1 /*- 2 * Implementation of Utility functions for all SCSI device types. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/types.h> 37 #include <sys/stdint.h> 38 39 #ifdef _KERNEL 40 #include "opt_scsi.h" 41 42 #include <sys/systm.h> 43 #include <sys/libkern.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/ctype.h> 50 #else 51 #include <errno.h> 52 #include <stdio.h> 53 #include <stdlib.h> 54 #include <string.h> 55 #include <ctype.h> 56 #endif 57 58 #include <cam/cam.h> 59 #include <cam/cam_ccb.h> 60 #include <cam/cam_queue.h> 61 #include <cam/cam_xpt.h> 62 #include <cam/scsi/scsi_all.h> 63 #include <sys/ata.h> 64 #include <sys/sbuf.h> 65 66 #ifdef _KERNEL 67 #include <cam/cam_periph.h> 68 #include <cam/cam_xpt_sim.h> 69 #include <cam/cam_xpt_periph.h> 70 #include <cam/cam_xpt_internal.h> 71 #else 72 #include <camlib.h> 73 #include <stddef.h> 74 75 #ifndef FALSE 76 #define FALSE 0 77 #endif /* FALSE */ 78 #ifndef TRUE 79 #define TRUE 1 80 #endif /* TRUE */ 81 #define ERESTART -1 /* restart syscall */ 82 #define EJUSTRETURN -2 /* don't modify regs, just return */ 83 #endif /* !_KERNEL */ 84 85 /* 86 * This is the default number of milliseconds we wait for devices to settle 87 * after a SCSI bus reset. 88 */ 89 #ifndef SCSI_DELAY 90 #define SCSI_DELAY 2000 91 #endif 92 /* 93 * All devices need _some_ sort of bus settle delay, so we'll set it to 94 * a minimum value of 100ms. Note that this is pertinent only for SPI- 95 * not transport like Fibre Channel or iSCSI where 'delay' is completely 96 * meaningless. 97 */ 98 #ifndef SCSI_MIN_DELAY 99 #define SCSI_MIN_DELAY 100 100 #endif 101 /* 102 * Make sure the user isn't using seconds instead of milliseconds. 103 */ 104 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) 105 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" 106 #endif 107 108 int scsi_delay; 109 110 static int ascentrycomp(const void *key, const void *member); 111 static int senseentrycomp(const void *key, const void *member); 112 static void fetchtableentries(int sense_key, int asc, int ascq, 113 struct scsi_inquiry_data *, 114 const struct sense_key_table_entry **, 115 const struct asc_table_entry **); 116 117 #ifdef _KERNEL 118 static void init_scsi_delay(void); 119 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); 120 static int set_scsi_delay(int delay); 121 #endif 122 123 #if !defined(SCSI_NO_OP_STRINGS) 124 125 #define D (1 << T_DIRECT) 126 #define T (1 << T_SEQUENTIAL) 127 #define L (1 << T_PRINTER) 128 #define P (1 << T_PROCESSOR) 129 #define W (1 << T_WORM) 130 #define R (1 << T_CDROM) 131 #define O (1 << T_OPTICAL) 132 #define M (1 << T_CHANGER) 133 #define A (1 << T_STORARRAY) 134 #define E (1 << T_ENCLOSURE) 135 #define B (1 << T_RBC) 136 #define K (1 << T_OCRW) 137 #define V (1 << T_ADC) 138 #define F (1 << T_OSD) 139 #define S (1 << T_SCANNER) 140 #define C (1 << T_COMM) 141 142 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) 143 144 static struct op_table_entry plextor_cd_ops[] = { 145 { 0xD8, R, "CD-DA READ" } 146 }; 147 148 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { 149 { 150 /* 151 * I believe that 0xD8 is the Plextor proprietary command 152 * to read CD-DA data. I'm not sure which Plextor CDROM 153 * models support the command, though. I know for sure 154 * that the 4X, 8X, and 12X models do, and presumably the 155 * 12-20X does. I don't know about any earlier models, 156 * though. If anyone has any more complete information, 157 * feel free to change this quirk entry. 158 */ 159 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, 160 nitems(plextor_cd_ops), 161 plextor_cd_ops 162 } 163 }; 164 165 static struct op_table_entry scsi_op_codes[] = { 166 /* 167 * From: http://www.t10.org/lists/op-num.txt 168 * Modifications by Kenneth Merry (ken@FreeBSD.ORG) 169 * and Jung-uk Kim (jkim@FreeBSD.org) 170 * 171 * Note: order is important in this table, scsi_op_desc() currently 172 * depends on the opcodes in the table being in order to save 173 * search time. 174 * Note: scanner and comm. devices are carried over from the previous 175 * version because they were removed in the latest spec. 176 */ 177 /* File: OP-NUM.TXT 178 * 179 * SCSI Operation Codes 180 * Numeric Sorted Listing 181 * as of 5/26/15 182 * 183 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 184 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- 185 * . L - PRINTER DEVICE (SSC) M = Mandatory 186 * . P - PROCESSOR DEVICE (SPC) O = Optional 187 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. 188 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete 189 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 190 * . . .M - MEDIA CHANGER DEVICE (SMC-2) 191 * . . . A - STORAGE ARRAY DEVICE (SCC-2) 192 * . . . .E - ENCLOSURE SERVICES DEVICE (SES) 193 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 194 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 195 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 196 * . . . . .F - OBJECT-BASED STORAGE (OSD) 197 * OP DTLPWROMAEBKVF Description 198 * -- -------------- ---------------------------------------------- */ 199 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ 200 { 0x00, ALL, "TEST UNIT READY" }, 201 /* 01 M REWIND */ 202 { 0x01, T, "REWIND" }, 203 /* 01 Z V ZZZZ REZERO UNIT */ 204 { 0x01, D | W | R | O | M, "REZERO UNIT" }, 205 /* 02 VVVVVV V */ 206 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ 207 { 0x03, ALL, "REQUEST SENSE" }, 208 /* 04 M OO FORMAT UNIT */ 209 { 0x04, D | R | O, "FORMAT UNIT" }, 210 /* 04 O FORMAT MEDIUM */ 211 { 0x04, T, "FORMAT MEDIUM" }, 212 /* 04 O FORMAT */ 213 { 0x04, L, "FORMAT" }, 214 /* 05 VMVVVV V READ BLOCK LIMITS */ 215 { 0x05, T, "READ BLOCK LIMITS" }, 216 /* 06 VVVVVV V */ 217 /* 07 OVV O OV REASSIGN BLOCKS */ 218 { 0x07, D | W | O, "REASSIGN BLOCKS" }, 219 /* 07 O INITIALIZE ELEMENT STATUS */ 220 { 0x07, M, "INITIALIZE ELEMENT STATUS" }, 221 /* 08 MOV O OV READ(6) */ 222 { 0x08, D | T | W | O, "READ(6)" }, 223 /* 08 O RECEIVE */ 224 { 0x08, P, "RECEIVE" }, 225 /* 08 GET MESSAGE(6) */ 226 { 0x08, C, "GET MESSAGE(6)" }, 227 /* 09 VVVVVV V */ 228 /* 0A OO O OV WRITE(6) */ 229 { 0x0A, D | T | W | O, "WRITE(6)" }, 230 /* 0A M SEND(6) */ 231 { 0x0A, P, "SEND(6)" }, 232 /* 0A SEND MESSAGE(6) */ 233 { 0x0A, C, "SEND MESSAGE(6)" }, 234 /* 0A M PRINT */ 235 { 0x0A, L, "PRINT" }, 236 /* 0B Z ZOZV SEEK(6) */ 237 { 0x0B, D | W | R | O, "SEEK(6)" }, 238 /* 0B O SET CAPACITY */ 239 { 0x0B, T, "SET CAPACITY" }, 240 /* 0B O SLEW AND PRINT */ 241 { 0x0B, L, "SLEW AND PRINT" }, 242 /* 0C VVVVVV V */ 243 /* 0D VVVVVV V */ 244 /* 0E VVVVVV V */ 245 /* 0F VOVVVV V READ REVERSE(6) */ 246 { 0x0F, T, "READ REVERSE(6)" }, 247 /* 10 VM VVV WRITE FILEMARKS(6) */ 248 { 0x10, T, "WRITE FILEMARKS(6)" }, 249 /* 10 O SYNCHRONIZE BUFFER */ 250 { 0x10, L, "SYNCHRONIZE BUFFER" }, 251 /* 11 VMVVVV SPACE(6) */ 252 { 0x11, T, "SPACE(6)" }, 253 /* 12 MMMMMMMMMMMMMM INQUIRY */ 254 { 0x12, ALL, "INQUIRY" }, 255 /* 13 V VVVV */ 256 /* 13 O VERIFY(6) */ 257 { 0x13, T, "VERIFY(6)" }, 258 /* 14 VOOVVV RECOVER BUFFERED DATA */ 259 { 0x14, T | L, "RECOVER BUFFERED DATA" }, 260 /* 15 OMO O OOOO OO MODE SELECT(6) */ 261 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, 262 /* 16 ZZMZO OOOZ O RESERVE(6) */ 263 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, 264 /* 16 Z RESERVE ELEMENT(6) */ 265 { 0x16, M, "RESERVE ELEMENT(6)" }, 266 /* 17 ZZMZO OOOZ O RELEASE(6) */ 267 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, 268 /* 17 Z RELEASE ELEMENT(6) */ 269 { 0x17, M, "RELEASE ELEMENT(6)" }, 270 /* 18 ZZZZOZO Z COPY */ 271 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, 272 /* 19 VMVVVV ERASE(6) */ 273 { 0x19, T, "ERASE(6)" }, 274 /* 1A OMO O OOOO OO MODE SENSE(6) */ 275 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, 276 /* 1B O OOO O MO O START STOP UNIT */ 277 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, 278 /* 1B O M LOAD UNLOAD */ 279 { 0x1B, T | V, "LOAD UNLOAD" }, 280 /* 1B SCAN */ 281 { 0x1B, S, "SCAN" }, 282 /* 1B O STOP PRINT */ 283 { 0x1B, L, "STOP PRINT" }, 284 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ 285 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, 286 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ 287 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, 288 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ 289 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, 290 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ 291 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, 292 /* 1F */ 293 /* 20 V VVV V */ 294 /* 21 V VVV V */ 295 /* 22 V VVV V */ 296 /* 23 V V V V */ 297 /* 23 O READ FORMAT CAPACITIES */ 298 { 0x23, R, "READ FORMAT CAPACITIES" }, 299 /* 24 V VV SET WINDOW */ 300 { 0x24, S, "SET WINDOW" }, 301 /* 25 M M M M READ CAPACITY(10) */ 302 { 0x25, D | W | O | B, "READ CAPACITY(10)" }, 303 /* 25 O READ CAPACITY */ 304 { 0x25, R, "READ CAPACITY" }, 305 /* 25 M READ CARD CAPACITY */ 306 { 0x25, K, "READ CARD CAPACITY" }, 307 /* 25 GET WINDOW */ 308 { 0x25, S, "GET WINDOW" }, 309 /* 26 V VV */ 310 /* 27 V VV */ 311 /* 28 M MOM MM READ(10) */ 312 { 0x28, D | W | R | O | B | K | S, "READ(10)" }, 313 /* 28 GET MESSAGE(10) */ 314 { 0x28, C, "GET MESSAGE(10)" }, 315 /* 29 V VVO READ GENERATION */ 316 { 0x29, O, "READ GENERATION" }, 317 /* 2A O MOM MO WRITE(10) */ 318 { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, 319 /* 2A SEND(10) */ 320 { 0x2A, S, "SEND(10)" }, 321 /* 2A SEND MESSAGE(10) */ 322 { 0x2A, C, "SEND MESSAGE(10)" }, 323 /* 2B Z OOO O SEEK(10) */ 324 { 0x2B, D | W | R | O | K, "SEEK(10)" }, 325 /* 2B O LOCATE(10) */ 326 { 0x2B, T, "LOCATE(10)" }, 327 /* 2B O POSITION TO ELEMENT */ 328 { 0x2B, M, "POSITION TO ELEMENT" }, 329 /* 2C V OO ERASE(10) */ 330 { 0x2C, R | O, "ERASE(10)" }, 331 /* 2D O READ UPDATED BLOCK */ 332 { 0x2D, O, "READ UPDATED BLOCK" }, 333 /* 2D V */ 334 /* 2E O OOO MO WRITE AND VERIFY(10) */ 335 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, 336 /* 2F O OOO VERIFY(10) */ 337 { 0x2F, D | W | R | O, "VERIFY(10)" }, 338 /* 30 Z ZZZ SEARCH DATA HIGH(10) */ 339 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, 340 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ 341 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, 342 /* 31 OBJECT POSITION */ 343 { 0x31, S, "OBJECT POSITION" }, 344 /* 32 Z ZZZ SEARCH DATA LOW(10) */ 345 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, 346 /* 33 Z OZO SET LIMITS(10) */ 347 { 0x33, D | W | R | O, "SET LIMITS(10)" }, 348 /* 34 O O O O PRE-FETCH(10) */ 349 { 0x34, D | W | O | K, "PRE-FETCH(10)" }, 350 /* 34 M READ POSITION */ 351 { 0x34, T, "READ POSITION" }, 352 /* 34 GET DATA BUFFER STATUS */ 353 { 0x34, S, "GET DATA BUFFER STATUS" }, 354 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ 355 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, 356 /* 36 Z O O O LOCK UNLOCK CACHE(10) */ 357 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, 358 /* 37 O O READ DEFECT DATA(10) */ 359 { 0x37, D | O, "READ DEFECT DATA(10)" }, 360 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ 361 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, 362 /* 38 O O O MEDIUM SCAN */ 363 { 0x38, W | O | K, "MEDIUM SCAN" }, 364 /* 39 ZZZZOZO Z COMPARE */ 365 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, 366 /* 3A ZZZZOZO Z COPY AND VERIFY */ 367 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, 368 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ 369 { 0x3B, ALL, "WRITE BUFFER" }, 370 /* 3C OOOOOOOOOO OOO READ BUFFER */ 371 { 0x3C, ALL & ~(B), "READ BUFFER" }, 372 /* 3D O UPDATE BLOCK */ 373 { 0x3D, O, "UPDATE BLOCK" }, 374 /* 3E O O O READ LONG(10) */ 375 { 0x3E, D | W | O, "READ LONG(10)" }, 376 /* 3F O O O WRITE LONG(10) */ 377 { 0x3F, D | W | O, "WRITE LONG(10)" }, 378 /* 40 ZZZZOZOZ CHANGE DEFINITION */ 379 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, 380 /* 41 O WRITE SAME(10) */ 381 { 0x41, D, "WRITE SAME(10)" }, 382 /* 42 O UNMAP */ 383 { 0x42, D, "UNMAP" }, 384 /* 42 O READ SUB-CHANNEL */ 385 { 0x42, R, "READ SUB-CHANNEL" }, 386 /* 43 O READ TOC/PMA/ATIP */ 387 { 0x43, R, "READ TOC/PMA/ATIP" }, 388 /* 44 M M REPORT DENSITY SUPPORT */ 389 { 0x44, T | V, "REPORT DENSITY SUPPORT" }, 390 /* 44 READ HEADER */ 391 /* 45 O PLAY AUDIO(10) */ 392 { 0x45, R, "PLAY AUDIO(10)" }, 393 /* 46 M GET CONFIGURATION */ 394 { 0x46, R, "GET CONFIGURATION" }, 395 /* 47 O PLAY AUDIO MSF */ 396 { 0x47, R, "PLAY AUDIO MSF" }, 397 /* 48 O SANITIZE */ 398 { 0x48, D, "SANITIZE" }, 399 /* 49 */ 400 /* 4A M GET EVENT STATUS NOTIFICATION */ 401 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, 402 /* 4B O PAUSE/RESUME */ 403 { 0x4B, R, "PAUSE/RESUME" }, 404 /* 4C OOOOO OOOO OOO LOG SELECT */ 405 { 0x4C, ALL & ~(R | B), "LOG SELECT" }, 406 /* 4D OOOOO OOOO OMO LOG SENSE */ 407 { 0x4D, ALL & ~(R | B), "LOG SENSE" }, 408 /* 4E O STOP PLAY/SCAN */ 409 { 0x4E, R, "STOP PLAY/SCAN" }, 410 /* 4F */ 411 /* 50 O XDWRITE(10) */ 412 { 0x50, D, "XDWRITE(10)" }, 413 /* 51 O XPWRITE(10) */ 414 { 0x51, D, "XPWRITE(10)" }, 415 /* 51 O READ DISC INFORMATION */ 416 { 0x51, R, "READ DISC INFORMATION" }, 417 /* 52 O XDREAD(10) */ 418 { 0x52, D, "XDREAD(10)" }, 419 /* 52 O READ TRACK INFORMATION */ 420 { 0x52, R, "READ TRACK INFORMATION" }, 421 /* 53 O RESERVE TRACK */ 422 { 0x53, R, "RESERVE TRACK" }, 423 /* 54 O SEND OPC INFORMATION */ 424 { 0x54, R, "SEND OPC INFORMATION" }, 425 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ 426 { 0x55, ALL & ~(P), "MODE SELECT(10)" }, 427 /* 56 ZZMZO OOOZ RESERVE(10) */ 428 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, 429 /* 56 Z RESERVE ELEMENT(10) */ 430 { 0x56, M, "RESERVE ELEMENT(10)" }, 431 /* 57 ZZMZO OOOZ RELEASE(10) */ 432 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, 433 /* 57 Z RELEASE ELEMENT(10) */ 434 { 0x57, M, "RELEASE ELEMENT(10)" }, 435 /* 58 O REPAIR TRACK */ 436 { 0x58, R, "REPAIR TRACK" }, 437 /* 59 */ 438 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ 439 { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, 440 /* 5B O CLOSE TRACK/SESSION */ 441 { 0x5B, R, "CLOSE TRACK/SESSION" }, 442 /* 5C O READ BUFFER CAPACITY */ 443 { 0x5C, R, "READ BUFFER CAPACITY" }, 444 /* 5D O SEND CUE SHEET */ 445 { 0x5D, R, "SEND CUE SHEET" }, 446 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ 447 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, 448 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ 449 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, 450 /* 7E OO O OOOO O extended CDB */ 451 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, 452 /* 7F O M variable length CDB (more than 16 bytes) */ 453 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, 454 /* 80 Z XDWRITE EXTENDED(16) */ 455 { 0x80, D, "XDWRITE EXTENDED(16)" }, 456 /* 80 M WRITE FILEMARKS(16) */ 457 { 0x80, T, "WRITE FILEMARKS(16)" }, 458 /* 81 Z REBUILD(16) */ 459 { 0x81, D, "REBUILD(16)" }, 460 /* 81 O READ REVERSE(16) */ 461 { 0x81, T, "READ REVERSE(16)" }, 462 /* 82 Z REGENERATE(16) */ 463 { 0x82, D, "REGENERATE(16)" }, 464 /* 83 OOOOO O OO EXTENDED COPY */ 465 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, 466 /* 84 OOOOO O OO RECEIVE COPY RESULTS */ 467 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, 468 /* 85 O O O ATA COMMAND PASS THROUGH(16) */ 469 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, 470 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ 471 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, 472 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ 473 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, 474 /* 88 MM O O O READ(16) */ 475 { 0x88, D | T | W | O | B, "READ(16)" }, 476 /* 89 O COMPARE AND WRITE*/ 477 { 0x89, D, "COMPARE AND WRITE" }, 478 /* 8A OM O O O WRITE(16) */ 479 { 0x8A, D | T | W | O | B, "WRITE(16)" }, 480 /* 8B O ORWRITE */ 481 { 0x8B, D, "ORWRITE" }, 482 /* 8C OO O OO O M READ ATTRIBUTE */ 483 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, 484 /* 8D OO O OO O O WRITE ATTRIBUTE */ 485 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, 486 /* 8E O O O O WRITE AND VERIFY(16) */ 487 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, 488 /* 8F OO O O O VERIFY(16) */ 489 { 0x8F, D | T | W | O | B, "VERIFY(16)" }, 490 /* 90 O O O O PRE-FETCH(16) */ 491 { 0x90, D | W | O | B, "PRE-FETCH(16)" }, 492 /* 91 O O O O SYNCHRONIZE CACHE(16) */ 493 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, 494 /* 91 O SPACE(16) */ 495 { 0x91, T, "SPACE(16)" }, 496 /* 92 Z O O LOCK UNLOCK CACHE(16) */ 497 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, 498 /* 92 O LOCATE(16) */ 499 { 0x92, T, "LOCATE(16)" }, 500 /* 93 O WRITE SAME(16) */ 501 { 0x93, D, "WRITE SAME(16)" }, 502 /* 93 M ERASE(16) */ 503 { 0x93, T, "ERASE(16)" }, 504 /* 94 O ZBC OUT */ 505 { 0x94, ALL, "ZBC OUT" }, 506 /* 95 O ZBC IN */ 507 { 0x95, ALL, "ZBC IN" }, 508 /* 96 */ 509 /* 97 */ 510 /* 98 */ 511 /* 99 */ 512 /* 9A O WRITE STREAM(16) */ 513 { 0x9A, D, "WRITE STREAM(16)" }, 514 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */ 515 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" }, 516 /* 9C O WRITE ATOMIC(16) */ 517 { 0x9C, D, "WRITE ATOMIC(16)" }, 518 /* 9D SERVICE ACTION BIDIRECTIONAL */ 519 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" }, 520 /* XXX KDM ALL for this? op-num.txt defines it for none.. */ 521 /* 9E SERVICE ACTION IN(16) */ 522 { 0x9E, ALL, "SERVICE ACTION IN(16)" }, 523 /* 9F M SERVICE ACTION OUT(16) */ 524 { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, 525 /* A0 MMOOO OMMM OMO REPORT LUNS */ 526 { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, 527 /* A1 O BLANK */ 528 { 0xA1, R, "BLANK" }, 529 /* A1 O O ATA COMMAND PASS THROUGH(12) */ 530 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, 531 /* A2 OO O O SECURITY PROTOCOL IN */ 532 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, 533 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ 534 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, 535 /* A3 O SEND KEY */ 536 { 0xA3, R, "SEND KEY" }, 537 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ 538 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, 539 /* A4 O REPORT KEY */ 540 { 0xA4, R, "REPORT KEY" }, 541 /* A5 O O OM MOVE MEDIUM */ 542 { 0xA5, T | W | O | M, "MOVE MEDIUM" }, 543 /* A5 O PLAY AUDIO(12) */ 544 { 0xA5, R, "PLAY AUDIO(12)" }, 545 /* A6 O EXCHANGE MEDIUM */ 546 { 0xA6, M, "EXCHANGE MEDIUM" }, 547 /* A6 O LOAD/UNLOAD C/DVD */ 548 { 0xA6, R, "LOAD/UNLOAD C/DVD" }, 549 /* A7 ZZ O O MOVE MEDIUM ATTACHED */ 550 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, 551 /* A7 O SET READ AHEAD */ 552 { 0xA7, R, "SET READ AHEAD" }, 553 /* A8 O OOO READ(12) */ 554 { 0xA8, D | W | R | O, "READ(12)" }, 555 /* A8 GET MESSAGE(12) */ 556 { 0xA8, C, "GET MESSAGE(12)" }, 557 /* A9 O SERVICE ACTION OUT(12) */ 558 { 0xA9, V, "SERVICE ACTION OUT(12)" }, 559 /* AA O OOO WRITE(12) */ 560 { 0xAA, D | W | R | O, "WRITE(12)" }, 561 /* AA SEND MESSAGE(12) */ 562 { 0xAA, C, "SEND MESSAGE(12)" }, 563 /* AB O O SERVICE ACTION IN(12) */ 564 { 0xAB, R | V, "SERVICE ACTION IN(12)" }, 565 /* AC O ERASE(12) */ 566 { 0xAC, O, "ERASE(12)" }, 567 /* AC O GET PERFORMANCE */ 568 { 0xAC, R, "GET PERFORMANCE" }, 569 /* AD O READ DVD STRUCTURE */ 570 { 0xAD, R, "READ DVD STRUCTURE" }, 571 /* AE O O O WRITE AND VERIFY(12) */ 572 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, 573 /* AF O OZO VERIFY(12) */ 574 { 0xAF, D | W | R | O, "VERIFY(12)" }, 575 /* B0 ZZZ SEARCH DATA HIGH(12) */ 576 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, 577 /* B1 ZZZ SEARCH DATA EQUAL(12) */ 578 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, 579 /* B2 ZZZ SEARCH DATA LOW(12) */ 580 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, 581 /* B3 Z OZO SET LIMITS(12) */ 582 { 0xB3, D | W | R | O, "SET LIMITS(12)" }, 583 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ 584 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, 585 /* B5 OO O O SECURITY PROTOCOL OUT */ 586 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, 587 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ 588 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, 589 /* B6 O SEND VOLUME TAG */ 590 { 0xB6, M, "SEND VOLUME TAG" }, 591 /* B6 O SET STREAMING */ 592 { 0xB6, R, "SET STREAMING" }, 593 /* B7 O O READ DEFECT DATA(12) */ 594 { 0xB7, D | O, "READ DEFECT DATA(12)" }, 595 /* B8 O OZOM READ ELEMENT STATUS */ 596 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, 597 /* B9 O READ CD MSF */ 598 { 0xB9, R, "READ CD MSF" }, 599 /* BA O O OOMO REDUNDANCY GROUP (IN) */ 600 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, 601 /* BA O SCAN */ 602 { 0xBA, R, "SCAN" }, 603 /* BB O O OOOO REDUNDANCY GROUP (OUT) */ 604 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, 605 /* BB O SET CD SPEED */ 606 { 0xBB, R, "SET CD SPEED" }, 607 /* BC O O OOMO SPARE (IN) */ 608 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, 609 /* BD O O OOOO SPARE (OUT) */ 610 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, 611 /* BD O MECHANISM STATUS */ 612 { 0xBD, R, "MECHANISM STATUS" }, 613 /* BE O O OOMO VOLUME SET (IN) */ 614 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, 615 /* BE O READ CD */ 616 { 0xBE, R, "READ CD" }, 617 /* BF O O OOOO VOLUME SET (OUT) */ 618 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, 619 /* BF O SEND DVD STRUCTURE */ 620 { 0xBF, R, "SEND DVD STRUCTURE" } 621 }; 622 623 const char * 624 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 625 { 626 caddr_t match; 627 int i, j; 628 u_int32_t opmask; 629 u_int16_t pd_type; 630 int num_ops[2]; 631 struct op_table_entry *table[2]; 632 int num_tables; 633 634 /* 635 * If we've got inquiry data, use it to determine what type of 636 * device we're dealing with here. Otherwise, assume direct 637 * access. 638 */ 639 if (inq_data == NULL) { 640 pd_type = T_DIRECT; 641 match = NULL; 642 } else { 643 pd_type = SID_TYPE(inq_data); 644 645 match = cam_quirkmatch((caddr_t)inq_data, 646 (caddr_t)scsi_op_quirk_table, 647 nitems(scsi_op_quirk_table), 648 sizeof(*scsi_op_quirk_table), 649 scsi_inquiry_match); 650 } 651 652 if (match != NULL) { 653 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; 654 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; 655 table[1] = scsi_op_codes; 656 num_ops[1] = nitems(scsi_op_codes); 657 num_tables = 2; 658 } else { 659 /* 660 * If this is true, we have a vendor specific opcode that 661 * wasn't covered in the quirk table. 662 */ 663 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) 664 return("Vendor Specific Command"); 665 666 table[0] = scsi_op_codes; 667 num_ops[0] = nitems(scsi_op_codes); 668 num_tables = 1; 669 } 670 671 /* RBC is 'Simplified' Direct Access Device */ 672 if (pd_type == T_RBC) 673 pd_type = T_DIRECT; 674 675 /* 676 * Host managed drives are direct access for the most part. 677 */ 678 if (pd_type == T_ZBC_HM) 679 pd_type = T_DIRECT; 680 681 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */ 682 if (pd_type == T_NODEVICE) 683 pd_type = T_DIRECT; 684 685 opmask = 1 << pd_type; 686 687 for (j = 0; j < num_tables; j++) { 688 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ 689 if ((table[j][i].opcode == opcode) 690 && ((table[j][i].opmask & opmask) != 0)) 691 return(table[j][i].desc); 692 } 693 } 694 695 /* 696 * If we can't find a match for the command in the table, we just 697 * assume it's a vendor specifc command. 698 */ 699 return("Vendor Specific Command"); 700 701 } 702 703 #else /* SCSI_NO_OP_STRINGS */ 704 705 const char * 706 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 707 { 708 return(""); 709 } 710 711 #endif 712 713 714 #if !defined(SCSI_NO_SENSE_STRINGS) 715 #define SST(asc, ascq, action, desc) \ 716 asc, ascq, action, desc 717 #else 718 const char empty_string[] = ""; 719 720 #define SST(asc, ascq, action, desc) \ 721 asc, ascq, action, empty_string 722 #endif 723 724 const struct sense_key_table_entry sense_key_table[] = 725 { 726 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, 727 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, 728 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" }, 729 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, 730 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, 731 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, 732 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, 733 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, 734 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, 735 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, 736 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, 737 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, 738 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, 739 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, 740 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, 741 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } 742 }; 743 744 static struct asc_table_entry quantum_fireball_entries[] = { 745 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 746 "Logical unit not ready, initializing cmd. required") } 747 }; 748 749 static struct asc_table_entry sony_mo_entries[] = { 750 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 751 "Logical unit not ready, cause not reportable") } 752 }; 753 754 static struct asc_table_entry hgst_entries[] = { 755 { SST(0x04, 0xF0, SS_RDEF, 756 "Vendor Unique - Logical Unit Not Ready") }, 757 { SST(0x0A, 0x01, SS_RDEF, 758 "Unrecovered Super Certification Log Write Error") }, 759 { SST(0x0A, 0x02, SS_RDEF, 760 "Unrecovered Super Certification Log Read Error") }, 761 { SST(0x15, 0x03, SS_RDEF, 762 "Unrecovered Sector Error") }, 763 { SST(0x3E, 0x04, SS_RDEF, 764 "Unrecovered Self-Test Hard-Cache Test Fail") }, 765 { SST(0x3E, 0x05, SS_RDEF, 766 "Unrecovered Self-Test OTF-Cache Fail") }, 767 { SST(0x40, 0x00, SS_RDEF, 768 "Unrecovered SAT No Buffer Overflow Error") }, 769 { SST(0x40, 0x01, SS_RDEF, 770 "Unrecovered SAT Buffer Overflow Error") }, 771 { SST(0x40, 0x02, SS_RDEF, 772 "Unrecovered SAT No Buffer Overflow With ECS Fault") }, 773 { SST(0x40, 0x03, SS_RDEF, 774 "Unrecovered SAT Buffer Overflow With ECS Fault") }, 775 { SST(0x40, 0x81, SS_RDEF, 776 "DRAM Failure") }, 777 { SST(0x44, 0x0B, SS_RDEF, 778 "Vendor Unique - Internal Target Failure") }, 779 { SST(0x44, 0xF2, SS_RDEF, 780 "Vendor Unique - Internal Target Failure") }, 781 { SST(0x44, 0xF6, SS_RDEF, 782 "Vendor Unique - Internal Target Failure") }, 783 { SST(0x44, 0xF9, SS_RDEF, 784 "Vendor Unique - Internal Target Failure") }, 785 { SST(0x44, 0xFA, SS_RDEF, 786 "Vendor Unique - Internal Target Failure") }, 787 { SST(0x5D, 0x22, SS_RDEF, 788 "Extreme Over-Temperature Warning") }, 789 { SST(0x5D, 0x50, SS_RDEF, 790 "Load/Unload cycle Count Warning") }, 791 { SST(0x81, 0x00, SS_RDEF, 792 "Vendor Unique - Internal Logic Error") }, 793 { SST(0x85, 0x00, SS_RDEF, 794 "Vendor Unique - Internal Key Seed Error") }, 795 }; 796 797 static struct asc_table_entry seagate_entries[] = { 798 { SST(0x04, 0xF0, SS_RDEF, 799 "Logical Unit Not Ready, super certify in Progress") }, 800 { SST(0x08, 0x86, SS_RDEF, 801 "Write Fault Data Corruption") }, 802 { SST(0x09, 0x0D, SS_RDEF, 803 "Tracking Failure") }, 804 { SST(0x09, 0x0E, SS_RDEF, 805 "ETF Failure") }, 806 { SST(0x0B, 0x5D, SS_RDEF, 807 "Pre-SMART Warning") }, 808 { SST(0x0B, 0x85, SS_RDEF, 809 "5V Voltage Warning") }, 810 { SST(0x0B, 0x8C, SS_RDEF, 811 "12V Voltage Warning") }, 812 { SST(0x0C, 0xFF, SS_RDEF, 813 "Write Error - Too many error recovery revs") }, 814 { SST(0x11, 0xFF, SS_RDEF, 815 "Unrecovered Read Error - Too many error recovery revs") }, 816 { SST(0x19, 0x0E, SS_RDEF, 817 "Fewer than 1/2 defect list copies") }, 818 { SST(0x20, 0xF3, SS_RDEF, 819 "Illegal CDB linked to skip mask cmd") }, 820 { SST(0x24, 0xF0, SS_RDEF, 821 "Illegal byte in CDB, LBA not matching") }, 822 { SST(0x24, 0xF1, SS_RDEF, 823 "Illegal byte in CDB, LEN not matching") }, 824 { SST(0x24, 0xF2, SS_RDEF, 825 "Mask not matching transfer length") }, 826 { SST(0x24, 0xF3, SS_RDEF, 827 "Drive formatted without plist") }, 828 { SST(0x26, 0x95, SS_RDEF, 829 "Invalid Field Parameter - CAP File") }, 830 { SST(0x26, 0x96, SS_RDEF, 831 "Invalid Field Parameter - RAP File") }, 832 { SST(0x26, 0x97, SS_RDEF, 833 "Invalid Field Parameter - TMS Firmware Tag") }, 834 { SST(0x26, 0x98, SS_RDEF, 835 "Invalid Field Parameter - Check Sum") }, 836 { SST(0x26, 0x99, SS_RDEF, 837 "Invalid Field Parameter - Firmware Tag") }, 838 { SST(0x29, 0x08, SS_RDEF, 839 "Write Log Dump data") }, 840 { SST(0x29, 0x09, SS_RDEF, 841 "Write Log Dump data") }, 842 { SST(0x29, 0x0A, SS_RDEF, 843 "Reserved disk space") }, 844 { SST(0x29, 0x0B, SS_RDEF, 845 "SDBP") }, 846 { SST(0x29, 0x0C, SS_RDEF, 847 "SDBP") }, 848 { SST(0x31, 0x91, SS_RDEF, 849 "Format Corrupted World Wide Name (WWN) is Invalid") }, 850 { SST(0x32, 0x03, SS_RDEF, 851 "Defect List - Length exceeds Command Allocated Length") }, 852 { SST(0x33, 0x00, SS_RDEF, 853 "Flash not ready for access") }, 854 { SST(0x3F, 0x70, SS_RDEF, 855 "Invalid RAP block") }, 856 { SST(0x3F, 0x71, SS_RDEF, 857 "RAP/ETF mismatch") }, 858 { SST(0x3F, 0x90, SS_RDEF, 859 "Invalid CAP block") }, 860 { SST(0x3F, 0x91, SS_RDEF, 861 "World Wide Name (WWN) Mismatch") }, 862 { SST(0x40, 0x01, SS_RDEF, 863 "DRAM Parity Error") }, 864 { SST(0x40, 0x02, SS_RDEF, 865 "DRAM Parity Error") }, 866 { SST(0x42, 0x0A, SS_RDEF, 867 "Loopback Test") }, 868 { SST(0x42, 0x0B, SS_RDEF, 869 "Loopback Test") }, 870 { SST(0x44, 0xF2, SS_RDEF, 871 "Compare error during data integrity check") }, 872 { SST(0x44, 0xF6, SS_RDEF, 873 "Unrecoverable error during data integrity check") }, 874 { SST(0x47, 0x80, SS_RDEF, 875 "Fibre Channel Sequence Error") }, 876 { SST(0x4E, 0x01, SS_RDEF, 877 "Information Unit Too Short") }, 878 { SST(0x80, 0x00, SS_RDEF, 879 "General Firmware Error / Command Timeout") }, 880 { SST(0x80, 0x01, SS_RDEF, 881 "Command Timeout") }, 882 { SST(0x80, 0x02, SS_RDEF, 883 "Command Timeout") }, 884 { SST(0x80, 0x80, SS_RDEF, 885 "FC FIFO Error During Read Transfer") }, 886 { SST(0x80, 0x81, SS_RDEF, 887 "FC FIFO Error During Write Transfer") }, 888 { SST(0x80, 0x82, SS_RDEF, 889 "DISC FIFO Error During Read Transfer") }, 890 { SST(0x80, 0x83, SS_RDEF, 891 "DISC FIFO Error During Write Transfer") }, 892 { SST(0x80, 0x84, SS_RDEF, 893 "LBA Seeded LRC Error on Read") }, 894 { SST(0x80, 0x85, SS_RDEF, 895 "LBA Seeded LRC Error on Write") }, 896 { SST(0x80, 0x86, SS_RDEF, 897 "IOEDC Error on Read") }, 898 { SST(0x80, 0x87, SS_RDEF, 899 "IOEDC Error on Write") }, 900 { SST(0x80, 0x88, SS_RDEF, 901 "Host Parity Check Failed") }, 902 { SST(0x80, 0x89, SS_RDEF, 903 "IOEDC error on read detected by formatter") }, 904 { SST(0x80, 0x8A, SS_RDEF, 905 "Host Parity Errors / Host FIFO Initialization Failed") }, 906 { SST(0x80, 0x8B, SS_RDEF, 907 "Host Parity Errors") }, 908 { SST(0x80, 0x8C, SS_RDEF, 909 "Host Parity Errors") }, 910 { SST(0x80, 0x8D, SS_RDEF, 911 "Host Parity Errors") }, 912 { SST(0x81, 0x00, SS_RDEF, 913 "LA Check Failed") }, 914 { SST(0x82, 0x00, SS_RDEF, 915 "Internal client detected insufficient buffer") }, 916 { SST(0x84, 0x00, SS_RDEF, 917 "Scheduled Diagnostic And Repair") }, 918 }; 919 920 static struct scsi_sense_quirk_entry sense_quirk_table[] = { 921 { 922 /* 923 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b 924 * when they really should return 0x04 0x02. 925 */ 926 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, 927 /*num_sense_keys*/0, 928 nitems(quantum_fireball_entries), 929 /*sense key entries*/NULL, 930 quantum_fireball_entries 931 }, 932 { 933 /* 934 * This Sony MO drive likes to return 0x04, 0x00 when it 935 * isn't spun up. 936 */ 937 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, 938 /*num_sense_keys*/0, 939 nitems(sony_mo_entries), 940 /*sense key entries*/NULL, 941 sony_mo_entries 942 }, 943 { 944 /* 945 * HGST vendor-specific error codes 946 */ 947 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"}, 948 /*num_sense_keys*/0, 949 nitems(hgst_entries), 950 /*sense key entries*/NULL, 951 hgst_entries 952 }, 953 { 954 /* 955 * SEAGATE vendor-specific error codes 956 */ 957 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"}, 958 /*num_sense_keys*/0, 959 nitems(seagate_entries), 960 /*sense key entries*/NULL, 961 seagate_entries 962 } 963 }; 964 965 const u_int sense_quirk_table_size = nitems(sense_quirk_table); 966 967 static struct asc_table_entry asc_table[] = { 968 /* 969 * From: http://www.t10.org/lists/asc-num.txt 970 * Modifications by Jung-uk Kim (jkim@FreeBSD.org) 971 */ 972 /* 973 * File: ASC-NUM.TXT 974 * 975 * SCSI ASC/ASCQ Assignments 976 * Numeric Sorted Listing 977 * as of 8/12/15 978 * 979 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 980 * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- 981 * . L - PRINTER DEVICE (SSC) blank = reserved 982 * . P - PROCESSOR DEVICE (SPC) not blank = allowed 983 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) 984 * . . R - CD DEVICE (MMC) 985 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 986 * . . .M - MEDIA CHANGER DEVICE (SMC) 987 * . . . A - STORAGE ARRAY DEVICE (SCC) 988 * . . . E - ENCLOSURE SERVICES DEVICE (SES) 989 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 990 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 991 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 992 * . . . . .F - OBJECT-BASED STORAGE (OSD) 993 * DTLPWROMAEBKVF 994 * ASC ASCQ Action 995 * Description 996 */ 997 /* DTLPWROMAEBKVF */ 998 { SST(0x00, 0x00, SS_NOP, 999 "No additional sense information") }, 1000 /* T */ 1001 { SST(0x00, 0x01, SS_RDEF, 1002 "Filemark detected") }, 1003 /* T */ 1004 { SST(0x00, 0x02, SS_RDEF, 1005 "End-of-partition/medium detected") }, 1006 /* T */ 1007 { SST(0x00, 0x03, SS_RDEF, 1008 "Setmark detected") }, 1009 /* T */ 1010 { SST(0x00, 0x04, SS_RDEF, 1011 "Beginning-of-partition/medium detected") }, 1012 /* TL */ 1013 { SST(0x00, 0x05, SS_RDEF, 1014 "End-of-data detected") }, 1015 /* DTLPWROMAEBKVF */ 1016 { SST(0x00, 0x06, SS_RDEF, 1017 "I/O process terminated") }, 1018 /* T */ 1019 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ 1020 "Programmable early warning detected") }, 1021 /* R */ 1022 { SST(0x00, 0x11, SS_FATAL | EBUSY, 1023 "Audio play operation in progress") }, 1024 /* R */ 1025 { SST(0x00, 0x12, SS_NOP, 1026 "Audio play operation paused") }, 1027 /* R */ 1028 { SST(0x00, 0x13, SS_NOP, 1029 "Audio play operation successfully completed") }, 1030 /* R */ 1031 { SST(0x00, 0x14, SS_RDEF, 1032 "Audio play operation stopped due to error") }, 1033 /* R */ 1034 { SST(0x00, 0x15, SS_NOP, 1035 "No current audio status to return") }, 1036 /* DTLPWROMAEBKVF */ 1037 { SST(0x00, 0x16, SS_FATAL | EBUSY, 1038 "Operation in progress") }, 1039 /* DTL WROMAEBKVF */ 1040 { SST(0x00, 0x17, SS_RDEF, 1041 "Cleaning requested") }, 1042 /* T */ 1043 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ 1044 "Erase operation in progress") }, 1045 /* T */ 1046 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ 1047 "Locate operation in progress") }, 1048 /* T */ 1049 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ 1050 "Rewind operation in progress") }, 1051 /* T */ 1052 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ 1053 "Set capacity operation in progress") }, 1054 /* T */ 1055 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ 1056 "Verify operation in progress") }, 1057 /* DT B */ 1058 { SST(0x00, 0x1D, SS_NOP, 1059 "ATA pass through information available") }, 1060 /* DT R MAEBKV */ 1061 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ 1062 "Conflicting SA creation request") }, 1063 /* DT B */ 1064 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */ 1065 "Logical unit transitioning to another power condition") }, 1066 /* DT P B */ 1067 { SST(0x00, 0x20, SS_NOP, 1068 "Extended copy information available") }, 1069 /* D */ 1070 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */ 1071 "Atomic command aborted due to ACA") }, 1072 /* D W O BK */ 1073 { SST(0x01, 0x00, SS_RDEF, 1074 "No index/sector signal") }, 1075 /* D WRO BK */ 1076 { SST(0x02, 0x00, SS_RDEF, 1077 "No seek complete") }, 1078 /* DTL W O BK */ 1079 { SST(0x03, 0x00, SS_RDEF, 1080 "Peripheral device write fault") }, 1081 /* T */ 1082 { SST(0x03, 0x01, SS_RDEF, 1083 "No write current") }, 1084 /* T */ 1085 { SST(0x03, 0x02, SS_RDEF, 1086 "Excessive write errors") }, 1087 /* DTLPWROMAEBKVF */ 1088 { SST(0x04, 0x00, SS_RDEF, 1089 "Logical unit not ready, cause not reportable") }, 1090 /* DTLPWROMAEBKVF */ 1091 { SST(0x04, 0x01, SS_WAIT | EBUSY, 1092 "Logical unit is in process of becoming ready") }, 1093 /* DTLPWROMAEBKVF */ 1094 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1095 "Logical unit not ready, initializing command required") }, 1096 /* DTLPWROMAEBKVF */ 1097 { SST(0x04, 0x03, SS_FATAL | ENXIO, 1098 "Logical unit not ready, manual intervention required") }, 1099 /* DTL RO B */ 1100 { SST(0x04, 0x04, SS_FATAL | EBUSY, 1101 "Logical unit not ready, format in progress") }, 1102 /* DT W O A BK F */ 1103 { SST(0x04, 0x05, SS_FATAL | EBUSY, 1104 "Logical unit not ready, rebuild in progress") }, 1105 /* DT W O A BK */ 1106 { SST(0x04, 0x06, SS_FATAL | EBUSY, 1107 "Logical unit not ready, recalculation in progress") }, 1108 /* DTLPWROMAEBKVF */ 1109 { SST(0x04, 0x07, SS_FATAL | EBUSY, 1110 "Logical unit not ready, operation in progress") }, 1111 /* R */ 1112 { SST(0x04, 0x08, SS_FATAL | EBUSY, 1113 "Logical unit not ready, long write in progress") }, 1114 /* DTLPWROMAEBKVF */ 1115 { SST(0x04, 0x09, SS_RDEF, /* XXX TBD */ 1116 "Logical unit not ready, self-test in progress") }, 1117 /* DTLPWROMAEBKVF */ 1118 { SST(0x04, 0x0A, SS_WAIT | ENXIO, 1119 "Logical unit not accessible, asymmetric access state transition")}, 1120 /* DTLPWROMAEBKVF */ 1121 { SST(0x04, 0x0B, SS_FATAL | ENXIO, 1122 "Logical unit not accessible, target port in standby state") }, 1123 /* DTLPWROMAEBKVF */ 1124 { SST(0x04, 0x0C, SS_FATAL | ENXIO, 1125 "Logical unit not accessible, target port in unavailable state") }, 1126 /* F */ 1127 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ 1128 "Logical unit not ready, structure check required") }, 1129 /* DTL WR MAEBKVF */ 1130 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */ 1131 "Logical unit not ready, security session in progress") }, 1132 /* DT WROM B */ 1133 { SST(0x04, 0x10, SS_RDEF, /* XXX TBD */ 1134 "Logical unit not ready, auxiliary memory not accessible") }, 1135 /* DT WRO AEB VF */ 1136 { SST(0x04, 0x11, SS_WAIT | EBUSY, 1137 "Logical unit not ready, notify (enable spinup) required") }, 1138 /* M V */ 1139 { SST(0x04, 0x12, SS_RDEF, /* XXX TBD */ 1140 "Logical unit not ready, offline") }, 1141 /* DT R MAEBKV */ 1142 { SST(0x04, 0x13, SS_RDEF, /* XXX TBD */ 1143 "Logical unit not ready, SA creation in progress") }, 1144 /* D B */ 1145 { SST(0x04, 0x14, SS_RDEF, /* XXX TBD */ 1146 "Logical unit not ready, space allocation in progress") }, 1147 /* M */ 1148 { SST(0x04, 0x15, SS_RDEF, /* XXX TBD */ 1149 "Logical unit not ready, robotics disabled") }, 1150 /* M */ 1151 { SST(0x04, 0x16, SS_RDEF, /* XXX TBD */ 1152 "Logical unit not ready, configuration required") }, 1153 /* M */ 1154 { SST(0x04, 0x17, SS_RDEF, /* XXX TBD */ 1155 "Logical unit not ready, calibration required") }, 1156 /* M */ 1157 { SST(0x04, 0x18, SS_RDEF, /* XXX TBD */ 1158 "Logical unit not ready, a door is open") }, 1159 /* M */ 1160 { SST(0x04, 0x19, SS_RDEF, /* XXX TBD */ 1161 "Logical unit not ready, operating in sequential mode") }, 1162 /* DT B */ 1163 { SST(0x04, 0x1A, SS_RDEF, /* XXX TBD */ 1164 "Logical unit not ready, START/STOP UNIT command in progress") }, 1165 /* D B */ 1166 { SST(0x04, 0x1B, SS_WAIT | EBUSY, 1167 "Logical unit not ready, sanitize in progress") }, 1168 /* DT MAEB */ 1169 { SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1170 "Logical unit not ready, additional power use not yet granted") }, 1171 /* D */ 1172 { SST(0x04, 0x1D, SS_RDEF, /* XXX TBD */ 1173 "Logical unit not ready, configuration in progress") }, 1174 /* D */ 1175 { SST(0x04, 0x1E, SS_FATAL | ENXIO, 1176 "Logical unit not ready, microcode activation required") }, 1177 /* DTLPWROMAEBKVF */ 1178 { SST(0x04, 0x1F, SS_FATAL | ENXIO, 1179 "Logical unit not ready, microcode download required") }, 1180 /* DTLPWROMAEBKVF */ 1181 { SST(0x04, 0x20, SS_RDEF, /* XXX TBD */ 1182 "Logical unit not ready, logical unit reset required") }, 1183 /* DTLPWROMAEBKVF */ 1184 { SST(0x04, 0x21, SS_RDEF, /* XXX TBD */ 1185 "Logical unit not ready, hard reset required") }, 1186 /* DTLPWROMAEBKVF */ 1187 { SST(0x04, 0x22, SS_RDEF, /* XXX TBD */ 1188 "Logical unit not ready, power cycle required") }, 1189 /* DTL WROMAEBKVF */ 1190 { SST(0x05, 0x00, SS_RDEF, 1191 "Logical unit does not respond to selection") }, 1192 /* D WROM BK */ 1193 { SST(0x06, 0x00, SS_RDEF, 1194 "No reference position found") }, 1195 /* DTL WROM BK */ 1196 { SST(0x07, 0x00, SS_RDEF, 1197 "Multiple peripheral devices selected") }, 1198 /* DTL WROMAEBKVF */ 1199 { SST(0x08, 0x00, SS_RDEF, 1200 "Logical unit communication failure") }, 1201 /* DTL WROMAEBKVF */ 1202 { SST(0x08, 0x01, SS_RDEF, 1203 "Logical unit communication time-out") }, 1204 /* DTL WROMAEBKVF */ 1205 { SST(0x08, 0x02, SS_RDEF, 1206 "Logical unit communication parity error") }, 1207 /* DT ROM BK */ 1208 { SST(0x08, 0x03, SS_RDEF, 1209 "Logical unit communication CRC error (Ultra-DMA/32)") }, 1210 /* DTLPWRO K */ 1211 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ 1212 "Unreachable copy target") }, 1213 /* DT WRO B */ 1214 { SST(0x09, 0x00, SS_RDEF, 1215 "Track following error") }, 1216 /* WRO K */ 1217 { SST(0x09, 0x01, SS_RDEF, 1218 "Tracking servo failure") }, 1219 /* WRO K */ 1220 { SST(0x09, 0x02, SS_RDEF, 1221 "Focus servo failure") }, 1222 /* WRO */ 1223 { SST(0x09, 0x03, SS_RDEF, 1224 "Spindle servo failure") }, 1225 /* DT WRO B */ 1226 { SST(0x09, 0x04, SS_RDEF, 1227 "Head select fault") }, 1228 /* DT RO B */ 1229 { SST(0x09, 0x05, SS_RDEF, 1230 "Vibration induced tracking error") }, 1231 /* DTLPWROMAEBKVF */ 1232 { SST(0x0A, 0x00, SS_FATAL | ENOSPC, 1233 "Error log overflow") }, 1234 /* DTLPWROMAEBKVF */ 1235 { SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1236 "Warning") }, 1237 /* DTLPWROMAEBKVF */ 1238 { SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1239 "Warning - specified temperature exceeded") }, 1240 /* DTLPWROMAEBKVF */ 1241 { SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1242 "Warning - enclosure degraded") }, 1243 /* DTLPWROMAEBKVF */ 1244 { SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1245 "Warning - background self-test failed") }, 1246 /* DTLPWRO AEBKVF */ 1247 { SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1248 "Warning - background pre-scan detected medium error") }, 1249 /* DTLPWRO AEBKVF */ 1250 { SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1251 "Warning - background medium scan detected medium error") }, 1252 /* DTLPWROMAEBKVF */ 1253 { SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1254 "Warning - non-volatile cache now volatile") }, 1255 /* DTLPWROMAEBKVF */ 1256 { SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1257 "Warning - degraded power to non-volatile cache") }, 1258 /* DTLPWROMAEBKVF */ 1259 { SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1260 "Warning - power loss expected") }, 1261 /* D */ 1262 { SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1263 "Warning - device statistics notification available") }, 1264 /* DTLPWROMAEBKVF */ 1265 { SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE, 1266 "Warning - High critical temperature limit exceeded") }, 1267 /* DTLPWROMAEBKVF */ 1268 { SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE, 1269 "Warning - Low critical temperature limit exceeded") }, 1270 /* DTLPWROMAEBKVF */ 1271 { SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE, 1272 "Warning - High operating temperature limit exceeded") }, 1273 /* DTLPWROMAEBKVF */ 1274 { SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE, 1275 "Warning - Low operating temperature limit exceeded") }, 1276 /* DTLPWROMAEBKVF */ 1277 { SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE, 1278 "Warning - High citical humidity limit exceeded") }, 1279 /* DTLPWROMAEBKVF */ 1280 { SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE, 1281 "Warning - Low citical humidity limit exceeded") }, 1282 /* DTLPWROMAEBKVF */ 1283 { SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE, 1284 "Warning - High operating humidity limit exceeded") }, 1285 /* DTLPWROMAEBKVF */ 1286 { SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE, 1287 "Warning - Low operating humidity limit exceeded") }, 1288 /* T R */ 1289 { SST(0x0C, 0x00, SS_RDEF, 1290 "Write error") }, 1291 /* K */ 1292 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1293 "Write error - recovered with auto reallocation") }, 1294 /* D W O BK */ 1295 { SST(0x0C, 0x02, SS_RDEF, 1296 "Write error - auto reallocation failed") }, 1297 /* D W O BK */ 1298 { SST(0x0C, 0x03, SS_RDEF, 1299 "Write error - recommend reassignment") }, 1300 /* DT W O B */ 1301 { SST(0x0C, 0x04, SS_RDEF, 1302 "Compression check miscompare error") }, 1303 /* DT W O B */ 1304 { SST(0x0C, 0x05, SS_RDEF, 1305 "Data expansion occurred during compression") }, 1306 /* DT W O B */ 1307 { SST(0x0C, 0x06, SS_RDEF, 1308 "Block not compressible") }, 1309 /* R */ 1310 { SST(0x0C, 0x07, SS_RDEF, 1311 "Write error - recovery needed") }, 1312 /* R */ 1313 { SST(0x0C, 0x08, SS_RDEF, 1314 "Write error - recovery failed") }, 1315 /* R */ 1316 { SST(0x0C, 0x09, SS_RDEF, 1317 "Write error - loss of streaming") }, 1318 /* R */ 1319 { SST(0x0C, 0x0A, SS_RDEF, 1320 "Write error - padding blocks added") }, 1321 /* DT WROM B */ 1322 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ 1323 "Auxiliary memory write error") }, 1324 /* DTLPWRO AEBKVF */ 1325 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ 1326 "Write error - unexpected unsolicited data") }, 1327 /* DTLPWRO AEBKVF */ 1328 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ 1329 "Write error - not enough unsolicited data") }, 1330 /* DT W O BK */ 1331 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */ 1332 "Multiple write errors") }, 1333 /* R */ 1334 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ 1335 "Defects in error window") }, 1336 /* D */ 1337 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */ 1338 "Incomplete multiple atomic write operations") }, 1339 /* D */ 1340 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */ 1341 "Write error - recovery scan needed") }, 1342 /* D */ 1343 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */ 1344 "Write error - insufficient zone resources") }, 1345 /* DTLPWRO A K */ 1346 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ 1347 "Error detected by third party temporary initiator") }, 1348 /* DTLPWRO A K */ 1349 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ 1350 "Third party device failure") }, 1351 /* DTLPWRO A K */ 1352 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ 1353 "Copy target device not reachable") }, 1354 /* DTLPWRO A K */ 1355 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ 1356 "Incorrect copy target device type") }, 1357 /* DTLPWRO A K */ 1358 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ 1359 "Copy target device data underrun") }, 1360 /* DTLPWRO A K */ 1361 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ 1362 "Copy target device data overrun") }, 1363 /* DT PWROMAEBK F */ 1364 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ 1365 "Invalid information unit") }, 1366 /* DT PWROMAEBK F */ 1367 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ 1368 "Information unit too short") }, 1369 /* DT PWROMAEBK F */ 1370 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ 1371 "Information unit too long") }, 1372 /* DT P R MAEBK F */ 1373 { SST(0x0E, 0x03, SS_FATAL | EINVAL, 1374 "Invalid field in command information unit") }, 1375 /* D W O BK */ 1376 { SST(0x10, 0x00, SS_RDEF, 1377 "ID CRC or ECC error") }, 1378 /* DT W O */ 1379 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ 1380 "Logical block guard check failed") }, 1381 /* DT W O */ 1382 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ 1383 "Logical block application tag check failed") }, 1384 /* DT W O */ 1385 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ 1386 "Logical block reference tag check failed") }, 1387 /* T */ 1388 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */ 1389 "Logical block protection error on recovered buffer data") }, 1390 /* T */ 1391 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */ 1392 "Logical block protection method error") }, 1393 /* DT WRO BK */ 1394 { SST(0x11, 0x00, SS_FATAL|EIO, 1395 "Unrecovered read error") }, 1396 /* DT WRO BK */ 1397 { SST(0x11, 0x01, SS_FATAL|EIO, 1398 "Read retries exhausted") }, 1399 /* DT WRO BK */ 1400 { SST(0x11, 0x02, SS_FATAL|EIO, 1401 "Error too long to correct") }, 1402 /* DT W O BK */ 1403 { SST(0x11, 0x03, SS_FATAL|EIO, 1404 "Multiple read errors") }, 1405 /* D W O BK */ 1406 { SST(0x11, 0x04, SS_FATAL|EIO, 1407 "Unrecovered read error - auto reallocate failed") }, 1408 /* WRO B */ 1409 { SST(0x11, 0x05, SS_FATAL|EIO, 1410 "L-EC uncorrectable error") }, 1411 /* WRO B */ 1412 { SST(0x11, 0x06, SS_FATAL|EIO, 1413 "CIRC unrecovered error") }, 1414 /* W O B */ 1415 { SST(0x11, 0x07, SS_RDEF, 1416 "Data re-synchronization error") }, 1417 /* T */ 1418 { SST(0x11, 0x08, SS_RDEF, 1419 "Incomplete block read") }, 1420 /* T */ 1421 { SST(0x11, 0x09, SS_RDEF, 1422 "No gap found") }, 1423 /* DT O BK */ 1424 { SST(0x11, 0x0A, SS_RDEF, 1425 "Miscorrected error") }, 1426 /* D W O BK */ 1427 { SST(0x11, 0x0B, SS_FATAL|EIO, 1428 "Unrecovered read error - recommend reassignment") }, 1429 /* D W O BK */ 1430 { SST(0x11, 0x0C, SS_FATAL|EIO, 1431 "Unrecovered read error - recommend rewrite the data") }, 1432 /* DT WRO B */ 1433 { SST(0x11, 0x0D, SS_RDEF, 1434 "De-compression CRC error") }, 1435 /* DT WRO B */ 1436 { SST(0x11, 0x0E, SS_RDEF, 1437 "Cannot decompress using declared algorithm") }, 1438 /* R */ 1439 { SST(0x11, 0x0F, SS_RDEF, 1440 "Error reading UPC/EAN number") }, 1441 /* R */ 1442 { SST(0x11, 0x10, SS_RDEF, 1443 "Error reading ISRC number") }, 1444 /* R */ 1445 { SST(0x11, 0x11, SS_RDEF, 1446 "Read error - loss of streaming") }, 1447 /* DT WROM B */ 1448 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ 1449 "Auxiliary memory read error") }, 1450 /* DTLPWRO AEBKVF */ 1451 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ 1452 "Read error - failed retransmission request") }, 1453 /* D */ 1454 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ 1455 "Read error - LBA marked bad by application client") }, 1456 /* D */ 1457 { SST(0x11, 0x15, SS_FATAL | EIO, 1458 "Write after sanitize required") }, 1459 /* D W O BK */ 1460 { SST(0x12, 0x00, SS_RDEF, 1461 "Address mark not found for ID field") }, 1462 /* D W O BK */ 1463 { SST(0x13, 0x00, SS_RDEF, 1464 "Address mark not found for data field") }, 1465 /* DTL WRO BK */ 1466 { SST(0x14, 0x00, SS_RDEF, 1467 "Recorded entity not found") }, 1468 /* DT WRO BK */ 1469 { SST(0x14, 0x01, SS_RDEF, 1470 "Record not found") }, 1471 /* T */ 1472 { SST(0x14, 0x02, SS_RDEF, 1473 "Filemark or setmark not found") }, 1474 /* T */ 1475 { SST(0x14, 0x03, SS_RDEF, 1476 "End-of-data not found") }, 1477 /* T */ 1478 { SST(0x14, 0x04, SS_RDEF, 1479 "Block sequence error") }, 1480 /* DT W O BK */ 1481 { SST(0x14, 0x05, SS_RDEF, 1482 "Record not found - recommend reassignment") }, 1483 /* DT W O BK */ 1484 { SST(0x14, 0x06, SS_RDEF, 1485 "Record not found - data auto-reallocated") }, 1486 /* T */ 1487 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ 1488 "Locate operation failure") }, 1489 /* DTL WROM BK */ 1490 { SST(0x15, 0x00, SS_RDEF, 1491 "Random positioning error") }, 1492 /* DTL WROM BK */ 1493 { SST(0x15, 0x01, SS_RDEF, 1494 "Mechanical positioning error") }, 1495 /* DT WRO BK */ 1496 { SST(0x15, 0x02, SS_RDEF, 1497 "Positioning error detected by read of medium") }, 1498 /* D W O BK */ 1499 { SST(0x16, 0x00, SS_RDEF, 1500 "Data synchronization mark error") }, 1501 /* D W O BK */ 1502 { SST(0x16, 0x01, SS_RDEF, 1503 "Data sync error - data rewritten") }, 1504 /* D W O BK */ 1505 { SST(0x16, 0x02, SS_RDEF, 1506 "Data sync error - recommend rewrite") }, 1507 /* D W O BK */ 1508 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1509 "Data sync error - data auto-reallocated") }, 1510 /* D W O BK */ 1511 { SST(0x16, 0x04, SS_RDEF, 1512 "Data sync error - recommend reassignment") }, 1513 /* DT WRO BK */ 1514 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1515 "Recovered data with no error correction applied") }, 1516 /* DT WRO BK */ 1517 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1518 "Recovered data with retries") }, 1519 /* DT WRO BK */ 1520 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1521 "Recovered data with positive head offset") }, 1522 /* DT WRO BK */ 1523 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1524 "Recovered data with negative head offset") }, 1525 /* WRO B */ 1526 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1527 "Recovered data with retries and/or CIRC applied") }, 1528 /* D WRO BK */ 1529 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1530 "Recovered data using previous sector ID") }, 1531 /* D W O BK */ 1532 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1533 "Recovered data without ECC - data auto-reallocated") }, 1534 /* D WRO BK */ 1535 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1536 "Recovered data without ECC - recommend reassignment") }, 1537 /* D WRO BK */ 1538 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1539 "Recovered data without ECC - recommend rewrite") }, 1540 /* D WRO BK */ 1541 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1542 "Recovered data without ECC - data rewritten") }, 1543 /* DT WRO BK */ 1544 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1545 "Recovered data with error correction applied") }, 1546 /* D WRO BK */ 1547 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1548 "Recovered data with error corr. & retries applied") }, 1549 /* D WRO BK */ 1550 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1551 "Recovered data - data auto-reallocated") }, 1552 /* R */ 1553 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1554 "Recovered data with CIRC") }, 1555 /* R */ 1556 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1557 "Recovered data with L-EC") }, 1558 /* D WRO BK */ 1559 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1560 "Recovered data - recommend reassignment") }, 1561 /* D WRO BK */ 1562 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1563 "Recovered data - recommend rewrite") }, 1564 /* D W O BK */ 1565 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1566 "Recovered data with ECC - data rewritten") }, 1567 /* R */ 1568 { SST(0x18, 0x08, SS_RDEF, /* XXX TBD */ 1569 "Recovered data with linking") }, 1570 /* D O K */ 1571 { SST(0x19, 0x00, SS_RDEF, 1572 "Defect list error") }, 1573 /* D O K */ 1574 { SST(0x19, 0x01, SS_RDEF, 1575 "Defect list not available") }, 1576 /* D O K */ 1577 { SST(0x19, 0x02, SS_RDEF, 1578 "Defect list error in primary list") }, 1579 /* D O K */ 1580 { SST(0x19, 0x03, SS_RDEF, 1581 "Defect list error in grown list") }, 1582 /* DTLPWROMAEBKVF */ 1583 { SST(0x1A, 0x00, SS_RDEF, 1584 "Parameter list length error") }, 1585 /* DTLPWROMAEBKVF */ 1586 { SST(0x1B, 0x00, SS_RDEF, 1587 "Synchronous data transfer error") }, 1588 /* D O BK */ 1589 { SST(0x1C, 0x00, SS_RDEF, 1590 "Defect list not found") }, 1591 /* D O BK */ 1592 { SST(0x1C, 0x01, SS_RDEF, 1593 "Primary defect list not found") }, 1594 /* D O BK */ 1595 { SST(0x1C, 0x02, SS_RDEF, 1596 "Grown defect list not found") }, 1597 /* DT WRO BK */ 1598 { SST(0x1D, 0x00, SS_FATAL, 1599 "Miscompare during verify operation") }, 1600 /* D B */ 1601 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */ 1602 "Miscomparable verify of unmapped LBA") }, 1603 /* D W O BK */ 1604 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1605 "Recovered ID with ECC correction") }, 1606 /* D O K */ 1607 { SST(0x1F, 0x00, SS_RDEF, 1608 "Partial defect list transfer") }, 1609 /* DTLPWROMAEBKVF */ 1610 { SST(0x20, 0x00, SS_FATAL | EINVAL, 1611 "Invalid command operation code") }, 1612 /* DT PWROMAEBK */ 1613 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ 1614 "Access denied - initiator pending-enrolled") }, 1615 /* DT PWROMAEBK */ 1616 { SST(0x20, 0x02, SS_FATAL | EPERM, 1617 "Access denied - no access rights") }, 1618 /* DT PWROMAEBK */ 1619 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ 1620 "Access denied - invalid mgmt ID key") }, 1621 /* T */ 1622 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ 1623 "Illegal command while in write capable state") }, 1624 /* T */ 1625 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ 1626 "Obsolete") }, 1627 /* T */ 1628 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ 1629 "Illegal command while in explicit address mode") }, 1630 /* T */ 1631 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ 1632 "Illegal command while in implicit address mode") }, 1633 /* DT PWROMAEBK */ 1634 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ 1635 "Access denied - enrollment conflict") }, 1636 /* DT PWROMAEBK */ 1637 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ 1638 "Access denied - invalid LU identifier") }, 1639 /* DT PWROMAEBK */ 1640 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ 1641 "Access denied - invalid proxy token") }, 1642 /* DT PWROMAEBK */ 1643 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ 1644 "Access denied - ACL LUN conflict") }, 1645 /* T */ 1646 { SST(0x20, 0x0C, SS_FATAL | EINVAL, 1647 "Illegal command when not in append-only mode") }, 1648 /* DT WRO BK */ 1649 { SST(0x21, 0x00, SS_FATAL | EINVAL, 1650 "Logical block address out of range") }, 1651 /* DT WROM BK */ 1652 { SST(0x21, 0x01, SS_FATAL | EINVAL, 1653 "Invalid element address") }, 1654 /* R */ 1655 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ 1656 "Invalid address for write") }, 1657 /* R */ 1658 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ 1659 "Invalid write crossing layer jump") }, 1660 /* D */ 1661 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */ 1662 "Unaligned write command") }, 1663 /* D */ 1664 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */ 1665 "Write boundary violation") }, 1666 /* D */ 1667 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */ 1668 "Attempt to read invalid data") }, 1669 /* D */ 1670 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */ 1671 "Read boundary violation") }, 1672 /* D */ 1673 { SST(0x22, 0x00, SS_FATAL | EINVAL, 1674 "Illegal function (use 20 00, 24 00, or 26 00)") }, 1675 /* DT P B */ 1676 { SST(0x23, 0x00, SS_FATAL | EINVAL, 1677 "Invalid token operation, cause not reportable") }, 1678 /* DT P B */ 1679 { SST(0x23, 0x01, SS_FATAL | EINVAL, 1680 "Invalid token operation, unsupported token type") }, 1681 /* DT P B */ 1682 { SST(0x23, 0x02, SS_FATAL | EINVAL, 1683 "Invalid token operation, remote token usage not supported") }, 1684 /* DT P B */ 1685 { SST(0x23, 0x03, SS_FATAL | EINVAL, 1686 "Invalid token operation, remote ROD token creation not supported") }, 1687 /* DT P B */ 1688 { SST(0x23, 0x04, SS_FATAL | EINVAL, 1689 "Invalid token operation, token unknown") }, 1690 /* DT P B */ 1691 { SST(0x23, 0x05, SS_FATAL | EINVAL, 1692 "Invalid token operation, token corrupt") }, 1693 /* DT P B */ 1694 { SST(0x23, 0x06, SS_FATAL | EINVAL, 1695 "Invalid token operation, token revoked") }, 1696 /* DT P B */ 1697 { SST(0x23, 0x07, SS_FATAL | EINVAL, 1698 "Invalid token operation, token expired") }, 1699 /* DT P B */ 1700 { SST(0x23, 0x08, SS_FATAL | EINVAL, 1701 "Invalid token operation, token cancelled") }, 1702 /* DT P B */ 1703 { SST(0x23, 0x09, SS_FATAL | EINVAL, 1704 "Invalid token operation, token deleted") }, 1705 /* DT P B */ 1706 { SST(0x23, 0x0A, SS_FATAL | EINVAL, 1707 "Invalid token operation, invalid token length") }, 1708 /* DTLPWROMAEBKVF */ 1709 { SST(0x24, 0x00, SS_FATAL | EINVAL, 1710 "Invalid field in CDB") }, 1711 /* DTLPWRO AEBKVF */ 1712 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ 1713 "CDB decryption error") }, 1714 /* T */ 1715 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ 1716 "Obsolete") }, 1717 /* T */ 1718 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ 1719 "Obsolete") }, 1720 /* F */ 1721 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ 1722 "Security audit value frozen") }, 1723 /* F */ 1724 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ 1725 "Security working key frozen") }, 1726 /* F */ 1727 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ 1728 "NONCE not unique") }, 1729 /* F */ 1730 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ 1731 "NONCE timestamp out of range") }, 1732 /* DT R MAEBKV */ 1733 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ 1734 "Invalid XCDB") }, 1735 /* DTLPWROMAEBKVF */ 1736 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST, 1737 "Logical unit not supported") }, 1738 /* DTLPWROMAEBKVF */ 1739 { SST(0x26, 0x00, SS_FATAL | EINVAL, 1740 "Invalid field in parameter list") }, 1741 /* DTLPWROMAEBKVF */ 1742 { SST(0x26, 0x01, SS_FATAL | EINVAL, 1743 "Parameter not supported") }, 1744 /* DTLPWROMAEBKVF */ 1745 { SST(0x26, 0x02, SS_FATAL | EINVAL, 1746 "Parameter value invalid") }, 1747 /* DTLPWROMAE K */ 1748 { SST(0x26, 0x03, SS_FATAL | EINVAL, 1749 "Threshold parameters not supported") }, 1750 /* DTLPWROMAEBKVF */ 1751 { SST(0x26, 0x04, SS_FATAL | EINVAL, 1752 "Invalid release of persistent reservation") }, 1753 /* DTLPWRO A BK */ 1754 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ 1755 "Data decryption error") }, 1756 /* DTLPWRO K */ 1757 { SST(0x26, 0x06, SS_FATAL | EINVAL, 1758 "Too many target descriptors") }, 1759 /* DTLPWRO K */ 1760 { SST(0x26, 0x07, SS_FATAL | EINVAL, 1761 "Unsupported target descriptor type code") }, 1762 /* DTLPWRO K */ 1763 { SST(0x26, 0x08, SS_FATAL | EINVAL, 1764 "Too many segment descriptors") }, 1765 /* DTLPWRO K */ 1766 { SST(0x26, 0x09, SS_FATAL | EINVAL, 1767 "Unsupported segment descriptor type code") }, 1768 /* DTLPWRO K */ 1769 { SST(0x26, 0x0A, SS_FATAL | EINVAL, 1770 "Unexpected inexact segment") }, 1771 /* DTLPWRO K */ 1772 { SST(0x26, 0x0B, SS_FATAL | EINVAL, 1773 "Inline data length exceeded") }, 1774 /* DTLPWRO K */ 1775 { SST(0x26, 0x0C, SS_FATAL | EINVAL, 1776 "Invalid operation for copy source or destination") }, 1777 /* DTLPWRO K */ 1778 { SST(0x26, 0x0D, SS_FATAL | EINVAL, 1779 "Copy segment granularity violation") }, 1780 /* DT PWROMAEBK */ 1781 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ 1782 "Invalid parameter while port is enabled") }, 1783 /* F */ 1784 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ 1785 "Invalid data-out buffer integrity check value") }, 1786 /* T */ 1787 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ 1788 "Data decryption key fail limit reached") }, 1789 /* T */ 1790 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ 1791 "Incomplete key-associated data set") }, 1792 /* T */ 1793 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ 1794 "Vendor specific key reference not found") }, 1795 /* D */ 1796 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */ 1797 "Application tag mode page is invalid") }, 1798 /* DT WRO BK */ 1799 { SST(0x27, 0x00, SS_FATAL | EACCES, 1800 "Write protected") }, 1801 /* DT WRO BK */ 1802 { SST(0x27, 0x01, SS_FATAL | EACCES, 1803 "Hardware write protected") }, 1804 /* DT WRO BK */ 1805 { SST(0x27, 0x02, SS_FATAL | EACCES, 1806 "Logical unit software write protected") }, 1807 /* T R */ 1808 { SST(0x27, 0x03, SS_FATAL | EACCES, 1809 "Associated write protect") }, 1810 /* T R */ 1811 { SST(0x27, 0x04, SS_FATAL | EACCES, 1812 "Persistent write protect") }, 1813 /* T R */ 1814 { SST(0x27, 0x05, SS_FATAL | EACCES, 1815 "Permanent write protect") }, 1816 /* R F */ 1817 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ 1818 "Conditional write protect") }, 1819 /* D B */ 1820 { SST(0x27, 0x07, SS_FATAL | ENOSPC, 1821 "Space allocation failed write protect") }, 1822 /* D */ 1823 { SST(0x27, 0x08, SS_FATAL | EACCES, 1824 "Zone is read only") }, 1825 /* DTLPWROMAEBKVF */ 1826 { SST(0x28, 0x00, SS_FATAL | ENXIO, 1827 "Not ready to ready change, medium may have changed") }, 1828 /* DT WROM B */ 1829 { SST(0x28, 0x01, SS_FATAL | ENXIO, 1830 "Import or export element accessed") }, 1831 /* R */ 1832 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ 1833 "Format-layer may have changed") }, 1834 /* M */ 1835 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ 1836 "Import/export element accessed, medium changed") }, 1837 /* 1838 * XXX JGibbs - All of these should use the same errno, but I don't 1839 * think ENXIO is the correct choice. Should we borrow from 1840 * the networking errnos? ECONNRESET anyone? 1841 */ 1842 /* DTLPWROMAEBKVF */ 1843 { SST(0x29, 0x00, SS_FATAL | ENXIO, 1844 "Power on, reset, or bus device reset occurred") }, 1845 /* DTLPWROMAEBKVF */ 1846 { SST(0x29, 0x01, SS_RDEF, 1847 "Power on occurred") }, 1848 /* DTLPWROMAEBKVF */ 1849 { SST(0x29, 0x02, SS_RDEF, 1850 "SCSI bus reset occurred") }, 1851 /* DTLPWROMAEBKVF */ 1852 { SST(0x29, 0x03, SS_RDEF, 1853 "Bus device reset function occurred") }, 1854 /* DTLPWROMAEBKVF */ 1855 { SST(0x29, 0x04, SS_RDEF, 1856 "Device internal reset") }, 1857 /* DTLPWROMAEBKVF */ 1858 { SST(0x29, 0x05, SS_RDEF, 1859 "Transceiver mode changed to single-ended") }, 1860 /* DTLPWROMAEBKVF */ 1861 { SST(0x29, 0x06, SS_RDEF, 1862 "Transceiver mode changed to LVD") }, 1863 /* DTLPWROMAEBKVF */ 1864 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ 1865 "I_T nexus loss occurred") }, 1866 /* DTL WROMAEBKVF */ 1867 { SST(0x2A, 0x00, SS_RDEF, 1868 "Parameters changed") }, 1869 /* DTL WROMAEBKVF */ 1870 { SST(0x2A, 0x01, SS_RDEF, 1871 "Mode parameters changed") }, 1872 /* DTL WROMAE K */ 1873 { SST(0x2A, 0x02, SS_RDEF, 1874 "Log parameters changed") }, 1875 /* DTLPWROMAE K */ 1876 { SST(0x2A, 0x03, SS_RDEF, 1877 "Reservations preempted") }, 1878 /* DTLPWROMAE */ 1879 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ 1880 "Reservations released") }, 1881 /* DTLPWROMAE */ 1882 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ 1883 "Registrations preempted") }, 1884 /* DTLPWROMAEBKVF */ 1885 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ 1886 "Asymmetric access state changed") }, 1887 /* DTLPWROMAEBKVF */ 1888 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ 1889 "Implicit asymmetric access state transition failed") }, 1890 /* DT WROMAEBKVF */ 1891 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ 1892 "Priority changed") }, 1893 /* D */ 1894 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ 1895 "Capacity data has changed") }, 1896 /* DT */ 1897 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ 1898 "Error history I_T nexus cleared") }, 1899 /* DT */ 1900 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ 1901 "Error history snapshot released") }, 1902 /* F */ 1903 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ 1904 "Error recovery attributes have changed") }, 1905 /* T */ 1906 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ 1907 "Data encryption capabilities changed") }, 1908 /* DT M E V */ 1909 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ 1910 "Timestamp changed") }, 1911 /* T */ 1912 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ 1913 "Data encryption parameters changed by another I_T nexus") }, 1914 /* T */ 1915 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ 1916 "Data encryption parameters changed by vendor specific event") }, 1917 /* T */ 1918 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ 1919 "Data encryption key instance counter has changed") }, 1920 /* DT R MAEBKV */ 1921 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ 1922 "SA creation capabilities data has changed") }, 1923 /* T M V */ 1924 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */ 1925 "Medium removal prevention preempted") }, 1926 /* DTLPWRO K */ 1927 { SST(0x2B, 0x00, SS_RDEF, 1928 "Copy cannot execute since host cannot disconnect") }, 1929 /* DTLPWROMAEBKVF */ 1930 { SST(0x2C, 0x00, SS_RDEF, 1931 "Command sequence error") }, 1932 /* */ 1933 { SST(0x2C, 0x01, SS_RDEF, 1934 "Too many windows specified") }, 1935 /* */ 1936 { SST(0x2C, 0x02, SS_RDEF, 1937 "Invalid combination of windows specified") }, 1938 /* R */ 1939 { SST(0x2C, 0x03, SS_RDEF, 1940 "Current program area is not empty") }, 1941 /* R */ 1942 { SST(0x2C, 0x04, SS_RDEF, 1943 "Current program area is empty") }, 1944 /* B */ 1945 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ 1946 "Illegal power condition request") }, 1947 /* R */ 1948 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ 1949 "Persistent prevent conflict") }, 1950 /* DTLPWROMAEBKVF */ 1951 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ 1952 "Previous busy status") }, 1953 /* DTLPWROMAEBKVF */ 1954 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ 1955 "Previous task set full status") }, 1956 /* DTLPWROM EBKVF */ 1957 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ 1958 "Previous reservation conflict status") }, 1959 /* F */ 1960 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ 1961 "Partition or collection contains user objects") }, 1962 /* T */ 1963 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ 1964 "Not reserved") }, 1965 /* D */ 1966 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */ 1967 "ORWRITE generation does not match") }, 1968 /* D */ 1969 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */ 1970 "Reset write pointer not allowed") }, 1971 /* D */ 1972 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */ 1973 "Zone is offline") }, 1974 /* D */ 1975 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */ 1976 "Stream not open") }, 1977 /* D */ 1978 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */ 1979 "Unwritten data in zone") }, 1980 /* T */ 1981 { SST(0x2D, 0x00, SS_RDEF, 1982 "Overwrite error on update in place") }, 1983 /* R */ 1984 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ 1985 "Insufficient time for operation") }, 1986 /* D */ 1987 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */ 1988 "Command timeout before processing") }, 1989 /* D */ 1990 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */ 1991 "Command timeout during processing") }, 1992 /* D */ 1993 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */ 1994 "Command timeout during processing due to error recovery") }, 1995 /* DTLPWROMAEBKVF */ 1996 { SST(0x2F, 0x00, SS_RDEF, 1997 "Commands cleared by another initiator") }, 1998 /* D */ 1999 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ 2000 "Commands cleared by power loss notification") }, 2001 /* DTLPWROMAEBKVF */ 2002 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ 2003 "Commands cleared by device server") }, 2004 /* DTLPWROMAEBKVF */ 2005 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */ 2006 "Some commands cleared by queuing layer event") }, 2007 /* DT WROM BK */ 2008 { SST(0x30, 0x00, SS_RDEF, 2009 "Incompatible medium installed") }, 2010 /* DT WRO BK */ 2011 { SST(0x30, 0x01, SS_RDEF, 2012 "Cannot read medium - unknown format") }, 2013 /* DT WRO BK */ 2014 { SST(0x30, 0x02, SS_RDEF, 2015 "Cannot read medium - incompatible format") }, 2016 /* DT R K */ 2017 { SST(0x30, 0x03, SS_RDEF, 2018 "Cleaning cartridge installed") }, 2019 /* DT WRO BK */ 2020 { SST(0x30, 0x04, SS_RDEF, 2021 "Cannot write medium - unknown format") }, 2022 /* DT WRO BK */ 2023 { SST(0x30, 0x05, SS_RDEF, 2024 "Cannot write medium - incompatible format") }, 2025 /* DT WRO B */ 2026 { SST(0x30, 0x06, SS_RDEF, 2027 "Cannot format medium - incompatible medium") }, 2028 /* DTL WROMAEBKVF */ 2029 { SST(0x30, 0x07, SS_RDEF, 2030 "Cleaning failure") }, 2031 /* R */ 2032 { SST(0x30, 0x08, SS_RDEF, 2033 "Cannot write - application code mismatch") }, 2034 /* R */ 2035 { SST(0x30, 0x09, SS_RDEF, 2036 "Current session not fixated for append") }, 2037 /* DT WRO AEBK */ 2038 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ 2039 "Cleaning request rejected") }, 2040 /* T */ 2041 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ 2042 "WORM medium - overwrite attempted") }, 2043 /* T */ 2044 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ 2045 "WORM medium - integrity check") }, 2046 /* R */ 2047 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ 2048 "Medium not formatted") }, 2049 /* M */ 2050 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ 2051 "Incompatible volume type") }, 2052 /* M */ 2053 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ 2054 "Incompatible volume qualifier") }, 2055 /* M */ 2056 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */ 2057 "Cleaning volume expired") }, 2058 /* DT WRO BK */ 2059 { SST(0x31, 0x00, SS_FATAL | ENXIO, 2060 "Medium format corrupted") }, 2061 /* D L RO B */ 2062 { SST(0x31, 0x01, SS_RDEF, 2063 "Format command failed") }, 2064 /* R */ 2065 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ 2066 "Zoned formatting failed due to spare linking") }, 2067 /* D B */ 2068 { SST(0x31, 0x03, SS_FATAL | EIO, 2069 "SANITIZE command failed") }, 2070 /* D W O BK */ 2071 { SST(0x32, 0x00, SS_RDEF, 2072 "No defect spare location available") }, 2073 /* D W O BK */ 2074 { SST(0x32, 0x01, SS_RDEF, 2075 "Defect list update failure") }, 2076 /* T */ 2077 { SST(0x33, 0x00, SS_RDEF, 2078 "Tape length error") }, 2079 /* DTLPWROMAEBKVF */ 2080 { SST(0x34, 0x00, SS_RDEF, 2081 "Enclosure failure") }, 2082 /* DTLPWROMAEBKVF */ 2083 { SST(0x35, 0x00, SS_RDEF, 2084 "Enclosure services failure") }, 2085 /* DTLPWROMAEBKVF */ 2086 { SST(0x35, 0x01, SS_RDEF, 2087 "Unsupported enclosure function") }, 2088 /* DTLPWROMAEBKVF */ 2089 { SST(0x35, 0x02, SS_RDEF, 2090 "Enclosure services unavailable") }, 2091 /* DTLPWROMAEBKVF */ 2092 { SST(0x35, 0x03, SS_RDEF, 2093 "Enclosure services transfer failure") }, 2094 /* DTLPWROMAEBKVF */ 2095 { SST(0x35, 0x04, SS_RDEF, 2096 "Enclosure services transfer refused") }, 2097 /* DTL WROMAEBKVF */ 2098 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ 2099 "Enclosure services checksum error") }, 2100 /* L */ 2101 { SST(0x36, 0x00, SS_RDEF, 2102 "Ribbon, ink, or toner failure") }, 2103 /* DTL WROMAEBKVF */ 2104 { SST(0x37, 0x00, SS_RDEF, 2105 "Rounded parameter") }, 2106 /* B */ 2107 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ 2108 "Event status notification") }, 2109 /* B */ 2110 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ 2111 "ESN - power management class event") }, 2112 /* B */ 2113 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ 2114 "ESN - media class event") }, 2115 /* B */ 2116 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ 2117 "ESN - device busy class event") }, 2118 /* D */ 2119 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */ 2120 "Thin provisioning soft threshold reached") }, 2121 /* DTL WROMAE K */ 2122 { SST(0x39, 0x00, SS_RDEF, 2123 "Saving parameters not supported") }, 2124 /* DTL WROM BK */ 2125 { SST(0x3A, 0x00, SS_FATAL | ENXIO, 2126 "Medium not present") }, 2127 /* DT WROM BK */ 2128 { SST(0x3A, 0x01, SS_FATAL | ENXIO, 2129 "Medium not present - tray closed") }, 2130 /* DT WROM BK */ 2131 { SST(0x3A, 0x02, SS_FATAL | ENXIO, 2132 "Medium not present - tray open") }, 2133 /* DT WROM B */ 2134 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ 2135 "Medium not present - loadable") }, 2136 /* DT WRO B */ 2137 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ 2138 "Medium not present - medium auxiliary memory accessible") }, 2139 /* TL */ 2140 { SST(0x3B, 0x00, SS_RDEF, 2141 "Sequential positioning error") }, 2142 /* T */ 2143 { SST(0x3B, 0x01, SS_RDEF, 2144 "Tape position error at beginning-of-medium") }, 2145 /* T */ 2146 { SST(0x3B, 0x02, SS_RDEF, 2147 "Tape position error at end-of-medium") }, 2148 /* L */ 2149 { SST(0x3B, 0x03, SS_RDEF, 2150 "Tape or electronic vertical forms unit not ready") }, 2151 /* L */ 2152 { SST(0x3B, 0x04, SS_RDEF, 2153 "Slew failure") }, 2154 /* L */ 2155 { SST(0x3B, 0x05, SS_RDEF, 2156 "Paper jam") }, 2157 /* L */ 2158 { SST(0x3B, 0x06, SS_RDEF, 2159 "Failed to sense top-of-form") }, 2160 /* L */ 2161 { SST(0x3B, 0x07, SS_RDEF, 2162 "Failed to sense bottom-of-form") }, 2163 /* T */ 2164 { SST(0x3B, 0x08, SS_RDEF, 2165 "Reposition error") }, 2166 /* */ 2167 { SST(0x3B, 0x09, SS_RDEF, 2168 "Read past end of medium") }, 2169 /* */ 2170 { SST(0x3B, 0x0A, SS_RDEF, 2171 "Read past beginning of medium") }, 2172 /* */ 2173 { SST(0x3B, 0x0B, SS_RDEF, 2174 "Position past end of medium") }, 2175 /* T */ 2176 { SST(0x3B, 0x0C, SS_RDEF, 2177 "Position past beginning of medium") }, 2178 /* DT WROM BK */ 2179 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, 2180 "Medium destination element full") }, 2181 /* DT WROM BK */ 2182 { SST(0x3B, 0x0E, SS_RDEF, 2183 "Medium source element empty") }, 2184 /* R */ 2185 { SST(0x3B, 0x0F, SS_RDEF, 2186 "End of medium reached") }, 2187 /* DT WROM BK */ 2188 { SST(0x3B, 0x11, SS_RDEF, 2189 "Medium magazine not accessible") }, 2190 /* DT WROM BK */ 2191 { SST(0x3B, 0x12, SS_RDEF, 2192 "Medium magazine removed") }, 2193 /* DT WROM BK */ 2194 { SST(0x3B, 0x13, SS_RDEF, 2195 "Medium magazine inserted") }, 2196 /* DT WROM BK */ 2197 { SST(0x3B, 0x14, SS_RDEF, 2198 "Medium magazine locked") }, 2199 /* DT WROM BK */ 2200 { SST(0x3B, 0x15, SS_RDEF, 2201 "Medium magazine unlocked") }, 2202 /* R */ 2203 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ 2204 "Mechanical positioning or changer error") }, 2205 /* F */ 2206 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ 2207 "Read past end of user object") }, 2208 /* M */ 2209 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ 2210 "Element disabled") }, 2211 /* M */ 2212 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ 2213 "Element enabled") }, 2214 /* M */ 2215 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ 2216 "Data transfer device removed") }, 2217 /* M */ 2218 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ 2219 "Data transfer device inserted") }, 2220 /* T */ 2221 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */ 2222 "Too many logical objects on partition to support operation") }, 2223 /* DTLPWROMAE K */ 2224 { SST(0x3D, 0x00, SS_RDEF, 2225 "Invalid bits in IDENTIFY message") }, 2226 /* DTLPWROMAEBKVF */ 2227 { SST(0x3E, 0x00, SS_RDEF, 2228 "Logical unit has not self-configured yet") }, 2229 /* DTLPWROMAEBKVF */ 2230 { SST(0x3E, 0x01, SS_RDEF, 2231 "Logical unit failure") }, 2232 /* DTLPWROMAEBKVF */ 2233 { SST(0x3E, 0x02, SS_RDEF, 2234 "Timeout on logical unit") }, 2235 /* DTLPWROMAEBKVF */ 2236 { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */ 2237 "Logical unit failed self-test") }, 2238 /* DTLPWROMAEBKVF */ 2239 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ 2240 "Logical unit unable to update self-test log") }, 2241 /* DTLPWROMAEBKVF */ 2242 { SST(0x3F, 0x00, SS_RDEF, 2243 "Target operating conditions have changed") }, 2244 /* DTLPWROMAEBKVF */ 2245 { SST(0x3F, 0x01, SS_RDEF, 2246 "Microcode has been changed") }, 2247 /* DTLPWROM BK */ 2248 { SST(0x3F, 0x02, SS_RDEF, 2249 "Changed operating definition") }, 2250 /* DTLPWROMAEBKVF */ 2251 { SST(0x3F, 0x03, SS_RDEF, 2252 "INQUIRY data has changed") }, 2253 /* DT WROMAEBK */ 2254 { SST(0x3F, 0x04, SS_RDEF, 2255 "Component device attached") }, 2256 /* DT WROMAEBK */ 2257 { SST(0x3F, 0x05, SS_RDEF, 2258 "Device identifier changed") }, 2259 /* DT WROMAEB */ 2260 { SST(0x3F, 0x06, SS_RDEF, 2261 "Redundancy group created or modified") }, 2262 /* DT WROMAEB */ 2263 { SST(0x3F, 0x07, SS_RDEF, 2264 "Redundancy group deleted") }, 2265 /* DT WROMAEB */ 2266 { SST(0x3F, 0x08, SS_RDEF, 2267 "Spare created or modified") }, 2268 /* DT WROMAEB */ 2269 { SST(0x3F, 0x09, SS_RDEF, 2270 "Spare deleted") }, 2271 /* DT WROMAEBK */ 2272 { SST(0x3F, 0x0A, SS_RDEF, 2273 "Volume set created or modified") }, 2274 /* DT WROMAEBK */ 2275 { SST(0x3F, 0x0B, SS_RDEF, 2276 "Volume set deleted") }, 2277 /* DT WROMAEBK */ 2278 { SST(0x3F, 0x0C, SS_RDEF, 2279 "Volume set deassigned") }, 2280 /* DT WROMAEBK */ 2281 { SST(0x3F, 0x0D, SS_RDEF, 2282 "Volume set reassigned") }, 2283 /* DTLPWROMAE */ 2284 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN , 2285 "Reported LUNs data has changed") }, 2286 /* DTLPWROMAEBKVF */ 2287 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ 2288 "Echo buffer overwritten") }, 2289 /* DT WROM B */ 2290 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ 2291 "Medium loadable") }, 2292 /* DT WROM B */ 2293 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ 2294 "Medium auxiliary memory accessible") }, 2295 /* DTLPWR MAEBK F */ 2296 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ 2297 "iSCSI IP address added") }, 2298 /* DTLPWR MAEBK F */ 2299 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ 2300 "iSCSI IP address removed") }, 2301 /* DTLPWR MAEBK F */ 2302 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ 2303 "iSCSI IP address changed") }, 2304 /* DTLPWR MAEBK */ 2305 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */ 2306 "Inspect referrals sense descriptors") }, 2307 /* DTLPWROMAEBKVF */ 2308 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */ 2309 "Microcode has been changed without reset") }, 2310 /* D */ 2311 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */ 2312 "Zone transition to full") }, 2313 /* D */ 2314 { SST(0x40, 0x00, SS_RDEF, 2315 "RAM failure") }, /* deprecated - use 40 NN instead */ 2316 /* DTLPWROMAEBKVF */ 2317 { SST(0x40, 0x80, SS_RDEF, 2318 "Diagnostic failure: ASCQ = Component ID") }, 2319 /* DTLPWROMAEBKVF */ 2320 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, 2321 NULL) }, /* Range 0x80->0xFF */ 2322 /* D */ 2323 { SST(0x41, 0x00, SS_RDEF, 2324 "Data path failure") }, /* deprecated - use 40 NN instead */ 2325 /* D */ 2326 { SST(0x42, 0x00, SS_RDEF, 2327 "Power-on or self-test failure") }, 2328 /* deprecated - use 40 NN instead */ 2329 /* DTLPWROMAEBKVF */ 2330 { SST(0x43, 0x00, SS_RDEF, 2331 "Message error") }, 2332 /* DTLPWROMAEBKVF */ 2333 { SST(0x44, 0x00, SS_FATAL | EIO, 2334 "Internal target failure") }, 2335 /* DT P MAEBKVF */ 2336 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */ 2337 "Persistent reservation information lost") }, 2338 /* DT B */ 2339 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ 2340 "ATA device failed set features") }, 2341 /* DTLPWROMAEBKVF */ 2342 { SST(0x45, 0x00, SS_RDEF, 2343 "Select or reselect failure") }, 2344 /* DTLPWROM BK */ 2345 { SST(0x46, 0x00, SS_RDEF, 2346 "Unsuccessful soft reset") }, 2347 /* DTLPWROMAEBKVF */ 2348 { SST(0x47, 0x00, SS_RDEF, 2349 "SCSI parity error") }, 2350 /* DTLPWROMAEBKVF */ 2351 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ 2352 "Data phase CRC error detected") }, 2353 /* DTLPWROMAEBKVF */ 2354 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ 2355 "SCSI parity error detected during ST data phase") }, 2356 /* DTLPWROMAEBKVF */ 2357 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ 2358 "Information unit iuCRC error detected") }, 2359 /* DTLPWROMAEBKVF */ 2360 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ 2361 "Asynchronous information protection error detected") }, 2362 /* DTLPWROMAEBKVF */ 2363 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ 2364 "Protocol service CRC error") }, 2365 /* DT MAEBKVF */ 2366 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ 2367 "PHY test function in progress") }, 2368 /* DT PWROMAEBK */ 2369 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ 2370 "Some commands cleared by iSCSI protocol event") }, 2371 /* DTLPWROMAEBKVF */ 2372 { SST(0x48, 0x00, SS_RDEF, 2373 "Initiator detected error message received") }, 2374 /* DTLPWROMAEBKVF */ 2375 { SST(0x49, 0x00, SS_RDEF, 2376 "Invalid message error") }, 2377 /* DTLPWROMAEBKVF */ 2378 { SST(0x4A, 0x00, SS_RDEF, 2379 "Command phase error") }, 2380 /* DTLPWROMAEBKVF */ 2381 { SST(0x4B, 0x00, SS_RDEF, 2382 "Data phase error") }, 2383 /* DT PWROMAEBK */ 2384 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ 2385 "Invalid target port transfer tag received") }, 2386 /* DT PWROMAEBK */ 2387 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ 2388 "Too much write data") }, 2389 /* DT PWROMAEBK */ 2390 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ 2391 "ACK/NAK timeout") }, 2392 /* DT PWROMAEBK */ 2393 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ 2394 "NAK received") }, 2395 /* DT PWROMAEBK */ 2396 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ 2397 "Data offset error") }, 2398 /* DT PWROMAEBK */ 2399 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ 2400 "Initiator response timeout") }, 2401 /* DT PWROMAEBK F */ 2402 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */ 2403 "Connection lost") }, 2404 /* DT PWROMAEBK F */ 2405 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */ 2406 "Data-in buffer overflow - data buffer size") }, 2407 /* DT PWROMAEBK F */ 2408 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */ 2409 "Data-in buffer overflow - data buffer descriptor area") }, 2410 /* DT PWROMAEBK F */ 2411 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */ 2412 "Data-in buffer error") }, 2413 /* DT PWROMAEBK F */ 2414 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */ 2415 "Data-out buffer overflow - data buffer size") }, 2416 /* DT PWROMAEBK F */ 2417 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */ 2418 "Data-out buffer overflow - data buffer descriptor area") }, 2419 /* DT PWROMAEBK F */ 2420 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */ 2421 "Data-out buffer error") }, 2422 /* DT PWROMAEBK F */ 2423 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */ 2424 "PCIe fabric error") }, 2425 /* DT PWROMAEBK F */ 2426 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */ 2427 "PCIe completion timeout") }, 2428 /* DT PWROMAEBK F */ 2429 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */ 2430 "PCIe completer abort") }, 2431 /* DT PWROMAEBK F */ 2432 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */ 2433 "PCIe poisoned TLP received") }, 2434 /* DT PWROMAEBK F */ 2435 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */ 2436 "PCIe ECRC check failed") }, 2437 /* DT PWROMAEBK F */ 2438 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */ 2439 "PCIe unsupported request") }, 2440 /* DT PWROMAEBK F */ 2441 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */ 2442 "PCIe ACS violation") }, 2443 /* DT PWROMAEBK F */ 2444 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */ 2445 "PCIe TLP prefix blocket") }, 2446 /* DTLPWROMAEBKVF */ 2447 { SST(0x4C, 0x00, SS_RDEF, 2448 "Logical unit failed self-configuration") }, 2449 /* DTLPWROMAEBKVF */ 2450 { SST(0x4D, 0x00, SS_RDEF, 2451 "Tagged overlapped commands: ASCQ = Queue tag ID") }, 2452 /* DTLPWROMAEBKVF */ 2453 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, 2454 NULL) }, /* Range 0x00->0xFF */ 2455 /* DTLPWROMAEBKVF */ 2456 { SST(0x4E, 0x00, SS_RDEF, 2457 "Overlapped commands attempted") }, 2458 /* T */ 2459 { SST(0x50, 0x00, SS_RDEF, 2460 "Write append error") }, 2461 /* T */ 2462 { SST(0x50, 0x01, SS_RDEF, 2463 "Write append position error") }, 2464 /* T */ 2465 { SST(0x50, 0x02, SS_RDEF, 2466 "Position error related to timing") }, 2467 /* T RO */ 2468 { SST(0x51, 0x00, SS_RDEF, 2469 "Erase failure") }, 2470 /* R */ 2471 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ 2472 "Erase failure - incomplete erase operation detected") }, 2473 /* T */ 2474 { SST(0x52, 0x00, SS_RDEF, 2475 "Cartridge fault") }, 2476 /* DTL WROM BK */ 2477 { SST(0x53, 0x00, SS_RDEF, 2478 "Media load or eject failed") }, 2479 /* T */ 2480 { SST(0x53, 0x01, SS_RDEF, 2481 "Unload tape failure") }, 2482 /* DT WROM BK */ 2483 { SST(0x53, 0x02, SS_RDEF, 2484 "Medium removal prevented") }, 2485 /* M */ 2486 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ 2487 "Medium removal prevented by data transfer element") }, 2488 /* T */ 2489 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ 2490 "Medium thread or unthread failure") }, 2491 /* M */ 2492 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */ 2493 "Volume identifier invalid") }, 2494 /* T */ 2495 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */ 2496 "Volume identifier missing") }, 2497 /* M */ 2498 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */ 2499 "Duplicate volume identifier") }, 2500 /* M */ 2501 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */ 2502 "Element status unknown") }, 2503 /* M */ 2504 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */ 2505 "Data transfer device error - load failed") }, 2506 /* M */ 2507 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */ 2508 "Data transfer device error - unload failed") }, 2509 /* M */ 2510 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */ 2511 "Data transfer device error - unload missing") }, 2512 /* M */ 2513 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */ 2514 "Data transfer device error - eject failed") }, 2515 /* M */ 2516 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */ 2517 "Data transfer device error - library communication failed") }, 2518 /* P */ 2519 { SST(0x54, 0x00, SS_RDEF, 2520 "SCSI to host system interface failure") }, 2521 /* P */ 2522 { SST(0x55, 0x00, SS_RDEF, 2523 "System resource failure") }, 2524 /* D O BK */ 2525 { SST(0x55, 0x01, SS_FATAL | ENOSPC, 2526 "System buffer full") }, 2527 /* DTLPWROMAE K */ 2528 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ 2529 "Insufficient reservation resources") }, 2530 /* DTLPWROMAE K */ 2531 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ 2532 "Insufficient resources") }, 2533 /* DTLPWROMAE K */ 2534 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ 2535 "Insufficient registration resources") }, 2536 /* DT PWROMAEBK */ 2537 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ 2538 "Insufficient access control resources") }, 2539 /* DT WROM B */ 2540 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ 2541 "Auxiliary memory out of space") }, 2542 /* F */ 2543 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ 2544 "Quota error") }, 2545 /* T */ 2546 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ 2547 "Maximum number of supplemental decryption keys exceeded") }, 2548 /* M */ 2549 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ 2550 "Medium auxiliary memory not accessible") }, 2551 /* M */ 2552 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ 2553 "Data currently unavailable") }, 2554 /* DTLPWROMAEBKVF */ 2555 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */ 2556 "Insufficient power for operation") }, 2557 /* DT P B */ 2558 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */ 2559 "Insufficient resources to create ROD") }, 2560 /* DT P B */ 2561 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */ 2562 "Insufficient resources to create ROD token") }, 2563 /* D */ 2564 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */ 2565 "Insufficient zone resources") }, 2566 /* D */ 2567 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */ 2568 "Insufficient zone resources to complete write") }, 2569 /* D */ 2570 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */ 2571 "Maximum number of streams open") }, 2572 /* R */ 2573 { SST(0x57, 0x00, SS_RDEF, 2574 "Unable to recover table-of-contents") }, 2575 /* O */ 2576 { SST(0x58, 0x00, SS_RDEF, 2577 "Generation does not exist") }, 2578 /* O */ 2579 { SST(0x59, 0x00, SS_RDEF, 2580 "Updated block read") }, 2581 /* DTLPWRO BK */ 2582 { SST(0x5A, 0x00, SS_RDEF, 2583 "Operator request or state change input") }, 2584 /* DT WROM BK */ 2585 { SST(0x5A, 0x01, SS_RDEF, 2586 "Operator medium removal request") }, 2587 /* DT WRO A BK */ 2588 { SST(0x5A, 0x02, SS_RDEF, 2589 "Operator selected write protect") }, 2590 /* DT WRO A BK */ 2591 { SST(0x5A, 0x03, SS_RDEF, 2592 "Operator selected write permit") }, 2593 /* DTLPWROM K */ 2594 { SST(0x5B, 0x00, SS_RDEF, 2595 "Log exception") }, 2596 /* DTLPWROM K */ 2597 { SST(0x5B, 0x01, SS_RDEF, 2598 "Threshold condition met") }, 2599 /* DTLPWROM K */ 2600 { SST(0x5B, 0x02, SS_RDEF, 2601 "Log counter at maximum") }, 2602 /* DTLPWROM K */ 2603 { SST(0x5B, 0x03, SS_RDEF, 2604 "Log list codes exhausted") }, 2605 /* D O */ 2606 { SST(0x5C, 0x00, SS_RDEF, 2607 "RPL status change") }, 2608 /* D O */ 2609 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2610 "Spindles synchronized") }, 2611 /* D O */ 2612 { SST(0x5C, 0x02, SS_RDEF, 2613 "Spindles not synchronized") }, 2614 /* DTLPWROMAEBKVF */ 2615 { SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE, 2616 "Failure prediction threshold exceeded") }, 2617 /* R B */ 2618 { SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2619 "Media failure prediction threshold exceeded") }, 2620 /* R */ 2621 { SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE, 2622 "Logical unit failure prediction threshold exceeded") }, 2623 /* R */ 2624 { SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE, 2625 "Spare area exhaustion prediction threshold exceeded") }, 2626 /* D B */ 2627 { SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE, 2628 "Hardware impending failure general hard drive failure") }, 2629 /* D B */ 2630 { SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE, 2631 "Hardware impending failure drive error rate too high") }, 2632 /* D B */ 2633 { SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE, 2634 "Hardware impending failure data error rate too high") }, 2635 /* D B */ 2636 { SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE, 2637 "Hardware impending failure seek error rate too high") }, 2638 /* D B */ 2639 { SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE, 2640 "Hardware impending failure too many block reassigns") }, 2641 /* D B */ 2642 { SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE, 2643 "Hardware impending failure access times too high") }, 2644 /* D B */ 2645 { SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE, 2646 "Hardware impending failure start unit times too high") }, 2647 /* D B */ 2648 { SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE, 2649 "Hardware impending failure channel parametrics") }, 2650 /* D B */ 2651 { SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE, 2652 "Hardware impending failure controller detected") }, 2653 /* D B */ 2654 { SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE, 2655 "Hardware impending failure throughput performance") }, 2656 /* D B */ 2657 { SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE, 2658 "Hardware impending failure seek time performance") }, 2659 /* D B */ 2660 { SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE, 2661 "Hardware impending failure spin-up retry count") }, 2662 /* D B */ 2663 { SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE, 2664 "Hardware impending failure drive calibration retry count") }, 2665 /* D B */ 2666 { SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE, 2667 "Hardware impending failure power loss protection circuit") }, 2668 /* D B */ 2669 { SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE, 2670 "Controller impending failure general hard drive failure") }, 2671 /* D B */ 2672 { SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE, 2673 "Controller impending failure drive error rate too high") }, 2674 /* D B */ 2675 { SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE, 2676 "Controller impending failure data error rate too high") }, 2677 /* D B */ 2678 { SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE, 2679 "Controller impending failure seek error rate too high") }, 2680 /* D B */ 2681 { SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE, 2682 "Controller impending failure too many block reassigns") }, 2683 /* D B */ 2684 { SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE, 2685 "Controller impending failure access times too high") }, 2686 /* D B */ 2687 { SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE, 2688 "Controller impending failure start unit times too high") }, 2689 /* D B */ 2690 { SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE, 2691 "Controller impending failure channel parametrics") }, 2692 /* D B */ 2693 { SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE, 2694 "Controller impending failure controller detected") }, 2695 /* D B */ 2696 { SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE, 2697 "Controller impending failure throughput performance") }, 2698 /* D B */ 2699 { SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE, 2700 "Controller impending failure seek time performance") }, 2701 /* D B */ 2702 { SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE, 2703 "Controller impending failure spin-up retry count") }, 2704 /* D B */ 2705 { SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE, 2706 "Controller impending failure drive calibration retry count") }, 2707 /* D B */ 2708 { SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE, 2709 "Data channel impending failure general hard drive failure") }, 2710 /* D B */ 2711 { SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE, 2712 "Data channel impending failure drive error rate too high") }, 2713 /* D B */ 2714 { SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE, 2715 "Data channel impending failure data error rate too high") }, 2716 /* D B */ 2717 { SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE, 2718 "Data channel impending failure seek error rate too high") }, 2719 /* D B */ 2720 { SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE, 2721 "Data channel impending failure too many block reassigns") }, 2722 /* D B */ 2723 { SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE, 2724 "Data channel impending failure access times too high") }, 2725 /* D B */ 2726 { SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE, 2727 "Data channel impending failure start unit times too high") }, 2728 /* D B */ 2729 { SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE, 2730 "Data channel impending failure channel parametrics") }, 2731 /* D B */ 2732 { SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE, 2733 "Data channel impending failure controller detected") }, 2734 /* D B */ 2735 { SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE, 2736 "Data channel impending failure throughput performance") }, 2737 /* D B */ 2738 { SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE, 2739 "Data channel impending failure seek time performance") }, 2740 /* D B */ 2741 { SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE, 2742 "Data channel impending failure spin-up retry count") }, 2743 /* D B */ 2744 { SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE, 2745 "Data channel impending failure drive calibration retry count") }, 2746 /* D B */ 2747 { SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE, 2748 "Servo impending failure general hard drive failure") }, 2749 /* D B */ 2750 { SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE, 2751 "Servo impending failure drive error rate too high") }, 2752 /* D B */ 2753 { SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE, 2754 "Servo impending failure data error rate too high") }, 2755 /* D B */ 2756 { SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE, 2757 "Servo impending failure seek error rate too high") }, 2758 /* D B */ 2759 { SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE, 2760 "Servo impending failure too many block reassigns") }, 2761 /* D B */ 2762 { SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE, 2763 "Servo impending failure access times too high") }, 2764 /* D B */ 2765 { SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE, 2766 "Servo impending failure start unit times too high") }, 2767 /* D B */ 2768 { SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE, 2769 "Servo impending failure channel parametrics") }, 2770 /* D B */ 2771 { SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE, 2772 "Servo impending failure controller detected") }, 2773 /* D B */ 2774 { SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE, 2775 "Servo impending failure throughput performance") }, 2776 /* D B */ 2777 { SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE, 2778 "Servo impending failure seek time performance") }, 2779 /* D B */ 2780 { SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE, 2781 "Servo impending failure spin-up retry count") }, 2782 /* D B */ 2783 { SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE, 2784 "Servo impending failure drive calibration retry count") }, 2785 /* D B */ 2786 { SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE, 2787 "Spindle impending failure general hard drive failure") }, 2788 /* D B */ 2789 { SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE, 2790 "Spindle impending failure drive error rate too high") }, 2791 /* D B */ 2792 { SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE, 2793 "Spindle impending failure data error rate too high") }, 2794 /* D B */ 2795 { SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE, 2796 "Spindle impending failure seek error rate too high") }, 2797 /* D B */ 2798 { SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE, 2799 "Spindle impending failure too many block reassigns") }, 2800 /* D B */ 2801 { SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE, 2802 "Spindle impending failure access times too high") }, 2803 /* D B */ 2804 { SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE, 2805 "Spindle impending failure start unit times too high") }, 2806 /* D B */ 2807 { SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE, 2808 "Spindle impending failure channel parametrics") }, 2809 /* D B */ 2810 { SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE, 2811 "Spindle impending failure controller detected") }, 2812 /* D B */ 2813 { SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE, 2814 "Spindle impending failure throughput performance") }, 2815 /* D B */ 2816 { SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE, 2817 "Spindle impending failure seek time performance") }, 2818 /* D B */ 2819 { SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE, 2820 "Spindle impending failure spin-up retry count") }, 2821 /* D B */ 2822 { SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE, 2823 "Spindle impending failure drive calibration retry count") }, 2824 /* D B */ 2825 { SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE, 2826 "Firmware impending failure general hard drive failure") }, 2827 /* D B */ 2828 { SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE, 2829 "Firmware impending failure drive error rate too high") }, 2830 /* D B */ 2831 { SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE, 2832 "Firmware impending failure data error rate too high") }, 2833 /* D B */ 2834 { SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE, 2835 "Firmware impending failure seek error rate too high") }, 2836 /* D B */ 2837 { SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE, 2838 "Firmware impending failure too many block reassigns") }, 2839 /* D B */ 2840 { SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE, 2841 "Firmware impending failure access times too high") }, 2842 /* D B */ 2843 { SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE, 2844 "Firmware impending failure start unit times too high") }, 2845 /* D B */ 2846 { SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE, 2847 "Firmware impending failure channel parametrics") }, 2848 /* D B */ 2849 { SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE, 2850 "Firmware impending failure controller detected") }, 2851 /* D B */ 2852 { SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE, 2853 "Firmware impending failure throughput performance") }, 2854 /* D B */ 2855 { SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE, 2856 "Firmware impending failure seek time performance") }, 2857 /* D B */ 2858 { SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE, 2859 "Firmware impending failure spin-up retry count") }, 2860 /* D B */ 2861 { SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE, 2862 "Firmware impending failure drive calibration retry count") }, 2863 /* D B */ 2864 { SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE, 2865 "Media impending failure endurance limit met") }, 2866 /* DTLPWROMAEBKVF */ 2867 { SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE, 2868 "Failure prediction threshold exceeded (false)") }, 2869 /* DTLPWRO A K */ 2870 { SST(0x5E, 0x00, SS_RDEF, 2871 "Low power condition on") }, 2872 /* DTLPWRO A K */ 2873 { SST(0x5E, 0x01, SS_RDEF, 2874 "Idle condition activated by timer") }, 2875 /* DTLPWRO A K */ 2876 { SST(0x5E, 0x02, SS_RDEF, 2877 "Standby condition activated by timer") }, 2878 /* DTLPWRO A K */ 2879 { SST(0x5E, 0x03, SS_RDEF, 2880 "Idle condition activated by command") }, 2881 /* DTLPWRO A K */ 2882 { SST(0x5E, 0x04, SS_RDEF, 2883 "Standby condition activated by command") }, 2884 /* DTLPWRO A K */ 2885 { SST(0x5E, 0x05, SS_RDEF, 2886 "Idle-B condition activated by timer") }, 2887 /* DTLPWRO A K */ 2888 { SST(0x5E, 0x06, SS_RDEF, 2889 "Idle-B condition activated by command") }, 2890 /* DTLPWRO A K */ 2891 { SST(0x5E, 0x07, SS_RDEF, 2892 "Idle-C condition activated by timer") }, 2893 /* DTLPWRO A K */ 2894 { SST(0x5E, 0x08, SS_RDEF, 2895 "Idle-C condition activated by command") }, 2896 /* DTLPWRO A K */ 2897 { SST(0x5E, 0x09, SS_RDEF, 2898 "Standby-Y condition activated by timer") }, 2899 /* DTLPWRO A K */ 2900 { SST(0x5E, 0x0A, SS_RDEF, 2901 "Standby-Y condition activated by command") }, 2902 /* B */ 2903 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ 2904 "Power state change to active") }, 2905 /* B */ 2906 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ 2907 "Power state change to idle") }, 2908 /* B */ 2909 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ 2910 "Power state change to standby") }, 2911 /* B */ 2912 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ 2913 "Power state change to sleep") }, 2914 /* BK */ 2915 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ 2916 "Power state change to device control") }, 2917 /* */ 2918 { SST(0x60, 0x00, SS_RDEF, 2919 "Lamp failure") }, 2920 /* */ 2921 { SST(0x61, 0x00, SS_RDEF, 2922 "Video acquisition error") }, 2923 /* */ 2924 { SST(0x61, 0x01, SS_RDEF, 2925 "Unable to acquire video") }, 2926 /* */ 2927 { SST(0x61, 0x02, SS_RDEF, 2928 "Out of focus") }, 2929 /* */ 2930 { SST(0x62, 0x00, SS_RDEF, 2931 "Scan head positioning error") }, 2932 /* R */ 2933 { SST(0x63, 0x00, SS_RDEF, 2934 "End of user area encountered on this track") }, 2935 /* R */ 2936 { SST(0x63, 0x01, SS_FATAL | ENOSPC, 2937 "Packet does not fit in available space") }, 2938 /* R */ 2939 { SST(0x64, 0x00, SS_FATAL | ENXIO, 2940 "Illegal mode for this track") }, 2941 /* R */ 2942 { SST(0x64, 0x01, SS_RDEF, 2943 "Invalid packet size") }, 2944 /* DTLPWROMAEBKVF */ 2945 { SST(0x65, 0x00, SS_RDEF, 2946 "Voltage fault") }, 2947 /* */ 2948 { SST(0x66, 0x00, SS_RDEF, 2949 "Automatic document feeder cover up") }, 2950 /* */ 2951 { SST(0x66, 0x01, SS_RDEF, 2952 "Automatic document feeder lift up") }, 2953 /* */ 2954 { SST(0x66, 0x02, SS_RDEF, 2955 "Document jam in automatic document feeder") }, 2956 /* */ 2957 { SST(0x66, 0x03, SS_RDEF, 2958 "Document miss feed automatic in document feeder") }, 2959 /* A */ 2960 { SST(0x67, 0x00, SS_RDEF, 2961 "Configuration failure") }, 2962 /* A */ 2963 { SST(0x67, 0x01, SS_RDEF, 2964 "Configuration of incapable logical units failed") }, 2965 /* A */ 2966 { SST(0x67, 0x02, SS_RDEF, 2967 "Add logical unit failed") }, 2968 /* A */ 2969 { SST(0x67, 0x03, SS_RDEF, 2970 "Modification of logical unit failed") }, 2971 /* A */ 2972 { SST(0x67, 0x04, SS_RDEF, 2973 "Exchange of logical unit failed") }, 2974 /* A */ 2975 { SST(0x67, 0x05, SS_RDEF, 2976 "Remove of logical unit failed") }, 2977 /* A */ 2978 { SST(0x67, 0x06, SS_RDEF, 2979 "Attachment of logical unit failed") }, 2980 /* A */ 2981 { SST(0x67, 0x07, SS_RDEF, 2982 "Creation of logical unit failed") }, 2983 /* A */ 2984 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ 2985 "Assign failure occurred") }, 2986 /* A */ 2987 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ 2988 "Multiply assigned logical unit") }, 2989 /* DTLPWROMAEBKVF */ 2990 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ 2991 "Set target port groups command failed") }, 2992 /* DT B */ 2993 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ 2994 "ATA device feature not enabled") }, 2995 /* A */ 2996 { SST(0x68, 0x00, SS_RDEF, 2997 "Logical unit not configured") }, 2998 /* D */ 2999 { SST(0x68, 0x01, SS_RDEF, 3000 "Subsidiary logical unit not configured") }, 3001 /* A */ 3002 { SST(0x69, 0x00, SS_RDEF, 3003 "Data loss on logical unit") }, 3004 /* A */ 3005 { SST(0x69, 0x01, SS_RDEF, 3006 "Multiple logical unit failures") }, 3007 /* A */ 3008 { SST(0x69, 0x02, SS_RDEF, 3009 "Parity/data mismatch") }, 3010 /* A */ 3011 { SST(0x6A, 0x00, SS_RDEF, 3012 "Informational, refer to log") }, 3013 /* A */ 3014 { SST(0x6B, 0x00, SS_RDEF, 3015 "State change has occurred") }, 3016 /* A */ 3017 { SST(0x6B, 0x01, SS_RDEF, 3018 "Redundancy level got better") }, 3019 /* A */ 3020 { SST(0x6B, 0x02, SS_RDEF, 3021 "Redundancy level got worse") }, 3022 /* A */ 3023 { SST(0x6C, 0x00, SS_RDEF, 3024 "Rebuild failure occurred") }, 3025 /* A */ 3026 { SST(0x6D, 0x00, SS_RDEF, 3027 "Recalculate failure occurred") }, 3028 /* A */ 3029 { SST(0x6E, 0x00, SS_RDEF, 3030 "Command to logical unit failed") }, 3031 /* R */ 3032 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ 3033 "Copy protection key exchange failure - authentication failure") }, 3034 /* R */ 3035 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ 3036 "Copy protection key exchange failure - key not present") }, 3037 /* R */ 3038 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ 3039 "Copy protection key exchange failure - key not established") }, 3040 /* R */ 3041 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ 3042 "Read of scrambled sector without authentication") }, 3043 /* R */ 3044 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ 3045 "Media region code is mismatched to logical unit region") }, 3046 /* R */ 3047 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ 3048 "Drive region must be permanent/region reset count error") }, 3049 /* R */ 3050 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ 3051 "Insufficient block count for binding NONCE recording") }, 3052 /* R */ 3053 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ 3054 "Conflict in binding NONCE recording") }, 3055 /* T */ 3056 { SST(0x70, 0x00, SS_RDEF, 3057 "Decompression exception short: ASCQ = Algorithm ID") }, 3058 /* T */ 3059 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, 3060 NULL) }, /* Range 0x00 -> 0xFF */ 3061 /* T */ 3062 { SST(0x71, 0x00, SS_RDEF, 3063 "Decompression exception long: ASCQ = Algorithm ID") }, 3064 /* T */ 3065 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, 3066 NULL) }, /* Range 0x00 -> 0xFF */ 3067 /* R */ 3068 { SST(0x72, 0x00, SS_RDEF, 3069 "Session fixation error") }, 3070 /* R */ 3071 { SST(0x72, 0x01, SS_RDEF, 3072 "Session fixation error writing lead-in") }, 3073 /* R */ 3074 { SST(0x72, 0x02, SS_RDEF, 3075 "Session fixation error writing lead-out") }, 3076 /* R */ 3077 { SST(0x72, 0x03, SS_RDEF, 3078 "Session fixation error - incomplete track in session") }, 3079 /* R */ 3080 { SST(0x72, 0x04, SS_RDEF, 3081 "Empty or partially written reserved track") }, 3082 /* R */ 3083 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ 3084 "No more track reservations allowed") }, 3085 /* R */ 3086 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ 3087 "RMZ extension is not allowed") }, 3088 /* R */ 3089 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ 3090 "No more test zone extensions are allowed") }, 3091 /* R */ 3092 { SST(0x73, 0x00, SS_RDEF, 3093 "CD control error") }, 3094 /* R */ 3095 { SST(0x73, 0x01, SS_RDEF, 3096 "Power calibration area almost full") }, 3097 /* R */ 3098 { SST(0x73, 0x02, SS_FATAL | ENOSPC, 3099 "Power calibration area is full") }, 3100 /* R */ 3101 { SST(0x73, 0x03, SS_RDEF, 3102 "Power calibration area error") }, 3103 /* R */ 3104 { SST(0x73, 0x04, SS_RDEF, 3105 "Program memory area update failure") }, 3106 /* R */ 3107 { SST(0x73, 0x05, SS_RDEF, 3108 "Program memory area is full") }, 3109 /* R */ 3110 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ 3111 "RMA/PMA is almost full") }, 3112 /* R */ 3113 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ 3114 "Current power calibration area almost full") }, 3115 /* R */ 3116 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ 3117 "Current power calibration area is full") }, 3118 /* R */ 3119 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ 3120 "RDZ is full") }, 3121 /* T */ 3122 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ 3123 "Security error") }, 3124 /* T */ 3125 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ 3126 "Unable to decrypt data") }, 3127 /* T */ 3128 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ 3129 "Unencrypted data encountered while decrypting") }, 3130 /* T */ 3131 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ 3132 "Incorrect data encryption key") }, 3133 /* T */ 3134 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ 3135 "Cryptographic integrity validation failed") }, 3136 /* T */ 3137 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ 3138 "Error decrypting data") }, 3139 /* T */ 3140 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ 3141 "Unknown signature verification key") }, 3142 /* T */ 3143 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ 3144 "Encryption parameters not useable") }, 3145 /* DT R M E VF */ 3146 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ 3147 "Digital signature validation failure") }, 3148 /* T */ 3149 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ 3150 "Encryption mode mismatch on read") }, 3151 /* T */ 3152 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ 3153 "Encrypted block not raw read enabled") }, 3154 /* T */ 3155 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ 3156 "Incorrect encryption parameters") }, 3157 /* DT R MAEBKV */ 3158 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ 3159 "Unable to decrypt parameter list") }, 3160 /* T */ 3161 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ 3162 "Encryption algorithm disabled") }, 3163 /* DT R MAEBKV */ 3164 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ 3165 "SA creation parameter value invalid") }, 3166 /* DT R MAEBKV */ 3167 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ 3168 "SA creation parameter value rejected") }, 3169 /* DT R MAEBKV */ 3170 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ 3171 "Invalid SA usage") }, 3172 /* T */ 3173 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ 3174 "Data encryption configuration prevented") }, 3175 /* DT R MAEBKV */ 3176 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ 3177 "SA creation parameter not supported") }, 3178 /* DT R MAEBKV */ 3179 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ 3180 "Authentication failed") }, 3181 /* V */ 3182 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ 3183 "External data encryption key manager access error") }, 3184 /* V */ 3185 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ 3186 "External data encryption key manager error") }, 3187 /* V */ 3188 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ 3189 "External data encryption key not found") }, 3190 /* V */ 3191 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ 3192 "External data encryption request not authorized") }, 3193 /* T */ 3194 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ 3195 "External data encryption control timeout") }, 3196 /* T */ 3197 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ 3198 "External data encryption control error") }, 3199 /* DT R M E V */ 3200 { SST(0x74, 0x71, SS_FATAL | EACCES, 3201 "Logical unit access not authorized") }, 3202 /* D */ 3203 { SST(0x74, 0x79, SS_FATAL | EACCES, 3204 "Security conflict in translated device") } 3205 }; 3206 3207 const u_int asc_table_size = nitems(asc_table); 3208 3209 struct asc_key 3210 { 3211 int asc; 3212 int ascq; 3213 }; 3214 3215 static int 3216 ascentrycomp(const void *key, const void *member) 3217 { 3218 int asc; 3219 int ascq; 3220 const struct asc_table_entry *table_entry; 3221 3222 asc = ((const struct asc_key *)key)->asc; 3223 ascq = ((const struct asc_key *)key)->ascq; 3224 table_entry = (const struct asc_table_entry *)member; 3225 3226 if (asc >= table_entry->asc) { 3227 3228 if (asc > table_entry->asc) 3229 return (1); 3230 3231 if (ascq <= table_entry->ascq) { 3232 /* Check for ranges */ 3233 if (ascq == table_entry->ascq 3234 || ((table_entry->action & SSQ_RANGE) != 0 3235 && ascq >= (table_entry - 1)->ascq)) 3236 return (0); 3237 return (-1); 3238 } 3239 return (1); 3240 } 3241 return (-1); 3242 } 3243 3244 static int 3245 senseentrycomp(const void *key, const void *member) 3246 { 3247 int sense_key; 3248 const struct sense_key_table_entry *table_entry; 3249 3250 sense_key = *((const int *)key); 3251 table_entry = (const struct sense_key_table_entry *)member; 3252 3253 if (sense_key >= table_entry->sense_key) { 3254 if (sense_key == table_entry->sense_key) 3255 return (0); 3256 return (1); 3257 } 3258 return (-1); 3259 } 3260 3261 static void 3262 fetchtableentries(int sense_key, int asc, int ascq, 3263 struct scsi_inquiry_data *inq_data, 3264 const struct sense_key_table_entry **sense_entry, 3265 const struct asc_table_entry **asc_entry) 3266 { 3267 caddr_t match; 3268 const struct asc_table_entry *asc_tables[2]; 3269 const struct sense_key_table_entry *sense_tables[2]; 3270 struct asc_key asc_ascq; 3271 size_t asc_tables_size[2]; 3272 size_t sense_tables_size[2]; 3273 int num_asc_tables; 3274 int num_sense_tables; 3275 int i; 3276 3277 /* Default to failure */ 3278 *sense_entry = NULL; 3279 *asc_entry = NULL; 3280 match = NULL; 3281 if (inq_data != NULL) 3282 match = cam_quirkmatch((caddr_t)inq_data, 3283 (caddr_t)sense_quirk_table, 3284 sense_quirk_table_size, 3285 sizeof(*sense_quirk_table), 3286 scsi_inquiry_match); 3287 3288 if (match != NULL) { 3289 struct scsi_sense_quirk_entry *quirk; 3290 3291 quirk = (struct scsi_sense_quirk_entry *)match; 3292 asc_tables[0] = quirk->asc_info; 3293 asc_tables_size[0] = quirk->num_ascs; 3294 asc_tables[1] = asc_table; 3295 asc_tables_size[1] = asc_table_size; 3296 num_asc_tables = 2; 3297 sense_tables[0] = quirk->sense_key_info; 3298 sense_tables_size[0] = quirk->num_sense_keys; 3299 sense_tables[1] = sense_key_table; 3300 sense_tables_size[1] = nitems(sense_key_table); 3301 num_sense_tables = 2; 3302 } else { 3303 asc_tables[0] = asc_table; 3304 asc_tables_size[0] = asc_table_size; 3305 num_asc_tables = 1; 3306 sense_tables[0] = sense_key_table; 3307 sense_tables_size[0] = nitems(sense_key_table); 3308 num_sense_tables = 1; 3309 } 3310 3311 asc_ascq.asc = asc; 3312 asc_ascq.ascq = ascq; 3313 for (i = 0; i < num_asc_tables; i++) { 3314 void *found_entry; 3315 3316 found_entry = bsearch(&asc_ascq, asc_tables[i], 3317 asc_tables_size[i], 3318 sizeof(**asc_tables), 3319 ascentrycomp); 3320 3321 if (found_entry) { 3322 *asc_entry = (struct asc_table_entry *)found_entry; 3323 break; 3324 } 3325 } 3326 3327 for (i = 0; i < num_sense_tables; i++) { 3328 void *found_entry; 3329 3330 found_entry = bsearch(&sense_key, sense_tables[i], 3331 sense_tables_size[i], 3332 sizeof(**sense_tables), 3333 senseentrycomp); 3334 3335 if (found_entry) { 3336 *sense_entry = 3337 (struct sense_key_table_entry *)found_entry; 3338 break; 3339 } 3340 } 3341 } 3342 3343 void 3344 scsi_sense_desc(int sense_key, int asc, int ascq, 3345 struct scsi_inquiry_data *inq_data, 3346 const char **sense_key_desc, const char **asc_desc) 3347 { 3348 const struct asc_table_entry *asc_entry; 3349 const struct sense_key_table_entry *sense_entry; 3350 3351 fetchtableentries(sense_key, asc, ascq, 3352 inq_data, 3353 &sense_entry, 3354 &asc_entry); 3355 3356 if (sense_entry != NULL) 3357 *sense_key_desc = sense_entry->desc; 3358 else 3359 *sense_key_desc = "Invalid Sense Key"; 3360 3361 if (asc_entry != NULL) 3362 *asc_desc = asc_entry->desc; 3363 else if (asc >= 0x80 && asc <= 0xff) 3364 *asc_desc = "Vendor Specific ASC"; 3365 else if (ascq >= 0x80 && ascq <= 0xff) 3366 *asc_desc = "Vendor Specific ASCQ"; 3367 else 3368 *asc_desc = "Reserved ASC/ASCQ pair"; 3369 } 3370 3371 /* 3372 * Given sense and device type information, return the appropriate action. 3373 * If we do not understand the specific error as identified by the ASC/ASCQ 3374 * pair, fall back on the more generic actions derived from the sense key. 3375 */ 3376 scsi_sense_action 3377 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, 3378 u_int32_t sense_flags) 3379 { 3380 const struct asc_table_entry *asc_entry; 3381 const struct sense_key_table_entry *sense_entry; 3382 int error_code, sense_key, asc, ascq; 3383 scsi_sense_action action; 3384 3385 if (!scsi_extract_sense_ccb((union ccb *)csio, 3386 &error_code, &sense_key, &asc, &ascq)) { 3387 action = SS_RETRY | SSQ_DECREMENT_COUNT | SSQ_PRINT_SENSE | EIO; 3388 } else if ((error_code == SSD_DEFERRED_ERROR) 3389 || (error_code == SSD_DESC_DEFERRED_ERROR)) { 3390 /* 3391 * XXX dufault@FreeBSD.org 3392 * This error doesn't relate to the command associated 3393 * with this request sense. A deferred error is an error 3394 * for a command that has already returned GOOD status 3395 * (see SCSI2 8.2.14.2). 3396 * 3397 * By my reading of that section, it looks like the current 3398 * command has been cancelled, we should now clean things up 3399 * (hopefully recovering any lost data) and then retry the 3400 * current command. There are two easy choices, both wrong: 3401 * 3402 * 1. Drop through (like we had been doing), thus treating 3403 * this as if the error were for the current command and 3404 * return and stop the current command. 3405 * 3406 * 2. Issue a retry (like I made it do) thus hopefully 3407 * recovering the current transfer, and ignoring the 3408 * fact that we've dropped a command. 3409 * 3410 * These should probably be handled in a device specific 3411 * sense handler or punted back up to a user mode daemon 3412 */ 3413 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3414 } else { 3415 fetchtableentries(sense_key, asc, ascq, 3416 inq_data, 3417 &sense_entry, 3418 &asc_entry); 3419 3420 /* 3421 * Override the 'No additional Sense' entry (0,0) 3422 * with the error action of the sense key. 3423 */ 3424 if (asc_entry != NULL 3425 && (asc != 0 || ascq != 0)) 3426 action = asc_entry->action; 3427 else if (sense_entry != NULL) 3428 action = sense_entry->action; 3429 else 3430 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3431 3432 if (sense_key == SSD_KEY_RECOVERED_ERROR) { 3433 /* 3434 * The action succeeded but the device wants 3435 * the user to know that some recovery action 3436 * was required. 3437 */ 3438 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); 3439 action |= SS_NOP|SSQ_PRINT_SENSE; 3440 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { 3441 if ((sense_flags & SF_QUIET_IR) != 0) 3442 action &= ~SSQ_PRINT_SENSE; 3443 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { 3444 if ((sense_flags & SF_RETRY_UA) != 0 3445 && (action & SS_MASK) == SS_FAIL) { 3446 action &= ~(SS_MASK|SSQ_MASK); 3447 action |= SS_RETRY|SSQ_DECREMENT_COUNT| 3448 SSQ_PRINT_SENSE; 3449 } 3450 action |= SSQ_UA; 3451 } 3452 } 3453 if ((action & SS_MASK) >= SS_START && 3454 (sense_flags & SF_NO_RECOVERY)) { 3455 action &= ~SS_MASK; 3456 action |= SS_FAIL; 3457 } else if ((action & SS_MASK) == SS_RETRY && 3458 (sense_flags & SF_NO_RETRY)) { 3459 action &= ~SS_MASK; 3460 action |= SS_FAIL; 3461 } 3462 if ((sense_flags & SF_PRINT_ALWAYS) != 0) 3463 action |= SSQ_PRINT_SENSE; 3464 else if ((sense_flags & SF_NO_PRINT) != 0) 3465 action &= ~SSQ_PRINT_SENSE; 3466 3467 return (action); 3468 } 3469 3470 char * 3471 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len) 3472 { 3473 struct sbuf sb; 3474 int error; 3475 3476 if (len == 0) 3477 return (""); 3478 3479 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN); 3480 3481 scsi_cdb_sbuf(cdb_ptr, &sb); 3482 3483 /* ENOMEM just means that the fixed buffer is full, OK to ignore */ 3484 error = sbuf_finish(&sb); 3485 if (error != 0 && error != ENOMEM) 3486 return (""); 3487 3488 return(sbuf_data(&sb)); 3489 } 3490 3491 void 3492 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb) 3493 { 3494 u_int8_t cdb_len; 3495 int i; 3496 3497 if (cdb_ptr == NULL) 3498 return; 3499 3500 /* 3501 * This is taken from the SCSI-3 draft spec. 3502 * (T10/1157D revision 0.3) 3503 * The top 3 bits of an opcode are the group code. The next 5 bits 3504 * are the command code. 3505 * Group 0: six byte commands 3506 * Group 1: ten byte commands 3507 * Group 2: ten byte commands 3508 * Group 3: reserved 3509 * Group 4: sixteen byte commands 3510 * Group 5: twelve byte commands 3511 * Group 6: vendor specific 3512 * Group 7: vendor specific 3513 */ 3514 switch((*cdb_ptr >> 5) & 0x7) { 3515 case 0: 3516 cdb_len = 6; 3517 break; 3518 case 1: 3519 case 2: 3520 cdb_len = 10; 3521 break; 3522 case 3: 3523 case 6: 3524 case 7: 3525 /* in this case, just print out the opcode */ 3526 cdb_len = 1; 3527 break; 3528 case 4: 3529 cdb_len = 16; 3530 break; 3531 case 5: 3532 cdb_len = 12; 3533 break; 3534 } 3535 3536 for (i = 0; i < cdb_len; i++) 3537 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]); 3538 3539 return; 3540 } 3541 3542 const char * 3543 scsi_status_string(struct ccb_scsiio *csio) 3544 { 3545 switch(csio->scsi_status) { 3546 case SCSI_STATUS_OK: 3547 return("OK"); 3548 case SCSI_STATUS_CHECK_COND: 3549 return("Check Condition"); 3550 case SCSI_STATUS_BUSY: 3551 return("Busy"); 3552 case SCSI_STATUS_INTERMED: 3553 return("Intermediate"); 3554 case SCSI_STATUS_INTERMED_COND_MET: 3555 return("Intermediate-Condition Met"); 3556 case SCSI_STATUS_RESERV_CONFLICT: 3557 return("Reservation Conflict"); 3558 case SCSI_STATUS_CMD_TERMINATED: 3559 return("Command Terminated"); 3560 case SCSI_STATUS_QUEUE_FULL: 3561 return("Queue Full"); 3562 case SCSI_STATUS_ACA_ACTIVE: 3563 return("ACA Active"); 3564 case SCSI_STATUS_TASK_ABORTED: 3565 return("Task Aborted"); 3566 default: { 3567 static char unkstr[64]; 3568 snprintf(unkstr, sizeof(unkstr), "Unknown %#x", 3569 csio->scsi_status); 3570 return(unkstr); 3571 } 3572 } 3573 } 3574 3575 /* 3576 * scsi_command_string() returns 0 for success and -1 for failure. 3577 */ 3578 #ifdef _KERNEL 3579 int 3580 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) 3581 #else /* !_KERNEL */ 3582 int 3583 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, 3584 struct sbuf *sb) 3585 #endif /* _KERNEL/!_KERNEL */ 3586 { 3587 struct scsi_inquiry_data *inq_data; 3588 #ifdef _KERNEL 3589 struct ccb_getdev *cgd; 3590 #endif /* _KERNEL */ 3591 3592 #ifdef _KERNEL 3593 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 3594 return(-1); 3595 /* 3596 * Get the device information. 3597 */ 3598 xpt_setup_ccb(&cgd->ccb_h, 3599 csio->ccb_h.path, 3600 CAM_PRIORITY_NORMAL); 3601 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 3602 xpt_action((union ccb *)cgd); 3603 3604 /* 3605 * If the device is unconfigured, just pretend that it is a hard 3606 * drive. scsi_op_desc() needs this. 3607 */ 3608 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 3609 cgd->inq_data.device = T_DIRECT; 3610 3611 inq_data = &cgd->inq_data; 3612 3613 #else /* !_KERNEL */ 3614 3615 inq_data = &device->inq_data; 3616 3617 #endif /* _KERNEL/!_KERNEL */ 3618 3619 sbuf_printf(sb, "%s. CDB: ", 3620 scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data)); 3621 scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb); 3622 3623 #ifdef _KERNEL 3624 xpt_free_ccb((union ccb *)cgd); 3625 #endif 3626 3627 return(0); 3628 } 3629 3630 /* 3631 * Iterate over sense descriptors. Each descriptor is passed into iter_func(). 3632 * If iter_func() returns 0, list traversal continues. If iter_func() 3633 * returns non-zero, list traversal is stopped. 3634 */ 3635 void 3636 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, 3637 int (*iter_func)(struct scsi_sense_data_desc *sense, 3638 u_int, struct scsi_sense_desc_header *, 3639 void *), void *arg) 3640 { 3641 int cur_pos; 3642 int desc_len; 3643 3644 /* 3645 * First make sure the extra length field is present. 3646 */ 3647 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) 3648 return; 3649 3650 /* 3651 * The length of data actually returned may be different than the 3652 * extra_len recorded in the structure. 3653 */ 3654 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); 3655 3656 /* 3657 * Limit this further by the extra length reported, and the maximum 3658 * allowed extra length. 3659 */ 3660 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); 3661 3662 /* 3663 * Subtract the size of the header from the descriptor length. 3664 * This is to ensure that we have at least the header left, so we 3665 * don't have to check that inside the loop. This can wind up 3666 * being a negative value. 3667 */ 3668 desc_len -= sizeof(struct scsi_sense_desc_header); 3669 3670 for (cur_pos = 0; cur_pos < desc_len;) { 3671 struct scsi_sense_desc_header *header; 3672 3673 header = (struct scsi_sense_desc_header *) 3674 &sense->sense_desc[cur_pos]; 3675 3676 /* 3677 * Check to make sure we have the entire descriptor. We 3678 * don't call iter_func() unless we do. 3679 * 3680 * Note that although cur_pos is at the beginning of the 3681 * descriptor, desc_len already has the header length 3682 * subtracted. So the comparison of the length in the 3683 * header (which does not include the header itself) to 3684 * desc_len - cur_pos is correct. 3685 */ 3686 if (header->length > (desc_len - cur_pos)) 3687 break; 3688 3689 if (iter_func(sense, sense_len, header, arg) != 0) 3690 break; 3691 3692 cur_pos += sizeof(*header) + header->length; 3693 } 3694 } 3695 3696 struct scsi_find_desc_info { 3697 uint8_t desc_type; 3698 struct scsi_sense_desc_header *header; 3699 }; 3700 3701 static int 3702 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 3703 struct scsi_sense_desc_header *header, void *arg) 3704 { 3705 struct scsi_find_desc_info *desc_info; 3706 3707 desc_info = (struct scsi_find_desc_info *)arg; 3708 3709 if (header->desc_type == desc_info->desc_type) { 3710 desc_info->header = header; 3711 3712 /* We found the descriptor, tell the iterator to stop. */ 3713 return (1); 3714 } else 3715 return (0); 3716 } 3717 3718 /* 3719 * Given a descriptor type, return a pointer to it if it is in the sense 3720 * data and not truncated. Avoiding truncating sense data will simplify 3721 * things significantly for the caller. 3722 */ 3723 uint8_t * 3724 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, 3725 uint8_t desc_type) 3726 { 3727 struct scsi_find_desc_info desc_info; 3728 3729 desc_info.desc_type = desc_type; 3730 desc_info.header = NULL; 3731 3732 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); 3733 3734 return ((uint8_t *)desc_info.header); 3735 } 3736 3737 /* 3738 * Fill in SCSI descriptor sense data with the specified parameters. 3739 */ 3740 static void 3741 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data, 3742 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3743 int sense_key, int asc, int ascq, va_list ap) 3744 { 3745 struct scsi_sense_data_desc *sense; 3746 scsi_sense_elem_type elem_type; 3747 int space, len; 3748 uint8_t *desc, *data; 3749 3750 memset(sense_data, 0, sizeof(*sense_data)); 3751 sense = (struct scsi_sense_data_desc *)sense_data; 3752 if (current_error != 0) 3753 sense->error_code = SSD_DESC_CURRENT_ERROR; 3754 else 3755 sense->error_code = SSD_DESC_DEFERRED_ERROR; 3756 sense->sense_key = sense_key; 3757 sense->add_sense_code = asc; 3758 sense->add_sense_code_qual = ascq; 3759 sense->flags = 0; 3760 3761 desc = &sense->sense_desc[0]; 3762 space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc); 3763 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3764 SSD_ELEM_NONE) { 3765 if (elem_type >= SSD_ELEM_MAX) { 3766 printf("%s: invalid sense type %d\n", __func__, 3767 elem_type); 3768 break; 3769 } 3770 len = va_arg(ap, int); 3771 data = va_arg(ap, uint8_t *); 3772 3773 switch (elem_type) { 3774 case SSD_ELEM_SKIP: 3775 break; 3776 case SSD_ELEM_DESC: 3777 if (space < len) { 3778 sense->flags |= SSDD_SDAT_OVFL; 3779 break; 3780 } 3781 bcopy(data, desc, len); 3782 desc += len; 3783 space -= len; 3784 break; 3785 case SSD_ELEM_SKS: { 3786 struct scsi_sense_sks *sks = (void *)desc; 3787 3788 if (len > sizeof(sks->sense_key_spec)) 3789 break; 3790 if (space < sizeof(*sks)) { 3791 sense->flags |= SSDD_SDAT_OVFL; 3792 break; 3793 } 3794 sks->desc_type = SSD_DESC_SKS; 3795 sks->length = sizeof(*sks) - 3796 (offsetof(struct scsi_sense_sks, length) + 1); 3797 bcopy(data, &sks->sense_key_spec, len); 3798 desc += sizeof(*sks); 3799 space -= sizeof(*sks); 3800 break; 3801 } 3802 case SSD_ELEM_COMMAND: { 3803 struct scsi_sense_command *cmd = (void *)desc; 3804 3805 if (len > sizeof(cmd->command_info)) 3806 break; 3807 if (space < sizeof(*cmd)) { 3808 sense->flags |= SSDD_SDAT_OVFL; 3809 break; 3810 } 3811 cmd->desc_type = SSD_DESC_COMMAND; 3812 cmd->length = sizeof(*cmd) - 3813 (offsetof(struct scsi_sense_command, length) + 1); 3814 bcopy(data, &cmd->command_info[ 3815 sizeof(cmd->command_info) - len], len); 3816 desc += sizeof(*cmd); 3817 space -= sizeof(*cmd); 3818 break; 3819 } 3820 case SSD_ELEM_INFO: { 3821 struct scsi_sense_info *info = (void *)desc; 3822 3823 if (len > sizeof(info->info)) 3824 break; 3825 if (space < sizeof(*info)) { 3826 sense->flags |= SSDD_SDAT_OVFL; 3827 break; 3828 } 3829 info->desc_type = SSD_DESC_INFO; 3830 info->length = sizeof(*info) - 3831 (offsetof(struct scsi_sense_info, length) + 1); 3832 info->byte2 = SSD_INFO_VALID; 3833 bcopy(data, &info->info[sizeof(info->info) - len], len); 3834 desc += sizeof(*info); 3835 space -= sizeof(*info); 3836 break; 3837 } 3838 case SSD_ELEM_FRU: { 3839 struct scsi_sense_fru *fru = (void *)desc; 3840 3841 if (len > sizeof(fru->fru)) 3842 break; 3843 if (space < sizeof(*fru)) { 3844 sense->flags |= SSDD_SDAT_OVFL; 3845 break; 3846 } 3847 fru->desc_type = SSD_DESC_FRU; 3848 fru->length = sizeof(*fru) - 3849 (offsetof(struct scsi_sense_fru, length) + 1); 3850 fru->fru = *data; 3851 desc += sizeof(*fru); 3852 space -= sizeof(*fru); 3853 break; 3854 } 3855 case SSD_ELEM_STREAM: { 3856 struct scsi_sense_stream *stream = (void *)desc; 3857 3858 if (len > sizeof(stream->byte3)) 3859 break; 3860 if (space < sizeof(*stream)) { 3861 sense->flags |= SSDD_SDAT_OVFL; 3862 break; 3863 } 3864 stream->desc_type = SSD_DESC_STREAM; 3865 stream->length = sizeof(*stream) - 3866 (offsetof(struct scsi_sense_stream, length) + 1); 3867 stream->byte3 = *data; 3868 desc += sizeof(*stream); 3869 space -= sizeof(*stream); 3870 break; 3871 } 3872 default: 3873 /* 3874 * We shouldn't get here, but if we do, do nothing. 3875 * We've already consumed the arguments above. 3876 */ 3877 break; 3878 } 3879 } 3880 sense->extra_len = desc - &sense->sense_desc[0]; 3881 *sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 + 3882 sense->extra_len; 3883 } 3884 3885 /* 3886 * Fill in SCSI fixed sense data with the specified parameters. 3887 */ 3888 static void 3889 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data, 3890 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3891 int sense_key, int asc, int ascq, va_list ap) 3892 { 3893 struct scsi_sense_data_fixed *sense; 3894 scsi_sense_elem_type elem_type; 3895 uint8_t *data; 3896 int len; 3897 3898 memset(sense_data, 0, sizeof(*sense_data)); 3899 sense = (struct scsi_sense_data_fixed *)sense_data; 3900 if (current_error != 0) 3901 sense->error_code = SSD_CURRENT_ERROR; 3902 else 3903 sense->error_code = SSD_DEFERRED_ERROR; 3904 sense->flags = sense_key & SSD_KEY; 3905 sense->extra_len = 0; 3906 if (*sense_len >= 13) { 3907 sense->add_sense_code = asc; 3908 sense->extra_len = MAX(sense->extra_len, 5); 3909 } else 3910 sense->flags |= SSD_SDAT_OVFL; 3911 if (*sense_len >= 14) { 3912 sense->add_sense_code_qual = ascq; 3913 sense->extra_len = MAX(sense->extra_len, 6); 3914 } else 3915 sense->flags |= SSD_SDAT_OVFL; 3916 3917 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3918 SSD_ELEM_NONE) { 3919 if (elem_type >= SSD_ELEM_MAX) { 3920 printf("%s: invalid sense type %d\n", __func__, 3921 elem_type); 3922 break; 3923 } 3924 len = va_arg(ap, int); 3925 data = va_arg(ap, uint8_t *); 3926 3927 switch (elem_type) { 3928 case SSD_ELEM_SKIP: 3929 break; 3930 case SSD_ELEM_SKS: 3931 if (len > sizeof(sense->sense_key_spec)) 3932 break; 3933 if (*sense_len < 18) { 3934 sense->flags |= SSD_SDAT_OVFL; 3935 break; 3936 } 3937 bcopy(data, &sense->sense_key_spec[0], len); 3938 sense->extra_len = MAX(sense->extra_len, 10); 3939 break; 3940 case SSD_ELEM_COMMAND: 3941 if (*sense_len < 12) { 3942 sense->flags |= SSD_SDAT_OVFL; 3943 break; 3944 } 3945 if (len > sizeof(sense->cmd_spec_info)) { 3946 data += len - sizeof(sense->cmd_spec_info); 3947 len = sizeof(sense->cmd_spec_info); 3948 } 3949 bcopy(data, &sense->cmd_spec_info[ 3950 sizeof(sense->cmd_spec_info) - len], len); 3951 sense->extra_len = MAX(sense->extra_len, 4); 3952 break; 3953 case SSD_ELEM_INFO: 3954 /* Set VALID bit only if no overflow. */ 3955 sense->error_code |= SSD_ERRCODE_VALID; 3956 while (len > sizeof(sense->info)) { 3957 if (data[0] != 0) 3958 sense->error_code &= ~SSD_ERRCODE_VALID; 3959 data ++; 3960 len --; 3961 } 3962 bcopy(data, &sense->info[sizeof(sense->info) - len], len); 3963 break; 3964 case SSD_ELEM_FRU: 3965 if (*sense_len < 15) { 3966 sense->flags |= SSD_SDAT_OVFL; 3967 break; 3968 } 3969 sense->fru = *data; 3970 sense->extra_len = MAX(sense->extra_len, 7); 3971 break; 3972 case SSD_ELEM_STREAM: 3973 sense->flags |= *data & 3974 (SSD_ILI | SSD_EOM | SSD_FILEMARK); 3975 break; 3976 default: 3977 3978 /* 3979 * We can't handle that in fixed format. Skip it. 3980 */ 3981 break; 3982 } 3983 } 3984 *sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 + 3985 sense->extra_len; 3986 } 3987 3988 /* 3989 * Fill in SCSI sense data with the specified parameters. This routine can 3990 * fill in either fixed or descriptor type sense data. 3991 */ 3992 void 3993 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len, 3994 scsi_sense_data_type sense_format, int current_error, 3995 int sense_key, int asc, int ascq, va_list ap) 3996 { 3997 3998 if (*sense_len > SSD_FULL_SIZE) 3999 *sense_len = SSD_FULL_SIZE; 4000 if (sense_format == SSD_TYPE_DESC) 4001 scsi_set_sense_data_desc_va(sense_data, sense_len, 4002 sense_format, current_error, sense_key, asc, ascq, ap); 4003 else 4004 scsi_set_sense_data_fixed_va(sense_data, sense_len, 4005 sense_format, current_error, sense_key, asc, ascq, ap); 4006 } 4007 4008 void 4009 scsi_set_sense_data(struct scsi_sense_data *sense_data, 4010 scsi_sense_data_type sense_format, int current_error, 4011 int sense_key, int asc, int ascq, ...) 4012 { 4013 va_list ap; 4014 u_int sense_len = SSD_FULL_SIZE; 4015 4016 va_start(ap, ascq); 4017 scsi_set_sense_data_va(sense_data, &sense_len, sense_format, 4018 current_error, sense_key, asc, ascq, ap); 4019 va_end(ap); 4020 } 4021 4022 void 4023 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len, 4024 scsi_sense_data_type sense_format, int current_error, 4025 int sense_key, int asc, int ascq, ...) 4026 { 4027 va_list ap; 4028 4029 va_start(ap, ascq); 4030 scsi_set_sense_data_va(sense_data, sense_len, sense_format, 4031 current_error, sense_key, asc, ascq, ap); 4032 va_end(ap); 4033 } 4034 4035 /* 4036 * Get sense information for three similar sense data types. 4037 */ 4038 int 4039 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, 4040 uint8_t info_type, uint64_t *info, int64_t *signed_info) 4041 { 4042 scsi_sense_data_type sense_type; 4043 4044 if (sense_len == 0) 4045 goto bailout; 4046 4047 sense_type = scsi_sense_type(sense_data); 4048 4049 switch (sense_type) { 4050 case SSD_TYPE_DESC: { 4051 struct scsi_sense_data_desc *sense; 4052 uint8_t *desc; 4053 4054 sense = (struct scsi_sense_data_desc *)sense_data; 4055 4056 desc = scsi_find_desc(sense, sense_len, info_type); 4057 if (desc == NULL) 4058 goto bailout; 4059 4060 switch (info_type) { 4061 case SSD_DESC_INFO: { 4062 struct scsi_sense_info *info_desc; 4063 4064 info_desc = (struct scsi_sense_info *)desc; 4065 4066 if ((info_desc->byte2 & SSD_INFO_VALID) == 0) 4067 goto bailout; 4068 4069 *info = scsi_8btou64(info_desc->info); 4070 if (signed_info != NULL) 4071 *signed_info = *info; 4072 break; 4073 } 4074 case SSD_DESC_COMMAND: { 4075 struct scsi_sense_command *cmd_desc; 4076 4077 cmd_desc = (struct scsi_sense_command *)desc; 4078 4079 *info = scsi_8btou64(cmd_desc->command_info); 4080 if (signed_info != NULL) 4081 *signed_info = *info; 4082 break; 4083 } 4084 case SSD_DESC_FRU: { 4085 struct scsi_sense_fru *fru_desc; 4086 4087 fru_desc = (struct scsi_sense_fru *)desc; 4088 4089 if (fru_desc->fru == 0) 4090 goto bailout; 4091 4092 *info = fru_desc->fru; 4093 if (signed_info != NULL) 4094 *signed_info = (int8_t)fru_desc->fru; 4095 break; 4096 } 4097 default: 4098 goto bailout; 4099 break; 4100 } 4101 break; 4102 } 4103 case SSD_TYPE_FIXED: { 4104 struct scsi_sense_data_fixed *sense; 4105 4106 sense = (struct scsi_sense_data_fixed *)sense_data; 4107 4108 switch (info_type) { 4109 case SSD_DESC_INFO: { 4110 uint32_t info_val; 4111 4112 if ((sense->error_code & SSD_ERRCODE_VALID) == 0) 4113 goto bailout; 4114 4115 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) 4116 goto bailout; 4117 4118 info_val = scsi_4btoul(sense->info); 4119 4120 *info = info_val; 4121 if (signed_info != NULL) 4122 *signed_info = (int32_t)info_val; 4123 break; 4124 } 4125 case SSD_DESC_COMMAND: { 4126 uint32_t cmd_val; 4127 4128 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, 4129 cmd_spec_info) == 0) 4130 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) 4131 goto bailout; 4132 4133 cmd_val = scsi_4btoul(sense->cmd_spec_info); 4134 if (cmd_val == 0) 4135 goto bailout; 4136 4137 *info = cmd_val; 4138 if (signed_info != NULL) 4139 *signed_info = (int32_t)cmd_val; 4140 break; 4141 } 4142 case SSD_DESC_FRU: 4143 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) 4144 || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) 4145 goto bailout; 4146 4147 if (sense->fru == 0) 4148 goto bailout; 4149 4150 *info = sense->fru; 4151 if (signed_info != NULL) 4152 *signed_info = (int8_t)sense->fru; 4153 break; 4154 default: 4155 goto bailout; 4156 break; 4157 } 4158 break; 4159 } 4160 default: 4161 goto bailout; 4162 break; 4163 } 4164 4165 return (0); 4166 bailout: 4167 return (1); 4168 } 4169 4170 int 4171 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) 4172 { 4173 scsi_sense_data_type sense_type; 4174 4175 if (sense_len == 0) 4176 goto bailout; 4177 4178 sense_type = scsi_sense_type(sense_data); 4179 4180 switch (sense_type) { 4181 case SSD_TYPE_DESC: { 4182 struct scsi_sense_data_desc *sense; 4183 struct scsi_sense_sks *desc; 4184 4185 sense = (struct scsi_sense_data_desc *)sense_data; 4186 4187 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, 4188 SSD_DESC_SKS); 4189 if (desc == NULL) 4190 goto bailout; 4191 4192 if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4193 goto bailout; 4194 4195 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); 4196 break; 4197 } 4198 case SSD_TYPE_FIXED: { 4199 struct scsi_sense_data_fixed *sense; 4200 4201 sense = (struct scsi_sense_data_fixed *)sense_data; 4202 4203 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) 4204 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) 4205 goto bailout; 4206 4207 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) 4208 goto bailout; 4209 4210 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); 4211 break; 4212 } 4213 default: 4214 goto bailout; 4215 break; 4216 } 4217 return (0); 4218 bailout: 4219 return (1); 4220 } 4221 4222 /* 4223 * Provide a common interface for fixed and descriptor sense to detect 4224 * whether we have block-specific sense information. It is clear by the 4225 * presence of the block descriptor in descriptor mode, but we have to 4226 * infer from the inquiry data and ILI bit in fixed mode. 4227 */ 4228 int 4229 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, 4230 struct scsi_inquiry_data *inq_data, uint8_t *block_bits) 4231 { 4232 scsi_sense_data_type sense_type; 4233 4234 if (inq_data != NULL) { 4235 switch (SID_TYPE(inq_data)) { 4236 case T_DIRECT: 4237 case T_RBC: 4238 case T_ZBC_HM: 4239 break; 4240 default: 4241 goto bailout; 4242 break; 4243 } 4244 } 4245 4246 sense_type = scsi_sense_type(sense_data); 4247 4248 switch (sense_type) { 4249 case SSD_TYPE_DESC: { 4250 struct scsi_sense_data_desc *sense; 4251 struct scsi_sense_block *block; 4252 4253 sense = (struct scsi_sense_data_desc *)sense_data; 4254 4255 block = (struct scsi_sense_block *)scsi_find_desc(sense, 4256 sense_len, SSD_DESC_BLOCK); 4257 if (block == NULL) 4258 goto bailout; 4259 4260 *block_bits = block->byte3; 4261 break; 4262 } 4263 case SSD_TYPE_FIXED: { 4264 struct scsi_sense_data_fixed *sense; 4265 4266 sense = (struct scsi_sense_data_fixed *)sense_data; 4267 4268 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4269 goto bailout; 4270 4271 *block_bits = sense->flags & SSD_ILI; 4272 break; 4273 } 4274 default: 4275 goto bailout; 4276 break; 4277 } 4278 return (0); 4279 bailout: 4280 return (1); 4281 } 4282 4283 int 4284 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, 4285 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) 4286 { 4287 scsi_sense_data_type sense_type; 4288 4289 if (inq_data != NULL) { 4290 switch (SID_TYPE(inq_data)) { 4291 case T_SEQUENTIAL: 4292 break; 4293 default: 4294 goto bailout; 4295 break; 4296 } 4297 } 4298 4299 sense_type = scsi_sense_type(sense_data); 4300 4301 switch (sense_type) { 4302 case SSD_TYPE_DESC: { 4303 struct scsi_sense_data_desc *sense; 4304 struct scsi_sense_stream *stream; 4305 4306 sense = (struct scsi_sense_data_desc *)sense_data; 4307 4308 stream = (struct scsi_sense_stream *)scsi_find_desc(sense, 4309 sense_len, SSD_DESC_STREAM); 4310 if (stream == NULL) 4311 goto bailout; 4312 4313 *stream_bits = stream->byte3; 4314 break; 4315 } 4316 case SSD_TYPE_FIXED: { 4317 struct scsi_sense_data_fixed *sense; 4318 4319 sense = (struct scsi_sense_data_fixed *)sense_data; 4320 4321 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4322 goto bailout; 4323 4324 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); 4325 break; 4326 } 4327 default: 4328 goto bailout; 4329 break; 4330 } 4331 return (0); 4332 bailout: 4333 return (1); 4334 } 4335 4336 void 4337 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4338 struct scsi_inquiry_data *inq_data, uint64_t info) 4339 { 4340 sbuf_printf(sb, "Info: %#jx", info); 4341 } 4342 4343 void 4344 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4345 struct scsi_inquiry_data *inq_data, uint64_t csi) 4346 { 4347 sbuf_printf(sb, "Command Specific Info: %#jx", csi); 4348 } 4349 4350 4351 void 4352 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) 4353 { 4354 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", 4355 (progress * 100) / SSD_SKS_PROGRESS_DENOM, 4356 progress, SSD_SKS_PROGRESS_DENOM); 4357 } 4358 4359 /* 4360 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. 4361 */ 4362 int 4363 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) 4364 { 4365 4366 switch (sense_key) { 4367 case SSD_KEY_ILLEGAL_REQUEST: { 4368 struct scsi_sense_sks_field *field; 4369 int bad_command; 4370 char tmpstr[40]; 4371 4372 /*Field Pointer*/ 4373 field = (struct scsi_sense_sks_field *)sks; 4374 4375 if (field->byte0 & SSD_SKS_FIELD_CMD) 4376 bad_command = 1; 4377 else 4378 bad_command = 0; 4379 4380 tmpstr[0] = '\0'; 4381 4382 /* Bit pointer is valid */ 4383 if (field->byte0 & SSD_SKS_BPV) 4384 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4385 field->byte0 & SSD_SKS_BIT_VALUE); 4386 4387 sbuf_printf(sb, "%s byte %d %sis invalid", 4388 bad_command ? "Command" : "Data", 4389 scsi_2btoul(field->field), tmpstr); 4390 break; 4391 } 4392 case SSD_KEY_UNIT_ATTENTION: { 4393 struct scsi_sense_sks_overflow *overflow; 4394 4395 overflow = (struct scsi_sense_sks_overflow *)sks; 4396 4397 /*UA Condition Queue Overflow*/ 4398 sbuf_printf(sb, "Unit Attention Condition Queue %s", 4399 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? 4400 "Overflowed" : "Did Not Overflow??"); 4401 break; 4402 } 4403 case SSD_KEY_RECOVERED_ERROR: 4404 case SSD_KEY_HARDWARE_ERROR: 4405 case SSD_KEY_MEDIUM_ERROR: { 4406 struct scsi_sense_sks_retry *retry; 4407 4408 /*Actual Retry Count*/ 4409 retry = (struct scsi_sense_sks_retry *)sks; 4410 4411 sbuf_printf(sb, "Actual Retry Count: %d", 4412 scsi_2btoul(retry->actual_retry_count)); 4413 break; 4414 } 4415 case SSD_KEY_NO_SENSE: 4416 case SSD_KEY_NOT_READY: { 4417 struct scsi_sense_sks_progress *progress; 4418 int progress_val; 4419 4420 /*Progress Indication*/ 4421 progress = (struct scsi_sense_sks_progress *)sks; 4422 progress_val = scsi_2btoul(progress->progress); 4423 4424 scsi_progress_sbuf(sb, progress_val); 4425 break; 4426 } 4427 case SSD_KEY_COPY_ABORTED: { 4428 struct scsi_sense_sks_segment *segment; 4429 char tmpstr[40]; 4430 4431 /*Segment Pointer*/ 4432 segment = (struct scsi_sense_sks_segment *)sks; 4433 4434 tmpstr[0] = '\0'; 4435 4436 if (segment->byte0 & SSD_SKS_SEGMENT_BPV) 4437 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4438 segment->byte0 & SSD_SKS_SEGMENT_BITPTR); 4439 4440 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & 4441 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", 4442 scsi_2btoul(segment->field), tmpstr); 4443 break; 4444 } 4445 default: 4446 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], 4447 scsi_2btoul(&sks[1])); 4448 break; 4449 } 4450 4451 return (0); 4452 } 4453 4454 void 4455 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) 4456 { 4457 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); 4458 } 4459 4460 void 4461 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits) 4462 { 4463 int need_comma; 4464 4465 need_comma = 0; 4466 /* 4467 * XXX KDM this needs more descriptive decoding. 4468 */ 4469 sbuf_printf(sb, "Stream Command Sense Data: "); 4470 if (stream_bits & SSD_DESC_STREAM_FM) { 4471 sbuf_printf(sb, "Filemark"); 4472 need_comma = 1; 4473 } 4474 4475 if (stream_bits & SSD_DESC_STREAM_EOM) { 4476 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); 4477 need_comma = 1; 4478 } 4479 4480 if (stream_bits & SSD_DESC_STREAM_ILI) 4481 sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); 4482 } 4483 4484 void 4485 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits) 4486 { 4487 4488 sbuf_printf(sb, "Block Command Sense Data: "); 4489 if (block_bits & SSD_DESC_BLOCK_ILI) 4490 sbuf_printf(sb, "ILI"); 4491 } 4492 4493 void 4494 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4495 u_int sense_len, uint8_t *cdb, int cdb_len, 4496 struct scsi_inquiry_data *inq_data, 4497 struct scsi_sense_desc_header *header) 4498 { 4499 struct scsi_sense_info *info; 4500 4501 info = (struct scsi_sense_info *)header; 4502 4503 if ((info->byte2 & SSD_INFO_VALID) == 0) 4504 return; 4505 4506 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); 4507 } 4508 4509 void 4510 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4511 u_int sense_len, uint8_t *cdb, int cdb_len, 4512 struct scsi_inquiry_data *inq_data, 4513 struct scsi_sense_desc_header *header) 4514 { 4515 struct scsi_sense_command *command; 4516 4517 command = (struct scsi_sense_command *)header; 4518 4519 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, 4520 scsi_8btou64(command->command_info)); 4521 } 4522 4523 void 4524 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4525 u_int sense_len, uint8_t *cdb, int cdb_len, 4526 struct scsi_inquiry_data *inq_data, 4527 struct scsi_sense_desc_header *header) 4528 { 4529 struct scsi_sense_sks *sks; 4530 int error_code, sense_key, asc, ascq; 4531 4532 sks = (struct scsi_sense_sks *)header; 4533 4534 if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4535 return; 4536 4537 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4538 &asc, &ascq, /*show_errors*/ 1); 4539 4540 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); 4541 } 4542 4543 void 4544 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4545 u_int sense_len, uint8_t *cdb, int cdb_len, 4546 struct scsi_inquiry_data *inq_data, 4547 struct scsi_sense_desc_header *header) 4548 { 4549 struct scsi_sense_fru *fru; 4550 4551 fru = (struct scsi_sense_fru *)header; 4552 4553 if (fru->fru == 0) 4554 return; 4555 4556 scsi_fru_sbuf(sb, (uint64_t)fru->fru); 4557 } 4558 4559 void 4560 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4561 u_int sense_len, uint8_t *cdb, int cdb_len, 4562 struct scsi_inquiry_data *inq_data, 4563 struct scsi_sense_desc_header *header) 4564 { 4565 struct scsi_sense_stream *stream; 4566 4567 stream = (struct scsi_sense_stream *)header; 4568 scsi_stream_sbuf(sb, stream->byte3); 4569 } 4570 4571 void 4572 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4573 u_int sense_len, uint8_t *cdb, int cdb_len, 4574 struct scsi_inquiry_data *inq_data, 4575 struct scsi_sense_desc_header *header) 4576 { 4577 struct scsi_sense_block *block; 4578 4579 block = (struct scsi_sense_block *)header; 4580 scsi_block_sbuf(sb, block->byte3); 4581 } 4582 4583 void 4584 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4585 u_int sense_len, uint8_t *cdb, int cdb_len, 4586 struct scsi_inquiry_data *inq_data, 4587 struct scsi_sense_desc_header *header) 4588 { 4589 struct scsi_sense_progress *progress; 4590 const char *sense_key_desc; 4591 const char *asc_desc; 4592 int progress_val; 4593 4594 progress = (struct scsi_sense_progress *)header; 4595 4596 /* 4597 * Get descriptions for the sense key, ASC, and ASCQ in the 4598 * progress descriptor. These could be different than the values 4599 * in the overall sense data. 4600 */ 4601 scsi_sense_desc(progress->sense_key, progress->add_sense_code, 4602 progress->add_sense_code_qual, inq_data, 4603 &sense_key_desc, &asc_desc); 4604 4605 progress_val = scsi_2btoul(progress->progress); 4606 4607 /* 4608 * The progress indicator is for the operation described by the 4609 * sense key, ASC, and ASCQ in the descriptor. 4610 */ 4611 sbuf_cat(sb, sense_key_desc); 4612 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, 4613 progress->add_sense_code_qual, asc_desc); 4614 scsi_progress_sbuf(sb, progress_val); 4615 } 4616 4617 void 4618 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4619 u_int sense_len, uint8_t *cdb, int cdb_len, 4620 struct scsi_inquiry_data *inq_data, 4621 struct scsi_sense_desc_header *header) 4622 { 4623 struct scsi_sense_ata_ret_desc *res; 4624 4625 res = (struct scsi_sense_ata_ret_desc *)header; 4626 4627 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ", 4628 res->status, 4629 (res->status & 0x80) ? "BSY " : "", 4630 (res->status & 0x40) ? "DRDY " : "", 4631 (res->status & 0x20) ? "DF " : "", 4632 (res->status & 0x10) ? "SERV " : "", 4633 (res->status & 0x08) ? "DRQ " : "", 4634 (res->status & 0x04) ? "CORR " : "", 4635 (res->status & 0x02) ? "IDX " : "", 4636 (res->status & 0x01) ? "ERR" : ""); 4637 if (res->status & 1) { 4638 sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ", 4639 res->error, 4640 (res->error & 0x80) ? "ICRC " : "", 4641 (res->error & 0x40) ? "UNC " : "", 4642 (res->error & 0x20) ? "MC " : "", 4643 (res->error & 0x10) ? "IDNF " : "", 4644 (res->error & 0x08) ? "MCR " : "", 4645 (res->error & 0x04) ? "ABRT " : "", 4646 (res->error & 0x02) ? "NM " : "", 4647 (res->error & 0x01) ? "ILI" : ""); 4648 } 4649 4650 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) { 4651 sbuf_printf(sb, "count: %02x%02x, ", 4652 res->count_15_8, res->count_7_0); 4653 sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ", 4654 res->lba_47_40, res->lba_39_32, res->lba_31_24, 4655 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4656 } else { 4657 sbuf_printf(sb, "count: %02x, ", res->count_7_0); 4658 sbuf_printf(sb, "LBA: %02x%02x%02x, ", 4659 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4660 } 4661 sbuf_printf(sb, "device: %02x, ", res->device); 4662 } 4663 4664 void 4665 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4666 u_int sense_len, uint8_t *cdb, int cdb_len, 4667 struct scsi_inquiry_data *inq_data, 4668 struct scsi_sense_desc_header *header) 4669 { 4670 struct scsi_sense_forwarded *forwarded; 4671 const char *sense_key_desc; 4672 const char *asc_desc; 4673 int error_code, sense_key, asc, ascq; 4674 4675 forwarded = (struct scsi_sense_forwarded *)header; 4676 scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data, 4677 forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1); 4678 scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc); 4679 4680 sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ", 4681 sense_key_desc, asc, ascq, asc_desc); 4682 } 4683 4684 /* 4685 * Generic sense descriptor printing routine. This is used when we have 4686 * not yet implemented a specific printing routine for this descriptor. 4687 */ 4688 void 4689 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4690 u_int sense_len, uint8_t *cdb, int cdb_len, 4691 struct scsi_inquiry_data *inq_data, 4692 struct scsi_sense_desc_header *header) 4693 { 4694 int i; 4695 uint8_t *buf_ptr; 4696 4697 sbuf_printf(sb, "Descriptor %#x:", header->desc_type); 4698 4699 buf_ptr = (uint8_t *)&header[1]; 4700 4701 for (i = 0; i < header->length; i++, buf_ptr++) 4702 sbuf_printf(sb, " %02x", *buf_ptr); 4703 } 4704 4705 /* 4706 * Keep this list in numeric order. This speeds the array traversal. 4707 */ 4708 struct scsi_sense_desc_printer { 4709 uint8_t desc_type; 4710 /* 4711 * The function arguments here are the superset of what is needed 4712 * to print out various different descriptors. Command and 4713 * information descriptors need inquiry data and command type. 4714 * Sense key specific descriptors need the sense key. 4715 * 4716 * The sense, cdb, and inquiry data arguments may be NULL, but the 4717 * information printed may not be fully decoded as a result. 4718 */ 4719 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, 4720 u_int sense_len, uint8_t *cdb, int cdb_len, 4721 struct scsi_inquiry_data *inq_data, 4722 struct scsi_sense_desc_header *header); 4723 } scsi_sense_printers[] = { 4724 {SSD_DESC_INFO, scsi_sense_info_sbuf}, 4725 {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, 4726 {SSD_DESC_SKS, scsi_sense_sks_sbuf}, 4727 {SSD_DESC_FRU, scsi_sense_fru_sbuf}, 4728 {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, 4729 {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, 4730 {SSD_DESC_ATA, scsi_sense_ata_sbuf}, 4731 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}, 4732 {SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf} 4733 }; 4734 4735 void 4736 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4737 u_int sense_len, uint8_t *cdb, int cdb_len, 4738 struct scsi_inquiry_data *inq_data, 4739 struct scsi_sense_desc_header *header) 4740 { 4741 u_int i; 4742 4743 for (i = 0; i < nitems(scsi_sense_printers); i++) { 4744 struct scsi_sense_desc_printer *printer; 4745 4746 printer = &scsi_sense_printers[i]; 4747 4748 /* 4749 * The list is sorted, so quit if we've passed our 4750 * descriptor number. 4751 */ 4752 if (printer->desc_type > header->desc_type) 4753 break; 4754 4755 if (printer->desc_type != header->desc_type) 4756 continue; 4757 4758 printer->print_func(sb, sense, sense_len, cdb, cdb_len, 4759 inq_data, header); 4760 4761 return; 4762 } 4763 4764 /* 4765 * No specific printing routine, so use the generic routine. 4766 */ 4767 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, 4768 inq_data, header); 4769 } 4770 4771 scsi_sense_data_type 4772 scsi_sense_type(struct scsi_sense_data *sense_data) 4773 { 4774 switch (sense_data->error_code & SSD_ERRCODE) { 4775 case SSD_DESC_CURRENT_ERROR: 4776 case SSD_DESC_DEFERRED_ERROR: 4777 return (SSD_TYPE_DESC); 4778 break; 4779 case SSD_CURRENT_ERROR: 4780 case SSD_DEFERRED_ERROR: 4781 return (SSD_TYPE_FIXED); 4782 break; 4783 default: 4784 break; 4785 } 4786 4787 return (SSD_TYPE_NONE); 4788 } 4789 4790 struct scsi_print_sense_info { 4791 struct sbuf *sb; 4792 char *path_str; 4793 uint8_t *cdb; 4794 int cdb_len; 4795 struct scsi_inquiry_data *inq_data; 4796 }; 4797 4798 static int 4799 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 4800 struct scsi_sense_desc_header *header, void *arg) 4801 { 4802 struct scsi_print_sense_info *print_info; 4803 4804 print_info = (struct scsi_print_sense_info *)arg; 4805 4806 switch (header->desc_type) { 4807 case SSD_DESC_INFO: 4808 case SSD_DESC_FRU: 4809 case SSD_DESC_COMMAND: 4810 case SSD_DESC_SKS: 4811 case SSD_DESC_BLOCK: 4812 case SSD_DESC_STREAM: 4813 /* 4814 * We have already printed these descriptors, if they are 4815 * present. 4816 */ 4817 break; 4818 default: { 4819 sbuf_printf(print_info->sb, "%s", print_info->path_str); 4820 scsi_sense_desc_sbuf(print_info->sb, 4821 (struct scsi_sense_data *)sense, sense_len, 4822 print_info->cdb, print_info->cdb_len, 4823 print_info->inq_data, header); 4824 sbuf_printf(print_info->sb, "\n"); 4825 break; 4826 } 4827 } 4828 4829 /* 4830 * Tell the iterator that we want to see more descriptors if they 4831 * are present. 4832 */ 4833 return (0); 4834 } 4835 4836 void 4837 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, 4838 struct sbuf *sb, char *path_str, 4839 struct scsi_inquiry_data *inq_data, uint8_t *cdb, 4840 int cdb_len) 4841 { 4842 int error_code, sense_key, asc, ascq; 4843 4844 sbuf_cat(sb, path_str); 4845 4846 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4847 &asc, &ascq, /*show_errors*/ 1); 4848 4849 sbuf_printf(sb, "SCSI sense: "); 4850 switch (error_code) { 4851 case SSD_DEFERRED_ERROR: 4852 case SSD_DESC_DEFERRED_ERROR: 4853 sbuf_printf(sb, "Deferred error: "); 4854 4855 /* FALLTHROUGH */ 4856 case SSD_CURRENT_ERROR: 4857 case SSD_DESC_CURRENT_ERROR: 4858 { 4859 struct scsi_sense_data_desc *desc_sense; 4860 struct scsi_print_sense_info print_info; 4861 const char *sense_key_desc; 4862 const char *asc_desc; 4863 uint8_t sks[3]; 4864 uint64_t val; 4865 uint8_t bits; 4866 4867 /* 4868 * Get descriptions for the sense key, ASC, and ASCQ. If 4869 * these aren't present in the sense data (i.e. the sense 4870 * data isn't long enough), the -1 values that 4871 * scsi_extract_sense_len() returns will yield default 4872 * or error descriptions. 4873 */ 4874 scsi_sense_desc(sense_key, asc, ascq, inq_data, 4875 &sense_key_desc, &asc_desc); 4876 4877 /* 4878 * We first print the sense key and ASC/ASCQ. 4879 */ 4880 sbuf_cat(sb, sense_key_desc); 4881 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); 4882 4883 /* 4884 * Print any block or stream device-specific information. 4885 */ 4886 if (scsi_get_block_info(sense, sense_len, inq_data, 4887 &bits) == 0 && bits != 0) { 4888 sbuf_cat(sb, path_str); 4889 scsi_block_sbuf(sb, bits); 4890 sbuf_printf(sb, "\n"); 4891 } else if (scsi_get_stream_info(sense, sense_len, inq_data, 4892 &bits) == 0 && bits != 0) { 4893 sbuf_cat(sb, path_str); 4894 scsi_stream_sbuf(sb, bits); 4895 sbuf_printf(sb, "\n"); 4896 } 4897 4898 /* 4899 * Print the info field. 4900 */ 4901 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, 4902 &val, NULL) == 0) { 4903 sbuf_cat(sb, path_str); 4904 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); 4905 sbuf_printf(sb, "\n"); 4906 } 4907 4908 /* 4909 * Print the FRU. 4910 */ 4911 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, 4912 &val, NULL) == 0) { 4913 sbuf_cat(sb, path_str); 4914 scsi_fru_sbuf(sb, val); 4915 sbuf_printf(sb, "\n"); 4916 } 4917 4918 /* 4919 * Print any command-specific information. 4920 */ 4921 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, 4922 &val, NULL) == 0) { 4923 sbuf_cat(sb, path_str); 4924 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); 4925 sbuf_printf(sb, "\n"); 4926 } 4927 4928 /* 4929 * Print out any sense-key-specific information. 4930 */ 4931 if (scsi_get_sks(sense, sense_len, sks) == 0) { 4932 sbuf_cat(sb, path_str); 4933 scsi_sks_sbuf(sb, sense_key, sks); 4934 sbuf_printf(sb, "\n"); 4935 } 4936 4937 /* 4938 * If this is fixed sense, we're done. If we have 4939 * descriptor sense, we might have more information 4940 * available. 4941 */ 4942 if (scsi_sense_type(sense) != SSD_TYPE_DESC) 4943 break; 4944 4945 desc_sense = (struct scsi_sense_data_desc *)sense; 4946 4947 print_info.sb = sb; 4948 print_info.path_str = path_str; 4949 print_info.cdb = cdb; 4950 print_info.cdb_len = cdb_len; 4951 print_info.inq_data = inq_data; 4952 4953 /* 4954 * Print any sense descriptors that we have not already printed. 4955 */ 4956 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, 4957 &print_info); 4958 break; 4959 4960 } 4961 case -1: 4962 /* 4963 * scsi_extract_sense_len() sets values to -1 if the 4964 * show_errors flag is set and they aren't present in the 4965 * sense data. This means that sense_len is 0. 4966 */ 4967 sbuf_printf(sb, "No sense data present\n"); 4968 break; 4969 default: { 4970 sbuf_printf(sb, "Error code 0x%x", error_code); 4971 if (sense->error_code & SSD_ERRCODE_VALID) { 4972 struct scsi_sense_data_fixed *fixed_sense; 4973 4974 fixed_sense = (struct scsi_sense_data_fixed *)sense; 4975 4976 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ 4977 uint32_t info; 4978 4979 info = scsi_4btoul(fixed_sense->info); 4980 4981 sbuf_printf(sb, " at block no. %d (decimal)", 4982 info); 4983 } 4984 } 4985 sbuf_printf(sb, "\n"); 4986 break; 4987 } 4988 } 4989 } 4990 4991 /* 4992 * scsi_sense_sbuf() returns 0 for success and -1 for failure. 4993 */ 4994 #ifdef _KERNEL 4995 int 4996 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, 4997 scsi_sense_string_flags flags) 4998 #else /* !_KERNEL */ 4999 int 5000 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, 5001 struct sbuf *sb, scsi_sense_string_flags flags) 5002 #endif /* _KERNEL/!_KERNEL */ 5003 { 5004 struct scsi_sense_data *sense; 5005 struct scsi_inquiry_data *inq_data; 5006 #ifdef _KERNEL 5007 struct ccb_getdev *cgd; 5008 #endif /* _KERNEL */ 5009 char path_str[64]; 5010 5011 #ifndef _KERNEL 5012 if (device == NULL) 5013 return(-1); 5014 #endif /* !_KERNEL */ 5015 if ((csio == NULL) || (sb == NULL)) 5016 return(-1); 5017 5018 /* 5019 * If the CDB is a physical address, we can't deal with it.. 5020 */ 5021 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) 5022 flags &= ~SSS_FLAG_PRINT_COMMAND; 5023 5024 #ifdef _KERNEL 5025 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); 5026 #else /* !_KERNEL */ 5027 cam_path_string(device, path_str, sizeof(path_str)); 5028 #endif /* _KERNEL/!_KERNEL */ 5029 5030 #ifdef _KERNEL 5031 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 5032 return(-1); 5033 /* 5034 * Get the device information. 5035 */ 5036 xpt_setup_ccb(&cgd->ccb_h, 5037 csio->ccb_h.path, 5038 CAM_PRIORITY_NORMAL); 5039 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 5040 xpt_action((union ccb *)cgd); 5041 5042 /* 5043 * If the device is unconfigured, just pretend that it is a hard 5044 * drive. scsi_op_desc() needs this. 5045 */ 5046 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 5047 cgd->inq_data.device = T_DIRECT; 5048 5049 inq_data = &cgd->inq_data; 5050 5051 #else /* !_KERNEL */ 5052 5053 inq_data = &device->inq_data; 5054 5055 #endif /* _KERNEL/!_KERNEL */ 5056 5057 sense = NULL; 5058 5059 if (flags & SSS_FLAG_PRINT_COMMAND) { 5060 5061 sbuf_cat(sb, path_str); 5062 5063 #ifdef _KERNEL 5064 scsi_command_string(csio, sb); 5065 #else /* !_KERNEL */ 5066 scsi_command_string(device, csio, sb); 5067 #endif /* _KERNEL/!_KERNEL */ 5068 sbuf_printf(sb, "\n"); 5069 } 5070 5071 /* 5072 * If the sense data is a physical pointer, forget it. 5073 */ 5074 if (csio->ccb_h.flags & CAM_SENSE_PTR) { 5075 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5076 #ifdef _KERNEL 5077 xpt_free_ccb((union ccb*)cgd); 5078 #endif /* _KERNEL/!_KERNEL */ 5079 return(-1); 5080 } else { 5081 /* 5082 * bcopy the pointer to avoid unaligned access 5083 * errors on finicky architectures. We don't 5084 * ensure that the sense data is pointer aligned. 5085 */ 5086 bcopy((struct scsi_sense_data **)&csio->sense_data, 5087 &sense, sizeof(struct scsi_sense_data *)); 5088 } 5089 } else { 5090 /* 5091 * If the physical sense flag is set, but the sense pointer 5092 * is not also set, we assume that the user is an idiot and 5093 * return. (Well, okay, it could be that somehow, the 5094 * entire csio is physical, but we would have probably core 5095 * dumped on one of the bogus pointer deferences above 5096 * already.) 5097 */ 5098 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5099 #ifdef _KERNEL 5100 xpt_free_ccb((union ccb*)cgd); 5101 #endif /* _KERNEL/!_KERNEL */ 5102 return(-1); 5103 } else 5104 sense = &csio->sense_data; 5105 } 5106 5107 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, 5108 path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len); 5109 5110 #ifdef _KERNEL 5111 xpt_free_ccb((union ccb*)cgd); 5112 #endif /* _KERNEL/!_KERNEL */ 5113 return(0); 5114 } 5115 5116 5117 5118 #ifdef _KERNEL 5119 char * 5120 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) 5121 #else /* !_KERNEL */ 5122 char * 5123 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, 5124 char *str, int str_len) 5125 #endif /* _KERNEL/!_KERNEL */ 5126 { 5127 struct sbuf sb; 5128 5129 sbuf_new(&sb, str, str_len, 0); 5130 5131 #ifdef _KERNEL 5132 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5133 #else /* !_KERNEL */ 5134 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5135 #endif /* _KERNEL/!_KERNEL */ 5136 5137 sbuf_finish(&sb); 5138 5139 return(sbuf_data(&sb)); 5140 } 5141 5142 #ifdef _KERNEL 5143 void 5144 scsi_sense_print(struct ccb_scsiio *csio) 5145 { 5146 struct sbuf sb; 5147 char str[512]; 5148 5149 sbuf_new(&sb, str, sizeof(str), 0); 5150 5151 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5152 5153 sbuf_finish(&sb); 5154 5155 sbuf_putbuf(&sb); 5156 } 5157 5158 #else /* !_KERNEL */ 5159 void 5160 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, 5161 FILE *ofile) 5162 { 5163 struct sbuf sb; 5164 char str[512]; 5165 5166 if ((device == NULL) || (csio == NULL) || (ofile == NULL)) 5167 return; 5168 5169 sbuf_new(&sb, str, sizeof(str), 0); 5170 5171 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5172 5173 sbuf_finish(&sb); 5174 5175 fprintf(ofile, "%s", sbuf_data(&sb)); 5176 } 5177 5178 #endif /* _KERNEL/!_KERNEL */ 5179 5180 /* 5181 * Extract basic sense information. This is backward-compatible with the 5182 * previous implementation. For new implementations, 5183 * scsi_extract_sense_len() is recommended. 5184 */ 5185 void 5186 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, 5187 int *sense_key, int *asc, int *ascq) 5188 { 5189 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, 5190 sense_key, asc, ascq, /*show_errors*/ 0); 5191 } 5192 5193 /* 5194 * Extract basic sense information from SCSI I/O CCB structure. 5195 */ 5196 int 5197 scsi_extract_sense_ccb(union ccb *ccb, 5198 int *error_code, int *sense_key, int *asc, int *ascq) 5199 { 5200 struct scsi_sense_data *sense_data; 5201 5202 /* Make sure there are some sense data we can access. */ 5203 if (ccb->ccb_h.func_code != XPT_SCSI_IO || 5204 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR || 5205 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) || 5206 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 || 5207 (ccb->ccb_h.flags & CAM_SENSE_PHYS)) 5208 return (0); 5209 5210 if (ccb->ccb_h.flags & CAM_SENSE_PTR) 5211 bcopy((struct scsi_sense_data **)&ccb->csio.sense_data, 5212 &sense_data, sizeof(struct scsi_sense_data *)); 5213 else 5214 sense_data = &ccb->csio.sense_data; 5215 scsi_extract_sense_len(sense_data, 5216 ccb->csio.sense_len - ccb->csio.sense_resid, 5217 error_code, sense_key, asc, ascq, 1); 5218 if (*error_code == -1) 5219 return (0); 5220 return (1); 5221 } 5222 5223 /* 5224 * Extract basic sense information. If show_errors is set, sense values 5225 * will be set to -1 if they are not present. 5226 */ 5227 void 5228 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, 5229 int *error_code, int *sense_key, int *asc, int *ascq, 5230 int show_errors) 5231 { 5232 /* 5233 * If we have no length, we have no sense. 5234 */ 5235 if (sense_len == 0) { 5236 if (show_errors == 0) { 5237 *error_code = 0; 5238 *sense_key = 0; 5239 *asc = 0; 5240 *ascq = 0; 5241 } else { 5242 *error_code = -1; 5243 *sense_key = -1; 5244 *asc = -1; 5245 *ascq = -1; 5246 } 5247 return; 5248 } 5249 5250 *error_code = sense_data->error_code & SSD_ERRCODE; 5251 5252 switch (*error_code) { 5253 case SSD_DESC_CURRENT_ERROR: 5254 case SSD_DESC_DEFERRED_ERROR: { 5255 struct scsi_sense_data_desc *sense; 5256 5257 sense = (struct scsi_sense_data_desc *)sense_data; 5258 5259 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) 5260 *sense_key = sense->sense_key & SSD_KEY; 5261 else 5262 *sense_key = (show_errors) ? -1 : 0; 5263 5264 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) 5265 *asc = sense->add_sense_code; 5266 else 5267 *asc = (show_errors) ? -1 : 0; 5268 5269 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) 5270 *ascq = sense->add_sense_code_qual; 5271 else 5272 *ascq = (show_errors) ? -1 : 0; 5273 break; 5274 } 5275 case SSD_CURRENT_ERROR: 5276 case SSD_DEFERRED_ERROR: 5277 default: { 5278 struct scsi_sense_data_fixed *sense; 5279 5280 sense = (struct scsi_sense_data_fixed *)sense_data; 5281 5282 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) 5283 *sense_key = sense->flags & SSD_KEY; 5284 else 5285 *sense_key = (show_errors) ? -1 : 0; 5286 5287 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) 5288 && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) 5289 *asc = sense->add_sense_code; 5290 else 5291 *asc = (show_errors) ? -1 : 0; 5292 5293 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) 5294 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) 5295 *ascq = sense->add_sense_code_qual; 5296 else 5297 *ascq = (show_errors) ? -1 : 0; 5298 break; 5299 } 5300 } 5301 } 5302 5303 int 5304 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, 5305 int show_errors) 5306 { 5307 int error_code, sense_key, asc, ascq; 5308 5309 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5310 &sense_key, &asc, &ascq, show_errors); 5311 5312 return (sense_key); 5313 } 5314 5315 int 5316 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, 5317 int show_errors) 5318 { 5319 int error_code, sense_key, asc, ascq; 5320 5321 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5322 &sense_key, &asc, &ascq, show_errors); 5323 5324 return (asc); 5325 } 5326 5327 int 5328 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, 5329 int show_errors) 5330 { 5331 int error_code, sense_key, asc, ascq; 5332 5333 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5334 &sense_key, &asc, &ascq, show_errors); 5335 5336 return (ascq); 5337 } 5338 5339 /* 5340 * This function currently requires at least 36 bytes, or 5341 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this 5342 * function needs more or less data in the future, another length should be 5343 * defined in scsi_all.h to indicate the minimum amount of data necessary 5344 * for this routine to function properly. 5345 */ 5346 void 5347 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5348 { 5349 u_int8_t type; 5350 char *dtype, *qtype; 5351 5352 type = SID_TYPE(inq_data); 5353 5354 /* 5355 * Figure out basic device type and qualifier. 5356 */ 5357 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { 5358 qtype = " (vendor-unique qualifier)"; 5359 } else { 5360 switch (SID_QUAL(inq_data)) { 5361 case SID_QUAL_LU_CONNECTED: 5362 qtype = ""; 5363 break; 5364 5365 case SID_QUAL_LU_OFFLINE: 5366 qtype = " (offline)"; 5367 break; 5368 5369 case SID_QUAL_RSVD: 5370 qtype = " (reserved qualifier)"; 5371 break; 5372 default: 5373 case SID_QUAL_BAD_LU: 5374 qtype = " (LUN not supported)"; 5375 break; 5376 } 5377 } 5378 5379 switch (type) { 5380 case T_DIRECT: 5381 dtype = "Direct Access"; 5382 break; 5383 case T_SEQUENTIAL: 5384 dtype = "Sequential Access"; 5385 break; 5386 case T_PRINTER: 5387 dtype = "Printer"; 5388 break; 5389 case T_PROCESSOR: 5390 dtype = "Processor"; 5391 break; 5392 case T_WORM: 5393 dtype = "WORM"; 5394 break; 5395 case T_CDROM: 5396 dtype = "CD-ROM"; 5397 break; 5398 case T_SCANNER: 5399 dtype = "Scanner"; 5400 break; 5401 case T_OPTICAL: 5402 dtype = "Optical"; 5403 break; 5404 case T_CHANGER: 5405 dtype = "Changer"; 5406 break; 5407 case T_COMM: 5408 dtype = "Communication"; 5409 break; 5410 case T_STORARRAY: 5411 dtype = "Storage Array"; 5412 break; 5413 case T_ENCLOSURE: 5414 dtype = "Enclosure Services"; 5415 break; 5416 case T_RBC: 5417 dtype = "Simplified Direct Access"; 5418 break; 5419 case T_OCRW: 5420 dtype = "Optical Card Read/Write"; 5421 break; 5422 case T_OSD: 5423 dtype = "Object-Based Storage"; 5424 break; 5425 case T_ADC: 5426 dtype = "Automation/Drive Interface"; 5427 break; 5428 case T_ZBC_HM: 5429 dtype = "Host Managed Zoned Block"; 5430 break; 5431 case T_NODEVICE: 5432 dtype = "Uninstalled"; 5433 break; 5434 default: 5435 dtype = "unknown"; 5436 break; 5437 } 5438 5439 scsi_print_inquiry_short_sbuf(sb, inq_data); 5440 5441 sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype); 5442 5443 if (SID_ANSI_REV(inq_data) == SCSI_REV_0) 5444 sbuf_printf(sb, "SCSI "); 5445 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) { 5446 sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data)); 5447 } else { 5448 sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2); 5449 } 5450 sbuf_printf(sb, "device%s\n", qtype); 5451 } 5452 5453 void 5454 scsi_print_inquiry(struct scsi_inquiry_data *inq_data) 5455 { 5456 struct sbuf sb; 5457 char buffer[120]; 5458 5459 sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN); 5460 scsi_print_inquiry_sbuf(&sb, inq_data); 5461 sbuf_finish(&sb); 5462 sbuf_putbuf(&sb); 5463 } 5464 5465 void 5466 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5467 { 5468 5469 sbuf_printf(sb, "<"); 5470 cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0); 5471 sbuf_printf(sb, " "); 5472 cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0); 5473 sbuf_printf(sb, " "); 5474 cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0); 5475 sbuf_printf(sb, "> "); 5476 } 5477 5478 void 5479 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data) 5480 { 5481 struct sbuf sb; 5482 char buffer[84]; 5483 5484 sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN); 5485 scsi_print_inquiry_short_sbuf(&sb, inq_data); 5486 sbuf_finish(&sb); 5487 sbuf_putbuf(&sb); 5488 } 5489 5490 /* 5491 * Table of syncrates that don't follow the "divisible by 4" 5492 * rule. This table will be expanded in future SCSI specs. 5493 */ 5494 static struct { 5495 u_int period_factor; 5496 u_int period; /* in 100ths of ns */ 5497 } scsi_syncrates[] = { 5498 { 0x08, 625 }, /* FAST-160 */ 5499 { 0x09, 1250 }, /* FAST-80 */ 5500 { 0x0a, 2500 }, /* FAST-40 40MHz */ 5501 { 0x0b, 3030 }, /* FAST-40 33MHz */ 5502 { 0x0c, 5000 } /* FAST-20 */ 5503 }; 5504 5505 /* 5506 * Return the frequency in kHz corresponding to the given 5507 * sync period factor. 5508 */ 5509 u_int 5510 scsi_calc_syncsrate(u_int period_factor) 5511 { 5512 u_int i; 5513 u_int num_syncrates; 5514 5515 /* 5516 * It's a bug if period is zero, but if it is anyway, don't 5517 * die with a divide fault- instead return something which 5518 * 'approximates' async 5519 */ 5520 if (period_factor == 0) { 5521 return (3300); 5522 } 5523 5524 num_syncrates = nitems(scsi_syncrates); 5525 /* See if the period is in the "exception" table */ 5526 for (i = 0; i < num_syncrates; i++) { 5527 5528 if (period_factor == scsi_syncrates[i].period_factor) { 5529 /* Period in kHz */ 5530 return (100000000 / scsi_syncrates[i].period); 5531 } 5532 } 5533 5534 /* 5535 * Wasn't in the table, so use the standard 5536 * 4 times conversion. 5537 */ 5538 return (10000000 / (period_factor * 4 * 10)); 5539 } 5540 5541 /* 5542 * Return the SCSI sync parameter that corresponds to 5543 * the passed in period in 10ths of ns. 5544 */ 5545 u_int 5546 scsi_calc_syncparam(u_int period) 5547 { 5548 u_int i; 5549 u_int num_syncrates; 5550 5551 if (period == 0) 5552 return (~0); /* Async */ 5553 5554 /* Adjust for exception table being in 100ths. */ 5555 period *= 10; 5556 num_syncrates = nitems(scsi_syncrates); 5557 /* See if the period is in the "exception" table */ 5558 for (i = 0; i < num_syncrates; i++) { 5559 5560 if (period <= scsi_syncrates[i].period) { 5561 /* Period in 100ths of ns */ 5562 return (scsi_syncrates[i].period_factor); 5563 } 5564 } 5565 5566 /* 5567 * Wasn't in the table, so use the standard 5568 * 1/4 period in ns conversion. 5569 */ 5570 return (period/400); 5571 } 5572 5573 int 5574 scsi_devid_is_naa_ieee_reg(uint8_t *bufp) 5575 { 5576 struct scsi_vpd_id_descriptor *descr; 5577 struct scsi_vpd_id_naa_basic *naa; 5578 int n; 5579 5580 descr = (struct scsi_vpd_id_descriptor *)bufp; 5581 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; 5582 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5583 return 0; 5584 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) 5585 return 0; 5586 n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT; 5587 if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG) 5588 return 0; 5589 return 1; 5590 } 5591 5592 int 5593 scsi_devid_is_sas_target(uint8_t *bufp) 5594 { 5595 struct scsi_vpd_id_descriptor *descr; 5596 5597 descr = (struct scsi_vpd_id_descriptor *)bufp; 5598 if (!scsi_devid_is_naa_ieee_reg(bufp)) 5599 return 0; 5600 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ 5601 return 0; 5602 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) 5603 return 0; 5604 return 1; 5605 } 5606 5607 int 5608 scsi_devid_is_lun_eui64(uint8_t *bufp) 5609 { 5610 struct scsi_vpd_id_descriptor *descr; 5611 5612 descr = (struct scsi_vpd_id_descriptor *)bufp; 5613 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5614 return 0; 5615 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64) 5616 return 0; 5617 return 1; 5618 } 5619 5620 int 5621 scsi_devid_is_lun_naa(uint8_t *bufp) 5622 { 5623 struct scsi_vpd_id_descriptor *descr; 5624 5625 descr = (struct scsi_vpd_id_descriptor *)bufp; 5626 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5627 return 0; 5628 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5629 return 0; 5630 return 1; 5631 } 5632 5633 int 5634 scsi_devid_is_lun_t10(uint8_t *bufp) 5635 { 5636 struct scsi_vpd_id_descriptor *descr; 5637 5638 descr = (struct scsi_vpd_id_descriptor *)bufp; 5639 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5640 return 0; 5641 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10) 5642 return 0; 5643 return 1; 5644 } 5645 5646 int 5647 scsi_devid_is_lun_name(uint8_t *bufp) 5648 { 5649 struct scsi_vpd_id_descriptor *descr; 5650 5651 descr = (struct scsi_vpd_id_descriptor *)bufp; 5652 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5653 return 0; 5654 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME) 5655 return 0; 5656 return 1; 5657 } 5658 5659 int 5660 scsi_devid_is_lun_md5(uint8_t *bufp) 5661 { 5662 struct scsi_vpd_id_descriptor *descr; 5663 5664 descr = (struct scsi_vpd_id_descriptor *)bufp; 5665 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5666 return 0; 5667 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID) 5668 return 0; 5669 return 1; 5670 } 5671 5672 int 5673 scsi_devid_is_lun_uuid(uint8_t *bufp) 5674 { 5675 struct scsi_vpd_id_descriptor *descr; 5676 5677 descr = (struct scsi_vpd_id_descriptor *)bufp; 5678 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5679 return 0; 5680 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID) 5681 return 0; 5682 return 1; 5683 } 5684 5685 int 5686 scsi_devid_is_port_naa(uint8_t *bufp) 5687 { 5688 struct scsi_vpd_id_descriptor *descr; 5689 5690 descr = (struct scsi_vpd_id_descriptor *)bufp; 5691 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT) 5692 return 0; 5693 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5694 return 0; 5695 return 1; 5696 } 5697 5698 struct scsi_vpd_id_descriptor * 5699 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, 5700 scsi_devid_checkfn_t ck_fn) 5701 { 5702 uint8_t *desc_buf_end; 5703 5704 desc_buf_end = (uint8_t *)desc + len; 5705 5706 for (; desc->identifier <= desc_buf_end && 5707 desc->identifier + desc->length <= desc_buf_end; 5708 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier 5709 + desc->length)) { 5710 5711 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) 5712 return (desc); 5713 } 5714 return (NULL); 5715 } 5716 5717 struct scsi_vpd_id_descriptor * 5718 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, 5719 scsi_devid_checkfn_t ck_fn) 5720 { 5721 uint32_t len; 5722 5723 if (page_len < sizeof(*id)) 5724 return (NULL); 5725 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id)); 5726 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *) 5727 id->desc_list, len, ck_fn)); 5728 } 5729 5730 int 5731 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, 5732 uint32_t valid_len) 5733 { 5734 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) { 5735 case SCSI_PROTO_FC: { 5736 struct scsi_transportid_fcp *fcp; 5737 uint64_t n_port_name; 5738 5739 fcp = (struct scsi_transportid_fcp *)hdr; 5740 5741 n_port_name = scsi_8btou64(fcp->n_port_name); 5742 5743 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name); 5744 break; 5745 } 5746 case SCSI_PROTO_SPI: { 5747 struct scsi_transportid_spi *spi; 5748 5749 spi = (struct scsi_transportid_spi *)hdr; 5750 5751 sbuf_printf(sb, "SPI address: %u,%u", 5752 scsi_2btoul(spi->scsi_addr), 5753 scsi_2btoul(spi->rel_trgt_port_id)); 5754 break; 5755 } 5756 case SCSI_PROTO_SSA: 5757 /* 5758 * XXX KDM there is no transport ID defined in SPC-4 for 5759 * SSA. 5760 */ 5761 break; 5762 case SCSI_PROTO_1394: { 5763 struct scsi_transportid_1394 *sbp; 5764 uint64_t eui64; 5765 5766 sbp = (struct scsi_transportid_1394 *)hdr; 5767 5768 eui64 = scsi_8btou64(sbp->eui64); 5769 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64); 5770 break; 5771 } 5772 case SCSI_PROTO_RDMA: { 5773 struct scsi_transportid_rdma *rdma; 5774 unsigned int i; 5775 5776 rdma = (struct scsi_transportid_rdma *)hdr; 5777 5778 sbuf_printf(sb, "RDMA address: 0x"); 5779 for (i = 0; i < sizeof(rdma->initiator_port_id); i++) 5780 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]); 5781 break; 5782 } 5783 case SCSI_PROTO_ISCSI: { 5784 uint32_t add_len, i; 5785 uint8_t *iscsi_name = NULL; 5786 int nul_found = 0; 5787 5788 sbuf_printf(sb, "iSCSI address: "); 5789 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5790 SCSI_TRN_ISCSI_FORMAT_DEVICE) { 5791 struct scsi_transportid_iscsi_device *dev; 5792 5793 dev = (struct scsi_transportid_iscsi_device *)hdr; 5794 5795 /* 5796 * Verify how much additional data we really have. 5797 */ 5798 add_len = scsi_2btoul(dev->additional_length); 5799 add_len = MIN(add_len, valid_len - 5800 __offsetof(struct scsi_transportid_iscsi_device, 5801 iscsi_name)); 5802 iscsi_name = &dev->iscsi_name[0]; 5803 5804 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5805 SCSI_TRN_ISCSI_FORMAT_PORT) { 5806 struct scsi_transportid_iscsi_port *port; 5807 5808 port = (struct scsi_transportid_iscsi_port *)hdr; 5809 5810 add_len = scsi_2btoul(port->additional_length); 5811 add_len = MIN(add_len, valid_len - 5812 __offsetof(struct scsi_transportid_iscsi_port, 5813 iscsi_name)); 5814 iscsi_name = &port->iscsi_name[0]; 5815 } else { 5816 sbuf_printf(sb, "unknown format %x", 5817 (hdr->format_protocol & 5818 SCSI_TRN_FORMAT_MASK) >> 5819 SCSI_TRN_FORMAT_SHIFT); 5820 break; 5821 } 5822 if (add_len == 0) { 5823 sbuf_printf(sb, "not enough data"); 5824 break; 5825 } 5826 /* 5827 * This is supposed to be a NUL-terminated ASCII 5828 * string, but you never know. So we're going to 5829 * check. We need to do this because there is no 5830 * sbuf equivalent of strncat(). 5831 */ 5832 for (i = 0; i < add_len; i++) { 5833 if (iscsi_name[i] == '\0') { 5834 nul_found = 1; 5835 break; 5836 } 5837 } 5838 /* 5839 * If there is a NUL in the name, we can just use 5840 * sbuf_cat(). Otherwise we need to use sbuf_bcat(). 5841 */ 5842 if (nul_found != 0) 5843 sbuf_cat(sb, iscsi_name); 5844 else 5845 sbuf_bcat(sb, iscsi_name, add_len); 5846 break; 5847 } 5848 case SCSI_PROTO_SAS: { 5849 struct scsi_transportid_sas *sas; 5850 uint64_t sas_addr; 5851 5852 sas = (struct scsi_transportid_sas *)hdr; 5853 5854 sas_addr = scsi_8btou64(sas->sas_address); 5855 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr); 5856 break; 5857 } 5858 case SCSI_PROTO_ADITP: 5859 case SCSI_PROTO_ATA: 5860 case SCSI_PROTO_UAS: 5861 /* 5862 * No Transport ID format for ADI, ATA or USB is defined in 5863 * SPC-4. 5864 */ 5865 sbuf_printf(sb, "No known Transport ID format for protocol " 5866 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5867 break; 5868 case SCSI_PROTO_SOP: { 5869 struct scsi_transportid_sop *sop; 5870 struct scsi_sop_routing_id_norm *rid; 5871 5872 sop = (struct scsi_transportid_sop *)hdr; 5873 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id; 5874 5875 /* 5876 * Note that there is no alternate format specified in SPC-4 5877 * for the PCIe routing ID, so we don't really have a way 5878 * to know whether the second byte of the routing ID is 5879 * a device and function or just a function. So we just 5880 * assume bus,device,function. 5881 */ 5882 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u", 5883 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT, 5884 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX); 5885 break; 5886 } 5887 case SCSI_PROTO_NONE: 5888 default: 5889 sbuf_printf(sb, "Unknown protocol %#x", 5890 hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5891 break; 5892 } 5893 5894 return (0); 5895 } 5896 5897 struct scsi_nv scsi_proto_map[] = { 5898 { "fcp", SCSI_PROTO_FC }, 5899 { "spi", SCSI_PROTO_SPI }, 5900 { "ssa", SCSI_PROTO_SSA }, 5901 { "sbp", SCSI_PROTO_1394 }, 5902 { "1394", SCSI_PROTO_1394 }, 5903 { "srp", SCSI_PROTO_RDMA }, 5904 { "rdma", SCSI_PROTO_RDMA }, 5905 { "iscsi", SCSI_PROTO_ISCSI }, 5906 { "iqn", SCSI_PROTO_ISCSI }, 5907 { "sas", SCSI_PROTO_SAS }, 5908 { "aditp", SCSI_PROTO_ADITP }, 5909 { "ata", SCSI_PROTO_ATA }, 5910 { "uas", SCSI_PROTO_UAS }, 5911 { "usb", SCSI_PROTO_UAS }, 5912 { "sop", SCSI_PROTO_SOP } 5913 }; 5914 5915 const char * 5916 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value) 5917 { 5918 int i; 5919 5920 for (i = 0; i < num_table_entries; i++) { 5921 if (table[i].value == value) 5922 return (table[i].name); 5923 } 5924 5925 return (NULL); 5926 } 5927 5928 /* 5929 * Given a name/value table, find a value matching the given name. 5930 * Return values: 5931 * SCSI_NV_FOUND - match found 5932 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact 5933 * SCSI_NV_NOT_FOUND - no match found 5934 */ 5935 scsi_nv_status 5936 scsi_get_nv(struct scsi_nv *table, int num_table_entries, 5937 char *name, int *table_entry, scsi_nv_flags flags) 5938 { 5939 int i, num_matches = 0; 5940 5941 for (i = 0; i < num_table_entries; i++) { 5942 size_t table_len, name_len; 5943 5944 table_len = strlen(table[i].name); 5945 name_len = strlen(name); 5946 5947 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0) 5948 && (strncasecmp(table[i].name, name, name_len) == 0)) 5949 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0) 5950 && (strncmp(table[i].name, name, name_len) == 0))) { 5951 *table_entry = i; 5952 5953 /* 5954 * Check for an exact match. If we have the same 5955 * number of characters in the table as the argument, 5956 * and we already know they're the same, we have 5957 * an exact match. 5958 */ 5959 if (table_len == name_len) 5960 return (SCSI_NV_FOUND); 5961 5962 /* 5963 * Otherwise, bump up the number of matches. We'll 5964 * see later how many we have. 5965 */ 5966 num_matches++; 5967 } 5968 } 5969 5970 if (num_matches > 1) 5971 return (SCSI_NV_AMBIGUOUS); 5972 else if (num_matches == 1) 5973 return (SCSI_NV_FOUND); 5974 else 5975 return (SCSI_NV_NOT_FOUND); 5976 } 5977 5978 /* 5979 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are 5980 * all 64-bit numbers, the code is similar. 5981 */ 5982 int 5983 scsi_parse_transportid_64bit(int proto_id, char *id_str, 5984 struct scsi_transportid_header **hdr, 5985 unsigned int *alloc_len, 5986 #ifdef _KERNEL 5987 struct malloc_type *type, int flags, 5988 #endif 5989 char *error_str, int error_str_len) 5990 { 5991 uint64_t value; 5992 char *endptr; 5993 int retval; 5994 size_t alloc_size; 5995 5996 retval = 0; 5997 5998 value = strtouq(id_str, &endptr, 0); 5999 if (*endptr != '\0') { 6000 if (error_str != NULL) { 6001 snprintf(error_str, error_str_len, "%s: error " 6002 "parsing ID %s, 64-bit number required", 6003 __func__, id_str); 6004 } 6005 retval = 1; 6006 goto bailout; 6007 } 6008 6009 switch (proto_id) { 6010 case SCSI_PROTO_FC: 6011 alloc_size = sizeof(struct scsi_transportid_fcp); 6012 break; 6013 case SCSI_PROTO_1394: 6014 alloc_size = sizeof(struct scsi_transportid_1394); 6015 break; 6016 case SCSI_PROTO_SAS: 6017 alloc_size = sizeof(struct scsi_transportid_sas); 6018 break; 6019 default: 6020 if (error_str != NULL) { 6021 snprintf(error_str, error_str_len, "%s: unsupported " 6022 "protocol %d", __func__, proto_id); 6023 } 6024 retval = 1; 6025 goto bailout; 6026 break; /* NOTREACHED */ 6027 } 6028 #ifdef _KERNEL 6029 *hdr = malloc(alloc_size, type, flags); 6030 #else /* _KERNEL */ 6031 *hdr = malloc(alloc_size); 6032 #endif /*_KERNEL */ 6033 if (*hdr == NULL) { 6034 if (error_str != NULL) { 6035 snprintf(error_str, error_str_len, "%s: unable to " 6036 "allocate %zu bytes", __func__, alloc_size); 6037 } 6038 retval = 1; 6039 goto bailout; 6040 } 6041 6042 *alloc_len = alloc_size; 6043 6044 bzero(*hdr, alloc_size); 6045 6046 switch (proto_id) { 6047 case SCSI_PROTO_FC: { 6048 struct scsi_transportid_fcp *fcp; 6049 6050 fcp = (struct scsi_transportid_fcp *)(*hdr); 6051 fcp->format_protocol = SCSI_PROTO_FC | 6052 SCSI_TRN_FCP_FORMAT_DEFAULT; 6053 scsi_u64to8b(value, fcp->n_port_name); 6054 break; 6055 } 6056 case SCSI_PROTO_1394: { 6057 struct scsi_transportid_1394 *sbp; 6058 6059 sbp = (struct scsi_transportid_1394 *)(*hdr); 6060 sbp->format_protocol = SCSI_PROTO_1394 | 6061 SCSI_TRN_1394_FORMAT_DEFAULT; 6062 scsi_u64to8b(value, sbp->eui64); 6063 break; 6064 } 6065 case SCSI_PROTO_SAS: { 6066 struct scsi_transportid_sas *sas; 6067 6068 sas = (struct scsi_transportid_sas *)(*hdr); 6069 sas->format_protocol = SCSI_PROTO_SAS | 6070 SCSI_TRN_SAS_FORMAT_DEFAULT; 6071 scsi_u64to8b(value, sas->sas_address); 6072 break; 6073 } 6074 default: 6075 break; 6076 } 6077 bailout: 6078 return (retval); 6079 } 6080 6081 /* 6082 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port 6083 */ 6084 int 6085 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, 6086 unsigned int *alloc_len, 6087 #ifdef _KERNEL 6088 struct malloc_type *type, int flags, 6089 #endif 6090 char *error_str, int error_str_len) 6091 { 6092 unsigned long scsi_addr, target_port; 6093 struct scsi_transportid_spi *spi; 6094 char *tmpstr, *endptr; 6095 int retval; 6096 6097 retval = 0; 6098 6099 tmpstr = strsep(&id_str, ","); 6100 if (tmpstr == NULL) { 6101 if (error_str != NULL) { 6102 snprintf(error_str, error_str_len, 6103 "%s: no ID found", __func__); 6104 } 6105 retval = 1; 6106 goto bailout; 6107 } 6108 scsi_addr = strtoul(tmpstr, &endptr, 0); 6109 if (*endptr != '\0') { 6110 if (error_str != NULL) { 6111 snprintf(error_str, error_str_len, "%s: error " 6112 "parsing SCSI ID %s, number required", 6113 __func__, tmpstr); 6114 } 6115 retval = 1; 6116 goto bailout; 6117 } 6118 6119 if (id_str == NULL) { 6120 if (error_str != NULL) { 6121 snprintf(error_str, error_str_len, "%s: no relative " 6122 "target port found", __func__); 6123 } 6124 retval = 1; 6125 goto bailout; 6126 } 6127 6128 target_port = strtoul(id_str, &endptr, 0); 6129 if (*endptr != '\0') { 6130 if (error_str != NULL) { 6131 snprintf(error_str, error_str_len, "%s: error " 6132 "parsing relative target port %s, number " 6133 "required", __func__, id_str); 6134 } 6135 retval = 1; 6136 goto bailout; 6137 } 6138 #ifdef _KERNEL 6139 spi = malloc(sizeof(*spi), type, flags); 6140 #else 6141 spi = malloc(sizeof(*spi)); 6142 #endif 6143 if (spi == NULL) { 6144 if (error_str != NULL) { 6145 snprintf(error_str, error_str_len, "%s: unable to " 6146 "allocate %zu bytes", __func__, 6147 sizeof(*spi)); 6148 } 6149 retval = 1; 6150 goto bailout; 6151 } 6152 *alloc_len = sizeof(*spi); 6153 bzero(spi, sizeof(*spi)); 6154 6155 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT; 6156 scsi_ulto2b(scsi_addr, spi->scsi_addr); 6157 scsi_ulto2b(target_port, spi->rel_trgt_port_id); 6158 6159 *hdr = (struct scsi_transportid_header *)spi; 6160 bailout: 6161 return (retval); 6162 } 6163 6164 /* 6165 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits, 6166 * optionally prefixed by "0x" or "0X". 6167 */ 6168 int 6169 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, 6170 unsigned int *alloc_len, 6171 #ifdef _KERNEL 6172 struct malloc_type *type, int flags, 6173 #endif 6174 char *error_str, int error_str_len) 6175 { 6176 struct scsi_transportid_rdma *rdma; 6177 int retval; 6178 size_t id_len, rdma_id_size; 6179 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN]; 6180 char *tmpstr; 6181 unsigned int i, j; 6182 6183 retval = 0; 6184 id_len = strlen(id_str); 6185 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN; 6186 6187 /* 6188 * Check the size. It needs to be either 32 or 34 characters long. 6189 */ 6190 if ((id_len != (rdma_id_size * 2)) 6191 && (id_len != ((rdma_id_size * 2) + 2))) { 6192 if (error_str != NULL) { 6193 snprintf(error_str, error_str_len, "%s: RDMA ID " 6194 "must be 32 hex digits (0x prefix " 6195 "optional), only %zu seen", __func__, id_len); 6196 } 6197 retval = 1; 6198 goto bailout; 6199 } 6200 6201 tmpstr = id_str; 6202 /* 6203 * If the user gave us 34 characters, the string needs to start 6204 * with '0x'. 6205 */ 6206 if (id_len == ((rdma_id_size * 2) + 2)) { 6207 if ((tmpstr[0] == '0') 6208 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) { 6209 tmpstr += 2; 6210 } else { 6211 if (error_str != NULL) { 6212 snprintf(error_str, error_str_len, "%s: RDMA " 6213 "ID prefix, if used, must be \"0x\", " 6214 "got %s", __func__, tmpstr); 6215 } 6216 retval = 1; 6217 goto bailout; 6218 } 6219 } 6220 bzero(rdma_id, sizeof(rdma_id)); 6221 6222 /* 6223 * Convert ASCII hex into binary bytes. There is no standard 6224 * 128-bit integer type, and so no strtou128t() routine to convert 6225 * from hex into a large integer. In the end, we're not going to 6226 * an integer, but rather to a byte array, so that and the fact 6227 * that we require the user to give us 32 hex digits simplifies the 6228 * logic. 6229 */ 6230 for (i = 0; i < (rdma_id_size * 2); i++) { 6231 int cur_shift; 6232 unsigned char c; 6233 6234 /* Increment the byte array one for every 2 hex digits */ 6235 j = i >> 1; 6236 6237 /* 6238 * The first digit in every pair is the most significant 6239 * 4 bits. The second is the least significant 4 bits. 6240 */ 6241 if ((i % 2) == 0) 6242 cur_shift = 4; 6243 else 6244 cur_shift = 0; 6245 6246 c = tmpstr[i]; 6247 /* Convert the ASCII hex character into a number */ 6248 if (isdigit(c)) 6249 c -= '0'; 6250 else if (isalpha(c)) 6251 c -= isupper(c) ? 'A' - 10 : 'a' - 10; 6252 else { 6253 if (error_str != NULL) { 6254 snprintf(error_str, error_str_len, "%s: " 6255 "RDMA ID must be hex digits, got " 6256 "invalid character %c", __func__, 6257 tmpstr[i]); 6258 } 6259 retval = 1; 6260 goto bailout; 6261 } 6262 /* 6263 * The converted number can't be less than 0; the type is 6264 * unsigned, and the subtraction logic will not give us 6265 * a negative number. So we only need to make sure that 6266 * the value is not greater than 0xf. (i.e. make sure the 6267 * user didn't give us a value like "0x12jklmno"). 6268 */ 6269 if (c > 0xf) { 6270 if (error_str != NULL) { 6271 snprintf(error_str, error_str_len, "%s: " 6272 "RDMA ID must be hex digits, got " 6273 "invalid character %c", __func__, 6274 tmpstr[i]); 6275 } 6276 retval = 1; 6277 goto bailout; 6278 } 6279 6280 rdma_id[j] |= c << cur_shift; 6281 } 6282 6283 #ifdef _KERNEL 6284 rdma = malloc(sizeof(*rdma), type, flags); 6285 #else 6286 rdma = malloc(sizeof(*rdma)); 6287 #endif 6288 if (rdma == NULL) { 6289 if (error_str != NULL) { 6290 snprintf(error_str, error_str_len, "%s: unable to " 6291 "allocate %zu bytes", __func__, 6292 sizeof(*rdma)); 6293 } 6294 retval = 1; 6295 goto bailout; 6296 } 6297 *alloc_len = sizeof(*rdma); 6298 bzero(rdma, *alloc_len); 6299 6300 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT; 6301 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN); 6302 6303 *hdr = (struct scsi_transportid_header *)rdma; 6304 6305 bailout: 6306 return (retval); 6307 } 6308 6309 /* 6310 * Parse an iSCSI name. The format is either just the name: 6311 * 6312 * iqn.2012-06.com.example:target0 6313 * or the name, separator and initiator session ID: 6314 * 6315 * iqn.2012-06.com.example:target0,i,0x123 6316 * 6317 * The separator format is exact. 6318 */ 6319 int 6320 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, 6321 unsigned int *alloc_len, 6322 #ifdef _KERNEL 6323 struct malloc_type *type, int flags, 6324 #endif 6325 char *error_str, int error_str_len) 6326 { 6327 size_t id_len, sep_len, id_size, name_len; 6328 int retval; 6329 unsigned int i, sep_pos, sep_found; 6330 const char *sep_template = ",i,0x"; 6331 const char *iqn_prefix = "iqn."; 6332 struct scsi_transportid_iscsi_device *iscsi; 6333 6334 retval = 0; 6335 sep_found = 0; 6336 6337 id_len = strlen(id_str); 6338 sep_len = strlen(sep_template); 6339 6340 /* 6341 * The separator is defined as exactly ',i,0x'. Any other commas, 6342 * or any other form, is an error. So look for a comma, and once 6343 * we find that, the next few characters must match the separator 6344 * exactly. Once we get through the separator, there should be at 6345 * least one character. 6346 */ 6347 for (i = 0, sep_pos = 0; i < id_len; i++) { 6348 if (sep_pos == 0) { 6349 if (id_str[i] == sep_template[sep_pos]) 6350 sep_pos++; 6351 6352 continue; 6353 } 6354 if (sep_pos < sep_len) { 6355 if (id_str[i] == sep_template[sep_pos]) { 6356 sep_pos++; 6357 continue; 6358 } 6359 if (error_str != NULL) { 6360 snprintf(error_str, error_str_len, "%s: " 6361 "invalid separator in iSCSI name " 6362 "\"%s\"", 6363 __func__, id_str); 6364 } 6365 retval = 1; 6366 goto bailout; 6367 } else { 6368 sep_found = 1; 6369 break; 6370 } 6371 } 6372 6373 /* 6374 * Check to see whether we have a separator but no digits after it. 6375 */ 6376 if ((sep_pos != 0) 6377 && (sep_found == 0)) { 6378 if (error_str != NULL) { 6379 snprintf(error_str, error_str_len, "%s: no digits " 6380 "found after separator in iSCSI name \"%s\"", 6381 __func__, id_str); 6382 } 6383 retval = 1; 6384 goto bailout; 6385 } 6386 6387 /* 6388 * The incoming ID string has the "iqn." prefix stripped off. We 6389 * need enough space for the base structure (the structures are the 6390 * same for the two iSCSI forms), the prefix, the ID string and a 6391 * terminating NUL. 6392 */ 6393 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1; 6394 6395 #ifdef _KERNEL 6396 iscsi = malloc(id_size, type, flags); 6397 #else 6398 iscsi = malloc(id_size); 6399 #endif 6400 if (iscsi == NULL) { 6401 if (error_str != NULL) { 6402 snprintf(error_str, error_str_len, "%s: unable to " 6403 "allocate %zu bytes", __func__, id_size); 6404 } 6405 retval = 1; 6406 goto bailout; 6407 } 6408 *alloc_len = id_size; 6409 bzero(iscsi, id_size); 6410 6411 iscsi->format_protocol = SCSI_PROTO_ISCSI; 6412 if (sep_found == 0) 6413 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE; 6414 else 6415 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT; 6416 name_len = id_size - sizeof(*iscsi); 6417 scsi_ulto2b(name_len, iscsi->additional_length); 6418 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str); 6419 6420 *hdr = (struct scsi_transportid_header *)iscsi; 6421 6422 bailout: 6423 return (retval); 6424 } 6425 6426 /* 6427 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be 6428 * of the form 'bus,device,function' or 'bus,function'. 6429 */ 6430 int 6431 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, 6432 unsigned int *alloc_len, 6433 #ifdef _KERNEL 6434 struct malloc_type *type, int flags, 6435 #endif 6436 char *error_str, int error_str_len) 6437 { 6438 struct scsi_transportid_sop *sop; 6439 unsigned long bus, device, function; 6440 char *tmpstr, *endptr; 6441 int retval, device_spec; 6442 6443 retval = 0; 6444 device_spec = 0; 6445 device = 0; 6446 6447 tmpstr = strsep(&id_str, ","); 6448 if ((tmpstr == NULL) 6449 || (*tmpstr == '\0')) { 6450 if (error_str != NULL) { 6451 snprintf(error_str, error_str_len, "%s: no ID found", 6452 __func__); 6453 } 6454 retval = 1; 6455 goto bailout; 6456 } 6457 bus = strtoul(tmpstr, &endptr, 0); 6458 if (*endptr != '\0') { 6459 if (error_str != NULL) { 6460 snprintf(error_str, error_str_len, "%s: error " 6461 "parsing PCIe bus %s, number required", 6462 __func__, tmpstr); 6463 } 6464 retval = 1; 6465 goto bailout; 6466 } 6467 if ((id_str == NULL) 6468 || (*id_str == '\0')) { 6469 if (error_str != NULL) { 6470 snprintf(error_str, error_str_len, "%s: no PCIe " 6471 "device or function found", __func__); 6472 } 6473 retval = 1; 6474 goto bailout; 6475 } 6476 tmpstr = strsep(&id_str, ","); 6477 function = strtoul(tmpstr, &endptr, 0); 6478 if (*endptr != '\0') { 6479 if (error_str != NULL) { 6480 snprintf(error_str, error_str_len, "%s: error " 6481 "parsing PCIe device/function %s, number " 6482 "required", __func__, tmpstr); 6483 } 6484 retval = 1; 6485 goto bailout; 6486 } 6487 /* 6488 * Check to see whether the user specified a third value. If so, 6489 * the second is the device. 6490 */ 6491 if (id_str != NULL) { 6492 if (*id_str == '\0') { 6493 if (error_str != NULL) { 6494 snprintf(error_str, error_str_len, "%s: " 6495 "no PCIe function found", __func__); 6496 } 6497 retval = 1; 6498 goto bailout; 6499 } 6500 device = function; 6501 device_spec = 1; 6502 function = strtoul(id_str, &endptr, 0); 6503 if (*endptr != '\0') { 6504 if (error_str != NULL) { 6505 snprintf(error_str, error_str_len, "%s: " 6506 "error parsing PCIe function %s, " 6507 "number required", __func__, id_str); 6508 } 6509 retval = 1; 6510 goto bailout; 6511 } 6512 } 6513 if (bus > SCSI_TRN_SOP_BUS_MAX) { 6514 if (error_str != NULL) { 6515 snprintf(error_str, error_str_len, "%s: bus value " 6516 "%lu greater than maximum %u", __func__, 6517 bus, SCSI_TRN_SOP_BUS_MAX); 6518 } 6519 retval = 1; 6520 goto bailout; 6521 } 6522 6523 if ((device_spec != 0) 6524 && (device > SCSI_TRN_SOP_DEV_MASK)) { 6525 if (error_str != NULL) { 6526 snprintf(error_str, error_str_len, "%s: device value " 6527 "%lu greater than maximum %u", __func__, 6528 device, SCSI_TRN_SOP_DEV_MAX); 6529 } 6530 retval = 1; 6531 goto bailout; 6532 } 6533 6534 if (((device_spec != 0) 6535 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX)) 6536 || ((device_spec == 0) 6537 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) { 6538 if (error_str != NULL) { 6539 snprintf(error_str, error_str_len, "%s: function value " 6540 "%lu greater than maximum %u", __func__, 6541 function, (device_spec == 0) ? 6542 SCSI_TRN_SOP_FUNC_ALT_MAX : 6543 SCSI_TRN_SOP_FUNC_NORM_MAX); 6544 } 6545 retval = 1; 6546 goto bailout; 6547 } 6548 6549 #ifdef _KERNEL 6550 sop = malloc(sizeof(*sop), type, flags); 6551 #else 6552 sop = malloc(sizeof(*sop)); 6553 #endif 6554 if (sop == NULL) { 6555 if (error_str != NULL) { 6556 snprintf(error_str, error_str_len, "%s: unable to " 6557 "allocate %zu bytes", __func__, sizeof(*sop)); 6558 } 6559 retval = 1; 6560 goto bailout; 6561 } 6562 *alloc_len = sizeof(*sop); 6563 bzero(sop, sizeof(*sop)); 6564 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT; 6565 if (device_spec != 0) { 6566 struct scsi_sop_routing_id_norm rid; 6567 6568 rid.bus = bus; 6569 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function; 6570 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6571 sizeof(sop->routing_id))); 6572 } else { 6573 struct scsi_sop_routing_id_alt rid; 6574 6575 rid.bus = bus; 6576 rid.function = function; 6577 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6578 sizeof(sop->routing_id))); 6579 } 6580 6581 *hdr = (struct scsi_transportid_header *)sop; 6582 bailout: 6583 return (retval); 6584 } 6585 6586 /* 6587 * transportid_str: NUL-terminated string with format: protcol,id 6588 * The ID is protocol specific. 6589 * hdr: Storage will be allocated for the transport ID. 6590 * alloc_len: The amount of memory allocated is returned here. 6591 * type: Malloc bucket (kernel only). 6592 * flags: Malloc flags (kernel only). 6593 * error_str: If non-NULL, it will contain error information (without 6594 * a terminating newline) if an error is returned. 6595 * error_str_len: Allocated length of the error string. 6596 * 6597 * Returns 0 for success, non-zero for failure. 6598 */ 6599 int 6600 scsi_parse_transportid(char *transportid_str, 6601 struct scsi_transportid_header **hdr, 6602 unsigned int *alloc_len, 6603 #ifdef _KERNEL 6604 struct malloc_type *type, int flags, 6605 #endif 6606 char *error_str, int error_str_len) 6607 { 6608 char *tmpstr; 6609 scsi_nv_status status; 6610 u_int num_proto_entries; 6611 int retval, table_entry; 6612 6613 retval = 0; 6614 table_entry = 0; 6615 6616 /* 6617 * We do allow a period as well as a comma to separate the protocol 6618 * from the ID string. This is to accommodate iSCSI names, which 6619 * start with "iqn.". 6620 */ 6621 tmpstr = strsep(&transportid_str, ",."); 6622 if (tmpstr == NULL) { 6623 if (error_str != NULL) { 6624 snprintf(error_str, error_str_len, 6625 "%s: transportid_str is NULL", __func__); 6626 } 6627 retval = 1; 6628 goto bailout; 6629 } 6630 6631 num_proto_entries = nitems(scsi_proto_map); 6632 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr, 6633 &table_entry, SCSI_NV_FLAG_IG_CASE); 6634 if (status != SCSI_NV_FOUND) { 6635 if (error_str != NULL) { 6636 snprintf(error_str, error_str_len, "%s: %s protocol " 6637 "name %s", __func__, 6638 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : 6639 "invalid", tmpstr); 6640 } 6641 retval = 1; 6642 goto bailout; 6643 } 6644 switch (scsi_proto_map[table_entry].value) { 6645 case SCSI_PROTO_FC: 6646 case SCSI_PROTO_1394: 6647 case SCSI_PROTO_SAS: 6648 retval = scsi_parse_transportid_64bit( 6649 scsi_proto_map[table_entry].value, transportid_str, hdr, 6650 alloc_len, 6651 #ifdef _KERNEL 6652 type, flags, 6653 #endif 6654 error_str, error_str_len); 6655 break; 6656 case SCSI_PROTO_SPI: 6657 retval = scsi_parse_transportid_spi(transportid_str, hdr, 6658 alloc_len, 6659 #ifdef _KERNEL 6660 type, flags, 6661 #endif 6662 error_str, error_str_len); 6663 break; 6664 case SCSI_PROTO_RDMA: 6665 retval = scsi_parse_transportid_rdma(transportid_str, hdr, 6666 alloc_len, 6667 #ifdef _KERNEL 6668 type, flags, 6669 #endif 6670 error_str, error_str_len); 6671 break; 6672 case SCSI_PROTO_ISCSI: 6673 retval = scsi_parse_transportid_iscsi(transportid_str, hdr, 6674 alloc_len, 6675 #ifdef _KERNEL 6676 type, flags, 6677 #endif 6678 error_str, error_str_len); 6679 break; 6680 case SCSI_PROTO_SOP: 6681 retval = scsi_parse_transportid_sop(transportid_str, hdr, 6682 alloc_len, 6683 #ifdef _KERNEL 6684 type, flags, 6685 #endif 6686 error_str, error_str_len); 6687 break; 6688 case SCSI_PROTO_SSA: 6689 case SCSI_PROTO_ADITP: 6690 case SCSI_PROTO_ATA: 6691 case SCSI_PROTO_UAS: 6692 case SCSI_PROTO_NONE: 6693 default: 6694 /* 6695 * There is no format defined for a Transport ID for these 6696 * protocols. So even if the user gives us something, we 6697 * have no way to turn it into a standard SCSI Transport ID. 6698 */ 6699 retval = 1; 6700 if (error_str != NULL) { 6701 snprintf(error_str, error_str_len, "%s: no Transport " 6702 "ID format exists for protocol %s", 6703 __func__, tmpstr); 6704 } 6705 goto bailout; 6706 break; /* NOTREACHED */ 6707 } 6708 bailout: 6709 return (retval); 6710 } 6711 6712 struct scsi_attrib_table_entry scsi_mam_attr_table[] = { 6713 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6714 "Remaining Capacity in Partition", 6715 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL }, 6716 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6717 "Maximum Capacity in Partition", 6718 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6719 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX, 6720 "TapeAlert Flags", 6721 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6722 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE, 6723 "Load Count", 6724 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6725 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE, 6726 "MAM Space Remaining", 6727 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6728 /*parse_str*/ NULL }, 6729 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6730 "Assigning Organization", 6731 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6732 /*parse_str*/ NULL }, 6733 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6734 "Format Density Code", 6735 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6736 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE, 6737 "Initialization Count", 6738 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6739 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE, 6740 "Volume Identifier", 6741 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6742 /*parse_str*/ NULL }, 6743 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX, 6744 "Volume Change Reference", 6745 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6746 /*parse_str*/ NULL }, 6747 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE, 6748 "Device Vendor/Serial at Last Load", 6749 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6750 /*parse_str*/ NULL }, 6751 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE, 6752 "Device Vendor/Serial at Last Load - 1", 6753 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6754 /*parse_str*/ NULL }, 6755 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE, 6756 "Device Vendor/Serial at Last Load - 2", 6757 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6758 /*parse_str*/ NULL }, 6759 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE, 6760 "Device Vendor/Serial at Last Load - 3", 6761 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6762 /*parse_str*/ NULL }, 6763 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE, 6764 "Total MB Written in Medium Life", 6765 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6766 /*parse_str*/ NULL }, 6767 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE, 6768 "Total MB Read in Medium Life", 6769 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6770 /*parse_str*/ NULL }, 6771 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE, 6772 "Total MB Written in Current/Last Load", 6773 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6774 /*parse_str*/ NULL }, 6775 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE, 6776 "Total MB Read in Current/Last Load", 6777 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6778 /*parse_str*/ NULL }, 6779 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6780 "Logical Position of First Encrypted Block", 6781 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6782 /*parse_str*/ NULL }, 6783 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6784 "Logical Position of First Unencrypted Block after First " 6785 "Encrypted Block", 6786 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6787 /*parse_str*/ NULL }, 6788 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6789 "Medium Usage History", 6790 /*suffix*/ NULL, /*to_str*/ NULL, 6791 /*parse_str*/ NULL }, 6792 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6793 "Partition Usage History", 6794 /*suffix*/ NULL, /*to_str*/ NULL, 6795 /*parse_str*/ NULL }, 6796 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE, 6797 "Medium Manufacturer", 6798 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6799 /*parse_str*/ NULL }, 6800 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE, 6801 "Medium Serial Number", 6802 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6803 /*parse_str*/ NULL }, 6804 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE, 6805 "Medium Length", 6806 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf, 6807 /*parse_str*/ NULL }, 6808 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 | 6809 SCSI_ATTR_FLAG_FP_1DIGIT, 6810 "Medium Width", 6811 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf, 6812 /*parse_str*/ NULL }, 6813 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6814 "Assigning Organization", 6815 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6816 /*parse_str*/ NULL }, 6817 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6818 "Medium Density Code", 6819 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6820 /*parse_str*/ NULL }, 6821 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE, 6822 "Medium Manufacture Date", 6823 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6824 /*parse_str*/ NULL }, 6825 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE, 6826 "MAM Capacity", 6827 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6828 /*parse_str*/ NULL }, 6829 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX, 6830 "Medium Type", 6831 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6832 /*parse_str*/ NULL }, 6833 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX, 6834 "Medium Type Information", 6835 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6836 /*parse_str*/ NULL }, 6837 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE, 6838 "Medium Serial Number", 6839 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6840 /*parse_str*/ NULL }, 6841 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE, 6842 "Application Vendor", 6843 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6844 /*parse_str*/ NULL }, 6845 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE, 6846 "Application Name", 6847 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6848 /*parse_str*/ NULL }, 6849 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE, 6850 "Application Version", 6851 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6852 /*parse_str*/ NULL }, 6853 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE, 6854 "User Medium Text Label", 6855 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6856 /*parse_str*/ NULL }, 6857 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE, 6858 "Date and Time Last Written", 6859 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6860 /*parse_str*/ NULL }, 6861 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX, 6862 "Text Localization Identifier", 6863 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6864 /*parse_str*/ NULL }, 6865 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE, 6866 "Barcode", 6867 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6868 /*parse_str*/ NULL }, 6869 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE, 6870 "Owning Host Textual Name", 6871 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6872 /*parse_str*/ NULL }, 6873 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE, 6874 "Media Pool", 6875 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6876 /*parse_str*/ NULL }, 6877 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE, 6878 "Partition User Text Label", 6879 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6880 /*parse_str*/ NULL }, 6881 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE, 6882 "Load/Unload at Partition", 6883 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6884 /*parse_str*/ NULL }, 6885 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE, 6886 "Application Format Version", 6887 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6888 /*parse_str*/ NULL }, 6889 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE, 6890 "Volume Coherency Information", 6891 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf, 6892 /*parse_str*/ NULL }, 6893 { 0x0ff1, SCSI_ATTR_FLAG_NONE, 6894 "Spectra MLM Creation", 6895 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6896 /*parse_str*/ NULL }, 6897 { 0x0ff2, SCSI_ATTR_FLAG_NONE, 6898 "Spectra MLM C3", 6899 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6900 /*parse_str*/ NULL }, 6901 { 0x0ff3, SCSI_ATTR_FLAG_NONE, 6902 "Spectra MLM RW", 6903 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6904 /*parse_str*/ NULL }, 6905 { 0x0ff4, SCSI_ATTR_FLAG_NONE, 6906 "Spectra MLM SDC List", 6907 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6908 /*parse_str*/ NULL }, 6909 { 0x0ff7, SCSI_ATTR_FLAG_NONE, 6910 "Spectra MLM Post Scan", 6911 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6912 /*parse_str*/ NULL }, 6913 { 0x0ffe, SCSI_ATTR_FLAG_NONE, 6914 "Spectra MLM Checksum", 6915 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6916 /*parse_str*/ NULL }, 6917 { 0x17f1, SCSI_ATTR_FLAG_NONE, 6918 "Spectra MLM Creation", 6919 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6920 /*parse_str*/ NULL }, 6921 { 0x17f2, SCSI_ATTR_FLAG_NONE, 6922 "Spectra MLM C3", 6923 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6924 /*parse_str*/ NULL }, 6925 { 0x17f3, SCSI_ATTR_FLAG_NONE, 6926 "Spectra MLM RW", 6927 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6928 /*parse_str*/ NULL }, 6929 { 0x17f4, SCSI_ATTR_FLAG_NONE, 6930 "Spectra MLM SDC List", 6931 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6932 /*parse_str*/ NULL }, 6933 { 0x17f7, SCSI_ATTR_FLAG_NONE, 6934 "Spectra MLM Post Scan", 6935 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6936 /*parse_str*/ NULL }, 6937 { 0x17ff, SCSI_ATTR_FLAG_NONE, 6938 "Spectra MLM Checksum", 6939 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6940 /*parse_str*/ NULL }, 6941 }; 6942 6943 /* 6944 * Print out Volume Coherency Information (Attribute 0x080c). 6945 * This field has two variable length members, including one at the 6946 * beginning, so it isn't practical to have a fixed structure definition. 6947 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25, 6948 * 2013. 6949 */ 6950 int 6951 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 6952 uint32_t valid_len, uint32_t flags, 6953 uint32_t output_flags, char *error_str, 6954 int error_str_len) 6955 { 6956 size_t avail_len; 6957 uint32_t field_size; 6958 uint64_t tmp_val; 6959 uint8_t *cur_ptr; 6960 int retval; 6961 int vcr_len, as_len; 6962 6963 retval = 0; 6964 tmp_val = 0; 6965 6966 field_size = scsi_2btoul(hdr->length); 6967 avail_len = valid_len - sizeof(*hdr); 6968 if (field_size > avail_len) { 6969 if (error_str != NULL) { 6970 snprintf(error_str, error_str_len, "Available " 6971 "length of attribute ID 0x%.4x %zu < field " 6972 "length %u", scsi_2btoul(hdr->id), avail_len, 6973 field_size); 6974 } 6975 retval = 1; 6976 goto bailout; 6977 } else if (field_size == 0) { 6978 /* 6979 * It isn't clear from the spec whether a field length of 6980 * 0 is invalid here. It probably is, but be lenient here 6981 * to avoid inconveniencing the user. 6982 */ 6983 goto bailout; 6984 } 6985 cur_ptr = hdr->attribute; 6986 vcr_len = *cur_ptr; 6987 cur_ptr++; 6988 6989 sbuf_printf(sb, "\n\tVolume Change Reference Value:"); 6990 6991 switch (vcr_len) { 6992 case 0: 6993 if (error_str != NULL) { 6994 snprintf(error_str, error_str_len, "Volume Change " 6995 "Reference value has length of 0"); 6996 } 6997 retval = 1; 6998 goto bailout; 6999 break; /*NOTREACHED*/ 7000 case 1: 7001 tmp_val = *cur_ptr; 7002 break; 7003 case 2: 7004 tmp_val = scsi_2btoul(cur_ptr); 7005 break; 7006 case 3: 7007 tmp_val = scsi_3btoul(cur_ptr); 7008 break; 7009 case 4: 7010 tmp_val = scsi_4btoul(cur_ptr); 7011 break; 7012 case 8: 7013 tmp_val = scsi_8btou64(cur_ptr); 7014 break; 7015 default: 7016 sbuf_printf(sb, "\n"); 7017 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0); 7018 break; 7019 } 7020 if (vcr_len <= 8) 7021 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val); 7022 7023 cur_ptr += vcr_len; 7024 tmp_val = scsi_8btou64(cur_ptr); 7025 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val); 7026 7027 cur_ptr += sizeof(tmp_val); 7028 tmp_val = scsi_8btou64(cur_ptr); 7029 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n", 7030 (uintmax_t)tmp_val); 7031 7032 /* 7033 * Figure out how long the Application Client Specific Information 7034 * is and produce a hexdump. 7035 */ 7036 cur_ptr += sizeof(tmp_val); 7037 as_len = scsi_2btoul(cur_ptr); 7038 cur_ptr += sizeof(uint16_t); 7039 sbuf_printf(sb, "\tApplication Client Specific Information: "); 7040 if (((as_len == SCSI_LTFS_VER0_LEN) 7041 || (as_len == SCSI_LTFS_VER1_LEN)) 7042 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) { 7043 sbuf_printf(sb, "LTFS\n"); 7044 cur_ptr += SCSI_LTFS_STR_LEN + 1; 7045 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0') 7046 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0'; 7047 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr); 7048 cur_ptr += SCSI_LTFS_UUID_LEN + 1; 7049 /* XXX KDM check the length */ 7050 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr); 7051 } else { 7052 sbuf_printf(sb, "Unknown\n"); 7053 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0); 7054 } 7055 7056 bailout: 7057 return (retval); 7058 } 7059 7060 int 7061 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7062 uint32_t valid_len, uint32_t flags, 7063 uint32_t output_flags, char *error_str, 7064 int error_str_len) 7065 { 7066 size_t avail_len; 7067 uint32_t field_size; 7068 struct scsi_attrib_vendser *vendser; 7069 cam_strvis_flags strvis_flags; 7070 int retval = 0; 7071 7072 field_size = scsi_2btoul(hdr->length); 7073 avail_len = valid_len - sizeof(*hdr); 7074 if (field_size > avail_len) { 7075 if (error_str != NULL) { 7076 snprintf(error_str, error_str_len, "Available " 7077 "length of attribute ID 0x%.4x %zu < field " 7078 "length %u", scsi_2btoul(hdr->id), avail_len, 7079 field_size); 7080 } 7081 retval = 1; 7082 goto bailout; 7083 } else if (field_size == 0) { 7084 /* 7085 * A field size of 0 doesn't make sense here. The device 7086 * can at least give you the vendor ID, even if it can't 7087 * give you the serial number. 7088 */ 7089 if (error_str != NULL) { 7090 snprintf(error_str, error_str_len, "The length of " 7091 "attribute ID 0x%.4x is 0", 7092 scsi_2btoul(hdr->id)); 7093 } 7094 retval = 1; 7095 goto bailout; 7096 } 7097 vendser = (struct scsi_attrib_vendser *)hdr->attribute; 7098 7099 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7100 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7101 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7102 break; 7103 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7104 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7105 break; 7106 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7107 default: 7108 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7109 break;; 7110 } 7111 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor), 7112 strvis_flags); 7113 sbuf_putc(sb, ' '); 7114 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num), 7115 strvis_flags); 7116 bailout: 7117 return (retval); 7118 } 7119 7120 int 7121 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7122 uint32_t valid_len, uint32_t flags, 7123 uint32_t output_flags, char *error_str, 7124 int error_str_len) 7125 { 7126 uint32_t field_size; 7127 ssize_t avail_len; 7128 uint32_t print_len; 7129 uint8_t *num_ptr; 7130 int retval = 0; 7131 7132 field_size = scsi_2btoul(hdr->length); 7133 avail_len = valid_len - sizeof(*hdr); 7134 print_len = MIN(avail_len, field_size); 7135 num_ptr = hdr->attribute; 7136 7137 if (print_len > 0) { 7138 sbuf_printf(sb, "\n"); 7139 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0); 7140 } 7141 7142 return (retval); 7143 } 7144 7145 int 7146 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7147 uint32_t valid_len, uint32_t flags, 7148 uint32_t output_flags, char *error_str, 7149 int error_str_len) 7150 { 7151 uint64_t print_number; 7152 size_t avail_len; 7153 uint32_t number_size; 7154 int retval = 0; 7155 7156 number_size = scsi_2btoul(hdr->length); 7157 7158 avail_len = valid_len - sizeof(*hdr); 7159 if (avail_len < number_size) { 7160 if (error_str != NULL) { 7161 snprintf(error_str, error_str_len, "Available " 7162 "length of attribute ID 0x%.4x %zu < field " 7163 "length %u", scsi_2btoul(hdr->id), avail_len, 7164 number_size); 7165 } 7166 retval = 1; 7167 goto bailout; 7168 } 7169 7170 switch (number_size) { 7171 case 0: 7172 /* 7173 * We don't treat this as an error, since there may be 7174 * scenarios where a device reports a field but then gives 7175 * a length of 0. See the note in scsi_attrib_ascii_sbuf(). 7176 */ 7177 goto bailout; 7178 break; /*NOTREACHED*/ 7179 case 1: 7180 print_number = hdr->attribute[0]; 7181 break; 7182 case 2: 7183 print_number = scsi_2btoul(hdr->attribute); 7184 break; 7185 case 3: 7186 print_number = scsi_3btoul(hdr->attribute); 7187 break; 7188 case 4: 7189 print_number = scsi_4btoul(hdr->attribute); 7190 break; 7191 case 8: 7192 print_number = scsi_8btou64(hdr->attribute); 7193 break; 7194 default: 7195 /* 7196 * If we wind up here, the number is too big to print 7197 * normally, so just do a hexdump. 7198 */ 7199 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7200 flags, output_flags, 7201 error_str, error_str_len); 7202 goto bailout; 7203 break; 7204 } 7205 7206 if (flags & SCSI_ATTR_FLAG_FP) { 7207 #ifndef _KERNEL 7208 long double num_float; 7209 7210 num_float = (long double)print_number; 7211 7212 if (flags & SCSI_ATTR_FLAG_DIV_10) 7213 num_float /= 10; 7214 7215 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ? 7216 1 : 0, num_float); 7217 #else /* _KERNEL */ 7218 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ? 7219 (print_number / 10) : print_number); 7220 #endif /* _KERNEL */ 7221 } else if (flags & SCSI_ATTR_FLAG_HEX) { 7222 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number); 7223 } else 7224 sbuf_printf(sb, "%ju", (uintmax_t)print_number); 7225 7226 bailout: 7227 return (retval); 7228 } 7229 7230 int 7231 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7232 uint32_t valid_len, uint32_t flags, 7233 uint32_t output_flags, char *error_str, 7234 int error_str_len) 7235 { 7236 size_t avail_len; 7237 uint32_t field_size, print_size; 7238 int retval = 0; 7239 7240 avail_len = valid_len - sizeof(*hdr); 7241 field_size = scsi_2btoul(hdr->length); 7242 print_size = MIN(avail_len, field_size); 7243 7244 if (print_size > 0) { 7245 cam_strvis_flags strvis_flags; 7246 7247 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7248 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7249 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7250 break; 7251 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7252 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7253 break; 7254 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7255 default: 7256 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7257 break; 7258 } 7259 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags); 7260 } else if (avail_len < field_size) { 7261 /* 7262 * We only report an error if the user didn't allocate 7263 * enough space to hold the full value of this field. If 7264 * the field length is 0, that is allowed by the spec. 7265 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER 7266 * "This attribute indicates the current volume identifier 7267 * (see SMC-3) of the medium. If the device server supports 7268 * this attribute but does not have access to the volume 7269 * identifier, the device server shall report this attribute 7270 * with an attribute length value of zero." 7271 */ 7272 if (error_str != NULL) { 7273 snprintf(error_str, error_str_len, "Available " 7274 "length of attribute ID 0x%.4x %zu < field " 7275 "length %u", scsi_2btoul(hdr->id), avail_len, 7276 field_size); 7277 } 7278 retval = 1; 7279 } 7280 7281 return (retval); 7282 } 7283 7284 int 7285 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7286 uint32_t valid_len, uint32_t flags, 7287 uint32_t output_flags, char *error_str, 7288 int error_str_len) 7289 { 7290 size_t avail_len; 7291 uint32_t field_size, print_size; 7292 int retval = 0; 7293 int esc_text = 1; 7294 7295 avail_len = valid_len - sizeof(*hdr); 7296 field_size = scsi_2btoul(hdr->length); 7297 print_size = MIN(avail_len, field_size); 7298 7299 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) == 7300 SCSI_ATTR_OUTPUT_TEXT_RAW) 7301 esc_text = 0; 7302 7303 if (print_size > 0) { 7304 uint32_t i; 7305 7306 for (i = 0; i < print_size; i++) { 7307 if (hdr->attribute[i] == '\0') 7308 continue; 7309 else if (((unsigned char)hdr->attribute[i] < 0x80) 7310 || (esc_text == 0)) 7311 sbuf_putc(sb, hdr->attribute[i]); 7312 else 7313 sbuf_printf(sb, "%%%02x", 7314 (unsigned char)hdr->attribute[i]); 7315 } 7316 } else if (avail_len < field_size) { 7317 /* 7318 * We only report an error if the user didn't allocate 7319 * enough space to hold the full value of this field. 7320 */ 7321 if (error_str != NULL) { 7322 snprintf(error_str, error_str_len, "Available " 7323 "length of attribute ID 0x%.4x %zu < field " 7324 "length %u", scsi_2btoul(hdr->id), avail_len, 7325 field_size); 7326 } 7327 retval = 1; 7328 } 7329 7330 return (retval); 7331 } 7332 7333 struct scsi_attrib_table_entry * 7334 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table, 7335 size_t num_table_entries, uint32_t id) 7336 { 7337 uint32_t i; 7338 7339 for (i = 0; i < num_table_entries; i++) { 7340 if (table[i].id == id) 7341 return (&table[i]); 7342 } 7343 7344 return (NULL); 7345 } 7346 7347 struct scsi_attrib_table_entry * 7348 scsi_get_attrib_entry(uint32_t id) 7349 { 7350 return (scsi_find_attrib_entry(scsi_mam_attr_table, 7351 nitems(scsi_mam_attr_table), id)); 7352 } 7353 7354 int 7355 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, 7356 struct scsi_mam_attribute_header *hdr, uint32_t output_flags, 7357 char *error_str, size_t error_str_len) 7358 { 7359 int retval; 7360 7361 switch (hdr->byte2 & SMA_FORMAT_MASK) { 7362 case SMA_FORMAT_ASCII: 7363 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len, 7364 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len); 7365 break; 7366 case SMA_FORMAT_BINARY: 7367 if (scsi_2btoul(hdr->length) <= 8) 7368 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len, 7369 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7370 error_str_len); 7371 else 7372 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7373 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7374 error_str_len); 7375 break; 7376 case SMA_FORMAT_TEXT: 7377 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len, 7378 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7379 error_str_len); 7380 break; 7381 default: 7382 if (error_str != NULL) { 7383 snprintf(error_str, error_str_len, "Unknown attribute " 7384 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK); 7385 } 7386 retval = 1; 7387 goto bailout; 7388 break; /*NOTREACHED*/ 7389 } 7390 7391 sbuf_trim(sb); 7392 7393 bailout: 7394 7395 return (retval); 7396 } 7397 7398 void 7399 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, 7400 struct scsi_mam_attribute_header *hdr, 7401 uint32_t valid_len, const char *desc) 7402 { 7403 int need_space = 0; 7404 uint32_t len; 7405 uint32_t id; 7406 7407 /* 7408 * We can't do anything if we don't have enough valid data for the 7409 * header. 7410 */ 7411 if (valid_len < sizeof(*hdr)) 7412 return; 7413 7414 id = scsi_2btoul(hdr->id); 7415 /* 7416 * Note that we print out the value of the attribute listed in the 7417 * header, regardless of whether we actually got that many bytes 7418 * back from the device through the controller. A truncated result 7419 * could be the result of a failure to ask for enough data; the 7420 * header indicates how many bytes are allocated for this attribute 7421 * in the MAM. 7422 */ 7423 len = scsi_2btoul(hdr->length); 7424 7425 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) == 7426 SCSI_ATTR_OUTPUT_FIELD_NONE) 7427 return; 7428 7429 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC) 7430 && (desc != NULL)) { 7431 sbuf_printf(sb, "%s", desc); 7432 need_space = 1; 7433 } 7434 7435 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) { 7436 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id); 7437 need_space = 0; 7438 } 7439 7440 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) { 7441 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len); 7442 need_space = 0; 7443 } 7444 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) { 7445 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "", 7446 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW"); 7447 } 7448 sbuf_printf(sb, ": "); 7449 } 7450 7451 int 7452 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7453 uint32_t valid_len, struct scsi_attrib_table_entry *user_table, 7454 size_t num_user_entries, int prefer_user_table, 7455 uint32_t output_flags, char *error_str, int error_str_len) 7456 { 7457 int retval; 7458 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL; 7459 struct scsi_attrib_table_entry *entry = NULL; 7460 size_t table1_size = 0, table2_size = 0; 7461 uint32_t id; 7462 7463 retval = 0; 7464 7465 if (valid_len < sizeof(*hdr)) { 7466 retval = 1; 7467 goto bailout; 7468 } 7469 7470 id = scsi_2btoul(hdr->id); 7471 7472 if (user_table != NULL) { 7473 if (prefer_user_table != 0) { 7474 table1 = user_table; 7475 table1_size = num_user_entries; 7476 table2 = scsi_mam_attr_table; 7477 table2_size = nitems(scsi_mam_attr_table); 7478 } else { 7479 table1 = scsi_mam_attr_table; 7480 table1_size = nitems(scsi_mam_attr_table); 7481 table2 = user_table; 7482 table2_size = num_user_entries; 7483 } 7484 } else { 7485 table1 = scsi_mam_attr_table; 7486 table1_size = nitems(scsi_mam_attr_table); 7487 } 7488 7489 entry = scsi_find_attrib_entry(table1, table1_size, id); 7490 if (entry != NULL) { 7491 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, 7492 entry->desc); 7493 if (entry->to_str == NULL) 7494 goto print_default; 7495 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7496 output_flags, error_str, error_str_len); 7497 goto bailout; 7498 } 7499 if (table2 != NULL) { 7500 entry = scsi_find_attrib_entry(table2, table2_size, id); 7501 if (entry != NULL) { 7502 if (entry->to_str == NULL) 7503 goto print_default; 7504 7505 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, 7506 valid_len, entry->desc); 7507 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7508 output_flags, error_str, 7509 error_str_len); 7510 goto bailout; 7511 } 7512 } 7513 7514 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL); 7515 7516 print_default: 7517 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags, 7518 error_str, error_str_len); 7519 bailout: 7520 if (retval == 0) { 7521 if ((entry != NULL) 7522 && (entry->suffix != NULL)) 7523 sbuf_printf(sb, " %s", entry->suffix); 7524 7525 sbuf_trim(sb); 7526 sbuf_printf(sb, "\n"); 7527 } 7528 7529 return (retval); 7530 } 7531 7532 void 7533 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, 7534 void (*cbfcnp)(struct cam_periph *, union ccb *), 7535 u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout) 7536 { 7537 struct scsi_test_unit_ready *scsi_cmd; 7538 7539 cam_fill_csio(csio, 7540 retries, 7541 cbfcnp, 7542 CAM_DIR_NONE, 7543 tag_action, 7544 /*data_ptr*/NULL, 7545 /*dxfer_len*/0, 7546 sense_len, 7547 sizeof(*scsi_cmd), 7548 timeout); 7549 7550 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; 7551 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7552 scsi_cmd->opcode = TEST_UNIT_READY; 7553 } 7554 7555 void 7556 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, 7557 void (*cbfcnp)(struct cam_periph *, union ccb *), 7558 void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, 7559 u_int8_t sense_len, u_int32_t timeout) 7560 { 7561 struct scsi_request_sense *scsi_cmd; 7562 7563 cam_fill_csio(csio, 7564 retries, 7565 cbfcnp, 7566 CAM_DIR_IN, 7567 tag_action, 7568 data_ptr, 7569 dxfer_len, 7570 sense_len, 7571 sizeof(*scsi_cmd), 7572 timeout); 7573 7574 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; 7575 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7576 scsi_cmd->opcode = REQUEST_SENSE; 7577 scsi_cmd->length = dxfer_len; 7578 } 7579 7580 void 7581 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, 7582 void (*cbfcnp)(struct cam_periph *, union ccb *), 7583 u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, 7584 int evpd, u_int8_t page_code, u_int8_t sense_len, 7585 u_int32_t timeout) 7586 { 7587 struct scsi_inquiry *scsi_cmd; 7588 7589 cam_fill_csio(csio, 7590 retries, 7591 cbfcnp, 7592 /*flags*/CAM_DIR_IN, 7593 tag_action, 7594 /*data_ptr*/inq_buf, 7595 /*dxfer_len*/inq_len, 7596 sense_len, 7597 sizeof(*scsi_cmd), 7598 timeout); 7599 7600 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; 7601 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7602 scsi_cmd->opcode = INQUIRY; 7603 if (evpd) { 7604 scsi_cmd->byte2 |= SI_EVPD; 7605 scsi_cmd->page_code = page_code; 7606 } 7607 scsi_ulto2b(inq_len, scsi_cmd->length); 7608 } 7609 7610 void 7611 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries, 7612 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7613 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7614 uint8_t sense_len, uint32_t timeout) 7615 { 7616 7617 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7618 pc, page, 0, param_buf, param_len, 0, sense_len, timeout); 7619 } 7620 7621 void 7622 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries, 7623 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7624 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7625 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout) 7626 { 7627 7628 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7629 pc, page, 0, param_buf, param_len, minimum_cmd_size, 7630 sense_len, timeout); 7631 } 7632 7633 void 7634 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries, 7635 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7636 int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf, 7637 uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, 7638 uint32_t timeout) 7639 { 7640 u_int8_t cdb_len; 7641 7642 /* 7643 * Use the smallest possible command to perform the operation. 7644 */ 7645 if ((param_len < 256) 7646 && (minimum_cmd_size < 10)) { 7647 /* 7648 * We can fit in a 6 byte cdb. 7649 */ 7650 struct scsi_mode_sense_6 *scsi_cmd; 7651 7652 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; 7653 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7654 scsi_cmd->opcode = MODE_SENSE_6; 7655 if (dbd != 0) 7656 scsi_cmd->byte2 |= SMS_DBD; 7657 scsi_cmd->page = pc | page; 7658 scsi_cmd->subpage = subpage; 7659 scsi_cmd->length = param_len; 7660 cdb_len = sizeof(*scsi_cmd); 7661 } else { 7662 /* 7663 * Need a 10 byte cdb. 7664 */ 7665 struct scsi_mode_sense_10 *scsi_cmd; 7666 7667 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; 7668 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7669 scsi_cmd->opcode = MODE_SENSE_10; 7670 if (dbd != 0) 7671 scsi_cmd->byte2 |= SMS_DBD; 7672 scsi_cmd->page = pc | page; 7673 scsi_cmd->subpage = subpage; 7674 scsi_ulto2b(param_len, scsi_cmd->length); 7675 cdb_len = sizeof(*scsi_cmd); 7676 } 7677 cam_fill_csio(csio, 7678 retries, 7679 cbfcnp, 7680 CAM_DIR_IN, 7681 tag_action, 7682 param_buf, 7683 param_len, 7684 sense_len, 7685 cdb_len, 7686 timeout); 7687 } 7688 7689 void 7690 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, 7691 void (*cbfcnp)(struct cam_periph *, union ccb *), 7692 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7693 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7694 u_int32_t timeout) 7695 { 7696 scsi_mode_select_len(csio, retries, cbfcnp, tag_action, 7697 scsi_page_fmt, save_pages, param_buf, 7698 param_len, 0, sense_len, timeout); 7699 } 7700 7701 void 7702 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, 7703 void (*cbfcnp)(struct cam_periph *, union ccb *), 7704 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7705 u_int8_t *param_buf, u_int32_t param_len, 7706 int minimum_cmd_size, u_int8_t sense_len, 7707 u_int32_t timeout) 7708 { 7709 u_int8_t cdb_len; 7710 7711 /* 7712 * Use the smallest possible command to perform the operation. 7713 */ 7714 if ((param_len < 256) 7715 && (minimum_cmd_size < 10)) { 7716 /* 7717 * We can fit in a 6 byte cdb. 7718 */ 7719 struct scsi_mode_select_6 *scsi_cmd; 7720 7721 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; 7722 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7723 scsi_cmd->opcode = MODE_SELECT_6; 7724 if (scsi_page_fmt != 0) 7725 scsi_cmd->byte2 |= SMS_PF; 7726 if (save_pages != 0) 7727 scsi_cmd->byte2 |= SMS_SP; 7728 scsi_cmd->length = param_len; 7729 cdb_len = sizeof(*scsi_cmd); 7730 } else { 7731 /* 7732 * Need a 10 byte cdb. 7733 */ 7734 struct scsi_mode_select_10 *scsi_cmd; 7735 7736 scsi_cmd = 7737 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; 7738 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7739 scsi_cmd->opcode = MODE_SELECT_10; 7740 if (scsi_page_fmt != 0) 7741 scsi_cmd->byte2 |= SMS_PF; 7742 if (save_pages != 0) 7743 scsi_cmd->byte2 |= SMS_SP; 7744 scsi_ulto2b(param_len, scsi_cmd->length); 7745 cdb_len = sizeof(*scsi_cmd); 7746 } 7747 cam_fill_csio(csio, 7748 retries, 7749 cbfcnp, 7750 CAM_DIR_OUT, 7751 tag_action, 7752 param_buf, 7753 param_len, 7754 sense_len, 7755 cdb_len, 7756 timeout); 7757 } 7758 7759 void 7760 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, 7761 void (*cbfcnp)(struct cam_periph *, union ccb *), 7762 u_int8_t tag_action, u_int8_t page_code, u_int8_t page, 7763 int save_pages, int ppc, u_int32_t paramptr, 7764 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7765 u_int32_t timeout) 7766 { 7767 struct scsi_log_sense *scsi_cmd; 7768 u_int8_t cdb_len; 7769 7770 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; 7771 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7772 scsi_cmd->opcode = LOG_SENSE; 7773 scsi_cmd->page = page_code | page; 7774 if (save_pages != 0) 7775 scsi_cmd->byte2 |= SLS_SP; 7776 if (ppc != 0) 7777 scsi_cmd->byte2 |= SLS_PPC; 7778 scsi_ulto2b(paramptr, scsi_cmd->paramptr); 7779 scsi_ulto2b(param_len, scsi_cmd->length); 7780 cdb_len = sizeof(*scsi_cmd); 7781 7782 cam_fill_csio(csio, 7783 retries, 7784 cbfcnp, 7785 /*flags*/CAM_DIR_IN, 7786 tag_action, 7787 /*data_ptr*/param_buf, 7788 /*dxfer_len*/param_len, 7789 sense_len, 7790 cdb_len, 7791 timeout); 7792 } 7793 7794 void 7795 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, 7796 void (*cbfcnp)(struct cam_periph *, union ccb *), 7797 u_int8_t tag_action, u_int8_t page_code, int save_pages, 7798 int pc_reset, u_int8_t *param_buf, u_int32_t param_len, 7799 u_int8_t sense_len, u_int32_t timeout) 7800 { 7801 struct scsi_log_select *scsi_cmd; 7802 u_int8_t cdb_len; 7803 7804 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; 7805 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7806 scsi_cmd->opcode = LOG_SELECT; 7807 scsi_cmd->page = page_code & SLS_PAGE_CODE; 7808 if (save_pages != 0) 7809 scsi_cmd->byte2 |= SLS_SP; 7810 if (pc_reset != 0) 7811 scsi_cmd->byte2 |= SLS_PCR; 7812 scsi_ulto2b(param_len, scsi_cmd->length); 7813 cdb_len = sizeof(*scsi_cmd); 7814 7815 cam_fill_csio(csio, 7816 retries, 7817 cbfcnp, 7818 /*flags*/CAM_DIR_OUT, 7819 tag_action, 7820 /*data_ptr*/param_buf, 7821 /*dxfer_len*/param_len, 7822 sense_len, 7823 cdb_len, 7824 timeout); 7825 } 7826 7827 /* 7828 * Prevent or allow the user to remove the media 7829 */ 7830 void 7831 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, 7832 void (*cbfcnp)(struct cam_periph *, union ccb *), 7833 u_int8_t tag_action, u_int8_t action, 7834 u_int8_t sense_len, u_int32_t timeout) 7835 { 7836 struct scsi_prevent *scsi_cmd; 7837 7838 cam_fill_csio(csio, 7839 retries, 7840 cbfcnp, 7841 /*flags*/CAM_DIR_NONE, 7842 tag_action, 7843 /*data_ptr*/NULL, 7844 /*dxfer_len*/0, 7845 sense_len, 7846 sizeof(*scsi_cmd), 7847 timeout); 7848 7849 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; 7850 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7851 scsi_cmd->opcode = PREVENT_ALLOW; 7852 scsi_cmd->how = action; 7853 } 7854 7855 /* XXX allow specification of address and PMI bit and LBA */ 7856 void 7857 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, 7858 void (*cbfcnp)(struct cam_periph *, union ccb *), 7859 u_int8_t tag_action, 7860 struct scsi_read_capacity_data *rcap_buf, 7861 u_int8_t sense_len, u_int32_t timeout) 7862 { 7863 struct scsi_read_capacity *scsi_cmd; 7864 7865 cam_fill_csio(csio, 7866 retries, 7867 cbfcnp, 7868 /*flags*/CAM_DIR_IN, 7869 tag_action, 7870 /*data_ptr*/(u_int8_t *)rcap_buf, 7871 /*dxfer_len*/sizeof(*rcap_buf), 7872 sense_len, 7873 sizeof(*scsi_cmd), 7874 timeout); 7875 7876 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; 7877 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7878 scsi_cmd->opcode = READ_CAPACITY; 7879 } 7880 7881 void 7882 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, 7883 void (*cbfcnp)(struct cam_periph *, union ccb *), 7884 uint8_t tag_action, uint64_t lba, int reladr, int pmi, 7885 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, 7886 uint32_t timeout) 7887 { 7888 struct scsi_read_capacity_16 *scsi_cmd; 7889 7890 7891 cam_fill_csio(csio, 7892 retries, 7893 cbfcnp, 7894 /*flags*/CAM_DIR_IN, 7895 tag_action, 7896 /*data_ptr*/(u_int8_t *)rcap_buf, 7897 /*dxfer_len*/rcap_buf_len, 7898 sense_len, 7899 sizeof(*scsi_cmd), 7900 timeout); 7901 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 7902 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7903 scsi_cmd->opcode = SERVICE_ACTION_IN; 7904 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 7905 scsi_u64to8b(lba, scsi_cmd->addr); 7906 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); 7907 if (pmi) 7908 reladr |= SRC16_PMI; 7909 if (reladr) 7910 reladr |= SRC16_RELADR; 7911 } 7912 7913 void 7914 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, 7915 void (*cbfcnp)(struct cam_periph *, union ccb *), 7916 u_int8_t tag_action, u_int8_t select_report, 7917 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, 7918 u_int8_t sense_len, u_int32_t timeout) 7919 { 7920 struct scsi_report_luns *scsi_cmd; 7921 7922 cam_fill_csio(csio, 7923 retries, 7924 cbfcnp, 7925 /*flags*/CAM_DIR_IN, 7926 tag_action, 7927 /*data_ptr*/(u_int8_t *)rpl_buf, 7928 /*dxfer_len*/alloc_len, 7929 sense_len, 7930 sizeof(*scsi_cmd), 7931 timeout); 7932 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; 7933 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7934 scsi_cmd->opcode = REPORT_LUNS; 7935 scsi_cmd->select_report = select_report; 7936 scsi_ulto4b(alloc_len, scsi_cmd->length); 7937 } 7938 7939 void 7940 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7941 void (*cbfcnp)(struct cam_periph *, union ccb *), 7942 u_int8_t tag_action, u_int8_t pdf, 7943 void *buf, u_int32_t alloc_len, 7944 u_int8_t sense_len, u_int32_t timeout) 7945 { 7946 struct scsi_target_group *scsi_cmd; 7947 7948 cam_fill_csio(csio, 7949 retries, 7950 cbfcnp, 7951 /*flags*/CAM_DIR_IN, 7952 tag_action, 7953 /*data_ptr*/(u_int8_t *)buf, 7954 /*dxfer_len*/alloc_len, 7955 sense_len, 7956 sizeof(*scsi_cmd), 7957 timeout); 7958 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 7959 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7960 scsi_cmd->opcode = MAINTENANCE_IN; 7961 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; 7962 scsi_ulto4b(alloc_len, scsi_cmd->length); 7963 } 7964 7965 void 7966 scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 7967 void (*cbfcnp)(struct cam_periph *, union ccb *), 7968 u_int8_t tag_action, u_int8_t pdf, 7969 void *buf, u_int32_t alloc_len, 7970 u_int8_t sense_len, u_int32_t timeout) 7971 { 7972 struct scsi_timestamp *scsi_cmd; 7973 7974 cam_fill_csio(csio, 7975 retries, 7976 cbfcnp, 7977 /*flags*/CAM_DIR_IN, 7978 tag_action, 7979 /*data_ptr*/(u_int8_t *)buf, 7980 /*dxfer_len*/alloc_len, 7981 sense_len, 7982 sizeof(*scsi_cmd), 7983 timeout); 7984 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 7985 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7986 scsi_cmd->opcode = MAINTENANCE_IN; 7987 scsi_cmd->service_action = REPORT_TIMESTAMP | pdf; 7988 scsi_ulto4b(alloc_len, scsi_cmd->length); 7989 } 7990 7991 void 7992 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7993 void (*cbfcnp)(struct cam_periph *, union ccb *), 7994 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 7995 u_int8_t sense_len, u_int32_t timeout) 7996 { 7997 struct scsi_target_group *scsi_cmd; 7998 7999 cam_fill_csio(csio, 8000 retries, 8001 cbfcnp, 8002 /*flags*/CAM_DIR_OUT, 8003 tag_action, 8004 /*data_ptr*/(u_int8_t *)buf, 8005 /*dxfer_len*/alloc_len, 8006 sense_len, 8007 sizeof(*scsi_cmd), 8008 timeout); 8009 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 8010 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8011 scsi_cmd->opcode = MAINTENANCE_OUT; 8012 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; 8013 scsi_ulto4b(alloc_len, scsi_cmd->length); 8014 } 8015 8016 void 8017 scsi_create_timestamp(uint8_t *timestamp_6b_buf, 8018 uint64_t timestamp) 8019 { 8020 uint8_t buf[8]; 8021 scsi_u64to8b(timestamp, buf); 8022 /* 8023 * Using memcopy starting at buf[2] because the set timestamp parameters 8024 * only has six bytes for the timestamp to fit into, and we don't have a 8025 * scsi_u64to6b function. 8026 */ 8027 memcpy(timestamp_6b_buf, &buf[2], 6); 8028 } 8029 8030 void 8031 scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 8032 void (*cbfcnp)(struct cam_periph *, union ccb *), 8033 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 8034 u_int8_t sense_len, u_int32_t timeout) 8035 { 8036 struct scsi_timestamp *scsi_cmd; 8037 8038 cam_fill_csio(csio, 8039 retries, 8040 cbfcnp, 8041 /*flags*/CAM_DIR_OUT, 8042 tag_action, 8043 /*data_ptr*/(u_int8_t *) buf, 8044 /*dxfer_len*/alloc_len, 8045 sense_len, 8046 sizeof(*scsi_cmd), 8047 timeout); 8048 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 8049 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8050 scsi_cmd->opcode = MAINTENANCE_OUT; 8051 scsi_cmd->service_action = SET_TIMESTAMP; 8052 scsi_ulto4b(alloc_len, scsi_cmd->length); 8053 } 8054 8055 /* 8056 * Syncronize the media to the contents of the cache for 8057 * the given lba/count pair. Specifying 0/0 means sync 8058 * the whole cache. 8059 */ 8060 void 8061 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, 8062 void (*cbfcnp)(struct cam_periph *, union ccb *), 8063 u_int8_t tag_action, u_int32_t begin_lba, 8064 u_int16_t lb_count, u_int8_t sense_len, 8065 u_int32_t timeout) 8066 { 8067 struct scsi_sync_cache *scsi_cmd; 8068 8069 cam_fill_csio(csio, 8070 retries, 8071 cbfcnp, 8072 /*flags*/CAM_DIR_NONE, 8073 tag_action, 8074 /*data_ptr*/NULL, 8075 /*dxfer_len*/0, 8076 sense_len, 8077 sizeof(*scsi_cmd), 8078 timeout); 8079 8080 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; 8081 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8082 scsi_cmd->opcode = SYNCHRONIZE_CACHE; 8083 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); 8084 scsi_ulto2b(lb_count, scsi_cmd->lb_count); 8085 } 8086 8087 void 8088 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, 8089 void (*cbfcnp)(struct cam_periph *, union ccb *), 8090 u_int8_t tag_action, int readop, u_int8_t byte2, 8091 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8092 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8093 u_int32_t timeout) 8094 { 8095 int read; 8096 u_int8_t cdb_len; 8097 8098 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; 8099 8100 /* 8101 * Use the smallest possible command to perform the operation 8102 * as some legacy hardware does not support the 10 byte commands. 8103 * If any of the bits in byte2 is set, we have to go with a larger 8104 * command. 8105 */ 8106 if ((minimum_cmd_size < 10) 8107 && ((lba & 0x1fffff) == lba) 8108 && ((block_count & 0xff) == block_count) 8109 && (byte2 == 0)) { 8110 /* 8111 * We can fit in a 6 byte cdb. 8112 */ 8113 struct scsi_rw_6 *scsi_cmd; 8114 8115 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; 8116 scsi_cmd->opcode = read ? READ_6 : WRITE_6; 8117 scsi_ulto3b(lba, scsi_cmd->addr); 8118 scsi_cmd->length = block_count & 0xff; 8119 scsi_cmd->control = 0; 8120 cdb_len = sizeof(*scsi_cmd); 8121 8122 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8123 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], 8124 scsi_cmd->addr[1], scsi_cmd->addr[2], 8125 scsi_cmd->length, dxfer_len)); 8126 } else if ((minimum_cmd_size < 12) 8127 && ((block_count & 0xffff) == block_count) 8128 && ((lba & 0xffffffff) == lba)) { 8129 /* 8130 * Need a 10 byte cdb. 8131 */ 8132 struct scsi_rw_10 *scsi_cmd; 8133 8134 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; 8135 scsi_cmd->opcode = read ? READ_10 : WRITE_10; 8136 scsi_cmd->byte2 = byte2; 8137 scsi_ulto4b(lba, scsi_cmd->addr); 8138 scsi_cmd->reserved = 0; 8139 scsi_ulto2b(block_count, scsi_cmd->length); 8140 scsi_cmd->control = 0; 8141 cdb_len = sizeof(*scsi_cmd); 8142 8143 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8144 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8145 scsi_cmd->addr[1], scsi_cmd->addr[2], 8146 scsi_cmd->addr[3], scsi_cmd->length[0], 8147 scsi_cmd->length[1], dxfer_len)); 8148 } else if ((minimum_cmd_size < 16) 8149 && ((block_count & 0xffffffff) == block_count) 8150 && ((lba & 0xffffffff) == lba)) { 8151 /* 8152 * The block count is too big for a 10 byte CDB, use a 12 8153 * byte CDB. 8154 */ 8155 struct scsi_rw_12 *scsi_cmd; 8156 8157 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; 8158 scsi_cmd->opcode = read ? READ_12 : WRITE_12; 8159 scsi_cmd->byte2 = byte2; 8160 scsi_ulto4b(lba, scsi_cmd->addr); 8161 scsi_cmd->reserved = 0; 8162 scsi_ulto4b(block_count, scsi_cmd->length); 8163 scsi_cmd->control = 0; 8164 cdb_len = sizeof(*scsi_cmd); 8165 8166 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8167 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], 8168 scsi_cmd->addr[1], scsi_cmd->addr[2], 8169 scsi_cmd->addr[3], scsi_cmd->length[0], 8170 scsi_cmd->length[1], scsi_cmd->length[2], 8171 scsi_cmd->length[3], dxfer_len)); 8172 } else { 8173 /* 8174 * 16 byte CDB. We'll only get here if the LBA is larger 8175 * than 2^32, or if the user asks for a 16 byte command. 8176 */ 8177 struct scsi_rw_16 *scsi_cmd; 8178 8179 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; 8180 scsi_cmd->opcode = read ? READ_16 : WRITE_16; 8181 scsi_cmd->byte2 = byte2; 8182 scsi_u64to8b(lba, scsi_cmd->addr); 8183 scsi_cmd->reserved = 0; 8184 scsi_ulto4b(block_count, scsi_cmd->length); 8185 scsi_cmd->control = 0; 8186 cdb_len = sizeof(*scsi_cmd); 8187 } 8188 cam_fill_csio(csio, 8189 retries, 8190 cbfcnp, 8191 (read ? CAM_DIR_IN : CAM_DIR_OUT) | 8192 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), 8193 tag_action, 8194 data_ptr, 8195 dxfer_len, 8196 sense_len, 8197 cdb_len, 8198 timeout); 8199 } 8200 8201 void 8202 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, 8203 void (*cbfcnp)(struct cam_periph *, union ccb *), 8204 u_int8_t tag_action, u_int8_t byte2, 8205 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8206 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8207 u_int32_t timeout) 8208 { 8209 u_int8_t cdb_len; 8210 if ((minimum_cmd_size < 16) && 8211 ((block_count & 0xffff) == block_count) && 8212 ((lba & 0xffffffff) == lba)) { 8213 /* 8214 * Need a 10 byte cdb. 8215 */ 8216 struct scsi_write_same_10 *scsi_cmd; 8217 8218 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; 8219 scsi_cmd->opcode = WRITE_SAME_10; 8220 scsi_cmd->byte2 = byte2; 8221 scsi_ulto4b(lba, scsi_cmd->addr); 8222 scsi_cmd->group = 0; 8223 scsi_ulto2b(block_count, scsi_cmd->length); 8224 scsi_cmd->control = 0; 8225 cdb_len = sizeof(*scsi_cmd); 8226 8227 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8228 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8229 scsi_cmd->addr[1], scsi_cmd->addr[2], 8230 scsi_cmd->addr[3], scsi_cmd->length[0], 8231 scsi_cmd->length[1], dxfer_len)); 8232 } else { 8233 /* 8234 * 16 byte CDB. We'll only get here if the LBA is larger 8235 * than 2^32, or if the user asks for a 16 byte command. 8236 */ 8237 struct scsi_write_same_16 *scsi_cmd; 8238 8239 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; 8240 scsi_cmd->opcode = WRITE_SAME_16; 8241 scsi_cmd->byte2 = byte2; 8242 scsi_u64to8b(lba, scsi_cmd->addr); 8243 scsi_ulto4b(block_count, scsi_cmd->length); 8244 scsi_cmd->group = 0; 8245 scsi_cmd->control = 0; 8246 cdb_len = sizeof(*scsi_cmd); 8247 8248 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8249 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", 8250 scsi_cmd->addr[0], scsi_cmd->addr[1], 8251 scsi_cmd->addr[2], scsi_cmd->addr[3], 8252 scsi_cmd->addr[4], scsi_cmd->addr[5], 8253 scsi_cmd->addr[6], scsi_cmd->addr[7], 8254 scsi_cmd->length[0], scsi_cmd->length[1], 8255 scsi_cmd->length[2], scsi_cmd->length[3], 8256 dxfer_len)); 8257 } 8258 cam_fill_csio(csio, 8259 retries, 8260 cbfcnp, 8261 /*flags*/CAM_DIR_OUT, 8262 tag_action, 8263 data_ptr, 8264 dxfer_len, 8265 sense_len, 8266 cdb_len, 8267 timeout); 8268 } 8269 8270 void 8271 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries, 8272 void (*cbfcnp)(struct cam_periph *, union ccb *), 8273 u_int8_t tag_action, u_int8_t *data_ptr, 8274 u_int16_t dxfer_len, u_int8_t sense_len, 8275 u_int32_t timeout) 8276 { 8277 scsi_ata_pass(csio, 8278 retries, 8279 cbfcnp, 8280 /*flags*/CAM_DIR_IN, 8281 tag_action, 8282 /*protocol*/AP_PROTO_PIO_IN, 8283 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8284 AP_FLAG_BYT_BLOK_BYTES | 8285 AP_FLAG_TLEN_SECT_CNT, 8286 /*features*/0, 8287 /*sector_count*/dxfer_len, 8288 /*lba*/0, 8289 /*command*/ATA_ATA_IDENTIFY, 8290 /*device*/ 0, 8291 /*icc*/ 0, 8292 /*auxiliary*/ 0, 8293 /*control*/0, 8294 data_ptr, 8295 dxfer_len, 8296 /*cdb_storage*/ NULL, 8297 /*cdb_storage_len*/ 0, 8298 /*minimum_cmd_size*/ 0, 8299 sense_len, 8300 timeout); 8301 } 8302 8303 void 8304 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries, 8305 void (*cbfcnp)(struct cam_periph *, union ccb *), 8306 u_int8_t tag_action, u_int16_t block_count, 8307 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8308 u_int32_t timeout) 8309 { 8310 scsi_ata_pass_16(csio, 8311 retries, 8312 cbfcnp, 8313 /*flags*/CAM_DIR_OUT, 8314 tag_action, 8315 /*protocol*/AP_EXTEND|AP_PROTO_DMA, 8316 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS, 8317 /*features*/ATA_DSM_TRIM, 8318 /*sector_count*/block_count, 8319 /*lba*/0, 8320 /*command*/ATA_DATA_SET_MANAGEMENT, 8321 /*control*/0, 8322 data_ptr, 8323 dxfer_len, 8324 sense_len, 8325 timeout); 8326 } 8327 8328 int 8329 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries, 8330 void (*cbfcnp)(struct cam_periph *, union ccb *), 8331 uint8_t tag_action, uint32_t log_address, 8332 uint32_t page_number, uint16_t block_count, 8333 uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, 8334 uint8_t sense_len, uint32_t timeout) 8335 { 8336 uint8_t command, protocol_out; 8337 uint16_t count_out; 8338 uint64_t lba; 8339 int retval; 8340 8341 retval = 0; 8342 8343 switch (protocol) { 8344 case AP_PROTO_DMA: 8345 count_out = block_count; 8346 command = ATA_READ_LOG_DMA_EXT; 8347 protocol_out = AP_PROTO_DMA; 8348 break; 8349 case AP_PROTO_PIO_IN: 8350 default: 8351 count_out = block_count; 8352 command = ATA_READ_LOG_EXT; 8353 protocol_out = AP_PROTO_PIO_IN; 8354 break; 8355 } 8356 8357 lba = (((uint64_t)page_number & 0xff00) << 32) | 8358 ((page_number & 0x00ff) << 8) | 8359 (log_address & 0xff); 8360 8361 protocol_out |= AP_EXTEND; 8362 8363 retval = scsi_ata_pass(csio, 8364 retries, 8365 cbfcnp, 8366 /*flags*/CAM_DIR_IN, 8367 tag_action, 8368 /*protocol*/ protocol_out, 8369 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT | 8370 AP_FLAG_BYT_BLOK_BLOCKS | 8371 AP_FLAG_TDIR_FROM_DEV, 8372 /*feature*/ 0, 8373 /*sector_count*/ count_out, 8374 /*lba*/ lba, 8375 /*command*/ command, 8376 /*device*/ 0, 8377 /*icc*/ 0, 8378 /*auxiliary*/ 0, 8379 /*control*/0, 8380 data_ptr, 8381 dxfer_len, 8382 /*cdb_storage*/ NULL, 8383 /*cdb_storage_len*/ 0, 8384 /*minimum_cmd_size*/ 0, 8385 sense_len, 8386 timeout); 8387 8388 return (retval); 8389 } 8390 8391 int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries, 8392 void (*cbfcnp)(struct cam_periph *, union ccb *), 8393 uint8_t tag_action, uint8_t feature, 8394 uint64_t lba, uint32_t count, 8395 uint8_t sense_len, uint32_t timeout) 8396 { 8397 return (scsi_ata_pass(csio, 8398 retries, 8399 cbfcnp, 8400 /*flags*/CAM_DIR_NONE, 8401 tag_action, 8402 /*protocol*/AP_PROTO_PIO_IN, 8403 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8404 AP_FLAG_BYT_BLOK_BYTES | 8405 AP_FLAG_TLEN_SECT_CNT, 8406 /*features*/feature, 8407 /*sector_count*/count, 8408 /*lba*/lba, 8409 /*command*/ATA_SETFEATURES, 8410 /*device*/ 0, 8411 /*icc*/ 0, 8412 /*auxiliary*/0, 8413 /*control*/0, 8414 /*data_ptr*/NULL, 8415 /*dxfer_len*/0, 8416 /*cdb_storage*/NULL, 8417 /*cdb_storage_len*/0, 8418 /*minimum_cmd_size*/0, 8419 sense_len, 8420 timeout)); 8421 } 8422 8423 /* 8424 * Note! This is an unusual CDB building function because it can return 8425 * an error in the event that the command in question requires a variable 8426 * length CDB, but the caller has not given storage space for one or has not 8427 * given enough storage space. If there is enough space available in the 8428 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage. 8429 */ 8430 int 8431 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries, 8432 void (*cbfcnp)(struct cam_periph *, union ccb *), 8433 uint32_t flags, uint8_t tag_action, 8434 uint8_t protocol, uint8_t ata_flags, uint16_t features, 8435 uint16_t sector_count, uint64_t lba, uint8_t command, 8436 uint8_t device, uint8_t icc, uint32_t auxiliary, 8437 uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len, 8438 uint8_t *cdb_storage, size_t cdb_storage_len, 8439 int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) 8440 { 8441 uint32_t cam_flags; 8442 uint8_t *cdb_ptr; 8443 int cmd_size; 8444 int retval; 8445 uint8_t cdb_len; 8446 8447 retval = 0; 8448 cam_flags = flags; 8449 8450 /* 8451 * Round the user's request to the nearest command size that is at 8452 * least as big as what he requested. 8453 */ 8454 if (minimum_cmd_size <= 12) 8455 cmd_size = 12; 8456 else if (minimum_cmd_size > 16) 8457 cmd_size = 32; 8458 else 8459 cmd_size = 16; 8460 8461 /* 8462 * If we have parameters that require a 48-bit ATA command, we have to 8463 * use the 16 byte ATA PASS-THROUGH command at least. 8464 */ 8465 if (((lba > ATA_MAX_28BIT_LBA) 8466 || (sector_count > 255) 8467 || (features > 255) 8468 || (protocol & AP_EXTEND)) 8469 && ((cmd_size < 16) 8470 || ((protocol & AP_EXTEND) == 0))) { 8471 if (cmd_size < 16) 8472 cmd_size = 16; 8473 protocol |= AP_EXTEND; 8474 } 8475 8476 /* 8477 * The icc and auxiliary ATA registers are only supported in the 8478 * 32-byte version of the ATA PASS-THROUGH command. 8479 */ 8480 if ((icc != 0) 8481 || (auxiliary != 0)) { 8482 cmd_size = 32; 8483 protocol |= AP_EXTEND; 8484 } 8485 8486 8487 if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes)) 8488 && ((cdb_storage == NULL) 8489 || (cdb_storage_len < cmd_size))) { 8490 retval = 1; 8491 goto bailout; 8492 } 8493 8494 /* 8495 * At this point we know we have enough space to store the command 8496 * in one place or another. We prefer the built-in array, but used 8497 * the passed in storage if necessary. 8498 */ 8499 if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes)) 8500 cdb_ptr = csio->cdb_io.cdb_bytes; 8501 else { 8502 cdb_ptr = cdb_storage; 8503 cam_flags |= CAM_CDB_POINTER; 8504 } 8505 8506 if (cmd_size <= 12) { 8507 struct ata_pass_12 *cdb; 8508 8509 cdb = (struct ata_pass_12 *)cdb_ptr; 8510 cdb_len = sizeof(*cdb); 8511 bzero(cdb, cdb_len); 8512 8513 cdb->opcode = ATA_PASS_12; 8514 cdb->protocol = protocol; 8515 cdb->flags = ata_flags; 8516 cdb->features = features; 8517 cdb->sector_count = sector_count; 8518 cdb->lba_low = lba & 0xff; 8519 cdb->lba_mid = (lba >> 8) & 0xff; 8520 cdb->lba_high = (lba >> 16) & 0xff; 8521 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8522 cdb->command = command; 8523 cdb->control = control; 8524 } else if (cmd_size <= 16) { 8525 struct ata_pass_16 *cdb; 8526 8527 cdb = (struct ata_pass_16 *)cdb_ptr; 8528 cdb_len = sizeof(*cdb); 8529 bzero(cdb, cdb_len); 8530 8531 cdb->opcode = ATA_PASS_16; 8532 cdb->protocol = protocol; 8533 cdb->flags = ata_flags; 8534 cdb->features = features & 0xff; 8535 cdb->sector_count = sector_count & 0xff; 8536 cdb->lba_low = lba & 0xff; 8537 cdb->lba_mid = (lba >> 8) & 0xff; 8538 cdb->lba_high = (lba >> 16) & 0xff; 8539 /* 8540 * If AP_EXTEND is set, we're sending a 48-bit command. 8541 * Otherwise it's a 28-bit command. 8542 */ 8543 if (protocol & AP_EXTEND) { 8544 cdb->lba_low_ext = (lba >> 24) & 0xff; 8545 cdb->lba_mid_ext = (lba >> 32) & 0xff; 8546 cdb->lba_high_ext = (lba >> 40) & 0xff; 8547 cdb->features_ext = (features >> 8) & 0xff; 8548 cdb->sector_count_ext = (sector_count >> 8) & 0xff; 8549 cdb->device = device | ATA_DEV_LBA; 8550 } else { 8551 cdb->lba_low_ext = (lba >> 24) & 0xf; 8552 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8553 } 8554 cdb->command = command; 8555 cdb->control = control; 8556 } else { 8557 struct ata_pass_32 *cdb; 8558 uint8_t tmp_lba[8]; 8559 8560 cdb = (struct ata_pass_32 *)cdb_ptr; 8561 cdb_len = sizeof(*cdb); 8562 bzero(cdb, cdb_len); 8563 cdb->opcode = VARIABLE_LEN_CDB; 8564 cdb->control = control; 8565 cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32, 8566 service_action); 8567 scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action); 8568 cdb->protocol = protocol; 8569 cdb->flags = ata_flags; 8570 8571 if ((protocol & AP_EXTEND) == 0) { 8572 lba &= 0x0fffffff; 8573 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8574 features &= 0xff; 8575 sector_count &= 0xff; 8576 } else { 8577 cdb->device = device | ATA_DEV_LBA; 8578 } 8579 scsi_u64to8b(lba, tmp_lba); 8580 bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba)); 8581 scsi_ulto2b(features, cdb->features); 8582 scsi_ulto2b(sector_count, cdb->count); 8583 cdb->command = command; 8584 cdb->icc = icc; 8585 scsi_ulto4b(auxiliary, cdb->auxiliary); 8586 } 8587 8588 cam_fill_csio(csio, 8589 retries, 8590 cbfcnp, 8591 cam_flags, 8592 tag_action, 8593 data_ptr, 8594 dxfer_len, 8595 sense_len, 8596 cmd_size, 8597 timeout); 8598 bailout: 8599 return (retval); 8600 } 8601 8602 void 8603 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries, 8604 void (*cbfcnp)(struct cam_periph *, union ccb *), 8605 u_int32_t flags, u_int8_t tag_action, 8606 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features, 8607 u_int16_t sector_count, uint64_t lba, u_int8_t command, 8608 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len, 8609 u_int8_t sense_len, u_int32_t timeout) 8610 { 8611 struct ata_pass_16 *ata_cmd; 8612 8613 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes; 8614 ata_cmd->opcode = ATA_PASS_16; 8615 ata_cmd->protocol = protocol; 8616 ata_cmd->flags = ata_flags; 8617 ata_cmd->features_ext = features >> 8; 8618 ata_cmd->features = features; 8619 ata_cmd->sector_count_ext = sector_count >> 8; 8620 ata_cmd->sector_count = sector_count; 8621 ata_cmd->lba_low = lba; 8622 ata_cmd->lba_mid = lba >> 8; 8623 ata_cmd->lba_high = lba >> 16; 8624 ata_cmd->device = ATA_DEV_LBA; 8625 if (protocol & AP_EXTEND) { 8626 ata_cmd->lba_low_ext = lba >> 24; 8627 ata_cmd->lba_mid_ext = lba >> 32; 8628 ata_cmd->lba_high_ext = lba >> 40; 8629 } else 8630 ata_cmd->device |= (lba >> 24) & 0x0f; 8631 ata_cmd->command = command; 8632 ata_cmd->control = control; 8633 8634 cam_fill_csio(csio, 8635 retries, 8636 cbfcnp, 8637 flags, 8638 tag_action, 8639 data_ptr, 8640 dxfer_len, 8641 sense_len, 8642 sizeof(*ata_cmd), 8643 timeout); 8644 } 8645 8646 void 8647 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, 8648 void (*cbfcnp)(struct cam_periph *, union ccb *), 8649 u_int8_t tag_action, u_int8_t byte2, 8650 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8651 u_int32_t timeout) 8652 { 8653 struct scsi_unmap *scsi_cmd; 8654 8655 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; 8656 scsi_cmd->opcode = UNMAP; 8657 scsi_cmd->byte2 = byte2; 8658 scsi_ulto4b(0, scsi_cmd->reserved); 8659 scsi_cmd->group = 0; 8660 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8661 scsi_cmd->control = 0; 8662 8663 cam_fill_csio(csio, 8664 retries, 8665 cbfcnp, 8666 /*flags*/CAM_DIR_OUT, 8667 tag_action, 8668 data_ptr, 8669 dxfer_len, 8670 sense_len, 8671 sizeof(*scsi_cmd), 8672 timeout); 8673 } 8674 8675 void 8676 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, 8677 void (*cbfcnp)(struct cam_periph *, union ccb*), 8678 uint8_t tag_action, int pcv, uint8_t page_code, 8679 uint8_t *data_ptr, uint16_t allocation_length, 8680 uint8_t sense_len, uint32_t timeout) 8681 { 8682 struct scsi_receive_diag *scsi_cmd; 8683 8684 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; 8685 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8686 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; 8687 if (pcv) { 8688 scsi_cmd->byte2 |= SRD_PCV; 8689 scsi_cmd->page_code = page_code; 8690 } 8691 scsi_ulto2b(allocation_length, scsi_cmd->length); 8692 8693 cam_fill_csio(csio, 8694 retries, 8695 cbfcnp, 8696 /*flags*/CAM_DIR_IN, 8697 tag_action, 8698 data_ptr, 8699 allocation_length, 8700 sense_len, 8701 sizeof(*scsi_cmd), 8702 timeout); 8703 } 8704 8705 void 8706 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, 8707 void (*cbfcnp)(struct cam_periph *, union ccb *), 8708 uint8_t tag_action, int unit_offline, int device_offline, 8709 int self_test, int page_format, int self_test_code, 8710 uint8_t *data_ptr, uint16_t param_list_length, 8711 uint8_t sense_len, uint32_t timeout) 8712 { 8713 struct scsi_send_diag *scsi_cmd; 8714 8715 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; 8716 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8717 scsi_cmd->opcode = SEND_DIAGNOSTIC; 8718 8719 /* 8720 * The default self-test mode control and specific test 8721 * control are mutually exclusive. 8722 */ 8723 if (self_test) 8724 self_test_code = SSD_SELF_TEST_CODE_NONE; 8725 8726 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) 8727 & SSD_SELF_TEST_CODE_MASK) 8728 | (unit_offline ? SSD_UNITOFFL : 0) 8729 | (device_offline ? SSD_DEVOFFL : 0) 8730 | (self_test ? SSD_SELFTEST : 0) 8731 | (page_format ? SSD_PF : 0); 8732 scsi_ulto2b(param_list_length, scsi_cmd->length); 8733 8734 cam_fill_csio(csio, 8735 retries, 8736 cbfcnp, 8737 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8738 tag_action, 8739 data_ptr, 8740 param_list_length, 8741 sense_len, 8742 sizeof(*scsi_cmd), 8743 timeout); 8744 } 8745 8746 void 8747 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8748 void (*cbfcnp)(struct cam_periph *, union ccb*), 8749 uint8_t tag_action, int mode, 8750 uint8_t buffer_id, u_int32_t offset, 8751 uint8_t *data_ptr, uint32_t allocation_length, 8752 uint8_t sense_len, uint32_t timeout) 8753 { 8754 struct scsi_read_buffer *scsi_cmd; 8755 8756 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes; 8757 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8758 scsi_cmd->opcode = READ_BUFFER; 8759 scsi_cmd->byte2 = mode; 8760 scsi_cmd->buffer_id = buffer_id; 8761 scsi_ulto3b(offset, scsi_cmd->offset); 8762 scsi_ulto3b(allocation_length, scsi_cmd->length); 8763 8764 cam_fill_csio(csio, 8765 retries, 8766 cbfcnp, 8767 /*flags*/CAM_DIR_IN, 8768 tag_action, 8769 data_ptr, 8770 allocation_length, 8771 sense_len, 8772 sizeof(*scsi_cmd), 8773 timeout); 8774 } 8775 8776 void 8777 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8778 void (*cbfcnp)(struct cam_periph *, union ccb *), 8779 uint8_t tag_action, int mode, 8780 uint8_t buffer_id, u_int32_t offset, 8781 uint8_t *data_ptr, uint32_t param_list_length, 8782 uint8_t sense_len, uint32_t timeout) 8783 { 8784 struct scsi_write_buffer *scsi_cmd; 8785 8786 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes; 8787 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8788 scsi_cmd->opcode = WRITE_BUFFER; 8789 scsi_cmd->byte2 = mode; 8790 scsi_cmd->buffer_id = buffer_id; 8791 scsi_ulto3b(offset, scsi_cmd->offset); 8792 scsi_ulto3b(param_list_length, scsi_cmd->length); 8793 8794 cam_fill_csio(csio, 8795 retries, 8796 cbfcnp, 8797 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8798 tag_action, 8799 data_ptr, 8800 param_list_length, 8801 sense_len, 8802 sizeof(*scsi_cmd), 8803 timeout); 8804 } 8805 8806 void 8807 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, 8808 void (*cbfcnp)(struct cam_periph *, union ccb *), 8809 u_int8_t tag_action, int start, int load_eject, 8810 int immediate, u_int8_t sense_len, u_int32_t timeout) 8811 { 8812 struct scsi_start_stop_unit *scsi_cmd; 8813 int extra_flags = 0; 8814 8815 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; 8816 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8817 scsi_cmd->opcode = START_STOP_UNIT; 8818 if (start != 0) { 8819 scsi_cmd->how |= SSS_START; 8820 /* it takes a lot of power to start a drive */ 8821 extra_flags |= CAM_HIGH_POWER; 8822 } 8823 if (load_eject != 0) 8824 scsi_cmd->how |= SSS_LOEJ; 8825 if (immediate != 0) 8826 scsi_cmd->byte2 |= SSS_IMMED; 8827 8828 cam_fill_csio(csio, 8829 retries, 8830 cbfcnp, 8831 /*flags*/CAM_DIR_NONE | extra_flags, 8832 tag_action, 8833 /*data_ptr*/NULL, 8834 /*dxfer_len*/0, 8835 sense_len, 8836 sizeof(*scsi_cmd), 8837 timeout); 8838 } 8839 8840 void 8841 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8842 void (*cbfcnp)(struct cam_periph *, union ccb *), 8843 u_int8_t tag_action, u_int8_t service_action, 8844 uint32_t element, u_int8_t elem_type, int logical_volume, 8845 int partition, u_int32_t first_attribute, int cache, 8846 u_int8_t *data_ptr, u_int32_t length, int sense_len, 8847 u_int32_t timeout) 8848 { 8849 struct scsi_read_attribute *scsi_cmd; 8850 8851 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes; 8852 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8853 8854 scsi_cmd->opcode = READ_ATTRIBUTE; 8855 scsi_cmd->service_action = service_action; 8856 scsi_ulto2b(element, scsi_cmd->element); 8857 scsi_cmd->elem_type = elem_type; 8858 scsi_cmd->logical_volume = logical_volume; 8859 scsi_cmd->partition = partition; 8860 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute); 8861 scsi_ulto4b(length, scsi_cmd->length); 8862 if (cache != 0) 8863 scsi_cmd->cache |= SRA_CACHE; 8864 8865 cam_fill_csio(csio, 8866 retries, 8867 cbfcnp, 8868 /*flags*/CAM_DIR_IN, 8869 tag_action, 8870 /*data_ptr*/data_ptr, 8871 /*dxfer_len*/length, 8872 sense_len, 8873 sizeof(*scsi_cmd), 8874 timeout); 8875 } 8876 8877 void 8878 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8879 void (*cbfcnp)(struct cam_periph *, union ccb *), 8880 u_int8_t tag_action, uint32_t element, int logical_volume, 8881 int partition, int wtc, u_int8_t *data_ptr, 8882 u_int32_t length, int sense_len, u_int32_t timeout) 8883 { 8884 struct scsi_write_attribute *scsi_cmd; 8885 8886 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes; 8887 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8888 8889 scsi_cmd->opcode = WRITE_ATTRIBUTE; 8890 if (wtc != 0) 8891 scsi_cmd->byte2 = SWA_WTC; 8892 scsi_ulto3b(element, scsi_cmd->element); 8893 scsi_cmd->logical_volume = logical_volume; 8894 scsi_cmd->partition = partition; 8895 scsi_ulto4b(length, scsi_cmd->length); 8896 8897 cam_fill_csio(csio, 8898 retries, 8899 cbfcnp, 8900 /*flags*/CAM_DIR_OUT, 8901 tag_action, 8902 /*data_ptr*/data_ptr, 8903 /*dxfer_len*/length, 8904 sense_len, 8905 sizeof(*scsi_cmd), 8906 timeout); 8907 } 8908 8909 void 8910 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, 8911 void (*cbfcnp)(struct cam_periph *, union ccb *), 8912 uint8_t tag_action, int service_action, 8913 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8914 int timeout) 8915 { 8916 struct scsi_per_res_in *scsi_cmd; 8917 8918 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes; 8919 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8920 8921 scsi_cmd->opcode = PERSISTENT_RES_IN; 8922 scsi_cmd->action = service_action; 8923 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8924 8925 cam_fill_csio(csio, 8926 retries, 8927 cbfcnp, 8928 /*flags*/CAM_DIR_IN, 8929 tag_action, 8930 data_ptr, 8931 dxfer_len, 8932 sense_len, 8933 sizeof(*scsi_cmd), 8934 timeout); 8935 } 8936 8937 void 8938 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, 8939 void (*cbfcnp)(struct cam_periph *, union ccb *), 8940 uint8_t tag_action, int service_action, 8941 int scope, int res_type, uint8_t *data_ptr, 8942 uint32_t dxfer_len, int sense_len, int timeout) 8943 { 8944 struct scsi_per_res_out *scsi_cmd; 8945 8946 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes; 8947 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8948 8949 scsi_cmd->opcode = PERSISTENT_RES_OUT; 8950 scsi_cmd->action = service_action; 8951 scsi_cmd->scope_type = scope | res_type; 8952 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8953 8954 cam_fill_csio(csio, 8955 retries, 8956 cbfcnp, 8957 /*flags*/CAM_DIR_OUT, 8958 tag_action, 8959 /*data_ptr*/data_ptr, 8960 /*dxfer_len*/dxfer_len, 8961 sense_len, 8962 sizeof(*scsi_cmd), 8963 timeout); 8964 } 8965 8966 void 8967 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, 8968 void (*cbfcnp)(struct cam_periph *, union ccb *), 8969 uint8_t tag_action, uint32_t security_protocol, 8970 uint32_t security_protocol_specific, int byte4, 8971 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8972 int timeout) 8973 { 8974 struct scsi_security_protocol_in *scsi_cmd; 8975 8976 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes; 8977 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8978 8979 scsi_cmd->opcode = SECURITY_PROTOCOL_IN; 8980 8981 scsi_cmd->security_protocol = security_protocol; 8982 scsi_ulto2b(security_protocol_specific, 8983 scsi_cmd->security_protocol_specific); 8984 scsi_cmd->byte4 = byte4; 8985 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8986 8987 cam_fill_csio(csio, 8988 retries, 8989 cbfcnp, 8990 /*flags*/CAM_DIR_IN, 8991 tag_action, 8992 data_ptr, 8993 dxfer_len, 8994 sense_len, 8995 sizeof(*scsi_cmd), 8996 timeout); 8997 } 8998 8999 void 9000 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, 9001 void (*cbfcnp)(struct cam_periph *, union ccb *), 9002 uint8_t tag_action, uint32_t security_protocol, 9003 uint32_t security_protocol_specific, int byte4, 9004 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9005 int timeout) 9006 { 9007 struct scsi_security_protocol_out *scsi_cmd; 9008 9009 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes; 9010 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9011 9012 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT; 9013 9014 scsi_cmd->security_protocol = security_protocol; 9015 scsi_ulto2b(security_protocol_specific, 9016 scsi_cmd->security_protocol_specific); 9017 scsi_cmd->byte4 = byte4; 9018 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9019 9020 cam_fill_csio(csio, 9021 retries, 9022 cbfcnp, 9023 /*flags*/CAM_DIR_OUT, 9024 tag_action, 9025 data_ptr, 9026 dxfer_len, 9027 sense_len, 9028 sizeof(*scsi_cmd), 9029 timeout); 9030 } 9031 9032 void 9033 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, 9034 void (*cbfcnp)(struct cam_periph *, union ccb *), 9035 uint8_t tag_action, int options, int req_opcode, 9036 int req_service_action, uint8_t *data_ptr, 9037 uint32_t dxfer_len, int sense_len, int timeout) 9038 { 9039 struct scsi_report_supported_opcodes *scsi_cmd; 9040 9041 scsi_cmd = (struct scsi_report_supported_opcodes *) 9042 &csio->cdb_io.cdb_bytes; 9043 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9044 9045 scsi_cmd->opcode = MAINTENANCE_IN; 9046 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES; 9047 scsi_cmd->options = options; 9048 scsi_cmd->requested_opcode = req_opcode; 9049 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action); 9050 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9051 9052 cam_fill_csio(csio, 9053 retries, 9054 cbfcnp, 9055 /*flags*/CAM_DIR_IN, 9056 tag_action, 9057 data_ptr, 9058 dxfer_len, 9059 sense_len, 9060 sizeof(*scsi_cmd), 9061 timeout); 9062 } 9063 9064 /* 9065 * Try make as good a match as possible with 9066 * available sub drivers 9067 */ 9068 int 9069 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9070 { 9071 struct scsi_inquiry_pattern *entry; 9072 struct scsi_inquiry_data *inq; 9073 9074 entry = (struct scsi_inquiry_pattern *)table_entry; 9075 inq = (struct scsi_inquiry_data *)inqbuffer; 9076 9077 if (((SID_TYPE(inq) == entry->type) 9078 || (entry->type == T_ANY)) 9079 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9080 : entry->media_type & SIP_MEDIA_FIXED) 9081 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9082 && (cam_strmatch(inq->product, entry->product, 9083 sizeof(inq->product)) == 0) 9084 && (cam_strmatch(inq->revision, entry->revision, 9085 sizeof(inq->revision)) == 0)) { 9086 return (0); 9087 } 9088 return (-1); 9089 } 9090 9091 /* 9092 * Try make as good a match as possible with 9093 * available sub drivers 9094 */ 9095 int 9096 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9097 { 9098 struct scsi_static_inquiry_pattern *entry; 9099 struct scsi_inquiry_data *inq; 9100 9101 entry = (struct scsi_static_inquiry_pattern *)table_entry; 9102 inq = (struct scsi_inquiry_data *)inqbuffer; 9103 9104 if (((SID_TYPE(inq) == entry->type) 9105 || (entry->type == T_ANY)) 9106 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9107 : entry->media_type & SIP_MEDIA_FIXED) 9108 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9109 && (cam_strmatch(inq->product, entry->product, 9110 sizeof(inq->product)) == 0) 9111 && (cam_strmatch(inq->revision, entry->revision, 9112 sizeof(inq->revision)) == 0)) { 9113 return (0); 9114 } 9115 return (-1); 9116 } 9117 9118 /** 9119 * Compare two buffers of vpd device descriptors for a match. 9120 * 9121 * \param lhs Pointer to first buffer of descriptors to compare. 9122 * \param lhs_len The length of the first buffer. 9123 * \param rhs Pointer to second buffer of descriptors to compare. 9124 * \param rhs_len The length of the second buffer. 9125 * 9126 * \return 0 on a match, -1 otherwise. 9127 * 9128 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching 9129 * against each element in rhs until all data are exhausted or we have found 9130 * a match. 9131 */ 9132 int 9133 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) 9134 { 9135 struct scsi_vpd_id_descriptor *lhs_id; 9136 struct scsi_vpd_id_descriptor *lhs_last; 9137 struct scsi_vpd_id_descriptor *rhs_last; 9138 uint8_t *lhs_end; 9139 uint8_t *rhs_end; 9140 9141 lhs_end = lhs + lhs_len; 9142 rhs_end = rhs + rhs_len; 9143 9144 /* 9145 * rhs_last and lhs_last are the last posible position of a valid 9146 * descriptor assuming it had a zero length identifier. We use 9147 * these variables to insure we can safely dereference the length 9148 * field in our loop termination tests. 9149 */ 9150 lhs_last = (struct scsi_vpd_id_descriptor *) 9151 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9152 rhs_last = (struct scsi_vpd_id_descriptor *) 9153 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9154 9155 lhs_id = (struct scsi_vpd_id_descriptor *)lhs; 9156 while (lhs_id <= lhs_last 9157 && (lhs_id->identifier + lhs_id->length) <= lhs_end) { 9158 struct scsi_vpd_id_descriptor *rhs_id; 9159 9160 rhs_id = (struct scsi_vpd_id_descriptor *)rhs; 9161 while (rhs_id <= rhs_last 9162 && (rhs_id->identifier + rhs_id->length) <= rhs_end) { 9163 9164 if ((rhs_id->id_type & 9165 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) == 9166 (lhs_id->id_type & 9167 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) 9168 && rhs_id->length == lhs_id->length 9169 && memcmp(rhs_id->identifier, lhs_id->identifier, 9170 rhs_id->length) == 0) 9171 return (0); 9172 9173 rhs_id = (struct scsi_vpd_id_descriptor *) 9174 (rhs_id->identifier + rhs_id->length); 9175 } 9176 lhs_id = (struct scsi_vpd_id_descriptor *) 9177 (lhs_id->identifier + lhs_id->length); 9178 } 9179 return (-1); 9180 } 9181 9182 #ifdef _KERNEL 9183 int 9184 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id) 9185 { 9186 struct cam_ed *device; 9187 struct scsi_vpd_supported_pages *vpds; 9188 int i, num_pages; 9189 9190 device = periph->path->device; 9191 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; 9192 9193 if (vpds != NULL) { 9194 num_pages = device->supported_vpds_len - 9195 SVPD_SUPPORTED_PAGES_HDR_LEN; 9196 for (i = 0; i < num_pages; i++) { 9197 if (vpds->page_list[i] == page_id) 9198 return (1); 9199 } 9200 } 9201 9202 return (0); 9203 } 9204 9205 static void 9206 init_scsi_delay(void) 9207 { 9208 int delay; 9209 9210 delay = SCSI_DELAY; 9211 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); 9212 9213 if (set_scsi_delay(delay) != 0) { 9214 printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); 9215 set_scsi_delay(SCSI_DELAY); 9216 } 9217 } 9218 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); 9219 9220 static int 9221 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) 9222 { 9223 int error, delay; 9224 9225 delay = scsi_delay; 9226 error = sysctl_handle_int(oidp, &delay, 0, req); 9227 if (error != 0 || req->newptr == NULL) 9228 return (error); 9229 return (set_scsi_delay(delay)); 9230 } 9231 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT|CTLFLAG_RW, 9232 0, 0, sysctl_scsi_delay, "I", 9233 "Delay to allow devices to settle after a SCSI bus reset (ms)"); 9234 9235 static int 9236 set_scsi_delay(int delay) 9237 { 9238 /* 9239 * If someone sets this to 0, we assume that they want the 9240 * minimum allowable bus settle delay. 9241 */ 9242 if (delay == 0) { 9243 printf("cam: using minimum scsi_delay (%dms)\n", 9244 SCSI_MIN_DELAY); 9245 delay = SCSI_MIN_DELAY; 9246 } 9247 if (delay < SCSI_MIN_DELAY) 9248 return (EINVAL); 9249 scsi_delay = delay; 9250 return (0); 9251 } 9252 #endif /* _KERNEL */ 9253