1 /*- 2 * Implementation of Utility functions for all SCSI device types. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/stdint.h> 36 37 #ifdef _KERNEL 38 #include <opt_scsi.h> 39 40 #include <sys/systm.h> 41 #include <sys/libkern.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mutex.h> 46 #include <sys/sysctl.h> 47 #include <sys/ctype.h> 48 #else 49 #include <errno.h> 50 #include <stdio.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <ctype.h> 54 #endif 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_queue.h> 59 #include <cam/cam_xpt.h> 60 #include <cam/scsi/scsi_all.h> 61 #include <sys/ata.h> 62 #include <sys/sbuf.h> 63 64 #ifdef _KERNEL 65 #include <cam/cam_periph.h> 66 #include <cam/cam_xpt_sim.h> 67 #include <cam/cam_xpt_periph.h> 68 #include <cam/cam_xpt_internal.h> 69 #else 70 #include <camlib.h> 71 #include <stddef.h> 72 73 #ifndef FALSE 74 #define FALSE 0 75 #endif /* FALSE */ 76 #ifndef TRUE 77 #define TRUE 1 78 #endif /* TRUE */ 79 #define ERESTART -1 /* restart syscall */ 80 #define EJUSTRETURN -2 /* don't modify regs, just return */ 81 #endif /* !_KERNEL */ 82 83 /* 84 * This is the default number of milliseconds we wait for devices to settle 85 * after a SCSI bus reset. 86 */ 87 #ifndef SCSI_DELAY 88 #define SCSI_DELAY 2000 89 #endif 90 /* 91 * All devices need _some_ sort of bus settle delay, so we'll set it to 92 * a minimum value of 100ms. Note that this is pertinent only for SPI- 93 * not transport like Fibre Channel or iSCSI where 'delay' is completely 94 * meaningless. 95 */ 96 #ifndef SCSI_MIN_DELAY 97 #define SCSI_MIN_DELAY 100 98 #endif 99 /* 100 * Make sure the user isn't using seconds instead of milliseconds. 101 */ 102 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) 103 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" 104 #endif 105 106 int scsi_delay; 107 108 static int ascentrycomp(const void *key, const void *member); 109 static int senseentrycomp(const void *key, const void *member); 110 static void fetchtableentries(int sense_key, int asc, int ascq, 111 struct scsi_inquiry_data *, 112 const struct sense_key_table_entry **, 113 const struct asc_table_entry **); 114 #ifdef _KERNEL 115 static void init_scsi_delay(void); 116 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); 117 static int set_scsi_delay(int delay); 118 #endif 119 120 #if !defined(SCSI_NO_OP_STRINGS) 121 122 #define D (1 << T_DIRECT) 123 #define T (1 << T_SEQUENTIAL) 124 #define L (1 << T_PRINTER) 125 #define P (1 << T_PROCESSOR) 126 #define W (1 << T_WORM) 127 #define R (1 << T_CDROM) 128 #define O (1 << T_OPTICAL) 129 #define M (1 << T_CHANGER) 130 #define A (1 << T_STORARRAY) 131 #define E (1 << T_ENCLOSURE) 132 #define B (1 << T_RBC) 133 #define K (1 << T_OCRW) 134 #define V (1 << T_ADC) 135 #define F (1 << T_OSD) 136 #define S (1 << T_SCANNER) 137 #define C (1 << T_COMM) 138 139 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) 140 141 static struct op_table_entry plextor_cd_ops[] = { 142 { 0xD8, R, "CD-DA READ" } 143 }; 144 145 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { 146 { 147 /* 148 * I believe that 0xD8 is the Plextor proprietary command 149 * to read CD-DA data. I'm not sure which Plextor CDROM 150 * models support the command, though. I know for sure 151 * that the 4X, 8X, and 12X models do, and presumably the 152 * 12-20X does. I don't know about any earlier models, 153 * though. If anyone has any more complete information, 154 * feel free to change this quirk entry. 155 */ 156 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, 157 sizeof(plextor_cd_ops)/sizeof(struct op_table_entry), 158 plextor_cd_ops 159 } 160 }; 161 162 static struct op_table_entry scsi_op_codes[] = { 163 /* 164 * From: http://www.t10.org/lists/op-num.txt 165 * Modifications by Kenneth Merry (ken@FreeBSD.ORG) 166 * and Jung-uk Kim (jkim@FreeBSD.org) 167 * 168 * Note: order is important in this table, scsi_op_desc() currently 169 * depends on the opcodes in the table being in order to save 170 * search time. 171 * Note: scanner and comm. devices are carried over from the previous 172 * version because they were removed in the latest spec. 173 */ 174 /* File: OP-NUM.TXT 175 * 176 * SCSI Operation Codes 177 * Numeric Sorted Listing 178 * as of 5/26/15 179 * 180 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 181 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- 182 * . L - PRINTER DEVICE (SSC) M = Mandatory 183 * . P - PROCESSOR DEVICE (SPC) O = Optional 184 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. 185 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete 186 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 187 * . . .M - MEDIA CHANGER DEVICE (SMC-2) 188 * . . . A - STORAGE ARRAY DEVICE (SCC-2) 189 * . . . .E - ENCLOSURE SERVICES DEVICE (SES) 190 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 191 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 192 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 193 * . . . . .F - OBJECT-BASED STORAGE (OSD) 194 * OP DTLPWROMAEBKVF Description 195 * -- -------------- ---------------------------------------------- */ 196 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ 197 { 0x00, ALL, "TEST UNIT READY" }, 198 /* 01 M REWIND */ 199 { 0x01, T, "REWIND" }, 200 /* 01 Z V ZZZZ REZERO UNIT */ 201 { 0x01, D | W | R | O | M, "REZERO UNIT" }, 202 /* 02 VVVVVV V */ 203 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ 204 { 0x03, ALL, "REQUEST SENSE" }, 205 /* 04 M OO FORMAT UNIT */ 206 { 0x04, D | R | O, "FORMAT UNIT" }, 207 /* 04 O FORMAT MEDIUM */ 208 { 0x04, T, "FORMAT MEDIUM" }, 209 /* 04 O FORMAT */ 210 { 0x04, L, "FORMAT" }, 211 /* 05 VMVVVV V READ BLOCK LIMITS */ 212 { 0x05, T, "READ BLOCK LIMITS" }, 213 /* 06 VVVVVV V */ 214 /* 07 OVV O OV REASSIGN BLOCKS */ 215 { 0x07, D | W | O, "REASSIGN BLOCKS" }, 216 /* 07 O INITIALIZE ELEMENT STATUS */ 217 { 0x07, M, "INITIALIZE ELEMENT STATUS" }, 218 /* 08 MOV O OV READ(6) */ 219 { 0x08, D | T | W | O, "READ(6)" }, 220 /* 08 O RECEIVE */ 221 { 0x08, P, "RECEIVE" }, 222 /* 08 GET MESSAGE(6) */ 223 { 0x08, C, "GET MESSAGE(6)" }, 224 /* 09 VVVVVV V */ 225 /* 0A OO O OV WRITE(6) */ 226 { 0x0A, D | T | W | O, "WRITE(6)" }, 227 /* 0A M SEND(6) */ 228 { 0x0A, P, "SEND(6)" }, 229 /* 0A SEND MESSAGE(6) */ 230 { 0x0A, C, "SEND MESSAGE(6)" }, 231 /* 0A M PRINT */ 232 { 0x0A, L, "PRINT" }, 233 /* 0B Z ZOZV SEEK(6) */ 234 { 0x0B, D | W | R | O, "SEEK(6)" }, 235 /* 0B O SET CAPACITY */ 236 { 0x0B, T, "SET CAPACITY" }, 237 /* 0B O SLEW AND PRINT */ 238 { 0x0B, L, "SLEW AND PRINT" }, 239 /* 0C VVVVVV V */ 240 /* 0D VVVVVV V */ 241 /* 0E VVVVVV V */ 242 /* 0F VOVVVV V READ REVERSE(6) */ 243 { 0x0F, T, "READ REVERSE(6)" }, 244 /* 10 VM VVV WRITE FILEMARKS(6) */ 245 { 0x10, T, "WRITE FILEMARKS(6)" }, 246 /* 10 O SYNCHRONIZE BUFFER */ 247 { 0x10, L, "SYNCHRONIZE BUFFER" }, 248 /* 11 VMVVVV SPACE(6) */ 249 { 0x11, T, "SPACE(6)" }, 250 /* 12 MMMMMMMMMMMMMM INQUIRY */ 251 { 0x12, ALL, "INQUIRY" }, 252 /* 13 V VVVV */ 253 /* 13 O VERIFY(6) */ 254 { 0x13, T, "VERIFY(6)" }, 255 /* 14 VOOVVV RECOVER BUFFERED DATA */ 256 { 0x14, T | L, "RECOVER BUFFERED DATA" }, 257 /* 15 OMO O OOOO OO MODE SELECT(6) */ 258 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, 259 /* 16 ZZMZO OOOZ O RESERVE(6) */ 260 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, 261 /* 16 Z RESERVE ELEMENT(6) */ 262 { 0x16, M, "RESERVE ELEMENT(6)" }, 263 /* 17 ZZMZO OOOZ O RELEASE(6) */ 264 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, 265 /* 17 Z RELEASE ELEMENT(6) */ 266 { 0x17, M, "RELEASE ELEMENT(6)" }, 267 /* 18 ZZZZOZO Z COPY */ 268 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, 269 /* 19 VMVVVV ERASE(6) */ 270 { 0x19, T, "ERASE(6)" }, 271 /* 1A OMO O OOOO OO MODE SENSE(6) */ 272 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, 273 /* 1B O OOO O MO O START STOP UNIT */ 274 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, 275 /* 1B O M LOAD UNLOAD */ 276 { 0x1B, T | V, "LOAD UNLOAD" }, 277 /* 1B SCAN */ 278 { 0x1B, S, "SCAN" }, 279 /* 1B O STOP PRINT */ 280 { 0x1B, L, "STOP PRINT" }, 281 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ 282 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, 283 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ 284 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, 285 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ 286 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, 287 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ 288 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, 289 /* 1F */ 290 /* 20 V VVV V */ 291 /* 21 V VVV V */ 292 /* 22 V VVV V */ 293 /* 23 V V V V */ 294 /* 23 O READ FORMAT CAPACITIES */ 295 { 0x23, R, "READ FORMAT CAPACITIES" }, 296 /* 24 V VV SET WINDOW */ 297 { 0x24, S, "SET WINDOW" }, 298 /* 25 M M M M READ CAPACITY(10) */ 299 { 0x25, D | W | O | B, "READ CAPACITY(10)" }, 300 /* 25 O READ CAPACITY */ 301 { 0x25, R, "READ CAPACITY" }, 302 /* 25 M READ CARD CAPACITY */ 303 { 0x25, K, "READ CARD CAPACITY" }, 304 /* 25 GET WINDOW */ 305 { 0x25, S, "GET WINDOW" }, 306 /* 26 V VV */ 307 /* 27 V VV */ 308 /* 28 M MOM MM READ(10) */ 309 { 0x28, D | W | R | O | B | K | S, "READ(10)" }, 310 /* 28 GET MESSAGE(10) */ 311 { 0x28, C, "GET MESSAGE(10)" }, 312 /* 29 V VVO READ GENERATION */ 313 { 0x29, O, "READ GENERATION" }, 314 /* 2A O MOM MO WRITE(10) */ 315 { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, 316 /* 2A SEND(10) */ 317 { 0x2A, S, "SEND(10)" }, 318 /* 2A SEND MESSAGE(10) */ 319 { 0x2A, C, "SEND MESSAGE(10)" }, 320 /* 2B Z OOO O SEEK(10) */ 321 { 0x2B, D | W | R | O | K, "SEEK(10)" }, 322 /* 2B O LOCATE(10) */ 323 { 0x2B, T, "LOCATE(10)" }, 324 /* 2B O POSITION TO ELEMENT */ 325 { 0x2B, M, "POSITION TO ELEMENT" }, 326 /* 2C V OO ERASE(10) */ 327 { 0x2C, R | O, "ERASE(10)" }, 328 /* 2D O READ UPDATED BLOCK */ 329 { 0x2D, O, "READ UPDATED BLOCK" }, 330 /* 2D V */ 331 /* 2E O OOO MO WRITE AND VERIFY(10) */ 332 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, 333 /* 2F O OOO VERIFY(10) */ 334 { 0x2F, D | W | R | O, "VERIFY(10)" }, 335 /* 30 Z ZZZ SEARCH DATA HIGH(10) */ 336 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, 337 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ 338 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, 339 /* 31 OBJECT POSITION */ 340 { 0x31, S, "OBJECT POSITION" }, 341 /* 32 Z ZZZ SEARCH DATA LOW(10) */ 342 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, 343 /* 33 Z OZO SET LIMITS(10) */ 344 { 0x33, D | W | R | O, "SET LIMITS(10)" }, 345 /* 34 O O O O PRE-FETCH(10) */ 346 { 0x34, D | W | O | K, "PRE-FETCH(10)" }, 347 /* 34 M READ POSITION */ 348 { 0x34, T, "READ POSITION" }, 349 /* 34 GET DATA BUFFER STATUS */ 350 { 0x34, S, "GET DATA BUFFER STATUS" }, 351 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ 352 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, 353 /* 36 Z O O O LOCK UNLOCK CACHE(10) */ 354 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, 355 /* 37 O O READ DEFECT DATA(10) */ 356 { 0x37, D | O, "READ DEFECT DATA(10)" }, 357 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ 358 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, 359 /* 38 O O O MEDIUM SCAN */ 360 { 0x38, W | O | K, "MEDIUM SCAN" }, 361 /* 39 ZZZZOZO Z COMPARE */ 362 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, 363 /* 3A ZZZZOZO Z COPY AND VERIFY */ 364 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, 365 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ 366 { 0x3B, ALL, "WRITE BUFFER" }, 367 /* 3C OOOOOOOOOO OOO READ BUFFER */ 368 { 0x3C, ALL & ~(B), "READ BUFFER" }, 369 /* 3D O UPDATE BLOCK */ 370 { 0x3D, O, "UPDATE BLOCK" }, 371 /* 3E O O O READ LONG(10) */ 372 { 0x3E, D | W | O, "READ LONG(10)" }, 373 /* 3F O O O WRITE LONG(10) */ 374 { 0x3F, D | W | O, "WRITE LONG(10)" }, 375 /* 40 ZZZZOZOZ CHANGE DEFINITION */ 376 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, 377 /* 41 O WRITE SAME(10) */ 378 { 0x41, D, "WRITE SAME(10)" }, 379 /* 42 O UNMAP */ 380 { 0x42, D, "UNMAP" }, 381 /* 42 O READ SUB-CHANNEL */ 382 { 0x42, R, "READ SUB-CHANNEL" }, 383 /* 43 O READ TOC/PMA/ATIP */ 384 { 0x43, R, "READ TOC/PMA/ATIP" }, 385 /* 44 M M REPORT DENSITY SUPPORT */ 386 { 0x44, T | V, "REPORT DENSITY SUPPORT" }, 387 /* 44 READ HEADER */ 388 /* 45 O PLAY AUDIO(10) */ 389 { 0x45, R, "PLAY AUDIO(10)" }, 390 /* 46 M GET CONFIGURATION */ 391 { 0x46, R, "GET CONFIGURATION" }, 392 /* 47 O PLAY AUDIO MSF */ 393 { 0x47, R, "PLAY AUDIO MSF" }, 394 /* 48 */ 395 /* 49 */ 396 /* 4A M GET EVENT STATUS NOTIFICATION */ 397 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, 398 /* 4B O PAUSE/RESUME */ 399 { 0x4B, R, "PAUSE/RESUME" }, 400 /* 4C OOOOO OOOO OOO LOG SELECT */ 401 { 0x4C, ALL & ~(R | B), "LOG SELECT" }, 402 /* 4D OOOOO OOOO OMO LOG SENSE */ 403 { 0x4D, ALL & ~(R | B), "LOG SENSE" }, 404 /* 4E O STOP PLAY/SCAN */ 405 { 0x4E, R, "STOP PLAY/SCAN" }, 406 /* 4F */ 407 /* 50 O XDWRITE(10) */ 408 { 0x50, D, "XDWRITE(10)" }, 409 /* 51 O XPWRITE(10) */ 410 { 0x51, D, "XPWRITE(10)" }, 411 /* 51 O READ DISC INFORMATION */ 412 { 0x51, R, "READ DISC INFORMATION" }, 413 /* 52 O XDREAD(10) */ 414 { 0x52, D, "XDREAD(10)" }, 415 /* 52 O READ TRACK INFORMATION */ 416 { 0x52, R, "READ TRACK INFORMATION" }, 417 /* 53 O RESERVE TRACK */ 418 { 0x53, R, "RESERVE TRACK" }, 419 /* 54 O SEND OPC INFORMATION */ 420 { 0x54, R, "SEND OPC INFORMATION" }, 421 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ 422 { 0x55, ALL & ~(P), "MODE SELECT(10)" }, 423 /* 56 ZZMZO OOOZ RESERVE(10) */ 424 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, 425 /* 56 Z RESERVE ELEMENT(10) */ 426 { 0x56, M, "RESERVE ELEMENT(10)" }, 427 /* 57 ZZMZO OOOZ RELEASE(10) */ 428 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, 429 /* 57 Z RELEASE ELEMENT(10) */ 430 { 0x57, M, "RELEASE ELEMENT(10)" }, 431 /* 58 O REPAIR TRACK */ 432 { 0x58, R, "REPAIR TRACK" }, 433 /* 59 */ 434 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ 435 { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, 436 /* 5B O CLOSE TRACK/SESSION */ 437 { 0x5B, R, "CLOSE TRACK/SESSION" }, 438 /* 5C O READ BUFFER CAPACITY */ 439 { 0x5C, R, "READ BUFFER CAPACITY" }, 440 /* 5D O SEND CUE SHEET */ 441 { 0x5D, R, "SEND CUE SHEET" }, 442 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ 443 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, 444 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ 445 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, 446 /* 7E OO O OOOO O extended CDB */ 447 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, 448 /* 7F O M variable length CDB (more than 16 bytes) */ 449 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, 450 /* 80 Z XDWRITE EXTENDED(16) */ 451 { 0x80, D, "XDWRITE EXTENDED(16)" }, 452 /* 80 M WRITE FILEMARKS(16) */ 453 { 0x80, T, "WRITE FILEMARKS(16)" }, 454 /* 81 Z REBUILD(16) */ 455 { 0x81, D, "REBUILD(16)" }, 456 /* 81 O READ REVERSE(16) */ 457 { 0x81, T, "READ REVERSE(16)" }, 458 /* 82 Z REGENERATE(16) */ 459 { 0x82, D, "REGENERATE(16)" }, 460 /* 83 OOOOO O OO EXTENDED COPY */ 461 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, 462 /* 84 OOOOO O OO RECEIVE COPY RESULTS */ 463 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, 464 /* 85 O O O ATA COMMAND PASS THROUGH(16) */ 465 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, 466 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ 467 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, 468 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ 469 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, 470 /* 471 * XXX READ(16)/WRITE(16) were not listed for CD/DVE in op-num.txt 472 * but we had it since r1.40. Do we really want them? 473 */ 474 /* 88 MM O O O READ(16) */ 475 { 0x88, D | T | W | O | B, "READ(16)" }, 476 /* 89 O COMPARE AND WRITE*/ 477 { 0x89, D, "COMPARE AND WRITE" }, 478 /* 8A OM O O O WRITE(16) */ 479 { 0x8A, D | T | W | O | B, "WRITE(16)" }, 480 /* 8B O ORWRITE */ 481 { 0x8B, D, "ORWRITE" }, 482 /* 8C OO O OO O M READ ATTRIBUTE */ 483 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, 484 /* 8D OO O OO O O WRITE ATTRIBUTE */ 485 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, 486 /* 8E O O O O WRITE AND VERIFY(16) */ 487 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, 488 /* 8F OO O O O VERIFY(16) */ 489 { 0x8F, D | T | W | O | B, "VERIFY(16)" }, 490 /* 90 O O O O PRE-FETCH(16) */ 491 { 0x90, D | W | O | B, "PRE-FETCH(16)" }, 492 /* 91 O O O O SYNCHRONIZE CACHE(16) */ 493 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, 494 /* 91 O SPACE(16) */ 495 { 0x91, T, "SPACE(16)" }, 496 /* 92 Z O O LOCK UNLOCK CACHE(16) */ 497 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, 498 /* 92 O LOCATE(16) */ 499 { 0x92, T, "LOCATE(16)" }, 500 /* 93 O WRITE SAME(16) */ 501 { 0x93, D, "WRITE SAME(16)" }, 502 /* 93 M ERASE(16) */ 503 { 0x93, T, "ERASE(16)" }, 504 /* 94 O ZBC OUT */ 505 { 0x94, D, "ZBC OUT" }, 506 /* 95 O ZBC OUT */ 507 { 0x95, D, "ZBC OUT" }, 508 /* 96 */ 509 /* 97 */ 510 /* 98 */ 511 /* 99 */ 512 /* 9A O WRITE STREAM(16) */ 513 { 0x9A, D, "WRITE STREAM(16)" }, 514 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */ 515 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" }, 516 /* 9C O WRITE ATOMIC(16) */ 517 { 0x9C, D, "WRITE ATOMIC(16)" }, 518 /* 9D SERVICE ACTION BIDIRECTIONAL */ 519 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" }, 520 /* XXX KDM ALL for this? op-num.txt defines it for none.. */ 521 /* 9E SERVICE ACTION IN(16) */ 522 { 0x9E, ALL, "SERVICE ACTION IN(16)" }, 523 /* XXX KDM ALL for this? op-num.txt defines it for ADC.. */ 524 /* 9F M SERVICE ACTION OUT(16) */ 525 { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, 526 /* A0 MMOOO OMMM OMO REPORT LUNS */ 527 { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, 528 /* A1 O BLANK */ 529 { 0xA1, R, "BLANK" }, 530 /* A1 O O ATA COMMAND PASS THROUGH(12) */ 531 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, 532 /* A2 OO O O SECURITY PROTOCOL IN */ 533 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, 534 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ 535 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, 536 /* A3 O SEND KEY */ 537 { 0xA3, R, "SEND KEY" }, 538 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ 539 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, 540 /* A4 O REPORT KEY */ 541 { 0xA4, R, "REPORT KEY" }, 542 /* A5 O O OM MOVE MEDIUM */ 543 { 0xA5, T | W | O | M, "MOVE MEDIUM" }, 544 /* A5 O PLAY AUDIO(12) */ 545 { 0xA5, R, "PLAY AUDIO(12)" }, 546 /* A6 O EXCHANGE MEDIUM */ 547 { 0xA6, M, "EXCHANGE MEDIUM" }, 548 /* A6 O LOAD/UNLOAD C/DVD */ 549 { 0xA6, R, "LOAD/UNLOAD C/DVD" }, 550 /* A7 ZZ O O MOVE MEDIUM ATTACHED */ 551 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, 552 /* A7 O SET READ AHEAD */ 553 { 0xA7, R, "SET READ AHEAD" }, 554 /* A8 O OOO READ(12) */ 555 { 0xA8, D | W | R | O, "READ(12)" }, 556 /* A8 GET MESSAGE(12) */ 557 { 0xA8, C, "GET MESSAGE(12)" }, 558 /* A9 O SERVICE ACTION OUT(12) */ 559 { 0xA9, V, "SERVICE ACTION OUT(12)" }, 560 /* AA O OOO WRITE(12) */ 561 { 0xAA, D | W | R | O, "WRITE(12)" }, 562 /* AA SEND MESSAGE(12) */ 563 { 0xAA, C, "SEND MESSAGE(12)" }, 564 /* AB O O SERVICE ACTION IN(12) */ 565 { 0xAB, R | V, "SERVICE ACTION IN(12)" }, 566 /* AC O ERASE(12) */ 567 { 0xAC, O, "ERASE(12)" }, 568 /* AC O GET PERFORMANCE */ 569 { 0xAC, R, "GET PERFORMANCE" }, 570 /* AD O READ DVD STRUCTURE */ 571 { 0xAD, R, "READ DVD STRUCTURE" }, 572 /* AE O O O WRITE AND VERIFY(12) */ 573 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, 574 /* AF O OZO VERIFY(12) */ 575 { 0xAF, D | W | R | O, "VERIFY(12)" }, 576 /* B0 ZZZ SEARCH DATA HIGH(12) */ 577 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, 578 /* B1 ZZZ SEARCH DATA EQUAL(12) */ 579 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, 580 /* B2 ZZZ SEARCH DATA LOW(12) */ 581 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, 582 /* B3 Z OZO SET LIMITS(12) */ 583 { 0xB3, D | W | R | O, "SET LIMITS(12)" }, 584 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ 585 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, 586 /* B5 OO O O SECURITY PROTOCOL OUT */ 587 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, 588 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ 589 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, 590 /* B6 O SEND VOLUME TAG */ 591 { 0xB6, M, "SEND VOLUME TAG" }, 592 /* B6 O SET STREAMING */ 593 { 0xB6, R, "SET STREAMING" }, 594 /* B7 O O READ DEFECT DATA(12) */ 595 { 0xB7, D | O, "READ DEFECT DATA(12)" }, 596 /* B8 O OZOM READ ELEMENT STATUS */ 597 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, 598 /* B9 O READ CD MSF */ 599 { 0xB9, R, "READ CD MSF" }, 600 /* BA O O OOMO REDUNDANCY GROUP (IN) */ 601 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, 602 /* BA O SCAN */ 603 { 0xBA, R, "SCAN" }, 604 /* BB O O OOOO REDUNDANCY GROUP (OUT) */ 605 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, 606 /* BB O SET CD SPEED */ 607 { 0xBB, R, "SET CD SPEED" }, 608 /* BC O O OOMO SPARE (IN) */ 609 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, 610 /* BD O O OOOO SPARE (OUT) */ 611 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, 612 /* BD O MECHANISM STATUS */ 613 { 0xBD, R, "MECHANISM STATUS" }, 614 /* BE O O OOMO VOLUME SET (IN) */ 615 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, 616 /* BE O READ CD */ 617 { 0xBE, R, "READ CD" }, 618 /* BF O O OOOO VOLUME SET (OUT) */ 619 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, 620 /* BF O SEND DVD STRUCTURE */ 621 { 0xBF, R, "SEND DVD STRUCTURE" } 622 }; 623 624 const char * 625 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 626 { 627 caddr_t match; 628 int i, j; 629 u_int32_t opmask; 630 u_int16_t pd_type; 631 int num_ops[2]; 632 struct op_table_entry *table[2]; 633 int num_tables; 634 635 /* 636 * If we've got inquiry data, use it to determine what type of 637 * device we're dealing with here. Otherwise, assume direct 638 * access. 639 */ 640 if (inq_data == NULL) { 641 pd_type = T_DIRECT; 642 match = NULL; 643 } else { 644 pd_type = SID_TYPE(inq_data); 645 646 match = cam_quirkmatch((caddr_t)inq_data, 647 (caddr_t)scsi_op_quirk_table, 648 sizeof(scsi_op_quirk_table)/ 649 sizeof(*scsi_op_quirk_table), 650 sizeof(*scsi_op_quirk_table), 651 scsi_inquiry_match); 652 } 653 654 if (match != NULL) { 655 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; 656 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; 657 table[1] = scsi_op_codes; 658 num_ops[1] = sizeof(scsi_op_codes)/sizeof(scsi_op_codes[0]); 659 num_tables = 2; 660 } else { 661 /* 662 * If this is true, we have a vendor specific opcode that 663 * wasn't covered in the quirk table. 664 */ 665 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) 666 return("Vendor Specific Command"); 667 668 table[0] = scsi_op_codes; 669 num_ops[0] = sizeof(scsi_op_codes)/sizeof(scsi_op_codes[0]); 670 num_tables = 1; 671 } 672 673 /* RBC is 'Simplified' Direct Access Device */ 674 if (pd_type == T_RBC) 675 pd_type = T_DIRECT; 676 677 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */ 678 if (pd_type == T_NODEVICE) 679 pd_type = T_DIRECT; 680 681 opmask = 1 << pd_type; 682 683 for (j = 0; j < num_tables; j++) { 684 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ 685 if ((table[j][i].opcode == opcode) 686 && ((table[j][i].opmask & opmask) != 0)) 687 return(table[j][i].desc); 688 } 689 } 690 691 /* 692 * If we can't find a match for the command in the table, we just 693 * assume it's a vendor specifc command. 694 */ 695 return("Vendor Specific Command"); 696 697 } 698 699 #else /* SCSI_NO_OP_STRINGS */ 700 701 const char * 702 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 703 { 704 return(""); 705 } 706 707 #endif 708 709 710 #if !defined(SCSI_NO_SENSE_STRINGS) 711 #define SST(asc, ascq, action, desc) \ 712 asc, ascq, action, desc 713 #else 714 const char empty_string[] = ""; 715 716 #define SST(asc, ascq, action, desc) \ 717 asc, ascq, action, empty_string 718 #endif 719 720 const struct sense_key_table_entry sense_key_table[] = 721 { 722 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, 723 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, 724 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" }, 725 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, 726 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, 727 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, 728 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, 729 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, 730 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, 731 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, 732 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, 733 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, 734 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, 735 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, 736 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, 737 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } 738 }; 739 740 const int sense_key_table_size = 741 sizeof(sense_key_table)/sizeof(sense_key_table[0]); 742 743 static struct asc_table_entry quantum_fireball_entries[] = { 744 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 745 "Logical unit not ready, initializing cmd. required") } 746 }; 747 748 static struct asc_table_entry sony_mo_entries[] = { 749 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 750 "Logical unit not ready, cause not reportable") } 751 }; 752 753 static struct asc_table_entry hgst_entries[] = { 754 { SST(0x04, 0xF0, SS_RDEF, 755 "Vendor Unique - Logical Unit Not Ready") }, 756 { SST(0x0A, 0x01, SS_RDEF, 757 "Unrecovered Super Certification Log Write Error") }, 758 { SST(0x0A, 0x02, SS_RDEF, 759 "Unrecovered Super Certification Log Read Error") }, 760 { SST(0x15, 0x03, SS_RDEF, 761 "Unrecovered Sector Error") }, 762 { SST(0x3E, 0x04, SS_RDEF, 763 "Unrecovered Self-Test Hard-Cache Test Fail") }, 764 { SST(0x3E, 0x05, SS_RDEF, 765 "Unrecovered Self-Test OTF-Cache Fail") }, 766 { SST(0x40, 0x00, SS_RDEF, 767 "Unrecovered SAT No Buffer Overflow Error") }, 768 { SST(0x40, 0x01, SS_RDEF, 769 "Unrecovered SAT Buffer Overflow Error") }, 770 { SST(0x40, 0x02, SS_RDEF, 771 "Unrecovered SAT No Buffer Overflow With ECS Fault") }, 772 { SST(0x40, 0x03, SS_RDEF, 773 "Unrecovered SAT Buffer Overflow With ECS Fault") }, 774 { SST(0x40, 0x81, SS_RDEF, 775 "DRAM Failure") }, 776 { SST(0x44, 0x0B, SS_RDEF, 777 "Vendor Unique - Internal Target Failure") }, 778 { SST(0x44, 0xF2, SS_RDEF, 779 "Vendor Unique - Internal Target Failure") }, 780 { SST(0x44, 0xF6, SS_RDEF, 781 "Vendor Unique - Internal Target Failure") }, 782 { SST(0x44, 0xF9, SS_RDEF, 783 "Vendor Unique - Internal Target Failure") }, 784 { SST(0x44, 0xFA, SS_RDEF, 785 "Vendor Unique - Internal Target Failure") }, 786 { SST(0x5D, 0x22, SS_RDEF, 787 "Extreme Over-Temperature Warning") }, 788 { SST(0x5D, 0x50, SS_RDEF, 789 "Load/Unload cycle Count Warning") }, 790 { SST(0x81, 0x00, SS_RDEF, 791 "Vendor Unique - Internal Logic Error") }, 792 { SST(0x85, 0x00, SS_RDEF, 793 "Vendor Unique - Internal Key Seed Error") }, 794 }; 795 796 static struct asc_table_entry seagate_entries[] = { 797 { SST(0x04, 0xF0, SS_RDEF, 798 "Logical Unit Not Ready, super certify in Progress") }, 799 { SST(0x08, 0x86, SS_RDEF, 800 "Write Fault Data Corruption") }, 801 { SST(0x09, 0x0D, SS_RDEF, 802 "Tracking Failure") }, 803 { SST(0x09, 0x0E, SS_RDEF, 804 "ETF Failure") }, 805 { SST(0x0B, 0x5D, SS_RDEF, 806 "Pre-SMART Warning") }, 807 { SST(0x0B, 0x85, SS_RDEF, 808 "5V Voltage Warning") }, 809 { SST(0x0B, 0x8C, SS_RDEF, 810 "12V Voltage Warning") }, 811 { SST(0x0C, 0xFF, SS_RDEF, 812 "Write Error - Too many error recovery revs") }, 813 { SST(0x11, 0xFF, SS_RDEF, 814 "Unrecovered Read Error - Too many error recovery revs") }, 815 { SST(0x19, 0x0E, SS_RDEF, 816 "Fewer than 1/2 defect list copies") }, 817 { SST(0x20, 0xF3, SS_RDEF, 818 "Illegal CDB linked to skip mask cmd") }, 819 { SST(0x24, 0xF0, SS_RDEF, 820 "Illegal byte in CDB, LBA not matching") }, 821 { SST(0x24, 0xF1, SS_RDEF, 822 "Illegal byte in CDB, LEN not matching") }, 823 { SST(0x24, 0xF2, SS_RDEF, 824 "Mask not matching transfer length") }, 825 { SST(0x24, 0xF3, SS_RDEF, 826 "Drive formatted without plist") }, 827 { SST(0x26, 0x95, SS_RDEF, 828 "Invalid Field Parameter - CAP File") }, 829 { SST(0x26, 0x96, SS_RDEF, 830 "Invalid Field Parameter - RAP File") }, 831 { SST(0x26, 0x97, SS_RDEF, 832 "Invalid Field Parameter - TMS Firmware Tag") }, 833 { SST(0x26, 0x98, SS_RDEF, 834 "Invalid Field Parameter - Check Sum") }, 835 { SST(0x26, 0x99, SS_RDEF, 836 "Invalid Field Parameter - Firmware Tag") }, 837 { SST(0x29, 0x08, SS_RDEF, 838 "Write Log Dump data") }, 839 { SST(0x29, 0x09, SS_RDEF, 840 "Write Log Dump data") }, 841 { SST(0x29, 0x0A, SS_RDEF, 842 "Reserved disk space") }, 843 { SST(0x29, 0x0B, SS_RDEF, 844 "SDBP") }, 845 { SST(0x29, 0x0C, SS_RDEF, 846 "SDBP") }, 847 { SST(0x31, 0x91, SS_RDEF, 848 "Format Corrupted World Wide Name (WWN) is Invalid") }, 849 { SST(0x32, 0x03, SS_RDEF, 850 "Defect List - Length exceeds Command Allocated Length") }, 851 { SST(0x33, 0x00, SS_RDEF, 852 "Flash not ready for access") }, 853 { SST(0x3F, 0x70, SS_RDEF, 854 "Invalid RAP block") }, 855 { SST(0x3F, 0x71, SS_RDEF, 856 "RAP/ETF mismatch") }, 857 { SST(0x3F, 0x90, SS_RDEF, 858 "Invalid CAP block") }, 859 { SST(0x3F, 0x91, SS_RDEF, 860 "World Wide Name (WWN) Mismatch") }, 861 { SST(0x40, 0x01, SS_RDEF, 862 "DRAM Parity Error") }, 863 { SST(0x40, 0x02, SS_RDEF, 864 "DRAM Parity Error") }, 865 { SST(0x42, 0x0A, SS_RDEF, 866 "Loopback Test") }, 867 { SST(0x42, 0x0B, SS_RDEF, 868 "Loopback Test") }, 869 { SST(0x44, 0xF2, SS_RDEF, 870 "Compare error during data integrity check") }, 871 { SST(0x44, 0xF6, SS_RDEF, 872 "Unrecoverable error during data integrity check") }, 873 { SST(0x47, 0x80, SS_RDEF, 874 "Fibre Channel Sequence Error") }, 875 { SST(0x4E, 0x01, SS_RDEF, 876 "Information Unit Too Short") }, 877 { SST(0x80, 0x00, SS_RDEF, 878 "General Firmware Error / Command Timeout") }, 879 { SST(0x80, 0x01, SS_RDEF, 880 "Command Timeout") }, 881 { SST(0x80, 0x02, SS_RDEF, 882 "Command Timeout") }, 883 { SST(0x80, 0x80, SS_RDEF, 884 "FC FIFO Error During Read Transfer") }, 885 { SST(0x80, 0x81, SS_RDEF, 886 "FC FIFO Error During Write Transfer") }, 887 { SST(0x80, 0x82, SS_RDEF, 888 "DISC FIFO Error During Read Transfer") }, 889 { SST(0x80, 0x83, SS_RDEF, 890 "DISC FIFO Error During Write Transfer") }, 891 { SST(0x80, 0x84, SS_RDEF, 892 "LBA Seeded LRC Error on Read") }, 893 { SST(0x80, 0x85, SS_RDEF, 894 "LBA Seeded LRC Error on Write") }, 895 { SST(0x80, 0x86, SS_RDEF, 896 "IOEDC Error on Read") }, 897 { SST(0x80, 0x87, SS_RDEF, 898 "IOEDC Error on Write") }, 899 { SST(0x80, 0x88, SS_RDEF, 900 "Host Parity Check Failed") }, 901 { SST(0x80, 0x89, SS_RDEF, 902 "IOEDC error on read detected by formatter") }, 903 { SST(0x80, 0x8A, SS_RDEF, 904 "Host Parity Errors / Host FIFO Initialization Failed") }, 905 { SST(0x80, 0x8B, SS_RDEF, 906 "Host Parity Errors") }, 907 { SST(0x80, 0x8C, SS_RDEF, 908 "Host Parity Errors") }, 909 { SST(0x80, 0x8D, SS_RDEF, 910 "Host Parity Errors") }, 911 { SST(0x81, 0x00, SS_RDEF, 912 "LA Check Failed") }, 913 { SST(0x82, 0x00, SS_RDEF, 914 "Internal client detected insufficient buffer") }, 915 { SST(0x84, 0x00, SS_RDEF, 916 "Scheduled Diagnostic And Repair") }, 917 }; 918 919 static struct scsi_sense_quirk_entry sense_quirk_table[] = { 920 { 921 /* 922 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b 923 * when they really should return 0x04 0x02. 924 */ 925 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, 926 /*num_sense_keys*/0, 927 sizeof(quantum_fireball_entries)/sizeof(struct asc_table_entry), 928 /*sense key entries*/NULL, 929 quantum_fireball_entries 930 }, 931 { 932 /* 933 * This Sony MO drive likes to return 0x04, 0x00 when it 934 * isn't spun up. 935 */ 936 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, 937 /*num_sense_keys*/0, 938 sizeof(sony_mo_entries)/sizeof(struct asc_table_entry), 939 /*sense key entries*/NULL, 940 sony_mo_entries 941 }, 942 { 943 /* 944 * HGST vendor-specific error codes 945 */ 946 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"}, 947 /*num_sense_keys*/0, 948 sizeof(hgst_entries)/sizeof(struct asc_table_entry), 949 /*sense key entries*/NULL, 950 hgst_entries 951 }, 952 { 953 /* 954 * SEAGATE vendor-specific error codes 955 */ 956 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"}, 957 /*num_sense_keys*/0, 958 sizeof(seagate_entries)/sizeof(struct asc_table_entry), 959 /*sense key entries*/NULL, 960 seagate_entries 961 } 962 }; 963 964 const int sense_quirk_table_size = 965 sizeof(sense_quirk_table)/sizeof(sense_quirk_table[0]); 966 967 static struct asc_table_entry asc_table[] = { 968 /* 969 * From: http://www.t10.org/lists/asc-num.txt 970 * Modifications by Jung-uk Kim (jkim@FreeBSD.org) 971 */ 972 /* 973 * File: ASC-NUM.TXT 974 * 975 * SCSI ASC/ASCQ Assignments 976 * Numeric Sorted Listing 977 * as of 8/12/15 978 * 979 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 980 * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- 981 * . L - PRINTER DEVICE (SSC) blank = reserved 982 * . P - PROCESSOR DEVICE (SPC) not blank = allowed 983 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) 984 * . . R - CD DEVICE (MMC) 985 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 986 * . . .M - MEDIA CHANGER DEVICE (SMC) 987 * . . . A - STORAGE ARRAY DEVICE (SCC) 988 * . . . E - ENCLOSURE SERVICES DEVICE (SES) 989 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 990 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 991 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 992 * . . . . .F - OBJECT-BASED STORAGE (OSD) 993 * DTLPWROMAEBKVF 994 * ASC ASCQ Action 995 * Description 996 */ 997 /* DTLPWROMAEBKVF */ 998 { SST(0x00, 0x00, SS_NOP, 999 "No additional sense information") }, 1000 /* T */ 1001 { SST(0x00, 0x01, SS_RDEF, 1002 "Filemark detected") }, 1003 /* T */ 1004 { SST(0x00, 0x02, SS_RDEF, 1005 "End-of-partition/medium detected") }, 1006 /* T */ 1007 { SST(0x00, 0x03, SS_RDEF, 1008 "Setmark detected") }, 1009 /* T */ 1010 { SST(0x00, 0x04, SS_RDEF, 1011 "Beginning-of-partition/medium detected") }, 1012 /* TL */ 1013 { SST(0x00, 0x05, SS_RDEF, 1014 "End-of-data detected") }, 1015 /* DTLPWROMAEBKVF */ 1016 { SST(0x00, 0x06, SS_RDEF, 1017 "I/O process terminated") }, 1018 /* T */ 1019 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ 1020 "Programmable early warning detected") }, 1021 /* R */ 1022 { SST(0x00, 0x11, SS_FATAL | EBUSY, 1023 "Audio play operation in progress") }, 1024 /* R */ 1025 { SST(0x00, 0x12, SS_NOP, 1026 "Audio play operation paused") }, 1027 /* R */ 1028 { SST(0x00, 0x13, SS_NOP, 1029 "Audio play operation successfully completed") }, 1030 /* R */ 1031 { SST(0x00, 0x14, SS_RDEF, 1032 "Audio play operation stopped due to error") }, 1033 /* R */ 1034 { SST(0x00, 0x15, SS_NOP, 1035 "No current audio status to return") }, 1036 /* DTLPWROMAEBKVF */ 1037 { SST(0x00, 0x16, SS_FATAL | EBUSY, 1038 "Operation in progress") }, 1039 /* DTL WROMAEBKVF */ 1040 { SST(0x00, 0x17, SS_RDEF, 1041 "Cleaning requested") }, 1042 /* T */ 1043 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ 1044 "Erase operation in progress") }, 1045 /* T */ 1046 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ 1047 "Locate operation in progress") }, 1048 /* T */ 1049 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ 1050 "Rewind operation in progress") }, 1051 /* T */ 1052 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ 1053 "Set capacity operation in progress") }, 1054 /* T */ 1055 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ 1056 "Verify operation in progress") }, 1057 /* DT B */ 1058 { SST(0x00, 0x1D, SS_RDEF, /* XXX TBD */ 1059 "ATA pass through information available") }, 1060 /* DT R MAEBKV */ 1061 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ 1062 "Conflicting SA creation request") }, 1063 /* DT B */ 1064 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */ 1065 "Logical unit transitioning to another power condition") }, 1066 /* DT P B */ 1067 { SST(0x00, 0x20, SS_RDEF, /* XXX TBD */ 1068 "Extended copy information available") }, 1069 /* D */ 1070 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */ 1071 "Atomic command aborted due to ACA") }, 1072 /* D W O BK */ 1073 { SST(0x01, 0x00, SS_RDEF, 1074 "No index/sector signal") }, 1075 /* D WRO BK */ 1076 { SST(0x02, 0x00, SS_RDEF, 1077 "No seek complete") }, 1078 /* DTL W O BK */ 1079 { SST(0x03, 0x00, SS_RDEF, 1080 "Peripheral device write fault") }, 1081 /* T */ 1082 { SST(0x03, 0x01, SS_RDEF, 1083 "No write current") }, 1084 /* T */ 1085 { SST(0x03, 0x02, SS_RDEF, 1086 "Excessive write errors") }, 1087 /* DTLPWROMAEBKVF */ 1088 { SST(0x04, 0x00, SS_RDEF, 1089 "Logical unit not ready, cause not reportable") }, 1090 /* DTLPWROMAEBKVF */ 1091 { SST(0x04, 0x01, SS_WAIT | EBUSY, 1092 "Logical unit is in process of becoming ready") }, 1093 /* DTLPWROMAEBKVF */ 1094 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1095 "Logical unit not ready, initializing command required") }, 1096 /* DTLPWROMAEBKVF */ 1097 { SST(0x04, 0x03, SS_FATAL | ENXIO, 1098 "Logical unit not ready, manual intervention required") }, 1099 /* DTL RO B */ 1100 { SST(0x04, 0x04, SS_FATAL | EBUSY, 1101 "Logical unit not ready, format in progress") }, 1102 /* DT W O A BK F */ 1103 { SST(0x04, 0x05, SS_FATAL | EBUSY, 1104 "Logical unit not ready, rebuild in progress") }, 1105 /* DT W O A BK */ 1106 { SST(0x04, 0x06, SS_FATAL | EBUSY, 1107 "Logical unit not ready, recalculation in progress") }, 1108 /* DTLPWROMAEBKVF */ 1109 { SST(0x04, 0x07, SS_FATAL | EBUSY, 1110 "Logical unit not ready, operation in progress") }, 1111 /* R */ 1112 { SST(0x04, 0x08, SS_FATAL | EBUSY, 1113 "Logical unit not ready, long write in progress") }, 1114 /* DTLPWROMAEBKVF */ 1115 { SST(0x04, 0x09, SS_RDEF, /* XXX TBD */ 1116 "Logical unit not ready, self-test in progress") }, 1117 /* DTLPWROMAEBKVF */ 1118 { SST(0x04, 0x0A, SS_WAIT | ENXIO, 1119 "Logical unit not accessible, asymmetric access state transition")}, 1120 /* DTLPWROMAEBKVF */ 1121 { SST(0x04, 0x0B, SS_FATAL | ENXIO, 1122 "Logical unit not accessible, target port in standby state") }, 1123 /* DTLPWROMAEBKVF */ 1124 { SST(0x04, 0x0C, SS_FATAL | ENXIO, 1125 "Logical unit not accessible, target port in unavailable state") }, 1126 /* F */ 1127 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ 1128 "Logical unit not ready, structure check required") }, 1129 /* DTL WR MAEBKVF */ 1130 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */ 1131 "Logical unit not ready, security session in progress") }, 1132 /* DT WROM B */ 1133 { SST(0x04, 0x10, SS_RDEF, /* XXX TBD */ 1134 "Logical unit not ready, auxiliary memory not accessible") }, 1135 /* DT WRO AEB VF */ 1136 { SST(0x04, 0x11, SS_WAIT | EBUSY, 1137 "Logical unit not ready, notify (enable spinup) required") }, 1138 /* M V */ 1139 { SST(0x04, 0x12, SS_RDEF, /* XXX TBD */ 1140 "Logical unit not ready, offline") }, 1141 /* DT R MAEBKV */ 1142 { SST(0x04, 0x13, SS_RDEF, /* XXX TBD */ 1143 "Logical unit not ready, SA creation in progress") }, 1144 /* D B */ 1145 { SST(0x04, 0x14, SS_RDEF, /* XXX TBD */ 1146 "Logical unit not ready, space allocation in progress") }, 1147 /* M */ 1148 { SST(0x04, 0x15, SS_RDEF, /* XXX TBD */ 1149 "Logical unit not ready, robotics disabled") }, 1150 /* M */ 1151 { SST(0x04, 0x16, SS_RDEF, /* XXX TBD */ 1152 "Logical unit not ready, configuration required") }, 1153 /* M */ 1154 { SST(0x04, 0x17, SS_RDEF, /* XXX TBD */ 1155 "Logical unit not ready, calibration required") }, 1156 /* M */ 1157 { SST(0x04, 0x18, SS_RDEF, /* XXX TBD */ 1158 "Logical unit not ready, a door is open") }, 1159 /* M */ 1160 { SST(0x04, 0x19, SS_RDEF, /* XXX TBD */ 1161 "Logical unit not ready, operating in sequential mode") }, 1162 /* DT B */ 1163 { SST(0x04, 0x1A, SS_RDEF, /* XXX TBD */ 1164 "Logical unit not ready, START/STOP UNIT command in progress") }, 1165 /* D B */ 1166 { SST(0x04, 0x1B, SS_RDEF, /* XXX TBD */ 1167 "Logical unit not ready, sanitize in progress") }, 1168 /* DT MAEB */ 1169 { SST(0x04, 0x1C, SS_RDEF, /* XXX TBD */ 1170 "Logical unit not ready, additional power use not yet granted") }, 1171 /* D */ 1172 { SST(0x04, 0x1D, SS_RDEF, /* XXX TBD */ 1173 "Logical unit not ready, configuration in progress") }, 1174 /* D */ 1175 { SST(0x04, 0x1E, SS_FATAL | ENXIO, 1176 "Logical unit not ready, microcode activation required") }, 1177 /* DTLPWROMAEBKVF */ 1178 { SST(0x04, 0x1F, SS_FATAL | ENXIO, 1179 "Logical unit not ready, microcode download required") }, 1180 /* DTLPWROMAEBKVF */ 1181 { SST(0x04, 0x20, SS_RDEF, /* XXX TBD */ 1182 "Logical unit not ready, logical unit reset required") }, 1183 /* DTLPWROMAEBKVF */ 1184 { SST(0x04, 0x21, SS_RDEF, /* XXX TBD */ 1185 "Logical unit not ready, hard reset required") }, 1186 /* DTLPWROMAEBKVF */ 1187 { SST(0x04, 0x22, SS_RDEF, /* XXX TBD */ 1188 "Logical unit not ready, power cycle required") }, 1189 /* DTL WROMAEBKVF */ 1190 { SST(0x05, 0x00, SS_RDEF, 1191 "Logical unit does not respond to selection") }, 1192 /* D WROM BK */ 1193 { SST(0x06, 0x00, SS_RDEF, 1194 "No reference position found") }, 1195 /* DTL WROM BK */ 1196 { SST(0x07, 0x00, SS_RDEF, 1197 "Multiple peripheral devices selected") }, 1198 /* DTL WROMAEBKVF */ 1199 { SST(0x08, 0x00, SS_RDEF, 1200 "Logical unit communication failure") }, 1201 /* DTL WROMAEBKVF */ 1202 { SST(0x08, 0x01, SS_RDEF, 1203 "Logical unit communication time-out") }, 1204 /* DTL WROMAEBKVF */ 1205 { SST(0x08, 0x02, SS_RDEF, 1206 "Logical unit communication parity error") }, 1207 /* DT ROM BK */ 1208 { SST(0x08, 0x03, SS_RDEF, 1209 "Logical unit communication CRC error (Ultra-DMA/32)") }, 1210 /* DTLPWRO K */ 1211 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ 1212 "Unreachable copy target") }, 1213 /* DT WRO B */ 1214 { SST(0x09, 0x00, SS_RDEF, 1215 "Track following error") }, 1216 /* WRO K */ 1217 { SST(0x09, 0x01, SS_RDEF, 1218 "Tracking servo failure") }, 1219 /* WRO K */ 1220 { SST(0x09, 0x02, SS_RDEF, 1221 "Focus servo failure") }, 1222 /* WRO */ 1223 { SST(0x09, 0x03, SS_RDEF, 1224 "Spindle servo failure") }, 1225 /* DT WRO B */ 1226 { SST(0x09, 0x04, SS_RDEF, 1227 "Head select fault") }, 1228 /* DT RO B */ 1229 { SST(0x09, 0x05, SS_RDEF, 1230 "Vibration induced tracking error") }, 1231 /* DTLPWROMAEBKVF */ 1232 { SST(0x0A, 0x00, SS_FATAL | ENOSPC, 1233 "Error log overflow") }, 1234 /* DTLPWROMAEBKVF */ 1235 { SST(0x0B, 0x00, SS_RDEF, 1236 "Warning") }, 1237 /* DTLPWROMAEBKVF */ 1238 { SST(0x0B, 0x01, SS_RDEF, 1239 "Warning - specified temperature exceeded") }, 1240 /* DTLPWROMAEBKVF */ 1241 { SST(0x0B, 0x02, SS_RDEF, 1242 "Warning - enclosure degraded") }, 1243 /* DTLPWROMAEBKVF */ 1244 { SST(0x0B, 0x03, SS_RDEF, /* XXX TBD */ 1245 "Warning - background self-test failed") }, 1246 /* DTLPWRO AEBKVF */ 1247 { SST(0x0B, 0x04, SS_RDEF, /* XXX TBD */ 1248 "Warning - background pre-scan detected medium error") }, 1249 /* DTLPWRO AEBKVF */ 1250 { SST(0x0B, 0x05, SS_RDEF, /* XXX TBD */ 1251 "Warning - background medium scan detected medium error") }, 1252 /* DTLPWROMAEBKVF */ 1253 { SST(0x0B, 0x06, SS_RDEF, /* XXX TBD */ 1254 "Warning - non-volatile cache now volatile") }, 1255 /* DTLPWROMAEBKVF */ 1256 { SST(0x0B, 0x07, SS_RDEF, /* XXX TBD */ 1257 "Warning - degraded power to non-volatile cache") }, 1258 /* DTLPWROMAEBKVF */ 1259 { SST(0x0B, 0x08, SS_RDEF, /* XXX TBD */ 1260 "Warning - power loss expected") }, 1261 /* D */ 1262 { SST(0x0B, 0x09, SS_RDEF, /* XXX TBD */ 1263 "Warning - device statistics notification available") }, 1264 /* DTLPWROMAEBKVF */ 1265 { SST(0x0B, 0x0A, SS_RDEF, /* XXX TBD */ 1266 "Warning - High critical temperature limit exceeded") }, 1267 /* DTLPWROMAEBKVF */ 1268 { SST(0x0B, 0x0B, SS_RDEF, /* XXX TBD */ 1269 "Warning - Low critical temperature limit exceeded") }, 1270 /* DTLPWROMAEBKVF */ 1271 { SST(0x0B, 0x0C, SS_RDEF, /* XXX TBD */ 1272 "Warning - High operating temperature limit exceeded") }, 1273 /* DTLPWROMAEBKVF */ 1274 { SST(0x0B, 0x0D, SS_RDEF, /* XXX TBD */ 1275 "Warning - Low operating temperature limit exceeded") }, 1276 /* DTLPWROMAEBKVF */ 1277 { SST(0x0B, 0x0E, SS_RDEF, /* XXX TBD */ 1278 "Warning - High citical humidity limit exceeded") }, 1279 /* DTLPWROMAEBKVF */ 1280 { SST(0x0B, 0x0F, SS_RDEF, /* XXX TBD */ 1281 "Warning - Low citical humidity limit exceeded") }, 1282 /* DTLPWROMAEBKVF */ 1283 { SST(0x0B, 0x10, SS_RDEF, /* XXX TBD */ 1284 "Warning - High operating humidity limit exceeded") }, 1285 /* DTLPWROMAEBKVF */ 1286 { SST(0x0B, 0x11, SS_RDEF, /* XXX TBD */ 1287 "Warning - Low operating humidity limit exceeded") }, 1288 /* T R */ 1289 { SST(0x0C, 0x00, SS_RDEF, 1290 "Write error") }, 1291 /* K */ 1292 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1293 "Write error - recovered with auto reallocation") }, 1294 /* D W O BK */ 1295 { SST(0x0C, 0x02, SS_RDEF, 1296 "Write error - auto reallocation failed") }, 1297 /* D W O BK */ 1298 { SST(0x0C, 0x03, SS_RDEF, 1299 "Write error - recommend reassignment") }, 1300 /* DT W O B */ 1301 { SST(0x0C, 0x04, SS_RDEF, 1302 "Compression check miscompare error") }, 1303 /* DT W O B */ 1304 { SST(0x0C, 0x05, SS_RDEF, 1305 "Data expansion occurred during compression") }, 1306 /* DT W O B */ 1307 { SST(0x0C, 0x06, SS_RDEF, 1308 "Block not compressible") }, 1309 /* R */ 1310 { SST(0x0C, 0x07, SS_RDEF, 1311 "Write error - recovery needed") }, 1312 /* R */ 1313 { SST(0x0C, 0x08, SS_RDEF, 1314 "Write error - recovery failed") }, 1315 /* R */ 1316 { SST(0x0C, 0x09, SS_RDEF, 1317 "Write error - loss of streaming") }, 1318 /* R */ 1319 { SST(0x0C, 0x0A, SS_RDEF, 1320 "Write error - padding blocks added") }, 1321 /* DT WROM B */ 1322 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ 1323 "Auxiliary memory write error") }, 1324 /* DTLPWRO AEBKVF */ 1325 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ 1326 "Write error - unexpected unsolicited data") }, 1327 /* DTLPWRO AEBKVF */ 1328 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ 1329 "Write error - not enough unsolicited data") }, 1330 /* DT W O BK */ 1331 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */ 1332 "Multiple write errors") }, 1333 /* R */ 1334 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ 1335 "Defects in error window") }, 1336 /* D */ 1337 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */ 1338 "Incomplete multiple atomic write operations") }, 1339 /* D */ 1340 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */ 1341 "Write error - recovery scan needed") }, 1342 /* D */ 1343 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */ 1344 "Write error - insufficient zone resources") }, 1345 /* DTLPWRO A K */ 1346 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ 1347 "Error detected by third party temporary initiator") }, 1348 /* DTLPWRO A K */ 1349 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ 1350 "Third party device failure") }, 1351 /* DTLPWRO A K */ 1352 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ 1353 "Copy target device not reachable") }, 1354 /* DTLPWRO A K */ 1355 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ 1356 "Incorrect copy target device type") }, 1357 /* DTLPWRO A K */ 1358 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ 1359 "Copy target device data underrun") }, 1360 /* DTLPWRO A K */ 1361 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ 1362 "Copy target device data overrun") }, 1363 /* DT PWROMAEBK F */ 1364 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ 1365 "Invalid information unit") }, 1366 /* DT PWROMAEBK F */ 1367 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ 1368 "Information unit too short") }, 1369 /* DT PWROMAEBK F */ 1370 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ 1371 "Information unit too long") }, 1372 /* DT P R MAEBK F */ 1373 { SST(0x0E, 0x03, SS_RDEF, /* XXX TBD */ 1374 "Invalid field in command information unit") }, 1375 /* D W O BK */ 1376 { SST(0x10, 0x00, SS_RDEF, 1377 "ID CRC or ECC error") }, 1378 /* DT W O */ 1379 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ 1380 "Logical block guard check failed") }, 1381 /* DT W O */ 1382 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ 1383 "Logical block application tag check failed") }, 1384 /* DT W O */ 1385 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ 1386 "Logical block reference tag check failed") }, 1387 /* T */ 1388 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */ 1389 "Logical block protection error on recovered buffer data") }, 1390 /* T */ 1391 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */ 1392 "Logical block protection method error") }, 1393 /* DT WRO BK */ 1394 { SST(0x11, 0x00, SS_FATAL|EIO, 1395 "Unrecovered read error") }, 1396 /* DT WRO BK */ 1397 { SST(0x11, 0x01, SS_FATAL|EIO, 1398 "Read retries exhausted") }, 1399 /* DT WRO BK */ 1400 { SST(0x11, 0x02, SS_FATAL|EIO, 1401 "Error too long to correct") }, 1402 /* DT W O BK */ 1403 { SST(0x11, 0x03, SS_FATAL|EIO, 1404 "Multiple read errors") }, 1405 /* D W O BK */ 1406 { SST(0x11, 0x04, SS_FATAL|EIO, 1407 "Unrecovered read error - auto reallocate failed") }, 1408 /* WRO B */ 1409 { SST(0x11, 0x05, SS_FATAL|EIO, 1410 "L-EC uncorrectable error") }, 1411 /* WRO B */ 1412 { SST(0x11, 0x06, SS_FATAL|EIO, 1413 "CIRC unrecovered error") }, 1414 /* W O B */ 1415 { SST(0x11, 0x07, SS_RDEF, 1416 "Data re-synchronization error") }, 1417 /* T */ 1418 { SST(0x11, 0x08, SS_RDEF, 1419 "Incomplete block read") }, 1420 /* T */ 1421 { SST(0x11, 0x09, SS_RDEF, 1422 "No gap found") }, 1423 /* DT O BK */ 1424 { SST(0x11, 0x0A, SS_RDEF, 1425 "Miscorrected error") }, 1426 /* D W O BK */ 1427 { SST(0x11, 0x0B, SS_FATAL|EIO, 1428 "Unrecovered read error - recommend reassignment") }, 1429 /* D W O BK */ 1430 { SST(0x11, 0x0C, SS_FATAL|EIO, 1431 "Unrecovered read error - recommend rewrite the data") }, 1432 /* DT WRO B */ 1433 { SST(0x11, 0x0D, SS_RDEF, 1434 "De-compression CRC error") }, 1435 /* DT WRO B */ 1436 { SST(0x11, 0x0E, SS_RDEF, 1437 "Cannot decompress using declared algorithm") }, 1438 /* R */ 1439 { SST(0x11, 0x0F, SS_RDEF, 1440 "Error reading UPC/EAN number") }, 1441 /* R */ 1442 { SST(0x11, 0x10, SS_RDEF, 1443 "Error reading ISRC number") }, 1444 /* R */ 1445 { SST(0x11, 0x11, SS_RDEF, 1446 "Read error - loss of streaming") }, 1447 /* DT WROM B */ 1448 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ 1449 "Auxiliary memory read error") }, 1450 /* DTLPWRO AEBKVF */ 1451 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ 1452 "Read error - failed retransmission request") }, 1453 /* D */ 1454 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ 1455 "Read error - LBA marked bad by application client") }, 1456 /* D */ 1457 { SST(0x11, 0x15, SS_RDEF, /* XXX TBD */ 1458 "Write after sanitize required") }, 1459 /* D W O BK */ 1460 { SST(0x12, 0x00, SS_RDEF, 1461 "Address mark not found for ID field") }, 1462 /* D W O BK */ 1463 { SST(0x13, 0x00, SS_RDEF, 1464 "Address mark not found for data field") }, 1465 /* DTL WRO BK */ 1466 { SST(0x14, 0x00, SS_RDEF, 1467 "Recorded entity not found") }, 1468 /* DT WRO BK */ 1469 { SST(0x14, 0x01, SS_RDEF, 1470 "Record not found") }, 1471 /* T */ 1472 { SST(0x14, 0x02, SS_RDEF, 1473 "Filemark or setmark not found") }, 1474 /* T */ 1475 { SST(0x14, 0x03, SS_RDEF, 1476 "End-of-data not found") }, 1477 /* T */ 1478 { SST(0x14, 0x04, SS_RDEF, 1479 "Block sequence error") }, 1480 /* DT W O BK */ 1481 { SST(0x14, 0x05, SS_RDEF, 1482 "Record not found - recommend reassignment") }, 1483 /* DT W O BK */ 1484 { SST(0x14, 0x06, SS_RDEF, 1485 "Record not found - data auto-reallocated") }, 1486 /* T */ 1487 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ 1488 "Locate operation failure") }, 1489 /* DTL WROM BK */ 1490 { SST(0x15, 0x00, SS_RDEF, 1491 "Random positioning error") }, 1492 /* DTL WROM BK */ 1493 { SST(0x15, 0x01, SS_RDEF, 1494 "Mechanical positioning error") }, 1495 /* DT WRO BK */ 1496 { SST(0x15, 0x02, SS_RDEF, 1497 "Positioning error detected by read of medium") }, 1498 /* D W O BK */ 1499 { SST(0x16, 0x00, SS_RDEF, 1500 "Data synchronization mark error") }, 1501 /* D W O BK */ 1502 { SST(0x16, 0x01, SS_RDEF, 1503 "Data sync error - data rewritten") }, 1504 /* D W O BK */ 1505 { SST(0x16, 0x02, SS_RDEF, 1506 "Data sync error - recommend rewrite") }, 1507 /* D W O BK */ 1508 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1509 "Data sync error - data auto-reallocated") }, 1510 /* D W O BK */ 1511 { SST(0x16, 0x04, SS_RDEF, 1512 "Data sync error - recommend reassignment") }, 1513 /* DT WRO BK */ 1514 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1515 "Recovered data with no error correction applied") }, 1516 /* DT WRO BK */ 1517 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1518 "Recovered data with retries") }, 1519 /* DT WRO BK */ 1520 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1521 "Recovered data with positive head offset") }, 1522 /* DT WRO BK */ 1523 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1524 "Recovered data with negative head offset") }, 1525 /* WRO B */ 1526 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1527 "Recovered data with retries and/or CIRC applied") }, 1528 /* D WRO BK */ 1529 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1530 "Recovered data using previous sector ID") }, 1531 /* D W O BK */ 1532 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1533 "Recovered data without ECC - data auto-reallocated") }, 1534 /* D WRO BK */ 1535 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1536 "Recovered data without ECC - recommend reassignment") }, 1537 /* D WRO BK */ 1538 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1539 "Recovered data without ECC - recommend rewrite") }, 1540 /* D WRO BK */ 1541 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1542 "Recovered data without ECC - data rewritten") }, 1543 /* DT WRO BK */ 1544 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1545 "Recovered data with error correction applied") }, 1546 /* D WRO BK */ 1547 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1548 "Recovered data with error corr. & retries applied") }, 1549 /* D WRO BK */ 1550 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1551 "Recovered data - data auto-reallocated") }, 1552 /* R */ 1553 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1554 "Recovered data with CIRC") }, 1555 /* R */ 1556 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1557 "Recovered data with L-EC") }, 1558 /* D WRO BK */ 1559 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1560 "Recovered data - recommend reassignment") }, 1561 /* D WRO BK */ 1562 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1563 "Recovered data - recommend rewrite") }, 1564 /* D W O BK */ 1565 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1566 "Recovered data with ECC - data rewritten") }, 1567 /* R */ 1568 { SST(0x18, 0x08, SS_RDEF, /* XXX TBD */ 1569 "Recovered data with linking") }, 1570 /* D O K */ 1571 { SST(0x19, 0x00, SS_RDEF, 1572 "Defect list error") }, 1573 /* D O K */ 1574 { SST(0x19, 0x01, SS_RDEF, 1575 "Defect list not available") }, 1576 /* D O K */ 1577 { SST(0x19, 0x02, SS_RDEF, 1578 "Defect list error in primary list") }, 1579 /* D O K */ 1580 { SST(0x19, 0x03, SS_RDEF, 1581 "Defect list error in grown list") }, 1582 /* DTLPWROMAEBKVF */ 1583 { SST(0x1A, 0x00, SS_RDEF, 1584 "Parameter list length error") }, 1585 /* DTLPWROMAEBKVF */ 1586 { SST(0x1B, 0x00, SS_RDEF, 1587 "Synchronous data transfer error") }, 1588 /* D O BK */ 1589 { SST(0x1C, 0x00, SS_RDEF, 1590 "Defect list not found") }, 1591 /* D O BK */ 1592 { SST(0x1C, 0x01, SS_RDEF, 1593 "Primary defect list not found") }, 1594 /* D O BK */ 1595 { SST(0x1C, 0x02, SS_RDEF, 1596 "Grown defect list not found") }, 1597 /* DT WRO BK */ 1598 { SST(0x1D, 0x00, SS_FATAL, 1599 "Miscompare during verify operation") }, 1600 /* D B */ 1601 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */ 1602 "Miscomparable verify of unmapped LBA") }, 1603 /* D W O BK */ 1604 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1605 "Recovered ID with ECC correction") }, 1606 /* D O K */ 1607 { SST(0x1F, 0x00, SS_RDEF, 1608 "Partial defect list transfer") }, 1609 /* DTLPWROMAEBKVF */ 1610 { SST(0x20, 0x00, SS_FATAL | EINVAL, 1611 "Invalid command operation code") }, 1612 /* DT PWROMAEBK */ 1613 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ 1614 "Access denied - initiator pending-enrolled") }, 1615 /* DT PWROMAEBK */ 1616 { SST(0x20, 0x02, SS_RDEF, /* XXX TBD */ 1617 "Access denied - no access rights") }, 1618 /* DT PWROMAEBK */ 1619 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ 1620 "Access denied - invalid mgmt ID key") }, 1621 /* T */ 1622 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ 1623 "Illegal command while in write capable state") }, 1624 /* T */ 1625 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ 1626 "Obsolete") }, 1627 /* T */ 1628 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ 1629 "Illegal command while in explicit address mode") }, 1630 /* T */ 1631 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ 1632 "Illegal command while in implicit address mode") }, 1633 /* DT PWROMAEBK */ 1634 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ 1635 "Access denied - enrollment conflict") }, 1636 /* DT PWROMAEBK */ 1637 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ 1638 "Access denied - invalid LU identifier") }, 1639 /* DT PWROMAEBK */ 1640 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ 1641 "Access denied - invalid proxy token") }, 1642 /* DT PWROMAEBK */ 1643 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ 1644 "Access denied - ACL LUN conflict") }, 1645 /* T */ 1646 { SST(0x20, 0x0C, SS_FATAL | EINVAL, 1647 "Illegal command when not in append-only mode") }, 1648 /* DT WRO BK */ 1649 { SST(0x21, 0x00, SS_FATAL | EINVAL, 1650 "Logical block address out of range") }, 1651 /* DT WROM BK */ 1652 { SST(0x21, 0x01, SS_FATAL | EINVAL, 1653 "Invalid element address") }, 1654 /* R */ 1655 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ 1656 "Invalid address for write") }, 1657 /* R */ 1658 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ 1659 "Invalid write crossing layer jump") }, 1660 /* D */ 1661 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */ 1662 "Unaligned write command") }, 1663 /* D */ 1664 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */ 1665 "Write boundary violation") }, 1666 /* D */ 1667 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */ 1668 "Attempt to read invalid data") }, 1669 /* D */ 1670 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */ 1671 "Read boundary violation") }, 1672 /* D */ 1673 { SST(0x22, 0x00, SS_FATAL | EINVAL, 1674 "Illegal function (use 20 00, 24 00, or 26 00)") }, 1675 /* DT P B */ 1676 { SST(0x23, 0x00, SS_FATAL | EINVAL, 1677 "Invalid token operation, cause not reportable") }, 1678 /* DT P B */ 1679 { SST(0x23, 0x01, SS_FATAL | EINVAL, 1680 "Invalid token operation, unsupported token type") }, 1681 /* DT P B */ 1682 { SST(0x23, 0x02, SS_FATAL | EINVAL, 1683 "Invalid token operation, remote token usage not supported") }, 1684 /* DT P B */ 1685 { SST(0x23, 0x03, SS_FATAL | EINVAL, 1686 "Invalid token operation, remote ROD token creation not supported") }, 1687 /* DT P B */ 1688 { SST(0x23, 0x04, SS_FATAL | EINVAL, 1689 "Invalid token operation, token unknown") }, 1690 /* DT P B */ 1691 { SST(0x23, 0x05, SS_FATAL | EINVAL, 1692 "Invalid token operation, token corrupt") }, 1693 /* DT P B */ 1694 { SST(0x23, 0x06, SS_FATAL | EINVAL, 1695 "Invalid token operation, token revoked") }, 1696 /* DT P B */ 1697 { SST(0x23, 0x07, SS_FATAL | EINVAL, 1698 "Invalid token operation, token expired") }, 1699 /* DT P B */ 1700 { SST(0x23, 0x08, SS_FATAL | EINVAL, 1701 "Invalid token operation, token cancelled") }, 1702 /* DT P B */ 1703 { SST(0x23, 0x09, SS_FATAL | EINVAL, 1704 "Invalid token operation, token deleted") }, 1705 /* DT P B */ 1706 { SST(0x23, 0x0A, SS_FATAL | EINVAL, 1707 "Invalid token operation, invalid token length") }, 1708 /* DTLPWROMAEBKVF */ 1709 { SST(0x24, 0x00, SS_FATAL | EINVAL, 1710 "Invalid field in CDB") }, 1711 /* DTLPWRO AEBKVF */ 1712 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ 1713 "CDB decryption error") }, 1714 /* T */ 1715 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ 1716 "Obsolete") }, 1717 /* T */ 1718 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ 1719 "Obsolete") }, 1720 /* F */ 1721 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ 1722 "Security audit value frozen") }, 1723 /* F */ 1724 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ 1725 "Security working key frozen") }, 1726 /* F */ 1727 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ 1728 "NONCE not unique") }, 1729 /* F */ 1730 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ 1731 "NONCE timestamp out of range") }, 1732 /* DT R MAEBKV */ 1733 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ 1734 "Invalid XCDB") }, 1735 /* DTLPWROMAEBKVF */ 1736 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST, 1737 "Logical unit not supported") }, 1738 /* DTLPWROMAEBKVF */ 1739 { SST(0x26, 0x00, SS_FATAL | EINVAL, 1740 "Invalid field in parameter list") }, 1741 /* DTLPWROMAEBKVF */ 1742 { SST(0x26, 0x01, SS_FATAL | EINVAL, 1743 "Parameter not supported") }, 1744 /* DTLPWROMAEBKVF */ 1745 { SST(0x26, 0x02, SS_FATAL | EINVAL, 1746 "Parameter value invalid") }, 1747 /* DTLPWROMAE K */ 1748 { SST(0x26, 0x03, SS_FATAL | EINVAL, 1749 "Threshold parameters not supported") }, 1750 /* DTLPWROMAEBKVF */ 1751 { SST(0x26, 0x04, SS_FATAL | EINVAL, 1752 "Invalid release of persistent reservation") }, 1753 /* DTLPWRO A BK */ 1754 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ 1755 "Data decryption error") }, 1756 /* DTLPWRO K */ 1757 { SST(0x26, 0x06, SS_FATAL | EINVAL, 1758 "Too many target descriptors") }, 1759 /* DTLPWRO K */ 1760 { SST(0x26, 0x07, SS_FATAL | EINVAL, 1761 "Unsupported target descriptor type code") }, 1762 /* DTLPWRO K */ 1763 { SST(0x26, 0x08, SS_FATAL | EINVAL, 1764 "Too many segment descriptors") }, 1765 /* DTLPWRO K */ 1766 { SST(0x26, 0x09, SS_FATAL | EINVAL, 1767 "Unsupported segment descriptor type code") }, 1768 /* DTLPWRO K */ 1769 { SST(0x26, 0x0A, SS_FATAL | EINVAL, 1770 "Unexpected inexact segment") }, 1771 /* DTLPWRO K */ 1772 { SST(0x26, 0x0B, SS_FATAL | EINVAL, 1773 "Inline data length exceeded") }, 1774 /* DTLPWRO K */ 1775 { SST(0x26, 0x0C, SS_FATAL | EINVAL, 1776 "Invalid operation for copy source or destination") }, 1777 /* DTLPWRO K */ 1778 { SST(0x26, 0x0D, SS_FATAL | EINVAL, 1779 "Copy segment granularity violation") }, 1780 /* DT PWROMAEBK */ 1781 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ 1782 "Invalid parameter while port is enabled") }, 1783 /* F */ 1784 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ 1785 "Invalid data-out buffer integrity check value") }, 1786 /* T */ 1787 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ 1788 "Data decryption key fail limit reached") }, 1789 /* T */ 1790 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ 1791 "Incomplete key-associated data set") }, 1792 /* T */ 1793 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ 1794 "Vendor specific key reference not found") }, 1795 /* D */ 1796 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */ 1797 "Application tag mode page is invalid") }, 1798 /* DT WRO BK */ 1799 { SST(0x27, 0x00, SS_FATAL | EACCES, 1800 "Write protected") }, 1801 /* DT WRO BK */ 1802 { SST(0x27, 0x01, SS_FATAL | EACCES, 1803 "Hardware write protected") }, 1804 /* DT WRO BK */ 1805 { SST(0x27, 0x02, SS_FATAL | EACCES, 1806 "Logical unit software write protected") }, 1807 /* T R */ 1808 { SST(0x27, 0x03, SS_FATAL | EACCES, 1809 "Associated write protect") }, 1810 /* T R */ 1811 { SST(0x27, 0x04, SS_FATAL | EACCES, 1812 "Persistent write protect") }, 1813 /* T R */ 1814 { SST(0x27, 0x05, SS_FATAL | EACCES, 1815 "Permanent write protect") }, 1816 /* R F */ 1817 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ 1818 "Conditional write protect") }, 1819 /* D B */ 1820 { SST(0x27, 0x07, SS_FATAL | ENOSPC, 1821 "Space allocation failed write protect") }, 1822 /* D */ 1823 { SST(0x27, 0x08, SS_FATAL | EACCES, 1824 "Zone is read only") }, 1825 /* DTLPWROMAEBKVF */ 1826 { SST(0x28, 0x00, SS_FATAL | ENXIO, 1827 "Not ready to ready change, medium may have changed") }, 1828 /* DT WROM B */ 1829 { SST(0x28, 0x01, SS_FATAL | ENXIO, 1830 "Import or export element accessed") }, 1831 /* R */ 1832 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ 1833 "Format-layer may have changed") }, 1834 /* M */ 1835 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ 1836 "Import/export element accessed, medium changed") }, 1837 /* 1838 * XXX JGibbs - All of these should use the same errno, but I don't 1839 * think ENXIO is the correct choice. Should we borrow from 1840 * the networking errnos? ECONNRESET anyone? 1841 */ 1842 /* DTLPWROMAEBKVF */ 1843 { SST(0x29, 0x00, SS_FATAL | ENXIO, 1844 "Power on, reset, or bus device reset occurred") }, 1845 /* DTLPWROMAEBKVF */ 1846 { SST(0x29, 0x01, SS_RDEF, 1847 "Power on occurred") }, 1848 /* DTLPWROMAEBKVF */ 1849 { SST(0x29, 0x02, SS_RDEF, 1850 "SCSI bus reset occurred") }, 1851 /* DTLPWROMAEBKVF */ 1852 { SST(0x29, 0x03, SS_RDEF, 1853 "Bus device reset function occurred") }, 1854 /* DTLPWROMAEBKVF */ 1855 { SST(0x29, 0x04, SS_RDEF, 1856 "Device internal reset") }, 1857 /* DTLPWROMAEBKVF */ 1858 { SST(0x29, 0x05, SS_RDEF, 1859 "Transceiver mode changed to single-ended") }, 1860 /* DTLPWROMAEBKVF */ 1861 { SST(0x29, 0x06, SS_RDEF, 1862 "Transceiver mode changed to LVD") }, 1863 /* DTLPWROMAEBKVF */ 1864 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ 1865 "I_T nexus loss occurred") }, 1866 /* DTL WROMAEBKVF */ 1867 { SST(0x2A, 0x00, SS_RDEF, 1868 "Parameters changed") }, 1869 /* DTL WROMAEBKVF */ 1870 { SST(0x2A, 0x01, SS_RDEF, 1871 "Mode parameters changed") }, 1872 /* DTL WROMAE K */ 1873 { SST(0x2A, 0x02, SS_RDEF, 1874 "Log parameters changed") }, 1875 /* DTLPWROMAE K */ 1876 { SST(0x2A, 0x03, SS_RDEF, 1877 "Reservations preempted") }, 1878 /* DTLPWROMAE */ 1879 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ 1880 "Reservations released") }, 1881 /* DTLPWROMAE */ 1882 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ 1883 "Registrations preempted") }, 1884 /* DTLPWROMAEBKVF */ 1885 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ 1886 "Asymmetric access state changed") }, 1887 /* DTLPWROMAEBKVF */ 1888 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ 1889 "Implicit asymmetric access state transition failed") }, 1890 /* DT WROMAEBKVF */ 1891 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ 1892 "Priority changed") }, 1893 /* D */ 1894 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ 1895 "Capacity data has changed") }, 1896 /* DT */ 1897 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ 1898 "Error history I_T nexus cleared") }, 1899 /* DT */ 1900 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ 1901 "Error history snapshot released") }, 1902 /* F */ 1903 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ 1904 "Error recovery attributes have changed") }, 1905 /* T */ 1906 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ 1907 "Data encryption capabilities changed") }, 1908 /* DT M E V */ 1909 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ 1910 "Timestamp changed") }, 1911 /* T */ 1912 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ 1913 "Data encryption parameters changed by another I_T nexus") }, 1914 /* T */ 1915 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ 1916 "Data encryption parameters changed by vendor specific event") }, 1917 /* T */ 1918 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ 1919 "Data encryption key instance counter has changed") }, 1920 /* DT R MAEBKV */ 1921 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ 1922 "SA creation capabilities data has changed") }, 1923 /* T M V */ 1924 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */ 1925 "Medium removal prevention preempted") }, 1926 /* DTLPWRO K */ 1927 { SST(0x2B, 0x00, SS_RDEF, 1928 "Copy cannot execute since host cannot disconnect") }, 1929 /* DTLPWROMAEBKVF */ 1930 { SST(0x2C, 0x00, SS_RDEF, 1931 "Command sequence error") }, 1932 /* */ 1933 { SST(0x2C, 0x01, SS_RDEF, 1934 "Too many windows specified") }, 1935 /* */ 1936 { SST(0x2C, 0x02, SS_RDEF, 1937 "Invalid combination of windows specified") }, 1938 /* R */ 1939 { SST(0x2C, 0x03, SS_RDEF, 1940 "Current program area is not empty") }, 1941 /* R */ 1942 { SST(0x2C, 0x04, SS_RDEF, 1943 "Current program area is empty") }, 1944 /* B */ 1945 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ 1946 "Illegal power condition request") }, 1947 /* R */ 1948 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ 1949 "Persistent prevent conflict") }, 1950 /* DTLPWROMAEBKVF */ 1951 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ 1952 "Previous busy status") }, 1953 /* DTLPWROMAEBKVF */ 1954 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ 1955 "Previous task set full status") }, 1956 /* DTLPWROM EBKVF */ 1957 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ 1958 "Previous reservation conflict status") }, 1959 /* F */ 1960 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ 1961 "Partition or collection contains user objects") }, 1962 /* T */ 1963 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ 1964 "Not reserved") }, 1965 /* D */ 1966 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */ 1967 "ORWRITE generation does not match") }, 1968 /* D */ 1969 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */ 1970 "Reset write pointer not allowed") }, 1971 /* D */ 1972 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */ 1973 "Zone is offline") }, 1974 /* D */ 1975 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */ 1976 "Stream not open") }, 1977 /* D */ 1978 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */ 1979 "Unwritten data in zone") }, 1980 /* T */ 1981 { SST(0x2D, 0x00, SS_RDEF, 1982 "Overwrite error on update in place") }, 1983 /* R */ 1984 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ 1985 "Insufficient time for operation") }, 1986 /* D */ 1987 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */ 1988 "Command timeout before processing") }, 1989 /* D */ 1990 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */ 1991 "Command timeout during processing") }, 1992 /* D */ 1993 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */ 1994 "Command timeout during processing due to error recovery") }, 1995 /* DTLPWROMAEBKVF */ 1996 { SST(0x2F, 0x00, SS_RDEF, 1997 "Commands cleared by another initiator") }, 1998 /* D */ 1999 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ 2000 "Commands cleared by power loss notification") }, 2001 /* DTLPWROMAEBKVF */ 2002 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ 2003 "Commands cleared by device server") }, 2004 /* DTLPWROMAEBKVF */ 2005 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */ 2006 "Some commands cleared by queuing layer event") }, 2007 /* DT WROM BK */ 2008 { SST(0x30, 0x00, SS_RDEF, 2009 "Incompatible medium installed") }, 2010 /* DT WRO BK */ 2011 { SST(0x30, 0x01, SS_RDEF, 2012 "Cannot read medium - unknown format") }, 2013 /* DT WRO BK */ 2014 { SST(0x30, 0x02, SS_RDEF, 2015 "Cannot read medium - incompatible format") }, 2016 /* DT R K */ 2017 { SST(0x30, 0x03, SS_RDEF, 2018 "Cleaning cartridge installed") }, 2019 /* DT WRO BK */ 2020 { SST(0x30, 0x04, SS_RDEF, 2021 "Cannot write medium - unknown format") }, 2022 /* DT WRO BK */ 2023 { SST(0x30, 0x05, SS_RDEF, 2024 "Cannot write medium - incompatible format") }, 2025 /* DT WRO B */ 2026 { SST(0x30, 0x06, SS_RDEF, 2027 "Cannot format medium - incompatible medium") }, 2028 /* DTL WROMAEBKVF */ 2029 { SST(0x30, 0x07, SS_RDEF, 2030 "Cleaning failure") }, 2031 /* R */ 2032 { SST(0x30, 0x08, SS_RDEF, 2033 "Cannot write - application code mismatch") }, 2034 /* R */ 2035 { SST(0x30, 0x09, SS_RDEF, 2036 "Current session not fixated for append") }, 2037 /* DT WRO AEBK */ 2038 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ 2039 "Cleaning request rejected") }, 2040 /* T */ 2041 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ 2042 "WORM medium - overwrite attempted") }, 2043 /* T */ 2044 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ 2045 "WORM medium - integrity check") }, 2046 /* R */ 2047 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ 2048 "Medium not formatted") }, 2049 /* M */ 2050 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ 2051 "Incompatible volume type") }, 2052 /* M */ 2053 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ 2054 "Incompatible volume qualifier") }, 2055 /* M */ 2056 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */ 2057 "Cleaning volume expired") }, 2058 /* DT WRO BK */ 2059 { SST(0x31, 0x00, SS_RDEF, 2060 "Medium format corrupted") }, 2061 /* D L RO B */ 2062 { SST(0x31, 0x01, SS_RDEF, 2063 "Format command failed") }, 2064 /* R */ 2065 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ 2066 "Zoned formatting failed due to spare linking") }, 2067 /* D B */ 2068 { SST(0x31, 0x03, SS_RDEF, /* XXX TBD */ 2069 "SANITIZE command failed") }, 2070 /* D W O BK */ 2071 { SST(0x32, 0x00, SS_RDEF, 2072 "No defect spare location available") }, 2073 /* D W O BK */ 2074 { SST(0x32, 0x01, SS_RDEF, 2075 "Defect list update failure") }, 2076 /* T */ 2077 { SST(0x33, 0x00, SS_RDEF, 2078 "Tape length error") }, 2079 /* DTLPWROMAEBKVF */ 2080 { SST(0x34, 0x00, SS_RDEF, 2081 "Enclosure failure") }, 2082 /* DTLPWROMAEBKVF */ 2083 { SST(0x35, 0x00, SS_RDEF, 2084 "Enclosure services failure") }, 2085 /* DTLPWROMAEBKVF */ 2086 { SST(0x35, 0x01, SS_RDEF, 2087 "Unsupported enclosure function") }, 2088 /* DTLPWROMAEBKVF */ 2089 { SST(0x35, 0x02, SS_RDEF, 2090 "Enclosure services unavailable") }, 2091 /* DTLPWROMAEBKVF */ 2092 { SST(0x35, 0x03, SS_RDEF, 2093 "Enclosure services transfer failure") }, 2094 /* DTLPWROMAEBKVF */ 2095 { SST(0x35, 0x04, SS_RDEF, 2096 "Enclosure services transfer refused") }, 2097 /* DTL WROMAEBKVF */ 2098 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ 2099 "Enclosure services checksum error") }, 2100 /* L */ 2101 { SST(0x36, 0x00, SS_RDEF, 2102 "Ribbon, ink, or toner failure") }, 2103 /* DTL WROMAEBKVF */ 2104 { SST(0x37, 0x00, SS_RDEF, 2105 "Rounded parameter") }, 2106 /* B */ 2107 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ 2108 "Event status notification") }, 2109 /* B */ 2110 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ 2111 "ESN - power management class event") }, 2112 /* B */ 2113 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ 2114 "ESN - media class event") }, 2115 /* B */ 2116 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ 2117 "ESN - device busy class event") }, 2118 /* D */ 2119 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */ 2120 "Thin provisioning soft threshold reached") }, 2121 /* DTL WROMAE K */ 2122 { SST(0x39, 0x00, SS_RDEF, 2123 "Saving parameters not supported") }, 2124 /* DTL WROM BK */ 2125 { SST(0x3A, 0x00, SS_FATAL | ENXIO, 2126 "Medium not present") }, 2127 /* DT WROM BK */ 2128 { SST(0x3A, 0x01, SS_FATAL | ENXIO, 2129 "Medium not present - tray closed") }, 2130 /* DT WROM BK */ 2131 { SST(0x3A, 0x02, SS_FATAL | ENXIO, 2132 "Medium not present - tray open") }, 2133 /* DT WROM B */ 2134 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ 2135 "Medium not present - loadable") }, 2136 /* DT WRO B */ 2137 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ 2138 "Medium not present - medium auxiliary memory accessible") }, 2139 /* TL */ 2140 { SST(0x3B, 0x00, SS_RDEF, 2141 "Sequential positioning error") }, 2142 /* T */ 2143 { SST(0x3B, 0x01, SS_RDEF, 2144 "Tape position error at beginning-of-medium") }, 2145 /* T */ 2146 { SST(0x3B, 0x02, SS_RDEF, 2147 "Tape position error at end-of-medium") }, 2148 /* L */ 2149 { SST(0x3B, 0x03, SS_RDEF, 2150 "Tape or electronic vertical forms unit not ready") }, 2151 /* L */ 2152 { SST(0x3B, 0x04, SS_RDEF, 2153 "Slew failure") }, 2154 /* L */ 2155 { SST(0x3B, 0x05, SS_RDEF, 2156 "Paper jam") }, 2157 /* L */ 2158 { SST(0x3B, 0x06, SS_RDEF, 2159 "Failed to sense top-of-form") }, 2160 /* L */ 2161 { SST(0x3B, 0x07, SS_RDEF, 2162 "Failed to sense bottom-of-form") }, 2163 /* T */ 2164 { SST(0x3B, 0x08, SS_RDEF, 2165 "Reposition error") }, 2166 /* */ 2167 { SST(0x3B, 0x09, SS_RDEF, 2168 "Read past end of medium") }, 2169 /* */ 2170 { SST(0x3B, 0x0A, SS_RDEF, 2171 "Read past beginning of medium") }, 2172 /* */ 2173 { SST(0x3B, 0x0B, SS_RDEF, 2174 "Position past end of medium") }, 2175 /* T */ 2176 { SST(0x3B, 0x0C, SS_RDEF, 2177 "Position past beginning of medium") }, 2178 /* DT WROM BK */ 2179 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, 2180 "Medium destination element full") }, 2181 /* DT WROM BK */ 2182 { SST(0x3B, 0x0E, SS_RDEF, 2183 "Medium source element empty") }, 2184 /* R */ 2185 { SST(0x3B, 0x0F, SS_RDEF, 2186 "End of medium reached") }, 2187 /* DT WROM BK */ 2188 { SST(0x3B, 0x11, SS_RDEF, 2189 "Medium magazine not accessible") }, 2190 /* DT WROM BK */ 2191 { SST(0x3B, 0x12, SS_RDEF, 2192 "Medium magazine removed") }, 2193 /* DT WROM BK */ 2194 { SST(0x3B, 0x13, SS_RDEF, 2195 "Medium magazine inserted") }, 2196 /* DT WROM BK */ 2197 { SST(0x3B, 0x14, SS_RDEF, 2198 "Medium magazine locked") }, 2199 /* DT WROM BK */ 2200 { SST(0x3B, 0x15, SS_RDEF, 2201 "Medium magazine unlocked") }, 2202 /* R */ 2203 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ 2204 "Mechanical positioning or changer error") }, 2205 /* F */ 2206 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ 2207 "Read past end of user object") }, 2208 /* M */ 2209 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ 2210 "Element disabled") }, 2211 /* M */ 2212 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ 2213 "Element enabled") }, 2214 /* M */ 2215 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ 2216 "Data transfer device removed") }, 2217 /* M */ 2218 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ 2219 "Data transfer device inserted") }, 2220 /* T */ 2221 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */ 2222 "Too many logical objects on partition to support operation") }, 2223 /* DTLPWROMAE K */ 2224 { SST(0x3D, 0x00, SS_RDEF, 2225 "Invalid bits in IDENTIFY message") }, 2226 /* DTLPWROMAEBKVF */ 2227 { SST(0x3E, 0x00, SS_RDEF, 2228 "Logical unit has not self-configured yet") }, 2229 /* DTLPWROMAEBKVF */ 2230 { SST(0x3E, 0x01, SS_RDEF, 2231 "Logical unit failure") }, 2232 /* DTLPWROMAEBKVF */ 2233 { SST(0x3E, 0x02, SS_RDEF, 2234 "Timeout on logical unit") }, 2235 /* DTLPWROMAEBKVF */ 2236 { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */ 2237 "Logical unit failed self-test") }, 2238 /* DTLPWROMAEBKVF */ 2239 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ 2240 "Logical unit unable to update self-test log") }, 2241 /* DTLPWROMAEBKVF */ 2242 { SST(0x3F, 0x00, SS_RDEF, 2243 "Target operating conditions have changed") }, 2244 /* DTLPWROMAEBKVF */ 2245 { SST(0x3F, 0x01, SS_RDEF, 2246 "Microcode has been changed") }, 2247 /* DTLPWROM BK */ 2248 { SST(0x3F, 0x02, SS_RDEF, 2249 "Changed operating definition") }, 2250 /* DTLPWROMAEBKVF */ 2251 { SST(0x3F, 0x03, SS_RDEF, 2252 "INQUIRY data has changed") }, 2253 /* DT WROMAEBK */ 2254 { SST(0x3F, 0x04, SS_RDEF, 2255 "Component device attached") }, 2256 /* DT WROMAEBK */ 2257 { SST(0x3F, 0x05, SS_RDEF, 2258 "Device identifier changed") }, 2259 /* DT WROMAEB */ 2260 { SST(0x3F, 0x06, SS_RDEF, 2261 "Redundancy group created or modified") }, 2262 /* DT WROMAEB */ 2263 { SST(0x3F, 0x07, SS_RDEF, 2264 "Redundancy group deleted") }, 2265 /* DT WROMAEB */ 2266 { SST(0x3F, 0x08, SS_RDEF, 2267 "Spare created or modified") }, 2268 /* DT WROMAEB */ 2269 { SST(0x3F, 0x09, SS_RDEF, 2270 "Spare deleted") }, 2271 /* DT WROMAEBK */ 2272 { SST(0x3F, 0x0A, SS_RDEF, 2273 "Volume set created or modified") }, 2274 /* DT WROMAEBK */ 2275 { SST(0x3F, 0x0B, SS_RDEF, 2276 "Volume set deleted") }, 2277 /* DT WROMAEBK */ 2278 { SST(0x3F, 0x0C, SS_RDEF, 2279 "Volume set deassigned") }, 2280 /* DT WROMAEBK */ 2281 { SST(0x3F, 0x0D, SS_RDEF, 2282 "Volume set reassigned") }, 2283 /* DTLPWROMAE */ 2284 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN , 2285 "Reported LUNs data has changed") }, 2286 /* DTLPWROMAEBKVF */ 2287 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ 2288 "Echo buffer overwritten") }, 2289 /* DT WROM B */ 2290 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ 2291 "Medium loadable") }, 2292 /* DT WROM B */ 2293 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ 2294 "Medium auxiliary memory accessible") }, 2295 /* DTLPWR MAEBK F */ 2296 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ 2297 "iSCSI IP address added") }, 2298 /* DTLPWR MAEBK F */ 2299 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ 2300 "iSCSI IP address removed") }, 2301 /* DTLPWR MAEBK F */ 2302 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ 2303 "iSCSI IP address changed") }, 2304 /* DTLPWR MAEBK */ 2305 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */ 2306 "Inspect referrals sense descriptors") }, 2307 /* DTLPWROMAEBKVF */ 2308 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */ 2309 "Microcode has been changed without reset") }, 2310 /* D */ 2311 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */ 2312 "Zone transition to full") }, 2313 /* D */ 2314 { SST(0x40, 0x00, SS_RDEF, 2315 "RAM failure") }, /* deprecated - use 40 NN instead */ 2316 /* DTLPWROMAEBKVF */ 2317 { SST(0x40, 0x80, SS_RDEF, 2318 "Diagnostic failure: ASCQ = Component ID") }, 2319 /* DTLPWROMAEBKVF */ 2320 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, 2321 NULL) }, /* Range 0x80->0xFF */ 2322 /* D */ 2323 { SST(0x41, 0x00, SS_RDEF, 2324 "Data path failure") }, /* deprecated - use 40 NN instead */ 2325 /* D */ 2326 { SST(0x42, 0x00, SS_RDEF, 2327 "Power-on or self-test failure") }, 2328 /* deprecated - use 40 NN instead */ 2329 /* DTLPWROMAEBKVF */ 2330 { SST(0x43, 0x00, SS_RDEF, 2331 "Message error") }, 2332 /* DTLPWROMAEBKVF */ 2333 { SST(0x44, 0x00, SS_RDEF, 2334 "Internal target failure") }, 2335 /* DT P MAEBKVF */ 2336 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */ 2337 "Persistent reservation information lost") }, 2338 /* DT B */ 2339 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ 2340 "ATA device failed set features") }, 2341 /* DTLPWROMAEBKVF */ 2342 { SST(0x45, 0x00, SS_RDEF, 2343 "Select or reselect failure") }, 2344 /* DTLPWROM BK */ 2345 { SST(0x46, 0x00, SS_RDEF, 2346 "Unsuccessful soft reset") }, 2347 /* DTLPWROMAEBKVF */ 2348 { SST(0x47, 0x00, SS_RDEF, 2349 "SCSI parity error") }, 2350 /* DTLPWROMAEBKVF */ 2351 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ 2352 "Data phase CRC error detected") }, 2353 /* DTLPWROMAEBKVF */ 2354 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ 2355 "SCSI parity error detected during ST data phase") }, 2356 /* DTLPWROMAEBKVF */ 2357 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ 2358 "Information unit iuCRC error detected") }, 2359 /* DTLPWROMAEBKVF */ 2360 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ 2361 "Asynchronous information protection error detected") }, 2362 /* DTLPWROMAEBKVF */ 2363 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ 2364 "Protocol service CRC error") }, 2365 /* DT MAEBKVF */ 2366 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ 2367 "PHY test function in progress") }, 2368 /* DT PWROMAEBK */ 2369 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ 2370 "Some commands cleared by iSCSI protocol event") }, 2371 /* DTLPWROMAEBKVF */ 2372 { SST(0x48, 0x00, SS_RDEF, 2373 "Initiator detected error message received") }, 2374 /* DTLPWROMAEBKVF */ 2375 { SST(0x49, 0x00, SS_RDEF, 2376 "Invalid message error") }, 2377 /* DTLPWROMAEBKVF */ 2378 { SST(0x4A, 0x00, SS_RDEF, 2379 "Command phase error") }, 2380 /* DTLPWROMAEBKVF */ 2381 { SST(0x4B, 0x00, SS_RDEF, 2382 "Data phase error") }, 2383 /* DT PWROMAEBK */ 2384 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ 2385 "Invalid target port transfer tag received") }, 2386 /* DT PWROMAEBK */ 2387 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ 2388 "Too much write data") }, 2389 /* DT PWROMAEBK */ 2390 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ 2391 "ACK/NAK timeout") }, 2392 /* DT PWROMAEBK */ 2393 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ 2394 "NAK received") }, 2395 /* DT PWROMAEBK */ 2396 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ 2397 "Data offset error") }, 2398 /* DT PWROMAEBK */ 2399 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ 2400 "Initiator response timeout") }, 2401 /* DT PWROMAEBK F */ 2402 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */ 2403 "Connection lost") }, 2404 /* DT PWROMAEBK F */ 2405 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */ 2406 "Data-in buffer overflow - data buffer size") }, 2407 /* DT PWROMAEBK F */ 2408 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */ 2409 "Data-in buffer overflow - data buffer descriptor area") }, 2410 /* DT PWROMAEBK F */ 2411 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */ 2412 "Data-in buffer error") }, 2413 /* DT PWROMAEBK F */ 2414 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */ 2415 "Data-out buffer overflow - data buffer size") }, 2416 /* DT PWROMAEBK F */ 2417 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */ 2418 "Data-out buffer overflow - data buffer descriptor area") }, 2419 /* DT PWROMAEBK F */ 2420 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */ 2421 "Data-out buffer error") }, 2422 /* DT PWROMAEBK F */ 2423 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */ 2424 "PCIe fabric error") }, 2425 /* DT PWROMAEBK F */ 2426 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */ 2427 "PCIe completion timeout") }, 2428 /* DT PWROMAEBK F */ 2429 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */ 2430 "PCIe completer abort") }, 2431 /* DT PWROMAEBK F */ 2432 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */ 2433 "PCIe poisoned TLP received") }, 2434 /* DT PWROMAEBK F */ 2435 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */ 2436 "PCIe ECRC check failed") }, 2437 /* DT PWROMAEBK F */ 2438 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */ 2439 "PCIe unsupported request") }, 2440 /* DT PWROMAEBK F */ 2441 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */ 2442 "PCIe ACS violation") }, 2443 /* DT PWROMAEBK F */ 2444 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */ 2445 "PCIe TLP prefix blocket") }, 2446 /* DTLPWROMAEBKVF */ 2447 { SST(0x4C, 0x00, SS_RDEF, 2448 "Logical unit failed self-configuration") }, 2449 /* DTLPWROMAEBKVF */ 2450 { SST(0x4D, 0x00, SS_RDEF, 2451 "Tagged overlapped commands: ASCQ = Queue tag ID") }, 2452 /* DTLPWROMAEBKVF */ 2453 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, 2454 NULL) }, /* Range 0x00->0xFF */ 2455 /* DTLPWROMAEBKVF */ 2456 { SST(0x4E, 0x00, SS_RDEF, 2457 "Overlapped commands attempted") }, 2458 /* T */ 2459 { SST(0x50, 0x00, SS_RDEF, 2460 "Write append error") }, 2461 /* T */ 2462 { SST(0x50, 0x01, SS_RDEF, 2463 "Write append position error") }, 2464 /* T */ 2465 { SST(0x50, 0x02, SS_RDEF, 2466 "Position error related to timing") }, 2467 /* T RO */ 2468 { SST(0x51, 0x00, SS_RDEF, 2469 "Erase failure") }, 2470 /* R */ 2471 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ 2472 "Erase failure - incomplete erase operation detected") }, 2473 /* T */ 2474 { SST(0x52, 0x00, SS_RDEF, 2475 "Cartridge fault") }, 2476 /* DTL WROM BK */ 2477 { SST(0x53, 0x00, SS_RDEF, 2478 "Media load or eject failed") }, 2479 /* T */ 2480 { SST(0x53, 0x01, SS_RDEF, 2481 "Unload tape failure") }, 2482 /* DT WROM BK */ 2483 { SST(0x53, 0x02, SS_RDEF, 2484 "Medium removal prevented") }, 2485 /* M */ 2486 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ 2487 "Medium removal prevented by data transfer element") }, 2488 /* T */ 2489 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ 2490 "Medium thread or unthread failure") }, 2491 /* M */ 2492 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */ 2493 "Volume identifier invalid") }, 2494 /* T */ 2495 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */ 2496 "Volume identifier missing") }, 2497 /* M */ 2498 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */ 2499 "Duplicate volume identifier") }, 2500 /* M */ 2501 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */ 2502 "Element status unknown") }, 2503 /* M */ 2504 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */ 2505 "Data transfer device error - load failed") }, 2506 /* M */ 2507 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */ 2508 "Data transfer device error - unload failed") }, 2509 /* M */ 2510 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */ 2511 "Data transfer device error - unload missing") }, 2512 /* M */ 2513 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */ 2514 "Data transfer device error - eject failed") }, 2515 /* M */ 2516 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */ 2517 "Data transfer device error - library communication failed") }, 2518 /* P */ 2519 { SST(0x54, 0x00, SS_RDEF, 2520 "SCSI to host system interface failure") }, 2521 /* P */ 2522 { SST(0x55, 0x00, SS_RDEF, 2523 "System resource failure") }, 2524 /* D O BK */ 2525 { SST(0x55, 0x01, SS_FATAL | ENOSPC, 2526 "System buffer full") }, 2527 /* DTLPWROMAE K */ 2528 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ 2529 "Insufficient reservation resources") }, 2530 /* DTLPWROMAE K */ 2531 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ 2532 "Insufficient resources") }, 2533 /* DTLPWROMAE K */ 2534 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ 2535 "Insufficient registration resources") }, 2536 /* DT PWROMAEBK */ 2537 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ 2538 "Insufficient access control resources") }, 2539 /* DT WROM B */ 2540 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ 2541 "Auxiliary memory out of space") }, 2542 /* F */ 2543 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ 2544 "Quota error") }, 2545 /* T */ 2546 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ 2547 "Maximum number of supplemental decryption keys exceeded") }, 2548 /* M */ 2549 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ 2550 "Medium auxiliary memory not accessible") }, 2551 /* M */ 2552 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ 2553 "Data currently unavailable") }, 2554 /* DTLPWROMAEBKVF */ 2555 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */ 2556 "Insufficient power for operation") }, 2557 /* DT P B */ 2558 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */ 2559 "Insufficient resources to create ROD") }, 2560 /* DT P B */ 2561 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */ 2562 "Insufficient resources to create ROD token") }, 2563 /* D */ 2564 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */ 2565 "Insufficient zone resources") }, 2566 /* D */ 2567 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */ 2568 "Insufficient zone resources to complete write") }, 2569 /* D */ 2570 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */ 2571 "Maximum number of streams open") }, 2572 /* R */ 2573 { SST(0x57, 0x00, SS_RDEF, 2574 "Unable to recover table-of-contents") }, 2575 /* O */ 2576 { SST(0x58, 0x00, SS_RDEF, 2577 "Generation does not exist") }, 2578 /* O */ 2579 { SST(0x59, 0x00, SS_RDEF, 2580 "Updated block read") }, 2581 /* DTLPWRO BK */ 2582 { SST(0x5A, 0x00, SS_RDEF, 2583 "Operator request or state change input") }, 2584 /* DT WROM BK */ 2585 { SST(0x5A, 0x01, SS_RDEF, 2586 "Operator medium removal request") }, 2587 /* DT WRO A BK */ 2588 { SST(0x5A, 0x02, SS_RDEF, 2589 "Operator selected write protect") }, 2590 /* DT WRO A BK */ 2591 { SST(0x5A, 0x03, SS_RDEF, 2592 "Operator selected write permit") }, 2593 /* DTLPWROM K */ 2594 { SST(0x5B, 0x00, SS_RDEF, 2595 "Log exception") }, 2596 /* DTLPWROM K */ 2597 { SST(0x5B, 0x01, SS_RDEF, 2598 "Threshold condition met") }, 2599 /* DTLPWROM K */ 2600 { SST(0x5B, 0x02, SS_RDEF, 2601 "Log counter at maximum") }, 2602 /* DTLPWROM K */ 2603 { SST(0x5B, 0x03, SS_RDEF, 2604 "Log list codes exhausted") }, 2605 /* D O */ 2606 { SST(0x5C, 0x00, SS_RDEF, 2607 "RPL status change") }, 2608 /* D O */ 2609 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2610 "Spindles synchronized") }, 2611 /* D O */ 2612 { SST(0x5C, 0x02, SS_RDEF, 2613 "Spindles not synchronized") }, 2614 /* DTLPWROMAEBKVF */ 2615 { SST(0x5D, 0x00, SS_RDEF, 2616 "Failure prediction threshold exceeded") }, 2617 /* R B */ 2618 { SST(0x5D, 0x01, SS_RDEF, /* XXX TBD */ 2619 "Media failure prediction threshold exceeded") }, 2620 /* R */ 2621 { SST(0x5D, 0x02, SS_RDEF, /* XXX TBD */ 2622 "Logical unit failure prediction threshold exceeded") }, 2623 /* R */ 2624 { SST(0x5D, 0x03, SS_RDEF, /* XXX TBD */ 2625 "Spare area exhaustion prediction threshold exceeded") }, 2626 /* D B */ 2627 { SST(0x5D, 0x10, SS_RDEF, /* XXX TBD */ 2628 "Hardware impending failure general hard drive failure") }, 2629 /* D B */ 2630 { SST(0x5D, 0x11, SS_RDEF, /* XXX TBD */ 2631 "Hardware impending failure drive error rate too high") }, 2632 /* D B */ 2633 { SST(0x5D, 0x12, SS_RDEF, /* XXX TBD */ 2634 "Hardware impending failure data error rate too high") }, 2635 /* D B */ 2636 { SST(0x5D, 0x13, SS_RDEF, /* XXX TBD */ 2637 "Hardware impending failure seek error rate too high") }, 2638 /* D B */ 2639 { SST(0x5D, 0x14, SS_RDEF, /* XXX TBD */ 2640 "Hardware impending failure too many block reassigns") }, 2641 /* D B */ 2642 { SST(0x5D, 0x15, SS_RDEF, /* XXX TBD */ 2643 "Hardware impending failure access times too high") }, 2644 /* D B */ 2645 { SST(0x5D, 0x16, SS_RDEF, /* XXX TBD */ 2646 "Hardware impending failure start unit times too high") }, 2647 /* D B */ 2648 { SST(0x5D, 0x17, SS_RDEF, /* XXX TBD */ 2649 "Hardware impending failure channel parametrics") }, 2650 /* D B */ 2651 { SST(0x5D, 0x18, SS_RDEF, /* XXX TBD */ 2652 "Hardware impending failure controller detected") }, 2653 /* D B */ 2654 { SST(0x5D, 0x19, SS_RDEF, /* XXX TBD */ 2655 "Hardware impending failure throughput performance") }, 2656 /* D B */ 2657 { SST(0x5D, 0x1A, SS_RDEF, /* XXX TBD */ 2658 "Hardware impending failure seek time performance") }, 2659 /* D B */ 2660 { SST(0x5D, 0x1B, SS_RDEF, /* XXX TBD */ 2661 "Hardware impending failure spin-up retry count") }, 2662 /* D B */ 2663 { SST(0x5D, 0x1C, SS_RDEF, /* XXX TBD */ 2664 "Hardware impending failure drive calibration retry count") }, 2665 /* D B */ 2666 { SST(0x5D, 0x20, SS_RDEF, /* XXX TBD */ 2667 "Controller impending failure general hard drive failure") }, 2668 /* D B */ 2669 { SST(0x5D, 0x21, SS_RDEF, /* XXX TBD */ 2670 "Controller impending failure drive error rate too high") }, 2671 /* D B */ 2672 { SST(0x5D, 0x22, SS_RDEF, /* XXX TBD */ 2673 "Controller impending failure data error rate too high") }, 2674 /* D B */ 2675 { SST(0x5D, 0x23, SS_RDEF, /* XXX TBD */ 2676 "Controller impending failure seek error rate too high") }, 2677 /* D B */ 2678 { SST(0x5D, 0x24, SS_RDEF, /* XXX TBD */ 2679 "Controller impending failure too many block reassigns") }, 2680 /* D B */ 2681 { SST(0x5D, 0x25, SS_RDEF, /* XXX TBD */ 2682 "Controller impending failure access times too high") }, 2683 /* D B */ 2684 { SST(0x5D, 0x26, SS_RDEF, /* XXX TBD */ 2685 "Controller impending failure start unit times too high") }, 2686 /* D B */ 2687 { SST(0x5D, 0x27, SS_RDEF, /* XXX TBD */ 2688 "Controller impending failure channel parametrics") }, 2689 /* D B */ 2690 { SST(0x5D, 0x28, SS_RDEF, /* XXX TBD */ 2691 "Controller impending failure controller detected") }, 2692 /* D B */ 2693 { SST(0x5D, 0x29, SS_RDEF, /* XXX TBD */ 2694 "Controller impending failure throughput performance") }, 2695 /* D B */ 2696 { SST(0x5D, 0x2A, SS_RDEF, /* XXX TBD */ 2697 "Controller impending failure seek time performance") }, 2698 /* D B */ 2699 { SST(0x5D, 0x2B, SS_RDEF, /* XXX TBD */ 2700 "Controller impending failure spin-up retry count") }, 2701 /* D B */ 2702 { SST(0x5D, 0x2C, SS_RDEF, /* XXX TBD */ 2703 "Controller impending failure drive calibration retry count") }, 2704 /* D B */ 2705 { SST(0x5D, 0x30, SS_RDEF, /* XXX TBD */ 2706 "Data channel impending failure general hard drive failure") }, 2707 /* D B */ 2708 { SST(0x5D, 0x31, SS_RDEF, /* XXX TBD */ 2709 "Data channel impending failure drive error rate too high") }, 2710 /* D B */ 2711 { SST(0x5D, 0x32, SS_RDEF, /* XXX TBD */ 2712 "Data channel impending failure data error rate too high") }, 2713 /* D B */ 2714 { SST(0x5D, 0x33, SS_RDEF, /* XXX TBD */ 2715 "Data channel impending failure seek error rate too high") }, 2716 /* D B */ 2717 { SST(0x5D, 0x34, SS_RDEF, /* XXX TBD */ 2718 "Data channel impending failure too many block reassigns") }, 2719 /* D B */ 2720 { SST(0x5D, 0x35, SS_RDEF, /* XXX TBD */ 2721 "Data channel impending failure access times too high") }, 2722 /* D B */ 2723 { SST(0x5D, 0x36, SS_RDEF, /* XXX TBD */ 2724 "Data channel impending failure start unit times too high") }, 2725 /* D B */ 2726 { SST(0x5D, 0x37, SS_RDEF, /* XXX TBD */ 2727 "Data channel impending failure channel parametrics") }, 2728 /* D B */ 2729 { SST(0x5D, 0x38, SS_RDEF, /* XXX TBD */ 2730 "Data channel impending failure controller detected") }, 2731 /* D B */ 2732 { SST(0x5D, 0x39, SS_RDEF, /* XXX TBD */ 2733 "Data channel impending failure throughput performance") }, 2734 /* D B */ 2735 { SST(0x5D, 0x3A, SS_RDEF, /* XXX TBD */ 2736 "Data channel impending failure seek time performance") }, 2737 /* D B */ 2738 { SST(0x5D, 0x3B, SS_RDEF, /* XXX TBD */ 2739 "Data channel impending failure spin-up retry count") }, 2740 /* D B */ 2741 { SST(0x5D, 0x3C, SS_RDEF, /* XXX TBD */ 2742 "Data channel impending failure drive calibration retry count") }, 2743 /* D B */ 2744 { SST(0x5D, 0x40, SS_RDEF, /* XXX TBD */ 2745 "Servo impending failure general hard drive failure") }, 2746 /* D B */ 2747 { SST(0x5D, 0x41, SS_RDEF, /* XXX TBD */ 2748 "Servo impending failure drive error rate too high") }, 2749 /* D B */ 2750 { SST(0x5D, 0x42, SS_RDEF, /* XXX TBD */ 2751 "Servo impending failure data error rate too high") }, 2752 /* D B */ 2753 { SST(0x5D, 0x43, SS_RDEF, /* XXX TBD */ 2754 "Servo impending failure seek error rate too high") }, 2755 /* D B */ 2756 { SST(0x5D, 0x44, SS_RDEF, /* XXX TBD */ 2757 "Servo impending failure too many block reassigns") }, 2758 /* D B */ 2759 { SST(0x5D, 0x45, SS_RDEF, /* XXX TBD */ 2760 "Servo impending failure access times too high") }, 2761 /* D B */ 2762 { SST(0x5D, 0x46, SS_RDEF, /* XXX TBD */ 2763 "Servo impending failure start unit times too high") }, 2764 /* D B */ 2765 { SST(0x5D, 0x47, SS_RDEF, /* XXX TBD */ 2766 "Servo impending failure channel parametrics") }, 2767 /* D B */ 2768 { SST(0x5D, 0x48, SS_RDEF, /* XXX TBD */ 2769 "Servo impending failure controller detected") }, 2770 /* D B */ 2771 { SST(0x5D, 0x49, SS_RDEF, /* XXX TBD */ 2772 "Servo impending failure throughput performance") }, 2773 /* D B */ 2774 { SST(0x5D, 0x4A, SS_RDEF, /* XXX TBD */ 2775 "Servo impending failure seek time performance") }, 2776 /* D B */ 2777 { SST(0x5D, 0x4B, SS_RDEF, /* XXX TBD */ 2778 "Servo impending failure spin-up retry count") }, 2779 /* D B */ 2780 { SST(0x5D, 0x4C, SS_RDEF, /* XXX TBD */ 2781 "Servo impending failure drive calibration retry count") }, 2782 /* D B */ 2783 { SST(0x5D, 0x50, SS_RDEF, /* XXX TBD */ 2784 "Spindle impending failure general hard drive failure") }, 2785 /* D B */ 2786 { SST(0x5D, 0x51, SS_RDEF, /* XXX TBD */ 2787 "Spindle impending failure drive error rate too high") }, 2788 /* D B */ 2789 { SST(0x5D, 0x52, SS_RDEF, /* XXX TBD */ 2790 "Spindle impending failure data error rate too high") }, 2791 /* D B */ 2792 { SST(0x5D, 0x53, SS_RDEF, /* XXX TBD */ 2793 "Spindle impending failure seek error rate too high") }, 2794 /* D B */ 2795 { SST(0x5D, 0x54, SS_RDEF, /* XXX TBD */ 2796 "Spindle impending failure too many block reassigns") }, 2797 /* D B */ 2798 { SST(0x5D, 0x55, SS_RDEF, /* XXX TBD */ 2799 "Spindle impending failure access times too high") }, 2800 /* D B */ 2801 { SST(0x5D, 0x56, SS_RDEF, /* XXX TBD */ 2802 "Spindle impending failure start unit times too high") }, 2803 /* D B */ 2804 { SST(0x5D, 0x57, SS_RDEF, /* XXX TBD */ 2805 "Spindle impending failure channel parametrics") }, 2806 /* D B */ 2807 { SST(0x5D, 0x58, SS_RDEF, /* XXX TBD */ 2808 "Spindle impending failure controller detected") }, 2809 /* D B */ 2810 { SST(0x5D, 0x59, SS_RDEF, /* XXX TBD */ 2811 "Spindle impending failure throughput performance") }, 2812 /* D B */ 2813 { SST(0x5D, 0x5A, SS_RDEF, /* XXX TBD */ 2814 "Spindle impending failure seek time performance") }, 2815 /* D B */ 2816 { SST(0x5D, 0x5B, SS_RDEF, /* XXX TBD */ 2817 "Spindle impending failure spin-up retry count") }, 2818 /* D B */ 2819 { SST(0x5D, 0x5C, SS_RDEF, /* XXX TBD */ 2820 "Spindle impending failure drive calibration retry count") }, 2821 /* D B */ 2822 { SST(0x5D, 0x60, SS_RDEF, /* XXX TBD */ 2823 "Firmware impending failure general hard drive failure") }, 2824 /* D B */ 2825 { SST(0x5D, 0x61, SS_RDEF, /* XXX TBD */ 2826 "Firmware impending failure drive error rate too high") }, 2827 /* D B */ 2828 { SST(0x5D, 0x62, SS_RDEF, /* XXX TBD */ 2829 "Firmware impending failure data error rate too high") }, 2830 /* D B */ 2831 { SST(0x5D, 0x63, SS_RDEF, /* XXX TBD */ 2832 "Firmware impending failure seek error rate too high") }, 2833 /* D B */ 2834 { SST(0x5D, 0x64, SS_RDEF, /* XXX TBD */ 2835 "Firmware impending failure too many block reassigns") }, 2836 /* D B */ 2837 { SST(0x5D, 0x65, SS_RDEF, /* XXX TBD */ 2838 "Firmware impending failure access times too high") }, 2839 /* D B */ 2840 { SST(0x5D, 0x66, SS_RDEF, /* XXX TBD */ 2841 "Firmware impending failure start unit times too high") }, 2842 /* D B */ 2843 { SST(0x5D, 0x67, SS_RDEF, /* XXX TBD */ 2844 "Firmware impending failure channel parametrics") }, 2845 /* D B */ 2846 { SST(0x5D, 0x68, SS_RDEF, /* XXX TBD */ 2847 "Firmware impending failure controller detected") }, 2848 /* D B */ 2849 { SST(0x5D, 0x69, SS_RDEF, /* XXX TBD */ 2850 "Firmware impending failure throughput performance") }, 2851 /* D B */ 2852 { SST(0x5D, 0x6A, SS_RDEF, /* XXX TBD */ 2853 "Firmware impending failure seek time performance") }, 2854 /* D B */ 2855 { SST(0x5D, 0x6B, SS_RDEF, /* XXX TBD */ 2856 "Firmware impending failure spin-up retry count") }, 2857 /* D B */ 2858 { SST(0x5D, 0x6C, SS_RDEF, /* XXX TBD */ 2859 "Firmware impending failure drive calibration retry count") }, 2860 /* DTLPWROMAEBKVF */ 2861 { SST(0x5D, 0xFF, SS_RDEF, 2862 "Failure prediction threshold exceeded (false)") }, 2863 /* DTLPWRO A K */ 2864 { SST(0x5E, 0x00, SS_RDEF, 2865 "Low power condition on") }, 2866 /* DTLPWRO A K */ 2867 { SST(0x5E, 0x01, SS_RDEF, 2868 "Idle condition activated by timer") }, 2869 /* DTLPWRO A K */ 2870 { SST(0x5E, 0x02, SS_RDEF, 2871 "Standby condition activated by timer") }, 2872 /* DTLPWRO A K */ 2873 { SST(0x5E, 0x03, SS_RDEF, 2874 "Idle condition activated by command") }, 2875 /* DTLPWRO A K */ 2876 { SST(0x5E, 0x04, SS_RDEF, 2877 "Standby condition activated by command") }, 2878 /* DTLPWRO A K */ 2879 { SST(0x5E, 0x05, SS_RDEF, 2880 "Idle-B condition activated by timer") }, 2881 /* DTLPWRO A K */ 2882 { SST(0x5E, 0x06, SS_RDEF, 2883 "Idle-B condition activated by command") }, 2884 /* DTLPWRO A K */ 2885 { SST(0x5E, 0x07, SS_RDEF, 2886 "Idle-C condition activated by timer") }, 2887 /* DTLPWRO A K */ 2888 { SST(0x5E, 0x08, SS_RDEF, 2889 "Idle-C condition activated by command") }, 2890 /* DTLPWRO A K */ 2891 { SST(0x5E, 0x09, SS_RDEF, 2892 "Standby-Y condition activated by timer") }, 2893 /* DTLPWRO A K */ 2894 { SST(0x5E, 0x0A, SS_RDEF, 2895 "Standby-Y condition activated by command") }, 2896 /* B */ 2897 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ 2898 "Power state change to active") }, 2899 /* B */ 2900 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ 2901 "Power state change to idle") }, 2902 /* B */ 2903 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ 2904 "Power state change to standby") }, 2905 /* B */ 2906 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ 2907 "Power state change to sleep") }, 2908 /* BK */ 2909 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ 2910 "Power state change to device control") }, 2911 /* */ 2912 { SST(0x60, 0x00, SS_RDEF, 2913 "Lamp failure") }, 2914 /* */ 2915 { SST(0x61, 0x00, SS_RDEF, 2916 "Video acquisition error") }, 2917 /* */ 2918 { SST(0x61, 0x01, SS_RDEF, 2919 "Unable to acquire video") }, 2920 /* */ 2921 { SST(0x61, 0x02, SS_RDEF, 2922 "Out of focus") }, 2923 /* */ 2924 { SST(0x62, 0x00, SS_RDEF, 2925 "Scan head positioning error") }, 2926 /* R */ 2927 { SST(0x63, 0x00, SS_RDEF, 2928 "End of user area encountered on this track") }, 2929 /* R */ 2930 { SST(0x63, 0x01, SS_FATAL | ENOSPC, 2931 "Packet does not fit in available space") }, 2932 /* R */ 2933 { SST(0x64, 0x00, SS_FATAL | ENXIO, 2934 "Illegal mode for this track") }, 2935 /* R */ 2936 { SST(0x64, 0x01, SS_RDEF, 2937 "Invalid packet size") }, 2938 /* DTLPWROMAEBKVF */ 2939 { SST(0x65, 0x00, SS_RDEF, 2940 "Voltage fault") }, 2941 /* */ 2942 { SST(0x66, 0x00, SS_RDEF, 2943 "Automatic document feeder cover up") }, 2944 /* */ 2945 { SST(0x66, 0x01, SS_RDEF, 2946 "Automatic document feeder lift up") }, 2947 /* */ 2948 { SST(0x66, 0x02, SS_RDEF, 2949 "Document jam in automatic document feeder") }, 2950 /* */ 2951 { SST(0x66, 0x03, SS_RDEF, 2952 "Document miss feed automatic in document feeder") }, 2953 /* A */ 2954 { SST(0x67, 0x00, SS_RDEF, 2955 "Configuration failure") }, 2956 /* A */ 2957 { SST(0x67, 0x01, SS_RDEF, 2958 "Configuration of incapable logical units failed") }, 2959 /* A */ 2960 { SST(0x67, 0x02, SS_RDEF, 2961 "Add logical unit failed") }, 2962 /* A */ 2963 { SST(0x67, 0x03, SS_RDEF, 2964 "Modification of logical unit failed") }, 2965 /* A */ 2966 { SST(0x67, 0x04, SS_RDEF, 2967 "Exchange of logical unit failed") }, 2968 /* A */ 2969 { SST(0x67, 0x05, SS_RDEF, 2970 "Remove of logical unit failed") }, 2971 /* A */ 2972 { SST(0x67, 0x06, SS_RDEF, 2973 "Attachment of logical unit failed") }, 2974 /* A */ 2975 { SST(0x67, 0x07, SS_RDEF, 2976 "Creation of logical unit failed") }, 2977 /* A */ 2978 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ 2979 "Assign failure occurred") }, 2980 /* A */ 2981 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ 2982 "Multiply assigned logical unit") }, 2983 /* DTLPWROMAEBKVF */ 2984 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ 2985 "Set target port groups command failed") }, 2986 /* DT B */ 2987 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ 2988 "ATA device feature not enabled") }, 2989 /* A */ 2990 { SST(0x68, 0x00, SS_RDEF, 2991 "Logical unit not configured") }, 2992 /* D */ 2993 { SST(0x68, 0x01, SS_RDEF, 2994 "Subsidiary logical unit not configured") }, 2995 /* A */ 2996 { SST(0x69, 0x00, SS_RDEF, 2997 "Data loss on logical unit") }, 2998 /* A */ 2999 { SST(0x69, 0x01, SS_RDEF, 3000 "Multiple logical unit failures") }, 3001 /* A */ 3002 { SST(0x69, 0x02, SS_RDEF, 3003 "Parity/data mismatch") }, 3004 /* A */ 3005 { SST(0x6A, 0x00, SS_RDEF, 3006 "Informational, refer to log") }, 3007 /* A */ 3008 { SST(0x6B, 0x00, SS_RDEF, 3009 "State change has occurred") }, 3010 /* A */ 3011 { SST(0x6B, 0x01, SS_RDEF, 3012 "Redundancy level got better") }, 3013 /* A */ 3014 { SST(0x6B, 0x02, SS_RDEF, 3015 "Redundancy level got worse") }, 3016 /* A */ 3017 { SST(0x6C, 0x00, SS_RDEF, 3018 "Rebuild failure occurred") }, 3019 /* A */ 3020 { SST(0x6D, 0x00, SS_RDEF, 3021 "Recalculate failure occurred") }, 3022 /* A */ 3023 { SST(0x6E, 0x00, SS_RDEF, 3024 "Command to logical unit failed") }, 3025 /* R */ 3026 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ 3027 "Copy protection key exchange failure - authentication failure") }, 3028 /* R */ 3029 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ 3030 "Copy protection key exchange failure - key not present") }, 3031 /* R */ 3032 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ 3033 "Copy protection key exchange failure - key not established") }, 3034 /* R */ 3035 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ 3036 "Read of scrambled sector without authentication") }, 3037 /* R */ 3038 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ 3039 "Media region code is mismatched to logical unit region") }, 3040 /* R */ 3041 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ 3042 "Drive region must be permanent/region reset count error") }, 3043 /* R */ 3044 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ 3045 "Insufficient block count for binding NONCE recording") }, 3046 /* R */ 3047 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ 3048 "Conflict in binding NONCE recording") }, 3049 /* T */ 3050 { SST(0x70, 0x00, SS_RDEF, 3051 "Decompression exception short: ASCQ = Algorithm ID") }, 3052 /* T */ 3053 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, 3054 NULL) }, /* Range 0x00 -> 0xFF */ 3055 /* T */ 3056 { SST(0x71, 0x00, SS_RDEF, 3057 "Decompression exception long: ASCQ = Algorithm ID") }, 3058 /* T */ 3059 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, 3060 NULL) }, /* Range 0x00 -> 0xFF */ 3061 /* R */ 3062 { SST(0x72, 0x00, SS_RDEF, 3063 "Session fixation error") }, 3064 /* R */ 3065 { SST(0x72, 0x01, SS_RDEF, 3066 "Session fixation error writing lead-in") }, 3067 /* R */ 3068 { SST(0x72, 0x02, SS_RDEF, 3069 "Session fixation error writing lead-out") }, 3070 /* R */ 3071 { SST(0x72, 0x03, SS_RDEF, 3072 "Session fixation error - incomplete track in session") }, 3073 /* R */ 3074 { SST(0x72, 0x04, SS_RDEF, 3075 "Empty or partially written reserved track") }, 3076 /* R */ 3077 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ 3078 "No more track reservations allowed") }, 3079 /* R */ 3080 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ 3081 "RMZ extension is not allowed") }, 3082 /* R */ 3083 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ 3084 "No more test zone extensions are allowed") }, 3085 /* R */ 3086 { SST(0x73, 0x00, SS_RDEF, 3087 "CD control error") }, 3088 /* R */ 3089 { SST(0x73, 0x01, SS_RDEF, 3090 "Power calibration area almost full") }, 3091 /* R */ 3092 { SST(0x73, 0x02, SS_FATAL | ENOSPC, 3093 "Power calibration area is full") }, 3094 /* R */ 3095 { SST(0x73, 0x03, SS_RDEF, 3096 "Power calibration area error") }, 3097 /* R */ 3098 { SST(0x73, 0x04, SS_RDEF, 3099 "Program memory area update failure") }, 3100 /* R */ 3101 { SST(0x73, 0x05, SS_RDEF, 3102 "Program memory area is full") }, 3103 /* R */ 3104 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ 3105 "RMA/PMA is almost full") }, 3106 /* R */ 3107 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ 3108 "Current power calibration area almost full") }, 3109 /* R */ 3110 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ 3111 "Current power calibration area is full") }, 3112 /* R */ 3113 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ 3114 "RDZ is full") }, 3115 /* T */ 3116 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ 3117 "Security error") }, 3118 /* T */ 3119 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ 3120 "Unable to decrypt data") }, 3121 /* T */ 3122 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ 3123 "Unencrypted data encountered while decrypting") }, 3124 /* T */ 3125 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ 3126 "Incorrect data encryption key") }, 3127 /* T */ 3128 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ 3129 "Cryptographic integrity validation failed") }, 3130 /* T */ 3131 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ 3132 "Error decrypting data") }, 3133 /* T */ 3134 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ 3135 "Unknown signature verification key") }, 3136 /* T */ 3137 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ 3138 "Encryption parameters not useable") }, 3139 /* DT R M E VF */ 3140 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ 3141 "Digital signature validation failure") }, 3142 /* T */ 3143 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ 3144 "Encryption mode mismatch on read") }, 3145 /* T */ 3146 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ 3147 "Encrypted block not raw read enabled") }, 3148 /* T */ 3149 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ 3150 "Incorrect encryption parameters") }, 3151 /* DT R MAEBKV */ 3152 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ 3153 "Unable to decrypt parameter list") }, 3154 /* T */ 3155 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ 3156 "Encryption algorithm disabled") }, 3157 /* DT R MAEBKV */ 3158 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ 3159 "SA creation parameter value invalid") }, 3160 /* DT R MAEBKV */ 3161 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ 3162 "SA creation parameter value rejected") }, 3163 /* DT R MAEBKV */ 3164 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ 3165 "Invalid SA usage") }, 3166 /* T */ 3167 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ 3168 "Data encryption configuration prevented") }, 3169 /* DT R MAEBKV */ 3170 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ 3171 "SA creation parameter not supported") }, 3172 /* DT R MAEBKV */ 3173 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ 3174 "Authentication failed") }, 3175 /* V */ 3176 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ 3177 "External data encryption key manager access error") }, 3178 /* V */ 3179 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ 3180 "External data encryption key manager error") }, 3181 /* V */ 3182 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ 3183 "External data encryption key not found") }, 3184 /* V */ 3185 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ 3186 "External data encryption request not authorized") }, 3187 /* T */ 3188 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ 3189 "External data encryption control timeout") }, 3190 /* T */ 3191 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ 3192 "External data encryption control error") }, 3193 /* DT R M E V */ 3194 { SST(0x74, 0x71, SS_RDEF, /* XXX TBD */ 3195 "Logical unit access not authorized") }, 3196 /* D */ 3197 { SST(0x74, 0x79, SS_RDEF, /* XXX TBD */ 3198 "Security conflict in translated device") } 3199 }; 3200 3201 const int asc_table_size = sizeof(asc_table)/sizeof(asc_table[0]); 3202 3203 struct asc_key 3204 { 3205 int asc; 3206 int ascq; 3207 }; 3208 3209 static int 3210 ascentrycomp(const void *key, const void *member) 3211 { 3212 int asc; 3213 int ascq; 3214 const struct asc_table_entry *table_entry; 3215 3216 asc = ((const struct asc_key *)key)->asc; 3217 ascq = ((const struct asc_key *)key)->ascq; 3218 table_entry = (const struct asc_table_entry *)member; 3219 3220 if (asc >= table_entry->asc) { 3221 3222 if (asc > table_entry->asc) 3223 return (1); 3224 3225 if (ascq <= table_entry->ascq) { 3226 /* Check for ranges */ 3227 if (ascq == table_entry->ascq 3228 || ((table_entry->action & SSQ_RANGE) != 0 3229 && ascq >= (table_entry - 1)->ascq)) 3230 return (0); 3231 return (-1); 3232 } 3233 return (1); 3234 } 3235 return (-1); 3236 } 3237 3238 static int 3239 senseentrycomp(const void *key, const void *member) 3240 { 3241 int sense_key; 3242 const struct sense_key_table_entry *table_entry; 3243 3244 sense_key = *((const int *)key); 3245 table_entry = (const struct sense_key_table_entry *)member; 3246 3247 if (sense_key >= table_entry->sense_key) { 3248 if (sense_key == table_entry->sense_key) 3249 return (0); 3250 return (1); 3251 } 3252 return (-1); 3253 } 3254 3255 static void 3256 fetchtableentries(int sense_key, int asc, int ascq, 3257 struct scsi_inquiry_data *inq_data, 3258 const struct sense_key_table_entry **sense_entry, 3259 const struct asc_table_entry **asc_entry) 3260 { 3261 caddr_t match; 3262 const struct asc_table_entry *asc_tables[2]; 3263 const struct sense_key_table_entry *sense_tables[2]; 3264 struct asc_key asc_ascq; 3265 size_t asc_tables_size[2]; 3266 size_t sense_tables_size[2]; 3267 int num_asc_tables; 3268 int num_sense_tables; 3269 int i; 3270 3271 /* Default to failure */ 3272 *sense_entry = NULL; 3273 *asc_entry = NULL; 3274 match = NULL; 3275 if (inq_data != NULL) 3276 match = cam_quirkmatch((caddr_t)inq_data, 3277 (caddr_t)sense_quirk_table, 3278 sense_quirk_table_size, 3279 sizeof(*sense_quirk_table), 3280 scsi_inquiry_match); 3281 3282 if (match != NULL) { 3283 struct scsi_sense_quirk_entry *quirk; 3284 3285 quirk = (struct scsi_sense_quirk_entry *)match; 3286 asc_tables[0] = quirk->asc_info; 3287 asc_tables_size[0] = quirk->num_ascs; 3288 asc_tables[1] = asc_table; 3289 asc_tables_size[1] = asc_table_size; 3290 num_asc_tables = 2; 3291 sense_tables[0] = quirk->sense_key_info; 3292 sense_tables_size[0] = quirk->num_sense_keys; 3293 sense_tables[1] = sense_key_table; 3294 sense_tables_size[1] = sense_key_table_size; 3295 num_sense_tables = 2; 3296 } else { 3297 asc_tables[0] = asc_table; 3298 asc_tables_size[0] = asc_table_size; 3299 num_asc_tables = 1; 3300 sense_tables[0] = sense_key_table; 3301 sense_tables_size[0] = sense_key_table_size; 3302 num_sense_tables = 1; 3303 } 3304 3305 asc_ascq.asc = asc; 3306 asc_ascq.ascq = ascq; 3307 for (i = 0; i < num_asc_tables; i++) { 3308 void *found_entry; 3309 3310 found_entry = bsearch(&asc_ascq, asc_tables[i], 3311 asc_tables_size[i], 3312 sizeof(**asc_tables), 3313 ascentrycomp); 3314 3315 if (found_entry) { 3316 *asc_entry = (struct asc_table_entry *)found_entry; 3317 break; 3318 } 3319 } 3320 3321 for (i = 0; i < num_sense_tables; i++) { 3322 void *found_entry; 3323 3324 found_entry = bsearch(&sense_key, sense_tables[i], 3325 sense_tables_size[i], 3326 sizeof(**sense_tables), 3327 senseentrycomp); 3328 3329 if (found_entry) { 3330 *sense_entry = 3331 (struct sense_key_table_entry *)found_entry; 3332 break; 3333 } 3334 } 3335 } 3336 3337 void 3338 scsi_sense_desc(int sense_key, int asc, int ascq, 3339 struct scsi_inquiry_data *inq_data, 3340 const char **sense_key_desc, const char **asc_desc) 3341 { 3342 const struct asc_table_entry *asc_entry; 3343 const struct sense_key_table_entry *sense_entry; 3344 3345 fetchtableentries(sense_key, asc, ascq, 3346 inq_data, 3347 &sense_entry, 3348 &asc_entry); 3349 3350 if (sense_entry != NULL) 3351 *sense_key_desc = sense_entry->desc; 3352 else 3353 *sense_key_desc = "Invalid Sense Key"; 3354 3355 if (asc_entry != NULL) 3356 *asc_desc = asc_entry->desc; 3357 else if (asc >= 0x80 && asc <= 0xff) 3358 *asc_desc = "Vendor Specific ASC"; 3359 else if (ascq >= 0x80 && ascq <= 0xff) 3360 *asc_desc = "Vendor Specific ASCQ"; 3361 else 3362 *asc_desc = "Reserved ASC/ASCQ pair"; 3363 } 3364 3365 /* 3366 * Given sense and device type information, return the appropriate action. 3367 * If we do not understand the specific error as identified by the ASC/ASCQ 3368 * pair, fall back on the more generic actions derived from the sense key. 3369 */ 3370 scsi_sense_action 3371 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, 3372 u_int32_t sense_flags) 3373 { 3374 const struct asc_table_entry *asc_entry; 3375 const struct sense_key_table_entry *sense_entry; 3376 int error_code, sense_key, asc, ascq; 3377 scsi_sense_action action; 3378 3379 if (!scsi_extract_sense_ccb((union ccb *)csio, 3380 &error_code, &sense_key, &asc, &ascq)) { 3381 action = SS_RETRY | SSQ_DECREMENT_COUNT | SSQ_PRINT_SENSE | EIO; 3382 } else if ((error_code == SSD_DEFERRED_ERROR) 3383 || (error_code == SSD_DESC_DEFERRED_ERROR)) { 3384 /* 3385 * XXX dufault@FreeBSD.org 3386 * This error doesn't relate to the command associated 3387 * with this request sense. A deferred error is an error 3388 * for a command that has already returned GOOD status 3389 * (see SCSI2 8.2.14.2). 3390 * 3391 * By my reading of that section, it looks like the current 3392 * command has been cancelled, we should now clean things up 3393 * (hopefully recovering any lost data) and then retry the 3394 * current command. There are two easy choices, both wrong: 3395 * 3396 * 1. Drop through (like we had been doing), thus treating 3397 * this as if the error were for the current command and 3398 * return and stop the current command. 3399 * 3400 * 2. Issue a retry (like I made it do) thus hopefully 3401 * recovering the current transfer, and ignoring the 3402 * fact that we've dropped a command. 3403 * 3404 * These should probably be handled in a device specific 3405 * sense handler or punted back up to a user mode daemon 3406 */ 3407 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3408 } else { 3409 fetchtableentries(sense_key, asc, ascq, 3410 inq_data, 3411 &sense_entry, 3412 &asc_entry); 3413 3414 /* 3415 * Override the 'No additional Sense' entry (0,0) 3416 * with the error action of the sense key. 3417 */ 3418 if (asc_entry != NULL 3419 && (asc != 0 || ascq != 0)) 3420 action = asc_entry->action; 3421 else if (sense_entry != NULL) 3422 action = sense_entry->action; 3423 else 3424 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3425 3426 if (sense_key == SSD_KEY_RECOVERED_ERROR) { 3427 /* 3428 * The action succeeded but the device wants 3429 * the user to know that some recovery action 3430 * was required. 3431 */ 3432 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); 3433 action |= SS_NOP|SSQ_PRINT_SENSE; 3434 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { 3435 if ((sense_flags & SF_QUIET_IR) != 0) 3436 action &= ~SSQ_PRINT_SENSE; 3437 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { 3438 if ((sense_flags & SF_RETRY_UA) != 0 3439 && (action & SS_MASK) == SS_FAIL) { 3440 action &= ~(SS_MASK|SSQ_MASK); 3441 action |= SS_RETRY|SSQ_DECREMENT_COUNT| 3442 SSQ_PRINT_SENSE; 3443 } 3444 action |= SSQ_UA; 3445 } 3446 } 3447 if ((action & SS_MASK) >= SS_START && 3448 (sense_flags & SF_NO_RECOVERY)) { 3449 action &= ~SS_MASK; 3450 action |= SS_FAIL; 3451 } else if ((action & SS_MASK) == SS_RETRY && 3452 (sense_flags & SF_NO_RETRY)) { 3453 action &= ~SS_MASK; 3454 action |= SS_FAIL; 3455 } 3456 if ((sense_flags & SF_PRINT_ALWAYS) != 0) 3457 action |= SSQ_PRINT_SENSE; 3458 else if ((sense_flags & SF_NO_PRINT) != 0) 3459 action &= ~SSQ_PRINT_SENSE; 3460 3461 return (action); 3462 } 3463 3464 char * 3465 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len) 3466 { 3467 u_int8_t cdb_len; 3468 int i; 3469 3470 if (cdb_ptr == NULL) 3471 return(""); 3472 3473 /* Silence warnings */ 3474 cdb_len = 0; 3475 3476 /* 3477 * This is taken from the SCSI-3 draft spec. 3478 * (T10/1157D revision 0.3) 3479 * The top 3 bits of an opcode are the group code. The next 5 bits 3480 * are the command code. 3481 * Group 0: six byte commands 3482 * Group 1: ten byte commands 3483 * Group 2: ten byte commands 3484 * Group 3: reserved 3485 * Group 4: sixteen byte commands 3486 * Group 5: twelve byte commands 3487 * Group 6: vendor specific 3488 * Group 7: vendor specific 3489 */ 3490 switch((*cdb_ptr >> 5) & 0x7) { 3491 case 0: 3492 cdb_len = 6; 3493 break; 3494 case 1: 3495 case 2: 3496 cdb_len = 10; 3497 break; 3498 case 3: 3499 case 6: 3500 case 7: 3501 /* in this case, just print out the opcode */ 3502 cdb_len = 1; 3503 break; 3504 case 4: 3505 cdb_len = 16; 3506 break; 3507 case 5: 3508 cdb_len = 12; 3509 break; 3510 } 3511 *cdb_string = '\0'; 3512 for (i = 0; i < cdb_len; i++) 3513 snprintf(cdb_string + strlen(cdb_string), 3514 len - strlen(cdb_string), "%02hhx ", cdb_ptr[i]); 3515 3516 return(cdb_string); 3517 } 3518 3519 const char * 3520 scsi_status_string(struct ccb_scsiio *csio) 3521 { 3522 switch(csio->scsi_status) { 3523 case SCSI_STATUS_OK: 3524 return("OK"); 3525 case SCSI_STATUS_CHECK_COND: 3526 return("Check Condition"); 3527 case SCSI_STATUS_BUSY: 3528 return("Busy"); 3529 case SCSI_STATUS_INTERMED: 3530 return("Intermediate"); 3531 case SCSI_STATUS_INTERMED_COND_MET: 3532 return("Intermediate-Condition Met"); 3533 case SCSI_STATUS_RESERV_CONFLICT: 3534 return("Reservation Conflict"); 3535 case SCSI_STATUS_CMD_TERMINATED: 3536 return("Command Terminated"); 3537 case SCSI_STATUS_QUEUE_FULL: 3538 return("Queue Full"); 3539 case SCSI_STATUS_ACA_ACTIVE: 3540 return("ACA Active"); 3541 case SCSI_STATUS_TASK_ABORTED: 3542 return("Task Aborted"); 3543 default: { 3544 static char unkstr[64]; 3545 snprintf(unkstr, sizeof(unkstr), "Unknown %#x", 3546 csio->scsi_status); 3547 return(unkstr); 3548 } 3549 } 3550 } 3551 3552 /* 3553 * scsi_command_string() returns 0 for success and -1 for failure. 3554 */ 3555 #ifdef _KERNEL 3556 int 3557 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) 3558 #else /* !_KERNEL */ 3559 int 3560 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, 3561 struct sbuf *sb) 3562 #endif /* _KERNEL/!_KERNEL */ 3563 { 3564 struct scsi_inquiry_data *inq_data; 3565 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3566 #ifdef _KERNEL 3567 struct ccb_getdev *cgd; 3568 #endif /* _KERNEL */ 3569 3570 #ifdef _KERNEL 3571 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 3572 return(-1); 3573 /* 3574 * Get the device information. 3575 */ 3576 xpt_setup_ccb(&cgd->ccb_h, 3577 csio->ccb_h.path, 3578 CAM_PRIORITY_NORMAL); 3579 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 3580 xpt_action((union ccb *)cgd); 3581 3582 /* 3583 * If the device is unconfigured, just pretend that it is a hard 3584 * drive. scsi_op_desc() needs this. 3585 */ 3586 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 3587 cgd->inq_data.device = T_DIRECT; 3588 3589 inq_data = &cgd->inq_data; 3590 3591 #else /* !_KERNEL */ 3592 3593 inq_data = &device->inq_data; 3594 3595 #endif /* _KERNEL/!_KERNEL */ 3596 3597 if ((csio->ccb_h.flags & CAM_CDB_POINTER) != 0) { 3598 sbuf_printf(sb, "%s. CDB: %s", 3599 scsi_op_desc(csio->cdb_io.cdb_ptr[0], inq_data), 3600 scsi_cdb_string(csio->cdb_io.cdb_ptr, cdb_str, 3601 sizeof(cdb_str))); 3602 } else { 3603 sbuf_printf(sb, "%s. CDB: %s", 3604 scsi_op_desc(csio->cdb_io.cdb_bytes[0], inq_data), 3605 scsi_cdb_string(csio->cdb_io.cdb_bytes, cdb_str, 3606 sizeof(cdb_str))); 3607 } 3608 3609 #ifdef _KERNEL 3610 xpt_free_ccb((union ccb *)cgd); 3611 #endif 3612 3613 return(0); 3614 } 3615 3616 /* 3617 * Iterate over sense descriptors. Each descriptor is passed into iter_func(). 3618 * If iter_func() returns 0, list traversal continues. If iter_func() 3619 * returns non-zero, list traversal is stopped. 3620 */ 3621 void 3622 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, 3623 int (*iter_func)(struct scsi_sense_data_desc *sense, 3624 u_int, struct scsi_sense_desc_header *, 3625 void *), void *arg) 3626 { 3627 int cur_pos; 3628 int desc_len; 3629 3630 /* 3631 * First make sure the extra length field is present. 3632 */ 3633 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) 3634 return; 3635 3636 /* 3637 * The length of data actually returned may be different than the 3638 * extra_len recorded in the sturcture. 3639 */ 3640 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); 3641 3642 /* 3643 * Limit this further by the extra length reported, and the maximum 3644 * allowed extra length. 3645 */ 3646 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); 3647 3648 /* 3649 * Subtract the size of the header from the descriptor length. 3650 * This is to ensure that we have at least the header left, so we 3651 * don't have to check that inside the loop. This can wind up 3652 * being a negative value. 3653 */ 3654 desc_len -= sizeof(struct scsi_sense_desc_header); 3655 3656 for (cur_pos = 0; cur_pos < desc_len;) { 3657 struct scsi_sense_desc_header *header; 3658 3659 header = (struct scsi_sense_desc_header *) 3660 &sense->sense_desc[cur_pos]; 3661 3662 /* 3663 * Check to make sure we have the entire descriptor. We 3664 * don't call iter_func() unless we do. 3665 * 3666 * Note that although cur_pos is at the beginning of the 3667 * descriptor, desc_len already has the header length 3668 * subtracted. So the comparison of the length in the 3669 * header (which does not include the header itself) to 3670 * desc_len - cur_pos is correct. 3671 */ 3672 if (header->length > (desc_len - cur_pos)) 3673 break; 3674 3675 if (iter_func(sense, sense_len, header, arg) != 0) 3676 break; 3677 3678 cur_pos += sizeof(*header) + header->length; 3679 } 3680 } 3681 3682 struct scsi_find_desc_info { 3683 uint8_t desc_type; 3684 struct scsi_sense_desc_header *header; 3685 }; 3686 3687 static int 3688 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 3689 struct scsi_sense_desc_header *header, void *arg) 3690 { 3691 struct scsi_find_desc_info *desc_info; 3692 3693 desc_info = (struct scsi_find_desc_info *)arg; 3694 3695 if (header->desc_type == desc_info->desc_type) { 3696 desc_info->header = header; 3697 3698 /* We found the descriptor, tell the iterator to stop. */ 3699 return (1); 3700 } else 3701 return (0); 3702 } 3703 3704 /* 3705 * Given a descriptor type, return a pointer to it if it is in the sense 3706 * data and not truncated. Avoiding truncating sense data will simplify 3707 * things significantly for the caller. 3708 */ 3709 uint8_t * 3710 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, 3711 uint8_t desc_type) 3712 { 3713 struct scsi_find_desc_info desc_info; 3714 3715 desc_info.desc_type = desc_type; 3716 desc_info.header = NULL; 3717 3718 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); 3719 3720 return ((uint8_t *)desc_info.header); 3721 } 3722 3723 /* 3724 * Fill in SCSI sense data with the specified parameters. This routine can 3725 * fill in either fixed or descriptor type sense data. 3726 */ 3727 void 3728 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, 3729 scsi_sense_data_type sense_format, int current_error, 3730 int sense_key, int asc, int ascq, va_list ap) 3731 { 3732 int descriptor_sense; 3733 scsi_sense_elem_type elem_type; 3734 3735 /* 3736 * Determine whether to return fixed or descriptor format sense 3737 * data. If the user specifies SSD_TYPE_NONE for some reason, 3738 * they'll just get fixed sense data. 3739 */ 3740 if (sense_format == SSD_TYPE_DESC) 3741 descriptor_sense = 1; 3742 else 3743 descriptor_sense = 0; 3744 3745 /* 3746 * Zero the sense data, so that we don't pass back any garbage data 3747 * to the user. 3748 */ 3749 memset(sense_data, 0, sizeof(*sense_data)); 3750 3751 if (descriptor_sense != 0) { 3752 struct scsi_sense_data_desc *sense; 3753 3754 sense = (struct scsi_sense_data_desc *)sense_data; 3755 /* 3756 * The descriptor sense format eliminates the use of the 3757 * valid bit. 3758 */ 3759 if (current_error != 0) 3760 sense->error_code = SSD_DESC_CURRENT_ERROR; 3761 else 3762 sense->error_code = SSD_DESC_DEFERRED_ERROR; 3763 sense->sense_key = sense_key; 3764 sense->add_sense_code = asc; 3765 sense->add_sense_code_qual = ascq; 3766 /* 3767 * Start off with no extra length, since the above data 3768 * fits in the standard descriptor sense information. 3769 */ 3770 sense->extra_len = 0; 3771 while ((elem_type = (scsi_sense_elem_type)va_arg(ap, 3772 scsi_sense_elem_type)) != SSD_ELEM_NONE) { 3773 int sense_len, len_to_copy; 3774 uint8_t *data; 3775 3776 if (elem_type >= SSD_ELEM_MAX) { 3777 printf("%s: invalid sense type %d\n", __func__, 3778 elem_type); 3779 break; 3780 } 3781 3782 sense_len = (int)va_arg(ap, int); 3783 len_to_copy = MIN(sense_len, SSD_EXTRA_MAX - 3784 sense->extra_len); 3785 data = (uint8_t *)va_arg(ap, uint8_t *); 3786 3787 /* 3788 * We've already consumed the arguments for this one. 3789 */ 3790 if (elem_type == SSD_ELEM_SKIP) 3791 continue; 3792 3793 switch (elem_type) { 3794 case SSD_ELEM_DESC: { 3795 3796 /* 3797 * This is a straight descriptor. All we 3798 * need to do is copy the data in. 3799 */ 3800 bcopy(data, &sense->sense_desc[ 3801 sense->extra_len], len_to_copy); 3802 sense->extra_len += len_to_copy; 3803 break; 3804 } 3805 case SSD_ELEM_SKS: { 3806 struct scsi_sense_sks sks; 3807 3808 bzero(&sks, sizeof(sks)); 3809 3810 /* 3811 * This is already-formatted sense key 3812 * specific data. We just need to fill out 3813 * the header and copy everything in. 3814 */ 3815 bcopy(data, &sks.sense_key_spec, 3816 MIN(len_to_copy, 3817 sizeof(sks.sense_key_spec))); 3818 3819 sks.desc_type = SSD_DESC_SKS; 3820 sks.length = sizeof(sks) - 3821 offsetof(struct scsi_sense_sks, reserved1); 3822 bcopy(&sks,&sense->sense_desc[sense->extra_len], 3823 sizeof(sks)); 3824 sense->extra_len += sizeof(sks); 3825 break; 3826 } 3827 case SSD_ELEM_INFO: 3828 case SSD_ELEM_COMMAND: { 3829 struct scsi_sense_command cmd; 3830 struct scsi_sense_info info; 3831 uint8_t *data_dest; 3832 uint8_t *descriptor; 3833 int descriptor_size, i, copy_len; 3834 3835 bzero(&cmd, sizeof(cmd)); 3836 bzero(&info, sizeof(info)); 3837 3838 /* 3839 * Command or information data. The 3840 * operate in pretty much the same way. 3841 */ 3842 if (elem_type == SSD_ELEM_COMMAND) { 3843 len_to_copy = MIN(len_to_copy, 3844 sizeof(cmd.command_info)); 3845 descriptor = (uint8_t *)&cmd; 3846 descriptor_size = sizeof(cmd); 3847 data_dest =(uint8_t *)&cmd.command_info; 3848 cmd.desc_type = SSD_DESC_COMMAND; 3849 cmd.length = sizeof(cmd) - 3850 offsetof(struct scsi_sense_command, 3851 reserved); 3852 } else { 3853 len_to_copy = MIN(len_to_copy, 3854 sizeof(info.info)); 3855 descriptor = (uint8_t *)&info; 3856 descriptor_size = sizeof(cmd); 3857 data_dest = (uint8_t *)&info.info; 3858 info.desc_type = SSD_DESC_INFO; 3859 info.byte2 = SSD_INFO_VALID; 3860 info.length = sizeof(info) - 3861 offsetof(struct scsi_sense_info, 3862 byte2); 3863 } 3864 3865 /* 3866 * Copy this in reverse because the spec 3867 * (SPC-4) says that when 4 byte quantities 3868 * are stored in this 8 byte field, the 3869 * first four bytes shall be 0. 3870 * 3871 * So we fill the bytes in from the end, and 3872 * if we have less than 8 bytes to copy, 3873 * the initial, most significant bytes will 3874 * be 0. 3875 */ 3876 for (i = sense_len - 1; i >= 0 && 3877 len_to_copy > 0; i--, len_to_copy--) 3878 data_dest[len_to_copy - 1] = data[i]; 3879 3880 /* 3881 * This calculation looks much like the 3882 * initial len_to_copy calculation, but 3883 * we have to do it again here, because 3884 * we're looking at a larger amount that 3885 * may or may not fit. It's not only the 3886 * data the user passed in, but also the 3887 * rest of the descriptor. 3888 */ 3889 copy_len = MIN(descriptor_size, 3890 SSD_EXTRA_MAX - sense->extra_len); 3891 bcopy(descriptor, &sense->sense_desc[ 3892 sense->extra_len], copy_len); 3893 sense->extra_len += copy_len; 3894 break; 3895 } 3896 case SSD_ELEM_FRU: { 3897 struct scsi_sense_fru fru; 3898 int copy_len; 3899 3900 bzero(&fru, sizeof(fru)); 3901 3902 fru.desc_type = SSD_DESC_FRU; 3903 fru.length = sizeof(fru) - 3904 offsetof(struct scsi_sense_fru, reserved); 3905 fru.fru = *data; 3906 3907 copy_len = MIN(sizeof(fru), SSD_EXTRA_MAX - 3908 sense->extra_len); 3909 bcopy(&fru, &sense->sense_desc[ 3910 sense->extra_len], copy_len); 3911 sense->extra_len += copy_len; 3912 break; 3913 } 3914 case SSD_ELEM_STREAM: { 3915 struct scsi_sense_stream stream_sense; 3916 int copy_len; 3917 3918 bzero(&stream_sense, sizeof(stream_sense)); 3919 stream_sense.desc_type = SSD_DESC_STREAM; 3920 stream_sense.length = sizeof(stream_sense) - 3921 offsetof(struct scsi_sense_stream, reserved); 3922 stream_sense.byte3 = *data; 3923 3924 copy_len = MIN(sizeof(stream_sense), 3925 SSD_EXTRA_MAX - sense->extra_len); 3926 bcopy(&stream_sense, &sense->sense_desc[ 3927 sense->extra_len], copy_len); 3928 sense->extra_len += copy_len; 3929 break; 3930 } 3931 default: 3932 /* 3933 * We shouldn't get here, but if we do, do 3934 * nothing. We've already consumed the 3935 * arguments above. 3936 */ 3937 break; 3938 } 3939 } 3940 } else { 3941 struct scsi_sense_data_fixed *sense; 3942 3943 sense = (struct scsi_sense_data_fixed *)sense_data; 3944 3945 if (current_error != 0) 3946 sense->error_code = SSD_CURRENT_ERROR; 3947 else 3948 sense->error_code = SSD_DEFERRED_ERROR; 3949 3950 sense->flags = sense_key; 3951 sense->add_sense_code = asc; 3952 sense->add_sense_code_qual = ascq; 3953 /* 3954 * We've set the ASC and ASCQ, so we have 6 more bytes of 3955 * valid data. If we wind up setting any of the other 3956 * fields, we'll bump this to 10 extra bytes. 3957 */ 3958 sense->extra_len = 6; 3959 3960 while ((elem_type = (scsi_sense_elem_type)va_arg(ap, 3961 scsi_sense_elem_type)) != SSD_ELEM_NONE) { 3962 int sense_len, len_to_copy; 3963 uint8_t *data; 3964 3965 if (elem_type >= SSD_ELEM_MAX) { 3966 printf("%s: invalid sense type %d\n", __func__, 3967 elem_type); 3968 break; 3969 } 3970 /* 3971 * If we get in here, just bump the extra length to 3972 * 10 bytes. That will encompass anything we're 3973 * going to set here. 3974 */ 3975 sense->extra_len = 10; 3976 sense_len = (int)va_arg(ap, int); 3977 data = (uint8_t *)va_arg(ap, uint8_t *); 3978 3979 switch (elem_type) { 3980 case SSD_ELEM_SKS: 3981 /* 3982 * The user passed in pre-formatted sense 3983 * key specific data. 3984 */ 3985 bcopy(data, &sense->sense_key_spec[0], 3986 MIN(sizeof(sense->sense_key_spec), 3987 sense_len)); 3988 break; 3989 case SSD_ELEM_INFO: 3990 case SSD_ELEM_COMMAND: { 3991 uint8_t *data_dest; 3992 int i; 3993 3994 if (elem_type == SSD_ELEM_COMMAND) { 3995 data_dest = &sense->cmd_spec_info[0]; 3996 len_to_copy = MIN(sense_len, 3997 sizeof(sense->cmd_spec_info)); 3998 } else { 3999 data_dest = &sense->info[0]; 4000 len_to_copy = MIN(sense_len, 4001 sizeof(sense->info)); 4002 /* 4003 * We're setting the info field, so 4004 * set the valid bit. 4005 */ 4006 sense->error_code |= SSD_ERRCODE_VALID; 4007 } 4008 4009 /* 4010 * Copy this in reverse so that if we have 4011 * less than 4 bytes to fill, the least 4012 * significant bytes will be at the end. 4013 * If we have more than 4 bytes, only the 4014 * least significant bytes will be included. 4015 */ 4016 for (i = sense_len - 1; i >= 0 && 4017 len_to_copy > 0; i--, len_to_copy--) 4018 data_dest[len_to_copy - 1] = data[i]; 4019 4020 break; 4021 } 4022 case SSD_ELEM_FRU: 4023 sense->fru = *data; 4024 break; 4025 case SSD_ELEM_STREAM: 4026 sense->flags |= *data; 4027 break; 4028 case SSD_ELEM_DESC: 4029 default: 4030 4031 /* 4032 * If the user passes in descriptor sense, 4033 * we can't handle that in fixed format. 4034 * So just skip it, and any unknown argument 4035 * types. 4036 */ 4037 break; 4038 } 4039 } 4040 } 4041 } 4042 4043 void 4044 scsi_set_sense_data(struct scsi_sense_data *sense_data, 4045 scsi_sense_data_type sense_format, int current_error, 4046 int sense_key, int asc, int ascq, ...) 4047 { 4048 va_list ap; 4049 4050 va_start(ap, ascq); 4051 scsi_set_sense_data_va(sense_data, sense_format, current_error, 4052 sense_key, asc, ascq, ap); 4053 va_end(ap); 4054 } 4055 4056 /* 4057 * Get sense information for three similar sense data types. 4058 */ 4059 int 4060 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, 4061 uint8_t info_type, uint64_t *info, int64_t *signed_info) 4062 { 4063 scsi_sense_data_type sense_type; 4064 4065 if (sense_len == 0) 4066 goto bailout; 4067 4068 sense_type = scsi_sense_type(sense_data); 4069 4070 switch (sense_type) { 4071 case SSD_TYPE_DESC: { 4072 struct scsi_sense_data_desc *sense; 4073 uint8_t *desc; 4074 4075 sense = (struct scsi_sense_data_desc *)sense_data; 4076 4077 desc = scsi_find_desc(sense, sense_len, info_type); 4078 if (desc == NULL) 4079 goto bailout; 4080 4081 switch (info_type) { 4082 case SSD_DESC_INFO: { 4083 struct scsi_sense_info *info_desc; 4084 4085 info_desc = (struct scsi_sense_info *)desc; 4086 *info = scsi_8btou64(info_desc->info); 4087 if (signed_info != NULL) 4088 *signed_info = *info; 4089 break; 4090 } 4091 case SSD_DESC_COMMAND: { 4092 struct scsi_sense_command *cmd_desc; 4093 4094 cmd_desc = (struct scsi_sense_command *)desc; 4095 4096 *info = scsi_8btou64(cmd_desc->command_info); 4097 if (signed_info != NULL) 4098 *signed_info = *info; 4099 break; 4100 } 4101 case SSD_DESC_FRU: { 4102 struct scsi_sense_fru *fru_desc; 4103 4104 fru_desc = (struct scsi_sense_fru *)desc; 4105 4106 *info = fru_desc->fru; 4107 if (signed_info != NULL) 4108 *signed_info = (int8_t)fru_desc->fru; 4109 break; 4110 } 4111 default: 4112 goto bailout; 4113 break; 4114 } 4115 break; 4116 } 4117 case SSD_TYPE_FIXED: { 4118 struct scsi_sense_data_fixed *sense; 4119 4120 sense = (struct scsi_sense_data_fixed *)sense_data; 4121 4122 switch (info_type) { 4123 case SSD_DESC_INFO: { 4124 uint32_t info_val; 4125 4126 if ((sense->error_code & SSD_ERRCODE_VALID) == 0) 4127 goto bailout; 4128 4129 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) 4130 goto bailout; 4131 4132 info_val = scsi_4btoul(sense->info); 4133 4134 *info = info_val; 4135 if (signed_info != NULL) 4136 *signed_info = (int32_t)info_val; 4137 break; 4138 } 4139 case SSD_DESC_COMMAND: { 4140 uint32_t cmd_val; 4141 4142 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, 4143 cmd_spec_info) == 0) 4144 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) 4145 goto bailout; 4146 4147 cmd_val = scsi_4btoul(sense->cmd_spec_info); 4148 if (cmd_val == 0) 4149 goto bailout; 4150 4151 *info = cmd_val; 4152 if (signed_info != NULL) 4153 *signed_info = (int32_t)cmd_val; 4154 break; 4155 } 4156 case SSD_DESC_FRU: 4157 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) 4158 || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) 4159 goto bailout; 4160 4161 if (sense->fru == 0) 4162 goto bailout; 4163 4164 *info = sense->fru; 4165 if (signed_info != NULL) 4166 *signed_info = (int8_t)sense->fru; 4167 break; 4168 default: 4169 goto bailout; 4170 break; 4171 } 4172 break; 4173 } 4174 default: 4175 goto bailout; 4176 break; 4177 } 4178 4179 return (0); 4180 bailout: 4181 return (1); 4182 } 4183 4184 int 4185 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) 4186 { 4187 scsi_sense_data_type sense_type; 4188 4189 if (sense_len == 0) 4190 goto bailout; 4191 4192 sense_type = scsi_sense_type(sense_data); 4193 4194 switch (sense_type) { 4195 case SSD_TYPE_DESC: { 4196 struct scsi_sense_data_desc *sense; 4197 struct scsi_sense_sks *desc; 4198 4199 sense = (struct scsi_sense_data_desc *)sense_data; 4200 4201 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, 4202 SSD_DESC_SKS); 4203 if (desc == NULL) 4204 goto bailout; 4205 4206 /* 4207 * No need to check the SKS valid bit for descriptor sense. 4208 * If the descriptor is present, it is valid. 4209 */ 4210 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); 4211 break; 4212 } 4213 case SSD_TYPE_FIXED: { 4214 struct scsi_sense_data_fixed *sense; 4215 4216 sense = (struct scsi_sense_data_fixed *)sense_data; 4217 4218 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) 4219 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) 4220 goto bailout; 4221 4222 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) 4223 goto bailout; 4224 4225 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); 4226 break; 4227 } 4228 default: 4229 goto bailout; 4230 break; 4231 } 4232 return (0); 4233 bailout: 4234 return (1); 4235 } 4236 4237 /* 4238 * Provide a common interface for fixed and descriptor sense to detect 4239 * whether we have block-specific sense information. It is clear by the 4240 * presence of the block descriptor in descriptor mode, but we have to 4241 * infer from the inquiry data and ILI bit in fixed mode. 4242 */ 4243 int 4244 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, 4245 struct scsi_inquiry_data *inq_data, uint8_t *block_bits) 4246 { 4247 scsi_sense_data_type sense_type; 4248 4249 if (inq_data != NULL) { 4250 switch (SID_TYPE(inq_data)) { 4251 case T_DIRECT: 4252 case T_RBC: 4253 break; 4254 default: 4255 goto bailout; 4256 break; 4257 } 4258 } 4259 4260 sense_type = scsi_sense_type(sense_data); 4261 4262 switch (sense_type) { 4263 case SSD_TYPE_DESC: { 4264 struct scsi_sense_data_desc *sense; 4265 struct scsi_sense_block *block; 4266 4267 sense = (struct scsi_sense_data_desc *)sense_data; 4268 4269 block = (struct scsi_sense_block *)scsi_find_desc(sense, 4270 sense_len, SSD_DESC_BLOCK); 4271 if (block == NULL) 4272 goto bailout; 4273 4274 *block_bits = block->byte3; 4275 break; 4276 } 4277 case SSD_TYPE_FIXED: { 4278 struct scsi_sense_data_fixed *sense; 4279 4280 sense = (struct scsi_sense_data_fixed *)sense_data; 4281 4282 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4283 goto bailout; 4284 4285 if ((sense->flags & SSD_ILI) == 0) 4286 goto bailout; 4287 4288 *block_bits = sense->flags & SSD_ILI; 4289 break; 4290 } 4291 default: 4292 goto bailout; 4293 break; 4294 } 4295 return (0); 4296 bailout: 4297 return (1); 4298 } 4299 4300 int 4301 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, 4302 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) 4303 { 4304 scsi_sense_data_type sense_type; 4305 4306 if (inq_data != NULL) { 4307 switch (SID_TYPE(inq_data)) { 4308 case T_SEQUENTIAL: 4309 break; 4310 default: 4311 goto bailout; 4312 break; 4313 } 4314 } 4315 4316 sense_type = scsi_sense_type(sense_data); 4317 4318 switch (sense_type) { 4319 case SSD_TYPE_DESC: { 4320 struct scsi_sense_data_desc *sense; 4321 struct scsi_sense_stream *stream; 4322 4323 sense = (struct scsi_sense_data_desc *)sense_data; 4324 4325 stream = (struct scsi_sense_stream *)scsi_find_desc(sense, 4326 sense_len, SSD_DESC_STREAM); 4327 if (stream == NULL) 4328 goto bailout; 4329 4330 *stream_bits = stream->byte3; 4331 break; 4332 } 4333 case SSD_TYPE_FIXED: { 4334 struct scsi_sense_data_fixed *sense; 4335 4336 sense = (struct scsi_sense_data_fixed *)sense_data; 4337 4338 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4339 goto bailout; 4340 4341 if ((sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK)) == 0) 4342 goto bailout; 4343 4344 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); 4345 break; 4346 } 4347 default: 4348 goto bailout; 4349 break; 4350 } 4351 return (0); 4352 bailout: 4353 return (1); 4354 } 4355 4356 void 4357 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4358 struct scsi_inquiry_data *inq_data, uint64_t info) 4359 { 4360 sbuf_printf(sb, "Info: %#jx", info); 4361 } 4362 4363 void 4364 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4365 struct scsi_inquiry_data *inq_data, uint64_t csi) 4366 { 4367 sbuf_printf(sb, "Command Specific Info: %#jx", csi); 4368 } 4369 4370 4371 void 4372 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) 4373 { 4374 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", 4375 (progress * 100) / SSD_SKS_PROGRESS_DENOM, 4376 progress, SSD_SKS_PROGRESS_DENOM); 4377 } 4378 4379 /* 4380 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. 4381 */ 4382 int 4383 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) 4384 { 4385 if ((sks[0] & SSD_SKS_VALID) == 0) 4386 return (1); 4387 4388 switch (sense_key) { 4389 case SSD_KEY_ILLEGAL_REQUEST: { 4390 struct scsi_sense_sks_field *field; 4391 int bad_command; 4392 char tmpstr[40]; 4393 4394 /*Field Pointer*/ 4395 field = (struct scsi_sense_sks_field *)sks; 4396 4397 if (field->byte0 & SSD_SKS_FIELD_CMD) 4398 bad_command = 1; 4399 else 4400 bad_command = 0; 4401 4402 tmpstr[0] = '\0'; 4403 4404 /* Bit pointer is valid */ 4405 if (field->byte0 & SSD_SKS_BPV) 4406 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4407 field->byte0 & SSD_SKS_BIT_VALUE); 4408 4409 sbuf_printf(sb, "%s byte %d %sis invalid", 4410 bad_command ? "Command" : "Data", 4411 scsi_2btoul(field->field), tmpstr); 4412 break; 4413 } 4414 case SSD_KEY_UNIT_ATTENTION: { 4415 struct scsi_sense_sks_overflow *overflow; 4416 4417 overflow = (struct scsi_sense_sks_overflow *)sks; 4418 4419 /*UA Condition Queue Overflow*/ 4420 sbuf_printf(sb, "Unit Attention Condition Queue %s", 4421 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? 4422 "Overflowed" : "Did Not Overflow??"); 4423 break; 4424 } 4425 case SSD_KEY_RECOVERED_ERROR: 4426 case SSD_KEY_HARDWARE_ERROR: 4427 case SSD_KEY_MEDIUM_ERROR: { 4428 struct scsi_sense_sks_retry *retry; 4429 4430 /*Actual Retry Count*/ 4431 retry = (struct scsi_sense_sks_retry *)sks; 4432 4433 sbuf_printf(sb, "Actual Retry Count: %d", 4434 scsi_2btoul(retry->actual_retry_count)); 4435 break; 4436 } 4437 case SSD_KEY_NO_SENSE: 4438 case SSD_KEY_NOT_READY: { 4439 struct scsi_sense_sks_progress *progress; 4440 int progress_val; 4441 4442 /*Progress Indication*/ 4443 progress = (struct scsi_sense_sks_progress *)sks; 4444 progress_val = scsi_2btoul(progress->progress); 4445 4446 scsi_progress_sbuf(sb, progress_val); 4447 break; 4448 } 4449 case SSD_KEY_COPY_ABORTED: { 4450 struct scsi_sense_sks_segment *segment; 4451 char tmpstr[40]; 4452 4453 /*Segment Pointer*/ 4454 segment = (struct scsi_sense_sks_segment *)sks; 4455 4456 tmpstr[0] = '\0'; 4457 4458 if (segment->byte0 & SSD_SKS_SEGMENT_BPV) 4459 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4460 segment->byte0 & SSD_SKS_SEGMENT_BITPTR); 4461 4462 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & 4463 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", 4464 scsi_2btoul(segment->field), tmpstr); 4465 break; 4466 } 4467 default: 4468 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], 4469 scsi_2btoul(&sks[1])); 4470 break; 4471 } 4472 4473 return (0); 4474 } 4475 4476 void 4477 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) 4478 { 4479 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); 4480 } 4481 4482 void 4483 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits, uint64_t info) 4484 { 4485 int need_comma; 4486 4487 need_comma = 0; 4488 /* 4489 * XXX KDM this needs more descriptive decoding. 4490 */ 4491 if (stream_bits & SSD_DESC_STREAM_FM) { 4492 sbuf_printf(sb, "Filemark"); 4493 need_comma = 1; 4494 } 4495 4496 if (stream_bits & SSD_DESC_STREAM_EOM) { 4497 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); 4498 need_comma = 1; 4499 } 4500 4501 if (stream_bits & SSD_DESC_STREAM_ILI) 4502 sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); 4503 4504 sbuf_printf(sb, ": Info: %#jx", (uintmax_t) info); 4505 } 4506 4507 void 4508 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits, uint64_t info) 4509 { 4510 if (block_bits & SSD_DESC_BLOCK_ILI) 4511 sbuf_printf(sb, "ILI: residue %#jx", (uintmax_t) info); 4512 } 4513 4514 void 4515 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4516 u_int sense_len, uint8_t *cdb, int cdb_len, 4517 struct scsi_inquiry_data *inq_data, 4518 struct scsi_sense_desc_header *header) 4519 { 4520 struct scsi_sense_info *info; 4521 4522 info = (struct scsi_sense_info *)header; 4523 4524 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); 4525 } 4526 4527 void 4528 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4529 u_int sense_len, uint8_t *cdb, int cdb_len, 4530 struct scsi_inquiry_data *inq_data, 4531 struct scsi_sense_desc_header *header) 4532 { 4533 struct scsi_sense_command *command; 4534 4535 command = (struct scsi_sense_command *)header; 4536 4537 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, 4538 scsi_8btou64(command->command_info)); 4539 } 4540 4541 void 4542 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4543 u_int sense_len, uint8_t *cdb, int cdb_len, 4544 struct scsi_inquiry_data *inq_data, 4545 struct scsi_sense_desc_header *header) 4546 { 4547 struct scsi_sense_sks *sks; 4548 int error_code, sense_key, asc, ascq; 4549 4550 sks = (struct scsi_sense_sks *)header; 4551 4552 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4553 &asc, &ascq, /*show_errors*/ 1); 4554 4555 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); 4556 } 4557 4558 void 4559 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4560 u_int sense_len, uint8_t *cdb, int cdb_len, 4561 struct scsi_inquiry_data *inq_data, 4562 struct scsi_sense_desc_header *header) 4563 { 4564 struct scsi_sense_fru *fru; 4565 4566 fru = (struct scsi_sense_fru *)header; 4567 4568 scsi_fru_sbuf(sb, (uint64_t)fru->fru); 4569 } 4570 4571 void 4572 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4573 u_int sense_len, uint8_t *cdb, int cdb_len, 4574 struct scsi_inquiry_data *inq_data, 4575 struct scsi_sense_desc_header *header) 4576 { 4577 struct scsi_sense_stream *stream; 4578 uint64_t info; 4579 4580 stream = (struct scsi_sense_stream *)header; 4581 info = 0; 4582 4583 scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL); 4584 4585 scsi_stream_sbuf(sb, stream->byte3, info); 4586 } 4587 4588 void 4589 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4590 u_int sense_len, uint8_t *cdb, int cdb_len, 4591 struct scsi_inquiry_data *inq_data, 4592 struct scsi_sense_desc_header *header) 4593 { 4594 struct scsi_sense_block *block; 4595 uint64_t info; 4596 4597 block = (struct scsi_sense_block *)header; 4598 info = 0; 4599 4600 scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL); 4601 4602 scsi_block_sbuf(sb, block->byte3, info); 4603 } 4604 4605 void 4606 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4607 u_int sense_len, uint8_t *cdb, int cdb_len, 4608 struct scsi_inquiry_data *inq_data, 4609 struct scsi_sense_desc_header *header) 4610 { 4611 struct scsi_sense_progress *progress; 4612 const char *sense_key_desc; 4613 const char *asc_desc; 4614 int progress_val; 4615 4616 progress = (struct scsi_sense_progress *)header; 4617 4618 /* 4619 * Get descriptions for the sense key, ASC, and ASCQ in the 4620 * progress descriptor. These could be different than the values 4621 * in the overall sense data. 4622 */ 4623 scsi_sense_desc(progress->sense_key, progress->add_sense_code, 4624 progress->add_sense_code_qual, inq_data, 4625 &sense_key_desc, &asc_desc); 4626 4627 progress_val = scsi_2btoul(progress->progress); 4628 4629 /* 4630 * The progress indicator is for the operation described by the 4631 * sense key, ASC, and ASCQ in the descriptor. 4632 */ 4633 sbuf_cat(sb, sense_key_desc); 4634 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, 4635 progress->add_sense_code_qual, asc_desc); 4636 scsi_progress_sbuf(sb, progress_val); 4637 } 4638 4639 /* 4640 * Generic sense descriptor printing routine. This is used when we have 4641 * not yet implemented a specific printing routine for this descriptor. 4642 */ 4643 void 4644 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4645 u_int sense_len, uint8_t *cdb, int cdb_len, 4646 struct scsi_inquiry_data *inq_data, 4647 struct scsi_sense_desc_header *header) 4648 { 4649 int i; 4650 uint8_t *buf_ptr; 4651 4652 sbuf_printf(sb, "Descriptor %#x:", header->desc_type); 4653 4654 buf_ptr = (uint8_t *)&header[1]; 4655 4656 for (i = 0; i < header->length; i++, buf_ptr++) 4657 sbuf_printf(sb, " %02x", *buf_ptr); 4658 } 4659 4660 /* 4661 * Keep this list in numeric order. This speeds the array traversal. 4662 */ 4663 struct scsi_sense_desc_printer { 4664 uint8_t desc_type; 4665 /* 4666 * The function arguments here are the superset of what is needed 4667 * to print out various different descriptors. Command and 4668 * information descriptors need inquiry data and command type. 4669 * Sense key specific descriptors need the sense key. 4670 * 4671 * The sense, cdb, and inquiry data arguments may be NULL, but the 4672 * information printed may not be fully decoded as a result. 4673 */ 4674 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, 4675 u_int sense_len, uint8_t *cdb, int cdb_len, 4676 struct scsi_inquiry_data *inq_data, 4677 struct scsi_sense_desc_header *header); 4678 } scsi_sense_printers[] = { 4679 {SSD_DESC_INFO, scsi_sense_info_sbuf}, 4680 {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, 4681 {SSD_DESC_SKS, scsi_sense_sks_sbuf}, 4682 {SSD_DESC_FRU, scsi_sense_fru_sbuf}, 4683 {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, 4684 {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, 4685 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf} 4686 }; 4687 4688 void 4689 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4690 u_int sense_len, uint8_t *cdb, int cdb_len, 4691 struct scsi_inquiry_data *inq_data, 4692 struct scsi_sense_desc_header *header) 4693 { 4694 int i; 4695 4696 for (i = 0; i < (sizeof(scsi_sense_printers) / 4697 sizeof(scsi_sense_printers[0])); i++) { 4698 struct scsi_sense_desc_printer *printer; 4699 4700 printer = &scsi_sense_printers[i]; 4701 4702 /* 4703 * The list is sorted, so quit if we've passed our 4704 * descriptor number. 4705 */ 4706 if (printer->desc_type > header->desc_type) 4707 break; 4708 4709 if (printer->desc_type != header->desc_type) 4710 continue; 4711 4712 printer->print_func(sb, sense, sense_len, cdb, cdb_len, 4713 inq_data, header); 4714 4715 return; 4716 } 4717 4718 /* 4719 * No specific printing routine, so use the generic routine. 4720 */ 4721 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, 4722 inq_data, header); 4723 } 4724 4725 scsi_sense_data_type 4726 scsi_sense_type(struct scsi_sense_data *sense_data) 4727 { 4728 switch (sense_data->error_code & SSD_ERRCODE) { 4729 case SSD_DESC_CURRENT_ERROR: 4730 case SSD_DESC_DEFERRED_ERROR: 4731 return (SSD_TYPE_DESC); 4732 break; 4733 case SSD_CURRENT_ERROR: 4734 case SSD_DEFERRED_ERROR: 4735 return (SSD_TYPE_FIXED); 4736 break; 4737 default: 4738 break; 4739 } 4740 4741 return (SSD_TYPE_NONE); 4742 } 4743 4744 struct scsi_print_sense_info { 4745 struct sbuf *sb; 4746 char *path_str; 4747 uint8_t *cdb; 4748 int cdb_len; 4749 struct scsi_inquiry_data *inq_data; 4750 }; 4751 4752 static int 4753 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 4754 struct scsi_sense_desc_header *header, void *arg) 4755 { 4756 struct scsi_print_sense_info *print_info; 4757 4758 print_info = (struct scsi_print_sense_info *)arg; 4759 4760 switch (header->desc_type) { 4761 case SSD_DESC_INFO: 4762 case SSD_DESC_FRU: 4763 case SSD_DESC_COMMAND: 4764 case SSD_DESC_SKS: 4765 case SSD_DESC_BLOCK: 4766 case SSD_DESC_STREAM: 4767 /* 4768 * We have already printed these descriptors, if they are 4769 * present. 4770 */ 4771 break; 4772 default: { 4773 sbuf_printf(print_info->sb, "%s", print_info->path_str); 4774 scsi_sense_desc_sbuf(print_info->sb, 4775 (struct scsi_sense_data *)sense, sense_len, 4776 print_info->cdb, print_info->cdb_len, 4777 print_info->inq_data, header); 4778 sbuf_printf(print_info->sb, "\n"); 4779 break; 4780 } 4781 } 4782 4783 /* 4784 * Tell the iterator that we want to see more descriptors if they 4785 * are present. 4786 */ 4787 return (0); 4788 } 4789 4790 void 4791 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, 4792 struct sbuf *sb, char *path_str, 4793 struct scsi_inquiry_data *inq_data, uint8_t *cdb, 4794 int cdb_len) 4795 { 4796 int error_code, sense_key, asc, ascq; 4797 4798 sbuf_cat(sb, path_str); 4799 4800 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4801 &asc, &ascq, /*show_errors*/ 1); 4802 4803 sbuf_printf(sb, "SCSI sense: "); 4804 switch (error_code) { 4805 case SSD_DEFERRED_ERROR: 4806 case SSD_DESC_DEFERRED_ERROR: 4807 sbuf_printf(sb, "Deferred error: "); 4808 4809 /* FALLTHROUGH */ 4810 case SSD_CURRENT_ERROR: 4811 case SSD_DESC_CURRENT_ERROR: 4812 { 4813 struct scsi_sense_data_desc *desc_sense; 4814 struct scsi_print_sense_info print_info; 4815 const char *sense_key_desc; 4816 const char *asc_desc; 4817 uint8_t sks[3]; 4818 uint64_t val; 4819 int info_valid; 4820 4821 /* 4822 * Get descriptions for the sense key, ASC, and ASCQ. If 4823 * these aren't present in the sense data (i.e. the sense 4824 * data isn't long enough), the -1 values that 4825 * scsi_extract_sense_len() returns will yield default 4826 * or error descriptions. 4827 */ 4828 scsi_sense_desc(sense_key, asc, ascq, inq_data, 4829 &sense_key_desc, &asc_desc); 4830 4831 /* 4832 * We first print the sense key and ASC/ASCQ. 4833 */ 4834 sbuf_cat(sb, sense_key_desc); 4835 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); 4836 4837 /* 4838 * Get the info field if it is valid. 4839 */ 4840 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, 4841 &val, NULL) == 0) 4842 info_valid = 1; 4843 else 4844 info_valid = 0; 4845 4846 if (info_valid != 0) { 4847 uint8_t bits; 4848 4849 /* 4850 * Determine whether we have any block or stream 4851 * device-specific information. 4852 */ 4853 if (scsi_get_block_info(sense, sense_len, inq_data, 4854 &bits) == 0) { 4855 sbuf_cat(sb, path_str); 4856 scsi_block_sbuf(sb, bits, val); 4857 sbuf_printf(sb, "\n"); 4858 } else if (scsi_get_stream_info(sense, sense_len, 4859 inq_data, &bits) == 0) { 4860 sbuf_cat(sb, path_str); 4861 scsi_stream_sbuf(sb, bits, val); 4862 sbuf_printf(sb, "\n"); 4863 } else if (val != 0) { 4864 /* 4865 * The information field can be valid but 0. 4866 * If the block or stream bits aren't set, 4867 * and this is 0, it isn't terribly useful 4868 * to print it out. 4869 */ 4870 sbuf_cat(sb, path_str); 4871 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); 4872 sbuf_printf(sb, "\n"); 4873 } 4874 } 4875 4876 /* 4877 * Print the FRU. 4878 */ 4879 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, 4880 &val, NULL) == 0) { 4881 sbuf_cat(sb, path_str); 4882 scsi_fru_sbuf(sb, val); 4883 sbuf_printf(sb, "\n"); 4884 } 4885 4886 /* 4887 * Print any command-specific information. 4888 */ 4889 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, 4890 &val, NULL) == 0) { 4891 sbuf_cat(sb, path_str); 4892 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); 4893 sbuf_printf(sb, "\n"); 4894 } 4895 4896 /* 4897 * Print out any sense-key-specific information. 4898 */ 4899 if (scsi_get_sks(sense, sense_len, sks) == 0) { 4900 sbuf_cat(sb, path_str); 4901 scsi_sks_sbuf(sb, sense_key, sks); 4902 sbuf_printf(sb, "\n"); 4903 } 4904 4905 /* 4906 * If this is fixed sense, we're done. If we have 4907 * descriptor sense, we might have more information 4908 * available. 4909 */ 4910 if (scsi_sense_type(sense) != SSD_TYPE_DESC) 4911 break; 4912 4913 desc_sense = (struct scsi_sense_data_desc *)sense; 4914 4915 print_info.sb = sb; 4916 print_info.path_str = path_str; 4917 print_info.cdb = cdb; 4918 print_info.cdb_len = cdb_len; 4919 print_info.inq_data = inq_data; 4920 4921 /* 4922 * Print any sense descriptors that we have not already printed. 4923 */ 4924 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, 4925 &print_info); 4926 break; 4927 4928 } 4929 case -1: 4930 /* 4931 * scsi_extract_sense_len() sets values to -1 if the 4932 * show_errors flag is set and they aren't present in the 4933 * sense data. This means that sense_len is 0. 4934 */ 4935 sbuf_printf(sb, "No sense data present\n"); 4936 break; 4937 default: { 4938 sbuf_printf(sb, "Error code 0x%x", error_code); 4939 if (sense->error_code & SSD_ERRCODE_VALID) { 4940 struct scsi_sense_data_fixed *fixed_sense; 4941 4942 fixed_sense = (struct scsi_sense_data_fixed *)sense; 4943 4944 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ 4945 uint32_t info; 4946 4947 info = scsi_4btoul(fixed_sense->info); 4948 4949 sbuf_printf(sb, " at block no. %d (decimal)", 4950 info); 4951 } 4952 } 4953 sbuf_printf(sb, "\n"); 4954 break; 4955 } 4956 } 4957 } 4958 4959 /* 4960 * scsi_sense_sbuf() returns 0 for success and -1 for failure. 4961 */ 4962 #ifdef _KERNEL 4963 int 4964 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, 4965 scsi_sense_string_flags flags) 4966 #else /* !_KERNEL */ 4967 int 4968 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, 4969 struct sbuf *sb, scsi_sense_string_flags flags) 4970 #endif /* _KERNEL/!_KERNEL */ 4971 { 4972 struct scsi_sense_data *sense; 4973 struct scsi_inquiry_data *inq_data; 4974 #ifdef _KERNEL 4975 struct ccb_getdev *cgd; 4976 #endif /* _KERNEL */ 4977 char path_str[64]; 4978 uint8_t *cdb; 4979 4980 #ifndef _KERNEL 4981 if (device == NULL) 4982 return(-1); 4983 #endif /* !_KERNEL */ 4984 if ((csio == NULL) || (sb == NULL)) 4985 return(-1); 4986 4987 /* 4988 * If the CDB is a physical address, we can't deal with it.. 4989 */ 4990 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) 4991 flags &= ~SSS_FLAG_PRINT_COMMAND; 4992 4993 #ifdef _KERNEL 4994 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); 4995 #else /* !_KERNEL */ 4996 cam_path_string(device, path_str, sizeof(path_str)); 4997 #endif /* _KERNEL/!_KERNEL */ 4998 4999 #ifdef _KERNEL 5000 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 5001 return(-1); 5002 /* 5003 * Get the device information. 5004 */ 5005 xpt_setup_ccb(&cgd->ccb_h, 5006 csio->ccb_h.path, 5007 CAM_PRIORITY_NORMAL); 5008 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 5009 xpt_action((union ccb *)cgd); 5010 5011 /* 5012 * If the device is unconfigured, just pretend that it is a hard 5013 * drive. scsi_op_desc() needs this. 5014 */ 5015 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 5016 cgd->inq_data.device = T_DIRECT; 5017 5018 inq_data = &cgd->inq_data; 5019 5020 #else /* !_KERNEL */ 5021 5022 inq_data = &device->inq_data; 5023 5024 #endif /* _KERNEL/!_KERNEL */ 5025 5026 sense = NULL; 5027 5028 if (flags & SSS_FLAG_PRINT_COMMAND) { 5029 5030 sbuf_cat(sb, path_str); 5031 5032 #ifdef _KERNEL 5033 scsi_command_string(csio, sb); 5034 #else /* !_KERNEL */ 5035 scsi_command_string(device, csio, sb); 5036 #endif /* _KERNEL/!_KERNEL */ 5037 sbuf_printf(sb, "\n"); 5038 } 5039 5040 /* 5041 * If the sense data is a physical pointer, forget it. 5042 */ 5043 if (csio->ccb_h.flags & CAM_SENSE_PTR) { 5044 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5045 #ifdef _KERNEL 5046 xpt_free_ccb((union ccb*)cgd); 5047 #endif /* _KERNEL/!_KERNEL */ 5048 return(-1); 5049 } else { 5050 /* 5051 * bcopy the pointer to avoid unaligned access 5052 * errors on finicky architectures. We don't 5053 * ensure that the sense data is pointer aligned. 5054 */ 5055 bcopy(&csio->sense_data, &sense, 5056 sizeof(struct scsi_sense_data *)); 5057 } 5058 } else { 5059 /* 5060 * If the physical sense flag is set, but the sense pointer 5061 * is not also set, we assume that the user is an idiot and 5062 * return. (Well, okay, it could be that somehow, the 5063 * entire csio is physical, but we would have probably core 5064 * dumped on one of the bogus pointer deferences above 5065 * already.) 5066 */ 5067 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5068 #ifdef _KERNEL 5069 xpt_free_ccb((union ccb*)cgd); 5070 #endif /* _KERNEL/!_KERNEL */ 5071 return(-1); 5072 } else 5073 sense = &csio->sense_data; 5074 } 5075 5076 if (csio->ccb_h.flags & CAM_CDB_POINTER) 5077 cdb = csio->cdb_io.cdb_ptr; 5078 else 5079 cdb = csio->cdb_io.cdb_bytes; 5080 5081 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, 5082 path_str, inq_data, cdb, csio->cdb_len); 5083 5084 #ifdef _KERNEL 5085 xpt_free_ccb((union ccb*)cgd); 5086 #endif /* _KERNEL/!_KERNEL */ 5087 return(0); 5088 } 5089 5090 5091 5092 #ifdef _KERNEL 5093 char * 5094 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) 5095 #else /* !_KERNEL */ 5096 char * 5097 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, 5098 char *str, int str_len) 5099 #endif /* _KERNEL/!_KERNEL */ 5100 { 5101 struct sbuf sb; 5102 5103 sbuf_new(&sb, str, str_len, 0); 5104 5105 #ifdef _KERNEL 5106 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5107 #else /* !_KERNEL */ 5108 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5109 #endif /* _KERNEL/!_KERNEL */ 5110 5111 sbuf_finish(&sb); 5112 5113 return(sbuf_data(&sb)); 5114 } 5115 5116 #ifdef _KERNEL 5117 void 5118 scsi_sense_print(struct ccb_scsiio *csio) 5119 { 5120 struct sbuf sb; 5121 char str[512]; 5122 5123 sbuf_new(&sb, str, sizeof(str), 0); 5124 5125 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5126 5127 sbuf_finish(&sb); 5128 5129 printf("%s", sbuf_data(&sb)); 5130 } 5131 5132 #else /* !_KERNEL */ 5133 void 5134 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, 5135 FILE *ofile) 5136 { 5137 struct sbuf sb; 5138 char str[512]; 5139 5140 if ((device == NULL) || (csio == NULL) || (ofile == NULL)) 5141 return; 5142 5143 sbuf_new(&sb, str, sizeof(str), 0); 5144 5145 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5146 5147 sbuf_finish(&sb); 5148 5149 fprintf(ofile, "%s", sbuf_data(&sb)); 5150 } 5151 5152 #endif /* _KERNEL/!_KERNEL */ 5153 5154 /* 5155 * Extract basic sense information. This is backward-compatible with the 5156 * previous implementation. For new implementations, 5157 * scsi_extract_sense_len() is recommended. 5158 */ 5159 void 5160 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, 5161 int *sense_key, int *asc, int *ascq) 5162 { 5163 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, 5164 sense_key, asc, ascq, /*show_errors*/ 0); 5165 } 5166 5167 /* 5168 * Extract basic sense information from SCSI I/O CCB structure. 5169 */ 5170 int 5171 scsi_extract_sense_ccb(union ccb *ccb, 5172 int *error_code, int *sense_key, int *asc, int *ascq) 5173 { 5174 struct scsi_sense_data *sense_data; 5175 5176 /* Make sure there are some sense data we can access. */ 5177 if (ccb->ccb_h.func_code != XPT_SCSI_IO || 5178 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR || 5179 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) || 5180 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 || 5181 (ccb->ccb_h.flags & CAM_SENSE_PHYS)) 5182 return (0); 5183 5184 if (ccb->ccb_h.flags & CAM_SENSE_PTR) 5185 bcopy(&ccb->csio.sense_data, &sense_data, 5186 sizeof(struct scsi_sense_data *)); 5187 else 5188 sense_data = &ccb->csio.sense_data; 5189 scsi_extract_sense_len(sense_data, 5190 ccb->csio.sense_len - ccb->csio.sense_resid, 5191 error_code, sense_key, asc, ascq, 1); 5192 if (*error_code == -1) 5193 return (0); 5194 return (1); 5195 } 5196 5197 /* 5198 * Extract basic sense information. If show_errors is set, sense values 5199 * will be set to -1 if they are not present. 5200 */ 5201 void 5202 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, 5203 int *error_code, int *sense_key, int *asc, int *ascq, 5204 int show_errors) 5205 { 5206 /* 5207 * If we have no length, we have no sense. 5208 */ 5209 if (sense_len == 0) { 5210 if (show_errors == 0) { 5211 *error_code = 0; 5212 *sense_key = 0; 5213 *asc = 0; 5214 *ascq = 0; 5215 } else { 5216 *error_code = -1; 5217 *sense_key = -1; 5218 *asc = -1; 5219 *ascq = -1; 5220 } 5221 return; 5222 } 5223 5224 *error_code = sense_data->error_code & SSD_ERRCODE; 5225 5226 switch (*error_code) { 5227 case SSD_DESC_CURRENT_ERROR: 5228 case SSD_DESC_DEFERRED_ERROR: { 5229 struct scsi_sense_data_desc *sense; 5230 5231 sense = (struct scsi_sense_data_desc *)sense_data; 5232 5233 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) 5234 *sense_key = sense->sense_key & SSD_KEY; 5235 else 5236 *sense_key = (show_errors) ? -1 : 0; 5237 5238 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) 5239 *asc = sense->add_sense_code; 5240 else 5241 *asc = (show_errors) ? -1 : 0; 5242 5243 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) 5244 *ascq = sense->add_sense_code_qual; 5245 else 5246 *ascq = (show_errors) ? -1 : 0; 5247 break; 5248 } 5249 case SSD_CURRENT_ERROR: 5250 case SSD_DEFERRED_ERROR: 5251 default: { 5252 struct scsi_sense_data_fixed *sense; 5253 5254 sense = (struct scsi_sense_data_fixed *)sense_data; 5255 5256 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) 5257 *sense_key = sense->flags & SSD_KEY; 5258 else 5259 *sense_key = (show_errors) ? -1 : 0; 5260 5261 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) 5262 && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) 5263 *asc = sense->add_sense_code; 5264 else 5265 *asc = (show_errors) ? -1 : 0; 5266 5267 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) 5268 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) 5269 *ascq = sense->add_sense_code_qual; 5270 else 5271 *ascq = (show_errors) ? -1 : 0; 5272 break; 5273 } 5274 } 5275 } 5276 5277 int 5278 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, 5279 int show_errors) 5280 { 5281 int error_code, sense_key, asc, ascq; 5282 5283 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5284 &sense_key, &asc, &ascq, show_errors); 5285 5286 return (sense_key); 5287 } 5288 5289 int 5290 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, 5291 int show_errors) 5292 { 5293 int error_code, sense_key, asc, ascq; 5294 5295 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5296 &sense_key, &asc, &ascq, show_errors); 5297 5298 return (asc); 5299 } 5300 5301 int 5302 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, 5303 int show_errors) 5304 { 5305 int error_code, sense_key, asc, ascq; 5306 5307 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5308 &sense_key, &asc, &ascq, show_errors); 5309 5310 return (ascq); 5311 } 5312 5313 /* 5314 * This function currently requires at least 36 bytes, or 5315 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this 5316 * function needs more or less data in the future, another length should be 5317 * defined in scsi_all.h to indicate the minimum amount of data necessary 5318 * for this routine to function properly. 5319 */ 5320 void 5321 scsi_print_inquiry(struct scsi_inquiry_data *inq_data) 5322 { 5323 u_int8_t type; 5324 char *dtype, *qtype; 5325 char vendor[16], product[48], revision[16], rstr[12]; 5326 5327 type = SID_TYPE(inq_data); 5328 5329 /* 5330 * Figure out basic device type and qualifier. 5331 */ 5332 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { 5333 qtype = " (vendor-unique qualifier)"; 5334 } else { 5335 switch (SID_QUAL(inq_data)) { 5336 case SID_QUAL_LU_CONNECTED: 5337 qtype = ""; 5338 break; 5339 5340 case SID_QUAL_LU_OFFLINE: 5341 qtype = " (offline)"; 5342 break; 5343 5344 case SID_QUAL_RSVD: 5345 qtype = " (reserved qualifier)"; 5346 break; 5347 default: 5348 case SID_QUAL_BAD_LU: 5349 qtype = " (LUN not supported)"; 5350 break; 5351 } 5352 } 5353 5354 switch (type) { 5355 case T_DIRECT: 5356 dtype = "Direct Access"; 5357 break; 5358 case T_SEQUENTIAL: 5359 dtype = "Sequential Access"; 5360 break; 5361 case T_PRINTER: 5362 dtype = "Printer"; 5363 break; 5364 case T_PROCESSOR: 5365 dtype = "Processor"; 5366 break; 5367 case T_WORM: 5368 dtype = "WORM"; 5369 break; 5370 case T_CDROM: 5371 dtype = "CD-ROM"; 5372 break; 5373 case T_SCANNER: 5374 dtype = "Scanner"; 5375 break; 5376 case T_OPTICAL: 5377 dtype = "Optical"; 5378 break; 5379 case T_CHANGER: 5380 dtype = "Changer"; 5381 break; 5382 case T_COMM: 5383 dtype = "Communication"; 5384 break; 5385 case T_STORARRAY: 5386 dtype = "Storage Array"; 5387 break; 5388 case T_ENCLOSURE: 5389 dtype = "Enclosure Services"; 5390 break; 5391 case T_RBC: 5392 dtype = "Simplified Direct Access"; 5393 break; 5394 case T_OCRW: 5395 dtype = "Optical Card Read/Write"; 5396 break; 5397 case T_OSD: 5398 dtype = "Object-Based Storage"; 5399 break; 5400 case T_ADC: 5401 dtype = "Automation/Drive Interface"; 5402 break; 5403 case T_NODEVICE: 5404 dtype = "Uninstalled"; 5405 break; 5406 default: 5407 dtype = "unknown"; 5408 break; 5409 } 5410 5411 cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor), 5412 sizeof(vendor)); 5413 cam_strvis(product, inq_data->product, sizeof(inq_data->product), 5414 sizeof(product)); 5415 cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision), 5416 sizeof(revision)); 5417 5418 if (SID_ANSI_REV(inq_data) == SCSI_REV_0) 5419 snprintf(rstr, sizeof(rstr), "SCSI"); 5420 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) { 5421 snprintf(rstr, sizeof(rstr), "SCSI-%d", 5422 SID_ANSI_REV(inq_data)); 5423 } else { 5424 snprintf(rstr, sizeof(rstr), "SPC-%d SCSI", 5425 SID_ANSI_REV(inq_data) - 2); 5426 } 5427 printf("<%s %s %s> %s %s %s device%s\n", 5428 vendor, product, revision, 5429 SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", 5430 dtype, rstr, qtype); 5431 } 5432 5433 void 5434 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data) 5435 { 5436 char vendor[16], product[48], revision[16]; 5437 5438 cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor), 5439 sizeof(vendor)); 5440 cam_strvis(product, inq_data->product, sizeof(inq_data->product), 5441 sizeof(product)); 5442 cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision), 5443 sizeof(revision)); 5444 5445 printf("<%s %s %s>", vendor, product, revision); 5446 } 5447 5448 /* 5449 * Table of syncrates that don't follow the "divisible by 4" 5450 * rule. This table will be expanded in future SCSI specs. 5451 */ 5452 static struct { 5453 u_int period_factor; 5454 u_int period; /* in 100ths of ns */ 5455 } scsi_syncrates[] = { 5456 { 0x08, 625 }, /* FAST-160 */ 5457 { 0x09, 1250 }, /* FAST-80 */ 5458 { 0x0a, 2500 }, /* FAST-40 40MHz */ 5459 { 0x0b, 3030 }, /* FAST-40 33MHz */ 5460 { 0x0c, 5000 } /* FAST-20 */ 5461 }; 5462 5463 /* 5464 * Return the frequency in kHz corresponding to the given 5465 * sync period factor. 5466 */ 5467 u_int 5468 scsi_calc_syncsrate(u_int period_factor) 5469 { 5470 int i; 5471 int num_syncrates; 5472 5473 /* 5474 * It's a bug if period is zero, but if it is anyway, don't 5475 * die with a divide fault- instead return something which 5476 * 'approximates' async 5477 */ 5478 if (period_factor == 0) { 5479 return (3300); 5480 } 5481 5482 num_syncrates = sizeof(scsi_syncrates) / sizeof(scsi_syncrates[0]); 5483 /* See if the period is in the "exception" table */ 5484 for (i = 0; i < num_syncrates; i++) { 5485 5486 if (period_factor == scsi_syncrates[i].period_factor) { 5487 /* Period in kHz */ 5488 return (100000000 / scsi_syncrates[i].period); 5489 } 5490 } 5491 5492 /* 5493 * Wasn't in the table, so use the standard 5494 * 4 times conversion. 5495 */ 5496 return (10000000 / (period_factor * 4 * 10)); 5497 } 5498 5499 /* 5500 * Return the SCSI sync parameter that corresponsd to 5501 * the passed in period in 10ths of ns. 5502 */ 5503 u_int 5504 scsi_calc_syncparam(u_int period) 5505 { 5506 int i; 5507 int num_syncrates; 5508 5509 if (period == 0) 5510 return (~0); /* Async */ 5511 5512 /* Adjust for exception table being in 100ths. */ 5513 period *= 10; 5514 num_syncrates = sizeof(scsi_syncrates) / sizeof(scsi_syncrates[0]); 5515 /* See if the period is in the "exception" table */ 5516 for (i = 0; i < num_syncrates; i++) { 5517 5518 if (period <= scsi_syncrates[i].period) { 5519 /* Period in 100ths of ns */ 5520 return (scsi_syncrates[i].period_factor); 5521 } 5522 } 5523 5524 /* 5525 * Wasn't in the table, so use the standard 5526 * 1/4 period in ns conversion. 5527 */ 5528 return (period/400); 5529 } 5530 5531 int 5532 scsi_devid_is_naa_ieee_reg(uint8_t *bufp) 5533 { 5534 struct scsi_vpd_id_descriptor *descr; 5535 struct scsi_vpd_id_naa_basic *naa; 5536 5537 descr = (struct scsi_vpd_id_descriptor *)bufp; 5538 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; 5539 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5540 return 0; 5541 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) 5542 return 0; 5543 if ((naa->naa >> SVPD_ID_NAA_NAA_SHIFT) != SVPD_ID_NAA_IEEE_REG) 5544 return 0; 5545 return 1; 5546 } 5547 5548 int 5549 scsi_devid_is_sas_target(uint8_t *bufp) 5550 { 5551 struct scsi_vpd_id_descriptor *descr; 5552 5553 descr = (struct scsi_vpd_id_descriptor *)bufp; 5554 if (!scsi_devid_is_naa_ieee_reg(bufp)) 5555 return 0; 5556 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ 5557 return 0; 5558 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) 5559 return 0; 5560 return 1; 5561 } 5562 5563 int 5564 scsi_devid_is_lun_eui64(uint8_t *bufp) 5565 { 5566 struct scsi_vpd_id_descriptor *descr; 5567 5568 descr = (struct scsi_vpd_id_descriptor *)bufp; 5569 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5570 return 0; 5571 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64) 5572 return 0; 5573 return 1; 5574 } 5575 5576 int 5577 scsi_devid_is_lun_naa(uint8_t *bufp) 5578 { 5579 struct scsi_vpd_id_descriptor *descr; 5580 5581 descr = (struct scsi_vpd_id_descriptor *)bufp; 5582 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5583 return 0; 5584 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5585 return 0; 5586 return 1; 5587 } 5588 5589 int 5590 scsi_devid_is_lun_t10(uint8_t *bufp) 5591 { 5592 struct scsi_vpd_id_descriptor *descr; 5593 5594 descr = (struct scsi_vpd_id_descriptor *)bufp; 5595 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5596 return 0; 5597 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10) 5598 return 0; 5599 return 1; 5600 } 5601 5602 int 5603 scsi_devid_is_lun_name(uint8_t *bufp) 5604 { 5605 struct scsi_vpd_id_descriptor *descr; 5606 5607 descr = (struct scsi_vpd_id_descriptor *)bufp; 5608 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5609 return 0; 5610 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME) 5611 return 0; 5612 return 1; 5613 } 5614 5615 struct scsi_vpd_id_descriptor * 5616 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, 5617 scsi_devid_checkfn_t ck_fn) 5618 { 5619 uint8_t *desc_buf_end; 5620 5621 desc_buf_end = (uint8_t *)desc + len; 5622 5623 for (; desc->identifier <= desc_buf_end && 5624 desc->identifier + desc->length <= desc_buf_end; 5625 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier 5626 + desc->length)) { 5627 5628 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) 5629 return (desc); 5630 } 5631 return (NULL); 5632 } 5633 5634 struct scsi_vpd_id_descriptor * 5635 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, 5636 scsi_devid_checkfn_t ck_fn) 5637 { 5638 uint32_t len; 5639 5640 if (page_len < sizeof(*id)) 5641 return (NULL); 5642 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id)); 5643 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *) 5644 id->desc_list, len, ck_fn)); 5645 } 5646 5647 int 5648 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, 5649 uint32_t valid_len) 5650 { 5651 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) { 5652 case SCSI_PROTO_FC: { 5653 struct scsi_transportid_fcp *fcp; 5654 uint64_t n_port_name; 5655 5656 fcp = (struct scsi_transportid_fcp *)hdr; 5657 5658 n_port_name = scsi_8btou64(fcp->n_port_name); 5659 5660 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name); 5661 break; 5662 } 5663 case SCSI_PROTO_SPI: { 5664 struct scsi_transportid_spi *spi; 5665 5666 spi = (struct scsi_transportid_spi *)hdr; 5667 5668 sbuf_printf(sb, "SPI address: %u,%u", 5669 scsi_2btoul(spi->scsi_addr), 5670 scsi_2btoul(spi->rel_trgt_port_id)); 5671 break; 5672 } 5673 case SCSI_PROTO_SSA: 5674 /* 5675 * XXX KDM there is no transport ID defined in SPC-4 for 5676 * SSA. 5677 */ 5678 break; 5679 case SCSI_PROTO_1394: { 5680 struct scsi_transportid_1394 *sbp; 5681 uint64_t eui64; 5682 5683 sbp = (struct scsi_transportid_1394 *)hdr; 5684 5685 eui64 = scsi_8btou64(sbp->eui64); 5686 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64); 5687 break; 5688 } 5689 case SCSI_PROTO_RDMA: { 5690 struct scsi_transportid_rdma *rdma; 5691 unsigned int i; 5692 5693 rdma = (struct scsi_transportid_rdma *)hdr; 5694 5695 sbuf_printf(sb, "RDMA address: 0x"); 5696 for (i = 0; i < sizeof(rdma->initiator_port_id); i++) 5697 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]); 5698 break; 5699 } 5700 case SCSI_PROTO_ISCSI: { 5701 uint32_t add_len, i; 5702 uint8_t *iscsi_name = NULL; 5703 int nul_found = 0; 5704 5705 sbuf_printf(sb, "iSCSI address: "); 5706 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5707 SCSI_TRN_ISCSI_FORMAT_DEVICE) { 5708 struct scsi_transportid_iscsi_device *dev; 5709 5710 dev = (struct scsi_transportid_iscsi_device *)hdr; 5711 5712 /* 5713 * Verify how much additional data we really have. 5714 */ 5715 add_len = scsi_2btoul(dev->additional_length); 5716 add_len = MIN(add_len, valid_len - 5717 __offsetof(struct scsi_transportid_iscsi_device, 5718 iscsi_name)); 5719 iscsi_name = &dev->iscsi_name[0]; 5720 5721 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5722 SCSI_TRN_ISCSI_FORMAT_PORT) { 5723 struct scsi_transportid_iscsi_port *port; 5724 5725 port = (struct scsi_transportid_iscsi_port *)hdr; 5726 5727 add_len = scsi_2btoul(port->additional_length); 5728 add_len = MIN(add_len, valid_len - 5729 __offsetof(struct scsi_transportid_iscsi_port, 5730 iscsi_name)); 5731 iscsi_name = &port->iscsi_name[0]; 5732 } else { 5733 sbuf_printf(sb, "unknown format %x", 5734 (hdr->format_protocol & 5735 SCSI_TRN_FORMAT_MASK) >> 5736 SCSI_TRN_FORMAT_SHIFT); 5737 break; 5738 } 5739 if (add_len == 0) { 5740 sbuf_printf(sb, "not enough data"); 5741 break; 5742 } 5743 /* 5744 * This is supposed to be a NUL-terminated ASCII 5745 * string, but you never know. So we're going to 5746 * check. We need to do this because there is no 5747 * sbuf equivalent of strncat(). 5748 */ 5749 for (i = 0; i < add_len; i++) { 5750 if (iscsi_name[i] == '\0') { 5751 nul_found = 1; 5752 break; 5753 } 5754 } 5755 /* 5756 * If there is a NUL in the name, we can just use 5757 * sbuf_cat(). Otherwise we need to use sbuf_bcat(). 5758 */ 5759 if (nul_found != 0) 5760 sbuf_cat(sb, iscsi_name); 5761 else 5762 sbuf_bcat(sb, iscsi_name, add_len); 5763 break; 5764 } 5765 case SCSI_PROTO_SAS: { 5766 struct scsi_transportid_sas *sas; 5767 uint64_t sas_addr; 5768 5769 sas = (struct scsi_transportid_sas *)hdr; 5770 5771 sas_addr = scsi_8btou64(sas->sas_address); 5772 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr); 5773 break; 5774 } 5775 case SCSI_PROTO_ADITP: 5776 case SCSI_PROTO_ATA: 5777 case SCSI_PROTO_UAS: 5778 /* 5779 * No Transport ID format for ADI, ATA or USB is defined in 5780 * SPC-4. 5781 */ 5782 sbuf_printf(sb, "No known Transport ID format for protocol " 5783 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5784 break; 5785 case SCSI_PROTO_SOP: { 5786 struct scsi_transportid_sop *sop; 5787 struct scsi_sop_routing_id_norm *rid; 5788 5789 sop = (struct scsi_transportid_sop *)hdr; 5790 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id; 5791 5792 /* 5793 * Note that there is no alternate format specified in SPC-4 5794 * for the PCIe routing ID, so we don't really have a way 5795 * to know whether the second byte of the routing ID is 5796 * a device and function or just a function. So we just 5797 * assume bus,device,function. 5798 */ 5799 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u", 5800 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT, 5801 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX); 5802 break; 5803 } 5804 case SCSI_PROTO_NONE: 5805 default: 5806 sbuf_printf(sb, "Unknown protocol %#x", 5807 hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5808 break; 5809 } 5810 5811 return (0); 5812 } 5813 5814 struct scsi_nv scsi_proto_map[] = { 5815 { "fcp", SCSI_PROTO_FC }, 5816 { "spi", SCSI_PROTO_SPI }, 5817 { "ssa", SCSI_PROTO_SSA }, 5818 { "sbp", SCSI_PROTO_1394 }, 5819 { "1394", SCSI_PROTO_1394 }, 5820 { "srp", SCSI_PROTO_RDMA }, 5821 { "rdma", SCSI_PROTO_RDMA }, 5822 { "iscsi", SCSI_PROTO_ISCSI }, 5823 { "iqn", SCSI_PROTO_ISCSI }, 5824 { "sas", SCSI_PROTO_SAS }, 5825 { "aditp", SCSI_PROTO_ADITP }, 5826 { "ata", SCSI_PROTO_ATA }, 5827 { "uas", SCSI_PROTO_UAS }, 5828 { "usb", SCSI_PROTO_UAS }, 5829 { "sop", SCSI_PROTO_SOP } 5830 }; 5831 5832 const char * 5833 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value) 5834 { 5835 int i; 5836 5837 for (i = 0; i < num_table_entries; i++) { 5838 if (table[i].value == value) 5839 return (table[i].name); 5840 } 5841 5842 return (NULL); 5843 } 5844 5845 /* 5846 * Given a name/value table, find a value matching the given name. 5847 * Return values: 5848 * SCSI_NV_FOUND - match found 5849 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact 5850 * SCSI_NV_NOT_FOUND - no match found 5851 */ 5852 scsi_nv_status 5853 scsi_get_nv(struct scsi_nv *table, int num_table_entries, 5854 char *name, int *table_entry, scsi_nv_flags flags) 5855 { 5856 int i, num_matches = 0; 5857 5858 for (i = 0; i < num_table_entries; i++) { 5859 size_t table_len, name_len; 5860 5861 table_len = strlen(table[i].name); 5862 name_len = strlen(name); 5863 5864 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0) 5865 && (strncasecmp(table[i].name, name, name_len) == 0)) 5866 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0) 5867 && (strncmp(table[i].name, name, name_len) == 0))) { 5868 *table_entry = i; 5869 5870 /* 5871 * Check for an exact match. If we have the same 5872 * number of characters in the table as the argument, 5873 * and we already know they're the same, we have 5874 * an exact match. 5875 */ 5876 if (table_len == name_len) 5877 return (SCSI_NV_FOUND); 5878 5879 /* 5880 * Otherwise, bump up the number of matches. We'll 5881 * see later how many we have. 5882 */ 5883 num_matches++; 5884 } 5885 } 5886 5887 if (num_matches > 1) 5888 return (SCSI_NV_AMBIGUOUS); 5889 else if (num_matches == 1) 5890 return (SCSI_NV_FOUND); 5891 else 5892 return (SCSI_NV_NOT_FOUND); 5893 } 5894 5895 /* 5896 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are 5897 * all 64-bit numbers, the code is similar. 5898 */ 5899 int 5900 scsi_parse_transportid_64bit(int proto_id, char *id_str, 5901 struct scsi_transportid_header **hdr, 5902 unsigned int *alloc_len, 5903 #ifdef _KERNEL 5904 struct malloc_type *type, int flags, 5905 #endif 5906 char *error_str, int error_str_len) 5907 { 5908 uint64_t value; 5909 char *endptr; 5910 int retval; 5911 size_t alloc_size; 5912 5913 retval = 0; 5914 5915 value = strtouq(id_str, &endptr, 0); 5916 if (*endptr != '\0') { 5917 if (error_str != NULL) { 5918 snprintf(error_str, error_str_len, "%s: error " 5919 "parsing ID %s, 64-bit number required", 5920 __func__, id_str); 5921 } 5922 retval = 1; 5923 goto bailout; 5924 } 5925 5926 switch (proto_id) { 5927 case SCSI_PROTO_FC: 5928 alloc_size = sizeof(struct scsi_transportid_fcp); 5929 break; 5930 case SCSI_PROTO_1394: 5931 alloc_size = sizeof(struct scsi_transportid_1394); 5932 break; 5933 case SCSI_PROTO_SAS: 5934 alloc_size = sizeof(struct scsi_transportid_sas); 5935 break; 5936 default: 5937 if (error_str != NULL) { 5938 snprintf(error_str, error_str_len, "%s: unsupoprted " 5939 "protocol %d", __func__, proto_id); 5940 } 5941 retval = 1; 5942 goto bailout; 5943 break; /* NOTREACHED */ 5944 } 5945 #ifdef _KERNEL 5946 *hdr = malloc(alloc_size, type, flags); 5947 #else /* _KERNEL */ 5948 *hdr = malloc(alloc_size); 5949 #endif /*_KERNEL */ 5950 if (*hdr == NULL) { 5951 if (error_str != NULL) { 5952 snprintf(error_str, error_str_len, "%s: unable to " 5953 "allocate %zu bytes", __func__, alloc_size); 5954 } 5955 retval = 1; 5956 goto bailout; 5957 } 5958 5959 *alloc_len = alloc_size; 5960 5961 bzero(*hdr, alloc_size); 5962 5963 switch (proto_id) { 5964 case SCSI_PROTO_FC: { 5965 struct scsi_transportid_fcp *fcp; 5966 5967 fcp = (struct scsi_transportid_fcp *)(*hdr); 5968 fcp->format_protocol = SCSI_PROTO_FC | 5969 SCSI_TRN_FCP_FORMAT_DEFAULT; 5970 scsi_u64to8b(value, fcp->n_port_name); 5971 break; 5972 } 5973 case SCSI_PROTO_1394: { 5974 struct scsi_transportid_1394 *sbp; 5975 5976 sbp = (struct scsi_transportid_1394 *)(*hdr); 5977 sbp->format_protocol = SCSI_PROTO_1394 | 5978 SCSI_TRN_1394_FORMAT_DEFAULT; 5979 scsi_u64to8b(value, sbp->eui64); 5980 break; 5981 } 5982 case SCSI_PROTO_SAS: { 5983 struct scsi_transportid_sas *sas; 5984 5985 sas = (struct scsi_transportid_sas *)(*hdr); 5986 sas->format_protocol = SCSI_PROTO_SAS | 5987 SCSI_TRN_SAS_FORMAT_DEFAULT; 5988 scsi_u64to8b(value, sas->sas_address); 5989 break; 5990 } 5991 default: 5992 break; 5993 } 5994 bailout: 5995 return (retval); 5996 } 5997 5998 /* 5999 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port 6000 */ 6001 int 6002 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, 6003 unsigned int *alloc_len, 6004 #ifdef _KERNEL 6005 struct malloc_type *type, int flags, 6006 #endif 6007 char *error_str, int error_str_len) 6008 { 6009 unsigned long scsi_addr, target_port; 6010 struct scsi_transportid_spi *spi; 6011 char *tmpstr, *endptr; 6012 int retval; 6013 6014 retval = 0; 6015 6016 tmpstr = strsep(&id_str, ","); 6017 if (tmpstr == NULL) { 6018 if (error_str != NULL) { 6019 snprintf(error_str, error_str_len, 6020 "%s: no ID found", __func__); 6021 } 6022 retval = 1; 6023 goto bailout; 6024 } 6025 scsi_addr = strtoul(tmpstr, &endptr, 0); 6026 if (*endptr != '\0') { 6027 if (error_str != NULL) { 6028 snprintf(error_str, error_str_len, "%s: error " 6029 "parsing SCSI ID %s, number required", 6030 __func__, tmpstr); 6031 } 6032 retval = 1; 6033 goto bailout; 6034 } 6035 6036 if (id_str == NULL) { 6037 if (error_str != NULL) { 6038 snprintf(error_str, error_str_len, "%s: no relative " 6039 "target port found", __func__); 6040 } 6041 retval = 1; 6042 goto bailout; 6043 } 6044 6045 target_port = strtoul(id_str, &endptr, 0); 6046 if (*endptr != '\0') { 6047 if (error_str != NULL) { 6048 snprintf(error_str, error_str_len, "%s: error " 6049 "parsing relative target port %s, number " 6050 "required", __func__, id_str); 6051 } 6052 retval = 1; 6053 goto bailout; 6054 } 6055 #ifdef _KERNEL 6056 spi = malloc(sizeof(*spi), type, flags); 6057 #else 6058 spi = malloc(sizeof(*spi)); 6059 #endif 6060 if (spi == NULL) { 6061 if (error_str != NULL) { 6062 snprintf(error_str, error_str_len, "%s: unable to " 6063 "allocate %zu bytes", __func__, 6064 sizeof(*spi)); 6065 } 6066 retval = 1; 6067 goto bailout; 6068 } 6069 *alloc_len = sizeof(*spi); 6070 bzero(spi, sizeof(*spi)); 6071 6072 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT; 6073 scsi_ulto2b(scsi_addr, spi->scsi_addr); 6074 scsi_ulto2b(target_port, spi->rel_trgt_port_id); 6075 6076 *hdr = (struct scsi_transportid_header *)spi; 6077 bailout: 6078 return (retval); 6079 } 6080 6081 /* 6082 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits, 6083 * optionally prefixed by "0x" or "0X". 6084 */ 6085 int 6086 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, 6087 unsigned int *alloc_len, 6088 #ifdef _KERNEL 6089 struct malloc_type *type, int flags, 6090 #endif 6091 char *error_str, int error_str_len) 6092 { 6093 struct scsi_transportid_rdma *rdma; 6094 int retval; 6095 size_t id_len, rdma_id_size; 6096 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN]; 6097 char *tmpstr; 6098 unsigned int i, j; 6099 6100 retval = 0; 6101 id_len = strlen(id_str); 6102 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN; 6103 6104 /* 6105 * Check the size. It needs to be either 32 or 34 characters long. 6106 */ 6107 if ((id_len != (rdma_id_size * 2)) 6108 && (id_len != ((rdma_id_size * 2) + 2))) { 6109 if (error_str != NULL) { 6110 snprintf(error_str, error_str_len, "%s: RDMA ID " 6111 "must be 32 hex digits (0x prefix " 6112 "optional), only %zu seen", __func__, id_len); 6113 } 6114 retval = 1; 6115 goto bailout; 6116 } 6117 6118 tmpstr = id_str; 6119 /* 6120 * If the user gave us 34 characters, the string needs to start 6121 * with '0x'. 6122 */ 6123 if (id_len == ((rdma_id_size * 2) + 2)) { 6124 if ((tmpstr[0] == '0') 6125 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) { 6126 tmpstr += 2; 6127 } else { 6128 if (error_str != NULL) { 6129 snprintf(error_str, error_str_len, "%s: RDMA " 6130 "ID prefix, if used, must be \"0x\", " 6131 "got %s", __func__, tmpstr); 6132 } 6133 retval = 1; 6134 goto bailout; 6135 } 6136 } 6137 bzero(rdma_id, sizeof(rdma_id)); 6138 6139 /* 6140 * Convert ASCII hex into binary bytes. There is no standard 6141 * 128-bit integer type, and so no strtou128t() routine to convert 6142 * from hex into a large integer. In the end, we're not going to 6143 * an integer, but rather to a byte array, so that and the fact 6144 * that we require the user to give us 32 hex digits simplifies the 6145 * logic. 6146 */ 6147 for (i = 0; i < (rdma_id_size * 2); i++) { 6148 int cur_shift; 6149 unsigned char c; 6150 6151 /* Increment the byte array one for every 2 hex digits */ 6152 j = i >> 1; 6153 6154 /* 6155 * The first digit in every pair is the most significant 6156 * 4 bits. The second is the least significant 4 bits. 6157 */ 6158 if ((i % 2) == 0) 6159 cur_shift = 4; 6160 else 6161 cur_shift = 0; 6162 6163 c = tmpstr[i]; 6164 /* Convert the ASCII hex character into a number */ 6165 if (isdigit(c)) 6166 c -= '0'; 6167 else if (isalpha(c)) 6168 c -= isupper(c) ? 'A' - 10 : 'a' - 10; 6169 else { 6170 if (error_str != NULL) { 6171 snprintf(error_str, error_str_len, "%s: " 6172 "RDMA ID must be hex digits, got " 6173 "invalid character %c", __func__, 6174 tmpstr[i]); 6175 } 6176 retval = 1; 6177 goto bailout; 6178 } 6179 /* 6180 * The converted number can't be less than 0; the type is 6181 * unsigned, and the subtraction logic will not give us 6182 * a negative number. So we only need to make sure that 6183 * the value is not greater than 0xf. (i.e. make sure the 6184 * user didn't give us a value like "0x12jklmno"). 6185 */ 6186 if (c > 0xf) { 6187 if (error_str != NULL) { 6188 snprintf(error_str, error_str_len, "%s: " 6189 "RDMA ID must be hex digits, got " 6190 "invalid character %c", __func__, 6191 tmpstr[i]); 6192 } 6193 retval = 1; 6194 goto bailout; 6195 } 6196 6197 rdma_id[j] |= c << cur_shift; 6198 } 6199 6200 #ifdef _KERNEL 6201 rdma = malloc(sizeof(*rdma), type, flags); 6202 #else 6203 rdma = malloc(sizeof(*rdma)); 6204 #endif 6205 if (rdma == NULL) { 6206 if (error_str != NULL) { 6207 snprintf(error_str, error_str_len, "%s: unable to " 6208 "allocate %zu bytes", __func__, 6209 sizeof(*rdma)); 6210 } 6211 retval = 1; 6212 goto bailout; 6213 } 6214 *alloc_len = sizeof(*rdma); 6215 bzero(rdma, *alloc_len); 6216 6217 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT; 6218 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN); 6219 6220 *hdr = (struct scsi_transportid_header *)rdma; 6221 6222 bailout: 6223 return (retval); 6224 } 6225 6226 /* 6227 * Parse an iSCSI name. The format is either just the name: 6228 * 6229 * iqn.2012-06.com.example:target0 6230 * or the name, separator and initiator session ID: 6231 * 6232 * iqn.2012-06.com.example:target0,i,0x123 6233 * 6234 * The separator format is exact. 6235 */ 6236 int 6237 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, 6238 unsigned int *alloc_len, 6239 #ifdef _KERNEL 6240 struct malloc_type *type, int flags, 6241 #endif 6242 char *error_str, int error_str_len) 6243 { 6244 size_t id_len, sep_len, id_size, name_len; 6245 int retval; 6246 unsigned int i, sep_pos, sep_found; 6247 const char *sep_template = ",i,0x"; 6248 const char *iqn_prefix = "iqn."; 6249 struct scsi_transportid_iscsi_device *iscsi; 6250 6251 retval = 0; 6252 sep_found = 0; 6253 6254 id_len = strlen(id_str); 6255 sep_len = strlen(sep_template); 6256 6257 /* 6258 * The separator is defined as exactly ',i,0x'. Any other commas, 6259 * or any other form, is an error. So look for a comma, and once 6260 * we find that, the next few characters must match the separator 6261 * exactly. Once we get through the separator, there should be at 6262 * least one character. 6263 */ 6264 for (i = 0, sep_pos = 0; i < id_len; i++) { 6265 if (sep_pos == 0) { 6266 if (id_str[i] == sep_template[sep_pos]) 6267 sep_pos++; 6268 6269 continue; 6270 } 6271 if (sep_pos < sep_len) { 6272 if (id_str[i] == sep_template[sep_pos]) { 6273 sep_pos++; 6274 continue; 6275 } 6276 if (error_str != NULL) { 6277 snprintf(error_str, error_str_len, "%s: " 6278 "invalid separator in iSCSI name " 6279 "\"%s\"", 6280 __func__, id_str); 6281 } 6282 retval = 1; 6283 goto bailout; 6284 } else { 6285 sep_found = 1; 6286 break; 6287 } 6288 } 6289 6290 /* 6291 * Check to see whether we have a separator but no digits after it. 6292 */ 6293 if ((sep_pos != 0) 6294 && (sep_found == 0)) { 6295 if (error_str != NULL) { 6296 snprintf(error_str, error_str_len, "%s: no digits " 6297 "found after separator in iSCSI name \"%s\"", 6298 __func__, id_str); 6299 } 6300 retval = 1; 6301 goto bailout; 6302 } 6303 6304 /* 6305 * The incoming ID string has the "iqn." prefix stripped off. We 6306 * need enough space for the base structure (the structures are the 6307 * same for the two iSCSI forms), the prefix, the ID string and a 6308 * terminating NUL. 6309 */ 6310 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1; 6311 6312 #ifdef _KERNEL 6313 iscsi = malloc(id_size, type, flags); 6314 #else 6315 iscsi = malloc(id_size); 6316 #endif 6317 if (iscsi == NULL) { 6318 if (error_str != NULL) { 6319 snprintf(error_str, error_str_len, "%s: unable to " 6320 "allocate %zu bytes", __func__, id_size); 6321 } 6322 retval = 1; 6323 goto bailout; 6324 } 6325 *alloc_len = id_size; 6326 bzero(iscsi, id_size); 6327 6328 iscsi->format_protocol = SCSI_PROTO_ISCSI; 6329 if (sep_found == 0) 6330 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE; 6331 else 6332 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT; 6333 name_len = id_size - sizeof(*iscsi); 6334 scsi_ulto2b(name_len, iscsi->additional_length); 6335 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str); 6336 6337 *hdr = (struct scsi_transportid_header *)iscsi; 6338 6339 bailout: 6340 return (retval); 6341 } 6342 6343 /* 6344 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be 6345 * of the form 'bus,device,function' or 'bus,function'. 6346 */ 6347 int 6348 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, 6349 unsigned int *alloc_len, 6350 #ifdef _KERNEL 6351 struct malloc_type *type, int flags, 6352 #endif 6353 char *error_str, int error_str_len) 6354 { 6355 struct scsi_transportid_sop *sop; 6356 unsigned long bus, device, function; 6357 char *tmpstr, *endptr; 6358 int retval, device_spec; 6359 6360 retval = 0; 6361 device_spec = 0; 6362 device = 0; 6363 6364 tmpstr = strsep(&id_str, ","); 6365 if ((tmpstr == NULL) 6366 || (*tmpstr == '\0')) { 6367 if (error_str != NULL) { 6368 snprintf(error_str, error_str_len, "%s: no ID found", 6369 __func__); 6370 } 6371 retval = 1; 6372 goto bailout; 6373 } 6374 bus = strtoul(tmpstr, &endptr, 0); 6375 if (*endptr != '\0') { 6376 if (error_str != NULL) { 6377 snprintf(error_str, error_str_len, "%s: error " 6378 "parsing PCIe bus %s, number required", 6379 __func__, tmpstr); 6380 } 6381 retval = 1; 6382 goto bailout; 6383 } 6384 if ((id_str == NULL) 6385 || (*id_str == '\0')) { 6386 if (error_str != NULL) { 6387 snprintf(error_str, error_str_len, "%s: no PCIe " 6388 "device or function found", __func__); 6389 } 6390 retval = 1; 6391 goto bailout; 6392 } 6393 tmpstr = strsep(&id_str, ","); 6394 function = strtoul(tmpstr, &endptr, 0); 6395 if (*endptr != '\0') { 6396 if (error_str != NULL) { 6397 snprintf(error_str, error_str_len, "%s: error " 6398 "parsing PCIe device/function %s, number " 6399 "required", __func__, tmpstr); 6400 } 6401 retval = 1; 6402 goto bailout; 6403 } 6404 /* 6405 * Check to see whether the user specified a third value. If so, 6406 * the second is the device. 6407 */ 6408 if (id_str != NULL) { 6409 if (*id_str == '\0') { 6410 if (error_str != NULL) { 6411 snprintf(error_str, error_str_len, "%s: " 6412 "no PCIe function found", __func__); 6413 } 6414 retval = 1; 6415 goto bailout; 6416 } 6417 device = function; 6418 device_spec = 1; 6419 function = strtoul(id_str, &endptr, 0); 6420 if (*endptr != '\0') { 6421 if (error_str != NULL) { 6422 snprintf(error_str, error_str_len, "%s: " 6423 "error parsing PCIe function %s, " 6424 "number required", __func__, id_str); 6425 } 6426 retval = 1; 6427 goto bailout; 6428 } 6429 } 6430 if (bus > SCSI_TRN_SOP_BUS_MAX) { 6431 if (error_str != NULL) { 6432 snprintf(error_str, error_str_len, "%s: bus value " 6433 "%lu greater than maximum %u", __func__, 6434 bus, SCSI_TRN_SOP_BUS_MAX); 6435 } 6436 retval = 1; 6437 goto bailout; 6438 } 6439 6440 if ((device_spec != 0) 6441 && (device > SCSI_TRN_SOP_DEV_MASK)) { 6442 if (error_str != NULL) { 6443 snprintf(error_str, error_str_len, "%s: device value " 6444 "%lu greater than maximum %u", __func__, 6445 device, SCSI_TRN_SOP_DEV_MAX); 6446 } 6447 retval = 1; 6448 goto bailout; 6449 } 6450 6451 if (((device_spec != 0) 6452 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX)) 6453 || ((device_spec == 0) 6454 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) { 6455 if (error_str != NULL) { 6456 snprintf(error_str, error_str_len, "%s: function value " 6457 "%lu greater than maximum %u", __func__, 6458 function, (device_spec == 0) ? 6459 SCSI_TRN_SOP_FUNC_ALT_MAX : 6460 SCSI_TRN_SOP_FUNC_NORM_MAX); 6461 } 6462 retval = 1; 6463 goto bailout; 6464 } 6465 6466 #ifdef _KERNEL 6467 sop = malloc(sizeof(*sop), type, flags); 6468 #else 6469 sop = malloc(sizeof(*sop)); 6470 #endif 6471 if (sop == NULL) { 6472 if (error_str != NULL) { 6473 snprintf(error_str, error_str_len, "%s: unable to " 6474 "allocate %zu bytes", __func__, sizeof(*sop)); 6475 } 6476 retval = 1; 6477 goto bailout; 6478 } 6479 *alloc_len = sizeof(*sop); 6480 bzero(sop, sizeof(*sop)); 6481 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT; 6482 if (device_spec != 0) { 6483 struct scsi_sop_routing_id_norm rid; 6484 6485 rid.bus = bus; 6486 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function; 6487 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6488 sizeof(sop->routing_id))); 6489 } else { 6490 struct scsi_sop_routing_id_alt rid; 6491 6492 rid.bus = bus; 6493 rid.function = function; 6494 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6495 sizeof(sop->routing_id))); 6496 } 6497 6498 *hdr = (struct scsi_transportid_header *)sop; 6499 bailout: 6500 return (retval); 6501 } 6502 6503 /* 6504 * transportid_str: NUL-terminated string with format: protcol,id 6505 * The ID is protocol specific. 6506 * hdr: Storage will be allocated for the transport ID. 6507 * alloc_len: The amount of memory allocated is returned here. 6508 * type: Malloc bucket (kernel only). 6509 * flags: Malloc flags (kernel only). 6510 * error_str: If non-NULL, it will contain error information (without 6511 * a terminating newline) if an error is returned. 6512 * error_str_len: Allocated length of the error string. 6513 * 6514 * Returns 0 for success, non-zero for failure. 6515 */ 6516 int 6517 scsi_parse_transportid(char *transportid_str, 6518 struct scsi_transportid_header **hdr, 6519 unsigned int *alloc_len, 6520 #ifdef _KERNEL 6521 struct malloc_type *type, int flags, 6522 #endif 6523 char *error_str, int error_str_len) 6524 { 6525 char *tmpstr; 6526 scsi_nv_status status; 6527 int retval, num_proto_entries, table_entry; 6528 6529 retval = 0; 6530 table_entry = 0; 6531 6532 /* 6533 * We do allow a period as well as a comma to separate the protocol 6534 * from the ID string. This is to accommodate iSCSI names, which 6535 * start with "iqn.". 6536 */ 6537 tmpstr = strsep(&transportid_str, ",."); 6538 if (tmpstr == NULL) { 6539 if (error_str != NULL) { 6540 snprintf(error_str, error_str_len, 6541 "%s: transportid_str is NULL", __func__); 6542 } 6543 retval = 1; 6544 goto bailout; 6545 } 6546 6547 num_proto_entries = sizeof(scsi_proto_map) / 6548 sizeof(scsi_proto_map[0]); 6549 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr, 6550 &table_entry, SCSI_NV_FLAG_IG_CASE); 6551 if (status != SCSI_NV_FOUND) { 6552 if (error_str != NULL) { 6553 snprintf(error_str, error_str_len, "%s: %s protocol " 6554 "name %s", __func__, 6555 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : 6556 "invalid", tmpstr); 6557 } 6558 retval = 1; 6559 goto bailout; 6560 } 6561 switch (scsi_proto_map[table_entry].value) { 6562 case SCSI_PROTO_FC: 6563 case SCSI_PROTO_1394: 6564 case SCSI_PROTO_SAS: 6565 retval = scsi_parse_transportid_64bit( 6566 scsi_proto_map[table_entry].value, transportid_str, hdr, 6567 alloc_len, 6568 #ifdef _KERNEL 6569 type, flags, 6570 #endif 6571 error_str, error_str_len); 6572 break; 6573 case SCSI_PROTO_SPI: 6574 retval = scsi_parse_transportid_spi(transportid_str, hdr, 6575 alloc_len, 6576 #ifdef _KERNEL 6577 type, flags, 6578 #endif 6579 error_str, error_str_len); 6580 break; 6581 case SCSI_PROTO_RDMA: 6582 retval = scsi_parse_transportid_rdma(transportid_str, hdr, 6583 alloc_len, 6584 #ifdef _KERNEL 6585 type, flags, 6586 #endif 6587 error_str, error_str_len); 6588 break; 6589 case SCSI_PROTO_ISCSI: 6590 retval = scsi_parse_transportid_iscsi(transportid_str, hdr, 6591 alloc_len, 6592 #ifdef _KERNEL 6593 type, flags, 6594 #endif 6595 error_str, error_str_len); 6596 break; 6597 case SCSI_PROTO_SOP: 6598 retval = scsi_parse_transportid_sop(transportid_str, hdr, 6599 alloc_len, 6600 #ifdef _KERNEL 6601 type, flags, 6602 #endif 6603 error_str, error_str_len); 6604 break; 6605 case SCSI_PROTO_SSA: 6606 case SCSI_PROTO_ADITP: 6607 case SCSI_PROTO_ATA: 6608 case SCSI_PROTO_UAS: 6609 case SCSI_PROTO_NONE: 6610 default: 6611 /* 6612 * There is no format defined for a Transport ID for these 6613 * protocols. So even if the user gives us something, we 6614 * have no way to turn it into a standard SCSI Transport ID. 6615 */ 6616 retval = 1; 6617 if (error_str != NULL) { 6618 snprintf(error_str, error_str_len, "%s: no Transport " 6619 "ID format exists for protocol %s", 6620 __func__, tmpstr); 6621 } 6622 goto bailout; 6623 break; /* NOTREACHED */ 6624 } 6625 bailout: 6626 return (retval); 6627 } 6628 6629 struct scsi_attrib_table_entry scsi_mam_attr_table[] = { 6630 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6631 "Remaining Capacity in Partition", 6632 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL }, 6633 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6634 "Maximum Capacity in Partition", 6635 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6636 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX, 6637 "TapeAlert Flags", 6638 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6639 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE, 6640 "Load Count", 6641 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6642 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE, 6643 "MAM Space Remaining", 6644 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6645 /*parse_str*/ NULL }, 6646 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6647 "Assigning Organization", 6648 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6649 /*parse_str*/ NULL }, 6650 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6651 "Format Density Code", 6652 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6653 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE, 6654 "Initialization Count", 6655 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6656 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE, 6657 "Volume Identifier", 6658 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6659 /*parse_str*/ NULL }, 6660 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX, 6661 "Volume Change Reference", 6662 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6663 /*parse_str*/ NULL }, 6664 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE, 6665 "Device Vendor/Serial at Last Load", 6666 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6667 /*parse_str*/ NULL }, 6668 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE, 6669 "Device Vendor/Serial at Last Load - 1", 6670 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6671 /*parse_str*/ NULL }, 6672 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE, 6673 "Device Vendor/Serial at Last Load - 2", 6674 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6675 /*parse_str*/ NULL }, 6676 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE, 6677 "Device Vendor/Serial at Last Load - 3", 6678 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6679 /*parse_str*/ NULL }, 6680 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE, 6681 "Total MB Written in Medium Life", 6682 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6683 /*parse_str*/ NULL }, 6684 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE, 6685 "Total MB Read in Medium Life", 6686 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6687 /*parse_str*/ NULL }, 6688 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE, 6689 "Total MB Written in Current/Last Load", 6690 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6691 /*parse_str*/ NULL }, 6692 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE, 6693 "Total MB Read in Current/Last Load", 6694 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6695 /*parse_str*/ NULL }, 6696 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6697 "Logical Position of First Encrypted Block", 6698 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6699 /*parse_str*/ NULL }, 6700 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6701 "Logical Position of First Unencrypted Block after First " 6702 "Encrypted Block", 6703 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6704 /*parse_str*/ NULL }, 6705 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6706 "Medium Usage History", 6707 /*suffix*/ NULL, /*to_str*/ NULL, 6708 /*parse_str*/ NULL }, 6709 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6710 "Partition Usage History", 6711 /*suffix*/ NULL, /*to_str*/ NULL, 6712 /*parse_str*/ NULL }, 6713 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE, 6714 "Medium Manufacturer", 6715 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6716 /*parse_str*/ NULL }, 6717 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE, 6718 "Medium Serial Number", 6719 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6720 /*parse_str*/ NULL }, 6721 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE, 6722 "Medium Length", 6723 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf, 6724 /*parse_str*/ NULL }, 6725 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 | 6726 SCSI_ATTR_FLAG_FP_1DIGIT, 6727 "Medium Width", 6728 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf, 6729 /*parse_str*/ NULL }, 6730 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6731 "Assigning Organization", 6732 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6733 /*parse_str*/ NULL }, 6734 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6735 "Medium Density Code", 6736 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6737 /*parse_str*/ NULL }, 6738 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE, 6739 "Medium Manufacture Date", 6740 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6741 /*parse_str*/ NULL }, 6742 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE, 6743 "MAM Capacity", 6744 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6745 /*parse_str*/ NULL }, 6746 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX, 6747 "Medium Type", 6748 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6749 /*parse_str*/ NULL }, 6750 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX, 6751 "Medium Type Information", 6752 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6753 /*parse_str*/ NULL }, 6754 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE, 6755 "Medium Serial Number", 6756 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6757 /*parse_str*/ NULL }, 6758 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE, 6759 "Application Vendor", 6760 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6761 /*parse_str*/ NULL }, 6762 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE, 6763 "Application Name", 6764 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6765 /*parse_str*/ NULL }, 6766 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE, 6767 "Application Version", 6768 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6769 /*parse_str*/ NULL }, 6770 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE, 6771 "User Medium Text Label", 6772 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6773 /*parse_str*/ NULL }, 6774 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE, 6775 "Date and Time Last Written", 6776 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6777 /*parse_str*/ NULL }, 6778 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX, 6779 "Text Localization Identifier", 6780 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6781 /*parse_str*/ NULL }, 6782 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE, 6783 "Barcode", 6784 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6785 /*parse_str*/ NULL }, 6786 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE, 6787 "Owning Host Textual Name", 6788 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6789 /*parse_str*/ NULL }, 6790 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE, 6791 "Media Pool", 6792 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6793 /*parse_str*/ NULL }, 6794 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE, 6795 "Partition User Text Label", 6796 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6797 /*parse_str*/ NULL }, 6798 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE, 6799 "Load/Unload at Partition", 6800 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6801 /*parse_str*/ NULL }, 6802 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE, 6803 "Application Format Version", 6804 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6805 /*parse_str*/ NULL }, 6806 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE, 6807 "Volume Coherency Information", 6808 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf, 6809 /*parse_str*/ NULL }, 6810 { 0x0ff1, SCSI_ATTR_FLAG_NONE, 6811 "Spectra MLM Creation", 6812 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6813 /*parse_str*/ NULL }, 6814 { 0x0ff2, SCSI_ATTR_FLAG_NONE, 6815 "Spectra MLM C3", 6816 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6817 /*parse_str*/ NULL }, 6818 { 0x0ff3, SCSI_ATTR_FLAG_NONE, 6819 "Spectra MLM RW", 6820 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6821 /*parse_str*/ NULL }, 6822 { 0x0ff4, SCSI_ATTR_FLAG_NONE, 6823 "Spectra MLM SDC List", 6824 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6825 /*parse_str*/ NULL }, 6826 { 0x0ff7, SCSI_ATTR_FLAG_NONE, 6827 "Spectra MLM Post Scan", 6828 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6829 /*parse_str*/ NULL }, 6830 { 0x0ffe, SCSI_ATTR_FLAG_NONE, 6831 "Spectra MLM Checksum", 6832 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6833 /*parse_str*/ NULL }, 6834 { 0x17f1, SCSI_ATTR_FLAG_NONE, 6835 "Spectra MLM Creation", 6836 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6837 /*parse_str*/ NULL }, 6838 { 0x17f2, SCSI_ATTR_FLAG_NONE, 6839 "Spectra MLM C3", 6840 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6841 /*parse_str*/ NULL }, 6842 { 0x17f3, SCSI_ATTR_FLAG_NONE, 6843 "Spectra MLM RW", 6844 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6845 /*parse_str*/ NULL }, 6846 { 0x17f4, SCSI_ATTR_FLAG_NONE, 6847 "Spectra MLM SDC List", 6848 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6849 /*parse_str*/ NULL }, 6850 { 0x17f7, SCSI_ATTR_FLAG_NONE, 6851 "Spectra MLM Post Scan", 6852 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6853 /*parse_str*/ NULL }, 6854 { 0x17ff, SCSI_ATTR_FLAG_NONE, 6855 "Spectra MLM Checksum", 6856 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6857 /*parse_str*/ NULL }, 6858 }; 6859 6860 /* 6861 * Print out Volume Coherency Information (Attribute 0x080c). 6862 * This field has two variable length members, including one at the 6863 * beginning, so it isn't practical to have a fixed structure definition. 6864 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25, 6865 * 2013. 6866 */ 6867 int 6868 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 6869 uint32_t valid_len, uint32_t flags, 6870 uint32_t output_flags, char *error_str, 6871 int error_str_len) 6872 { 6873 size_t avail_len; 6874 uint32_t field_size; 6875 uint64_t tmp_val; 6876 uint8_t *cur_ptr; 6877 int retval; 6878 int vcr_len, as_len; 6879 6880 retval = 0; 6881 tmp_val = 0; 6882 6883 field_size = scsi_2btoul(hdr->length); 6884 avail_len = valid_len - sizeof(*hdr); 6885 if (field_size > avail_len) { 6886 if (error_str != NULL) { 6887 snprintf(error_str, error_str_len, "Available " 6888 "length of attribute ID 0x%.4x %zu < field " 6889 "length %u", scsi_2btoul(hdr->id), avail_len, 6890 field_size); 6891 } 6892 retval = 1; 6893 goto bailout; 6894 } else if (field_size == 0) { 6895 /* 6896 * It isn't clear from the spec whether a field length of 6897 * 0 is invalid here. It probably is, but be lenient here 6898 * to avoid inconveniencing the user. 6899 */ 6900 goto bailout; 6901 } 6902 cur_ptr = hdr->attribute; 6903 vcr_len = *cur_ptr; 6904 cur_ptr++; 6905 6906 sbuf_printf(sb, "\n\tVolume Change Reference Value:"); 6907 6908 switch (vcr_len) { 6909 case 0: 6910 if (error_str != NULL) { 6911 snprintf(error_str, error_str_len, "Volume Change " 6912 "Reference value has length of 0"); 6913 } 6914 retval = 1; 6915 goto bailout; 6916 break; /*NOTREACHED*/ 6917 case 1: 6918 tmp_val = *cur_ptr; 6919 break; 6920 case 2: 6921 tmp_val = scsi_2btoul(cur_ptr); 6922 break; 6923 case 3: 6924 tmp_val = scsi_3btoul(cur_ptr); 6925 break; 6926 case 4: 6927 tmp_val = scsi_4btoul(cur_ptr); 6928 break; 6929 case 8: 6930 tmp_val = scsi_8btou64(cur_ptr); 6931 break; 6932 default: 6933 sbuf_printf(sb, "\n"); 6934 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0); 6935 break; 6936 } 6937 if (vcr_len <= 8) 6938 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val); 6939 6940 cur_ptr += vcr_len; 6941 tmp_val = scsi_8btou64(cur_ptr); 6942 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val); 6943 6944 cur_ptr += sizeof(tmp_val); 6945 tmp_val = scsi_8btou64(cur_ptr); 6946 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n", 6947 (uintmax_t)tmp_val); 6948 6949 /* 6950 * Figure out how long the Application Client Specific Information 6951 * is and produce a hexdump. 6952 */ 6953 cur_ptr += sizeof(tmp_val); 6954 as_len = scsi_2btoul(cur_ptr); 6955 cur_ptr += sizeof(uint16_t); 6956 sbuf_printf(sb, "\tApplication Client Specific Information: "); 6957 if (((as_len == SCSI_LTFS_VER0_LEN) 6958 || (as_len == SCSI_LTFS_VER1_LEN)) 6959 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) { 6960 sbuf_printf(sb, "LTFS\n"); 6961 cur_ptr += SCSI_LTFS_STR_LEN + 1; 6962 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0') 6963 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0'; 6964 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr); 6965 cur_ptr += SCSI_LTFS_UUID_LEN + 1; 6966 /* XXX KDM check the length */ 6967 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr); 6968 } else { 6969 sbuf_printf(sb, "Unknown\n"); 6970 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0); 6971 } 6972 6973 bailout: 6974 return (retval); 6975 } 6976 6977 int 6978 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 6979 uint32_t valid_len, uint32_t flags, 6980 uint32_t output_flags, char *error_str, 6981 int error_str_len) 6982 { 6983 size_t avail_len; 6984 uint32_t field_size; 6985 struct scsi_attrib_vendser *vendser; 6986 cam_strvis_flags strvis_flags; 6987 int retval = 0; 6988 6989 field_size = scsi_2btoul(hdr->length); 6990 avail_len = valid_len - sizeof(*hdr); 6991 if (field_size > avail_len) { 6992 if (error_str != NULL) { 6993 snprintf(error_str, error_str_len, "Available " 6994 "length of attribute ID 0x%.4x %zu < field " 6995 "length %u", scsi_2btoul(hdr->id), avail_len, 6996 field_size); 6997 } 6998 retval = 1; 6999 goto bailout; 7000 } else if (field_size == 0) { 7001 /* 7002 * A field size of 0 doesn't make sense here. The device 7003 * can at least give you the vendor ID, even if it can't 7004 * give you the serial number. 7005 */ 7006 if (error_str != NULL) { 7007 snprintf(error_str, error_str_len, "The length of " 7008 "attribute ID 0x%.4x is 0", 7009 scsi_2btoul(hdr->id)); 7010 } 7011 retval = 1; 7012 goto bailout; 7013 } 7014 vendser = (struct scsi_attrib_vendser *)hdr->attribute; 7015 7016 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7017 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7018 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7019 break; 7020 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7021 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7022 break; 7023 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7024 default: 7025 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7026 break;; 7027 } 7028 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor), 7029 strvis_flags); 7030 sbuf_putc(sb, ' '); 7031 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num), 7032 strvis_flags); 7033 bailout: 7034 return (retval); 7035 } 7036 7037 int 7038 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7039 uint32_t valid_len, uint32_t flags, 7040 uint32_t output_flags, char *error_str, 7041 int error_str_len) 7042 { 7043 uint32_t field_size; 7044 ssize_t avail_len; 7045 uint32_t print_len; 7046 uint8_t *num_ptr; 7047 int retval = 0; 7048 7049 field_size = scsi_2btoul(hdr->length); 7050 avail_len = valid_len - sizeof(*hdr); 7051 print_len = MIN(avail_len, field_size); 7052 num_ptr = hdr->attribute; 7053 7054 if (print_len > 0) { 7055 sbuf_printf(sb, "\n"); 7056 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0); 7057 } 7058 7059 return (retval); 7060 } 7061 7062 int 7063 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7064 uint32_t valid_len, uint32_t flags, 7065 uint32_t output_flags, char *error_str, 7066 int error_str_len) 7067 { 7068 uint64_t print_number; 7069 size_t avail_len; 7070 uint32_t number_size; 7071 int retval = 0; 7072 7073 number_size = scsi_2btoul(hdr->length); 7074 7075 avail_len = valid_len - sizeof(*hdr); 7076 if (avail_len < number_size) { 7077 if (error_str != NULL) { 7078 snprintf(error_str, error_str_len, "Available " 7079 "length of attribute ID 0x%.4x %zu < field " 7080 "length %u", scsi_2btoul(hdr->id), avail_len, 7081 number_size); 7082 } 7083 retval = 1; 7084 goto bailout; 7085 } 7086 7087 switch (number_size) { 7088 case 0: 7089 /* 7090 * We don't treat this as an error, since there may be 7091 * scenarios where a device reports a field but then gives 7092 * a length of 0. See the note in scsi_attrib_ascii_sbuf(). 7093 */ 7094 goto bailout; 7095 break; /*NOTREACHED*/ 7096 case 1: 7097 print_number = hdr->attribute[0]; 7098 break; 7099 case 2: 7100 print_number = scsi_2btoul(hdr->attribute); 7101 break; 7102 case 3: 7103 print_number = scsi_3btoul(hdr->attribute); 7104 break; 7105 case 4: 7106 print_number = scsi_4btoul(hdr->attribute); 7107 break; 7108 case 8: 7109 print_number = scsi_8btou64(hdr->attribute); 7110 break; 7111 default: 7112 /* 7113 * If we wind up here, the number is too big to print 7114 * normally, so just do a hexdump. 7115 */ 7116 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7117 flags, output_flags, 7118 error_str, error_str_len); 7119 goto bailout; 7120 break; 7121 } 7122 7123 if (flags & SCSI_ATTR_FLAG_FP) { 7124 #ifndef _KERNEL 7125 long double num_float; 7126 7127 num_float = (long double)print_number; 7128 7129 if (flags & SCSI_ATTR_FLAG_DIV_10) 7130 num_float /= 10; 7131 7132 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ? 7133 1 : 0, num_float); 7134 #else /* _KERNEL */ 7135 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ? 7136 (print_number / 10) : print_number); 7137 #endif /* _KERNEL */ 7138 } else if (flags & SCSI_ATTR_FLAG_HEX) { 7139 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number); 7140 } else 7141 sbuf_printf(sb, "%ju", (uintmax_t)print_number); 7142 7143 bailout: 7144 return (retval); 7145 } 7146 7147 int 7148 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7149 uint32_t valid_len, uint32_t flags, 7150 uint32_t output_flags, char *error_str, 7151 int error_str_len) 7152 { 7153 size_t avail_len; 7154 uint32_t field_size, print_size; 7155 int retval = 0; 7156 7157 avail_len = valid_len - sizeof(*hdr); 7158 field_size = scsi_2btoul(hdr->length); 7159 print_size = MIN(avail_len, field_size); 7160 7161 if (print_size > 0) { 7162 cam_strvis_flags strvis_flags; 7163 7164 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7165 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7166 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7167 break; 7168 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7169 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7170 break; 7171 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7172 default: 7173 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7174 break; 7175 } 7176 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags); 7177 } else if (avail_len < field_size) { 7178 /* 7179 * We only report an error if the user didn't allocate 7180 * enough space to hold the full value of this field. If 7181 * the field length is 0, that is allowed by the spec. 7182 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER 7183 * "This attribute indicates the current volume identifier 7184 * (see SMC-3) of the medium. If the device server supports 7185 * this attribute but does not have access to the volume 7186 * identifier, the device server shall report this attribute 7187 * with an attribute length value of zero." 7188 */ 7189 if (error_str != NULL) { 7190 snprintf(error_str, error_str_len, "Available " 7191 "length of attribute ID 0x%.4x %zu < field " 7192 "length %u", scsi_2btoul(hdr->id), avail_len, 7193 field_size); 7194 } 7195 retval = 1; 7196 } 7197 7198 return (retval); 7199 } 7200 7201 int 7202 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7203 uint32_t valid_len, uint32_t flags, 7204 uint32_t output_flags, char *error_str, 7205 int error_str_len) 7206 { 7207 size_t avail_len; 7208 uint32_t field_size, print_size; 7209 int retval = 0; 7210 int esc_text = 1; 7211 7212 avail_len = valid_len - sizeof(*hdr); 7213 field_size = scsi_2btoul(hdr->length); 7214 print_size = MIN(avail_len, field_size); 7215 7216 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) == 7217 SCSI_ATTR_OUTPUT_TEXT_RAW) 7218 esc_text = 0; 7219 7220 if (print_size > 0) { 7221 uint32_t i; 7222 7223 for (i = 0; i < print_size; i++) { 7224 if (hdr->attribute[i] == '\0') 7225 continue; 7226 else if (((unsigned char)hdr->attribute[i] < 0x80) 7227 || (esc_text == 0)) 7228 sbuf_putc(sb, hdr->attribute[i]); 7229 else 7230 sbuf_printf(sb, "%%%02x", 7231 (unsigned char)hdr->attribute[i]); 7232 } 7233 } else if (avail_len < field_size) { 7234 /* 7235 * We only report an error if the user didn't allocate 7236 * enough space to hold the full value of this field. 7237 */ 7238 if (error_str != NULL) { 7239 snprintf(error_str, error_str_len, "Available " 7240 "length of attribute ID 0x%.4x %zu < field " 7241 "length %u", scsi_2btoul(hdr->id), avail_len, 7242 field_size); 7243 } 7244 retval = 1; 7245 } 7246 7247 return (retval); 7248 } 7249 7250 struct scsi_attrib_table_entry * 7251 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table, 7252 size_t num_table_entries, uint32_t id) 7253 { 7254 uint32_t i; 7255 7256 for (i = 0; i < num_table_entries; i++) { 7257 if (table[i].id == id) 7258 return (&table[i]); 7259 } 7260 7261 return (NULL); 7262 } 7263 7264 struct scsi_attrib_table_entry * 7265 scsi_get_attrib_entry(uint32_t id) 7266 { 7267 return (scsi_find_attrib_entry(scsi_mam_attr_table, 7268 sizeof(scsi_mam_attr_table) / sizeof(scsi_mam_attr_table[0]), 7269 id)); 7270 } 7271 7272 int 7273 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, 7274 struct scsi_mam_attribute_header *hdr, uint32_t output_flags, 7275 char *error_str, size_t error_str_len) 7276 { 7277 int retval; 7278 7279 switch (hdr->byte2 & SMA_FORMAT_MASK) { 7280 case SMA_FORMAT_ASCII: 7281 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len, 7282 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len); 7283 break; 7284 case SMA_FORMAT_BINARY: 7285 if (scsi_2btoul(hdr->length) <= 8) 7286 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len, 7287 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7288 error_str_len); 7289 else 7290 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7291 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7292 error_str_len); 7293 break; 7294 case SMA_FORMAT_TEXT: 7295 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len, 7296 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7297 error_str_len); 7298 break; 7299 default: 7300 if (error_str != NULL) { 7301 snprintf(error_str, error_str_len, "Unknown attribute " 7302 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK); 7303 } 7304 retval = 1; 7305 goto bailout; 7306 break; /*NOTREACHED*/ 7307 } 7308 7309 sbuf_trim(sb); 7310 7311 bailout: 7312 7313 return (retval); 7314 } 7315 7316 void 7317 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, 7318 struct scsi_mam_attribute_header *hdr, 7319 uint32_t valid_len, const char *desc) 7320 { 7321 int need_space = 0; 7322 uint32_t len; 7323 uint32_t id; 7324 7325 /* 7326 * We can't do anything if we don't have enough valid data for the 7327 * header. 7328 */ 7329 if (valid_len < sizeof(*hdr)) 7330 return; 7331 7332 id = scsi_2btoul(hdr->id); 7333 /* 7334 * Note that we print out the value of the attribute listed in the 7335 * header, regardless of whether we actually got that many bytes 7336 * back from the device through the controller. A truncated result 7337 * could be the result of a failure to ask for enough data; the 7338 * header indicates how many bytes are allocated for this attribute 7339 * in the MAM. 7340 */ 7341 len = scsi_2btoul(hdr->length); 7342 7343 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) == 7344 SCSI_ATTR_OUTPUT_FIELD_NONE) 7345 return; 7346 7347 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC) 7348 && (desc != NULL)) { 7349 sbuf_printf(sb, "%s", desc); 7350 need_space = 1; 7351 } 7352 7353 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) { 7354 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id); 7355 need_space = 0; 7356 } 7357 7358 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) { 7359 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len); 7360 need_space = 0; 7361 } 7362 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) { 7363 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "", 7364 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW"); 7365 } 7366 sbuf_printf(sb, ": "); 7367 } 7368 7369 int 7370 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7371 uint32_t valid_len, struct scsi_attrib_table_entry *user_table, 7372 size_t num_user_entries, int prefer_user_table, 7373 uint32_t output_flags, char *error_str, int error_str_len) 7374 { 7375 int retval; 7376 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL; 7377 struct scsi_attrib_table_entry *entry = NULL; 7378 size_t table1_size = 0, table2_size = 0; 7379 uint32_t id; 7380 7381 retval = 0; 7382 7383 if (valid_len < sizeof(*hdr)) { 7384 retval = 1; 7385 goto bailout; 7386 } 7387 7388 id = scsi_2btoul(hdr->id); 7389 7390 if (user_table != NULL) { 7391 if (prefer_user_table != 0) { 7392 table1 = user_table; 7393 table1_size = num_user_entries; 7394 table2 = scsi_mam_attr_table; 7395 table2_size = sizeof(scsi_mam_attr_table) / 7396 sizeof(scsi_mam_attr_table[0]); 7397 } else { 7398 table1 = scsi_mam_attr_table; 7399 table1_size = sizeof(scsi_mam_attr_table) / 7400 sizeof(scsi_mam_attr_table[0]); 7401 table2 = user_table; 7402 table2_size = num_user_entries; 7403 } 7404 } else { 7405 table1 = scsi_mam_attr_table; 7406 table1_size = sizeof(scsi_mam_attr_table) / 7407 sizeof(scsi_mam_attr_table[0]); 7408 } 7409 7410 entry = scsi_find_attrib_entry(table1, table1_size, id); 7411 if (entry != NULL) { 7412 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, 7413 entry->desc); 7414 if (entry->to_str == NULL) 7415 goto print_default; 7416 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7417 output_flags, error_str, error_str_len); 7418 goto bailout; 7419 } 7420 if (table2 != NULL) { 7421 entry = scsi_find_attrib_entry(table2, table2_size, id); 7422 if (entry != NULL) { 7423 if (entry->to_str == NULL) 7424 goto print_default; 7425 7426 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, 7427 valid_len, entry->desc); 7428 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7429 output_flags, error_str, 7430 error_str_len); 7431 goto bailout; 7432 } 7433 } 7434 7435 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL); 7436 7437 print_default: 7438 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags, 7439 error_str, error_str_len); 7440 bailout: 7441 if (retval == 0) { 7442 if ((entry != NULL) 7443 && (entry->suffix != NULL)) 7444 sbuf_printf(sb, " %s", entry->suffix); 7445 7446 sbuf_trim(sb); 7447 sbuf_printf(sb, "\n"); 7448 } 7449 7450 return (retval); 7451 } 7452 7453 void 7454 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, 7455 void (*cbfcnp)(struct cam_periph *, union ccb *), 7456 u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout) 7457 { 7458 struct scsi_test_unit_ready *scsi_cmd; 7459 7460 cam_fill_csio(csio, 7461 retries, 7462 cbfcnp, 7463 CAM_DIR_NONE, 7464 tag_action, 7465 /*data_ptr*/NULL, 7466 /*dxfer_len*/0, 7467 sense_len, 7468 sizeof(*scsi_cmd), 7469 timeout); 7470 7471 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; 7472 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7473 scsi_cmd->opcode = TEST_UNIT_READY; 7474 } 7475 7476 void 7477 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, 7478 void (*cbfcnp)(struct cam_periph *, union ccb *), 7479 void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, 7480 u_int8_t sense_len, u_int32_t timeout) 7481 { 7482 struct scsi_request_sense *scsi_cmd; 7483 7484 cam_fill_csio(csio, 7485 retries, 7486 cbfcnp, 7487 CAM_DIR_IN, 7488 tag_action, 7489 data_ptr, 7490 dxfer_len, 7491 sense_len, 7492 sizeof(*scsi_cmd), 7493 timeout); 7494 7495 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; 7496 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7497 scsi_cmd->opcode = REQUEST_SENSE; 7498 scsi_cmd->length = dxfer_len; 7499 } 7500 7501 void 7502 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, 7503 void (*cbfcnp)(struct cam_periph *, union ccb *), 7504 u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, 7505 int evpd, u_int8_t page_code, u_int8_t sense_len, 7506 u_int32_t timeout) 7507 { 7508 struct scsi_inquiry *scsi_cmd; 7509 7510 cam_fill_csio(csio, 7511 retries, 7512 cbfcnp, 7513 /*flags*/CAM_DIR_IN, 7514 tag_action, 7515 /*data_ptr*/inq_buf, 7516 /*dxfer_len*/inq_len, 7517 sense_len, 7518 sizeof(*scsi_cmd), 7519 timeout); 7520 7521 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; 7522 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7523 scsi_cmd->opcode = INQUIRY; 7524 if (evpd) { 7525 scsi_cmd->byte2 |= SI_EVPD; 7526 scsi_cmd->page_code = page_code; 7527 } 7528 scsi_ulto2b(inq_len, scsi_cmd->length); 7529 } 7530 7531 void 7532 scsi_mode_sense(struct ccb_scsiio *csio, u_int32_t retries, 7533 void (*cbfcnp)(struct cam_periph *, union ccb *), 7534 u_int8_t tag_action, int dbd, u_int8_t page_code, 7535 u_int8_t page, u_int8_t *param_buf, u_int32_t param_len, 7536 u_int8_t sense_len, u_int32_t timeout) 7537 { 7538 7539 scsi_mode_sense_len(csio, retries, cbfcnp, tag_action, dbd, 7540 page_code, page, param_buf, param_len, 0, 7541 sense_len, timeout); 7542 } 7543 7544 void 7545 scsi_mode_sense_len(struct ccb_scsiio *csio, u_int32_t retries, 7546 void (*cbfcnp)(struct cam_periph *, union ccb *), 7547 u_int8_t tag_action, int dbd, u_int8_t page_code, 7548 u_int8_t page, u_int8_t *param_buf, u_int32_t param_len, 7549 int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) 7550 { 7551 u_int8_t cdb_len; 7552 7553 /* 7554 * Use the smallest possible command to perform the operation. 7555 */ 7556 if ((param_len < 256) 7557 && (minimum_cmd_size < 10)) { 7558 /* 7559 * We can fit in a 6 byte cdb. 7560 */ 7561 struct scsi_mode_sense_6 *scsi_cmd; 7562 7563 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; 7564 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7565 scsi_cmd->opcode = MODE_SENSE_6; 7566 if (dbd != 0) 7567 scsi_cmd->byte2 |= SMS_DBD; 7568 scsi_cmd->page = page_code | page; 7569 scsi_cmd->length = param_len; 7570 cdb_len = sizeof(*scsi_cmd); 7571 } else { 7572 /* 7573 * Need a 10 byte cdb. 7574 */ 7575 struct scsi_mode_sense_10 *scsi_cmd; 7576 7577 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; 7578 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7579 scsi_cmd->opcode = MODE_SENSE_10; 7580 if (dbd != 0) 7581 scsi_cmd->byte2 |= SMS_DBD; 7582 scsi_cmd->page = page_code | page; 7583 scsi_ulto2b(param_len, scsi_cmd->length); 7584 cdb_len = sizeof(*scsi_cmd); 7585 } 7586 cam_fill_csio(csio, 7587 retries, 7588 cbfcnp, 7589 CAM_DIR_IN, 7590 tag_action, 7591 param_buf, 7592 param_len, 7593 sense_len, 7594 cdb_len, 7595 timeout); 7596 } 7597 7598 void 7599 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, 7600 void (*cbfcnp)(struct cam_periph *, union ccb *), 7601 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7602 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7603 u_int32_t timeout) 7604 { 7605 scsi_mode_select_len(csio, retries, cbfcnp, tag_action, 7606 scsi_page_fmt, save_pages, param_buf, 7607 param_len, 0, sense_len, timeout); 7608 } 7609 7610 void 7611 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, 7612 void (*cbfcnp)(struct cam_periph *, union ccb *), 7613 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7614 u_int8_t *param_buf, u_int32_t param_len, 7615 int minimum_cmd_size, u_int8_t sense_len, 7616 u_int32_t timeout) 7617 { 7618 u_int8_t cdb_len; 7619 7620 /* 7621 * Use the smallest possible command to perform the operation. 7622 */ 7623 if ((param_len < 256) 7624 && (minimum_cmd_size < 10)) { 7625 /* 7626 * We can fit in a 6 byte cdb. 7627 */ 7628 struct scsi_mode_select_6 *scsi_cmd; 7629 7630 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; 7631 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7632 scsi_cmd->opcode = MODE_SELECT_6; 7633 if (scsi_page_fmt != 0) 7634 scsi_cmd->byte2 |= SMS_PF; 7635 if (save_pages != 0) 7636 scsi_cmd->byte2 |= SMS_SP; 7637 scsi_cmd->length = param_len; 7638 cdb_len = sizeof(*scsi_cmd); 7639 } else { 7640 /* 7641 * Need a 10 byte cdb. 7642 */ 7643 struct scsi_mode_select_10 *scsi_cmd; 7644 7645 scsi_cmd = 7646 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; 7647 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7648 scsi_cmd->opcode = MODE_SELECT_10; 7649 if (scsi_page_fmt != 0) 7650 scsi_cmd->byte2 |= SMS_PF; 7651 if (save_pages != 0) 7652 scsi_cmd->byte2 |= SMS_SP; 7653 scsi_ulto2b(param_len, scsi_cmd->length); 7654 cdb_len = sizeof(*scsi_cmd); 7655 } 7656 cam_fill_csio(csio, 7657 retries, 7658 cbfcnp, 7659 CAM_DIR_OUT, 7660 tag_action, 7661 param_buf, 7662 param_len, 7663 sense_len, 7664 cdb_len, 7665 timeout); 7666 } 7667 7668 void 7669 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, 7670 void (*cbfcnp)(struct cam_periph *, union ccb *), 7671 u_int8_t tag_action, u_int8_t page_code, u_int8_t page, 7672 int save_pages, int ppc, u_int32_t paramptr, 7673 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7674 u_int32_t timeout) 7675 { 7676 struct scsi_log_sense *scsi_cmd; 7677 u_int8_t cdb_len; 7678 7679 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; 7680 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7681 scsi_cmd->opcode = LOG_SENSE; 7682 scsi_cmd->page = page_code | page; 7683 if (save_pages != 0) 7684 scsi_cmd->byte2 |= SLS_SP; 7685 if (ppc != 0) 7686 scsi_cmd->byte2 |= SLS_PPC; 7687 scsi_ulto2b(paramptr, scsi_cmd->paramptr); 7688 scsi_ulto2b(param_len, scsi_cmd->length); 7689 cdb_len = sizeof(*scsi_cmd); 7690 7691 cam_fill_csio(csio, 7692 retries, 7693 cbfcnp, 7694 /*flags*/CAM_DIR_IN, 7695 tag_action, 7696 /*data_ptr*/param_buf, 7697 /*dxfer_len*/param_len, 7698 sense_len, 7699 cdb_len, 7700 timeout); 7701 } 7702 7703 void 7704 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, 7705 void (*cbfcnp)(struct cam_periph *, union ccb *), 7706 u_int8_t tag_action, u_int8_t page_code, int save_pages, 7707 int pc_reset, u_int8_t *param_buf, u_int32_t param_len, 7708 u_int8_t sense_len, u_int32_t timeout) 7709 { 7710 struct scsi_log_select *scsi_cmd; 7711 u_int8_t cdb_len; 7712 7713 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; 7714 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7715 scsi_cmd->opcode = LOG_SELECT; 7716 scsi_cmd->page = page_code & SLS_PAGE_CODE; 7717 if (save_pages != 0) 7718 scsi_cmd->byte2 |= SLS_SP; 7719 if (pc_reset != 0) 7720 scsi_cmd->byte2 |= SLS_PCR; 7721 scsi_ulto2b(param_len, scsi_cmd->length); 7722 cdb_len = sizeof(*scsi_cmd); 7723 7724 cam_fill_csio(csio, 7725 retries, 7726 cbfcnp, 7727 /*flags*/CAM_DIR_OUT, 7728 tag_action, 7729 /*data_ptr*/param_buf, 7730 /*dxfer_len*/param_len, 7731 sense_len, 7732 cdb_len, 7733 timeout); 7734 } 7735 7736 /* 7737 * Prevent or allow the user to remove the media 7738 */ 7739 void 7740 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, 7741 void (*cbfcnp)(struct cam_periph *, union ccb *), 7742 u_int8_t tag_action, u_int8_t action, 7743 u_int8_t sense_len, u_int32_t timeout) 7744 { 7745 struct scsi_prevent *scsi_cmd; 7746 7747 cam_fill_csio(csio, 7748 retries, 7749 cbfcnp, 7750 /*flags*/CAM_DIR_NONE, 7751 tag_action, 7752 /*data_ptr*/NULL, 7753 /*dxfer_len*/0, 7754 sense_len, 7755 sizeof(*scsi_cmd), 7756 timeout); 7757 7758 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; 7759 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7760 scsi_cmd->opcode = PREVENT_ALLOW; 7761 scsi_cmd->how = action; 7762 } 7763 7764 /* XXX allow specification of address and PMI bit and LBA */ 7765 void 7766 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, 7767 void (*cbfcnp)(struct cam_periph *, union ccb *), 7768 u_int8_t tag_action, 7769 struct scsi_read_capacity_data *rcap_buf, 7770 u_int8_t sense_len, u_int32_t timeout) 7771 { 7772 struct scsi_read_capacity *scsi_cmd; 7773 7774 cam_fill_csio(csio, 7775 retries, 7776 cbfcnp, 7777 /*flags*/CAM_DIR_IN, 7778 tag_action, 7779 /*data_ptr*/(u_int8_t *)rcap_buf, 7780 /*dxfer_len*/sizeof(*rcap_buf), 7781 sense_len, 7782 sizeof(*scsi_cmd), 7783 timeout); 7784 7785 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; 7786 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7787 scsi_cmd->opcode = READ_CAPACITY; 7788 } 7789 7790 void 7791 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, 7792 void (*cbfcnp)(struct cam_periph *, union ccb *), 7793 uint8_t tag_action, uint64_t lba, int reladr, int pmi, 7794 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, 7795 uint32_t timeout) 7796 { 7797 struct scsi_read_capacity_16 *scsi_cmd; 7798 7799 7800 cam_fill_csio(csio, 7801 retries, 7802 cbfcnp, 7803 /*flags*/CAM_DIR_IN, 7804 tag_action, 7805 /*data_ptr*/(u_int8_t *)rcap_buf, 7806 /*dxfer_len*/rcap_buf_len, 7807 sense_len, 7808 sizeof(*scsi_cmd), 7809 timeout); 7810 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 7811 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7812 scsi_cmd->opcode = SERVICE_ACTION_IN; 7813 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 7814 scsi_u64to8b(lba, scsi_cmd->addr); 7815 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); 7816 if (pmi) 7817 reladr |= SRC16_PMI; 7818 if (reladr) 7819 reladr |= SRC16_RELADR; 7820 } 7821 7822 void 7823 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, 7824 void (*cbfcnp)(struct cam_periph *, union ccb *), 7825 u_int8_t tag_action, u_int8_t select_report, 7826 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, 7827 u_int8_t sense_len, u_int32_t timeout) 7828 { 7829 struct scsi_report_luns *scsi_cmd; 7830 7831 cam_fill_csio(csio, 7832 retries, 7833 cbfcnp, 7834 /*flags*/CAM_DIR_IN, 7835 tag_action, 7836 /*data_ptr*/(u_int8_t *)rpl_buf, 7837 /*dxfer_len*/alloc_len, 7838 sense_len, 7839 sizeof(*scsi_cmd), 7840 timeout); 7841 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; 7842 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7843 scsi_cmd->opcode = REPORT_LUNS; 7844 scsi_cmd->select_report = select_report; 7845 scsi_ulto4b(alloc_len, scsi_cmd->length); 7846 } 7847 7848 void 7849 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7850 void (*cbfcnp)(struct cam_periph *, union ccb *), 7851 u_int8_t tag_action, u_int8_t pdf, 7852 void *buf, u_int32_t alloc_len, 7853 u_int8_t sense_len, u_int32_t timeout) 7854 { 7855 struct scsi_target_group *scsi_cmd; 7856 7857 cam_fill_csio(csio, 7858 retries, 7859 cbfcnp, 7860 /*flags*/CAM_DIR_IN, 7861 tag_action, 7862 /*data_ptr*/(u_int8_t *)buf, 7863 /*dxfer_len*/alloc_len, 7864 sense_len, 7865 sizeof(*scsi_cmd), 7866 timeout); 7867 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 7868 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7869 scsi_cmd->opcode = MAINTENANCE_IN; 7870 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; 7871 scsi_ulto4b(alloc_len, scsi_cmd->length); 7872 } 7873 7874 void 7875 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7876 void (*cbfcnp)(struct cam_periph *, union ccb *), 7877 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 7878 u_int8_t sense_len, u_int32_t timeout) 7879 { 7880 struct scsi_target_group *scsi_cmd; 7881 7882 cam_fill_csio(csio, 7883 retries, 7884 cbfcnp, 7885 /*flags*/CAM_DIR_OUT, 7886 tag_action, 7887 /*data_ptr*/(u_int8_t *)buf, 7888 /*dxfer_len*/alloc_len, 7889 sense_len, 7890 sizeof(*scsi_cmd), 7891 timeout); 7892 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 7893 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7894 scsi_cmd->opcode = MAINTENANCE_OUT; 7895 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; 7896 scsi_ulto4b(alloc_len, scsi_cmd->length); 7897 } 7898 7899 /* 7900 * Syncronize the media to the contents of the cache for 7901 * the given lba/count pair. Specifying 0/0 means sync 7902 * the whole cache. 7903 */ 7904 void 7905 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, 7906 void (*cbfcnp)(struct cam_periph *, union ccb *), 7907 u_int8_t tag_action, u_int32_t begin_lba, 7908 u_int16_t lb_count, u_int8_t sense_len, 7909 u_int32_t timeout) 7910 { 7911 struct scsi_sync_cache *scsi_cmd; 7912 7913 cam_fill_csio(csio, 7914 retries, 7915 cbfcnp, 7916 /*flags*/CAM_DIR_NONE, 7917 tag_action, 7918 /*data_ptr*/NULL, 7919 /*dxfer_len*/0, 7920 sense_len, 7921 sizeof(*scsi_cmd), 7922 timeout); 7923 7924 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; 7925 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7926 scsi_cmd->opcode = SYNCHRONIZE_CACHE; 7927 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); 7928 scsi_ulto2b(lb_count, scsi_cmd->lb_count); 7929 } 7930 7931 void 7932 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, 7933 void (*cbfcnp)(struct cam_periph *, union ccb *), 7934 u_int8_t tag_action, int readop, u_int8_t byte2, 7935 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 7936 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 7937 u_int32_t timeout) 7938 { 7939 int read; 7940 u_int8_t cdb_len; 7941 7942 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; 7943 7944 /* 7945 * Use the smallest possible command to perform the operation 7946 * as some legacy hardware does not support the 10 byte commands. 7947 * If any of the bits in byte2 is set, we have to go with a larger 7948 * command. 7949 */ 7950 if ((minimum_cmd_size < 10) 7951 && ((lba & 0x1fffff) == lba) 7952 && ((block_count & 0xff) == block_count) 7953 && (byte2 == 0)) { 7954 /* 7955 * We can fit in a 6 byte cdb. 7956 */ 7957 struct scsi_rw_6 *scsi_cmd; 7958 7959 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; 7960 scsi_cmd->opcode = read ? READ_6 : WRITE_6; 7961 scsi_ulto3b(lba, scsi_cmd->addr); 7962 scsi_cmd->length = block_count & 0xff; 7963 scsi_cmd->control = 0; 7964 cdb_len = sizeof(*scsi_cmd); 7965 7966 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 7967 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], 7968 scsi_cmd->addr[1], scsi_cmd->addr[2], 7969 scsi_cmd->length, dxfer_len)); 7970 } else if ((minimum_cmd_size < 12) 7971 && ((block_count & 0xffff) == block_count) 7972 && ((lba & 0xffffffff) == lba)) { 7973 /* 7974 * Need a 10 byte cdb. 7975 */ 7976 struct scsi_rw_10 *scsi_cmd; 7977 7978 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; 7979 scsi_cmd->opcode = read ? READ_10 : WRITE_10; 7980 scsi_cmd->byte2 = byte2; 7981 scsi_ulto4b(lba, scsi_cmd->addr); 7982 scsi_cmd->reserved = 0; 7983 scsi_ulto2b(block_count, scsi_cmd->length); 7984 scsi_cmd->control = 0; 7985 cdb_len = sizeof(*scsi_cmd); 7986 7987 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 7988 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 7989 scsi_cmd->addr[1], scsi_cmd->addr[2], 7990 scsi_cmd->addr[3], scsi_cmd->length[0], 7991 scsi_cmd->length[1], dxfer_len)); 7992 } else if ((minimum_cmd_size < 16) 7993 && ((block_count & 0xffffffff) == block_count) 7994 && ((lba & 0xffffffff) == lba)) { 7995 /* 7996 * The block count is too big for a 10 byte CDB, use a 12 7997 * byte CDB. 7998 */ 7999 struct scsi_rw_12 *scsi_cmd; 8000 8001 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; 8002 scsi_cmd->opcode = read ? READ_12 : WRITE_12; 8003 scsi_cmd->byte2 = byte2; 8004 scsi_ulto4b(lba, scsi_cmd->addr); 8005 scsi_cmd->reserved = 0; 8006 scsi_ulto4b(block_count, scsi_cmd->length); 8007 scsi_cmd->control = 0; 8008 cdb_len = sizeof(*scsi_cmd); 8009 8010 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8011 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], 8012 scsi_cmd->addr[1], scsi_cmd->addr[2], 8013 scsi_cmd->addr[3], scsi_cmd->length[0], 8014 scsi_cmd->length[1], scsi_cmd->length[2], 8015 scsi_cmd->length[3], dxfer_len)); 8016 } else { 8017 /* 8018 * 16 byte CDB. We'll only get here if the LBA is larger 8019 * than 2^32, or if the user asks for a 16 byte command. 8020 */ 8021 struct scsi_rw_16 *scsi_cmd; 8022 8023 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; 8024 scsi_cmd->opcode = read ? READ_16 : WRITE_16; 8025 scsi_cmd->byte2 = byte2; 8026 scsi_u64to8b(lba, scsi_cmd->addr); 8027 scsi_cmd->reserved = 0; 8028 scsi_ulto4b(block_count, scsi_cmd->length); 8029 scsi_cmd->control = 0; 8030 cdb_len = sizeof(*scsi_cmd); 8031 } 8032 cam_fill_csio(csio, 8033 retries, 8034 cbfcnp, 8035 (read ? CAM_DIR_IN : CAM_DIR_OUT) | 8036 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), 8037 tag_action, 8038 data_ptr, 8039 dxfer_len, 8040 sense_len, 8041 cdb_len, 8042 timeout); 8043 } 8044 8045 void 8046 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, 8047 void (*cbfcnp)(struct cam_periph *, union ccb *), 8048 u_int8_t tag_action, u_int8_t byte2, 8049 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8050 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8051 u_int32_t timeout) 8052 { 8053 u_int8_t cdb_len; 8054 if ((minimum_cmd_size < 16) && 8055 ((block_count & 0xffff) == block_count) && 8056 ((lba & 0xffffffff) == lba)) { 8057 /* 8058 * Need a 10 byte cdb. 8059 */ 8060 struct scsi_write_same_10 *scsi_cmd; 8061 8062 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; 8063 scsi_cmd->opcode = WRITE_SAME_10; 8064 scsi_cmd->byte2 = byte2; 8065 scsi_ulto4b(lba, scsi_cmd->addr); 8066 scsi_cmd->group = 0; 8067 scsi_ulto2b(block_count, scsi_cmd->length); 8068 scsi_cmd->control = 0; 8069 cdb_len = sizeof(*scsi_cmd); 8070 8071 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8072 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8073 scsi_cmd->addr[1], scsi_cmd->addr[2], 8074 scsi_cmd->addr[3], scsi_cmd->length[0], 8075 scsi_cmd->length[1], dxfer_len)); 8076 } else { 8077 /* 8078 * 16 byte CDB. We'll only get here if the LBA is larger 8079 * than 2^32, or if the user asks for a 16 byte command. 8080 */ 8081 struct scsi_write_same_16 *scsi_cmd; 8082 8083 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; 8084 scsi_cmd->opcode = WRITE_SAME_16; 8085 scsi_cmd->byte2 = byte2; 8086 scsi_u64to8b(lba, scsi_cmd->addr); 8087 scsi_ulto4b(block_count, scsi_cmd->length); 8088 scsi_cmd->group = 0; 8089 scsi_cmd->control = 0; 8090 cdb_len = sizeof(*scsi_cmd); 8091 8092 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8093 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", 8094 scsi_cmd->addr[0], scsi_cmd->addr[1], 8095 scsi_cmd->addr[2], scsi_cmd->addr[3], 8096 scsi_cmd->addr[4], scsi_cmd->addr[5], 8097 scsi_cmd->addr[6], scsi_cmd->addr[7], 8098 scsi_cmd->length[0], scsi_cmd->length[1], 8099 scsi_cmd->length[2], scsi_cmd->length[3], 8100 dxfer_len)); 8101 } 8102 cam_fill_csio(csio, 8103 retries, 8104 cbfcnp, 8105 /*flags*/CAM_DIR_OUT, 8106 tag_action, 8107 data_ptr, 8108 dxfer_len, 8109 sense_len, 8110 cdb_len, 8111 timeout); 8112 } 8113 8114 void 8115 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries, 8116 void (*cbfcnp)(struct cam_periph *, union ccb *), 8117 u_int8_t tag_action, u_int8_t *data_ptr, 8118 u_int16_t dxfer_len, u_int8_t sense_len, 8119 u_int32_t timeout) 8120 { 8121 scsi_ata_pass_16(csio, 8122 retries, 8123 cbfcnp, 8124 /*flags*/CAM_DIR_IN, 8125 tag_action, 8126 /*protocol*/AP_PROTO_PIO_IN, 8127 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV| 8128 AP_FLAG_BYT_BLOK_BYTES|AP_FLAG_TLEN_SECT_CNT, 8129 /*features*/0, 8130 /*sector_count*/dxfer_len, 8131 /*lba*/0, 8132 /*command*/ATA_ATA_IDENTIFY, 8133 /*control*/0, 8134 data_ptr, 8135 dxfer_len, 8136 sense_len, 8137 timeout); 8138 } 8139 8140 void 8141 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries, 8142 void (*cbfcnp)(struct cam_periph *, union ccb *), 8143 u_int8_t tag_action, u_int16_t block_count, 8144 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8145 u_int32_t timeout) 8146 { 8147 scsi_ata_pass_16(csio, 8148 retries, 8149 cbfcnp, 8150 /*flags*/CAM_DIR_OUT, 8151 tag_action, 8152 /*protocol*/AP_EXTEND|AP_PROTO_DMA, 8153 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS, 8154 /*features*/ATA_DSM_TRIM, 8155 /*sector_count*/block_count, 8156 /*lba*/0, 8157 /*command*/ATA_DATA_SET_MANAGEMENT, 8158 /*control*/0, 8159 data_ptr, 8160 dxfer_len, 8161 sense_len, 8162 timeout); 8163 } 8164 8165 void 8166 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries, 8167 void (*cbfcnp)(struct cam_periph *, union ccb *), 8168 u_int32_t flags, u_int8_t tag_action, 8169 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features, 8170 u_int16_t sector_count, uint64_t lba, u_int8_t command, 8171 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len, 8172 u_int8_t sense_len, u_int32_t timeout) 8173 { 8174 struct ata_pass_16 *ata_cmd; 8175 8176 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes; 8177 ata_cmd->opcode = ATA_PASS_16; 8178 ata_cmd->protocol = protocol; 8179 ata_cmd->flags = ata_flags; 8180 ata_cmd->features_ext = features >> 8; 8181 ata_cmd->features = features; 8182 ata_cmd->sector_count_ext = sector_count >> 8; 8183 ata_cmd->sector_count = sector_count; 8184 ata_cmd->lba_low = lba; 8185 ata_cmd->lba_mid = lba >> 8; 8186 ata_cmd->lba_high = lba >> 16; 8187 ata_cmd->device = ATA_DEV_LBA; 8188 if (protocol & AP_EXTEND) { 8189 ata_cmd->lba_low_ext = lba >> 24; 8190 ata_cmd->lba_mid_ext = lba >> 32; 8191 ata_cmd->lba_high_ext = lba >> 40; 8192 } else 8193 ata_cmd->device |= (lba >> 24) & 0x0f; 8194 ata_cmd->command = command; 8195 ata_cmd->control = control; 8196 8197 cam_fill_csio(csio, 8198 retries, 8199 cbfcnp, 8200 flags, 8201 tag_action, 8202 data_ptr, 8203 dxfer_len, 8204 sense_len, 8205 sizeof(*ata_cmd), 8206 timeout); 8207 } 8208 8209 void 8210 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, 8211 void (*cbfcnp)(struct cam_periph *, union ccb *), 8212 u_int8_t tag_action, u_int8_t byte2, 8213 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8214 u_int32_t timeout) 8215 { 8216 struct scsi_unmap *scsi_cmd; 8217 8218 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; 8219 scsi_cmd->opcode = UNMAP; 8220 scsi_cmd->byte2 = byte2; 8221 scsi_ulto4b(0, scsi_cmd->reserved); 8222 scsi_cmd->group = 0; 8223 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8224 scsi_cmd->control = 0; 8225 8226 cam_fill_csio(csio, 8227 retries, 8228 cbfcnp, 8229 /*flags*/CAM_DIR_OUT, 8230 tag_action, 8231 data_ptr, 8232 dxfer_len, 8233 sense_len, 8234 sizeof(*scsi_cmd), 8235 timeout); 8236 } 8237 8238 void 8239 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, 8240 void (*cbfcnp)(struct cam_periph *, union ccb*), 8241 uint8_t tag_action, int pcv, uint8_t page_code, 8242 uint8_t *data_ptr, uint16_t allocation_length, 8243 uint8_t sense_len, uint32_t timeout) 8244 { 8245 struct scsi_receive_diag *scsi_cmd; 8246 8247 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; 8248 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8249 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; 8250 if (pcv) { 8251 scsi_cmd->byte2 |= SRD_PCV; 8252 scsi_cmd->page_code = page_code; 8253 } 8254 scsi_ulto2b(allocation_length, scsi_cmd->length); 8255 8256 cam_fill_csio(csio, 8257 retries, 8258 cbfcnp, 8259 /*flags*/CAM_DIR_IN, 8260 tag_action, 8261 data_ptr, 8262 allocation_length, 8263 sense_len, 8264 sizeof(*scsi_cmd), 8265 timeout); 8266 } 8267 8268 void 8269 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, 8270 void (*cbfcnp)(struct cam_periph *, union ccb *), 8271 uint8_t tag_action, int unit_offline, int device_offline, 8272 int self_test, int page_format, int self_test_code, 8273 uint8_t *data_ptr, uint16_t param_list_length, 8274 uint8_t sense_len, uint32_t timeout) 8275 { 8276 struct scsi_send_diag *scsi_cmd; 8277 8278 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; 8279 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8280 scsi_cmd->opcode = SEND_DIAGNOSTIC; 8281 8282 /* 8283 * The default self-test mode control and specific test 8284 * control are mutually exclusive. 8285 */ 8286 if (self_test) 8287 self_test_code = SSD_SELF_TEST_CODE_NONE; 8288 8289 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) 8290 & SSD_SELF_TEST_CODE_MASK) 8291 | (unit_offline ? SSD_UNITOFFL : 0) 8292 | (device_offline ? SSD_DEVOFFL : 0) 8293 | (self_test ? SSD_SELFTEST : 0) 8294 | (page_format ? SSD_PF : 0); 8295 scsi_ulto2b(param_list_length, scsi_cmd->length); 8296 8297 cam_fill_csio(csio, 8298 retries, 8299 cbfcnp, 8300 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8301 tag_action, 8302 data_ptr, 8303 param_list_length, 8304 sense_len, 8305 sizeof(*scsi_cmd), 8306 timeout); 8307 } 8308 8309 void 8310 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8311 void (*cbfcnp)(struct cam_periph *, union ccb*), 8312 uint8_t tag_action, int mode, 8313 uint8_t buffer_id, u_int32_t offset, 8314 uint8_t *data_ptr, uint32_t allocation_length, 8315 uint8_t sense_len, uint32_t timeout) 8316 { 8317 struct scsi_read_buffer *scsi_cmd; 8318 8319 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes; 8320 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8321 scsi_cmd->opcode = READ_BUFFER; 8322 scsi_cmd->byte2 = mode; 8323 scsi_cmd->buffer_id = buffer_id; 8324 scsi_ulto3b(offset, scsi_cmd->offset); 8325 scsi_ulto3b(allocation_length, scsi_cmd->length); 8326 8327 cam_fill_csio(csio, 8328 retries, 8329 cbfcnp, 8330 /*flags*/CAM_DIR_IN, 8331 tag_action, 8332 data_ptr, 8333 allocation_length, 8334 sense_len, 8335 sizeof(*scsi_cmd), 8336 timeout); 8337 } 8338 8339 void 8340 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8341 void (*cbfcnp)(struct cam_periph *, union ccb *), 8342 uint8_t tag_action, int mode, 8343 uint8_t buffer_id, u_int32_t offset, 8344 uint8_t *data_ptr, uint32_t param_list_length, 8345 uint8_t sense_len, uint32_t timeout) 8346 { 8347 struct scsi_write_buffer *scsi_cmd; 8348 8349 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes; 8350 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8351 scsi_cmd->opcode = WRITE_BUFFER; 8352 scsi_cmd->byte2 = mode; 8353 scsi_cmd->buffer_id = buffer_id; 8354 scsi_ulto3b(offset, scsi_cmd->offset); 8355 scsi_ulto3b(param_list_length, scsi_cmd->length); 8356 8357 cam_fill_csio(csio, 8358 retries, 8359 cbfcnp, 8360 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8361 tag_action, 8362 data_ptr, 8363 param_list_length, 8364 sense_len, 8365 sizeof(*scsi_cmd), 8366 timeout); 8367 } 8368 8369 void 8370 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, 8371 void (*cbfcnp)(struct cam_periph *, union ccb *), 8372 u_int8_t tag_action, int start, int load_eject, 8373 int immediate, u_int8_t sense_len, u_int32_t timeout) 8374 { 8375 struct scsi_start_stop_unit *scsi_cmd; 8376 int extra_flags = 0; 8377 8378 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; 8379 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8380 scsi_cmd->opcode = START_STOP_UNIT; 8381 if (start != 0) { 8382 scsi_cmd->how |= SSS_START; 8383 /* it takes a lot of power to start a drive */ 8384 extra_flags |= CAM_HIGH_POWER; 8385 } 8386 if (load_eject != 0) 8387 scsi_cmd->how |= SSS_LOEJ; 8388 if (immediate != 0) 8389 scsi_cmd->byte2 |= SSS_IMMED; 8390 8391 cam_fill_csio(csio, 8392 retries, 8393 cbfcnp, 8394 /*flags*/CAM_DIR_NONE | extra_flags, 8395 tag_action, 8396 /*data_ptr*/NULL, 8397 /*dxfer_len*/0, 8398 sense_len, 8399 sizeof(*scsi_cmd), 8400 timeout); 8401 } 8402 8403 void 8404 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8405 void (*cbfcnp)(struct cam_periph *, union ccb *), 8406 u_int8_t tag_action, u_int8_t service_action, 8407 uint32_t element, u_int8_t elem_type, int logical_volume, 8408 int partition, u_int32_t first_attribute, int cache, 8409 u_int8_t *data_ptr, u_int32_t length, int sense_len, 8410 u_int32_t timeout) 8411 { 8412 struct scsi_read_attribute *scsi_cmd; 8413 8414 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes; 8415 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8416 8417 scsi_cmd->opcode = READ_ATTRIBUTE; 8418 scsi_cmd->service_action = service_action, 8419 scsi_ulto2b(element, scsi_cmd->element); 8420 scsi_cmd->elem_type = elem_type; 8421 scsi_cmd->logical_volume = logical_volume; 8422 scsi_cmd->partition = partition; 8423 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute); 8424 scsi_ulto4b(length, scsi_cmd->length); 8425 if (cache != 0) 8426 scsi_cmd->cache |= SRA_CACHE; 8427 8428 cam_fill_csio(csio, 8429 retries, 8430 cbfcnp, 8431 /*flags*/CAM_DIR_IN, 8432 tag_action, 8433 /*data_ptr*/data_ptr, 8434 /*dxfer_len*/length, 8435 sense_len, 8436 sizeof(*scsi_cmd), 8437 timeout); 8438 } 8439 8440 void 8441 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8442 void (*cbfcnp)(struct cam_periph *, union ccb *), 8443 u_int8_t tag_action, uint32_t element, int logical_volume, 8444 int partition, int wtc, u_int8_t *data_ptr, 8445 u_int32_t length, int sense_len, u_int32_t timeout) 8446 { 8447 struct scsi_write_attribute *scsi_cmd; 8448 8449 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes; 8450 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8451 8452 scsi_cmd->opcode = WRITE_ATTRIBUTE; 8453 if (wtc != 0) 8454 scsi_cmd->byte2 = SWA_WTC; 8455 scsi_ulto3b(element, scsi_cmd->element); 8456 scsi_cmd->logical_volume = logical_volume; 8457 scsi_cmd->partition = partition; 8458 scsi_ulto4b(length, scsi_cmd->length); 8459 8460 cam_fill_csio(csio, 8461 retries, 8462 cbfcnp, 8463 /*flags*/CAM_DIR_OUT, 8464 tag_action, 8465 /*data_ptr*/data_ptr, 8466 /*dxfer_len*/length, 8467 sense_len, 8468 sizeof(*scsi_cmd), 8469 timeout); 8470 } 8471 8472 void 8473 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, 8474 void (*cbfcnp)(struct cam_periph *, union ccb *), 8475 uint8_t tag_action, int service_action, 8476 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8477 int timeout) 8478 { 8479 struct scsi_per_res_in *scsi_cmd; 8480 8481 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes; 8482 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8483 8484 scsi_cmd->opcode = PERSISTENT_RES_IN; 8485 scsi_cmd->action = service_action; 8486 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8487 8488 cam_fill_csio(csio, 8489 retries, 8490 cbfcnp, 8491 /*flags*/CAM_DIR_IN, 8492 tag_action, 8493 data_ptr, 8494 dxfer_len, 8495 sense_len, 8496 sizeof(*scsi_cmd), 8497 timeout); 8498 } 8499 8500 void 8501 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, 8502 void (*cbfcnp)(struct cam_periph *, union ccb *), 8503 uint8_t tag_action, int service_action, 8504 int scope, int res_type, uint8_t *data_ptr, 8505 uint32_t dxfer_len, int sense_len, int timeout) 8506 { 8507 struct scsi_per_res_out *scsi_cmd; 8508 8509 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes; 8510 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8511 8512 scsi_cmd->opcode = PERSISTENT_RES_OUT; 8513 scsi_cmd->action = service_action; 8514 scsi_cmd->scope_type = scope | res_type; 8515 8516 cam_fill_csio(csio, 8517 retries, 8518 cbfcnp, 8519 /*flags*/CAM_DIR_OUT, 8520 tag_action, 8521 /*data_ptr*/data_ptr, 8522 /*dxfer_len*/dxfer_len, 8523 sense_len, 8524 sizeof(*scsi_cmd), 8525 timeout); 8526 } 8527 8528 void 8529 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, 8530 void (*cbfcnp)(struct cam_periph *, union ccb *), 8531 uint8_t tag_action, uint32_t security_protocol, 8532 uint32_t security_protocol_specific, int byte4, 8533 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8534 int timeout) 8535 { 8536 struct scsi_security_protocol_in *scsi_cmd; 8537 8538 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes; 8539 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8540 8541 scsi_cmd->opcode = SECURITY_PROTOCOL_IN; 8542 8543 scsi_cmd->security_protocol = security_protocol; 8544 scsi_ulto2b(security_protocol_specific, 8545 scsi_cmd->security_protocol_specific); 8546 scsi_cmd->byte4 = byte4; 8547 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8548 8549 cam_fill_csio(csio, 8550 retries, 8551 cbfcnp, 8552 /*flags*/CAM_DIR_IN, 8553 tag_action, 8554 data_ptr, 8555 dxfer_len, 8556 sense_len, 8557 sizeof(*scsi_cmd), 8558 timeout); 8559 } 8560 8561 void 8562 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, 8563 void (*cbfcnp)(struct cam_periph *, union ccb *), 8564 uint8_t tag_action, uint32_t security_protocol, 8565 uint32_t security_protocol_specific, int byte4, 8566 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8567 int timeout) 8568 { 8569 struct scsi_security_protocol_out *scsi_cmd; 8570 8571 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes; 8572 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8573 8574 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT; 8575 8576 scsi_cmd->security_protocol = security_protocol; 8577 scsi_ulto2b(security_protocol_specific, 8578 scsi_cmd->security_protocol_specific); 8579 scsi_cmd->byte4 = byte4; 8580 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8581 8582 cam_fill_csio(csio, 8583 retries, 8584 cbfcnp, 8585 /*flags*/CAM_DIR_OUT, 8586 tag_action, 8587 data_ptr, 8588 dxfer_len, 8589 sense_len, 8590 sizeof(*scsi_cmd), 8591 timeout); 8592 } 8593 8594 void 8595 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, 8596 void (*cbfcnp)(struct cam_periph *, union ccb *), 8597 uint8_t tag_action, int options, int req_opcode, 8598 int req_service_action, uint8_t *data_ptr, 8599 uint32_t dxfer_len, int sense_len, int timeout) 8600 { 8601 struct scsi_report_supported_opcodes *scsi_cmd; 8602 8603 scsi_cmd = (struct scsi_report_supported_opcodes *) 8604 &csio->cdb_io.cdb_bytes; 8605 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8606 8607 scsi_cmd->opcode = MAINTENANCE_IN; 8608 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES; 8609 scsi_cmd->options = options; 8610 scsi_cmd->requested_opcode = req_opcode; 8611 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action); 8612 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8613 8614 cam_fill_csio(csio, 8615 retries, 8616 cbfcnp, 8617 /*flags*/CAM_DIR_IN, 8618 tag_action, 8619 data_ptr, 8620 dxfer_len, 8621 sense_len, 8622 sizeof(*scsi_cmd), 8623 timeout); 8624 } 8625 8626 /* 8627 * Try make as good a match as possible with 8628 * available sub drivers 8629 */ 8630 int 8631 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 8632 { 8633 struct scsi_inquiry_pattern *entry; 8634 struct scsi_inquiry_data *inq; 8635 8636 entry = (struct scsi_inquiry_pattern *)table_entry; 8637 inq = (struct scsi_inquiry_data *)inqbuffer; 8638 8639 if (((SID_TYPE(inq) == entry->type) 8640 || (entry->type == T_ANY)) 8641 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 8642 : entry->media_type & SIP_MEDIA_FIXED) 8643 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 8644 && (cam_strmatch(inq->product, entry->product, 8645 sizeof(inq->product)) == 0) 8646 && (cam_strmatch(inq->revision, entry->revision, 8647 sizeof(inq->revision)) == 0)) { 8648 return (0); 8649 } 8650 return (-1); 8651 } 8652 8653 /* 8654 * Try make as good a match as possible with 8655 * available sub drivers 8656 */ 8657 int 8658 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 8659 { 8660 struct scsi_static_inquiry_pattern *entry; 8661 struct scsi_inquiry_data *inq; 8662 8663 entry = (struct scsi_static_inquiry_pattern *)table_entry; 8664 inq = (struct scsi_inquiry_data *)inqbuffer; 8665 8666 if (((SID_TYPE(inq) == entry->type) 8667 || (entry->type == T_ANY)) 8668 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 8669 : entry->media_type & SIP_MEDIA_FIXED) 8670 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 8671 && (cam_strmatch(inq->product, entry->product, 8672 sizeof(inq->product)) == 0) 8673 && (cam_strmatch(inq->revision, entry->revision, 8674 sizeof(inq->revision)) == 0)) { 8675 return (0); 8676 } 8677 return (-1); 8678 } 8679 8680 /** 8681 * Compare two buffers of vpd device descriptors for a match. 8682 * 8683 * \param lhs Pointer to first buffer of descriptors to compare. 8684 * \param lhs_len The length of the first buffer. 8685 * \param rhs Pointer to second buffer of descriptors to compare. 8686 * \param rhs_len The length of the second buffer. 8687 * 8688 * \return 0 on a match, -1 otherwise. 8689 * 8690 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching 8691 * agains each element in rhs until all data are exhausted or we have found 8692 * a match. 8693 */ 8694 int 8695 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) 8696 { 8697 struct scsi_vpd_id_descriptor *lhs_id; 8698 struct scsi_vpd_id_descriptor *lhs_last; 8699 struct scsi_vpd_id_descriptor *rhs_last; 8700 uint8_t *lhs_end; 8701 uint8_t *rhs_end; 8702 8703 lhs_end = lhs + lhs_len; 8704 rhs_end = rhs + rhs_len; 8705 8706 /* 8707 * rhs_last and lhs_last are the last posible position of a valid 8708 * descriptor assuming it had a zero length identifier. We use 8709 * these variables to insure we can safely dereference the length 8710 * field in our loop termination tests. 8711 */ 8712 lhs_last = (struct scsi_vpd_id_descriptor *) 8713 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 8714 rhs_last = (struct scsi_vpd_id_descriptor *) 8715 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 8716 8717 lhs_id = (struct scsi_vpd_id_descriptor *)lhs; 8718 while (lhs_id <= lhs_last 8719 && (lhs_id->identifier + lhs_id->length) <= lhs_end) { 8720 struct scsi_vpd_id_descriptor *rhs_id; 8721 8722 rhs_id = (struct scsi_vpd_id_descriptor *)rhs; 8723 while (rhs_id <= rhs_last 8724 && (rhs_id->identifier + rhs_id->length) <= rhs_end) { 8725 8726 if ((rhs_id->id_type & 8727 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) == 8728 (lhs_id->id_type & 8729 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) 8730 && rhs_id->length == lhs_id->length 8731 && memcmp(rhs_id->identifier, lhs_id->identifier, 8732 rhs_id->length) == 0) 8733 return (0); 8734 8735 rhs_id = (struct scsi_vpd_id_descriptor *) 8736 (rhs_id->identifier + rhs_id->length); 8737 } 8738 lhs_id = (struct scsi_vpd_id_descriptor *) 8739 (lhs_id->identifier + lhs_id->length); 8740 } 8741 return (-1); 8742 } 8743 8744 #ifdef _KERNEL 8745 int 8746 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id) 8747 { 8748 struct cam_ed *device; 8749 struct scsi_vpd_supported_pages *vpds; 8750 int i, num_pages; 8751 8752 device = periph->path->device; 8753 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; 8754 8755 if (vpds != NULL) { 8756 num_pages = device->supported_vpds_len - 8757 SVPD_SUPPORTED_PAGES_HDR_LEN; 8758 for (i = 0; i < num_pages; i++) { 8759 if (vpds->page_list[i] == page_id) 8760 return (1); 8761 } 8762 } 8763 8764 return (0); 8765 } 8766 8767 static void 8768 init_scsi_delay(void) 8769 { 8770 int delay; 8771 8772 delay = SCSI_DELAY; 8773 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); 8774 8775 if (set_scsi_delay(delay) != 0) { 8776 printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); 8777 set_scsi_delay(SCSI_DELAY); 8778 } 8779 } 8780 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); 8781 8782 static int 8783 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) 8784 { 8785 int error, delay; 8786 8787 delay = scsi_delay; 8788 error = sysctl_handle_int(oidp, &delay, 0, req); 8789 if (error != 0 || req->newptr == NULL) 8790 return (error); 8791 return (set_scsi_delay(delay)); 8792 } 8793 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT|CTLFLAG_RW, 8794 0, 0, sysctl_scsi_delay, "I", 8795 "Delay to allow devices to settle after a SCSI bus reset (ms)"); 8796 8797 static int 8798 set_scsi_delay(int delay) 8799 { 8800 /* 8801 * If someone sets this to 0, we assume that they want the 8802 * minimum allowable bus settle delay. 8803 */ 8804 if (delay == 0) { 8805 printf("cam: using minimum scsi_delay (%dms)\n", 8806 SCSI_MIN_DELAY); 8807 delay = SCSI_MIN_DELAY; 8808 } 8809 if (delay < SCSI_MIN_DELAY) 8810 return (EINVAL); 8811 scsi_delay = delay; 8812 return (0); 8813 } 8814 #endif /* _KERNEL */ 8815