1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/kernel.h> 36 #include <sys/conf.h> 37 #include <sys/types.h> 38 #include <sys/bio.h> 39 #include <sys/bus.h> 40 #include <sys/devicestat.h> 41 #include <sys/errno.h> 42 #include <sys/fcntl.h> 43 #include <sys/malloc.h> 44 #include <sys/proc.h> 45 #include <sys/poll.h> 46 #include <sys/selinfo.h> 47 #include <sys/sdt.h> 48 #include <sys/sysent.h> 49 #include <sys/taskqueue.h> 50 #include <vm/uma.h> 51 #include <vm/vm.h> 52 #include <vm/vm_extern.h> 53 54 #include <machine/bus.h> 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_queue.h> 60 #include <cam/cam_xpt.h> 61 #include <cam/cam_xpt_periph.h> 62 #include <cam/cam_debug.h> 63 #include <cam/cam_compat.h> 64 #include <cam/cam_xpt_periph.h> 65 66 #include <cam/scsi/scsi_all.h> 67 #include <cam/scsi/scsi_pass.h> 68 69 typedef enum { 70 PASS_FLAG_OPEN = 0x01, 71 PASS_FLAG_LOCKED = 0x02, 72 PASS_FLAG_INVALID = 0x04, 73 PASS_FLAG_INITIAL_PHYSPATH = 0x08, 74 PASS_FLAG_ZONE_INPROG = 0x10, 75 PASS_FLAG_ZONE_VALID = 0x20, 76 PASS_FLAG_UNMAPPED_CAPABLE = 0x40, 77 PASS_FLAG_ABANDONED_REF_SET = 0x80 78 } pass_flags; 79 80 typedef enum { 81 PASS_STATE_NORMAL 82 } pass_state; 83 84 typedef enum { 85 PASS_CCB_BUFFER_IO, 86 PASS_CCB_QUEUED_IO 87 } pass_ccb_types; 88 89 #define ccb_type ppriv_field0 90 #define ccb_ioreq ppriv_ptr1 91 92 /* 93 * The maximum number of memory segments we preallocate. 94 */ 95 #define PASS_MAX_SEGS 16 96 97 typedef enum { 98 PASS_IO_NONE = 0x00, 99 PASS_IO_USER_SEG_MALLOC = 0x01, 100 PASS_IO_KERN_SEG_MALLOC = 0x02, 101 PASS_IO_ABANDONED = 0x04 102 } pass_io_flags; 103 104 struct pass_io_req { 105 union ccb ccb; 106 union ccb *alloced_ccb; 107 union ccb *user_ccb_ptr; 108 camq_entry user_periph_links; 109 ccb_ppriv_area user_periph_priv; 110 struct cam_periph_map_info mapinfo; 111 pass_io_flags flags; 112 ccb_flags data_flags; 113 int num_user_segs; 114 bus_dma_segment_t user_segs[PASS_MAX_SEGS]; 115 int num_kern_segs; 116 bus_dma_segment_t kern_segs[PASS_MAX_SEGS]; 117 bus_dma_segment_t *user_segptr; 118 bus_dma_segment_t *kern_segptr; 119 int num_bufs; 120 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 121 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 122 uint8_t *user_bufs[CAM_PERIPH_MAXMAPS]; 123 uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS]; 124 struct bintime start_time; 125 TAILQ_ENTRY(pass_io_req) links; 126 }; 127 128 struct pass_softc { 129 pass_state state; 130 pass_flags flags; 131 u_int8_t pd_type; 132 union ccb saved_ccb; 133 int open_count; 134 u_int maxio; 135 struct devstat *device_stats; 136 struct cdev *dev; 137 struct cdev *alias_dev; 138 struct task add_physpath_task; 139 struct task shutdown_kqueue_task; 140 struct selinfo read_select; 141 TAILQ_HEAD(, pass_io_req) incoming_queue; 142 TAILQ_HEAD(, pass_io_req) active_queue; 143 TAILQ_HEAD(, pass_io_req) abandoned_queue; 144 TAILQ_HEAD(, pass_io_req) done_queue; 145 struct cam_periph *periph; 146 char zone_name[12]; 147 char io_zone_name[12]; 148 uma_zone_t pass_zone; 149 uma_zone_t pass_io_zone; 150 size_t io_zone_size; 151 }; 152 153 static d_open_t passopen; 154 static d_close_t passclose; 155 static d_ioctl_t passioctl; 156 static d_ioctl_t passdoioctl; 157 static d_poll_t passpoll; 158 static d_kqfilter_t passkqfilter; 159 static void passreadfiltdetach(struct knote *kn); 160 static int passreadfilt(struct knote *kn, long hint); 161 162 static periph_init_t passinit; 163 static periph_ctor_t passregister; 164 static periph_oninv_t passoninvalidate; 165 static periph_dtor_t passcleanup; 166 static periph_start_t passstart; 167 static void pass_shutdown_kqueue(void *context, int pending); 168 static void pass_add_physpath(void *context, int pending); 169 static void passasync(void *callback_arg, u_int32_t code, 170 struct cam_path *path, void *arg); 171 static void passdone(struct cam_periph *periph, 172 union ccb *done_ccb); 173 static int passcreatezone(struct cam_periph *periph); 174 static void passiocleanup(struct pass_softc *softc, 175 struct pass_io_req *io_req); 176 static int passcopysglist(struct cam_periph *periph, 177 struct pass_io_req *io_req, 178 ccb_flags direction); 179 static int passmemsetup(struct cam_periph *periph, 180 struct pass_io_req *io_req); 181 static int passmemdone(struct cam_periph *periph, 182 struct pass_io_req *io_req); 183 static int passerror(union ccb *ccb, u_int32_t cam_flags, 184 u_int32_t sense_flags); 185 static int passsendccb(struct cam_periph *periph, union ccb *ccb, 186 union ccb *inccb); 187 188 static struct periph_driver passdriver = 189 { 190 passinit, "pass", 191 TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0 192 }; 193 194 PERIPHDRIVER_DECLARE(pass, passdriver); 195 196 static struct cdevsw pass_cdevsw = { 197 .d_version = D_VERSION, 198 .d_flags = D_TRACKCLOSE, 199 .d_open = passopen, 200 .d_close = passclose, 201 .d_ioctl = passioctl, 202 .d_poll = passpoll, 203 .d_kqfilter = passkqfilter, 204 .d_name = "pass", 205 }; 206 207 static struct filterops passread_filtops = { 208 .f_isfd = 1, 209 .f_detach = passreadfiltdetach, 210 .f_event = passreadfilt 211 }; 212 213 static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers"); 214 215 static void 216 passinit(void) 217 { 218 cam_status status; 219 220 /* 221 * Install a global async callback. This callback will 222 * receive async callbacks like "new device found". 223 */ 224 status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL); 225 226 if (status != CAM_REQ_CMP) { 227 printf("pass: Failed to attach master async callback " 228 "due to status 0x%x!\n", status); 229 } 230 231 } 232 233 static void 234 passrejectios(struct cam_periph *periph) 235 { 236 struct pass_io_req *io_req, *io_req2; 237 struct pass_softc *softc; 238 239 softc = (struct pass_softc *)periph->softc; 240 241 /* 242 * The user can no longer get status for I/O on the done queue, so 243 * clean up all outstanding I/O on the done queue. 244 */ 245 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 246 TAILQ_REMOVE(&softc->done_queue, io_req, links); 247 passiocleanup(softc, io_req); 248 uma_zfree(softc->pass_zone, io_req); 249 } 250 251 /* 252 * The underlying device is gone, so we can't issue these I/Os. 253 * The devfs node has been shut down, so we can't return status to 254 * the user. Free any I/O left on the incoming queue. 255 */ 256 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) { 257 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 258 passiocleanup(softc, io_req); 259 uma_zfree(softc->pass_zone, io_req); 260 } 261 262 /* 263 * Normally we would put I/Os on the abandoned queue and acquire a 264 * reference when we saw the final close. But, the device went 265 * away and devfs may have moved everything off to deadfs by the 266 * time the I/O done callback is called; as a result, we won't see 267 * any more closes. So, if we have any active I/Os, we need to put 268 * them on the abandoned queue. When the abandoned queue is empty, 269 * we'll release the remaining reference (see below) to the peripheral. 270 */ 271 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) { 272 TAILQ_REMOVE(&softc->active_queue, io_req, links); 273 io_req->flags |= PASS_IO_ABANDONED; 274 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links); 275 } 276 277 /* 278 * If we put any I/O on the abandoned queue, acquire a reference. 279 */ 280 if ((!TAILQ_EMPTY(&softc->abandoned_queue)) 281 && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) { 282 cam_periph_doacquire(periph); 283 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 284 } 285 } 286 287 static void 288 passdevgonecb(void *arg) 289 { 290 struct cam_periph *periph; 291 struct mtx *mtx; 292 struct pass_softc *softc; 293 int i; 294 295 periph = (struct cam_periph *)arg; 296 mtx = cam_periph_mtx(periph); 297 mtx_lock(mtx); 298 299 softc = (struct pass_softc *)periph->softc; 300 KASSERT(softc->open_count >= 0, ("Negative open count %d", 301 softc->open_count)); 302 303 /* 304 * When we get this callback, we will get no more close calls from 305 * devfs. So if we have any dangling opens, we need to release the 306 * reference held for that particular context. 307 */ 308 for (i = 0; i < softc->open_count; i++) 309 cam_periph_release_locked(periph); 310 311 softc->open_count = 0; 312 313 /* 314 * Release the reference held for the device node, it is gone now. 315 * Accordingly, inform all queued I/Os of their fate. 316 */ 317 cam_periph_release_locked(periph); 318 passrejectios(periph); 319 320 /* 321 * We reference the SIM lock directly here, instead of using 322 * cam_periph_unlock(). The reason is that the final call to 323 * cam_periph_release_locked() above could result in the periph 324 * getting freed. If that is the case, dereferencing the periph 325 * with a cam_periph_unlock() call would cause a page fault. 326 */ 327 mtx_unlock(mtx); 328 329 /* 330 * We have to remove our kqueue context from a thread because it 331 * may sleep. It would be nice if we could get a callback from 332 * kqueue when it is done cleaning up resources. 333 */ 334 taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task); 335 } 336 337 static void 338 passoninvalidate(struct cam_periph *periph) 339 { 340 struct pass_softc *softc; 341 342 softc = (struct pass_softc *)periph->softc; 343 344 /* 345 * De-register any async callbacks. 346 */ 347 xpt_register_async(0, passasync, periph, periph->path); 348 349 softc->flags |= PASS_FLAG_INVALID; 350 351 /* 352 * Tell devfs this device has gone away, and ask for a callback 353 * when it has cleaned up its state. 354 */ 355 destroy_dev_sched_cb(softc->dev, passdevgonecb, periph); 356 } 357 358 static void 359 passcleanup(struct cam_periph *periph) 360 { 361 struct pass_softc *softc; 362 363 softc = (struct pass_softc *)periph->softc; 364 365 cam_periph_assert(periph, MA_OWNED); 366 KASSERT(TAILQ_EMPTY(&softc->active_queue), 367 ("%s called when there are commands on the active queue!\n", 368 __func__)); 369 KASSERT(TAILQ_EMPTY(&softc->abandoned_queue), 370 ("%s called when there are commands on the abandoned queue!\n", 371 __func__)); 372 KASSERT(TAILQ_EMPTY(&softc->incoming_queue), 373 ("%s called when there are commands on the incoming queue!\n", 374 __func__)); 375 KASSERT(TAILQ_EMPTY(&softc->done_queue), 376 ("%s called when there are commands on the done queue!\n", 377 __func__)); 378 379 devstat_remove_entry(softc->device_stats); 380 381 cam_periph_unlock(periph); 382 383 /* 384 * We call taskqueue_drain() for the physpath task to make sure it 385 * is complete. We drop the lock because this can potentially 386 * sleep. XXX KDM that is bad. Need a way to get a callback when 387 * a taskqueue is drained. 388 * 389 * Note that we don't drain the kqueue shutdown task queue. This 390 * is because we hold a reference on the periph for kqueue, and 391 * release that reference from the kqueue shutdown task queue. So 392 * we cannot come into this routine unless we've released that 393 * reference. Also, because that could be the last reference, we 394 * could be called from the cam_periph_release() call in 395 * pass_shutdown_kqueue(). In that case, the taskqueue_drain() 396 * would deadlock. It would be preferable if we had a way to 397 * get a callback when a taskqueue is done. 398 */ 399 taskqueue_drain(taskqueue_thread, &softc->add_physpath_task); 400 401 cam_periph_lock(periph); 402 403 free(softc, M_DEVBUF); 404 } 405 406 static void 407 pass_shutdown_kqueue(void *context, int pending) 408 { 409 struct cam_periph *periph; 410 struct pass_softc *softc; 411 412 periph = context; 413 softc = periph->softc; 414 415 knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0); 416 knlist_destroy(&softc->read_select.si_note); 417 418 /* 419 * Release the reference we held for kqueue. 420 */ 421 cam_periph_release(periph); 422 } 423 424 static void 425 pass_add_physpath(void *context, int pending) 426 { 427 struct cam_periph *periph; 428 struct pass_softc *softc; 429 struct mtx *mtx; 430 char *physpath; 431 432 /* 433 * If we have one, create a devfs alias for our 434 * physical path. 435 */ 436 periph = context; 437 softc = periph->softc; 438 physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK); 439 mtx = cam_periph_mtx(periph); 440 mtx_lock(mtx); 441 442 if (periph->flags & CAM_PERIPH_INVALID) 443 goto out; 444 445 if (xpt_getattr(physpath, MAXPATHLEN, 446 "GEOM::physpath", periph->path) == 0 447 && strlen(physpath) != 0) { 448 449 mtx_unlock(mtx); 450 make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev, 451 softc->dev, softc->alias_dev, physpath); 452 mtx_lock(mtx); 453 } 454 455 out: 456 /* 457 * Now that we've made our alias, we no longer have to have a 458 * reference to the device. 459 */ 460 if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0) 461 softc->flags |= PASS_FLAG_INITIAL_PHYSPATH; 462 463 /* 464 * We always acquire a reference to the periph before queueing this 465 * task queue function, so it won't go away before we run. 466 */ 467 while (pending-- > 0) 468 cam_periph_release_locked(periph); 469 mtx_unlock(mtx); 470 471 free(physpath, M_DEVBUF); 472 } 473 474 static void 475 passasync(void *callback_arg, u_int32_t code, 476 struct cam_path *path, void *arg) 477 { 478 struct cam_periph *periph; 479 480 periph = (struct cam_periph *)callback_arg; 481 482 switch (code) { 483 case AC_FOUND_DEVICE: 484 { 485 struct ccb_getdev *cgd; 486 cam_status status; 487 488 cgd = (struct ccb_getdev *)arg; 489 if (cgd == NULL) 490 break; 491 492 /* 493 * Allocate a peripheral instance for 494 * this device and start the probe 495 * process. 496 */ 497 status = cam_periph_alloc(passregister, passoninvalidate, 498 passcleanup, passstart, "pass", 499 CAM_PERIPH_BIO, path, 500 passasync, AC_FOUND_DEVICE, cgd); 501 502 if (status != CAM_REQ_CMP 503 && status != CAM_REQ_INPROG) { 504 const struct cam_status_entry *entry; 505 506 entry = cam_fetch_status_entry(status); 507 508 printf("passasync: Unable to attach new device " 509 "due to status %#x: %s\n", status, entry ? 510 entry->status_text : "Unknown"); 511 } 512 513 break; 514 } 515 case AC_ADVINFO_CHANGED: 516 { 517 uintptr_t buftype; 518 519 buftype = (uintptr_t)arg; 520 if (buftype == CDAI_TYPE_PHYS_PATH) { 521 struct pass_softc *softc; 522 523 softc = (struct pass_softc *)periph->softc; 524 /* 525 * Acquire a reference to the periph before we 526 * start the taskqueue, so that we don't run into 527 * a situation where the periph goes away before 528 * the task queue has a chance to run. 529 */ 530 if (cam_periph_acquire(periph) != 0) 531 break; 532 533 taskqueue_enqueue(taskqueue_thread, 534 &softc->add_physpath_task); 535 } 536 break; 537 } 538 default: 539 cam_periph_async(periph, code, path, arg); 540 break; 541 } 542 } 543 544 static cam_status 545 passregister(struct cam_periph *periph, void *arg) 546 { 547 struct pass_softc *softc; 548 struct ccb_getdev *cgd; 549 struct ccb_pathinq cpi; 550 struct make_dev_args args; 551 int error, no_tags; 552 553 cgd = (struct ccb_getdev *)arg; 554 if (cgd == NULL) { 555 printf("%s: no getdev CCB, can't register device\n", __func__); 556 return(CAM_REQ_CMP_ERR); 557 } 558 559 softc = (struct pass_softc *)malloc(sizeof(*softc), 560 M_DEVBUF, M_NOWAIT); 561 562 if (softc == NULL) { 563 printf("%s: Unable to probe new device. " 564 "Unable to allocate softc\n", __func__); 565 return(CAM_REQ_CMP_ERR); 566 } 567 568 bzero(softc, sizeof(*softc)); 569 softc->state = PASS_STATE_NORMAL; 570 if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI) 571 softc->pd_type = SID_TYPE(&cgd->inq_data); 572 else if (cgd->protocol == PROTO_SATAPM) 573 softc->pd_type = T_ENCLOSURE; 574 else 575 softc->pd_type = T_DIRECT; 576 577 periph->softc = softc; 578 softc->periph = periph; 579 TAILQ_INIT(&softc->incoming_queue); 580 TAILQ_INIT(&softc->active_queue); 581 TAILQ_INIT(&softc->abandoned_queue); 582 TAILQ_INIT(&softc->done_queue); 583 snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d", 584 periph->periph_name, periph->unit_number); 585 snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO", 586 periph->periph_name, periph->unit_number); 587 softc->io_zone_size = MAXPHYS; 588 knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph)); 589 590 xpt_path_inq(&cpi, periph->path); 591 592 if (cpi.maxio == 0) 593 softc->maxio = DFLTPHYS; /* traditional default */ 594 else if (cpi.maxio > MAXPHYS) 595 softc->maxio = MAXPHYS; /* for safety */ 596 else 597 softc->maxio = cpi.maxio; /* real value */ 598 599 if (cpi.hba_misc & PIM_UNMAPPED) 600 softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE; 601 602 /* 603 * We pass in 0 for a blocksize, since we don't 604 * know what the blocksize of this device is, if 605 * it even has a blocksize. 606 */ 607 cam_periph_unlock(periph); 608 no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0; 609 softc->device_stats = devstat_new_entry("pass", 610 periph->unit_number, 0, 611 DEVSTAT_NO_BLOCKSIZE 612 | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0), 613 softc->pd_type | 614 XPORT_DEVSTAT_TYPE(cpi.transport) | 615 DEVSTAT_TYPE_PASS, 616 DEVSTAT_PRIORITY_PASS); 617 618 /* 619 * Initialize the taskqueue handler for shutting down kqueue. 620 */ 621 TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0, 622 pass_shutdown_kqueue, periph); 623 624 /* 625 * Acquire a reference to the periph that we can release once we've 626 * cleaned up the kqueue. 627 */ 628 if (cam_periph_acquire(periph) != 0) { 629 xpt_print(periph->path, "%s: lost periph during " 630 "registration!\n", __func__); 631 cam_periph_lock(periph); 632 return (CAM_REQ_CMP_ERR); 633 } 634 635 /* 636 * Acquire a reference to the periph before we create the devfs 637 * instance for it. We'll release this reference once the devfs 638 * instance has been freed. 639 */ 640 if (cam_periph_acquire(periph) != 0) { 641 xpt_print(periph->path, "%s: lost periph during " 642 "registration!\n", __func__); 643 cam_periph_lock(periph); 644 return (CAM_REQ_CMP_ERR); 645 } 646 647 /* Register the device */ 648 make_dev_args_init(&args); 649 args.mda_devsw = &pass_cdevsw; 650 args.mda_unit = periph->unit_number; 651 args.mda_uid = UID_ROOT; 652 args.mda_gid = GID_OPERATOR; 653 args.mda_mode = 0600; 654 args.mda_si_drv1 = periph; 655 args.mda_flags = MAKEDEV_NOWAIT; 656 error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name, 657 periph->unit_number); 658 if (error != 0) { 659 cam_periph_lock(periph); 660 cam_periph_release_locked(periph); 661 return (CAM_REQ_CMP_ERR); 662 } 663 664 /* 665 * Hold a reference to the periph before we create the physical 666 * path alias so it can't go away. 667 */ 668 if (cam_periph_acquire(periph) != 0) { 669 xpt_print(periph->path, "%s: lost periph during " 670 "registration!\n", __func__); 671 cam_periph_lock(periph); 672 return (CAM_REQ_CMP_ERR); 673 } 674 675 cam_periph_lock(periph); 676 677 TASK_INIT(&softc->add_physpath_task, /*priority*/0, 678 pass_add_physpath, periph); 679 680 /* 681 * See if physical path information is already available. 682 */ 683 taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); 684 685 /* 686 * Add an async callback so that we get notified if 687 * this device goes away or its physical path 688 * (stored in the advanced info data of the EDT) has 689 * changed. 690 */ 691 xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED, 692 passasync, periph, periph->path); 693 694 if (bootverbose) 695 xpt_announce_periph(periph, NULL); 696 697 return(CAM_REQ_CMP); 698 } 699 700 static int 701 passopen(struct cdev *dev, int flags, int fmt, struct thread *td) 702 { 703 struct cam_periph *periph; 704 struct pass_softc *softc; 705 int error; 706 707 periph = (struct cam_periph *)dev->si_drv1; 708 if (cam_periph_acquire(periph) != 0) 709 return (ENXIO); 710 711 cam_periph_lock(periph); 712 713 softc = (struct pass_softc *)periph->softc; 714 715 if (softc->flags & PASS_FLAG_INVALID) { 716 cam_periph_release_locked(periph); 717 cam_periph_unlock(periph); 718 return(ENXIO); 719 } 720 721 /* 722 * Don't allow access when we're running at a high securelevel. 723 */ 724 error = securelevel_gt(td->td_ucred, 1); 725 if (error) { 726 cam_periph_release_locked(periph); 727 cam_periph_unlock(periph); 728 return(error); 729 } 730 731 /* 732 * Only allow read-write access. 733 */ 734 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) { 735 cam_periph_release_locked(periph); 736 cam_periph_unlock(periph); 737 return(EPERM); 738 } 739 740 /* 741 * We don't allow nonblocking access. 742 */ 743 if ((flags & O_NONBLOCK) != 0) { 744 xpt_print(periph->path, "can't do nonblocking access\n"); 745 cam_periph_release_locked(periph); 746 cam_periph_unlock(periph); 747 return(EINVAL); 748 } 749 750 softc->open_count++; 751 752 cam_periph_unlock(periph); 753 754 return (error); 755 } 756 757 static int 758 passclose(struct cdev *dev, int flag, int fmt, struct thread *td) 759 { 760 struct cam_periph *periph; 761 struct pass_softc *softc; 762 struct mtx *mtx; 763 764 periph = (struct cam_periph *)dev->si_drv1; 765 mtx = cam_periph_mtx(periph); 766 mtx_lock(mtx); 767 768 softc = periph->softc; 769 softc->open_count--; 770 771 if (softc->open_count == 0) { 772 struct pass_io_req *io_req, *io_req2; 773 774 TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { 775 TAILQ_REMOVE(&softc->done_queue, io_req, links); 776 passiocleanup(softc, io_req); 777 uma_zfree(softc->pass_zone, io_req); 778 } 779 780 TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, 781 io_req2) { 782 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 783 passiocleanup(softc, io_req); 784 uma_zfree(softc->pass_zone, io_req); 785 } 786 787 /* 788 * If there are any active I/Os, we need to forcibly acquire a 789 * reference to the peripheral so that we don't go away 790 * before they complete. We'll release the reference when 791 * the abandoned queue is empty. 792 */ 793 io_req = TAILQ_FIRST(&softc->active_queue); 794 if ((io_req != NULL) 795 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) { 796 cam_periph_doacquire(periph); 797 softc->flags |= PASS_FLAG_ABANDONED_REF_SET; 798 } 799 800 /* 801 * Since the I/O in the active queue is not under our 802 * control, just set a flag so that we can clean it up when 803 * it completes and put it on the abandoned queue. This 804 * will prevent our sending spurious completions in the 805 * event that the device is opened again before these I/Os 806 * complete. 807 */ 808 TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, 809 io_req2) { 810 TAILQ_REMOVE(&softc->active_queue, io_req, links); 811 io_req->flags |= PASS_IO_ABANDONED; 812 TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, 813 links); 814 } 815 } 816 817 cam_periph_release_locked(periph); 818 819 /* 820 * We reference the lock directly here, instead of using 821 * cam_periph_unlock(). The reason is that the call to 822 * cam_periph_release_locked() above could result in the periph 823 * getting freed. If that is the case, dereferencing the periph 824 * with a cam_periph_unlock() call would cause a page fault. 825 * 826 * cam_periph_release() avoids this problem using the same method, 827 * but we're manually acquiring and dropping the lock here to 828 * protect the open count and avoid another lock acquisition and 829 * release. 830 */ 831 mtx_unlock(mtx); 832 833 return (0); 834 } 835 836 837 static void 838 passstart(struct cam_periph *periph, union ccb *start_ccb) 839 { 840 struct pass_softc *softc; 841 842 softc = (struct pass_softc *)periph->softc; 843 844 switch (softc->state) { 845 case PASS_STATE_NORMAL: { 846 struct pass_io_req *io_req; 847 848 /* 849 * Check for any queued I/O requests that require an 850 * allocated slot. 851 */ 852 io_req = TAILQ_FIRST(&softc->incoming_queue); 853 if (io_req == NULL) { 854 xpt_release_ccb(start_ccb); 855 break; 856 } 857 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 858 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 859 /* 860 * Merge the user's CCB into the allocated CCB. 861 */ 862 xpt_merge_ccb(start_ccb, &io_req->ccb); 863 start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO; 864 start_ccb->ccb_h.ccb_ioreq = io_req; 865 start_ccb->ccb_h.cbfcnp = passdone; 866 io_req->alloced_ccb = start_ccb; 867 binuptime(&io_req->start_time); 868 devstat_start_transaction(softc->device_stats, 869 &io_req->start_time); 870 871 xpt_action(start_ccb); 872 873 /* 874 * If we have any more I/O waiting, schedule ourselves again. 875 */ 876 if (!TAILQ_EMPTY(&softc->incoming_queue)) 877 xpt_schedule(periph, CAM_PRIORITY_NORMAL); 878 break; 879 } 880 default: 881 break; 882 } 883 } 884 885 static void 886 passdone(struct cam_periph *periph, union ccb *done_ccb) 887 { 888 struct pass_softc *softc; 889 struct ccb_scsiio *csio; 890 891 softc = (struct pass_softc *)periph->softc; 892 893 cam_periph_assert(periph, MA_OWNED); 894 895 csio = &done_ccb->csio; 896 switch (csio->ccb_h.ccb_type) { 897 case PASS_CCB_QUEUED_IO: { 898 struct pass_io_req *io_req; 899 900 io_req = done_ccb->ccb_h.ccb_ioreq; 901 #if 0 902 xpt_print(periph->path, "%s: called for user CCB %p\n", 903 __func__, io_req->user_ccb_ptr); 904 #endif 905 if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) 906 && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) 907 && ((io_req->flags & PASS_IO_ABANDONED) == 0)) { 908 int error; 909 910 error = passerror(done_ccb, CAM_RETRY_SELTO, 911 SF_RETRY_UA | SF_NO_PRINT); 912 913 if (error == ERESTART) { 914 /* 915 * A retry was scheduled, so 916 * just return. 917 */ 918 return; 919 } 920 } 921 922 /* 923 * Copy the allocated CCB contents back to the malloced CCB 924 * so we can give status back to the user when he requests it. 925 */ 926 bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb)); 927 928 /* 929 * Log data/transaction completion with devstat(9). 930 */ 931 switch (done_ccb->ccb_h.func_code) { 932 case XPT_SCSI_IO: 933 devstat_end_transaction(softc->device_stats, 934 done_ccb->csio.dxfer_len - done_ccb->csio.resid, 935 done_ccb->csio.tag_action & 0x3, 936 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 937 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 938 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 939 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 940 &io_req->start_time); 941 break; 942 case XPT_ATA_IO: 943 devstat_end_transaction(softc->device_stats, 944 done_ccb->ataio.dxfer_len - done_ccb->ataio.resid, 945 0, /* Not used in ATA */ 946 ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == 947 CAM_DIR_NONE) ? DEVSTAT_NO_DATA : 948 (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? 949 DEVSTAT_WRITE : DEVSTAT_READ, NULL, 950 &io_req->start_time); 951 break; 952 case XPT_SMP_IO: 953 /* 954 * XXX KDM this isn't quite right, but there isn't 955 * currently an easy way to represent a bidirectional 956 * transfer in devstat. The only way to do it 957 * and have the byte counts come out right would 958 * mean that we would have to record two 959 * transactions, one for the request and one for the 960 * response. For now, so that we report something, 961 * just treat the entire thing as a read. 962 */ 963 devstat_end_transaction(softc->device_stats, 964 done_ccb->smpio.smp_request_len + 965 done_ccb->smpio.smp_response_len, 966 DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL, 967 &io_req->start_time); 968 break; 969 default: 970 devstat_end_transaction(softc->device_stats, 0, 971 DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL, 972 &io_req->start_time); 973 break; 974 } 975 976 /* 977 * In the normal case, take the completed I/O off of the 978 * active queue and put it on the done queue. Notitfy the 979 * user that we have a completed I/O. 980 */ 981 if ((io_req->flags & PASS_IO_ABANDONED) == 0) { 982 TAILQ_REMOVE(&softc->active_queue, io_req, links); 983 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 984 selwakeuppri(&softc->read_select, PRIBIO); 985 KNOTE_LOCKED(&softc->read_select.si_note, 0); 986 } else { 987 /* 988 * In the case of an abandoned I/O (final close 989 * without fetching the I/O), take it off of the 990 * abandoned queue and free it. 991 */ 992 TAILQ_REMOVE(&softc->abandoned_queue, io_req, links); 993 passiocleanup(softc, io_req); 994 uma_zfree(softc->pass_zone, io_req); 995 996 /* 997 * Release the done_ccb here, since we may wind up 998 * freeing the peripheral when we decrement the 999 * reference count below. 1000 */ 1001 xpt_release_ccb(done_ccb); 1002 1003 /* 1004 * If the abandoned queue is empty, we can release 1005 * our reference to the periph since we won't have 1006 * any more completions coming. 1007 */ 1008 if ((TAILQ_EMPTY(&softc->abandoned_queue)) 1009 && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) { 1010 softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET; 1011 cam_periph_release_locked(periph); 1012 } 1013 1014 /* 1015 * We have already released the CCB, so we can 1016 * return. 1017 */ 1018 return; 1019 } 1020 break; 1021 } 1022 } 1023 xpt_release_ccb(done_ccb); 1024 } 1025 1026 static int 1027 passcreatezone(struct cam_periph *periph) 1028 { 1029 struct pass_softc *softc; 1030 int error; 1031 1032 error = 0; 1033 softc = (struct pass_softc *)periph->softc; 1034 1035 cam_periph_assert(periph, MA_OWNED); 1036 KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), 1037 ("%s called when the pass(4) zone is valid!\n", __func__)); 1038 KASSERT((softc->pass_zone == NULL), 1039 ("%s called when the pass(4) zone is allocated!\n", __func__)); 1040 1041 if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) { 1042 1043 /* 1044 * We're the first context through, so we need to create 1045 * the pass(4) UMA zone for I/O requests. 1046 */ 1047 softc->flags |= PASS_FLAG_ZONE_INPROG; 1048 1049 /* 1050 * uma_zcreate() does a blocking (M_WAITOK) allocation, 1051 * so we cannot hold a mutex while we call it. 1052 */ 1053 cam_periph_unlock(periph); 1054 1055 softc->pass_zone = uma_zcreate(softc->zone_name, 1056 sizeof(struct pass_io_req), NULL, NULL, NULL, NULL, 1057 /*align*/ 0, /*flags*/ 0); 1058 1059 softc->pass_io_zone = uma_zcreate(softc->io_zone_name, 1060 softc->io_zone_size, NULL, NULL, NULL, NULL, 1061 /*align*/ 0, /*flags*/ 0); 1062 1063 cam_periph_lock(periph); 1064 1065 if ((softc->pass_zone == NULL) 1066 || (softc->pass_io_zone == NULL)) { 1067 if (softc->pass_zone == NULL) 1068 xpt_print(periph->path, "unable to allocate " 1069 "IO Req UMA zone\n"); 1070 else 1071 xpt_print(periph->path, "unable to allocate " 1072 "IO UMA zone\n"); 1073 softc->flags &= ~PASS_FLAG_ZONE_INPROG; 1074 goto bailout; 1075 } 1076 1077 /* 1078 * Set the flags appropriately and notify any other waiters. 1079 */ 1080 softc->flags &= PASS_FLAG_ZONE_INPROG; 1081 softc->flags |= PASS_FLAG_ZONE_VALID; 1082 wakeup(&softc->pass_zone); 1083 } else { 1084 /* 1085 * In this case, the UMA zone has not yet been created, but 1086 * another context is in the process of creating it. We 1087 * need to sleep until the creation is either done or has 1088 * failed. 1089 */ 1090 while ((softc->flags & PASS_FLAG_ZONE_INPROG) 1091 && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) { 1092 error = msleep(&softc->pass_zone, 1093 cam_periph_mtx(periph), PRIBIO, 1094 "paszon", 0); 1095 if (error != 0) 1096 goto bailout; 1097 } 1098 /* 1099 * If the zone creation failed, no luck for the user. 1100 */ 1101 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){ 1102 error = ENOMEM; 1103 goto bailout; 1104 } 1105 } 1106 bailout: 1107 return (error); 1108 } 1109 1110 static void 1111 passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req) 1112 { 1113 union ccb *ccb; 1114 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1115 int i, numbufs; 1116 1117 ccb = &io_req->ccb; 1118 1119 switch (ccb->ccb_h.func_code) { 1120 case XPT_DEV_MATCH: 1121 numbufs = min(io_req->num_bufs, 2); 1122 1123 if (numbufs == 1) { 1124 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1125 } else { 1126 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1127 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1128 } 1129 break; 1130 case XPT_SCSI_IO: 1131 case XPT_CONT_TARGET_IO: 1132 data_ptrs[0] = &ccb->csio.data_ptr; 1133 numbufs = min(io_req->num_bufs, 1); 1134 break; 1135 case XPT_ATA_IO: 1136 data_ptrs[0] = &ccb->ataio.data_ptr; 1137 numbufs = min(io_req->num_bufs, 1); 1138 break; 1139 case XPT_SMP_IO: 1140 numbufs = min(io_req->num_bufs, 2); 1141 data_ptrs[0] = &ccb->smpio.smp_request; 1142 data_ptrs[1] = &ccb->smpio.smp_response; 1143 break; 1144 case XPT_DEV_ADVINFO: 1145 numbufs = min(io_req->num_bufs, 1); 1146 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1147 break; 1148 case XPT_NVME_IO: 1149 case XPT_NVME_ADMIN: 1150 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1151 numbufs = min(io_req->num_bufs, 1); 1152 break; 1153 default: 1154 /* allow ourselves to be swapped once again */ 1155 return; 1156 break; /* NOTREACHED */ 1157 } 1158 1159 if (io_req->flags & PASS_IO_USER_SEG_MALLOC) { 1160 free(io_req->user_segptr, M_SCSIPASS); 1161 io_req->user_segptr = NULL; 1162 } 1163 1164 /* 1165 * We only want to free memory we malloced. 1166 */ 1167 if (io_req->data_flags == CAM_DATA_VADDR) { 1168 for (i = 0; i < io_req->num_bufs; i++) { 1169 if (io_req->kern_bufs[i] == NULL) 1170 continue; 1171 1172 free(io_req->kern_bufs[i], M_SCSIPASS); 1173 io_req->kern_bufs[i] = NULL; 1174 } 1175 } else if (io_req->data_flags == CAM_DATA_SG) { 1176 for (i = 0; i < io_req->num_kern_segs; i++) { 1177 if ((uint8_t *)(uintptr_t) 1178 io_req->kern_segptr[i].ds_addr == NULL) 1179 continue; 1180 1181 uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t) 1182 io_req->kern_segptr[i].ds_addr); 1183 io_req->kern_segptr[i].ds_addr = 0; 1184 } 1185 } 1186 1187 if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) { 1188 free(io_req->kern_segptr, M_SCSIPASS); 1189 io_req->kern_segptr = NULL; 1190 } 1191 1192 if (io_req->data_flags != CAM_DATA_PADDR) { 1193 for (i = 0; i < numbufs; i++) { 1194 /* 1195 * Restore the user's buffer pointers to their 1196 * previous values. 1197 */ 1198 if (io_req->user_bufs[i] != NULL) 1199 *data_ptrs[i] = io_req->user_bufs[i]; 1200 } 1201 } 1202 1203 } 1204 1205 static int 1206 passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req, 1207 ccb_flags direction) 1208 { 1209 bus_size_t kern_watermark, user_watermark, len_copied, len_to_copy; 1210 bus_dma_segment_t *user_sglist, *kern_sglist; 1211 int i, j, error; 1212 1213 error = 0; 1214 kern_watermark = 0; 1215 user_watermark = 0; 1216 len_to_copy = 0; 1217 len_copied = 0; 1218 user_sglist = io_req->user_segptr; 1219 kern_sglist = io_req->kern_segptr; 1220 1221 for (i = 0, j = 0; i < io_req->num_user_segs && 1222 j < io_req->num_kern_segs;) { 1223 uint8_t *user_ptr, *kern_ptr; 1224 1225 len_to_copy = min(user_sglist[i].ds_len -user_watermark, 1226 kern_sglist[j].ds_len - kern_watermark); 1227 1228 user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr; 1229 user_ptr = user_ptr + user_watermark; 1230 kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr; 1231 kern_ptr = kern_ptr + kern_watermark; 1232 1233 user_watermark += len_to_copy; 1234 kern_watermark += len_to_copy; 1235 1236 if (direction == CAM_DIR_IN) { 1237 error = copyout(kern_ptr, user_ptr, len_to_copy); 1238 if (error != 0) { 1239 xpt_print(periph->path, "%s: copyout of %u " 1240 "bytes from %p to %p failed with " 1241 "error %d\n", __func__, len_to_copy, 1242 kern_ptr, user_ptr, error); 1243 goto bailout; 1244 } 1245 } else { 1246 error = copyin(user_ptr, kern_ptr, len_to_copy); 1247 if (error != 0) { 1248 xpt_print(periph->path, "%s: copyin of %u " 1249 "bytes from %p to %p failed with " 1250 "error %d\n", __func__, len_to_copy, 1251 user_ptr, kern_ptr, error); 1252 goto bailout; 1253 } 1254 } 1255 1256 len_copied += len_to_copy; 1257 1258 if (user_sglist[i].ds_len == user_watermark) { 1259 i++; 1260 user_watermark = 0; 1261 } 1262 1263 if (kern_sglist[j].ds_len == kern_watermark) { 1264 j++; 1265 kern_watermark = 0; 1266 } 1267 } 1268 1269 bailout: 1270 1271 return (error); 1272 } 1273 1274 static int 1275 passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req) 1276 { 1277 union ccb *ccb; 1278 struct pass_softc *softc; 1279 int numbufs, i; 1280 uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; 1281 uint32_t lengths[CAM_PERIPH_MAXMAPS]; 1282 uint32_t dirs[CAM_PERIPH_MAXMAPS]; 1283 uint32_t num_segs; 1284 uint16_t *seg_cnt_ptr; 1285 size_t maxmap; 1286 int error; 1287 1288 cam_periph_assert(periph, MA_NOTOWNED); 1289 1290 softc = periph->softc; 1291 1292 error = 0; 1293 ccb = &io_req->ccb; 1294 maxmap = 0; 1295 num_segs = 0; 1296 seg_cnt_ptr = NULL; 1297 1298 switch(ccb->ccb_h.func_code) { 1299 case XPT_DEV_MATCH: 1300 if (ccb->cdm.match_buf_len == 0) { 1301 printf("%s: invalid match buffer length 0\n", __func__); 1302 return(EINVAL); 1303 } 1304 if (ccb->cdm.pattern_buf_len > 0) { 1305 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; 1306 lengths[0] = ccb->cdm.pattern_buf_len; 1307 dirs[0] = CAM_DIR_OUT; 1308 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; 1309 lengths[1] = ccb->cdm.match_buf_len; 1310 dirs[1] = CAM_DIR_IN; 1311 numbufs = 2; 1312 } else { 1313 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; 1314 lengths[0] = ccb->cdm.match_buf_len; 1315 dirs[0] = CAM_DIR_IN; 1316 numbufs = 1; 1317 } 1318 io_req->data_flags = CAM_DATA_VADDR; 1319 break; 1320 case XPT_SCSI_IO: 1321 case XPT_CONT_TARGET_IO: 1322 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1323 return(0); 1324 1325 /* 1326 * The user shouldn't be able to supply a bio. 1327 */ 1328 if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO) 1329 return (EINVAL); 1330 1331 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1332 1333 data_ptrs[0] = &ccb->csio.data_ptr; 1334 lengths[0] = ccb->csio.dxfer_len; 1335 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1336 num_segs = ccb->csio.sglist_cnt; 1337 seg_cnt_ptr = &ccb->csio.sglist_cnt; 1338 numbufs = 1; 1339 maxmap = softc->maxio; 1340 break; 1341 case XPT_ATA_IO: 1342 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1343 return(0); 1344 1345 /* 1346 * We only support a single virtual address for ATA I/O. 1347 */ 1348 if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) 1349 return (EINVAL); 1350 1351 io_req->data_flags = CAM_DATA_VADDR; 1352 1353 data_ptrs[0] = &ccb->ataio.data_ptr; 1354 lengths[0] = ccb->ataio.dxfer_len; 1355 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1356 numbufs = 1; 1357 maxmap = softc->maxio; 1358 break; 1359 case XPT_SMP_IO: 1360 io_req->data_flags = CAM_DATA_VADDR; 1361 1362 data_ptrs[0] = &ccb->smpio.smp_request; 1363 lengths[0] = ccb->smpio.smp_request_len; 1364 dirs[0] = CAM_DIR_OUT; 1365 data_ptrs[1] = &ccb->smpio.smp_response; 1366 lengths[1] = ccb->smpio.smp_response_len; 1367 dirs[1] = CAM_DIR_IN; 1368 numbufs = 2; 1369 maxmap = softc->maxio; 1370 break; 1371 case XPT_DEV_ADVINFO: 1372 if (ccb->cdai.bufsiz == 0) 1373 return (0); 1374 1375 io_req->data_flags = CAM_DATA_VADDR; 1376 1377 data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; 1378 lengths[0] = ccb->cdai.bufsiz; 1379 dirs[0] = CAM_DIR_IN; 1380 numbufs = 1; 1381 break; 1382 case XPT_NVME_ADMIN: 1383 case XPT_NVME_IO: 1384 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) 1385 return (0); 1386 1387 io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; 1388 1389 data_ptrs[0] = &ccb->nvmeio.data_ptr; 1390 lengths[0] = ccb->nvmeio.dxfer_len; 1391 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; 1392 num_segs = ccb->nvmeio.sglist_cnt; 1393 seg_cnt_ptr = &ccb->nvmeio.sglist_cnt; 1394 numbufs = 1; 1395 maxmap = softc->maxio; 1396 break; 1397 default: 1398 return(EINVAL); 1399 break; /* NOTREACHED */ 1400 } 1401 1402 io_req->num_bufs = numbufs; 1403 1404 /* 1405 * If there is a maximum, check to make sure that the user's 1406 * request fits within the limit. In general, we should only have 1407 * a maximum length for requests that go to hardware. Otherwise it 1408 * is whatever we're able to malloc. 1409 */ 1410 for (i = 0; i < numbufs; i++) { 1411 io_req->user_bufs[i] = *data_ptrs[i]; 1412 io_req->dirs[i] = dirs[i]; 1413 io_req->lengths[i] = lengths[i]; 1414 1415 if (maxmap == 0) 1416 continue; 1417 1418 if (lengths[i] <= maxmap) 1419 continue; 1420 1421 xpt_print(periph->path, "%s: data length %u > max allowed %u " 1422 "bytes\n", __func__, lengths[i], maxmap); 1423 error = EINVAL; 1424 goto bailout; 1425 } 1426 1427 switch (io_req->data_flags) { 1428 case CAM_DATA_VADDR: 1429 /* Map or copy the buffer into kernel address space */ 1430 for (i = 0; i < numbufs; i++) { 1431 uint8_t *tmp_buf; 1432 1433 /* 1434 * If for some reason no length is specified, we 1435 * don't need to allocate anything. 1436 */ 1437 if (io_req->lengths[i] == 0) 1438 continue; 1439 1440 tmp_buf = malloc(lengths[i], M_SCSIPASS, 1441 M_WAITOK | M_ZERO); 1442 io_req->kern_bufs[i] = tmp_buf; 1443 *data_ptrs[i] = tmp_buf; 1444 1445 #if 0 1446 xpt_print(periph->path, "%s: malloced %p len %u, user " 1447 "buffer %p, operation: %s\n", __func__, 1448 tmp_buf, lengths[i], io_req->user_bufs[i], 1449 (dirs[i] == CAM_DIR_IN) ? "read" : "write"); 1450 #endif 1451 /* 1452 * We only need to copy in if the user is writing. 1453 */ 1454 if (dirs[i] != CAM_DIR_OUT) 1455 continue; 1456 1457 error = copyin(io_req->user_bufs[i], 1458 io_req->kern_bufs[i], lengths[i]); 1459 if (error != 0) { 1460 xpt_print(periph->path, "%s: copy of user " 1461 "buffer from %p to %p failed with " 1462 "error %d\n", __func__, 1463 io_req->user_bufs[i], 1464 io_req->kern_bufs[i], error); 1465 goto bailout; 1466 } 1467 } 1468 break; 1469 case CAM_DATA_PADDR: 1470 /* Pass down the pointer as-is */ 1471 break; 1472 case CAM_DATA_SG: { 1473 size_t sg_length, size_to_go, alloc_size; 1474 uint32_t num_segs_needed; 1475 1476 /* 1477 * Copy the user S/G list in, and then copy in the 1478 * individual segments. 1479 */ 1480 /* 1481 * We shouldn't see this, but check just in case. 1482 */ 1483 if (numbufs != 1) { 1484 xpt_print(periph->path, "%s: cannot currently handle " 1485 "more than one S/G list per CCB\n", __func__); 1486 error = EINVAL; 1487 goto bailout; 1488 } 1489 1490 /* 1491 * We have to have at least one segment. 1492 */ 1493 if (num_segs == 0) { 1494 xpt_print(periph->path, "%s: CAM_DATA_SG flag set, " 1495 "but sglist_cnt=0!\n", __func__); 1496 error = EINVAL; 1497 goto bailout; 1498 } 1499 1500 /* 1501 * Make sure the user specified the total length and didn't 1502 * just leave it to us to decode the S/G list. 1503 */ 1504 if (lengths[0] == 0) { 1505 xpt_print(periph->path, "%s: no dxfer_len specified, " 1506 "but CAM_DATA_SG flag is set!\n", __func__); 1507 error = EINVAL; 1508 goto bailout; 1509 } 1510 1511 /* 1512 * We allocate buffers in io_zone_size increments for an 1513 * S/G list. This will generally be MAXPHYS. 1514 */ 1515 if (lengths[0] <= softc->io_zone_size) 1516 num_segs_needed = 1; 1517 else { 1518 num_segs_needed = lengths[0] / softc->io_zone_size; 1519 if ((lengths[0] % softc->io_zone_size) != 0) 1520 num_segs_needed++; 1521 } 1522 1523 /* Figure out the size of the S/G list */ 1524 sg_length = num_segs * sizeof(bus_dma_segment_t); 1525 io_req->num_user_segs = num_segs; 1526 io_req->num_kern_segs = num_segs_needed; 1527 1528 /* Save the user's S/G list pointer for later restoration */ 1529 io_req->user_bufs[0] = *data_ptrs[0]; 1530 1531 /* 1532 * If we have enough segments allocated by default to handle 1533 * the length of the user's S/G list, 1534 */ 1535 if (num_segs > PASS_MAX_SEGS) { 1536 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1537 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1538 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1539 } else 1540 io_req->user_segptr = io_req->user_segs; 1541 1542 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1543 if (error != 0) { 1544 xpt_print(periph->path, "%s: copy of user S/G list " 1545 "from %p to %p failed with error %d\n", 1546 __func__, *data_ptrs[0], io_req->user_segptr, 1547 error); 1548 goto bailout; 1549 } 1550 1551 if (num_segs_needed > PASS_MAX_SEGS) { 1552 io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) * 1553 num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO); 1554 io_req->flags |= PASS_IO_KERN_SEG_MALLOC; 1555 } else { 1556 io_req->kern_segptr = io_req->kern_segs; 1557 } 1558 1559 /* 1560 * Allocate the kernel S/G list. 1561 */ 1562 for (size_to_go = lengths[0], i = 0; 1563 size_to_go > 0 && i < num_segs_needed; 1564 i++, size_to_go -= alloc_size) { 1565 uint8_t *kern_ptr; 1566 1567 alloc_size = min(size_to_go, softc->io_zone_size); 1568 kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK); 1569 io_req->kern_segptr[i].ds_addr = 1570 (bus_addr_t)(uintptr_t)kern_ptr; 1571 io_req->kern_segptr[i].ds_len = alloc_size; 1572 } 1573 if (size_to_go > 0) { 1574 printf("%s: size_to_go = %zu, software error!\n", 1575 __func__, size_to_go); 1576 error = EINVAL; 1577 goto bailout; 1578 } 1579 1580 *data_ptrs[0] = (uint8_t *)io_req->kern_segptr; 1581 *seg_cnt_ptr = io_req->num_kern_segs; 1582 1583 /* 1584 * We only need to copy data here if the user is writing. 1585 */ 1586 if (dirs[0] == CAM_DIR_OUT) 1587 error = passcopysglist(periph, io_req, dirs[0]); 1588 break; 1589 } 1590 case CAM_DATA_SG_PADDR: { 1591 size_t sg_length; 1592 1593 /* 1594 * We shouldn't see this, but check just in case. 1595 */ 1596 if (numbufs != 1) { 1597 printf("%s: cannot currently handle more than one " 1598 "S/G list per CCB\n", __func__); 1599 error = EINVAL; 1600 goto bailout; 1601 } 1602 1603 /* 1604 * We have to have at least one segment. 1605 */ 1606 if (num_segs == 0) { 1607 xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag " 1608 "set, but sglist_cnt=0!\n", __func__); 1609 error = EINVAL; 1610 goto bailout; 1611 } 1612 1613 /* 1614 * Make sure the user specified the total length and didn't 1615 * just leave it to us to decode the S/G list. 1616 */ 1617 if (lengths[0] == 0) { 1618 xpt_print(periph->path, "%s: no dxfer_len specified, " 1619 "but CAM_DATA_SG flag is set!\n", __func__); 1620 error = EINVAL; 1621 goto bailout; 1622 } 1623 1624 /* Figure out the size of the S/G list */ 1625 sg_length = num_segs * sizeof(bus_dma_segment_t); 1626 io_req->num_user_segs = num_segs; 1627 io_req->num_kern_segs = io_req->num_user_segs; 1628 1629 /* Save the user's S/G list pointer for later restoration */ 1630 io_req->user_bufs[0] = *data_ptrs[0]; 1631 1632 if (num_segs > PASS_MAX_SEGS) { 1633 io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * 1634 num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); 1635 io_req->flags |= PASS_IO_USER_SEG_MALLOC; 1636 } else 1637 io_req->user_segptr = io_req->user_segs; 1638 1639 io_req->kern_segptr = io_req->user_segptr; 1640 1641 error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); 1642 if (error != 0) { 1643 xpt_print(periph->path, "%s: copy of user S/G list " 1644 "from %p to %p failed with error %d\n", 1645 __func__, *data_ptrs[0], io_req->user_segptr, 1646 error); 1647 goto bailout; 1648 } 1649 break; 1650 } 1651 default: 1652 case CAM_DATA_BIO: 1653 /* 1654 * A user shouldn't be attaching a bio to the CCB. It 1655 * isn't a user-accessible structure. 1656 */ 1657 error = EINVAL; 1658 break; 1659 } 1660 1661 bailout: 1662 if (error != 0) 1663 passiocleanup(softc, io_req); 1664 1665 return (error); 1666 } 1667 1668 static int 1669 passmemdone(struct cam_periph *periph, struct pass_io_req *io_req) 1670 { 1671 struct pass_softc *softc; 1672 int error; 1673 int i; 1674 1675 error = 0; 1676 softc = (struct pass_softc *)periph->softc; 1677 1678 switch (io_req->data_flags) { 1679 case CAM_DATA_VADDR: 1680 /* 1681 * Copy back to the user buffer if this was a read. 1682 */ 1683 for (i = 0; i < io_req->num_bufs; i++) { 1684 if (io_req->dirs[i] != CAM_DIR_IN) 1685 continue; 1686 1687 error = copyout(io_req->kern_bufs[i], 1688 io_req->user_bufs[i], io_req->lengths[i]); 1689 if (error != 0) { 1690 xpt_print(periph->path, "Unable to copy %u " 1691 "bytes from %p to user address %p\n", 1692 io_req->lengths[i], 1693 io_req->kern_bufs[i], 1694 io_req->user_bufs[i]); 1695 goto bailout; 1696 } 1697 1698 } 1699 break; 1700 case CAM_DATA_PADDR: 1701 /* Do nothing. The pointer is a physical address already */ 1702 break; 1703 case CAM_DATA_SG: 1704 /* 1705 * Copy back to the user buffer if this was a read. 1706 * Restore the user's S/G list buffer pointer. 1707 */ 1708 if (io_req->dirs[0] == CAM_DIR_IN) 1709 error = passcopysglist(periph, io_req, io_req->dirs[0]); 1710 break; 1711 case CAM_DATA_SG_PADDR: 1712 /* 1713 * Restore the user's S/G list buffer pointer. No need to 1714 * copy. 1715 */ 1716 break; 1717 default: 1718 case CAM_DATA_BIO: 1719 error = EINVAL; 1720 break; 1721 } 1722 1723 bailout: 1724 /* 1725 * Reset the user's pointers to their original values and free 1726 * allocated memory. 1727 */ 1728 passiocleanup(softc, io_req); 1729 1730 return (error); 1731 } 1732 1733 static int 1734 passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1735 { 1736 int error; 1737 1738 if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 1739 error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl); 1740 } 1741 return (error); 1742 } 1743 1744 static int 1745 passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1746 { 1747 struct cam_periph *periph; 1748 struct pass_softc *softc; 1749 int error; 1750 uint32_t priority; 1751 1752 periph = (struct cam_periph *)dev->si_drv1; 1753 cam_periph_lock(periph); 1754 softc = (struct pass_softc *)periph->softc; 1755 1756 error = 0; 1757 1758 switch (cmd) { 1759 1760 case CAMIOCOMMAND: 1761 { 1762 union ccb *inccb; 1763 union ccb *ccb; 1764 int ccb_malloced; 1765 1766 inccb = (union ccb *)addr; 1767 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1768 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 1769 inccb->csio.bio = NULL; 1770 #endif 1771 1772 if (inccb->ccb_h.flags & CAM_UNLOCKED) { 1773 error = EINVAL; 1774 break; 1775 } 1776 1777 /* 1778 * Some CCB types, like scan bus and scan lun can only go 1779 * through the transport layer device. 1780 */ 1781 if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1782 xpt_print(periph->path, "CCB function code %#x is " 1783 "restricted to the XPT device\n", 1784 inccb->ccb_h.func_code); 1785 error = ENODEV; 1786 break; 1787 } 1788 1789 /* Compatibility for RL/priority-unaware code. */ 1790 priority = inccb->ccb_h.pinfo.priority; 1791 if (priority <= CAM_PRIORITY_OOB) 1792 priority += CAM_PRIORITY_OOB + 1; 1793 1794 /* 1795 * Non-immediate CCBs need a CCB from the per-device pool 1796 * of CCBs, which is scheduled by the transport layer. 1797 * Immediate CCBs and user-supplied CCBs should just be 1798 * malloced. 1799 */ 1800 if ((inccb->ccb_h.func_code & XPT_FC_QUEUED) 1801 && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) { 1802 ccb = cam_periph_getccb(periph, priority); 1803 ccb_malloced = 0; 1804 } else { 1805 ccb = xpt_alloc_ccb_nowait(); 1806 1807 if (ccb != NULL) 1808 xpt_setup_ccb(&ccb->ccb_h, periph->path, 1809 priority); 1810 ccb_malloced = 1; 1811 } 1812 1813 if (ccb == NULL) { 1814 xpt_print(periph->path, "unable to allocate CCB\n"); 1815 error = ENOMEM; 1816 break; 1817 } 1818 1819 error = passsendccb(periph, ccb, inccb); 1820 1821 if (ccb_malloced) 1822 xpt_free_ccb(ccb); 1823 else 1824 xpt_release_ccb(ccb); 1825 1826 break; 1827 } 1828 case CAMIOQUEUE: 1829 { 1830 struct pass_io_req *io_req; 1831 union ccb **user_ccb, *ccb; 1832 xpt_opcode fc; 1833 1834 #ifdef COMPAT_FREEBSD32 1835 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 1836 error = ENOTTY; 1837 goto bailout; 1838 } 1839 #endif 1840 if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) { 1841 error = passcreatezone(periph); 1842 if (error != 0) 1843 goto bailout; 1844 } 1845 1846 /* 1847 * We're going to do a blocking allocation for this I/O 1848 * request, so we have to drop the lock. 1849 */ 1850 cam_periph_unlock(periph); 1851 1852 io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO); 1853 ccb = &io_req->ccb; 1854 user_ccb = (union ccb **)addr; 1855 1856 /* 1857 * Unlike the CAMIOCOMMAND ioctl above, we only have a 1858 * pointer to the user's CCB, so we have to copy the whole 1859 * thing in to a buffer we have allocated (above) instead 1860 * of allowing the ioctl code to malloc a buffer and copy 1861 * it in. 1862 * 1863 * This is an advantage for this asynchronous interface, 1864 * since we don't want the memory to get freed while the 1865 * CCB is outstanding. 1866 */ 1867 #if 0 1868 xpt_print(periph->path, "Copying user CCB %p to " 1869 "kernel address %p\n", *user_ccb, ccb); 1870 #endif 1871 error = copyin(*user_ccb, ccb, sizeof(*ccb)); 1872 if (error != 0) { 1873 xpt_print(periph->path, "Copy of user CCB %p to " 1874 "kernel address %p failed with error %d\n", 1875 *user_ccb, ccb, error); 1876 goto camioqueue_error; 1877 } 1878 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 1879 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 1880 ccb->csio.bio = NULL; 1881 #endif 1882 1883 if (ccb->ccb_h.flags & CAM_UNLOCKED) { 1884 error = EINVAL; 1885 goto camioqueue_error; 1886 } 1887 1888 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 1889 if (ccb->csio.cdb_len > IOCDBLEN) { 1890 error = EINVAL; 1891 goto camioqueue_error; 1892 } 1893 error = copyin(ccb->csio.cdb_io.cdb_ptr, 1894 ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len); 1895 if (error != 0) 1896 goto camioqueue_error; 1897 ccb->ccb_h.flags &= ~CAM_CDB_POINTER; 1898 } 1899 1900 /* 1901 * Some CCB types, like scan bus and scan lun can only go 1902 * through the transport layer device. 1903 */ 1904 if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { 1905 xpt_print(periph->path, "CCB function code %#x is " 1906 "restricted to the XPT device\n", 1907 ccb->ccb_h.func_code); 1908 error = ENODEV; 1909 goto camioqueue_error; 1910 } 1911 1912 /* 1913 * Save the user's CCB pointer as well as his linked list 1914 * pointers and peripheral private area so that we can 1915 * restore these later. 1916 */ 1917 io_req->user_ccb_ptr = *user_ccb; 1918 io_req->user_periph_links = ccb->ccb_h.periph_links; 1919 io_req->user_periph_priv = ccb->ccb_h.periph_priv; 1920 1921 /* 1922 * Now that we've saved the user's values, we can set our 1923 * own peripheral private entry. 1924 */ 1925 ccb->ccb_h.ccb_ioreq = io_req; 1926 1927 /* Compatibility for RL/priority-unaware code. */ 1928 priority = ccb->ccb_h.pinfo.priority; 1929 if (priority <= CAM_PRIORITY_OOB) 1930 priority += CAM_PRIORITY_OOB + 1; 1931 1932 /* 1933 * Setup fields in the CCB like the path and the priority. 1934 * The path in particular cannot be done in userland, since 1935 * it is a pointer to a kernel data structure. 1936 */ 1937 xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority, 1938 ccb->ccb_h.flags); 1939 1940 /* 1941 * Setup our done routine. There is no way for the user to 1942 * have a valid pointer here. 1943 */ 1944 ccb->ccb_h.cbfcnp = passdone; 1945 1946 fc = ccb->ccb_h.func_code; 1947 /* 1948 * If this function code has memory that can be mapped in 1949 * or out, we need to call passmemsetup(). 1950 */ 1951 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) 1952 || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH) 1953 || (fc == XPT_DEV_ADVINFO) 1954 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { 1955 error = passmemsetup(periph, io_req); 1956 if (error != 0) 1957 goto camioqueue_error; 1958 } else 1959 io_req->mapinfo.num_bufs_used = 0; 1960 1961 cam_periph_lock(periph); 1962 1963 /* 1964 * Everything goes on the incoming queue initially. 1965 */ 1966 TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links); 1967 1968 /* 1969 * If the CCB is queued, and is not a user CCB, then 1970 * we need to allocate a slot for it. Call xpt_schedule() 1971 * so that our start routine will get called when a CCB is 1972 * available. 1973 */ 1974 if ((fc & XPT_FC_QUEUED) 1975 && ((fc & XPT_FC_USER_CCB) == 0)) { 1976 xpt_schedule(periph, priority); 1977 break; 1978 } 1979 1980 /* 1981 * At this point, the CCB in question is either an 1982 * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB 1983 * and therefore should be malloced, not allocated via a slot. 1984 * Remove the CCB from the incoming queue and add it to the 1985 * active queue. 1986 */ 1987 TAILQ_REMOVE(&softc->incoming_queue, io_req, links); 1988 TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); 1989 1990 xpt_action(ccb); 1991 1992 /* 1993 * If this is not a queued CCB (i.e. it is an immediate CCB), 1994 * then it is already done. We need to put it on the done 1995 * queue for the user to fetch. 1996 */ 1997 if ((fc & XPT_FC_QUEUED) == 0) { 1998 TAILQ_REMOVE(&softc->active_queue, io_req, links); 1999 TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); 2000 } 2001 break; 2002 2003 camioqueue_error: 2004 uma_zfree(softc->pass_zone, io_req); 2005 cam_periph_lock(periph); 2006 break; 2007 } 2008 case CAMIOGET: 2009 { 2010 union ccb **user_ccb; 2011 struct pass_io_req *io_req; 2012 int old_error; 2013 2014 #ifdef COMPAT_FREEBSD32 2015 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { 2016 error = ENOTTY; 2017 goto bailout; 2018 } 2019 #endif 2020 user_ccb = (union ccb **)addr; 2021 old_error = 0; 2022 2023 io_req = TAILQ_FIRST(&softc->done_queue); 2024 if (io_req == NULL) { 2025 error = ENOENT; 2026 break; 2027 } 2028 2029 /* 2030 * Remove the I/O from the done queue. 2031 */ 2032 TAILQ_REMOVE(&softc->done_queue, io_req, links); 2033 2034 /* 2035 * We have to drop the lock during the copyout because the 2036 * copyout can result in VM faults that require sleeping. 2037 */ 2038 cam_periph_unlock(periph); 2039 2040 /* 2041 * Do any needed copies (e.g. for reads) and revert the 2042 * pointers in the CCB back to the user's pointers. 2043 */ 2044 error = passmemdone(periph, io_req); 2045 2046 old_error = error; 2047 2048 io_req->ccb.ccb_h.periph_links = io_req->user_periph_links; 2049 io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv; 2050 2051 #if 0 2052 xpt_print(periph->path, "Copying to user CCB %p from " 2053 "kernel address %p\n", *user_ccb, &io_req->ccb); 2054 #endif 2055 2056 error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb)); 2057 if (error != 0) { 2058 xpt_print(periph->path, "Copy to user CCB %p from " 2059 "kernel address %p failed with error %d\n", 2060 *user_ccb, &io_req->ccb, error); 2061 } 2062 2063 /* 2064 * Prefer the first error we got back, and make sure we 2065 * don't overwrite bad status with good. 2066 */ 2067 if (old_error != 0) 2068 error = old_error; 2069 2070 cam_periph_lock(periph); 2071 2072 /* 2073 * At this point, if there was an error, we could potentially 2074 * re-queue the I/O and try again. But why? The error 2075 * would almost certainly happen again. We might as well 2076 * not leak memory. 2077 */ 2078 uma_zfree(softc->pass_zone, io_req); 2079 break; 2080 } 2081 default: 2082 error = cam_periph_ioctl(periph, cmd, addr, passerror); 2083 break; 2084 } 2085 2086 bailout: 2087 cam_periph_unlock(periph); 2088 2089 return(error); 2090 } 2091 2092 static int 2093 passpoll(struct cdev *dev, int poll_events, struct thread *td) 2094 { 2095 struct cam_periph *periph; 2096 struct pass_softc *softc; 2097 int revents; 2098 2099 periph = (struct cam_periph *)dev->si_drv1; 2100 softc = (struct pass_softc *)periph->softc; 2101 2102 revents = poll_events & (POLLOUT | POLLWRNORM); 2103 if ((poll_events & (POLLIN | POLLRDNORM)) != 0) { 2104 cam_periph_lock(periph); 2105 2106 if (!TAILQ_EMPTY(&softc->done_queue)) { 2107 revents |= poll_events & (POLLIN | POLLRDNORM); 2108 } 2109 cam_periph_unlock(periph); 2110 if (revents == 0) 2111 selrecord(td, &softc->read_select); 2112 } 2113 2114 return (revents); 2115 } 2116 2117 static int 2118 passkqfilter(struct cdev *dev, struct knote *kn) 2119 { 2120 struct cam_periph *periph; 2121 struct pass_softc *softc; 2122 2123 periph = (struct cam_periph *)dev->si_drv1; 2124 softc = (struct pass_softc *)periph->softc; 2125 2126 kn->kn_hook = (caddr_t)periph; 2127 kn->kn_fop = &passread_filtops; 2128 knlist_add(&softc->read_select.si_note, kn, 0); 2129 2130 return (0); 2131 } 2132 2133 static void 2134 passreadfiltdetach(struct knote *kn) 2135 { 2136 struct cam_periph *periph; 2137 struct pass_softc *softc; 2138 2139 periph = (struct cam_periph *)kn->kn_hook; 2140 softc = (struct pass_softc *)periph->softc; 2141 2142 knlist_remove(&softc->read_select.si_note, kn, 0); 2143 } 2144 2145 static int 2146 passreadfilt(struct knote *kn, long hint) 2147 { 2148 struct cam_periph *periph; 2149 struct pass_softc *softc; 2150 int retval; 2151 2152 periph = (struct cam_periph *)kn->kn_hook; 2153 softc = (struct pass_softc *)periph->softc; 2154 2155 cam_periph_assert(periph, MA_OWNED); 2156 2157 if (TAILQ_EMPTY(&softc->done_queue)) 2158 retval = 0; 2159 else 2160 retval = 1; 2161 2162 return (retval); 2163 } 2164 2165 /* 2166 * Generally, "ccb" should be the CCB supplied by the kernel. "inccb" 2167 * should be the CCB that is copied in from the user. 2168 */ 2169 static int 2170 passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb) 2171 { 2172 struct pass_softc *softc; 2173 struct cam_periph_map_info mapinfo; 2174 uint8_t *cmd; 2175 xpt_opcode fc; 2176 int error; 2177 2178 softc = (struct pass_softc *)periph->softc; 2179 2180 /* 2181 * There are some fields in the CCB header that need to be 2182 * preserved, the rest we get from the user. 2183 */ 2184 xpt_merge_ccb(ccb, inccb); 2185 2186 if (ccb->ccb_h.flags & CAM_CDB_POINTER) { 2187 cmd = __builtin_alloca(ccb->csio.cdb_len); 2188 error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len); 2189 if (error) 2190 return (error); 2191 ccb->csio.cdb_io.cdb_ptr = cmd; 2192 } 2193 2194 /* 2195 * Let cam_periph_mapmem do a sanity check on the data pointer format. 2196 * Even if no data transfer is needed, it's a cheap check and it 2197 * simplifies the code. 2198 */ 2199 fc = ccb->ccb_h.func_code; 2200 if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO) 2201 || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO) 2202 || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { 2203 2204 bzero(&mapinfo, sizeof(mapinfo)); 2205 2206 /* 2207 * cam_periph_mapmem calls into proc and vm functions that can 2208 * sleep as well as trigger I/O, so we can't hold the lock. 2209 * Dropping it here is reasonably safe. 2210 */ 2211 cam_periph_unlock(periph); 2212 error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio); 2213 cam_periph_lock(periph); 2214 2215 /* 2216 * cam_periph_mapmem returned an error, we can't continue. 2217 * Return the error to the user. 2218 */ 2219 if (error) 2220 return(error); 2221 } else 2222 /* Ensure that the unmap call later on is a no-op. */ 2223 mapinfo.num_bufs_used = 0; 2224 2225 /* 2226 * If the user wants us to perform any error recovery, then honor 2227 * that request. Otherwise, it's up to the user to perform any 2228 * error recovery. 2229 */ 2230 cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? 2231 passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO, 2232 /* sense_flags */ SF_RETRY_UA | SF_NO_PRINT, 2233 softc->device_stats); 2234 2235 cam_periph_unlock(periph); 2236 cam_periph_unmapmem(ccb, &mapinfo); 2237 cam_periph_lock(periph); 2238 2239 ccb->ccb_h.cbfcnp = NULL; 2240 ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv; 2241 bcopy(ccb, inccb, sizeof(union ccb)); 2242 2243 return(0); 2244 } 2245 2246 static int 2247 passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) 2248 { 2249 struct cam_periph *periph; 2250 struct pass_softc *softc; 2251 2252 periph = xpt_path_periph(ccb->ccb_h.path); 2253 softc = (struct pass_softc *)periph->softc; 2254 2255 return(cam_periph_error(ccb, cam_flags, sense_flags)); 2256 } 2257