1 /*- 2 * Implementation of Utility functions for all SCSI device types. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/types.h> 37 #include <sys/stdint.h> 38 39 #ifdef _KERNEL 40 #include "opt_scsi.h" 41 42 #include <sys/systm.h> 43 #include <sys/libkern.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/ctype.h> 50 #else 51 #include <errno.h> 52 #include <stdio.h> 53 #include <stdlib.h> 54 #include <string.h> 55 #include <ctype.h> 56 #endif 57 58 #include <cam/cam.h> 59 #include <cam/cam_ccb.h> 60 #include <cam/cam_queue.h> 61 #include <cam/cam_xpt.h> 62 #include <cam/scsi/scsi_all.h> 63 #include <sys/ata.h> 64 #include <sys/sbuf.h> 65 66 #ifdef _KERNEL 67 #include <cam/cam_periph.h> 68 #include <cam/cam_xpt_sim.h> 69 #include <cam/cam_xpt_periph.h> 70 #include <cam/cam_xpt_internal.h> 71 #else 72 #include <camlib.h> 73 #include <stddef.h> 74 75 #ifndef FALSE 76 #define FALSE 0 77 #endif /* FALSE */ 78 #ifndef TRUE 79 #define TRUE 1 80 #endif /* TRUE */ 81 #define ERESTART -1 /* restart syscall */ 82 #define EJUSTRETURN -2 /* don't modify regs, just return */ 83 #endif /* !_KERNEL */ 84 85 /* 86 * This is the default number of milliseconds we wait for devices to settle 87 * after a SCSI bus reset. 88 */ 89 #ifndef SCSI_DELAY 90 #define SCSI_DELAY 2000 91 #endif 92 /* 93 * All devices need _some_ sort of bus settle delay, so we'll set it to 94 * a minimum value of 100ms. Note that this is pertinent only for SPI- 95 * not transport like Fibre Channel or iSCSI where 'delay' is completely 96 * meaningless. 97 */ 98 #ifndef SCSI_MIN_DELAY 99 #define SCSI_MIN_DELAY 100 100 #endif 101 /* 102 * Make sure the user isn't using seconds instead of milliseconds. 103 */ 104 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) 105 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" 106 #endif 107 108 int scsi_delay; 109 110 static int ascentrycomp(const void *key, const void *member); 111 static int senseentrycomp(const void *key, const void *member); 112 static void fetchtableentries(int sense_key, int asc, int ascq, 113 struct scsi_inquiry_data *, 114 const struct sense_key_table_entry **, 115 const struct asc_table_entry **); 116 117 #ifdef _KERNEL 118 static void init_scsi_delay(void); 119 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); 120 static int set_scsi_delay(int delay); 121 #endif 122 123 #if !defined(SCSI_NO_OP_STRINGS) 124 125 #define D (1 << T_DIRECT) 126 #define T (1 << T_SEQUENTIAL) 127 #define L (1 << T_PRINTER) 128 #define P (1 << T_PROCESSOR) 129 #define W (1 << T_WORM) 130 #define R (1 << T_CDROM) 131 #define O (1 << T_OPTICAL) 132 #define M (1 << T_CHANGER) 133 #define A (1 << T_STORARRAY) 134 #define E (1 << T_ENCLOSURE) 135 #define B (1 << T_RBC) 136 #define K (1 << T_OCRW) 137 #define V (1 << T_ADC) 138 #define F (1 << T_OSD) 139 #define S (1 << T_SCANNER) 140 #define C (1 << T_COMM) 141 142 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) 143 144 static struct op_table_entry plextor_cd_ops[] = { 145 { 0xD8, R, "CD-DA READ" } 146 }; 147 148 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { 149 { 150 /* 151 * I believe that 0xD8 is the Plextor proprietary command 152 * to read CD-DA data. I'm not sure which Plextor CDROM 153 * models support the command, though. I know for sure 154 * that the 4X, 8X, and 12X models do, and presumably the 155 * 12-20X does. I don't know about any earlier models, 156 * though. If anyone has any more complete information, 157 * feel free to change this quirk entry. 158 */ 159 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, 160 nitems(plextor_cd_ops), 161 plextor_cd_ops 162 } 163 }; 164 165 static struct op_table_entry scsi_op_codes[] = { 166 /* 167 * From: http://www.t10.org/lists/op-num.txt 168 * Modifications by Kenneth Merry (ken@FreeBSD.ORG) 169 * and Jung-uk Kim (jkim@FreeBSD.org) 170 * 171 * Note: order is important in this table, scsi_op_desc() currently 172 * depends on the opcodes in the table being in order to save 173 * search time. 174 * Note: scanner and comm. devices are carried over from the previous 175 * version because they were removed in the latest spec. 176 */ 177 /* File: OP-NUM.TXT 178 * 179 * SCSI Operation Codes 180 * Numeric Sorted Listing 181 * as of 5/26/15 182 * 183 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 184 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- 185 * . L - PRINTER DEVICE (SSC) M = Mandatory 186 * . P - PROCESSOR DEVICE (SPC) O = Optional 187 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. 188 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete 189 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 190 * . . .M - MEDIA CHANGER DEVICE (SMC-2) 191 * . . . A - STORAGE ARRAY DEVICE (SCC-2) 192 * . . . .E - ENCLOSURE SERVICES DEVICE (SES) 193 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 194 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 195 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 196 * . . . . .F - OBJECT-BASED STORAGE (OSD) 197 * OP DTLPWROMAEBKVF Description 198 * -- -------------- ---------------------------------------------- */ 199 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ 200 { 0x00, ALL, "TEST UNIT READY" }, 201 /* 01 M REWIND */ 202 { 0x01, T, "REWIND" }, 203 /* 01 Z V ZZZZ REZERO UNIT */ 204 { 0x01, D | W | R | O | M, "REZERO UNIT" }, 205 /* 02 VVVVVV V */ 206 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ 207 { 0x03, ALL, "REQUEST SENSE" }, 208 /* 04 M OO FORMAT UNIT */ 209 { 0x04, D | R | O, "FORMAT UNIT" }, 210 /* 04 O FORMAT MEDIUM */ 211 { 0x04, T, "FORMAT MEDIUM" }, 212 /* 04 O FORMAT */ 213 { 0x04, L, "FORMAT" }, 214 /* 05 VMVVVV V READ BLOCK LIMITS */ 215 { 0x05, T, "READ BLOCK LIMITS" }, 216 /* 06 VVVVVV V */ 217 /* 07 OVV O OV REASSIGN BLOCKS */ 218 { 0x07, D | W | O, "REASSIGN BLOCKS" }, 219 /* 07 O INITIALIZE ELEMENT STATUS */ 220 { 0x07, M, "INITIALIZE ELEMENT STATUS" }, 221 /* 08 MOV O OV READ(6) */ 222 { 0x08, D | T | W | O, "READ(6)" }, 223 /* 08 O RECEIVE */ 224 { 0x08, P, "RECEIVE" }, 225 /* 08 GET MESSAGE(6) */ 226 { 0x08, C, "GET MESSAGE(6)" }, 227 /* 09 VVVVVV V */ 228 /* 0A OO O OV WRITE(6) */ 229 { 0x0A, D | T | W | O, "WRITE(6)" }, 230 /* 0A M SEND(6) */ 231 { 0x0A, P, "SEND(6)" }, 232 /* 0A SEND MESSAGE(6) */ 233 { 0x0A, C, "SEND MESSAGE(6)" }, 234 /* 0A M PRINT */ 235 { 0x0A, L, "PRINT" }, 236 /* 0B Z ZOZV SEEK(6) */ 237 { 0x0B, D | W | R | O, "SEEK(6)" }, 238 /* 0B O SET CAPACITY */ 239 { 0x0B, T, "SET CAPACITY" }, 240 /* 0B O SLEW AND PRINT */ 241 { 0x0B, L, "SLEW AND PRINT" }, 242 /* 0C VVVVVV V */ 243 /* 0D VVVVVV V */ 244 /* 0E VVVVVV V */ 245 /* 0F VOVVVV V READ REVERSE(6) */ 246 { 0x0F, T, "READ REVERSE(6)" }, 247 /* 10 VM VVV WRITE FILEMARKS(6) */ 248 { 0x10, T, "WRITE FILEMARKS(6)" }, 249 /* 10 O SYNCHRONIZE BUFFER */ 250 { 0x10, L, "SYNCHRONIZE BUFFER" }, 251 /* 11 VMVVVV SPACE(6) */ 252 { 0x11, T, "SPACE(6)" }, 253 /* 12 MMMMMMMMMMMMMM INQUIRY */ 254 { 0x12, ALL, "INQUIRY" }, 255 /* 13 V VVVV */ 256 /* 13 O VERIFY(6) */ 257 { 0x13, T, "VERIFY(6)" }, 258 /* 14 VOOVVV RECOVER BUFFERED DATA */ 259 { 0x14, T | L, "RECOVER BUFFERED DATA" }, 260 /* 15 OMO O OOOO OO MODE SELECT(6) */ 261 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, 262 /* 16 ZZMZO OOOZ O RESERVE(6) */ 263 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, 264 /* 16 Z RESERVE ELEMENT(6) */ 265 { 0x16, M, "RESERVE ELEMENT(6)" }, 266 /* 17 ZZMZO OOOZ O RELEASE(6) */ 267 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, 268 /* 17 Z RELEASE ELEMENT(6) */ 269 { 0x17, M, "RELEASE ELEMENT(6)" }, 270 /* 18 ZZZZOZO Z COPY */ 271 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, 272 /* 19 VMVVVV ERASE(6) */ 273 { 0x19, T, "ERASE(6)" }, 274 /* 1A OMO O OOOO OO MODE SENSE(6) */ 275 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, 276 /* 1B O OOO O MO O START STOP UNIT */ 277 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, 278 /* 1B O M LOAD UNLOAD */ 279 { 0x1B, T | V, "LOAD UNLOAD" }, 280 /* 1B SCAN */ 281 { 0x1B, S, "SCAN" }, 282 /* 1B O STOP PRINT */ 283 { 0x1B, L, "STOP PRINT" }, 284 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ 285 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, 286 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ 287 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, 288 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ 289 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, 290 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ 291 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, 292 /* 1F */ 293 /* 20 V VVV V */ 294 /* 21 V VVV V */ 295 /* 22 V VVV V */ 296 /* 23 V V V V */ 297 /* 23 O READ FORMAT CAPACITIES */ 298 { 0x23, R, "READ FORMAT CAPACITIES" }, 299 /* 24 V VV SET WINDOW */ 300 { 0x24, S, "SET WINDOW" }, 301 /* 25 M M M M READ CAPACITY(10) */ 302 { 0x25, D | W | O | B, "READ CAPACITY(10)" }, 303 /* 25 O READ CAPACITY */ 304 { 0x25, R, "READ CAPACITY" }, 305 /* 25 M READ CARD CAPACITY */ 306 { 0x25, K, "READ CARD CAPACITY" }, 307 /* 25 GET WINDOW */ 308 { 0x25, S, "GET WINDOW" }, 309 /* 26 V VV */ 310 /* 27 V VV */ 311 /* 28 M MOM MM READ(10) */ 312 { 0x28, D | W | R | O | B | K | S, "READ(10)" }, 313 /* 28 GET MESSAGE(10) */ 314 { 0x28, C, "GET MESSAGE(10)" }, 315 /* 29 V VVO READ GENERATION */ 316 { 0x29, O, "READ GENERATION" }, 317 /* 2A O MOM MO WRITE(10) */ 318 { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, 319 /* 2A SEND(10) */ 320 { 0x2A, S, "SEND(10)" }, 321 /* 2A SEND MESSAGE(10) */ 322 { 0x2A, C, "SEND MESSAGE(10)" }, 323 /* 2B Z OOO O SEEK(10) */ 324 { 0x2B, D | W | R | O | K, "SEEK(10)" }, 325 /* 2B O LOCATE(10) */ 326 { 0x2B, T, "LOCATE(10)" }, 327 /* 2B O POSITION TO ELEMENT */ 328 { 0x2B, M, "POSITION TO ELEMENT" }, 329 /* 2C V OO ERASE(10) */ 330 { 0x2C, R | O, "ERASE(10)" }, 331 /* 2D O READ UPDATED BLOCK */ 332 { 0x2D, O, "READ UPDATED BLOCK" }, 333 /* 2D V */ 334 /* 2E O OOO MO WRITE AND VERIFY(10) */ 335 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, 336 /* 2F O OOO VERIFY(10) */ 337 { 0x2F, D | W | R | O, "VERIFY(10)" }, 338 /* 30 Z ZZZ SEARCH DATA HIGH(10) */ 339 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, 340 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ 341 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, 342 /* 31 OBJECT POSITION */ 343 { 0x31, S, "OBJECT POSITION" }, 344 /* 32 Z ZZZ SEARCH DATA LOW(10) */ 345 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, 346 /* 33 Z OZO SET LIMITS(10) */ 347 { 0x33, D | W | R | O, "SET LIMITS(10)" }, 348 /* 34 O O O O PRE-FETCH(10) */ 349 { 0x34, D | W | O | K, "PRE-FETCH(10)" }, 350 /* 34 M READ POSITION */ 351 { 0x34, T, "READ POSITION" }, 352 /* 34 GET DATA BUFFER STATUS */ 353 { 0x34, S, "GET DATA BUFFER STATUS" }, 354 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ 355 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, 356 /* 36 Z O O O LOCK UNLOCK CACHE(10) */ 357 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, 358 /* 37 O O READ DEFECT DATA(10) */ 359 { 0x37, D | O, "READ DEFECT DATA(10)" }, 360 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ 361 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, 362 /* 38 O O O MEDIUM SCAN */ 363 { 0x38, W | O | K, "MEDIUM SCAN" }, 364 /* 39 ZZZZOZO Z COMPARE */ 365 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, 366 /* 3A ZZZZOZO Z COPY AND VERIFY */ 367 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, 368 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ 369 { 0x3B, ALL, "WRITE BUFFER" }, 370 /* 3C OOOOOOOOOO OOO READ BUFFER */ 371 { 0x3C, ALL & ~(B), "READ BUFFER" }, 372 /* 3D O UPDATE BLOCK */ 373 { 0x3D, O, "UPDATE BLOCK" }, 374 /* 3E O O O READ LONG(10) */ 375 { 0x3E, D | W | O, "READ LONG(10)" }, 376 /* 3F O O O WRITE LONG(10) */ 377 { 0x3F, D | W | O, "WRITE LONG(10)" }, 378 /* 40 ZZZZOZOZ CHANGE DEFINITION */ 379 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, 380 /* 41 O WRITE SAME(10) */ 381 { 0x41, D, "WRITE SAME(10)" }, 382 /* 42 O UNMAP */ 383 { 0x42, D, "UNMAP" }, 384 /* 42 O READ SUB-CHANNEL */ 385 { 0x42, R, "READ SUB-CHANNEL" }, 386 /* 43 O READ TOC/PMA/ATIP */ 387 { 0x43, R, "READ TOC/PMA/ATIP" }, 388 /* 44 M M REPORT DENSITY SUPPORT */ 389 { 0x44, T | V, "REPORT DENSITY SUPPORT" }, 390 /* 44 READ HEADER */ 391 /* 45 O PLAY AUDIO(10) */ 392 { 0x45, R, "PLAY AUDIO(10)" }, 393 /* 46 M GET CONFIGURATION */ 394 { 0x46, R, "GET CONFIGURATION" }, 395 /* 47 O PLAY AUDIO MSF */ 396 { 0x47, R, "PLAY AUDIO MSF" }, 397 /* 48 */ 398 /* 49 */ 399 /* 4A M GET EVENT STATUS NOTIFICATION */ 400 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, 401 /* 4B O PAUSE/RESUME */ 402 { 0x4B, R, "PAUSE/RESUME" }, 403 /* 4C OOOOO OOOO OOO LOG SELECT */ 404 { 0x4C, ALL & ~(R | B), "LOG SELECT" }, 405 /* 4D OOOOO OOOO OMO LOG SENSE */ 406 { 0x4D, ALL & ~(R | B), "LOG SENSE" }, 407 /* 4E O STOP PLAY/SCAN */ 408 { 0x4E, R, "STOP PLAY/SCAN" }, 409 /* 4F */ 410 /* 50 O XDWRITE(10) */ 411 { 0x50, D, "XDWRITE(10)" }, 412 /* 51 O XPWRITE(10) */ 413 { 0x51, D, "XPWRITE(10)" }, 414 /* 51 O READ DISC INFORMATION */ 415 { 0x51, R, "READ DISC INFORMATION" }, 416 /* 52 O XDREAD(10) */ 417 { 0x52, D, "XDREAD(10)" }, 418 /* 52 O READ TRACK INFORMATION */ 419 { 0x52, R, "READ TRACK INFORMATION" }, 420 /* 53 O RESERVE TRACK */ 421 { 0x53, R, "RESERVE TRACK" }, 422 /* 54 O SEND OPC INFORMATION */ 423 { 0x54, R, "SEND OPC INFORMATION" }, 424 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ 425 { 0x55, ALL & ~(P), "MODE SELECT(10)" }, 426 /* 56 ZZMZO OOOZ RESERVE(10) */ 427 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, 428 /* 56 Z RESERVE ELEMENT(10) */ 429 { 0x56, M, "RESERVE ELEMENT(10)" }, 430 /* 57 ZZMZO OOOZ RELEASE(10) */ 431 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, 432 /* 57 Z RELEASE ELEMENT(10) */ 433 { 0x57, M, "RELEASE ELEMENT(10)" }, 434 /* 58 O REPAIR TRACK */ 435 { 0x58, R, "REPAIR TRACK" }, 436 /* 59 */ 437 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ 438 { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, 439 /* 5B O CLOSE TRACK/SESSION */ 440 { 0x5B, R, "CLOSE TRACK/SESSION" }, 441 /* 5C O READ BUFFER CAPACITY */ 442 { 0x5C, R, "READ BUFFER CAPACITY" }, 443 /* 5D O SEND CUE SHEET */ 444 { 0x5D, R, "SEND CUE SHEET" }, 445 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ 446 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, 447 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ 448 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, 449 /* 7E OO O OOOO O extended CDB */ 450 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, 451 /* 7F O M variable length CDB (more than 16 bytes) */ 452 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, 453 /* 80 Z XDWRITE EXTENDED(16) */ 454 { 0x80, D, "XDWRITE EXTENDED(16)" }, 455 /* 80 M WRITE FILEMARKS(16) */ 456 { 0x80, T, "WRITE FILEMARKS(16)" }, 457 /* 81 Z REBUILD(16) */ 458 { 0x81, D, "REBUILD(16)" }, 459 /* 81 O READ REVERSE(16) */ 460 { 0x81, T, "READ REVERSE(16)" }, 461 /* 82 Z REGENERATE(16) */ 462 { 0x82, D, "REGENERATE(16)" }, 463 /* 83 OOOOO O OO EXTENDED COPY */ 464 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, 465 /* 84 OOOOO O OO RECEIVE COPY RESULTS */ 466 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, 467 /* 85 O O O ATA COMMAND PASS THROUGH(16) */ 468 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, 469 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ 470 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, 471 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ 472 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, 473 /* 88 MM O O O READ(16) */ 474 { 0x88, D | T | W | O | B, "READ(16)" }, 475 /* 89 O COMPARE AND WRITE*/ 476 { 0x89, D, "COMPARE AND WRITE" }, 477 /* 8A OM O O O WRITE(16) */ 478 { 0x8A, D | T | W | O | B, "WRITE(16)" }, 479 /* 8B O ORWRITE */ 480 { 0x8B, D, "ORWRITE" }, 481 /* 8C OO O OO O M READ ATTRIBUTE */ 482 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, 483 /* 8D OO O OO O O WRITE ATTRIBUTE */ 484 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, 485 /* 8E O O O O WRITE AND VERIFY(16) */ 486 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, 487 /* 8F OO O O O VERIFY(16) */ 488 { 0x8F, D | T | W | O | B, "VERIFY(16)" }, 489 /* 90 O O O O PRE-FETCH(16) */ 490 { 0x90, D | W | O | B, "PRE-FETCH(16)" }, 491 /* 91 O O O O SYNCHRONIZE CACHE(16) */ 492 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, 493 /* 91 O SPACE(16) */ 494 { 0x91, T, "SPACE(16)" }, 495 /* 92 Z O O LOCK UNLOCK CACHE(16) */ 496 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, 497 /* 92 O LOCATE(16) */ 498 { 0x92, T, "LOCATE(16)" }, 499 /* 93 O WRITE SAME(16) */ 500 { 0x93, D, "WRITE SAME(16)" }, 501 /* 93 M ERASE(16) */ 502 { 0x93, T, "ERASE(16)" }, 503 /* 94 O ZBC OUT */ 504 { 0x94, ALL, "ZBC OUT" }, 505 /* 95 O ZBC IN */ 506 { 0x95, ALL, "ZBC IN" }, 507 /* 96 */ 508 /* 97 */ 509 /* 98 */ 510 /* 99 */ 511 /* 9A O WRITE STREAM(16) */ 512 { 0x9A, D, "WRITE STREAM(16)" }, 513 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */ 514 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" }, 515 /* 9C O WRITE ATOMIC(16) */ 516 { 0x9C, D, "WRITE ATOMIC(16)" }, 517 /* 9D SERVICE ACTION BIDIRECTIONAL */ 518 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" }, 519 /* XXX KDM ALL for this? op-num.txt defines it for none.. */ 520 /* 9E SERVICE ACTION IN(16) */ 521 { 0x9E, ALL, "SERVICE ACTION IN(16)" }, 522 /* 9F M SERVICE ACTION OUT(16) */ 523 { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, 524 /* A0 MMOOO OMMM OMO REPORT LUNS */ 525 { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, 526 /* A1 O BLANK */ 527 { 0xA1, R, "BLANK" }, 528 /* A1 O O ATA COMMAND PASS THROUGH(12) */ 529 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, 530 /* A2 OO O O SECURITY PROTOCOL IN */ 531 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, 532 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ 533 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, 534 /* A3 O SEND KEY */ 535 { 0xA3, R, "SEND KEY" }, 536 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ 537 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, 538 /* A4 O REPORT KEY */ 539 { 0xA4, R, "REPORT KEY" }, 540 /* A5 O O OM MOVE MEDIUM */ 541 { 0xA5, T | W | O | M, "MOVE MEDIUM" }, 542 /* A5 O PLAY AUDIO(12) */ 543 { 0xA5, R, "PLAY AUDIO(12)" }, 544 /* A6 O EXCHANGE MEDIUM */ 545 { 0xA6, M, "EXCHANGE MEDIUM" }, 546 /* A6 O LOAD/UNLOAD C/DVD */ 547 { 0xA6, R, "LOAD/UNLOAD C/DVD" }, 548 /* A7 ZZ O O MOVE MEDIUM ATTACHED */ 549 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, 550 /* A7 O SET READ AHEAD */ 551 { 0xA7, R, "SET READ AHEAD" }, 552 /* A8 O OOO READ(12) */ 553 { 0xA8, D | W | R | O, "READ(12)" }, 554 /* A8 GET MESSAGE(12) */ 555 { 0xA8, C, "GET MESSAGE(12)" }, 556 /* A9 O SERVICE ACTION OUT(12) */ 557 { 0xA9, V, "SERVICE ACTION OUT(12)" }, 558 /* AA O OOO WRITE(12) */ 559 { 0xAA, D | W | R | O, "WRITE(12)" }, 560 /* AA SEND MESSAGE(12) */ 561 { 0xAA, C, "SEND MESSAGE(12)" }, 562 /* AB O O SERVICE ACTION IN(12) */ 563 { 0xAB, R | V, "SERVICE ACTION IN(12)" }, 564 /* AC O ERASE(12) */ 565 { 0xAC, O, "ERASE(12)" }, 566 /* AC O GET PERFORMANCE */ 567 { 0xAC, R, "GET PERFORMANCE" }, 568 /* AD O READ DVD STRUCTURE */ 569 { 0xAD, R, "READ DVD STRUCTURE" }, 570 /* AE O O O WRITE AND VERIFY(12) */ 571 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, 572 /* AF O OZO VERIFY(12) */ 573 { 0xAF, D | W | R | O, "VERIFY(12)" }, 574 /* B0 ZZZ SEARCH DATA HIGH(12) */ 575 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, 576 /* B1 ZZZ SEARCH DATA EQUAL(12) */ 577 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, 578 /* B2 ZZZ SEARCH DATA LOW(12) */ 579 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, 580 /* B3 Z OZO SET LIMITS(12) */ 581 { 0xB3, D | W | R | O, "SET LIMITS(12)" }, 582 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ 583 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, 584 /* B5 OO O O SECURITY PROTOCOL OUT */ 585 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, 586 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ 587 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, 588 /* B6 O SEND VOLUME TAG */ 589 { 0xB6, M, "SEND VOLUME TAG" }, 590 /* B6 O SET STREAMING */ 591 { 0xB6, R, "SET STREAMING" }, 592 /* B7 O O READ DEFECT DATA(12) */ 593 { 0xB7, D | O, "READ DEFECT DATA(12)" }, 594 /* B8 O OZOM READ ELEMENT STATUS */ 595 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, 596 /* B9 O READ CD MSF */ 597 { 0xB9, R, "READ CD MSF" }, 598 /* BA O O OOMO REDUNDANCY GROUP (IN) */ 599 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, 600 /* BA O SCAN */ 601 { 0xBA, R, "SCAN" }, 602 /* BB O O OOOO REDUNDANCY GROUP (OUT) */ 603 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, 604 /* BB O SET CD SPEED */ 605 { 0xBB, R, "SET CD SPEED" }, 606 /* BC O O OOMO SPARE (IN) */ 607 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, 608 /* BD O O OOOO SPARE (OUT) */ 609 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, 610 /* BD O MECHANISM STATUS */ 611 { 0xBD, R, "MECHANISM STATUS" }, 612 /* BE O O OOMO VOLUME SET (IN) */ 613 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, 614 /* BE O READ CD */ 615 { 0xBE, R, "READ CD" }, 616 /* BF O O OOOO VOLUME SET (OUT) */ 617 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, 618 /* BF O SEND DVD STRUCTURE */ 619 { 0xBF, R, "SEND DVD STRUCTURE" } 620 }; 621 622 const char * 623 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 624 { 625 caddr_t match; 626 int i, j; 627 u_int32_t opmask; 628 u_int16_t pd_type; 629 int num_ops[2]; 630 struct op_table_entry *table[2]; 631 int num_tables; 632 633 /* 634 * If we've got inquiry data, use it to determine what type of 635 * device we're dealing with here. Otherwise, assume direct 636 * access. 637 */ 638 if (inq_data == NULL) { 639 pd_type = T_DIRECT; 640 match = NULL; 641 } else { 642 pd_type = SID_TYPE(inq_data); 643 644 match = cam_quirkmatch((caddr_t)inq_data, 645 (caddr_t)scsi_op_quirk_table, 646 nitems(scsi_op_quirk_table), 647 sizeof(*scsi_op_quirk_table), 648 scsi_inquiry_match); 649 } 650 651 if (match != NULL) { 652 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; 653 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; 654 table[1] = scsi_op_codes; 655 num_ops[1] = nitems(scsi_op_codes); 656 num_tables = 2; 657 } else { 658 /* 659 * If this is true, we have a vendor specific opcode that 660 * wasn't covered in the quirk table. 661 */ 662 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) 663 return("Vendor Specific Command"); 664 665 table[0] = scsi_op_codes; 666 num_ops[0] = nitems(scsi_op_codes); 667 num_tables = 1; 668 } 669 670 /* RBC is 'Simplified' Direct Access Device */ 671 if (pd_type == T_RBC) 672 pd_type = T_DIRECT; 673 674 /* 675 * Host managed drives are direct access for the most part. 676 */ 677 if (pd_type == T_ZBC_HM) 678 pd_type = T_DIRECT; 679 680 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */ 681 if (pd_type == T_NODEVICE) 682 pd_type = T_DIRECT; 683 684 opmask = 1 << pd_type; 685 686 for (j = 0; j < num_tables; j++) { 687 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ 688 if ((table[j][i].opcode == opcode) 689 && ((table[j][i].opmask & opmask) != 0)) 690 return(table[j][i].desc); 691 } 692 } 693 694 /* 695 * If we can't find a match for the command in the table, we just 696 * assume it's a vendor specifc command. 697 */ 698 return("Vendor Specific Command"); 699 700 } 701 702 #else /* SCSI_NO_OP_STRINGS */ 703 704 const char * 705 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 706 { 707 return(""); 708 } 709 710 #endif 711 712 713 #if !defined(SCSI_NO_SENSE_STRINGS) 714 #define SST(asc, ascq, action, desc) \ 715 asc, ascq, action, desc 716 #else 717 const char empty_string[] = ""; 718 719 #define SST(asc, ascq, action, desc) \ 720 asc, ascq, action, empty_string 721 #endif 722 723 const struct sense_key_table_entry sense_key_table[] = 724 { 725 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, 726 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, 727 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" }, 728 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, 729 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, 730 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, 731 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, 732 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, 733 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, 734 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, 735 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, 736 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, 737 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, 738 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, 739 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, 740 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } 741 }; 742 743 static struct asc_table_entry quantum_fireball_entries[] = { 744 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 745 "Logical unit not ready, initializing cmd. required") } 746 }; 747 748 static struct asc_table_entry sony_mo_entries[] = { 749 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 750 "Logical unit not ready, cause not reportable") } 751 }; 752 753 static struct asc_table_entry hgst_entries[] = { 754 { SST(0x04, 0xF0, SS_RDEF, 755 "Vendor Unique - Logical Unit Not Ready") }, 756 { SST(0x0A, 0x01, SS_RDEF, 757 "Unrecovered Super Certification Log Write Error") }, 758 { SST(0x0A, 0x02, SS_RDEF, 759 "Unrecovered Super Certification Log Read Error") }, 760 { SST(0x15, 0x03, SS_RDEF, 761 "Unrecovered Sector Error") }, 762 { SST(0x3E, 0x04, SS_RDEF, 763 "Unrecovered Self-Test Hard-Cache Test Fail") }, 764 { SST(0x3E, 0x05, SS_RDEF, 765 "Unrecovered Self-Test OTF-Cache Fail") }, 766 { SST(0x40, 0x00, SS_RDEF, 767 "Unrecovered SAT No Buffer Overflow Error") }, 768 { SST(0x40, 0x01, SS_RDEF, 769 "Unrecovered SAT Buffer Overflow Error") }, 770 { SST(0x40, 0x02, SS_RDEF, 771 "Unrecovered SAT No Buffer Overflow With ECS Fault") }, 772 { SST(0x40, 0x03, SS_RDEF, 773 "Unrecovered SAT Buffer Overflow With ECS Fault") }, 774 { SST(0x40, 0x81, SS_RDEF, 775 "DRAM Failure") }, 776 { SST(0x44, 0x0B, SS_RDEF, 777 "Vendor Unique - Internal Target Failure") }, 778 { SST(0x44, 0xF2, SS_RDEF, 779 "Vendor Unique - Internal Target Failure") }, 780 { SST(0x44, 0xF6, SS_RDEF, 781 "Vendor Unique - Internal Target Failure") }, 782 { SST(0x44, 0xF9, SS_RDEF, 783 "Vendor Unique - Internal Target Failure") }, 784 { SST(0x44, 0xFA, SS_RDEF, 785 "Vendor Unique - Internal Target Failure") }, 786 { SST(0x5D, 0x22, SS_RDEF, 787 "Extreme Over-Temperature Warning") }, 788 { SST(0x5D, 0x50, SS_RDEF, 789 "Load/Unload cycle Count Warning") }, 790 { SST(0x81, 0x00, SS_RDEF, 791 "Vendor Unique - Internal Logic Error") }, 792 { SST(0x85, 0x00, SS_RDEF, 793 "Vendor Unique - Internal Key Seed Error") }, 794 }; 795 796 static struct asc_table_entry seagate_entries[] = { 797 { SST(0x04, 0xF0, SS_RDEF, 798 "Logical Unit Not Ready, super certify in Progress") }, 799 { SST(0x08, 0x86, SS_RDEF, 800 "Write Fault Data Corruption") }, 801 { SST(0x09, 0x0D, SS_RDEF, 802 "Tracking Failure") }, 803 { SST(0x09, 0x0E, SS_RDEF, 804 "ETF Failure") }, 805 { SST(0x0B, 0x5D, SS_RDEF, 806 "Pre-SMART Warning") }, 807 { SST(0x0B, 0x85, SS_RDEF, 808 "5V Voltage Warning") }, 809 { SST(0x0B, 0x8C, SS_RDEF, 810 "12V Voltage Warning") }, 811 { SST(0x0C, 0xFF, SS_RDEF, 812 "Write Error - Too many error recovery revs") }, 813 { SST(0x11, 0xFF, SS_RDEF, 814 "Unrecovered Read Error - Too many error recovery revs") }, 815 { SST(0x19, 0x0E, SS_RDEF, 816 "Fewer than 1/2 defect list copies") }, 817 { SST(0x20, 0xF3, SS_RDEF, 818 "Illegal CDB linked to skip mask cmd") }, 819 { SST(0x24, 0xF0, SS_RDEF, 820 "Illegal byte in CDB, LBA not matching") }, 821 { SST(0x24, 0xF1, SS_RDEF, 822 "Illegal byte in CDB, LEN not matching") }, 823 { SST(0x24, 0xF2, SS_RDEF, 824 "Mask not matching transfer length") }, 825 { SST(0x24, 0xF3, SS_RDEF, 826 "Drive formatted without plist") }, 827 { SST(0x26, 0x95, SS_RDEF, 828 "Invalid Field Parameter - CAP File") }, 829 { SST(0x26, 0x96, SS_RDEF, 830 "Invalid Field Parameter - RAP File") }, 831 { SST(0x26, 0x97, SS_RDEF, 832 "Invalid Field Parameter - TMS Firmware Tag") }, 833 { SST(0x26, 0x98, SS_RDEF, 834 "Invalid Field Parameter - Check Sum") }, 835 { SST(0x26, 0x99, SS_RDEF, 836 "Invalid Field Parameter - Firmware Tag") }, 837 { SST(0x29, 0x08, SS_RDEF, 838 "Write Log Dump data") }, 839 { SST(0x29, 0x09, SS_RDEF, 840 "Write Log Dump data") }, 841 { SST(0x29, 0x0A, SS_RDEF, 842 "Reserved disk space") }, 843 { SST(0x29, 0x0B, SS_RDEF, 844 "SDBP") }, 845 { SST(0x29, 0x0C, SS_RDEF, 846 "SDBP") }, 847 { SST(0x31, 0x91, SS_RDEF, 848 "Format Corrupted World Wide Name (WWN) is Invalid") }, 849 { SST(0x32, 0x03, SS_RDEF, 850 "Defect List - Length exceeds Command Allocated Length") }, 851 { SST(0x33, 0x00, SS_RDEF, 852 "Flash not ready for access") }, 853 { SST(0x3F, 0x70, SS_RDEF, 854 "Invalid RAP block") }, 855 { SST(0x3F, 0x71, SS_RDEF, 856 "RAP/ETF mismatch") }, 857 { SST(0x3F, 0x90, SS_RDEF, 858 "Invalid CAP block") }, 859 { SST(0x3F, 0x91, SS_RDEF, 860 "World Wide Name (WWN) Mismatch") }, 861 { SST(0x40, 0x01, SS_RDEF, 862 "DRAM Parity Error") }, 863 { SST(0x40, 0x02, SS_RDEF, 864 "DRAM Parity Error") }, 865 { SST(0x42, 0x0A, SS_RDEF, 866 "Loopback Test") }, 867 { SST(0x42, 0x0B, SS_RDEF, 868 "Loopback Test") }, 869 { SST(0x44, 0xF2, SS_RDEF, 870 "Compare error during data integrity check") }, 871 { SST(0x44, 0xF6, SS_RDEF, 872 "Unrecoverable error during data integrity check") }, 873 { SST(0x47, 0x80, SS_RDEF, 874 "Fibre Channel Sequence Error") }, 875 { SST(0x4E, 0x01, SS_RDEF, 876 "Information Unit Too Short") }, 877 { SST(0x80, 0x00, SS_RDEF, 878 "General Firmware Error / Command Timeout") }, 879 { SST(0x80, 0x01, SS_RDEF, 880 "Command Timeout") }, 881 { SST(0x80, 0x02, SS_RDEF, 882 "Command Timeout") }, 883 { SST(0x80, 0x80, SS_RDEF, 884 "FC FIFO Error During Read Transfer") }, 885 { SST(0x80, 0x81, SS_RDEF, 886 "FC FIFO Error During Write Transfer") }, 887 { SST(0x80, 0x82, SS_RDEF, 888 "DISC FIFO Error During Read Transfer") }, 889 { SST(0x80, 0x83, SS_RDEF, 890 "DISC FIFO Error During Write Transfer") }, 891 { SST(0x80, 0x84, SS_RDEF, 892 "LBA Seeded LRC Error on Read") }, 893 { SST(0x80, 0x85, SS_RDEF, 894 "LBA Seeded LRC Error on Write") }, 895 { SST(0x80, 0x86, SS_RDEF, 896 "IOEDC Error on Read") }, 897 { SST(0x80, 0x87, SS_RDEF, 898 "IOEDC Error on Write") }, 899 { SST(0x80, 0x88, SS_RDEF, 900 "Host Parity Check Failed") }, 901 { SST(0x80, 0x89, SS_RDEF, 902 "IOEDC error on read detected by formatter") }, 903 { SST(0x80, 0x8A, SS_RDEF, 904 "Host Parity Errors / Host FIFO Initialization Failed") }, 905 { SST(0x80, 0x8B, SS_RDEF, 906 "Host Parity Errors") }, 907 { SST(0x80, 0x8C, SS_RDEF, 908 "Host Parity Errors") }, 909 { SST(0x80, 0x8D, SS_RDEF, 910 "Host Parity Errors") }, 911 { SST(0x81, 0x00, SS_RDEF, 912 "LA Check Failed") }, 913 { SST(0x82, 0x00, SS_RDEF, 914 "Internal client detected insufficient buffer") }, 915 { SST(0x84, 0x00, SS_RDEF, 916 "Scheduled Diagnostic And Repair") }, 917 }; 918 919 static struct scsi_sense_quirk_entry sense_quirk_table[] = { 920 { 921 /* 922 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b 923 * when they really should return 0x04 0x02. 924 */ 925 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, 926 /*num_sense_keys*/0, 927 nitems(quantum_fireball_entries), 928 /*sense key entries*/NULL, 929 quantum_fireball_entries 930 }, 931 { 932 /* 933 * This Sony MO drive likes to return 0x04, 0x00 when it 934 * isn't spun up. 935 */ 936 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, 937 /*num_sense_keys*/0, 938 nitems(sony_mo_entries), 939 /*sense key entries*/NULL, 940 sony_mo_entries 941 }, 942 { 943 /* 944 * HGST vendor-specific error codes 945 */ 946 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"}, 947 /*num_sense_keys*/0, 948 nitems(hgst_entries), 949 /*sense key entries*/NULL, 950 hgst_entries 951 }, 952 { 953 /* 954 * SEAGATE vendor-specific error codes 955 */ 956 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"}, 957 /*num_sense_keys*/0, 958 nitems(seagate_entries), 959 /*sense key entries*/NULL, 960 seagate_entries 961 } 962 }; 963 964 const u_int sense_quirk_table_size = nitems(sense_quirk_table); 965 966 static struct asc_table_entry asc_table[] = { 967 /* 968 * From: http://www.t10.org/lists/asc-num.txt 969 * Modifications by Jung-uk Kim (jkim@FreeBSD.org) 970 */ 971 /* 972 * File: ASC-NUM.TXT 973 * 974 * SCSI ASC/ASCQ Assignments 975 * Numeric Sorted Listing 976 * as of 8/12/15 977 * 978 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 979 * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- 980 * . L - PRINTER DEVICE (SSC) blank = reserved 981 * . P - PROCESSOR DEVICE (SPC) not blank = allowed 982 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) 983 * . . R - CD DEVICE (MMC) 984 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 985 * . . .M - MEDIA CHANGER DEVICE (SMC) 986 * . . . A - STORAGE ARRAY DEVICE (SCC) 987 * . . . E - ENCLOSURE SERVICES DEVICE (SES) 988 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 989 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 990 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 991 * . . . . .F - OBJECT-BASED STORAGE (OSD) 992 * DTLPWROMAEBKVF 993 * ASC ASCQ Action 994 * Description 995 */ 996 /* DTLPWROMAEBKVF */ 997 { SST(0x00, 0x00, SS_NOP, 998 "No additional sense information") }, 999 /* T */ 1000 { SST(0x00, 0x01, SS_RDEF, 1001 "Filemark detected") }, 1002 /* T */ 1003 { SST(0x00, 0x02, SS_RDEF, 1004 "End-of-partition/medium detected") }, 1005 /* T */ 1006 { SST(0x00, 0x03, SS_RDEF, 1007 "Setmark detected") }, 1008 /* T */ 1009 { SST(0x00, 0x04, SS_RDEF, 1010 "Beginning-of-partition/medium detected") }, 1011 /* TL */ 1012 { SST(0x00, 0x05, SS_RDEF, 1013 "End-of-data detected") }, 1014 /* DTLPWROMAEBKVF */ 1015 { SST(0x00, 0x06, SS_RDEF, 1016 "I/O process terminated") }, 1017 /* T */ 1018 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ 1019 "Programmable early warning detected") }, 1020 /* R */ 1021 { SST(0x00, 0x11, SS_FATAL | EBUSY, 1022 "Audio play operation in progress") }, 1023 /* R */ 1024 { SST(0x00, 0x12, SS_NOP, 1025 "Audio play operation paused") }, 1026 /* R */ 1027 { SST(0x00, 0x13, SS_NOP, 1028 "Audio play operation successfully completed") }, 1029 /* R */ 1030 { SST(0x00, 0x14, SS_RDEF, 1031 "Audio play operation stopped due to error") }, 1032 /* R */ 1033 { SST(0x00, 0x15, SS_NOP, 1034 "No current audio status to return") }, 1035 /* DTLPWROMAEBKVF */ 1036 { SST(0x00, 0x16, SS_FATAL | EBUSY, 1037 "Operation in progress") }, 1038 /* DTL WROMAEBKVF */ 1039 { SST(0x00, 0x17, SS_RDEF, 1040 "Cleaning requested") }, 1041 /* T */ 1042 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ 1043 "Erase operation in progress") }, 1044 /* T */ 1045 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ 1046 "Locate operation in progress") }, 1047 /* T */ 1048 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ 1049 "Rewind operation in progress") }, 1050 /* T */ 1051 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ 1052 "Set capacity operation in progress") }, 1053 /* T */ 1054 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ 1055 "Verify operation in progress") }, 1056 /* DT B */ 1057 { SST(0x00, 0x1D, SS_NOP, 1058 "ATA pass through information available") }, 1059 /* DT R MAEBKV */ 1060 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ 1061 "Conflicting SA creation request") }, 1062 /* DT B */ 1063 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */ 1064 "Logical unit transitioning to another power condition") }, 1065 /* DT P B */ 1066 { SST(0x00, 0x20, SS_NOP, 1067 "Extended copy information available") }, 1068 /* D */ 1069 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */ 1070 "Atomic command aborted due to ACA") }, 1071 /* D W O BK */ 1072 { SST(0x01, 0x00, SS_RDEF, 1073 "No index/sector signal") }, 1074 /* D WRO BK */ 1075 { SST(0x02, 0x00, SS_RDEF, 1076 "No seek complete") }, 1077 /* DTL W O BK */ 1078 { SST(0x03, 0x00, SS_RDEF, 1079 "Peripheral device write fault") }, 1080 /* T */ 1081 { SST(0x03, 0x01, SS_RDEF, 1082 "No write current") }, 1083 /* T */ 1084 { SST(0x03, 0x02, SS_RDEF, 1085 "Excessive write errors") }, 1086 /* DTLPWROMAEBKVF */ 1087 { SST(0x04, 0x00, SS_RDEF, 1088 "Logical unit not ready, cause not reportable") }, 1089 /* DTLPWROMAEBKVF */ 1090 { SST(0x04, 0x01, SS_WAIT | EBUSY, 1091 "Logical unit is in process of becoming ready") }, 1092 /* DTLPWROMAEBKVF */ 1093 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1094 "Logical unit not ready, initializing command required") }, 1095 /* DTLPWROMAEBKVF */ 1096 { SST(0x04, 0x03, SS_FATAL | ENXIO, 1097 "Logical unit not ready, manual intervention required") }, 1098 /* DTL RO B */ 1099 { SST(0x04, 0x04, SS_FATAL | EBUSY, 1100 "Logical unit not ready, format in progress") }, 1101 /* DT W O A BK F */ 1102 { SST(0x04, 0x05, SS_FATAL | EBUSY, 1103 "Logical unit not ready, rebuild in progress") }, 1104 /* DT W O A BK */ 1105 { SST(0x04, 0x06, SS_FATAL | EBUSY, 1106 "Logical unit not ready, recalculation in progress") }, 1107 /* DTLPWROMAEBKVF */ 1108 { SST(0x04, 0x07, SS_FATAL | EBUSY, 1109 "Logical unit not ready, operation in progress") }, 1110 /* R */ 1111 { SST(0x04, 0x08, SS_FATAL | EBUSY, 1112 "Logical unit not ready, long write in progress") }, 1113 /* DTLPWROMAEBKVF */ 1114 { SST(0x04, 0x09, SS_RDEF, /* XXX TBD */ 1115 "Logical unit not ready, self-test in progress") }, 1116 /* DTLPWROMAEBKVF */ 1117 { SST(0x04, 0x0A, SS_WAIT | ENXIO, 1118 "Logical unit not accessible, asymmetric access state transition")}, 1119 /* DTLPWROMAEBKVF */ 1120 { SST(0x04, 0x0B, SS_FATAL | ENXIO, 1121 "Logical unit not accessible, target port in standby state") }, 1122 /* DTLPWROMAEBKVF */ 1123 { SST(0x04, 0x0C, SS_FATAL | ENXIO, 1124 "Logical unit not accessible, target port in unavailable state") }, 1125 /* F */ 1126 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ 1127 "Logical unit not ready, structure check required") }, 1128 /* DTL WR MAEBKVF */ 1129 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */ 1130 "Logical unit not ready, security session in progress") }, 1131 /* DT WROM B */ 1132 { SST(0x04, 0x10, SS_RDEF, /* XXX TBD */ 1133 "Logical unit not ready, auxiliary memory not accessible") }, 1134 /* DT WRO AEB VF */ 1135 { SST(0x04, 0x11, SS_WAIT | EBUSY, 1136 "Logical unit not ready, notify (enable spinup) required") }, 1137 /* M V */ 1138 { SST(0x04, 0x12, SS_RDEF, /* XXX TBD */ 1139 "Logical unit not ready, offline") }, 1140 /* DT R MAEBKV */ 1141 { SST(0x04, 0x13, SS_RDEF, /* XXX TBD */ 1142 "Logical unit not ready, SA creation in progress") }, 1143 /* D B */ 1144 { SST(0x04, 0x14, SS_RDEF, /* XXX TBD */ 1145 "Logical unit not ready, space allocation in progress") }, 1146 /* M */ 1147 { SST(0x04, 0x15, SS_RDEF, /* XXX TBD */ 1148 "Logical unit not ready, robotics disabled") }, 1149 /* M */ 1150 { SST(0x04, 0x16, SS_RDEF, /* XXX TBD */ 1151 "Logical unit not ready, configuration required") }, 1152 /* M */ 1153 { SST(0x04, 0x17, SS_RDEF, /* XXX TBD */ 1154 "Logical unit not ready, calibration required") }, 1155 /* M */ 1156 { SST(0x04, 0x18, SS_RDEF, /* XXX TBD */ 1157 "Logical unit not ready, a door is open") }, 1158 /* M */ 1159 { SST(0x04, 0x19, SS_RDEF, /* XXX TBD */ 1160 "Logical unit not ready, operating in sequential mode") }, 1161 /* DT B */ 1162 { SST(0x04, 0x1A, SS_RDEF, /* XXX TBD */ 1163 "Logical unit not ready, START/STOP UNIT command in progress") }, 1164 /* D B */ 1165 { SST(0x04, 0x1B, SS_RDEF, /* XXX TBD */ 1166 "Logical unit not ready, sanitize in progress") }, 1167 /* DT MAEB */ 1168 { SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1169 "Logical unit not ready, additional power use not yet granted") }, 1170 /* D */ 1171 { SST(0x04, 0x1D, SS_RDEF, /* XXX TBD */ 1172 "Logical unit not ready, configuration in progress") }, 1173 /* D */ 1174 { SST(0x04, 0x1E, SS_FATAL | ENXIO, 1175 "Logical unit not ready, microcode activation required") }, 1176 /* DTLPWROMAEBKVF */ 1177 { SST(0x04, 0x1F, SS_FATAL | ENXIO, 1178 "Logical unit not ready, microcode download required") }, 1179 /* DTLPWROMAEBKVF */ 1180 { SST(0x04, 0x20, SS_RDEF, /* XXX TBD */ 1181 "Logical unit not ready, logical unit reset required") }, 1182 /* DTLPWROMAEBKVF */ 1183 { SST(0x04, 0x21, SS_RDEF, /* XXX TBD */ 1184 "Logical unit not ready, hard reset required") }, 1185 /* DTLPWROMAEBKVF */ 1186 { SST(0x04, 0x22, SS_RDEF, /* XXX TBD */ 1187 "Logical unit not ready, power cycle required") }, 1188 /* DTL WROMAEBKVF */ 1189 { SST(0x05, 0x00, SS_RDEF, 1190 "Logical unit does not respond to selection") }, 1191 /* D WROM BK */ 1192 { SST(0x06, 0x00, SS_RDEF, 1193 "No reference position found") }, 1194 /* DTL WROM BK */ 1195 { SST(0x07, 0x00, SS_RDEF, 1196 "Multiple peripheral devices selected") }, 1197 /* DTL WROMAEBKVF */ 1198 { SST(0x08, 0x00, SS_RDEF, 1199 "Logical unit communication failure") }, 1200 /* DTL WROMAEBKVF */ 1201 { SST(0x08, 0x01, SS_RDEF, 1202 "Logical unit communication time-out") }, 1203 /* DTL WROMAEBKVF */ 1204 { SST(0x08, 0x02, SS_RDEF, 1205 "Logical unit communication parity error") }, 1206 /* DT ROM BK */ 1207 { SST(0x08, 0x03, SS_RDEF, 1208 "Logical unit communication CRC error (Ultra-DMA/32)") }, 1209 /* DTLPWRO K */ 1210 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ 1211 "Unreachable copy target") }, 1212 /* DT WRO B */ 1213 { SST(0x09, 0x00, SS_RDEF, 1214 "Track following error") }, 1215 /* WRO K */ 1216 { SST(0x09, 0x01, SS_RDEF, 1217 "Tracking servo failure") }, 1218 /* WRO K */ 1219 { SST(0x09, 0x02, SS_RDEF, 1220 "Focus servo failure") }, 1221 /* WRO */ 1222 { SST(0x09, 0x03, SS_RDEF, 1223 "Spindle servo failure") }, 1224 /* DT WRO B */ 1225 { SST(0x09, 0x04, SS_RDEF, 1226 "Head select fault") }, 1227 /* DT RO B */ 1228 { SST(0x09, 0x05, SS_RDEF, 1229 "Vibration induced tracking error") }, 1230 /* DTLPWROMAEBKVF */ 1231 { SST(0x0A, 0x00, SS_FATAL | ENOSPC, 1232 "Error log overflow") }, 1233 /* DTLPWROMAEBKVF */ 1234 { SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1235 "Warning") }, 1236 /* DTLPWROMAEBKVF */ 1237 { SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1238 "Warning - specified temperature exceeded") }, 1239 /* DTLPWROMAEBKVF */ 1240 { SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1241 "Warning - enclosure degraded") }, 1242 /* DTLPWROMAEBKVF */ 1243 { SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1244 "Warning - background self-test failed") }, 1245 /* DTLPWRO AEBKVF */ 1246 { SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1247 "Warning - background pre-scan detected medium error") }, 1248 /* DTLPWRO AEBKVF */ 1249 { SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1250 "Warning - background medium scan detected medium error") }, 1251 /* DTLPWROMAEBKVF */ 1252 { SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1253 "Warning - non-volatile cache now volatile") }, 1254 /* DTLPWROMAEBKVF */ 1255 { SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1256 "Warning - degraded power to non-volatile cache") }, 1257 /* DTLPWROMAEBKVF */ 1258 { SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1259 "Warning - power loss expected") }, 1260 /* D */ 1261 { SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1262 "Warning - device statistics notification available") }, 1263 /* DTLPWROMAEBKVF */ 1264 { SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE, 1265 "Warning - High critical temperature limit exceeded") }, 1266 /* DTLPWROMAEBKVF */ 1267 { SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE, 1268 "Warning - Low critical temperature limit exceeded") }, 1269 /* DTLPWROMAEBKVF */ 1270 { SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE, 1271 "Warning - High operating temperature limit exceeded") }, 1272 /* DTLPWROMAEBKVF */ 1273 { SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE, 1274 "Warning - Low operating temperature limit exceeded") }, 1275 /* DTLPWROMAEBKVF */ 1276 { SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE, 1277 "Warning - High citical humidity limit exceeded") }, 1278 /* DTLPWROMAEBKVF */ 1279 { SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE, 1280 "Warning - Low citical humidity limit exceeded") }, 1281 /* DTLPWROMAEBKVF */ 1282 { SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE, 1283 "Warning - High operating humidity limit exceeded") }, 1284 /* DTLPWROMAEBKVF */ 1285 { SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE, 1286 "Warning - Low operating humidity limit exceeded") }, 1287 /* T R */ 1288 { SST(0x0C, 0x00, SS_RDEF, 1289 "Write error") }, 1290 /* K */ 1291 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1292 "Write error - recovered with auto reallocation") }, 1293 /* D W O BK */ 1294 { SST(0x0C, 0x02, SS_RDEF, 1295 "Write error - auto reallocation failed") }, 1296 /* D W O BK */ 1297 { SST(0x0C, 0x03, SS_RDEF, 1298 "Write error - recommend reassignment") }, 1299 /* DT W O B */ 1300 { SST(0x0C, 0x04, SS_RDEF, 1301 "Compression check miscompare error") }, 1302 /* DT W O B */ 1303 { SST(0x0C, 0x05, SS_RDEF, 1304 "Data expansion occurred during compression") }, 1305 /* DT W O B */ 1306 { SST(0x0C, 0x06, SS_RDEF, 1307 "Block not compressible") }, 1308 /* R */ 1309 { SST(0x0C, 0x07, SS_RDEF, 1310 "Write error - recovery needed") }, 1311 /* R */ 1312 { SST(0x0C, 0x08, SS_RDEF, 1313 "Write error - recovery failed") }, 1314 /* R */ 1315 { SST(0x0C, 0x09, SS_RDEF, 1316 "Write error - loss of streaming") }, 1317 /* R */ 1318 { SST(0x0C, 0x0A, SS_RDEF, 1319 "Write error - padding blocks added") }, 1320 /* DT WROM B */ 1321 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ 1322 "Auxiliary memory write error") }, 1323 /* DTLPWRO AEBKVF */ 1324 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ 1325 "Write error - unexpected unsolicited data") }, 1326 /* DTLPWRO AEBKVF */ 1327 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ 1328 "Write error - not enough unsolicited data") }, 1329 /* DT W O BK */ 1330 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */ 1331 "Multiple write errors") }, 1332 /* R */ 1333 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ 1334 "Defects in error window") }, 1335 /* D */ 1336 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */ 1337 "Incomplete multiple atomic write operations") }, 1338 /* D */ 1339 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */ 1340 "Write error - recovery scan needed") }, 1341 /* D */ 1342 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */ 1343 "Write error - insufficient zone resources") }, 1344 /* DTLPWRO A K */ 1345 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ 1346 "Error detected by third party temporary initiator") }, 1347 /* DTLPWRO A K */ 1348 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ 1349 "Third party device failure") }, 1350 /* DTLPWRO A K */ 1351 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ 1352 "Copy target device not reachable") }, 1353 /* DTLPWRO A K */ 1354 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ 1355 "Incorrect copy target device type") }, 1356 /* DTLPWRO A K */ 1357 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ 1358 "Copy target device data underrun") }, 1359 /* DTLPWRO A K */ 1360 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ 1361 "Copy target device data overrun") }, 1362 /* DT PWROMAEBK F */ 1363 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ 1364 "Invalid information unit") }, 1365 /* DT PWROMAEBK F */ 1366 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ 1367 "Information unit too short") }, 1368 /* DT PWROMAEBK F */ 1369 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ 1370 "Information unit too long") }, 1371 /* DT P R MAEBK F */ 1372 { SST(0x0E, 0x03, SS_FATAL | EINVAL, 1373 "Invalid field in command information unit") }, 1374 /* D W O BK */ 1375 { SST(0x10, 0x00, SS_RDEF, 1376 "ID CRC or ECC error") }, 1377 /* DT W O */ 1378 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ 1379 "Logical block guard check failed") }, 1380 /* DT W O */ 1381 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ 1382 "Logical block application tag check failed") }, 1383 /* DT W O */ 1384 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ 1385 "Logical block reference tag check failed") }, 1386 /* T */ 1387 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */ 1388 "Logical block protection error on recovered buffer data") }, 1389 /* T */ 1390 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */ 1391 "Logical block protection method error") }, 1392 /* DT WRO BK */ 1393 { SST(0x11, 0x00, SS_FATAL|EIO, 1394 "Unrecovered read error") }, 1395 /* DT WRO BK */ 1396 { SST(0x11, 0x01, SS_FATAL|EIO, 1397 "Read retries exhausted") }, 1398 /* DT WRO BK */ 1399 { SST(0x11, 0x02, SS_FATAL|EIO, 1400 "Error too long to correct") }, 1401 /* DT W O BK */ 1402 { SST(0x11, 0x03, SS_FATAL|EIO, 1403 "Multiple read errors") }, 1404 /* D W O BK */ 1405 { SST(0x11, 0x04, SS_FATAL|EIO, 1406 "Unrecovered read error - auto reallocate failed") }, 1407 /* WRO B */ 1408 { SST(0x11, 0x05, SS_FATAL|EIO, 1409 "L-EC uncorrectable error") }, 1410 /* WRO B */ 1411 { SST(0x11, 0x06, SS_FATAL|EIO, 1412 "CIRC unrecovered error") }, 1413 /* W O B */ 1414 { SST(0x11, 0x07, SS_RDEF, 1415 "Data re-synchronization error") }, 1416 /* T */ 1417 { SST(0x11, 0x08, SS_RDEF, 1418 "Incomplete block read") }, 1419 /* T */ 1420 { SST(0x11, 0x09, SS_RDEF, 1421 "No gap found") }, 1422 /* DT O BK */ 1423 { SST(0x11, 0x0A, SS_RDEF, 1424 "Miscorrected error") }, 1425 /* D W O BK */ 1426 { SST(0x11, 0x0B, SS_FATAL|EIO, 1427 "Unrecovered read error - recommend reassignment") }, 1428 /* D W O BK */ 1429 { SST(0x11, 0x0C, SS_FATAL|EIO, 1430 "Unrecovered read error - recommend rewrite the data") }, 1431 /* DT WRO B */ 1432 { SST(0x11, 0x0D, SS_RDEF, 1433 "De-compression CRC error") }, 1434 /* DT WRO B */ 1435 { SST(0x11, 0x0E, SS_RDEF, 1436 "Cannot decompress using declared algorithm") }, 1437 /* R */ 1438 { SST(0x11, 0x0F, SS_RDEF, 1439 "Error reading UPC/EAN number") }, 1440 /* R */ 1441 { SST(0x11, 0x10, SS_RDEF, 1442 "Error reading ISRC number") }, 1443 /* R */ 1444 { SST(0x11, 0x11, SS_RDEF, 1445 "Read error - loss of streaming") }, 1446 /* DT WROM B */ 1447 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ 1448 "Auxiliary memory read error") }, 1449 /* DTLPWRO AEBKVF */ 1450 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ 1451 "Read error - failed retransmission request") }, 1452 /* D */ 1453 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ 1454 "Read error - LBA marked bad by application client") }, 1455 /* D */ 1456 { SST(0x11, 0x15, SS_RDEF, /* XXX TBD */ 1457 "Write after sanitize required") }, 1458 /* D W O BK */ 1459 { SST(0x12, 0x00, SS_RDEF, 1460 "Address mark not found for ID field") }, 1461 /* D W O BK */ 1462 { SST(0x13, 0x00, SS_RDEF, 1463 "Address mark not found for data field") }, 1464 /* DTL WRO BK */ 1465 { SST(0x14, 0x00, SS_RDEF, 1466 "Recorded entity not found") }, 1467 /* DT WRO BK */ 1468 { SST(0x14, 0x01, SS_RDEF, 1469 "Record not found") }, 1470 /* T */ 1471 { SST(0x14, 0x02, SS_RDEF, 1472 "Filemark or setmark not found") }, 1473 /* T */ 1474 { SST(0x14, 0x03, SS_RDEF, 1475 "End-of-data not found") }, 1476 /* T */ 1477 { SST(0x14, 0x04, SS_RDEF, 1478 "Block sequence error") }, 1479 /* DT W O BK */ 1480 { SST(0x14, 0x05, SS_RDEF, 1481 "Record not found - recommend reassignment") }, 1482 /* DT W O BK */ 1483 { SST(0x14, 0x06, SS_RDEF, 1484 "Record not found - data auto-reallocated") }, 1485 /* T */ 1486 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ 1487 "Locate operation failure") }, 1488 /* DTL WROM BK */ 1489 { SST(0x15, 0x00, SS_RDEF, 1490 "Random positioning error") }, 1491 /* DTL WROM BK */ 1492 { SST(0x15, 0x01, SS_RDEF, 1493 "Mechanical positioning error") }, 1494 /* DT WRO BK */ 1495 { SST(0x15, 0x02, SS_RDEF, 1496 "Positioning error detected by read of medium") }, 1497 /* D W O BK */ 1498 { SST(0x16, 0x00, SS_RDEF, 1499 "Data synchronization mark error") }, 1500 /* D W O BK */ 1501 { SST(0x16, 0x01, SS_RDEF, 1502 "Data sync error - data rewritten") }, 1503 /* D W O BK */ 1504 { SST(0x16, 0x02, SS_RDEF, 1505 "Data sync error - recommend rewrite") }, 1506 /* D W O BK */ 1507 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1508 "Data sync error - data auto-reallocated") }, 1509 /* D W O BK */ 1510 { SST(0x16, 0x04, SS_RDEF, 1511 "Data sync error - recommend reassignment") }, 1512 /* DT WRO BK */ 1513 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1514 "Recovered data with no error correction applied") }, 1515 /* DT WRO BK */ 1516 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1517 "Recovered data with retries") }, 1518 /* DT WRO BK */ 1519 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1520 "Recovered data with positive head offset") }, 1521 /* DT WRO BK */ 1522 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1523 "Recovered data with negative head offset") }, 1524 /* WRO B */ 1525 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1526 "Recovered data with retries and/or CIRC applied") }, 1527 /* D WRO BK */ 1528 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1529 "Recovered data using previous sector ID") }, 1530 /* D W O BK */ 1531 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1532 "Recovered data without ECC - data auto-reallocated") }, 1533 /* D WRO BK */ 1534 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1535 "Recovered data without ECC - recommend reassignment") }, 1536 /* D WRO BK */ 1537 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1538 "Recovered data without ECC - recommend rewrite") }, 1539 /* D WRO BK */ 1540 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1541 "Recovered data without ECC - data rewritten") }, 1542 /* DT WRO BK */ 1543 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1544 "Recovered data with error correction applied") }, 1545 /* D WRO BK */ 1546 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1547 "Recovered data with error corr. & retries applied") }, 1548 /* D WRO BK */ 1549 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1550 "Recovered data - data auto-reallocated") }, 1551 /* R */ 1552 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1553 "Recovered data with CIRC") }, 1554 /* R */ 1555 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1556 "Recovered data with L-EC") }, 1557 /* D WRO BK */ 1558 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1559 "Recovered data - recommend reassignment") }, 1560 /* D WRO BK */ 1561 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1562 "Recovered data - recommend rewrite") }, 1563 /* D W O BK */ 1564 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1565 "Recovered data with ECC - data rewritten") }, 1566 /* R */ 1567 { SST(0x18, 0x08, SS_RDEF, /* XXX TBD */ 1568 "Recovered data with linking") }, 1569 /* D O K */ 1570 { SST(0x19, 0x00, SS_RDEF, 1571 "Defect list error") }, 1572 /* D O K */ 1573 { SST(0x19, 0x01, SS_RDEF, 1574 "Defect list not available") }, 1575 /* D O K */ 1576 { SST(0x19, 0x02, SS_RDEF, 1577 "Defect list error in primary list") }, 1578 /* D O K */ 1579 { SST(0x19, 0x03, SS_RDEF, 1580 "Defect list error in grown list") }, 1581 /* DTLPWROMAEBKVF */ 1582 { SST(0x1A, 0x00, SS_RDEF, 1583 "Parameter list length error") }, 1584 /* DTLPWROMAEBKVF */ 1585 { SST(0x1B, 0x00, SS_RDEF, 1586 "Synchronous data transfer error") }, 1587 /* D O BK */ 1588 { SST(0x1C, 0x00, SS_RDEF, 1589 "Defect list not found") }, 1590 /* D O BK */ 1591 { SST(0x1C, 0x01, SS_RDEF, 1592 "Primary defect list not found") }, 1593 /* D O BK */ 1594 { SST(0x1C, 0x02, SS_RDEF, 1595 "Grown defect list not found") }, 1596 /* DT WRO BK */ 1597 { SST(0x1D, 0x00, SS_FATAL, 1598 "Miscompare during verify operation") }, 1599 /* D B */ 1600 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */ 1601 "Miscomparable verify of unmapped LBA") }, 1602 /* D W O BK */ 1603 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1604 "Recovered ID with ECC correction") }, 1605 /* D O K */ 1606 { SST(0x1F, 0x00, SS_RDEF, 1607 "Partial defect list transfer") }, 1608 /* DTLPWROMAEBKVF */ 1609 { SST(0x20, 0x00, SS_FATAL | EINVAL, 1610 "Invalid command operation code") }, 1611 /* DT PWROMAEBK */ 1612 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ 1613 "Access denied - initiator pending-enrolled") }, 1614 /* DT PWROMAEBK */ 1615 { SST(0x20, 0x02, SS_FATAL | EPERM, 1616 "Access denied - no access rights") }, 1617 /* DT PWROMAEBK */ 1618 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ 1619 "Access denied - invalid mgmt ID key") }, 1620 /* T */ 1621 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ 1622 "Illegal command while in write capable state") }, 1623 /* T */ 1624 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ 1625 "Obsolete") }, 1626 /* T */ 1627 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ 1628 "Illegal command while in explicit address mode") }, 1629 /* T */ 1630 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ 1631 "Illegal command while in implicit address mode") }, 1632 /* DT PWROMAEBK */ 1633 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ 1634 "Access denied - enrollment conflict") }, 1635 /* DT PWROMAEBK */ 1636 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ 1637 "Access denied - invalid LU identifier") }, 1638 /* DT PWROMAEBK */ 1639 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ 1640 "Access denied - invalid proxy token") }, 1641 /* DT PWROMAEBK */ 1642 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ 1643 "Access denied - ACL LUN conflict") }, 1644 /* T */ 1645 { SST(0x20, 0x0C, SS_FATAL | EINVAL, 1646 "Illegal command when not in append-only mode") }, 1647 /* DT WRO BK */ 1648 { SST(0x21, 0x00, SS_FATAL | EINVAL, 1649 "Logical block address out of range") }, 1650 /* DT WROM BK */ 1651 { SST(0x21, 0x01, SS_FATAL | EINVAL, 1652 "Invalid element address") }, 1653 /* R */ 1654 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ 1655 "Invalid address for write") }, 1656 /* R */ 1657 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ 1658 "Invalid write crossing layer jump") }, 1659 /* D */ 1660 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */ 1661 "Unaligned write command") }, 1662 /* D */ 1663 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */ 1664 "Write boundary violation") }, 1665 /* D */ 1666 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */ 1667 "Attempt to read invalid data") }, 1668 /* D */ 1669 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */ 1670 "Read boundary violation") }, 1671 /* D */ 1672 { SST(0x22, 0x00, SS_FATAL | EINVAL, 1673 "Illegal function (use 20 00, 24 00, or 26 00)") }, 1674 /* DT P B */ 1675 { SST(0x23, 0x00, SS_FATAL | EINVAL, 1676 "Invalid token operation, cause not reportable") }, 1677 /* DT P B */ 1678 { SST(0x23, 0x01, SS_FATAL | EINVAL, 1679 "Invalid token operation, unsupported token type") }, 1680 /* DT P B */ 1681 { SST(0x23, 0x02, SS_FATAL | EINVAL, 1682 "Invalid token operation, remote token usage not supported") }, 1683 /* DT P B */ 1684 { SST(0x23, 0x03, SS_FATAL | EINVAL, 1685 "Invalid token operation, remote ROD token creation not supported") }, 1686 /* DT P B */ 1687 { SST(0x23, 0x04, SS_FATAL | EINVAL, 1688 "Invalid token operation, token unknown") }, 1689 /* DT P B */ 1690 { SST(0x23, 0x05, SS_FATAL | EINVAL, 1691 "Invalid token operation, token corrupt") }, 1692 /* DT P B */ 1693 { SST(0x23, 0x06, SS_FATAL | EINVAL, 1694 "Invalid token operation, token revoked") }, 1695 /* DT P B */ 1696 { SST(0x23, 0x07, SS_FATAL | EINVAL, 1697 "Invalid token operation, token expired") }, 1698 /* DT P B */ 1699 { SST(0x23, 0x08, SS_FATAL | EINVAL, 1700 "Invalid token operation, token cancelled") }, 1701 /* DT P B */ 1702 { SST(0x23, 0x09, SS_FATAL | EINVAL, 1703 "Invalid token operation, token deleted") }, 1704 /* DT P B */ 1705 { SST(0x23, 0x0A, SS_FATAL | EINVAL, 1706 "Invalid token operation, invalid token length") }, 1707 /* DTLPWROMAEBKVF */ 1708 { SST(0x24, 0x00, SS_FATAL | EINVAL, 1709 "Invalid field in CDB") }, 1710 /* DTLPWRO AEBKVF */ 1711 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ 1712 "CDB decryption error") }, 1713 /* T */ 1714 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ 1715 "Obsolete") }, 1716 /* T */ 1717 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ 1718 "Obsolete") }, 1719 /* F */ 1720 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ 1721 "Security audit value frozen") }, 1722 /* F */ 1723 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ 1724 "Security working key frozen") }, 1725 /* F */ 1726 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ 1727 "NONCE not unique") }, 1728 /* F */ 1729 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ 1730 "NONCE timestamp out of range") }, 1731 /* DT R MAEBKV */ 1732 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ 1733 "Invalid XCDB") }, 1734 /* DTLPWROMAEBKVF */ 1735 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST, 1736 "Logical unit not supported") }, 1737 /* DTLPWROMAEBKVF */ 1738 { SST(0x26, 0x00, SS_FATAL | EINVAL, 1739 "Invalid field in parameter list") }, 1740 /* DTLPWROMAEBKVF */ 1741 { SST(0x26, 0x01, SS_FATAL | EINVAL, 1742 "Parameter not supported") }, 1743 /* DTLPWROMAEBKVF */ 1744 { SST(0x26, 0x02, SS_FATAL | EINVAL, 1745 "Parameter value invalid") }, 1746 /* DTLPWROMAE K */ 1747 { SST(0x26, 0x03, SS_FATAL | EINVAL, 1748 "Threshold parameters not supported") }, 1749 /* DTLPWROMAEBKVF */ 1750 { SST(0x26, 0x04, SS_FATAL | EINVAL, 1751 "Invalid release of persistent reservation") }, 1752 /* DTLPWRO A BK */ 1753 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ 1754 "Data decryption error") }, 1755 /* DTLPWRO K */ 1756 { SST(0x26, 0x06, SS_FATAL | EINVAL, 1757 "Too many target descriptors") }, 1758 /* DTLPWRO K */ 1759 { SST(0x26, 0x07, SS_FATAL | EINVAL, 1760 "Unsupported target descriptor type code") }, 1761 /* DTLPWRO K */ 1762 { SST(0x26, 0x08, SS_FATAL | EINVAL, 1763 "Too many segment descriptors") }, 1764 /* DTLPWRO K */ 1765 { SST(0x26, 0x09, SS_FATAL | EINVAL, 1766 "Unsupported segment descriptor type code") }, 1767 /* DTLPWRO K */ 1768 { SST(0x26, 0x0A, SS_FATAL | EINVAL, 1769 "Unexpected inexact segment") }, 1770 /* DTLPWRO K */ 1771 { SST(0x26, 0x0B, SS_FATAL | EINVAL, 1772 "Inline data length exceeded") }, 1773 /* DTLPWRO K */ 1774 { SST(0x26, 0x0C, SS_FATAL | EINVAL, 1775 "Invalid operation for copy source or destination") }, 1776 /* DTLPWRO K */ 1777 { SST(0x26, 0x0D, SS_FATAL | EINVAL, 1778 "Copy segment granularity violation") }, 1779 /* DT PWROMAEBK */ 1780 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ 1781 "Invalid parameter while port is enabled") }, 1782 /* F */ 1783 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ 1784 "Invalid data-out buffer integrity check value") }, 1785 /* T */ 1786 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ 1787 "Data decryption key fail limit reached") }, 1788 /* T */ 1789 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ 1790 "Incomplete key-associated data set") }, 1791 /* T */ 1792 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ 1793 "Vendor specific key reference not found") }, 1794 /* D */ 1795 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */ 1796 "Application tag mode page is invalid") }, 1797 /* DT WRO BK */ 1798 { SST(0x27, 0x00, SS_FATAL | EACCES, 1799 "Write protected") }, 1800 /* DT WRO BK */ 1801 { SST(0x27, 0x01, SS_FATAL | EACCES, 1802 "Hardware write protected") }, 1803 /* DT WRO BK */ 1804 { SST(0x27, 0x02, SS_FATAL | EACCES, 1805 "Logical unit software write protected") }, 1806 /* T R */ 1807 { SST(0x27, 0x03, SS_FATAL | EACCES, 1808 "Associated write protect") }, 1809 /* T R */ 1810 { SST(0x27, 0x04, SS_FATAL | EACCES, 1811 "Persistent write protect") }, 1812 /* T R */ 1813 { SST(0x27, 0x05, SS_FATAL | EACCES, 1814 "Permanent write protect") }, 1815 /* R F */ 1816 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ 1817 "Conditional write protect") }, 1818 /* D B */ 1819 { SST(0x27, 0x07, SS_FATAL | ENOSPC, 1820 "Space allocation failed write protect") }, 1821 /* D */ 1822 { SST(0x27, 0x08, SS_FATAL | EACCES, 1823 "Zone is read only") }, 1824 /* DTLPWROMAEBKVF */ 1825 { SST(0x28, 0x00, SS_FATAL | ENXIO, 1826 "Not ready to ready change, medium may have changed") }, 1827 /* DT WROM B */ 1828 { SST(0x28, 0x01, SS_FATAL | ENXIO, 1829 "Import or export element accessed") }, 1830 /* R */ 1831 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ 1832 "Format-layer may have changed") }, 1833 /* M */ 1834 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ 1835 "Import/export element accessed, medium changed") }, 1836 /* 1837 * XXX JGibbs - All of these should use the same errno, but I don't 1838 * think ENXIO is the correct choice. Should we borrow from 1839 * the networking errnos? ECONNRESET anyone? 1840 */ 1841 /* DTLPWROMAEBKVF */ 1842 { SST(0x29, 0x00, SS_FATAL | ENXIO, 1843 "Power on, reset, or bus device reset occurred") }, 1844 /* DTLPWROMAEBKVF */ 1845 { SST(0x29, 0x01, SS_RDEF, 1846 "Power on occurred") }, 1847 /* DTLPWROMAEBKVF */ 1848 { SST(0x29, 0x02, SS_RDEF, 1849 "SCSI bus reset occurred") }, 1850 /* DTLPWROMAEBKVF */ 1851 { SST(0x29, 0x03, SS_RDEF, 1852 "Bus device reset function occurred") }, 1853 /* DTLPWROMAEBKVF */ 1854 { SST(0x29, 0x04, SS_RDEF, 1855 "Device internal reset") }, 1856 /* DTLPWROMAEBKVF */ 1857 { SST(0x29, 0x05, SS_RDEF, 1858 "Transceiver mode changed to single-ended") }, 1859 /* DTLPWROMAEBKVF */ 1860 { SST(0x29, 0x06, SS_RDEF, 1861 "Transceiver mode changed to LVD") }, 1862 /* DTLPWROMAEBKVF */ 1863 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ 1864 "I_T nexus loss occurred") }, 1865 /* DTL WROMAEBKVF */ 1866 { SST(0x2A, 0x00, SS_RDEF, 1867 "Parameters changed") }, 1868 /* DTL WROMAEBKVF */ 1869 { SST(0x2A, 0x01, SS_RDEF, 1870 "Mode parameters changed") }, 1871 /* DTL WROMAE K */ 1872 { SST(0x2A, 0x02, SS_RDEF, 1873 "Log parameters changed") }, 1874 /* DTLPWROMAE K */ 1875 { SST(0x2A, 0x03, SS_RDEF, 1876 "Reservations preempted") }, 1877 /* DTLPWROMAE */ 1878 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ 1879 "Reservations released") }, 1880 /* DTLPWROMAE */ 1881 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ 1882 "Registrations preempted") }, 1883 /* DTLPWROMAEBKVF */ 1884 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ 1885 "Asymmetric access state changed") }, 1886 /* DTLPWROMAEBKVF */ 1887 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ 1888 "Implicit asymmetric access state transition failed") }, 1889 /* DT WROMAEBKVF */ 1890 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ 1891 "Priority changed") }, 1892 /* D */ 1893 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ 1894 "Capacity data has changed") }, 1895 /* DT */ 1896 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ 1897 "Error history I_T nexus cleared") }, 1898 /* DT */ 1899 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ 1900 "Error history snapshot released") }, 1901 /* F */ 1902 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ 1903 "Error recovery attributes have changed") }, 1904 /* T */ 1905 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ 1906 "Data encryption capabilities changed") }, 1907 /* DT M E V */ 1908 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ 1909 "Timestamp changed") }, 1910 /* T */ 1911 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ 1912 "Data encryption parameters changed by another I_T nexus") }, 1913 /* T */ 1914 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ 1915 "Data encryption parameters changed by vendor specific event") }, 1916 /* T */ 1917 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ 1918 "Data encryption key instance counter has changed") }, 1919 /* DT R MAEBKV */ 1920 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ 1921 "SA creation capabilities data has changed") }, 1922 /* T M V */ 1923 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */ 1924 "Medium removal prevention preempted") }, 1925 /* DTLPWRO K */ 1926 { SST(0x2B, 0x00, SS_RDEF, 1927 "Copy cannot execute since host cannot disconnect") }, 1928 /* DTLPWROMAEBKVF */ 1929 { SST(0x2C, 0x00, SS_RDEF, 1930 "Command sequence error") }, 1931 /* */ 1932 { SST(0x2C, 0x01, SS_RDEF, 1933 "Too many windows specified") }, 1934 /* */ 1935 { SST(0x2C, 0x02, SS_RDEF, 1936 "Invalid combination of windows specified") }, 1937 /* R */ 1938 { SST(0x2C, 0x03, SS_RDEF, 1939 "Current program area is not empty") }, 1940 /* R */ 1941 { SST(0x2C, 0x04, SS_RDEF, 1942 "Current program area is empty") }, 1943 /* B */ 1944 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ 1945 "Illegal power condition request") }, 1946 /* R */ 1947 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ 1948 "Persistent prevent conflict") }, 1949 /* DTLPWROMAEBKVF */ 1950 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ 1951 "Previous busy status") }, 1952 /* DTLPWROMAEBKVF */ 1953 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ 1954 "Previous task set full status") }, 1955 /* DTLPWROM EBKVF */ 1956 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ 1957 "Previous reservation conflict status") }, 1958 /* F */ 1959 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ 1960 "Partition or collection contains user objects") }, 1961 /* T */ 1962 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ 1963 "Not reserved") }, 1964 /* D */ 1965 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */ 1966 "ORWRITE generation does not match") }, 1967 /* D */ 1968 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */ 1969 "Reset write pointer not allowed") }, 1970 /* D */ 1971 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */ 1972 "Zone is offline") }, 1973 /* D */ 1974 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */ 1975 "Stream not open") }, 1976 /* D */ 1977 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */ 1978 "Unwritten data in zone") }, 1979 /* T */ 1980 { SST(0x2D, 0x00, SS_RDEF, 1981 "Overwrite error on update in place") }, 1982 /* R */ 1983 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ 1984 "Insufficient time for operation") }, 1985 /* D */ 1986 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */ 1987 "Command timeout before processing") }, 1988 /* D */ 1989 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */ 1990 "Command timeout during processing") }, 1991 /* D */ 1992 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */ 1993 "Command timeout during processing due to error recovery") }, 1994 /* DTLPWROMAEBKVF */ 1995 { SST(0x2F, 0x00, SS_RDEF, 1996 "Commands cleared by another initiator") }, 1997 /* D */ 1998 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ 1999 "Commands cleared by power loss notification") }, 2000 /* DTLPWROMAEBKVF */ 2001 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ 2002 "Commands cleared by device server") }, 2003 /* DTLPWROMAEBKVF */ 2004 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */ 2005 "Some commands cleared by queuing layer event") }, 2006 /* DT WROM BK */ 2007 { SST(0x30, 0x00, SS_RDEF, 2008 "Incompatible medium installed") }, 2009 /* DT WRO BK */ 2010 { SST(0x30, 0x01, SS_RDEF, 2011 "Cannot read medium - unknown format") }, 2012 /* DT WRO BK */ 2013 { SST(0x30, 0x02, SS_RDEF, 2014 "Cannot read medium - incompatible format") }, 2015 /* DT R K */ 2016 { SST(0x30, 0x03, SS_RDEF, 2017 "Cleaning cartridge installed") }, 2018 /* DT WRO BK */ 2019 { SST(0x30, 0x04, SS_RDEF, 2020 "Cannot write medium - unknown format") }, 2021 /* DT WRO BK */ 2022 { SST(0x30, 0x05, SS_RDEF, 2023 "Cannot write medium - incompatible format") }, 2024 /* DT WRO B */ 2025 { SST(0x30, 0x06, SS_RDEF, 2026 "Cannot format medium - incompatible medium") }, 2027 /* DTL WROMAEBKVF */ 2028 { SST(0x30, 0x07, SS_RDEF, 2029 "Cleaning failure") }, 2030 /* R */ 2031 { SST(0x30, 0x08, SS_RDEF, 2032 "Cannot write - application code mismatch") }, 2033 /* R */ 2034 { SST(0x30, 0x09, SS_RDEF, 2035 "Current session not fixated for append") }, 2036 /* DT WRO AEBK */ 2037 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ 2038 "Cleaning request rejected") }, 2039 /* T */ 2040 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ 2041 "WORM medium - overwrite attempted") }, 2042 /* T */ 2043 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ 2044 "WORM medium - integrity check") }, 2045 /* R */ 2046 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ 2047 "Medium not formatted") }, 2048 /* M */ 2049 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ 2050 "Incompatible volume type") }, 2051 /* M */ 2052 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ 2053 "Incompatible volume qualifier") }, 2054 /* M */ 2055 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */ 2056 "Cleaning volume expired") }, 2057 /* DT WRO BK */ 2058 { SST(0x31, 0x00, SS_RDEF, 2059 "Medium format corrupted") }, 2060 /* D L RO B */ 2061 { SST(0x31, 0x01, SS_RDEF, 2062 "Format command failed") }, 2063 /* R */ 2064 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ 2065 "Zoned formatting failed due to spare linking") }, 2066 /* D B */ 2067 { SST(0x31, 0x03, SS_RDEF, /* XXX TBD */ 2068 "SANITIZE command failed") }, 2069 /* D W O BK */ 2070 { SST(0x32, 0x00, SS_RDEF, 2071 "No defect spare location available") }, 2072 /* D W O BK */ 2073 { SST(0x32, 0x01, SS_RDEF, 2074 "Defect list update failure") }, 2075 /* T */ 2076 { SST(0x33, 0x00, SS_RDEF, 2077 "Tape length error") }, 2078 /* DTLPWROMAEBKVF */ 2079 { SST(0x34, 0x00, SS_RDEF, 2080 "Enclosure failure") }, 2081 /* DTLPWROMAEBKVF */ 2082 { SST(0x35, 0x00, SS_RDEF, 2083 "Enclosure services failure") }, 2084 /* DTLPWROMAEBKVF */ 2085 { SST(0x35, 0x01, SS_RDEF, 2086 "Unsupported enclosure function") }, 2087 /* DTLPWROMAEBKVF */ 2088 { SST(0x35, 0x02, SS_RDEF, 2089 "Enclosure services unavailable") }, 2090 /* DTLPWROMAEBKVF */ 2091 { SST(0x35, 0x03, SS_RDEF, 2092 "Enclosure services transfer failure") }, 2093 /* DTLPWROMAEBKVF */ 2094 { SST(0x35, 0x04, SS_RDEF, 2095 "Enclosure services transfer refused") }, 2096 /* DTL WROMAEBKVF */ 2097 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ 2098 "Enclosure services checksum error") }, 2099 /* L */ 2100 { SST(0x36, 0x00, SS_RDEF, 2101 "Ribbon, ink, or toner failure") }, 2102 /* DTL WROMAEBKVF */ 2103 { SST(0x37, 0x00, SS_RDEF, 2104 "Rounded parameter") }, 2105 /* B */ 2106 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ 2107 "Event status notification") }, 2108 /* B */ 2109 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ 2110 "ESN - power management class event") }, 2111 /* B */ 2112 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ 2113 "ESN - media class event") }, 2114 /* B */ 2115 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ 2116 "ESN - device busy class event") }, 2117 /* D */ 2118 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */ 2119 "Thin provisioning soft threshold reached") }, 2120 /* DTL WROMAE K */ 2121 { SST(0x39, 0x00, SS_RDEF, 2122 "Saving parameters not supported") }, 2123 /* DTL WROM BK */ 2124 { SST(0x3A, 0x00, SS_FATAL | ENXIO, 2125 "Medium not present") }, 2126 /* DT WROM BK */ 2127 { SST(0x3A, 0x01, SS_FATAL | ENXIO, 2128 "Medium not present - tray closed") }, 2129 /* DT WROM BK */ 2130 { SST(0x3A, 0x02, SS_FATAL | ENXIO, 2131 "Medium not present - tray open") }, 2132 /* DT WROM B */ 2133 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ 2134 "Medium not present - loadable") }, 2135 /* DT WRO B */ 2136 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ 2137 "Medium not present - medium auxiliary memory accessible") }, 2138 /* TL */ 2139 { SST(0x3B, 0x00, SS_RDEF, 2140 "Sequential positioning error") }, 2141 /* T */ 2142 { SST(0x3B, 0x01, SS_RDEF, 2143 "Tape position error at beginning-of-medium") }, 2144 /* T */ 2145 { SST(0x3B, 0x02, SS_RDEF, 2146 "Tape position error at end-of-medium") }, 2147 /* L */ 2148 { SST(0x3B, 0x03, SS_RDEF, 2149 "Tape or electronic vertical forms unit not ready") }, 2150 /* L */ 2151 { SST(0x3B, 0x04, SS_RDEF, 2152 "Slew failure") }, 2153 /* L */ 2154 { SST(0x3B, 0x05, SS_RDEF, 2155 "Paper jam") }, 2156 /* L */ 2157 { SST(0x3B, 0x06, SS_RDEF, 2158 "Failed to sense top-of-form") }, 2159 /* L */ 2160 { SST(0x3B, 0x07, SS_RDEF, 2161 "Failed to sense bottom-of-form") }, 2162 /* T */ 2163 { SST(0x3B, 0x08, SS_RDEF, 2164 "Reposition error") }, 2165 /* */ 2166 { SST(0x3B, 0x09, SS_RDEF, 2167 "Read past end of medium") }, 2168 /* */ 2169 { SST(0x3B, 0x0A, SS_RDEF, 2170 "Read past beginning of medium") }, 2171 /* */ 2172 { SST(0x3B, 0x0B, SS_RDEF, 2173 "Position past end of medium") }, 2174 /* T */ 2175 { SST(0x3B, 0x0C, SS_RDEF, 2176 "Position past beginning of medium") }, 2177 /* DT WROM BK */ 2178 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, 2179 "Medium destination element full") }, 2180 /* DT WROM BK */ 2181 { SST(0x3B, 0x0E, SS_RDEF, 2182 "Medium source element empty") }, 2183 /* R */ 2184 { SST(0x3B, 0x0F, SS_RDEF, 2185 "End of medium reached") }, 2186 /* DT WROM BK */ 2187 { SST(0x3B, 0x11, SS_RDEF, 2188 "Medium magazine not accessible") }, 2189 /* DT WROM BK */ 2190 { SST(0x3B, 0x12, SS_RDEF, 2191 "Medium magazine removed") }, 2192 /* DT WROM BK */ 2193 { SST(0x3B, 0x13, SS_RDEF, 2194 "Medium magazine inserted") }, 2195 /* DT WROM BK */ 2196 { SST(0x3B, 0x14, SS_RDEF, 2197 "Medium magazine locked") }, 2198 /* DT WROM BK */ 2199 { SST(0x3B, 0x15, SS_RDEF, 2200 "Medium magazine unlocked") }, 2201 /* R */ 2202 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ 2203 "Mechanical positioning or changer error") }, 2204 /* F */ 2205 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ 2206 "Read past end of user object") }, 2207 /* M */ 2208 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ 2209 "Element disabled") }, 2210 /* M */ 2211 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ 2212 "Element enabled") }, 2213 /* M */ 2214 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ 2215 "Data transfer device removed") }, 2216 /* M */ 2217 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ 2218 "Data transfer device inserted") }, 2219 /* T */ 2220 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */ 2221 "Too many logical objects on partition to support operation") }, 2222 /* DTLPWROMAE K */ 2223 { SST(0x3D, 0x00, SS_RDEF, 2224 "Invalid bits in IDENTIFY message") }, 2225 /* DTLPWROMAEBKVF */ 2226 { SST(0x3E, 0x00, SS_RDEF, 2227 "Logical unit has not self-configured yet") }, 2228 /* DTLPWROMAEBKVF */ 2229 { SST(0x3E, 0x01, SS_RDEF, 2230 "Logical unit failure") }, 2231 /* DTLPWROMAEBKVF */ 2232 { SST(0x3E, 0x02, SS_RDEF, 2233 "Timeout on logical unit") }, 2234 /* DTLPWROMAEBKVF */ 2235 { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */ 2236 "Logical unit failed self-test") }, 2237 /* DTLPWROMAEBKVF */ 2238 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ 2239 "Logical unit unable to update self-test log") }, 2240 /* DTLPWROMAEBKVF */ 2241 { SST(0x3F, 0x00, SS_RDEF, 2242 "Target operating conditions have changed") }, 2243 /* DTLPWROMAEBKVF */ 2244 { SST(0x3F, 0x01, SS_RDEF, 2245 "Microcode has been changed") }, 2246 /* DTLPWROM BK */ 2247 { SST(0x3F, 0x02, SS_RDEF, 2248 "Changed operating definition") }, 2249 /* DTLPWROMAEBKVF */ 2250 { SST(0x3F, 0x03, SS_RDEF, 2251 "INQUIRY data has changed") }, 2252 /* DT WROMAEBK */ 2253 { SST(0x3F, 0x04, SS_RDEF, 2254 "Component device attached") }, 2255 /* DT WROMAEBK */ 2256 { SST(0x3F, 0x05, SS_RDEF, 2257 "Device identifier changed") }, 2258 /* DT WROMAEB */ 2259 { SST(0x3F, 0x06, SS_RDEF, 2260 "Redundancy group created or modified") }, 2261 /* DT WROMAEB */ 2262 { SST(0x3F, 0x07, SS_RDEF, 2263 "Redundancy group deleted") }, 2264 /* DT WROMAEB */ 2265 { SST(0x3F, 0x08, SS_RDEF, 2266 "Spare created or modified") }, 2267 /* DT WROMAEB */ 2268 { SST(0x3F, 0x09, SS_RDEF, 2269 "Spare deleted") }, 2270 /* DT WROMAEBK */ 2271 { SST(0x3F, 0x0A, SS_RDEF, 2272 "Volume set created or modified") }, 2273 /* DT WROMAEBK */ 2274 { SST(0x3F, 0x0B, SS_RDEF, 2275 "Volume set deleted") }, 2276 /* DT WROMAEBK */ 2277 { SST(0x3F, 0x0C, SS_RDEF, 2278 "Volume set deassigned") }, 2279 /* DT WROMAEBK */ 2280 { SST(0x3F, 0x0D, SS_RDEF, 2281 "Volume set reassigned") }, 2282 /* DTLPWROMAE */ 2283 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN , 2284 "Reported LUNs data has changed") }, 2285 /* DTLPWROMAEBKVF */ 2286 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ 2287 "Echo buffer overwritten") }, 2288 /* DT WROM B */ 2289 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ 2290 "Medium loadable") }, 2291 /* DT WROM B */ 2292 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ 2293 "Medium auxiliary memory accessible") }, 2294 /* DTLPWR MAEBK F */ 2295 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ 2296 "iSCSI IP address added") }, 2297 /* DTLPWR MAEBK F */ 2298 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ 2299 "iSCSI IP address removed") }, 2300 /* DTLPWR MAEBK F */ 2301 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ 2302 "iSCSI IP address changed") }, 2303 /* DTLPWR MAEBK */ 2304 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */ 2305 "Inspect referrals sense descriptors") }, 2306 /* DTLPWROMAEBKVF */ 2307 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */ 2308 "Microcode has been changed without reset") }, 2309 /* D */ 2310 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */ 2311 "Zone transition to full") }, 2312 /* D */ 2313 { SST(0x40, 0x00, SS_RDEF, 2314 "RAM failure") }, /* deprecated - use 40 NN instead */ 2315 /* DTLPWROMAEBKVF */ 2316 { SST(0x40, 0x80, SS_RDEF, 2317 "Diagnostic failure: ASCQ = Component ID") }, 2318 /* DTLPWROMAEBKVF */ 2319 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, 2320 NULL) }, /* Range 0x80->0xFF */ 2321 /* D */ 2322 { SST(0x41, 0x00, SS_RDEF, 2323 "Data path failure") }, /* deprecated - use 40 NN instead */ 2324 /* D */ 2325 { SST(0x42, 0x00, SS_RDEF, 2326 "Power-on or self-test failure") }, 2327 /* deprecated - use 40 NN instead */ 2328 /* DTLPWROMAEBKVF */ 2329 { SST(0x43, 0x00, SS_RDEF, 2330 "Message error") }, 2331 /* DTLPWROMAEBKVF */ 2332 { SST(0x44, 0x00, SS_FATAL | EIO, 2333 "Internal target failure") }, 2334 /* DT P MAEBKVF */ 2335 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */ 2336 "Persistent reservation information lost") }, 2337 /* DT B */ 2338 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ 2339 "ATA device failed set features") }, 2340 /* DTLPWROMAEBKVF */ 2341 { SST(0x45, 0x00, SS_RDEF, 2342 "Select or reselect failure") }, 2343 /* DTLPWROM BK */ 2344 { SST(0x46, 0x00, SS_RDEF, 2345 "Unsuccessful soft reset") }, 2346 /* DTLPWROMAEBKVF */ 2347 { SST(0x47, 0x00, SS_RDEF, 2348 "SCSI parity error") }, 2349 /* DTLPWROMAEBKVF */ 2350 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ 2351 "Data phase CRC error detected") }, 2352 /* DTLPWROMAEBKVF */ 2353 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ 2354 "SCSI parity error detected during ST data phase") }, 2355 /* DTLPWROMAEBKVF */ 2356 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ 2357 "Information unit iuCRC error detected") }, 2358 /* DTLPWROMAEBKVF */ 2359 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ 2360 "Asynchronous information protection error detected") }, 2361 /* DTLPWROMAEBKVF */ 2362 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ 2363 "Protocol service CRC error") }, 2364 /* DT MAEBKVF */ 2365 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ 2366 "PHY test function in progress") }, 2367 /* DT PWROMAEBK */ 2368 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ 2369 "Some commands cleared by iSCSI protocol event") }, 2370 /* DTLPWROMAEBKVF */ 2371 { SST(0x48, 0x00, SS_RDEF, 2372 "Initiator detected error message received") }, 2373 /* DTLPWROMAEBKVF */ 2374 { SST(0x49, 0x00, SS_RDEF, 2375 "Invalid message error") }, 2376 /* DTLPWROMAEBKVF */ 2377 { SST(0x4A, 0x00, SS_RDEF, 2378 "Command phase error") }, 2379 /* DTLPWROMAEBKVF */ 2380 { SST(0x4B, 0x00, SS_RDEF, 2381 "Data phase error") }, 2382 /* DT PWROMAEBK */ 2383 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ 2384 "Invalid target port transfer tag received") }, 2385 /* DT PWROMAEBK */ 2386 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ 2387 "Too much write data") }, 2388 /* DT PWROMAEBK */ 2389 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ 2390 "ACK/NAK timeout") }, 2391 /* DT PWROMAEBK */ 2392 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ 2393 "NAK received") }, 2394 /* DT PWROMAEBK */ 2395 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ 2396 "Data offset error") }, 2397 /* DT PWROMAEBK */ 2398 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ 2399 "Initiator response timeout") }, 2400 /* DT PWROMAEBK F */ 2401 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */ 2402 "Connection lost") }, 2403 /* DT PWROMAEBK F */ 2404 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */ 2405 "Data-in buffer overflow - data buffer size") }, 2406 /* DT PWROMAEBK F */ 2407 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */ 2408 "Data-in buffer overflow - data buffer descriptor area") }, 2409 /* DT PWROMAEBK F */ 2410 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */ 2411 "Data-in buffer error") }, 2412 /* DT PWROMAEBK F */ 2413 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */ 2414 "Data-out buffer overflow - data buffer size") }, 2415 /* DT PWROMAEBK F */ 2416 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */ 2417 "Data-out buffer overflow - data buffer descriptor area") }, 2418 /* DT PWROMAEBK F */ 2419 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */ 2420 "Data-out buffer error") }, 2421 /* DT PWROMAEBK F */ 2422 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */ 2423 "PCIe fabric error") }, 2424 /* DT PWROMAEBK F */ 2425 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */ 2426 "PCIe completion timeout") }, 2427 /* DT PWROMAEBK F */ 2428 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */ 2429 "PCIe completer abort") }, 2430 /* DT PWROMAEBK F */ 2431 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */ 2432 "PCIe poisoned TLP received") }, 2433 /* DT PWROMAEBK F */ 2434 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */ 2435 "PCIe ECRC check failed") }, 2436 /* DT PWROMAEBK F */ 2437 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */ 2438 "PCIe unsupported request") }, 2439 /* DT PWROMAEBK F */ 2440 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */ 2441 "PCIe ACS violation") }, 2442 /* DT PWROMAEBK F */ 2443 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */ 2444 "PCIe TLP prefix blocket") }, 2445 /* DTLPWROMAEBKVF */ 2446 { SST(0x4C, 0x00, SS_RDEF, 2447 "Logical unit failed self-configuration") }, 2448 /* DTLPWROMAEBKVF */ 2449 { SST(0x4D, 0x00, SS_RDEF, 2450 "Tagged overlapped commands: ASCQ = Queue tag ID") }, 2451 /* DTLPWROMAEBKVF */ 2452 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, 2453 NULL) }, /* Range 0x00->0xFF */ 2454 /* DTLPWROMAEBKVF */ 2455 { SST(0x4E, 0x00, SS_RDEF, 2456 "Overlapped commands attempted") }, 2457 /* T */ 2458 { SST(0x50, 0x00, SS_RDEF, 2459 "Write append error") }, 2460 /* T */ 2461 { SST(0x50, 0x01, SS_RDEF, 2462 "Write append position error") }, 2463 /* T */ 2464 { SST(0x50, 0x02, SS_RDEF, 2465 "Position error related to timing") }, 2466 /* T RO */ 2467 { SST(0x51, 0x00, SS_RDEF, 2468 "Erase failure") }, 2469 /* R */ 2470 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ 2471 "Erase failure - incomplete erase operation detected") }, 2472 /* T */ 2473 { SST(0x52, 0x00, SS_RDEF, 2474 "Cartridge fault") }, 2475 /* DTL WROM BK */ 2476 { SST(0x53, 0x00, SS_RDEF, 2477 "Media load or eject failed") }, 2478 /* T */ 2479 { SST(0x53, 0x01, SS_RDEF, 2480 "Unload tape failure") }, 2481 /* DT WROM BK */ 2482 { SST(0x53, 0x02, SS_RDEF, 2483 "Medium removal prevented") }, 2484 /* M */ 2485 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ 2486 "Medium removal prevented by data transfer element") }, 2487 /* T */ 2488 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ 2489 "Medium thread or unthread failure") }, 2490 /* M */ 2491 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */ 2492 "Volume identifier invalid") }, 2493 /* T */ 2494 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */ 2495 "Volume identifier missing") }, 2496 /* M */ 2497 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */ 2498 "Duplicate volume identifier") }, 2499 /* M */ 2500 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */ 2501 "Element status unknown") }, 2502 /* M */ 2503 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */ 2504 "Data transfer device error - load failed") }, 2505 /* M */ 2506 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */ 2507 "Data transfer device error - unload failed") }, 2508 /* M */ 2509 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */ 2510 "Data transfer device error - unload missing") }, 2511 /* M */ 2512 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */ 2513 "Data transfer device error - eject failed") }, 2514 /* M */ 2515 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */ 2516 "Data transfer device error - library communication failed") }, 2517 /* P */ 2518 { SST(0x54, 0x00, SS_RDEF, 2519 "SCSI to host system interface failure") }, 2520 /* P */ 2521 { SST(0x55, 0x00, SS_RDEF, 2522 "System resource failure") }, 2523 /* D O BK */ 2524 { SST(0x55, 0x01, SS_FATAL | ENOSPC, 2525 "System buffer full") }, 2526 /* DTLPWROMAE K */ 2527 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ 2528 "Insufficient reservation resources") }, 2529 /* DTLPWROMAE K */ 2530 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ 2531 "Insufficient resources") }, 2532 /* DTLPWROMAE K */ 2533 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ 2534 "Insufficient registration resources") }, 2535 /* DT PWROMAEBK */ 2536 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ 2537 "Insufficient access control resources") }, 2538 /* DT WROM B */ 2539 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ 2540 "Auxiliary memory out of space") }, 2541 /* F */ 2542 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ 2543 "Quota error") }, 2544 /* T */ 2545 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ 2546 "Maximum number of supplemental decryption keys exceeded") }, 2547 /* M */ 2548 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ 2549 "Medium auxiliary memory not accessible") }, 2550 /* M */ 2551 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ 2552 "Data currently unavailable") }, 2553 /* DTLPWROMAEBKVF */ 2554 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */ 2555 "Insufficient power for operation") }, 2556 /* DT P B */ 2557 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */ 2558 "Insufficient resources to create ROD") }, 2559 /* DT P B */ 2560 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */ 2561 "Insufficient resources to create ROD token") }, 2562 /* D */ 2563 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */ 2564 "Insufficient zone resources") }, 2565 /* D */ 2566 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */ 2567 "Insufficient zone resources to complete write") }, 2568 /* D */ 2569 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */ 2570 "Maximum number of streams open") }, 2571 /* R */ 2572 { SST(0x57, 0x00, SS_RDEF, 2573 "Unable to recover table-of-contents") }, 2574 /* O */ 2575 { SST(0x58, 0x00, SS_RDEF, 2576 "Generation does not exist") }, 2577 /* O */ 2578 { SST(0x59, 0x00, SS_RDEF, 2579 "Updated block read") }, 2580 /* DTLPWRO BK */ 2581 { SST(0x5A, 0x00, SS_RDEF, 2582 "Operator request or state change input") }, 2583 /* DT WROM BK */ 2584 { SST(0x5A, 0x01, SS_RDEF, 2585 "Operator medium removal request") }, 2586 /* DT WRO A BK */ 2587 { SST(0x5A, 0x02, SS_RDEF, 2588 "Operator selected write protect") }, 2589 /* DT WRO A BK */ 2590 { SST(0x5A, 0x03, SS_RDEF, 2591 "Operator selected write permit") }, 2592 /* DTLPWROM K */ 2593 { SST(0x5B, 0x00, SS_RDEF, 2594 "Log exception") }, 2595 /* DTLPWROM K */ 2596 { SST(0x5B, 0x01, SS_RDEF, 2597 "Threshold condition met") }, 2598 /* DTLPWROM K */ 2599 { SST(0x5B, 0x02, SS_RDEF, 2600 "Log counter at maximum") }, 2601 /* DTLPWROM K */ 2602 { SST(0x5B, 0x03, SS_RDEF, 2603 "Log list codes exhausted") }, 2604 /* D O */ 2605 { SST(0x5C, 0x00, SS_RDEF, 2606 "RPL status change") }, 2607 /* D O */ 2608 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2609 "Spindles synchronized") }, 2610 /* D O */ 2611 { SST(0x5C, 0x02, SS_RDEF, 2612 "Spindles not synchronized") }, 2613 /* DTLPWROMAEBKVF */ 2614 { SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE, 2615 "Failure prediction threshold exceeded") }, 2616 /* R B */ 2617 { SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2618 "Media failure prediction threshold exceeded") }, 2619 /* R */ 2620 { SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE, 2621 "Logical unit failure prediction threshold exceeded") }, 2622 /* R */ 2623 { SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE, 2624 "Spare area exhaustion prediction threshold exceeded") }, 2625 /* D B */ 2626 { SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE, 2627 "Hardware impending failure general hard drive failure") }, 2628 /* D B */ 2629 { SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE, 2630 "Hardware impending failure drive error rate too high") }, 2631 /* D B */ 2632 { SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE, 2633 "Hardware impending failure data error rate too high") }, 2634 /* D B */ 2635 { SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE, 2636 "Hardware impending failure seek error rate too high") }, 2637 /* D B */ 2638 { SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE, 2639 "Hardware impending failure too many block reassigns") }, 2640 /* D B */ 2641 { SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE, 2642 "Hardware impending failure access times too high") }, 2643 /* D B */ 2644 { SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE, 2645 "Hardware impending failure start unit times too high") }, 2646 /* D B */ 2647 { SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE, 2648 "Hardware impending failure channel parametrics") }, 2649 /* D B */ 2650 { SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE, 2651 "Hardware impending failure controller detected") }, 2652 /* D B */ 2653 { SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE, 2654 "Hardware impending failure throughput performance") }, 2655 /* D B */ 2656 { SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE, 2657 "Hardware impending failure seek time performance") }, 2658 /* D B */ 2659 { SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE, 2660 "Hardware impending failure spin-up retry count") }, 2661 /* D B */ 2662 { SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE, 2663 "Hardware impending failure drive calibration retry count") }, 2664 /* D B */ 2665 { SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE, 2666 "Hardware impending failure power loss protection circuit") }, 2667 /* D B */ 2668 { SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE, 2669 "Controller impending failure general hard drive failure") }, 2670 /* D B */ 2671 { SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE, 2672 "Controller impending failure drive error rate too high") }, 2673 /* D B */ 2674 { SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE, 2675 "Controller impending failure data error rate too high") }, 2676 /* D B */ 2677 { SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE, 2678 "Controller impending failure seek error rate too high") }, 2679 /* D B */ 2680 { SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE, 2681 "Controller impending failure too many block reassigns") }, 2682 /* D B */ 2683 { SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE, 2684 "Controller impending failure access times too high") }, 2685 /* D B */ 2686 { SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE, 2687 "Controller impending failure start unit times too high") }, 2688 /* D B */ 2689 { SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE, 2690 "Controller impending failure channel parametrics") }, 2691 /* D B */ 2692 { SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE, 2693 "Controller impending failure controller detected") }, 2694 /* D B */ 2695 { SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE, 2696 "Controller impending failure throughput performance") }, 2697 /* D B */ 2698 { SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE, 2699 "Controller impending failure seek time performance") }, 2700 /* D B */ 2701 { SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE, 2702 "Controller impending failure spin-up retry count") }, 2703 /* D B */ 2704 { SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE, 2705 "Controller impending failure drive calibration retry count") }, 2706 /* D B */ 2707 { SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE, 2708 "Data channel impending failure general hard drive failure") }, 2709 /* D B */ 2710 { SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE, 2711 "Data channel impending failure drive error rate too high") }, 2712 /* D B */ 2713 { SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE, 2714 "Data channel impending failure data error rate too high") }, 2715 /* D B */ 2716 { SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE, 2717 "Data channel impending failure seek error rate too high") }, 2718 /* D B */ 2719 { SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE, 2720 "Data channel impending failure too many block reassigns") }, 2721 /* D B */ 2722 { SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE, 2723 "Data channel impending failure access times too high") }, 2724 /* D B */ 2725 { SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE, 2726 "Data channel impending failure start unit times too high") }, 2727 /* D B */ 2728 { SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE, 2729 "Data channel impending failure channel parametrics") }, 2730 /* D B */ 2731 { SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE, 2732 "Data channel impending failure controller detected") }, 2733 /* D B */ 2734 { SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE, 2735 "Data channel impending failure throughput performance") }, 2736 /* D B */ 2737 { SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE, 2738 "Data channel impending failure seek time performance") }, 2739 /* D B */ 2740 { SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE, 2741 "Data channel impending failure spin-up retry count") }, 2742 /* D B */ 2743 { SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE, 2744 "Data channel impending failure drive calibration retry count") }, 2745 /* D B */ 2746 { SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE, 2747 "Servo impending failure general hard drive failure") }, 2748 /* D B */ 2749 { SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE, 2750 "Servo impending failure drive error rate too high") }, 2751 /* D B */ 2752 { SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE, 2753 "Servo impending failure data error rate too high") }, 2754 /* D B */ 2755 { SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE, 2756 "Servo impending failure seek error rate too high") }, 2757 /* D B */ 2758 { SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE, 2759 "Servo impending failure too many block reassigns") }, 2760 /* D B */ 2761 { SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE, 2762 "Servo impending failure access times too high") }, 2763 /* D B */ 2764 { SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE, 2765 "Servo impending failure start unit times too high") }, 2766 /* D B */ 2767 { SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE, 2768 "Servo impending failure channel parametrics") }, 2769 /* D B */ 2770 { SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE, 2771 "Servo impending failure controller detected") }, 2772 /* D B */ 2773 { SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE, 2774 "Servo impending failure throughput performance") }, 2775 /* D B */ 2776 { SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE, 2777 "Servo impending failure seek time performance") }, 2778 /* D B */ 2779 { SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE, 2780 "Servo impending failure spin-up retry count") }, 2781 /* D B */ 2782 { SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE, 2783 "Servo impending failure drive calibration retry count") }, 2784 /* D B */ 2785 { SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE, 2786 "Spindle impending failure general hard drive failure") }, 2787 /* D B */ 2788 { SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE, 2789 "Spindle impending failure drive error rate too high") }, 2790 /* D B */ 2791 { SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE, 2792 "Spindle impending failure data error rate too high") }, 2793 /* D B */ 2794 { SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE, 2795 "Spindle impending failure seek error rate too high") }, 2796 /* D B */ 2797 { SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE, 2798 "Spindle impending failure too many block reassigns") }, 2799 /* D B */ 2800 { SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE, 2801 "Spindle impending failure access times too high") }, 2802 /* D B */ 2803 { SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE, 2804 "Spindle impending failure start unit times too high") }, 2805 /* D B */ 2806 { SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE, 2807 "Spindle impending failure channel parametrics") }, 2808 /* D B */ 2809 { SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE, 2810 "Spindle impending failure controller detected") }, 2811 /* D B */ 2812 { SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE, 2813 "Spindle impending failure throughput performance") }, 2814 /* D B */ 2815 { SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE, 2816 "Spindle impending failure seek time performance") }, 2817 /* D B */ 2818 { SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE, 2819 "Spindle impending failure spin-up retry count") }, 2820 /* D B */ 2821 { SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE, 2822 "Spindle impending failure drive calibration retry count") }, 2823 /* D B */ 2824 { SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE, 2825 "Firmware impending failure general hard drive failure") }, 2826 /* D B */ 2827 { SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE, 2828 "Firmware impending failure drive error rate too high") }, 2829 /* D B */ 2830 { SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE, 2831 "Firmware impending failure data error rate too high") }, 2832 /* D B */ 2833 { SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE, 2834 "Firmware impending failure seek error rate too high") }, 2835 /* D B */ 2836 { SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE, 2837 "Firmware impending failure too many block reassigns") }, 2838 /* D B */ 2839 { SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE, 2840 "Firmware impending failure access times too high") }, 2841 /* D B */ 2842 { SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE, 2843 "Firmware impending failure start unit times too high") }, 2844 /* D B */ 2845 { SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE, 2846 "Firmware impending failure channel parametrics") }, 2847 /* D B */ 2848 { SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE, 2849 "Firmware impending failure controller detected") }, 2850 /* D B */ 2851 { SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE, 2852 "Firmware impending failure throughput performance") }, 2853 /* D B */ 2854 { SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE, 2855 "Firmware impending failure seek time performance") }, 2856 /* D B */ 2857 { SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE, 2858 "Firmware impending failure spin-up retry count") }, 2859 /* D B */ 2860 { SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE, 2861 "Firmware impending failure drive calibration retry count") }, 2862 /* D B */ 2863 { SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE, 2864 "Media impending failure endurance limit met") }, 2865 /* DTLPWROMAEBKVF */ 2866 { SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE, 2867 "Failure prediction threshold exceeded (false)") }, 2868 /* DTLPWRO A K */ 2869 { SST(0x5E, 0x00, SS_RDEF, 2870 "Low power condition on") }, 2871 /* DTLPWRO A K */ 2872 { SST(0x5E, 0x01, SS_RDEF, 2873 "Idle condition activated by timer") }, 2874 /* DTLPWRO A K */ 2875 { SST(0x5E, 0x02, SS_RDEF, 2876 "Standby condition activated by timer") }, 2877 /* DTLPWRO A K */ 2878 { SST(0x5E, 0x03, SS_RDEF, 2879 "Idle condition activated by command") }, 2880 /* DTLPWRO A K */ 2881 { SST(0x5E, 0x04, SS_RDEF, 2882 "Standby condition activated by command") }, 2883 /* DTLPWRO A K */ 2884 { SST(0x5E, 0x05, SS_RDEF, 2885 "Idle-B condition activated by timer") }, 2886 /* DTLPWRO A K */ 2887 { SST(0x5E, 0x06, SS_RDEF, 2888 "Idle-B condition activated by command") }, 2889 /* DTLPWRO A K */ 2890 { SST(0x5E, 0x07, SS_RDEF, 2891 "Idle-C condition activated by timer") }, 2892 /* DTLPWRO A K */ 2893 { SST(0x5E, 0x08, SS_RDEF, 2894 "Idle-C condition activated by command") }, 2895 /* DTLPWRO A K */ 2896 { SST(0x5E, 0x09, SS_RDEF, 2897 "Standby-Y condition activated by timer") }, 2898 /* DTLPWRO A K */ 2899 { SST(0x5E, 0x0A, SS_RDEF, 2900 "Standby-Y condition activated by command") }, 2901 /* B */ 2902 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ 2903 "Power state change to active") }, 2904 /* B */ 2905 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ 2906 "Power state change to idle") }, 2907 /* B */ 2908 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ 2909 "Power state change to standby") }, 2910 /* B */ 2911 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ 2912 "Power state change to sleep") }, 2913 /* BK */ 2914 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ 2915 "Power state change to device control") }, 2916 /* */ 2917 { SST(0x60, 0x00, SS_RDEF, 2918 "Lamp failure") }, 2919 /* */ 2920 { SST(0x61, 0x00, SS_RDEF, 2921 "Video acquisition error") }, 2922 /* */ 2923 { SST(0x61, 0x01, SS_RDEF, 2924 "Unable to acquire video") }, 2925 /* */ 2926 { SST(0x61, 0x02, SS_RDEF, 2927 "Out of focus") }, 2928 /* */ 2929 { SST(0x62, 0x00, SS_RDEF, 2930 "Scan head positioning error") }, 2931 /* R */ 2932 { SST(0x63, 0x00, SS_RDEF, 2933 "End of user area encountered on this track") }, 2934 /* R */ 2935 { SST(0x63, 0x01, SS_FATAL | ENOSPC, 2936 "Packet does not fit in available space") }, 2937 /* R */ 2938 { SST(0x64, 0x00, SS_FATAL | ENXIO, 2939 "Illegal mode for this track") }, 2940 /* R */ 2941 { SST(0x64, 0x01, SS_RDEF, 2942 "Invalid packet size") }, 2943 /* DTLPWROMAEBKVF */ 2944 { SST(0x65, 0x00, SS_RDEF, 2945 "Voltage fault") }, 2946 /* */ 2947 { SST(0x66, 0x00, SS_RDEF, 2948 "Automatic document feeder cover up") }, 2949 /* */ 2950 { SST(0x66, 0x01, SS_RDEF, 2951 "Automatic document feeder lift up") }, 2952 /* */ 2953 { SST(0x66, 0x02, SS_RDEF, 2954 "Document jam in automatic document feeder") }, 2955 /* */ 2956 { SST(0x66, 0x03, SS_RDEF, 2957 "Document miss feed automatic in document feeder") }, 2958 /* A */ 2959 { SST(0x67, 0x00, SS_RDEF, 2960 "Configuration failure") }, 2961 /* A */ 2962 { SST(0x67, 0x01, SS_RDEF, 2963 "Configuration of incapable logical units failed") }, 2964 /* A */ 2965 { SST(0x67, 0x02, SS_RDEF, 2966 "Add logical unit failed") }, 2967 /* A */ 2968 { SST(0x67, 0x03, SS_RDEF, 2969 "Modification of logical unit failed") }, 2970 /* A */ 2971 { SST(0x67, 0x04, SS_RDEF, 2972 "Exchange of logical unit failed") }, 2973 /* A */ 2974 { SST(0x67, 0x05, SS_RDEF, 2975 "Remove of logical unit failed") }, 2976 /* A */ 2977 { SST(0x67, 0x06, SS_RDEF, 2978 "Attachment of logical unit failed") }, 2979 /* A */ 2980 { SST(0x67, 0x07, SS_RDEF, 2981 "Creation of logical unit failed") }, 2982 /* A */ 2983 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ 2984 "Assign failure occurred") }, 2985 /* A */ 2986 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ 2987 "Multiply assigned logical unit") }, 2988 /* DTLPWROMAEBKVF */ 2989 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ 2990 "Set target port groups command failed") }, 2991 /* DT B */ 2992 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ 2993 "ATA device feature not enabled") }, 2994 /* A */ 2995 { SST(0x68, 0x00, SS_RDEF, 2996 "Logical unit not configured") }, 2997 /* D */ 2998 { SST(0x68, 0x01, SS_RDEF, 2999 "Subsidiary logical unit not configured") }, 3000 /* A */ 3001 { SST(0x69, 0x00, SS_RDEF, 3002 "Data loss on logical unit") }, 3003 /* A */ 3004 { SST(0x69, 0x01, SS_RDEF, 3005 "Multiple logical unit failures") }, 3006 /* A */ 3007 { SST(0x69, 0x02, SS_RDEF, 3008 "Parity/data mismatch") }, 3009 /* A */ 3010 { SST(0x6A, 0x00, SS_RDEF, 3011 "Informational, refer to log") }, 3012 /* A */ 3013 { SST(0x6B, 0x00, SS_RDEF, 3014 "State change has occurred") }, 3015 /* A */ 3016 { SST(0x6B, 0x01, SS_RDEF, 3017 "Redundancy level got better") }, 3018 /* A */ 3019 { SST(0x6B, 0x02, SS_RDEF, 3020 "Redundancy level got worse") }, 3021 /* A */ 3022 { SST(0x6C, 0x00, SS_RDEF, 3023 "Rebuild failure occurred") }, 3024 /* A */ 3025 { SST(0x6D, 0x00, SS_RDEF, 3026 "Recalculate failure occurred") }, 3027 /* A */ 3028 { SST(0x6E, 0x00, SS_RDEF, 3029 "Command to logical unit failed") }, 3030 /* R */ 3031 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ 3032 "Copy protection key exchange failure - authentication failure") }, 3033 /* R */ 3034 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ 3035 "Copy protection key exchange failure - key not present") }, 3036 /* R */ 3037 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ 3038 "Copy protection key exchange failure - key not established") }, 3039 /* R */ 3040 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ 3041 "Read of scrambled sector without authentication") }, 3042 /* R */ 3043 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ 3044 "Media region code is mismatched to logical unit region") }, 3045 /* R */ 3046 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ 3047 "Drive region must be permanent/region reset count error") }, 3048 /* R */ 3049 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ 3050 "Insufficient block count for binding NONCE recording") }, 3051 /* R */ 3052 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ 3053 "Conflict in binding NONCE recording") }, 3054 /* T */ 3055 { SST(0x70, 0x00, SS_RDEF, 3056 "Decompression exception short: ASCQ = Algorithm ID") }, 3057 /* T */ 3058 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, 3059 NULL) }, /* Range 0x00 -> 0xFF */ 3060 /* T */ 3061 { SST(0x71, 0x00, SS_RDEF, 3062 "Decompression exception long: ASCQ = Algorithm ID") }, 3063 /* T */ 3064 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, 3065 NULL) }, /* Range 0x00 -> 0xFF */ 3066 /* R */ 3067 { SST(0x72, 0x00, SS_RDEF, 3068 "Session fixation error") }, 3069 /* R */ 3070 { SST(0x72, 0x01, SS_RDEF, 3071 "Session fixation error writing lead-in") }, 3072 /* R */ 3073 { SST(0x72, 0x02, SS_RDEF, 3074 "Session fixation error writing lead-out") }, 3075 /* R */ 3076 { SST(0x72, 0x03, SS_RDEF, 3077 "Session fixation error - incomplete track in session") }, 3078 /* R */ 3079 { SST(0x72, 0x04, SS_RDEF, 3080 "Empty or partially written reserved track") }, 3081 /* R */ 3082 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ 3083 "No more track reservations allowed") }, 3084 /* R */ 3085 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ 3086 "RMZ extension is not allowed") }, 3087 /* R */ 3088 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ 3089 "No more test zone extensions are allowed") }, 3090 /* R */ 3091 { SST(0x73, 0x00, SS_RDEF, 3092 "CD control error") }, 3093 /* R */ 3094 { SST(0x73, 0x01, SS_RDEF, 3095 "Power calibration area almost full") }, 3096 /* R */ 3097 { SST(0x73, 0x02, SS_FATAL | ENOSPC, 3098 "Power calibration area is full") }, 3099 /* R */ 3100 { SST(0x73, 0x03, SS_RDEF, 3101 "Power calibration area error") }, 3102 /* R */ 3103 { SST(0x73, 0x04, SS_RDEF, 3104 "Program memory area update failure") }, 3105 /* R */ 3106 { SST(0x73, 0x05, SS_RDEF, 3107 "Program memory area is full") }, 3108 /* R */ 3109 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ 3110 "RMA/PMA is almost full") }, 3111 /* R */ 3112 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ 3113 "Current power calibration area almost full") }, 3114 /* R */ 3115 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ 3116 "Current power calibration area is full") }, 3117 /* R */ 3118 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ 3119 "RDZ is full") }, 3120 /* T */ 3121 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ 3122 "Security error") }, 3123 /* T */ 3124 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ 3125 "Unable to decrypt data") }, 3126 /* T */ 3127 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ 3128 "Unencrypted data encountered while decrypting") }, 3129 /* T */ 3130 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ 3131 "Incorrect data encryption key") }, 3132 /* T */ 3133 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ 3134 "Cryptographic integrity validation failed") }, 3135 /* T */ 3136 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ 3137 "Error decrypting data") }, 3138 /* T */ 3139 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ 3140 "Unknown signature verification key") }, 3141 /* T */ 3142 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ 3143 "Encryption parameters not useable") }, 3144 /* DT R M E VF */ 3145 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ 3146 "Digital signature validation failure") }, 3147 /* T */ 3148 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ 3149 "Encryption mode mismatch on read") }, 3150 /* T */ 3151 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ 3152 "Encrypted block not raw read enabled") }, 3153 /* T */ 3154 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ 3155 "Incorrect encryption parameters") }, 3156 /* DT R MAEBKV */ 3157 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ 3158 "Unable to decrypt parameter list") }, 3159 /* T */ 3160 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ 3161 "Encryption algorithm disabled") }, 3162 /* DT R MAEBKV */ 3163 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ 3164 "SA creation parameter value invalid") }, 3165 /* DT R MAEBKV */ 3166 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ 3167 "SA creation parameter value rejected") }, 3168 /* DT R MAEBKV */ 3169 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ 3170 "Invalid SA usage") }, 3171 /* T */ 3172 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ 3173 "Data encryption configuration prevented") }, 3174 /* DT R MAEBKV */ 3175 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ 3176 "SA creation parameter not supported") }, 3177 /* DT R MAEBKV */ 3178 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ 3179 "Authentication failed") }, 3180 /* V */ 3181 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ 3182 "External data encryption key manager access error") }, 3183 /* V */ 3184 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ 3185 "External data encryption key manager error") }, 3186 /* V */ 3187 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ 3188 "External data encryption key not found") }, 3189 /* V */ 3190 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ 3191 "External data encryption request not authorized") }, 3192 /* T */ 3193 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ 3194 "External data encryption control timeout") }, 3195 /* T */ 3196 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ 3197 "External data encryption control error") }, 3198 /* DT R M E V */ 3199 { SST(0x74, 0x71, SS_FATAL | EACCES, 3200 "Logical unit access not authorized") }, 3201 /* D */ 3202 { SST(0x74, 0x79, SS_FATAL | EACCES, 3203 "Security conflict in translated device") } 3204 }; 3205 3206 const u_int asc_table_size = nitems(asc_table); 3207 3208 struct asc_key 3209 { 3210 int asc; 3211 int ascq; 3212 }; 3213 3214 static int 3215 ascentrycomp(const void *key, const void *member) 3216 { 3217 int asc; 3218 int ascq; 3219 const struct asc_table_entry *table_entry; 3220 3221 asc = ((const struct asc_key *)key)->asc; 3222 ascq = ((const struct asc_key *)key)->ascq; 3223 table_entry = (const struct asc_table_entry *)member; 3224 3225 if (asc >= table_entry->asc) { 3226 3227 if (asc > table_entry->asc) 3228 return (1); 3229 3230 if (ascq <= table_entry->ascq) { 3231 /* Check for ranges */ 3232 if (ascq == table_entry->ascq 3233 || ((table_entry->action & SSQ_RANGE) != 0 3234 && ascq >= (table_entry - 1)->ascq)) 3235 return (0); 3236 return (-1); 3237 } 3238 return (1); 3239 } 3240 return (-1); 3241 } 3242 3243 static int 3244 senseentrycomp(const void *key, const void *member) 3245 { 3246 int sense_key; 3247 const struct sense_key_table_entry *table_entry; 3248 3249 sense_key = *((const int *)key); 3250 table_entry = (const struct sense_key_table_entry *)member; 3251 3252 if (sense_key >= table_entry->sense_key) { 3253 if (sense_key == table_entry->sense_key) 3254 return (0); 3255 return (1); 3256 } 3257 return (-1); 3258 } 3259 3260 static void 3261 fetchtableentries(int sense_key, int asc, int ascq, 3262 struct scsi_inquiry_data *inq_data, 3263 const struct sense_key_table_entry **sense_entry, 3264 const struct asc_table_entry **asc_entry) 3265 { 3266 caddr_t match; 3267 const struct asc_table_entry *asc_tables[2]; 3268 const struct sense_key_table_entry *sense_tables[2]; 3269 struct asc_key asc_ascq; 3270 size_t asc_tables_size[2]; 3271 size_t sense_tables_size[2]; 3272 int num_asc_tables; 3273 int num_sense_tables; 3274 int i; 3275 3276 /* Default to failure */ 3277 *sense_entry = NULL; 3278 *asc_entry = NULL; 3279 match = NULL; 3280 if (inq_data != NULL) 3281 match = cam_quirkmatch((caddr_t)inq_data, 3282 (caddr_t)sense_quirk_table, 3283 sense_quirk_table_size, 3284 sizeof(*sense_quirk_table), 3285 scsi_inquiry_match); 3286 3287 if (match != NULL) { 3288 struct scsi_sense_quirk_entry *quirk; 3289 3290 quirk = (struct scsi_sense_quirk_entry *)match; 3291 asc_tables[0] = quirk->asc_info; 3292 asc_tables_size[0] = quirk->num_ascs; 3293 asc_tables[1] = asc_table; 3294 asc_tables_size[1] = asc_table_size; 3295 num_asc_tables = 2; 3296 sense_tables[0] = quirk->sense_key_info; 3297 sense_tables_size[0] = quirk->num_sense_keys; 3298 sense_tables[1] = sense_key_table; 3299 sense_tables_size[1] = nitems(sense_key_table); 3300 num_sense_tables = 2; 3301 } else { 3302 asc_tables[0] = asc_table; 3303 asc_tables_size[0] = asc_table_size; 3304 num_asc_tables = 1; 3305 sense_tables[0] = sense_key_table; 3306 sense_tables_size[0] = nitems(sense_key_table); 3307 num_sense_tables = 1; 3308 } 3309 3310 asc_ascq.asc = asc; 3311 asc_ascq.ascq = ascq; 3312 for (i = 0; i < num_asc_tables; i++) { 3313 void *found_entry; 3314 3315 found_entry = bsearch(&asc_ascq, asc_tables[i], 3316 asc_tables_size[i], 3317 sizeof(**asc_tables), 3318 ascentrycomp); 3319 3320 if (found_entry) { 3321 *asc_entry = (struct asc_table_entry *)found_entry; 3322 break; 3323 } 3324 } 3325 3326 for (i = 0; i < num_sense_tables; i++) { 3327 void *found_entry; 3328 3329 found_entry = bsearch(&sense_key, sense_tables[i], 3330 sense_tables_size[i], 3331 sizeof(**sense_tables), 3332 senseentrycomp); 3333 3334 if (found_entry) { 3335 *sense_entry = 3336 (struct sense_key_table_entry *)found_entry; 3337 break; 3338 } 3339 } 3340 } 3341 3342 void 3343 scsi_sense_desc(int sense_key, int asc, int ascq, 3344 struct scsi_inquiry_data *inq_data, 3345 const char **sense_key_desc, const char **asc_desc) 3346 { 3347 const struct asc_table_entry *asc_entry; 3348 const struct sense_key_table_entry *sense_entry; 3349 3350 fetchtableentries(sense_key, asc, ascq, 3351 inq_data, 3352 &sense_entry, 3353 &asc_entry); 3354 3355 if (sense_entry != NULL) 3356 *sense_key_desc = sense_entry->desc; 3357 else 3358 *sense_key_desc = "Invalid Sense Key"; 3359 3360 if (asc_entry != NULL) 3361 *asc_desc = asc_entry->desc; 3362 else if (asc >= 0x80 && asc <= 0xff) 3363 *asc_desc = "Vendor Specific ASC"; 3364 else if (ascq >= 0x80 && ascq <= 0xff) 3365 *asc_desc = "Vendor Specific ASCQ"; 3366 else 3367 *asc_desc = "Reserved ASC/ASCQ pair"; 3368 } 3369 3370 /* 3371 * Given sense and device type information, return the appropriate action. 3372 * If we do not understand the specific error as identified by the ASC/ASCQ 3373 * pair, fall back on the more generic actions derived from the sense key. 3374 */ 3375 scsi_sense_action 3376 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, 3377 u_int32_t sense_flags) 3378 { 3379 const struct asc_table_entry *asc_entry; 3380 const struct sense_key_table_entry *sense_entry; 3381 int error_code, sense_key, asc, ascq; 3382 scsi_sense_action action; 3383 3384 if (!scsi_extract_sense_ccb((union ccb *)csio, 3385 &error_code, &sense_key, &asc, &ascq)) { 3386 action = SS_RETRY | SSQ_DECREMENT_COUNT | SSQ_PRINT_SENSE | EIO; 3387 } else if ((error_code == SSD_DEFERRED_ERROR) 3388 || (error_code == SSD_DESC_DEFERRED_ERROR)) { 3389 /* 3390 * XXX dufault@FreeBSD.org 3391 * This error doesn't relate to the command associated 3392 * with this request sense. A deferred error is an error 3393 * for a command that has already returned GOOD status 3394 * (see SCSI2 8.2.14.2). 3395 * 3396 * By my reading of that section, it looks like the current 3397 * command has been cancelled, we should now clean things up 3398 * (hopefully recovering any lost data) and then retry the 3399 * current command. There are two easy choices, both wrong: 3400 * 3401 * 1. Drop through (like we had been doing), thus treating 3402 * this as if the error were for the current command and 3403 * return and stop the current command. 3404 * 3405 * 2. Issue a retry (like I made it do) thus hopefully 3406 * recovering the current transfer, and ignoring the 3407 * fact that we've dropped a command. 3408 * 3409 * These should probably be handled in a device specific 3410 * sense handler or punted back up to a user mode daemon 3411 */ 3412 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3413 } else { 3414 fetchtableentries(sense_key, asc, ascq, 3415 inq_data, 3416 &sense_entry, 3417 &asc_entry); 3418 3419 /* 3420 * Override the 'No additional Sense' entry (0,0) 3421 * with the error action of the sense key. 3422 */ 3423 if (asc_entry != NULL 3424 && (asc != 0 || ascq != 0)) 3425 action = asc_entry->action; 3426 else if (sense_entry != NULL) 3427 action = sense_entry->action; 3428 else 3429 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3430 3431 if (sense_key == SSD_KEY_RECOVERED_ERROR) { 3432 /* 3433 * The action succeeded but the device wants 3434 * the user to know that some recovery action 3435 * was required. 3436 */ 3437 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); 3438 action |= SS_NOP|SSQ_PRINT_SENSE; 3439 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { 3440 if ((sense_flags & SF_QUIET_IR) != 0) 3441 action &= ~SSQ_PRINT_SENSE; 3442 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { 3443 if ((sense_flags & SF_RETRY_UA) != 0 3444 && (action & SS_MASK) == SS_FAIL) { 3445 action &= ~(SS_MASK|SSQ_MASK); 3446 action |= SS_RETRY|SSQ_DECREMENT_COUNT| 3447 SSQ_PRINT_SENSE; 3448 } 3449 action |= SSQ_UA; 3450 } 3451 } 3452 if ((action & SS_MASK) >= SS_START && 3453 (sense_flags & SF_NO_RECOVERY)) { 3454 action &= ~SS_MASK; 3455 action |= SS_FAIL; 3456 } else if ((action & SS_MASK) == SS_RETRY && 3457 (sense_flags & SF_NO_RETRY)) { 3458 action &= ~SS_MASK; 3459 action |= SS_FAIL; 3460 } 3461 if ((sense_flags & SF_PRINT_ALWAYS) != 0) 3462 action |= SSQ_PRINT_SENSE; 3463 else if ((sense_flags & SF_NO_PRINT) != 0) 3464 action &= ~SSQ_PRINT_SENSE; 3465 3466 return (action); 3467 } 3468 3469 char * 3470 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len) 3471 { 3472 struct sbuf sb; 3473 int error; 3474 3475 if (len == 0) 3476 return (""); 3477 3478 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN); 3479 3480 scsi_cdb_sbuf(cdb_ptr, &sb); 3481 3482 /* ENOMEM just means that the fixed buffer is full, OK to ignore */ 3483 error = sbuf_finish(&sb); 3484 if (error != 0 && error != ENOMEM) 3485 return (""); 3486 3487 return(sbuf_data(&sb)); 3488 } 3489 3490 void 3491 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb) 3492 { 3493 u_int8_t cdb_len; 3494 int i; 3495 3496 if (cdb_ptr == NULL) 3497 return; 3498 3499 /* 3500 * This is taken from the SCSI-3 draft spec. 3501 * (T10/1157D revision 0.3) 3502 * The top 3 bits of an opcode are the group code. The next 5 bits 3503 * are the command code. 3504 * Group 0: six byte commands 3505 * Group 1: ten byte commands 3506 * Group 2: ten byte commands 3507 * Group 3: reserved 3508 * Group 4: sixteen byte commands 3509 * Group 5: twelve byte commands 3510 * Group 6: vendor specific 3511 * Group 7: vendor specific 3512 */ 3513 switch((*cdb_ptr >> 5) & 0x7) { 3514 case 0: 3515 cdb_len = 6; 3516 break; 3517 case 1: 3518 case 2: 3519 cdb_len = 10; 3520 break; 3521 case 3: 3522 case 6: 3523 case 7: 3524 /* in this case, just print out the opcode */ 3525 cdb_len = 1; 3526 break; 3527 case 4: 3528 cdb_len = 16; 3529 break; 3530 case 5: 3531 cdb_len = 12; 3532 break; 3533 } 3534 3535 for (i = 0; i < cdb_len; i++) 3536 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]); 3537 3538 return; 3539 } 3540 3541 const char * 3542 scsi_status_string(struct ccb_scsiio *csio) 3543 { 3544 switch(csio->scsi_status) { 3545 case SCSI_STATUS_OK: 3546 return("OK"); 3547 case SCSI_STATUS_CHECK_COND: 3548 return("Check Condition"); 3549 case SCSI_STATUS_BUSY: 3550 return("Busy"); 3551 case SCSI_STATUS_INTERMED: 3552 return("Intermediate"); 3553 case SCSI_STATUS_INTERMED_COND_MET: 3554 return("Intermediate-Condition Met"); 3555 case SCSI_STATUS_RESERV_CONFLICT: 3556 return("Reservation Conflict"); 3557 case SCSI_STATUS_CMD_TERMINATED: 3558 return("Command Terminated"); 3559 case SCSI_STATUS_QUEUE_FULL: 3560 return("Queue Full"); 3561 case SCSI_STATUS_ACA_ACTIVE: 3562 return("ACA Active"); 3563 case SCSI_STATUS_TASK_ABORTED: 3564 return("Task Aborted"); 3565 default: { 3566 static char unkstr[64]; 3567 snprintf(unkstr, sizeof(unkstr), "Unknown %#x", 3568 csio->scsi_status); 3569 return(unkstr); 3570 } 3571 } 3572 } 3573 3574 /* 3575 * scsi_command_string() returns 0 for success and -1 for failure. 3576 */ 3577 #ifdef _KERNEL 3578 int 3579 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) 3580 #else /* !_KERNEL */ 3581 int 3582 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, 3583 struct sbuf *sb) 3584 #endif /* _KERNEL/!_KERNEL */ 3585 { 3586 struct scsi_inquiry_data *inq_data; 3587 #ifdef _KERNEL 3588 struct ccb_getdev *cgd; 3589 #endif /* _KERNEL */ 3590 3591 #ifdef _KERNEL 3592 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 3593 return(-1); 3594 /* 3595 * Get the device information. 3596 */ 3597 xpt_setup_ccb(&cgd->ccb_h, 3598 csio->ccb_h.path, 3599 CAM_PRIORITY_NORMAL); 3600 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 3601 xpt_action((union ccb *)cgd); 3602 3603 /* 3604 * If the device is unconfigured, just pretend that it is a hard 3605 * drive. scsi_op_desc() needs this. 3606 */ 3607 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 3608 cgd->inq_data.device = T_DIRECT; 3609 3610 inq_data = &cgd->inq_data; 3611 3612 #else /* !_KERNEL */ 3613 3614 inq_data = &device->inq_data; 3615 3616 #endif /* _KERNEL/!_KERNEL */ 3617 3618 sbuf_printf(sb, "%s. CDB: ", 3619 scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data)); 3620 scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb); 3621 3622 #ifdef _KERNEL 3623 xpt_free_ccb((union ccb *)cgd); 3624 #endif 3625 3626 return(0); 3627 } 3628 3629 /* 3630 * Iterate over sense descriptors. Each descriptor is passed into iter_func(). 3631 * If iter_func() returns 0, list traversal continues. If iter_func() 3632 * returns non-zero, list traversal is stopped. 3633 */ 3634 void 3635 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, 3636 int (*iter_func)(struct scsi_sense_data_desc *sense, 3637 u_int, struct scsi_sense_desc_header *, 3638 void *), void *arg) 3639 { 3640 int cur_pos; 3641 int desc_len; 3642 3643 /* 3644 * First make sure the extra length field is present. 3645 */ 3646 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) 3647 return; 3648 3649 /* 3650 * The length of data actually returned may be different than the 3651 * extra_len recorded in the structure. 3652 */ 3653 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); 3654 3655 /* 3656 * Limit this further by the extra length reported, and the maximum 3657 * allowed extra length. 3658 */ 3659 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); 3660 3661 /* 3662 * Subtract the size of the header from the descriptor length. 3663 * This is to ensure that we have at least the header left, so we 3664 * don't have to check that inside the loop. This can wind up 3665 * being a negative value. 3666 */ 3667 desc_len -= sizeof(struct scsi_sense_desc_header); 3668 3669 for (cur_pos = 0; cur_pos < desc_len;) { 3670 struct scsi_sense_desc_header *header; 3671 3672 header = (struct scsi_sense_desc_header *) 3673 &sense->sense_desc[cur_pos]; 3674 3675 /* 3676 * Check to make sure we have the entire descriptor. We 3677 * don't call iter_func() unless we do. 3678 * 3679 * Note that although cur_pos is at the beginning of the 3680 * descriptor, desc_len already has the header length 3681 * subtracted. So the comparison of the length in the 3682 * header (which does not include the header itself) to 3683 * desc_len - cur_pos is correct. 3684 */ 3685 if (header->length > (desc_len - cur_pos)) 3686 break; 3687 3688 if (iter_func(sense, sense_len, header, arg) != 0) 3689 break; 3690 3691 cur_pos += sizeof(*header) + header->length; 3692 } 3693 } 3694 3695 struct scsi_find_desc_info { 3696 uint8_t desc_type; 3697 struct scsi_sense_desc_header *header; 3698 }; 3699 3700 static int 3701 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 3702 struct scsi_sense_desc_header *header, void *arg) 3703 { 3704 struct scsi_find_desc_info *desc_info; 3705 3706 desc_info = (struct scsi_find_desc_info *)arg; 3707 3708 if (header->desc_type == desc_info->desc_type) { 3709 desc_info->header = header; 3710 3711 /* We found the descriptor, tell the iterator to stop. */ 3712 return (1); 3713 } else 3714 return (0); 3715 } 3716 3717 /* 3718 * Given a descriptor type, return a pointer to it if it is in the sense 3719 * data and not truncated. Avoiding truncating sense data will simplify 3720 * things significantly for the caller. 3721 */ 3722 uint8_t * 3723 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, 3724 uint8_t desc_type) 3725 { 3726 struct scsi_find_desc_info desc_info; 3727 3728 desc_info.desc_type = desc_type; 3729 desc_info.header = NULL; 3730 3731 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); 3732 3733 return ((uint8_t *)desc_info.header); 3734 } 3735 3736 /* 3737 * Fill in SCSI descriptor sense data with the specified parameters. 3738 */ 3739 static void 3740 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data, 3741 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3742 int sense_key, int asc, int ascq, va_list ap) 3743 { 3744 struct scsi_sense_data_desc *sense; 3745 scsi_sense_elem_type elem_type; 3746 int space, len; 3747 uint8_t *desc, *data; 3748 3749 memset(sense_data, 0, sizeof(*sense_data)); 3750 sense = (struct scsi_sense_data_desc *)sense_data; 3751 if (current_error != 0) 3752 sense->error_code = SSD_DESC_CURRENT_ERROR; 3753 else 3754 sense->error_code = SSD_DESC_DEFERRED_ERROR; 3755 sense->sense_key = sense_key; 3756 sense->add_sense_code = asc; 3757 sense->add_sense_code_qual = ascq; 3758 sense->flags = 0; 3759 3760 desc = &sense->sense_desc[0]; 3761 space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc); 3762 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3763 SSD_ELEM_NONE) { 3764 if (elem_type >= SSD_ELEM_MAX) { 3765 printf("%s: invalid sense type %d\n", __func__, 3766 elem_type); 3767 break; 3768 } 3769 len = va_arg(ap, int); 3770 data = va_arg(ap, uint8_t *); 3771 3772 switch (elem_type) { 3773 case SSD_ELEM_SKIP: 3774 break; 3775 case SSD_ELEM_DESC: 3776 if (space < len) { 3777 sense->flags |= SSDD_SDAT_OVFL; 3778 break; 3779 } 3780 bcopy(data, desc, len); 3781 desc += len; 3782 space -= len; 3783 break; 3784 case SSD_ELEM_SKS: { 3785 struct scsi_sense_sks *sks = (void *)desc; 3786 3787 if (len > sizeof(sks->sense_key_spec)) 3788 break; 3789 if (space < sizeof(*sks)) { 3790 sense->flags |= SSDD_SDAT_OVFL; 3791 break; 3792 } 3793 sks->desc_type = SSD_DESC_SKS; 3794 sks->length = sizeof(*sks) - 3795 (offsetof(struct scsi_sense_sks, length) + 1); 3796 bcopy(data, &sks->sense_key_spec, len); 3797 desc += sizeof(*sks); 3798 space -= sizeof(*sks); 3799 break; 3800 } 3801 case SSD_ELEM_COMMAND: { 3802 struct scsi_sense_command *cmd = (void *)desc; 3803 3804 if (len > sizeof(cmd->command_info)) 3805 break; 3806 if (space < sizeof(*cmd)) { 3807 sense->flags |= SSDD_SDAT_OVFL; 3808 break; 3809 } 3810 cmd->desc_type = SSD_DESC_COMMAND; 3811 cmd->length = sizeof(*cmd) - 3812 (offsetof(struct scsi_sense_command, length) + 1); 3813 bcopy(data, &cmd->command_info[ 3814 sizeof(cmd->command_info) - len], len); 3815 desc += sizeof(*cmd); 3816 space -= sizeof(*cmd); 3817 break; 3818 } 3819 case SSD_ELEM_INFO: { 3820 struct scsi_sense_info *info = (void *)desc; 3821 3822 if (len > sizeof(info->info)) 3823 break; 3824 if (space < sizeof(*info)) { 3825 sense->flags |= SSDD_SDAT_OVFL; 3826 break; 3827 } 3828 info->desc_type = SSD_DESC_INFO; 3829 info->length = sizeof(*info) - 3830 (offsetof(struct scsi_sense_info, length) + 1); 3831 info->byte2 = SSD_INFO_VALID; 3832 bcopy(data, &info->info[sizeof(info->info) - len], len); 3833 desc += sizeof(*info); 3834 space -= sizeof(*info); 3835 break; 3836 } 3837 case SSD_ELEM_FRU: { 3838 struct scsi_sense_fru *fru = (void *)desc; 3839 3840 if (len > sizeof(fru->fru)) 3841 break; 3842 if (space < sizeof(*fru)) { 3843 sense->flags |= SSDD_SDAT_OVFL; 3844 break; 3845 } 3846 fru->desc_type = SSD_DESC_FRU; 3847 fru->length = sizeof(*fru) - 3848 (offsetof(struct scsi_sense_fru, length) + 1); 3849 fru->fru = *data; 3850 desc += sizeof(*fru); 3851 space -= sizeof(*fru); 3852 break; 3853 } 3854 case SSD_ELEM_STREAM: { 3855 struct scsi_sense_stream *stream = (void *)desc; 3856 3857 if (len > sizeof(stream->byte3)) 3858 break; 3859 if (space < sizeof(*stream)) { 3860 sense->flags |= SSDD_SDAT_OVFL; 3861 break; 3862 } 3863 stream->desc_type = SSD_DESC_STREAM; 3864 stream->length = sizeof(*stream) - 3865 (offsetof(struct scsi_sense_stream, length) + 1); 3866 stream->byte3 = *data; 3867 desc += sizeof(*stream); 3868 space -= sizeof(*stream); 3869 break; 3870 } 3871 default: 3872 /* 3873 * We shouldn't get here, but if we do, do nothing. 3874 * We've already consumed the arguments above. 3875 */ 3876 break; 3877 } 3878 } 3879 sense->extra_len = desc - &sense->sense_desc[0]; 3880 *sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 + 3881 sense->extra_len; 3882 } 3883 3884 /* 3885 * Fill in SCSI fixed sense data with the specified parameters. 3886 */ 3887 static void 3888 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data, 3889 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3890 int sense_key, int asc, int ascq, va_list ap) 3891 { 3892 struct scsi_sense_data_fixed *sense; 3893 scsi_sense_elem_type elem_type; 3894 uint8_t *data; 3895 int len; 3896 3897 memset(sense_data, 0, sizeof(*sense_data)); 3898 sense = (struct scsi_sense_data_fixed *)sense_data; 3899 if (current_error != 0) 3900 sense->error_code = SSD_CURRENT_ERROR; 3901 else 3902 sense->error_code = SSD_DEFERRED_ERROR; 3903 sense->flags = sense_key & SSD_KEY; 3904 sense->extra_len = 0; 3905 if (*sense_len >= 13) { 3906 sense->add_sense_code = asc; 3907 sense->extra_len = MAX(sense->extra_len, 5); 3908 } else 3909 sense->flags |= SSD_SDAT_OVFL; 3910 if (*sense_len >= 14) { 3911 sense->add_sense_code_qual = ascq; 3912 sense->extra_len = MAX(sense->extra_len, 6); 3913 } else 3914 sense->flags |= SSD_SDAT_OVFL; 3915 3916 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3917 SSD_ELEM_NONE) { 3918 if (elem_type >= SSD_ELEM_MAX) { 3919 printf("%s: invalid sense type %d\n", __func__, 3920 elem_type); 3921 break; 3922 } 3923 len = va_arg(ap, int); 3924 data = va_arg(ap, uint8_t *); 3925 3926 switch (elem_type) { 3927 case SSD_ELEM_SKIP: 3928 break; 3929 case SSD_ELEM_SKS: 3930 if (len > sizeof(sense->sense_key_spec)) 3931 break; 3932 if (*sense_len < 18) { 3933 sense->flags |= SSD_SDAT_OVFL; 3934 break; 3935 } 3936 bcopy(data, &sense->sense_key_spec[0], len); 3937 sense->extra_len = MAX(sense->extra_len, 10); 3938 break; 3939 case SSD_ELEM_COMMAND: 3940 if (*sense_len < 12) { 3941 sense->flags |= SSD_SDAT_OVFL; 3942 break; 3943 } 3944 if (len > sizeof(sense->cmd_spec_info)) { 3945 data += len - sizeof(sense->cmd_spec_info); 3946 len = sizeof(sense->cmd_spec_info); 3947 } 3948 bcopy(data, &sense->cmd_spec_info[ 3949 sizeof(sense->cmd_spec_info) - len], len); 3950 sense->extra_len = MAX(sense->extra_len, 4); 3951 break; 3952 case SSD_ELEM_INFO: 3953 /* Set VALID bit only if no overflow. */ 3954 sense->error_code |= SSD_ERRCODE_VALID; 3955 while (len > sizeof(sense->info)) { 3956 if (data[0] != 0) 3957 sense->error_code &= ~SSD_ERRCODE_VALID; 3958 data ++; 3959 len --; 3960 } 3961 bcopy(data, &sense->info[sizeof(sense->info) - len], len); 3962 break; 3963 case SSD_ELEM_FRU: 3964 if (*sense_len < 15) { 3965 sense->flags |= SSD_SDAT_OVFL; 3966 break; 3967 } 3968 sense->fru = *data; 3969 sense->extra_len = MAX(sense->extra_len, 7); 3970 break; 3971 case SSD_ELEM_STREAM: 3972 sense->flags |= *data & 3973 (SSD_ILI | SSD_EOM | SSD_FILEMARK); 3974 break; 3975 default: 3976 3977 /* 3978 * We can't handle that in fixed format. Skip it. 3979 */ 3980 break; 3981 } 3982 } 3983 *sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 + 3984 sense->extra_len; 3985 } 3986 3987 /* 3988 * Fill in SCSI sense data with the specified parameters. This routine can 3989 * fill in either fixed or descriptor type sense data. 3990 */ 3991 void 3992 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len, 3993 scsi_sense_data_type sense_format, int current_error, 3994 int sense_key, int asc, int ascq, va_list ap) 3995 { 3996 3997 if (*sense_len > SSD_FULL_SIZE) 3998 *sense_len = SSD_FULL_SIZE; 3999 if (sense_format == SSD_TYPE_DESC) 4000 scsi_set_sense_data_desc_va(sense_data, sense_len, 4001 sense_format, current_error, sense_key, asc, ascq, ap); 4002 else 4003 scsi_set_sense_data_fixed_va(sense_data, sense_len, 4004 sense_format, current_error, sense_key, asc, ascq, ap); 4005 } 4006 4007 void 4008 scsi_set_sense_data(struct scsi_sense_data *sense_data, 4009 scsi_sense_data_type sense_format, int current_error, 4010 int sense_key, int asc, int ascq, ...) 4011 { 4012 va_list ap; 4013 u_int sense_len = SSD_FULL_SIZE; 4014 4015 va_start(ap, ascq); 4016 scsi_set_sense_data_va(sense_data, &sense_len, sense_format, 4017 current_error, sense_key, asc, ascq, ap); 4018 va_end(ap); 4019 } 4020 4021 void 4022 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len, 4023 scsi_sense_data_type sense_format, int current_error, 4024 int sense_key, int asc, int ascq, ...) 4025 { 4026 va_list ap; 4027 4028 va_start(ap, ascq); 4029 scsi_set_sense_data_va(sense_data, sense_len, sense_format, 4030 current_error, sense_key, asc, ascq, ap); 4031 va_end(ap); 4032 } 4033 4034 /* 4035 * Get sense information for three similar sense data types. 4036 */ 4037 int 4038 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, 4039 uint8_t info_type, uint64_t *info, int64_t *signed_info) 4040 { 4041 scsi_sense_data_type sense_type; 4042 4043 if (sense_len == 0) 4044 goto bailout; 4045 4046 sense_type = scsi_sense_type(sense_data); 4047 4048 switch (sense_type) { 4049 case SSD_TYPE_DESC: { 4050 struct scsi_sense_data_desc *sense; 4051 uint8_t *desc; 4052 4053 sense = (struct scsi_sense_data_desc *)sense_data; 4054 4055 desc = scsi_find_desc(sense, sense_len, info_type); 4056 if (desc == NULL) 4057 goto bailout; 4058 4059 switch (info_type) { 4060 case SSD_DESC_INFO: { 4061 struct scsi_sense_info *info_desc; 4062 4063 info_desc = (struct scsi_sense_info *)desc; 4064 4065 if ((info_desc->byte2 & SSD_INFO_VALID) == 0) 4066 goto bailout; 4067 4068 *info = scsi_8btou64(info_desc->info); 4069 if (signed_info != NULL) 4070 *signed_info = *info; 4071 break; 4072 } 4073 case SSD_DESC_COMMAND: { 4074 struct scsi_sense_command *cmd_desc; 4075 4076 cmd_desc = (struct scsi_sense_command *)desc; 4077 4078 *info = scsi_8btou64(cmd_desc->command_info); 4079 if (signed_info != NULL) 4080 *signed_info = *info; 4081 break; 4082 } 4083 case SSD_DESC_FRU: { 4084 struct scsi_sense_fru *fru_desc; 4085 4086 fru_desc = (struct scsi_sense_fru *)desc; 4087 4088 if (fru_desc->fru == 0) 4089 goto bailout; 4090 4091 *info = fru_desc->fru; 4092 if (signed_info != NULL) 4093 *signed_info = (int8_t)fru_desc->fru; 4094 break; 4095 } 4096 default: 4097 goto bailout; 4098 break; 4099 } 4100 break; 4101 } 4102 case SSD_TYPE_FIXED: { 4103 struct scsi_sense_data_fixed *sense; 4104 4105 sense = (struct scsi_sense_data_fixed *)sense_data; 4106 4107 switch (info_type) { 4108 case SSD_DESC_INFO: { 4109 uint32_t info_val; 4110 4111 if ((sense->error_code & SSD_ERRCODE_VALID) == 0) 4112 goto bailout; 4113 4114 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) 4115 goto bailout; 4116 4117 info_val = scsi_4btoul(sense->info); 4118 4119 *info = info_val; 4120 if (signed_info != NULL) 4121 *signed_info = (int32_t)info_val; 4122 break; 4123 } 4124 case SSD_DESC_COMMAND: { 4125 uint32_t cmd_val; 4126 4127 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, 4128 cmd_spec_info) == 0) 4129 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) 4130 goto bailout; 4131 4132 cmd_val = scsi_4btoul(sense->cmd_spec_info); 4133 if (cmd_val == 0) 4134 goto bailout; 4135 4136 *info = cmd_val; 4137 if (signed_info != NULL) 4138 *signed_info = (int32_t)cmd_val; 4139 break; 4140 } 4141 case SSD_DESC_FRU: 4142 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) 4143 || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) 4144 goto bailout; 4145 4146 if (sense->fru == 0) 4147 goto bailout; 4148 4149 *info = sense->fru; 4150 if (signed_info != NULL) 4151 *signed_info = (int8_t)sense->fru; 4152 break; 4153 default: 4154 goto bailout; 4155 break; 4156 } 4157 break; 4158 } 4159 default: 4160 goto bailout; 4161 break; 4162 } 4163 4164 return (0); 4165 bailout: 4166 return (1); 4167 } 4168 4169 int 4170 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) 4171 { 4172 scsi_sense_data_type sense_type; 4173 4174 if (sense_len == 0) 4175 goto bailout; 4176 4177 sense_type = scsi_sense_type(sense_data); 4178 4179 switch (sense_type) { 4180 case SSD_TYPE_DESC: { 4181 struct scsi_sense_data_desc *sense; 4182 struct scsi_sense_sks *desc; 4183 4184 sense = (struct scsi_sense_data_desc *)sense_data; 4185 4186 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, 4187 SSD_DESC_SKS); 4188 if (desc == NULL) 4189 goto bailout; 4190 4191 if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4192 goto bailout; 4193 4194 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); 4195 break; 4196 } 4197 case SSD_TYPE_FIXED: { 4198 struct scsi_sense_data_fixed *sense; 4199 4200 sense = (struct scsi_sense_data_fixed *)sense_data; 4201 4202 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) 4203 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) 4204 goto bailout; 4205 4206 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) 4207 goto bailout; 4208 4209 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); 4210 break; 4211 } 4212 default: 4213 goto bailout; 4214 break; 4215 } 4216 return (0); 4217 bailout: 4218 return (1); 4219 } 4220 4221 /* 4222 * Provide a common interface for fixed and descriptor sense to detect 4223 * whether we have block-specific sense information. It is clear by the 4224 * presence of the block descriptor in descriptor mode, but we have to 4225 * infer from the inquiry data and ILI bit in fixed mode. 4226 */ 4227 int 4228 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, 4229 struct scsi_inquiry_data *inq_data, uint8_t *block_bits) 4230 { 4231 scsi_sense_data_type sense_type; 4232 4233 if (inq_data != NULL) { 4234 switch (SID_TYPE(inq_data)) { 4235 case T_DIRECT: 4236 case T_RBC: 4237 case T_ZBC_HM: 4238 break; 4239 default: 4240 goto bailout; 4241 break; 4242 } 4243 } 4244 4245 sense_type = scsi_sense_type(sense_data); 4246 4247 switch (sense_type) { 4248 case SSD_TYPE_DESC: { 4249 struct scsi_sense_data_desc *sense; 4250 struct scsi_sense_block *block; 4251 4252 sense = (struct scsi_sense_data_desc *)sense_data; 4253 4254 block = (struct scsi_sense_block *)scsi_find_desc(sense, 4255 sense_len, SSD_DESC_BLOCK); 4256 if (block == NULL) 4257 goto bailout; 4258 4259 *block_bits = block->byte3; 4260 break; 4261 } 4262 case SSD_TYPE_FIXED: { 4263 struct scsi_sense_data_fixed *sense; 4264 4265 sense = (struct scsi_sense_data_fixed *)sense_data; 4266 4267 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4268 goto bailout; 4269 4270 *block_bits = sense->flags & SSD_ILI; 4271 break; 4272 } 4273 default: 4274 goto bailout; 4275 break; 4276 } 4277 return (0); 4278 bailout: 4279 return (1); 4280 } 4281 4282 int 4283 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, 4284 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) 4285 { 4286 scsi_sense_data_type sense_type; 4287 4288 if (inq_data != NULL) { 4289 switch (SID_TYPE(inq_data)) { 4290 case T_SEQUENTIAL: 4291 break; 4292 default: 4293 goto bailout; 4294 break; 4295 } 4296 } 4297 4298 sense_type = scsi_sense_type(sense_data); 4299 4300 switch (sense_type) { 4301 case SSD_TYPE_DESC: { 4302 struct scsi_sense_data_desc *sense; 4303 struct scsi_sense_stream *stream; 4304 4305 sense = (struct scsi_sense_data_desc *)sense_data; 4306 4307 stream = (struct scsi_sense_stream *)scsi_find_desc(sense, 4308 sense_len, SSD_DESC_STREAM); 4309 if (stream == NULL) 4310 goto bailout; 4311 4312 *stream_bits = stream->byte3; 4313 break; 4314 } 4315 case SSD_TYPE_FIXED: { 4316 struct scsi_sense_data_fixed *sense; 4317 4318 sense = (struct scsi_sense_data_fixed *)sense_data; 4319 4320 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4321 goto bailout; 4322 4323 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); 4324 break; 4325 } 4326 default: 4327 goto bailout; 4328 break; 4329 } 4330 return (0); 4331 bailout: 4332 return (1); 4333 } 4334 4335 void 4336 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4337 struct scsi_inquiry_data *inq_data, uint64_t info) 4338 { 4339 sbuf_printf(sb, "Info: %#jx", info); 4340 } 4341 4342 void 4343 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4344 struct scsi_inquiry_data *inq_data, uint64_t csi) 4345 { 4346 sbuf_printf(sb, "Command Specific Info: %#jx", csi); 4347 } 4348 4349 4350 void 4351 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) 4352 { 4353 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", 4354 (progress * 100) / SSD_SKS_PROGRESS_DENOM, 4355 progress, SSD_SKS_PROGRESS_DENOM); 4356 } 4357 4358 /* 4359 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. 4360 */ 4361 int 4362 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) 4363 { 4364 4365 switch (sense_key) { 4366 case SSD_KEY_ILLEGAL_REQUEST: { 4367 struct scsi_sense_sks_field *field; 4368 int bad_command; 4369 char tmpstr[40]; 4370 4371 /*Field Pointer*/ 4372 field = (struct scsi_sense_sks_field *)sks; 4373 4374 if (field->byte0 & SSD_SKS_FIELD_CMD) 4375 bad_command = 1; 4376 else 4377 bad_command = 0; 4378 4379 tmpstr[0] = '\0'; 4380 4381 /* Bit pointer is valid */ 4382 if (field->byte0 & SSD_SKS_BPV) 4383 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4384 field->byte0 & SSD_SKS_BIT_VALUE); 4385 4386 sbuf_printf(sb, "%s byte %d %sis invalid", 4387 bad_command ? "Command" : "Data", 4388 scsi_2btoul(field->field), tmpstr); 4389 break; 4390 } 4391 case SSD_KEY_UNIT_ATTENTION: { 4392 struct scsi_sense_sks_overflow *overflow; 4393 4394 overflow = (struct scsi_sense_sks_overflow *)sks; 4395 4396 /*UA Condition Queue Overflow*/ 4397 sbuf_printf(sb, "Unit Attention Condition Queue %s", 4398 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? 4399 "Overflowed" : "Did Not Overflow??"); 4400 break; 4401 } 4402 case SSD_KEY_RECOVERED_ERROR: 4403 case SSD_KEY_HARDWARE_ERROR: 4404 case SSD_KEY_MEDIUM_ERROR: { 4405 struct scsi_sense_sks_retry *retry; 4406 4407 /*Actual Retry Count*/ 4408 retry = (struct scsi_sense_sks_retry *)sks; 4409 4410 sbuf_printf(sb, "Actual Retry Count: %d", 4411 scsi_2btoul(retry->actual_retry_count)); 4412 break; 4413 } 4414 case SSD_KEY_NO_SENSE: 4415 case SSD_KEY_NOT_READY: { 4416 struct scsi_sense_sks_progress *progress; 4417 int progress_val; 4418 4419 /*Progress Indication*/ 4420 progress = (struct scsi_sense_sks_progress *)sks; 4421 progress_val = scsi_2btoul(progress->progress); 4422 4423 scsi_progress_sbuf(sb, progress_val); 4424 break; 4425 } 4426 case SSD_KEY_COPY_ABORTED: { 4427 struct scsi_sense_sks_segment *segment; 4428 char tmpstr[40]; 4429 4430 /*Segment Pointer*/ 4431 segment = (struct scsi_sense_sks_segment *)sks; 4432 4433 tmpstr[0] = '\0'; 4434 4435 if (segment->byte0 & SSD_SKS_SEGMENT_BPV) 4436 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4437 segment->byte0 & SSD_SKS_SEGMENT_BITPTR); 4438 4439 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & 4440 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", 4441 scsi_2btoul(segment->field), tmpstr); 4442 break; 4443 } 4444 default: 4445 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], 4446 scsi_2btoul(&sks[1])); 4447 break; 4448 } 4449 4450 return (0); 4451 } 4452 4453 void 4454 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) 4455 { 4456 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); 4457 } 4458 4459 void 4460 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits) 4461 { 4462 int need_comma; 4463 4464 need_comma = 0; 4465 /* 4466 * XXX KDM this needs more descriptive decoding. 4467 */ 4468 sbuf_printf(sb, "Stream Command Sense Data: "); 4469 if (stream_bits & SSD_DESC_STREAM_FM) { 4470 sbuf_printf(sb, "Filemark"); 4471 need_comma = 1; 4472 } 4473 4474 if (stream_bits & SSD_DESC_STREAM_EOM) { 4475 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); 4476 need_comma = 1; 4477 } 4478 4479 if (stream_bits & SSD_DESC_STREAM_ILI) 4480 sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); 4481 } 4482 4483 void 4484 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits) 4485 { 4486 4487 sbuf_printf(sb, "Block Command Sense Data: "); 4488 if (block_bits & SSD_DESC_BLOCK_ILI) 4489 sbuf_printf(sb, "ILI"); 4490 } 4491 4492 void 4493 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4494 u_int sense_len, uint8_t *cdb, int cdb_len, 4495 struct scsi_inquiry_data *inq_data, 4496 struct scsi_sense_desc_header *header) 4497 { 4498 struct scsi_sense_info *info; 4499 4500 info = (struct scsi_sense_info *)header; 4501 4502 if ((info->byte2 & SSD_INFO_VALID) == 0) 4503 return; 4504 4505 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); 4506 } 4507 4508 void 4509 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4510 u_int sense_len, uint8_t *cdb, int cdb_len, 4511 struct scsi_inquiry_data *inq_data, 4512 struct scsi_sense_desc_header *header) 4513 { 4514 struct scsi_sense_command *command; 4515 4516 command = (struct scsi_sense_command *)header; 4517 4518 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, 4519 scsi_8btou64(command->command_info)); 4520 } 4521 4522 void 4523 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4524 u_int sense_len, uint8_t *cdb, int cdb_len, 4525 struct scsi_inquiry_data *inq_data, 4526 struct scsi_sense_desc_header *header) 4527 { 4528 struct scsi_sense_sks *sks; 4529 int error_code, sense_key, asc, ascq; 4530 4531 sks = (struct scsi_sense_sks *)header; 4532 4533 if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4534 return; 4535 4536 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4537 &asc, &ascq, /*show_errors*/ 1); 4538 4539 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); 4540 } 4541 4542 void 4543 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4544 u_int sense_len, uint8_t *cdb, int cdb_len, 4545 struct scsi_inquiry_data *inq_data, 4546 struct scsi_sense_desc_header *header) 4547 { 4548 struct scsi_sense_fru *fru; 4549 4550 fru = (struct scsi_sense_fru *)header; 4551 4552 if (fru->fru == 0) 4553 return; 4554 4555 scsi_fru_sbuf(sb, (uint64_t)fru->fru); 4556 } 4557 4558 void 4559 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4560 u_int sense_len, uint8_t *cdb, int cdb_len, 4561 struct scsi_inquiry_data *inq_data, 4562 struct scsi_sense_desc_header *header) 4563 { 4564 struct scsi_sense_stream *stream; 4565 4566 stream = (struct scsi_sense_stream *)header; 4567 scsi_stream_sbuf(sb, stream->byte3); 4568 } 4569 4570 void 4571 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4572 u_int sense_len, uint8_t *cdb, int cdb_len, 4573 struct scsi_inquiry_data *inq_data, 4574 struct scsi_sense_desc_header *header) 4575 { 4576 struct scsi_sense_block *block; 4577 4578 block = (struct scsi_sense_block *)header; 4579 scsi_block_sbuf(sb, block->byte3); 4580 } 4581 4582 void 4583 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4584 u_int sense_len, uint8_t *cdb, int cdb_len, 4585 struct scsi_inquiry_data *inq_data, 4586 struct scsi_sense_desc_header *header) 4587 { 4588 struct scsi_sense_progress *progress; 4589 const char *sense_key_desc; 4590 const char *asc_desc; 4591 int progress_val; 4592 4593 progress = (struct scsi_sense_progress *)header; 4594 4595 /* 4596 * Get descriptions for the sense key, ASC, and ASCQ in the 4597 * progress descriptor. These could be different than the values 4598 * in the overall sense data. 4599 */ 4600 scsi_sense_desc(progress->sense_key, progress->add_sense_code, 4601 progress->add_sense_code_qual, inq_data, 4602 &sense_key_desc, &asc_desc); 4603 4604 progress_val = scsi_2btoul(progress->progress); 4605 4606 /* 4607 * The progress indicator is for the operation described by the 4608 * sense key, ASC, and ASCQ in the descriptor. 4609 */ 4610 sbuf_cat(sb, sense_key_desc); 4611 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, 4612 progress->add_sense_code_qual, asc_desc); 4613 scsi_progress_sbuf(sb, progress_val); 4614 } 4615 4616 void 4617 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4618 u_int sense_len, uint8_t *cdb, int cdb_len, 4619 struct scsi_inquiry_data *inq_data, 4620 struct scsi_sense_desc_header *header) 4621 { 4622 struct scsi_sense_ata_ret_desc *res; 4623 4624 res = (struct scsi_sense_ata_ret_desc *)header; 4625 4626 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ", 4627 res->status, 4628 (res->status & 0x80) ? "BSY " : "", 4629 (res->status & 0x40) ? "DRDY " : "", 4630 (res->status & 0x20) ? "DF " : "", 4631 (res->status & 0x10) ? "SERV " : "", 4632 (res->status & 0x08) ? "DRQ " : "", 4633 (res->status & 0x04) ? "CORR " : "", 4634 (res->status & 0x02) ? "IDX " : "", 4635 (res->status & 0x01) ? "ERR" : ""); 4636 if (res->status & 1) { 4637 sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ", 4638 res->error, 4639 (res->error & 0x80) ? "ICRC " : "", 4640 (res->error & 0x40) ? "UNC " : "", 4641 (res->error & 0x20) ? "MC " : "", 4642 (res->error & 0x10) ? "IDNF " : "", 4643 (res->error & 0x08) ? "MCR " : "", 4644 (res->error & 0x04) ? "ABRT " : "", 4645 (res->error & 0x02) ? "NM " : "", 4646 (res->error & 0x01) ? "ILI" : ""); 4647 } 4648 4649 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) { 4650 sbuf_printf(sb, "count: %02x%02x, ", 4651 res->count_15_8, res->count_7_0); 4652 sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ", 4653 res->lba_47_40, res->lba_39_32, res->lba_31_24, 4654 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4655 } else { 4656 sbuf_printf(sb, "count: %02x, ", res->count_7_0); 4657 sbuf_printf(sb, "LBA: %02x%02x%02x, ", 4658 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4659 } 4660 sbuf_printf(sb, "device: %02x, ", res->device); 4661 } 4662 4663 void 4664 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4665 u_int sense_len, uint8_t *cdb, int cdb_len, 4666 struct scsi_inquiry_data *inq_data, 4667 struct scsi_sense_desc_header *header) 4668 { 4669 struct scsi_sense_forwarded *forwarded; 4670 const char *sense_key_desc; 4671 const char *asc_desc; 4672 int error_code, sense_key, asc, ascq; 4673 4674 forwarded = (struct scsi_sense_forwarded *)header; 4675 scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data, 4676 forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1); 4677 scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc); 4678 4679 sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ", 4680 sense_key_desc, asc, ascq, asc_desc); 4681 } 4682 4683 /* 4684 * Generic sense descriptor printing routine. This is used when we have 4685 * not yet implemented a specific printing routine for this descriptor. 4686 */ 4687 void 4688 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4689 u_int sense_len, uint8_t *cdb, int cdb_len, 4690 struct scsi_inquiry_data *inq_data, 4691 struct scsi_sense_desc_header *header) 4692 { 4693 int i; 4694 uint8_t *buf_ptr; 4695 4696 sbuf_printf(sb, "Descriptor %#x:", header->desc_type); 4697 4698 buf_ptr = (uint8_t *)&header[1]; 4699 4700 for (i = 0; i < header->length; i++, buf_ptr++) 4701 sbuf_printf(sb, " %02x", *buf_ptr); 4702 } 4703 4704 /* 4705 * Keep this list in numeric order. This speeds the array traversal. 4706 */ 4707 struct scsi_sense_desc_printer { 4708 uint8_t desc_type; 4709 /* 4710 * The function arguments here are the superset of what is needed 4711 * to print out various different descriptors. Command and 4712 * information descriptors need inquiry data and command type. 4713 * Sense key specific descriptors need the sense key. 4714 * 4715 * The sense, cdb, and inquiry data arguments may be NULL, but the 4716 * information printed may not be fully decoded as a result. 4717 */ 4718 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, 4719 u_int sense_len, uint8_t *cdb, int cdb_len, 4720 struct scsi_inquiry_data *inq_data, 4721 struct scsi_sense_desc_header *header); 4722 } scsi_sense_printers[] = { 4723 {SSD_DESC_INFO, scsi_sense_info_sbuf}, 4724 {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, 4725 {SSD_DESC_SKS, scsi_sense_sks_sbuf}, 4726 {SSD_DESC_FRU, scsi_sense_fru_sbuf}, 4727 {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, 4728 {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, 4729 {SSD_DESC_ATA, scsi_sense_ata_sbuf}, 4730 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}, 4731 {SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf} 4732 }; 4733 4734 void 4735 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4736 u_int sense_len, uint8_t *cdb, int cdb_len, 4737 struct scsi_inquiry_data *inq_data, 4738 struct scsi_sense_desc_header *header) 4739 { 4740 u_int i; 4741 4742 for (i = 0; i < nitems(scsi_sense_printers); i++) { 4743 struct scsi_sense_desc_printer *printer; 4744 4745 printer = &scsi_sense_printers[i]; 4746 4747 /* 4748 * The list is sorted, so quit if we've passed our 4749 * descriptor number. 4750 */ 4751 if (printer->desc_type > header->desc_type) 4752 break; 4753 4754 if (printer->desc_type != header->desc_type) 4755 continue; 4756 4757 printer->print_func(sb, sense, sense_len, cdb, cdb_len, 4758 inq_data, header); 4759 4760 return; 4761 } 4762 4763 /* 4764 * No specific printing routine, so use the generic routine. 4765 */ 4766 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, 4767 inq_data, header); 4768 } 4769 4770 scsi_sense_data_type 4771 scsi_sense_type(struct scsi_sense_data *sense_data) 4772 { 4773 switch (sense_data->error_code & SSD_ERRCODE) { 4774 case SSD_DESC_CURRENT_ERROR: 4775 case SSD_DESC_DEFERRED_ERROR: 4776 return (SSD_TYPE_DESC); 4777 break; 4778 case SSD_CURRENT_ERROR: 4779 case SSD_DEFERRED_ERROR: 4780 return (SSD_TYPE_FIXED); 4781 break; 4782 default: 4783 break; 4784 } 4785 4786 return (SSD_TYPE_NONE); 4787 } 4788 4789 struct scsi_print_sense_info { 4790 struct sbuf *sb; 4791 char *path_str; 4792 uint8_t *cdb; 4793 int cdb_len; 4794 struct scsi_inquiry_data *inq_data; 4795 }; 4796 4797 static int 4798 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 4799 struct scsi_sense_desc_header *header, void *arg) 4800 { 4801 struct scsi_print_sense_info *print_info; 4802 4803 print_info = (struct scsi_print_sense_info *)arg; 4804 4805 switch (header->desc_type) { 4806 case SSD_DESC_INFO: 4807 case SSD_DESC_FRU: 4808 case SSD_DESC_COMMAND: 4809 case SSD_DESC_SKS: 4810 case SSD_DESC_BLOCK: 4811 case SSD_DESC_STREAM: 4812 /* 4813 * We have already printed these descriptors, if they are 4814 * present. 4815 */ 4816 break; 4817 default: { 4818 sbuf_printf(print_info->sb, "%s", print_info->path_str); 4819 scsi_sense_desc_sbuf(print_info->sb, 4820 (struct scsi_sense_data *)sense, sense_len, 4821 print_info->cdb, print_info->cdb_len, 4822 print_info->inq_data, header); 4823 sbuf_printf(print_info->sb, "\n"); 4824 break; 4825 } 4826 } 4827 4828 /* 4829 * Tell the iterator that we want to see more descriptors if they 4830 * are present. 4831 */ 4832 return (0); 4833 } 4834 4835 void 4836 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, 4837 struct sbuf *sb, char *path_str, 4838 struct scsi_inquiry_data *inq_data, uint8_t *cdb, 4839 int cdb_len) 4840 { 4841 int error_code, sense_key, asc, ascq; 4842 4843 sbuf_cat(sb, path_str); 4844 4845 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4846 &asc, &ascq, /*show_errors*/ 1); 4847 4848 sbuf_printf(sb, "SCSI sense: "); 4849 switch (error_code) { 4850 case SSD_DEFERRED_ERROR: 4851 case SSD_DESC_DEFERRED_ERROR: 4852 sbuf_printf(sb, "Deferred error: "); 4853 4854 /* FALLTHROUGH */ 4855 case SSD_CURRENT_ERROR: 4856 case SSD_DESC_CURRENT_ERROR: 4857 { 4858 struct scsi_sense_data_desc *desc_sense; 4859 struct scsi_print_sense_info print_info; 4860 const char *sense_key_desc; 4861 const char *asc_desc; 4862 uint8_t sks[3]; 4863 uint64_t val; 4864 uint8_t bits; 4865 4866 /* 4867 * Get descriptions for the sense key, ASC, and ASCQ. If 4868 * these aren't present in the sense data (i.e. the sense 4869 * data isn't long enough), the -1 values that 4870 * scsi_extract_sense_len() returns will yield default 4871 * or error descriptions. 4872 */ 4873 scsi_sense_desc(sense_key, asc, ascq, inq_data, 4874 &sense_key_desc, &asc_desc); 4875 4876 /* 4877 * We first print the sense key and ASC/ASCQ. 4878 */ 4879 sbuf_cat(sb, sense_key_desc); 4880 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); 4881 4882 /* 4883 * Print any block or stream device-specific information. 4884 */ 4885 if (scsi_get_block_info(sense, sense_len, inq_data, 4886 &bits) == 0 && bits != 0) { 4887 sbuf_cat(sb, path_str); 4888 scsi_block_sbuf(sb, bits); 4889 sbuf_printf(sb, "\n"); 4890 } else if (scsi_get_stream_info(sense, sense_len, inq_data, 4891 &bits) == 0 && bits != 0) { 4892 sbuf_cat(sb, path_str); 4893 scsi_stream_sbuf(sb, bits); 4894 sbuf_printf(sb, "\n"); 4895 } 4896 4897 /* 4898 * Print the info field. 4899 */ 4900 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, 4901 &val, NULL) == 0) { 4902 sbuf_cat(sb, path_str); 4903 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); 4904 sbuf_printf(sb, "\n"); 4905 } 4906 4907 /* 4908 * Print the FRU. 4909 */ 4910 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, 4911 &val, NULL) == 0) { 4912 sbuf_cat(sb, path_str); 4913 scsi_fru_sbuf(sb, val); 4914 sbuf_printf(sb, "\n"); 4915 } 4916 4917 /* 4918 * Print any command-specific information. 4919 */ 4920 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, 4921 &val, NULL) == 0) { 4922 sbuf_cat(sb, path_str); 4923 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); 4924 sbuf_printf(sb, "\n"); 4925 } 4926 4927 /* 4928 * Print out any sense-key-specific information. 4929 */ 4930 if (scsi_get_sks(sense, sense_len, sks) == 0) { 4931 sbuf_cat(sb, path_str); 4932 scsi_sks_sbuf(sb, sense_key, sks); 4933 sbuf_printf(sb, "\n"); 4934 } 4935 4936 /* 4937 * If this is fixed sense, we're done. If we have 4938 * descriptor sense, we might have more information 4939 * available. 4940 */ 4941 if (scsi_sense_type(sense) != SSD_TYPE_DESC) 4942 break; 4943 4944 desc_sense = (struct scsi_sense_data_desc *)sense; 4945 4946 print_info.sb = sb; 4947 print_info.path_str = path_str; 4948 print_info.cdb = cdb; 4949 print_info.cdb_len = cdb_len; 4950 print_info.inq_data = inq_data; 4951 4952 /* 4953 * Print any sense descriptors that we have not already printed. 4954 */ 4955 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, 4956 &print_info); 4957 break; 4958 4959 } 4960 case -1: 4961 /* 4962 * scsi_extract_sense_len() sets values to -1 if the 4963 * show_errors flag is set and they aren't present in the 4964 * sense data. This means that sense_len is 0. 4965 */ 4966 sbuf_printf(sb, "No sense data present\n"); 4967 break; 4968 default: { 4969 sbuf_printf(sb, "Error code 0x%x", error_code); 4970 if (sense->error_code & SSD_ERRCODE_VALID) { 4971 struct scsi_sense_data_fixed *fixed_sense; 4972 4973 fixed_sense = (struct scsi_sense_data_fixed *)sense; 4974 4975 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ 4976 uint32_t info; 4977 4978 info = scsi_4btoul(fixed_sense->info); 4979 4980 sbuf_printf(sb, " at block no. %d (decimal)", 4981 info); 4982 } 4983 } 4984 sbuf_printf(sb, "\n"); 4985 break; 4986 } 4987 } 4988 } 4989 4990 /* 4991 * scsi_sense_sbuf() returns 0 for success and -1 for failure. 4992 */ 4993 #ifdef _KERNEL 4994 int 4995 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, 4996 scsi_sense_string_flags flags) 4997 #else /* !_KERNEL */ 4998 int 4999 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, 5000 struct sbuf *sb, scsi_sense_string_flags flags) 5001 #endif /* _KERNEL/!_KERNEL */ 5002 { 5003 struct scsi_sense_data *sense; 5004 struct scsi_inquiry_data *inq_data; 5005 #ifdef _KERNEL 5006 struct ccb_getdev *cgd; 5007 #endif /* _KERNEL */ 5008 char path_str[64]; 5009 5010 #ifndef _KERNEL 5011 if (device == NULL) 5012 return(-1); 5013 #endif /* !_KERNEL */ 5014 if ((csio == NULL) || (sb == NULL)) 5015 return(-1); 5016 5017 /* 5018 * If the CDB is a physical address, we can't deal with it.. 5019 */ 5020 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) 5021 flags &= ~SSS_FLAG_PRINT_COMMAND; 5022 5023 #ifdef _KERNEL 5024 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); 5025 #else /* !_KERNEL */ 5026 cam_path_string(device, path_str, sizeof(path_str)); 5027 #endif /* _KERNEL/!_KERNEL */ 5028 5029 #ifdef _KERNEL 5030 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 5031 return(-1); 5032 /* 5033 * Get the device information. 5034 */ 5035 xpt_setup_ccb(&cgd->ccb_h, 5036 csio->ccb_h.path, 5037 CAM_PRIORITY_NORMAL); 5038 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 5039 xpt_action((union ccb *)cgd); 5040 5041 /* 5042 * If the device is unconfigured, just pretend that it is a hard 5043 * drive. scsi_op_desc() needs this. 5044 */ 5045 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 5046 cgd->inq_data.device = T_DIRECT; 5047 5048 inq_data = &cgd->inq_data; 5049 5050 #else /* !_KERNEL */ 5051 5052 inq_data = &device->inq_data; 5053 5054 #endif /* _KERNEL/!_KERNEL */ 5055 5056 sense = NULL; 5057 5058 if (flags & SSS_FLAG_PRINT_COMMAND) { 5059 5060 sbuf_cat(sb, path_str); 5061 5062 #ifdef _KERNEL 5063 scsi_command_string(csio, sb); 5064 #else /* !_KERNEL */ 5065 scsi_command_string(device, csio, sb); 5066 #endif /* _KERNEL/!_KERNEL */ 5067 sbuf_printf(sb, "\n"); 5068 } 5069 5070 /* 5071 * If the sense data is a physical pointer, forget it. 5072 */ 5073 if (csio->ccb_h.flags & CAM_SENSE_PTR) { 5074 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5075 #ifdef _KERNEL 5076 xpt_free_ccb((union ccb*)cgd); 5077 #endif /* _KERNEL/!_KERNEL */ 5078 return(-1); 5079 } else { 5080 /* 5081 * bcopy the pointer to avoid unaligned access 5082 * errors on finicky architectures. We don't 5083 * ensure that the sense data is pointer aligned. 5084 */ 5085 bcopy((struct scsi_sense_data **)&csio->sense_data, 5086 &sense, sizeof(struct scsi_sense_data *)); 5087 } 5088 } else { 5089 /* 5090 * If the physical sense flag is set, but the sense pointer 5091 * is not also set, we assume that the user is an idiot and 5092 * return. (Well, okay, it could be that somehow, the 5093 * entire csio is physical, but we would have probably core 5094 * dumped on one of the bogus pointer deferences above 5095 * already.) 5096 */ 5097 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5098 #ifdef _KERNEL 5099 xpt_free_ccb((union ccb*)cgd); 5100 #endif /* _KERNEL/!_KERNEL */ 5101 return(-1); 5102 } else 5103 sense = &csio->sense_data; 5104 } 5105 5106 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, 5107 path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len); 5108 5109 #ifdef _KERNEL 5110 xpt_free_ccb((union ccb*)cgd); 5111 #endif /* _KERNEL/!_KERNEL */ 5112 return(0); 5113 } 5114 5115 5116 5117 #ifdef _KERNEL 5118 char * 5119 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) 5120 #else /* !_KERNEL */ 5121 char * 5122 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, 5123 char *str, int str_len) 5124 #endif /* _KERNEL/!_KERNEL */ 5125 { 5126 struct sbuf sb; 5127 5128 sbuf_new(&sb, str, str_len, 0); 5129 5130 #ifdef _KERNEL 5131 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5132 #else /* !_KERNEL */ 5133 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5134 #endif /* _KERNEL/!_KERNEL */ 5135 5136 sbuf_finish(&sb); 5137 5138 return(sbuf_data(&sb)); 5139 } 5140 5141 #ifdef _KERNEL 5142 void 5143 scsi_sense_print(struct ccb_scsiio *csio) 5144 { 5145 struct sbuf sb; 5146 char str[512]; 5147 5148 sbuf_new(&sb, str, sizeof(str), 0); 5149 5150 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5151 5152 sbuf_finish(&sb); 5153 5154 sbuf_putbuf(&sb); 5155 } 5156 5157 #else /* !_KERNEL */ 5158 void 5159 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, 5160 FILE *ofile) 5161 { 5162 struct sbuf sb; 5163 char str[512]; 5164 5165 if ((device == NULL) || (csio == NULL) || (ofile == NULL)) 5166 return; 5167 5168 sbuf_new(&sb, str, sizeof(str), 0); 5169 5170 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5171 5172 sbuf_finish(&sb); 5173 5174 fprintf(ofile, "%s", sbuf_data(&sb)); 5175 } 5176 5177 #endif /* _KERNEL/!_KERNEL */ 5178 5179 /* 5180 * Extract basic sense information. This is backward-compatible with the 5181 * previous implementation. For new implementations, 5182 * scsi_extract_sense_len() is recommended. 5183 */ 5184 void 5185 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, 5186 int *sense_key, int *asc, int *ascq) 5187 { 5188 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, 5189 sense_key, asc, ascq, /*show_errors*/ 0); 5190 } 5191 5192 /* 5193 * Extract basic sense information from SCSI I/O CCB structure. 5194 */ 5195 int 5196 scsi_extract_sense_ccb(union ccb *ccb, 5197 int *error_code, int *sense_key, int *asc, int *ascq) 5198 { 5199 struct scsi_sense_data *sense_data; 5200 5201 /* Make sure there are some sense data we can access. */ 5202 if (ccb->ccb_h.func_code != XPT_SCSI_IO || 5203 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR || 5204 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) || 5205 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 || 5206 (ccb->ccb_h.flags & CAM_SENSE_PHYS)) 5207 return (0); 5208 5209 if (ccb->ccb_h.flags & CAM_SENSE_PTR) 5210 bcopy((struct scsi_sense_data **)&ccb->csio.sense_data, 5211 &sense_data, sizeof(struct scsi_sense_data *)); 5212 else 5213 sense_data = &ccb->csio.sense_data; 5214 scsi_extract_sense_len(sense_data, 5215 ccb->csio.sense_len - ccb->csio.sense_resid, 5216 error_code, sense_key, asc, ascq, 1); 5217 if (*error_code == -1) 5218 return (0); 5219 return (1); 5220 } 5221 5222 /* 5223 * Extract basic sense information. If show_errors is set, sense values 5224 * will be set to -1 if they are not present. 5225 */ 5226 void 5227 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, 5228 int *error_code, int *sense_key, int *asc, int *ascq, 5229 int show_errors) 5230 { 5231 /* 5232 * If we have no length, we have no sense. 5233 */ 5234 if (sense_len == 0) { 5235 if (show_errors == 0) { 5236 *error_code = 0; 5237 *sense_key = 0; 5238 *asc = 0; 5239 *ascq = 0; 5240 } else { 5241 *error_code = -1; 5242 *sense_key = -1; 5243 *asc = -1; 5244 *ascq = -1; 5245 } 5246 return; 5247 } 5248 5249 *error_code = sense_data->error_code & SSD_ERRCODE; 5250 5251 switch (*error_code) { 5252 case SSD_DESC_CURRENT_ERROR: 5253 case SSD_DESC_DEFERRED_ERROR: { 5254 struct scsi_sense_data_desc *sense; 5255 5256 sense = (struct scsi_sense_data_desc *)sense_data; 5257 5258 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) 5259 *sense_key = sense->sense_key & SSD_KEY; 5260 else 5261 *sense_key = (show_errors) ? -1 : 0; 5262 5263 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) 5264 *asc = sense->add_sense_code; 5265 else 5266 *asc = (show_errors) ? -1 : 0; 5267 5268 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) 5269 *ascq = sense->add_sense_code_qual; 5270 else 5271 *ascq = (show_errors) ? -1 : 0; 5272 break; 5273 } 5274 case SSD_CURRENT_ERROR: 5275 case SSD_DEFERRED_ERROR: 5276 default: { 5277 struct scsi_sense_data_fixed *sense; 5278 5279 sense = (struct scsi_sense_data_fixed *)sense_data; 5280 5281 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) 5282 *sense_key = sense->flags & SSD_KEY; 5283 else 5284 *sense_key = (show_errors) ? -1 : 0; 5285 5286 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) 5287 && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) 5288 *asc = sense->add_sense_code; 5289 else 5290 *asc = (show_errors) ? -1 : 0; 5291 5292 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) 5293 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) 5294 *ascq = sense->add_sense_code_qual; 5295 else 5296 *ascq = (show_errors) ? -1 : 0; 5297 break; 5298 } 5299 } 5300 } 5301 5302 int 5303 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, 5304 int show_errors) 5305 { 5306 int error_code, sense_key, asc, ascq; 5307 5308 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5309 &sense_key, &asc, &ascq, show_errors); 5310 5311 return (sense_key); 5312 } 5313 5314 int 5315 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, 5316 int show_errors) 5317 { 5318 int error_code, sense_key, asc, ascq; 5319 5320 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5321 &sense_key, &asc, &ascq, show_errors); 5322 5323 return (asc); 5324 } 5325 5326 int 5327 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, 5328 int show_errors) 5329 { 5330 int error_code, sense_key, asc, ascq; 5331 5332 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5333 &sense_key, &asc, &ascq, show_errors); 5334 5335 return (ascq); 5336 } 5337 5338 /* 5339 * This function currently requires at least 36 bytes, or 5340 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this 5341 * function needs more or less data in the future, another length should be 5342 * defined in scsi_all.h to indicate the minimum amount of data necessary 5343 * for this routine to function properly. 5344 */ 5345 void 5346 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5347 { 5348 u_int8_t type; 5349 char *dtype, *qtype; 5350 5351 type = SID_TYPE(inq_data); 5352 5353 /* 5354 * Figure out basic device type and qualifier. 5355 */ 5356 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { 5357 qtype = " (vendor-unique qualifier)"; 5358 } else { 5359 switch (SID_QUAL(inq_data)) { 5360 case SID_QUAL_LU_CONNECTED: 5361 qtype = ""; 5362 break; 5363 5364 case SID_QUAL_LU_OFFLINE: 5365 qtype = " (offline)"; 5366 break; 5367 5368 case SID_QUAL_RSVD: 5369 qtype = " (reserved qualifier)"; 5370 break; 5371 default: 5372 case SID_QUAL_BAD_LU: 5373 qtype = " (LUN not supported)"; 5374 break; 5375 } 5376 } 5377 5378 switch (type) { 5379 case T_DIRECT: 5380 dtype = "Direct Access"; 5381 break; 5382 case T_SEQUENTIAL: 5383 dtype = "Sequential Access"; 5384 break; 5385 case T_PRINTER: 5386 dtype = "Printer"; 5387 break; 5388 case T_PROCESSOR: 5389 dtype = "Processor"; 5390 break; 5391 case T_WORM: 5392 dtype = "WORM"; 5393 break; 5394 case T_CDROM: 5395 dtype = "CD-ROM"; 5396 break; 5397 case T_SCANNER: 5398 dtype = "Scanner"; 5399 break; 5400 case T_OPTICAL: 5401 dtype = "Optical"; 5402 break; 5403 case T_CHANGER: 5404 dtype = "Changer"; 5405 break; 5406 case T_COMM: 5407 dtype = "Communication"; 5408 break; 5409 case T_STORARRAY: 5410 dtype = "Storage Array"; 5411 break; 5412 case T_ENCLOSURE: 5413 dtype = "Enclosure Services"; 5414 break; 5415 case T_RBC: 5416 dtype = "Simplified Direct Access"; 5417 break; 5418 case T_OCRW: 5419 dtype = "Optical Card Read/Write"; 5420 break; 5421 case T_OSD: 5422 dtype = "Object-Based Storage"; 5423 break; 5424 case T_ADC: 5425 dtype = "Automation/Drive Interface"; 5426 break; 5427 case T_ZBC_HM: 5428 dtype = "Host Managed Zoned Block"; 5429 break; 5430 case T_NODEVICE: 5431 dtype = "Uninstalled"; 5432 break; 5433 default: 5434 dtype = "unknown"; 5435 break; 5436 } 5437 5438 scsi_print_inquiry_short_sbuf(sb, inq_data); 5439 5440 sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype); 5441 5442 if (SID_ANSI_REV(inq_data) == SCSI_REV_0) 5443 sbuf_printf(sb, "SCSI "); 5444 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) { 5445 sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data)); 5446 } else { 5447 sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2); 5448 } 5449 sbuf_printf(sb, "device%s\n", qtype); 5450 } 5451 5452 void 5453 scsi_print_inquiry(struct scsi_inquiry_data *inq_data) 5454 { 5455 struct sbuf sb; 5456 char buffer[120]; 5457 5458 sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN); 5459 scsi_print_inquiry_sbuf(&sb, inq_data); 5460 sbuf_finish(&sb); 5461 sbuf_putbuf(&sb); 5462 } 5463 5464 void 5465 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5466 { 5467 5468 sbuf_printf(sb, "<"); 5469 cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0); 5470 sbuf_printf(sb, " "); 5471 cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0); 5472 sbuf_printf(sb, " "); 5473 cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0); 5474 sbuf_printf(sb, "> "); 5475 } 5476 5477 void 5478 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data) 5479 { 5480 struct sbuf sb; 5481 char buffer[84]; 5482 5483 sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN); 5484 scsi_print_inquiry_short_sbuf(&sb, inq_data); 5485 sbuf_finish(&sb); 5486 sbuf_putbuf(&sb); 5487 } 5488 5489 /* 5490 * Table of syncrates that don't follow the "divisible by 4" 5491 * rule. This table will be expanded in future SCSI specs. 5492 */ 5493 static struct { 5494 u_int period_factor; 5495 u_int period; /* in 100ths of ns */ 5496 } scsi_syncrates[] = { 5497 { 0x08, 625 }, /* FAST-160 */ 5498 { 0x09, 1250 }, /* FAST-80 */ 5499 { 0x0a, 2500 }, /* FAST-40 40MHz */ 5500 { 0x0b, 3030 }, /* FAST-40 33MHz */ 5501 { 0x0c, 5000 } /* FAST-20 */ 5502 }; 5503 5504 /* 5505 * Return the frequency in kHz corresponding to the given 5506 * sync period factor. 5507 */ 5508 u_int 5509 scsi_calc_syncsrate(u_int period_factor) 5510 { 5511 u_int i; 5512 u_int num_syncrates; 5513 5514 /* 5515 * It's a bug if period is zero, but if it is anyway, don't 5516 * die with a divide fault- instead return something which 5517 * 'approximates' async 5518 */ 5519 if (period_factor == 0) { 5520 return (3300); 5521 } 5522 5523 num_syncrates = nitems(scsi_syncrates); 5524 /* See if the period is in the "exception" table */ 5525 for (i = 0; i < num_syncrates; i++) { 5526 5527 if (period_factor == scsi_syncrates[i].period_factor) { 5528 /* Period in kHz */ 5529 return (100000000 / scsi_syncrates[i].period); 5530 } 5531 } 5532 5533 /* 5534 * Wasn't in the table, so use the standard 5535 * 4 times conversion. 5536 */ 5537 return (10000000 / (period_factor * 4 * 10)); 5538 } 5539 5540 /* 5541 * Return the SCSI sync parameter that corresponds to 5542 * the passed in period in 10ths of ns. 5543 */ 5544 u_int 5545 scsi_calc_syncparam(u_int period) 5546 { 5547 u_int i; 5548 u_int num_syncrates; 5549 5550 if (period == 0) 5551 return (~0); /* Async */ 5552 5553 /* Adjust for exception table being in 100ths. */ 5554 period *= 10; 5555 num_syncrates = nitems(scsi_syncrates); 5556 /* See if the period is in the "exception" table */ 5557 for (i = 0; i < num_syncrates; i++) { 5558 5559 if (period <= scsi_syncrates[i].period) { 5560 /* Period in 100ths of ns */ 5561 return (scsi_syncrates[i].period_factor); 5562 } 5563 } 5564 5565 /* 5566 * Wasn't in the table, so use the standard 5567 * 1/4 period in ns conversion. 5568 */ 5569 return (period/400); 5570 } 5571 5572 int 5573 scsi_devid_is_naa_ieee_reg(uint8_t *bufp) 5574 { 5575 struct scsi_vpd_id_descriptor *descr; 5576 struct scsi_vpd_id_naa_basic *naa; 5577 int n; 5578 5579 descr = (struct scsi_vpd_id_descriptor *)bufp; 5580 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; 5581 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5582 return 0; 5583 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) 5584 return 0; 5585 n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT; 5586 if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG) 5587 return 0; 5588 return 1; 5589 } 5590 5591 int 5592 scsi_devid_is_sas_target(uint8_t *bufp) 5593 { 5594 struct scsi_vpd_id_descriptor *descr; 5595 5596 descr = (struct scsi_vpd_id_descriptor *)bufp; 5597 if (!scsi_devid_is_naa_ieee_reg(bufp)) 5598 return 0; 5599 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ 5600 return 0; 5601 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) 5602 return 0; 5603 return 1; 5604 } 5605 5606 int 5607 scsi_devid_is_lun_eui64(uint8_t *bufp) 5608 { 5609 struct scsi_vpd_id_descriptor *descr; 5610 5611 descr = (struct scsi_vpd_id_descriptor *)bufp; 5612 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5613 return 0; 5614 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64) 5615 return 0; 5616 return 1; 5617 } 5618 5619 int 5620 scsi_devid_is_lun_naa(uint8_t *bufp) 5621 { 5622 struct scsi_vpd_id_descriptor *descr; 5623 5624 descr = (struct scsi_vpd_id_descriptor *)bufp; 5625 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5626 return 0; 5627 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5628 return 0; 5629 return 1; 5630 } 5631 5632 int 5633 scsi_devid_is_lun_t10(uint8_t *bufp) 5634 { 5635 struct scsi_vpd_id_descriptor *descr; 5636 5637 descr = (struct scsi_vpd_id_descriptor *)bufp; 5638 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5639 return 0; 5640 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10) 5641 return 0; 5642 return 1; 5643 } 5644 5645 int 5646 scsi_devid_is_lun_name(uint8_t *bufp) 5647 { 5648 struct scsi_vpd_id_descriptor *descr; 5649 5650 descr = (struct scsi_vpd_id_descriptor *)bufp; 5651 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5652 return 0; 5653 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME) 5654 return 0; 5655 return 1; 5656 } 5657 5658 int 5659 scsi_devid_is_lun_md5(uint8_t *bufp) 5660 { 5661 struct scsi_vpd_id_descriptor *descr; 5662 5663 descr = (struct scsi_vpd_id_descriptor *)bufp; 5664 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5665 return 0; 5666 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID) 5667 return 0; 5668 return 1; 5669 } 5670 5671 int 5672 scsi_devid_is_lun_uuid(uint8_t *bufp) 5673 { 5674 struct scsi_vpd_id_descriptor *descr; 5675 5676 descr = (struct scsi_vpd_id_descriptor *)bufp; 5677 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5678 return 0; 5679 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID) 5680 return 0; 5681 return 1; 5682 } 5683 5684 int 5685 scsi_devid_is_port_naa(uint8_t *bufp) 5686 { 5687 struct scsi_vpd_id_descriptor *descr; 5688 5689 descr = (struct scsi_vpd_id_descriptor *)bufp; 5690 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT) 5691 return 0; 5692 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5693 return 0; 5694 return 1; 5695 } 5696 5697 struct scsi_vpd_id_descriptor * 5698 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, 5699 scsi_devid_checkfn_t ck_fn) 5700 { 5701 uint8_t *desc_buf_end; 5702 5703 desc_buf_end = (uint8_t *)desc + len; 5704 5705 for (; desc->identifier <= desc_buf_end && 5706 desc->identifier + desc->length <= desc_buf_end; 5707 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier 5708 + desc->length)) { 5709 5710 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) 5711 return (desc); 5712 } 5713 return (NULL); 5714 } 5715 5716 struct scsi_vpd_id_descriptor * 5717 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, 5718 scsi_devid_checkfn_t ck_fn) 5719 { 5720 uint32_t len; 5721 5722 if (page_len < sizeof(*id)) 5723 return (NULL); 5724 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id)); 5725 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *) 5726 id->desc_list, len, ck_fn)); 5727 } 5728 5729 int 5730 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, 5731 uint32_t valid_len) 5732 { 5733 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) { 5734 case SCSI_PROTO_FC: { 5735 struct scsi_transportid_fcp *fcp; 5736 uint64_t n_port_name; 5737 5738 fcp = (struct scsi_transportid_fcp *)hdr; 5739 5740 n_port_name = scsi_8btou64(fcp->n_port_name); 5741 5742 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name); 5743 break; 5744 } 5745 case SCSI_PROTO_SPI: { 5746 struct scsi_transportid_spi *spi; 5747 5748 spi = (struct scsi_transportid_spi *)hdr; 5749 5750 sbuf_printf(sb, "SPI address: %u,%u", 5751 scsi_2btoul(spi->scsi_addr), 5752 scsi_2btoul(spi->rel_trgt_port_id)); 5753 break; 5754 } 5755 case SCSI_PROTO_SSA: 5756 /* 5757 * XXX KDM there is no transport ID defined in SPC-4 for 5758 * SSA. 5759 */ 5760 break; 5761 case SCSI_PROTO_1394: { 5762 struct scsi_transportid_1394 *sbp; 5763 uint64_t eui64; 5764 5765 sbp = (struct scsi_transportid_1394 *)hdr; 5766 5767 eui64 = scsi_8btou64(sbp->eui64); 5768 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64); 5769 break; 5770 } 5771 case SCSI_PROTO_RDMA: { 5772 struct scsi_transportid_rdma *rdma; 5773 unsigned int i; 5774 5775 rdma = (struct scsi_transportid_rdma *)hdr; 5776 5777 sbuf_printf(sb, "RDMA address: 0x"); 5778 for (i = 0; i < sizeof(rdma->initiator_port_id); i++) 5779 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]); 5780 break; 5781 } 5782 case SCSI_PROTO_ISCSI: { 5783 uint32_t add_len, i; 5784 uint8_t *iscsi_name = NULL; 5785 int nul_found = 0; 5786 5787 sbuf_printf(sb, "iSCSI address: "); 5788 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5789 SCSI_TRN_ISCSI_FORMAT_DEVICE) { 5790 struct scsi_transportid_iscsi_device *dev; 5791 5792 dev = (struct scsi_transportid_iscsi_device *)hdr; 5793 5794 /* 5795 * Verify how much additional data we really have. 5796 */ 5797 add_len = scsi_2btoul(dev->additional_length); 5798 add_len = MIN(add_len, valid_len - 5799 __offsetof(struct scsi_transportid_iscsi_device, 5800 iscsi_name)); 5801 iscsi_name = &dev->iscsi_name[0]; 5802 5803 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5804 SCSI_TRN_ISCSI_FORMAT_PORT) { 5805 struct scsi_transportid_iscsi_port *port; 5806 5807 port = (struct scsi_transportid_iscsi_port *)hdr; 5808 5809 add_len = scsi_2btoul(port->additional_length); 5810 add_len = MIN(add_len, valid_len - 5811 __offsetof(struct scsi_transportid_iscsi_port, 5812 iscsi_name)); 5813 iscsi_name = &port->iscsi_name[0]; 5814 } else { 5815 sbuf_printf(sb, "unknown format %x", 5816 (hdr->format_protocol & 5817 SCSI_TRN_FORMAT_MASK) >> 5818 SCSI_TRN_FORMAT_SHIFT); 5819 break; 5820 } 5821 if (add_len == 0) { 5822 sbuf_printf(sb, "not enough data"); 5823 break; 5824 } 5825 /* 5826 * This is supposed to be a NUL-terminated ASCII 5827 * string, but you never know. So we're going to 5828 * check. We need to do this because there is no 5829 * sbuf equivalent of strncat(). 5830 */ 5831 for (i = 0; i < add_len; i++) { 5832 if (iscsi_name[i] == '\0') { 5833 nul_found = 1; 5834 break; 5835 } 5836 } 5837 /* 5838 * If there is a NUL in the name, we can just use 5839 * sbuf_cat(). Otherwise we need to use sbuf_bcat(). 5840 */ 5841 if (nul_found != 0) 5842 sbuf_cat(sb, iscsi_name); 5843 else 5844 sbuf_bcat(sb, iscsi_name, add_len); 5845 break; 5846 } 5847 case SCSI_PROTO_SAS: { 5848 struct scsi_transportid_sas *sas; 5849 uint64_t sas_addr; 5850 5851 sas = (struct scsi_transportid_sas *)hdr; 5852 5853 sas_addr = scsi_8btou64(sas->sas_address); 5854 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr); 5855 break; 5856 } 5857 case SCSI_PROTO_ADITP: 5858 case SCSI_PROTO_ATA: 5859 case SCSI_PROTO_UAS: 5860 /* 5861 * No Transport ID format for ADI, ATA or USB is defined in 5862 * SPC-4. 5863 */ 5864 sbuf_printf(sb, "No known Transport ID format for protocol " 5865 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5866 break; 5867 case SCSI_PROTO_SOP: { 5868 struct scsi_transportid_sop *sop; 5869 struct scsi_sop_routing_id_norm *rid; 5870 5871 sop = (struct scsi_transportid_sop *)hdr; 5872 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id; 5873 5874 /* 5875 * Note that there is no alternate format specified in SPC-4 5876 * for the PCIe routing ID, so we don't really have a way 5877 * to know whether the second byte of the routing ID is 5878 * a device and function or just a function. So we just 5879 * assume bus,device,function. 5880 */ 5881 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u", 5882 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT, 5883 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX); 5884 break; 5885 } 5886 case SCSI_PROTO_NONE: 5887 default: 5888 sbuf_printf(sb, "Unknown protocol %#x", 5889 hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5890 break; 5891 } 5892 5893 return (0); 5894 } 5895 5896 struct scsi_nv scsi_proto_map[] = { 5897 { "fcp", SCSI_PROTO_FC }, 5898 { "spi", SCSI_PROTO_SPI }, 5899 { "ssa", SCSI_PROTO_SSA }, 5900 { "sbp", SCSI_PROTO_1394 }, 5901 { "1394", SCSI_PROTO_1394 }, 5902 { "srp", SCSI_PROTO_RDMA }, 5903 { "rdma", SCSI_PROTO_RDMA }, 5904 { "iscsi", SCSI_PROTO_ISCSI }, 5905 { "iqn", SCSI_PROTO_ISCSI }, 5906 { "sas", SCSI_PROTO_SAS }, 5907 { "aditp", SCSI_PROTO_ADITP }, 5908 { "ata", SCSI_PROTO_ATA }, 5909 { "uas", SCSI_PROTO_UAS }, 5910 { "usb", SCSI_PROTO_UAS }, 5911 { "sop", SCSI_PROTO_SOP } 5912 }; 5913 5914 const char * 5915 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value) 5916 { 5917 int i; 5918 5919 for (i = 0; i < num_table_entries; i++) { 5920 if (table[i].value == value) 5921 return (table[i].name); 5922 } 5923 5924 return (NULL); 5925 } 5926 5927 /* 5928 * Given a name/value table, find a value matching the given name. 5929 * Return values: 5930 * SCSI_NV_FOUND - match found 5931 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact 5932 * SCSI_NV_NOT_FOUND - no match found 5933 */ 5934 scsi_nv_status 5935 scsi_get_nv(struct scsi_nv *table, int num_table_entries, 5936 char *name, int *table_entry, scsi_nv_flags flags) 5937 { 5938 int i, num_matches = 0; 5939 5940 for (i = 0; i < num_table_entries; i++) { 5941 size_t table_len, name_len; 5942 5943 table_len = strlen(table[i].name); 5944 name_len = strlen(name); 5945 5946 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0) 5947 && (strncasecmp(table[i].name, name, name_len) == 0)) 5948 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0) 5949 && (strncmp(table[i].name, name, name_len) == 0))) { 5950 *table_entry = i; 5951 5952 /* 5953 * Check for an exact match. If we have the same 5954 * number of characters in the table as the argument, 5955 * and we already know they're the same, we have 5956 * an exact match. 5957 */ 5958 if (table_len == name_len) 5959 return (SCSI_NV_FOUND); 5960 5961 /* 5962 * Otherwise, bump up the number of matches. We'll 5963 * see later how many we have. 5964 */ 5965 num_matches++; 5966 } 5967 } 5968 5969 if (num_matches > 1) 5970 return (SCSI_NV_AMBIGUOUS); 5971 else if (num_matches == 1) 5972 return (SCSI_NV_FOUND); 5973 else 5974 return (SCSI_NV_NOT_FOUND); 5975 } 5976 5977 /* 5978 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are 5979 * all 64-bit numbers, the code is similar. 5980 */ 5981 int 5982 scsi_parse_transportid_64bit(int proto_id, char *id_str, 5983 struct scsi_transportid_header **hdr, 5984 unsigned int *alloc_len, 5985 #ifdef _KERNEL 5986 struct malloc_type *type, int flags, 5987 #endif 5988 char *error_str, int error_str_len) 5989 { 5990 uint64_t value; 5991 char *endptr; 5992 int retval; 5993 size_t alloc_size; 5994 5995 retval = 0; 5996 5997 value = strtouq(id_str, &endptr, 0); 5998 if (*endptr != '\0') { 5999 if (error_str != NULL) { 6000 snprintf(error_str, error_str_len, "%s: error " 6001 "parsing ID %s, 64-bit number required", 6002 __func__, id_str); 6003 } 6004 retval = 1; 6005 goto bailout; 6006 } 6007 6008 switch (proto_id) { 6009 case SCSI_PROTO_FC: 6010 alloc_size = sizeof(struct scsi_transportid_fcp); 6011 break; 6012 case SCSI_PROTO_1394: 6013 alloc_size = sizeof(struct scsi_transportid_1394); 6014 break; 6015 case SCSI_PROTO_SAS: 6016 alloc_size = sizeof(struct scsi_transportid_sas); 6017 break; 6018 default: 6019 if (error_str != NULL) { 6020 snprintf(error_str, error_str_len, "%s: unsupported " 6021 "protocol %d", __func__, proto_id); 6022 } 6023 retval = 1; 6024 goto bailout; 6025 break; /* NOTREACHED */ 6026 } 6027 #ifdef _KERNEL 6028 *hdr = malloc(alloc_size, type, flags); 6029 #else /* _KERNEL */ 6030 *hdr = malloc(alloc_size); 6031 #endif /*_KERNEL */ 6032 if (*hdr == NULL) { 6033 if (error_str != NULL) { 6034 snprintf(error_str, error_str_len, "%s: unable to " 6035 "allocate %zu bytes", __func__, alloc_size); 6036 } 6037 retval = 1; 6038 goto bailout; 6039 } 6040 6041 *alloc_len = alloc_size; 6042 6043 bzero(*hdr, alloc_size); 6044 6045 switch (proto_id) { 6046 case SCSI_PROTO_FC: { 6047 struct scsi_transportid_fcp *fcp; 6048 6049 fcp = (struct scsi_transportid_fcp *)(*hdr); 6050 fcp->format_protocol = SCSI_PROTO_FC | 6051 SCSI_TRN_FCP_FORMAT_DEFAULT; 6052 scsi_u64to8b(value, fcp->n_port_name); 6053 break; 6054 } 6055 case SCSI_PROTO_1394: { 6056 struct scsi_transportid_1394 *sbp; 6057 6058 sbp = (struct scsi_transportid_1394 *)(*hdr); 6059 sbp->format_protocol = SCSI_PROTO_1394 | 6060 SCSI_TRN_1394_FORMAT_DEFAULT; 6061 scsi_u64to8b(value, sbp->eui64); 6062 break; 6063 } 6064 case SCSI_PROTO_SAS: { 6065 struct scsi_transportid_sas *sas; 6066 6067 sas = (struct scsi_transportid_sas *)(*hdr); 6068 sas->format_protocol = SCSI_PROTO_SAS | 6069 SCSI_TRN_SAS_FORMAT_DEFAULT; 6070 scsi_u64to8b(value, sas->sas_address); 6071 break; 6072 } 6073 default: 6074 break; 6075 } 6076 bailout: 6077 return (retval); 6078 } 6079 6080 /* 6081 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port 6082 */ 6083 int 6084 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, 6085 unsigned int *alloc_len, 6086 #ifdef _KERNEL 6087 struct malloc_type *type, int flags, 6088 #endif 6089 char *error_str, int error_str_len) 6090 { 6091 unsigned long scsi_addr, target_port; 6092 struct scsi_transportid_spi *spi; 6093 char *tmpstr, *endptr; 6094 int retval; 6095 6096 retval = 0; 6097 6098 tmpstr = strsep(&id_str, ","); 6099 if (tmpstr == NULL) { 6100 if (error_str != NULL) { 6101 snprintf(error_str, error_str_len, 6102 "%s: no ID found", __func__); 6103 } 6104 retval = 1; 6105 goto bailout; 6106 } 6107 scsi_addr = strtoul(tmpstr, &endptr, 0); 6108 if (*endptr != '\0') { 6109 if (error_str != NULL) { 6110 snprintf(error_str, error_str_len, "%s: error " 6111 "parsing SCSI ID %s, number required", 6112 __func__, tmpstr); 6113 } 6114 retval = 1; 6115 goto bailout; 6116 } 6117 6118 if (id_str == NULL) { 6119 if (error_str != NULL) { 6120 snprintf(error_str, error_str_len, "%s: no relative " 6121 "target port found", __func__); 6122 } 6123 retval = 1; 6124 goto bailout; 6125 } 6126 6127 target_port = strtoul(id_str, &endptr, 0); 6128 if (*endptr != '\0') { 6129 if (error_str != NULL) { 6130 snprintf(error_str, error_str_len, "%s: error " 6131 "parsing relative target port %s, number " 6132 "required", __func__, id_str); 6133 } 6134 retval = 1; 6135 goto bailout; 6136 } 6137 #ifdef _KERNEL 6138 spi = malloc(sizeof(*spi), type, flags); 6139 #else 6140 spi = malloc(sizeof(*spi)); 6141 #endif 6142 if (spi == NULL) { 6143 if (error_str != NULL) { 6144 snprintf(error_str, error_str_len, "%s: unable to " 6145 "allocate %zu bytes", __func__, 6146 sizeof(*spi)); 6147 } 6148 retval = 1; 6149 goto bailout; 6150 } 6151 *alloc_len = sizeof(*spi); 6152 bzero(spi, sizeof(*spi)); 6153 6154 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT; 6155 scsi_ulto2b(scsi_addr, spi->scsi_addr); 6156 scsi_ulto2b(target_port, spi->rel_trgt_port_id); 6157 6158 *hdr = (struct scsi_transportid_header *)spi; 6159 bailout: 6160 return (retval); 6161 } 6162 6163 /* 6164 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits, 6165 * optionally prefixed by "0x" or "0X". 6166 */ 6167 int 6168 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, 6169 unsigned int *alloc_len, 6170 #ifdef _KERNEL 6171 struct malloc_type *type, int flags, 6172 #endif 6173 char *error_str, int error_str_len) 6174 { 6175 struct scsi_transportid_rdma *rdma; 6176 int retval; 6177 size_t id_len, rdma_id_size; 6178 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN]; 6179 char *tmpstr; 6180 unsigned int i, j; 6181 6182 retval = 0; 6183 id_len = strlen(id_str); 6184 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN; 6185 6186 /* 6187 * Check the size. It needs to be either 32 or 34 characters long. 6188 */ 6189 if ((id_len != (rdma_id_size * 2)) 6190 && (id_len != ((rdma_id_size * 2) + 2))) { 6191 if (error_str != NULL) { 6192 snprintf(error_str, error_str_len, "%s: RDMA ID " 6193 "must be 32 hex digits (0x prefix " 6194 "optional), only %zu seen", __func__, id_len); 6195 } 6196 retval = 1; 6197 goto bailout; 6198 } 6199 6200 tmpstr = id_str; 6201 /* 6202 * If the user gave us 34 characters, the string needs to start 6203 * with '0x'. 6204 */ 6205 if (id_len == ((rdma_id_size * 2) + 2)) { 6206 if ((tmpstr[0] == '0') 6207 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) { 6208 tmpstr += 2; 6209 } else { 6210 if (error_str != NULL) { 6211 snprintf(error_str, error_str_len, "%s: RDMA " 6212 "ID prefix, if used, must be \"0x\", " 6213 "got %s", __func__, tmpstr); 6214 } 6215 retval = 1; 6216 goto bailout; 6217 } 6218 } 6219 bzero(rdma_id, sizeof(rdma_id)); 6220 6221 /* 6222 * Convert ASCII hex into binary bytes. There is no standard 6223 * 128-bit integer type, and so no strtou128t() routine to convert 6224 * from hex into a large integer. In the end, we're not going to 6225 * an integer, but rather to a byte array, so that and the fact 6226 * that we require the user to give us 32 hex digits simplifies the 6227 * logic. 6228 */ 6229 for (i = 0; i < (rdma_id_size * 2); i++) { 6230 int cur_shift; 6231 unsigned char c; 6232 6233 /* Increment the byte array one for every 2 hex digits */ 6234 j = i >> 1; 6235 6236 /* 6237 * The first digit in every pair is the most significant 6238 * 4 bits. The second is the least significant 4 bits. 6239 */ 6240 if ((i % 2) == 0) 6241 cur_shift = 4; 6242 else 6243 cur_shift = 0; 6244 6245 c = tmpstr[i]; 6246 /* Convert the ASCII hex character into a number */ 6247 if (isdigit(c)) 6248 c -= '0'; 6249 else if (isalpha(c)) 6250 c -= isupper(c) ? 'A' - 10 : 'a' - 10; 6251 else { 6252 if (error_str != NULL) { 6253 snprintf(error_str, error_str_len, "%s: " 6254 "RDMA ID must be hex digits, got " 6255 "invalid character %c", __func__, 6256 tmpstr[i]); 6257 } 6258 retval = 1; 6259 goto bailout; 6260 } 6261 /* 6262 * The converted number can't be less than 0; the type is 6263 * unsigned, and the subtraction logic will not give us 6264 * a negative number. So we only need to make sure that 6265 * the value is not greater than 0xf. (i.e. make sure the 6266 * user didn't give us a value like "0x12jklmno"). 6267 */ 6268 if (c > 0xf) { 6269 if (error_str != NULL) { 6270 snprintf(error_str, error_str_len, "%s: " 6271 "RDMA ID must be hex digits, got " 6272 "invalid character %c", __func__, 6273 tmpstr[i]); 6274 } 6275 retval = 1; 6276 goto bailout; 6277 } 6278 6279 rdma_id[j] |= c << cur_shift; 6280 } 6281 6282 #ifdef _KERNEL 6283 rdma = malloc(sizeof(*rdma), type, flags); 6284 #else 6285 rdma = malloc(sizeof(*rdma)); 6286 #endif 6287 if (rdma == NULL) { 6288 if (error_str != NULL) { 6289 snprintf(error_str, error_str_len, "%s: unable to " 6290 "allocate %zu bytes", __func__, 6291 sizeof(*rdma)); 6292 } 6293 retval = 1; 6294 goto bailout; 6295 } 6296 *alloc_len = sizeof(*rdma); 6297 bzero(rdma, *alloc_len); 6298 6299 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT; 6300 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN); 6301 6302 *hdr = (struct scsi_transportid_header *)rdma; 6303 6304 bailout: 6305 return (retval); 6306 } 6307 6308 /* 6309 * Parse an iSCSI name. The format is either just the name: 6310 * 6311 * iqn.2012-06.com.example:target0 6312 * or the name, separator and initiator session ID: 6313 * 6314 * iqn.2012-06.com.example:target0,i,0x123 6315 * 6316 * The separator format is exact. 6317 */ 6318 int 6319 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, 6320 unsigned int *alloc_len, 6321 #ifdef _KERNEL 6322 struct malloc_type *type, int flags, 6323 #endif 6324 char *error_str, int error_str_len) 6325 { 6326 size_t id_len, sep_len, id_size, name_len; 6327 int retval; 6328 unsigned int i, sep_pos, sep_found; 6329 const char *sep_template = ",i,0x"; 6330 const char *iqn_prefix = "iqn."; 6331 struct scsi_transportid_iscsi_device *iscsi; 6332 6333 retval = 0; 6334 sep_found = 0; 6335 6336 id_len = strlen(id_str); 6337 sep_len = strlen(sep_template); 6338 6339 /* 6340 * The separator is defined as exactly ',i,0x'. Any other commas, 6341 * or any other form, is an error. So look for a comma, and once 6342 * we find that, the next few characters must match the separator 6343 * exactly. Once we get through the separator, there should be at 6344 * least one character. 6345 */ 6346 for (i = 0, sep_pos = 0; i < id_len; i++) { 6347 if (sep_pos == 0) { 6348 if (id_str[i] == sep_template[sep_pos]) 6349 sep_pos++; 6350 6351 continue; 6352 } 6353 if (sep_pos < sep_len) { 6354 if (id_str[i] == sep_template[sep_pos]) { 6355 sep_pos++; 6356 continue; 6357 } 6358 if (error_str != NULL) { 6359 snprintf(error_str, error_str_len, "%s: " 6360 "invalid separator in iSCSI name " 6361 "\"%s\"", 6362 __func__, id_str); 6363 } 6364 retval = 1; 6365 goto bailout; 6366 } else { 6367 sep_found = 1; 6368 break; 6369 } 6370 } 6371 6372 /* 6373 * Check to see whether we have a separator but no digits after it. 6374 */ 6375 if ((sep_pos != 0) 6376 && (sep_found == 0)) { 6377 if (error_str != NULL) { 6378 snprintf(error_str, error_str_len, "%s: no digits " 6379 "found after separator in iSCSI name \"%s\"", 6380 __func__, id_str); 6381 } 6382 retval = 1; 6383 goto bailout; 6384 } 6385 6386 /* 6387 * The incoming ID string has the "iqn." prefix stripped off. We 6388 * need enough space for the base structure (the structures are the 6389 * same for the two iSCSI forms), the prefix, the ID string and a 6390 * terminating NUL. 6391 */ 6392 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1; 6393 6394 #ifdef _KERNEL 6395 iscsi = malloc(id_size, type, flags); 6396 #else 6397 iscsi = malloc(id_size); 6398 #endif 6399 if (iscsi == NULL) { 6400 if (error_str != NULL) { 6401 snprintf(error_str, error_str_len, "%s: unable to " 6402 "allocate %zu bytes", __func__, id_size); 6403 } 6404 retval = 1; 6405 goto bailout; 6406 } 6407 *alloc_len = id_size; 6408 bzero(iscsi, id_size); 6409 6410 iscsi->format_protocol = SCSI_PROTO_ISCSI; 6411 if (sep_found == 0) 6412 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE; 6413 else 6414 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT; 6415 name_len = id_size - sizeof(*iscsi); 6416 scsi_ulto2b(name_len, iscsi->additional_length); 6417 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str); 6418 6419 *hdr = (struct scsi_transportid_header *)iscsi; 6420 6421 bailout: 6422 return (retval); 6423 } 6424 6425 /* 6426 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be 6427 * of the form 'bus,device,function' or 'bus,function'. 6428 */ 6429 int 6430 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, 6431 unsigned int *alloc_len, 6432 #ifdef _KERNEL 6433 struct malloc_type *type, int flags, 6434 #endif 6435 char *error_str, int error_str_len) 6436 { 6437 struct scsi_transportid_sop *sop; 6438 unsigned long bus, device, function; 6439 char *tmpstr, *endptr; 6440 int retval, device_spec; 6441 6442 retval = 0; 6443 device_spec = 0; 6444 device = 0; 6445 6446 tmpstr = strsep(&id_str, ","); 6447 if ((tmpstr == NULL) 6448 || (*tmpstr == '\0')) { 6449 if (error_str != NULL) { 6450 snprintf(error_str, error_str_len, "%s: no ID found", 6451 __func__); 6452 } 6453 retval = 1; 6454 goto bailout; 6455 } 6456 bus = strtoul(tmpstr, &endptr, 0); 6457 if (*endptr != '\0') { 6458 if (error_str != NULL) { 6459 snprintf(error_str, error_str_len, "%s: error " 6460 "parsing PCIe bus %s, number required", 6461 __func__, tmpstr); 6462 } 6463 retval = 1; 6464 goto bailout; 6465 } 6466 if ((id_str == NULL) 6467 || (*id_str == '\0')) { 6468 if (error_str != NULL) { 6469 snprintf(error_str, error_str_len, "%s: no PCIe " 6470 "device or function found", __func__); 6471 } 6472 retval = 1; 6473 goto bailout; 6474 } 6475 tmpstr = strsep(&id_str, ","); 6476 function = strtoul(tmpstr, &endptr, 0); 6477 if (*endptr != '\0') { 6478 if (error_str != NULL) { 6479 snprintf(error_str, error_str_len, "%s: error " 6480 "parsing PCIe device/function %s, number " 6481 "required", __func__, tmpstr); 6482 } 6483 retval = 1; 6484 goto bailout; 6485 } 6486 /* 6487 * Check to see whether the user specified a third value. If so, 6488 * the second is the device. 6489 */ 6490 if (id_str != NULL) { 6491 if (*id_str == '\0') { 6492 if (error_str != NULL) { 6493 snprintf(error_str, error_str_len, "%s: " 6494 "no PCIe function found", __func__); 6495 } 6496 retval = 1; 6497 goto bailout; 6498 } 6499 device = function; 6500 device_spec = 1; 6501 function = strtoul(id_str, &endptr, 0); 6502 if (*endptr != '\0') { 6503 if (error_str != NULL) { 6504 snprintf(error_str, error_str_len, "%s: " 6505 "error parsing PCIe function %s, " 6506 "number required", __func__, id_str); 6507 } 6508 retval = 1; 6509 goto bailout; 6510 } 6511 } 6512 if (bus > SCSI_TRN_SOP_BUS_MAX) { 6513 if (error_str != NULL) { 6514 snprintf(error_str, error_str_len, "%s: bus value " 6515 "%lu greater than maximum %u", __func__, 6516 bus, SCSI_TRN_SOP_BUS_MAX); 6517 } 6518 retval = 1; 6519 goto bailout; 6520 } 6521 6522 if ((device_spec != 0) 6523 && (device > SCSI_TRN_SOP_DEV_MASK)) { 6524 if (error_str != NULL) { 6525 snprintf(error_str, error_str_len, "%s: device value " 6526 "%lu greater than maximum %u", __func__, 6527 device, SCSI_TRN_SOP_DEV_MAX); 6528 } 6529 retval = 1; 6530 goto bailout; 6531 } 6532 6533 if (((device_spec != 0) 6534 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX)) 6535 || ((device_spec == 0) 6536 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) { 6537 if (error_str != NULL) { 6538 snprintf(error_str, error_str_len, "%s: function value " 6539 "%lu greater than maximum %u", __func__, 6540 function, (device_spec == 0) ? 6541 SCSI_TRN_SOP_FUNC_ALT_MAX : 6542 SCSI_TRN_SOP_FUNC_NORM_MAX); 6543 } 6544 retval = 1; 6545 goto bailout; 6546 } 6547 6548 #ifdef _KERNEL 6549 sop = malloc(sizeof(*sop), type, flags); 6550 #else 6551 sop = malloc(sizeof(*sop)); 6552 #endif 6553 if (sop == NULL) { 6554 if (error_str != NULL) { 6555 snprintf(error_str, error_str_len, "%s: unable to " 6556 "allocate %zu bytes", __func__, sizeof(*sop)); 6557 } 6558 retval = 1; 6559 goto bailout; 6560 } 6561 *alloc_len = sizeof(*sop); 6562 bzero(sop, sizeof(*sop)); 6563 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT; 6564 if (device_spec != 0) { 6565 struct scsi_sop_routing_id_norm rid; 6566 6567 rid.bus = bus; 6568 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function; 6569 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6570 sizeof(sop->routing_id))); 6571 } else { 6572 struct scsi_sop_routing_id_alt rid; 6573 6574 rid.bus = bus; 6575 rid.function = function; 6576 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6577 sizeof(sop->routing_id))); 6578 } 6579 6580 *hdr = (struct scsi_transportid_header *)sop; 6581 bailout: 6582 return (retval); 6583 } 6584 6585 /* 6586 * transportid_str: NUL-terminated string with format: protcol,id 6587 * The ID is protocol specific. 6588 * hdr: Storage will be allocated for the transport ID. 6589 * alloc_len: The amount of memory allocated is returned here. 6590 * type: Malloc bucket (kernel only). 6591 * flags: Malloc flags (kernel only). 6592 * error_str: If non-NULL, it will contain error information (without 6593 * a terminating newline) if an error is returned. 6594 * error_str_len: Allocated length of the error string. 6595 * 6596 * Returns 0 for success, non-zero for failure. 6597 */ 6598 int 6599 scsi_parse_transportid(char *transportid_str, 6600 struct scsi_transportid_header **hdr, 6601 unsigned int *alloc_len, 6602 #ifdef _KERNEL 6603 struct malloc_type *type, int flags, 6604 #endif 6605 char *error_str, int error_str_len) 6606 { 6607 char *tmpstr; 6608 scsi_nv_status status; 6609 u_int num_proto_entries; 6610 int retval, table_entry; 6611 6612 retval = 0; 6613 table_entry = 0; 6614 6615 /* 6616 * We do allow a period as well as a comma to separate the protocol 6617 * from the ID string. This is to accommodate iSCSI names, which 6618 * start with "iqn.". 6619 */ 6620 tmpstr = strsep(&transportid_str, ",."); 6621 if (tmpstr == NULL) { 6622 if (error_str != NULL) { 6623 snprintf(error_str, error_str_len, 6624 "%s: transportid_str is NULL", __func__); 6625 } 6626 retval = 1; 6627 goto bailout; 6628 } 6629 6630 num_proto_entries = nitems(scsi_proto_map); 6631 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr, 6632 &table_entry, SCSI_NV_FLAG_IG_CASE); 6633 if (status != SCSI_NV_FOUND) { 6634 if (error_str != NULL) { 6635 snprintf(error_str, error_str_len, "%s: %s protocol " 6636 "name %s", __func__, 6637 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : 6638 "invalid", tmpstr); 6639 } 6640 retval = 1; 6641 goto bailout; 6642 } 6643 switch (scsi_proto_map[table_entry].value) { 6644 case SCSI_PROTO_FC: 6645 case SCSI_PROTO_1394: 6646 case SCSI_PROTO_SAS: 6647 retval = scsi_parse_transportid_64bit( 6648 scsi_proto_map[table_entry].value, transportid_str, hdr, 6649 alloc_len, 6650 #ifdef _KERNEL 6651 type, flags, 6652 #endif 6653 error_str, error_str_len); 6654 break; 6655 case SCSI_PROTO_SPI: 6656 retval = scsi_parse_transportid_spi(transportid_str, hdr, 6657 alloc_len, 6658 #ifdef _KERNEL 6659 type, flags, 6660 #endif 6661 error_str, error_str_len); 6662 break; 6663 case SCSI_PROTO_RDMA: 6664 retval = scsi_parse_transportid_rdma(transportid_str, hdr, 6665 alloc_len, 6666 #ifdef _KERNEL 6667 type, flags, 6668 #endif 6669 error_str, error_str_len); 6670 break; 6671 case SCSI_PROTO_ISCSI: 6672 retval = scsi_parse_transportid_iscsi(transportid_str, hdr, 6673 alloc_len, 6674 #ifdef _KERNEL 6675 type, flags, 6676 #endif 6677 error_str, error_str_len); 6678 break; 6679 case SCSI_PROTO_SOP: 6680 retval = scsi_parse_transportid_sop(transportid_str, hdr, 6681 alloc_len, 6682 #ifdef _KERNEL 6683 type, flags, 6684 #endif 6685 error_str, error_str_len); 6686 break; 6687 case SCSI_PROTO_SSA: 6688 case SCSI_PROTO_ADITP: 6689 case SCSI_PROTO_ATA: 6690 case SCSI_PROTO_UAS: 6691 case SCSI_PROTO_NONE: 6692 default: 6693 /* 6694 * There is no format defined for a Transport ID for these 6695 * protocols. So even if the user gives us something, we 6696 * have no way to turn it into a standard SCSI Transport ID. 6697 */ 6698 retval = 1; 6699 if (error_str != NULL) { 6700 snprintf(error_str, error_str_len, "%s: no Transport " 6701 "ID format exists for protocol %s", 6702 __func__, tmpstr); 6703 } 6704 goto bailout; 6705 break; /* NOTREACHED */ 6706 } 6707 bailout: 6708 return (retval); 6709 } 6710 6711 struct scsi_attrib_table_entry scsi_mam_attr_table[] = { 6712 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6713 "Remaining Capacity in Partition", 6714 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL }, 6715 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6716 "Maximum Capacity in Partition", 6717 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6718 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX, 6719 "TapeAlert Flags", 6720 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6721 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE, 6722 "Load Count", 6723 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6724 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE, 6725 "MAM Space Remaining", 6726 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6727 /*parse_str*/ NULL }, 6728 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6729 "Assigning Organization", 6730 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6731 /*parse_str*/ NULL }, 6732 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6733 "Format Density Code", 6734 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6735 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE, 6736 "Initialization Count", 6737 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6738 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE, 6739 "Volume Identifier", 6740 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6741 /*parse_str*/ NULL }, 6742 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX, 6743 "Volume Change Reference", 6744 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6745 /*parse_str*/ NULL }, 6746 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE, 6747 "Device Vendor/Serial at Last Load", 6748 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6749 /*parse_str*/ NULL }, 6750 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE, 6751 "Device Vendor/Serial at Last Load - 1", 6752 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6753 /*parse_str*/ NULL }, 6754 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE, 6755 "Device Vendor/Serial at Last Load - 2", 6756 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6757 /*parse_str*/ NULL }, 6758 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE, 6759 "Device Vendor/Serial at Last Load - 3", 6760 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6761 /*parse_str*/ NULL }, 6762 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE, 6763 "Total MB Written in Medium Life", 6764 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6765 /*parse_str*/ NULL }, 6766 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE, 6767 "Total MB Read in Medium Life", 6768 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6769 /*parse_str*/ NULL }, 6770 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE, 6771 "Total MB Written in Current/Last Load", 6772 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6773 /*parse_str*/ NULL }, 6774 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE, 6775 "Total MB Read in Current/Last Load", 6776 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6777 /*parse_str*/ NULL }, 6778 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6779 "Logical Position of First Encrypted Block", 6780 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6781 /*parse_str*/ NULL }, 6782 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6783 "Logical Position of First Unencrypted Block after First " 6784 "Encrypted Block", 6785 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6786 /*parse_str*/ NULL }, 6787 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6788 "Medium Usage History", 6789 /*suffix*/ NULL, /*to_str*/ NULL, 6790 /*parse_str*/ NULL }, 6791 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6792 "Partition Usage History", 6793 /*suffix*/ NULL, /*to_str*/ NULL, 6794 /*parse_str*/ NULL }, 6795 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE, 6796 "Medium Manufacturer", 6797 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6798 /*parse_str*/ NULL }, 6799 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE, 6800 "Medium Serial Number", 6801 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6802 /*parse_str*/ NULL }, 6803 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE, 6804 "Medium Length", 6805 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf, 6806 /*parse_str*/ NULL }, 6807 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 | 6808 SCSI_ATTR_FLAG_FP_1DIGIT, 6809 "Medium Width", 6810 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf, 6811 /*parse_str*/ NULL }, 6812 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6813 "Assigning Organization", 6814 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6815 /*parse_str*/ NULL }, 6816 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6817 "Medium Density Code", 6818 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6819 /*parse_str*/ NULL }, 6820 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE, 6821 "Medium Manufacture Date", 6822 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6823 /*parse_str*/ NULL }, 6824 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE, 6825 "MAM Capacity", 6826 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6827 /*parse_str*/ NULL }, 6828 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX, 6829 "Medium Type", 6830 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6831 /*parse_str*/ NULL }, 6832 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX, 6833 "Medium Type Information", 6834 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6835 /*parse_str*/ NULL }, 6836 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE, 6837 "Medium Serial Number", 6838 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6839 /*parse_str*/ NULL }, 6840 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE, 6841 "Application Vendor", 6842 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6843 /*parse_str*/ NULL }, 6844 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE, 6845 "Application Name", 6846 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6847 /*parse_str*/ NULL }, 6848 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE, 6849 "Application Version", 6850 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6851 /*parse_str*/ NULL }, 6852 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE, 6853 "User Medium Text Label", 6854 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6855 /*parse_str*/ NULL }, 6856 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE, 6857 "Date and Time Last Written", 6858 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6859 /*parse_str*/ NULL }, 6860 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX, 6861 "Text Localization Identifier", 6862 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6863 /*parse_str*/ NULL }, 6864 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE, 6865 "Barcode", 6866 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6867 /*parse_str*/ NULL }, 6868 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE, 6869 "Owning Host Textual Name", 6870 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6871 /*parse_str*/ NULL }, 6872 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE, 6873 "Media Pool", 6874 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6875 /*parse_str*/ NULL }, 6876 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE, 6877 "Partition User Text Label", 6878 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6879 /*parse_str*/ NULL }, 6880 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE, 6881 "Load/Unload at Partition", 6882 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6883 /*parse_str*/ NULL }, 6884 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE, 6885 "Application Format Version", 6886 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6887 /*parse_str*/ NULL }, 6888 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE, 6889 "Volume Coherency Information", 6890 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf, 6891 /*parse_str*/ NULL }, 6892 { 0x0ff1, SCSI_ATTR_FLAG_NONE, 6893 "Spectra MLM Creation", 6894 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6895 /*parse_str*/ NULL }, 6896 { 0x0ff2, SCSI_ATTR_FLAG_NONE, 6897 "Spectra MLM C3", 6898 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6899 /*parse_str*/ NULL }, 6900 { 0x0ff3, SCSI_ATTR_FLAG_NONE, 6901 "Spectra MLM RW", 6902 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6903 /*parse_str*/ NULL }, 6904 { 0x0ff4, SCSI_ATTR_FLAG_NONE, 6905 "Spectra MLM SDC List", 6906 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6907 /*parse_str*/ NULL }, 6908 { 0x0ff7, SCSI_ATTR_FLAG_NONE, 6909 "Spectra MLM Post Scan", 6910 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6911 /*parse_str*/ NULL }, 6912 { 0x0ffe, SCSI_ATTR_FLAG_NONE, 6913 "Spectra MLM Checksum", 6914 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6915 /*parse_str*/ NULL }, 6916 { 0x17f1, SCSI_ATTR_FLAG_NONE, 6917 "Spectra MLM Creation", 6918 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6919 /*parse_str*/ NULL }, 6920 { 0x17f2, SCSI_ATTR_FLAG_NONE, 6921 "Spectra MLM C3", 6922 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6923 /*parse_str*/ NULL }, 6924 { 0x17f3, SCSI_ATTR_FLAG_NONE, 6925 "Spectra MLM RW", 6926 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6927 /*parse_str*/ NULL }, 6928 { 0x17f4, SCSI_ATTR_FLAG_NONE, 6929 "Spectra MLM SDC List", 6930 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6931 /*parse_str*/ NULL }, 6932 { 0x17f7, SCSI_ATTR_FLAG_NONE, 6933 "Spectra MLM Post Scan", 6934 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6935 /*parse_str*/ NULL }, 6936 { 0x17ff, SCSI_ATTR_FLAG_NONE, 6937 "Spectra MLM Checksum", 6938 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6939 /*parse_str*/ NULL }, 6940 }; 6941 6942 /* 6943 * Print out Volume Coherency Information (Attribute 0x080c). 6944 * This field has two variable length members, including one at the 6945 * beginning, so it isn't practical to have a fixed structure definition. 6946 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25, 6947 * 2013. 6948 */ 6949 int 6950 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 6951 uint32_t valid_len, uint32_t flags, 6952 uint32_t output_flags, char *error_str, 6953 int error_str_len) 6954 { 6955 size_t avail_len; 6956 uint32_t field_size; 6957 uint64_t tmp_val; 6958 uint8_t *cur_ptr; 6959 int retval; 6960 int vcr_len, as_len; 6961 6962 retval = 0; 6963 tmp_val = 0; 6964 6965 field_size = scsi_2btoul(hdr->length); 6966 avail_len = valid_len - sizeof(*hdr); 6967 if (field_size > avail_len) { 6968 if (error_str != NULL) { 6969 snprintf(error_str, error_str_len, "Available " 6970 "length of attribute ID 0x%.4x %zu < field " 6971 "length %u", scsi_2btoul(hdr->id), avail_len, 6972 field_size); 6973 } 6974 retval = 1; 6975 goto bailout; 6976 } else if (field_size == 0) { 6977 /* 6978 * It isn't clear from the spec whether a field length of 6979 * 0 is invalid here. It probably is, but be lenient here 6980 * to avoid inconveniencing the user. 6981 */ 6982 goto bailout; 6983 } 6984 cur_ptr = hdr->attribute; 6985 vcr_len = *cur_ptr; 6986 cur_ptr++; 6987 6988 sbuf_printf(sb, "\n\tVolume Change Reference Value:"); 6989 6990 switch (vcr_len) { 6991 case 0: 6992 if (error_str != NULL) { 6993 snprintf(error_str, error_str_len, "Volume Change " 6994 "Reference value has length of 0"); 6995 } 6996 retval = 1; 6997 goto bailout; 6998 break; /*NOTREACHED*/ 6999 case 1: 7000 tmp_val = *cur_ptr; 7001 break; 7002 case 2: 7003 tmp_val = scsi_2btoul(cur_ptr); 7004 break; 7005 case 3: 7006 tmp_val = scsi_3btoul(cur_ptr); 7007 break; 7008 case 4: 7009 tmp_val = scsi_4btoul(cur_ptr); 7010 break; 7011 case 8: 7012 tmp_val = scsi_8btou64(cur_ptr); 7013 break; 7014 default: 7015 sbuf_printf(sb, "\n"); 7016 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0); 7017 break; 7018 } 7019 if (vcr_len <= 8) 7020 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val); 7021 7022 cur_ptr += vcr_len; 7023 tmp_val = scsi_8btou64(cur_ptr); 7024 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val); 7025 7026 cur_ptr += sizeof(tmp_val); 7027 tmp_val = scsi_8btou64(cur_ptr); 7028 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n", 7029 (uintmax_t)tmp_val); 7030 7031 /* 7032 * Figure out how long the Application Client Specific Information 7033 * is and produce a hexdump. 7034 */ 7035 cur_ptr += sizeof(tmp_val); 7036 as_len = scsi_2btoul(cur_ptr); 7037 cur_ptr += sizeof(uint16_t); 7038 sbuf_printf(sb, "\tApplication Client Specific Information: "); 7039 if (((as_len == SCSI_LTFS_VER0_LEN) 7040 || (as_len == SCSI_LTFS_VER1_LEN)) 7041 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) { 7042 sbuf_printf(sb, "LTFS\n"); 7043 cur_ptr += SCSI_LTFS_STR_LEN + 1; 7044 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0') 7045 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0'; 7046 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr); 7047 cur_ptr += SCSI_LTFS_UUID_LEN + 1; 7048 /* XXX KDM check the length */ 7049 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr); 7050 } else { 7051 sbuf_printf(sb, "Unknown\n"); 7052 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0); 7053 } 7054 7055 bailout: 7056 return (retval); 7057 } 7058 7059 int 7060 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7061 uint32_t valid_len, uint32_t flags, 7062 uint32_t output_flags, char *error_str, 7063 int error_str_len) 7064 { 7065 size_t avail_len; 7066 uint32_t field_size; 7067 struct scsi_attrib_vendser *vendser; 7068 cam_strvis_flags strvis_flags; 7069 int retval = 0; 7070 7071 field_size = scsi_2btoul(hdr->length); 7072 avail_len = valid_len - sizeof(*hdr); 7073 if (field_size > avail_len) { 7074 if (error_str != NULL) { 7075 snprintf(error_str, error_str_len, "Available " 7076 "length of attribute ID 0x%.4x %zu < field " 7077 "length %u", scsi_2btoul(hdr->id), avail_len, 7078 field_size); 7079 } 7080 retval = 1; 7081 goto bailout; 7082 } else if (field_size == 0) { 7083 /* 7084 * A field size of 0 doesn't make sense here. The device 7085 * can at least give you the vendor ID, even if it can't 7086 * give you the serial number. 7087 */ 7088 if (error_str != NULL) { 7089 snprintf(error_str, error_str_len, "The length of " 7090 "attribute ID 0x%.4x is 0", 7091 scsi_2btoul(hdr->id)); 7092 } 7093 retval = 1; 7094 goto bailout; 7095 } 7096 vendser = (struct scsi_attrib_vendser *)hdr->attribute; 7097 7098 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7099 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7100 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7101 break; 7102 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7103 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7104 break; 7105 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7106 default: 7107 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7108 break;; 7109 } 7110 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor), 7111 strvis_flags); 7112 sbuf_putc(sb, ' '); 7113 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num), 7114 strvis_flags); 7115 bailout: 7116 return (retval); 7117 } 7118 7119 int 7120 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7121 uint32_t valid_len, uint32_t flags, 7122 uint32_t output_flags, char *error_str, 7123 int error_str_len) 7124 { 7125 uint32_t field_size; 7126 ssize_t avail_len; 7127 uint32_t print_len; 7128 uint8_t *num_ptr; 7129 int retval = 0; 7130 7131 field_size = scsi_2btoul(hdr->length); 7132 avail_len = valid_len - sizeof(*hdr); 7133 print_len = MIN(avail_len, field_size); 7134 num_ptr = hdr->attribute; 7135 7136 if (print_len > 0) { 7137 sbuf_printf(sb, "\n"); 7138 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0); 7139 } 7140 7141 return (retval); 7142 } 7143 7144 int 7145 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7146 uint32_t valid_len, uint32_t flags, 7147 uint32_t output_flags, char *error_str, 7148 int error_str_len) 7149 { 7150 uint64_t print_number; 7151 size_t avail_len; 7152 uint32_t number_size; 7153 int retval = 0; 7154 7155 number_size = scsi_2btoul(hdr->length); 7156 7157 avail_len = valid_len - sizeof(*hdr); 7158 if (avail_len < number_size) { 7159 if (error_str != NULL) { 7160 snprintf(error_str, error_str_len, "Available " 7161 "length of attribute ID 0x%.4x %zu < field " 7162 "length %u", scsi_2btoul(hdr->id), avail_len, 7163 number_size); 7164 } 7165 retval = 1; 7166 goto bailout; 7167 } 7168 7169 switch (number_size) { 7170 case 0: 7171 /* 7172 * We don't treat this as an error, since there may be 7173 * scenarios where a device reports a field but then gives 7174 * a length of 0. See the note in scsi_attrib_ascii_sbuf(). 7175 */ 7176 goto bailout; 7177 break; /*NOTREACHED*/ 7178 case 1: 7179 print_number = hdr->attribute[0]; 7180 break; 7181 case 2: 7182 print_number = scsi_2btoul(hdr->attribute); 7183 break; 7184 case 3: 7185 print_number = scsi_3btoul(hdr->attribute); 7186 break; 7187 case 4: 7188 print_number = scsi_4btoul(hdr->attribute); 7189 break; 7190 case 8: 7191 print_number = scsi_8btou64(hdr->attribute); 7192 break; 7193 default: 7194 /* 7195 * If we wind up here, the number is too big to print 7196 * normally, so just do a hexdump. 7197 */ 7198 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7199 flags, output_flags, 7200 error_str, error_str_len); 7201 goto bailout; 7202 break; 7203 } 7204 7205 if (flags & SCSI_ATTR_FLAG_FP) { 7206 #ifndef _KERNEL 7207 long double num_float; 7208 7209 num_float = (long double)print_number; 7210 7211 if (flags & SCSI_ATTR_FLAG_DIV_10) 7212 num_float /= 10; 7213 7214 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ? 7215 1 : 0, num_float); 7216 #else /* _KERNEL */ 7217 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ? 7218 (print_number / 10) : print_number); 7219 #endif /* _KERNEL */ 7220 } else if (flags & SCSI_ATTR_FLAG_HEX) { 7221 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number); 7222 } else 7223 sbuf_printf(sb, "%ju", (uintmax_t)print_number); 7224 7225 bailout: 7226 return (retval); 7227 } 7228 7229 int 7230 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7231 uint32_t valid_len, uint32_t flags, 7232 uint32_t output_flags, char *error_str, 7233 int error_str_len) 7234 { 7235 size_t avail_len; 7236 uint32_t field_size, print_size; 7237 int retval = 0; 7238 7239 avail_len = valid_len - sizeof(*hdr); 7240 field_size = scsi_2btoul(hdr->length); 7241 print_size = MIN(avail_len, field_size); 7242 7243 if (print_size > 0) { 7244 cam_strvis_flags strvis_flags; 7245 7246 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7247 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7248 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7249 break; 7250 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7251 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7252 break; 7253 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7254 default: 7255 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7256 break; 7257 } 7258 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags); 7259 } else if (avail_len < field_size) { 7260 /* 7261 * We only report an error if the user didn't allocate 7262 * enough space to hold the full value of this field. If 7263 * the field length is 0, that is allowed by the spec. 7264 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER 7265 * "This attribute indicates the current volume identifier 7266 * (see SMC-3) of the medium. If the device server supports 7267 * this attribute but does not have access to the volume 7268 * identifier, the device server shall report this attribute 7269 * with an attribute length value of zero." 7270 */ 7271 if (error_str != NULL) { 7272 snprintf(error_str, error_str_len, "Available " 7273 "length of attribute ID 0x%.4x %zu < field " 7274 "length %u", scsi_2btoul(hdr->id), avail_len, 7275 field_size); 7276 } 7277 retval = 1; 7278 } 7279 7280 return (retval); 7281 } 7282 7283 int 7284 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7285 uint32_t valid_len, uint32_t flags, 7286 uint32_t output_flags, char *error_str, 7287 int error_str_len) 7288 { 7289 size_t avail_len; 7290 uint32_t field_size, print_size; 7291 int retval = 0; 7292 int esc_text = 1; 7293 7294 avail_len = valid_len - sizeof(*hdr); 7295 field_size = scsi_2btoul(hdr->length); 7296 print_size = MIN(avail_len, field_size); 7297 7298 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) == 7299 SCSI_ATTR_OUTPUT_TEXT_RAW) 7300 esc_text = 0; 7301 7302 if (print_size > 0) { 7303 uint32_t i; 7304 7305 for (i = 0; i < print_size; i++) { 7306 if (hdr->attribute[i] == '\0') 7307 continue; 7308 else if (((unsigned char)hdr->attribute[i] < 0x80) 7309 || (esc_text == 0)) 7310 sbuf_putc(sb, hdr->attribute[i]); 7311 else 7312 sbuf_printf(sb, "%%%02x", 7313 (unsigned char)hdr->attribute[i]); 7314 } 7315 } else if (avail_len < field_size) { 7316 /* 7317 * We only report an error if the user didn't allocate 7318 * enough space to hold the full value of this field. 7319 */ 7320 if (error_str != NULL) { 7321 snprintf(error_str, error_str_len, "Available " 7322 "length of attribute ID 0x%.4x %zu < field " 7323 "length %u", scsi_2btoul(hdr->id), avail_len, 7324 field_size); 7325 } 7326 retval = 1; 7327 } 7328 7329 return (retval); 7330 } 7331 7332 struct scsi_attrib_table_entry * 7333 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table, 7334 size_t num_table_entries, uint32_t id) 7335 { 7336 uint32_t i; 7337 7338 for (i = 0; i < num_table_entries; i++) { 7339 if (table[i].id == id) 7340 return (&table[i]); 7341 } 7342 7343 return (NULL); 7344 } 7345 7346 struct scsi_attrib_table_entry * 7347 scsi_get_attrib_entry(uint32_t id) 7348 { 7349 return (scsi_find_attrib_entry(scsi_mam_attr_table, 7350 nitems(scsi_mam_attr_table), id)); 7351 } 7352 7353 int 7354 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, 7355 struct scsi_mam_attribute_header *hdr, uint32_t output_flags, 7356 char *error_str, size_t error_str_len) 7357 { 7358 int retval; 7359 7360 switch (hdr->byte2 & SMA_FORMAT_MASK) { 7361 case SMA_FORMAT_ASCII: 7362 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len, 7363 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len); 7364 break; 7365 case SMA_FORMAT_BINARY: 7366 if (scsi_2btoul(hdr->length) <= 8) 7367 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len, 7368 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7369 error_str_len); 7370 else 7371 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7372 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7373 error_str_len); 7374 break; 7375 case SMA_FORMAT_TEXT: 7376 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len, 7377 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7378 error_str_len); 7379 break; 7380 default: 7381 if (error_str != NULL) { 7382 snprintf(error_str, error_str_len, "Unknown attribute " 7383 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK); 7384 } 7385 retval = 1; 7386 goto bailout; 7387 break; /*NOTREACHED*/ 7388 } 7389 7390 sbuf_trim(sb); 7391 7392 bailout: 7393 7394 return (retval); 7395 } 7396 7397 void 7398 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, 7399 struct scsi_mam_attribute_header *hdr, 7400 uint32_t valid_len, const char *desc) 7401 { 7402 int need_space = 0; 7403 uint32_t len; 7404 uint32_t id; 7405 7406 /* 7407 * We can't do anything if we don't have enough valid data for the 7408 * header. 7409 */ 7410 if (valid_len < sizeof(*hdr)) 7411 return; 7412 7413 id = scsi_2btoul(hdr->id); 7414 /* 7415 * Note that we print out the value of the attribute listed in the 7416 * header, regardless of whether we actually got that many bytes 7417 * back from the device through the controller. A truncated result 7418 * could be the result of a failure to ask for enough data; the 7419 * header indicates how many bytes are allocated for this attribute 7420 * in the MAM. 7421 */ 7422 len = scsi_2btoul(hdr->length); 7423 7424 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) == 7425 SCSI_ATTR_OUTPUT_FIELD_NONE) 7426 return; 7427 7428 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC) 7429 && (desc != NULL)) { 7430 sbuf_printf(sb, "%s", desc); 7431 need_space = 1; 7432 } 7433 7434 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) { 7435 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id); 7436 need_space = 0; 7437 } 7438 7439 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) { 7440 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len); 7441 need_space = 0; 7442 } 7443 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) { 7444 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "", 7445 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW"); 7446 } 7447 sbuf_printf(sb, ": "); 7448 } 7449 7450 int 7451 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7452 uint32_t valid_len, struct scsi_attrib_table_entry *user_table, 7453 size_t num_user_entries, int prefer_user_table, 7454 uint32_t output_flags, char *error_str, int error_str_len) 7455 { 7456 int retval; 7457 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL; 7458 struct scsi_attrib_table_entry *entry = NULL; 7459 size_t table1_size = 0, table2_size = 0; 7460 uint32_t id; 7461 7462 retval = 0; 7463 7464 if (valid_len < sizeof(*hdr)) { 7465 retval = 1; 7466 goto bailout; 7467 } 7468 7469 id = scsi_2btoul(hdr->id); 7470 7471 if (user_table != NULL) { 7472 if (prefer_user_table != 0) { 7473 table1 = user_table; 7474 table1_size = num_user_entries; 7475 table2 = scsi_mam_attr_table; 7476 table2_size = nitems(scsi_mam_attr_table); 7477 } else { 7478 table1 = scsi_mam_attr_table; 7479 table1_size = nitems(scsi_mam_attr_table); 7480 table2 = user_table; 7481 table2_size = num_user_entries; 7482 } 7483 } else { 7484 table1 = scsi_mam_attr_table; 7485 table1_size = nitems(scsi_mam_attr_table); 7486 } 7487 7488 entry = scsi_find_attrib_entry(table1, table1_size, id); 7489 if (entry != NULL) { 7490 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, 7491 entry->desc); 7492 if (entry->to_str == NULL) 7493 goto print_default; 7494 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7495 output_flags, error_str, error_str_len); 7496 goto bailout; 7497 } 7498 if (table2 != NULL) { 7499 entry = scsi_find_attrib_entry(table2, table2_size, id); 7500 if (entry != NULL) { 7501 if (entry->to_str == NULL) 7502 goto print_default; 7503 7504 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, 7505 valid_len, entry->desc); 7506 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7507 output_flags, error_str, 7508 error_str_len); 7509 goto bailout; 7510 } 7511 } 7512 7513 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL); 7514 7515 print_default: 7516 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags, 7517 error_str, error_str_len); 7518 bailout: 7519 if (retval == 0) { 7520 if ((entry != NULL) 7521 && (entry->suffix != NULL)) 7522 sbuf_printf(sb, " %s", entry->suffix); 7523 7524 sbuf_trim(sb); 7525 sbuf_printf(sb, "\n"); 7526 } 7527 7528 return (retval); 7529 } 7530 7531 void 7532 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, 7533 void (*cbfcnp)(struct cam_periph *, union ccb *), 7534 u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout) 7535 { 7536 struct scsi_test_unit_ready *scsi_cmd; 7537 7538 cam_fill_csio(csio, 7539 retries, 7540 cbfcnp, 7541 CAM_DIR_NONE, 7542 tag_action, 7543 /*data_ptr*/NULL, 7544 /*dxfer_len*/0, 7545 sense_len, 7546 sizeof(*scsi_cmd), 7547 timeout); 7548 7549 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; 7550 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7551 scsi_cmd->opcode = TEST_UNIT_READY; 7552 } 7553 7554 void 7555 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, 7556 void (*cbfcnp)(struct cam_periph *, union ccb *), 7557 void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, 7558 u_int8_t sense_len, u_int32_t timeout) 7559 { 7560 struct scsi_request_sense *scsi_cmd; 7561 7562 cam_fill_csio(csio, 7563 retries, 7564 cbfcnp, 7565 CAM_DIR_IN, 7566 tag_action, 7567 data_ptr, 7568 dxfer_len, 7569 sense_len, 7570 sizeof(*scsi_cmd), 7571 timeout); 7572 7573 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; 7574 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7575 scsi_cmd->opcode = REQUEST_SENSE; 7576 scsi_cmd->length = dxfer_len; 7577 } 7578 7579 void 7580 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, 7581 void (*cbfcnp)(struct cam_periph *, union ccb *), 7582 u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, 7583 int evpd, u_int8_t page_code, u_int8_t sense_len, 7584 u_int32_t timeout) 7585 { 7586 struct scsi_inquiry *scsi_cmd; 7587 7588 cam_fill_csio(csio, 7589 retries, 7590 cbfcnp, 7591 /*flags*/CAM_DIR_IN, 7592 tag_action, 7593 /*data_ptr*/inq_buf, 7594 /*dxfer_len*/inq_len, 7595 sense_len, 7596 sizeof(*scsi_cmd), 7597 timeout); 7598 7599 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; 7600 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7601 scsi_cmd->opcode = INQUIRY; 7602 if (evpd) { 7603 scsi_cmd->byte2 |= SI_EVPD; 7604 scsi_cmd->page_code = page_code; 7605 } 7606 scsi_ulto2b(inq_len, scsi_cmd->length); 7607 } 7608 7609 void 7610 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries, 7611 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7612 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7613 uint8_t sense_len, uint32_t timeout) 7614 { 7615 7616 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7617 pc, page, 0, param_buf, param_len, 0, sense_len, timeout); 7618 } 7619 7620 void 7621 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries, 7622 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7623 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7624 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout) 7625 { 7626 7627 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7628 pc, page, 0, param_buf, param_len, minimum_cmd_size, 7629 sense_len, timeout); 7630 } 7631 7632 void 7633 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries, 7634 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7635 int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf, 7636 uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, 7637 uint32_t timeout) 7638 { 7639 u_int8_t cdb_len; 7640 7641 /* 7642 * Use the smallest possible command to perform the operation. 7643 */ 7644 if ((param_len < 256) 7645 && (minimum_cmd_size < 10)) { 7646 /* 7647 * We can fit in a 6 byte cdb. 7648 */ 7649 struct scsi_mode_sense_6 *scsi_cmd; 7650 7651 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; 7652 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7653 scsi_cmd->opcode = MODE_SENSE_6; 7654 if (dbd != 0) 7655 scsi_cmd->byte2 |= SMS_DBD; 7656 scsi_cmd->page = pc | page; 7657 scsi_cmd->subpage = subpage; 7658 scsi_cmd->length = param_len; 7659 cdb_len = sizeof(*scsi_cmd); 7660 } else { 7661 /* 7662 * Need a 10 byte cdb. 7663 */ 7664 struct scsi_mode_sense_10 *scsi_cmd; 7665 7666 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; 7667 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7668 scsi_cmd->opcode = MODE_SENSE_10; 7669 if (dbd != 0) 7670 scsi_cmd->byte2 |= SMS_DBD; 7671 scsi_cmd->page = pc | page; 7672 scsi_cmd->subpage = subpage; 7673 scsi_ulto2b(param_len, scsi_cmd->length); 7674 cdb_len = sizeof(*scsi_cmd); 7675 } 7676 cam_fill_csio(csio, 7677 retries, 7678 cbfcnp, 7679 CAM_DIR_IN, 7680 tag_action, 7681 param_buf, 7682 param_len, 7683 sense_len, 7684 cdb_len, 7685 timeout); 7686 } 7687 7688 void 7689 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, 7690 void (*cbfcnp)(struct cam_periph *, union ccb *), 7691 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7692 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7693 u_int32_t timeout) 7694 { 7695 scsi_mode_select_len(csio, retries, cbfcnp, tag_action, 7696 scsi_page_fmt, save_pages, param_buf, 7697 param_len, 0, sense_len, timeout); 7698 } 7699 7700 void 7701 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, 7702 void (*cbfcnp)(struct cam_periph *, union ccb *), 7703 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7704 u_int8_t *param_buf, u_int32_t param_len, 7705 int minimum_cmd_size, u_int8_t sense_len, 7706 u_int32_t timeout) 7707 { 7708 u_int8_t cdb_len; 7709 7710 /* 7711 * Use the smallest possible command to perform the operation. 7712 */ 7713 if ((param_len < 256) 7714 && (minimum_cmd_size < 10)) { 7715 /* 7716 * We can fit in a 6 byte cdb. 7717 */ 7718 struct scsi_mode_select_6 *scsi_cmd; 7719 7720 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; 7721 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7722 scsi_cmd->opcode = MODE_SELECT_6; 7723 if (scsi_page_fmt != 0) 7724 scsi_cmd->byte2 |= SMS_PF; 7725 if (save_pages != 0) 7726 scsi_cmd->byte2 |= SMS_SP; 7727 scsi_cmd->length = param_len; 7728 cdb_len = sizeof(*scsi_cmd); 7729 } else { 7730 /* 7731 * Need a 10 byte cdb. 7732 */ 7733 struct scsi_mode_select_10 *scsi_cmd; 7734 7735 scsi_cmd = 7736 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; 7737 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7738 scsi_cmd->opcode = MODE_SELECT_10; 7739 if (scsi_page_fmt != 0) 7740 scsi_cmd->byte2 |= SMS_PF; 7741 if (save_pages != 0) 7742 scsi_cmd->byte2 |= SMS_SP; 7743 scsi_ulto2b(param_len, scsi_cmd->length); 7744 cdb_len = sizeof(*scsi_cmd); 7745 } 7746 cam_fill_csio(csio, 7747 retries, 7748 cbfcnp, 7749 CAM_DIR_OUT, 7750 tag_action, 7751 param_buf, 7752 param_len, 7753 sense_len, 7754 cdb_len, 7755 timeout); 7756 } 7757 7758 void 7759 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, 7760 void (*cbfcnp)(struct cam_periph *, union ccb *), 7761 u_int8_t tag_action, u_int8_t page_code, u_int8_t page, 7762 int save_pages, int ppc, u_int32_t paramptr, 7763 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7764 u_int32_t timeout) 7765 { 7766 struct scsi_log_sense *scsi_cmd; 7767 u_int8_t cdb_len; 7768 7769 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; 7770 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7771 scsi_cmd->opcode = LOG_SENSE; 7772 scsi_cmd->page = page_code | page; 7773 if (save_pages != 0) 7774 scsi_cmd->byte2 |= SLS_SP; 7775 if (ppc != 0) 7776 scsi_cmd->byte2 |= SLS_PPC; 7777 scsi_ulto2b(paramptr, scsi_cmd->paramptr); 7778 scsi_ulto2b(param_len, scsi_cmd->length); 7779 cdb_len = sizeof(*scsi_cmd); 7780 7781 cam_fill_csio(csio, 7782 retries, 7783 cbfcnp, 7784 /*flags*/CAM_DIR_IN, 7785 tag_action, 7786 /*data_ptr*/param_buf, 7787 /*dxfer_len*/param_len, 7788 sense_len, 7789 cdb_len, 7790 timeout); 7791 } 7792 7793 void 7794 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, 7795 void (*cbfcnp)(struct cam_periph *, union ccb *), 7796 u_int8_t tag_action, u_int8_t page_code, int save_pages, 7797 int pc_reset, u_int8_t *param_buf, u_int32_t param_len, 7798 u_int8_t sense_len, u_int32_t timeout) 7799 { 7800 struct scsi_log_select *scsi_cmd; 7801 u_int8_t cdb_len; 7802 7803 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; 7804 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7805 scsi_cmd->opcode = LOG_SELECT; 7806 scsi_cmd->page = page_code & SLS_PAGE_CODE; 7807 if (save_pages != 0) 7808 scsi_cmd->byte2 |= SLS_SP; 7809 if (pc_reset != 0) 7810 scsi_cmd->byte2 |= SLS_PCR; 7811 scsi_ulto2b(param_len, scsi_cmd->length); 7812 cdb_len = sizeof(*scsi_cmd); 7813 7814 cam_fill_csio(csio, 7815 retries, 7816 cbfcnp, 7817 /*flags*/CAM_DIR_OUT, 7818 tag_action, 7819 /*data_ptr*/param_buf, 7820 /*dxfer_len*/param_len, 7821 sense_len, 7822 cdb_len, 7823 timeout); 7824 } 7825 7826 /* 7827 * Prevent or allow the user to remove the media 7828 */ 7829 void 7830 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, 7831 void (*cbfcnp)(struct cam_periph *, union ccb *), 7832 u_int8_t tag_action, u_int8_t action, 7833 u_int8_t sense_len, u_int32_t timeout) 7834 { 7835 struct scsi_prevent *scsi_cmd; 7836 7837 cam_fill_csio(csio, 7838 retries, 7839 cbfcnp, 7840 /*flags*/CAM_DIR_NONE, 7841 tag_action, 7842 /*data_ptr*/NULL, 7843 /*dxfer_len*/0, 7844 sense_len, 7845 sizeof(*scsi_cmd), 7846 timeout); 7847 7848 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; 7849 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7850 scsi_cmd->opcode = PREVENT_ALLOW; 7851 scsi_cmd->how = action; 7852 } 7853 7854 /* XXX allow specification of address and PMI bit and LBA */ 7855 void 7856 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, 7857 void (*cbfcnp)(struct cam_periph *, union ccb *), 7858 u_int8_t tag_action, 7859 struct scsi_read_capacity_data *rcap_buf, 7860 u_int8_t sense_len, u_int32_t timeout) 7861 { 7862 struct scsi_read_capacity *scsi_cmd; 7863 7864 cam_fill_csio(csio, 7865 retries, 7866 cbfcnp, 7867 /*flags*/CAM_DIR_IN, 7868 tag_action, 7869 /*data_ptr*/(u_int8_t *)rcap_buf, 7870 /*dxfer_len*/sizeof(*rcap_buf), 7871 sense_len, 7872 sizeof(*scsi_cmd), 7873 timeout); 7874 7875 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; 7876 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7877 scsi_cmd->opcode = READ_CAPACITY; 7878 } 7879 7880 void 7881 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, 7882 void (*cbfcnp)(struct cam_periph *, union ccb *), 7883 uint8_t tag_action, uint64_t lba, int reladr, int pmi, 7884 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, 7885 uint32_t timeout) 7886 { 7887 struct scsi_read_capacity_16 *scsi_cmd; 7888 7889 7890 cam_fill_csio(csio, 7891 retries, 7892 cbfcnp, 7893 /*flags*/CAM_DIR_IN, 7894 tag_action, 7895 /*data_ptr*/(u_int8_t *)rcap_buf, 7896 /*dxfer_len*/rcap_buf_len, 7897 sense_len, 7898 sizeof(*scsi_cmd), 7899 timeout); 7900 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 7901 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7902 scsi_cmd->opcode = SERVICE_ACTION_IN; 7903 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 7904 scsi_u64to8b(lba, scsi_cmd->addr); 7905 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); 7906 if (pmi) 7907 reladr |= SRC16_PMI; 7908 if (reladr) 7909 reladr |= SRC16_RELADR; 7910 } 7911 7912 void 7913 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, 7914 void (*cbfcnp)(struct cam_periph *, union ccb *), 7915 u_int8_t tag_action, u_int8_t select_report, 7916 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, 7917 u_int8_t sense_len, u_int32_t timeout) 7918 { 7919 struct scsi_report_luns *scsi_cmd; 7920 7921 cam_fill_csio(csio, 7922 retries, 7923 cbfcnp, 7924 /*flags*/CAM_DIR_IN, 7925 tag_action, 7926 /*data_ptr*/(u_int8_t *)rpl_buf, 7927 /*dxfer_len*/alloc_len, 7928 sense_len, 7929 sizeof(*scsi_cmd), 7930 timeout); 7931 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; 7932 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7933 scsi_cmd->opcode = REPORT_LUNS; 7934 scsi_cmd->select_report = select_report; 7935 scsi_ulto4b(alloc_len, scsi_cmd->length); 7936 } 7937 7938 void 7939 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7940 void (*cbfcnp)(struct cam_periph *, union ccb *), 7941 u_int8_t tag_action, u_int8_t pdf, 7942 void *buf, u_int32_t alloc_len, 7943 u_int8_t sense_len, u_int32_t timeout) 7944 { 7945 struct scsi_target_group *scsi_cmd; 7946 7947 cam_fill_csio(csio, 7948 retries, 7949 cbfcnp, 7950 /*flags*/CAM_DIR_IN, 7951 tag_action, 7952 /*data_ptr*/(u_int8_t *)buf, 7953 /*dxfer_len*/alloc_len, 7954 sense_len, 7955 sizeof(*scsi_cmd), 7956 timeout); 7957 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 7958 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7959 scsi_cmd->opcode = MAINTENANCE_IN; 7960 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; 7961 scsi_ulto4b(alloc_len, scsi_cmd->length); 7962 } 7963 7964 void 7965 scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 7966 void (*cbfcnp)(struct cam_periph *, union ccb *), 7967 u_int8_t tag_action, u_int8_t pdf, 7968 void *buf, u_int32_t alloc_len, 7969 u_int8_t sense_len, u_int32_t timeout) 7970 { 7971 struct scsi_timestamp *scsi_cmd; 7972 7973 cam_fill_csio(csio, 7974 retries, 7975 cbfcnp, 7976 /*flags*/CAM_DIR_IN, 7977 tag_action, 7978 /*data_ptr*/(u_int8_t *)buf, 7979 /*dxfer_len*/alloc_len, 7980 sense_len, 7981 sizeof(*scsi_cmd), 7982 timeout); 7983 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 7984 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7985 scsi_cmd->opcode = MAINTENANCE_IN; 7986 scsi_cmd->service_action = REPORT_TIMESTAMP | pdf; 7987 scsi_ulto4b(alloc_len, scsi_cmd->length); 7988 } 7989 7990 void 7991 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7992 void (*cbfcnp)(struct cam_periph *, union ccb *), 7993 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 7994 u_int8_t sense_len, u_int32_t timeout) 7995 { 7996 struct scsi_target_group *scsi_cmd; 7997 7998 cam_fill_csio(csio, 7999 retries, 8000 cbfcnp, 8001 /*flags*/CAM_DIR_OUT, 8002 tag_action, 8003 /*data_ptr*/(u_int8_t *)buf, 8004 /*dxfer_len*/alloc_len, 8005 sense_len, 8006 sizeof(*scsi_cmd), 8007 timeout); 8008 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 8009 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8010 scsi_cmd->opcode = MAINTENANCE_OUT; 8011 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; 8012 scsi_ulto4b(alloc_len, scsi_cmd->length); 8013 } 8014 8015 void 8016 scsi_create_timestamp(uint8_t *timestamp_6b_buf, 8017 uint64_t timestamp) 8018 { 8019 uint8_t buf[8]; 8020 scsi_u64to8b(timestamp, buf); 8021 /* 8022 * Using memcopy starting at buf[2] because the set timestamp parameters 8023 * only has six bytes for the timestamp to fit into, and we don't have a 8024 * scsi_u64to6b function. 8025 */ 8026 memcpy(timestamp_6b_buf, &buf[2], 6); 8027 } 8028 8029 void 8030 scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 8031 void (*cbfcnp)(struct cam_periph *, union ccb *), 8032 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 8033 u_int8_t sense_len, u_int32_t timeout) 8034 { 8035 struct scsi_timestamp *scsi_cmd; 8036 8037 cam_fill_csio(csio, 8038 retries, 8039 cbfcnp, 8040 /*flags*/CAM_DIR_OUT, 8041 tag_action, 8042 /*data_ptr*/(u_int8_t *) buf, 8043 /*dxfer_len*/alloc_len, 8044 sense_len, 8045 sizeof(*scsi_cmd), 8046 timeout); 8047 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 8048 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8049 scsi_cmd->opcode = MAINTENANCE_OUT; 8050 scsi_cmd->service_action = SET_TIMESTAMP; 8051 scsi_ulto4b(alloc_len, scsi_cmd->length); 8052 } 8053 8054 /* 8055 * Syncronize the media to the contents of the cache for 8056 * the given lba/count pair. Specifying 0/0 means sync 8057 * the whole cache. 8058 */ 8059 void 8060 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, 8061 void (*cbfcnp)(struct cam_periph *, union ccb *), 8062 u_int8_t tag_action, u_int32_t begin_lba, 8063 u_int16_t lb_count, u_int8_t sense_len, 8064 u_int32_t timeout) 8065 { 8066 struct scsi_sync_cache *scsi_cmd; 8067 8068 cam_fill_csio(csio, 8069 retries, 8070 cbfcnp, 8071 /*flags*/CAM_DIR_NONE, 8072 tag_action, 8073 /*data_ptr*/NULL, 8074 /*dxfer_len*/0, 8075 sense_len, 8076 sizeof(*scsi_cmd), 8077 timeout); 8078 8079 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; 8080 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8081 scsi_cmd->opcode = SYNCHRONIZE_CACHE; 8082 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); 8083 scsi_ulto2b(lb_count, scsi_cmd->lb_count); 8084 } 8085 8086 void 8087 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, 8088 void (*cbfcnp)(struct cam_periph *, union ccb *), 8089 u_int8_t tag_action, int readop, u_int8_t byte2, 8090 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8091 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8092 u_int32_t timeout) 8093 { 8094 int read; 8095 u_int8_t cdb_len; 8096 8097 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; 8098 8099 /* 8100 * Use the smallest possible command to perform the operation 8101 * as some legacy hardware does not support the 10 byte commands. 8102 * If any of the bits in byte2 is set, we have to go with a larger 8103 * command. 8104 */ 8105 if ((minimum_cmd_size < 10) 8106 && ((lba & 0x1fffff) == lba) 8107 && ((block_count & 0xff) == block_count) 8108 && (byte2 == 0)) { 8109 /* 8110 * We can fit in a 6 byte cdb. 8111 */ 8112 struct scsi_rw_6 *scsi_cmd; 8113 8114 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; 8115 scsi_cmd->opcode = read ? READ_6 : WRITE_6; 8116 scsi_ulto3b(lba, scsi_cmd->addr); 8117 scsi_cmd->length = block_count & 0xff; 8118 scsi_cmd->control = 0; 8119 cdb_len = sizeof(*scsi_cmd); 8120 8121 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8122 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], 8123 scsi_cmd->addr[1], scsi_cmd->addr[2], 8124 scsi_cmd->length, dxfer_len)); 8125 } else if ((minimum_cmd_size < 12) 8126 && ((block_count & 0xffff) == block_count) 8127 && ((lba & 0xffffffff) == lba)) { 8128 /* 8129 * Need a 10 byte cdb. 8130 */ 8131 struct scsi_rw_10 *scsi_cmd; 8132 8133 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; 8134 scsi_cmd->opcode = read ? READ_10 : WRITE_10; 8135 scsi_cmd->byte2 = byte2; 8136 scsi_ulto4b(lba, scsi_cmd->addr); 8137 scsi_cmd->reserved = 0; 8138 scsi_ulto2b(block_count, scsi_cmd->length); 8139 scsi_cmd->control = 0; 8140 cdb_len = sizeof(*scsi_cmd); 8141 8142 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8143 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8144 scsi_cmd->addr[1], scsi_cmd->addr[2], 8145 scsi_cmd->addr[3], scsi_cmd->length[0], 8146 scsi_cmd->length[1], dxfer_len)); 8147 } else if ((minimum_cmd_size < 16) 8148 && ((block_count & 0xffffffff) == block_count) 8149 && ((lba & 0xffffffff) == lba)) { 8150 /* 8151 * The block count is too big for a 10 byte CDB, use a 12 8152 * byte CDB. 8153 */ 8154 struct scsi_rw_12 *scsi_cmd; 8155 8156 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; 8157 scsi_cmd->opcode = read ? READ_12 : WRITE_12; 8158 scsi_cmd->byte2 = byte2; 8159 scsi_ulto4b(lba, scsi_cmd->addr); 8160 scsi_cmd->reserved = 0; 8161 scsi_ulto4b(block_count, scsi_cmd->length); 8162 scsi_cmd->control = 0; 8163 cdb_len = sizeof(*scsi_cmd); 8164 8165 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8166 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], 8167 scsi_cmd->addr[1], scsi_cmd->addr[2], 8168 scsi_cmd->addr[3], scsi_cmd->length[0], 8169 scsi_cmd->length[1], scsi_cmd->length[2], 8170 scsi_cmd->length[3], dxfer_len)); 8171 } else { 8172 /* 8173 * 16 byte CDB. We'll only get here if the LBA is larger 8174 * than 2^32, or if the user asks for a 16 byte command. 8175 */ 8176 struct scsi_rw_16 *scsi_cmd; 8177 8178 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; 8179 scsi_cmd->opcode = read ? READ_16 : WRITE_16; 8180 scsi_cmd->byte2 = byte2; 8181 scsi_u64to8b(lba, scsi_cmd->addr); 8182 scsi_cmd->reserved = 0; 8183 scsi_ulto4b(block_count, scsi_cmd->length); 8184 scsi_cmd->control = 0; 8185 cdb_len = sizeof(*scsi_cmd); 8186 } 8187 cam_fill_csio(csio, 8188 retries, 8189 cbfcnp, 8190 (read ? CAM_DIR_IN : CAM_DIR_OUT) | 8191 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), 8192 tag_action, 8193 data_ptr, 8194 dxfer_len, 8195 sense_len, 8196 cdb_len, 8197 timeout); 8198 } 8199 8200 void 8201 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, 8202 void (*cbfcnp)(struct cam_periph *, union ccb *), 8203 u_int8_t tag_action, u_int8_t byte2, 8204 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8205 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8206 u_int32_t timeout) 8207 { 8208 u_int8_t cdb_len; 8209 if ((minimum_cmd_size < 16) && 8210 ((block_count & 0xffff) == block_count) && 8211 ((lba & 0xffffffff) == lba)) { 8212 /* 8213 * Need a 10 byte cdb. 8214 */ 8215 struct scsi_write_same_10 *scsi_cmd; 8216 8217 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; 8218 scsi_cmd->opcode = WRITE_SAME_10; 8219 scsi_cmd->byte2 = byte2; 8220 scsi_ulto4b(lba, scsi_cmd->addr); 8221 scsi_cmd->group = 0; 8222 scsi_ulto2b(block_count, scsi_cmd->length); 8223 scsi_cmd->control = 0; 8224 cdb_len = sizeof(*scsi_cmd); 8225 8226 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8227 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8228 scsi_cmd->addr[1], scsi_cmd->addr[2], 8229 scsi_cmd->addr[3], scsi_cmd->length[0], 8230 scsi_cmd->length[1], dxfer_len)); 8231 } else { 8232 /* 8233 * 16 byte CDB. We'll only get here if the LBA is larger 8234 * than 2^32, or if the user asks for a 16 byte command. 8235 */ 8236 struct scsi_write_same_16 *scsi_cmd; 8237 8238 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; 8239 scsi_cmd->opcode = WRITE_SAME_16; 8240 scsi_cmd->byte2 = byte2; 8241 scsi_u64to8b(lba, scsi_cmd->addr); 8242 scsi_ulto4b(block_count, scsi_cmd->length); 8243 scsi_cmd->group = 0; 8244 scsi_cmd->control = 0; 8245 cdb_len = sizeof(*scsi_cmd); 8246 8247 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8248 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", 8249 scsi_cmd->addr[0], scsi_cmd->addr[1], 8250 scsi_cmd->addr[2], scsi_cmd->addr[3], 8251 scsi_cmd->addr[4], scsi_cmd->addr[5], 8252 scsi_cmd->addr[6], scsi_cmd->addr[7], 8253 scsi_cmd->length[0], scsi_cmd->length[1], 8254 scsi_cmd->length[2], scsi_cmd->length[3], 8255 dxfer_len)); 8256 } 8257 cam_fill_csio(csio, 8258 retries, 8259 cbfcnp, 8260 /*flags*/CAM_DIR_OUT, 8261 tag_action, 8262 data_ptr, 8263 dxfer_len, 8264 sense_len, 8265 cdb_len, 8266 timeout); 8267 } 8268 8269 void 8270 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries, 8271 void (*cbfcnp)(struct cam_periph *, union ccb *), 8272 u_int8_t tag_action, u_int8_t *data_ptr, 8273 u_int16_t dxfer_len, u_int8_t sense_len, 8274 u_int32_t timeout) 8275 { 8276 scsi_ata_pass(csio, 8277 retries, 8278 cbfcnp, 8279 /*flags*/CAM_DIR_IN, 8280 tag_action, 8281 /*protocol*/AP_PROTO_PIO_IN, 8282 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8283 AP_FLAG_BYT_BLOK_BYTES | 8284 AP_FLAG_TLEN_SECT_CNT, 8285 /*features*/0, 8286 /*sector_count*/dxfer_len, 8287 /*lba*/0, 8288 /*command*/ATA_ATA_IDENTIFY, 8289 /*device*/ 0, 8290 /*icc*/ 0, 8291 /*auxiliary*/ 0, 8292 /*control*/0, 8293 data_ptr, 8294 dxfer_len, 8295 /*cdb_storage*/ NULL, 8296 /*cdb_storage_len*/ 0, 8297 /*minimum_cmd_size*/ 0, 8298 sense_len, 8299 timeout); 8300 } 8301 8302 void 8303 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries, 8304 void (*cbfcnp)(struct cam_periph *, union ccb *), 8305 u_int8_t tag_action, u_int16_t block_count, 8306 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8307 u_int32_t timeout) 8308 { 8309 scsi_ata_pass_16(csio, 8310 retries, 8311 cbfcnp, 8312 /*flags*/CAM_DIR_OUT, 8313 tag_action, 8314 /*protocol*/AP_EXTEND|AP_PROTO_DMA, 8315 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS, 8316 /*features*/ATA_DSM_TRIM, 8317 /*sector_count*/block_count, 8318 /*lba*/0, 8319 /*command*/ATA_DATA_SET_MANAGEMENT, 8320 /*control*/0, 8321 data_ptr, 8322 dxfer_len, 8323 sense_len, 8324 timeout); 8325 } 8326 8327 int 8328 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries, 8329 void (*cbfcnp)(struct cam_periph *, union ccb *), 8330 uint8_t tag_action, uint32_t log_address, 8331 uint32_t page_number, uint16_t block_count, 8332 uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, 8333 uint8_t sense_len, uint32_t timeout) 8334 { 8335 uint8_t command, protocol_out; 8336 uint16_t count_out; 8337 uint64_t lba; 8338 int retval; 8339 8340 retval = 0; 8341 8342 switch (protocol) { 8343 case AP_PROTO_DMA: 8344 count_out = block_count; 8345 command = ATA_READ_LOG_DMA_EXT; 8346 protocol_out = AP_PROTO_DMA; 8347 break; 8348 case AP_PROTO_PIO_IN: 8349 default: 8350 count_out = block_count; 8351 command = ATA_READ_LOG_EXT; 8352 protocol_out = AP_PROTO_PIO_IN; 8353 break; 8354 } 8355 8356 lba = (((uint64_t)page_number & 0xff00) << 32) | 8357 ((page_number & 0x00ff) << 8) | 8358 (log_address & 0xff); 8359 8360 protocol_out |= AP_EXTEND; 8361 8362 retval = scsi_ata_pass(csio, 8363 retries, 8364 cbfcnp, 8365 /*flags*/CAM_DIR_IN, 8366 tag_action, 8367 /*protocol*/ protocol_out, 8368 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT | 8369 AP_FLAG_BYT_BLOK_BLOCKS | 8370 AP_FLAG_TDIR_FROM_DEV, 8371 /*feature*/ 0, 8372 /*sector_count*/ count_out, 8373 /*lba*/ lba, 8374 /*command*/ command, 8375 /*device*/ 0, 8376 /*icc*/ 0, 8377 /*auxiliary*/ 0, 8378 /*control*/0, 8379 data_ptr, 8380 dxfer_len, 8381 /*cdb_storage*/ NULL, 8382 /*cdb_storage_len*/ 0, 8383 /*minimum_cmd_size*/ 0, 8384 sense_len, 8385 timeout); 8386 8387 return (retval); 8388 } 8389 8390 int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries, 8391 void (*cbfcnp)(struct cam_periph *, union ccb *), 8392 uint8_t tag_action, uint8_t feature, 8393 uint64_t lba, uint32_t count, 8394 uint8_t sense_len, uint32_t timeout) 8395 { 8396 return (scsi_ata_pass(csio, 8397 retries, 8398 cbfcnp, 8399 /*flags*/CAM_DIR_NONE, 8400 tag_action, 8401 /*protocol*/AP_PROTO_PIO_IN, 8402 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8403 AP_FLAG_BYT_BLOK_BYTES | 8404 AP_FLAG_TLEN_SECT_CNT, 8405 /*features*/feature, 8406 /*sector_count*/count, 8407 /*lba*/lba, 8408 /*command*/ATA_SETFEATURES, 8409 /*device*/ 0, 8410 /*icc*/ 0, 8411 /*auxiliary*/0, 8412 /*control*/0, 8413 /*data_ptr*/NULL, 8414 /*dxfer_len*/0, 8415 /*cdb_storage*/NULL, 8416 /*cdb_storage_len*/0, 8417 /*minimum_cmd_size*/0, 8418 sense_len, 8419 timeout)); 8420 } 8421 8422 /* 8423 * Note! This is an unusual CDB building function because it can return 8424 * an error in the event that the command in question requires a variable 8425 * length CDB, but the caller has not given storage space for one or has not 8426 * given enough storage space. If there is enough space available in the 8427 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage. 8428 */ 8429 int 8430 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries, 8431 void (*cbfcnp)(struct cam_periph *, union ccb *), 8432 uint32_t flags, uint8_t tag_action, 8433 uint8_t protocol, uint8_t ata_flags, uint16_t features, 8434 uint16_t sector_count, uint64_t lba, uint8_t command, 8435 uint8_t device, uint8_t icc, uint32_t auxiliary, 8436 uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len, 8437 uint8_t *cdb_storage, size_t cdb_storage_len, 8438 int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) 8439 { 8440 uint32_t cam_flags; 8441 uint8_t *cdb_ptr; 8442 int cmd_size; 8443 int retval; 8444 uint8_t cdb_len; 8445 8446 retval = 0; 8447 cam_flags = flags; 8448 8449 /* 8450 * Round the user's request to the nearest command size that is at 8451 * least as big as what he requested. 8452 */ 8453 if (minimum_cmd_size <= 12) 8454 cmd_size = 12; 8455 else if (minimum_cmd_size > 16) 8456 cmd_size = 32; 8457 else 8458 cmd_size = 16; 8459 8460 /* 8461 * If we have parameters that require a 48-bit ATA command, we have to 8462 * use the 16 byte ATA PASS-THROUGH command at least. 8463 */ 8464 if (((lba > ATA_MAX_28BIT_LBA) 8465 || (sector_count > 255) 8466 || (features > 255) 8467 || (protocol & AP_EXTEND)) 8468 && ((cmd_size < 16) 8469 || ((protocol & AP_EXTEND) == 0))) { 8470 if (cmd_size < 16) 8471 cmd_size = 16; 8472 protocol |= AP_EXTEND; 8473 } 8474 8475 /* 8476 * The icc and auxiliary ATA registers are only supported in the 8477 * 32-byte version of the ATA PASS-THROUGH command. 8478 */ 8479 if ((icc != 0) 8480 || (auxiliary != 0)) { 8481 cmd_size = 32; 8482 protocol |= AP_EXTEND; 8483 } 8484 8485 8486 if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes)) 8487 && ((cdb_storage == NULL) 8488 || (cdb_storage_len < cmd_size))) { 8489 retval = 1; 8490 goto bailout; 8491 } 8492 8493 /* 8494 * At this point we know we have enough space to store the command 8495 * in one place or another. We prefer the built-in array, but used 8496 * the passed in storage if necessary. 8497 */ 8498 if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes)) 8499 cdb_ptr = csio->cdb_io.cdb_bytes; 8500 else { 8501 cdb_ptr = cdb_storage; 8502 cam_flags |= CAM_CDB_POINTER; 8503 } 8504 8505 if (cmd_size <= 12) { 8506 struct ata_pass_12 *cdb; 8507 8508 cdb = (struct ata_pass_12 *)cdb_ptr; 8509 cdb_len = sizeof(*cdb); 8510 bzero(cdb, cdb_len); 8511 8512 cdb->opcode = ATA_PASS_12; 8513 cdb->protocol = protocol; 8514 cdb->flags = ata_flags; 8515 cdb->features = features; 8516 cdb->sector_count = sector_count; 8517 cdb->lba_low = lba & 0xff; 8518 cdb->lba_mid = (lba >> 8) & 0xff; 8519 cdb->lba_high = (lba >> 16) & 0xff; 8520 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8521 cdb->command = command; 8522 cdb->control = control; 8523 } else if (cmd_size <= 16) { 8524 struct ata_pass_16 *cdb; 8525 8526 cdb = (struct ata_pass_16 *)cdb_ptr; 8527 cdb_len = sizeof(*cdb); 8528 bzero(cdb, cdb_len); 8529 8530 cdb->opcode = ATA_PASS_16; 8531 cdb->protocol = protocol; 8532 cdb->flags = ata_flags; 8533 cdb->features = features & 0xff; 8534 cdb->sector_count = sector_count & 0xff; 8535 cdb->lba_low = lba & 0xff; 8536 cdb->lba_mid = (lba >> 8) & 0xff; 8537 cdb->lba_high = (lba >> 16) & 0xff; 8538 /* 8539 * If AP_EXTEND is set, we're sending a 48-bit command. 8540 * Otherwise it's a 28-bit command. 8541 */ 8542 if (protocol & AP_EXTEND) { 8543 cdb->lba_low_ext = (lba >> 24) & 0xff; 8544 cdb->lba_mid_ext = (lba >> 32) & 0xff; 8545 cdb->lba_high_ext = (lba >> 40) & 0xff; 8546 cdb->features_ext = (features >> 8) & 0xff; 8547 cdb->sector_count_ext = (sector_count >> 8) & 0xff; 8548 cdb->device = device | ATA_DEV_LBA; 8549 } else { 8550 cdb->lba_low_ext = (lba >> 24) & 0xf; 8551 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8552 } 8553 cdb->command = command; 8554 cdb->control = control; 8555 } else { 8556 struct ata_pass_32 *cdb; 8557 uint8_t tmp_lba[8]; 8558 8559 cdb = (struct ata_pass_32 *)cdb_ptr; 8560 cdb_len = sizeof(*cdb); 8561 bzero(cdb, cdb_len); 8562 cdb->opcode = VARIABLE_LEN_CDB; 8563 cdb->control = control; 8564 cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32, 8565 service_action); 8566 scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action); 8567 cdb->protocol = protocol; 8568 cdb->flags = ata_flags; 8569 8570 if ((protocol & AP_EXTEND) == 0) { 8571 lba &= 0x0fffffff; 8572 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8573 features &= 0xff; 8574 sector_count &= 0xff; 8575 } else { 8576 cdb->device = device | ATA_DEV_LBA; 8577 } 8578 scsi_u64to8b(lba, tmp_lba); 8579 bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba)); 8580 scsi_ulto2b(features, cdb->features); 8581 scsi_ulto2b(sector_count, cdb->count); 8582 cdb->command = command; 8583 cdb->icc = icc; 8584 scsi_ulto4b(auxiliary, cdb->auxiliary); 8585 } 8586 8587 cam_fill_csio(csio, 8588 retries, 8589 cbfcnp, 8590 cam_flags, 8591 tag_action, 8592 data_ptr, 8593 dxfer_len, 8594 sense_len, 8595 cmd_size, 8596 timeout); 8597 bailout: 8598 return (retval); 8599 } 8600 8601 void 8602 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries, 8603 void (*cbfcnp)(struct cam_periph *, union ccb *), 8604 u_int32_t flags, u_int8_t tag_action, 8605 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features, 8606 u_int16_t sector_count, uint64_t lba, u_int8_t command, 8607 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len, 8608 u_int8_t sense_len, u_int32_t timeout) 8609 { 8610 struct ata_pass_16 *ata_cmd; 8611 8612 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes; 8613 ata_cmd->opcode = ATA_PASS_16; 8614 ata_cmd->protocol = protocol; 8615 ata_cmd->flags = ata_flags; 8616 ata_cmd->features_ext = features >> 8; 8617 ata_cmd->features = features; 8618 ata_cmd->sector_count_ext = sector_count >> 8; 8619 ata_cmd->sector_count = sector_count; 8620 ata_cmd->lba_low = lba; 8621 ata_cmd->lba_mid = lba >> 8; 8622 ata_cmd->lba_high = lba >> 16; 8623 ata_cmd->device = ATA_DEV_LBA; 8624 if (protocol & AP_EXTEND) { 8625 ata_cmd->lba_low_ext = lba >> 24; 8626 ata_cmd->lba_mid_ext = lba >> 32; 8627 ata_cmd->lba_high_ext = lba >> 40; 8628 } else 8629 ata_cmd->device |= (lba >> 24) & 0x0f; 8630 ata_cmd->command = command; 8631 ata_cmd->control = control; 8632 8633 cam_fill_csio(csio, 8634 retries, 8635 cbfcnp, 8636 flags, 8637 tag_action, 8638 data_ptr, 8639 dxfer_len, 8640 sense_len, 8641 sizeof(*ata_cmd), 8642 timeout); 8643 } 8644 8645 void 8646 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, 8647 void (*cbfcnp)(struct cam_periph *, union ccb *), 8648 u_int8_t tag_action, u_int8_t byte2, 8649 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8650 u_int32_t timeout) 8651 { 8652 struct scsi_unmap *scsi_cmd; 8653 8654 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; 8655 scsi_cmd->opcode = UNMAP; 8656 scsi_cmd->byte2 = byte2; 8657 scsi_ulto4b(0, scsi_cmd->reserved); 8658 scsi_cmd->group = 0; 8659 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8660 scsi_cmd->control = 0; 8661 8662 cam_fill_csio(csio, 8663 retries, 8664 cbfcnp, 8665 /*flags*/CAM_DIR_OUT, 8666 tag_action, 8667 data_ptr, 8668 dxfer_len, 8669 sense_len, 8670 sizeof(*scsi_cmd), 8671 timeout); 8672 } 8673 8674 void 8675 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, 8676 void (*cbfcnp)(struct cam_periph *, union ccb*), 8677 uint8_t tag_action, int pcv, uint8_t page_code, 8678 uint8_t *data_ptr, uint16_t allocation_length, 8679 uint8_t sense_len, uint32_t timeout) 8680 { 8681 struct scsi_receive_diag *scsi_cmd; 8682 8683 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; 8684 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8685 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; 8686 if (pcv) { 8687 scsi_cmd->byte2 |= SRD_PCV; 8688 scsi_cmd->page_code = page_code; 8689 } 8690 scsi_ulto2b(allocation_length, scsi_cmd->length); 8691 8692 cam_fill_csio(csio, 8693 retries, 8694 cbfcnp, 8695 /*flags*/CAM_DIR_IN, 8696 tag_action, 8697 data_ptr, 8698 allocation_length, 8699 sense_len, 8700 sizeof(*scsi_cmd), 8701 timeout); 8702 } 8703 8704 void 8705 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, 8706 void (*cbfcnp)(struct cam_periph *, union ccb *), 8707 uint8_t tag_action, int unit_offline, int device_offline, 8708 int self_test, int page_format, int self_test_code, 8709 uint8_t *data_ptr, uint16_t param_list_length, 8710 uint8_t sense_len, uint32_t timeout) 8711 { 8712 struct scsi_send_diag *scsi_cmd; 8713 8714 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; 8715 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8716 scsi_cmd->opcode = SEND_DIAGNOSTIC; 8717 8718 /* 8719 * The default self-test mode control and specific test 8720 * control are mutually exclusive. 8721 */ 8722 if (self_test) 8723 self_test_code = SSD_SELF_TEST_CODE_NONE; 8724 8725 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) 8726 & SSD_SELF_TEST_CODE_MASK) 8727 | (unit_offline ? SSD_UNITOFFL : 0) 8728 | (device_offline ? SSD_DEVOFFL : 0) 8729 | (self_test ? SSD_SELFTEST : 0) 8730 | (page_format ? SSD_PF : 0); 8731 scsi_ulto2b(param_list_length, scsi_cmd->length); 8732 8733 cam_fill_csio(csio, 8734 retries, 8735 cbfcnp, 8736 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8737 tag_action, 8738 data_ptr, 8739 param_list_length, 8740 sense_len, 8741 sizeof(*scsi_cmd), 8742 timeout); 8743 } 8744 8745 void 8746 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8747 void (*cbfcnp)(struct cam_periph *, union ccb*), 8748 uint8_t tag_action, int mode, 8749 uint8_t buffer_id, u_int32_t offset, 8750 uint8_t *data_ptr, uint32_t allocation_length, 8751 uint8_t sense_len, uint32_t timeout) 8752 { 8753 struct scsi_read_buffer *scsi_cmd; 8754 8755 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes; 8756 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8757 scsi_cmd->opcode = READ_BUFFER; 8758 scsi_cmd->byte2 = mode; 8759 scsi_cmd->buffer_id = buffer_id; 8760 scsi_ulto3b(offset, scsi_cmd->offset); 8761 scsi_ulto3b(allocation_length, scsi_cmd->length); 8762 8763 cam_fill_csio(csio, 8764 retries, 8765 cbfcnp, 8766 /*flags*/CAM_DIR_IN, 8767 tag_action, 8768 data_ptr, 8769 allocation_length, 8770 sense_len, 8771 sizeof(*scsi_cmd), 8772 timeout); 8773 } 8774 8775 void 8776 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8777 void (*cbfcnp)(struct cam_periph *, union ccb *), 8778 uint8_t tag_action, int mode, 8779 uint8_t buffer_id, u_int32_t offset, 8780 uint8_t *data_ptr, uint32_t param_list_length, 8781 uint8_t sense_len, uint32_t timeout) 8782 { 8783 struct scsi_write_buffer *scsi_cmd; 8784 8785 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes; 8786 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8787 scsi_cmd->opcode = WRITE_BUFFER; 8788 scsi_cmd->byte2 = mode; 8789 scsi_cmd->buffer_id = buffer_id; 8790 scsi_ulto3b(offset, scsi_cmd->offset); 8791 scsi_ulto3b(param_list_length, scsi_cmd->length); 8792 8793 cam_fill_csio(csio, 8794 retries, 8795 cbfcnp, 8796 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8797 tag_action, 8798 data_ptr, 8799 param_list_length, 8800 sense_len, 8801 sizeof(*scsi_cmd), 8802 timeout); 8803 } 8804 8805 void 8806 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, 8807 void (*cbfcnp)(struct cam_periph *, union ccb *), 8808 u_int8_t tag_action, int start, int load_eject, 8809 int immediate, u_int8_t sense_len, u_int32_t timeout) 8810 { 8811 struct scsi_start_stop_unit *scsi_cmd; 8812 int extra_flags = 0; 8813 8814 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; 8815 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8816 scsi_cmd->opcode = START_STOP_UNIT; 8817 if (start != 0) { 8818 scsi_cmd->how |= SSS_START; 8819 /* it takes a lot of power to start a drive */ 8820 extra_flags |= CAM_HIGH_POWER; 8821 } 8822 if (load_eject != 0) 8823 scsi_cmd->how |= SSS_LOEJ; 8824 if (immediate != 0) 8825 scsi_cmd->byte2 |= SSS_IMMED; 8826 8827 cam_fill_csio(csio, 8828 retries, 8829 cbfcnp, 8830 /*flags*/CAM_DIR_NONE | extra_flags, 8831 tag_action, 8832 /*data_ptr*/NULL, 8833 /*dxfer_len*/0, 8834 sense_len, 8835 sizeof(*scsi_cmd), 8836 timeout); 8837 } 8838 8839 void 8840 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8841 void (*cbfcnp)(struct cam_periph *, union ccb *), 8842 u_int8_t tag_action, u_int8_t service_action, 8843 uint32_t element, u_int8_t elem_type, int logical_volume, 8844 int partition, u_int32_t first_attribute, int cache, 8845 u_int8_t *data_ptr, u_int32_t length, int sense_len, 8846 u_int32_t timeout) 8847 { 8848 struct scsi_read_attribute *scsi_cmd; 8849 8850 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes; 8851 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8852 8853 scsi_cmd->opcode = READ_ATTRIBUTE; 8854 scsi_cmd->service_action = service_action; 8855 scsi_ulto2b(element, scsi_cmd->element); 8856 scsi_cmd->elem_type = elem_type; 8857 scsi_cmd->logical_volume = logical_volume; 8858 scsi_cmd->partition = partition; 8859 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute); 8860 scsi_ulto4b(length, scsi_cmd->length); 8861 if (cache != 0) 8862 scsi_cmd->cache |= SRA_CACHE; 8863 8864 cam_fill_csio(csio, 8865 retries, 8866 cbfcnp, 8867 /*flags*/CAM_DIR_IN, 8868 tag_action, 8869 /*data_ptr*/data_ptr, 8870 /*dxfer_len*/length, 8871 sense_len, 8872 sizeof(*scsi_cmd), 8873 timeout); 8874 } 8875 8876 void 8877 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8878 void (*cbfcnp)(struct cam_periph *, union ccb *), 8879 u_int8_t tag_action, uint32_t element, int logical_volume, 8880 int partition, int wtc, u_int8_t *data_ptr, 8881 u_int32_t length, int sense_len, u_int32_t timeout) 8882 { 8883 struct scsi_write_attribute *scsi_cmd; 8884 8885 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes; 8886 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8887 8888 scsi_cmd->opcode = WRITE_ATTRIBUTE; 8889 if (wtc != 0) 8890 scsi_cmd->byte2 = SWA_WTC; 8891 scsi_ulto3b(element, scsi_cmd->element); 8892 scsi_cmd->logical_volume = logical_volume; 8893 scsi_cmd->partition = partition; 8894 scsi_ulto4b(length, scsi_cmd->length); 8895 8896 cam_fill_csio(csio, 8897 retries, 8898 cbfcnp, 8899 /*flags*/CAM_DIR_OUT, 8900 tag_action, 8901 /*data_ptr*/data_ptr, 8902 /*dxfer_len*/length, 8903 sense_len, 8904 sizeof(*scsi_cmd), 8905 timeout); 8906 } 8907 8908 void 8909 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, 8910 void (*cbfcnp)(struct cam_periph *, union ccb *), 8911 uint8_t tag_action, int service_action, 8912 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8913 int timeout) 8914 { 8915 struct scsi_per_res_in *scsi_cmd; 8916 8917 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes; 8918 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8919 8920 scsi_cmd->opcode = PERSISTENT_RES_IN; 8921 scsi_cmd->action = service_action; 8922 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8923 8924 cam_fill_csio(csio, 8925 retries, 8926 cbfcnp, 8927 /*flags*/CAM_DIR_IN, 8928 tag_action, 8929 data_ptr, 8930 dxfer_len, 8931 sense_len, 8932 sizeof(*scsi_cmd), 8933 timeout); 8934 } 8935 8936 void 8937 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, 8938 void (*cbfcnp)(struct cam_periph *, union ccb *), 8939 uint8_t tag_action, int service_action, 8940 int scope, int res_type, uint8_t *data_ptr, 8941 uint32_t dxfer_len, int sense_len, int timeout) 8942 { 8943 struct scsi_per_res_out *scsi_cmd; 8944 8945 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes; 8946 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8947 8948 scsi_cmd->opcode = PERSISTENT_RES_OUT; 8949 scsi_cmd->action = service_action; 8950 scsi_cmd->scope_type = scope | res_type; 8951 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8952 8953 cam_fill_csio(csio, 8954 retries, 8955 cbfcnp, 8956 /*flags*/CAM_DIR_OUT, 8957 tag_action, 8958 /*data_ptr*/data_ptr, 8959 /*dxfer_len*/dxfer_len, 8960 sense_len, 8961 sizeof(*scsi_cmd), 8962 timeout); 8963 } 8964 8965 void 8966 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, 8967 void (*cbfcnp)(struct cam_periph *, union ccb *), 8968 uint8_t tag_action, uint32_t security_protocol, 8969 uint32_t security_protocol_specific, int byte4, 8970 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8971 int timeout) 8972 { 8973 struct scsi_security_protocol_in *scsi_cmd; 8974 8975 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes; 8976 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8977 8978 scsi_cmd->opcode = SECURITY_PROTOCOL_IN; 8979 8980 scsi_cmd->security_protocol = security_protocol; 8981 scsi_ulto2b(security_protocol_specific, 8982 scsi_cmd->security_protocol_specific); 8983 scsi_cmd->byte4 = byte4; 8984 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8985 8986 cam_fill_csio(csio, 8987 retries, 8988 cbfcnp, 8989 /*flags*/CAM_DIR_IN, 8990 tag_action, 8991 data_ptr, 8992 dxfer_len, 8993 sense_len, 8994 sizeof(*scsi_cmd), 8995 timeout); 8996 } 8997 8998 void 8999 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, 9000 void (*cbfcnp)(struct cam_periph *, union ccb *), 9001 uint8_t tag_action, uint32_t security_protocol, 9002 uint32_t security_protocol_specific, int byte4, 9003 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9004 int timeout) 9005 { 9006 struct scsi_security_protocol_out *scsi_cmd; 9007 9008 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes; 9009 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9010 9011 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT; 9012 9013 scsi_cmd->security_protocol = security_protocol; 9014 scsi_ulto2b(security_protocol_specific, 9015 scsi_cmd->security_protocol_specific); 9016 scsi_cmd->byte4 = byte4; 9017 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9018 9019 cam_fill_csio(csio, 9020 retries, 9021 cbfcnp, 9022 /*flags*/CAM_DIR_OUT, 9023 tag_action, 9024 data_ptr, 9025 dxfer_len, 9026 sense_len, 9027 sizeof(*scsi_cmd), 9028 timeout); 9029 } 9030 9031 void 9032 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, 9033 void (*cbfcnp)(struct cam_periph *, union ccb *), 9034 uint8_t tag_action, int options, int req_opcode, 9035 int req_service_action, uint8_t *data_ptr, 9036 uint32_t dxfer_len, int sense_len, int timeout) 9037 { 9038 struct scsi_report_supported_opcodes *scsi_cmd; 9039 9040 scsi_cmd = (struct scsi_report_supported_opcodes *) 9041 &csio->cdb_io.cdb_bytes; 9042 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9043 9044 scsi_cmd->opcode = MAINTENANCE_IN; 9045 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES; 9046 scsi_cmd->options = options; 9047 scsi_cmd->requested_opcode = req_opcode; 9048 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action); 9049 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9050 9051 cam_fill_csio(csio, 9052 retries, 9053 cbfcnp, 9054 /*flags*/CAM_DIR_IN, 9055 tag_action, 9056 data_ptr, 9057 dxfer_len, 9058 sense_len, 9059 sizeof(*scsi_cmd), 9060 timeout); 9061 } 9062 9063 /* 9064 * Try make as good a match as possible with 9065 * available sub drivers 9066 */ 9067 int 9068 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9069 { 9070 struct scsi_inquiry_pattern *entry; 9071 struct scsi_inquiry_data *inq; 9072 9073 entry = (struct scsi_inquiry_pattern *)table_entry; 9074 inq = (struct scsi_inquiry_data *)inqbuffer; 9075 9076 if (((SID_TYPE(inq) == entry->type) 9077 || (entry->type == T_ANY)) 9078 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9079 : entry->media_type & SIP_MEDIA_FIXED) 9080 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9081 && (cam_strmatch(inq->product, entry->product, 9082 sizeof(inq->product)) == 0) 9083 && (cam_strmatch(inq->revision, entry->revision, 9084 sizeof(inq->revision)) == 0)) { 9085 return (0); 9086 } 9087 return (-1); 9088 } 9089 9090 /* 9091 * Try make as good a match as possible with 9092 * available sub drivers 9093 */ 9094 int 9095 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9096 { 9097 struct scsi_static_inquiry_pattern *entry; 9098 struct scsi_inquiry_data *inq; 9099 9100 entry = (struct scsi_static_inquiry_pattern *)table_entry; 9101 inq = (struct scsi_inquiry_data *)inqbuffer; 9102 9103 if (((SID_TYPE(inq) == entry->type) 9104 || (entry->type == T_ANY)) 9105 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9106 : entry->media_type & SIP_MEDIA_FIXED) 9107 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9108 && (cam_strmatch(inq->product, entry->product, 9109 sizeof(inq->product)) == 0) 9110 && (cam_strmatch(inq->revision, entry->revision, 9111 sizeof(inq->revision)) == 0)) { 9112 return (0); 9113 } 9114 return (-1); 9115 } 9116 9117 /** 9118 * Compare two buffers of vpd device descriptors for a match. 9119 * 9120 * \param lhs Pointer to first buffer of descriptors to compare. 9121 * \param lhs_len The length of the first buffer. 9122 * \param rhs Pointer to second buffer of descriptors to compare. 9123 * \param rhs_len The length of the second buffer. 9124 * 9125 * \return 0 on a match, -1 otherwise. 9126 * 9127 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching 9128 * against each element in rhs until all data are exhausted or we have found 9129 * a match. 9130 */ 9131 int 9132 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) 9133 { 9134 struct scsi_vpd_id_descriptor *lhs_id; 9135 struct scsi_vpd_id_descriptor *lhs_last; 9136 struct scsi_vpd_id_descriptor *rhs_last; 9137 uint8_t *lhs_end; 9138 uint8_t *rhs_end; 9139 9140 lhs_end = lhs + lhs_len; 9141 rhs_end = rhs + rhs_len; 9142 9143 /* 9144 * rhs_last and lhs_last are the last posible position of a valid 9145 * descriptor assuming it had a zero length identifier. We use 9146 * these variables to insure we can safely dereference the length 9147 * field in our loop termination tests. 9148 */ 9149 lhs_last = (struct scsi_vpd_id_descriptor *) 9150 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9151 rhs_last = (struct scsi_vpd_id_descriptor *) 9152 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9153 9154 lhs_id = (struct scsi_vpd_id_descriptor *)lhs; 9155 while (lhs_id <= lhs_last 9156 && (lhs_id->identifier + lhs_id->length) <= lhs_end) { 9157 struct scsi_vpd_id_descriptor *rhs_id; 9158 9159 rhs_id = (struct scsi_vpd_id_descriptor *)rhs; 9160 while (rhs_id <= rhs_last 9161 && (rhs_id->identifier + rhs_id->length) <= rhs_end) { 9162 9163 if ((rhs_id->id_type & 9164 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) == 9165 (lhs_id->id_type & 9166 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) 9167 && rhs_id->length == lhs_id->length 9168 && memcmp(rhs_id->identifier, lhs_id->identifier, 9169 rhs_id->length) == 0) 9170 return (0); 9171 9172 rhs_id = (struct scsi_vpd_id_descriptor *) 9173 (rhs_id->identifier + rhs_id->length); 9174 } 9175 lhs_id = (struct scsi_vpd_id_descriptor *) 9176 (lhs_id->identifier + lhs_id->length); 9177 } 9178 return (-1); 9179 } 9180 9181 #ifdef _KERNEL 9182 int 9183 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id) 9184 { 9185 struct cam_ed *device; 9186 struct scsi_vpd_supported_pages *vpds; 9187 int i, num_pages; 9188 9189 device = periph->path->device; 9190 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; 9191 9192 if (vpds != NULL) { 9193 num_pages = device->supported_vpds_len - 9194 SVPD_SUPPORTED_PAGES_HDR_LEN; 9195 for (i = 0; i < num_pages; i++) { 9196 if (vpds->page_list[i] == page_id) 9197 return (1); 9198 } 9199 } 9200 9201 return (0); 9202 } 9203 9204 static void 9205 init_scsi_delay(void) 9206 { 9207 int delay; 9208 9209 delay = SCSI_DELAY; 9210 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); 9211 9212 if (set_scsi_delay(delay) != 0) { 9213 printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); 9214 set_scsi_delay(SCSI_DELAY); 9215 } 9216 } 9217 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); 9218 9219 static int 9220 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) 9221 { 9222 int error, delay; 9223 9224 delay = scsi_delay; 9225 error = sysctl_handle_int(oidp, &delay, 0, req); 9226 if (error != 0 || req->newptr == NULL) 9227 return (error); 9228 return (set_scsi_delay(delay)); 9229 } 9230 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT|CTLFLAG_RW, 9231 0, 0, sysctl_scsi_delay, "I", 9232 "Delay to allow devices to settle after a SCSI bus reset (ms)"); 9233 9234 static int 9235 set_scsi_delay(int delay) 9236 { 9237 /* 9238 * If someone sets this to 0, we assume that they want the 9239 * minimum allowable bus settle delay. 9240 */ 9241 if (delay == 0) { 9242 printf("cam: using minimum scsi_delay (%dms)\n", 9243 SCSI_MIN_DELAY); 9244 delay = SCSI_MIN_DELAY; 9245 } 9246 if (delay < SCSI_MIN_DELAY) 9247 return (EINVAL); 9248 scsi_delay = delay; 9249 return (0); 9250 } 9251 #endif /* _KERNEL */ 9252