1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/kernel.h> 36 #include <sys/conf.h> 37 #include <sys/types.h> 38 #include <sys/bio.h> 39 #include <sys/bus.h> 40 #include <sys/devicestat.h> 41 #include <sys/errno.h> 42 #include <sys/fcntl.h> 43 #include <sys/malloc.h> 44 #include <sys/proc.h> 45 #include <sys/poll.h> 46 #include <sys/selinfo.h> 47 #include <sys/sdt.h> 48 #include <sys/sysent.h> 49 #include <sys/taskqueue.h> 50 #include <vm/uma.h> 51 #include <vm/vm.h> 52 #include <vm/vm_extern.h> 53 54 #include <machine/bus.h> 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_queue.h> 60 #include <cam/cam_xpt.h> 61 #include <cam/cam_xpt_periph.h> 62 #include <cam/cam_debug.h> 63 #include <cam/cam_compat.h> 64 #include <cam/cam_xpt_periph.h> 65 66 #include <cam/scsi/scsi_all.h> 67 #include <cam/scsi/scsi_pass.h> 68 69 typedef enum { 70 PASS_FLAG_OPEN = 0x01, 71 PASS_FLAG_LOCKED = 0x02, 72 PASS_FLAG_INVALID = 0x04, 73 PASS_FLAG_INITIAL_PHYSPATH = 0x08, 74 PASS_FLAG_ZONE_INPROG = 0x10, 75 PASS_FLAG_ZONE_VALID = 0x20, 76 PASS_FLAG_UNMAPPED_CAPABLE = 0x40, 77 PASS_FLAG_ABANDONED_REF_SET = 0x80 78 } pass_flags; 79 80 typedef enum { 81 PASS_STATE_NORMAL 82 } pass_state; 83 84 typedef enum { 85 PASS_CCB_BUFFER_IO, 86 PASS_CCB_QUEUED_IO 87 } pass_ccb_types; 88 89 #define ccb_type ppriv_field0 90 #define ccb_ioreq ppriv_ptr1 91 92 /* 93 * The maximum number of memory segments we preallocate. 94 */ 95 #define PASS_MAX_SEGS 16 96 97 typedef enum { 98 PASS_IO_NONE = 0x00, 99 PASS_IO_USER_SEG_MALLOC = 0x01, 100 PASS_IO_KERN_SEG_MALLOC = 0x02, 101 PASS_IO_ABANDONED = 0x04 102 } pass_io_flags; 103 104 struct pass_io_req { 105 union ccb ccb; 106 union ccb *alloced_ccb; 107 union ccb *user_ccb_ptr; 108 camq_entry user_periph_links; 109 ccb_ppriv_area user_periph_priv; 110 struct cam_periph_map_info mapinfo; 111 pass_io_flags flags; 112 ccb_flags data_flags; 113 int num_user_segs; 114 bus_dma_segment_t user_segs[PASS_MAX_SEGS]; 115 int num_kern_segs; 116 bus_dma_segment_t kern_segs[PASS_MAX_SEGS]; 117 bus_dma_segment_t *user_segptr; 118 bus_dma_segment_t *kern_segptr; 119 int num_bufs; 120 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 121 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 122 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS]; 123 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS]; 124 struct bintime start_time; 125 TAILQ_ENTRY(pass_io_req) links; 126 }; 127 128 struct pass_softc { 129 pass_state state; 130 pass_flags flags; 131 u_int8_t pd_type; 132 union ccb saved_ccb; 133 int open_count; 134 u_int maxio; 135 struct devstat *device_stats; 136 struct cdev *dev; 137 struct cdev *alias_dev; 138 struct task add_physpath_task; 139 struct task shutdown_kqueue_task; 140 struct selinfo read_select; 141 TAILQ_HEAD(, pass_io_req) incoming_queue; 142 TAILQ_HEAD(, pass_io_req) active_queue; 143 TAILQ_HEAD(, pass_io_req) abandoned_queue; 144 TAILQ_HEAD(, pass_io_req) done_queue; 145 struct cam_periph *periph; 146 char zone_name[12]; 147 char io_zone_name[12]; 148 uma_zone_t pass_zone; 149 uma_zone_t pass_io_zone; 150 size_t io_zone_size; 151 }; 152 153 static d_open_t passopen; 154 static d_close_t passclose; 155 static d_ioctl_t passioctl; 156 static d_ioctl_t passdoioctl; 157 static d_poll_t passpoll; 158 static d_kqfilter_t passkqfilter; 159 static void passreadfiltdetach(struct knote *kn); 160 static int passreadfilt(struct knote *kn, long hint); 161 162 static periph_init_t passinit; 163 static periph_ctor_t passregister; 164 static periph_oninv_t passoninvalidate; 165 static periph_dtor_t passcleanup; 166 static periph_start_t passstart; 167 static void pass_shutdown_kqueue(void *context, int pending); 168 static void pass_add_physpath(void *context, int pending); 169 static void passasync(void *callback_arg, u_int32_t code, 170 struct cam_path *path, void *arg); 171 static void passdone(struct cam_periph *periph, 172 union ccb *done_ccb); 173 static int passcreatezone(struct cam_periph *periph); 174 static void passiocleanup(struct pass_softc *softc, 175 struct pass_io_req *io_req); 176 static int passcopysglist(struct cam_periph *periph, 177 struct pass_io_req *io_req, 178 ccb_flags direction); 179 static int passmemsetup(struct cam_periph *periph, 180 struct pass_io_req *io_req); 181 static int passmemdone(struct cam_periph *periph, 182 struct pass_io_req *io_req); 183 static int passerror(union ccb *ccb, u_int32_t cam_flags, 184 u_int32_t sense_flags); 185 static int passsendccb(struct cam_periph *periph, union ccb *ccb, 186 union ccb *inccb); 187 188 static struct periph_driver passdriver = 189 { 190 passinit, "pass", 191 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0 192 }; 193 194 PERIPHDRIVER_DECLARE(pass, passdriver); 195 196 static struct cdevsw pass_cdevsw = { 197 .d_version = D_VERSION, 198 .d_flags = D_TRACKCLOSE, 199 .d_open = passopen, 200 .d_close = passclose, 201 .d_ioctl = passioctl, 202 .d_poll = passpoll, 203 .d_kqfilter = passkqfilter, 204 .d_name = "pass", 205 }; 206 207 static struct filterops passread_filtops = { 208 .f_isfd = 1, 209 .f_detach = passreadfiltdetach, 210 .f_event = passreadfilt 211 }; 212 213 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers"); 214 215 static void 216 passinit(void) 217 { 218 cam_status status; 219 220 /* 221 * Install a global async callback. This callback will 222 * receive async callbacks like "new device found". 223 */ 224 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL); 225 226 if (status != CAM_REQ_CMP) { 227 printf("pass: Failed to attach master async callback " 228 "due to status 0x%x!\n", status); 229 } 230 231 } 232 233 static void 234 passrejectios(struct cam_periph *periph) 235 { 236 struct pass_io_req *io_req, *io_req2; 237 struct pass_softc *softc; 238 239 softc = (struct pass_softc *)periph->softc; 240 241 /* 242 * The user can no longer get status for I/O on the done queue, so 243 * clean up all outstanding I/O on the done queue. 244 */ 245 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 246 TAILQ_REMOVE(&softc->done_queue, io_req, links); 247 passiocleanup(softc, io_req); 248 uma_zfree(softc->pass_zone, io_req); 249 } 250 251 /* 252 * The underlying device is gone, so we can't issue these I/Os. 253 * The devfs node has been shut down, so we can't return status to 254 * the user. Free any I/O left on the incoming queue. 255 */ 256 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) { 257 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 258 passiocleanup(softc, io_req); 259 uma_zfree(softc->pass_zone, io_req); 260 } 261 262 /* 263 * Normally we would put I/Os on the abandoned queue and acquire a 264 * reference when we saw the final close. But, the device went 265 * away and devfs may have moved everything off to deadfs by the 266 * time the I/O done callback is called; as a result, we won't see 267 * any more closes. So, if we have any active I/Os, we need to put 268 * them on the abandoned queue. When the abandoned queue is empty, 269 * we'll release the remaining reference (see below) to the peripheral. 270 */ 271 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) { 272 TAILQ_REMOVE(&softc->active_queue, io_req, links); 273 io_req->flags |= PASS_IO_ABANDONED; 274 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links); 275 } 276 277 /* 278 * If we put any I/O on the abandoned queue, acquire a reference. 279 */ 280 if ((!TAILQ_EMPTY(&softc->abandoned_queue)) 281 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) { 282 cam_periph_doacquire(periph); 283 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 284 } 285 } 286 287 static void 288 passdevgonecb(void *arg) 289 { 290 struct cam_periph *periph; 291 struct mtx *mtx; 292 struct pass_softc *softc; 293 int i; 294 295 periph = (struct cam_periph *)arg; 296 mtx = cam_periph_mtx(periph); 297 mtx_lock(mtx); 298 299 softc = (struct pass_softc *)periph->softc; 300 KASSERT(softc->open_count >= 0, ("Negative open count %d", 301 softc->open_count)); 302 303 /* 304 * When we get this callback, we will get no more close calls from 305 * devfs. So if we have any dangling opens, we need to release the 306 * reference held for that particular context. 307 */ 308 for (i = 0; i < softc->open_count; i++) 309 cam_periph_release_locked(periph); 310 311 softc->open_count = 0; 312 313 /* 314 * Release the reference held for the device node, it is gone now. 315 * Accordingly, inform all queued I/Os of their fate. 316 */ 317 cam_periph_release_locked(periph); 318 passrejectios(periph); 319 320 /* 321 * We reference the SIM lock directly here, instead of using 322 * cam_periph_unlock(). The reason is that the final call to 323 * cam_periph_release_locked() above could result in the periph 324 * getting freed. If that is the case, dereferencing the periph 325 * with a cam_periph_unlock() call would cause a page fault. 326 */ 327 mtx_unlock(mtx); 328 329 /* 330 * We have to remove our kqueue context from a thread because it 331 * may sleep. It would be nice if we could get a callback from 332 * kqueue when it is done cleaning up resources. 333 */ 334 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task); 335 } 336 337 static void 338 passoninvalidate(struct cam_periph *periph) 339 { 340 struct pass_softc *softc; 341 342 softc = (struct pass_softc *)periph->softc; 343 344 /* 345 * De-register any async callbacks. 346 */ 347 xpt_register_async(0, passasync, periph, periph->path); 348 349 softc->flags |= PASS_FLAG_INVALID; 350 351 /* 352 * Tell devfs this device has gone away, and ask for a callback 353 * when it has cleaned up its state. 354 */ 355 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph); 356 } 357 358 static void 359 passcleanup(struct cam_periph *periph) 360 { 361 struct pass_softc *softc; 362 363 softc = (struct pass_softc *)periph->softc; 364 365 cam_periph_assert(periph, MA_OWNED); 366 KASSERT(TAILQ_EMPTY(&softc->active_queue), 367 ("%s called when there are commands on the active queue!\n", 368 __func__)); 369 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue), 370 ("%s called when there are commands on the abandoned queue!\n", 371 __func__)); 372 KASSERT(TAILQ_EMPTY(&softc->incoming_queue), 373 ("%s called when there are commands on the incoming queue!\n", 374 __func__)); 375 KASSERT(TAILQ_EMPTY(&softc->done_queue), 376 ("%s called when there are commands on the done queue!\n", 377 __func__)); 378 379 devstat_remove_entry(softc->device_stats); 380 381 cam_periph_unlock(periph); 382 383 /* 384 * We call taskqueue_drain() for the physpath task to make sure it 385 * is complete. We drop the lock because this can potentially 386 * sleep. XXX KDM that is bad. Need a way to get a callback when 387 * a taskqueue is drained. 388 * 389 * Note that we don't drain the kqueue shutdown task queue. This 390 * is because we hold a reference on the periph for kqueue, and 391 * release that reference from the kqueue shutdown task queue. So 392 * we cannot come into this routine unless we've released that 393 * reference. Also, because that could be the last reference, we 394 * could be called from the cam_periph_release() call in 395 * pass_shutdown_kqueue(). In that case, the taskqueue_drain() 396 * would deadlock. It would be preferable if we had a way to 397 * get a callback when a taskqueue is done. 398 */ 399 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task); 400 401 cam_periph_lock(periph); 402 403 free(softc, M_DEVBUF); 404 } 405 406 static void 407 pass_shutdown_kqueue(void *context, int pending) 408 { 409 struct cam_periph *periph; 410 struct pass_softc *softc; 411 412 periph = context; 413 softc = periph->softc; 414 415 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0); 416 knlist_destroy(&softc->read_select.si_note); 417 418 /* 419 * Release the reference we held for kqueue. 420 */ 421 cam_periph_release(periph); 422 } 423 424 static void 425 pass_add_physpath(void *context, int pending) 426 { 427 struct cam_periph *periph; 428 struct pass_softc *softc; 429 struct mtx *mtx; 430 char *physpath; 431 432 /* 433 * If we have one, create a devfs alias for our 434 * physical path. 435 */ 436 periph = context; 437 softc = periph->softc; 438 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK); 439 mtx = cam_periph_mtx(periph); 440 mtx_lock(mtx); 441 442 if (periph->flags & CAM_PERIPH_INVALID) 443 goto out; 444 445 if (xpt_getattr(physpath, MAXPATHLEN, 446 "GEOM::physpath", periph->path) == 0 447 && strlen(physpath) != 0) { 448 mtx_unlock(mtx); 449 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev, 450 softc->dev, softc->alias_dev, physpath); 451 mtx_lock(mtx); 452 } 453 454 out: 455 /* 456 * Now that we've made our alias, we no longer have to have a 457 * reference to the device. 458 */ 459 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0) 460 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH; 461 462 /* 463 * We always acquire a reference to the periph before queueing this 464 * task queue function, so it won't go away before we run. 465 */ 466 while (pending-- > 0) 467 cam_periph_release_locked(periph); 468 mtx_unlock(mtx); 469 470 free(physpath, M_DEVBUF); 471 } 472 473 static void 474 passasync(void *callback_arg, u_int32_t code, 475 struct cam_path *path, void *arg) 476 { 477 struct cam_periph *periph; 478 479 periph = (struct cam_periph *)callback_arg; 480 481 switch (code) { 482 case AC_FOUND_DEVICE: 483 { 484 struct ccb_getdev *cgd; 485 cam_status status; 486 487 cgd = (struct ccb_getdev *)arg; 488 if (cgd == NULL) 489 break; 490 491 /* 492 * Allocate a peripheral instance for 493 * this device and start the probe 494 * process. 495 */ 496 status = cam_periph_alloc(passregister, passoninvalidate, 497 passcleanup, passstart, "pass", 498 CAM_PERIPH_BIO, path, 499 passasync, AC_FOUND_DEVICE, cgd); 500 501 if (status != CAM_REQ_CMP 502 && status != CAM_REQ_INPROG) { 503 const struct cam_status_entry *entry; 504 505 entry = cam_fetch_status_entry(status); 506 507 printf("passasync: Unable to attach new device " 508 "due to status %#x: %s\n", status, entry ? 509 entry->status_text : "Unknown"); 510 } 511 512 break; 513 } 514 case AC_ADVINFO_CHANGED: 515 { 516 uintptr_t buftype; 517 518 buftype = (uintptr_t)arg; 519 if (buftype == CDAI_TYPE_PHYS_PATH) { 520 struct pass_softc *softc; 521 522 softc = (struct pass_softc *)periph->softc; 523 /* 524 * Acquire a reference to the periph before we 525 * start the taskqueue, so that we don't run into 526 * a situation where the periph goes away before 527 * the task queue has a chance to run. 528 */ 529 if (cam_periph_acquire(periph) != 0) 530 break; 531 532 taskqueue_enqueue(taskqueue_thread, 533 &softc->add_physpath_task); 534 } 535 break; 536 } 537 default: 538 cam_periph_async(periph, code, path, arg); 539 break; 540 } 541 } 542 543 static cam_status 544 passregister(struct cam_periph *periph, void *arg) 545 { 546 struct pass_softc *softc; 547 struct ccb_getdev *cgd; 548 struct ccb_pathinq cpi; 549 struct make_dev_args args; 550 int error, no_tags; 551 552 cgd = (struct ccb_getdev *)arg; 553 if (cgd == NULL) { 554 printf("%s: no getdev CCB, can't register device\n", __func__); 555 return(CAM_REQ_CMP_ERR); 556 } 557 558 softc = (struct pass_softc *)malloc(sizeof(*softc), 559 M_DEVBUF, M_NOWAIT); 560 561 if (softc == NULL) { 562 printf("%s: Unable to probe new device. " 563 "Unable to allocate softc\n", __func__); 564 return(CAM_REQ_CMP_ERR); 565 } 566 567 bzero(softc, sizeof(*softc)); 568 softc->state = PASS_STATE_NORMAL; 569 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI) 570 softc->pd_type = SID_TYPE(&cgd->inq_data); 571 else if (cgd->protocol == PROTO_SATAPM) 572 softc->pd_type = T_ENCLOSURE; 573 else 574 softc->pd_type = T_DIRECT; 575 576 periph->softc = softc; 577 softc->periph = periph; 578 TAILQ_INIT(&softc->incoming_queue); 579 TAILQ_INIT(&softc->active_queue); 580 TAILQ_INIT(&softc->abandoned_queue); 581 TAILQ_INIT(&softc->done_queue); 582 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d", 583 periph->periph_name, periph->unit_number); 584 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO", 585 periph->periph_name, periph->unit_number); 586 softc->io_zone_size = MAXPHYS; 587 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph)); 588 589 xpt_path_inq(&cpi, periph->path); 590 591 if (cpi.maxio == 0) 592 softc->maxio = DFLTPHYS; /* traditional default */ 593 else if (cpi.maxio > MAXPHYS) 594 softc->maxio = MAXPHYS; /* for safety */ 595 else 596 softc->maxio = cpi.maxio; /* real value */ 597 598 if (cpi.hba_misc & PIM_UNMAPPED) 599 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE; 600 601 /* 602 * We pass in 0 for a blocksize, since we don't 603 * know what the blocksize of this device is, if 604 * it even has a blocksize. 605 */ 606 cam_periph_unlock(periph); 607 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0; 608 softc->device_stats = devstat_new_entry("pass", 609 periph->unit_number, 0, 610 DEVSTAT_NO_BLOCKSIZE 611 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0), 612 softc->pd_type | 613 XPORT_DEVSTAT_TYPE(cpi.transport) | 614 DEVSTAT_TYPE_PASS, 615 DEVSTAT_PRIORITY_PASS); 616 617 /* 618 * Initialize the taskqueue handler for shutting down kqueue. 619 */ 620 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0, 621 pass_shutdown_kqueue, periph); 622 623 /* 624 * Acquire a reference to the periph that we can release once we've 625 * cleaned up the kqueue. 626 */ 627 if (cam_periph_acquire(periph) != 0) { 628 xpt_print(periph->path, "%s: lost periph during " 629 "registration!\n", __func__); 630 cam_periph_lock(periph); 631 return (CAM_REQ_CMP_ERR); 632 } 633 634 /* 635 * Acquire a reference to the periph before we create the devfs 636 * instance for it. We'll release this reference once the devfs 637 * instance has been freed. 638 */ 639 if (cam_periph_acquire(periph) != 0) { 640 xpt_print(periph->path, "%s: lost periph during " 641 "registration!\n", __func__); 642 cam_periph_lock(periph); 643 return (CAM_REQ_CMP_ERR); 644 } 645 646 /* Register the device */ 647 make_dev_args_init(&args); 648 args.mda_devsw = &pass_cdevsw; 649 args.mda_unit = periph->unit_number; 650 args.mda_uid = UID_ROOT; 651 args.mda_gid = GID_OPERATOR; 652 args.mda_mode = 0600; 653 args.mda_si_drv1 = periph; 654 args.mda_flags = MAKEDEV_NOWAIT; 655 error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name, 656 periph->unit_number); 657 if (error != 0) { 658 cam_periph_lock(periph); 659 cam_periph_release_locked(periph); 660 return (CAM_REQ_CMP_ERR); 661 } 662 663 /* 664 * Hold a reference to the periph before we create the physical 665 * path alias so it can't go away. 666 */ 667 if (cam_periph_acquire(periph) != 0) { 668 xpt_print(periph->path, "%s: lost periph during " 669 "registration!\n", __func__); 670 cam_periph_lock(periph); 671 return (CAM_REQ_CMP_ERR); 672 } 673 674 cam_periph_lock(periph); 675 676 TASK_INIT(&softc->add_physpath_task, /*priority*/0, 677 pass_add_physpath, periph); 678 679 /* 680 * See if physical path information is already available. 681 */ 682 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); 683 684 /* 685 * Add an async callback so that we get notified if 686 * this device goes away or its physical path 687 * (stored in the advanced info data of the EDT) has 688 * changed. 689 */ 690 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED, 691 passasync, periph, periph->path); 692 693 if (bootverbose) 694 xpt_announce_periph(periph, NULL); 695 696 return(CAM_REQ_CMP); 697 } 698 699 static int 700 passopen(struct cdev *dev, int flags, int fmt, struct thread *td) 701 { 702 struct cam_periph *periph; 703 struct pass_softc *softc; 704 int error; 705 706 periph = (struct cam_periph *)dev->si_drv1; 707 if (cam_periph_acquire(periph) != 0) 708 return (ENXIO); 709 710 cam_periph_lock(periph); 711 712 softc = (struct pass_softc *)periph->softc; 713 714 if (softc->flags & PASS_FLAG_INVALID) { 715 cam_periph_release_locked(periph); 716 cam_periph_unlock(periph); 717 return(ENXIO); 718 } 719 720 /* 721 * Don't allow access when we're running at a high securelevel. 722 */ 723 error = securelevel_gt(td->td_ucred, 1); 724 if (error) { 725 cam_periph_release_locked(periph); 726 cam_periph_unlock(periph); 727 return(error); 728 } 729 730 /* 731 * Only allow read-write access. 732 */ 733 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) { 734 cam_periph_release_locked(periph); 735 cam_periph_unlock(periph); 736 return(EPERM); 737 } 738 739 /* 740 * We don't allow nonblocking access. 741 */ 742 if ((flags & O_NONBLOCK) != 0) { 743 xpt_print(periph->path, "can't do nonblocking access\n"); 744 cam_periph_release_locked(periph); 745 cam_periph_unlock(periph); 746 return(EINVAL); 747 } 748 749 softc->open_count++; 750 751 cam_periph_unlock(periph); 752 753 return (error); 754 } 755 756 static int 757 passclose(struct cdev *dev, int flag, int fmt, struct thread *td) 758 { 759 struct cam_periph *periph; 760 struct pass_softc *softc; 761 struct mtx *mtx; 762 763 periph = (struct cam_periph *)dev->si_drv1; 764 mtx = cam_periph_mtx(periph); 765 mtx_lock(mtx); 766 767 softc = periph->softc; 768 softc->open_count--; 769 770 if (softc->open_count == 0) { 771 struct pass_io_req *io_req, *io_req2; 772 773 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 774 TAILQ_REMOVE(&softc->done_queue, io_req, links); 775 passiocleanup(softc, io_req); 776 uma_zfree(softc->pass_zone, io_req); 777 } 778 779 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, 780 io_req2) { 781 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 782 passiocleanup(softc, io_req); 783 uma_zfree(softc->pass_zone, io_req); 784 } 785 786 /* 787 * If there are any active I/Os, we need to forcibly acquire a 788 * reference to the peripheral so that we don't go away 789 * before they complete. We'll release the reference when 790 * the abandoned queue is empty. 791 */ 792 io_req = TAILQ_FIRST(&softc->active_queue); 793 if ((io_req != NULL) 794 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) { 795 cam_periph_doacquire(periph); 796 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 797 } 798 799 /* 800 * Since the I/O in the active queue is not under our 801 * control, just set a flag so that we can clean it up when 802 * it completes and put it on the abandoned queue. This 803 * will prevent our sending spurious completions in the 804 * event that the device is opened again before these I/Os 805 * complete. 806 */ 807 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, 808 io_req2) { 809 TAILQ_REMOVE(&softc->active_queue, io_req, links); 810 io_req->flags |= PASS_IO_ABANDONED; 811 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, 812 links); 813 } 814 } 815 816 cam_periph_release_locked(periph); 817 818 /* 819 * We reference the lock directly here, instead of using 820 * cam_periph_unlock(). The reason is that the call to 821 * cam_periph_release_locked() above could result in the periph 822 * getting freed. If that is the case, dereferencing the periph 823 * with a cam_periph_unlock() call would cause a page fault. 824 * 825 * cam_periph_release() avoids this problem using the same method, 826 * but we're manually acquiring and dropping the lock here to 827 * protect the open count and avoid another lock acquisition and 828 * release. 829 */ 830 mtx_unlock(mtx); 831 832 return (0); 833 } 834 835 static void 836 passstart(struct cam_periph *periph, union ccb *start_ccb) 837 { 838 struct pass_softc *softc; 839 840 softc = (struct pass_softc *)periph->softc; 841 842 switch (softc->state) { 843 case PASS_STATE_NORMAL: { 844 struct pass_io_req *io_req; 845 846 /* 847 * Check for any queued I/O requests that require an 848 * allocated slot. 849 */ 850 io_req = TAILQ_FIRST(&softc->incoming_queue); 851 if (io_req == NULL) { 852 xpt_release_ccb(start_ccb); 853 break; 854 } 855 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 856 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 857 /* 858 * Merge the user's CCB into the allocated CCB. 859 */ 860 xpt_merge_ccb(start_ccb, &io_req->ccb); 861 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO; 862 start_ccb->ccb_h.ccb_ioreq = io_req; 863 start_ccb->ccb_h.cbfcnp = passdone; 864 io_req->alloced_ccb = start_ccb; 865 binuptime(&io_req->start_time); 866 devstat_start_transaction(softc->device_stats, 867 &io_req->start_time); 868 869 xpt_action(start_ccb); 870 871 /* 872 * If we have any more I/O waiting, schedule ourselves again. 873 */ 874 if (!TAILQ_EMPTY(&softc->incoming_queue)) 875 xpt_schedule(periph, CAM_PRIORITY_NORMAL); 876 break; 877 } 878 default: 879 break; 880 } 881 } 882 883 static void 884 passdone(struct cam_periph *periph, union ccb *done_ccb) 885 { 886 struct pass_softc *softc; 887 struct ccb_scsiio *csio; 888 889 softc = (struct pass_softc *)periph->softc; 890 891 cam_periph_assert(periph, MA_OWNED); 892 893 csio = &done_ccb->csio; 894 switch (csio->ccb_h.ccb_type) { 895 case PASS_CCB_QUEUED_IO: { 896 struct pass_io_req *io_req; 897 898 io_req = done_ccb->ccb_h.ccb_ioreq; 899 #if 0 900 xpt_print(periph->path, "%s: called for user CCB %p\n", 901 __func__, io_req->user_ccb_ptr); 902 #endif 903 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) 904 && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) 905 && ((io_req->flags & PASS_IO_ABANDONED) == 0)) { 906 int error; 907 908 error = passerror(done_ccb, CAM_RETRY_SELTO, 909 SF_RETRY_UA | SF_NO_PRINT); 910 911 if (error == ERESTART) { 912 /* 913 * A retry was scheduled, so 914 * just return. 915 */ 916 return; 917 } 918 } 919 920 /* 921 * Copy the allocated CCB contents back to the malloced CCB 922 * so we can give status back to the user when he requests it. 923 */ 924 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb)); 925 926 /* 927 * Log data/transaction completion with devstat(9). 928 */ 929 switch (done_ccb->ccb_h.func_code) { 930 case XPT_SCSI_IO: 931 devstat_end_transaction(softc->device_stats, 932 done_ccb->csio.dxfer_len - done_ccb->csio.resid, 933 done_ccb->csio.tag_action & 0x3, 934 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 935 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 936 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 937 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 938 &io_req->start_time); 939 break; 940 case XPT_ATA_IO: 941 devstat_end_transaction(softc->device_stats, 942 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid, 943 0, /* Not used in ATA */ 944 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 945 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 946 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 947 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 948 &io_req->start_time); 949 break; 950 case XPT_SMP_IO: 951 /* 952 * XXX KDM this isn't quite right, but there isn't 953 * currently an easy way to represent a bidirectional 954 * transfer in devstat. The only way to do it 955 * and have the byte counts come out right would 956 * mean that we would have to record two 957 * transactions, one for the request and one for the 958 * response. For now, so that we report something, 959 * just treat the entire thing as a read. 960 */ 961 devstat_end_transaction(softc->device_stats, 962 done_ccb->smpio.smp_request_len + 963 done_ccb->smpio.smp_response_len, 964 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL, 965 &io_req->start_time); 966 break; 967 default: 968 devstat_end_transaction(softc->device_stats, 0, 969 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL, 970 &io_req->start_time); 971 break; 972 } 973 974 /* 975 * In the normal case, take the completed I/O off of the 976 * active queue and put it on the done queue. Notitfy the 977 * user that we have a completed I/O. 978 */ 979 if ((io_req->flags & PASS_IO_ABANDONED) == 0) { 980 TAILQ_REMOVE(&softc->active_queue, io_req, links); 981 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 982 selwakeuppri(&softc->read_select, PRIBIO); 983 KNOTE_LOCKED(&softc->read_select.si_note, 0); 984 } else { 985 /* 986 * In the case of an abandoned I/O (final close 987 * without fetching the I/O), take it off of the 988 * abandoned queue and free it. 989 */ 990 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links); 991 passiocleanup(softc, io_req); 992 uma_zfree(softc->pass_zone, io_req); 993 994 /* 995 * Release the done_ccb here, since we may wind up 996 * freeing the peripheral when we decrement the 997 * reference count below. 998 */ 999 xpt_release_ccb(done_ccb); 1000 1001 /* 1002 * If the abandoned queue is empty, we can release 1003 * our reference to the periph since we won't have 1004 * any more completions coming. 1005 */ 1006 if ((TAILQ_EMPTY(&softc->abandoned_queue)) 1007 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) { 1008 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET; 1009 cam_periph_release_locked(periph); 1010 } 1011 1012 /* 1013 * We have already released the CCB, so we can 1014 * return. 1015 */ 1016 return; 1017 } 1018 break; 1019 } 1020 } 1021 xpt_release_ccb(done_ccb); 1022 } 1023 1024 static int 1025 passcreatezone(struct cam_periph *periph) 1026 { 1027 struct pass_softc *softc; 1028 int error; 1029 1030 error = 0; 1031 softc = (struct pass_softc *)periph->softc; 1032 1033 cam_periph_assert(periph, MA_OWNED); 1034 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 1035 ("%s called when the pass(4) zone is valid!\n", __func__)); 1036 KASSERT((softc->pass_zone == NULL), 1037 ("%s called when the pass(4) zone is allocated!\n", __func__)); 1038 1039 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) { 1040 /* 1041 * We're the first context through, so we need to create 1042 * the pass(4) UMA zone for I/O requests. 1043 */ 1044 softc->flags |= PASS_FLAG_ZONE_INPROG; 1045 1046 /* 1047 * uma_zcreate() does a blocking (M_WAITOK) allocation, 1048 * so we cannot hold a mutex while we call it. 1049 */ 1050 cam_periph_unlock(periph); 1051 1052 softc->pass_zone = uma_zcreate(softc->zone_name, 1053 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL, 1054 /*align*/ 0, /*flags*/ 0); 1055 1056 softc->pass_io_zone = uma_zcreate(softc->io_zone_name, 1057 softc->io_zone_size, NULL, NULL, NULL, NULL, 1058 /*align*/ 0, /*flags*/ 0); 1059 1060 cam_periph_lock(periph); 1061 1062 if ((softc->pass_zone == NULL) 1063 || (softc->pass_io_zone == NULL)) { 1064 if (softc->pass_zone == NULL) 1065 xpt_print(periph->path, "unable to allocate " 1066 "IO Req UMA zone\n"); 1067 else 1068 xpt_print(periph->path, "unable to allocate " 1069 "IO UMA zone\n"); 1070 softc->flags &= ~PASS_FLAG_ZONE_INPROG; 1071 goto bailout; 1072 } 1073 1074 /* 1075 * Set the flags appropriately and notify any other waiters. 1076 */ 1077 softc->flags &= PASS_FLAG_ZONE_INPROG; 1078 softc->flags |= PASS_FLAG_ZONE_VALID; 1079 wakeup(&softc->pass_zone); 1080 } else { 1081 /* 1082 * In this case, the UMA zone has not yet been created, but 1083 * another context is in the process of creating it. We 1084 * need to sleep until the creation is either done or has 1085 * failed. 1086 */ 1087 while ((softc->flags & PASS_FLAG_ZONE_INPROG) 1088 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) { 1089 error = msleep(&softc->pass_zone, 1090 cam_periph_mtx(periph), PRIBIO, 1091 "paszon", 0); 1092 if (error != 0) 1093 goto bailout; 1094 } 1095 /* 1096 * If the zone creation failed, no luck for the user. 1097 */ 1098 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){ 1099 error = ENOMEM; 1100 goto bailout; 1101 } 1102 } 1103 bailout: 1104 return (error); 1105 } 1106 1107 static void 1108 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req) 1109 { 1110 union ccb *ccb; 1111 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1112 int i, numbufs; 1113 1114 ccb = &io_req->ccb; 1115 1116 switch (ccb->ccb_h.func_code) { 1117 case XPT_DEV_MATCH: 1118 numbufs = min(io_req->num_bufs, 2); 1119 1120 if (numbufs == 1) { 1121 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1122 } else { 1123 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1124 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1125 } 1126 break; 1127 case XPT_SCSI_IO: 1128 case XPT_CONT_TARGET_IO: 1129 data_ptrs[0] = &ccb->csio.data_ptr; 1130 numbufs = min(io_req->num_bufs, 1); 1131 break; 1132 case XPT_ATA_IO: 1133 data_ptrs[0] = &ccb->ataio.data_ptr; 1134 numbufs = min(io_req->num_bufs, 1); 1135 break; 1136 case XPT_SMP_IO: 1137 numbufs = min(io_req->num_bufs, 2); 1138 data_ptrs[0] = &ccb->smpio.smp_request; 1139 data_ptrs[1] = &ccb->smpio.smp_response; 1140 break; 1141 case XPT_DEV_ADVINFO: 1142 numbufs = min(io_req->num_bufs, 1); 1143 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1144 break; 1145 case XPT_NVME_IO: 1146 case XPT_NVME_ADMIN: 1147 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1148 numbufs = min(io_req->num_bufs, 1); 1149 break; 1150 default: 1151 /* allow ourselves to be swapped once again */ 1152 return; 1153 break; /* NOTREACHED */ 1154 } 1155 1156 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) { 1157 free(io_req->user_segptr, M_SCSIPASS); 1158 io_req->user_segptr = NULL; 1159 } 1160 1161 /* 1162 * We only want to free memory we malloced. 1163 */ 1164 if (io_req->data_flags == CAM_DATA_VADDR) { 1165 for (i = 0; i < io_req->num_bufs; i++) { 1166 if (io_req->kern_bufs[i] == NULL) 1167 continue; 1168 1169 free(io_req->kern_bufs[i], M_SCSIPASS); 1170 io_req->kern_bufs[i] = NULL; 1171 } 1172 } else if (io_req->data_flags == CAM_DATA_SG) { 1173 for (i = 0; i < io_req->num_kern_segs; i++) { 1174 if ((uint8_t *)(uintptr_t) 1175 io_req->kern_segptr[i].ds_addr == NULL) 1176 continue; 1177 1178 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t) 1179 io_req->kern_segptr[i].ds_addr); 1180 io_req->kern_segptr[i].ds_addr = 0; 1181 } 1182 } 1183 1184 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) { 1185 free(io_req->kern_segptr, M_SCSIPASS); 1186 io_req->kern_segptr = NULL; 1187 } 1188 1189 if (io_req->data_flags != CAM_DATA_PADDR) { 1190 for (i = 0; i < numbufs; i++) { 1191 /* 1192 * Restore the user's buffer pointers to their 1193 * previous values. 1194 */ 1195 if (io_req->user_bufs[i] != NULL) 1196 *data_ptrs[i] = io_req->user_bufs[i]; 1197 } 1198 } 1199 1200 } 1201 1202 static int 1203 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req, 1204 ccb_flags direction) 1205 { 1206 bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy; 1207 bus_dma_segment_t *user_sglist, *kern_sglist; 1208 int i, j, error; 1209 1210 error = 0; 1211 kern_watermark = 0; 1212 user_watermark = 0; 1213 len_to_copy = 0; 1214 len_copied = 0; 1215 user_sglist = io_req->user_segptr; 1216 kern_sglist = io_req->kern_segptr; 1217 1218 for (i = 0, j = 0; i < io_req->num_user_segs && 1219 j < io_req->num_kern_segs;) { 1220 uint8_t *user_ptr, *kern_ptr; 1221 1222 len_to_copy = min(user_sglist[i].ds_len -user_watermark, 1223 kern_sglist[j].ds_len - kern_watermark); 1224 1225 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr; 1226 user_ptr = user_ptr + user_watermark; 1227 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr; 1228 kern_ptr = kern_ptr + kern_watermark; 1229 1230 user_watermark += len_to_copy; 1231 kern_watermark += len_to_copy; 1232 1233 if (direction == CAM_DIR_IN) { 1234 error = copyout(kern_ptr, user_ptr, len_to_copy); 1235 if (error != 0) { 1236 xpt_print(periph->path, "%s: copyout of %u " 1237 "bytes from %p to %p failed with " 1238 "error %d\n", __func__, len_to_copy, 1239 kern_ptr, user_ptr, error); 1240 goto bailout; 1241 } 1242 } else { 1243 error = copyin(user_ptr, kern_ptr, len_to_copy); 1244 if (error != 0) { 1245 xpt_print(periph->path, "%s: copyin of %u " 1246 "bytes from %p to %p failed with " 1247 "error %d\n", __func__, len_to_copy, 1248 user_ptr, kern_ptr, error); 1249 goto bailout; 1250 } 1251 } 1252 1253 len_copied += len_to_copy; 1254 1255 if (user_sglist[i].ds_len == user_watermark) { 1256 i++; 1257 user_watermark = 0; 1258 } 1259 1260 if (kern_sglist[j].ds_len == kern_watermark) { 1261 j++; 1262 kern_watermark = 0; 1263 } 1264 } 1265 1266 bailout: 1267 1268 return (error); 1269 } 1270 1271 static int 1272 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req) 1273 { 1274 union ccb *ccb; 1275 struct pass_softc *softc; 1276 int numbufs, i; 1277 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1278 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 1279 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 1280 uint32_t num_segs; 1281 uint16_t *seg_cnt_ptr; 1282 size_t maxmap; 1283 int error; 1284 1285 cam_periph_assert(periph, MA_NOTOWNED); 1286 1287 softc = periph->softc; 1288 1289 error = 0; 1290 ccb = &io_req->ccb; 1291 maxmap = 0; 1292 num_segs = 0; 1293 seg_cnt_ptr = NULL; 1294 1295 switch(ccb->ccb_h.func_code) { 1296 case XPT_DEV_MATCH: 1297 if (ccb->cdm.match_buf_len == 0) { 1298 printf("%s: invalid match buffer length 0\n", __func__); 1299 return(EINVAL); 1300 } 1301 if (ccb->cdm.pattern_buf_len > 0) { 1302 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1303 lengths[0] = ccb->cdm.pattern_buf_len; 1304 dirs[0] = CAM_DIR_OUT; 1305 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1306 lengths[1] = ccb->cdm.match_buf_len; 1307 dirs[1] = CAM_DIR_IN; 1308 numbufs = 2; 1309 } else { 1310 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1311 lengths[0] = ccb->cdm.match_buf_len; 1312 dirs[0] = CAM_DIR_IN; 1313 numbufs = 1; 1314 } 1315 io_req->data_flags = CAM_DATA_VADDR; 1316 break; 1317 case XPT_SCSI_IO: 1318 case XPT_CONT_TARGET_IO: 1319 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1320 return(0); 1321 1322 /* 1323 * The user shouldn't be able to supply a bio. 1324 */ 1325 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO) 1326 return (EINVAL); 1327 1328 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1329 1330 data_ptrs[0] = &ccb->csio.data_ptr; 1331 lengths[0] = ccb->csio.dxfer_len; 1332 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1333 num_segs = ccb->csio.sglist_cnt; 1334 seg_cnt_ptr = &ccb->csio.sglist_cnt; 1335 numbufs = 1; 1336 maxmap = softc->maxio; 1337 break; 1338 case XPT_ATA_IO: 1339 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1340 return(0); 1341 1342 /* 1343 * We only support a single virtual address for ATA I/O. 1344 */ 1345 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 1346 return (EINVAL); 1347 1348 io_req->data_flags = CAM_DATA_VADDR; 1349 1350 data_ptrs[0] = &ccb->ataio.data_ptr; 1351 lengths[0] = ccb->ataio.dxfer_len; 1352 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1353 numbufs = 1; 1354 maxmap = softc->maxio; 1355 break; 1356 case XPT_SMP_IO: 1357 io_req->data_flags = CAM_DATA_VADDR; 1358 1359 data_ptrs[0] = &ccb->smpio.smp_request; 1360 lengths[0] = ccb->smpio.smp_request_len; 1361 dirs[0] = CAM_DIR_OUT; 1362 data_ptrs[1] = &ccb->smpio.smp_response; 1363 lengths[1] = ccb->smpio.smp_response_len; 1364 dirs[1] = CAM_DIR_IN; 1365 numbufs = 2; 1366 maxmap = softc->maxio; 1367 break; 1368 case XPT_DEV_ADVINFO: 1369 if (ccb->cdai.bufsiz == 0) 1370 return (0); 1371 1372 io_req->data_flags = CAM_DATA_VADDR; 1373 1374 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1375 lengths[0] = ccb->cdai.bufsiz; 1376 dirs[0] = CAM_DIR_IN; 1377 numbufs = 1; 1378 break; 1379 case XPT_NVME_ADMIN: 1380 case XPT_NVME_IO: 1381 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1382 return (0); 1383 1384 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1385 1386 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1387 lengths[0] = ccb->nvmeio.dxfer_len; 1388 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1389 num_segs = ccb->nvmeio.sglist_cnt; 1390 seg_cnt_ptr = &ccb->nvmeio.sglist_cnt; 1391 numbufs = 1; 1392 maxmap = softc->maxio; 1393 break; 1394 default: 1395 return(EINVAL); 1396 break; /* NOTREACHED */ 1397 } 1398 1399 io_req->num_bufs = numbufs; 1400 1401 /* 1402 * If there is a maximum, check to make sure that the user's 1403 * request fits within the limit. In general, we should only have 1404 * a maximum length for requests that go to hardware. Otherwise it 1405 * is whatever we're able to malloc. 1406 */ 1407 for (i = 0; i < numbufs; i++) { 1408 io_req->user_bufs[i] = *data_ptrs[i]; 1409 io_req->dirs[i] = dirs[i]; 1410 io_req->lengths[i] = lengths[i]; 1411 1412 if (maxmap == 0) 1413 continue; 1414 1415 if (lengths[i] <= maxmap) 1416 continue; 1417 1418 xpt_print(periph->path, "%s: data length %u > max allowed %u " 1419 "bytes\n", __func__, lengths[i], maxmap); 1420 error = EINVAL; 1421 goto bailout; 1422 } 1423 1424 switch (io_req->data_flags) { 1425 case CAM_DATA_VADDR: 1426 /* Map or copy the buffer into kernel address space */ 1427 for (i = 0; i < numbufs; i++) { 1428 uint8_t *tmp_buf; 1429 1430 /* 1431 * If for some reason no length is specified, we 1432 * don't need to allocate anything. 1433 */ 1434 if (io_req->lengths[i] == 0) 1435 continue; 1436 1437 tmp_buf = malloc(lengths[i], M_SCSIPASS, 1438 M_WAITOK | M_ZERO); 1439 io_req->kern_bufs[i] = tmp_buf; 1440 *data_ptrs[i] = tmp_buf; 1441 1442 #if 0 1443 xpt_print(periph->path, "%s: malloced %p len %u, user " 1444 "buffer %p, operation: %s\n", __func__, 1445 tmp_buf, lengths[i], io_req->user_bufs[i], 1446 (dirs[i] == CAM_DIR_IN) ? "read" : "write"); 1447 #endif 1448 /* 1449 * We only need to copy in if the user is writing. 1450 */ 1451 if (dirs[i] != CAM_DIR_OUT) 1452 continue; 1453 1454 error = copyin(io_req->user_bufs[i], 1455 io_req->kern_bufs[i], lengths[i]); 1456 if (error != 0) { 1457 xpt_print(periph->path, "%s: copy of user " 1458 "buffer from %p to %p failed with " 1459 "error %d\n", __func__, 1460 io_req->user_bufs[i], 1461 io_req->kern_bufs[i], error); 1462 goto bailout; 1463 } 1464 } 1465 break; 1466 case CAM_DATA_PADDR: 1467 /* Pass down the pointer as-is */ 1468 break; 1469 case CAM_DATA_SG: { 1470 size_t sg_length, size_to_go, alloc_size; 1471 uint32_t num_segs_needed; 1472 1473 /* 1474 * Copy the user S/G list in, and then copy in the 1475 * individual segments. 1476 */ 1477 /* 1478 * We shouldn't see this, but check just in case. 1479 */ 1480 if (numbufs != 1) { 1481 xpt_print(periph->path, "%s: cannot currently handle " 1482 "more than one S/G list per CCB\n", __func__); 1483 error = EINVAL; 1484 goto bailout; 1485 } 1486 1487 /* 1488 * We have to have at least one segment. 1489 */ 1490 if (num_segs == 0) { 1491 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, " 1492 "but sglist_cnt=0!\n", __func__); 1493 error = EINVAL; 1494 goto bailout; 1495 } 1496 1497 /* 1498 * Make sure the user specified the total length and didn't 1499 * just leave it to us to decode the S/G list. 1500 */ 1501 if (lengths[0] == 0) { 1502 xpt_print(periph->path, "%s: no dxfer_len specified, " 1503 "but CAM_DATA_SG flag is set!\n", __func__); 1504 error = EINVAL; 1505 goto bailout; 1506 } 1507 1508 /* 1509 * We allocate buffers in io_zone_size increments for an 1510 * S/G list. This will generally be MAXPHYS. 1511 */ 1512 if (lengths[0] <= softc->io_zone_size) 1513 num_segs_needed = 1; 1514 else { 1515 num_segs_needed = lengths[0] / softc->io_zone_size; 1516 if ((lengths[0] % softc->io_zone_size) != 0) 1517 num_segs_needed++; 1518 } 1519 1520 /* Figure out the size of the S/G list */ 1521 sg_length = num_segs * sizeof(bus_dma_segment_t); 1522 io_req->num_user_segs = num_segs; 1523 io_req->num_kern_segs = num_segs_needed; 1524 1525 /* Save the user's S/G list pointer for later restoration */ 1526 io_req->user_bufs[0] = *data_ptrs[0]; 1527 1528 /* 1529 * If we have enough segments allocated by default to handle 1530 * the length of the user's S/G list, 1531 */ 1532 if (num_segs > PASS_MAX_SEGS) { 1533 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1534 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1535 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1536 } else 1537 io_req->user_segptr = io_req->user_segs; 1538 1539 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1540 if (error != 0) { 1541 xpt_print(periph->path, "%s: copy of user S/G list " 1542 "from %p to %p failed with error %d\n", 1543 __func__, *data_ptrs[0], io_req->user_segptr, 1544 error); 1545 goto bailout; 1546 } 1547 1548 if (num_segs_needed > PASS_MAX_SEGS) { 1549 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) * 1550 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO); 1551 io_req->flags |= PASS_IO_KERN_SEG_MALLOC; 1552 } else { 1553 io_req->kern_segptr = io_req->kern_segs; 1554 } 1555 1556 /* 1557 * Allocate the kernel S/G list. 1558 */ 1559 for (size_to_go = lengths[0], i = 0; 1560 size_to_go > 0 && i < num_segs_needed; 1561 i++, size_to_go -= alloc_size) { 1562 uint8_t *kern_ptr; 1563 1564 alloc_size = min(size_to_go, softc->io_zone_size); 1565 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK); 1566 io_req->kern_segptr[i].ds_addr = 1567 (bus_addr_t)(uintptr_t)kern_ptr; 1568 io_req->kern_segptr[i].ds_len = alloc_size; 1569 } 1570 if (size_to_go > 0) { 1571 printf("%s: size_to_go = %zu, software error!\n", 1572 __func__, size_to_go); 1573 error = EINVAL; 1574 goto bailout; 1575 } 1576 1577 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr; 1578 *seg_cnt_ptr = io_req->num_kern_segs; 1579 1580 /* 1581 * We only need to copy data here if the user is writing. 1582 */ 1583 if (dirs[0] == CAM_DIR_OUT) 1584 error = passcopysglist(periph, io_req, dirs[0]); 1585 break; 1586 } 1587 case CAM_DATA_SG_PADDR: { 1588 size_t sg_length; 1589 1590 /* 1591 * We shouldn't see this, but check just in case. 1592 */ 1593 if (numbufs != 1) { 1594 printf("%s: cannot currently handle more than one " 1595 "S/G list per CCB\n", __func__); 1596 error = EINVAL; 1597 goto bailout; 1598 } 1599 1600 /* 1601 * We have to have at least one segment. 1602 */ 1603 if (num_segs == 0) { 1604 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag " 1605 "set, but sglist_cnt=0!\n", __func__); 1606 error = EINVAL; 1607 goto bailout; 1608 } 1609 1610 /* 1611 * Make sure the user specified the total length and didn't 1612 * just leave it to us to decode the S/G list. 1613 */ 1614 if (lengths[0] == 0) { 1615 xpt_print(periph->path, "%s: no dxfer_len specified, " 1616 "but CAM_DATA_SG flag is set!\n", __func__); 1617 error = EINVAL; 1618 goto bailout; 1619 } 1620 1621 /* Figure out the size of the S/G list */ 1622 sg_length = num_segs * sizeof(bus_dma_segment_t); 1623 io_req->num_user_segs = num_segs; 1624 io_req->num_kern_segs = io_req->num_user_segs; 1625 1626 /* Save the user's S/G list pointer for later restoration */ 1627 io_req->user_bufs[0] = *data_ptrs[0]; 1628 1629 if (num_segs > PASS_MAX_SEGS) { 1630 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1631 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1632 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1633 } else 1634 io_req->user_segptr = io_req->user_segs; 1635 1636 io_req->kern_segptr = io_req->user_segptr; 1637 1638 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1639 if (error != 0) { 1640 xpt_print(periph->path, "%s: copy of user S/G list " 1641 "from %p to %p failed with error %d\n", 1642 __func__, *data_ptrs[0], io_req->user_segptr, 1643 error); 1644 goto bailout; 1645 } 1646 break; 1647 } 1648 default: 1649 case CAM_DATA_BIO: 1650 /* 1651 * A user shouldn't be attaching a bio to the CCB. It 1652 * isn't a user-accessible structure. 1653 */ 1654 error = EINVAL; 1655 break; 1656 } 1657 1658 bailout: 1659 if (error != 0) 1660 passiocleanup(softc, io_req); 1661 1662 return (error); 1663 } 1664 1665 static int 1666 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req) 1667 { 1668 struct pass_softc *softc; 1669 int error; 1670 int i; 1671 1672 error = 0; 1673 softc = (struct pass_softc *)periph->softc; 1674 1675 switch (io_req->data_flags) { 1676 case CAM_DATA_VADDR: 1677 /* 1678 * Copy back to the user buffer if this was a read. 1679 */ 1680 for (i = 0; i < io_req->num_bufs; i++) { 1681 if (io_req->dirs[i] != CAM_DIR_IN) 1682 continue; 1683 1684 error = copyout(io_req->kern_bufs[i], 1685 io_req->user_bufs[i], io_req->lengths[i]); 1686 if (error != 0) { 1687 xpt_print(periph->path, "Unable to copy %u " 1688 "bytes from %p to user address %p\n", 1689 io_req->lengths[i], 1690 io_req->kern_bufs[i], 1691 io_req->user_bufs[i]); 1692 goto bailout; 1693 } 1694 } 1695 break; 1696 case CAM_DATA_PADDR: 1697 /* Do nothing. The pointer is a physical address already */ 1698 break; 1699 case CAM_DATA_SG: 1700 /* 1701 * Copy back to the user buffer if this was a read. 1702 * Restore the user's S/G list buffer pointer. 1703 */ 1704 if (io_req->dirs[0] == CAM_DIR_IN) 1705 error = passcopysglist(periph, io_req, io_req->dirs[0]); 1706 break; 1707 case CAM_DATA_SG_PADDR: 1708 /* 1709 * Restore the user's S/G list buffer pointer. No need to 1710 * copy. 1711 */ 1712 break; 1713 default: 1714 case CAM_DATA_BIO: 1715 error = EINVAL; 1716 break; 1717 } 1718 1719 bailout: 1720 /* 1721 * Reset the user's pointers to their original values and free 1722 * allocated memory. 1723 */ 1724 passiocleanup(softc, io_req); 1725 1726 return (error); 1727 } 1728 1729 static int 1730 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1731 { 1732 int error; 1733 1734 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 1735 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl); 1736 } 1737 return (error); 1738 } 1739 1740 static int 1741 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1742 { 1743 struct cam_periph *periph; 1744 struct pass_softc *softc; 1745 int error; 1746 uint32_t priority; 1747 1748 periph = (struct cam_periph *)dev->si_drv1; 1749 cam_periph_lock(periph); 1750 softc = (struct pass_softc *)periph->softc; 1751 1752 error = 0; 1753 1754 switch (cmd) { 1755 case CAMIOCOMMAND: 1756 { 1757 union ccb *inccb; 1758 union ccb *ccb; 1759 int ccb_malloced; 1760 1761 inccb = (union ccb *)addr; 1762 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1763 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 1764 inccb->csio.bio = NULL; 1765 #endif 1766 1767 if (inccb->ccb_h.flags & CAM_UNLOCKED) { 1768 error = EINVAL; 1769 break; 1770 } 1771 1772 /* 1773 * Some CCB types, like scan bus and scan lun can only go 1774 * through the transport layer device. 1775 */ 1776 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1777 xpt_print(periph->path, "CCB function code %#x is " 1778 "restricted to the XPT device\n", 1779 inccb->ccb_h.func_code); 1780 error = ENODEV; 1781 break; 1782 } 1783 1784 /* Compatibility for RL/priority-unaware code. */ 1785 priority = inccb->ccb_h.pinfo.priority; 1786 if (priority <= CAM_PRIORITY_OOB) 1787 priority += CAM_PRIORITY_OOB + 1; 1788 1789 /* 1790 * Non-immediate CCBs need a CCB from the per-device pool 1791 * of CCBs, which is scheduled by the transport layer. 1792 * Immediate CCBs and user-supplied CCBs should just be 1793 * malloced. 1794 */ 1795 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED) 1796 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) { 1797 ccb = cam_periph_getccb(periph, priority); 1798 ccb_malloced = 0; 1799 } else { 1800 ccb = xpt_alloc_ccb_nowait(); 1801 1802 if (ccb != NULL) 1803 xpt_setup_ccb(&ccb->ccb_h, periph->path, 1804 priority); 1805 ccb_malloced = 1; 1806 } 1807 1808 if (ccb == NULL) { 1809 xpt_print(periph->path, "unable to allocate CCB\n"); 1810 error = ENOMEM; 1811 break; 1812 } 1813 1814 error = passsendccb(periph, ccb, inccb); 1815 1816 if (ccb_malloced) 1817 xpt_free_ccb(ccb); 1818 else 1819 xpt_release_ccb(ccb); 1820 1821 break; 1822 } 1823 case CAMIOQUEUE: 1824 { 1825 struct pass_io_req *io_req; 1826 union ccb **user_ccb, *ccb; 1827 xpt_opcode fc; 1828 1829 #ifdef COMPAT_FREEBSD32 1830 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 1831 error = ENOTTY; 1832 goto bailout; 1833 } 1834 #endif 1835 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) { 1836 error = passcreatezone(periph); 1837 if (error != 0) 1838 goto bailout; 1839 } 1840 1841 /* 1842 * We're going to do a blocking allocation for this I/O 1843 * request, so we have to drop the lock. 1844 */ 1845 cam_periph_unlock(periph); 1846 1847 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO); 1848 ccb = &io_req->ccb; 1849 user_ccb = (union ccb **)addr; 1850 1851 /* 1852 * Unlike the CAMIOCOMMAND ioctl above, we only have a 1853 * pointer to the user's CCB, so we have to copy the whole 1854 * thing in to a buffer we have allocated (above) instead 1855 * of allowing the ioctl code to malloc a buffer and copy 1856 * it in. 1857 * 1858 * This is an advantage for this asynchronous interface, 1859 * since we don't want the memory to get freed while the 1860 * CCB is outstanding. 1861 */ 1862 #if 0 1863 xpt_print(periph->path, "Copying user CCB %p to " 1864 "kernel address %p\n", *user_ccb, ccb); 1865 #endif 1866 error = copyin(*user_ccb, ccb, sizeof(*ccb)); 1867 if (error != 0) { 1868 xpt_print(periph->path, "Copy of user CCB %p to " 1869 "kernel address %p failed with error %d\n", 1870 *user_ccb, ccb, error); 1871 goto camioqueue_error; 1872 } 1873 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1874 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 1875 ccb->csio.bio = NULL; 1876 #endif 1877 1878 if (ccb->ccb_h.flags & CAM_UNLOCKED) { 1879 error = EINVAL; 1880 goto camioqueue_error; 1881 } 1882 1883 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 1884 if (ccb->csio.cdb_len > IOCDBLEN) { 1885 error = EINVAL; 1886 goto camioqueue_error; 1887 } 1888 error = copyin(ccb->csio.cdb_io.cdb_ptr, 1889 ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len); 1890 if (error != 0) 1891 goto camioqueue_error; 1892 ccb->ccb_h.flags &= ~CAM_CDB_POINTER; 1893 } 1894 1895 /* 1896 * Some CCB types, like scan bus and scan lun can only go 1897 * through the transport layer device. 1898 */ 1899 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1900 xpt_print(periph->path, "CCB function code %#x is " 1901 "restricted to the XPT device\n", 1902 ccb->ccb_h.func_code); 1903 error = ENODEV; 1904 goto camioqueue_error; 1905 } 1906 1907 /* 1908 * Save the user's CCB pointer as well as his linked list 1909 * pointers and peripheral private area so that we can 1910 * restore these later. 1911 */ 1912 io_req->user_ccb_ptr = *user_ccb; 1913 io_req->user_periph_links = ccb->ccb_h.periph_links; 1914 io_req->user_periph_priv = ccb->ccb_h.periph_priv; 1915 1916 /* 1917 * Now that we've saved the user's values, we can set our 1918 * own peripheral private entry. 1919 */ 1920 ccb->ccb_h.ccb_ioreq = io_req; 1921 1922 /* Compatibility for RL/priority-unaware code. */ 1923 priority = ccb->ccb_h.pinfo.priority; 1924 if (priority <= CAM_PRIORITY_OOB) 1925 priority += CAM_PRIORITY_OOB + 1; 1926 1927 /* 1928 * Setup fields in the CCB like the path and the priority. 1929 * The path in particular cannot be done in userland, since 1930 * it is a pointer to a kernel data structure. 1931 */ 1932 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority, 1933 ccb->ccb_h.flags); 1934 1935 /* 1936 * Setup our done routine. There is no way for the user to 1937 * have a valid pointer here. 1938 */ 1939 ccb->ccb_h.cbfcnp = passdone; 1940 1941 fc = ccb->ccb_h.func_code; 1942 /* 1943 * If this function code has memory that can be mapped in 1944 * or out, we need to call passmemsetup(). 1945 */ 1946 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) 1947 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH) 1948 || (fc == XPT_DEV_ADVINFO) 1949 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { 1950 error = passmemsetup(periph, io_req); 1951 if (error != 0) 1952 goto camioqueue_error; 1953 } else 1954 io_req->mapinfo.num_bufs_used = 0; 1955 1956 cam_periph_lock(periph); 1957 1958 /* 1959 * Everything goes on the incoming queue initially. 1960 */ 1961 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links); 1962 1963 /* 1964 * If the CCB is queued, and is not a user CCB, then 1965 * we need to allocate a slot for it. Call xpt_schedule() 1966 * so that our start routine will get called when a CCB is 1967 * available. 1968 */ 1969 if ((fc & XPT_FC_QUEUED) 1970 && ((fc & XPT_FC_USER_CCB) == 0)) { 1971 xpt_schedule(periph, priority); 1972 break; 1973 } 1974 1975 /* 1976 * At this point, the CCB in question is either an 1977 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB 1978 * and therefore should be malloced, not allocated via a slot. 1979 * Remove the CCB from the incoming queue and add it to the 1980 * active queue. 1981 */ 1982 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 1983 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 1984 1985 xpt_action(ccb); 1986 1987 /* 1988 * If this is not a queued CCB (i.e. it is an immediate CCB), 1989 * then it is already done. We need to put it on the done 1990 * queue for the user to fetch. 1991 */ 1992 if ((fc & XPT_FC_QUEUED) == 0) { 1993 TAILQ_REMOVE(&softc->active_queue, io_req, links); 1994 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 1995 } 1996 break; 1997 1998 camioqueue_error: 1999 uma_zfree(softc->pass_zone, io_req); 2000 cam_periph_lock(periph); 2001 break; 2002 } 2003 case CAMIOGET: 2004 { 2005 union ccb **user_ccb; 2006 struct pass_io_req *io_req; 2007 int old_error; 2008 2009 #ifdef COMPAT_FREEBSD32 2010 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 2011 error = ENOTTY; 2012 goto bailout; 2013 } 2014 #endif 2015 user_ccb = (union ccb **)addr; 2016 old_error = 0; 2017 2018 io_req = TAILQ_FIRST(&softc->done_queue); 2019 if (io_req == NULL) { 2020 error = ENOENT; 2021 break; 2022 } 2023 2024 /* 2025 * Remove the I/O from the done queue. 2026 */ 2027 TAILQ_REMOVE(&softc->done_queue, io_req, links); 2028 2029 /* 2030 * We have to drop the lock during the copyout because the 2031 * copyout can result in VM faults that require sleeping. 2032 */ 2033 cam_periph_unlock(periph); 2034 2035 /* 2036 * Do any needed copies (e.g. for reads) and revert the 2037 * pointers in the CCB back to the user's pointers. 2038 */ 2039 error = passmemdone(periph, io_req); 2040 2041 old_error = error; 2042 2043 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links; 2044 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv; 2045 2046 #if 0 2047 xpt_print(periph->path, "Copying to user CCB %p from " 2048 "kernel address %p\n", *user_ccb, &io_req->ccb); 2049 #endif 2050 2051 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb)); 2052 if (error != 0) { 2053 xpt_print(periph->path, "Copy to user CCB %p from " 2054 "kernel address %p failed with error %d\n", 2055 *user_ccb, &io_req->ccb, error); 2056 } 2057 2058 /* 2059 * Prefer the first error we got back, and make sure we 2060 * don't overwrite bad status with good. 2061 */ 2062 if (old_error != 0) 2063 error = old_error; 2064 2065 cam_periph_lock(periph); 2066 2067 /* 2068 * At this point, if there was an error, we could potentially 2069 * re-queue the I/O and try again. But why? The error 2070 * would almost certainly happen again. We might as well 2071 * not leak memory. 2072 */ 2073 uma_zfree(softc->pass_zone, io_req); 2074 break; 2075 } 2076 default: 2077 error = cam_periph_ioctl(periph, cmd, addr, passerror); 2078 break; 2079 } 2080 2081 bailout: 2082 cam_periph_unlock(periph); 2083 2084 return(error); 2085 } 2086 2087 static int 2088 passpoll(struct cdev *dev, int poll_events, struct thread *td) 2089 { 2090 struct cam_periph *periph; 2091 struct pass_softc *softc; 2092 int revents; 2093 2094 periph = (struct cam_periph *)dev->si_drv1; 2095 softc = (struct pass_softc *)periph->softc; 2096 2097 revents = poll_events & (POLLOUT | POLLWRNORM); 2098 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) { 2099 cam_periph_lock(periph); 2100 2101 if (!TAILQ_EMPTY(&softc->done_queue)) { 2102 revents |= poll_events & (POLLIN | POLLRDNORM); 2103 } 2104 cam_periph_unlock(periph); 2105 if (revents == 0) 2106 selrecord(td, &softc->read_select); 2107 } 2108 2109 return (revents); 2110 } 2111 2112 static int 2113 passkqfilter(struct cdev *dev, struct knote *kn) 2114 { 2115 struct cam_periph *periph; 2116 struct pass_softc *softc; 2117 2118 periph = (struct cam_periph *)dev->si_drv1; 2119 softc = (struct pass_softc *)periph->softc; 2120 2121 kn->kn_hook = (caddr_t)periph; 2122 kn->kn_fop = &passread_filtops; 2123 knlist_add(&softc->read_select.si_note, kn, 0); 2124 2125 return (0); 2126 } 2127 2128 static void 2129 passreadfiltdetach(struct knote *kn) 2130 { 2131 struct cam_periph *periph; 2132 struct pass_softc *softc; 2133 2134 periph = (struct cam_periph *)kn->kn_hook; 2135 softc = (struct pass_softc *)periph->softc; 2136 2137 knlist_remove(&softc->read_select.si_note, kn, 0); 2138 } 2139 2140 static int 2141 passreadfilt(struct knote *kn, long hint) 2142 { 2143 struct cam_periph *periph; 2144 struct pass_softc *softc; 2145 int retval; 2146 2147 periph = (struct cam_periph *)kn->kn_hook; 2148 softc = (struct pass_softc *)periph->softc; 2149 2150 cam_periph_assert(periph, MA_OWNED); 2151 2152 if (TAILQ_EMPTY(&softc->done_queue)) 2153 retval = 0; 2154 else 2155 retval = 1; 2156 2157 return (retval); 2158 } 2159 2160 /* 2161 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb" 2162 * should be the CCB that is copied in from the user. 2163 */ 2164 static int 2165 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb) 2166 { 2167 struct pass_softc *softc; 2168 struct cam_periph_map_info mapinfo; 2169 uint8_t *cmd; 2170 xpt_opcode fc; 2171 int error; 2172 2173 softc = (struct pass_softc *)periph->softc; 2174 2175 /* 2176 * There are some fields in the CCB header that need to be 2177 * preserved, the rest we get from the user. 2178 */ 2179 xpt_merge_ccb(ccb, inccb); 2180 2181 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 2182 cmd = __builtin_alloca(ccb->csio.cdb_len); 2183 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len); 2184 if (error) 2185 return (error); 2186 ccb->csio.cdb_io.cdb_ptr = cmd; 2187 } 2188 2189 /* 2190 * Let cam_periph_mapmem do a sanity check on the data pointer format. 2191 * Even if no data transfer is needed, it's a cheap check and it 2192 * simplifies the code. 2193 */ 2194 fc = ccb->ccb_h.func_code; 2195 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO) 2196 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO) 2197 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { 2198 bzero(&mapinfo, sizeof(mapinfo)); 2199 2200 /* 2201 * cam_periph_mapmem calls into proc and vm functions that can 2202 * sleep as well as trigger I/O, so we can't hold the lock. 2203 * Dropping it here is reasonably safe. 2204 */ 2205 cam_periph_unlock(periph); 2206 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio); 2207 cam_periph_lock(periph); 2208 2209 /* 2210 * cam_periph_mapmem returned an error, we can't continue. 2211 * Return the error to the user. 2212 */ 2213 if (error) 2214 return(error); 2215 } else 2216 /* Ensure that the unmap call later on is a no-op. */ 2217 mapinfo.num_bufs_used = 0; 2218 2219 /* 2220 * If the user wants us to perform any error recovery, then honor 2221 * that request. Otherwise, it's up to the user to perform any 2222 * error recovery. 2223 */ 2224 cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? 2225 passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO, 2226 /* sense_flags */ SF_RETRY_UA | SF_NO_PRINT, 2227 softc->device_stats); 2228 2229 cam_periph_unlock(periph); 2230 cam_periph_unmapmem(ccb, &mapinfo); 2231 cam_periph_lock(periph); 2232 2233 ccb->ccb_h.cbfcnp = NULL; 2234 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv; 2235 bcopy(ccb, inccb, sizeof(union ccb)); 2236 2237 return(0); 2238 } 2239 2240 static int 2241 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) 2242 { 2243 struct cam_periph *periph; 2244 struct pass_softc *softc; 2245 2246 periph = xpt_path_periph(ccb->ccb_h.path); 2247 softc = (struct pass_softc *)periph->softc; 2248 2249 return(cam_periph_error(ccb, cam_flags, sense_flags)); 2250 } 2251