1 /*- 2 * Implementation of Utility functions for all SCSI device types. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/stdint.h> 36 37 #ifdef _KERNEL 38 #include <opt_scsi.h> 39 40 #include <sys/systm.h> 41 #include <sys/libkern.h> 42 #include <sys/kernel.h> 43 #include <sys/sysctl.h> 44 #else 45 #include <errno.h> 46 #include <stdio.h> 47 #include <stdlib.h> 48 #include <string.h> 49 #endif 50 51 #include <cam/cam.h> 52 #include <cam/cam_ccb.h> 53 #include <cam/cam_queue.h> 54 #include <cam/cam_xpt.h> 55 #include <cam/scsi/scsi_all.h> 56 #include <sys/sbuf.h> 57 #ifndef _KERNEL 58 #include <camlib.h> 59 #include <stddef.h> 60 61 #ifndef FALSE 62 #define FALSE 0 63 #endif /* FALSE */ 64 #ifndef TRUE 65 #define TRUE 1 66 #endif /* TRUE */ 67 #define ERESTART -1 /* restart syscall */ 68 #define EJUSTRETURN -2 /* don't modify regs, just return */ 69 #endif /* !_KERNEL */ 70 71 /* 72 * This is the default number of milliseconds we wait for devices to settle 73 * after a SCSI bus reset. 74 */ 75 #ifndef SCSI_DELAY 76 #define SCSI_DELAY 2000 77 #endif 78 /* 79 * All devices need _some_ sort of bus settle delay, so we'll set it to 80 * a minimum value of 100ms. Note that this is pertinent only for SPI- 81 * not transport like Fibre Channel or iSCSI where 'delay' is completely 82 * meaningless. 83 */ 84 #ifndef SCSI_MIN_DELAY 85 #define SCSI_MIN_DELAY 100 86 #endif 87 /* 88 * Make sure the user isn't using seconds instead of milliseconds. 89 */ 90 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) 91 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" 92 #endif 93 94 int scsi_delay; 95 96 static int ascentrycomp(const void *key, const void *member); 97 static int senseentrycomp(const void *key, const void *member); 98 static void fetchtableentries(int sense_key, int asc, int ascq, 99 struct scsi_inquiry_data *, 100 const struct sense_key_table_entry **, 101 const struct asc_table_entry **); 102 #ifdef _KERNEL 103 static void init_scsi_delay(void); 104 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); 105 static int set_scsi_delay(int delay); 106 #endif 107 108 #if !defined(SCSI_NO_OP_STRINGS) 109 110 #define D (1 << T_DIRECT) 111 #define T (1 << T_SEQUENTIAL) 112 #define L (1 << T_PRINTER) 113 #define P (1 << T_PROCESSOR) 114 #define W (1 << T_WORM) 115 #define R (1 << T_CDROM) 116 #define O (1 << T_OPTICAL) 117 #define M (1 << T_CHANGER) 118 #define A (1 << T_STORARRAY) 119 #define E (1 << T_ENCLOSURE) 120 #define B (1 << T_RBC) 121 #define K (1 << T_OCRW) 122 #define V (1 << T_ADC) 123 #define F (1 << T_OSD) 124 #define S (1 << T_SCANNER) 125 #define C (1 << T_COMM) 126 127 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) 128 129 static struct op_table_entry plextor_cd_ops[] = { 130 { 0xD8, R, "CD-DA READ" } 131 }; 132 133 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { 134 { 135 /* 136 * I believe that 0xD8 is the Plextor proprietary command 137 * to read CD-DA data. I'm not sure which Plextor CDROM 138 * models support the command, though. I know for sure 139 * that the 4X, 8X, and 12X models do, and presumably the 140 * 12-20X does. I don't know about any earlier models, 141 * though. If anyone has any more complete information, 142 * feel free to change this quirk entry. 143 */ 144 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, 145 sizeof(plextor_cd_ops)/sizeof(struct op_table_entry), 146 plextor_cd_ops 147 } 148 }; 149 150 static struct op_table_entry scsi_op_codes[] = { 151 /* 152 * From: http://www.t10.org/lists/op-num.txt 153 * Modifications by Kenneth Merry (ken@FreeBSD.ORG) 154 * and Jung-uk Kim (jkim@FreeBSD.org) 155 * 156 * Note: order is important in this table, scsi_op_desc() currently 157 * depends on the opcodes in the table being in order to save 158 * search time. 159 * Note: scanner and comm. devices are carried over from the previous 160 * version because they were removed in the latest spec. 161 */ 162 /* File: OP-NUM.TXT 163 * 164 * SCSI Operation Codes 165 * Numeric Sorted Listing 166 * as of 3/11/08 167 * 168 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 169 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- 170 * . L - PRINTER DEVICE (SSC) M = Mandatory 171 * . P - PROCESSOR DEVICE (SPC) O = Optional 172 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. 173 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete 174 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 175 * . . .M - MEDIA CHANGER DEVICE (SMC-2) 176 * . . . A - STORAGE ARRAY DEVICE (SCC-2) 177 * . . . .E - ENCLOSURE SERVICES DEVICE (SES) 178 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 179 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 180 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 181 * . . . . .F - OBJECT-BASED STORAGE (OSD) 182 * OP DTLPWROMAEBKVF Description 183 * -- -------------- ---------------------------------------------- */ 184 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ 185 { 0x00, ALL, "TEST UNIT READY" }, 186 /* 01 M REWIND */ 187 { 0x01, T, "REWIND" }, 188 /* 01 Z V ZZZZ REZERO UNIT */ 189 { 0x01, D | W | R | O | M, "REZERO UNIT" }, 190 /* 02 VVVVVV V */ 191 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ 192 { 0x03, ALL, "REQUEST SENSE" }, 193 /* 04 M OO FORMAT UNIT */ 194 { 0x04, D | R | O, "FORMAT UNIT" }, 195 /* 04 O FORMAT MEDIUM */ 196 { 0x04, T, "FORMAT MEDIUM" }, 197 /* 04 O FORMAT */ 198 { 0x04, L, "FORMAT" }, 199 /* 05 VMVVVV V READ BLOCK LIMITS */ 200 { 0x05, T, "READ BLOCK LIMITS" }, 201 /* 06 VVVVVV V */ 202 /* 07 OVV O OV REASSIGN BLOCKS */ 203 { 0x07, D | W | O, "REASSIGN BLOCKS" }, 204 /* 07 O INITIALIZE ELEMENT STATUS */ 205 { 0x07, M, "INITIALIZE ELEMENT STATUS" }, 206 /* 08 MOV O OV READ(6) */ 207 { 0x08, D | T | W | O, "READ(6)" }, 208 /* 08 O RECEIVE */ 209 { 0x08, P, "RECEIVE" }, 210 /* 08 GET MESSAGE(6) */ 211 { 0x08, C, "GET MESSAGE(6)" }, 212 /* 09 VVVVVV V */ 213 /* 0A OO O OV WRITE(6) */ 214 { 0x0A, D | T | W | O, "WRITE(6)" }, 215 /* 0A M SEND(6) */ 216 { 0x0A, P, "SEND(6)" }, 217 /* 0A SEND MESSAGE(6) */ 218 { 0x0A, C, "SEND MESSAGE(6)" }, 219 /* 0A M PRINT */ 220 { 0x0A, L, "PRINT" }, 221 /* 0B Z ZOZV SEEK(6) */ 222 { 0x0B, D | W | R | O, "SEEK(6)" }, 223 /* 0B O SET CAPACITY */ 224 { 0x0B, T, "SET CAPACITY" }, 225 /* 0B O SLEW AND PRINT */ 226 { 0x0B, L, "SLEW AND PRINT" }, 227 /* 0C VVVVVV V */ 228 /* 0D VVVVVV V */ 229 /* 0E VVVVVV V */ 230 /* 0F VOVVVV V READ REVERSE(6) */ 231 { 0x0F, T, "READ REVERSE(6)" }, 232 /* 10 VM VVV WRITE FILEMARKS(6) */ 233 { 0x10, T, "WRITE FILEMARKS(6)" }, 234 /* 10 O SYNCHRONIZE BUFFER */ 235 { 0x10, L, "SYNCHRONIZE BUFFER" }, 236 /* 11 VMVVVV SPACE(6) */ 237 { 0x11, T, "SPACE(6)" }, 238 /* 12 MMMMMMMMMMMMMM INQUIRY */ 239 { 0x12, ALL, "INQUIRY" }, 240 /* 13 V VVVV */ 241 /* 13 O VERIFY(6) */ 242 { 0x13, T, "VERIFY(6)" }, 243 /* 14 VOOVVV RECOVER BUFFERED DATA */ 244 { 0x14, T | L, "RECOVER BUFFERED DATA" }, 245 /* 15 OMO O OOOO OO MODE SELECT(6) */ 246 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, 247 /* 16 ZZMZO OOOZ O RESERVE(6) */ 248 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, 249 /* 16 Z RESERVE ELEMENT(6) */ 250 { 0x16, M, "RESERVE ELEMENT(6)" }, 251 /* 17 ZZMZO OOOZ O RELEASE(6) */ 252 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, 253 /* 17 Z RELEASE ELEMENT(6) */ 254 { 0x17, M, "RELEASE ELEMENT(6)" }, 255 /* 18 ZZZZOZO Z COPY */ 256 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, 257 /* 19 VMVVVV ERASE(6) */ 258 { 0x19, T, "ERASE(6)" }, 259 /* 1A OMO O OOOO OO MODE SENSE(6) */ 260 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, 261 /* 1B O OOO O MO O START STOP UNIT */ 262 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, 263 /* 1B O M LOAD UNLOAD */ 264 { 0x1B, T | V, "LOAD UNLOAD" }, 265 /* 1B SCAN */ 266 { 0x1B, S, "SCAN" }, 267 /* 1B O STOP PRINT */ 268 { 0x1B, L, "STOP PRINT" }, 269 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ 270 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, 271 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ 272 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, 273 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ 274 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, 275 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ 276 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, 277 /* 1F */ 278 /* 20 V VVV V */ 279 /* 21 V VVV V */ 280 /* 22 V VVV V */ 281 /* 23 V V V V */ 282 /* 23 O READ FORMAT CAPACITIES */ 283 { 0x23, R, "READ FORMAT CAPACITIES" }, 284 /* 24 V VV SET WINDOW */ 285 { 0x24, S, "SET WINDOW" }, 286 /* 25 M M M M READ CAPACITY(10) */ 287 { 0x25, D | W | O | B, "READ CAPACITY(10)" }, 288 /* 25 O READ CAPACITY */ 289 { 0x25, R, "READ CAPACITY" }, 290 /* 25 M READ CARD CAPACITY */ 291 { 0x25, K, "READ CARD CAPACITY" }, 292 /* 25 GET WINDOW */ 293 { 0x25, S, "GET WINDOW" }, 294 /* 26 V VV */ 295 /* 27 V VV */ 296 /* 28 M MOM MM READ(10) */ 297 { 0x28, D | W | R | O | B | K | S, "READ(10)" }, 298 /* 28 GET MESSAGE(10) */ 299 { 0x28, C, "GET MESSAGE(10)" }, 300 /* 29 V VVO READ GENERATION */ 301 { 0x29, O, "READ GENERATION" }, 302 /* 2A O MOM MO WRITE(10) */ 303 { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, 304 /* 2A SEND(10) */ 305 { 0x2A, S, "SEND(10)" }, 306 /* 2A SEND MESSAGE(10) */ 307 { 0x2A, C, "SEND MESSAGE(10)" }, 308 /* 2B Z OOO O SEEK(10) */ 309 { 0x2B, D | W | R | O | K, "SEEK(10)" }, 310 /* 2B O LOCATE(10) */ 311 { 0x2B, T, "LOCATE(10)" }, 312 /* 2B O POSITION TO ELEMENT */ 313 { 0x2B, M, "POSITION TO ELEMENT" }, 314 /* 2C V OO ERASE(10) */ 315 { 0x2C, R | O, "ERASE(10)" }, 316 /* 2D O READ UPDATED BLOCK */ 317 { 0x2D, O, "READ UPDATED BLOCK" }, 318 /* 2D V */ 319 /* 2E O OOO MO WRITE AND VERIFY(10) */ 320 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, 321 /* 2F O OOO VERIFY(10) */ 322 { 0x2F, D | W | R | O, "VERIFY(10)" }, 323 /* 30 Z ZZZ SEARCH DATA HIGH(10) */ 324 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, 325 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ 326 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, 327 /* 31 OBJECT POSITION */ 328 { 0x31, S, "OBJECT POSITION" }, 329 /* 32 Z ZZZ SEARCH DATA LOW(10) */ 330 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, 331 /* 33 Z OZO SET LIMITS(10) */ 332 { 0x33, D | W | R | O, "SET LIMITS(10)" }, 333 /* 34 O O O O PRE-FETCH(10) */ 334 { 0x34, D | W | O | K, "PRE-FETCH(10)" }, 335 /* 34 M READ POSITION */ 336 { 0x34, T, "READ POSITION" }, 337 /* 34 GET DATA BUFFER STATUS */ 338 { 0x34, S, "GET DATA BUFFER STATUS" }, 339 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ 340 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, 341 /* 36 Z O O O LOCK UNLOCK CACHE(10) */ 342 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, 343 /* 37 O O READ DEFECT DATA(10) */ 344 { 0x37, D | O, "READ DEFECT DATA(10)" }, 345 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ 346 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, 347 /* 38 O O O MEDIUM SCAN */ 348 { 0x38, W | O | K, "MEDIUM SCAN" }, 349 /* 39 ZZZZOZO Z COMPARE */ 350 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, 351 /* 3A ZZZZOZO Z COPY AND VERIFY */ 352 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, 353 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ 354 { 0x3B, ALL, "WRITE BUFFER" }, 355 /* 3C OOOOOOOOOO OOO READ BUFFER */ 356 { 0x3C, ALL & ~(B), "READ BUFFER" }, 357 /* 3D O UPDATE BLOCK */ 358 { 0x3D, O, "UPDATE BLOCK" }, 359 /* 3E O O O READ LONG(10) */ 360 { 0x3E, D | W | O, "READ LONG(10)" }, 361 /* 3F O O O WRITE LONG(10) */ 362 { 0x3F, D | W | O, "WRITE LONG(10)" }, 363 /* 40 ZZZZOZOZ CHANGE DEFINITION */ 364 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, 365 /* 41 O WRITE SAME(10) */ 366 { 0x41, D, "WRITE SAME(10)" }, 367 /* 42 O UNMAP */ 368 { 0x42, D, "UNMAP" }, 369 /* 42 O READ SUB-CHANNEL */ 370 { 0x42, R, "READ SUB-CHANNEL" }, 371 /* 43 O READ TOC/PMA/ATIP */ 372 { 0x43, R, "READ TOC/PMA/ATIP" }, 373 /* 44 M M REPORT DENSITY SUPPORT */ 374 { 0x44, T | V, "REPORT DENSITY SUPPORT" }, 375 /* 44 READ HEADER */ 376 /* 45 O PLAY AUDIO(10) */ 377 { 0x45, R, "PLAY AUDIO(10)" }, 378 /* 46 M GET CONFIGURATION */ 379 { 0x46, R, "GET CONFIGURATION" }, 380 /* 47 O PLAY AUDIO MSF */ 381 { 0x47, R, "PLAY AUDIO MSF" }, 382 /* 48 */ 383 /* 49 */ 384 /* 4A M GET EVENT STATUS NOTIFICATION */ 385 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, 386 /* 4B O PAUSE/RESUME */ 387 { 0x4B, R, "PAUSE/RESUME" }, 388 /* 4C OOOOO OOOO OOO LOG SELECT */ 389 { 0x4C, ALL & ~(R | B), "LOG SELECT" }, 390 /* 4D OOOOO OOOO OMO LOG SENSE */ 391 { 0x4D, ALL & ~(R | B), "LOG SENSE" }, 392 /* 4E O STOP PLAY/SCAN */ 393 { 0x4E, R, "STOP PLAY/SCAN" }, 394 /* 4F */ 395 /* 50 O XDWRITE(10) */ 396 { 0x50, D, "XDWRITE(10)" }, 397 /* 51 O XPWRITE(10) */ 398 { 0x51, D, "XPWRITE(10)" }, 399 /* 51 O READ DISC INFORMATION */ 400 { 0x51, R, "READ DISC INFORMATION" }, 401 /* 52 O XDREAD(10) */ 402 { 0x52, D, "XDREAD(10)" }, 403 /* 52 O READ TRACK INFORMATION */ 404 { 0x52, R, "READ TRACK INFORMATION" }, 405 /* 53 O RESERVE TRACK */ 406 { 0x53, R, "RESERVE TRACK" }, 407 /* 54 O SEND OPC INFORMATION */ 408 { 0x54, R, "SEND OPC INFORMATION" }, 409 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ 410 { 0x55, ALL & ~(P), "MODE SELECT(10)" }, 411 /* 56 ZZMZO OOOZ RESERVE(10) */ 412 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, 413 /* 56 Z RESERVE ELEMENT(10) */ 414 { 0x56, M, "RESERVE ELEMENT(10)" }, 415 /* 57 ZZMZO OOOZ RELEASE(10) */ 416 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, 417 /* 57 Z RELEASE ELEMENT(10) */ 418 { 0x57, M, "RELEASE ELEMENT(10)" }, 419 /* 58 O REPAIR TRACK */ 420 { 0x58, R, "REPAIR TRACK" }, 421 /* 59 */ 422 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ 423 { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, 424 /* 5B O CLOSE TRACK/SESSION */ 425 { 0x5B, R, "CLOSE TRACK/SESSION" }, 426 /* 5C O READ BUFFER CAPACITY */ 427 { 0x5C, R, "READ BUFFER CAPACITY" }, 428 /* 5D O SEND CUE SHEET */ 429 { 0x5D, R, "SEND CUE SHEET" }, 430 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ 431 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, 432 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ 433 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, 434 /* 7E OO O OOOO O extended CDB */ 435 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, 436 /* 7F O M variable length CDB (more than 16 bytes) */ 437 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, 438 /* 80 Z XDWRITE EXTENDED(16) */ 439 { 0x80, D, "XDWRITE EXTENDED(16)" }, 440 /* 80 M WRITE FILEMARKS(16) */ 441 { 0x80, T, "WRITE FILEMARKS(16)" }, 442 /* 81 Z REBUILD(16) */ 443 { 0x81, D, "REBUILD(16)" }, 444 /* 81 O READ REVERSE(16) */ 445 { 0x81, T, "READ REVERSE(16)" }, 446 /* 82 Z REGENERATE(16) */ 447 { 0x82, D, "REGENERATE(16)" }, 448 /* 83 OOOOO O OO EXTENDED COPY */ 449 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, 450 /* 84 OOOOO O OO RECEIVE COPY RESULTS */ 451 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, 452 /* 85 O O O ATA COMMAND PASS THROUGH(16) */ 453 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, 454 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ 455 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, 456 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ 457 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, 458 /* 459 * XXX READ(16)/WRITE(16) were not listed for CD/DVE in op-num.txt 460 * but we had it since r1.40. Do we really want them? 461 */ 462 /* 88 MM O O O READ(16) */ 463 { 0x88, D | T | W | O | B, "READ(16)" }, 464 /* 89 */ 465 /* 8A OM O O O WRITE(16) */ 466 { 0x8A, D | T | W | O | B, "WRITE(16)" }, 467 /* 8B O ORWRITE */ 468 { 0x8B, D, "ORWRITE" }, 469 /* 8C OO O OO O M READ ATTRIBUTE */ 470 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, 471 /* 8D OO O OO O O WRITE ATTRIBUTE */ 472 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, 473 /* 8E O O O O WRITE AND VERIFY(16) */ 474 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, 475 /* 8F OO O O O VERIFY(16) */ 476 { 0x8F, D | T | W | O | B, "VERIFY(16)" }, 477 /* 90 O O O O PRE-FETCH(16) */ 478 { 0x90, D | W | O | B, "PRE-FETCH(16)" }, 479 /* 91 O O O O SYNCHRONIZE CACHE(16) */ 480 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, 481 /* 91 O SPACE(16) */ 482 { 0x91, T, "SPACE(16)" }, 483 /* 92 Z O O LOCK UNLOCK CACHE(16) */ 484 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, 485 /* 92 O LOCATE(16) */ 486 { 0x92, T, "LOCATE(16)" }, 487 /* 93 O WRITE SAME(16) */ 488 { 0x93, D, "WRITE SAME(16)" }, 489 /* 93 M ERASE(16) */ 490 { 0x93, T, "ERASE(16)" }, 491 /* 94 [usage proposed by SCSI Socket Services project] */ 492 /* 95 [usage proposed by SCSI Socket Services project] */ 493 /* 96 [usage proposed by SCSI Socket Services project] */ 494 /* 97 [usage proposed by SCSI Socket Services project] */ 495 /* 98 */ 496 /* 99 */ 497 /* 9A */ 498 /* 9B */ 499 /* 9C */ 500 /* 9D */ 501 /* XXX KDM ALL for this? op-num.txt defines it for none.. */ 502 /* 9E SERVICE ACTION IN(16) */ 503 { 0x9E, ALL, "SERVICE ACTION IN(16)" }, 504 /* XXX KDM ALL for this? op-num.txt defines it for ADC.. */ 505 /* 9F M SERVICE ACTION OUT(16) */ 506 { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, 507 /* A0 MMOOO OMMM OMO REPORT LUNS */ 508 { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, 509 /* A1 O BLANK */ 510 { 0xA1, R, "BLANK" }, 511 /* A1 O O ATA COMMAND PASS THROUGH(12) */ 512 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, 513 /* A2 OO O O SECURITY PROTOCOL IN */ 514 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, 515 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ 516 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, 517 /* A3 O SEND KEY */ 518 { 0xA3, R, "SEND KEY" }, 519 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ 520 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, 521 /* A4 O REPORT KEY */ 522 { 0xA4, R, "REPORT KEY" }, 523 /* A5 O O OM MOVE MEDIUM */ 524 { 0xA5, T | W | O | M, "MOVE MEDIUM" }, 525 /* A5 O PLAY AUDIO(12) */ 526 { 0xA5, R, "PLAY AUDIO(12)" }, 527 /* A6 O EXCHANGE MEDIUM */ 528 { 0xA6, M, "EXCHANGE MEDIUM" }, 529 /* A6 O LOAD/UNLOAD C/DVD */ 530 { 0xA6, R, "LOAD/UNLOAD C/DVD" }, 531 /* A7 ZZ O O MOVE MEDIUM ATTACHED */ 532 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, 533 /* A7 O SET READ AHEAD */ 534 { 0xA7, R, "SET READ AHEAD" }, 535 /* A8 O OOO READ(12) */ 536 { 0xA8, D | W | R | O, "READ(12)" }, 537 /* A8 GET MESSAGE(12) */ 538 { 0xA8, C, "GET MESSAGE(12)" }, 539 /* A9 O SERVICE ACTION OUT(12) */ 540 { 0xA9, V, "SERVICE ACTION OUT(12)" }, 541 /* AA O OOO WRITE(12) */ 542 { 0xAA, D | W | R | O, "WRITE(12)" }, 543 /* AA SEND MESSAGE(12) */ 544 { 0xAA, C, "SEND MESSAGE(12)" }, 545 /* AB O O SERVICE ACTION IN(12) */ 546 { 0xAB, R | V, "SERVICE ACTION IN(12)" }, 547 /* AC O ERASE(12) */ 548 { 0xAC, O, "ERASE(12)" }, 549 /* AC O GET PERFORMANCE */ 550 { 0xAC, R, "GET PERFORMANCE" }, 551 /* AD O READ DVD STRUCTURE */ 552 { 0xAD, R, "READ DVD STRUCTURE" }, 553 /* AE O O O WRITE AND VERIFY(12) */ 554 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, 555 /* AF O OZO VERIFY(12) */ 556 { 0xAF, D | W | R | O, "VERIFY(12)" }, 557 /* B0 ZZZ SEARCH DATA HIGH(12) */ 558 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, 559 /* B1 ZZZ SEARCH DATA EQUAL(12) */ 560 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, 561 /* B2 ZZZ SEARCH DATA LOW(12) */ 562 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, 563 /* B3 Z OZO SET LIMITS(12) */ 564 { 0xB3, D | W | R | O, "SET LIMITS(12)" }, 565 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ 566 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, 567 /* B5 OO O O SECURITY PROTOCOL OUT */ 568 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, 569 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ 570 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, 571 /* B6 O SEND VOLUME TAG */ 572 { 0xB6, M, "SEND VOLUME TAG" }, 573 /* B6 O SET STREAMING */ 574 { 0xB6, R, "SET STREAMING" }, 575 /* B7 O O READ DEFECT DATA(12) */ 576 { 0xB7, D | O, "READ DEFECT DATA(12)" }, 577 /* B8 O OZOM READ ELEMENT STATUS */ 578 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, 579 /* B9 O READ CD MSF */ 580 { 0xB9, R, "READ CD MSF" }, 581 /* BA O O OOMO REDUNDANCY GROUP (IN) */ 582 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, 583 /* BA O SCAN */ 584 { 0xBA, R, "SCAN" }, 585 /* BB O O OOOO REDUNDANCY GROUP (OUT) */ 586 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, 587 /* BB O SET CD SPEED */ 588 { 0xBB, R, "SET CD SPEED" }, 589 /* BC O O OOMO SPARE (IN) */ 590 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, 591 /* BD O O OOOO SPARE (OUT) */ 592 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, 593 /* BD O MECHANISM STATUS */ 594 { 0xBD, R, "MECHANISM STATUS" }, 595 /* BE O O OOMO VOLUME SET (IN) */ 596 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, 597 /* BE O READ CD */ 598 { 0xBE, R, "READ CD" }, 599 /* BF O O OOOO VOLUME SET (OUT) */ 600 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, 601 /* BF O SEND DVD STRUCTURE */ 602 { 0xBF, R, "SEND DVD STRUCTURE" } 603 }; 604 605 const char * 606 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 607 { 608 caddr_t match; 609 int i, j; 610 u_int32_t opmask; 611 u_int16_t pd_type; 612 int num_ops[2]; 613 struct op_table_entry *table[2]; 614 int num_tables; 615 616 /* 617 * If we've got inquiry data, use it to determine what type of 618 * device we're dealing with here. Otherwise, assume direct 619 * access. 620 */ 621 if (inq_data == NULL) { 622 pd_type = T_DIRECT; 623 match = NULL; 624 } else { 625 pd_type = SID_TYPE(inq_data); 626 627 match = cam_quirkmatch((caddr_t)inq_data, 628 (caddr_t)scsi_op_quirk_table, 629 sizeof(scsi_op_quirk_table)/ 630 sizeof(*scsi_op_quirk_table), 631 sizeof(*scsi_op_quirk_table), 632 scsi_inquiry_match); 633 } 634 635 if (match != NULL) { 636 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; 637 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; 638 table[1] = scsi_op_codes; 639 num_ops[1] = sizeof(scsi_op_codes)/sizeof(scsi_op_codes[0]); 640 num_tables = 2; 641 } else { 642 /* 643 * If this is true, we have a vendor specific opcode that 644 * wasn't covered in the quirk table. 645 */ 646 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) 647 return("Vendor Specific Command"); 648 649 table[0] = scsi_op_codes; 650 num_ops[0] = sizeof(scsi_op_codes)/sizeof(scsi_op_codes[0]); 651 num_tables = 1; 652 } 653 654 /* RBC is 'Simplified' Direct Access Device */ 655 if (pd_type == T_RBC) 656 pd_type = T_DIRECT; 657 658 opmask = 1 << pd_type; 659 660 for (j = 0; j < num_tables; j++) { 661 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ 662 if ((table[j][i].opcode == opcode) 663 && ((table[j][i].opmask & opmask) != 0)) 664 return(table[j][i].desc); 665 } 666 } 667 668 /* 669 * If we can't find a match for the command in the table, we just 670 * assume it's a vendor specifc command. 671 */ 672 return("Vendor Specific Command"); 673 674 } 675 676 #else /* SCSI_NO_OP_STRINGS */ 677 678 const char * 679 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 680 { 681 return(""); 682 } 683 684 #endif 685 686 687 #if !defined(SCSI_NO_SENSE_STRINGS) 688 #define SST(asc, ascq, action, desc) \ 689 asc, ascq, action, desc 690 #else 691 const char empty_string[] = ""; 692 693 #define SST(asc, ascq, action, desc) \ 694 asc, ascq, action, empty_string 695 #endif 696 697 const struct sense_key_table_entry sense_key_table[] = 698 { 699 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, 700 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, 701 { 702 SSD_KEY_NOT_READY, SS_TUR|SSQ_MANY|SSQ_DECREMENT_COUNT|EBUSY, 703 "NOT READY" 704 }, 705 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, 706 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, 707 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, 708 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, 709 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, 710 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, 711 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, 712 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, 713 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, 714 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, 715 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, 716 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, 717 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } 718 }; 719 720 const int sense_key_table_size = 721 sizeof(sense_key_table)/sizeof(sense_key_table[0]); 722 723 static struct asc_table_entry quantum_fireball_entries[] = { 724 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 725 "Logical unit not ready, initializing cmd. required") } 726 }; 727 728 static struct asc_table_entry sony_mo_entries[] = { 729 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 730 "Logical unit not ready, cause not reportable") } 731 }; 732 733 static struct scsi_sense_quirk_entry sense_quirk_table[] = { 734 { 735 /* 736 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b 737 * when they really should return 0x04 0x02. 738 */ 739 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, 740 /*num_sense_keys*/0, 741 sizeof(quantum_fireball_entries)/sizeof(struct asc_table_entry), 742 /*sense key entries*/NULL, 743 quantum_fireball_entries 744 }, 745 { 746 /* 747 * This Sony MO drive likes to return 0x04, 0x00 when it 748 * isn't spun up. 749 */ 750 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, 751 /*num_sense_keys*/0, 752 sizeof(sony_mo_entries)/sizeof(struct asc_table_entry), 753 /*sense key entries*/NULL, 754 sony_mo_entries 755 } 756 }; 757 758 const int sense_quirk_table_size = 759 sizeof(sense_quirk_table)/sizeof(sense_quirk_table[0]); 760 761 static struct asc_table_entry asc_table[] = { 762 /* 763 * From: http://www.t10.org/lists/asc-num.txt 764 * Modifications by Jung-uk Kim (jkim@FreeBSD.org) 765 */ 766 /* 767 * File: ASC-NUM.TXT 768 * 769 * SCSI ASC/ASCQ Assignments 770 * Numeric Sorted Listing 771 * as of 7/29/08 772 * 773 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 774 * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- 775 * . L - PRINTER DEVICE (SSC) blank = reserved 776 * . P - PROCESSOR DEVICE (SPC) not blank = allowed 777 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) 778 * . . R - CD DEVICE (MMC) 779 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 780 * . . .M - MEDIA CHANGER DEVICE (SMC) 781 * . . . A - STORAGE ARRAY DEVICE (SCC) 782 * . . . E - ENCLOSURE SERVICES DEVICE (SES) 783 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 784 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 785 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 786 * . . . . .F - OBJECT-BASED STORAGE (OSD) 787 * DTLPWROMAEBKVF 788 * ASC ASCQ Action 789 * Description 790 */ 791 /* DTLPWROMAEBKVF */ 792 { SST(0x00, 0x00, SS_NOP, 793 "No additional sense information") }, 794 /* T */ 795 { SST(0x00, 0x01, SS_RDEF, 796 "Filemark detected") }, 797 /* T */ 798 { SST(0x00, 0x02, SS_RDEF, 799 "End-of-partition/medium detected") }, 800 /* T */ 801 { SST(0x00, 0x03, SS_RDEF, 802 "Setmark detected") }, 803 /* T */ 804 { SST(0x00, 0x04, SS_RDEF, 805 "Beginning-of-partition/medium detected") }, 806 /* TL */ 807 { SST(0x00, 0x05, SS_RDEF, 808 "End-of-data detected") }, 809 /* DTLPWROMAEBKVF */ 810 { SST(0x00, 0x06, SS_RDEF, 811 "I/O process terminated") }, 812 /* T */ 813 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ 814 "Programmable early warning detected") }, 815 /* R */ 816 { SST(0x00, 0x11, SS_FATAL | EBUSY, 817 "Audio play operation in progress") }, 818 /* R */ 819 { SST(0x00, 0x12, SS_NOP, 820 "Audio play operation paused") }, 821 /* R */ 822 { SST(0x00, 0x13, SS_NOP, 823 "Audio play operation successfully completed") }, 824 /* R */ 825 { SST(0x00, 0x14, SS_RDEF, 826 "Audio play operation stopped due to error") }, 827 /* R */ 828 { SST(0x00, 0x15, SS_NOP, 829 "No current audio status to return") }, 830 /* DTLPWROMAEBKVF */ 831 { SST(0x00, 0x16, SS_FATAL | EBUSY, 832 "Operation in progress") }, 833 /* DTL WROMAEBKVF */ 834 { SST(0x00, 0x17, SS_RDEF, 835 "Cleaning requested") }, 836 /* T */ 837 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ 838 "Erase operation in progress") }, 839 /* T */ 840 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ 841 "Locate operation in progress") }, 842 /* T */ 843 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ 844 "Rewind operation in progress") }, 845 /* T */ 846 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ 847 "Set capacity operation in progress") }, 848 /* T */ 849 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ 850 "Verify operation in progress") }, 851 /* DT B */ 852 { SST(0x00, 0x1D, SS_RDEF, /* XXX TBD */ 853 "ATA pass through information available") }, 854 /* DT R MAEBKV */ 855 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ 856 "Conflicting SA creation request") }, 857 /* D W O BK */ 858 { SST(0x01, 0x00, SS_RDEF, 859 "No index/sector signal") }, 860 /* D WRO BK */ 861 { SST(0x02, 0x00, SS_RDEF, 862 "No seek complete") }, 863 /* DTL W O BK */ 864 { SST(0x03, 0x00, SS_RDEF, 865 "Peripheral device write fault") }, 866 /* T */ 867 { SST(0x03, 0x01, SS_RDEF, 868 "No write current") }, 869 /* T */ 870 { SST(0x03, 0x02, SS_RDEF, 871 "Excessive write errors") }, 872 /* DTLPWROMAEBKVF */ 873 { SST(0x04, 0x00, SS_TUR | SSQ_MANY | SSQ_DECREMENT_COUNT | EIO, 874 "Logical unit not ready, cause not reportable") }, 875 /* DTLPWROMAEBKVF */ 876 { SST(0x04, 0x01, SS_TUR | SSQ_MANY | SSQ_DECREMENT_COUNT | EBUSY, 877 "Logical unit is in process of becoming ready") }, 878 /* DTLPWROMAEBKVF */ 879 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 880 "Logical unit not ready, initializing command required") }, 881 /* DTLPWROMAEBKVF */ 882 { SST(0x04, 0x03, SS_FATAL | ENXIO, 883 "Logical unit not ready, manual intervention required") }, 884 /* DTL RO B */ 885 { SST(0x04, 0x04, SS_FATAL | EBUSY, 886 "Logical unit not ready, format in progress") }, 887 /* DT W O A BK F */ 888 { SST(0x04, 0x05, SS_FATAL | EBUSY, 889 "Logical unit not ready, rebuild in progress") }, 890 /* DT W O A BK */ 891 { SST(0x04, 0x06, SS_FATAL | EBUSY, 892 "Logical unit not ready, recalculation in progress") }, 893 /* DTLPWROMAEBKVF */ 894 { SST(0x04, 0x07, SS_FATAL | EBUSY, 895 "Logical unit not ready, operation in progress") }, 896 /* R */ 897 { SST(0x04, 0x08, SS_FATAL | EBUSY, 898 "Logical unit not ready, long write in progress") }, 899 /* DTLPWROMAEBKVF */ 900 { SST(0x04, 0x09, SS_RDEF, /* XXX TBD */ 901 "Logical unit not ready, self-test in progress") }, 902 /* DTLPWROMAEBKVF */ 903 { SST(0x04, 0x0A, SS_RDEF, /* XXX TBD */ 904 "Logical unit not accessible, asymmetric access state transition")}, 905 /* DTLPWROMAEBKVF */ 906 { SST(0x04, 0x0B, SS_RDEF, /* XXX TBD */ 907 "Logical unit not accessible, target port in standby state") }, 908 /* DTLPWROMAEBKVF */ 909 { SST(0x04, 0x0C, SS_RDEF, /* XXX TBD */ 910 "Logical unit not accessible, target port in unavailable state") }, 911 /* F */ 912 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ 913 "Logical unit not ready, structure check required") }, 914 /* DT WROM B */ 915 { SST(0x04, 0x10, SS_RDEF, /* XXX TBD */ 916 "Logical unit not ready, auxiliary memory not accessible") }, 917 /* DT WRO AEB VF */ 918 { SST(0x04, 0x11, SS_RDEF, /* XXX TBD */ 919 "Logical unit not ready, notify (enable spinup) required") }, 920 /* M V */ 921 { SST(0x04, 0x12, SS_RDEF, /* XXX TBD */ 922 "Logical unit not ready, offline") }, 923 /* DT R MAEBKV */ 924 { SST(0x04, 0x13, SS_RDEF, /* XXX TBD */ 925 "Logical unit not ready, SA creation in progress") }, 926 /* DTL WROMAEBKVF */ 927 { SST(0x05, 0x00, SS_RDEF, 928 "Logical unit does not respond to selection") }, 929 /* D WROM BK */ 930 { SST(0x06, 0x00, SS_RDEF, 931 "No reference position found") }, 932 /* DTL WROM BK */ 933 { SST(0x07, 0x00, SS_RDEF, 934 "Multiple peripheral devices selected") }, 935 /* DTL WROMAEBKVF */ 936 { SST(0x08, 0x00, SS_RDEF, 937 "Logical unit communication failure") }, 938 /* DTL WROMAEBKVF */ 939 { SST(0x08, 0x01, SS_RDEF, 940 "Logical unit communication time-out") }, 941 /* DTL WROMAEBKVF */ 942 { SST(0x08, 0x02, SS_RDEF, 943 "Logical unit communication parity error") }, 944 /* DT ROM BK */ 945 { SST(0x08, 0x03, SS_RDEF, 946 "Logical unit communication CRC error (Ultra-DMA/32)") }, 947 /* DTLPWRO K */ 948 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ 949 "Unreachable copy target") }, 950 /* DT WRO B */ 951 { SST(0x09, 0x00, SS_RDEF, 952 "Track following error") }, 953 /* WRO K */ 954 { SST(0x09, 0x01, SS_RDEF, 955 "Tracking servo failure") }, 956 /* WRO K */ 957 { SST(0x09, 0x02, SS_RDEF, 958 "Focus servo failure") }, 959 /* WRO */ 960 { SST(0x09, 0x03, SS_RDEF, 961 "Spindle servo failure") }, 962 /* DT WRO B */ 963 { SST(0x09, 0x04, SS_RDEF, 964 "Head select fault") }, 965 /* DTLPWROMAEBKVF */ 966 { SST(0x0A, 0x00, SS_FATAL | ENOSPC, 967 "Error log overflow") }, 968 /* DTLPWROMAEBKVF */ 969 { SST(0x0B, 0x00, SS_RDEF, 970 "Warning") }, 971 /* DTLPWROMAEBKVF */ 972 { SST(0x0B, 0x01, SS_RDEF, 973 "Warning - specified temperature exceeded") }, 974 /* DTLPWROMAEBKVF */ 975 { SST(0x0B, 0x02, SS_RDEF, 976 "Warning - enclosure degraded") }, 977 /* DTLPWROMAEBKVF */ 978 { SST(0x0B, 0x03, SS_RDEF, /* XXX TBD */ 979 "Warning - background self-test failed") }, 980 /* DTLPWRO AEBKVF */ 981 { SST(0x0B, 0x04, SS_RDEF, /* XXX TBD */ 982 "Warning - background pre-scan detected medium error") }, 983 /* DTLPWRO AEBKVF */ 984 { SST(0x0B, 0x05, SS_RDEF, /* XXX TBD */ 985 "Warning - background medium scan detected medium error") }, 986 /* DTLPWROMAEBKVF */ 987 { SST(0x0B, 0x06, SS_RDEF, /* XXX TBD */ 988 "Warning - non-volatile cache now volatile") }, 989 /* DTLPWROMAEBKVF */ 990 { SST(0x0B, 0x07, SS_RDEF, /* XXX TBD */ 991 "Warning - degraded power to non-volatile cache") }, 992 /* T R */ 993 { SST(0x0C, 0x00, SS_RDEF, 994 "Write error") }, 995 /* K */ 996 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 997 "Write error - recovered with auto reallocation") }, 998 /* D W O BK */ 999 { SST(0x0C, 0x02, SS_RDEF, 1000 "Write error - auto reallocation failed") }, 1001 /* D W O BK */ 1002 { SST(0x0C, 0x03, SS_RDEF, 1003 "Write error - recommend reassignment") }, 1004 /* DT W O B */ 1005 { SST(0x0C, 0x04, SS_RDEF, 1006 "Compression check miscompare error") }, 1007 /* DT W O B */ 1008 { SST(0x0C, 0x05, SS_RDEF, 1009 "Data expansion occurred during compression") }, 1010 /* DT W O B */ 1011 { SST(0x0C, 0x06, SS_RDEF, 1012 "Block not compressible") }, 1013 /* R */ 1014 { SST(0x0C, 0x07, SS_RDEF, 1015 "Write error - recovery needed") }, 1016 /* R */ 1017 { SST(0x0C, 0x08, SS_RDEF, 1018 "Write error - recovery failed") }, 1019 /* R */ 1020 { SST(0x0C, 0x09, SS_RDEF, 1021 "Write error - loss of streaming") }, 1022 /* R */ 1023 { SST(0x0C, 0x0A, SS_RDEF, 1024 "Write error - padding blocks added") }, 1025 /* DT WROM B */ 1026 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ 1027 "Auxiliary memory write error") }, 1028 /* DTLPWRO AEBKVF */ 1029 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ 1030 "Write error - unexpected unsolicited data") }, 1031 /* DTLPWRO AEBKVF */ 1032 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ 1033 "Write error - not enough unsolicited data") }, 1034 /* R */ 1035 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ 1036 "Defects in error window") }, 1037 /* DTLPWRO A K */ 1038 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ 1039 "Error detected by third party temporary initiator") }, 1040 /* DTLPWRO A K */ 1041 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ 1042 "Third party device failure") }, 1043 /* DTLPWRO A K */ 1044 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ 1045 "Copy target device not reachable") }, 1046 /* DTLPWRO A K */ 1047 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ 1048 "Incorrect copy target device type") }, 1049 /* DTLPWRO A K */ 1050 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ 1051 "Copy target device data underrun") }, 1052 /* DTLPWRO A K */ 1053 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ 1054 "Copy target device data overrun") }, 1055 /* DT PWROMAEBK F */ 1056 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ 1057 "Invalid information unit") }, 1058 /* DT PWROMAEBK F */ 1059 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ 1060 "Information unit too short") }, 1061 /* DT PWROMAEBK F */ 1062 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ 1063 "Information unit too long") }, 1064 /* DT P R MAEBK F */ 1065 { SST(0x0E, 0x03, SS_RDEF, /* XXX TBD */ 1066 "Invalid field in command information unit") }, 1067 /* D W O BK */ 1068 { SST(0x10, 0x00, SS_RDEF, 1069 "ID CRC or ECC error") }, 1070 /* DT W O */ 1071 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ 1072 "Logical block guard check failed") }, 1073 /* DT W O */ 1074 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ 1075 "Logical block application tag check failed") }, 1076 /* DT W O */ 1077 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ 1078 "Logical block reference tag check failed") }, 1079 /* DT WRO BK */ 1080 { SST(0x11, 0x00, SS_FATAL|EIO, 1081 "Unrecovered read error") }, 1082 /* DT WRO BK */ 1083 { SST(0x11, 0x01, SS_FATAL|EIO, 1084 "Read retries exhausted") }, 1085 /* DT WRO BK */ 1086 { SST(0x11, 0x02, SS_FATAL|EIO, 1087 "Error too long to correct") }, 1088 /* DT W O BK */ 1089 { SST(0x11, 0x03, SS_FATAL|EIO, 1090 "Multiple read errors") }, 1091 /* D W O BK */ 1092 { SST(0x11, 0x04, SS_FATAL|EIO, 1093 "Unrecovered read error - auto reallocate failed") }, 1094 /* WRO B */ 1095 { SST(0x11, 0x05, SS_FATAL|EIO, 1096 "L-EC uncorrectable error") }, 1097 /* WRO B */ 1098 { SST(0x11, 0x06, SS_FATAL|EIO, 1099 "CIRC unrecovered error") }, 1100 /* W O B */ 1101 { SST(0x11, 0x07, SS_RDEF, 1102 "Data re-synchronization error") }, 1103 /* T */ 1104 { SST(0x11, 0x08, SS_RDEF, 1105 "Incomplete block read") }, 1106 /* T */ 1107 { SST(0x11, 0x09, SS_RDEF, 1108 "No gap found") }, 1109 /* DT O BK */ 1110 { SST(0x11, 0x0A, SS_RDEF, 1111 "Miscorrected error") }, 1112 /* D W O BK */ 1113 { SST(0x11, 0x0B, SS_FATAL|EIO, 1114 "Unrecovered read error - recommend reassignment") }, 1115 /* D W O BK */ 1116 { SST(0x11, 0x0C, SS_FATAL|EIO, 1117 "Unrecovered read error - recommend rewrite the data") }, 1118 /* DT WRO B */ 1119 { SST(0x11, 0x0D, SS_RDEF, 1120 "De-compression CRC error") }, 1121 /* DT WRO B */ 1122 { SST(0x11, 0x0E, SS_RDEF, 1123 "Cannot decompress using declared algorithm") }, 1124 /* R */ 1125 { SST(0x11, 0x0F, SS_RDEF, 1126 "Error reading UPC/EAN number") }, 1127 /* R */ 1128 { SST(0x11, 0x10, SS_RDEF, 1129 "Error reading ISRC number") }, 1130 /* R */ 1131 { SST(0x11, 0x11, SS_RDEF, 1132 "Read error - loss of streaming") }, 1133 /* DT WROM B */ 1134 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ 1135 "Auxiliary memory read error") }, 1136 /* DTLPWRO AEBKVF */ 1137 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ 1138 "Read error - failed retransmission request") }, 1139 /* D */ 1140 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ 1141 "Read error - LBA marked bad by application client") }, 1142 /* D W O BK */ 1143 { SST(0x12, 0x00, SS_RDEF, 1144 "Address mark not found for ID field") }, 1145 /* D W O BK */ 1146 { SST(0x13, 0x00, SS_RDEF, 1147 "Address mark not found for data field") }, 1148 /* DTL WRO BK */ 1149 { SST(0x14, 0x00, SS_RDEF, 1150 "Recorded entity not found") }, 1151 /* DT WRO BK */ 1152 { SST(0x14, 0x01, SS_RDEF, 1153 "Record not found") }, 1154 /* T */ 1155 { SST(0x14, 0x02, SS_RDEF, 1156 "Filemark or setmark not found") }, 1157 /* T */ 1158 { SST(0x14, 0x03, SS_RDEF, 1159 "End-of-data not found") }, 1160 /* T */ 1161 { SST(0x14, 0x04, SS_RDEF, 1162 "Block sequence error") }, 1163 /* DT W O BK */ 1164 { SST(0x14, 0x05, SS_RDEF, 1165 "Record not found - recommend reassignment") }, 1166 /* DT W O BK */ 1167 { SST(0x14, 0x06, SS_RDEF, 1168 "Record not found - data auto-reallocated") }, 1169 /* T */ 1170 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ 1171 "Locate operation failure") }, 1172 /* DTL WROM BK */ 1173 { SST(0x15, 0x00, SS_RDEF, 1174 "Random positioning error") }, 1175 /* DTL WROM BK */ 1176 { SST(0x15, 0x01, SS_RDEF, 1177 "Mechanical positioning error") }, 1178 /* DT WRO BK */ 1179 { SST(0x15, 0x02, SS_RDEF, 1180 "Positioning error detected by read of medium") }, 1181 /* D W O BK */ 1182 { SST(0x16, 0x00, SS_RDEF, 1183 "Data synchronization mark error") }, 1184 /* D W O BK */ 1185 { SST(0x16, 0x01, SS_RDEF, 1186 "Data sync error - data rewritten") }, 1187 /* D W O BK */ 1188 { SST(0x16, 0x02, SS_RDEF, 1189 "Data sync error - recommend rewrite") }, 1190 /* D W O BK */ 1191 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1192 "Data sync error - data auto-reallocated") }, 1193 /* D W O BK */ 1194 { SST(0x16, 0x04, SS_RDEF, 1195 "Data sync error - recommend reassignment") }, 1196 /* DT WRO BK */ 1197 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1198 "Recovered data with no error correction applied") }, 1199 /* DT WRO BK */ 1200 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1201 "Recovered data with retries") }, 1202 /* DT WRO BK */ 1203 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1204 "Recovered data with positive head offset") }, 1205 /* DT WRO BK */ 1206 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1207 "Recovered data with negative head offset") }, 1208 /* WRO B */ 1209 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1210 "Recovered data with retries and/or CIRC applied") }, 1211 /* D WRO BK */ 1212 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1213 "Recovered data using previous sector ID") }, 1214 /* D W O BK */ 1215 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1216 "Recovered data without ECC - data auto-reallocated") }, 1217 /* D WRO BK */ 1218 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1219 "Recovered data without ECC - recommend reassignment") }, 1220 /* D WRO BK */ 1221 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1222 "Recovered data without ECC - recommend rewrite") }, 1223 /* D WRO BK */ 1224 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1225 "Recovered data without ECC - data rewritten") }, 1226 /* DT WRO BK */ 1227 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1228 "Recovered data with error correction applied") }, 1229 /* D WRO BK */ 1230 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1231 "Recovered data with error corr. & retries applied") }, 1232 /* D WRO BK */ 1233 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1234 "Recovered data - data auto-reallocated") }, 1235 /* R */ 1236 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1237 "Recovered data with CIRC") }, 1238 /* R */ 1239 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1240 "Recovered data with L-EC") }, 1241 /* D WRO BK */ 1242 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1243 "Recovered data - recommend reassignment") }, 1244 /* D WRO BK */ 1245 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1246 "Recovered data - recommend rewrite") }, 1247 /* D W O BK */ 1248 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1249 "Recovered data with ECC - data rewritten") }, 1250 /* R */ 1251 { SST(0x18, 0x08, SS_RDEF, /* XXX TBD */ 1252 "Recovered data with linking") }, 1253 /* D O K */ 1254 { SST(0x19, 0x00, SS_RDEF, 1255 "Defect list error") }, 1256 /* D O K */ 1257 { SST(0x19, 0x01, SS_RDEF, 1258 "Defect list not available") }, 1259 /* D O K */ 1260 { SST(0x19, 0x02, SS_RDEF, 1261 "Defect list error in primary list") }, 1262 /* D O K */ 1263 { SST(0x19, 0x03, SS_RDEF, 1264 "Defect list error in grown list") }, 1265 /* DTLPWROMAEBKVF */ 1266 { SST(0x1A, 0x00, SS_RDEF, 1267 "Parameter list length error") }, 1268 /* DTLPWROMAEBKVF */ 1269 { SST(0x1B, 0x00, SS_RDEF, 1270 "Synchronous data transfer error") }, 1271 /* D O BK */ 1272 { SST(0x1C, 0x00, SS_RDEF, 1273 "Defect list not found") }, 1274 /* D O BK */ 1275 { SST(0x1C, 0x01, SS_RDEF, 1276 "Primary defect list not found") }, 1277 /* D O BK */ 1278 { SST(0x1C, 0x02, SS_RDEF, 1279 "Grown defect list not found") }, 1280 /* DT WRO BK */ 1281 { SST(0x1D, 0x00, SS_FATAL, 1282 "Miscompare during verify operation") }, 1283 /* D W O BK */ 1284 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1285 "Recovered ID with ECC correction") }, 1286 /* D O K */ 1287 { SST(0x1F, 0x00, SS_RDEF, 1288 "Partial defect list transfer") }, 1289 /* DTLPWROMAEBKVF */ 1290 { SST(0x20, 0x00, SS_FATAL | EINVAL, 1291 "Invalid command operation code") }, 1292 /* DT PWROMAEBK */ 1293 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ 1294 "Access denied - initiator pending-enrolled") }, 1295 /* DT PWROMAEBK */ 1296 { SST(0x20, 0x02, SS_RDEF, /* XXX TBD */ 1297 "Access denied - no access rights") }, 1298 /* DT PWROMAEBK */ 1299 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ 1300 "Access denied - invalid mgmt ID key") }, 1301 /* T */ 1302 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ 1303 "Illegal command while in write capable state") }, 1304 /* T */ 1305 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ 1306 "Obsolete") }, 1307 /* T */ 1308 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ 1309 "Illegal command while in explicit address mode") }, 1310 /* T */ 1311 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ 1312 "Illegal command while in implicit address mode") }, 1313 /* DT PWROMAEBK */ 1314 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ 1315 "Access denied - enrollment conflict") }, 1316 /* DT PWROMAEBK */ 1317 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ 1318 "Access denied - invalid LU identifier") }, 1319 /* DT PWROMAEBK */ 1320 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ 1321 "Access denied - invalid proxy token") }, 1322 /* DT PWROMAEBK */ 1323 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ 1324 "Access denied - ACL LUN conflict") }, 1325 /* DT WRO BK */ 1326 { SST(0x21, 0x00, SS_FATAL | EINVAL, 1327 "Logical block address out of range") }, 1328 /* DT WROM BK */ 1329 { SST(0x21, 0x01, SS_FATAL | EINVAL, 1330 "Invalid element address") }, 1331 /* R */ 1332 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ 1333 "Invalid address for write") }, 1334 /* R */ 1335 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ 1336 "Invalid write crossing layer jump") }, 1337 /* D */ 1338 { SST(0x22, 0x00, SS_FATAL | EINVAL, 1339 "Illegal function (use 20 00, 24 00, or 26 00)") }, 1340 /* DTLPWROMAEBKVF */ 1341 { SST(0x24, 0x00, SS_FATAL | EINVAL, 1342 "Invalid field in CDB") }, 1343 /* DTLPWRO AEBKVF */ 1344 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ 1345 "CDB decryption error") }, 1346 /* T */ 1347 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ 1348 "Obsolete") }, 1349 /* T */ 1350 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ 1351 "Obsolete") }, 1352 /* F */ 1353 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ 1354 "Security audit value frozen") }, 1355 /* F */ 1356 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ 1357 "Security working key frozen") }, 1358 /* F */ 1359 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ 1360 "NONCE not unique") }, 1361 /* F */ 1362 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ 1363 "NONCE timestamp out of range") }, 1364 /* DT R MAEBKV */ 1365 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ 1366 "Invalid XCDB") }, 1367 /* DTLPWROMAEBKVF */ 1368 { SST(0x25, 0x00, SS_FATAL | ENXIO, 1369 "Logical unit not supported") }, 1370 /* DTLPWROMAEBKVF */ 1371 { SST(0x26, 0x00, SS_FATAL | EINVAL, 1372 "Invalid field in parameter list") }, 1373 /* DTLPWROMAEBKVF */ 1374 { SST(0x26, 0x01, SS_FATAL | EINVAL, 1375 "Parameter not supported") }, 1376 /* DTLPWROMAEBKVF */ 1377 { SST(0x26, 0x02, SS_FATAL | EINVAL, 1378 "Parameter value invalid") }, 1379 /* DTLPWROMAE K */ 1380 { SST(0x26, 0x03, SS_FATAL | EINVAL, 1381 "Threshold parameters not supported") }, 1382 /* DTLPWROMAEBKVF */ 1383 { SST(0x26, 0x04, SS_FATAL | EINVAL, 1384 "Invalid release of persistent reservation") }, 1385 /* DTLPWRO A BK */ 1386 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ 1387 "Data decryption error") }, 1388 /* DTLPWRO K */ 1389 { SST(0x26, 0x06, SS_RDEF, /* XXX TBD */ 1390 "Too many target descriptors") }, 1391 /* DTLPWRO K */ 1392 { SST(0x26, 0x07, SS_RDEF, /* XXX TBD */ 1393 "Unsupported target descriptor type code") }, 1394 /* DTLPWRO K */ 1395 { SST(0x26, 0x08, SS_RDEF, /* XXX TBD */ 1396 "Too many segment descriptors") }, 1397 /* DTLPWRO K */ 1398 { SST(0x26, 0x09, SS_RDEF, /* XXX TBD */ 1399 "Unsupported segment descriptor type code") }, 1400 /* DTLPWRO K */ 1401 { SST(0x26, 0x0A, SS_RDEF, /* XXX TBD */ 1402 "Unexpected inexact segment") }, 1403 /* DTLPWRO K */ 1404 { SST(0x26, 0x0B, SS_RDEF, /* XXX TBD */ 1405 "Inline data length exceeded") }, 1406 /* DTLPWRO K */ 1407 { SST(0x26, 0x0C, SS_RDEF, /* XXX TBD */ 1408 "Invalid operation for copy source or destination") }, 1409 /* DTLPWRO K */ 1410 { SST(0x26, 0x0D, SS_RDEF, /* XXX TBD */ 1411 "Copy segment granularity violation") }, 1412 /* DT PWROMAEBK */ 1413 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ 1414 "Invalid parameter while port is enabled") }, 1415 /* F */ 1416 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ 1417 "Invalid data-out buffer integrity check value") }, 1418 /* T */ 1419 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ 1420 "Data decryption key fail limit reached") }, 1421 /* T */ 1422 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ 1423 "Incomplete key-associated data set") }, 1424 /* T */ 1425 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ 1426 "Vendor specific key reference not found") }, 1427 /* DT WRO BK */ 1428 { SST(0x27, 0x00, SS_FATAL | EACCES, 1429 "Write protected") }, 1430 /* DT WRO BK */ 1431 { SST(0x27, 0x01, SS_FATAL | EACCES, 1432 "Hardware write protected") }, 1433 /* DT WRO BK */ 1434 { SST(0x27, 0x02, SS_FATAL | EACCES, 1435 "Logical unit software write protected") }, 1436 /* T R */ 1437 { SST(0x27, 0x03, SS_FATAL | EACCES, 1438 "Associated write protect") }, 1439 /* T R */ 1440 { SST(0x27, 0x04, SS_FATAL | EACCES, 1441 "Persistent write protect") }, 1442 /* T R */ 1443 { SST(0x27, 0x05, SS_FATAL | EACCES, 1444 "Permanent write protect") }, 1445 /* R F */ 1446 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ 1447 "Conditional write protect") }, 1448 /* DTLPWROMAEBKVF */ 1449 { SST(0x28, 0x00, SS_FATAL | ENXIO, 1450 "Not ready to ready change, medium may have changed") }, 1451 /* DT WROM B */ 1452 { SST(0x28, 0x01, SS_FATAL | ENXIO, 1453 "Import or export element accessed") }, 1454 /* R */ 1455 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ 1456 "Format-layer may have changed") }, 1457 /* M */ 1458 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ 1459 "Import/export element accessed, medium changed") }, 1460 /* 1461 * XXX JGibbs - All of these should use the same errno, but I don't 1462 * think ENXIO is the correct choice. Should we borrow from 1463 * the networking errnos? ECONNRESET anyone? 1464 */ 1465 /* DTLPWROMAEBKVF */ 1466 { SST(0x29, 0x00, SS_FATAL | ENXIO, 1467 "Power on, reset, or bus device reset occurred") }, 1468 /* DTLPWROMAEBKVF */ 1469 { SST(0x29, 0x01, SS_RDEF, 1470 "Power on occurred") }, 1471 /* DTLPWROMAEBKVF */ 1472 { SST(0x29, 0x02, SS_RDEF, 1473 "SCSI bus reset occurred") }, 1474 /* DTLPWROMAEBKVF */ 1475 { SST(0x29, 0x03, SS_RDEF, 1476 "Bus device reset function occurred") }, 1477 /* DTLPWROMAEBKVF */ 1478 { SST(0x29, 0x04, SS_RDEF, 1479 "Device internal reset") }, 1480 /* DTLPWROMAEBKVF */ 1481 { SST(0x29, 0x05, SS_RDEF, 1482 "Transceiver mode changed to single-ended") }, 1483 /* DTLPWROMAEBKVF */ 1484 { SST(0x29, 0x06, SS_RDEF, 1485 "Transceiver mode changed to LVD") }, 1486 /* DTLPWROMAEBKVF */ 1487 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ 1488 "I_T nexus loss occurred") }, 1489 /* DTL WROMAEBKVF */ 1490 { SST(0x2A, 0x00, SS_RDEF, 1491 "Parameters changed") }, 1492 /* DTL WROMAEBKVF */ 1493 { SST(0x2A, 0x01, SS_RDEF, 1494 "Mode parameters changed") }, 1495 /* DTL WROMAE K */ 1496 { SST(0x2A, 0x02, SS_RDEF, 1497 "Log parameters changed") }, 1498 /* DTLPWROMAE K */ 1499 { SST(0x2A, 0x03, SS_RDEF, 1500 "Reservations preempted") }, 1501 /* DTLPWROMAE */ 1502 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ 1503 "Reservations released") }, 1504 /* DTLPWROMAE */ 1505 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ 1506 "Registrations preempted") }, 1507 /* DTLPWROMAEBKVF */ 1508 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ 1509 "Asymmetric access state changed") }, 1510 /* DTLPWROMAEBKVF */ 1511 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ 1512 "Implicit asymmetric access state transition failed") }, 1513 /* DT WROMAEBKVF */ 1514 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ 1515 "Priority changed") }, 1516 /* D */ 1517 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ 1518 "Capacity data has changed") }, 1519 /* DT */ 1520 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ 1521 "Error history I_T nexus cleared") }, 1522 /* DT */ 1523 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ 1524 "Error history snapshot released") }, 1525 /* F */ 1526 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ 1527 "Error recovery attributes have changed") }, 1528 /* T */ 1529 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ 1530 "Data encryption capabilities changed") }, 1531 /* DT M E V */ 1532 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ 1533 "Timestamp changed") }, 1534 /* T */ 1535 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ 1536 "Data encryption parameters changed by another I_T nexus") }, 1537 /* T */ 1538 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ 1539 "Data encryption parameters changed by vendor specific event") }, 1540 /* T */ 1541 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ 1542 "Data encryption key instance counter has changed") }, 1543 /* DT R MAEBKV */ 1544 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ 1545 "SA creation capabilities data has changed") }, 1546 /* DTLPWRO K */ 1547 { SST(0x2B, 0x00, SS_RDEF, 1548 "Copy cannot execute since host cannot disconnect") }, 1549 /* DTLPWROMAEBKVF */ 1550 { SST(0x2C, 0x00, SS_RDEF, 1551 "Command sequence error") }, 1552 /* */ 1553 { SST(0x2C, 0x01, SS_RDEF, 1554 "Too many windows specified") }, 1555 /* */ 1556 { SST(0x2C, 0x02, SS_RDEF, 1557 "Invalid combination of windows specified") }, 1558 /* R */ 1559 { SST(0x2C, 0x03, SS_RDEF, 1560 "Current program area is not empty") }, 1561 /* R */ 1562 { SST(0x2C, 0x04, SS_RDEF, 1563 "Current program area is empty") }, 1564 /* B */ 1565 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ 1566 "Illegal power condition request") }, 1567 /* R */ 1568 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ 1569 "Persistent prevent conflict") }, 1570 /* DTLPWROMAEBKVF */ 1571 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ 1572 "Previous busy status") }, 1573 /* DTLPWROMAEBKVF */ 1574 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ 1575 "Previous task set full status") }, 1576 /* DTLPWROM EBKVF */ 1577 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ 1578 "Previous reservation conflict status") }, 1579 /* F */ 1580 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ 1581 "Partition or collection contains user objects") }, 1582 /* T */ 1583 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ 1584 "Not reserved") }, 1585 /* T */ 1586 { SST(0x2D, 0x00, SS_RDEF, 1587 "Overwrite error on update in place") }, 1588 /* R */ 1589 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ 1590 "Insufficient time for operation") }, 1591 /* DTLPWROMAEBKVF */ 1592 { SST(0x2F, 0x00, SS_RDEF, 1593 "Commands cleared by another initiator") }, 1594 /* D */ 1595 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ 1596 "Commands cleared by power loss notification") }, 1597 /* DTLPWROMAEBKVF */ 1598 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ 1599 "Commands cleared by device server") }, 1600 /* DT WROM BK */ 1601 { SST(0x30, 0x00, SS_RDEF, 1602 "Incompatible medium installed") }, 1603 /* DT WRO BK */ 1604 { SST(0x30, 0x01, SS_RDEF, 1605 "Cannot read medium - unknown format") }, 1606 /* DT WRO BK */ 1607 { SST(0x30, 0x02, SS_RDEF, 1608 "Cannot read medium - incompatible format") }, 1609 /* DT R K */ 1610 { SST(0x30, 0x03, SS_RDEF, 1611 "Cleaning cartridge installed") }, 1612 /* DT WRO BK */ 1613 { SST(0x30, 0x04, SS_RDEF, 1614 "Cannot write medium - unknown format") }, 1615 /* DT WRO BK */ 1616 { SST(0x30, 0x05, SS_RDEF, 1617 "Cannot write medium - incompatible format") }, 1618 /* DT WRO B */ 1619 { SST(0x30, 0x06, SS_RDEF, 1620 "Cannot format medium - incompatible medium") }, 1621 /* DTL WROMAEBKVF */ 1622 { SST(0x30, 0x07, SS_RDEF, 1623 "Cleaning failure") }, 1624 /* R */ 1625 { SST(0x30, 0x08, SS_RDEF, 1626 "Cannot write - application code mismatch") }, 1627 /* R */ 1628 { SST(0x30, 0x09, SS_RDEF, 1629 "Current session not fixated for append") }, 1630 /* DT WRO AEBK */ 1631 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ 1632 "Cleaning request rejected") }, 1633 /* T */ 1634 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ 1635 "WORM medium - overwrite attempted") }, 1636 /* T */ 1637 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ 1638 "WORM medium - integrity check") }, 1639 /* R */ 1640 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ 1641 "Medium not formatted") }, 1642 /* M */ 1643 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ 1644 "Incompatible volume type") }, 1645 /* M */ 1646 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ 1647 "Incompatible volume qualifier") }, 1648 /* DT WRO BK */ 1649 { SST(0x31, 0x00, SS_RDEF, 1650 "Medium format corrupted") }, 1651 /* D L RO B */ 1652 { SST(0x31, 0x01, SS_RDEF, 1653 "Format command failed") }, 1654 /* R */ 1655 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ 1656 "Zoned formatting failed due to spare linking") }, 1657 /* D W O BK */ 1658 { SST(0x32, 0x00, SS_RDEF, 1659 "No defect spare location available") }, 1660 /* D W O BK */ 1661 { SST(0x32, 0x01, SS_RDEF, 1662 "Defect list update failure") }, 1663 /* T */ 1664 { SST(0x33, 0x00, SS_RDEF, 1665 "Tape length error") }, 1666 /* DTLPWROMAEBKVF */ 1667 { SST(0x34, 0x00, SS_RDEF, 1668 "Enclosure failure") }, 1669 /* DTLPWROMAEBKVF */ 1670 { SST(0x35, 0x00, SS_RDEF, 1671 "Enclosure services failure") }, 1672 /* DTLPWROMAEBKVF */ 1673 { SST(0x35, 0x01, SS_RDEF, 1674 "Unsupported enclosure function") }, 1675 /* DTLPWROMAEBKVF */ 1676 { SST(0x35, 0x02, SS_RDEF, 1677 "Enclosure services unavailable") }, 1678 /* DTLPWROMAEBKVF */ 1679 { SST(0x35, 0x03, SS_RDEF, 1680 "Enclosure services transfer failure") }, 1681 /* DTLPWROMAEBKVF */ 1682 { SST(0x35, 0x04, SS_RDEF, 1683 "Enclosure services transfer refused") }, 1684 /* DTL WROMAEBKVF */ 1685 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ 1686 "Enclosure services checksum error") }, 1687 /* L */ 1688 { SST(0x36, 0x00, SS_RDEF, 1689 "Ribbon, ink, or toner failure") }, 1690 /* DTL WROMAEBKVF */ 1691 { SST(0x37, 0x00, SS_RDEF, 1692 "Rounded parameter") }, 1693 /* B */ 1694 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ 1695 "Event status notification") }, 1696 /* B */ 1697 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ 1698 "ESN - power management class event") }, 1699 /* B */ 1700 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ 1701 "ESN - media class event") }, 1702 /* B */ 1703 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ 1704 "ESN - device busy class event") }, 1705 /* DTL WROMAE K */ 1706 { SST(0x39, 0x00, SS_RDEF, 1707 "Saving parameters not supported") }, 1708 /* DTL WROM BK */ 1709 { SST(0x3A, 0x00, SS_FATAL | ENXIO, 1710 "Medium not present") }, 1711 /* DT WROM BK */ 1712 { SST(0x3A, 0x01, SS_FATAL | ENXIO, 1713 "Medium not present - tray closed") }, 1714 /* DT WROM BK */ 1715 { SST(0x3A, 0x02, SS_FATAL | ENXIO, 1716 "Medium not present - tray open") }, 1717 /* DT WROM B */ 1718 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ 1719 "Medium not present - loadable") }, 1720 /* DT WRO B */ 1721 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ 1722 "Medium not present - medium auxiliary memory accessible") }, 1723 /* TL */ 1724 { SST(0x3B, 0x00, SS_RDEF, 1725 "Sequential positioning error") }, 1726 /* T */ 1727 { SST(0x3B, 0x01, SS_RDEF, 1728 "Tape position error at beginning-of-medium") }, 1729 /* T */ 1730 { SST(0x3B, 0x02, SS_RDEF, 1731 "Tape position error at end-of-medium") }, 1732 /* L */ 1733 { SST(0x3B, 0x03, SS_RDEF, 1734 "Tape or electronic vertical forms unit not ready") }, 1735 /* L */ 1736 { SST(0x3B, 0x04, SS_RDEF, 1737 "Slew failure") }, 1738 /* L */ 1739 { SST(0x3B, 0x05, SS_RDEF, 1740 "Paper jam") }, 1741 /* L */ 1742 { SST(0x3B, 0x06, SS_RDEF, 1743 "Failed to sense top-of-form") }, 1744 /* L */ 1745 { SST(0x3B, 0x07, SS_RDEF, 1746 "Failed to sense bottom-of-form") }, 1747 /* T */ 1748 { SST(0x3B, 0x08, SS_RDEF, 1749 "Reposition error") }, 1750 /* */ 1751 { SST(0x3B, 0x09, SS_RDEF, 1752 "Read past end of medium") }, 1753 /* */ 1754 { SST(0x3B, 0x0A, SS_RDEF, 1755 "Read past beginning of medium") }, 1756 /* */ 1757 { SST(0x3B, 0x0B, SS_RDEF, 1758 "Position past end of medium") }, 1759 /* T */ 1760 { SST(0x3B, 0x0C, SS_RDEF, 1761 "Position past beginning of medium") }, 1762 /* DT WROM BK */ 1763 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, 1764 "Medium destination element full") }, 1765 /* DT WROM BK */ 1766 { SST(0x3B, 0x0E, SS_RDEF, 1767 "Medium source element empty") }, 1768 /* R */ 1769 { SST(0x3B, 0x0F, SS_RDEF, 1770 "End of medium reached") }, 1771 /* DT WROM BK */ 1772 { SST(0x3B, 0x11, SS_RDEF, 1773 "Medium magazine not accessible") }, 1774 /* DT WROM BK */ 1775 { SST(0x3B, 0x12, SS_RDEF, 1776 "Medium magazine removed") }, 1777 /* DT WROM BK */ 1778 { SST(0x3B, 0x13, SS_RDEF, 1779 "Medium magazine inserted") }, 1780 /* DT WROM BK */ 1781 { SST(0x3B, 0x14, SS_RDEF, 1782 "Medium magazine locked") }, 1783 /* DT WROM BK */ 1784 { SST(0x3B, 0x15, SS_RDEF, 1785 "Medium magazine unlocked") }, 1786 /* R */ 1787 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ 1788 "Mechanical positioning or changer error") }, 1789 /* F */ 1790 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ 1791 "Read past end of user object") }, 1792 /* M */ 1793 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ 1794 "Element disabled") }, 1795 /* M */ 1796 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ 1797 "Element enabled") }, 1798 /* M */ 1799 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ 1800 "Data transfer device removed") }, 1801 /* M */ 1802 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ 1803 "Data transfer device inserted") }, 1804 /* DTLPWROMAE K */ 1805 { SST(0x3D, 0x00, SS_RDEF, 1806 "Invalid bits in IDENTIFY message") }, 1807 /* DTLPWROMAEBKVF */ 1808 { SST(0x3E, 0x00, SS_RDEF, 1809 "Logical unit has not self-configured yet") }, 1810 /* DTLPWROMAEBKVF */ 1811 { SST(0x3E, 0x01, SS_RDEF, 1812 "Logical unit failure") }, 1813 /* DTLPWROMAEBKVF */ 1814 { SST(0x3E, 0x02, SS_RDEF, 1815 "Timeout on logical unit") }, 1816 /* DTLPWROMAEBKVF */ 1817 { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */ 1818 "Logical unit failed self-test") }, 1819 /* DTLPWROMAEBKVF */ 1820 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ 1821 "Logical unit unable to update self-test log") }, 1822 /* DTLPWROMAEBKVF */ 1823 { SST(0x3F, 0x00, SS_RDEF, 1824 "Target operating conditions have changed") }, 1825 /* DTLPWROMAEBKVF */ 1826 { SST(0x3F, 0x01, SS_RDEF, 1827 "Microcode has been changed") }, 1828 /* DTLPWROM BK */ 1829 { SST(0x3F, 0x02, SS_RDEF, 1830 "Changed operating definition") }, 1831 /* DTLPWROMAEBKVF */ 1832 { SST(0x3F, 0x03, SS_RDEF, 1833 "INQUIRY data has changed") }, 1834 /* DT WROMAEBK */ 1835 { SST(0x3F, 0x04, SS_RDEF, 1836 "Component device attached") }, 1837 /* DT WROMAEBK */ 1838 { SST(0x3F, 0x05, SS_RDEF, 1839 "Device identifier changed") }, 1840 /* DT WROMAEB */ 1841 { SST(0x3F, 0x06, SS_RDEF, 1842 "Redundancy group created or modified") }, 1843 /* DT WROMAEB */ 1844 { SST(0x3F, 0x07, SS_RDEF, 1845 "Redundancy group deleted") }, 1846 /* DT WROMAEB */ 1847 { SST(0x3F, 0x08, SS_RDEF, 1848 "Spare created or modified") }, 1849 /* DT WROMAEB */ 1850 { SST(0x3F, 0x09, SS_RDEF, 1851 "Spare deleted") }, 1852 /* DT WROMAEBK */ 1853 { SST(0x3F, 0x0A, SS_RDEF, 1854 "Volume set created or modified") }, 1855 /* DT WROMAEBK */ 1856 { SST(0x3F, 0x0B, SS_RDEF, 1857 "Volume set deleted") }, 1858 /* DT WROMAEBK */ 1859 { SST(0x3F, 0x0C, SS_RDEF, 1860 "Volume set deassigned") }, 1861 /* DT WROMAEBK */ 1862 { SST(0x3F, 0x0D, SS_RDEF, 1863 "Volume set reassigned") }, 1864 /* DTLPWROMAE */ 1865 { SST(0x3F, 0x0E, SS_RDEF, /* XXX TBD */ 1866 "Reported LUNs data has changed") }, 1867 /* DTLPWROMAEBKVF */ 1868 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ 1869 "Echo buffer overwritten") }, 1870 /* DT WROM B */ 1871 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ 1872 "Medium loadable") }, 1873 /* DT WROM B */ 1874 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ 1875 "Medium auxiliary memory accessible") }, 1876 /* DTLPWR MAEBK F */ 1877 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ 1878 "iSCSI IP address added") }, 1879 /* DTLPWR MAEBK F */ 1880 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ 1881 "iSCSI IP address removed") }, 1882 /* DTLPWR MAEBK F */ 1883 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ 1884 "iSCSI IP address changed") }, 1885 /* D */ 1886 { SST(0x40, 0x00, SS_RDEF, 1887 "RAM failure") }, /* deprecated - use 40 NN instead */ 1888 /* DTLPWROMAEBKVF */ 1889 { SST(0x40, 0x80, SS_RDEF, 1890 "Diagnostic failure: ASCQ = Component ID") }, 1891 /* DTLPWROMAEBKVF */ 1892 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, 1893 NULL) }, /* Range 0x80->0xFF */ 1894 /* D */ 1895 { SST(0x41, 0x00, SS_RDEF, 1896 "Data path failure") }, /* deprecated - use 40 NN instead */ 1897 /* D */ 1898 { SST(0x42, 0x00, SS_RDEF, 1899 "Power-on or self-test failure") }, 1900 /* deprecated - use 40 NN instead */ 1901 /* DTLPWROMAEBKVF */ 1902 { SST(0x43, 0x00, SS_RDEF, 1903 "Message error") }, 1904 /* DTLPWROMAEBKVF */ 1905 { SST(0x44, 0x00, SS_RDEF, 1906 "Internal target failure") }, 1907 /* DT B */ 1908 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ 1909 "ATA device failed set features") }, 1910 /* DTLPWROMAEBKVF */ 1911 { SST(0x45, 0x00, SS_RDEF, 1912 "Select or reselect failure") }, 1913 /* DTLPWROM BK */ 1914 { SST(0x46, 0x00, SS_RDEF, 1915 "Unsuccessful soft reset") }, 1916 /* DTLPWROMAEBKVF */ 1917 { SST(0x47, 0x00, SS_RDEF, 1918 "SCSI parity error") }, 1919 /* DTLPWROMAEBKVF */ 1920 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ 1921 "Data phase CRC error detected") }, 1922 /* DTLPWROMAEBKVF */ 1923 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ 1924 "SCSI parity error detected during ST data phase") }, 1925 /* DTLPWROMAEBKVF */ 1926 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ 1927 "Information unit iuCRC error detected") }, 1928 /* DTLPWROMAEBKVF */ 1929 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ 1930 "Asynchronous information protection error detected") }, 1931 /* DTLPWROMAEBKVF */ 1932 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ 1933 "Protocol service CRC error") }, 1934 /* DT MAEBKVF */ 1935 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ 1936 "PHY test function in progress") }, 1937 /* DT PWROMAEBK */ 1938 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ 1939 "Some commands cleared by iSCSI protocol event") }, 1940 /* DTLPWROMAEBKVF */ 1941 { SST(0x48, 0x00, SS_RDEF, 1942 "Initiator detected error message received") }, 1943 /* DTLPWROMAEBKVF */ 1944 { SST(0x49, 0x00, SS_RDEF, 1945 "Invalid message error") }, 1946 /* DTLPWROMAEBKVF */ 1947 { SST(0x4A, 0x00, SS_RDEF, 1948 "Command phase error") }, 1949 /* DTLPWROMAEBKVF */ 1950 { SST(0x4B, 0x00, SS_RDEF, 1951 "Data phase error") }, 1952 /* DT PWROMAEBK */ 1953 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ 1954 "Invalid target port transfer tag received") }, 1955 /* DT PWROMAEBK */ 1956 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ 1957 "Too much write data") }, 1958 /* DT PWROMAEBK */ 1959 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ 1960 "ACK/NAK timeout") }, 1961 /* DT PWROMAEBK */ 1962 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ 1963 "NAK received") }, 1964 /* DT PWROMAEBK */ 1965 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ 1966 "Data offset error") }, 1967 /* DT PWROMAEBK */ 1968 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ 1969 "Initiator response timeout") }, 1970 /* DTLPWROMAEBKVF */ 1971 { SST(0x4C, 0x00, SS_RDEF, 1972 "Logical unit failed self-configuration") }, 1973 /* DTLPWROMAEBKVF */ 1974 { SST(0x4D, 0x00, SS_RDEF, 1975 "Tagged overlapped commands: ASCQ = Queue tag ID") }, 1976 /* DTLPWROMAEBKVF */ 1977 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, 1978 NULL) }, /* Range 0x00->0xFF */ 1979 /* DTLPWROMAEBKVF */ 1980 { SST(0x4E, 0x00, SS_RDEF, 1981 "Overlapped commands attempted") }, 1982 /* T */ 1983 { SST(0x50, 0x00, SS_RDEF, 1984 "Write append error") }, 1985 /* T */ 1986 { SST(0x50, 0x01, SS_RDEF, 1987 "Write append position error") }, 1988 /* T */ 1989 { SST(0x50, 0x02, SS_RDEF, 1990 "Position error related to timing") }, 1991 /* T RO */ 1992 { SST(0x51, 0x00, SS_RDEF, 1993 "Erase failure") }, 1994 /* R */ 1995 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ 1996 "Erase failure - incomplete erase operation detected") }, 1997 /* T */ 1998 { SST(0x52, 0x00, SS_RDEF, 1999 "Cartridge fault") }, 2000 /* DTL WROM BK */ 2001 { SST(0x53, 0x00, SS_RDEF, 2002 "Media load or eject failed") }, 2003 /* T */ 2004 { SST(0x53, 0x01, SS_RDEF, 2005 "Unload tape failure") }, 2006 /* DT WROM BK */ 2007 { SST(0x53, 0x02, SS_RDEF, 2008 "Medium removal prevented") }, 2009 /* M */ 2010 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ 2011 "Medium removal prevented by data transfer element") }, 2012 /* T */ 2013 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ 2014 "Medium thread or unthread failure") }, 2015 /* P */ 2016 { SST(0x54, 0x00, SS_RDEF, 2017 "SCSI to host system interface failure") }, 2018 /* P */ 2019 { SST(0x55, 0x00, SS_RDEF, 2020 "System resource failure") }, 2021 /* D O BK */ 2022 { SST(0x55, 0x01, SS_FATAL | ENOSPC, 2023 "System buffer full") }, 2024 /* DTLPWROMAE K */ 2025 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ 2026 "Insufficient reservation resources") }, 2027 /* DTLPWROMAE K */ 2028 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ 2029 "Insufficient resources") }, 2030 /* DTLPWROMAE K */ 2031 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ 2032 "Insufficient registration resources") }, 2033 /* DT PWROMAEBK */ 2034 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ 2035 "Insufficient access control resources") }, 2036 /* DT WROM B */ 2037 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ 2038 "Auxiliary memory out of space") }, 2039 /* F */ 2040 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ 2041 "Quota error") }, 2042 /* T */ 2043 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ 2044 "Maximum number of supplemental decryption keys exceeded") }, 2045 /* M */ 2046 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ 2047 "Medium auxiliary memory not accessible") }, 2048 /* M */ 2049 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ 2050 "Data currently unavailable") }, 2051 /* R */ 2052 { SST(0x57, 0x00, SS_RDEF, 2053 "Unable to recover table-of-contents") }, 2054 /* O */ 2055 { SST(0x58, 0x00, SS_RDEF, 2056 "Generation does not exist") }, 2057 /* O */ 2058 { SST(0x59, 0x00, SS_RDEF, 2059 "Updated block read") }, 2060 /* DTLPWRO BK */ 2061 { SST(0x5A, 0x00, SS_RDEF, 2062 "Operator request or state change input") }, 2063 /* DT WROM BK */ 2064 { SST(0x5A, 0x01, SS_RDEF, 2065 "Operator medium removal request") }, 2066 /* DT WRO A BK */ 2067 { SST(0x5A, 0x02, SS_RDEF, 2068 "Operator selected write protect") }, 2069 /* DT WRO A BK */ 2070 { SST(0x5A, 0x03, SS_RDEF, 2071 "Operator selected write permit") }, 2072 /* DTLPWROM K */ 2073 { SST(0x5B, 0x00, SS_RDEF, 2074 "Log exception") }, 2075 /* DTLPWROM K */ 2076 { SST(0x5B, 0x01, SS_RDEF, 2077 "Threshold condition met") }, 2078 /* DTLPWROM K */ 2079 { SST(0x5B, 0x02, SS_RDEF, 2080 "Log counter at maximum") }, 2081 /* DTLPWROM K */ 2082 { SST(0x5B, 0x03, SS_RDEF, 2083 "Log list codes exhausted") }, 2084 /* D O */ 2085 { SST(0x5C, 0x00, SS_RDEF, 2086 "RPL status change") }, 2087 /* D O */ 2088 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2089 "Spindles synchronized") }, 2090 /* D O */ 2091 { SST(0x5C, 0x02, SS_RDEF, 2092 "Spindles not synchronized") }, 2093 /* DTLPWROMAEBKVF */ 2094 { SST(0x5D, 0x00, SS_RDEF, 2095 "Failure prediction threshold exceeded") }, 2096 /* R B */ 2097 { SST(0x5D, 0x01, SS_RDEF, /* XXX TBD */ 2098 "Media failure prediction threshold exceeded") }, 2099 /* R */ 2100 { SST(0x5D, 0x02, SS_RDEF, /* XXX TBD */ 2101 "Logical unit failure prediction threshold exceeded") }, 2102 /* R */ 2103 { SST(0x5D, 0x03, SS_RDEF, /* XXX TBD */ 2104 "Spare area exhaustion prediction threshold exceeded") }, 2105 /* D B */ 2106 { SST(0x5D, 0x10, SS_RDEF, /* XXX TBD */ 2107 "Hardware impending failure general hard drive failure") }, 2108 /* D B */ 2109 { SST(0x5D, 0x11, SS_RDEF, /* XXX TBD */ 2110 "Hardware impending failure drive error rate too high") }, 2111 /* D B */ 2112 { SST(0x5D, 0x12, SS_RDEF, /* XXX TBD */ 2113 "Hardware impending failure data error rate too high") }, 2114 /* D B */ 2115 { SST(0x5D, 0x13, SS_RDEF, /* XXX TBD */ 2116 "Hardware impending failure seek error rate too high") }, 2117 /* D B */ 2118 { SST(0x5D, 0x14, SS_RDEF, /* XXX TBD */ 2119 "Hardware impending failure too many block reassigns") }, 2120 /* D B */ 2121 { SST(0x5D, 0x15, SS_RDEF, /* XXX TBD */ 2122 "Hardware impending failure access times too high") }, 2123 /* D B */ 2124 { SST(0x5D, 0x16, SS_RDEF, /* XXX TBD */ 2125 "Hardware impending failure start unit times too high") }, 2126 /* D B */ 2127 { SST(0x5D, 0x17, SS_RDEF, /* XXX TBD */ 2128 "Hardware impending failure channel parametrics") }, 2129 /* D B */ 2130 { SST(0x5D, 0x18, SS_RDEF, /* XXX TBD */ 2131 "Hardware impending failure controller detected") }, 2132 /* D B */ 2133 { SST(0x5D, 0x19, SS_RDEF, /* XXX TBD */ 2134 "Hardware impending failure throughput performance") }, 2135 /* D B */ 2136 { SST(0x5D, 0x1A, SS_RDEF, /* XXX TBD */ 2137 "Hardware impending failure seek time performance") }, 2138 /* D B */ 2139 { SST(0x5D, 0x1B, SS_RDEF, /* XXX TBD */ 2140 "Hardware impending failure spin-up retry count") }, 2141 /* D B */ 2142 { SST(0x5D, 0x1C, SS_RDEF, /* XXX TBD */ 2143 "Hardware impending failure drive calibration retry count") }, 2144 /* D B */ 2145 { SST(0x5D, 0x20, SS_RDEF, /* XXX TBD */ 2146 "Controller impending failure general hard drive failure") }, 2147 /* D B */ 2148 { SST(0x5D, 0x21, SS_RDEF, /* XXX TBD */ 2149 "Controller impending failure drive error rate too high") }, 2150 /* D B */ 2151 { SST(0x5D, 0x22, SS_RDEF, /* XXX TBD */ 2152 "Controller impending failure data error rate too high") }, 2153 /* D B */ 2154 { SST(0x5D, 0x23, SS_RDEF, /* XXX TBD */ 2155 "Controller impending failure seek error rate too high") }, 2156 /* D B */ 2157 { SST(0x5D, 0x24, SS_RDEF, /* XXX TBD */ 2158 "Controller impending failure too many block reassigns") }, 2159 /* D B */ 2160 { SST(0x5D, 0x25, SS_RDEF, /* XXX TBD */ 2161 "Controller impending failure access times too high") }, 2162 /* D B */ 2163 { SST(0x5D, 0x26, SS_RDEF, /* XXX TBD */ 2164 "Controller impending failure start unit times too high") }, 2165 /* D B */ 2166 { SST(0x5D, 0x27, SS_RDEF, /* XXX TBD */ 2167 "Controller impending failure channel parametrics") }, 2168 /* D B */ 2169 { SST(0x5D, 0x28, SS_RDEF, /* XXX TBD */ 2170 "Controller impending failure controller detected") }, 2171 /* D B */ 2172 { SST(0x5D, 0x29, SS_RDEF, /* XXX TBD */ 2173 "Controller impending failure throughput performance") }, 2174 /* D B */ 2175 { SST(0x5D, 0x2A, SS_RDEF, /* XXX TBD */ 2176 "Controller impending failure seek time performance") }, 2177 /* D B */ 2178 { SST(0x5D, 0x2B, SS_RDEF, /* XXX TBD */ 2179 "Controller impending failure spin-up retry count") }, 2180 /* D B */ 2181 { SST(0x5D, 0x2C, SS_RDEF, /* XXX TBD */ 2182 "Controller impending failure drive calibration retry count") }, 2183 /* D B */ 2184 { SST(0x5D, 0x30, SS_RDEF, /* XXX TBD */ 2185 "Data channel impending failure general hard drive failure") }, 2186 /* D B */ 2187 { SST(0x5D, 0x31, SS_RDEF, /* XXX TBD */ 2188 "Data channel impending failure drive error rate too high") }, 2189 /* D B */ 2190 { SST(0x5D, 0x32, SS_RDEF, /* XXX TBD */ 2191 "Data channel impending failure data error rate too high") }, 2192 /* D B */ 2193 { SST(0x5D, 0x33, SS_RDEF, /* XXX TBD */ 2194 "Data channel impending failure seek error rate too high") }, 2195 /* D B */ 2196 { SST(0x5D, 0x34, SS_RDEF, /* XXX TBD */ 2197 "Data channel impending failure too many block reassigns") }, 2198 /* D B */ 2199 { SST(0x5D, 0x35, SS_RDEF, /* XXX TBD */ 2200 "Data channel impending failure access times too high") }, 2201 /* D B */ 2202 { SST(0x5D, 0x36, SS_RDEF, /* XXX TBD */ 2203 "Data channel impending failure start unit times too high") }, 2204 /* D B */ 2205 { SST(0x5D, 0x37, SS_RDEF, /* XXX TBD */ 2206 "Data channel impending failure channel parametrics") }, 2207 /* D B */ 2208 { SST(0x5D, 0x38, SS_RDEF, /* XXX TBD */ 2209 "Data channel impending failure controller detected") }, 2210 /* D B */ 2211 { SST(0x5D, 0x39, SS_RDEF, /* XXX TBD */ 2212 "Data channel impending failure throughput performance") }, 2213 /* D B */ 2214 { SST(0x5D, 0x3A, SS_RDEF, /* XXX TBD */ 2215 "Data channel impending failure seek time performance") }, 2216 /* D B */ 2217 { SST(0x5D, 0x3B, SS_RDEF, /* XXX TBD */ 2218 "Data channel impending failure spin-up retry count") }, 2219 /* D B */ 2220 { SST(0x5D, 0x3C, SS_RDEF, /* XXX TBD */ 2221 "Data channel impending failure drive calibration retry count") }, 2222 /* D B */ 2223 { SST(0x5D, 0x40, SS_RDEF, /* XXX TBD */ 2224 "Servo impending failure general hard drive failure") }, 2225 /* D B */ 2226 { SST(0x5D, 0x41, SS_RDEF, /* XXX TBD */ 2227 "Servo impending failure drive error rate too high") }, 2228 /* D B */ 2229 { SST(0x5D, 0x42, SS_RDEF, /* XXX TBD */ 2230 "Servo impending failure data error rate too high") }, 2231 /* D B */ 2232 { SST(0x5D, 0x43, SS_RDEF, /* XXX TBD */ 2233 "Servo impending failure seek error rate too high") }, 2234 /* D B */ 2235 { SST(0x5D, 0x44, SS_RDEF, /* XXX TBD */ 2236 "Servo impending failure too many block reassigns") }, 2237 /* D B */ 2238 { SST(0x5D, 0x45, SS_RDEF, /* XXX TBD */ 2239 "Servo impending failure access times too high") }, 2240 /* D B */ 2241 { SST(0x5D, 0x46, SS_RDEF, /* XXX TBD */ 2242 "Servo impending failure start unit times too high") }, 2243 /* D B */ 2244 { SST(0x5D, 0x47, SS_RDEF, /* XXX TBD */ 2245 "Servo impending failure channel parametrics") }, 2246 /* D B */ 2247 { SST(0x5D, 0x48, SS_RDEF, /* XXX TBD */ 2248 "Servo impending failure controller detected") }, 2249 /* D B */ 2250 { SST(0x5D, 0x49, SS_RDEF, /* XXX TBD */ 2251 "Servo impending failure throughput performance") }, 2252 /* D B */ 2253 { SST(0x5D, 0x4A, SS_RDEF, /* XXX TBD */ 2254 "Servo impending failure seek time performance") }, 2255 /* D B */ 2256 { SST(0x5D, 0x4B, SS_RDEF, /* XXX TBD */ 2257 "Servo impending failure spin-up retry count") }, 2258 /* D B */ 2259 { SST(0x5D, 0x4C, SS_RDEF, /* XXX TBD */ 2260 "Servo impending failure drive calibration retry count") }, 2261 /* D B */ 2262 { SST(0x5D, 0x50, SS_RDEF, /* XXX TBD */ 2263 "Spindle impending failure general hard drive failure") }, 2264 /* D B */ 2265 { SST(0x5D, 0x51, SS_RDEF, /* XXX TBD */ 2266 "Spindle impending failure drive error rate too high") }, 2267 /* D B */ 2268 { SST(0x5D, 0x52, SS_RDEF, /* XXX TBD */ 2269 "Spindle impending failure data error rate too high") }, 2270 /* D B */ 2271 { SST(0x5D, 0x53, SS_RDEF, /* XXX TBD */ 2272 "Spindle impending failure seek error rate too high") }, 2273 /* D B */ 2274 { SST(0x5D, 0x54, SS_RDEF, /* XXX TBD */ 2275 "Spindle impending failure too many block reassigns") }, 2276 /* D B */ 2277 { SST(0x5D, 0x55, SS_RDEF, /* XXX TBD */ 2278 "Spindle impending failure access times too high") }, 2279 /* D B */ 2280 { SST(0x5D, 0x56, SS_RDEF, /* XXX TBD */ 2281 "Spindle impending failure start unit times too high") }, 2282 /* D B */ 2283 { SST(0x5D, 0x57, SS_RDEF, /* XXX TBD */ 2284 "Spindle impending failure channel parametrics") }, 2285 /* D B */ 2286 { SST(0x5D, 0x58, SS_RDEF, /* XXX TBD */ 2287 "Spindle impending failure controller detected") }, 2288 /* D B */ 2289 { SST(0x5D, 0x59, SS_RDEF, /* XXX TBD */ 2290 "Spindle impending failure throughput performance") }, 2291 /* D B */ 2292 { SST(0x5D, 0x5A, SS_RDEF, /* XXX TBD */ 2293 "Spindle impending failure seek time performance") }, 2294 /* D B */ 2295 { SST(0x5D, 0x5B, SS_RDEF, /* XXX TBD */ 2296 "Spindle impending failure spin-up retry count") }, 2297 /* D B */ 2298 { SST(0x5D, 0x5C, SS_RDEF, /* XXX TBD */ 2299 "Spindle impending failure drive calibration retry count") }, 2300 /* D B */ 2301 { SST(0x5D, 0x60, SS_RDEF, /* XXX TBD */ 2302 "Firmware impending failure general hard drive failure") }, 2303 /* D B */ 2304 { SST(0x5D, 0x61, SS_RDEF, /* XXX TBD */ 2305 "Firmware impending failure drive error rate too high") }, 2306 /* D B */ 2307 { SST(0x5D, 0x62, SS_RDEF, /* XXX TBD */ 2308 "Firmware impending failure data error rate too high") }, 2309 /* D B */ 2310 { SST(0x5D, 0x63, SS_RDEF, /* XXX TBD */ 2311 "Firmware impending failure seek error rate too high") }, 2312 /* D B */ 2313 { SST(0x5D, 0x64, SS_RDEF, /* XXX TBD */ 2314 "Firmware impending failure too many block reassigns") }, 2315 /* D B */ 2316 { SST(0x5D, 0x65, SS_RDEF, /* XXX TBD */ 2317 "Firmware impending failure access times too high") }, 2318 /* D B */ 2319 { SST(0x5D, 0x66, SS_RDEF, /* XXX TBD */ 2320 "Firmware impending failure start unit times too high") }, 2321 /* D B */ 2322 { SST(0x5D, 0x67, SS_RDEF, /* XXX TBD */ 2323 "Firmware impending failure channel parametrics") }, 2324 /* D B */ 2325 { SST(0x5D, 0x68, SS_RDEF, /* XXX TBD */ 2326 "Firmware impending failure controller detected") }, 2327 /* D B */ 2328 { SST(0x5D, 0x69, SS_RDEF, /* XXX TBD */ 2329 "Firmware impending failure throughput performance") }, 2330 /* D B */ 2331 { SST(0x5D, 0x6A, SS_RDEF, /* XXX TBD */ 2332 "Firmware impending failure seek time performance") }, 2333 /* D B */ 2334 { SST(0x5D, 0x6B, SS_RDEF, /* XXX TBD */ 2335 "Firmware impending failure spin-up retry count") }, 2336 /* D B */ 2337 { SST(0x5D, 0x6C, SS_RDEF, /* XXX TBD */ 2338 "Firmware impending failure drive calibration retry count") }, 2339 /* DTLPWROMAEBKVF */ 2340 { SST(0x5D, 0xFF, SS_RDEF, 2341 "Failure prediction threshold exceeded (false)") }, 2342 /* DTLPWRO A K */ 2343 { SST(0x5E, 0x00, SS_RDEF, 2344 "Low power condition on") }, 2345 /* DTLPWRO A K */ 2346 { SST(0x5E, 0x01, SS_RDEF, 2347 "Idle condition activated by timer") }, 2348 /* DTLPWRO A K */ 2349 { SST(0x5E, 0x02, SS_RDEF, 2350 "Standby condition activated by timer") }, 2351 /* DTLPWRO A K */ 2352 { SST(0x5E, 0x03, SS_RDEF, 2353 "Idle condition activated by command") }, 2354 /* DTLPWRO A K */ 2355 { SST(0x5E, 0x04, SS_RDEF, 2356 "Standby condition activated by command") }, 2357 /* B */ 2358 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ 2359 "Power state change to active") }, 2360 /* B */ 2361 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ 2362 "Power state change to idle") }, 2363 /* B */ 2364 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ 2365 "Power state change to standby") }, 2366 /* B */ 2367 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ 2368 "Power state change to sleep") }, 2369 /* BK */ 2370 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ 2371 "Power state change to device control") }, 2372 /* */ 2373 { SST(0x60, 0x00, SS_RDEF, 2374 "Lamp failure") }, 2375 /* */ 2376 { SST(0x61, 0x00, SS_RDEF, 2377 "Video acquisition error") }, 2378 /* */ 2379 { SST(0x61, 0x01, SS_RDEF, 2380 "Unable to acquire video") }, 2381 /* */ 2382 { SST(0x61, 0x02, SS_RDEF, 2383 "Out of focus") }, 2384 /* */ 2385 { SST(0x62, 0x00, SS_RDEF, 2386 "Scan head positioning error") }, 2387 /* R */ 2388 { SST(0x63, 0x00, SS_RDEF, 2389 "End of user area encountered on this track") }, 2390 /* R */ 2391 { SST(0x63, 0x01, SS_FATAL | ENOSPC, 2392 "Packet does not fit in available space") }, 2393 /* R */ 2394 { SST(0x64, 0x00, SS_FATAL | ENXIO, 2395 "Illegal mode for this track") }, 2396 /* R */ 2397 { SST(0x64, 0x01, SS_RDEF, 2398 "Invalid packet size") }, 2399 /* DTLPWROMAEBKVF */ 2400 { SST(0x65, 0x00, SS_RDEF, 2401 "Voltage fault") }, 2402 /* */ 2403 { SST(0x66, 0x00, SS_RDEF, 2404 "Automatic document feeder cover up") }, 2405 /* */ 2406 { SST(0x66, 0x01, SS_RDEF, 2407 "Automatic document feeder lift up") }, 2408 /* */ 2409 { SST(0x66, 0x02, SS_RDEF, 2410 "Document jam in automatic document feeder") }, 2411 /* */ 2412 { SST(0x66, 0x03, SS_RDEF, 2413 "Document miss feed automatic in document feeder") }, 2414 /* A */ 2415 { SST(0x67, 0x00, SS_RDEF, 2416 "Configuration failure") }, 2417 /* A */ 2418 { SST(0x67, 0x01, SS_RDEF, 2419 "Configuration of incapable logical units failed") }, 2420 /* A */ 2421 { SST(0x67, 0x02, SS_RDEF, 2422 "Add logical unit failed") }, 2423 /* A */ 2424 { SST(0x67, 0x03, SS_RDEF, 2425 "Modification of logical unit failed") }, 2426 /* A */ 2427 { SST(0x67, 0x04, SS_RDEF, 2428 "Exchange of logical unit failed") }, 2429 /* A */ 2430 { SST(0x67, 0x05, SS_RDEF, 2431 "Remove of logical unit failed") }, 2432 /* A */ 2433 { SST(0x67, 0x06, SS_RDEF, 2434 "Attachment of logical unit failed") }, 2435 /* A */ 2436 { SST(0x67, 0x07, SS_RDEF, 2437 "Creation of logical unit failed") }, 2438 /* A */ 2439 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ 2440 "Assign failure occurred") }, 2441 /* A */ 2442 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ 2443 "Multiply assigned logical unit") }, 2444 /* DTLPWROMAEBKVF */ 2445 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ 2446 "Set target port groups command failed") }, 2447 /* DT B */ 2448 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ 2449 "ATA device feature not enabled") }, 2450 /* A */ 2451 { SST(0x68, 0x00, SS_RDEF, 2452 "Logical unit not configured") }, 2453 /* A */ 2454 { SST(0x69, 0x00, SS_RDEF, 2455 "Data loss on logical unit") }, 2456 /* A */ 2457 { SST(0x69, 0x01, SS_RDEF, 2458 "Multiple logical unit failures") }, 2459 /* A */ 2460 { SST(0x69, 0x02, SS_RDEF, 2461 "Parity/data mismatch") }, 2462 /* A */ 2463 { SST(0x6A, 0x00, SS_RDEF, 2464 "Informational, refer to log") }, 2465 /* A */ 2466 { SST(0x6B, 0x00, SS_RDEF, 2467 "State change has occurred") }, 2468 /* A */ 2469 { SST(0x6B, 0x01, SS_RDEF, 2470 "Redundancy level got better") }, 2471 /* A */ 2472 { SST(0x6B, 0x02, SS_RDEF, 2473 "Redundancy level got worse") }, 2474 /* A */ 2475 { SST(0x6C, 0x00, SS_RDEF, 2476 "Rebuild failure occurred") }, 2477 /* A */ 2478 { SST(0x6D, 0x00, SS_RDEF, 2479 "Recalculate failure occurred") }, 2480 /* A */ 2481 { SST(0x6E, 0x00, SS_RDEF, 2482 "Command to logical unit failed") }, 2483 /* R */ 2484 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ 2485 "Copy protection key exchange failure - authentication failure") }, 2486 /* R */ 2487 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ 2488 "Copy protection key exchange failure - key not present") }, 2489 /* R */ 2490 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ 2491 "Copy protection key exchange failure - key not established") }, 2492 /* R */ 2493 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ 2494 "Read of scrambled sector without authentication") }, 2495 /* R */ 2496 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ 2497 "Media region code is mismatched to logical unit region") }, 2498 /* R */ 2499 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ 2500 "Drive region must be permanent/region reset count error") }, 2501 /* R */ 2502 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ 2503 "Insufficient block count for binding NONCE recording") }, 2504 /* R */ 2505 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ 2506 "Conflict in binding NONCE recording") }, 2507 /* T */ 2508 { SST(0x70, 0x00, SS_RDEF, 2509 "Decompression exception short: ASCQ = Algorithm ID") }, 2510 /* T */ 2511 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, 2512 NULL) }, /* Range 0x00 -> 0xFF */ 2513 /* T */ 2514 { SST(0x71, 0x00, SS_RDEF, 2515 "Decompression exception long: ASCQ = Algorithm ID") }, 2516 /* T */ 2517 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, 2518 NULL) }, /* Range 0x00 -> 0xFF */ 2519 /* R */ 2520 { SST(0x72, 0x00, SS_RDEF, 2521 "Session fixation error") }, 2522 /* R */ 2523 { SST(0x72, 0x01, SS_RDEF, 2524 "Session fixation error writing lead-in") }, 2525 /* R */ 2526 { SST(0x72, 0x02, SS_RDEF, 2527 "Session fixation error writing lead-out") }, 2528 /* R */ 2529 { SST(0x72, 0x03, SS_RDEF, 2530 "Session fixation error - incomplete track in session") }, 2531 /* R */ 2532 { SST(0x72, 0x04, SS_RDEF, 2533 "Empty or partially written reserved track") }, 2534 /* R */ 2535 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ 2536 "No more track reservations allowed") }, 2537 /* R */ 2538 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ 2539 "RMZ extension is not allowed") }, 2540 /* R */ 2541 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ 2542 "No more test zone extensions are allowed") }, 2543 /* R */ 2544 { SST(0x73, 0x00, SS_RDEF, 2545 "CD control error") }, 2546 /* R */ 2547 { SST(0x73, 0x01, SS_RDEF, 2548 "Power calibration area almost full") }, 2549 /* R */ 2550 { SST(0x73, 0x02, SS_FATAL | ENOSPC, 2551 "Power calibration area is full") }, 2552 /* R */ 2553 { SST(0x73, 0x03, SS_RDEF, 2554 "Power calibration area error") }, 2555 /* R */ 2556 { SST(0x73, 0x04, SS_RDEF, 2557 "Program memory area update failure") }, 2558 /* R */ 2559 { SST(0x73, 0x05, SS_RDEF, 2560 "Program memory area is full") }, 2561 /* R */ 2562 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ 2563 "RMA/PMA is almost full") }, 2564 /* R */ 2565 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ 2566 "Current power calibration area almost full") }, 2567 /* R */ 2568 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ 2569 "Current power calibration area is full") }, 2570 /* R */ 2571 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ 2572 "RDZ is full") }, 2573 /* T */ 2574 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ 2575 "Security error") }, 2576 /* T */ 2577 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ 2578 "Unable to decrypt data") }, 2579 /* T */ 2580 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ 2581 "Unencrypted data encountered while decrypting") }, 2582 /* T */ 2583 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ 2584 "Incorrect data encryption key") }, 2585 /* T */ 2586 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ 2587 "Cryptographic integrity validation failed") }, 2588 /* T */ 2589 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ 2590 "Error decrypting data") }, 2591 /* T */ 2592 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ 2593 "Unknown signature verification key") }, 2594 /* T */ 2595 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ 2596 "Encryption parameters not useable") }, 2597 /* DT R M E VF */ 2598 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ 2599 "Digital signature validation failure") }, 2600 /* T */ 2601 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ 2602 "Encryption mode mismatch on read") }, 2603 /* T */ 2604 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ 2605 "Encrypted block not raw read enabled") }, 2606 /* T */ 2607 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ 2608 "Incorrect encryption parameters") }, 2609 /* DT R MAEBKV */ 2610 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ 2611 "Unable to decrypt parameter list") }, 2612 /* T */ 2613 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ 2614 "Encryption algorithm disabled") }, 2615 /* DT R MAEBKV */ 2616 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ 2617 "SA creation parameter value invalid") }, 2618 /* DT R MAEBKV */ 2619 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ 2620 "SA creation parameter value rejected") }, 2621 /* DT R MAEBKV */ 2622 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ 2623 "Invalid SA usage") }, 2624 /* T */ 2625 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ 2626 "Data encryption configuration prevented") }, 2627 /* DT R MAEBKV */ 2628 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ 2629 "SA creation parameter not supported") }, 2630 /* DT R MAEBKV */ 2631 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ 2632 "Authentication failed") }, 2633 /* V */ 2634 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ 2635 "External data encryption key manager access error") }, 2636 /* V */ 2637 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ 2638 "External data encryption key manager error") }, 2639 /* V */ 2640 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ 2641 "External data encryption key not found") }, 2642 /* V */ 2643 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ 2644 "External data encryption request not authorized") }, 2645 /* T */ 2646 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ 2647 "External data encryption control timeout") }, 2648 /* T */ 2649 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ 2650 "External data encryption control error") }, 2651 /* DT R M E V */ 2652 { SST(0x74, 0x71, SS_RDEF, /* XXX TBD */ 2653 "Logical unit access not authorized") }, 2654 /* D */ 2655 { SST(0x74, 0x79, SS_RDEF, /* XXX TBD */ 2656 "Security conflict in translated device") } 2657 }; 2658 2659 const int asc_table_size = sizeof(asc_table)/sizeof(asc_table[0]); 2660 2661 struct asc_key 2662 { 2663 int asc; 2664 int ascq; 2665 }; 2666 2667 static int 2668 ascentrycomp(const void *key, const void *member) 2669 { 2670 int asc; 2671 int ascq; 2672 const struct asc_table_entry *table_entry; 2673 2674 asc = ((const struct asc_key *)key)->asc; 2675 ascq = ((const struct asc_key *)key)->ascq; 2676 table_entry = (const struct asc_table_entry *)member; 2677 2678 if (asc >= table_entry->asc) { 2679 2680 if (asc > table_entry->asc) 2681 return (1); 2682 2683 if (ascq <= table_entry->ascq) { 2684 /* Check for ranges */ 2685 if (ascq == table_entry->ascq 2686 || ((table_entry->action & SSQ_RANGE) != 0 2687 && ascq >= (table_entry - 1)->ascq)) 2688 return (0); 2689 return (-1); 2690 } 2691 return (1); 2692 } 2693 return (-1); 2694 } 2695 2696 static int 2697 senseentrycomp(const void *key, const void *member) 2698 { 2699 int sense_key; 2700 const struct sense_key_table_entry *table_entry; 2701 2702 sense_key = *((const int *)key); 2703 table_entry = (const struct sense_key_table_entry *)member; 2704 2705 if (sense_key >= table_entry->sense_key) { 2706 if (sense_key == table_entry->sense_key) 2707 return (0); 2708 return (1); 2709 } 2710 return (-1); 2711 } 2712 2713 static void 2714 fetchtableentries(int sense_key, int asc, int ascq, 2715 struct scsi_inquiry_data *inq_data, 2716 const struct sense_key_table_entry **sense_entry, 2717 const struct asc_table_entry **asc_entry) 2718 { 2719 caddr_t match; 2720 const struct asc_table_entry *asc_tables[2]; 2721 const struct sense_key_table_entry *sense_tables[2]; 2722 struct asc_key asc_ascq; 2723 size_t asc_tables_size[2]; 2724 size_t sense_tables_size[2]; 2725 int num_asc_tables; 2726 int num_sense_tables; 2727 int i; 2728 2729 /* Default to failure */ 2730 *sense_entry = NULL; 2731 *asc_entry = NULL; 2732 match = NULL; 2733 if (inq_data != NULL) 2734 match = cam_quirkmatch((caddr_t)inq_data, 2735 (caddr_t)sense_quirk_table, 2736 sense_quirk_table_size, 2737 sizeof(*sense_quirk_table), 2738 scsi_inquiry_match); 2739 2740 if (match != NULL) { 2741 struct scsi_sense_quirk_entry *quirk; 2742 2743 quirk = (struct scsi_sense_quirk_entry *)match; 2744 asc_tables[0] = quirk->asc_info; 2745 asc_tables_size[0] = quirk->num_ascs; 2746 asc_tables[1] = asc_table; 2747 asc_tables_size[1] = asc_table_size; 2748 num_asc_tables = 2; 2749 sense_tables[0] = quirk->sense_key_info; 2750 sense_tables_size[0] = quirk->num_sense_keys; 2751 sense_tables[1] = sense_key_table; 2752 sense_tables_size[1] = sense_key_table_size; 2753 num_sense_tables = 2; 2754 } else { 2755 asc_tables[0] = asc_table; 2756 asc_tables_size[0] = asc_table_size; 2757 num_asc_tables = 1; 2758 sense_tables[0] = sense_key_table; 2759 sense_tables_size[0] = sense_key_table_size; 2760 num_sense_tables = 1; 2761 } 2762 2763 asc_ascq.asc = asc; 2764 asc_ascq.ascq = ascq; 2765 for (i = 0; i < num_asc_tables; i++) { 2766 void *found_entry; 2767 2768 found_entry = bsearch(&asc_ascq, asc_tables[i], 2769 asc_tables_size[i], 2770 sizeof(**asc_tables), 2771 ascentrycomp); 2772 2773 if (found_entry) { 2774 *asc_entry = (struct asc_table_entry *)found_entry; 2775 break; 2776 } 2777 } 2778 2779 for (i = 0; i < num_sense_tables; i++) { 2780 void *found_entry; 2781 2782 found_entry = bsearch(&sense_key, sense_tables[i], 2783 sense_tables_size[i], 2784 sizeof(**sense_tables), 2785 senseentrycomp); 2786 2787 if (found_entry) { 2788 *sense_entry = 2789 (struct sense_key_table_entry *)found_entry; 2790 break; 2791 } 2792 } 2793 } 2794 2795 void 2796 scsi_sense_desc(int sense_key, int asc, int ascq, 2797 struct scsi_inquiry_data *inq_data, 2798 const char **sense_key_desc, const char **asc_desc) 2799 { 2800 const struct asc_table_entry *asc_entry; 2801 const struct sense_key_table_entry *sense_entry; 2802 2803 fetchtableentries(sense_key, asc, ascq, 2804 inq_data, 2805 &sense_entry, 2806 &asc_entry); 2807 2808 if (sense_entry != NULL) 2809 *sense_key_desc = sense_entry->desc; 2810 else 2811 *sense_key_desc = "Invalid Sense Key"; 2812 2813 if (asc_entry != NULL) 2814 *asc_desc = asc_entry->desc; 2815 else if (asc >= 0x80 && asc <= 0xff) 2816 *asc_desc = "Vendor Specific ASC"; 2817 else if (ascq >= 0x80 && ascq <= 0xff) 2818 *asc_desc = "Vendor Specific ASCQ"; 2819 else 2820 *asc_desc = "Reserved ASC/ASCQ pair"; 2821 } 2822 2823 /* 2824 * Given sense and device type information, return the appropriate action. 2825 * If we do not understand the specific error as identified by the ASC/ASCQ 2826 * pair, fall back on the more generic actions derived from the sense key. 2827 */ 2828 scsi_sense_action 2829 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, 2830 u_int32_t sense_flags) 2831 { 2832 const struct asc_table_entry *asc_entry; 2833 const struct sense_key_table_entry *sense_entry; 2834 int error_code, sense_key, asc, ascq; 2835 scsi_sense_action action; 2836 2837 scsi_extract_sense_len(&csio->sense_data, csio->sense_len - 2838 csio->sense_resid, &error_code, 2839 &sense_key, &asc, &ascq, /*show_errors*/ 1); 2840 2841 if ((error_code == SSD_DEFERRED_ERROR) 2842 || (error_code == SSD_DESC_DEFERRED_ERROR)) { 2843 /* 2844 * XXX dufault@FreeBSD.org 2845 * This error doesn't relate to the command associated 2846 * with this request sense. A deferred error is an error 2847 * for a command that has already returned GOOD status 2848 * (see SCSI2 8.2.14.2). 2849 * 2850 * By my reading of that section, it looks like the current 2851 * command has been cancelled, we should now clean things up 2852 * (hopefully recovering any lost data) and then retry the 2853 * current command. There are two easy choices, both wrong: 2854 * 2855 * 1. Drop through (like we had been doing), thus treating 2856 * this as if the error were for the current command and 2857 * return and stop the current command. 2858 * 2859 * 2. Issue a retry (like I made it do) thus hopefully 2860 * recovering the current transfer, and ignoring the 2861 * fact that we've dropped a command. 2862 * 2863 * These should probably be handled in a device specific 2864 * sense handler or punted back up to a user mode daemon 2865 */ 2866 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 2867 } else { 2868 fetchtableentries(sense_key, asc, ascq, 2869 inq_data, 2870 &sense_entry, 2871 &asc_entry); 2872 2873 /* 2874 * Override the 'No additional Sense' entry (0,0) 2875 * with the error action of the sense key. 2876 */ 2877 if (asc_entry != NULL 2878 && (asc != 0 || ascq != 0)) 2879 action = asc_entry->action; 2880 else if (sense_entry != NULL) 2881 action = sense_entry->action; 2882 else 2883 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 2884 2885 if (sense_key == SSD_KEY_RECOVERED_ERROR) { 2886 /* 2887 * The action succeeded but the device wants 2888 * the user to know that some recovery action 2889 * was required. 2890 */ 2891 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); 2892 action |= SS_NOP|SSQ_PRINT_SENSE; 2893 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { 2894 if ((sense_flags & SF_QUIET_IR) != 0) 2895 action &= ~SSQ_PRINT_SENSE; 2896 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { 2897 if ((sense_flags & SF_RETRY_UA) != 0 2898 && (action & SS_MASK) == SS_FAIL) { 2899 action &= ~(SS_MASK|SSQ_MASK); 2900 action |= SS_RETRY|SSQ_DECREMENT_COUNT| 2901 SSQ_PRINT_SENSE; 2902 } 2903 } 2904 } 2905 #ifdef _KERNEL 2906 if (bootverbose) 2907 sense_flags |= SF_PRINT_ALWAYS; 2908 #endif 2909 if ((sense_flags & SF_PRINT_ALWAYS) != 0) 2910 action |= SSQ_PRINT_SENSE; 2911 else if ((sense_flags & SF_NO_PRINT) != 0) 2912 action &= ~SSQ_PRINT_SENSE; 2913 2914 return (action); 2915 } 2916 2917 char * 2918 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len) 2919 { 2920 u_int8_t cdb_len; 2921 int i; 2922 2923 if (cdb_ptr == NULL) 2924 return(""); 2925 2926 /* Silence warnings */ 2927 cdb_len = 0; 2928 2929 /* 2930 * This is taken from the SCSI-3 draft spec. 2931 * (T10/1157D revision 0.3) 2932 * The top 3 bits of an opcode are the group code. The next 5 bits 2933 * are the command code. 2934 * Group 0: six byte commands 2935 * Group 1: ten byte commands 2936 * Group 2: ten byte commands 2937 * Group 3: reserved 2938 * Group 4: sixteen byte commands 2939 * Group 5: twelve byte commands 2940 * Group 6: vendor specific 2941 * Group 7: vendor specific 2942 */ 2943 switch((*cdb_ptr >> 5) & 0x7) { 2944 case 0: 2945 cdb_len = 6; 2946 break; 2947 case 1: 2948 case 2: 2949 cdb_len = 10; 2950 break; 2951 case 3: 2952 case 6: 2953 case 7: 2954 /* in this case, just print out the opcode */ 2955 cdb_len = 1; 2956 break; 2957 case 4: 2958 cdb_len = 16; 2959 break; 2960 case 5: 2961 cdb_len = 12; 2962 break; 2963 } 2964 *cdb_string = '\0'; 2965 for (i = 0; i < cdb_len; i++) 2966 snprintf(cdb_string + strlen(cdb_string), 2967 len - strlen(cdb_string), "%x ", cdb_ptr[i]); 2968 2969 return(cdb_string); 2970 } 2971 2972 const char * 2973 scsi_status_string(struct ccb_scsiio *csio) 2974 { 2975 switch(csio->scsi_status) { 2976 case SCSI_STATUS_OK: 2977 return("OK"); 2978 case SCSI_STATUS_CHECK_COND: 2979 return("Check Condition"); 2980 case SCSI_STATUS_BUSY: 2981 return("Busy"); 2982 case SCSI_STATUS_INTERMED: 2983 return("Intermediate"); 2984 case SCSI_STATUS_INTERMED_COND_MET: 2985 return("Intermediate-Condition Met"); 2986 case SCSI_STATUS_RESERV_CONFLICT: 2987 return("Reservation Conflict"); 2988 case SCSI_STATUS_CMD_TERMINATED: 2989 return("Command Terminated"); 2990 case SCSI_STATUS_QUEUE_FULL: 2991 return("Queue Full"); 2992 case SCSI_STATUS_ACA_ACTIVE: 2993 return("ACA Active"); 2994 case SCSI_STATUS_TASK_ABORTED: 2995 return("Task Aborted"); 2996 default: { 2997 static char unkstr[64]; 2998 snprintf(unkstr, sizeof(unkstr), "Unknown %#x", 2999 csio->scsi_status); 3000 return(unkstr); 3001 } 3002 } 3003 } 3004 3005 /* 3006 * scsi_command_string() returns 0 for success and -1 for failure. 3007 */ 3008 #ifdef _KERNEL 3009 int 3010 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) 3011 #else /* !_KERNEL */ 3012 int 3013 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, 3014 struct sbuf *sb) 3015 #endif /* _KERNEL/!_KERNEL */ 3016 { 3017 struct scsi_inquiry_data *inq_data; 3018 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3019 #ifdef _KERNEL 3020 struct ccb_getdev *cgd; 3021 #endif /* _KERNEL */ 3022 3023 #ifdef _KERNEL 3024 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 3025 return(-1); 3026 /* 3027 * Get the device information. 3028 */ 3029 xpt_setup_ccb(&cgd->ccb_h, 3030 csio->ccb_h.path, 3031 CAM_PRIORITY_NORMAL); 3032 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 3033 xpt_action((union ccb *)cgd); 3034 3035 /* 3036 * If the device is unconfigured, just pretend that it is a hard 3037 * drive. scsi_op_desc() needs this. 3038 */ 3039 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 3040 cgd->inq_data.device = T_DIRECT; 3041 3042 inq_data = &cgd->inq_data; 3043 3044 #else /* !_KERNEL */ 3045 3046 inq_data = &device->inq_data; 3047 3048 #endif /* _KERNEL/!_KERNEL */ 3049 3050 if ((csio->ccb_h.flags & CAM_CDB_POINTER) != 0) { 3051 sbuf_printf(sb, "%s. CDB: %s", 3052 scsi_op_desc(csio->cdb_io.cdb_ptr[0], inq_data), 3053 scsi_cdb_string(csio->cdb_io.cdb_ptr, cdb_str, 3054 sizeof(cdb_str))); 3055 } else { 3056 sbuf_printf(sb, "%s. CDB: %s", 3057 scsi_op_desc(csio->cdb_io.cdb_bytes[0], inq_data), 3058 scsi_cdb_string(csio->cdb_io.cdb_bytes, cdb_str, 3059 sizeof(cdb_str))); 3060 } 3061 3062 return(0); 3063 } 3064 3065 /* 3066 * Iterate over sense descriptors. Each descriptor is passed into iter_func(). 3067 * If iter_func() returns 0, list traversal continues. If iter_func() 3068 * returns non-zero, list traversal is stopped. 3069 */ 3070 void 3071 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, 3072 int (*iter_func)(struct scsi_sense_data_desc *sense, 3073 u_int, struct scsi_sense_desc_header *, 3074 void *), void *arg) 3075 { 3076 int cur_pos; 3077 int desc_len; 3078 3079 /* 3080 * First make sure the extra length field is present. 3081 */ 3082 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) 3083 return; 3084 3085 /* 3086 * The length of data actually returned may be different than the 3087 * extra_len recorded in the sturcture. 3088 */ 3089 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); 3090 3091 /* 3092 * Limit this further by the extra length reported, and the maximum 3093 * allowed extra length. 3094 */ 3095 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); 3096 3097 /* 3098 * Subtract the size of the header from the descriptor length. 3099 * This is to ensure that we have at least the header left, so we 3100 * don't have to check that inside the loop. This can wind up 3101 * being a negative value. 3102 */ 3103 desc_len -= sizeof(struct scsi_sense_desc_header); 3104 3105 for (cur_pos = 0; cur_pos < desc_len;) { 3106 struct scsi_sense_desc_header *header; 3107 3108 header = (struct scsi_sense_desc_header *) 3109 &sense->sense_desc[cur_pos]; 3110 3111 /* 3112 * Check to make sure we have the entire descriptor. We 3113 * don't call iter_func() unless we do. 3114 * 3115 * Note that although cur_pos is at the beginning of the 3116 * descriptor, desc_len already has the header length 3117 * subtracted. So the comparison of the length in the 3118 * header (which does not include the header itself) to 3119 * desc_len - cur_pos is correct. 3120 */ 3121 if (header->length > (desc_len - cur_pos)) 3122 break; 3123 3124 if (iter_func(sense, sense_len, header, arg) != 0) 3125 break; 3126 3127 cur_pos += sizeof(*header) + header->length; 3128 } 3129 } 3130 3131 struct scsi_find_desc_info { 3132 uint8_t desc_type; 3133 struct scsi_sense_desc_header *header; 3134 }; 3135 3136 static int 3137 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 3138 struct scsi_sense_desc_header *header, void *arg) 3139 { 3140 struct scsi_find_desc_info *desc_info; 3141 3142 desc_info = (struct scsi_find_desc_info *)arg; 3143 3144 if (header->desc_type == desc_info->desc_type) { 3145 desc_info->header = header; 3146 3147 /* We found the descriptor, tell the iterator to stop. */ 3148 return (1); 3149 } else 3150 return (0); 3151 } 3152 3153 /* 3154 * Given a descriptor type, return a pointer to it if it is in the sense 3155 * data and not truncated. Avoiding truncating sense data will simplify 3156 * things significantly for the caller. 3157 */ 3158 uint8_t * 3159 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, 3160 uint8_t desc_type) 3161 { 3162 struct scsi_find_desc_info desc_info; 3163 3164 desc_info.desc_type = desc_type; 3165 desc_info.header = NULL; 3166 3167 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); 3168 3169 return ((uint8_t *)desc_info.header); 3170 } 3171 3172 /* 3173 * Fill in SCSI sense data with the specified parameters. This routine can 3174 * fill in either fixed or descriptor type sense data. 3175 */ 3176 void 3177 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, 3178 scsi_sense_data_type sense_format, int current_error, 3179 int sense_key, int asc, int ascq, va_list ap) 3180 { 3181 int descriptor_sense; 3182 scsi_sense_elem_type elem_type; 3183 3184 /* 3185 * Determine whether to return fixed or descriptor format sense 3186 * data. If the user specifies SSD_TYPE_NONE for some reason, 3187 * they'll just get fixed sense data. 3188 */ 3189 if (sense_format == SSD_TYPE_DESC) 3190 descriptor_sense = 1; 3191 else 3192 descriptor_sense = 0; 3193 3194 /* 3195 * Zero the sense data, so that we don't pass back any garbage data 3196 * to the user. 3197 */ 3198 memset(sense_data, 0, sizeof(*sense_data)); 3199 3200 if (descriptor_sense != 0) { 3201 struct scsi_sense_data_desc *sense; 3202 3203 sense = (struct scsi_sense_data_desc *)sense_data; 3204 /* 3205 * The descriptor sense format eliminates the use of the 3206 * valid bit. 3207 */ 3208 if (current_error != 0) 3209 sense->error_code = SSD_DESC_CURRENT_ERROR; 3210 else 3211 sense->error_code = SSD_DESC_DEFERRED_ERROR; 3212 sense->sense_key = sense_key; 3213 sense->add_sense_code = asc; 3214 sense->add_sense_code_qual = ascq; 3215 /* 3216 * Start off with no extra length, since the above data 3217 * fits in the standard descriptor sense information. 3218 */ 3219 sense->extra_len = 0; 3220 while ((elem_type = (scsi_sense_elem_type)va_arg(ap, 3221 scsi_sense_elem_type)) != SSD_ELEM_NONE) { 3222 int sense_len, len_to_copy; 3223 uint8_t *data; 3224 3225 if (elem_type >= SSD_ELEM_MAX) { 3226 printf("%s: invalid sense type %d\n", __func__, 3227 elem_type); 3228 break; 3229 } 3230 3231 sense_len = (int)va_arg(ap, int); 3232 len_to_copy = MIN(sense_len, SSD_EXTRA_MAX - 3233 sense->extra_len); 3234 data = (uint8_t *)va_arg(ap, uint8_t *); 3235 3236 /* 3237 * We've already consumed the arguments for this one. 3238 */ 3239 if (elem_type == SSD_ELEM_SKIP) 3240 continue; 3241 3242 switch (elem_type) { 3243 case SSD_ELEM_DESC: { 3244 3245 /* 3246 * This is a straight descriptor. All we 3247 * need to do is copy the data in. 3248 */ 3249 bcopy(data, &sense->sense_desc[ 3250 sense->extra_len], len_to_copy); 3251 sense->extra_len += len_to_copy; 3252 break; 3253 } 3254 case SSD_ELEM_SKS: { 3255 struct scsi_sense_sks sks; 3256 3257 bzero(&sks, sizeof(sks)); 3258 3259 /* 3260 * This is already-formatted sense key 3261 * specific data. We just need to fill out 3262 * the header and copy everything in. 3263 */ 3264 bcopy(data, &sks.sense_key_spec, 3265 MIN(len_to_copy, 3266 sizeof(sks.sense_key_spec))); 3267 3268 sks.desc_type = SSD_DESC_SKS; 3269 sks.length = sizeof(sks) - 3270 offsetof(struct scsi_sense_sks, reserved1); 3271 bcopy(&sks,&sense->sense_desc[sense->extra_len], 3272 sizeof(sks)); 3273 sense->extra_len += sizeof(sks); 3274 break; 3275 } 3276 case SSD_ELEM_INFO: 3277 case SSD_ELEM_COMMAND: { 3278 struct scsi_sense_command cmd; 3279 struct scsi_sense_info info; 3280 uint8_t *data_dest; 3281 uint8_t *descriptor; 3282 int descriptor_size, i, copy_len; 3283 3284 bzero(&cmd, sizeof(cmd)); 3285 bzero(&info, sizeof(info)); 3286 3287 /* 3288 * Command or information data. The 3289 * operate in pretty much the same way. 3290 */ 3291 if (elem_type == SSD_ELEM_COMMAND) { 3292 len_to_copy = MIN(len_to_copy, 3293 sizeof(cmd.command_info)); 3294 descriptor = (uint8_t *)&cmd; 3295 descriptor_size = sizeof(cmd); 3296 data_dest =(uint8_t *)&cmd.command_info; 3297 cmd.desc_type = SSD_DESC_COMMAND; 3298 cmd.length = sizeof(cmd) - 3299 offsetof(struct scsi_sense_command, 3300 reserved); 3301 } else { 3302 len_to_copy = MIN(len_to_copy, 3303 sizeof(info.info)); 3304 descriptor = (uint8_t *)&info; 3305 descriptor_size = sizeof(cmd); 3306 data_dest = (uint8_t *)&info.info; 3307 info.desc_type = SSD_DESC_INFO; 3308 info.byte2 = SSD_INFO_VALID; 3309 info.length = sizeof(info) - 3310 offsetof(struct scsi_sense_info, 3311 byte2); 3312 } 3313 3314 /* 3315 * Copy this in reverse because the spec 3316 * (SPC-4) says that when 4 byte quantities 3317 * are stored in this 8 byte field, the 3318 * first four bytes shall be 0. 3319 * 3320 * So we fill the bytes in from the end, and 3321 * if we have less than 8 bytes to copy, 3322 * the initial, most significant bytes will 3323 * be 0. 3324 */ 3325 for (i = sense_len - 1; i >= 0 && 3326 len_to_copy > 0; i--, len_to_copy--) 3327 data_dest[len_to_copy - 1] = data[i]; 3328 3329 /* 3330 * This calculation looks much like the 3331 * initial len_to_copy calculation, but 3332 * we have to do it again here, because 3333 * we're looking at a larger amount that 3334 * may or may not fit. It's not only the 3335 * data the user passed in, but also the 3336 * rest of the descriptor. 3337 */ 3338 copy_len = MIN(descriptor_size, 3339 SSD_EXTRA_MAX - sense->extra_len); 3340 bcopy(descriptor, &sense->sense_desc[ 3341 sense->extra_len], copy_len); 3342 sense->extra_len += copy_len; 3343 break; 3344 } 3345 case SSD_ELEM_FRU: { 3346 struct scsi_sense_fru fru; 3347 int copy_len; 3348 3349 bzero(&fru, sizeof(fru)); 3350 3351 fru.desc_type = SSD_DESC_FRU; 3352 fru.length = sizeof(fru) - 3353 offsetof(struct scsi_sense_fru, reserved); 3354 fru.fru = *data; 3355 3356 copy_len = MIN(sizeof(fru), SSD_EXTRA_MAX - 3357 sense->extra_len); 3358 bcopy(&fru, &sense->sense_desc[ 3359 sense->extra_len], copy_len); 3360 sense->extra_len += copy_len; 3361 break; 3362 } 3363 case SSD_ELEM_STREAM: { 3364 struct scsi_sense_stream stream_sense; 3365 int copy_len; 3366 3367 bzero(&stream_sense, sizeof(stream_sense)); 3368 stream_sense.desc_type = SSD_DESC_STREAM; 3369 stream_sense.length = sizeof(stream_sense) - 3370 offsetof(struct scsi_sense_stream, reserved); 3371 stream_sense.byte3 = *data; 3372 3373 copy_len = MIN(sizeof(stream_sense), 3374 SSD_EXTRA_MAX - sense->extra_len); 3375 bcopy(&stream_sense, &sense->sense_desc[ 3376 sense->extra_len], copy_len); 3377 sense->extra_len += copy_len; 3378 break; 3379 } 3380 default: 3381 /* 3382 * We shouldn't get here, but if we do, do 3383 * nothing. We've already consumed the 3384 * arguments above. 3385 */ 3386 break; 3387 } 3388 } 3389 } else { 3390 struct scsi_sense_data_fixed *sense; 3391 3392 sense = (struct scsi_sense_data_fixed *)sense_data; 3393 3394 if (current_error != 0) 3395 sense->error_code = SSD_CURRENT_ERROR; 3396 else 3397 sense->error_code = SSD_DEFERRED_ERROR; 3398 3399 sense->flags = sense_key; 3400 sense->add_sense_code = asc; 3401 sense->add_sense_code_qual = ascq; 3402 /* 3403 * We've set the ASC and ASCQ, so we have 6 more bytes of 3404 * valid data. If we wind up setting any of the other 3405 * fields, we'll bump this to 10 extra bytes. 3406 */ 3407 sense->extra_len = 6; 3408 3409 while ((elem_type = (scsi_sense_elem_type)va_arg(ap, 3410 scsi_sense_elem_type)) != SSD_ELEM_NONE) { 3411 int sense_len, len_to_copy; 3412 uint8_t *data; 3413 3414 if (elem_type >= SSD_ELEM_MAX) { 3415 printf("%s: invalid sense type %d\n", __func__, 3416 elem_type); 3417 break; 3418 } 3419 /* 3420 * If we get in here, just bump the extra length to 3421 * 10 bytes. That will encompass anything we're 3422 * going to set here. 3423 */ 3424 sense->extra_len = 10; 3425 sense_len = (int)va_arg(ap, int); 3426 len_to_copy = MIN(sense_len, SSD_EXTRA_MAX - 3427 sense->extra_len); 3428 data = (uint8_t *)va_arg(ap, uint8_t *); 3429 3430 switch (elem_type) { 3431 case SSD_ELEM_SKS: 3432 /* 3433 * The user passed in pre-formatted sense 3434 * key specific data. 3435 */ 3436 bcopy(data, &sense->sense_key_spec[0], 3437 MIN(sizeof(sense->sense_key_spec), 3438 sense_len)); 3439 break; 3440 case SSD_ELEM_INFO: 3441 case SSD_ELEM_COMMAND: { 3442 uint8_t *data_dest; 3443 int i; 3444 3445 if (elem_type == SSD_ELEM_COMMAND) 3446 data_dest = &sense->cmd_spec_info[0]; 3447 else { 3448 data_dest = &sense->info[0]; 3449 /* 3450 * We're setting the info field, so 3451 * set the valid bit. 3452 */ 3453 sense->error_code |= SSD_ERRCODE_VALID; 3454 } 3455 3456 /* 3457 * Copy this in reverse so that if we have 3458 * less than 4 bytes to fill, the least 3459 * significant bytes will be at the end. 3460 * If we have more than 4 bytes, only the 3461 * least significant bytes will be included. 3462 */ 3463 for (i = sense_len - 1; i >= 0 && 3464 len_to_copy > 0; i--, len_to_copy--) 3465 data_dest[len_to_copy - 1] = data[i]; 3466 3467 break; 3468 } 3469 case SSD_ELEM_FRU: 3470 sense->fru = *data; 3471 break; 3472 case SSD_ELEM_STREAM: 3473 sense->flags |= *data; 3474 break; 3475 case SSD_ELEM_DESC: 3476 default: 3477 3478 /* 3479 * If the user passes in descriptor sense, 3480 * we can't handle that in fixed format. 3481 * So just skip it, and any unknown argument 3482 * types. 3483 */ 3484 break; 3485 } 3486 } 3487 } 3488 } 3489 3490 void 3491 scsi_set_sense_data(struct scsi_sense_data *sense_data, 3492 scsi_sense_data_type sense_format, int current_error, 3493 int sense_key, int asc, int ascq, ...) 3494 { 3495 va_list ap; 3496 3497 va_start(ap, ascq); 3498 scsi_set_sense_data_va(sense_data, sense_format, current_error, 3499 sense_key, asc, ascq, ap); 3500 va_end(ap); 3501 } 3502 3503 /* 3504 * Get sense information for three similar sense data types. 3505 */ 3506 int 3507 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, 3508 uint8_t info_type, uint64_t *info, int64_t *signed_info) 3509 { 3510 scsi_sense_data_type sense_type; 3511 3512 if (sense_len == 0) 3513 goto bailout; 3514 3515 sense_type = scsi_sense_type(sense_data); 3516 3517 switch (sense_type) { 3518 case SSD_TYPE_DESC: { 3519 struct scsi_sense_data_desc *sense; 3520 uint8_t *desc; 3521 3522 sense = (struct scsi_sense_data_desc *)sense_data; 3523 3524 desc = scsi_find_desc(sense, sense_len, info_type); 3525 if (desc == NULL) 3526 goto bailout; 3527 3528 switch (info_type) { 3529 case SSD_DESC_INFO: { 3530 struct scsi_sense_info *info_desc; 3531 3532 info_desc = (struct scsi_sense_info *)desc; 3533 *info = scsi_8btou64(info_desc->info); 3534 if (signed_info != NULL) 3535 *signed_info = *info; 3536 break; 3537 } 3538 case SSD_DESC_COMMAND: { 3539 struct scsi_sense_command *cmd_desc; 3540 3541 cmd_desc = (struct scsi_sense_command *)desc; 3542 3543 *info = scsi_8btou64(cmd_desc->command_info); 3544 if (signed_info != NULL) 3545 *signed_info = *info; 3546 break; 3547 } 3548 case SSD_DESC_FRU: { 3549 struct scsi_sense_fru *fru_desc; 3550 3551 fru_desc = (struct scsi_sense_fru *)desc; 3552 3553 *info = fru_desc->fru; 3554 if (signed_info != NULL) 3555 *signed_info = (int8_t)fru_desc->fru; 3556 break; 3557 } 3558 default: 3559 goto bailout; 3560 break; 3561 } 3562 break; 3563 } 3564 case SSD_TYPE_FIXED: { 3565 struct scsi_sense_data_fixed *sense; 3566 3567 sense = (struct scsi_sense_data_fixed *)sense_data; 3568 3569 switch (info_type) { 3570 case SSD_DESC_INFO: { 3571 uint32_t info_val; 3572 3573 if ((sense->error_code & SSD_ERRCODE_VALID) == 0) 3574 goto bailout; 3575 3576 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) 3577 goto bailout; 3578 3579 info_val = scsi_4btoul(sense->info); 3580 3581 *info = info_val; 3582 if (signed_info != NULL) 3583 *signed_info = (int32_t)info_val; 3584 break; 3585 } 3586 case SSD_DESC_COMMAND: { 3587 uint32_t cmd_val; 3588 3589 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, 3590 cmd_spec_info) == 0) 3591 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) 3592 goto bailout; 3593 3594 cmd_val = scsi_4btoul(sense->cmd_spec_info); 3595 if (cmd_val == 0) 3596 goto bailout; 3597 3598 *info = cmd_val; 3599 if (signed_info != NULL) 3600 *signed_info = (int32_t)cmd_val; 3601 break; 3602 } 3603 case SSD_DESC_FRU: 3604 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) 3605 || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) 3606 goto bailout; 3607 3608 if (sense->fru == 0) 3609 goto bailout; 3610 3611 *info = sense->fru; 3612 if (signed_info != NULL) 3613 *signed_info = (int8_t)sense->fru; 3614 break; 3615 default: 3616 goto bailout; 3617 break; 3618 } 3619 break; 3620 } 3621 default: 3622 goto bailout; 3623 break; 3624 } 3625 3626 return (0); 3627 bailout: 3628 return (1); 3629 } 3630 3631 int 3632 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) 3633 { 3634 scsi_sense_data_type sense_type; 3635 3636 if (sense_len == 0) 3637 goto bailout; 3638 3639 sense_type = scsi_sense_type(sense_data); 3640 3641 switch (sense_type) { 3642 case SSD_TYPE_DESC: { 3643 struct scsi_sense_data_desc *sense; 3644 struct scsi_sense_sks *desc; 3645 3646 sense = (struct scsi_sense_data_desc *)sense_data; 3647 3648 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, 3649 SSD_DESC_SKS); 3650 if (desc == NULL) 3651 goto bailout; 3652 3653 /* 3654 * No need to check the SKS valid bit for descriptor sense. 3655 * If the descriptor is present, it is valid. 3656 */ 3657 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); 3658 break; 3659 } 3660 case SSD_TYPE_FIXED: { 3661 struct scsi_sense_data_fixed *sense; 3662 3663 sense = (struct scsi_sense_data_fixed *)sense_data; 3664 3665 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) 3666 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) 3667 goto bailout; 3668 3669 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) 3670 goto bailout; 3671 3672 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); 3673 break; 3674 } 3675 default: 3676 goto bailout; 3677 break; 3678 } 3679 return (0); 3680 bailout: 3681 return (1); 3682 } 3683 3684 /* 3685 * Provide a common interface for fixed and descriptor sense to detect 3686 * whether we have block-specific sense information. It is clear by the 3687 * presence of the block descriptor in descriptor mode, but we have to 3688 * infer from the inquiry data and ILI bit in fixed mode. 3689 */ 3690 int 3691 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, 3692 struct scsi_inquiry_data *inq_data, uint8_t *block_bits) 3693 { 3694 scsi_sense_data_type sense_type; 3695 3696 if (inq_data != NULL) { 3697 switch (SID_TYPE(inq_data)) { 3698 case T_DIRECT: 3699 case T_RBC: 3700 break; 3701 default: 3702 goto bailout; 3703 break; 3704 } 3705 } 3706 3707 sense_type = scsi_sense_type(sense_data); 3708 3709 switch (sense_type) { 3710 case SSD_TYPE_DESC: { 3711 struct scsi_sense_data_desc *sense; 3712 struct scsi_sense_block *block; 3713 3714 sense = (struct scsi_sense_data_desc *)sense_data; 3715 3716 block = (struct scsi_sense_block *)scsi_find_desc(sense, 3717 sense_len, SSD_DESC_BLOCK); 3718 if (block == NULL) 3719 goto bailout; 3720 3721 *block_bits = block->byte3; 3722 break; 3723 } 3724 case SSD_TYPE_FIXED: { 3725 struct scsi_sense_data_fixed *sense; 3726 3727 sense = (struct scsi_sense_data_fixed *)sense_data; 3728 3729 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 3730 goto bailout; 3731 3732 if ((sense->flags & SSD_ILI) == 0) 3733 goto bailout; 3734 3735 *block_bits = sense->flags & SSD_ILI; 3736 break; 3737 } 3738 default: 3739 goto bailout; 3740 break; 3741 } 3742 return (0); 3743 bailout: 3744 return (1); 3745 } 3746 3747 int 3748 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, 3749 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) 3750 { 3751 scsi_sense_data_type sense_type; 3752 3753 if (inq_data != NULL) { 3754 switch (SID_TYPE(inq_data)) { 3755 case T_SEQUENTIAL: 3756 break; 3757 default: 3758 goto bailout; 3759 break; 3760 } 3761 } 3762 3763 sense_type = scsi_sense_type(sense_data); 3764 3765 switch (sense_type) { 3766 case SSD_TYPE_DESC: { 3767 struct scsi_sense_data_desc *sense; 3768 struct scsi_sense_stream *stream; 3769 3770 sense = (struct scsi_sense_data_desc *)sense_data; 3771 3772 stream = (struct scsi_sense_stream *)scsi_find_desc(sense, 3773 sense_len, SSD_DESC_STREAM); 3774 if (stream == NULL) 3775 goto bailout; 3776 3777 *stream_bits = stream->byte3; 3778 break; 3779 } 3780 case SSD_TYPE_FIXED: { 3781 struct scsi_sense_data_fixed *sense; 3782 3783 sense = (struct scsi_sense_data_fixed *)sense_data; 3784 3785 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 3786 goto bailout; 3787 3788 if ((sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK)) == 0) 3789 goto bailout; 3790 3791 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); 3792 break; 3793 } 3794 default: 3795 goto bailout; 3796 break; 3797 } 3798 return (0); 3799 bailout: 3800 return (1); 3801 } 3802 3803 void 3804 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 3805 struct scsi_inquiry_data *inq_data, uint64_t info) 3806 { 3807 sbuf_printf(sb, "Info: %#jx", info); 3808 } 3809 3810 void 3811 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 3812 struct scsi_inquiry_data *inq_data, uint64_t csi) 3813 { 3814 sbuf_printf(sb, "Command Specific Info: %#jx", csi); 3815 } 3816 3817 3818 void 3819 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) 3820 { 3821 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", 3822 (progress * 100) / SSD_SKS_PROGRESS_DENOM, 3823 progress, SSD_SKS_PROGRESS_DENOM); 3824 } 3825 3826 /* 3827 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. 3828 */ 3829 int 3830 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) 3831 { 3832 if ((sks[0] & SSD_SKS_VALID) == 0) 3833 return (1); 3834 3835 switch (sense_key) { 3836 case SSD_KEY_ILLEGAL_REQUEST: { 3837 struct scsi_sense_sks_field *field; 3838 int bad_command; 3839 char tmpstr[40]; 3840 3841 /*Field Pointer*/ 3842 field = (struct scsi_sense_sks_field *)sks; 3843 3844 if (field->byte0 & SSD_SKS_FIELD_CMD) 3845 bad_command = 1; 3846 else 3847 bad_command = 0; 3848 3849 tmpstr[0] = '\0'; 3850 3851 /* Bit pointer is valid */ 3852 if (field->byte0 & SSD_SKS_BPV) 3853 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 3854 field->byte0 & SSD_SKS_BIT_VALUE); 3855 3856 sbuf_printf(sb, "%s byte %d %sis invalid", 3857 bad_command ? "Command" : "Data", 3858 scsi_2btoul(field->field), tmpstr); 3859 break; 3860 } 3861 case SSD_KEY_UNIT_ATTENTION: { 3862 struct scsi_sense_sks_overflow *overflow; 3863 3864 overflow = (struct scsi_sense_sks_overflow *)sks; 3865 3866 /*UA Condition Queue Overflow*/ 3867 sbuf_printf(sb, "Unit Attention Condition Queue %s", 3868 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? 3869 "Overflowed" : "Did Not Overflow??"); 3870 break; 3871 } 3872 case SSD_KEY_RECOVERED_ERROR: 3873 case SSD_KEY_HARDWARE_ERROR: 3874 case SSD_KEY_MEDIUM_ERROR: { 3875 struct scsi_sense_sks_retry *retry; 3876 3877 /*Actual Retry Count*/ 3878 retry = (struct scsi_sense_sks_retry *)sks; 3879 3880 sbuf_printf(sb, "Actual Retry Count: %d", 3881 scsi_2btoul(retry->actual_retry_count)); 3882 break; 3883 } 3884 case SSD_KEY_NO_SENSE: 3885 case SSD_KEY_NOT_READY: { 3886 struct scsi_sense_sks_progress *progress; 3887 int progress_val; 3888 3889 /*Progress Indication*/ 3890 progress = (struct scsi_sense_sks_progress *)sks; 3891 progress_val = scsi_2btoul(progress->progress); 3892 3893 scsi_progress_sbuf(sb, progress_val); 3894 break; 3895 } 3896 case SSD_KEY_COPY_ABORTED: { 3897 struct scsi_sense_sks_segment *segment; 3898 char tmpstr[40]; 3899 3900 /*Segment Pointer*/ 3901 segment = (struct scsi_sense_sks_segment *)sks; 3902 3903 tmpstr[0] = '\0'; 3904 3905 if (segment->byte0 & SSD_SKS_SEGMENT_BPV) 3906 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 3907 segment->byte0 & SSD_SKS_SEGMENT_BITPTR); 3908 3909 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & 3910 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", 3911 scsi_2btoul(segment->field), tmpstr); 3912 break; 3913 } 3914 default: 3915 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], 3916 scsi_2btoul(&sks[1])); 3917 break; 3918 } 3919 3920 return (0); 3921 } 3922 3923 void 3924 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) 3925 { 3926 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); 3927 } 3928 3929 void 3930 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits, uint64_t info) 3931 { 3932 int need_comma; 3933 3934 need_comma = 0; 3935 /* 3936 * XXX KDM this needs more descriptive decoding. 3937 */ 3938 if (stream_bits & SSD_DESC_STREAM_FM) { 3939 sbuf_printf(sb, "Filemark"); 3940 need_comma = 1; 3941 } 3942 3943 if (stream_bits & SSD_DESC_STREAM_EOM) { 3944 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); 3945 need_comma = 1; 3946 } 3947 3948 if (stream_bits & SSD_DESC_STREAM_ILI) 3949 sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); 3950 3951 sbuf_printf(sb, ": Info: %#jx", (uintmax_t) info); 3952 } 3953 3954 void 3955 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits, uint64_t info) 3956 { 3957 if (block_bits & SSD_DESC_BLOCK_ILI) 3958 sbuf_printf(sb, "ILI: residue %#jx", (uintmax_t) info); 3959 } 3960 3961 void 3962 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 3963 u_int sense_len, uint8_t *cdb, int cdb_len, 3964 struct scsi_inquiry_data *inq_data, 3965 struct scsi_sense_desc_header *header) 3966 { 3967 struct scsi_sense_info *info; 3968 3969 info = (struct scsi_sense_info *)header; 3970 3971 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); 3972 } 3973 3974 void 3975 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 3976 u_int sense_len, uint8_t *cdb, int cdb_len, 3977 struct scsi_inquiry_data *inq_data, 3978 struct scsi_sense_desc_header *header) 3979 { 3980 struct scsi_sense_command *command; 3981 3982 command = (struct scsi_sense_command *)header; 3983 3984 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, 3985 scsi_8btou64(command->command_info)); 3986 } 3987 3988 void 3989 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 3990 u_int sense_len, uint8_t *cdb, int cdb_len, 3991 struct scsi_inquiry_data *inq_data, 3992 struct scsi_sense_desc_header *header) 3993 { 3994 struct scsi_sense_sks *sks; 3995 int error_code, sense_key, asc, ascq; 3996 3997 sks = (struct scsi_sense_sks *)header; 3998 3999 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4000 &asc, &ascq, /*show_errors*/ 1); 4001 4002 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); 4003 } 4004 4005 void 4006 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4007 u_int sense_len, uint8_t *cdb, int cdb_len, 4008 struct scsi_inquiry_data *inq_data, 4009 struct scsi_sense_desc_header *header) 4010 { 4011 struct scsi_sense_fru *fru; 4012 4013 fru = (struct scsi_sense_fru *)header; 4014 4015 scsi_fru_sbuf(sb, (uint64_t)fru->fru); 4016 } 4017 4018 void 4019 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4020 u_int sense_len, uint8_t *cdb, int cdb_len, 4021 struct scsi_inquiry_data *inq_data, 4022 struct scsi_sense_desc_header *header) 4023 { 4024 struct scsi_sense_stream *stream; 4025 uint64_t info; 4026 4027 stream = (struct scsi_sense_stream *)header; 4028 info = 0; 4029 4030 scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL); 4031 4032 scsi_stream_sbuf(sb, stream->byte3, info); 4033 } 4034 4035 void 4036 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4037 u_int sense_len, uint8_t *cdb, int cdb_len, 4038 struct scsi_inquiry_data *inq_data, 4039 struct scsi_sense_desc_header *header) 4040 { 4041 struct scsi_sense_block *block; 4042 uint64_t info; 4043 4044 block = (struct scsi_sense_block *)header; 4045 info = 0; 4046 4047 scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL); 4048 4049 scsi_block_sbuf(sb, block->byte3, info); 4050 } 4051 4052 void 4053 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4054 u_int sense_len, uint8_t *cdb, int cdb_len, 4055 struct scsi_inquiry_data *inq_data, 4056 struct scsi_sense_desc_header *header) 4057 { 4058 struct scsi_sense_progress *progress; 4059 const char *sense_key_desc; 4060 const char *asc_desc; 4061 int progress_val; 4062 4063 progress = (struct scsi_sense_progress *)header; 4064 4065 /* 4066 * Get descriptions for the sense key, ASC, and ASCQ in the 4067 * progress descriptor. These could be different than the values 4068 * in the overall sense data. 4069 */ 4070 scsi_sense_desc(progress->sense_key, progress->add_sense_code, 4071 progress->add_sense_code_qual, inq_data, 4072 &sense_key_desc, &asc_desc); 4073 4074 progress_val = scsi_2btoul(progress->progress); 4075 4076 /* 4077 * The progress indicator is for the operation described by the 4078 * sense key, ASC, and ASCQ in the descriptor. 4079 */ 4080 sbuf_cat(sb, sense_key_desc); 4081 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, 4082 progress->add_sense_code_qual, asc_desc); 4083 scsi_progress_sbuf(sb, progress_val); 4084 } 4085 4086 /* 4087 * Generic sense descriptor printing routine. This is used when we have 4088 * not yet implemented a specific printing routine for this descriptor. 4089 */ 4090 void 4091 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4092 u_int sense_len, uint8_t *cdb, int cdb_len, 4093 struct scsi_inquiry_data *inq_data, 4094 struct scsi_sense_desc_header *header) 4095 { 4096 int i; 4097 uint8_t *buf_ptr; 4098 4099 sbuf_printf(sb, "Descriptor %#x:", header->desc_type); 4100 4101 buf_ptr = (uint8_t *)&header[1]; 4102 4103 for (i = 0; i < header->length; i++, buf_ptr++) 4104 sbuf_printf(sb, " %02x", *buf_ptr); 4105 } 4106 4107 /* 4108 * Keep this list in numeric order. This speeds the array traversal. 4109 */ 4110 struct scsi_sense_desc_printer { 4111 uint8_t desc_type; 4112 /* 4113 * The function arguments here are the superset of what is needed 4114 * to print out various different descriptors. Command and 4115 * information descriptors need inquiry data and command type. 4116 * Sense key specific descriptors need the sense key. 4117 * 4118 * The sense, cdb, and inquiry data arguments may be NULL, but the 4119 * information printed may not be fully decoded as a result. 4120 */ 4121 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, 4122 u_int sense_len, uint8_t *cdb, int cdb_len, 4123 struct scsi_inquiry_data *inq_data, 4124 struct scsi_sense_desc_header *header); 4125 } scsi_sense_printers[] = { 4126 {SSD_DESC_INFO, scsi_sense_info_sbuf}, 4127 {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, 4128 {SSD_DESC_SKS, scsi_sense_sks_sbuf}, 4129 {SSD_DESC_FRU, scsi_sense_fru_sbuf}, 4130 {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, 4131 {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, 4132 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf} 4133 }; 4134 4135 void 4136 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4137 u_int sense_len, uint8_t *cdb, int cdb_len, 4138 struct scsi_inquiry_data *inq_data, 4139 struct scsi_sense_desc_header *header) 4140 { 4141 int i, found; 4142 4143 for (i = 0, found = 0; i < (sizeof(scsi_sense_printers) / 4144 sizeof(scsi_sense_printers[0])); i++) { 4145 struct scsi_sense_desc_printer *printer; 4146 4147 printer = &scsi_sense_printers[i]; 4148 4149 /* 4150 * The list is sorted, so quit if we've passed our 4151 * descriptor number. 4152 */ 4153 if (printer->desc_type > header->desc_type) 4154 break; 4155 4156 if (printer->desc_type != header->desc_type) 4157 continue; 4158 4159 printer->print_func(sb, sense, sense_len, cdb, cdb_len, 4160 inq_data, header); 4161 4162 return; 4163 } 4164 4165 /* 4166 * No specific printing routine, so use the generic routine. 4167 */ 4168 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, 4169 inq_data, header); 4170 } 4171 4172 scsi_sense_data_type 4173 scsi_sense_type(struct scsi_sense_data *sense_data) 4174 { 4175 switch (sense_data->error_code & SSD_ERRCODE) { 4176 case SSD_DESC_CURRENT_ERROR: 4177 case SSD_DESC_DEFERRED_ERROR: 4178 return (SSD_TYPE_DESC); 4179 break; 4180 case SSD_CURRENT_ERROR: 4181 case SSD_DEFERRED_ERROR: 4182 return (SSD_TYPE_FIXED); 4183 break; 4184 default: 4185 break; 4186 } 4187 4188 return (SSD_TYPE_NONE); 4189 } 4190 4191 struct scsi_print_sense_info { 4192 struct sbuf *sb; 4193 char *path_str; 4194 uint8_t *cdb; 4195 int cdb_len; 4196 struct scsi_inquiry_data *inq_data; 4197 }; 4198 4199 static int 4200 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 4201 struct scsi_sense_desc_header *header, void *arg) 4202 { 4203 struct scsi_print_sense_info *print_info; 4204 4205 print_info = (struct scsi_print_sense_info *)arg; 4206 4207 switch (header->desc_type) { 4208 case SSD_DESC_INFO: 4209 case SSD_DESC_FRU: 4210 case SSD_DESC_COMMAND: 4211 case SSD_DESC_SKS: 4212 case SSD_DESC_BLOCK: 4213 case SSD_DESC_STREAM: 4214 /* 4215 * We have already printed these descriptors, if they are 4216 * present. 4217 */ 4218 break; 4219 default: { 4220 sbuf_printf(print_info->sb, "%s", print_info->path_str); 4221 scsi_sense_desc_sbuf(print_info->sb, 4222 (struct scsi_sense_data *)sense, sense_len, 4223 print_info->cdb, print_info->cdb_len, 4224 print_info->inq_data, header); 4225 sbuf_printf(print_info->sb, "\n"); 4226 break; 4227 } 4228 } 4229 4230 /* 4231 * Tell the iterator that we want to see more descriptors if they 4232 * are present. 4233 */ 4234 return (0); 4235 } 4236 4237 void 4238 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, 4239 struct sbuf *sb, char *path_str, 4240 struct scsi_inquiry_data *inq_data, uint8_t *cdb, 4241 int cdb_len) 4242 { 4243 int error_code, sense_key, asc, ascq; 4244 4245 sbuf_cat(sb, path_str); 4246 4247 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4248 &asc, &ascq, /*show_errors*/ 1); 4249 4250 sbuf_printf(sb, "SCSI sense: "); 4251 switch (error_code) { 4252 case SSD_DEFERRED_ERROR: 4253 case SSD_DESC_DEFERRED_ERROR: 4254 sbuf_printf(sb, "Deferred error: "); 4255 4256 /* FALLTHROUGH */ 4257 case SSD_CURRENT_ERROR: 4258 case SSD_DESC_CURRENT_ERROR: 4259 { 4260 struct scsi_sense_data_desc *desc_sense; 4261 struct scsi_print_sense_info print_info; 4262 const char *sense_key_desc; 4263 const char *asc_desc; 4264 uint8_t sks[3]; 4265 uint64_t val; 4266 int info_valid; 4267 4268 /* 4269 * Get descriptions for the sense key, ASC, and ASCQ. If 4270 * these aren't present in the sense data (i.e. the sense 4271 * data isn't long enough), the -1 values that 4272 * scsi_extract_sense_len() returns will yield default 4273 * or error descriptions. 4274 */ 4275 scsi_sense_desc(sense_key, asc, ascq, inq_data, 4276 &sense_key_desc, &asc_desc); 4277 4278 /* 4279 * We first print the sense key and ASC/ASCQ. 4280 */ 4281 sbuf_cat(sb, sense_key_desc); 4282 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); 4283 4284 /* 4285 * Get the info field if it is valid. 4286 */ 4287 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, 4288 &val, NULL) == 0) 4289 info_valid = 1; 4290 else 4291 info_valid = 0; 4292 4293 if (info_valid != 0) { 4294 uint8_t bits; 4295 4296 /* 4297 * Determine whether we have any block or stream 4298 * device-specific information. 4299 */ 4300 if (scsi_get_block_info(sense, sense_len, inq_data, 4301 &bits) == 0) { 4302 sbuf_cat(sb, path_str); 4303 scsi_block_sbuf(sb, bits, val); 4304 sbuf_printf(sb, "\n"); 4305 } else if (scsi_get_stream_info(sense, sense_len, 4306 inq_data, &bits) == 0) { 4307 sbuf_cat(sb, path_str); 4308 scsi_stream_sbuf(sb, bits, val); 4309 sbuf_printf(sb, "\n"); 4310 } else if (val != 0) { 4311 /* 4312 * The information field can be valid but 0. 4313 * If the block or stream bits aren't set, 4314 * and this is 0, it isn't terribly useful 4315 * to print it out. 4316 */ 4317 sbuf_cat(sb, path_str); 4318 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); 4319 sbuf_printf(sb, "\n"); 4320 } 4321 } 4322 4323 /* 4324 * Print the FRU. 4325 */ 4326 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, 4327 &val, NULL) == 0) { 4328 sbuf_cat(sb, path_str); 4329 scsi_fru_sbuf(sb, val); 4330 sbuf_printf(sb, "\n"); 4331 } 4332 4333 /* 4334 * Print any command-specific information. 4335 */ 4336 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, 4337 &val, NULL) == 0) { 4338 sbuf_cat(sb, path_str); 4339 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); 4340 sbuf_printf(sb, "\n"); 4341 } 4342 4343 /* 4344 * Print out any sense-key-specific information. 4345 */ 4346 if (scsi_get_sks(sense, sense_len, sks) == 0) { 4347 sbuf_cat(sb, path_str); 4348 scsi_sks_sbuf(sb, sense_key, sks); 4349 sbuf_printf(sb, "\n"); 4350 } 4351 4352 /* 4353 * If this is fixed sense, we're done. If we have 4354 * descriptor sense, we might have more information 4355 * available. 4356 */ 4357 if (scsi_sense_type(sense) != SSD_TYPE_DESC) 4358 break; 4359 4360 desc_sense = (struct scsi_sense_data_desc *)sense; 4361 4362 print_info.sb = sb; 4363 print_info.path_str = path_str; 4364 print_info.cdb = cdb; 4365 print_info.cdb_len = cdb_len; 4366 print_info.inq_data = inq_data; 4367 4368 /* 4369 * Print any sense descriptors that we have not already printed. 4370 */ 4371 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, 4372 &print_info); 4373 break; 4374 4375 } 4376 case -1: 4377 /* 4378 * scsi_extract_sense_len() sets values to -1 if the 4379 * show_errors flag is set and they aren't present in the 4380 * sense data. This means that sense_len is 0. 4381 */ 4382 sbuf_printf(sb, "No sense data present\n"); 4383 break; 4384 default: { 4385 sbuf_printf(sb, "Error code 0x%x", error_code); 4386 if (sense->error_code & SSD_ERRCODE_VALID) { 4387 struct scsi_sense_data_fixed *fixed_sense; 4388 4389 fixed_sense = (struct scsi_sense_data_fixed *)sense; 4390 4391 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ 4392 uint32_t info; 4393 4394 info = scsi_4btoul(fixed_sense->info); 4395 4396 sbuf_printf(sb, " at block no. %d (decimal)", 4397 info); 4398 } 4399 } 4400 sbuf_printf(sb, "\n"); 4401 break; 4402 } 4403 } 4404 } 4405 4406 /* 4407 * scsi_sense_sbuf() returns 0 for success and -1 for failure. 4408 */ 4409 #ifdef _KERNEL 4410 int 4411 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, 4412 scsi_sense_string_flags flags) 4413 #else /* !_KERNEL */ 4414 int 4415 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, 4416 struct sbuf *sb, scsi_sense_string_flags flags) 4417 #endif /* _KERNEL/!_KERNEL */ 4418 { 4419 struct scsi_sense_data *sense; 4420 struct scsi_inquiry_data *inq_data; 4421 #ifdef _KERNEL 4422 struct ccb_getdev *cgd; 4423 #endif /* _KERNEL */ 4424 char path_str[64]; 4425 uint8_t *cdb; 4426 4427 #ifndef _KERNEL 4428 if (device == NULL) 4429 return(-1); 4430 #endif /* !_KERNEL */ 4431 if ((csio == NULL) || (sb == NULL)) 4432 return(-1); 4433 4434 /* 4435 * If the CDB is a physical address, we can't deal with it.. 4436 */ 4437 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) 4438 flags &= ~SSS_FLAG_PRINT_COMMAND; 4439 4440 #ifdef _KERNEL 4441 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); 4442 #else /* !_KERNEL */ 4443 cam_path_string(device, path_str, sizeof(path_str)); 4444 #endif /* _KERNEL/!_KERNEL */ 4445 4446 #ifdef _KERNEL 4447 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 4448 return(-1); 4449 /* 4450 * Get the device information. 4451 */ 4452 xpt_setup_ccb(&cgd->ccb_h, 4453 csio->ccb_h.path, 4454 CAM_PRIORITY_NORMAL); 4455 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 4456 xpt_action((union ccb *)cgd); 4457 4458 /* 4459 * If the device is unconfigured, just pretend that it is a hard 4460 * drive. scsi_op_desc() needs this. 4461 */ 4462 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 4463 cgd->inq_data.device = T_DIRECT; 4464 4465 inq_data = &cgd->inq_data; 4466 4467 #else /* !_KERNEL */ 4468 4469 inq_data = &device->inq_data; 4470 4471 #endif /* _KERNEL/!_KERNEL */ 4472 4473 sense = NULL; 4474 4475 if (flags & SSS_FLAG_PRINT_COMMAND) { 4476 4477 sbuf_cat(sb, path_str); 4478 4479 #ifdef _KERNEL 4480 scsi_command_string(csio, sb); 4481 #else /* !_KERNEL */ 4482 scsi_command_string(device, csio, sb); 4483 #endif /* _KERNEL/!_KERNEL */ 4484 sbuf_printf(sb, "\n"); 4485 } 4486 4487 /* 4488 * If the sense data is a physical pointer, forget it. 4489 */ 4490 if (csio->ccb_h.flags & CAM_SENSE_PTR) { 4491 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 4492 #ifdef _KERNEL 4493 xpt_free_ccb((union ccb*)cgd); 4494 #endif /* _KERNEL/!_KERNEL */ 4495 return(-1); 4496 } else { 4497 /* 4498 * bcopy the pointer to avoid unaligned access 4499 * errors on finicky architectures. We don't 4500 * ensure that the sense data is pointer aligned. 4501 */ 4502 bcopy(&csio->sense_data, &sense, 4503 sizeof(struct scsi_sense_data *)); 4504 } 4505 } else { 4506 /* 4507 * If the physical sense flag is set, but the sense pointer 4508 * is not also set, we assume that the user is an idiot and 4509 * return. (Well, okay, it could be that somehow, the 4510 * entire csio is physical, but we would have probably core 4511 * dumped on one of the bogus pointer deferences above 4512 * already.) 4513 */ 4514 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 4515 #ifdef _KERNEL 4516 xpt_free_ccb((union ccb*)cgd); 4517 #endif /* _KERNEL/!_KERNEL */ 4518 return(-1); 4519 } else 4520 sense = &csio->sense_data; 4521 } 4522 4523 if (csio->ccb_h.flags & CAM_CDB_POINTER) 4524 cdb = csio->cdb_io.cdb_ptr; 4525 else 4526 cdb = csio->cdb_io.cdb_bytes; 4527 4528 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, 4529 path_str, inq_data, cdb, csio->cdb_len); 4530 4531 #ifdef _KERNEL 4532 xpt_free_ccb((union ccb*)cgd); 4533 #endif /* _KERNEL/!_KERNEL */ 4534 return(0); 4535 } 4536 4537 4538 4539 #ifdef _KERNEL 4540 char * 4541 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) 4542 #else /* !_KERNEL */ 4543 char * 4544 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, 4545 char *str, int str_len) 4546 #endif /* _KERNEL/!_KERNEL */ 4547 { 4548 struct sbuf sb; 4549 4550 sbuf_new(&sb, str, str_len, 0); 4551 4552 #ifdef _KERNEL 4553 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 4554 #else /* !_KERNEL */ 4555 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 4556 #endif /* _KERNEL/!_KERNEL */ 4557 4558 sbuf_finish(&sb); 4559 4560 return(sbuf_data(&sb)); 4561 } 4562 4563 #ifdef _KERNEL 4564 void 4565 scsi_sense_print(struct ccb_scsiio *csio) 4566 { 4567 struct sbuf sb; 4568 char str[512]; 4569 4570 sbuf_new(&sb, str, sizeof(str), 0); 4571 4572 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 4573 4574 sbuf_finish(&sb); 4575 4576 printf("%s", sbuf_data(&sb)); 4577 } 4578 4579 #else /* !_KERNEL */ 4580 void 4581 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, 4582 FILE *ofile) 4583 { 4584 struct sbuf sb; 4585 char str[512]; 4586 4587 if ((device == NULL) || (csio == NULL) || (ofile == NULL)) 4588 return; 4589 4590 sbuf_new(&sb, str, sizeof(str), 0); 4591 4592 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 4593 4594 sbuf_finish(&sb); 4595 4596 fprintf(ofile, "%s", sbuf_data(&sb)); 4597 } 4598 4599 #endif /* _KERNEL/!_KERNEL */ 4600 4601 /* 4602 * Extract basic sense information. This is backward-compatible with the 4603 * previous implementation. For new implementations, 4604 * scsi_extract_sense_len() is recommended. 4605 */ 4606 void 4607 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, 4608 int *sense_key, int *asc, int *ascq) 4609 { 4610 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, 4611 sense_key, asc, ascq, /*show_errors*/ 0); 4612 } 4613 4614 /* 4615 * Extract basic sense information. If show_errors is set, sense values 4616 * will be set to -1 if they are not present. 4617 */ 4618 void 4619 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, 4620 int *error_code, int *sense_key, int *asc, int *ascq, 4621 int show_errors) 4622 { 4623 /* 4624 * If we have no length, we have no sense. 4625 */ 4626 if (sense_len == 0) { 4627 if (show_errors == 0) { 4628 *error_code = 0; 4629 *sense_key = 0; 4630 *asc = 0; 4631 *ascq = 0; 4632 } else { 4633 *error_code = -1; 4634 *sense_key = -1; 4635 *asc = -1; 4636 *ascq = -1; 4637 } 4638 return; 4639 } 4640 4641 *error_code = sense_data->error_code & SSD_ERRCODE; 4642 4643 switch (*error_code) { 4644 case SSD_DESC_CURRENT_ERROR: 4645 case SSD_DESC_DEFERRED_ERROR: { 4646 struct scsi_sense_data_desc *sense; 4647 4648 sense = (struct scsi_sense_data_desc *)sense_data; 4649 4650 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) 4651 *sense_key = sense->sense_key & SSD_KEY; 4652 else 4653 *sense_key = (show_errors) ? -1 : 0; 4654 4655 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) 4656 *asc = sense->add_sense_code; 4657 else 4658 *asc = (show_errors) ? -1 : 0; 4659 4660 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) 4661 *ascq = sense->add_sense_code_qual; 4662 else 4663 *ascq = (show_errors) ? -1 : 0; 4664 break; 4665 } 4666 case SSD_CURRENT_ERROR: 4667 case SSD_DEFERRED_ERROR: 4668 default: { 4669 struct scsi_sense_data_fixed *sense; 4670 4671 sense = (struct scsi_sense_data_fixed *)sense_data; 4672 4673 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) 4674 *sense_key = sense->flags & SSD_KEY; 4675 else 4676 *sense_key = (show_errors) ? -1 : 0; 4677 4678 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) 4679 && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) 4680 *asc = sense->add_sense_code; 4681 else 4682 *asc = (show_errors) ? -1 : 0; 4683 4684 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) 4685 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) 4686 *ascq = sense->add_sense_code_qual; 4687 else 4688 *ascq = (show_errors) ? -1 : 0; 4689 break; 4690 } 4691 } 4692 } 4693 4694 int 4695 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, 4696 int show_errors) 4697 { 4698 int error_code, sense_key, asc, ascq; 4699 4700 scsi_extract_sense_len(sense_data, sense_len, &error_code, 4701 &sense_key, &asc, &ascq, show_errors); 4702 4703 return (sense_key); 4704 } 4705 4706 int 4707 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, 4708 int show_errors) 4709 { 4710 int error_code, sense_key, asc, ascq; 4711 4712 scsi_extract_sense_len(sense_data, sense_len, &error_code, 4713 &sense_key, &asc, &ascq, show_errors); 4714 4715 return (asc); 4716 } 4717 4718 int 4719 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, 4720 int show_errors) 4721 { 4722 int error_code, sense_key, asc, ascq; 4723 4724 scsi_extract_sense_len(sense_data, sense_len, &error_code, 4725 &sense_key, &asc, &ascq, show_errors); 4726 4727 return (ascq); 4728 } 4729 4730 /* 4731 * This function currently requires at least 36 bytes, or 4732 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this 4733 * function needs more or less data in the future, another length should be 4734 * defined in scsi_all.h to indicate the minimum amount of data necessary 4735 * for this routine to function properly. 4736 */ 4737 void 4738 scsi_print_inquiry(struct scsi_inquiry_data *inq_data) 4739 { 4740 u_int8_t type; 4741 char *dtype, *qtype; 4742 char vendor[16], product[48], revision[16], rstr[4]; 4743 4744 type = SID_TYPE(inq_data); 4745 4746 /* 4747 * Figure out basic device type and qualifier. 4748 */ 4749 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { 4750 qtype = "(vendor-unique qualifier)"; 4751 } else { 4752 switch (SID_QUAL(inq_data)) { 4753 case SID_QUAL_LU_CONNECTED: 4754 qtype = ""; 4755 break; 4756 4757 case SID_QUAL_LU_OFFLINE: 4758 qtype = "(offline)"; 4759 break; 4760 4761 case SID_QUAL_RSVD: 4762 qtype = "(reserved qualifier)"; 4763 break; 4764 default: 4765 case SID_QUAL_BAD_LU: 4766 qtype = "(LUN not supported)"; 4767 break; 4768 } 4769 } 4770 4771 switch (type) { 4772 case T_DIRECT: 4773 dtype = "Direct Access"; 4774 break; 4775 case T_SEQUENTIAL: 4776 dtype = "Sequential Access"; 4777 break; 4778 case T_PRINTER: 4779 dtype = "Printer"; 4780 break; 4781 case T_PROCESSOR: 4782 dtype = "Processor"; 4783 break; 4784 case T_WORM: 4785 dtype = "WORM"; 4786 break; 4787 case T_CDROM: 4788 dtype = "CD-ROM"; 4789 break; 4790 case T_SCANNER: 4791 dtype = "Scanner"; 4792 break; 4793 case T_OPTICAL: 4794 dtype = "Optical"; 4795 break; 4796 case T_CHANGER: 4797 dtype = "Changer"; 4798 break; 4799 case T_COMM: 4800 dtype = "Communication"; 4801 break; 4802 case T_STORARRAY: 4803 dtype = "Storage Array"; 4804 break; 4805 case T_ENCLOSURE: 4806 dtype = "Enclosure Services"; 4807 break; 4808 case T_RBC: 4809 dtype = "Simplified Direct Access"; 4810 break; 4811 case T_OCRW: 4812 dtype = "Optical Card Read/Write"; 4813 break; 4814 case T_OSD: 4815 dtype = "Object-Based Storage"; 4816 break; 4817 case T_ADC: 4818 dtype = "Automation/Drive Interface"; 4819 break; 4820 case T_NODEVICE: 4821 dtype = "Uninstalled"; 4822 break; 4823 default: 4824 dtype = "unknown"; 4825 break; 4826 } 4827 4828 cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor), 4829 sizeof(vendor)); 4830 cam_strvis(product, inq_data->product, sizeof(inq_data->product), 4831 sizeof(product)); 4832 cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision), 4833 sizeof(revision)); 4834 4835 if (SID_ANSI_REV(inq_data) == SCSI_REV_CCS) 4836 bcopy("CCS", rstr, 4); 4837 else 4838 snprintf(rstr, sizeof (rstr), "%d", SID_ANSI_REV(inq_data)); 4839 printf("<%s %s %s> %s %s SCSI-%s device %s\n", 4840 vendor, product, revision, 4841 SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", 4842 dtype, rstr, qtype); 4843 } 4844 4845 /* 4846 * Table of syncrates that don't follow the "divisible by 4" 4847 * rule. This table will be expanded in future SCSI specs. 4848 */ 4849 static struct { 4850 u_int period_factor; 4851 u_int period; /* in 100ths of ns */ 4852 } scsi_syncrates[] = { 4853 { 0x08, 625 }, /* FAST-160 */ 4854 { 0x09, 1250 }, /* FAST-80 */ 4855 { 0x0a, 2500 }, /* FAST-40 40MHz */ 4856 { 0x0b, 3030 }, /* FAST-40 33MHz */ 4857 { 0x0c, 5000 } /* FAST-20 */ 4858 }; 4859 4860 /* 4861 * Return the frequency in kHz corresponding to the given 4862 * sync period factor. 4863 */ 4864 u_int 4865 scsi_calc_syncsrate(u_int period_factor) 4866 { 4867 int i; 4868 int num_syncrates; 4869 4870 /* 4871 * It's a bug if period is zero, but if it is anyway, don't 4872 * die with a divide fault- instead return something which 4873 * 'approximates' async 4874 */ 4875 if (period_factor == 0) { 4876 return (3300); 4877 } 4878 4879 num_syncrates = sizeof(scsi_syncrates) / sizeof(scsi_syncrates[0]); 4880 /* See if the period is in the "exception" table */ 4881 for (i = 0; i < num_syncrates; i++) { 4882 4883 if (period_factor == scsi_syncrates[i].period_factor) { 4884 /* Period in kHz */ 4885 return (100000000 / scsi_syncrates[i].period); 4886 } 4887 } 4888 4889 /* 4890 * Wasn't in the table, so use the standard 4891 * 4 times conversion. 4892 */ 4893 return (10000000 / (period_factor * 4 * 10)); 4894 } 4895 4896 /* 4897 * Return the SCSI sync parameter that corresponsd to 4898 * the passed in period in 10ths of ns. 4899 */ 4900 u_int 4901 scsi_calc_syncparam(u_int period) 4902 { 4903 int i; 4904 int num_syncrates; 4905 4906 if (period == 0) 4907 return (~0); /* Async */ 4908 4909 /* Adjust for exception table being in 100ths. */ 4910 period *= 10; 4911 num_syncrates = sizeof(scsi_syncrates) / sizeof(scsi_syncrates[0]); 4912 /* See if the period is in the "exception" table */ 4913 for (i = 0; i < num_syncrates; i++) { 4914 4915 if (period <= scsi_syncrates[i].period) { 4916 /* Period in 100ths of ns */ 4917 return (scsi_syncrates[i].period_factor); 4918 } 4919 } 4920 4921 /* 4922 * Wasn't in the table, so use the standard 4923 * 1/4 period in ns conversion. 4924 */ 4925 return (period/400); 4926 } 4927 4928 int 4929 scsi_devid_is_naa_ieee_reg(uint8_t *bufp) 4930 { 4931 struct scsi_vpd_id_descriptor *descr; 4932 struct scsi_vpd_id_naa_basic *naa; 4933 4934 descr = (struct scsi_vpd_id_descriptor *)bufp; 4935 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; 4936 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 4937 return 0; 4938 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) 4939 return 0; 4940 if ((naa->naa >> SVPD_ID_NAA_NAA_SHIFT) != SVPD_ID_NAA_IEEE_REG) 4941 return 0; 4942 return 1; 4943 } 4944 4945 int 4946 scsi_devid_is_sas_target(uint8_t *bufp) 4947 { 4948 struct scsi_vpd_id_descriptor *descr; 4949 4950 descr = (struct scsi_vpd_id_descriptor *)bufp; 4951 if (!scsi_devid_is_naa_ieee_reg(bufp)) 4952 return 0; 4953 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ 4954 return 0; 4955 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) 4956 return 0; 4957 return 1; 4958 } 4959 4960 uint8_t * 4961 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, 4962 scsi_devid_checkfn_t ck_fn) 4963 { 4964 struct scsi_vpd_id_descriptor *desc; 4965 uint8_t *page_end; 4966 uint8_t *desc_buf_end; 4967 4968 page_end = (uint8_t *)id + page_len; 4969 if (page_end < id->desc_list) 4970 return (NULL); 4971 4972 desc_buf_end = MIN(id->desc_list + scsi_2btoul(id->length), page_end); 4973 4974 for (desc = (struct scsi_vpd_id_descriptor *)id->desc_list; 4975 desc->identifier <= desc_buf_end 4976 && desc->identifier + desc->length <= desc_buf_end; 4977 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier 4978 + desc->length)) { 4979 4980 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) 4981 return (desc->identifier); 4982 } 4983 4984 return (NULL); 4985 } 4986 4987 void 4988 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, 4989 void (*cbfcnp)(struct cam_periph *, union ccb *), 4990 u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout) 4991 { 4992 struct scsi_test_unit_ready *scsi_cmd; 4993 4994 cam_fill_csio(csio, 4995 retries, 4996 cbfcnp, 4997 CAM_DIR_NONE, 4998 tag_action, 4999 /*data_ptr*/NULL, 5000 /*dxfer_len*/0, 5001 sense_len, 5002 sizeof(*scsi_cmd), 5003 timeout); 5004 5005 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; 5006 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5007 scsi_cmd->opcode = TEST_UNIT_READY; 5008 } 5009 5010 void 5011 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, 5012 void (*cbfcnp)(struct cam_periph *, union ccb *), 5013 void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, 5014 u_int8_t sense_len, u_int32_t timeout) 5015 { 5016 struct scsi_request_sense *scsi_cmd; 5017 5018 cam_fill_csio(csio, 5019 retries, 5020 cbfcnp, 5021 CAM_DIR_IN, 5022 tag_action, 5023 data_ptr, 5024 dxfer_len, 5025 sense_len, 5026 sizeof(*scsi_cmd), 5027 timeout); 5028 5029 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; 5030 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5031 scsi_cmd->opcode = REQUEST_SENSE; 5032 scsi_cmd->length = dxfer_len; 5033 } 5034 5035 void 5036 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, 5037 void (*cbfcnp)(struct cam_periph *, union ccb *), 5038 u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, 5039 int evpd, u_int8_t page_code, u_int8_t sense_len, 5040 u_int32_t timeout) 5041 { 5042 struct scsi_inquiry *scsi_cmd; 5043 5044 cam_fill_csio(csio, 5045 retries, 5046 cbfcnp, 5047 /*flags*/CAM_DIR_IN, 5048 tag_action, 5049 /*data_ptr*/inq_buf, 5050 /*dxfer_len*/inq_len, 5051 sense_len, 5052 sizeof(*scsi_cmd), 5053 timeout); 5054 5055 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; 5056 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5057 scsi_cmd->opcode = INQUIRY; 5058 if (evpd) { 5059 scsi_cmd->byte2 |= SI_EVPD; 5060 scsi_cmd->page_code = page_code; 5061 } 5062 scsi_ulto2b(inq_len, scsi_cmd->length); 5063 } 5064 5065 void 5066 scsi_mode_sense(struct ccb_scsiio *csio, u_int32_t retries, 5067 void (*cbfcnp)(struct cam_periph *, union ccb *), 5068 u_int8_t tag_action, int dbd, u_int8_t page_code, 5069 u_int8_t page, u_int8_t *param_buf, u_int32_t param_len, 5070 u_int8_t sense_len, u_int32_t timeout) 5071 { 5072 5073 scsi_mode_sense_len(csio, retries, cbfcnp, tag_action, dbd, 5074 page_code, page, param_buf, param_len, 0, 5075 sense_len, timeout); 5076 } 5077 5078 void 5079 scsi_mode_sense_len(struct ccb_scsiio *csio, u_int32_t retries, 5080 void (*cbfcnp)(struct cam_periph *, union ccb *), 5081 u_int8_t tag_action, int dbd, u_int8_t page_code, 5082 u_int8_t page, u_int8_t *param_buf, u_int32_t param_len, 5083 int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) 5084 { 5085 u_int8_t cdb_len; 5086 5087 /* 5088 * Use the smallest possible command to perform the operation. 5089 */ 5090 if ((param_len < 256) 5091 && (minimum_cmd_size < 10)) { 5092 /* 5093 * We can fit in a 6 byte cdb. 5094 */ 5095 struct scsi_mode_sense_6 *scsi_cmd; 5096 5097 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; 5098 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5099 scsi_cmd->opcode = MODE_SENSE_6; 5100 if (dbd != 0) 5101 scsi_cmd->byte2 |= SMS_DBD; 5102 scsi_cmd->page = page_code | page; 5103 scsi_cmd->length = param_len; 5104 cdb_len = sizeof(*scsi_cmd); 5105 } else { 5106 /* 5107 * Need a 10 byte cdb. 5108 */ 5109 struct scsi_mode_sense_10 *scsi_cmd; 5110 5111 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; 5112 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5113 scsi_cmd->opcode = MODE_SENSE_10; 5114 if (dbd != 0) 5115 scsi_cmd->byte2 |= SMS_DBD; 5116 scsi_cmd->page = page_code | page; 5117 scsi_ulto2b(param_len, scsi_cmd->length); 5118 cdb_len = sizeof(*scsi_cmd); 5119 } 5120 cam_fill_csio(csio, 5121 retries, 5122 cbfcnp, 5123 CAM_DIR_IN, 5124 tag_action, 5125 param_buf, 5126 param_len, 5127 sense_len, 5128 cdb_len, 5129 timeout); 5130 } 5131 5132 void 5133 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, 5134 void (*cbfcnp)(struct cam_periph *, union ccb *), 5135 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 5136 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 5137 u_int32_t timeout) 5138 { 5139 scsi_mode_select_len(csio, retries, cbfcnp, tag_action, 5140 scsi_page_fmt, save_pages, param_buf, 5141 param_len, 0, sense_len, timeout); 5142 } 5143 5144 void 5145 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, 5146 void (*cbfcnp)(struct cam_periph *, union ccb *), 5147 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 5148 u_int8_t *param_buf, u_int32_t param_len, 5149 int minimum_cmd_size, u_int8_t sense_len, 5150 u_int32_t timeout) 5151 { 5152 u_int8_t cdb_len; 5153 5154 /* 5155 * Use the smallest possible command to perform the operation. 5156 */ 5157 if ((param_len < 256) 5158 && (minimum_cmd_size < 10)) { 5159 /* 5160 * We can fit in a 6 byte cdb. 5161 */ 5162 struct scsi_mode_select_6 *scsi_cmd; 5163 5164 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; 5165 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5166 scsi_cmd->opcode = MODE_SELECT_6; 5167 if (scsi_page_fmt != 0) 5168 scsi_cmd->byte2 |= SMS_PF; 5169 if (save_pages != 0) 5170 scsi_cmd->byte2 |= SMS_SP; 5171 scsi_cmd->length = param_len; 5172 cdb_len = sizeof(*scsi_cmd); 5173 } else { 5174 /* 5175 * Need a 10 byte cdb. 5176 */ 5177 struct scsi_mode_select_10 *scsi_cmd; 5178 5179 scsi_cmd = 5180 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; 5181 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5182 scsi_cmd->opcode = MODE_SELECT_10; 5183 if (scsi_page_fmt != 0) 5184 scsi_cmd->byte2 |= SMS_PF; 5185 if (save_pages != 0) 5186 scsi_cmd->byte2 |= SMS_SP; 5187 scsi_ulto2b(param_len, scsi_cmd->length); 5188 cdb_len = sizeof(*scsi_cmd); 5189 } 5190 cam_fill_csio(csio, 5191 retries, 5192 cbfcnp, 5193 CAM_DIR_OUT, 5194 tag_action, 5195 param_buf, 5196 param_len, 5197 sense_len, 5198 cdb_len, 5199 timeout); 5200 } 5201 5202 void 5203 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, 5204 void (*cbfcnp)(struct cam_periph *, union ccb *), 5205 u_int8_t tag_action, u_int8_t page_code, u_int8_t page, 5206 int save_pages, int ppc, u_int32_t paramptr, 5207 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 5208 u_int32_t timeout) 5209 { 5210 struct scsi_log_sense *scsi_cmd; 5211 u_int8_t cdb_len; 5212 5213 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; 5214 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5215 scsi_cmd->opcode = LOG_SENSE; 5216 scsi_cmd->page = page_code | page; 5217 if (save_pages != 0) 5218 scsi_cmd->byte2 |= SLS_SP; 5219 if (ppc != 0) 5220 scsi_cmd->byte2 |= SLS_PPC; 5221 scsi_ulto2b(paramptr, scsi_cmd->paramptr); 5222 scsi_ulto2b(param_len, scsi_cmd->length); 5223 cdb_len = sizeof(*scsi_cmd); 5224 5225 cam_fill_csio(csio, 5226 retries, 5227 cbfcnp, 5228 /*flags*/CAM_DIR_IN, 5229 tag_action, 5230 /*data_ptr*/param_buf, 5231 /*dxfer_len*/param_len, 5232 sense_len, 5233 cdb_len, 5234 timeout); 5235 } 5236 5237 void 5238 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, 5239 void (*cbfcnp)(struct cam_periph *, union ccb *), 5240 u_int8_t tag_action, u_int8_t page_code, int save_pages, 5241 int pc_reset, u_int8_t *param_buf, u_int32_t param_len, 5242 u_int8_t sense_len, u_int32_t timeout) 5243 { 5244 struct scsi_log_select *scsi_cmd; 5245 u_int8_t cdb_len; 5246 5247 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; 5248 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5249 scsi_cmd->opcode = LOG_SELECT; 5250 scsi_cmd->page = page_code & SLS_PAGE_CODE; 5251 if (save_pages != 0) 5252 scsi_cmd->byte2 |= SLS_SP; 5253 if (pc_reset != 0) 5254 scsi_cmd->byte2 |= SLS_PCR; 5255 scsi_ulto2b(param_len, scsi_cmd->length); 5256 cdb_len = sizeof(*scsi_cmd); 5257 5258 cam_fill_csio(csio, 5259 retries, 5260 cbfcnp, 5261 /*flags*/CAM_DIR_OUT, 5262 tag_action, 5263 /*data_ptr*/param_buf, 5264 /*dxfer_len*/param_len, 5265 sense_len, 5266 cdb_len, 5267 timeout); 5268 } 5269 5270 /* 5271 * Prevent or allow the user to remove the media 5272 */ 5273 void 5274 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, 5275 void (*cbfcnp)(struct cam_periph *, union ccb *), 5276 u_int8_t tag_action, u_int8_t action, 5277 u_int8_t sense_len, u_int32_t timeout) 5278 { 5279 struct scsi_prevent *scsi_cmd; 5280 5281 cam_fill_csio(csio, 5282 retries, 5283 cbfcnp, 5284 /*flags*/CAM_DIR_NONE, 5285 tag_action, 5286 /*data_ptr*/NULL, 5287 /*dxfer_len*/0, 5288 sense_len, 5289 sizeof(*scsi_cmd), 5290 timeout); 5291 5292 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; 5293 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5294 scsi_cmd->opcode = PREVENT_ALLOW; 5295 scsi_cmd->how = action; 5296 } 5297 5298 /* XXX allow specification of address and PMI bit and LBA */ 5299 void 5300 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, 5301 void (*cbfcnp)(struct cam_periph *, union ccb *), 5302 u_int8_t tag_action, 5303 struct scsi_read_capacity_data *rcap_buf, 5304 u_int8_t sense_len, u_int32_t timeout) 5305 { 5306 struct scsi_read_capacity *scsi_cmd; 5307 5308 cam_fill_csio(csio, 5309 retries, 5310 cbfcnp, 5311 /*flags*/CAM_DIR_IN, 5312 tag_action, 5313 /*data_ptr*/(u_int8_t *)rcap_buf, 5314 /*dxfer_len*/sizeof(*rcap_buf), 5315 sense_len, 5316 sizeof(*scsi_cmd), 5317 timeout); 5318 5319 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; 5320 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5321 scsi_cmd->opcode = READ_CAPACITY; 5322 } 5323 5324 void 5325 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, 5326 void (*cbfcnp)(struct cam_periph *, union ccb *), 5327 uint8_t tag_action, uint64_t lba, int reladr, int pmi, 5328 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, 5329 uint32_t timeout) 5330 { 5331 struct scsi_read_capacity_16 *scsi_cmd; 5332 5333 5334 cam_fill_csio(csio, 5335 retries, 5336 cbfcnp, 5337 /*flags*/CAM_DIR_IN, 5338 tag_action, 5339 /*data_ptr*/(u_int8_t *)rcap_buf, 5340 /*dxfer_len*/rcap_buf_len, 5341 sense_len, 5342 sizeof(*scsi_cmd), 5343 timeout); 5344 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 5345 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5346 scsi_cmd->opcode = SERVICE_ACTION_IN; 5347 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 5348 scsi_u64to8b(lba, scsi_cmd->addr); 5349 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); 5350 if (pmi) 5351 reladr |= SRC16_PMI; 5352 if (reladr) 5353 reladr |= SRC16_RELADR; 5354 } 5355 5356 void 5357 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, 5358 void (*cbfcnp)(struct cam_periph *, union ccb *), 5359 u_int8_t tag_action, u_int8_t select_report, 5360 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, 5361 u_int8_t sense_len, u_int32_t timeout) 5362 { 5363 struct scsi_report_luns *scsi_cmd; 5364 5365 cam_fill_csio(csio, 5366 retries, 5367 cbfcnp, 5368 /*flags*/CAM_DIR_IN, 5369 tag_action, 5370 /*data_ptr*/(u_int8_t *)rpl_buf, 5371 /*dxfer_len*/alloc_len, 5372 sense_len, 5373 sizeof(*scsi_cmd), 5374 timeout); 5375 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; 5376 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5377 scsi_cmd->opcode = REPORT_LUNS; 5378 scsi_cmd->select_report = select_report; 5379 scsi_ulto4b(alloc_len, scsi_cmd->length); 5380 } 5381 5382 void 5383 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, 5384 void (*cbfcnp)(struct cam_periph *, union ccb *), 5385 u_int8_t tag_action, u_int8_t pdf, 5386 void *buf, u_int32_t alloc_len, 5387 u_int8_t sense_len, u_int32_t timeout) 5388 { 5389 struct scsi_target_group *scsi_cmd; 5390 5391 cam_fill_csio(csio, 5392 retries, 5393 cbfcnp, 5394 /*flags*/CAM_DIR_IN, 5395 tag_action, 5396 /*data_ptr*/(u_int8_t *)buf, 5397 /*dxfer_len*/alloc_len, 5398 sense_len, 5399 sizeof(*scsi_cmd), 5400 timeout); 5401 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 5402 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5403 scsi_cmd->opcode = MAINTENANCE_IN; 5404 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; 5405 scsi_ulto4b(alloc_len, scsi_cmd->length); 5406 } 5407 5408 void 5409 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, 5410 void (*cbfcnp)(struct cam_periph *, union ccb *), 5411 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 5412 u_int8_t sense_len, u_int32_t timeout) 5413 { 5414 struct scsi_target_group *scsi_cmd; 5415 5416 cam_fill_csio(csio, 5417 retries, 5418 cbfcnp, 5419 /*flags*/CAM_DIR_OUT, 5420 tag_action, 5421 /*data_ptr*/(u_int8_t *)buf, 5422 /*dxfer_len*/alloc_len, 5423 sense_len, 5424 sizeof(*scsi_cmd), 5425 timeout); 5426 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 5427 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5428 scsi_cmd->opcode = MAINTENANCE_OUT; 5429 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; 5430 scsi_ulto4b(alloc_len, scsi_cmd->length); 5431 } 5432 5433 /* 5434 * Syncronize the media to the contents of the cache for 5435 * the given lba/count pair. Specifying 0/0 means sync 5436 * the whole cache. 5437 */ 5438 void 5439 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, 5440 void (*cbfcnp)(struct cam_periph *, union ccb *), 5441 u_int8_t tag_action, u_int32_t begin_lba, 5442 u_int16_t lb_count, u_int8_t sense_len, 5443 u_int32_t timeout) 5444 { 5445 struct scsi_sync_cache *scsi_cmd; 5446 5447 cam_fill_csio(csio, 5448 retries, 5449 cbfcnp, 5450 /*flags*/CAM_DIR_NONE, 5451 tag_action, 5452 /*data_ptr*/NULL, 5453 /*dxfer_len*/0, 5454 sense_len, 5455 sizeof(*scsi_cmd), 5456 timeout); 5457 5458 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; 5459 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5460 scsi_cmd->opcode = SYNCHRONIZE_CACHE; 5461 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); 5462 scsi_ulto2b(lb_count, scsi_cmd->lb_count); 5463 } 5464 5465 void 5466 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, 5467 void (*cbfcnp)(struct cam_periph *, union ccb *), 5468 u_int8_t tag_action, int readop, u_int8_t byte2, 5469 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 5470 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 5471 u_int32_t timeout) 5472 { 5473 u_int8_t cdb_len; 5474 /* 5475 * Use the smallest possible command to perform the operation 5476 * as some legacy hardware does not support the 10 byte commands. 5477 * If any of the bits in byte2 is set, we have to go with a larger 5478 * command. 5479 */ 5480 if ((minimum_cmd_size < 10) 5481 && ((lba & 0x1fffff) == lba) 5482 && ((block_count & 0xff) == block_count) 5483 && (byte2 == 0)) { 5484 /* 5485 * We can fit in a 6 byte cdb. 5486 */ 5487 struct scsi_rw_6 *scsi_cmd; 5488 5489 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; 5490 scsi_cmd->opcode = readop ? READ_6 : WRITE_6; 5491 scsi_ulto3b(lba, scsi_cmd->addr); 5492 scsi_cmd->length = block_count & 0xff; 5493 scsi_cmd->control = 0; 5494 cdb_len = sizeof(*scsi_cmd); 5495 5496 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 5497 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], 5498 scsi_cmd->addr[1], scsi_cmd->addr[2], 5499 scsi_cmd->length, dxfer_len)); 5500 } else if ((minimum_cmd_size < 12) 5501 && ((block_count & 0xffff) == block_count) 5502 && ((lba & 0xffffffff) == lba)) { 5503 /* 5504 * Need a 10 byte cdb. 5505 */ 5506 struct scsi_rw_10 *scsi_cmd; 5507 5508 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; 5509 scsi_cmd->opcode = readop ? READ_10 : WRITE_10; 5510 scsi_cmd->byte2 = byte2; 5511 scsi_ulto4b(lba, scsi_cmd->addr); 5512 scsi_cmd->reserved = 0; 5513 scsi_ulto2b(block_count, scsi_cmd->length); 5514 scsi_cmd->control = 0; 5515 cdb_len = sizeof(*scsi_cmd); 5516 5517 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 5518 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 5519 scsi_cmd->addr[1], scsi_cmd->addr[2], 5520 scsi_cmd->addr[3], scsi_cmd->length[0], 5521 scsi_cmd->length[1], dxfer_len)); 5522 } else if ((minimum_cmd_size < 16) 5523 && ((block_count & 0xffffffff) == block_count) 5524 && ((lba & 0xffffffff) == lba)) { 5525 /* 5526 * The block count is too big for a 10 byte CDB, use a 12 5527 * byte CDB. 5528 */ 5529 struct scsi_rw_12 *scsi_cmd; 5530 5531 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; 5532 scsi_cmd->opcode = readop ? READ_12 : WRITE_12; 5533 scsi_cmd->byte2 = byte2; 5534 scsi_ulto4b(lba, scsi_cmd->addr); 5535 scsi_cmd->reserved = 0; 5536 scsi_ulto4b(block_count, scsi_cmd->length); 5537 scsi_cmd->control = 0; 5538 cdb_len = sizeof(*scsi_cmd); 5539 5540 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 5541 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], 5542 scsi_cmd->addr[1], scsi_cmd->addr[2], 5543 scsi_cmd->addr[3], scsi_cmd->length[0], 5544 scsi_cmd->length[1], scsi_cmd->length[2], 5545 scsi_cmd->length[3], dxfer_len)); 5546 } else { 5547 /* 5548 * 16 byte CDB. We'll only get here if the LBA is larger 5549 * than 2^32, or if the user asks for a 16 byte command. 5550 */ 5551 struct scsi_rw_16 *scsi_cmd; 5552 5553 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; 5554 scsi_cmd->opcode = readop ? READ_16 : WRITE_16; 5555 scsi_cmd->byte2 = byte2; 5556 scsi_u64to8b(lba, scsi_cmd->addr); 5557 scsi_cmd->reserved = 0; 5558 scsi_ulto4b(block_count, scsi_cmd->length); 5559 scsi_cmd->control = 0; 5560 cdb_len = sizeof(*scsi_cmd); 5561 } 5562 cam_fill_csio(csio, 5563 retries, 5564 cbfcnp, 5565 /*flags*/readop ? CAM_DIR_IN : CAM_DIR_OUT, 5566 tag_action, 5567 data_ptr, 5568 dxfer_len, 5569 sense_len, 5570 cdb_len, 5571 timeout); 5572 } 5573 5574 void 5575 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, 5576 void (*cbfcnp)(struct cam_periph *, union ccb *), 5577 u_int8_t tag_action, u_int8_t byte2, 5578 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 5579 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 5580 u_int32_t timeout) 5581 { 5582 u_int8_t cdb_len; 5583 if ((minimum_cmd_size < 16) && 5584 ((block_count & 0xffff) == block_count) && 5585 ((lba & 0xffffffff) == lba)) { 5586 /* 5587 * Need a 10 byte cdb. 5588 */ 5589 struct scsi_write_same_10 *scsi_cmd; 5590 5591 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; 5592 scsi_cmd->opcode = WRITE_SAME_10; 5593 scsi_cmd->byte2 = byte2; 5594 scsi_ulto4b(lba, scsi_cmd->addr); 5595 scsi_cmd->group = 0; 5596 scsi_ulto2b(block_count, scsi_cmd->length); 5597 scsi_cmd->control = 0; 5598 cdb_len = sizeof(*scsi_cmd); 5599 5600 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 5601 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 5602 scsi_cmd->addr[1], scsi_cmd->addr[2], 5603 scsi_cmd->addr[3], scsi_cmd->length[0], 5604 scsi_cmd->length[1], dxfer_len)); 5605 } else { 5606 /* 5607 * 16 byte CDB. We'll only get here if the LBA is larger 5608 * than 2^32, or if the user asks for a 16 byte command. 5609 */ 5610 struct scsi_write_same_16 *scsi_cmd; 5611 5612 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; 5613 scsi_cmd->opcode = WRITE_SAME_16; 5614 scsi_cmd->byte2 = byte2; 5615 scsi_u64to8b(lba, scsi_cmd->addr); 5616 scsi_ulto4b(block_count, scsi_cmd->length); 5617 scsi_cmd->group = 0; 5618 scsi_cmd->control = 0; 5619 cdb_len = sizeof(*scsi_cmd); 5620 5621 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 5622 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", 5623 scsi_cmd->addr[0], scsi_cmd->addr[1], 5624 scsi_cmd->addr[2], scsi_cmd->addr[3], 5625 scsi_cmd->addr[4], scsi_cmd->addr[5], 5626 scsi_cmd->addr[6], scsi_cmd->addr[7], 5627 scsi_cmd->length[0], scsi_cmd->length[1], 5628 scsi_cmd->length[2], scsi_cmd->length[3], 5629 dxfer_len)); 5630 } 5631 cam_fill_csio(csio, 5632 retries, 5633 cbfcnp, 5634 /*flags*/CAM_DIR_OUT, 5635 tag_action, 5636 data_ptr, 5637 dxfer_len, 5638 sense_len, 5639 cdb_len, 5640 timeout); 5641 } 5642 5643 void 5644 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, 5645 void (*cbfcnp)(struct cam_periph *, union ccb *), 5646 u_int8_t tag_action, u_int8_t byte2, 5647 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 5648 u_int32_t timeout) 5649 { 5650 struct scsi_unmap *scsi_cmd; 5651 5652 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; 5653 scsi_cmd->opcode = UNMAP; 5654 scsi_cmd->byte2 = byte2; 5655 scsi_ulto4b(0, scsi_cmd->reserved); 5656 scsi_cmd->group = 0; 5657 scsi_ulto2b(dxfer_len, scsi_cmd->length); 5658 scsi_cmd->control = 0; 5659 5660 cam_fill_csio(csio, 5661 retries, 5662 cbfcnp, 5663 /*flags*/CAM_DIR_OUT, 5664 tag_action, 5665 data_ptr, 5666 dxfer_len, 5667 sense_len, 5668 sizeof(*scsi_cmd), 5669 timeout); 5670 } 5671 5672 void 5673 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, 5674 void (*cbfcnp)(struct cam_periph *, union ccb*), 5675 uint8_t tag_action, int pcv, uint8_t page_code, 5676 uint8_t *data_ptr, uint16_t allocation_length, 5677 uint8_t sense_len, uint32_t timeout) 5678 { 5679 struct scsi_receive_diag *scsi_cmd; 5680 5681 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; 5682 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 5683 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; 5684 if (pcv) { 5685 scsi_cmd->byte2 |= SRD_PCV; 5686 scsi_cmd->page_code = page_code; 5687 } 5688 scsi_ulto2b(allocation_length, scsi_cmd->length); 5689 5690 cam_fill_csio(csio, 5691 retries, 5692 cbfcnp, 5693 /*flags*/CAM_DIR_IN, 5694 tag_action, 5695 data_ptr, 5696 allocation_length, 5697 sense_len, 5698 sizeof(*scsi_cmd), 5699 timeout); 5700 } 5701 5702 void 5703 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, 5704 void (*cbfcnp)(struct cam_periph *, union ccb *), 5705 uint8_t tag_action, int unit_offline, int device_offline, 5706 int self_test, int page_format, int self_test_code, 5707 uint8_t *data_ptr, uint16_t param_list_length, 5708 uint8_t sense_len, uint32_t timeout) 5709 { 5710 struct scsi_send_diag *scsi_cmd; 5711 5712 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; 5713 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 5714 scsi_cmd->opcode = SEND_DIAGNOSTIC; 5715 5716 /* 5717 * The default self-test mode control and specific test 5718 * control are mutually exclusive. 5719 */ 5720 if (self_test) 5721 self_test_code = SSD_SELF_TEST_CODE_NONE; 5722 5723 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) 5724 & SSD_SELF_TEST_CODE_MASK) 5725 | (unit_offline ? SSD_UNITOFFL : 0) 5726 | (device_offline ? SSD_DEVOFFL : 0) 5727 | (self_test ? SSD_SELFTEST : 0) 5728 | (page_format ? SSD_PF : 0); 5729 scsi_ulto2b(param_list_length, scsi_cmd->length); 5730 5731 cam_fill_csio(csio, 5732 retries, 5733 cbfcnp, 5734 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 5735 tag_action, 5736 data_ptr, 5737 param_list_length, 5738 sense_len, 5739 sizeof(*scsi_cmd), 5740 timeout); 5741 } 5742 5743 void 5744 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, 5745 void (*cbfcnp)(struct cam_periph *, union ccb *), 5746 u_int8_t tag_action, int start, int load_eject, 5747 int immediate, u_int8_t sense_len, u_int32_t timeout) 5748 { 5749 struct scsi_start_stop_unit *scsi_cmd; 5750 int extra_flags = 0; 5751 5752 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; 5753 bzero(scsi_cmd, sizeof(*scsi_cmd)); 5754 scsi_cmd->opcode = START_STOP_UNIT; 5755 if (start != 0) { 5756 scsi_cmd->how |= SSS_START; 5757 /* it takes a lot of power to start a drive */ 5758 extra_flags |= CAM_HIGH_POWER; 5759 } 5760 if (load_eject != 0) 5761 scsi_cmd->how |= SSS_LOEJ; 5762 if (immediate != 0) 5763 scsi_cmd->byte2 |= SSS_IMMED; 5764 5765 cam_fill_csio(csio, 5766 retries, 5767 cbfcnp, 5768 /*flags*/CAM_DIR_NONE | extra_flags, 5769 tag_action, 5770 /*data_ptr*/NULL, 5771 /*dxfer_len*/0, 5772 sense_len, 5773 sizeof(*scsi_cmd), 5774 timeout); 5775 } 5776 5777 5778 /* 5779 * Try make as good a match as possible with 5780 * available sub drivers 5781 */ 5782 int 5783 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 5784 { 5785 struct scsi_inquiry_pattern *entry; 5786 struct scsi_inquiry_data *inq; 5787 5788 entry = (struct scsi_inquiry_pattern *)table_entry; 5789 inq = (struct scsi_inquiry_data *)inqbuffer; 5790 5791 if (((SID_TYPE(inq) == entry->type) 5792 || (entry->type == T_ANY)) 5793 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 5794 : entry->media_type & SIP_MEDIA_FIXED) 5795 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 5796 && (cam_strmatch(inq->product, entry->product, 5797 sizeof(inq->product)) == 0) 5798 && (cam_strmatch(inq->revision, entry->revision, 5799 sizeof(inq->revision)) == 0)) { 5800 return (0); 5801 } 5802 return (-1); 5803 } 5804 5805 /* 5806 * Try make as good a match as possible with 5807 * available sub drivers 5808 */ 5809 int 5810 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 5811 { 5812 struct scsi_static_inquiry_pattern *entry; 5813 struct scsi_inquiry_data *inq; 5814 5815 entry = (struct scsi_static_inquiry_pattern *)table_entry; 5816 inq = (struct scsi_inquiry_data *)inqbuffer; 5817 5818 if (((SID_TYPE(inq) == entry->type) 5819 || (entry->type == T_ANY)) 5820 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 5821 : entry->media_type & SIP_MEDIA_FIXED) 5822 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 5823 && (cam_strmatch(inq->product, entry->product, 5824 sizeof(inq->product)) == 0) 5825 && (cam_strmatch(inq->revision, entry->revision, 5826 sizeof(inq->revision)) == 0)) { 5827 return (0); 5828 } 5829 return (-1); 5830 } 5831 5832 /** 5833 * Compare two buffers of vpd device descriptors for a match. 5834 * 5835 * \param lhs Pointer to first buffer of descriptors to compare. 5836 * \param lhs_len The length of the first buffer. 5837 * \param rhs Pointer to second buffer of descriptors to compare. 5838 * \param rhs_len The length of the second buffer. 5839 * 5840 * \return 0 on a match, -1 otherwise. 5841 * 5842 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching 5843 * agains each element in rhs until all data are exhausted or we have found 5844 * a match. 5845 */ 5846 int 5847 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) 5848 { 5849 struct scsi_vpd_id_descriptor *lhs_id; 5850 struct scsi_vpd_id_descriptor *lhs_last; 5851 struct scsi_vpd_id_descriptor *rhs_last; 5852 uint8_t *lhs_end; 5853 uint8_t *rhs_end; 5854 5855 lhs_end = lhs + lhs_len; 5856 rhs_end = rhs + rhs_len; 5857 5858 /* 5859 * rhs_last and lhs_last are the last posible position of a valid 5860 * descriptor assuming it had a zero length identifier. We use 5861 * these variables to insure we can safely dereference the length 5862 * field in our loop termination tests. 5863 */ 5864 lhs_last = (struct scsi_vpd_id_descriptor *) 5865 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 5866 rhs_last = (struct scsi_vpd_id_descriptor *) 5867 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 5868 5869 lhs_id = (struct scsi_vpd_id_descriptor *)lhs; 5870 while (lhs_id <= lhs_last 5871 && (lhs_id->identifier + lhs_id->length) <= lhs_end) { 5872 struct scsi_vpd_id_descriptor *rhs_id; 5873 5874 rhs_id = (struct scsi_vpd_id_descriptor *)rhs; 5875 while (rhs_id <= rhs_last 5876 && (rhs_id->identifier + rhs_id->length) <= rhs_end) { 5877 5878 if (rhs_id->length == lhs_id->length 5879 && memcmp(rhs_id->identifier, lhs_id->identifier, 5880 rhs_id->length) == 0) 5881 return (0); 5882 5883 rhs_id = (struct scsi_vpd_id_descriptor *) 5884 (rhs_id->identifier + rhs_id->length); 5885 } 5886 lhs_id = (struct scsi_vpd_id_descriptor *) 5887 (lhs_id->identifier + lhs_id->length); 5888 } 5889 return (-1); 5890 } 5891 5892 #ifdef _KERNEL 5893 static void 5894 init_scsi_delay(void) 5895 { 5896 int delay; 5897 5898 delay = SCSI_DELAY; 5899 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); 5900 5901 if (set_scsi_delay(delay) != 0) { 5902 printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); 5903 set_scsi_delay(SCSI_DELAY); 5904 } 5905 } 5906 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); 5907 5908 static int 5909 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) 5910 { 5911 int error, delay; 5912 5913 delay = scsi_delay; 5914 error = sysctl_handle_int(oidp, &delay, 0, req); 5915 if (error != 0 || req->newptr == NULL) 5916 return (error); 5917 return (set_scsi_delay(delay)); 5918 } 5919 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT|CTLFLAG_RW, 5920 0, 0, sysctl_scsi_delay, "I", 5921 "Delay to allow devices to settle after a SCSI bus reset (ms)"); 5922 5923 static int 5924 set_scsi_delay(int delay) 5925 { 5926 /* 5927 * If someone sets this to 0, we assume that they want the 5928 * minimum allowable bus settle delay. 5929 */ 5930 if (delay == 0) { 5931 printf("cam: using minimum scsi_delay (%dms)\n", 5932 SCSI_MIN_DELAY); 5933 delay = SCSI_MIN_DELAY; 5934 } 5935 if (delay < SCSI_MIN_DELAY) 5936 return (EINVAL); 5937 scsi_delay = delay; 5938 return (0); 5939 } 5940 #endif /* _KERNEL */ 5941