1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/kernel.h> 36 #include <sys/conf.h> 37 #include <sys/types.h> 38 #include <sys/bio.h> 39 #include <sys/bus.h> 40 #include <sys/devicestat.h> 41 #include <sys/errno.h> 42 #include <sys/fcntl.h> 43 #include <sys/malloc.h> 44 #include <sys/proc.h> 45 #include <sys/poll.h> 46 #include <sys/selinfo.h> 47 #include <sys/sdt.h> 48 #include <sys/sysent.h> 49 #include <sys/taskqueue.h> 50 #include <vm/uma.h> 51 #include <vm/vm.h> 52 #include <vm/vm_extern.h> 53 54 #include <machine/bus.h> 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_queue.h> 60 #include <cam/cam_xpt.h> 61 #include <cam/cam_xpt_periph.h> 62 #include <cam/cam_debug.h> 63 #include <cam/cam_compat.h> 64 #include <cam/cam_xpt_periph.h> 65 66 #include <cam/scsi/scsi_all.h> 67 #include <cam/scsi/scsi_pass.h> 68 69 typedef enum { 70 PASS_FLAG_OPEN = 0x01, 71 PASS_FLAG_LOCKED = 0x02, 72 PASS_FLAG_INVALID = 0x04, 73 PASS_FLAG_INITIAL_PHYSPATH = 0x08, 74 PASS_FLAG_ZONE_INPROG = 0x10, 75 PASS_FLAG_ZONE_VALID = 0x20, 76 PASS_FLAG_UNMAPPED_CAPABLE = 0x40, 77 PASS_FLAG_ABANDONED_REF_SET = 0x80 78 } pass_flags; 79 80 typedef enum { 81 PASS_STATE_NORMAL 82 } pass_state; 83 84 typedef enum { 85 PASS_CCB_BUFFER_IO, 86 PASS_CCB_QUEUED_IO 87 } pass_ccb_types; 88 89 #define ccb_type ppriv_field0 90 #define ccb_ioreq ppriv_ptr1 91 92 /* 93 * The maximum number of memory segments we preallocate. 94 */ 95 #define PASS_MAX_SEGS 16 96 97 typedef enum { 98 PASS_IO_NONE = 0x00, 99 PASS_IO_USER_SEG_MALLOC = 0x01, 100 PASS_IO_KERN_SEG_MALLOC = 0x02, 101 PASS_IO_ABANDONED = 0x04 102 } pass_io_flags; 103 104 struct pass_io_req { 105 union ccb ccb; 106 union ccb *alloced_ccb; 107 union ccb *user_ccb_ptr; 108 camq_entry user_periph_links; 109 ccb_ppriv_area user_periph_priv; 110 struct cam_periph_map_info mapinfo; 111 pass_io_flags flags; 112 ccb_flags data_flags; 113 int num_user_segs; 114 bus_dma_segment_t user_segs[PASS_MAX_SEGS]; 115 int num_kern_segs; 116 bus_dma_segment_t kern_segs[PASS_MAX_SEGS]; 117 bus_dma_segment_t *user_segptr; 118 bus_dma_segment_t *kern_segptr; 119 int num_bufs; 120 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 121 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 122 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS]; 123 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS]; 124 struct bintime start_time; 125 TAILQ_ENTRY(pass_io_req) links; 126 }; 127 128 struct pass_softc { 129 pass_state state; 130 pass_flags flags; 131 u_int8_t pd_type; 132 union ccb saved_ccb; 133 int open_count; 134 u_int maxio; 135 struct devstat *device_stats; 136 struct cdev *dev; 137 struct cdev *alias_dev; 138 struct task add_physpath_task; 139 struct task shutdown_kqueue_task; 140 struct selinfo read_select; 141 TAILQ_HEAD(, pass_io_req) incoming_queue; 142 TAILQ_HEAD(, pass_io_req) active_queue; 143 TAILQ_HEAD(, pass_io_req) abandoned_queue; 144 TAILQ_HEAD(, pass_io_req) done_queue; 145 struct cam_periph *periph; 146 char zone_name[12]; 147 char io_zone_name[12]; 148 uma_zone_t pass_zone; 149 uma_zone_t pass_io_zone; 150 size_t io_zone_size; 151 }; 152 153 static d_open_t passopen; 154 static d_close_t passclose; 155 static d_ioctl_t passioctl; 156 static d_ioctl_t passdoioctl; 157 static d_poll_t passpoll; 158 static d_kqfilter_t passkqfilter; 159 static void passreadfiltdetach(struct knote *kn); 160 static int passreadfilt(struct knote *kn, long hint); 161 162 static periph_init_t passinit; 163 static periph_ctor_t passregister; 164 static periph_oninv_t passoninvalidate; 165 static periph_dtor_t passcleanup; 166 static periph_start_t passstart; 167 static void pass_shutdown_kqueue(void *context, int pending); 168 static void pass_add_physpath(void *context, int pending); 169 static void passasync(void *callback_arg, u_int32_t code, 170 struct cam_path *path, void *arg); 171 static void passdone(struct cam_periph *periph, 172 union ccb *done_ccb); 173 static int passcreatezone(struct cam_periph *periph); 174 static void passiocleanup(struct pass_softc *softc, 175 struct pass_io_req *io_req); 176 static int passcopysglist(struct cam_periph *periph, 177 struct pass_io_req *io_req, 178 ccb_flags direction); 179 static int passmemsetup(struct cam_periph *periph, 180 struct pass_io_req *io_req); 181 static int passmemdone(struct cam_periph *periph, 182 struct pass_io_req *io_req); 183 static int passerror(union ccb *ccb, u_int32_t cam_flags, 184 u_int32_t sense_flags); 185 static int passsendccb(struct cam_periph *periph, union ccb *ccb, 186 union ccb *inccb); 187 188 static struct periph_driver passdriver = 189 { 190 passinit, "pass", 191 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0 192 }; 193 194 PERIPHDRIVER_DECLARE(pass, passdriver); 195 196 static struct cdevsw pass_cdevsw = { 197 .d_version = D_VERSION, 198 .d_flags = D_TRACKCLOSE, 199 .d_open = passopen, 200 .d_close = passclose, 201 .d_ioctl = passioctl, 202 .d_poll = passpoll, 203 .d_kqfilter = passkqfilter, 204 .d_name = "pass", 205 }; 206 207 static struct filterops passread_filtops = { 208 .f_isfd = 1, 209 .f_detach = passreadfiltdetach, 210 .f_event = passreadfilt 211 }; 212 213 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers"); 214 215 static void 216 passinit(void) 217 { 218 cam_status status; 219 220 /* 221 * Install a global async callback. This callback will 222 * receive async callbacks like "new device found". 223 */ 224 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL); 225 226 if (status != CAM_REQ_CMP) { 227 printf("pass: Failed to attach master async callback " 228 "due to status 0x%x!\n", status); 229 } 230 231 } 232 233 static void 234 passrejectios(struct cam_periph *periph) 235 { 236 struct pass_io_req *io_req, *io_req2; 237 struct pass_softc *softc; 238 239 softc = (struct pass_softc *)periph->softc; 240 241 /* 242 * The user can no longer get status for I/O on the done queue, so 243 * clean up all outstanding I/O on the done queue. 244 */ 245 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 246 TAILQ_REMOVE(&softc->done_queue, io_req, links); 247 passiocleanup(softc, io_req); 248 uma_zfree(softc->pass_zone, io_req); 249 } 250 251 /* 252 * The underlying device is gone, so we can't issue these I/Os. 253 * The devfs node has been shut down, so we can't return status to 254 * the user. Free any I/O left on the incoming queue. 255 */ 256 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) { 257 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 258 passiocleanup(softc, io_req); 259 uma_zfree(softc->pass_zone, io_req); 260 } 261 262 /* 263 * Normally we would put I/Os on the abandoned queue and acquire a 264 * reference when we saw the final close. But, the device went 265 * away and devfs may have moved everything off to deadfs by the 266 * time the I/O done callback is called; as a result, we won't see 267 * any more closes. So, if we have any active I/Os, we need to put 268 * them on the abandoned queue. When the abandoned queue is empty, 269 * we'll release the remaining reference (see below) to the peripheral. 270 */ 271 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) { 272 TAILQ_REMOVE(&softc->active_queue, io_req, links); 273 io_req->flags |= PASS_IO_ABANDONED; 274 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links); 275 } 276 277 /* 278 * If we put any I/O on the abandoned queue, acquire a reference. 279 */ 280 if ((!TAILQ_EMPTY(&softc->abandoned_queue)) 281 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) { 282 cam_periph_doacquire(periph); 283 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 284 } 285 } 286 287 static void 288 passdevgonecb(void *arg) 289 { 290 struct cam_periph *periph; 291 struct mtx *mtx; 292 struct pass_softc *softc; 293 int i; 294 295 periph = (struct cam_periph *)arg; 296 mtx = cam_periph_mtx(periph); 297 mtx_lock(mtx); 298 299 softc = (struct pass_softc *)periph->softc; 300 KASSERT(softc->open_count >= 0, ("Negative open count %d", 301 softc->open_count)); 302 303 /* 304 * When we get this callback, we will get no more close calls from 305 * devfs. So if we have any dangling opens, we need to release the 306 * reference held for that particular context. 307 */ 308 for (i = 0; i < softc->open_count; i++) 309 cam_periph_release_locked(periph); 310 311 softc->open_count = 0; 312 313 /* 314 * Release the reference held for the device node, it is gone now. 315 * Accordingly, inform all queued I/Os of their fate. 316 */ 317 cam_periph_release_locked(periph); 318 passrejectios(periph); 319 320 /* 321 * We reference the SIM lock directly here, instead of using 322 * cam_periph_unlock(). The reason is that the final call to 323 * cam_periph_release_locked() above could result in the periph 324 * getting freed. If that is the case, dereferencing the periph 325 * with a cam_periph_unlock() call would cause a page fault. 326 */ 327 mtx_unlock(mtx); 328 329 /* 330 * We have to remove our kqueue context from a thread because it 331 * may sleep. It would be nice if we could get a callback from 332 * kqueue when it is done cleaning up resources. 333 */ 334 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task); 335 } 336 337 static void 338 passoninvalidate(struct cam_periph *periph) 339 { 340 struct pass_softc *softc; 341 342 softc = (struct pass_softc *)periph->softc; 343 344 /* 345 * De-register any async callbacks. 346 */ 347 xpt_register_async(0, passasync, periph, periph->path); 348 349 softc->flags |= PASS_FLAG_INVALID; 350 351 /* 352 * Tell devfs this device has gone away, and ask for a callback 353 * when it has cleaned up its state. 354 */ 355 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph); 356 } 357 358 static void 359 passcleanup(struct cam_periph *periph) 360 { 361 struct pass_softc *softc; 362 363 softc = (struct pass_softc *)periph->softc; 364 365 cam_periph_assert(periph, MA_OWNED); 366 KASSERT(TAILQ_EMPTY(&softc->active_queue), 367 ("%s called when there are commands on the active queue!\n", 368 __func__)); 369 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue), 370 ("%s called when there are commands on the abandoned queue!\n", 371 __func__)); 372 KASSERT(TAILQ_EMPTY(&softc->incoming_queue), 373 ("%s called when there are commands on the incoming queue!\n", 374 __func__)); 375 KASSERT(TAILQ_EMPTY(&softc->done_queue), 376 ("%s called when there are commands on the done queue!\n", 377 __func__)); 378 379 devstat_remove_entry(softc->device_stats); 380 381 cam_periph_unlock(periph); 382 383 /* 384 * We call taskqueue_drain() for the physpath task to make sure it 385 * is complete. We drop the lock because this can potentially 386 * sleep. XXX KDM that is bad. Need a way to get a callback when 387 * a taskqueue is drained. 388 * 389 * Note that we don't drain the kqueue shutdown task queue. This 390 * is because we hold a reference on the periph for kqueue, and 391 * release that reference from the kqueue shutdown task queue. So 392 * we cannot come into this routine unless we've released that 393 * reference. Also, because that could be the last reference, we 394 * could be called from the cam_periph_release() call in 395 * pass_shutdown_kqueue(). In that case, the taskqueue_drain() 396 * would deadlock. It would be preferable if we had a way to 397 * get a callback when a taskqueue is done. 398 */ 399 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task); 400 401 cam_periph_lock(periph); 402 403 free(softc, M_DEVBUF); 404 } 405 406 static void 407 pass_shutdown_kqueue(void *context, int pending) 408 { 409 struct cam_periph *periph; 410 struct pass_softc *softc; 411 412 periph = context; 413 softc = periph->softc; 414 415 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0); 416 knlist_destroy(&softc->read_select.si_note); 417 418 /* 419 * Release the reference we held for kqueue. 420 */ 421 cam_periph_release(periph); 422 } 423 424 static void 425 pass_add_physpath(void *context, int pending) 426 { 427 struct cam_periph *periph; 428 struct pass_softc *softc; 429 struct mtx *mtx; 430 char *physpath; 431 432 /* 433 * If we have one, create a devfs alias for our 434 * physical path. 435 */ 436 periph = context; 437 softc = periph->softc; 438 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK); 439 mtx = cam_periph_mtx(periph); 440 mtx_lock(mtx); 441 442 if (periph->flags & CAM_PERIPH_INVALID) 443 goto out; 444 445 if (xpt_getattr(physpath, MAXPATHLEN, 446 "GEOM::physpath", periph->path) == 0 447 && strlen(physpath) != 0) { 448 449 mtx_unlock(mtx); 450 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev, 451 softc->dev, softc->alias_dev, physpath); 452 mtx_lock(mtx); 453 } 454 455 out: 456 /* 457 * Now that we've made our alias, we no longer have to have a 458 * reference to the device. 459 */ 460 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0) 461 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH; 462 463 /* 464 * We always acquire a reference to the periph before queueing this 465 * task queue function, so it won't go away before we run. 466 */ 467 while (pending-- > 0) 468 cam_periph_release_locked(periph); 469 mtx_unlock(mtx); 470 471 free(physpath, M_DEVBUF); 472 } 473 474 static void 475 passasync(void *callback_arg, u_int32_t code, 476 struct cam_path *path, void *arg) 477 { 478 struct cam_periph *periph; 479 480 periph = (struct cam_periph *)callback_arg; 481 482 switch (code) { 483 case AC_FOUND_DEVICE: 484 { 485 struct ccb_getdev *cgd; 486 cam_status status; 487 488 cgd = (struct ccb_getdev *)arg; 489 if (cgd == NULL) 490 break; 491 492 /* 493 * Allocate a peripheral instance for 494 * this device and start the probe 495 * process. 496 */ 497 status = cam_periph_alloc(passregister, passoninvalidate, 498 passcleanup, passstart, "pass", 499 CAM_PERIPH_BIO, path, 500 passasync, AC_FOUND_DEVICE, cgd); 501 502 if (status != CAM_REQ_CMP 503 && status != CAM_REQ_INPROG) { 504 const struct cam_status_entry *entry; 505 506 entry = cam_fetch_status_entry(status); 507 508 printf("passasync: Unable to attach new device " 509 "due to status %#x: %s\n", status, entry ? 510 entry->status_text : "Unknown"); 511 } 512 513 break; 514 } 515 case AC_ADVINFO_CHANGED: 516 { 517 uintptr_t buftype; 518 519 buftype = (uintptr_t)arg; 520 if (buftype == CDAI_TYPE_PHYS_PATH) { 521 struct pass_softc *softc; 522 523 softc = (struct pass_softc *)periph->softc; 524 /* 525 * Acquire a reference to the periph before we 526 * start the taskqueue, so that we don't run into 527 * a situation where the periph goes away before 528 * the task queue has a chance to run. 529 */ 530 if (cam_periph_acquire(periph) != 0) 531 break; 532 533 taskqueue_enqueue(taskqueue_thread, 534 &softc->add_physpath_task); 535 } 536 break; 537 } 538 default: 539 cam_periph_async(periph, code, path, arg); 540 break; 541 } 542 } 543 544 static cam_status 545 passregister(struct cam_periph *periph, void *arg) 546 { 547 struct pass_softc *softc; 548 struct ccb_getdev *cgd; 549 struct ccb_pathinq cpi; 550 struct make_dev_args args; 551 int error, no_tags; 552 553 cgd = (struct ccb_getdev *)arg; 554 if (cgd == NULL) { 555 printf("%s: no getdev CCB, can't register device\n", __func__); 556 return(CAM_REQ_CMP_ERR); 557 } 558 559 softc = (struct pass_softc *)malloc(sizeof(*softc), 560 M_DEVBUF, M_NOWAIT); 561 562 if (softc == NULL) { 563 printf("%s: Unable to probe new device. " 564 "Unable to allocate softc\n", __func__); 565 return(CAM_REQ_CMP_ERR); 566 } 567 568 bzero(softc, sizeof(*softc)); 569 softc->state = PASS_STATE_NORMAL; 570 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI) 571 softc->pd_type = SID_TYPE(&cgd->inq_data); 572 else if (cgd->protocol == PROTO_SATAPM) 573 softc->pd_type = T_ENCLOSURE; 574 else 575 softc->pd_type = T_DIRECT; 576 577 periph->softc = softc; 578 softc->periph = periph; 579 TAILQ_INIT(&softc->incoming_queue); 580 TAILQ_INIT(&softc->active_queue); 581 TAILQ_INIT(&softc->abandoned_queue); 582 TAILQ_INIT(&softc->done_queue); 583 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d", 584 periph->periph_name, periph->unit_number); 585 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO", 586 periph->periph_name, periph->unit_number); 587 softc->io_zone_size = MAXPHYS; 588 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph)); 589 590 xpt_path_inq(&cpi, periph->path); 591 592 if (cpi.maxio == 0) 593 softc->maxio = DFLTPHYS; /* traditional default */ 594 else if (cpi.maxio > MAXPHYS) 595 softc->maxio = MAXPHYS; /* for safety */ 596 else 597 softc->maxio = cpi.maxio; /* real value */ 598 599 if (cpi.hba_misc & PIM_UNMAPPED) 600 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE; 601 602 /* 603 * We pass in 0 for a blocksize, since we don't 604 * know what the blocksize of this device is, if 605 * it even has a blocksize. 606 */ 607 cam_periph_unlock(periph); 608 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0; 609 softc->device_stats = devstat_new_entry("pass", 610 periph->unit_number, 0, 611 DEVSTAT_NO_BLOCKSIZE 612 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0), 613 softc->pd_type | 614 XPORT_DEVSTAT_TYPE(cpi.transport) | 615 DEVSTAT_TYPE_PASS, 616 DEVSTAT_PRIORITY_PASS); 617 618 /* 619 * Initialize the taskqueue handler for shutting down kqueue. 620 */ 621 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0, 622 pass_shutdown_kqueue, periph); 623 624 /* 625 * Acquire a reference to the periph that we can release once we've 626 * cleaned up the kqueue. 627 */ 628 if (cam_periph_acquire(periph) != 0) { 629 xpt_print(periph->path, "%s: lost periph during " 630 "registration!\n", __func__); 631 cam_periph_lock(periph); 632 return (CAM_REQ_CMP_ERR); 633 } 634 635 /* 636 * Acquire a reference to the periph before we create the devfs 637 * instance for it. We'll release this reference once the devfs 638 * instance has been freed. 639 */ 640 if (cam_periph_acquire(periph) != 0) { 641 xpt_print(periph->path, "%s: lost periph during " 642 "registration!\n", __func__); 643 cam_periph_lock(periph); 644 return (CAM_REQ_CMP_ERR); 645 } 646 647 /* Register the device */ 648 make_dev_args_init(&args); 649 args.mda_devsw = &pass_cdevsw; 650 args.mda_unit = periph->unit_number; 651 args.mda_uid = UID_ROOT; 652 args.mda_gid = GID_OPERATOR; 653 args.mda_mode = 0600; 654 args.mda_si_drv1 = periph; 655 error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name, 656 periph->unit_number); 657 if (error != 0) { 658 cam_periph_lock(periph); 659 cam_periph_release_locked(periph); 660 return (CAM_REQ_CMP_ERR); 661 } 662 663 /* 664 * Hold a reference to the periph before we create the physical 665 * path alias so it can't go away. 666 */ 667 if (cam_periph_acquire(periph) != 0) { 668 xpt_print(periph->path, "%s: lost periph during " 669 "registration!\n", __func__); 670 cam_periph_lock(periph); 671 return (CAM_REQ_CMP_ERR); 672 } 673 674 cam_periph_lock(periph); 675 676 TASK_INIT(&softc->add_physpath_task, /*priority*/0, 677 pass_add_physpath, periph); 678 679 /* 680 * See if physical path information is already available. 681 */ 682 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); 683 684 /* 685 * Add an async callback so that we get notified if 686 * this device goes away or its physical path 687 * (stored in the advanced info data of the EDT) has 688 * changed. 689 */ 690 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED, 691 passasync, periph, periph->path); 692 693 if (bootverbose) 694 xpt_announce_periph(periph, NULL); 695 696 return(CAM_REQ_CMP); 697 } 698 699 static int 700 passopen(struct cdev *dev, int flags, int fmt, struct thread *td) 701 { 702 struct cam_periph *periph; 703 struct pass_softc *softc; 704 int error; 705 706 periph = (struct cam_periph *)dev->si_drv1; 707 if (cam_periph_acquire(periph) != 0) 708 return (ENXIO); 709 710 cam_periph_lock(periph); 711 712 softc = (struct pass_softc *)periph->softc; 713 714 if (softc->flags & PASS_FLAG_INVALID) { 715 cam_periph_release_locked(periph); 716 cam_periph_unlock(periph); 717 return(ENXIO); 718 } 719 720 /* 721 * Don't allow access when we're running at a high securelevel. 722 */ 723 error = securelevel_gt(td->td_ucred, 1); 724 if (error) { 725 cam_periph_release_locked(periph); 726 cam_periph_unlock(periph); 727 return(error); 728 } 729 730 /* 731 * Only allow read-write access. 732 */ 733 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) { 734 cam_periph_release_locked(periph); 735 cam_periph_unlock(periph); 736 return(EPERM); 737 } 738 739 /* 740 * We don't allow nonblocking access. 741 */ 742 if ((flags & O_NONBLOCK) != 0) { 743 xpt_print(periph->path, "can't do nonblocking access\n"); 744 cam_periph_release_locked(periph); 745 cam_periph_unlock(periph); 746 return(EINVAL); 747 } 748 749 softc->open_count++; 750 751 cam_periph_unlock(periph); 752 753 return (error); 754 } 755 756 static int 757 passclose(struct cdev *dev, int flag, int fmt, struct thread *td) 758 { 759 struct cam_periph *periph; 760 struct pass_softc *softc; 761 struct mtx *mtx; 762 763 periph = (struct cam_periph *)dev->si_drv1; 764 mtx = cam_periph_mtx(periph); 765 mtx_lock(mtx); 766 767 softc = periph->softc; 768 softc->open_count--; 769 770 if (softc->open_count == 0) { 771 struct pass_io_req *io_req, *io_req2; 772 773 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 774 TAILQ_REMOVE(&softc->done_queue, io_req, links); 775 passiocleanup(softc, io_req); 776 uma_zfree(softc->pass_zone, io_req); 777 } 778 779 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, 780 io_req2) { 781 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 782 passiocleanup(softc, io_req); 783 uma_zfree(softc->pass_zone, io_req); 784 } 785 786 /* 787 * If there are any active I/Os, we need to forcibly acquire a 788 * reference to the peripheral so that we don't go away 789 * before they complete. We'll release the reference when 790 * the abandoned queue is empty. 791 */ 792 io_req = TAILQ_FIRST(&softc->active_queue); 793 if ((io_req != NULL) 794 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) { 795 cam_periph_doacquire(periph); 796 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 797 } 798 799 /* 800 * Since the I/O in the active queue is not under our 801 * control, just set a flag so that we can clean it up when 802 * it completes and put it on the abandoned queue. This 803 * will prevent our sending spurious completions in the 804 * event that the device is opened again before these I/Os 805 * complete. 806 */ 807 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, 808 io_req2) { 809 TAILQ_REMOVE(&softc->active_queue, io_req, links); 810 io_req->flags |= PASS_IO_ABANDONED; 811 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, 812 links); 813 } 814 } 815 816 cam_periph_release_locked(periph); 817 818 /* 819 * We reference the lock directly here, instead of using 820 * cam_periph_unlock(). The reason is that the call to 821 * cam_periph_release_locked() above could result in the periph 822 * getting freed. If that is the case, dereferencing the periph 823 * with a cam_periph_unlock() call would cause a page fault. 824 * 825 * cam_periph_release() avoids this problem using the same method, 826 * but we're manually acquiring and dropping the lock here to 827 * protect the open count and avoid another lock acquisition and 828 * release. 829 */ 830 mtx_unlock(mtx); 831 832 return (0); 833 } 834 835 836 static void 837 passstart(struct cam_periph *periph, union ccb *start_ccb) 838 { 839 struct pass_softc *softc; 840 841 softc = (struct pass_softc *)periph->softc; 842 843 switch (softc->state) { 844 case PASS_STATE_NORMAL: { 845 struct pass_io_req *io_req; 846 847 /* 848 * Check for any queued I/O requests that require an 849 * allocated slot. 850 */ 851 io_req = TAILQ_FIRST(&softc->incoming_queue); 852 if (io_req == NULL) { 853 xpt_release_ccb(start_ccb); 854 break; 855 } 856 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 857 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 858 /* 859 * Merge the user's CCB into the allocated CCB. 860 */ 861 xpt_merge_ccb(start_ccb, &io_req->ccb); 862 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO; 863 start_ccb->ccb_h.ccb_ioreq = io_req; 864 start_ccb->ccb_h.cbfcnp = passdone; 865 io_req->alloced_ccb = start_ccb; 866 binuptime(&io_req->start_time); 867 devstat_start_transaction(softc->device_stats, 868 &io_req->start_time); 869 870 xpt_action(start_ccb); 871 872 /* 873 * If we have any more I/O waiting, schedule ourselves again. 874 */ 875 if (!TAILQ_EMPTY(&softc->incoming_queue)) 876 xpt_schedule(periph, CAM_PRIORITY_NORMAL); 877 break; 878 } 879 default: 880 break; 881 } 882 } 883 884 static void 885 passdone(struct cam_periph *periph, union ccb *done_ccb) 886 { 887 struct pass_softc *softc; 888 struct ccb_scsiio *csio; 889 890 softc = (struct pass_softc *)periph->softc; 891 892 cam_periph_assert(periph, MA_OWNED); 893 894 csio = &done_ccb->csio; 895 switch (csio->ccb_h.ccb_type) { 896 case PASS_CCB_QUEUED_IO: { 897 struct pass_io_req *io_req; 898 899 io_req = done_ccb->ccb_h.ccb_ioreq; 900 #if 0 901 xpt_print(periph->path, "%s: called for user CCB %p\n", 902 __func__, io_req->user_ccb_ptr); 903 #endif 904 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) 905 && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) 906 && ((io_req->flags & PASS_IO_ABANDONED) == 0)) { 907 int error; 908 909 error = passerror(done_ccb, CAM_RETRY_SELTO, 910 SF_RETRY_UA | SF_NO_PRINT); 911 912 if (error == ERESTART) { 913 /* 914 * A retry was scheduled, so 915 * just return. 916 */ 917 return; 918 } 919 } 920 921 /* 922 * Copy the allocated CCB contents back to the malloced CCB 923 * so we can give status back to the user when he requests it. 924 */ 925 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb)); 926 927 /* 928 * Log data/transaction completion with devstat(9). 929 */ 930 switch (done_ccb->ccb_h.func_code) { 931 case XPT_SCSI_IO: 932 devstat_end_transaction(softc->device_stats, 933 done_ccb->csio.dxfer_len - done_ccb->csio.resid, 934 done_ccb->csio.tag_action & 0x3, 935 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 936 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 937 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 938 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 939 &io_req->start_time); 940 break; 941 case XPT_ATA_IO: 942 devstat_end_transaction(softc->device_stats, 943 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid, 944 0, /* Not used in ATA */ 945 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 946 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 947 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 948 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 949 &io_req->start_time); 950 break; 951 case XPT_SMP_IO: 952 /* 953 * XXX KDM this isn't quite right, but there isn't 954 * currently an easy way to represent a bidirectional 955 * transfer in devstat. The only way to do it 956 * and have the byte counts come out right would 957 * mean that we would have to record two 958 * transactions, one for the request and one for the 959 * response. For now, so that we report something, 960 * just treat the entire thing as a read. 961 */ 962 devstat_end_transaction(softc->device_stats, 963 done_ccb->smpio.smp_request_len + 964 done_ccb->smpio.smp_response_len, 965 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL, 966 &io_req->start_time); 967 break; 968 default: 969 devstat_end_transaction(softc->device_stats, 0, 970 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL, 971 &io_req->start_time); 972 break; 973 } 974 975 /* 976 * In the normal case, take the completed I/O off of the 977 * active queue and put it on the done queue. Notitfy the 978 * user that we have a completed I/O. 979 */ 980 if ((io_req->flags & PASS_IO_ABANDONED) == 0) { 981 TAILQ_REMOVE(&softc->active_queue, io_req, links); 982 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 983 selwakeuppri(&softc->read_select, PRIBIO); 984 KNOTE_LOCKED(&softc->read_select.si_note, 0); 985 } else { 986 /* 987 * In the case of an abandoned I/O (final close 988 * without fetching the I/O), take it off of the 989 * abandoned queue and free it. 990 */ 991 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links); 992 passiocleanup(softc, io_req); 993 uma_zfree(softc->pass_zone, io_req); 994 995 /* 996 * Release the done_ccb here, since we may wind up 997 * freeing the peripheral when we decrement the 998 * reference count below. 999 */ 1000 xpt_release_ccb(done_ccb); 1001 1002 /* 1003 * If the abandoned queue is empty, we can release 1004 * our reference to the periph since we won't have 1005 * any more completions coming. 1006 */ 1007 if ((TAILQ_EMPTY(&softc->abandoned_queue)) 1008 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) { 1009 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET; 1010 cam_periph_release_locked(periph); 1011 } 1012 1013 /* 1014 * We have already released the CCB, so we can 1015 * return. 1016 */ 1017 return; 1018 } 1019 break; 1020 } 1021 } 1022 xpt_release_ccb(done_ccb); 1023 } 1024 1025 static int 1026 passcreatezone(struct cam_periph *periph) 1027 { 1028 struct pass_softc *softc; 1029 int error; 1030 1031 error = 0; 1032 softc = (struct pass_softc *)periph->softc; 1033 1034 cam_periph_assert(periph, MA_OWNED); 1035 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 1036 ("%s called when the pass(4) zone is valid!\n", __func__)); 1037 KASSERT((softc->pass_zone == NULL), 1038 ("%s called when the pass(4) zone is allocated!\n", __func__)); 1039 1040 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) { 1041 1042 /* 1043 * We're the first context through, so we need to create 1044 * the pass(4) UMA zone for I/O requests. 1045 */ 1046 softc->flags |= PASS_FLAG_ZONE_INPROG; 1047 1048 /* 1049 * uma_zcreate() does a blocking (M_WAITOK) allocation, 1050 * so we cannot hold a mutex while we call it. 1051 */ 1052 cam_periph_unlock(periph); 1053 1054 softc->pass_zone = uma_zcreate(softc->zone_name, 1055 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL, 1056 /*align*/ 0, /*flags*/ 0); 1057 1058 softc->pass_io_zone = uma_zcreate(softc->io_zone_name, 1059 softc->io_zone_size, NULL, NULL, NULL, NULL, 1060 /*align*/ 0, /*flags*/ 0); 1061 1062 cam_periph_lock(periph); 1063 1064 if ((softc->pass_zone == NULL) 1065 || (softc->pass_io_zone == NULL)) { 1066 if (softc->pass_zone == NULL) 1067 xpt_print(periph->path, "unable to allocate " 1068 "IO Req UMA zone\n"); 1069 else 1070 xpt_print(periph->path, "unable to allocate " 1071 "IO UMA zone\n"); 1072 softc->flags &= ~PASS_FLAG_ZONE_INPROG; 1073 goto bailout; 1074 } 1075 1076 /* 1077 * Set the flags appropriately and notify any other waiters. 1078 */ 1079 softc->flags &= PASS_FLAG_ZONE_INPROG; 1080 softc->flags |= PASS_FLAG_ZONE_VALID; 1081 wakeup(&softc->pass_zone); 1082 } else { 1083 /* 1084 * In this case, the UMA zone has not yet been created, but 1085 * another context is in the process of creating it. We 1086 * need to sleep until the creation is either done or has 1087 * failed. 1088 */ 1089 while ((softc->flags & PASS_FLAG_ZONE_INPROG) 1090 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) { 1091 error = msleep(&softc->pass_zone, 1092 cam_periph_mtx(periph), PRIBIO, 1093 "paszon", 0); 1094 if (error != 0) 1095 goto bailout; 1096 } 1097 /* 1098 * If the zone creation failed, no luck for the user. 1099 */ 1100 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){ 1101 error = ENOMEM; 1102 goto bailout; 1103 } 1104 } 1105 bailout: 1106 return (error); 1107 } 1108 1109 static void 1110 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req) 1111 { 1112 union ccb *ccb; 1113 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1114 int i, numbufs; 1115 1116 ccb = &io_req->ccb; 1117 1118 switch (ccb->ccb_h.func_code) { 1119 case XPT_DEV_MATCH: 1120 numbufs = min(io_req->num_bufs, 2); 1121 1122 if (numbufs == 1) { 1123 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1124 } else { 1125 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1126 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1127 } 1128 break; 1129 case XPT_SCSI_IO: 1130 case XPT_CONT_TARGET_IO: 1131 data_ptrs[0] = &ccb->csio.data_ptr; 1132 numbufs = min(io_req->num_bufs, 1); 1133 break; 1134 case XPT_ATA_IO: 1135 data_ptrs[0] = &ccb->ataio.data_ptr; 1136 numbufs = min(io_req->num_bufs, 1); 1137 break; 1138 case XPT_SMP_IO: 1139 numbufs = min(io_req->num_bufs, 2); 1140 data_ptrs[0] = &ccb->smpio.smp_request; 1141 data_ptrs[1] = &ccb->smpio.smp_response; 1142 break; 1143 case XPT_DEV_ADVINFO: 1144 numbufs = min(io_req->num_bufs, 1); 1145 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1146 break; 1147 case XPT_NVME_IO: 1148 case XPT_NVME_ADMIN: 1149 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1150 numbufs = min(io_req->num_bufs, 1); 1151 break; 1152 default: 1153 /* allow ourselves to be swapped once again */ 1154 return; 1155 break; /* NOTREACHED */ 1156 } 1157 1158 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) { 1159 free(io_req->user_segptr, M_SCSIPASS); 1160 io_req->user_segptr = NULL; 1161 } 1162 1163 /* 1164 * We only want to free memory we malloced. 1165 */ 1166 if (io_req->data_flags == CAM_DATA_VADDR) { 1167 for (i = 0; i < io_req->num_bufs; i++) { 1168 if (io_req->kern_bufs[i] == NULL) 1169 continue; 1170 1171 free(io_req->kern_bufs[i], M_SCSIPASS); 1172 io_req->kern_bufs[i] = NULL; 1173 } 1174 } else if (io_req->data_flags == CAM_DATA_SG) { 1175 for (i = 0; i < io_req->num_kern_segs; i++) { 1176 if ((uint8_t *)(uintptr_t) 1177 io_req->kern_segptr[i].ds_addr == NULL) 1178 continue; 1179 1180 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t) 1181 io_req->kern_segptr[i].ds_addr); 1182 io_req->kern_segptr[i].ds_addr = 0; 1183 } 1184 } 1185 1186 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) { 1187 free(io_req->kern_segptr, M_SCSIPASS); 1188 io_req->kern_segptr = NULL; 1189 } 1190 1191 if (io_req->data_flags != CAM_DATA_PADDR) { 1192 for (i = 0; i < numbufs; i++) { 1193 /* 1194 * Restore the user's buffer pointers to their 1195 * previous values. 1196 */ 1197 if (io_req->user_bufs[i] != NULL) 1198 *data_ptrs[i] = io_req->user_bufs[i]; 1199 } 1200 } 1201 1202 } 1203 1204 static int 1205 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req, 1206 ccb_flags direction) 1207 { 1208 bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy; 1209 bus_dma_segment_t *user_sglist, *kern_sglist; 1210 int i, j, error; 1211 1212 error = 0; 1213 kern_watermark = 0; 1214 user_watermark = 0; 1215 len_to_copy = 0; 1216 len_copied = 0; 1217 user_sglist = io_req->user_segptr; 1218 kern_sglist = io_req->kern_segptr; 1219 1220 for (i = 0, j = 0; i < io_req->num_user_segs && 1221 j < io_req->num_kern_segs;) { 1222 uint8_t *user_ptr, *kern_ptr; 1223 1224 len_to_copy = min(user_sglist[i].ds_len -user_watermark, 1225 kern_sglist[j].ds_len - kern_watermark); 1226 1227 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr; 1228 user_ptr = user_ptr + user_watermark; 1229 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr; 1230 kern_ptr = kern_ptr + kern_watermark; 1231 1232 user_watermark += len_to_copy; 1233 kern_watermark += len_to_copy; 1234 1235 if (!useracc(user_ptr, len_to_copy, 1236 (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) { 1237 xpt_print(periph->path, "%s: unable to access user " 1238 "S/G list element %p len %zu\n", __func__, 1239 user_ptr, len_to_copy); 1240 error = EFAULT; 1241 goto bailout; 1242 } 1243 1244 if (direction == CAM_DIR_IN) { 1245 error = copyout(kern_ptr, user_ptr, len_to_copy); 1246 if (error != 0) { 1247 xpt_print(periph->path, "%s: copyout of %u " 1248 "bytes from %p to %p failed with " 1249 "error %d\n", __func__, len_to_copy, 1250 kern_ptr, user_ptr, error); 1251 goto bailout; 1252 } 1253 } else { 1254 error = copyin(user_ptr, kern_ptr, len_to_copy); 1255 if (error != 0) { 1256 xpt_print(periph->path, "%s: copyin of %u " 1257 "bytes from %p to %p failed with " 1258 "error %d\n", __func__, len_to_copy, 1259 user_ptr, kern_ptr, error); 1260 goto bailout; 1261 } 1262 } 1263 1264 len_copied += len_to_copy; 1265 1266 if (user_sglist[i].ds_len == user_watermark) { 1267 i++; 1268 user_watermark = 0; 1269 } 1270 1271 if (kern_sglist[j].ds_len == kern_watermark) { 1272 j++; 1273 kern_watermark = 0; 1274 } 1275 } 1276 1277 bailout: 1278 1279 return (error); 1280 } 1281 1282 static int 1283 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req) 1284 { 1285 union ccb *ccb; 1286 struct pass_softc *softc; 1287 int numbufs, i; 1288 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1289 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 1290 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 1291 uint32_t num_segs; 1292 uint16_t *seg_cnt_ptr; 1293 size_t maxmap; 1294 int error; 1295 1296 cam_periph_assert(periph, MA_NOTOWNED); 1297 1298 softc = periph->softc; 1299 1300 error = 0; 1301 ccb = &io_req->ccb; 1302 maxmap = 0; 1303 num_segs = 0; 1304 seg_cnt_ptr = NULL; 1305 1306 switch(ccb->ccb_h.func_code) { 1307 case XPT_DEV_MATCH: 1308 if (ccb->cdm.match_buf_len == 0) { 1309 printf("%s: invalid match buffer length 0\n", __func__); 1310 return(EINVAL); 1311 } 1312 if (ccb->cdm.pattern_buf_len > 0) { 1313 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1314 lengths[0] = ccb->cdm.pattern_buf_len; 1315 dirs[0] = CAM_DIR_OUT; 1316 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1317 lengths[1] = ccb->cdm.match_buf_len; 1318 dirs[1] = CAM_DIR_IN; 1319 numbufs = 2; 1320 } else { 1321 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1322 lengths[0] = ccb->cdm.match_buf_len; 1323 dirs[0] = CAM_DIR_IN; 1324 numbufs = 1; 1325 } 1326 io_req->data_flags = CAM_DATA_VADDR; 1327 break; 1328 case XPT_SCSI_IO: 1329 case XPT_CONT_TARGET_IO: 1330 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1331 return(0); 1332 1333 /* 1334 * The user shouldn't be able to supply a bio. 1335 */ 1336 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO) 1337 return (EINVAL); 1338 1339 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1340 1341 data_ptrs[0] = &ccb->csio.data_ptr; 1342 lengths[0] = ccb->csio.dxfer_len; 1343 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1344 num_segs = ccb->csio.sglist_cnt; 1345 seg_cnt_ptr = &ccb->csio.sglist_cnt; 1346 numbufs = 1; 1347 maxmap = softc->maxio; 1348 break; 1349 case XPT_ATA_IO: 1350 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1351 return(0); 1352 1353 /* 1354 * We only support a single virtual address for ATA I/O. 1355 */ 1356 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 1357 return (EINVAL); 1358 1359 io_req->data_flags = CAM_DATA_VADDR; 1360 1361 data_ptrs[0] = &ccb->ataio.data_ptr; 1362 lengths[0] = ccb->ataio.dxfer_len; 1363 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1364 numbufs = 1; 1365 maxmap = softc->maxio; 1366 break; 1367 case XPT_SMP_IO: 1368 io_req->data_flags = CAM_DATA_VADDR; 1369 1370 data_ptrs[0] = &ccb->smpio.smp_request; 1371 lengths[0] = ccb->smpio.smp_request_len; 1372 dirs[0] = CAM_DIR_OUT; 1373 data_ptrs[1] = &ccb->smpio.smp_response; 1374 lengths[1] = ccb->smpio.smp_response_len; 1375 dirs[1] = CAM_DIR_IN; 1376 numbufs = 2; 1377 maxmap = softc->maxio; 1378 break; 1379 case XPT_DEV_ADVINFO: 1380 if (ccb->cdai.bufsiz == 0) 1381 return (0); 1382 1383 io_req->data_flags = CAM_DATA_VADDR; 1384 1385 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1386 lengths[0] = ccb->cdai.bufsiz; 1387 dirs[0] = CAM_DIR_IN; 1388 numbufs = 1; 1389 break; 1390 case XPT_NVME_ADMIN: 1391 case XPT_NVME_IO: 1392 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1393 return (0); 1394 1395 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1396 1397 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1398 lengths[0] = ccb->nvmeio.dxfer_len; 1399 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1400 num_segs = ccb->nvmeio.sglist_cnt; 1401 seg_cnt_ptr = &ccb->nvmeio.sglist_cnt; 1402 numbufs = 1; 1403 maxmap = softc->maxio; 1404 break; 1405 default: 1406 return(EINVAL); 1407 break; /* NOTREACHED */ 1408 } 1409 1410 io_req->num_bufs = numbufs; 1411 1412 /* 1413 * If there is a maximum, check to make sure that the user's 1414 * request fits within the limit. In general, we should only have 1415 * a maximum length for requests that go to hardware. Otherwise it 1416 * is whatever we're able to malloc. 1417 */ 1418 for (i = 0; i < numbufs; i++) { 1419 io_req->user_bufs[i] = *data_ptrs[i]; 1420 io_req->dirs[i] = dirs[i]; 1421 io_req->lengths[i] = lengths[i]; 1422 1423 if (maxmap == 0) 1424 continue; 1425 1426 if (lengths[i] <= maxmap) 1427 continue; 1428 1429 xpt_print(periph->path, "%s: data length %u > max allowed %u " 1430 "bytes\n", __func__, lengths[i], maxmap); 1431 error = EINVAL; 1432 goto bailout; 1433 } 1434 1435 switch (io_req->data_flags) { 1436 case CAM_DATA_VADDR: 1437 /* Map or copy the buffer into kernel address space */ 1438 for (i = 0; i < numbufs; i++) { 1439 uint8_t *tmp_buf; 1440 1441 /* 1442 * If for some reason no length is specified, we 1443 * don't need to allocate anything. 1444 */ 1445 if (io_req->lengths[i] == 0) 1446 continue; 1447 1448 /* 1449 * Make sure that the user's buffer is accessible 1450 * to that process. 1451 */ 1452 if (!useracc(io_req->user_bufs[i], io_req->lengths[i], 1453 (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE : 1454 VM_PROT_READ)) { 1455 xpt_print(periph->path, "%s: user address %p " 1456 "length %u is not accessible\n", __func__, 1457 io_req->user_bufs[i], io_req->lengths[i]); 1458 error = EFAULT; 1459 goto bailout; 1460 } 1461 1462 tmp_buf = malloc(lengths[i], M_SCSIPASS, 1463 M_WAITOK | M_ZERO); 1464 io_req->kern_bufs[i] = tmp_buf; 1465 *data_ptrs[i] = tmp_buf; 1466 1467 #if 0 1468 xpt_print(periph->path, "%s: malloced %p len %u, user " 1469 "buffer %p, operation: %s\n", __func__, 1470 tmp_buf, lengths[i], io_req->user_bufs[i], 1471 (dirs[i] == CAM_DIR_IN) ? "read" : "write"); 1472 #endif 1473 /* 1474 * We only need to copy in if the user is writing. 1475 */ 1476 if (dirs[i] != CAM_DIR_OUT) 1477 continue; 1478 1479 error = copyin(io_req->user_bufs[i], 1480 io_req->kern_bufs[i], lengths[i]); 1481 if (error != 0) { 1482 xpt_print(periph->path, "%s: copy of user " 1483 "buffer from %p to %p failed with " 1484 "error %d\n", __func__, 1485 io_req->user_bufs[i], 1486 io_req->kern_bufs[i], error); 1487 goto bailout; 1488 } 1489 } 1490 break; 1491 case CAM_DATA_PADDR: 1492 /* Pass down the pointer as-is */ 1493 break; 1494 case CAM_DATA_SG: { 1495 size_t sg_length, size_to_go, alloc_size; 1496 uint32_t num_segs_needed; 1497 1498 /* 1499 * Copy the user S/G list in, and then copy in the 1500 * individual segments. 1501 */ 1502 /* 1503 * We shouldn't see this, but check just in case. 1504 */ 1505 if (numbufs != 1) { 1506 xpt_print(periph->path, "%s: cannot currently handle " 1507 "more than one S/G list per CCB\n", __func__); 1508 error = EINVAL; 1509 goto bailout; 1510 } 1511 1512 /* 1513 * We have to have at least one segment. 1514 */ 1515 if (num_segs == 0) { 1516 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, " 1517 "but sglist_cnt=0!\n", __func__); 1518 error = EINVAL; 1519 goto bailout; 1520 } 1521 1522 /* 1523 * Make sure the user specified the total length and didn't 1524 * just leave it to us to decode the S/G list. 1525 */ 1526 if (lengths[0] == 0) { 1527 xpt_print(periph->path, "%s: no dxfer_len specified, " 1528 "but CAM_DATA_SG flag is set!\n", __func__); 1529 error = EINVAL; 1530 goto bailout; 1531 } 1532 1533 /* 1534 * We allocate buffers in io_zone_size increments for an 1535 * S/G list. This will generally be MAXPHYS. 1536 */ 1537 if (lengths[0] <= softc->io_zone_size) 1538 num_segs_needed = 1; 1539 else { 1540 num_segs_needed = lengths[0] / softc->io_zone_size; 1541 if ((lengths[0] % softc->io_zone_size) != 0) 1542 num_segs_needed++; 1543 } 1544 1545 /* Figure out the size of the S/G list */ 1546 sg_length = num_segs * sizeof(bus_dma_segment_t); 1547 io_req->num_user_segs = num_segs; 1548 io_req->num_kern_segs = num_segs_needed; 1549 1550 /* Save the user's S/G list pointer for later restoration */ 1551 io_req->user_bufs[0] = *data_ptrs[0]; 1552 1553 /* 1554 * If we have enough segments allocated by default to handle 1555 * the length of the user's S/G list, 1556 */ 1557 if (num_segs > PASS_MAX_SEGS) { 1558 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1559 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1560 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1561 } else 1562 io_req->user_segptr = io_req->user_segs; 1563 1564 if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) { 1565 xpt_print(periph->path, "%s: unable to access user " 1566 "S/G list at %p\n", __func__, *data_ptrs[0]); 1567 error = EFAULT; 1568 goto bailout; 1569 } 1570 1571 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1572 if (error != 0) { 1573 xpt_print(periph->path, "%s: copy of user S/G list " 1574 "from %p to %p failed with error %d\n", 1575 __func__, *data_ptrs[0], io_req->user_segptr, 1576 error); 1577 goto bailout; 1578 } 1579 1580 if (num_segs_needed > PASS_MAX_SEGS) { 1581 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) * 1582 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO); 1583 io_req->flags |= PASS_IO_KERN_SEG_MALLOC; 1584 } else { 1585 io_req->kern_segptr = io_req->kern_segs; 1586 } 1587 1588 /* 1589 * Allocate the kernel S/G list. 1590 */ 1591 for (size_to_go = lengths[0], i = 0; 1592 size_to_go > 0 && i < num_segs_needed; 1593 i++, size_to_go -= alloc_size) { 1594 uint8_t *kern_ptr; 1595 1596 alloc_size = min(size_to_go, softc->io_zone_size); 1597 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK); 1598 io_req->kern_segptr[i].ds_addr = 1599 (bus_addr_t)(uintptr_t)kern_ptr; 1600 io_req->kern_segptr[i].ds_len = alloc_size; 1601 } 1602 if (size_to_go > 0) { 1603 printf("%s: size_to_go = %zu, software error!\n", 1604 __func__, size_to_go); 1605 error = EINVAL; 1606 goto bailout; 1607 } 1608 1609 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr; 1610 *seg_cnt_ptr = io_req->num_kern_segs; 1611 1612 /* 1613 * We only need to copy data here if the user is writing. 1614 */ 1615 if (dirs[0] == CAM_DIR_OUT) 1616 error = passcopysglist(periph, io_req, dirs[0]); 1617 break; 1618 } 1619 case CAM_DATA_SG_PADDR: { 1620 size_t sg_length; 1621 1622 /* 1623 * We shouldn't see this, but check just in case. 1624 */ 1625 if (numbufs != 1) { 1626 printf("%s: cannot currently handle more than one " 1627 "S/G list per CCB\n", __func__); 1628 error = EINVAL; 1629 goto bailout; 1630 } 1631 1632 /* 1633 * We have to have at least one segment. 1634 */ 1635 if (num_segs == 0) { 1636 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag " 1637 "set, but sglist_cnt=0!\n", __func__); 1638 error = EINVAL; 1639 goto bailout; 1640 } 1641 1642 /* 1643 * Make sure the user specified the total length and didn't 1644 * just leave it to us to decode the S/G list. 1645 */ 1646 if (lengths[0] == 0) { 1647 xpt_print(periph->path, "%s: no dxfer_len specified, " 1648 "but CAM_DATA_SG flag is set!\n", __func__); 1649 error = EINVAL; 1650 goto bailout; 1651 } 1652 1653 /* Figure out the size of the S/G list */ 1654 sg_length = num_segs * sizeof(bus_dma_segment_t); 1655 io_req->num_user_segs = num_segs; 1656 io_req->num_kern_segs = io_req->num_user_segs; 1657 1658 /* Save the user's S/G list pointer for later restoration */ 1659 io_req->user_bufs[0] = *data_ptrs[0]; 1660 1661 if (num_segs > PASS_MAX_SEGS) { 1662 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1663 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1664 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1665 } else 1666 io_req->user_segptr = io_req->user_segs; 1667 1668 io_req->kern_segptr = io_req->user_segptr; 1669 1670 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1671 if (error != 0) { 1672 xpt_print(periph->path, "%s: copy of user S/G list " 1673 "from %p to %p failed with error %d\n", 1674 __func__, *data_ptrs[0], io_req->user_segptr, 1675 error); 1676 goto bailout; 1677 } 1678 break; 1679 } 1680 default: 1681 case CAM_DATA_BIO: 1682 /* 1683 * A user shouldn't be attaching a bio to the CCB. It 1684 * isn't a user-accessible structure. 1685 */ 1686 error = EINVAL; 1687 break; 1688 } 1689 1690 bailout: 1691 if (error != 0) 1692 passiocleanup(softc, io_req); 1693 1694 return (error); 1695 } 1696 1697 static int 1698 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req) 1699 { 1700 struct pass_softc *softc; 1701 int error; 1702 int i; 1703 1704 error = 0; 1705 softc = (struct pass_softc *)periph->softc; 1706 1707 switch (io_req->data_flags) { 1708 case CAM_DATA_VADDR: 1709 /* 1710 * Copy back to the user buffer if this was a read. 1711 */ 1712 for (i = 0; i < io_req->num_bufs; i++) { 1713 if (io_req->dirs[i] != CAM_DIR_IN) 1714 continue; 1715 1716 error = copyout(io_req->kern_bufs[i], 1717 io_req->user_bufs[i], io_req->lengths[i]); 1718 if (error != 0) { 1719 xpt_print(periph->path, "Unable to copy %u " 1720 "bytes from %p to user address %p\n", 1721 io_req->lengths[i], 1722 io_req->kern_bufs[i], 1723 io_req->user_bufs[i]); 1724 goto bailout; 1725 } 1726 1727 } 1728 break; 1729 case CAM_DATA_PADDR: 1730 /* Do nothing. The pointer is a physical address already */ 1731 break; 1732 case CAM_DATA_SG: 1733 /* 1734 * Copy back to the user buffer if this was a read. 1735 * Restore the user's S/G list buffer pointer. 1736 */ 1737 if (io_req->dirs[0] == CAM_DIR_IN) 1738 error = passcopysglist(periph, io_req, io_req->dirs[0]); 1739 break; 1740 case CAM_DATA_SG_PADDR: 1741 /* 1742 * Restore the user's S/G list buffer pointer. No need to 1743 * copy. 1744 */ 1745 break; 1746 default: 1747 case CAM_DATA_BIO: 1748 error = EINVAL; 1749 break; 1750 } 1751 1752 bailout: 1753 /* 1754 * Reset the user's pointers to their original values and free 1755 * allocated memory. 1756 */ 1757 passiocleanup(softc, io_req); 1758 1759 return (error); 1760 } 1761 1762 static int 1763 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1764 { 1765 int error; 1766 1767 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 1768 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl); 1769 } 1770 return (error); 1771 } 1772 1773 static int 1774 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1775 { 1776 struct cam_periph *periph; 1777 struct pass_softc *softc; 1778 int error; 1779 uint32_t priority; 1780 1781 periph = (struct cam_periph *)dev->si_drv1; 1782 cam_periph_lock(periph); 1783 softc = (struct pass_softc *)periph->softc; 1784 1785 error = 0; 1786 1787 switch (cmd) { 1788 1789 case CAMIOCOMMAND: 1790 { 1791 union ccb *inccb; 1792 union ccb *ccb; 1793 int ccb_malloced; 1794 1795 inccb = (union ccb *)addr; 1796 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1797 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 1798 inccb->csio.bio = NULL; 1799 #endif 1800 1801 if (inccb->ccb_h.flags & CAM_UNLOCKED) { 1802 error = EINVAL; 1803 break; 1804 } 1805 1806 /* 1807 * Some CCB types, like scan bus and scan lun can only go 1808 * through the transport layer device. 1809 */ 1810 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1811 xpt_print(periph->path, "CCB function code %#x is " 1812 "restricted to the XPT device\n", 1813 inccb->ccb_h.func_code); 1814 error = ENODEV; 1815 break; 1816 } 1817 1818 /* Compatibility for RL/priority-unaware code. */ 1819 priority = inccb->ccb_h.pinfo.priority; 1820 if (priority <= CAM_PRIORITY_OOB) 1821 priority += CAM_PRIORITY_OOB + 1; 1822 1823 /* 1824 * Non-immediate CCBs need a CCB from the per-device pool 1825 * of CCBs, which is scheduled by the transport layer. 1826 * Immediate CCBs and user-supplied CCBs should just be 1827 * malloced. 1828 */ 1829 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED) 1830 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) { 1831 ccb = cam_periph_getccb(periph, priority); 1832 ccb_malloced = 0; 1833 } else { 1834 ccb = xpt_alloc_ccb_nowait(); 1835 1836 if (ccb != NULL) 1837 xpt_setup_ccb(&ccb->ccb_h, periph->path, 1838 priority); 1839 ccb_malloced = 1; 1840 } 1841 1842 if (ccb == NULL) { 1843 xpt_print(periph->path, "unable to allocate CCB\n"); 1844 error = ENOMEM; 1845 break; 1846 } 1847 1848 error = passsendccb(periph, ccb, inccb); 1849 1850 if (ccb_malloced) 1851 xpt_free_ccb(ccb); 1852 else 1853 xpt_release_ccb(ccb); 1854 1855 break; 1856 } 1857 case CAMIOQUEUE: 1858 { 1859 struct pass_io_req *io_req; 1860 union ccb **user_ccb, *ccb; 1861 xpt_opcode fc; 1862 1863 #ifdef COMPAT_FREEBSD32 1864 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 1865 error = ENOTTY; 1866 goto bailout; 1867 } 1868 #endif 1869 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) { 1870 error = passcreatezone(periph); 1871 if (error != 0) 1872 goto bailout; 1873 } 1874 1875 /* 1876 * We're going to do a blocking allocation for this I/O 1877 * request, so we have to drop the lock. 1878 */ 1879 cam_periph_unlock(periph); 1880 1881 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO); 1882 ccb = &io_req->ccb; 1883 user_ccb = (union ccb **)addr; 1884 1885 /* 1886 * Unlike the CAMIOCOMMAND ioctl above, we only have a 1887 * pointer to the user's CCB, so we have to copy the whole 1888 * thing in to a buffer we have allocated (above) instead 1889 * of allowing the ioctl code to malloc a buffer and copy 1890 * it in. 1891 * 1892 * This is an advantage for this asynchronous interface, 1893 * since we don't want the memory to get freed while the 1894 * CCB is outstanding. 1895 */ 1896 #if 0 1897 xpt_print(periph->path, "Copying user CCB %p to " 1898 "kernel address %p\n", *user_ccb, ccb); 1899 #endif 1900 error = copyin(*user_ccb, ccb, sizeof(*ccb)); 1901 if (error != 0) { 1902 xpt_print(periph->path, "Copy of user CCB %p to " 1903 "kernel address %p failed with error %d\n", 1904 *user_ccb, ccb, error); 1905 goto camioqueue_error; 1906 } 1907 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1908 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 1909 ccb->csio.bio = NULL; 1910 #endif 1911 1912 if (ccb->ccb_h.flags & CAM_UNLOCKED) { 1913 error = EINVAL; 1914 goto camioqueue_error; 1915 } 1916 1917 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 1918 if (ccb->csio.cdb_len > IOCDBLEN) { 1919 error = EINVAL; 1920 goto camioqueue_error; 1921 } 1922 error = copyin(ccb->csio.cdb_io.cdb_ptr, 1923 ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len); 1924 if (error != 0) 1925 goto camioqueue_error; 1926 ccb->ccb_h.flags &= ~CAM_CDB_POINTER; 1927 } 1928 1929 /* 1930 * Some CCB types, like scan bus and scan lun can only go 1931 * through the transport layer device. 1932 */ 1933 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1934 xpt_print(periph->path, "CCB function code %#x is " 1935 "restricted to the XPT device\n", 1936 ccb->ccb_h.func_code); 1937 error = ENODEV; 1938 goto camioqueue_error; 1939 } 1940 1941 /* 1942 * Save the user's CCB pointer as well as his linked list 1943 * pointers and peripheral private area so that we can 1944 * restore these later. 1945 */ 1946 io_req->user_ccb_ptr = *user_ccb; 1947 io_req->user_periph_links = ccb->ccb_h.periph_links; 1948 io_req->user_periph_priv = ccb->ccb_h.periph_priv; 1949 1950 /* 1951 * Now that we've saved the user's values, we can set our 1952 * own peripheral private entry. 1953 */ 1954 ccb->ccb_h.ccb_ioreq = io_req; 1955 1956 /* Compatibility for RL/priority-unaware code. */ 1957 priority = ccb->ccb_h.pinfo.priority; 1958 if (priority <= CAM_PRIORITY_OOB) 1959 priority += CAM_PRIORITY_OOB + 1; 1960 1961 /* 1962 * Setup fields in the CCB like the path and the priority. 1963 * The path in particular cannot be done in userland, since 1964 * it is a pointer to a kernel data structure. 1965 */ 1966 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority, 1967 ccb->ccb_h.flags); 1968 1969 /* 1970 * Setup our done routine. There is no way for the user to 1971 * have a valid pointer here. 1972 */ 1973 ccb->ccb_h.cbfcnp = passdone; 1974 1975 fc = ccb->ccb_h.func_code; 1976 /* 1977 * If this function code has memory that can be mapped in 1978 * or out, we need to call passmemsetup(). 1979 */ 1980 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) 1981 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH) 1982 || (fc == XPT_DEV_ADVINFO) 1983 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { 1984 error = passmemsetup(periph, io_req); 1985 if (error != 0) 1986 goto camioqueue_error; 1987 } else 1988 io_req->mapinfo.num_bufs_used = 0; 1989 1990 cam_periph_lock(periph); 1991 1992 /* 1993 * Everything goes on the incoming queue initially. 1994 */ 1995 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links); 1996 1997 /* 1998 * If the CCB is queued, and is not a user CCB, then 1999 * we need to allocate a slot for it. Call xpt_schedule() 2000 * so that our start routine will get called when a CCB is 2001 * available. 2002 */ 2003 if ((fc & XPT_FC_QUEUED) 2004 && ((fc & XPT_FC_USER_CCB) == 0)) { 2005 xpt_schedule(periph, priority); 2006 break; 2007 } 2008 2009 /* 2010 * At this point, the CCB in question is either an 2011 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB 2012 * and therefore should be malloced, not allocated via a slot. 2013 * Remove the CCB from the incoming queue and add it to the 2014 * active queue. 2015 */ 2016 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 2017 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 2018 2019 xpt_action(ccb); 2020 2021 /* 2022 * If this is not a queued CCB (i.e. it is an immediate CCB), 2023 * then it is already done. We need to put it on the done 2024 * queue for the user to fetch. 2025 */ 2026 if ((fc & XPT_FC_QUEUED) == 0) { 2027 TAILQ_REMOVE(&softc->active_queue, io_req, links); 2028 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 2029 } 2030 break; 2031 2032 camioqueue_error: 2033 uma_zfree(softc->pass_zone, io_req); 2034 cam_periph_lock(periph); 2035 break; 2036 } 2037 case CAMIOGET: 2038 { 2039 union ccb **user_ccb; 2040 struct pass_io_req *io_req; 2041 int old_error; 2042 2043 #ifdef COMPAT_FREEBSD32 2044 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 2045 error = ENOTTY; 2046 goto bailout; 2047 } 2048 #endif 2049 user_ccb = (union ccb **)addr; 2050 old_error = 0; 2051 2052 io_req = TAILQ_FIRST(&softc->done_queue); 2053 if (io_req == NULL) { 2054 error = ENOENT; 2055 break; 2056 } 2057 2058 /* 2059 * Remove the I/O from the done queue. 2060 */ 2061 TAILQ_REMOVE(&softc->done_queue, io_req, links); 2062 2063 /* 2064 * We have to drop the lock during the copyout because the 2065 * copyout can result in VM faults that require sleeping. 2066 */ 2067 cam_periph_unlock(periph); 2068 2069 /* 2070 * Do any needed copies (e.g. for reads) and revert the 2071 * pointers in the CCB back to the user's pointers. 2072 */ 2073 error = passmemdone(periph, io_req); 2074 2075 old_error = error; 2076 2077 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links; 2078 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv; 2079 2080 #if 0 2081 xpt_print(periph->path, "Copying to user CCB %p from " 2082 "kernel address %p\n", *user_ccb, &io_req->ccb); 2083 #endif 2084 2085 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb)); 2086 if (error != 0) { 2087 xpt_print(periph->path, "Copy to user CCB %p from " 2088 "kernel address %p failed with error %d\n", 2089 *user_ccb, &io_req->ccb, error); 2090 } 2091 2092 /* 2093 * Prefer the first error we got back, and make sure we 2094 * don't overwrite bad status with good. 2095 */ 2096 if (old_error != 0) 2097 error = old_error; 2098 2099 cam_periph_lock(periph); 2100 2101 /* 2102 * At this point, if there was an error, we could potentially 2103 * re-queue the I/O and try again. But why? The error 2104 * would almost certainly happen again. We might as well 2105 * not leak memory. 2106 */ 2107 uma_zfree(softc->pass_zone, io_req); 2108 break; 2109 } 2110 default: 2111 error = cam_periph_ioctl(periph, cmd, addr, passerror); 2112 break; 2113 } 2114 2115 bailout: 2116 cam_periph_unlock(periph); 2117 2118 return(error); 2119 } 2120 2121 static int 2122 passpoll(struct cdev *dev, int poll_events, struct thread *td) 2123 { 2124 struct cam_periph *periph; 2125 struct pass_softc *softc; 2126 int revents; 2127 2128 periph = (struct cam_periph *)dev->si_drv1; 2129 softc = (struct pass_softc *)periph->softc; 2130 2131 revents = poll_events & (POLLOUT | POLLWRNORM); 2132 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) { 2133 cam_periph_lock(periph); 2134 2135 if (!TAILQ_EMPTY(&softc->done_queue)) { 2136 revents |= poll_events & (POLLIN | POLLRDNORM); 2137 } 2138 cam_periph_unlock(periph); 2139 if (revents == 0) 2140 selrecord(td, &softc->read_select); 2141 } 2142 2143 return (revents); 2144 } 2145 2146 static int 2147 passkqfilter(struct cdev *dev, struct knote *kn) 2148 { 2149 struct cam_periph *periph; 2150 struct pass_softc *softc; 2151 2152 periph = (struct cam_periph *)dev->si_drv1; 2153 softc = (struct pass_softc *)periph->softc; 2154 2155 kn->kn_hook = (caddr_t)periph; 2156 kn->kn_fop = &passread_filtops; 2157 knlist_add(&softc->read_select.si_note, kn, 0); 2158 2159 return (0); 2160 } 2161 2162 static void 2163 passreadfiltdetach(struct knote *kn) 2164 { 2165 struct cam_periph *periph; 2166 struct pass_softc *softc; 2167 2168 periph = (struct cam_periph *)kn->kn_hook; 2169 softc = (struct pass_softc *)periph->softc; 2170 2171 knlist_remove(&softc->read_select.si_note, kn, 0); 2172 } 2173 2174 static int 2175 passreadfilt(struct knote *kn, long hint) 2176 { 2177 struct cam_periph *periph; 2178 struct pass_softc *softc; 2179 int retval; 2180 2181 periph = (struct cam_periph *)kn->kn_hook; 2182 softc = (struct pass_softc *)periph->softc; 2183 2184 cam_periph_assert(periph, MA_OWNED); 2185 2186 if (TAILQ_EMPTY(&softc->done_queue)) 2187 retval = 0; 2188 else 2189 retval = 1; 2190 2191 return (retval); 2192 } 2193 2194 /* 2195 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb" 2196 * should be the CCB that is copied in from the user. 2197 */ 2198 static int 2199 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb) 2200 { 2201 struct pass_softc *softc; 2202 struct cam_periph_map_info mapinfo; 2203 uint8_t *cmd; 2204 xpt_opcode fc; 2205 int error; 2206 2207 softc = (struct pass_softc *)periph->softc; 2208 2209 /* 2210 * There are some fields in the CCB header that need to be 2211 * preserved, the rest we get from the user. 2212 */ 2213 xpt_merge_ccb(ccb, inccb); 2214 2215 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 2216 cmd = __builtin_alloca(ccb->csio.cdb_len); 2217 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len); 2218 if (error) 2219 return (error); 2220 ccb->csio.cdb_io.cdb_ptr = cmd; 2221 } 2222 2223 /* 2224 * Let cam_periph_mapmem do a sanity check on the data pointer format. 2225 * Even if no data transfer is needed, it's a cheap check and it 2226 * simplifies the code. 2227 */ 2228 fc = ccb->ccb_h.func_code; 2229 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO) 2230 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO) 2231 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { 2232 2233 bzero(&mapinfo, sizeof(mapinfo)); 2234 2235 /* 2236 * cam_periph_mapmem calls into proc and vm functions that can 2237 * sleep as well as trigger I/O, so we can't hold the lock. 2238 * Dropping it here is reasonably safe. 2239 */ 2240 cam_periph_unlock(periph); 2241 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio); 2242 cam_periph_lock(periph); 2243 2244 /* 2245 * cam_periph_mapmem returned an error, we can't continue. 2246 * Return the error to the user. 2247 */ 2248 if (error) 2249 return(error); 2250 } else 2251 /* Ensure that the unmap call later on is a no-op. */ 2252 mapinfo.num_bufs_used = 0; 2253 2254 /* 2255 * If the user wants us to perform any error recovery, then honor 2256 * that request. Otherwise, it's up to the user to perform any 2257 * error recovery. 2258 */ 2259 cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? 2260 passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO, 2261 /* sense_flags */ SF_RETRY_UA | SF_NO_PRINT, 2262 softc->device_stats); 2263 2264 cam_periph_unmapmem(ccb, &mapinfo); 2265 2266 ccb->ccb_h.cbfcnp = NULL; 2267 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv; 2268 bcopy(ccb, inccb, sizeof(union ccb)); 2269 2270 return(0); 2271 } 2272 2273 static int 2274 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) 2275 { 2276 struct cam_periph *periph; 2277 struct pass_softc *softc; 2278 2279 periph = xpt_path_periph(ccb->ccb_h.path); 2280 softc = (struct pass_softc *)periph->softc; 2281 2282 return(cam_periph_error(ccb, cam_flags, sense_flags)); 2283 } 2284