1 /*- 2 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs. 3 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions, and the following disclaimer, 11 * without modification, immediately at the beginning of the file. 12 * 2. The name of the author may not be used to endorse or promote products 13 * derived from this software without specific prior written permission. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 19 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_kdtrace.h" 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/kernel.h> 36 #include <sys/conf.h> 37 #include <sys/types.h> 38 #include <sys/bio.h> 39 #include <sys/bus.h> 40 #include <sys/devicestat.h> 41 #include <sys/errno.h> 42 #include <sys/fcntl.h> 43 #include <sys/malloc.h> 44 #include <sys/proc.h> 45 #include <sys/poll.h> 46 #include <sys/selinfo.h> 47 #include <sys/sdt.h> 48 #include <sys/taskqueue.h> 49 #include <vm/uma.h> 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 53 #include <machine/bus.h> 54 55 #include <cam/cam.h> 56 #include <cam/cam_ccb.h> 57 #include <cam/cam_periph.h> 58 #include <cam/cam_queue.h> 59 #include <cam/cam_xpt.h> 60 #include <cam/cam_xpt_periph.h> 61 #include <cam/cam_debug.h> 62 #include <cam/cam_compat.h> 63 #include <cam/cam_xpt_periph.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/scsi/scsi_pass.h> 67 68 typedef enum { 69 PASS_FLAG_OPEN = 0x01, 70 PASS_FLAG_LOCKED = 0x02, 71 PASS_FLAG_INVALID = 0x04, 72 PASS_FLAG_INITIAL_PHYSPATH = 0x08, 73 PASS_FLAG_ZONE_INPROG = 0x10, 74 PASS_FLAG_ZONE_VALID = 0x20, 75 PASS_FLAG_UNMAPPED_CAPABLE = 0x40, 76 PASS_FLAG_ABANDONED_REF_SET = 0x80 77 } pass_flags; 78 79 typedef enum { 80 PASS_STATE_NORMAL 81 } pass_state; 82 83 typedef enum { 84 PASS_CCB_BUFFER_IO, 85 PASS_CCB_QUEUED_IO 86 } pass_ccb_types; 87 88 #define ccb_type ppriv_field0 89 #define ccb_ioreq ppriv_ptr1 90 91 /* 92 * The maximum number of memory segments we preallocate. 93 */ 94 #define PASS_MAX_SEGS 16 95 96 typedef enum { 97 PASS_IO_NONE = 0x00, 98 PASS_IO_USER_SEG_MALLOC = 0x01, 99 PASS_IO_KERN_SEG_MALLOC = 0x02, 100 PASS_IO_ABANDONED = 0x04 101 } pass_io_flags; 102 103 struct pass_io_req { 104 union ccb ccb; 105 union ccb *alloced_ccb; 106 union ccb *user_ccb_ptr; 107 camq_entry user_periph_links; 108 ccb_ppriv_area user_periph_priv; 109 struct cam_periph_map_info mapinfo; 110 pass_io_flags flags; 111 ccb_flags data_flags; 112 int num_user_segs; 113 bus_dma_segment_t user_segs[PASS_MAX_SEGS]; 114 int num_kern_segs; 115 bus_dma_segment_t kern_segs[PASS_MAX_SEGS]; 116 bus_dma_segment_t *user_segptr; 117 bus_dma_segment_t *kern_segptr; 118 int num_bufs; 119 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 120 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 121 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS]; 122 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS]; 123 struct bintime start_time; 124 TAILQ_ENTRY(pass_io_req) links; 125 }; 126 127 struct pass_softc { 128 pass_state state; 129 pass_flags flags; 130 u_int8_t pd_type; 131 union ccb saved_ccb; 132 int open_count; 133 u_int maxio; 134 struct devstat *device_stats; 135 struct cdev *dev; 136 struct cdev *alias_dev; 137 struct task add_physpath_task; 138 struct task shutdown_kqueue_task; 139 struct selinfo read_select; 140 TAILQ_HEAD(, pass_io_req) incoming_queue; 141 TAILQ_HEAD(, pass_io_req) active_queue; 142 TAILQ_HEAD(, pass_io_req) abandoned_queue; 143 TAILQ_HEAD(, pass_io_req) done_queue; 144 struct cam_periph *periph; 145 char zone_name[12]; 146 char io_zone_name[12]; 147 uma_zone_t pass_zone; 148 uma_zone_t pass_io_zone; 149 size_t io_zone_size; 150 }; 151 152 static d_open_t passopen; 153 static d_close_t passclose; 154 static d_ioctl_t passioctl; 155 static d_ioctl_t passdoioctl; 156 static d_poll_t passpoll; 157 static d_kqfilter_t passkqfilter; 158 static void passreadfiltdetach(struct knote *kn); 159 static int passreadfilt(struct knote *kn, long hint); 160 161 static periph_init_t passinit; 162 static periph_ctor_t passregister; 163 static periph_oninv_t passoninvalidate; 164 static periph_dtor_t passcleanup; 165 static periph_start_t passstart; 166 static void pass_shutdown_kqueue(void *context, int pending); 167 static void pass_add_physpath(void *context, int pending); 168 static void passasync(void *callback_arg, u_int32_t code, 169 struct cam_path *path, void *arg); 170 static void passdone(struct cam_periph *periph, 171 union ccb *done_ccb); 172 static int passcreatezone(struct cam_periph *periph); 173 static void passiocleanup(struct pass_softc *softc, 174 struct pass_io_req *io_req); 175 static int passcopysglist(struct cam_periph *periph, 176 struct pass_io_req *io_req, 177 ccb_flags direction); 178 static int passmemsetup(struct cam_periph *periph, 179 struct pass_io_req *io_req); 180 static int passmemdone(struct cam_periph *periph, 181 struct pass_io_req *io_req); 182 static int passerror(union ccb *ccb, u_int32_t cam_flags, 183 u_int32_t sense_flags); 184 static int passsendccb(struct cam_periph *periph, union ccb *ccb, 185 union ccb *inccb); 186 187 static struct periph_driver passdriver = 188 { 189 passinit, "pass", 190 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0 191 }; 192 193 PERIPHDRIVER_DECLARE(pass, passdriver); 194 195 static struct cdevsw pass_cdevsw = { 196 .d_version = D_VERSION, 197 .d_flags = D_TRACKCLOSE, 198 .d_open = passopen, 199 .d_close = passclose, 200 .d_ioctl = passioctl, 201 .d_poll = passpoll, 202 .d_kqfilter = passkqfilter, 203 .d_name = "pass", 204 }; 205 206 static struct filterops passread_filtops = { 207 .f_isfd = 1, 208 .f_detach = passreadfiltdetach, 209 .f_event = passreadfilt 210 }; 211 212 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers"); 213 214 static void 215 passinit(void) 216 { 217 cam_status status; 218 219 /* 220 * Install a global async callback. This callback will 221 * receive async callbacks like "new device found". 222 */ 223 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL); 224 225 if (status != CAM_REQ_CMP) { 226 printf("pass: Failed to attach master async callback " 227 "due to status 0x%x!\n", status); 228 } 229 230 } 231 232 static void 233 passrejectios(struct cam_periph *periph) 234 { 235 struct pass_io_req *io_req, *io_req2; 236 struct pass_softc *softc; 237 238 softc = (struct pass_softc *)periph->softc; 239 240 /* 241 * The user can no longer get status for I/O on the done queue, so 242 * clean up all outstanding I/O on the done queue. 243 */ 244 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 245 TAILQ_REMOVE(&softc->done_queue, io_req, links); 246 passiocleanup(softc, io_req); 247 uma_zfree(softc->pass_zone, io_req); 248 } 249 250 /* 251 * The underlying device is gone, so we can't issue these I/Os. 252 * The devfs node has been shut down, so we can't return status to 253 * the user. Free any I/O left on the incoming queue. 254 */ 255 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) { 256 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 257 passiocleanup(softc, io_req); 258 uma_zfree(softc->pass_zone, io_req); 259 } 260 261 /* 262 * Normally we would put I/Os on the abandoned queue and acquire a 263 * reference when we saw the final close. But, the device went 264 * away and devfs may have moved everything off to deadfs by the 265 * time the I/O done callback is called; as a result, we won't see 266 * any more closes. So, if we have any active I/Os, we need to put 267 * them on the abandoned queue. When the abandoned queue is empty, 268 * we'll release the remaining reference (see below) to the peripheral. 269 */ 270 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) { 271 TAILQ_REMOVE(&softc->active_queue, io_req, links); 272 io_req->flags |= PASS_IO_ABANDONED; 273 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links); 274 } 275 276 /* 277 * If we put any I/O on the abandoned queue, acquire a reference. 278 */ 279 if ((!TAILQ_EMPTY(&softc->abandoned_queue)) 280 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) { 281 cam_periph_doacquire(periph); 282 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 283 } 284 } 285 286 static void 287 passdevgonecb(void *arg) 288 { 289 struct cam_periph *periph; 290 struct mtx *mtx; 291 struct pass_softc *softc; 292 int i; 293 294 periph = (struct cam_periph *)arg; 295 mtx = cam_periph_mtx(periph); 296 mtx_lock(mtx); 297 298 softc = (struct pass_softc *)periph->softc; 299 KASSERT(softc->open_count >= 0, ("Negative open count %d", 300 softc->open_count)); 301 302 /* 303 * When we get this callback, we will get no more close calls from 304 * devfs. So if we have any dangling opens, we need to release the 305 * reference held for that particular context. 306 */ 307 for (i = 0; i < softc->open_count; i++) 308 cam_periph_release_locked(periph); 309 310 softc->open_count = 0; 311 312 /* 313 * Release the reference held for the device node, it is gone now. 314 * Accordingly, inform all queued I/Os of their fate. 315 */ 316 cam_periph_release_locked(periph); 317 passrejectios(periph); 318 319 /* 320 * We reference the SIM lock directly here, instead of using 321 * cam_periph_unlock(). The reason is that the final call to 322 * cam_periph_release_locked() above could result in the periph 323 * getting freed. If that is the case, dereferencing the periph 324 * with a cam_periph_unlock() call would cause a page fault. 325 */ 326 mtx_unlock(mtx); 327 328 /* 329 * We have to remove our kqueue context from a thread because it 330 * may sleep. It would be nice if we could get a callback from 331 * kqueue when it is done cleaning up resources. 332 */ 333 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task); 334 } 335 336 static void 337 passoninvalidate(struct cam_periph *periph) 338 { 339 struct pass_softc *softc; 340 341 softc = (struct pass_softc *)periph->softc; 342 343 /* 344 * De-register any async callbacks. 345 */ 346 xpt_register_async(0, passasync, periph, periph->path); 347 348 softc->flags |= PASS_FLAG_INVALID; 349 350 /* 351 * Tell devfs this device has gone away, and ask for a callback 352 * when it has cleaned up its state. 353 */ 354 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph); 355 } 356 357 static void 358 passcleanup(struct cam_periph *periph) 359 { 360 struct pass_softc *softc; 361 362 softc = (struct pass_softc *)periph->softc; 363 364 cam_periph_assert(periph, MA_OWNED); 365 KASSERT(TAILQ_EMPTY(&softc->active_queue), 366 ("%s called when there are commands on the active queue!\n", 367 __func__)); 368 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue), 369 ("%s called when there are commands on the abandoned queue!\n", 370 __func__)); 371 KASSERT(TAILQ_EMPTY(&softc->incoming_queue), 372 ("%s called when there are commands on the incoming queue!\n", 373 __func__)); 374 KASSERT(TAILQ_EMPTY(&softc->done_queue), 375 ("%s called when there are commands on the done queue!\n", 376 __func__)); 377 378 devstat_remove_entry(softc->device_stats); 379 380 cam_periph_unlock(periph); 381 382 /* 383 * We call taskqueue_drain() for the physpath task to make sure it 384 * is complete. We drop the lock because this can potentially 385 * sleep. XXX KDM that is bad. Need a way to get a callback when 386 * a taskqueue is drained. 387 * 388 * Note that we don't drain the kqueue shutdown task queue. This 389 * is because we hold a reference on the periph for kqueue, and 390 * release that reference from the kqueue shutdown task queue. So 391 * we cannot come into this routine unless we've released that 392 * reference. Also, because that could be the last reference, we 393 * could be called from the cam_periph_release() call in 394 * pass_shutdown_kqueue(). In that case, the taskqueue_drain() 395 * would deadlock. It would be preferable if we had a way to 396 * get a callback when a taskqueue is done. 397 */ 398 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task); 399 400 cam_periph_lock(periph); 401 402 free(softc, M_DEVBUF); 403 } 404 405 static void 406 pass_shutdown_kqueue(void *context, int pending) 407 { 408 struct cam_periph *periph; 409 struct pass_softc *softc; 410 411 periph = context; 412 softc = periph->softc; 413 414 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0); 415 knlist_destroy(&softc->read_select.si_note); 416 417 /* 418 * Release the reference we held for kqueue. 419 */ 420 cam_periph_release(periph); 421 } 422 423 static void 424 pass_add_physpath(void *context, int pending) 425 { 426 struct cam_periph *periph; 427 struct pass_softc *softc; 428 struct mtx *mtx; 429 char *physpath; 430 431 /* 432 * If we have one, create a devfs alias for our 433 * physical path. 434 */ 435 periph = context; 436 softc = periph->softc; 437 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK); 438 mtx = cam_periph_mtx(periph); 439 mtx_lock(mtx); 440 441 if (periph->flags & CAM_PERIPH_INVALID) 442 goto out; 443 444 if (xpt_getattr(physpath, MAXPATHLEN, 445 "GEOM::physpath", periph->path) == 0 446 && strlen(physpath) != 0) { 447 448 mtx_unlock(mtx); 449 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev, 450 softc->dev, softc->alias_dev, physpath); 451 mtx_lock(mtx); 452 } 453 454 out: 455 /* 456 * Now that we've made our alias, we no longer have to have a 457 * reference to the device. 458 */ 459 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0) 460 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH; 461 462 /* 463 * We always acquire a reference to the periph before queueing this 464 * task queue function, so it won't go away before we run. 465 */ 466 while (pending-- > 0) 467 cam_periph_release_locked(periph); 468 mtx_unlock(mtx); 469 470 free(physpath, M_DEVBUF); 471 } 472 473 static void 474 passasync(void *callback_arg, u_int32_t code, 475 struct cam_path *path, void *arg) 476 { 477 struct cam_periph *periph; 478 479 periph = (struct cam_periph *)callback_arg; 480 481 switch (code) { 482 case AC_FOUND_DEVICE: 483 { 484 struct ccb_getdev *cgd; 485 cam_status status; 486 487 cgd = (struct ccb_getdev *)arg; 488 if (cgd == NULL) 489 break; 490 491 /* 492 * Allocate a peripheral instance for 493 * this device and start the probe 494 * process. 495 */ 496 status = cam_periph_alloc(passregister, passoninvalidate, 497 passcleanup, passstart, "pass", 498 CAM_PERIPH_BIO, path, 499 passasync, AC_FOUND_DEVICE, cgd); 500 501 if (status != CAM_REQ_CMP 502 && status != CAM_REQ_INPROG) { 503 const struct cam_status_entry *entry; 504 505 entry = cam_fetch_status_entry(status); 506 507 printf("passasync: Unable to attach new device " 508 "due to status %#x: %s\n", status, entry ? 509 entry->status_text : "Unknown"); 510 } 511 512 break; 513 } 514 case AC_ADVINFO_CHANGED: 515 { 516 uintptr_t buftype; 517 518 buftype = (uintptr_t)arg; 519 if (buftype == CDAI_TYPE_PHYS_PATH) { 520 struct pass_softc *softc; 521 cam_status status; 522 523 softc = (struct pass_softc *)periph->softc; 524 /* 525 * Acquire a reference to the periph before we 526 * start the taskqueue, so that we don't run into 527 * a situation where the periph goes away before 528 * the task queue has a chance to run. 529 */ 530 status = cam_periph_acquire(periph); 531 if (status != CAM_REQ_CMP) 532 break; 533 534 taskqueue_enqueue(taskqueue_thread, 535 &softc->add_physpath_task); 536 } 537 break; 538 } 539 default: 540 cam_periph_async(periph, code, path, arg); 541 break; 542 } 543 } 544 545 static cam_status 546 passregister(struct cam_periph *periph, void *arg) 547 { 548 struct pass_softc *softc; 549 struct ccb_getdev *cgd; 550 struct ccb_pathinq cpi; 551 int no_tags; 552 553 cgd = (struct ccb_getdev *)arg; 554 if (cgd == NULL) { 555 printf("%s: no getdev CCB, can't register device\n", __func__); 556 return(CAM_REQ_CMP_ERR); 557 } 558 559 softc = (struct pass_softc *)malloc(sizeof(*softc), 560 M_DEVBUF, M_NOWAIT); 561 562 if (softc == NULL) { 563 printf("%s: Unable to probe new device. " 564 "Unable to allocate softc\n", __func__); 565 return(CAM_REQ_CMP_ERR); 566 } 567 568 bzero(softc, sizeof(*softc)); 569 softc->state = PASS_STATE_NORMAL; 570 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI) 571 softc->pd_type = SID_TYPE(&cgd->inq_data); 572 else if (cgd->protocol == PROTO_SATAPM) 573 softc->pd_type = T_ENCLOSURE; 574 else 575 softc->pd_type = T_DIRECT; 576 577 periph->softc = softc; 578 softc->periph = periph; 579 TAILQ_INIT(&softc->incoming_queue); 580 TAILQ_INIT(&softc->active_queue); 581 TAILQ_INIT(&softc->abandoned_queue); 582 TAILQ_INIT(&softc->done_queue); 583 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d", 584 periph->periph_name, periph->unit_number); 585 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO", 586 periph->periph_name, periph->unit_number); 587 softc->io_zone_size = MAXPHYS; 588 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph)); 589 590 bzero(&cpi, sizeof(cpi)); 591 xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 592 cpi.ccb_h.func_code = XPT_PATH_INQ; 593 xpt_action((union ccb *)&cpi); 594 595 if (cpi.maxio == 0) 596 softc->maxio = DFLTPHYS; /* traditional default */ 597 else if (cpi.maxio > MAXPHYS) 598 softc->maxio = MAXPHYS; /* for safety */ 599 else 600 softc->maxio = cpi.maxio; /* real value */ 601 602 if (cpi.hba_misc & PIM_UNMAPPED) 603 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE; 604 605 /* 606 * We pass in 0 for a blocksize, since we don't 607 * know what the blocksize of this device is, if 608 * it even has a blocksize. 609 */ 610 cam_periph_unlock(periph); 611 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0; 612 softc->device_stats = devstat_new_entry("pass", 613 periph->unit_number, 0, 614 DEVSTAT_NO_BLOCKSIZE 615 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0), 616 softc->pd_type | 617 XPORT_DEVSTAT_TYPE(cpi.transport) | 618 DEVSTAT_TYPE_PASS, 619 DEVSTAT_PRIORITY_PASS); 620 621 /* 622 * Initialize the taskqueue handler for shutting down kqueue. 623 */ 624 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0, 625 pass_shutdown_kqueue, periph); 626 627 /* 628 * Acquire a reference to the periph that we can release once we've 629 * cleaned up the kqueue. 630 */ 631 if (cam_periph_acquire(periph) != CAM_REQ_CMP) { 632 xpt_print(periph->path, "%s: lost periph during " 633 "registration!\n", __func__); 634 cam_periph_lock(periph); 635 return (CAM_REQ_CMP_ERR); 636 } 637 638 /* 639 * Acquire a reference to the periph before we create the devfs 640 * instance for it. We'll release this reference once the devfs 641 * instance has been freed. 642 */ 643 if (cam_periph_acquire(periph) != CAM_REQ_CMP) { 644 xpt_print(periph->path, "%s: lost periph during " 645 "registration!\n", __func__); 646 cam_periph_lock(periph); 647 return (CAM_REQ_CMP_ERR); 648 } 649 650 /* Register the device */ 651 softc->dev = make_dev(&pass_cdevsw, periph->unit_number, 652 UID_ROOT, GID_OPERATOR, 0600, "%s%d", 653 periph->periph_name, periph->unit_number); 654 655 /* 656 * Hold a reference to the periph before we create the physical 657 * path alias so it can't go away. 658 */ 659 if (cam_periph_acquire(periph) != CAM_REQ_CMP) { 660 xpt_print(periph->path, "%s: lost periph during " 661 "registration!\n", __func__); 662 cam_periph_lock(periph); 663 return (CAM_REQ_CMP_ERR); 664 } 665 666 cam_periph_lock(periph); 667 softc->dev->si_drv1 = periph; 668 669 TASK_INIT(&softc->add_physpath_task, /*priority*/0, 670 pass_add_physpath, periph); 671 672 /* 673 * See if physical path information is already available. 674 */ 675 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); 676 677 /* 678 * Add an async callback so that we get notified if 679 * this device goes away or its physical path 680 * (stored in the advanced info data of the EDT) has 681 * changed. 682 */ 683 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED, 684 passasync, periph, periph->path); 685 686 if (bootverbose) 687 xpt_announce_periph(periph, NULL); 688 689 return(CAM_REQ_CMP); 690 } 691 692 static int 693 passopen(struct cdev *dev, int flags, int fmt, struct thread *td) 694 { 695 struct cam_periph *periph; 696 struct pass_softc *softc; 697 int error; 698 699 periph = (struct cam_periph *)dev->si_drv1; 700 if (cam_periph_acquire(periph) != CAM_REQ_CMP) 701 return (ENXIO); 702 703 cam_periph_lock(periph); 704 705 softc = (struct pass_softc *)periph->softc; 706 707 if (softc->flags & PASS_FLAG_INVALID) { 708 cam_periph_release_locked(periph); 709 cam_periph_unlock(periph); 710 return(ENXIO); 711 } 712 713 /* 714 * Don't allow access when we're running at a high securelevel. 715 */ 716 error = securelevel_gt(td->td_ucred, 1); 717 if (error) { 718 cam_periph_release_locked(periph); 719 cam_periph_unlock(periph); 720 return(error); 721 } 722 723 /* 724 * Only allow read-write access. 725 */ 726 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) { 727 cam_periph_release_locked(periph); 728 cam_periph_unlock(periph); 729 return(EPERM); 730 } 731 732 /* 733 * We don't allow nonblocking access. 734 */ 735 if ((flags & O_NONBLOCK) != 0) { 736 xpt_print(periph->path, "can't do nonblocking access\n"); 737 cam_periph_release_locked(periph); 738 cam_periph_unlock(periph); 739 return(EINVAL); 740 } 741 742 softc->open_count++; 743 744 cam_periph_unlock(periph); 745 746 return (error); 747 } 748 749 static int 750 passclose(struct cdev *dev, int flag, int fmt, struct thread *td) 751 { 752 struct cam_periph *periph; 753 struct pass_softc *softc; 754 struct mtx *mtx; 755 756 periph = (struct cam_periph *)dev->si_drv1; 757 if (periph == NULL) 758 return (ENXIO); 759 mtx = cam_periph_mtx(periph); 760 mtx_lock(mtx); 761 762 softc = periph->softc; 763 softc->open_count--; 764 765 if (softc->open_count == 0) { 766 struct pass_io_req *io_req, *io_req2; 767 int need_unlock; 768 769 need_unlock = 0; 770 771 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 772 TAILQ_REMOVE(&softc->done_queue, io_req, links); 773 passiocleanup(softc, io_req); 774 uma_zfree(softc->pass_zone, io_req); 775 } 776 777 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, 778 io_req2) { 779 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 780 passiocleanup(softc, io_req); 781 uma_zfree(softc->pass_zone, io_req); 782 } 783 784 /* 785 * If there are any active I/Os, we need to forcibly acquire a 786 * reference to the peripheral so that we don't go away 787 * before they complete. We'll release the reference when 788 * the abandoned queue is empty. 789 */ 790 io_req = TAILQ_FIRST(&softc->active_queue); 791 if ((io_req != NULL) 792 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) { 793 cam_periph_doacquire(periph); 794 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 795 } 796 797 /* 798 * Since the I/O in the active queue is not under our 799 * control, just set a flag so that we can clean it up when 800 * it completes and put it on the abandoned queue. This 801 * will prevent our sending spurious completions in the 802 * event that the device is opened again before these I/Os 803 * complete. 804 */ 805 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, 806 io_req2) { 807 TAILQ_REMOVE(&softc->active_queue, io_req, links); 808 io_req->flags |= PASS_IO_ABANDONED; 809 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, 810 links); 811 } 812 } 813 814 cam_periph_release_locked(periph); 815 816 /* 817 * We reference the lock directly here, instead of using 818 * cam_periph_unlock(). The reason is that the call to 819 * cam_periph_release_locked() above could result in the periph 820 * getting freed. If that is the case, dereferencing the periph 821 * with a cam_periph_unlock() call would cause a page fault. 822 * 823 * cam_periph_release() avoids this problem using the same method, 824 * but we're manually acquiring and dropping the lock here to 825 * protect the open count and avoid another lock acquisition and 826 * release. 827 */ 828 mtx_unlock(mtx); 829 830 return (0); 831 } 832 833 834 static void 835 passstart(struct cam_periph *periph, union ccb *start_ccb) 836 { 837 struct pass_softc *softc; 838 839 softc = (struct pass_softc *)periph->softc; 840 841 switch (softc->state) { 842 case PASS_STATE_NORMAL: { 843 struct pass_io_req *io_req; 844 845 /* 846 * Check for any queued I/O requests that require an 847 * allocated slot. 848 */ 849 io_req = TAILQ_FIRST(&softc->incoming_queue); 850 if (io_req == NULL) { 851 xpt_release_ccb(start_ccb); 852 break; 853 } 854 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 855 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 856 /* 857 * Merge the user's CCB into the allocated CCB. 858 */ 859 xpt_merge_ccb(start_ccb, &io_req->ccb); 860 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO; 861 start_ccb->ccb_h.ccb_ioreq = io_req; 862 start_ccb->ccb_h.cbfcnp = passdone; 863 io_req->alloced_ccb = start_ccb; 864 binuptime(&io_req->start_time); 865 devstat_start_transaction(softc->device_stats, 866 &io_req->start_time); 867 868 xpt_action(start_ccb); 869 870 /* 871 * If we have any more I/O waiting, schedule ourselves again. 872 */ 873 if (!TAILQ_EMPTY(&softc->incoming_queue)) 874 xpt_schedule(periph, CAM_PRIORITY_NORMAL); 875 break; 876 } 877 default: 878 break; 879 } 880 } 881 882 static void 883 passdone(struct cam_periph *periph, union ccb *done_ccb) 884 { 885 struct pass_softc *softc; 886 struct ccb_scsiio *csio; 887 888 softc = (struct pass_softc *)periph->softc; 889 890 cam_periph_assert(periph, MA_OWNED); 891 892 csio = &done_ccb->csio; 893 switch (csio->ccb_h.ccb_type) { 894 case PASS_CCB_QUEUED_IO: { 895 struct pass_io_req *io_req; 896 897 io_req = done_ccb->ccb_h.ccb_ioreq; 898 #if 0 899 xpt_print(periph->path, "%s: called for user CCB %p\n", 900 __func__, io_req->user_ccb_ptr); 901 #endif 902 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) 903 && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) 904 && ((io_req->flags & PASS_IO_ABANDONED) == 0)) { 905 int error; 906 907 error = passerror(done_ccb, CAM_RETRY_SELTO, 908 SF_RETRY_UA | SF_NO_PRINT); 909 910 if (error == ERESTART) { 911 /* 912 * A retry was scheduled, so 913 * just return. 914 */ 915 return; 916 } 917 } 918 919 /* 920 * Copy the allocated CCB contents back to the malloced CCB 921 * so we can give status back to the user when he requests it. 922 */ 923 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb)); 924 925 /* 926 * Log data/transaction completion with devstat(9). 927 */ 928 switch (done_ccb->ccb_h.func_code) { 929 case XPT_SCSI_IO: 930 devstat_end_transaction(softc->device_stats, 931 done_ccb->csio.dxfer_len - done_ccb->csio.resid, 932 done_ccb->csio.tag_action & 0x3, 933 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 934 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 935 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 936 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 937 &io_req->start_time); 938 break; 939 case XPT_ATA_IO: 940 devstat_end_transaction(softc->device_stats, 941 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid, 942 done_ccb->ataio.tag_action & 0x3, 943 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 944 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 945 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 946 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 947 &io_req->start_time); 948 break; 949 case XPT_SMP_IO: 950 /* 951 * XXX KDM this isn't quite right, but there isn't 952 * currently an easy way to represent a bidirectional 953 * transfer in devstat. The only way to do it 954 * and have the byte counts come out right would 955 * mean that we would have to record two 956 * transactions, one for the request and one for the 957 * response. For now, so that we report something, 958 * just treat the entire thing as a read. 959 */ 960 devstat_end_transaction(softc->device_stats, 961 done_ccb->smpio.smp_request_len + 962 done_ccb->smpio.smp_response_len, 963 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL, 964 &io_req->start_time); 965 break; 966 default: 967 devstat_end_transaction(softc->device_stats, 0, 968 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL, 969 &io_req->start_time); 970 break; 971 } 972 973 /* 974 * In the normal case, take the completed I/O off of the 975 * active queue and put it on the done queue. Notitfy the 976 * user that we have a completed I/O. 977 */ 978 if ((io_req->flags & PASS_IO_ABANDONED) == 0) { 979 TAILQ_REMOVE(&softc->active_queue, io_req, links); 980 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 981 selwakeuppri(&softc->read_select, PRIBIO); 982 KNOTE_LOCKED(&softc->read_select.si_note, 0); 983 } else { 984 /* 985 * In the case of an abandoned I/O (final close 986 * without fetching the I/O), take it off of the 987 * abandoned queue and free it. 988 */ 989 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links); 990 passiocleanup(softc, io_req); 991 uma_zfree(softc->pass_zone, io_req); 992 993 /* 994 * Release the done_ccb here, since we may wind up 995 * freeing the peripheral when we decrement the 996 * reference count below. 997 */ 998 xpt_release_ccb(done_ccb); 999 1000 /* 1001 * If the abandoned queue is empty, we can release 1002 * our reference to the periph since we won't have 1003 * any more completions coming. 1004 */ 1005 if ((TAILQ_EMPTY(&softc->abandoned_queue)) 1006 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) { 1007 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET; 1008 cam_periph_release_locked(periph); 1009 } 1010 1011 /* 1012 * We have already released the CCB, so we can 1013 * return. 1014 */ 1015 return; 1016 } 1017 break; 1018 } 1019 } 1020 xpt_release_ccb(done_ccb); 1021 } 1022 1023 static int 1024 passcreatezone(struct cam_periph *periph) 1025 { 1026 struct pass_softc *softc; 1027 int error; 1028 1029 error = 0; 1030 softc = (struct pass_softc *)periph->softc; 1031 1032 cam_periph_assert(periph, MA_OWNED); 1033 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 1034 ("%s called when the pass(4) zone is valid!\n", __func__)); 1035 KASSERT((softc->pass_zone == NULL), 1036 ("%s called when the pass(4) zone is allocated!\n", __func__)); 1037 1038 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) { 1039 1040 /* 1041 * We're the first context through, so we need to create 1042 * the pass(4) UMA zone for I/O requests. 1043 */ 1044 softc->flags |= PASS_FLAG_ZONE_INPROG; 1045 1046 /* 1047 * uma_zcreate() does a blocking (M_WAITOK) allocation, 1048 * so we cannot hold a mutex while we call it. 1049 */ 1050 cam_periph_unlock(periph); 1051 1052 softc->pass_zone = uma_zcreate(softc->zone_name, 1053 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL, 1054 /*align*/ 0, /*flags*/ 0); 1055 1056 softc->pass_io_zone = uma_zcreate(softc->io_zone_name, 1057 softc->io_zone_size, NULL, NULL, NULL, NULL, 1058 /*align*/ 0, /*flags*/ 0); 1059 1060 cam_periph_lock(periph); 1061 1062 if ((softc->pass_zone == NULL) 1063 || (softc->pass_io_zone == NULL)) { 1064 if (softc->pass_zone == NULL) 1065 xpt_print(periph->path, "unable to allocate " 1066 "IO Req UMA zone\n"); 1067 else 1068 xpt_print(periph->path, "unable to allocate " 1069 "IO UMA zone\n"); 1070 softc->flags &= ~PASS_FLAG_ZONE_INPROG; 1071 goto bailout; 1072 } 1073 1074 /* 1075 * Set the flags appropriately and notify any other waiters. 1076 */ 1077 softc->flags &= PASS_FLAG_ZONE_INPROG; 1078 softc->flags |= PASS_FLAG_ZONE_VALID; 1079 wakeup(&softc->pass_zone); 1080 } else { 1081 /* 1082 * In this case, the UMA zone has not yet been created, but 1083 * another context is in the process of creating it. We 1084 * need to sleep until the creation is either done or has 1085 * failed. 1086 */ 1087 while ((softc->flags & PASS_FLAG_ZONE_INPROG) 1088 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) { 1089 error = msleep(&softc->pass_zone, 1090 cam_periph_mtx(periph), PRIBIO, 1091 "paszon", 0); 1092 if (error != 0) 1093 goto bailout; 1094 } 1095 /* 1096 * If the zone creation failed, no luck for the user. 1097 */ 1098 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){ 1099 error = ENOMEM; 1100 goto bailout; 1101 } 1102 } 1103 bailout: 1104 return (error); 1105 } 1106 1107 static void 1108 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req) 1109 { 1110 union ccb *ccb; 1111 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1112 int i, numbufs; 1113 1114 ccb = &io_req->ccb; 1115 1116 switch (ccb->ccb_h.func_code) { 1117 case XPT_DEV_MATCH: 1118 numbufs = min(io_req->num_bufs, 2); 1119 1120 if (numbufs == 1) { 1121 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1122 } else { 1123 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1124 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1125 } 1126 break; 1127 case XPT_SCSI_IO: 1128 case XPT_CONT_TARGET_IO: 1129 data_ptrs[0] = &ccb->csio.data_ptr; 1130 numbufs = min(io_req->num_bufs, 1); 1131 break; 1132 case XPT_ATA_IO: 1133 data_ptrs[0] = &ccb->ataio.data_ptr; 1134 numbufs = min(io_req->num_bufs, 1); 1135 break; 1136 case XPT_SMP_IO: 1137 numbufs = min(io_req->num_bufs, 2); 1138 data_ptrs[0] = &ccb->smpio.smp_request; 1139 data_ptrs[1] = &ccb->smpio.smp_response; 1140 break; 1141 case XPT_DEV_ADVINFO: 1142 numbufs = min(io_req->num_bufs, 1); 1143 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1144 break; 1145 default: 1146 /* allow ourselves to be swapped once again */ 1147 return; 1148 break; /* NOTREACHED */ 1149 } 1150 1151 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) { 1152 free(io_req->user_segptr, M_SCSIPASS); 1153 io_req->user_segptr = NULL; 1154 } 1155 1156 /* 1157 * We only want to free memory we malloced. 1158 */ 1159 if (io_req->data_flags == CAM_DATA_VADDR) { 1160 for (i = 0; i < io_req->num_bufs; i++) { 1161 if (io_req->kern_bufs[i] == NULL) 1162 continue; 1163 1164 free(io_req->kern_bufs[i], M_SCSIPASS); 1165 io_req->kern_bufs[i] = NULL; 1166 } 1167 } else if (io_req->data_flags == CAM_DATA_SG) { 1168 for (i = 0; i < io_req->num_kern_segs; i++) { 1169 if ((uint8_t *)(uintptr_t) 1170 io_req->kern_segptr[i].ds_addr == NULL) 1171 continue; 1172 1173 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t) 1174 io_req->kern_segptr[i].ds_addr); 1175 io_req->kern_segptr[i].ds_addr = 0; 1176 } 1177 } 1178 1179 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) { 1180 free(io_req->kern_segptr, M_SCSIPASS); 1181 io_req->kern_segptr = NULL; 1182 } 1183 1184 if (io_req->data_flags != CAM_DATA_PADDR) { 1185 for (i = 0; i < numbufs; i++) { 1186 /* 1187 * Restore the user's buffer pointers to their 1188 * previous values. 1189 */ 1190 if (io_req->user_bufs[i] != NULL) 1191 *data_ptrs[i] = io_req->user_bufs[i]; 1192 } 1193 } 1194 1195 } 1196 1197 static int 1198 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req, 1199 ccb_flags direction) 1200 { 1201 bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy; 1202 bus_dma_segment_t *user_sglist, *kern_sglist; 1203 int i, j, error; 1204 1205 error = 0; 1206 kern_watermark = 0; 1207 user_watermark = 0; 1208 len_to_copy = 0; 1209 len_copied = 0; 1210 user_sglist = io_req->user_segptr; 1211 kern_sglist = io_req->kern_segptr; 1212 1213 for (i = 0, j = 0; i < io_req->num_user_segs && 1214 j < io_req->num_kern_segs;) { 1215 uint8_t *user_ptr, *kern_ptr; 1216 1217 len_to_copy = min(user_sglist[i].ds_len -user_watermark, 1218 kern_sglist[j].ds_len - kern_watermark); 1219 1220 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr; 1221 user_ptr = user_ptr + user_watermark; 1222 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr; 1223 kern_ptr = kern_ptr + kern_watermark; 1224 1225 user_watermark += len_to_copy; 1226 kern_watermark += len_to_copy; 1227 1228 if (!useracc(user_ptr, len_to_copy, 1229 (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) { 1230 xpt_print(periph->path, "%s: unable to access user " 1231 "S/G list element %p len %zu\n", __func__, 1232 user_ptr, len_to_copy); 1233 error = EFAULT; 1234 goto bailout; 1235 } 1236 1237 if (direction == CAM_DIR_IN) { 1238 error = copyout(kern_ptr, user_ptr, len_to_copy); 1239 if (error != 0) { 1240 xpt_print(periph->path, "%s: copyout of %u " 1241 "bytes from %p to %p failed with " 1242 "error %d\n", __func__, len_to_copy, 1243 kern_ptr, user_ptr, error); 1244 goto bailout; 1245 } 1246 } else { 1247 error = copyin(user_ptr, kern_ptr, len_to_copy); 1248 if (error != 0) { 1249 xpt_print(periph->path, "%s: copyin of %u " 1250 "bytes from %p to %p failed with " 1251 "error %d\n", __func__, len_to_copy, 1252 user_ptr, kern_ptr, error); 1253 goto bailout; 1254 } 1255 } 1256 1257 len_copied += len_to_copy; 1258 1259 if (user_sglist[i].ds_len == user_watermark) { 1260 i++; 1261 user_watermark = 0; 1262 } 1263 1264 if (kern_sglist[j].ds_len == kern_watermark) { 1265 j++; 1266 kern_watermark = 0; 1267 } 1268 } 1269 1270 bailout: 1271 1272 return (error); 1273 } 1274 1275 static int 1276 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req) 1277 { 1278 union ccb *ccb; 1279 struct pass_softc *softc; 1280 int numbufs, i; 1281 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1282 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 1283 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 1284 uint32_t num_segs; 1285 uint16_t *seg_cnt_ptr; 1286 size_t maxmap; 1287 int error; 1288 1289 cam_periph_assert(periph, MA_NOTOWNED); 1290 1291 softc = periph->softc; 1292 1293 error = 0; 1294 ccb = &io_req->ccb; 1295 maxmap = 0; 1296 num_segs = 0; 1297 seg_cnt_ptr = NULL; 1298 1299 switch(ccb->ccb_h.func_code) { 1300 case XPT_DEV_MATCH: 1301 if (ccb->cdm.match_buf_len == 0) { 1302 printf("%s: invalid match buffer length 0\n", __func__); 1303 return(EINVAL); 1304 } 1305 if (ccb->cdm.pattern_buf_len > 0) { 1306 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1307 lengths[0] = ccb->cdm.pattern_buf_len; 1308 dirs[0] = CAM_DIR_OUT; 1309 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1310 lengths[1] = ccb->cdm.match_buf_len; 1311 dirs[1] = CAM_DIR_IN; 1312 numbufs = 2; 1313 } else { 1314 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1315 lengths[0] = ccb->cdm.match_buf_len; 1316 dirs[0] = CAM_DIR_IN; 1317 numbufs = 1; 1318 } 1319 io_req->data_flags = CAM_DATA_VADDR; 1320 break; 1321 case XPT_SCSI_IO: 1322 case XPT_CONT_TARGET_IO: 1323 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1324 return(0); 1325 1326 /* 1327 * The user shouldn't be able to supply a bio. 1328 */ 1329 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO) 1330 return (EINVAL); 1331 1332 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1333 1334 data_ptrs[0] = &ccb->csio.data_ptr; 1335 lengths[0] = ccb->csio.dxfer_len; 1336 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1337 num_segs = ccb->csio.sglist_cnt; 1338 seg_cnt_ptr = &ccb->csio.sglist_cnt; 1339 numbufs = 1; 1340 maxmap = softc->maxio; 1341 break; 1342 case XPT_ATA_IO: 1343 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1344 return(0); 1345 1346 /* 1347 * We only support a single virtual address for ATA I/O. 1348 */ 1349 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 1350 return (EINVAL); 1351 1352 io_req->data_flags = CAM_DATA_VADDR; 1353 1354 data_ptrs[0] = &ccb->ataio.data_ptr; 1355 lengths[0] = ccb->ataio.dxfer_len; 1356 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1357 numbufs = 1; 1358 maxmap = softc->maxio; 1359 break; 1360 case XPT_SMP_IO: 1361 io_req->data_flags = CAM_DATA_VADDR; 1362 1363 data_ptrs[0] = &ccb->smpio.smp_request; 1364 lengths[0] = ccb->smpio.smp_request_len; 1365 dirs[0] = CAM_DIR_OUT; 1366 data_ptrs[1] = &ccb->smpio.smp_response; 1367 lengths[1] = ccb->smpio.smp_response_len; 1368 dirs[1] = CAM_DIR_IN; 1369 numbufs = 2; 1370 maxmap = softc->maxio; 1371 break; 1372 case XPT_DEV_ADVINFO: 1373 if (ccb->cdai.bufsiz == 0) 1374 return (0); 1375 1376 io_req->data_flags = CAM_DATA_VADDR; 1377 1378 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1379 lengths[0] = ccb->cdai.bufsiz; 1380 dirs[0] = CAM_DIR_IN; 1381 numbufs = 1; 1382 break; 1383 default: 1384 return(EINVAL); 1385 break; /* NOTREACHED */ 1386 } 1387 1388 io_req->num_bufs = numbufs; 1389 1390 /* 1391 * If there is a maximum, check to make sure that the user's 1392 * request fits within the limit. In general, we should only have 1393 * a maximum length for requests that go to hardware. Otherwise it 1394 * is whatever we're able to malloc. 1395 */ 1396 for (i = 0; i < numbufs; i++) { 1397 io_req->user_bufs[i] = *data_ptrs[i]; 1398 io_req->dirs[i] = dirs[i]; 1399 io_req->lengths[i] = lengths[i]; 1400 1401 if (maxmap == 0) 1402 continue; 1403 1404 if (lengths[i] <= maxmap) 1405 continue; 1406 1407 xpt_print(periph->path, "%s: data length %u > max allowed %u " 1408 "bytes\n", __func__, lengths[i], maxmap); 1409 error = EINVAL; 1410 goto bailout; 1411 } 1412 1413 switch (io_req->data_flags) { 1414 case CAM_DATA_VADDR: 1415 /* Map or copy the buffer into kernel address space */ 1416 for (i = 0; i < numbufs; i++) { 1417 uint8_t *tmp_buf; 1418 1419 /* 1420 * If for some reason no length is specified, we 1421 * don't need to allocate anything. 1422 */ 1423 if (io_req->lengths[i] == 0) 1424 continue; 1425 1426 /* 1427 * Make sure that the user's buffer is accessible 1428 * to that process. 1429 */ 1430 if (!useracc(io_req->user_bufs[i], io_req->lengths[i], 1431 (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE : 1432 VM_PROT_READ)) { 1433 xpt_print(periph->path, "%s: user address %p " 1434 "length %u is not accessible\n", __func__, 1435 io_req->user_bufs[i], io_req->lengths[i]); 1436 error = EFAULT; 1437 goto bailout; 1438 } 1439 1440 tmp_buf = malloc(lengths[i], M_SCSIPASS, 1441 M_WAITOK | M_ZERO); 1442 io_req->kern_bufs[i] = tmp_buf; 1443 *data_ptrs[i] = tmp_buf; 1444 1445 #if 0 1446 xpt_print(periph->path, "%s: malloced %p len %u, user " 1447 "buffer %p, operation: %s\n", __func__, 1448 tmp_buf, lengths[i], io_req->user_bufs[i], 1449 (dirs[i] == CAM_DIR_IN) ? "read" : "write"); 1450 #endif 1451 /* 1452 * We only need to copy in if the user is writing. 1453 */ 1454 if (dirs[i] != CAM_DIR_OUT) 1455 continue; 1456 1457 error = copyin(io_req->user_bufs[i], 1458 io_req->kern_bufs[i], lengths[i]); 1459 if (error != 0) { 1460 xpt_print(periph->path, "%s: copy of user " 1461 "buffer from %p to %p failed with " 1462 "error %d\n", __func__, 1463 io_req->user_bufs[i], 1464 io_req->kern_bufs[i], error); 1465 goto bailout; 1466 } 1467 } 1468 break; 1469 case CAM_DATA_PADDR: 1470 /* Pass down the pointer as-is */ 1471 break; 1472 case CAM_DATA_SG: { 1473 size_t sg_length, size_to_go, alloc_size; 1474 uint32_t num_segs_needed; 1475 1476 /* 1477 * Copy the user S/G list in, and then copy in the 1478 * individual segments. 1479 */ 1480 /* 1481 * We shouldn't see this, but check just in case. 1482 */ 1483 if (numbufs != 1) { 1484 xpt_print(periph->path, "%s: cannot currently handle " 1485 "more than one S/G list per CCB\n", __func__); 1486 error = EINVAL; 1487 goto bailout; 1488 } 1489 1490 /* 1491 * We have to have at least one segment. 1492 */ 1493 if (num_segs == 0) { 1494 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, " 1495 "but sglist_cnt=0!\n", __func__); 1496 error = EINVAL; 1497 goto bailout; 1498 } 1499 1500 /* 1501 * Make sure the user specified the total length and didn't 1502 * just leave it to us to decode the S/G list. 1503 */ 1504 if (lengths[0] == 0) { 1505 xpt_print(periph->path, "%s: no dxfer_len specified, " 1506 "but CAM_DATA_SG flag is set!\n", __func__); 1507 error = EINVAL; 1508 goto bailout; 1509 } 1510 1511 /* 1512 * We allocate buffers in io_zone_size increments for an 1513 * S/G list. This will generally be MAXPHYS. 1514 */ 1515 if (lengths[0] <= softc->io_zone_size) 1516 num_segs_needed = 1; 1517 else { 1518 num_segs_needed = lengths[0] / softc->io_zone_size; 1519 if ((lengths[0] % softc->io_zone_size) != 0) 1520 num_segs_needed++; 1521 } 1522 1523 /* Figure out the size of the S/G list */ 1524 sg_length = num_segs * sizeof(bus_dma_segment_t); 1525 io_req->num_user_segs = num_segs; 1526 io_req->num_kern_segs = num_segs_needed; 1527 1528 /* Save the user's S/G list pointer for later restoration */ 1529 io_req->user_bufs[0] = *data_ptrs[0]; 1530 1531 /* 1532 * If we have enough segments allocated by default to handle 1533 * the length of the user's S/G list, 1534 */ 1535 if (num_segs > PASS_MAX_SEGS) { 1536 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1537 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1538 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1539 } else 1540 io_req->user_segptr = io_req->user_segs; 1541 1542 if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) { 1543 xpt_print(periph->path, "%s: unable to access user " 1544 "S/G list at %p\n", __func__, *data_ptrs[0]); 1545 error = EFAULT; 1546 goto bailout; 1547 } 1548 1549 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1550 if (error != 0) { 1551 xpt_print(periph->path, "%s: copy of user S/G list " 1552 "from %p to %p failed with error %d\n", 1553 __func__, *data_ptrs[0], io_req->user_segptr, 1554 error); 1555 goto bailout; 1556 } 1557 1558 if (num_segs_needed > PASS_MAX_SEGS) { 1559 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) * 1560 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO); 1561 io_req->flags |= PASS_IO_KERN_SEG_MALLOC; 1562 } else { 1563 io_req->kern_segptr = io_req->kern_segs; 1564 } 1565 1566 /* 1567 * Allocate the kernel S/G list. 1568 */ 1569 for (size_to_go = lengths[0], i = 0; 1570 size_to_go > 0 && i < num_segs_needed; 1571 i++, size_to_go -= alloc_size) { 1572 uint8_t *kern_ptr; 1573 1574 alloc_size = min(size_to_go, softc->io_zone_size); 1575 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK); 1576 io_req->kern_segptr[i].ds_addr = 1577 (bus_addr_t)(uintptr_t)kern_ptr; 1578 io_req->kern_segptr[i].ds_len = alloc_size; 1579 } 1580 if (size_to_go > 0) { 1581 printf("%s: size_to_go = %zu, software error!\n", 1582 __func__, size_to_go); 1583 error = EINVAL; 1584 goto bailout; 1585 } 1586 1587 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr; 1588 *seg_cnt_ptr = io_req->num_kern_segs; 1589 1590 /* 1591 * We only need to copy data here if the user is writing. 1592 */ 1593 if (dirs[0] == CAM_DIR_OUT) 1594 error = passcopysglist(periph, io_req, dirs[0]); 1595 break; 1596 } 1597 case CAM_DATA_SG_PADDR: { 1598 size_t sg_length; 1599 1600 /* 1601 * We shouldn't see this, but check just in case. 1602 */ 1603 if (numbufs != 1) { 1604 printf("%s: cannot currently handle more than one " 1605 "S/G list per CCB\n", __func__); 1606 error = EINVAL; 1607 goto bailout; 1608 } 1609 1610 /* 1611 * We have to have at least one segment. 1612 */ 1613 if (num_segs == 0) { 1614 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag " 1615 "set, but sglist_cnt=0!\n", __func__); 1616 error = EINVAL; 1617 goto bailout; 1618 } 1619 1620 /* 1621 * Make sure the user specified the total length and didn't 1622 * just leave it to us to decode the S/G list. 1623 */ 1624 if (lengths[0] == 0) { 1625 xpt_print(periph->path, "%s: no dxfer_len specified, " 1626 "but CAM_DATA_SG flag is set!\n", __func__); 1627 error = EINVAL; 1628 goto bailout; 1629 } 1630 1631 /* Figure out the size of the S/G list */ 1632 sg_length = num_segs * sizeof(bus_dma_segment_t); 1633 io_req->num_user_segs = num_segs; 1634 io_req->num_kern_segs = io_req->num_user_segs; 1635 1636 /* Save the user's S/G list pointer for later restoration */ 1637 io_req->user_bufs[0] = *data_ptrs[0]; 1638 1639 if (num_segs > PASS_MAX_SEGS) { 1640 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1641 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1642 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1643 } else 1644 io_req->user_segptr = io_req->user_segs; 1645 1646 io_req->kern_segptr = io_req->user_segptr; 1647 1648 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1649 if (error != 0) { 1650 xpt_print(periph->path, "%s: copy of user S/G list " 1651 "from %p to %p failed with error %d\n", 1652 __func__, *data_ptrs[0], io_req->user_segptr, 1653 error); 1654 goto bailout; 1655 } 1656 break; 1657 } 1658 default: 1659 case CAM_DATA_BIO: 1660 /* 1661 * A user shouldn't be attaching a bio to the CCB. It 1662 * isn't a user-accessible structure. 1663 */ 1664 error = EINVAL; 1665 break; 1666 } 1667 1668 bailout: 1669 if (error != 0) 1670 passiocleanup(softc, io_req); 1671 1672 return (error); 1673 } 1674 1675 static int 1676 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req) 1677 { 1678 struct pass_softc *softc; 1679 union ccb *ccb; 1680 int error; 1681 int i; 1682 1683 error = 0; 1684 softc = (struct pass_softc *)periph->softc; 1685 ccb = &io_req->ccb; 1686 1687 switch (io_req->data_flags) { 1688 case CAM_DATA_VADDR: 1689 /* 1690 * Copy back to the user buffer if this was a read. 1691 */ 1692 for (i = 0; i < io_req->num_bufs; i++) { 1693 if (io_req->dirs[i] != CAM_DIR_IN) 1694 continue; 1695 1696 error = copyout(io_req->kern_bufs[i], 1697 io_req->user_bufs[i], io_req->lengths[i]); 1698 if (error != 0) { 1699 xpt_print(periph->path, "Unable to copy %u " 1700 "bytes from %p to user address %p\n", 1701 io_req->lengths[i], 1702 io_req->kern_bufs[i], 1703 io_req->user_bufs[i]); 1704 goto bailout; 1705 } 1706 1707 } 1708 break; 1709 case CAM_DATA_PADDR: 1710 /* Do nothing. The pointer is a physical address already */ 1711 break; 1712 case CAM_DATA_SG: 1713 /* 1714 * Copy back to the user buffer if this was a read. 1715 * Restore the user's S/G list buffer pointer. 1716 */ 1717 if (io_req->dirs[0] == CAM_DIR_IN) 1718 error = passcopysglist(periph, io_req, io_req->dirs[0]); 1719 break; 1720 case CAM_DATA_SG_PADDR: 1721 /* 1722 * Restore the user's S/G list buffer pointer. No need to 1723 * copy. 1724 */ 1725 break; 1726 default: 1727 case CAM_DATA_BIO: 1728 error = EINVAL; 1729 break; 1730 } 1731 1732 bailout: 1733 /* 1734 * Reset the user's pointers to their original values and free 1735 * allocated memory. 1736 */ 1737 passiocleanup(softc, io_req); 1738 1739 return (error); 1740 } 1741 1742 static int 1743 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1744 { 1745 int error; 1746 1747 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 1748 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl); 1749 } 1750 return (error); 1751 } 1752 1753 static int 1754 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1755 { 1756 struct cam_periph *periph; 1757 struct pass_softc *softc; 1758 int error; 1759 uint32_t priority; 1760 1761 periph = (struct cam_periph *)dev->si_drv1; 1762 if (periph == NULL) 1763 return(ENXIO); 1764 1765 cam_periph_lock(periph); 1766 softc = (struct pass_softc *)periph->softc; 1767 1768 error = 0; 1769 1770 switch (cmd) { 1771 1772 case CAMIOCOMMAND: 1773 { 1774 union ccb *inccb; 1775 union ccb *ccb; 1776 int ccb_malloced; 1777 1778 inccb = (union ccb *)addr; 1779 1780 /* 1781 * Some CCB types, like scan bus and scan lun can only go 1782 * through the transport layer device. 1783 */ 1784 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1785 xpt_print(periph->path, "CCB function code %#x is " 1786 "restricted to the XPT device\n", 1787 inccb->ccb_h.func_code); 1788 error = ENODEV; 1789 break; 1790 } 1791 1792 /* Compatibility for RL/priority-unaware code. */ 1793 priority = inccb->ccb_h.pinfo.priority; 1794 if (priority <= CAM_PRIORITY_OOB) 1795 priority += CAM_PRIORITY_OOB + 1; 1796 1797 /* 1798 * Non-immediate CCBs need a CCB from the per-device pool 1799 * of CCBs, which is scheduled by the transport layer. 1800 * Immediate CCBs and user-supplied CCBs should just be 1801 * malloced. 1802 */ 1803 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED) 1804 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) { 1805 ccb = cam_periph_getccb(periph, priority); 1806 ccb_malloced = 0; 1807 } else { 1808 ccb = xpt_alloc_ccb_nowait(); 1809 1810 if (ccb != NULL) 1811 xpt_setup_ccb(&ccb->ccb_h, periph->path, 1812 priority); 1813 ccb_malloced = 1; 1814 } 1815 1816 if (ccb == NULL) { 1817 xpt_print(periph->path, "unable to allocate CCB\n"); 1818 error = ENOMEM; 1819 break; 1820 } 1821 1822 error = passsendccb(periph, ccb, inccb); 1823 1824 if (ccb_malloced) 1825 xpt_free_ccb(ccb); 1826 else 1827 xpt_release_ccb(ccb); 1828 1829 break; 1830 } 1831 case CAMIOQUEUE: 1832 { 1833 struct pass_io_req *io_req; 1834 union ccb **user_ccb, *ccb; 1835 xpt_opcode fc; 1836 1837 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) { 1838 error = passcreatezone(periph); 1839 if (error != 0) 1840 goto bailout; 1841 } 1842 1843 /* 1844 * We're going to do a blocking allocation for this I/O 1845 * request, so we have to drop the lock. 1846 */ 1847 cam_periph_unlock(periph); 1848 1849 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO); 1850 ccb = &io_req->ccb; 1851 user_ccb = (union ccb **)addr; 1852 1853 /* 1854 * Unlike the CAMIOCOMMAND ioctl above, we only have a 1855 * pointer to the user's CCB, so we have to copy the whole 1856 * thing in to a buffer we have allocated (above) instead 1857 * of allowing the ioctl code to malloc a buffer and copy 1858 * it in. 1859 * 1860 * This is an advantage for this asynchronous interface, 1861 * since we don't want the memory to get freed while the 1862 * CCB is outstanding. 1863 */ 1864 #if 0 1865 xpt_print(periph->path, "Copying user CCB %p to " 1866 "kernel address %p\n", *user_ccb, ccb); 1867 #endif 1868 error = copyin(*user_ccb, ccb, sizeof(*ccb)); 1869 if (error != 0) { 1870 xpt_print(periph->path, "Copy of user CCB %p to " 1871 "kernel address %p failed with error %d\n", 1872 *user_ccb, ccb, error); 1873 uma_zfree(softc->pass_zone, io_req); 1874 cam_periph_lock(periph); 1875 break; 1876 } 1877 1878 /* 1879 * Some CCB types, like scan bus and scan lun can only go 1880 * through the transport layer device. 1881 */ 1882 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1883 xpt_print(periph->path, "CCB function code %#x is " 1884 "restricted to the XPT device\n", 1885 ccb->ccb_h.func_code); 1886 uma_zfree(softc->pass_zone, io_req); 1887 cam_periph_lock(periph); 1888 error = ENODEV; 1889 break; 1890 } 1891 1892 /* 1893 * Save the user's CCB pointer as well as his linked list 1894 * pointers and peripheral private area so that we can 1895 * restore these later. 1896 */ 1897 io_req->user_ccb_ptr = *user_ccb; 1898 io_req->user_periph_links = ccb->ccb_h.periph_links; 1899 io_req->user_periph_priv = ccb->ccb_h.periph_priv; 1900 1901 /* 1902 * Now that we've saved the user's values, we can set our 1903 * own peripheral private entry. 1904 */ 1905 ccb->ccb_h.ccb_ioreq = io_req; 1906 1907 /* Compatibility for RL/priority-unaware code. */ 1908 priority = ccb->ccb_h.pinfo.priority; 1909 if (priority <= CAM_PRIORITY_OOB) 1910 priority += CAM_PRIORITY_OOB + 1; 1911 1912 /* 1913 * Setup fields in the CCB like the path and the priority. 1914 * The path in particular cannot be done in userland, since 1915 * it is a pointer to a kernel data structure. 1916 */ 1917 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority, 1918 ccb->ccb_h.flags); 1919 1920 /* 1921 * Setup our done routine. There is no way for the user to 1922 * have a valid pointer here. 1923 */ 1924 ccb->ccb_h.cbfcnp = passdone; 1925 1926 fc = ccb->ccb_h.func_code; 1927 /* 1928 * If this function code has memory that can be mapped in 1929 * or out, we need to call passmemsetup(). 1930 */ 1931 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) 1932 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH) 1933 || (fc == XPT_DEV_ADVINFO)) { 1934 error = passmemsetup(periph, io_req); 1935 if (error != 0) { 1936 uma_zfree(softc->pass_zone, io_req); 1937 cam_periph_lock(periph); 1938 break; 1939 } 1940 } else 1941 io_req->mapinfo.num_bufs_used = 0; 1942 1943 cam_periph_lock(periph); 1944 1945 /* 1946 * Everything goes on the incoming queue initially. 1947 */ 1948 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links); 1949 1950 /* 1951 * If the CCB is queued, and is not a user CCB, then 1952 * we need to allocate a slot for it. Call xpt_schedule() 1953 * so that our start routine will get called when a CCB is 1954 * available. 1955 */ 1956 if ((fc & XPT_FC_QUEUED) 1957 && ((fc & XPT_FC_USER_CCB) == 0)) { 1958 xpt_schedule(periph, priority); 1959 break; 1960 } 1961 1962 /* 1963 * At this point, the CCB in question is either an 1964 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB 1965 * and therefore should be malloced, not allocated via a slot. 1966 * Remove the CCB from the incoming queue and add it to the 1967 * active queue. 1968 */ 1969 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 1970 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 1971 1972 xpt_action(ccb); 1973 1974 /* 1975 * If this is not a queued CCB (i.e. it is an immediate CCB), 1976 * then it is already done. We need to put it on the done 1977 * queue for the user to fetch. 1978 */ 1979 if ((fc & XPT_FC_QUEUED) == 0) { 1980 TAILQ_REMOVE(&softc->active_queue, io_req, links); 1981 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 1982 } 1983 break; 1984 } 1985 case CAMIOGET: 1986 { 1987 union ccb **user_ccb; 1988 struct pass_io_req *io_req; 1989 int old_error; 1990 1991 user_ccb = (union ccb **)addr; 1992 old_error = 0; 1993 1994 io_req = TAILQ_FIRST(&softc->done_queue); 1995 if (io_req == NULL) { 1996 error = ENOENT; 1997 break; 1998 } 1999 2000 /* 2001 * Remove the I/O from the done queue. 2002 */ 2003 TAILQ_REMOVE(&softc->done_queue, io_req, links); 2004 2005 /* 2006 * We have to drop the lock during the copyout because the 2007 * copyout can result in VM faults that require sleeping. 2008 */ 2009 cam_periph_unlock(periph); 2010 2011 /* 2012 * Do any needed copies (e.g. for reads) and revert the 2013 * pointers in the CCB back to the user's pointers. 2014 */ 2015 error = passmemdone(periph, io_req); 2016 2017 old_error = error; 2018 2019 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links; 2020 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv; 2021 2022 #if 0 2023 xpt_print(periph->path, "Copying to user CCB %p from " 2024 "kernel address %p\n", *user_ccb, &io_req->ccb); 2025 #endif 2026 2027 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb)); 2028 if (error != 0) { 2029 xpt_print(periph->path, "Copy to user CCB %p from " 2030 "kernel address %p failed with error %d\n", 2031 *user_ccb, &io_req->ccb, error); 2032 } 2033 2034 /* 2035 * Prefer the first error we got back, and make sure we 2036 * don't overwrite bad status with good. 2037 */ 2038 if (old_error != 0) 2039 error = old_error; 2040 2041 cam_periph_lock(periph); 2042 2043 /* 2044 * At this point, if there was an error, we could potentially 2045 * re-queue the I/O and try again. But why? The error 2046 * would almost certainly happen again. We might as well 2047 * not leak memory. 2048 */ 2049 uma_zfree(softc->pass_zone, io_req); 2050 break; 2051 } 2052 default: 2053 error = cam_periph_ioctl(periph, cmd, addr, passerror); 2054 break; 2055 } 2056 2057 bailout: 2058 cam_periph_unlock(periph); 2059 2060 return(error); 2061 } 2062 2063 static int 2064 passpoll(struct cdev *dev, int poll_events, struct thread *td) 2065 { 2066 struct cam_periph *periph; 2067 struct pass_softc *softc; 2068 int revents; 2069 2070 periph = (struct cam_periph *)dev->si_drv1; 2071 if (periph == NULL) 2072 return (ENXIO); 2073 2074 softc = (struct pass_softc *)periph->softc; 2075 2076 revents = poll_events & (POLLOUT | POLLWRNORM); 2077 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) { 2078 cam_periph_lock(periph); 2079 2080 if (!TAILQ_EMPTY(&softc->done_queue)) { 2081 revents |= poll_events & (POLLIN | POLLRDNORM); 2082 } 2083 cam_periph_unlock(periph); 2084 if (revents == 0) 2085 selrecord(td, &softc->read_select); 2086 } 2087 2088 return (revents); 2089 } 2090 2091 static int 2092 passkqfilter(struct cdev *dev, struct knote *kn) 2093 { 2094 struct cam_periph *periph; 2095 struct pass_softc *softc; 2096 2097 periph = (struct cam_periph *)dev->si_drv1; 2098 if (periph == NULL) 2099 return (ENXIO); 2100 2101 softc = (struct pass_softc *)periph->softc; 2102 2103 kn->kn_hook = (caddr_t)periph; 2104 kn->kn_fop = &passread_filtops; 2105 knlist_add(&softc->read_select.si_note, kn, 0); 2106 2107 return (0); 2108 } 2109 2110 static void 2111 passreadfiltdetach(struct knote *kn) 2112 { 2113 struct cam_periph *periph; 2114 struct pass_softc *softc; 2115 2116 periph = (struct cam_periph *)kn->kn_hook; 2117 softc = (struct pass_softc *)periph->softc; 2118 2119 knlist_remove(&softc->read_select.si_note, kn, 0); 2120 } 2121 2122 static int 2123 passreadfilt(struct knote *kn, long hint) 2124 { 2125 struct cam_periph *periph; 2126 struct pass_softc *softc; 2127 int retval; 2128 2129 periph = (struct cam_periph *)kn->kn_hook; 2130 softc = (struct pass_softc *)periph->softc; 2131 2132 cam_periph_assert(periph, MA_OWNED); 2133 2134 if (TAILQ_EMPTY(&softc->done_queue)) 2135 retval = 0; 2136 else 2137 retval = 1; 2138 2139 return (retval); 2140 } 2141 2142 /* 2143 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb" 2144 * should be the CCB that is copied in from the user. 2145 */ 2146 static int 2147 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb) 2148 { 2149 struct pass_softc *softc; 2150 struct cam_periph_map_info mapinfo; 2151 xpt_opcode fc; 2152 int error; 2153 2154 softc = (struct pass_softc *)periph->softc; 2155 2156 /* 2157 * There are some fields in the CCB header that need to be 2158 * preserved, the rest we get from the user. 2159 */ 2160 xpt_merge_ccb(ccb, inccb); 2161 2162 /* 2163 */ 2164 ccb->ccb_h.cbfcnp = passdone; 2165 2166 /* 2167 * Let cam_periph_mapmem do a sanity check on the data pointer format. 2168 * Even if no data transfer is needed, it's a cheap check and it 2169 * simplifies the code. 2170 */ 2171 fc = ccb->ccb_h.func_code; 2172 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO) 2173 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO)) { 2174 bzero(&mapinfo, sizeof(mapinfo)); 2175 2176 /* 2177 * cam_periph_mapmem calls into proc and vm functions that can 2178 * sleep as well as trigger I/O, so we can't hold the lock. 2179 * Dropping it here is reasonably safe. 2180 */ 2181 cam_periph_unlock(periph); 2182 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio); 2183 cam_periph_lock(periph); 2184 2185 /* 2186 * cam_periph_mapmem returned an error, we can't continue. 2187 * Return the error to the user. 2188 */ 2189 if (error) 2190 return(error); 2191 } else 2192 /* Ensure that the unmap call later on is a no-op. */ 2193 mapinfo.num_bufs_used = 0; 2194 2195 /* 2196 * If the user wants us to perform any error recovery, then honor 2197 * that request. Otherwise, it's up to the user to perform any 2198 * error recovery. 2199 */ 2200 cam_periph_runccb(ccb, passerror, /* cam_flags */ CAM_RETRY_SELTO, 2201 /* sense_flags */ ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? 2202 SF_RETRY_UA : SF_NO_RECOVERY) | SF_NO_PRINT, 2203 softc->device_stats); 2204 2205 cam_periph_unmapmem(ccb, &mapinfo); 2206 2207 ccb->ccb_h.cbfcnp = NULL; 2208 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv; 2209 bcopy(ccb, inccb, sizeof(union ccb)); 2210 2211 return(0); 2212 } 2213 2214 static int 2215 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) 2216 { 2217 struct cam_periph *periph; 2218 struct pass_softc *softc; 2219 2220 periph = xpt_path_periph(ccb->ccb_h.path); 2221 softc = (struct pass_softc *)periph->softc; 2222 2223 return(cam_periph_error(ccb, cam_flags, sense_flags, 2224 &softc->saved_ccb)); 2225 } 2226