1 /*- 2 * Implementation of Utility functions for all SCSI device types. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/stdint.h> 36 37 #ifdef _KERNEL 38 #include "opt_scsi.h" 39 40 #include <sys/systm.h> 41 #include <sys/libkern.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mutex.h> 46 #include <sys/sysctl.h> 47 #include <sys/ctype.h> 48 #else 49 #include <errno.h> 50 #include <stdio.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <ctype.h> 54 #endif 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_queue.h> 59 #include <cam/cam_xpt.h> 60 #include <cam/scsi/scsi_all.h> 61 #include <sys/ata.h> 62 #include <sys/sbuf.h> 63 64 #ifdef _KERNEL 65 #include <cam/cam_periph.h> 66 #include <cam/cam_xpt_sim.h> 67 #include <cam/cam_xpt_periph.h> 68 #include <cam/cam_xpt_internal.h> 69 #else 70 #include <camlib.h> 71 #include <stddef.h> 72 73 #ifndef FALSE 74 #define FALSE 0 75 #endif /* FALSE */ 76 #ifndef TRUE 77 #define TRUE 1 78 #endif /* TRUE */ 79 #define ERESTART -1 /* restart syscall */ 80 #define EJUSTRETURN -2 /* don't modify regs, just return */ 81 #endif /* !_KERNEL */ 82 83 /* 84 * This is the default number of milliseconds we wait for devices to settle 85 * after a SCSI bus reset. 86 */ 87 #ifndef SCSI_DELAY 88 #define SCSI_DELAY 2000 89 #endif 90 /* 91 * All devices need _some_ sort of bus settle delay, so we'll set it to 92 * a minimum value of 100ms. Note that this is pertinent only for SPI- 93 * not transport like Fibre Channel or iSCSI where 'delay' is completely 94 * meaningless. 95 */ 96 #ifndef SCSI_MIN_DELAY 97 #define SCSI_MIN_DELAY 100 98 #endif 99 /* 100 * Make sure the user isn't using seconds instead of milliseconds. 101 */ 102 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) 103 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" 104 #endif 105 106 int scsi_delay; 107 108 static int ascentrycomp(const void *key, const void *member); 109 static int senseentrycomp(const void *key, const void *member); 110 static void fetchtableentries(int sense_key, int asc, int ascq, 111 struct scsi_inquiry_data *, 112 const struct sense_key_table_entry **, 113 const struct asc_table_entry **); 114 115 #ifdef _KERNEL 116 static void init_scsi_delay(void); 117 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); 118 static int set_scsi_delay(int delay); 119 #endif 120 121 #if !defined(SCSI_NO_OP_STRINGS) 122 123 #define D (1 << T_DIRECT) 124 #define T (1 << T_SEQUENTIAL) 125 #define L (1 << T_PRINTER) 126 #define P (1 << T_PROCESSOR) 127 #define W (1 << T_WORM) 128 #define R (1 << T_CDROM) 129 #define O (1 << T_OPTICAL) 130 #define M (1 << T_CHANGER) 131 #define A (1 << T_STORARRAY) 132 #define E (1 << T_ENCLOSURE) 133 #define B (1 << T_RBC) 134 #define K (1 << T_OCRW) 135 #define V (1 << T_ADC) 136 #define F (1 << T_OSD) 137 #define S (1 << T_SCANNER) 138 #define C (1 << T_COMM) 139 140 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) 141 142 static struct op_table_entry plextor_cd_ops[] = { 143 { 0xD8, R, "CD-DA READ" } 144 }; 145 146 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { 147 { 148 /* 149 * I believe that 0xD8 is the Plextor proprietary command 150 * to read CD-DA data. I'm not sure which Plextor CDROM 151 * models support the command, though. I know for sure 152 * that the 4X, 8X, and 12X models do, and presumably the 153 * 12-20X does. I don't know about any earlier models, 154 * though. If anyone has any more complete information, 155 * feel free to change this quirk entry. 156 */ 157 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, 158 nitems(plextor_cd_ops), 159 plextor_cd_ops 160 } 161 }; 162 163 static struct op_table_entry scsi_op_codes[] = { 164 /* 165 * From: http://www.t10.org/lists/op-num.txt 166 * Modifications by Kenneth Merry (ken@FreeBSD.ORG) 167 * and Jung-uk Kim (jkim@FreeBSD.org) 168 * 169 * Note: order is important in this table, scsi_op_desc() currently 170 * depends on the opcodes in the table being in order to save 171 * search time. 172 * Note: scanner and comm. devices are carried over from the previous 173 * version because they were removed in the latest spec. 174 */ 175 /* File: OP-NUM.TXT 176 * 177 * SCSI Operation Codes 178 * Numeric Sorted Listing 179 * as of 5/26/15 180 * 181 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 182 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- 183 * . L - PRINTER DEVICE (SSC) M = Mandatory 184 * . P - PROCESSOR DEVICE (SPC) O = Optional 185 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. 186 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete 187 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 188 * . . .M - MEDIA CHANGER DEVICE (SMC-2) 189 * . . . A - STORAGE ARRAY DEVICE (SCC-2) 190 * . . . .E - ENCLOSURE SERVICES DEVICE (SES) 191 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 192 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 193 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 194 * . . . . .F - OBJECT-BASED STORAGE (OSD) 195 * OP DTLPWROMAEBKVF Description 196 * -- -------------- ---------------------------------------------- */ 197 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ 198 { 0x00, ALL, "TEST UNIT READY" }, 199 /* 01 M REWIND */ 200 { 0x01, T, "REWIND" }, 201 /* 01 Z V ZZZZ REZERO UNIT */ 202 { 0x01, D | W | R | O | M, "REZERO UNIT" }, 203 /* 02 VVVVVV V */ 204 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ 205 { 0x03, ALL, "REQUEST SENSE" }, 206 /* 04 M OO FORMAT UNIT */ 207 { 0x04, D | R | O, "FORMAT UNIT" }, 208 /* 04 O FORMAT MEDIUM */ 209 { 0x04, T, "FORMAT MEDIUM" }, 210 /* 04 O FORMAT */ 211 { 0x04, L, "FORMAT" }, 212 /* 05 VMVVVV V READ BLOCK LIMITS */ 213 { 0x05, T, "READ BLOCK LIMITS" }, 214 /* 06 VVVVVV V */ 215 /* 07 OVV O OV REASSIGN BLOCKS */ 216 { 0x07, D | W | O, "REASSIGN BLOCKS" }, 217 /* 07 O INITIALIZE ELEMENT STATUS */ 218 { 0x07, M, "INITIALIZE ELEMENT STATUS" }, 219 /* 08 MOV O OV READ(6) */ 220 { 0x08, D | T | W | O, "READ(6)" }, 221 /* 08 O RECEIVE */ 222 { 0x08, P, "RECEIVE" }, 223 /* 08 GET MESSAGE(6) */ 224 { 0x08, C, "GET MESSAGE(6)" }, 225 /* 09 VVVVVV V */ 226 /* 0A OO O OV WRITE(6) */ 227 { 0x0A, D | T | W | O, "WRITE(6)" }, 228 /* 0A M SEND(6) */ 229 { 0x0A, P, "SEND(6)" }, 230 /* 0A SEND MESSAGE(6) */ 231 { 0x0A, C, "SEND MESSAGE(6)" }, 232 /* 0A M PRINT */ 233 { 0x0A, L, "PRINT" }, 234 /* 0B Z ZOZV SEEK(6) */ 235 { 0x0B, D | W | R | O, "SEEK(6)" }, 236 /* 0B O SET CAPACITY */ 237 { 0x0B, T, "SET CAPACITY" }, 238 /* 0B O SLEW AND PRINT */ 239 { 0x0B, L, "SLEW AND PRINT" }, 240 /* 0C VVVVVV V */ 241 /* 0D VVVVVV V */ 242 /* 0E VVVVVV V */ 243 /* 0F VOVVVV V READ REVERSE(6) */ 244 { 0x0F, T, "READ REVERSE(6)" }, 245 /* 10 VM VVV WRITE FILEMARKS(6) */ 246 { 0x10, T, "WRITE FILEMARKS(6)" }, 247 /* 10 O SYNCHRONIZE BUFFER */ 248 { 0x10, L, "SYNCHRONIZE BUFFER" }, 249 /* 11 VMVVVV SPACE(6) */ 250 { 0x11, T, "SPACE(6)" }, 251 /* 12 MMMMMMMMMMMMMM INQUIRY */ 252 { 0x12, ALL, "INQUIRY" }, 253 /* 13 V VVVV */ 254 /* 13 O VERIFY(6) */ 255 { 0x13, T, "VERIFY(6)" }, 256 /* 14 VOOVVV RECOVER BUFFERED DATA */ 257 { 0x14, T | L, "RECOVER BUFFERED DATA" }, 258 /* 15 OMO O OOOO OO MODE SELECT(6) */ 259 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, 260 /* 16 ZZMZO OOOZ O RESERVE(6) */ 261 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, 262 /* 16 Z RESERVE ELEMENT(6) */ 263 { 0x16, M, "RESERVE ELEMENT(6)" }, 264 /* 17 ZZMZO OOOZ O RELEASE(6) */ 265 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, 266 /* 17 Z RELEASE ELEMENT(6) */ 267 { 0x17, M, "RELEASE ELEMENT(6)" }, 268 /* 18 ZZZZOZO Z COPY */ 269 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, 270 /* 19 VMVVVV ERASE(6) */ 271 { 0x19, T, "ERASE(6)" }, 272 /* 1A OMO O OOOO OO MODE SENSE(6) */ 273 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, 274 /* 1B O OOO O MO O START STOP UNIT */ 275 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, 276 /* 1B O M LOAD UNLOAD */ 277 { 0x1B, T | V, "LOAD UNLOAD" }, 278 /* 1B SCAN */ 279 { 0x1B, S, "SCAN" }, 280 /* 1B O STOP PRINT */ 281 { 0x1B, L, "STOP PRINT" }, 282 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ 283 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, 284 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ 285 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, 286 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ 287 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, 288 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ 289 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, 290 /* 1F */ 291 /* 20 V VVV V */ 292 /* 21 V VVV V */ 293 /* 22 V VVV V */ 294 /* 23 V V V V */ 295 /* 23 O READ FORMAT CAPACITIES */ 296 { 0x23, R, "READ FORMAT CAPACITIES" }, 297 /* 24 V VV SET WINDOW */ 298 { 0x24, S, "SET WINDOW" }, 299 /* 25 M M M M READ CAPACITY(10) */ 300 { 0x25, D | W | O | B, "READ CAPACITY(10)" }, 301 /* 25 O READ CAPACITY */ 302 { 0x25, R, "READ CAPACITY" }, 303 /* 25 M READ CARD CAPACITY */ 304 { 0x25, K, "READ CARD CAPACITY" }, 305 /* 25 GET WINDOW */ 306 { 0x25, S, "GET WINDOW" }, 307 /* 26 V VV */ 308 /* 27 V VV */ 309 /* 28 M MOM MM READ(10) */ 310 { 0x28, D | W | R | O | B | K | S, "READ(10)" }, 311 /* 28 GET MESSAGE(10) */ 312 { 0x28, C, "GET MESSAGE(10)" }, 313 /* 29 V VVO READ GENERATION */ 314 { 0x29, O, "READ GENERATION" }, 315 /* 2A O MOM MO WRITE(10) */ 316 { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, 317 /* 2A SEND(10) */ 318 { 0x2A, S, "SEND(10)" }, 319 /* 2A SEND MESSAGE(10) */ 320 { 0x2A, C, "SEND MESSAGE(10)" }, 321 /* 2B Z OOO O SEEK(10) */ 322 { 0x2B, D | W | R | O | K, "SEEK(10)" }, 323 /* 2B O LOCATE(10) */ 324 { 0x2B, T, "LOCATE(10)" }, 325 /* 2B O POSITION TO ELEMENT */ 326 { 0x2B, M, "POSITION TO ELEMENT" }, 327 /* 2C V OO ERASE(10) */ 328 { 0x2C, R | O, "ERASE(10)" }, 329 /* 2D O READ UPDATED BLOCK */ 330 { 0x2D, O, "READ UPDATED BLOCK" }, 331 /* 2D V */ 332 /* 2E O OOO MO WRITE AND VERIFY(10) */ 333 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, 334 /* 2F O OOO VERIFY(10) */ 335 { 0x2F, D | W | R | O, "VERIFY(10)" }, 336 /* 30 Z ZZZ SEARCH DATA HIGH(10) */ 337 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, 338 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ 339 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, 340 /* 31 OBJECT POSITION */ 341 { 0x31, S, "OBJECT POSITION" }, 342 /* 32 Z ZZZ SEARCH DATA LOW(10) */ 343 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, 344 /* 33 Z OZO SET LIMITS(10) */ 345 { 0x33, D | W | R | O, "SET LIMITS(10)" }, 346 /* 34 O O O O PRE-FETCH(10) */ 347 { 0x34, D | W | O | K, "PRE-FETCH(10)" }, 348 /* 34 M READ POSITION */ 349 { 0x34, T, "READ POSITION" }, 350 /* 34 GET DATA BUFFER STATUS */ 351 { 0x34, S, "GET DATA BUFFER STATUS" }, 352 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ 353 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, 354 /* 36 Z O O O LOCK UNLOCK CACHE(10) */ 355 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, 356 /* 37 O O READ DEFECT DATA(10) */ 357 { 0x37, D | O, "READ DEFECT DATA(10)" }, 358 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ 359 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, 360 /* 38 O O O MEDIUM SCAN */ 361 { 0x38, W | O | K, "MEDIUM SCAN" }, 362 /* 39 ZZZZOZO Z COMPARE */ 363 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, 364 /* 3A ZZZZOZO Z COPY AND VERIFY */ 365 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, 366 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ 367 { 0x3B, ALL, "WRITE BUFFER" }, 368 /* 3C OOOOOOOOOO OOO READ BUFFER */ 369 { 0x3C, ALL & ~(B), "READ BUFFER" }, 370 /* 3D O UPDATE BLOCK */ 371 { 0x3D, O, "UPDATE BLOCK" }, 372 /* 3E O O O READ LONG(10) */ 373 { 0x3E, D | W | O, "READ LONG(10)" }, 374 /* 3F O O O WRITE LONG(10) */ 375 { 0x3F, D | W | O, "WRITE LONG(10)" }, 376 /* 40 ZZZZOZOZ CHANGE DEFINITION */ 377 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, 378 /* 41 O WRITE SAME(10) */ 379 { 0x41, D, "WRITE SAME(10)" }, 380 /* 42 O UNMAP */ 381 { 0x42, D, "UNMAP" }, 382 /* 42 O READ SUB-CHANNEL */ 383 { 0x42, R, "READ SUB-CHANNEL" }, 384 /* 43 O READ TOC/PMA/ATIP */ 385 { 0x43, R, "READ TOC/PMA/ATIP" }, 386 /* 44 M M REPORT DENSITY SUPPORT */ 387 { 0x44, T | V, "REPORT DENSITY SUPPORT" }, 388 /* 44 READ HEADER */ 389 /* 45 O PLAY AUDIO(10) */ 390 { 0x45, R, "PLAY AUDIO(10)" }, 391 /* 46 M GET CONFIGURATION */ 392 { 0x46, R, "GET CONFIGURATION" }, 393 /* 47 O PLAY AUDIO MSF */ 394 { 0x47, R, "PLAY AUDIO MSF" }, 395 /* 48 */ 396 /* 49 */ 397 /* 4A M GET EVENT STATUS NOTIFICATION */ 398 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, 399 /* 4B O PAUSE/RESUME */ 400 { 0x4B, R, "PAUSE/RESUME" }, 401 /* 4C OOOOO OOOO OOO LOG SELECT */ 402 { 0x4C, ALL & ~(R | B), "LOG SELECT" }, 403 /* 4D OOOOO OOOO OMO LOG SENSE */ 404 { 0x4D, ALL & ~(R | B), "LOG SENSE" }, 405 /* 4E O STOP PLAY/SCAN */ 406 { 0x4E, R, "STOP PLAY/SCAN" }, 407 /* 4F */ 408 /* 50 O XDWRITE(10) */ 409 { 0x50, D, "XDWRITE(10)" }, 410 /* 51 O XPWRITE(10) */ 411 { 0x51, D, "XPWRITE(10)" }, 412 /* 51 O READ DISC INFORMATION */ 413 { 0x51, R, "READ DISC INFORMATION" }, 414 /* 52 O XDREAD(10) */ 415 { 0x52, D, "XDREAD(10)" }, 416 /* 52 O READ TRACK INFORMATION */ 417 { 0x52, R, "READ TRACK INFORMATION" }, 418 /* 53 O RESERVE TRACK */ 419 { 0x53, R, "RESERVE TRACK" }, 420 /* 54 O SEND OPC INFORMATION */ 421 { 0x54, R, "SEND OPC INFORMATION" }, 422 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ 423 { 0x55, ALL & ~(P), "MODE SELECT(10)" }, 424 /* 56 ZZMZO OOOZ RESERVE(10) */ 425 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, 426 /* 56 Z RESERVE ELEMENT(10) */ 427 { 0x56, M, "RESERVE ELEMENT(10)" }, 428 /* 57 ZZMZO OOOZ RELEASE(10) */ 429 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, 430 /* 57 Z RELEASE ELEMENT(10) */ 431 { 0x57, M, "RELEASE ELEMENT(10)" }, 432 /* 58 O REPAIR TRACK */ 433 { 0x58, R, "REPAIR TRACK" }, 434 /* 59 */ 435 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ 436 { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, 437 /* 5B O CLOSE TRACK/SESSION */ 438 { 0x5B, R, "CLOSE TRACK/SESSION" }, 439 /* 5C O READ BUFFER CAPACITY */ 440 { 0x5C, R, "READ BUFFER CAPACITY" }, 441 /* 5D O SEND CUE SHEET */ 442 { 0x5D, R, "SEND CUE SHEET" }, 443 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ 444 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, 445 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ 446 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, 447 /* 7E OO O OOOO O extended CDB */ 448 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, 449 /* 7F O M variable length CDB (more than 16 bytes) */ 450 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, 451 /* 80 Z XDWRITE EXTENDED(16) */ 452 { 0x80, D, "XDWRITE EXTENDED(16)" }, 453 /* 80 M WRITE FILEMARKS(16) */ 454 { 0x80, T, "WRITE FILEMARKS(16)" }, 455 /* 81 Z REBUILD(16) */ 456 { 0x81, D, "REBUILD(16)" }, 457 /* 81 O READ REVERSE(16) */ 458 { 0x81, T, "READ REVERSE(16)" }, 459 /* 82 Z REGENERATE(16) */ 460 { 0x82, D, "REGENERATE(16)" }, 461 /* 83 OOOOO O OO EXTENDED COPY */ 462 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, 463 /* 84 OOOOO O OO RECEIVE COPY RESULTS */ 464 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, 465 /* 85 O O O ATA COMMAND PASS THROUGH(16) */ 466 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, 467 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ 468 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, 469 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ 470 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, 471 /* 88 MM O O O READ(16) */ 472 { 0x88, D | T | W | O | B, "READ(16)" }, 473 /* 89 O COMPARE AND WRITE*/ 474 { 0x89, D, "COMPARE AND WRITE" }, 475 /* 8A OM O O O WRITE(16) */ 476 { 0x8A, D | T | W | O | B, "WRITE(16)" }, 477 /* 8B O ORWRITE */ 478 { 0x8B, D, "ORWRITE" }, 479 /* 8C OO O OO O M READ ATTRIBUTE */ 480 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, 481 /* 8D OO O OO O O WRITE ATTRIBUTE */ 482 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, 483 /* 8E O O O O WRITE AND VERIFY(16) */ 484 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, 485 /* 8F OO O O O VERIFY(16) */ 486 { 0x8F, D | T | W | O | B, "VERIFY(16)" }, 487 /* 90 O O O O PRE-FETCH(16) */ 488 { 0x90, D | W | O | B, "PRE-FETCH(16)" }, 489 /* 91 O O O O SYNCHRONIZE CACHE(16) */ 490 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, 491 /* 91 O SPACE(16) */ 492 { 0x91, T, "SPACE(16)" }, 493 /* 92 Z O O LOCK UNLOCK CACHE(16) */ 494 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, 495 /* 92 O LOCATE(16) */ 496 { 0x92, T, "LOCATE(16)" }, 497 /* 93 O WRITE SAME(16) */ 498 { 0x93, D, "WRITE SAME(16)" }, 499 /* 93 M ERASE(16) */ 500 { 0x93, T, "ERASE(16)" }, 501 /* 94 O ZBC OUT */ 502 { 0x94, ALL, "ZBC OUT" }, 503 /* 95 O ZBC IN */ 504 { 0x95, ALL, "ZBC IN" }, 505 /* 96 */ 506 /* 97 */ 507 /* 98 */ 508 /* 99 */ 509 /* 9A O WRITE STREAM(16) */ 510 { 0x9A, D, "WRITE STREAM(16)" }, 511 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */ 512 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" }, 513 /* 9C O WRITE ATOMIC(16) */ 514 { 0x9C, D, "WRITE ATOMIC(16)" }, 515 /* 9D SERVICE ACTION BIDIRECTIONAL */ 516 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" }, 517 /* XXX KDM ALL for this? op-num.txt defines it for none.. */ 518 /* 9E SERVICE ACTION IN(16) */ 519 { 0x9E, ALL, "SERVICE ACTION IN(16)" }, 520 /* 9F M SERVICE ACTION OUT(16) */ 521 { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, 522 /* A0 MMOOO OMMM OMO REPORT LUNS */ 523 { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, 524 /* A1 O BLANK */ 525 { 0xA1, R, "BLANK" }, 526 /* A1 O O ATA COMMAND PASS THROUGH(12) */ 527 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, 528 /* A2 OO O O SECURITY PROTOCOL IN */ 529 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, 530 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ 531 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, 532 /* A3 O SEND KEY */ 533 { 0xA3, R, "SEND KEY" }, 534 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ 535 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, 536 /* A4 O REPORT KEY */ 537 { 0xA4, R, "REPORT KEY" }, 538 /* A5 O O OM MOVE MEDIUM */ 539 { 0xA5, T | W | O | M, "MOVE MEDIUM" }, 540 /* A5 O PLAY AUDIO(12) */ 541 { 0xA5, R, "PLAY AUDIO(12)" }, 542 /* A6 O EXCHANGE MEDIUM */ 543 { 0xA6, M, "EXCHANGE MEDIUM" }, 544 /* A6 O LOAD/UNLOAD C/DVD */ 545 { 0xA6, R, "LOAD/UNLOAD C/DVD" }, 546 /* A7 ZZ O O MOVE MEDIUM ATTACHED */ 547 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, 548 /* A7 O SET READ AHEAD */ 549 { 0xA7, R, "SET READ AHEAD" }, 550 /* A8 O OOO READ(12) */ 551 { 0xA8, D | W | R | O, "READ(12)" }, 552 /* A8 GET MESSAGE(12) */ 553 { 0xA8, C, "GET MESSAGE(12)" }, 554 /* A9 O SERVICE ACTION OUT(12) */ 555 { 0xA9, V, "SERVICE ACTION OUT(12)" }, 556 /* AA O OOO WRITE(12) */ 557 { 0xAA, D | W | R | O, "WRITE(12)" }, 558 /* AA SEND MESSAGE(12) */ 559 { 0xAA, C, "SEND MESSAGE(12)" }, 560 /* AB O O SERVICE ACTION IN(12) */ 561 { 0xAB, R | V, "SERVICE ACTION IN(12)" }, 562 /* AC O ERASE(12) */ 563 { 0xAC, O, "ERASE(12)" }, 564 /* AC O GET PERFORMANCE */ 565 { 0xAC, R, "GET PERFORMANCE" }, 566 /* AD O READ DVD STRUCTURE */ 567 { 0xAD, R, "READ DVD STRUCTURE" }, 568 /* AE O O O WRITE AND VERIFY(12) */ 569 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, 570 /* AF O OZO VERIFY(12) */ 571 { 0xAF, D | W | R | O, "VERIFY(12)" }, 572 /* B0 ZZZ SEARCH DATA HIGH(12) */ 573 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, 574 /* B1 ZZZ SEARCH DATA EQUAL(12) */ 575 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, 576 /* B2 ZZZ SEARCH DATA LOW(12) */ 577 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, 578 /* B3 Z OZO SET LIMITS(12) */ 579 { 0xB3, D | W | R | O, "SET LIMITS(12)" }, 580 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ 581 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, 582 /* B5 OO O O SECURITY PROTOCOL OUT */ 583 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, 584 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ 585 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, 586 /* B6 O SEND VOLUME TAG */ 587 { 0xB6, M, "SEND VOLUME TAG" }, 588 /* B6 O SET STREAMING */ 589 { 0xB6, R, "SET STREAMING" }, 590 /* B7 O O READ DEFECT DATA(12) */ 591 { 0xB7, D | O, "READ DEFECT DATA(12)" }, 592 /* B8 O OZOM READ ELEMENT STATUS */ 593 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, 594 /* B9 O READ CD MSF */ 595 { 0xB9, R, "READ CD MSF" }, 596 /* BA O O OOMO REDUNDANCY GROUP (IN) */ 597 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, 598 /* BA O SCAN */ 599 { 0xBA, R, "SCAN" }, 600 /* BB O O OOOO REDUNDANCY GROUP (OUT) */ 601 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, 602 /* BB O SET CD SPEED */ 603 { 0xBB, R, "SET CD SPEED" }, 604 /* BC O O OOMO SPARE (IN) */ 605 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, 606 /* BD O O OOOO SPARE (OUT) */ 607 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, 608 /* BD O MECHANISM STATUS */ 609 { 0xBD, R, "MECHANISM STATUS" }, 610 /* BE O O OOMO VOLUME SET (IN) */ 611 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, 612 /* BE O READ CD */ 613 { 0xBE, R, "READ CD" }, 614 /* BF O O OOOO VOLUME SET (OUT) */ 615 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, 616 /* BF O SEND DVD STRUCTURE */ 617 { 0xBF, R, "SEND DVD STRUCTURE" } 618 }; 619 620 const char * 621 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 622 { 623 caddr_t match; 624 int i, j; 625 u_int32_t opmask; 626 u_int16_t pd_type; 627 int num_ops[2]; 628 struct op_table_entry *table[2]; 629 int num_tables; 630 631 /* 632 * If we've got inquiry data, use it to determine what type of 633 * device we're dealing with here. Otherwise, assume direct 634 * access. 635 */ 636 if (inq_data == NULL) { 637 pd_type = T_DIRECT; 638 match = NULL; 639 } else { 640 pd_type = SID_TYPE(inq_data); 641 642 match = cam_quirkmatch((caddr_t)inq_data, 643 (caddr_t)scsi_op_quirk_table, 644 nitems(scsi_op_quirk_table), 645 sizeof(*scsi_op_quirk_table), 646 scsi_inquiry_match); 647 } 648 649 if (match != NULL) { 650 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; 651 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; 652 table[1] = scsi_op_codes; 653 num_ops[1] = nitems(scsi_op_codes); 654 num_tables = 2; 655 } else { 656 /* 657 * If this is true, we have a vendor specific opcode that 658 * wasn't covered in the quirk table. 659 */ 660 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) 661 return("Vendor Specific Command"); 662 663 table[0] = scsi_op_codes; 664 num_ops[0] = nitems(scsi_op_codes); 665 num_tables = 1; 666 } 667 668 /* RBC is 'Simplified' Direct Access Device */ 669 if (pd_type == T_RBC) 670 pd_type = T_DIRECT; 671 672 /* 673 * Host managed drives are direct access for the most part. 674 */ 675 if (pd_type == T_ZBC_HM) 676 pd_type = T_DIRECT; 677 678 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */ 679 if (pd_type == T_NODEVICE) 680 pd_type = T_DIRECT; 681 682 opmask = 1 << pd_type; 683 684 for (j = 0; j < num_tables; j++) { 685 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ 686 if ((table[j][i].opcode == opcode) 687 && ((table[j][i].opmask & opmask) != 0)) 688 return(table[j][i].desc); 689 } 690 } 691 692 /* 693 * If we can't find a match for the command in the table, we just 694 * assume it's a vendor specifc command. 695 */ 696 return("Vendor Specific Command"); 697 698 } 699 700 #else /* SCSI_NO_OP_STRINGS */ 701 702 const char * 703 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 704 { 705 return(""); 706 } 707 708 #endif 709 710 711 #if !defined(SCSI_NO_SENSE_STRINGS) 712 #define SST(asc, ascq, action, desc) \ 713 asc, ascq, action, desc 714 #else 715 const char empty_string[] = ""; 716 717 #define SST(asc, ascq, action, desc) \ 718 asc, ascq, action, empty_string 719 #endif 720 721 const struct sense_key_table_entry sense_key_table[] = 722 { 723 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, 724 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, 725 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" }, 726 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, 727 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, 728 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, 729 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, 730 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, 731 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, 732 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, 733 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, 734 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, 735 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, 736 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, 737 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, 738 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } 739 }; 740 741 static struct asc_table_entry quantum_fireball_entries[] = { 742 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 743 "Logical unit not ready, initializing cmd. required") } 744 }; 745 746 static struct asc_table_entry sony_mo_entries[] = { 747 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 748 "Logical unit not ready, cause not reportable") } 749 }; 750 751 static struct asc_table_entry hgst_entries[] = { 752 { SST(0x04, 0xF0, SS_RDEF, 753 "Vendor Unique - Logical Unit Not Ready") }, 754 { SST(0x0A, 0x01, SS_RDEF, 755 "Unrecovered Super Certification Log Write Error") }, 756 { SST(0x0A, 0x02, SS_RDEF, 757 "Unrecovered Super Certification Log Read Error") }, 758 { SST(0x15, 0x03, SS_RDEF, 759 "Unrecovered Sector Error") }, 760 { SST(0x3E, 0x04, SS_RDEF, 761 "Unrecovered Self-Test Hard-Cache Test Fail") }, 762 { SST(0x3E, 0x05, SS_RDEF, 763 "Unrecovered Self-Test OTF-Cache Fail") }, 764 { SST(0x40, 0x00, SS_RDEF, 765 "Unrecovered SAT No Buffer Overflow Error") }, 766 { SST(0x40, 0x01, SS_RDEF, 767 "Unrecovered SAT Buffer Overflow Error") }, 768 { SST(0x40, 0x02, SS_RDEF, 769 "Unrecovered SAT No Buffer Overflow With ECS Fault") }, 770 { SST(0x40, 0x03, SS_RDEF, 771 "Unrecovered SAT Buffer Overflow With ECS Fault") }, 772 { SST(0x40, 0x81, SS_RDEF, 773 "DRAM Failure") }, 774 { SST(0x44, 0x0B, SS_RDEF, 775 "Vendor Unique - Internal Target Failure") }, 776 { SST(0x44, 0xF2, SS_RDEF, 777 "Vendor Unique - Internal Target Failure") }, 778 { SST(0x44, 0xF6, SS_RDEF, 779 "Vendor Unique - Internal Target Failure") }, 780 { SST(0x44, 0xF9, SS_RDEF, 781 "Vendor Unique - Internal Target Failure") }, 782 { SST(0x44, 0xFA, SS_RDEF, 783 "Vendor Unique - Internal Target Failure") }, 784 { SST(0x5D, 0x22, SS_RDEF, 785 "Extreme Over-Temperature Warning") }, 786 { SST(0x5D, 0x50, SS_RDEF, 787 "Load/Unload cycle Count Warning") }, 788 { SST(0x81, 0x00, SS_RDEF, 789 "Vendor Unique - Internal Logic Error") }, 790 { SST(0x85, 0x00, SS_RDEF, 791 "Vendor Unique - Internal Key Seed Error") }, 792 }; 793 794 static struct asc_table_entry seagate_entries[] = { 795 { SST(0x04, 0xF0, SS_RDEF, 796 "Logical Unit Not Ready, super certify in Progress") }, 797 { SST(0x08, 0x86, SS_RDEF, 798 "Write Fault Data Corruption") }, 799 { SST(0x09, 0x0D, SS_RDEF, 800 "Tracking Failure") }, 801 { SST(0x09, 0x0E, SS_RDEF, 802 "ETF Failure") }, 803 { SST(0x0B, 0x5D, SS_RDEF, 804 "Pre-SMART Warning") }, 805 { SST(0x0B, 0x85, SS_RDEF, 806 "5V Voltage Warning") }, 807 { SST(0x0B, 0x8C, SS_RDEF, 808 "12V Voltage Warning") }, 809 { SST(0x0C, 0xFF, SS_RDEF, 810 "Write Error - Too many error recovery revs") }, 811 { SST(0x11, 0xFF, SS_RDEF, 812 "Unrecovered Read Error - Too many error recovery revs") }, 813 { SST(0x19, 0x0E, SS_RDEF, 814 "Fewer than 1/2 defect list copies") }, 815 { SST(0x20, 0xF3, SS_RDEF, 816 "Illegal CDB linked to skip mask cmd") }, 817 { SST(0x24, 0xF0, SS_RDEF, 818 "Illegal byte in CDB, LBA not matching") }, 819 { SST(0x24, 0xF1, SS_RDEF, 820 "Illegal byte in CDB, LEN not matching") }, 821 { SST(0x24, 0xF2, SS_RDEF, 822 "Mask not matching transfer length") }, 823 { SST(0x24, 0xF3, SS_RDEF, 824 "Drive formatted without plist") }, 825 { SST(0x26, 0x95, SS_RDEF, 826 "Invalid Field Parameter - CAP File") }, 827 { SST(0x26, 0x96, SS_RDEF, 828 "Invalid Field Parameter - RAP File") }, 829 { SST(0x26, 0x97, SS_RDEF, 830 "Invalid Field Parameter - TMS Firmware Tag") }, 831 { SST(0x26, 0x98, SS_RDEF, 832 "Invalid Field Parameter - Check Sum") }, 833 { SST(0x26, 0x99, SS_RDEF, 834 "Invalid Field Parameter - Firmware Tag") }, 835 { SST(0x29, 0x08, SS_RDEF, 836 "Write Log Dump data") }, 837 { SST(0x29, 0x09, SS_RDEF, 838 "Write Log Dump data") }, 839 { SST(0x29, 0x0A, SS_RDEF, 840 "Reserved disk space") }, 841 { SST(0x29, 0x0B, SS_RDEF, 842 "SDBP") }, 843 { SST(0x29, 0x0C, SS_RDEF, 844 "SDBP") }, 845 { SST(0x31, 0x91, SS_RDEF, 846 "Format Corrupted World Wide Name (WWN) is Invalid") }, 847 { SST(0x32, 0x03, SS_RDEF, 848 "Defect List - Length exceeds Command Allocated Length") }, 849 { SST(0x33, 0x00, SS_RDEF, 850 "Flash not ready for access") }, 851 { SST(0x3F, 0x70, SS_RDEF, 852 "Invalid RAP block") }, 853 { SST(0x3F, 0x71, SS_RDEF, 854 "RAP/ETF mismatch") }, 855 { SST(0x3F, 0x90, SS_RDEF, 856 "Invalid CAP block") }, 857 { SST(0x3F, 0x91, SS_RDEF, 858 "World Wide Name (WWN) Mismatch") }, 859 { SST(0x40, 0x01, SS_RDEF, 860 "DRAM Parity Error") }, 861 { SST(0x40, 0x02, SS_RDEF, 862 "DRAM Parity Error") }, 863 { SST(0x42, 0x0A, SS_RDEF, 864 "Loopback Test") }, 865 { SST(0x42, 0x0B, SS_RDEF, 866 "Loopback Test") }, 867 { SST(0x44, 0xF2, SS_RDEF, 868 "Compare error during data integrity check") }, 869 { SST(0x44, 0xF6, SS_RDEF, 870 "Unrecoverable error during data integrity check") }, 871 { SST(0x47, 0x80, SS_RDEF, 872 "Fibre Channel Sequence Error") }, 873 { SST(0x4E, 0x01, SS_RDEF, 874 "Information Unit Too Short") }, 875 { SST(0x80, 0x00, SS_RDEF, 876 "General Firmware Error / Command Timeout") }, 877 { SST(0x80, 0x01, SS_RDEF, 878 "Command Timeout") }, 879 { SST(0x80, 0x02, SS_RDEF, 880 "Command Timeout") }, 881 { SST(0x80, 0x80, SS_RDEF, 882 "FC FIFO Error During Read Transfer") }, 883 { SST(0x80, 0x81, SS_RDEF, 884 "FC FIFO Error During Write Transfer") }, 885 { SST(0x80, 0x82, SS_RDEF, 886 "DISC FIFO Error During Read Transfer") }, 887 { SST(0x80, 0x83, SS_RDEF, 888 "DISC FIFO Error During Write Transfer") }, 889 { SST(0x80, 0x84, SS_RDEF, 890 "LBA Seeded LRC Error on Read") }, 891 { SST(0x80, 0x85, SS_RDEF, 892 "LBA Seeded LRC Error on Write") }, 893 { SST(0x80, 0x86, SS_RDEF, 894 "IOEDC Error on Read") }, 895 { SST(0x80, 0x87, SS_RDEF, 896 "IOEDC Error on Write") }, 897 { SST(0x80, 0x88, SS_RDEF, 898 "Host Parity Check Failed") }, 899 { SST(0x80, 0x89, SS_RDEF, 900 "IOEDC error on read detected by formatter") }, 901 { SST(0x80, 0x8A, SS_RDEF, 902 "Host Parity Errors / Host FIFO Initialization Failed") }, 903 { SST(0x80, 0x8B, SS_RDEF, 904 "Host Parity Errors") }, 905 { SST(0x80, 0x8C, SS_RDEF, 906 "Host Parity Errors") }, 907 { SST(0x80, 0x8D, SS_RDEF, 908 "Host Parity Errors") }, 909 { SST(0x81, 0x00, SS_RDEF, 910 "LA Check Failed") }, 911 { SST(0x82, 0x00, SS_RDEF, 912 "Internal client detected insufficient buffer") }, 913 { SST(0x84, 0x00, SS_RDEF, 914 "Scheduled Diagnostic And Repair") }, 915 }; 916 917 static struct scsi_sense_quirk_entry sense_quirk_table[] = { 918 { 919 /* 920 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b 921 * when they really should return 0x04 0x02. 922 */ 923 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, 924 /*num_sense_keys*/0, 925 nitems(quantum_fireball_entries), 926 /*sense key entries*/NULL, 927 quantum_fireball_entries 928 }, 929 { 930 /* 931 * This Sony MO drive likes to return 0x04, 0x00 when it 932 * isn't spun up. 933 */ 934 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, 935 /*num_sense_keys*/0, 936 nitems(sony_mo_entries), 937 /*sense key entries*/NULL, 938 sony_mo_entries 939 }, 940 { 941 /* 942 * HGST vendor-specific error codes 943 */ 944 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"}, 945 /*num_sense_keys*/0, 946 nitems(hgst_entries), 947 /*sense key entries*/NULL, 948 hgst_entries 949 }, 950 { 951 /* 952 * SEAGATE vendor-specific error codes 953 */ 954 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"}, 955 /*num_sense_keys*/0, 956 nitems(seagate_entries), 957 /*sense key entries*/NULL, 958 seagate_entries 959 } 960 }; 961 962 const u_int sense_quirk_table_size = nitems(sense_quirk_table); 963 964 static struct asc_table_entry asc_table[] = { 965 /* 966 * From: http://www.t10.org/lists/asc-num.txt 967 * Modifications by Jung-uk Kim (jkim@FreeBSD.org) 968 */ 969 /* 970 * File: ASC-NUM.TXT 971 * 972 * SCSI ASC/ASCQ Assignments 973 * Numeric Sorted Listing 974 * as of 8/12/15 975 * 976 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 977 * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- 978 * . L - PRINTER DEVICE (SSC) blank = reserved 979 * . P - PROCESSOR DEVICE (SPC) not blank = allowed 980 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) 981 * . . R - CD DEVICE (MMC) 982 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 983 * . . .M - MEDIA CHANGER DEVICE (SMC) 984 * . . . A - STORAGE ARRAY DEVICE (SCC) 985 * . . . E - ENCLOSURE SERVICES DEVICE (SES) 986 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 987 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 988 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 989 * . . . . .F - OBJECT-BASED STORAGE (OSD) 990 * DTLPWROMAEBKVF 991 * ASC ASCQ Action 992 * Description 993 */ 994 /* DTLPWROMAEBKVF */ 995 { SST(0x00, 0x00, SS_NOP, 996 "No additional sense information") }, 997 /* T */ 998 { SST(0x00, 0x01, SS_RDEF, 999 "Filemark detected") }, 1000 /* T */ 1001 { SST(0x00, 0x02, SS_RDEF, 1002 "End-of-partition/medium detected") }, 1003 /* T */ 1004 { SST(0x00, 0x03, SS_RDEF, 1005 "Setmark detected") }, 1006 /* T */ 1007 { SST(0x00, 0x04, SS_RDEF, 1008 "Beginning-of-partition/medium detected") }, 1009 /* TL */ 1010 { SST(0x00, 0x05, SS_RDEF, 1011 "End-of-data detected") }, 1012 /* DTLPWROMAEBKVF */ 1013 { SST(0x00, 0x06, SS_RDEF, 1014 "I/O process terminated") }, 1015 /* T */ 1016 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ 1017 "Programmable early warning detected") }, 1018 /* R */ 1019 { SST(0x00, 0x11, SS_FATAL | EBUSY, 1020 "Audio play operation in progress") }, 1021 /* R */ 1022 { SST(0x00, 0x12, SS_NOP, 1023 "Audio play operation paused") }, 1024 /* R */ 1025 { SST(0x00, 0x13, SS_NOP, 1026 "Audio play operation successfully completed") }, 1027 /* R */ 1028 { SST(0x00, 0x14, SS_RDEF, 1029 "Audio play operation stopped due to error") }, 1030 /* R */ 1031 { SST(0x00, 0x15, SS_NOP, 1032 "No current audio status to return") }, 1033 /* DTLPWROMAEBKVF */ 1034 { SST(0x00, 0x16, SS_FATAL | EBUSY, 1035 "Operation in progress") }, 1036 /* DTL WROMAEBKVF */ 1037 { SST(0x00, 0x17, SS_RDEF, 1038 "Cleaning requested") }, 1039 /* T */ 1040 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ 1041 "Erase operation in progress") }, 1042 /* T */ 1043 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ 1044 "Locate operation in progress") }, 1045 /* T */ 1046 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ 1047 "Rewind operation in progress") }, 1048 /* T */ 1049 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ 1050 "Set capacity operation in progress") }, 1051 /* T */ 1052 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ 1053 "Verify operation in progress") }, 1054 /* DT B */ 1055 { SST(0x00, 0x1D, SS_NOP, 1056 "ATA pass through information available") }, 1057 /* DT R MAEBKV */ 1058 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ 1059 "Conflicting SA creation request") }, 1060 /* DT B */ 1061 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */ 1062 "Logical unit transitioning to another power condition") }, 1063 /* DT P B */ 1064 { SST(0x00, 0x20, SS_NOP, 1065 "Extended copy information available") }, 1066 /* D */ 1067 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */ 1068 "Atomic command aborted due to ACA") }, 1069 /* D W O BK */ 1070 { SST(0x01, 0x00, SS_RDEF, 1071 "No index/sector signal") }, 1072 /* D WRO BK */ 1073 { SST(0x02, 0x00, SS_RDEF, 1074 "No seek complete") }, 1075 /* DTL W O BK */ 1076 { SST(0x03, 0x00, SS_RDEF, 1077 "Peripheral device write fault") }, 1078 /* T */ 1079 { SST(0x03, 0x01, SS_RDEF, 1080 "No write current") }, 1081 /* T */ 1082 { SST(0x03, 0x02, SS_RDEF, 1083 "Excessive write errors") }, 1084 /* DTLPWROMAEBKVF */ 1085 { SST(0x04, 0x00, SS_RDEF, 1086 "Logical unit not ready, cause not reportable") }, 1087 /* DTLPWROMAEBKVF */ 1088 { SST(0x04, 0x01, SS_WAIT | EBUSY, 1089 "Logical unit is in process of becoming ready") }, 1090 /* DTLPWROMAEBKVF */ 1091 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1092 "Logical unit not ready, initializing command required") }, 1093 /* DTLPWROMAEBKVF */ 1094 { SST(0x04, 0x03, SS_FATAL | ENXIO, 1095 "Logical unit not ready, manual intervention required") }, 1096 /* DTL RO B */ 1097 { SST(0x04, 0x04, SS_FATAL | EBUSY, 1098 "Logical unit not ready, format in progress") }, 1099 /* DT W O A BK F */ 1100 { SST(0x04, 0x05, SS_FATAL | EBUSY, 1101 "Logical unit not ready, rebuild in progress") }, 1102 /* DT W O A BK */ 1103 { SST(0x04, 0x06, SS_FATAL | EBUSY, 1104 "Logical unit not ready, recalculation in progress") }, 1105 /* DTLPWROMAEBKVF */ 1106 { SST(0x04, 0x07, SS_FATAL | EBUSY, 1107 "Logical unit not ready, operation in progress") }, 1108 /* R */ 1109 { SST(0x04, 0x08, SS_FATAL | EBUSY, 1110 "Logical unit not ready, long write in progress") }, 1111 /* DTLPWROMAEBKVF */ 1112 { SST(0x04, 0x09, SS_RDEF, /* XXX TBD */ 1113 "Logical unit not ready, self-test in progress") }, 1114 /* DTLPWROMAEBKVF */ 1115 { SST(0x04, 0x0A, SS_WAIT | ENXIO, 1116 "Logical unit not accessible, asymmetric access state transition")}, 1117 /* DTLPWROMAEBKVF */ 1118 { SST(0x04, 0x0B, SS_FATAL | ENXIO, 1119 "Logical unit not accessible, target port in standby state") }, 1120 /* DTLPWROMAEBKVF */ 1121 { SST(0x04, 0x0C, SS_FATAL | ENXIO, 1122 "Logical unit not accessible, target port in unavailable state") }, 1123 /* F */ 1124 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ 1125 "Logical unit not ready, structure check required") }, 1126 /* DTL WR MAEBKVF */ 1127 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */ 1128 "Logical unit not ready, security session in progress") }, 1129 /* DT WROM B */ 1130 { SST(0x04, 0x10, SS_RDEF, /* XXX TBD */ 1131 "Logical unit not ready, auxiliary memory not accessible") }, 1132 /* DT WRO AEB VF */ 1133 { SST(0x04, 0x11, SS_WAIT | EBUSY, 1134 "Logical unit not ready, notify (enable spinup) required") }, 1135 /* M V */ 1136 { SST(0x04, 0x12, SS_RDEF, /* XXX TBD */ 1137 "Logical unit not ready, offline") }, 1138 /* DT R MAEBKV */ 1139 { SST(0x04, 0x13, SS_RDEF, /* XXX TBD */ 1140 "Logical unit not ready, SA creation in progress") }, 1141 /* D B */ 1142 { SST(0x04, 0x14, SS_RDEF, /* XXX TBD */ 1143 "Logical unit not ready, space allocation in progress") }, 1144 /* M */ 1145 { SST(0x04, 0x15, SS_RDEF, /* XXX TBD */ 1146 "Logical unit not ready, robotics disabled") }, 1147 /* M */ 1148 { SST(0x04, 0x16, SS_RDEF, /* XXX TBD */ 1149 "Logical unit not ready, configuration required") }, 1150 /* M */ 1151 { SST(0x04, 0x17, SS_RDEF, /* XXX TBD */ 1152 "Logical unit not ready, calibration required") }, 1153 /* M */ 1154 { SST(0x04, 0x18, SS_RDEF, /* XXX TBD */ 1155 "Logical unit not ready, a door is open") }, 1156 /* M */ 1157 { SST(0x04, 0x19, SS_RDEF, /* XXX TBD */ 1158 "Logical unit not ready, operating in sequential mode") }, 1159 /* DT B */ 1160 { SST(0x04, 0x1A, SS_RDEF, /* XXX TBD */ 1161 "Logical unit not ready, START/STOP UNIT command in progress") }, 1162 /* D B */ 1163 { SST(0x04, 0x1B, SS_RDEF, /* XXX TBD */ 1164 "Logical unit not ready, sanitize in progress") }, 1165 /* DT MAEB */ 1166 { SST(0x04, 0x1C, SS_RDEF, /* XXX TBD */ 1167 "Logical unit not ready, additional power use not yet granted") }, 1168 /* D */ 1169 { SST(0x04, 0x1D, SS_RDEF, /* XXX TBD */ 1170 "Logical unit not ready, configuration in progress") }, 1171 /* D */ 1172 { SST(0x04, 0x1E, SS_FATAL | ENXIO, 1173 "Logical unit not ready, microcode activation required") }, 1174 /* DTLPWROMAEBKVF */ 1175 { SST(0x04, 0x1F, SS_FATAL | ENXIO, 1176 "Logical unit not ready, microcode download required") }, 1177 /* DTLPWROMAEBKVF */ 1178 { SST(0x04, 0x20, SS_RDEF, /* XXX TBD */ 1179 "Logical unit not ready, logical unit reset required") }, 1180 /* DTLPWROMAEBKVF */ 1181 { SST(0x04, 0x21, SS_RDEF, /* XXX TBD */ 1182 "Logical unit not ready, hard reset required") }, 1183 /* DTLPWROMAEBKVF */ 1184 { SST(0x04, 0x22, SS_RDEF, /* XXX TBD */ 1185 "Logical unit not ready, power cycle required") }, 1186 /* DTL WROMAEBKVF */ 1187 { SST(0x05, 0x00, SS_RDEF, 1188 "Logical unit does not respond to selection") }, 1189 /* D WROM BK */ 1190 { SST(0x06, 0x00, SS_RDEF, 1191 "No reference position found") }, 1192 /* DTL WROM BK */ 1193 { SST(0x07, 0x00, SS_RDEF, 1194 "Multiple peripheral devices selected") }, 1195 /* DTL WROMAEBKVF */ 1196 { SST(0x08, 0x00, SS_RDEF, 1197 "Logical unit communication failure") }, 1198 /* DTL WROMAEBKVF */ 1199 { SST(0x08, 0x01, SS_RDEF, 1200 "Logical unit communication time-out") }, 1201 /* DTL WROMAEBKVF */ 1202 { SST(0x08, 0x02, SS_RDEF, 1203 "Logical unit communication parity error") }, 1204 /* DT ROM BK */ 1205 { SST(0x08, 0x03, SS_RDEF, 1206 "Logical unit communication CRC error (Ultra-DMA/32)") }, 1207 /* DTLPWRO K */ 1208 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ 1209 "Unreachable copy target") }, 1210 /* DT WRO B */ 1211 { SST(0x09, 0x00, SS_RDEF, 1212 "Track following error") }, 1213 /* WRO K */ 1214 { SST(0x09, 0x01, SS_RDEF, 1215 "Tracking servo failure") }, 1216 /* WRO K */ 1217 { SST(0x09, 0x02, SS_RDEF, 1218 "Focus servo failure") }, 1219 /* WRO */ 1220 { SST(0x09, 0x03, SS_RDEF, 1221 "Spindle servo failure") }, 1222 /* DT WRO B */ 1223 { SST(0x09, 0x04, SS_RDEF, 1224 "Head select fault") }, 1225 /* DT RO B */ 1226 { SST(0x09, 0x05, SS_RDEF, 1227 "Vibration induced tracking error") }, 1228 /* DTLPWROMAEBKVF */ 1229 { SST(0x0A, 0x00, SS_FATAL | ENOSPC, 1230 "Error log overflow") }, 1231 /* DTLPWROMAEBKVF */ 1232 { SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1233 "Warning") }, 1234 /* DTLPWROMAEBKVF */ 1235 { SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1236 "Warning - specified temperature exceeded") }, 1237 /* DTLPWROMAEBKVF */ 1238 { SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1239 "Warning - enclosure degraded") }, 1240 /* DTLPWROMAEBKVF */ 1241 { SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1242 "Warning - background self-test failed") }, 1243 /* DTLPWRO AEBKVF */ 1244 { SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1245 "Warning - background pre-scan detected medium error") }, 1246 /* DTLPWRO AEBKVF */ 1247 { SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1248 "Warning - background medium scan detected medium error") }, 1249 /* DTLPWROMAEBKVF */ 1250 { SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1251 "Warning - non-volatile cache now volatile") }, 1252 /* DTLPWROMAEBKVF */ 1253 { SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1254 "Warning - degraded power to non-volatile cache") }, 1255 /* DTLPWROMAEBKVF */ 1256 { SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1257 "Warning - power loss expected") }, 1258 /* D */ 1259 { SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1260 "Warning - device statistics notification available") }, 1261 /* DTLPWROMAEBKVF */ 1262 { SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE, 1263 "Warning - High critical temperature limit exceeded") }, 1264 /* DTLPWROMAEBKVF */ 1265 { SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE, 1266 "Warning - Low critical temperature limit exceeded") }, 1267 /* DTLPWROMAEBKVF */ 1268 { SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE, 1269 "Warning - High operating temperature limit exceeded") }, 1270 /* DTLPWROMAEBKVF */ 1271 { SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE, 1272 "Warning - Low operating temperature limit exceeded") }, 1273 /* DTLPWROMAEBKVF */ 1274 { SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE, 1275 "Warning - High citical humidity limit exceeded") }, 1276 /* DTLPWROMAEBKVF */ 1277 { SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE, 1278 "Warning - Low citical humidity limit exceeded") }, 1279 /* DTLPWROMAEBKVF */ 1280 { SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE, 1281 "Warning - High operating humidity limit exceeded") }, 1282 /* DTLPWROMAEBKVF */ 1283 { SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE, 1284 "Warning - Low operating humidity limit exceeded") }, 1285 /* T R */ 1286 { SST(0x0C, 0x00, SS_RDEF, 1287 "Write error") }, 1288 /* K */ 1289 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1290 "Write error - recovered with auto reallocation") }, 1291 /* D W O BK */ 1292 { SST(0x0C, 0x02, SS_RDEF, 1293 "Write error - auto reallocation failed") }, 1294 /* D W O BK */ 1295 { SST(0x0C, 0x03, SS_RDEF, 1296 "Write error - recommend reassignment") }, 1297 /* DT W O B */ 1298 { SST(0x0C, 0x04, SS_RDEF, 1299 "Compression check miscompare error") }, 1300 /* DT W O B */ 1301 { SST(0x0C, 0x05, SS_RDEF, 1302 "Data expansion occurred during compression") }, 1303 /* DT W O B */ 1304 { SST(0x0C, 0x06, SS_RDEF, 1305 "Block not compressible") }, 1306 /* R */ 1307 { SST(0x0C, 0x07, SS_RDEF, 1308 "Write error - recovery needed") }, 1309 /* R */ 1310 { SST(0x0C, 0x08, SS_RDEF, 1311 "Write error - recovery failed") }, 1312 /* R */ 1313 { SST(0x0C, 0x09, SS_RDEF, 1314 "Write error - loss of streaming") }, 1315 /* R */ 1316 { SST(0x0C, 0x0A, SS_RDEF, 1317 "Write error - padding blocks added") }, 1318 /* DT WROM B */ 1319 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ 1320 "Auxiliary memory write error") }, 1321 /* DTLPWRO AEBKVF */ 1322 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ 1323 "Write error - unexpected unsolicited data") }, 1324 /* DTLPWRO AEBKVF */ 1325 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ 1326 "Write error - not enough unsolicited data") }, 1327 /* DT W O BK */ 1328 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */ 1329 "Multiple write errors") }, 1330 /* R */ 1331 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ 1332 "Defects in error window") }, 1333 /* D */ 1334 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */ 1335 "Incomplete multiple atomic write operations") }, 1336 /* D */ 1337 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */ 1338 "Write error - recovery scan needed") }, 1339 /* D */ 1340 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */ 1341 "Write error - insufficient zone resources") }, 1342 /* DTLPWRO A K */ 1343 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ 1344 "Error detected by third party temporary initiator") }, 1345 /* DTLPWRO A K */ 1346 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ 1347 "Third party device failure") }, 1348 /* DTLPWRO A K */ 1349 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ 1350 "Copy target device not reachable") }, 1351 /* DTLPWRO A K */ 1352 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ 1353 "Incorrect copy target device type") }, 1354 /* DTLPWRO A K */ 1355 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ 1356 "Copy target device data underrun") }, 1357 /* DTLPWRO A K */ 1358 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ 1359 "Copy target device data overrun") }, 1360 /* DT PWROMAEBK F */ 1361 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ 1362 "Invalid information unit") }, 1363 /* DT PWROMAEBK F */ 1364 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ 1365 "Information unit too short") }, 1366 /* DT PWROMAEBK F */ 1367 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ 1368 "Information unit too long") }, 1369 /* DT P R MAEBK F */ 1370 { SST(0x0E, 0x03, SS_FATAL | EINVAL, 1371 "Invalid field in command information unit") }, 1372 /* D W O BK */ 1373 { SST(0x10, 0x00, SS_RDEF, 1374 "ID CRC or ECC error") }, 1375 /* DT W O */ 1376 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ 1377 "Logical block guard check failed") }, 1378 /* DT W O */ 1379 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ 1380 "Logical block application tag check failed") }, 1381 /* DT W O */ 1382 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ 1383 "Logical block reference tag check failed") }, 1384 /* T */ 1385 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */ 1386 "Logical block protection error on recovered buffer data") }, 1387 /* T */ 1388 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */ 1389 "Logical block protection method error") }, 1390 /* DT WRO BK */ 1391 { SST(0x11, 0x00, SS_FATAL|EIO, 1392 "Unrecovered read error") }, 1393 /* DT WRO BK */ 1394 { SST(0x11, 0x01, SS_FATAL|EIO, 1395 "Read retries exhausted") }, 1396 /* DT WRO BK */ 1397 { SST(0x11, 0x02, SS_FATAL|EIO, 1398 "Error too long to correct") }, 1399 /* DT W O BK */ 1400 { SST(0x11, 0x03, SS_FATAL|EIO, 1401 "Multiple read errors") }, 1402 /* D W O BK */ 1403 { SST(0x11, 0x04, SS_FATAL|EIO, 1404 "Unrecovered read error - auto reallocate failed") }, 1405 /* WRO B */ 1406 { SST(0x11, 0x05, SS_FATAL|EIO, 1407 "L-EC uncorrectable error") }, 1408 /* WRO B */ 1409 { SST(0x11, 0x06, SS_FATAL|EIO, 1410 "CIRC unrecovered error") }, 1411 /* W O B */ 1412 { SST(0x11, 0x07, SS_RDEF, 1413 "Data re-synchronization error") }, 1414 /* T */ 1415 { SST(0x11, 0x08, SS_RDEF, 1416 "Incomplete block read") }, 1417 /* T */ 1418 { SST(0x11, 0x09, SS_RDEF, 1419 "No gap found") }, 1420 /* DT O BK */ 1421 { SST(0x11, 0x0A, SS_RDEF, 1422 "Miscorrected error") }, 1423 /* D W O BK */ 1424 { SST(0x11, 0x0B, SS_FATAL|EIO, 1425 "Unrecovered read error - recommend reassignment") }, 1426 /* D W O BK */ 1427 { SST(0x11, 0x0C, SS_FATAL|EIO, 1428 "Unrecovered read error - recommend rewrite the data") }, 1429 /* DT WRO B */ 1430 { SST(0x11, 0x0D, SS_RDEF, 1431 "De-compression CRC error") }, 1432 /* DT WRO B */ 1433 { SST(0x11, 0x0E, SS_RDEF, 1434 "Cannot decompress using declared algorithm") }, 1435 /* R */ 1436 { SST(0x11, 0x0F, SS_RDEF, 1437 "Error reading UPC/EAN number") }, 1438 /* R */ 1439 { SST(0x11, 0x10, SS_RDEF, 1440 "Error reading ISRC number") }, 1441 /* R */ 1442 { SST(0x11, 0x11, SS_RDEF, 1443 "Read error - loss of streaming") }, 1444 /* DT WROM B */ 1445 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ 1446 "Auxiliary memory read error") }, 1447 /* DTLPWRO AEBKVF */ 1448 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ 1449 "Read error - failed retransmission request") }, 1450 /* D */ 1451 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ 1452 "Read error - LBA marked bad by application client") }, 1453 /* D */ 1454 { SST(0x11, 0x15, SS_RDEF, /* XXX TBD */ 1455 "Write after sanitize required") }, 1456 /* D W O BK */ 1457 { SST(0x12, 0x00, SS_RDEF, 1458 "Address mark not found for ID field") }, 1459 /* D W O BK */ 1460 { SST(0x13, 0x00, SS_RDEF, 1461 "Address mark not found for data field") }, 1462 /* DTL WRO BK */ 1463 { SST(0x14, 0x00, SS_RDEF, 1464 "Recorded entity not found") }, 1465 /* DT WRO BK */ 1466 { SST(0x14, 0x01, SS_RDEF, 1467 "Record not found") }, 1468 /* T */ 1469 { SST(0x14, 0x02, SS_RDEF, 1470 "Filemark or setmark not found") }, 1471 /* T */ 1472 { SST(0x14, 0x03, SS_RDEF, 1473 "End-of-data not found") }, 1474 /* T */ 1475 { SST(0x14, 0x04, SS_RDEF, 1476 "Block sequence error") }, 1477 /* DT W O BK */ 1478 { SST(0x14, 0x05, SS_RDEF, 1479 "Record not found - recommend reassignment") }, 1480 /* DT W O BK */ 1481 { SST(0x14, 0x06, SS_RDEF, 1482 "Record not found - data auto-reallocated") }, 1483 /* T */ 1484 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ 1485 "Locate operation failure") }, 1486 /* DTL WROM BK */ 1487 { SST(0x15, 0x00, SS_RDEF, 1488 "Random positioning error") }, 1489 /* DTL WROM BK */ 1490 { SST(0x15, 0x01, SS_RDEF, 1491 "Mechanical positioning error") }, 1492 /* DT WRO BK */ 1493 { SST(0x15, 0x02, SS_RDEF, 1494 "Positioning error detected by read of medium") }, 1495 /* D W O BK */ 1496 { SST(0x16, 0x00, SS_RDEF, 1497 "Data synchronization mark error") }, 1498 /* D W O BK */ 1499 { SST(0x16, 0x01, SS_RDEF, 1500 "Data sync error - data rewritten") }, 1501 /* D W O BK */ 1502 { SST(0x16, 0x02, SS_RDEF, 1503 "Data sync error - recommend rewrite") }, 1504 /* D W O BK */ 1505 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1506 "Data sync error - data auto-reallocated") }, 1507 /* D W O BK */ 1508 { SST(0x16, 0x04, SS_RDEF, 1509 "Data sync error - recommend reassignment") }, 1510 /* DT WRO BK */ 1511 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1512 "Recovered data with no error correction applied") }, 1513 /* DT WRO BK */ 1514 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1515 "Recovered data with retries") }, 1516 /* DT WRO BK */ 1517 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1518 "Recovered data with positive head offset") }, 1519 /* DT WRO BK */ 1520 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1521 "Recovered data with negative head offset") }, 1522 /* WRO B */ 1523 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1524 "Recovered data with retries and/or CIRC applied") }, 1525 /* D WRO BK */ 1526 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1527 "Recovered data using previous sector ID") }, 1528 /* D W O BK */ 1529 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1530 "Recovered data without ECC - data auto-reallocated") }, 1531 /* D WRO BK */ 1532 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1533 "Recovered data without ECC - recommend reassignment") }, 1534 /* D WRO BK */ 1535 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1536 "Recovered data without ECC - recommend rewrite") }, 1537 /* D WRO BK */ 1538 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1539 "Recovered data without ECC - data rewritten") }, 1540 /* DT WRO BK */ 1541 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1542 "Recovered data with error correction applied") }, 1543 /* D WRO BK */ 1544 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1545 "Recovered data with error corr. & retries applied") }, 1546 /* D WRO BK */ 1547 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1548 "Recovered data - data auto-reallocated") }, 1549 /* R */ 1550 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1551 "Recovered data with CIRC") }, 1552 /* R */ 1553 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1554 "Recovered data with L-EC") }, 1555 /* D WRO BK */ 1556 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1557 "Recovered data - recommend reassignment") }, 1558 /* D WRO BK */ 1559 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1560 "Recovered data - recommend rewrite") }, 1561 /* D W O BK */ 1562 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1563 "Recovered data with ECC - data rewritten") }, 1564 /* R */ 1565 { SST(0x18, 0x08, SS_RDEF, /* XXX TBD */ 1566 "Recovered data with linking") }, 1567 /* D O K */ 1568 { SST(0x19, 0x00, SS_RDEF, 1569 "Defect list error") }, 1570 /* D O K */ 1571 { SST(0x19, 0x01, SS_RDEF, 1572 "Defect list not available") }, 1573 /* D O K */ 1574 { SST(0x19, 0x02, SS_RDEF, 1575 "Defect list error in primary list") }, 1576 /* D O K */ 1577 { SST(0x19, 0x03, SS_RDEF, 1578 "Defect list error in grown list") }, 1579 /* DTLPWROMAEBKVF */ 1580 { SST(0x1A, 0x00, SS_RDEF, 1581 "Parameter list length error") }, 1582 /* DTLPWROMAEBKVF */ 1583 { SST(0x1B, 0x00, SS_RDEF, 1584 "Synchronous data transfer error") }, 1585 /* D O BK */ 1586 { SST(0x1C, 0x00, SS_RDEF, 1587 "Defect list not found") }, 1588 /* D O BK */ 1589 { SST(0x1C, 0x01, SS_RDEF, 1590 "Primary defect list not found") }, 1591 /* D O BK */ 1592 { SST(0x1C, 0x02, SS_RDEF, 1593 "Grown defect list not found") }, 1594 /* DT WRO BK */ 1595 { SST(0x1D, 0x00, SS_FATAL, 1596 "Miscompare during verify operation") }, 1597 /* D B */ 1598 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */ 1599 "Miscomparable verify of unmapped LBA") }, 1600 /* D W O BK */ 1601 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1602 "Recovered ID with ECC correction") }, 1603 /* D O K */ 1604 { SST(0x1F, 0x00, SS_RDEF, 1605 "Partial defect list transfer") }, 1606 /* DTLPWROMAEBKVF */ 1607 { SST(0x20, 0x00, SS_FATAL | EINVAL, 1608 "Invalid command operation code") }, 1609 /* DT PWROMAEBK */ 1610 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ 1611 "Access denied - initiator pending-enrolled") }, 1612 /* DT PWROMAEBK */ 1613 { SST(0x20, 0x02, SS_FATAL | EPERM, 1614 "Access denied - no access rights") }, 1615 /* DT PWROMAEBK */ 1616 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ 1617 "Access denied - invalid mgmt ID key") }, 1618 /* T */ 1619 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ 1620 "Illegal command while in write capable state") }, 1621 /* T */ 1622 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ 1623 "Obsolete") }, 1624 /* T */ 1625 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ 1626 "Illegal command while in explicit address mode") }, 1627 /* T */ 1628 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ 1629 "Illegal command while in implicit address mode") }, 1630 /* DT PWROMAEBK */ 1631 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ 1632 "Access denied - enrollment conflict") }, 1633 /* DT PWROMAEBK */ 1634 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ 1635 "Access denied - invalid LU identifier") }, 1636 /* DT PWROMAEBK */ 1637 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ 1638 "Access denied - invalid proxy token") }, 1639 /* DT PWROMAEBK */ 1640 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ 1641 "Access denied - ACL LUN conflict") }, 1642 /* T */ 1643 { SST(0x20, 0x0C, SS_FATAL | EINVAL, 1644 "Illegal command when not in append-only mode") }, 1645 /* DT WRO BK */ 1646 { SST(0x21, 0x00, SS_FATAL | EINVAL, 1647 "Logical block address out of range") }, 1648 /* DT WROM BK */ 1649 { SST(0x21, 0x01, SS_FATAL | EINVAL, 1650 "Invalid element address") }, 1651 /* R */ 1652 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ 1653 "Invalid address for write") }, 1654 /* R */ 1655 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ 1656 "Invalid write crossing layer jump") }, 1657 /* D */ 1658 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */ 1659 "Unaligned write command") }, 1660 /* D */ 1661 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */ 1662 "Write boundary violation") }, 1663 /* D */ 1664 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */ 1665 "Attempt to read invalid data") }, 1666 /* D */ 1667 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */ 1668 "Read boundary violation") }, 1669 /* D */ 1670 { SST(0x22, 0x00, SS_FATAL | EINVAL, 1671 "Illegal function (use 20 00, 24 00, or 26 00)") }, 1672 /* DT P B */ 1673 { SST(0x23, 0x00, SS_FATAL | EINVAL, 1674 "Invalid token operation, cause not reportable") }, 1675 /* DT P B */ 1676 { SST(0x23, 0x01, SS_FATAL | EINVAL, 1677 "Invalid token operation, unsupported token type") }, 1678 /* DT P B */ 1679 { SST(0x23, 0x02, SS_FATAL | EINVAL, 1680 "Invalid token operation, remote token usage not supported") }, 1681 /* DT P B */ 1682 { SST(0x23, 0x03, SS_FATAL | EINVAL, 1683 "Invalid token operation, remote ROD token creation not supported") }, 1684 /* DT P B */ 1685 { SST(0x23, 0x04, SS_FATAL | EINVAL, 1686 "Invalid token operation, token unknown") }, 1687 /* DT P B */ 1688 { SST(0x23, 0x05, SS_FATAL | EINVAL, 1689 "Invalid token operation, token corrupt") }, 1690 /* DT P B */ 1691 { SST(0x23, 0x06, SS_FATAL | EINVAL, 1692 "Invalid token operation, token revoked") }, 1693 /* DT P B */ 1694 { SST(0x23, 0x07, SS_FATAL | EINVAL, 1695 "Invalid token operation, token expired") }, 1696 /* DT P B */ 1697 { SST(0x23, 0x08, SS_FATAL | EINVAL, 1698 "Invalid token operation, token cancelled") }, 1699 /* DT P B */ 1700 { SST(0x23, 0x09, SS_FATAL | EINVAL, 1701 "Invalid token operation, token deleted") }, 1702 /* DT P B */ 1703 { SST(0x23, 0x0A, SS_FATAL | EINVAL, 1704 "Invalid token operation, invalid token length") }, 1705 /* DTLPWROMAEBKVF */ 1706 { SST(0x24, 0x00, SS_FATAL | EINVAL, 1707 "Invalid field in CDB") }, 1708 /* DTLPWRO AEBKVF */ 1709 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ 1710 "CDB decryption error") }, 1711 /* T */ 1712 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ 1713 "Obsolete") }, 1714 /* T */ 1715 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ 1716 "Obsolete") }, 1717 /* F */ 1718 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ 1719 "Security audit value frozen") }, 1720 /* F */ 1721 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ 1722 "Security working key frozen") }, 1723 /* F */ 1724 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ 1725 "NONCE not unique") }, 1726 /* F */ 1727 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ 1728 "NONCE timestamp out of range") }, 1729 /* DT R MAEBKV */ 1730 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ 1731 "Invalid XCDB") }, 1732 /* DTLPWROMAEBKVF */ 1733 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST, 1734 "Logical unit not supported") }, 1735 /* DTLPWROMAEBKVF */ 1736 { SST(0x26, 0x00, SS_FATAL | EINVAL, 1737 "Invalid field in parameter list") }, 1738 /* DTLPWROMAEBKVF */ 1739 { SST(0x26, 0x01, SS_FATAL | EINVAL, 1740 "Parameter not supported") }, 1741 /* DTLPWROMAEBKVF */ 1742 { SST(0x26, 0x02, SS_FATAL | EINVAL, 1743 "Parameter value invalid") }, 1744 /* DTLPWROMAE K */ 1745 { SST(0x26, 0x03, SS_FATAL | EINVAL, 1746 "Threshold parameters not supported") }, 1747 /* DTLPWROMAEBKVF */ 1748 { SST(0x26, 0x04, SS_FATAL | EINVAL, 1749 "Invalid release of persistent reservation") }, 1750 /* DTLPWRO A BK */ 1751 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ 1752 "Data decryption error") }, 1753 /* DTLPWRO K */ 1754 { SST(0x26, 0x06, SS_FATAL | EINVAL, 1755 "Too many target descriptors") }, 1756 /* DTLPWRO K */ 1757 { SST(0x26, 0x07, SS_FATAL | EINVAL, 1758 "Unsupported target descriptor type code") }, 1759 /* DTLPWRO K */ 1760 { SST(0x26, 0x08, SS_FATAL | EINVAL, 1761 "Too many segment descriptors") }, 1762 /* DTLPWRO K */ 1763 { SST(0x26, 0x09, SS_FATAL | EINVAL, 1764 "Unsupported segment descriptor type code") }, 1765 /* DTLPWRO K */ 1766 { SST(0x26, 0x0A, SS_FATAL | EINVAL, 1767 "Unexpected inexact segment") }, 1768 /* DTLPWRO K */ 1769 { SST(0x26, 0x0B, SS_FATAL | EINVAL, 1770 "Inline data length exceeded") }, 1771 /* DTLPWRO K */ 1772 { SST(0x26, 0x0C, SS_FATAL | EINVAL, 1773 "Invalid operation for copy source or destination") }, 1774 /* DTLPWRO K */ 1775 { SST(0x26, 0x0D, SS_FATAL | EINVAL, 1776 "Copy segment granularity violation") }, 1777 /* DT PWROMAEBK */ 1778 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ 1779 "Invalid parameter while port is enabled") }, 1780 /* F */ 1781 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ 1782 "Invalid data-out buffer integrity check value") }, 1783 /* T */ 1784 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ 1785 "Data decryption key fail limit reached") }, 1786 /* T */ 1787 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ 1788 "Incomplete key-associated data set") }, 1789 /* T */ 1790 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ 1791 "Vendor specific key reference not found") }, 1792 /* D */ 1793 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */ 1794 "Application tag mode page is invalid") }, 1795 /* DT WRO BK */ 1796 { SST(0x27, 0x00, SS_FATAL | EACCES, 1797 "Write protected") }, 1798 /* DT WRO BK */ 1799 { SST(0x27, 0x01, SS_FATAL | EACCES, 1800 "Hardware write protected") }, 1801 /* DT WRO BK */ 1802 { SST(0x27, 0x02, SS_FATAL | EACCES, 1803 "Logical unit software write protected") }, 1804 /* T R */ 1805 { SST(0x27, 0x03, SS_FATAL | EACCES, 1806 "Associated write protect") }, 1807 /* T R */ 1808 { SST(0x27, 0x04, SS_FATAL | EACCES, 1809 "Persistent write protect") }, 1810 /* T R */ 1811 { SST(0x27, 0x05, SS_FATAL | EACCES, 1812 "Permanent write protect") }, 1813 /* R F */ 1814 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ 1815 "Conditional write protect") }, 1816 /* D B */ 1817 { SST(0x27, 0x07, SS_FATAL | ENOSPC, 1818 "Space allocation failed write protect") }, 1819 /* D */ 1820 { SST(0x27, 0x08, SS_FATAL | EACCES, 1821 "Zone is read only") }, 1822 /* DTLPWROMAEBKVF */ 1823 { SST(0x28, 0x00, SS_FATAL | ENXIO, 1824 "Not ready to ready change, medium may have changed") }, 1825 /* DT WROM B */ 1826 { SST(0x28, 0x01, SS_FATAL | ENXIO, 1827 "Import or export element accessed") }, 1828 /* R */ 1829 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ 1830 "Format-layer may have changed") }, 1831 /* M */ 1832 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ 1833 "Import/export element accessed, medium changed") }, 1834 /* 1835 * XXX JGibbs - All of these should use the same errno, but I don't 1836 * think ENXIO is the correct choice. Should we borrow from 1837 * the networking errnos? ECONNRESET anyone? 1838 */ 1839 /* DTLPWROMAEBKVF */ 1840 { SST(0x29, 0x00, SS_FATAL | ENXIO, 1841 "Power on, reset, or bus device reset occurred") }, 1842 /* DTLPWROMAEBKVF */ 1843 { SST(0x29, 0x01, SS_RDEF, 1844 "Power on occurred") }, 1845 /* DTLPWROMAEBKVF */ 1846 { SST(0x29, 0x02, SS_RDEF, 1847 "SCSI bus reset occurred") }, 1848 /* DTLPWROMAEBKVF */ 1849 { SST(0x29, 0x03, SS_RDEF, 1850 "Bus device reset function occurred") }, 1851 /* DTLPWROMAEBKVF */ 1852 { SST(0x29, 0x04, SS_RDEF, 1853 "Device internal reset") }, 1854 /* DTLPWROMAEBKVF */ 1855 { SST(0x29, 0x05, SS_RDEF, 1856 "Transceiver mode changed to single-ended") }, 1857 /* DTLPWROMAEBKVF */ 1858 { SST(0x29, 0x06, SS_RDEF, 1859 "Transceiver mode changed to LVD") }, 1860 /* DTLPWROMAEBKVF */ 1861 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ 1862 "I_T nexus loss occurred") }, 1863 /* DTL WROMAEBKVF */ 1864 { SST(0x2A, 0x00, SS_RDEF, 1865 "Parameters changed") }, 1866 /* DTL WROMAEBKVF */ 1867 { SST(0x2A, 0x01, SS_RDEF, 1868 "Mode parameters changed") }, 1869 /* DTL WROMAE K */ 1870 { SST(0x2A, 0x02, SS_RDEF, 1871 "Log parameters changed") }, 1872 /* DTLPWROMAE K */ 1873 { SST(0x2A, 0x03, SS_RDEF, 1874 "Reservations preempted") }, 1875 /* DTLPWROMAE */ 1876 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ 1877 "Reservations released") }, 1878 /* DTLPWROMAE */ 1879 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ 1880 "Registrations preempted") }, 1881 /* DTLPWROMAEBKVF */ 1882 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ 1883 "Asymmetric access state changed") }, 1884 /* DTLPWROMAEBKVF */ 1885 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ 1886 "Implicit asymmetric access state transition failed") }, 1887 /* DT WROMAEBKVF */ 1888 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ 1889 "Priority changed") }, 1890 /* D */ 1891 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ 1892 "Capacity data has changed") }, 1893 /* DT */ 1894 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ 1895 "Error history I_T nexus cleared") }, 1896 /* DT */ 1897 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ 1898 "Error history snapshot released") }, 1899 /* F */ 1900 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ 1901 "Error recovery attributes have changed") }, 1902 /* T */ 1903 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ 1904 "Data encryption capabilities changed") }, 1905 /* DT M E V */ 1906 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ 1907 "Timestamp changed") }, 1908 /* T */ 1909 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ 1910 "Data encryption parameters changed by another I_T nexus") }, 1911 /* T */ 1912 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ 1913 "Data encryption parameters changed by vendor specific event") }, 1914 /* T */ 1915 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ 1916 "Data encryption key instance counter has changed") }, 1917 /* DT R MAEBKV */ 1918 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ 1919 "SA creation capabilities data has changed") }, 1920 /* T M V */ 1921 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */ 1922 "Medium removal prevention preempted") }, 1923 /* DTLPWRO K */ 1924 { SST(0x2B, 0x00, SS_RDEF, 1925 "Copy cannot execute since host cannot disconnect") }, 1926 /* DTLPWROMAEBKVF */ 1927 { SST(0x2C, 0x00, SS_RDEF, 1928 "Command sequence error") }, 1929 /* */ 1930 { SST(0x2C, 0x01, SS_RDEF, 1931 "Too many windows specified") }, 1932 /* */ 1933 { SST(0x2C, 0x02, SS_RDEF, 1934 "Invalid combination of windows specified") }, 1935 /* R */ 1936 { SST(0x2C, 0x03, SS_RDEF, 1937 "Current program area is not empty") }, 1938 /* R */ 1939 { SST(0x2C, 0x04, SS_RDEF, 1940 "Current program area is empty") }, 1941 /* B */ 1942 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ 1943 "Illegal power condition request") }, 1944 /* R */ 1945 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ 1946 "Persistent prevent conflict") }, 1947 /* DTLPWROMAEBKVF */ 1948 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ 1949 "Previous busy status") }, 1950 /* DTLPWROMAEBKVF */ 1951 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ 1952 "Previous task set full status") }, 1953 /* DTLPWROM EBKVF */ 1954 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ 1955 "Previous reservation conflict status") }, 1956 /* F */ 1957 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ 1958 "Partition or collection contains user objects") }, 1959 /* T */ 1960 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ 1961 "Not reserved") }, 1962 /* D */ 1963 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */ 1964 "ORWRITE generation does not match") }, 1965 /* D */ 1966 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */ 1967 "Reset write pointer not allowed") }, 1968 /* D */ 1969 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */ 1970 "Zone is offline") }, 1971 /* D */ 1972 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */ 1973 "Stream not open") }, 1974 /* D */ 1975 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */ 1976 "Unwritten data in zone") }, 1977 /* T */ 1978 { SST(0x2D, 0x00, SS_RDEF, 1979 "Overwrite error on update in place") }, 1980 /* R */ 1981 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ 1982 "Insufficient time for operation") }, 1983 /* D */ 1984 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */ 1985 "Command timeout before processing") }, 1986 /* D */ 1987 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */ 1988 "Command timeout during processing") }, 1989 /* D */ 1990 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */ 1991 "Command timeout during processing due to error recovery") }, 1992 /* DTLPWROMAEBKVF */ 1993 { SST(0x2F, 0x00, SS_RDEF, 1994 "Commands cleared by another initiator") }, 1995 /* D */ 1996 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ 1997 "Commands cleared by power loss notification") }, 1998 /* DTLPWROMAEBKVF */ 1999 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ 2000 "Commands cleared by device server") }, 2001 /* DTLPWROMAEBKVF */ 2002 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */ 2003 "Some commands cleared by queuing layer event") }, 2004 /* DT WROM BK */ 2005 { SST(0x30, 0x00, SS_RDEF, 2006 "Incompatible medium installed") }, 2007 /* DT WRO BK */ 2008 { SST(0x30, 0x01, SS_RDEF, 2009 "Cannot read medium - unknown format") }, 2010 /* DT WRO BK */ 2011 { SST(0x30, 0x02, SS_RDEF, 2012 "Cannot read medium - incompatible format") }, 2013 /* DT R K */ 2014 { SST(0x30, 0x03, SS_RDEF, 2015 "Cleaning cartridge installed") }, 2016 /* DT WRO BK */ 2017 { SST(0x30, 0x04, SS_RDEF, 2018 "Cannot write medium - unknown format") }, 2019 /* DT WRO BK */ 2020 { SST(0x30, 0x05, SS_RDEF, 2021 "Cannot write medium - incompatible format") }, 2022 /* DT WRO B */ 2023 { SST(0x30, 0x06, SS_RDEF, 2024 "Cannot format medium - incompatible medium") }, 2025 /* DTL WROMAEBKVF */ 2026 { SST(0x30, 0x07, SS_RDEF, 2027 "Cleaning failure") }, 2028 /* R */ 2029 { SST(0x30, 0x08, SS_RDEF, 2030 "Cannot write - application code mismatch") }, 2031 /* R */ 2032 { SST(0x30, 0x09, SS_RDEF, 2033 "Current session not fixated for append") }, 2034 /* DT WRO AEBK */ 2035 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ 2036 "Cleaning request rejected") }, 2037 /* T */ 2038 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ 2039 "WORM medium - overwrite attempted") }, 2040 /* T */ 2041 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ 2042 "WORM medium - integrity check") }, 2043 /* R */ 2044 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ 2045 "Medium not formatted") }, 2046 /* M */ 2047 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ 2048 "Incompatible volume type") }, 2049 /* M */ 2050 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ 2051 "Incompatible volume qualifier") }, 2052 /* M */ 2053 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */ 2054 "Cleaning volume expired") }, 2055 /* DT WRO BK */ 2056 { SST(0x31, 0x00, SS_RDEF, 2057 "Medium format corrupted") }, 2058 /* D L RO B */ 2059 { SST(0x31, 0x01, SS_RDEF, 2060 "Format command failed") }, 2061 /* R */ 2062 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ 2063 "Zoned formatting failed due to spare linking") }, 2064 /* D B */ 2065 { SST(0x31, 0x03, SS_RDEF, /* XXX TBD */ 2066 "SANITIZE command failed") }, 2067 /* D W O BK */ 2068 { SST(0x32, 0x00, SS_RDEF, 2069 "No defect spare location available") }, 2070 /* D W O BK */ 2071 { SST(0x32, 0x01, SS_RDEF, 2072 "Defect list update failure") }, 2073 /* T */ 2074 { SST(0x33, 0x00, SS_RDEF, 2075 "Tape length error") }, 2076 /* DTLPWROMAEBKVF */ 2077 { SST(0x34, 0x00, SS_RDEF, 2078 "Enclosure failure") }, 2079 /* DTLPWROMAEBKVF */ 2080 { SST(0x35, 0x00, SS_RDEF, 2081 "Enclosure services failure") }, 2082 /* DTLPWROMAEBKVF */ 2083 { SST(0x35, 0x01, SS_RDEF, 2084 "Unsupported enclosure function") }, 2085 /* DTLPWROMAEBKVF */ 2086 { SST(0x35, 0x02, SS_RDEF, 2087 "Enclosure services unavailable") }, 2088 /* DTLPWROMAEBKVF */ 2089 { SST(0x35, 0x03, SS_RDEF, 2090 "Enclosure services transfer failure") }, 2091 /* DTLPWROMAEBKVF */ 2092 { SST(0x35, 0x04, SS_RDEF, 2093 "Enclosure services transfer refused") }, 2094 /* DTL WROMAEBKVF */ 2095 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ 2096 "Enclosure services checksum error") }, 2097 /* L */ 2098 { SST(0x36, 0x00, SS_RDEF, 2099 "Ribbon, ink, or toner failure") }, 2100 /* DTL WROMAEBKVF */ 2101 { SST(0x37, 0x00, SS_RDEF, 2102 "Rounded parameter") }, 2103 /* B */ 2104 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ 2105 "Event status notification") }, 2106 /* B */ 2107 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ 2108 "ESN - power management class event") }, 2109 /* B */ 2110 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ 2111 "ESN - media class event") }, 2112 /* B */ 2113 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ 2114 "ESN - device busy class event") }, 2115 /* D */ 2116 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */ 2117 "Thin provisioning soft threshold reached") }, 2118 /* DTL WROMAE K */ 2119 { SST(0x39, 0x00, SS_RDEF, 2120 "Saving parameters not supported") }, 2121 /* DTL WROM BK */ 2122 { SST(0x3A, 0x00, SS_FATAL | ENXIO, 2123 "Medium not present") }, 2124 /* DT WROM BK */ 2125 { SST(0x3A, 0x01, SS_FATAL | ENXIO, 2126 "Medium not present - tray closed") }, 2127 /* DT WROM BK */ 2128 { SST(0x3A, 0x02, SS_FATAL | ENXIO, 2129 "Medium not present - tray open") }, 2130 /* DT WROM B */ 2131 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ 2132 "Medium not present - loadable") }, 2133 /* DT WRO B */ 2134 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ 2135 "Medium not present - medium auxiliary memory accessible") }, 2136 /* TL */ 2137 { SST(0x3B, 0x00, SS_RDEF, 2138 "Sequential positioning error") }, 2139 /* T */ 2140 { SST(0x3B, 0x01, SS_RDEF, 2141 "Tape position error at beginning-of-medium") }, 2142 /* T */ 2143 { SST(0x3B, 0x02, SS_RDEF, 2144 "Tape position error at end-of-medium") }, 2145 /* L */ 2146 { SST(0x3B, 0x03, SS_RDEF, 2147 "Tape or electronic vertical forms unit not ready") }, 2148 /* L */ 2149 { SST(0x3B, 0x04, SS_RDEF, 2150 "Slew failure") }, 2151 /* L */ 2152 { SST(0x3B, 0x05, SS_RDEF, 2153 "Paper jam") }, 2154 /* L */ 2155 { SST(0x3B, 0x06, SS_RDEF, 2156 "Failed to sense top-of-form") }, 2157 /* L */ 2158 { SST(0x3B, 0x07, SS_RDEF, 2159 "Failed to sense bottom-of-form") }, 2160 /* T */ 2161 { SST(0x3B, 0x08, SS_RDEF, 2162 "Reposition error") }, 2163 /* */ 2164 { SST(0x3B, 0x09, SS_RDEF, 2165 "Read past end of medium") }, 2166 /* */ 2167 { SST(0x3B, 0x0A, SS_RDEF, 2168 "Read past beginning of medium") }, 2169 /* */ 2170 { SST(0x3B, 0x0B, SS_RDEF, 2171 "Position past end of medium") }, 2172 /* T */ 2173 { SST(0x3B, 0x0C, SS_RDEF, 2174 "Position past beginning of medium") }, 2175 /* DT WROM BK */ 2176 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, 2177 "Medium destination element full") }, 2178 /* DT WROM BK */ 2179 { SST(0x3B, 0x0E, SS_RDEF, 2180 "Medium source element empty") }, 2181 /* R */ 2182 { SST(0x3B, 0x0F, SS_RDEF, 2183 "End of medium reached") }, 2184 /* DT WROM BK */ 2185 { SST(0x3B, 0x11, SS_RDEF, 2186 "Medium magazine not accessible") }, 2187 /* DT WROM BK */ 2188 { SST(0x3B, 0x12, SS_RDEF, 2189 "Medium magazine removed") }, 2190 /* DT WROM BK */ 2191 { SST(0x3B, 0x13, SS_RDEF, 2192 "Medium magazine inserted") }, 2193 /* DT WROM BK */ 2194 { SST(0x3B, 0x14, SS_RDEF, 2195 "Medium magazine locked") }, 2196 /* DT WROM BK */ 2197 { SST(0x3B, 0x15, SS_RDEF, 2198 "Medium magazine unlocked") }, 2199 /* R */ 2200 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ 2201 "Mechanical positioning or changer error") }, 2202 /* F */ 2203 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ 2204 "Read past end of user object") }, 2205 /* M */ 2206 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ 2207 "Element disabled") }, 2208 /* M */ 2209 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ 2210 "Element enabled") }, 2211 /* M */ 2212 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ 2213 "Data transfer device removed") }, 2214 /* M */ 2215 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ 2216 "Data transfer device inserted") }, 2217 /* T */ 2218 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */ 2219 "Too many logical objects on partition to support operation") }, 2220 /* DTLPWROMAE K */ 2221 { SST(0x3D, 0x00, SS_RDEF, 2222 "Invalid bits in IDENTIFY message") }, 2223 /* DTLPWROMAEBKVF */ 2224 { SST(0x3E, 0x00, SS_RDEF, 2225 "Logical unit has not self-configured yet") }, 2226 /* DTLPWROMAEBKVF */ 2227 { SST(0x3E, 0x01, SS_RDEF, 2228 "Logical unit failure") }, 2229 /* DTLPWROMAEBKVF */ 2230 { SST(0x3E, 0x02, SS_RDEF, 2231 "Timeout on logical unit") }, 2232 /* DTLPWROMAEBKVF */ 2233 { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */ 2234 "Logical unit failed self-test") }, 2235 /* DTLPWROMAEBKVF */ 2236 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ 2237 "Logical unit unable to update self-test log") }, 2238 /* DTLPWROMAEBKVF */ 2239 { SST(0x3F, 0x00, SS_RDEF, 2240 "Target operating conditions have changed") }, 2241 /* DTLPWROMAEBKVF */ 2242 { SST(0x3F, 0x01, SS_RDEF, 2243 "Microcode has been changed") }, 2244 /* DTLPWROM BK */ 2245 { SST(0x3F, 0x02, SS_RDEF, 2246 "Changed operating definition") }, 2247 /* DTLPWROMAEBKVF */ 2248 { SST(0x3F, 0x03, SS_RDEF, 2249 "INQUIRY data has changed") }, 2250 /* DT WROMAEBK */ 2251 { SST(0x3F, 0x04, SS_RDEF, 2252 "Component device attached") }, 2253 /* DT WROMAEBK */ 2254 { SST(0x3F, 0x05, SS_RDEF, 2255 "Device identifier changed") }, 2256 /* DT WROMAEB */ 2257 { SST(0x3F, 0x06, SS_RDEF, 2258 "Redundancy group created or modified") }, 2259 /* DT WROMAEB */ 2260 { SST(0x3F, 0x07, SS_RDEF, 2261 "Redundancy group deleted") }, 2262 /* DT WROMAEB */ 2263 { SST(0x3F, 0x08, SS_RDEF, 2264 "Spare created or modified") }, 2265 /* DT WROMAEB */ 2266 { SST(0x3F, 0x09, SS_RDEF, 2267 "Spare deleted") }, 2268 /* DT WROMAEBK */ 2269 { SST(0x3F, 0x0A, SS_RDEF, 2270 "Volume set created or modified") }, 2271 /* DT WROMAEBK */ 2272 { SST(0x3F, 0x0B, SS_RDEF, 2273 "Volume set deleted") }, 2274 /* DT WROMAEBK */ 2275 { SST(0x3F, 0x0C, SS_RDEF, 2276 "Volume set deassigned") }, 2277 /* DT WROMAEBK */ 2278 { SST(0x3F, 0x0D, SS_RDEF, 2279 "Volume set reassigned") }, 2280 /* DTLPWROMAE */ 2281 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN , 2282 "Reported LUNs data has changed") }, 2283 /* DTLPWROMAEBKVF */ 2284 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ 2285 "Echo buffer overwritten") }, 2286 /* DT WROM B */ 2287 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ 2288 "Medium loadable") }, 2289 /* DT WROM B */ 2290 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ 2291 "Medium auxiliary memory accessible") }, 2292 /* DTLPWR MAEBK F */ 2293 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ 2294 "iSCSI IP address added") }, 2295 /* DTLPWR MAEBK F */ 2296 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ 2297 "iSCSI IP address removed") }, 2298 /* DTLPWR MAEBK F */ 2299 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ 2300 "iSCSI IP address changed") }, 2301 /* DTLPWR MAEBK */ 2302 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */ 2303 "Inspect referrals sense descriptors") }, 2304 /* DTLPWROMAEBKVF */ 2305 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */ 2306 "Microcode has been changed without reset") }, 2307 /* D */ 2308 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */ 2309 "Zone transition to full") }, 2310 /* D */ 2311 { SST(0x40, 0x00, SS_RDEF, 2312 "RAM failure") }, /* deprecated - use 40 NN instead */ 2313 /* DTLPWROMAEBKVF */ 2314 { SST(0x40, 0x80, SS_RDEF, 2315 "Diagnostic failure: ASCQ = Component ID") }, 2316 /* DTLPWROMAEBKVF */ 2317 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, 2318 NULL) }, /* Range 0x80->0xFF */ 2319 /* D */ 2320 { SST(0x41, 0x00, SS_RDEF, 2321 "Data path failure") }, /* deprecated - use 40 NN instead */ 2322 /* D */ 2323 { SST(0x42, 0x00, SS_RDEF, 2324 "Power-on or self-test failure") }, 2325 /* deprecated - use 40 NN instead */ 2326 /* DTLPWROMAEBKVF */ 2327 { SST(0x43, 0x00, SS_RDEF, 2328 "Message error") }, 2329 /* DTLPWROMAEBKVF */ 2330 { SST(0x44, 0x00, SS_FATAL | EIO, 2331 "Internal target failure") }, 2332 /* DT P MAEBKVF */ 2333 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */ 2334 "Persistent reservation information lost") }, 2335 /* DT B */ 2336 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ 2337 "ATA device failed set features") }, 2338 /* DTLPWROMAEBKVF */ 2339 { SST(0x45, 0x00, SS_RDEF, 2340 "Select or reselect failure") }, 2341 /* DTLPWROM BK */ 2342 { SST(0x46, 0x00, SS_RDEF, 2343 "Unsuccessful soft reset") }, 2344 /* DTLPWROMAEBKVF */ 2345 { SST(0x47, 0x00, SS_RDEF, 2346 "SCSI parity error") }, 2347 /* DTLPWROMAEBKVF */ 2348 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ 2349 "Data phase CRC error detected") }, 2350 /* DTLPWROMAEBKVF */ 2351 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ 2352 "SCSI parity error detected during ST data phase") }, 2353 /* DTLPWROMAEBKVF */ 2354 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ 2355 "Information unit iuCRC error detected") }, 2356 /* DTLPWROMAEBKVF */ 2357 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ 2358 "Asynchronous information protection error detected") }, 2359 /* DTLPWROMAEBKVF */ 2360 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ 2361 "Protocol service CRC error") }, 2362 /* DT MAEBKVF */ 2363 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ 2364 "PHY test function in progress") }, 2365 /* DT PWROMAEBK */ 2366 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ 2367 "Some commands cleared by iSCSI protocol event") }, 2368 /* DTLPWROMAEBKVF */ 2369 { SST(0x48, 0x00, SS_RDEF, 2370 "Initiator detected error message received") }, 2371 /* DTLPWROMAEBKVF */ 2372 { SST(0x49, 0x00, SS_RDEF, 2373 "Invalid message error") }, 2374 /* DTLPWROMAEBKVF */ 2375 { SST(0x4A, 0x00, SS_RDEF, 2376 "Command phase error") }, 2377 /* DTLPWROMAEBKVF */ 2378 { SST(0x4B, 0x00, SS_RDEF, 2379 "Data phase error") }, 2380 /* DT PWROMAEBK */ 2381 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ 2382 "Invalid target port transfer tag received") }, 2383 /* DT PWROMAEBK */ 2384 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ 2385 "Too much write data") }, 2386 /* DT PWROMAEBK */ 2387 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ 2388 "ACK/NAK timeout") }, 2389 /* DT PWROMAEBK */ 2390 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ 2391 "NAK received") }, 2392 /* DT PWROMAEBK */ 2393 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ 2394 "Data offset error") }, 2395 /* DT PWROMAEBK */ 2396 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ 2397 "Initiator response timeout") }, 2398 /* DT PWROMAEBK F */ 2399 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */ 2400 "Connection lost") }, 2401 /* DT PWROMAEBK F */ 2402 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */ 2403 "Data-in buffer overflow - data buffer size") }, 2404 /* DT PWROMAEBK F */ 2405 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */ 2406 "Data-in buffer overflow - data buffer descriptor area") }, 2407 /* DT PWROMAEBK F */ 2408 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */ 2409 "Data-in buffer error") }, 2410 /* DT PWROMAEBK F */ 2411 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */ 2412 "Data-out buffer overflow - data buffer size") }, 2413 /* DT PWROMAEBK F */ 2414 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */ 2415 "Data-out buffer overflow - data buffer descriptor area") }, 2416 /* DT PWROMAEBK F */ 2417 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */ 2418 "Data-out buffer error") }, 2419 /* DT PWROMAEBK F */ 2420 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */ 2421 "PCIe fabric error") }, 2422 /* DT PWROMAEBK F */ 2423 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */ 2424 "PCIe completion timeout") }, 2425 /* DT PWROMAEBK F */ 2426 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */ 2427 "PCIe completer abort") }, 2428 /* DT PWROMAEBK F */ 2429 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */ 2430 "PCIe poisoned TLP received") }, 2431 /* DT PWROMAEBK F */ 2432 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */ 2433 "PCIe ECRC check failed") }, 2434 /* DT PWROMAEBK F */ 2435 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */ 2436 "PCIe unsupported request") }, 2437 /* DT PWROMAEBK F */ 2438 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */ 2439 "PCIe ACS violation") }, 2440 /* DT PWROMAEBK F */ 2441 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */ 2442 "PCIe TLP prefix blocket") }, 2443 /* DTLPWROMAEBKVF */ 2444 { SST(0x4C, 0x00, SS_RDEF, 2445 "Logical unit failed self-configuration") }, 2446 /* DTLPWROMAEBKVF */ 2447 { SST(0x4D, 0x00, SS_RDEF, 2448 "Tagged overlapped commands: ASCQ = Queue tag ID") }, 2449 /* DTLPWROMAEBKVF */ 2450 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, 2451 NULL) }, /* Range 0x00->0xFF */ 2452 /* DTLPWROMAEBKVF */ 2453 { SST(0x4E, 0x00, SS_RDEF, 2454 "Overlapped commands attempted") }, 2455 /* T */ 2456 { SST(0x50, 0x00, SS_RDEF, 2457 "Write append error") }, 2458 /* T */ 2459 { SST(0x50, 0x01, SS_RDEF, 2460 "Write append position error") }, 2461 /* T */ 2462 { SST(0x50, 0x02, SS_RDEF, 2463 "Position error related to timing") }, 2464 /* T RO */ 2465 { SST(0x51, 0x00, SS_RDEF, 2466 "Erase failure") }, 2467 /* R */ 2468 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ 2469 "Erase failure - incomplete erase operation detected") }, 2470 /* T */ 2471 { SST(0x52, 0x00, SS_RDEF, 2472 "Cartridge fault") }, 2473 /* DTL WROM BK */ 2474 { SST(0x53, 0x00, SS_RDEF, 2475 "Media load or eject failed") }, 2476 /* T */ 2477 { SST(0x53, 0x01, SS_RDEF, 2478 "Unload tape failure") }, 2479 /* DT WROM BK */ 2480 { SST(0x53, 0x02, SS_RDEF, 2481 "Medium removal prevented") }, 2482 /* M */ 2483 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ 2484 "Medium removal prevented by data transfer element") }, 2485 /* T */ 2486 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ 2487 "Medium thread or unthread failure") }, 2488 /* M */ 2489 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */ 2490 "Volume identifier invalid") }, 2491 /* T */ 2492 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */ 2493 "Volume identifier missing") }, 2494 /* M */ 2495 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */ 2496 "Duplicate volume identifier") }, 2497 /* M */ 2498 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */ 2499 "Element status unknown") }, 2500 /* M */ 2501 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */ 2502 "Data transfer device error - load failed") }, 2503 /* M */ 2504 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */ 2505 "Data transfer device error - unload failed") }, 2506 /* M */ 2507 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */ 2508 "Data transfer device error - unload missing") }, 2509 /* M */ 2510 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */ 2511 "Data transfer device error - eject failed") }, 2512 /* M */ 2513 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */ 2514 "Data transfer device error - library communication failed") }, 2515 /* P */ 2516 { SST(0x54, 0x00, SS_RDEF, 2517 "SCSI to host system interface failure") }, 2518 /* P */ 2519 { SST(0x55, 0x00, SS_RDEF, 2520 "System resource failure") }, 2521 /* D O BK */ 2522 { SST(0x55, 0x01, SS_FATAL | ENOSPC, 2523 "System buffer full") }, 2524 /* DTLPWROMAE K */ 2525 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ 2526 "Insufficient reservation resources") }, 2527 /* DTLPWROMAE K */ 2528 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ 2529 "Insufficient resources") }, 2530 /* DTLPWROMAE K */ 2531 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ 2532 "Insufficient registration resources") }, 2533 /* DT PWROMAEBK */ 2534 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ 2535 "Insufficient access control resources") }, 2536 /* DT WROM B */ 2537 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ 2538 "Auxiliary memory out of space") }, 2539 /* F */ 2540 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ 2541 "Quota error") }, 2542 /* T */ 2543 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ 2544 "Maximum number of supplemental decryption keys exceeded") }, 2545 /* M */ 2546 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ 2547 "Medium auxiliary memory not accessible") }, 2548 /* M */ 2549 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ 2550 "Data currently unavailable") }, 2551 /* DTLPWROMAEBKVF */ 2552 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */ 2553 "Insufficient power for operation") }, 2554 /* DT P B */ 2555 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */ 2556 "Insufficient resources to create ROD") }, 2557 /* DT P B */ 2558 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */ 2559 "Insufficient resources to create ROD token") }, 2560 /* D */ 2561 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */ 2562 "Insufficient zone resources") }, 2563 /* D */ 2564 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */ 2565 "Insufficient zone resources to complete write") }, 2566 /* D */ 2567 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */ 2568 "Maximum number of streams open") }, 2569 /* R */ 2570 { SST(0x57, 0x00, SS_RDEF, 2571 "Unable to recover table-of-contents") }, 2572 /* O */ 2573 { SST(0x58, 0x00, SS_RDEF, 2574 "Generation does not exist") }, 2575 /* O */ 2576 { SST(0x59, 0x00, SS_RDEF, 2577 "Updated block read") }, 2578 /* DTLPWRO BK */ 2579 { SST(0x5A, 0x00, SS_RDEF, 2580 "Operator request or state change input") }, 2581 /* DT WROM BK */ 2582 { SST(0x5A, 0x01, SS_RDEF, 2583 "Operator medium removal request") }, 2584 /* DT WRO A BK */ 2585 { SST(0x5A, 0x02, SS_RDEF, 2586 "Operator selected write protect") }, 2587 /* DT WRO A BK */ 2588 { SST(0x5A, 0x03, SS_RDEF, 2589 "Operator selected write permit") }, 2590 /* DTLPWROM K */ 2591 { SST(0x5B, 0x00, SS_RDEF, 2592 "Log exception") }, 2593 /* DTLPWROM K */ 2594 { SST(0x5B, 0x01, SS_RDEF, 2595 "Threshold condition met") }, 2596 /* DTLPWROM K */ 2597 { SST(0x5B, 0x02, SS_RDEF, 2598 "Log counter at maximum") }, 2599 /* DTLPWROM K */ 2600 { SST(0x5B, 0x03, SS_RDEF, 2601 "Log list codes exhausted") }, 2602 /* D O */ 2603 { SST(0x5C, 0x00, SS_RDEF, 2604 "RPL status change") }, 2605 /* D O */ 2606 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2607 "Spindles synchronized") }, 2608 /* D O */ 2609 { SST(0x5C, 0x02, SS_RDEF, 2610 "Spindles not synchronized") }, 2611 /* DTLPWROMAEBKVF */ 2612 { SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE, 2613 "Failure prediction threshold exceeded") }, 2614 /* R B */ 2615 { SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2616 "Media failure prediction threshold exceeded") }, 2617 /* R */ 2618 { SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE, 2619 "Logical unit failure prediction threshold exceeded") }, 2620 /* R */ 2621 { SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE, 2622 "Spare area exhaustion prediction threshold exceeded") }, 2623 /* D B */ 2624 { SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE, 2625 "Hardware impending failure general hard drive failure") }, 2626 /* D B */ 2627 { SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE, 2628 "Hardware impending failure drive error rate too high") }, 2629 /* D B */ 2630 { SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE, 2631 "Hardware impending failure data error rate too high") }, 2632 /* D B */ 2633 { SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE, 2634 "Hardware impending failure seek error rate too high") }, 2635 /* D B */ 2636 { SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE, 2637 "Hardware impending failure too many block reassigns") }, 2638 /* D B */ 2639 { SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE, 2640 "Hardware impending failure access times too high") }, 2641 /* D B */ 2642 { SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE, 2643 "Hardware impending failure start unit times too high") }, 2644 /* D B */ 2645 { SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE, 2646 "Hardware impending failure channel parametrics") }, 2647 /* D B */ 2648 { SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE, 2649 "Hardware impending failure controller detected") }, 2650 /* D B */ 2651 { SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE, 2652 "Hardware impending failure throughput performance") }, 2653 /* D B */ 2654 { SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE, 2655 "Hardware impending failure seek time performance") }, 2656 /* D B */ 2657 { SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE, 2658 "Hardware impending failure spin-up retry count") }, 2659 /* D B */ 2660 { SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE, 2661 "Hardware impending failure drive calibration retry count") }, 2662 /* D B */ 2663 { SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE, 2664 "Hardware impending failure power loss protection circuit") }, 2665 /* D B */ 2666 { SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE, 2667 "Controller impending failure general hard drive failure") }, 2668 /* D B */ 2669 { SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE, 2670 "Controller impending failure drive error rate too high") }, 2671 /* D B */ 2672 { SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE, 2673 "Controller impending failure data error rate too high") }, 2674 /* D B */ 2675 { SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE, 2676 "Controller impending failure seek error rate too high") }, 2677 /* D B */ 2678 { SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE, 2679 "Controller impending failure too many block reassigns") }, 2680 /* D B */ 2681 { SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE, 2682 "Controller impending failure access times too high") }, 2683 /* D B */ 2684 { SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE, 2685 "Controller impending failure start unit times too high") }, 2686 /* D B */ 2687 { SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE, 2688 "Controller impending failure channel parametrics") }, 2689 /* D B */ 2690 { SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE, 2691 "Controller impending failure controller detected") }, 2692 /* D B */ 2693 { SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE, 2694 "Controller impending failure throughput performance") }, 2695 /* D B */ 2696 { SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE, 2697 "Controller impending failure seek time performance") }, 2698 /* D B */ 2699 { SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE, 2700 "Controller impending failure spin-up retry count") }, 2701 /* D B */ 2702 { SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE, 2703 "Controller impending failure drive calibration retry count") }, 2704 /* D B */ 2705 { SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE, 2706 "Data channel impending failure general hard drive failure") }, 2707 /* D B */ 2708 { SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE, 2709 "Data channel impending failure drive error rate too high") }, 2710 /* D B */ 2711 { SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE, 2712 "Data channel impending failure data error rate too high") }, 2713 /* D B */ 2714 { SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE, 2715 "Data channel impending failure seek error rate too high") }, 2716 /* D B */ 2717 { SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE, 2718 "Data channel impending failure too many block reassigns") }, 2719 /* D B */ 2720 { SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE, 2721 "Data channel impending failure access times too high") }, 2722 /* D B */ 2723 { SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE, 2724 "Data channel impending failure start unit times too high") }, 2725 /* D B */ 2726 { SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE, 2727 "Data channel impending failure channel parametrics") }, 2728 /* D B */ 2729 { SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE, 2730 "Data channel impending failure controller detected") }, 2731 /* D B */ 2732 { SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE, 2733 "Data channel impending failure throughput performance") }, 2734 /* D B */ 2735 { SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE, 2736 "Data channel impending failure seek time performance") }, 2737 /* D B */ 2738 { SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE, 2739 "Data channel impending failure spin-up retry count") }, 2740 /* D B */ 2741 { SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE, 2742 "Data channel impending failure drive calibration retry count") }, 2743 /* D B */ 2744 { SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE, 2745 "Servo impending failure general hard drive failure") }, 2746 /* D B */ 2747 { SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE, 2748 "Servo impending failure drive error rate too high") }, 2749 /* D B */ 2750 { SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE, 2751 "Servo impending failure data error rate too high") }, 2752 /* D B */ 2753 { SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE, 2754 "Servo impending failure seek error rate too high") }, 2755 /* D B */ 2756 { SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE, 2757 "Servo impending failure too many block reassigns") }, 2758 /* D B */ 2759 { SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE, 2760 "Servo impending failure access times too high") }, 2761 /* D B */ 2762 { SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE, 2763 "Servo impending failure start unit times too high") }, 2764 /* D B */ 2765 { SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE, 2766 "Servo impending failure channel parametrics") }, 2767 /* D B */ 2768 { SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE, 2769 "Servo impending failure controller detected") }, 2770 /* D B */ 2771 { SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE, 2772 "Servo impending failure throughput performance") }, 2773 /* D B */ 2774 { SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE, 2775 "Servo impending failure seek time performance") }, 2776 /* D B */ 2777 { SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE, 2778 "Servo impending failure spin-up retry count") }, 2779 /* D B */ 2780 { SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE, 2781 "Servo impending failure drive calibration retry count") }, 2782 /* D B */ 2783 { SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE, 2784 "Spindle impending failure general hard drive failure") }, 2785 /* D B */ 2786 { SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE, 2787 "Spindle impending failure drive error rate too high") }, 2788 /* D B */ 2789 { SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE, 2790 "Spindle impending failure data error rate too high") }, 2791 /* D B */ 2792 { SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE, 2793 "Spindle impending failure seek error rate too high") }, 2794 /* D B */ 2795 { SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE, 2796 "Spindle impending failure too many block reassigns") }, 2797 /* D B */ 2798 { SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE, 2799 "Spindle impending failure access times too high") }, 2800 /* D B */ 2801 { SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE, 2802 "Spindle impending failure start unit times too high") }, 2803 /* D B */ 2804 { SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE, 2805 "Spindle impending failure channel parametrics") }, 2806 /* D B */ 2807 { SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE, 2808 "Spindle impending failure controller detected") }, 2809 /* D B */ 2810 { SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE, 2811 "Spindle impending failure throughput performance") }, 2812 /* D B */ 2813 { SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE, 2814 "Spindle impending failure seek time performance") }, 2815 /* D B */ 2816 { SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE, 2817 "Spindle impending failure spin-up retry count") }, 2818 /* D B */ 2819 { SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE, 2820 "Spindle impending failure drive calibration retry count") }, 2821 /* D B */ 2822 { SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE, 2823 "Firmware impending failure general hard drive failure") }, 2824 /* D B */ 2825 { SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE, 2826 "Firmware impending failure drive error rate too high") }, 2827 /* D B */ 2828 { SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE, 2829 "Firmware impending failure data error rate too high") }, 2830 /* D B */ 2831 { SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE, 2832 "Firmware impending failure seek error rate too high") }, 2833 /* D B */ 2834 { SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE, 2835 "Firmware impending failure too many block reassigns") }, 2836 /* D B */ 2837 { SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE, 2838 "Firmware impending failure access times too high") }, 2839 /* D B */ 2840 { SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE, 2841 "Firmware impending failure start unit times too high") }, 2842 /* D B */ 2843 { SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE, 2844 "Firmware impending failure channel parametrics") }, 2845 /* D B */ 2846 { SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE, 2847 "Firmware impending failure controller detected") }, 2848 /* D B */ 2849 { SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE, 2850 "Firmware impending failure throughput performance") }, 2851 /* D B */ 2852 { SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE, 2853 "Firmware impending failure seek time performance") }, 2854 /* D B */ 2855 { SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE, 2856 "Firmware impending failure spin-up retry count") }, 2857 /* D B */ 2858 { SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE, 2859 "Firmware impending failure drive calibration retry count") }, 2860 /* D B */ 2861 { SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE, 2862 "Media impending failure endurance limit met") }, 2863 /* DTLPWROMAEBKVF */ 2864 { SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE, 2865 "Failure prediction threshold exceeded (false)") }, 2866 /* DTLPWRO A K */ 2867 { SST(0x5E, 0x00, SS_RDEF, 2868 "Low power condition on") }, 2869 /* DTLPWRO A K */ 2870 { SST(0x5E, 0x01, SS_RDEF, 2871 "Idle condition activated by timer") }, 2872 /* DTLPWRO A K */ 2873 { SST(0x5E, 0x02, SS_RDEF, 2874 "Standby condition activated by timer") }, 2875 /* DTLPWRO A K */ 2876 { SST(0x5E, 0x03, SS_RDEF, 2877 "Idle condition activated by command") }, 2878 /* DTLPWRO A K */ 2879 { SST(0x5E, 0x04, SS_RDEF, 2880 "Standby condition activated by command") }, 2881 /* DTLPWRO A K */ 2882 { SST(0x5E, 0x05, SS_RDEF, 2883 "Idle-B condition activated by timer") }, 2884 /* DTLPWRO A K */ 2885 { SST(0x5E, 0x06, SS_RDEF, 2886 "Idle-B condition activated by command") }, 2887 /* DTLPWRO A K */ 2888 { SST(0x5E, 0x07, SS_RDEF, 2889 "Idle-C condition activated by timer") }, 2890 /* DTLPWRO A K */ 2891 { SST(0x5E, 0x08, SS_RDEF, 2892 "Idle-C condition activated by command") }, 2893 /* DTLPWRO A K */ 2894 { SST(0x5E, 0x09, SS_RDEF, 2895 "Standby-Y condition activated by timer") }, 2896 /* DTLPWRO A K */ 2897 { SST(0x5E, 0x0A, SS_RDEF, 2898 "Standby-Y condition activated by command") }, 2899 /* B */ 2900 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ 2901 "Power state change to active") }, 2902 /* B */ 2903 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ 2904 "Power state change to idle") }, 2905 /* B */ 2906 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ 2907 "Power state change to standby") }, 2908 /* B */ 2909 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ 2910 "Power state change to sleep") }, 2911 /* BK */ 2912 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ 2913 "Power state change to device control") }, 2914 /* */ 2915 { SST(0x60, 0x00, SS_RDEF, 2916 "Lamp failure") }, 2917 /* */ 2918 { SST(0x61, 0x00, SS_RDEF, 2919 "Video acquisition error") }, 2920 /* */ 2921 { SST(0x61, 0x01, SS_RDEF, 2922 "Unable to acquire video") }, 2923 /* */ 2924 { SST(0x61, 0x02, SS_RDEF, 2925 "Out of focus") }, 2926 /* */ 2927 { SST(0x62, 0x00, SS_RDEF, 2928 "Scan head positioning error") }, 2929 /* R */ 2930 { SST(0x63, 0x00, SS_RDEF, 2931 "End of user area encountered on this track") }, 2932 /* R */ 2933 { SST(0x63, 0x01, SS_FATAL | ENOSPC, 2934 "Packet does not fit in available space") }, 2935 /* R */ 2936 { SST(0x64, 0x00, SS_FATAL | ENXIO, 2937 "Illegal mode for this track") }, 2938 /* R */ 2939 { SST(0x64, 0x01, SS_RDEF, 2940 "Invalid packet size") }, 2941 /* DTLPWROMAEBKVF */ 2942 { SST(0x65, 0x00, SS_RDEF, 2943 "Voltage fault") }, 2944 /* */ 2945 { SST(0x66, 0x00, SS_RDEF, 2946 "Automatic document feeder cover up") }, 2947 /* */ 2948 { SST(0x66, 0x01, SS_RDEF, 2949 "Automatic document feeder lift up") }, 2950 /* */ 2951 { SST(0x66, 0x02, SS_RDEF, 2952 "Document jam in automatic document feeder") }, 2953 /* */ 2954 { SST(0x66, 0x03, SS_RDEF, 2955 "Document miss feed automatic in document feeder") }, 2956 /* A */ 2957 { SST(0x67, 0x00, SS_RDEF, 2958 "Configuration failure") }, 2959 /* A */ 2960 { SST(0x67, 0x01, SS_RDEF, 2961 "Configuration of incapable logical units failed") }, 2962 /* A */ 2963 { SST(0x67, 0x02, SS_RDEF, 2964 "Add logical unit failed") }, 2965 /* A */ 2966 { SST(0x67, 0x03, SS_RDEF, 2967 "Modification of logical unit failed") }, 2968 /* A */ 2969 { SST(0x67, 0x04, SS_RDEF, 2970 "Exchange of logical unit failed") }, 2971 /* A */ 2972 { SST(0x67, 0x05, SS_RDEF, 2973 "Remove of logical unit failed") }, 2974 /* A */ 2975 { SST(0x67, 0x06, SS_RDEF, 2976 "Attachment of logical unit failed") }, 2977 /* A */ 2978 { SST(0x67, 0x07, SS_RDEF, 2979 "Creation of logical unit failed") }, 2980 /* A */ 2981 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ 2982 "Assign failure occurred") }, 2983 /* A */ 2984 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ 2985 "Multiply assigned logical unit") }, 2986 /* DTLPWROMAEBKVF */ 2987 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ 2988 "Set target port groups command failed") }, 2989 /* DT B */ 2990 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ 2991 "ATA device feature not enabled") }, 2992 /* A */ 2993 { SST(0x68, 0x00, SS_RDEF, 2994 "Logical unit not configured") }, 2995 /* D */ 2996 { SST(0x68, 0x01, SS_RDEF, 2997 "Subsidiary logical unit not configured") }, 2998 /* A */ 2999 { SST(0x69, 0x00, SS_RDEF, 3000 "Data loss on logical unit") }, 3001 /* A */ 3002 { SST(0x69, 0x01, SS_RDEF, 3003 "Multiple logical unit failures") }, 3004 /* A */ 3005 { SST(0x69, 0x02, SS_RDEF, 3006 "Parity/data mismatch") }, 3007 /* A */ 3008 { SST(0x6A, 0x00, SS_RDEF, 3009 "Informational, refer to log") }, 3010 /* A */ 3011 { SST(0x6B, 0x00, SS_RDEF, 3012 "State change has occurred") }, 3013 /* A */ 3014 { SST(0x6B, 0x01, SS_RDEF, 3015 "Redundancy level got better") }, 3016 /* A */ 3017 { SST(0x6B, 0x02, SS_RDEF, 3018 "Redundancy level got worse") }, 3019 /* A */ 3020 { SST(0x6C, 0x00, SS_RDEF, 3021 "Rebuild failure occurred") }, 3022 /* A */ 3023 { SST(0x6D, 0x00, SS_RDEF, 3024 "Recalculate failure occurred") }, 3025 /* A */ 3026 { SST(0x6E, 0x00, SS_RDEF, 3027 "Command to logical unit failed") }, 3028 /* R */ 3029 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ 3030 "Copy protection key exchange failure - authentication failure") }, 3031 /* R */ 3032 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ 3033 "Copy protection key exchange failure - key not present") }, 3034 /* R */ 3035 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ 3036 "Copy protection key exchange failure - key not established") }, 3037 /* R */ 3038 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ 3039 "Read of scrambled sector without authentication") }, 3040 /* R */ 3041 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ 3042 "Media region code is mismatched to logical unit region") }, 3043 /* R */ 3044 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ 3045 "Drive region must be permanent/region reset count error") }, 3046 /* R */ 3047 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ 3048 "Insufficient block count for binding NONCE recording") }, 3049 /* R */ 3050 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ 3051 "Conflict in binding NONCE recording") }, 3052 /* T */ 3053 { SST(0x70, 0x00, SS_RDEF, 3054 "Decompression exception short: ASCQ = Algorithm ID") }, 3055 /* T */ 3056 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, 3057 NULL) }, /* Range 0x00 -> 0xFF */ 3058 /* T */ 3059 { SST(0x71, 0x00, SS_RDEF, 3060 "Decompression exception long: ASCQ = Algorithm ID") }, 3061 /* T */ 3062 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, 3063 NULL) }, /* Range 0x00 -> 0xFF */ 3064 /* R */ 3065 { SST(0x72, 0x00, SS_RDEF, 3066 "Session fixation error") }, 3067 /* R */ 3068 { SST(0x72, 0x01, SS_RDEF, 3069 "Session fixation error writing lead-in") }, 3070 /* R */ 3071 { SST(0x72, 0x02, SS_RDEF, 3072 "Session fixation error writing lead-out") }, 3073 /* R */ 3074 { SST(0x72, 0x03, SS_RDEF, 3075 "Session fixation error - incomplete track in session") }, 3076 /* R */ 3077 { SST(0x72, 0x04, SS_RDEF, 3078 "Empty or partially written reserved track") }, 3079 /* R */ 3080 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ 3081 "No more track reservations allowed") }, 3082 /* R */ 3083 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ 3084 "RMZ extension is not allowed") }, 3085 /* R */ 3086 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ 3087 "No more test zone extensions are allowed") }, 3088 /* R */ 3089 { SST(0x73, 0x00, SS_RDEF, 3090 "CD control error") }, 3091 /* R */ 3092 { SST(0x73, 0x01, SS_RDEF, 3093 "Power calibration area almost full") }, 3094 /* R */ 3095 { SST(0x73, 0x02, SS_FATAL | ENOSPC, 3096 "Power calibration area is full") }, 3097 /* R */ 3098 { SST(0x73, 0x03, SS_RDEF, 3099 "Power calibration area error") }, 3100 /* R */ 3101 { SST(0x73, 0x04, SS_RDEF, 3102 "Program memory area update failure") }, 3103 /* R */ 3104 { SST(0x73, 0x05, SS_RDEF, 3105 "Program memory area is full") }, 3106 /* R */ 3107 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ 3108 "RMA/PMA is almost full") }, 3109 /* R */ 3110 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ 3111 "Current power calibration area almost full") }, 3112 /* R */ 3113 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ 3114 "Current power calibration area is full") }, 3115 /* R */ 3116 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ 3117 "RDZ is full") }, 3118 /* T */ 3119 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ 3120 "Security error") }, 3121 /* T */ 3122 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ 3123 "Unable to decrypt data") }, 3124 /* T */ 3125 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ 3126 "Unencrypted data encountered while decrypting") }, 3127 /* T */ 3128 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ 3129 "Incorrect data encryption key") }, 3130 /* T */ 3131 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ 3132 "Cryptographic integrity validation failed") }, 3133 /* T */ 3134 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ 3135 "Error decrypting data") }, 3136 /* T */ 3137 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ 3138 "Unknown signature verification key") }, 3139 /* T */ 3140 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ 3141 "Encryption parameters not useable") }, 3142 /* DT R M E VF */ 3143 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ 3144 "Digital signature validation failure") }, 3145 /* T */ 3146 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ 3147 "Encryption mode mismatch on read") }, 3148 /* T */ 3149 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ 3150 "Encrypted block not raw read enabled") }, 3151 /* T */ 3152 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ 3153 "Incorrect encryption parameters") }, 3154 /* DT R MAEBKV */ 3155 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ 3156 "Unable to decrypt parameter list") }, 3157 /* T */ 3158 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ 3159 "Encryption algorithm disabled") }, 3160 /* DT R MAEBKV */ 3161 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ 3162 "SA creation parameter value invalid") }, 3163 /* DT R MAEBKV */ 3164 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ 3165 "SA creation parameter value rejected") }, 3166 /* DT R MAEBKV */ 3167 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ 3168 "Invalid SA usage") }, 3169 /* T */ 3170 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ 3171 "Data encryption configuration prevented") }, 3172 /* DT R MAEBKV */ 3173 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ 3174 "SA creation parameter not supported") }, 3175 /* DT R MAEBKV */ 3176 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ 3177 "Authentication failed") }, 3178 /* V */ 3179 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ 3180 "External data encryption key manager access error") }, 3181 /* V */ 3182 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ 3183 "External data encryption key manager error") }, 3184 /* V */ 3185 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ 3186 "External data encryption key not found") }, 3187 /* V */ 3188 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ 3189 "External data encryption request not authorized") }, 3190 /* T */ 3191 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ 3192 "External data encryption control timeout") }, 3193 /* T */ 3194 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ 3195 "External data encryption control error") }, 3196 /* DT R M E V */ 3197 { SST(0x74, 0x71, SS_FATAL | EACCES, 3198 "Logical unit access not authorized") }, 3199 /* D */ 3200 { SST(0x74, 0x79, SS_FATAL | EACCES, 3201 "Security conflict in translated device") } 3202 }; 3203 3204 const u_int asc_table_size = nitems(asc_table); 3205 3206 struct asc_key 3207 { 3208 int asc; 3209 int ascq; 3210 }; 3211 3212 static int 3213 ascentrycomp(const void *key, const void *member) 3214 { 3215 int asc; 3216 int ascq; 3217 const struct asc_table_entry *table_entry; 3218 3219 asc = ((const struct asc_key *)key)->asc; 3220 ascq = ((const struct asc_key *)key)->ascq; 3221 table_entry = (const struct asc_table_entry *)member; 3222 3223 if (asc >= table_entry->asc) { 3224 3225 if (asc > table_entry->asc) 3226 return (1); 3227 3228 if (ascq <= table_entry->ascq) { 3229 /* Check for ranges */ 3230 if (ascq == table_entry->ascq 3231 || ((table_entry->action & SSQ_RANGE) != 0 3232 && ascq >= (table_entry - 1)->ascq)) 3233 return (0); 3234 return (-1); 3235 } 3236 return (1); 3237 } 3238 return (-1); 3239 } 3240 3241 static int 3242 senseentrycomp(const void *key, const void *member) 3243 { 3244 int sense_key; 3245 const struct sense_key_table_entry *table_entry; 3246 3247 sense_key = *((const int *)key); 3248 table_entry = (const struct sense_key_table_entry *)member; 3249 3250 if (sense_key >= table_entry->sense_key) { 3251 if (sense_key == table_entry->sense_key) 3252 return (0); 3253 return (1); 3254 } 3255 return (-1); 3256 } 3257 3258 static void 3259 fetchtableentries(int sense_key, int asc, int ascq, 3260 struct scsi_inquiry_data *inq_data, 3261 const struct sense_key_table_entry **sense_entry, 3262 const struct asc_table_entry **asc_entry) 3263 { 3264 caddr_t match; 3265 const struct asc_table_entry *asc_tables[2]; 3266 const struct sense_key_table_entry *sense_tables[2]; 3267 struct asc_key asc_ascq; 3268 size_t asc_tables_size[2]; 3269 size_t sense_tables_size[2]; 3270 int num_asc_tables; 3271 int num_sense_tables; 3272 int i; 3273 3274 /* Default to failure */ 3275 *sense_entry = NULL; 3276 *asc_entry = NULL; 3277 match = NULL; 3278 if (inq_data != NULL) 3279 match = cam_quirkmatch((caddr_t)inq_data, 3280 (caddr_t)sense_quirk_table, 3281 sense_quirk_table_size, 3282 sizeof(*sense_quirk_table), 3283 scsi_inquiry_match); 3284 3285 if (match != NULL) { 3286 struct scsi_sense_quirk_entry *quirk; 3287 3288 quirk = (struct scsi_sense_quirk_entry *)match; 3289 asc_tables[0] = quirk->asc_info; 3290 asc_tables_size[0] = quirk->num_ascs; 3291 asc_tables[1] = asc_table; 3292 asc_tables_size[1] = asc_table_size; 3293 num_asc_tables = 2; 3294 sense_tables[0] = quirk->sense_key_info; 3295 sense_tables_size[0] = quirk->num_sense_keys; 3296 sense_tables[1] = sense_key_table; 3297 sense_tables_size[1] = nitems(sense_key_table); 3298 num_sense_tables = 2; 3299 } else { 3300 asc_tables[0] = asc_table; 3301 asc_tables_size[0] = asc_table_size; 3302 num_asc_tables = 1; 3303 sense_tables[0] = sense_key_table; 3304 sense_tables_size[0] = nitems(sense_key_table); 3305 num_sense_tables = 1; 3306 } 3307 3308 asc_ascq.asc = asc; 3309 asc_ascq.ascq = ascq; 3310 for (i = 0; i < num_asc_tables; i++) { 3311 void *found_entry; 3312 3313 found_entry = bsearch(&asc_ascq, asc_tables[i], 3314 asc_tables_size[i], 3315 sizeof(**asc_tables), 3316 ascentrycomp); 3317 3318 if (found_entry) { 3319 *asc_entry = (struct asc_table_entry *)found_entry; 3320 break; 3321 } 3322 } 3323 3324 for (i = 0; i < num_sense_tables; i++) { 3325 void *found_entry; 3326 3327 found_entry = bsearch(&sense_key, sense_tables[i], 3328 sense_tables_size[i], 3329 sizeof(**sense_tables), 3330 senseentrycomp); 3331 3332 if (found_entry) { 3333 *sense_entry = 3334 (struct sense_key_table_entry *)found_entry; 3335 break; 3336 } 3337 } 3338 } 3339 3340 void 3341 scsi_sense_desc(int sense_key, int asc, int ascq, 3342 struct scsi_inquiry_data *inq_data, 3343 const char **sense_key_desc, const char **asc_desc) 3344 { 3345 const struct asc_table_entry *asc_entry; 3346 const struct sense_key_table_entry *sense_entry; 3347 3348 fetchtableentries(sense_key, asc, ascq, 3349 inq_data, 3350 &sense_entry, 3351 &asc_entry); 3352 3353 if (sense_entry != NULL) 3354 *sense_key_desc = sense_entry->desc; 3355 else 3356 *sense_key_desc = "Invalid Sense Key"; 3357 3358 if (asc_entry != NULL) 3359 *asc_desc = asc_entry->desc; 3360 else if (asc >= 0x80 && asc <= 0xff) 3361 *asc_desc = "Vendor Specific ASC"; 3362 else if (ascq >= 0x80 && ascq <= 0xff) 3363 *asc_desc = "Vendor Specific ASCQ"; 3364 else 3365 *asc_desc = "Reserved ASC/ASCQ pair"; 3366 } 3367 3368 /* 3369 * Given sense and device type information, return the appropriate action. 3370 * If we do not understand the specific error as identified by the ASC/ASCQ 3371 * pair, fall back on the more generic actions derived from the sense key. 3372 */ 3373 scsi_sense_action 3374 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, 3375 u_int32_t sense_flags) 3376 { 3377 const struct asc_table_entry *asc_entry; 3378 const struct sense_key_table_entry *sense_entry; 3379 int error_code, sense_key, asc, ascq; 3380 scsi_sense_action action; 3381 3382 if (!scsi_extract_sense_ccb((union ccb *)csio, 3383 &error_code, &sense_key, &asc, &ascq)) { 3384 action = SS_RETRY | SSQ_DECREMENT_COUNT | SSQ_PRINT_SENSE | EIO; 3385 } else if ((error_code == SSD_DEFERRED_ERROR) 3386 || (error_code == SSD_DESC_DEFERRED_ERROR)) { 3387 /* 3388 * XXX dufault@FreeBSD.org 3389 * This error doesn't relate to the command associated 3390 * with this request sense. A deferred error is an error 3391 * for a command that has already returned GOOD status 3392 * (see SCSI2 8.2.14.2). 3393 * 3394 * By my reading of that section, it looks like the current 3395 * command has been cancelled, we should now clean things up 3396 * (hopefully recovering any lost data) and then retry the 3397 * current command. There are two easy choices, both wrong: 3398 * 3399 * 1. Drop through (like we had been doing), thus treating 3400 * this as if the error were for the current command and 3401 * return and stop the current command. 3402 * 3403 * 2. Issue a retry (like I made it do) thus hopefully 3404 * recovering the current transfer, and ignoring the 3405 * fact that we've dropped a command. 3406 * 3407 * These should probably be handled in a device specific 3408 * sense handler or punted back up to a user mode daemon 3409 */ 3410 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3411 } else { 3412 fetchtableentries(sense_key, asc, ascq, 3413 inq_data, 3414 &sense_entry, 3415 &asc_entry); 3416 3417 /* 3418 * Override the 'No additional Sense' entry (0,0) 3419 * with the error action of the sense key. 3420 */ 3421 if (asc_entry != NULL 3422 && (asc != 0 || ascq != 0)) 3423 action = asc_entry->action; 3424 else if (sense_entry != NULL) 3425 action = sense_entry->action; 3426 else 3427 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3428 3429 if (sense_key == SSD_KEY_RECOVERED_ERROR) { 3430 /* 3431 * The action succeeded but the device wants 3432 * the user to know that some recovery action 3433 * was required. 3434 */ 3435 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); 3436 action |= SS_NOP|SSQ_PRINT_SENSE; 3437 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { 3438 if ((sense_flags & SF_QUIET_IR) != 0) 3439 action &= ~SSQ_PRINT_SENSE; 3440 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { 3441 if ((sense_flags & SF_RETRY_UA) != 0 3442 && (action & SS_MASK) == SS_FAIL) { 3443 action &= ~(SS_MASK|SSQ_MASK); 3444 action |= SS_RETRY|SSQ_DECREMENT_COUNT| 3445 SSQ_PRINT_SENSE; 3446 } 3447 action |= SSQ_UA; 3448 } 3449 } 3450 if ((action & SS_MASK) >= SS_START && 3451 (sense_flags & SF_NO_RECOVERY)) { 3452 action &= ~SS_MASK; 3453 action |= SS_FAIL; 3454 } else if ((action & SS_MASK) == SS_RETRY && 3455 (sense_flags & SF_NO_RETRY)) { 3456 action &= ~SS_MASK; 3457 action |= SS_FAIL; 3458 } 3459 if ((sense_flags & SF_PRINT_ALWAYS) != 0) 3460 action |= SSQ_PRINT_SENSE; 3461 else if ((sense_flags & SF_NO_PRINT) != 0) 3462 action &= ~SSQ_PRINT_SENSE; 3463 3464 return (action); 3465 } 3466 3467 char * 3468 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len) 3469 { 3470 struct sbuf sb; 3471 int error; 3472 3473 if (len == 0) 3474 return (""); 3475 3476 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN); 3477 3478 scsi_cdb_sbuf(cdb_ptr, &sb); 3479 3480 /* ENOMEM just means that the fixed buffer is full, OK to ignore */ 3481 error = sbuf_finish(&sb); 3482 if (error != 0 && error != ENOMEM) 3483 return (""); 3484 3485 return(sbuf_data(&sb)); 3486 } 3487 3488 void 3489 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb) 3490 { 3491 u_int8_t cdb_len; 3492 int i; 3493 3494 if (cdb_ptr == NULL) 3495 return; 3496 3497 /* 3498 * This is taken from the SCSI-3 draft spec. 3499 * (T10/1157D revision 0.3) 3500 * The top 3 bits of an opcode are the group code. The next 5 bits 3501 * are the command code. 3502 * Group 0: six byte commands 3503 * Group 1: ten byte commands 3504 * Group 2: ten byte commands 3505 * Group 3: reserved 3506 * Group 4: sixteen byte commands 3507 * Group 5: twelve byte commands 3508 * Group 6: vendor specific 3509 * Group 7: vendor specific 3510 */ 3511 switch((*cdb_ptr >> 5) & 0x7) { 3512 case 0: 3513 cdb_len = 6; 3514 break; 3515 case 1: 3516 case 2: 3517 cdb_len = 10; 3518 break; 3519 case 3: 3520 case 6: 3521 case 7: 3522 /* in this case, just print out the opcode */ 3523 cdb_len = 1; 3524 break; 3525 case 4: 3526 cdb_len = 16; 3527 break; 3528 case 5: 3529 cdb_len = 12; 3530 break; 3531 } 3532 3533 for (i = 0; i < cdb_len; i++) 3534 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]); 3535 3536 return; 3537 } 3538 3539 const char * 3540 scsi_status_string(struct ccb_scsiio *csio) 3541 { 3542 switch(csio->scsi_status) { 3543 case SCSI_STATUS_OK: 3544 return("OK"); 3545 case SCSI_STATUS_CHECK_COND: 3546 return("Check Condition"); 3547 case SCSI_STATUS_BUSY: 3548 return("Busy"); 3549 case SCSI_STATUS_INTERMED: 3550 return("Intermediate"); 3551 case SCSI_STATUS_INTERMED_COND_MET: 3552 return("Intermediate-Condition Met"); 3553 case SCSI_STATUS_RESERV_CONFLICT: 3554 return("Reservation Conflict"); 3555 case SCSI_STATUS_CMD_TERMINATED: 3556 return("Command Terminated"); 3557 case SCSI_STATUS_QUEUE_FULL: 3558 return("Queue Full"); 3559 case SCSI_STATUS_ACA_ACTIVE: 3560 return("ACA Active"); 3561 case SCSI_STATUS_TASK_ABORTED: 3562 return("Task Aborted"); 3563 default: { 3564 static char unkstr[64]; 3565 snprintf(unkstr, sizeof(unkstr), "Unknown %#x", 3566 csio->scsi_status); 3567 return(unkstr); 3568 } 3569 } 3570 } 3571 3572 /* 3573 * scsi_command_string() returns 0 for success and -1 for failure. 3574 */ 3575 #ifdef _KERNEL 3576 int 3577 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) 3578 #else /* !_KERNEL */ 3579 int 3580 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, 3581 struct sbuf *sb) 3582 #endif /* _KERNEL/!_KERNEL */ 3583 { 3584 struct scsi_inquiry_data *inq_data; 3585 #ifdef _KERNEL 3586 struct ccb_getdev *cgd; 3587 #endif /* _KERNEL */ 3588 3589 #ifdef _KERNEL 3590 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 3591 return(-1); 3592 /* 3593 * Get the device information. 3594 */ 3595 xpt_setup_ccb(&cgd->ccb_h, 3596 csio->ccb_h.path, 3597 CAM_PRIORITY_NORMAL); 3598 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 3599 xpt_action((union ccb *)cgd); 3600 3601 /* 3602 * If the device is unconfigured, just pretend that it is a hard 3603 * drive. scsi_op_desc() needs this. 3604 */ 3605 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 3606 cgd->inq_data.device = T_DIRECT; 3607 3608 inq_data = &cgd->inq_data; 3609 3610 #else /* !_KERNEL */ 3611 3612 inq_data = &device->inq_data; 3613 3614 #endif /* _KERNEL/!_KERNEL */ 3615 3616 sbuf_printf(sb, "%s. CDB: ", 3617 scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data)); 3618 scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb); 3619 3620 #ifdef _KERNEL 3621 xpt_free_ccb((union ccb *)cgd); 3622 #endif 3623 3624 return(0); 3625 } 3626 3627 /* 3628 * Iterate over sense descriptors. Each descriptor is passed into iter_func(). 3629 * If iter_func() returns 0, list traversal continues. If iter_func() 3630 * returns non-zero, list traversal is stopped. 3631 */ 3632 void 3633 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, 3634 int (*iter_func)(struct scsi_sense_data_desc *sense, 3635 u_int, struct scsi_sense_desc_header *, 3636 void *), void *arg) 3637 { 3638 int cur_pos; 3639 int desc_len; 3640 3641 /* 3642 * First make sure the extra length field is present. 3643 */ 3644 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) 3645 return; 3646 3647 /* 3648 * The length of data actually returned may be different than the 3649 * extra_len recorded in the structure. 3650 */ 3651 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); 3652 3653 /* 3654 * Limit this further by the extra length reported, and the maximum 3655 * allowed extra length. 3656 */ 3657 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); 3658 3659 /* 3660 * Subtract the size of the header from the descriptor length. 3661 * This is to ensure that we have at least the header left, so we 3662 * don't have to check that inside the loop. This can wind up 3663 * being a negative value. 3664 */ 3665 desc_len -= sizeof(struct scsi_sense_desc_header); 3666 3667 for (cur_pos = 0; cur_pos < desc_len;) { 3668 struct scsi_sense_desc_header *header; 3669 3670 header = (struct scsi_sense_desc_header *) 3671 &sense->sense_desc[cur_pos]; 3672 3673 /* 3674 * Check to make sure we have the entire descriptor. We 3675 * don't call iter_func() unless we do. 3676 * 3677 * Note that although cur_pos is at the beginning of the 3678 * descriptor, desc_len already has the header length 3679 * subtracted. So the comparison of the length in the 3680 * header (which does not include the header itself) to 3681 * desc_len - cur_pos is correct. 3682 */ 3683 if (header->length > (desc_len - cur_pos)) 3684 break; 3685 3686 if (iter_func(sense, sense_len, header, arg) != 0) 3687 break; 3688 3689 cur_pos += sizeof(*header) + header->length; 3690 } 3691 } 3692 3693 struct scsi_find_desc_info { 3694 uint8_t desc_type; 3695 struct scsi_sense_desc_header *header; 3696 }; 3697 3698 static int 3699 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 3700 struct scsi_sense_desc_header *header, void *arg) 3701 { 3702 struct scsi_find_desc_info *desc_info; 3703 3704 desc_info = (struct scsi_find_desc_info *)arg; 3705 3706 if (header->desc_type == desc_info->desc_type) { 3707 desc_info->header = header; 3708 3709 /* We found the descriptor, tell the iterator to stop. */ 3710 return (1); 3711 } else 3712 return (0); 3713 } 3714 3715 /* 3716 * Given a descriptor type, return a pointer to it if it is in the sense 3717 * data and not truncated. Avoiding truncating sense data will simplify 3718 * things significantly for the caller. 3719 */ 3720 uint8_t * 3721 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, 3722 uint8_t desc_type) 3723 { 3724 struct scsi_find_desc_info desc_info; 3725 3726 desc_info.desc_type = desc_type; 3727 desc_info.header = NULL; 3728 3729 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); 3730 3731 return ((uint8_t *)desc_info.header); 3732 } 3733 3734 /* 3735 * Fill in SCSI descriptor sense data with the specified parameters. 3736 */ 3737 static void 3738 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data, 3739 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3740 int sense_key, int asc, int ascq, va_list ap) 3741 { 3742 struct scsi_sense_data_desc *sense; 3743 scsi_sense_elem_type elem_type; 3744 int space, len; 3745 uint8_t *desc, *data; 3746 3747 memset(sense_data, 0, sizeof(*sense_data)); 3748 sense = (struct scsi_sense_data_desc *)sense_data; 3749 if (current_error != 0) 3750 sense->error_code = SSD_DESC_CURRENT_ERROR; 3751 else 3752 sense->error_code = SSD_DESC_DEFERRED_ERROR; 3753 sense->sense_key = sense_key; 3754 sense->add_sense_code = asc; 3755 sense->add_sense_code_qual = ascq; 3756 sense->flags = 0; 3757 3758 desc = &sense->sense_desc[0]; 3759 space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc); 3760 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3761 SSD_ELEM_NONE) { 3762 if (elem_type >= SSD_ELEM_MAX) { 3763 printf("%s: invalid sense type %d\n", __func__, 3764 elem_type); 3765 break; 3766 } 3767 len = va_arg(ap, int); 3768 data = va_arg(ap, uint8_t *); 3769 3770 switch (elem_type) { 3771 case SSD_ELEM_SKIP: 3772 break; 3773 case SSD_ELEM_DESC: 3774 if (space < len) { 3775 sense->flags |= SSDD_SDAT_OVFL; 3776 break; 3777 } 3778 bcopy(data, desc, len); 3779 desc += len; 3780 space -= len; 3781 break; 3782 case SSD_ELEM_SKS: { 3783 struct scsi_sense_sks *sks = (void *)desc; 3784 3785 if (len > sizeof(sks->sense_key_spec)) 3786 break; 3787 if (space < sizeof(*sks)) { 3788 sense->flags |= SSDD_SDAT_OVFL; 3789 break; 3790 } 3791 sks->desc_type = SSD_DESC_SKS; 3792 sks->length = sizeof(*sks) - 3793 (offsetof(struct scsi_sense_sks, length) + 1); 3794 bcopy(data, &sks->sense_key_spec, len); 3795 desc += sizeof(*sks); 3796 space -= sizeof(*sks); 3797 break; 3798 } 3799 case SSD_ELEM_COMMAND: { 3800 struct scsi_sense_command *cmd = (void *)desc; 3801 3802 if (len > sizeof(cmd->command_info)) 3803 break; 3804 if (space < sizeof(*cmd)) { 3805 sense->flags |= SSDD_SDAT_OVFL; 3806 break; 3807 } 3808 cmd->desc_type = SSD_DESC_COMMAND; 3809 cmd->length = sizeof(*cmd) - 3810 (offsetof(struct scsi_sense_command, length) + 1); 3811 bcopy(data, &cmd->command_info[ 3812 sizeof(cmd->command_info) - len], len); 3813 desc += sizeof(*cmd); 3814 space -= sizeof(*cmd); 3815 break; 3816 } 3817 case SSD_ELEM_INFO: { 3818 struct scsi_sense_info *info = (void *)desc; 3819 3820 if (len > sizeof(info->info)) 3821 break; 3822 if (space < sizeof(*info)) { 3823 sense->flags |= SSDD_SDAT_OVFL; 3824 break; 3825 } 3826 info->desc_type = SSD_DESC_INFO; 3827 info->length = sizeof(*info) - 3828 (offsetof(struct scsi_sense_info, length) + 1); 3829 info->byte2 = SSD_INFO_VALID; 3830 bcopy(data, &info->info[sizeof(info->info) - len], len); 3831 desc += sizeof(*info); 3832 space -= sizeof(*info); 3833 break; 3834 } 3835 case SSD_ELEM_FRU: { 3836 struct scsi_sense_fru *fru = (void *)desc; 3837 3838 if (len > sizeof(fru->fru)) 3839 break; 3840 if (space < sizeof(*fru)) { 3841 sense->flags |= SSDD_SDAT_OVFL; 3842 break; 3843 } 3844 fru->desc_type = SSD_DESC_FRU; 3845 fru->length = sizeof(*fru) - 3846 (offsetof(struct scsi_sense_fru, length) + 1); 3847 fru->fru = *data; 3848 desc += sizeof(*fru); 3849 space -= sizeof(*fru); 3850 break; 3851 } 3852 case SSD_ELEM_STREAM: { 3853 struct scsi_sense_stream *stream = (void *)desc; 3854 3855 if (len > sizeof(stream->byte3)) 3856 break; 3857 if (space < sizeof(*stream)) { 3858 sense->flags |= SSDD_SDAT_OVFL; 3859 break; 3860 } 3861 stream->desc_type = SSD_DESC_STREAM; 3862 stream->length = sizeof(*stream) - 3863 (offsetof(struct scsi_sense_stream, length) + 1); 3864 stream->byte3 = *data; 3865 desc += sizeof(*stream); 3866 space -= sizeof(*stream); 3867 break; 3868 } 3869 default: 3870 /* 3871 * We shouldn't get here, but if we do, do nothing. 3872 * We've already consumed the arguments above. 3873 */ 3874 break; 3875 } 3876 } 3877 sense->extra_len = desc - &sense->sense_desc[0]; 3878 *sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 + 3879 sense->extra_len; 3880 } 3881 3882 /* 3883 * Fill in SCSI fixed sense data with the specified parameters. 3884 */ 3885 static void 3886 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data, 3887 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3888 int sense_key, int asc, int ascq, va_list ap) 3889 { 3890 struct scsi_sense_data_fixed *sense; 3891 scsi_sense_elem_type elem_type; 3892 uint8_t *data; 3893 int len; 3894 3895 memset(sense_data, 0, sizeof(*sense_data)); 3896 sense = (struct scsi_sense_data_fixed *)sense_data; 3897 if (current_error != 0) 3898 sense->error_code = SSD_CURRENT_ERROR; 3899 else 3900 sense->error_code = SSD_DEFERRED_ERROR; 3901 sense->flags = sense_key & SSD_KEY; 3902 sense->extra_len = 0; 3903 if (*sense_len >= 13) { 3904 sense->add_sense_code = asc; 3905 sense->extra_len = MAX(sense->extra_len, 5); 3906 } else 3907 sense->flags |= SSD_SDAT_OVFL; 3908 if (*sense_len >= 14) { 3909 sense->add_sense_code_qual = ascq; 3910 sense->extra_len = MAX(sense->extra_len, 6); 3911 } else 3912 sense->flags |= SSD_SDAT_OVFL; 3913 3914 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3915 SSD_ELEM_NONE) { 3916 if (elem_type >= SSD_ELEM_MAX) { 3917 printf("%s: invalid sense type %d\n", __func__, 3918 elem_type); 3919 break; 3920 } 3921 len = va_arg(ap, int); 3922 data = va_arg(ap, uint8_t *); 3923 3924 switch (elem_type) { 3925 case SSD_ELEM_SKIP: 3926 break; 3927 case SSD_ELEM_SKS: 3928 if (len > sizeof(sense->sense_key_spec)) 3929 break; 3930 if (*sense_len < 18) { 3931 sense->flags |= SSD_SDAT_OVFL; 3932 break; 3933 } 3934 bcopy(data, &sense->sense_key_spec[0], len); 3935 sense->extra_len = MAX(sense->extra_len, 10); 3936 break; 3937 case SSD_ELEM_COMMAND: 3938 if (*sense_len < 12) { 3939 sense->flags |= SSD_SDAT_OVFL; 3940 break; 3941 } 3942 if (len > sizeof(sense->cmd_spec_info)) { 3943 data += len - sizeof(sense->cmd_spec_info); 3944 len -= len - sizeof(sense->cmd_spec_info); 3945 } 3946 bcopy(data, &sense->cmd_spec_info[ 3947 sizeof(sense->cmd_spec_info) - len], len); 3948 sense->extra_len = MAX(sense->extra_len, 4); 3949 break; 3950 case SSD_ELEM_INFO: 3951 /* Set VALID bit only if no overflow. */ 3952 sense->error_code |= SSD_ERRCODE_VALID; 3953 while (len > sizeof(sense->info)) { 3954 if (data[0] != 0) 3955 sense->error_code &= ~SSD_ERRCODE_VALID; 3956 data ++; 3957 len --; 3958 } 3959 bcopy(data, &sense->info[sizeof(sense->info) - len], len); 3960 break; 3961 case SSD_ELEM_FRU: 3962 if (*sense_len < 15) { 3963 sense->flags |= SSD_SDAT_OVFL; 3964 break; 3965 } 3966 sense->fru = *data; 3967 sense->extra_len = MAX(sense->extra_len, 7); 3968 break; 3969 case SSD_ELEM_STREAM: 3970 sense->flags |= *data & 3971 (SSD_ILI | SSD_EOM | SSD_FILEMARK); 3972 break; 3973 default: 3974 3975 /* 3976 * We can't handle that in fixed format. Skip it. 3977 */ 3978 break; 3979 } 3980 } 3981 *sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 + 3982 sense->extra_len; 3983 } 3984 3985 /* 3986 * Fill in SCSI sense data with the specified parameters. This routine can 3987 * fill in either fixed or descriptor type sense data. 3988 */ 3989 void 3990 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len, 3991 scsi_sense_data_type sense_format, int current_error, 3992 int sense_key, int asc, int ascq, va_list ap) 3993 { 3994 3995 if (*sense_len > SSD_FULL_SIZE) 3996 *sense_len = SSD_FULL_SIZE; 3997 if (sense_format == SSD_TYPE_DESC) 3998 scsi_set_sense_data_desc_va(sense_data, sense_len, 3999 sense_format, current_error, sense_key, asc, ascq, ap); 4000 else 4001 scsi_set_sense_data_fixed_va(sense_data, sense_len, 4002 sense_format, current_error, sense_key, asc, ascq, ap); 4003 } 4004 4005 void 4006 scsi_set_sense_data(struct scsi_sense_data *sense_data, 4007 scsi_sense_data_type sense_format, int current_error, 4008 int sense_key, int asc, int ascq, ...) 4009 { 4010 va_list ap; 4011 u_int sense_len = SSD_FULL_SIZE; 4012 4013 va_start(ap, ascq); 4014 scsi_set_sense_data_va(sense_data, &sense_len, sense_format, 4015 current_error, sense_key, asc, ascq, ap); 4016 va_end(ap); 4017 } 4018 4019 void 4020 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len, 4021 scsi_sense_data_type sense_format, int current_error, 4022 int sense_key, int asc, int ascq, ...) 4023 { 4024 va_list ap; 4025 4026 va_start(ap, ascq); 4027 scsi_set_sense_data_va(sense_data, sense_len, sense_format, 4028 current_error, sense_key, asc, ascq, ap); 4029 va_end(ap); 4030 } 4031 4032 /* 4033 * Get sense information for three similar sense data types. 4034 */ 4035 int 4036 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, 4037 uint8_t info_type, uint64_t *info, int64_t *signed_info) 4038 { 4039 scsi_sense_data_type sense_type; 4040 4041 if (sense_len == 0) 4042 goto bailout; 4043 4044 sense_type = scsi_sense_type(sense_data); 4045 4046 switch (sense_type) { 4047 case SSD_TYPE_DESC: { 4048 struct scsi_sense_data_desc *sense; 4049 uint8_t *desc; 4050 4051 sense = (struct scsi_sense_data_desc *)sense_data; 4052 4053 desc = scsi_find_desc(sense, sense_len, info_type); 4054 if (desc == NULL) 4055 goto bailout; 4056 4057 switch (info_type) { 4058 case SSD_DESC_INFO: { 4059 struct scsi_sense_info *info_desc; 4060 4061 info_desc = (struct scsi_sense_info *)desc; 4062 *info = scsi_8btou64(info_desc->info); 4063 if (signed_info != NULL) 4064 *signed_info = *info; 4065 break; 4066 } 4067 case SSD_DESC_COMMAND: { 4068 struct scsi_sense_command *cmd_desc; 4069 4070 cmd_desc = (struct scsi_sense_command *)desc; 4071 4072 *info = scsi_8btou64(cmd_desc->command_info); 4073 if (signed_info != NULL) 4074 *signed_info = *info; 4075 break; 4076 } 4077 case SSD_DESC_FRU: { 4078 struct scsi_sense_fru *fru_desc; 4079 4080 fru_desc = (struct scsi_sense_fru *)desc; 4081 4082 *info = fru_desc->fru; 4083 if (signed_info != NULL) 4084 *signed_info = (int8_t)fru_desc->fru; 4085 break; 4086 } 4087 default: 4088 goto bailout; 4089 break; 4090 } 4091 break; 4092 } 4093 case SSD_TYPE_FIXED: { 4094 struct scsi_sense_data_fixed *sense; 4095 4096 sense = (struct scsi_sense_data_fixed *)sense_data; 4097 4098 switch (info_type) { 4099 case SSD_DESC_INFO: { 4100 uint32_t info_val; 4101 4102 if ((sense->error_code & SSD_ERRCODE_VALID) == 0) 4103 goto bailout; 4104 4105 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) 4106 goto bailout; 4107 4108 info_val = scsi_4btoul(sense->info); 4109 4110 *info = info_val; 4111 if (signed_info != NULL) 4112 *signed_info = (int32_t)info_val; 4113 break; 4114 } 4115 case SSD_DESC_COMMAND: { 4116 uint32_t cmd_val; 4117 4118 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, 4119 cmd_spec_info) == 0) 4120 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) 4121 goto bailout; 4122 4123 cmd_val = scsi_4btoul(sense->cmd_spec_info); 4124 if (cmd_val == 0) 4125 goto bailout; 4126 4127 *info = cmd_val; 4128 if (signed_info != NULL) 4129 *signed_info = (int32_t)cmd_val; 4130 break; 4131 } 4132 case SSD_DESC_FRU: 4133 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) 4134 || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) 4135 goto bailout; 4136 4137 if (sense->fru == 0) 4138 goto bailout; 4139 4140 *info = sense->fru; 4141 if (signed_info != NULL) 4142 *signed_info = (int8_t)sense->fru; 4143 break; 4144 default: 4145 goto bailout; 4146 break; 4147 } 4148 break; 4149 } 4150 default: 4151 goto bailout; 4152 break; 4153 } 4154 4155 return (0); 4156 bailout: 4157 return (1); 4158 } 4159 4160 int 4161 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) 4162 { 4163 scsi_sense_data_type sense_type; 4164 4165 if (sense_len == 0) 4166 goto bailout; 4167 4168 sense_type = scsi_sense_type(sense_data); 4169 4170 switch (sense_type) { 4171 case SSD_TYPE_DESC: { 4172 struct scsi_sense_data_desc *sense; 4173 struct scsi_sense_sks *desc; 4174 4175 sense = (struct scsi_sense_data_desc *)sense_data; 4176 4177 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, 4178 SSD_DESC_SKS); 4179 if (desc == NULL) 4180 goto bailout; 4181 4182 /* 4183 * No need to check the SKS valid bit for descriptor sense. 4184 * If the descriptor is present, it is valid. 4185 */ 4186 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); 4187 break; 4188 } 4189 case SSD_TYPE_FIXED: { 4190 struct scsi_sense_data_fixed *sense; 4191 4192 sense = (struct scsi_sense_data_fixed *)sense_data; 4193 4194 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) 4195 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) 4196 goto bailout; 4197 4198 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) 4199 goto bailout; 4200 4201 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); 4202 break; 4203 } 4204 default: 4205 goto bailout; 4206 break; 4207 } 4208 return (0); 4209 bailout: 4210 return (1); 4211 } 4212 4213 /* 4214 * Provide a common interface for fixed and descriptor sense to detect 4215 * whether we have block-specific sense information. It is clear by the 4216 * presence of the block descriptor in descriptor mode, but we have to 4217 * infer from the inquiry data and ILI bit in fixed mode. 4218 */ 4219 int 4220 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, 4221 struct scsi_inquiry_data *inq_data, uint8_t *block_bits) 4222 { 4223 scsi_sense_data_type sense_type; 4224 4225 if (inq_data != NULL) { 4226 switch (SID_TYPE(inq_data)) { 4227 case T_DIRECT: 4228 case T_RBC: 4229 case T_ZBC_HM: 4230 break; 4231 default: 4232 goto bailout; 4233 break; 4234 } 4235 } 4236 4237 sense_type = scsi_sense_type(sense_data); 4238 4239 switch (sense_type) { 4240 case SSD_TYPE_DESC: { 4241 struct scsi_sense_data_desc *sense; 4242 struct scsi_sense_block *block; 4243 4244 sense = (struct scsi_sense_data_desc *)sense_data; 4245 4246 block = (struct scsi_sense_block *)scsi_find_desc(sense, 4247 sense_len, SSD_DESC_BLOCK); 4248 if (block == NULL) 4249 goto bailout; 4250 4251 *block_bits = block->byte3; 4252 break; 4253 } 4254 case SSD_TYPE_FIXED: { 4255 struct scsi_sense_data_fixed *sense; 4256 4257 sense = (struct scsi_sense_data_fixed *)sense_data; 4258 4259 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4260 goto bailout; 4261 4262 if ((sense->flags & SSD_ILI) == 0) 4263 goto bailout; 4264 4265 *block_bits = sense->flags & SSD_ILI; 4266 break; 4267 } 4268 default: 4269 goto bailout; 4270 break; 4271 } 4272 return (0); 4273 bailout: 4274 return (1); 4275 } 4276 4277 int 4278 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, 4279 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) 4280 { 4281 scsi_sense_data_type sense_type; 4282 4283 if (inq_data != NULL) { 4284 switch (SID_TYPE(inq_data)) { 4285 case T_SEQUENTIAL: 4286 break; 4287 default: 4288 goto bailout; 4289 break; 4290 } 4291 } 4292 4293 sense_type = scsi_sense_type(sense_data); 4294 4295 switch (sense_type) { 4296 case SSD_TYPE_DESC: { 4297 struct scsi_sense_data_desc *sense; 4298 struct scsi_sense_stream *stream; 4299 4300 sense = (struct scsi_sense_data_desc *)sense_data; 4301 4302 stream = (struct scsi_sense_stream *)scsi_find_desc(sense, 4303 sense_len, SSD_DESC_STREAM); 4304 if (stream == NULL) 4305 goto bailout; 4306 4307 *stream_bits = stream->byte3; 4308 break; 4309 } 4310 case SSD_TYPE_FIXED: { 4311 struct scsi_sense_data_fixed *sense; 4312 4313 sense = (struct scsi_sense_data_fixed *)sense_data; 4314 4315 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4316 goto bailout; 4317 4318 if ((sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK)) == 0) 4319 goto bailout; 4320 4321 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); 4322 break; 4323 } 4324 default: 4325 goto bailout; 4326 break; 4327 } 4328 return (0); 4329 bailout: 4330 return (1); 4331 } 4332 4333 void 4334 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4335 struct scsi_inquiry_data *inq_data, uint64_t info) 4336 { 4337 sbuf_printf(sb, "Info: %#jx", info); 4338 } 4339 4340 void 4341 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4342 struct scsi_inquiry_data *inq_data, uint64_t csi) 4343 { 4344 sbuf_printf(sb, "Command Specific Info: %#jx", csi); 4345 } 4346 4347 4348 void 4349 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) 4350 { 4351 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", 4352 (progress * 100) / SSD_SKS_PROGRESS_DENOM, 4353 progress, SSD_SKS_PROGRESS_DENOM); 4354 } 4355 4356 /* 4357 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. 4358 */ 4359 int 4360 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) 4361 { 4362 if ((sks[0] & SSD_SKS_VALID) == 0) 4363 return (1); 4364 4365 switch (sense_key) { 4366 case SSD_KEY_ILLEGAL_REQUEST: { 4367 struct scsi_sense_sks_field *field; 4368 int bad_command; 4369 char tmpstr[40]; 4370 4371 /*Field Pointer*/ 4372 field = (struct scsi_sense_sks_field *)sks; 4373 4374 if (field->byte0 & SSD_SKS_FIELD_CMD) 4375 bad_command = 1; 4376 else 4377 bad_command = 0; 4378 4379 tmpstr[0] = '\0'; 4380 4381 /* Bit pointer is valid */ 4382 if (field->byte0 & SSD_SKS_BPV) 4383 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4384 field->byte0 & SSD_SKS_BIT_VALUE); 4385 4386 sbuf_printf(sb, "%s byte %d %sis invalid", 4387 bad_command ? "Command" : "Data", 4388 scsi_2btoul(field->field), tmpstr); 4389 break; 4390 } 4391 case SSD_KEY_UNIT_ATTENTION: { 4392 struct scsi_sense_sks_overflow *overflow; 4393 4394 overflow = (struct scsi_sense_sks_overflow *)sks; 4395 4396 /*UA Condition Queue Overflow*/ 4397 sbuf_printf(sb, "Unit Attention Condition Queue %s", 4398 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? 4399 "Overflowed" : "Did Not Overflow??"); 4400 break; 4401 } 4402 case SSD_KEY_RECOVERED_ERROR: 4403 case SSD_KEY_HARDWARE_ERROR: 4404 case SSD_KEY_MEDIUM_ERROR: { 4405 struct scsi_sense_sks_retry *retry; 4406 4407 /*Actual Retry Count*/ 4408 retry = (struct scsi_sense_sks_retry *)sks; 4409 4410 sbuf_printf(sb, "Actual Retry Count: %d", 4411 scsi_2btoul(retry->actual_retry_count)); 4412 break; 4413 } 4414 case SSD_KEY_NO_SENSE: 4415 case SSD_KEY_NOT_READY: { 4416 struct scsi_sense_sks_progress *progress; 4417 int progress_val; 4418 4419 /*Progress Indication*/ 4420 progress = (struct scsi_sense_sks_progress *)sks; 4421 progress_val = scsi_2btoul(progress->progress); 4422 4423 scsi_progress_sbuf(sb, progress_val); 4424 break; 4425 } 4426 case SSD_KEY_COPY_ABORTED: { 4427 struct scsi_sense_sks_segment *segment; 4428 char tmpstr[40]; 4429 4430 /*Segment Pointer*/ 4431 segment = (struct scsi_sense_sks_segment *)sks; 4432 4433 tmpstr[0] = '\0'; 4434 4435 if (segment->byte0 & SSD_SKS_SEGMENT_BPV) 4436 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4437 segment->byte0 & SSD_SKS_SEGMENT_BITPTR); 4438 4439 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & 4440 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", 4441 scsi_2btoul(segment->field), tmpstr); 4442 break; 4443 } 4444 default: 4445 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], 4446 scsi_2btoul(&sks[1])); 4447 break; 4448 } 4449 4450 return (0); 4451 } 4452 4453 void 4454 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) 4455 { 4456 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); 4457 } 4458 4459 void 4460 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits, uint64_t info) 4461 { 4462 int need_comma; 4463 4464 need_comma = 0; 4465 /* 4466 * XXX KDM this needs more descriptive decoding. 4467 */ 4468 if (stream_bits & SSD_DESC_STREAM_FM) { 4469 sbuf_printf(sb, "Filemark"); 4470 need_comma = 1; 4471 } 4472 4473 if (stream_bits & SSD_DESC_STREAM_EOM) { 4474 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); 4475 need_comma = 1; 4476 } 4477 4478 if (stream_bits & SSD_DESC_STREAM_ILI) 4479 sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); 4480 4481 sbuf_printf(sb, ": Info: %#jx", (uintmax_t) info); 4482 } 4483 4484 void 4485 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits, uint64_t info) 4486 { 4487 if (block_bits & SSD_DESC_BLOCK_ILI) 4488 sbuf_printf(sb, "ILI: residue %#jx", (uintmax_t) info); 4489 } 4490 4491 void 4492 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4493 u_int sense_len, uint8_t *cdb, int cdb_len, 4494 struct scsi_inquiry_data *inq_data, 4495 struct scsi_sense_desc_header *header) 4496 { 4497 struct scsi_sense_info *info; 4498 4499 info = (struct scsi_sense_info *)header; 4500 4501 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); 4502 } 4503 4504 void 4505 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4506 u_int sense_len, uint8_t *cdb, int cdb_len, 4507 struct scsi_inquiry_data *inq_data, 4508 struct scsi_sense_desc_header *header) 4509 { 4510 struct scsi_sense_command *command; 4511 4512 command = (struct scsi_sense_command *)header; 4513 4514 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, 4515 scsi_8btou64(command->command_info)); 4516 } 4517 4518 void 4519 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4520 u_int sense_len, uint8_t *cdb, int cdb_len, 4521 struct scsi_inquiry_data *inq_data, 4522 struct scsi_sense_desc_header *header) 4523 { 4524 struct scsi_sense_sks *sks; 4525 int error_code, sense_key, asc, ascq; 4526 4527 sks = (struct scsi_sense_sks *)header; 4528 4529 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4530 &asc, &ascq, /*show_errors*/ 1); 4531 4532 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); 4533 } 4534 4535 void 4536 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4537 u_int sense_len, uint8_t *cdb, int cdb_len, 4538 struct scsi_inquiry_data *inq_data, 4539 struct scsi_sense_desc_header *header) 4540 { 4541 struct scsi_sense_fru *fru; 4542 4543 fru = (struct scsi_sense_fru *)header; 4544 4545 scsi_fru_sbuf(sb, (uint64_t)fru->fru); 4546 } 4547 4548 void 4549 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4550 u_int sense_len, uint8_t *cdb, int cdb_len, 4551 struct scsi_inquiry_data *inq_data, 4552 struct scsi_sense_desc_header *header) 4553 { 4554 struct scsi_sense_stream *stream; 4555 uint64_t info; 4556 4557 stream = (struct scsi_sense_stream *)header; 4558 info = 0; 4559 4560 scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL); 4561 4562 scsi_stream_sbuf(sb, stream->byte3, info); 4563 } 4564 4565 void 4566 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4567 u_int sense_len, uint8_t *cdb, int cdb_len, 4568 struct scsi_inquiry_data *inq_data, 4569 struct scsi_sense_desc_header *header) 4570 { 4571 struct scsi_sense_block *block; 4572 uint64_t info; 4573 4574 block = (struct scsi_sense_block *)header; 4575 info = 0; 4576 4577 scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL); 4578 4579 scsi_block_sbuf(sb, block->byte3, info); 4580 } 4581 4582 void 4583 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4584 u_int sense_len, uint8_t *cdb, int cdb_len, 4585 struct scsi_inquiry_data *inq_data, 4586 struct scsi_sense_desc_header *header) 4587 { 4588 struct scsi_sense_progress *progress; 4589 const char *sense_key_desc; 4590 const char *asc_desc; 4591 int progress_val; 4592 4593 progress = (struct scsi_sense_progress *)header; 4594 4595 /* 4596 * Get descriptions for the sense key, ASC, and ASCQ in the 4597 * progress descriptor. These could be different than the values 4598 * in the overall sense data. 4599 */ 4600 scsi_sense_desc(progress->sense_key, progress->add_sense_code, 4601 progress->add_sense_code_qual, inq_data, 4602 &sense_key_desc, &asc_desc); 4603 4604 progress_val = scsi_2btoul(progress->progress); 4605 4606 /* 4607 * The progress indicator is for the operation described by the 4608 * sense key, ASC, and ASCQ in the descriptor. 4609 */ 4610 sbuf_cat(sb, sense_key_desc); 4611 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, 4612 progress->add_sense_code_qual, asc_desc); 4613 scsi_progress_sbuf(sb, progress_val); 4614 } 4615 4616 void 4617 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4618 u_int sense_len, uint8_t *cdb, int cdb_len, 4619 struct scsi_inquiry_data *inq_data, 4620 struct scsi_sense_desc_header *header) 4621 { 4622 struct scsi_sense_ata_ret_desc *res; 4623 4624 res = (struct scsi_sense_ata_ret_desc *)header; 4625 4626 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ", 4627 res->status, 4628 (res->status & 0x80) ? "BSY " : "", 4629 (res->status & 0x40) ? "DRDY " : "", 4630 (res->status & 0x20) ? "DF " : "", 4631 (res->status & 0x10) ? "SERV " : "", 4632 (res->status & 0x08) ? "DRQ " : "", 4633 (res->status & 0x04) ? "CORR " : "", 4634 (res->status & 0x02) ? "IDX " : "", 4635 (res->status & 0x01) ? "ERR" : ""); 4636 if (res->status & 1) { 4637 sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ", 4638 res->error, 4639 (res->error & 0x80) ? "ICRC " : "", 4640 (res->error & 0x40) ? "UNC " : "", 4641 (res->error & 0x20) ? "MC " : "", 4642 (res->error & 0x10) ? "IDNF " : "", 4643 (res->error & 0x08) ? "MCR " : "", 4644 (res->error & 0x04) ? "ABRT " : "", 4645 (res->error & 0x02) ? "NM " : "", 4646 (res->error & 0x01) ? "ILI" : ""); 4647 } 4648 4649 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) { 4650 sbuf_printf(sb, "count: %02x%02x, ", 4651 res->count_15_8, res->count_7_0); 4652 sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ", 4653 res->lba_47_40, res->lba_39_32, res->lba_31_24, 4654 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4655 } else { 4656 sbuf_printf(sb, "count: %02x, ", res->count_7_0); 4657 sbuf_printf(sb, "LBA: %02x%02x%02x, ", 4658 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4659 } 4660 sbuf_printf(sb, "device: %02x, ", res->device); 4661 } 4662 4663 void 4664 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4665 u_int sense_len, uint8_t *cdb, int cdb_len, 4666 struct scsi_inquiry_data *inq_data, 4667 struct scsi_sense_desc_header *header) 4668 { 4669 struct scsi_sense_forwarded *forwarded; 4670 const char *sense_key_desc; 4671 const char *asc_desc; 4672 int error_code, sense_key, asc, ascq; 4673 4674 forwarded = (struct scsi_sense_forwarded *)header; 4675 scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data, 4676 forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1); 4677 scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc); 4678 4679 sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ", 4680 sense_key_desc, asc, ascq, asc_desc); 4681 } 4682 4683 /* 4684 * Generic sense descriptor printing routine. This is used when we have 4685 * not yet implemented a specific printing routine for this descriptor. 4686 */ 4687 void 4688 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4689 u_int sense_len, uint8_t *cdb, int cdb_len, 4690 struct scsi_inquiry_data *inq_data, 4691 struct scsi_sense_desc_header *header) 4692 { 4693 int i; 4694 uint8_t *buf_ptr; 4695 4696 sbuf_printf(sb, "Descriptor %#x:", header->desc_type); 4697 4698 buf_ptr = (uint8_t *)&header[1]; 4699 4700 for (i = 0; i < header->length; i++, buf_ptr++) 4701 sbuf_printf(sb, " %02x", *buf_ptr); 4702 } 4703 4704 /* 4705 * Keep this list in numeric order. This speeds the array traversal. 4706 */ 4707 struct scsi_sense_desc_printer { 4708 uint8_t desc_type; 4709 /* 4710 * The function arguments here are the superset of what is needed 4711 * to print out various different descriptors. Command and 4712 * information descriptors need inquiry data and command type. 4713 * Sense key specific descriptors need the sense key. 4714 * 4715 * The sense, cdb, and inquiry data arguments may be NULL, but the 4716 * information printed may not be fully decoded as a result. 4717 */ 4718 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, 4719 u_int sense_len, uint8_t *cdb, int cdb_len, 4720 struct scsi_inquiry_data *inq_data, 4721 struct scsi_sense_desc_header *header); 4722 } scsi_sense_printers[] = { 4723 {SSD_DESC_INFO, scsi_sense_info_sbuf}, 4724 {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, 4725 {SSD_DESC_SKS, scsi_sense_sks_sbuf}, 4726 {SSD_DESC_FRU, scsi_sense_fru_sbuf}, 4727 {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, 4728 {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, 4729 {SSD_DESC_ATA, scsi_sense_ata_sbuf}, 4730 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}, 4731 {SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf} 4732 }; 4733 4734 void 4735 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4736 u_int sense_len, uint8_t *cdb, int cdb_len, 4737 struct scsi_inquiry_data *inq_data, 4738 struct scsi_sense_desc_header *header) 4739 { 4740 u_int i; 4741 4742 for (i = 0; i < nitems(scsi_sense_printers); i++) { 4743 struct scsi_sense_desc_printer *printer; 4744 4745 printer = &scsi_sense_printers[i]; 4746 4747 /* 4748 * The list is sorted, so quit if we've passed our 4749 * descriptor number. 4750 */ 4751 if (printer->desc_type > header->desc_type) 4752 break; 4753 4754 if (printer->desc_type != header->desc_type) 4755 continue; 4756 4757 printer->print_func(sb, sense, sense_len, cdb, cdb_len, 4758 inq_data, header); 4759 4760 return; 4761 } 4762 4763 /* 4764 * No specific printing routine, so use the generic routine. 4765 */ 4766 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, 4767 inq_data, header); 4768 } 4769 4770 scsi_sense_data_type 4771 scsi_sense_type(struct scsi_sense_data *sense_data) 4772 { 4773 switch (sense_data->error_code & SSD_ERRCODE) { 4774 case SSD_DESC_CURRENT_ERROR: 4775 case SSD_DESC_DEFERRED_ERROR: 4776 return (SSD_TYPE_DESC); 4777 break; 4778 case SSD_CURRENT_ERROR: 4779 case SSD_DEFERRED_ERROR: 4780 return (SSD_TYPE_FIXED); 4781 break; 4782 default: 4783 break; 4784 } 4785 4786 return (SSD_TYPE_NONE); 4787 } 4788 4789 struct scsi_print_sense_info { 4790 struct sbuf *sb; 4791 char *path_str; 4792 uint8_t *cdb; 4793 int cdb_len; 4794 struct scsi_inquiry_data *inq_data; 4795 }; 4796 4797 static int 4798 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 4799 struct scsi_sense_desc_header *header, void *arg) 4800 { 4801 struct scsi_print_sense_info *print_info; 4802 4803 print_info = (struct scsi_print_sense_info *)arg; 4804 4805 switch (header->desc_type) { 4806 case SSD_DESC_INFO: 4807 case SSD_DESC_FRU: 4808 case SSD_DESC_COMMAND: 4809 case SSD_DESC_SKS: 4810 case SSD_DESC_BLOCK: 4811 case SSD_DESC_STREAM: 4812 /* 4813 * We have already printed these descriptors, if they are 4814 * present. 4815 */ 4816 break; 4817 default: { 4818 sbuf_printf(print_info->sb, "%s", print_info->path_str); 4819 scsi_sense_desc_sbuf(print_info->sb, 4820 (struct scsi_sense_data *)sense, sense_len, 4821 print_info->cdb, print_info->cdb_len, 4822 print_info->inq_data, header); 4823 sbuf_printf(print_info->sb, "\n"); 4824 break; 4825 } 4826 } 4827 4828 /* 4829 * Tell the iterator that we want to see more descriptors if they 4830 * are present. 4831 */ 4832 return (0); 4833 } 4834 4835 void 4836 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, 4837 struct sbuf *sb, char *path_str, 4838 struct scsi_inquiry_data *inq_data, uint8_t *cdb, 4839 int cdb_len) 4840 { 4841 int error_code, sense_key, asc, ascq; 4842 4843 sbuf_cat(sb, path_str); 4844 4845 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4846 &asc, &ascq, /*show_errors*/ 1); 4847 4848 sbuf_printf(sb, "SCSI sense: "); 4849 switch (error_code) { 4850 case SSD_DEFERRED_ERROR: 4851 case SSD_DESC_DEFERRED_ERROR: 4852 sbuf_printf(sb, "Deferred error: "); 4853 4854 /* FALLTHROUGH */ 4855 case SSD_CURRENT_ERROR: 4856 case SSD_DESC_CURRENT_ERROR: 4857 { 4858 struct scsi_sense_data_desc *desc_sense; 4859 struct scsi_print_sense_info print_info; 4860 const char *sense_key_desc; 4861 const char *asc_desc; 4862 uint8_t sks[3]; 4863 uint64_t val; 4864 int info_valid; 4865 4866 /* 4867 * Get descriptions for the sense key, ASC, and ASCQ. If 4868 * these aren't present in the sense data (i.e. the sense 4869 * data isn't long enough), the -1 values that 4870 * scsi_extract_sense_len() returns will yield default 4871 * or error descriptions. 4872 */ 4873 scsi_sense_desc(sense_key, asc, ascq, inq_data, 4874 &sense_key_desc, &asc_desc); 4875 4876 /* 4877 * We first print the sense key and ASC/ASCQ. 4878 */ 4879 sbuf_cat(sb, sense_key_desc); 4880 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); 4881 4882 /* 4883 * Get the info field if it is valid. 4884 */ 4885 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, 4886 &val, NULL) == 0) 4887 info_valid = 1; 4888 else 4889 info_valid = 0; 4890 4891 if (info_valid != 0) { 4892 uint8_t bits; 4893 4894 /* 4895 * Determine whether we have any block or stream 4896 * device-specific information. 4897 */ 4898 if (scsi_get_block_info(sense, sense_len, inq_data, 4899 &bits) == 0) { 4900 sbuf_cat(sb, path_str); 4901 scsi_block_sbuf(sb, bits, val); 4902 sbuf_printf(sb, "\n"); 4903 } else if (scsi_get_stream_info(sense, sense_len, 4904 inq_data, &bits) == 0) { 4905 sbuf_cat(sb, path_str); 4906 scsi_stream_sbuf(sb, bits, val); 4907 sbuf_printf(sb, "\n"); 4908 } else if (val != 0) { 4909 /* 4910 * The information field can be valid but 0. 4911 * If the block or stream bits aren't set, 4912 * and this is 0, it isn't terribly useful 4913 * to print it out. 4914 */ 4915 sbuf_cat(sb, path_str); 4916 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); 4917 sbuf_printf(sb, "\n"); 4918 } 4919 } 4920 4921 /* 4922 * Print the FRU. 4923 */ 4924 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, 4925 &val, NULL) == 0) { 4926 sbuf_cat(sb, path_str); 4927 scsi_fru_sbuf(sb, val); 4928 sbuf_printf(sb, "\n"); 4929 } 4930 4931 /* 4932 * Print any command-specific information. 4933 */ 4934 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, 4935 &val, NULL) == 0) { 4936 sbuf_cat(sb, path_str); 4937 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); 4938 sbuf_printf(sb, "\n"); 4939 } 4940 4941 /* 4942 * Print out any sense-key-specific information. 4943 */ 4944 if (scsi_get_sks(sense, sense_len, sks) == 0) { 4945 sbuf_cat(sb, path_str); 4946 scsi_sks_sbuf(sb, sense_key, sks); 4947 sbuf_printf(sb, "\n"); 4948 } 4949 4950 /* 4951 * If this is fixed sense, we're done. If we have 4952 * descriptor sense, we might have more information 4953 * available. 4954 */ 4955 if (scsi_sense_type(sense) != SSD_TYPE_DESC) 4956 break; 4957 4958 desc_sense = (struct scsi_sense_data_desc *)sense; 4959 4960 print_info.sb = sb; 4961 print_info.path_str = path_str; 4962 print_info.cdb = cdb; 4963 print_info.cdb_len = cdb_len; 4964 print_info.inq_data = inq_data; 4965 4966 /* 4967 * Print any sense descriptors that we have not already printed. 4968 */ 4969 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, 4970 &print_info); 4971 break; 4972 4973 } 4974 case -1: 4975 /* 4976 * scsi_extract_sense_len() sets values to -1 if the 4977 * show_errors flag is set and they aren't present in the 4978 * sense data. This means that sense_len is 0. 4979 */ 4980 sbuf_printf(sb, "No sense data present\n"); 4981 break; 4982 default: { 4983 sbuf_printf(sb, "Error code 0x%x", error_code); 4984 if (sense->error_code & SSD_ERRCODE_VALID) { 4985 struct scsi_sense_data_fixed *fixed_sense; 4986 4987 fixed_sense = (struct scsi_sense_data_fixed *)sense; 4988 4989 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ 4990 uint32_t info; 4991 4992 info = scsi_4btoul(fixed_sense->info); 4993 4994 sbuf_printf(sb, " at block no. %d (decimal)", 4995 info); 4996 } 4997 } 4998 sbuf_printf(sb, "\n"); 4999 break; 5000 } 5001 } 5002 } 5003 5004 /* 5005 * scsi_sense_sbuf() returns 0 for success and -1 for failure. 5006 */ 5007 #ifdef _KERNEL 5008 int 5009 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, 5010 scsi_sense_string_flags flags) 5011 #else /* !_KERNEL */ 5012 int 5013 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, 5014 struct sbuf *sb, scsi_sense_string_flags flags) 5015 #endif /* _KERNEL/!_KERNEL */ 5016 { 5017 struct scsi_sense_data *sense; 5018 struct scsi_inquiry_data *inq_data; 5019 #ifdef _KERNEL 5020 struct ccb_getdev *cgd; 5021 #endif /* _KERNEL */ 5022 char path_str[64]; 5023 5024 #ifndef _KERNEL 5025 if (device == NULL) 5026 return(-1); 5027 #endif /* !_KERNEL */ 5028 if ((csio == NULL) || (sb == NULL)) 5029 return(-1); 5030 5031 /* 5032 * If the CDB is a physical address, we can't deal with it.. 5033 */ 5034 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) 5035 flags &= ~SSS_FLAG_PRINT_COMMAND; 5036 5037 #ifdef _KERNEL 5038 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); 5039 #else /* !_KERNEL */ 5040 cam_path_string(device, path_str, sizeof(path_str)); 5041 #endif /* _KERNEL/!_KERNEL */ 5042 5043 #ifdef _KERNEL 5044 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 5045 return(-1); 5046 /* 5047 * Get the device information. 5048 */ 5049 xpt_setup_ccb(&cgd->ccb_h, 5050 csio->ccb_h.path, 5051 CAM_PRIORITY_NORMAL); 5052 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 5053 xpt_action((union ccb *)cgd); 5054 5055 /* 5056 * If the device is unconfigured, just pretend that it is a hard 5057 * drive. scsi_op_desc() needs this. 5058 */ 5059 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 5060 cgd->inq_data.device = T_DIRECT; 5061 5062 inq_data = &cgd->inq_data; 5063 5064 #else /* !_KERNEL */ 5065 5066 inq_data = &device->inq_data; 5067 5068 #endif /* _KERNEL/!_KERNEL */ 5069 5070 sense = NULL; 5071 5072 if (flags & SSS_FLAG_PRINT_COMMAND) { 5073 5074 sbuf_cat(sb, path_str); 5075 5076 #ifdef _KERNEL 5077 scsi_command_string(csio, sb); 5078 #else /* !_KERNEL */ 5079 scsi_command_string(device, csio, sb); 5080 #endif /* _KERNEL/!_KERNEL */ 5081 sbuf_printf(sb, "\n"); 5082 } 5083 5084 /* 5085 * If the sense data is a physical pointer, forget it. 5086 */ 5087 if (csio->ccb_h.flags & CAM_SENSE_PTR) { 5088 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5089 #ifdef _KERNEL 5090 xpt_free_ccb((union ccb*)cgd); 5091 #endif /* _KERNEL/!_KERNEL */ 5092 return(-1); 5093 } else { 5094 /* 5095 * bcopy the pointer to avoid unaligned access 5096 * errors on finicky architectures. We don't 5097 * ensure that the sense data is pointer aligned. 5098 */ 5099 bcopy((struct scsi_sense_data **)&csio->sense_data, 5100 &sense, sizeof(struct scsi_sense_data *)); 5101 } 5102 } else { 5103 /* 5104 * If the physical sense flag is set, but the sense pointer 5105 * is not also set, we assume that the user is an idiot and 5106 * return. (Well, okay, it could be that somehow, the 5107 * entire csio is physical, but we would have probably core 5108 * dumped on one of the bogus pointer deferences above 5109 * already.) 5110 */ 5111 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5112 #ifdef _KERNEL 5113 xpt_free_ccb((union ccb*)cgd); 5114 #endif /* _KERNEL/!_KERNEL */ 5115 return(-1); 5116 } else 5117 sense = &csio->sense_data; 5118 } 5119 5120 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, 5121 path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len); 5122 5123 #ifdef _KERNEL 5124 xpt_free_ccb((union ccb*)cgd); 5125 #endif /* _KERNEL/!_KERNEL */ 5126 return(0); 5127 } 5128 5129 5130 5131 #ifdef _KERNEL 5132 char * 5133 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) 5134 #else /* !_KERNEL */ 5135 char * 5136 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, 5137 char *str, int str_len) 5138 #endif /* _KERNEL/!_KERNEL */ 5139 { 5140 struct sbuf sb; 5141 5142 sbuf_new(&sb, str, str_len, 0); 5143 5144 #ifdef _KERNEL 5145 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5146 #else /* !_KERNEL */ 5147 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5148 #endif /* _KERNEL/!_KERNEL */ 5149 5150 sbuf_finish(&sb); 5151 5152 return(sbuf_data(&sb)); 5153 } 5154 5155 #ifdef _KERNEL 5156 void 5157 scsi_sense_print(struct ccb_scsiio *csio) 5158 { 5159 struct sbuf sb; 5160 char str[512]; 5161 5162 sbuf_new(&sb, str, sizeof(str), 0); 5163 5164 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5165 5166 sbuf_finish(&sb); 5167 5168 sbuf_putbuf(&sb); 5169 } 5170 5171 #else /* !_KERNEL */ 5172 void 5173 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, 5174 FILE *ofile) 5175 { 5176 struct sbuf sb; 5177 char str[512]; 5178 5179 if ((device == NULL) || (csio == NULL) || (ofile == NULL)) 5180 return; 5181 5182 sbuf_new(&sb, str, sizeof(str), 0); 5183 5184 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5185 5186 sbuf_finish(&sb); 5187 5188 fprintf(ofile, "%s", sbuf_data(&sb)); 5189 } 5190 5191 #endif /* _KERNEL/!_KERNEL */ 5192 5193 /* 5194 * Extract basic sense information. This is backward-compatible with the 5195 * previous implementation. For new implementations, 5196 * scsi_extract_sense_len() is recommended. 5197 */ 5198 void 5199 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, 5200 int *sense_key, int *asc, int *ascq) 5201 { 5202 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, 5203 sense_key, asc, ascq, /*show_errors*/ 0); 5204 } 5205 5206 /* 5207 * Extract basic sense information from SCSI I/O CCB structure. 5208 */ 5209 int 5210 scsi_extract_sense_ccb(union ccb *ccb, 5211 int *error_code, int *sense_key, int *asc, int *ascq) 5212 { 5213 struct scsi_sense_data *sense_data; 5214 5215 /* Make sure there are some sense data we can access. */ 5216 if (ccb->ccb_h.func_code != XPT_SCSI_IO || 5217 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR || 5218 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) || 5219 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 || 5220 (ccb->ccb_h.flags & CAM_SENSE_PHYS)) 5221 return (0); 5222 5223 if (ccb->ccb_h.flags & CAM_SENSE_PTR) 5224 bcopy((struct scsi_sense_data **)&ccb->csio.sense_data, 5225 &sense_data, sizeof(struct scsi_sense_data *)); 5226 else 5227 sense_data = &ccb->csio.sense_data; 5228 scsi_extract_sense_len(sense_data, 5229 ccb->csio.sense_len - ccb->csio.sense_resid, 5230 error_code, sense_key, asc, ascq, 1); 5231 if (*error_code == -1) 5232 return (0); 5233 return (1); 5234 } 5235 5236 /* 5237 * Extract basic sense information. If show_errors is set, sense values 5238 * will be set to -1 if they are not present. 5239 */ 5240 void 5241 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, 5242 int *error_code, int *sense_key, int *asc, int *ascq, 5243 int show_errors) 5244 { 5245 /* 5246 * If we have no length, we have no sense. 5247 */ 5248 if (sense_len == 0) { 5249 if (show_errors == 0) { 5250 *error_code = 0; 5251 *sense_key = 0; 5252 *asc = 0; 5253 *ascq = 0; 5254 } else { 5255 *error_code = -1; 5256 *sense_key = -1; 5257 *asc = -1; 5258 *ascq = -1; 5259 } 5260 return; 5261 } 5262 5263 *error_code = sense_data->error_code & SSD_ERRCODE; 5264 5265 switch (*error_code) { 5266 case SSD_DESC_CURRENT_ERROR: 5267 case SSD_DESC_DEFERRED_ERROR: { 5268 struct scsi_sense_data_desc *sense; 5269 5270 sense = (struct scsi_sense_data_desc *)sense_data; 5271 5272 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) 5273 *sense_key = sense->sense_key & SSD_KEY; 5274 else 5275 *sense_key = (show_errors) ? -1 : 0; 5276 5277 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) 5278 *asc = sense->add_sense_code; 5279 else 5280 *asc = (show_errors) ? -1 : 0; 5281 5282 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) 5283 *ascq = sense->add_sense_code_qual; 5284 else 5285 *ascq = (show_errors) ? -1 : 0; 5286 break; 5287 } 5288 case SSD_CURRENT_ERROR: 5289 case SSD_DEFERRED_ERROR: 5290 default: { 5291 struct scsi_sense_data_fixed *sense; 5292 5293 sense = (struct scsi_sense_data_fixed *)sense_data; 5294 5295 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) 5296 *sense_key = sense->flags & SSD_KEY; 5297 else 5298 *sense_key = (show_errors) ? -1 : 0; 5299 5300 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) 5301 && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) 5302 *asc = sense->add_sense_code; 5303 else 5304 *asc = (show_errors) ? -1 : 0; 5305 5306 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) 5307 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) 5308 *ascq = sense->add_sense_code_qual; 5309 else 5310 *ascq = (show_errors) ? -1 : 0; 5311 break; 5312 } 5313 } 5314 } 5315 5316 int 5317 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, 5318 int show_errors) 5319 { 5320 int error_code, sense_key, asc, ascq; 5321 5322 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5323 &sense_key, &asc, &ascq, show_errors); 5324 5325 return (sense_key); 5326 } 5327 5328 int 5329 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, 5330 int show_errors) 5331 { 5332 int error_code, sense_key, asc, ascq; 5333 5334 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5335 &sense_key, &asc, &ascq, show_errors); 5336 5337 return (asc); 5338 } 5339 5340 int 5341 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, 5342 int show_errors) 5343 { 5344 int error_code, sense_key, asc, ascq; 5345 5346 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5347 &sense_key, &asc, &ascq, show_errors); 5348 5349 return (ascq); 5350 } 5351 5352 /* 5353 * This function currently requires at least 36 bytes, or 5354 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this 5355 * function needs more or less data in the future, another length should be 5356 * defined in scsi_all.h to indicate the minimum amount of data necessary 5357 * for this routine to function properly. 5358 */ 5359 void 5360 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5361 { 5362 u_int8_t type; 5363 char *dtype, *qtype; 5364 5365 type = SID_TYPE(inq_data); 5366 5367 /* 5368 * Figure out basic device type and qualifier. 5369 */ 5370 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { 5371 qtype = " (vendor-unique qualifier)"; 5372 } else { 5373 switch (SID_QUAL(inq_data)) { 5374 case SID_QUAL_LU_CONNECTED: 5375 qtype = ""; 5376 break; 5377 5378 case SID_QUAL_LU_OFFLINE: 5379 qtype = " (offline)"; 5380 break; 5381 5382 case SID_QUAL_RSVD: 5383 qtype = " (reserved qualifier)"; 5384 break; 5385 default: 5386 case SID_QUAL_BAD_LU: 5387 qtype = " (LUN not supported)"; 5388 break; 5389 } 5390 } 5391 5392 switch (type) { 5393 case T_DIRECT: 5394 dtype = "Direct Access"; 5395 break; 5396 case T_SEQUENTIAL: 5397 dtype = "Sequential Access"; 5398 break; 5399 case T_PRINTER: 5400 dtype = "Printer"; 5401 break; 5402 case T_PROCESSOR: 5403 dtype = "Processor"; 5404 break; 5405 case T_WORM: 5406 dtype = "WORM"; 5407 break; 5408 case T_CDROM: 5409 dtype = "CD-ROM"; 5410 break; 5411 case T_SCANNER: 5412 dtype = "Scanner"; 5413 break; 5414 case T_OPTICAL: 5415 dtype = "Optical"; 5416 break; 5417 case T_CHANGER: 5418 dtype = "Changer"; 5419 break; 5420 case T_COMM: 5421 dtype = "Communication"; 5422 break; 5423 case T_STORARRAY: 5424 dtype = "Storage Array"; 5425 break; 5426 case T_ENCLOSURE: 5427 dtype = "Enclosure Services"; 5428 break; 5429 case T_RBC: 5430 dtype = "Simplified Direct Access"; 5431 break; 5432 case T_OCRW: 5433 dtype = "Optical Card Read/Write"; 5434 break; 5435 case T_OSD: 5436 dtype = "Object-Based Storage"; 5437 break; 5438 case T_ADC: 5439 dtype = "Automation/Drive Interface"; 5440 break; 5441 case T_ZBC_HM: 5442 dtype = "Host Managed Zoned Block"; 5443 break; 5444 case T_NODEVICE: 5445 dtype = "Uninstalled"; 5446 break; 5447 default: 5448 dtype = "unknown"; 5449 break; 5450 } 5451 5452 scsi_print_inquiry_short_sbuf(sb, inq_data); 5453 5454 sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype); 5455 5456 if (SID_ANSI_REV(inq_data) == SCSI_REV_0) 5457 sbuf_printf(sb, "SCSI "); 5458 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) { 5459 sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data)); 5460 } else { 5461 sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2); 5462 } 5463 sbuf_printf(sb, "device%s\n", qtype); 5464 } 5465 5466 void 5467 scsi_print_inquiry(struct scsi_inquiry_data *inq_data) 5468 { 5469 struct sbuf sb; 5470 char buffer[120]; 5471 5472 sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN); 5473 scsi_print_inquiry_sbuf(&sb, inq_data); 5474 sbuf_finish(&sb); 5475 sbuf_putbuf(&sb); 5476 } 5477 5478 void 5479 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5480 { 5481 5482 sbuf_printf(sb, "<"); 5483 cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0); 5484 sbuf_printf(sb, " "); 5485 cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0); 5486 sbuf_printf(sb, " "); 5487 cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0); 5488 sbuf_printf(sb, "> "); 5489 } 5490 5491 void 5492 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data) 5493 { 5494 struct sbuf sb; 5495 char buffer[84]; 5496 5497 sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN); 5498 scsi_print_inquiry_short_sbuf(&sb, inq_data); 5499 sbuf_finish(&sb); 5500 sbuf_putbuf(&sb); 5501 } 5502 5503 /* 5504 * Table of syncrates that don't follow the "divisible by 4" 5505 * rule. This table will be expanded in future SCSI specs. 5506 */ 5507 static struct { 5508 u_int period_factor; 5509 u_int period; /* in 100ths of ns */ 5510 } scsi_syncrates[] = { 5511 { 0x08, 625 }, /* FAST-160 */ 5512 { 0x09, 1250 }, /* FAST-80 */ 5513 { 0x0a, 2500 }, /* FAST-40 40MHz */ 5514 { 0x0b, 3030 }, /* FAST-40 33MHz */ 5515 { 0x0c, 5000 } /* FAST-20 */ 5516 }; 5517 5518 /* 5519 * Return the frequency in kHz corresponding to the given 5520 * sync period factor. 5521 */ 5522 u_int 5523 scsi_calc_syncsrate(u_int period_factor) 5524 { 5525 u_int i; 5526 u_int num_syncrates; 5527 5528 /* 5529 * It's a bug if period is zero, but if it is anyway, don't 5530 * die with a divide fault- instead return something which 5531 * 'approximates' async 5532 */ 5533 if (period_factor == 0) { 5534 return (3300); 5535 } 5536 5537 num_syncrates = nitems(scsi_syncrates); 5538 /* See if the period is in the "exception" table */ 5539 for (i = 0; i < num_syncrates; i++) { 5540 5541 if (period_factor == scsi_syncrates[i].period_factor) { 5542 /* Period in kHz */ 5543 return (100000000 / scsi_syncrates[i].period); 5544 } 5545 } 5546 5547 /* 5548 * Wasn't in the table, so use the standard 5549 * 4 times conversion. 5550 */ 5551 return (10000000 / (period_factor * 4 * 10)); 5552 } 5553 5554 /* 5555 * Return the SCSI sync parameter that corresponds to 5556 * the passed in period in 10ths of ns. 5557 */ 5558 u_int 5559 scsi_calc_syncparam(u_int period) 5560 { 5561 u_int i; 5562 u_int num_syncrates; 5563 5564 if (period == 0) 5565 return (~0); /* Async */ 5566 5567 /* Adjust for exception table being in 100ths. */ 5568 period *= 10; 5569 num_syncrates = nitems(scsi_syncrates); 5570 /* See if the period is in the "exception" table */ 5571 for (i = 0; i < num_syncrates; i++) { 5572 5573 if (period <= scsi_syncrates[i].period) { 5574 /* Period in 100ths of ns */ 5575 return (scsi_syncrates[i].period_factor); 5576 } 5577 } 5578 5579 /* 5580 * Wasn't in the table, so use the standard 5581 * 1/4 period in ns conversion. 5582 */ 5583 return (period/400); 5584 } 5585 5586 int 5587 scsi_devid_is_naa_ieee_reg(uint8_t *bufp) 5588 { 5589 struct scsi_vpd_id_descriptor *descr; 5590 struct scsi_vpd_id_naa_basic *naa; 5591 5592 descr = (struct scsi_vpd_id_descriptor *)bufp; 5593 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; 5594 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5595 return 0; 5596 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) 5597 return 0; 5598 if ((naa->naa >> SVPD_ID_NAA_NAA_SHIFT) != SVPD_ID_NAA_IEEE_REG) 5599 return 0; 5600 return 1; 5601 } 5602 5603 int 5604 scsi_devid_is_sas_target(uint8_t *bufp) 5605 { 5606 struct scsi_vpd_id_descriptor *descr; 5607 5608 descr = (struct scsi_vpd_id_descriptor *)bufp; 5609 if (!scsi_devid_is_naa_ieee_reg(bufp)) 5610 return 0; 5611 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ 5612 return 0; 5613 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) 5614 return 0; 5615 return 1; 5616 } 5617 5618 int 5619 scsi_devid_is_lun_eui64(uint8_t *bufp) 5620 { 5621 struct scsi_vpd_id_descriptor *descr; 5622 5623 descr = (struct scsi_vpd_id_descriptor *)bufp; 5624 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5625 return 0; 5626 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64) 5627 return 0; 5628 return 1; 5629 } 5630 5631 int 5632 scsi_devid_is_lun_naa(uint8_t *bufp) 5633 { 5634 struct scsi_vpd_id_descriptor *descr; 5635 5636 descr = (struct scsi_vpd_id_descriptor *)bufp; 5637 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5638 return 0; 5639 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5640 return 0; 5641 return 1; 5642 } 5643 5644 int 5645 scsi_devid_is_lun_t10(uint8_t *bufp) 5646 { 5647 struct scsi_vpd_id_descriptor *descr; 5648 5649 descr = (struct scsi_vpd_id_descriptor *)bufp; 5650 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5651 return 0; 5652 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10) 5653 return 0; 5654 return 1; 5655 } 5656 5657 int 5658 scsi_devid_is_lun_name(uint8_t *bufp) 5659 { 5660 struct scsi_vpd_id_descriptor *descr; 5661 5662 descr = (struct scsi_vpd_id_descriptor *)bufp; 5663 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5664 return 0; 5665 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME) 5666 return 0; 5667 return 1; 5668 } 5669 5670 int 5671 scsi_devid_is_lun_md5(uint8_t *bufp) 5672 { 5673 struct scsi_vpd_id_descriptor *descr; 5674 5675 descr = (struct scsi_vpd_id_descriptor *)bufp; 5676 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5677 return 0; 5678 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID) 5679 return 0; 5680 return 1; 5681 } 5682 5683 int 5684 scsi_devid_is_lun_uuid(uint8_t *bufp) 5685 { 5686 struct scsi_vpd_id_descriptor *descr; 5687 5688 descr = (struct scsi_vpd_id_descriptor *)bufp; 5689 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5690 return 0; 5691 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID) 5692 return 0; 5693 return 1; 5694 } 5695 5696 int 5697 scsi_devid_is_port_naa(uint8_t *bufp) 5698 { 5699 struct scsi_vpd_id_descriptor *descr; 5700 5701 descr = (struct scsi_vpd_id_descriptor *)bufp; 5702 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT) 5703 return 0; 5704 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5705 return 0; 5706 return 1; 5707 } 5708 5709 struct scsi_vpd_id_descriptor * 5710 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, 5711 scsi_devid_checkfn_t ck_fn) 5712 { 5713 uint8_t *desc_buf_end; 5714 5715 desc_buf_end = (uint8_t *)desc + len; 5716 5717 for (; desc->identifier <= desc_buf_end && 5718 desc->identifier + desc->length <= desc_buf_end; 5719 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier 5720 + desc->length)) { 5721 5722 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) 5723 return (desc); 5724 } 5725 return (NULL); 5726 } 5727 5728 struct scsi_vpd_id_descriptor * 5729 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, 5730 scsi_devid_checkfn_t ck_fn) 5731 { 5732 uint32_t len; 5733 5734 if (page_len < sizeof(*id)) 5735 return (NULL); 5736 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id)); 5737 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *) 5738 id->desc_list, len, ck_fn)); 5739 } 5740 5741 int 5742 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, 5743 uint32_t valid_len) 5744 { 5745 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) { 5746 case SCSI_PROTO_FC: { 5747 struct scsi_transportid_fcp *fcp; 5748 uint64_t n_port_name; 5749 5750 fcp = (struct scsi_transportid_fcp *)hdr; 5751 5752 n_port_name = scsi_8btou64(fcp->n_port_name); 5753 5754 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name); 5755 break; 5756 } 5757 case SCSI_PROTO_SPI: { 5758 struct scsi_transportid_spi *spi; 5759 5760 spi = (struct scsi_transportid_spi *)hdr; 5761 5762 sbuf_printf(sb, "SPI address: %u,%u", 5763 scsi_2btoul(spi->scsi_addr), 5764 scsi_2btoul(spi->rel_trgt_port_id)); 5765 break; 5766 } 5767 case SCSI_PROTO_SSA: 5768 /* 5769 * XXX KDM there is no transport ID defined in SPC-4 for 5770 * SSA. 5771 */ 5772 break; 5773 case SCSI_PROTO_1394: { 5774 struct scsi_transportid_1394 *sbp; 5775 uint64_t eui64; 5776 5777 sbp = (struct scsi_transportid_1394 *)hdr; 5778 5779 eui64 = scsi_8btou64(sbp->eui64); 5780 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64); 5781 break; 5782 } 5783 case SCSI_PROTO_RDMA: { 5784 struct scsi_transportid_rdma *rdma; 5785 unsigned int i; 5786 5787 rdma = (struct scsi_transportid_rdma *)hdr; 5788 5789 sbuf_printf(sb, "RDMA address: 0x"); 5790 for (i = 0; i < sizeof(rdma->initiator_port_id); i++) 5791 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]); 5792 break; 5793 } 5794 case SCSI_PROTO_ISCSI: { 5795 uint32_t add_len, i; 5796 uint8_t *iscsi_name = NULL; 5797 int nul_found = 0; 5798 5799 sbuf_printf(sb, "iSCSI address: "); 5800 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5801 SCSI_TRN_ISCSI_FORMAT_DEVICE) { 5802 struct scsi_transportid_iscsi_device *dev; 5803 5804 dev = (struct scsi_transportid_iscsi_device *)hdr; 5805 5806 /* 5807 * Verify how much additional data we really have. 5808 */ 5809 add_len = scsi_2btoul(dev->additional_length); 5810 add_len = MIN(add_len, valid_len - 5811 __offsetof(struct scsi_transportid_iscsi_device, 5812 iscsi_name)); 5813 iscsi_name = &dev->iscsi_name[0]; 5814 5815 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5816 SCSI_TRN_ISCSI_FORMAT_PORT) { 5817 struct scsi_transportid_iscsi_port *port; 5818 5819 port = (struct scsi_transportid_iscsi_port *)hdr; 5820 5821 add_len = scsi_2btoul(port->additional_length); 5822 add_len = MIN(add_len, valid_len - 5823 __offsetof(struct scsi_transportid_iscsi_port, 5824 iscsi_name)); 5825 iscsi_name = &port->iscsi_name[0]; 5826 } else { 5827 sbuf_printf(sb, "unknown format %x", 5828 (hdr->format_protocol & 5829 SCSI_TRN_FORMAT_MASK) >> 5830 SCSI_TRN_FORMAT_SHIFT); 5831 break; 5832 } 5833 if (add_len == 0) { 5834 sbuf_printf(sb, "not enough data"); 5835 break; 5836 } 5837 /* 5838 * This is supposed to be a NUL-terminated ASCII 5839 * string, but you never know. So we're going to 5840 * check. We need to do this because there is no 5841 * sbuf equivalent of strncat(). 5842 */ 5843 for (i = 0; i < add_len; i++) { 5844 if (iscsi_name[i] == '\0') { 5845 nul_found = 1; 5846 break; 5847 } 5848 } 5849 /* 5850 * If there is a NUL in the name, we can just use 5851 * sbuf_cat(). Otherwise we need to use sbuf_bcat(). 5852 */ 5853 if (nul_found != 0) 5854 sbuf_cat(sb, iscsi_name); 5855 else 5856 sbuf_bcat(sb, iscsi_name, add_len); 5857 break; 5858 } 5859 case SCSI_PROTO_SAS: { 5860 struct scsi_transportid_sas *sas; 5861 uint64_t sas_addr; 5862 5863 sas = (struct scsi_transportid_sas *)hdr; 5864 5865 sas_addr = scsi_8btou64(sas->sas_address); 5866 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr); 5867 break; 5868 } 5869 case SCSI_PROTO_ADITP: 5870 case SCSI_PROTO_ATA: 5871 case SCSI_PROTO_UAS: 5872 /* 5873 * No Transport ID format for ADI, ATA or USB is defined in 5874 * SPC-4. 5875 */ 5876 sbuf_printf(sb, "No known Transport ID format for protocol " 5877 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5878 break; 5879 case SCSI_PROTO_SOP: { 5880 struct scsi_transportid_sop *sop; 5881 struct scsi_sop_routing_id_norm *rid; 5882 5883 sop = (struct scsi_transportid_sop *)hdr; 5884 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id; 5885 5886 /* 5887 * Note that there is no alternate format specified in SPC-4 5888 * for the PCIe routing ID, so we don't really have a way 5889 * to know whether the second byte of the routing ID is 5890 * a device and function or just a function. So we just 5891 * assume bus,device,function. 5892 */ 5893 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u", 5894 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT, 5895 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX); 5896 break; 5897 } 5898 case SCSI_PROTO_NONE: 5899 default: 5900 sbuf_printf(sb, "Unknown protocol %#x", 5901 hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5902 break; 5903 } 5904 5905 return (0); 5906 } 5907 5908 struct scsi_nv scsi_proto_map[] = { 5909 { "fcp", SCSI_PROTO_FC }, 5910 { "spi", SCSI_PROTO_SPI }, 5911 { "ssa", SCSI_PROTO_SSA }, 5912 { "sbp", SCSI_PROTO_1394 }, 5913 { "1394", SCSI_PROTO_1394 }, 5914 { "srp", SCSI_PROTO_RDMA }, 5915 { "rdma", SCSI_PROTO_RDMA }, 5916 { "iscsi", SCSI_PROTO_ISCSI }, 5917 { "iqn", SCSI_PROTO_ISCSI }, 5918 { "sas", SCSI_PROTO_SAS }, 5919 { "aditp", SCSI_PROTO_ADITP }, 5920 { "ata", SCSI_PROTO_ATA }, 5921 { "uas", SCSI_PROTO_UAS }, 5922 { "usb", SCSI_PROTO_UAS }, 5923 { "sop", SCSI_PROTO_SOP } 5924 }; 5925 5926 const char * 5927 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value) 5928 { 5929 int i; 5930 5931 for (i = 0; i < num_table_entries; i++) { 5932 if (table[i].value == value) 5933 return (table[i].name); 5934 } 5935 5936 return (NULL); 5937 } 5938 5939 /* 5940 * Given a name/value table, find a value matching the given name. 5941 * Return values: 5942 * SCSI_NV_FOUND - match found 5943 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact 5944 * SCSI_NV_NOT_FOUND - no match found 5945 */ 5946 scsi_nv_status 5947 scsi_get_nv(struct scsi_nv *table, int num_table_entries, 5948 char *name, int *table_entry, scsi_nv_flags flags) 5949 { 5950 int i, num_matches = 0; 5951 5952 for (i = 0; i < num_table_entries; i++) { 5953 size_t table_len, name_len; 5954 5955 table_len = strlen(table[i].name); 5956 name_len = strlen(name); 5957 5958 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0) 5959 && (strncasecmp(table[i].name, name, name_len) == 0)) 5960 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0) 5961 && (strncmp(table[i].name, name, name_len) == 0))) { 5962 *table_entry = i; 5963 5964 /* 5965 * Check for an exact match. If we have the same 5966 * number of characters in the table as the argument, 5967 * and we already know they're the same, we have 5968 * an exact match. 5969 */ 5970 if (table_len == name_len) 5971 return (SCSI_NV_FOUND); 5972 5973 /* 5974 * Otherwise, bump up the number of matches. We'll 5975 * see later how many we have. 5976 */ 5977 num_matches++; 5978 } 5979 } 5980 5981 if (num_matches > 1) 5982 return (SCSI_NV_AMBIGUOUS); 5983 else if (num_matches == 1) 5984 return (SCSI_NV_FOUND); 5985 else 5986 return (SCSI_NV_NOT_FOUND); 5987 } 5988 5989 /* 5990 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are 5991 * all 64-bit numbers, the code is similar. 5992 */ 5993 int 5994 scsi_parse_transportid_64bit(int proto_id, char *id_str, 5995 struct scsi_transportid_header **hdr, 5996 unsigned int *alloc_len, 5997 #ifdef _KERNEL 5998 struct malloc_type *type, int flags, 5999 #endif 6000 char *error_str, int error_str_len) 6001 { 6002 uint64_t value; 6003 char *endptr; 6004 int retval; 6005 size_t alloc_size; 6006 6007 retval = 0; 6008 6009 value = strtouq(id_str, &endptr, 0); 6010 if (*endptr != '\0') { 6011 if (error_str != NULL) { 6012 snprintf(error_str, error_str_len, "%s: error " 6013 "parsing ID %s, 64-bit number required", 6014 __func__, id_str); 6015 } 6016 retval = 1; 6017 goto bailout; 6018 } 6019 6020 switch (proto_id) { 6021 case SCSI_PROTO_FC: 6022 alloc_size = sizeof(struct scsi_transportid_fcp); 6023 break; 6024 case SCSI_PROTO_1394: 6025 alloc_size = sizeof(struct scsi_transportid_1394); 6026 break; 6027 case SCSI_PROTO_SAS: 6028 alloc_size = sizeof(struct scsi_transportid_sas); 6029 break; 6030 default: 6031 if (error_str != NULL) { 6032 snprintf(error_str, error_str_len, "%s: unsupported " 6033 "protocol %d", __func__, proto_id); 6034 } 6035 retval = 1; 6036 goto bailout; 6037 break; /* NOTREACHED */ 6038 } 6039 #ifdef _KERNEL 6040 *hdr = malloc(alloc_size, type, flags); 6041 #else /* _KERNEL */ 6042 *hdr = malloc(alloc_size); 6043 #endif /*_KERNEL */ 6044 if (*hdr == NULL) { 6045 if (error_str != NULL) { 6046 snprintf(error_str, error_str_len, "%s: unable to " 6047 "allocate %zu bytes", __func__, alloc_size); 6048 } 6049 retval = 1; 6050 goto bailout; 6051 } 6052 6053 *alloc_len = alloc_size; 6054 6055 bzero(*hdr, alloc_size); 6056 6057 switch (proto_id) { 6058 case SCSI_PROTO_FC: { 6059 struct scsi_transportid_fcp *fcp; 6060 6061 fcp = (struct scsi_transportid_fcp *)(*hdr); 6062 fcp->format_protocol = SCSI_PROTO_FC | 6063 SCSI_TRN_FCP_FORMAT_DEFAULT; 6064 scsi_u64to8b(value, fcp->n_port_name); 6065 break; 6066 } 6067 case SCSI_PROTO_1394: { 6068 struct scsi_transportid_1394 *sbp; 6069 6070 sbp = (struct scsi_transportid_1394 *)(*hdr); 6071 sbp->format_protocol = SCSI_PROTO_1394 | 6072 SCSI_TRN_1394_FORMAT_DEFAULT; 6073 scsi_u64to8b(value, sbp->eui64); 6074 break; 6075 } 6076 case SCSI_PROTO_SAS: { 6077 struct scsi_transportid_sas *sas; 6078 6079 sas = (struct scsi_transportid_sas *)(*hdr); 6080 sas->format_protocol = SCSI_PROTO_SAS | 6081 SCSI_TRN_SAS_FORMAT_DEFAULT; 6082 scsi_u64to8b(value, sas->sas_address); 6083 break; 6084 } 6085 default: 6086 break; 6087 } 6088 bailout: 6089 return (retval); 6090 } 6091 6092 /* 6093 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port 6094 */ 6095 int 6096 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, 6097 unsigned int *alloc_len, 6098 #ifdef _KERNEL 6099 struct malloc_type *type, int flags, 6100 #endif 6101 char *error_str, int error_str_len) 6102 { 6103 unsigned long scsi_addr, target_port; 6104 struct scsi_transportid_spi *spi; 6105 char *tmpstr, *endptr; 6106 int retval; 6107 6108 retval = 0; 6109 6110 tmpstr = strsep(&id_str, ","); 6111 if (tmpstr == NULL) { 6112 if (error_str != NULL) { 6113 snprintf(error_str, error_str_len, 6114 "%s: no ID found", __func__); 6115 } 6116 retval = 1; 6117 goto bailout; 6118 } 6119 scsi_addr = strtoul(tmpstr, &endptr, 0); 6120 if (*endptr != '\0') { 6121 if (error_str != NULL) { 6122 snprintf(error_str, error_str_len, "%s: error " 6123 "parsing SCSI ID %s, number required", 6124 __func__, tmpstr); 6125 } 6126 retval = 1; 6127 goto bailout; 6128 } 6129 6130 if (id_str == NULL) { 6131 if (error_str != NULL) { 6132 snprintf(error_str, error_str_len, "%s: no relative " 6133 "target port found", __func__); 6134 } 6135 retval = 1; 6136 goto bailout; 6137 } 6138 6139 target_port = strtoul(id_str, &endptr, 0); 6140 if (*endptr != '\0') { 6141 if (error_str != NULL) { 6142 snprintf(error_str, error_str_len, "%s: error " 6143 "parsing relative target port %s, number " 6144 "required", __func__, id_str); 6145 } 6146 retval = 1; 6147 goto bailout; 6148 } 6149 #ifdef _KERNEL 6150 spi = malloc(sizeof(*spi), type, flags); 6151 #else 6152 spi = malloc(sizeof(*spi)); 6153 #endif 6154 if (spi == NULL) { 6155 if (error_str != NULL) { 6156 snprintf(error_str, error_str_len, "%s: unable to " 6157 "allocate %zu bytes", __func__, 6158 sizeof(*spi)); 6159 } 6160 retval = 1; 6161 goto bailout; 6162 } 6163 *alloc_len = sizeof(*spi); 6164 bzero(spi, sizeof(*spi)); 6165 6166 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT; 6167 scsi_ulto2b(scsi_addr, spi->scsi_addr); 6168 scsi_ulto2b(target_port, spi->rel_trgt_port_id); 6169 6170 *hdr = (struct scsi_transportid_header *)spi; 6171 bailout: 6172 return (retval); 6173 } 6174 6175 /* 6176 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits, 6177 * optionally prefixed by "0x" or "0X". 6178 */ 6179 int 6180 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, 6181 unsigned int *alloc_len, 6182 #ifdef _KERNEL 6183 struct malloc_type *type, int flags, 6184 #endif 6185 char *error_str, int error_str_len) 6186 { 6187 struct scsi_transportid_rdma *rdma; 6188 int retval; 6189 size_t id_len, rdma_id_size; 6190 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN]; 6191 char *tmpstr; 6192 unsigned int i, j; 6193 6194 retval = 0; 6195 id_len = strlen(id_str); 6196 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN; 6197 6198 /* 6199 * Check the size. It needs to be either 32 or 34 characters long. 6200 */ 6201 if ((id_len != (rdma_id_size * 2)) 6202 && (id_len != ((rdma_id_size * 2) + 2))) { 6203 if (error_str != NULL) { 6204 snprintf(error_str, error_str_len, "%s: RDMA ID " 6205 "must be 32 hex digits (0x prefix " 6206 "optional), only %zu seen", __func__, id_len); 6207 } 6208 retval = 1; 6209 goto bailout; 6210 } 6211 6212 tmpstr = id_str; 6213 /* 6214 * If the user gave us 34 characters, the string needs to start 6215 * with '0x'. 6216 */ 6217 if (id_len == ((rdma_id_size * 2) + 2)) { 6218 if ((tmpstr[0] == '0') 6219 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) { 6220 tmpstr += 2; 6221 } else { 6222 if (error_str != NULL) { 6223 snprintf(error_str, error_str_len, "%s: RDMA " 6224 "ID prefix, if used, must be \"0x\", " 6225 "got %s", __func__, tmpstr); 6226 } 6227 retval = 1; 6228 goto bailout; 6229 } 6230 } 6231 bzero(rdma_id, sizeof(rdma_id)); 6232 6233 /* 6234 * Convert ASCII hex into binary bytes. There is no standard 6235 * 128-bit integer type, and so no strtou128t() routine to convert 6236 * from hex into a large integer. In the end, we're not going to 6237 * an integer, but rather to a byte array, so that and the fact 6238 * that we require the user to give us 32 hex digits simplifies the 6239 * logic. 6240 */ 6241 for (i = 0; i < (rdma_id_size * 2); i++) { 6242 int cur_shift; 6243 unsigned char c; 6244 6245 /* Increment the byte array one for every 2 hex digits */ 6246 j = i >> 1; 6247 6248 /* 6249 * The first digit in every pair is the most significant 6250 * 4 bits. The second is the least significant 4 bits. 6251 */ 6252 if ((i % 2) == 0) 6253 cur_shift = 4; 6254 else 6255 cur_shift = 0; 6256 6257 c = tmpstr[i]; 6258 /* Convert the ASCII hex character into a number */ 6259 if (isdigit(c)) 6260 c -= '0'; 6261 else if (isalpha(c)) 6262 c -= isupper(c) ? 'A' - 10 : 'a' - 10; 6263 else { 6264 if (error_str != NULL) { 6265 snprintf(error_str, error_str_len, "%s: " 6266 "RDMA ID must be hex digits, got " 6267 "invalid character %c", __func__, 6268 tmpstr[i]); 6269 } 6270 retval = 1; 6271 goto bailout; 6272 } 6273 /* 6274 * The converted number can't be less than 0; the type is 6275 * unsigned, and the subtraction logic will not give us 6276 * a negative number. So we only need to make sure that 6277 * the value is not greater than 0xf. (i.e. make sure the 6278 * user didn't give us a value like "0x12jklmno"). 6279 */ 6280 if (c > 0xf) { 6281 if (error_str != NULL) { 6282 snprintf(error_str, error_str_len, "%s: " 6283 "RDMA ID must be hex digits, got " 6284 "invalid character %c", __func__, 6285 tmpstr[i]); 6286 } 6287 retval = 1; 6288 goto bailout; 6289 } 6290 6291 rdma_id[j] |= c << cur_shift; 6292 } 6293 6294 #ifdef _KERNEL 6295 rdma = malloc(sizeof(*rdma), type, flags); 6296 #else 6297 rdma = malloc(sizeof(*rdma)); 6298 #endif 6299 if (rdma == NULL) { 6300 if (error_str != NULL) { 6301 snprintf(error_str, error_str_len, "%s: unable to " 6302 "allocate %zu bytes", __func__, 6303 sizeof(*rdma)); 6304 } 6305 retval = 1; 6306 goto bailout; 6307 } 6308 *alloc_len = sizeof(*rdma); 6309 bzero(rdma, *alloc_len); 6310 6311 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT; 6312 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN); 6313 6314 *hdr = (struct scsi_transportid_header *)rdma; 6315 6316 bailout: 6317 return (retval); 6318 } 6319 6320 /* 6321 * Parse an iSCSI name. The format is either just the name: 6322 * 6323 * iqn.2012-06.com.example:target0 6324 * or the name, separator and initiator session ID: 6325 * 6326 * iqn.2012-06.com.example:target0,i,0x123 6327 * 6328 * The separator format is exact. 6329 */ 6330 int 6331 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, 6332 unsigned int *alloc_len, 6333 #ifdef _KERNEL 6334 struct malloc_type *type, int flags, 6335 #endif 6336 char *error_str, int error_str_len) 6337 { 6338 size_t id_len, sep_len, id_size, name_len; 6339 int retval; 6340 unsigned int i, sep_pos, sep_found; 6341 const char *sep_template = ",i,0x"; 6342 const char *iqn_prefix = "iqn."; 6343 struct scsi_transportid_iscsi_device *iscsi; 6344 6345 retval = 0; 6346 sep_found = 0; 6347 6348 id_len = strlen(id_str); 6349 sep_len = strlen(sep_template); 6350 6351 /* 6352 * The separator is defined as exactly ',i,0x'. Any other commas, 6353 * or any other form, is an error. So look for a comma, and once 6354 * we find that, the next few characters must match the separator 6355 * exactly. Once we get through the separator, there should be at 6356 * least one character. 6357 */ 6358 for (i = 0, sep_pos = 0; i < id_len; i++) { 6359 if (sep_pos == 0) { 6360 if (id_str[i] == sep_template[sep_pos]) 6361 sep_pos++; 6362 6363 continue; 6364 } 6365 if (sep_pos < sep_len) { 6366 if (id_str[i] == sep_template[sep_pos]) { 6367 sep_pos++; 6368 continue; 6369 } 6370 if (error_str != NULL) { 6371 snprintf(error_str, error_str_len, "%s: " 6372 "invalid separator in iSCSI name " 6373 "\"%s\"", 6374 __func__, id_str); 6375 } 6376 retval = 1; 6377 goto bailout; 6378 } else { 6379 sep_found = 1; 6380 break; 6381 } 6382 } 6383 6384 /* 6385 * Check to see whether we have a separator but no digits after it. 6386 */ 6387 if ((sep_pos != 0) 6388 && (sep_found == 0)) { 6389 if (error_str != NULL) { 6390 snprintf(error_str, error_str_len, "%s: no digits " 6391 "found after separator in iSCSI name \"%s\"", 6392 __func__, id_str); 6393 } 6394 retval = 1; 6395 goto bailout; 6396 } 6397 6398 /* 6399 * The incoming ID string has the "iqn." prefix stripped off. We 6400 * need enough space for the base structure (the structures are the 6401 * same for the two iSCSI forms), the prefix, the ID string and a 6402 * terminating NUL. 6403 */ 6404 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1; 6405 6406 #ifdef _KERNEL 6407 iscsi = malloc(id_size, type, flags); 6408 #else 6409 iscsi = malloc(id_size); 6410 #endif 6411 if (iscsi == NULL) { 6412 if (error_str != NULL) { 6413 snprintf(error_str, error_str_len, "%s: unable to " 6414 "allocate %zu bytes", __func__, id_size); 6415 } 6416 retval = 1; 6417 goto bailout; 6418 } 6419 *alloc_len = id_size; 6420 bzero(iscsi, id_size); 6421 6422 iscsi->format_protocol = SCSI_PROTO_ISCSI; 6423 if (sep_found == 0) 6424 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE; 6425 else 6426 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT; 6427 name_len = id_size - sizeof(*iscsi); 6428 scsi_ulto2b(name_len, iscsi->additional_length); 6429 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str); 6430 6431 *hdr = (struct scsi_transportid_header *)iscsi; 6432 6433 bailout: 6434 return (retval); 6435 } 6436 6437 /* 6438 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be 6439 * of the form 'bus,device,function' or 'bus,function'. 6440 */ 6441 int 6442 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, 6443 unsigned int *alloc_len, 6444 #ifdef _KERNEL 6445 struct malloc_type *type, int flags, 6446 #endif 6447 char *error_str, int error_str_len) 6448 { 6449 struct scsi_transportid_sop *sop; 6450 unsigned long bus, device, function; 6451 char *tmpstr, *endptr; 6452 int retval, device_spec; 6453 6454 retval = 0; 6455 device_spec = 0; 6456 device = 0; 6457 6458 tmpstr = strsep(&id_str, ","); 6459 if ((tmpstr == NULL) 6460 || (*tmpstr == '\0')) { 6461 if (error_str != NULL) { 6462 snprintf(error_str, error_str_len, "%s: no ID found", 6463 __func__); 6464 } 6465 retval = 1; 6466 goto bailout; 6467 } 6468 bus = strtoul(tmpstr, &endptr, 0); 6469 if (*endptr != '\0') { 6470 if (error_str != NULL) { 6471 snprintf(error_str, error_str_len, "%s: error " 6472 "parsing PCIe bus %s, number required", 6473 __func__, tmpstr); 6474 } 6475 retval = 1; 6476 goto bailout; 6477 } 6478 if ((id_str == NULL) 6479 || (*id_str == '\0')) { 6480 if (error_str != NULL) { 6481 snprintf(error_str, error_str_len, "%s: no PCIe " 6482 "device or function found", __func__); 6483 } 6484 retval = 1; 6485 goto bailout; 6486 } 6487 tmpstr = strsep(&id_str, ","); 6488 function = strtoul(tmpstr, &endptr, 0); 6489 if (*endptr != '\0') { 6490 if (error_str != NULL) { 6491 snprintf(error_str, error_str_len, "%s: error " 6492 "parsing PCIe device/function %s, number " 6493 "required", __func__, tmpstr); 6494 } 6495 retval = 1; 6496 goto bailout; 6497 } 6498 /* 6499 * Check to see whether the user specified a third value. If so, 6500 * the second is the device. 6501 */ 6502 if (id_str != NULL) { 6503 if (*id_str == '\0') { 6504 if (error_str != NULL) { 6505 snprintf(error_str, error_str_len, "%s: " 6506 "no PCIe function found", __func__); 6507 } 6508 retval = 1; 6509 goto bailout; 6510 } 6511 device = function; 6512 device_spec = 1; 6513 function = strtoul(id_str, &endptr, 0); 6514 if (*endptr != '\0') { 6515 if (error_str != NULL) { 6516 snprintf(error_str, error_str_len, "%s: " 6517 "error parsing PCIe function %s, " 6518 "number required", __func__, id_str); 6519 } 6520 retval = 1; 6521 goto bailout; 6522 } 6523 } 6524 if (bus > SCSI_TRN_SOP_BUS_MAX) { 6525 if (error_str != NULL) { 6526 snprintf(error_str, error_str_len, "%s: bus value " 6527 "%lu greater than maximum %u", __func__, 6528 bus, SCSI_TRN_SOP_BUS_MAX); 6529 } 6530 retval = 1; 6531 goto bailout; 6532 } 6533 6534 if ((device_spec != 0) 6535 && (device > SCSI_TRN_SOP_DEV_MASK)) { 6536 if (error_str != NULL) { 6537 snprintf(error_str, error_str_len, "%s: device value " 6538 "%lu greater than maximum %u", __func__, 6539 device, SCSI_TRN_SOP_DEV_MAX); 6540 } 6541 retval = 1; 6542 goto bailout; 6543 } 6544 6545 if (((device_spec != 0) 6546 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX)) 6547 || ((device_spec == 0) 6548 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) { 6549 if (error_str != NULL) { 6550 snprintf(error_str, error_str_len, "%s: function value " 6551 "%lu greater than maximum %u", __func__, 6552 function, (device_spec == 0) ? 6553 SCSI_TRN_SOP_FUNC_ALT_MAX : 6554 SCSI_TRN_SOP_FUNC_NORM_MAX); 6555 } 6556 retval = 1; 6557 goto bailout; 6558 } 6559 6560 #ifdef _KERNEL 6561 sop = malloc(sizeof(*sop), type, flags); 6562 #else 6563 sop = malloc(sizeof(*sop)); 6564 #endif 6565 if (sop == NULL) { 6566 if (error_str != NULL) { 6567 snprintf(error_str, error_str_len, "%s: unable to " 6568 "allocate %zu bytes", __func__, sizeof(*sop)); 6569 } 6570 retval = 1; 6571 goto bailout; 6572 } 6573 *alloc_len = sizeof(*sop); 6574 bzero(sop, sizeof(*sop)); 6575 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT; 6576 if (device_spec != 0) { 6577 struct scsi_sop_routing_id_norm rid; 6578 6579 rid.bus = bus; 6580 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function; 6581 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6582 sizeof(sop->routing_id))); 6583 } else { 6584 struct scsi_sop_routing_id_alt rid; 6585 6586 rid.bus = bus; 6587 rid.function = function; 6588 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6589 sizeof(sop->routing_id))); 6590 } 6591 6592 *hdr = (struct scsi_transportid_header *)sop; 6593 bailout: 6594 return (retval); 6595 } 6596 6597 /* 6598 * transportid_str: NUL-terminated string with format: protcol,id 6599 * The ID is protocol specific. 6600 * hdr: Storage will be allocated for the transport ID. 6601 * alloc_len: The amount of memory allocated is returned here. 6602 * type: Malloc bucket (kernel only). 6603 * flags: Malloc flags (kernel only). 6604 * error_str: If non-NULL, it will contain error information (without 6605 * a terminating newline) if an error is returned. 6606 * error_str_len: Allocated length of the error string. 6607 * 6608 * Returns 0 for success, non-zero for failure. 6609 */ 6610 int 6611 scsi_parse_transportid(char *transportid_str, 6612 struct scsi_transportid_header **hdr, 6613 unsigned int *alloc_len, 6614 #ifdef _KERNEL 6615 struct malloc_type *type, int flags, 6616 #endif 6617 char *error_str, int error_str_len) 6618 { 6619 char *tmpstr; 6620 scsi_nv_status status; 6621 u_int num_proto_entries; 6622 int retval, table_entry; 6623 6624 retval = 0; 6625 table_entry = 0; 6626 6627 /* 6628 * We do allow a period as well as a comma to separate the protocol 6629 * from the ID string. This is to accommodate iSCSI names, which 6630 * start with "iqn.". 6631 */ 6632 tmpstr = strsep(&transportid_str, ",."); 6633 if (tmpstr == NULL) { 6634 if (error_str != NULL) { 6635 snprintf(error_str, error_str_len, 6636 "%s: transportid_str is NULL", __func__); 6637 } 6638 retval = 1; 6639 goto bailout; 6640 } 6641 6642 num_proto_entries = nitems(scsi_proto_map); 6643 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr, 6644 &table_entry, SCSI_NV_FLAG_IG_CASE); 6645 if (status != SCSI_NV_FOUND) { 6646 if (error_str != NULL) { 6647 snprintf(error_str, error_str_len, "%s: %s protocol " 6648 "name %s", __func__, 6649 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : 6650 "invalid", tmpstr); 6651 } 6652 retval = 1; 6653 goto bailout; 6654 } 6655 switch (scsi_proto_map[table_entry].value) { 6656 case SCSI_PROTO_FC: 6657 case SCSI_PROTO_1394: 6658 case SCSI_PROTO_SAS: 6659 retval = scsi_parse_transportid_64bit( 6660 scsi_proto_map[table_entry].value, transportid_str, hdr, 6661 alloc_len, 6662 #ifdef _KERNEL 6663 type, flags, 6664 #endif 6665 error_str, error_str_len); 6666 break; 6667 case SCSI_PROTO_SPI: 6668 retval = scsi_parse_transportid_spi(transportid_str, hdr, 6669 alloc_len, 6670 #ifdef _KERNEL 6671 type, flags, 6672 #endif 6673 error_str, error_str_len); 6674 break; 6675 case SCSI_PROTO_RDMA: 6676 retval = scsi_parse_transportid_rdma(transportid_str, hdr, 6677 alloc_len, 6678 #ifdef _KERNEL 6679 type, flags, 6680 #endif 6681 error_str, error_str_len); 6682 break; 6683 case SCSI_PROTO_ISCSI: 6684 retval = scsi_parse_transportid_iscsi(transportid_str, hdr, 6685 alloc_len, 6686 #ifdef _KERNEL 6687 type, flags, 6688 #endif 6689 error_str, error_str_len); 6690 break; 6691 case SCSI_PROTO_SOP: 6692 retval = scsi_parse_transportid_sop(transportid_str, hdr, 6693 alloc_len, 6694 #ifdef _KERNEL 6695 type, flags, 6696 #endif 6697 error_str, error_str_len); 6698 break; 6699 case SCSI_PROTO_SSA: 6700 case SCSI_PROTO_ADITP: 6701 case SCSI_PROTO_ATA: 6702 case SCSI_PROTO_UAS: 6703 case SCSI_PROTO_NONE: 6704 default: 6705 /* 6706 * There is no format defined for a Transport ID for these 6707 * protocols. So even if the user gives us something, we 6708 * have no way to turn it into a standard SCSI Transport ID. 6709 */ 6710 retval = 1; 6711 if (error_str != NULL) { 6712 snprintf(error_str, error_str_len, "%s: no Transport " 6713 "ID format exists for protocol %s", 6714 __func__, tmpstr); 6715 } 6716 goto bailout; 6717 break; /* NOTREACHED */ 6718 } 6719 bailout: 6720 return (retval); 6721 } 6722 6723 struct scsi_attrib_table_entry scsi_mam_attr_table[] = { 6724 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6725 "Remaining Capacity in Partition", 6726 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL }, 6727 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6728 "Maximum Capacity in Partition", 6729 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6730 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX, 6731 "TapeAlert Flags", 6732 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6733 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE, 6734 "Load Count", 6735 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6736 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE, 6737 "MAM Space Remaining", 6738 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6739 /*parse_str*/ NULL }, 6740 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6741 "Assigning Organization", 6742 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6743 /*parse_str*/ NULL }, 6744 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6745 "Format Density Code", 6746 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6747 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE, 6748 "Initialization Count", 6749 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6750 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE, 6751 "Volume Identifier", 6752 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6753 /*parse_str*/ NULL }, 6754 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX, 6755 "Volume Change Reference", 6756 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6757 /*parse_str*/ NULL }, 6758 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE, 6759 "Device Vendor/Serial at Last Load", 6760 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6761 /*parse_str*/ NULL }, 6762 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE, 6763 "Device Vendor/Serial at Last Load - 1", 6764 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6765 /*parse_str*/ NULL }, 6766 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE, 6767 "Device Vendor/Serial at Last Load - 2", 6768 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6769 /*parse_str*/ NULL }, 6770 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE, 6771 "Device Vendor/Serial at Last Load - 3", 6772 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6773 /*parse_str*/ NULL }, 6774 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE, 6775 "Total MB Written in Medium Life", 6776 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6777 /*parse_str*/ NULL }, 6778 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE, 6779 "Total MB Read in Medium Life", 6780 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6781 /*parse_str*/ NULL }, 6782 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE, 6783 "Total MB Written in Current/Last Load", 6784 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6785 /*parse_str*/ NULL }, 6786 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE, 6787 "Total MB Read in Current/Last Load", 6788 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6789 /*parse_str*/ NULL }, 6790 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6791 "Logical Position of First Encrypted Block", 6792 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6793 /*parse_str*/ NULL }, 6794 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6795 "Logical Position of First Unencrypted Block after First " 6796 "Encrypted Block", 6797 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6798 /*parse_str*/ NULL }, 6799 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6800 "Medium Usage History", 6801 /*suffix*/ NULL, /*to_str*/ NULL, 6802 /*parse_str*/ NULL }, 6803 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6804 "Partition Usage History", 6805 /*suffix*/ NULL, /*to_str*/ NULL, 6806 /*parse_str*/ NULL }, 6807 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE, 6808 "Medium Manufacturer", 6809 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6810 /*parse_str*/ NULL }, 6811 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE, 6812 "Medium Serial Number", 6813 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6814 /*parse_str*/ NULL }, 6815 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE, 6816 "Medium Length", 6817 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf, 6818 /*parse_str*/ NULL }, 6819 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 | 6820 SCSI_ATTR_FLAG_FP_1DIGIT, 6821 "Medium Width", 6822 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf, 6823 /*parse_str*/ NULL }, 6824 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6825 "Assigning Organization", 6826 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6827 /*parse_str*/ NULL }, 6828 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6829 "Medium Density Code", 6830 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6831 /*parse_str*/ NULL }, 6832 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE, 6833 "Medium Manufacture Date", 6834 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6835 /*parse_str*/ NULL }, 6836 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE, 6837 "MAM Capacity", 6838 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6839 /*parse_str*/ NULL }, 6840 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX, 6841 "Medium Type", 6842 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6843 /*parse_str*/ NULL }, 6844 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX, 6845 "Medium Type Information", 6846 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6847 /*parse_str*/ NULL }, 6848 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE, 6849 "Medium Serial Number", 6850 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6851 /*parse_str*/ NULL }, 6852 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE, 6853 "Application Vendor", 6854 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6855 /*parse_str*/ NULL }, 6856 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE, 6857 "Application Name", 6858 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6859 /*parse_str*/ NULL }, 6860 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE, 6861 "Application Version", 6862 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6863 /*parse_str*/ NULL }, 6864 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE, 6865 "User Medium Text Label", 6866 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6867 /*parse_str*/ NULL }, 6868 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE, 6869 "Date and Time Last Written", 6870 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6871 /*parse_str*/ NULL }, 6872 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX, 6873 "Text Localization Identifier", 6874 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6875 /*parse_str*/ NULL }, 6876 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE, 6877 "Barcode", 6878 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6879 /*parse_str*/ NULL }, 6880 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE, 6881 "Owning Host Textual Name", 6882 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6883 /*parse_str*/ NULL }, 6884 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE, 6885 "Media Pool", 6886 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6887 /*parse_str*/ NULL }, 6888 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE, 6889 "Partition User Text Label", 6890 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6891 /*parse_str*/ NULL }, 6892 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE, 6893 "Load/Unload at Partition", 6894 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6895 /*parse_str*/ NULL }, 6896 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE, 6897 "Application Format Version", 6898 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6899 /*parse_str*/ NULL }, 6900 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE, 6901 "Volume Coherency Information", 6902 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf, 6903 /*parse_str*/ NULL }, 6904 { 0x0ff1, SCSI_ATTR_FLAG_NONE, 6905 "Spectra MLM Creation", 6906 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6907 /*parse_str*/ NULL }, 6908 { 0x0ff2, SCSI_ATTR_FLAG_NONE, 6909 "Spectra MLM C3", 6910 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6911 /*parse_str*/ NULL }, 6912 { 0x0ff3, SCSI_ATTR_FLAG_NONE, 6913 "Spectra MLM RW", 6914 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6915 /*parse_str*/ NULL }, 6916 { 0x0ff4, SCSI_ATTR_FLAG_NONE, 6917 "Spectra MLM SDC List", 6918 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6919 /*parse_str*/ NULL }, 6920 { 0x0ff7, SCSI_ATTR_FLAG_NONE, 6921 "Spectra MLM Post Scan", 6922 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6923 /*parse_str*/ NULL }, 6924 { 0x0ffe, SCSI_ATTR_FLAG_NONE, 6925 "Spectra MLM Checksum", 6926 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6927 /*parse_str*/ NULL }, 6928 { 0x17f1, SCSI_ATTR_FLAG_NONE, 6929 "Spectra MLM Creation", 6930 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6931 /*parse_str*/ NULL }, 6932 { 0x17f2, SCSI_ATTR_FLAG_NONE, 6933 "Spectra MLM C3", 6934 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6935 /*parse_str*/ NULL }, 6936 { 0x17f3, SCSI_ATTR_FLAG_NONE, 6937 "Spectra MLM RW", 6938 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6939 /*parse_str*/ NULL }, 6940 { 0x17f4, SCSI_ATTR_FLAG_NONE, 6941 "Spectra MLM SDC List", 6942 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6943 /*parse_str*/ NULL }, 6944 { 0x17f7, SCSI_ATTR_FLAG_NONE, 6945 "Spectra MLM Post Scan", 6946 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6947 /*parse_str*/ NULL }, 6948 { 0x17ff, SCSI_ATTR_FLAG_NONE, 6949 "Spectra MLM Checksum", 6950 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6951 /*parse_str*/ NULL }, 6952 }; 6953 6954 /* 6955 * Print out Volume Coherency Information (Attribute 0x080c). 6956 * This field has two variable length members, including one at the 6957 * beginning, so it isn't practical to have a fixed structure definition. 6958 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25, 6959 * 2013. 6960 */ 6961 int 6962 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 6963 uint32_t valid_len, uint32_t flags, 6964 uint32_t output_flags, char *error_str, 6965 int error_str_len) 6966 { 6967 size_t avail_len; 6968 uint32_t field_size; 6969 uint64_t tmp_val; 6970 uint8_t *cur_ptr; 6971 int retval; 6972 int vcr_len, as_len; 6973 6974 retval = 0; 6975 tmp_val = 0; 6976 6977 field_size = scsi_2btoul(hdr->length); 6978 avail_len = valid_len - sizeof(*hdr); 6979 if (field_size > avail_len) { 6980 if (error_str != NULL) { 6981 snprintf(error_str, error_str_len, "Available " 6982 "length of attribute ID 0x%.4x %zu < field " 6983 "length %u", scsi_2btoul(hdr->id), avail_len, 6984 field_size); 6985 } 6986 retval = 1; 6987 goto bailout; 6988 } else if (field_size == 0) { 6989 /* 6990 * It isn't clear from the spec whether a field length of 6991 * 0 is invalid here. It probably is, but be lenient here 6992 * to avoid inconveniencing the user. 6993 */ 6994 goto bailout; 6995 } 6996 cur_ptr = hdr->attribute; 6997 vcr_len = *cur_ptr; 6998 cur_ptr++; 6999 7000 sbuf_printf(sb, "\n\tVolume Change Reference Value:"); 7001 7002 switch (vcr_len) { 7003 case 0: 7004 if (error_str != NULL) { 7005 snprintf(error_str, error_str_len, "Volume Change " 7006 "Reference value has length of 0"); 7007 } 7008 retval = 1; 7009 goto bailout; 7010 break; /*NOTREACHED*/ 7011 case 1: 7012 tmp_val = *cur_ptr; 7013 break; 7014 case 2: 7015 tmp_val = scsi_2btoul(cur_ptr); 7016 break; 7017 case 3: 7018 tmp_val = scsi_3btoul(cur_ptr); 7019 break; 7020 case 4: 7021 tmp_val = scsi_4btoul(cur_ptr); 7022 break; 7023 case 8: 7024 tmp_val = scsi_8btou64(cur_ptr); 7025 break; 7026 default: 7027 sbuf_printf(sb, "\n"); 7028 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0); 7029 break; 7030 } 7031 if (vcr_len <= 8) 7032 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val); 7033 7034 cur_ptr += vcr_len; 7035 tmp_val = scsi_8btou64(cur_ptr); 7036 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val); 7037 7038 cur_ptr += sizeof(tmp_val); 7039 tmp_val = scsi_8btou64(cur_ptr); 7040 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n", 7041 (uintmax_t)tmp_val); 7042 7043 /* 7044 * Figure out how long the Application Client Specific Information 7045 * is and produce a hexdump. 7046 */ 7047 cur_ptr += sizeof(tmp_val); 7048 as_len = scsi_2btoul(cur_ptr); 7049 cur_ptr += sizeof(uint16_t); 7050 sbuf_printf(sb, "\tApplication Client Specific Information: "); 7051 if (((as_len == SCSI_LTFS_VER0_LEN) 7052 || (as_len == SCSI_LTFS_VER1_LEN)) 7053 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) { 7054 sbuf_printf(sb, "LTFS\n"); 7055 cur_ptr += SCSI_LTFS_STR_LEN + 1; 7056 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0') 7057 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0'; 7058 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr); 7059 cur_ptr += SCSI_LTFS_UUID_LEN + 1; 7060 /* XXX KDM check the length */ 7061 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr); 7062 } else { 7063 sbuf_printf(sb, "Unknown\n"); 7064 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0); 7065 } 7066 7067 bailout: 7068 return (retval); 7069 } 7070 7071 int 7072 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7073 uint32_t valid_len, uint32_t flags, 7074 uint32_t output_flags, char *error_str, 7075 int error_str_len) 7076 { 7077 size_t avail_len; 7078 uint32_t field_size; 7079 struct scsi_attrib_vendser *vendser; 7080 cam_strvis_flags strvis_flags; 7081 int retval = 0; 7082 7083 field_size = scsi_2btoul(hdr->length); 7084 avail_len = valid_len - sizeof(*hdr); 7085 if (field_size > avail_len) { 7086 if (error_str != NULL) { 7087 snprintf(error_str, error_str_len, "Available " 7088 "length of attribute ID 0x%.4x %zu < field " 7089 "length %u", scsi_2btoul(hdr->id), avail_len, 7090 field_size); 7091 } 7092 retval = 1; 7093 goto bailout; 7094 } else if (field_size == 0) { 7095 /* 7096 * A field size of 0 doesn't make sense here. The device 7097 * can at least give you the vendor ID, even if it can't 7098 * give you the serial number. 7099 */ 7100 if (error_str != NULL) { 7101 snprintf(error_str, error_str_len, "The length of " 7102 "attribute ID 0x%.4x is 0", 7103 scsi_2btoul(hdr->id)); 7104 } 7105 retval = 1; 7106 goto bailout; 7107 } 7108 vendser = (struct scsi_attrib_vendser *)hdr->attribute; 7109 7110 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7111 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7112 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7113 break; 7114 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7115 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7116 break; 7117 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7118 default: 7119 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7120 break;; 7121 } 7122 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor), 7123 strvis_flags); 7124 sbuf_putc(sb, ' '); 7125 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num), 7126 strvis_flags); 7127 bailout: 7128 return (retval); 7129 } 7130 7131 int 7132 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7133 uint32_t valid_len, uint32_t flags, 7134 uint32_t output_flags, char *error_str, 7135 int error_str_len) 7136 { 7137 uint32_t field_size; 7138 ssize_t avail_len; 7139 uint32_t print_len; 7140 uint8_t *num_ptr; 7141 int retval = 0; 7142 7143 field_size = scsi_2btoul(hdr->length); 7144 avail_len = valid_len - sizeof(*hdr); 7145 print_len = MIN(avail_len, field_size); 7146 num_ptr = hdr->attribute; 7147 7148 if (print_len > 0) { 7149 sbuf_printf(sb, "\n"); 7150 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0); 7151 } 7152 7153 return (retval); 7154 } 7155 7156 int 7157 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7158 uint32_t valid_len, uint32_t flags, 7159 uint32_t output_flags, char *error_str, 7160 int error_str_len) 7161 { 7162 uint64_t print_number; 7163 size_t avail_len; 7164 uint32_t number_size; 7165 int retval = 0; 7166 7167 number_size = scsi_2btoul(hdr->length); 7168 7169 avail_len = valid_len - sizeof(*hdr); 7170 if (avail_len < number_size) { 7171 if (error_str != NULL) { 7172 snprintf(error_str, error_str_len, "Available " 7173 "length of attribute ID 0x%.4x %zu < field " 7174 "length %u", scsi_2btoul(hdr->id), avail_len, 7175 number_size); 7176 } 7177 retval = 1; 7178 goto bailout; 7179 } 7180 7181 switch (number_size) { 7182 case 0: 7183 /* 7184 * We don't treat this as an error, since there may be 7185 * scenarios where a device reports a field but then gives 7186 * a length of 0. See the note in scsi_attrib_ascii_sbuf(). 7187 */ 7188 goto bailout; 7189 break; /*NOTREACHED*/ 7190 case 1: 7191 print_number = hdr->attribute[0]; 7192 break; 7193 case 2: 7194 print_number = scsi_2btoul(hdr->attribute); 7195 break; 7196 case 3: 7197 print_number = scsi_3btoul(hdr->attribute); 7198 break; 7199 case 4: 7200 print_number = scsi_4btoul(hdr->attribute); 7201 break; 7202 case 8: 7203 print_number = scsi_8btou64(hdr->attribute); 7204 break; 7205 default: 7206 /* 7207 * If we wind up here, the number is too big to print 7208 * normally, so just do a hexdump. 7209 */ 7210 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7211 flags, output_flags, 7212 error_str, error_str_len); 7213 goto bailout; 7214 break; 7215 } 7216 7217 if (flags & SCSI_ATTR_FLAG_FP) { 7218 #ifndef _KERNEL 7219 long double num_float; 7220 7221 num_float = (long double)print_number; 7222 7223 if (flags & SCSI_ATTR_FLAG_DIV_10) 7224 num_float /= 10; 7225 7226 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ? 7227 1 : 0, num_float); 7228 #else /* _KERNEL */ 7229 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ? 7230 (print_number / 10) : print_number); 7231 #endif /* _KERNEL */ 7232 } else if (flags & SCSI_ATTR_FLAG_HEX) { 7233 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number); 7234 } else 7235 sbuf_printf(sb, "%ju", (uintmax_t)print_number); 7236 7237 bailout: 7238 return (retval); 7239 } 7240 7241 int 7242 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7243 uint32_t valid_len, uint32_t flags, 7244 uint32_t output_flags, char *error_str, 7245 int error_str_len) 7246 { 7247 size_t avail_len; 7248 uint32_t field_size, print_size; 7249 int retval = 0; 7250 7251 avail_len = valid_len - sizeof(*hdr); 7252 field_size = scsi_2btoul(hdr->length); 7253 print_size = MIN(avail_len, field_size); 7254 7255 if (print_size > 0) { 7256 cam_strvis_flags strvis_flags; 7257 7258 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7259 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7260 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7261 break; 7262 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7263 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7264 break; 7265 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7266 default: 7267 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7268 break; 7269 } 7270 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags); 7271 } else if (avail_len < field_size) { 7272 /* 7273 * We only report an error if the user didn't allocate 7274 * enough space to hold the full value of this field. If 7275 * the field length is 0, that is allowed by the spec. 7276 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER 7277 * "This attribute indicates the current volume identifier 7278 * (see SMC-3) of the medium. If the device server supports 7279 * this attribute but does not have access to the volume 7280 * identifier, the device server shall report this attribute 7281 * with an attribute length value of zero." 7282 */ 7283 if (error_str != NULL) { 7284 snprintf(error_str, error_str_len, "Available " 7285 "length of attribute ID 0x%.4x %zu < field " 7286 "length %u", scsi_2btoul(hdr->id), avail_len, 7287 field_size); 7288 } 7289 retval = 1; 7290 } 7291 7292 return (retval); 7293 } 7294 7295 int 7296 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7297 uint32_t valid_len, uint32_t flags, 7298 uint32_t output_flags, char *error_str, 7299 int error_str_len) 7300 { 7301 size_t avail_len; 7302 uint32_t field_size, print_size; 7303 int retval = 0; 7304 int esc_text = 1; 7305 7306 avail_len = valid_len - sizeof(*hdr); 7307 field_size = scsi_2btoul(hdr->length); 7308 print_size = MIN(avail_len, field_size); 7309 7310 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) == 7311 SCSI_ATTR_OUTPUT_TEXT_RAW) 7312 esc_text = 0; 7313 7314 if (print_size > 0) { 7315 uint32_t i; 7316 7317 for (i = 0; i < print_size; i++) { 7318 if (hdr->attribute[i] == '\0') 7319 continue; 7320 else if (((unsigned char)hdr->attribute[i] < 0x80) 7321 || (esc_text == 0)) 7322 sbuf_putc(sb, hdr->attribute[i]); 7323 else 7324 sbuf_printf(sb, "%%%02x", 7325 (unsigned char)hdr->attribute[i]); 7326 } 7327 } else if (avail_len < field_size) { 7328 /* 7329 * We only report an error if the user didn't allocate 7330 * enough space to hold the full value of this field. 7331 */ 7332 if (error_str != NULL) { 7333 snprintf(error_str, error_str_len, "Available " 7334 "length of attribute ID 0x%.4x %zu < field " 7335 "length %u", scsi_2btoul(hdr->id), avail_len, 7336 field_size); 7337 } 7338 retval = 1; 7339 } 7340 7341 return (retval); 7342 } 7343 7344 struct scsi_attrib_table_entry * 7345 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table, 7346 size_t num_table_entries, uint32_t id) 7347 { 7348 uint32_t i; 7349 7350 for (i = 0; i < num_table_entries; i++) { 7351 if (table[i].id == id) 7352 return (&table[i]); 7353 } 7354 7355 return (NULL); 7356 } 7357 7358 struct scsi_attrib_table_entry * 7359 scsi_get_attrib_entry(uint32_t id) 7360 { 7361 return (scsi_find_attrib_entry(scsi_mam_attr_table, 7362 nitems(scsi_mam_attr_table), id)); 7363 } 7364 7365 int 7366 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, 7367 struct scsi_mam_attribute_header *hdr, uint32_t output_flags, 7368 char *error_str, size_t error_str_len) 7369 { 7370 int retval; 7371 7372 switch (hdr->byte2 & SMA_FORMAT_MASK) { 7373 case SMA_FORMAT_ASCII: 7374 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len, 7375 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len); 7376 break; 7377 case SMA_FORMAT_BINARY: 7378 if (scsi_2btoul(hdr->length) <= 8) 7379 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len, 7380 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7381 error_str_len); 7382 else 7383 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7384 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7385 error_str_len); 7386 break; 7387 case SMA_FORMAT_TEXT: 7388 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len, 7389 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7390 error_str_len); 7391 break; 7392 default: 7393 if (error_str != NULL) { 7394 snprintf(error_str, error_str_len, "Unknown attribute " 7395 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK); 7396 } 7397 retval = 1; 7398 goto bailout; 7399 break; /*NOTREACHED*/ 7400 } 7401 7402 sbuf_trim(sb); 7403 7404 bailout: 7405 7406 return (retval); 7407 } 7408 7409 void 7410 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, 7411 struct scsi_mam_attribute_header *hdr, 7412 uint32_t valid_len, const char *desc) 7413 { 7414 int need_space = 0; 7415 uint32_t len; 7416 uint32_t id; 7417 7418 /* 7419 * We can't do anything if we don't have enough valid data for the 7420 * header. 7421 */ 7422 if (valid_len < sizeof(*hdr)) 7423 return; 7424 7425 id = scsi_2btoul(hdr->id); 7426 /* 7427 * Note that we print out the value of the attribute listed in the 7428 * header, regardless of whether we actually got that many bytes 7429 * back from the device through the controller. A truncated result 7430 * could be the result of a failure to ask for enough data; the 7431 * header indicates how many bytes are allocated for this attribute 7432 * in the MAM. 7433 */ 7434 len = scsi_2btoul(hdr->length); 7435 7436 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) == 7437 SCSI_ATTR_OUTPUT_FIELD_NONE) 7438 return; 7439 7440 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC) 7441 && (desc != NULL)) { 7442 sbuf_printf(sb, "%s", desc); 7443 need_space = 1; 7444 } 7445 7446 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) { 7447 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id); 7448 need_space = 0; 7449 } 7450 7451 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) { 7452 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len); 7453 need_space = 0; 7454 } 7455 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) { 7456 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "", 7457 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW"); 7458 } 7459 sbuf_printf(sb, ": "); 7460 } 7461 7462 int 7463 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7464 uint32_t valid_len, struct scsi_attrib_table_entry *user_table, 7465 size_t num_user_entries, int prefer_user_table, 7466 uint32_t output_flags, char *error_str, int error_str_len) 7467 { 7468 int retval; 7469 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL; 7470 struct scsi_attrib_table_entry *entry = NULL; 7471 size_t table1_size = 0, table2_size = 0; 7472 uint32_t id; 7473 7474 retval = 0; 7475 7476 if (valid_len < sizeof(*hdr)) { 7477 retval = 1; 7478 goto bailout; 7479 } 7480 7481 id = scsi_2btoul(hdr->id); 7482 7483 if (user_table != NULL) { 7484 if (prefer_user_table != 0) { 7485 table1 = user_table; 7486 table1_size = num_user_entries; 7487 table2 = scsi_mam_attr_table; 7488 table2_size = nitems(scsi_mam_attr_table); 7489 } else { 7490 table1 = scsi_mam_attr_table; 7491 table1_size = nitems(scsi_mam_attr_table); 7492 table2 = user_table; 7493 table2_size = num_user_entries; 7494 } 7495 } else { 7496 table1 = scsi_mam_attr_table; 7497 table1_size = nitems(scsi_mam_attr_table); 7498 } 7499 7500 entry = scsi_find_attrib_entry(table1, table1_size, id); 7501 if (entry != NULL) { 7502 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, 7503 entry->desc); 7504 if (entry->to_str == NULL) 7505 goto print_default; 7506 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7507 output_flags, error_str, error_str_len); 7508 goto bailout; 7509 } 7510 if (table2 != NULL) { 7511 entry = scsi_find_attrib_entry(table2, table2_size, id); 7512 if (entry != NULL) { 7513 if (entry->to_str == NULL) 7514 goto print_default; 7515 7516 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, 7517 valid_len, entry->desc); 7518 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7519 output_flags, error_str, 7520 error_str_len); 7521 goto bailout; 7522 } 7523 } 7524 7525 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL); 7526 7527 print_default: 7528 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags, 7529 error_str, error_str_len); 7530 bailout: 7531 if (retval == 0) { 7532 if ((entry != NULL) 7533 && (entry->suffix != NULL)) 7534 sbuf_printf(sb, " %s", entry->suffix); 7535 7536 sbuf_trim(sb); 7537 sbuf_printf(sb, "\n"); 7538 } 7539 7540 return (retval); 7541 } 7542 7543 void 7544 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, 7545 void (*cbfcnp)(struct cam_periph *, union ccb *), 7546 u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout) 7547 { 7548 struct scsi_test_unit_ready *scsi_cmd; 7549 7550 cam_fill_csio(csio, 7551 retries, 7552 cbfcnp, 7553 CAM_DIR_NONE, 7554 tag_action, 7555 /*data_ptr*/NULL, 7556 /*dxfer_len*/0, 7557 sense_len, 7558 sizeof(*scsi_cmd), 7559 timeout); 7560 7561 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; 7562 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7563 scsi_cmd->opcode = TEST_UNIT_READY; 7564 } 7565 7566 void 7567 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, 7568 void (*cbfcnp)(struct cam_periph *, union ccb *), 7569 void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, 7570 u_int8_t sense_len, u_int32_t timeout) 7571 { 7572 struct scsi_request_sense *scsi_cmd; 7573 7574 cam_fill_csio(csio, 7575 retries, 7576 cbfcnp, 7577 CAM_DIR_IN, 7578 tag_action, 7579 data_ptr, 7580 dxfer_len, 7581 sense_len, 7582 sizeof(*scsi_cmd), 7583 timeout); 7584 7585 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; 7586 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7587 scsi_cmd->opcode = REQUEST_SENSE; 7588 scsi_cmd->length = dxfer_len; 7589 } 7590 7591 void 7592 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, 7593 void (*cbfcnp)(struct cam_periph *, union ccb *), 7594 u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, 7595 int evpd, u_int8_t page_code, u_int8_t sense_len, 7596 u_int32_t timeout) 7597 { 7598 struct scsi_inquiry *scsi_cmd; 7599 7600 cam_fill_csio(csio, 7601 retries, 7602 cbfcnp, 7603 /*flags*/CAM_DIR_IN, 7604 tag_action, 7605 /*data_ptr*/inq_buf, 7606 /*dxfer_len*/inq_len, 7607 sense_len, 7608 sizeof(*scsi_cmd), 7609 timeout); 7610 7611 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; 7612 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7613 scsi_cmd->opcode = INQUIRY; 7614 if (evpd) { 7615 scsi_cmd->byte2 |= SI_EVPD; 7616 scsi_cmd->page_code = page_code; 7617 } 7618 scsi_ulto2b(inq_len, scsi_cmd->length); 7619 } 7620 7621 void 7622 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries, 7623 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7624 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7625 uint8_t sense_len, uint32_t timeout) 7626 { 7627 7628 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7629 pc, page, 0, param_buf, param_len, 0, sense_len, timeout); 7630 } 7631 7632 void 7633 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries, 7634 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7635 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7636 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout) 7637 { 7638 7639 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7640 pc, page, 0, param_buf, param_len, minimum_cmd_size, 7641 sense_len, timeout); 7642 } 7643 7644 void 7645 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries, 7646 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7647 int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf, 7648 uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, 7649 uint32_t timeout) 7650 { 7651 u_int8_t cdb_len; 7652 7653 /* 7654 * Use the smallest possible command to perform the operation. 7655 */ 7656 if ((param_len < 256) 7657 && (minimum_cmd_size < 10)) { 7658 /* 7659 * We can fit in a 6 byte cdb. 7660 */ 7661 struct scsi_mode_sense_6 *scsi_cmd; 7662 7663 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; 7664 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7665 scsi_cmd->opcode = MODE_SENSE_6; 7666 if (dbd != 0) 7667 scsi_cmd->byte2 |= SMS_DBD; 7668 scsi_cmd->page = pc | page; 7669 scsi_cmd->subpage = subpage; 7670 scsi_cmd->length = param_len; 7671 cdb_len = sizeof(*scsi_cmd); 7672 } else { 7673 /* 7674 * Need a 10 byte cdb. 7675 */ 7676 struct scsi_mode_sense_10 *scsi_cmd; 7677 7678 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; 7679 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7680 scsi_cmd->opcode = MODE_SENSE_10; 7681 if (dbd != 0) 7682 scsi_cmd->byte2 |= SMS_DBD; 7683 scsi_cmd->page = pc | page; 7684 scsi_cmd->subpage = subpage; 7685 scsi_ulto2b(param_len, scsi_cmd->length); 7686 cdb_len = sizeof(*scsi_cmd); 7687 } 7688 cam_fill_csio(csio, 7689 retries, 7690 cbfcnp, 7691 CAM_DIR_IN, 7692 tag_action, 7693 param_buf, 7694 param_len, 7695 sense_len, 7696 cdb_len, 7697 timeout); 7698 } 7699 7700 void 7701 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, 7702 void (*cbfcnp)(struct cam_periph *, union ccb *), 7703 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7704 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7705 u_int32_t timeout) 7706 { 7707 scsi_mode_select_len(csio, retries, cbfcnp, tag_action, 7708 scsi_page_fmt, save_pages, param_buf, 7709 param_len, 0, sense_len, timeout); 7710 } 7711 7712 void 7713 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, 7714 void (*cbfcnp)(struct cam_periph *, union ccb *), 7715 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7716 u_int8_t *param_buf, u_int32_t param_len, 7717 int minimum_cmd_size, u_int8_t sense_len, 7718 u_int32_t timeout) 7719 { 7720 u_int8_t cdb_len; 7721 7722 /* 7723 * Use the smallest possible command to perform the operation. 7724 */ 7725 if ((param_len < 256) 7726 && (minimum_cmd_size < 10)) { 7727 /* 7728 * We can fit in a 6 byte cdb. 7729 */ 7730 struct scsi_mode_select_6 *scsi_cmd; 7731 7732 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; 7733 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7734 scsi_cmd->opcode = MODE_SELECT_6; 7735 if (scsi_page_fmt != 0) 7736 scsi_cmd->byte2 |= SMS_PF; 7737 if (save_pages != 0) 7738 scsi_cmd->byte2 |= SMS_SP; 7739 scsi_cmd->length = param_len; 7740 cdb_len = sizeof(*scsi_cmd); 7741 } else { 7742 /* 7743 * Need a 10 byte cdb. 7744 */ 7745 struct scsi_mode_select_10 *scsi_cmd; 7746 7747 scsi_cmd = 7748 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; 7749 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7750 scsi_cmd->opcode = MODE_SELECT_10; 7751 if (scsi_page_fmt != 0) 7752 scsi_cmd->byte2 |= SMS_PF; 7753 if (save_pages != 0) 7754 scsi_cmd->byte2 |= SMS_SP; 7755 scsi_ulto2b(param_len, scsi_cmd->length); 7756 cdb_len = sizeof(*scsi_cmd); 7757 } 7758 cam_fill_csio(csio, 7759 retries, 7760 cbfcnp, 7761 CAM_DIR_OUT, 7762 tag_action, 7763 param_buf, 7764 param_len, 7765 sense_len, 7766 cdb_len, 7767 timeout); 7768 } 7769 7770 void 7771 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, 7772 void (*cbfcnp)(struct cam_periph *, union ccb *), 7773 u_int8_t tag_action, u_int8_t page_code, u_int8_t page, 7774 int save_pages, int ppc, u_int32_t paramptr, 7775 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7776 u_int32_t timeout) 7777 { 7778 struct scsi_log_sense *scsi_cmd; 7779 u_int8_t cdb_len; 7780 7781 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; 7782 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7783 scsi_cmd->opcode = LOG_SENSE; 7784 scsi_cmd->page = page_code | page; 7785 if (save_pages != 0) 7786 scsi_cmd->byte2 |= SLS_SP; 7787 if (ppc != 0) 7788 scsi_cmd->byte2 |= SLS_PPC; 7789 scsi_ulto2b(paramptr, scsi_cmd->paramptr); 7790 scsi_ulto2b(param_len, scsi_cmd->length); 7791 cdb_len = sizeof(*scsi_cmd); 7792 7793 cam_fill_csio(csio, 7794 retries, 7795 cbfcnp, 7796 /*flags*/CAM_DIR_IN, 7797 tag_action, 7798 /*data_ptr*/param_buf, 7799 /*dxfer_len*/param_len, 7800 sense_len, 7801 cdb_len, 7802 timeout); 7803 } 7804 7805 void 7806 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, 7807 void (*cbfcnp)(struct cam_periph *, union ccb *), 7808 u_int8_t tag_action, u_int8_t page_code, int save_pages, 7809 int pc_reset, u_int8_t *param_buf, u_int32_t param_len, 7810 u_int8_t sense_len, u_int32_t timeout) 7811 { 7812 struct scsi_log_select *scsi_cmd; 7813 u_int8_t cdb_len; 7814 7815 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; 7816 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7817 scsi_cmd->opcode = LOG_SELECT; 7818 scsi_cmd->page = page_code & SLS_PAGE_CODE; 7819 if (save_pages != 0) 7820 scsi_cmd->byte2 |= SLS_SP; 7821 if (pc_reset != 0) 7822 scsi_cmd->byte2 |= SLS_PCR; 7823 scsi_ulto2b(param_len, scsi_cmd->length); 7824 cdb_len = sizeof(*scsi_cmd); 7825 7826 cam_fill_csio(csio, 7827 retries, 7828 cbfcnp, 7829 /*flags*/CAM_DIR_OUT, 7830 tag_action, 7831 /*data_ptr*/param_buf, 7832 /*dxfer_len*/param_len, 7833 sense_len, 7834 cdb_len, 7835 timeout); 7836 } 7837 7838 /* 7839 * Prevent or allow the user to remove the media 7840 */ 7841 void 7842 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, 7843 void (*cbfcnp)(struct cam_periph *, union ccb *), 7844 u_int8_t tag_action, u_int8_t action, 7845 u_int8_t sense_len, u_int32_t timeout) 7846 { 7847 struct scsi_prevent *scsi_cmd; 7848 7849 cam_fill_csio(csio, 7850 retries, 7851 cbfcnp, 7852 /*flags*/CAM_DIR_NONE, 7853 tag_action, 7854 /*data_ptr*/NULL, 7855 /*dxfer_len*/0, 7856 sense_len, 7857 sizeof(*scsi_cmd), 7858 timeout); 7859 7860 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; 7861 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7862 scsi_cmd->opcode = PREVENT_ALLOW; 7863 scsi_cmd->how = action; 7864 } 7865 7866 /* XXX allow specification of address and PMI bit and LBA */ 7867 void 7868 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, 7869 void (*cbfcnp)(struct cam_periph *, union ccb *), 7870 u_int8_t tag_action, 7871 struct scsi_read_capacity_data *rcap_buf, 7872 u_int8_t sense_len, u_int32_t timeout) 7873 { 7874 struct scsi_read_capacity *scsi_cmd; 7875 7876 cam_fill_csio(csio, 7877 retries, 7878 cbfcnp, 7879 /*flags*/CAM_DIR_IN, 7880 tag_action, 7881 /*data_ptr*/(u_int8_t *)rcap_buf, 7882 /*dxfer_len*/sizeof(*rcap_buf), 7883 sense_len, 7884 sizeof(*scsi_cmd), 7885 timeout); 7886 7887 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; 7888 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7889 scsi_cmd->opcode = READ_CAPACITY; 7890 } 7891 7892 void 7893 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, 7894 void (*cbfcnp)(struct cam_periph *, union ccb *), 7895 uint8_t tag_action, uint64_t lba, int reladr, int pmi, 7896 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, 7897 uint32_t timeout) 7898 { 7899 struct scsi_read_capacity_16 *scsi_cmd; 7900 7901 7902 cam_fill_csio(csio, 7903 retries, 7904 cbfcnp, 7905 /*flags*/CAM_DIR_IN, 7906 tag_action, 7907 /*data_ptr*/(u_int8_t *)rcap_buf, 7908 /*dxfer_len*/rcap_buf_len, 7909 sense_len, 7910 sizeof(*scsi_cmd), 7911 timeout); 7912 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 7913 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7914 scsi_cmd->opcode = SERVICE_ACTION_IN; 7915 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 7916 scsi_u64to8b(lba, scsi_cmd->addr); 7917 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); 7918 if (pmi) 7919 reladr |= SRC16_PMI; 7920 if (reladr) 7921 reladr |= SRC16_RELADR; 7922 } 7923 7924 void 7925 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, 7926 void (*cbfcnp)(struct cam_periph *, union ccb *), 7927 u_int8_t tag_action, u_int8_t select_report, 7928 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, 7929 u_int8_t sense_len, u_int32_t timeout) 7930 { 7931 struct scsi_report_luns *scsi_cmd; 7932 7933 cam_fill_csio(csio, 7934 retries, 7935 cbfcnp, 7936 /*flags*/CAM_DIR_IN, 7937 tag_action, 7938 /*data_ptr*/(u_int8_t *)rpl_buf, 7939 /*dxfer_len*/alloc_len, 7940 sense_len, 7941 sizeof(*scsi_cmd), 7942 timeout); 7943 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; 7944 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7945 scsi_cmd->opcode = REPORT_LUNS; 7946 scsi_cmd->select_report = select_report; 7947 scsi_ulto4b(alloc_len, scsi_cmd->length); 7948 } 7949 7950 void 7951 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7952 void (*cbfcnp)(struct cam_periph *, union ccb *), 7953 u_int8_t tag_action, u_int8_t pdf, 7954 void *buf, u_int32_t alloc_len, 7955 u_int8_t sense_len, u_int32_t timeout) 7956 { 7957 struct scsi_target_group *scsi_cmd; 7958 7959 cam_fill_csio(csio, 7960 retries, 7961 cbfcnp, 7962 /*flags*/CAM_DIR_IN, 7963 tag_action, 7964 /*data_ptr*/(u_int8_t *)buf, 7965 /*dxfer_len*/alloc_len, 7966 sense_len, 7967 sizeof(*scsi_cmd), 7968 timeout); 7969 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 7970 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7971 scsi_cmd->opcode = MAINTENANCE_IN; 7972 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; 7973 scsi_ulto4b(alloc_len, scsi_cmd->length); 7974 } 7975 7976 void 7977 scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 7978 void (*cbfcnp)(struct cam_periph *, union ccb *), 7979 u_int8_t tag_action, u_int8_t pdf, 7980 void *buf, u_int32_t alloc_len, 7981 u_int8_t sense_len, u_int32_t timeout) 7982 { 7983 struct scsi_timestamp *scsi_cmd; 7984 7985 cam_fill_csio(csio, 7986 retries, 7987 cbfcnp, 7988 /*flags*/CAM_DIR_IN, 7989 tag_action, 7990 /*data_ptr*/(u_int8_t *)buf, 7991 /*dxfer_len*/alloc_len, 7992 sense_len, 7993 sizeof(*scsi_cmd), 7994 timeout); 7995 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 7996 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7997 scsi_cmd->opcode = MAINTENANCE_IN; 7998 scsi_cmd->service_action = REPORT_TIMESTAMP | pdf; 7999 scsi_ulto4b(alloc_len, scsi_cmd->length); 8000 } 8001 8002 void 8003 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, 8004 void (*cbfcnp)(struct cam_periph *, union ccb *), 8005 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 8006 u_int8_t sense_len, u_int32_t timeout) 8007 { 8008 struct scsi_target_group *scsi_cmd; 8009 8010 cam_fill_csio(csio, 8011 retries, 8012 cbfcnp, 8013 /*flags*/CAM_DIR_OUT, 8014 tag_action, 8015 /*data_ptr*/(u_int8_t *)buf, 8016 /*dxfer_len*/alloc_len, 8017 sense_len, 8018 sizeof(*scsi_cmd), 8019 timeout); 8020 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 8021 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8022 scsi_cmd->opcode = MAINTENANCE_OUT; 8023 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; 8024 scsi_ulto4b(alloc_len, scsi_cmd->length); 8025 } 8026 8027 void 8028 scsi_create_timestamp(uint8_t *timestamp_6b_buf, 8029 uint64_t timestamp) 8030 { 8031 uint8_t buf[8]; 8032 scsi_u64to8b(timestamp, buf); 8033 /* 8034 * Using memcopy starting at buf[2] because the set timestamp parameters 8035 * only has six bytes for the timestamp to fit into, and we don't have a 8036 * scsi_u64to6b function. 8037 */ 8038 memcpy(timestamp_6b_buf, &buf[2], 6); 8039 } 8040 8041 void 8042 scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 8043 void (*cbfcnp)(struct cam_periph *, union ccb *), 8044 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 8045 u_int8_t sense_len, u_int32_t timeout) 8046 { 8047 struct scsi_timestamp *scsi_cmd; 8048 8049 cam_fill_csio(csio, 8050 retries, 8051 cbfcnp, 8052 /*flags*/CAM_DIR_OUT, 8053 tag_action, 8054 /*data_ptr*/(u_int8_t *) buf, 8055 /*dxfer_len*/alloc_len, 8056 sense_len, 8057 sizeof(*scsi_cmd), 8058 timeout); 8059 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 8060 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8061 scsi_cmd->opcode = MAINTENANCE_OUT; 8062 scsi_cmd->service_action = SET_TIMESTAMP; 8063 scsi_ulto4b(alloc_len, scsi_cmd->length); 8064 } 8065 8066 /* 8067 * Syncronize the media to the contents of the cache for 8068 * the given lba/count pair. Specifying 0/0 means sync 8069 * the whole cache. 8070 */ 8071 void 8072 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, 8073 void (*cbfcnp)(struct cam_periph *, union ccb *), 8074 u_int8_t tag_action, u_int32_t begin_lba, 8075 u_int16_t lb_count, u_int8_t sense_len, 8076 u_int32_t timeout) 8077 { 8078 struct scsi_sync_cache *scsi_cmd; 8079 8080 cam_fill_csio(csio, 8081 retries, 8082 cbfcnp, 8083 /*flags*/CAM_DIR_NONE, 8084 tag_action, 8085 /*data_ptr*/NULL, 8086 /*dxfer_len*/0, 8087 sense_len, 8088 sizeof(*scsi_cmd), 8089 timeout); 8090 8091 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; 8092 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8093 scsi_cmd->opcode = SYNCHRONIZE_CACHE; 8094 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); 8095 scsi_ulto2b(lb_count, scsi_cmd->lb_count); 8096 } 8097 8098 void 8099 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, 8100 void (*cbfcnp)(struct cam_periph *, union ccb *), 8101 u_int8_t tag_action, int readop, u_int8_t byte2, 8102 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8103 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8104 u_int32_t timeout) 8105 { 8106 int read; 8107 u_int8_t cdb_len; 8108 8109 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; 8110 8111 /* 8112 * Use the smallest possible command to perform the operation 8113 * as some legacy hardware does not support the 10 byte commands. 8114 * If any of the bits in byte2 is set, we have to go with a larger 8115 * command. 8116 */ 8117 if ((minimum_cmd_size < 10) 8118 && ((lba & 0x1fffff) == lba) 8119 && ((block_count & 0xff) == block_count) 8120 && (byte2 == 0)) { 8121 /* 8122 * We can fit in a 6 byte cdb. 8123 */ 8124 struct scsi_rw_6 *scsi_cmd; 8125 8126 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; 8127 scsi_cmd->opcode = read ? READ_6 : WRITE_6; 8128 scsi_ulto3b(lba, scsi_cmd->addr); 8129 scsi_cmd->length = block_count & 0xff; 8130 scsi_cmd->control = 0; 8131 cdb_len = sizeof(*scsi_cmd); 8132 8133 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8134 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], 8135 scsi_cmd->addr[1], scsi_cmd->addr[2], 8136 scsi_cmd->length, dxfer_len)); 8137 } else if ((minimum_cmd_size < 12) 8138 && ((block_count & 0xffff) == block_count) 8139 && ((lba & 0xffffffff) == lba)) { 8140 /* 8141 * Need a 10 byte cdb. 8142 */ 8143 struct scsi_rw_10 *scsi_cmd; 8144 8145 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; 8146 scsi_cmd->opcode = read ? READ_10 : WRITE_10; 8147 scsi_cmd->byte2 = byte2; 8148 scsi_ulto4b(lba, scsi_cmd->addr); 8149 scsi_cmd->reserved = 0; 8150 scsi_ulto2b(block_count, scsi_cmd->length); 8151 scsi_cmd->control = 0; 8152 cdb_len = sizeof(*scsi_cmd); 8153 8154 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8155 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8156 scsi_cmd->addr[1], scsi_cmd->addr[2], 8157 scsi_cmd->addr[3], scsi_cmd->length[0], 8158 scsi_cmd->length[1], dxfer_len)); 8159 } else if ((minimum_cmd_size < 16) 8160 && ((block_count & 0xffffffff) == block_count) 8161 && ((lba & 0xffffffff) == lba)) { 8162 /* 8163 * The block count is too big for a 10 byte CDB, use a 12 8164 * byte CDB. 8165 */ 8166 struct scsi_rw_12 *scsi_cmd; 8167 8168 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; 8169 scsi_cmd->opcode = read ? READ_12 : WRITE_12; 8170 scsi_cmd->byte2 = byte2; 8171 scsi_ulto4b(lba, scsi_cmd->addr); 8172 scsi_cmd->reserved = 0; 8173 scsi_ulto4b(block_count, scsi_cmd->length); 8174 scsi_cmd->control = 0; 8175 cdb_len = sizeof(*scsi_cmd); 8176 8177 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8178 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], 8179 scsi_cmd->addr[1], scsi_cmd->addr[2], 8180 scsi_cmd->addr[3], scsi_cmd->length[0], 8181 scsi_cmd->length[1], scsi_cmd->length[2], 8182 scsi_cmd->length[3], dxfer_len)); 8183 } else { 8184 /* 8185 * 16 byte CDB. We'll only get here if the LBA is larger 8186 * than 2^32, or if the user asks for a 16 byte command. 8187 */ 8188 struct scsi_rw_16 *scsi_cmd; 8189 8190 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; 8191 scsi_cmd->opcode = read ? READ_16 : WRITE_16; 8192 scsi_cmd->byte2 = byte2; 8193 scsi_u64to8b(lba, scsi_cmd->addr); 8194 scsi_cmd->reserved = 0; 8195 scsi_ulto4b(block_count, scsi_cmd->length); 8196 scsi_cmd->control = 0; 8197 cdb_len = sizeof(*scsi_cmd); 8198 } 8199 cam_fill_csio(csio, 8200 retries, 8201 cbfcnp, 8202 (read ? CAM_DIR_IN : CAM_DIR_OUT) | 8203 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), 8204 tag_action, 8205 data_ptr, 8206 dxfer_len, 8207 sense_len, 8208 cdb_len, 8209 timeout); 8210 } 8211 8212 void 8213 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, 8214 void (*cbfcnp)(struct cam_periph *, union ccb *), 8215 u_int8_t tag_action, u_int8_t byte2, 8216 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8217 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8218 u_int32_t timeout) 8219 { 8220 u_int8_t cdb_len; 8221 if ((minimum_cmd_size < 16) && 8222 ((block_count & 0xffff) == block_count) && 8223 ((lba & 0xffffffff) == lba)) { 8224 /* 8225 * Need a 10 byte cdb. 8226 */ 8227 struct scsi_write_same_10 *scsi_cmd; 8228 8229 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; 8230 scsi_cmd->opcode = WRITE_SAME_10; 8231 scsi_cmd->byte2 = byte2; 8232 scsi_ulto4b(lba, scsi_cmd->addr); 8233 scsi_cmd->group = 0; 8234 scsi_ulto2b(block_count, scsi_cmd->length); 8235 scsi_cmd->control = 0; 8236 cdb_len = sizeof(*scsi_cmd); 8237 8238 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8239 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8240 scsi_cmd->addr[1], scsi_cmd->addr[2], 8241 scsi_cmd->addr[3], scsi_cmd->length[0], 8242 scsi_cmd->length[1], dxfer_len)); 8243 } else { 8244 /* 8245 * 16 byte CDB. We'll only get here if the LBA is larger 8246 * than 2^32, or if the user asks for a 16 byte command. 8247 */ 8248 struct scsi_write_same_16 *scsi_cmd; 8249 8250 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; 8251 scsi_cmd->opcode = WRITE_SAME_16; 8252 scsi_cmd->byte2 = byte2; 8253 scsi_u64to8b(lba, scsi_cmd->addr); 8254 scsi_ulto4b(block_count, scsi_cmd->length); 8255 scsi_cmd->group = 0; 8256 scsi_cmd->control = 0; 8257 cdb_len = sizeof(*scsi_cmd); 8258 8259 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8260 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", 8261 scsi_cmd->addr[0], scsi_cmd->addr[1], 8262 scsi_cmd->addr[2], scsi_cmd->addr[3], 8263 scsi_cmd->addr[4], scsi_cmd->addr[5], 8264 scsi_cmd->addr[6], scsi_cmd->addr[7], 8265 scsi_cmd->length[0], scsi_cmd->length[1], 8266 scsi_cmd->length[2], scsi_cmd->length[3], 8267 dxfer_len)); 8268 } 8269 cam_fill_csio(csio, 8270 retries, 8271 cbfcnp, 8272 /*flags*/CAM_DIR_OUT, 8273 tag_action, 8274 data_ptr, 8275 dxfer_len, 8276 sense_len, 8277 cdb_len, 8278 timeout); 8279 } 8280 8281 void 8282 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries, 8283 void (*cbfcnp)(struct cam_periph *, union ccb *), 8284 u_int8_t tag_action, u_int8_t *data_ptr, 8285 u_int16_t dxfer_len, u_int8_t sense_len, 8286 u_int32_t timeout) 8287 { 8288 scsi_ata_pass(csio, 8289 retries, 8290 cbfcnp, 8291 /*flags*/CAM_DIR_IN, 8292 tag_action, 8293 /*protocol*/AP_PROTO_PIO_IN, 8294 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8295 AP_FLAG_BYT_BLOK_BYTES | 8296 AP_FLAG_TLEN_SECT_CNT, 8297 /*features*/0, 8298 /*sector_count*/dxfer_len, 8299 /*lba*/0, 8300 /*command*/ATA_ATA_IDENTIFY, 8301 /*device*/ 0, 8302 /*icc*/ 0, 8303 /*auxiliary*/ 0, 8304 /*control*/0, 8305 data_ptr, 8306 dxfer_len, 8307 /*cdb_storage*/ NULL, 8308 /*cdb_storage_len*/ 0, 8309 /*minimum_cmd_size*/ 0, 8310 sense_len, 8311 timeout); 8312 } 8313 8314 void 8315 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries, 8316 void (*cbfcnp)(struct cam_periph *, union ccb *), 8317 u_int8_t tag_action, u_int16_t block_count, 8318 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8319 u_int32_t timeout) 8320 { 8321 scsi_ata_pass_16(csio, 8322 retries, 8323 cbfcnp, 8324 /*flags*/CAM_DIR_OUT, 8325 tag_action, 8326 /*protocol*/AP_EXTEND|AP_PROTO_DMA, 8327 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS, 8328 /*features*/ATA_DSM_TRIM, 8329 /*sector_count*/block_count, 8330 /*lba*/0, 8331 /*command*/ATA_DATA_SET_MANAGEMENT, 8332 /*control*/0, 8333 data_ptr, 8334 dxfer_len, 8335 sense_len, 8336 timeout); 8337 } 8338 8339 int 8340 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries, 8341 void (*cbfcnp)(struct cam_periph *, union ccb *), 8342 uint8_t tag_action, uint32_t log_address, 8343 uint32_t page_number, uint16_t block_count, 8344 uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, 8345 uint8_t sense_len, uint32_t timeout) 8346 { 8347 uint8_t command, protocol_out; 8348 uint16_t count_out; 8349 uint64_t lba; 8350 int retval; 8351 8352 retval = 0; 8353 8354 switch (protocol) { 8355 case AP_PROTO_DMA: 8356 count_out = block_count; 8357 command = ATA_READ_LOG_DMA_EXT; 8358 protocol_out = AP_PROTO_DMA; 8359 break; 8360 case AP_PROTO_PIO_IN: 8361 default: 8362 count_out = block_count; 8363 command = ATA_READ_LOG_EXT; 8364 protocol_out = AP_PROTO_PIO_IN; 8365 break; 8366 } 8367 8368 lba = (((uint64_t)page_number & 0xff00) << 32) | 8369 ((page_number & 0x00ff) << 8) | 8370 (log_address & 0xff); 8371 8372 protocol_out |= AP_EXTEND; 8373 8374 retval = scsi_ata_pass(csio, 8375 retries, 8376 cbfcnp, 8377 /*flags*/CAM_DIR_IN, 8378 tag_action, 8379 /*protocol*/ protocol_out, 8380 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT | 8381 AP_FLAG_BYT_BLOK_BLOCKS | 8382 AP_FLAG_TDIR_FROM_DEV, 8383 /*feature*/ 0, 8384 /*sector_count*/ count_out, 8385 /*lba*/ lba, 8386 /*command*/ command, 8387 /*device*/ 0, 8388 /*icc*/ 0, 8389 /*auxiliary*/ 0, 8390 /*control*/0, 8391 data_ptr, 8392 dxfer_len, 8393 /*cdb_storage*/ NULL, 8394 /*cdb_storage_len*/ 0, 8395 /*minimum_cmd_size*/ 0, 8396 sense_len, 8397 timeout); 8398 8399 return (retval); 8400 } 8401 8402 /* 8403 * Note! This is an unusual CDB building function because it can return 8404 * an error in the event that the command in question requires a variable 8405 * length CDB, but the caller has not given storage space for one or has not 8406 * given enough storage space. If there is enough space available in the 8407 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage. 8408 */ 8409 int 8410 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries, 8411 void (*cbfcnp)(struct cam_periph *, union ccb *), 8412 uint32_t flags, uint8_t tag_action, 8413 uint8_t protocol, uint8_t ata_flags, uint16_t features, 8414 uint16_t sector_count, uint64_t lba, uint8_t command, 8415 uint8_t device, uint8_t icc, uint32_t auxiliary, 8416 uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len, 8417 uint8_t *cdb_storage, size_t cdb_storage_len, 8418 int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) 8419 { 8420 uint32_t cam_flags; 8421 uint8_t *cdb_ptr; 8422 int cmd_size; 8423 int retval; 8424 uint8_t cdb_len; 8425 8426 retval = 0; 8427 cam_flags = flags; 8428 8429 /* 8430 * Round the user's request to the nearest command size that is at 8431 * least as big as what he requested. 8432 */ 8433 if (minimum_cmd_size <= 12) 8434 cmd_size = 12; 8435 else if (minimum_cmd_size > 16) 8436 cmd_size = 32; 8437 else 8438 cmd_size = 16; 8439 8440 /* 8441 * If we have parameters that require a 48-bit ATA command, we have to 8442 * use the 16 byte ATA PASS-THROUGH command at least. 8443 */ 8444 if (((lba > ATA_MAX_28BIT_LBA) 8445 || (sector_count > 255) 8446 || (features > 255) 8447 || (protocol & AP_EXTEND)) 8448 && ((cmd_size < 16) 8449 || ((protocol & AP_EXTEND) == 0))) { 8450 if (cmd_size < 16) 8451 cmd_size = 16; 8452 protocol |= AP_EXTEND; 8453 } 8454 8455 /* 8456 * The icc and auxiliary ATA registers are only supported in the 8457 * 32-byte version of the ATA PASS-THROUGH command. 8458 */ 8459 if ((icc != 0) 8460 || (auxiliary != 0)) { 8461 cmd_size = 32; 8462 protocol |= AP_EXTEND; 8463 } 8464 8465 8466 if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes)) 8467 && ((cdb_storage == NULL) 8468 || (cdb_storage_len < cmd_size))) { 8469 retval = 1; 8470 goto bailout; 8471 } 8472 8473 /* 8474 * At this point we know we have enough space to store the command 8475 * in one place or another. We prefer the built-in array, but used 8476 * the passed in storage if necessary. 8477 */ 8478 if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes)) 8479 cdb_ptr = csio->cdb_io.cdb_bytes; 8480 else { 8481 cdb_ptr = cdb_storage; 8482 cam_flags |= CAM_CDB_POINTER; 8483 } 8484 8485 if (cmd_size <= 12) { 8486 struct ata_pass_12 *cdb; 8487 8488 cdb = (struct ata_pass_12 *)cdb_ptr; 8489 cdb_len = sizeof(*cdb); 8490 bzero(cdb, cdb_len); 8491 8492 cdb->opcode = ATA_PASS_12; 8493 cdb->protocol = protocol; 8494 cdb->flags = ata_flags; 8495 cdb->features = features; 8496 cdb->sector_count = sector_count; 8497 cdb->lba_low = lba & 0xff; 8498 cdb->lba_mid = (lba >> 8) & 0xff; 8499 cdb->lba_high = (lba >> 16) & 0xff; 8500 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8501 cdb->command = command; 8502 cdb->control = control; 8503 } else if (cmd_size <= 16) { 8504 struct ata_pass_16 *cdb; 8505 8506 cdb = (struct ata_pass_16 *)cdb_ptr; 8507 cdb_len = sizeof(*cdb); 8508 bzero(cdb, cdb_len); 8509 8510 cdb->opcode = ATA_PASS_16; 8511 cdb->protocol = protocol; 8512 cdb->flags = ata_flags; 8513 cdb->features = features & 0xff; 8514 cdb->sector_count = sector_count & 0xff; 8515 cdb->lba_low = lba & 0xff; 8516 cdb->lba_mid = (lba >> 8) & 0xff; 8517 cdb->lba_high = (lba >> 16) & 0xff; 8518 /* 8519 * If AP_EXTEND is set, we're sending a 48-bit command. 8520 * Otherwise it's a 28-bit command. 8521 */ 8522 if (protocol & AP_EXTEND) { 8523 cdb->lba_low_ext = (lba >> 24) & 0xff; 8524 cdb->lba_mid_ext = (lba >> 32) & 0xff; 8525 cdb->lba_high_ext = (lba >> 40) & 0xff; 8526 cdb->features_ext = (features >> 8) & 0xff; 8527 cdb->sector_count_ext = (sector_count >> 8) & 0xff; 8528 cdb->device = device | ATA_DEV_LBA; 8529 } else { 8530 cdb->lba_low_ext = (lba >> 24) & 0xf; 8531 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8532 } 8533 cdb->command = command; 8534 cdb->control = control; 8535 } else { 8536 struct ata_pass_32 *cdb; 8537 uint8_t tmp_lba[8]; 8538 8539 cdb = (struct ata_pass_32 *)cdb_ptr; 8540 cdb_len = sizeof(*cdb); 8541 bzero(cdb, cdb_len); 8542 cdb->opcode = VARIABLE_LEN_CDB; 8543 cdb->control = control; 8544 cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32, 8545 service_action); 8546 scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action); 8547 cdb->protocol = protocol; 8548 cdb->flags = ata_flags; 8549 8550 if ((protocol & AP_EXTEND) == 0) { 8551 lba &= 0x0fffffff; 8552 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8553 features &= 0xff; 8554 sector_count &= 0xff; 8555 } else { 8556 cdb->device = device | ATA_DEV_LBA; 8557 } 8558 scsi_u64to8b(lba, tmp_lba); 8559 bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba)); 8560 scsi_ulto2b(features, cdb->features); 8561 scsi_ulto2b(sector_count, cdb->count); 8562 cdb->command = command; 8563 cdb->icc = icc; 8564 scsi_ulto4b(auxiliary, cdb->auxiliary); 8565 } 8566 8567 cam_fill_csio(csio, 8568 retries, 8569 cbfcnp, 8570 cam_flags, 8571 tag_action, 8572 data_ptr, 8573 dxfer_len, 8574 sense_len, 8575 cmd_size, 8576 timeout); 8577 bailout: 8578 return (retval); 8579 } 8580 8581 void 8582 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries, 8583 void (*cbfcnp)(struct cam_periph *, union ccb *), 8584 u_int32_t flags, u_int8_t tag_action, 8585 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features, 8586 u_int16_t sector_count, uint64_t lba, u_int8_t command, 8587 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len, 8588 u_int8_t sense_len, u_int32_t timeout) 8589 { 8590 struct ata_pass_16 *ata_cmd; 8591 8592 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes; 8593 ata_cmd->opcode = ATA_PASS_16; 8594 ata_cmd->protocol = protocol; 8595 ata_cmd->flags = ata_flags; 8596 ata_cmd->features_ext = features >> 8; 8597 ata_cmd->features = features; 8598 ata_cmd->sector_count_ext = sector_count >> 8; 8599 ata_cmd->sector_count = sector_count; 8600 ata_cmd->lba_low = lba; 8601 ata_cmd->lba_mid = lba >> 8; 8602 ata_cmd->lba_high = lba >> 16; 8603 ata_cmd->device = ATA_DEV_LBA; 8604 if (protocol & AP_EXTEND) { 8605 ata_cmd->lba_low_ext = lba >> 24; 8606 ata_cmd->lba_mid_ext = lba >> 32; 8607 ata_cmd->lba_high_ext = lba >> 40; 8608 } else 8609 ata_cmd->device |= (lba >> 24) & 0x0f; 8610 ata_cmd->command = command; 8611 ata_cmd->control = control; 8612 8613 cam_fill_csio(csio, 8614 retries, 8615 cbfcnp, 8616 flags, 8617 tag_action, 8618 data_ptr, 8619 dxfer_len, 8620 sense_len, 8621 sizeof(*ata_cmd), 8622 timeout); 8623 } 8624 8625 void 8626 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, 8627 void (*cbfcnp)(struct cam_periph *, union ccb *), 8628 u_int8_t tag_action, u_int8_t byte2, 8629 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8630 u_int32_t timeout) 8631 { 8632 struct scsi_unmap *scsi_cmd; 8633 8634 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; 8635 scsi_cmd->opcode = UNMAP; 8636 scsi_cmd->byte2 = byte2; 8637 scsi_ulto4b(0, scsi_cmd->reserved); 8638 scsi_cmd->group = 0; 8639 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8640 scsi_cmd->control = 0; 8641 8642 cam_fill_csio(csio, 8643 retries, 8644 cbfcnp, 8645 /*flags*/CAM_DIR_OUT, 8646 tag_action, 8647 data_ptr, 8648 dxfer_len, 8649 sense_len, 8650 sizeof(*scsi_cmd), 8651 timeout); 8652 } 8653 8654 void 8655 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, 8656 void (*cbfcnp)(struct cam_periph *, union ccb*), 8657 uint8_t tag_action, int pcv, uint8_t page_code, 8658 uint8_t *data_ptr, uint16_t allocation_length, 8659 uint8_t sense_len, uint32_t timeout) 8660 { 8661 struct scsi_receive_diag *scsi_cmd; 8662 8663 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; 8664 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8665 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; 8666 if (pcv) { 8667 scsi_cmd->byte2 |= SRD_PCV; 8668 scsi_cmd->page_code = page_code; 8669 } 8670 scsi_ulto2b(allocation_length, scsi_cmd->length); 8671 8672 cam_fill_csio(csio, 8673 retries, 8674 cbfcnp, 8675 /*flags*/CAM_DIR_IN, 8676 tag_action, 8677 data_ptr, 8678 allocation_length, 8679 sense_len, 8680 sizeof(*scsi_cmd), 8681 timeout); 8682 } 8683 8684 void 8685 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, 8686 void (*cbfcnp)(struct cam_periph *, union ccb *), 8687 uint8_t tag_action, int unit_offline, int device_offline, 8688 int self_test, int page_format, int self_test_code, 8689 uint8_t *data_ptr, uint16_t param_list_length, 8690 uint8_t sense_len, uint32_t timeout) 8691 { 8692 struct scsi_send_diag *scsi_cmd; 8693 8694 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; 8695 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8696 scsi_cmd->opcode = SEND_DIAGNOSTIC; 8697 8698 /* 8699 * The default self-test mode control and specific test 8700 * control are mutually exclusive. 8701 */ 8702 if (self_test) 8703 self_test_code = SSD_SELF_TEST_CODE_NONE; 8704 8705 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) 8706 & SSD_SELF_TEST_CODE_MASK) 8707 | (unit_offline ? SSD_UNITOFFL : 0) 8708 | (device_offline ? SSD_DEVOFFL : 0) 8709 | (self_test ? SSD_SELFTEST : 0) 8710 | (page_format ? SSD_PF : 0); 8711 scsi_ulto2b(param_list_length, scsi_cmd->length); 8712 8713 cam_fill_csio(csio, 8714 retries, 8715 cbfcnp, 8716 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8717 tag_action, 8718 data_ptr, 8719 param_list_length, 8720 sense_len, 8721 sizeof(*scsi_cmd), 8722 timeout); 8723 } 8724 8725 void 8726 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8727 void (*cbfcnp)(struct cam_periph *, union ccb*), 8728 uint8_t tag_action, int mode, 8729 uint8_t buffer_id, u_int32_t offset, 8730 uint8_t *data_ptr, uint32_t allocation_length, 8731 uint8_t sense_len, uint32_t timeout) 8732 { 8733 struct scsi_read_buffer *scsi_cmd; 8734 8735 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes; 8736 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8737 scsi_cmd->opcode = READ_BUFFER; 8738 scsi_cmd->byte2 = mode; 8739 scsi_cmd->buffer_id = buffer_id; 8740 scsi_ulto3b(offset, scsi_cmd->offset); 8741 scsi_ulto3b(allocation_length, scsi_cmd->length); 8742 8743 cam_fill_csio(csio, 8744 retries, 8745 cbfcnp, 8746 /*flags*/CAM_DIR_IN, 8747 tag_action, 8748 data_ptr, 8749 allocation_length, 8750 sense_len, 8751 sizeof(*scsi_cmd), 8752 timeout); 8753 } 8754 8755 void 8756 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8757 void (*cbfcnp)(struct cam_periph *, union ccb *), 8758 uint8_t tag_action, int mode, 8759 uint8_t buffer_id, u_int32_t offset, 8760 uint8_t *data_ptr, uint32_t param_list_length, 8761 uint8_t sense_len, uint32_t timeout) 8762 { 8763 struct scsi_write_buffer *scsi_cmd; 8764 8765 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes; 8766 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8767 scsi_cmd->opcode = WRITE_BUFFER; 8768 scsi_cmd->byte2 = mode; 8769 scsi_cmd->buffer_id = buffer_id; 8770 scsi_ulto3b(offset, scsi_cmd->offset); 8771 scsi_ulto3b(param_list_length, scsi_cmd->length); 8772 8773 cam_fill_csio(csio, 8774 retries, 8775 cbfcnp, 8776 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8777 tag_action, 8778 data_ptr, 8779 param_list_length, 8780 sense_len, 8781 sizeof(*scsi_cmd), 8782 timeout); 8783 } 8784 8785 void 8786 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, 8787 void (*cbfcnp)(struct cam_periph *, union ccb *), 8788 u_int8_t tag_action, int start, int load_eject, 8789 int immediate, u_int8_t sense_len, u_int32_t timeout) 8790 { 8791 struct scsi_start_stop_unit *scsi_cmd; 8792 int extra_flags = 0; 8793 8794 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; 8795 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8796 scsi_cmd->opcode = START_STOP_UNIT; 8797 if (start != 0) { 8798 scsi_cmd->how |= SSS_START; 8799 /* it takes a lot of power to start a drive */ 8800 extra_flags |= CAM_HIGH_POWER; 8801 } 8802 if (load_eject != 0) 8803 scsi_cmd->how |= SSS_LOEJ; 8804 if (immediate != 0) 8805 scsi_cmd->byte2 |= SSS_IMMED; 8806 8807 cam_fill_csio(csio, 8808 retries, 8809 cbfcnp, 8810 /*flags*/CAM_DIR_NONE | extra_flags, 8811 tag_action, 8812 /*data_ptr*/NULL, 8813 /*dxfer_len*/0, 8814 sense_len, 8815 sizeof(*scsi_cmd), 8816 timeout); 8817 } 8818 8819 void 8820 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8821 void (*cbfcnp)(struct cam_periph *, union ccb *), 8822 u_int8_t tag_action, u_int8_t service_action, 8823 uint32_t element, u_int8_t elem_type, int logical_volume, 8824 int partition, u_int32_t first_attribute, int cache, 8825 u_int8_t *data_ptr, u_int32_t length, int sense_len, 8826 u_int32_t timeout) 8827 { 8828 struct scsi_read_attribute *scsi_cmd; 8829 8830 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes; 8831 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8832 8833 scsi_cmd->opcode = READ_ATTRIBUTE; 8834 scsi_cmd->service_action = service_action; 8835 scsi_ulto2b(element, scsi_cmd->element); 8836 scsi_cmd->elem_type = elem_type; 8837 scsi_cmd->logical_volume = logical_volume; 8838 scsi_cmd->partition = partition; 8839 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute); 8840 scsi_ulto4b(length, scsi_cmd->length); 8841 if (cache != 0) 8842 scsi_cmd->cache |= SRA_CACHE; 8843 8844 cam_fill_csio(csio, 8845 retries, 8846 cbfcnp, 8847 /*flags*/CAM_DIR_IN, 8848 tag_action, 8849 /*data_ptr*/data_ptr, 8850 /*dxfer_len*/length, 8851 sense_len, 8852 sizeof(*scsi_cmd), 8853 timeout); 8854 } 8855 8856 void 8857 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8858 void (*cbfcnp)(struct cam_periph *, union ccb *), 8859 u_int8_t tag_action, uint32_t element, int logical_volume, 8860 int partition, int wtc, u_int8_t *data_ptr, 8861 u_int32_t length, int sense_len, u_int32_t timeout) 8862 { 8863 struct scsi_write_attribute *scsi_cmd; 8864 8865 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes; 8866 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8867 8868 scsi_cmd->opcode = WRITE_ATTRIBUTE; 8869 if (wtc != 0) 8870 scsi_cmd->byte2 = SWA_WTC; 8871 scsi_ulto3b(element, scsi_cmd->element); 8872 scsi_cmd->logical_volume = logical_volume; 8873 scsi_cmd->partition = partition; 8874 scsi_ulto4b(length, scsi_cmd->length); 8875 8876 cam_fill_csio(csio, 8877 retries, 8878 cbfcnp, 8879 /*flags*/CAM_DIR_OUT, 8880 tag_action, 8881 /*data_ptr*/data_ptr, 8882 /*dxfer_len*/length, 8883 sense_len, 8884 sizeof(*scsi_cmd), 8885 timeout); 8886 } 8887 8888 void 8889 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, 8890 void (*cbfcnp)(struct cam_periph *, union ccb *), 8891 uint8_t tag_action, int service_action, 8892 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8893 int timeout) 8894 { 8895 struct scsi_per_res_in *scsi_cmd; 8896 8897 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes; 8898 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8899 8900 scsi_cmd->opcode = PERSISTENT_RES_IN; 8901 scsi_cmd->action = service_action; 8902 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8903 8904 cam_fill_csio(csio, 8905 retries, 8906 cbfcnp, 8907 /*flags*/CAM_DIR_IN, 8908 tag_action, 8909 data_ptr, 8910 dxfer_len, 8911 sense_len, 8912 sizeof(*scsi_cmd), 8913 timeout); 8914 } 8915 8916 void 8917 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, 8918 void (*cbfcnp)(struct cam_periph *, union ccb *), 8919 uint8_t tag_action, int service_action, 8920 int scope, int res_type, uint8_t *data_ptr, 8921 uint32_t dxfer_len, int sense_len, int timeout) 8922 { 8923 struct scsi_per_res_out *scsi_cmd; 8924 8925 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes; 8926 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8927 8928 scsi_cmd->opcode = PERSISTENT_RES_OUT; 8929 scsi_cmd->action = service_action; 8930 scsi_cmd->scope_type = scope | res_type; 8931 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8932 8933 cam_fill_csio(csio, 8934 retries, 8935 cbfcnp, 8936 /*flags*/CAM_DIR_OUT, 8937 tag_action, 8938 /*data_ptr*/data_ptr, 8939 /*dxfer_len*/dxfer_len, 8940 sense_len, 8941 sizeof(*scsi_cmd), 8942 timeout); 8943 } 8944 8945 void 8946 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, 8947 void (*cbfcnp)(struct cam_periph *, union ccb *), 8948 uint8_t tag_action, uint32_t security_protocol, 8949 uint32_t security_protocol_specific, int byte4, 8950 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8951 int timeout) 8952 { 8953 struct scsi_security_protocol_in *scsi_cmd; 8954 8955 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes; 8956 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8957 8958 scsi_cmd->opcode = SECURITY_PROTOCOL_IN; 8959 8960 scsi_cmd->security_protocol = security_protocol; 8961 scsi_ulto2b(security_protocol_specific, 8962 scsi_cmd->security_protocol_specific); 8963 scsi_cmd->byte4 = byte4; 8964 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8965 8966 cam_fill_csio(csio, 8967 retries, 8968 cbfcnp, 8969 /*flags*/CAM_DIR_IN, 8970 tag_action, 8971 data_ptr, 8972 dxfer_len, 8973 sense_len, 8974 sizeof(*scsi_cmd), 8975 timeout); 8976 } 8977 8978 void 8979 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, 8980 void (*cbfcnp)(struct cam_periph *, union ccb *), 8981 uint8_t tag_action, uint32_t security_protocol, 8982 uint32_t security_protocol_specific, int byte4, 8983 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8984 int timeout) 8985 { 8986 struct scsi_security_protocol_out *scsi_cmd; 8987 8988 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes; 8989 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8990 8991 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT; 8992 8993 scsi_cmd->security_protocol = security_protocol; 8994 scsi_ulto2b(security_protocol_specific, 8995 scsi_cmd->security_protocol_specific); 8996 scsi_cmd->byte4 = byte4; 8997 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8998 8999 cam_fill_csio(csio, 9000 retries, 9001 cbfcnp, 9002 /*flags*/CAM_DIR_OUT, 9003 tag_action, 9004 data_ptr, 9005 dxfer_len, 9006 sense_len, 9007 sizeof(*scsi_cmd), 9008 timeout); 9009 } 9010 9011 void 9012 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, 9013 void (*cbfcnp)(struct cam_periph *, union ccb *), 9014 uint8_t tag_action, int options, int req_opcode, 9015 int req_service_action, uint8_t *data_ptr, 9016 uint32_t dxfer_len, int sense_len, int timeout) 9017 { 9018 struct scsi_report_supported_opcodes *scsi_cmd; 9019 9020 scsi_cmd = (struct scsi_report_supported_opcodes *) 9021 &csio->cdb_io.cdb_bytes; 9022 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9023 9024 scsi_cmd->opcode = MAINTENANCE_IN; 9025 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES; 9026 scsi_cmd->options = options; 9027 scsi_cmd->requested_opcode = req_opcode; 9028 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action); 9029 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9030 9031 cam_fill_csio(csio, 9032 retries, 9033 cbfcnp, 9034 /*flags*/CAM_DIR_IN, 9035 tag_action, 9036 data_ptr, 9037 dxfer_len, 9038 sense_len, 9039 sizeof(*scsi_cmd), 9040 timeout); 9041 } 9042 9043 /* 9044 * Try make as good a match as possible with 9045 * available sub drivers 9046 */ 9047 int 9048 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9049 { 9050 struct scsi_inquiry_pattern *entry; 9051 struct scsi_inquiry_data *inq; 9052 9053 entry = (struct scsi_inquiry_pattern *)table_entry; 9054 inq = (struct scsi_inquiry_data *)inqbuffer; 9055 9056 if (((SID_TYPE(inq) == entry->type) 9057 || (entry->type == T_ANY)) 9058 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9059 : entry->media_type & SIP_MEDIA_FIXED) 9060 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9061 && (cam_strmatch(inq->product, entry->product, 9062 sizeof(inq->product)) == 0) 9063 && (cam_strmatch(inq->revision, entry->revision, 9064 sizeof(inq->revision)) == 0)) { 9065 return (0); 9066 } 9067 return (-1); 9068 } 9069 9070 /* 9071 * Try make as good a match as possible with 9072 * available sub drivers 9073 */ 9074 int 9075 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9076 { 9077 struct scsi_static_inquiry_pattern *entry; 9078 struct scsi_inquiry_data *inq; 9079 9080 entry = (struct scsi_static_inquiry_pattern *)table_entry; 9081 inq = (struct scsi_inquiry_data *)inqbuffer; 9082 9083 if (((SID_TYPE(inq) == entry->type) 9084 || (entry->type == T_ANY)) 9085 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9086 : entry->media_type & SIP_MEDIA_FIXED) 9087 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9088 && (cam_strmatch(inq->product, entry->product, 9089 sizeof(inq->product)) == 0) 9090 && (cam_strmatch(inq->revision, entry->revision, 9091 sizeof(inq->revision)) == 0)) { 9092 return (0); 9093 } 9094 return (-1); 9095 } 9096 9097 /** 9098 * Compare two buffers of vpd device descriptors for a match. 9099 * 9100 * \param lhs Pointer to first buffer of descriptors to compare. 9101 * \param lhs_len The length of the first buffer. 9102 * \param rhs Pointer to second buffer of descriptors to compare. 9103 * \param rhs_len The length of the second buffer. 9104 * 9105 * \return 0 on a match, -1 otherwise. 9106 * 9107 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching 9108 * against each element in rhs until all data are exhausted or we have found 9109 * a match. 9110 */ 9111 int 9112 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) 9113 { 9114 struct scsi_vpd_id_descriptor *lhs_id; 9115 struct scsi_vpd_id_descriptor *lhs_last; 9116 struct scsi_vpd_id_descriptor *rhs_last; 9117 uint8_t *lhs_end; 9118 uint8_t *rhs_end; 9119 9120 lhs_end = lhs + lhs_len; 9121 rhs_end = rhs + rhs_len; 9122 9123 /* 9124 * rhs_last and lhs_last are the last posible position of a valid 9125 * descriptor assuming it had a zero length identifier. We use 9126 * these variables to insure we can safely dereference the length 9127 * field in our loop termination tests. 9128 */ 9129 lhs_last = (struct scsi_vpd_id_descriptor *) 9130 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9131 rhs_last = (struct scsi_vpd_id_descriptor *) 9132 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9133 9134 lhs_id = (struct scsi_vpd_id_descriptor *)lhs; 9135 while (lhs_id <= lhs_last 9136 && (lhs_id->identifier + lhs_id->length) <= lhs_end) { 9137 struct scsi_vpd_id_descriptor *rhs_id; 9138 9139 rhs_id = (struct scsi_vpd_id_descriptor *)rhs; 9140 while (rhs_id <= rhs_last 9141 && (rhs_id->identifier + rhs_id->length) <= rhs_end) { 9142 9143 if ((rhs_id->id_type & 9144 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) == 9145 (lhs_id->id_type & 9146 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) 9147 && rhs_id->length == lhs_id->length 9148 && memcmp(rhs_id->identifier, lhs_id->identifier, 9149 rhs_id->length) == 0) 9150 return (0); 9151 9152 rhs_id = (struct scsi_vpd_id_descriptor *) 9153 (rhs_id->identifier + rhs_id->length); 9154 } 9155 lhs_id = (struct scsi_vpd_id_descriptor *) 9156 (lhs_id->identifier + lhs_id->length); 9157 } 9158 return (-1); 9159 } 9160 9161 #ifdef _KERNEL 9162 int 9163 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id) 9164 { 9165 struct cam_ed *device; 9166 struct scsi_vpd_supported_pages *vpds; 9167 int i, num_pages; 9168 9169 device = periph->path->device; 9170 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; 9171 9172 if (vpds != NULL) { 9173 num_pages = device->supported_vpds_len - 9174 SVPD_SUPPORTED_PAGES_HDR_LEN; 9175 for (i = 0; i < num_pages; i++) { 9176 if (vpds->page_list[i] == page_id) 9177 return (1); 9178 } 9179 } 9180 9181 return (0); 9182 } 9183 9184 static void 9185 init_scsi_delay(void) 9186 { 9187 int delay; 9188 9189 delay = SCSI_DELAY; 9190 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); 9191 9192 if (set_scsi_delay(delay) != 0) { 9193 printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); 9194 set_scsi_delay(SCSI_DELAY); 9195 } 9196 } 9197 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); 9198 9199 static int 9200 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) 9201 { 9202 int error, delay; 9203 9204 delay = scsi_delay; 9205 error = sysctl_handle_int(oidp, &delay, 0, req); 9206 if (error != 0 || req->newptr == NULL) 9207 return (error); 9208 return (set_scsi_delay(delay)); 9209 } 9210 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT|CTLFLAG_RW, 9211 0, 0, sysctl_scsi_delay, "I", 9212 "Delay to allow devices to settle after a SCSI bus reset (ms)"); 9213 9214 static int 9215 set_scsi_delay(int delay) 9216 { 9217 /* 9218 * If someone sets this to 0, we assume that they want the 9219 * minimum allowable bus settle delay. 9220 */ 9221 if (delay == 0) { 9222 printf("cam: using minimum scsi_delay (%dms)\n", 9223 SCSI_MIN_DELAY); 9224 delay = SCSI_MIN_DELAY; 9225 } 9226 if (delay < SCSI_MIN_DELAY) 9227 return (EINVAL); 9228 scsi_delay = delay; 9229 return (0); 9230 } 9231 #endif /* _KERNEL */ 9232