1 /*- 2 * Implementation of Utility functions for all SCSI device types. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/types.h> 37 #include <sys/stdint.h> 38 39 #ifdef _KERNEL 40 #include "opt_scsi.h" 41 42 #include <sys/systm.h> 43 #include <sys/libkern.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/ctype.h> 50 #else 51 #include <errno.h> 52 #include <stdio.h> 53 #include <stdlib.h> 54 #include <string.h> 55 #include <ctype.h> 56 #endif 57 58 #include <cam/cam.h> 59 #include <cam/cam_ccb.h> 60 #include <cam/cam_queue.h> 61 #include <cam/cam_xpt.h> 62 #include <cam/scsi/scsi_all.h> 63 #include <sys/ata.h> 64 #include <sys/sbuf.h> 65 66 #ifdef _KERNEL 67 #include <cam/cam_periph.h> 68 #include <cam/cam_xpt_sim.h> 69 #include <cam/cam_xpt_periph.h> 70 #include <cam/cam_xpt_internal.h> 71 #else 72 #include <camlib.h> 73 #include <stddef.h> 74 75 #ifndef FALSE 76 #define FALSE 0 77 #endif /* FALSE */ 78 #ifndef TRUE 79 #define TRUE 1 80 #endif /* TRUE */ 81 #define ERESTART -1 /* restart syscall */ 82 #define EJUSTRETURN -2 /* don't modify regs, just return */ 83 #endif /* !_KERNEL */ 84 85 /* 86 * This is the default number of milliseconds we wait for devices to settle 87 * after a SCSI bus reset. 88 */ 89 #ifndef SCSI_DELAY 90 #define SCSI_DELAY 2000 91 #endif 92 /* 93 * All devices need _some_ sort of bus settle delay, so we'll set it to 94 * a minimum value of 100ms. Note that this is pertinent only for SPI- 95 * not transport like Fibre Channel or iSCSI where 'delay' is completely 96 * meaningless. 97 */ 98 #ifndef SCSI_MIN_DELAY 99 #define SCSI_MIN_DELAY 100 100 #endif 101 /* 102 * Make sure the user isn't using seconds instead of milliseconds. 103 */ 104 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) 105 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" 106 #endif 107 108 int scsi_delay; 109 110 static int ascentrycomp(const void *key, const void *member); 111 static int senseentrycomp(const void *key, const void *member); 112 static void fetchtableentries(int sense_key, int asc, int ascq, 113 struct scsi_inquiry_data *, 114 const struct sense_key_table_entry **, 115 const struct asc_table_entry **); 116 117 #ifdef _KERNEL 118 static void init_scsi_delay(void); 119 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); 120 static int set_scsi_delay(int delay); 121 #endif 122 123 #if !defined(SCSI_NO_OP_STRINGS) 124 125 #define D (1 << T_DIRECT) 126 #define T (1 << T_SEQUENTIAL) 127 #define L (1 << T_PRINTER) 128 #define P (1 << T_PROCESSOR) 129 #define W (1 << T_WORM) 130 #define R (1 << T_CDROM) 131 #define O (1 << T_OPTICAL) 132 #define M (1 << T_CHANGER) 133 #define A (1 << T_STORARRAY) 134 #define E (1 << T_ENCLOSURE) 135 #define B (1 << T_RBC) 136 #define K (1 << T_OCRW) 137 #define V (1 << T_ADC) 138 #define F (1 << T_OSD) 139 #define S (1 << T_SCANNER) 140 #define C (1 << T_COMM) 141 142 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) 143 144 static struct op_table_entry plextor_cd_ops[] = { 145 { 0xD8, R, "CD-DA READ" } 146 }; 147 148 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { 149 { 150 /* 151 * I believe that 0xD8 is the Plextor proprietary command 152 * to read CD-DA data. I'm not sure which Plextor CDROM 153 * models support the command, though. I know for sure 154 * that the 4X, 8X, and 12X models do, and presumably the 155 * 12-20X does. I don't know about any earlier models, 156 * though. If anyone has any more complete information, 157 * feel free to change this quirk entry. 158 */ 159 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, 160 nitems(plextor_cd_ops), 161 plextor_cd_ops 162 } 163 }; 164 165 static struct op_table_entry scsi_op_codes[] = { 166 /* 167 * From: http://www.t10.org/lists/op-num.txt 168 * Modifications by Kenneth Merry (ken@FreeBSD.ORG) 169 * and Jung-uk Kim (jkim@FreeBSD.org) 170 * 171 * Note: order is important in this table, scsi_op_desc() currently 172 * depends on the opcodes in the table being in order to save 173 * search time. 174 * Note: scanner and comm. devices are carried over from the previous 175 * version because they were removed in the latest spec. 176 */ 177 /* File: OP-NUM.TXT 178 * 179 * SCSI Operation Codes 180 * Numeric Sorted Listing 181 * as of 5/26/15 182 * 183 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 184 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- 185 * . L - PRINTER DEVICE (SSC) M = Mandatory 186 * . P - PROCESSOR DEVICE (SPC) O = Optional 187 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. 188 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete 189 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 190 * . . .M - MEDIA CHANGER DEVICE (SMC-2) 191 * . . . A - STORAGE ARRAY DEVICE (SCC-2) 192 * . . . .E - ENCLOSURE SERVICES DEVICE (SES) 193 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 194 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 195 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 196 * . . . . .F - OBJECT-BASED STORAGE (OSD) 197 * OP DTLPWROMAEBKVF Description 198 * -- -------------- ---------------------------------------------- */ 199 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ 200 { 0x00, ALL, "TEST UNIT READY" }, 201 /* 01 M REWIND */ 202 { 0x01, T, "REWIND" }, 203 /* 01 Z V ZZZZ REZERO UNIT */ 204 { 0x01, D | W | R | O | M, "REZERO UNIT" }, 205 /* 02 VVVVVV V */ 206 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ 207 { 0x03, ALL, "REQUEST SENSE" }, 208 /* 04 M OO FORMAT UNIT */ 209 { 0x04, D | R | O, "FORMAT UNIT" }, 210 /* 04 O FORMAT MEDIUM */ 211 { 0x04, T, "FORMAT MEDIUM" }, 212 /* 04 O FORMAT */ 213 { 0x04, L, "FORMAT" }, 214 /* 05 VMVVVV V READ BLOCK LIMITS */ 215 { 0x05, T, "READ BLOCK LIMITS" }, 216 /* 06 VVVVVV V */ 217 /* 07 OVV O OV REASSIGN BLOCKS */ 218 { 0x07, D | W | O, "REASSIGN BLOCKS" }, 219 /* 07 O INITIALIZE ELEMENT STATUS */ 220 { 0x07, M, "INITIALIZE ELEMENT STATUS" }, 221 /* 08 MOV O OV READ(6) */ 222 { 0x08, D | T | W | O, "READ(6)" }, 223 /* 08 O RECEIVE */ 224 { 0x08, P, "RECEIVE" }, 225 /* 08 GET MESSAGE(6) */ 226 { 0x08, C, "GET MESSAGE(6)" }, 227 /* 09 VVVVVV V */ 228 /* 0A OO O OV WRITE(6) */ 229 { 0x0A, D | T | W | O, "WRITE(6)" }, 230 /* 0A M SEND(6) */ 231 { 0x0A, P, "SEND(6)" }, 232 /* 0A SEND MESSAGE(6) */ 233 { 0x0A, C, "SEND MESSAGE(6)" }, 234 /* 0A M PRINT */ 235 { 0x0A, L, "PRINT" }, 236 /* 0B Z ZOZV SEEK(6) */ 237 { 0x0B, D | W | R | O, "SEEK(6)" }, 238 /* 0B O SET CAPACITY */ 239 { 0x0B, T, "SET CAPACITY" }, 240 /* 0B O SLEW AND PRINT */ 241 { 0x0B, L, "SLEW AND PRINT" }, 242 /* 0C VVVVVV V */ 243 /* 0D VVVVVV V */ 244 /* 0E VVVVVV V */ 245 /* 0F VOVVVV V READ REVERSE(6) */ 246 { 0x0F, T, "READ REVERSE(6)" }, 247 /* 10 VM VVV WRITE FILEMARKS(6) */ 248 { 0x10, T, "WRITE FILEMARKS(6)" }, 249 /* 10 O SYNCHRONIZE BUFFER */ 250 { 0x10, L, "SYNCHRONIZE BUFFER" }, 251 /* 11 VMVVVV SPACE(6) */ 252 { 0x11, T, "SPACE(6)" }, 253 /* 12 MMMMMMMMMMMMMM INQUIRY */ 254 { 0x12, ALL, "INQUIRY" }, 255 /* 13 V VVVV */ 256 /* 13 O VERIFY(6) */ 257 { 0x13, T, "VERIFY(6)" }, 258 /* 14 VOOVVV RECOVER BUFFERED DATA */ 259 { 0x14, T | L, "RECOVER BUFFERED DATA" }, 260 /* 15 OMO O OOOO OO MODE SELECT(6) */ 261 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, 262 /* 16 ZZMZO OOOZ O RESERVE(6) */ 263 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, 264 /* 16 Z RESERVE ELEMENT(6) */ 265 { 0x16, M, "RESERVE ELEMENT(6)" }, 266 /* 17 ZZMZO OOOZ O RELEASE(6) */ 267 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, 268 /* 17 Z RELEASE ELEMENT(6) */ 269 { 0x17, M, "RELEASE ELEMENT(6)" }, 270 /* 18 ZZZZOZO Z COPY */ 271 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, 272 /* 19 VMVVVV ERASE(6) */ 273 { 0x19, T, "ERASE(6)" }, 274 /* 1A OMO O OOOO OO MODE SENSE(6) */ 275 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, 276 /* 1B O OOO O MO O START STOP UNIT */ 277 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, 278 /* 1B O M LOAD UNLOAD */ 279 { 0x1B, T | V, "LOAD UNLOAD" }, 280 /* 1B SCAN */ 281 { 0x1B, S, "SCAN" }, 282 /* 1B O STOP PRINT */ 283 { 0x1B, L, "STOP PRINT" }, 284 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ 285 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, 286 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ 287 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, 288 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ 289 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, 290 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ 291 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, 292 /* 1F */ 293 /* 20 V VVV V */ 294 /* 21 V VVV V */ 295 /* 22 V VVV V */ 296 /* 23 V V V V */ 297 /* 23 O READ FORMAT CAPACITIES */ 298 { 0x23, R, "READ FORMAT CAPACITIES" }, 299 /* 24 V VV SET WINDOW */ 300 { 0x24, S, "SET WINDOW" }, 301 /* 25 M M M M READ CAPACITY(10) */ 302 { 0x25, D | W | O | B, "READ CAPACITY(10)" }, 303 /* 25 O READ CAPACITY */ 304 { 0x25, R, "READ CAPACITY" }, 305 /* 25 M READ CARD CAPACITY */ 306 { 0x25, K, "READ CARD CAPACITY" }, 307 /* 25 GET WINDOW */ 308 { 0x25, S, "GET WINDOW" }, 309 /* 26 V VV */ 310 /* 27 V VV */ 311 /* 28 M MOM MM READ(10) */ 312 { 0x28, D | W | R | O | B | K | S, "READ(10)" }, 313 /* 28 GET MESSAGE(10) */ 314 { 0x28, C, "GET MESSAGE(10)" }, 315 /* 29 V VVO READ GENERATION */ 316 { 0x29, O, "READ GENERATION" }, 317 /* 2A O MOM MO WRITE(10) */ 318 { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, 319 /* 2A SEND(10) */ 320 { 0x2A, S, "SEND(10)" }, 321 /* 2A SEND MESSAGE(10) */ 322 { 0x2A, C, "SEND MESSAGE(10)" }, 323 /* 2B Z OOO O SEEK(10) */ 324 { 0x2B, D | W | R | O | K, "SEEK(10)" }, 325 /* 2B O LOCATE(10) */ 326 { 0x2B, T, "LOCATE(10)" }, 327 /* 2B O POSITION TO ELEMENT */ 328 { 0x2B, M, "POSITION TO ELEMENT" }, 329 /* 2C V OO ERASE(10) */ 330 { 0x2C, R | O, "ERASE(10)" }, 331 /* 2D O READ UPDATED BLOCK */ 332 { 0x2D, O, "READ UPDATED BLOCK" }, 333 /* 2D V */ 334 /* 2E O OOO MO WRITE AND VERIFY(10) */ 335 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, 336 /* 2F O OOO VERIFY(10) */ 337 { 0x2F, D | W | R | O, "VERIFY(10)" }, 338 /* 30 Z ZZZ SEARCH DATA HIGH(10) */ 339 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, 340 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ 341 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, 342 /* 31 OBJECT POSITION */ 343 { 0x31, S, "OBJECT POSITION" }, 344 /* 32 Z ZZZ SEARCH DATA LOW(10) */ 345 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, 346 /* 33 Z OZO SET LIMITS(10) */ 347 { 0x33, D | W | R | O, "SET LIMITS(10)" }, 348 /* 34 O O O O PRE-FETCH(10) */ 349 { 0x34, D | W | O | K, "PRE-FETCH(10)" }, 350 /* 34 M READ POSITION */ 351 { 0x34, T, "READ POSITION" }, 352 /* 34 GET DATA BUFFER STATUS */ 353 { 0x34, S, "GET DATA BUFFER STATUS" }, 354 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ 355 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, 356 /* 36 Z O O O LOCK UNLOCK CACHE(10) */ 357 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, 358 /* 37 O O READ DEFECT DATA(10) */ 359 { 0x37, D | O, "READ DEFECT DATA(10)" }, 360 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ 361 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, 362 /* 38 O O O MEDIUM SCAN */ 363 { 0x38, W | O | K, "MEDIUM SCAN" }, 364 /* 39 ZZZZOZO Z COMPARE */ 365 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, 366 /* 3A ZZZZOZO Z COPY AND VERIFY */ 367 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, 368 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ 369 { 0x3B, ALL, "WRITE BUFFER" }, 370 /* 3C OOOOOOOOOO OOO READ BUFFER */ 371 { 0x3C, ALL & ~(B), "READ BUFFER" }, 372 /* 3D O UPDATE BLOCK */ 373 { 0x3D, O, "UPDATE BLOCK" }, 374 /* 3E O O O READ LONG(10) */ 375 { 0x3E, D | W | O, "READ LONG(10)" }, 376 /* 3F O O O WRITE LONG(10) */ 377 { 0x3F, D | W | O, "WRITE LONG(10)" }, 378 /* 40 ZZZZOZOZ CHANGE DEFINITION */ 379 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, 380 /* 41 O WRITE SAME(10) */ 381 { 0x41, D, "WRITE SAME(10)" }, 382 /* 42 O UNMAP */ 383 { 0x42, D, "UNMAP" }, 384 /* 42 O READ SUB-CHANNEL */ 385 { 0x42, R, "READ SUB-CHANNEL" }, 386 /* 43 O READ TOC/PMA/ATIP */ 387 { 0x43, R, "READ TOC/PMA/ATIP" }, 388 /* 44 M M REPORT DENSITY SUPPORT */ 389 { 0x44, T | V, "REPORT DENSITY SUPPORT" }, 390 /* 44 READ HEADER */ 391 /* 45 O PLAY AUDIO(10) */ 392 { 0x45, R, "PLAY AUDIO(10)" }, 393 /* 46 M GET CONFIGURATION */ 394 { 0x46, R, "GET CONFIGURATION" }, 395 /* 47 O PLAY AUDIO MSF */ 396 { 0x47, R, "PLAY AUDIO MSF" }, 397 /* 48 O SANITIZE */ 398 { 0x48, D, "SANITIZE" }, 399 /* 49 */ 400 /* 4A M GET EVENT STATUS NOTIFICATION */ 401 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, 402 /* 4B O PAUSE/RESUME */ 403 { 0x4B, R, "PAUSE/RESUME" }, 404 /* 4C OOOOO OOOO OOO LOG SELECT */ 405 { 0x4C, ALL & ~(R | B), "LOG SELECT" }, 406 /* 4D OOOOO OOOO OMO LOG SENSE */ 407 { 0x4D, ALL & ~(R | B), "LOG SENSE" }, 408 /* 4E O STOP PLAY/SCAN */ 409 { 0x4E, R, "STOP PLAY/SCAN" }, 410 /* 4F */ 411 /* 50 O XDWRITE(10) */ 412 { 0x50, D, "XDWRITE(10)" }, 413 /* 51 O XPWRITE(10) */ 414 { 0x51, D, "XPWRITE(10)" }, 415 /* 51 O READ DISC INFORMATION */ 416 { 0x51, R, "READ DISC INFORMATION" }, 417 /* 52 O XDREAD(10) */ 418 { 0x52, D, "XDREAD(10)" }, 419 /* 52 O READ TRACK INFORMATION */ 420 { 0x52, R, "READ TRACK INFORMATION" }, 421 /* 53 O RESERVE TRACK */ 422 { 0x53, R, "RESERVE TRACK" }, 423 /* 54 O SEND OPC INFORMATION */ 424 { 0x54, R, "SEND OPC INFORMATION" }, 425 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ 426 { 0x55, ALL & ~(P), "MODE SELECT(10)" }, 427 /* 56 ZZMZO OOOZ RESERVE(10) */ 428 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, 429 /* 56 Z RESERVE ELEMENT(10) */ 430 { 0x56, M, "RESERVE ELEMENT(10)" }, 431 /* 57 ZZMZO OOOZ RELEASE(10) */ 432 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, 433 /* 57 Z RELEASE ELEMENT(10) */ 434 { 0x57, M, "RELEASE ELEMENT(10)" }, 435 /* 58 O REPAIR TRACK */ 436 { 0x58, R, "REPAIR TRACK" }, 437 /* 59 */ 438 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ 439 { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, 440 /* 5B O CLOSE TRACK/SESSION */ 441 { 0x5B, R, "CLOSE TRACK/SESSION" }, 442 /* 5C O READ BUFFER CAPACITY */ 443 { 0x5C, R, "READ BUFFER CAPACITY" }, 444 /* 5D O SEND CUE SHEET */ 445 { 0x5D, R, "SEND CUE SHEET" }, 446 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ 447 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, 448 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ 449 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, 450 /* 7E OO O OOOO O extended CDB */ 451 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, 452 /* 7F O M variable length CDB (more than 16 bytes) */ 453 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, 454 /* 80 Z XDWRITE EXTENDED(16) */ 455 { 0x80, D, "XDWRITE EXTENDED(16)" }, 456 /* 80 M WRITE FILEMARKS(16) */ 457 { 0x80, T, "WRITE FILEMARKS(16)" }, 458 /* 81 Z REBUILD(16) */ 459 { 0x81, D, "REBUILD(16)" }, 460 /* 81 O READ REVERSE(16) */ 461 { 0x81, T, "READ REVERSE(16)" }, 462 /* 82 Z REGENERATE(16) */ 463 { 0x82, D, "REGENERATE(16)" }, 464 /* 83 OOOOO O OO EXTENDED COPY */ 465 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, 466 /* 84 OOOOO O OO RECEIVE COPY RESULTS */ 467 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, 468 /* 85 O O O ATA COMMAND PASS THROUGH(16) */ 469 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, 470 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ 471 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, 472 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ 473 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, 474 /* 88 MM O O O READ(16) */ 475 { 0x88, D | T | W | O | B, "READ(16)" }, 476 /* 89 O COMPARE AND WRITE*/ 477 { 0x89, D, "COMPARE AND WRITE" }, 478 /* 8A OM O O O WRITE(16) */ 479 { 0x8A, D | T | W | O | B, "WRITE(16)" }, 480 /* 8B O ORWRITE */ 481 { 0x8B, D, "ORWRITE" }, 482 /* 8C OO O OO O M READ ATTRIBUTE */ 483 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, 484 /* 8D OO O OO O O WRITE ATTRIBUTE */ 485 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, 486 /* 8E O O O O WRITE AND VERIFY(16) */ 487 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, 488 /* 8F OO O O O VERIFY(16) */ 489 { 0x8F, D | T | W | O | B, "VERIFY(16)" }, 490 /* 90 O O O O PRE-FETCH(16) */ 491 { 0x90, D | W | O | B, "PRE-FETCH(16)" }, 492 /* 91 O O O O SYNCHRONIZE CACHE(16) */ 493 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, 494 /* 91 O SPACE(16) */ 495 { 0x91, T, "SPACE(16)" }, 496 /* 92 Z O O LOCK UNLOCK CACHE(16) */ 497 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, 498 /* 92 O LOCATE(16) */ 499 { 0x92, T, "LOCATE(16)" }, 500 /* 93 O WRITE SAME(16) */ 501 { 0x93, D, "WRITE SAME(16)" }, 502 /* 93 M ERASE(16) */ 503 { 0x93, T, "ERASE(16)" }, 504 /* 94 O ZBC OUT */ 505 { 0x94, ALL, "ZBC OUT" }, 506 /* 95 O ZBC IN */ 507 { 0x95, ALL, "ZBC IN" }, 508 /* 96 */ 509 /* 97 */ 510 /* 98 */ 511 /* 99 */ 512 /* 9A O WRITE STREAM(16) */ 513 { 0x9A, D, "WRITE STREAM(16)" }, 514 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */ 515 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" }, 516 /* 9C O WRITE ATOMIC(16) */ 517 { 0x9C, D, "WRITE ATOMIC(16)" }, 518 /* 9D SERVICE ACTION BIDIRECTIONAL */ 519 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" }, 520 /* XXX KDM ALL for this? op-num.txt defines it for none.. */ 521 /* 9E SERVICE ACTION IN(16) */ 522 { 0x9E, ALL, "SERVICE ACTION IN(16)" }, 523 /* 9F M SERVICE ACTION OUT(16) */ 524 { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, 525 /* A0 MMOOO OMMM OMO REPORT LUNS */ 526 { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, 527 /* A1 O BLANK */ 528 { 0xA1, R, "BLANK" }, 529 /* A1 O O ATA COMMAND PASS THROUGH(12) */ 530 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, 531 /* A2 OO O O SECURITY PROTOCOL IN */ 532 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, 533 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ 534 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, 535 /* A3 O SEND KEY */ 536 { 0xA3, R, "SEND KEY" }, 537 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ 538 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, 539 /* A4 O REPORT KEY */ 540 { 0xA4, R, "REPORT KEY" }, 541 /* A5 O O OM MOVE MEDIUM */ 542 { 0xA5, T | W | O | M, "MOVE MEDIUM" }, 543 /* A5 O PLAY AUDIO(12) */ 544 { 0xA5, R, "PLAY AUDIO(12)" }, 545 /* A6 O EXCHANGE MEDIUM */ 546 { 0xA6, M, "EXCHANGE MEDIUM" }, 547 /* A6 O LOAD/UNLOAD C/DVD */ 548 { 0xA6, R, "LOAD/UNLOAD C/DVD" }, 549 /* A7 ZZ O O MOVE MEDIUM ATTACHED */ 550 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, 551 /* A7 O SET READ AHEAD */ 552 { 0xA7, R, "SET READ AHEAD" }, 553 /* A8 O OOO READ(12) */ 554 { 0xA8, D | W | R | O, "READ(12)" }, 555 /* A8 GET MESSAGE(12) */ 556 { 0xA8, C, "GET MESSAGE(12)" }, 557 /* A9 O SERVICE ACTION OUT(12) */ 558 { 0xA9, V, "SERVICE ACTION OUT(12)" }, 559 /* AA O OOO WRITE(12) */ 560 { 0xAA, D | W | R | O, "WRITE(12)" }, 561 /* AA SEND MESSAGE(12) */ 562 { 0xAA, C, "SEND MESSAGE(12)" }, 563 /* AB O O SERVICE ACTION IN(12) */ 564 { 0xAB, R | V, "SERVICE ACTION IN(12)" }, 565 /* AC O ERASE(12) */ 566 { 0xAC, O, "ERASE(12)" }, 567 /* AC O GET PERFORMANCE */ 568 { 0xAC, R, "GET PERFORMANCE" }, 569 /* AD O READ DVD STRUCTURE */ 570 { 0xAD, R, "READ DVD STRUCTURE" }, 571 /* AE O O O WRITE AND VERIFY(12) */ 572 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, 573 /* AF O OZO VERIFY(12) */ 574 { 0xAF, D | W | R | O, "VERIFY(12)" }, 575 /* B0 ZZZ SEARCH DATA HIGH(12) */ 576 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, 577 /* B1 ZZZ SEARCH DATA EQUAL(12) */ 578 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, 579 /* B2 ZZZ SEARCH DATA LOW(12) */ 580 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, 581 /* B3 Z OZO SET LIMITS(12) */ 582 { 0xB3, D | W | R | O, "SET LIMITS(12)" }, 583 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ 584 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, 585 /* B5 OO O O SECURITY PROTOCOL OUT */ 586 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, 587 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ 588 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, 589 /* B6 O SEND VOLUME TAG */ 590 { 0xB6, M, "SEND VOLUME TAG" }, 591 /* B6 O SET STREAMING */ 592 { 0xB6, R, "SET STREAMING" }, 593 /* B7 O O READ DEFECT DATA(12) */ 594 { 0xB7, D | O, "READ DEFECT DATA(12)" }, 595 /* B8 O OZOM READ ELEMENT STATUS */ 596 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, 597 /* B9 O READ CD MSF */ 598 { 0xB9, R, "READ CD MSF" }, 599 /* BA O O OOMO REDUNDANCY GROUP (IN) */ 600 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, 601 /* BA O SCAN */ 602 { 0xBA, R, "SCAN" }, 603 /* BB O O OOOO REDUNDANCY GROUP (OUT) */ 604 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, 605 /* BB O SET CD SPEED */ 606 { 0xBB, R, "SET CD SPEED" }, 607 /* BC O O OOMO SPARE (IN) */ 608 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, 609 /* BD O O OOOO SPARE (OUT) */ 610 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, 611 /* BD O MECHANISM STATUS */ 612 { 0xBD, R, "MECHANISM STATUS" }, 613 /* BE O O OOMO VOLUME SET (IN) */ 614 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, 615 /* BE O READ CD */ 616 { 0xBE, R, "READ CD" }, 617 /* BF O O OOOO VOLUME SET (OUT) */ 618 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, 619 /* BF O SEND DVD STRUCTURE */ 620 { 0xBF, R, "SEND DVD STRUCTURE" } 621 }; 622 623 const char * 624 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 625 { 626 caddr_t match; 627 int i, j; 628 u_int32_t opmask; 629 u_int16_t pd_type; 630 int num_ops[2]; 631 struct op_table_entry *table[2]; 632 int num_tables; 633 634 /* 635 * If we've got inquiry data, use it to determine what type of 636 * device we're dealing with here. Otherwise, assume direct 637 * access. 638 */ 639 if (inq_data == NULL) { 640 pd_type = T_DIRECT; 641 match = NULL; 642 } else { 643 pd_type = SID_TYPE(inq_data); 644 645 match = cam_quirkmatch((caddr_t)inq_data, 646 (caddr_t)scsi_op_quirk_table, 647 nitems(scsi_op_quirk_table), 648 sizeof(*scsi_op_quirk_table), 649 scsi_inquiry_match); 650 } 651 652 if (match != NULL) { 653 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; 654 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; 655 table[1] = scsi_op_codes; 656 num_ops[1] = nitems(scsi_op_codes); 657 num_tables = 2; 658 } else { 659 /* 660 * If this is true, we have a vendor specific opcode that 661 * wasn't covered in the quirk table. 662 */ 663 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) 664 return("Vendor Specific Command"); 665 666 table[0] = scsi_op_codes; 667 num_ops[0] = nitems(scsi_op_codes); 668 num_tables = 1; 669 } 670 671 /* RBC is 'Simplified' Direct Access Device */ 672 if (pd_type == T_RBC) 673 pd_type = T_DIRECT; 674 675 /* 676 * Host managed drives are direct access for the most part. 677 */ 678 if (pd_type == T_ZBC_HM) 679 pd_type = T_DIRECT; 680 681 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */ 682 if (pd_type == T_NODEVICE) 683 pd_type = T_DIRECT; 684 685 opmask = 1 << pd_type; 686 687 for (j = 0; j < num_tables; j++) { 688 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ 689 if ((table[j][i].opcode == opcode) 690 && ((table[j][i].opmask & opmask) != 0)) 691 return(table[j][i].desc); 692 } 693 } 694 695 /* 696 * If we can't find a match for the command in the table, we just 697 * assume it's a vendor specifc command. 698 */ 699 return("Vendor Specific Command"); 700 701 } 702 703 #else /* SCSI_NO_OP_STRINGS */ 704 705 const char * 706 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 707 { 708 return(""); 709 } 710 711 #endif 712 713 #if !defined(SCSI_NO_SENSE_STRINGS) 714 #define SST(asc, ascq, action, desc) \ 715 asc, ascq, action, desc 716 #else 717 const char empty_string[] = ""; 718 719 #define SST(asc, ascq, action, desc) \ 720 asc, ascq, action, empty_string 721 #endif 722 723 const struct sense_key_table_entry sense_key_table[] = 724 { 725 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, 726 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, 727 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" }, 728 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, 729 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, 730 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, 731 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, 732 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, 733 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, 734 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, 735 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, 736 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, 737 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, 738 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, 739 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, 740 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } 741 }; 742 743 static struct asc_table_entry quantum_fireball_entries[] = { 744 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 745 "Logical unit not ready, initializing cmd. required") } 746 }; 747 748 static struct asc_table_entry sony_mo_entries[] = { 749 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 750 "Logical unit not ready, cause not reportable") } 751 }; 752 753 static struct asc_table_entry hgst_entries[] = { 754 { SST(0x04, 0xF0, SS_RDEF, 755 "Vendor Unique - Logical Unit Not Ready") }, 756 { SST(0x0A, 0x01, SS_RDEF, 757 "Unrecovered Super Certification Log Write Error") }, 758 { SST(0x0A, 0x02, SS_RDEF, 759 "Unrecovered Super Certification Log Read Error") }, 760 { SST(0x15, 0x03, SS_RDEF, 761 "Unrecovered Sector Error") }, 762 { SST(0x3E, 0x04, SS_RDEF, 763 "Unrecovered Self-Test Hard-Cache Test Fail") }, 764 { SST(0x3E, 0x05, SS_RDEF, 765 "Unrecovered Self-Test OTF-Cache Fail") }, 766 { SST(0x40, 0x00, SS_RDEF, 767 "Unrecovered SAT No Buffer Overflow Error") }, 768 { SST(0x40, 0x01, SS_RDEF, 769 "Unrecovered SAT Buffer Overflow Error") }, 770 { SST(0x40, 0x02, SS_RDEF, 771 "Unrecovered SAT No Buffer Overflow With ECS Fault") }, 772 { SST(0x40, 0x03, SS_RDEF, 773 "Unrecovered SAT Buffer Overflow With ECS Fault") }, 774 { SST(0x40, 0x81, SS_RDEF, 775 "DRAM Failure") }, 776 { SST(0x44, 0x0B, SS_RDEF, 777 "Vendor Unique - Internal Target Failure") }, 778 { SST(0x44, 0xF2, SS_RDEF, 779 "Vendor Unique - Internal Target Failure") }, 780 { SST(0x44, 0xF6, SS_RDEF, 781 "Vendor Unique - Internal Target Failure") }, 782 { SST(0x44, 0xF9, SS_RDEF, 783 "Vendor Unique - Internal Target Failure") }, 784 { SST(0x44, 0xFA, SS_RDEF, 785 "Vendor Unique - Internal Target Failure") }, 786 { SST(0x5D, 0x22, SS_RDEF, 787 "Extreme Over-Temperature Warning") }, 788 { SST(0x5D, 0x50, SS_RDEF, 789 "Load/Unload cycle Count Warning") }, 790 { SST(0x81, 0x00, SS_RDEF, 791 "Vendor Unique - Internal Logic Error") }, 792 { SST(0x85, 0x00, SS_RDEF, 793 "Vendor Unique - Internal Key Seed Error") }, 794 }; 795 796 static struct asc_table_entry seagate_entries[] = { 797 { SST(0x04, 0xF0, SS_RDEF, 798 "Logical Unit Not Ready, super certify in Progress") }, 799 { SST(0x08, 0x86, SS_RDEF, 800 "Write Fault Data Corruption") }, 801 { SST(0x09, 0x0D, SS_RDEF, 802 "Tracking Failure") }, 803 { SST(0x09, 0x0E, SS_RDEF, 804 "ETF Failure") }, 805 { SST(0x0B, 0x5D, SS_RDEF, 806 "Pre-SMART Warning") }, 807 { SST(0x0B, 0x85, SS_RDEF, 808 "5V Voltage Warning") }, 809 { SST(0x0B, 0x8C, SS_RDEF, 810 "12V Voltage Warning") }, 811 { SST(0x0C, 0xFF, SS_RDEF, 812 "Write Error - Too many error recovery revs") }, 813 { SST(0x11, 0xFF, SS_RDEF, 814 "Unrecovered Read Error - Too many error recovery revs") }, 815 { SST(0x19, 0x0E, SS_RDEF, 816 "Fewer than 1/2 defect list copies") }, 817 { SST(0x20, 0xF3, SS_RDEF, 818 "Illegal CDB linked to skip mask cmd") }, 819 { SST(0x24, 0xF0, SS_RDEF, 820 "Illegal byte in CDB, LBA not matching") }, 821 { SST(0x24, 0xF1, SS_RDEF, 822 "Illegal byte in CDB, LEN not matching") }, 823 { SST(0x24, 0xF2, SS_RDEF, 824 "Mask not matching transfer length") }, 825 { SST(0x24, 0xF3, SS_RDEF, 826 "Drive formatted without plist") }, 827 { SST(0x26, 0x95, SS_RDEF, 828 "Invalid Field Parameter - CAP File") }, 829 { SST(0x26, 0x96, SS_RDEF, 830 "Invalid Field Parameter - RAP File") }, 831 { SST(0x26, 0x97, SS_RDEF, 832 "Invalid Field Parameter - TMS Firmware Tag") }, 833 { SST(0x26, 0x98, SS_RDEF, 834 "Invalid Field Parameter - Check Sum") }, 835 { SST(0x26, 0x99, SS_RDEF, 836 "Invalid Field Parameter - Firmware Tag") }, 837 { SST(0x29, 0x08, SS_RDEF, 838 "Write Log Dump data") }, 839 { SST(0x29, 0x09, SS_RDEF, 840 "Write Log Dump data") }, 841 { SST(0x29, 0x0A, SS_RDEF, 842 "Reserved disk space") }, 843 { SST(0x29, 0x0B, SS_RDEF, 844 "SDBP") }, 845 { SST(0x29, 0x0C, SS_RDEF, 846 "SDBP") }, 847 { SST(0x31, 0x91, SS_RDEF, 848 "Format Corrupted World Wide Name (WWN) is Invalid") }, 849 { SST(0x32, 0x03, SS_RDEF, 850 "Defect List - Length exceeds Command Allocated Length") }, 851 { SST(0x33, 0x00, SS_RDEF, 852 "Flash not ready for access") }, 853 { SST(0x3F, 0x70, SS_RDEF, 854 "Invalid RAP block") }, 855 { SST(0x3F, 0x71, SS_RDEF, 856 "RAP/ETF mismatch") }, 857 { SST(0x3F, 0x90, SS_RDEF, 858 "Invalid CAP block") }, 859 { SST(0x3F, 0x91, SS_RDEF, 860 "World Wide Name (WWN) Mismatch") }, 861 { SST(0x40, 0x01, SS_RDEF, 862 "DRAM Parity Error") }, 863 { SST(0x40, 0x02, SS_RDEF, 864 "DRAM Parity Error") }, 865 { SST(0x42, 0x0A, SS_RDEF, 866 "Loopback Test") }, 867 { SST(0x42, 0x0B, SS_RDEF, 868 "Loopback Test") }, 869 { SST(0x44, 0xF2, SS_RDEF, 870 "Compare error during data integrity check") }, 871 { SST(0x44, 0xF6, SS_RDEF, 872 "Unrecoverable error during data integrity check") }, 873 { SST(0x47, 0x80, SS_RDEF, 874 "Fibre Channel Sequence Error") }, 875 { SST(0x4E, 0x01, SS_RDEF, 876 "Information Unit Too Short") }, 877 { SST(0x80, 0x00, SS_RDEF, 878 "General Firmware Error / Command Timeout") }, 879 { SST(0x80, 0x01, SS_RDEF, 880 "Command Timeout") }, 881 { SST(0x80, 0x02, SS_RDEF, 882 "Command Timeout") }, 883 { SST(0x80, 0x80, SS_RDEF, 884 "FC FIFO Error During Read Transfer") }, 885 { SST(0x80, 0x81, SS_RDEF, 886 "FC FIFO Error During Write Transfer") }, 887 { SST(0x80, 0x82, SS_RDEF, 888 "DISC FIFO Error During Read Transfer") }, 889 { SST(0x80, 0x83, SS_RDEF, 890 "DISC FIFO Error During Write Transfer") }, 891 { SST(0x80, 0x84, SS_RDEF, 892 "LBA Seeded LRC Error on Read") }, 893 { SST(0x80, 0x85, SS_RDEF, 894 "LBA Seeded LRC Error on Write") }, 895 { SST(0x80, 0x86, SS_RDEF, 896 "IOEDC Error on Read") }, 897 { SST(0x80, 0x87, SS_RDEF, 898 "IOEDC Error on Write") }, 899 { SST(0x80, 0x88, SS_RDEF, 900 "Host Parity Check Failed") }, 901 { SST(0x80, 0x89, SS_RDEF, 902 "IOEDC error on read detected by formatter") }, 903 { SST(0x80, 0x8A, SS_RDEF, 904 "Host Parity Errors / Host FIFO Initialization Failed") }, 905 { SST(0x80, 0x8B, SS_RDEF, 906 "Host Parity Errors") }, 907 { SST(0x80, 0x8C, SS_RDEF, 908 "Host Parity Errors") }, 909 { SST(0x80, 0x8D, SS_RDEF, 910 "Host Parity Errors") }, 911 { SST(0x81, 0x00, SS_RDEF, 912 "LA Check Failed") }, 913 { SST(0x82, 0x00, SS_RDEF, 914 "Internal client detected insufficient buffer") }, 915 { SST(0x84, 0x00, SS_RDEF, 916 "Scheduled Diagnostic And Repair") }, 917 }; 918 919 static struct scsi_sense_quirk_entry sense_quirk_table[] = { 920 { 921 /* 922 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b 923 * when they really should return 0x04 0x02. 924 */ 925 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, 926 /*num_sense_keys*/0, 927 nitems(quantum_fireball_entries), 928 /*sense key entries*/NULL, 929 quantum_fireball_entries 930 }, 931 { 932 /* 933 * This Sony MO drive likes to return 0x04, 0x00 when it 934 * isn't spun up. 935 */ 936 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, 937 /*num_sense_keys*/0, 938 nitems(sony_mo_entries), 939 /*sense key entries*/NULL, 940 sony_mo_entries 941 }, 942 { 943 /* 944 * HGST vendor-specific error codes 945 */ 946 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"}, 947 /*num_sense_keys*/0, 948 nitems(hgst_entries), 949 /*sense key entries*/NULL, 950 hgst_entries 951 }, 952 { 953 /* 954 * SEAGATE vendor-specific error codes 955 */ 956 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"}, 957 /*num_sense_keys*/0, 958 nitems(seagate_entries), 959 /*sense key entries*/NULL, 960 seagate_entries 961 } 962 }; 963 964 const u_int sense_quirk_table_size = nitems(sense_quirk_table); 965 966 static struct asc_table_entry asc_table[] = { 967 /* 968 * From: http://www.t10.org/lists/asc-num.txt 969 * Modifications by Jung-uk Kim (jkim@FreeBSD.org) 970 */ 971 /* 972 * File: ASC-NUM.TXT 973 * 974 * SCSI ASC/ASCQ Assignments 975 * Numeric Sorted Listing 976 * as of 8/12/15 977 * 978 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 979 * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- 980 * . L - PRINTER DEVICE (SSC) blank = reserved 981 * . P - PROCESSOR DEVICE (SPC) not blank = allowed 982 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) 983 * . . R - CD DEVICE (MMC) 984 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 985 * . . .M - MEDIA CHANGER DEVICE (SMC) 986 * . . . A - STORAGE ARRAY DEVICE (SCC) 987 * . . . E - ENCLOSURE SERVICES DEVICE (SES) 988 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 989 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 990 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 991 * . . . . .F - OBJECT-BASED STORAGE (OSD) 992 * DTLPWROMAEBKVF 993 * ASC ASCQ Action 994 * Description 995 */ 996 /* DTLPWROMAEBKVF */ 997 { SST(0x00, 0x00, SS_NOP, 998 "No additional sense information") }, 999 /* T */ 1000 { SST(0x00, 0x01, SS_RDEF, 1001 "Filemark detected") }, 1002 /* T */ 1003 { SST(0x00, 0x02, SS_RDEF, 1004 "End-of-partition/medium detected") }, 1005 /* T */ 1006 { SST(0x00, 0x03, SS_RDEF, 1007 "Setmark detected") }, 1008 /* T */ 1009 { SST(0x00, 0x04, SS_RDEF, 1010 "Beginning-of-partition/medium detected") }, 1011 /* TL */ 1012 { SST(0x00, 0x05, SS_RDEF, 1013 "End-of-data detected") }, 1014 /* DTLPWROMAEBKVF */ 1015 { SST(0x00, 0x06, SS_RDEF, 1016 "I/O process terminated") }, 1017 /* T */ 1018 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ 1019 "Programmable early warning detected") }, 1020 /* R */ 1021 { SST(0x00, 0x11, SS_FATAL | EBUSY, 1022 "Audio play operation in progress") }, 1023 /* R */ 1024 { SST(0x00, 0x12, SS_NOP, 1025 "Audio play operation paused") }, 1026 /* R */ 1027 { SST(0x00, 0x13, SS_NOP, 1028 "Audio play operation successfully completed") }, 1029 /* R */ 1030 { SST(0x00, 0x14, SS_RDEF, 1031 "Audio play operation stopped due to error") }, 1032 /* R */ 1033 { SST(0x00, 0x15, SS_NOP, 1034 "No current audio status to return") }, 1035 /* DTLPWROMAEBKVF */ 1036 { SST(0x00, 0x16, SS_FATAL | EBUSY, 1037 "Operation in progress") }, 1038 /* DTL WROMAEBKVF */ 1039 { SST(0x00, 0x17, SS_RDEF, 1040 "Cleaning requested") }, 1041 /* T */ 1042 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ 1043 "Erase operation in progress") }, 1044 /* T */ 1045 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ 1046 "Locate operation in progress") }, 1047 /* T */ 1048 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ 1049 "Rewind operation in progress") }, 1050 /* T */ 1051 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ 1052 "Set capacity operation in progress") }, 1053 /* T */ 1054 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ 1055 "Verify operation in progress") }, 1056 /* DT B */ 1057 { SST(0x00, 0x1D, SS_NOP, 1058 "ATA pass through information available") }, 1059 /* DT R MAEBKV */ 1060 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ 1061 "Conflicting SA creation request") }, 1062 /* DT B */ 1063 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */ 1064 "Logical unit transitioning to another power condition") }, 1065 /* DT P B */ 1066 { SST(0x00, 0x20, SS_NOP, 1067 "Extended copy information available") }, 1068 /* D */ 1069 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */ 1070 "Atomic command aborted due to ACA") }, 1071 /* D W O BK */ 1072 { SST(0x01, 0x00, SS_RDEF, 1073 "No index/sector signal") }, 1074 /* D WRO BK */ 1075 { SST(0x02, 0x00, SS_RDEF, 1076 "No seek complete") }, 1077 /* DTL W O BK */ 1078 { SST(0x03, 0x00, SS_RDEF, 1079 "Peripheral device write fault") }, 1080 /* T */ 1081 { SST(0x03, 0x01, SS_RDEF, 1082 "No write current") }, 1083 /* T */ 1084 { SST(0x03, 0x02, SS_RDEF, 1085 "Excessive write errors") }, 1086 /* DTLPWROMAEBKVF */ 1087 { SST(0x04, 0x00, SS_RDEF, 1088 "Logical unit not ready, cause not reportable") }, 1089 /* DTLPWROMAEBKVF */ 1090 { SST(0x04, 0x01, SS_WAIT | EBUSY, 1091 "Logical unit is in process of becoming ready") }, 1092 /* DTLPWROMAEBKVF */ 1093 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1094 "Logical unit not ready, initializing command required") }, 1095 /* DTLPWROMAEBKVF */ 1096 { SST(0x04, 0x03, SS_FATAL | ENXIO, 1097 "Logical unit not ready, manual intervention required") }, 1098 /* DTL RO B */ 1099 { SST(0x04, 0x04, SS_FATAL | EBUSY, 1100 "Logical unit not ready, format in progress") }, 1101 /* DT W O A BK F */ 1102 { SST(0x04, 0x05, SS_FATAL | EBUSY, 1103 "Logical unit not ready, rebuild in progress") }, 1104 /* DT W O A BK */ 1105 { SST(0x04, 0x06, SS_FATAL | EBUSY, 1106 "Logical unit not ready, recalculation in progress") }, 1107 /* DTLPWROMAEBKVF */ 1108 { SST(0x04, 0x07, SS_FATAL | EBUSY, 1109 "Logical unit not ready, operation in progress") }, 1110 /* R */ 1111 { SST(0x04, 0x08, SS_FATAL | EBUSY, 1112 "Logical unit not ready, long write in progress") }, 1113 /* DTLPWROMAEBKVF */ 1114 { SST(0x04, 0x09, SS_FATAL | EBUSY, 1115 "Logical unit not ready, self-test in progress") }, 1116 /* DTLPWROMAEBKVF */ 1117 { SST(0x04, 0x0A, SS_WAIT | ENXIO, 1118 "Logical unit not accessible, asymmetric access state transition")}, 1119 /* DTLPWROMAEBKVF */ 1120 { SST(0x04, 0x0B, SS_FATAL | ENXIO, 1121 "Logical unit not accessible, target port in standby state") }, 1122 /* DTLPWROMAEBKVF */ 1123 { SST(0x04, 0x0C, SS_FATAL | ENXIO, 1124 "Logical unit not accessible, target port in unavailable state") }, 1125 /* F */ 1126 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ 1127 "Logical unit not ready, structure check required") }, 1128 /* DTL WR MAEBKVF */ 1129 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */ 1130 "Logical unit not ready, security session in progress") }, 1131 /* DT WROM B */ 1132 { SST(0x04, 0x10, SS_FATAL | ENODEV, 1133 "Logical unit not ready, auxiliary memory not accessible") }, 1134 /* DT WRO AEB VF */ 1135 { SST(0x04, 0x11, SS_WAIT | ENXIO, 1136 "Logical unit not ready, notify (enable spinup) required") }, 1137 /* M V */ 1138 { SST(0x04, 0x12, SS_FATAL | ENXIO, 1139 "Logical unit not ready, offline") }, 1140 /* DT R MAEBKV */ 1141 { SST(0x04, 0x13, SS_WAIT | EBUSY, 1142 "Logical unit not ready, SA creation in progress") }, 1143 /* D B */ 1144 { SST(0x04, 0x14, SS_WAIT | ENOSPC, 1145 "Logical unit not ready, space allocation in progress") }, 1146 /* M */ 1147 { SST(0x04, 0x15, SS_FATAL | ENXIO, 1148 "Logical unit not ready, robotics disabled") }, 1149 /* M */ 1150 { SST(0x04, 0x16, SS_FATAL | ENXIO, 1151 "Logical unit not ready, configuration required") }, 1152 /* M */ 1153 { SST(0x04, 0x17, SS_FATAL | ENXIO, 1154 "Logical unit not ready, calibration required") }, 1155 /* M */ 1156 { SST(0x04, 0x18, SS_FATAL | ENXIO, 1157 "Logical unit not ready, a door is open") }, 1158 /* M */ 1159 { SST(0x04, 0x19, SS_FATAL | ENODEV, 1160 "Logical unit not ready, operating in sequential mode") }, 1161 /* DT B */ 1162 { SST(0x04, 0x1A, SS_WAIT | EBUSY, 1163 "Logical unit not ready, START/STOP UNIT command in progress") }, 1164 /* D B */ 1165 { SST(0x04, 0x1B, SS_WAIT | EBUSY, 1166 "Logical unit not ready, sanitize in progress") }, 1167 /* DT MAEB */ 1168 { SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1169 "Logical unit not ready, additional power use not yet granted") }, 1170 /* D */ 1171 { SST(0x04, 0x1D, SS_WAIT | EBUSY, 1172 "Logical unit not ready, configuration in progress") }, 1173 /* D */ 1174 { SST(0x04, 0x1E, SS_FATAL | ENXIO, 1175 "Logical unit not ready, microcode activation required") }, 1176 /* DTLPWROMAEBKVF */ 1177 { SST(0x04, 0x1F, SS_FATAL | ENXIO, 1178 "Logical unit not ready, microcode download required") }, 1179 /* DTLPWROMAEBKVF */ 1180 { SST(0x04, 0x20, SS_FATAL | ENXIO, 1181 "Logical unit not ready, logical unit reset required") }, 1182 /* DTLPWROMAEBKVF */ 1183 { SST(0x04, 0x21, SS_FATAL | ENXIO, 1184 "Logical unit not ready, hard reset required") }, 1185 /* DTLPWROMAEBKVF */ 1186 { SST(0x04, 0x22, SS_FATAL | ENXIO, 1187 "Logical unit not ready, power cycle required") }, 1188 /* D */ 1189 { SST(0x04, 0x23, SS_FATAL | ENXIO, 1190 "Logical unit not ready, affiliation required") }, 1191 /* D */ 1192 { SST(0x04, 0x24, SS_FATAL | EBUSY, 1193 "Depopulation in progress") }, 1194 /* DTL WROMAEBKVF */ 1195 { SST(0x05, 0x00, SS_RDEF, 1196 "Logical unit does not respond to selection") }, 1197 /* D WROM BK */ 1198 { SST(0x06, 0x00, SS_RDEF, 1199 "No reference position found") }, 1200 /* DTL WROM BK */ 1201 { SST(0x07, 0x00, SS_RDEF, 1202 "Multiple peripheral devices selected") }, 1203 /* DTL WROMAEBKVF */ 1204 { SST(0x08, 0x00, SS_RDEF, 1205 "Logical unit communication failure") }, 1206 /* DTL WROMAEBKVF */ 1207 { SST(0x08, 0x01, SS_RDEF, 1208 "Logical unit communication time-out") }, 1209 /* DTL WROMAEBKVF */ 1210 { SST(0x08, 0x02, SS_RDEF, 1211 "Logical unit communication parity error") }, 1212 /* DT ROM BK */ 1213 { SST(0x08, 0x03, SS_RDEF, 1214 "Logical unit communication CRC error (Ultra-DMA/32)") }, 1215 /* DTLPWRO K */ 1216 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ 1217 "Unreachable copy target") }, 1218 /* DT WRO B */ 1219 { SST(0x09, 0x00, SS_RDEF, 1220 "Track following error") }, 1221 /* WRO K */ 1222 { SST(0x09, 0x01, SS_RDEF, 1223 "Tracking servo failure") }, 1224 /* WRO K */ 1225 { SST(0x09, 0x02, SS_RDEF, 1226 "Focus servo failure") }, 1227 /* WRO */ 1228 { SST(0x09, 0x03, SS_RDEF, 1229 "Spindle servo failure") }, 1230 /* DT WRO B */ 1231 { SST(0x09, 0x04, SS_RDEF, 1232 "Head select fault") }, 1233 /* DT RO B */ 1234 { SST(0x09, 0x05, SS_RDEF, 1235 "Vibration induced tracking error") }, 1236 /* DTLPWROMAEBKVF */ 1237 { SST(0x0A, 0x00, SS_FATAL | ENOSPC, 1238 "Error log overflow") }, 1239 /* DTLPWROMAEBKVF */ 1240 { SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1241 "Warning") }, 1242 /* DTLPWROMAEBKVF */ 1243 { SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1244 "Warning - specified temperature exceeded") }, 1245 /* DTLPWROMAEBKVF */ 1246 { SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1247 "Warning - enclosure degraded") }, 1248 /* DTLPWROMAEBKVF */ 1249 { SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1250 "Warning - background self-test failed") }, 1251 /* DTLPWRO AEBKVF */ 1252 { SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1253 "Warning - background pre-scan detected medium error") }, 1254 /* DTLPWRO AEBKVF */ 1255 { SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1256 "Warning - background medium scan detected medium error") }, 1257 /* DTLPWROMAEBKVF */ 1258 { SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1259 "Warning - non-volatile cache now volatile") }, 1260 /* DTLPWROMAEBKVF */ 1261 { SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1262 "Warning - degraded power to non-volatile cache") }, 1263 /* DTLPWROMAEBKVF */ 1264 { SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1265 "Warning - power loss expected") }, 1266 /* D */ 1267 { SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1268 "Warning - device statistics notification available") }, 1269 /* DTLPWROMAEBKVF */ 1270 { SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE, 1271 "Warning - High critical temperature limit exceeded") }, 1272 /* DTLPWROMAEBKVF */ 1273 { SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE, 1274 "Warning - Low critical temperature limit exceeded") }, 1275 /* DTLPWROMAEBKVF */ 1276 { SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE, 1277 "Warning - High operating temperature limit exceeded") }, 1278 /* DTLPWROMAEBKVF */ 1279 { SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE, 1280 "Warning - Low operating temperature limit exceeded") }, 1281 /* DTLPWROMAEBKVF */ 1282 { SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE, 1283 "Warning - High citical humidity limit exceeded") }, 1284 /* DTLPWROMAEBKVF */ 1285 { SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE, 1286 "Warning - Low citical humidity limit exceeded") }, 1287 /* DTLPWROMAEBKVF */ 1288 { SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE, 1289 "Warning - High operating humidity limit exceeded") }, 1290 /* DTLPWROMAEBKVF */ 1291 { SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE, 1292 "Warning - Low operating humidity limit exceeded") }, 1293 /* T R */ 1294 { SST(0x0C, 0x00, SS_RDEF, 1295 "Write error") }, 1296 /* K */ 1297 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1298 "Write error - recovered with auto reallocation") }, 1299 /* D W O BK */ 1300 { SST(0x0C, 0x02, SS_RDEF, 1301 "Write error - auto reallocation failed") }, 1302 /* D W O BK */ 1303 { SST(0x0C, 0x03, SS_RDEF, 1304 "Write error - recommend reassignment") }, 1305 /* DT W O B */ 1306 { SST(0x0C, 0x04, SS_RDEF, 1307 "Compression check miscompare error") }, 1308 /* DT W O B */ 1309 { SST(0x0C, 0x05, SS_RDEF, 1310 "Data expansion occurred during compression") }, 1311 /* DT W O B */ 1312 { SST(0x0C, 0x06, SS_RDEF, 1313 "Block not compressible") }, 1314 /* R */ 1315 { SST(0x0C, 0x07, SS_RDEF, 1316 "Write error - recovery needed") }, 1317 /* R */ 1318 { SST(0x0C, 0x08, SS_RDEF, 1319 "Write error - recovery failed") }, 1320 /* R */ 1321 { SST(0x0C, 0x09, SS_RDEF, 1322 "Write error - loss of streaming") }, 1323 /* R */ 1324 { SST(0x0C, 0x0A, SS_RDEF, 1325 "Write error - padding blocks added") }, 1326 /* DT WROM B */ 1327 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ 1328 "Auxiliary memory write error") }, 1329 /* DTLPWRO AEBKVF */ 1330 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ 1331 "Write error - unexpected unsolicited data") }, 1332 /* DTLPWRO AEBKVF */ 1333 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ 1334 "Write error - not enough unsolicited data") }, 1335 /* DT W O BK */ 1336 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */ 1337 "Multiple write errors") }, 1338 /* R */ 1339 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ 1340 "Defects in error window") }, 1341 /* D */ 1342 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */ 1343 "Incomplete multiple atomic write operations") }, 1344 /* D */ 1345 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */ 1346 "Write error - recovery scan needed") }, 1347 /* D */ 1348 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */ 1349 "Write error - insufficient zone resources") }, 1350 /* DTLPWRO A K */ 1351 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ 1352 "Error detected by third party temporary initiator") }, 1353 /* DTLPWRO A K */ 1354 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ 1355 "Third party device failure") }, 1356 /* DTLPWRO A K */ 1357 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ 1358 "Copy target device not reachable") }, 1359 /* DTLPWRO A K */ 1360 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ 1361 "Incorrect copy target device type") }, 1362 /* DTLPWRO A K */ 1363 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ 1364 "Copy target device data underrun") }, 1365 /* DTLPWRO A K */ 1366 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ 1367 "Copy target device data overrun") }, 1368 /* DT PWROMAEBK F */ 1369 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ 1370 "Invalid information unit") }, 1371 /* DT PWROMAEBK F */ 1372 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ 1373 "Information unit too short") }, 1374 /* DT PWROMAEBK F */ 1375 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ 1376 "Information unit too long") }, 1377 /* DT P R MAEBK F */ 1378 { SST(0x0E, 0x03, SS_FATAL | EINVAL, 1379 "Invalid field in command information unit") }, 1380 /* D W O BK */ 1381 { SST(0x10, 0x00, SS_RDEF, 1382 "ID CRC or ECC error") }, 1383 /* DT W O */ 1384 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ 1385 "Logical block guard check failed") }, 1386 /* DT W O */ 1387 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ 1388 "Logical block application tag check failed") }, 1389 /* DT W O */ 1390 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ 1391 "Logical block reference tag check failed") }, 1392 /* T */ 1393 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */ 1394 "Logical block protection error on recovered buffer data") }, 1395 /* T */ 1396 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */ 1397 "Logical block protection method error") }, 1398 /* DT WRO BK */ 1399 { SST(0x11, 0x00, SS_FATAL|EIO, 1400 "Unrecovered read error") }, 1401 /* DT WRO BK */ 1402 { SST(0x11, 0x01, SS_FATAL|EIO, 1403 "Read retries exhausted") }, 1404 /* DT WRO BK */ 1405 { SST(0x11, 0x02, SS_FATAL|EIO, 1406 "Error too long to correct") }, 1407 /* DT W O BK */ 1408 { SST(0x11, 0x03, SS_FATAL|EIO, 1409 "Multiple read errors") }, 1410 /* D W O BK */ 1411 { SST(0x11, 0x04, SS_FATAL|EIO, 1412 "Unrecovered read error - auto reallocate failed") }, 1413 /* WRO B */ 1414 { SST(0x11, 0x05, SS_FATAL|EIO, 1415 "L-EC uncorrectable error") }, 1416 /* WRO B */ 1417 { SST(0x11, 0x06, SS_FATAL|EIO, 1418 "CIRC unrecovered error") }, 1419 /* W O B */ 1420 { SST(0x11, 0x07, SS_RDEF, 1421 "Data re-synchronization error") }, 1422 /* T */ 1423 { SST(0x11, 0x08, SS_RDEF, 1424 "Incomplete block read") }, 1425 /* T */ 1426 { SST(0x11, 0x09, SS_RDEF, 1427 "No gap found") }, 1428 /* DT O BK */ 1429 { SST(0x11, 0x0A, SS_RDEF, 1430 "Miscorrected error") }, 1431 /* D W O BK */ 1432 { SST(0x11, 0x0B, SS_FATAL|EIO, 1433 "Unrecovered read error - recommend reassignment") }, 1434 /* D W O BK */ 1435 { SST(0x11, 0x0C, SS_FATAL|EIO, 1436 "Unrecovered read error - recommend rewrite the data") }, 1437 /* DT WRO B */ 1438 { SST(0x11, 0x0D, SS_RDEF, 1439 "De-compression CRC error") }, 1440 /* DT WRO B */ 1441 { SST(0x11, 0x0E, SS_RDEF, 1442 "Cannot decompress using declared algorithm") }, 1443 /* R */ 1444 { SST(0x11, 0x0F, SS_RDEF, 1445 "Error reading UPC/EAN number") }, 1446 /* R */ 1447 { SST(0x11, 0x10, SS_RDEF, 1448 "Error reading ISRC number") }, 1449 /* R */ 1450 { SST(0x11, 0x11, SS_RDEF, 1451 "Read error - loss of streaming") }, 1452 /* DT WROM B */ 1453 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ 1454 "Auxiliary memory read error") }, 1455 /* DTLPWRO AEBKVF */ 1456 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ 1457 "Read error - failed retransmission request") }, 1458 /* D */ 1459 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ 1460 "Read error - LBA marked bad by application client") }, 1461 /* D */ 1462 { SST(0x11, 0x15, SS_FATAL | EIO, 1463 "Write after sanitize required") }, 1464 /* D W O BK */ 1465 { SST(0x12, 0x00, SS_RDEF, 1466 "Address mark not found for ID field") }, 1467 /* D W O BK */ 1468 { SST(0x13, 0x00, SS_RDEF, 1469 "Address mark not found for data field") }, 1470 /* DTL WRO BK */ 1471 { SST(0x14, 0x00, SS_RDEF, 1472 "Recorded entity not found") }, 1473 /* DT WRO BK */ 1474 { SST(0x14, 0x01, SS_RDEF, 1475 "Record not found") }, 1476 /* T */ 1477 { SST(0x14, 0x02, SS_RDEF, 1478 "Filemark or setmark not found") }, 1479 /* T */ 1480 { SST(0x14, 0x03, SS_RDEF, 1481 "End-of-data not found") }, 1482 /* T */ 1483 { SST(0x14, 0x04, SS_RDEF, 1484 "Block sequence error") }, 1485 /* DT W O BK */ 1486 { SST(0x14, 0x05, SS_RDEF, 1487 "Record not found - recommend reassignment") }, 1488 /* DT W O BK */ 1489 { SST(0x14, 0x06, SS_RDEF, 1490 "Record not found - data auto-reallocated") }, 1491 /* T */ 1492 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ 1493 "Locate operation failure") }, 1494 /* DTL WROM BK */ 1495 { SST(0x15, 0x00, SS_RDEF, 1496 "Random positioning error") }, 1497 /* DTL WROM BK */ 1498 { SST(0x15, 0x01, SS_RDEF, 1499 "Mechanical positioning error") }, 1500 /* DT WRO BK */ 1501 { SST(0x15, 0x02, SS_RDEF, 1502 "Positioning error detected by read of medium") }, 1503 /* D W O BK */ 1504 { SST(0x16, 0x00, SS_RDEF, 1505 "Data synchronization mark error") }, 1506 /* D W O BK */ 1507 { SST(0x16, 0x01, SS_RDEF, 1508 "Data sync error - data rewritten") }, 1509 /* D W O BK */ 1510 { SST(0x16, 0x02, SS_RDEF, 1511 "Data sync error - recommend rewrite") }, 1512 /* D W O BK */ 1513 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1514 "Data sync error - data auto-reallocated") }, 1515 /* D W O BK */ 1516 { SST(0x16, 0x04, SS_RDEF, 1517 "Data sync error - recommend reassignment") }, 1518 /* DT WRO BK */ 1519 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1520 "Recovered data with no error correction applied") }, 1521 /* DT WRO BK */ 1522 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1523 "Recovered data with retries") }, 1524 /* DT WRO BK */ 1525 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1526 "Recovered data with positive head offset") }, 1527 /* DT WRO BK */ 1528 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1529 "Recovered data with negative head offset") }, 1530 /* WRO B */ 1531 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1532 "Recovered data with retries and/or CIRC applied") }, 1533 /* D WRO BK */ 1534 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1535 "Recovered data using previous sector ID") }, 1536 /* D W O BK */ 1537 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1538 "Recovered data without ECC - data auto-reallocated") }, 1539 /* D WRO BK */ 1540 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1541 "Recovered data without ECC - recommend reassignment") }, 1542 /* D WRO BK */ 1543 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1544 "Recovered data without ECC - recommend rewrite") }, 1545 /* D WRO BK */ 1546 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1547 "Recovered data without ECC - data rewritten") }, 1548 /* DT WRO BK */ 1549 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1550 "Recovered data with error correction applied") }, 1551 /* D WRO BK */ 1552 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1553 "Recovered data with error corr. & retries applied") }, 1554 /* D WRO BK */ 1555 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1556 "Recovered data - data auto-reallocated") }, 1557 /* R */ 1558 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1559 "Recovered data with CIRC") }, 1560 /* R */ 1561 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1562 "Recovered data with L-EC") }, 1563 /* D WRO BK */ 1564 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1565 "Recovered data - recommend reassignment") }, 1566 /* D WRO BK */ 1567 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1568 "Recovered data - recommend rewrite") }, 1569 /* D W O BK */ 1570 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1571 "Recovered data with ECC - data rewritten") }, 1572 /* R */ 1573 { SST(0x18, 0x08, SS_RDEF, /* XXX TBD */ 1574 "Recovered data with linking") }, 1575 /* D O K */ 1576 { SST(0x19, 0x00, SS_RDEF, 1577 "Defect list error") }, 1578 /* D O K */ 1579 { SST(0x19, 0x01, SS_RDEF, 1580 "Defect list not available") }, 1581 /* D O K */ 1582 { SST(0x19, 0x02, SS_RDEF, 1583 "Defect list error in primary list") }, 1584 /* D O K */ 1585 { SST(0x19, 0x03, SS_RDEF, 1586 "Defect list error in grown list") }, 1587 /* DTLPWROMAEBKVF */ 1588 { SST(0x1A, 0x00, SS_RDEF, 1589 "Parameter list length error") }, 1590 /* DTLPWROMAEBKVF */ 1591 { SST(0x1B, 0x00, SS_RDEF, 1592 "Synchronous data transfer error") }, 1593 /* D O BK */ 1594 { SST(0x1C, 0x00, SS_RDEF, 1595 "Defect list not found") }, 1596 /* D O BK */ 1597 { SST(0x1C, 0x01, SS_RDEF, 1598 "Primary defect list not found") }, 1599 /* D O BK */ 1600 { SST(0x1C, 0x02, SS_RDEF, 1601 "Grown defect list not found") }, 1602 /* DT WRO BK */ 1603 { SST(0x1D, 0x00, SS_FATAL, 1604 "Miscompare during verify operation") }, 1605 /* D B */ 1606 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */ 1607 "Miscomparable verify of unmapped LBA") }, 1608 /* D W O BK */ 1609 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1610 "Recovered ID with ECC correction") }, 1611 /* D O K */ 1612 { SST(0x1F, 0x00, SS_RDEF, 1613 "Partial defect list transfer") }, 1614 /* DTLPWROMAEBKVF */ 1615 { SST(0x20, 0x00, SS_FATAL | EINVAL, 1616 "Invalid command operation code") }, 1617 /* DT PWROMAEBK */ 1618 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ 1619 "Access denied - initiator pending-enrolled") }, 1620 /* DT PWROMAEBK */ 1621 { SST(0x20, 0x02, SS_FATAL | EPERM, 1622 "Access denied - no access rights") }, 1623 /* DT PWROMAEBK */ 1624 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ 1625 "Access denied - invalid mgmt ID key") }, 1626 /* T */ 1627 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ 1628 "Illegal command while in write capable state") }, 1629 /* T */ 1630 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ 1631 "Obsolete") }, 1632 /* T */ 1633 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ 1634 "Illegal command while in explicit address mode") }, 1635 /* T */ 1636 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ 1637 "Illegal command while in implicit address mode") }, 1638 /* DT PWROMAEBK */ 1639 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ 1640 "Access denied - enrollment conflict") }, 1641 /* DT PWROMAEBK */ 1642 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ 1643 "Access denied - invalid LU identifier") }, 1644 /* DT PWROMAEBK */ 1645 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ 1646 "Access denied - invalid proxy token") }, 1647 /* DT PWROMAEBK */ 1648 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ 1649 "Access denied - ACL LUN conflict") }, 1650 /* T */ 1651 { SST(0x20, 0x0C, SS_FATAL | EINVAL, 1652 "Illegal command when not in append-only mode") }, 1653 /* DT WRO BK */ 1654 { SST(0x21, 0x00, SS_FATAL | EINVAL, 1655 "Logical block address out of range") }, 1656 /* DT WROM BK */ 1657 { SST(0x21, 0x01, SS_FATAL | EINVAL, 1658 "Invalid element address") }, 1659 /* R */ 1660 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ 1661 "Invalid address for write") }, 1662 /* R */ 1663 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ 1664 "Invalid write crossing layer jump") }, 1665 /* D */ 1666 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */ 1667 "Unaligned write command") }, 1668 /* D */ 1669 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */ 1670 "Write boundary violation") }, 1671 /* D */ 1672 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */ 1673 "Attempt to read invalid data") }, 1674 /* D */ 1675 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */ 1676 "Read boundary violation") }, 1677 /* D */ 1678 { SST(0x22, 0x00, SS_FATAL | EINVAL, 1679 "Illegal function (use 20 00, 24 00, or 26 00)") }, 1680 /* DT P B */ 1681 { SST(0x23, 0x00, SS_FATAL | EINVAL, 1682 "Invalid token operation, cause not reportable") }, 1683 /* DT P B */ 1684 { SST(0x23, 0x01, SS_FATAL | EINVAL, 1685 "Invalid token operation, unsupported token type") }, 1686 /* DT P B */ 1687 { SST(0x23, 0x02, SS_FATAL | EINVAL, 1688 "Invalid token operation, remote token usage not supported") }, 1689 /* DT P B */ 1690 { SST(0x23, 0x03, SS_FATAL | EINVAL, 1691 "Invalid token operation, remote ROD token creation not supported") }, 1692 /* DT P B */ 1693 { SST(0x23, 0x04, SS_FATAL | EINVAL, 1694 "Invalid token operation, token unknown") }, 1695 /* DT P B */ 1696 { SST(0x23, 0x05, SS_FATAL | EINVAL, 1697 "Invalid token operation, token corrupt") }, 1698 /* DT P B */ 1699 { SST(0x23, 0x06, SS_FATAL | EINVAL, 1700 "Invalid token operation, token revoked") }, 1701 /* DT P B */ 1702 { SST(0x23, 0x07, SS_FATAL | EINVAL, 1703 "Invalid token operation, token expired") }, 1704 /* DT P B */ 1705 { SST(0x23, 0x08, SS_FATAL | EINVAL, 1706 "Invalid token operation, token cancelled") }, 1707 /* DT P B */ 1708 { SST(0x23, 0x09, SS_FATAL | EINVAL, 1709 "Invalid token operation, token deleted") }, 1710 /* DT P B */ 1711 { SST(0x23, 0x0A, SS_FATAL | EINVAL, 1712 "Invalid token operation, invalid token length") }, 1713 /* DTLPWROMAEBKVF */ 1714 { SST(0x24, 0x00, SS_FATAL | EINVAL, 1715 "Invalid field in CDB") }, 1716 /* DTLPWRO AEBKVF */ 1717 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ 1718 "CDB decryption error") }, 1719 /* T */ 1720 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ 1721 "Obsolete") }, 1722 /* T */ 1723 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ 1724 "Obsolete") }, 1725 /* F */ 1726 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ 1727 "Security audit value frozen") }, 1728 /* F */ 1729 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ 1730 "Security working key frozen") }, 1731 /* F */ 1732 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ 1733 "NONCE not unique") }, 1734 /* F */ 1735 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ 1736 "NONCE timestamp out of range") }, 1737 /* DT R MAEBKV */ 1738 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ 1739 "Invalid XCDB") }, 1740 /* DTLPWROMAEBKVF */ 1741 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST, 1742 "Logical unit not supported") }, 1743 /* DTLPWROMAEBKVF */ 1744 { SST(0x26, 0x00, SS_FATAL | EINVAL, 1745 "Invalid field in parameter list") }, 1746 /* DTLPWROMAEBKVF */ 1747 { SST(0x26, 0x01, SS_FATAL | EINVAL, 1748 "Parameter not supported") }, 1749 /* DTLPWROMAEBKVF */ 1750 { SST(0x26, 0x02, SS_FATAL | EINVAL, 1751 "Parameter value invalid") }, 1752 /* DTLPWROMAE K */ 1753 { SST(0x26, 0x03, SS_FATAL | EINVAL, 1754 "Threshold parameters not supported") }, 1755 /* DTLPWROMAEBKVF */ 1756 { SST(0x26, 0x04, SS_FATAL | EINVAL, 1757 "Invalid release of persistent reservation") }, 1758 /* DTLPWRO A BK */ 1759 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ 1760 "Data decryption error") }, 1761 /* DTLPWRO K */ 1762 { SST(0x26, 0x06, SS_FATAL | EINVAL, 1763 "Too many target descriptors") }, 1764 /* DTLPWRO K */ 1765 { SST(0x26, 0x07, SS_FATAL | EINVAL, 1766 "Unsupported target descriptor type code") }, 1767 /* DTLPWRO K */ 1768 { SST(0x26, 0x08, SS_FATAL | EINVAL, 1769 "Too many segment descriptors") }, 1770 /* DTLPWRO K */ 1771 { SST(0x26, 0x09, SS_FATAL | EINVAL, 1772 "Unsupported segment descriptor type code") }, 1773 /* DTLPWRO K */ 1774 { SST(0x26, 0x0A, SS_FATAL | EINVAL, 1775 "Unexpected inexact segment") }, 1776 /* DTLPWRO K */ 1777 { SST(0x26, 0x0B, SS_FATAL | EINVAL, 1778 "Inline data length exceeded") }, 1779 /* DTLPWRO K */ 1780 { SST(0x26, 0x0C, SS_FATAL | EINVAL, 1781 "Invalid operation for copy source or destination") }, 1782 /* DTLPWRO K */ 1783 { SST(0x26, 0x0D, SS_FATAL | EINVAL, 1784 "Copy segment granularity violation") }, 1785 /* DT PWROMAEBK */ 1786 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ 1787 "Invalid parameter while port is enabled") }, 1788 /* F */ 1789 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ 1790 "Invalid data-out buffer integrity check value") }, 1791 /* T */ 1792 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ 1793 "Data decryption key fail limit reached") }, 1794 /* T */ 1795 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ 1796 "Incomplete key-associated data set") }, 1797 /* T */ 1798 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ 1799 "Vendor specific key reference not found") }, 1800 /* D */ 1801 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */ 1802 "Application tag mode page is invalid") }, 1803 /* DT WRO BK */ 1804 { SST(0x27, 0x00, SS_FATAL | EACCES, 1805 "Write protected") }, 1806 /* DT WRO BK */ 1807 { SST(0x27, 0x01, SS_FATAL | EACCES, 1808 "Hardware write protected") }, 1809 /* DT WRO BK */ 1810 { SST(0x27, 0x02, SS_FATAL | EACCES, 1811 "Logical unit software write protected") }, 1812 /* T R */ 1813 { SST(0x27, 0x03, SS_FATAL | EACCES, 1814 "Associated write protect") }, 1815 /* T R */ 1816 { SST(0x27, 0x04, SS_FATAL | EACCES, 1817 "Persistent write protect") }, 1818 /* T R */ 1819 { SST(0x27, 0x05, SS_FATAL | EACCES, 1820 "Permanent write protect") }, 1821 /* R F */ 1822 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ 1823 "Conditional write protect") }, 1824 /* D B */ 1825 { SST(0x27, 0x07, SS_FATAL | ENOSPC, 1826 "Space allocation failed write protect") }, 1827 /* D */ 1828 { SST(0x27, 0x08, SS_FATAL | EACCES, 1829 "Zone is read only") }, 1830 /* DTLPWROMAEBKVF */ 1831 { SST(0x28, 0x00, SS_FATAL | ENXIO, 1832 "Not ready to ready change, medium may have changed") }, 1833 /* DT WROM B */ 1834 { SST(0x28, 0x01, SS_FATAL | ENXIO, 1835 "Import or export element accessed") }, 1836 /* R */ 1837 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ 1838 "Format-layer may have changed") }, 1839 /* M */ 1840 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ 1841 "Import/export element accessed, medium changed") }, 1842 /* 1843 * XXX JGibbs - All of these should use the same errno, but I don't 1844 * think ENXIO is the correct choice. Should we borrow from 1845 * the networking errnos? ECONNRESET anyone? 1846 */ 1847 /* DTLPWROMAEBKVF */ 1848 { SST(0x29, 0x00, SS_FATAL | ENXIO, 1849 "Power on, reset, or bus device reset occurred") }, 1850 /* DTLPWROMAEBKVF */ 1851 { SST(0x29, 0x01, SS_RDEF, 1852 "Power on occurred") }, 1853 /* DTLPWROMAEBKVF */ 1854 { SST(0x29, 0x02, SS_RDEF, 1855 "SCSI bus reset occurred") }, 1856 /* DTLPWROMAEBKVF */ 1857 { SST(0x29, 0x03, SS_RDEF, 1858 "Bus device reset function occurred") }, 1859 /* DTLPWROMAEBKVF */ 1860 { SST(0x29, 0x04, SS_RDEF, 1861 "Device internal reset") }, 1862 /* DTLPWROMAEBKVF */ 1863 { SST(0x29, 0x05, SS_RDEF, 1864 "Transceiver mode changed to single-ended") }, 1865 /* DTLPWROMAEBKVF */ 1866 { SST(0x29, 0x06, SS_RDEF, 1867 "Transceiver mode changed to LVD") }, 1868 /* DTLPWROMAEBKVF */ 1869 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ 1870 "I_T nexus loss occurred") }, 1871 /* DTL WROMAEBKVF */ 1872 { SST(0x2A, 0x00, SS_RDEF, 1873 "Parameters changed") }, 1874 /* DTL WROMAEBKVF */ 1875 { SST(0x2A, 0x01, SS_RDEF, 1876 "Mode parameters changed") }, 1877 /* DTL WROMAE K */ 1878 { SST(0x2A, 0x02, SS_RDEF, 1879 "Log parameters changed") }, 1880 /* DTLPWROMAE K */ 1881 { SST(0x2A, 0x03, SS_RDEF, 1882 "Reservations preempted") }, 1883 /* DTLPWROMAE */ 1884 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ 1885 "Reservations released") }, 1886 /* DTLPWROMAE */ 1887 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ 1888 "Registrations preempted") }, 1889 /* DTLPWROMAEBKVF */ 1890 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ 1891 "Asymmetric access state changed") }, 1892 /* DTLPWROMAEBKVF */ 1893 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ 1894 "Implicit asymmetric access state transition failed") }, 1895 /* DT WROMAEBKVF */ 1896 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ 1897 "Priority changed") }, 1898 /* D */ 1899 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ 1900 "Capacity data has changed") }, 1901 /* DT */ 1902 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ 1903 "Error history I_T nexus cleared") }, 1904 /* DT */ 1905 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ 1906 "Error history snapshot released") }, 1907 /* F */ 1908 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ 1909 "Error recovery attributes have changed") }, 1910 /* T */ 1911 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ 1912 "Data encryption capabilities changed") }, 1913 /* DT M E V */ 1914 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ 1915 "Timestamp changed") }, 1916 /* T */ 1917 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ 1918 "Data encryption parameters changed by another I_T nexus") }, 1919 /* T */ 1920 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ 1921 "Data encryption parameters changed by vendor specific event") }, 1922 /* T */ 1923 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ 1924 "Data encryption key instance counter has changed") }, 1925 /* DT R MAEBKV */ 1926 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ 1927 "SA creation capabilities data has changed") }, 1928 /* T M V */ 1929 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */ 1930 "Medium removal prevention preempted") }, 1931 /* DTLPWRO K */ 1932 { SST(0x2B, 0x00, SS_RDEF, 1933 "Copy cannot execute since host cannot disconnect") }, 1934 /* DTLPWROMAEBKVF */ 1935 { SST(0x2C, 0x00, SS_RDEF, 1936 "Command sequence error") }, 1937 /* */ 1938 { SST(0x2C, 0x01, SS_RDEF, 1939 "Too many windows specified") }, 1940 /* */ 1941 { SST(0x2C, 0x02, SS_RDEF, 1942 "Invalid combination of windows specified") }, 1943 /* R */ 1944 { SST(0x2C, 0x03, SS_RDEF, 1945 "Current program area is not empty") }, 1946 /* R */ 1947 { SST(0x2C, 0x04, SS_RDEF, 1948 "Current program area is empty") }, 1949 /* B */ 1950 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ 1951 "Illegal power condition request") }, 1952 /* R */ 1953 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ 1954 "Persistent prevent conflict") }, 1955 /* DTLPWROMAEBKVF */ 1956 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ 1957 "Previous busy status") }, 1958 /* DTLPWROMAEBKVF */ 1959 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ 1960 "Previous task set full status") }, 1961 /* DTLPWROM EBKVF */ 1962 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ 1963 "Previous reservation conflict status") }, 1964 /* F */ 1965 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ 1966 "Partition or collection contains user objects") }, 1967 /* T */ 1968 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ 1969 "Not reserved") }, 1970 /* D */ 1971 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */ 1972 "ORWRITE generation does not match") }, 1973 /* D */ 1974 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */ 1975 "Reset write pointer not allowed") }, 1976 /* D */ 1977 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */ 1978 "Zone is offline") }, 1979 /* D */ 1980 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */ 1981 "Stream not open") }, 1982 /* D */ 1983 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */ 1984 "Unwritten data in zone") }, 1985 /* T */ 1986 { SST(0x2D, 0x00, SS_RDEF, 1987 "Overwrite error on update in place") }, 1988 /* R */ 1989 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ 1990 "Insufficient time for operation") }, 1991 /* D */ 1992 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */ 1993 "Command timeout before processing") }, 1994 /* D */ 1995 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */ 1996 "Command timeout during processing") }, 1997 /* D */ 1998 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */ 1999 "Command timeout during processing due to error recovery") }, 2000 /* DTLPWROMAEBKVF */ 2001 { SST(0x2F, 0x00, SS_RDEF, 2002 "Commands cleared by another initiator") }, 2003 /* D */ 2004 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ 2005 "Commands cleared by power loss notification") }, 2006 /* DTLPWROMAEBKVF */ 2007 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ 2008 "Commands cleared by device server") }, 2009 /* DTLPWROMAEBKVF */ 2010 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */ 2011 "Some commands cleared by queuing layer event") }, 2012 /* DT WROM BK */ 2013 { SST(0x30, 0x00, SS_RDEF, 2014 "Incompatible medium installed") }, 2015 /* DT WRO BK */ 2016 { SST(0x30, 0x01, SS_RDEF, 2017 "Cannot read medium - unknown format") }, 2018 /* DT WRO BK */ 2019 { SST(0x30, 0x02, SS_RDEF, 2020 "Cannot read medium - incompatible format") }, 2021 /* DT R K */ 2022 { SST(0x30, 0x03, SS_RDEF, 2023 "Cleaning cartridge installed") }, 2024 /* DT WRO BK */ 2025 { SST(0x30, 0x04, SS_RDEF, 2026 "Cannot write medium - unknown format") }, 2027 /* DT WRO BK */ 2028 { SST(0x30, 0x05, SS_RDEF, 2029 "Cannot write medium - incompatible format") }, 2030 /* DT WRO B */ 2031 { SST(0x30, 0x06, SS_RDEF, 2032 "Cannot format medium - incompatible medium") }, 2033 /* DTL WROMAEBKVF */ 2034 { SST(0x30, 0x07, SS_RDEF, 2035 "Cleaning failure") }, 2036 /* R */ 2037 { SST(0x30, 0x08, SS_RDEF, 2038 "Cannot write - application code mismatch") }, 2039 /* R */ 2040 { SST(0x30, 0x09, SS_RDEF, 2041 "Current session not fixated for append") }, 2042 /* DT WRO AEBK */ 2043 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ 2044 "Cleaning request rejected") }, 2045 /* T */ 2046 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ 2047 "WORM medium - overwrite attempted") }, 2048 /* T */ 2049 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ 2050 "WORM medium - integrity check") }, 2051 /* R */ 2052 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ 2053 "Medium not formatted") }, 2054 /* M */ 2055 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ 2056 "Incompatible volume type") }, 2057 /* M */ 2058 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ 2059 "Incompatible volume qualifier") }, 2060 /* M */ 2061 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */ 2062 "Cleaning volume expired") }, 2063 /* DT WRO BK */ 2064 { SST(0x31, 0x00, SS_FATAL | ENXIO, 2065 "Medium format corrupted") }, 2066 /* D L RO B */ 2067 { SST(0x31, 0x01, SS_RDEF, 2068 "Format command failed") }, 2069 /* R */ 2070 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ 2071 "Zoned formatting failed due to spare linking") }, 2072 /* D B */ 2073 { SST(0x31, 0x03, SS_FATAL | EIO, 2074 "SANITIZE command failed") }, 2075 /* D W O BK */ 2076 { SST(0x32, 0x00, SS_RDEF, 2077 "No defect spare location available") }, 2078 /* D W O BK */ 2079 { SST(0x32, 0x01, SS_RDEF, 2080 "Defect list update failure") }, 2081 /* T */ 2082 { SST(0x33, 0x00, SS_RDEF, 2083 "Tape length error") }, 2084 /* DTLPWROMAEBKVF */ 2085 { SST(0x34, 0x00, SS_RDEF, 2086 "Enclosure failure") }, 2087 /* DTLPWROMAEBKVF */ 2088 { SST(0x35, 0x00, SS_RDEF, 2089 "Enclosure services failure") }, 2090 /* DTLPWROMAEBKVF */ 2091 { SST(0x35, 0x01, SS_RDEF, 2092 "Unsupported enclosure function") }, 2093 /* DTLPWROMAEBKVF */ 2094 { SST(0x35, 0x02, SS_RDEF, 2095 "Enclosure services unavailable") }, 2096 /* DTLPWROMAEBKVF */ 2097 { SST(0x35, 0x03, SS_RDEF, 2098 "Enclosure services transfer failure") }, 2099 /* DTLPWROMAEBKVF */ 2100 { SST(0x35, 0x04, SS_RDEF, 2101 "Enclosure services transfer refused") }, 2102 /* DTL WROMAEBKVF */ 2103 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ 2104 "Enclosure services checksum error") }, 2105 /* L */ 2106 { SST(0x36, 0x00, SS_RDEF, 2107 "Ribbon, ink, or toner failure") }, 2108 /* DTL WROMAEBKVF */ 2109 { SST(0x37, 0x00, SS_RDEF, 2110 "Rounded parameter") }, 2111 /* B */ 2112 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ 2113 "Event status notification") }, 2114 /* B */ 2115 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ 2116 "ESN - power management class event") }, 2117 /* B */ 2118 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ 2119 "ESN - media class event") }, 2120 /* B */ 2121 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ 2122 "ESN - device busy class event") }, 2123 /* D */ 2124 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */ 2125 "Thin provisioning soft threshold reached") }, 2126 /* DTL WROMAE K */ 2127 { SST(0x39, 0x00, SS_RDEF, 2128 "Saving parameters not supported") }, 2129 /* DTL WROM BK */ 2130 { SST(0x3A, 0x00, SS_FATAL | ENXIO, 2131 "Medium not present") }, 2132 /* DT WROM BK */ 2133 { SST(0x3A, 0x01, SS_FATAL | ENXIO, 2134 "Medium not present - tray closed") }, 2135 /* DT WROM BK */ 2136 { SST(0x3A, 0x02, SS_FATAL | ENXIO, 2137 "Medium not present - tray open") }, 2138 /* DT WROM B */ 2139 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ 2140 "Medium not present - loadable") }, 2141 /* DT WRO B */ 2142 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ 2143 "Medium not present - medium auxiliary memory accessible") }, 2144 /* TL */ 2145 { SST(0x3B, 0x00, SS_RDEF, 2146 "Sequential positioning error") }, 2147 /* T */ 2148 { SST(0x3B, 0x01, SS_RDEF, 2149 "Tape position error at beginning-of-medium") }, 2150 /* T */ 2151 { SST(0x3B, 0x02, SS_RDEF, 2152 "Tape position error at end-of-medium") }, 2153 /* L */ 2154 { SST(0x3B, 0x03, SS_RDEF, 2155 "Tape or electronic vertical forms unit not ready") }, 2156 /* L */ 2157 { SST(0x3B, 0x04, SS_RDEF, 2158 "Slew failure") }, 2159 /* L */ 2160 { SST(0x3B, 0x05, SS_RDEF, 2161 "Paper jam") }, 2162 /* L */ 2163 { SST(0x3B, 0x06, SS_RDEF, 2164 "Failed to sense top-of-form") }, 2165 /* L */ 2166 { SST(0x3B, 0x07, SS_RDEF, 2167 "Failed to sense bottom-of-form") }, 2168 /* T */ 2169 { SST(0x3B, 0x08, SS_RDEF, 2170 "Reposition error") }, 2171 /* */ 2172 { SST(0x3B, 0x09, SS_RDEF, 2173 "Read past end of medium") }, 2174 /* */ 2175 { SST(0x3B, 0x0A, SS_RDEF, 2176 "Read past beginning of medium") }, 2177 /* */ 2178 { SST(0x3B, 0x0B, SS_RDEF, 2179 "Position past end of medium") }, 2180 /* T */ 2181 { SST(0x3B, 0x0C, SS_RDEF, 2182 "Position past beginning of medium") }, 2183 /* DT WROM BK */ 2184 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, 2185 "Medium destination element full") }, 2186 /* DT WROM BK */ 2187 { SST(0x3B, 0x0E, SS_RDEF, 2188 "Medium source element empty") }, 2189 /* R */ 2190 { SST(0x3B, 0x0F, SS_RDEF, 2191 "End of medium reached") }, 2192 /* DT WROM BK */ 2193 { SST(0x3B, 0x11, SS_RDEF, 2194 "Medium magazine not accessible") }, 2195 /* DT WROM BK */ 2196 { SST(0x3B, 0x12, SS_RDEF, 2197 "Medium magazine removed") }, 2198 /* DT WROM BK */ 2199 { SST(0x3B, 0x13, SS_RDEF, 2200 "Medium magazine inserted") }, 2201 /* DT WROM BK */ 2202 { SST(0x3B, 0x14, SS_RDEF, 2203 "Medium magazine locked") }, 2204 /* DT WROM BK */ 2205 { SST(0x3B, 0x15, SS_RDEF, 2206 "Medium magazine unlocked") }, 2207 /* R */ 2208 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ 2209 "Mechanical positioning or changer error") }, 2210 /* F */ 2211 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ 2212 "Read past end of user object") }, 2213 /* M */ 2214 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ 2215 "Element disabled") }, 2216 /* M */ 2217 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ 2218 "Element enabled") }, 2219 /* M */ 2220 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ 2221 "Data transfer device removed") }, 2222 /* M */ 2223 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ 2224 "Data transfer device inserted") }, 2225 /* T */ 2226 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */ 2227 "Too many logical objects on partition to support operation") }, 2228 /* DTLPWROMAE K */ 2229 { SST(0x3D, 0x00, SS_RDEF, 2230 "Invalid bits in IDENTIFY message") }, 2231 /* DTLPWROMAEBKVF */ 2232 { SST(0x3E, 0x00, SS_RDEF, 2233 "Logical unit has not self-configured yet") }, 2234 /* DTLPWROMAEBKVF */ 2235 { SST(0x3E, 0x01, SS_RDEF, 2236 "Logical unit failure") }, 2237 /* DTLPWROMAEBKVF */ 2238 { SST(0x3E, 0x02, SS_RDEF, 2239 "Timeout on logical unit") }, 2240 /* DTLPWROMAEBKVF */ 2241 { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */ 2242 "Logical unit failed self-test") }, 2243 /* DTLPWROMAEBKVF */ 2244 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ 2245 "Logical unit unable to update self-test log") }, 2246 /* DTLPWROMAEBKVF */ 2247 { SST(0x3F, 0x00, SS_RDEF, 2248 "Target operating conditions have changed") }, 2249 /* DTLPWROMAEBKVF */ 2250 { SST(0x3F, 0x01, SS_RDEF, 2251 "Microcode has been changed") }, 2252 /* DTLPWROM BK */ 2253 { SST(0x3F, 0x02, SS_RDEF, 2254 "Changed operating definition") }, 2255 /* DTLPWROMAEBKVF */ 2256 { SST(0x3F, 0x03, SS_RDEF, 2257 "INQUIRY data has changed") }, 2258 /* DT WROMAEBK */ 2259 { SST(0x3F, 0x04, SS_RDEF, 2260 "Component device attached") }, 2261 /* DT WROMAEBK */ 2262 { SST(0x3F, 0x05, SS_RDEF, 2263 "Device identifier changed") }, 2264 /* DT WROMAEB */ 2265 { SST(0x3F, 0x06, SS_RDEF, 2266 "Redundancy group created or modified") }, 2267 /* DT WROMAEB */ 2268 { SST(0x3F, 0x07, SS_RDEF, 2269 "Redundancy group deleted") }, 2270 /* DT WROMAEB */ 2271 { SST(0x3F, 0x08, SS_RDEF, 2272 "Spare created or modified") }, 2273 /* DT WROMAEB */ 2274 { SST(0x3F, 0x09, SS_RDEF, 2275 "Spare deleted") }, 2276 /* DT WROMAEBK */ 2277 { SST(0x3F, 0x0A, SS_RDEF, 2278 "Volume set created or modified") }, 2279 /* DT WROMAEBK */ 2280 { SST(0x3F, 0x0B, SS_RDEF, 2281 "Volume set deleted") }, 2282 /* DT WROMAEBK */ 2283 { SST(0x3F, 0x0C, SS_RDEF, 2284 "Volume set deassigned") }, 2285 /* DT WROMAEBK */ 2286 { SST(0x3F, 0x0D, SS_RDEF, 2287 "Volume set reassigned") }, 2288 /* DTLPWROMAE */ 2289 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN , 2290 "Reported LUNs data has changed") }, 2291 /* DTLPWROMAEBKVF */ 2292 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ 2293 "Echo buffer overwritten") }, 2294 /* DT WROM B */ 2295 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ 2296 "Medium loadable") }, 2297 /* DT WROM B */ 2298 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ 2299 "Medium auxiliary memory accessible") }, 2300 /* DTLPWR MAEBK F */ 2301 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ 2302 "iSCSI IP address added") }, 2303 /* DTLPWR MAEBK F */ 2304 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ 2305 "iSCSI IP address removed") }, 2306 /* DTLPWR MAEBK F */ 2307 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ 2308 "iSCSI IP address changed") }, 2309 /* DTLPWR MAEBK */ 2310 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */ 2311 "Inspect referrals sense descriptors") }, 2312 /* DTLPWROMAEBKVF */ 2313 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */ 2314 "Microcode has been changed without reset") }, 2315 /* D */ 2316 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */ 2317 "Zone transition to full") }, 2318 /* D */ 2319 { SST(0x40, 0x00, SS_RDEF, 2320 "RAM failure") }, /* deprecated - use 40 NN instead */ 2321 /* DTLPWROMAEBKVF */ 2322 { SST(0x40, 0x80, SS_RDEF, 2323 "Diagnostic failure: ASCQ = Component ID") }, 2324 /* DTLPWROMAEBKVF */ 2325 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, 2326 NULL) }, /* Range 0x80->0xFF */ 2327 /* D */ 2328 { SST(0x41, 0x00, SS_RDEF, 2329 "Data path failure") }, /* deprecated - use 40 NN instead */ 2330 /* D */ 2331 { SST(0x42, 0x00, SS_RDEF, 2332 "Power-on or self-test failure") }, 2333 /* deprecated - use 40 NN instead */ 2334 /* DTLPWROMAEBKVF */ 2335 { SST(0x43, 0x00, SS_RDEF, 2336 "Message error") }, 2337 /* DTLPWROMAEBKVF */ 2338 { SST(0x44, 0x00, SS_FATAL | EIO, 2339 "Internal target failure") }, 2340 /* DT P MAEBKVF */ 2341 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */ 2342 "Persistent reservation information lost") }, 2343 /* DT B */ 2344 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ 2345 "ATA device failed set features") }, 2346 /* DTLPWROMAEBKVF */ 2347 { SST(0x45, 0x00, SS_RDEF, 2348 "Select or reselect failure") }, 2349 /* DTLPWROM BK */ 2350 { SST(0x46, 0x00, SS_RDEF, 2351 "Unsuccessful soft reset") }, 2352 /* DTLPWROMAEBKVF */ 2353 { SST(0x47, 0x00, SS_RDEF, 2354 "SCSI parity error") }, 2355 /* DTLPWROMAEBKVF */ 2356 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ 2357 "Data phase CRC error detected") }, 2358 /* DTLPWROMAEBKVF */ 2359 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ 2360 "SCSI parity error detected during ST data phase") }, 2361 /* DTLPWROMAEBKVF */ 2362 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ 2363 "Information unit iuCRC error detected") }, 2364 /* DTLPWROMAEBKVF */ 2365 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ 2366 "Asynchronous information protection error detected") }, 2367 /* DTLPWROMAEBKVF */ 2368 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ 2369 "Protocol service CRC error") }, 2370 /* DT MAEBKVF */ 2371 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ 2372 "PHY test function in progress") }, 2373 /* DT PWROMAEBK */ 2374 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ 2375 "Some commands cleared by iSCSI protocol event") }, 2376 /* DTLPWROMAEBKVF */ 2377 { SST(0x48, 0x00, SS_RDEF, 2378 "Initiator detected error message received") }, 2379 /* DTLPWROMAEBKVF */ 2380 { SST(0x49, 0x00, SS_RDEF, 2381 "Invalid message error") }, 2382 /* DTLPWROMAEBKVF */ 2383 { SST(0x4A, 0x00, SS_RDEF, 2384 "Command phase error") }, 2385 /* DTLPWROMAEBKVF */ 2386 { SST(0x4B, 0x00, SS_RDEF, 2387 "Data phase error") }, 2388 /* DT PWROMAEBK */ 2389 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ 2390 "Invalid target port transfer tag received") }, 2391 /* DT PWROMAEBK */ 2392 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ 2393 "Too much write data") }, 2394 /* DT PWROMAEBK */ 2395 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ 2396 "ACK/NAK timeout") }, 2397 /* DT PWROMAEBK */ 2398 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ 2399 "NAK received") }, 2400 /* DT PWROMAEBK */ 2401 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ 2402 "Data offset error") }, 2403 /* DT PWROMAEBK */ 2404 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ 2405 "Initiator response timeout") }, 2406 /* DT PWROMAEBK F */ 2407 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */ 2408 "Connection lost") }, 2409 /* DT PWROMAEBK F */ 2410 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */ 2411 "Data-in buffer overflow - data buffer size") }, 2412 /* DT PWROMAEBK F */ 2413 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */ 2414 "Data-in buffer overflow - data buffer descriptor area") }, 2415 /* DT PWROMAEBK F */ 2416 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */ 2417 "Data-in buffer error") }, 2418 /* DT PWROMAEBK F */ 2419 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */ 2420 "Data-out buffer overflow - data buffer size") }, 2421 /* DT PWROMAEBK F */ 2422 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */ 2423 "Data-out buffer overflow - data buffer descriptor area") }, 2424 /* DT PWROMAEBK F */ 2425 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */ 2426 "Data-out buffer error") }, 2427 /* DT PWROMAEBK F */ 2428 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */ 2429 "PCIe fabric error") }, 2430 /* DT PWROMAEBK F */ 2431 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */ 2432 "PCIe completion timeout") }, 2433 /* DT PWROMAEBK F */ 2434 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */ 2435 "PCIe completer abort") }, 2436 /* DT PWROMAEBK F */ 2437 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */ 2438 "PCIe poisoned TLP received") }, 2439 /* DT PWROMAEBK F */ 2440 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */ 2441 "PCIe ECRC check failed") }, 2442 /* DT PWROMAEBK F */ 2443 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */ 2444 "PCIe unsupported request") }, 2445 /* DT PWROMAEBK F */ 2446 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */ 2447 "PCIe ACS violation") }, 2448 /* DT PWROMAEBK F */ 2449 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */ 2450 "PCIe TLP prefix blocket") }, 2451 /* DTLPWROMAEBKVF */ 2452 { SST(0x4C, 0x00, SS_RDEF, 2453 "Logical unit failed self-configuration") }, 2454 /* DTLPWROMAEBKVF */ 2455 { SST(0x4D, 0x00, SS_RDEF, 2456 "Tagged overlapped commands: ASCQ = Queue tag ID") }, 2457 /* DTLPWROMAEBKVF */ 2458 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, 2459 NULL) }, /* Range 0x00->0xFF */ 2460 /* DTLPWROMAEBKVF */ 2461 { SST(0x4E, 0x00, SS_RDEF, 2462 "Overlapped commands attempted") }, 2463 /* T */ 2464 { SST(0x50, 0x00, SS_RDEF, 2465 "Write append error") }, 2466 /* T */ 2467 { SST(0x50, 0x01, SS_RDEF, 2468 "Write append position error") }, 2469 /* T */ 2470 { SST(0x50, 0x02, SS_RDEF, 2471 "Position error related to timing") }, 2472 /* T RO */ 2473 { SST(0x51, 0x00, SS_RDEF, 2474 "Erase failure") }, 2475 /* R */ 2476 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ 2477 "Erase failure - incomplete erase operation detected") }, 2478 /* T */ 2479 { SST(0x52, 0x00, SS_RDEF, 2480 "Cartridge fault") }, 2481 /* DTL WROM BK */ 2482 { SST(0x53, 0x00, SS_RDEF, 2483 "Media load or eject failed") }, 2484 /* T */ 2485 { SST(0x53, 0x01, SS_RDEF, 2486 "Unload tape failure") }, 2487 /* DT WROM BK */ 2488 { SST(0x53, 0x02, SS_RDEF, 2489 "Medium removal prevented") }, 2490 /* M */ 2491 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ 2492 "Medium removal prevented by data transfer element") }, 2493 /* T */ 2494 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ 2495 "Medium thread or unthread failure") }, 2496 /* M */ 2497 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */ 2498 "Volume identifier invalid") }, 2499 /* T */ 2500 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */ 2501 "Volume identifier missing") }, 2502 /* M */ 2503 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */ 2504 "Duplicate volume identifier") }, 2505 /* M */ 2506 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */ 2507 "Element status unknown") }, 2508 /* M */ 2509 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */ 2510 "Data transfer device error - load failed") }, 2511 /* M */ 2512 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */ 2513 "Data transfer device error - unload failed") }, 2514 /* M */ 2515 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */ 2516 "Data transfer device error - unload missing") }, 2517 /* M */ 2518 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */ 2519 "Data transfer device error - eject failed") }, 2520 /* M */ 2521 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */ 2522 "Data transfer device error - library communication failed") }, 2523 /* P */ 2524 { SST(0x54, 0x00, SS_RDEF, 2525 "SCSI to host system interface failure") }, 2526 /* P */ 2527 { SST(0x55, 0x00, SS_RDEF, 2528 "System resource failure") }, 2529 /* D O BK */ 2530 { SST(0x55, 0x01, SS_FATAL | ENOSPC, 2531 "System buffer full") }, 2532 /* DTLPWROMAE K */ 2533 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ 2534 "Insufficient reservation resources") }, 2535 /* DTLPWROMAE K */ 2536 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ 2537 "Insufficient resources") }, 2538 /* DTLPWROMAE K */ 2539 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ 2540 "Insufficient registration resources") }, 2541 /* DT PWROMAEBK */ 2542 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ 2543 "Insufficient access control resources") }, 2544 /* DT WROM B */ 2545 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ 2546 "Auxiliary memory out of space") }, 2547 /* F */ 2548 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ 2549 "Quota error") }, 2550 /* T */ 2551 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ 2552 "Maximum number of supplemental decryption keys exceeded") }, 2553 /* M */ 2554 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ 2555 "Medium auxiliary memory not accessible") }, 2556 /* M */ 2557 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ 2558 "Data currently unavailable") }, 2559 /* DTLPWROMAEBKVF */ 2560 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */ 2561 "Insufficient power for operation") }, 2562 /* DT P B */ 2563 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */ 2564 "Insufficient resources to create ROD") }, 2565 /* DT P B */ 2566 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */ 2567 "Insufficient resources to create ROD token") }, 2568 /* D */ 2569 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */ 2570 "Insufficient zone resources") }, 2571 /* D */ 2572 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */ 2573 "Insufficient zone resources to complete write") }, 2574 /* D */ 2575 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */ 2576 "Maximum number of streams open") }, 2577 /* R */ 2578 { SST(0x57, 0x00, SS_RDEF, 2579 "Unable to recover table-of-contents") }, 2580 /* O */ 2581 { SST(0x58, 0x00, SS_RDEF, 2582 "Generation does not exist") }, 2583 /* O */ 2584 { SST(0x59, 0x00, SS_RDEF, 2585 "Updated block read") }, 2586 /* DTLPWRO BK */ 2587 { SST(0x5A, 0x00, SS_RDEF, 2588 "Operator request or state change input") }, 2589 /* DT WROM BK */ 2590 { SST(0x5A, 0x01, SS_RDEF, 2591 "Operator medium removal request") }, 2592 /* DT WRO A BK */ 2593 { SST(0x5A, 0x02, SS_RDEF, 2594 "Operator selected write protect") }, 2595 /* DT WRO A BK */ 2596 { SST(0x5A, 0x03, SS_RDEF, 2597 "Operator selected write permit") }, 2598 /* DTLPWROM K */ 2599 { SST(0x5B, 0x00, SS_RDEF, 2600 "Log exception") }, 2601 /* DTLPWROM K */ 2602 { SST(0x5B, 0x01, SS_RDEF, 2603 "Threshold condition met") }, 2604 /* DTLPWROM K */ 2605 { SST(0x5B, 0x02, SS_RDEF, 2606 "Log counter at maximum") }, 2607 /* DTLPWROM K */ 2608 { SST(0x5B, 0x03, SS_RDEF, 2609 "Log list codes exhausted") }, 2610 /* D O */ 2611 { SST(0x5C, 0x00, SS_RDEF, 2612 "RPL status change") }, 2613 /* D O */ 2614 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2615 "Spindles synchronized") }, 2616 /* D O */ 2617 { SST(0x5C, 0x02, SS_RDEF, 2618 "Spindles not synchronized") }, 2619 /* DTLPWROMAEBKVF */ 2620 { SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE, 2621 "Failure prediction threshold exceeded") }, 2622 /* R B */ 2623 { SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2624 "Media failure prediction threshold exceeded") }, 2625 /* R */ 2626 { SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE, 2627 "Logical unit failure prediction threshold exceeded") }, 2628 /* R */ 2629 { SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE, 2630 "Spare area exhaustion prediction threshold exceeded") }, 2631 /* D B */ 2632 { SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE, 2633 "Hardware impending failure general hard drive failure") }, 2634 /* D B */ 2635 { SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE, 2636 "Hardware impending failure drive error rate too high") }, 2637 /* D B */ 2638 { SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE, 2639 "Hardware impending failure data error rate too high") }, 2640 /* D B */ 2641 { SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE, 2642 "Hardware impending failure seek error rate too high") }, 2643 /* D B */ 2644 { SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE, 2645 "Hardware impending failure too many block reassigns") }, 2646 /* D B */ 2647 { SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE, 2648 "Hardware impending failure access times too high") }, 2649 /* D B */ 2650 { SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE, 2651 "Hardware impending failure start unit times too high") }, 2652 /* D B */ 2653 { SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE, 2654 "Hardware impending failure channel parametrics") }, 2655 /* D B */ 2656 { SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE, 2657 "Hardware impending failure controller detected") }, 2658 /* D B */ 2659 { SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE, 2660 "Hardware impending failure throughput performance") }, 2661 /* D B */ 2662 { SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE, 2663 "Hardware impending failure seek time performance") }, 2664 /* D B */ 2665 { SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE, 2666 "Hardware impending failure spin-up retry count") }, 2667 /* D B */ 2668 { SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE, 2669 "Hardware impending failure drive calibration retry count") }, 2670 /* D B */ 2671 { SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE, 2672 "Hardware impending failure power loss protection circuit") }, 2673 /* D B */ 2674 { SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE, 2675 "Controller impending failure general hard drive failure") }, 2676 /* D B */ 2677 { SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE, 2678 "Controller impending failure drive error rate too high") }, 2679 /* D B */ 2680 { SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE, 2681 "Controller impending failure data error rate too high") }, 2682 /* D B */ 2683 { SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE, 2684 "Controller impending failure seek error rate too high") }, 2685 /* D B */ 2686 { SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE, 2687 "Controller impending failure too many block reassigns") }, 2688 /* D B */ 2689 { SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE, 2690 "Controller impending failure access times too high") }, 2691 /* D B */ 2692 { SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE, 2693 "Controller impending failure start unit times too high") }, 2694 /* D B */ 2695 { SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE, 2696 "Controller impending failure channel parametrics") }, 2697 /* D B */ 2698 { SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE, 2699 "Controller impending failure controller detected") }, 2700 /* D B */ 2701 { SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE, 2702 "Controller impending failure throughput performance") }, 2703 /* D B */ 2704 { SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE, 2705 "Controller impending failure seek time performance") }, 2706 /* D B */ 2707 { SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE, 2708 "Controller impending failure spin-up retry count") }, 2709 /* D B */ 2710 { SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE, 2711 "Controller impending failure drive calibration retry count") }, 2712 /* D B */ 2713 { SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE, 2714 "Data channel impending failure general hard drive failure") }, 2715 /* D B */ 2716 { SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE, 2717 "Data channel impending failure drive error rate too high") }, 2718 /* D B */ 2719 { SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE, 2720 "Data channel impending failure data error rate too high") }, 2721 /* D B */ 2722 { SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE, 2723 "Data channel impending failure seek error rate too high") }, 2724 /* D B */ 2725 { SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE, 2726 "Data channel impending failure too many block reassigns") }, 2727 /* D B */ 2728 { SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE, 2729 "Data channel impending failure access times too high") }, 2730 /* D B */ 2731 { SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE, 2732 "Data channel impending failure start unit times too high") }, 2733 /* D B */ 2734 { SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE, 2735 "Data channel impending failure channel parametrics") }, 2736 /* D B */ 2737 { SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE, 2738 "Data channel impending failure controller detected") }, 2739 /* D B */ 2740 { SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE, 2741 "Data channel impending failure throughput performance") }, 2742 /* D B */ 2743 { SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE, 2744 "Data channel impending failure seek time performance") }, 2745 /* D B */ 2746 { SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE, 2747 "Data channel impending failure spin-up retry count") }, 2748 /* D B */ 2749 { SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE, 2750 "Data channel impending failure drive calibration retry count") }, 2751 /* D B */ 2752 { SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE, 2753 "Servo impending failure general hard drive failure") }, 2754 /* D B */ 2755 { SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE, 2756 "Servo impending failure drive error rate too high") }, 2757 /* D B */ 2758 { SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE, 2759 "Servo impending failure data error rate too high") }, 2760 /* D B */ 2761 { SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE, 2762 "Servo impending failure seek error rate too high") }, 2763 /* D B */ 2764 { SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE, 2765 "Servo impending failure too many block reassigns") }, 2766 /* D B */ 2767 { SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE, 2768 "Servo impending failure access times too high") }, 2769 /* D B */ 2770 { SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE, 2771 "Servo impending failure start unit times too high") }, 2772 /* D B */ 2773 { SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE, 2774 "Servo impending failure channel parametrics") }, 2775 /* D B */ 2776 { SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE, 2777 "Servo impending failure controller detected") }, 2778 /* D B */ 2779 { SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE, 2780 "Servo impending failure throughput performance") }, 2781 /* D B */ 2782 { SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE, 2783 "Servo impending failure seek time performance") }, 2784 /* D B */ 2785 { SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE, 2786 "Servo impending failure spin-up retry count") }, 2787 /* D B */ 2788 { SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE, 2789 "Servo impending failure drive calibration retry count") }, 2790 /* D B */ 2791 { SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE, 2792 "Spindle impending failure general hard drive failure") }, 2793 /* D B */ 2794 { SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE, 2795 "Spindle impending failure drive error rate too high") }, 2796 /* D B */ 2797 { SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE, 2798 "Spindle impending failure data error rate too high") }, 2799 /* D B */ 2800 { SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE, 2801 "Spindle impending failure seek error rate too high") }, 2802 /* D B */ 2803 { SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE, 2804 "Spindle impending failure too many block reassigns") }, 2805 /* D B */ 2806 { SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE, 2807 "Spindle impending failure access times too high") }, 2808 /* D B */ 2809 { SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE, 2810 "Spindle impending failure start unit times too high") }, 2811 /* D B */ 2812 { SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE, 2813 "Spindle impending failure channel parametrics") }, 2814 /* D B */ 2815 { SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE, 2816 "Spindle impending failure controller detected") }, 2817 /* D B */ 2818 { SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE, 2819 "Spindle impending failure throughput performance") }, 2820 /* D B */ 2821 { SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE, 2822 "Spindle impending failure seek time performance") }, 2823 /* D B */ 2824 { SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE, 2825 "Spindle impending failure spin-up retry count") }, 2826 /* D B */ 2827 { SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE, 2828 "Spindle impending failure drive calibration retry count") }, 2829 /* D B */ 2830 { SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE, 2831 "Firmware impending failure general hard drive failure") }, 2832 /* D B */ 2833 { SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE, 2834 "Firmware impending failure drive error rate too high") }, 2835 /* D B */ 2836 { SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE, 2837 "Firmware impending failure data error rate too high") }, 2838 /* D B */ 2839 { SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE, 2840 "Firmware impending failure seek error rate too high") }, 2841 /* D B */ 2842 { SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE, 2843 "Firmware impending failure too many block reassigns") }, 2844 /* D B */ 2845 { SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE, 2846 "Firmware impending failure access times too high") }, 2847 /* D B */ 2848 { SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE, 2849 "Firmware impending failure start unit times too high") }, 2850 /* D B */ 2851 { SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE, 2852 "Firmware impending failure channel parametrics") }, 2853 /* D B */ 2854 { SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE, 2855 "Firmware impending failure controller detected") }, 2856 /* D B */ 2857 { SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE, 2858 "Firmware impending failure throughput performance") }, 2859 /* D B */ 2860 { SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE, 2861 "Firmware impending failure seek time performance") }, 2862 /* D B */ 2863 { SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE, 2864 "Firmware impending failure spin-up retry count") }, 2865 /* D B */ 2866 { SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE, 2867 "Firmware impending failure drive calibration retry count") }, 2868 /* D B */ 2869 { SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE, 2870 "Media impending failure endurance limit met") }, 2871 /* DTLPWROMAEBKVF */ 2872 { SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE, 2873 "Failure prediction threshold exceeded (false)") }, 2874 /* DTLPWRO A K */ 2875 { SST(0x5E, 0x00, SS_RDEF, 2876 "Low power condition on") }, 2877 /* DTLPWRO A K */ 2878 { SST(0x5E, 0x01, SS_RDEF, 2879 "Idle condition activated by timer") }, 2880 /* DTLPWRO A K */ 2881 { SST(0x5E, 0x02, SS_RDEF, 2882 "Standby condition activated by timer") }, 2883 /* DTLPWRO A K */ 2884 { SST(0x5E, 0x03, SS_RDEF, 2885 "Idle condition activated by command") }, 2886 /* DTLPWRO A K */ 2887 { SST(0x5E, 0x04, SS_RDEF, 2888 "Standby condition activated by command") }, 2889 /* DTLPWRO A K */ 2890 { SST(0x5E, 0x05, SS_RDEF, 2891 "Idle-B condition activated by timer") }, 2892 /* DTLPWRO A K */ 2893 { SST(0x5E, 0x06, SS_RDEF, 2894 "Idle-B condition activated by command") }, 2895 /* DTLPWRO A K */ 2896 { SST(0x5E, 0x07, SS_RDEF, 2897 "Idle-C condition activated by timer") }, 2898 /* DTLPWRO A K */ 2899 { SST(0x5E, 0x08, SS_RDEF, 2900 "Idle-C condition activated by command") }, 2901 /* DTLPWRO A K */ 2902 { SST(0x5E, 0x09, SS_RDEF, 2903 "Standby-Y condition activated by timer") }, 2904 /* DTLPWRO A K */ 2905 { SST(0x5E, 0x0A, SS_RDEF, 2906 "Standby-Y condition activated by command") }, 2907 /* B */ 2908 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ 2909 "Power state change to active") }, 2910 /* B */ 2911 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ 2912 "Power state change to idle") }, 2913 /* B */ 2914 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ 2915 "Power state change to standby") }, 2916 /* B */ 2917 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ 2918 "Power state change to sleep") }, 2919 /* BK */ 2920 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ 2921 "Power state change to device control") }, 2922 /* */ 2923 { SST(0x60, 0x00, SS_RDEF, 2924 "Lamp failure") }, 2925 /* */ 2926 { SST(0x61, 0x00, SS_RDEF, 2927 "Video acquisition error") }, 2928 /* */ 2929 { SST(0x61, 0x01, SS_RDEF, 2930 "Unable to acquire video") }, 2931 /* */ 2932 { SST(0x61, 0x02, SS_RDEF, 2933 "Out of focus") }, 2934 /* */ 2935 { SST(0x62, 0x00, SS_RDEF, 2936 "Scan head positioning error") }, 2937 /* R */ 2938 { SST(0x63, 0x00, SS_RDEF, 2939 "End of user area encountered on this track") }, 2940 /* R */ 2941 { SST(0x63, 0x01, SS_FATAL | ENOSPC, 2942 "Packet does not fit in available space") }, 2943 /* R */ 2944 { SST(0x64, 0x00, SS_FATAL | ENXIO, 2945 "Illegal mode for this track") }, 2946 /* R */ 2947 { SST(0x64, 0x01, SS_RDEF, 2948 "Invalid packet size") }, 2949 /* DTLPWROMAEBKVF */ 2950 { SST(0x65, 0x00, SS_RDEF, 2951 "Voltage fault") }, 2952 /* */ 2953 { SST(0x66, 0x00, SS_RDEF, 2954 "Automatic document feeder cover up") }, 2955 /* */ 2956 { SST(0x66, 0x01, SS_RDEF, 2957 "Automatic document feeder lift up") }, 2958 /* */ 2959 { SST(0x66, 0x02, SS_RDEF, 2960 "Document jam in automatic document feeder") }, 2961 /* */ 2962 { SST(0x66, 0x03, SS_RDEF, 2963 "Document miss feed automatic in document feeder") }, 2964 /* A */ 2965 { SST(0x67, 0x00, SS_RDEF, 2966 "Configuration failure") }, 2967 /* A */ 2968 { SST(0x67, 0x01, SS_RDEF, 2969 "Configuration of incapable logical units failed") }, 2970 /* A */ 2971 { SST(0x67, 0x02, SS_RDEF, 2972 "Add logical unit failed") }, 2973 /* A */ 2974 { SST(0x67, 0x03, SS_RDEF, 2975 "Modification of logical unit failed") }, 2976 /* A */ 2977 { SST(0x67, 0x04, SS_RDEF, 2978 "Exchange of logical unit failed") }, 2979 /* A */ 2980 { SST(0x67, 0x05, SS_RDEF, 2981 "Remove of logical unit failed") }, 2982 /* A */ 2983 { SST(0x67, 0x06, SS_RDEF, 2984 "Attachment of logical unit failed") }, 2985 /* A */ 2986 { SST(0x67, 0x07, SS_RDEF, 2987 "Creation of logical unit failed") }, 2988 /* A */ 2989 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ 2990 "Assign failure occurred") }, 2991 /* A */ 2992 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ 2993 "Multiply assigned logical unit") }, 2994 /* DTLPWROMAEBKVF */ 2995 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ 2996 "Set target port groups command failed") }, 2997 /* DT B */ 2998 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ 2999 "ATA device feature not enabled") }, 3000 /* A */ 3001 { SST(0x68, 0x00, SS_RDEF, 3002 "Logical unit not configured") }, 3003 /* D */ 3004 { SST(0x68, 0x01, SS_RDEF, 3005 "Subsidiary logical unit not configured") }, 3006 /* A */ 3007 { SST(0x69, 0x00, SS_RDEF, 3008 "Data loss on logical unit") }, 3009 /* A */ 3010 { SST(0x69, 0x01, SS_RDEF, 3011 "Multiple logical unit failures") }, 3012 /* A */ 3013 { SST(0x69, 0x02, SS_RDEF, 3014 "Parity/data mismatch") }, 3015 /* A */ 3016 { SST(0x6A, 0x00, SS_RDEF, 3017 "Informational, refer to log") }, 3018 /* A */ 3019 { SST(0x6B, 0x00, SS_RDEF, 3020 "State change has occurred") }, 3021 /* A */ 3022 { SST(0x6B, 0x01, SS_RDEF, 3023 "Redundancy level got better") }, 3024 /* A */ 3025 { SST(0x6B, 0x02, SS_RDEF, 3026 "Redundancy level got worse") }, 3027 /* A */ 3028 { SST(0x6C, 0x00, SS_RDEF, 3029 "Rebuild failure occurred") }, 3030 /* A */ 3031 { SST(0x6D, 0x00, SS_RDEF, 3032 "Recalculate failure occurred") }, 3033 /* A */ 3034 { SST(0x6E, 0x00, SS_RDEF, 3035 "Command to logical unit failed") }, 3036 /* R */ 3037 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ 3038 "Copy protection key exchange failure - authentication failure") }, 3039 /* R */ 3040 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ 3041 "Copy protection key exchange failure - key not present") }, 3042 /* R */ 3043 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ 3044 "Copy protection key exchange failure - key not established") }, 3045 /* R */ 3046 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ 3047 "Read of scrambled sector without authentication") }, 3048 /* R */ 3049 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ 3050 "Media region code is mismatched to logical unit region") }, 3051 /* R */ 3052 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ 3053 "Drive region must be permanent/region reset count error") }, 3054 /* R */ 3055 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ 3056 "Insufficient block count for binding NONCE recording") }, 3057 /* R */ 3058 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ 3059 "Conflict in binding NONCE recording") }, 3060 /* T */ 3061 { SST(0x70, 0x00, SS_RDEF, 3062 "Decompression exception short: ASCQ = Algorithm ID") }, 3063 /* T */ 3064 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, 3065 NULL) }, /* Range 0x00 -> 0xFF */ 3066 /* T */ 3067 { SST(0x71, 0x00, SS_RDEF, 3068 "Decompression exception long: ASCQ = Algorithm ID") }, 3069 /* T */ 3070 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, 3071 NULL) }, /* Range 0x00 -> 0xFF */ 3072 /* R */ 3073 { SST(0x72, 0x00, SS_RDEF, 3074 "Session fixation error") }, 3075 /* R */ 3076 { SST(0x72, 0x01, SS_RDEF, 3077 "Session fixation error writing lead-in") }, 3078 /* R */ 3079 { SST(0x72, 0x02, SS_RDEF, 3080 "Session fixation error writing lead-out") }, 3081 /* R */ 3082 { SST(0x72, 0x03, SS_RDEF, 3083 "Session fixation error - incomplete track in session") }, 3084 /* R */ 3085 { SST(0x72, 0x04, SS_RDEF, 3086 "Empty or partially written reserved track") }, 3087 /* R */ 3088 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ 3089 "No more track reservations allowed") }, 3090 /* R */ 3091 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ 3092 "RMZ extension is not allowed") }, 3093 /* R */ 3094 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ 3095 "No more test zone extensions are allowed") }, 3096 /* R */ 3097 { SST(0x73, 0x00, SS_RDEF, 3098 "CD control error") }, 3099 /* R */ 3100 { SST(0x73, 0x01, SS_RDEF, 3101 "Power calibration area almost full") }, 3102 /* R */ 3103 { SST(0x73, 0x02, SS_FATAL | ENOSPC, 3104 "Power calibration area is full") }, 3105 /* R */ 3106 { SST(0x73, 0x03, SS_RDEF, 3107 "Power calibration area error") }, 3108 /* R */ 3109 { SST(0x73, 0x04, SS_RDEF, 3110 "Program memory area update failure") }, 3111 /* R */ 3112 { SST(0x73, 0x05, SS_RDEF, 3113 "Program memory area is full") }, 3114 /* R */ 3115 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ 3116 "RMA/PMA is almost full") }, 3117 /* R */ 3118 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ 3119 "Current power calibration area almost full") }, 3120 /* R */ 3121 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ 3122 "Current power calibration area is full") }, 3123 /* R */ 3124 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ 3125 "RDZ is full") }, 3126 /* T */ 3127 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ 3128 "Security error") }, 3129 /* T */ 3130 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ 3131 "Unable to decrypt data") }, 3132 /* T */ 3133 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ 3134 "Unencrypted data encountered while decrypting") }, 3135 /* T */ 3136 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ 3137 "Incorrect data encryption key") }, 3138 /* T */ 3139 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ 3140 "Cryptographic integrity validation failed") }, 3141 /* T */ 3142 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ 3143 "Error decrypting data") }, 3144 /* T */ 3145 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ 3146 "Unknown signature verification key") }, 3147 /* T */ 3148 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ 3149 "Encryption parameters not useable") }, 3150 /* DT R M E VF */ 3151 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ 3152 "Digital signature validation failure") }, 3153 /* T */ 3154 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ 3155 "Encryption mode mismatch on read") }, 3156 /* T */ 3157 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ 3158 "Encrypted block not raw read enabled") }, 3159 /* T */ 3160 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ 3161 "Incorrect encryption parameters") }, 3162 /* DT R MAEBKV */ 3163 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ 3164 "Unable to decrypt parameter list") }, 3165 /* T */ 3166 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ 3167 "Encryption algorithm disabled") }, 3168 /* DT R MAEBKV */ 3169 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ 3170 "SA creation parameter value invalid") }, 3171 /* DT R MAEBKV */ 3172 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ 3173 "SA creation parameter value rejected") }, 3174 /* DT R MAEBKV */ 3175 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ 3176 "Invalid SA usage") }, 3177 /* T */ 3178 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ 3179 "Data encryption configuration prevented") }, 3180 /* DT R MAEBKV */ 3181 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ 3182 "SA creation parameter not supported") }, 3183 /* DT R MAEBKV */ 3184 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ 3185 "Authentication failed") }, 3186 /* V */ 3187 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ 3188 "External data encryption key manager access error") }, 3189 /* V */ 3190 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ 3191 "External data encryption key manager error") }, 3192 /* V */ 3193 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ 3194 "External data encryption key not found") }, 3195 /* V */ 3196 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ 3197 "External data encryption request not authorized") }, 3198 /* T */ 3199 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ 3200 "External data encryption control timeout") }, 3201 /* T */ 3202 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ 3203 "External data encryption control error") }, 3204 /* DT R M E V */ 3205 { SST(0x74, 0x71, SS_FATAL | EACCES, 3206 "Logical unit access not authorized") }, 3207 /* D */ 3208 { SST(0x74, 0x79, SS_FATAL | EACCES, 3209 "Security conflict in translated device") } 3210 }; 3211 3212 const u_int asc_table_size = nitems(asc_table); 3213 3214 struct asc_key 3215 { 3216 int asc; 3217 int ascq; 3218 }; 3219 3220 static int 3221 ascentrycomp(const void *key, const void *member) 3222 { 3223 int asc; 3224 int ascq; 3225 const struct asc_table_entry *table_entry; 3226 3227 asc = ((const struct asc_key *)key)->asc; 3228 ascq = ((const struct asc_key *)key)->ascq; 3229 table_entry = (const struct asc_table_entry *)member; 3230 3231 if (asc >= table_entry->asc) { 3232 if (asc > table_entry->asc) 3233 return (1); 3234 3235 if (ascq <= table_entry->ascq) { 3236 /* Check for ranges */ 3237 if (ascq == table_entry->ascq 3238 || ((table_entry->action & SSQ_RANGE) != 0 3239 && ascq >= (table_entry - 1)->ascq)) 3240 return (0); 3241 return (-1); 3242 } 3243 return (1); 3244 } 3245 return (-1); 3246 } 3247 3248 static int 3249 senseentrycomp(const void *key, const void *member) 3250 { 3251 int sense_key; 3252 const struct sense_key_table_entry *table_entry; 3253 3254 sense_key = *((const int *)key); 3255 table_entry = (const struct sense_key_table_entry *)member; 3256 3257 if (sense_key >= table_entry->sense_key) { 3258 if (sense_key == table_entry->sense_key) 3259 return (0); 3260 return (1); 3261 } 3262 return (-1); 3263 } 3264 3265 static void 3266 fetchtableentries(int sense_key, int asc, int ascq, 3267 struct scsi_inquiry_data *inq_data, 3268 const struct sense_key_table_entry **sense_entry, 3269 const struct asc_table_entry **asc_entry) 3270 { 3271 caddr_t match; 3272 const struct asc_table_entry *asc_tables[2]; 3273 const struct sense_key_table_entry *sense_tables[2]; 3274 struct asc_key asc_ascq; 3275 size_t asc_tables_size[2]; 3276 size_t sense_tables_size[2]; 3277 int num_asc_tables; 3278 int num_sense_tables; 3279 int i; 3280 3281 /* Default to failure */ 3282 *sense_entry = NULL; 3283 *asc_entry = NULL; 3284 match = NULL; 3285 if (inq_data != NULL) 3286 match = cam_quirkmatch((caddr_t)inq_data, 3287 (caddr_t)sense_quirk_table, 3288 sense_quirk_table_size, 3289 sizeof(*sense_quirk_table), 3290 scsi_inquiry_match); 3291 3292 if (match != NULL) { 3293 struct scsi_sense_quirk_entry *quirk; 3294 3295 quirk = (struct scsi_sense_quirk_entry *)match; 3296 asc_tables[0] = quirk->asc_info; 3297 asc_tables_size[0] = quirk->num_ascs; 3298 asc_tables[1] = asc_table; 3299 asc_tables_size[1] = asc_table_size; 3300 num_asc_tables = 2; 3301 sense_tables[0] = quirk->sense_key_info; 3302 sense_tables_size[0] = quirk->num_sense_keys; 3303 sense_tables[1] = sense_key_table; 3304 sense_tables_size[1] = nitems(sense_key_table); 3305 num_sense_tables = 2; 3306 } else { 3307 asc_tables[0] = asc_table; 3308 asc_tables_size[0] = asc_table_size; 3309 num_asc_tables = 1; 3310 sense_tables[0] = sense_key_table; 3311 sense_tables_size[0] = nitems(sense_key_table); 3312 num_sense_tables = 1; 3313 } 3314 3315 asc_ascq.asc = asc; 3316 asc_ascq.ascq = ascq; 3317 for (i = 0; i < num_asc_tables; i++) { 3318 void *found_entry; 3319 3320 found_entry = bsearch(&asc_ascq, asc_tables[i], 3321 asc_tables_size[i], 3322 sizeof(**asc_tables), 3323 ascentrycomp); 3324 3325 if (found_entry) { 3326 *asc_entry = (struct asc_table_entry *)found_entry; 3327 break; 3328 } 3329 } 3330 3331 for (i = 0; i < num_sense_tables; i++) { 3332 void *found_entry; 3333 3334 found_entry = bsearch(&sense_key, sense_tables[i], 3335 sense_tables_size[i], 3336 sizeof(**sense_tables), 3337 senseentrycomp); 3338 3339 if (found_entry) { 3340 *sense_entry = 3341 (struct sense_key_table_entry *)found_entry; 3342 break; 3343 } 3344 } 3345 } 3346 3347 void 3348 scsi_sense_desc(int sense_key, int asc, int ascq, 3349 struct scsi_inquiry_data *inq_data, 3350 const char **sense_key_desc, const char **asc_desc) 3351 { 3352 const struct asc_table_entry *asc_entry; 3353 const struct sense_key_table_entry *sense_entry; 3354 3355 fetchtableentries(sense_key, asc, ascq, 3356 inq_data, 3357 &sense_entry, 3358 &asc_entry); 3359 3360 if (sense_entry != NULL) 3361 *sense_key_desc = sense_entry->desc; 3362 else 3363 *sense_key_desc = "Invalid Sense Key"; 3364 3365 if (asc_entry != NULL) 3366 *asc_desc = asc_entry->desc; 3367 else if (asc >= 0x80 && asc <= 0xff) 3368 *asc_desc = "Vendor Specific ASC"; 3369 else if (ascq >= 0x80 && ascq <= 0xff) 3370 *asc_desc = "Vendor Specific ASCQ"; 3371 else 3372 *asc_desc = "Reserved ASC/ASCQ pair"; 3373 } 3374 3375 /* 3376 * Given sense and device type information, return the appropriate action. 3377 * If we do not understand the specific error as identified by the ASC/ASCQ 3378 * pair, fall back on the more generic actions derived from the sense key. 3379 */ 3380 scsi_sense_action 3381 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, 3382 u_int32_t sense_flags) 3383 { 3384 const struct asc_table_entry *asc_entry; 3385 const struct sense_key_table_entry *sense_entry; 3386 int error_code, sense_key, asc, ascq; 3387 scsi_sense_action action; 3388 3389 if (!scsi_extract_sense_ccb((union ccb *)csio, 3390 &error_code, &sense_key, &asc, &ascq)) { 3391 action = SS_RDEF; 3392 } else if ((error_code == SSD_DEFERRED_ERROR) 3393 || (error_code == SSD_DESC_DEFERRED_ERROR)) { 3394 /* 3395 * XXX dufault@FreeBSD.org 3396 * This error doesn't relate to the command associated 3397 * with this request sense. A deferred error is an error 3398 * for a command that has already returned GOOD status 3399 * (see SCSI2 8.2.14.2). 3400 * 3401 * By my reading of that section, it looks like the current 3402 * command has been cancelled, we should now clean things up 3403 * (hopefully recovering any lost data) and then retry the 3404 * current command. There are two easy choices, both wrong: 3405 * 3406 * 1. Drop through (like we had been doing), thus treating 3407 * this as if the error were for the current command and 3408 * return and stop the current command. 3409 * 3410 * 2. Issue a retry (like I made it do) thus hopefully 3411 * recovering the current transfer, and ignoring the 3412 * fact that we've dropped a command. 3413 * 3414 * These should probably be handled in a device specific 3415 * sense handler or punted back up to a user mode daemon 3416 */ 3417 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3418 } else { 3419 fetchtableentries(sense_key, asc, ascq, 3420 inq_data, 3421 &sense_entry, 3422 &asc_entry); 3423 3424 /* 3425 * Override the 'No additional Sense' entry (0,0) 3426 * with the error action of the sense key. 3427 */ 3428 if (asc_entry != NULL 3429 && (asc != 0 || ascq != 0)) 3430 action = asc_entry->action; 3431 else if (sense_entry != NULL) 3432 action = sense_entry->action; 3433 else 3434 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3435 3436 if (sense_key == SSD_KEY_RECOVERED_ERROR) { 3437 /* 3438 * The action succeeded but the device wants 3439 * the user to know that some recovery action 3440 * was required. 3441 */ 3442 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); 3443 action |= SS_NOP|SSQ_PRINT_SENSE; 3444 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { 3445 if ((sense_flags & SF_QUIET_IR) != 0) 3446 action &= ~SSQ_PRINT_SENSE; 3447 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { 3448 if ((sense_flags & SF_RETRY_UA) != 0 3449 && (action & SS_MASK) == SS_FAIL) { 3450 action &= ~(SS_MASK|SSQ_MASK); 3451 action |= SS_RETRY|SSQ_DECREMENT_COUNT| 3452 SSQ_PRINT_SENSE; 3453 } 3454 action |= SSQ_UA; 3455 } 3456 } 3457 if ((action & SS_MASK) >= SS_START && 3458 (sense_flags & SF_NO_RECOVERY)) { 3459 action &= ~SS_MASK; 3460 action |= SS_FAIL; 3461 } else if ((action & SS_MASK) == SS_RETRY && 3462 (sense_flags & SF_NO_RETRY)) { 3463 action &= ~SS_MASK; 3464 action |= SS_FAIL; 3465 } 3466 if ((sense_flags & SF_PRINT_ALWAYS) != 0) 3467 action |= SSQ_PRINT_SENSE; 3468 else if ((sense_flags & SF_NO_PRINT) != 0) 3469 action &= ~SSQ_PRINT_SENSE; 3470 3471 return (action); 3472 } 3473 3474 char * 3475 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len) 3476 { 3477 struct sbuf sb; 3478 int error; 3479 3480 if (len == 0) 3481 return (""); 3482 3483 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN); 3484 3485 scsi_cdb_sbuf(cdb_ptr, &sb); 3486 3487 /* ENOMEM just means that the fixed buffer is full, OK to ignore */ 3488 error = sbuf_finish(&sb); 3489 if (error != 0 && 3490 #ifdef _KERNEL 3491 error != ENOMEM) 3492 #else 3493 errno != ENOMEM) 3494 #endif 3495 return (""); 3496 3497 return(sbuf_data(&sb)); 3498 } 3499 3500 void 3501 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb) 3502 { 3503 u_int8_t cdb_len; 3504 int i; 3505 3506 if (cdb_ptr == NULL) 3507 return; 3508 3509 /* 3510 * This is taken from the SCSI-3 draft spec. 3511 * (T10/1157D revision 0.3) 3512 * The top 3 bits of an opcode are the group code. The next 5 bits 3513 * are the command code. 3514 * Group 0: six byte commands 3515 * Group 1: ten byte commands 3516 * Group 2: ten byte commands 3517 * Group 3: reserved 3518 * Group 4: sixteen byte commands 3519 * Group 5: twelve byte commands 3520 * Group 6: vendor specific 3521 * Group 7: vendor specific 3522 */ 3523 switch((*cdb_ptr >> 5) & 0x7) { 3524 case 0: 3525 cdb_len = 6; 3526 break; 3527 case 1: 3528 case 2: 3529 cdb_len = 10; 3530 break; 3531 case 3: 3532 case 6: 3533 case 7: 3534 /* in this case, just print out the opcode */ 3535 cdb_len = 1; 3536 break; 3537 case 4: 3538 cdb_len = 16; 3539 break; 3540 case 5: 3541 cdb_len = 12; 3542 break; 3543 } 3544 3545 for (i = 0; i < cdb_len; i++) 3546 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]); 3547 3548 return; 3549 } 3550 3551 const char * 3552 scsi_status_string(struct ccb_scsiio *csio) 3553 { 3554 switch(csio->scsi_status) { 3555 case SCSI_STATUS_OK: 3556 return("OK"); 3557 case SCSI_STATUS_CHECK_COND: 3558 return("Check Condition"); 3559 case SCSI_STATUS_BUSY: 3560 return("Busy"); 3561 case SCSI_STATUS_INTERMED: 3562 return("Intermediate"); 3563 case SCSI_STATUS_INTERMED_COND_MET: 3564 return("Intermediate-Condition Met"); 3565 case SCSI_STATUS_RESERV_CONFLICT: 3566 return("Reservation Conflict"); 3567 case SCSI_STATUS_CMD_TERMINATED: 3568 return("Command Terminated"); 3569 case SCSI_STATUS_QUEUE_FULL: 3570 return("Queue Full"); 3571 case SCSI_STATUS_ACA_ACTIVE: 3572 return("ACA Active"); 3573 case SCSI_STATUS_TASK_ABORTED: 3574 return("Task Aborted"); 3575 default: { 3576 static char unkstr[64]; 3577 snprintf(unkstr, sizeof(unkstr), "Unknown %#x", 3578 csio->scsi_status); 3579 return(unkstr); 3580 } 3581 } 3582 } 3583 3584 /* 3585 * scsi_command_string() returns 0 for success and -1 for failure. 3586 */ 3587 #ifdef _KERNEL 3588 int 3589 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) 3590 #else /* !_KERNEL */ 3591 int 3592 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, 3593 struct sbuf *sb) 3594 #endif /* _KERNEL/!_KERNEL */ 3595 { 3596 struct scsi_inquiry_data *inq_data; 3597 #ifdef _KERNEL 3598 struct ccb_getdev *cgd; 3599 #endif /* _KERNEL */ 3600 3601 #ifdef _KERNEL 3602 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 3603 return(-1); 3604 /* 3605 * Get the device information. 3606 */ 3607 xpt_setup_ccb(&cgd->ccb_h, 3608 csio->ccb_h.path, 3609 CAM_PRIORITY_NORMAL); 3610 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 3611 xpt_action((union ccb *)cgd); 3612 3613 /* 3614 * If the device is unconfigured, just pretend that it is a hard 3615 * drive. scsi_op_desc() needs this. 3616 */ 3617 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 3618 cgd->inq_data.device = T_DIRECT; 3619 3620 inq_data = &cgd->inq_data; 3621 3622 #else /* !_KERNEL */ 3623 3624 inq_data = &device->inq_data; 3625 3626 #endif /* _KERNEL/!_KERNEL */ 3627 3628 sbuf_printf(sb, "%s. CDB: ", 3629 scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data)); 3630 scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb); 3631 3632 #ifdef _KERNEL 3633 xpt_free_ccb((union ccb *)cgd); 3634 #endif 3635 3636 return(0); 3637 } 3638 3639 /* 3640 * Iterate over sense descriptors. Each descriptor is passed into iter_func(). 3641 * If iter_func() returns 0, list traversal continues. If iter_func() 3642 * returns non-zero, list traversal is stopped. 3643 */ 3644 void 3645 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, 3646 int (*iter_func)(struct scsi_sense_data_desc *sense, 3647 u_int, struct scsi_sense_desc_header *, 3648 void *), void *arg) 3649 { 3650 int cur_pos; 3651 int desc_len; 3652 3653 /* 3654 * First make sure the extra length field is present. 3655 */ 3656 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) 3657 return; 3658 3659 /* 3660 * The length of data actually returned may be different than the 3661 * extra_len recorded in the structure. 3662 */ 3663 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); 3664 3665 /* 3666 * Limit this further by the extra length reported, and the maximum 3667 * allowed extra length. 3668 */ 3669 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); 3670 3671 /* 3672 * Subtract the size of the header from the descriptor length. 3673 * This is to ensure that we have at least the header left, so we 3674 * don't have to check that inside the loop. This can wind up 3675 * being a negative value. 3676 */ 3677 desc_len -= sizeof(struct scsi_sense_desc_header); 3678 3679 for (cur_pos = 0; cur_pos < desc_len;) { 3680 struct scsi_sense_desc_header *header; 3681 3682 header = (struct scsi_sense_desc_header *) 3683 &sense->sense_desc[cur_pos]; 3684 3685 /* 3686 * Check to make sure we have the entire descriptor. We 3687 * don't call iter_func() unless we do. 3688 * 3689 * Note that although cur_pos is at the beginning of the 3690 * descriptor, desc_len already has the header length 3691 * subtracted. So the comparison of the length in the 3692 * header (which does not include the header itself) to 3693 * desc_len - cur_pos is correct. 3694 */ 3695 if (header->length > (desc_len - cur_pos)) 3696 break; 3697 3698 if (iter_func(sense, sense_len, header, arg) != 0) 3699 break; 3700 3701 cur_pos += sizeof(*header) + header->length; 3702 } 3703 } 3704 3705 struct scsi_find_desc_info { 3706 uint8_t desc_type; 3707 struct scsi_sense_desc_header *header; 3708 }; 3709 3710 static int 3711 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 3712 struct scsi_sense_desc_header *header, void *arg) 3713 { 3714 struct scsi_find_desc_info *desc_info; 3715 3716 desc_info = (struct scsi_find_desc_info *)arg; 3717 3718 if (header->desc_type == desc_info->desc_type) { 3719 desc_info->header = header; 3720 3721 /* We found the descriptor, tell the iterator to stop. */ 3722 return (1); 3723 } else 3724 return (0); 3725 } 3726 3727 /* 3728 * Given a descriptor type, return a pointer to it if it is in the sense 3729 * data and not truncated. Avoiding truncating sense data will simplify 3730 * things significantly for the caller. 3731 */ 3732 uint8_t * 3733 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, 3734 uint8_t desc_type) 3735 { 3736 struct scsi_find_desc_info desc_info; 3737 3738 desc_info.desc_type = desc_type; 3739 desc_info.header = NULL; 3740 3741 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); 3742 3743 return ((uint8_t *)desc_info.header); 3744 } 3745 3746 /* 3747 * Fill in SCSI descriptor sense data with the specified parameters. 3748 */ 3749 static void 3750 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data, 3751 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3752 int sense_key, int asc, int ascq, va_list ap) 3753 { 3754 struct scsi_sense_data_desc *sense; 3755 scsi_sense_elem_type elem_type; 3756 int space, len; 3757 uint8_t *desc, *data; 3758 3759 memset(sense_data, 0, sizeof(*sense_data)); 3760 sense = (struct scsi_sense_data_desc *)sense_data; 3761 if (current_error != 0) 3762 sense->error_code = SSD_DESC_CURRENT_ERROR; 3763 else 3764 sense->error_code = SSD_DESC_DEFERRED_ERROR; 3765 sense->sense_key = sense_key; 3766 sense->add_sense_code = asc; 3767 sense->add_sense_code_qual = ascq; 3768 sense->flags = 0; 3769 3770 desc = &sense->sense_desc[0]; 3771 space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc); 3772 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3773 SSD_ELEM_NONE) { 3774 if (elem_type >= SSD_ELEM_MAX) { 3775 printf("%s: invalid sense type %d\n", __func__, 3776 elem_type); 3777 break; 3778 } 3779 len = va_arg(ap, int); 3780 data = va_arg(ap, uint8_t *); 3781 3782 switch (elem_type) { 3783 case SSD_ELEM_SKIP: 3784 break; 3785 case SSD_ELEM_DESC: 3786 if (space < len) { 3787 sense->flags |= SSDD_SDAT_OVFL; 3788 break; 3789 } 3790 bcopy(data, desc, len); 3791 desc += len; 3792 space -= len; 3793 break; 3794 case SSD_ELEM_SKS: { 3795 struct scsi_sense_sks *sks = (void *)desc; 3796 3797 if (len > sizeof(sks->sense_key_spec)) 3798 break; 3799 if (space < sizeof(*sks)) { 3800 sense->flags |= SSDD_SDAT_OVFL; 3801 break; 3802 } 3803 sks->desc_type = SSD_DESC_SKS; 3804 sks->length = sizeof(*sks) - 3805 (offsetof(struct scsi_sense_sks, length) + 1); 3806 bcopy(data, &sks->sense_key_spec, len); 3807 desc += sizeof(*sks); 3808 space -= sizeof(*sks); 3809 break; 3810 } 3811 case SSD_ELEM_COMMAND: { 3812 struct scsi_sense_command *cmd = (void *)desc; 3813 3814 if (len > sizeof(cmd->command_info)) 3815 break; 3816 if (space < sizeof(*cmd)) { 3817 sense->flags |= SSDD_SDAT_OVFL; 3818 break; 3819 } 3820 cmd->desc_type = SSD_DESC_COMMAND; 3821 cmd->length = sizeof(*cmd) - 3822 (offsetof(struct scsi_sense_command, length) + 1); 3823 bcopy(data, &cmd->command_info[ 3824 sizeof(cmd->command_info) - len], len); 3825 desc += sizeof(*cmd); 3826 space -= sizeof(*cmd); 3827 break; 3828 } 3829 case SSD_ELEM_INFO: { 3830 struct scsi_sense_info *info = (void *)desc; 3831 3832 if (len > sizeof(info->info)) 3833 break; 3834 if (space < sizeof(*info)) { 3835 sense->flags |= SSDD_SDAT_OVFL; 3836 break; 3837 } 3838 info->desc_type = SSD_DESC_INFO; 3839 info->length = sizeof(*info) - 3840 (offsetof(struct scsi_sense_info, length) + 1); 3841 info->byte2 = SSD_INFO_VALID; 3842 bcopy(data, &info->info[sizeof(info->info) - len], len); 3843 desc += sizeof(*info); 3844 space -= sizeof(*info); 3845 break; 3846 } 3847 case SSD_ELEM_FRU: { 3848 struct scsi_sense_fru *fru = (void *)desc; 3849 3850 if (len > sizeof(fru->fru)) 3851 break; 3852 if (space < sizeof(*fru)) { 3853 sense->flags |= SSDD_SDAT_OVFL; 3854 break; 3855 } 3856 fru->desc_type = SSD_DESC_FRU; 3857 fru->length = sizeof(*fru) - 3858 (offsetof(struct scsi_sense_fru, length) + 1); 3859 fru->fru = *data; 3860 desc += sizeof(*fru); 3861 space -= sizeof(*fru); 3862 break; 3863 } 3864 case SSD_ELEM_STREAM: { 3865 struct scsi_sense_stream *stream = (void *)desc; 3866 3867 if (len > sizeof(stream->byte3)) 3868 break; 3869 if (space < sizeof(*stream)) { 3870 sense->flags |= SSDD_SDAT_OVFL; 3871 break; 3872 } 3873 stream->desc_type = SSD_DESC_STREAM; 3874 stream->length = sizeof(*stream) - 3875 (offsetof(struct scsi_sense_stream, length) + 1); 3876 stream->byte3 = *data; 3877 desc += sizeof(*stream); 3878 space -= sizeof(*stream); 3879 break; 3880 } 3881 default: 3882 /* 3883 * We shouldn't get here, but if we do, do nothing. 3884 * We've already consumed the arguments above. 3885 */ 3886 break; 3887 } 3888 } 3889 sense->extra_len = desc - &sense->sense_desc[0]; 3890 *sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 + 3891 sense->extra_len; 3892 } 3893 3894 /* 3895 * Fill in SCSI fixed sense data with the specified parameters. 3896 */ 3897 static void 3898 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data, 3899 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3900 int sense_key, int asc, int ascq, va_list ap) 3901 { 3902 struct scsi_sense_data_fixed *sense; 3903 scsi_sense_elem_type elem_type; 3904 uint8_t *data; 3905 int len; 3906 3907 memset(sense_data, 0, sizeof(*sense_data)); 3908 sense = (struct scsi_sense_data_fixed *)sense_data; 3909 if (current_error != 0) 3910 sense->error_code = SSD_CURRENT_ERROR; 3911 else 3912 sense->error_code = SSD_DEFERRED_ERROR; 3913 sense->flags = sense_key & SSD_KEY; 3914 sense->extra_len = 0; 3915 if (*sense_len >= 13) { 3916 sense->add_sense_code = asc; 3917 sense->extra_len = MAX(sense->extra_len, 5); 3918 } else 3919 sense->flags |= SSD_SDAT_OVFL; 3920 if (*sense_len >= 14) { 3921 sense->add_sense_code_qual = ascq; 3922 sense->extra_len = MAX(sense->extra_len, 6); 3923 } else 3924 sense->flags |= SSD_SDAT_OVFL; 3925 3926 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3927 SSD_ELEM_NONE) { 3928 if (elem_type >= SSD_ELEM_MAX) { 3929 printf("%s: invalid sense type %d\n", __func__, 3930 elem_type); 3931 break; 3932 } 3933 len = va_arg(ap, int); 3934 data = va_arg(ap, uint8_t *); 3935 3936 switch (elem_type) { 3937 case SSD_ELEM_SKIP: 3938 break; 3939 case SSD_ELEM_SKS: 3940 if (len > sizeof(sense->sense_key_spec)) 3941 break; 3942 if (*sense_len < 18) { 3943 sense->flags |= SSD_SDAT_OVFL; 3944 break; 3945 } 3946 bcopy(data, &sense->sense_key_spec[0], len); 3947 sense->extra_len = MAX(sense->extra_len, 10); 3948 break; 3949 case SSD_ELEM_COMMAND: 3950 if (*sense_len < 12) { 3951 sense->flags |= SSD_SDAT_OVFL; 3952 break; 3953 } 3954 if (len > sizeof(sense->cmd_spec_info)) { 3955 data += len - sizeof(sense->cmd_spec_info); 3956 len = sizeof(sense->cmd_spec_info); 3957 } 3958 bcopy(data, &sense->cmd_spec_info[ 3959 sizeof(sense->cmd_spec_info) - len], len); 3960 sense->extra_len = MAX(sense->extra_len, 4); 3961 break; 3962 case SSD_ELEM_INFO: 3963 /* Set VALID bit only if no overflow. */ 3964 sense->error_code |= SSD_ERRCODE_VALID; 3965 while (len > sizeof(sense->info)) { 3966 if (data[0] != 0) 3967 sense->error_code &= ~SSD_ERRCODE_VALID; 3968 data ++; 3969 len --; 3970 } 3971 bcopy(data, &sense->info[sizeof(sense->info) - len], len); 3972 break; 3973 case SSD_ELEM_FRU: 3974 if (*sense_len < 15) { 3975 sense->flags |= SSD_SDAT_OVFL; 3976 break; 3977 } 3978 sense->fru = *data; 3979 sense->extra_len = MAX(sense->extra_len, 7); 3980 break; 3981 case SSD_ELEM_STREAM: 3982 sense->flags |= *data & 3983 (SSD_ILI | SSD_EOM | SSD_FILEMARK); 3984 break; 3985 default: 3986 3987 /* 3988 * We can't handle that in fixed format. Skip it. 3989 */ 3990 break; 3991 } 3992 } 3993 *sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 + 3994 sense->extra_len; 3995 } 3996 3997 /* 3998 * Fill in SCSI sense data with the specified parameters. This routine can 3999 * fill in either fixed or descriptor type sense data. 4000 */ 4001 void 4002 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len, 4003 scsi_sense_data_type sense_format, int current_error, 4004 int sense_key, int asc, int ascq, va_list ap) 4005 { 4006 4007 if (*sense_len > SSD_FULL_SIZE) 4008 *sense_len = SSD_FULL_SIZE; 4009 if (sense_format == SSD_TYPE_DESC) 4010 scsi_set_sense_data_desc_va(sense_data, sense_len, 4011 sense_format, current_error, sense_key, asc, ascq, ap); 4012 else 4013 scsi_set_sense_data_fixed_va(sense_data, sense_len, 4014 sense_format, current_error, sense_key, asc, ascq, ap); 4015 } 4016 4017 void 4018 scsi_set_sense_data(struct scsi_sense_data *sense_data, 4019 scsi_sense_data_type sense_format, int current_error, 4020 int sense_key, int asc, int ascq, ...) 4021 { 4022 va_list ap; 4023 u_int sense_len = SSD_FULL_SIZE; 4024 4025 va_start(ap, ascq); 4026 scsi_set_sense_data_va(sense_data, &sense_len, sense_format, 4027 current_error, sense_key, asc, ascq, ap); 4028 va_end(ap); 4029 } 4030 4031 void 4032 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len, 4033 scsi_sense_data_type sense_format, int current_error, 4034 int sense_key, int asc, int ascq, ...) 4035 { 4036 va_list ap; 4037 4038 va_start(ap, ascq); 4039 scsi_set_sense_data_va(sense_data, sense_len, sense_format, 4040 current_error, sense_key, asc, ascq, ap); 4041 va_end(ap); 4042 } 4043 4044 /* 4045 * Get sense information for three similar sense data types. 4046 */ 4047 int 4048 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, 4049 uint8_t info_type, uint64_t *info, int64_t *signed_info) 4050 { 4051 scsi_sense_data_type sense_type; 4052 4053 if (sense_len == 0) 4054 goto bailout; 4055 4056 sense_type = scsi_sense_type(sense_data); 4057 4058 switch (sense_type) { 4059 case SSD_TYPE_DESC: { 4060 struct scsi_sense_data_desc *sense; 4061 uint8_t *desc; 4062 4063 sense = (struct scsi_sense_data_desc *)sense_data; 4064 4065 desc = scsi_find_desc(sense, sense_len, info_type); 4066 if (desc == NULL) 4067 goto bailout; 4068 4069 switch (info_type) { 4070 case SSD_DESC_INFO: { 4071 struct scsi_sense_info *info_desc; 4072 4073 info_desc = (struct scsi_sense_info *)desc; 4074 4075 if ((info_desc->byte2 & SSD_INFO_VALID) == 0) 4076 goto bailout; 4077 4078 *info = scsi_8btou64(info_desc->info); 4079 if (signed_info != NULL) 4080 *signed_info = *info; 4081 break; 4082 } 4083 case SSD_DESC_COMMAND: { 4084 struct scsi_sense_command *cmd_desc; 4085 4086 cmd_desc = (struct scsi_sense_command *)desc; 4087 4088 *info = scsi_8btou64(cmd_desc->command_info); 4089 if (signed_info != NULL) 4090 *signed_info = *info; 4091 break; 4092 } 4093 case SSD_DESC_FRU: { 4094 struct scsi_sense_fru *fru_desc; 4095 4096 fru_desc = (struct scsi_sense_fru *)desc; 4097 4098 if (fru_desc->fru == 0) 4099 goto bailout; 4100 4101 *info = fru_desc->fru; 4102 if (signed_info != NULL) 4103 *signed_info = (int8_t)fru_desc->fru; 4104 break; 4105 } 4106 default: 4107 goto bailout; 4108 break; 4109 } 4110 break; 4111 } 4112 case SSD_TYPE_FIXED: { 4113 struct scsi_sense_data_fixed *sense; 4114 4115 sense = (struct scsi_sense_data_fixed *)sense_data; 4116 4117 switch (info_type) { 4118 case SSD_DESC_INFO: { 4119 uint32_t info_val; 4120 4121 if ((sense->error_code & SSD_ERRCODE_VALID) == 0) 4122 goto bailout; 4123 4124 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) 4125 goto bailout; 4126 4127 info_val = scsi_4btoul(sense->info); 4128 4129 *info = info_val; 4130 if (signed_info != NULL) 4131 *signed_info = (int32_t)info_val; 4132 break; 4133 } 4134 case SSD_DESC_COMMAND: { 4135 uint32_t cmd_val; 4136 4137 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, 4138 cmd_spec_info) == 0) 4139 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) 4140 goto bailout; 4141 4142 cmd_val = scsi_4btoul(sense->cmd_spec_info); 4143 if (cmd_val == 0) 4144 goto bailout; 4145 4146 *info = cmd_val; 4147 if (signed_info != NULL) 4148 *signed_info = (int32_t)cmd_val; 4149 break; 4150 } 4151 case SSD_DESC_FRU: 4152 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) 4153 || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) 4154 goto bailout; 4155 4156 if (sense->fru == 0) 4157 goto bailout; 4158 4159 *info = sense->fru; 4160 if (signed_info != NULL) 4161 *signed_info = (int8_t)sense->fru; 4162 break; 4163 default: 4164 goto bailout; 4165 break; 4166 } 4167 break; 4168 } 4169 default: 4170 goto bailout; 4171 break; 4172 } 4173 4174 return (0); 4175 bailout: 4176 return (1); 4177 } 4178 4179 int 4180 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) 4181 { 4182 scsi_sense_data_type sense_type; 4183 4184 if (sense_len == 0) 4185 goto bailout; 4186 4187 sense_type = scsi_sense_type(sense_data); 4188 4189 switch (sense_type) { 4190 case SSD_TYPE_DESC: { 4191 struct scsi_sense_data_desc *sense; 4192 struct scsi_sense_sks *desc; 4193 4194 sense = (struct scsi_sense_data_desc *)sense_data; 4195 4196 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, 4197 SSD_DESC_SKS); 4198 if (desc == NULL) 4199 goto bailout; 4200 4201 if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4202 goto bailout; 4203 4204 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); 4205 break; 4206 } 4207 case SSD_TYPE_FIXED: { 4208 struct scsi_sense_data_fixed *sense; 4209 4210 sense = (struct scsi_sense_data_fixed *)sense_data; 4211 4212 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) 4213 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) 4214 goto bailout; 4215 4216 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) 4217 goto bailout; 4218 4219 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); 4220 break; 4221 } 4222 default: 4223 goto bailout; 4224 break; 4225 } 4226 return (0); 4227 bailout: 4228 return (1); 4229 } 4230 4231 /* 4232 * Provide a common interface for fixed and descriptor sense to detect 4233 * whether we have block-specific sense information. It is clear by the 4234 * presence of the block descriptor in descriptor mode, but we have to 4235 * infer from the inquiry data and ILI bit in fixed mode. 4236 */ 4237 int 4238 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, 4239 struct scsi_inquiry_data *inq_data, uint8_t *block_bits) 4240 { 4241 scsi_sense_data_type sense_type; 4242 4243 if (inq_data != NULL) { 4244 switch (SID_TYPE(inq_data)) { 4245 case T_DIRECT: 4246 case T_RBC: 4247 case T_ZBC_HM: 4248 break; 4249 default: 4250 goto bailout; 4251 break; 4252 } 4253 } 4254 4255 sense_type = scsi_sense_type(sense_data); 4256 4257 switch (sense_type) { 4258 case SSD_TYPE_DESC: { 4259 struct scsi_sense_data_desc *sense; 4260 struct scsi_sense_block *block; 4261 4262 sense = (struct scsi_sense_data_desc *)sense_data; 4263 4264 block = (struct scsi_sense_block *)scsi_find_desc(sense, 4265 sense_len, SSD_DESC_BLOCK); 4266 if (block == NULL) 4267 goto bailout; 4268 4269 *block_bits = block->byte3; 4270 break; 4271 } 4272 case SSD_TYPE_FIXED: { 4273 struct scsi_sense_data_fixed *sense; 4274 4275 sense = (struct scsi_sense_data_fixed *)sense_data; 4276 4277 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4278 goto bailout; 4279 4280 *block_bits = sense->flags & SSD_ILI; 4281 break; 4282 } 4283 default: 4284 goto bailout; 4285 break; 4286 } 4287 return (0); 4288 bailout: 4289 return (1); 4290 } 4291 4292 int 4293 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, 4294 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) 4295 { 4296 scsi_sense_data_type sense_type; 4297 4298 if (inq_data != NULL) { 4299 switch (SID_TYPE(inq_data)) { 4300 case T_SEQUENTIAL: 4301 break; 4302 default: 4303 goto bailout; 4304 break; 4305 } 4306 } 4307 4308 sense_type = scsi_sense_type(sense_data); 4309 4310 switch (sense_type) { 4311 case SSD_TYPE_DESC: { 4312 struct scsi_sense_data_desc *sense; 4313 struct scsi_sense_stream *stream; 4314 4315 sense = (struct scsi_sense_data_desc *)sense_data; 4316 4317 stream = (struct scsi_sense_stream *)scsi_find_desc(sense, 4318 sense_len, SSD_DESC_STREAM); 4319 if (stream == NULL) 4320 goto bailout; 4321 4322 *stream_bits = stream->byte3; 4323 break; 4324 } 4325 case SSD_TYPE_FIXED: { 4326 struct scsi_sense_data_fixed *sense; 4327 4328 sense = (struct scsi_sense_data_fixed *)sense_data; 4329 4330 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4331 goto bailout; 4332 4333 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); 4334 break; 4335 } 4336 default: 4337 goto bailout; 4338 break; 4339 } 4340 return (0); 4341 bailout: 4342 return (1); 4343 } 4344 4345 void 4346 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4347 struct scsi_inquiry_data *inq_data, uint64_t info) 4348 { 4349 sbuf_printf(sb, "Info: %#jx", info); 4350 } 4351 4352 void 4353 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4354 struct scsi_inquiry_data *inq_data, uint64_t csi) 4355 { 4356 sbuf_printf(sb, "Command Specific Info: %#jx", csi); 4357 } 4358 4359 void 4360 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) 4361 { 4362 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", 4363 (progress * 100) / SSD_SKS_PROGRESS_DENOM, 4364 progress, SSD_SKS_PROGRESS_DENOM); 4365 } 4366 4367 /* 4368 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. 4369 */ 4370 int 4371 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) 4372 { 4373 4374 switch (sense_key) { 4375 case SSD_KEY_ILLEGAL_REQUEST: { 4376 struct scsi_sense_sks_field *field; 4377 int bad_command; 4378 char tmpstr[40]; 4379 4380 /*Field Pointer*/ 4381 field = (struct scsi_sense_sks_field *)sks; 4382 4383 if (field->byte0 & SSD_SKS_FIELD_CMD) 4384 bad_command = 1; 4385 else 4386 bad_command = 0; 4387 4388 tmpstr[0] = '\0'; 4389 4390 /* Bit pointer is valid */ 4391 if (field->byte0 & SSD_SKS_BPV) 4392 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4393 field->byte0 & SSD_SKS_BIT_VALUE); 4394 4395 sbuf_printf(sb, "%s byte %d %sis invalid", 4396 bad_command ? "Command" : "Data", 4397 scsi_2btoul(field->field), tmpstr); 4398 break; 4399 } 4400 case SSD_KEY_UNIT_ATTENTION: { 4401 struct scsi_sense_sks_overflow *overflow; 4402 4403 overflow = (struct scsi_sense_sks_overflow *)sks; 4404 4405 /*UA Condition Queue Overflow*/ 4406 sbuf_printf(sb, "Unit Attention Condition Queue %s", 4407 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? 4408 "Overflowed" : "Did Not Overflow??"); 4409 break; 4410 } 4411 case SSD_KEY_RECOVERED_ERROR: 4412 case SSD_KEY_HARDWARE_ERROR: 4413 case SSD_KEY_MEDIUM_ERROR: { 4414 struct scsi_sense_sks_retry *retry; 4415 4416 /*Actual Retry Count*/ 4417 retry = (struct scsi_sense_sks_retry *)sks; 4418 4419 sbuf_printf(sb, "Actual Retry Count: %d", 4420 scsi_2btoul(retry->actual_retry_count)); 4421 break; 4422 } 4423 case SSD_KEY_NO_SENSE: 4424 case SSD_KEY_NOT_READY: { 4425 struct scsi_sense_sks_progress *progress; 4426 int progress_val; 4427 4428 /*Progress Indication*/ 4429 progress = (struct scsi_sense_sks_progress *)sks; 4430 progress_val = scsi_2btoul(progress->progress); 4431 4432 scsi_progress_sbuf(sb, progress_val); 4433 break; 4434 } 4435 case SSD_KEY_COPY_ABORTED: { 4436 struct scsi_sense_sks_segment *segment; 4437 char tmpstr[40]; 4438 4439 /*Segment Pointer*/ 4440 segment = (struct scsi_sense_sks_segment *)sks; 4441 4442 tmpstr[0] = '\0'; 4443 4444 if (segment->byte0 & SSD_SKS_SEGMENT_BPV) 4445 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4446 segment->byte0 & SSD_SKS_SEGMENT_BITPTR); 4447 4448 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & 4449 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", 4450 scsi_2btoul(segment->field), tmpstr); 4451 break; 4452 } 4453 default: 4454 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], 4455 scsi_2btoul(&sks[1])); 4456 break; 4457 } 4458 4459 return (0); 4460 } 4461 4462 void 4463 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) 4464 { 4465 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); 4466 } 4467 4468 void 4469 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits) 4470 { 4471 int need_comma; 4472 4473 need_comma = 0; 4474 /* 4475 * XXX KDM this needs more descriptive decoding. 4476 */ 4477 sbuf_printf(sb, "Stream Command Sense Data: "); 4478 if (stream_bits & SSD_DESC_STREAM_FM) { 4479 sbuf_printf(sb, "Filemark"); 4480 need_comma = 1; 4481 } 4482 4483 if (stream_bits & SSD_DESC_STREAM_EOM) { 4484 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); 4485 need_comma = 1; 4486 } 4487 4488 if (stream_bits & SSD_DESC_STREAM_ILI) 4489 sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); 4490 } 4491 4492 void 4493 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits) 4494 { 4495 4496 sbuf_printf(sb, "Block Command Sense Data: "); 4497 if (block_bits & SSD_DESC_BLOCK_ILI) 4498 sbuf_printf(sb, "ILI"); 4499 } 4500 4501 void 4502 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4503 u_int sense_len, uint8_t *cdb, int cdb_len, 4504 struct scsi_inquiry_data *inq_data, 4505 struct scsi_sense_desc_header *header) 4506 { 4507 struct scsi_sense_info *info; 4508 4509 info = (struct scsi_sense_info *)header; 4510 4511 if ((info->byte2 & SSD_INFO_VALID) == 0) 4512 return; 4513 4514 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); 4515 } 4516 4517 void 4518 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4519 u_int sense_len, uint8_t *cdb, int cdb_len, 4520 struct scsi_inquiry_data *inq_data, 4521 struct scsi_sense_desc_header *header) 4522 { 4523 struct scsi_sense_command *command; 4524 4525 command = (struct scsi_sense_command *)header; 4526 4527 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, 4528 scsi_8btou64(command->command_info)); 4529 } 4530 4531 void 4532 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4533 u_int sense_len, uint8_t *cdb, int cdb_len, 4534 struct scsi_inquiry_data *inq_data, 4535 struct scsi_sense_desc_header *header) 4536 { 4537 struct scsi_sense_sks *sks; 4538 int error_code, sense_key, asc, ascq; 4539 4540 sks = (struct scsi_sense_sks *)header; 4541 4542 if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4543 return; 4544 4545 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4546 &asc, &ascq, /*show_errors*/ 1); 4547 4548 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); 4549 } 4550 4551 void 4552 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4553 u_int sense_len, uint8_t *cdb, int cdb_len, 4554 struct scsi_inquiry_data *inq_data, 4555 struct scsi_sense_desc_header *header) 4556 { 4557 struct scsi_sense_fru *fru; 4558 4559 fru = (struct scsi_sense_fru *)header; 4560 4561 if (fru->fru == 0) 4562 return; 4563 4564 scsi_fru_sbuf(sb, (uint64_t)fru->fru); 4565 } 4566 4567 void 4568 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4569 u_int sense_len, uint8_t *cdb, int cdb_len, 4570 struct scsi_inquiry_data *inq_data, 4571 struct scsi_sense_desc_header *header) 4572 { 4573 struct scsi_sense_stream *stream; 4574 4575 stream = (struct scsi_sense_stream *)header; 4576 scsi_stream_sbuf(sb, stream->byte3); 4577 } 4578 4579 void 4580 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4581 u_int sense_len, uint8_t *cdb, int cdb_len, 4582 struct scsi_inquiry_data *inq_data, 4583 struct scsi_sense_desc_header *header) 4584 { 4585 struct scsi_sense_block *block; 4586 4587 block = (struct scsi_sense_block *)header; 4588 scsi_block_sbuf(sb, block->byte3); 4589 } 4590 4591 void 4592 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4593 u_int sense_len, uint8_t *cdb, int cdb_len, 4594 struct scsi_inquiry_data *inq_data, 4595 struct scsi_sense_desc_header *header) 4596 { 4597 struct scsi_sense_progress *progress; 4598 const char *sense_key_desc; 4599 const char *asc_desc; 4600 int progress_val; 4601 4602 progress = (struct scsi_sense_progress *)header; 4603 4604 /* 4605 * Get descriptions for the sense key, ASC, and ASCQ in the 4606 * progress descriptor. These could be different than the values 4607 * in the overall sense data. 4608 */ 4609 scsi_sense_desc(progress->sense_key, progress->add_sense_code, 4610 progress->add_sense_code_qual, inq_data, 4611 &sense_key_desc, &asc_desc); 4612 4613 progress_val = scsi_2btoul(progress->progress); 4614 4615 /* 4616 * The progress indicator is for the operation described by the 4617 * sense key, ASC, and ASCQ in the descriptor. 4618 */ 4619 sbuf_cat(sb, sense_key_desc); 4620 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, 4621 progress->add_sense_code_qual, asc_desc); 4622 scsi_progress_sbuf(sb, progress_val); 4623 } 4624 4625 void 4626 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4627 u_int sense_len, uint8_t *cdb, int cdb_len, 4628 struct scsi_inquiry_data *inq_data, 4629 struct scsi_sense_desc_header *header) 4630 { 4631 struct scsi_sense_ata_ret_desc *res; 4632 4633 res = (struct scsi_sense_ata_ret_desc *)header; 4634 4635 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ", 4636 res->status, 4637 (res->status & 0x80) ? "BSY " : "", 4638 (res->status & 0x40) ? "DRDY " : "", 4639 (res->status & 0x20) ? "DF " : "", 4640 (res->status & 0x10) ? "SERV " : "", 4641 (res->status & 0x08) ? "DRQ " : "", 4642 (res->status & 0x04) ? "CORR " : "", 4643 (res->status & 0x02) ? "IDX " : "", 4644 (res->status & 0x01) ? "ERR" : ""); 4645 if (res->status & 1) { 4646 sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ", 4647 res->error, 4648 (res->error & 0x80) ? "ICRC " : "", 4649 (res->error & 0x40) ? "UNC " : "", 4650 (res->error & 0x20) ? "MC " : "", 4651 (res->error & 0x10) ? "IDNF " : "", 4652 (res->error & 0x08) ? "MCR " : "", 4653 (res->error & 0x04) ? "ABRT " : "", 4654 (res->error & 0x02) ? "NM " : "", 4655 (res->error & 0x01) ? "ILI" : ""); 4656 } 4657 4658 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) { 4659 sbuf_printf(sb, "count: %02x%02x, ", 4660 res->count_15_8, res->count_7_0); 4661 sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ", 4662 res->lba_47_40, res->lba_39_32, res->lba_31_24, 4663 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4664 } else { 4665 sbuf_printf(sb, "count: %02x, ", res->count_7_0); 4666 sbuf_printf(sb, "LBA: %02x%02x%02x, ", 4667 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4668 } 4669 sbuf_printf(sb, "device: %02x, ", res->device); 4670 } 4671 4672 void 4673 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4674 u_int sense_len, uint8_t *cdb, int cdb_len, 4675 struct scsi_inquiry_data *inq_data, 4676 struct scsi_sense_desc_header *header) 4677 { 4678 struct scsi_sense_forwarded *forwarded; 4679 const char *sense_key_desc; 4680 const char *asc_desc; 4681 int error_code, sense_key, asc, ascq; 4682 4683 forwarded = (struct scsi_sense_forwarded *)header; 4684 scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data, 4685 forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1); 4686 scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc); 4687 4688 sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ", 4689 sense_key_desc, asc, ascq, asc_desc); 4690 } 4691 4692 /* 4693 * Generic sense descriptor printing routine. This is used when we have 4694 * not yet implemented a specific printing routine for this descriptor. 4695 */ 4696 void 4697 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4698 u_int sense_len, uint8_t *cdb, int cdb_len, 4699 struct scsi_inquiry_data *inq_data, 4700 struct scsi_sense_desc_header *header) 4701 { 4702 int i; 4703 uint8_t *buf_ptr; 4704 4705 sbuf_printf(sb, "Descriptor %#x:", header->desc_type); 4706 4707 buf_ptr = (uint8_t *)&header[1]; 4708 4709 for (i = 0; i < header->length; i++, buf_ptr++) 4710 sbuf_printf(sb, " %02x", *buf_ptr); 4711 } 4712 4713 /* 4714 * Keep this list in numeric order. This speeds the array traversal. 4715 */ 4716 struct scsi_sense_desc_printer { 4717 uint8_t desc_type; 4718 /* 4719 * The function arguments here are the superset of what is needed 4720 * to print out various different descriptors. Command and 4721 * information descriptors need inquiry data and command type. 4722 * Sense key specific descriptors need the sense key. 4723 * 4724 * The sense, cdb, and inquiry data arguments may be NULL, but the 4725 * information printed may not be fully decoded as a result. 4726 */ 4727 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, 4728 u_int sense_len, uint8_t *cdb, int cdb_len, 4729 struct scsi_inquiry_data *inq_data, 4730 struct scsi_sense_desc_header *header); 4731 } scsi_sense_printers[] = { 4732 {SSD_DESC_INFO, scsi_sense_info_sbuf}, 4733 {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, 4734 {SSD_DESC_SKS, scsi_sense_sks_sbuf}, 4735 {SSD_DESC_FRU, scsi_sense_fru_sbuf}, 4736 {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, 4737 {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, 4738 {SSD_DESC_ATA, scsi_sense_ata_sbuf}, 4739 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}, 4740 {SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf} 4741 }; 4742 4743 void 4744 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4745 u_int sense_len, uint8_t *cdb, int cdb_len, 4746 struct scsi_inquiry_data *inq_data, 4747 struct scsi_sense_desc_header *header) 4748 { 4749 u_int i; 4750 4751 for (i = 0; i < nitems(scsi_sense_printers); i++) { 4752 struct scsi_sense_desc_printer *printer; 4753 4754 printer = &scsi_sense_printers[i]; 4755 4756 /* 4757 * The list is sorted, so quit if we've passed our 4758 * descriptor number. 4759 */ 4760 if (printer->desc_type > header->desc_type) 4761 break; 4762 4763 if (printer->desc_type != header->desc_type) 4764 continue; 4765 4766 printer->print_func(sb, sense, sense_len, cdb, cdb_len, 4767 inq_data, header); 4768 4769 return; 4770 } 4771 4772 /* 4773 * No specific printing routine, so use the generic routine. 4774 */ 4775 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, 4776 inq_data, header); 4777 } 4778 4779 scsi_sense_data_type 4780 scsi_sense_type(struct scsi_sense_data *sense_data) 4781 { 4782 switch (sense_data->error_code & SSD_ERRCODE) { 4783 case SSD_DESC_CURRENT_ERROR: 4784 case SSD_DESC_DEFERRED_ERROR: 4785 return (SSD_TYPE_DESC); 4786 break; 4787 case SSD_CURRENT_ERROR: 4788 case SSD_DEFERRED_ERROR: 4789 return (SSD_TYPE_FIXED); 4790 break; 4791 default: 4792 break; 4793 } 4794 4795 return (SSD_TYPE_NONE); 4796 } 4797 4798 struct scsi_print_sense_info { 4799 struct sbuf *sb; 4800 char *path_str; 4801 uint8_t *cdb; 4802 int cdb_len; 4803 struct scsi_inquiry_data *inq_data; 4804 }; 4805 4806 static int 4807 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 4808 struct scsi_sense_desc_header *header, void *arg) 4809 { 4810 struct scsi_print_sense_info *print_info; 4811 4812 print_info = (struct scsi_print_sense_info *)arg; 4813 4814 switch (header->desc_type) { 4815 case SSD_DESC_INFO: 4816 case SSD_DESC_FRU: 4817 case SSD_DESC_COMMAND: 4818 case SSD_DESC_SKS: 4819 case SSD_DESC_BLOCK: 4820 case SSD_DESC_STREAM: 4821 /* 4822 * We have already printed these descriptors, if they are 4823 * present. 4824 */ 4825 break; 4826 default: { 4827 sbuf_printf(print_info->sb, "%s", print_info->path_str); 4828 scsi_sense_desc_sbuf(print_info->sb, 4829 (struct scsi_sense_data *)sense, sense_len, 4830 print_info->cdb, print_info->cdb_len, 4831 print_info->inq_data, header); 4832 sbuf_printf(print_info->sb, "\n"); 4833 break; 4834 } 4835 } 4836 4837 /* 4838 * Tell the iterator that we want to see more descriptors if they 4839 * are present. 4840 */ 4841 return (0); 4842 } 4843 4844 void 4845 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, 4846 struct sbuf *sb, char *path_str, 4847 struct scsi_inquiry_data *inq_data, uint8_t *cdb, 4848 int cdb_len) 4849 { 4850 int error_code, sense_key, asc, ascq; 4851 4852 sbuf_cat(sb, path_str); 4853 4854 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4855 &asc, &ascq, /*show_errors*/ 1); 4856 4857 sbuf_printf(sb, "SCSI sense: "); 4858 switch (error_code) { 4859 case SSD_DEFERRED_ERROR: 4860 case SSD_DESC_DEFERRED_ERROR: 4861 sbuf_printf(sb, "Deferred error: "); 4862 4863 /* FALLTHROUGH */ 4864 case SSD_CURRENT_ERROR: 4865 case SSD_DESC_CURRENT_ERROR: 4866 { 4867 struct scsi_sense_data_desc *desc_sense; 4868 struct scsi_print_sense_info print_info; 4869 const char *sense_key_desc; 4870 const char *asc_desc; 4871 uint8_t sks[3]; 4872 uint64_t val; 4873 uint8_t bits; 4874 4875 /* 4876 * Get descriptions for the sense key, ASC, and ASCQ. If 4877 * these aren't present in the sense data (i.e. the sense 4878 * data isn't long enough), the -1 values that 4879 * scsi_extract_sense_len() returns will yield default 4880 * or error descriptions. 4881 */ 4882 scsi_sense_desc(sense_key, asc, ascq, inq_data, 4883 &sense_key_desc, &asc_desc); 4884 4885 /* 4886 * We first print the sense key and ASC/ASCQ. 4887 */ 4888 sbuf_cat(sb, sense_key_desc); 4889 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); 4890 4891 /* 4892 * Print any block or stream device-specific information. 4893 */ 4894 if (scsi_get_block_info(sense, sense_len, inq_data, 4895 &bits) == 0 && bits != 0) { 4896 sbuf_cat(sb, path_str); 4897 scsi_block_sbuf(sb, bits); 4898 sbuf_printf(sb, "\n"); 4899 } else if (scsi_get_stream_info(sense, sense_len, inq_data, 4900 &bits) == 0 && bits != 0) { 4901 sbuf_cat(sb, path_str); 4902 scsi_stream_sbuf(sb, bits); 4903 sbuf_printf(sb, "\n"); 4904 } 4905 4906 /* 4907 * Print the info field. 4908 */ 4909 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, 4910 &val, NULL) == 0) { 4911 sbuf_cat(sb, path_str); 4912 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); 4913 sbuf_printf(sb, "\n"); 4914 } 4915 4916 /* 4917 * Print the FRU. 4918 */ 4919 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, 4920 &val, NULL) == 0) { 4921 sbuf_cat(sb, path_str); 4922 scsi_fru_sbuf(sb, val); 4923 sbuf_printf(sb, "\n"); 4924 } 4925 4926 /* 4927 * Print any command-specific information. 4928 */ 4929 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, 4930 &val, NULL) == 0) { 4931 sbuf_cat(sb, path_str); 4932 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); 4933 sbuf_printf(sb, "\n"); 4934 } 4935 4936 /* 4937 * Print out any sense-key-specific information. 4938 */ 4939 if (scsi_get_sks(sense, sense_len, sks) == 0) { 4940 sbuf_cat(sb, path_str); 4941 scsi_sks_sbuf(sb, sense_key, sks); 4942 sbuf_printf(sb, "\n"); 4943 } 4944 4945 /* 4946 * If this is fixed sense, we're done. If we have 4947 * descriptor sense, we might have more information 4948 * available. 4949 */ 4950 if (scsi_sense_type(sense) != SSD_TYPE_DESC) 4951 break; 4952 4953 desc_sense = (struct scsi_sense_data_desc *)sense; 4954 4955 print_info.sb = sb; 4956 print_info.path_str = path_str; 4957 print_info.cdb = cdb; 4958 print_info.cdb_len = cdb_len; 4959 print_info.inq_data = inq_data; 4960 4961 /* 4962 * Print any sense descriptors that we have not already printed. 4963 */ 4964 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, 4965 &print_info); 4966 break; 4967 } 4968 case -1: 4969 /* 4970 * scsi_extract_sense_len() sets values to -1 if the 4971 * show_errors flag is set and they aren't present in the 4972 * sense data. This means that sense_len is 0. 4973 */ 4974 sbuf_printf(sb, "No sense data present\n"); 4975 break; 4976 default: { 4977 sbuf_printf(sb, "Error code 0x%x", error_code); 4978 if (sense->error_code & SSD_ERRCODE_VALID) { 4979 struct scsi_sense_data_fixed *fixed_sense; 4980 4981 fixed_sense = (struct scsi_sense_data_fixed *)sense; 4982 4983 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ 4984 uint32_t info; 4985 4986 info = scsi_4btoul(fixed_sense->info); 4987 4988 sbuf_printf(sb, " at block no. %d (decimal)", 4989 info); 4990 } 4991 } 4992 sbuf_printf(sb, "\n"); 4993 break; 4994 } 4995 } 4996 } 4997 4998 /* 4999 * scsi_sense_sbuf() returns 0 for success and -1 for failure. 5000 */ 5001 #ifdef _KERNEL 5002 int 5003 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, 5004 scsi_sense_string_flags flags) 5005 #else /* !_KERNEL */ 5006 int 5007 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, 5008 struct sbuf *sb, scsi_sense_string_flags flags) 5009 #endif /* _KERNEL/!_KERNEL */ 5010 { 5011 struct scsi_sense_data *sense; 5012 struct scsi_inquiry_data *inq_data; 5013 #ifdef _KERNEL 5014 struct ccb_getdev *cgd; 5015 #endif /* _KERNEL */ 5016 char path_str[64]; 5017 5018 #ifndef _KERNEL 5019 if (device == NULL) 5020 return(-1); 5021 #endif /* !_KERNEL */ 5022 if ((csio == NULL) || (sb == NULL)) 5023 return(-1); 5024 5025 /* 5026 * If the CDB is a physical address, we can't deal with it.. 5027 */ 5028 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) 5029 flags &= ~SSS_FLAG_PRINT_COMMAND; 5030 5031 #ifdef _KERNEL 5032 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); 5033 #else /* !_KERNEL */ 5034 cam_path_string(device, path_str, sizeof(path_str)); 5035 #endif /* _KERNEL/!_KERNEL */ 5036 5037 #ifdef _KERNEL 5038 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 5039 return(-1); 5040 /* 5041 * Get the device information. 5042 */ 5043 xpt_setup_ccb(&cgd->ccb_h, 5044 csio->ccb_h.path, 5045 CAM_PRIORITY_NORMAL); 5046 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 5047 xpt_action((union ccb *)cgd); 5048 5049 /* 5050 * If the device is unconfigured, just pretend that it is a hard 5051 * drive. scsi_op_desc() needs this. 5052 */ 5053 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 5054 cgd->inq_data.device = T_DIRECT; 5055 5056 inq_data = &cgd->inq_data; 5057 5058 #else /* !_KERNEL */ 5059 5060 inq_data = &device->inq_data; 5061 5062 #endif /* _KERNEL/!_KERNEL */ 5063 5064 sense = NULL; 5065 5066 if (flags & SSS_FLAG_PRINT_COMMAND) { 5067 sbuf_cat(sb, path_str); 5068 5069 #ifdef _KERNEL 5070 scsi_command_string(csio, sb); 5071 #else /* !_KERNEL */ 5072 scsi_command_string(device, csio, sb); 5073 #endif /* _KERNEL/!_KERNEL */ 5074 sbuf_printf(sb, "\n"); 5075 } 5076 5077 /* 5078 * If the sense data is a physical pointer, forget it. 5079 */ 5080 if (csio->ccb_h.flags & CAM_SENSE_PTR) { 5081 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5082 #ifdef _KERNEL 5083 xpt_free_ccb((union ccb*)cgd); 5084 #endif /* _KERNEL/!_KERNEL */ 5085 return(-1); 5086 } else { 5087 /* 5088 * bcopy the pointer to avoid unaligned access 5089 * errors on finicky architectures. We don't 5090 * ensure that the sense data is pointer aligned. 5091 */ 5092 bcopy((struct scsi_sense_data **)&csio->sense_data, 5093 &sense, sizeof(struct scsi_sense_data *)); 5094 } 5095 } else { 5096 /* 5097 * If the physical sense flag is set, but the sense pointer 5098 * is not also set, we assume that the user is an idiot and 5099 * return. (Well, okay, it could be that somehow, the 5100 * entire csio is physical, but we would have probably core 5101 * dumped on one of the bogus pointer deferences above 5102 * already.) 5103 */ 5104 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5105 #ifdef _KERNEL 5106 xpt_free_ccb((union ccb*)cgd); 5107 #endif /* _KERNEL/!_KERNEL */ 5108 return(-1); 5109 } else 5110 sense = &csio->sense_data; 5111 } 5112 5113 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, 5114 path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len); 5115 5116 #ifdef _KERNEL 5117 xpt_free_ccb((union ccb*)cgd); 5118 #endif /* _KERNEL/!_KERNEL */ 5119 return(0); 5120 } 5121 5122 #ifdef _KERNEL 5123 char * 5124 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) 5125 #else /* !_KERNEL */ 5126 char * 5127 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, 5128 char *str, int str_len) 5129 #endif /* _KERNEL/!_KERNEL */ 5130 { 5131 struct sbuf sb; 5132 5133 sbuf_new(&sb, str, str_len, 0); 5134 5135 #ifdef _KERNEL 5136 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5137 #else /* !_KERNEL */ 5138 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5139 #endif /* _KERNEL/!_KERNEL */ 5140 5141 sbuf_finish(&sb); 5142 5143 return(sbuf_data(&sb)); 5144 } 5145 5146 #ifdef _KERNEL 5147 void 5148 scsi_sense_print(struct ccb_scsiio *csio) 5149 { 5150 struct sbuf sb; 5151 char str[512]; 5152 5153 sbuf_new(&sb, str, sizeof(str), 0); 5154 5155 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5156 5157 sbuf_finish(&sb); 5158 5159 sbuf_putbuf(&sb); 5160 } 5161 5162 #else /* !_KERNEL */ 5163 void 5164 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, 5165 FILE *ofile) 5166 { 5167 struct sbuf sb; 5168 char str[512]; 5169 5170 if ((device == NULL) || (csio == NULL) || (ofile == NULL)) 5171 return; 5172 5173 sbuf_new(&sb, str, sizeof(str), 0); 5174 5175 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5176 5177 sbuf_finish(&sb); 5178 5179 fprintf(ofile, "%s", sbuf_data(&sb)); 5180 } 5181 5182 #endif /* _KERNEL/!_KERNEL */ 5183 5184 /* 5185 * Extract basic sense information. This is backward-compatible with the 5186 * previous implementation. For new implementations, 5187 * scsi_extract_sense_len() is recommended. 5188 */ 5189 void 5190 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, 5191 int *sense_key, int *asc, int *ascq) 5192 { 5193 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, 5194 sense_key, asc, ascq, /*show_errors*/ 0); 5195 } 5196 5197 /* 5198 * Extract basic sense information from SCSI I/O CCB structure. 5199 */ 5200 int 5201 scsi_extract_sense_ccb(union ccb *ccb, 5202 int *error_code, int *sense_key, int *asc, int *ascq) 5203 { 5204 struct scsi_sense_data *sense_data; 5205 5206 /* Make sure there are some sense data we can access. */ 5207 if (ccb->ccb_h.func_code != XPT_SCSI_IO || 5208 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR || 5209 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) || 5210 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 || 5211 (ccb->ccb_h.flags & CAM_SENSE_PHYS)) 5212 return (0); 5213 5214 if (ccb->ccb_h.flags & CAM_SENSE_PTR) 5215 bcopy((struct scsi_sense_data **)&ccb->csio.sense_data, 5216 &sense_data, sizeof(struct scsi_sense_data *)); 5217 else 5218 sense_data = &ccb->csio.sense_data; 5219 scsi_extract_sense_len(sense_data, 5220 ccb->csio.sense_len - ccb->csio.sense_resid, 5221 error_code, sense_key, asc, ascq, 1); 5222 if (*error_code == -1) 5223 return (0); 5224 return (1); 5225 } 5226 5227 /* 5228 * Extract basic sense information. If show_errors is set, sense values 5229 * will be set to -1 if they are not present. 5230 */ 5231 void 5232 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, 5233 int *error_code, int *sense_key, int *asc, int *ascq, 5234 int show_errors) 5235 { 5236 /* 5237 * If we have no length, we have no sense. 5238 */ 5239 if (sense_len == 0) { 5240 if (show_errors == 0) { 5241 *error_code = 0; 5242 *sense_key = 0; 5243 *asc = 0; 5244 *ascq = 0; 5245 } else { 5246 *error_code = -1; 5247 *sense_key = -1; 5248 *asc = -1; 5249 *ascq = -1; 5250 } 5251 return; 5252 } 5253 5254 *error_code = sense_data->error_code & SSD_ERRCODE; 5255 5256 switch (*error_code) { 5257 case SSD_DESC_CURRENT_ERROR: 5258 case SSD_DESC_DEFERRED_ERROR: { 5259 struct scsi_sense_data_desc *sense; 5260 5261 sense = (struct scsi_sense_data_desc *)sense_data; 5262 5263 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) 5264 *sense_key = sense->sense_key & SSD_KEY; 5265 else 5266 *sense_key = (show_errors) ? -1 : 0; 5267 5268 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) 5269 *asc = sense->add_sense_code; 5270 else 5271 *asc = (show_errors) ? -1 : 0; 5272 5273 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) 5274 *ascq = sense->add_sense_code_qual; 5275 else 5276 *ascq = (show_errors) ? -1 : 0; 5277 break; 5278 } 5279 case SSD_CURRENT_ERROR: 5280 case SSD_DEFERRED_ERROR: 5281 default: { 5282 struct scsi_sense_data_fixed *sense; 5283 5284 sense = (struct scsi_sense_data_fixed *)sense_data; 5285 5286 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) 5287 *sense_key = sense->flags & SSD_KEY; 5288 else 5289 *sense_key = (show_errors) ? -1 : 0; 5290 5291 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) 5292 && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) 5293 *asc = sense->add_sense_code; 5294 else 5295 *asc = (show_errors) ? -1 : 0; 5296 5297 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) 5298 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) 5299 *ascq = sense->add_sense_code_qual; 5300 else 5301 *ascq = (show_errors) ? -1 : 0; 5302 break; 5303 } 5304 } 5305 } 5306 5307 int 5308 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, 5309 int show_errors) 5310 { 5311 int error_code, sense_key, asc, ascq; 5312 5313 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5314 &sense_key, &asc, &ascq, show_errors); 5315 5316 return (sense_key); 5317 } 5318 5319 int 5320 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, 5321 int show_errors) 5322 { 5323 int error_code, sense_key, asc, ascq; 5324 5325 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5326 &sense_key, &asc, &ascq, show_errors); 5327 5328 return (asc); 5329 } 5330 5331 int 5332 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, 5333 int show_errors) 5334 { 5335 int error_code, sense_key, asc, ascq; 5336 5337 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5338 &sense_key, &asc, &ascq, show_errors); 5339 5340 return (ascq); 5341 } 5342 5343 /* 5344 * This function currently requires at least 36 bytes, or 5345 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this 5346 * function needs more or less data in the future, another length should be 5347 * defined in scsi_all.h to indicate the minimum amount of data necessary 5348 * for this routine to function properly. 5349 */ 5350 void 5351 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5352 { 5353 u_int8_t type; 5354 char *dtype, *qtype; 5355 5356 type = SID_TYPE(inq_data); 5357 5358 /* 5359 * Figure out basic device type and qualifier. 5360 */ 5361 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { 5362 qtype = " (vendor-unique qualifier)"; 5363 } else { 5364 switch (SID_QUAL(inq_data)) { 5365 case SID_QUAL_LU_CONNECTED: 5366 qtype = ""; 5367 break; 5368 5369 case SID_QUAL_LU_OFFLINE: 5370 qtype = " (offline)"; 5371 break; 5372 5373 case SID_QUAL_RSVD: 5374 qtype = " (reserved qualifier)"; 5375 break; 5376 default: 5377 case SID_QUAL_BAD_LU: 5378 qtype = " (LUN not supported)"; 5379 break; 5380 } 5381 } 5382 5383 switch (type) { 5384 case T_DIRECT: 5385 dtype = "Direct Access"; 5386 break; 5387 case T_SEQUENTIAL: 5388 dtype = "Sequential Access"; 5389 break; 5390 case T_PRINTER: 5391 dtype = "Printer"; 5392 break; 5393 case T_PROCESSOR: 5394 dtype = "Processor"; 5395 break; 5396 case T_WORM: 5397 dtype = "WORM"; 5398 break; 5399 case T_CDROM: 5400 dtype = "CD-ROM"; 5401 break; 5402 case T_SCANNER: 5403 dtype = "Scanner"; 5404 break; 5405 case T_OPTICAL: 5406 dtype = "Optical"; 5407 break; 5408 case T_CHANGER: 5409 dtype = "Changer"; 5410 break; 5411 case T_COMM: 5412 dtype = "Communication"; 5413 break; 5414 case T_STORARRAY: 5415 dtype = "Storage Array"; 5416 break; 5417 case T_ENCLOSURE: 5418 dtype = "Enclosure Services"; 5419 break; 5420 case T_RBC: 5421 dtype = "Simplified Direct Access"; 5422 break; 5423 case T_OCRW: 5424 dtype = "Optical Card Read/Write"; 5425 break; 5426 case T_OSD: 5427 dtype = "Object-Based Storage"; 5428 break; 5429 case T_ADC: 5430 dtype = "Automation/Drive Interface"; 5431 break; 5432 case T_ZBC_HM: 5433 dtype = "Host Managed Zoned Block"; 5434 break; 5435 case T_NODEVICE: 5436 dtype = "Uninstalled"; 5437 break; 5438 default: 5439 dtype = "unknown"; 5440 break; 5441 } 5442 5443 scsi_print_inquiry_short_sbuf(sb, inq_data); 5444 5445 sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype); 5446 5447 if (SID_ANSI_REV(inq_data) == SCSI_REV_0) 5448 sbuf_printf(sb, "SCSI "); 5449 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) { 5450 sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data)); 5451 } else { 5452 sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2); 5453 } 5454 sbuf_printf(sb, "device%s\n", qtype); 5455 } 5456 5457 void 5458 scsi_print_inquiry(struct scsi_inquiry_data *inq_data) 5459 { 5460 struct sbuf sb; 5461 char buffer[120]; 5462 5463 sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN); 5464 scsi_print_inquiry_sbuf(&sb, inq_data); 5465 sbuf_finish(&sb); 5466 sbuf_putbuf(&sb); 5467 } 5468 5469 void 5470 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5471 { 5472 5473 sbuf_printf(sb, "<"); 5474 cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0); 5475 sbuf_printf(sb, " "); 5476 cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0); 5477 sbuf_printf(sb, " "); 5478 cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0); 5479 sbuf_printf(sb, "> "); 5480 } 5481 5482 void 5483 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data) 5484 { 5485 struct sbuf sb; 5486 char buffer[84]; 5487 5488 sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN); 5489 scsi_print_inquiry_short_sbuf(&sb, inq_data); 5490 sbuf_finish(&sb); 5491 sbuf_putbuf(&sb); 5492 } 5493 5494 /* 5495 * Table of syncrates that don't follow the "divisible by 4" 5496 * rule. This table will be expanded in future SCSI specs. 5497 */ 5498 static struct { 5499 u_int period_factor; 5500 u_int period; /* in 100ths of ns */ 5501 } scsi_syncrates[] = { 5502 { 0x08, 625 }, /* FAST-160 */ 5503 { 0x09, 1250 }, /* FAST-80 */ 5504 { 0x0a, 2500 }, /* FAST-40 40MHz */ 5505 { 0x0b, 3030 }, /* FAST-40 33MHz */ 5506 { 0x0c, 5000 } /* FAST-20 */ 5507 }; 5508 5509 /* 5510 * Return the frequency in kHz corresponding to the given 5511 * sync period factor. 5512 */ 5513 u_int 5514 scsi_calc_syncsrate(u_int period_factor) 5515 { 5516 u_int i; 5517 u_int num_syncrates; 5518 5519 /* 5520 * It's a bug if period is zero, but if it is anyway, don't 5521 * die with a divide fault- instead return something which 5522 * 'approximates' async 5523 */ 5524 if (period_factor == 0) { 5525 return (3300); 5526 } 5527 5528 num_syncrates = nitems(scsi_syncrates); 5529 /* See if the period is in the "exception" table */ 5530 for (i = 0; i < num_syncrates; i++) { 5531 if (period_factor == scsi_syncrates[i].period_factor) { 5532 /* Period in kHz */ 5533 return (100000000 / scsi_syncrates[i].period); 5534 } 5535 } 5536 5537 /* 5538 * Wasn't in the table, so use the standard 5539 * 4 times conversion. 5540 */ 5541 return (10000000 / (period_factor * 4 * 10)); 5542 } 5543 5544 /* 5545 * Return the SCSI sync parameter that corresponds to 5546 * the passed in period in 10ths of ns. 5547 */ 5548 u_int 5549 scsi_calc_syncparam(u_int period) 5550 { 5551 u_int i; 5552 u_int num_syncrates; 5553 5554 if (period == 0) 5555 return (~0); /* Async */ 5556 5557 /* Adjust for exception table being in 100ths. */ 5558 period *= 10; 5559 num_syncrates = nitems(scsi_syncrates); 5560 /* See if the period is in the "exception" table */ 5561 for (i = 0; i < num_syncrates; i++) { 5562 if (period <= scsi_syncrates[i].period) { 5563 /* Period in 100ths of ns */ 5564 return (scsi_syncrates[i].period_factor); 5565 } 5566 } 5567 5568 /* 5569 * Wasn't in the table, so use the standard 5570 * 1/4 period in ns conversion. 5571 */ 5572 return (period/400); 5573 } 5574 5575 int 5576 scsi_devid_is_naa_ieee_reg(uint8_t *bufp) 5577 { 5578 struct scsi_vpd_id_descriptor *descr; 5579 struct scsi_vpd_id_naa_basic *naa; 5580 int n; 5581 5582 descr = (struct scsi_vpd_id_descriptor *)bufp; 5583 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; 5584 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5585 return 0; 5586 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) 5587 return 0; 5588 n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT; 5589 if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG) 5590 return 0; 5591 return 1; 5592 } 5593 5594 int 5595 scsi_devid_is_sas_target(uint8_t *bufp) 5596 { 5597 struct scsi_vpd_id_descriptor *descr; 5598 5599 descr = (struct scsi_vpd_id_descriptor *)bufp; 5600 if (!scsi_devid_is_naa_ieee_reg(bufp)) 5601 return 0; 5602 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ 5603 return 0; 5604 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) 5605 return 0; 5606 return 1; 5607 } 5608 5609 int 5610 scsi_devid_is_lun_eui64(uint8_t *bufp) 5611 { 5612 struct scsi_vpd_id_descriptor *descr; 5613 5614 descr = (struct scsi_vpd_id_descriptor *)bufp; 5615 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5616 return 0; 5617 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64) 5618 return 0; 5619 return 1; 5620 } 5621 5622 int 5623 scsi_devid_is_lun_naa(uint8_t *bufp) 5624 { 5625 struct scsi_vpd_id_descriptor *descr; 5626 5627 descr = (struct scsi_vpd_id_descriptor *)bufp; 5628 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5629 return 0; 5630 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5631 return 0; 5632 return 1; 5633 } 5634 5635 int 5636 scsi_devid_is_lun_t10(uint8_t *bufp) 5637 { 5638 struct scsi_vpd_id_descriptor *descr; 5639 5640 descr = (struct scsi_vpd_id_descriptor *)bufp; 5641 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5642 return 0; 5643 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10) 5644 return 0; 5645 return 1; 5646 } 5647 5648 int 5649 scsi_devid_is_lun_name(uint8_t *bufp) 5650 { 5651 struct scsi_vpd_id_descriptor *descr; 5652 5653 descr = (struct scsi_vpd_id_descriptor *)bufp; 5654 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5655 return 0; 5656 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME) 5657 return 0; 5658 return 1; 5659 } 5660 5661 int 5662 scsi_devid_is_lun_md5(uint8_t *bufp) 5663 { 5664 struct scsi_vpd_id_descriptor *descr; 5665 5666 descr = (struct scsi_vpd_id_descriptor *)bufp; 5667 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5668 return 0; 5669 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID) 5670 return 0; 5671 return 1; 5672 } 5673 5674 int 5675 scsi_devid_is_lun_uuid(uint8_t *bufp) 5676 { 5677 struct scsi_vpd_id_descriptor *descr; 5678 5679 descr = (struct scsi_vpd_id_descriptor *)bufp; 5680 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5681 return 0; 5682 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID) 5683 return 0; 5684 return 1; 5685 } 5686 5687 int 5688 scsi_devid_is_port_naa(uint8_t *bufp) 5689 { 5690 struct scsi_vpd_id_descriptor *descr; 5691 5692 descr = (struct scsi_vpd_id_descriptor *)bufp; 5693 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT) 5694 return 0; 5695 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5696 return 0; 5697 return 1; 5698 } 5699 5700 struct scsi_vpd_id_descriptor * 5701 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, 5702 scsi_devid_checkfn_t ck_fn) 5703 { 5704 uint8_t *desc_buf_end; 5705 5706 desc_buf_end = (uint8_t *)desc + len; 5707 5708 for (; desc->identifier <= desc_buf_end && 5709 desc->identifier + desc->length <= desc_buf_end; 5710 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier 5711 + desc->length)) { 5712 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) 5713 return (desc); 5714 } 5715 return (NULL); 5716 } 5717 5718 struct scsi_vpd_id_descriptor * 5719 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, 5720 scsi_devid_checkfn_t ck_fn) 5721 { 5722 uint32_t len; 5723 5724 if (page_len < sizeof(*id)) 5725 return (NULL); 5726 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id)); 5727 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *) 5728 id->desc_list, len, ck_fn)); 5729 } 5730 5731 int 5732 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, 5733 uint32_t valid_len) 5734 { 5735 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) { 5736 case SCSI_PROTO_FC: { 5737 struct scsi_transportid_fcp *fcp; 5738 uint64_t n_port_name; 5739 5740 fcp = (struct scsi_transportid_fcp *)hdr; 5741 5742 n_port_name = scsi_8btou64(fcp->n_port_name); 5743 5744 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name); 5745 break; 5746 } 5747 case SCSI_PROTO_SPI: { 5748 struct scsi_transportid_spi *spi; 5749 5750 spi = (struct scsi_transportid_spi *)hdr; 5751 5752 sbuf_printf(sb, "SPI address: %u,%u", 5753 scsi_2btoul(spi->scsi_addr), 5754 scsi_2btoul(spi->rel_trgt_port_id)); 5755 break; 5756 } 5757 case SCSI_PROTO_SSA: 5758 /* 5759 * XXX KDM there is no transport ID defined in SPC-4 for 5760 * SSA. 5761 */ 5762 break; 5763 case SCSI_PROTO_1394: { 5764 struct scsi_transportid_1394 *sbp; 5765 uint64_t eui64; 5766 5767 sbp = (struct scsi_transportid_1394 *)hdr; 5768 5769 eui64 = scsi_8btou64(sbp->eui64); 5770 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64); 5771 break; 5772 } 5773 case SCSI_PROTO_RDMA: { 5774 struct scsi_transportid_rdma *rdma; 5775 unsigned int i; 5776 5777 rdma = (struct scsi_transportid_rdma *)hdr; 5778 5779 sbuf_printf(sb, "RDMA address: 0x"); 5780 for (i = 0; i < sizeof(rdma->initiator_port_id); i++) 5781 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]); 5782 break; 5783 } 5784 case SCSI_PROTO_ISCSI: { 5785 uint32_t add_len, i; 5786 uint8_t *iscsi_name = NULL; 5787 int nul_found = 0; 5788 5789 sbuf_printf(sb, "iSCSI address: "); 5790 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5791 SCSI_TRN_ISCSI_FORMAT_DEVICE) { 5792 struct scsi_transportid_iscsi_device *dev; 5793 5794 dev = (struct scsi_transportid_iscsi_device *)hdr; 5795 5796 /* 5797 * Verify how much additional data we really have. 5798 */ 5799 add_len = scsi_2btoul(dev->additional_length); 5800 add_len = MIN(add_len, valid_len - 5801 __offsetof(struct scsi_transportid_iscsi_device, 5802 iscsi_name)); 5803 iscsi_name = &dev->iscsi_name[0]; 5804 5805 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5806 SCSI_TRN_ISCSI_FORMAT_PORT) { 5807 struct scsi_transportid_iscsi_port *port; 5808 5809 port = (struct scsi_transportid_iscsi_port *)hdr; 5810 5811 add_len = scsi_2btoul(port->additional_length); 5812 add_len = MIN(add_len, valid_len - 5813 __offsetof(struct scsi_transportid_iscsi_port, 5814 iscsi_name)); 5815 iscsi_name = &port->iscsi_name[0]; 5816 } else { 5817 sbuf_printf(sb, "unknown format %x", 5818 (hdr->format_protocol & 5819 SCSI_TRN_FORMAT_MASK) >> 5820 SCSI_TRN_FORMAT_SHIFT); 5821 break; 5822 } 5823 if (add_len == 0) { 5824 sbuf_printf(sb, "not enough data"); 5825 break; 5826 } 5827 /* 5828 * This is supposed to be a NUL-terminated ASCII 5829 * string, but you never know. So we're going to 5830 * check. We need to do this because there is no 5831 * sbuf equivalent of strncat(). 5832 */ 5833 for (i = 0; i < add_len; i++) { 5834 if (iscsi_name[i] == '\0') { 5835 nul_found = 1; 5836 break; 5837 } 5838 } 5839 /* 5840 * If there is a NUL in the name, we can just use 5841 * sbuf_cat(). Otherwise we need to use sbuf_bcat(). 5842 */ 5843 if (nul_found != 0) 5844 sbuf_cat(sb, iscsi_name); 5845 else 5846 sbuf_bcat(sb, iscsi_name, add_len); 5847 break; 5848 } 5849 case SCSI_PROTO_SAS: { 5850 struct scsi_transportid_sas *sas; 5851 uint64_t sas_addr; 5852 5853 sas = (struct scsi_transportid_sas *)hdr; 5854 5855 sas_addr = scsi_8btou64(sas->sas_address); 5856 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr); 5857 break; 5858 } 5859 case SCSI_PROTO_ADITP: 5860 case SCSI_PROTO_ATA: 5861 case SCSI_PROTO_UAS: 5862 /* 5863 * No Transport ID format for ADI, ATA or USB is defined in 5864 * SPC-4. 5865 */ 5866 sbuf_printf(sb, "No known Transport ID format for protocol " 5867 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5868 break; 5869 case SCSI_PROTO_SOP: { 5870 struct scsi_transportid_sop *sop; 5871 struct scsi_sop_routing_id_norm *rid; 5872 5873 sop = (struct scsi_transportid_sop *)hdr; 5874 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id; 5875 5876 /* 5877 * Note that there is no alternate format specified in SPC-4 5878 * for the PCIe routing ID, so we don't really have a way 5879 * to know whether the second byte of the routing ID is 5880 * a device and function or just a function. So we just 5881 * assume bus,device,function. 5882 */ 5883 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u", 5884 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT, 5885 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX); 5886 break; 5887 } 5888 case SCSI_PROTO_NONE: 5889 default: 5890 sbuf_printf(sb, "Unknown protocol %#x", 5891 hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5892 break; 5893 } 5894 5895 return (0); 5896 } 5897 5898 struct scsi_nv scsi_proto_map[] = { 5899 { "fcp", SCSI_PROTO_FC }, 5900 { "spi", SCSI_PROTO_SPI }, 5901 { "ssa", SCSI_PROTO_SSA }, 5902 { "sbp", SCSI_PROTO_1394 }, 5903 { "1394", SCSI_PROTO_1394 }, 5904 { "srp", SCSI_PROTO_RDMA }, 5905 { "rdma", SCSI_PROTO_RDMA }, 5906 { "iscsi", SCSI_PROTO_ISCSI }, 5907 { "iqn", SCSI_PROTO_ISCSI }, 5908 { "sas", SCSI_PROTO_SAS }, 5909 { "aditp", SCSI_PROTO_ADITP }, 5910 { "ata", SCSI_PROTO_ATA }, 5911 { "uas", SCSI_PROTO_UAS }, 5912 { "usb", SCSI_PROTO_UAS }, 5913 { "sop", SCSI_PROTO_SOP } 5914 }; 5915 5916 const char * 5917 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value) 5918 { 5919 int i; 5920 5921 for (i = 0; i < num_table_entries; i++) { 5922 if (table[i].value == value) 5923 return (table[i].name); 5924 } 5925 5926 return (NULL); 5927 } 5928 5929 /* 5930 * Given a name/value table, find a value matching the given name. 5931 * Return values: 5932 * SCSI_NV_FOUND - match found 5933 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact 5934 * SCSI_NV_NOT_FOUND - no match found 5935 */ 5936 scsi_nv_status 5937 scsi_get_nv(struct scsi_nv *table, int num_table_entries, 5938 char *name, int *table_entry, scsi_nv_flags flags) 5939 { 5940 int i, num_matches = 0; 5941 5942 for (i = 0; i < num_table_entries; i++) { 5943 size_t table_len, name_len; 5944 5945 table_len = strlen(table[i].name); 5946 name_len = strlen(name); 5947 5948 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0) 5949 && (strncasecmp(table[i].name, name, name_len) == 0)) 5950 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0) 5951 && (strncmp(table[i].name, name, name_len) == 0))) { 5952 *table_entry = i; 5953 5954 /* 5955 * Check for an exact match. If we have the same 5956 * number of characters in the table as the argument, 5957 * and we already know they're the same, we have 5958 * an exact match. 5959 */ 5960 if (table_len == name_len) 5961 return (SCSI_NV_FOUND); 5962 5963 /* 5964 * Otherwise, bump up the number of matches. We'll 5965 * see later how many we have. 5966 */ 5967 num_matches++; 5968 } 5969 } 5970 5971 if (num_matches > 1) 5972 return (SCSI_NV_AMBIGUOUS); 5973 else if (num_matches == 1) 5974 return (SCSI_NV_FOUND); 5975 else 5976 return (SCSI_NV_NOT_FOUND); 5977 } 5978 5979 /* 5980 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are 5981 * all 64-bit numbers, the code is similar. 5982 */ 5983 int 5984 scsi_parse_transportid_64bit(int proto_id, char *id_str, 5985 struct scsi_transportid_header **hdr, 5986 unsigned int *alloc_len, 5987 #ifdef _KERNEL 5988 struct malloc_type *type, int flags, 5989 #endif 5990 char *error_str, int error_str_len) 5991 { 5992 uint64_t value; 5993 char *endptr; 5994 int retval; 5995 size_t alloc_size; 5996 5997 retval = 0; 5998 5999 value = strtouq(id_str, &endptr, 0); 6000 if (*endptr != '\0') { 6001 if (error_str != NULL) { 6002 snprintf(error_str, error_str_len, "%s: error " 6003 "parsing ID %s, 64-bit number required", 6004 __func__, id_str); 6005 } 6006 retval = 1; 6007 goto bailout; 6008 } 6009 6010 switch (proto_id) { 6011 case SCSI_PROTO_FC: 6012 alloc_size = sizeof(struct scsi_transportid_fcp); 6013 break; 6014 case SCSI_PROTO_1394: 6015 alloc_size = sizeof(struct scsi_transportid_1394); 6016 break; 6017 case SCSI_PROTO_SAS: 6018 alloc_size = sizeof(struct scsi_transportid_sas); 6019 break; 6020 default: 6021 if (error_str != NULL) { 6022 snprintf(error_str, error_str_len, "%s: unsupported " 6023 "protocol %d", __func__, proto_id); 6024 } 6025 retval = 1; 6026 goto bailout; 6027 break; /* NOTREACHED */ 6028 } 6029 #ifdef _KERNEL 6030 *hdr = malloc(alloc_size, type, flags); 6031 #else /* _KERNEL */ 6032 *hdr = malloc(alloc_size); 6033 #endif /*_KERNEL */ 6034 if (*hdr == NULL) { 6035 if (error_str != NULL) { 6036 snprintf(error_str, error_str_len, "%s: unable to " 6037 "allocate %zu bytes", __func__, alloc_size); 6038 } 6039 retval = 1; 6040 goto bailout; 6041 } 6042 6043 *alloc_len = alloc_size; 6044 6045 bzero(*hdr, alloc_size); 6046 6047 switch (proto_id) { 6048 case SCSI_PROTO_FC: { 6049 struct scsi_transportid_fcp *fcp; 6050 6051 fcp = (struct scsi_transportid_fcp *)(*hdr); 6052 fcp->format_protocol = SCSI_PROTO_FC | 6053 SCSI_TRN_FCP_FORMAT_DEFAULT; 6054 scsi_u64to8b(value, fcp->n_port_name); 6055 break; 6056 } 6057 case SCSI_PROTO_1394: { 6058 struct scsi_transportid_1394 *sbp; 6059 6060 sbp = (struct scsi_transportid_1394 *)(*hdr); 6061 sbp->format_protocol = SCSI_PROTO_1394 | 6062 SCSI_TRN_1394_FORMAT_DEFAULT; 6063 scsi_u64to8b(value, sbp->eui64); 6064 break; 6065 } 6066 case SCSI_PROTO_SAS: { 6067 struct scsi_transportid_sas *sas; 6068 6069 sas = (struct scsi_transportid_sas *)(*hdr); 6070 sas->format_protocol = SCSI_PROTO_SAS | 6071 SCSI_TRN_SAS_FORMAT_DEFAULT; 6072 scsi_u64to8b(value, sas->sas_address); 6073 break; 6074 } 6075 default: 6076 break; 6077 } 6078 bailout: 6079 return (retval); 6080 } 6081 6082 /* 6083 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port 6084 */ 6085 int 6086 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, 6087 unsigned int *alloc_len, 6088 #ifdef _KERNEL 6089 struct malloc_type *type, int flags, 6090 #endif 6091 char *error_str, int error_str_len) 6092 { 6093 unsigned long scsi_addr, target_port; 6094 struct scsi_transportid_spi *spi; 6095 char *tmpstr, *endptr; 6096 int retval; 6097 6098 retval = 0; 6099 6100 tmpstr = strsep(&id_str, ","); 6101 if (tmpstr == NULL) { 6102 if (error_str != NULL) { 6103 snprintf(error_str, error_str_len, 6104 "%s: no ID found", __func__); 6105 } 6106 retval = 1; 6107 goto bailout; 6108 } 6109 scsi_addr = strtoul(tmpstr, &endptr, 0); 6110 if (*endptr != '\0') { 6111 if (error_str != NULL) { 6112 snprintf(error_str, error_str_len, "%s: error " 6113 "parsing SCSI ID %s, number required", 6114 __func__, tmpstr); 6115 } 6116 retval = 1; 6117 goto bailout; 6118 } 6119 6120 if (id_str == NULL) { 6121 if (error_str != NULL) { 6122 snprintf(error_str, error_str_len, "%s: no relative " 6123 "target port found", __func__); 6124 } 6125 retval = 1; 6126 goto bailout; 6127 } 6128 6129 target_port = strtoul(id_str, &endptr, 0); 6130 if (*endptr != '\0') { 6131 if (error_str != NULL) { 6132 snprintf(error_str, error_str_len, "%s: error " 6133 "parsing relative target port %s, number " 6134 "required", __func__, id_str); 6135 } 6136 retval = 1; 6137 goto bailout; 6138 } 6139 #ifdef _KERNEL 6140 spi = malloc(sizeof(*spi), type, flags); 6141 #else 6142 spi = malloc(sizeof(*spi)); 6143 #endif 6144 if (spi == NULL) { 6145 if (error_str != NULL) { 6146 snprintf(error_str, error_str_len, "%s: unable to " 6147 "allocate %zu bytes", __func__, 6148 sizeof(*spi)); 6149 } 6150 retval = 1; 6151 goto bailout; 6152 } 6153 *alloc_len = sizeof(*spi); 6154 bzero(spi, sizeof(*spi)); 6155 6156 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT; 6157 scsi_ulto2b(scsi_addr, spi->scsi_addr); 6158 scsi_ulto2b(target_port, spi->rel_trgt_port_id); 6159 6160 *hdr = (struct scsi_transportid_header *)spi; 6161 bailout: 6162 return (retval); 6163 } 6164 6165 /* 6166 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits, 6167 * optionally prefixed by "0x" or "0X". 6168 */ 6169 int 6170 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, 6171 unsigned int *alloc_len, 6172 #ifdef _KERNEL 6173 struct malloc_type *type, int flags, 6174 #endif 6175 char *error_str, int error_str_len) 6176 { 6177 struct scsi_transportid_rdma *rdma; 6178 int retval; 6179 size_t id_len, rdma_id_size; 6180 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN]; 6181 char *tmpstr; 6182 unsigned int i, j; 6183 6184 retval = 0; 6185 id_len = strlen(id_str); 6186 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN; 6187 6188 /* 6189 * Check the size. It needs to be either 32 or 34 characters long. 6190 */ 6191 if ((id_len != (rdma_id_size * 2)) 6192 && (id_len != ((rdma_id_size * 2) + 2))) { 6193 if (error_str != NULL) { 6194 snprintf(error_str, error_str_len, "%s: RDMA ID " 6195 "must be 32 hex digits (0x prefix " 6196 "optional), only %zu seen", __func__, id_len); 6197 } 6198 retval = 1; 6199 goto bailout; 6200 } 6201 6202 tmpstr = id_str; 6203 /* 6204 * If the user gave us 34 characters, the string needs to start 6205 * with '0x'. 6206 */ 6207 if (id_len == ((rdma_id_size * 2) + 2)) { 6208 if ((tmpstr[0] == '0') 6209 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) { 6210 tmpstr += 2; 6211 } else { 6212 if (error_str != NULL) { 6213 snprintf(error_str, error_str_len, "%s: RDMA " 6214 "ID prefix, if used, must be \"0x\", " 6215 "got %s", __func__, tmpstr); 6216 } 6217 retval = 1; 6218 goto bailout; 6219 } 6220 } 6221 bzero(rdma_id, sizeof(rdma_id)); 6222 6223 /* 6224 * Convert ASCII hex into binary bytes. There is no standard 6225 * 128-bit integer type, and so no strtou128t() routine to convert 6226 * from hex into a large integer. In the end, we're not going to 6227 * an integer, but rather to a byte array, so that and the fact 6228 * that we require the user to give us 32 hex digits simplifies the 6229 * logic. 6230 */ 6231 for (i = 0; i < (rdma_id_size * 2); i++) { 6232 int cur_shift; 6233 unsigned char c; 6234 6235 /* Increment the byte array one for every 2 hex digits */ 6236 j = i >> 1; 6237 6238 /* 6239 * The first digit in every pair is the most significant 6240 * 4 bits. The second is the least significant 4 bits. 6241 */ 6242 if ((i % 2) == 0) 6243 cur_shift = 4; 6244 else 6245 cur_shift = 0; 6246 6247 c = tmpstr[i]; 6248 /* Convert the ASCII hex character into a number */ 6249 if (isdigit(c)) 6250 c -= '0'; 6251 else if (isalpha(c)) 6252 c -= isupper(c) ? 'A' - 10 : 'a' - 10; 6253 else { 6254 if (error_str != NULL) { 6255 snprintf(error_str, error_str_len, "%s: " 6256 "RDMA ID must be hex digits, got " 6257 "invalid character %c", __func__, 6258 tmpstr[i]); 6259 } 6260 retval = 1; 6261 goto bailout; 6262 } 6263 /* 6264 * The converted number can't be less than 0; the type is 6265 * unsigned, and the subtraction logic will not give us 6266 * a negative number. So we only need to make sure that 6267 * the value is not greater than 0xf. (i.e. make sure the 6268 * user didn't give us a value like "0x12jklmno"). 6269 */ 6270 if (c > 0xf) { 6271 if (error_str != NULL) { 6272 snprintf(error_str, error_str_len, "%s: " 6273 "RDMA ID must be hex digits, got " 6274 "invalid character %c", __func__, 6275 tmpstr[i]); 6276 } 6277 retval = 1; 6278 goto bailout; 6279 } 6280 6281 rdma_id[j] |= c << cur_shift; 6282 } 6283 6284 #ifdef _KERNEL 6285 rdma = malloc(sizeof(*rdma), type, flags); 6286 #else 6287 rdma = malloc(sizeof(*rdma)); 6288 #endif 6289 if (rdma == NULL) { 6290 if (error_str != NULL) { 6291 snprintf(error_str, error_str_len, "%s: unable to " 6292 "allocate %zu bytes", __func__, 6293 sizeof(*rdma)); 6294 } 6295 retval = 1; 6296 goto bailout; 6297 } 6298 *alloc_len = sizeof(*rdma); 6299 bzero(rdma, *alloc_len); 6300 6301 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT; 6302 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN); 6303 6304 *hdr = (struct scsi_transportid_header *)rdma; 6305 6306 bailout: 6307 return (retval); 6308 } 6309 6310 /* 6311 * Parse an iSCSI name. The format is either just the name: 6312 * 6313 * iqn.2012-06.com.example:target0 6314 * or the name, separator and initiator session ID: 6315 * 6316 * iqn.2012-06.com.example:target0,i,0x123 6317 * 6318 * The separator format is exact. 6319 */ 6320 int 6321 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, 6322 unsigned int *alloc_len, 6323 #ifdef _KERNEL 6324 struct malloc_type *type, int flags, 6325 #endif 6326 char *error_str, int error_str_len) 6327 { 6328 size_t id_len, sep_len, id_size, name_len; 6329 int retval; 6330 unsigned int i, sep_pos, sep_found; 6331 const char *sep_template = ",i,0x"; 6332 const char *iqn_prefix = "iqn."; 6333 struct scsi_transportid_iscsi_device *iscsi; 6334 6335 retval = 0; 6336 sep_found = 0; 6337 6338 id_len = strlen(id_str); 6339 sep_len = strlen(sep_template); 6340 6341 /* 6342 * The separator is defined as exactly ',i,0x'. Any other commas, 6343 * or any other form, is an error. So look for a comma, and once 6344 * we find that, the next few characters must match the separator 6345 * exactly. Once we get through the separator, there should be at 6346 * least one character. 6347 */ 6348 for (i = 0, sep_pos = 0; i < id_len; i++) { 6349 if (sep_pos == 0) { 6350 if (id_str[i] == sep_template[sep_pos]) 6351 sep_pos++; 6352 6353 continue; 6354 } 6355 if (sep_pos < sep_len) { 6356 if (id_str[i] == sep_template[sep_pos]) { 6357 sep_pos++; 6358 continue; 6359 } 6360 if (error_str != NULL) { 6361 snprintf(error_str, error_str_len, "%s: " 6362 "invalid separator in iSCSI name " 6363 "\"%s\"", 6364 __func__, id_str); 6365 } 6366 retval = 1; 6367 goto bailout; 6368 } else { 6369 sep_found = 1; 6370 break; 6371 } 6372 } 6373 6374 /* 6375 * Check to see whether we have a separator but no digits after it. 6376 */ 6377 if ((sep_pos != 0) 6378 && (sep_found == 0)) { 6379 if (error_str != NULL) { 6380 snprintf(error_str, error_str_len, "%s: no digits " 6381 "found after separator in iSCSI name \"%s\"", 6382 __func__, id_str); 6383 } 6384 retval = 1; 6385 goto bailout; 6386 } 6387 6388 /* 6389 * The incoming ID string has the "iqn." prefix stripped off. We 6390 * need enough space for the base structure (the structures are the 6391 * same for the two iSCSI forms), the prefix, the ID string and a 6392 * terminating NUL. 6393 */ 6394 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1; 6395 6396 #ifdef _KERNEL 6397 iscsi = malloc(id_size, type, flags); 6398 #else 6399 iscsi = malloc(id_size); 6400 #endif 6401 if (iscsi == NULL) { 6402 if (error_str != NULL) { 6403 snprintf(error_str, error_str_len, "%s: unable to " 6404 "allocate %zu bytes", __func__, id_size); 6405 } 6406 retval = 1; 6407 goto bailout; 6408 } 6409 *alloc_len = id_size; 6410 bzero(iscsi, id_size); 6411 6412 iscsi->format_protocol = SCSI_PROTO_ISCSI; 6413 if (sep_found == 0) 6414 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE; 6415 else 6416 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT; 6417 name_len = id_size - sizeof(*iscsi); 6418 scsi_ulto2b(name_len, iscsi->additional_length); 6419 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str); 6420 6421 *hdr = (struct scsi_transportid_header *)iscsi; 6422 6423 bailout: 6424 return (retval); 6425 } 6426 6427 /* 6428 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be 6429 * of the form 'bus,device,function' or 'bus,function'. 6430 */ 6431 int 6432 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, 6433 unsigned int *alloc_len, 6434 #ifdef _KERNEL 6435 struct malloc_type *type, int flags, 6436 #endif 6437 char *error_str, int error_str_len) 6438 { 6439 struct scsi_transportid_sop *sop; 6440 unsigned long bus, device, function; 6441 char *tmpstr, *endptr; 6442 int retval, device_spec; 6443 6444 retval = 0; 6445 device_spec = 0; 6446 device = 0; 6447 6448 tmpstr = strsep(&id_str, ","); 6449 if ((tmpstr == NULL) 6450 || (*tmpstr == '\0')) { 6451 if (error_str != NULL) { 6452 snprintf(error_str, error_str_len, "%s: no ID found", 6453 __func__); 6454 } 6455 retval = 1; 6456 goto bailout; 6457 } 6458 bus = strtoul(tmpstr, &endptr, 0); 6459 if (*endptr != '\0') { 6460 if (error_str != NULL) { 6461 snprintf(error_str, error_str_len, "%s: error " 6462 "parsing PCIe bus %s, number required", 6463 __func__, tmpstr); 6464 } 6465 retval = 1; 6466 goto bailout; 6467 } 6468 if ((id_str == NULL) 6469 || (*id_str == '\0')) { 6470 if (error_str != NULL) { 6471 snprintf(error_str, error_str_len, "%s: no PCIe " 6472 "device or function found", __func__); 6473 } 6474 retval = 1; 6475 goto bailout; 6476 } 6477 tmpstr = strsep(&id_str, ","); 6478 function = strtoul(tmpstr, &endptr, 0); 6479 if (*endptr != '\0') { 6480 if (error_str != NULL) { 6481 snprintf(error_str, error_str_len, "%s: error " 6482 "parsing PCIe device/function %s, number " 6483 "required", __func__, tmpstr); 6484 } 6485 retval = 1; 6486 goto bailout; 6487 } 6488 /* 6489 * Check to see whether the user specified a third value. If so, 6490 * the second is the device. 6491 */ 6492 if (id_str != NULL) { 6493 if (*id_str == '\0') { 6494 if (error_str != NULL) { 6495 snprintf(error_str, error_str_len, "%s: " 6496 "no PCIe function found", __func__); 6497 } 6498 retval = 1; 6499 goto bailout; 6500 } 6501 device = function; 6502 device_spec = 1; 6503 function = strtoul(id_str, &endptr, 0); 6504 if (*endptr != '\0') { 6505 if (error_str != NULL) { 6506 snprintf(error_str, error_str_len, "%s: " 6507 "error parsing PCIe function %s, " 6508 "number required", __func__, id_str); 6509 } 6510 retval = 1; 6511 goto bailout; 6512 } 6513 } 6514 if (bus > SCSI_TRN_SOP_BUS_MAX) { 6515 if (error_str != NULL) { 6516 snprintf(error_str, error_str_len, "%s: bus value " 6517 "%lu greater than maximum %u", __func__, 6518 bus, SCSI_TRN_SOP_BUS_MAX); 6519 } 6520 retval = 1; 6521 goto bailout; 6522 } 6523 6524 if ((device_spec != 0) 6525 && (device > SCSI_TRN_SOP_DEV_MASK)) { 6526 if (error_str != NULL) { 6527 snprintf(error_str, error_str_len, "%s: device value " 6528 "%lu greater than maximum %u", __func__, 6529 device, SCSI_TRN_SOP_DEV_MAX); 6530 } 6531 retval = 1; 6532 goto bailout; 6533 } 6534 6535 if (((device_spec != 0) 6536 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX)) 6537 || ((device_spec == 0) 6538 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) { 6539 if (error_str != NULL) { 6540 snprintf(error_str, error_str_len, "%s: function value " 6541 "%lu greater than maximum %u", __func__, 6542 function, (device_spec == 0) ? 6543 SCSI_TRN_SOP_FUNC_ALT_MAX : 6544 SCSI_TRN_SOP_FUNC_NORM_MAX); 6545 } 6546 retval = 1; 6547 goto bailout; 6548 } 6549 6550 #ifdef _KERNEL 6551 sop = malloc(sizeof(*sop), type, flags); 6552 #else 6553 sop = malloc(sizeof(*sop)); 6554 #endif 6555 if (sop == NULL) { 6556 if (error_str != NULL) { 6557 snprintf(error_str, error_str_len, "%s: unable to " 6558 "allocate %zu bytes", __func__, sizeof(*sop)); 6559 } 6560 retval = 1; 6561 goto bailout; 6562 } 6563 *alloc_len = sizeof(*sop); 6564 bzero(sop, sizeof(*sop)); 6565 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT; 6566 if (device_spec != 0) { 6567 struct scsi_sop_routing_id_norm rid; 6568 6569 rid.bus = bus; 6570 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function; 6571 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6572 sizeof(sop->routing_id))); 6573 } else { 6574 struct scsi_sop_routing_id_alt rid; 6575 6576 rid.bus = bus; 6577 rid.function = function; 6578 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6579 sizeof(sop->routing_id))); 6580 } 6581 6582 *hdr = (struct scsi_transportid_header *)sop; 6583 bailout: 6584 return (retval); 6585 } 6586 6587 /* 6588 * transportid_str: NUL-terminated string with format: protcol,id 6589 * The ID is protocol specific. 6590 * hdr: Storage will be allocated for the transport ID. 6591 * alloc_len: The amount of memory allocated is returned here. 6592 * type: Malloc bucket (kernel only). 6593 * flags: Malloc flags (kernel only). 6594 * error_str: If non-NULL, it will contain error information (without 6595 * a terminating newline) if an error is returned. 6596 * error_str_len: Allocated length of the error string. 6597 * 6598 * Returns 0 for success, non-zero for failure. 6599 */ 6600 int 6601 scsi_parse_transportid(char *transportid_str, 6602 struct scsi_transportid_header **hdr, 6603 unsigned int *alloc_len, 6604 #ifdef _KERNEL 6605 struct malloc_type *type, int flags, 6606 #endif 6607 char *error_str, int error_str_len) 6608 { 6609 char *tmpstr; 6610 scsi_nv_status status; 6611 u_int num_proto_entries; 6612 int retval, table_entry; 6613 6614 retval = 0; 6615 table_entry = 0; 6616 6617 /* 6618 * We do allow a period as well as a comma to separate the protocol 6619 * from the ID string. This is to accommodate iSCSI names, which 6620 * start with "iqn.". 6621 */ 6622 tmpstr = strsep(&transportid_str, ",."); 6623 if (tmpstr == NULL) { 6624 if (error_str != NULL) { 6625 snprintf(error_str, error_str_len, 6626 "%s: transportid_str is NULL", __func__); 6627 } 6628 retval = 1; 6629 goto bailout; 6630 } 6631 6632 num_proto_entries = nitems(scsi_proto_map); 6633 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr, 6634 &table_entry, SCSI_NV_FLAG_IG_CASE); 6635 if (status != SCSI_NV_FOUND) { 6636 if (error_str != NULL) { 6637 snprintf(error_str, error_str_len, "%s: %s protocol " 6638 "name %s", __func__, 6639 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : 6640 "invalid", tmpstr); 6641 } 6642 retval = 1; 6643 goto bailout; 6644 } 6645 switch (scsi_proto_map[table_entry].value) { 6646 case SCSI_PROTO_FC: 6647 case SCSI_PROTO_1394: 6648 case SCSI_PROTO_SAS: 6649 retval = scsi_parse_transportid_64bit( 6650 scsi_proto_map[table_entry].value, transportid_str, hdr, 6651 alloc_len, 6652 #ifdef _KERNEL 6653 type, flags, 6654 #endif 6655 error_str, error_str_len); 6656 break; 6657 case SCSI_PROTO_SPI: 6658 retval = scsi_parse_transportid_spi(transportid_str, hdr, 6659 alloc_len, 6660 #ifdef _KERNEL 6661 type, flags, 6662 #endif 6663 error_str, error_str_len); 6664 break; 6665 case SCSI_PROTO_RDMA: 6666 retval = scsi_parse_transportid_rdma(transportid_str, hdr, 6667 alloc_len, 6668 #ifdef _KERNEL 6669 type, flags, 6670 #endif 6671 error_str, error_str_len); 6672 break; 6673 case SCSI_PROTO_ISCSI: 6674 retval = scsi_parse_transportid_iscsi(transportid_str, hdr, 6675 alloc_len, 6676 #ifdef _KERNEL 6677 type, flags, 6678 #endif 6679 error_str, error_str_len); 6680 break; 6681 case SCSI_PROTO_SOP: 6682 retval = scsi_parse_transportid_sop(transportid_str, hdr, 6683 alloc_len, 6684 #ifdef _KERNEL 6685 type, flags, 6686 #endif 6687 error_str, error_str_len); 6688 break; 6689 case SCSI_PROTO_SSA: 6690 case SCSI_PROTO_ADITP: 6691 case SCSI_PROTO_ATA: 6692 case SCSI_PROTO_UAS: 6693 case SCSI_PROTO_NONE: 6694 default: 6695 /* 6696 * There is no format defined for a Transport ID for these 6697 * protocols. So even if the user gives us something, we 6698 * have no way to turn it into a standard SCSI Transport ID. 6699 */ 6700 retval = 1; 6701 if (error_str != NULL) { 6702 snprintf(error_str, error_str_len, "%s: no Transport " 6703 "ID format exists for protocol %s", 6704 __func__, tmpstr); 6705 } 6706 goto bailout; 6707 break; /* NOTREACHED */ 6708 } 6709 bailout: 6710 return (retval); 6711 } 6712 6713 struct scsi_attrib_table_entry scsi_mam_attr_table[] = { 6714 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6715 "Remaining Capacity in Partition", 6716 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL }, 6717 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6718 "Maximum Capacity in Partition", 6719 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6720 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX, 6721 "TapeAlert Flags", 6722 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6723 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE, 6724 "Load Count", 6725 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6726 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE, 6727 "MAM Space Remaining", 6728 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6729 /*parse_str*/ NULL }, 6730 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6731 "Assigning Organization", 6732 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6733 /*parse_str*/ NULL }, 6734 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6735 "Format Density Code", 6736 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6737 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE, 6738 "Initialization Count", 6739 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6740 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE, 6741 "Volume Identifier", 6742 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6743 /*parse_str*/ NULL }, 6744 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX, 6745 "Volume Change Reference", 6746 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6747 /*parse_str*/ NULL }, 6748 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE, 6749 "Device Vendor/Serial at Last Load", 6750 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6751 /*parse_str*/ NULL }, 6752 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE, 6753 "Device Vendor/Serial at Last Load - 1", 6754 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6755 /*parse_str*/ NULL }, 6756 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE, 6757 "Device Vendor/Serial at Last Load - 2", 6758 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6759 /*parse_str*/ NULL }, 6760 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE, 6761 "Device Vendor/Serial at Last Load - 3", 6762 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6763 /*parse_str*/ NULL }, 6764 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE, 6765 "Total MB Written in Medium Life", 6766 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6767 /*parse_str*/ NULL }, 6768 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE, 6769 "Total MB Read in Medium Life", 6770 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6771 /*parse_str*/ NULL }, 6772 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE, 6773 "Total MB Written in Current/Last Load", 6774 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6775 /*parse_str*/ NULL }, 6776 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE, 6777 "Total MB Read in Current/Last Load", 6778 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6779 /*parse_str*/ NULL }, 6780 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6781 "Logical Position of First Encrypted Block", 6782 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6783 /*parse_str*/ NULL }, 6784 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6785 "Logical Position of First Unencrypted Block after First " 6786 "Encrypted Block", 6787 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6788 /*parse_str*/ NULL }, 6789 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6790 "Medium Usage History", 6791 /*suffix*/ NULL, /*to_str*/ NULL, 6792 /*parse_str*/ NULL }, 6793 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6794 "Partition Usage History", 6795 /*suffix*/ NULL, /*to_str*/ NULL, 6796 /*parse_str*/ NULL }, 6797 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE, 6798 "Medium Manufacturer", 6799 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6800 /*parse_str*/ NULL }, 6801 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE, 6802 "Medium Serial Number", 6803 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6804 /*parse_str*/ NULL }, 6805 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE, 6806 "Medium Length", 6807 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf, 6808 /*parse_str*/ NULL }, 6809 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 | 6810 SCSI_ATTR_FLAG_FP_1DIGIT, 6811 "Medium Width", 6812 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf, 6813 /*parse_str*/ NULL }, 6814 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6815 "Assigning Organization", 6816 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6817 /*parse_str*/ NULL }, 6818 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6819 "Medium Density Code", 6820 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6821 /*parse_str*/ NULL }, 6822 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE, 6823 "Medium Manufacture Date", 6824 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6825 /*parse_str*/ NULL }, 6826 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE, 6827 "MAM Capacity", 6828 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6829 /*parse_str*/ NULL }, 6830 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX, 6831 "Medium Type", 6832 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6833 /*parse_str*/ NULL }, 6834 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX, 6835 "Medium Type Information", 6836 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6837 /*parse_str*/ NULL }, 6838 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE, 6839 "Medium Serial Number", 6840 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6841 /*parse_str*/ NULL }, 6842 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE, 6843 "Application Vendor", 6844 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6845 /*parse_str*/ NULL }, 6846 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE, 6847 "Application Name", 6848 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6849 /*parse_str*/ NULL }, 6850 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE, 6851 "Application Version", 6852 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6853 /*parse_str*/ NULL }, 6854 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE, 6855 "User Medium Text Label", 6856 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6857 /*parse_str*/ NULL }, 6858 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE, 6859 "Date and Time Last Written", 6860 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6861 /*parse_str*/ NULL }, 6862 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX, 6863 "Text Localization Identifier", 6864 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6865 /*parse_str*/ NULL }, 6866 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE, 6867 "Barcode", 6868 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6869 /*parse_str*/ NULL }, 6870 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE, 6871 "Owning Host Textual Name", 6872 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6873 /*parse_str*/ NULL }, 6874 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE, 6875 "Media Pool", 6876 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6877 /*parse_str*/ NULL }, 6878 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE, 6879 "Partition User Text Label", 6880 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6881 /*parse_str*/ NULL }, 6882 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE, 6883 "Load/Unload at Partition", 6884 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6885 /*parse_str*/ NULL }, 6886 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE, 6887 "Application Format Version", 6888 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6889 /*parse_str*/ NULL }, 6890 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE, 6891 "Volume Coherency Information", 6892 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf, 6893 /*parse_str*/ NULL }, 6894 { 0x0ff1, SCSI_ATTR_FLAG_NONE, 6895 "Spectra MLM Creation", 6896 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6897 /*parse_str*/ NULL }, 6898 { 0x0ff2, SCSI_ATTR_FLAG_NONE, 6899 "Spectra MLM C3", 6900 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6901 /*parse_str*/ NULL }, 6902 { 0x0ff3, SCSI_ATTR_FLAG_NONE, 6903 "Spectra MLM RW", 6904 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6905 /*parse_str*/ NULL }, 6906 { 0x0ff4, SCSI_ATTR_FLAG_NONE, 6907 "Spectra MLM SDC List", 6908 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6909 /*parse_str*/ NULL }, 6910 { 0x0ff7, SCSI_ATTR_FLAG_NONE, 6911 "Spectra MLM Post Scan", 6912 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6913 /*parse_str*/ NULL }, 6914 { 0x0ffe, SCSI_ATTR_FLAG_NONE, 6915 "Spectra MLM Checksum", 6916 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6917 /*parse_str*/ NULL }, 6918 { 0x17f1, SCSI_ATTR_FLAG_NONE, 6919 "Spectra MLM Creation", 6920 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6921 /*parse_str*/ NULL }, 6922 { 0x17f2, SCSI_ATTR_FLAG_NONE, 6923 "Spectra MLM C3", 6924 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6925 /*parse_str*/ NULL }, 6926 { 0x17f3, SCSI_ATTR_FLAG_NONE, 6927 "Spectra MLM RW", 6928 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6929 /*parse_str*/ NULL }, 6930 { 0x17f4, SCSI_ATTR_FLAG_NONE, 6931 "Spectra MLM SDC List", 6932 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6933 /*parse_str*/ NULL }, 6934 { 0x17f7, SCSI_ATTR_FLAG_NONE, 6935 "Spectra MLM Post Scan", 6936 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6937 /*parse_str*/ NULL }, 6938 { 0x17ff, SCSI_ATTR_FLAG_NONE, 6939 "Spectra MLM Checksum", 6940 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6941 /*parse_str*/ NULL }, 6942 }; 6943 6944 /* 6945 * Print out Volume Coherency Information (Attribute 0x080c). 6946 * This field has two variable length members, including one at the 6947 * beginning, so it isn't practical to have a fixed structure definition. 6948 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25, 6949 * 2013. 6950 */ 6951 int 6952 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 6953 uint32_t valid_len, uint32_t flags, 6954 uint32_t output_flags, char *error_str, 6955 int error_str_len) 6956 { 6957 size_t avail_len; 6958 uint32_t field_size; 6959 uint64_t tmp_val; 6960 uint8_t *cur_ptr; 6961 int retval; 6962 int vcr_len, as_len; 6963 6964 retval = 0; 6965 tmp_val = 0; 6966 6967 field_size = scsi_2btoul(hdr->length); 6968 avail_len = valid_len - sizeof(*hdr); 6969 if (field_size > avail_len) { 6970 if (error_str != NULL) { 6971 snprintf(error_str, error_str_len, "Available " 6972 "length of attribute ID 0x%.4x %zu < field " 6973 "length %u", scsi_2btoul(hdr->id), avail_len, 6974 field_size); 6975 } 6976 retval = 1; 6977 goto bailout; 6978 } else if (field_size == 0) { 6979 /* 6980 * It isn't clear from the spec whether a field length of 6981 * 0 is invalid here. It probably is, but be lenient here 6982 * to avoid inconveniencing the user. 6983 */ 6984 goto bailout; 6985 } 6986 cur_ptr = hdr->attribute; 6987 vcr_len = *cur_ptr; 6988 cur_ptr++; 6989 6990 sbuf_printf(sb, "\n\tVolume Change Reference Value:"); 6991 6992 switch (vcr_len) { 6993 case 0: 6994 if (error_str != NULL) { 6995 snprintf(error_str, error_str_len, "Volume Change " 6996 "Reference value has length of 0"); 6997 } 6998 retval = 1; 6999 goto bailout; 7000 break; /*NOTREACHED*/ 7001 case 1: 7002 tmp_val = *cur_ptr; 7003 break; 7004 case 2: 7005 tmp_val = scsi_2btoul(cur_ptr); 7006 break; 7007 case 3: 7008 tmp_val = scsi_3btoul(cur_ptr); 7009 break; 7010 case 4: 7011 tmp_val = scsi_4btoul(cur_ptr); 7012 break; 7013 case 8: 7014 tmp_val = scsi_8btou64(cur_ptr); 7015 break; 7016 default: 7017 sbuf_printf(sb, "\n"); 7018 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0); 7019 break; 7020 } 7021 if (vcr_len <= 8) 7022 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val); 7023 7024 cur_ptr += vcr_len; 7025 tmp_val = scsi_8btou64(cur_ptr); 7026 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val); 7027 7028 cur_ptr += sizeof(tmp_val); 7029 tmp_val = scsi_8btou64(cur_ptr); 7030 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n", 7031 (uintmax_t)tmp_val); 7032 7033 /* 7034 * Figure out how long the Application Client Specific Information 7035 * is and produce a hexdump. 7036 */ 7037 cur_ptr += sizeof(tmp_val); 7038 as_len = scsi_2btoul(cur_ptr); 7039 cur_ptr += sizeof(uint16_t); 7040 sbuf_printf(sb, "\tApplication Client Specific Information: "); 7041 if (((as_len == SCSI_LTFS_VER0_LEN) 7042 || (as_len == SCSI_LTFS_VER1_LEN)) 7043 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) { 7044 sbuf_printf(sb, "LTFS\n"); 7045 cur_ptr += SCSI_LTFS_STR_LEN + 1; 7046 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0') 7047 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0'; 7048 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr); 7049 cur_ptr += SCSI_LTFS_UUID_LEN + 1; 7050 /* XXX KDM check the length */ 7051 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr); 7052 } else { 7053 sbuf_printf(sb, "Unknown\n"); 7054 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0); 7055 } 7056 7057 bailout: 7058 return (retval); 7059 } 7060 7061 int 7062 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7063 uint32_t valid_len, uint32_t flags, 7064 uint32_t output_flags, char *error_str, 7065 int error_str_len) 7066 { 7067 size_t avail_len; 7068 uint32_t field_size; 7069 struct scsi_attrib_vendser *vendser; 7070 cam_strvis_flags strvis_flags; 7071 int retval = 0; 7072 7073 field_size = scsi_2btoul(hdr->length); 7074 avail_len = valid_len - sizeof(*hdr); 7075 if (field_size > avail_len) { 7076 if (error_str != NULL) { 7077 snprintf(error_str, error_str_len, "Available " 7078 "length of attribute ID 0x%.4x %zu < field " 7079 "length %u", scsi_2btoul(hdr->id), avail_len, 7080 field_size); 7081 } 7082 retval = 1; 7083 goto bailout; 7084 } else if (field_size == 0) { 7085 /* 7086 * A field size of 0 doesn't make sense here. The device 7087 * can at least give you the vendor ID, even if it can't 7088 * give you the serial number. 7089 */ 7090 if (error_str != NULL) { 7091 snprintf(error_str, error_str_len, "The length of " 7092 "attribute ID 0x%.4x is 0", 7093 scsi_2btoul(hdr->id)); 7094 } 7095 retval = 1; 7096 goto bailout; 7097 } 7098 vendser = (struct scsi_attrib_vendser *)hdr->attribute; 7099 7100 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7101 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7102 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7103 break; 7104 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7105 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7106 break; 7107 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7108 default: 7109 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7110 break; 7111 } 7112 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor), 7113 strvis_flags); 7114 sbuf_putc(sb, ' '); 7115 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num), 7116 strvis_flags); 7117 bailout: 7118 return (retval); 7119 } 7120 7121 int 7122 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7123 uint32_t valid_len, uint32_t flags, 7124 uint32_t output_flags, char *error_str, 7125 int error_str_len) 7126 { 7127 uint32_t field_size; 7128 ssize_t avail_len; 7129 uint32_t print_len; 7130 uint8_t *num_ptr; 7131 int retval = 0; 7132 7133 field_size = scsi_2btoul(hdr->length); 7134 avail_len = valid_len - sizeof(*hdr); 7135 print_len = MIN(avail_len, field_size); 7136 num_ptr = hdr->attribute; 7137 7138 if (print_len > 0) { 7139 sbuf_printf(sb, "\n"); 7140 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0); 7141 } 7142 7143 return (retval); 7144 } 7145 7146 int 7147 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7148 uint32_t valid_len, uint32_t flags, 7149 uint32_t output_flags, char *error_str, 7150 int error_str_len) 7151 { 7152 uint64_t print_number; 7153 size_t avail_len; 7154 uint32_t number_size; 7155 int retval = 0; 7156 7157 number_size = scsi_2btoul(hdr->length); 7158 7159 avail_len = valid_len - sizeof(*hdr); 7160 if (avail_len < number_size) { 7161 if (error_str != NULL) { 7162 snprintf(error_str, error_str_len, "Available " 7163 "length of attribute ID 0x%.4x %zu < field " 7164 "length %u", scsi_2btoul(hdr->id), avail_len, 7165 number_size); 7166 } 7167 retval = 1; 7168 goto bailout; 7169 } 7170 7171 switch (number_size) { 7172 case 0: 7173 /* 7174 * We don't treat this as an error, since there may be 7175 * scenarios where a device reports a field but then gives 7176 * a length of 0. See the note in scsi_attrib_ascii_sbuf(). 7177 */ 7178 goto bailout; 7179 break; /*NOTREACHED*/ 7180 case 1: 7181 print_number = hdr->attribute[0]; 7182 break; 7183 case 2: 7184 print_number = scsi_2btoul(hdr->attribute); 7185 break; 7186 case 3: 7187 print_number = scsi_3btoul(hdr->attribute); 7188 break; 7189 case 4: 7190 print_number = scsi_4btoul(hdr->attribute); 7191 break; 7192 case 8: 7193 print_number = scsi_8btou64(hdr->attribute); 7194 break; 7195 default: 7196 /* 7197 * If we wind up here, the number is too big to print 7198 * normally, so just do a hexdump. 7199 */ 7200 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7201 flags, output_flags, 7202 error_str, error_str_len); 7203 goto bailout; 7204 break; 7205 } 7206 7207 if (flags & SCSI_ATTR_FLAG_FP) { 7208 #ifndef _KERNEL 7209 long double num_float; 7210 7211 num_float = (long double)print_number; 7212 7213 if (flags & SCSI_ATTR_FLAG_DIV_10) 7214 num_float /= 10; 7215 7216 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ? 7217 1 : 0, num_float); 7218 #else /* _KERNEL */ 7219 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ? 7220 (print_number / 10) : print_number); 7221 #endif /* _KERNEL */ 7222 } else if (flags & SCSI_ATTR_FLAG_HEX) { 7223 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number); 7224 } else 7225 sbuf_printf(sb, "%ju", (uintmax_t)print_number); 7226 7227 bailout: 7228 return (retval); 7229 } 7230 7231 int 7232 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7233 uint32_t valid_len, uint32_t flags, 7234 uint32_t output_flags, char *error_str, 7235 int error_str_len) 7236 { 7237 size_t avail_len; 7238 uint32_t field_size, print_size; 7239 int retval = 0; 7240 7241 avail_len = valid_len - sizeof(*hdr); 7242 field_size = scsi_2btoul(hdr->length); 7243 print_size = MIN(avail_len, field_size); 7244 7245 if (print_size > 0) { 7246 cam_strvis_flags strvis_flags; 7247 7248 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7249 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7250 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7251 break; 7252 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7253 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7254 break; 7255 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7256 default: 7257 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7258 break; 7259 } 7260 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags); 7261 } else if (avail_len < field_size) { 7262 /* 7263 * We only report an error if the user didn't allocate 7264 * enough space to hold the full value of this field. If 7265 * the field length is 0, that is allowed by the spec. 7266 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER 7267 * "This attribute indicates the current volume identifier 7268 * (see SMC-3) of the medium. If the device server supports 7269 * this attribute but does not have access to the volume 7270 * identifier, the device server shall report this attribute 7271 * with an attribute length value of zero." 7272 */ 7273 if (error_str != NULL) { 7274 snprintf(error_str, error_str_len, "Available " 7275 "length of attribute ID 0x%.4x %zu < field " 7276 "length %u", scsi_2btoul(hdr->id), avail_len, 7277 field_size); 7278 } 7279 retval = 1; 7280 } 7281 7282 return (retval); 7283 } 7284 7285 int 7286 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7287 uint32_t valid_len, uint32_t flags, 7288 uint32_t output_flags, char *error_str, 7289 int error_str_len) 7290 { 7291 size_t avail_len; 7292 uint32_t field_size, print_size; 7293 int retval = 0; 7294 int esc_text = 1; 7295 7296 avail_len = valid_len - sizeof(*hdr); 7297 field_size = scsi_2btoul(hdr->length); 7298 print_size = MIN(avail_len, field_size); 7299 7300 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) == 7301 SCSI_ATTR_OUTPUT_TEXT_RAW) 7302 esc_text = 0; 7303 7304 if (print_size > 0) { 7305 uint32_t i; 7306 7307 for (i = 0; i < print_size; i++) { 7308 if (hdr->attribute[i] == '\0') 7309 continue; 7310 else if (((unsigned char)hdr->attribute[i] < 0x80) 7311 || (esc_text == 0)) 7312 sbuf_putc(sb, hdr->attribute[i]); 7313 else 7314 sbuf_printf(sb, "%%%02x", 7315 (unsigned char)hdr->attribute[i]); 7316 } 7317 } else if (avail_len < field_size) { 7318 /* 7319 * We only report an error if the user didn't allocate 7320 * enough space to hold the full value of this field. 7321 */ 7322 if (error_str != NULL) { 7323 snprintf(error_str, error_str_len, "Available " 7324 "length of attribute ID 0x%.4x %zu < field " 7325 "length %u", scsi_2btoul(hdr->id), avail_len, 7326 field_size); 7327 } 7328 retval = 1; 7329 } 7330 7331 return (retval); 7332 } 7333 7334 struct scsi_attrib_table_entry * 7335 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table, 7336 size_t num_table_entries, uint32_t id) 7337 { 7338 uint32_t i; 7339 7340 for (i = 0; i < num_table_entries; i++) { 7341 if (table[i].id == id) 7342 return (&table[i]); 7343 } 7344 7345 return (NULL); 7346 } 7347 7348 struct scsi_attrib_table_entry * 7349 scsi_get_attrib_entry(uint32_t id) 7350 { 7351 return (scsi_find_attrib_entry(scsi_mam_attr_table, 7352 nitems(scsi_mam_attr_table), id)); 7353 } 7354 7355 int 7356 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, 7357 struct scsi_mam_attribute_header *hdr, uint32_t output_flags, 7358 char *error_str, size_t error_str_len) 7359 { 7360 int retval; 7361 7362 switch (hdr->byte2 & SMA_FORMAT_MASK) { 7363 case SMA_FORMAT_ASCII: 7364 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len, 7365 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len); 7366 break; 7367 case SMA_FORMAT_BINARY: 7368 if (scsi_2btoul(hdr->length) <= 8) 7369 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len, 7370 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7371 error_str_len); 7372 else 7373 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7374 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7375 error_str_len); 7376 break; 7377 case SMA_FORMAT_TEXT: 7378 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len, 7379 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7380 error_str_len); 7381 break; 7382 default: 7383 if (error_str != NULL) { 7384 snprintf(error_str, error_str_len, "Unknown attribute " 7385 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK); 7386 } 7387 retval = 1; 7388 goto bailout; 7389 break; /*NOTREACHED*/ 7390 } 7391 7392 sbuf_trim(sb); 7393 7394 bailout: 7395 7396 return (retval); 7397 } 7398 7399 void 7400 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, 7401 struct scsi_mam_attribute_header *hdr, 7402 uint32_t valid_len, const char *desc) 7403 { 7404 int need_space = 0; 7405 uint32_t len; 7406 uint32_t id; 7407 7408 /* 7409 * We can't do anything if we don't have enough valid data for the 7410 * header. 7411 */ 7412 if (valid_len < sizeof(*hdr)) 7413 return; 7414 7415 id = scsi_2btoul(hdr->id); 7416 /* 7417 * Note that we print out the value of the attribute listed in the 7418 * header, regardless of whether we actually got that many bytes 7419 * back from the device through the controller. A truncated result 7420 * could be the result of a failure to ask for enough data; the 7421 * header indicates how many bytes are allocated for this attribute 7422 * in the MAM. 7423 */ 7424 len = scsi_2btoul(hdr->length); 7425 7426 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) == 7427 SCSI_ATTR_OUTPUT_FIELD_NONE) 7428 return; 7429 7430 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC) 7431 && (desc != NULL)) { 7432 sbuf_printf(sb, "%s", desc); 7433 need_space = 1; 7434 } 7435 7436 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) { 7437 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id); 7438 need_space = 0; 7439 } 7440 7441 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) { 7442 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len); 7443 need_space = 0; 7444 } 7445 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) { 7446 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "", 7447 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW"); 7448 } 7449 sbuf_printf(sb, ": "); 7450 } 7451 7452 int 7453 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7454 uint32_t valid_len, struct scsi_attrib_table_entry *user_table, 7455 size_t num_user_entries, int prefer_user_table, 7456 uint32_t output_flags, char *error_str, int error_str_len) 7457 { 7458 int retval; 7459 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL; 7460 struct scsi_attrib_table_entry *entry = NULL; 7461 size_t table1_size = 0, table2_size = 0; 7462 uint32_t id; 7463 7464 retval = 0; 7465 7466 if (valid_len < sizeof(*hdr)) { 7467 retval = 1; 7468 goto bailout; 7469 } 7470 7471 id = scsi_2btoul(hdr->id); 7472 7473 if (user_table != NULL) { 7474 if (prefer_user_table != 0) { 7475 table1 = user_table; 7476 table1_size = num_user_entries; 7477 table2 = scsi_mam_attr_table; 7478 table2_size = nitems(scsi_mam_attr_table); 7479 } else { 7480 table1 = scsi_mam_attr_table; 7481 table1_size = nitems(scsi_mam_attr_table); 7482 table2 = user_table; 7483 table2_size = num_user_entries; 7484 } 7485 } else { 7486 table1 = scsi_mam_attr_table; 7487 table1_size = nitems(scsi_mam_attr_table); 7488 } 7489 7490 entry = scsi_find_attrib_entry(table1, table1_size, id); 7491 if (entry != NULL) { 7492 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, 7493 entry->desc); 7494 if (entry->to_str == NULL) 7495 goto print_default; 7496 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7497 output_flags, error_str, error_str_len); 7498 goto bailout; 7499 } 7500 if (table2 != NULL) { 7501 entry = scsi_find_attrib_entry(table2, table2_size, id); 7502 if (entry != NULL) { 7503 if (entry->to_str == NULL) 7504 goto print_default; 7505 7506 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, 7507 valid_len, entry->desc); 7508 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7509 output_flags, error_str, 7510 error_str_len); 7511 goto bailout; 7512 } 7513 } 7514 7515 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL); 7516 7517 print_default: 7518 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags, 7519 error_str, error_str_len); 7520 bailout: 7521 if (retval == 0) { 7522 if ((entry != NULL) 7523 && (entry->suffix != NULL)) 7524 sbuf_printf(sb, " %s", entry->suffix); 7525 7526 sbuf_trim(sb); 7527 sbuf_printf(sb, "\n"); 7528 } 7529 7530 return (retval); 7531 } 7532 7533 void 7534 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, 7535 void (*cbfcnp)(struct cam_periph *, union ccb *), 7536 u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout) 7537 { 7538 struct scsi_test_unit_ready *scsi_cmd; 7539 7540 cam_fill_csio(csio, 7541 retries, 7542 cbfcnp, 7543 CAM_DIR_NONE, 7544 tag_action, 7545 /*data_ptr*/NULL, 7546 /*dxfer_len*/0, 7547 sense_len, 7548 sizeof(*scsi_cmd), 7549 timeout); 7550 7551 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; 7552 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7553 scsi_cmd->opcode = TEST_UNIT_READY; 7554 } 7555 7556 void 7557 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, 7558 void (*cbfcnp)(struct cam_periph *, union ccb *), 7559 void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, 7560 u_int8_t sense_len, u_int32_t timeout) 7561 { 7562 struct scsi_request_sense *scsi_cmd; 7563 7564 cam_fill_csio(csio, 7565 retries, 7566 cbfcnp, 7567 CAM_DIR_IN, 7568 tag_action, 7569 data_ptr, 7570 dxfer_len, 7571 sense_len, 7572 sizeof(*scsi_cmd), 7573 timeout); 7574 7575 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; 7576 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7577 scsi_cmd->opcode = REQUEST_SENSE; 7578 scsi_cmd->length = dxfer_len; 7579 } 7580 7581 void 7582 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, 7583 void (*cbfcnp)(struct cam_periph *, union ccb *), 7584 u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, 7585 int evpd, u_int8_t page_code, u_int8_t sense_len, 7586 u_int32_t timeout) 7587 { 7588 struct scsi_inquiry *scsi_cmd; 7589 7590 cam_fill_csio(csio, 7591 retries, 7592 cbfcnp, 7593 /*flags*/CAM_DIR_IN, 7594 tag_action, 7595 /*data_ptr*/inq_buf, 7596 /*dxfer_len*/inq_len, 7597 sense_len, 7598 sizeof(*scsi_cmd), 7599 timeout); 7600 7601 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; 7602 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7603 scsi_cmd->opcode = INQUIRY; 7604 if (evpd) { 7605 scsi_cmd->byte2 |= SI_EVPD; 7606 scsi_cmd->page_code = page_code; 7607 } 7608 scsi_ulto2b(inq_len, scsi_cmd->length); 7609 } 7610 7611 void 7612 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries, 7613 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7614 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7615 uint8_t sense_len, uint32_t timeout) 7616 { 7617 7618 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7619 pc, page, 0, param_buf, param_len, 0, sense_len, timeout); 7620 } 7621 7622 void 7623 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries, 7624 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7625 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7626 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout) 7627 { 7628 7629 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7630 pc, page, 0, param_buf, param_len, minimum_cmd_size, 7631 sense_len, timeout); 7632 } 7633 7634 void 7635 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries, 7636 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7637 int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf, 7638 uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, 7639 uint32_t timeout) 7640 { 7641 u_int8_t cdb_len; 7642 7643 /* 7644 * Use the smallest possible command to perform the operation. 7645 */ 7646 if ((param_len < 256) 7647 && (minimum_cmd_size < 10)) { 7648 /* 7649 * We can fit in a 6 byte cdb. 7650 */ 7651 struct scsi_mode_sense_6 *scsi_cmd; 7652 7653 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; 7654 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7655 scsi_cmd->opcode = MODE_SENSE_6; 7656 if (dbd != 0) 7657 scsi_cmd->byte2 |= SMS_DBD; 7658 scsi_cmd->page = pc | page; 7659 scsi_cmd->subpage = subpage; 7660 scsi_cmd->length = param_len; 7661 cdb_len = sizeof(*scsi_cmd); 7662 } else { 7663 /* 7664 * Need a 10 byte cdb. 7665 */ 7666 struct scsi_mode_sense_10 *scsi_cmd; 7667 7668 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; 7669 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7670 scsi_cmd->opcode = MODE_SENSE_10; 7671 if (dbd != 0) 7672 scsi_cmd->byte2 |= SMS_DBD; 7673 scsi_cmd->page = pc | page; 7674 scsi_cmd->subpage = subpage; 7675 scsi_ulto2b(param_len, scsi_cmd->length); 7676 cdb_len = sizeof(*scsi_cmd); 7677 } 7678 cam_fill_csio(csio, 7679 retries, 7680 cbfcnp, 7681 CAM_DIR_IN, 7682 tag_action, 7683 param_buf, 7684 param_len, 7685 sense_len, 7686 cdb_len, 7687 timeout); 7688 } 7689 7690 void 7691 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, 7692 void (*cbfcnp)(struct cam_periph *, union ccb *), 7693 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7694 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7695 u_int32_t timeout) 7696 { 7697 scsi_mode_select_len(csio, retries, cbfcnp, tag_action, 7698 scsi_page_fmt, save_pages, param_buf, 7699 param_len, 0, sense_len, timeout); 7700 } 7701 7702 void 7703 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, 7704 void (*cbfcnp)(struct cam_periph *, union ccb *), 7705 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7706 u_int8_t *param_buf, u_int32_t param_len, 7707 int minimum_cmd_size, u_int8_t sense_len, 7708 u_int32_t timeout) 7709 { 7710 u_int8_t cdb_len; 7711 7712 /* 7713 * Use the smallest possible command to perform the operation. 7714 */ 7715 if ((param_len < 256) 7716 && (minimum_cmd_size < 10)) { 7717 /* 7718 * We can fit in a 6 byte cdb. 7719 */ 7720 struct scsi_mode_select_6 *scsi_cmd; 7721 7722 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; 7723 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7724 scsi_cmd->opcode = MODE_SELECT_6; 7725 if (scsi_page_fmt != 0) 7726 scsi_cmd->byte2 |= SMS_PF; 7727 if (save_pages != 0) 7728 scsi_cmd->byte2 |= SMS_SP; 7729 scsi_cmd->length = param_len; 7730 cdb_len = sizeof(*scsi_cmd); 7731 } else { 7732 /* 7733 * Need a 10 byte cdb. 7734 */ 7735 struct scsi_mode_select_10 *scsi_cmd; 7736 7737 scsi_cmd = 7738 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; 7739 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7740 scsi_cmd->opcode = MODE_SELECT_10; 7741 if (scsi_page_fmt != 0) 7742 scsi_cmd->byte2 |= SMS_PF; 7743 if (save_pages != 0) 7744 scsi_cmd->byte2 |= SMS_SP; 7745 scsi_ulto2b(param_len, scsi_cmd->length); 7746 cdb_len = sizeof(*scsi_cmd); 7747 } 7748 cam_fill_csio(csio, 7749 retries, 7750 cbfcnp, 7751 CAM_DIR_OUT, 7752 tag_action, 7753 param_buf, 7754 param_len, 7755 sense_len, 7756 cdb_len, 7757 timeout); 7758 } 7759 7760 void 7761 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, 7762 void (*cbfcnp)(struct cam_periph *, union ccb *), 7763 u_int8_t tag_action, u_int8_t page_code, u_int8_t page, 7764 int save_pages, int ppc, u_int32_t paramptr, 7765 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7766 u_int32_t timeout) 7767 { 7768 struct scsi_log_sense *scsi_cmd; 7769 u_int8_t cdb_len; 7770 7771 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; 7772 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7773 scsi_cmd->opcode = LOG_SENSE; 7774 scsi_cmd->page = page_code | page; 7775 if (save_pages != 0) 7776 scsi_cmd->byte2 |= SLS_SP; 7777 if (ppc != 0) 7778 scsi_cmd->byte2 |= SLS_PPC; 7779 scsi_ulto2b(paramptr, scsi_cmd->paramptr); 7780 scsi_ulto2b(param_len, scsi_cmd->length); 7781 cdb_len = sizeof(*scsi_cmd); 7782 7783 cam_fill_csio(csio, 7784 retries, 7785 cbfcnp, 7786 /*flags*/CAM_DIR_IN, 7787 tag_action, 7788 /*data_ptr*/param_buf, 7789 /*dxfer_len*/param_len, 7790 sense_len, 7791 cdb_len, 7792 timeout); 7793 } 7794 7795 void 7796 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, 7797 void (*cbfcnp)(struct cam_periph *, union ccb *), 7798 u_int8_t tag_action, u_int8_t page_code, int save_pages, 7799 int pc_reset, u_int8_t *param_buf, u_int32_t param_len, 7800 u_int8_t sense_len, u_int32_t timeout) 7801 { 7802 struct scsi_log_select *scsi_cmd; 7803 u_int8_t cdb_len; 7804 7805 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; 7806 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7807 scsi_cmd->opcode = LOG_SELECT; 7808 scsi_cmd->page = page_code & SLS_PAGE_CODE; 7809 if (save_pages != 0) 7810 scsi_cmd->byte2 |= SLS_SP; 7811 if (pc_reset != 0) 7812 scsi_cmd->byte2 |= SLS_PCR; 7813 scsi_ulto2b(param_len, scsi_cmd->length); 7814 cdb_len = sizeof(*scsi_cmd); 7815 7816 cam_fill_csio(csio, 7817 retries, 7818 cbfcnp, 7819 /*flags*/CAM_DIR_OUT, 7820 tag_action, 7821 /*data_ptr*/param_buf, 7822 /*dxfer_len*/param_len, 7823 sense_len, 7824 cdb_len, 7825 timeout); 7826 } 7827 7828 /* 7829 * Prevent or allow the user to remove the media 7830 */ 7831 void 7832 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, 7833 void (*cbfcnp)(struct cam_periph *, union ccb *), 7834 u_int8_t tag_action, u_int8_t action, 7835 u_int8_t sense_len, u_int32_t timeout) 7836 { 7837 struct scsi_prevent *scsi_cmd; 7838 7839 cam_fill_csio(csio, 7840 retries, 7841 cbfcnp, 7842 /*flags*/CAM_DIR_NONE, 7843 tag_action, 7844 /*data_ptr*/NULL, 7845 /*dxfer_len*/0, 7846 sense_len, 7847 sizeof(*scsi_cmd), 7848 timeout); 7849 7850 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; 7851 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7852 scsi_cmd->opcode = PREVENT_ALLOW; 7853 scsi_cmd->how = action; 7854 } 7855 7856 /* XXX allow specification of address and PMI bit and LBA */ 7857 void 7858 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, 7859 void (*cbfcnp)(struct cam_periph *, union ccb *), 7860 u_int8_t tag_action, 7861 struct scsi_read_capacity_data *rcap_buf, 7862 u_int8_t sense_len, u_int32_t timeout) 7863 { 7864 struct scsi_read_capacity *scsi_cmd; 7865 7866 cam_fill_csio(csio, 7867 retries, 7868 cbfcnp, 7869 /*flags*/CAM_DIR_IN, 7870 tag_action, 7871 /*data_ptr*/(u_int8_t *)rcap_buf, 7872 /*dxfer_len*/sizeof(*rcap_buf), 7873 sense_len, 7874 sizeof(*scsi_cmd), 7875 timeout); 7876 7877 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; 7878 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7879 scsi_cmd->opcode = READ_CAPACITY; 7880 } 7881 7882 void 7883 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, 7884 void (*cbfcnp)(struct cam_periph *, union ccb *), 7885 uint8_t tag_action, uint64_t lba, int reladr, int pmi, 7886 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, 7887 uint32_t timeout) 7888 { 7889 struct scsi_read_capacity_16 *scsi_cmd; 7890 7891 cam_fill_csio(csio, 7892 retries, 7893 cbfcnp, 7894 /*flags*/CAM_DIR_IN, 7895 tag_action, 7896 /*data_ptr*/(u_int8_t *)rcap_buf, 7897 /*dxfer_len*/rcap_buf_len, 7898 sense_len, 7899 sizeof(*scsi_cmd), 7900 timeout); 7901 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 7902 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7903 scsi_cmd->opcode = SERVICE_ACTION_IN; 7904 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 7905 scsi_u64to8b(lba, scsi_cmd->addr); 7906 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); 7907 if (pmi) 7908 reladr |= SRC16_PMI; 7909 if (reladr) 7910 reladr |= SRC16_RELADR; 7911 } 7912 7913 void 7914 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, 7915 void (*cbfcnp)(struct cam_periph *, union ccb *), 7916 u_int8_t tag_action, u_int8_t select_report, 7917 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, 7918 u_int8_t sense_len, u_int32_t timeout) 7919 { 7920 struct scsi_report_luns *scsi_cmd; 7921 7922 cam_fill_csio(csio, 7923 retries, 7924 cbfcnp, 7925 /*flags*/CAM_DIR_IN, 7926 tag_action, 7927 /*data_ptr*/(u_int8_t *)rpl_buf, 7928 /*dxfer_len*/alloc_len, 7929 sense_len, 7930 sizeof(*scsi_cmd), 7931 timeout); 7932 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; 7933 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7934 scsi_cmd->opcode = REPORT_LUNS; 7935 scsi_cmd->select_report = select_report; 7936 scsi_ulto4b(alloc_len, scsi_cmd->length); 7937 } 7938 7939 void 7940 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7941 void (*cbfcnp)(struct cam_periph *, union ccb *), 7942 u_int8_t tag_action, u_int8_t pdf, 7943 void *buf, u_int32_t alloc_len, 7944 u_int8_t sense_len, u_int32_t timeout) 7945 { 7946 struct scsi_target_group *scsi_cmd; 7947 7948 cam_fill_csio(csio, 7949 retries, 7950 cbfcnp, 7951 /*flags*/CAM_DIR_IN, 7952 tag_action, 7953 /*data_ptr*/(u_int8_t *)buf, 7954 /*dxfer_len*/alloc_len, 7955 sense_len, 7956 sizeof(*scsi_cmd), 7957 timeout); 7958 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 7959 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7960 scsi_cmd->opcode = MAINTENANCE_IN; 7961 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; 7962 scsi_ulto4b(alloc_len, scsi_cmd->length); 7963 } 7964 7965 void 7966 scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 7967 void (*cbfcnp)(struct cam_periph *, union ccb *), 7968 u_int8_t tag_action, u_int8_t pdf, 7969 void *buf, u_int32_t alloc_len, 7970 u_int8_t sense_len, u_int32_t timeout) 7971 { 7972 struct scsi_timestamp *scsi_cmd; 7973 7974 cam_fill_csio(csio, 7975 retries, 7976 cbfcnp, 7977 /*flags*/CAM_DIR_IN, 7978 tag_action, 7979 /*data_ptr*/(u_int8_t *)buf, 7980 /*dxfer_len*/alloc_len, 7981 sense_len, 7982 sizeof(*scsi_cmd), 7983 timeout); 7984 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 7985 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7986 scsi_cmd->opcode = MAINTENANCE_IN; 7987 scsi_cmd->service_action = REPORT_TIMESTAMP | pdf; 7988 scsi_ulto4b(alloc_len, scsi_cmd->length); 7989 } 7990 7991 void 7992 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7993 void (*cbfcnp)(struct cam_periph *, union ccb *), 7994 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 7995 u_int8_t sense_len, u_int32_t timeout) 7996 { 7997 struct scsi_target_group *scsi_cmd; 7998 7999 cam_fill_csio(csio, 8000 retries, 8001 cbfcnp, 8002 /*flags*/CAM_DIR_OUT, 8003 tag_action, 8004 /*data_ptr*/(u_int8_t *)buf, 8005 /*dxfer_len*/alloc_len, 8006 sense_len, 8007 sizeof(*scsi_cmd), 8008 timeout); 8009 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 8010 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8011 scsi_cmd->opcode = MAINTENANCE_OUT; 8012 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; 8013 scsi_ulto4b(alloc_len, scsi_cmd->length); 8014 } 8015 8016 void 8017 scsi_create_timestamp(uint8_t *timestamp_6b_buf, 8018 uint64_t timestamp) 8019 { 8020 uint8_t buf[8]; 8021 scsi_u64to8b(timestamp, buf); 8022 /* 8023 * Using memcopy starting at buf[2] because the set timestamp parameters 8024 * only has six bytes for the timestamp to fit into, and we don't have a 8025 * scsi_u64to6b function. 8026 */ 8027 memcpy(timestamp_6b_buf, &buf[2], 6); 8028 } 8029 8030 void 8031 scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 8032 void (*cbfcnp)(struct cam_periph *, union ccb *), 8033 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 8034 u_int8_t sense_len, u_int32_t timeout) 8035 { 8036 struct scsi_timestamp *scsi_cmd; 8037 8038 cam_fill_csio(csio, 8039 retries, 8040 cbfcnp, 8041 /*flags*/CAM_DIR_OUT, 8042 tag_action, 8043 /*data_ptr*/(u_int8_t *) buf, 8044 /*dxfer_len*/alloc_len, 8045 sense_len, 8046 sizeof(*scsi_cmd), 8047 timeout); 8048 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 8049 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8050 scsi_cmd->opcode = MAINTENANCE_OUT; 8051 scsi_cmd->service_action = SET_TIMESTAMP; 8052 scsi_ulto4b(alloc_len, scsi_cmd->length); 8053 } 8054 8055 /* 8056 * Syncronize the media to the contents of the cache for 8057 * the given lba/count pair. Specifying 0/0 means sync 8058 * the whole cache. 8059 */ 8060 void 8061 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, 8062 void (*cbfcnp)(struct cam_periph *, union ccb *), 8063 u_int8_t tag_action, u_int32_t begin_lba, 8064 u_int16_t lb_count, u_int8_t sense_len, 8065 u_int32_t timeout) 8066 { 8067 struct scsi_sync_cache *scsi_cmd; 8068 8069 cam_fill_csio(csio, 8070 retries, 8071 cbfcnp, 8072 /*flags*/CAM_DIR_NONE, 8073 tag_action, 8074 /*data_ptr*/NULL, 8075 /*dxfer_len*/0, 8076 sense_len, 8077 sizeof(*scsi_cmd), 8078 timeout); 8079 8080 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; 8081 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8082 scsi_cmd->opcode = SYNCHRONIZE_CACHE; 8083 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); 8084 scsi_ulto2b(lb_count, scsi_cmd->lb_count); 8085 } 8086 8087 void 8088 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, 8089 void (*cbfcnp)(struct cam_periph *, union ccb *), 8090 u_int8_t tag_action, int readop, u_int8_t byte2, 8091 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8092 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8093 u_int32_t timeout) 8094 { 8095 int read; 8096 u_int8_t cdb_len; 8097 8098 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; 8099 8100 /* 8101 * Use the smallest possible command to perform the operation 8102 * as some legacy hardware does not support the 10 byte commands. 8103 * If any of the bits in byte2 is set, we have to go with a larger 8104 * command. 8105 */ 8106 if ((minimum_cmd_size < 10) 8107 && ((lba & 0x1fffff) == lba) 8108 && ((block_count & 0xff) == block_count) 8109 && (byte2 == 0)) { 8110 /* 8111 * We can fit in a 6 byte cdb. 8112 */ 8113 struct scsi_rw_6 *scsi_cmd; 8114 8115 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; 8116 scsi_cmd->opcode = read ? READ_6 : WRITE_6; 8117 scsi_ulto3b(lba, scsi_cmd->addr); 8118 scsi_cmd->length = block_count & 0xff; 8119 scsi_cmd->control = 0; 8120 cdb_len = sizeof(*scsi_cmd); 8121 8122 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8123 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], 8124 scsi_cmd->addr[1], scsi_cmd->addr[2], 8125 scsi_cmd->length, dxfer_len)); 8126 } else if ((minimum_cmd_size < 12) 8127 && ((block_count & 0xffff) == block_count) 8128 && ((lba & 0xffffffff) == lba)) { 8129 /* 8130 * Need a 10 byte cdb. 8131 */ 8132 struct scsi_rw_10 *scsi_cmd; 8133 8134 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; 8135 scsi_cmd->opcode = read ? READ_10 : WRITE_10; 8136 scsi_cmd->byte2 = byte2; 8137 scsi_ulto4b(lba, scsi_cmd->addr); 8138 scsi_cmd->reserved = 0; 8139 scsi_ulto2b(block_count, scsi_cmd->length); 8140 scsi_cmd->control = 0; 8141 cdb_len = sizeof(*scsi_cmd); 8142 8143 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8144 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8145 scsi_cmd->addr[1], scsi_cmd->addr[2], 8146 scsi_cmd->addr[3], scsi_cmd->length[0], 8147 scsi_cmd->length[1], dxfer_len)); 8148 } else if ((minimum_cmd_size < 16) 8149 && ((block_count & 0xffffffff) == block_count) 8150 && ((lba & 0xffffffff) == lba)) { 8151 /* 8152 * The block count is too big for a 10 byte CDB, use a 12 8153 * byte CDB. 8154 */ 8155 struct scsi_rw_12 *scsi_cmd; 8156 8157 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; 8158 scsi_cmd->opcode = read ? READ_12 : WRITE_12; 8159 scsi_cmd->byte2 = byte2; 8160 scsi_ulto4b(lba, scsi_cmd->addr); 8161 scsi_cmd->reserved = 0; 8162 scsi_ulto4b(block_count, scsi_cmd->length); 8163 scsi_cmd->control = 0; 8164 cdb_len = sizeof(*scsi_cmd); 8165 8166 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8167 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], 8168 scsi_cmd->addr[1], scsi_cmd->addr[2], 8169 scsi_cmd->addr[3], scsi_cmd->length[0], 8170 scsi_cmd->length[1], scsi_cmd->length[2], 8171 scsi_cmd->length[3], dxfer_len)); 8172 } else { 8173 /* 8174 * 16 byte CDB. We'll only get here if the LBA is larger 8175 * than 2^32, or if the user asks for a 16 byte command. 8176 */ 8177 struct scsi_rw_16 *scsi_cmd; 8178 8179 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; 8180 scsi_cmd->opcode = read ? READ_16 : WRITE_16; 8181 scsi_cmd->byte2 = byte2; 8182 scsi_u64to8b(lba, scsi_cmd->addr); 8183 scsi_cmd->reserved = 0; 8184 scsi_ulto4b(block_count, scsi_cmd->length); 8185 scsi_cmd->control = 0; 8186 cdb_len = sizeof(*scsi_cmd); 8187 } 8188 cam_fill_csio(csio, 8189 retries, 8190 cbfcnp, 8191 (read ? CAM_DIR_IN : CAM_DIR_OUT) | 8192 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), 8193 tag_action, 8194 data_ptr, 8195 dxfer_len, 8196 sense_len, 8197 cdb_len, 8198 timeout); 8199 } 8200 8201 void 8202 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, 8203 void (*cbfcnp)(struct cam_periph *, union ccb *), 8204 u_int8_t tag_action, u_int8_t byte2, 8205 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8206 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8207 u_int32_t timeout) 8208 { 8209 u_int8_t cdb_len; 8210 if ((minimum_cmd_size < 16) && 8211 ((block_count & 0xffff) == block_count) && 8212 ((lba & 0xffffffff) == lba)) { 8213 /* 8214 * Need a 10 byte cdb. 8215 */ 8216 struct scsi_write_same_10 *scsi_cmd; 8217 8218 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; 8219 scsi_cmd->opcode = WRITE_SAME_10; 8220 scsi_cmd->byte2 = byte2; 8221 scsi_ulto4b(lba, scsi_cmd->addr); 8222 scsi_cmd->group = 0; 8223 scsi_ulto2b(block_count, scsi_cmd->length); 8224 scsi_cmd->control = 0; 8225 cdb_len = sizeof(*scsi_cmd); 8226 8227 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8228 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8229 scsi_cmd->addr[1], scsi_cmd->addr[2], 8230 scsi_cmd->addr[3], scsi_cmd->length[0], 8231 scsi_cmd->length[1], dxfer_len)); 8232 } else { 8233 /* 8234 * 16 byte CDB. We'll only get here if the LBA is larger 8235 * than 2^32, or if the user asks for a 16 byte command. 8236 */ 8237 struct scsi_write_same_16 *scsi_cmd; 8238 8239 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; 8240 scsi_cmd->opcode = WRITE_SAME_16; 8241 scsi_cmd->byte2 = byte2; 8242 scsi_u64to8b(lba, scsi_cmd->addr); 8243 scsi_ulto4b(block_count, scsi_cmd->length); 8244 scsi_cmd->group = 0; 8245 scsi_cmd->control = 0; 8246 cdb_len = sizeof(*scsi_cmd); 8247 8248 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8249 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", 8250 scsi_cmd->addr[0], scsi_cmd->addr[1], 8251 scsi_cmd->addr[2], scsi_cmd->addr[3], 8252 scsi_cmd->addr[4], scsi_cmd->addr[5], 8253 scsi_cmd->addr[6], scsi_cmd->addr[7], 8254 scsi_cmd->length[0], scsi_cmd->length[1], 8255 scsi_cmd->length[2], scsi_cmd->length[3], 8256 dxfer_len)); 8257 } 8258 cam_fill_csio(csio, 8259 retries, 8260 cbfcnp, 8261 /*flags*/CAM_DIR_OUT, 8262 tag_action, 8263 data_ptr, 8264 dxfer_len, 8265 sense_len, 8266 cdb_len, 8267 timeout); 8268 } 8269 8270 void 8271 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries, 8272 void (*cbfcnp)(struct cam_periph *, union ccb *), 8273 u_int8_t tag_action, u_int8_t *data_ptr, 8274 u_int16_t dxfer_len, u_int8_t sense_len, 8275 u_int32_t timeout) 8276 { 8277 scsi_ata_pass(csio, 8278 retries, 8279 cbfcnp, 8280 /*flags*/CAM_DIR_IN, 8281 tag_action, 8282 /*protocol*/AP_PROTO_PIO_IN, 8283 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8284 AP_FLAG_BYT_BLOK_BLOCKS | 8285 AP_FLAG_TLEN_SECT_CNT, 8286 /*features*/0, 8287 /*sector_count*/dxfer_len / 512, 8288 /*lba*/0, 8289 /*command*/ATA_ATA_IDENTIFY, 8290 /*device*/ 0, 8291 /*icc*/ 0, 8292 /*auxiliary*/ 0, 8293 /*control*/0, 8294 data_ptr, 8295 dxfer_len, 8296 /*cdb_storage*/ NULL, 8297 /*cdb_storage_len*/ 0, 8298 /*minimum_cmd_size*/ 0, 8299 sense_len, 8300 timeout); 8301 } 8302 8303 void 8304 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries, 8305 void (*cbfcnp)(struct cam_periph *, union ccb *), 8306 u_int8_t tag_action, u_int16_t block_count, 8307 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8308 u_int32_t timeout) 8309 { 8310 scsi_ata_pass_16(csio, 8311 retries, 8312 cbfcnp, 8313 /*flags*/CAM_DIR_OUT, 8314 tag_action, 8315 /*protocol*/AP_EXTEND|AP_PROTO_DMA, 8316 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS, 8317 /*features*/ATA_DSM_TRIM, 8318 /*sector_count*/block_count, 8319 /*lba*/0, 8320 /*command*/ATA_DATA_SET_MANAGEMENT, 8321 /*control*/0, 8322 data_ptr, 8323 dxfer_len, 8324 sense_len, 8325 timeout); 8326 } 8327 8328 int 8329 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries, 8330 void (*cbfcnp)(struct cam_periph *, union ccb *), 8331 uint8_t tag_action, uint32_t log_address, 8332 uint32_t page_number, uint16_t block_count, 8333 uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, 8334 uint8_t sense_len, uint32_t timeout) 8335 { 8336 uint8_t command, protocol_out; 8337 uint16_t count_out; 8338 uint64_t lba; 8339 int retval; 8340 8341 retval = 0; 8342 8343 switch (protocol) { 8344 case AP_PROTO_DMA: 8345 count_out = block_count; 8346 command = ATA_READ_LOG_DMA_EXT; 8347 protocol_out = AP_PROTO_DMA; 8348 break; 8349 case AP_PROTO_PIO_IN: 8350 default: 8351 count_out = block_count; 8352 command = ATA_READ_LOG_EXT; 8353 protocol_out = AP_PROTO_PIO_IN; 8354 break; 8355 } 8356 8357 lba = (((uint64_t)page_number & 0xff00) << 32) | 8358 ((page_number & 0x00ff) << 8) | 8359 (log_address & 0xff); 8360 8361 protocol_out |= AP_EXTEND; 8362 8363 retval = scsi_ata_pass(csio, 8364 retries, 8365 cbfcnp, 8366 /*flags*/CAM_DIR_IN, 8367 tag_action, 8368 /*protocol*/ protocol_out, 8369 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT | 8370 AP_FLAG_BYT_BLOK_BLOCKS | 8371 AP_FLAG_TDIR_FROM_DEV, 8372 /*feature*/ 0, 8373 /*sector_count*/ count_out, 8374 /*lba*/ lba, 8375 /*command*/ command, 8376 /*device*/ 0, 8377 /*icc*/ 0, 8378 /*auxiliary*/ 0, 8379 /*control*/0, 8380 data_ptr, 8381 dxfer_len, 8382 /*cdb_storage*/ NULL, 8383 /*cdb_storage_len*/ 0, 8384 /*minimum_cmd_size*/ 0, 8385 sense_len, 8386 timeout); 8387 8388 return (retval); 8389 } 8390 8391 int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries, 8392 void (*cbfcnp)(struct cam_periph *, union ccb *), 8393 uint8_t tag_action, uint8_t feature, 8394 uint64_t lba, uint32_t count, 8395 uint8_t sense_len, uint32_t timeout) 8396 { 8397 return (scsi_ata_pass(csio, 8398 retries, 8399 cbfcnp, 8400 /*flags*/CAM_DIR_NONE, 8401 tag_action, 8402 /*protocol*/AP_PROTO_PIO_IN, 8403 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8404 AP_FLAG_BYT_BLOK_BYTES | 8405 AP_FLAG_TLEN_SECT_CNT, 8406 /*features*/feature, 8407 /*sector_count*/count, 8408 /*lba*/lba, 8409 /*command*/ATA_SETFEATURES, 8410 /*device*/ 0, 8411 /*icc*/ 0, 8412 /*auxiliary*/0, 8413 /*control*/0, 8414 /*data_ptr*/NULL, 8415 /*dxfer_len*/0, 8416 /*cdb_storage*/NULL, 8417 /*cdb_storage_len*/0, 8418 /*minimum_cmd_size*/0, 8419 sense_len, 8420 timeout)); 8421 } 8422 8423 /* 8424 * Note! This is an unusual CDB building function because it can return 8425 * an error in the event that the command in question requires a variable 8426 * length CDB, but the caller has not given storage space for one or has not 8427 * given enough storage space. If there is enough space available in the 8428 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage. 8429 */ 8430 int 8431 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries, 8432 void (*cbfcnp)(struct cam_periph *, union ccb *), 8433 uint32_t flags, uint8_t tag_action, 8434 uint8_t protocol, uint8_t ata_flags, uint16_t features, 8435 uint16_t sector_count, uint64_t lba, uint8_t command, 8436 uint8_t device, uint8_t icc, uint32_t auxiliary, 8437 uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len, 8438 uint8_t *cdb_storage, size_t cdb_storage_len, 8439 int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) 8440 { 8441 uint32_t cam_flags; 8442 uint8_t *cdb_ptr; 8443 int cmd_size; 8444 int retval; 8445 uint8_t cdb_len; 8446 8447 retval = 0; 8448 cam_flags = flags; 8449 8450 /* 8451 * Round the user's request to the nearest command size that is at 8452 * least as big as what he requested. 8453 */ 8454 if (minimum_cmd_size <= 12) 8455 cmd_size = 12; 8456 else if (minimum_cmd_size > 16) 8457 cmd_size = 32; 8458 else 8459 cmd_size = 16; 8460 8461 /* 8462 * If we have parameters that require a 48-bit ATA command, we have to 8463 * use the 16 byte ATA PASS-THROUGH command at least. 8464 */ 8465 if (((lba > ATA_MAX_28BIT_LBA) 8466 || (sector_count > 255) 8467 || (features > 255) 8468 || (protocol & AP_EXTEND)) 8469 && ((cmd_size < 16) 8470 || ((protocol & AP_EXTEND) == 0))) { 8471 if (cmd_size < 16) 8472 cmd_size = 16; 8473 protocol |= AP_EXTEND; 8474 } 8475 8476 /* 8477 * The icc and auxiliary ATA registers are only supported in the 8478 * 32-byte version of the ATA PASS-THROUGH command. 8479 */ 8480 if ((icc != 0) 8481 || (auxiliary != 0)) { 8482 cmd_size = 32; 8483 protocol |= AP_EXTEND; 8484 } 8485 8486 if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes)) 8487 && ((cdb_storage == NULL) 8488 || (cdb_storage_len < cmd_size))) { 8489 retval = 1; 8490 goto bailout; 8491 } 8492 8493 /* 8494 * At this point we know we have enough space to store the command 8495 * in one place or another. We prefer the built-in array, but used 8496 * the passed in storage if necessary. 8497 */ 8498 if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes)) 8499 cdb_ptr = csio->cdb_io.cdb_bytes; 8500 else { 8501 cdb_ptr = cdb_storage; 8502 cam_flags |= CAM_CDB_POINTER; 8503 } 8504 8505 if (cmd_size <= 12) { 8506 struct ata_pass_12 *cdb; 8507 8508 cdb = (struct ata_pass_12 *)cdb_ptr; 8509 cdb_len = sizeof(*cdb); 8510 bzero(cdb, cdb_len); 8511 8512 cdb->opcode = ATA_PASS_12; 8513 cdb->protocol = protocol; 8514 cdb->flags = ata_flags; 8515 cdb->features = features; 8516 cdb->sector_count = sector_count; 8517 cdb->lba_low = lba & 0xff; 8518 cdb->lba_mid = (lba >> 8) & 0xff; 8519 cdb->lba_high = (lba >> 16) & 0xff; 8520 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8521 cdb->command = command; 8522 cdb->control = control; 8523 } else if (cmd_size <= 16) { 8524 struct ata_pass_16 *cdb; 8525 8526 cdb = (struct ata_pass_16 *)cdb_ptr; 8527 cdb_len = sizeof(*cdb); 8528 bzero(cdb, cdb_len); 8529 8530 cdb->opcode = ATA_PASS_16; 8531 cdb->protocol = protocol; 8532 cdb->flags = ata_flags; 8533 cdb->features = features & 0xff; 8534 cdb->sector_count = sector_count & 0xff; 8535 cdb->lba_low = lba & 0xff; 8536 cdb->lba_mid = (lba >> 8) & 0xff; 8537 cdb->lba_high = (lba >> 16) & 0xff; 8538 /* 8539 * If AP_EXTEND is set, we're sending a 48-bit command. 8540 * Otherwise it's a 28-bit command. 8541 */ 8542 if (protocol & AP_EXTEND) { 8543 cdb->lba_low_ext = (lba >> 24) & 0xff; 8544 cdb->lba_mid_ext = (lba >> 32) & 0xff; 8545 cdb->lba_high_ext = (lba >> 40) & 0xff; 8546 cdb->features_ext = (features >> 8) & 0xff; 8547 cdb->sector_count_ext = (sector_count >> 8) & 0xff; 8548 cdb->device = device | ATA_DEV_LBA; 8549 } else { 8550 cdb->lba_low_ext = (lba >> 24) & 0xf; 8551 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8552 } 8553 cdb->command = command; 8554 cdb->control = control; 8555 } else { 8556 struct ata_pass_32 *cdb; 8557 uint8_t tmp_lba[8]; 8558 8559 cdb = (struct ata_pass_32 *)cdb_ptr; 8560 cdb_len = sizeof(*cdb); 8561 bzero(cdb, cdb_len); 8562 cdb->opcode = VARIABLE_LEN_CDB; 8563 cdb->control = control; 8564 cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32, 8565 service_action); 8566 scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action); 8567 cdb->protocol = protocol; 8568 cdb->flags = ata_flags; 8569 8570 if ((protocol & AP_EXTEND) == 0) { 8571 lba &= 0x0fffffff; 8572 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8573 features &= 0xff; 8574 sector_count &= 0xff; 8575 } else { 8576 cdb->device = device | ATA_DEV_LBA; 8577 } 8578 scsi_u64to8b(lba, tmp_lba); 8579 bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba)); 8580 scsi_ulto2b(features, cdb->features); 8581 scsi_ulto2b(sector_count, cdb->count); 8582 cdb->command = command; 8583 cdb->icc = icc; 8584 scsi_ulto4b(auxiliary, cdb->auxiliary); 8585 } 8586 8587 cam_fill_csio(csio, 8588 retries, 8589 cbfcnp, 8590 cam_flags, 8591 tag_action, 8592 data_ptr, 8593 dxfer_len, 8594 sense_len, 8595 cmd_size, 8596 timeout); 8597 bailout: 8598 return (retval); 8599 } 8600 8601 void 8602 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries, 8603 void (*cbfcnp)(struct cam_periph *, union ccb *), 8604 u_int32_t flags, u_int8_t tag_action, 8605 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features, 8606 u_int16_t sector_count, uint64_t lba, u_int8_t command, 8607 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len, 8608 u_int8_t sense_len, u_int32_t timeout) 8609 { 8610 struct ata_pass_16 *ata_cmd; 8611 8612 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes; 8613 ata_cmd->opcode = ATA_PASS_16; 8614 ata_cmd->protocol = protocol; 8615 ata_cmd->flags = ata_flags; 8616 ata_cmd->features_ext = features >> 8; 8617 ata_cmd->features = features; 8618 ata_cmd->sector_count_ext = sector_count >> 8; 8619 ata_cmd->sector_count = sector_count; 8620 ata_cmd->lba_low = lba; 8621 ata_cmd->lba_mid = lba >> 8; 8622 ata_cmd->lba_high = lba >> 16; 8623 ata_cmd->device = ATA_DEV_LBA; 8624 if (protocol & AP_EXTEND) { 8625 ata_cmd->lba_low_ext = lba >> 24; 8626 ata_cmd->lba_mid_ext = lba >> 32; 8627 ata_cmd->lba_high_ext = lba >> 40; 8628 } else 8629 ata_cmd->device |= (lba >> 24) & 0x0f; 8630 ata_cmd->command = command; 8631 ata_cmd->control = control; 8632 8633 cam_fill_csio(csio, 8634 retries, 8635 cbfcnp, 8636 flags, 8637 tag_action, 8638 data_ptr, 8639 dxfer_len, 8640 sense_len, 8641 sizeof(*ata_cmd), 8642 timeout); 8643 } 8644 8645 void 8646 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, 8647 void (*cbfcnp)(struct cam_periph *, union ccb *), 8648 u_int8_t tag_action, u_int8_t byte2, 8649 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8650 u_int32_t timeout) 8651 { 8652 struct scsi_unmap *scsi_cmd; 8653 8654 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; 8655 scsi_cmd->opcode = UNMAP; 8656 scsi_cmd->byte2 = byte2; 8657 scsi_ulto4b(0, scsi_cmd->reserved); 8658 scsi_cmd->group = 0; 8659 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8660 scsi_cmd->control = 0; 8661 8662 cam_fill_csio(csio, 8663 retries, 8664 cbfcnp, 8665 /*flags*/CAM_DIR_OUT, 8666 tag_action, 8667 data_ptr, 8668 dxfer_len, 8669 sense_len, 8670 sizeof(*scsi_cmd), 8671 timeout); 8672 } 8673 8674 void 8675 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, 8676 void (*cbfcnp)(struct cam_periph *, union ccb*), 8677 uint8_t tag_action, int pcv, uint8_t page_code, 8678 uint8_t *data_ptr, uint16_t allocation_length, 8679 uint8_t sense_len, uint32_t timeout) 8680 { 8681 struct scsi_receive_diag *scsi_cmd; 8682 8683 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; 8684 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8685 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; 8686 if (pcv) { 8687 scsi_cmd->byte2 |= SRD_PCV; 8688 scsi_cmd->page_code = page_code; 8689 } 8690 scsi_ulto2b(allocation_length, scsi_cmd->length); 8691 8692 cam_fill_csio(csio, 8693 retries, 8694 cbfcnp, 8695 /*flags*/CAM_DIR_IN, 8696 tag_action, 8697 data_ptr, 8698 allocation_length, 8699 sense_len, 8700 sizeof(*scsi_cmd), 8701 timeout); 8702 } 8703 8704 void 8705 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, 8706 void (*cbfcnp)(struct cam_periph *, union ccb *), 8707 uint8_t tag_action, int unit_offline, int device_offline, 8708 int self_test, int page_format, int self_test_code, 8709 uint8_t *data_ptr, uint16_t param_list_length, 8710 uint8_t sense_len, uint32_t timeout) 8711 { 8712 struct scsi_send_diag *scsi_cmd; 8713 8714 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; 8715 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8716 scsi_cmd->opcode = SEND_DIAGNOSTIC; 8717 8718 /* 8719 * The default self-test mode control and specific test 8720 * control are mutually exclusive. 8721 */ 8722 if (self_test) 8723 self_test_code = SSD_SELF_TEST_CODE_NONE; 8724 8725 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) 8726 & SSD_SELF_TEST_CODE_MASK) 8727 | (unit_offline ? SSD_UNITOFFL : 0) 8728 | (device_offline ? SSD_DEVOFFL : 0) 8729 | (self_test ? SSD_SELFTEST : 0) 8730 | (page_format ? SSD_PF : 0); 8731 scsi_ulto2b(param_list_length, scsi_cmd->length); 8732 8733 cam_fill_csio(csio, 8734 retries, 8735 cbfcnp, 8736 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8737 tag_action, 8738 data_ptr, 8739 param_list_length, 8740 sense_len, 8741 sizeof(*scsi_cmd), 8742 timeout); 8743 } 8744 8745 void 8746 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8747 void (*cbfcnp)(struct cam_periph *, union ccb*), 8748 uint8_t tag_action, int mode, 8749 uint8_t buffer_id, u_int32_t offset, 8750 uint8_t *data_ptr, uint32_t allocation_length, 8751 uint8_t sense_len, uint32_t timeout) 8752 { 8753 struct scsi_read_buffer *scsi_cmd; 8754 8755 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes; 8756 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8757 scsi_cmd->opcode = READ_BUFFER; 8758 scsi_cmd->byte2 = mode; 8759 scsi_cmd->buffer_id = buffer_id; 8760 scsi_ulto3b(offset, scsi_cmd->offset); 8761 scsi_ulto3b(allocation_length, scsi_cmd->length); 8762 8763 cam_fill_csio(csio, 8764 retries, 8765 cbfcnp, 8766 /*flags*/CAM_DIR_IN, 8767 tag_action, 8768 data_ptr, 8769 allocation_length, 8770 sense_len, 8771 sizeof(*scsi_cmd), 8772 timeout); 8773 } 8774 8775 void 8776 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8777 void (*cbfcnp)(struct cam_periph *, union ccb *), 8778 uint8_t tag_action, int mode, 8779 uint8_t buffer_id, u_int32_t offset, 8780 uint8_t *data_ptr, uint32_t param_list_length, 8781 uint8_t sense_len, uint32_t timeout) 8782 { 8783 struct scsi_write_buffer *scsi_cmd; 8784 8785 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes; 8786 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8787 scsi_cmd->opcode = WRITE_BUFFER; 8788 scsi_cmd->byte2 = mode; 8789 scsi_cmd->buffer_id = buffer_id; 8790 scsi_ulto3b(offset, scsi_cmd->offset); 8791 scsi_ulto3b(param_list_length, scsi_cmd->length); 8792 8793 cam_fill_csio(csio, 8794 retries, 8795 cbfcnp, 8796 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8797 tag_action, 8798 data_ptr, 8799 param_list_length, 8800 sense_len, 8801 sizeof(*scsi_cmd), 8802 timeout); 8803 } 8804 8805 void 8806 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, 8807 void (*cbfcnp)(struct cam_periph *, union ccb *), 8808 u_int8_t tag_action, int start, int load_eject, 8809 int immediate, u_int8_t sense_len, u_int32_t timeout) 8810 { 8811 struct scsi_start_stop_unit *scsi_cmd; 8812 int extra_flags = 0; 8813 8814 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; 8815 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8816 scsi_cmd->opcode = START_STOP_UNIT; 8817 if (start != 0) { 8818 scsi_cmd->how |= SSS_START; 8819 /* it takes a lot of power to start a drive */ 8820 extra_flags |= CAM_HIGH_POWER; 8821 } 8822 if (load_eject != 0) 8823 scsi_cmd->how |= SSS_LOEJ; 8824 if (immediate != 0) 8825 scsi_cmd->byte2 |= SSS_IMMED; 8826 8827 cam_fill_csio(csio, 8828 retries, 8829 cbfcnp, 8830 /*flags*/CAM_DIR_NONE | extra_flags, 8831 tag_action, 8832 /*data_ptr*/NULL, 8833 /*dxfer_len*/0, 8834 sense_len, 8835 sizeof(*scsi_cmd), 8836 timeout); 8837 } 8838 8839 void 8840 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8841 void (*cbfcnp)(struct cam_periph *, union ccb *), 8842 u_int8_t tag_action, u_int8_t service_action, 8843 uint32_t element, u_int8_t elem_type, int logical_volume, 8844 int partition, u_int32_t first_attribute, int cache, 8845 u_int8_t *data_ptr, u_int32_t length, int sense_len, 8846 u_int32_t timeout) 8847 { 8848 struct scsi_read_attribute *scsi_cmd; 8849 8850 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes; 8851 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8852 8853 scsi_cmd->opcode = READ_ATTRIBUTE; 8854 scsi_cmd->service_action = service_action; 8855 scsi_ulto2b(element, scsi_cmd->element); 8856 scsi_cmd->elem_type = elem_type; 8857 scsi_cmd->logical_volume = logical_volume; 8858 scsi_cmd->partition = partition; 8859 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute); 8860 scsi_ulto4b(length, scsi_cmd->length); 8861 if (cache != 0) 8862 scsi_cmd->cache |= SRA_CACHE; 8863 8864 cam_fill_csio(csio, 8865 retries, 8866 cbfcnp, 8867 /*flags*/CAM_DIR_IN, 8868 tag_action, 8869 /*data_ptr*/data_ptr, 8870 /*dxfer_len*/length, 8871 sense_len, 8872 sizeof(*scsi_cmd), 8873 timeout); 8874 } 8875 8876 void 8877 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8878 void (*cbfcnp)(struct cam_periph *, union ccb *), 8879 u_int8_t tag_action, uint32_t element, int logical_volume, 8880 int partition, int wtc, u_int8_t *data_ptr, 8881 u_int32_t length, int sense_len, u_int32_t timeout) 8882 { 8883 struct scsi_write_attribute *scsi_cmd; 8884 8885 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes; 8886 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8887 8888 scsi_cmd->opcode = WRITE_ATTRIBUTE; 8889 if (wtc != 0) 8890 scsi_cmd->byte2 = SWA_WTC; 8891 scsi_ulto3b(element, scsi_cmd->element); 8892 scsi_cmd->logical_volume = logical_volume; 8893 scsi_cmd->partition = partition; 8894 scsi_ulto4b(length, scsi_cmd->length); 8895 8896 cam_fill_csio(csio, 8897 retries, 8898 cbfcnp, 8899 /*flags*/CAM_DIR_OUT, 8900 tag_action, 8901 /*data_ptr*/data_ptr, 8902 /*dxfer_len*/length, 8903 sense_len, 8904 sizeof(*scsi_cmd), 8905 timeout); 8906 } 8907 8908 void 8909 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, 8910 void (*cbfcnp)(struct cam_periph *, union ccb *), 8911 uint8_t tag_action, int service_action, 8912 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8913 int timeout) 8914 { 8915 struct scsi_per_res_in *scsi_cmd; 8916 8917 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes; 8918 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8919 8920 scsi_cmd->opcode = PERSISTENT_RES_IN; 8921 scsi_cmd->action = service_action; 8922 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8923 8924 cam_fill_csio(csio, 8925 retries, 8926 cbfcnp, 8927 /*flags*/CAM_DIR_IN, 8928 tag_action, 8929 data_ptr, 8930 dxfer_len, 8931 sense_len, 8932 sizeof(*scsi_cmd), 8933 timeout); 8934 } 8935 8936 void 8937 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, 8938 void (*cbfcnp)(struct cam_periph *, union ccb *), 8939 uint8_t tag_action, int service_action, 8940 int scope, int res_type, uint8_t *data_ptr, 8941 uint32_t dxfer_len, int sense_len, int timeout) 8942 { 8943 struct scsi_per_res_out *scsi_cmd; 8944 8945 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes; 8946 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8947 8948 scsi_cmd->opcode = PERSISTENT_RES_OUT; 8949 scsi_cmd->action = service_action; 8950 scsi_cmd->scope_type = scope | res_type; 8951 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8952 8953 cam_fill_csio(csio, 8954 retries, 8955 cbfcnp, 8956 /*flags*/CAM_DIR_OUT, 8957 tag_action, 8958 /*data_ptr*/data_ptr, 8959 /*dxfer_len*/dxfer_len, 8960 sense_len, 8961 sizeof(*scsi_cmd), 8962 timeout); 8963 } 8964 8965 void 8966 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, 8967 void (*cbfcnp)(struct cam_periph *, union ccb *), 8968 uint8_t tag_action, uint32_t security_protocol, 8969 uint32_t security_protocol_specific, int byte4, 8970 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8971 int timeout) 8972 { 8973 struct scsi_security_protocol_in *scsi_cmd; 8974 8975 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes; 8976 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8977 8978 scsi_cmd->opcode = SECURITY_PROTOCOL_IN; 8979 8980 scsi_cmd->security_protocol = security_protocol; 8981 scsi_ulto2b(security_protocol_specific, 8982 scsi_cmd->security_protocol_specific); 8983 scsi_cmd->byte4 = byte4; 8984 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8985 8986 cam_fill_csio(csio, 8987 retries, 8988 cbfcnp, 8989 /*flags*/CAM_DIR_IN, 8990 tag_action, 8991 data_ptr, 8992 dxfer_len, 8993 sense_len, 8994 sizeof(*scsi_cmd), 8995 timeout); 8996 } 8997 8998 void 8999 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, 9000 void (*cbfcnp)(struct cam_periph *, union ccb *), 9001 uint8_t tag_action, uint32_t security_protocol, 9002 uint32_t security_protocol_specific, int byte4, 9003 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9004 int timeout) 9005 { 9006 struct scsi_security_protocol_out *scsi_cmd; 9007 9008 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes; 9009 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9010 9011 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT; 9012 9013 scsi_cmd->security_protocol = security_protocol; 9014 scsi_ulto2b(security_protocol_specific, 9015 scsi_cmd->security_protocol_specific); 9016 scsi_cmd->byte4 = byte4; 9017 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9018 9019 cam_fill_csio(csio, 9020 retries, 9021 cbfcnp, 9022 /*flags*/CAM_DIR_OUT, 9023 tag_action, 9024 data_ptr, 9025 dxfer_len, 9026 sense_len, 9027 sizeof(*scsi_cmd), 9028 timeout); 9029 } 9030 9031 void 9032 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, 9033 void (*cbfcnp)(struct cam_periph *, union ccb *), 9034 uint8_t tag_action, int options, int req_opcode, 9035 int req_service_action, uint8_t *data_ptr, 9036 uint32_t dxfer_len, int sense_len, int timeout) 9037 { 9038 struct scsi_report_supported_opcodes *scsi_cmd; 9039 9040 scsi_cmd = (struct scsi_report_supported_opcodes *) 9041 &csio->cdb_io.cdb_bytes; 9042 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9043 9044 scsi_cmd->opcode = MAINTENANCE_IN; 9045 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES; 9046 scsi_cmd->options = options; 9047 scsi_cmd->requested_opcode = req_opcode; 9048 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action); 9049 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9050 9051 cam_fill_csio(csio, 9052 retries, 9053 cbfcnp, 9054 /*flags*/CAM_DIR_IN, 9055 tag_action, 9056 data_ptr, 9057 dxfer_len, 9058 sense_len, 9059 sizeof(*scsi_cmd), 9060 timeout); 9061 } 9062 9063 /* 9064 * Try make as good a match as possible with 9065 * available sub drivers 9066 */ 9067 int 9068 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9069 { 9070 struct scsi_inquiry_pattern *entry; 9071 struct scsi_inquiry_data *inq; 9072 9073 entry = (struct scsi_inquiry_pattern *)table_entry; 9074 inq = (struct scsi_inquiry_data *)inqbuffer; 9075 9076 if (((SID_TYPE(inq) == entry->type) 9077 || (entry->type == T_ANY)) 9078 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9079 : entry->media_type & SIP_MEDIA_FIXED) 9080 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9081 && (cam_strmatch(inq->product, entry->product, 9082 sizeof(inq->product)) == 0) 9083 && (cam_strmatch(inq->revision, entry->revision, 9084 sizeof(inq->revision)) == 0)) { 9085 return (0); 9086 } 9087 return (-1); 9088 } 9089 9090 /* 9091 * Try make as good a match as possible with 9092 * available sub drivers 9093 */ 9094 int 9095 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9096 { 9097 struct scsi_static_inquiry_pattern *entry; 9098 struct scsi_inquiry_data *inq; 9099 9100 entry = (struct scsi_static_inquiry_pattern *)table_entry; 9101 inq = (struct scsi_inquiry_data *)inqbuffer; 9102 9103 if (((SID_TYPE(inq) == entry->type) 9104 || (entry->type == T_ANY)) 9105 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9106 : entry->media_type & SIP_MEDIA_FIXED) 9107 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9108 && (cam_strmatch(inq->product, entry->product, 9109 sizeof(inq->product)) == 0) 9110 && (cam_strmatch(inq->revision, entry->revision, 9111 sizeof(inq->revision)) == 0)) { 9112 return (0); 9113 } 9114 return (-1); 9115 } 9116 9117 /** 9118 * Compare two buffers of vpd device descriptors for a match. 9119 * 9120 * \param lhs Pointer to first buffer of descriptors to compare. 9121 * \param lhs_len The length of the first buffer. 9122 * \param rhs Pointer to second buffer of descriptors to compare. 9123 * \param rhs_len The length of the second buffer. 9124 * 9125 * \return 0 on a match, -1 otherwise. 9126 * 9127 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching 9128 * against each element in rhs until all data are exhausted or we have found 9129 * a match. 9130 */ 9131 int 9132 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) 9133 { 9134 struct scsi_vpd_id_descriptor *lhs_id; 9135 struct scsi_vpd_id_descriptor *lhs_last; 9136 struct scsi_vpd_id_descriptor *rhs_last; 9137 uint8_t *lhs_end; 9138 uint8_t *rhs_end; 9139 9140 lhs_end = lhs + lhs_len; 9141 rhs_end = rhs + rhs_len; 9142 9143 /* 9144 * rhs_last and lhs_last are the last posible position of a valid 9145 * descriptor assuming it had a zero length identifier. We use 9146 * these variables to insure we can safely dereference the length 9147 * field in our loop termination tests. 9148 */ 9149 lhs_last = (struct scsi_vpd_id_descriptor *) 9150 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9151 rhs_last = (struct scsi_vpd_id_descriptor *) 9152 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9153 9154 lhs_id = (struct scsi_vpd_id_descriptor *)lhs; 9155 while (lhs_id <= lhs_last 9156 && (lhs_id->identifier + lhs_id->length) <= lhs_end) { 9157 struct scsi_vpd_id_descriptor *rhs_id; 9158 9159 rhs_id = (struct scsi_vpd_id_descriptor *)rhs; 9160 while (rhs_id <= rhs_last 9161 && (rhs_id->identifier + rhs_id->length) <= rhs_end) { 9162 if ((rhs_id->id_type & 9163 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) == 9164 (lhs_id->id_type & 9165 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) 9166 && rhs_id->length == lhs_id->length 9167 && memcmp(rhs_id->identifier, lhs_id->identifier, 9168 rhs_id->length) == 0) 9169 return (0); 9170 9171 rhs_id = (struct scsi_vpd_id_descriptor *) 9172 (rhs_id->identifier + rhs_id->length); 9173 } 9174 lhs_id = (struct scsi_vpd_id_descriptor *) 9175 (lhs_id->identifier + lhs_id->length); 9176 } 9177 return (-1); 9178 } 9179 9180 #ifdef _KERNEL 9181 int 9182 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id) 9183 { 9184 struct cam_ed *device; 9185 struct scsi_vpd_supported_pages *vpds; 9186 int i, num_pages; 9187 9188 device = periph->path->device; 9189 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; 9190 9191 if (vpds != NULL) { 9192 num_pages = device->supported_vpds_len - 9193 SVPD_SUPPORTED_PAGES_HDR_LEN; 9194 for (i = 0; i < num_pages; i++) { 9195 if (vpds->page_list[i] == page_id) 9196 return (1); 9197 } 9198 } 9199 9200 return (0); 9201 } 9202 9203 static void 9204 init_scsi_delay(void) 9205 { 9206 int delay; 9207 9208 delay = SCSI_DELAY; 9209 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); 9210 9211 if (set_scsi_delay(delay) != 0) { 9212 printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); 9213 set_scsi_delay(SCSI_DELAY); 9214 } 9215 } 9216 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); 9217 9218 static int 9219 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) 9220 { 9221 int error, delay; 9222 9223 delay = scsi_delay; 9224 error = sysctl_handle_int(oidp, &delay, 0, req); 9225 if (error != 0 || req->newptr == NULL) 9226 return (error); 9227 return (set_scsi_delay(delay)); 9228 } 9229 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, 9230 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, 0, sysctl_scsi_delay, "I", 9231 "Delay to allow devices to settle after a SCSI bus reset (ms)"); 9232 9233 static int 9234 set_scsi_delay(int delay) 9235 { 9236 /* 9237 * If someone sets this to 0, we assume that they want the 9238 * minimum allowable bus settle delay. 9239 */ 9240 if (delay == 0) { 9241 printf("cam: using minimum scsi_delay (%dms)\n", 9242 SCSI_MIN_DELAY); 9243 delay = SCSI_MIN_DELAY; 9244 } 9245 if (delay < SCSI_MIN_DELAY) 9246 return (EINVAL); 9247 scsi_delay = delay; 9248 return (0); 9249 } 9250 #endif /* _KERNEL */ 9251