1 /*- 2 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs. 3 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions, and the following disclaimer, 11 * without modification, immediately at the beginning of the file. 12 * 2. The name of the author may not be used to endorse or promote products 13 * derived from this software without specific prior written permission. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 19 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_kdtrace.h" 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/kernel.h> 36 #include <sys/conf.h> 37 #include <sys/types.h> 38 #include <sys/bio.h> 39 #include <sys/bus.h> 40 #include <sys/devicestat.h> 41 #include <sys/errno.h> 42 #include <sys/fcntl.h> 43 #include <sys/malloc.h> 44 #include <sys/proc.h> 45 #include <sys/poll.h> 46 #include <sys/selinfo.h> 47 #include <sys/sdt.h> 48 #include <sys/taskqueue.h> 49 #include <vm/uma.h> 50 #include <vm/vm.h> 51 #include <vm/vm_extern.h> 52 53 #include <machine/bus.h> 54 55 #include <cam/cam.h> 56 #include <cam/cam_ccb.h> 57 #include <cam/cam_periph.h> 58 #include <cam/cam_queue.h> 59 #include <cam/cam_xpt.h> 60 #include <cam/cam_xpt_periph.h> 61 #include <cam/cam_debug.h> 62 #include <cam/cam_compat.h> 63 #include <cam/cam_xpt_periph.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/scsi/scsi_pass.h> 67 68 typedef enum { 69 PASS_FLAG_OPEN = 0x01, 70 PASS_FLAG_LOCKED = 0x02, 71 PASS_FLAG_INVALID = 0x04, 72 PASS_FLAG_INITIAL_PHYSPATH = 0x08, 73 PASS_FLAG_ZONE_INPROG = 0x10, 74 PASS_FLAG_ZONE_VALID = 0x20, 75 PASS_FLAG_UNMAPPED_CAPABLE = 0x40, 76 PASS_FLAG_ABANDONED_REF_SET = 0x80 77 } pass_flags; 78 79 typedef enum { 80 PASS_STATE_NORMAL 81 } pass_state; 82 83 typedef enum { 84 PASS_CCB_BUFFER_IO, 85 PASS_CCB_QUEUED_IO 86 } pass_ccb_types; 87 88 #define ccb_type ppriv_field0 89 #define ccb_ioreq ppriv_ptr1 90 91 /* 92 * The maximum number of memory segments we preallocate. 93 */ 94 #define PASS_MAX_SEGS 16 95 96 typedef enum { 97 PASS_IO_NONE = 0x00, 98 PASS_IO_USER_SEG_MALLOC = 0x01, 99 PASS_IO_KERN_SEG_MALLOC = 0x02, 100 PASS_IO_ABANDONED = 0x04 101 } pass_io_flags; 102 103 struct pass_io_req { 104 union ccb ccb; 105 union ccb *alloced_ccb; 106 union ccb *user_ccb_ptr; 107 camq_entry user_periph_links; 108 ccb_ppriv_area user_periph_priv; 109 struct cam_periph_map_info mapinfo; 110 pass_io_flags flags; 111 ccb_flags data_flags; 112 int num_user_segs; 113 bus_dma_segment_t user_segs[PASS_MAX_SEGS]; 114 int num_kern_segs; 115 bus_dma_segment_t kern_segs[PASS_MAX_SEGS]; 116 bus_dma_segment_t *user_segptr; 117 bus_dma_segment_t *kern_segptr; 118 int num_bufs; 119 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 120 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 121 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS]; 122 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS]; 123 struct bintime start_time; 124 TAILQ_ENTRY(pass_io_req) links; 125 }; 126 127 struct pass_softc { 128 pass_state state; 129 pass_flags flags; 130 u_int8_t pd_type; 131 union ccb saved_ccb; 132 int open_count; 133 u_int maxio; 134 struct devstat *device_stats; 135 struct cdev *dev; 136 struct cdev *alias_dev; 137 struct task add_physpath_task; 138 struct task shutdown_kqueue_task; 139 struct selinfo read_select; 140 TAILQ_HEAD(, pass_io_req) incoming_queue; 141 TAILQ_HEAD(, pass_io_req) active_queue; 142 TAILQ_HEAD(, pass_io_req) abandoned_queue; 143 TAILQ_HEAD(, pass_io_req) done_queue; 144 struct cam_periph *periph; 145 char zone_name[12]; 146 char io_zone_name[12]; 147 uma_zone_t pass_zone; 148 uma_zone_t pass_io_zone; 149 size_t io_zone_size; 150 }; 151 152 static d_open_t passopen; 153 static d_close_t passclose; 154 static d_ioctl_t passioctl; 155 static d_ioctl_t passdoioctl; 156 static d_poll_t passpoll; 157 static d_kqfilter_t passkqfilter; 158 static void passreadfiltdetach(struct knote *kn); 159 static int passreadfilt(struct knote *kn, long hint); 160 161 static periph_init_t passinit; 162 static periph_ctor_t passregister; 163 static periph_oninv_t passoninvalidate; 164 static periph_dtor_t passcleanup; 165 static periph_start_t passstart; 166 static void pass_shutdown_kqueue(void *context, int pending); 167 static void pass_add_physpath(void *context, int pending); 168 static void passasync(void *callback_arg, u_int32_t code, 169 struct cam_path *path, void *arg); 170 static void passdone(struct cam_periph *periph, 171 union ccb *done_ccb); 172 static int passcreatezone(struct cam_periph *periph); 173 static void passiocleanup(struct pass_softc *softc, 174 struct pass_io_req *io_req); 175 static int passcopysglist(struct cam_periph *periph, 176 struct pass_io_req *io_req, 177 ccb_flags direction); 178 static int passmemsetup(struct cam_periph *periph, 179 struct pass_io_req *io_req); 180 static int passmemdone(struct cam_periph *periph, 181 struct pass_io_req *io_req); 182 static int passerror(union ccb *ccb, u_int32_t cam_flags, 183 u_int32_t sense_flags); 184 static int passsendccb(struct cam_periph *periph, union ccb *ccb, 185 union ccb *inccb); 186 187 static struct periph_driver passdriver = 188 { 189 passinit, "pass", 190 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0 191 }; 192 193 PERIPHDRIVER_DECLARE(pass, passdriver); 194 195 static struct cdevsw pass_cdevsw = { 196 .d_version = D_VERSION, 197 .d_flags = D_TRACKCLOSE, 198 .d_open = passopen, 199 .d_close = passclose, 200 .d_ioctl = passioctl, 201 .d_poll = passpoll, 202 .d_kqfilter = passkqfilter, 203 .d_name = "pass", 204 }; 205 206 static struct filterops passread_filtops = { 207 .f_isfd = 1, 208 .f_detach = passreadfiltdetach, 209 .f_event = passreadfilt 210 }; 211 212 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers"); 213 214 static void 215 passinit(void) 216 { 217 cam_status status; 218 219 /* 220 * Install a global async callback. This callback will 221 * receive async callbacks like "new device found". 222 */ 223 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL); 224 225 if (status != CAM_REQ_CMP) { 226 printf("pass: Failed to attach master async callback " 227 "due to status 0x%x!\n", status); 228 } 229 230 } 231 232 static void 233 passrejectios(struct cam_periph *periph) 234 { 235 struct pass_io_req *io_req, *io_req2; 236 struct pass_softc *softc; 237 238 softc = (struct pass_softc *)periph->softc; 239 240 /* 241 * The user can no longer get status for I/O on the done queue, so 242 * clean up all outstanding I/O on the done queue. 243 */ 244 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 245 TAILQ_REMOVE(&softc->done_queue, io_req, links); 246 passiocleanup(softc, io_req); 247 uma_zfree(softc->pass_zone, io_req); 248 } 249 250 /* 251 * The underlying device is gone, so we can't issue these I/Os. 252 * The devfs node has been shut down, so we can't return status to 253 * the user. Free any I/O left on the incoming queue. 254 */ 255 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) { 256 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 257 passiocleanup(softc, io_req); 258 uma_zfree(softc->pass_zone, io_req); 259 } 260 261 /* 262 * Normally we would put I/Os on the abandoned queue and acquire a 263 * reference when we saw the final close. But, the device went 264 * away and devfs may have moved everything off to deadfs by the 265 * time the I/O done callback is called; as a result, we won't see 266 * any more closes. So, if we have any active I/Os, we need to put 267 * them on the abandoned queue. When the abandoned queue is empty, 268 * we'll release the remaining reference (see below) to the peripheral. 269 */ 270 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) { 271 TAILQ_REMOVE(&softc->active_queue, io_req, links); 272 io_req->flags |= PASS_IO_ABANDONED; 273 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links); 274 } 275 276 /* 277 * If we put any I/O on the abandoned queue, acquire a reference. 278 */ 279 if ((!TAILQ_EMPTY(&softc->abandoned_queue)) 280 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) { 281 cam_periph_doacquire(periph); 282 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 283 } 284 } 285 286 static void 287 passdevgonecb(void *arg) 288 { 289 struct cam_periph *periph; 290 struct mtx *mtx; 291 struct pass_softc *softc; 292 int i; 293 294 periph = (struct cam_periph *)arg; 295 mtx = cam_periph_mtx(periph); 296 mtx_lock(mtx); 297 298 softc = (struct pass_softc *)periph->softc; 299 KASSERT(softc->open_count >= 0, ("Negative open count %d", 300 softc->open_count)); 301 302 /* 303 * When we get this callback, we will get no more close calls from 304 * devfs. So if we have any dangling opens, we need to release the 305 * reference held for that particular context. 306 */ 307 for (i = 0; i < softc->open_count; i++) 308 cam_periph_release_locked(periph); 309 310 softc->open_count = 0; 311 312 /* 313 * Release the reference held for the device node, it is gone now. 314 * Accordingly, inform all queued I/Os of their fate. 315 */ 316 cam_periph_release_locked(periph); 317 passrejectios(periph); 318 319 /* 320 * We reference the SIM lock directly here, instead of using 321 * cam_periph_unlock(). The reason is that the final call to 322 * cam_periph_release_locked() above could result in the periph 323 * getting freed. If that is the case, dereferencing the periph 324 * with a cam_periph_unlock() call would cause a page fault. 325 */ 326 mtx_unlock(mtx); 327 328 /* 329 * We have to remove our kqueue context from a thread because it 330 * may sleep. It would be nice if we could get a callback from 331 * kqueue when it is done cleaning up resources. 332 */ 333 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task); 334 } 335 336 static void 337 passoninvalidate(struct cam_periph *periph) 338 { 339 struct pass_softc *softc; 340 341 softc = (struct pass_softc *)periph->softc; 342 343 /* 344 * De-register any async callbacks. 345 */ 346 xpt_register_async(0, passasync, periph, periph->path); 347 348 softc->flags |= PASS_FLAG_INVALID; 349 350 /* 351 * Tell devfs this device has gone away, and ask for a callback 352 * when it has cleaned up its state. 353 */ 354 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph); 355 } 356 357 static void 358 passcleanup(struct cam_periph *periph) 359 { 360 struct pass_softc *softc; 361 362 softc = (struct pass_softc *)periph->softc; 363 364 cam_periph_assert(periph, MA_OWNED); 365 KASSERT(TAILQ_EMPTY(&softc->active_queue), 366 ("%s called when there are commands on the active queue!\n", 367 __func__)); 368 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue), 369 ("%s called when there are commands on the abandoned queue!\n", 370 __func__)); 371 KASSERT(TAILQ_EMPTY(&softc->incoming_queue), 372 ("%s called when there are commands on the incoming queue!\n", 373 __func__)); 374 KASSERT(TAILQ_EMPTY(&softc->done_queue), 375 ("%s called when there are commands on the done queue!\n", 376 __func__)); 377 378 devstat_remove_entry(softc->device_stats); 379 380 cam_periph_unlock(periph); 381 382 /* 383 * We call taskqueue_drain() for the physpath task to make sure it 384 * is complete. We drop the lock because this can potentially 385 * sleep. XXX KDM that is bad. Need a way to get a callback when 386 * a taskqueue is drained. 387 * 388 * Note that we don't drain the kqueue shutdown task queue. This 389 * is because we hold a reference on the periph for kqueue, and 390 * release that reference from the kqueue shutdown task queue. So 391 * we cannot come into this routine unless we've released that 392 * reference. Also, because that could be the last reference, we 393 * could be called from the cam_periph_release() call in 394 * pass_shutdown_kqueue(). In that case, the taskqueue_drain() 395 * would deadlock. It would be preferable if we had a way to 396 * get a callback when a taskqueue is done. 397 */ 398 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task); 399 400 cam_periph_lock(periph); 401 402 free(softc, M_DEVBUF); 403 } 404 405 static void 406 pass_shutdown_kqueue(void *context, int pending) 407 { 408 struct cam_periph *periph; 409 struct pass_softc *softc; 410 411 periph = context; 412 softc = periph->softc; 413 414 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0); 415 knlist_destroy(&softc->read_select.si_note); 416 417 /* 418 * Release the reference we held for kqueue. 419 */ 420 cam_periph_release(periph); 421 } 422 423 static void 424 pass_add_physpath(void *context, int pending) 425 { 426 struct cam_periph *periph; 427 struct pass_softc *softc; 428 struct mtx *mtx; 429 char *physpath; 430 431 /* 432 * If we have one, create a devfs alias for our 433 * physical path. 434 */ 435 periph = context; 436 softc = periph->softc; 437 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK); 438 mtx = cam_periph_mtx(periph); 439 mtx_lock(mtx); 440 441 if (periph->flags & CAM_PERIPH_INVALID) 442 goto out; 443 444 if (xpt_getattr(physpath, MAXPATHLEN, 445 "GEOM::physpath", periph->path) == 0 446 && strlen(physpath) != 0) { 447 448 mtx_unlock(mtx); 449 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev, 450 softc->dev, softc->alias_dev, physpath); 451 mtx_lock(mtx); 452 } 453 454 out: 455 /* 456 * Now that we've made our alias, we no longer have to have a 457 * reference to the device. 458 */ 459 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0) 460 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH; 461 462 /* 463 * We always acquire a reference to the periph before queueing this 464 * task queue function, so it won't go away before we run. 465 */ 466 while (pending-- > 0) 467 cam_periph_release_locked(periph); 468 mtx_unlock(mtx); 469 470 free(physpath, M_DEVBUF); 471 } 472 473 static void 474 passasync(void *callback_arg, u_int32_t code, 475 struct cam_path *path, void *arg) 476 { 477 struct cam_periph *periph; 478 479 periph = (struct cam_periph *)callback_arg; 480 481 switch (code) { 482 case AC_FOUND_DEVICE: 483 { 484 struct ccb_getdev *cgd; 485 cam_status status; 486 487 cgd = (struct ccb_getdev *)arg; 488 if (cgd == NULL) 489 break; 490 491 /* 492 * Allocate a peripheral instance for 493 * this device and start the probe 494 * process. 495 */ 496 status = cam_periph_alloc(passregister, passoninvalidate, 497 passcleanup, passstart, "pass", 498 CAM_PERIPH_BIO, path, 499 passasync, AC_FOUND_DEVICE, cgd); 500 501 if (status != CAM_REQ_CMP 502 && status != CAM_REQ_INPROG) { 503 const struct cam_status_entry *entry; 504 505 entry = cam_fetch_status_entry(status); 506 507 printf("passasync: Unable to attach new device " 508 "due to status %#x: %s\n", status, entry ? 509 entry->status_text : "Unknown"); 510 } 511 512 break; 513 } 514 case AC_ADVINFO_CHANGED: 515 { 516 uintptr_t buftype; 517 518 buftype = (uintptr_t)arg; 519 if (buftype == CDAI_TYPE_PHYS_PATH) { 520 struct pass_softc *softc; 521 cam_status status; 522 523 softc = (struct pass_softc *)periph->softc; 524 /* 525 * Acquire a reference to the periph before we 526 * start the taskqueue, so that we don't run into 527 * a situation where the periph goes away before 528 * the task queue has a chance to run. 529 */ 530 status = cam_periph_acquire(periph); 531 if (status != CAM_REQ_CMP) 532 break; 533 534 taskqueue_enqueue(taskqueue_thread, 535 &softc->add_physpath_task); 536 } 537 break; 538 } 539 default: 540 cam_periph_async(periph, code, path, arg); 541 break; 542 } 543 } 544 545 static cam_status 546 passregister(struct cam_periph *periph, void *arg) 547 { 548 struct pass_softc *softc; 549 struct ccb_getdev *cgd; 550 struct ccb_pathinq cpi; 551 struct make_dev_args args; 552 int error, no_tags; 553 554 cgd = (struct ccb_getdev *)arg; 555 if (cgd == NULL) { 556 printf("%s: no getdev CCB, can't register device\n", __func__); 557 return(CAM_REQ_CMP_ERR); 558 } 559 560 softc = (struct pass_softc *)malloc(sizeof(*softc), 561 M_DEVBUF, M_NOWAIT); 562 563 if (softc == NULL) { 564 printf("%s: Unable to probe new device. " 565 "Unable to allocate softc\n", __func__); 566 return(CAM_REQ_CMP_ERR); 567 } 568 569 bzero(softc, sizeof(*softc)); 570 softc->state = PASS_STATE_NORMAL; 571 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI) 572 softc->pd_type = SID_TYPE(&cgd->inq_data); 573 else if (cgd->protocol == PROTO_SATAPM) 574 softc->pd_type = T_ENCLOSURE; 575 else 576 softc->pd_type = T_DIRECT; 577 578 periph->softc = softc; 579 softc->periph = periph; 580 TAILQ_INIT(&softc->incoming_queue); 581 TAILQ_INIT(&softc->active_queue); 582 TAILQ_INIT(&softc->abandoned_queue); 583 TAILQ_INIT(&softc->done_queue); 584 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d", 585 periph->periph_name, periph->unit_number); 586 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO", 587 periph->periph_name, periph->unit_number); 588 softc->io_zone_size = MAXPHYS; 589 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph)); 590 591 bzero(&cpi, sizeof(cpi)); 592 xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 593 cpi.ccb_h.func_code = XPT_PATH_INQ; 594 xpt_action((union ccb *)&cpi); 595 596 if (cpi.maxio == 0) 597 softc->maxio = DFLTPHYS; /* traditional default */ 598 else if (cpi.maxio > MAXPHYS) 599 softc->maxio = MAXPHYS; /* for safety */ 600 else 601 softc->maxio = cpi.maxio; /* real value */ 602 603 if (cpi.hba_misc & PIM_UNMAPPED) 604 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE; 605 606 /* 607 * We pass in 0 for a blocksize, since we don't 608 * know what the blocksize of this device is, if 609 * it even has a blocksize. 610 */ 611 cam_periph_unlock(periph); 612 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0; 613 softc->device_stats = devstat_new_entry("pass", 614 periph->unit_number, 0, 615 DEVSTAT_NO_BLOCKSIZE 616 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0), 617 softc->pd_type | 618 XPORT_DEVSTAT_TYPE(cpi.transport) | 619 DEVSTAT_TYPE_PASS, 620 DEVSTAT_PRIORITY_PASS); 621 622 /* 623 * Initialize the taskqueue handler for shutting down kqueue. 624 */ 625 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0, 626 pass_shutdown_kqueue, periph); 627 628 /* 629 * Acquire a reference to the periph that we can release once we've 630 * cleaned up the kqueue. 631 */ 632 if (cam_periph_acquire(periph) != CAM_REQ_CMP) { 633 xpt_print(periph->path, "%s: lost periph during " 634 "registration!\n", __func__); 635 cam_periph_lock(periph); 636 return (CAM_REQ_CMP_ERR); 637 } 638 639 /* 640 * Acquire a reference to the periph before we create the devfs 641 * instance for it. We'll release this reference once the devfs 642 * instance has been freed. 643 */ 644 if (cam_periph_acquire(periph) != CAM_REQ_CMP) { 645 xpt_print(periph->path, "%s: lost periph during " 646 "registration!\n", __func__); 647 cam_periph_lock(periph); 648 return (CAM_REQ_CMP_ERR); 649 } 650 651 /* Register the device */ 652 make_dev_args_init(&args); 653 args.mda_devsw = &pass_cdevsw; 654 args.mda_unit = periph->unit_number; 655 args.mda_uid = UID_ROOT; 656 args.mda_gid = GID_OPERATOR; 657 args.mda_mode = 0600; 658 args.mda_si_drv1 = periph; 659 error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name, 660 periph->unit_number); 661 if (error != 0) { 662 cam_periph_lock(periph); 663 cam_periph_release_locked(periph); 664 return (CAM_REQ_CMP_ERR); 665 } 666 667 /* 668 * Hold a reference to the periph before we create the physical 669 * path alias so it can't go away. 670 */ 671 if (cam_periph_acquire(periph) != CAM_REQ_CMP) { 672 xpt_print(periph->path, "%s: lost periph during " 673 "registration!\n", __func__); 674 cam_periph_lock(periph); 675 return (CAM_REQ_CMP_ERR); 676 } 677 678 cam_periph_lock(periph); 679 680 TASK_INIT(&softc->add_physpath_task, /*priority*/0, 681 pass_add_physpath, periph); 682 683 /* 684 * See if physical path information is already available. 685 */ 686 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); 687 688 /* 689 * Add an async callback so that we get notified if 690 * this device goes away or its physical path 691 * (stored in the advanced info data of the EDT) has 692 * changed. 693 */ 694 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED, 695 passasync, periph, periph->path); 696 697 if (bootverbose) 698 xpt_announce_periph(periph, NULL); 699 700 return(CAM_REQ_CMP); 701 } 702 703 static int 704 passopen(struct cdev *dev, int flags, int fmt, struct thread *td) 705 { 706 struct cam_periph *periph; 707 struct pass_softc *softc; 708 int error; 709 710 periph = (struct cam_periph *)dev->si_drv1; 711 if (cam_periph_acquire(periph) != CAM_REQ_CMP) 712 return (ENXIO); 713 714 cam_periph_lock(periph); 715 716 softc = (struct pass_softc *)periph->softc; 717 718 if (softc->flags & PASS_FLAG_INVALID) { 719 cam_periph_release_locked(periph); 720 cam_periph_unlock(periph); 721 return(ENXIO); 722 } 723 724 /* 725 * Don't allow access when we're running at a high securelevel. 726 */ 727 error = securelevel_gt(td->td_ucred, 1); 728 if (error) { 729 cam_periph_release_locked(periph); 730 cam_periph_unlock(periph); 731 return(error); 732 } 733 734 /* 735 * Only allow read-write access. 736 */ 737 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) { 738 cam_periph_release_locked(periph); 739 cam_periph_unlock(periph); 740 return(EPERM); 741 } 742 743 /* 744 * We don't allow nonblocking access. 745 */ 746 if ((flags & O_NONBLOCK) != 0) { 747 xpt_print(periph->path, "can't do nonblocking access\n"); 748 cam_periph_release_locked(periph); 749 cam_periph_unlock(periph); 750 return(EINVAL); 751 } 752 753 softc->open_count++; 754 755 cam_periph_unlock(periph); 756 757 return (error); 758 } 759 760 static int 761 passclose(struct cdev *dev, int flag, int fmt, struct thread *td) 762 { 763 struct cam_periph *periph; 764 struct pass_softc *softc; 765 struct mtx *mtx; 766 767 periph = (struct cam_periph *)dev->si_drv1; 768 mtx = cam_periph_mtx(periph); 769 mtx_lock(mtx); 770 771 softc = periph->softc; 772 softc->open_count--; 773 774 if (softc->open_count == 0) { 775 struct pass_io_req *io_req, *io_req2; 776 int need_unlock; 777 778 need_unlock = 0; 779 780 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 781 TAILQ_REMOVE(&softc->done_queue, io_req, links); 782 passiocleanup(softc, io_req); 783 uma_zfree(softc->pass_zone, io_req); 784 } 785 786 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, 787 io_req2) { 788 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 789 passiocleanup(softc, io_req); 790 uma_zfree(softc->pass_zone, io_req); 791 } 792 793 /* 794 * If there are any active I/Os, we need to forcibly acquire a 795 * reference to the peripheral so that we don't go away 796 * before they complete. We'll release the reference when 797 * the abandoned queue is empty. 798 */ 799 io_req = TAILQ_FIRST(&softc->active_queue); 800 if ((io_req != NULL) 801 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) { 802 cam_periph_doacquire(periph); 803 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 804 } 805 806 /* 807 * Since the I/O in the active queue is not under our 808 * control, just set a flag so that we can clean it up when 809 * it completes and put it on the abandoned queue. This 810 * will prevent our sending spurious completions in the 811 * event that the device is opened again before these I/Os 812 * complete. 813 */ 814 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, 815 io_req2) { 816 TAILQ_REMOVE(&softc->active_queue, io_req, links); 817 io_req->flags |= PASS_IO_ABANDONED; 818 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, 819 links); 820 } 821 } 822 823 cam_periph_release_locked(periph); 824 825 /* 826 * We reference the lock directly here, instead of using 827 * cam_periph_unlock(). The reason is that the call to 828 * cam_periph_release_locked() above could result in the periph 829 * getting freed. If that is the case, dereferencing the periph 830 * with a cam_periph_unlock() call would cause a page fault. 831 * 832 * cam_periph_release() avoids this problem using the same method, 833 * but we're manually acquiring and dropping the lock here to 834 * protect the open count and avoid another lock acquisition and 835 * release. 836 */ 837 mtx_unlock(mtx); 838 839 return (0); 840 } 841 842 843 static void 844 passstart(struct cam_periph *periph, union ccb *start_ccb) 845 { 846 struct pass_softc *softc; 847 848 softc = (struct pass_softc *)periph->softc; 849 850 switch (softc->state) { 851 case PASS_STATE_NORMAL: { 852 struct pass_io_req *io_req; 853 854 /* 855 * Check for any queued I/O requests that require an 856 * allocated slot. 857 */ 858 io_req = TAILQ_FIRST(&softc->incoming_queue); 859 if (io_req == NULL) { 860 xpt_release_ccb(start_ccb); 861 break; 862 } 863 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 864 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 865 /* 866 * Merge the user's CCB into the allocated CCB. 867 */ 868 xpt_merge_ccb(start_ccb, &io_req->ccb); 869 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO; 870 start_ccb->ccb_h.ccb_ioreq = io_req; 871 start_ccb->ccb_h.cbfcnp = passdone; 872 io_req->alloced_ccb = start_ccb; 873 binuptime(&io_req->start_time); 874 devstat_start_transaction(softc->device_stats, 875 &io_req->start_time); 876 877 xpt_action(start_ccb); 878 879 /* 880 * If we have any more I/O waiting, schedule ourselves again. 881 */ 882 if (!TAILQ_EMPTY(&softc->incoming_queue)) 883 xpt_schedule(periph, CAM_PRIORITY_NORMAL); 884 break; 885 } 886 default: 887 break; 888 } 889 } 890 891 static void 892 passdone(struct cam_periph *periph, union ccb *done_ccb) 893 { 894 struct pass_softc *softc; 895 struct ccb_scsiio *csio; 896 897 softc = (struct pass_softc *)periph->softc; 898 899 cam_periph_assert(periph, MA_OWNED); 900 901 csio = &done_ccb->csio; 902 switch (csio->ccb_h.ccb_type) { 903 case PASS_CCB_QUEUED_IO: { 904 struct pass_io_req *io_req; 905 906 io_req = done_ccb->ccb_h.ccb_ioreq; 907 #if 0 908 xpt_print(periph->path, "%s: called for user CCB %p\n", 909 __func__, io_req->user_ccb_ptr); 910 #endif 911 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) 912 && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) 913 && ((io_req->flags & PASS_IO_ABANDONED) == 0)) { 914 int error; 915 916 error = passerror(done_ccb, CAM_RETRY_SELTO, 917 SF_RETRY_UA | SF_NO_PRINT); 918 919 if (error == ERESTART) { 920 /* 921 * A retry was scheduled, so 922 * just return. 923 */ 924 return; 925 } 926 } 927 928 /* 929 * Copy the allocated CCB contents back to the malloced CCB 930 * so we can give status back to the user when he requests it. 931 */ 932 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb)); 933 934 /* 935 * Log data/transaction completion with devstat(9). 936 */ 937 switch (done_ccb->ccb_h.func_code) { 938 case XPT_SCSI_IO: 939 devstat_end_transaction(softc->device_stats, 940 done_ccb->csio.dxfer_len - done_ccb->csio.resid, 941 done_ccb->csio.tag_action & 0x3, 942 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 943 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 944 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 945 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 946 &io_req->start_time); 947 break; 948 case XPT_ATA_IO: 949 devstat_end_transaction(softc->device_stats, 950 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid, 951 done_ccb->ataio.tag_action & 0x3, 952 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 953 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 954 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 955 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 956 &io_req->start_time); 957 break; 958 case XPT_SMP_IO: 959 /* 960 * XXX KDM this isn't quite right, but there isn't 961 * currently an easy way to represent a bidirectional 962 * transfer in devstat. The only way to do it 963 * and have the byte counts come out right would 964 * mean that we would have to record two 965 * transactions, one for the request and one for the 966 * response. For now, so that we report something, 967 * just treat the entire thing as a read. 968 */ 969 devstat_end_transaction(softc->device_stats, 970 done_ccb->smpio.smp_request_len + 971 done_ccb->smpio.smp_response_len, 972 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL, 973 &io_req->start_time); 974 break; 975 default: 976 devstat_end_transaction(softc->device_stats, 0, 977 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL, 978 &io_req->start_time); 979 break; 980 } 981 982 /* 983 * In the normal case, take the completed I/O off of the 984 * active queue and put it on the done queue. Notitfy the 985 * user that we have a completed I/O. 986 */ 987 if ((io_req->flags & PASS_IO_ABANDONED) == 0) { 988 TAILQ_REMOVE(&softc->active_queue, io_req, links); 989 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 990 selwakeuppri(&softc->read_select, PRIBIO); 991 KNOTE_LOCKED(&softc->read_select.si_note, 0); 992 } else { 993 /* 994 * In the case of an abandoned I/O (final close 995 * without fetching the I/O), take it off of the 996 * abandoned queue and free it. 997 */ 998 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links); 999 passiocleanup(softc, io_req); 1000 uma_zfree(softc->pass_zone, io_req); 1001 1002 /* 1003 * Release the done_ccb here, since we may wind up 1004 * freeing the peripheral when we decrement the 1005 * reference count below. 1006 */ 1007 xpt_release_ccb(done_ccb); 1008 1009 /* 1010 * If the abandoned queue is empty, we can release 1011 * our reference to the periph since we won't have 1012 * any more completions coming. 1013 */ 1014 if ((TAILQ_EMPTY(&softc->abandoned_queue)) 1015 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) { 1016 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET; 1017 cam_periph_release_locked(periph); 1018 } 1019 1020 /* 1021 * We have already released the CCB, so we can 1022 * return. 1023 */ 1024 return; 1025 } 1026 break; 1027 } 1028 } 1029 xpt_release_ccb(done_ccb); 1030 } 1031 1032 static int 1033 passcreatezone(struct cam_periph *periph) 1034 { 1035 struct pass_softc *softc; 1036 int error; 1037 1038 error = 0; 1039 softc = (struct pass_softc *)periph->softc; 1040 1041 cam_periph_assert(periph, MA_OWNED); 1042 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 1043 ("%s called when the pass(4) zone is valid!\n", __func__)); 1044 KASSERT((softc->pass_zone == NULL), 1045 ("%s called when the pass(4) zone is allocated!\n", __func__)); 1046 1047 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) { 1048 1049 /* 1050 * We're the first context through, so we need to create 1051 * the pass(4) UMA zone for I/O requests. 1052 */ 1053 softc->flags |= PASS_FLAG_ZONE_INPROG; 1054 1055 /* 1056 * uma_zcreate() does a blocking (M_WAITOK) allocation, 1057 * so we cannot hold a mutex while we call it. 1058 */ 1059 cam_periph_unlock(periph); 1060 1061 softc->pass_zone = uma_zcreate(softc->zone_name, 1062 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL, 1063 /*align*/ 0, /*flags*/ 0); 1064 1065 softc->pass_io_zone = uma_zcreate(softc->io_zone_name, 1066 softc->io_zone_size, NULL, NULL, NULL, NULL, 1067 /*align*/ 0, /*flags*/ 0); 1068 1069 cam_periph_lock(periph); 1070 1071 if ((softc->pass_zone == NULL) 1072 || (softc->pass_io_zone == NULL)) { 1073 if (softc->pass_zone == NULL) 1074 xpt_print(periph->path, "unable to allocate " 1075 "IO Req UMA zone\n"); 1076 else 1077 xpt_print(periph->path, "unable to allocate " 1078 "IO UMA zone\n"); 1079 softc->flags &= ~PASS_FLAG_ZONE_INPROG; 1080 goto bailout; 1081 } 1082 1083 /* 1084 * Set the flags appropriately and notify any other waiters. 1085 */ 1086 softc->flags &= PASS_FLAG_ZONE_INPROG; 1087 softc->flags |= PASS_FLAG_ZONE_VALID; 1088 wakeup(&softc->pass_zone); 1089 } else { 1090 /* 1091 * In this case, the UMA zone has not yet been created, but 1092 * another context is in the process of creating it. We 1093 * need to sleep until the creation is either done or has 1094 * failed. 1095 */ 1096 while ((softc->flags & PASS_FLAG_ZONE_INPROG) 1097 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) { 1098 error = msleep(&softc->pass_zone, 1099 cam_periph_mtx(periph), PRIBIO, 1100 "paszon", 0); 1101 if (error != 0) 1102 goto bailout; 1103 } 1104 /* 1105 * If the zone creation failed, no luck for the user. 1106 */ 1107 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){ 1108 error = ENOMEM; 1109 goto bailout; 1110 } 1111 } 1112 bailout: 1113 return (error); 1114 } 1115 1116 static void 1117 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req) 1118 { 1119 union ccb *ccb; 1120 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1121 int i, numbufs; 1122 1123 ccb = &io_req->ccb; 1124 1125 switch (ccb->ccb_h.func_code) { 1126 case XPT_DEV_MATCH: 1127 numbufs = min(io_req->num_bufs, 2); 1128 1129 if (numbufs == 1) { 1130 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1131 } else { 1132 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1133 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1134 } 1135 break; 1136 case XPT_SCSI_IO: 1137 case XPT_CONT_TARGET_IO: 1138 data_ptrs[0] = &ccb->csio.data_ptr; 1139 numbufs = min(io_req->num_bufs, 1); 1140 break; 1141 case XPT_ATA_IO: 1142 data_ptrs[0] = &ccb->ataio.data_ptr; 1143 numbufs = min(io_req->num_bufs, 1); 1144 break; 1145 case XPT_SMP_IO: 1146 numbufs = min(io_req->num_bufs, 2); 1147 data_ptrs[0] = &ccb->smpio.smp_request; 1148 data_ptrs[1] = &ccb->smpio.smp_response; 1149 break; 1150 case XPT_DEV_ADVINFO: 1151 numbufs = min(io_req->num_bufs, 1); 1152 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1153 break; 1154 default: 1155 /* allow ourselves to be swapped once again */ 1156 return; 1157 break; /* NOTREACHED */ 1158 } 1159 1160 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) { 1161 free(io_req->user_segptr, M_SCSIPASS); 1162 io_req->user_segptr = NULL; 1163 } 1164 1165 /* 1166 * We only want to free memory we malloced. 1167 */ 1168 if (io_req->data_flags == CAM_DATA_VADDR) { 1169 for (i = 0; i < io_req->num_bufs; i++) { 1170 if (io_req->kern_bufs[i] == NULL) 1171 continue; 1172 1173 free(io_req->kern_bufs[i], M_SCSIPASS); 1174 io_req->kern_bufs[i] = NULL; 1175 } 1176 } else if (io_req->data_flags == CAM_DATA_SG) { 1177 for (i = 0; i < io_req->num_kern_segs; i++) { 1178 if ((uint8_t *)(uintptr_t) 1179 io_req->kern_segptr[i].ds_addr == NULL) 1180 continue; 1181 1182 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t) 1183 io_req->kern_segptr[i].ds_addr); 1184 io_req->kern_segptr[i].ds_addr = 0; 1185 } 1186 } 1187 1188 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) { 1189 free(io_req->kern_segptr, M_SCSIPASS); 1190 io_req->kern_segptr = NULL; 1191 } 1192 1193 if (io_req->data_flags != CAM_DATA_PADDR) { 1194 for (i = 0; i < numbufs; i++) { 1195 /* 1196 * Restore the user's buffer pointers to their 1197 * previous values. 1198 */ 1199 if (io_req->user_bufs[i] != NULL) 1200 *data_ptrs[i] = io_req->user_bufs[i]; 1201 } 1202 } 1203 1204 } 1205 1206 static int 1207 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req, 1208 ccb_flags direction) 1209 { 1210 bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy; 1211 bus_dma_segment_t *user_sglist, *kern_sglist; 1212 int i, j, error; 1213 1214 error = 0; 1215 kern_watermark = 0; 1216 user_watermark = 0; 1217 len_to_copy = 0; 1218 len_copied = 0; 1219 user_sglist = io_req->user_segptr; 1220 kern_sglist = io_req->kern_segptr; 1221 1222 for (i = 0, j = 0; i < io_req->num_user_segs && 1223 j < io_req->num_kern_segs;) { 1224 uint8_t *user_ptr, *kern_ptr; 1225 1226 len_to_copy = min(user_sglist[i].ds_len -user_watermark, 1227 kern_sglist[j].ds_len - kern_watermark); 1228 1229 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr; 1230 user_ptr = user_ptr + user_watermark; 1231 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr; 1232 kern_ptr = kern_ptr + kern_watermark; 1233 1234 user_watermark += len_to_copy; 1235 kern_watermark += len_to_copy; 1236 1237 if (!useracc(user_ptr, len_to_copy, 1238 (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) { 1239 xpt_print(periph->path, "%s: unable to access user " 1240 "S/G list element %p len %zu\n", __func__, 1241 user_ptr, len_to_copy); 1242 error = EFAULT; 1243 goto bailout; 1244 } 1245 1246 if (direction == CAM_DIR_IN) { 1247 error = copyout(kern_ptr, user_ptr, len_to_copy); 1248 if (error != 0) { 1249 xpt_print(periph->path, "%s: copyout of %u " 1250 "bytes from %p to %p failed with " 1251 "error %d\n", __func__, len_to_copy, 1252 kern_ptr, user_ptr, error); 1253 goto bailout; 1254 } 1255 } else { 1256 error = copyin(user_ptr, kern_ptr, len_to_copy); 1257 if (error != 0) { 1258 xpt_print(periph->path, "%s: copyin of %u " 1259 "bytes from %p to %p failed with " 1260 "error %d\n", __func__, len_to_copy, 1261 user_ptr, kern_ptr, error); 1262 goto bailout; 1263 } 1264 } 1265 1266 len_copied += len_to_copy; 1267 1268 if (user_sglist[i].ds_len == user_watermark) { 1269 i++; 1270 user_watermark = 0; 1271 } 1272 1273 if (kern_sglist[j].ds_len == kern_watermark) { 1274 j++; 1275 kern_watermark = 0; 1276 } 1277 } 1278 1279 bailout: 1280 1281 return (error); 1282 } 1283 1284 static int 1285 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req) 1286 { 1287 union ccb *ccb; 1288 struct pass_softc *softc; 1289 int numbufs, i; 1290 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1291 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 1292 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 1293 uint32_t num_segs; 1294 uint16_t *seg_cnt_ptr; 1295 size_t maxmap; 1296 int error; 1297 1298 cam_periph_assert(periph, MA_NOTOWNED); 1299 1300 softc = periph->softc; 1301 1302 error = 0; 1303 ccb = &io_req->ccb; 1304 maxmap = 0; 1305 num_segs = 0; 1306 seg_cnt_ptr = NULL; 1307 1308 switch(ccb->ccb_h.func_code) { 1309 case XPT_DEV_MATCH: 1310 if (ccb->cdm.match_buf_len == 0) { 1311 printf("%s: invalid match buffer length 0\n", __func__); 1312 return(EINVAL); 1313 } 1314 if (ccb->cdm.pattern_buf_len > 0) { 1315 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1316 lengths[0] = ccb->cdm.pattern_buf_len; 1317 dirs[0] = CAM_DIR_OUT; 1318 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1319 lengths[1] = ccb->cdm.match_buf_len; 1320 dirs[1] = CAM_DIR_IN; 1321 numbufs = 2; 1322 } else { 1323 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1324 lengths[0] = ccb->cdm.match_buf_len; 1325 dirs[0] = CAM_DIR_IN; 1326 numbufs = 1; 1327 } 1328 io_req->data_flags = CAM_DATA_VADDR; 1329 break; 1330 case XPT_SCSI_IO: 1331 case XPT_CONT_TARGET_IO: 1332 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1333 return(0); 1334 1335 /* 1336 * The user shouldn't be able to supply a bio. 1337 */ 1338 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO) 1339 return (EINVAL); 1340 1341 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1342 1343 data_ptrs[0] = &ccb->csio.data_ptr; 1344 lengths[0] = ccb->csio.dxfer_len; 1345 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1346 num_segs = ccb->csio.sglist_cnt; 1347 seg_cnt_ptr = &ccb->csio.sglist_cnt; 1348 numbufs = 1; 1349 maxmap = softc->maxio; 1350 break; 1351 case XPT_ATA_IO: 1352 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1353 return(0); 1354 1355 /* 1356 * We only support a single virtual address for ATA I/O. 1357 */ 1358 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 1359 return (EINVAL); 1360 1361 io_req->data_flags = CAM_DATA_VADDR; 1362 1363 data_ptrs[0] = &ccb->ataio.data_ptr; 1364 lengths[0] = ccb->ataio.dxfer_len; 1365 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1366 numbufs = 1; 1367 maxmap = softc->maxio; 1368 break; 1369 case XPT_SMP_IO: 1370 io_req->data_flags = CAM_DATA_VADDR; 1371 1372 data_ptrs[0] = &ccb->smpio.smp_request; 1373 lengths[0] = ccb->smpio.smp_request_len; 1374 dirs[0] = CAM_DIR_OUT; 1375 data_ptrs[1] = &ccb->smpio.smp_response; 1376 lengths[1] = ccb->smpio.smp_response_len; 1377 dirs[1] = CAM_DIR_IN; 1378 numbufs = 2; 1379 maxmap = softc->maxio; 1380 break; 1381 case XPT_DEV_ADVINFO: 1382 if (ccb->cdai.bufsiz == 0) 1383 return (0); 1384 1385 io_req->data_flags = CAM_DATA_VADDR; 1386 1387 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1388 lengths[0] = ccb->cdai.bufsiz; 1389 dirs[0] = CAM_DIR_IN; 1390 numbufs = 1; 1391 break; 1392 default: 1393 return(EINVAL); 1394 break; /* NOTREACHED */ 1395 } 1396 1397 io_req->num_bufs = numbufs; 1398 1399 /* 1400 * If there is a maximum, check to make sure that the user's 1401 * request fits within the limit. In general, we should only have 1402 * a maximum length for requests that go to hardware. Otherwise it 1403 * is whatever we're able to malloc. 1404 */ 1405 for (i = 0; i < numbufs; i++) { 1406 io_req->user_bufs[i] = *data_ptrs[i]; 1407 io_req->dirs[i] = dirs[i]; 1408 io_req->lengths[i] = lengths[i]; 1409 1410 if (maxmap == 0) 1411 continue; 1412 1413 if (lengths[i] <= maxmap) 1414 continue; 1415 1416 xpt_print(periph->path, "%s: data length %u > max allowed %u " 1417 "bytes\n", __func__, lengths[i], maxmap); 1418 error = EINVAL; 1419 goto bailout; 1420 } 1421 1422 switch (io_req->data_flags) { 1423 case CAM_DATA_VADDR: 1424 /* Map or copy the buffer into kernel address space */ 1425 for (i = 0; i < numbufs; i++) { 1426 uint8_t *tmp_buf; 1427 1428 /* 1429 * If for some reason no length is specified, we 1430 * don't need to allocate anything. 1431 */ 1432 if (io_req->lengths[i] == 0) 1433 continue; 1434 1435 /* 1436 * Make sure that the user's buffer is accessible 1437 * to that process. 1438 */ 1439 if (!useracc(io_req->user_bufs[i], io_req->lengths[i], 1440 (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE : 1441 VM_PROT_READ)) { 1442 xpt_print(periph->path, "%s: user address %p " 1443 "length %u is not accessible\n", __func__, 1444 io_req->user_bufs[i], io_req->lengths[i]); 1445 error = EFAULT; 1446 goto bailout; 1447 } 1448 1449 tmp_buf = malloc(lengths[i], M_SCSIPASS, 1450 M_WAITOK | M_ZERO); 1451 io_req->kern_bufs[i] = tmp_buf; 1452 *data_ptrs[i] = tmp_buf; 1453 1454 #if 0 1455 xpt_print(periph->path, "%s: malloced %p len %u, user " 1456 "buffer %p, operation: %s\n", __func__, 1457 tmp_buf, lengths[i], io_req->user_bufs[i], 1458 (dirs[i] == CAM_DIR_IN) ? "read" : "write"); 1459 #endif 1460 /* 1461 * We only need to copy in if the user is writing. 1462 */ 1463 if (dirs[i] != CAM_DIR_OUT) 1464 continue; 1465 1466 error = copyin(io_req->user_bufs[i], 1467 io_req->kern_bufs[i], lengths[i]); 1468 if (error != 0) { 1469 xpt_print(periph->path, "%s: copy of user " 1470 "buffer from %p to %p failed with " 1471 "error %d\n", __func__, 1472 io_req->user_bufs[i], 1473 io_req->kern_bufs[i], error); 1474 goto bailout; 1475 } 1476 } 1477 break; 1478 case CAM_DATA_PADDR: 1479 /* Pass down the pointer as-is */ 1480 break; 1481 case CAM_DATA_SG: { 1482 size_t sg_length, size_to_go, alloc_size; 1483 uint32_t num_segs_needed; 1484 1485 /* 1486 * Copy the user S/G list in, and then copy in the 1487 * individual segments. 1488 */ 1489 /* 1490 * We shouldn't see this, but check just in case. 1491 */ 1492 if (numbufs != 1) { 1493 xpt_print(periph->path, "%s: cannot currently handle " 1494 "more than one S/G list per CCB\n", __func__); 1495 error = EINVAL; 1496 goto bailout; 1497 } 1498 1499 /* 1500 * We have to have at least one segment. 1501 */ 1502 if (num_segs == 0) { 1503 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, " 1504 "but sglist_cnt=0!\n", __func__); 1505 error = EINVAL; 1506 goto bailout; 1507 } 1508 1509 /* 1510 * Make sure the user specified the total length and didn't 1511 * just leave it to us to decode the S/G list. 1512 */ 1513 if (lengths[0] == 0) { 1514 xpt_print(periph->path, "%s: no dxfer_len specified, " 1515 "but CAM_DATA_SG flag is set!\n", __func__); 1516 error = EINVAL; 1517 goto bailout; 1518 } 1519 1520 /* 1521 * We allocate buffers in io_zone_size increments for an 1522 * S/G list. This will generally be MAXPHYS. 1523 */ 1524 if (lengths[0] <= softc->io_zone_size) 1525 num_segs_needed = 1; 1526 else { 1527 num_segs_needed = lengths[0] / softc->io_zone_size; 1528 if ((lengths[0] % softc->io_zone_size) != 0) 1529 num_segs_needed++; 1530 } 1531 1532 /* Figure out the size of the S/G list */ 1533 sg_length = num_segs * sizeof(bus_dma_segment_t); 1534 io_req->num_user_segs = num_segs; 1535 io_req->num_kern_segs = num_segs_needed; 1536 1537 /* Save the user's S/G list pointer for later restoration */ 1538 io_req->user_bufs[0] = *data_ptrs[0]; 1539 1540 /* 1541 * If we have enough segments allocated by default to handle 1542 * the length of the user's S/G list, 1543 */ 1544 if (num_segs > PASS_MAX_SEGS) { 1545 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1546 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1547 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1548 } else 1549 io_req->user_segptr = io_req->user_segs; 1550 1551 if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) { 1552 xpt_print(periph->path, "%s: unable to access user " 1553 "S/G list at %p\n", __func__, *data_ptrs[0]); 1554 error = EFAULT; 1555 goto bailout; 1556 } 1557 1558 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1559 if (error != 0) { 1560 xpt_print(periph->path, "%s: copy of user S/G list " 1561 "from %p to %p failed with error %d\n", 1562 __func__, *data_ptrs[0], io_req->user_segptr, 1563 error); 1564 goto bailout; 1565 } 1566 1567 if (num_segs_needed > PASS_MAX_SEGS) { 1568 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) * 1569 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO); 1570 io_req->flags |= PASS_IO_KERN_SEG_MALLOC; 1571 } else { 1572 io_req->kern_segptr = io_req->kern_segs; 1573 } 1574 1575 /* 1576 * Allocate the kernel S/G list. 1577 */ 1578 for (size_to_go = lengths[0], i = 0; 1579 size_to_go > 0 && i < num_segs_needed; 1580 i++, size_to_go -= alloc_size) { 1581 uint8_t *kern_ptr; 1582 1583 alloc_size = min(size_to_go, softc->io_zone_size); 1584 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK); 1585 io_req->kern_segptr[i].ds_addr = 1586 (bus_addr_t)(uintptr_t)kern_ptr; 1587 io_req->kern_segptr[i].ds_len = alloc_size; 1588 } 1589 if (size_to_go > 0) { 1590 printf("%s: size_to_go = %zu, software error!\n", 1591 __func__, size_to_go); 1592 error = EINVAL; 1593 goto bailout; 1594 } 1595 1596 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr; 1597 *seg_cnt_ptr = io_req->num_kern_segs; 1598 1599 /* 1600 * We only need to copy data here if the user is writing. 1601 */ 1602 if (dirs[0] == CAM_DIR_OUT) 1603 error = passcopysglist(periph, io_req, dirs[0]); 1604 break; 1605 } 1606 case CAM_DATA_SG_PADDR: { 1607 size_t sg_length; 1608 1609 /* 1610 * We shouldn't see this, but check just in case. 1611 */ 1612 if (numbufs != 1) { 1613 printf("%s: cannot currently handle more than one " 1614 "S/G list per CCB\n", __func__); 1615 error = EINVAL; 1616 goto bailout; 1617 } 1618 1619 /* 1620 * We have to have at least one segment. 1621 */ 1622 if (num_segs == 0) { 1623 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag " 1624 "set, but sglist_cnt=0!\n", __func__); 1625 error = EINVAL; 1626 goto bailout; 1627 } 1628 1629 /* 1630 * Make sure the user specified the total length and didn't 1631 * just leave it to us to decode the S/G list. 1632 */ 1633 if (lengths[0] == 0) { 1634 xpt_print(periph->path, "%s: no dxfer_len specified, " 1635 "but CAM_DATA_SG flag is set!\n", __func__); 1636 error = EINVAL; 1637 goto bailout; 1638 } 1639 1640 /* Figure out the size of the S/G list */ 1641 sg_length = num_segs * sizeof(bus_dma_segment_t); 1642 io_req->num_user_segs = num_segs; 1643 io_req->num_kern_segs = io_req->num_user_segs; 1644 1645 /* Save the user's S/G list pointer for later restoration */ 1646 io_req->user_bufs[0] = *data_ptrs[0]; 1647 1648 if (num_segs > PASS_MAX_SEGS) { 1649 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1650 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1651 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1652 } else 1653 io_req->user_segptr = io_req->user_segs; 1654 1655 io_req->kern_segptr = io_req->user_segptr; 1656 1657 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1658 if (error != 0) { 1659 xpt_print(periph->path, "%s: copy of user S/G list " 1660 "from %p to %p failed with error %d\n", 1661 __func__, *data_ptrs[0], io_req->user_segptr, 1662 error); 1663 goto bailout; 1664 } 1665 break; 1666 } 1667 default: 1668 case CAM_DATA_BIO: 1669 /* 1670 * A user shouldn't be attaching a bio to the CCB. It 1671 * isn't a user-accessible structure. 1672 */ 1673 error = EINVAL; 1674 break; 1675 } 1676 1677 bailout: 1678 if (error != 0) 1679 passiocleanup(softc, io_req); 1680 1681 return (error); 1682 } 1683 1684 static int 1685 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req) 1686 { 1687 struct pass_softc *softc; 1688 union ccb *ccb; 1689 int error; 1690 int i; 1691 1692 error = 0; 1693 softc = (struct pass_softc *)periph->softc; 1694 ccb = &io_req->ccb; 1695 1696 switch (io_req->data_flags) { 1697 case CAM_DATA_VADDR: 1698 /* 1699 * Copy back to the user buffer if this was a read. 1700 */ 1701 for (i = 0; i < io_req->num_bufs; i++) { 1702 if (io_req->dirs[i] != CAM_DIR_IN) 1703 continue; 1704 1705 error = copyout(io_req->kern_bufs[i], 1706 io_req->user_bufs[i], io_req->lengths[i]); 1707 if (error != 0) { 1708 xpt_print(periph->path, "Unable to copy %u " 1709 "bytes from %p to user address %p\n", 1710 io_req->lengths[i], 1711 io_req->kern_bufs[i], 1712 io_req->user_bufs[i]); 1713 goto bailout; 1714 } 1715 1716 } 1717 break; 1718 case CAM_DATA_PADDR: 1719 /* Do nothing. The pointer is a physical address already */ 1720 break; 1721 case CAM_DATA_SG: 1722 /* 1723 * Copy back to the user buffer if this was a read. 1724 * Restore the user's S/G list buffer pointer. 1725 */ 1726 if (io_req->dirs[0] == CAM_DIR_IN) 1727 error = passcopysglist(periph, io_req, io_req->dirs[0]); 1728 break; 1729 case CAM_DATA_SG_PADDR: 1730 /* 1731 * Restore the user's S/G list buffer pointer. No need to 1732 * copy. 1733 */ 1734 break; 1735 default: 1736 case CAM_DATA_BIO: 1737 error = EINVAL; 1738 break; 1739 } 1740 1741 bailout: 1742 /* 1743 * Reset the user's pointers to their original values and free 1744 * allocated memory. 1745 */ 1746 passiocleanup(softc, io_req); 1747 1748 return (error); 1749 } 1750 1751 static int 1752 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1753 { 1754 int error; 1755 1756 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 1757 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl); 1758 } 1759 return (error); 1760 } 1761 1762 static int 1763 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1764 { 1765 struct cam_periph *periph; 1766 struct pass_softc *softc; 1767 int error; 1768 uint32_t priority; 1769 1770 periph = (struct cam_periph *)dev->si_drv1; 1771 cam_periph_lock(periph); 1772 softc = (struct pass_softc *)periph->softc; 1773 1774 error = 0; 1775 1776 switch (cmd) { 1777 1778 case CAMIOCOMMAND: 1779 { 1780 union ccb *inccb; 1781 union ccb *ccb; 1782 int ccb_malloced; 1783 1784 inccb = (union ccb *)addr; 1785 1786 /* 1787 * Some CCB types, like scan bus and scan lun can only go 1788 * through the transport layer device. 1789 */ 1790 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1791 xpt_print(periph->path, "CCB function code %#x is " 1792 "restricted to the XPT device\n", 1793 inccb->ccb_h.func_code); 1794 error = ENODEV; 1795 break; 1796 } 1797 1798 /* Compatibility for RL/priority-unaware code. */ 1799 priority = inccb->ccb_h.pinfo.priority; 1800 if (priority <= CAM_PRIORITY_OOB) 1801 priority += CAM_PRIORITY_OOB + 1; 1802 1803 /* 1804 * Non-immediate CCBs need a CCB from the per-device pool 1805 * of CCBs, which is scheduled by the transport layer. 1806 * Immediate CCBs and user-supplied CCBs should just be 1807 * malloced. 1808 */ 1809 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED) 1810 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) { 1811 ccb = cam_periph_getccb(periph, priority); 1812 ccb_malloced = 0; 1813 } else { 1814 ccb = xpt_alloc_ccb_nowait(); 1815 1816 if (ccb != NULL) 1817 xpt_setup_ccb(&ccb->ccb_h, periph->path, 1818 priority); 1819 ccb_malloced = 1; 1820 } 1821 1822 if (ccb == NULL) { 1823 xpt_print(periph->path, "unable to allocate CCB\n"); 1824 error = ENOMEM; 1825 break; 1826 } 1827 1828 error = passsendccb(periph, ccb, inccb); 1829 1830 if (ccb_malloced) 1831 xpt_free_ccb(ccb); 1832 else 1833 xpt_release_ccb(ccb); 1834 1835 break; 1836 } 1837 case CAMIOQUEUE: 1838 { 1839 struct pass_io_req *io_req; 1840 union ccb **user_ccb, *ccb; 1841 xpt_opcode fc; 1842 1843 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) { 1844 error = passcreatezone(periph); 1845 if (error != 0) 1846 goto bailout; 1847 } 1848 1849 /* 1850 * We're going to do a blocking allocation for this I/O 1851 * request, so we have to drop the lock. 1852 */ 1853 cam_periph_unlock(periph); 1854 1855 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO); 1856 ccb = &io_req->ccb; 1857 user_ccb = (union ccb **)addr; 1858 1859 /* 1860 * Unlike the CAMIOCOMMAND ioctl above, we only have a 1861 * pointer to the user's CCB, so we have to copy the whole 1862 * thing in to a buffer we have allocated (above) instead 1863 * of allowing the ioctl code to malloc a buffer and copy 1864 * it in. 1865 * 1866 * This is an advantage for this asynchronous interface, 1867 * since we don't want the memory to get freed while the 1868 * CCB is outstanding. 1869 */ 1870 #if 0 1871 xpt_print(periph->path, "Copying user CCB %p to " 1872 "kernel address %p\n", *user_ccb, ccb); 1873 #endif 1874 error = copyin(*user_ccb, ccb, sizeof(*ccb)); 1875 if (error != 0) { 1876 xpt_print(periph->path, "Copy of user CCB %p to " 1877 "kernel address %p failed with error %d\n", 1878 *user_ccb, ccb, error); 1879 uma_zfree(softc->pass_zone, io_req); 1880 cam_periph_lock(periph); 1881 break; 1882 } 1883 1884 /* 1885 * Some CCB types, like scan bus and scan lun can only go 1886 * through the transport layer device. 1887 */ 1888 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1889 xpt_print(periph->path, "CCB function code %#x is " 1890 "restricted to the XPT device\n", 1891 ccb->ccb_h.func_code); 1892 uma_zfree(softc->pass_zone, io_req); 1893 cam_periph_lock(periph); 1894 error = ENODEV; 1895 break; 1896 } 1897 1898 /* 1899 * Save the user's CCB pointer as well as his linked list 1900 * pointers and peripheral private area so that we can 1901 * restore these later. 1902 */ 1903 io_req->user_ccb_ptr = *user_ccb; 1904 io_req->user_periph_links = ccb->ccb_h.periph_links; 1905 io_req->user_periph_priv = ccb->ccb_h.periph_priv; 1906 1907 /* 1908 * Now that we've saved the user's values, we can set our 1909 * own peripheral private entry. 1910 */ 1911 ccb->ccb_h.ccb_ioreq = io_req; 1912 1913 /* Compatibility for RL/priority-unaware code. */ 1914 priority = ccb->ccb_h.pinfo.priority; 1915 if (priority <= CAM_PRIORITY_OOB) 1916 priority += CAM_PRIORITY_OOB + 1; 1917 1918 /* 1919 * Setup fields in the CCB like the path and the priority. 1920 * The path in particular cannot be done in userland, since 1921 * it is a pointer to a kernel data structure. 1922 */ 1923 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority, 1924 ccb->ccb_h.flags); 1925 1926 /* 1927 * Setup our done routine. There is no way for the user to 1928 * have a valid pointer here. 1929 */ 1930 ccb->ccb_h.cbfcnp = passdone; 1931 1932 fc = ccb->ccb_h.func_code; 1933 /* 1934 * If this function code has memory that can be mapped in 1935 * or out, we need to call passmemsetup(). 1936 */ 1937 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) 1938 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH) 1939 || (fc == XPT_DEV_ADVINFO)) { 1940 error = passmemsetup(periph, io_req); 1941 if (error != 0) { 1942 uma_zfree(softc->pass_zone, io_req); 1943 cam_periph_lock(periph); 1944 break; 1945 } 1946 } else 1947 io_req->mapinfo.num_bufs_used = 0; 1948 1949 cam_periph_lock(periph); 1950 1951 /* 1952 * Everything goes on the incoming queue initially. 1953 */ 1954 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links); 1955 1956 /* 1957 * If the CCB is queued, and is not a user CCB, then 1958 * we need to allocate a slot for it. Call xpt_schedule() 1959 * so that our start routine will get called when a CCB is 1960 * available. 1961 */ 1962 if ((fc & XPT_FC_QUEUED) 1963 && ((fc & XPT_FC_USER_CCB) == 0)) { 1964 xpt_schedule(periph, priority); 1965 break; 1966 } 1967 1968 /* 1969 * At this point, the CCB in question is either an 1970 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB 1971 * and therefore should be malloced, not allocated via a slot. 1972 * Remove the CCB from the incoming queue and add it to the 1973 * active queue. 1974 */ 1975 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 1976 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 1977 1978 xpt_action(ccb); 1979 1980 /* 1981 * If this is not a queued CCB (i.e. it is an immediate CCB), 1982 * then it is already done. We need to put it on the done 1983 * queue for the user to fetch. 1984 */ 1985 if ((fc & XPT_FC_QUEUED) == 0) { 1986 TAILQ_REMOVE(&softc->active_queue, io_req, links); 1987 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 1988 } 1989 break; 1990 } 1991 case CAMIOGET: 1992 { 1993 union ccb **user_ccb; 1994 struct pass_io_req *io_req; 1995 int old_error; 1996 1997 user_ccb = (union ccb **)addr; 1998 old_error = 0; 1999 2000 io_req = TAILQ_FIRST(&softc->done_queue); 2001 if (io_req == NULL) { 2002 error = ENOENT; 2003 break; 2004 } 2005 2006 /* 2007 * Remove the I/O from the done queue. 2008 */ 2009 TAILQ_REMOVE(&softc->done_queue, io_req, links); 2010 2011 /* 2012 * We have to drop the lock during the copyout because the 2013 * copyout can result in VM faults that require sleeping. 2014 */ 2015 cam_periph_unlock(periph); 2016 2017 /* 2018 * Do any needed copies (e.g. for reads) and revert the 2019 * pointers in the CCB back to the user's pointers. 2020 */ 2021 error = passmemdone(periph, io_req); 2022 2023 old_error = error; 2024 2025 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links; 2026 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv; 2027 2028 #if 0 2029 xpt_print(periph->path, "Copying to user CCB %p from " 2030 "kernel address %p\n", *user_ccb, &io_req->ccb); 2031 #endif 2032 2033 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb)); 2034 if (error != 0) { 2035 xpt_print(periph->path, "Copy to user CCB %p from " 2036 "kernel address %p failed with error %d\n", 2037 *user_ccb, &io_req->ccb, error); 2038 } 2039 2040 /* 2041 * Prefer the first error we got back, and make sure we 2042 * don't overwrite bad status with good. 2043 */ 2044 if (old_error != 0) 2045 error = old_error; 2046 2047 cam_periph_lock(periph); 2048 2049 /* 2050 * At this point, if there was an error, we could potentially 2051 * re-queue the I/O and try again. But why? The error 2052 * would almost certainly happen again. We might as well 2053 * not leak memory. 2054 */ 2055 uma_zfree(softc->pass_zone, io_req); 2056 break; 2057 } 2058 default: 2059 error = cam_periph_ioctl(periph, cmd, addr, passerror); 2060 break; 2061 } 2062 2063 bailout: 2064 cam_periph_unlock(periph); 2065 2066 return(error); 2067 } 2068 2069 static int 2070 passpoll(struct cdev *dev, int poll_events, struct thread *td) 2071 { 2072 struct cam_periph *periph; 2073 struct pass_softc *softc; 2074 int revents; 2075 2076 periph = (struct cam_periph *)dev->si_drv1; 2077 softc = (struct pass_softc *)periph->softc; 2078 2079 revents = poll_events & (POLLOUT | POLLWRNORM); 2080 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) { 2081 cam_periph_lock(periph); 2082 2083 if (!TAILQ_EMPTY(&softc->done_queue)) { 2084 revents |= poll_events & (POLLIN | POLLRDNORM); 2085 } 2086 cam_periph_unlock(periph); 2087 if (revents == 0) 2088 selrecord(td, &softc->read_select); 2089 } 2090 2091 return (revents); 2092 } 2093 2094 static int 2095 passkqfilter(struct cdev *dev, struct knote *kn) 2096 { 2097 struct cam_periph *periph; 2098 struct pass_softc *softc; 2099 2100 periph = (struct cam_periph *)dev->si_drv1; 2101 softc = (struct pass_softc *)periph->softc; 2102 2103 kn->kn_hook = (caddr_t)periph; 2104 kn->kn_fop = &passread_filtops; 2105 knlist_add(&softc->read_select.si_note, kn, 0); 2106 2107 return (0); 2108 } 2109 2110 static void 2111 passreadfiltdetach(struct knote *kn) 2112 { 2113 struct cam_periph *periph; 2114 struct pass_softc *softc; 2115 2116 periph = (struct cam_periph *)kn->kn_hook; 2117 softc = (struct pass_softc *)periph->softc; 2118 2119 knlist_remove(&softc->read_select.si_note, kn, 0); 2120 } 2121 2122 static int 2123 passreadfilt(struct knote *kn, long hint) 2124 { 2125 struct cam_periph *periph; 2126 struct pass_softc *softc; 2127 int retval; 2128 2129 periph = (struct cam_periph *)kn->kn_hook; 2130 softc = (struct pass_softc *)periph->softc; 2131 2132 cam_periph_assert(periph, MA_OWNED); 2133 2134 if (TAILQ_EMPTY(&softc->done_queue)) 2135 retval = 0; 2136 else 2137 retval = 1; 2138 2139 return (retval); 2140 } 2141 2142 /* 2143 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb" 2144 * should be the CCB that is copied in from the user. 2145 */ 2146 static int 2147 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb) 2148 { 2149 struct pass_softc *softc; 2150 struct cam_periph_map_info mapinfo; 2151 xpt_opcode fc; 2152 int error; 2153 2154 softc = (struct pass_softc *)periph->softc; 2155 2156 /* 2157 * There are some fields in the CCB header that need to be 2158 * preserved, the rest we get from the user. 2159 */ 2160 xpt_merge_ccb(ccb, inccb); 2161 2162 /* 2163 */ 2164 ccb->ccb_h.cbfcnp = passdone; 2165 2166 /* 2167 * Let cam_periph_mapmem do a sanity check on the data pointer format. 2168 * Even if no data transfer is needed, it's a cheap check and it 2169 * simplifies the code. 2170 */ 2171 fc = ccb->ccb_h.func_code; 2172 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO) 2173 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO)) { 2174 bzero(&mapinfo, sizeof(mapinfo)); 2175 2176 /* 2177 * cam_periph_mapmem calls into proc and vm functions that can 2178 * sleep as well as trigger I/O, so we can't hold the lock. 2179 * Dropping it here is reasonably safe. 2180 */ 2181 cam_periph_unlock(periph); 2182 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio); 2183 cam_periph_lock(periph); 2184 2185 /* 2186 * cam_periph_mapmem returned an error, we can't continue. 2187 * Return the error to the user. 2188 */ 2189 if (error) 2190 return(error); 2191 } else 2192 /* Ensure that the unmap call later on is a no-op. */ 2193 mapinfo.num_bufs_used = 0; 2194 2195 /* 2196 * If the user wants us to perform any error recovery, then honor 2197 * that request. Otherwise, it's up to the user to perform any 2198 * error recovery. 2199 */ 2200 cam_periph_runccb(ccb, passerror, /* cam_flags */ CAM_RETRY_SELTO, 2201 /* sense_flags */ ((ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? 2202 SF_RETRY_UA : SF_NO_RECOVERY) | SF_NO_PRINT, 2203 softc->device_stats); 2204 2205 cam_periph_unmapmem(ccb, &mapinfo); 2206 2207 ccb->ccb_h.cbfcnp = NULL; 2208 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv; 2209 bcopy(ccb, inccb, sizeof(union ccb)); 2210 2211 return(0); 2212 } 2213 2214 static int 2215 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) 2216 { 2217 struct cam_periph *periph; 2218 struct pass_softc *softc; 2219 2220 periph = xpt_path_periph(ccb->ccb_h.path); 2221 softc = (struct pass_softc *)periph->softc; 2222 2223 return(cam_periph_error(ccb, cam_flags, sense_flags, 2224 &softc->saved_ccb)); 2225 } 2226