2104 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) { 2105 cam_periph_lock(periph); 2106 2107 if (!TAILQ_EMPTY(&softc->done_queue)) { 2108 revents |= poll_events & (POLLIN | POLLRDNORM); 2109 } 2110 cam_periph_unlock(periph); 2111 if (revents == 0) 2112 selrecord(td, &softc->read_select); 2113 } 2114 2115 return (revents); 2116 } 2117 2118 static int 2119 passkqfilter(struct cdev *dev, struct knote *kn) 2120 { 2121 struct cam_periph *periph; 2122 struct pass_softc *softc; 2123 2124 periph = (struct cam_periph *)dev->si_drv1; 2125 softc = (struct pass_softc *)periph->softc; 2126 2127 kn->kn_hook = (caddr_t)periph; 2128 kn->kn_fop = &passread_filtops; 2129 knlist_add(&softc->read_select.si_note, kn, 0); 2130 2131 return (0); 2132 } 2133 2134 static void 2135 passreadfiltdetach(struct knote *kn) 2136 { 2137 struct cam_periph *periph; 2138 struct pass_softc *softc; 2139 2140 periph = (struct cam_periph *)kn->kn_hook; 2141 softc = (struct pass_softc *)periph->softc; 2142 2143 knlist_remove(&softc->read_select.si_note, kn, 0); 2144 } 2145 2146 static int 2147 passreadfilt(struct knote *kn, long hint) 2148 { 2149 struct cam_periph *periph; 2150 struct pass_softc *softc; 2151 int retval; 2152 2153 periph = (struct cam_periph *)kn->kn_hook; 2154 softc = (struct pass_softc *)periph->softc; 2155 2156 cam_periph_assert(periph, MA_OWNED); 2157 2158 if (TAILQ_EMPTY(&softc->done_queue)) 2159 retval = 0; 2160 else 2161 retval = 1; 2162 2163 return (retval); 2164 } 2165 2166 /* 2167 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb" 2168 * should be the CCB that is copied in from the user. 2169 */ 2170 static int 2171 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb) 2172 { 2173 struct pass_softc *softc; 2174 struct cam_periph_map_info mapinfo; 2175 uint8_t *cmd; 2176 xpt_opcode fc; 2177 int error; 2178 2179 softc = (struct pass_softc *)periph->softc; 2180 2181 /* 2182 * There are some fields in the CCB header that need to be 2183 * preserved, the rest we get from the user. 2184 */ 2185 xpt_merge_ccb(ccb, inccb); 2186 2187 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 2188 cmd = __builtin_alloca(ccb->csio.cdb_len); 2189 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len); 2190 if (error) 2191 return (error); 2192 ccb->csio.cdb_io.cdb_ptr = cmd; 2193 } 2194 2195 /* 2196 * Let cam_periph_mapmem do a sanity check on the data pointer format. 2197 * Even if no data transfer is needed, it's a cheap check and it 2198 * simplifies the code. 2199 */ 2200 fc = ccb->ccb_h.func_code; 2201 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO) 2202 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO) 2203 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { 2204 bzero(&mapinfo, sizeof(mapinfo)); 2205 2206 /* 2207 * cam_periph_mapmem calls into proc and vm functions that can 2208 * sleep as well as trigger I/O, so we can't hold the lock. 2209 * Dropping it here is reasonably safe. 2210 */ 2211 cam_periph_unlock(periph); 2212 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio); 2213 cam_periph_lock(periph); 2214 2215 /* 2216 * cam_periph_mapmem returned an error, we can't continue. 2217 * Return the error to the user. 2218 */ 2219 if (error) 2220 return(error); 2221 } else 2222 /* Ensure that the unmap call later on is a no-op. */ 2223 mapinfo.num_bufs_used = 0; 2224 2225 /* 2226 * If the user wants us to perform any error recovery, then honor 2227 * that request. Otherwise, it's up to the user to perform any 2228 * error recovery. 2229 */ 2230 { 2231 uint32_t cam_flags, sense_flags; 2232 2233 passflags(ccb, &cam_flags, &sense_flags); 2234 cam_periph_runccb(ccb, passerror, cam_flags, 2235 sense_flags, softc->device_stats); 2236 } 2237 2238 cam_periph_unlock(periph); 2239 error = cam_periph_unmapmem(ccb, &mapinfo); 2240 cam_periph_lock(periph); 2241 2242 ccb->ccb_h.cbfcnp = NULL; 2243 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv; 2244 bcopy(ccb, inccb, sizeof(union ccb)); 2245 2246 return (error); 2247 } 2248 2249 /* 2250 * Set the cam_flags and sense_flags based on whether or not the request wants 2251 * error recovery. In order to log errors via devctl, we need to do at least 2252 * minimal recovery. We do this by not retrying unit attention (we let the 2253 * requester do it, or not, if appropriate) and specifically asking for no 2254 * recovery, like we do during device probing. 2255 */ 2256 static void 2257 passflags(union ccb *ccb, uint32_t *cam_flags, uint32_t *sense_flags) 2258 { 2259 if ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) != 0) { 2260 *cam_flags = CAM_RETRY_SELTO; 2261 *sense_flags = SF_RETRY_UA | SF_NO_PRINT; 2262 } else { 2263 *cam_flags = 0; 2264 *sense_flags = SF_NO_RETRY | SF_NO_RECOVERY | SF_NO_PRINT; 2265 } 2266 } 2267 2268 static int 2269 passerror(union ccb *ccb, uint32_t cam_flags, uint32_t sense_flags) 2270 { 2271 2272 return(cam_periph_error(ccb, cam_flags, sense_flags)); 2273 } 2274