xref: /freebsd/sys/cam/scsi/scsi_all.c (revision ca987d4641cdcd7f27e153db17c5bf064934faf5)
1 /*-
2  * Implementation of Utility functions for all SCSI device types.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/stdint.h>
36 
37 #ifdef _KERNEL
38 #include "opt_scsi.h"
39 
40 #include <sys/systm.h>
41 #include <sys/libkern.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/ctype.h>
48 #else
49 #include <errno.h>
50 #include <stdio.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <ctype.h>
54 #endif
55 
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_queue.h>
59 #include <cam/cam_xpt.h>
60 #include <cam/scsi/scsi_all.h>
61 #include <sys/ata.h>
62 #include <sys/sbuf.h>
63 
64 #ifdef _KERNEL
65 #include <cam/cam_periph.h>
66 #include <cam/cam_xpt_sim.h>
67 #include <cam/cam_xpt_periph.h>
68 #include <cam/cam_xpt_internal.h>
69 #else
70 #include <camlib.h>
71 #include <stddef.h>
72 
73 #ifndef FALSE
74 #define FALSE   0
75 #endif /* FALSE */
76 #ifndef TRUE
77 #define TRUE    1
78 #endif /* TRUE */
79 #define ERESTART        -1              /* restart syscall */
80 #define EJUSTRETURN     -2              /* don't modify regs, just return */
81 #endif /* !_KERNEL */
82 
83 /*
84  * This is the default number of milliseconds we wait for devices to settle
85  * after a SCSI bus reset.
86  */
87 #ifndef SCSI_DELAY
88 #define SCSI_DELAY 2000
89 #endif
90 /*
91  * All devices need _some_ sort of bus settle delay, so we'll set it to
92  * a minimum value of 100ms. Note that this is pertinent only for SPI-
93  * not transport like Fibre Channel or iSCSI where 'delay' is completely
94  * meaningless.
95  */
96 #ifndef SCSI_MIN_DELAY
97 #define SCSI_MIN_DELAY 100
98 #endif
99 /*
100  * Make sure the user isn't using seconds instead of milliseconds.
101  */
102 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0)
103 #error "SCSI_DELAY is in milliseconds, not seconds!  Please use a larger value"
104 #endif
105 
106 int scsi_delay;
107 
108 static int	ascentrycomp(const void *key, const void *member);
109 static int	senseentrycomp(const void *key, const void *member);
110 static void	fetchtableentries(int sense_key, int asc, int ascq,
111 				  struct scsi_inquiry_data *,
112 				  const struct sense_key_table_entry **,
113 				  const struct asc_table_entry **);
114 
115 #ifdef _KERNEL
116 static void	init_scsi_delay(void);
117 static int	sysctl_scsi_delay(SYSCTL_HANDLER_ARGS);
118 static int	set_scsi_delay(int delay);
119 #endif
120 
121 #if !defined(SCSI_NO_OP_STRINGS)
122 
123 #define	D	(1 << T_DIRECT)
124 #define	T	(1 << T_SEQUENTIAL)
125 #define	L	(1 << T_PRINTER)
126 #define	P	(1 << T_PROCESSOR)
127 #define	W	(1 << T_WORM)
128 #define	R	(1 << T_CDROM)
129 #define	O	(1 << T_OPTICAL)
130 #define	M	(1 << T_CHANGER)
131 #define	A	(1 << T_STORARRAY)
132 #define	E	(1 << T_ENCLOSURE)
133 #define	B	(1 << T_RBC)
134 #define	K	(1 << T_OCRW)
135 #define	V	(1 << T_ADC)
136 #define	F	(1 << T_OSD)
137 #define	S	(1 << T_SCANNER)
138 #define	C	(1 << T_COMM)
139 
140 #define ALL	(D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C)
141 
142 static struct op_table_entry plextor_cd_ops[] = {
143 	{ 0xD8, R, "CD-DA READ" }
144 };
145 
146 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = {
147 	{
148 		/*
149 		 * I believe that 0xD8 is the Plextor proprietary command
150 		 * to read CD-DA data.  I'm not sure which Plextor CDROM
151 		 * models support the command, though.  I know for sure
152 		 * that the 4X, 8X, and 12X models do, and presumably the
153 		 * 12-20X does.  I don't know about any earlier models,
154 		 * though.  If anyone has any more complete information,
155 		 * feel free to change this quirk entry.
156 		 */
157 		{T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"},
158 		nitems(plextor_cd_ops),
159 		plextor_cd_ops
160 	}
161 };
162 
163 static struct op_table_entry scsi_op_codes[] = {
164 	/*
165 	 * From: http://www.t10.org/lists/op-num.txt
166 	 * Modifications by Kenneth Merry (ken@FreeBSD.ORG)
167 	 *              and Jung-uk Kim (jkim@FreeBSD.org)
168 	 *
169 	 * Note:  order is important in this table, scsi_op_desc() currently
170 	 * depends on the opcodes in the table being in order to save
171 	 * search time.
172 	 * Note:  scanner and comm. devices are carried over from the previous
173 	 * version because they were removed in the latest spec.
174 	 */
175 	/* File: OP-NUM.TXT
176 	 *
177 	 * SCSI Operation Codes
178 	 * Numeric Sorted Listing
179 	 * as of  5/26/15
180 	 *
181 	 *     D - DIRECT ACCESS DEVICE (SBC-2)                device column key
182 	 *     .T - SEQUENTIAL ACCESS DEVICE (SSC-2)           -----------------
183 	 *     . L - PRINTER DEVICE (SSC)                      M = Mandatory
184 	 *     .  P - PROCESSOR DEVICE (SPC)                   O = Optional
185 	 *     .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec.
186 	 *     .  . R - CD/DVE DEVICE (MMC-3)                  Z = Obsolete
187 	 *     .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
188 	 *     .  .  .M - MEDIA CHANGER DEVICE (SMC-2)
189 	 *     .  .  . A - STORAGE ARRAY DEVICE (SCC-2)
190 	 *     .  .  . .E - ENCLOSURE SERVICES DEVICE (SES)
191 	 *     .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
192 	 *     .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
193 	 *     .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
194 	 *     .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
195 	 * OP  DTLPWROMAEBKVF  Description
196 	 * --  --------------  ---------------------------------------------- */
197 	/* 00  MMMMMMMMMMMMMM  TEST UNIT READY */
198 	{ 0x00,	ALL, "TEST UNIT READY" },
199 	/* 01   M              REWIND */
200 	{ 0x01,	T, "REWIND" },
201 	/* 01  Z V ZZZZ        REZERO UNIT */
202 	{ 0x01,	D | W | R | O | M, "REZERO UNIT" },
203 	/* 02  VVVVVV V */
204 	/* 03  MMMMMMMMMMOMMM  REQUEST SENSE */
205 	{ 0x03,	ALL, "REQUEST SENSE" },
206 	/* 04  M    OO         FORMAT UNIT */
207 	{ 0x04,	D | R | O, "FORMAT UNIT" },
208 	/* 04   O              FORMAT MEDIUM */
209 	{ 0x04,	T, "FORMAT MEDIUM" },
210 	/* 04    O             FORMAT */
211 	{ 0x04,	L, "FORMAT" },
212 	/* 05  VMVVVV V        READ BLOCK LIMITS */
213 	{ 0x05,	T, "READ BLOCK LIMITS" },
214 	/* 06  VVVVVV V */
215 	/* 07  OVV O OV        REASSIGN BLOCKS */
216 	{ 0x07,	D | W | O, "REASSIGN BLOCKS" },
217 	/* 07         O        INITIALIZE ELEMENT STATUS */
218 	{ 0x07,	M, "INITIALIZE ELEMENT STATUS" },
219 	/* 08  MOV O OV        READ(6) */
220 	{ 0x08,	D | T | W | O, "READ(6)" },
221 	/* 08     O            RECEIVE */
222 	{ 0x08,	P, "RECEIVE" },
223 	/* 08                  GET MESSAGE(6) */
224 	{ 0x08, C, "GET MESSAGE(6)" },
225 	/* 09  VVVVVV V */
226 	/* 0A  OO  O OV        WRITE(6) */
227 	{ 0x0A,	D | T | W | O, "WRITE(6)" },
228 	/* 0A     M            SEND(6) */
229 	{ 0x0A,	P, "SEND(6)" },
230 	/* 0A                  SEND MESSAGE(6) */
231 	{ 0x0A, C, "SEND MESSAGE(6)" },
232 	/* 0A    M             PRINT */
233 	{ 0x0A,	L, "PRINT" },
234 	/* 0B  Z   ZOZV        SEEK(6) */
235 	{ 0x0B,	D | W | R | O, "SEEK(6)" },
236 	/* 0B   O              SET CAPACITY */
237 	{ 0x0B,	T, "SET CAPACITY" },
238 	/* 0B    O             SLEW AND PRINT */
239 	{ 0x0B,	L, "SLEW AND PRINT" },
240 	/* 0C  VVVVVV V */
241 	/* 0D  VVVVVV V */
242 	/* 0E  VVVVVV V */
243 	/* 0F  VOVVVV V        READ REVERSE(6) */
244 	{ 0x0F,	T, "READ REVERSE(6)" },
245 	/* 10  VM VVV          WRITE FILEMARKS(6) */
246 	{ 0x10,	T, "WRITE FILEMARKS(6)" },
247 	/* 10    O             SYNCHRONIZE BUFFER */
248 	{ 0x10,	L, "SYNCHRONIZE BUFFER" },
249 	/* 11  VMVVVV          SPACE(6) */
250 	{ 0x11,	T, "SPACE(6)" },
251 	/* 12  MMMMMMMMMMMMMM  INQUIRY */
252 	{ 0x12,	ALL, "INQUIRY" },
253 	/* 13  V VVVV */
254 	/* 13   O              VERIFY(6) */
255 	{ 0x13,	T, "VERIFY(6)" },
256 	/* 14  VOOVVV          RECOVER BUFFERED DATA */
257 	{ 0x14,	T | L, "RECOVER BUFFERED DATA" },
258 	/* 15  OMO O OOOO OO   MODE SELECT(6) */
259 	{ 0x15,	ALL & ~(P | R | B | F), "MODE SELECT(6)" },
260 	/* 16  ZZMZO OOOZ O    RESERVE(6) */
261 	{ 0x16,	ALL & ~(R | B | V | F | C), "RESERVE(6)" },
262 	/* 16         Z        RESERVE ELEMENT(6) */
263 	{ 0x16,	M, "RESERVE ELEMENT(6)" },
264 	/* 17  ZZMZO OOOZ O    RELEASE(6) */
265 	{ 0x17,	ALL & ~(R | B | V | F | C), "RELEASE(6)" },
266 	/* 17         Z        RELEASE ELEMENT(6) */
267 	{ 0x17,	M, "RELEASE ELEMENT(6)" },
268 	/* 18  ZZZZOZO    Z    COPY */
269 	{ 0x18,	D | T | L | P | W | R | O | K | S, "COPY" },
270 	/* 19  VMVVVV          ERASE(6) */
271 	{ 0x19,	T, "ERASE(6)" },
272 	/* 1A  OMO O OOOO OO   MODE SENSE(6) */
273 	{ 0x1A,	ALL & ~(P | R | B | F), "MODE SENSE(6)" },
274 	/* 1B  O   OOO O MO O  START STOP UNIT */
275 	{ 0x1B,	D | W | R | O | A | B | K | F, "START STOP UNIT" },
276 	/* 1B   O          M   LOAD UNLOAD */
277 	{ 0x1B,	T | V, "LOAD UNLOAD" },
278 	/* 1B                  SCAN */
279 	{ 0x1B, S, "SCAN" },
280 	/* 1B    O             STOP PRINT */
281 	{ 0x1B,	L, "STOP PRINT" },
282 	/* 1B         O        OPEN/CLOSE IMPORT/EXPORT ELEMENT */
283 	{ 0x1B,	M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" },
284 	/* 1C  OOOOO OOOM OOO  RECEIVE DIAGNOSTIC RESULTS */
285 	{ 0x1C,	ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" },
286 	/* 1D  MMMMM MMOM MMM  SEND DIAGNOSTIC */
287 	{ 0x1D,	ALL & ~(R | B), "SEND DIAGNOSTIC" },
288 	/* 1E  OO  OOOO   O O  PREVENT ALLOW MEDIUM REMOVAL */
289 	{ 0x1E,	D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" },
290 	/* 1F */
291 	/* 20  V   VVV    V */
292 	/* 21  V   VVV    V */
293 	/* 22  V   VVV    V */
294 	/* 23  V   V V    V */
295 	/* 23       O          READ FORMAT CAPACITIES */
296 	{ 0x23,	R, "READ FORMAT CAPACITIES" },
297 	/* 24  V   VV          SET WINDOW */
298 	{ 0x24, S, "SET WINDOW" },
299 	/* 25  M   M M   M     READ CAPACITY(10) */
300 	{ 0x25,	D | W | O | B, "READ CAPACITY(10)" },
301 	/* 25       O          READ CAPACITY */
302 	{ 0x25,	R, "READ CAPACITY" },
303 	/* 25             M    READ CARD CAPACITY */
304 	{ 0x25,	K, "READ CARD CAPACITY" },
305 	/* 25                  GET WINDOW */
306 	{ 0x25, S, "GET WINDOW" },
307 	/* 26  V   VV */
308 	/* 27  V   VV */
309 	/* 28  M   MOM   MM    READ(10) */
310 	{ 0x28,	D | W | R | O | B | K | S, "READ(10)" },
311 	/* 28                  GET MESSAGE(10) */
312 	{ 0x28, C, "GET MESSAGE(10)" },
313 	/* 29  V   VVO         READ GENERATION */
314 	{ 0x29,	O, "READ GENERATION" },
315 	/* 2A  O   MOM   MO    WRITE(10) */
316 	{ 0x2A,	D | W | R | O | B | K, "WRITE(10)" },
317 	/* 2A                  SEND(10) */
318 	{ 0x2A, S, "SEND(10)" },
319 	/* 2A                  SEND MESSAGE(10) */
320 	{ 0x2A, C, "SEND MESSAGE(10)" },
321 	/* 2B  Z   OOO    O    SEEK(10) */
322 	{ 0x2B,	D | W | R | O | K, "SEEK(10)" },
323 	/* 2B   O              LOCATE(10) */
324 	{ 0x2B,	T, "LOCATE(10)" },
325 	/* 2B         O        POSITION TO ELEMENT */
326 	{ 0x2B,	M, "POSITION TO ELEMENT" },
327 	/* 2C  V    OO         ERASE(10) */
328 	{ 0x2C,	R | O, "ERASE(10)" },
329 	/* 2D        O         READ UPDATED BLOCK */
330 	{ 0x2D,	O, "READ UPDATED BLOCK" },
331 	/* 2D  V */
332 	/* 2E  O   OOO   MO    WRITE AND VERIFY(10) */
333 	{ 0x2E,	D | W | R | O | B | K, "WRITE AND VERIFY(10)" },
334 	/* 2F  O   OOO         VERIFY(10) */
335 	{ 0x2F,	D | W | R | O, "VERIFY(10)" },
336 	/* 30  Z   ZZZ         SEARCH DATA HIGH(10) */
337 	{ 0x30,	D | W | R | O, "SEARCH DATA HIGH(10)" },
338 	/* 31  Z   ZZZ         SEARCH DATA EQUAL(10) */
339 	{ 0x31,	D | W | R | O, "SEARCH DATA EQUAL(10)" },
340 	/* 31                  OBJECT POSITION */
341 	{ 0x31, S, "OBJECT POSITION" },
342 	/* 32  Z   ZZZ         SEARCH DATA LOW(10) */
343 	{ 0x32,	D | W | R | O, "SEARCH DATA LOW(10)" },
344 	/* 33  Z   OZO         SET LIMITS(10) */
345 	{ 0x33,	D | W | R | O, "SET LIMITS(10)" },
346 	/* 34  O   O O    O    PRE-FETCH(10) */
347 	{ 0x34,	D | W | O | K, "PRE-FETCH(10)" },
348 	/* 34   M              READ POSITION */
349 	{ 0x34,	T, "READ POSITION" },
350 	/* 34                  GET DATA BUFFER STATUS */
351 	{ 0x34, S, "GET DATA BUFFER STATUS" },
352 	/* 35  O   OOO   MO    SYNCHRONIZE CACHE(10) */
353 	{ 0x35,	D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" },
354 	/* 36  Z   O O    O    LOCK UNLOCK CACHE(10) */
355 	{ 0x36,	D | W | O | K, "LOCK UNLOCK CACHE(10)" },
356 	/* 37  O     O         READ DEFECT DATA(10) */
357 	{ 0x37,	D | O, "READ DEFECT DATA(10)" },
358 	/* 37         O        INITIALIZE ELEMENT STATUS WITH RANGE */
359 	{ 0x37,	M, "INITIALIZE ELEMENT STATUS WITH RANGE" },
360 	/* 38      O O    O    MEDIUM SCAN */
361 	{ 0x38,	W | O | K, "MEDIUM SCAN" },
362 	/* 39  ZZZZOZO    Z    COMPARE */
363 	{ 0x39,	D | T | L | P | W | R | O | K | S, "COMPARE" },
364 	/* 3A  ZZZZOZO    Z    COPY AND VERIFY */
365 	{ 0x3A,	D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" },
366 	/* 3B  OOOOOOOOOOMOOO  WRITE BUFFER */
367 	{ 0x3B,	ALL, "WRITE BUFFER" },
368 	/* 3C  OOOOOOOOOO OOO  READ BUFFER */
369 	{ 0x3C,	ALL & ~(B), "READ BUFFER" },
370 	/* 3D        O         UPDATE BLOCK */
371 	{ 0x3D,	O, "UPDATE BLOCK" },
372 	/* 3E  O   O O         READ LONG(10) */
373 	{ 0x3E,	D | W | O, "READ LONG(10)" },
374 	/* 3F  O   O O         WRITE LONG(10) */
375 	{ 0x3F,	D | W | O, "WRITE LONG(10)" },
376 	/* 40  ZZZZOZOZ        CHANGE DEFINITION */
377 	{ 0x40,	D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" },
378 	/* 41  O               WRITE SAME(10) */
379 	{ 0x41,	D, "WRITE SAME(10)" },
380 	/* 42       O          UNMAP */
381 	{ 0x42,	D, "UNMAP" },
382 	/* 42       O          READ SUB-CHANNEL */
383 	{ 0x42,	R, "READ SUB-CHANNEL" },
384 	/* 43       O          READ TOC/PMA/ATIP */
385 	{ 0x43,	R, "READ TOC/PMA/ATIP" },
386 	/* 44   M          M   REPORT DENSITY SUPPORT */
387 	{ 0x44,	T | V, "REPORT DENSITY SUPPORT" },
388 	/* 44                  READ HEADER */
389 	/* 45       O          PLAY AUDIO(10) */
390 	{ 0x45,	R, "PLAY AUDIO(10)" },
391 	/* 46       M          GET CONFIGURATION */
392 	{ 0x46,	R, "GET CONFIGURATION" },
393 	/* 47       O          PLAY AUDIO MSF */
394 	{ 0x47,	R, "PLAY AUDIO MSF" },
395 	/* 48 */
396 	/* 49 */
397 	/* 4A       M          GET EVENT STATUS NOTIFICATION */
398 	{ 0x4A,	R, "GET EVENT STATUS NOTIFICATION" },
399 	/* 4B       O          PAUSE/RESUME */
400 	{ 0x4B,	R, "PAUSE/RESUME" },
401 	/* 4C  OOOOO OOOO OOO  LOG SELECT */
402 	{ 0x4C,	ALL & ~(R | B), "LOG SELECT" },
403 	/* 4D  OOOOO OOOO OMO  LOG SENSE */
404 	{ 0x4D,	ALL & ~(R | B), "LOG SENSE" },
405 	/* 4E       O          STOP PLAY/SCAN */
406 	{ 0x4E,	R, "STOP PLAY/SCAN" },
407 	/* 4F */
408 	/* 50  O               XDWRITE(10) */
409 	{ 0x50,	D, "XDWRITE(10)" },
410 	/* 51  O               XPWRITE(10) */
411 	{ 0x51,	D, "XPWRITE(10)" },
412 	/* 51       O          READ DISC INFORMATION */
413 	{ 0x51,	R, "READ DISC INFORMATION" },
414 	/* 52  O               XDREAD(10) */
415 	{ 0x52,	D, "XDREAD(10)" },
416 	/* 52       O          READ TRACK INFORMATION */
417 	{ 0x52,	R, "READ TRACK INFORMATION" },
418 	/* 53       O          RESERVE TRACK */
419 	{ 0x53,	R, "RESERVE TRACK" },
420 	/* 54       O          SEND OPC INFORMATION */
421 	{ 0x54,	R, "SEND OPC INFORMATION" },
422 	/* 55  OOO OMOOOOMOMO  MODE SELECT(10) */
423 	{ 0x55,	ALL & ~(P), "MODE SELECT(10)" },
424 	/* 56  ZZMZO OOOZ      RESERVE(10) */
425 	{ 0x56,	ALL & ~(R | B | K | V | F | C), "RESERVE(10)" },
426 	/* 56         Z        RESERVE ELEMENT(10) */
427 	{ 0x56,	M, "RESERVE ELEMENT(10)" },
428 	/* 57  ZZMZO OOOZ      RELEASE(10) */
429 	{ 0x57,	ALL & ~(R | B | K | V | F | C), "RELEASE(10)" },
430 	/* 57         Z        RELEASE ELEMENT(10) */
431 	{ 0x57,	M, "RELEASE ELEMENT(10)" },
432 	/* 58       O          REPAIR TRACK */
433 	{ 0x58,	R, "REPAIR TRACK" },
434 	/* 59 */
435 	/* 5A  OOO OMOOOOMOMO  MODE SENSE(10) */
436 	{ 0x5A,	ALL & ~(P), "MODE SENSE(10)" },
437 	/* 5B       O          CLOSE TRACK/SESSION */
438 	{ 0x5B,	R, "CLOSE TRACK/SESSION" },
439 	/* 5C       O          READ BUFFER CAPACITY */
440 	{ 0x5C,	R, "READ BUFFER CAPACITY" },
441 	/* 5D       O          SEND CUE SHEET */
442 	{ 0x5D,	R, "SEND CUE SHEET" },
443 	/* 5E  OOOOO OOOO   M  PERSISTENT RESERVE IN */
444 	{ 0x5E,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" },
445 	/* 5F  OOOOO OOOO   M  PERSISTENT RESERVE OUT */
446 	{ 0x5F,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" },
447 	/* 7E  OO   O OOOO O   extended CDB */
448 	{ 0x7E,	D | T | R | M | A | E | B | V, "extended CDB" },
449 	/* 7F  O            M  variable length CDB (more than 16 bytes) */
450 	{ 0x7F,	D | F, "variable length CDB (more than 16 bytes)" },
451 	/* 80  Z               XDWRITE EXTENDED(16) */
452 	{ 0x80,	D, "XDWRITE EXTENDED(16)" },
453 	/* 80   M              WRITE FILEMARKS(16) */
454 	{ 0x80,	T, "WRITE FILEMARKS(16)" },
455 	/* 81  Z               REBUILD(16) */
456 	{ 0x81,	D, "REBUILD(16)" },
457 	/* 81   O              READ REVERSE(16) */
458 	{ 0x81,	T, "READ REVERSE(16)" },
459 	/* 82  Z               REGENERATE(16) */
460 	{ 0x82,	D, "REGENERATE(16)" },
461 	/* 83  OOOOO O    OO   EXTENDED COPY */
462 	{ 0x83,	D | T | L | P | W | O | K | V, "EXTENDED COPY" },
463 	/* 84  OOOOO O    OO   RECEIVE COPY RESULTS */
464 	{ 0x84,	D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" },
465 	/* 85  O    O    O     ATA COMMAND PASS THROUGH(16) */
466 	{ 0x85,	D | R | B, "ATA COMMAND PASS THROUGH(16)" },
467 	/* 86  OO OO OOOOOOO   ACCESS CONTROL IN */
468 	{ 0x86,	ALL & ~(L | R | F), "ACCESS CONTROL IN" },
469 	/* 87  OO OO OOOOOOO   ACCESS CONTROL OUT */
470 	{ 0x87,	ALL & ~(L | R | F), "ACCESS CONTROL OUT" },
471 	/* 88  MM  O O   O     READ(16) */
472 	{ 0x88,	D | T | W | O | B, "READ(16)" },
473 	/* 89  O               COMPARE AND WRITE*/
474 	{ 0x89,	D, "COMPARE AND WRITE" },
475 	/* 8A  OM  O O   O     WRITE(16) */
476 	{ 0x8A,	D | T | W | O | B, "WRITE(16)" },
477 	/* 8B  O               ORWRITE */
478 	{ 0x8B,	D, "ORWRITE" },
479 	/* 8C  OO  O OO  O M   READ ATTRIBUTE */
480 	{ 0x8C,	D | T | W | O | M | B | V, "READ ATTRIBUTE" },
481 	/* 8D  OO  O OO  O O   WRITE ATTRIBUTE */
482 	{ 0x8D,	D | T | W | O | M | B | V, "WRITE ATTRIBUTE" },
483 	/* 8E  O   O O   O     WRITE AND VERIFY(16) */
484 	{ 0x8E,	D | W | O | B, "WRITE AND VERIFY(16)" },
485 	/* 8F  OO  O O   O     VERIFY(16) */
486 	{ 0x8F,	D | T | W | O | B, "VERIFY(16)" },
487 	/* 90  O   O O   O     PRE-FETCH(16) */
488 	{ 0x90,	D | W | O | B, "PRE-FETCH(16)" },
489 	/* 91  O   O O   O     SYNCHRONIZE CACHE(16) */
490 	{ 0x91,	D | W | O | B, "SYNCHRONIZE CACHE(16)" },
491 	/* 91   O              SPACE(16) */
492 	{ 0x91,	T, "SPACE(16)" },
493 	/* 92  Z   O O         LOCK UNLOCK CACHE(16) */
494 	{ 0x92,	D | W | O, "LOCK UNLOCK CACHE(16)" },
495 	/* 92   O              LOCATE(16) */
496 	{ 0x92,	T, "LOCATE(16)" },
497 	/* 93  O               WRITE SAME(16) */
498 	{ 0x93,	D, "WRITE SAME(16)" },
499 	/* 93   M              ERASE(16) */
500 	{ 0x93,	T, "ERASE(16)" },
501 	/* 94  O               ZBC OUT */
502 	{ 0x94,	ALL, "ZBC OUT" },
503 	/* 95  O               ZBC IN */
504 	{ 0x95,	ALL, "ZBC IN" },
505 	/* 96 */
506 	/* 97 */
507 	/* 98 */
508 	/* 99 */
509 	/* 9A  O               WRITE STREAM(16) */
510 	{ 0x9A,	D, "WRITE STREAM(16)" },
511 	/* 9B  OOOOOOOOOO OOO  READ BUFFER(16) */
512 	{ 0x9B,	ALL & ~(B) , "READ BUFFER(16)" },
513 	/* 9C  O              WRITE ATOMIC(16) */
514 	{ 0x9C, D, "WRITE ATOMIC(16)" },
515 	/* 9D                  SERVICE ACTION BIDIRECTIONAL */
516 	{ 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" },
517 	/* XXX KDM ALL for this?  op-num.txt defines it for none.. */
518 	/* 9E                  SERVICE ACTION IN(16) */
519 	{ 0x9E, ALL, "SERVICE ACTION IN(16)" },
520 	/* 9F              M   SERVICE ACTION OUT(16) */
521 	{ 0x9F,	ALL, "SERVICE ACTION OUT(16)" },
522 	/* A0  MMOOO OMMM OMO  REPORT LUNS */
523 	{ 0xA0,	ALL & ~(R | B), "REPORT LUNS" },
524 	/* A1       O          BLANK */
525 	{ 0xA1,	R, "BLANK" },
526 	/* A1  O         O     ATA COMMAND PASS THROUGH(12) */
527 	{ 0xA1,	D | B, "ATA COMMAND PASS THROUGH(12)" },
528 	/* A2  OO   O      O   SECURITY PROTOCOL IN */
529 	{ 0xA2,	D | T | R | V, "SECURITY PROTOCOL IN" },
530 	/* A3  OOO O OOMOOOM   MAINTENANCE (IN) */
531 	{ 0xA3,	ALL & ~(P | R | F), "MAINTENANCE (IN)" },
532 	/* A3       O          SEND KEY */
533 	{ 0xA3,	R, "SEND KEY" },
534 	/* A4  OOO O OOOOOOO   MAINTENANCE (OUT) */
535 	{ 0xA4,	ALL & ~(P | R | F), "MAINTENANCE (OUT)" },
536 	/* A4       O          REPORT KEY */
537 	{ 0xA4,	R, "REPORT KEY" },
538 	/* A5   O  O OM        MOVE MEDIUM */
539 	{ 0xA5,	T | W | O | M, "MOVE MEDIUM" },
540 	/* A5       O          PLAY AUDIO(12) */
541 	{ 0xA5,	R, "PLAY AUDIO(12)" },
542 	/* A6         O        EXCHANGE MEDIUM */
543 	{ 0xA6,	M, "EXCHANGE MEDIUM" },
544 	/* A6       O          LOAD/UNLOAD C/DVD */
545 	{ 0xA6,	R, "LOAD/UNLOAD C/DVD" },
546 	/* A7  ZZ  O O         MOVE MEDIUM ATTACHED */
547 	{ 0xA7,	D | T | W | O, "MOVE MEDIUM ATTACHED" },
548 	/* A7       O          SET READ AHEAD */
549 	{ 0xA7,	R, "SET READ AHEAD" },
550 	/* A8  O   OOO         READ(12) */
551 	{ 0xA8,	D | W | R | O, "READ(12)" },
552 	/* A8                  GET MESSAGE(12) */
553 	{ 0xA8, C, "GET MESSAGE(12)" },
554 	/* A9              O   SERVICE ACTION OUT(12) */
555 	{ 0xA9,	V, "SERVICE ACTION OUT(12)" },
556 	/* AA  O   OOO         WRITE(12) */
557 	{ 0xAA,	D | W | R | O, "WRITE(12)" },
558 	/* AA                  SEND MESSAGE(12) */
559 	{ 0xAA, C, "SEND MESSAGE(12)" },
560 	/* AB       O      O   SERVICE ACTION IN(12) */
561 	{ 0xAB,	R | V, "SERVICE ACTION IN(12)" },
562 	/* AC        O         ERASE(12) */
563 	{ 0xAC,	O, "ERASE(12)" },
564 	/* AC       O          GET PERFORMANCE */
565 	{ 0xAC,	R, "GET PERFORMANCE" },
566 	/* AD       O          READ DVD STRUCTURE */
567 	{ 0xAD,	R, "READ DVD STRUCTURE" },
568 	/* AE  O   O O         WRITE AND VERIFY(12) */
569 	{ 0xAE,	D | W | O, "WRITE AND VERIFY(12)" },
570 	/* AF  O   OZO         VERIFY(12) */
571 	{ 0xAF,	D | W | R | O, "VERIFY(12)" },
572 	/* B0      ZZZ         SEARCH DATA HIGH(12) */
573 	{ 0xB0,	W | R | O, "SEARCH DATA HIGH(12)" },
574 	/* B1      ZZZ         SEARCH DATA EQUAL(12) */
575 	{ 0xB1,	W | R | O, "SEARCH DATA EQUAL(12)" },
576 	/* B2      ZZZ         SEARCH DATA LOW(12) */
577 	{ 0xB2,	W | R | O, "SEARCH DATA LOW(12)" },
578 	/* B3  Z   OZO         SET LIMITS(12) */
579 	{ 0xB3,	D | W | R | O, "SET LIMITS(12)" },
580 	/* B4  ZZ  OZO         READ ELEMENT STATUS ATTACHED */
581 	{ 0xB4,	D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" },
582 	/* B5  OO   O      O   SECURITY PROTOCOL OUT */
583 	{ 0xB5,	D | T | R | V, "SECURITY PROTOCOL OUT" },
584 	/* B5         O        REQUEST VOLUME ELEMENT ADDRESS */
585 	{ 0xB5,	M, "REQUEST VOLUME ELEMENT ADDRESS" },
586 	/* B6         O        SEND VOLUME TAG */
587 	{ 0xB6,	M, "SEND VOLUME TAG" },
588 	/* B6       O          SET STREAMING */
589 	{ 0xB6,	R, "SET STREAMING" },
590 	/* B7  O     O         READ DEFECT DATA(12) */
591 	{ 0xB7,	D | O, "READ DEFECT DATA(12)" },
592 	/* B8   O  OZOM        READ ELEMENT STATUS */
593 	{ 0xB8,	T | W | R | O | M, "READ ELEMENT STATUS" },
594 	/* B9       O          READ CD MSF */
595 	{ 0xB9,	R, "READ CD MSF" },
596 	/* BA  O   O OOMO      REDUNDANCY GROUP (IN) */
597 	{ 0xBA,	D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" },
598 	/* BA       O          SCAN */
599 	{ 0xBA,	R, "SCAN" },
600 	/* BB  O   O OOOO      REDUNDANCY GROUP (OUT) */
601 	{ 0xBB,	D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" },
602 	/* BB       O          SET CD SPEED */
603 	{ 0xBB,	R, "SET CD SPEED" },
604 	/* BC  O   O OOMO      SPARE (IN) */
605 	{ 0xBC,	D | W | O | M | A | E, "SPARE (IN)" },
606 	/* BD  O   O OOOO      SPARE (OUT) */
607 	{ 0xBD,	D | W | O | M | A | E, "SPARE (OUT)" },
608 	/* BD       O          MECHANISM STATUS */
609 	{ 0xBD,	R, "MECHANISM STATUS" },
610 	/* BE  O   O OOMO      VOLUME SET (IN) */
611 	{ 0xBE,	D | W | O | M | A | E, "VOLUME SET (IN)" },
612 	/* BE       O          READ CD */
613 	{ 0xBE,	R, "READ CD" },
614 	/* BF  O   O OOOO      VOLUME SET (OUT) */
615 	{ 0xBF,	D | W | O | M | A | E, "VOLUME SET (OUT)" },
616 	/* BF       O          SEND DVD STRUCTURE */
617 	{ 0xBF,	R, "SEND DVD STRUCTURE" }
618 };
619 
620 const char *
621 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
622 {
623 	caddr_t match;
624 	int i, j;
625 	u_int32_t opmask;
626 	u_int16_t pd_type;
627 	int       num_ops[2];
628 	struct op_table_entry *table[2];
629 	int num_tables;
630 
631 	/*
632 	 * If we've got inquiry data, use it to determine what type of
633 	 * device we're dealing with here.  Otherwise, assume direct
634 	 * access.
635 	 */
636 	if (inq_data == NULL) {
637 		pd_type = T_DIRECT;
638 		match = NULL;
639 	} else {
640 		pd_type = SID_TYPE(inq_data);
641 
642 		match = cam_quirkmatch((caddr_t)inq_data,
643 				       (caddr_t)scsi_op_quirk_table,
644 				       nitems(scsi_op_quirk_table),
645 				       sizeof(*scsi_op_quirk_table),
646 				       scsi_inquiry_match);
647 	}
648 
649 	if (match != NULL) {
650 		table[0] = ((struct scsi_op_quirk_entry *)match)->op_table;
651 		num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops;
652 		table[1] = scsi_op_codes;
653 		num_ops[1] = nitems(scsi_op_codes);
654 		num_tables = 2;
655 	} else {
656 		/*
657 		 * If this is true, we have a vendor specific opcode that
658 		 * wasn't covered in the quirk table.
659 		 */
660 		if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80)))
661 			return("Vendor Specific Command");
662 
663 		table[0] = scsi_op_codes;
664 		num_ops[0] = nitems(scsi_op_codes);
665 		num_tables = 1;
666 	}
667 
668 	/* RBC is 'Simplified' Direct Access Device */
669 	if (pd_type == T_RBC)
670 		pd_type = T_DIRECT;
671 
672 	/*
673 	 * Host managed drives are direct access for the most part.
674 	 */
675 	if (pd_type == T_ZBC_HM)
676 		pd_type = T_DIRECT;
677 
678 	/* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */
679 	if (pd_type == T_NODEVICE)
680 		pd_type = T_DIRECT;
681 
682 	opmask = 1 << pd_type;
683 
684 	for (j = 0; j < num_tables; j++) {
685 		for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){
686 			if ((table[j][i].opcode == opcode)
687 			 && ((table[j][i].opmask & opmask) != 0))
688 				return(table[j][i].desc);
689 		}
690 	}
691 
692 	/*
693 	 * If we can't find a match for the command in the table, we just
694 	 * assume it's a vendor specifc command.
695 	 */
696 	return("Vendor Specific Command");
697 
698 }
699 
700 #else /* SCSI_NO_OP_STRINGS */
701 
702 const char *
703 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
704 {
705 	return("");
706 }
707 
708 #endif
709 
710 
711 #if !defined(SCSI_NO_SENSE_STRINGS)
712 #define SST(asc, ascq, action, desc) \
713 	asc, ascq, action, desc
714 #else
715 const char empty_string[] = "";
716 
717 #define SST(asc, ascq, action, desc) \
718 	asc, ascq, action, empty_string
719 #endif
720 
721 const struct sense_key_table_entry sense_key_table[] =
722 {
723 	{ SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" },
724 	{ SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" },
725 	{ SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" },
726 	{ SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" },
727 	{ SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" },
728 	{ SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" },
729 	{ SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" },
730 	{ SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" },
731 	{ SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" },
732 	{ SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" },
733 	{ SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" },
734 	{ SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" },
735 	{ SSD_KEY_EQUAL, SS_NOP, "EQUAL" },
736 	{ SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" },
737 	{ SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" },
738 	{ SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" }
739 };
740 
741 static struct asc_table_entry quantum_fireball_entries[] = {
742 	{ SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
743 	     "Logical unit not ready, initializing cmd. required") }
744 };
745 
746 static struct asc_table_entry sony_mo_entries[] = {
747 	{ SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
748 	     "Logical unit not ready, cause not reportable") }
749 };
750 
751 static struct asc_table_entry hgst_entries[] = {
752 	{ SST(0x04, 0xF0, SS_RDEF,
753 	    "Vendor Unique - Logical Unit Not Ready") },
754 	{ SST(0x0A, 0x01, SS_RDEF,
755 	    "Unrecovered Super Certification Log Write Error") },
756 	{ SST(0x0A, 0x02, SS_RDEF,
757 	    "Unrecovered Super Certification Log Read Error") },
758 	{ SST(0x15, 0x03, SS_RDEF,
759 	    "Unrecovered Sector Error") },
760 	{ SST(0x3E, 0x04, SS_RDEF,
761 	    "Unrecovered Self-Test Hard-Cache Test Fail") },
762 	{ SST(0x3E, 0x05, SS_RDEF,
763 	    "Unrecovered Self-Test OTF-Cache Fail") },
764 	{ SST(0x40, 0x00, SS_RDEF,
765 	    "Unrecovered SAT No Buffer Overflow Error") },
766 	{ SST(0x40, 0x01, SS_RDEF,
767 	    "Unrecovered SAT Buffer Overflow Error") },
768 	{ SST(0x40, 0x02, SS_RDEF,
769 	    "Unrecovered SAT No Buffer Overflow With ECS Fault") },
770 	{ SST(0x40, 0x03, SS_RDEF,
771 	    "Unrecovered SAT Buffer Overflow With ECS Fault") },
772 	{ SST(0x40, 0x81, SS_RDEF,
773 	    "DRAM Failure") },
774 	{ SST(0x44, 0x0B, SS_RDEF,
775 	    "Vendor Unique - Internal Target Failure") },
776 	{ SST(0x44, 0xF2, SS_RDEF,
777 	    "Vendor Unique - Internal Target Failure") },
778 	{ SST(0x44, 0xF6, SS_RDEF,
779 	    "Vendor Unique - Internal Target Failure") },
780 	{ SST(0x44, 0xF9, SS_RDEF,
781 	    "Vendor Unique - Internal Target Failure") },
782 	{ SST(0x44, 0xFA, SS_RDEF,
783 	    "Vendor Unique - Internal Target Failure") },
784 	{ SST(0x5D, 0x22, SS_RDEF,
785 	    "Extreme Over-Temperature Warning") },
786 	{ SST(0x5D, 0x50, SS_RDEF,
787 	    "Load/Unload cycle Count Warning") },
788 	{ SST(0x81, 0x00, SS_RDEF,
789 	    "Vendor Unique - Internal Logic Error") },
790 	{ SST(0x85, 0x00, SS_RDEF,
791 	    "Vendor Unique - Internal Key Seed Error") },
792 };
793 
794 static struct asc_table_entry seagate_entries[] = {
795 	{ SST(0x04, 0xF0, SS_RDEF,
796 	    "Logical Unit Not Ready, super certify in Progress") },
797 	{ SST(0x08, 0x86, SS_RDEF,
798 	    "Write Fault Data Corruption") },
799 	{ SST(0x09, 0x0D, SS_RDEF,
800 	    "Tracking Failure") },
801 	{ SST(0x09, 0x0E, SS_RDEF,
802 	    "ETF Failure") },
803 	{ SST(0x0B, 0x5D, SS_RDEF,
804 	    "Pre-SMART Warning") },
805 	{ SST(0x0B, 0x85, SS_RDEF,
806 	    "5V Voltage Warning") },
807 	{ SST(0x0B, 0x8C, SS_RDEF,
808 	    "12V Voltage Warning") },
809 	{ SST(0x0C, 0xFF, SS_RDEF,
810 	    "Write Error - Too many error recovery revs") },
811 	{ SST(0x11, 0xFF, SS_RDEF,
812 	    "Unrecovered Read Error - Too many error recovery revs") },
813 	{ SST(0x19, 0x0E, SS_RDEF,
814 	    "Fewer than 1/2 defect list copies") },
815 	{ SST(0x20, 0xF3, SS_RDEF,
816 	    "Illegal CDB linked to skip mask cmd") },
817 	{ SST(0x24, 0xF0, SS_RDEF,
818 	    "Illegal byte in CDB, LBA not matching") },
819 	{ SST(0x24, 0xF1, SS_RDEF,
820 	    "Illegal byte in CDB, LEN not matching") },
821 	{ SST(0x24, 0xF2, SS_RDEF,
822 	    "Mask not matching transfer length") },
823 	{ SST(0x24, 0xF3, SS_RDEF,
824 	    "Drive formatted without plist") },
825 	{ SST(0x26, 0x95, SS_RDEF,
826 	    "Invalid Field Parameter - CAP File") },
827 	{ SST(0x26, 0x96, SS_RDEF,
828 	    "Invalid Field Parameter - RAP File") },
829 	{ SST(0x26, 0x97, SS_RDEF,
830 	    "Invalid Field Parameter - TMS Firmware Tag") },
831 	{ SST(0x26, 0x98, SS_RDEF,
832 	    "Invalid Field Parameter - Check Sum") },
833 	{ SST(0x26, 0x99, SS_RDEF,
834 	    "Invalid Field Parameter - Firmware Tag") },
835 	{ SST(0x29, 0x08, SS_RDEF,
836 	    "Write Log Dump data") },
837 	{ SST(0x29, 0x09, SS_RDEF,
838 	    "Write Log Dump data") },
839 	{ SST(0x29, 0x0A, SS_RDEF,
840 	    "Reserved disk space") },
841 	{ SST(0x29, 0x0B, SS_RDEF,
842 	    "SDBP") },
843 	{ SST(0x29, 0x0C, SS_RDEF,
844 	    "SDBP") },
845 	{ SST(0x31, 0x91, SS_RDEF,
846 	    "Format Corrupted World Wide Name (WWN) is Invalid") },
847 	{ SST(0x32, 0x03, SS_RDEF,
848 	    "Defect List - Length exceeds Command Allocated Length") },
849 	{ SST(0x33, 0x00, SS_RDEF,
850 	    "Flash not ready for access") },
851 	{ SST(0x3F, 0x70, SS_RDEF,
852 	    "Invalid RAP block") },
853 	{ SST(0x3F, 0x71, SS_RDEF,
854 	    "RAP/ETF mismatch") },
855 	{ SST(0x3F, 0x90, SS_RDEF,
856 	    "Invalid CAP block") },
857 	{ SST(0x3F, 0x91, SS_RDEF,
858 	    "World Wide Name (WWN) Mismatch") },
859 	{ SST(0x40, 0x01, SS_RDEF,
860 	    "DRAM Parity Error") },
861 	{ SST(0x40, 0x02, SS_RDEF,
862 	    "DRAM Parity Error") },
863 	{ SST(0x42, 0x0A, SS_RDEF,
864 	    "Loopback Test") },
865 	{ SST(0x42, 0x0B, SS_RDEF,
866 	    "Loopback Test") },
867 	{ SST(0x44, 0xF2, SS_RDEF,
868 	    "Compare error during data integrity check") },
869 	{ SST(0x44, 0xF6, SS_RDEF,
870 	    "Unrecoverable error during data integrity check") },
871 	{ SST(0x47, 0x80, SS_RDEF,
872 	    "Fibre Channel Sequence Error") },
873 	{ SST(0x4E, 0x01, SS_RDEF,
874 	    "Information Unit Too Short") },
875 	{ SST(0x80, 0x00, SS_RDEF,
876 	    "General Firmware Error / Command Timeout") },
877 	{ SST(0x80, 0x01, SS_RDEF,
878 	    "Command Timeout") },
879 	{ SST(0x80, 0x02, SS_RDEF,
880 	    "Command Timeout") },
881 	{ SST(0x80, 0x80, SS_RDEF,
882 	    "FC FIFO Error During Read Transfer") },
883 	{ SST(0x80, 0x81, SS_RDEF,
884 	    "FC FIFO Error During Write Transfer") },
885 	{ SST(0x80, 0x82, SS_RDEF,
886 	    "DISC FIFO Error During Read Transfer") },
887 	{ SST(0x80, 0x83, SS_RDEF,
888 	    "DISC FIFO Error During Write Transfer") },
889 	{ SST(0x80, 0x84, SS_RDEF,
890 	    "LBA Seeded LRC Error on Read") },
891 	{ SST(0x80, 0x85, SS_RDEF,
892 	    "LBA Seeded LRC Error on Write") },
893 	{ SST(0x80, 0x86, SS_RDEF,
894 	    "IOEDC Error on Read") },
895 	{ SST(0x80, 0x87, SS_RDEF,
896 	    "IOEDC Error on Write") },
897 	{ SST(0x80, 0x88, SS_RDEF,
898 	    "Host Parity Check Failed") },
899 	{ SST(0x80, 0x89, SS_RDEF,
900 	    "IOEDC error on read detected by formatter") },
901 	{ SST(0x80, 0x8A, SS_RDEF,
902 	    "Host Parity Errors / Host FIFO Initialization Failed") },
903 	{ SST(0x80, 0x8B, SS_RDEF,
904 	    "Host Parity Errors") },
905 	{ SST(0x80, 0x8C, SS_RDEF,
906 	    "Host Parity Errors") },
907 	{ SST(0x80, 0x8D, SS_RDEF,
908 	    "Host Parity Errors") },
909 	{ SST(0x81, 0x00, SS_RDEF,
910 	    "LA Check Failed") },
911 	{ SST(0x82, 0x00, SS_RDEF,
912 	    "Internal client detected insufficient buffer") },
913 	{ SST(0x84, 0x00, SS_RDEF,
914 	    "Scheduled Diagnostic And Repair") },
915 };
916 
917 static struct scsi_sense_quirk_entry sense_quirk_table[] = {
918 	{
919 		/*
920 		 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b
921 		 * when they really should return 0x04 0x02.
922 		 */
923 		{T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"},
924 		/*num_sense_keys*/0,
925 		nitems(quantum_fireball_entries),
926 		/*sense key entries*/NULL,
927 		quantum_fireball_entries
928 	},
929 	{
930 		/*
931 		 * This Sony MO drive likes to return 0x04, 0x00 when it
932 		 * isn't spun up.
933 		 */
934 		{T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"},
935 		/*num_sense_keys*/0,
936 		nitems(sony_mo_entries),
937 		/*sense key entries*/NULL,
938 		sony_mo_entries
939 	},
940 	{
941 		/*
942 		 * HGST vendor-specific error codes
943 		 */
944 		{T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"},
945 		/*num_sense_keys*/0,
946 		nitems(hgst_entries),
947 		/*sense key entries*/NULL,
948 		hgst_entries
949 	},
950 	{
951 		/*
952 		 * SEAGATE vendor-specific error codes
953 		 */
954 		{T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"},
955 		/*num_sense_keys*/0,
956 		nitems(seagate_entries),
957 		/*sense key entries*/NULL,
958 		seagate_entries
959 	}
960 };
961 
962 const u_int sense_quirk_table_size = nitems(sense_quirk_table);
963 
964 static struct asc_table_entry asc_table[] = {
965 	/*
966 	 * From: http://www.t10.org/lists/asc-num.txt
967 	 * Modifications by Jung-uk Kim (jkim@FreeBSD.org)
968 	 */
969 	/*
970 	 * File: ASC-NUM.TXT
971 	 *
972 	 * SCSI ASC/ASCQ Assignments
973 	 * Numeric Sorted Listing
974 	 * as of  8/12/15
975 	 *
976 	 * D - DIRECT ACCESS DEVICE (SBC-2)                   device column key
977 	 * .T - SEQUENTIAL ACCESS DEVICE (SSC)               -------------------
978 	 * . L - PRINTER DEVICE (SSC)                           blank = reserved
979 	 * .  P - PROCESSOR DEVICE (SPC)                     not blank = allowed
980 	 * .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2)
981 	 * .  . R - CD DEVICE (MMC)
982 	 * .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
983 	 * .  .  .M - MEDIA CHANGER DEVICE (SMC)
984 	 * .  .  . A - STORAGE ARRAY DEVICE (SCC)
985 	 * .  .  .  E - ENCLOSURE SERVICES DEVICE (SES)
986 	 * .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
987 	 * .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
988 	 * .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
989 	 * .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
990 	 * DTLPWROMAEBKVF
991 	 * ASC      ASCQ  Action
992 	 * Description
993 	 */
994 	/* DTLPWROMAEBKVF */
995 	{ SST(0x00, 0x00, SS_NOP,
996 	    "No additional sense information") },
997 	/*  T             */
998 	{ SST(0x00, 0x01, SS_RDEF,
999 	    "Filemark detected") },
1000 	/*  T             */
1001 	{ SST(0x00, 0x02, SS_RDEF,
1002 	    "End-of-partition/medium detected") },
1003 	/*  T             */
1004 	{ SST(0x00, 0x03, SS_RDEF,
1005 	    "Setmark detected") },
1006 	/*  T             */
1007 	{ SST(0x00, 0x04, SS_RDEF,
1008 	    "Beginning-of-partition/medium detected") },
1009 	/*  TL            */
1010 	{ SST(0x00, 0x05, SS_RDEF,
1011 	    "End-of-data detected") },
1012 	/* DTLPWROMAEBKVF */
1013 	{ SST(0x00, 0x06, SS_RDEF,
1014 	    "I/O process terminated") },
1015 	/*  T             */
1016 	{ SST(0x00, 0x07, SS_RDEF,	/* XXX TBD */
1017 	    "Programmable early warning detected") },
1018 	/*      R         */
1019 	{ SST(0x00, 0x11, SS_FATAL | EBUSY,
1020 	    "Audio play operation in progress") },
1021 	/*      R         */
1022 	{ SST(0x00, 0x12, SS_NOP,
1023 	    "Audio play operation paused") },
1024 	/*      R         */
1025 	{ SST(0x00, 0x13, SS_NOP,
1026 	    "Audio play operation successfully completed") },
1027 	/*      R         */
1028 	{ SST(0x00, 0x14, SS_RDEF,
1029 	    "Audio play operation stopped due to error") },
1030 	/*      R         */
1031 	{ SST(0x00, 0x15, SS_NOP,
1032 	    "No current audio status to return") },
1033 	/* DTLPWROMAEBKVF */
1034 	{ SST(0x00, 0x16, SS_FATAL | EBUSY,
1035 	    "Operation in progress") },
1036 	/* DTL WROMAEBKVF */
1037 	{ SST(0x00, 0x17, SS_RDEF,
1038 	    "Cleaning requested") },
1039 	/*  T             */
1040 	{ SST(0x00, 0x18, SS_RDEF,	/* XXX TBD */
1041 	    "Erase operation in progress") },
1042 	/*  T             */
1043 	{ SST(0x00, 0x19, SS_RDEF,	/* XXX TBD */
1044 	    "Locate operation in progress") },
1045 	/*  T             */
1046 	{ SST(0x00, 0x1A, SS_RDEF,	/* XXX TBD */
1047 	    "Rewind operation in progress") },
1048 	/*  T             */
1049 	{ SST(0x00, 0x1B, SS_RDEF,	/* XXX TBD */
1050 	    "Set capacity operation in progress") },
1051 	/*  T             */
1052 	{ SST(0x00, 0x1C, SS_RDEF,	/* XXX TBD */
1053 	    "Verify operation in progress") },
1054 	/* DT        B    */
1055 	{ SST(0x00, 0x1D, SS_NOP,
1056 	    "ATA pass through information available") },
1057 	/* DT   R MAEBKV  */
1058 	{ SST(0x00, 0x1E, SS_RDEF,	/* XXX TBD */
1059 	    "Conflicting SA creation request") },
1060 	/* DT        B    */
1061 	{ SST(0x00, 0x1F, SS_RDEF,	/* XXX TBD */
1062 	    "Logical unit transitioning to another power condition") },
1063 	/* DT P      B    */
1064 	{ SST(0x00, 0x20, SS_NOP,
1065 	    "Extended copy information available") },
1066 	/* D              */
1067 	{ SST(0x00, 0x21, SS_RDEF,	/* XXX TBD */
1068 	    "Atomic command aborted due to ACA") },
1069 	/* D   W O   BK   */
1070 	{ SST(0x01, 0x00, SS_RDEF,
1071 	    "No index/sector signal") },
1072 	/* D   WRO   BK   */
1073 	{ SST(0x02, 0x00, SS_RDEF,
1074 	    "No seek complete") },
1075 	/* DTL W O   BK   */
1076 	{ SST(0x03, 0x00, SS_RDEF,
1077 	    "Peripheral device write fault") },
1078 	/*  T             */
1079 	{ SST(0x03, 0x01, SS_RDEF,
1080 	    "No write current") },
1081 	/*  T             */
1082 	{ SST(0x03, 0x02, SS_RDEF,
1083 	    "Excessive write errors") },
1084 	/* DTLPWROMAEBKVF */
1085 	{ SST(0x04, 0x00, SS_RDEF,
1086 	    "Logical unit not ready, cause not reportable") },
1087 	/* DTLPWROMAEBKVF */
1088 	{ SST(0x04, 0x01, SS_WAIT | EBUSY,
1089 	    "Logical unit is in process of becoming ready") },
1090 	/* DTLPWROMAEBKVF */
1091 	{ SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1092 	    "Logical unit not ready, initializing command required") },
1093 	/* DTLPWROMAEBKVF */
1094 	{ SST(0x04, 0x03, SS_FATAL | ENXIO,
1095 	    "Logical unit not ready, manual intervention required") },
1096 	/* DTL  RO   B    */
1097 	{ SST(0x04, 0x04, SS_FATAL | EBUSY,
1098 	    "Logical unit not ready, format in progress") },
1099 	/* DT  W O A BK F */
1100 	{ SST(0x04, 0x05, SS_FATAL | EBUSY,
1101 	    "Logical unit not ready, rebuild in progress") },
1102 	/* DT  W O A BK   */
1103 	{ SST(0x04, 0x06, SS_FATAL | EBUSY,
1104 	    "Logical unit not ready, recalculation in progress") },
1105 	/* DTLPWROMAEBKVF */
1106 	{ SST(0x04, 0x07, SS_FATAL | EBUSY,
1107 	    "Logical unit not ready, operation in progress") },
1108 	/*      R         */
1109 	{ SST(0x04, 0x08, SS_FATAL | EBUSY,
1110 	    "Logical unit not ready, long write in progress") },
1111 	/* DTLPWROMAEBKVF */
1112 	{ SST(0x04, 0x09, SS_RDEF,	/* XXX TBD */
1113 	    "Logical unit not ready, self-test in progress") },
1114 	/* DTLPWROMAEBKVF */
1115 	{ SST(0x04, 0x0A, SS_WAIT | ENXIO,
1116 	    "Logical unit not accessible, asymmetric access state transition")},
1117 	/* DTLPWROMAEBKVF */
1118 	{ SST(0x04, 0x0B, SS_FATAL | ENXIO,
1119 	    "Logical unit not accessible, target port in standby state") },
1120 	/* DTLPWROMAEBKVF */
1121 	{ SST(0x04, 0x0C, SS_FATAL | ENXIO,
1122 	    "Logical unit not accessible, target port in unavailable state") },
1123 	/*              F */
1124 	{ SST(0x04, 0x0D, SS_RDEF,	/* XXX TBD */
1125 	    "Logical unit not ready, structure check required") },
1126 	/* DTL WR MAEBKVF */
1127 	{ SST(0x04, 0x0E, SS_RDEF,	/* XXX TBD */
1128 	    "Logical unit not ready, security session in progress") },
1129 	/* DT  WROM  B    */
1130 	{ SST(0x04, 0x10, SS_RDEF,	/* XXX TBD */
1131 	    "Logical unit not ready, auxiliary memory not accessible") },
1132 	/* DT  WRO AEB VF */
1133 	{ SST(0x04, 0x11, SS_WAIT | EBUSY,
1134 	    "Logical unit not ready, notify (enable spinup) required") },
1135 	/*        M    V  */
1136 	{ SST(0x04, 0x12, SS_RDEF,	/* XXX TBD */
1137 	    "Logical unit not ready, offline") },
1138 	/* DT   R MAEBKV  */
1139 	{ SST(0x04, 0x13, SS_RDEF,	/* XXX TBD */
1140 	    "Logical unit not ready, SA creation in progress") },
1141 	/* D         B    */
1142 	{ SST(0x04, 0x14, SS_RDEF,	/* XXX TBD */
1143 	    "Logical unit not ready, space allocation in progress") },
1144 	/*        M       */
1145 	{ SST(0x04, 0x15, SS_RDEF,	/* XXX TBD */
1146 	    "Logical unit not ready, robotics disabled") },
1147 	/*        M       */
1148 	{ SST(0x04, 0x16, SS_RDEF,	/* XXX TBD */
1149 	    "Logical unit not ready, configuration required") },
1150 	/*        M       */
1151 	{ SST(0x04, 0x17, SS_RDEF,	/* XXX TBD */
1152 	    "Logical unit not ready, calibration required") },
1153 	/*        M       */
1154 	{ SST(0x04, 0x18, SS_RDEF,	/* XXX TBD */
1155 	    "Logical unit not ready, a door is open") },
1156 	/*        M       */
1157 	{ SST(0x04, 0x19, SS_RDEF,	/* XXX TBD */
1158 	    "Logical unit not ready, operating in sequential mode") },
1159 	/* DT        B    */
1160 	{ SST(0x04, 0x1A, SS_RDEF,	/* XXX TBD */
1161 	    "Logical unit not ready, START/STOP UNIT command in progress") },
1162 	/* D         B    */
1163 	{ SST(0x04, 0x1B, SS_RDEF,	/* XXX TBD */
1164 	    "Logical unit not ready, sanitize in progress") },
1165 	/* DT     MAEB    */
1166 	{ SST(0x04, 0x1C, SS_RDEF,	/* XXX TBD */
1167 	    "Logical unit not ready, additional power use not yet granted") },
1168 	/* D              */
1169 	{ SST(0x04, 0x1D, SS_RDEF,	/* XXX TBD */
1170 	    "Logical unit not ready, configuration in progress") },
1171 	/* D              */
1172 	{ SST(0x04, 0x1E, SS_FATAL | ENXIO,
1173 	    "Logical unit not ready, microcode activation required") },
1174 	/* DTLPWROMAEBKVF */
1175 	{ SST(0x04, 0x1F, SS_FATAL | ENXIO,
1176 	    "Logical unit not ready, microcode download required") },
1177 	/* DTLPWROMAEBKVF */
1178 	{ SST(0x04, 0x20, SS_RDEF,	/* XXX TBD */
1179 	    "Logical unit not ready, logical unit reset required") },
1180 	/* DTLPWROMAEBKVF */
1181 	{ SST(0x04, 0x21, SS_RDEF,	/* XXX TBD */
1182 	    "Logical unit not ready, hard reset required") },
1183 	/* DTLPWROMAEBKVF */
1184 	{ SST(0x04, 0x22, SS_RDEF,	/* XXX TBD */
1185 	    "Logical unit not ready, power cycle required") },
1186 	/* DTL WROMAEBKVF */
1187 	{ SST(0x05, 0x00, SS_RDEF,
1188 	    "Logical unit does not respond to selection") },
1189 	/* D   WROM  BK   */
1190 	{ SST(0x06, 0x00, SS_RDEF,
1191 	    "No reference position found") },
1192 	/* DTL WROM  BK   */
1193 	{ SST(0x07, 0x00, SS_RDEF,
1194 	    "Multiple peripheral devices selected") },
1195 	/* DTL WROMAEBKVF */
1196 	{ SST(0x08, 0x00, SS_RDEF,
1197 	    "Logical unit communication failure") },
1198 	/* DTL WROMAEBKVF */
1199 	{ SST(0x08, 0x01, SS_RDEF,
1200 	    "Logical unit communication time-out") },
1201 	/* DTL WROMAEBKVF */
1202 	{ SST(0x08, 0x02, SS_RDEF,
1203 	    "Logical unit communication parity error") },
1204 	/* DT   ROM  BK   */
1205 	{ SST(0x08, 0x03, SS_RDEF,
1206 	    "Logical unit communication CRC error (Ultra-DMA/32)") },
1207 	/* DTLPWRO    K   */
1208 	{ SST(0x08, 0x04, SS_RDEF,	/* XXX TBD */
1209 	    "Unreachable copy target") },
1210 	/* DT  WRO   B    */
1211 	{ SST(0x09, 0x00, SS_RDEF,
1212 	    "Track following error") },
1213 	/*     WRO    K   */
1214 	{ SST(0x09, 0x01, SS_RDEF,
1215 	    "Tracking servo failure") },
1216 	/*     WRO    K   */
1217 	{ SST(0x09, 0x02, SS_RDEF,
1218 	    "Focus servo failure") },
1219 	/*     WRO        */
1220 	{ SST(0x09, 0x03, SS_RDEF,
1221 	    "Spindle servo failure") },
1222 	/* DT  WRO   B    */
1223 	{ SST(0x09, 0x04, SS_RDEF,
1224 	    "Head select fault") },
1225 	/* DT   RO   B    */
1226 	{ SST(0x09, 0x05, SS_RDEF,
1227 	    "Vibration induced tracking error") },
1228 	/* DTLPWROMAEBKVF */
1229 	{ SST(0x0A, 0x00, SS_FATAL | ENOSPC,
1230 	    "Error log overflow") },
1231 	/* DTLPWROMAEBKVF */
1232 	{ SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1233 	    "Warning") },
1234 	/* DTLPWROMAEBKVF */
1235 	{ SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1236 	    "Warning - specified temperature exceeded") },
1237 	/* DTLPWROMAEBKVF */
1238 	{ SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1239 	    "Warning - enclosure degraded") },
1240 	/* DTLPWROMAEBKVF */
1241 	{ SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1242 	    "Warning - background self-test failed") },
1243 	/* DTLPWRO AEBKVF */
1244 	{ SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1245 	    "Warning - background pre-scan detected medium error") },
1246 	/* DTLPWRO AEBKVF */
1247 	{ SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1248 	    "Warning - background medium scan detected medium error") },
1249 	/* DTLPWROMAEBKVF */
1250 	{ SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1251 	    "Warning - non-volatile cache now volatile") },
1252 	/* DTLPWROMAEBKVF */
1253 	{ SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1254 	    "Warning - degraded power to non-volatile cache") },
1255 	/* DTLPWROMAEBKVF */
1256 	{ SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1257 	    "Warning - power loss expected") },
1258 	/* D              */
1259 	{ SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1260 	    "Warning - device statistics notification available") },
1261 	/* DTLPWROMAEBKVF */
1262 	{ SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE,
1263 	    "Warning - High critical temperature limit exceeded") },
1264 	/* DTLPWROMAEBKVF */
1265 	{ SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE,
1266 	    "Warning - Low critical temperature limit exceeded") },
1267 	/* DTLPWROMAEBKVF */
1268 	{ SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE,
1269 	    "Warning - High operating temperature limit exceeded") },
1270 	/* DTLPWROMAEBKVF */
1271 	{ SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE,
1272 	    "Warning - Low operating temperature limit exceeded") },
1273 	/* DTLPWROMAEBKVF */
1274 	{ SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE,
1275 	    "Warning - High citical humidity limit exceeded") },
1276 	/* DTLPWROMAEBKVF */
1277 	{ SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE,
1278 	    "Warning - Low citical humidity limit exceeded") },
1279 	/* DTLPWROMAEBKVF */
1280 	{ SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE,
1281 	    "Warning - High operating humidity limit exceeded") },
1282 	/* DTLPWROMAEBKVF */
1283 	{ SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE,
1284 	    "Warning - Low operating humidity limit exceeded") },
1285 	/*  T   R         */
1286 	{ SST(0x0C, 0x00, SS_RDEF,
1287 	    "Write error") },
1288 	/*            K   */
1289 	{ SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1290 	    "Write error - recovered with auto reallocation") },
1291 	/* D   W O   BK   */
1292 	{ SST(0x0C, 0x02, SS_RDEF,
1293 	    "Write error - auto reallocation failed") },
1294 	/* D   W O   BK   */
1295 	{ SST(0x0C, 0x03, SS_RDEF,
1296 	    "Write error - recommend reassignment") },
1297 	/* DT  W O   B    */
1298 	{ SST(0x0C, 0x04, SS_RDEF,
1299 	    "Compression check miscompare error") },
1300 	/* DT  W O   B    */
1301 	{ SST(0x0C, 0x05, SS_RDEF,
1302 	    "Data expansion occurred during compression") },
1303 	/* DT  W O   B    */
1304 	{ SST(0x0C, 0x06, SS_RDEF,
1305 	    "Block not compressible") },
1306 	/*      R         */
1307 	{ SST(0x0C, 0x07, SS_RDEF,
1308 	    "Write error - recovery needed") },
1309 	/*      R         */
1310 	{ SST(0x0C, 0x08, SS_RDEF,
1311 	    "Write error - recovery failed") },
1312 	/*      R         */
1313 	{ SST(0x0C, 0x09, SS_RDEF,
1314 	    "Write error - loss of streaming") },
1315 	/*      R         */
1316 	{ SST(0x0C, 0x0A, SS_RDEF,
1317 	    "Write error - padding blocks added") },
1318 	/* DT  WROM  B    */
1319 	{ SST(0x0C, 0x0B, SS_RDEF,	/* XXX TBD */
1320 	    "Auxiliary memory write error") },
1321 	/* DTLPWRO AEBKVF */
1322 	{ SST(0x0C, 0x0C, SS_RDEF,	/* XXX TBD */
1323 	    "Write error - unexpected unsolicited data") },
1324 	/* DTLPWRO AEBKVF */
1325 	{ SST(0x0C, 0x0D, SS_RDEF,	/* XXX TBD */
1326 	    "Write error - not enough unsolicited data") },
1327 	/* DT  W O   BK   */
1328 	{ SST(0x0C, 0x0E, SS_RDEF,	/* XXX TBD */
1329 	    "Multiple write errors") },
1330 	/*      R         */
1331 	{ SST(0x0C, 0x0F, SS_RDEF,	/* XXX TBD */
1332 	    "Defects in error window") },
1333 	/* D              */
1334 	{ SST(0x0C, 0x10, SS_RDEF,	/* XXX TBD */
1335 	    "Incomplete multiple atomic write operations") },
1336 	/* D              */
1337 	{ SST(0x0C, 0x11, SS_RDEF,	/* XXX TBD */
1338 	    "Write error - recovery scan needed") },
1339 	/* D              */
1340 	{ SST(0x0C, 0x12, SS_RDEF,	/* XXX TBD */
1341 	    "Write error - insufficient zone resources") },
1342 	/* DTLPWRO A  K   */
1343 	{ SST(0x0D, 0x00, SS_RDEF,	/* XXX TBD */
1344 	    "Error detected by third party temporary initiator") },
1345 	/* DTLPWRO A  K   */
1346 	{ SST(0x0D, 0x01, SS_RDEF,	/* XXX TBD */
1347 	    "Third party device failure") },
1348 	/* DTLPWRO A  K   */
1349 	{ SST(0x0D, 0x02, SS_RDEF,	/* XXX TBD */
1350 	    "Copy target device not reachable") },
1351 	/* DTLPWRO A  K   */
1352 	{ SST(0x0D, 0x03, SS_RDEF,	/* XXX TBD */
1353 	    "Incorrect copy target device type") },
1354 	/* DTLPWRO A  K   */
1355 	{ SST(0x0D, 0x04, SS_RDEF,	/* XXX TBD */
1356 	    "Copy target device data underrun") },
1357 	/* DTLPWRO A  K   */
1358 	{ SST(0x0D, 0x05, SS_RDEF,	/* XXX TBD */
1359 	    "Copy target device data overrun") },
1360 	/* DT PWROMAEBK F */
1361 	{ SST(0x0E, 0x00, SS_RDEF,	/* XXX TBD */
1362 	    "Invalid information unit") },
1363 	/* DT PWROMAEBK F */
1364 	{ SST(0x0E, 0x01, SS_RDEF,	/* XXX TBD */
1365 	    "Information unit too short") },
1366 	/* DT PWROMAEBK F */
1367 	{ SST(0x0E, 0x02, SS_RDEF,	/* XXX TBD */
1368 	    "Information unit too long") },
1369 	/* DT P R MAEBK F */
1370 	{ SST(0x0E, 0x03, SS_FATAL | EINVAL,
1371 	    "Invalid field in command information unit") },
1372 	/* D   W O   BK   */
1373 	{ SST(0x10, 0x00, SS_RDEF,
1374 	    "ID CRC or ECC error") },
1375 	/* DT  W O        */
1376 	{ SST(0x10, 0x01, SS_RDEF,	/* XXX TBD */
1377 	    "Logical block guard check failed") },
1378 	/* DT  W O        */
1379 	{ SST(0x10, 0x02, SS_RDEF,	/* XXX TBD */
1380 	    "Logical block application tag check failed") },
1381 	/* DT  W O        */
1382 	{ SST(0x10, 0x03, SS_RDEF,	/* XXX TBD */
1383 	    "Logical block reference tag check failed") },
1384 	/*  T             */
1385 	{ SST(0x10, 0x04, SS_RDEF,	/* XXX TBD */
1386 	    "Logical block protection error on recovered buffer data") },
1387 	/*  T             */
1388 	{ SST(0x10, 0x05, SS_RDEF,	/* XXX TBD */
1389 	    "Logical block protection method error") },
1390 	/* DT  WRO   BK   */
1391 	{ SST(0x11, 0x00, SS_FATAL|EIO,
1392 	    "Unrecovered read error") },
1393 	/* DT  WRO   BK   */
1394 	{ SST(0x11, 0x01, SS_FATAL|EIO,
1395 	    "Read retries exhausted") },
1396 	/* DT  WRO   BK   */
1397 	{ SST(0x11, 0x02, SS_FATAL|EIO,
1398 	    "Error too long to correct") },
1399 	/* DT  W O   BK   */
1400 	{ SST(0x11, 0x03, SS_FATAL|EIO,
1401 	    "Multiple read errors") },
1402 	/* D   W O   BK   */
1403 	{ SST(0x11, 0x04, SS_FATAL|EIO,
1404 	    "Unrecovered read error - auto reallocate failed") },
1405 	/*     WRO   B    */
1406 	{ SST(0x11, 0x05, SS_FATAL|EIO,
1407 	    "L-EC uncorrectable error") },
1408 	/*     WRO   B    */
1409 	{ SST(0x11, 0x06, SS_FATAL|EIO,
1410 	    "CIRC unrecovered error") },
1411 	/*     W O   B    */
1412 	{ SST(0x11, 0x07, SS_RDEF,
1413 	    "Data re-synchronization error") },
1414 	/*  T             */
1415 	{ SST(0x11, 0x08, SS_RDEF,
1416 	    "Incomplete block read") },
1417 	/*  T             */
1418 	{ SST(0x11, 0x09, SS_RDEF,
1419 	    "No gap found") },
1420 	/* DT    O   BK   */
1421 	{ SST(0x11, 0x0A, SS_RDEF,
1422 	    "Miscorrected error") },
1423 	/* D   W O   BK   */
1424 	{ SST(0x11, 0x0B, SS_FATAL|EIO,
1425 	    "Unrecovered read error - recommend reassignment") },
1426 	/* D   W O   BK   */
1427 	{ SST(0x11, 0x0C, SS_FATAL|EIO,
1428 	    "Unrecovered read error - recommend rewrite the data") },
1429 	/* DT  WRO   B    */
1430 	{ SST(0x11, 0x0D, SS_RDEF,
1431 	    "De-compression CRC error") },
1432 	/* DT  WRO   B    */
1433 	{ SST(0x11, 0x0E, SS_RDEF,
1434 	    "Cannot decompress using declared algorithm") },
1435 	/*      R         */
1436 	{ SST(0x11, 0x0F, SS_RDEF,
1437 	    "Error reading UPC/EAN number") },
1438 	/*      R         */
1439 	{ SST(0x11, 0x10, SS_RDEF,
1440 	    "Error reading ISRC number") },
1441 	/*      R         */
1442 	{ SST(0x11, 0x11, SS_RDEF,
1443 	    "Read error - loss of streaming") },
1444 	/* DT  WROM  B    */
1445 	{ SST(0x11, 0x12, SS_RDEF,	/* XXX TBD */
1446 	    "Auxiliary memory read error") },
1447 	/* DTLPWRO AEBKVF */
1448 	{ SST(0x11, 0x13, SS_RDEF,	/* XXX TBD */
1449 	    "Read error - failed retransmission request") },
1450 	/* D              */
1451 	{ SST(0x11, 0x14, SS_RDEF,	/* XXX TBD */
1452 	    "Read error - LBA marked bad by application client") },
1453 	/* D              */
1454 	{ SST(0x11, 0x15, SS_RDEF,	/* XXX TBD */
1455 	    "Write after sanitize required") },
1456 	/* D   W O   BK   */
1457 	{ SST(0x12, 0x00, SS_RDEF,
1458 	    "Address mark not found for ID field") },
1459 	/* D   W O   BK   */
1460 	{ SST(0x13, 0x00, SS_RDEF,
1461 	    "Address mark not found for data field") },
1462 	/* DTL WRO   BK   */
1463 	{ SST(0x14, 0x00, SS_RDEF,
1464 	    "Recorded entity not found") },
1465 	/* DT  WRO   BK   */
1466 	{ SST(0x14, 0x01, SS_RDEF,
1467 	    "Record not found") },
1468 	/*  T             */
1469 	{ SST(0x14, 0x02, SS_RDEF,
1470 	    "Filemark or setmark not found") },
1471 	/*  T             */
1472 	{ SST(0x14, 0x03, SS_RDEF,
1473 	    "End-of-data not found") },
1474 	/*  T             */
1475 	{ SST(0x14, 0x04, SS_RDEF,
1476 	    "Block sequence error") },
1477 	/* DT  W O   BK   */
1478 	{ SST(0x14, 0x05, SS_RDEF,
1479 	    "Record not found - recommend reassignment") },
1480 	/* DT  W O   BK   */
1481 	{ SST(0x14, 0x06, SS_RDEF,
1482 	    "Record not found - data auto-reallocated") },
1483 	/*  T             */
1484 	{ SST(0x14, 0x07, SS_RDEF,	/* XXX TBD */
1485 	    "Locate operation failure") },
1486 	/* DTL WROM  BK   */
1487 	{ SST(0x15, 0x00, SS_RDEF,
1488 	    "Random positioning error") },
1489 	/* DTL WROM  BK   */
1490 	{ SST(0x15, 0x01, SS_RDEF,
1491 	    "Mechanical positioning error") },
1492 	/* DT  WRO   BK   */
1493 	{ SST(0x15, 0x02, SS_RDEF,
1494 	    "Positioning error detected by read of medium") },
1495 	/* D   W O   BK   */
1496 	{ SST(0x16, 0x00, SS_RDEF,
1497 	    "Data synchronization mark error") },
1498 	/* D   W O   BK   */
1499 	{ SST(0x16, 0x01, SS_RDEF,
1500 	    "Data sync error - data rewritten") },
1501 	/* D   W O   BK   */
1502 	{ SST(0x16, 0x02, SS_RDEF,
1503 	    "Data sync error - recommend rewrite") },
1504 	/* D   W O   BK   */
1505 	{ SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1506 	    "Data sync error - data auto-reallocated") },
1507 	/* D   W O   BK   */
1508 	{ SST(0x16, 0x04, SS_RDEF,
1509 	    "Data sync error - recommend reassignment") },
1510 	/* DT  WRO   BK   */
1511 	{ SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1512 	    "Recovered data with no error correction applied") },
1513 	/* DT  WRO   BK   */
1514 	{ SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1515 	    "Recovered data with retries") },
1516 	/* DT  WRO   BK   */
1517 	{ SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1518 	    "Recovered data with positive head offset") },
1519 	/* DT  WRO   BK   */
1520 	{ SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1521 	    "Recovered data with negative head offset") },
1522 	/*     WRO   B    */
1523 	{ SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1524 	    "Recovered data with retries and/or CIRC applied") },
1525 	/* D   WRO   BK   */
1526 	{ SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1527 	    "Recovered data using previous sector ID") },
1528 	/* D   W O   BK   */
1529 	{ SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1530 	    "Recovered data without ECC - data auto-reallocated") },
1531 	/* D   WRO   BK   */
1532 	{ SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1533 	    "Recovered data without ECC - recommend reassignment") },
1534 	/* D   WRO   BK   */
1535 	{ SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1536 	    "Recovered data without ECC - recommend rewrite") },
1537 	/* D   WRO   BK   */
1538 	{ SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1539 	    "Recovered data without ECC - data rewritten") },
1540 	/* DT  WRO   BK   */
1541 	{ SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1542 	    "Recovered data with error correction applied") },
1543 	/* D   WRO   BK   */
1544 	{ SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1545 	    "Recovered data with error corr. & retries applied") },
1546 	/* D   WRO   BK   */
1547 	{ SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1548 	    "Recovered data - data auto-reallocated") },
1549 	/*      R         */
1550 	{ SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1551 	    "Recovered data with CIRC") },
1552 	/*      R         */
1553 	{ SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1554 	    "Recovered data with L-EC") },
1555 	/* D   WRO   BK   */
1556 	{ SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1557 	    "Recovered data - recommend reassignment") },
1558 	/* D   WRO   BK   */
1559 	{ SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1560 	    "Recovered data - recommend rewrite") },
1561 	/* D   W O   BK   */
1562 	{ SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1563 	    "Recovered data with ECC - data rewritten") },
1564 	/*      R         */
1565 	{ SST(0x18, 0x08, SS_RDEF,	/* XXX TBD */
1566 	    "Recovered data with linking") },
1567 	/* D     O    K   */
1568 	{ SST(0x19, 0x00, SS_RDEF,
1569 	    "Defect list error") },
1570 	/* D     O    K   */
1571 	{ SST(0x19, 0x01, SS_RDEF,
1572 	    "Defect list not available") },
1573 	/* D     O    K   */
1574 	{ SST(0x19, 0x02, SS_RDEF,
1575 	    "Defect list error in primary list") },
1576 	/* D     O    K   */
1577 	{ SST(0x19, 0x03, SS_RDEF,
1578 	    "Defect list error in grown list") },
1579 	/* DTLPWROMAEBKVF */
1580 	{ SST(0x1A, 0x00, SS_RDEF,
1581 	    "Parameter list length error") },
1582 	/* DTLPWROMAEBKVF */
1583 	{ SST(0x1B, 0x00, SS_RDEF,
1584 	    "Synchronous data transfer error") },
1585 	/* D     O   BK   */
1586 	{ SST(0x1C, 0x00, SS_RDEF,
1587 	    "Defect list not found") },
1588 	/* D     O   BK   */
1589 	{ SST(0x1C, 0x01, SS_RDEF,
1590 	    "Primary defect list not found") },
1591 	/* D     O   BK   */
1592 	{ SST(0x1C, 0x02, SS_RDEF,
1593 	    "Grown defect list not found") },
1594 	/* DT  WRO   BK   */
1595 	{ SST(0x1D, 0x00, SS_FATAL,
1596 	    "Miscompare during verify operation") },
1597 	/* D         B    */
1598 	{ SST(0x1D, 0x01, SS_RDEF,	/* XXX TBD */
1599 	    "Miscomparable verify of unmapped LBA") },
1600 	/* D   W O   BK   */
1601 	{ SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1602 	    "Recovered ID with ECC correction") },
1603 	/* D     O    K   */
1604 	{ SST(0x1F, 0x00, SS_RDEF,
1605 	    "Partial defect list transfer") },
1606 	/* DTLPWROMAEBKVF */
1607 	{ SST(0x20, 0x00, SS_FATAL | EINVAL,
1608 	    "Invalid command operation code") },
1609 	/* DT PWROMAEBK   */
1610 	{ SST(0x20, 0x01, SS_RDEF,	/* XXX TBD */
1611 	    "Access denied - initiator pending-enrolled") },
1612 	/* DT PWROMAEBK   */
1613 	{ SST(0x20, 0x02, SS_FATAL | EPERM,
1614 	    "Access denied - no access rights") },
1615 	/* DT PWROMAEBK   */
1616 	{ SST(0x20, 0x03, SS_RDEF,	/* XXX TBD */
1617 	    "Access denied - invalid mgmt ID key") },
1618 	/*  T             */
1619 	{ SST(0x20, 0x04, SS_RDEF,	/* XXX TBD */
1620 	    "Illegal command while in write capable state") },
1621 	/*  T             */
1622 	{ SST(0x20, 0x05, SS_RDEF,	/* XXX TBD */
1623 	    "Obsolete") },
1624 	/*  T             */
1625 	{ SST(0x20, 0x06, SS_RDEF,	/* XXX TBD */
1626 	    "Illegal command while in explicit address mode") },
1627 	/*  T             */
1628 	{ SST(0x20, 0x07, SS_RDEF,	/* XXX TBD */
1629 	    "Illegal command while in implicit address mode") },
1630 	/* DT PWROMAEBK   */
1631 	{ SST(0x20, 0x08, SS_RDEF,	/* XXX TBD */
1632 	    "Access denied - enrollment conflict") },
1633 	/* DT PWROMAEBK   */
1634 	{ SST(0x20, 0x09, SS_RDEF,	/* XXX TBD */
1635 	    "Access denied - invalid LU identifier") },
1636 	/* DT PWROMAEBK   */
1637 	{ SST(0x20, 0x0A, SS_RDEF,	/* XXX TBD */
1638 	    "Access denied - invalid proxy token") },
1639 	/* DT PWROMAEBK   */
1640 	{ SST(0x20, 0x0B, SS_RDEF,	/* XXX TBD */
1641 	    "Access denied - ACL LUN conflict") },
1642 	/*  T             */
1643 	{ SST(0x20, 0x0C, SS_FATAL | EINVAL,
1644 	    "Illegal command when not in append-only mode") },
1645 	/* DT  WRO   BK   */
1646 	{ SST(0x21, 0x00, SS_FATAL | EINVAL,
1647 	    "Logical block address out of range") },
1648 	/* DT  WROM  BK   */
1649 	{ SST(0x21, 0x01, SS_FATAL | EINVAL,
1650 	    "Invalid element address") },
1651 	/*      R         */
1652 	{ SST(0x21, 0x02, SS_RDEF,	/* XXX TBD */
1653 	    "Invalid address for write") },
1654 	/*      R         */
1655 	{ SST(0x21, 0x03, SS_RDEF,	/* XXX TBD */
1656 	    "Invalid write crossing layer jump") },
1657 	/* D              */
1658 	{ SST(0x21, 0x04, SS_RDEF,	/* XXX TBD */
1659 	    "Unaligned write command") },
1660 	/* D              */
1661 	{ SST(0x21, 0x05, SS_RDEF,	/* XXX TBD */
1662 	    "Write boundary violation") },
1663 	/* D              */
1664 	{ SST(0x21, 0x06, SS_RDEF,	/* XXX TBD */
1665 	    "Attempt to read invalid data") },
1666 	/* D              */
1667 	{ SST(0x21, 0x07, SS_RDEF,	/* XXX TBD */
1668 	    "Read boundary violation") },
1669 	/* D              */
1670 	{ SST(0x22, 0x00, SS_FATAL | EINVAL,
1671 	    "Illegal function (use 20 00, 24 00, or 26 00)") },
1672 	/* DT P      B    */
1673 	{ SST(0x23, 0x00, SS_FATAL | EINVAL,
1674 	    "Invalid token operation, cause not reportable") },
1675 	/* DT P      B    */
1676 	{ SST(0x23, 0x01, SS_FATAL | EINVAL,
1677 	    "Invalid token operation, unsupported token type") },
1678 	/* DT P      B    */
1679 	{ SST(0x23, 0x02, SS_FATAL | EINVAL,
1680 	    "Invalid token operation, remote token usage not supported") },
1681 	/* DT P      B    */
1682 	{ SST(0x23, 0x03, SS_FATAL | EINVAL,
1683 	    "Invalid token operation, remote ROD token creation not supported") },
1684 	/* DT P      B    */
1685 	{ SST(0x23, 0x04, SS_FATAL | EINVAL,
1686 	    "Invalid token operation, token unknown") },
1687 	/* DT P      B    */
1688 	{ SST(0x23, 0x05, SS_FATAL | EINVAL,
1689 	    "Invalid token operation, token corrupt") },
1690 	/* DT P      B    */
1691 	{ SST(0x23, 0x06, SS_FATAL | EINVAL,
1692 	    "Invalid token operation, token revoked") },
1693 	/* DT P      B    */
1694 	{ SST(0x23, 0x07, SS_FATAL | EINVAL,
1695 	    "Invalid token operation, token expired") },
1696 	/* DT P      B    */
1697 	{ SST(0x23, 0x08, SS_FATAL | EINVAL,
1698 	    "Invalid token operation, token cancelled") },
1699 	/* DT P      B    */
1700 	{ SST(0x23, 0x09, SS_FATAL | EINVAL,
1701 	    "Invalid token operation, token deleted") },
1702 	/* DT P      B    */
1703 	{ SST(0x23, 0x0A, SS_FATAL | EINVAL,
1704 	    "Invalid token operation, invalid token length") },
1705 	/* DTLPWROMAEBKVF */
1706 	{ SST(0x24, 0x00, SS_FATAL | EINVAL,
1707 	    "Invalid field in CDB") },
1708 	/* DTLPWRO AEBKVF */
1709 	{ SST(0x24, 0x01, SS_RDEF,	/* XXX TBD */
1710 	    "CDB decryption error") },
1711 	/*  T             */
1712 	{ SST(0x24, 0x02, SS_RDEF,	/* XXX TBD */
1713 	    "Obsolete") },
1714 	/*  T             */
1715 	{ SST(0x24, 0x03, SS_RDEF,	/* XXX TBD */
1716 	    "Obsolete") },
1717 	/*              F */
1718 	{ SST(0x24, 0x04, SS_RDEF,	/* XXX TBD */
1719 	    "Security audit value frozen") },
1720 	/*              F */
1721 	{ SST(0x24, 0x05, SS_RDEF,	/* XXX TBD */
1722 	    "Security working key frozen") },
1723 	/*              F */
1724 	{ SST(0x24, 0x06, SS_RDEF,	/* XXX TBD */
1725 	    "NONCE not unique") },
1726 	/*              F */
1727 	{ SST(0x24, 0x07, SS_RDEF,	/* XXX TBD */
1728 	    "NONCE timestamp out of range") },
1729 	/* DT   R MAEBKV  */
1730 	{ SST(0x24, 0x08, SS_RDEF,	/* XXX TBD */
1731 	    "Invalid XCDB") },
1732 	/* DTLPWROMAEBKVF */
1733 	{ SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST,
1734 	    "Logical unit not supported") },
1735 	/* DTLPWROMAEBKVF */
1736 	{ SST(0x26, 0x00, SS_FATAL | EINVAL,
1737 	    "Invalid field in parameter list") },
1738 	/* DTLPWROMAEBKVF */
1739 	{ SST(0x26, 0x01, SS_FATAL | EINVAL,
1740 	    "Parameter not supported") },
1741 	/* DTLPWROMAEBKVF */
1742 	{ SST(0x26, 0x02, SS_FATAL | EINVAL,
1743 	    "Parameter value invalid") },
1744 	/* DTLPWROMAE K   */
1745 	{ SST(0x26, 0x03, SS_FATAL | EINVAL,
1746 	    "Threshold parameters not supported") },
1747 	/* DTLPWROMAEBKVF */
1748 	{ SST(0x26, 0x04, SS_FATAL | EINVAL,
1749 	    "Invalid release of persistent reservation") },
1750 	/* DTLPWRO A BK   */
1751 	{ SST(0x26, 0x05, SS_RDEF,	/* XXX TBD */
1752 	    "Data decryption error") },
1753 	/* DTLPWRO    K   */
1754 	{ SST(0x26, 0x06, SS_FATAL | EINVAL,
1755 	    "Too many target descriptors") },
1756 	/* DTLPWRO    K   */
1757 	{ SST(0x26, 0x07, SS_FATAL | EINVAL,
1758 	    "Unsupported target descriptor type code") },
1759 	/* DTLPWRO    K   */
1760 	{ SST(0x26, 0x08, SS_FATAL | EINVAL,
1761 	    "Too many segment descriptors") },
1762 	/* DTLPWRO    K   */
1763 	{ SST(0x26, 0x09, SS_FATAL | EINVAL,
1764 	    "Unsupported segment descriptor type code") },
1765 	/* DTLPWRO    K   */
1766 	{ SST(0x26, 0x0A, SS_FATAL | EINVAL,
1767 	    "Unexpected inexact segment") },
1768 	/* DTLPWRO    K   */
1769 	{ SST(0x26, 0x0B, SS_FATAL | EINVAL,
1770 	    "Inline data length exceeded") },
1771 	/* DTLPWRO    K   */
1772 	{ SST(0x26, 0x0C, SS_FATAL | EINVAL,
1773 	    "Invalid operation for copy source or destination") },
1774 	/* DTLPWRO    K   */
1775 	{ SST(0x26, 0x0D, SS_FATAL | EINVAL,
1776 	    "Copy segment granularity violation") },
1777 	/* DT PWROMAEBK   */
1778 	{ SST(0x26, 0x0E, SS_RDEF,	/* XXX TBD */
1779 	    "Invalid parameter while port is enabled") },
1780 	/*              F */
1781 	{ SST(0x26, 0x0F, SS_RDEF,	/* XXX TBD */
1782 	    "Invalid data-out buffer integrity check value") },
1783 	/*  T             */
1784 	{ SST(0x26, 0x10, SS_RDEF,	/* XXX TBD */
1785 	    "Data decryption key fail limit reached") },
1786 	/*  T             */
1787 	{ SST(0x26, 0x11, SS_RDEF,	/* XXX TBD */
1788 	    "Incomplete key-associated data set") },
1789 	/*  T             */
1790 	{ SST(0x26, 0x12, SS_RDEF,	/* XXX TBD */
1791 	    "Vendor specific key reference not found") },
1792 	/* D              */
1793 	{ SST(0x26, 0x13, SS_RDEF,	/* XXX TBD */
1794 	    "Application tag mode page is invalid") },
1795 	/* DT  WRO   BK   */
1796 	{ SST(0x27, 0x00, SS_FATAL | EACCES,
1797 	    "Write protected") },
1798 	/* DT  WRO   BK   */
1799 	{ SST(0x27, 0x01, SS_FATAL | EACCES,
1800 	    "Hardware write protected") },
1801 	/* DT  WRO   BK   */
1802 	{ SST(0x27, 0x02, SS_FATAL | EACCES,
1803 	    "Logical unit software write protected") },
1804 	/*  T   R         */
1805 	{ SST(0x27, 0x03, SS_FATAL | EACCES,
1806 	    "Associated write protect") },
1807 	/*  T   R         */
1808 	{ SST(0x27, 0x04, SS_FATAL | EACCES,
1809 	    "Persistent write protect") },
1810 	/*  T   R         */
1811 	{ SST(0x27, 0x05, SS_FATAL | EACCES,
1812 	    "Permanent write protect") },
1813 	/*      R       F */
1814 	{ SST(0x27, 0x06, SS_RDEF,	/* XXX TBD */
1815 	    "Conditional write protect") },
1816 	/* D         B    */
1817 	{ SST(0x27, 0x07, SS_FATAL | ENOSPC,
1818 	    "Space allocation failed write protect") },
1819 	/* D              */
1820 	{ SST(0x27, 0x08, SS_FATAL | EACCES,
1821 	    "Zone is read only") },
1822 	/* DTLPWROMAEBKVF */
1823 	{ SST(0x28, 0x00, SS_FATAL | ENXIO,
1824 	    "Not ready to ready change, medium may have changed") },
1825 	/* DT  WROM  B    */
1826 	{ SST(0x28, 0x01, SS_FATAL | ENXIO,
1827 	    "Import or export element accessed") },
1828 	/*      R         */
1829 	{ SST(0x28, 0x02, SS_RDEF,	/* XXX TBD */
1830 	    "Format-layer may have changed") },
1831 	/*        M       */
1832 	{ SST(0x28, 0x03, SS_RDEF,	/* XXX TBD */
1833 	    "Import/export element accessed, medium changed") },
1834 	/*
1835 	 * XXX JGibbs - All of these should use the same errno, but I don't
1836 	 * think ENXIO is the correct choice.  Should we borrow from
1837 	 * the networking errnos?  ECONNRESET anyone?
1838 	 */
1839 	/* DTLPWROMAEBKVF */
1840 	{ SST(0x29, 0x00, SS_FATAL | ENXIO,
1841 	    "Power on, reset, or bus device reset occurred") },
1842 	/* DTLPWROMAEBKVF */
1843 	{ SST(0x29, 0x01, SS_RDEF,
1844 	    "Power on occurred") },
1845 	/* DTLPWROMAEBKVF */
1846 	{ SST(0x29, 0x02, SS_RDEF,
1847 	    "SCSI bus reset occurred") },
1848 	/* DTLPWROMAEBKVF */
1849 	{ SST(0x29, 0x03, SS_RDEF,
1850 	    "Bus device reset function occurred") },
1851 	/* DTLPWROMAEBKVF */
1852 	{ SST(0x29, 0x04, SS_RDEF,
1853 	    "Device internal reset") },
1854 	/* DTLPWROMAEBKVF */
1855 	{ SST(0x29, 0x05, SS_RDEF,
1856 	    "Transceiver mode changed to single-ended") },
1857 	/* DTLPWROMAEBKVF */
1858 	{ SST(0x29, 0x06, SS_RDEF,
1859 	    "Transceiver mode changed to LVD") },
1860 	/* DTLPWROMAEBKVF */
1861 	{ SST(0x29, 0x07, SS_RDEF,	/* XXX TBD */
1862 	    "I_T nexus loss occurred") },
1863 	/* DTL WROMAEBKVF */
1864 	{ SST(0x2A, 0x00, SS_RDEF,
1865 	    "Parameters changed") },
1866 	/* DTL WROMAEBKVF */
1867 	{ SST(0x2A, 0x01, SS_RDEF,
1868 	    "Mode parameters changed") },
1869 	/* DTL WROMAE K   */
1870 	{ SST(0x2A, 0x02, SS_RDEF,
1871 	    "Log parameters changed") },
1872 	/* DTLPWROMAE K   */
1873 	{ SST(0x2A, 0x03, SS_RDEF,
1874 	    "Reservations preempted") },
1875 	/* DTLPWROMAE     */
1876 	{ SST(0x2A, 0x04, SS_RDEF,	/* XXX TBD */
1877 	    "Reservations released") },
1878 	/* DTLPWROMAE     */
1879 	{ SST(0x2A, 0x05, SS_RDEF,	/* XXX TBD */
1880 	    "Registrations preempted") },
1881 	/* DTLPWROMAEBKVF */
1882 	{ SST(0x2A, 0x06, SS_RDEF,	/* XXX TBD */
1883 	    "Asymmetric access state changed") },
1884 	/* DTLPWROMAEBKVF */
1885 	{ SST(0x2A, 0x07, SS_RDEF,	/* XXX TBD */
1886 	    "Implicit asymmetric access state transition failed") },
1887 	/* DT  WROMAEBKVF */
1888 	{ SST(0x2A, 0x08, SS_RDEF,	/* XXX TBD */
1889 	    "Priority changed") },
1890 	/* D              */
1891 	{ SST(0x2A, 0x09, SS_RDEF,	/* XXX TBD */
1892 	    "Capacity data has changed") },
1893 	/* DT             */
1894 	{ SST(0x2A, 0x0A, SS_RDEF,	/* XXX TBD */
1895 	    "Error history I_T nexus cleared") },
1896 	/* DT             */
1897 	{ SST(0x2A, 0x0B, SS_RDEF,	/* XXX TBD */
1898 	    "Error history snapshot released") },
1899 	/*              F */
1900 	{ SST(0x2A, 0x0C, SS_RDEF,	/* XXX TBD */
1901 	    "Error recovery attributes have changed") },
1902 	/*  T             */
1903 	{ SST(0x2A, 0x0D, SS_RDEF,	/* XXX TBD */
1904 	    "Data encryption capabilities changed") },
1905 	/* DT     M E  V  */
1906 	{ SST(0x2A, 0x10, SS_RDEF,	/* XXX TBD */
1907 	    "Timestamp changed") },
1908 	/*  T             */
1909 	{ SST(0x2A, 0x11, SS_RDEF,	/* XXX TBD */
1910 	    "Data encryption parameters changed by another I_T nexus") },
1911 	/*  T             */
1912 	{ SST(0x2A, 0x12, SS_RDEF,	/* XXX TBD */
1913 	    "Data encryption parameters changed by vendor specific event") },
1914 	/*  T             */
1915 	{ SST(0x2A, 0x13, SS_RDEF,	/* XXX TBD */
1916 	    "Data encryption key instance counter has changed") },
1917 	/* DT   R MAEBKV  */
1918 	{ SST(0x2A, 0x14, SS_RDEF,	/* XXX TBD */
1919 	    "SA creation capabilities data has changed") },
1920 	/*  T     M    V  */
1921 	{ SST(0x2A, 0x15, SS_RDEF,	/* XXX TBD */
1922 	    "Medium removal prevention preempted") },
1923 	/* DTLPWRO    K   */
1924 	{ SST(0x2B, 0x00, SS_RDEF,
1925 	    "Copy cannot execute since host cannot disconnect") },
1926 	/* DTLPWROMAEBKVF */
1927 	{ SST(0x2C, 0x00, SS_RDEF,
1928 	    "Command sequence error") },
1929 	/*                */
1930 	{ SST(0x2C, 0x01, SS_RDEF,
1931 	    "Too many windows specified") },
1932 	/*                */
1933 	{ SST(0x2C, 0x02, SS_RDEF,
1934 	    "Invalid combination of windows specified") },
1935 	/*      R         */
1936 	{ SST(0x2C, 0x03, SS_RDEF,
1937 	    "Current program area is not empty") },
1938 	/*      R         */
1939 	{ SST(0x2C, 0x04, SS_RDEF,
1940 	    "Current program area is empty") },
1941 	/*           B    */
1942 	{ SST(0x2C, 0x05, SS_RDEF,	/* XXX TBD */
1943 	    "Illegal power condition request") },
1944 	/*      R         */
1945 	{ SST(0x2C, 0x06, SS_RDEF,	/* XXX TBD */
1946 	    "Persistent prevent conflict") },
1947 	/* DTLPWROMAEBKVF */
1948 	{ SST(0x2C, 0x07, SS_RDEF,	/* XXX TBD */
1949 	    "Previous busy status") },
1950 	/* DTLPWROMAEBKVF */
1951 	{ SST(0x2C, 0x08, SS_RDEF,	/* XXX TBD */
1952 	    "Previous task set full status") },
1953 	/* DTLPWROM EBKVF */
1954 	{ SST(0x2C, 0x09, SS_RDEF,	/* XXX TBD */
1955 	    "Previous reservation conflict status") },
1956 	/*              F */
1957 	{ SST(0x2C, 0x0A, SS_RDEF,	/* XXX TBD */
1958 	    "Partition or collection contains user objects") },
1959 	/*  T             */
1960 	{ SST(0x2C, 0x0B, SS_RDEF,	/* XXX TBD */
1961 	    "Not reserved") },
1962 	/* D              */
1963 	{ SST(0x2C, 0x0C, SS_RDEF,	/* XXX TBD */
1964 	    "ORWRITE generation does not match") },
1965 	/* D              */
1966 	{ SST(0x2C, 0x0D, SS_RDEF,	/* XXX TBD */
1967 	    "Reset write pointer not allowed") },
1968 	/* D              */
1969 	{ SST(0x2C, 0x0E, SS_RDEF,	/* XXX TBD */
1970 	    "Zone is offline") },
1971 	/* D              */
1972 	{ SST(0x2C, 0x0F, SS_RDEF,	/* XXX TBD */
1973 	    "Stream not open") },
1974 	/* D              */
1975 	{ SST(0x2C, 0x10, SS_RDEF,	/* XXX TBD */
1976 	    "Unwritten data in zone") },
1977 	/*  T             */
1978 	{ SST(0x2D, 0x00, SS_RDEF,
1979 	    "Overwrite error on update in place") },
1980 	/*      R         */
1981 	{ SST(0x2E, 0x00, SS_RDEF,	/* XXX TBD */
1982 	    "Insufficient time for operation") },
1983 	/* D              */
1984 	{ SST(0x2E, 0x01, SS_RDEF,	/* XXX TBD */
1985 	    "Command timeout before processing") },
1986 	/* D              */
1987 	{ SST(0x2E, 0x02, SS_RDEF,	/* XXX TBD */
1988 	    "Command timeout during processing") },
1989 	/* D              */
1990 	{ SST(0x2E, 0x03, SS_RDEF,	/* XXX TBD */
1991 	    "Command timeout during processing due to error recovery") },
1992 	/* DTLPWROMAEBKVF */
1993 	{ SST(0x2F, 0x00, SS_RDEF,
1994 	    "Commands cleared by another initiator") },
1995 	/* D              */
1996 	{ SST(0x2F, 0x01, SS_RDEF,	/* XXX TBD */
1997 	    "Commands cleared by power loss notification") },
1998 	/* DTLPWROMAEBKVF */
1999 	{ SST(0x2F, 0x02, SS_RDEF,	/* XXX TBD */
2000 	    "Commands cleared by device server") },
2001 	/* DTLPWROMAEBKVF */
2002 	{ SST(0x2F, 0x03, SS_RDEF,	/* XXX TBD */
2003 	    "Some commands cleared by queuing layer event") },
2004 	/* DT  WROM  BK   */
2005 	{ SST(0x30, 0x00, SS_RDEF,
2006 	    "Incompatible medium installed") },
2007 	/* DT  WRO   BK   */
2008 	{ SST(0x30, 0x01, SS_RDEF,
2009 	    "Cannot read medium - unknown format") },
2010 	/* DT  WRO   BK   */
2011 	{ SST(0x30, 0x02, SS_RDEF,
2012 	    "Cannot read medium - incompatible format") },
2013 	/* DT   R     K   */
2014 	{ SST(0x30, 0x03, SS_RDEF,
2015 	    "Cleaning cartridge installed") },
2016 	/* DT  WRO   BK   */
2017 	{ SST(0x30, 0x04, SS_RDEF,
2018 	    "Cannot write medium - unknown format") },
2019 	/* DT  WRO   BK   */
2020 	{ SST(0x30, 0x05, SS_RDEF,
2021 	    "Cannot write medium - incompatible format") },
2022 	/* DT  WRO   B    */
2023 	{ SST(0x30, 0x06, SS_RDEF,
2024 	    "Cannot format medium - incompatible medium") },
2025 	/* DTL WROMAEBKVF */
2026 	{ SST(0x30, 0x07, SS_RDEF,
2027 	    "Cleaning failure") },
2028 	/*      R         */
2029 	{ SST(0x30, 0x08, SS_RDEF,
2030 	    "Cannot write - application code mismatch") },
2031 	/*      R         */
2032 	{ SST(0x30, 0x09, SS_RDEF,
2033 	    "Current session not fixated for append") },
2034 	/* DT  WRO AEBK   */
2035 	{ SST(0x30, 0x0A, SS_RDEF,	/* XXX TBD */
2036 	    "Cleaning request rejected") },
2037 	/*  T             */
2038 	{ SST(0x30, 0x0C, SS_RDEF,	/* XXX TBD */
2039 	    "WORM medium - overwrite attempted") },
2040 	/*  T             */
2041 	{ SST(0x30, 0x0D, SS_RDEF,	/* XXX TBD */
2042 	    "WORM medium - integrity check") },
2043 	/*      R         */
2044 	{ SST(0x30, 0x10, SS_RDEF,	/* XXX TBD */
2045 	    "Medium not formatted") },
2046 	/*        M       */
2047 	{ SST(0x30, 0x11, SS_RDEF,	/* XXX TBD */
2048 	    "Incompatible volume type") },
2049 	/*        M       */
2050 	{ SST(0x30, 0x12, SS_RDEF,	/* XXX TBD */
2051 	    "Incompatible volume qualifier") },
2052 	/*        M       */
2053 	{ SST(0x30, 0x13, SS_RDEF,	/* XXX TBD */
2054 	    "Cleaning volume expired") },
2055 	/* DT  WRO   BK   */
2056 	{ SST(0x31, 0x00, SS_RDEF,
2057 	    "Medium format corrupted") },
2058 	/* D L  RO   B    */
2059 	{ SST(0x31, 0x01, SS_RDEF,
2060 	    "Format command failed") },
2061 	/*      R         */
2062 	{ SST(0x31, 0x02, SS_RDEF,	/* XXX TBD */
2063 	    "Zoned formatting failed due to spare linking") },
2064 	/* D         B    */
2065 	{ SST(0x31, 0x03, SS_RDEF,	/* XXX TBD */
2066 	    "SANITIZE command failed") },
2067 	/* D   W O   BK   */
2068 	{ SST(0x32, 0x00, SS_RDEF,
2069 	    "No defect spare location available") },
2070 	/* D   W O   BK   */
2071 	{ SST(0x32, 0x01, SS_RDEF,
2072 	    "Defect list update failure") },
2073 	/*  T             */
2074 	{ SST(0x33, 0x00, SS_RDEF,
2075 	    "Tape length error") },
2076 	/* DTLPWROMAEBKVF */
2077 	{ SST(0x34, 0x00, SS_RDEF,
2078 	    "Enclosure failure") },
2079 	/* DTLPWROMAEBKVF */
2080 	{ SST(0x35, 0x00, SS_RDEF,
2081 	    "Enclosure services failure") },
2082 	/* DTLPWROMAEBKVF */
2083 	{ SST(0x35, 0x01, SS_RDEF,
2084 	    "Unsupported enclosure function") },
2085 	/* DTLPWROMAEBKVF */
2086 	{ SST(0x35, 0x02, SS_RDEF,
2087 	    "Enclosure services unavailable") },
2088 	/* DTLPWROMAEBKVF */
2089 	{ SST(0x35, 0x03, SS_RDEF,
2090 	    "Enclosure services transfer failure") },
2091 	/* DTLPWROMAEBKVF */
2092 	{ SST(0x35, 0x04, SS_RDEF,
2093 	    "Enclosure services transfer refused") },
2094 	/* DTL WROMAEBKVF */
2095 	{ SST(0x35, 0x05, SS_RDEF,	/* XXX TBD */
2096 	    "Enclosure services checksum error") },
2097 	/*   L            */
2098 	{ SST(0x36, 0x00, SS_RDEF,
2099 	    "Ribbon, ink, or toner failure") },
2100 	/* DTL WROMAEBKVF */
2101 	{ SST(0x37, 0x00, SS_RDEF,
2102 	    "Rounded parameter") },
2103 	/*           B    */
2104 	{ SST(0x38, 0x00, SS_RDEF,	/* XXX TBD */
2105 	    "Event status notification") },
2106 	/*           B    */
2107 	{ SST(0x38, 0x02, SS_RDEF,	/* XXX TBD */
2108 	    "ESN - power management class event") },
2109 	/*           B    */
2110 	{ SST(0x38, 0x04, SS_RDEF,	/* XXX TBD */
2111 	    "ESN - media class event") },
2112 	/*           B    */
2113 	{ SST(0x38, 0x06, SS_RDEF,	/* XXX TBD */
2114 	    "ESN - device busy class event") },
2115 	/* D              */
2116 	{ SST(0x38, 0x07, SS_RDEF,	/* XXX TBD */
2117 	    "Thin provisioning soft threshold reached") },
2118 	/* DTL WROMAE K   */
2119 	{ SST(0x39, 0x00, SS_RDEF,
2120 	    "Saving parameters not supported") },
2121 	/* DTL WROM  BK   */
2122 	{ SST(0x3A, 0x00, SS_FATAL | ENXIO,
2123 	    "Medium not present") },
2124 	/* DT  WROM  BK   */
2125 	{ SST(0x3A, 0x01, SS_FATAL | ENXIO,
2126 	    "Medium not present - tray closed") },
2127 	/* DT  WROM  BK   */
2128 	{ SST(0x3A, 0x02, SS_FATAL | ENXIO,
2129 	    "Medium not present - tray open") },
2130 	/* DT  WROM  B    */
2131 	{ SST(0x3A, 0x03, SS_RDEF,	/* XXX TBD */
2132 	    "Medium not present - loadable") },
2133 	/* DT  WRO   B    */
2134 	{ SST(0x3A, 0x04, SS_RDEF,	/* XXX TBD */
2135 	    "Medium not present - medium auxiliary memory accessible") },
2136 	/*  TL            */
2137 	{ SST(0x3B, 0x00, SS_RDEF,
2138 	    "Sequential positioning error") },
2139 	/*  T             */
2140 	{ SST(0x3B, 0x01, SS_RDEF,
2141 	    "Tape position error at beginning-of-medium") },
2142 	/*  T             */
2143 	{ SST(0x3B, 0x02, SS_RDEF,
2144 	    "Tape position error at end-of-medium") },
2145 	/*   L            */
2146 	{ SST(0x3B, 0x03, SS_RDEF,
2147 	    "Tape or electronic vertical forms unit not ready") },
2148 	/*   L            */
2149 	{ SST(0x3B, 0x04, SS_RDEF,
2150 	    "Slew failure") },
2151 	/*   L            */
2152 	{ SST(0x3B, 0x05, SS_RDEF,
2153 	    "Paper jam") },
2154 	/*   L            */
2155 	{ SST(0x3B, 0x06, SS_RDEF,
2156 	    "Failed to sense top-of-form") },
2157 	/*   L            */
2158 	{ SST(0x3B, 0x07, SS_RDEF,
2159 	    "Failed to sense bottom-of-form") },
2160 	/*  T             */
2161 	{ SST(0x3B, 0x08, SS_RDEF,
2162 	    "Reposition error") },
2163 	/*                */
2164 	{ SST(0x3B, 0x09, SS_RDEF,
2165 	    "Read past end of medium") },
2166 	/*                */
2167 	{ SST(0x3B, 0x0A, SS_RDEF,
2168 	    "Read past beginning of medium") },
2169 	/*                */
2170 	{ SST(0x3B, 0x0B, SS_RDEF,
2171 	    "Position past end of medium") },
2172 	/*  T             */
2173 	{ SST(0x3B, 0x0C, SS_RDEF,
2174 	    "Position past beginning of medium") },
2175 	/* DT  WROM  BK   */
2176 	{ SST(0x3B, 0x0D, SS_FATAL | ENOSPC,
2177 	    "Medium destination element full") },
2178 	/* DT  WROM  BK   */
2179 	{ SST(0x3B, 0x0E, SS_RDEF,
2180 	    "Medium source element empty") },
2181 	/*      R         */
2182 	{ SST(0x3B, 0x0F, SS_RDEF,
2183 	    "End of medium reached") },
2184 	/* DT  WROM  BK   */
2185 	{ SST(0x3B, 0x11, SS_RDEF,
2186 	    "Medium magazine not accessible") },
2187 	/* DT  WROM  BK   */
2188 	{ SST(0x3B, 0x12, SS_RDEF,
2189 	    "Medium magazine removed") },
2190 	/* DT  WROM  BK   */
2191 	{ SST(0x3B, 0x13, SS_RDEF,
2192 	    "Medium magazine inserted") },
2193 	/* DT  WROM  BK   */
2194 	{ SST(0x3B, 0x14, SS_RDEF,
2195 	    "Medium magazine locked") },
2196 	/* DT  WROM  BK   */
2197 	{ SST(0x3B, 0x15, SS_RDEF,
2198 	    "Medium magazine unlocked") },
2199 	/*      R         */
2200 	{ SST(0x3B, 0x16, SS_RDEF,	/* XXX TBD */
2201 	    "Mechanical positioning or changer error") },
2202 	/*              F */
2203 	{ SST(0x3B, 0x17, SS_RDEF,	/* XXX TBD */
2204 	    "Read past end of user object") },
2205 	/*        M       */
2206 	{ SST(0x3B, 0x18, SS_RDEF,	/* XXX TBD */
2207 	    "Element disabled") },
2208 	/*        M       */
2209 	{ SST(0x3B, 0x19, SS_RDEF,	/* XXX TBD */
2210 	    "Element enabled") },
2211 	/*        M       */
2212 	{ SST(0x3B, 0x1A, SS_RDEF,	/* XXX TBD */
2213 	    "Data transfer device removed") },
2214 	/*        M       */
2215 	{ SST(0x3B, 0x1B, SS_RDEF,	/* XXX TBD */
2216 	    "Data transfer device inserted") },
2217 	/*  T             */
2218 	{ SST(0x3B, 0x1C, SS_RDEF,	/* XXX TBD */
2219 	    "Too many logical objects on partition to support operation") },
2220 	/* DTLPWROMAE K   */
2221 	{ SST(0x3D, 0x00, SS_RDEF,
2222 	    "Invalid bits in IDENTIFY message") },
2223 	/* DTLPWROMAEBKVF */
2224 	{ SST(0x3E, 0x00, SS_RDEF,
2225 	    "Logical unit has not self-configured yet") },
2226 	/* DTLPWROMAEBKVF */
2227 	{ SST(0x3E, 0x01, SS_RDEF,
2228 	    "Logical unit failure") },
2229 	/* DTLPWROMAEBKVF */
2230 	{ SST(0x3E, 0x02, SS_RDEF,
2231 	    "Timeout on logical unit") },
2232 	/* DTLPWROMAEBKVF */
2233 	{ SST(0x3E, 0x03, SS_RDEF,	/* XXX TBD */
2234 	    "Logical unit failed self-test") },
2235 	/* DTLPWROMAEBKVF */
2236 	{ SST(0x3E, 0x04, SS_RDEF,	/* XXX TBD */
2237 	    "Logical unit unable to update self-test log") },
2238 	/* DTLPWROMAEBKVF */
2239 	{ SST(0x3F, 0x00, SS_RDEF,
2240 	    "Target operating conditions have changed") },
2241 	/* DTLPWROMAEBKVF */
2242 	{ SST(0x3F, 0x01, SS_RDEF,
2243 	    "Microcode has been changed") },
2244 	/* DTLPWROM  BK   */
2245 	{ SST(0x3F, 0x02, SS_RDEF,
2246 	    "Changed operating definition") },
2247 	/* DTLPWROMAEBKVF */
2248 	{ SST(0x3F, 0x03, SS_RDEF,
2249 	    "INQUIRY data has changed") },
2250 	/* DT  WROMAEBK   */
2251 	{ SST(0x3F, 0x04, SS_RDEF,
2252 	    "Component device attached") },
2253 	/* DT  WROMAEBK   */
2254 	{ SST(0x3F, 0x05, SS_RDEF,
2255 	    "Device identifier changed") },
2256 	/* DT  WROMAEB    */
2257 	{ SST(0x3F, 0x06, SS_RDEF,
2258 	    "Redundancy group created or modified") },
2259 	/* DT  WROMAEB    */
2260 	{ SST(0x3F, 0x07, SS_RDEF,
2261 	    "Redundancy group deleted") },
2262 	/* DT  WROMAEB    */
2263 	{ SST(0x3F, 0x08, SS_RDEF,
2264 	    "Spare created or modified") },
2265 	/* DT  WROMAEB    */
2266 	{ SST(0x3F, 0x09, SS_RDEF,
2267 	    "Spare deleted") },
2268 	/* DT  WROMAEBK   */
2269 	{ SST(0x3F, 0x0A, SS_RDEF,
2270 	    "Volume set created or modified") },
2271 	/* DT  WROMAEBK   */
2272 	{ SST(0x3F, 0x0B, SS_RDEF,
2273 	    "Volume set deleted") },
2274 	/* DT  WROMAEBK   */
2275 	{ SST(0x3F, 0x0C, SS_RDEF,
2276 	    "Volume set deassigned") },
2277 	/* DT  WROMAEBK   */
2278 	{ SST(0x3F, 0x0D, SS_RDEF,
2279 	    "Volume set reassigned") },
2280 	/* DTLPWROMAE     */
2281 	{ SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN ,
2282 	    "Reported LUNs data has changed") },
2283 	/* DTLPWROMAEBKVF */
2284 	{ SST(0x3F, 0x0F, SS_RDEF,	/* XXX TBD */
2285 	    "Echo buffer overwritten") },
2286 	/* DT  WROM  B    */
2287 	{ SST(0x3F, 0x10, SS_RDEF,	/* XXX TBD */
2288 	    "Medium loadable") },
2289 	/* DT  WROM  B    */
2290 	{ SST(0x3F, 0x11, SS_RDEF,	/* XXX TBD */
2291 	    "Medium auxiliary memory accessible") },
2292 	/* DTLPWR MAEBK F */
2293 	{ SST(0x3F, 0x12, SS_RDEF,	/* XXX TBD */
2294 	    "iSCSI IP address added") },
2295 	/* DTLPWR MAEBK F */
2296 	{ SST(0x3F, 0x13, SS_RDEF,	/* XXX TBD */
2297 	    "iSCSI IP address removed") },
2298 	/* DTLPWR MAEBK F */
2299 	{ SST(0x3F, 0x14, SS_RDEF,	/* XXX TBD */
2300 	    "iSCSI IP address changed") },
2301 	/* DTLPWR MAEBK   */
2302 	{ SST(0x3F, 0x15, SS_RDEF,	/* XXX TBD */
2303 	    "Inspect referrals sense descriptors") },
2304 	/* DTLPWROMAEBKVF */
2305 	{ SST(0x3F, 0x16, SS_RDEF,	/* XXX TBD */
2306 	    "Microcode has been changed without reset") },
2307 	/* D              */
2308 	{ SST(0x3F, 0x17, SS_RDEF,	/* XXX TBD */
2309 	    "Zone transition to full") },
2310 	/* D              */
2311 	{ SST(0x40, 0x00, SS_RDEF,
2312 	    "RAM failure") },		/* deprecated - use 40 NN instead */
2313 	/* DTLPWROMAEBKVF */
2314 	{ SST(0x40, 0x80, SS_RDEF,
2315 	    "Diagnostic failure: ASCQ = Component ID") },
2316 	/* DTLPWROMAEBKVF */
2317 	{ SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE,
2318 	    NULL) },			/* Range 0x80->0xFF */
2319 	/* D              */
2320 	{ SST(0x41, 0x00, SS_RDEF,
2321 	    "Data path failure") },	/* deprecated - use 40 NN instead */
2322 	/* D              */
2323 	{ SST(0x42, 0x00, SS_RDEF,
2324 	    "Power-on or self-test failure") },
2325 					/* deprecated - use 40 NN instead */
2326 	/* DTLPWROMAEBKVF */
2327 	{ SST(0x43, 0x00, SS_RDEF,
2328 	    "Message error") },
2329 	/* DTLPWROMAEBKVF */
2330 	{ SST(0x44, 0x00, SS_FATAL | EIO,
2331 	    "Internal target failure") },
2332 	/* DT P   MAEBKVF */
2333 	{ SST(0x44, 0x01, SS_RDEF,	/* XXX TBD */
2334 	    "Persistent reservation information lost") },
2335 	/* DT        B    */
2336 	{ SST(0x44, 0x71, SS_RDEF,	/* XXX TBD */
2337 	    "ATA device failed set features") },
2338 	/* DTLPWROMAEBKVF */
2339 	{ SST(0x45, 0x00, SS_RDEF,
2340 	    "Select or reselect failure") },
2341 	/* DTLPWROM  BK   */
2342 	{ SST(0x46, 0x00, SS_RDEF,
2343 	    "Unsuccessful soft reset") },
2344 	/* DTLPWROMAEBKVF */
2345 	{ SST(0x47, 0x00, SS_RDEF,
2346 	    "SCSI parity error") },
2347 	/* DTLPWROMAEBKVF */
2348 	{ SST(0x47, 0x01, SS_RDEF,	/* XXX TBD */
2349 	    "Data phase CRC error detected") },
2350 	/* DTLPWROMAEBKVF */
2351 	{ SST(0x47, 0x02, SS_RDEF,	/* XXX TBD */
2352 	    "SCSI parity error detected during ST data phase") },
2353 	/* DTLPWROMAEBKVF */
2354 	{ SST(0x47, 0x03, SS_RDEF,	/* XXX TBD */
2355 	    "Information unit iuCRC error detected") },
2356 	/* DTLPWROMAEBKVF */
2357 	{ SST(0x47, 0x04, SS_RDEF,	/* XXX TBD */
2358 	    "Asynchronous information protection error detected") },
2359 	/* DTLPWROMAEBKVF */
2360 	{ SST(0x47, 0x05, SS_RDEF,	/* XXX TBD */
2361 	    "Protocol service CRC error") },
2362 	/* DT     MAEBKVF */
2363 	{ SST(0x47, 0x06, SS_RDEF,	/* XXX TBD */
2364 	    "PHY test function in progress") },
2365 	/* DT PWROMAEBK   */
2366 	{ SST(0x47, 0x7F, SS_RDEF,	/* XXX TBD */
2367 	    "Some commands cleared by iSCSI protocol event") },
2368 	/* DTLPWROMAEBKVF */
2369 	{ SST(0x48, 0x00, SS_RDEF,
2370 	    "Initiator detected error message received") },
2371 	/* DTLPWROMAEBKVF */
2372 	{ SST(0x49, 0x00, SS_RDEF,
2373 	    "Invalid message error") },
2374 	/* DTLPWROMAEBKVF */
2375 	{ SST(0x4A, 0x00, SS_RDEF,
2376 	    "Command phase error") },
2377 	/* DTLPWROMAEBKVF */
2378 	{ SST(0x4B, 0x00, SS_RDEF,
2379 	    "Data phase error") },
2380 	/* DT PWROMAEBK   */
2381 	{ SST(0x4B, 0x01, SS_RDEF,	/* XXX TBD */
2382 	    "Invalid target port transfer tag received") },
2383 	/* DT PWROMAEBK   */
2384 	{ SST(0x4B, 0x02, SS_RDEF,	/* XXX TBD */
2385 	    "Too much write data") },
2386 	/* DT PWROMAEBK   */
2387 	{ SST(0x4B, 0x03, SS_RDEF,	/* XXX TBD */
2388 	    "ACK/NAK timeout") },
2389 	/* DT PWROMAEBK   */
2390 	{ SST(0x4B, 0x04, SS_RDEF,	/* XXX TBD */
2391 	    "NAK received") },
2392 	/* DT PWROMAEBK   */
2393 	{ SST(0x4B, 0x05, SS_RDEF,	/* XXX TBD */
2394 	    "Data offset error") },
2395 	/* DT PWROMAEBK   */
2396 	{ SST(0x4B, 0x06, SS_RDEF,	/* XXX TBD */
2397 	    "Initiator response timeout") },
2398 	/* DT PWROMAEBK F */
2399 	{ SST(0x4B, 0x07, SS_RDEF,	/* XXX TBD */
2400 	    "Connection lost") },
2401 	/* DT PWROMAEBK F */
2402 	{ SST(0x4B, 0x08, SS_RDEF,	/* XXX TBD */
2403 	    "Data-in buffer overflow - data buffer size") },
2404 	/* DT PWROMAEBK F */
2405 	{ SST(0x4B, 0x09, SS_RDEF,	/* XXX TBD */
2406 	    "Data-in buffer overflow - data buffer descriptor area") },
2407 	/* DT PWROMAEBK F */
2408 	{ SST(0x4B, 0x0A, SS_RDEF,	/* XXX TBD */
2409 	    "Data-in buffer error") },
2410 	/* DT PWROMAEBK F */
2411 	{ SST(0x4B, 0x0B, SS_RDEF,	/* XXX TBD */
2412 	    "Data-out buffer overflow - data buffer size") },
2413 	/* DT PWROMAEBK F */
2414 	{ SST(0x4B, 0x0C, SS_RDEF,	/* XXX TBD */
2415 	    "Data-out buffer overflow - data buffer descriptor area") },
2416 	/* DT PWROMAEBK F */
2417 	{ SST(0x4B, 0x0D, SS_RDEF,	/* XXX TBD */
2418 	    "Data-out buffer error") },
2419 	/* DT PWROMAEBK F */
2420 	{ SST(0x4B, 0x0E, SS_RDEF,	/* XXX TBD */
2421 	    "PCIe fabric error") },
2422 	/* DT PWROMAEBK F */
2423 	{ SST(0x4B, 0x0F, SS_RDEF,	/* XXX TBD */
2424 	    "PCIe completion timeout") },
2425 	/* DT PWROMAEBK F */
2426 	{ SST(0x4B, 0x10, SS_RDEF,	/* XXX TBD */
2427 	    "PCIe completer abort") },
2428 	/* DT PWROMAEBK F */
2429 	{ SST(0x4B, 0x11, SS_RDEF,	/* XXX TBD */
2430 	    "PCIe poisoned TLP received") },
2431 	/* DT PWROMAEBK F */
2432 	{ SST(0x4B, 0x12, SS_RDEF,	/* XXX TBD */
2433 	    "PCIe ECRC check failed") },
2434 	/* DT PWROMAEBK F */
2435 	{ SST(0x4B, 0x13, SS_RDEF,	/* XXX TBD */
2436 	    "PCIe unsupported request") },
2437 	/* DT PWROMAEBK F */
2438 	{ SST(0x4B, 0x14, SS_RDEF,	/* XXX TBD */
2439 	    "PCIe ACS violation") },
2440 	/* DT PWROMAEBK F */
2441 	{ SST(0x4B, 0x15, SS_RDEF,	/* XXX TBD */
2442 	    "PCIe TLP prefix blocket") },
2443 	/* DTLPWROMAEBKVF */
2444 	{ SST(0x4C, 0x00, SS_RDEF,
2445 	    "Logical unit failed self-configuration") },
2446 	/* DTLPWROMAEBKVF */
2447 	{ SST(0x4D, 0x00, SS_RDEF,
2448 	    "Tagged overlapped commands: ASCQ = Queue tag ID") },
2449 	/* DTLPWROMAEBKVF */
2450 	{ SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE,
2451 	    NULL) },			/* Range 0x00->0xFF */
2452 	/* DTLPWROMAEBKVF */
2453 	{ SST(0x4E, 0x00, SS_RDEF,
2454 	    "Overlapped commands attempted") },
2455 	/*  T             */
2456 	{ SST(0x50, 0x00, SS_RDEF,
2457 	    "Write append error") },
2458 	/*  T             */
2459 	{ SST(0x50, 0x01, SS_RDEF,
2460 	    "Write append position error") },
2461 	/*  T             */
2462 	{ SST(0x50, 0x02, SS_RDEF,
2463 	    "Position error related to timing") },
2464 	/*  T   RO        */
2465 	{ SST(0x51, 0x00, SS_RDEF,
2466 	    "Erase failure") },
2467 	/*      R         */
2468 	{ SST(0x51, 0x01, SS_RDEF,	/* XXX TBD */
2469 	    "Erase failure - incomplete erase operation detected") },
2470 	/*  T             */
2471 	{ SST(0x52, 0x00, SS_RDEF,
2472 	    "Cartridge fault") },
2473 	/* DTL WROM  BK   */
2474 	{ SST(0x53, 0x00, SS_RDEF,
2475 	    "Media load or eject failed") },
2476 	/*  T             */
2477 	{ SST(0x53, 0x01, SS_RDEF,
2478 	    "Unload tape failure") },
2479 	/* DT  WROM  BK   */
2480 	{ SST(0x53, 0x02, SS_RDEF,
2481 	    "Medium removal prevented") },
2482 	/*        M       */
2483 	{ SST(0x53, 0x03, SS_RDEF,	/* XXX TBD */
2484 	    "Medium removal prevented by data transfer element") },
2485 	/*  T             */
2486 	{ SST(0x53, 0x04, SS_RDEF,	/* XXX TBD */
2487 	    "Medium thread or unthread failure") },
2488 	/*        M       */
2489 	{ SST(0x53, 0x05, SS_RDEF,	/* XXX TBD */
2490 	    "Volume identifier invalid") },
2491 	/*  T             */
2492 	{ SST(0x53, 0x06, SS_RDEF,	/* XXX TBD */
2493 	    "Volume identifier missing") },
2494 	/*        M       */
2495 	{ SST(0x53, 0x07, SS_RDEF,	/* XXX TBD */
2496 	    "Duplicate volume identifier") },
2497 	/*        M       */
2498 	{ SST(0x53, 0x08, SS_RDEF,	/* XXX TBD */
2499 	    "Element status unknown") },
2500 	/*        M       */
2501 	{ SST(0x53, 0x09, SS_RDEF,	/* XXX TBD */
2502 	    "Data transfer device error - load failed") },
2503 	/*        M       */
2504 	{ SST(0x53, 0x0A, SS_RDEF,	/* XXX TBD */
2505 	    "Data transfer device error - unload failed") },
2506 	/*        M       */
2507 	{ SST(0x53, 0x0B, SS_RDEF,	/* XXX TBD */
2508 	    "Data transfer device error - unload missing") },
2509 	/*        M       */
2510 	{ SST(0x53, 0x0C, SS_RDEF,	/* XXX TBD */
2511 	    "Data transfer device error - eject failed") },
2512 	/*        M       */
2513 	{ SST(0x53, 0x0D, SS_RDEF,	/* XXX TBD */
2514 	    "Data transfer device error - library communication failed") },
2515 	/*    P           */
2516 	{ SST(0x54, 0x00, SS_RDEF,
2517 	    "SCSI to host system interface failure") },
2518 	/*    P           */
2519 	{ SST(0x55, 0x00, SS_RDEF,
2520 	    "System resource failure") },
2521 	/* D     O   BK   */
2522 	{ SST(0x55, 0x01, SS_FATAL | ENOSPC,
2523 	    "System buffer full") },
2524 	/* DTLPWROMAE K   */
2525 	{ SST(0x55, 0x02, SS_RDEF,	/* XXX TBD */
2526 	    "Insufficient reservation resources") },
2527 	/* DTLPWROMAE K   */
2528 	{ SST(0x55, 0x03, SS_RDEF,	/* XXX TBD */
2529 	    "Insufficient resources") },
2530 	/* DTLPWROMAE K   */
2531 	{ SST(0x55, 0x04, SS_RDEF,	/* XXX TBD */
2532 	    "Insufficient registration resources") },
2533 	/* DT PWROMAEBK   */
2534 	{ SST(0x55, 0x05, SS_RDEF,	/* XXX TBD */
2535 	    "Insufficient access control resources") },
2536 	/* DT  WROM  B    */
2537 	{ SST(0x55, 0x06, SS_RDEF,	/* XXX TBD */
2538 	    "Auxiliary memory out of space") },
2539 	/*              F */
2540 	{ SST(0x55, 0x07, SS_RDEF,	/* XXX TBD */
2541 	    "Quota error") },
2542 	/*  T             */
2543 	{ SST(0x55, 0x08, SS_RDEF,	/* XXX TBD */
2544 	    "Maximum number of supplemental decryption keys exceeded") },
2545 	/*        M       */
2546 	{ SST(0x55, 0x09, SS_RDEF,	/* XXX TBD */
2547 	    "Medium auxiliary memory not accessible") },
2548 	/*        M       */
2549 	{ SST(0x55, 0x0A, SS_RDEF,	/* XXX TBD */
2550 	    "Data currently unavailable") },
2551 	/* DTLPWROMAEBKVF */
2552 	{ SST(0x55, 0x0B, SS_RDEF,	/* XXX TBD */
2553 	    "Insufficient power for operation") },
2554 	/* DT P      B    */
2555 	{ SST(0x55, 0x0C, SS_RDEF,	/* XXX TBD */
2556 	    "Insufficient resources to create ROD") },
2557 	/* DT P      B    */
2558 	{ SST(0x55, 0x0D, SS_RDEF,	/* XXX TBD */
2559 	    "Insufficient resources to create ROD token") },
2560 	/* D              */
2561 	{ SST(0x55, 0x0E, SS_RDEF,	/* XXX TBD */
2562 	    "Insufficient zone resources") },
2563 	/* D              */
2564 	{ SST(0x55, 0x0F, SS_RDEF,	/* XXX TBD */
2565 	    "Insufficient zone resources to complete write") },
2566 	/* D              */
2567 	{ SST(0x55, 0x10, SS_RDEF,	/* XXX TBD */
2568 	    "Maximum number of streams open") },
2569 	/*      R         */
2570 	{ SST(0x57, 0x00, SS_RDEF,
2571 	    "Unable to recover table-of-contents") },
2572 	/*       O        */
2573 	{ SST(0x58, 0x00, SS_RDEF,
2574 	    "Generation does not exist") },
2575 	/*       O        */
2576 	{ SST(0x59, 0x00, SS_RDEF,
2577 	    "Updated block read") },
2578 	/* DTLPWRO   BK   */
2579 	{ SST(0x5A, 0x00, SS_RDEF,
2580 	    "Operator request or state change input") },
2581 	/* DT  WROM  BK   */
2582 	{ SST(0x5A, 0x01, SS_RDEF,
2583 	    "Operator medium removal request") },
2584 	/* DT  WRO A BK   */
2585 	{ SST(0x5A, 0x02, SS_RDEF,
2586 	    "Operator selected write protect") },
2587 	/* DT  WRO A BK   */
2588 	{ SST(0x5A, 0x03, SS_RDEF,
2589 	    "Operator selected write permit") },
2590 	/* DTLPWROM   K   */
2591 	{ SST(0x5B, 0x00, SS_RDEF,
2592 	    "Log exception") },
2593 	/* DTLPWROM   K   */
2594 	{ SST(0x5B, 0x01, SS_RDEF,
2595 	    "Threshold condition met") },
2596 	/* DTLPWROM   K   */
2597 	{ SST(0x5B, 0x02, SS_RDEF,
2598 	    "Log counter at maximum") },
2599 	/* DTLPWROM   K   */
2600 	{ SST(0x5B, 0x03, SS_RDEF,
2601 	    "Log list codes exhausted") },
2602 	/* D     O        */
2603 	{ SST(0x5C, 0x00, SS_RDEF,
2604 	    "RPL status change") },
2605 	/* D     O        */
2606 	{ SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2607 	    "Spindles synchronized") },
2608 	/* D     O        */
2609 	{ SST(0x5C, 0x02, SS_RDEF,
2610 	    "Spindles not synchronized") },
2611 	/* DTLPWROMAEBKVF */
2612 	{ SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE,
2613 	    "Failure prediction threshold exceeded") },
2614 	/*      R    B    */
2615 	{ SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2616 	    "Media failure prediction threshold exceeded") },
2617 	/*      R         */
2618 	{ SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE,
2619 	    "Logical unit failure prediction threshold exceeded") },
2620 	/*      R         */
2621 	{ SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE,
2622 	    "Spare area exhaustion prediction threshold exceeded") },
2623 	/* D         B    */
2624 	{ SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE,
2625 	    "Hardware impending failure general hard drive failure") },
2626 	/* D         B    */
2627 	{ SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE,
2628 	    "Hardware impending failure drive error rate too high") },
2629 	/* D         B    */
2630 	{ SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE,
2631 	    "Hardware impending failure data error rate too high") },
2632 	/* D         B    */
2633 	{ SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE,
2634 	    "Hardware impending failure seek error rate too high") },
2635 	/* D         B    */
2636 	{ SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE,
2637 	    "Hardware impending failure too many block reassigns") },
2638 	/* D         B    */
2639 	{ SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE,
2640 	    "Hardware impending failure access times too high") },
2641 	/* D         B    */
2642 	{ SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE,
2643 	    "Hardware impending failure start unit times too high") },
2644 	/* D         B    */
2645 	{ SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE,
2646 	    "Hardware impending failure channel parametrics") },
2647 	/* D         B    */
2648 	{ SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE,
2649 	    "Hardware impending failure controller detected") },
2650 	/* D         B    */
2651 	{ SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE,
2652 	    "Hardware impending failure throughput performance") },
2653 	/* D         B    */
2654 	{ SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE,
2655 	    "Hardware impending failure seek time performance") },
2656 	/* D         B    */
2657 	{ SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE,
2658 	    "Hardware impending failure spin-up retry count") },
2659 	/* D         B    */
2660 	{ SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE,
2661 	    "Hardware impending failure drive calibration retry count") },
2662 	/* D         B    */
2663 	{ SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE,
2664 	    "Hardware impending failure power loss protection circuit") },
2665 	/* D         B    */
2666 	{ SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE,
2667 	    "Controller impending failure general hard drive failure") },
2668 	/* D         B    */
2669 	{ SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE,
2670 	    "Controller impending failure drive error rate too high") },
2671 	/* D         B    */
2672 	{ SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE,
2673 	    "Controller impending failure data error rate too high") },
2674 	/* D         B    */
2675 	{ SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE,
2676 	    "Controller impending failure seek error rate too high") },
2677 	/* D         B    */
2678 	{ SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE,
2679 	    "Controller impending failure too many block reassigns") },
2680 	/* D         B    */
2681 	{ SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE,
2682 	    "Controller impending failure access times too high") },
2683 	/* D         B    */
2684 	{ SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE,
2685 	    "Controller impending failure start unit times too high") },
2686 	/* D         B    */
2687 	{ SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE,
2688 	    "Controller impending failure channel parametrics") },
2689 	/* D         B    */
2690 	{ SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE,
2691 	    "Controller impending failure controller detected") },
2692 	/* D         B    */
2693 	{ SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE,
2694 	    "Controller impending failure throughput performance") },
2695 	/* D         B    */
2696 	{ SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE,
2697 	    "Controller impending failure seek time performance") },
2698 	/* D         B    */
2699 	{ SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE,
2700 	    "Controller impending failure spin-up retry count") },
2701 	/* D         B    */
2702 	{ SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE,
2703 	    "Controller impending failure drive calibration retry count") },
2704 	/* D         B    */
2705 	{ SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE,
2706 	    "Data channel impending failure general hard drive failure") },
2707 	/* D         B    */
2708 	{ SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE,
2709 	    "Data channel impending failure drive error rate too high") },
2710 	/* D         B    */
2711 	{ SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE,
2712 	    "Data channel impending failure data error rate too high") },
2713 	/* D         B    */
2714 	{ SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE,
2715 	    "Data channel impending failure seek error rate too high") },
2716 	/* D         B    */
2717 	{ SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE,
2718 	    "Data channel impending failure too many block reassigns") },
2719 	/* D         B    */
2720 	{ SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE,
2721 	    "Data channel impending failure access times too high") },
2722 	/* D         B    */
2723 	{ SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE,
2724 	    "Data channel impending failure start unit times too high") },
2725 	/* D         B    */
2726 	{ SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE,
2727 	    "Data channel impending failure channel parametrics") },
2728 	/* D         B    */
2729 	{ SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE,
2730 	    "Data channel impending failure controller detected") },
2731 	/* D         B    */
2732 	{ SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE,
2733 	    "Data channel impending failure throughput performance") },
2734 	/* D         B    */
2735 	{ SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE,
2736 	    "Data channel impending failure seek time performance") },
2737 	/* D         B    */
2738 	{ SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE,
2739 	    "Data channel impending failure spin-up retry count") },
2740 	/* D         B    */
2741 	{ SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE,
2742 	    "Data channel impending failure drive calibration retry count") },
2743 	/* D         B    */
2744 	{ SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE,
2745 	    "Servo impending failure general hard drive failure") },
2746 	/* D         B    */
2747 	{ SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE,
2748 	    "Servo impending failure drive error rate too high") },
2749 	/* D         B    */
2750 	{ SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE,
2751 	    "Servo impending failure data error rate too high") },
2752 	/* D         B    */
2753 	{ SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE,
2754 	    "Servo impending failure seek error rate too high") },
2755 	/* D         B    */
2756 	{ SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE,
2757 	    "Servo impending failure too many block reassigns") },
2758 	/* D         B    */
2759 	{ SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE,
2760 	    "Servo impending failure access times too high") },
2761 	/* D         B    */
2762 	{ SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE,
2763 	    "Servo impending failure start unit times too high") },
2764 	/* D         B    */
2765 	{ SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE,
2766 	    "Servo impending failure channel parametrics") },
2767 	/* D         B    */
2768 	{ SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE,
2769 	    "Servo impending failure controller detected") },
2770 	/* D         B    */
2771 	{ SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE,
2772 	    "Servo impending failure throughput performance") },
2773 	/* D         B    */
2774 	{ SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE,
2775 	    "Servo impending failure seek time performance") },
2776 	/* D         B    */
2777 	{ SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE,
2778 	    "Servo impending failure spin-up retry count") },
2779 	/* D         B    */
2780 	{ SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE,
2781 	    "Servo impending failure drive calibration retry count") },
2782 	/* D         B    */
2783 	{ SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE,
2784 	    "Spindle impending failure general hard drive failure") },
2785 	/* D         B    */
2786 	{ SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE,
2787 	    "Spindle impending failure drive error rate too high") },
2788 	/* D         B    */
2789 	{ SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE,
2790 	    "Spindle impending failure data error rate too high") },
2791 	/* D         B    */
2792 	{ SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE,
2793 	    "Spindle impending failure seek error rate too high") },
2794 	/* D         B    */
2795 	{ SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE,
2796 	    "Spindle impending failure too many block reassigns") },
2797 	/* D         B    */
2798 	{ SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE,
2799 	    "Spindle impending failure access times too high") },
2800 	/* D         B    */
2801 	{ SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE,
2802 	    "Spindle impending failure start unit times too high") },
2803 	/* D         B    */
2804 	{ SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE,
2805 	    "Spindle impending failure channel parametrics") },
2806 	/* D         B    */
2807 	{ SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE,
2808 	    "Spindle impending failure controller detected") },
2809 	/* D         B    */
2810 	{ SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE,
2811 	    "Spindle impending failure throughput performance") },
2812 	/* D         B    */
2813 	{ SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE,
2814 	    "Spindle impending failure seek time performance") },
2815 	/* D         B    */
2816 	{ SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE,
2817 	    "Spindle impending failure spin-up retry count") },
2818 	/* D         B    */
2819 	{ SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE,
2820 	    "Spindle impending failure drive calibration retry count") },
2821 	/* D         B    */
2822 	{ SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE,
2823 	    "Firmware impending failure general hard drive failure") },
2824 	/* D         B    */
2825 	{ SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE,
2826 	    "Firmware impending failure drive error rate too high") },
2827 	/* D         B    */
2828 	{ SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE,
2829 	    "Firmware impending failure data error rate too high") },
2830 	/* D         B    */
2831 	{ SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE,
2832 	    "Firmware impending failure seek error rate too high") },
2833 	/* D         B    */
2834 	{ SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE,
2835 	    "Firmware impending failure too many block reassigns") },
2836 	/* D         B    */
2837 	{ SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE,
2838 	    "Firmware impending failure access times too high") },
2839 	/* D         B    */
2840 	{ SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE,
2841 	    "Firmware impending failure start unit times too high") },
2842 	/* D         B    */
2843 	{ SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE,
2844 	    "Firmware impending failure channel parametrics") },
2845 	/* D         B    */
2846 	{ SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE,
2847 	    "Firmware impending failure controller detected") },
2848 	/* D         B    */
2849 	{ SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE,
2850 	    "Firmware impending failure throughput performance") },
2851 	/* D         B    */
2852 	{ SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE,
2853 	    "Firmware impending failure seek time performance") },
2854 	/* D         B    */
2855 	{ SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE,
2856 	    "Firmware impending failure spin-up retry count") },
2857 	/* D         B    */
2858 	{ SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE,
2859 	    "Firmware impending failure drive calibration retry count") },
2860 	/* D         B    */
2861 	{ SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE,
2862 	    "Media impending failure endurance limit met") },
2863 	/* DTLPWROMAEBKVF */
2864 	{ SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE,
2865 	    "Failure prediction threshold exceeded (false)") },
2866 	/* DTLPWRO A  K   */
2867 	{ SST(0x5E, 0x00, SS_RDEF,
2868 	    "Low power condition on") },
2869 	/* DTLPWRO A  K   */
2870 	{ SST(0x5E, 0x01, SS_RDEF,
2871 	    "Idle condition activated by timer") },
2872 	/* DTLPWRO A  K   */
2873 	{ SST(0x5E, 0x02, SS_RDEF,
2874 	    "Standby condition activated by timer") },
2875 	/* DTLPWRO A  K   */
2876 	{ SST(0x5E, 0x03, SS_RDEF,
2877 	    "Idle condition activated by command") },
2878 	/* DTLPWRO A  K   */
2879 	{ SST(0x5E, 0x04, SS_RDEF,
2880 	    "Standby condition activated by command") },
2881 	/* DTLPWRO A  K   */
2882 	{ SST(0x5E, 0x05, SS_RDEF,
2883 	    "Idle-B condition activated by timer") },
2884 	/* DTLPWRO A  K   */
2885 	{ SST(0x5E, 0x06, SS_RDEF,
2886 	    "Idle-B condition activated by command") },
2887 	/* DTLPWRO A  K   */
2888 	{ SST(0x5E, 0x07, SS_RDEF,
2889 	    "Idle-C condition activated by timer") },
2890 	/* DTLPWRO A  K   */
2891 	{ SST(0x5E, 0x08, SS_RDEF,
2892 	    "Idle-C condition activated by command") },
2893 	/* DTLPWRO A  K   */
2894 	{ SST(0x5E, 0x09, SS_RDEF,
2895 	    "Standby-Y condition activated by timer") },
2896 	/* DTLPWRO A  K   */
2897 	{ SST(0x5E, 0x0A, SS_RDEF,
2898 	    "Standby-Y condition activated by command") },
2899 	/*           B    */
2900 	{ SST(0x5E, 0x41, SS_RDEF,	/* XXX TBD */
2901 	    "Power state change to active") },
2902 	/*           B    */
2903 	{ SST(0x5E, 0x42, SS_RDEF,	/* XXX TBD */
2904 	    "Power state change to idle") },
2905 	/*           B    */
2906 	{ SST(0x5E, 0x43, SS_RDEF,	/* XXX TBD */
2907 	    "Power state change to standby") },
2908 	/*           B    */
2909 	{ SST(0x5E, 0x45, SS_RDEF,	/* XXX TBD */
2910 	    "Power state change to sleep") },
2911 	/*           BK   */
2912 	{ SST(0x5E, 0x47, SS_RDEF,	/* XXX TBD */
2913 	    "Power state change to device control") },
2914 	/*                */
2915 	{ SST(0x60, 0x00, SS_RDEF,
2916 	    "Lamp failure") },
2917 	/*                */
2918 	{ SST(0x61, 0x00, SS_RDEF,
2919 	    "Video acquisition error") },
2920 	/*                */
2921 	{ SST(0x61, 0x01, SS_RDEF,
2922 	    "Unable to acquire video") },
2923 	/*                */
2924 	{ SST(0x61, 0x02, SS_RDEF,
2925 	    "Out of focus") },
2926 	/*                */
2927 	{ SST(0x62, 0x00, SS_RDEF,
2928 	    "Scan head positioning error") },
2929 	/*      R         */
2930 	{ SST(0x63, 0x00, SS_RDEF,
2931 	    "End of user area encountered on this track") },
2932 	/*      R         */
2933 	{ SST(0x63, 0x01, SS_FATAL | ENOSPC,
2934 	    "Packet does not fit in available space") },
2935 	/*      R         */
2936 	{ SST(0x64, 0x00, SS_FATAL | ENXIO,
2937 	    "Illegal mode for this track") },
2938 	/*      R         */
2939 	{ SST(0x64, 0x01, SS_RDEF,
2940 	    "Invalid packet size") },
2941 	/* DTLPWROMAEBKVF */
2942 	{ SST(0x65, 0x00, SS_RDEF,
2943 	    "Voltage fault") },
2944 	/*                */
2945 	{ SST(0x66, 0x00, SS_RDEF,
2946 	    "Automatic document feeder cover up") },
2947 	/*                */
2948 	{ SST(0x66, 0x01, SS_RDEF,
2949 	    "Automatic document feeder lift up") },
2950 	/*                */
2951 	{ SST(0x66, 0x02, SS_RDEF,
2952 	    "Document jam in automatic document feeder") },
2953 	/*                */
2954 	{ SST(0x66, 0x03, SS_RDEF,
2955 	    "Document miss feed automatic in document feeder") },
2956 	/*         A      */
2957 	{ SST(0x67, 0x00, SS_RDEF,
2958 	    "Configuration failure") },
2959 	/*         A      */
2960 	{ SST(0x67, 0x01, SS_RDEF,
2961 	    "Configuration of incapable logical units failed") },
2962 	/*         A      */
2963 	{ SST(0x67, 0x02, SS_RDEF,
2964 	    "Add logical unit failed") },
2965 	/*         A      */
2966 	{ SST(0x67, 0x03, SS_RDEF,
2967 	    "Modification of logical unit failed") },
2968 	/*         A      */
2969 	{ SST(0x67, 0x04, SS_RDEF,
2970 	    "Exchange of logical unit failed") },
2971 	/*         A      */
2972 	{ SST(0x67, 0x05, SS_RDEF,
2973 	    "Remove of logical unit failed") },
2974 	/*         A      */
2975 	{ SST(0x67, 0x06, SS_RDEF,
2976 	    "Attachment of logical unit failed") },
2977 	/*         A      */
2978 	{ SST(0x67, 0x07, SS_RDEF,
2979 	    "Creation of logical unit failed") },
2980 	/*         A      */
2981 	{ SST(0x67, 0x08, SS_RDEF,	/* XXX TBD */
2982 	    "Assign failure occurred") },
2983 	/*         A      */
2984 	{ SST(0x67, 0x09, SS_RDEF,	/* XXX TBD */
2985 	    "Multiply assigned logical unit") },
2986 	/* DTLPWROMAEBKVF */
2987 	{ SST(0x67, 0x0A, SS_RDEF,	/* XXX TBD */
2988 	    "Set target port groups command failed") },
2989 	/* DT        B    */
2990 	{ SST(0x67, 0x0B, SS_RDEF,	/* XXX TBD */
2991 	    "ATA device feature not enabled") },
2992 	/*         A      */
2993 	{ SST(0x68, 0x00, SS_RDEF,
2994 	    "Logical unit not configured") },
2995 	/* D              */
2996 	{ SST(0x68, 0x01, SS_RDEF,
2997 	    "Subsidiary logical unit not configured") },
2998 	/*         A      */
2999 	{ SST(0x69, 0x00, SS_RDEF,
3000 	    "Data loss on logical unit") },
3001 	/*         A      */
3002 	{ SST(0x69, 0x01, SS_RDEF,
3003 	    "Multiple logical unit failures") },
3004 	/*         A      */
3005 	{ SST(0x69, 0x02, SS_RDEF,
3006 	    "Parity/data mismatch") },
3007 	/*         A      */
3008 	{ SST(0x6A, 0x00, SS_RDEF,
3009 	    "Informational, refer to log") },
3010 	/*         A      */
3011 	{ SST(0x6B, 0x00, SS_RDEF,
3012 	    "State change has occurred") },
3013 	/*         A      */
3014 	{ SST(0x6B, 0x01, SS_RDEF,
3015 	    "Redundancy level got better") },
3016 	/*         A      */
3017 	{ SST(0x6B, 0x02, SS_RDEF,
3018 	    "Redundancy level got worse") },
3019 	/*         A      */
3020 	{ SST(0x6C, 0x00, SS_RDEF,
3021 	    "Rebuild failure occurred") },
3022 	/*         A      */
3023 	{ SST(0x6D, 0x00, SS_RDEF,
3024 	    "Recalculate failure occurred") },
3025 	/*         A      */
3026 	{ SST(0x6E, 0x00, SS_RDEF,
3027 	    "Command to logical unit failed") },
3028 	/*      R         */
3029 	{ SST(0x6F, 0x00, SS_RDEF,	/* XXX TBD */
3030 	    "Copy protection key exchange failure - authentication failure") },
3031 	/*      R         */
3032 	{ SST(0x6F, 0x01, SS_RDEF,	/* XXX TBD */
3033 	    "Copy protection key exchange failure - key not present") },
3034 	/*      R         */
3035 	{ SST(0x6F, 0x02, SS_RDEF,	/* XXX TBD */
3036 	    "Copy protection key exchange failure - key not established") },
3037 	/*      R         */
3038 	{ SST(0x6F, 0x03, SS_RDEF,	/* XXX TBD */
3039 	    "Read of scrambled sector without authentication") },
3040 	/*      R         */
3041 	{ SST(0x6F, 0x04, SS_RDEF,	/* XXX TBD */
3042 	    "Media region code is mismatched to logical unit region") },
3043 	/*      R         */
3044 	{ SST(0x6F, 0x05, SS_RDEF,	/* XXX TBD */
3045 	    "Drive region must be permanent/region reset count error") },
3046 	/*      R         */
3047 	{ SST(0x6F, 0x06, SS_RDEF,	/* XXX TBD */
3048 	    "Insufficient block count for binding NONCE recording") },
3049 	/*      R         */
3050 	{ SST(0x6F, 0x07, SS_RDEF,	/* XXX TBD */
3051 	    "Conflict in binding NONCE recording") },
3052 	/*  T             */
3053 	{ SST(0x70, 0x00, SS_RDEF,
3054 	    "Decompression exception short: ASCQ = Algorithm ID") },
3055 	/*  T             */
3056 	{ SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE,
3057 	    NULL) },			/* Range 0x00 -> 0xFF */
3058 	/*  T             */
3059 	{ SST(0x71, 0x00, SS_RDEF,
3060 	    "Decompression exception long: ASCQ = Algorithm ID") },
3061 	/*  T             */
3062 	{ SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE,
3063 	    NULL) },			/* Range 0x00 -> 0xFF */
3064 	/*      R         */
3065 	{ SST(0x72, 0x00, SS_RDEF,
3066 	    "Session fixation error") },
3067 	/*      R         */
3068 	{ SST(0x72, 0x01, SS_RDEF,
3069 	    "Session fixation error writing lead-in") },
3070 	/*      R         */
3071 	{ SST(0x72, 0x02, SS_RDEF,
3072 	    "Session fixation error writing lead-out") },
3073 	/*      R         */
3074 	{ SST(0x72, 0x03, SS_RDEF,
3075 	    "Session fixation error - incomplete track in session") },
3076 	/*      R         */
3077 	{ SST(0x72, 0x04, SS_RDEF,
3078 	    "Empty or partially written reserved track") },
3079 	/*      R         */
3080 	{ SST(0x72, 0x05, SS_RDEF,	/* XXX TBD */
3081 	    "No more track reservations allowed") },
3082 	/*      R         */
3083 	{ SST(0x72, 0x06, SS_RDEF,	/* XXX TBD */
3084 	    "RMZ extension is not allowed") },
3085 	/*      R         */
3086 	{ SST(0x72, 0x07, SS_RDEF,	/* XXX TBD */
3087 	    "No more test zone extensions are allowed") },
3088 	/*      R         */
3089 	{ SST(0x73, 0x00, SS_RDEF,
3090 	    "CD control error") },
3091 	/*      R         */
3092 	{ SST(0x73, 0x01, SS_RDEF,
3093 	    "Power calibration area almost full") },
3094 	/*      R         */
3095 	{ SST(0x73, 0x02, SS_FATAL | ENOSPC,
3096 	    "Power calibration area is full") },
3097 	/*      R         */
3098 	{ SST(0x73, 0x03, SS_RDEF,
3099 	    "Power calibration area error") },
3100 	/*      R         */
3101 	{ SST(0x73, 0x04, SS_RDEF,
3102 	    "Program memory area update failure") },
3103 	/*      R         */
3104 	{ SST(0x73, 0x05, SS_RDEF,
3105 	    "Program memory area is full") },
3106 	/*      R         */
3107 	{ SST(0x73, 0x06, SS_RDEF,	/* XXX TBD */
3108 	    "RMA/PMA is almost full") },
3109 	/*      R         */
3110 	{ SST(0x73, 0x10, SS_RDEF,	/* XXX TBD */
3111 	    "Current power calibration area almost full") },
3112 	/*      R         */
3113 	{ SST(0x73, 0x11, SS_RDEF,	/* XXX TBD */
3114 	    "Current power calibration area is full") },
3115 	/*      R         */
3116 	{ SST(0x73, 0x17, SS_RDEF,	/* XXX TBD */
3117 	    "RDZ is full") },
3118 	/*  T             */
3119 	{ SST(0x74, 0x00, SS_RDEF,	/* XXX TBD */
3120 	    "Security error") },
3121 	/*  T             */
3122 	{ SST(0x74, 0x01, SS_RDEF,	/* XXX TBD */
3123 	    "Unable to decrypt data") },
3124 	/*  T             */
3125 	{ SST(0x74, 0x02, SS_RDEF,	/* XXX TBD */
3126 	    "Unencrypted data encountered while decrypting") },
3127 	/*  T             */
3128 	{ SST(0x74, 0x03, SS_RDEF,	/* XXX TBD */
3129 	    "Incorrect data encryption key") },
3130 	/*  T             */
3131 	{ SST(0x74, 0x04, SS_RDEF,	/* XXX TBD */
3132 	    "Cryptographic integrity validation failed") },
3133 	/*  T             */
3134 	{ SST(0x74, 0x05, SS_RDEF,	/* XXX TBD */
3135 	    "Error decrypting data") },
3136 	/*  T             */
3137 	{ SST(0x74, 0x06, SS_RDEF,	/* XXX TBD */
3138 	    "Unknown signature verification key") },
3139 	/*  T             */
3140 	{ SST(0x74, 0x07, SS_RDEF,	/* XXX TBD */
3141 	    "Encryption parameters not useable") },
3142 	/* DT   R M E  VF */
3143 	{ SST(0x74, 0x08, SS_RDEF,	/* XXX TBD */
3144 	    "Digital signature validation failure") },
3145 	/*  T             */
3146 	{ SST(0x74, 0x09, SS_RDEF,	/* XXX TBD */
3147 	    "Encryption mode mismatch on read") },
3148 	/*  T             */
3149 	{ SST(0x74, 0x0A, SS_RDEF,	/* XXX TBD */
3150 	    "Encrypted block not raw read enabled") },
3151 	/*  T             */
3152 	{ SST(0x74, 0x0B, SS_RDEF,	/* XXX TBD */
3153 	    "Incorrect encryption parameters") },
3154 	/* DT   R MAEBKV  */
3155 	{ SST(0x74, 0x0C, SS_RDEF,	/* XXX TBD */
3156 	    "Unable to decrypt parameter list") },
3157 	/*  T             */
3158 	{ SST(0x74, 0x0D, SS_RDEF,	/* XXX TBD */
3159 	    "Encryption algorithm disabled") },
3160 	/* DT   R MAEBKV  */
3161 	{ SST(0x74, 0x10, SS_RDEF,	/* XXX TBD */
3162 	    "SA creation parameter value invalid") },
3163 	/* DT   R MAEBKV  */
3164 	{ SST(0x74, 0x11, SS_RDEF,	/* XXX TBD */
3165 	    "SA creation parameter value rejected") },
3166 	/* DT   R MAEBKV  */
3167 	{ SST(0x74, 0x12, SS_RDEF,	/* XXX TBD */
3168 	    "Invalid SA usage") },
3169 	/*  T             */
3170 	{ SST(0x74, 0x21, SS_RDEF,	/* XXX TBD */
3171 	    "Data encryption configuration prevented") },
3172 	/* DT   R MAEBKV  */
3173 	{ SST(0x74, 0x30, SS_RDEF,	/* XXX TBD */
3174 	    "SA creation parameter not supported") },
3175 	/* DT   R MAEBKV  */
3176 	{ SST(0x74, 0x40, SS_RDEF,	/* XXX TBD */
3177 	    "Authentication failed") },
3178 	/*             V  */
3179 	{ SST(0x74, 0x61, SS_RDEF,	/* XXX TBD */
3180 	    "External data encryption key manager access error") },
3181 	/*             V  */
3182 	{ SST(0x74, 0x62, SS_RDEF,	/* XXX TBD */
3183 	    "External data encryption key manager error") },
3184 	/*             V  */
3185 	{ SST(0x74, 0x63, SS_RDEF,	/* XXX TBD */
3186 	    "External data encryption key not found") },
3187 	/*             V  */
3188 	{ SST(0x74, 0x64, SS_RDEF,	/* XXX TBD */
3189 	    "External data encryption request not authorized") },
3190 	/*  T             */
3191 	{ SST(0x74, 0x6E, SS_RDEF,	/* XXX TBD */
3192 	    "External data encryption control timeout") },
3193 	/*  T             */
3194 	{ SST(0x74, 0x6F, SS_RDEF,	/* XXX TBD */
3195 	    "External data encryption control error") },
3196 	/* DT   R M E  V  */
3197 	{ SST(0x74, 0x71, SS_FATAL | EACCES,
3198 	    "Logical unit access not authorized") },
3199 	/* D              */
3200 	{ SST(0x74, 0x79, SS_FATAL | EACCES,
3201 	    "Security conflict in translated device") }
3202 };
3203 
3204 const u_int asc_table_size = nitems(asc_table);
3205 
3206 struct asc_key
3207 {
3208 	int asc;
3209 	int ascq;
3210 };
3211 
3212 static int
3213 ascentrycomp(const void *key, const void *member)
3214 {
3215 	int asc;
3216 	int ascq;
3217 	const struct asc_table_entry *table_entry;
3218 
3219 	asc = ((const struct asc_key *)key)->asc;
3220 	ascq = ((const struct asc_key *)key)->ascq;
3221 	table_entry = (const struct asc_table_entry *)member;
3222 
3223 	if (asc >= table_entry->asc) {
3224 
3225 		if (asc > table_entry->asc)
3226 			return (1);
3227 
3228 		if (ascq <= table_entry->ascq) {
3229 			/* Check for ranges */
3230 			if (ascq == table_entry->ascq
3231 		 	 || ((table_entry->action & SSQ_RANGE) != 0
3232 		  	   && ascq >= (table_entry - 1)->ascq))
3233 				return (0);
3234 			return (-1);
3235 		}
3236 		return (1);
3237 	}
3238 	return (-1);
3239 }
3240 
3241 static int
3242 senseentrycomp(const void *key, const void *member)
3243 {
3244 	int sense_key;
3245 	const struct sense_key_table_entry *table_entry;
3246 
3247 	sense_key = *((const int *)key);
3248 	table_entry = (const struct sense_key_table_entry *)member;
3249 
3250 	if (sense_key >= table_entry->sense_key) {
3251 		if (sense_key == table_entry->sense_key)
3252 			return (0);
3253 		return (1);
3254 	}
3255 	return (-1);
3256 }
3257 
3258 static void
3259 fetchtableentries(int sense_key, int asc, int ascq,
3260 		  struct scsi_inquiry_data *inq_data,
3261 		  const struct sense_key_table_entry **sense_entry,
3262 		  const struct asc_table_entry **asc_entry)
3263 {
3264 	caddr_t match;
3265 	const struct asc_table_entry *asc_tables[2];
3266 	const struct sense_key_table_entry *sense_tables[2];
3267 	struct asc_key asc_ascq;
3268 	size_t asc_tables_size[2];
3269 	size_t sense_tables_size[2];
3270 	int num_asc_tables;
3271 	int num_sense_tables;
3272 	int i;
3273 
3274 	/* Default to failure */
3275 	*sense_entry = NULL;
3276 	*asc_entry = NULL;
3277 	match = NULL;
3278 	if (inq_data != NULL)
3279 		match = cam_quirkmatch((caddr_t)inq_data,
3280 				       (caddr_t)sense_quirk_table,
3281 				       sense_quirk_table_size,
3282 				       sizeof(*sense_quirk_table),
3283 				       scsi_inquiry_match);
3284 
3285 	if (match != NULL) {
3286 		struct scsi_sense_quirk_entry *quirk;
3287 
3288 		quirk = (struct scsi_sense_quirk_entry *)match;
3289 		asc_tables[0] = quirk->asc_info;
3290 		asc_tables_size[0] = quirk->num_ascs;
3291 		asc_tables[1] = asc_table;
3292 		asc_tables_size[1] = asc_table_size;
3293 		num_asc_tables = 2;
3294 		sense_tables[0] = quirk->sense_key_info;
3295 		sense_tables_size[0] = quirk->num_sense_keys;
3296 		sense_tables[1] = sense_key_table;
3297 		sense_tables_size[1] = nitems(sense_key_table);
3298 		num_sense_tables = 2;
3299 	} else {
3300 		asc_tables[0] = asc_table;
3301 		asc_tables_size[0] = asc_table_size;
3302 		num_asc_tables = 1;
3303 		sense_tables[0] = sense_key_table;
3304 		sense_tables_size[0] = nitems(sense_key_table);
3305 		num_sense_tables = 1;
3306 	}
3307 
3308 	asc_ascq.asc = asc;
3309 	asc_ascq.ascq = ascq;
3310 	for (i = 0; i < num_asc_tables; i++) {
3311 		void *found_entry;
3312 
3313 		found_entry = bsearch(&asc_ascq, asc_tables[i],
3314 				      asc_tables_size[i],
3315 				      sizeof(**asc_tables),
3316 				      ascentrycomp);
3317 
3318 		if (found_entry) {
3319 			*asc_entry = (struct asc_table_entry *)found_entry;
3320 			break;
3321 		}
3322 	}
3323 
3324 	for (i = 0; i < num_sense_tables; i++) {
3325 		void *found_entry;
3326 
3327 		found_entry = bsearch(&sense_key, sense_tables[i],
3328 				      sense_tables_size[i],
3329 				      sizeof(**sense_tables),
3330 				      senseentrycomp);
3331 
3332 		if (found_entry) {
3333 			*sense_entry =
3334 			    (struct sense_key_table_entry *)found_entry;
3335 			break;
3336 		}
3337 	}
3338 }
3339 
3340 void
3341 scsi_sense_desc(int sense_key, int asc, int ascq,
3342 		struct scsi_inquiry_data *inq_data,
3343 		const char **sense_key_desc, const char **asc_desc)
3344 {
3345 	const struct asc_table_entry *asc_entry;
3346 	const struct sense_key_table_entry *sense_entry;
3347 
3348 	fetchtableentries(sense_key, asc, ascq,
3349 			  inq_data,
3350 			  &sense_entry,
3351 			  &asc_entry);
3352 
3353 	if (sense_entry != NULL)
3354 		*sense_key_desc = sense_entry->desc;
3355 	else
3356 		*sense_key_desc = "Invalid Sense Key";
3357 
3358 	if (asc_entry != NULL)
3359 		*asc_desc = asc_entry->desc;
3360 	else if (asc >= 0x80 && asc <= 0xff)
3361 		*asc_desc = "Vendor Specific ASC";
3362 	else if (ascq >= 0x80 && ascq <= 0xff)
3363 		*asc_desc = "Vendor Specific ASCQ";
3364 	else
3365 		*asc_desc = "Reserved ASC/ASCQ pair";
3366 }
3367 
3368 /*
3369  * Given sense and device type information, return the appropriate action.
3370  * If we do not understand the specific error as identified by the ASC/ASCQ
3371  * pair, fall back on the more generic actions derived from the sense key.
3372  */
3373 scsi_sense_action
3374 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data,
3375 		  u_int32_t sense_flags)
3376 {
3377 	const struct asc_table_entry *asc_entry;
3378 	const struct sense_key_table_entry *sense_entry;
3379 	int error_code, sense_key, asc, ascq;
3380 	scsi_sense_action action;
3381 
3382 	if (!scsi_extract_sense_ccb((union ccb *)csio,
3383 	    &error_code, &sense_key, &asc, &ascq)) {
3384 		action = SS_RETRY | SSQ_DECREMENT_COUNT | SSQ_PRINT_SENSE | EIO;
3385 	} else if ((error_code == SSD_DEFERRED_ERROR)
3386 	 || (error_code == SSD_DESC_DEFERRED_ERROR)) {
3387 		/*
3388 		 * XXX dufault@FreeBSD.org
3389 		 * This error doesn't relate to the command associated
3390 		 * with this request sense.  A deferred error is an error
3391 		 * for a command that has already returned GOOD status
3392 		 * (see SCSI2 8.2.14.2).
3393 		 *
3394 		 * By my reading of that section, it looks like the current
3395 		 * command has been cancelled, we should now clean things up
3396 		 * (hopefully recovering any lost data) and then retry the
3397 		 * current command.  There are two easy choices, both wrong:
3398 		 *
3399 		 * 1. Drop through (like we had been doing), thus treating
3400 		 *    this as if the error were for the current command and
3401 		 *    return and stop the current command.
3402 		 *
3403 		 * 2. Issue a retry (like I made it do) thus hopefully
3404 		 *    recovering the current transfer, and ignoring the
3405 		 *    fact that we've dropped a command.
3406 		 *
3407 		 * These should probably be handled in a device specific
3408 		 * sense handler or punted back up to a user mode daemon
3409 		 */
3410 		action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3411 	} else {
3412 		fetchtableentries(sense_key, asc, ascq,
3413 				  inq_data,
3414 				  &sense_entry,
3415 				  &asc_entry);
3416 
3417 		/*
3418 		 * Override the 'No additional Sense' entry (0,0)
3419 		 * with the error action of the sense key.
3420 		 */
3421 		if (asc_entry != NULL
3422 		 && (asc != 0 || ascq != 0))
3423 			action = asc_entry->action;
3424 		else if (sense_entry != NULL)
3425 			action = sense_entry->action;
3426 		else
3427 			action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3428 
3429 		if (sense_key == SSD_KEY_RECOVERED_ERROR) {
3430 			/*
3431 			 * The action succeeded but the device wants
3432 			 * the user to know that some recovery action
3433 			 * was required.
3434 			 */
3435 			action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK);
3436 			action |= SS_NOP|SSQ_PRINT_SENSE;
3437 		} else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) {
3438 			if ((sense_flags & SF_QUIET_IR) != 0)
3439 				action &= ~SSQ_PRINT_SENSE;
3440 		} else if (sense_key == SSD_KEY_UNIT_ATTENTION) {
3441 			if ((sense_flags & SF_RETRY_UA) != 0
3442 			 && (action & SS_MASK) == SS_FAIL) {
3443 				action &= ~(SS_MASK|SSQ_MASK);
3444 				action |= SS_RETRY|SSQ_DECREMENT_COUNT|
3445 					  SSQ_PRINT_SENSE;
3446 			}
3447 			action |= SSQ_UA;
3448 		}
3449 	}
3450 	if ((action & SS_MASK) >= SS_START &&
3451 	    (sense_flags & SF_NO_RECOVERY)) {
3452 		action &= ~SS_MASK;
3453 		action |= SS_FAIL;
3454 	} else if ((action & SS_MASK) == SS_RETRY &&
3455 	    (sense_flags & SF_NO_RETRY)) {
3456 		action &= ~SS_MASK;
3457 		action |= SS_FAIL;
3458 	}
3459 	if ((sense_flags & SF_PRINT_ALWAYS) != 0)
3460 		action |= SSQ_PRINT_SENSE;
3461 	else if ((sense_flags & SF_NO_PRINT) != 0)
3462 		action &= ~SSQ_PRINT_SENSE;
3463 
3464 	return (action);
3465 }
3466 
3467 char *
3468 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len)
3469 {
3470 	struct sbuf sb;
3471 	int error;
3472 
3473 	if (len == 0)
3474 		return ("");
3475 
3476 	sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN);
3477 
3478 	scsi_cdb_sbuf(cdb_ptr, &sb);
3479 
3480 	/* ENOMEM just means that the fixed buffer is full, OK to ignore */
3481 	error = sbuf_finish(&sb);
3482 	if (error != 0 && error != ENOMEM)
3483 		return ("");
3484 
3485 	return(sbuf_data(&sb));
3486 }
3487 
3488 void
3489 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb)
3490 {
3491 	u_int8_t cdb_len;
3492 	int i;
3493 
3494 	if (cdb_ptr == NULL)
3495 		return;
3496 
3497 	/*
3498 	 * This is taken from the SCSI-3 draft spec.
3499 	 * (T10/1157D revision 0.3)
3500 	 * The top 3 bits of an opcode are the group code.  The next 5 bits
3501 	 * are the command code.
3502 	 * Group 0:  six byte commands
3503 	 * Group 1:  ten byte commands
3504 	 * Group 2:  ten byte commands
3505 	 * Group 3:  reserved
3506 	 * Group 4:  sixteen byte commands
3507 	 * Group 5:  twelve byte commands
3508 	 * Group 6:  vendor specific
3509 	 * Group 7:  vendor specific
3510 	 */
3511 	switch((*cdb_ptr >> 5) & 0x7) {
3512 		case 0:
3513 			cdb_len = 6;
3514 			break;
3515 		case 1:
3516 		case 2:
3517 			cdb_len = 10;
3518 			break;
3519 		case 3:
3520 		case 6:
3521 		case 7:
3522 			/* in this case, just print out the opcode */
3523 			cdb_len = 1;
3524 			break;
3525 		case 4:
3526 			cdb_len = 16;
3527 			break;
3528 		case 5:
3529 			cdb_len = 12;
3530 			break;
3531 	}
3532 
3533 	for (i = 0; i < cdb_len; i++)
3534 		sbuf_printf(sb, "%02hhx ", cdb_ptr[i]);
3535 
3536 	return;
3537 }
3538 
3539 const char *
3540 scsi_status_string(struct ccb_scsiio *csio)
3541 {
3542 	switch(csio->scsi_status) {
3543 	case SCSI_STATUS_OK:
3544 		return("OK");
3545 	case SCSI_STATUS_CHECK_COND:
3546 		return("Check Condition");
3547 	case SCSI_STATUS_BUSY:
3548 		return("Busy");
3549 	case SCSI_STATUS_INTERMED:
3550 		return("Intermediate");
3551 	case SCSI_STATUS_INTERMED_COND_MET:
3552 		return("Intermediate-Condition Met");
3553 	case SCSI_STATUS_RESERV_CONFLICT:
3554 		return("Reservation Conflict");
3555 	case SCSI_STATUS_CMD_TERMINATED:
3556 		return("Command Terminated");
3557 	case SCSI_STATUS_QUEUE_FULL:
3558 		return("Queue Full");
3559 	case SCSI_STATUS_ACA_ACTIVE:
3560 		return("ACA Active");
3561 	case SCSI_STATUS_TASK_ABORTED:
3562 		return("Task Aborted");
3563 	default: {
3564 		static char unkstr[64];
3565 		snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
3566 			 csio->scsi_status);
3567 		return(unkstr);
3568 	}
3569 	}
3570 }
3571 
3572 /*
3573  * scsi_command_string() returns 0 for success and -1 for failure.
3574  */
3575 #ifdef _KERNEL
3576 int
3577 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb)
3578 #else /* !_KERNEL */
3579 int
3580 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio,
3581 		    struct sbuf *sb)
3582 #endif /* _KERNEL/!_KERNEL */
3583 {
3584 	struct scsi_inquiry_data *inq_data;
3585 #ifdef _KERNEL
3586 	struct	  ccb_getdev *cgd;
3587 #endif /* _KERNEL */
3588 
3589 #ifdef _KERNEL
3590 	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
3591 		return(-1);
3592 	/*
3593 	 * Get the device information.
3594 	 */
3595 	xpt_setup_ccb(&cgd->ccb_h,
3596 		      csio->ccb_h.path,
3597 		      CAM_PRIORITY_NORMAL);
3598 	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
3599 	xpt_action((union ccb *)cgd);
3600 
3601 	/*
3602 	 * If the device is unconfigured, just pretend that it is a hard
3603 	 * drive.  scsi_op_desc() needs this.
3604 	 */
3605 	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
3606 		cgd->inq_data.device = T_DIRECT;
3607 
3608 	inq_data = &cgd->inq_data;
3609 
3610 #else /* !_KERNEL */
3611 
3612 	inq_data = &device->inq_data;
3613 
3614 #endif /* _KERNEL/!_KERNEL */
3615 
3616 	sbuf_printf(sb, "%s. CDB: ",
3617 		    scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data));
3618 	scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb);
3619 
3620 #ifdef _KERNEL
3621 	xpt_free_ccb((union ccb *)cgd);
3622 #endif
3623 
3624 	return(0);
3625 }
3626 
3627 /*
3628  * Iterate over sense descriptors.  Each descriptor is passed into iter_func().
3629  * If iter_func() returns 0, list traversal continues.  If iter_func()
3630  * returns non-zero, list traversal is stopped.
3631  */
3632 void
3633 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
3634 		  int (*iter_func)(struct scsi_sense_data_desc *sense,
3635 				   u_int, struct scsi_sense_desc_header *,
3636 				   void *), void *arg)
3637 {
3638 	int cur_pos;
3639 	int desc_len;
3640 
3641 	/*
3642 	 * First make sure the extra length field is present.
3643 	 */
3644 	if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0)
3645 		return;
3646 
3647 	/*
3648 	 * The length of data actually returned may be different than the
3649 	 * extra_len recorded in the structure.
3650 	 */
3651 	desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc);
3652 
3653 	/*
3654 	 * Limit this further by the extra length reported, and the maximum
3655 	 * allowed extra length.
3656 	 */
3657 	desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX));
3658 
3659 	/*
3660 	 * Subtract the size of the header from the descriptor length.
3661 	 * This is to ensure that we have at least the header left, so we
3662 	 * don't have to check that inside the loop.  This can wind up
3663 	 * being a negative value.
3664 	 */
3665 	desc_len -= sizeof(struct scsi_sense_desc_header);
3666 
3667 	for (cur_pos = 0; cur_pos < desc_len;) {
3668 		struct scsi_sense_desc_header *header;
3669 
3670 		header = (struct scsi_sense_desc_header *)
3671 			&sense->sense_desc[cur_pos];
3672 
3673 		/*
3674 		 * Check to make sure we have the entire descriptor.  We
3675 		 * don't call iter_func() unless we do.
3676 		 *
3677 		 * Note that although cur_pos is at the beginning of the
3678 		 * descriptor, desc_len already has the header length
3679 		 * subtracted.  So the comparison of the length in the
3680 		 * header (which does not include the header itself) to
3681 		 * desc_len - cur_pos is correct.
3682 		 */
3683 		if (header->length > (desc_len - cur_pos))
3684 			break;
3685 
3686 		if (iter_func(sense, sense_len, header, arg) != 0)
3687 			break;
3688 
3689 		cur_pos += sizeof(*header) + header->length;
3690 	}
3691 }
3692 
3693 struct scsi_find_desc_info {
3694 	uint8_t desc_type;
3695 	struct scsi_sense_desc_header *header;
3696 };
3697 
3698 static int
3699 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
3700 		    struct scsi_sense_desc_header *header, void *arg)
3701 {
3702 	struct scsi_find_desc_info *desc_info;
3703 
3704 	desc_info = (struct scsi_find_desc_info *)arg;
3705 
3706 	if (header->desc_type == desc_info->desc_type) {
3707 		desc_info->header = header;
3708 
3709 		/* We found the descriptor, tell the iterator to stop. */
3710 		return (1);
3711 	} else
3712 		return (0);
3713 }
3714 
3715 /*
3716  * Given a descriptor type, return a pointer to it if it is in the sense
3717  * data and not truncated.  Avoiding truncating sense data will simplify
3718  * things significantly for the caller.
3719  */
3720 uint8_t *
3721 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
3722 	       uint8_t desc_type)
3723 {
3724 	struct scsi_find_desc_info desc_info;
3725 
3726 	desc_info.desc_type = desc_type;
3727 	desc_info.header = NULL;
3728 
3729 	scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info);
3730 
3731 	return ((uint8_t *)desc_info.header);
3732 }
3733 
3734 /*
3735  * Fill in SCSI descriptor sense data with the specified parameters.
3736  */
3737 static void
3738 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data,
3739     u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
3740     int sense_key, int asc, int ascq, va_list ap)
3741 {
3742 	struct scsi_sense_data_desc *sense;
3743 	scsi_sense_elem_type elem_type;
3744 	int space, len;
3745 	uint8_t *desc, *data;
3746 
3747 	memset(sense_data, 0, sizeof(*sense_data));
3748 	sense = (struct scsi_sense_data_desc *)sense_data;
3749 	if (current_error != 0)
3750 		sense->error_code = SSD_DESC_CURRENT_ERROR;
3751 	else
3752 		sense->error_code = SSD_DESC_DEFERRED_ERROR;
3753 	sense->sense_key = sense_key;
3754 	sense->add_sense_code = asc;
3755 	sense->add_sense_code_qual = ascq;
3756 	sense->flags = 0;
3757 
3758 	desc = &sense->sense_desc[0];
3759 	space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc);
3760 	while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
3761 	    SSD_ELEM_NONE) {
3762 		if (elem_type >= SSD_ELEM_MAX) {
3763 			printf("%s: invalid sense type %d\n", __func__,
3764 			       elem_type);
3765 			break;
3766 		}
3767 		len = va_arg(ap, int);
3768 		data = va_arg(ap, uint8_t *);
3769 
3770 		switch (elem_type) {
3771 		case SSD_ELEM_SKIP:
3772 			break;
3773 		case SSD_ELEM_DESC:
3774 			if (space < len) {
3775 				sense->flags |= SSDD_SDAT_OVFL;
3776 				break;
3777 			}
3778 			bcopy(data, desc, len);
3779 			desc += len;
3780 			space -= len;
3781 			break;
3782 		case SSD_ELEM_SKS: {
3783 			struct scsi_sense_sks *sks = (void *)desc;
3784 
3785 			if (len > sizeof(sks->sense_key_spec))
3786 				break;
3787 			if (space < sizeof(*sks)) {
3788 				sense->flags |= SSDD_SDAT_OVFL;
3789 				break;
3790 			}
3791 			sks->desc_type = SSD_DESC_SKS;
3792 			sks->length = sizeof(*sks) -
3793 			    (offsetof(struct scsi_sense_sks, length) + 1);
3794 			bcopy(data, &sks->sense_key_spec, len);
3795 			desc += sizeof(*sks);
3796 			space -= sizeof(*sks);
3797 			break;
3798 		}
3799 		case SSD_ELEM_COMMAND: {
3800 			struct scsi_sense_command *cmd = (void *)desc;
3801 
3802 			if (len > sizeof(cmd->command_info))
3803 				break;
3804 			if (space < sizeof(*cmd)) {
3805 				sense->flags |= SSDD_SDAT_OVFL;
3806 				break;
3807 			}
3808 			cmd->desc_type = SSD_DESC_COMMAND;
3809 			cmd->length = sizeof(*cmd) -
3810 			    (offsetof(struct scsi_sense_command, length) + 1);
3811 			bcopy(data, &cmd->command_info[
3812 			    sizeof(cmd->command_info) - len], len);
3813 			desc += sizeof(*cmd);
3814 			space -= sizeof(*cmd);
3815 			break;
3816 		}
3817 		case SSD_ELEM_INFO: {
3818 			struct scsi_sense_info *info = (void *)desc;
3819 
3820 			if (len > sizeof(info->info))
3821 				break;
3822 			if (space < sizeof(*info)) {
3823 				sense->flags |= SSDD_SDAT_OVFL;
3824 				break;
3825 			}
3826 			info->desc_type = SSD_DESC_INFO;
3827 			info->length = sizeof(*info) -
3828 			    (offsetof(struct scsi_sense_info, length) + 1);
3829 			info->byte2 = SSD_INFO_VALID;
3830 			bcopy(data, &info->info[sizeof(info->info) - len], len);
3831 			desc += sizeof(*info);
3832 			space -= sizeof(*info);
3833 			break;
3834 		}
3835 		case SSD_ELEM_FRU: {
3836 			struct scsi_sense_fru *fru = (void *)desc;
3837 
3838 			if (len > sizeof(fru->fru))
3839 				break;
3840 			if (space < sizeof(*fru)) {
3841 				sense->flags |= SSDD_SDAT_OVFL;
3842 				break;
3843 			}
3844 			fru->desc_type = SSD_DESC_FRU;
3845 			fru->length = sizeof(*fru) -
3846 			    (offsetof(struct scsi_sense_fru, length) + 1);
3847 			fru->fru = *data;
3848 			desc += sizeof(*fru);
3849 			space -= sizeof(*fru);
3850 			break;
3851 		}
3852 		case SSD_ELEM_STREAM: {
3853 			struct scsi_sense_stream *stream = (void *)desc;
3854 
3855 			if (len > sizeof(stream->byte3))
3856 				break;
3857 			if (space < sizeof(*stream)) {
3858 				sense->flags |= SSDD_SDAT_OVFL;
3859 				break;
3860 			}
3861 			stream->desc_type = SSD_DESC_STREAM;
3862 			stream->length = sizeof(*stream) -
3863 			    (offsetof(struct scsi_sense_stream, length) + 1);
3864 			stream->byte3 = *data;
3865 			desc += sizeof(*stream);
3866 			space -= sizeof(*stream);
3867 			break;
3868 		}
3869 		default:
3870 			/*
3871 			 * We shouldn't get here, but if we do, do nothing.
3872 			 * We've already consumed the arguments above.
3873 			 */
3874 			break;
3875 		}
3876 	}
3877 	sense->extra_len = desc - &sense->sense_desc[0];
3878 	*sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 +
3879 	    sense->extra_len;
3880 }
3881 
3882 /*
3883  * Fill in SCSI fixed sense data with the specified parameters.
3884  */
3885 static void
3886 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data,
3887     u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
3888     int sense_key, int asc, int ascq, va_list ap)
3889 {
3890 	struct scsi_sense_data_fixed *sense;
3891 	scsi_sense_elem_type elem_type;
3892 	uint8_t *data;
3893 	int len;
3894 
3895 	memset(sense_data, 0, sizeof(*sense_data));
3896 	sense = (struct scsi_sense_data_fixed *)sense_data;
3897 	if (current_error != 0)
3898 		sense->error_code = SSD_CURRENT_ERROR;
3899 	else
3900 		sense->error_code = SSD_DEFERRED_ERROR;
3901 	sense->flags = sense_key & SSD_KEY;
3902 	sense->extra_len = 0;
3903 	if (*sense_len >= 13) {
3904 		sense->add_sense_code = asc;
3905 		sense->extra_len = MAX(sense->extra_len, 5);
3906 	} else
3907 		sense->flags |= SSD_SDAT_OVFL;
3908 	if (*sense_len >= 14) {
3909 		sense->add_sense_code_qual = ascq;
3910 		sense->extra_len = MAX(sense->extra_len, 6);
3911 	} else
3912 		sense->flags |= SSD_SDAT_OVFL;
3913 
3914 	while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
3915 	    SSD_ELEM_NONE) {
3916 		if (elem_type >= SSD_ELEM_MAX) {
3917 			printf("%s: invalid sense type %d\n", __func__,
3918 			       elem_type);
3919 			break;
3920 		}
3921 		len = va_arg(ap, int);
3922 		data = va_arg(ap, uint8_t *);
3923 
3924 		switch (elem_type) {
3925 		case SSD_ELEM_SKIP:
3926 			break;
3927 		case SSD_ELEM_SKS:
3928 			if (len > sizeof(sense->sense_key_spec))
3929 				break;
3930 			if (*sense_len < 18) {
3931 				sense->flags |= SSD_SDAT_OVFL;
3932 				break;
3933 			}
3934 			bcopy(data, &sense->sense_key_spec[0], len);
3935 			sense->extra_len = MAX(sense->extra_len, 10);
3936 			break;
3937 		case SSD_ELEM_COMMAND:
3938 			if (*sense_len < 12) {
3939 				sense->flags |= SSD_SDAT_OVFL;
3940 				break;
3941 			}
3942 			if (len > sizeof(sense->cmd_spec_info)) {
3943 				data += len - sizeof(sense->cmd_spec_info);
3944 				len -= len - sizeof(sense->cmd_spec_info);
3945 			}
3946 			bcopy(data, &sense->cmd_spec_info[
3947 			    sizeof(sense->cmd_spec_info) - len], len);
3948 			sense->extra_len = MAX(sense->extra_len, 4);
3949 			break;
3950 		case SSD_ELEM_INFO:
3951 			/* Set VALID bit only if no overflow. */
3952 			sense->error_code |= SSD_ERRCODE_VALID;
3953 			while (len > sizeof(sense->info)) {
3954 				if (data[0] != 0)
3955 					sense->error_code &= ~SSD_ERRCODE_VALID;
3956 				data ++;
3957 				len --;
3958 			}
3959 			bcopy(data, &sense->info[sizeof(sense->info) - len], len);
3960 			break;
3961 		case SSD_ELEM_FRU:
3962 			if (*sense_len < 15) {
3963 				sense->flags |= SSD_SDAT_OVFL;
3964 				break;
3965 			}
3966 			sense->fru = *data;
3967 			sense->extra_len = MAX(sense->extra_len, 7);
3968 			break;
3969 		case SSD_ELEM_STREAM:
3970 			sense->flags |= *data &
3971 			    (SSD_ILI | SSD_EOM | SSD_FILEMARK);
3972 			break;
3973 		default:
3974 
3975 			/*
3976 			 * We can't handle that in fixed format.  Skip it.
3977 			 */
3978 			break;
3979 		}
3980 	}
3981 	*sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 +
3982 	    sense->extra_len;
3983 }
3984 
3985 /*
3986  * Fill in SCSI sense data with the specified parameters.  This routine can
3987  * fill in either fixed or descriptor type sense data.
3988  */
3989 void
3990 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len,
3991 		      scsi_sense_data_type sense_format, int current_error,
3992 		      int sense_key, int asc, int ascq, va_list ap)
3993 {
3994 
3995 	if (*sense_len > SSD_FULL_SIZE)
3996 		*sense_len = SSD_FULL_SIZE;
3997 	if (sense_format == SSD_TYPE_DESC)
3998 		scsi_set_sense_data_desc_va(sense_data, sense_len,
3999 		    sense_format, current_error, sense_key, asc, ascq, ap);
4000 	else
4001 		scsi_set_sense_data_fixed_va(sense_data, sense_len,
4002 		    sense_format, current_error, sense_key, asc, ascq, ap);
4003 }
4004 
4005 void
4006 scsi_set_sense_data(struct scsi_sense_data *sense_data,
4007 		    scsi_sense_data_type sense_format, int current_error,
4008 		    int sense_key, int asc, int ascq, ...)
4009 {
4010 	va_list ap;
4011 	u_int	sense_len = SSD_FULL_SIZE;
4012 
4013 	va_start(ap, ascq);
4014 	scsi_set_sense_data_va(sense_data, &sense_len, sense_format,
4015 	    current_error, sense_key, asc, ascq, ap);
4016 	va_end(ap);
4017 }
4018 
4019 void
4020 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len,
4021 		    scsi_sense_data_type sense_format, int current_error,
4022 		    int sense_key, int asc, int ascq, ...)
4023 {
4024 	va_list ap;
4025 
4026 	va_start(ap, ascq);
4027 	scsi_set_sense_data_va(sense_data, sense_len, sense_format,
4028 	    current_error, sense_key, asc, ascq, ap);
4029 	va_end(ap);
4030 }
4031 
4032 /*
4033  * Get sense information for three similar sense data types.
4034  */
4035 int
4036 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
4037 		    uint8_t info_type, uint64_t *info, int64_t *signed_info)
4038 {
4039 	scsi_sense_data_type sense_type;
4040 
4041 	if (sense_len == 0)
4042 		goto bailout;
4043 
4044 	sense_type = scsi_sense_type(sense_data);
4045 
4046 	switch (sense_type) {
4047 	case SSD_TYPE_DESC: {
4048 		struct scsi_sense_data_desc *sense;
4049 		uint8_t *desc;
4050 
4051 		sense = (struct scsi_sense_data_desc *)sense_data;
4052 
4053 		desc = scsi_find_desc(sense, sense_len, info_type);
4054 		if (desc == NULL)
4055 			goto bailout;
4056 
4057 		switch (info_type) {
4058 		case SSD_DESC_INFO: {
4059 			struct scsi_sense_info *info_desc;
4060 
4061 			info_desc = (struct scsi_sense_info *)desc;
4062 			*info = scsi_8btou64(info_desc->info);
4063 			if (signed_info != NULL)
4064 				*signed_info = *info;
4065 			break;
4066 		}
4067 		case SSD_DESC_COMMAND: {
4068 			struct scsi_sense_command *cmd_desc;
4069 
4070 			cmd_desc = (struct scsi_sense_command *)desc;
4071 
4072 			*info = scsi_8btou64(cmd_desc->command_info);
4073 			if (signed_info != NULL)
4074 				*signed_info = *info;
4075 			break;
4076 		}
4077 		case SSD_DESC_FRU: {
4078 			struct scsi_sense_fru *fru_desc;
4079 
4080 			fru_desc = (struct scsi_sense_fru *)desc;
4081 
4082 			*info = fru_desc->fru;
4083 			if (signed_info != NULL)
4084 				*signed_info = (int8_t)fru_desc->fru;
4085 			break;
4086 		}
4087 		default:
4088 			goto bailout;
4089 			break;
4090 		}
4091 		break;
4092 	}
4093 	case SSD_TYPE_FIXED: {
4094 		struct scsi_sense_data_fixed *sense;
4095 
4096 		sense = (struct scsi_sense_data_fixed *)sense_data;
4097 
4098 		switch (info_type) {
4099 		case SSD_DESC_INFO: {
4100 			uint32_t info_val;
4101 
4102 			if ((sense->error_code & SSD_ERRCODE_VALID) == 0)
4103 				goto bailout;
4104 
4105 			if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0)
4106 				goto bailout;
4107 
4108 			info_val = scsi_4btoul(sense->info);
4109 
4110 			*info = info_val;
4111 			if (signed_info != NULL)
4112 				*signed_info = (int32_t)info_val;
4113 			break;
4114 		}
4115 		case SSD_DESC_COMMAND: {
4116 			uint32_t cmd_val;
4117 
4118 			if ((SSD_FIXED_IS_PRESENT(sense, sense_len,
4119 			     cmd_spec_info) == 0)
4120 			 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0))
4121 				goto bailout;
4122 
4123 			cmd_val = scsi_4btoul(sense->cmd_spec_info);
4124 			if (cmd_val == 0)
4125 				goto bailout;
4126 
4127 			*info = cmd_val;
4128 			if (signed_info != NULL)
4129 				*signed_info = (int32_t)cmd_val;
4130 			break;
4131 		}
4132 		case SSD_DESC_FRU:
4133 			if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0)
4134 			 || (SSD_FIXED_IS_FILLED(sense, fru) == 0))
4135 				goto bailout;
4136 
4137 			if (sense->fru == 0)
4138 				goto bailout;
4139 
4140 			*info = sense->fru;
4141 			if (signed_info != NULL)
4142 				*signed_info = (int8_t)sense->fru;
4143 			break;
4144 		default:
4145 			goto bailout;
4146 			break;
4147 		}
4148 		break;
4149 	}
4150 	default:
4151 		goto bailout;
4152 		break;
4153 	}
4154 
4155 	return (0);
4156 bailout:
4157 	return (1);
4158 }
4159 
4160 int
4161 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks)
4162 {
4163 	scsi_sense_data_type sense_type;
4164 
4165 	if (sense_len == 0)
4166 		goto bailout;
4167 
4168 	sense_type = scsi_sense_type(sense_data);
4169 
4170 	switch (sense_type) {
4171 	case SSD_TYPE_DESC: {
4172 		struct scsi_sense_data_desc *sense;
4173 		struct scsi_sense_sks *desc;
4174 
4175 		sense = (struct scsi_sense_data_desc *)sense_data;
4176 
4177 		desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len,
4178 							       SSD_DESC_SKS);
4179 		if (desc == NULL)
4180 			goto bailout;
4181 
4182 		/*
4183 		 * No need to check the SKS valid bit for descriptor sense.
4184 		 * If the descriptor is present, it is valid.
4185 		 */
4186 		bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec));
4187 		break;
4188 	}
4189 	case SSD_TYPE_FIXED: {
4190 		struct scsi_sense_data_fixed *sense;
4191 
4192 		sense = (struct scsi_sense_data_fixed *)sense_data;
4193 
4194 		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0)
4195 		 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0))
4196 			goto bailout;
4197 
4198 		if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0)
4199 			goto bailout;
4200 
4201 		bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec));
4202 		break;
4203 	}
4204 	default:
4205 		goto bailout;
4206 		break;
4207 	}
4208 	return (0);
4209 bailout:
4210 	return (1);
4211 }
4212 
4213 /*
4214  * Provide a common interface for fixed and descriptor sense to detect
4215  * whether we have block-specific sense information.  It is clear by the
4216  * presence of the block descriptor in descriptor mode, but we have to
4217  * infer from the inquiry data and ILI bit in fixed mode.
4218  */
4219 int
4220 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
4221 		    struct scsi_inquiry_data *inq_data, uint8_t *block_bits)
4222 {
4223 	scsi_sense_data_type sense_type;
4224 
4225 	if (inq_data != NULL) {
4226 		switch (SID_TYPE(inq_data)) {
4227 		case T_DIRECT:
4228 		case T_RBC:
4229 		case T_ZBC_HM:
4230 			break;
4231 		default:
4232 			goto bailout;
4233 			break;
4234 		}
4235 	}
4236 
4237 	sense_type = scsi_sense_type(sense_data);
4238 
4239 	switch (sense_type) {
4240 	case SSD_TYPE_DESC: {
4241 		struct scsi_sense_data_desc *sense;
4242 		struct scsi_sense_block *block;
4243 
4244 		sense = (struct scsi_sense_data_desc *)sense_data;
4245 
4246 		block = (struct scsi_sense_block *)scsi_find_desc(sense,
4247 		    sense_len, SSD_DESC_BLOCK);
4248 		if (block == NULL)
4249 			goto bailout;
4250 
4251 		*block_bits = block->byte3;
4252 		break;
4253 	}
4254 	case SSD_TYPE_FIXED: {
4255 		struct scsi_sense_data_fixed *sense;
4256 
4257 		sense = (struct scsi_sense_data_fixed *)sense_data;
4258 
4259 		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4260 			goto bailout;
4261 
4262 		if ((sense->flags & SSD_ILI) == 0)
4263 			goto bailout;
4264 
4265 		*block_bits = sense->flags & SSD_ILI;
4266 		break;
4267 	}
4268 	default:
4269 		goto bailout;
4270 		break;
4271 	}
4272 	return (0);
4273 bailout:
4274 	return (1);
4275 }
4276 
4277 int
4278 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
4279 		     struct scsi_inquiry_data *inq_data, uint8_t *stream_bits)
4280 {
4281 	scsi_sense_data_type sense_type;
4282 
4283 	if (inq_data != NULL) {
4284 		switch (SID_TYPE(inq_data)) {
4285 		case T_SEQUENTIAL:
4286 			break;
4287 		default:
4288 			goto bailout;
4289 			break;
4290 		}
4291 	}
4292 
4293 	sense_type = scsi_sense_type(sense_data);
4294 
4295 	switch (sense_type) {
4296 	case SSD_TYPE_DESC: {
4297 		struct scsi_sense_data_desc *sense;
4298 		struct scsi_sense_stream *stream;
4299 
4300 		sense = (struct scsi_sense_data_desc *)sense_data;
4301 
4302 		stream = (struct scsi_sense_stream *)scsi_find_desc(sense,
4303 		    sense_len, SSD_DESC_STREAM);
4304 		if (stream == NULL)
4305 			goto bailout;
4306 
4307 		*stream_bits = stream->byte3;
4308 		break;
4309 	}
4310 	case SSD_TYPE_FIXED: {
4311 		struct scsi_sense_data_fixed *sense;
4312 
4313 		sense = (struct scsi_sense_data_fixed *)sense_data;
4314 
4315 		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4316 			goto bailout;
4317 
4318 		if ((sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK)) == 0)
4319 			goto bailout;
4320 
4321 		*stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK);
4322 		break;
4323 	}
4324 	default:
4325 		goto bailout;
4326 		break;
4327 	}
4328 	return (0);
4329 bailout:
4330 	return (1);
4331 }
4332 
4333 void
4334 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4335 	       struct scsi_inquiry_data *inq_data, uint64_t info)
4336 {
4337 	sbuf_printf(sb, "Info: %#jx", info);
4338 }
4339 
4340 void
4341 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4342 		  struct scsi_inquiry_data *inq_data, uint64_t csi)
4343 {
4344 	sbuf_printf(sb, "Command Specific Info: %#jx", csi);
4345 }
4346 
4347 
4348 void
4349 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress)
4350 {
4351 	sbuf_printf(sb, "Progress: %d%% (%d/%d) complete",
4352 		    (progress * 100) / SSD_SKS_PROGRESS_DENOM,
4353 		    progress, SSD_SKS_PROGRESS_DENOM);
4354 }
4355 
4356 /*
4357  * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success.
4358  */
4359 int
4360 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks)
4361 {
4362 	if ((sks[0] & SSD_SKS_VALID) == 0)
4363 		return (1);
4364 
4365 	switch (sense_key) {
4366 	case SSD_KEY_ILLEGAL_REQUEST: {
4367 		struct scsi_sense_sks_field *field;
4368 		int bad_command;
4369 		char tmpstr[40];
4370 
4371 		/*Field Pointer*/
4372 		field = (struct scsi_sense_sks_field *)sks;
4373 
4374 		if (field->byte0 & SSD_SKS_FIELD_CMD)
4375 			bad_command = 1;
4376 		else
4377 			bad_command = 0;
4378 
4379 		tmpstr[0] = '\0';
4380 
4381 		/* Bit pointer is valid */
4382 		if (field->byte0 & SSD_SKS_BPV)
4383 			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4384 				 field->byte0 & SSD_SKS_BIT_VALUE);
4385 
4386 		sbuf_printf(sb, "%s byte %d %sis invalid",
4387 			    bad_command ? "Command" : "Data",
4388 			    scsi_2btoul(field->field), tmpstr);
4389 		break;
4390 	}
4391 	case SSD_KEY_UNIT_ATTENTION: {
4392 		struct scsi_sense_sks_overflow *overflow;
4393 
4394 		overflow = (struct scsi_sense_sks_overflow *)sks;
4395 
4396 		/*UA Condition Queue Overflow*/
4397 		sbuf_printf(sb, "Unit Attention Condition Queue %s",
4398 			    (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ?
4399 			    "Overflowed" : "Did Not Overflow??");
4400 		break;
4401 	}
4402 	case SSD_KEY_RECOVERED_ERROR:
4403 	case SSD_KEY_HARDWARE_ERROR:
4404 	case SSD_KEY_MEDIUM_ERROR: {
4405 		struct scsi_sense_sks_retry *retry;
4406 
4407 		/*Actual Retry Count*/
4408 		retry = (struct scsi_sense_sks_retry *)sks;
4409 
4410 		sbuf_printf(sb, "Actual Retry Count: %d",
4411 			    scsi_2btoul(retry->actual_retry_count));
4412 		break;
4413 	}
4414 	case SSD_KEY_NO_SENSE:
4415 	case SSD_KEY_NOT_READY: {
4416 		struct scsi_sense_sks_progress *progress;
4417 		int progress_val;
4418 
4419 		/*Progress Indication*/
4420 		progress = (struct scsi_sense_sks_progress *)sks;
4421 		progress_val = scsi_2btoul(progress->progress);
4422 
4423 		scsi_progress_sbuf(sb, progress_val);
4424 		break;
4425 	}
4426 	case SSD_KEY_COPY_ABORTED: {
4427 		struct scsi_sense_sks_segment *segment;
4428 		char tmpstr[40];
4429 
4430 		/*Segment Pointer*/
4431 		segment = (struct scsi_sense_sks_segment *)sks;
4432 
4433 		tmpstr[0] = '\0';
4434 
4435 		if (segment->byte0 & SSD_SKS_SEGMENT_BPV)
4436 			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4437 				 segment->byte0 & SSD_SKS_SEGMENT_BITPTR);
4438 
4439 		sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 &
4440 			    SSD_SKS_SEGMENT_SD) ? "Segment" : "Data",
4441 			    scsi_2btoul(segment->field), tmpstr);
4442 		break;
4443 	}
4444 	default:
4445 		sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0],
4446 			    scsi_2btoul(&sks[1]));
4447 		break;
4448 	}
4449 
4450 	return (0);
4451 }
4452 
4453 void
4454 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru)
4455 {
4456 	sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru);
4457 }
4458 
4459 void
4460 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits, uint64_t info)
4461 {
4462 	int need_comma;
4463 
4464 	need_comma = 0;
4465 	/*
4466 	 * XXX KDM this needs more descriptive decoding.
4467 	 */
4468 	if (stream_bits & SSD_DESC_STREAM_FM) {
4469 		sbuf_printf(sb, "Filemark");
4470 		need_comma = 1;
4471 	}
4472 
4473 	if (stream_bits & SSD_DESC_STREAM_EOM) {
4474 		sbuf_printf(sb, "%sEOM", (need_comma) ? "," : "");
4475 		need_comma = 1;
4476 	}
4477 
4478 	if (stream_bits & SSD_DESC_STREAM_ILI)
4479 		sbuf_printf(sb, "%sILI", (need_comma) ? "," : "");
4480 
4481 	sbuf_printf(sb, ": Info: %#jx", (uintmax_t) info);
4482 }
4483 
4484 void
4485 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits, uint64_t info)
4486 {
4487 	if (block_bits & SSD_DESC_BLOCK_ILI)
4488 		sbuf_printf(sb, "ILI: residue %#jx", (uintmax_t) info);
4489 }
4490 
4491 void
4492 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4493 		     u_int sense_len, uint8_t *cdb, int cdb_len,
4494 		     struct scsi_inquiry_data *inq_data,
4495 		     struct scsi_sense_desc_header *header)
4496 {
4497 	struct scsi_sense_info *info;
4498 
4499 	info = (struct scsi_sense_info *)header;
4500 
4501 	scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info));
4502 }
4503 
4504 void
4505 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4506 			u_int sense_len, uint8_t *cdb, int cdb_len,
4507 			struct scsi_inquiry_data *inq_data,
4508 			struct scsi_sense_desc_header *header)
4509 {
4510 	struct scsi_sense_command *command;
4511 
4512 	command = (struct scsi_sense_command *)header;
4513 
4514 	scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
4515 			  scsi_8btou64(command->command_info));
4516 }
4517 
4518 void
4519 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4520 		    u_int sense_len, uint8_t *cdb, int cdb_len,
4521 		    struct scsi_inquiry_data *inq_data,
4522 		    struct scsi_sense_desc_header *header)
4523 {
4524 	struct scsi_sense_sks *sks;
4525 	int error_code, sense_key, asc, ascq;
4526 
4527 	sks = (struct scsi_sense_sks *)header;
4528 
4529 	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4530 			       &asc, &ascq, /*show_errors*/ 1);
4531 
4532 	scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec);
4533 }
4534 
4535 void
4536 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4537 		    u_int sense_len, uint8_t *cdb, int cdb_len,
4538 		    struct scsi_inquiry_data *inq_data,
4539 		    struct scsi_sense_desc_header *header)
4540 {
4541 	struct scsi_sense_fru *fru;
4542 
4543 	fru = (struct scsi_sense_fru *)header;
4544 
4545 	scsi_fru_sbuf(sb, (uint64_t)fru->fru);
4546 }
4547 
4548 void
4549 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4550 		       u_int sense_len, uint8_t *cdb, int cdb_len,
4551 		       struct scsi_inquiry_data *inq_data,
4552 		       struct scsi_sense_desc_header *header)
4553 {
4554 	struct scsi_sense_stream *stream;
4555 	uint64_t info;
4556 
4557 	stream = (struct scsi_sense_stream *)header;
4558 	info = 0;
4559 
4560 	scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL);
4561 
4562 	scsi_stream_sbuf(sb, stream->byte3, info);
4563 }
4564 
4565 void
4566 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4567 		      u_int sense_len, uint8_t *cdb, int cdb_len,
4568 		      struct scsi_inquiry_data *inq_data,
4569 		      struct scsi_sense_desc_header *header)
4570 {
4571 	struct scsi_sense_block *block;
4572 	uint64_t info;
4573 
4574 	block = (struct scsi_sense_block *)header;
4575 	info = 0;
4576 
4577 	scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL);
4578 
4579 	scsi_block_sbuf(sb, block->byte3, info);
4580 }
4581 
4582 void
4583 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4584 			 u_int sense_len, uint8_t *cdb, int cdb_len,
4585 			 struct scsi_inquiry_data *inq_data,
4586 			 struct scsi_sense_desc_header *header)
4587 {
4588 	struct scsi_sense_progress *progress;
4589 	const char *sense_key_desc;
4590 	const char *asc_desc;
4591 	int progress_val;
4592 
4593 	progress = (struct scsi_sense_progress *)header;
4594 
4595 	/*
4596 	 * Get descriptions for the sense key, ASC, and ASCQ in the
4597 	 * progress descriptor.  These could be different than the values
4598 	 * in the overall sense data.
4599 	 */
4600 	scsi_sense_desc(progress->sense_key, progress->add_sense_code,
4601 			progress->add_sense_code_qual, inq_data,
4602 			&sense_key_desc, &asc_desc);
4603 
4604 	progress_val = scsi_2btoul(progress->progress);
4605 
4606 	/*
4607 	 * The progress indicator is for the operation described by the
4608 	 * sense key, ASC, and ASCQ in the descriptor.
4609 	 */
4610 	sbuf_cat(sb, sense_key_desc);
4611 	sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code,
4612 		    progress->add_sense_code_qual, asc_desc);
4613 	scsi_progress_sbuf(sb, progress_val);
4614 }
4615 
4616 void
4617 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4618 			 u_int sense_len, uint8_t *cdb, int cdb_len,
4619 			 struct scsi_inquiry_data *inq_data,
4620 			 struct scsi_sense_desc_header *header)
4621 {
4622 	struct scsi_sense_ata_ret_desc *res;
4623 
4624 	res = (struct scsi_sense_ata_ret_desc *)header;
4625 
4626 	sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ",
4627 	    res->status,
4628 	    (res->status & 0x80) ? "BSY " : "",
4629 	    (res->status & 0x40) ? "DRDY " : "",
4630 	    (res->status & 0x20) ? "DF " : "",
4631 	    (res->status & 0x10) ? "SERV " : "",
4632 	    (res->status & 0x08) ? "DRQ " : "",
4633 	    (res->status & 0x04) ? "CORR " : "",
4634 	    (res->status & 0x02) ? "IDX " : "",
4635 	    (res->status & 0x01) ? "ERR" : "");
4636 	if (res->status & 1) {
4637 	    sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ",
4638 		res->error,
4639 		(res->error & 0x80) ? "ICRC " : "",
4640 		(res->error & 0x40) ? "UNC " : "",
4641 		(res->error & 0x20) ? "MC " : "",
4642 		(res->error & 0x10) ? "IDNF " : "",
4643 		(res->error & 0x08) ? "MCR " : "",
4644 		(res->error & 0x04) ? "ABRT " : "",
4645 		(res->error & 0x02) ? "NM " : "",
4646 		(res->error & 0x01) ? "ILI" : "");
4647 	}
4648 
4649 	if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) {
4650 		sbuf_printf(sb, "count: %02x%02x, ",
4651 		    res->count_15_8, res->count_7_0);
4652 		sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ",
4653 		    res->lba_47_40, res->lba_39_32, res->lba_31_24,
4654 		    res->lba_23_16, res->lba_15_8, res->lba_7_0);
4655 	} else {
4656 		sbuf_printf(sb, "count: %02x, ", res->count_7_0);
4657 		sbuf_printf(sb, "LBA: %02x%02x%02x, ",
4658 		    res->lba_23_16, res->lba_15_8, res->lba_7_0);
4659 	}
4660 	sbuf_printf(sb, "device: %02x, ", res->device);
4661 }
4662 
4663 void
4664 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4665 			 u_int sense_len, uint8_t *cdb, int cdb_len,
4666 			 struct scsi_inquiry_data *inq_data,
4667 			 struct scsi_sense_desc_header *header)
4668 {
4669 	struct scsi_sense_forwarded *forwarded;
4670 	const char *sense_key_desc;
4671 	const char *asc_desc;
4672 	int error_code, sense_key, asc, ascq;
4673 
4674 	forwarded = (struct scsi_sense_forwarded *)header;
4675 	scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data,
4676 	    forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1);
4677 	scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc);
4678 
4679 	sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ",
4680 	    sense_key_desc, asc, ascq, asc_desc);
4681 }
4682 
4683 /*
4684  * Generic sense descriptor printing routine.  This is used when we have
4685  * not yet implemented a specific printing routine for this descriptor.
4686  */
4687 void
4688 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4689 			u_int sense_len, uint8_t *cdb, int cdb_len,
4690 			struct scsi_inquiry_data *inq_data,
4691 			struct scsi_sense_desc_header *header)
4692 {
4693 	int i;
4694 	uint8_t *buf_ptr;
4695 
4696 	sbuf_printf(sb, "Descriptor %#x:", header->desc_type);
4697 
4698 	buf_ptr = (uint8_t *)&header[1];
4699 
4700 	for (i = 0; i < header->length; i++, buf_ptr++)
4701 		sbuf_printf(sb, " %02x", *buf_ptr);
4702 }
4703 
4704 /*
4705  * Keep this list in numeric order.  This speeds the array traversal.
4706  */
4707 struct scsi_sense_desc_printer {
4708 	uint8_t desc_type;
4709 	/*
4710 	 * The function arguments here are the superset of what is needed
4711 	 * to print out various different descriptors.  Command and
4712 	 * information descriptors need inquiry data and command type.
4713 	 * Sense key specific descriptors need the sense key.
4714 	 *
4715 	 * The sense, cdb, and inquiry data arguments may be NULL, but the
4716 	 * information printed may not be fully decoded as a result.
4717 	 */
4718 	void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense,
4719 			   u_int sense_len, uint8_t *cdb, int cdb_len,
4720 			   struct scsi_inquiry_data *inq_data,
4721 			   struct scsi_sense_desc_header *header);
4722 } scsi_sense_printers[] = {
4723 	{SSD_DESC_INFO, scsi_sense_info_sbuf},
4724 	{SSD_DESC_COMMAND, scsi_sense_command_sbuf},
4725 	{SSD_DESC_SKS, scsi_sense_sks_sbuf},
4726 	{SSD_DESC_FRU, scsi_sense_fru_sbuf},
4727 	{SSD_DESC_STREAM, scsi_sense_stream_sbuf},
4728 	{SSD_DESC_BLOCK, scsi_sense_block_sbuf},
4729 	{SSD_DESC_ATA, scsi_sense_ata_sbuf},
4730 	{SSD_DESC_PROGRESS, scsi_sense_progress_sbuf},
4731 	{SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf}
4732 };
4733 
4734 void
4735 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4736 		     u_int sense_len, uint8_t *cdb, int cdb_len,
4737 		     struct scsi_inquiry_data *inq_data,
4738 		     struct scsi_sense_desc_header *header)
4739 {
4740 	u_int i;
4741 
4742 	for (i = 0; i < nitems(scsi_sense_printers); i++) {
4743 		struct scsi_sense_desc_printer *printer;
4744 
4745 		printer = &scsi_sense_printers[i];
4746 
4747 		/*
4748 		 * The list is sorted, so quit if we've passed our
4749 		 * descriptor number.
4750 		 */
4751 		if (printer->desc_type > header->desc_type)
4752 			break;
4753 
4754 		if (printer->desc_type != header->desc_type)
4755 			continue;
4756 
4757 		printer->print_func(sb, sense, sense_len, cdb, cdb_len,
4758 				    inq_data, header);
4759 
4760 		return;
4761 	}
4762 
4763 	/*
4764 	 * No specific printing routine, so use the generic routine.
4765 	 */
4766 	scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len,
4767 				inq_data, header);
4768 }
4769 
4770 scsi_sense_data_type
4771 scsi_sense_type(struct scsi_sense_data *sense_data)
4772 {
4773 	switch (sense_data->error_code & SSD_ERRCODE) {
4774 	case SSD_DESC_CURRENT_ERROR:
4775 	case SSD_DESC_DEFERRED_ERROR:
4776 		return (SSD_TYPE_DESC);
4777 		break;
4778 	case SSD_CURRENT_ERROR:
4779 	case SSD_DEFERRED_ERROR:
4780 		return (SSD_TYPE_FIXED);
4781 		break;
4782 	default:
4783 		break;
4784 	}
4785 
4786 	return (SSD_TYPE_NONE);
4787 }
4788 
4789 struct scsi_print_sense_info {
4790 	struct sbuf *sb;
4791 	char *path_str;
4792 	uint8_t *cdb;
4793 	int cdb_len;
4794 	struct scsi_inquiry_data *inq_data;
4795 };
4796 
4797 static int
4798 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
4799 		     struct scsi_sense_desc_header *header, void *arg)
4800 {
4801 	struct scsi_print_sense_info *print_info;
4802 
4803 	print_info = (struct scsi_print_sense_info *)arg;
4804 
4805 	switch (header->desc_type) {
4806 	case SSD_DESC_INFO:
4807 	case SSD_DESC_FRU:
4808 	case SSD_DESC_COMMAND:
4809 	case SSD_DESC_SKS:
4810 	case SSD_DESC_BLOCK:
4811 	case SSD_DESC_STREAM:
4812 		/*
4813 		 * We have already printed these descriptors, if they are
4814 		 * present.
4815 		 */
4816 		break;
4817 	default: {
4818 		sbuf_printf(print_info->sb, "%s", print_info->path_str);
4819 		scsi_sense_desc_sbuf(print_info->sb,
4820 				     (struct scsi_sense_data *)sense, sense_len,
4821 				     print_info->cdb, print_info->cdb_len,
4822 				     print_info->inq_data, header);
4823 		sbuf_printf(print_info->sb, "\n");
4824 		break;
4825 	}
4826 	}
4827 
4828 	/*
4829 	 * Tell the iterator that we want to see more descriptors if they
4830 	 * are present.
4831 	 */
4832 	return (0);
4833 }
4834 
4835 void
4836 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
4837 		     struct sbuf *sb, char *path_str,
4838 		     struct scsi_inquiry_data *inq_data, uint8_t *cdb,
4839 		     int cdb_len)
4840 {
4841 	int error_code, sense_key, asc, ascq;
4842 
4843 	sbuf_cat(sb, path_str);
4844 
4845 	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4846 			       &asc, &ascq, /*show_errors*/ 1);
4847 
4848 	sbuf_printf(sb, "SCSI sense: ");
4849 	switch (error_code) {
4850 	case SSD_DEFERRED_ERROR:
4851 	case SSD_DESC_DEFERRED_ERROR:
4852 		sbuf_printf(sb, "Deferred error: ");
4853 
4854 		/* FALLTHROUGH */
4855 	case SSD_CURRENT_ERROR:
4856 	case SSD_DESC_CURRENT_ERROR:
4857 	{
4858 		struct scsi_sense_data_desc *desc_sense;
4859 		struct scsi_print_sense_info print_info;
4860 		const char *sense_key_desc;
4861 		const char *asc_desc;
4862 		uint8_t sks[3];
4863 		uint64_t val;
4864 		int info_valid;
4865 
4866 		/*
4867 		 * Get descriptions for the sense key, ASC, and ASCQ.  If
4868 		 * these aren't present in the sense data (i.e. the sense
4869 		 * data isn't long enough), the -1 values that
4870 		 * scsi_extract_sense_len() returns will yield default
4871 		 * or error descriptions.
4872 		 */
4873 		scsi_sense_desc(sense_key, asc, ascq, inq_data,
4874 				&sense_key_desc, &asc_desc);
4875 
4876 		/*
4877 		 * We first print the sense key and ASC/ASCQ.
4878 		 */
4879 		sbuf_cat(sb, sense_key_desc);
4880 		sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc);
4881 
4882 		/*
4883 		 * Get the info field if it is valid.
4884 		 */
4885 		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO,
4886 					&val, NULL) == 0)
4887 			info_valid = 1;
4888 		else
4889 			info_valid = 0;
4890 
4891 		if (info_valid != 0) {
4892 			uint8_t bits;
4893 
4894 			/*
4895 			 * Determine whether we have any block or stream
4896 			 * device-specific information.
4897 			 */
4898 			if (scsi_get_block_info(sense, sense_len, inq_data,
4899 						&bits) == 0) {
4900 				sbuf_cat(sb, path_str);
4901 				scsi_block_sbuf(sb, bits, val);
4902 				sbuf_printf(sb, "\n");
4903 			} else if (scsi_get_stream_info(sense, sense_len,
4904 							inq_data, &bits) == 0) {
4905 				sbuf_cat(sb, path_str);
4906 				scsi_stream_sbuf(sb, bits, val);
4907 				sbuf_printf(sb, "\n");
4908 			} else if (val != 0) {
4909 				/*
4910 				 * The information field can be valid but 0.
4911 				 * If the block or stream bits aren't set,
4912 				 * and this is 0, it isn't terribly useful
4913 				 * to print it out.
4914 				 */
4915 				sbuf_cat(sb, path_str);
4916 				scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val);
4917 				sbuf_printf(sb, "\n");
4918 			}
4919 		}
4920 
4921 		/*
4922 		 * Print the FRU.
4923 		 */
4924 		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU,
4925 					&val, NULL) == 0) {
4926 			sbuf_cat(sb, path_str);
4927 			scsi_fru_sbuf(sb, val);
4928 			sbuf_printf(sb, "\n");
4929 		}
4930 
4931 		/*
4932 		 * Print any command-specific information.
4933 		 */
4934 		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND,
4935 					&val, NULL) == 0) {
4936 			sbuf_cat(sb, path_str);
4937 			scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val);
4938 			sbuf_printf(sb, "\n");
4939 		}
4940 
4941 		/*
4942 		 * Print out any sense-key-specific information.
4943 		 */
4944 		if (scsi_get_sks(sense, sense_len, sks) == 0) {
4945 			sbuf_cat(sb, path_str);
4946 			scsi_sks_sbuf(sb, sense_key, sks);
4947 			sbuf_printf(sb, "\n");
4948 		}
4949 
4950 		/*
4951 		 * If this is fixed sense, we're done.  If we have
4952 		 * descriptor sense, we might have more information
4953 		 * available.
4954 		 */
4955 		if (scsi_sense_type(sense) != SSD_TYPE_DESC)
4956 			break;
4957 
4958 		desc_sense = (struct scsi_sense_data_desc *)sense;
4959 
4960 		print_info.sb = sb;
4961 		print_info.path_str = path_str;
4962 		print_info.cdb = cdb;
4963 		print_info.cdb_len = cdb_len;
4964 		print_info.inq_data = inq_data;
4965 
4966 		/*
4967 		 * Print any sense descriptors that we have not already printed.
4968 		 */
4969 		scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func,
4970 				  &print_info);
4971 		break;
4972 
4973 	}
4974 	case -1:
4975 		/*
4976 		 * scsi_extract_sense_len() sets values to -1 if the
4977 		 * show_errors flag is set and they aren't present in the
4978 		 * sense data.  This means that sense_len is 0.
4979 		 */
4980 		sbuf_printf(sb, "No sense data present\n");
4981 		break;
4982 	default: {
4983 		sbuf_printf(sb, "Error code 0x%x", error_code);
4984 		if (sense->error_code & SSD_ERRCODE_VALID) {
4985 			struct scsi_sense_data_fixed *fixed_sense;
4986 
4987 			fixed_sense = (struct scsi_sense_data_fixed *)sense;
4988 
4989 			if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){
4990 				uint32_t info;
4991 
4992 				info = scsi_4btoul(fixed_sense->info);
4993 
4994 				sbuf_printf(sb, " at block no. %d (decimal)",
4995 					    info);
4996 			}
4997 		}
4998 		sbuf_printf(sb, "\n");
4999 		break;
5000 	}
5001 	}
5002 }
5003 
5004 /*
5005  * scsi_sense_sbuf() returns 0 for success and -1 for failure.
5006  */
5007 #ifdef _KERNEL
5008 int
5009 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
5010 		scsi_sense_string_flags flags)
5011 #else /* !_KERNEL */
5012 int
5013 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio,
5014 		struct sbuf *sb, scsi_sense_string_flags flags)
5015 #endif /* _KERNEL/!_KERNEL */
5016 {
5017 	struct	  scsi_sense_data *sense;
5018 	struct	  scsi_inquiry_data *inq_data;
5019 #ifdef _KERNEL
5020 	struct	  ccb_getdev *cgd;
5021 #endif /* _KERNEL */
5022 	char	  path_str[64];
5023 
5024 #ifndef _KERNEL
5025 	if (device == NULL)
5026 		return(-1);
5027 #endif /* !_KERNEL */
5028 	if ((csio == NULL) || (sb == NULL))
5029 		return(-1);
5030 
5031 	/*
5032 	 * If the CDB is a physical address, we can't deal with it..
5033 	 */
5034 	if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0)
5035 		flags &= ~SSS_FLAG_PRINT_COMMAND;
5036 
5037 #ifdef _KERNEL
5038 	xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str));
5039 #else /* !_KERNEL */
5040 	cam_path_string(device, path_str, sizeof(path_str));
5041 #endif /* _KERNEL/!_KERNEL */
5042 
5043 #ifdef _KERNEL
5044 	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
5045 		return(-1);
5046 	/*
5047 	 * Get the device information.
5048 	 */
5049 	xpt_setup_ccb(&cgd->ccb_h,
5050 		      csio->ccb_h.path,
5051 		      CAM_PRIORITY_NORMAL);
5052 	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
5053 	xpt_action((union ccb *)cgd);
5054 
5055 	/*
5056 	 * If the device is unconfigured, just pretend that it is a hard
5057 	 * drive.  scsi_op_desc() needs this.
5058 	 */
5059 	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
5060 		cgd->inq_data.device = T_DIRECT;
5061 
5062 	inq_data = &cgd->inq_data;
5063 
5064 #else /* !_KERNEL */
5065 
5066 	inq_data = &device->inq_data;
5067 
5068 #endif /* _KERNEL/!_KERNEL */
5069 
5070 	sense = NULL;
5071 
5072 	if (flags & SSS_FLAG_PRINT_COMMAND) {
5073 
5074 		sbuf_cat(sb, path_str);
5075 
5076 #ifdef _KERNEL
5077 		scsi_command_string(csio, sb);
5078 #else /* !_KERNEL */
5079 		scsi_command_string(device, csio, sb);
5080 #endif /* _KERNEL/!_KERNEL */
5081 		sbuf_printf(sb, "\n");
5082 	}
5083 
5084 	/*
5085 	 * If the sense data is a physical pointer, forget it.
5086 	 */
5087 	if (csio->ccb_h.flags & CAM_SENSE_PTR) {
5088 		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5089 #ifdef _KERNEL
5090 			xpt_free_ccb((union ccb*)cgd);
5091 #endif /* _KERNEL/!_KERNEL */
5092 			return(-1);
5093 		} else {
5094 			/*
5095 			 * bcopy the pointer to avoid unaligned access
5096 			 * errors on finicky architectures.  We don't
5097 			 * ensure that the sense data is pointer aligned.
5098 			 */
5099 			bcopy((struct scsi_sense_data **)&csio->sense_data,
5100 			    &sense, sizeof(struct scsi_sense_data *));
5101 		}
5102 	} else {
5103 		/*
5104 		 * If the physical sense flag is set, but the sense pointer
5105 		 * is not also set, we assume that the user is an idiot and
5106 		 * return.  (Well, okay, it could be that somehow, the
5107 		 * entire csio is physical, but we would have probably core
5108 		 * dumped on one of the bogus pointer deferences above
5109 		 * already.)
5110 		 */
5111 		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5112 #ifdef _KERNEL
5113 			xpt_free_ccb((union ccb*)cgd);
5114 #endif /* _KERNEL/!_KERNEL */
5115 			return(-1);
5116 		} else
5117 			sense = &csio->sense_data;
5118 	}
5119 
5120 	scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb,
5121 	    path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len);
5122 
5123 #ifdef _KERNEL
5124 	xpt_free_ccb((union ccb*)cgd);
5125 #endif /* _KERNEL/!_KERNEL */
5126 	return(0);
5127 }
5128 
5129 
5130 
5131 #ifdef _KERNEL
5132 char *
5133 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len)
5134 #else /* !_KERNEL */
5135 char *
5136 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio,
5137 		  char *str, int str_len)
5138 #endif /* _KERNEL/!_KERNEL */
5139 {
5140 	struct sbuf sb;
5141 
5142 	sbuf_new(&sb, str, str_len, 0);
5143 
5144 #ifdef _KERNEL
5145 	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5146 #else /* !_KERNEL */
5147 	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5148 #endif /* _KERNEL/!_KERNEL */
5149 
5150 	sbuf_finish(&sb);
5151 
5152 	return(sbuf_data(&sb));
5153 }
5154 
5155 #ifdef _KERNEL
5156 void
5157 scsi_sense_print(struct ccb_scsiio *csio)
5158 {
5159 	struct sbuf sb;
5160 	char str[512];
5161 
5162 	sbuf_new(&sb, str, sizeof(str), 0);
5163 
5164 	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5165 
5166 	sbuf_finish(&sb);
5167 
5168 	sbuf_putbuf(&sb);
5169 }
5170 
5171 #else /* !_KERNEL */
5172 void
5173 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio,
5174 		 FILE *ofile)
5175 {
5176 	struct sbuf sb;
5177 	char str[512];
5178 
5179 	if ((device == NULL) || (csio == NULL) || (ofile == NULL))
5180 		return;
5181 
5182 	sbuf_new(&sb, str, sizeof(str), 0);
5183 
5184 	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5185 
5186 	sbuf_finish(&sb);
5187 
5188 	fprintf(ofile, "%s", sbuf_data(&sb));
5189 }
5190 
5191 #endif /* _KERNEL/!_KERNEL */
5192 
5193 /*
5194  * Extract basic sense information.  This is backward-compatible with the
5195  * previous implementation.  For new implementations,
5196  * scsi_extract_sense_len() is recommended.
5197  */
5198 void
5199 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code,
5200 		   int *sense_key, int *asc, int *ascq)
5201 {
5202 	scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code,
5203 			       sense_key, asc, ascq, /*show_errors*/ 0);
5204 }
5205 
5206 /*
5207  * Extract basic sense information from SCSI I/O CCB structure.
5208  */
5209 int
5210 scsi_extract_sense_ccb(union ccb *ccb,
5211     int *error_code, int *sense_key, int *asc, int *ascq)
5212 {
5213 	struct scsi_sense_data *sense_data;
5214 
5215 	/* Make sure there are some sense data we can access. */
5216 	if (ccb->ccb_h.func_code != XPT_SCSI_IO ||
5217 	    (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR ||
5218 	    (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) ||
5219 	    (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 ||
5220 	    (ccb->ccb_h.flags & CAM_SENSE_PHYS))
5221 		return (0);
5222 
5223 	if (ccb->ccb_h.flags & CAM_SENSE_PTR)
5224 		bcopy((struct scsi_sense_data **)&ccb->csio.sense_data,
5225 		    &sense_data, sizeof(struct scsi_sense_data *));
5226 	else
5227 		sense_data = &ccb->csio.sense_data;
5228 	scsi_extract_sense_len(sense_data,
5229 	    ccb->csio.sense_len - ccb->csio.sense_resid,
5230 	    error_code, sense_key, asc, ascq, 1);
5231 	if (*error_code == -1)
5232 		return (0);
5233 	return (1);
5234 }
5235 
5236 /*
5237  * Extract basic sense information.  If show_errors is set, sense values
5238  * will be set to -1 if they are not present.
5239  */
5240 void
5241 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len,
5242 		       int *error_code, int *sense_key, int *asc, int *ascq,
5243 		       int show_errors)
5244 {
5245 	/*
5246 	 * If we have no length, we have no sense.
5247 	 */
5248 	if (sense_len == 0) {
5249 		if (show_errors == 0) {
5250 			*error_code = 0;
5251 			*sense_key = 0;
5252 			*asc = 0;
5253 			*ascq = 0;
5254 		} else {
5255 			*error_code = -1;
5256 			*sense_key = -1;
5257 			*asc = -1;
5258 			*ascq = -1;
5259 		}
5260 		return;
5261 	}
5262 
5263 	*error_code = sense_data->error_code & SSD_ERRCODE;
5264 
5265 	switch (*error_code) {
5266 	case SSD_DESC_CURRENT_ERROR:
5267 	case SSD_DESC_DEFERRED_ERROR: {
5268 		struct scsi_sense_data_desc *sense;
5269 
5270 		sense = (struct scsi_sense_data_desc *)sense_data;
5271 
5272 		if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key))
5273 			*sense_key = sense->sense_key & SSD_KEY;
5274 		else
5275 			*sense_key = (show_errors) ? -1 : 0;
5276 
5277 		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code))
5278 			*asc = sense->add_sense_code;
5279 		else
5280 			*asc = (show_errors) ? -1 : 0;
5281 
5282 		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual))
5283 			*ascq = sense->add_sense_code_qual;
5284 		else
5285 			*ascq = (show_errors) ? -1 : 0;
5286 		break;
5287 	}
5288 	case SSD_CURRENT_ERROR:
5289 	case SSD_DEFERRED_ERROR:
5290 	default: {
5291 		struct scsi_sense_data_fixed *sense;
5292 
5293 		sense = (struct scsi_sense_data_fixed *)sense_data;
5294 
5295 		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags))
5296 			*sense_key = sense->flags & SSD_KEY;
5297 		else
5298 			*sense_key = (show_errors) ? -1 : 0;
5299 
5300 		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code))
5301 		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code)))
5302 			*asc = sense->add_sense_code;
5303 		else
5304 			*asc = (show_errors) ? -1 : 0;
5305 
5306 		if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual))
5307 		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual)))
5308 			*ascq = sense->add_sense_code_qual;
5309 		else
5310 			*ascq = (show_errors) ? -1 : 0;
5311 		break;
5312 	}
5313 	}
5314 }
5315 
5316 int
5317 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len,
5318 		   int show_errors)
5319 {
5320 	int error_code, sense_key, asc, ascq;
5321 
5322 	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5323 			       &sense_key, &asc, &ascq, show_errors);
5324 
5325 	return (sense_key);
5326 }
5327 
5328 int
5329 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len,
5330 	     int show_errors)
5331 {
5332 	int error_code, sense_key, asc, ascq;
5333 
5334 	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5335 			       &sense_key, &asc, &ascq, show_errors);
5336 
5337 	return (asc);
5338 }
5339 
5340 int
5341 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len,
5342 	      int show_errors)
5343 {
5344 	int error_code, sense_key, asc, ascq;
5345 
5346 	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5347 			       &sense_key, &asc, &ascq, show_errors);
5348 
5349 	return (ascq);
5350 }
5351 
5352 /*
5353  * This function currently requires at least 36 bytes, or
5354  * SHORT_INQUIRY_LENGTH, worth of data to function properly.  If this
5355  * function needs more or less data in the future, another length should be
5356  * defined in scsi_all.h to indicate the minimum amount of data necessary
5357  * for this routine to function properly.
5358  */
5359 void
5360 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
5361 {
5362 	u_int8_t type;
5363 	char *dtype, *qtype;
5364 
5365 	type = SID_TYPE(inq_data);
5366 
5367 	/*
5368 	 * Figure out basic device type and qualifier.
5369 	 */
5370 	if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) {
5371 		qtype = " (vendor-unique qualifier)";
5372 	} else {
5373 		switch (SID_QUAL(inq_data)) {
5374 		case SID_QUAL_LU_CONNECTED:
5375 			qtype = "";
5376 			break;
5377 
5378 		case SID_QUAL_LU_OFFLINE:
5379 			qtype = " (offline)";
5380 			break;
5381 
5382 		case SID_QUAL_RSVD:
5383 			qtype = " (reserved qualifier)";
5384 			break;
5385 		default:
5386 		case SID_QUAL_BAD_LU:
5387 			qtype = " (LUN not supported)";
5388 			break;
5389 		}
5390 	}
5391 
5392 	switch (type) {
5393 	case T_DIRECT:
5394 		dtype = "Direct Access";
5395 		break;
5396 	case T_SEQUENTIAL:
5397 		dtype = "Sequential Access";
5398 		break;
5399 	case T_PRINTER:
5400 		dtype = "Printer";
5401 		break;
5402 	case T_PROCESSOR:
5403 		dtype = "Processor";
5404 		break;
5405 	case T_WORM:
5406 		dtype = "WORM";
5407 		break;
5408 	case T_CDROM:
5409 		dtype = "CD-ROM";
5410 		break;
5411 	case T_SCANNER:
5412 		dtype = "Scanner";
5413 		break;
5414 	case T_OPTICAL:
5415 		dtype = "Optical";
5416 		break;
5417 	case T_CHANGER:
5418 		dtype = "Changer";
5419 		break;
5420 	case T_COMM:
5421 		dtype = "Communication";
5422 		break;
5423 	case T_STORARRAY:
5424 		dtype = "Storage Array";
5425 		break;
5426 	case T_ENCLOSURE:
5427 		dtype = "Enclosure Services";
5428 		break;
5429 	case T_RBC:
5430 		dtype = "Simplified Direct Access";
5431 		break;
5432 	case T_OCRW:
5433 		dtype = "Optical Card Read/Write";
5434 		break;
5435 	case T_OSD:
5436 		dtype = "Object-Based Storage";
5437 		break;
5438 	case T_ADC:
5439 		dtype = "Automation/Drive Interface";
5440 		break;
5441 	case T_ZBC_HM:
5442 		dtype = "Host Managed Zoned Block";
5443 		break;
5444 	case T_NODEVICE:
5445 		dtype = "Uninstalled";
5446 		break;
5447 	default:
5448 		dtype = "unknown";
5449 		break;
5450 	}
5451 
5452 	scsi_print_inquiry_short_sbuf(sb, inq_data);
5453 
5454 	sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype);
5455 
5456 	if (SID_ANSI_REV(inq_data) == SCSI_REV_0)
5457 		sbuf_printf(sb, "SCSI ");
5458 	else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) {
5459 		sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data));
5460 	} else {
5461 		sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2);
5462 	}
5463 	sbuf_printf(sb, "device%s\n", qtype);
5464 }
5465 
5466 void
5467 scsi_print_inquiry(struct scsi_inquiry_data *inq_data)
5468 {
5469 	struct sbuf	sb;
5470 	char		buffer[120];
5471 
5472 	sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN);
5473 	scsi_print_inquiry_sbuf(&sb, inq_data);
5474 	sbuf_finish(&sb);
5475 	sbuf_putbuf(&sb);
5476 }
5477 
5478 void
5479 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
5480 {
5481 
5482 	sbuf_printf(sb, "<");
5483 	cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0);
5484 	sbuf_printf(sb, " ");
5485 	cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0);
5486 	sbuf_printf(sb, " ");
5487 	cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0);
5488 	sbuf_printf(sb, "> ");
5489 }
5490 
5491 void
5492 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data)
5493 {
5494 	struct sbuf	sb;
5495 	char		buffer[84];
5496 
5497 	sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN);
5498 	scsi_print_inquiry_short_sbuf(&sb, inq_data);
5499 	sbuf_finish(&sb);
5500 	sbuf_putbuf(&sb);
5501 }
5502 
5503 /*
5504  * Table of syncrates that don't follow the "divisible by 4"
5505  * rule. This table will be expanded in future SCSI specs.
5506  */
5507 static struct {
5508 	u_int period_factor;
5509 	u_int period;	/* in 100ths of ns */
5510 } scsi_syncrates[] = {
5511 	{ 0x08, 625 },	/* FAST-160 */
5512 	{ 0x09, 1250 },	/* FAST-80 */
5513 	{ 0x0a, 2500 },	/* FAST-40 40MHz */
5514 	{ 0x0b, 3030 },	/* FAST-40 33MHz */
5515 	{ 0x0c, 5000 }	/* FAST-20 */
5516 };
5517 
5518 /*
5519  * Return the frequency in kHz corresponding to the given
5520  * sync period factor.
5521  */
5522 u_int
5523 scsi_calc_syncsrate(u_int period_factor)
5524 {
5525 	u_int i;
5526 	u_int num_syncrates;
5527 
5528 	/*
5529 	 * It's a bug if period is zero, but if it is anyway, don't
5530 	 * die with a divide fault- instead return something which
5531 	 * 'approximates' async
5532 	 */
5533 	if (period_factor == 0) {
5534 		return (3300);
5535 	}
5536 
5537 	num_syncrates = nitems(scsi_syncrates);
5538 	/* See if the period is in the "exception" table */
5539 	for (i = 0; i < num_syncrates; i++) {
5540 
5541 		if (period_factor == scsi_syncrates[i].period_factor) {
5542 			/* Period in kHz */
5543 			return (100000000 / scsi_syncrates[i].period);
5544 		}
5545 	}
5546 
5547 	/*
5548 	 * Wasn't in the table, so use the standard
5549 	 * 4 times conversion.
5550 	 */
5551 	return (10000000 / (period_factor * 4 * 10));
5552 }
5553 
5554 /*
5555  * Return the SCSI sync parameter that corresponds to
5556  * the passed in period in 10ths of ns.
5557  */
5558 u_int
5559 scsi_calc_syncparam(u_int period)
5560 {
5561 	u_int i;
5562 	u_int num_syncrates;
5563 
5564 	if (period == 0)
5565 		return (~0);	/* Async */
5566 
5567 	/* Adjust for exception table being in 100ths. */
5568 	period *= 10;
5569 	num_syncrates = nitems(scsi_syncrates);
5570 	/* See if the period is in the "exception" table */
5571 	for (i = 0; i < num_syncrates; i++) {
5572 
5573 		if (period <= scsi_syncrates[i].period) {
5574 			/* Period in 100ths of ns */
5575 			return (scsi_syncrates[i].period_factor);
5576 		}
5577 	}
5578 
5579 	/*
5580 	 * Wasn't in the table, so use the standard
5581 	 * 1/4 period in ns conversion.
5582 	 */
5583 	return (period/400);
5584 }
5585 
5586 int
5587 scsi_devid_is_naa_ieee_reg(uint8_t *bufp)
5588 {
5589 	struct scsi_vpd_id_descriptor *descr;
5590 	struct scsi_vpd_id_naa_basic *naa;
5591 
5592 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5593 	naa = (struct scsi_vpd_id_naa_basic *)descr->identifier;
5594 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5595 		return 0;
5596 	if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg))
5597 		return 0;
5598 	if ((naa->naa >> SVPD_ID_NAA_NAA_SHIFT) != SVPD_ID_NAA_IEEE_REG)
5599 		return 0;
5600 	return 1;
5601 }
5602 
5603 int
5604 scsi_devid_is_sas_target(uint8_t *bufp)
5605 {
5606 	struct scsi_vpd_id_descriptor *descr;
5607 
5608 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5609 	if (!scsi_devid_is_naa_ieee_reg(bufp))
5610 		return 0;
5611 	if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */
5612 		return 0;
5613 	if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS)
5614 		return 0;
5615 	return 1;
5616 }
5617 
5618 int
5619 scsi_devid_is_lun_eui64(uint8_t *bufp)
5620 {
5621 	struct scsi_vpd_id_descriptor *descr;
5622 
5623 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5624 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5625 		return 0;
5626 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64)
5627 		return 0;
5628 	return 1;
5629 }
5630 
5631 int
5632 scsi_devid_is_lun_naa(uint8_t *bufp)
5633 {
5634 	struct scsi_vpd_id_descriptor *descr;
5635 
5636 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5637 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5638 		return 0;
5639 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5640 		return 0;
5641 	return 1;
5642 }
5643 
5644 int
5645 scsi_devid_is_lun_t10(uint8_t *bufp)
5646 {
5647 	struct scsi_vpd_id_descriptor *descr;
5648 
5649 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5650 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5651 		return 0;
5652 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10)
5653 		return 0;
5654 	return 1;
5655 }
5656 
5657 int
5658 scsi_devid_is_lun_name(uint8_t *bufp)
5659 {
5660 	struct scsi_vpd_id_descriptor *descr;
5661 
5662 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5663 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5664 		return 0;
5665 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME)
5666 		return 0;
5667 	return 1;
5668 }
5669 
5670 int
5671 scsi_devid_is_lun_md5(uint8_t *bufp)
5672 {
5673 	struct scsi_vpd_id_descriptor *descr;
5674 
5675 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5676 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5677 		return 0;
5678 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID)
5679 		return 0;
5680 	return 1;
5681 }
5682 
5683 int
5684 scsi_devid_is_lun_uuid(uint8_t *bufp)
5685 {
5686 	struct scsi_vpd_id_descriptor *descr;
5687 
5688 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5689 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5690 		return 0;
5691 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID)
5692 		return 0;
5693 	return 1;
5694 }
5695 
5696 int
5697 scsi_devid_is_port_naa(uint8_t *bufp)
5698 {
5699 	struct scsi_vpd_id_descriptor *descr;
5700 
5701 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5702 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT)
5703 		return 0;
5704 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5705 		return 0;
5706 	return 1;
5707 }
5708 
5709 struct scsi_vpd_id_descriptor *
5710 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
5711     scsi_devid_checkfn_t ck_fn)
5712 {
5713 	uint8_t *desc_buf_end;
5714 
5715 	desc_buf_end = (uint8_t *)desc + len;
5716 
5717 	for (; desc->identifier <= desc_buf_end &&
5718 	    desc->identifier + desc->length <= desc_buf_end;
5719 	    desc = (struct scsi_vpd_id_descriptor *)(desc->identifier
5720 						    + desc->length)) {
5721 
5722 		if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0)
5723 			return (desc);
5724 	}
5725 	return (NULL);
5726 }
5727 
5728 struct scsi_vpd_id_descriptor *
5729 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len,
5730     scsi_devid_checkfn_t ck_fn)
5731 {
5732 	uint32_t len;
5733 
5734 	if (page_len < sizeof(*id))
5735 		return (NULL);
5736 	len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id));
5737 	return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *)
5738 	    id->desc_list, len, ck_fn));
5739 }
5740 
5741 int
5742 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr,
5743 		      uint32_t valid_len)
5744 {
5745 	switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) {
5746 	case SCSI_PROTO_FC: {
5747 		struct scsi_transportid_fcp *fcp;
5748 		uint64_t n_port_name;
5749 
5750 		fcp = (struct scsi_transportid_fcp *)hdr;
5751 
5752 		n_port_name = scsi_8btou64(fcp->n_port_name);
5753 
5754 		sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name);
5755 		break;
5756 	}
5757 	case SCSI_PROTO_SPI: {
5758 		struct scsi_transportid_spi *spi;
5759 
5760 		spi = (struct scsi_transportid_spi *)hdr;
5761 
5762 		sbuf_printf(sb, "SPI address: %u,%u",
5763 			    scsi_2btoul(spi->scsi_addr),
5764 			    scsi_2btoul(spi->rel_trgt_port_id));
5765 		break;
5766 	}
5767 	case SCSI_PROTO_SSA:
5768 		/*
5769 		 * XXX KDM there is no transport ID defined in SPC-4 for
5770 		 * SSA.
5771 		 */
5772 		break;
5773 	case SCSI_PROTO_1394: {
5774 		struct scsi_transportid_1394 *sbp;
5775 		uint64_t eui64;
5776 
5777 		sbp = (struct scsi_transportid_1394 *)hdr;
5778 
5779 		eui64 = scsi_8btou64(sbp->eui64);
5780 		sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64);
5781 		break;
5782 	}
5783 	case SCSI_PROTO_RDMA: {
5784 		struct scsi_transportid_rdma *rdma;
5785 		unsigned int i;
5786 
5787 		rdma = (struct scsi_transportid_rdma *)hdr;
5788 
5789 		sbuf_printf(sb, "RDMA address: 0x");
5790 		for (i = 0; i < sizeof(rdma->initiator_port_id); i++)
5791 			sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]);
5792 		break;
5793 	}
5794 	case SCSI_PROTO_ISCSI: {
5795 		uint32_t add_len, i;
5796 		uint8_t *iscsi_name = NULL;
5797 		int nul_found = 0;
5798 
5799 		sbuf_printf(sb, "iSCSI address: ");
5800 		if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5801 		    SCSI_TRN_ISCSI_FORMAT_DEVICE) {
5802 			struct scsi_transportid_iscsi_device *dev;
5803 
5804 			dev = (struct scsi_transportid_iscsi_device *)hdr;
5805 
5806 			/*
5807 			 * Verify how much additional data we really have.
5808 			 */
5809 			add_len = scsi_2btoul(dev->additional_length);
5810 			add_len = MIN(add_len, valid_len -
5811 				__offsetof(struct scsi_transportid_iscsi_device,
5812 					   iscsi_name));
5813 			iscsi_name = &dev->iscsi_name[0];
5814 
5815 		} else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5816 			    SCSI_TRN_ISCSI_FORMAT_PORT) {
5817 			struct scsi_transportid_iscsi_port *port;
5818 
5819 			port = (struct scsi_transportid_iscsi_port *)hdr;
5820 
5821 			add_len = scsi_2btoul(port->additional_length);
5822 			add_len = MIN(add_len, valid_len -
5823 				__offsetof(struct scsi_transportid_iscsi_port,
5824 					   iscsi_name));
5825 			iscsi_name = &port->iscsi_name[0];
5826 		} else {
5827 			sbuf_printf(sb, "unknown format %x",
5828 				    (hdr->format_protocol &
5829 				     SCSI_TRN_FORMAT_MASK) >>
5830 				     SCSI_TRN_FORMAT_SHIFT);
5831 			break;
5832 		}
5833 		if (add_len == 0) {
5834 			sbuf_printf(sb, "not enough data");
5835 			break;
5836 		}
5837 		/*
5838 		 * This is supposed to be a NUL-terminated ASCII
5839 		 * string, but you never know.  So we're going to
5840 		 * check.  We need to do this because there is no
5841 		 * sbuf equivalent of strncat().
5842 		 */
5843 		for (i = 0; i < add_len; i++) {
5844 			if (iscsi_name[i] == '\0') {
5845 				nul_found = 1;
5846 				break;
5847 			}
5848 		}
5849 		/*
5850 		 * If there is a NUL in the name, we can just use
5851 		 * sbuf_cat().  Otherwise we need to use sbuf_bcat().
5852 		 */
5853 		if (nul_found != 0)
5854 			sbuf_cat(sb, iscsi_name);
5855 		else
5856 			sbuf_bcat(sb, iscsi_name, add_len);
5857 		break;
5858 	}
5859 	case SCSI_PROTO_SAS: {
5860 		struct scsi_transportid_sas *sas;
5861 		uint64_t sas_addr;
5862 
5863 		sas = (struct scsi_transportid_sas *)hdr;
5864 
5865 		sas_addr = scsi_8btou64(sas->sas_address);
5866 		sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr);
5867 		break;
5868 	}
5869 	case SCSI_PROTO_ADITP:
5870 	case SCSI_PROTO_ATA:
5871 	case SCSI_PROTO_UAS:
5872 		/*
5873 		 * No Transport ID format for ADI, ATA or USB is defined in
5874 		 * SPC-4.
5875 		 */
5876 		sbuf_printf(sb, "No known Transport ID format for protocol "
5877 			    "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5878 		break;
5879 	case SCSI_PROTO_SOP: {
5880 		struct scsi_transportid_sop *sop;
5881 		struct scsi_sop_routing_id_norm *rid;
5882 
5883 		sop = (struct scsi_transportid_sop *)hdr;
5884 		rid = (struct scsi_sop_routing_id_norm *)sop->routing_id;
5885 
5886 		/*
5887 		 * Note that there is no alternate format specified in SPC-4
5888 		 * for the PCIe routing ID, so we don't really have a way
5889 		 * to know whether the second byte of the routing ID is
5890 		 * a device and function or just a function.  So we just
5891 		 * assume bus,device,function.
5892 		 */
5893 		sbuf_printf(sb, "SOP Routing ID: %u,%u,%u",
5894 			    rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT,
5895 			    rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX);
5896 		break;
5897 	}
5898 	case SCSI_PROTO_NONE:
5899 	default:
5900 		sbuf_printf(sb, "Unknown protocol %#x",
5901 			    hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5902 		break;
5903 	}
5904 
5905 	return (0);
5906 }
5907 
5908 struct scsi_nv scsi_proto_map[] = {
5909 	{ "fcp", SCSI_PROTO_FC },
5910 	{ "spi", SCSI_PROTO_SPI },
5911 	{ "ssa", SCSI_PROTO_SSA },
5912 	{ "sbp", SCSI_PROTO_1394 },
5913 	{ "1394", SCSI_PROTO_1394 },
5914 	{ "srp", SCSI_PROTO_RDMA },
5915 	{ "rdma", SCSI_PROTO_RDMA },
5916 	{ "iscsi", SCSI_PROTO_ISCSI },
5917 	{ "iqn", SCSI_PROTO_ISCSI },
5918 	{ "sas", SCSI_PROTO_SAS },
5919 	{ "aditp", SCSI_PROTO_ADITP },
5920 	{ "ata", SCSI_PROTO_ATA },
5921 	{ "uas", SCSI_PROTO_UAS },
5922 	{ "usb", SCSI_PROTO_UAS },
5923 	{ "sop", SCSI_PROTO_SOP }
5924 };
5925 
5926 const char *
5927 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value)
5928 {
5929 	int i;
5930 
5931 	for (i = 0; i < num_table_entries; i++) {
5932 		if (table[i].value == value)
5933 			return (table[i].name);
5934 	}
5935 
5936 	return (NULL);
5937 }
5938 
5939 /*
5940  * Given a name/value table, find a value matching the given name.
5941  * Return values:
5942  *	SCSI_NV_FOUND - match found
5943  *	SCSI_NV_AMBIGUOUS - more than one match, none of them exact
5944  *	SCSI_NV_NOT_FOUND - no match found
5945  */
5946 scsi_nv_status
5947 scsi_get_nv(struct scsi_nv *table, int num_table_entries,
5948 	    char *name, int *table_entry, scsi_nv_flags flags)
5949 {
5950 	int i, num_matches = 0;
5951 
5952 	for (i = 0; i < num_table_entries; i++) {
5953 		size_t table_len, name_len;
5954 
5955 		table_len = strlen(table[i].name);
5956 		name_len = strlen(name);
5957 
5958 		if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0)
5959 		  && (strncasecmp(table[i].name, name, name_len) == 0))
5960 		|| (((flags & SCSI_NV_FLAG_IG_CASE) == 0)
5961 		 && (strncmp(table[i].name, name, name_len) == 0))) {
5962 			*table_entry = i;
5963 
5964 			/*
5965 			 * Check for an exact match.  If we have the same
5966 			 * number of characters in the table as the argument,
5967 			 * and we already know they're the same, we have
5968 			 * an exact match.
5969 		 	 */
5970 			if (table_len == name_len)
5971 				return (SCSI_NV_FOUND);
5972 
5973 			/*
5974 			 * Otherwise, bump up the number of matches.  We'll
5975 			 * see later how many we have.
5976 			 */
5977 			num_matches++;
5978 		}
5979 	}
5980 
5981 	if (num_matches > 1)
5982 		return (SCSI_NV_AMBIGUOUS);
5983 	else if (num_matches == 1)
5984 		return (SCSI_NV_FOUND);
5985 	else
5986 		return (SCSI_NV_NOT_FOUND);
5987 }
5988 
5989 /*
5990  * Parse transport IDs for Fibre Channel, 1394 and SAS.  Since these are
5991  * all 64-bit numbers, the code is similar.
5992  */
5993 int
5994 scsi_parse_transportid_64bit(int proto_id, char *id_str,
5995 			     struct scsi_transportid_header **hdr,
5996 			     unsigned int *alloc_len,
5997 #ifdef _KERNEL
5998 			     struct malloc_type *type, int flags,
5999 #endif
6000 			     char *error_str, int error_str_len)
6001 {
6002 	uint64_t value;
6003 	char *endptr;
6004 	int retval;
6005 	size_t alloc_size;
6006 
6007 	retval = 0;
6008 
6009 	value = strtouq(id_str, &endptr, 0);
6010 	if (*endptr != '\0') {
6011 		if (error_str != NULL) {
6012 			snprintf(error_str, error_str_len, "%s: error "
6013 				 "parsing ID %s, 64-bit number required",
6014 				 __func__, id_str);
6015 		}
6016 		retval = 1;
6017 		goto bailout;
6018 	}
6019 
6020 	switch (proto_id) {
6021 	case SCSI_PROTO_FC:
6022 		alloc_size = sizeof(struct scsi_transportid_fcp);
6023 		break;
6024 	case SCSI_PROTO_1394:
6025 		alloc_size = sizeof(struct scsi_transportid_1394);
6026 		break;
6027 	case SCSI_PROTO_SAS:
6028 		alloc_size = sizeof(struct scsi_transportid_sas);
6029 		break;
6030 	default:
6031 		if (error_str != NULL) {
6032 			snprintf(error_str, error_str_len, "%s: unsupported "
6033 				 "protocol %d", __func__, proto_id);
6034 		}
6035 		retval = 1;
6036 		goto bailout;
6037 		break; /* NOTREACHED */
6038 	}
6039 #ifdef _KERNEL
6040 	*hdr = malloc(alloc_size, type, flags);
6041 #else /* _KERNEL */
6042 	*hdr = malloc(alloc_size);
6043 #endif /*_KERNEL */
6044 	if (*hdr == NULL) {
6045 		if (error_str != NULL) {
6046 			snprintf(error_str, error_str_len, "%s: unable to "
6047 				 "allocate %zu bytes", __func__, alloc_size);
6048 		}
6049 		retval = 1;
6050 		goto bailout;
6051 	}
6052 
6053 	*alloc_len = alloc_size;
6054 
6055 	bzero(*hdr, alloc_size);
6056 
6057 	switch (proto_id) {
6058 	case SCSI_PROTO_FC: {
6059 		struct scsi_transportid_fcp *fcp;
6060 
6061 		fcp = (struct scsi_transportid_fcp *)(*hdr);
6062 		fcp->format_protocol = SCSI_PROTO_FC |
6063 				       SCSI_TRN_FCP_FORMAT_DEFAULT;
6064 		scsi_u64to8b(value, fcp->n_port_name);
6065 		break;
6066 	}
6067 	case SCSI_PROTO_1394: {
6068 		struct scsi_transportid_1394 *sbp;
6069 
6070 		sbp = (struct scsi_transportid_1394 *)(*hdr);
6071 		sbp->format_protocol = SCSI_PROTO_1394 |
6072 				       SCSI_TRN_1394_FORMAT_DEFAULT;
6073 		scsi_u64to8b(value, sbp->eui64);
6074 		break;
6075 	}
6076 	case SCSI_PROTO_SAS: {
6077 		struct scsi_transportid_sas *sas;
6078 
6079 		sas = (struct scsi_transportid_sas *)(*hdr);
6080 		sas->format_protocol = SCSI_PROTO_SAS |
6081 				       SCSI_TRN_SAS_FORMAT_DEFAULT;
6082 		scsi_u64to8b(value, sas->sas_address);
6083 		break;
6084 	}
6085 	default:
6086 		break;
6087 	}
6088 bailout:
6089 	return (retval);
6090 }
6091 
6092 /*
6093  * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port
6094  */
6095 int
6096 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr,
6097 			   unsigned int *alloc_len,
6098 #ifdef _KERNEL
6099 			   struct malloc_type *type, int flags,
6100 #endif
6101 			   char *error_str, int error_str_len)
6102 {
6103 	unsigned long scsi_addr, target_port;
6104 	struct scsi_transportid_spi *spi;
6105 	char *tmpstr, *endptr;
6106 	int retval;
6107 
6108 	retval = 0;
6109 
6110 	tmpstr = strsep(&id_str, ",");
6111 	if (tmpstr == NULL) {
6112 		if (error_str != NULL) {
6113 			snprintf(error_str, error_str_len,
6114 				 "%s: no ID found", __func__);
6115 		}
6116 		retval = 1;
6117 		goto bailout;
6118 	}
6119 	scsi_addr = strtoul(tmpstr, &endptr, 0);
6120 	if (*endptr != '\0') {
6121 		if (error_str != NULL) {
6122 			snprintf(error_str, error_str_len, "%s: error "
6123 				 "parsing SCSI ID %s, number required",
6124 				 __func__, tmpstr);
6125 		}
6126 		retval = 1;
6127 		goto bailout;
6128 	}
6129 
6130 	if (id_str == NULL) {
6131 		if (error_str != NULL) {
6132 			snprintf(error_str, error_str_len, "%s: no relative "
6133 				 "target port found", __func__);
6134 		}
6135 		retval = 1;
6136 		goto bailout;
6137 	}
6138 
6139 	target_port = strtoul(id_str, &endptr, 0);
6140 	if (*endptr != '\0') {
6141 		if (error_str != NULL) {
6142 			snprintf(error_str, error_str_len, "%s: error "
6143 				 "parsing relative target port %s, number "
6144 				 "required", __func__, id_str);
6145 		}
6146 		retval = 1;
6147 		goto bailout;
6148 	}
6149 #ifdef _KERNEL
6150 	spi = malloc(sizeof(*spi), type, flags);
6151 #else
6152 	spi = malloc(sizeof(*spi));
6153 #endif
6154 	if (spi == NULL) {
6155 		if (error_str != NULL) {
6156 			snprintf(error_str, error_str_len, "%s: unable to "
6157 				 "allocate %zu bytes", __func__,
6158 				 sizeof(*spi));
6159 		}
6160 		retval = 1;
6161 		goto bailout;
6162 	}
6163 	*alloc_len = sizeof(*spi);
6164 	bzero(spi, sizeof(*spi));
6165 
6166 	spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT;
6167 	scsi_ulto2b(scsi_addr, spi->scsi_addr);
6168 	scsi_ulto2b(target_port, spi->rel_trgt_port_id);
6169 
6170 	*hdr = (struct scsi_transportid_header *)spi;
6171 bailout:
6172 	return (retval);
6173 }
6174 
6175 /*
6176  * Parse an RDMA/SRP Initiator Port ID string.  This is 32 hexadecimal digits,
6177  * optionally prefixed by "0x" or "0X".
6178  */
6179 int
6180 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr,
6181 			    unsigned int *alloc_len,
6182 #ifdef _KERNEL
6183 			    struct malloc_type *type, int flags,
6184 #endif
6185 			    char *error_str, int error_str_len)
6186 {
6187 	struct scsi_transportid_rdma *rdma;
6188 	int retval;
6189 	size_t id_len, rdma_id_size;
6190 	uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN];
6191 	char *tmpstr;
6192 	unsigned int i, j;
6193 
6194 	retval = 0;
6195 	id_len = strlen(id_str);
6196 	rdma_id_size = SCSI_TRN_RDMA_PORT_LEN;
6197 
6198 	/*
6199 	 * Check the size.  It needs to be either 32 or 34 characters long.
6200 	 */
6201 	if ((id_len != (rdma_id_size * 2))
6202 	 && (id_len != ((rdma_id_size * 2) + 2))) {
6203 		if (error_str != NULL) {
6204 			snprintf(error_str, error_str_len, "%s: RDMA ID "
6205 				 "must be 32 hex digits (0x prefix "
6206 				 "optional), only %zu seen", __func__, id_len);
6207 		}
6208 		retval = 1;
6209 		goto bailout;
6210 	}
6211 
6212 	tmpstr = id_str;
6213 	/*
6214 	 * If the user gave us 34 characters, the string needs to start
6215 	 * with '0x'.
6216 	 */
6217 	if (id_len == ((rdma_id_size * 2) + 2)) {
6218 	 	if ((tmpstr[0] == '0')
6219 		 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) {
6220 			tmpstr += 2;
6221 		} else {
6222 			if (error_str != NULL) {
6223 				snprintf(error_str, error_str_len, "%s: RDMA "
6224 					 "ID prefix, if used, must be \"0x\", "
6225 					 "got %s", __func__, tmpstr);
6226 			}
6227 			retval = 1;
6228 			goto bailout;
6229 		}
6230 	}
6231 	bzero(rdma_id, sizeof(rdma_id));
6232 
6233 	/*
6234 	 * Convert ASCII hex into binary bytes.  There is no standard
6235 	 * 128-bit integer type, and so no strtou128t() routine to convert
6236 	 * from hex into a large integer.  In the end, we're not going to
6237 	 * an integer, but rather to a byte array, so that and the fact
6238 	 * that we require the user to give us 32 hex digits simplifies the
6239 	 * logic.
6240 	 */
6241 	for (i = 0; i < (rdma_id_size * 2); i++) {
6242 		int cur_shift;
6243 		unsigned char c;
6244 
6245 		/* Increment the byte array one for every 2 hex digits */
6246 		j = i >> 1;
6247 
6248 		/*
6249 		 * The first digit in every pair is the most significant
6250 		 * 4 bits.  The second is the least significant 4 bits.
6251 		 */
6252 		if ((i % 2) == 0)
6253 			cur_shift = 4;
6254 		else
6255 			cur_shift = 0;
6256 
6257 		c = tmpstr[i];
6258 		/* Convert the ASCII hex character into a number */
6259 		if (isdigit(c))
6260 			c -= '0';
6261 		else if (isalpha(c))
6262 			c -= isupper(c) ? 'A' - 10 : 'a' - 10;
6263 		else {
6264 			if (error_str != NULL) {
6265 				snprintf(error_str, error_str_len, "%s: "
6266 					 "RDMA ID must be hex digits, got "
6267 					 "invalid character %c", __func__,
6268 					 tmpstr[i]);
6269 			}
6270 			retval = 1;
6271 			goto bailout;
6272 		}
6273 		/*
6274 		 * The converted number can't be less than 0; the type is
6275 		 * unsigned, and the subtraction logic will not give us
6276 		 * a negative number.  So we only need to make sure that
6277 		 * the value is not greater than 0xf.  (i.e. make sure the
6278 		 * user didn't give us a value like "0x12jklmno").
6279 		 */
6280 		if (c > 0xf) {
6281 			if (error_str != NULL) {
6282 				snprintf(error_str, error_str_len, "%s: "
6283 					 "RDMA ID must be hex digits, got "
6284 					 "invalid character %c", __func__,
6285 					 tmpstr[i]);
6286 			}
6287 			retval = 1;
6288 			goto bailout;
6289 		}
6290 
6291 		rdma_id[j] |= c << cur_shift;
6292 	}
6293 
6294 #ifdef _KERNEL
6295 	rdma = malloc(sizeof(*rdma), type, flags);
6296 #else
6297 	rdma = malloc(sizeof(*rdma));
6298 #endif
6299 	if (rdma == NULL) {
6300 		if (error_str != NULL) {
6301 			snprintf(error_str, error_str_len, "%s: unable to "
6302 				 "allocate %zu bytes", __func__,
6303 				 sizeof(*rdma));
6304 		}
6305 		retval = 1;
6306 		goto bailout;
6307 	}
6308 	*alloc_len = sizeof(*rdma);
6309 	bzero(rdma, *alloc_len);
6310 
6311 	rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT;
6312 	bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN);
6313 
6314 	*hdr = (struct scsi_transportid_header *)rdma;
6315 
6316 bailout:
6317 	return (retval);
6318 }
6319 
6320 /*
6321  * Parse an iSCSI name.  The format is either just the name:
6322  *
6323  *	iqn.2012-06.com.example:target0
6324  * or the name, separator and initiator session ID:
6325  *
6326  *	iqn.2012-06.com.example:target0,i,0x123
6327  *
6328  * The separator format is exact.
6329  */
6330 int
6331 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr,
6332 			     unsigned int *alloc_len,
6333 #ifdef _KERNEL
6334 			     struct malloc_type *type, int flags,
6335 #endif
6336 			     char *error_str, int error_str_len)
6337 {
6338 	size_t id_len, sep_len, id_size, name_len;
6339 	int retval;
6340 	unsigned int i, sep_pos, sep_found;
6341 	const char *sep_template = ",i,0x";
6342 	const char *iqn_prefix = "iqn.";
6343 	struct scsi_transportid_iscsi_device *iscsi;
6344 
6345 	retval = 0;
6346 	sep_found = 0;
6347 
6348 	id_len = strlen(id_str);
6349 	sep_len = strlen(sep_template);
6350 
6351 	/*
6352 	 * The separator is defined as exactly ',i,0x'.  Any other commas,
6353 	 * or any other form, is an error.  So look for a comma, and once
6354 	 * we find that, the next few characters must match the separator
6355 	 * exactly.  Once we get through the separator, there should be at
6356 	 * least one character.
6357 	 */
6358 	for (i = 0, sep_pos = 0; i < id_len; i++) {
6359 		if (sep_pos == 0) {
6360 		 	if (id_str[i] == sep_template[sep_pos])
6361 				sep_pos++;
6362 
6363 			continue;
6364 		}
6365 		if (sep_pos < sep_len) {
6366 			if (id_str[i] == sep_template[sep_pos]) {
6367 				sep_pos++;
6368 				continue;
6369 			}
6370 			if (error_str != NULL) {
6371 				snprintf(error_str, error_str_len, "%s: "
6372 					 "invalid separator in iSCSI name "
6373 					 "\"%s\"",
6374 					 __func__, id_str);
6375 			}
6376 			retval = 1;
6377 			goto bailout;
6378 		} else {
6379 			sep_found = 1;
6380 			break;
6381 		}
6382 	}
6383 
6384 	/*
6385 	 * Check to see whether we have a separator but no digits after it.
6386 	 */
6387 	if ((sep_pos != 0)
6388 	 && (sep_found == 0)) {
6389 		if (error_str != NULL) {
6390 			snprintf(error_str, error_str_len, "%s: no digits "
6391 				 "found after separator in iSCSI name \"%s\"",
6392 				 __func__, id_str);
6393 		}
6394 		retval = 1;
6395 		goto bailout;
6396 	}
6397 
6398 	/*
6399 	 * The incoming ID string has the "iqn." prefix stripped off.  We
6400 	 * need enough space for the base structure (the structures are the
6401 	 * same for the two iSCSI forms), the prefix, the ID string and a
6402 	 * terminating NUL.
6403 	 */
6404 	id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1;
6405 
6406 #ifdef _KERNEL
6407 	iscsi = malloc(id_size, type, flags);
6408 #else
6409 	iscsi = malloc(id_size);
6410 #endif
6411 	if (iscsi == NULL) {
6412 		if (error_str != NULL) {
6413 			snprintf(error_str, error_str_len, "%s: unable to "
6414 				 "allocate %zu bytes", __func__, id_size);
6415 		}
6416 		retval = 1;
6417 		goto bailout;
6418 	}
6419 	*alloc_len = id_size;
6420 	bzero(iscsi, id_size);
6421 
6422 	iscsi->format_protocol = SCSI_PROTO_ISCSI;
6423 	if (sep_found == 0)
6424 		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE;
6425 	else
6426 		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT;
6427 	name_len = id_size - sizeof(*iscsi);
6428 	scsi_ulto2b(name_len, iscsi->additional_length);
6429 	snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str);
6430 
6431 	*hdr = (struct scsi_transportid_header *)iscsi;
6432 
6433 bailout:
6434 	return (retval);
6435 }
6436 
6437 /*
6438  * Parse a SCSI over PCIe (SOP) identifier.  The Routing ID can either be
6439  * of the form 'bus,device,function' or 'bus,function'.
6440  */
6441 int
6442 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr,
6443 			   unsigned int *alloc_len,
6444 #ifdef _KERNEL
6445 			   struct malloc_type *type, int flags,
6446 #endif
6447 			   char *error_str, int error_str_len)
6448 {
6449 	struct scsi_transportid_sop *sop;
6450 	unsigned long bus, device, function;
6451 	char *tmpstr, *endptr;
6452 	int retval, device_spec;
6453 
6454 	retval = 0;
6455 	device_spec = 0;
6456 	device = 0;
6457 
6458 	tmpstr = strsep(&id_str, ",");
6459 	if ((tmpstr == NULL)
6460 	 || (*tmpstr == '\0')) {
6461 		if (error_str != NULL) {
6462 			snprintf(error_str, error_str_len, "%s: no ID found",
6463 				 __func__);
6464 		}
6465 		retval = 1;
6466 		goto bailout;
6467 	}
6468 	bus = strtoul(tmpstr, &endptr, 0);
6469 	if (*endptr != '\0') {
6470 		if (error_str != NULL) {
6471 			snprintf(error_str, error_str_len, "%s: error "
6472 				 "parsing PCIe bus %s, number required",
6473 				 __func__, tmpstr);
6474 		}
6475 		retval = 1;
6476 		goto bailout;
6477 	}
6478 	if ((id_str == NULL)
6479 	 || (*id_str == '\0')) {
6480 		if (error_str != NULL) {
6481 			snprintf(error_str, error_str_len, "%s: no PCIe "
6482 				 "device or function found", __func__);
6483 		}
6484 		retval = 1;
6485 		goto bailout;
6486 	}
6487 	tmpstr = strsep(&id_str, ",");
6488 	function = strtoul(tmpstr, &endptr, 0);
6489 	if (*endptr != '\0') {
6490 		if (error_str != NULL) {
6491 			snprintf(error_str, error_str_len, "%s: error "
6492 				 "parsing PCIe device/function %s, number "
6493 				 "required", __func__, tmpstr);
6494 		}
6495 		retval = 1;
6496 		goto bailout;
6497 	}
6498 	/*
6499 	 * Check to see whether the user specified a third value.  If so,
6500 	 * the second is the device.
6501 	 */
6502 	if (id_str != NULL) {
6503 		if (*id_str == '\0') {
6504 			if (error_str != NULL) {
6505 				snprintf(error_str, error_str_len, "%s: "
6506 					 "no PCIe function found", __func__);
6507 			}
6508 			retval = 1;
6509 			goto bailout;
6510 		}
6511 		device = function;
6512 		device_spec = 1;
6513 		function = strtoul(id_str, &endptr, 0);
6514 		if (*endptr != '\0') {
6515 			if (error_str != NULL) {
6516 				snprintf(error_str, error_str_len, "%s: "
6517 					 "error parsing PCIe function %s, "
6518 					 "number required", __func__, id_str);
6519 			}
6520 			retval = 1;
6521 			goto bailout;
6522 		}
6523 	}
6524 	if (bus > SCSI_TRN_SOP_BUS_MAX) {
6525 		if (error_str != NULL) {
6526 			snprintf(error_str, error_str_len, "%s: bus value "
6527 				 "%lu greater than maximum %u", __func__,
6528 				 bus, SCSI_TRN_SOP_BUS_MAX);
6529 		}
6530 		retval = 1;
6531 		goto bailout;
6532 	}
6533 
6534 	if ((device_spec != 0)
6535 	 && (device > SCSI_TRN_SOP_DEV_MASK)) {
6536 		if (error_str != NULL) {
6537 			snprintf(error_str, error_str_len, "%s: device value "
6538 				 "%lu greater than maximum %u", __func__,
6539 				 device, SCSI_TRN_SOP_DEV_MAX);
6540 		}
6541 		retval = 1;
6542 		goto bailout;
6543 	}
6544 
6545 	if (((device_spec != 0)
6546 	  && (function > SCSI_TRN_SOP_FUNC_NORM_MAX))
6547 	 || ((device_spec == 0)
6548 	  && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) {
6549 		if (error_str != NULL) {
6550 			snprintf(error_str, error_str_len, "%s: function value "
6551 				 "%lu greater than maximum %u", __func__,
6552 				 function, (device_spec == 0) ?
6553 				 SCSI_TRN_SOP_FUNC_ALT_MAX :
6554 				 SCSI_TRN_SOP_FUNC_NORM_MAX);
6555 		}
6556 		retval = 1;
6557 		goto bailout;
6558 	}
6559 
6560 #ifdef _KERNEL
6561 	sop = malloc(sizeof(*sop), type, flags);
6562 #else
6563 	sop = malloc(sizeof(*sop));
6564 #endif
6565 	if (sop == NULL) {
6566 		if (error_str != NULL) {
6567 			snprintf(error_str, error_str_len, "%s: unable to "
6568 				 "allocate %zu bytes", __func__, sizeof(*sop));
6569 		}
6570 		retval = 1;
6571 		goto bailout;
6572 	}
6573 	*alloc_len = sizeof(*sop);
6574 	bzero(sop, sizeof(*sop));
6575 	sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT;
6576 	if (device_spec != 0) {
6577 		struct scsi_sop_routing_id_norm rid;
6578 
6579 		rid.bus = bus;
6580 		rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function;
6581 		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6582 		      sizeof(sop->routing_id)));
6583 	} else {
6584 		struct scsi_sop_routing_id_alt rid;
6585 
6586 		rid.bus = bus;
6587 		rid.function = function;
6588 		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6589 		      sizeof(sop->routing_id)));
6590 	}
6591 
6592 	*hdr = (struct scsi_transportid_header *)sop;
6593 bailout:
6594 	return (retval);
6595 }
6596 
6597 /*
6598  * transportid_str: NUL-terminated string with format: protcol,id
6599  *		    The ID is protocol specific.
6600  * hdr:		    Storage will be allocated for the transport ID.
6601  * alloc_len:	    The amount of memory allocated is returned here.
6602  * type:	    Malloc bucket (kernel only).
6603  * flags:	    Malloc flags (kernel only).
6604  * error_str:	    If non-NULL, it will contain error information (without
6605  * 		    a terminating newline) if an error is returned.
6606  * error_str_len:   Allocated length of the error string.
6607  *
6608  * Returns 0 for success, non-zero for failure.
6609  */
6610 int
6611 scsi_parse_transportid(char *transportid_str,
6612 		       struct scsi_transportid_header **hdr,
6613 		       unsigned int *alloc_len,
6614 #ifdef _KERNEL
6615 		       struct malloc_type *type, int flags,
6616 #endif
6617 		       char *error_str, int error_str_len)
6618 {
6619 	char *tmpstr;
6620 	scsi_nv_status status;
6621 	u_int num_proto_entries;
6622 	int retval, table_entry;
6623 
6624 	retval = 0;
6625 	table_entry = 0;
6626 
6627 	/*
6628 	 * We do allow a period as well as a comma to separate the protocol
6629 	 * from the ID string.  This is to accommodate iSCSI names, which
6630 	 * start with "iqn.".
6631 	 */
6632 	tmpstr = strsep(&transportid_str, ",.");
6633 	if (tmpstr == NULL) {
6634 		if (error_str != NULL) {
6635 			snprintf(error_str, error_str_len,
6636 				 "%s: transportid_str is NULL", __func__);
6637 		}
6638 		retval = 1;
6639 		goto bailout;
6640 	}
6641 
6642 	num_proto_entries = nitems(scsi_proto_map);
6643 	status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr,
6644 			     &table_entry, SCSI_NV_FLAG_IG_CASE);
6645 	if (status != SCSI_NV_FOUND) {
6646 		if (error_str != NULL) {
6647 			snprintf(error_str, error_str_len, "%s: %s protocol "
6648 				 "name %s", __func__,
6649 				 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" :
6650 				 "invalid", tmpstr);
6651 		}
6652 		retval = 1;
6653 		goto bailout;
6654 	}
6655 	switch (scsi_proto_map[table_entry].value) {
6656 	case SCSI_PROTO_FC:
6657 	case SCSI_PROTO_1394:
6658 	case SCSI_PROTO_SAS:
6659 		retval = scsi_parse_transportid_64bit(
6660 		    scsi_proto_map[table_entry].value, transportid_str, hdr,
6661 		    alloc_len,
6662 #ifdef _KERNEL
6663 		    type, flags,
6664 #endif
6665 		    error_str, error_str_len);
6666 		break;
6667 	case SCSI_PROTO_SPI:
6668 		retval = scsi_parse_transportid_spi(transportid_str, hdr,
6669 		    alloc_len,
6670 #ifdef _KERNEL
6671 		    type, flags,
6672 #endif
6673 		    error_str, error_str_len);
6674 		break;
6675 	case SCSI_PROTO_RDMA:
6676 		retval = scsi_parse_transportid_rdma(transportid_str, hdr,
6677 		    alloc_len,
6678 #ifdef _KERNEL
6679 		    type, flags,
6680 #endif
6681 		    error_str, error_str_len);
6682 		break;
6683 	case SCSI_PROTO_ISCSI:
6684 		retval = scsi_parse_transportid_iscsi(transportid_str, hdr,
6685 		    alloc_len,
6686 #ifdef _KERNEL
6687 		    type, flags,
6688 #endif
6689 		    error_str, error_str_len);
6690 		break;
6691 	case SCSI_PROTO_SOP:
6692 		retval = scsi_parse_transportid_sop(transportid_str, hdr,
6693 		    alloc_len,
6694 #ifdef _KERNEL
6695 		    type, flags,
6696 #endif
6697 		    error_str, error_str_len);
6698 		break;
6699 	case SCSI_PROTO_SSA:
6700 	case SCSI_PROTO_ADITP:
6701 	case SCSI_PROTO_ATA:
6702 	case SCSI_PROTO_UAS:
6703 	case SCSI_PROTO_NONE:
6704 	default:
6705 		/*
6706 		 * There is no format defined for a Transport ID for these
6707 		 * protocols.  So even if the user gives us something, we
6708 		 * have no way to turn it into a standard SCSI Transport ID.
6709 		 */
6710 		retval = 1;
6711 		if (error_str != NULL) {
6712 			snprintf(error_str, error_str_len, "%s: no Transport "
6713 				 "ID format exists for protocol %s",
6714 				 __func__, tmpstr);
6715 		}
6716 		goto bailout;
6717 		break;	/* NOTREACHED */
6718 	}
6719 bailout:
6720 	return (retval);
6721 }
6722 
6723 struct scsi_attrib_table_entry scsi_mam_attr_table[] = {
6724 	{ SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6725 	  "Remaining Capacity in Partition",
6726 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL },
6727 	{ SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6728 	  "Maximum Capacity in Partition",
6729 	  /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6730 	{ SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX,
6731 	  "TapeAlert Flags",
6732 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6733 	{ SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE,
6734 	  "Load Count",
6735 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6736 	{ SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE,
6737 	  "MAM Space Remaining",
6738 	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6739 	  /*parse_str*/ NULL },
6740 	{ SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6741 	  "Assigning Organization",
6742 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6743 	  /*parse_str*/ NULL },
6744 	{ SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6745 	  "Format Density Code",
6746 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6747 	{ SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE,
6748 	  "Initialization Count",
6749 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6750 	{ SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE,
6751 	  "Volume Identifier",
6752 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6753 	  /*parse_str*/ NULL },
6754 	{ SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX,
6755 	  "Volume Change Reference",
6756 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6757 	  /*parse_str*/ NULL },
6758 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE,
6759 	  "Device Vendor/Serial at Last Load",
6760 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6761 	  /*parse_str*/ NULL },
6762 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE,
6763 	  "Device Vendor/Serial at Last Load - 1",
6764 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6765 	  /*parse_str*/ NULL },
6766 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE,
6767 	  "Device Vendor/Serial at Last Load - 2",
6768 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6769 	  /*parse_str*/ NULL },
6770 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE,
6771 	  "Device Vendor/Serial at Last Load - 3",
6772 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6773 	  /*parse_str*/ NULL },
6774 	{ SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE,
6775 	  "Total MB Written in Medium Life",
6776 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6777 	  /*parse_str*/ NULL },
6778 	{ SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE,
6779 	  "Total MB Read in Medium Life",
6780 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6781 	  /*parse_str*/ NULL },
6782 	{ SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE,
6783 	  "Total MB Written in Current/Last Load",
6784 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6785 	  /*parse_str*/ NULL },
6786 	{ SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE,
6787 	  "Total MB Read in Current/Last Load",
6788 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6789 	  /*parse_str*/ NULL },
6790 	{ SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6791 	  "Logical Position of First Encrypted Block",
6792 	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6793 	  /*parse_str*/ NULL },
6794 	{ SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6795 	  "Logical Position of First Unencrypted Block after First "
6796 	  "Encrypted Block",
6797 	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6798 	  /*parse_str*/ NULL },
6799 	{ SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6800 	  "Medium Usage History",
6801 	  /*suffix*/ NULL, /*to_str*/ NULL,
6802 	  /*parse_str*/ NULL },
6803 	{ SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6804 	  "Partition Usage History",
6805 	  /*suffix*/ NULL, /*to_str*/ NULL,
6806 	  /*parse_str*/ NULL },
6807 	{ SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE,
6808 	  "Medium Manufacturer",
6809 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6810 	  /*parse_str*/ NULL },
6811 	{ SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE,
6812 	  "Medium Serial Number",
6813 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6814 	  /*parse_str*/ NULL },
6815 	{ SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE,
6816 	  "Medium Length",
6817 	  /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf,
6818 	  /*parse_str*/ NULL },
6819 	{ SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 |
6820 	  SCSI_ATTR_FLAG_FP_1DIGIT,
6821 	  "Medium Width",
6822 	  /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf,
6823 	  /*parse_str*/ NULL },
6824 	{ SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6825 	  "Assigning Organization",
6826 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6827 	  /*parse_str*/ NULL },
6828 	{ SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6829 	  "Medium Density Code",
6830 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6831 	  /*parse_str*/ NULL },
6832 	{ SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE,
6833 	  "Medium Manufacture Date",
6834 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6835 	  /*parse_str*/ NULL },
6836 	{ SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE,
6837 	  "MAM Capacity",
6838 	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6839 	  /*parse_str*/ NULL },
6840 	{ SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX,
6841 	  "Medium Type",
6842 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6843 	  /*parse_str*/ NULL },
6844 	{ SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX,
6845 	  "Medium Type Information",
6846 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6847 	  /*parse_str*/ NULL },
6848 	{ SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE,
6849 	  "Medium Serial Number",
6850 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6851 	  /*parse_str*/ NULL },
6852 	{ SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE,
6853 	  "Application Vendor",
6854 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6855 	  /*parse_str*/ NULL },
6856 	{ SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE,
6857 	  "Application Name",
6858 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6859 	  /*parse_str*/ NULL },
6860 	{ SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE,
6861 	  "Application Version",
6862 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6863 	  /*parse_str*/ NULL },
6864 	{ SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE,
6865 	  "User Medium Text Label",
6866 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6867 	  /*parse_str*/ NULL },
6868 	{ SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE,
6869 	  "Date and Time Last Written",
6870 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6871 	  /*parse_str*/ NULL },
6872 	{ SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX,
6873 	  "Text Localization Identifier",
6874 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6875 	  /*parse_str*/ NULL },
6876 	{ SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE,
6877 	  "Barcode",
6878 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6879 	  /*parse_str*/ NULL },
6880 	{ SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE,
6881 	  "Owning Host Textual Name",
6882 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6883 	  /*parse_str*/ NULL },
6884 	{ SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE,
6885 	  "Media Pool",
6886 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6887 	  /*parse_str*/ NULL },
6888 	{ SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE,
6889 	  "Partition User Text Label",
6890 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6891 	  /*parse_str*/ NULL },
6892 	{ SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE,
6893 	  "Load/Unload at Partition",
6894 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6895 	  /*parse_str*/ NULL },
6896 	{ SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE,
6897 	  "Application Format Version",
6898 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6899 	  /*parse_str*/ NULL },
6900 	{ SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE,
6901 	  "Volume Coherency Information",
6902 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf,
6903 	  /*parse_str*/ NULL },
6904 	{ 0x0ff1, SCSI_ATTR_FLAG_NONE,
6905 	  "Spectra MLM Creation",
6906 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6907 	  /*parse_str*/ NULL },
6908 	{ 0x0ff2, SCSI_ATTR_FLAG_NONE,
6909 	  "Spectra MLM C3",
6910 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6911 	  /*parse_str*/ NULL },
6912 	{ 0x0ff3, SCSI_ATTR_FLAG_NONE,
6913 	  "Spectra MLM RW",
6914 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6915 	  /*parse_str*/ NULL },
6916 	{ 0x0ff4, SCSI_ATTR_FLAG_NONE,
6917 	  "Spectra MLM SDC List",
6918 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6919 	  /*parse_str*/ NULL },
6920 	{ 0x0ff7, SCSI_ATTR_FLAG_NONE,
6921 	  "Spectra MLM Post Scan",
6922 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6923 	  /*parse_str*/ NULL },
6924 	{ 0x0ffe, SCSI_ATTR_FLAG_NONE,
6925 	  "Spectra MLM Checksum",
6926 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6927 	  /*parse_str*/ NULL },
6928 	{ 0x17f1, SCSI_ATTR_FLAG_NONE,
6929 	  "Spectra MLM Creation",
6930 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6931 	  /*parse_str*/ NULL },
6932 	{ 0x17f2, SCSI_ATTR_FLAG_NONE,
6933 	  "Spectra MLM C3",
6934 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6935 	  /*parse_str*/ NULL },
6936 	{ 0x17f3, SCSI_ATTR_FLAG_NONE,
6937 	  "Spectra MLM RW",
6938 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6939 	  /*parse_str*/ NULL },
6940 	{ 0x17f4, SCSI_ATTR_FLAG_NONE,
6941 	  "Spectra MLM SDC List",
6942 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6943 	  /*parse_str*/ NULL },
6944 	{ 0x17f7, SCSI_ATTR_FLAG_NONE,
6945 	  "Spectra MLM Post Scan",
6946 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6947 	  /*parse_str*/ NULL },
6948 	{ 0x17ff, SCSI_ATTR_FLAG_NONE,
6949 	  "Spectra MLM Checksum",
6950 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6951 	  /*parse_str*/ NULL },
6952 };
6953 
6954 /*
6955  * Print out Volume Coherency Information (Attribute 0x080c).
6956  * This field has two variable length members, including one at the
6957  * beginning, so it isn't practical to have a fixed structure definition.
6958  * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25,
6959  * 2013.
6960  */
6961 int
6962 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
6963 			 uint32_t valid_len, uint32_t flags,
6964 			 uint32_t output_flags, char *error_str,
6965 			 int error_str_len)
6966 {
6967 	size_t avail_len;
6968 	uint32_t field_size;
6969 	uint64_t tmp_val;
6970 	uint8_t *cur_ptr;
6971 	int retval;
6972 	int vcr_len, as_len;
6973 
6974 	retval = 0;
6975 	tmp_val = 0;
6976 
6977 	field_size = scsi_2btoul(hdr->length);
6978 	avail_len = valid_len - sizeof(*hdr);
6979 	if (field_size > avail_len) {
6980 		if (error_str != NULL) {
6981 			snprintf(error_str, error_str_len, "Available "
6982 				 "length of attribute ID 0x%.4x %zu < field "
6983 				 "length %u", scsi_2btoul(hdr->id), avail_len,
6984 				 field_size);
6985 		}
6986 		retval = 1;
6987 		goto bailout;
6988 	} else if (field_size == 0) {
6989 		/*
6990 		 * It isn't clear from the spec whether a field length of
6991 		 * 0 is invalid here.  It probably is, but be lenient here
6992 		 * to avoid inconveniencing the user.
6993 		 */
6994 		goto bailout;
6995 	}
6996 	cur_ptr = hdr->attribute;
6997 	vcr_len = *cur_ptr;
6998 	cur_ptr++;
6999 
7000 	sbuf_printf(sb, "\n\tVolume Change Reference Value:");
7001 
7002 	switch (vcr_len) {
7003 	case 0:
7004 		if (error_str != NULL) {
7005 			snprintf(error_str, error_str_len, "Volume Change "
7006 				 "Reference value has length of 0");
7007 		}
7008 		retval = 1;
7009 		goto bailout;
7010 		break; /*NOTREACHED*/
7011 	case 1:
7012 		tmp_val = *cur_ptr;
7013 		break;
7014 	case 2:
7015 		tmp_val = scsi_2btoul(cur_ptr);
7016 		break;
7017 	case 3:
7018 		tmp_val = scsi_3btoul(cur_ptr);
7019 		break;
7020 	case 4:
7021 		tmp_val = scsi_4btoul(cur_ptr);
7022 		break;
7023 	case 8:
7024 		tmp_val = scsi_8btou64(cur_ptr);
7025 		break;
7026 	default:
7027 		sbuf_printf(sb, "\n");
7028 		sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0);
7029 		break;
7030 	}
7031 	if (vcr_len <= 8)
7032 		sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val);
7033 
7034 	cur_ptr += vcr_len;
7035 	tmp_val = scsi_8btou64(cur_ptr);
7036 	sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val);
7037 
7038 	cur_ptr += sizeof(tmp_val);
7039 	tmp_val = scsi_8btou64(cur_ptr);
7040 	sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n",
7041 		    (uintmax_t)tmp_val);
7042 
7043 	/*
7044 	 * Figure out how long the Application Client Specific Information
7045 	 * is and produce a hexdump.
7046 	 */
7047 	cur_ptr += sizeof(tmp_val);
7048 	as_len = scsi_2btoul(cur_ptr);
7049 	cur_ptr += sizeof(uint16_t);
7050 	sbuf_printf(sb, "\tApplication Client Specific Information: ");
7051 	if (((as_len == SCSI_LTFS_VER0_LEN)
7052 	  || (as_len == SCSI_LTFS_VER1_LEN))
7053 	 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) {
7054 		sbuf_printf(sb, "LTFS\n");
7055 		cur_ptr += SCSI_LTFS_STR_LEN + 1;
7056 		if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0')
7057 			cur_ptr[SCSI_LTFS_UUID_LEN] = '\0';
7058 		sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr);
7059 		cur_ptr += SCSI_LTFS_UUID_LEN + 1;
7060 		/* XXX KDM check the length */
7061 		sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr);
7062 	} else {
7063 		sbuf_printf(sb, "Unknown\n");
7064 		sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0);
7065 	}
7066 
7067 bailout:
7068 	return (retval);
7069 }
7070 
7071 int
7072 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7073 			 uint32_t valid_len, uint32_t flags,
7074 			 uint32_t output_flags, char *error_str,
7075 			 int error_str_len)
7076 {
7077 	size_t avail_len;
7078 	uint32_t field_size;
7079 	struct scsi_attrib_vendser *vendser;
7080 	cam_strvis_flags strvis_flags;
7081 	int retval = 0;
7082 
7083 	field_size = scsi_2btoul(hdr->length);
7084 	avail_len = valid_len - sizeof(*hdr);
7085 	if (field_size > avail_len) {
7086 		if (error_str != NULL) {
7087 			snprintf(error_str, error_str_len, "Available "
7088 				 "length of attribute ID 0x%.4x %zu < field "
7089 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7090 				 field_size);
7091 		}
7092 		retval = 1;
7093 		goto bailout;
7094 	} else if (field_size == 0) {
7095 		/*
7096 		 * A field size of 0 doesn't make sense here.  The device
7097 		 * can at least give you the vendor ID, even if it can't
7098 		 * give you the serial number.
7099 		 */
7100 		if (error_str != NULL) {
7101 			snprintf(error_str, error_str_len, "The length of "
7102 				 "attribute ID 0x%.4x is 0",
7103 				 scsi_2btoul(hdr->id));
7104 		}
7105 		retval = 1;
7106 		goto bailout;
7107 	}
7108 	vendser = (struct scsi_attrib_vendser *)hdr->attribute;
7109 
7110 	switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7111 	case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7112 		strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7113 		break;
7114 	case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7115 		strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7116 		break;
7117 	case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7118 	default:
7119 		strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7120 		break;;
7121 	}
7122 	cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor),
7123 	    strvis_flags);
7124 	sbuf_putc(sb, ' ');
7125 	cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num),
7126 	    strvis_flags);
7127 bailout:
7128 	return (retval);
7129 }
7130 
7131 int
7132 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7133 			 uint32_t valid_len, uint32_t flags,
7134 			 uint32_t output_flags, char *error_str,
7135 			 int error_str_len)
7136 {
7137 	uint32_t field_size;
7138 	ssize_t avail_len;
7139 	uint32_t print_len;
7140 	uint8_t *num_ptr;
7141 	int retval = 0;
7142 
7143 	field_size = scsi_2btoul(hdr->length);
7144 	avail_len = valid_len - sizeof(*hdr);
7145 	print_len = MIN(avail_len, field_size);
7146 	num_ptr = hdr->attribute;
7147 
7148 	if (print_len > 0) {
7149 		sbuf_printf(sb, "\n");
7150 		sbuf_hexdump(sb, num_ptr, print_len, NULL, 0);
7151 	}
7152 
7153 	return (retval);
7154 }
7155 
7156 int
7157 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7158 		     uint32_t valid_len, uint32_t flags,
7159 		     uint32_t output_flags, char *error_str,
7160 		     int error_str_len)
7161 {
7162 	uint64_t print_number;
7163 	size_t avail_len;
7164 	uint32_t number_size;
7165 	int retval = 0;
7166 
7167 	number_size = scsi_2btoul(hdr->length);
7168 
7169 	avail_len = valid_len - sizeof(*hdr);
7170 	if (avail_len < number_size) {
7171 		if (error_str != NULL) {
7172 			snprintf(error_str, error_str_len, "Available "
7173 				 "length of attribute ID 0x%.4x %zu < field "
7174 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7175 				 number_size);
7176 		}
7177 		retval = 1;
7178 		goto bailout;
7179 	}
7180 
7181 	switch (number_size) {
7182 	case 0:
7183 		/*
7184 		 * We don't treat this as an error, since there may be
7185 		 * scenarios where a device reports a field but then gives
7186 		 * a length of 0.  See the note in scsi_attrib_ascii_sbuf().
7187 		 */
7188 		goto bailout;
7189 		break; /*NOTREACHED*/
7190 	case 1:
7191 		print_number = hdr->attribute[0];
7192 		break;
7193 	case 2:
7194 		print_number = scsi_2btoul(hdr->attribute);
7195 		break;
7196 	case 3:
7197 		print_number = scsi_3btoul(hdr->attribute);
7198 		break;
7199 	case 4:
7200 		print_number = scsi_4btoul(hdr->attribute);
7201 		break;
7202 	case 8:
7203 		print_number = scsi_8btou64(hdr->attribute);
7204 		break;
7205 	default:
7206 		/*
7207 		 * If we wind up here, the number is too big to print
7208 		 * normally, so just do a hexdump.
7209 		 */
7210 		retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7211 						  flags, output_flags,
7212 						  error_str, error_str_len);
7213 		goto bailout;
7214 		break;
7215 	}
7216 
7217 	if (flags & SCSI_ATTR_FLAG_FP) {
7218 #ifndef _KERNEL
7219 		long double num_float;
7220 
7221 		num_float = (long double)print_number;
7222 
7223 		if (flags & SCSI_ATTR_FLAG_DIV_10)
7224 			num_float /= 10;
7225 
7226 		sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ?
7227 			    1 : 0, num_float);
7228 #else /* _KERNEL */
7229 		sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ?
7230 			    (print_number / 10) : print_number);
7231 #endif /* _KERNEL */
7232 	} else if (flags & SCSI_ATTR_FLAG_HEX) {
7233 		sbuf_printf(sb, "0x%jx", (uintmax_t)print_number);
7234 	} else
7235 		sbuf_printf(sb, "%ju", (uintmax_t)print_number);
7236 
7237 bailout:
7238 	return (retval);
7239 }
7240 
7241 int
7242 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7243 		       uint32_t valid_len, uint32_t flags,
7244 		       uint32_t output_flags, char *error_str,
7245 		       int error_str_len)
7246 {
7247 	size_t avail_len;
7248 	uint32_t field_size, print_size;
7249 	int retval = 0;
7250 
7251 	avail_len = valid_len - sizeof(*hdr);
7252 	field_size = scsi_2btoul(hdr->length);
7253 	print_size = MIN(avail_len, field_size);
7254 
7255 	if (print_size > 0) {
7256 		cam_strvis_flags strvis_flags;
7257 
7258 		switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7259 		case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7260 			strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7261 			break;
7262 		case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7263 			strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7264 			break;
7265 		case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7266 		default:
7267 			strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7268 			break;
7269 		}
7270 		cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags);
7271 	} else if (avail_len < field_size) {
7272 		/*
7273 		 * We only report an error if the user didn't allocate
7274 		 * enough space to hold the full value of this field.  If
7275 		 * the field length is 0, that is allowed by the spec.
7276 		 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER
7277 		 * "This attribute indicates the current volume identifier
7278 		 * (see SMC-3) of the medium. If the device server supports
7279 		 * this attribute but does not have access to the volume
7280 		 * identifier, the device server shall report this attribute
7281 		 * with an attribute length value of zero."
7282 		 */
7283 		if (error_str != NULL) {
7284 			snprintf(error_str, error_str_len, "Available "
7285 				 "length of attribute ID 0x%.4x %zu < field "
7286 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7287 				 field_size);
7288 		}
7289 		retval = 1;
7290 	}
7291 
7292 	return (retval);
7293 }
7294 
7295 int
7296 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7297 		      uint32_t valid_len, uint32_t flags,
7298 		      uint32_t output_flags, char *error_str,
7299 		      int error_str_len)
7300 {
7301 	size_t avail_len;
7302 	uint32_t field_size, print_size;
7303 	int retval = 0;
7304 	int esc_text = 1;
7305 
7306 	avail_len = valid_len - sizeof(*hdr);
7307 	field_size = scsi_2btoul(hdr->length);
7308 	print_size = MIN(avail_len, field_size);
7309 
7310 	if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) ==
7311 	     SCSI_ATTR_OUTPUT_TEXT_RAW)
7312 		esc_text = 0;
7313 
7314 	if (print_size > 0) {
7315 		uint32_t i;
7316 
7317 		for (i = 0; i < print_size; i++) {
7318 			if (hdr->attribute[i] == '\0')
7319 				continue;
7320 			else if (((unsigned char)hdr->attribute[i] < 0x80)
7321 			      || (esc_text == 0))
7322 				sbuf_putc(sb, hdr->attribute[i]);
7323 			else
7324 				sbuf_printf(sb, "%%%02x",
7325 				    (unsigned char)hdr->attribute[i]);
7326 		}
7327 	} else if (avail_len < field_size) {
7328 		/*
7329 		 * We only report an error if the user didn't allocate
7330 		 * enough space to hold the full value of this field.
7331 		 */
7332 		if (error_str != NULL) {
7333 			snprintf(error_str, error_str_len, "Available "
7334 				 "length of attribute ID 0x%.4x %zu < field "
7335 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7336 				 field_size);
7337 		}
7338 		retval = 1;
7339 	}
7340 
7341 	return (retval);
7342 }
7343 
7344 struct scsi_attrib_table_entry *
7345 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table,
7346 		       size_t num_table_entries, uint32_t id)
7347 {
7348 	uint32_t i;
7349 
7350 	for (i = 0; i < num_table_entries; i++) {
7351 		if (table[i].id == id)
7352 			return (&table[i]);
7353 	}
7354 
7355 	return (NULL);
7356 }
7357 
7358 struct scsi_attrib_table_entry *
7359 scsi_get_attrib_entry(uint32_t id)
7360 {
7361 	return (scsi_find_attrib_entry(scsi_mam_attr_table,
7362 	    nitems(scsi_mam_attr_table), id));
7363 }
7364 
7365 int
7366 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len,
7367    struct scsi_mam_attribute_header *hdr, uint32_t output_flags,
7368    char *error_str, size_t error_str_len)
7369 {
7370 	int retval;
7371 
7372 	switch (hdr->byte2 & SMA_FORMAT_MASK) {
7373 	case SMA_FORMAT_ASCII:
7374 		retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len,
7375 		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len);
7376 		break;
7377 	case SMA_FORMAT_BINARY:
7378 		if (scsi_2btoul(hdr->length) <= 8)
7379 			retval = scsi_attrib_int_sbuf(sb, hdr, valid_len,
7380 			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7381 			    error_str_len);
7382 		else
7383 			retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7384 			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7385 			    error_str_len);
7386 		break;
7387 	case SMA_FORMAT_TEXT:
7388 		retval = scsi_attrib_text_sbuf(sb, hdr, valid_len,
7389 		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7390 		    error_str_len);
7391 		break;
7392 	default:
7393 		if (error_str != NULL) {
7394 			snprintf(error_str, error_str_len, "Unknown attribute "
7395 			    "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK);
7396 		}
7397 		retval = 1;
7398 		goto bailout;
7399 		break; /*NOTREACHED*/
7400 	}
7401 
7402 	sbuf_trim(sb);
7403 
7404 bailout:
7405 
7406 	return (retval);
7407 }
7408 
7409 void
7410 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags,
7411 			struct scsi_mam_attribute_header *hdr,
7412 			uint32_t valid_len, const char *desc)
7413 {
7414 	int need_space = 0;
7415 	uint32_t len;
7416 	uint32_t id;
7417 
7418 	/*
7419 	 * We can't do anything if we don't have enough valid data for the
7420 	 * header.
7421 	 */
7422 	if (valid_len < sizeof(*hdr))
7423 		return;
7424 
7425 	id = scsi_2btoul(hdr->id);
7426 	/*
7427 	 * Note that we print out the value of the attribute listed in the
7428 	 * header, regardless of whether we actually got that many bytes
7429 	 * back from the device through the controller.  A truncated result
7430 	 * could be the result of a failure to ask for enough data; the
7431 	 * header indicates how many bytes are allocated for this attribute
7432 	 * in the MAM.
7433 	 */
7434 	len = scsi_2btoul(hdr->length);
7435 
7436 	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) ==
7437 	    SCSI_ATTR_OUTPUT_FIELD_NONE)
7438 		return;
7439 
7440 	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC)
7441 	 && (desc != NULL)) {
7442 		sbuf_printf(sb, "%s", desc);
7443 		need_space = 1;
7444 	}
7445 
7446 	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) {
7447 		sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id);
7448 		need_space = 0;
7449 	}
7450 
7451 	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) {
7452 		sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len);
7453 		need_space = 0;
7454 	}
7455 	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) {
7456 		sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "",
7457 			    (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW");
7458 	}
7459 	sbuf_printf(sb, ": ");
7460 }
7461 
7462 int
7463 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7464 		 uint32_t valid_len, struct scsi_attrib_table_entry *user_table,
7465 		 size_t num_user_entries, int prefer_user_table,
7466 		 uint32_t output_flags, char *error_str, int error_str_len)
7467 {
7468 	int retval;
7469 	struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL;
7470 	struct scsi_attrib_table_entry *entry = NULL;
7471 	size_t table1_size = 0, table2_size = 0;
7472 	uint32_t id;
7473 
7474 	retval = 0;
7475 
7476 	if (valid_len < sizeof(*hdr)) {
7477 		retval = 1;
7478 		goto bailout;
7479 	}
7480 
7481 	id = scsi_2btoul(hdr->id);
7482 
7483 	if (user_table != NULL) {
7484 		if (prefer_user_table != 0) {
7485 			table1 = user_table;
7486 			table1_size = num_user_entries;
7487 			table2 = scsi_mam_attr_table;
7488 			table2_size = nitems(scsi_mam_attr_table);
7489 		} else {
7490 			table1 = scsi_mam_attr_table;
7491 			table1_size = nitems(scsi_mam_attr_table);
7492 			table2 = user_table;
7493 			table2_size = num_user_entries;
7494 		}
7495 	} else {
7496 		table1 = scsi_mam_attr_table;
7497 		table1_size = nitems(scsi_mam_attr_table);
7498 	}
7499 
7500 	entry = scsi_find_attrib_entry(table1, table1_size, id);
7501 	if (entry != NULL) {
7502 		scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len,
7503 					entry->desc);
7504 		if (entry->to_str == NULL)
7505 			goto print_default;
7506 		retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7507 				       output_flags, error_str, error_str_len);
7508 		goto bailout;
7509 	}
7510 	if (table2 != NULL) {
7511 		entry = scsi_find_attrib_entry(table2, table2_size, id);
7512 		if (entry != NULL) {
7513 			if (entry->to_str == NULL)
7514 				goto print_default;
7515 
7516 			scsi_attrib_prefix_sbuf(sb, output_flags, hdr,
7517 						valid_len, entry->desc);
7518 			retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7519 					       output_flags, error_str,
7520 					       error_str_len);
7521 			goto bailout;
7522 		}
7523 	}
7524 
7525 	scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL);
7526 
7527 print_default:
7528 	retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags,
7529 	    error_str, error_str_len);
7530 bailout:
7531 	if (retval == 0) {
7532 	 	if ((entry != NULL)
7533 		 && (entry->suffix != NULL))
7534 			sbuf_printf(sb, " %s", entry->suffix);
7535 
7536 		sbuf_trim(sb);
7537 		sbuf_printf(sb, "\n");
7538 	}
7539 
7540 	return (retval);
7541 }
7542 
7543 void
7544 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries,
7545 		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7546 		     u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout)
7547 {
7548 	struct scsi_test_unit_ready *scsi_cmd;
7549 
7550 	cam_fill_csio(csio,
7551 		      retries,
7552 		      cbfcnp,
7553 		      CAM_DIR_NONE,
7554 		      tag_action,
7555 		      /*data_ptr*/NULL,
7556 		      /*dxfer_len*/0,
7557 		      sense_len,
7558 		      sizeof(*scsi_cmd),
7559 		      timeout);
7560 
7561 	scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes;
7562 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7563 	scsi_cmd->opcode = TEST_UNIT_READY;
7564 }
7565 
7566 void
7567 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries,
7568 		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7569 		   void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action,
7570 		   u_int8_t sense_len, u_int32_t timeout)
7571 {
7572 	struct scsi_request_sense *scsi_cmd;
7573 
7574 	cam_fill_csio(csio,
7575 		      retries,
7576 		      cbfcnp,
7577 		      CAM_DIR_IN,
7578 		      tag_action,
7579 		      data_ptr,
7580 		      dxfer_len,
7581 		      sense_len,
7582 		      sizeof(*scsi_cmd),
7583 		      timeout);
7584 
7585 	scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes;
7586 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7587 	scsi_cmd->opcode = REQUEST_SENSE;
7588 	scsi_cmd->length = dxfer_len;
7589 }
7590 
7591 void
7592 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries,
7593 	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7594 	     u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len,
7595 	     int evpd, u_int8_t page_code, u_int8_t sense_len,
7596 	     u_int32_t timeout)
7597 {
7598 	struct scsi_inquiry *scsi_cmd;
7599 
7600 	cam_fill_csio(csio,
7601 		      retries,
7602 		      cbfcnp,
7603 		      /*flags*/CAM_DIR_IN,
7604 		      tag_action,
7605 		      /*data_ptr*/inq_buf,
7606 		      /*dxfer_len*/inq_len,
7607 		      sense_len,
7608 		      sizeof(*scsi_cmd),
7609 		      timeout);
7610 
7611 	scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes;
7612 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7613 	scsi_cmd->opcode = INQUIRY;
7614 	if (evpd) {
7615 		scsi_cmd->byte2 |= SI_EVPD;
7616 		scsi_cmd->page_code = page_code;
7617 	}
7618 	scsi_ulto2b(inq_len, scsi_cmd->length);
7619 }
7620 
7621 void
7622 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries,
7623     void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7624     int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7625     uint8_t sense_len, uint32_t timeout)
7626 {
7627 
7628 	scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7629 	    pc, page, 0, param_buf, param_len, 0, sense_len, timeout);
7630 }
7631 
7632 void
7633 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries,
7634     void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7635     int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7636     int minimum_cmd_size, uint8_t sense_len, uint32_t timeout)
7637 {
7638 
7639 	scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7640 	    pc, page, 0, param_buf, param_len, minimum_cmd_size,
7641 	    sense_len, timeout);
7642 }
7643 
7644 void
7645 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries,
7646     void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7647     int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf,
7648     uint32_t param_len, int minimum_cmd_size, uint8_t sense_len,
7649     uint32_t timeout)
7650 {
7651 	u_int8_t cdb_len;
7652 
7653 	/*
7654 	 * Use the smallest possible command to perform the operation.
7655 	 */
7656 	if ((param_len < 256)
7657 	 && (minimum_cmd_size < 10)) {
7658 		/*
7659 		 * We can fit in a 6 byte cdb.
7660 		 */
7661 		struct scsi_mode_sense_6 *scsi_cmd;
7662 
7663 		scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes;
7664 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7665 		scsi_cmd->opcode = MODE_SENSE_6;
7666 		if (dbd != 0)
7667 			scsi_cmd->byte2 |= SMS_DBD;
7668 		scsi_cmd->page = pc | page;
7669 		scsi_cmd->subpage = subpage;
7670 		scsi_cmd->length = param_len;
7671 		cdb_len = sizeof(*scsi_cmd);
7672 	} else {
7673 		/*
7674 		 * Need a 10 byte cdb.
7675 		 */
7676 		struct scsi_mode_sense_10 *scsi_cmd;
7677 
7678 		scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes;
7679 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7680 		scsi_cmd->opcode = MODE_SENSE_10;
7681 		if (dbd != 0)
7682 			scsi_cmd->byte2 |= SMS_DBD;
7683 		scsi_cmd->page = pc | page;
7684 		scsi_cmd->subpage = subpage;
7685 		scsi_ulto2b(param_len, scsi_cmd->length);
7686 		cdb_len = sizeof(*scsi_cmd);
7687 	}
7688 	cam_fill_csio(csio,
7689 		      retries,
7690 		      cbfcnp,
7691 		      CAM_DIR_IN,
7692 		      tag_action,
7693 		      param_buf,
7694 		      param_len,
7695 		      sense_len,
7696 		      cdb_len,
7697 		      timeout);
7698 }
7699 
7700 void
7701 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries,
7702 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7703 		 u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7704 		 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7705 		 u_int32_t timeout)
7706 {
7707 	scsi_mode_select_len(csio, retries, cbfcnp, tag_action,
7708 			     scsi_page_fmt, save_pages, param_buf,
7709 			     param_len, 0, sense_len, timeout);
7710 }
7711 
7712 void
7713 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries,
7714 		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7715 		     u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7716 		     u_int8_t *param_buf, u_int32_t param_len,
7717 		     int minimum_cmd_size, u_int8_t sense_len,
7718 		     u_int32_t timeout)
7719 {
7720 	u_int8_t cdb_len;
7721 
7722 	/*
7723 	 * Use the smallest possible command to perform the operation.
7724 	 */
7725 	if ((param_len < 256)
7726 	 && (minimum_cmd_size < 10)) {
7727 		/*
7728 		 * We can fit in a 6 byte cdb.
7729 		 */
7730 		struct scsi_mode_select_6 *scsi_cmd;
7731 
7732 		scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes;
7733 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7734 		scsi_cmd->opcode = MODE_SELECT_6;
7735 		if (scsi_page_fmt != 0)
7736 			scsi_cmd->byte2 |= SMS_PF;
7737 		if (save_pages != 0)
7738 			scsi_cmd->byte2 |= SMS_SP;
7739 		scsi_cmd->length = param_len;
7740 		cdb_len = sizeof(*scsi_cmd);
7741 	} else {
7742 		/*
7743 		 * Need a 10 byte cdb.
7744 		 */
7745 		struct scsi_mode_select_10 *scsi_cmd;
7746 
7747 		scsi_cmd =
7748 		    (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes;
7749 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7750 		scsi_cmd->opcode = MODE_SELECT_10;
7751 		if (scsi_page_fmt != 0)
7752 			scsi_cmd->byte2 |= SMS_PF;
7753 		if (save_pages != 0)
7754 			scsi_cmd->byte2 |= SMS_SP;
7755 		scsi_ulto2b(param_len, scsi_cmd->length);
7756 		cdb_len = sizeof(*scsi_cmd);
7757 	}
7758 	cam_fill_csio(csio,
7759 		      retries,
7760 		      cbfcnp,
7761 		      CAM_DIR_OUT,
7762 		      tag_action,
7763 		      param_buf,
7764 		      param_len,
7765 		      sense_len,
7766 		      cdb_len,
7767 		      timeout);
7768 }
7769 
7770 void
7771 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries,
7772 	       void (*cbfcnp)(struct cam_periph *, union ccb *),
7773 	       u_int8_t tag_action, u_int8_t page_code, u_int8_t page,
7774 	       int save_pages, int ppc, u_int32_t paramptr,
7775 	       u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7776 	       u_int32_t timeout)
7777 {
7778 	struct scsi_log_sense *scsi_cmd;
7779 	u_int8_t cdb_len;
7780 
7781 	scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes;
7782 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7783 	scsi_cmd->opcode = LOG_SENSE;
7784 	scsi_cmd->page = page_code | page;
7785 	if (save_pages != 0)
7786 		scsi_cmd->byte2 |= SLS_SP;
7787 	if (ppc != 0)
7788 		scsi_cmd->byte2 |= SLS_PPC;
7789 	scsi_ulto2b(paramptr, scsi_cmd->paramptr);
7790 	scsi_ulto2b(param_len, scsi_cmd->length);
7791 	cdb_len = sizeof(*scsi_cmd);
7792 
7793 	cam_fill_csio(csio,
7794 		      retries,
7795 		      cbfcnp,
7796 		      /*flags*/CAM_DIR_IN,
7797 		      tag_action,
7798 		      /*data_ptr*/param_buf,
7799 		      /*dxfer_len*/param_len,
7800 		      sense_len,
7801 		      cdb_len,
7802 		      timeout);
7803 }
7804 
7805 void
7806 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries,
7807 		void (*cbfcnp)(struct cam_periph *, union ccb *),
7808 		u_int8_t tag_action, u_int8_t page_code, int save_pages,
7809 		int pc_reset, u_int8_t *param_buf, u_int32_t param_len,
7810 		u_int8_t sense_len, u_int32_t timeout)
7811 {
7812 	struct scsi_log_select *scsi_cmd;
7813 	u_int8_t cdb_len;
7814 
7815 	scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes;
7816 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7817 	scsi_cmd->opcode = LOG_SELECT;
7818 	scsi_cmd->page = page_code & SLS_PAGE_CODE;
7819 	if (save_pages != 0)
7820 		scsi_cmd->byte2 |= SLS_SP;
7821 	if (pc_reset != 0)
7822 		scsi_cmd->byte2 |= SLS_PCR;
7823 	scsi_ulto2b(param_len, scsi_cmd->length);
7824 	cdb_len = sizeof(*scsi_cmd);
7825 
7826 	cam_fill_csio(csio,
7827 		      retries,
7828 		      cbfcnp,
7829 		      /*flags*/CAM_DIR_OUT,
7830 		      tag_action,
7831 		      /*data_ptr*/param_buf,
7832 		      /*dxfer_len*/param_len,
7833 		      sense_len,
7834 		      cdb_len,
7835 		      timeout);
7836 }
7837 
7838 /*
7839  * Prevent or allow the user to remove the media
7840  */
7841 void
7842 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries,
7843 	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7844 	     u_int8_t tag_action, u_int8_t action,
7845 	     u_int8_t sense_len, u_int32_t timeout)
7846 {
7847 	struct scsi_prevent *scsi_cmd;
7848 
7849 	cam_fill_csio(csio,
7850 		      retries,
7851 		      cbfcnp,
7852 		      /*flags*/CAM_DIR_NONE,
7853 		      tag_action,
7854 		      /*data_ptr*/NULL,
7855 		      /*dxfer_len*/0,
7856 		      sense_len,
7857 		      sizeof(*scsi_cmd),
7858 		      timeout);
7859 
7860 	scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes;
7861 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7862 	scsi_cmd->opcode = PREVENT_ALLOW;
7863 	scsi_cmd->how = action;
7864 }
7865 
7866 /* XXX allow specification of address and PMI bit and LBA */
7867 void
7868 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries,
7869 		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7870 		   u_int8_t tag_action,
7871 		   struct scsi_read_capacity_data *rcap_buf,
7872 		   u_int8_t sense_len, u_int32_t timeout)
7873 {
7874 	struct scsi_read_capacity *scsi_cmd;
7875 
7876 	cam_fill_csio(csio,
7877 		      retries,
7878 		      cbfcnp,
7879 		      /*flags*/CAM_DIR_IN,
7880 		      tag_action,
7881 		      /*data_ptr*/(u_int8_t *)rcap_buf,
7882 		      /*dxfer_len*/sizeof(*rcap_buf),
7883 		      sense_len,
7884 		      sizeof(*scsi_cmd),
7885 		      timeout);
7886 
7887 	scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes;
7888 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7889 	scsi_cmd->opcode = READ_CAPACITY;
7890 }
7891 
7892 void
7893 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
7894 		      void (*cbfcnp)(struct cam_periph *, union ccb *),
7895 		      uint8_t tag_action, uint64_t lba, int reladr, int pmi,
7896 		      uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len,
7897 		      uint32_t timeout)
7898 {
7899 	struct scsi_read_capacity_16 *scsi_cmd;
7900 
7901 
7902 	cam_fill_csio(csio,
7903 		      retries,
7904 		      cbfcnp,
7905 		      /*flags*/CAM_DIR_IN,
7906 		      tag_action,
7907 		      /*data_ptr*/(u_int8_t *)rcap_buf,
7908 		      /*dxfer_len*/rcap_buf_len,
7909 		      sense_len,
7910 		      sizeof(*scsi_cmd),
7911 		      timeout);
7912 	scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
7913 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7914 	scsi_cmd->opcode = SERVICE_ACTION_IN;
7915 	scsi_cmd->service_action = SRC16_SERVICE_ACTION;
7916 	scsi_u64to8b(lba, scsi_cmd->addr);
7917 	scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len);
7918 	if (pmi)
7919 		reladr |= SRC16_PMI;
7920 	if (reladr)
7921 		reladr |= SRC16_RELADR;
7922 }
7923 
7924 void
7925 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries,
7926 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7927 		 u_int8_t tag_action, u_int8_t select_report,
7928 		 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len,
7929 		 u_int8_t sense_len, u_int32_t timeout)
7930 {
7931 	struct scsi_report_luns *scsi_cmd;
7932 
7933 	cam_fill_csio(csio,
7934 		      retries,
7935 		      cbfcnp,
7936 		      /*flags*/CAM_DIR_IN,
7937 		      tag_action,
7938 		      /*data_ptr*/(u_int8_t *)rpl_buf,
7939 		      /*dxfer_len*/alloc_len,
7940 		      sense_len,
7941 		      sizeof(*scsi_cmd),
7942 		      timeout);
7943 	scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes;
7944 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7945 	scsi_cmd->opcode = REPORT_LUNS;
7946 	scsi_cmd->select_report = select_report;
7947 	scsi_ulto4b(alloc_len, scsi_cmd->length);
7948 }
7949 
7950 void
7951 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries,
7952 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7953 		 u_int8_t tag_action, u_int8_t pdf,
7954 		 void *buf, u_int32_t alloc_len,
7955 		 u_int8_t sense_len, u_int32_t timeout)
7956 {
7957 	struct scsi_target_group *scsi_cmd;
7958 
7959 	cam_fill_csio(csio,
7960 		      retries,
7961 		      cbfcnp,
7962 		      /*flags*/CAM_DIR_IN,
7963 		      tag_action,
7964 		      /*data_ptr*/(u_int8_t *)buf,
7965 		      /*dxfer_len*/alloc_len,
7966 		      sense_len,
7967 		      sizeof(*scsi_cmd),
7968 		      timeout);
7969 	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
7970 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7971 	scsi_cmd->opcode = MAINTENANCE_IN;
7972 	scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf;
7973 	scsi_ulto4b(alloc_len, scsi_cmd->length);
7974 }
7975 
7976 void
7977 scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries,
7978 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7979 		 u_int8_t tag_action, u_int8_t pdf,
7980 		 void *buf, u_int32_t alloc_len,
7981 		 u_int8_t sense_len, u_int32_t timeout)
7982 {
7983 	struct scsi_timestamp *scsi_cmd;
7984 
7985 	cam_fill_csio(csio,
7986 		      retries,
7987 		      cbfcnp,
7988 		      /*flags*/CAM_DIR_IN,
7989 		      tag_action,
7990 		      /*data_ptr*/(u_int8_t *)buf,
7991 		      /*dxfer_len*/alloc_len,
7992 		      sense_len,
7993 		      sizeof(*scsi_cmd),
7994 		      timeout);
7995 	scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
7996 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7997 	scsi_cmd->opcode = MAINTENANCE_IN;
7998 	scsi_cmd->service_action = REPORT_TIMESTAMP | pdf;
7999 	scsi_ulto4b(alloc_len, scsi_cmd->length);
8000 }
8001 
8002 void
8003 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries,
8004 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
8005 		 u_int8_t tag_action, void *buf, u_int32_t alloc_len,
8006 		 u_int8_t sense_len, u_int32_t timeout)
8007 {
8008 	struct scsi_target_group *scsi_cmd;
8009 
8010 	cam_fill_csio(csio,
8011 		      retries,
8012 		      cbfcnp,
8013 		      /*flags*/CAM_DIR_OUT,
8014 		      tag_action,
8015 		      /*data_ptr*/(u_int8_t *)buf,
8016 		      /*dxfer_len*/alloc_len,
8017 		      sense_len,
8018 		      sizeof(*scsi_cmd),
8019 		      timeout);
8020 	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
8021 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8022 	scsi_cmd->opcode = MAINTENANCE_OUT;
8023 	scsi_cmd->service_action = SET_TARGET_PORT_GROUPS;
8024 	scsi_ulto4b(alloc_len, scsi_cmd->length);
8025 }
8026 
8027 void
8028 scsi_create_timestamp(uint8_t *timestamp_6b_buf,
8029 		      uint64_t timestamp)
8030 {
8031 	uint8_t buf[8];
8032 	scsi_u64to8b(timestamp, buf);
8033 	/*
8034 	 * Using memcopy starting at buf[2] because the set timestamp parameters
8035 	 * only has six bytes for the timestamp to fit into, and we don't have a
8036 	 * scsi_u64to6b function.
8037 	 */
8038 	memcpy(timestamp_6b_buf, &buf[2], 6);
8039 }
8040 
8041 void
8042 scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries,
8043 		   void (*cbfcnp)(struct cam_periph *, union ccb *),
8044 		   u_int8_t tag_action, void *buf, u_int32_t alloc_len,
8045 		   u_int8_t sense_len, u_int32_t timeout)
8046 {
8047 	struct scsi_timestamp *scsi_cmd;
8048 
8049 	cam_fill_csio(csio,
8050 		      retries,
8051 		      cbfcnp,
8052 		      /*flags*/CAM_DIR_OUT,
8053 		      tag_action,
8054 		      /*data_ptr*/(u_int8_t *) buf,
8055 		      /*dxfer_len*/alloc_len,
8056 		      sense_len,
8057 		      sizeof(*scsi_cmd),
8058 		      timeout);
8059 	scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
8060 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8061 	scsi_cmd->opcode = MAINTENANCE_OUT;
8062 	scsi_cmd->service_action = SET_TIMESTAMP;
8063 	scsi_ulto4b(alloc_len, scsi_cmd->length);
8064 }
8065 
8066 /*
8067  * Syncronize the media to the contents of the cache for
8068  * the given lba/count pair.  Specifying 0/0 means sync
8069  * the whole cache.
8070  */
8071 void
8072 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries,
8073 		       void (*cbfcnp)(struct cam_periph *, union ccb *),
8074 		       u_int8_t tag_action, u_int32_t begin_lba,
8075 		       u_int16_t lb_count, u_int8_t sense_len,
8076 		       u_int32_t timeout)
8077 {
8078 	struct scsi_sync_cache *scsi_cmd;
8079 
8080 	cam_fill_csio(csio,
8081 		      retries,
8082 		      cbfcnp,
8083 		      /*flags*/CAM_DIR_NONE,
8084 		      tag_action,
8085 		      /*data_ptr*/NULL,
8086 		      /*dxfer_len*/0,
8087 		      sense_len,
8088 		      sizeof(*scsi_cmd),
8089 		      timeout);
8090 
8091 	scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes;
8092 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8093 	scsi_cmd->opcode = SYNCHRONIZE_CACHE;
8094 	scsi_ulto4b(begin_lba, scsi_cmd->begin_lba);
8095 	scsi_ulto2b(lb_count, scsi_cmd->lb_count);
8096 }
8097 
8098 void
8099 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries,
8100 		void (*cbfcnp)(struct cam_periph *, union ccb *),
8101 		u_int8_t tag_action, int readop, u_int8_t byte2,
8102 		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
8103 		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
8104 		u_int32_t timeout)
8105 {
8106 	int read;
8107 	u_int8_t cdb_len;
8108 
8109 	read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ;
8110 
8111 	/*
8112 	 * Use the smallest possible command to perform the operation
8113 	 * as some legacy hardware does not support the 10 byte commands.
8114 	 * If any of the bits in byte2 is set, we have to go with a larger
8115 	 * command.
8116 	 */
8117 	if ((minimum_cmd_size < 10)
8118 	 && ((lba & 0x1fffff) == lba)
8119 	 && ((block_count & 0xff) == block_count)
8120 	 && (byte2 == 0)) {
8121 		/*
8122 		 * We can fit in a 6 byte cdb.
8123 		 */
8124 		struct scsi_rw_6 *scsi_cmd;
8125 
8126 		scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes;
8127 		scsi_cmd->opcode = read ? READ_6 : WRITE_6;
8128 		scsi_ulto3b(lba, scsi_cmd->addr);
8129 		scsi_cmd->length = block_count & 0xff;
8130 		scsi_cmd->control = 0;
8131 		cdb_len = sizeof(*scsi_cmd);
8132 
8133 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8134 			  ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0],
8135 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8136 			   scsi_cmd->length, dxfer_len));
8137 	} else if ((minimum_cmd_size < 12)
8138 		&& ((block_count & 0xffff) == block_count)
8139 		&& ((lba & 0xffffffff) == lba)) {
8140 		/*
8141 		 * Need a 10 byte cdb.
8142 		 */
8143 		struct scsi_rw_10 *scsi_cmd;
8144 
8145 		scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes;
8146 		scsi_cmd->opcode = read ? READ_10 : WRITE_10;
8147 		scsi_cmd->byte2 = byte2;
8148 		scsi_ulto4b(lba, scsi_cmd->addr);
8149 		scsi_cmd->reserved = 0;
8150 		scsi_ulto2b(block_count, scsi_cmd->length);
8151 		scsi_cmd->control = 0;
8152 		cdb_len = sizeof(*scsi_cmd);
8153 
8154 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8155 			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8156 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8157 			   scsi_cmd->addr[3], scsi_cmd->length[0],
8158 			   scsi_cmd->length[1], dxfer_len));
8159 	} else if ((minimum_cmd_size < 16)
8160 		&& ((block_count & 0xffffffff) == block_count)
8161 		&& ((lba & 0xffffffff) == lba)) {
8162 		/*
8163 		 * The block count is too big for a 10 byte CDB, use a 12
8164 		 * byte CDB.
8165 		 */
8166 		struct scsi_rw_12 *scsi_cmd;
8167 
8168 		scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes;
8169 		scsi_cmd->opcode = read ? READ_12 : WRITE_12;
8170 		scsi_cmd->byte2 = byte2;
8171 		scsi_ulto4b(lba, scsi_cmd->addr);
8172 		scsi_cmd->reserved = 0;
8173 		scsi_ulto4b(block_count, scsi_cmd->length);
8174 		scsi_cmd->control = 0;
8175 		cdb_len = sizeof(*scsi_cmd);
8176 
8177 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8178 			  ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0],
8179 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8180 			   scsi_cmd->addr[3], scsi_cmd->length[0],
8181 			   scsi_cmd->length[1], scsi_cmd->length[2],
8182 			   scsi_cmd->length[3], dxfer_len));
8183 	} else {
8184 		/*
8185 		 * 16 byte CDB.  We'll only get here if the LBA is larger
8186 		 * than 2^32, or if the user asks for a 16 byte command.
8187 		 */
8188 		struct scsi_rw_16 *scsi_cmd;
8189 
8190 		scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes;
8191 		scsi_cmd->opcode = read ? READ_16 : WRITE_16;
8192 		scsi_cmd->byte2 = byte2;
8193 		scsi_u64to8b(lba, scsi_cmd->addr);
8194 		scsi_cmd->reserved = 0;
8195 		scsi_ulto4b(block_count, scsi_cmd->length);
8196 		scsi_cmd->control = 0;
8197 		cdb_len = sizeof(*scsi_cmd);
8198 	}
8199 	cam_fill_csio(csio,
8200 		      retries,
8201 		      cbfcnp,
8202 		      (read ? CAM_DIR_IN : CAM_DIR_OUT) |
8203 		      ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0),
8204 		      tag_action,
8205 		      data_ptr,
8206 		      dxfer_len,
8207 		      sense_len,
8208 		      cdb_len,
8209 		      timeout);
8210 }
8211 
8212 void
8213 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries,
8214 		void (*cbfcnp)(struct cam_periph *, union ccb *),
8215 		u_int8_t tag_action, u_int8_t byte2,
8216 		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
8217 		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
8218 		u_int32_t timeout)
8219 {
8220 	u_int8_t cdb_len;
8221 	if ((minimum_cmd_size < 16) &&
8222 	    ((block_count & 0xffff) == block_count) &&
8223 	    ((lba & 0xffffffff) == lba)) {
8224 		/*
8225 		 * Need a 10 byte cdb.
8226 		 */
8227 		struct scsi_write_same_10 *scsi_cmd;
8228 
8229 		scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes;
8230 		scsi_cmd->opcode = WRITE_SAME_10;
8231 		scsi_cmd->byte2 = byte2;
8232 		scsi_ulto4b(lba, scsi_cmd->addr);
8233 		scsi_cmd->group = 0;
8234 		scsi_ulto2b(block_count, scsi_cmd->length);
8235 		scsi_cmd->control = 0;
8236 		cdb_len = sizeof(*scsi_cmd);
8237 
8238 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8239 			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8240 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8241 			   scsi_cmd->addr[3], scsi_cmd->length[0],
8242 			   scsi_cmd->length[1], dxfer_len));
8243 	} else {
8244 		/*
8245 		 * 16 byte CDB.  We'll only get here if the LBA is larger
8246 		 * than 2^32, or if the user asks for a 16 byte command.
8247 		 */
8248 		struct scsi_write_same_16 *scsi_cmd;
8249 
8250 		scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes;
8251 		scsi_cmd->opcode = WRITE_SAME_16;
8252 		scsi_cmd->byte2 = byte2;
8253 		scsi_u64to8b(lba, scsi_cmd->addr);
8254 		scsi_ulto4b(block_count, scsi_cmd->length);
8255 		scsi_cmd->group = 0;
8256 		scsi_cmd->control = 0;
8257 		cdb_len = sizeof(*scsi_cmd);
8258 
8259 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8260 			  ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n",
8261 			   scsi_cmd->addr[0], scsi_cmd->addr[1],
8262 			   scsi_cmd->addr[2], scsi_cmd->addr[3],
8263 			   scsi_cmd->addr[4], scsi_cmd->addr[5],
8264 			   scsi_cmd->addr[6], scsi_cmd->addr[7],
8265 			   scsi_cmd->length[0], scsi_cmd->length[1],
8266 			   scsi_cmd->length[2], scsi_cmd->length[3],
8267 			   dxfer_len));
8268 	}
8269 	cam_fill_csio(csio,
8270 		      retries,
8271 		      cbfcnp,
8272 		      /*flags*/CAM_DIR_OUT,
8273 		      tag_action,
8274 		      data_ptr,
8275 		      dxfer_len,
8276 		      sense_len,
8277 		      cdb_len,
8278 		      timeout);
8279 }
8280 
8281 void
8282 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries,
8283 		  void (*cbfcnp)(struct cam_periph *, union ccb *),
8284 		  u_int8_t tag_action, u_int8_t *data_ptr,
8285 		  u_int16_t dxfer_len, u_int8_t sense_len,
8286 		  u_int32_t timeout)
8287 {
8288 	scsi_ata_pass(csio,
8289 		      retries,
8290 		      cbfcnp,
8291 		      /*flags*/CAM_DIR_IN,
8292 		      tag_action,
8293 		      /*protocol*/AP_PROTO_PIO_IN,
8294 		      /*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8295 				   AP_FLAG_BYT_BLOK_BYTES |
8296 				   AP_FLAG_TLEN_SECT_CNT,
8297 		      /*features*/0,
8298 		      /*sector_count*/dxfer_len,
8299 		      /*lba*/0,
8300 		      /*command*/ATA_ATA_IDENTIFY,
8301 		      /*device*/ 0,
8302 		      /*icc*/ 0,
8303 		      /*auxiliary*/ 0,
8304 		      /*control*/0,
8305 		      data_ptr,
8306 		      dxfer_len,
8307 		      /*cdb_storage*/ NULL,
8308 		      /*cdb_storage_len*/ 0,
8309 		      /*minimum_cmd_size*/ 0,
8310 		      sense_len,
8311 		      timeout);
8312 }
8313 
8314 void
8315 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries,
8316 	      void (*cbfcnp)(struct cam_periph *, union ccb *),
8317 	      u_int8_t tag_action, u_int16_t block_count,
8318 	      u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8319 	      u_int32_t timeout)
8320 {
8321 	scsi_ata_pass_16(csio,
8322 			 retries,
8323 			 cbfcnp,
8324 			 /*flags*/CAM_DIR_OUT,
8325 			 tag_action,
8326 			 /*protocol*/AP_EXTEND|AP_PROTO_DMA,
8327 			 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS,
8328 			 /*features*/ATA_DSM_TRIM,
8329 			 /*sector_count*/block_count,
8330 			 /*lba*/0,
8331 			 /*command*/ATA_DATA_SET_MANAGEMENT,
8332 			 /*control*/0,
8333 			 data_ptr,
8334 			 dxfer_len,
8335 			 sense_len,
8336 			 timeout);
8337 }
8338 
8339 int
8340 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries,
8341 		  void (*cbfcnp)(struct cam_periph *, union ccb *),
8342 		  uint8_t tag_action, uint32_t log_address,
8343 		  uint32_t page_number, uint16_t block_count,
8344 		  uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len,
8345 		  uint8_t sense_len, uint32_t timeout)
8346 {
8347 	uint8_t command, protocol_out;
8348 	uint16_t count_out;
8349 	uint64_t lba;
8350 	int retval;
8351 
8352 	retval = 0;
8353 
8354 	switch (protocol) {
8355 	case AP_PROTO_DMA:
8356 		count_out = block_count;
8357 		command = ATA_READ_LOG_DMA_EXT;
8358 		protocol_out = AP_PROTO_DMA;
8359 		break;
8360 	case AP_PROTO_PIO_IN:
8361 	default:
8362 		count_out = block_count;
8363 		command = ATA_READ_LOG_EXT;
8364 		protocol_out = AP_PROTO_PIO_IN;
8365 		break;
8366 	}
8367 
8368 	lba = (((uint64_t)page_number & 0xff00) << 32) |
8369 	      ((page_number & 0x00ff) << 8) |
8370 	      (log_address & 0xff);
8371 
8372 	protocol_out |= AP_EXTEND;
8373 
8374 	retval = scsi_ata_pass(csio,
8375 			       retries,
8376 			       cbfcnp,
8377 			       /*flags*/CAM_DIR_IN,
8378 			       tag_action,
8379 			       /*protocol*/ protocol_out,
8380 			       /*ata_flags*/AP_FLAG_TLEN_SECT_CNT |
8381 					    AP_FLAG_BYT_BLOK_BLOCKS |
8382 					    AP_FLAG_TDIR_FROM_DEV,
8383 			       /*feature*/ 0,
8384 			       /*sector_count*/ count_out,
8385 			       /*lba*/ lba,
8386 			       /*command*/ command,
8387 			       /*device*/ 0,
8388 			       /*icc*/ 0,
8389 			       /*auxiliary*/ 0,
8390 			       /*control*/0,
8391 			       data_ptr,
8392 			       dxfer_len,
8393 			       /*cdb_storage*/ NULL,
8394 			       /*cdb_storage_len*/ 0,
8395 			       /*minimum_cmd_size*/ 0,
8396 			       sense_len,
8397 			       timeout);
8398 
8399 	return (retval);
8400 }
8401 
8402 /*
8403  * Note! This is an unusual CDB building function because it can return
8404  * an error in the event that the command in question requires a variable
8405  * length CDB, but the caller has not given storage space for one or has not
8406  * given enough storage space.  If there is enough space available in the
8407  * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage.
8408  */
8409 int
8410 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries,
8411 	      void (*cbfcnp)(struct cam_periph *, union ccb *),
8412 	      uint32_t flags, uint8_t tag_action,
8413 	      uint8_t protocol, uint8_t ata_flags, uint16_t features,
8414 	      uint16_t sector_count, uint64_t lba, uint8_t command,
8415 	      uint8_t device, uint8_t icc, uint32_t auxiliary,
8416 	      uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len,
8417 	      uint8_t *cdb_storage, size_t cdb_storage_len,
8418 	      int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout)
8419 {
8420 	uint32_t cam_flags;
8421 	uint8_t *cdb_ptr;
8422 	int cmd_size;
8423 	int retval;
8424 	uint8_t cdb_len;
8425 
8426 	retval = 0;
8427 	cam_flags = flags;
8428 
8429 	/*
8430 	 * Round the user's request to the nearest command size that is at
8431 	 * least as big as what he requested.
8432 	 */
8433 	if (minimum_cmd_size <= 12)
8434 		cmd_size = 12;
8435 	else if (minimum_cmd_size > 16)
8436 		cmd_size = 32;
8437 	else
8438 		cmd_size = 16;
8439 
8440 	/*
8441 	 * If we have parameters that require a 48-bit ATA command, we have to
8442 	 * use the 16 byte ATA PASS-THROUGH command at least.
8443 	 */
8444 	if (((lba > ATA_MAX_28BIT_LBA)
8445 	  || (sector_count > 255)
8446 	  || (features > 255)
8447 	  || (protocol & AP_EXTEND))
8448 	 && ((cmd_size < 16)
8449 	  || ((protocol & AP_EXTEND) == 0))) {
8450 		if (cmd_size < 16)
8451 			cmd_size = 16;
8452 		protocol |= AP_EXTEND;
8453 	}
8454 
8455 	/*
8456 	 * The icc and auxiliary ATA registers are only supported in the
8457 	 * 32-byte version of the ATA PASS-THROUGH command.
8458 	 */
8459 	if ((icc != 0)
8460 	 || (auxiliary != 0)) {
8461 		cmd_size = 32;
8462 		protocol |= AP_EXTEND;
8463 	}
8464 
8465 
8466 	if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes))
8467 	 && ((cdb_storage == NULL)
8468 	  || (cdb_storage_len < cmd_size))) {
8469 		retval = 1;
8470 		goto bailout;
8471 	}
8472 
8473 	/*
8474 	 * At this point we know we have enough space to store the command
8475 	 * in one place or another.  We prefer the built-in array, but used
8476 	 * the passed in storage if necessary.
8477 	 */
8478 	if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes))
8479 		cdb_ptr = csio->cdb_io.cdb_bytes;
8480 	else {
8481 		cdb_ptr = cdb_storage;
8482 		cam_flags |= CAM_CDB_POINTER;
8483 	}
8484 
8485 	if (cmd_size <= 12) {
8486 		struct ata_pass_12 *cdb;
8487 
8488 		cdb = (struct ata_pass_12 *)cdb_ptr;
8489 		cdb_len = sizeof(*cdb);
8490 		bzero(cdb, cdb_len);
8491 
8492 		cdb->opcode = ATA_PASS_12;
8493 		cdb->protocol = protocol;
8494 		cdb->flags = ata_flags;
8495 		cdb->features = features;
8496 		cdb->sector_count = sector_count;
8497 		cdb->lba_low = lba & 0xff;
8498 		cdb->lba_mid = (lba >> 8) & 0xff;
8499 		cdb->lba_high = (lba >> 16) & 0xff;
8500 		cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8501 		cdb->command = command;
8502 		cdb->control = control;
8503 	} else if (cmd_size <= 16) {
8504 		struct ata_pass_16 *cdb;
8505 
8506 		cdb = (struct ata_pass_16 *)cdb_ptr;
8507 		cdb_len = sizeof(*cdb);
8508 		bzero(cdb, cdb_len);
8509 
8510 		cdb->opcode = ATA_PASS_16;
8511 		cdb->protocol = protocol;
8512 		cdb->flags = ata_flags;
8513 		cdb->features = features & 0xff;
8514 		cdb->sector_count = sector_count & 0xff;
8515 		cdb->lba_low = lba & 0xff;
8516 		cdb->lba_mid = (lba >> 8) & 0xff;
8517 		cdb->lba_high = (lba >> 16) & 0xff;
8518 		/*
8519 		 * If AP_EXTEND is set, we're sending a 48-bit command.
8520 		 * Otherwise it's a 28-bit command.
8521 		 */
8522 		if (protocol & AP_EXTEND) {
8523 			cdb->lba_low_ext = (lba >> 24) & 0xff;
8524 			cdb->lba_mid_ext = (lba >> 32) & 0xff;
8525 			cdb->lba_high_ext = (lba >> 40) & 0xff;
8526 			cdb->features_ext = (features >> 8) & 0xff;
8527 			cdb->sector_count_ext = (sector_count >> 8) & 0xff;
8528 			cdb->device = device | ATA_DEV_LBA;
8529 		} else {
8530 			cdb->lba_low_ext = (lba >> 24) & 0xf;
8531 			cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8532 		}
8533 		cdb->command = command;
8534 		cdb->control = control;
8535 	} else {
8536 		struct ata_pass_32 *cdb;
8537 		uint8_t tmp_lba[8];
8538 
8539 		cdb = (struct ata_pass_32 *)cdb_ptr;
8540 		cdb_len = sizeof(*cdb);
8541 		bzero(cdb, cdb_len);
8542 		cdb->opcode = VARIABLE_LEN_CDB;
8543 		cdb->control = control;
8544 		cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32,
8545 							service_action);
8546 		scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action);
8547 		cdb->protocol = protocol;
8548 		cdb->flags = ata_flags;
8549 
8550 		if ((protocol & AP_EXTEND) == 0) {
8551 			lba &= 0x0fffffff;
8552 			cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8553 			features &= 0xff;
8554 			sector_count &= 0xff;
8555 		} else {
8556 			cdb->device = device | ATA_DEV_LBA;
8557 		}
8558 		scsi_u64to8b(lba, tmp_lba);
8559 		bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba));
8560 		scsi_ulto2b(features, cdb->features);
8561 		scsi_ulto2b(sector_count, cdb->count);
8562 		cdb->command = command;
8563 		cdb->icc = icc;
8564 		scsi_ulto4b(auxiliary, cdb->auxiliary);
8565 	}
8566 
8567 	cam_fill_csio(csio,
8568 		      retries,
8569 		      cbfcnp,
8570 		      cam_flags,
8571 		      tag_action,
8572 		      data_ptr,
8573 		      dxfer_len,
8574 		      sense_len,
8575 		      cmd_size,
8576 		      timeout);
8577 bailout:
8578 	return (retval);
8579 }
8580 
8581 void
8582 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries,
8583 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
8584 		 u_int32_t flags, u_int8_t tag_action,
8585 		 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features,
8586 		 u_int16_t sector_count, uint64_t lba, u_int8_t command,
8587 		 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len,
8588 		 u_int8_t sense_len, u_int32_t timeout)
8589 {
8590 	struct ata_pass_16 *ata_cmd;
8591 
8592 	ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes;
8593 	ata_cmd->opcode = ATA_PASS_16;
8594 	ata_cmd->protocol = protocol;
8595 	ata_cmd->flags = ata_flags;
8596 	ata_cmd->features_ext = features >> 8;
8597 	ata_cmd->features = features;
8598 	ata_cmd->sector_count_ext = sector_count >> 8;
8599 	ata_cmd->sector_count = sector_count;
8600 	ata_cmd->lba_low = lba;
8601 	ata_cmd->lba_mid = lba >> 8;
8602 	ata_cmd->lba_high = lba >> 16;
8603 	ata_cmd->device = ATA_DEV_LBA;
8604 	if (protocol & AP_EXTEND) {
8605 		ata_cmd->lba_low_ext = lba >> 24;
8606 		ata_cmd->lba_mid_ext = lba >> 32;
8607 		ata_cmd->lba_high_ext = lba >> 40;
8608 	} else
8609 		ata_cmd->device |= (lba >> 24) & 0x0f;
8610 	ata_cmd->command = command;
8611 	ata_cmd->control = control;
8612 
8613 	cam_fill_csio(csio,
8614 		      retries,
8615 		      cbfcnp,
8616 		      flags,
8617 		      tag_action,
8618 		      data_ptr,
8619 		      dxfer_len,
8620 		      sense_len,
8621 		      sizeof(*ata_cmd),
8622 		      timeout);
8623 }
8624 
8625 void
8626 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries,
8627 	   void (*cbfcnp)(struct cam_periph *, union ccb *),
8628 	   u_int8_t tag_action, u_int8_t byte2,
8629 	   u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8630 	   u_int32_t timeout)
8631 {
8632 	struct scsi_unmap *scsi_cmd;
8633 
8634 	scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes;
8635 	scsi_cmd->opcode = UNMAP;
8636 	scsi_cmd->byte2 = byte2;
8637 	scsi_ulto4b(0, scsi_cmd->reserved);
8638 	scsi_cmd->group = 0;
8639 	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8640 	scsi_cmd->control = 0;
8641 
8642 	cam_fill_csio(csio,
8643 		      retries,
8644 		      cbfcnp,
8645 		      /*flags*/CAM_DIR_OUT,
8646 		      tag_action,
8647 		      data_ptr,
8648 		      dxfer_len,
8649 		      sense_len,
8650 		      sizeof(*scsi_cmd),
8651 		      timeout);
8652 }
8653 
8654 void
8655 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries,
8656 				void (*cbfcnp)(struct cam_periph *, union ccb*),
8657 				uint8_t tag_action, int pcv, uint8_t page_code,
8658 				uint8_t *data_ptr, uint16_t allocation_length,
8659 				uint8_t sense_len, uint32_t timeout)
8660 {
8661 	struct scsi_receive_diag *scsi_cmd;
8662 
8663 	scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes;
8664 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8665 	scsi_cmd->opcode = RECEIVE_DIAGNOSTIC;
8666 	if (pcv) {
8667 		scsi_cmd->byte2 |= SRD_PCV;
8668 		scsi_cmd->page_code = page_code;
8669 	}
8670 	scsi_ulto2b(allocation_length, scsi_cmd->length);
8671 
8672 	cam_fill_csio(csio,
8673 		      retries,
8674 		      cbfcnp,
8675 		      /*flags*/CAM_DIR_IN,
8676 		      tag_action,
8677 		      data_ptr,
8678 		      allocation_length,
8679 		      sense_len,
8680 		      sizeof(*scsi_cmd),
8681 		      timeout);
8682 }
8683 
8684 void
8685 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries,
8686 		     void (*cbfcnp)(struct cam_periph *, union ccb *),
8687 		     uint8_t tag_action, int unit_offline, int device_offline,
8688 		     int self_test, int page_format, int self_test_code,
8689 		     uint8_t *data_ptr, uint16_t param_list_length,
8690 		     uint8_t sense_len, uint32_t timeout)
8691 {
8692 	struct scsi_send_diag *scsi_cmd;
8693 
8694 	scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes;
8695 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8696 	scsi_cmd->opcode = SEND_DIAGNOSTIC;
8697 
8698 	/*
8699 	 * The default self-test mode control and specific test
8700 	 * control are mutually exclusive.
8701 	 */
8702 	if (self_test)
8703 		self_test_code = SSD_SELF_TEST_CODE_NONE;
8704 
8705 	scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT)
8706 			 & SSD_SELF_TEST_CODE_MASK)
8707 			| (unit_offline   ? SSD_UNITOFFL : 0)
8708 			| (device_offline ? SSD_DEVOFFL  : 0)
8709 			| (self_test      ? SSD_SELFTEST : 0)
8710 			| (page_format    ? SSD_PF       : 0);
8711 	scsi_ulto2b(param_list_length, scsi_cmd->length);
8712 
8713 	cam_fill_csio(csio,
8714 		      retries,
8715 		      cbfcnp,
8716 		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8717 		      tag_action,
8718 		      data_ptr,
8719 		      param_list_length,
8720 		      sense_len,
8721 		      sizeof(*scsi_cmd),
8722 		      timeout);
8723 }
8724 
8725 void
8726 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8727 			void (*cbfcnp)(struct cam_periph *, union ccb*),
8728 			uint8_t tag_action, int mode,
8729 			uint8_t buffer_id, u_int32_t offset,
8730 			uint8_t *data_ptr, uint32_t allocation_length,
8731 			uint8_t sense_len, uint32_t timeout)
8732 {
8733 	struct scsi_read_buffer *scsi_cmd;
8734 
8735 	scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes;
8736 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8737 	scsi_cmd->opcode = READ_BUFFER;
8738 	scsi_cmd->byte2 = mode;
8739 	scsi_cmd->buffer_id = buffer_id;
8740 	scsi_ulto3b(offset, scsi_cmd->offset);
8741 	scsi_ulto3b(allocation_length, scsi_cmd->length);
8742 
8743 	cam_fill_csio(csio,
8744 		      retries,
8745 		      cbfcnp,
8746 		      /*flags*/CAM_DIR_IN,
8747 		      tag_action,
8748 		      data_ptr,
8749 		      allocation_length,
8750 		      sense_len,
8751 		      sizeof(*scsi_cmd),
8752 		      timeout);
8753 }
8754 
8755 void
8756 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8757 			void (*cbfcnp)(struct cam_periph *, union ccb *),
8758 			uint8_t tag_action, int mode,
8759 			uint8_t buffer_id, u_int32_t offset,
8760 			uint8_t *data_ptr, uint32_t param_list_length,
8761 			uint8_t sense_len, uint32_t timeout)
8762 {
8763 	struct scsi_write_buffer *scsi_cmd;
8764 
8765 	scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes;
8766 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8767 	scsi_cmd->opcode = WRITE_BUFFER;
8768 	scsi_cmd->byte2 = mode;
8769 	scsi_cmd->buffer_id = buffer_id;
8770 	scsi_ulto3b(offset, scsi_cmd->offset);
8771 	scsi_ulto3b(param_list_length, scsi_cmd->length);
8772 
8773 	cam_fill_csio(csio,
8774 		      retries,
8775 		      cbfcnp,
8776 		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8777 		      tag_action,
8778 		      data_ptr,
8779 		      param_list_length,
8780 		      sense_len,
8781 		      sizeof(*scsi_cmd),
8782 		      timeout);
8783 }
8784 
8785 void
8786 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries,
8787 		void (*cbfcnp)(struct cam_periph *, union ccb *),
8788 		u_int8_t tag_action, int start, int load_eject,
8789 		int immediate, u_int8_t sense_len, u_int32_t timeout)
8790 {
8791 	struct scsi_start_stop_unit *scsi_cmd;
8792 	int extra_flags = 0;
8793 
8794 	scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
8795 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8796 	scsi_cmd->opcode = START_STOP_UNIT;
8797 	if (start != 0) {
8798 		scsi_cmd->how |= SSS_START;
8799 		/* it takes a lot of power to start a drive */
8800 		extra_flags |= CAM_HIGH_POWER;
8801 	}
8802 	if (load_eject != 0)
8803 		scsi_cmd->how |= SSS_LOEJ;
8804 	if (immediate != 0)
8805 		scsi_cmd->byte2 |= SSS_IMMED;
8806 
8807 	cam_fill_csio(csio,
8808 		      retries,
8809 		      cbfcnp,
8810 		      /*flags*/CAM_DIR_NONE | extra_flags,
8811 		      tag_action,
8812 		      /*data_ptr*/NULL,
8813 		      /*dxfer_len*/0,
8814 		      sense_len,
8815 		      sizeof(*scsi_cmd),
8816 		      timeout);
8817 }
8818 
8819 void
8820 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8821 		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8822 		    u_int8_t tag_action, u_int8_t service_action,
8823 		    uint32_t element, u_int8_t elem_type, int logical_volume,
8824 		    int partition, u_int32_t first_attribute, int cache,
8825 		    u_int8_t *data_ptr, u_int32_t length, int sense_len,
8826 		    u_int32_t timeout)
8827 {
8828 	struct scsi_read_attribute *scsi_cmd;
8829 
8830 	scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes;
8831 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8832 
8833 	scsi_cmd->opcode = READ_ATTRIBUTE;
8834 	scsi_cmd->service_action = service_action;
8835 	scsi_ulto2b(element, scsi_cmd->element);
8836 	scsi_cmd->elem_type = elem_type;
8837 	scsi_cmd->logical_volume = logical_volume;
8838 	scsi_cmd->partition = partition;
8839 	scsi_ulto2b(first_attribute, scsi_cmd->first_attribute);
8840 	scsi_ulto4b(length, scsi_cmd->length);
8841 	if (cache != 0)
8842 		scsi_cmd->cache |= SRA_CACHE;
8843 
8844 	cam_fill_csio(csio,
8845 		      retries,
8846 		      cbfcnp,
8847 		      /*flags*/CAM_DIR_IN,
8848 		      tag_action,
8849 		      /*data_ptr*/data_ptr,
8850 		      /*dxfer_len*/length,
8851 		      sense_len,
8852 		      sizeof(*scsi_cmd),
8853 		      timeout);
8854 }
8855 
8856 void
8857 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8858 		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8859 		    u_int8_t tag_action, uint32_t element, int logical_volume,
8860 		    int partition, int wtc, u_int8_t *data_ptr,
8861 		    u_int32_t length, int sense_len, u_int32_t timeout)
8862 {
8863 	struct scsi_write_attribute *scsi_cmd;
8864 
8865 	scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes;
8866 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8867 
8868 	scsi_cmd->opcode = WRITE_ATTRIBUTE;
8869 	if (wtc != 0)
8870 		scsi_cmd->byte2 = SWA_WTC;
8871 	scsi_ulto3b(element, scsi_cmd->element);
8872 	scsi_cmd->logical_volume = logical_volume;
8873 	scsi_cmd->partition = partition;
8874 	scsi_ulto4b(length, scsi_cmd->length);
8875 
8876 	cam_fill_csio(csio,
8877 		      retries,
8878 		      cbfcnp,
8879 		      /*flags*/CAM_DIR_OUT,
8880 		      tag_action,
8881 		      /*data_ptr*/data_ptr,
8882 		      /*dxfer_len*/length,
8883 		      sense_len,
8884 		      sizeof(*scsi_cmd),
8885 		      timeout);
8886 }
8887 
8888 void
8889 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
8890 			   void (*cbfcnp)(struct cam_periph *, union ccb *),
8891 			   uint8_t tag_action, int service_action,
8892 			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8893 			   int timeout)
8894 {
8895 	struct scsi_per_res_in *scsi_cmd;
8896 
8897 	scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes;
8898 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8899 
8900 	scsi_cmd->opcode = PERSISTENT_RES_IN;
8901 	scsi_cmd->action = service_action;
8902 	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8903 
8904 	cam_fill_csio(csio,
8905 		      retries,
8906 		      cbfcnp,
8907 		      /*flags*/CAM_DIR_IN,
8908 		      tag_action,
8909 		      data_ptr,
8910 		      dxfer_len,
8911 		      sense_len,
8912 		      sizeof(*scsi_cmd),
8913 		      timeout);
8914 }
8915 
8916 void
8917 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
8918 			    void (*cbfcnp)(struct cam_periph *, union ccb *),
8919 			    uint8_t tag_action, int service_action,
8920 			    int scope, int res_type, uint8_t *data_ptr,
8921 			    uint32_t dxfer_len, int sense_len, int timeout)
8922 {
8923 	struct scsi_per_res_out *scsi_cmd;
8924 
8925 	scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes;
8926 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8927 
8928 	scsi_cmd->opcode = PERSISTENT_RES_OUT;
8929 	scsi_cmd->action = service_action;
8930 	scsi_cmd->scope_type = scope | res_type;
8931 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8932 
8933 	cam_fill_csio(csio,
8934 		      retries,
8935 		      cbfcnp,
8936 		      /*flags*/CAM_DIR_OUT,
8937 		      tag_action,
8938 		      /*data_ptr*/data_ptr,
8939 		      /*dxfer_len*/dxfer_len,
8940 		      sense_len,
8941 		      sizeof(*scsi_cmd),
8942 		      timeout);
8943 }
8944 
8945 void
8946 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries,
8947 			  void (*cbfcnp)(struct cam_periph *, union ccb *),
8948 			  uint8_t tag_action, uint32_t security_protocol,
8949 			  uint32_t security_protocol_specific, int byte4,
8950 			  uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8951 			  int timeout)
8952 {
8953 	struct scsi_security_protocol_in *scsi_cmd;
8954 
8955 	scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes;
8956 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8957 
8958 	scsi_cmd->opcode = SECURITY_PROTOCOL_IN;
8959 
8960 	scsi_cmd->security_protocol = security_protocol;
8961 	scsi_ulto2b(security_protocol_specific,
8962 		    scsi_cmd->security_protocol_specific);
8963 	scsi_cmd->byte4 = byte4;
8964 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8965 
8966 	cam_fill_csio(csio,
8967 		      retries,
8968 		      cbfcnp,
8969 		      /*flags*/CAM_DIR_IN,
8970 		      tag_action,
8971 		      data_ptr,
8972 		      dxfer_len,
8973 		      sense_len,
8974 		      sizeof(*scsi_cmd),
8975 		      timeout);
8976 }
8977 
8978 void
8979 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries,
8980 			   void (*cbfcnp)(struct cam_periph *, union ccb *),
8981 			   uint8_t tag_action, uint32_t security_protocol,
8982 			   uint32_t security_protocol_specific, int byte4,
8983 			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8984 			   int timeout)
8985 {
8986 	struct scsi_security_protocol_out *scsi_cmd;
8987 
8988 	scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes;
8989 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8990 
8991 	scsi_cmd->opcode = SECURITY_PROTOCOL_OUT;
8992 
8993 	scsi_cmd->security_protocol = security_protocol;
8994 	scsi_ulto2b(security_protocol_specific,
8995 		    scsi_cmd->security_protocol_specific);
8996 	scsi_cmd->byte4 = byte4;
8997 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8998 
8999 	cam_fill_csio(csio,
9000 		      retries,
9001 		      cbfcnp,
9002 		      /*flags*/CAM_DIR_OUT,
9003 		      tag_action,
9004 		      data_ptr,
9005 		      dxfer_len,
9006 		      sense_len,
9007 		      sizeof(*scsi_cmd),
9008 		      timeout);
9009 }
9010 
9011 void
9012 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries,
9013 			      void (*cbfcnp)(struct cam_periph *, union ccb *),
9014 			      uint8_t tag_action, int options, int req_opcode,
9015 			      int req_service_action, uint8_t *data_ptr,
9016 			      uint32_t dxfer_len, int sense_len, int timeout)
9017 {
9018 	struct scsi_report_supported_opcodes *scsi_cmd;
9019 
9020 	scsi_cmd = (struct scsi_report_supported_opcodes *)
9021 	    &csio->cdb_io.cdb_bytes;
9022 	bzero(scsi_cmd, sizeof(*scsi_cmd));
9023 
9024 	scsi_cmd->opcode = MAINTENANCE_IN;
9025 	scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES;
9026 	scsi_cmd->options = options;
9027 	scsi_cmd->requested_opcode = req_opcode;
9028 	scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action);
9029 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
9030 
9031 	cam_fill_csio(csio,
9032 		      retries,
9033 		      cbfcnp,
9034 		      /*flags*/CAM_DIR_IN,
9035 		      tag_action,
9036 		      data_ptr,
9037 		      dxfer_len,
9038 		      sense_len,
9039 		      sizeof(*scsi_cmd),
9040 		      timeout);
9041 }
9042 
9043 /*
9044  * Try make as good a match as possible with
9045  * available sub drivers
9046  */
9047 int
9048 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9049 {
9050 	struct scsi_inquiry_pattern *entry;
9051 	struct scsi_inquiry_data *inq;
9052 
9053 	entry = (struct scsi_inquiry_pattern *)table_entry;
9054 	inq = (struct scsi_inquiry_data *)inqbuffer;
9055 
9056 	if (((SID_TYPE(inq) == entry->type)
9057 	  || (entry->type == T_ANY))
9058 	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9059 				   : entry->media_type & SIP_MEDIA_FIXED)
9060 	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9061 	 && (cam_strmatch(inq->product, entry->product,
9062 			  sizeof(inq->product)) == 0)
9063 	 && (cam_strmatch(inq->revision, entry->revision,
9064 			  sizeof(inq->revision)) == 0)) {
9065 		return (0);
9066 	}
9067         return (-1);
9068 }
9069 
9070 /*
9071  * Try make as good a match as possible with
9072  * available sub drivers
9073  */
9074 int
9075 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9076 {
9077 	struct scsi_static_inquiry_pattern *entry;
9078 	struct scsi_inquiry_data *inq;
9079 
9080 	entry = (struct scsi_static_inquiry_pattern *)table_entry;
9081 	inq = (struct scsi_inquiry_data *)inqbuffer;
9082 
9083 	if (((SID_TYPE(inq) == entry->type)
9084 	  || (entry->type == T_ANY))
9085 	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9086 				   : entry->media_type & SIP_MEDIA_FIXED)
9087 	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9088 	 && (cam_strmatch(inq->product, entry->product,
9089 			  sizeof(inq->product)) == 0)
9090 	 && (cam_strmatch(inq->revision, entry->revision,
9091 			  sizeof(inq->revision)) == 0)) {
9092 		return (0);
9093 	}
9094         return (-1);
9095 }
9096 
9097 /**
9098  * Compare two buffers of vpd device descriptors for a match.
9099  *
9100  * \param lhs      Pointer to first buffer of descriptors to compare.
9101  * \param lhs_len  The length of the first buffer.
9102  * \param rhs	   Pointer to second buffer of descriptors to compare.
9103  * \param rhs_len  The length of the second buffer.
9104  *
9105  * \return  0 on a match, -1 otherwise.
9106  *
9107  * Treat rhs and lhs as arrays of vpd device id descriptors.  Walk lhs matching
9108  * against each element in rhs until all data are exhausted or we have found
9109  * a match.
9110  */
9111 int
9112 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len)
9113 {
9114 	struct scsi_vpd_id_descriptor *lhs_id;
9115 	struct scsi_vpd_id_descriptor *lhs_last;
9116 	struct scsi_vpd_id_descriptor *rhs_last;
9117 	uint8_t *lhs_end;
9118 	uint8_t *rhs_end;
9119 
9120 	lhs_end = lhs + lhs_len;
9121 	rhs_end = rhs + rhs_len;
9122 
9123 	/*
9124 	 * rhs_last and lhs_last are the last posible position of a valid
9125 	 * descriptor assuming it had a zero length identifier.  We use
9126 	 * these variables to insure we can safely dereference the length
9127 	 * field in our loop termination tests.
9128 	 */
9129 	lhs_last = (struct scsi_vpd_id_descriptor *)
9130 	    (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9131 	rhs_last = (struct scsi_vpd_id_descriptor *)
9132 	    (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9133 
9134 	lhs_id = (struct scsi_vpd_id_descriptor *)lhs;
9135 	while (lhs_id <= lhs_last
9136 	    && (lhs_id->identifier + lhs_id->length) <= lhs_end) {
9137 		struct scsi_vpd_id_descriptor *rhs_id;
9138 
9139 		rhs_id = (struct scsi_vpd_id_descriptor *)rhs;
9140 		while (rhs_id <= rhs_last
9141 		    && (rhs_id->identifier + rhs_id->length) <= rhs_end) {
9142 
9143 			if ((rhs_id->id_type &
9144 			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) ==
9145 			    (lhs_id->id_type &
9146 			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK))
9147 			 && rhs_id->length == lhs_id->length
9148 			 && memcmp(rhs_id->identifier, lhs_id->identifier,
9149 				   rhs_id->length) == 0)
9150 				return (0);
9151 
9152 			rhs_id = (struct scsi_vpd_id_descriptor *)
9153 			   (rhs_id->identifier + rhs_id->length);
9154 		}
9155 		lhs_id = (struct scsi_vpd_id_descriptor *)
9156 		   (lhs_id->identifier + lhs_id->length);
9157 	}
9158 	return (-1);
9159 }
9160 
9161 #ifdef _KERNEL
9162 int
9163 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id)
9164 {
9165 	struct cam_ed *device;
9166 	struct scsi_vpd_supported_pages *vpds;
9167 	int i, num_pages;
9168 
9169 	device = periph->path->device;
9170 	vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
9171 
9172 	if (vpds != NULL) {
9173 		num_pages = device->supported_vpds_len -
9174 		    SVPD_SUPPORTED_PAGES_HDR_LEN;
9175 		for (i = 0; i < num_pages; i++) {
9176 			if (vpds->page_list[i] == page_id)
9177 				return (1);
9178 		}
9179 	}
9180 
9181 	return (0);
9182 }
9183 
9184 static void
9185 init_scsi_delay(void)
9186 {
9187 	int delay;
9188 
9189 	delay = SCSI_DELAY;
9190 	TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay);
9191 
9192 	if (set_scsi_delay(delay) != 0) {
9193 		printf("cam: invalid value for tunable kern.cam.scsi_delay\n");
9194 		set_scsi_delay(SCSI_DELAY);
9195 	}
9196 }
9197 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL);
9198 
9199 static int
9200 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)
9201 {
9202 	int error, delay;
9203 
9204 	delay = scsi_delay;
9205 	error = sysctl_handle_int(oidp, &delay, 0, req);
9206 	if (error != 0 || req->newptr == NULL)
9207 		return (error);
9208 	return (set_scsi_delay(delay));
9209 }
9210 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT|CTLFLAG_RW,
9211     0, 0, sysctl_scsi_delay, "I",
9212     "Delay to allow devices to settle after a SCSI bus reset (ms)");
9213 
9214 static int
9215 set_scsi_delay(int delay)
9216 {
9217 	/*
9218          * If someone sets this to 0, we assume that they want the
9219          * minimum allowable bus settle delay.
9220 	 */
9221 	if (delay == 0) {
9222 		printf("cam: using minimum scsi_delay (%dms)\n",
9223 		    SCSI_MIN_DELAY);
9224 		delay = SCSI_MIN_DELAY;
9225 	}
9226 	if (delay < SCSI_MIN_DELAY)
9227 		return (EINVAL);
9228 	scsi_delay = delay;
9229 	return (0);
9230 }
9231 #endif /* _KERNEL */
9232