1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/kernel.h> 36 #include <sys/conf.h> 37 #include <sys/types.h> 38 #include <sys/bio.h> 39 #include <sys/bus.h> 40 #include <sys/devicestat.h> 41 #include <sys/errno.h> 42 #include <sys/fcntl.h> 43 #include <sys/malloc.h> 44 #include <sys/proc.h> 45 #include <sys/poll.h> 46 #include <sys/selinfo.h> 47 #include <sys/sdt.h> 48 #include <sys/sysent.h> 49 #include <sys/taskqueue.h> 50 #include <vm/uma.h> 51 #include <vm/vm.h> 52 #include <vm/vm_extern.h> 53 54 #include <machine/bus.h> 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_queue.h> 60 #include <cam/cam_xpt.h> 61 #include <cam/cam_xpt_periph.h> 62 #include <cam/cam_debug.h> 63 #include <cam/cam_compat.h> 64 #include <cam/cam_xpt_periph.h> 65 66 #include <cam/scsi/scsi_all.h> 67 #include <cam/scsi/scsi_pass.h> 68 69 typedef enum { 70 PASS_FLAG_OPEN = 0x01, 71 PASS_FLAG_LOCKED = 0x02, 72 PASS_FLAG_INVALID = 0x04, 73 PASS_FLAG_INITIAL_PHYSPATH = 0x08, 74 PASS_FLAG_ZONE_INPROG = 0x10, 75 PASS_FLAG_ZONE_VALID = 0x20, 76 PASS_FLAG_UNMAPPED_CAPABLE = 0x40, 77 PASS_FLAG_ABANDONED_REF_SET = 0x80 78 } pass_flags; 79 80 typedef enum { 81 PASS_STATE_NORMAL 82 } pass_state; 83 84 typedef enum { 85 PASS_CCB_BUFFER_IO, 86 PASS_CCB_QUEUED_IO 87 } pass_ccb_types; 88 89 #define ccb_type ppriv_field0 90 #define ccb_ioreq ppriv_ptr1 91 92 /* 93 * The maximum number of memory segments we preallocate. 94 */ 95 #define PASS_MAX_SEGS 16 96 97 typedef enum { 98 PASS_IO_NONE = 0x00, 99 PASS_IO_USER_SEG_MALLOC = 0x01, 100 PASS_IO_KERN_SEG_MALLOC = 0x02, 101 PASS_IO_ABANDONED = 0x04 102 } pass_io_flags; 103 104 struct pass_io_req { 105 union ccb ccb; 106 union ccb *alloced_ccb; 107 union ccb *user_ccb_ptr; 108 camq_entry user_periph_links; 109 ccb_ppriv_area user_periph_priv; 110 struct cam_periph_map_info mapinfo; 111 pass_io_flags flags; 112 ccb_flags data_flags; 113 int num_user_segs; 114 bus_dma_segment_t user_segs[PASS_MAX_SEGS]; 115 int num_kern_segs; 116 bus_dma_segment_t kern_segs[PASS_MAX_SEGS]; 117 bus_dma_segment_t *user_segptr; 118 bus_dma_segment_t *kern_segptr; 119 int num_bufs; 120 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 121 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 122 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS]; 123 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS]; 124 struct bintime start_time; 125 TAILQ_ENTRY(pass_io_req) links; 126 }; 127 128 struct pass_softc { 129 pass_state state; 130 pass_flags flags; 131 u_int8_t pd_type; 132 int open_count; 133 u_int maxio; 134 struct devstat *device_stats; 135 struct cdev *dev; 136 struct cdev *alias_dev; 137 struct task add_physpath_task; 138 struct task shutdown_kqueue_task; 139 struct selinfo read_select; 140 TAILQ_HEAD(, pass_io_req) incoming_queue; 141 TAILQ_HEAD(, pass_io_req) active_queue; 142 TAILQ_HEAD(, pass_io_req) abandoned_queue; 143 TAILQ_HEAD(, pass_io_req) done_queue; 144 struct cam_periph *periph; 145 char zone_name[12]; 146 char io_zone_name[12]; 147 uma_zone_t pass_zone; 148 uma_zone_t pass_io_zone; 149 size_t io_zone_size; 150 }; 151 152 static d_open_t passopen; 153 static d_close_t passclose; 154 static d_ioctl_t passioctl; 155 static d_ioctl_t passdoioctl; 156 static d_poll_t passpoll; 157 static d_kqfilter_t passkqfilter; 158 static void passreadfiltdetach(struct knote *kn); 159 static int passreadfilt(struct knote *kn, long hint); 160 161 static periph_init_t passinit; 162 static periph_ctor_t passregister; 163 static periph_oninv_t passoninvalidate; 164 static periph_dtor_t passcleanup; 165 static periph_start_t passstart; 166 static void pass_shutdown_kqueue(void *context, int pending); 167 static void pass_add_physpath(void *context, int pending); 168 static void passasync(void *callback_arg, u_int32_t code, 169 struct cam_path *path, void *arg); 170 static void passdone(struct cam_periph *periph, 171 union ccb *done_ccb); 172 static int passcreatezone(struct cam_periph *periph); 173 static void passiocleanup(struct pass_softc *softc, 174 struct pass_io_req *io_req); 175 static int passcopysglist(struct cam_periph *periph, 176 struct pass_io_req *io_req, 177 ccb_flags direction); 178 static int passmemsetup(struct cam_periph *periph, 179 struct pass_io_req *io_req); 180 static int passmemdone(struct cam_periph *periph, 181 struct pass_io_req *io_req); 182 static int passerror(union ccb *ccb, u_int32_t cam_flags, 183 u_int32_t sense_flags); 184 static int passsendccb(struct cam_periph *periph, union ccb *ccb, 185 union ccb *inccb); 186 187 static struct periph_driver passdriver = 188 { 189 passinit, "pass", 190 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0 191 }; 192 193 PERIPHDRIVER_DECLARE(pass, passdriver); 194 195 static struct cdevsw pass_cdevsw = { 196 .d_version = D_VERSION, 197 .d_flags = D_TRACKCLOSE, 198 .d_open = passopen, 199 .d_close = passclose, 200 .d_ioctl = passioctl, 201 .d_poll = passpoll, 202 .d_kqfilter = passkqfilter, 203 .d_name = "pass", 204 }; 205 206 static struct filterops passread_filtops = { 207 .f_isfd = 1, 208 .f_detach = passreadfiltdetach, 209 .f_event = passreadfilt 210 }; 211 212 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers"); 213 214 static void 215 passinit(void) 216 { 217 cam_status status; 218 219 /* 220 * Install a global async callback. This callback will 221 * receive async callbacks like "new device found". 222 */ 223 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL); 224 225 if (status != CAM_REQ_CMP) { 226 printf("pass: Failed to attach master async callback " 227 "due to status 0x%x!\n", status); 228 } 229 230 } 231 232 static void 233 passrejectios(struct cam_periph *periph) 234 { 235 struct pass_io_req *io_req, *io_req2; 236 struct pass_softc *softc; 237 238 softc = (struct pass_softc *)periph->softc; 239 240 /* 241 * The user can no longer get status for I/O on the done queue, so 242 * clean up all outstanding I/O on the done queue. 243 */ 244 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 245 TAILQ_REMOVE(&softc->done_queue, io_req, links); 246 passiocleanup(softc, io_req); 247 uma_zfree(softc->pass_zone, io_req); 248 } 249 250 /* 251 * The underlying device is gone, so we can't issue these I/Os. 252 * The devfs node has been shut down, so we can't return status to 253 * the user. Free any I/O left on the incoming queue. 254 */ 255 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) { 256 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 257 passiocleanup(softc, io_req); 258 uma_zfree(softc->pass_zone, io_req); 259 } 260 261 /* 262 * Normally we would put I/Os on the abandoned queue and acquire a 263 * reference when we saw the final close. But, the device went 264 * away and devfs may have moved everything off to deadfs by the 265 * time the I/O done callback is called; as a result, we won't see 266 * any more closes. So, if we have any active I/Os, we need to put 267 * them on the abandoned queue. When the abandoned queue is empty, 268 * we'll release the remaining reference (see below) to the peripheral. 269 */ 270 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) { 271 TAILQ_REMOVE(&softc->active_queue, io_req, links); 272 io_req->flags |= PASS_IO_ABANDONED; 273 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links); 274 } 275 276 /* 277 * If we put any I/O on the abandoned queue, acquire a reference. 278 */ 279 if ((!TAILQ_EMPTY(&softc->abandoned_queue)) 280 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) { 281 cam_periph_doacquire(periph); 282 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 283 } 284 } 285 286 static void 287 passdevgonecb(void *arg) 288 { 289 struct cam_periph *periph; 290 struct mtx *mtx; 291 struct pass_softc *softc; 292 int i; 293 294 periph = (struct cam_periph *)arg; 295 mtx = cam_periph_mtx(periph); 296 mtx_lock(mtx); 297 298 softc = (struct pass_softc *)periph->softc; 299 KASSERT(softc->open_count >= 0, ("Negative open count %d", 300 softc->open_count)); 301 302 /* 303 * When we get this callback, we will get no more close calls from 304 * devfs. So if we have any dangling opens, we need to release the 305 * reference held for that particular context. 306 */ 307 for (i = 0; i < softc->open_count; i++) 308 cam_periph_release_locked(periph); 309 310 softc->open_count = 0; 311 312 /* 313 * Release the reference held for the device node, it is gone now. 314 * Accordingly, inform all queued I/Os of their fate. 315 */ 316 cam_periph_release_locked(periph); 317 passrejectios(periph); 318 319 /* 320 * We reference the SIM lock directly here, instead of using 321 * cam_periph_unlock(). The reason is that the final call to 322 * cam_periph_release_locked() above could result in the periph 323 * getting freed. If that is the case, dereferencing the periph 324 * with a cam_periph_unlock() call would cause a page fault. 325 */ 326 mtx_unlock(mtx); 327 328 /* 329 * We have to remove our kqueue context from a thread because it 330 * may sleep. It would be nice if we could get a callback from 331 * kqueue when it is done cleaning up resources. 332 */ 333 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task); 334 } 335 336 static void 337 passoninvalidate(struct cam_periph *periph) 338 { 339 struct pass_softc *softc; 340 341 softc = (struct pass_softc *)periph->softc; 342 343 /* 344 * De-register any async callbacks. 345 */ 346 xpt_register_async(0, passasync, periph, periph->path); 347 348 softc->flags |= PASS_FLAG_INVALID; 349 350 /* 351 * Tell devfs this device has gone away, and ask for a callback 352 * when it has cleaned up its state. 353 */ 354 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph); 355 } 356 357 static void 358 passcleanup(struct cam_periph *periph) 359 { 360 struct pass_softc *softc; 361 362 softc = (struct pass_softc *)periph->softc; 363 364 cam_periph_assert(periph, MA_OWNED); 365 KASSERT(TAILQ_EMPTY(&softc->active_queue), 366 ("%s called when there are commands on the active queue!\n", 367 __func__)); 368 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue), 369 ("%s called when there are commands on the abandoned queue!\n", 370 __func__)); 371 KASSERT(TAILQ_EMPTY(&softc->incoming_queue), 372 ("%s called when there are commands on the incoming queue!\n", 373 __func__)); 374 KASSERT(TAILQ_EMPTY(&softc->done_queue), 375 ("%s called when there are commands on the done queue!\n", 376 __func__)); 377 378 devstat_remove_entry(softc->device_stats); 379 380 cam_periph_unlock(periph); 381 382 /* 383 * We call taskqueue_drain() for the physpath task to make sure it 384 * is complete. We drop the lock because this can potentially 385 * sleep. XXX KDM that is bad. Need a way to get a callback when 386 * a taskqueue is drained. 387 * 388 * Note that we don't drain the kqueue shutdown task queue. This 389 * is because we hold a reference on the periph for kqueue, and 390 * release that reference from the kqueue shutdown task queue. So 391 * we cannot come into this routine unless we've released that 392 * reference. Also, because that could be the last reference, we 393 * could be called from the cam_periph_release() call in 394 * pass_shutdown_kqueue(). In that case, the taskqueue_drain() 395 * would deadlock. It would be preferable if we had a way to 396 * get a callback when a taskqueue is done. 397 */ 398 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task); 399 400 cam_periph_lock(periph); 401 402 free(softc, M_DEVBUF); 403 } 404 405 static void 406 pass_shutdown_kqueue(void *context, int pending) 407 { 408 struct cam_periph *periph; 409 struct pass_softc *softc; 410 411 periph = context; 412 softc = periph->softc; 413 414 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0); 415 knlist_destroy(&softc->read_select.si_note); 416 417 /* 418 * Release the reference we held for kqueue. 419 */ 420 cam_periph_release(periph); 421 } 422 423 static void 424 pass_add_physpath(void *context, int pending) 425 { 426 struct cam_periph *periph; 427 struct pass_softc *softc; 428 struct mtx *mtx; 429 char *physpath; 430 431 /* 432 * If we have one, create a devfs alias for our 433 * physical path. 434 */ 435 periph = context; 436 softc = periph->softc; 437 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK); 438 mtx = cam_periph_mtx(periph); 439 mtx_lock(mtx); 440 441 if (periph->flags & CAM_PERIPH_INVALID) 442 goto out; 443 444 if (xpt_getattr(physpath, MAXPATHLEN, 445 "GEOM::physpath", periph->path) == 0 446 && strlen(physpath) != 0) { 447 mtx_unlock(mtx); 448 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev, 449 softc->dev, softc->alias_dev, physpath); 450 mtx_lock(mtx); 451 } 452 453 out: 454 /* 455 * Now that we've made our alias, we no longer have to have a 456 * reference to the device. 457 */ 458 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0) 459 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH; 460 461 /* 462 * We always acquire a reference to the periph before queueing this 463 * task queue function, so it won't go away before we run. 464 */ 465 while (pending-- > 0) 466 cam_periph_release_locked(periph); 467 mtx_unlock(mtx); 468 469 free(physpath, M_DEVBUF); 470 } 471 472 static void 473 passasync(void *callback_arg, u_int32_t code, 474 struct cam_path *path, void *arg) 475 { 476 struct cam_periph *periph; 477 478 periph = (struct cam_periph *)callback_arg; 479 480 switch (code) { 481 case AC_FOUND_DEVICE: 482 { 483 struct ccb_getdev *cgd; 484 cam_status status; 485 486 cgd = (struct ccb_getdev *)arg; 487 if (cgd == NULL) 488 break; 489 490 /* 491 * Allocate a peripheral instance for 492 * this device and start the probe 493 * process. 494 */ 495 status = cam_periph_alloc(passregister, passoninvalidate, 496 passcleanup, passstart, "pass", 497 CAM_PERIPH_BIO, path, 498 passasync, AC_FOUND_DEVICE, cgd); 499 500 if (status != CAM_REQ_CMP 501 && status != CAM_REQ_INPROG) { 502 const struct cam_status_entry *entry; 503 504 entry = cam_fetch_status_entry(status); 505 506 printf("passasync: Unable to attach new device " 507 "due to status %#x: %s\n", status, entry ? 508 entry->status_text : "Unknown"); 509 } 510 511 break; 512 } 513 case AC_ADVINFO_CHANGED: 514 { 515 uintptr_t buftype; 516 517 buftype = (uintptr_t)arg; 518 if (buftype == CDAI_TYPE_PHYS_PATH) { 519 struct pass_softc *softc; 520 521 softc = (struct pass_softc *)periph->softc; 522 /* 523 * Acquire a reference to the periph before we 524 * start the taskqueue, so that we don't run into 525 * a situation where the periph goes away before 526 * the task queue has a chance to run. 527 */ 528 if (cam_periph_acquire(periph) != 0) 529 break; 530 531 taskqueue_enqueue(taskqueue_thread, 532 &softc->add_physpath_task); 533 } 534 break; 535 } 536 default: 537 cam_periph_async(periph, code, path, arg); 538 break; 539 } 540 } 541 542 static cam_status 543 passregister(struct cam_periph *periph, void *arg) 544 { 545 struct pass_softc *softc; 546 struct ccb_getdev *cgd; 547 struct ccb_pathinq cpi; 548 struct make_dev_args args; 549 int error, no_tags; 550 551 cgd = (struct ccb_getdev *)arg; 552 if (cgd == NULL) { 553 printf("%s: no getdev CCB, can't register device\n", __func__); 554 return(CAM_REQ_CMP_ERR); 555 } 556 557 softc = (struct pass_softc *)malloc(sizeof(*softc), 558 M_DEVBUF, M_NOWAIT); 559 560 if (softc == NULL) { 561 printf("%s: Unable to probe new device. " 562 "Unable to allocate softc\n", __func__); 563 return(CAM_REQ_CMP_ERR); 564 } 565 566 bzero(softc, sizeof(*softc)); 567 softc->state = PASS_STATE_NORMAL; 568 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI) 569 softc->pd_type = SID_TYPE(&cgd->inq_data); 570 else if (cgd->protocol == PROTO_SATAPM) 571 softc->pd_type = T_ENCLOSURE; 572 else 573 softc->pd_type = T_DIRECT; 574 575 periph->softc = softc; 576 softc->periph = periph; 577 TAILQ_INIT(&softc->incoming_queue); 578 TAILQ_INIT(&softc->active_queue); 579 TAILQ_INIT(&softc->abandoned_queue); 580 TAILQ_INIT(&softc->done_queue); 581 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d", 582 periph->periph_name, periph->unit_number); 583 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO", 584 periph->periph_name, periph->unit_number); 585 softc->io_zone_size = maxphys; 586 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph)); 587 588 xpt_path_inq(&cpi, periph->path); 589 590 if (cpi.maxio == 0) 591 softc->maxio = DFLTPHYS; /* traditional default */ 592 else if (cpi.maxio > maxphys) 593 softc->maxio = maxphys; /* for safety */ 594 else 595 softc->maxio = cpi.maxio; /* real value */ 596 597 if (cpi.hba_misc & PIM_UNMAPPED) 598 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE; 599 600 /* 601 * We pass in 0 for a blocksize, since we don't 602 * know what the blocksize of this device is, if 603 * it even has a blocksize. 604 */ 605 cam_periph_unlock(periph); 606 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0; 607 softc->device_stats = devstat_new_entry("pass", 608 periph->unit_number, 0, 609 DEVSTAT_NO_BLOCKSIZE 610 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0), 611 softc->pd_type | 612 XPORT_DEVSTAT_TYPE(cpi.transport) | 613 DEVSTAT_TYPE_PASS, 614 DEVSTAT_PRIORITY_PASS); 615 616 /* 617 * Initialize the taskqueue handler for shutting down kqueue. 618 */ 619 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0, 620 pass_shutdown_kqueue, periph); 621 622 /* 623 * Acquire a reference to the periph that we can release once we've 624 * cleaned up the kqueue. 625 */ 626 if (cam_periph_acquire(periph) != 0) { 627 xpt_print(periph->path, "%s: lost periph during " 628 "registration!\n", __func__); 629 cam_periph_lock(periph); 630 return (CAM_REQ_CMP_ERR); 631 } 632 633 /* 634 * Acquire a reference to the periph before we create the devfs 635 * instance for it. We'll release this reference once the devfs 636 * instance has been freed. 637 */ 638 if (cam_periph_acquire(periph) != 0) { 639 xpt_print(periph->path, "%s: lost periph during " 640 "registration!\n", __func__); 641 cam_periph_lock(periph); 642 return (CAM_REQ_CMP_ERR); 643 } 644 645 /* Register the device */ 646 make_dev_args_init(&args); 647 args.mda_devsw = &pass_cdevsw; 648 args.mda_unit = periph->unit_number; 649 args.mda_uid = UID_ROOT; 650 args.mda_gid = GID_OPERATOR; 651 args.mda_mode = 0600; 652 args.mda_si_drv1 = periph; 653 args.mda_flags = MAKEDEV_NOWAIT; 654 error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name, 655 periph->unit_number); 656 if (error != 0) { 657 cam_periph_lock(periph); 658 cam_periph_release_locked(periph); 659 return (CAM_REQ_CMP_ERR); 660 } 661 662 /* 663 * Hold a reference to the periph before we create the physical 664 * path alias so it can't go away. 665 */ 666 if (cam_periph_acquire(periph) != 0) { 667 xpt_print(periph->path, "%s: lost periph during " 668 "registration!\n", __func__); 669 cam_periph_lock(periph); 670 return (CAM_REQ_CMP_ERR); 671 } 672 673 cam_periph_lock(periph); 674 675 TASK_INIT(&softc->add_physpath_task, /*priority*/0, 676 pass_add_physpath, periph); 677 678 /* 679 * See if physical path information is already available. 680 */ 681 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); 682 683 /* 684 * Add an async callback so that we get notified if 685 * this device goes away or its physical path 686 * (stored in the advanced info data of the EDT) has 687 * changed. 688 */ 689 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED, 690 passasync, periph, periph->path); 691 692 if (bootverbose) 693 xpt_announce_periph(periph, NULL); 694 695 return(CAM_REQ_CMP); 696 } 697 698 static int 699 passopen(struct cdev *dev, int flags, int fmt, struct thread *td) 700 { 701 struct cam_periph *periph; 702 struct pass_softc *softc; 703 int error; 704 705 periph = (struct cam_periph *)dev->si_drv1; 706 if (cam_periph_acquire(periph) != 0) 707 return (ENXIO); 708 709 cam_periph_lock(periph); 710 711 softc = (struct pass_softc *)periph->softc; 712 713 if (softc->flags & PASS_FLAG_INVALID) { 714 cam_periph_release_locked(periph); 715 cam_periph_unlock(periph); 716 return(ENXIO); 717 } 718 719 /* 720 * Don't allow access when we're running at a high securelevel. 721 */ 722 error = securelevel_gt(td->td_ucred, 1); 723 if (error) { 724 cam_periph_release_locked(periph); 725 cam_periph_unlock(periph); 726 return(error); 727 } 728 729 /* 730 * Only allow read-write access. 731 */ 732 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) { 733 cam_periph_release_locked(periph); 734 cam_periph_unlock(periph); 735 return(EPERM); 736 } 737 738 /* 739 * We don't allow nonblocking access. 740 */ 741 if ((flags & O_NONBLOCK) != 0) { 742 xpt_print(periph->path, "can't do nonblocking access\n"); 743 cam_periph_release_locked(periph); 744 cam_periph_unlock(periph); 745 return(EINVAL); 746 } 747 748 softc->open_count++; 749 750 cam_periph_unlock(periph); 751 752 return (error); 753 } 754 755 static int 756 passclose(struct cdev *dev, int flag, int fmt, struct thread *td) 757 { 758 struct cam_periph *periph; 759 struct pass_softc *softc; 760 struct mtx *mtx; 761 762 periph = (struct cam_periph *)dev->si_drv1; 763 mtx = cam_periph_mtx(periph); 764 mtx_lock(mtx); 765 766 softc = periph->softc; 767 softc->open_count--; 768 769 if (softc->open_count == 0) { 770 struct pass_io_req *io_req, *io_req2; 771 772 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 773 TAILQ_REMOVE(&softc->done_queue, io_req, links); 774 passiocleanup(softc, io_req); 775 uma_zfree(softc->pass_zone, io_req); 776 } 777 778 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, 779 io_req2) { 780 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 781 passiocleanup(softc, io_req); 782 uma_zfree(softc->pass_zone, io_req); 783 } 784 785 /* 786 * If there are any active I/Os, we need to forcibly acquire a 787 * reference to the peripheral so that we don't go away 788 * before they complete. We'll release the reference when 789 * the abandoned queue is empty. 790 */ 791 io_req = TAILQ_FIRST(&softc->active_queue); 792 if ((io_req != NULL) 793 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) { 794 cam_periph_doacquire(periph); 795 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 796 } 797 798 /* 799 * Since the I/O in the active queue is not under our 800 * control, just set a flag so that we can clean it up when 801 * it completes and put it on the abandoned queue. This 802 * will prevent our sending spurious completions in the 803 * event that the device is opened again before these I/Os 804 * complete. 805 */ 806 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, 807 io_req2) { 808 TAILQ_REMOVE(&softc->active_queue, io_req, links); 809 io_req->flags |= PASS_IO_ABANDONED; 810 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, 811 links); 812 } 813 } 814 815 cam_periph_release_locked(periph); 816 817 /* 818 * We reference the lock directly here, instead of using 819 * cam_periph_unlock(). The reason is that the call to 820 * cam_periph_release_locked() above could result in the periph 821 * getting freed. If that is the case, dereferencing the periph 822 * with a cam_periph_unlock() call would cause a page fault. 823 * 824 * cam_periph_release() avoids this problem using the same method, 825 * but we're manually acquiring and dropping the lock here to 826 * protect the open count and avoid another lock acquisition and 827 * release. 828 */ 829 mtx_unlock(mtx); 830 831 return (0); 832 } 833 834 static void 835 passstart(struct cam_periph *periph, union ccb *start_ccb) 836 { 837 struct pass_softc *softc; 838 839 softc = (struct pass_softc *)periph->softc; 840 841 switch (softc->state) { 842 case PASS_STATE_NORMAL: { 843 struct pass_io_req *io_req; 844 845 /* 846 * Check for any queued I/O requests that require an 847 * allocated slot. 848 */ 849 io_req = TAILQ_FIRST(&softc->incoming_queue); 850 if (io_req == NULL) { 851 xpt_release_ccb(start_ccb); 852 break; 853 } 854 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 855 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 856 /* 857 * Merge the user's CCB into the allocated CCB. 858 */ 859 xpt_merge_ccb(start_ccb, &io_req->ccb); 860 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO; 861 start_ccb->ccb_h.ccb_ioreq = io_req; 862 start_ccb->ccb_h.cbfcnp = passdone; 863 io_req->alloced_ccb = start_ccb; 864 binuptime(&io_req->start_time); 865 devstat_start_transaction(softc->device_stats, 866 &io_req->start_time); 867 868 xpt_action(start_ccb); 869 870 /* 871 * If we have any more I/O waiting, schedule ourselves again. 872 */ 873 if (!TAILQ_EMPTY(&softc->incoming_queue)) 874 xpt_schedule(periph, CAM_PRIORITY_NORMAL); 875 break; 876 } 877 default: 878 break; 879 } 880 } 881 882 static void 883 passdone(struct cam_periph *periph, union ccb *done_ccb) 884 { 885 struct pass_softc *softc; 886 struct ccb_scsiio *csio; 887 888 softc = (struct pass_softc *)periph->softc; 889 890 cam_periph_assert(periph, MA_OWNED); 891 892 csio = &done_ccb->csio; 893 switch (csio->ccb_h.ccb_type) { 894 case PASS_CCB_QUEUED_IO: { 895 struct pass_io_req *io_req; 896 897 io_req = done_ccb->ccb_h.ccb_ioreq; 898 #if 0 899 xpt_print(periph->path, "%s: called for user CCB %p\n", 900 __func__, io_req->user_ccb_ptr); 901 #endif 902 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) 903 && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) 904 && ((io_req->flags & PASS_IO_ABANDONED) == 0)) { 905 int error; 906 907 error = passerror(done_ccb, CAM_RETRY_SELTO, 908 SF_RETRY_UA | SF_NO_PRINT); 909 910 if (error == ERESTART) { 911 /* 912 * A retry was scheduled, so 913 * just return. 914 */ 915 return; 916 } 917 } 918 919 /* 920 * Copy the allocated CCB contents back to the malloced CCB 921 * so we can give status back to the user when he requests it. 922 */ 923 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb)); 924 925 /* 926 * Log data/transaction completion with devstat(9). 927 */ 928 switch (done_ccb->ccb_h.func_code) { 929 case XPT_SCSI_IO: 930 devstat_end_transaction(softc->device_stats, 931 done_ccb->csio.dxfer_len - done_ccb->csio.resid, 932 done_ccb->csio.tag_action & 0x3, 933 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 934 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 935 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 936 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 937 &io_req->start_time); 938 break; 939 case XPT_ATA_IO: 940 devstat_end_transaction(softc->device_stats, 941 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid, 942 0, /* Not used in ATA */ 943 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 944 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 945 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 946 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 947 &io_req->start_time); 948 break; 949 case XPT_SMP_IO: 950 /* 951 * XXX KDM this isn't quite right, but there isn't 952 * currently an easy way to represent a bidirectional 953 * transfer in devstat. The only way to do it 954 * and have the byte counts come out right would 955 * mean that we would have to record two 956 * transactions, one for the request and one for the 957 * response. For now, so that we report something, 958 * just treat the entire thing as a read. 959 */ 960 devstat_end_transaction(softc->device_stats, 961 done_ccb->smpio.smp_request_len + 962 done_ccb->smpio.smp_response_len, 963 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL, 964 &io_req->start_time); 965 break; 966 default: 967 devstat_end_transaction(softc->device_stats, 0, 968 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL, 969 &io_req->start_time); 970 break; 971 } 972 973 /* 974 * In the normal case, take the completed I/O off of the 975 * active queue and put it on the done queue. Notitfy the 976 * user that we have a completed I/O. 977 */ 978 if ((io_req->flags & PASS_IO_ABANDONED) == 0) { 979 TAILQ_REMOVE(&softc->active_queue, io_req, links); 980 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 981 selwakeuppri(&softc->read_select, PRIBIO); 982 KNOTE_LOCKED(&softc->read_select.si_note, 0); 983 } else { 984 /* 985 * In the case of an abandoned I/O (final close 986 * without fetching the I/O), take it off of the 987 * abandoned queue and free it. 988 */ 989 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links); 990 passiocleanup(softc, io_req); 991 uma_zfree(softc->pass_zone, io_req); 992 993 /* 994 * Release the done_ccb here, since we may wind up 995 * freeing the peripheral when we decrement the 996 * reference count below. 997 */ 998 xpt_release_ccb(done_ccb); 999 1000 /* 1001 * If the abandoned queue is empty, we can release 1002 * our reference to the periph since we won't have 1003 * any more completions coming. 1004 */ 1005 if ((TAILQ_EMPTY(&softc->abandoned_queue)) 1006 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) { 1007 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET; 1008 cam_periph_release_locked(periph); 1009 } 1010 1011 /* 1012 * We have already released the CCB, so we can 1013 * return. 1014 */ 1015 return; 1016 } 1017 break; 1018 } 1019 } 1020 xpt_release_ccb(done_ccb); 1021 } 1022 1023 static int 1024 passcreatezone(struct cam_periph *periph) 1025 { 1026 struct pass_softc *softc; 1027 int error; 1028 1029 error = 0; 1030 softc = (struct pass_softc *)periph->softc; 1031 1032 cam_periph_assert(periph, MA_OWNED); 1033 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 1034 ("%s called when the pass(4) zone is valid!\n", __func__)); 1035 KASSERT((softc->pass_zone == NULL), 1036 ("%s called when the pass(4) zone is allocated!\n", __func__)); 1037 1038 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) { 1039 /* 1040 * We're the first context through, so we need to create 1041 * the pass(4) UMA zone for I/O requests. 1042 */ 1043 softc->flags |= PASS_FLAG_ZONE_INPROG; 1044 1045 /* 1046 * uma_zcreate() does a blocking (M_WAITOK) allocation, 1047 * so we cannot hold a mutex while we call it. 1048 */ 1049 cam_periph_unlock(periph); 1050 1051 softc->pass_zone = uma_zcreate(softc->zone_name, 1052 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL, 1053 /*align*/ 0, /*flags*/ 0); 1054 1055 softc->pass_io_zone = uma_zcreate(softc->io_zone_name, 1056 softc->io_zone_size, NULL, NULL, NULL, NULL, 1057 /*align*/ 0, /*flags*/ 0); 1058 1059 cam_periph_lock(periph); 1060 1061 if ((softc->pass_zone == NULL) 1062 || (softc->pass_io_zone == NULL)) { 1063 if (softc->pass_zone == NULL) 1064 xpt_print(periph->path, "unable to allocate " 1065 "IO Req UMA zone\n"); 1066 else 1067 xpt_print(periph->path, "unable to allocate " 1068 "IO UMA zone\n"); 1069 softc->flags &= ~PASS_FLAG_ZONE_INPROG; 1070 goto bailout; 1071 } 1072 1073 /* 1074 * Set the flags appropriately and notify any other waiters. 1075 */ 1076 softc->flags &= PASS_FLAG_ZONE_INPROG; 1077 softc->flags |= PASS_FLAG_ZONE_VALID; 1078 wakeup(&softc->pass_zone); 1079 } else { 1080 /* 1081 * In this case, the UMA zone has not yet been created, but 1082 * another context is in the process of creating it. We 1083 * need to sleep until the creation is either done or has 1084 * failed. 1085 */ 1086 while ((softc->flags & PASS_FLAG_ZONE_INPROG) 1087 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) { 1088 error = msleep(&softc->pass_zone, 1089 cam_periph_mtx(periph), PRIBIO, 1090 "paszon", 0); 1091 if (error != 0) 1092 goto bailout; 1093 } 1094 /* 1095 * If the zone creation failed, no luck for the user. 1096 */ 1097 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){ 1098 error = ENOMEM; 1099 goto bailout; 1100 } 1101 } 1102 bailout: 1103 return (error); 1104 } 1105 1106 static void 1107 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req) 1108 { 1109 union ccb *ccb; 1110 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1111 int i, numbufs; 1112 1113 ccb = &io_req->ccb; 1114 1115 switch (ccb->ccb_h.func_code) { 1116 case XPT_DEV_MATCH: 1117 numbufs = min(io_req->num_bufs, 2); 1118 1119 if (numbufs == 1) { 1120 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1121 } else { 1122 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1123 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1124 } 1125 break; 1126 case XPT_SCSI_IO: 1127 case XPT_CONT_TARGET_IO: 1128 data_ptrs[0] = &ccb->csio.data_ptr; 1129 numbufs = min(io_req->num_bufs, 1); 1130 break; 1131 case XPT_ATA_IO: 1132 data_ptrs[0] = &ccb->ataio.data_ptr; 1133 numbufs = min(io_req->num_bufs, 1); 1134 break; 1135 case XPT_SMP_IO: 1136 numbufs = min(io_req->num_bufs, 2); 1137 data_ptrs[0] = &ccb->smpio.smp_request; 1138 data_ptrs[1] = &ccb->smpio.smp_response; 1139 break; 1140 case XPT_DEV_ADVINFO: 1141 numbufs = min(io_req->num_bufs, 1); 1142 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1143 break; 1144 case XPT_NVME_IO: 1145 case XPT_NVME_ADMIN: 1146 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1147 numbufs = min(io_req->num_bufs, 1); 1148 break; 1149 default: 1150 /* allow ourselves to be swapped once again */ 1151 return; 1152 break; /* NOTREACHED */ 1153 } 1154 1155 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) { 1156 free(io_req->user_segptr, M_SCSIPASS); 1157 io_req->user_segptr = NULL; 1158 } 1159 1160 /* 1161 * We only want to free memory we malloced. 1162 */ 1163 if (io_req->data_flags == CAM_DATA_VADDR) { 1164 for (i = 0; i < io_req->num_bufs; i++) { 1165 if (io_req->kern_bufs[i] == NULL) 1166 continue; 1167 1168 free(io_req->kern_bufs[i], M_SCSIPASS); 1169 io_req->kern_bufs[i] = NULL; 1170 } 1171 } else if (io_req->data_flags == CAM_DATA_SG) { 1172 for (i = 0; i < io_req->num_kern_segs; i++) { 1173 if ((uint8_t *)(uintptr_t) 1174 io_req->kern_segptr[i].ds_addr == NULL) 1175 continue; 1176 1177 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t) 1178 io_req->kern_segptr[i].ds_addr); 1179 io_req->kern_segptr[i].ds_addr = 0; 1180 } 1181 } 1182 1183 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) { 1184 free(io_req->kern_segptr, M_SCSIPASS); 1185 io_req->kern_segptr = NULL; 1186 } 1187 1188 if (io_req->data_flags != CAM_DATA_PADDR) { 1189 for (i = 0; i < numbufs; i++) { 1190 /* 1191 * Restore the user's buffer pointers to their 1192 * previous values. 1193 */ 1194 if (io_req->user_bufs[i] != NULL) 1195 *data_ptrs[i] = io_req->user_bufs[i]; 1196 } 1197 } 1198 1199 } 1200 1201 static int 1202 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req, 1203 ccb_flags direction) 1204 { 1205 bus_size_t kern_watermark, user_watermark, len_to_copy; 1206 bus_dma_segment_t *user_sglist, *kern_sglist; 1207 int i, j, error; 1208 1209 error = 0; 1210 kern_watermark = 0; 1211 user_watermark = 0; 1212 len_to_copy = 0; 1213 user_sglist = io_req->user_segptr; 1214 kern_sglist = io_req->kern_segptr; 1215 1216 for (i = 0, j = 0; i < io_req->num_user_segs && 1217 j < io_req->num_kern_segs;) { 1218 uint8_t *user_ptr, *kern_ptr; 1219 1220 len_to_copy = min(user_sglist[i].ds_len -user_watermark, 1221 kern_sglist[j].ds_len - kern_watermark); 1222 1223 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr; 1224 user_ptr = user_ptr + user_watermark; 1225 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr; 1226 kern_ptr = kern_ptr + kern_watermark; 1227 1228 user_watermark += len_to_copy; 1229 kern_watermark += len_to_copy; 1230 1231 if (direction == CAM_DIR_IN) { 1232 error = copyout(kern_ptr, user_ptr, len_to_copy); 1233 if (error != 0) { 1234 xpt_print(periph->path, "%s: copyout of %u " 1235 "bytes from %p to %p failed with " 1236 "error %d\n", __func__, len_to_copy, 1237 kern_ptr, user_ptr, error); 1238 goto bailout; 1239 } 1240 } else { 1241 error = copyin(user_ptr, kern_ptr, len_to_copy); 1242 if (error != 0) { 1243 xpt_print(periph->path, "%s: copyin of %u " 1244 "bytes from %p to %p failed with " 1245 "error %d\n", __func__, len_to_copy, 1246 user_ptr, kern_ptr, error); 1247 goto bailout; 1248 } 1249 } 1250 1251 if (user_sglist[i].ds_len == user_watermark) { 1252 i++; 1253 user_watermark = 0; 1254 } 1255 1256 if (kern_sglist[j].ds_len == kern_watermark) { 1257 j++; 1258 kern_watermark = 0; 1259 } 1260 } 1261 1262 bailout: 1263 1264 return (error); 1265 } 1266 1267 static int 1268 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req) 1269 { 1270 union ccb *ccb; 1271 struct pass_softc *softc; 1272 int numbufs, i; 1273 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1274 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 1275 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 1276 uint32_t num_segs; 1277 uint16_t *seg_cnt_ptr; 1278 size_t maxmap; 1279 int error; 1280 1281 cam_periph_assert(periph, MA_NOTOWNED); 1282 1283 softc = periph->softc; 1284 1285 error = 0; 1286 ccb = &io_req->ccb; 1287 maxmap = 0; 1288 num_segs = 0; 1289 seg_cnt_ptr = NULL; 1290 1291 switch(ccb->ccb_h.func_code) { 1292 case XPT_DEV_MATCH: 1293 if (ccb->cdm.match_buf_len == 0) { 1294 printf("%s: invalid match buffer length 0\n", __func__); 1295 return(EINVAL); 1296 } 1297 if (ccb->cdm.pattern_buf_len > 0) { 1298 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1299 lengths[0] = ccb->cdm.pattern_buf_len; 1300 dirs[0] = CAM_DIR_OUT; 1301 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1302 lengths[1] = ccb->cdm.match_buf_len; 1303 dirs[1] = CAM_DIR_IN; 1304 numbufs = 2; 1305 } else { 1306 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1307 lengths[0] = ccb->cdm.match_buf_len; 1308 dirs[0] = CAM_DIR_IN; 1309 numbufs = 1; 1310 } 1311 io_req->data_flags = CAM_DATA_VADDR; 1312 break; 1313 case XPT_SCSI_IO: 1314 case XPT_CONT_TARGET_IO: 1315 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1316 return(0); 1317 1318 /* 1319 * The user shouldn't be able to supply a bio. 1320 */ 1321 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO) 1322 return (EINVAL); 1323 1324 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1325 1326 data_ptrs[0] = &ccb->csio.data_ptr; 1327 lengths[0] = ccb->csio.dxfer_len; 1328 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1329 num_segs = ccb->csio.sglist_cnt; 1330 seg_cnt_ptr = &ccb->csio.sglist_cnt; 1331 numbufs = 1; 1332 maxmap = softc->maxio; 1333 break; 1334 case XPT_ATA_IO: 1335 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1336 return(0); 1337 1338 /* 1339 * We only support a single virtual address for ATA I/O. 1340 */ 1341 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 1342 return (EINVAL); 1343 1344 io_req->data_flags = CAM_DATA_VADDR; 1345 1346 data_ptrs[0] = &ccb->ataio.data_ptr; 1347 lengths[0] = ccb->ataio.dxfer_len; 1348 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1349 numbufs = 1; 1350 maxmap = softc->maxio; 1351 break; 1352 case XPT_SMP_IO: 1353 io_req->data_flags = CAM_DATA_VADDR; 1354 1355 data_ptrs[0] = &ccb->smpio.smp_request; 1356 lengths[0] = ccb->smpio.smp_request_len; 1357 dirs[0] = CAM_DIR_OUT; 1358 data_ptrs[1] = &ccb->smpio.smp_response; 1359 lengths[1] = ccb->smpio.smp_response_len; 1360 dirs[1] = CAM_DIR_IN; 1361 numbufs = 2; 1362 maxmap = softc->maxio; 1363 break; 1364 case XPT_DEV_ADVINFO: 1365 if (ccb->cdai.bufsiz == 0) 1366 return (0); 1367 1368 io_req->data_flags = CAM_DATA_VADDR; 1369 1370 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1371 lengths[0] = ccb->cdai.bufsiz; 1372 dirs[0] = CAM_DIR_IN; 1373 numbufs = 1; 1374 break; 1375 case XPT_NVME_ADMIN: 1376 case XPT_NVME_IO: 1377 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1378 return (0); 1379 1380 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1381 1382 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1383 lengths[0] = ccb->nvmeio.dxfer_len; 1384 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1385 num_segs = ccb->nvmeio.sglist_cnt; 1386 seg_cnt_ptr = &ccb->nvmeio.sglist_cnt; 1387 numbufs = 1; 1388 maxmap = softc->maxio; 1389 break; 1390 default: 1391 return(EINVAL); 1392 break; /* NOTREACHED */ 1393 } 1394 1395 io_req->num_bufs = numbufs; 1396 1397 /* 1398 * If there is a maximum, check to make sure that the user's 1399 * request fits within the limit. In general, we should only have 1400 * a maximum length for requests that go to hardware. Otherwise it 1401 * is whatever we're able to malloc. 1402 */ 1403 for (i = 0; i < numbufs; i++) { 1404 io_req->user_bufs[i] = *data_ptrs[i]; 1405 io_req->dirs[i] = dirs[i]; 1406 io_req->lengths[i] = lengths[i]; 1407 1408 if (maxmap == 0) 1409 continue; 1410 1411 if (lengths[i] <= maxmap) 1412 continue; 1413 1414 xpt_print(periph->path, "%s: data length %u > max allowed %u " 1415 "bytes\n", __func__, lengths[i], maxmap); 1416 error = EINVAL; 1417 goto bailout; 1418 } 1419 1420 switch (io_req->data_flags) { 1421 case CAM_DATA_VADDR: 1422 /* Map or copy the buffer into kernel address space */ 1423 for (i = 0; i < numbufs; i++) { 1424 uint8_t *tmp_buf; 1425 1426 /* 1427 * If for some reason no length is specified, we 1428 * don't need to allocate anything. 1429 */ 1430 if (io_req->lengths[i] == 0) 1431 continue; 1432 1433 tmp_buf = malloc(lengths[i], M_SCSIPASS, 1434 M_WAITOK | M_ZERO); 1435 io_req->kern_bufs[i] = tmp_buf; 1436 *data_ptrs[i] = tmp_buf; 1437 1438 #if 0 1439 xpt_print(periph->path, "%s: malloced %p len %u, user " 1440 "buffer %p, operation: %s\n", __func__, 1441 tmp_buf, lengths[i], io_req->user_bufs[i], 1442 (dirs[i] == CAM_DIR_IN) ? "read" : "write"); 1443 #endif 1444 /* 1445 * We only need to copy in if the user is writing. 1446 */ 1447 if (dirs[i] != CAM_DIR_OUT) 1448 continue; 1449 1450 error = copyin(io_req->user_bufs[i], 1451 io_req->kern_bufs[i], lengths[i]); 1452 if (error != 0) { 1453 xpt_print(periph->path, "%s: copy of user " 1454 "buffer from %p to %p failed with " 1455 "error %d\n", __func__, 1456 io_req->user_bufs[i], 1457 io_req->kern_bufs[i], error); 1458 goto bailout; 1459 } 1460 } 1461 break; 1462 case CAM_DATA_PADDR: 1463 /* Pass down the pointer as-is */ 1464 break; 1465 case CAM_DATA_SG: { 1466 size_t sg_length, size_to_go, alloc_size; 1467 uint32_t num_segs_needed; 1468 1469 /* 1470 * Copy the user S/G list in, and then copy in the 1471 * individual segments. 1472 */ 1473 /* 1474 * We shouldn't see this, but check just in case. 1475 */ 1476 if (numbufs != 1) { 1477 xpt_print(periph->path, "%s: cannot currently handle " 1478 "more than one S/G list per CCB\n", __func__); 1479 error = EINVAL; 1480 goto bailout; 1481 } 1482 1483 /* 1484 * We have to have at least one segment. 1485 */ 1486 if (num_segs == 0) { 1487 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, " 1488 "but sglist_cnt=0!\n", __func__); 1489 error = EINVAL; 1490 goto bailout; 1491 } 1492 1493 /* 1494 * Make sure the user specified the total length and didn't 1495 * just leave it to us to decode the S/G list. 1496 */ 1497 if (lengths[0] == 0) { 1498 xpt_print(periph->path, "%s: no dxfer_len specified, " 1499 "but CAM_DATA_SG flag is set!\n", __func__); 1500 error = EINVAL; 1501 goto bailout; 1502 } 1503 1504 /* 1505 * We allocate buffers in io_zone_size increments for an 1506 * S/G list. This will generally be maxphys. 1507 */ 1508 if (lengths[0] <= softc->io_zone_size) 1509 num_segs_needed = 1; 1510 else { 1511 num_segs_needed = lengths[0] / softc->io_zone_size; 1512 if ((lengths[0] % softc->io_zone_size) != 0) 1513 num_segs_needed++; 1514 } 1515 1516 /* Figure out the size of the S/G list */ 1517 sg_length = num_segs * sizeof(bus_dma_segment_t); 1518 io_req->num_user_segs = num_segs; 1519 io_req->num_kern_segs = num_segs_needed; 1520 1521 /* Save the user's S/G list pointer for later restoration */ 1522 io_req->user_bufs[0] = *data_ptrs[0]; 1523 1524 /* 1525 * If we have enough segments allocated by default to handle 1526 * the length of the user's S/G list, 1527 */ 1528 if (num_segs > PASS_MAX_SEGS) { 1529 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1530 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1531 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1532 } else 1533 io_req->user_segptr = io_req->user_segs; 1534 1535 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1536 if (error != 0) { 1537 xpt_print(periph->path, "%s: copy of user S/G list " 1538 "from %p to %p failed with error %d\n", 1539 __func__, *data_ptrs[0], io_req->user_segptr, 1540 error); 1541 goto bailout; 1542 } 1543 1544 if (num_segs_needed > PASS_MAX_SEGS) { 1545 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) * 1546 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO); 1547 io_req->flags |= PASS_IO_KERN_SEG_MALLOC; 1548 } else { 1549 io_req->kern_segptr = io_req->kern_segs; 1550 } 1551 1552 /* 1553 * Allocate the kernel S/G list. 1554 */ 1555 for (size_to_go = lengths[0], i = 0; 1556 size_to_go > 0 && i < num_segs_needed; 1557 i++, size_to_go -= alloc_size) { 1558 uint8_t *kern_ptr; 1559 1560 alloc_size = min(size_to_go, softc->io_zone_size); 1561 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK); 1562 io_req->kern_segptr[i].ds_addr = 1563 (bus_addr_t)(uintptr_t)kern_ptr; 1564 io_req->kern_segptr[i].ds_len = alloc_size; 1565 } 1566 if (size_to_go > 0) { 1567 printf("%s: size_to_go = %zu, software error!\n", 1568 __func__, size_to_go); 1569 error = EINVAL; 1570 goto bailout; 1571 } 1572 1573 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr; 1574 *seg_cnt_ptr = io_req->num_kern_segs; 1575 1576 /* 1577 * We only need to copy data here if the user is writing. 1578 */ 1579 if (dirs[0] == CAM_DIR_OUT) 1580 error = passcopysglist(periph, io_req, dirs[0]); 1581 break; 1582 } 1583 case CAM_DATA_SG_PADDR: { 1584 size_t sg_length; 1585 1586 /* 1587 * We shouldn't see this, but check just in case. 1588 */ 1589 if (numbufs != 1) { 1590 printf("%s: cannot currently handle more than one " 1591 "S/G list per CCB\n", __func__); 1592 error = EINVAL; 1593 goto bailout; 1594 } 1595 1596 /* 1597 * We have to have at least one segment. 1598 */ 1599 if (num_segs == 0) { 1600 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag " 1601 "set, but sglist_cnt=0!\n", __func__); 1602 error = EINVAL; 1603 goto bailout; 1604 } 1605 1606 /* 1607 * Make sure the user specified the total length and didn't 1608 * just leave it to us to decode the S/G list. 1609 */ 1610 if (lengths[0] == 0) { 1611 xpt_print(periph->path, "%s: no dxfer_len specified, " 1612 "but CAM_DATA_SG flag is set!\n", __func__); 1613 error = EINVAL; 1614 goto bailout; 1615 } 1616 1617 /* Figure out the size of the S/G list */ 1618 sg_length = num_segs * sizeof(bus_dma_segment_t); 1619 io_req->num_user_segs = num_segs; 1620 io_req->num_kern_segs = io_req->num_user_segs; 1621 1622 /* Save the user's S/G list pointer for later restoration */ 1623 io_req->user_bufs[0] = *data_ptrs[0]; 1624 1625 if (num_segs > PASS_MAX_SEGS) { 1626 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1627 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1628 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1629 } else 1630 io_req->user_segptr = io_req->user_segs; 1631 1632 io_req->kern_segptr = io_req->user_segptr; 1633 1634 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1635 if (error != 0) { 1636 xpt_print(periph->path, "%s: copy of user S/G list " 1637 "from %p to %p failed with error %d\n", 1638 __func__, *data_ptrs[0], io_req->user_segptr, 1639 error); 1640 goto bailout; 1641 } 1642 break; 1643 } 1644 default: 1645 case CAM_DATA_BIO: 1646 /* 1647 * A user shouldn't be attaching a bio to the CCB. It 1648 * isn't a user-accessible structure. 1649 */ 1650 error = EINVAL; 1651 break; 1652 } 1653 1654 bailout: 1655 if (error != 0) 1656 passiocleanup(softc, io_req); 1657 1658 return (error); 1659 } 1660 1661 static int 1662 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req) 1663 { 1664 struct pass_softc *softc; 1665 int error; 1666 int i; 1667 1668 error = 0; 1669 softc = (struct pass_softc *)periph->softc; 1670 1671 switch (io_req->data_flags) { 1672 case CAM_DATA_VADDR: 1673 /* 1674 * Copy back to the user buffer if this was a read. 1675 */ 1676 for (i = 0; i < io_req->num_bufs; i++) { 1677 if (io_req->dirs[i] != CAM_DIR_IN) 1678 continue; 1679 1680 error = copyout(io_req->kern_bufs[i], 1681 io_req->user_bufs[i], io_req->lengths[i]); 1682 if (error != 0) { 1683 xpt_print(periph->path, "Unable to copy %u " 1684 "bytes from %p to user address %p\n", 1685 io_req->lengths[i], 1686 io_req->kern_bufs[i], 1687 io_req->user_bufs[i]); 1688 goto bailout; 1689 } 1690 } 1691 break; 1692 case CAM_DATA_PADDR: 1693 /* Do nothing. The pointer is a physical address already */ 1694 break; 1695 case CAM_DATA_SG: 1696 /* 1697 * Copy back to the user buffer if this was a read. 1698 * Restore the user's S/G list buffer pointer. 1699 */ 1700 if (io_req->dirs[0] == CAM_DIR_IN) 1701 error = passcopysglist(periph, io_req, io_req->dirs[0]); 1702 break; 1703 case CAM_DATA_SG_PADDR: 1704 /* 1705 * Restore the user's S/G list buffer pointer. No need to 1706 * copy. 1707 */ 1708 break; 1709 default: 1710 case CAM_DATA_BIO: 1711 error = EINVAL; 1712 break; 1713 } 1714 1715 bailout: 1716 /* 1717 * Reset the user's pointers to their original values and free 1718 * allocated memory. 1719 */ 1720 passiocleanup(softc, io_req); 1721 1722 return (error); 1723 } 1724 1725 static int 1726 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1727 { 1728 int error; 1729 1730 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 1731 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl); 1732 } 1733 return (error); 1734 } 1735 1736 static int 1737 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1738 { 1739 struct cam_periph *periph; 1740 struct pass_softc *softc; 1741 int error; 1742 uint32_t priority; 1743 1744 periph = (struct cam_periph *)dev->si_drv1; 1745 cam_periph_lock(periph); 1746 softc = (struct pass_softc *)periph->softc; 1747 1748 error = 0; 1749 1750 switch (cmd) { 1751 case CAMIOCOMMAND: 1752 { 1753 union ccb *inccb; 1754 union ccb *ccb; 1755 int ccb_malloced; 1756 1757 inccb = (union ccb *)addr; 1758 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1759 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 1760 inccb->csio.bio = NULL; 1761 #endif 1762 1763 if (inccb->ccb_h.flags & CAM_UNLOCKED) { 1764 error = EINVAL; 1765 break; 1766 } 1767 1768 /* 1769 * Some CCB types, like scan bus and scan lun can only go 1770 * through the transport layer device. 1771 */ 1772 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1773 xpt_print(periph->path, "CCB function code %#x is " 1774 "restricted to the XPT device\n", 1775 inccb->ccb_h.func_code); 1776 error = ENODEV; 1777 break; 1778 } 1779 1780 /* Compatibility for RL/priority-unaware code. */ 1781 priority = inccb->ccb_h.pinfo.priority; 1782 if (priority <= CAM_PRIORITY_OOB) 1783 priority += CAM_PRIORITY_OOB + 1; 1784 1785 /* 1786 * Non-immediate CCBs need a CCB from the per-device pool 1787 * of CCBs, which is scheduled by the transport layer. 1788 * Immediate CCBs and user-supplied CCBs should just be 1789 * malloced. 1790 */ 1791 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED) 1792 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) { 1793 ccb = cam_periph_getccb(periph, priority); 1794 ccb_malloced = 0; 1795 } else { 1796 ccb = xpt_alloc_ccb_nowait(); 1797 1798 if (ccb != NULL) 1799 xpt_setup_ccb(&ccb->ccb_h, periph->path, 1800 priority); 1801 ccb_malloced = 1; 1802 } 1803 1804 if (ccb == NULL) { 1805 xpt_print(periph->path, "unable to allocate CCB\n"); 1806 error = ENOMEM; 1807 break; 1808 } 1809 1810 error = passsendccb(periph, ccb, inccb); 1811 1812 if (ccb_malloced) 1813 xpt_free_ccb(ccb); 1814 else 1815 xpt_release_ccb(ccb); 1816 1817 break; 1818 } 1819 case CAMIOQUEUE: 1820 { 1821 struct pass_io_req *io_req; 1822 union ccb **user_ccb, *ccb; 1823 xpt_opcode fc; 1824 1825 #ifdef COMPAT_FREEBSD32 1826 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 1827 error = ENOTTY; 1828 goto bailout; 1829 } 1830 #endif 1831 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) { 1832 error = passcreatezone(periph); 1833 if (error != 0) 1834 goto bailout; 1835 } 1836 1837 /* 1838 * We're going to do a blocking allocation for this I/O 1839 * request, so we have to drop the lock. 1840 */ 1841 cam_periph_unlock(periph); 1842 1843 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO); 1844 ccb = &io_req->ccb; 1845 user_ccb = (union ccb **)addr; 1846 1847 /* 1848 * Unlike the CAMIOCOMMAND ioctl above, we only have a 1849 * pointer to the user's CCB, so we have to copy the whole 1850 * thing in to a buffer we have allocated (above) instead 1851 * of allowing the ioctl code to malloc a buffer and copy 1852 * it in. 1853 * 1854 * This is an advantage for this asynchronous interface, 1855 * since we don't want the memory to get freed while the 1856 * CCB is outstanding. 1857 */ 1858 #if 0 1859 xpt_print(periph->path, "Copying user CCB %p to " 1860 "kernel address %p\n", *user_ccb, ccb); 1861 #endif 1862 error = copyin(*user_ccb, ccb, sizeof(*ccb)); 1863 if (error != 0) { 1864 xpt_print(periph->path, "Copy of user CCB %p to " 1865 "kernel address %p failed with error %d\n", 1866 *user_ccb, ccb, error); 1867 goto camioqueue_error; 1868 } 1869 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1870 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 1871 ccb->csio.bio = NULL; 1872 #endif 1873 1874 if (ccb->ccb_h.flags & CAM_UNLOCKED) { 1875 error = EINVAL; 1876 goto camioqueue_error; 1877 } 1878 1879 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 1880 if (ccb->csio.cdb_len > IOCDBLEN) { 1881 error = EINVAL; 1882 goto camioqueue_error; 1883 } 1884 error = copyin(ccb->csio.cdb_io.cdb_ptr, 1885 ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len); 1886 if (error != 0) 1887 goto camioqueue_error; 1888 ccb->ccb_h.flags &= ~CAM_CDB_POINTER; 1889 } 1890 1891 /* 1892 * Some CCB types, like scan bus and scan lun can only go 1893 * through the transport layer device. 1894 */ 1895 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1896 xpt_print(periph->path, "CCB function code %#x is " 1897 "restricted to the XPT device\n", 1898 ccb->ccb_h.func_code); 1899 error = ENODEV; 1900 goto camioqueue_error; 1901 } 1902 1903 /* 1904 * Save the user's CCB pointer as well as his linked list 1905 * pointers and peripheral private area so that we can 1906 * restore these later. 1907 */ 1908 io_req->user_ccb_ptr = *user_ccb; 1909 io_req->user_periph_links = ccb->ccb_h.periph_links; 1910 io_req->user_periph_priv = ccb->ccb_h.periph_priv; 1911 1912 /* 1913 * Now that we've saved the user's values, we can set our 1914 * own peripheral private entry. 1915 */ 1916 ccb->ccb_h.ccb_ioreq = io_req; 1917 1918 /* Compatibility for RL/priority-unaware code. */ 1919 priority = ccb->ccb_h.pinfo.priority; 1920 if (priority <= CAM_PRIORITY_OOB) 1921 priority += CAM_PRIORITY_OOB + 1; 1922 1923 /* 1924 * Setup fields in the CCB like the path and the priority. 1925 * The path in particular cannot be done in userland, since 1926 * it is a pointer to a kernel data structure. 1927 */ 1928 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority, 1929 ccb->ccb_h.flags); 1930 1931 /* 1932 * Setup our done routine. There is no way for the user to 1933 * have a valid pointer here. 1934 */ 1935 ccb->ccb_h.cbfcnp = passdone; 1936 1937 fc = ccb->ccb_h.func_code; 1938 /* 1939 * If this function code has memory that can be mapped in 1940 * or out, we need to call passmemsetup(). 1941 */ 1942 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) 1943 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH) 1944 || (fc == XPT_DEV_ADVINFO) 1945 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { 1946 error = passmemsetup(periph, io_req); 1947 if (error != 0) 1948 goto camioqueue_error; 1949 } else 1950 io_req->mapinfo.num_bufs_used = 0; 1951 1952 cam_periph_lock(periph); 1953 1954 /* 1955 * Everything goes on the incoming queue initially. 1956 */ 1957 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links); 1958 1959 /* 1960 * If the CCB is queued, and is not a user CCB, then 1961 * we need to allocate a slot for it. Call xpt_schedule() 1962 * so that our start routine will get called when a CCB is 1963 * available. 1964 */ 1965 if ((fc & XPT_FC_QUEUED) 1966 && ((fc & XPT_FC_USER_CCB) == 0)) { 1967 xpt_schedule(periph, priority); 1968 break; 1969 } 1970 1971 /* 1972 * At this point, the CCB in question is either an 1973 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB 1974 * and therefore should be malloced, not allocated via a slot. 1975 * Remove the CCB from the incoming queue and add it to the 1976 * active queue. 1977 */ 1978 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 1979 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 1980 1981 xpt_action(ccb); 1982 1983 /* 1984 * If this is not a queued CCB (i.e. it is an immediate CCB), 1985 * then it is already done. We need to put it on the done 1986 * queue for the user to fetch. 1987 */ 1988 if ((fc & XPT_FC_QUEUED) == 0) { 1989 TAILQ_REMOVE(&softc->active_queue, io_req, links); 1990 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 1991 } 1992 break; 1993 1994 camioqueue_error: 1995 uma_zfree(softc->pass_zone, io_req); 1996 cam_periph_lock(periph); 1997 break; 1998 } 1999 case CAMIOGET: 2000 { 2001 union ccb **user_ccb; 2002 struct pass_io_req *io_req; 2003 int old_error; 2004 2005 #ifdef COMPAT_FREEBSD32 2006 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 2007 error = ENOTTY; 2008 goto bailout; 2009 } 2010 #endif 2011 user_ccb = (union ccb **)addr; 2012 old_error = 0; 2013 2014 io_req = TAILQ_FIRST(&softc->done_queue); 2015 if (io_req == NULL) { 2016 error = ENOENT; 2017 break; 2018 } 2019 2020 /* 2021 * Remove the I/O from the done queue. 2022 */ 2023 TAILQ_REMOVE(&softc->done_queue, io_req, links); 2024 2025 /* 2026 * We have to drop the lock during the copyout because the 2027 * copyout can result in VM faults that require sleeping. 2028 */ 2029 cam_periph_unlock(periph); 2030 2031 /* 2032 * Do any needed copies (e.g. for reads) and revert the 2033 * pointers in the CCB back to the user's pointers. 2034 */ 2035 error = passmemdone(periph, io_req); 2036 2037 old_error = error; 2038 2039 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links; 2040 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv; 2041 2042 #if 0 2043 xpt_print(periph->path, "Copying to user CCB %p from " 2044 "kernel address %p\n", *user_ccb, &io_req->ccb); 2045 #endif 2046 2047 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb)); 2048 if (error != 0) { 2049 xpt_print(periph->path, "Copy to user CCB %p from " 2050 "kernel address %p failed with error %d\n", 2051 *user_ccb, &io_req->ccb, error); 2052 } 2053 2054 /* 2055 * Prefer the first error we got back, and make sure we 2056 * don't overwrite bad status with good. 2057 */ 2058 if (old_error != 0) 2059 error = old_error; 2060 2061 cam_periph_lock(periph); 2062 2063 /* 2064 * At this point, if there was an error, we could potentially 2065 * re-queue the I/O and try again. But why? The error 2066 * would almost certainly happen again. We might as well 2067 * not leak memory. 2068 */ 2069 uma_zfree(softc->pass_zone, io_req); 2070 break; 2071 } 2072 default: 2073 error = cam_periph_ioctl(periph, cmd, addr, passerror); 2074 break; 2075 } 2076 2077 bailout: 2078 cam_periph_unlock(periph); 2079 2080 return(error); 2081 } 2082 2083 static int 2084 passpoll(struct cdev *dev, int poll_events, struct thread *td) 2085 { 2086 struct cam_periph *periph; 2087 struct pass_softc *softc; 2088 int revents; 2089 2090 periph = (struct cam_periph *)dev->si_drv1; 2091 softc = (struct pass_softc *)periph->softc; 2092 2093 revents = poll_events & (POLLOUT | POLLWRNORM); 2094 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) { 2095 cam_periph_lock(periph); 2096 2097 if (!TAILQ_EMPTY(&softc->done_queue)) { 2098 revents |= poll_events & (POLLIN | POLLRDNORM); 2099 } 2100 cam_periph_unlock(periph); 2101 if (revents == 0) 2102 selrecord(td, &softc->read_select); 2103 } 2104 2105 return (revents); 2106 } 2107 2108 static int 2109 passkqfilter(struct cdev *dev, struct knote *kn) 2110 { 2111 struct cam_periph *periph; 2112 struct pass_softc *softc; 2113 2114 periph = (struct cam_periph *)dev->si_drv1; 2115 softc = (struct pass_softc *)periph->softc; 2116 2117 kn->kn_hook = (caddr_t)periph; 2118 kn->kn_fop = &passread_filtops; 2119 knlist_add(&softc->read_select.si_note, kn, 0); 2120 2121 return (0); 2122 } 2123 2124 static void 2125 passreadfiltdetach(struct knote *kn) 2126 { 2127 struct cam_periph *periph; 2128 struct pass_softc *softc; 2129 2130 periph = (struct cam_periph *)kn->kn_hook; 2131 softc = (struct pass_softc *)periph->softc; 2132 2133 knlist_remove(&softc->read_select.si_note, kn, 0); 2134 } 2135 2136 static int 2137 passreadfilt(struct knote *kn, long hint) 2138 { 2139 struct cam_periph *periph; 2140 struct pass_softc *softc; 2141 int retval; 2142 2143 periph = (struct cam_periph *)kn->kn_hook; 2144 softc = (struct pass_softc *)periph->softc; 2145 2146 cam_periph_assert(periph, MA_OWNED); 2147 2148 if (TAILQ_EMPTY(&softc->done_queue)) 2149 retval = 0; 2150 else 2151 retval = 1; 2152 2153 return (retval); 2154 } 2155 2156 /* 2157 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb" 2158 * should be the CCB that is copied in from the user. 2159 */ 2160 static int 2161 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb) 2162 { 2163 struct pass_softc *softc; 2164 struct cam_periph_map_info mapinfo; 2165 uint8_t *cmd; 2166 xpt_opcode fc; 2167 int error; 2168 2169 softc = (struct pass_softc *)periph->softc; 2170 2171 /* 2172 * There are some fields in the CCB header that need to be 2173 * preserved, the rest we get from the user. 2174 */ 2175 xpt_merge_ccb(ccb, inccb); 2176 2177 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 2178 cmd = __builtin_alloca(ccb->csio.cdb_len); 2179 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len); 2180 if (error) 2181 return (error); 2182 ccb->csio.cdb_io.cdb_ptr = cmd; 2183 } 2184 2185 /* 2186 * Let cam_periph_mapmem do a sanity check on the data pointer format. 2187 * Even if no data transfer is needed, it's a cheap check and it 2188 * simplifies the code. 2189 */ 2190 fc = ccb->ccb_h.func_code; 2191 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO) 2192 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO) 2193 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { 2194 bzero(&mapinfo, sizeof(mapinfo)); 2195 2196 /* 2197 * cam_periph_mapmem calls into proc and vm functions that can 2198 * sleep as well as trigger I/O, so we can't hold the lock. 2199 * Dropping it here is reasonably safe. 2200 */ 2201 cam_periph_unlock(periph); 2202 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio); 2203 cam_periph_lock(periph); 2204 2205 /* 2206 * cam_periph_mapmem returned an error, we can't continue. 2207 * Return the error to the user. 2208 */ 2209 if (error) 2210 return(error); 2211 } else 2212 /* Ensure that the unmap call later on is a no-op. */ 2213 mapinfo.num_bufs_used = 0; 2214 2215 /* 2216 * If the user wants us to perform any error recovery, then honor 2217 * that request. Otherwise, it's up to the user to perform any 2218 * error recovery. 2219 */ 2220 cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? 2221 passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO, 2222 /* sense_flags */ SF_RETRY_UA | SF_NO_PRINT, 2223 softc->device_stats); 2224 2225 cam_periph_unlock(periph); 2226 cam_periph_unmapmem(ccb, &mapinfo); 2227 cam_periph_lock(periph); 2228 2229 ccb->ccb_h.cbfcnp = NULL; 2230 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv; 2231 bcopy(ccb, inccb, sizeof(union ccb)); 2232 2233 return(0); 2234 } 2235 2236 static int 2237 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) 2238 { 2239 2240 return(cam_periph_error(ccb, cam_flags, sense_flags)); 2241 } 2242