1 /*- 2 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs. 3 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions, and the following disclaimer, 11 * without modification, immediately at the beginning of the file. 12 * 2. The name of the author may not be used to endorse or promote products 13 * derived from this software without specific prior written permission. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 19 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/kernel.h> 34 #include <sys/conf.h> 35 #include <sys/types.h> 36 #include <sys/bio.h> 37 #include <sys/bus.h> 38 #include <sys/devicestat.h> 39 #include <sys/errno.h> 40 #include <sys/fcntl.h> 41 #include <sys/malloc.h> 42 #include <sys/proc.h> 43 #include <sys/poll.h> 44 #include <sys/selinfo.h> 45 #include <sys/sdt.h> 46 #include <sys/taskqueue.h> 47 #include <vm/uma.h> 48 #include <vm/vm.h> 49 #include <vm/vm_extern.h> 50 51 #include <machine/bus.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_periph.h> 56 #include <cam/cam_queue.h> 57 #include <cam/cam_xpt.h> 58 #include <cam/cam_xpt_periph.h> 59 #include <cam/cam_debug.h> 60 #include <cam/cam_compat.h> 61 #include <cam/cam_xpt_periph.h> 62 63 #include <cam/scsi/scsi_all.h> 64 #include <cam/scsi/scsi_pass.h> 65 66 typedef enum { 67 PASS_FLAG_OPEN = 0x01, 68 PASS_FLAG_LOCKED = 0x02, 69 PASS_FLAG_INVALID = 0x04, 70 PASS_FLAG_INITIAL_PHYSPATH = 0x08, 71 PASS_FLAG_ZONE_INPROG = 0x10, 72 PASS_FLAG_ZONE_VALID = 0x20, 73 PASS_FLAG_UNMAPPED_CAPABLE = 0x40, 74 PASS_FLAG_ABANDONED_REF_SET = 0x80 75 } pass_flags; 76 77 typedef enum { 78 PASS_STATE_NORMAL 79 } pass_state; 80 81 typedef enum { 82 PASS_CCB_BUFFER_IO, 83 PASS_CCB_QUEUED_IO 84 } pass_ccb_types; 85 86 #define ccb_type ppriv_field0 87 #define ccb_ioreq ppriv_ptr1 88 89 /* 90 * The maximum number of memory segments we preallocate. 91 */ 92 #define PASS_MAX_SEGS 16 93 94 typedef enum { 95 PASS_IO_NONE = 0x00, 96 PASS_IO_USER_SEG_MALLOC = 0x01, 97 PASS_IO_KERN_SEG_MALLOC = 0x02, 98 PASS_IO_ABANDONED = 0x04 99 } pass_io_flags; 100 101 struct pass_io_req { 102 union ccb ccb; 103 union ccb *alloced_ccb; 104 union ccb *user_ccb_ptr; 105 camq_entry user_periph_links; 106 ccb_ppriv_area user_periph_priv; 107 struct cam_periph_map_info mapinfo; 108 pass_io_flags flags; 109 ccb_flags data_flags; 110 int num_user_segs; 111 bus_dma_segment_t user_segs[PASS_MAX_SEGS]; 112 int num_kern_segs; 113 bus_dma_segment_t kern_segs[PASS_MAX_SEGS]; 114 bus_dma_segment_t *user_segptr; 115 bus_dma_segment_t *kern_segptr; 116 int num_bufs; 117 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 118 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 119 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS]; 120 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS]; 121 struct bintime start_time; 122 TAILQ_ENTRY(pass_io_req) links; 123 }; 124 125 struct pass_softc { 126 pass_state state; 127 pass_flags flags; 128 u_int8_t pd_type; 129 union ccb saved_ccb; 130 int open_count; 131 u_int maxio; 132 struct devstat *device_stats; 133 struct cdev *dev; 134 struct cdev *alias_dev; 135 struct task add_physpath_task; 136 struct task shutdown_kqueue_task; 137 struct selinfo read_select; 138 TAILQ_HEAD(, pass_io_req) incoming_queue; 139 TAILQ_HEAD(, pass_io_req) active_queue; 140 TAILQ_HEAD(, pass_io_req) abandoned_queue; 141 TAILQ_HEAD(, pass_io_req) done_queue; 142 struct cam_periph *periph; 143 char zone_name[12]; 144 char io_zone_name[12]; 145 uma_zone_t pass_zone; 146 uma_zone_t pass_io_zone; 147 size_t io_zone_size; 148 }; 149 150 static d_open_t passopen; 151 static d_close_t passclose; 152 static d_ioctl_t passioctl; 153 static d_ioctl_t passdoioctl; 154 static d_poll_t passpoll; 155 static d_kqfilter_t passkqfilter; 156 static void passreadfiltdetach(struct knote *kn); 157 static int passreadfilt(struct knote *kn, long hint); 158 159 static periph_init_t passinit; 160 static periph_ctor_t passregister; 161 static periph_oninv_t passoninvalidate; 162 static periph_dtor_t passcleanup; 163 static periph_start_t passstart; 164 static void pass_shutdown_kqueue(void *context, int pending); 165 static void pass_add_physpath(void *context, int pending); 166 static void passasync(void *callback_arg, u_int32_t code, 167 struct cam_path *path, void *arg); 168 static void passdone(struct cam_periph *periph, 169 union ccb *done_ccb); 170 static int passcreatezone(struct cam_periph *periph); 171 static void passiocleanup(struct pass_softc *softc, 172 struct pass_io_req *io_req); 173 static int passcopysglist(struct cam_periph *periph, 174 struct pass_io_req *io_req, 175 ccb_flags direction); 176 static int passmemsetup(struct cam_periph *periph, 177 struct pass_io_req *io_req); 178 static int passmemdone(struct cam_periph *periph, 179 struct pass_io_req *io_req); 180 static int passerror(union ccb *ccb, u_int32_t cam_flags, 181 u_int32_t sense_flags); 182 static int passsendccb(struct cam_periph *periph, union ccb *ccb, 183 union ccb *inccb); 184 185 static struct periph_driver passdriver = 186 { 187 passinit, "pass", 188 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0 189 }; 190 191 PERIPHDRIVER_DECLARE(pass, passdriver); 192 193 static struct cdevsw pass_cdevsw = { 194 .d_version = D_VERSION, 195 .d_flags = D_TRACKCLOSE, 196 .d_open = passopen, 197 .d_close = passclose, 198 .d_ioctl = passioctl, 199 .d_poll = passpoll, 200 .d_kqfilter = passkqfilter, 201 .d_name = "pass", 202 }; 203 204 static struct filterops passread_filtops = { 205 .f_isfd = 1, 206 .f_detach = passreadfiltdetach, 207 .f_event = passreadfilt 208 }; 209 210 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers"); 211 212 static void 213 passinit(void) 214 { 215 cam_status status; 216 217 /* 218 * Install a global async callback. This callback will 219 * receive async callbacks like "new device found". 220 */ 221 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL); 222 223 if (status != CAM_REQ_CMP) { 224 printf("pass: Failed to attach master async callback " 225 "due to status 0x%x!\n", status); 226 } 227 228 } 229 230 static void 231 passrejectios(struct cam_periph *periph) 232 { 233 struct pass_io_req *io_req, *io_req2; 234 struct pass_softc *softc; 235 236 softc = (struct pass_softc *)periph->softc; 237 238 /* 239 * The user can no longer get status for I/O on the done queue, so 240 * clean up all outstanding I/O on the done queue. 241 */ 242 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 243 TAILQ_REMOVE(&softc->done_queue, io_req, links); 244 passiocleanup(softc, io_req); 245 uma_zfree(softc->pass_zone, io_req); 246 } 247 248 /* 249 * The underlying device is gone, so we can't issue these I/Os. 250 * The devfs node has been shut down, so we can't return status to 251 * the user. Free any I/O left on the incoming queue. 252 */ 253 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) { 254 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 255 passiocleanup(softc, io_req); 256 uma_zfree(softc->pass_zone, io_req); 257 } 258 259 /* 260 * Normally we would put I/Os on the abandoned queue and acquire a 261 * reference when we saw the final close. But, the device went 262 * away and devfs may have moved everything off to deadfs by the 263 * time the I/O done callback is called; as a result, we won't see 264 * any more closes. So, if we have any active I/Os, we need to put 265 * them on the abandoned queue. When the abandoned queue is empty, 266 * we'll release the remaining reference (see below) to the peripheral. 267 */ 268 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) { 269 TAILQ_REMOVE(&softc->active_queue, io_req, links); 270 io_req->flags |= PASS_IO_ABANDONED; 271 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links); 272 } 273 274 /* 275 * If we put any I/O on the abandoned queue, acquire a reference. 276 */ 277 if ((!TAILQ_EMPTY(&softc->abandoned_queue)) 278 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) { 279 cam_periph_doacquire(periph); 280 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 281 } 282 } 283 284 static void 285 passdevgonecb(void *arg) 286 { 287 struct cam_periph *periph; 288 struct mtx *mtx; 289 struct pass_softc *softc; 290 int i; 291 292 periph = (struct cam_periph *)arg; 293 mtx = cam_periph_mtx(periph); 294 mtx_lock(mtx); 295 296 softc = (struct pass_softc *)periph->softc; 297 KASSERT(softc->open_count >= 0, ("Negative open count %d", 298 softc->open_count)); 299 300 /* 301 * When we get this callback, we will get no more close calls from 302 * devfs. So if we have any dangling opens, we need to release the 303 * reference held for that particular context. 304 */ 305 for (i = 0; i < softc->open_count; i++) 306 cam_periph_release_locked(periph); 307 308 softc->open_count = 0; 309 310 /* 311 * Release the reference held for the device node, it is gone now. 312 * Accordingly, inform all queued I/Os of their fate. 313 */ 314 cam_periph_release_locked(periph); 315 passrejectios(periph); 316 317 /* 318 * We reference the SIM lock directly here, instead of using 319 * cam_periph_unlock(). The reason is that the final call to 320 * cam_periph_release_locked() above could result in the periph 321 * getting freed. If that is the case, dereferencing the periph 322 * with a cam_periph_unlock() call would cause a page fault. 323 */ 324 mtx_unlock(mtx); 325 326 /* 327 * We have to remove our kqueue context from a thread because it 328 * may sleep. It would be nice if we could get a callback from 329 * kqueue when it is done cleaning up resources. 330 */ 331 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task); 332 } 333 334 static void 335 passoninvalidate(struct cam_periph *periph) 336 { 337 struct pass_softc *softc; 338 339 softc = (struct pass_softc *)periph->softc; 340 341 /* 342 * De-register any async callbacks. 343 */ 344 xpt_register_async(0, passasync, periph, periph->path); 345 346 softc->flags |= PASS_FLAG_INVALID; 347 348 /* 349 * Tell devfs this device has gone away, and ask for a callback 350 * when it has cleaned up its state. 351 */ 352 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph); 353 } 354 355 static void 356 passcleanup(struct cam_periph *periph) 357 { 358 struct pass_softc *softc; 359 360 softc = (struct pass_softc *)periph->softc; 361 362 cam_periph_assert(periph, MA_OWNED); 363 KASSERT(TAILQ_EMPTY(&softc->active_queue), 364 ("%s called when there are commands on the active queue!\n", 365 __func__)); 366 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue), 367 ("%s called when there are commands on the abandoned queue!\n", 368 __func__)); 369 KASSERT(TAILQ_EMPTY(&softc->incoming_queue), 370 ("%s called when there are commands on the incoming queue!\n", 371 __func__)); 372 KASSERT(TAILQ_EMPTY(&softc->done_queue), 373 ("%s called when there are commands on the done queue!\n", 374 __func__)); 375 376 devstat_remove_entry(softc->device_stats); 377 378 cam_periph_unlock(periph); 379 380 /* 381 * We call taskqueue_drain() for the physpath task to make sure it 382 * is complete. We drop the lock because this can potentially 383 * sleep. XXX KDM that is bad. Need a way to get a callback when 384 * a taskqueue is drained. 385 * 386 * Note that we don't drain the kqueue shutdown task queue. This 387 * is because we hold a reference on the periph for kqueue, and 388 * release that reference from the kqueue shutdown task queue. So 389 * we cannot come into this routine unless we've released that 390 * reference. Also, because that could be the last reference, we 391 * could be called from the cam_periph_release() call in 392 * pass_shutdown_kqueue(). In that case, the taskqueue_drain() 393 * would deadlock. It would be preferable if we had a way to 394 * get a callback when a taskqueue is done. 395 */ 396 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task); 397 398 cam_periph_lock(periph); 399 400 free(softc, M_DEVBUF); 401 } 402 403 static void 404 pass_shutdown_kqueue(void *context, int pending) 405 { 406 struct cam_periph *periph; 407 struct pass_softc *softc; 408 409 periph = context; 410 softc = periph->softc; 411 412 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0); 413 knlist_destroy(&softc->read_select.si_note); 414 415 /* 416 * Release the reference we held for kqueue. 417 */ 418 cam_periph_release(periph); 419 } 420 421 static void 422 pass_add_physpath(void *context, int pending) 423 { 424 struct cam_periph *periph; 425 struct pass_softc *softc; 426 struct mtx *mtx; 427 char *physpath; 428 429 /* 430 * If we have one, create a devfs alias for our 431 * physical path. 432 */ 433 periph = context; 434 softc = periph->softc; 435 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK); 436 mtx = cam_periph_mtx(periph); 437 mtx_lock(mtx); 438 439 if (periph->flags & CAM_PERIPH_INVALID) 440 goto out; 441 442 if (xpt_getattr(physpath, MAXPATHLEN, 443 "GEOM::physpath", periph->path) == 0 444 && strlen(physpath) != 0) { 445 446 mtx_unlock(mtx); 447 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev, 448 softc->dev, softc->alias_dev, physpath); 449 mtx_lock(mtx); 450 } 451 452 out: 453 /* 454 * Now that we've made our alias, we no longer have to have a 455 * reference to the device. 456 */ 457 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0) 458 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH; 459 460 /* 461 * We always acquire a reference to the periph before queueing this 462 * task queue function, so it won't go away before we run. 463 */ 464 while (pending-- > 0) 465 cam_periph_release_locked(periph); 466 mtx_unlock(mtx); 467 468 free(physpath, M_DEVBUF); 469 } 470 471 static void 472 passasync(void *callback_arg, u_int32_t code, 473 struct cam_path *path, void *arg) 474 { 475 struct cam_periph *periph; 476 477 periph = (struct cam_periph *)callback_arg; 478 479 switch (code) { 480 case AC_FOUND_DEVICE: 481 { 482 struct ccb_getdev *cgd; 483 cam_status status; 484 485 cgd = (struct ccb_getdev *)arg; 486 if (cgd == NULL) 487 break; 488 489 /* 490 * Allocate a peripheral instance for 491 * this device and start the probe 492 * process. 493 */ 494 status = cam_periph_alloc(passregister, passoninvalidate, 495 passcleanup, passstart, "pass", 496 CAM_PERIPH_BIO, path, 497 passasync, AC_FOUND_DEVICE, cgd); 498 499 if (status != CAM_REQ_CMP 500 && status != CAM_REQ_INPROG) { 501 const struct cam_status_entry *entry; 502 503 entry = cam_fetch_status_entry(status); 504 505 printf("passasync: Unable to attach new device " 506 "due to status %#x: %s\n", status, entry ? 507 entry->status_text : "Unknown"); 508 } 509 510 break; 511 } 512 case AC_ADVINFO_CHANGED: 513 { 514 uintptr_t buftype; 515 516 buftype = (uintptr_t)arg; 517 if (buftype == CDAI_TYPE_PHYS_PATH) { 518 struct pass_softc *softc; 519 cam_status status; 520 521 softc = (struct pass_softc *)periph->softc; 522 /* 523 * Acquire a reference to the periph before we 524 * start the taskqueue, so that we don't run into 525 * a situation where the periph goes away before 526 * the task queue has a chance to run. 527 */ 528 status = cam_periph_acquire(periph); 529 if (status != CAM_REQ_CMP) 530 break; 531 532 taskqueue_enqueue(taskqueue_thread, 533 &softc->add_physpath_task); 534 } 535 break; 536 } 537 default: 538 cam_periph_async(periph, code, path, arg); 539 break; 540 } 541 } 542 543 static cam_status 544 passregister(struct cam_periph *periph, void *arg) 545 { 546 struct pass_softc *softc; 547 struct ccb_getdev *cgd; 548 struct ccb_pathinq cpi; 549 struct make_dev_args args; 550 int error, no_tags; 551 552 cgd = (struct ccb_getdev *)arg; 553 if (cgd == NULL) { 554 printf("%s: no getdev CCB, can't register device\n", __func__); 555 return(CAM_REQ_CMP_ERR); 556 } 557 558 softc = (struct pass_softc *)malloc(sizeof(*softc), 559 M_DEVBUF, M_NOWAIT); 560 561 if (softc == NULL) { 562 printf("%s: Unable to probe new device. " 563 "Unable to allocate softc\n", __func__); 564 return(CAM_REQ_CMP_ERR); 565 } 566 567 bzero(softc, sizeof(*softc)); 568 softc->state = PASS_STATE_NORMAL; 569 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI) 570 softc->pd_type = SID_TYPE(&cgd->inq_data); 571 else if (cgd->protocol == PROTO_SATAPM) 572 softc->pd_type = T_ENCLOSURE; 573 else 574 softc->pd_type = T_DIRECT; 575 576 periph->softc = softc; 577 softc->periph = periph; 578 TAILQ_INIT(&softc->incoming_queue); 579 TAILQ_INIT(&softc->active_queue); 580 TAILQ_INIT(&softc->abandoned_queue); 581 TAILQ_INIT(&softc->done_queue); 582 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d", 583 periph->periph_name, periph->unit_number); 584 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO", 585 periph->periph_name, periph->unit_number); 586 softc->io_zone_size = MAXPHYS; 587 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph)); 588 589 bzero(&cpi, sizeof(cpi)); 590 xpt_setup_ccb(&cpi.ccb_h, periph->path, CAM_PRIORITY_NORMAL); 591 cpi.ccb_h.func_code = XPT_PATH_INQ; 592 xpt_action((union ccb *)&cpi); 593 594 if (cpi.maxio == 0) 595 softc->maxio = DFLTPHYS; /* traditional default */ 596 else if (cpi.maxio > MAXPHYS) 597 softc->maxio = MAXPHYS; /* for safety */ 598 else 599 softc->maxio = cpi.maxio; /* real value */ 600 601 if (cpi.hba_misc & PIM_UNMAPPED) 602 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE; 603 604 /* 605 * We pass in 0 for a blocksize, since we don't 606 * know what the blocksize of this device is, if 607 * it even has a blocksize. 608 */ 609 cam_periph_unlock(periph); 610 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0; 611 softc->device_stats = devstat_new_entry("pass", 612 periph->unit_number, 0, 613 DEVSTAT_NO_BLOCKSIZE 614 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0), 615 softc->pd_type | 616 XPORT_DEVSTAT_TYPE(cpi.transport) | 617 DEVSTAT_TYPE_PASS, 618 DEVSTAT_PRIORITY_PASS); 619 620 /* 621 * Initialize the taskqueue handler for shutting down kqueue. 622 */ 623 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0, 624 pass_shutdown_kqueue, periph); 625 626 /* 627 * Acquire a reference to the periph that we can release once we've 628 * cleaned up the kqueue. 629 */ 630 if (cam_periph_acquire(periph) != CAM_REQ_CMP) { 631 xpt_print(periph->path, "%s: lost periph during " 632 "registration!\n", __func__); 633 cam_periph_lock(periph); 634 return (CAM_REQ_CMP_ERR); 635 } 636 637 /* 638 * Acquire a reference to the periph before we create the devfs 639 * instance for it. We'll release this reference once the devfs 640 * instance has been freed. 641 */ 642 if (cam_periph_acquire(periph) != CAM_REQ_CMP) { 643 xpt_print(periph->path, "%s: lost periph during " 644 "registration!\n", __func__); 645 cam_periph_lock(periph); 646 return (CAM_REQ_CMP_ERR); 647 } 648 649 /* Register the device */ 650 make_dev_args_init(&args); 651 args.mda_devsw = &pass_cdevsw; 652 args.mda_unit = periph->unit_number; 653 args.mda_uid = UID_ROOT; 654 args.mda_gid = GID_OPERATOR; 655 args.mda_mode = 0600; 656 args.mda_si_drv1 = periph; 657 error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name, 658 periph->unit_number); 659 if (error != 0) { 660 cam_periph_lock(periph); 661 cam_periph_release_locked(periph); 662 return (CAM_REQ_CMP_ERR); 663 } 664 665 /* 666 * Hold a reference to the periph before we create the physical 667 * path alias so it can't go away. 668 */ 669 if (cam_periph_acquire(periph) != CAM_REQ_CMP) { 670 xpt_print(periph->path, "%s: lost periph during " 671 "registration!\n", __func__); 672 cam_periph_lock(periph); 673 return (CAM_REQ_CMP_ERR); 674 } 675 676 cam_periph_lock(periph); 677 678 TASK_INIT(&softc->add_physpath_task, /*priority*/0, 679 pass_add_physpath, periph); 680 681 /* 682 * See if physical path information is already available. 683 */ 684 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); 685 686 /* 687 * Add an async callback so that we get notified if 688 * this device goes away or its physical path 689 * (stored in the advanced info data of the EDT) has 690 * changed. 691 */ 692 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED, 693 passasync, periph, periph->path); 694 695 if (bootverbose) 696 xpt_announce_periph(periph, NULL); 697 698 return(CAM_REQ_CMP); 699 } 700 701 static int 702 passopen(struct cdev *dev, int flags, int fmt, struct thread *td) 703 { 704 struct cam_periph *periph; 705 struct pass_softc *softc; 706 int error; 707 708 periph = (struct cam_periph *)dev->si_drv1; 709 if (cam_periph_acquire(periph) != CAM_REQ_CMP) 710 return (ENXIO); 711 712 cam_periph_lock(periph); 713 714 softc = (struct pass_softc *)periph->softc; 715 716 if (softc->flags & PASS_FLAG_INVALID) { 717 cam_periph_release_locked(periph); 718 cam_periph_unlock(periph); 719 return(ENXIO); 720 } 721 722 /* 723 * Don't allow access when we're running at a high securelevel. 724 */ 725 error = securelevel_gt(td->td_ucred, 1); 726 if (error) { 727 cam_periph_release_locked(periph); 728 cam_periph_unlock(periph); 729 return(error); 730 } 731 732 /* 733 * Only allow read-write access. 734 */ 735 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) { 736 cam_periph_release_locked(periph); 737 cam_periph_unlock(periph); 738 return(EPERM); 739 } 740 741 /* 742 * We don't allow nonblocking access. 743 */ 744 if ((flags & O_NONBLOCK) != 0) { 745 xpt_print(periph->path, "can't do nonblocking access\n"); 746 cam_periph_release_locked(periph); 747 cam_periph_unlock(periph); 748 return(EINVAL); 749 } 750 751 softc->open_count++; 752 753 cam_periph_unlock(periph); 754 755 return (error); 756 } 757 758 static int 759 passclose(struct cdev *dev, int flag, int fmt, struct thread *td) 760 { 761 struct cam_periph *periph; 762 struct pass_softc *softc; 763 struct mtx *mtx; 764 765 periph = (struct cam_periph *)dev->si_drv1; 766 mtx = cam_periph_mtx(periph); 767 mtx_lock(mtx); 768 769 softc = periph->softc; 770 softc->open_count--; 771 772 if (softc->open_count == 0) { 773 struct pass_io_req *io_req, *io_req2; 774 775 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 776 TAILQ_REMOVE(&softc->done_queue, io_req, links); 777 passiocleanup(softc, io_req); 778 uma_zfree(softc->pass_zone, io_req); 779 } 780 781 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, 782 io_req2) { 783 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 784 passiocleanup(softc, io_req); 785 uma_zfree(softc->pass_zone, io_req); 786 } 787 788 /* 789 * If there are any active I/Os, we need to forcibly acquire a 790 * reference to the peripheral so that we don't go away 791 * before they complete. We'll release the reference when 792 * the abandoned queue is empty. 793 */ 794 io_req = TAILQ_FIRST(&softc->active_queue); 795 if ((io_req != NULL) 796 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) { 797 cam_periph_doacquire(periph); 798 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 799 } 800 801 /* 802 * Since the I/O in the active queue is not under our 803 * control, just set a flag so that we can clean it up when 804 * it completes and put it on the abandoned queue. This 805 * will prevent our sending spurious completions in the 806 * event that the device is opened again before these I/Os 807 * complete. 808 */ 809 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, 810 io_req2) { 811 TAILQ_REMOVE(&softc->active_queue, io_req, links); 812 io_req->flags |= PASS_IO_ABANDONED; 813 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, 814 links); 815 } 816 } 817 818 cam_periph_release_locked(periph); 819 820 /* 821 * We reference the lock directly here, instead of using 822 * cam_periph_unlock(). The reason is that the call to 823 * cam_periph_release_locked() above could result in the periph 824 * getting freed. If that is the case, dereferencing the periph 825 * with a cam_periph_unlock() call would cause a page fault. 826 * 827 * cam_periph_release() avoids this problem using the same method, 828 * but we're manually acquiring and dropping the lock here to 829 * protect the open count and avoid another lock acquisition and 830 * release. 831 */ 832 mtx_unlock(mtx); 833 834 return (0); 835 } 836 837 838 static void 839 passstart(struct cam_periph *periph, union ccb *start_ccb) 840 { 841 struct pass_softc *softc; 842 843 softc = (struct pass_softc *)periph->softc; 844 845 switch (softc->state) { 846 case PASS_STATE_NORMAL: { 847 struct pass_io_req *io_req; 848 849 /* 850 * Check for any queued I/O requests that require an 851 * allocated slot. 852 */ 853 io_req = TAILQ_FIRST(&softc->incoming_queue); 854 if (io_req == NULL) { 855 xpt_release_ccb(start_ccb); 856 break; 857 } 858 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 859 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 860 /* 861 * Merge the user's CCB into the allocated CCB. 862 */ 863 xpt_merge_ccb(start_ccb, &io_req->ccb); 864 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO; 865 start_ccb->ccb_h.ccb_ioreq = io_req; 866 start_ccb->ccb_h.cbfcnp = passdone; 867 io_req->alloced_ccb = start_ccb; 868 binuptime(&io_req->start_time); 869 devstat_start_transaction(softc->device_stats, 870 &io_req->start_time); 871 872 xpt_action(start_ccb); 873 874 /* 875 * If we have any more I/O waiting, schedule ourselves again. 876 */ 877 if (!TAILQ_EMPTY(&softc->incoming_queue)) 878 xpt_schedule(periph, CAM_PRIORITY_NORMAL); 879 break; 880 } 881 default: 882 break; 883 } 884 } 885 886 static void 887 passdone(struct cam_periph *periph, union ccb *done_ccb) 888 { 889 struct pass_softc *softc; 890 struct ccb_scsiio *csio; 891 892 softc = (struct pass_softc *)periph->softc; 893 894 cam_periph_assert(periph, MA_OWNED); 895 896 csio = &done_ccb->csio; 897 switch (csio->ccb_h.ccb_type) { 898 case PASS_CCB_QUEUED_IO: { 899 struct pass_io_req *io_req; 900 901 io_req = done_ccb->ccb_h.ccb_ioreq; 902 #if 0 903 xpt_print(periph->path, "%s: called for user CCB %p\n", 904 __func__, io_req->user_ccb_ptr); 905 #endif 906 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) 907 && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) 908 && ((io_req->flags & PASS_IO_ABANDONED) == 0)) { 909 int error; 910 911 error = passerror(done_ccb, CAM_RETRY_SELTO, 912 SF_RETRY_UA | SF_NO_PRINT); 913 914 if (error == ERESTART) { 915 /* 916 * A retry was scheduled, so 917 * just return. 918 */ 919 return; 920 } 921 } 922 923 /* 924 * Copy the allocated CCB contents back to the malloced CCB 925 * so we can give status back to the user when he requests it. 926 */ 927 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb)); 928 929 /* 930 * Log data/transaction completion with devstat(9). 931 */ 932 switch (done_ccb->ccb_h.func_code) { 933 case XPT_SCSI_IO: 934 devstat_end_transaction(softc->device_stats, 935 done_ccb->csio.dxfer_len - done_ccb->csio.resid, 936 done_ccb->csio.tag_action & 0x3, 937 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 938 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 939 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 940 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 941 &io_req->start_time); 942 break; 943 case XPT_ATA_IO: 944 devstat_end_transaction(softc->device_stats, 945 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid, 946 0, /* Not used in ATA */ 947 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 948 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 949 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 950 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 951 &io_req->start_time); 952 break; 953 case XPT_SMP_IO: 954 /* 955 * XXX KDM this isn't quite right, but there isn't 956 * currently an easy way to represent a bidirectional 957 * transfer in devstat. The only way to do it 958 * and have the byte counts come out right would 959 * mean that we would have to record two 960 * transactions, one for the request and one for the 961 * response. For now, so that we report something, 962 * just treat the entire thing as a read. 963 */ 964 devstat_end_transaction(softc->device_stats, 965 done_ccb->smpio.smp_request_len + 966 done_ccb->smpio.smp_response_len, 967 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL, 968 &io_req->start_time); 969 break; 970 default: 971 devstat_end_transaction(softc->device_stats, 0, 972 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL, 973 &io_req->start_time); 974 break; 975 } 976 977 /* 978 * In the normal case, take the completed I/O off of the 979 * active queue and put it on the done queue. Notitfy the 980 * user that we have a completed I/O. 981 */ 982 if ((io_req->flags & PASS_IO_ABANDONED) == 0) { 983 TAILQ_REMOVE(&softc->active_queue, io_req, links); 984 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 985 selwakeuppri(&softc->read_select, PRIBIO); 986 KNOTE_LOCKED(&softc->read_select.si_note, 0); 987 } else { 988 /* 989 * In the case of an abandoned I/O (final close 990 * without fetching the I/O), take it off of the 991 * abandoned queue and free it. 992 */ 993 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links); 994 passiocleanup(softc, io_req); 995 uma_zfree(softc->pass_zone, io_req); 996 997 /* 998 * Release the done_ccb here, since we may wind up 999 * freeing the peripheral when we decrement the 1000 * reference count below. 1001 */ 1002 xpt_release_ccb(done_ccb); 1003 1004 /* 1005 * If the abandoned queue is empty, we can release 1006 * our reference to the periph since we won't have 1007 * any more completions coming. 1008 */ 1009 if ((TAILQ_EMPTY(&softc->abandoned_queue)) 1010 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) { 1011 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET; 1012 cam_periph_release_locked(periph); 1013 } 1014 1015 /* 1016 * We have already released the CCB, so we can 1017 * return. 1018 */ 1019 return; 1020 } 1021 break; 1022 } 1023 } 1024 xpt_release_ccb(done_ccb); 1025 } 1026 1027 static int 1028 passcreatezone(struct cam_periph *periph) 1029 { 1030 struct pass_softc *softc; 1031 int error; 1032 1033 error = 0; 1034 softc = (struct pass_softc *)periph->softc; 1035 1036 cam_periph_assert(periph, MA_OWNED); 1037 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 1038 ("%s called when the pass(4) zone is valid!\n", __func__)); 1039 KASSERT((softc->pass_zone == NULL), 1040 ("%s called when the pass(4) zone is allocated!\n", __func__)); 1041 1042 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) { 1043 1044 /* 1045 * We're the first context through, so we need to create 1046 * the pass(4) UMA zone for I/O requests. 1047 */ 1048 softc->flags |= PASS_FLAG_ZONE_INPROG; 1049 1050 /* 1051 * uma_zcreate() does a blocking (M_WAITOK) allocation, 1052 * so we cannot hold a mutex while we call it. 1053 */ 1054 cam_periph_unlock(periph); 1055 1056 softc->pass_zone = uma_zcreate(softc->zone_name, 1057 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL, 1058 /*align*/ 0, /*flags*/ 0); 1059 1060 softc->pass_io_zone = uma_zcreate(softc->io_zone_name, 1061 softc->io_zone_size, NULL, NULL, NULL, NULL, 1062 /*align*/ 0, /*flags*/ 0); 1063 1064 cam_periph_lock(periph); 1065 1066 if ((softc->pass_zone == NULL) 1067 || (softc->pass_io_zone == NULL)) { 1068 if (softc->pass_zone == NULL) 1069 xpt_print(periph->path, "unable to allocate " 1070 "IO Req UMA zone\n"); 1071 else 1072 xpt_print(periph->path, "unable to allocate " 1073 "IO UMA zone\n"); 1074 softc->flags &= ~PASS_FLAG_ZONE_INPROG; 1075 goto bailout; 1076 } 1077 1078 /* 1079 * Set the flags appropriately and notify any other waiters. 1080 */ 1081 softc->flags &= PASS_FLAG_ZONE_INPROG; 1082 softc->flags |= PASS_FLAG_ZONE_VALID; 1083 wakeup(&softc->pass_zone); 1084 } else { 1085 /* 1086 * In this case, the UMA zone has not yet been created, but 1087 * another context is in the process of creating it. We 1088 * need to sleep until the creation is either done or has 1089 * failed. 1090 */ 1091 while ((softc->flags & PASS_FLAG_ZONE_INPROG) 1092 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) { 1093 error = msleep(&softc->pass_zone, 1094 cam_periph_mtx(periph), PRIBIO, 1095 "paszon", 0); 1096 if (error != 0) 1097 goto bailout; 1098 } 1099 /* 1100 * If the zone creation failed, no luck for the user. 1101 */ 1102 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){ 1103 error = ENOMEM; 1104 goto bailout; 1105 } 1106 } 1107 bailout: 1108 return (error); 1109 } 1110 1111 static void 1112 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req) 1113 { 1114 union ccb *ccb; 1115 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1116 int i, numbufs; 1117 1118 ccb = &io_req->ccb; 1119 1120 switch (ccb->ccb_h.func_code) { 1121 case XPT_DEV_MATCH: 1122 numbufs = min(io_req->num_bufs, 2); 1123 1124 if (numbufs == 1) { 1125 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1126 } else { 1127 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1128 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1129 } 1130 break; 1131 case XPT_SCSI_IO: 1132 case XPT_CONT_TARGET_IO: 1133 data_ptrs[0] = &ccb->csio.data_ptr; 1134 numbufs = min(io_req->num_bufs, 1); 1135 break; 1136 case XPT_ATA_IO: 1137 data_ptrs[0] = &ccb->ataio.data_ptr; 1138 numbufs = min(io_req->num_bufs, 1); 1139 break; 1140 case XPT_SMP_IO: 1141 numbufs = min(io_req->num_bufs, 2); 1142 data_ptrs[0] = &ccb->smpio.smp_request; 1143 data_ptrs[1] = &ccb->smpio.smp_response; 1144 break; 1145 case XPT_DEV_ADVINFO: 1146 numbufs = min(io_req->num_bufs, 1); 1147 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1148 break; 1149 default: 1150 /* allow ourselves to be swapped once again */ 1151 return; 1152 break; /* NOTREACHED */ 1153 } 1154 1155 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) { 1156 free(io_req->user_segptr, M_SCSIPASS); 1157 io_req->user_segptr = NULL; 1158 } 1159 1160 /* 1161 * We only want to free memory we malloced. 1162 */ 1163 if (io_req->data_flags == CAM_DATA_VADDR) { 1164 for (i = 0; i < io_req->num_bufs; i++) { 1165 if (io_req->kern_bufs[i] == NULL) 1166 continue; 1167 1168 free(io_req->kern_bufs[i], M_SCSIPASS); 1169 io_req->kern_bufs[i] = NULL; 1170 } 1171 } else if (io_req->data_flags == CAM_DATA_SG) { 1172 for (i = 0; i < io_req->num_kern_segs; i++) { 1173 if ((uint8_t *)(uintptr_t) 1174 io_req->kern_segptr[i].ds_addr == NULL) 1175 continue; 1176 1177 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t) 1178 io_req->kern_segptr[i].ds_addr); 1179 io_req->kern_segptr[i].ds_addr = 0; 1180 } 1181 } 1182 1183 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) { 1184 free(io_req->kern_segptr, M_SCSIPASS); 1185 io_req->kern_segptr = NULL; 1186 } 1187 1188 if (io_req->data_flags != CAM_DATA_PADDR) { 1189 for (i = 0; i < numbufs; i++) { 1190 /* 1191 * Restore the user's buffer pointers to their 1192 * previous values. 1193 */ 1194 if (io_req->user_bufs[i] != NULL) 1195 *data_ptrs[i] = io_req->user_bufs[i]; 1196 } 1197 } 1198 1199 } 1200 1201 static int 1202 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req, 1203 ccb_flags direction) 1204 { 1205 bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy; 1206 bus_dma_segment_t *user_sglist, *kern_sglist; 1207 int i, j, error; 1208 1209 error = 0; 1210 kern_watermark = 0; 1211 user_watermark = 0; 1212 len_to_copy = 0; 1213 len_copied = 0; 1214 user_sglist = io_req->user_segptr; 1215 kern_sglist = io_req->kern_segptr; 1216 1217 for (i = 0, j = 0; i < io_req->num_user_segs && 1218 j < io_req->num_kern_segs;) { 1219 uint8_t *user_ptr, *kern_ptr; 1220 1221 len_to_copy = min(user_sglist[i].ds_len -user_watermark, 1222 kern_sglist[j].ds_len - kern_watermark); 1223 1224 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr; 1225 user_ptr = user_ptr + user_watermark; 1226 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr; 1227 kern_ptr = kern_ptr + kern_watermark; 1228 1229 user_watermark += len_to_copy; 1230 kern_watermark += len_to_copy; 1231 1232 if (!useracc(user_ptr, len_to_copy, 1233 (direction == CAM_DIR_IN) ? VM_PROT_WRITE : VM_PROT_READ)) { 1234 xpt_print(periph->path, "%s: unable to access user " 1235 "S/G list element %p len %zu\n", __func__, 1236 user_ptr, len_to_copy); 1237 error = EFAULT; 1238 goto bailout; 1239 } 1240 1241 if (direction == CAM_DIR_IN) { 1242 error = copyout(kern_ptr, user_ptr, len_to_copy); 1243 if (error != 0) { 1244 xpt_print(periph->path, "%s: copyout of %u " 1245 "bytes from %p to %p failed with " 1246 "error %d\n", __func__, len_to_copy, 1247 kern_ptr, user_ptr, error); 1248 goto bailout; 1249 } 1250 } else { 1251 error = copyin(user_ptr, kern_ptr, len_to_copy); 1252 if (error != 0) { 1253 xpt_print(periph->path, "%s: copyin of %u " 1254 "bytes from %p to %p failed with " 1255 "error %d\n", __func__, len_to_copy, 1256 user_ptr, kern_ptr, error); 1257 goto bailout; 1258 } 1259 } 1260 1261 len_copied += len_to_copy; 1262 1263 if (user_sglist[i].ds_len == user_watermark) { 1264 i++; 1265 user_watermark = 0; 1266 } 1267 1268 if (kern_sglist[j].ds_len == kern_watermark) { 1269 j++; 1270 kern_watermark = 0; 1271 } 1272 } 1273 1274 bailout: 1275 1276 return (error); 1277 } 1278 1279 static int 1280 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req) 1281 { 1282 union ccb *ccb; 1283 struct pass_softc *softc; 1284 int numbufs, i; 1285 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1286 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 1287 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 1288 uint32_t num_segs; 1289 uint16_t *seg_cnt_ptr; 1290 size_t maxmap; 1291 int error; 1292 1293 cam_periph_assert(periph, MA_NOTOWNED); 1294 1295 softc = periph->softc; 1296 1297 error = 0; 1298 ccb = &io_req->ccb; 1299 maxmap = 0; 1300 num_segs = 0; 1301 seg_cnt_ptr = NULL; 1302 1303 switch(ccb->ccb_h.func_code) { 1304 case XPT_DEV_MATCH: 1305 if (ccb->cdm.match_buf_len == 0) { 1306 printf("%s: invalid match buffer length 0\n", __func__); 1307 return(EINVAL); 1308 } 1309 if (ccb->cdm.pattern_buf_len > 0) { 1310 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1311 lengths[0] = ccb->cdm.pattern_buf_len; 1312 dirs[0] = CAM_DIR_OUT; 1313 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1314 lengths[1] = ccb->cdm.match_buf_len; 1315 dirs[1] = CAM_DIR_IN; 1316 numbufs = 2; 1317 } else { 1318 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1319 lengths[0] = ccb->cdm.match_buf_len; 1320 dirs[0] = CAM_DIR_IN; 1321 numbufs = 1; 1322 } 1323 io_req->data_flags = CAM_DATA_VADDR; 1324 break; 1325 case XPT_SCSI_IO: 1326 case XPT_CONT_TARGET_IO: 1327 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1328 return(0); 1329 1330 /* 1331 * The user shouldn't be able to supply a bio. 1332 */ 1333 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO) 1334 return (EINVAL); 1335 1336 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1337 1338 data_ptrs[0] = &ccb->csio.data_ptr; 1339 lengths[0] = ccb->csio.dxfer_len; 1340 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1341 num_segs = ccb->csio.sglist_cnt; 1342 seg_cnt_ptr = &ccb->csio.sglist_cnt; 1343 numbufs = 1; 1344 maxmap = softc->maxio; 1345 break; 1346 case XPT_ATA_IO: 1347 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1348 return(0); 1349 1350 /* 1351 * We only support a single virtual address for ATA I/O. 1352 */ 1353 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 1354 return (EINVAL); 1355 1356 io_req->data_flags = CAM_DATA_VADDR; 1357 1358 data_ptrs[0] = &ccb->ataio.data_ptr; 1359 lengths[0] = ccb->ataio.dxfer_len; 1360 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1361 numbufs = 1; 1362 maxmap = softc->maxio; 1363 break; 1364 case XPT_SMP_IO: 1365 io_req->data_flags = CAM_DATA_VADDR; 1366 1367 data_ptrs[0] = &ccb->smpio.smp_request; 1368 lengths[0] = ccb->smpio.smp_request_len; 1369 dirs[0] = CAM_DIR_OUT; 1370 data_ptrs[1] = &ccb->smpio.smp_response; 1371 lengths[1] = ccb->smpio.smp_response_len; 1372 dirs[1] = CAM_DIR_IN; 1373 numbufs = 2; 1374 maxmap = softc->maxio; 1375 break; 1376 case XPT_DEV_ADVINFO: 1377 if (ccb->cdai.bufsiz == 0) 1378 return (0); 1379 1380 io_req->data_flags = CAM_DATA_VADDR; 1381 1382 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1383 lengths[0] = ccb->cdai.bufsiz; 1384 dirs[0] = CAM_DIR_IN; 1385 numbufs = 1; 1386 break; 1387 default: 1388 return(EINVAL); 1389 break; /* NOTREACHED */ 1390 } 1391 1392 io_req->num_bufs = numbufs; 1393 1394 /* 1395 * If there is a maximum, check to make sure that the user's 1396 * request fits within the limit. In general, we should only have 1397 * a maximum length for requests that go to hardware. Otherwise it 1398 * is whatever we're able to malloc. 1399 */ 1400 for (i = 0; i < numbufs; i++) { 1401 io_req->user_bufs[i] = *data_ptrs[i]; 1402 io_req->dirs[i] = dirs[i]; 1403 io_req->lengths[i] = lengths[i]; 1404 1405 if (maxmap == 0) 1406 continue; 1407 1408 if (lengths[i] <= maxmap) 1409 continue; 1410 1411 xpt_print(periph->path, "%s: data length %u > max allowed %u " 1412 "bytes\n", __func__, lengths[i], maxmap); 1413 error = EINVAL; 1414 goto bailout; 1415 } 1416 1417 switch (io_req->data_flags) { 1418 case CAM_DATA_VADDR: 1419 /* Map or copy the buffer into kernel address space */ 1420 for (i = 0; i < numbufs; i++) { 1421 uint8_t *tmp_buf; 1422 1423 /* 1424 * If for some reason no length is specified, we 1425 * don't need to allocate anything. 1426 */ 1427 if (io_req->lengths[i] == 0) 1428 continue; 1429 1430 /* 1431 * Make sure that the user's buffer is accessible 1432 * to that process. 1433 */ 1434 if (!useracc(io_req->user_bufs[i], io_req->lengths[i], 1435 (io_req->dirs[i] == CAM_DIR_IN) ? VM_PROT_WRITE : 1436 VM_PROT_READ)) { 1437 xpt_print(periph->path, "%s: user address %p " 1438 "length %u is not accessible\n", __func__, 1439 io_req->user_bufs[i], io_req->lengths[i]); 1440 error = EFAULT; 1441 goto bailout; 1442 } 1443 1444 tmp_buf = malloc(lengths[i], M_SCSIPASS, 1445 M_WAITOK | M_ZERO); 1446 io_req->kern_bufs[i] = tmp_buf; 1447 *data_ptrs[i] = tmp_buf; 1448 1449 #if 0 1450 xpt_print(periph->path, "%s: malloced %p len %u, user " 1451 "buffer %p, operation: %s\n", __func__, 1452 tmp_buf, lengths[i], io_req->user_bufs[i], 1453 (dirs[i] == CAM_DIR_IN) ? "read" : "write"); 1454 #endif 1455 /* 1456 * We only need to copy in if the user is writing. 1457 */ 1458 if (dirs[i] != CAM_DIR_OUT) 1459 continue; 1460 1461 error = copyin(io_req->user_bufs[i], 1462 io_req->kern_bufs[i], lengths[i]); 1463 if (error != 0) { 1464 xpt_print(periph->path, "%s: copy of user " 1465 "buffer from %p to %p failed with " 1466 "error %d\n", __func__, 1467 io_req->user_bufs[i], 1468 io_req->kern_bufs[i], error); 1469 goto bailout; 1470 } 1471 } 1472 break; 1473 case CAM_DATA_PADDR: 1474 /* Pass down the pointer as-is */ 1475 break; 1476 case CAM_DATA_SG: { 1477 size_t sg_length, size_to_go, alloc_size; 1478 uint32_t num_segs_needed; 1479 1480 /* 1481 * Copy the user S/G list in, and then copy in the 1482 * individual segments. 1483 */ 1484 /* 1485 * We shouldn't see this, but check just in case. 1486 */ 1487 if (numbufs != 1) { 1488 xpt_print(periph->path, "%s: cannot currently handle " 1489 "more than one S/G list per CCB\n", __func__); 1490 error = EINVAL; 1491 goto bailout; 1492 } 1493 1494 /* 1495 * We have to have at least one segment. 1496 */ 1497 if (num_segs == 0) { 1498 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, " 1499 "but sglist_cnt=0!\n", __func__); 1500 error = EINVAL; 1501 goto bailout; 1502 } 1503 1504 /* 1505 * Make sure the user specified the total length and didn't 1506 * just leave it to us to decode the S/G list. 1507 */ 1508 if (lengths[0] == 0) { 1509 xpt_print(periph->path, "%s: no dxfer_len specified, " 1510 "but CAM_DATA_SG flag is set!\n", __func__); 1511 error = EINVAL; 1512 goto bailout; 1513 } 1514 1515 /* 1516 * We allocate buffers in io_zone_size increments for an 1517 * S/G list. This will generally be MAXPHYS. 1518 */ 1519 if (lengths[0] <= softc->io_zone_size) 1520 num_segs_needed = 1; 1521 else { 1522 num_segs_needed = lengths[0] / softc->io_zone_size; 1523 if ((lengths[0] % softc->io_zone_size) != 0) 1524 num_segs_needed++; 1525 } 1526 1527 /* Figure out the size of the S/G list */ 1528 sg_length = num_segs * sizeof(bus_dma_segment_t); 1529 io_req->num_user_segs = num_segs; 1530 io_req->num_kern_segs = num_segs_needed; 1531 1532 /* Save the user's S/G list pointer for later restoration */ 1533 io_req->user_bufs[0] = *data_ptrs[0]; 1534 1535 /* 1536 * If we have enough segments allocated by default to handle 1537 * the length of the user's S/G list, 1538 */ 1539 if (num_segs > PASS_MAX_SEGS) { 1540 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1541 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1542 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1543 } else 1544 io_req->user_segptr = io_req->user_segs; 1545 1546 if (!useracc(*data_ptrs[0], sg_length, VM_PROT_READ)) { 1547 xpt_print(periph->path, "%s: unable to access user " 1548 "S/G list at %p\n", __func__, *data_ptrs[0]); 1549 error = EFAULT; 1550 goto bailout; 1551 } 1552 1553 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1554 if (error != 0) { 1555 xpt_print(periph->path, "%s: copy of user S/G list " 1556 "from %p to %p failed with error %d\n", 1557 __func__, *data_ptrs[0], io_req->user_segptr, 1558 error); 1559 goto bailout; 1560 } 1561 1562 if (num_segs_needed > PASS_MAX_SEGS) { 1563 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) * 1564 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO); 1565 io_req->flags |= PASS_IO_KERN_SEG_MALLOC; 1566 } else { 1567 io_req->kern_segptr = io_req->kern_segs; 1568 } 1569 1570 /* 1571 * Allocate the kernel S/G list. 1572 */ 1573 for (size_to_go = lengths[0], i = 0; 1574 size_to_go > 0 && i < num_segs_needed; 1575 i++, size_to_go -= alloc_size) { 1576 uint8_t *kern_ptr; 1577 1578 alloc_size = min(size_to_go, softc->io_zone_size); 1579 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK); 1580 io_req->kern_segptr[i].ds_addr = 1581 (bus_addr_t)(uintptr_t)kern_ptr; 1582 io_req->kern_segptr[i].ds_len = alloc_size; 1583 } 1584 if (size_to_go > 0) { 1585 printf("%s: size_to_go = %zu, software error!\n", 1586 __func__, size_to_go); 1587 error = EINVAL; 1588 goto bailout; 1589 } 1590 1591 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr; 1592 *seg_cnt_ptr = io_req->num_kern_segs; 1593 1594 /* 1595 * We only need to copy data here if the user is writing. 1596 */ 1597 if (dirs[0] == CAM_DIR_OUT) 1598 error = passcopysglist(periph, io_req, dirs[0]); 1599 break; 1600 } 1601 case CAM_DATA_SG_PADDR: { 1602 size_t sg_length; 1603 1604 /* 1605 * We shouldn't see this, but check just in case. 1606 */ 1607 if (numbufs != 1) { 1608 printf("%s: cannot currently handle more than one " 1609 "S/G list per CCB\n", __func__); 1610 error = EINVAL; 1611 goto bailout; 1612 } 1613 1614 /* 1615 * We have to have at least one segment. 1616 */ 1617 if (num_segs == 0) { 1618 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag " 1619 "set, but sglist_cnt=0!\n", __func__); 1620 error = EINVAL; 1621 goto bailout; 1622 } 1623 1624 /* 1625 * Make sure the user specified the total length and didn't 1626 * just leave it to us to decode the S/G list. 1627 */ 1628 if (lengths[0] == 0) { 1629 xpt_print(periph->path, "%s: no dxfer_len specified, " 1630 "but CAM_DATA_SG flag is set!\n", __func__); 1631 error = EINVAL; 1632 goto bailout; 1633 } 1634 1635 /* Figure out the size of the S/G list */ 1636 sg_length = num_segs * sizeof(bus_dma_segment_t); 1637 io_req->num_user_segs = num_segs; 1638 io_req->num_kern_segs = io_req->num_user_segs; 1639 1640 /* Save the user's S/G list pointer for later restoration */ 1641 io_req->user_bufs[0] = *data_ptrs[0]; 1642 1643 if (num_segs > PASS_MAX_SEGS) { 1644 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1645 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1646 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1647 } else 1648 io_req->user_segptr = io_req->user_segs; 1649 1650 io_req->kern_segptr = io_req->user_segptr; 1651 1652 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1653 if (error != 0) { 1654 xpt_print(periph->path, "%s: copy of user S/G list " 1655 "from %p to %p failed with error %d\n", 1656 __func__, *data_ptrs[0], io_req->user_segptr, 1657 error); 1658 goto bailout; 1659 } 1660 break; 1661 } 1662 default: 1663 case CAM_DATA_BIO: 1664 /* 1665 * A user shouldn't be attaching a bio to the CCB. It 1666 * isn't a user-accessible structure. 1667 */ 1668 error = EINVAL; 1669 break; 1670 } 1671 1672 bailout: 1673 if (error != 0) 1674 passiocleanup(softc, io_req); 1675 1676 return (error); 1677 } 1678 1679 static int 1680 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req) 1681 { 1682 struct pass_softc *softc; 1683 union ccb *ccb; 1684 int error; 1685 int i; 1686 1687 error = 0; 1688 softc = (struct pass_softc *)periph->softc; 1689 ccb = &io_req->ccb; 1690 1691 switch (io_req->data_flags) { 1692 case CAM_DATA_VADDR: 1693 /* 1694 * Copy back to the user buffer if this was a read. 1695 */ 1696 for (i = 0; i < io_req->num_bufs; i++) { 1697 if (io_req->dirs[i] != CAM_DIR_IN) 1698 continue; 1699 1700 error = copyout(io_req->kern_bufs[i], 1701 io_req->user_bufs[i], io_req->lengths[i]); 1702 if (error != 0) { 1703 xpt_print(periph->path, "Unable to copy %u " 1704 "bytes from %p to user address %p\n", 1705 io_req->lengths[i], 1706 io_req->kern_bufs[i], 1707 io_req->user_bufs[i]); 1708 goto bailout; 1709 } 1710 1711 } 1712 break; 1713 case CAM_DATA_PADDR: 1714 /* Do nothing. The pointer is a physical address already */ 1715 break; 1716 case CAM_DATA_SG: 1717 /* 1718 * Copy back to the user buffer if this was a read. 1719 * Restore the user's S/G list buffer pointer. 1720 */ 1721 if (io_req->dirs[0] == CAM_DIR_IN) 1722 error = passcopysglist(periph, io_req, io_req->dirs[0]); 1723 break; 1724 case CAM_DATA_SG_PADDR: 1725 /* 1726 * Restore the user's S/G list buffer pointer. No need to 1727 * copy. 1728 */ 1729 break; 1730 default: 1731 case CAM_DATA_BIO: 1732 error = EINVAL; 1733 break; 1734 } 1735 1736 bailout: 1737 /* 1738 * Reset the user's pointers to their original values and free 1739 * allocated memory. 1740 */ 1741 passiocleanup(softc, io_req); 1742 1743 return (error); 1744 } 1745 1746 static int 1747 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1748 { 1749 int error; 1750 1751 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 1752 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl); 1753 } 1754 return (error); 1755 } 1756 1757 static int 1758 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1759 { 1760 struct cam_periph *periph; 1761 struct pass_softc *softc; 1762 int error; 1763 uint32_t priority; 1764 1765 periph = (struct cam_periph *)dev->si_drv1; 1766 cam_periph_lock(periph); 1767 softc = (struct pass_softc *)periph->softc; 1768 1769 error = 0; 1770 1771 switch (cmd) { 1772 1773 case CAMIOCOMMAND: 1774 { 1775 union ccb *inccb; 1776 union ccb *ccb; 1777 int ccb_malloced; 1778 1779 inccb = (union ccb *)addr; 1780 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1781 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 1782 inccb->csio.bio = NULL; 1783 #endif 1784 1785 if (inccb->ccb_h.flags & CAM_UNLOCKED) { 1786 error = EINVAL; 1787 break; 1788 } 1789 1790 /* 1791 * Some CCB types, like scan bus and scan lun can only go 1792 * through the transport layer device. 1793 */ 1794 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1795 xpt_print(periph->path, "CCB function code %#x is " 1796 "restricted to the XPT device\n", 1797 inccb->ccb_h.func_code); 1798 error = ENODEV; 1799 break; 1800 } 1801 1802 /* Compatibility for RL/priority-unaware code. */ 1803 priority = inccb->ccb_h.pinfo.priority; 1804 if (priority <= CAM_PRIORITY_OOB) 1805 priority += CAM_PRIORITY_OOB + 1; 1806 1807 /* 1808 * Non-immediate CCBs need a CCB from the per-device pool 1809 * of CCBs, which is scheduled by the transport layer. 1810 * Immediate CCBs and user-supplied CCBs should just be 1811 * malloced. 1812 */ 1813 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED) 1814 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) { 1815 ccb = cam_periph_getccb(periph, priority); 1816 ccb_malloced = 0; 1817 } else { 1818 ccb = xpt_alloc_ccb_nowait(); 1819 1820 if (ccb != NULL) 1821 xpt_setup_ccb(&ccb->ccb_h, periph->path, 1822 priority); 1823 ccb_malloced = 1; 1824 } 1825 1826 if (ccb == NULL) { 1827 xpt_print(periph->path, "unable to allocate CCB\n"); 1828 error = ENOMEM; 1829 break; 1830 } 1831 1832 error = passsendccb(periph, ccb, inccb); 1833 1834 if (ccb_malloced) 1835 xpt_free_ccb(ccb); 1836 else 1837 xpt_release_ccb(ccb); 1838 1839 break; 1840 } 1841 case CAMIOQUEUE: 1842 { 1843 struct pass_io_req *io_req; 1844 union ccb **user_ccb, *ccb; 1845 xpt_opcode fc; 1846 1847 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) { 1848 error = passcreatezone(periph); 1849 if (error != 0) 1850 goto bailout; 1851 } 1852 1853 /* 1854 * We're going to do a blocking allocation for this I/O 1855 * request, so we have to drop the lock. 1856 */ 1857 cam_periph_unlock(periph); 1858 1859 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO); 1860 ccb = &io_req->ccb; 1861 user_ccb = (union ccb **)addr; 1862 1863 /* 1864 * Unlike the CAMIOCOMMAND ioctl above, we only have a 1865 * pointer to the user's CCB, so we have to copy the whole 1866 * thing in to a buffer we have allocated (above) instead 1867 * of allowing the ioctl code to malloc a buffer and copy 1868 * it in. 1869 * 1870 * This is an advantage for this asynchronous interface, 1871 * since we don't want the memory to get freed while the 1872 * CCB is outstanding. 1873 */ 1874 #if 0 1875 xpt_print(periph->path, "Copying user CCB %p to " 1876 "kernel address %p\n", *user_ccb, ccb); 1877 #endif 1878 error = copyin(*user_ccb, ccb, sizeof(*ccb)); 1879 if (error != 0) { 1880 xpt_print(periph->path, "Copy of user CCB %p to " 1881 "kernel address %p failed with error %d\n", 1882 *user_ccb, ccb, error); 1883 goto camioqueue_error; 1884 } 1885 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1886 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 1887 ccb->csio.bio = NULL; 1888 #endif 1889 1890 if (ccb->ccb_h.flags & CAM_UNLOCKED) { 1891 error = EINVAL; 1892 goto camioqueue_error; 1893 } 1894 1895 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 1896 if (ccb->csio.cdb_len > IOCDBLEN) { 1897 error = EINVAL; 1898 goto camioqueue_error; 1899 } 1900 error = copyin(ccb->csio.cdb_io.cdb_ptr, 1901 ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len); 1902 if (error != 0) 1903 goto camioqueue_error; 1904 ccb->ccb_h.flags &= ~CAM_CDB_POINTER; 1905 } 1906 1907 /* 1908 * Some CCB types, like scan bus and scan lun can only go 1909 * through the transport layer device. 1910 */ 1911 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1912 xpt_print(periph->path, "CCB function code %#x is " 1913 "restricted to the XPT device\n", 1914 ccb->ccb_h.func_code); 1915 error = ENODEV; 1916 goto camioqueue_error; 1917 } 1918 1919 /* 1920 * Save the user's CCB pointer as well as his linked list 1921 * pointers and peripheral private area so that we can 1922 * restore these later. 1923 */ 1924 io_req->user_ccb_ptr = *user_ccb; 1925 io_req->user_periph_links = ccb->ccb_h.periph_links; 1926 io_req->user_periph_priv = ccb->ccb_h.periph_priv; 1927 1928 /* 1929 * Now that we've saved the user's values, we can set our 1930 * own peripheral private entry. 1931 */ 1932 ccb->ccb_h.ccb_ioreq = io_req; 1933 1934 /* Compatibility for RL/priority-unaware code. */ 1935 priority = ccb->ccb_h.pinfo.priority; 1936 if (priority <= CAM_PRIORITY_OOB) 1937 priority += CAM_PRIORITY_OOB + 1; 1938 1939 /* 1940 * Setup fields in the CCB like the path and the priority. 1941 * The path in particular cannot be done in userland, since 1942 * it is a pointer to a kernel data structure. 1943 */ 1944 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority, 1945 ccb->ccb_h.flags); 1946 1947 /* 1948 * Setup our done routine. There is no way for the user to 1949 * have a valid pointer here. 1950 */ 1951 ccb->ccb_h.cbfcnp = passdone; 1952 1953 fc = ccb->ccb_h.func_code; 1954 /* 1955 * If this function code has memory that can be mapped in 1956 * or out, we need to call passmemsetup(). 1957 */ 1958 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) 1959 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH) 1960 || (fc == XPT_DEV_ADVINFO)) { 1961 error = passmemsetup(periph, io_req); 1962 if (error != 0) 1963 goto camioqueue_error; 1964 } else 1965 io_req->mapinfo.num_bufs_used = 0; 1966 1967 cam_periph_lock(periph); 1968 1969 /* 1970 * Everything goes on the incoming queue initially. 1971 */ 1972 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links); 1973 1974 /* 1975 * If the CCB is queued, and is not a user CCB, then 1976 * we need to allocate a slot for it. Call xpt_schedule() 1977 * so that our start routine will get called when a CCB is 1978 * available. 1979 */ 1980 if ((fc & XPT_FC_QUEUED) 1981 && ((fc & XPT_FC_USER_CCB) == 0)) { 1982 xpt_schedule(periph, priority); 1983 break; 1984 } 1985 1986 /* 1987 * At this point, the CCB in question is either an 1988 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB 1989 * and therefore should be malloced, not allocated via a slot. 1990 * Remove the CCB from the incoming queue and add it to the 1991 * active queue. 1992 */ 1993 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 1994 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 1995 1996 xpt_action(ccb); 1997 1998 /* 1999 * If this is not a queued CCB (i.e. it is an immediate CCB), 2000 * then it is already done. We need to put it on the done 2001 * queue for the user to fetch. 2002 */ 2003 if ((fc & XPT_FC_QUEUED) == 0) { 2004 TAILQ_REMOVE(&softc->active_queue, io_req, links); 2005 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 2006 } 2007 break; 2008 2009 camioqueue_error: 2010 uma_zfree(softc->pass_zone, io_req); 2011 cam_periph_lock(periph); 2012 break; 2013 } 2014 case CAMIOGET: 2015 { 2016 union ccb **user_ccb; 2017 struct pass_io_req *io_req; 2018 int old_error; 2019 2020 user_ccb = (union ccb **)addr; 2021 old_error = 0; 2022 2023 io_req = TAILQ_FIRST(&softc->done_queue); 2024 if (io_req == NULL) { 2025 error = ENOENT; 2026 break; 2027 } 2028 2029 /* 2030 * Remove the I/O from the done queue. 2031 */ 2032 TAILQ_REMOVE(&softc->done_queue, io_req, links); 2033 2034 /* 2035 * We have to drop the lock during the copyout because the 2036 * copyout can result in VM faults that require sleeping. 2037 */ 2038 cam_periph_unlock(periph); 2039 2040 /* 2041 * Do any needed copies (e.g. for reads) and revert the 2042 * pointers in the CCB back to the user's pointers. 2043 */ 2044 error = passmemdone(periph, io_req); 2045 2046 old_error = error; 2047 2048 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links; 2049 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv; 2050 2051 #if 0 2052 xpt_print(periph->path, "Copying to user CCB %p from " 2053 "kernel address %p\n", *user_ccb, &io_req->ccb); 2054 #endif 2055 2056 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb)); 2057 if (error != 0) { 2058 xpt_print(periph->path, "Copy to user CCB %p from " 2059 "kernel address %p failed with error %d\n", 2060 *user_ccb, &io_req->ccb, error); 2061 } 2062 2063 /* 2064 * Prefer the first error we got back, and make sure we 2065 * don't overwrite bad status with good. 2066 */ 2067 if (old_error != 0) 2068 error = old_error; 2069 2070 cam_periph_lock(periph); 2071 2072 /* 2073 * At this point, if there was an error, we could potentially 2074 * re-queue the I/O and try again. But why? The error 2075 * would almost certainly happen again. We might as well 2076 * not leak memory. 2077 */ 2078 uma_zfree(softc->pass_zone, io_req); 2079 break; 2080 } 2081 default: 2082 error = cam_periph_ioctl(periph, cmd, addr, passerror); 2083 break; 2084 } 2085 2086 bailout: 2087 cam_periph_unlock(periph); 2088 2089 return(error); 2090 } 2091 2092 static int 2093 passpoll(struct cdev *dev, int poll_events, struct thread *td) 2094 { 2095 struct cam_periph *periph; 2096 struct pass_softc *softc; 2097 int revents; 2098 2099 periph = (struct cam_periph *)dev->si_drv1; 2100 softc = (struct pass_softc *)periph->softc; 2101 2102 revents = poll_events & (POLLOUT | POLLWRNORM); 2103 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) { 2104 cam_periph_lock(periph); 2105 2106 if (!TAILQ_EMPTY(&softc->done_queue)) { 2107 revents |= poll_events & (POLLIN | POLLRDNORM); 2108 } 2109 cam_periph_unlock(periph); 2110 if (revents == 0) 2111 selrecord(td, &softc->read_select); 2112 } 2113 2114 return (revents); 2115 } 2116 2117 static int 2118 passkqfilter(struct cdev *dev, struct knote *kn) 2119 { 2120 struct cam_periph *periph; 2121 struct pass_softc *softc; 2122 2123 periph = (struct cam_periph *)dev->si_drv1; 2124 softc = (struct pass_softc *)periph->softc; 2125 2126 kn->kn_hook = (caddr_t)periph; 2127 kn->kn_fop = &passread_filtops; 2128 knlist_add(&softc->read_select.si_note, kn, 0); 2129 2130 return (0); 2131 } 2132 2133 static void 2134 passreadfiltdetach(struct knote *kn) 2135 { 2136 struct cam_periph *periph; 2137 struct pass_softc *softc; 2138 2139 periph = (struct cam_periph *)kn->kn_hook; 2140 softc = (struct pass_softc *)periph->softc; 2141 2142 knlist_remove(&softc->read_select.si_note, kn, 0); 2143 } 2144 2145 static int 2146 passreadfilt(struct knote *kn, long hint) 2147 { 2148 struct cam_periph *periph; 2149 struct pass_softc *softc; 2150 int retval; 2151 2152 periph = (struct cam_periph *)kn->kn_hook; 2153 softc = (struct pass_softc *)periph->softc; 2154 2155 cam_periph_assert(periph, MA_OWNED); 2156 2157 if (TAILQ_EMPTY(&softc->done_queue)) 2158 retval = 0; 2159 else 2160 retval = 1; 2161 2162 return (retval); 2163 } 2164 2165 /* 2166 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb" 2167 * should be the CCB that is copied in from the user. 2168 */ 2169 static int 2170 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb) 2171 { 2172 struct pass_softc *softc; 2173 struct cam_periph_map_info mapinfo; 2174 uint8_t *cmd; 2175 xpt_opcode fc; 2176 int error; 2177 2178 softc = (struct pass_softc *)periph->softc; 2179 2180 /* 2181 * There are some fields in the CCB header that need to be 2182 * preserved, the rest we get from the user. 2183 */ 2184 xpt_merge_ccb(ccb, inccb); 2185 2186 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 2187 cmd = __builtin_alloca(ccb->csio.cdb_len); 2188 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len); 2189 if (error) 2190 return (error); 2191 ccb->csio.cdb_io.cdb_ptr = cmd; 2192 } 2193 2194 /* 2195 */ 2196 ccb->ccb_h.cbfcnp = passdone; 2197 2198 /* 2199 * Let cam_periph_mapmem do a sanity check on the data pointer format. 2200 * Even if no data transfer is needed, it's a cheap check and it 2201 * simplifies the code. 2202 */ 2203 fc = ccb->ccb_h.func_code; 2204 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO) 2205 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO)) { 2206 bzero(&mapinfo, sizeof(mapinfo)); 2207 2208 /* 2209 * cam_periph_mapmem calls into proc and vm functions that can 2210 * sleep as well as trigger I/O, so we can't hold the lock. 2211 * Dropping it here is reasonably safe. 2212 */ 2213 cam_periph_unlock(periph); 2214 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio); 2215 cam_periph_lock(periph); 2216 2217 /* 2218 * cam_periph_mapmem returned an error, we can't continue. 2219 * Return the error to the user. 2220 */ 2221 if (error) 2222 return(error); 2223 } else 2224 /* Ensure that the unmap call later on is a no-op. */ 2225 mapinfo.num_bufs_used = 0; 2226 2227 /* 2228 * If the user wants us to perform any error recovery, then honor 2229 * that request. Otherwise, it's up to the user to perform any 2230 * error recovery. 2231 */ 2232 cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? 2233 passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO, 2234 /* sense_flags */ SF_RETRY_UA | SF_NO_PRINT, 2235 softc->device_stats); 2236 2237 cam_periph_unmapmem(ccb, &mapinfo); 2238 2239 ccb->ccb_h.cbfcnp = NULL; 2240 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv; 2241 bcopy(ccb, inccb, sizeof(union ccb)); 2242 2243 return(0); 2244 } 2245 2246 static int 2247 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) 2248 { 2249 struct cam_periph *periph; 2250 struct pass_softc *softc; 2251 2252 periph = xpt_path_periph(ccb->ccb_h.path); 2253 softc = (struct pass_softc *)periph->softc; 2254 2255 return(cam_periph_error(ccb, cam_flags, sense_flags, 2256 &softc->saved_ccb)); 2257 } 2258