1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_compat.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/conf.h> 39 #include <sys/types.h> 40 #include <sys/bio.h> 41 #include <sys/bus.h> 42 #include <sys/devicestat.h> 43 #include <sys/errno.h> 44 #include <sys/fcntl.h> 45 #include <sys/malloc.h> 46 #include <sys/proc.h> 47 #include <sys/poll.h> 48 #include <sys/selinfo.h> 49 #include <sys/sdt.h> 50 #include <sys/sysent.h> 51 #include <sys/taskqueue.h> 52 #include <vm/uma.h> 53 #include <vm/vm.h> 54 #include <vm/vm_extern.h> 55 56 #include <machine/bus.h> 57 58 #include <cam/cam.h> 59 #include <cam/cam_ccb.h> 60 #include <cam/cam_periph.h> 61 #include <cam/cam_queue.h> 62 #include <cam/cam_xpt.h> 63 #include <cam/cam_xpt_periph.h> 64 #include <cam/cam_debug.h> 65 #include <cam/cam_compat.h> 66 #include <cam/cam_xpt_periph.h> 67 68 #include <cam/scsi/scsi_all.h> 69 #include <cam/scsi/scsi_pass.h> 70 71 typedef enum { 72 PASS_FLAG_OPEN = 0x01, 73 PASS_FLAG_LOCKED = 0x02, 74 PASS_FLAG_INVALID = 0x04, 75 PASS_FLAG_INITIAL_PHYSPATH = 0x08, 76 PASS_FLAG_ZONE_INPROG = 0x10, 77 PASS_FLAG_ZONE_VALID = 0x20, 78 PASS_FLAG_UNMAPPED_CAPABLE = 0x40, 79 PASS_FLAG_ABANDONED_REF_SET = 0x80 80 } pass_flags; 81 82 typedef enum { 83 PASS_STATE_NORMAL 84 } pass_state; 85 86 typedef enum { 87 PASS_CCB_BUFFER_IO, 88 PASS_CCB_QUEUED_IO 89 } pass_ccb_types; 90 91 #define ccb_type ppriv_field0 92 #define ccb_ioreq ppriv_ptr1 93 94 /* 95 * The maximum number of memory segments we preallocate. 96 */ 97 #define PASS_MAX_SEGS 16 98 99 typedef enum { 100 PASS_IO_NONE = 0x00, 101 PASS_IO_USER_SEG_MALLOC = 0x01, 102 PASS_IO_KERN_SEG_MALLOC = 0x02, 103 PASS_IO_ABANDONED = 0x04 104 } pass_io_flags; 105 106 struct pass_io_req { 107 union ccb ccb; 108 union ccb *alloced_ccb; 109 union ccb *user_ccb_ptr; 110 camq_entry user_periph_links; 111 ccb_ppriv_area user_periph_priv; 112 struct cam_periph_map_info mapinfo; 113 pass_io_flags flags; 114 ccb_flags data_flags; 115 int num_user_segs; 116 bus_dma_segment_t user_segs[PASS_MAX_SEGS]; 117 int num_kern_segs; 118 bus_dma_segment_t kern_segs[PASS_MAX_SEGS]; 119 bus_dma_segment_t *user_segptr; 120 bus_dma_segment_t *kern_segptr; 121 int num_bufs; 122 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 123 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 124 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS]; 125 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS]; 126 struct bintime start_time; 127 TAILQ_ENTRY(pass_io_req) links; 128 }; 129 130 struct pass_softc { 131 pass_state state; 132 pass_flags flags; 133 u_int8_t pd_type; 134 union ccb saved_ccb; 135 int open_count; 136 u_int maxio; 137 struct devstat *device_stats; 138 struct cdev *dev; 139 struct cdev *alias_dev; 140 struct task add_physpath_task; 141 struct task shutdown_kqueue_task; 142 struct selinfo read_select; 143 TAILQ_HEAD(, pass_io_req) incoming_queue; 144 TAILQ_HEAD(, pass_io_req) active_queue; 145 TAILQ_HEAD(, pass_io_req) abandoned_queue; 146 TAILQ_HEAD(, pass_io_req) done_queue; 147 struct cam_periph *periph; 148 char zone_name[12]; 149 char io_zone_name[12]; 150 uma_zone_t pass_zone; 151 uma_zone_t pass_io_zone; 152 size_t io_zone_size; 153 }; 154 155 static d_open_t passopen; 156 static d_close_t passclose; 157 static d_ioctl_t passioctl; 158 static d_ioctl_t passdoioctl; 159 static d_poll_t passpoll; 160 static d_kqfilter_t passkqfilter; 161 static void passreadfiltdetach(struct knote *kn); 162 static int passreadfilt(struct knote *kn, long hint); 163 164 static periph_init_t passinit; 165 static periph_ctor_t passregister; 166 static periph_oninv_t passoninvalidate; 167 static periph_dtor_t passcleanup; 168 static periph_start_t passstart; 169 static void pass_shutdown_kqueue(void *context, int pending); 170 static void pass_add_physpath(void *context, int pending); 171 static void passasync(void *callback_arg, u_int32_t code, 172 struct cam_path *path, void *arg); 173 static void passdone(struct cam_periph *periph, 174 union ccb *done_ccb); 175 static int passcreatezone(struct cam_periph *periph); 176 static void passiocleanup(struct pass_softc *softc, 177 struct pass_io_req *io_req); 178 static int passcopysglist(struct cam_periph *periph, 179 struct pass_io_req *io_req, 180 ccb_flags direction); 181 static int passmemsetup(struct cam_periph *periph, 182 struct pass_io_req *io_req); 183 static int passmemdone(struct cam_periph *periph, 184 struct pass_io_req *io_req); 185 static int passerror(union ccb *ccb, u_int32_t cam_flags, 186 u_int32_t sense_flags); 187 static int passsendccb(struct cam_periph *periph, union ccb *ccb, 188 union ccb *inccb); 189 190 static struct periph_driver passdriver = 191 { 192 passinit, "pass", 193 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0 194 }; 195 196 PERIPHDRIVER_DECLARE(pass, passdriver); 197 198 static struct cdevsw pass_cdevsw = { 199 .d_version = D_VERSION, 200 .d_flags = D_TRACKCLOSE, 201 .d_open = passopen, 202 .d_close = passclose, 203 .d_ioctl = passioctl, 204 .d_poll = passpoll, 205 .d_kqfilter = passkqfilter, 206 .d_name = "pass", 207 }; 208 209 static struct filterops passread_filtops = { 210 .f_isfd = 1, 211 .f_detach = passreadfiltdetach, 212 .f_event = passreadfilt 213 }; 214 215 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers"); 216 217 static void 218 passinit(void) 219 { 220 cam_status status; 221 222 /* 223 * Install a global async callback. This callback will 224 * receive async callbacks like "new device found". 225 */ 226 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL); 227 228 if (status != CAM_REQ_CMP) { 229 printf("pass: Failed to attach master async callback " 230 "due to status 0x%x!\n", status); 231 } 232 233 } 234 235 static void 236 passrejectios(struct cam_periph *periph) 237 { 238 struct pass_io_req *io_req, *io_req2; 239 struct pass_softc *softc; 240 241 softc = (struct pass_softc *)periph->softc; 242 243 /* 244 * The user can no longer get status for I/O on the done queue, so 245 * clean up all outstanding I/O on the done queue. 246 */ 247 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 248 TAILQ_REMOVE(&softc->done_queue, io_req, links); 249 passiocleanup(softc, io_req); 250 uma_zfree(softc->pass_zone, io_req); 251 } 252 253 /* 254 * The underlying device is gone, so we can't issue these I/Os. 255 * The devfs node has been shut down, so we can't return status to 256 * the user. Free any I/O left on the incoming queue. 257 */ 258 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) { 259 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 260 passiocleanup(softc, io_req); 261 uma_zfree(softc->pass_zone, io_req); 262 } 263 264 /* 265 * Normally we would put I/Os on the abandoned queue and acquire a 266 * reference when we saw the final close. But, the device went 267 * away and devfs may have moved everything off to deadfs by the 268 * time the I/O done callback is called; as a result, we won't see 269 * any more closes. So, if we have any active I/Os, we need to put 270 * them on the abandoned queue. When the abandoned queue is empty, 271 * we'll release the remaining reference (see below) to the peripheral. 272 */ 273 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) { 274 TAILQ_REMOVE(&softc->active_queue, io_req, links); 275 io_req->flags |= PASS_IO_ABANDONED; 276 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links); 277 } 278 279 /* 280 * If we put any I/O on the abandoned queue, acquire a reference. 281 */ 282 if ((!TAILQ_EMPTY(&softc->abandoned_queue)) 283 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) { 284 cam_periph_doacquire(periph); 285 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 286 } 287 } 288 289 static void 290 passdevgonecb(void *arg) 291 { 292 struct cam_periph *periph; 293 struct mtx *mtx; 294 struct pass_softc *softc; 295 int i; 296 297 periph = (struct cam_periph *)arg; 298 mtx = cam_periph_mtx(periph); 299 mtx_lock(mtx); 300 301 softc = (struct pass_softc *)periph->softc; 302 KASSERT(softc->open_count >= 0, ("Negative open count %d", 303 softc->open_count)); 304 305 /* 306 * When we get this callback, we will get no more close calls from 307 * devfs. So if we have any dangling opens, we need to release the 308 * reference held for that particular context. 309 */ 310 for (i = 0; i < softc->open_count; i++) 311 cam_periph_release_locked(periph); 312 313 softc->open_count = 0; 314 315 /* 316 * Release the reference held for the device node, it is gone now. 317 * Accordingly, inform all queued I/Os of their fate. 318 */ 319 cam_periph_release_locked(periph); 320 passrejectios(periph); 321 322 /* 323 * We reference the SIM lock directly here, instead of using 324 * cam_periph_unlock(). The reason is that the final call to 325 * cam_periph_release_locked() above could result in the periph 326 * getting freed. If that is the case, dereferencing the periph 327 * with a cam_periph_unlock() call would cause a page fault. 328 */ 329 mtx_unlock(mtx); 330 331 /* 332 * We have to remove our kqueue context from a thread because it 333 * may sleep. It would be nice if we could get a callback from 334 * kqueue when it is done cleaning up resources. 335 */ 336 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task); 337 } 338 339 static void 340 passoninvalidate(struct cam_periph *periph) 341 { 342 struct pass_softc *softc; 343 344 softc = (struct pass_softc *)periph->softc; 345 346 /* 347 * De-register any async callbacks. 348 */ 349 xpt_register_async(0, passasync, periph, periph->path); 350 351 softc->flags |= PASS_FLAG_INVALID; 352 353 /* 354 * Tell devfs this device has gone away, and ask for a callback 355 * when it has cleaned up its state. 356 */ 357 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph); 358 } 359 360 static void 361 passcleanup(struct cam_periph *periph) 362 { 363 struct pass_softc *softc; 364 365 softc = (struct pass_softc *)periph->softc; 366 367 cam_periph_assert(periph, MA_OWNED); 368 KASSERT(TAILQ_EMPTY(&softc->active_queue), 369 ("%s called when there are commands on the active queue!\n", 370 __func__)); 371 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue), 372 ("%s called when there are commands on the abandoned queue!\n", 373 __func__)); 374 KASSERT(TAILQ_EMPTY(&softc->incoming_queue), 375 ("%s called when there are commands on the incoming queue!\n", 376 __func__)); 377 KASSERT(TAILQ_EMPTY(&softc->done_queue), 378 ("%s called when there are commands on the done queue!\n", 379 __func__)); 380 381 devstat_remove_entry(softc->device_stats); 382 383 cam_periph_unlock(periph); 384 385 /* 386 * We call taskqueue_drain() for the physpath task to make sure it 387 * is complete. We drop the lock because this can potentially 388 * sleep. XXX KDM that is bad. Need a way to get a callback when 389 * a taskqueue is drained. 390 * 391 * Note that we don't drain the kqueue shutdown task queue. This 392 * is because we hold a reference on the periph for kqueue, and 393 * release that reference from the kqueue shutdown task queue. So 394 * we cannot come into this routine unless we've released that 395 * reference. Also, because that could be the last reference, we 396 * could be called from the cam_periph_release() call in 397 * pass_shutdown_kqueue(). In that case, the taskqueue_drain() 398 * would deadlock. It would be preferable if we had a way to 399 * get a callback when a taskqueue is done. 400 */ 401 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task); 402 403 cam_periph_lock(periph); 404 405 free(softc, M_DEVBUF); 406 } 407 408 static void 409 pass_shutdown_kqueue(void *context, int pending) 410 { 411 struct cam_periph *periph; 412 struct pass_softc *softc; 413 414 periph = context; 415 softc = periph->softc; 416 417 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0); 418 knlist_destroy(&softc->read_select.si_note); 419 420 /* 421 * Release the reference we held for kqueue. 422 */ 423 cam_periph_release(periph); 424 } 425 426 static void 427 pass_add_physpath(void *context, int pending) 428 { 429 struct cam_periph *periph; 430 struct pass_softc *softc; 431 struct mtx *mtx; 432 char *physpath; 433 434 /* 435 * If we have one, create a devfs alias for our 436 * physical path. 437 */ 438 periph = context; 439 softc = periph->softc; 440 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK); 441 mtx = cam_periph_mtx(periph); 442 mtx_lock(mtx); 443 444 if (periph->flags & CAM_PERIPH_INVALID) 445 goto out; 446 447 if (xpt_getattr(physpath, MAXPATHLEN, 448 "GEOM::physpath", periph->path) == 0 449 && strlen(physpath) != 0) { 450 451 mtx_unlock(mtx); 452 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev, 453 softc->dev, softc->alias_dev, physpath); 454 mtx_lock(mtx); 455 } 456 457 out: 458 /* 459 * Now that we've made our alias, we no longer have to have a 460 * reference to the device. 461 */ 462 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0) 463 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH; 464 465 /* 466 * We always acquire a reference to the periph before queueing this 467 * task queue function, so it won't go away before we run. 468 */ 469 while (pending-- > 0) 470 cam_periph_release_locked(periph); 471 mtx_unlock(mtx); 472 473 free(physpath, M_DEVBUF); 474 } 475 476 static void 477 passasync(void *callback_arg, u_int32_t code, 478 struct cam_path *path, void *arg) 479 { 480 struct cam_periph *periph; 481 482 periph = (struct cam_periph *)callback_arg; 483 484 switch (code) { 485 case AC_FOUND_DEVICE: 486 { 487 struct ccb_getdev *cgd; 488 cam_status status; 489 490 cgd = (struct ccb_getdev *)arg; 491 if (cgd == NULL) 492 break; 493 494 /* 495 * Allocate a peripheral instance for 496 * this device and start the probe 497 * process. 498 */ 499 status = cam_periph_alloc(passregister, passoninvalidate, 500 passcleanup, passstart, "pass", 501 CAM_PERIPH_BIO, path, 502 passasync, AC_FOUND_DEVICE, cgd); 503 504 if (status != CAM_REQ_CMP 505 && status != CAM_REQ_INPROG) { 506 const struct cam_status_entry *entry; 507 508 entry = cam_fetch_status_entry(status); 509 510 printf("passasync: Unable to attach new device " 511 "due to status %#x: %s\n", status, entry ? 512 entry->status_text : "Unknown"); 513 } 514 515 break; 516 } 517 case AC_ADVINFO_CHANGED: 518 { 519 uintptr_t buftype; 520 521 buftype = (uintptr_t)arg; 522 if (buftype == CDAI_TYPE_PHYS_PATH) { 523 struct pass_softc *softc; 524 525 softc = (struct pass_softc *)periph->softc; 526 /* 527 * Acquire a reference to the periph before we 528 * start the taskqueue, so that we don't run into 529 * a situation where the periph goes away before 530 * the task queue has a chance to run. 531 */ 532 if (cam_periph_acquire(periph) != 0) 533 break; 534 535 taskqueue_enqueue(taskqueue_thread, 536 &softc->add_physpath_task); 537 } 538 break; 539 } 540 default: 541 cam_periph_async(periph, code, path, arg); 542 break; 543 } 544 } 545 546 static cam_status 547 passregister(struct cam_periph *periph, void *arg) 548 { 549 struct pass_softc *softc; 550 struct ccb_getdev *cgd; 551 struct ccb_pathinq cpi; 552 struct make_dev_args args; 553 int error, no_tags; 554 555 cgd = (struct ccb_getdev *)arg; 556 if (cgd == NULL) { 557 printf("%s: no getdev CCB, can't register device\n", __func__); 558 return(CAM_REQ_CMP_ERR); 559 } 560 561 softc = (struct pass_softc *)malloc(sizeof(*softc), 562 M_DEVBUF, M_NOWAIT); 563 564 if (softc == NULL) { 565 printf("%s: Unable to probe new device. " 566 "Unable to allocate softc\n", __func__); 567 return(CAM_REQ_CMP_ERR); 568 } 569 570 bzero(softc, sizeof(*softc)); 571 softc->state = PASS_STATE_NORMAL; 572 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI) 573 softc->pd_type = SID_TYPE(&cgd->inq_data); 574 else if (cgd->protocol == PROTO_SATAPM) 575 softc->pd_type = T_ENCLOSURE; 576 else 577 softc->pd_type = T_DIRECT; 578 579 periph->softc = softc; 580 softc->periph = periph; 581 TAILQ_INIT(&softc->incoming_queue); 582 TAILQ_INIT(&softc->active_queue); 583 TAILQ_INIT(&softc->abandoned_queue); 584 TAILQ_INIT(&softc->done_queue); 585 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d", 586 periph->periph_name, periph->unit_number); 587 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO", 588 periph->periph_name, periph->unit_number); 589 softc->io_zone_size = MAXPHYS; 590 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph)); 591 592 xpt_path_inq(&cpi, periph->path); 593 594 if (cpi.maxio == 0) 595 softc->maxio = DFLTPHYS; /* traditional default */ 596 else if (cpi.maxio > MAXPHYS) 597 softc->maxio = MAXPHYS; /* for safety */ 598 else 599 softc->maxio = cpi.maxio; /* real value */ 600 601 if (cpi.hba_misc & PIM_UNMAPPED) 602 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE; 603 604 /* 605 * We pass in 0 for a blocksize, since we don't 606 * know what the blocksize of this device is, if 607 * it even has a blocksize. 608 */ 609 cam_periph_unlock(periph); 610 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0; 611 softc->device_stats = devstat_new_entry("pass", 612 periph->unit_number, 0, 613 DEVSTAT_NO_BLOCKSIZE 614 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0), 615 softc->pd_type | 616 XPORT_DEVSTAT_TYPE(cpi.transport) | 617 DEVSTAT_TYPE_PASS, 618 DEVSTAT_PRIORITY_PASS); 619 620 /* 621 * Initialize the taskqueue handler for shutting down kqueue. 622 */ 623 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0, 624 pass_shutdown_kqueue, periph); 625 626 /* 627 * Acquire a reference to the periph that we can release once we've 628 * cleaned up the kqueue. 629 */ 630 if (cam_periph_acquire(periph) != 0) { 631 xpt_print(periph->path, "%s: lost periph during " 632 "registration!\n", __func__); 633 cam_periph_lock(periph); 634 return (CAM_REQ_CMP_ERR); 635 } 636 637 /* 638 * Acquire a reference to the periph before we create the devfs 639 * instance for it. We'll release this reference once the devfs 640 * instance has been freed. 641 */ 642 if (cam_periph_acquire(periph) != 0) { 643 xpt_print(periph->path, "%s: lost periph during " 644 "registration!\n", __func__); 645 cam_periph_lock(periph); 646 return (CAM_REQ_CMP_ERR); 647 } 648 649 /* Register the device */ 650 make_dev_args_init(&args); 651 args.mda_devsw = &pass_cdevsw; 652 args.mda_unit = periph->unit_number; 653 args.mda_uid = UID_ROOT; 654 args.mda_gid = GID_OPERATOR; 655 args.mda_mode = 0600; 656 args.mda_si_drv1 = periph; 657 error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name, 658 periph->unit_number); 659 if (error != 0) { 660 cam_periph_lock(periph); 661 cam_periph_release_locked(periph); 662 return (CAM_REQ_CMP_ERR); 663 } 664 665 /* 666 * Hold a reference to the periph before we create the physical 667 * path alias so it can't go away. 668 */ 669 if (cam_periph_acquire(periph) != 0) { 670 xpt_print(periph->path, "%s: lost periph during " 671 "registration!\n", __func__); 672 cam_periph_lock(periph); 673 return (CAM_REQ_CMP_ERR); 674 } 675 676 cam_periph_lock(periph); 677 678 TASK_INIT(&softc->add_physpath_task, /*priority*/0, 679 pass_add_physpath, periph); 680 681 /* 682 * See if physical path information is already available. 683 */ 684 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); 685 686 /* 687 * Add an async callback so that we get notified if 688 * this device goes away or its physical path 689 * (stored in the advanced info data of the EDT) has 690 * changed. 691 */ 692 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED, 693 passasync, periph, periph->path); 694 695 if (bootverbose) 696 xpt_announce_periph(periph, NULL); 697 698 return(CAM_REQ_CMP); 699 } 700 701 static int 702 passopen(struct cdev *dev, int flags, int fmt, struct thread *td) 703 { 704 struct cam_periph *periph; 705 struct pass_softc *softc; 706 int error; 707 708 periph = (struct cam_periph *)dev->si_drv1; 709 if (cam_periph_acquire(periph) != 0) 710 return (ENXIO); 711 712 cam_periph_lock(periph); 713 714 softc = (struct pass_softc *)periph->softc; 715 716 if (softc->flags & PASS_FLAG_INVALID) { 717 cam_periph_release_locked(periph); 718 cam_periph_unlock(periph); 719 return(ENXIO); 720 } 721 722 /* 723 * Don't allow access when we're running at a high securelevel. 724 */ 725 error = securelevel_gt(td->td_ucred, 1); 726 if (error) { 727 cam_periph_release_locked(periph); 728 cam_periph_unlock(periph); 729 return(error); 730 } 731 732 /* 733 * Only allow read-write access. 734 */ 735 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) { 736 cam_periph_release_locked(periph); 737 cam_periph_unlock(periph); 738 return(EPERM); 739 } 740 741 /* 742 * We don't allow nonblocking access. 743 */ 744 if ((flags & O_NONBLOCK) != 0) { 745 xpt_print(periph->path, "can't do nonblocking access\n"); 746 cam_periph_release_locked(periph); 747 cam_periph_unlock(periph); 748 return(EINVAL); 749 } 750 751 softc->open_count++; 752 753 cam_periph_unlock(periph); 754 755 return (error); 756 } 757 758 static int 759 passclose(struct cdev *dev, int flag, int fmt, struct thread *td) 760 { 761 struct cam_periph *periph; 762 struct pass_softc *softc; 763 struct mtx *mtx; 764 765 periph = (struct cam_periph *)dev->si_drv1; 766 mtx = cam_periph_mtx(periph); 767 mtx_lock(mtx); 768 769 softc = periph->softc; 770 softc->open_count--; 771 772 if (softc->open_count == 0) { 773 struct pass_io_req *io_req, *io_req2; 774 775 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 776 TAILQ_REMOVE(&softc->done_queue, io_req, links); 777 passiocleanup(softc, io_req); 778 uma_zfree(softc->pass_zone, io_req); 779 } 780 781 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, 782 io_req2) { 783 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 784 passiocleanup(softc, io_req); 785 uma_zfree(softc->pass_zone, io_req); 786 } 787 788 /* 789 * If there are any active I/Os, we need to forcibly acquire a 790 * reference to the peripheral so that we don't go away 791 * before they complete. We'll release the reference when 792 * the abandoned queue is empty. 793 */ 794 io_req = TAILQ_FIRST(&softc->active_queue); 795 if ((io_req != NULL) 796 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) { 797 cam_periph_doacquire(periph); 798 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 799 } 800 801 /* 802 * Since the I/O in the active queue is not under our 803 * control, just set a flag so that we can clean it up when 804 * it completes and put it on the abandoned queue. This 805 * will prevent our sending spurious completions in the 806 * event that the device is opened again before these I/Os 807 * complete. 808 */ 809 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, 810 io_req2) { 811 TAILQ_REMOVE(&softc->active_queue, io_req, links); 812 io_req->flags |= PASS_IO_ABANDONED; 813 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, 814 links); 815 } 816 } 817 818 cam_periph_release_locked(periph); 819 820 /* 821 * We reference the lock directly here, instead of using 822 * cam_periph_unlock(). The reason is that the call to 823 * cam_periph_release_locked() above could result in the periph 824 * getting freed. If that is the case, dereferencing the periph 825 * with a cam_periph_unlock() call would cause a page fault. 826 * 827 * cam_periph_release() avoids this problem using the same method, 828 * but we're manually acquiring and dropping the lock here to 829 * protect the open count and avoid another lock acquisition and 830 * release. 831 */ 832 mtx_unlock(mtx); 833 834 return (0); 835 } 836 837 838 static void 839 passstart(struct cam_periph *periph, union ccb *start_ccb) 840 { 841 struct pass_softc *softc; 842 843 softc = (struct pass_softc *)periph->softc; 844 845 switch (softc->state) { 846 case PASS_STATE_NORMAL: { 847 struct pass_io_req *io_req; 848 849 /* 850 * Check for any queued I/O requests that require an 851 * allocated slot. 852 */ 853 io_req = TAILQ_FIRST(&softc->incoming_queue); 854 if (io_req == NULL) { 855 xpt_release_ccb(start_ccb); 856 break; 857 } 858 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 859 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 860 /* 861 * Merge the user's CCB into the allocated CCB. 862 */ 863 xpt_merge_ccb(start_ccb, &io_req->ccb); 864 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO; 865 start_ccb->ccb_h.ccb_ioreq = io_req; 866 start_ccb->ccb_h.cbfcnp = passdone; 867 io_req->alloced_ccb = start_ccb; 868 binuptime(&io_req->start_time); 869 devstat_start_transaction(softc->device_stats, 870 &io_req->start_time); 871 872 xpt_action(start_ccb); 873 874 /* 875 * If we have any more I/O waiting, schedule ourselves again. 876 */ 877 if (!TAILQ_EMPTY(&softc->incoming_queue)) 878 xpt_schedule(periph, CAM_PRIORITY_NORMAL); 879 break; 880 } 881 default: 882 break; 883 } 884 } 885 886 static void 887 passdone(struct cam_periph *periph, union ccb *done_ccb) 888 { 889 struct pass_softc *softc; 890 struct ccb_scsiio *csio; 891 892 softc = (struct pass_softc *)periph->softc; 893 894 cam_periph_assert(periph, MA_OWNED); 895 896 csio = &done_ccb->csio; 897 switch (csio->ccb_h.ccb_type) { 898 case PASS_CCB_QUEUED_IO: { 899 struct pass_io_req *io_req; 900 901 io_req = done_ccb->ccb_h.ccb_ioreq; 902 #if 0 903 xpt_print(periph->path, "%s: called for user CCB %p\n", 904 __func__, io_req->user_ccb_ptr); 905 #endif 906 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) 907 && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) 908 && ((io_req->flags & PASS_IO_ABANDONED) == 0)) { 909 int error; 910 911 error = passerror(done_ccb, CAM_RETRY_SELTO, 912 SF_RETRY_UA | SF_NO_PRINT); 913 914 if (error == ERESTART) { 915 /* 916 * A retry was scheduled, so 917 * just return. 918 */ 919 return; 920 } 921 } 922 923 /* 924 * Copy the allocated CCB contents back to the malloced CCB 925 * so we can give status back to the user when he requests it. 926 */ 927 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb)); 928 929 /* 930 * Log data/transaction completion with devstat(9). 931 */ 932 switch (done_ccb->ccb_h.func_code) { 933 case XPT_SCSI_IO: 934 devstat_end_transaction(softc->device_stats, 935 done_ccb->csio.dxfer_len - done_ccb->csio.resid, 936 done_ccb->csio.tag_action & 0x3, 937 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 938 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 939 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 940 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 941 &io_req->start_time); 942 break; 943 case XPT_ATA_IO: 944 devstat_end_transaction(softc->device_stats, 945 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid, 946 0, /* Not used in ATA */ 947 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 948 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 949 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 950 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 951 &io_req->start_time); 952 break; 953 case XPT_SMP_IO: 954 /* 955 * XXX KDM this isn't quite right, but there isn't 956 * currently an easy way to represent a bidirectional 957 * transfer in devstat. The only way to do it 958 * and have the byte counts come out right would 959 * mean that we would have to record two 960 * transactions, one for the request and one for the 961 * response. For now, so that we report something, 962 * just treat the entire thing as a read. 963 */ 964 devstat_end_transaction(softc->device_stats, 965 done_ccb->smpio.smp_request_len + 966 done_ccb->smpio.smp_response_len, 967 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL, 968 &io_req->start_time); 969 break; 970 default: 971 devstat_end_transaction(softc->device_stats, 0, 972 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL, 973 &io_req->start_time); 974 break; 975 } 976 977 /* 978 * In the normal case, take the completed I/O off of the 979 * active queue and put it on the done queue. Notitfy the 980 * user that we have a completed I/O. 981 */ 982 if ((io_req->flags & PASS_IO_ABANDONED) == 0) { 983 TAILQ_REMOVE(&softc->active_queue, io_req, links); 984 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 985 selwakeuppri(&softc->read_select, PRIBIO); 986 KNOTE_LOCKED(&softc->read_select.si_note, 0); 987 } else { 988 /* 989 * In the case of an abandoned I/O (final close 990 * without fetching the I/O), take it off of the 991 * abandoned queue and free it. 992 */ 993 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links); 994 passiocleanup(softc, io_req); 995 uma_zfree(softc->pass_zone, io_req); 996 997 /* 998 * Release the done_ccb here, since we may wind up 999 * freeing the peripheral when we decrement the 1000 * reference count below. 1001 */ 1002 xpt_release_ccb(done_ccb); 1003 1004 /* 1005 * If the abandoned queue is empty, we can release 1006 * our reference to the periph since we won't have 1007 * any more completions coming. 1008 */ 1009 if ((TAILQ_EMPTY(&softc->abandoned_queue)) 1010 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) { 1011 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET; 1012 cam_periph_release_locked(periph); 1013 } 1014 1015 /* 1016 * We have already released the CCB, so we can 1017 * return. 1018 */ 1019 return; 1020 } 1021 break; 1022 } 1023 } 1024 xpt_release_ccb(done_ccb); 1025 } 1026 1027 static int 1028 passcreatezone(struct cam_periph *periph) 1029 { 1030 struct pass_softc *softc; 1031 int error; 1032 1033 error = 0; 1034 softc = (struct pass_softc *)periph->softc; 1035 1036 cam_periph_assert(periph, MA_OWNED); 1037 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 1038 ("%s called when the pass(4) zone is valid!\n", __func__)); 1039 KASSERT((softc->pass_zone == NULL), 1040 ("%s called when the pass(4) zone is allocated!\n", __func__)); 1041 1042 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) { 1043 1044 /* 1045 * We're the first context through, so we need to create 1046 * the pass(4) UMA zone for I/O requests. 1047 */ 1048 softc->flags |= PASS_FLAG_ZONE_INPROG; 1049 1050 /* 1051 * uma_zcreate() does a blocking (M_WAITOK) allocation, 1052 * so we cannot hold a mutex while we call it. 1053 */ 1054 cam_periph_unlock(periph); 1055 1056 softc->pass_zone = uma_zcreate(softc->zone_name, 1057 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL, 1058 /*align*/ 0, /*flags*/ 0); 1059 1060 softc->pass_io_zone = uma_zcreate(softc->io_zone_name, 1061 softc->io_zone_size, NULL, NULL, NULL, NULL, 1062 /*align*/ 0, /*flags*/ 0); 1063 1064 cam_periph_lock(periph); 1065 1066 if ((softc->pass_zone == NULL) 1067 || (softc->pass_io_zone == NULL)) { 1068 if (softc->pass_zone == NULL) 1069 xpt_print(periph->path, "unable to allocate " 1070 "IO Req UMA zone\n"); 1071 else 1072 xpt_print(periph->path, "unable to allocate " 1073 "IO UMA zone\n"); 1074 softc->flags &= ~PASS_FLAG_ZONE_INPROG; 1075 goto bailout; 1076 } 1077 1078 /* 1079 * Set the flags appropriately and notify any other waiters. 1080 */ 1081 softc->flags &= PASS_FLAG_ZONE_INPROG; 1082 softc->flags |= PASS_FLAG_ZONE_VALID; 1083 wakeup(&softc->pass_zone); 1084 } else { 1085 /* 1086 * In this case, the UMA zone has not yet been created, but 1087 * another context is in the process of creating it. We 1088 * need to sleep until the creation is either done or has 1089 * failed. 1090 */ 1091 while ((softc->flags & PASS_FLAG_ZONE_INPROG) 1092 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) { 1093 error = msleep(&softc->pass_zone, 1094 cam_periph_mtx(periph), PRIBIO, 1095 "paszon", 0); 1096 if (error != 0) 1097 goto bailout; 1098 } 1099 /* 1100 * If the zone creation failed, no luck for the user. 1101 */ 1102 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){ 1103 error = ENOMEM; 1104 goto bailout; 1105 } 1106 } 1107 bailout: 1108 return (error); 1109 } 1110 1111 static void 1112 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req) 1113 { 1114 union ccb *ccb; 1115 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1116 int i, numbufs; 1117 1118 ccb = &io_req->ccb; 1119 1120 switch (ccb->ccb_h.func_code) { 1121 case XPT_DEV_MATCH: 1122 numbufs = min(io_req->num_bufs, 2); 1123 1124 if (numbufs == 1) { 1125 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1126 } else { 1127 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1128 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1129 } 1130 break; 1131 case XPT_SCSI_IO: 1132 case XPT_CONT_TARGET_IO: 1133 data_ptrs[0] = &ccb->csio.data_ptr; 1134 numbufs = min(io_req->num_bufs, 1); 1135 break; 1136 case XPT_ATA_IO: 1137 data_ptrs[0] = &ccb->ataio.data_ptr; 1138 numbufs = min(io_req->num_bufs, 1); 1139 break; 1140 case XPT_SMP_IO: 1141 numbufs = min(io_req->num_bufs, 2); 1142 data_ptrs[0] = &ccb->smpio.smp_request; 1143 data_ptrs[1] = &ccb->smpio.smp_response; 1144 break; 1145 case XPT_DEV_ADVINFO: 1146 numbufs = min(io_req->num_bufs, 1); 1147 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1148 break; 1149 case XPT_NVME_IO: 1150 case XPT_NVME_ADMIN: 1151 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1152 numbufs = min(io_req->num_bufs, 1); 1153 break; 1154 default: 1155 /* allow ourselves to be swapped once again */ 1156 return; 1157 break; /* NOTREACHED */ 1158 } 1159 1160 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) { 1161 free(io_req->user_segptr, M_SCSIPASS); 1162 io_req->user_segptr = NULL; 1163 } 1164 1165 /* 1166 * We only want to free memory we malloced. 1167 */ 1168 if (io_req->data_flags == CAM_DATA_VADDR) { 1169 for (i = 0; i < io_req->num_bufs; i++) { 1170 if (io_req->kern_bufs[i] == NULL) 1171 continue; 1172 1173 free(io_req->kern_bufs[i], M_SCSIPASS); 1174 io_req->kern_bufs[i] = NULL; 1175 } 1176 } else if (io_req->data_flags == CAM_DATA_SG) { 1177 for (i = 0; i < io_req->num_kern_segs; i++) { 1178 if ((uint8_t *)(uintptr_t) 1179 io_req->kern_segptr[i].ds_addr == NULL) 1180 continue; 1181 1182 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t) 1183 io_req->kern_segptr[i].ds_addr); 1184 io_req->kern_segptr[i].ds_addr = 0; 1185 } 1186 } 1187 1188 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) { 1189 free(io_req->kern_segptr, M_SCSIPASS); 1190 io_req->kern_segptr = NULL; 1191 } 1192 1193 if (io_req->data_flags != CAM_DATA_PADDR) { 1194 for (i = 0; i < numbufs; i++) { 1195 /* 1196 * Restore the user's buffer pointers to their 1197 * previous values. 1198 */ 1199 if (io_req->user_bufs[i] != NULL) 1200 *data_ptrs[i] = io_req->user_bufs[i]; 1201 } 1202 } 1203 1204 } 1205 1206 static int 1207 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req, 1208 ccb_flags direction) 1209 { 1210 bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy; 1211 bus_dma_segment_t *user_sglist, *kern_sglist; 1212 int i, j, error; 1213 1214 error = 0; 1215 kern_watermark = 0; 1216 user_watermark = 0; 1217 len_to_copy = 0; 1218 len_copied = 0; 1219 user_sglist = io_req->user_segptr; 1220 kern_sglist = io_req->kern_segptr; 1221 1222 for (i = 0, j = 0; i < io_req->num_user_segs && 1223 j < io_req->num_kern_segs;) { 1224 uint8_t *user_ptr, *kern_ptr; 1225 1226 len_to_copy = min(user_sglist[i].ds_len -user_watermark, 1227 kern_sglist[j].ds_len - kern_watermark); 1228 1229 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr; 1230 user_ptr = user_ptr + user_watermark; 1231 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr; 1232 kern_ptr = kern_ptr + kern_watermark; 1233 1234 user_watermark += len_to_copy; 1235 kern_watermark += len_to_copy; 1236 1237 if (!useracc(user_ptr, len_to_copy, 1238 (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) { 1239 xpt_print(periph->path, "%s: unable to access user " 1240 "S/G list element %p len %zu\n", __func__, 1241 user_ptr, len_to_copy); 1242 error = EFAULT; 1243 goto bailout; 1244 } 1245 1246 if (direction == CAM_DIR_IN) { 1247 error = copyout(kern_ptr, user_ptr, len_to_copy); 1248 if (error != 0) { 1249 xpt_print(periph->path, "%s: copyout of %u " 1250 "bytes from %p to %p failed with " 1251 "error %d\n", __func__, len_to_copy, 1252 kern_ptr, user_ptr, error); 1253 goto bailout; 1254 } 1255 } else { 1256 error = copyin(user_ptr, kern_ptr, len_to_copy); 1257 if (error != 0) { 1258 xpt_print(periph->path, "%s: copyin of %u " 1259 "bytes from %p to %p failed with " 1260 "error %d\n", __func__, len_to_copy, 1261 user_ptr, kern_ptr, error); 1262 goto bailout; 1263 } 1264 } 1265 1266 len_copied += len_to_copy; 1267 1268 if (user_sglist[i].ds_len == user_watermark) { 1269 i++; 1270 user_watermark = 0; 1271 } 1272 1273 if (kern_sglist[j].ds_len == kern_watermark) { 1274 j++; 1275 kern_watermark = 0; 1276 } 1277 } 1278 1279 bailout: 1280 1281 return (error); 1282 } 1283 1284 static int 1285 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req) 1286 { 1287 union ccb *ccb; 1288 struct pass_softc *softc; 1289 int numbufs, i; 1290 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1291 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 1292 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 1293 uint32_t num_segs; 1294 uint16_t *seg_cnt_ptr; 1295 size_t maxmap; 1296 int error; 1297 1298 cam_periph_assert(periph, MA_NOTOWNED); 1299 1300 softc = periph->softc; 1301 1302 error = 0; 1303 ccb = &io_req->ccb; 1304 maxmap = 0; 1305 num_segs = 0; 1306 seg_cnt_ptr = NULL; 1307 1308 switch(ccb->ccb_h.func_code) { 1309 case XPT_DEV_MATCH: 1310 if (ccb->cdm.match_buf_len == 0) { 1311 printf("%s: invalid match buffer length 0\n", __func__); 1312 return(EINVAL); 1313 } 1314 if (ccb->cdm.pattern_buf_len > 0) { 1315 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1316 lengths[0] = ccb->cdm.pattern_buf_len; 1317 dirs[0] = CAM_DIR_OUT; 1318 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1319 lengths[1] = ccb->cdm.match_buf_len; 1320 dirs[1] = CAM_DIR_IN; 1321 numbufs = 2; 1322 } else { 1323 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1324 lengths[0] = ccb->cdm.match_buf_len; 1325 dirs[0] = CAM_DIR_IN; 1326 numbufs = 1; 1327 } 1328 io_req->data_flags = CAM_DATA_VADDR; 1329 break; 1330 case XPT_SCSI_IO: 1331 case XPT_CONT_TARGET_IO: 1332 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1333 return(0); 1334 1335 /* 1336 * The user shouldn't be able to supply a bio. 1337 */ 1338 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO) 1339 return (EINVAL); 1340 1341 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1342 1343 data_ptrs[0] = &ccb->csio.data_ptr; 1344 lengths[0] = ccb->csio.dxfer_len; 1345 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1346 num_segs = ccb->csio.sglist_cnt; 1347 seg_cnt_ptr = &ccb->csio.sglist_cnt; 1348 numbufs = 1; 1349 maxmap = softc->maxio; 1350 break; 1351 case XPT_ATA_IO: 1352 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1353 return(0); 1354 1355 /* 1356 * We only support a single virtual address for ATA I/O. 1357 */ 1358 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 1359 return (EINVAL); 1360 1361 io_req->data_flags = CAM_DATA_VADDR; 1362 1363 data_ptrs[0] = &ccb->ataio.data_ptr; 1364 lengths[0] = ccb->ataio.dxfer_len; 1365 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1366 numbufs = 1; 1367 maxmap = softc->maxio; 1368 break; 1369 case XPT_SMP_IO: 1370 io_req->data_flags = CAM_DATA_VADDR; 1371 1372 data_ptrs[0] = &ccb->smpio.smp_request; 1373 lengths[0] = ccb->smpio.smp_request_len; 1374 dirs[0] = CAM_DIR_OUT; 1375 data_ptrs[1] = &ccb->smpio.smp_response; 1376 lengths[1] = ccb->smpio.smp_response_len; 1377 dirs[1] = CAM_DIR_IN; 1378 numbufs = 2; 1379 maxmap = softc->maxio; 1380 break; 1381 case XPT_DEV_ADVINFO: 1382 if (ccb->cdai.bufsiz == 0) 1383 return (0); 1384 1385 io_req->data_flags = CAM_DATA_VADDR; 1386 1387 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1388 lengths[0] = ccb->cdai.bufsiz; 1389 dirs[0] = CAM_DIR_IN; 1390 numbufs = 1; 1391 break; 1392 case XPT_NVME_ADMIN: 1393 case XPT_NVME_IO: 1394 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1395 return (0); 1396 1397 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1398 1399 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1400 lengths[0] = ccb->nvmeio.dxfer_len; 1401 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1402 num_segs = ccb->nvmeio.sglist_cnt; 1403 seg_cnt_ptr = &ccb->nvmeio.sglist_cnt; 1404 numbufs = 1; 1405 maxmap = softc->maxio; 1406 break; 1407 default: 1408 return(EINVAL); 1409 break; /* NOTREACHED */ 1410 } 1411 1412 io_req->num_bufs = numbufs; 1413 1414 /* 1415 * If there is a maximum, check to make sure that the user's 1416 * request fits within the limit. In general, we should only have 1417 * a maximum length for requests that go to hardware. Otherwise it 1418 * is whatever we're able to malloc. 1419 */ 1420 for (i = 0; i < numbufs; i++) { 1421 io_req->user_bufs[i] = *data_ptrs[i]; 1422 io_req->dirs[i] = dirs[i]; 1423 io_req->lengths[i] = lengths[i]; 1424 1425 if (maxmap == 0) 1426 continue; 1427 1428 if (lengths[i] <= maxmap) 1429 continue; 1430 1431 xpt_print(periph->path, "%s: data length %u > max allowed %u " 1432 "bytes\n", __func__, lengths[i], maxmap); 1433 error = EINVAL; 1434 goto bailout; 1435 } 1436 1437 switch (io_req->data_flags) { 1438 case CAM_DATA_VADDR: 1439 /* Map or copy the buffer into kernel address space */ 1440 for (i = 0; i < numbufs; i++) { 1441 uint8_t *tmp_buf; 1442 1443 /* 1444 * If for some reason no length is specified, we 1445 * don't need to allocate anything. 1446 */ 1447 if (io_req->lengths[i] == 0) 1448 continue; 1449 1450 /* 1451 * Make sure that the user's buffer is accessible 1452 * to that process. 1453 */ 1454 if (!useracc(io_req->user_bufs[i], io_req->lengths[i], 1455 (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE : 1456 VM_PROT_READ)) { 1457 xpt_print(periph->path, "%s: user address %p " 1458 "length %u is not accessible\n", __func__, 1459 io_req->user_bufs[i], io_req->lengths[i]); 1460 error = EFAULT; 1461 goto bailout; 1462 } 1463 1464 tmp_buf = malloc(lengths[i], M_SCSIPASS, 1465 M_WAITOK | M_ZERO); 1466 io_req->kern_bufs[i] = tmp_buf; 1467 *data_ptrs[i] = tmp_buf; 1468 1469 #if 0 1470 xpt_print(periph->path, "%s: malloced %p len %u, user " 1471 "buffer %p, operation: %s\n", __func__, 1472 tmp_buf, lengths[i], io_req->user_bufs[i], 1473 (dirs[i] == CAM_DIR_IN) ? "read" : "write"); 1474 #endif 1475 /* 1476 * We only need to copy in if the user is writing. 1477 */ 1478 if (dirs[i] != CAM_DIR_OUT) 1479 continue; 1480 1481 error = copyin(io_req->user_bufs[i], 1482 io_req->kern_bufs[i], lengths[i]); 1483 if (error != 0) { 1484 xpt_print(periph->path, "%s: copy of user " 1485 "buffer from %p to %p failed with " 1486 "error %d\n", __func__, 1487 io_req->user_bufs[i], 1488 io_req->kern_bufs[i], error); 1489 goto bailout; 1490 } 1491 } 1492 break; 1493 case CAM_DATA_PADDR: 1494 /* Pass down the pointer as-is */ 1495 break; 1496 case CAM_DATA_SG: { 1497 size_t sg_length, size_to_go, alloc_size; 1498 uint32_t num_segs_needed; 1499 1500 /* 1501 * Copy the user S/G list in, and then copy in the 1502 * individual segments. 1503 */ 1504 /* 1505 * We shouldn't see this, but check just in case. 1506 */ 1507 if (numbufs != 1) { 1508 xpt_print(periph->path, "%s: cannot currently handle " 1509 "more than one S/G list per CCB\n", __func__); 1510 error = EINVAL; 1511 goto bailout; 1512 } 1513 1514 /* 1515 * We have to have at least one segment. 1516 */ 1517 if (num_segs == 0) { 1518 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, " 1519 "but sglist_cnt=0!\n", __func__); 1520 error = EINVAL; 1521 goto bailout; 1522 } 1523 1524 /* 1525 * Make sure the user specified the total length and didn't 1526 * just leave it to us to decode the S/G list. 1527 */ 1528 if (lengths[0] == 0) { 1529 xpt_print(periph->path, "%s: no dxfer_len specified, " 1530 "but CAM_DATA_SG flag is set!\n", __func__); 1531 error = EINVAL; 1532 goto bailout; 1533 } 1534 1535 /* 1536 * We allocate buffers in io_zone_size increments for an 1537 * S/G list. This will generally be MAXPHYS. 1538 */ 1539 if (lengths[0] <= softc->io_zone_size) 1540 num_segs_needed = 1; 1541 else { 1542 num_segs_needed = lengths[0] / softc->io_zone_size; 1543 if ((lengths[0] % softc->io_zone_size) != 0) 1544 num_segs_needed++; 1545 } 1546 1547 /* Figure out the size of the S/G list */ 1548 sg_length = num_segs * sizeof(bus_dma_segment_t); 1549 io_req->num_user_segs = num_segs; 1550 io_req->num_kern_segs = num_segs_needed; 1551 1552 /* Save the user's S/G list pointer for later restoration */ 1553 io_req->user_bufs[0] = *data_ptrs[0]; 1554 1555 /* 1556 * If we have enough segments allocated by default to handle 1557 * the length of the user's S/G list, 1558 */ 1559 if (num_segs > PASS_MAX_SEGS) { 1560 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1561 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1562 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1563 } else 1564 io_req->user_segptr = io_req->user_segs; 1565 1566 if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) { 1567 xpt_print(periph->path, "%s: unable to access user " 1568 "S/G list at %p\n", __func__, *data_ptrs[0]); 1569 error = EFAULT; 1570 goto bailout; 1571 } 1572 1573 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1574 if (error != 0) { 1575 xpt_print(periph->path, "%s: copy of user S/G list " 1576 "from %p to %p failed with error %d\n", 1577 __func__, *data_ptrs[0], io_req->user_segptr, 1578 error); 1579 goto bailout; 1580 } 1581 1582 if (num_segs_needed > PASS_MAX_SEGS) { 1583 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) * 1584 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO); 1585 io_req->flags |= PASS_IO_KERN_SEG_MALLOC; 1586 } else { 1587 io_req->kern_segptr = io_req->kern_segs; 1588 } 1589 1590 /* 1591 * Allocate the kernel S/G list. 1592 */ 1593 for (size_to_go = lengths[0], i = 0; 1594 size_to_go > 0 && i < num_segs_needed; 1595 i++, size_to_go -= alloc_size) { 1596 uint8_t *kern_ptr; 1597 1598 alloc_size = min(size_to_go, softc->io_zone_size); 1599 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK); 1600 io_req->kern_segptr[i].ds_addr = 1601 (bus_addr_t)(uintptr_t)kern_ptr; 1602 io_req->kern_segptr[i].ds_len = alloc_size; 1603 } 1604 if (size_to_go > 0) { 1605 printf("%s: size_to_go = %zu, software error!\n", 1606 __func__, size_to_go); 1607 error = EINVAL; 1608 goto bailout; 1609 } 1610 1611 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr; 1612 *seg_cnt_ptr = io_req->num_kern_segs; 1613 1614 /* 1615 * We only need to copy data here if the user is writing. 1616 */ 1617 if (dirs[0] == CAM_DIR_OUT) 1618 error = passcopysglist(periph, io_req, dirs[0]); 1619 break; 1620 } 1621 case CAM_DATA_SG_PADDR: { 1622 size_t sg_length; 1623 1624 /* 1625 * We shouldn't see this, but check just in case. 1626 */ 1627 if (numbufs != 1) { 1628 printf("%s: cannot currently handle more than one " 1629 "S/G list per CCB\n", __func__); 1630 error = EINVAL; 1631 goto bailout; 1632 } 1633 1634 /* 1635 * We have to have at least one segment. 1636 */ 1637 if (num_segs == 0) { 1638 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag " 1639 "set, but sglist_cnt=0!\n", __func__); 1640 error = EINVAL; 1641 goto bailout; 1642 } 1643 1644 /* 1645 * Make sure the user specified the total length and didn't 1646 * just leave it to us to decode the S/G list. 1647 */ 1648 if (lengths[0] == 0) { 1649 xpt_print(periph->path, "%s: no dxfer_len specified, " 1650 "but CAM_DATA_SG flag is set!\n", __func__); 1651 error = EINVAL; 1652 goto bailout; 1653 } 1654 1655 /* Figure out the size of the S/G list */ 1656 sg_length = num_segs * sizeof(bus_dma_segment_t); 1657 io_req->num_user_segs = num_segs; 1658 io_req->num_kern_segs = io_req->num_user_segs; 1659 1660 /* Save the user's S/G list pointer for later restoration */ 1661 io_req->user_bufs[0] = *data_ptrs[0]; 1662 1663 if (num_segs > PASS_MAX_SEGS) { 1664 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1665 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1666 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1667 } else 1668 io_req->user_segptr = io_req->user_segs; 1669 1670 io_req->kern_segptr = io_req->user_segptr; 1671 1672 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1673 if (error != 0) { 1674 xpt_print(periph->path, "%s: copy of user S/G list " 1675 "from %p to %p failed with error %d\n", 1676 __func__, *data_ptrs[0], io_req->user_segptr, 1677 error); 1678 goto bailout; 1679 } 1680 break; 1681 } 1682 default: 1683 case CAM_DATA_BIO: 1684 /* 1685 * A user shouldn't be attaching a bio to the CCB. It 1686 * isn't a user-accessible structure. 1687 */ 1688 error = EINVAL; 1689 break; 1690 } 1691 1692 bailout: 1693 if (error != 0) 1694 passiocleanup(softc, io_req); 1695 1696 return (error); 1697 } 1698 1699 static int 1700 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req) 1701 { 1702 struct pass_softc *softc; 1703 int error; 1704 int i; 1705 1706 error = 0; 1707 softc = (struct pass_softc *)periph->softc; 1708 1709 switch (io_req->data_flags) { 1710 case CAM_DATA_VADDR: 1711 /* 1712 * Copy back to the user buffer if this was a read. 1713 */ 1714 for (i = 0; i < io_req->num_bufs; i++) { 1715 if (io_req->dirs[i] != CAM_DIR_IN) 1716 continue; 1717 1718 error = copyout(io_req->kern_bufs[i], 1719 io_req->user_bufs[i], io_req->lengths[i]); 1720 if (error != 0) { 1721 xpt_print(periph->path, "Unable to copy %u " 1722 "bytes from %p to user address %p\n", 1723 io_req->lengths[i], 1724 io_req->kern_bufs[i], 1725 io_req->user_bufs[i]); 1726 goto bailout; 1727 } 1728 1729 } 1730 break; 1731 case CAM_DATA_PADDR: 1732 /* Do nothing. The pointer is a physical address already */ 1733 break; 1734 case CAM_DATA_SG: 1735 /* 1736 * Copy back to the user buffer if this was a read. 1737 * Restore the user's S/G list buffer pointer. 1738 */ 1739 if (io_req->dirs[0] == CAM_DIR_IN) 1740 error = passcopysglist(periph, io_req, io_req->dirs[0]); 1741 break; 1742 case CAM_DATA_SG_PADDR: 1743 /* 1744 * Restore the user's S/G list buffer pointer. No need to 1745 * copy. 1746 */ 1747 break; 1748 default: 1749 case CAM_DATA_BIO: 1750 error = EINVAL; 1751 break; 1752 } 1753 1754 bailout: 1755 /* 1756 * Reset the user's pointers to their original values and free 1757 * allocated memory. 1758 */ 1759 passiocleanup(softc, io_req); 1760 1761 return (error); 1762 } 1763 1764 static int 1765 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1766 { 1767 int error; 1768 1769 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 1770 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl); 1771 } 1772 return (error); 1773 } 1774 1775 static int 1776 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1777 { 1778 struct cam_periph *periph; 1779 struct pass_softc *softc; 1780 int error; 1781 uint32_t priority; 1782 1783 periph = (struct cam_periph *)dev->si_drv1; 1784 cam_periph_lock(periph); 1785 softc = (struct pass_softc *)periph->softc; 1786 1787 error = 0; 1788 1789 switch (cmd) { 1790 1791 case CAMIOCOMMAND: 1792 { 1793 union ccb *inccb; 1794 union ccb *ccb; 1795 int ccb_malloced; 1796 1797 inccb = (union ccb *)addr; 1798 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1799 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 1800 inccb->csio.bio = NULL; 1801 #endif 1802 1803 if (inccb->ccb_h.flags & CAM_UNLOCKED) { 1804 error = EINVAL; 1805 break; 1806 } 1807 1808 /* 1809 * Some CCB types, like scan bus and scan lun can only go 1810 * through the transport layer device. 1811 */ 1812 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1813 xpt_print(periph->path, "CCB function code %#x is " 1814 "restricted to the XPT device\n", 1815 inccb->ccb_h.func_code); 1816 error = ENODEV; 1817 break; 1818 } 1819 1820 /* Compatibility for RL/priority-unaware code. */ 1821 priority = inccb->ccb_h.pinfo.priority; 1822 if (priority <= CAM_PRIORITY_OOB) 1823 priority += CAM_PRIORITY_OOB + 1; 1824 1825 /* 1826 * Non-immediate CCBs need a CCB from the per-device pool 1827 * of CCBs, which is scheduled by the transport layer. 1828 * Immediate CCBs and user-supplied CCBs should just be 1829 * malloced. 1830 */ 1831 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED) 1832 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) { 1833 ccb = cam_periph_getccb(periph, priority); 1834 ccb_malloced = 0; 1835 } else { 1836 ccb = xpt_alloc_ccb_nowait(); 1837 1838 if (ccb != NULL) 1839 xpt_setup_ccb(&ccb->ccb_h, periph->path, 1840 priority); 1841 ccb_malloced = 1; 1842 } 1843 1844 if (ccb == NULL) { 1845 xpt_print(periph->path, "unable to allocate CCB\n"); 1846 error = ENOMEM; 1847 break; 1848 } 1849 1850 error = passsendccb(periph, ccb, inccb); 1851 1852 if (ccb_malloced) 1853 xpt_free_ccb(ccb); 1854 else 1855 xpt_release_ccb(ccb); 1856 1857 break; 1858 } 1859 case CAMIOQUEUE: 1860 { 1861 struct pass_io_req *io_req; 1862 union ccb **user_ccb, *ccb; 1863 xpt_opcode fc; 1864 1865 #ifdef COMPAT_FREEBSD32 1866 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 1867 error = ENOTTY; 1868 goto bailout; 1869 } 1870 #endif 1871 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) { 1872 error = passcreatezone(periph); 1873 if (error != 0) 1874 goto bailout; 1875 } 1876 1877 /* 1878 * We're going to do a blocking allocation for this I/O 1879 * request, so we have to drop the lock. 1880 */ 1881 cam_periph_unlock(periph); 1882 1883 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO); 1884 ccb = &io_req->ccb; 1885 user_ccb = (union ccb **)addr; 1886 1887 /* 1888 * Unlike the CAMIOCOMMAND ioctl above, we only have a 1889 * pointer to the user's CCB, so we have to copy the whole 1890 * thing in to a buffer we have allocated (above) instead 1891 * of allowing the ioctl code to malloc a buffer and copy 1892 * it in. 1893 * 1894 * This is an advantage for this asynchronous interface, 1895 * since we don't want the memory to get freed while the 1896 * CCB is outstanding. 1897 */ 1898 #if 0 1899 xpt_print(periph->path, "Copying user CCB %p to " 1900 "kernel address %p\n", *user_ccb, ccb); 1901 #endif 1902 error = copyin(*user_ccb, ccb, sizeof(*ccb)); 1903 if (error != 0) { 1904 xpt_print(periph->path, "Copy of user CCB %p to " 1905 "kernel address %p failed with error %d\n", 1906 *user_ccb, ccb, error); 1907 goto camioqueue_error; 1908 } 1909 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1910 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 1911 ccb->csio.bio = NULL; 1912 #endif 1913 1914 if (ccb->ccb_h.flags & CAM_UNLOCKED) { 1915 error = EINVAL; 1916 goto camioqueue_error; 1917 } 1918 1919 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 1920 if (ccb->csio.cdb_len > IOCDBLEN) { 1921 error = EINVAL; 1922 goto camioqueue_error; 1923 } 1924 error = copyin(ccb->csio.cdb_io.cdb_ptr, 1925 ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len); 1926 if (error != 0) 1927 goto camioqueue_error; 1928 ccb->ccb_h.flags &= ~CAM_CDB_POINTER; 1929 } 1930 1931 /* 1932 * Some CCB types, like scan bus and scan lun can only go 1933 * through the transport layer device. 1934 */ 1935 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1936 xpt_print(periph->path, "CCB function code %#x is " 1937 "restricted to the XPT device\n", 1938 ccb->ccb_h.func_code); 1939 error = ENODEV; 1940 goto camioqueue_error; 1941 } 1942 1943 /* 1944 * Save the user's CCB pointer as well as his linked list 1945 * pointers and peripheral private area so that we can 1946 * restore these later. 1947 */ 1948 io_req->user_ccb_ptr = *user_ccb; 1949 io_req->user_periph_links = ccb->ccb_h.periph_links; 1950 io_req->user_periph_priv = ccb->ccb_h.periph_priv; 1951 1952 /* 1953 * Now that we've saved the user's values, we can set our 1954 * own peripheral private entry. 1955 */ 1956 ccb->ccb_h.ccb_ioreq = io_req; 1957 1958 /* Compatibility for RL/priority-unaware code. */ 1959 priority = ccb->ccb_h.pinfo.priority; 1960 if (priority <= CAM_PRIORITY_OOB) 1961 priority += CAM_PRIORITY_OOB + 1; 1962 1963 /* 1964 * Setup fields in the CCB like the path and the priority. 1965 * The path in particular cannot be done in userland, since 1966 * it is a pointer to a kernel data structure. 1967 */ 1968 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority, 1969 ccb->ccb_h.flags); 1970 1971 /* 1972 * Setup our done routine. There is no way for the user to 1973 * have a valid pointer here. 1974 */ 1975 ccb->ccb_h.cbfcnp = passdone; 1976 1977 fc = ccb->ccb_h.func_code; 1978 /* 1979 * If this function code has memory that can be mapped in 1980 * or out, we need to call passmemsetup(). 1981 */ 1982 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) 1983 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH) 1984 || (fc == XPT_DEV_ADVINFO) 1985 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { 1986 error = passmemsetup(periph, io_req); 1987 if (error != 0) 1988 goto camioqueue_error; 1989 } else 1990 io_req->mapinfo.num_bufs_used = 0; 1991 1992 cam_periph_lock(periph); 1993 1994 /* 1995 * Everything goes on the incoming queue initially. 1996 */ 1997 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links); 1998 1999 /* 2000 * If the CCB is queued, and is not a user CCB, then 2001 * we need to allocate a slot for it. Call xpt_schedule() 2002 * so that our start routine will get called when a CCB is 2003 * available. 2004 */ 2005 if ((fc & XPT_FC_QUEUED) 2006 && ((fc & XPT_FC_USER_CCB) == 0)) { 2007 xpt_schedule(periph, priority); 2008 break; 2009 } 2010 2011 /* 2012 * At this point, the CCB in question is either an 2013 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB 2014 * and therefore should be malloced, not allocated via a slot. 2015 * Remove the CCB from the incoming queue and add it to the 2016 * active queue. 2017 */ 2018 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 2019 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 2020 2021 xpt_action(ccb); 2022 2023 /* 2024 * If this is not a queued CCB (i.e. it is an immediate CCB), 2025 * then it is already done. We need to put it on the done 2026 * queue for the user to fetch. 2027 */ 2028 if ((fc & XPT_FC_QUEUED) == 0) { 2029 TAILQ_REMOVE(&softc->active_queue, io_req, links); 2030 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 2031 } 2032 break; 2033 2034 camioqueue_error: 2035 uma_zfree(softc->pass_zone, io_req); 2036 cam_periph_lock(periph); 2037 break; 2038 } 2039 case CAMIOGET: 2040 { 2041 union ccb **user_ccb; 2042 struct pass_io_req *io_req; 2043 int old_error; 2044 2045 #ifdef COMPAT_FREEBSD32 2046 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 2047 error = ENOTTY; 2048 goto bailout; 2049 } 2050 #endif 2051 user_ccb = (union ccb **)addr; 2052 old_error = 0; 2053 2054 io_req = TAILQ_FIRST(&softc->done_queue); 2055 if (io_req == NULL) { 2056 error = ENOENT; 2057 break; 2058 } 2059 2060 /* 2061 * Remove the I/O from the done queue. 2062 */ 2063 TAILQ_REMOVE(&softc->done_queue, io_req, links); 2064 2065 /* 2066 * We have to drop the lock during the copyout because the 2067 * copyout can result in VM faults that require sleeping. 2068 */ 2069 cam_periph_unlock(periph); 2070 2071 /* 2072 * Do any needed copies (e.g. for reads) and revert the 2073 * pointers in the CCB back to the user's pointers. 2074 */ 2075 error = passmemdone(periph, io_req); 2076 2077 old_error = error; 2078 2079 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links; 2080 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv; 2081 2082 #if 0 2083 xpt_print(periph->path, "Copying to user CCB %p from " 2084 "kernel address %p\n", *user_ccb, &io_req->ccb); 2085 #endif 2086 2087 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb)); 2088 if (error != 0) { 2089 xpt_print(periph->path, "Copy to user CCB %p from " 2090 "kernel address %p failed with error %d\n", 2091 *user_ccb, &io_req->ccb, error); 2092 } 2093 2094 /* 2095 * Prefer the first error we got back, and make sure we 2096 * don't overwrite bad status with good. 2097 */ 2098 if (old_error != 0) 2099 error = old_error; 2100 2101 cam_periph_lock(periph); 2102 2103 /* 2104 * At this point, if there was an error, we could potentially 2105 * re-queue the I/O and try again. But why? The error 2106 * would almost certainly happen again. We might as well 2107 * not leak memory. 2108 */ 2109 uma_zfree(softc->pass_zone, io_req); 2110 break; 2111 } 2112 default: 2113 error = cam_periph_ioctl(periph, cmd, addr, passerror); 2114 break; 2115 } 2116 2117 bailout: 2118 cam_periph_unlock(periph); 2119 2120 return(error); 2121 } 2122 2123 static int 2124 passpoll(struct cdev *dev, int poll_events, struct thread *td) 2125 { 2126 struct cam_periph *periph; 2127 struct pass_softc *softc; 2128 int revents; 2129 2130 periph = (struct cam_periph *)dev->si_drv1; 2131 softc = (struct pass_softc *)periph->softc; 2132 2133 revents = poll_events & (POLLOUT | POLLWRNORM); 2134 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) { 2135 cam_periph_lock(periph); 2136 2137 if (!TAILQ_EMPTY(&softc->done_queue)) { 2138 revents |= poll_events & (POLLIN | POLLRDNORM); 2139 } 2140 cam_periph_unlock(periph); 2141 if (revents == 0) 2142 selrecord(td, &softc->read_select); 2143 } 2144 2145 return (revents); 2146 } 2147 2148 static int 2149 passkqfilter(struct cdev *dev, struct knote *kn) 2150 { 2151 struct cam_periph *periph; 2152 struct pass_softc *softc; 2153 2154 periph = (struct cam_periph *)dev->si_drv1; 2155 softc = (struct pass_softc *)periph->softc; 2156 2157 kn->kn_hook = (caddr_t)periph; 2158 kn->kn_fop = &passread_filtops; 2159 knlist_add(&softc->read_select.si_note, kn, 0); 2160 2161 return (0); 2162 } 2163 2164 static void 2165 passreadfiltdetach(struct knote *kn) 2166 { 2167 struct cam_periph *periph; 2168 struct pass_softc *softc; 2169 2170 periph = (struct cam_periph *)kn->kn_hook; 2171 softc = (struct pass_softc *)periph->softc; 2172 2173 knlist_remove(&softc->read_select.si_note, kn, 0); 2174 } 2175 2176 static int 2177 passreadfilt(struct knote *kn, long hint) 2178 { 2179 struct cam_periph *periph; 2180 struct pass_softc *softc; 2181 int retval; 2182 2183 periph = (struct cam_periph *)kn->kn_hook; 2184 softc = (struct pass_softc *)periph->softc; 2185 2186 cam_periph_assert(periph, MA_OWNED); 2187 2188 if (TAILQ_EMPTY(&softc->done_queue)) 2189 retval = 0; 2190 else 2191 retval = 1; 2192 2193 return (retval); 2194 } 2195 2196 /* 2197 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb" 2198 * should be the CCB that is copied in from the user. 2199 */ 2200 static int 2201 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb) 2202 { 2203 struct pass_softc *softc; 2204 struct cam_periph_map_info mapinfo; 2205 uint8_t *cmd; 2206 xpt_opcode fc; 2207 int error; 2208 2209 softc = (struct pass_softc *)periph->softc; 2210 2211 /* 2212 * There are some fields in the CCB header that need to be 2213 * preserved, the rest we get from the user. 2214 */ 2215 xpt_merge_ccb(ccb, inccb); 2216 2217 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 2218 cmd = __builtin_alloca(ccb->csio.cdb_len); 2219 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len); 2220 if (error) 2221 return (error); 2222 ccb->csio.cdb_io.cdb_ptr = cmd; 2223 } 2224 2225 /* 2226 */ 2227 ccb->ccb_h.cbfcnp = passdone; 2228 2229 /* 2230 * Let cam_periph_mapmem do a sanity check on the data pointer format. 2231 * Even if no data transfer is needed, it's a cheap check and it 2232 * simplifies the code. 2233 */ 2234 fc = ccb->ccb_h.func_code; 2235 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO) 2236 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO) 2237 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { 2238 2239 bzero(&mapinfo, sizeof(mapinfo)); 2240 2241 /* 2242 * cam_periph_mapmem calls into proc and vm functions that can 2243 * sleep as well as trigger I/O, so we can't hold the lock. 2244 * Dropping it here is reasonably safe. 2245 */ 2246 cam_periph_unlock(periph); 2247 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio); 2248 cam_periph_lock(periph); 2249 2250 /* 2251 * cam_periph_mapmem returned an error, we can't continue. 2252 * Return the error to the user. 2253 */ 2254 if (error) 2255 return(error); 2256 } else 2257 /* Ensure that the unmap call later on is a no-op. */ 2258 mapinfo.num_bufs_used = 0; 2259 2260 /* 2261 * If the user wants us to perform any error recovery, then honor 2262 * that request. Otherwise, it's up to the user to perform any 2263 * error recovery. 2264 */ 2265 cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? 2266 passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO, 2267 /* sense_flags */ SF_RETRY_UA | SF_NO_PRINT, 2268 softc->device_stats); 2269 2270 cam_periph_unmapmem(ccb, &mapinfo); 2271 2272 ccb->ccb_h.cbfcnp = NULL; 2273 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv; 2274 bcopy(ccb, inccb, sizeof(union ccb)); 2275 2276 return(0); 2277 } 2278 2279 static int 2280 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) 2281 { 2282 struct cam_periph *periph; 2283 struct pass_softc *softc; 2284 2285 periph = xpt_path_periph(ccb->ccb_h.path); 2286 softc = (struct pass_softc *)periph->softc; 2287 2288 return(cam_periph_error(ccb, cam_flags, sense_flags)); 2289 } 2290