xref: /freebsd/sys/cam/scsi/scsi_all.c (revision a5ff72cb0e51a7675d4e2b5810a2b6dad5b91960)
1 /*-
2  * Implementation of Utility functions for all SCSI device types.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/stdint.h>
36 
37 #ifdef _KERNEL
38 #include <opt_scsi.h>
39 
40 #include <sys/systm.h>
41 #include <sys/libkern.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/ctype.h>
48 #else
49 #include <errno.h>
50 #include <stdio.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <ctype.h>
54 #endif
55 
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_queue.h>
59 #include <cam/cam_xpt.h>
60 #include <cam/scsi/scsi_all.h>
61 #include <sys/ata.h>
62 #include <sys/sbuf.h>
63 
64 #ifdef _KERNEL
65 #include <cam/cam_periph.h>
66 #include <cam/cam_xpt_sim.h>
67 #include <cam/cam_xpt_periph.h>
68 #include <cam/cam_xpt_internal.h>
69 #else
70 #include <camlib.h>
71 #include <stddef.h>
72 
73 #ifndef FALSE
74 #define FALSE   0
75 #endif /* FALSE */
76 #ifndef TRUE
77 #define TRUE    1
78 #endif /* TRUE */
79 #define ERESTART        -1              /* restart syscall */
80 #define EJUSTRETURN     -2              /* don't modify regs, just return */
81 #endif /* !_KERNEL */
82 
83 /*
84  * This is the default number of milliseconds we wait for devices to settle
85  * after a SCSI bus reset.
86  */
87 #ifndef SCSI_DELAY
88 #define SCSI_DELAY 2000
89 #endif
90 /*
91  * All devices need _some_ sort of bus settle delay, so we'll set it to
92  * a minimum value of 100ms. Note that this is pertinent only for SPI-
93  * not transport like Fibre Channel or iSCSI where 'delay' is completely
94  * meaningless.
95  */
96 #ifndef SCSI_MIN_DELAY
97 #define SCSI_MIN_DELAY 100
98 #endif
99 /*
100  * Make sure the user isn't using seconds instead of milliseconds.
101  */
102 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0)
103 #error "SCSI_DELAY is in milliseconds, not seconds!  Please use a larger value"
104 #endif
105 
106 int scsi_delay;
107 
108 static int	ascentrycomp(const void *key, const void *member);
109 static int	senseentrycomp(const void *key, const void *member);
110 static void	fetchtableentries(int sense_key, int asc, int ascq,
111 				  struct scsi_inquiry_data *,
112 				  const struct sense_key_table_entry **,
113 				  const struct asc_table_entry **);
114 #ifdef _KERNEL
115 static void	init_scsi_delay(void);
116 static int	sysctl_scsi_delay(SYSCTL_HANDLER_ARGS);
117 static int	set_scsi_delay(int delay);
118 #endif
119 
120 #if !defined(SCSI_NO_OP_STRINGS)
121 
122 #define	D	(1 << T_DIRECT)
123 #define	T	(1 << T_SEQUENTIAL)
124 #define	L	(1 << T_PRINTER)
125 #define	P	(1 << T_PROCESSOR)
126 #define	W	(1 << T_WORM)
127 #define	R	(1 << T_CDROM)
128 #define	O	(1 << T_OPTICAL)
129 #define	M	(1 << T_CHANGER)
130 #define	A	(1 << T_STORARRAY)
131 #define	E	(1 << T_ENCLOSURE)
132 #define	B	(1 << T_RBC)
133 #define	K	(1 << T_OCRW)
134 #define	V	(1 << T_ADC)
135 #define	F	(1 << T_OSD)
136 #define	S	(1 << T_SCANNER)
137 #define	C	(1 << T_COMM)
138 
139 #define ALL	(D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C)
140 
141 static struct op_table_entry plextor_cd_ops[] = {
142 	{ 0xD8, R, "CD-DA READ" }
143 };
144 
145 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = {
146 	{
147 		/*
148 		 * I believe that 0xD8 is the Plextor proprietary command
149 		 * to read CD-DA data.  I'm not sure which Plextor CDROM
150 		 * models support the command, though.  I know for sure
151 		 * that the 4X, 8X, and 12X models do, and presumably the
152 		 * 12-20X does.  I don't know about any earlier models,
153 		 * though.  If anyone has any more complete information,
154 		 * feel free to change this quirk entry.
155 		 */
156 		{T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"},
157 		sizeof(plextor_cd_ops)/sizeof(struct op_table_entry),
158 		plextor_cd_ops
159 	}
160 };
161 
162 static struct op_table_entry scsi_op_codes[] = {
163 	/*
164 	 * From: http://www.t10.org/lists/op-num.txt
165 	 * Modifications by Kenneth Merry (ken@FreeBSD.ORG)
166 	 *              and Jung-uk Kim (jkim@FreeBSD.org)
167 	 *
168 	 * Note:  order is important in this table, scsi_op_desc() currently
169 	 * depends on the opcodes in the table being in order to save
170 	 * search time.
171 	 * Note:  scanner and comm. devices are carried over from the previous
172 	 * version because they were removed in the latest spec.
173 	 */
174 	/* File: OP-NUM.TXT
175 	 *
176 	 * SCSI Operation Codes
177 	 * Numeric Sorted Listing
178 	 * as of  5/26/15
179 	 *
180 	 *     D - DIRECT ACCESS DEVICE (SBC-2)                device column key
181 	 *     .T - SEQUENTIAL ACCESS DEVICE (SSC-2)           -----------------
182 	 *     . L - PRINTER DEVICE (SSC)                      M = Mandatory
183 	 *     .  P - PROCESSOR DEVICE (SPC)                   O = Optional
184 	 *     .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec.
185 	 *     .  . R - CD/DVE DEVICE (MMC-3)                  Z = Obsolete
186 	 *     .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
187 	 *     .  .  .M - MEDIA CHANGER DEVICE (SMC-2)
188 	 *     .  .  . A - STORAGE ARRAY DEVICE (SCC-2)
189 	 *     .  .  . .E - ENCLOSURE SERVICES DEVICE (SES)
190 	 *     .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
191 	 *     .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
192 	 *     .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
193 	 *     .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
194 	 * OP  DTLPWROMAEBKVF  Description
195 	 * --  --------------  ---------------------------------------------- */
196 	/* 00  MMMMMMMMMMMMMM  TEST UNIT READY */
197 	{ 0x00,	ALL, "TEST UNIT READY" },
198 	/* 01   M              REWIND */
199 	{ 0x01,	T, "REWIND" },
200 	/* 01  Z V ZZZZ        REZERO UNIT */
201 	{ 0x01,	D | W | R | O | M, "REZERO UNIT" },
202 	/* 02  VVVVVV V */
203 	/* 03  MMMMMMMMMMOMMM  REQUEST SENSE */
204 	{ 0x03,	ALL, "REQUEST SENSE" },
205 	/* 04  M    OO         FORMAT UNIT */
206 	{ 0x04,	D | R | O, "FORMAT UNIT" },
207 	/* 04   O              FORMAT MEDIUM */
208 	{ 0x04,	T, "FORMAT MEDIUM" },
209 	/* 04    O             FORMAT */
210 	{ 0x04,	L, "FORMAT" },
211 	/* 05  VMVVVV V        READ BLOCK LIMITS */
212 	{ 0x05,	T, "READ BLOCK LIMITS" },
213 	/* 06  VVVVVV V */
214 	/* 07  OVV O OV        REASSIGN BLOCKS */
215 	{ 0x07,	D | W | O, "REASSIGN BLOCKS" },
216 	/* 07         O        INITIALIZE ELEMENT STATUS */
217 	{ 0x07,	M, "INITIALIZE ELEMENT STATUS" },
218 	/* 08  MOV O OV        READ(6) */
219 	{ 0x08,	D | T | W | O, "READ(6)" },
220 	/* 08     O            RECEIVE */
221 	{ 0x08,	P, "RECEIVE" },
222 	/* 08                  GET MESSAGE(6) */
223 	{ 0x08, C, "GET MESSAGE(6)" },
224 	/* 09  VVVVVV V */
225 	/* 0A  OO  O OV        WRITE(6) */
226 	{ 0x0A,	D | T | W | O, "WRITE(6)" },
227 	/* 0A     M            SEND(6) */
228 	{ 0x0A,	P, "SEND(6)" },
229 	/* 0A                  SEND MESSAGE(6) */
230 	{ 0x0A, C, "SEND MESSAGE(6)" },
231 	/* 0A    M             PRINT */
232 	{ 0x0A,	L, "PRINT" },
233 	/* 0B  Z   ZOZV        SEEK(6) */
234 	{ 0x0B,	D | W | R | O, "SEEK(6)" },
235 	/* 0B   O              SET CAPACITY */
236 	{ 0x0B,	T, "SET CAPACITY" },
237 	/* 0B    O             SLEW AND PRINT */
238 	{ 0x0B,	L, "SLEW AND PRINT" },
239 	/* 0C  VVVVVV V */
240 	/* 0D  VVVVVV V */
241 	/* 0E  VVVVVV V */
242 	/* 0F  VOVVVV V        READ REVERSE(6) */
243 	{ 0x0F,	T, "READ REVERSE(6)" },
244 	/* 10  VM VVV          WRITE FILEMARKS(6) */
245 	{ 0x10,	T, "WRITE FILEMARKS(6)" },
246 	/* 10    O             SYNCHRONIZE BUFFER */
247 	{ 0x10,	L, "SYNCHRONIZE BUFFER" },
248 	/* 11  VMVVVV          SPACE(6) */
249 	{ 0x11,	T, "SPACE(6)" },
250 	/* 12  MMMMMMMMMMMMMM  INQUIRY */
251 	{ 0x12,	ALL, "INQUIRY" },
252 	/* 13  V VVVV */
253 	/* 13   O              VERIFY(6) */
254 	{ 0x13,	T, "VERIFY(6)" },
255 	/* 14  VOOVVV          RECOVER BUFFERED DATA */
256 	{ 0x14,	T | L, "RECOVER BUFFERED DATA" },
257 	/* 15  OMO O OOOO OO   MODE SELECT(6) */
258 	{ 0x15,	ALL & ~(P | R | B | F), "MODE SELECT(6)" },
259 	/* 16  ZZMZO OOOZ O    RESERVE(6) */
260 	{ 0x16,	ALL & ~(R | B | V | F | C), "RESERVE(6)" },
261 	/* 16         Z        RESERVE ELEMENT(6) */
262 	{ 0x16,	M, "RESERVE ELEMENT(6)" },
263 	/* 17  ZZMZO OOOZ O    RELEASE(6) */
264 	{ 0x17,	ALL & ~(R | B | V | F | C), "RELEASE(6)" },
265 	/* 17         Z        RELEASE ELEMENT(6) */
266 	{ 0x17,	M, "RELEASE ELEMENT(6)" },
267 	/* 18  ZZZZOZO    Z    COPY */
268 	{ 0x18,	D | T | L | P | W | R | O | K | S, "COPY" },
269 	/* 19  VMVVVV          ERASE(6) */
270 	{ 0x19,	T, "ERASE(6)" },
271 	/* 1A  OMO O OOOO OO   MODE SENSE(6) */
272 	{ 0x1A,	ALL & ~(P | R | B | F), "MODE SENSE(6)" },
273 	/* 1B  O   OOO O MO O  START STOP UNIT */
274 	{ 0x1B,	D | W | R | O | A | B | K | F, "START STOP UNIT" },
275 	/* 1B   O          M   LOAD UNLOAD */
276 	{ 0x1B,	T | V, "LOAD UNLOAD" },
277 	/* 1B                  SCAN */
278 	{ 0x1B, S, "SCAN" },
279 	/* 1B    O             STOP PRINT */
280 	{ 0x1B,	L, "STOP PRINT" },
281 	/* 1B         O        OPEN/CLOSE IMPORT/EXPORT ELEMENT */
282 	{ 0x1B,	M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" },
283 	/* 1C  OOOOO OOOM OOO  RECEIVE DIAGNOSTIC RESULTS */
284 	{ 0x1C,	ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" },
285 	/* 1D  MMMMM MMOM MMM  SEND DIAGNOSTIC */
286 	{ 0x1D,	ALL & ~(R | B), "SEND DIAGNOSTIC" },
287 	/* 1E  OO  OOOO   O O  PREVENT ALLOW MEDIUM REMOVAL */
288 	{ 0x1E,	D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" },
289 	/* 1F */
290 	/* 20  V   VVV    V */
291 	/* 21  V   VVV    V */
292 	/* 22  V   VVV    V */
293 	/* 23  V   V V    V */
294 	/* 23       O          READ FORMAT CAPACITIES */
295 	{ 0x23,	R, "READ FORMAT CAPACITIES" },
296 	/* 24  V   VV          SET WINDOW */
297 	{ 0x24, S, "SET WINDOW" },
298 	/* 25  M   M M   M     READ CAPACITY(10) */
299 	{ 0x25,	D | W | O | B, "READ CAPACITY(10)" },
300 	/* 25       O          READ CAPACITY */
301 	{ 0x25,	R, "READ CAPACITY" },
302 	/* 25             M    READ CARD CAPACITY */
303 	{ 0x25,	K, "READ CARD CAPACITY" },
304 	/* 25                  GET WINDOW */
305 	{ 0x25, S, "GET WINDOW" },
306 	/* 26  V   VV */
307 	/* 27  V   VV */
308 	/* 28  M   MOM   MM    READ(10) */
309 	{ 0x28,	D | W | R | O | B | K | S, "READ(10)" },
310 	/* 28                  GET MESSAGE(10) */
311 	{ 0x28, C, "GET MESSAGE(10)" },
312 	/* 29  V   VVO         READ GENERATION */
313 	{ 0x29,	O, "READ GENERATION" },
314 	/* 2A  O   MOM   MO    WRITE(10) */
315 	{ 0x2A,	D | W | R | O | B | K, "WRITE(10)" },
316 	/* 2A                  SEND(10) */
317 	{ 0x2A, S, "SEND(10)" },
318 	/* 2A                  SEND MESSAGE(10) */
319 	{ 0x2A, C, "SEND MESSAGE(10)" },
320 	/* 2B  Z   OOO    O    SEEK(10) */
321 	{ 0x2B,	D | W | R | O | K, "SEEK(10)" },
322 	/* 2B   O              LOCATE(10) */
323 	{ 0x2B,	T, "LOCATE(10)" },
324 	/* 2B         O        POSITION TO ELEMENT */
325 	{ 0x2B,	M, "POSITION TO ELEMENT" },
326 	/* 2C  V    OO         ERASE(10) */
327 	{ 0x2C,	R | O, "ERASE(10)" },
328 	/* 2D        O         READ UPDATED BLOCK */
329 	{ 0x2D,	O, "READ UPDATED BLOCK" },
330 	/* 2D  V */
331 	/* 2E  O   OOO   MO    WRITE AND VERIFY(10) */
332 	{ 0x2E,	D | W | R | O | B | K, "WRITE AND VERIFY(10)" },
333 	/* 2F  O   OOO         VERIFY(10) */
334 	{ 0x2F,	D | W | R | O, "VERIFY(10)" },
335 	/* 30  Z   ZZZ         SEARCH DATA HIGH(10) */
336 	{ 0x30,	D | W | R | O, "SEARCH DATA HIGH(10)" },
337 	/* 31  Z   ZZZ         SEARCH DATA EQUAL(10) */
338 	{ 0x31,	D | W | R | O, "SEARCH DATA EQUAL(10)" },
339 	/* 31                  OBJECT POSITION */
340 	{ 0x31, S, "OBJECT POSITION" },
341 	/* 32  Z   ZZZ         SEARCH DATA LOW(10) */
342 	{ 0x32,	D | W | R | O, "SEARCH DATA LOW(10)" },
343 	/* 33  Z   OZO         SET LIMITS(10) */
344 	{ 0x33,	D | W | R | O, "SET LIMITS(10)" },
345 	/* 34  O   O O    O    PRE-FETCH(10) */
346 	{ 0x34,	D | W | O | K, "PRE-FETCH(10)" },
347 	/* 34   M              READ POSITION */
348 	{ 0x34,	T, "READ POSITION" },
349 	/* 34                  GET DATA BUFFER STATUS */
350 	{ 0x34, S, "GET DATA BUFFER STATUS" },
351 	/* 35  O   OOO   MO    SYNCHRONIZE CACHE(10) */
352 	{ 0x35,	D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" },
353 	/* 36  Z   O O    O    LOCK UNLOCK CACHE(10) */
354 	{ 0x36,	D | W | O | K, "LOCK UNLOCK CACHE(10)" },
355 	/* 37  O     O         READ DEFECT DATA(10) */
356 	{ 0x37,	D | O, "READ DEFECT DATA(10)" },
357 	/* 37         O        INITIALIZE ELEMENT STATUS WITH RANGE */
358 	{ 0x37,	M, "INITIALIZE ELEMENT STATUS WITH RANGE" },
359 	/* 38      O O    O    MEDIUM SCAN */
360 	{ 0x38,	W | O | K, "MEDIUM SCAN" },
361 	/* 39  ZZZZOZO    Z    COMPARE */
362 	{ 0x39,	D | T | L | P | W | R | O | K | S, "COMPARE" },
363 	/* 3A  ZZZZOZO    Z    COPY AND VERIFY */
364 	{ 0x3A,	D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" },
365 	/* 3B  OOOOOOOOOOMOOO  WRITE BUFFER */
366 	{ 0x3B,	ALL, "WRITE BUFFER" },
367 	/* 3C  OOOOOOOOOO OOO  READ BUFFER */
368 	{ 0x3C,	ALL & ~(B), "READ BUFFER" },
369 	/* 3D        O         UPDATE BLOCK */
370 	{ 0x3D,	O, "UPDATE BLOCK" },
371 	/* 3E  O   O O         READ LONG(10) */
372 	{ 0x3E,	D | W | O, "READ LONG(10)" },
373 	/* 3F  O   O O         WRITE LONG(10) */
374 	{ 0x3F,	D | W | O, "WRITE LONG(10)" },
375 	/* 40  ZZZZOZOZ        CHANGE DEFINITION */
376 	{ 0x40,	D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" },
377 	/* 41  O               WRITE SAME(10) */
378 	{ 0x41,	D, "WRITE SAME(10)" },
379 	/* 42       O          UNMAP */
380 	{ 0x42,	D, "UNMAP" },
381 	/* 42       O          READ SUB-CHANNEL */
382 	{ 0x42,	R, "READ SUB-CHANNEL" },
383 	/* 43       O          READ TOC/PMA/ATIP */
384 	{ 0x43,	R, "READ TOC/PMA/ATIP" },
385 	/* 44   M          M   REPORT DENSITY SUPPORT */
386 	{ 0x44,	T | V, "REPORT DENSITY SUPPORT" },
387 	/* 44                  READ HEADER */
388 	/* 45       O          PLAY AUDIO(10) */
389 	{ 0x45,	R, "PLAY AUDIO(10)" },
390 	/* 46       M          GET CONFIGURATION */
391 	{ 0x46,	R, "GET CONFIGURATION" },
392 	/* 47       O          PLAY AUDIO MSF */
393 	{ 0x47,	R, "PLAY AUDIO MSF" },
394 	/* 48 */
395 	/* 49 */
396 	/* 4A       M          GET EVENT STATUS NOTIFICATION */
397 	{ 0x4A,	R, "GET EVENT STATUS NOTIFICATION" },
398 	/* 4B       O          PAUSE/RESUME */
399 	{ 0x4B,	R, "PAUSE/RESUME" },
400 	/* 4C  OOOOO OOOO OOO  LOG SELECT */
401 	{ 0x4C,	ALL & ~(R | B), "LOG SELECT" },
402 	/* 4D  OOOOO OOOO OMO  LOG SENSE */
403 	{ 0x4D,	ALL & ~(R | B), "LOG SENSE" },
404 	/* 4E       O          STOP PLAY/SCAN */
405 	{ 0x4E,	R, "STOP PLAY/SCAN" },
406 	/* 4F */
407 	/* 50  O               XDWRITE(10) */
408 	{ 0x50,	D, "XDWRITE(10)" },
409 	/* 51  O               XPWRITE(10) */
410 	{ 0x51,	D, "XPWRITE(10)" },
411 	/* 51       O          READ DISC INFORMATION */
412 	{ 0x51,	R, "READ DISC INFORMATION" },
413 	/* 52  O               XDREAD(10) */
414 	{ 0x52,	D, "XDREAD(10)" },
415 	/* 52       O          READ TRACK INFORMATION */
416 	{ 0x52,	R, "READ TRACK INFORMATION" },
417 	/* 53       O          RESERVE TRACK */
418 	{ 0x53,	R, "RESERVE TRACK" },
419 	/* 54       O          SEND OPC INFORMATION */
420 	{ 0x54,	R, "SEND OPC INFORMATION" },
421 	/* 55  OOO OMOOOOMOMO  MODE SELECT(10) */
422 	{ 0x55,	ALL & ~(P), "MODE SELECT(10)" },
423 	/* 56  ZZMZO OOOZ      RESERVE(10) */
424 	{ 0x56,	ALL & ~(R | B | K | V | F | C), "RESERVE(10)" },
425 	/* 56         Z        RESERVE ELEMENT(10) */
426 	{ 0x56,	M, "RESERVE ELEMENT(10)" },
427 	/* 57  ZZMZO OOOZ      RELEASE(10) */
428 	{ 0x57,	ALL & ~(R | B | K | V | F | C), "RELEASE(10)" },
429 	/* 57         Z        RELEASE ELEMENT(10) */
430 	{ 0x57,	M, "RELEASE ELEMENT(10)" },
431 	/* 58       O          REPAIR TRACK */
432 	{ 0x58,	R, "REPAIR TRACK" },
433 	/* 59 */
434 	/* 5A  OOO OMOOOOMOMO  MODE SENSE(10) */
435 	{ 0x5A,	ALL & ~(P), "MODE SENSE(10)" },
436 	/* 5B       O          CLOSE TRACK/SESSION */
437 	{ 0x5B,	R, "CLOSE TRACK/SESSION" },
438 	/* 5C       O          READ BUFFER CAPACITY */
439 	{ 0x5C,	R, "READ BUFFER CAPACITY" },
440 	/* 5D       O          SEND CUE SHEET */
441 	{ 0x5D,	R, "SEND CUE SHEET" },
442 	/* 5E  OOOOO OOOO   M  PERSISTENT RESERVE IN */
443 	{ 0x5E,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" },
444 	/* 5F  OOOOO OOOO   M  PERSISTENT RESERVE OUT */
445 	{ 0x5F,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" },
446 	/* 7E  OO   O OOOO O   extended CDB */
447 	{ 0x7E,	D | T | R | M | A | E | B | V, "extended CDB" },
448 	/* 7F  O            M  variable length CDB (more than 16 bytes) */
449 	{ 0x7F,	D | F, "variable length CDB (more than 16 bytes)" },
450 	/* 80  Z               XDWRITE EXTENDED(16) */
451 	{ 0x80,	D, "XDWRITE EXTENDED(16)" },
452 	/* 80   M              WRITE FILEMARKS(16) */
453 	{ 0x80,	T, "WRITE FILEMARKS(16)" },
454 	/* 81  Z               REBUILD(16) */
455 	{ 0x81,	D, "REBUILD(16)" },
456 	/* 81   O              READ REVERSE(16) */
457 	{ 0x81,	T, "READ REVERSE(16)" },
458 	/* 82  Z               REGENERATE(16) */
459 	{ 0x82,	D, "REGENERATE(16)" },
460 	/* 83  OOOOO O    OO   EXTENDED COPY */
461 	{ 0x83,	D | T | L | P | W | O | K | V, "EXTENDED COPY" },
462 	/* 84  OOOOO O    OO   RECEIVE COPY RESULTS */
463 	{ 0x84,	D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" },
464 	/* 85  O    O    O     ATA COMMAND PASS THROUGH(16) */
465 	{ 0x85,	D | R | B, "ATA COMMAND PASS THROUGH(16)" },
466 	/* 86  OO OO OOOOOOO   ACCESS CONTROL IN */
467 	{ 0x86,	ALL & ~(L | R | F), "ACCESS CONTROL IN" },
468 	/* 87  OO OO OOOOOOO   ACCESS CONTROL OUT */
469 	{ 0x87,	ALL & ~(L | R | F), "ACCESS CONTROL OUT" },
470 	/*
471 	 * XXX READ(16)/WRITE(16) were not listed for CD/DVE in op-num.txt
472 	 * but we had it since r1.40.  Do we really want them?
473 	 */
474 	/* 88  MM  O O   O     READ(16) */
475 	{ 0x88,	D | T | W | O | B, "READ(16)" },
476 	/* 89  O               COMPARE AND WRITE*/
477 	{ 0x89,	D, "COMPARE AND WRITE" },
478 	/* 8A  OM  O O   O     WRITE(16) */
479 	{ 0x8A,	D | T | W | O | B, "WRITE(16)" },
480 	/* 8B  O               ORWRITE */
481 	{ 0x8B,	D, "ORWRITE" },
482 	/* 8C  OO  O OO  O M   READ ATTRIBUTE */
483 	{ 0x8C,	D | T | W | O | M | B | V, "READ ATTRIBUTE" },
484 	/* 8D  OO  O OO  O O   WRITE ATTRIBUTE */
485 	{ 0x8D,	D | T | W | O | M | B | V, "WRITE ATTRIBUTE" },
486 	/* 8E  O   O O   O     WRITE AND VERIFY(16) */
487 	{ 0x8E,	D | W | O | B, "WRITE AND VERIFY(16)" },
488 	/* 8F  OO  O O   O     VERIFY(16) */
489 	{ 0x8F,	D | T | W | O | B, "VERIFY(16)" },
490 	/* 90  O   O O   O     PRE-FETCH(16) */
491 	{ 0x90,	D | W | O | B, "PRE-FETCH(16)" },
492 	/* 91  O   O O   O     SYNCHRONIZE CACHE(16) */
493 	{ 0x91,	D | W | O | B, "SYNCHRONIZE CACHE(16)" },
494 	/* 91   O              SPACE(16) */
495 	{ 0x91,	T, "SPACE(16)" },
496 	/* 92  Z   O O         LOCK UNLOCK CACHE(16) */
497 	{ 0x92,	D | W | O, "LOCK UNLOCK CACHE(16)" },
498 	/* 92   O              LOCATE(16) */
499 	{ 0x92,	T, "LOCATE(16)" },
500 	/* 93  O               WRITE SAME(16) */
501 	{ 0x93,	D, "WRITE SAME(16)" },
502 	/* 93   M              ERASE(16) */
503 	{ 0x93,	T, "ERASE(16)" },
504 	/* 94  O               ZBC OUT */
505 	{ 0x94,	D, "ZBC OUT" },
506 	/* 95  O               ZBC OUT */
507 	{ 0x95,	D, "ZBC OUT" },
508 	/* 96 */
509 	/* 97 */
510 	/* 98 */
511 	/* 99 */
512 	/* 9A  O               WRITE STREAM(16) */
513 	{ 0x9A,	D, "WRITE STREAM(16)" },
514 	/* 9B  OOOOOOOOOO OOO  READ BUFFER(16) */
515 	{ 0x9B,	ALL & ~(B) , "READ BUFFER(16)" },
516 	/* 9C  O              WRITE ATOMIC(16) */
517 	{ 0x9C, D, "WRITE ATOMIC(16)" },
518 	/* 9D                  SERVICE ACTION BIDIRECTIONAL */
519 	{ 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" },
520 	/* XXX KDM ALL for this?  op-num.txt defines it for none.. */
521 	/* 9E                  SERVICE ACTION IN(16) */
522 	{ 0x9E, ALL, "SERVICE ACTION IN(16)" },
523 	/* XXX KDM ALL for this?  op-num.txt defines it for ADC.. */
524 	/* 9F              M   SERVICE ACTION OUT(16) */
525 	{ 0x9F,	ALL, "SERVICE ACTION OUT(16)" },
526 	/* A0  MMOOO OMMM OMO  REPORT LUNS */
527 	{ 0xA0,	ALL & ~(R | B), "REPORT LUNS" },
528 	/* A1       O          BLANK */
529 	{ 0xA1,	R, "BLANK" },
530 	/* A1  O         O     ATA COMMAND PASS THROUGH(12) */
531 	{ 0xA1,	D | B, "ATA COMMAND PASS THROUGH(12)" },
532 	/* A2  OO   O      O   SECURITY PROTOCOL IN */
533 	{ 0xA2,	D | T | R | V, "SECURITY PROTOCOL IN" },
534 	/* A3  OOO O OOMOOOM   MAINTENANCE (IN) */
535 	{ 0xA3,	ALL & ~(P | R | F), "MAINTENANCE (IN)" },
536 	/* A3       O          SEND KEY */
537 	{ 0xA3,	R, "SEND KEY" },
538 	/* A4  OOO O OOOOOOO   MAINTENANCE (OUT) */
539 	{ 0xA4,	ALL & ~(P | R | F), "MAINTENANCE (OUT)" },
540 	/* A4       O          REPORT KEY */
541 	{ 0xA4,	R, "REPORT KEY" },
542 	/* A5   O  O OM        MOVE MEDIUM */
543 	{ 0xA5,	T | W | O | M, "MOVE MEDIUM" },
544 	/* A5       O          PLAY AUDIO(12) */
545 	{ 0xA5,	R, "PLAY AUDIO(12)" },
546 	/* A6         O        EXCHANGE MEDIUM */
547 	{ 0xA6,	M, "EXCHANGE MEDIUM" },
548 	/* A6       O          LOAD/UNLOAD C/DVD */
549 	{ 0xA6,	R, "LOAD/UNLOAD C/DVD" },
550 	/* A7  ZZ  O O         MOVE MEDIUM ATTACHED */
551 	{ 0xA7,	D | T | W | O, "MOVE MEDIUM ATTACHED" },
552 	/* A7       O          SET READ AHEAD */
553 	{ 0xA7,	R, "SET READ AHEAD" },
554 	/* A8  O   OOO         READ(12) */
555 	{ 0xA8,	D | W | R | O, "READ(12)" },
556 	/* A8                  GET MESSAGE(12) */
557 	{ 0xA8, C, "GET MESSAGE(12)" },
558 	/* A9              O   SERVICE ACTION OUT(12) */
559 	{ 0xA9,	V, "SERVICE ACTION OUT(12)" },
560 	/* AA  O   OOO         WRITE(12) */
561 	{ 0xAA,	D | W | R | O, "WRITE(12)" },
562 	/* AA                  SEND MESSAGE(12) */
563 	{ 0xAA, C, "SEND MESSAGE(12)" },
564 	/* AB       O      O   SERVICE ACTION IN(12) */
565 	{ 0xAB,	R | V, "SERVICE ACTION IN(12)" },
566 	/* AC        O         ERASE(12) */
567 	{ 0xAC,	O, "ERASE(12)" },
568 	/* AC       O          GET PERFORMANCE */
569 	{ 0xAC,	R, "GET PERFORMANCE" },
570 	/* AD       O          READ DVD STRUCTURE */
571 	{ 0xAD,	R, "READ DVD STRUCTURE" },
572 	/* AE  O   O O         WRITE AND VERIFY(12) */
573 	{ 0xAE,	D | W | O, "WRITE AND VERIFY(12)" },
574 	/* AF  O   OZO         VERIFY(12) */
575 	{ 0xAF,	D | W | R | O, "VERIFY(12)" },
576 	/* B0      ZZZ         SEARCH DATA HIGH(12) */
577 	{ 0xB0,	W | R | O, "SEARCH DATA HIGH(12)" },
578 	/* B1      ZZZ         SEARCH DATA EQUAL(12) */
579 	{ 0xB1,	W | R | O, "SEARCH DATA EQUAL(12)" },
580 	/* B2      ZZZ         SEARCH DATA LOW(12) */
581 	{ 0xB2,	W | R | O, "SEARCH DATA LOW(12)" },
582 	/* B3  Z   OZO         SET LIMITS(12) */
583 	{ 0xB3,	D | W | R | O, "SET LIMITS(12)" },
584 	/* B4  ZZ  OZO         READ ELEMENT STATUS ATTACHED */
585 	{ 0xB4,	D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" },
586 	/* B5  OO   O      O   SECURITY PROTOCOL OUT */
587 	{ 0xB5,	D | T | R | V, "SECURITY PROTOCOL OUT" },
588 	/* B5         O        REQUEST VOLUME ELEMENT ADDRESS */
589 	{ 0xB5,	M, "REQUEST VOLUME ELEMENT ADDRESS" },
590 	/* B6         O        SEND VOLUME TAG */
591 	{ 0xB6,	M, "SEND VOLUME TAG" },
592 	/* B6       O          SET STREAMING */
593 	{ 0xB6,	R, "SET STREAMING" },
594 	/* B7  O     O         READ DEFECT DATA(12) */
595 	{ 0xB7,	D | O, "READ DEFECT DATA(12)" },
596 	/* B8   O  OZOM        READ ELEMENT STATUS */
597 	{ 0xB8,	T | W | R | O | M, "READ ELEMENT STATUS" },
598 	/* B9       O          READ CD MSF */
599 	{ 0xB9,	R, "READ CD MSF" },
600 	/* BA  O   O OOMO      REDUNDANCY GROUP (IN) */
601 	{ 0xBA,	D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" },
602 	/* BA       O          SCAN */
603 	{ 0xBA,	R, "SCAN" },
604 	/* BB  O   O OOOO      REDUNDANCY GROUP (OUT) */
605 	{ 0xBB,	D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" },
606 	/* BB       O          SET CD SPEED */
607 	{ 0xBB,	R, "SET CD SPEED" },
608 	/* BC  O   O OOMO      SPARE (IN) */
609 	{ 0xBC,	D | W | O | M | A | E, "SPARE (IN)" },
610 	/* BD  O   O OOOO      SPARE (OUT) */
611 	{ 0xBD,	D | W | O | M | A | E, "SPARE (OUT)" },
612 	/* BD       O          MECHANISM STATUS */
613 	{ 0xBD,	R, "MECHANISM STATUS" },
614 	/* BE  O   O OOMO      VOLUME SET (IN) */
615 	{ 0xBE,	D | W | O | M | A | E, "VOLUME SET (IN)" },
616 	/* BE       O          READ CD */
617 	{ 0xBE,	R, "READ CD" },
618 	/* BF  O   O OOOO      VOLUME SET (OUT) */
619 	{ 0xBF,	D | W | O | M | A | E, "VOLUME SET (OUT)" },
620 	/* BF       O          SEND DVD STRUCTURE */
621 	{ 0xBF,	R, "SEND DVD STRUCTURE" }
622 };
623 
624 const char *
625 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
626 {
627 	caddr_t match;
628 	int i, j;
629 	u_int32_t opmask;
630 	u_int16_t pd_type;
631 	int       num_ops[2];
632 	struct op_table_entry *table[2];
633 	int num_tables;
634 
635 	/*
636 	 * If we've got inquiry data, use it to determine what type of
637 	 * device we're dealing with here.  Otherwise, assume direct
638 	 * access.
639 	 */
640 	if (inq_data == NULL) {
641 		pd_type = T_DIRECT;
642 		match = NULL;
643 	} else {
644 		pd_type = SID_TYPE(inq_data);
645 
646 		match = cam_quirkmatch((caddr_t)inq_data,
647 				       (caddr_t)scsi_op_quirk_table,
648 				       sizeof(scsi_op_quirk_table)/
649 				       sizeof(*scsi_op_quirk_table),
650 				       sizeof(*scsi_op_quirk_table),
651 				       scsi_inquiry_match);
652 	}
653 
654 	if (match != NULL) {
655 		table[0] = ((struct scsi_op_quirk_entry *)match)->op_table;
656 		num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops;
657 		table[1] = scsi_op_codes;
658 		num_ops[1] = sizeof(scsi_op_codes)/sizeof(scsi_op_codes[0]);
659 		num_tables = 2;
660 	} else {
661 		/*
662 		 * If this is true, we have a vendor specific opcode that
663 		 * wasn't covered in the quirk table.
664 		 */
665 		if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80)))
666 			return("Vendor Specific Command");
667 
668 		table[0] = scsi_op_codes;
669 		num_ops[0] = sizeof(scsi_op_codes)/sizeof(scsi_op_codes[0]);
670 		num_tables = 1;
671 	}
672 
673 	/* RBC is 'Simplified' Direct Access Device */
674 	if (pd_type == T_RBC)
675 		pd_type = T_DIRECT;
676 
677 	/* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */
678 	if (pd_type == T_NODEVICE)
679 		pd_type = T_DIRECT;
680 
681 	opmask = 1 << pd_type;
682 
683 	for (j = 0; j < num_tables; j++) {
684 		for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){
685 			if ((table[j][i].opcode == opcode)
686 			 && ((table[j][i].opmask & opmask) != 0))
687 				return(table[j][i].desc);
688 		}
689 	}
690 
691 	/*
692 	 * If we can't find a match for the command in the table, we just
693 	 * assume it's a vendor specifc command.
694 	 */
695 	return("Vendor Specific Command");
696 
697 }
698 
699 #else /* SCSI_NO_OP_STRINGS */
700 
701 const char *
702 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
703 {
704 	return("");
705 }
706 
707 #endif
708 
709 
710 #if !defined(SCSI_NO_SENSE_STRINGS)
711 #define SST(asc, ascq, action, desc) \
712 	asc, ascq, action, desc
713 #else
714 const char empty_string[] = "";
715 
716 #define SST(asc, ascq, action, desc) \
717 	asc, ascq, action, empty_string
718 #endif
719 
720 const struct sense_key_table_entry sense_key_table[] =
721 {
722 	{ SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" },
723 	{ SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" },
724 	{ SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" },
725 	{ SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" },
726 	{ SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" },
727 	{ SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" },
728 	{ SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" },
729 	{ SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" },
730 	{ SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" },
731 	{ SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" },
732 	{ SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" },
733 	{ SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" },
734 	{ SSD_KEY_EQUAL, SS_NOP, "EQUAL" },
735 	{ SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" },
736 	{ SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" },
737 	{ SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" }
738 };
739 
740 const int sense_key_table_size =
741     sizeof(sense_key_table)/sizeof(sense_key_table[0]);
742 
743 static struct asc_table_entry quantum_fireball_entries[] = {
744 	{ SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
745 	     "Logical unit not ready, initializing cmd. required") }
746 };
747 
748 static struct asc_table_entry sony_mo_entries[] = {
749 	{ SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
750 	     "Logical unit not ready, cause not reportable") }
751 };
752 
753 static struct asc_table_entry hgst_entries[] = {
754 	{ SST(0x04, 0xF0, SS_RDEF,
755 	    "Vendor Unique - Logical Unit Not Ready") },
756 	{ SST(0x0A, 0x01, SS_RDEF,
757 	    "Unrecovered Super Certification Log Write Error") },
758 	{ SST(0x0A, 0x02, SS_RDEF,
759 	    "Unrecovered Super Certification Log Read Error") },
760 	{ SST(0x15, 0x03, SS_RDEF,
761 	    "Unrecovered Sector Error") },
762 	{ SST(0x3E, 0x04, SS_RDEF,
763 	    "Unrecovered Self-Test Hard-Cache Test Fail") },
764 	{ SST(0x3E, 0x05, SS_RDEF,
765 	    "Unrecovered Self-Test OTF-Cache Fail") },
766 	{ SST(0x40, 0x00, SS_RDEF,
767 	    "Unrecovered SAT No Buffer Overflow Error") },
768 	{ SST(0x40, 0x01, SS_RDEF,
769 	    "Unrecovered SAT Buffer Overflow Error") },
770 	{ SST(0x40, 0x02, SS_RDEF,
771 	    "Unrecovered SAT No Buffer Overflow With ECS Fault") },
772 	{ SST(0x40, 0x03, SS_RDEF,
773 	    "Unrecovered SAT Buffer Overflow With ECS Fault") },
774 	{ SST(0x40, 0x81, SS_RDEF,
775 	    "DRAM Failure") },
776 	{ SST(0x44, 0x0B, SS_RDEF,
777 	    "Vendor Unique - Internal Target Failure") },
778 	{ SST(0x44, 0xF2, SS_RDEF,
779 	    "Vendor Unique - Internal Target Failure") },
780 	{ SST(0x44, 0xF6, SS_RDEF,
781 	    "Vendor Unique - Internal Target Failure") },
782 	{ SST(0x44, 0xF9, SS_RDEF,
783 	    "Vendor Unique - Internal Target Failure") },
784 	{ SST(0x44, 0xFA, SS_RDEF,
785 	    "Vendor Unique - Internal Target Failure") },
786 	{ SST(0x5D, 0x22, SS_RDEF,
787 	    "Extreme Over-Temperature Warning") },
788 	{ SST(0x5D, 0x50, SS_RDEF,
789 	    "Load/Unload cycle Count Warning") },
790 	{ SST(0x81, 0x00, SS_RDEF,
791 	    "Vendor Unique - Internal Logic Error") },
792 	{ SST(0x85, 0x00, SS_RDEF,
793 	    "Vendor Unique - Internal Key Seed Error") },
794 };
795 
796 static struct asc_table_entry seagate_entries[] = {
797 	{ SST(0x04, 0xF0, SS_RDEF,
798 	    "Logical Unit Not Ready, super certify in Progress") },
799 	{ SST(0x08, 0x86, SS_RDEF,
800 	    "Write Fault Data Corruption") },
801 	{ SST(0x09, 0x0D, SS_RDEF,
802 	    "Tracking Failure") },
803 	{ SST(0x09, 0x0E, SS_RDEF,
804 	    "ETF Failure") },
805 	{ SST(0x0B, 0x5D, SS_RDEF,
806 	    "Pre-SMART Warning") },
807 	{ SST(0x0B, 0x85, SS_RDEF,
808 	    "5V Voltage Warning") },
809 	{ SST(0x0B, 0x8C, SS_RDEF,
810 	    "12V Voltage Warning") },
811 	{ SST(0x0C, 0xFF, SS_RDEF,
812 	    "Write Error - Too many error recovery revs") },
813 	{ SST(0x11, 0xFF, SS_RDEF,
814 	    "Unrecovered Read Error - Too many error recovery revs") },
815 	{ SST(0x19, 0x0E, SS_RDEF,
816 	    "Fewer than 1/2 defect list copies") },
817 	{ SST(0x20, 0xF3, SS_RDEF,
818 	    "Illegal CDB linked to skip mask cmd") },
819 	{ SST(0x24, 0xF0, SS_RDEF,
820 	    "Illegal byte in CDB, LBA not matching") },
821 	{ SST(0x24, 0xF1, SS_RDEF,
822 	    "Illegal byte in CDB, LEN not matching") },
823 	{ SST(0x24, 0xF2, SS_RDEF,
824 	    "Mask not matching transfer length") },
825 	{ SST(0x24, 0xF3, SS_RDEF,
826 	    "Drive formatted without plist") },
827 	{ SST(0x26, 0x95, SS_RDEF,
828 	    "Invalid Field Parameter - CAP File") },
829 	{ SST(0x26, 0x96, SS_RDEF,
830 	    "Invalid Field Parameter - RAP File") },
831 	{ SST(0x26, 0x97, SS_RDEF,
832 	    "Invalid Field Parameter - TMS Firmware Tag") },
833 	{ SST(0x26, 0x98, SS_RDEF,
834 	    "Invalid Field Parameter - Check Sum") },
835 	{ SST(0x26, 0x99, SS_RDEF,
836 	    "Invalid Field Parameter - Firmware Tag") },
837 	{ SST(0x29, 0x08, SS_RDEF,
838 	    "Write Log Dump data") },
839 	{ SST(0x29, 0x09, SS_RDEF,
840 	    "Write Log Dump data") },
841 	{ SST(0x29, 0x0A, SS_RDEF,
842 	    "Reserved disk space") },
843 	{ SST(0x29, 0x0B, SS_RDEF,
844 	    "SDBP") },
845 	{ SST(0x29, 0x0C, SS_RDEF,
846 	    "SDBP") },
847 	{ SST(0x31, 0x91, SS_RDEF,
848 	    "Format Corrupted World Wide Name (WWN) is Invalid") },
849 	{ SST(0x32, 0x03, SS_RDEF,
850 	    "Defect List - Length exceeds Command Allocated Length") },
851 	{ SST(0x33, 0x00, SS_RDEF,
852 	    "Flash not ready for access") },
853 	{ SST(0x3F, 0x70, SS_RDEF,
854 	    "Invalid RAP block") },
855 	{ SST(0x3F, 0x71, SS_RDEF,
856 	    "RAP/ETF mismatch") },
857 	{ SST(0x3F, 0x90, SS_RDEF,
858 	    "Invalid CAP block") },
859 	{ SST(0x3F, 0x91, SS_RDEF,
860 	    "World Wide Name (WWN) Mismatch") },
861 	{ SST(0x40, 0x01, SS_RDEF,
862 	    "DRAM Parity Error") },
863 	{ SST(0x40, 0x02, SS_RDEF,
864 	    "DRAM Parity Error") },
865 	{ SST(0x42, 0x0A, SS_RDEF,
866 	    "Loopback Test") },
867 	{ SST(0x42, 0x0B, SS_RDEF,
868 	    "Loopback Test") },
869 	{ SST(0x44, 0xF2, SS_RDEF,
870 	    "Compare error during data integrity check") },
871 	{ SST(0x44, 0xF6, SS_RDEF,
872 	    "Unrecoverable error during data integrity check") },
873 	{ SST(0x47, 0x80, SS_RDEF,
874 	    "Fibre Channel Sequence Error") },
875 	{ SST(0x4E, 0x01, SS_RDEF,
876 	    "Information Unit Too Short") },
877 	{ SST(0x80, 0x00, SS_RDEF,
878 	    "General Firmware Error / Command Timeout") },
879 	{ SST(0x80, 0x01, SS_RDEF,
880 	    "Command Timeout") },
881 	{ SST(0x80, 0x02, SS_RDEF,
882 	    "Command Timeout") },
883 	{ SST(0x80, 0x80, SS_RDEF,
884 	    "FC FIFO Error During Read Transfer") },
885 	{ SST(0x80, 0x81, SS_RDEF,
886 	    "FC FIFO Error During Write Transfer") },
887 	{ SST(0x80, 0x82, SS_RDEF,
888 	    "DISC FIFO Error During Read Transfer") },
889 	{ SST(0x80, 0x83, SS_RDEF,
890 	    "DISC FIFO Error During Write Transfer") },
891 	{ SST(0x80, 0x84, SS_RDEF,
892 	    "LBA Seeded LRC Error on Read") },
893 	{ SST(0x80, 0x85, SS_RDEF,
894 	    "LBA Seeded LRC Error on Write") },
895 	{ SST(0x80, 0x86, SS_RDEF,
896 	    "IOEDC Error on Read") },
897 	{ SST(0x80, 0x87, SS_RDEF,
898 	    "IOEDC Error on Write") },
899 	{ SST(0x80, 0x88, SS_RDEF,
900 	    "Host Parity Check Failed") },
901 	{ SST(0x80, 0x89, SS_RDEF,
902 	    "IOEDC error on read detected by formatter") },
903 	{ SST(0x80, 0x8A, SS_RDEF,
904 	    "Host Parity Errors / Host FIFO Initialization Failed") },
905 	{ SST(0x80, 0x8B, SS_RDEF,
906 	    "Host Parity Errors") },
907 	{ SST(0x80, 0x8C, SS_RDEF,
908 	    "Host Parity Errors") },
909 	{ SST(0x80, 0x8D, SS_RDEF,
910 	    "Host Parity Errors") },
911 	{ SST(0x81, 0x00, SS_RDEF,
912 	    "LA Check Failed") },
913 	{ SST(0x82, 0x00, SS_RDEF,
914 	    "Internal client detected insufficient buffer") },
915 	{ SST(0x84, 0x00, SS_RDEF,
916 	    "Scheduled Diagnostic And Repair") },
917 };
918 
919 static struct scsi_sense_quirk_entry sense_quirk_table[] = {
920 	{
921 		/*
922 		 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b
923 		 * when they really should return 0x04 0x02.
924 		 */
925 		{T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"},
926 		/*num_sense_keys*/0,
927 		sizeof(quantum_fireball_entries)/sizeof(struct asc_table_entry),
928 		/*sense key entries*/NULL,
929 		quantum_fireball_entries
930 	},
931 	{
932 		/*
933 		 * This Sony MO drive likes to return 0x04, 0x00 when it
934 		 * isn't spun up.
935 		 */
936 		{T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"},
937 		/*num_sense_keys*/0,
938 		sizeof(sony_mo_entries)/sizeof(struct asc_table_entry),
939 		/*sense key entries*/NULL,
940 		sony_mo_entries
941 	},
942 	{
943 		/*
944 		 * HGST vendor-specific error codes
945 		 */
946 		{T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"},
947 		/*num_sense_keys*/0,
948 		sizeof(hgst_entries)/sizeof(struct asc_table_entry),
949 		/*sense key entries*/NULL,
950 		hgst_entries
951 	},
952 	{
953 		/*
954 		 * SEAGATE vendor-specific error codes
955 		 */
956 		{T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"},
957 		/*num_sense_keys*/0,
958 		sizeof(seagate_entries)/sizeof(struct asc_table_entry),
959 		/*sense key entries*/NULL,
960 		seagate_entries
961 	}
962 };
963 
964 const int sense_quirk_table_size =
965     sizeof(sense_quirk_table)/sizeof(sense_quirk_table[0]);
966 
967 static struct asc_table_entry asc_table[] = {
968 	/*
969 	 * From: http://www.t10.org/lists/asc-num.txt
970 	 * Modifications by Jung-uk Kim (jkim@FreeBSD.org)
971 	 */
972 	/*
973 	 * File: ASC-NUM.TXT
974 	 *
975 	 * SCSI ASC/ASCQ Assignments
976 	 * Numeric Sorted Listing
977 	 * as of  8/12/15
978 	 *
979 	 * D - DIRECT ACCESS DEVICE (SBC-2)                   device column key
980 	 * .T - SEQUENTIAL ACCESS DEVICE (SSC)               -------------------
981 	 * . L - PRINTER DEVICE (SSC)                           blank = reserved
982 	 * .  P - PROCESSOR DEVICE (SPC)                     not blank = allowed
983 	 * .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2)
984 	 * .  . R - CD DEVICE (MMC)
985 	 * .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
986 	 * .  .  .M - MEDIA CHANGER DEVICE (SMC)
987 	 * .  .  . A - STORAGE ARRAY DEVICE (SCC)
988 	 * .  .  .  E - ENCLOSURE SERVICES DEVICE (SES)
989 	 * .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
990 	 * .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
991 	 * .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
992 	 * .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
993 	 * DTLPWROMAEBKVF
994 	 * ASC      ASCQ  Action
995 	 * Description
996 	 */
997 	/* DTLPWROMAEBKVF */
998 	{ SST(0x00, 0x00, SS_NOP,
999 	    "No additional sense information") },
1000 	/*  T             */
1001 	{ SST(0x00, 0x01, SS_RDEF,
1002 	    "Filemark detected") },
1003 	/*  T             */
1004 	{ SST(0x00, 0x02, SS_RDEF,
1005 	    "End-of-partition/medium detected") },
1006 	/*  T             */
1007 	{ SST(0x00, 0x03, SS_RDEF,
1008 	    "Setmark detected") },
1009 	/*  T             */
1010 	{ SST(0x00, 0x04, SS_RDEF,
1011 	    "Beginning-of-partition/medium detected") },
1012 	/*  TL            */
1013 	{ SST(0x00, 0x05, SS_RDEF,
1014 	    "End-of-data detected") },
1015 	/* DTLPWROMAEBKVF */
1016 	{ SST(0x00, 0x06, SS_RDEF,
1017 	    "I/O process terminated") },
1018 	/*  T             */
1019 	{ SST(0x00, 0x07, SS_RDEF,	/* XXX TBD */
1020 	    "Programmable early warning detected") },
1021 	/*      R         */
1022 	{ SST(0x00, 0x11, SS_FATAL | EBUSY,
1023 	    "Audio play operation in progress") },
1024 	/*      R         */
1025 	{ SST(0x00, 0x12, SS_NOP,
1026 	    "Audio play operation paused") },
1027 	/*      R         */
1028 	{ SST(0x00, 0x13, SS_NOP,
1029 	    "Audio play operation successfully completed") },
1030 	/*      R         */
1031 	{ SST(0x00, 0x14, SS_RDEF,
1032 	    "Audio play operation stopped due to error") },
1033 	/*      R         */
1034 	{ SST(0x00, 0x15, SS_NOP,
1035 	    "No current audio status to return") },
1036 	/* DTLPWROMAEBKVF */
1037 	{ SST(0x00, 0x16, SS_FATAL | EBUSY,
1038 	    "Operation in progress") },
1039 	/* DTL WROMAEBKVF */
1040 	{ SST(0x00, 0x17, SS_RDEF,
1041 	    "Cleaning requested") },
1042 	/*  T             */
1043 	{ SST(0x00, 0x18, SS_RDEF,	/* XXX TBD */
1044 	    "Erase operation in progress") },
1045 	/*  T             */
1046 	{ SST(0x00, 0x19, SS_RDEF,	/* XXX TBD */
1047 	    "Locate operation in progress") },
1048 	/*  T             */
1049 	{ SST(0x00, 0x1A, SS_RDEF,	/* XXX TBD */
1050 	    "Rewind operation in progress") },
1051 	/*  T             */
1052 	{ SST(0x00, 0x1B, SS_RDEF,	/* XXX TBD */
1053 	    "Set capacity operation in progress") },
1054 	/*  T             */
1055 	{ SST(0x00, 0x1C, SS_RDEF,	/* XXX TBD */
1056 	    "Verify operation in progress") },
1057 	/* DT        B    */
1058 	{ SST(0x00, 0x1D, SS_RDEF,	/* XXX TBD */
1059 	    "ATA pass through information available") },
1060 	/* DT   R MAEBKV  */
1061 	{ SST(0x00, 0x1E, SS_RDEF,	/* XXX TBD */
1062 	    "Conflicting SA creation request") },
1063 	/* DT        B    */
1064 	{ SST(0x00, 0x1F, SS_RDEF,	/* XXX TBD */
1065 	    "Logical unit transitioning to another power condition") },
1066 	/* DT P      B    */
1067 	{ SST(0x00, 0x20, SS_RDEF,	/* XXX TBD */
1068 	    "Extended copy information available") },
1069 	/* D              */
1070 	{ SST(0x00, 0x21, SS_RDEF,	/* XXX TBD */
1071 	    "Atomic command aborted due to ACA") },
1072 	/* D   W O   BK   */
1073 	{ SST(0x01, 0x00, SS_RDEF,
1074 	    "No index/sector signal") },
1075 	/* D   WRO   BK   */
1076 	{ SST(0x02, 0x00, SS_RDEF,
1077 	    "No seek complete") },
1078 	/* DTL W O   BK   */
1079 	{ SST(0x03, 0x00, SS_RDEF,
1080 	    "Peripheral device write fault") },
1081 	/*  T             */
1082 	{ SST(0x03, 0x01, SS_RDEF,
1083 	    "No write current") },
1084 	/*  T             */
1085 	{ SST(0x03, 0x02, SS_RDEF,
1086 	    "Excessive write errors") },
1087 	/* DTLPWROMAEBKVF */
1088 	{ SST(0x04, 0x00, SS_RDEF,
1089 	    "Logical unit not ready, cause not reportable") },
1090 	/* DTLPWROMAEBKVF */
1091 	{ SST(0x04, 0x01, SS_WAIT | EBUSY,
1092 	    "Logical unit is in process of becoming ready") },
1093 	/* DTLPWROMAEBKVF */
1094 	{ SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1095 	    "Logical unit not ready, initializing command required") },
1096 	/* DTLPWROMAEBKVF */
1097 	{ SST(0x04, 0x03, SS_FATAL | ENXIO,
1098 	    "Logical unit not ready, manual intervention required") },
1099 	/* DTL  RO   B    */
1100 	{ SST(0x04, 0x04, SS_FATAL | EBUSY,
1101 	    "Logical unit not ready, format in progress") },
1102 	/* DT  W O A BK F */
1103 	{ SST(0x04, 0x05, SS_FATAL | EBUSY,
1104 	    "Logical unit not ready, rebuild in progress") },
1105 	/* DT  W O A BK   */
1106 	{ SST(0x04, 0x06, SS_FATAL | EBUSY,
1107 	    "Logical unit not ready, recalculation in progress") },
1108 	/* DTLPWROMAEBKVF */
1109 	{ SST(0x04, 0x07, SS_FATAL | EBUSY,
1110 	    "Logical unit not ready, operation in progress") },
1111 	/*      R         */
1112 	{ SST(0x04, 0x08, SS_FATAL | EBUSY,
1113 	    "Logical unit not ready, long write in progress") },
1114 	/* DTLPWROMAEBKVF */
1115 	{ SST(0x04, 0x09, SS_RDEF,	/* XXX TBD */
1116 	    "Logical unit not ready, self-test in progress") },
1117 	/* DTLPWROMAEBKVF */
1118 	{ SST(0x04, 0x0A, SS_WAIT | ENXIO,
1119 	    "Logical unit not accessible, asymmetric access state transition")},
1120 	/* DTLPWROMAEBKVF */
1121 	{ SST(0x04, 0x0B, SS_FATAL | ENXIO,
1122 	    "Logical unit not accessible, target port in standby state") },
1123 	/* DTLPWROMAEBKVF */
1124 	{ SST(0x04, 0x0C, SS_FATAL | ENXIO,
1125 	    "Logical unit not accessible, target port in unavailable state") },
1126 	/*              F */
1127 	{ SST(0x04, 0x0D, SS_RDEF,	/* XXX TBD */
1128 	    "Logical unit not ready, structure check required") },
1129 	/* DTL WR MAEBKVF */
1130 	{ SST(0x04, 0x0E, SS_RDEF,	/* XXX TBD */
1131 	    "Logical unit not ready, security session in progress") },
1132 	/* DT  WROM  B    */
1133 	{ SST(0x04, 0x10, SS_RDEF,	/* XXX TBD */
1134 	    "Logical unit not ready, auxiliary memory not accessible") },
1135 	/* DT  WRO AEB VF */
1136 	{ SST(0x04, 0x11, SS_WAIT | EBUSY,
1137 	    "Logical unit not ready, notify (enable spinup) required") },
1138 	/*        M    V  */
1139 	{ SST(0x04, 0x12, SS_RDEF,	/* XXX TBD */
1140 	    "Logical unit not ready, offline") },
1141 	/* DT   R MAEBKV  */
1142 	{ SST(0x04, 0x13, SS_RDEF,	/* XXX TBD */
1143 	    "Logical unit not ready, SA creation in progress") },
1144 	/* D         B    */
1145 	{ SST(0x04, 0x14, SS_RDEF,	/* XXX TBD */
1146 	    "Logical unit not ready, space allocation in progress") },
1147 	/*        M       */
1148 	{ SST(0x04, 0x15, SS_RDEF,	/* XXX TBD */
1149 	    "Logical unit not ready, robotics disabled") },
1150 	/*        M       */
1151 	{ SST(0x04, 0x16, SS_RDEF,	/* XXX TBD */
1152 	    "Logical unit not ready, configuration required") },
1153 	/*        M       */
1154 	{ SST(0x04, 0x17, SS_RDEF,	/* XXX TBD */
1155 	    "Logical unit not ready, calibration required") },
1156 	/*        M       */
1157 	{ SST(0x04, 0x18, SS_RDEF,	/* XXX TBD */
1158 	    "Logical unit not ready, a door is open") },
1159 	/*        M       */
1160 	{ SST(0x04, 0x19, SS_RDEF,	/* XXX TBD */
1161 	    "Logical unit not ready, operating in sequential mode") },
1162 	/* DT        B    */
1163 	{ SST(0x04, 0x1A, SS_RDEF,	/* XXX TBD */
1164 	    "Logical unit not ready, START/STOP UNIT command in progress") },
1165 	/* D         B    */
1166 	{ SST(0x04, 0x1B, SS_RDEF,	/* XXX TBD */
1167 	    "Logical unit not ready, sanitize in progress") },
1168 	/* DT     MAEB    */
1169 	{ SST(0x04, 0x1C, SS_RDEF,	/* XXX TBD */
1170 	    "Logical unit not ready, additional power use not yet granted") },
1171 	/* D              */
1172 	{ SST(0x04, 0x1D, SS_RDEF,	/* XXX TBD */
1173 	    "Logical unit not ready, configuration in progress") },
1174 	/* D              */
1175 	{ SST(0x04, 0x1E, SS_FATAL | ENXIO,
1176 	    "Logical unit not ready, microcode activation required") },
1177 	/* DTLPWROMAEBKVF */
1178 	{ SST(0x04, 0x1F, SS_FATAL | ENXIO,
1179 	    "Logical unit not ready, microcode download required") },
1180 	/* DTLPWROMAEBKVF */
1181 	{ SST(0x04, 0x20, SS_RDEF,	/* XXX TBD */
1182 	    "Logical unit not ready, logical unit reset required") },
1183 	/* DTLPWROMAEBKVF */
1184 	{ SST(0x04, 0x21, SS_RDEF,	/* XXX TBD */
1185 	    "Logical unit not ready, hard reset required") },
1186 	/* DTLPWROMAEBKVF */
1187 	{ SST(0x04, 0x22, SS_RDEF,	/* XXX TBD */
1188 	    "Logical unit not ready, power cycle required") },
1189 	/* DTL WROMAEBKVF */
1190 	{ SST(0x05, 0x00, SS_RDEF,
1191 	    "Logical unit does not respond to selection") },
1192 	/* D   WROM  BK   */
1193 	{ SST(0x06, 0x00, SS_RDEF,
1194 	    "No reference position found") },
1195 	/* DTL WROM  BK   */
1196 	{ SST(0x07, 0x00, SS_RDEF,
1197 	    "Multiple peripheral devices selected") },
1198 	/* DTL WROMAEBKVF */
1199 	{ SST(0x08, 0x00, SS_RDEF,
1200 	    "Logical unit communication failure") },
1201 	/* DTL WROMAEBKVF */
1202 	{ SST(0x08, 0x01, SS_RDEF,
1203 	    "Logical unit communication time-out") },
1204 	/* DTL WROMAEBKVF */
1205 	{ SST(0x08, 0x02, SS_RDEF,
1206 	    "Logical unit communication parity error") },
1207 	/* DT   ROM  BK   */
1208 	{ SST(0x08, 0x03, SS_RDEF,
1209 	    "Logical unit communication CRC error (Ultra-DMA/32)") },
1210 	/* DTLPWRO    K   */
1211 	{ SST(0x08, 0x04, SS_RDEF,	/* XXX TBD */
1212 	    "Unreachable copy target") },
1213 	/* DT  WRO   B    */
1214 	{ SST(0x09, 0x00, SS_RDEF,
1215 	    "Track following error") },
1216 	/*     WRO    K   */
1217 	{ SST(0x09, 0x01, SS_RDEF,
1218 	    "Tracking servo failure") },
1219 	/*     WRO    K   */
1220 	{ SST(0x09, 0x02, SS_RDEF,
1221 	    "Focus servo failure") },
1222 	/*     WRO        */
1223 	{ SST(0x09, 0x03, SS_RDEF,
1224 	    "Spindle servo failure") },
1225 	/* DT  WRO   B    */
1226 	{ SST(0x09, 0x04, SS_RDEF,
1227 	    "Head select fault") },
1228 	/* DT   RO   B    */
1229 	{ SST(0x09, 0x05, SS_RDEF,
1230 	    "Vibration induced tracking error") },
1231 	/* DTLPWROMAEBKVF */
1232 	{ SST(0x0A, 0x00, SS_FATAL | ENOSPC,
1233 	    "Error log overflow") },
1234 	/* DTLPWROMAEBKVF */
1235 	{ SST(0x0B, 0x00, SS_RDEF,
1236 	    "Warning") },
1237 	/* DTLPWROMAEBKVF */
1238 	{ SST(0x0B, 0x01, SS_RDEF,
1239 	    "Warning - specified temperature exceeded") },
1240 	/* DTLPWROMAEBKVF */
1241 	{ SST(0x0B, 0x02, SS_RDEF,
1242 	    "Warning - enclosure degraded") },
1243 	/* DTLPWROMAEBKVF */
1244 	{ SST(0x0B, 0x03, SS_RDEF,	/* XXX TBD */
1245 	    "Warning - background self-test failed") },
1246 	/* DTLPWRO AEBKVF */
1247 	{ SST(0x0B, 0x04, SS_RDEF,	/* XXX TBD */
1248 	    "Warning - background pre-scan detected medium error") },
1249 	/* DTLPWRO AEBKVF */
1250 	{ SST(0x0B, 0x05, SS_RDEF,	/* XXX TBD */
1251 	    "Warning - background medium scan detected medium error") },
1252 	/* DTLPWROMAEBKVF */
1253 	{ SST(0x0B, 0x06, SS_RDEF,	/* XXX TBD */
1254 	    "Warning - non-volatile cache now volatile") },
1255 	/* DTLPWROMAEBKVF */
1256 	{ SST(0x0B, 0x07, SS_RDEF,	/* XXX TBD */
1257 	    "Warning - degraded power to non-volatile cache") },
1258 	/* DTLPWROMAEBKVF */
1259 	{ SST(0x0B, 0x08, SS_RDEF,	/* XXX TBD */
1260 	    "Warning - power loss expected") },
1261 	/* D              */
1262 	{ SST(0x0B, 0x09, SS_RDEF,	/* XXX TBD */
1263 	    "Warning - device statistics notification available") },
1264 	/* DTLPWROMAEBKVF */
1265 	{ SST(0x0B, 0x0A, SS_RDEF,	/* XXX TBD */
1266 	    "Warning - High critical temperature limit exceeded") },
1267 	/* DTLPWROMAEBKVF */
1268 	{ SST(0x0B, 0x0B, SS_RDEF,	/* XXX TBD */
1269 	    "Warning - Low critical temperature limit exceeded") },
1270 	/* DTLPWROMAEBKVF */
1271 	{ SST(0x0B, 0x0C, SS_RDEF,	/* XXX TBD */
1272 	    "Warning - High operating temperature limit exceeded") },
1273 	/* DTLPWROMAEBKVF */
1274 	{ SST(0x0B, 0x0D, SS_RDEF,	/* XXX TBD */
1275 	    "Warning - Low operating temperature limit exceeded") },
1276 	/* DTLPWROMAEBKVF */
1277 	{ SST(0x0B, 0x0E, SS_RDEF,	/* XXX TBD */
1278 	    "Warning - High citical humidity limit exceeded") },
1279 	/* DTLPWROMAEBKVF */
1280 	{ SST(0x0B, 0x0F, SS_RDEF,	/* XXX TBD */
1281 	    "Warning - Low citical humidity limit exceeded") },
1282 	/* DTLPWROMAEBKVF */
1283 	{ SST(0x0B, 0x10, SS_RDEF,	/* XXX TBD */
1284 	    "Warning - High operating humidity limit exceeded") },
1285 	/* DTLPWROMAEBKVF */
1286 	{ SST(0x0B, 0x11, SS_RDEF,	/* XXX TBD */
1287 	    "Warning - Low operating humidity limit exceeded") },
1288 	/*  T   R         */
1289 	{ SST(0x0C, 0x00, SS_RDEF,
1290 	    "Write error") },
1291 	/*            K   */
1292 	{ SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1293 	    "Write error - recovered with auto reallocation") },
1294 	/* D   W O   BK   */
1295 	{ SST(0x0C, 0x02, SS_RDEF,
1296 	    "Write error - auto reallocation failed") },
1297 	/* D   W O   BK   */
1298 	{ SST(0x0C, 0x03, SS_RDEF,
1299 	    "Write error - recommend reassignment") },
1300 	/* DT  W O   B    */
1301 	{ SST(0x0C, 0x04, SS_RDEF,
1302 	    "Compression check miscompare error") },
1303 	/* DT  W O   B    */
1304 	{ SST(0x0C, 0x05, SS_RDEF,
1305 	    "Data expansion occurred during compression") },
1306 	/* DT  W O   B    */
1307 	{ SST(0x0C, 0x06, SS_RDEF,
1308 	    "Block not compressible") },
1309 	/*      R         */
1310 	{ SST(0x0C, 0x07, SS_RDEF,
1311 	    "Write error - recovery needed") },
1312 	/*      R         */
1313 	{ SST(0x0C, 0x08, SS_RDEF,
1314 	    "Write error - recovery failed") },
1315 	/*      R         */
1316 	{ SST(0x0C, 0x09, SS_RDEF,
1317 	    "Write error - loss of streaming") },
1318 	/*      R         */
1319 	{ SST(0x0C, 0x0A, SS_RDEF,
1320 	    "Write error - padding blocks added") },
1321 	/* DT  WROM  B    */
1322 	{ SST(0x0C, 0x0B, SS_RDEF,	/* XXX TBD */
1323 	    "Auxiliary memory write error") },
1324 	/* DTLPWRO AEBKVF */
1325 	{ SST(0x0C, 0x0C, SS_RDEF,	/* XXX TBD */
1326 	    "Write error - unexpected unsolicited data") },
1327 	/* DTLPWRO AEBKVF */
1328 	{ SST(0x0C, 0x0D, SS_RDEF,	/* XXX TBD */
1329 	    "Write error - not enough unsolicited data") },
1330 	/* DT  W O   BK   */
1331 	{ SST(0x0C, 0x0E, SS_RDEF,	/* XXX TBD */
1332 	    "Multiple write errors") },
1333 	/*      R         */
1334 	{ SST(0x0C, 0x0F, SS_RDEF,	/* XXX TBD */
1335 	    "Defects in error window") },
1336 	/* D              */
1337 	{ SST(0x0C, 0x10, SS_RDEF,	/* XXX TBD */
1338 	    "Incomplete multiple atomic write operations") },
1339 	/* D              */
1340 	{ SST(0x0C, 0x11, SS_RDEF,	/* XXX TBD */
1341 	    "Write error - recovery scan needed") },
1342 	/* D              */
1343 	{ SST(0x0C, 0x12, SS_RDEF,	/* XXX TBD */
1344 	    "Write error - insufficient zone resources") },
1345 	/* DTLPWRO A  K   */
1346 	{ SST(0x0D, 0x00, SS_RDEF,	/* XXX TBD */
1347 	    "Error detected by third party temporary initiator") },
1348 	/* DTLPWRO A  K   */
1349 	{ SST(0x0D, 0x01, SS_RDEF,	/* XXX TBD */
1350 	    "Third party device failure") },
1351 	/* DTLPWRO A  K   */
1352 	{ SST(0x0D, 0x02, SS_RDEF,	/* XXX TBD */
1353 	    "Copy target device not reachable") },
1354 	/* DTLPWRO A  K   */
1355 	{ SST(0x0D, 0x03, SS_RDEF,	/* XXX TBD */
1356 	    "Incorrect copy target device type") },
1357 	/* DTLPWRO A  K   */
1358 	{ SST(0x0D, 0x04, SS_RDEF,	/* XXX TBD */
1359 	    "Copy target device data underrun") },
1360 	/* DTLPWRO A  K   */
1361 	{ SST(0x0D, 0x05, SS_RDEF,	/* XXX TBD */
1362 	    "Copy target device data overrun") },
1363 	/* DT PWROMAEBK F */
1364 	{ SST(0x0E, 0x00, SS_RDEF,	/* XXX TBD */
1365 	    "Invalid information unit") },
1366 	/* DT PWROMAEBK F */
1367 	{ SST(0x0E, 0x01, SS_RDEF,	/* XXX TBD */
1368 	    "Information unit too short") },
1369 	/* DT PWROMAEBK F */
1370 	{ SST(0x0E, 0x02, SS_RDEF,	/* XXX TBD */
1371 	    "Information unit too long") },
1372 	/* DT P R MAEBK F */
1373 	{ SST(0x0E, 0x03, SS_RDEF,	/* XXX TBD */
1374 	    "Invalid field in command information unit") },
1375 	/* D   W O   BK   */
1376 	{ SST(0x10, 0x00, SS_RDEF,
1377 	    "ID CRC or ECC error") },
1378 	/* DT  W O        */
1379 	{ SST(0x10, 0x01, SS_RDEF,	/* XXX TBD */
1380 	    "Logical block guard check failed") },
1381 	/* DT  W O        */
1382 	{ SST(0x10, 0x02, SS_RDEF,	/* XXX TBD */
1383 	    "Logical block application tag check failed") },
1384 	/* DT  W O        */
1385 	{ SST(0x10, 0x03, SS_RDEF,	/* XXX TBD */
1386 	    "Logical block reference tag check failed") },
1387 	/*  T             */
1388 	{ SST(0x10, 0x04, SS_RDEF,	/* XXX TBD */
1389 	    "Logical block protection error on recovered buffer data") },
1390 	/*  T             */
1391 	{ SST(0x10, 0x05, SS_RDEF,	/* XXX TBD */
1392 	    "Logical block protection method error") },
1393 	/* DT  WRO   BK   */
1394 	{ SST(0x11, 0x00, SS_FATAL|EIO,
1395 	    "Unrecovered read error") },
1396 	/* DT  WRO   BK   */
1397 	{ SST(0x11, 0x01, SS_FATAL|EIO,
1398 	    "Read retries exhausted") },
1399 	/* DT  WRO   BK   */
1400 	{ SST(0x11, 0x02, SS_FATAL|EIO,
1401 	    "Error too long to correct") },
1402 	/* DT  W O   BK   */
1403 	{ SST(0x11, 0x03, SS_FATAL|EIO,
1404 	    "Multiple read errors") },
1405 	/* D   W O   BK   */
1406 	{ SST(0x11, 0x04, SS_FATAL|EIO,
1407 	    "Unrecovered read error - auto reallocate failed") },
1408 	/*     WRO   B    */
1409 	{ SST(0x11, 0x05, SS_FATAL|EIO,
1410 	    "L-EC uncorrectable error") },
1411 	/*     WRO   B    */
1412 	{ SST(0x11, 0x06, SS_FATAL|EIO,
1413 	    "CIRC unrecovered error") },
1414 	/*     W O   B    */
1415 	{ SST(0x11, 0x07, SS_RDEF,
1416 	    "Data re-synchronization error") },
1417 	/*  T             */
1418 	{ SST(0x11, 0x08, SS_RDEF,
1419 	    "Incomplete block read") },
1420 	/*  T             */
1421 	{ SST(0x11, 0x09, SS_RDEF,
1422 	    "No gap found") },
1423 	/* DT    O   BK   */
1424 	{ SST(0x11, 0x0A, SS_RDEF,
1425 	    "Miscorrected error") },
1426 	/* D   W O   BK   */
1427 	{ SST(0x11, 0x0B, SS_FATAL|EIO,
1428 	    "Unrecovered read error - recommend reassignment") },
1429 	/* D   W O   BK   */
1430 	{ SST(0x11, 0x0C, SS_FATAL|EIO,
1431 	    "Unrecovered read error - recommend rewrite the data") },
1432 	/* DT  WRO   B    */
1433 	{ SST(0x11, 0x0D, SS_RDEF,
1434 	    "De-compression CRC error") },
1435 	/* DT  WRO   B    */
1436 	{ SST(0x11, 0x0E, SS_RDEF,
1437 	    "Cannot decompress using declared algorithm") },
1438 	/*      R         */
1439 	{ SST(0x11, 0x0F, SS_RDEF,
1440 	    "Error reading UPC/EAN number") },
1441 	/*      R         */
1442 	{ SST(0x11, 0x10, SS_RDEF,
1443 	    "Error reading ISRC number") },
1444 	/*      R         */
1445 	{ SST(0x11, 0x11, SS_RDEF,
1446 	    "Read error - loss of streaming") },
1447 	/* DT  WROM  B    */
1448 	{ SST(0x11, 0x12, SS_RDEF,	/* XXX TBD */
1449 	    "Auxiliary memory read error") },
1450 	/* DTLPWRO AEBKVF */
1451 	{ SST(0x11, 0x13, SS_RDEF,	/* XXX TBD */
1452 	    "Read error - failed retransmission request") },
1453 	/* D              */
1454 	{ SST(0x11, 0x14, SS_RDEF,	/* XXX TBD */
1455 	    "Read error - LBA marked bad by application client") },
1456 	/* D              */
1457 	{ SST(0x11, 0x15, SS_RDEF,	/* XXX TBD */
1458 	    "Write after sanitize required") },
1459 	/* D   W O   BK   */
1460 	{ SST(0x12, 0x00, SS_RDEF,
1461 	    "Address mark not found for ID field") },
1462 	/* D   W O   BK   */
1463 	{ SST(0x13, 0x00, SS_RDEF,
1464 	    "Address mark not found for data field") },
1465 	/* DTL WRO   BK   */
1466 	{ SST(0x14, 0x00, SS_RDEF,
1467 	    "Recorded entity not found") },
1468 	/* DT  WRO   BK   */
1469 	{ SST(0x14, 0x01, SS_RDEF,
1470 	    "Record not found") },
1471 	/*  T             */
1472 	{ SST(0x14, 0x02, SS_RDEF,
1473 	    "Filemark or setmark not found") },
1474 	/*  T             */
1475 	{ SST(0x14, 0x03, SS_RDEF,
1476 	    "End-of-data not found") },
1477 	/*  T             */
1478 	{ SST(0x14, 0x04, SS_RDEF,
1479 	    "Block sequence error") },
1480 	/* DT  W O   BK   */
1481 	{ SST(0x14, 0x05, SS_RDEF,
1482 	    "Record not found - recommend reassignment") },
1483 	/* DT  W O   BK   */
1484 	{ SST(0x14, 0x06, SS_RDEF,
1485 	    "Record not found - data auto-reallocated") },
1486 	/*  T             */
1487 	{ SST(0x14, 0x07, SS_RDEF,	/* XXX TBD */
1488 	    "Locate operation failure") },
1489 	/* DTL WROM  BK   */
1490 	{ SST(0x15, 0x00, SS_RDEF,
1491 	    "Random positioning error") },
1492 	/* DTL WROM  BK   */
1493 	{ SST(0x15, 0x01, SS_RDEF,
1494 	    "Mechanical positioning error") },
1495 	/* DT  WRO   BK   */
1496 	{ SST(0x15, 0x02, SS_RDEF,
1497 	    "Positioning error detected by read of medium") },
1498 	/* D   W O   BK   */
1499 	{ SST(0x16, 0x00, SS_RDEF,
1500 	    "Data synchronization mark error") },
1501 	/* D   W O   BK   */
1502 	{ SST(0x16, 0x01, SS_RDEF,
1503 	    "Data sync error - data rewritten") },
1504 	/* D   W O   BK   */
1505 	{ SST(0x16, 0x02, SS_RDEF,
1506 	    "Data sync error - recommend rewrite") },
1507 	/* D   W O   BK   */
1508 	{ SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1509 	    "Data sync error - data auto-reallocated") },
1510 	/* D   W O   BK   */
1511 	{ SST(0x16, 0x04, SS_RDEF,
1512 	    "Data sync error - recommend reassignment") },
1513 	/* DT  WRO   BK   */
1514 	{ SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1515 	    "Recovered data with no error correction applied") },
1516 	/* DT  WRO   BK   */
1517 	{ SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1518 	    "Recovered data with retries") },
1519 	/* DT  WRO   BK   */
1520 	{ SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1521 	    "Recovered data with positive head offset") },
1522 	/* DT  WRO   BK   */
1523 	{ SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1524 	    "Recovered data with negative head offset") },
1525 	/*     WRO   B    */
1526 	{ SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1527 	    "Recovered data with retries and/or CIRC applied") },
1528 	/* D   WRO   BK   */
1529 	{ SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1530 	    "Recovered data using previous sector ID") },
1531 	/* D   W O   BK   */
1532 	{ SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1533 	    "Recovered data without ECC - data auto-reallocated") },
1534 	/* D   WRO   BK   */
1535 	{ SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1536 	    "Recovered data without ECC - recommend reassignment") },
1537 	/* D   WRO   BK   */
1538 	{ SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1539 	    "Recovered data without ECC - recommend rewrite") },
1540 	/* D   WRO   BK   */
1541 	{ SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1542 	    "Recovered data without ECC - data rewritten") },
1543 	/* DT  WRO   BK   */
1544 	{ SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1545 	    "Recovered data with error correction applied") },
1546 	/* D   WRO   BK   */
1547 	{ SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1548 	    "Recovered data with error corr. & retries applied") },
1549 	/* D   WRO   BK   */
1550 	{ SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1551 	    "Recovered data - data auto-reallocated") },
1552 	/*      R         */
1553 	{ SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1554 	    "Recovered data with CIRC") },
1555 	/*      R         */
1556 	{ SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1557 	    "Recovered data with L-EC") },
1558 	/* D   WRO   BK   */
1559 	{ SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1560 	    "Recovered data - recommend reassignment") },
1561 	/* D   WRO   BK   */
1562 	{ SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1563 	    "Recovered data - recommend rewrite") },
1564 	/* D   W O   BK   */
1565 	{ SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1566 	    "Recovered data with ECC - data rewritten") },
1567 	/*      R         */
1568 	{ SST(0x18, 0x08, SS_RDEF,	/* XXX TBD */
1569 	    "Recovered data with linking") },
1570 	/* D     O    K   */
1571 	{ SST(0x19, 0x00, SS_RDEF,
1572 	    "Defect list error") },
1573 	/* D     O    K   */
1574 	{ SST(0x19, 0x01, SS_RDEF,
1575 	    "Defect list not available") },
1576 	/* D     O    K   */
1577 	{ SST(0x19, 0x02, SS_RDEF,
1578 	    "Defect list error in primary list") },
1579 	/* D     O    K   */
1580 	{ SST(0x19, 0x03, SS_RDEF,
1581 	    "Defect list error in grown list") },
1582 	/* DTLPWROMAEBKVF */
1583 	{ SST(0x1A, 0x00, SS_RDEF,
1584 	    "Parameter list length error") },
1585 	/* DTLPWROMAEBKVF */
1586 	{ SST(0x1B, 0x00, SS_RDEF,
1587 	    "Synchronous data transfer error") },
1588 	/* D     O   BK   */
1589 	{ SST(0x1C, 0x00, SS_RDEF,
1590 	    "Defect list not found") },
1591 	/* D     O   BK   */
1592 	{ SST(0x1C, 0x01, SS_RDEF,
1593 	    "Primary defect list not found") },
1594 	/* D     O   BK   */
1595 	{ SST(0x1C, 0x02, SS_RDEF,
1596 	    "Grown defect list not found") },
1597 	/* DT  WRO   BK   */
1598 	{ SST(0x1D, 0x00, SS_FATAL,
1599 	    "Miscompare during verify operation") },
1600 	/* D         B    */
1601 	{ SST(0x1D, 0x01, SS_RDEF,	/* XXX TBD */
1602 	    "Miscomparable verify of unmapped LBA") },
1603 	/* D   W O   BK   */
1604 	{ SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1605 	    "Recovered ID with ECC correction") },
1606 	/* D     O    K   */
1607 	{ SST(0x1F, 0x00, SS_RDEF,
1608 	    "Partial defect list transfer") },
1609 	/* DTLPWROMAEBKVF */
1610 	{ SST(0x20, 0x00, SS_FATAL | EINVAL,
1611 	    "Invalid command operation code") },
1612 	/* DT PWROMAEBK   */
1613 	{ SST(0x20, 0x01, SS_RDEF,	/* XXX TBD */
1614 	    "Access denied - initiator pending-enrolled") },
1615 	/* DT PWROMAEBK   */
1616 	{ SST(0x20, 0x02, SS_RDEF,	/* XXX TBD */
1617 	    "Access denied - no access rights") },
1618 	/* DT PWROMAEBK   */
1619 	{ SST(0x20, 0x03, SS_RDEF,	/* XXX TBD */
1620 	    "Access denied - invalid mgmt ID key") },
1621 	/*  T             */
1622 	{ SST(0x20, 0x04, SS_RDEF,	/* XXX TBD */
1623 	    "Illegal command while in write capable state") },
1624 	/*  T             */
1625 	{ SST(0x20, 0x05, SS_RDEF,	/* XXX TBD */
1626 	    "Obsolete") },
1627 	/*  T             */
1628 	{ SST(0x20, 0x06, SS_RDEF,	/* XXX TBD */
1629 	    "Illegal command while in explicit address mode") },
1630 	/*  T             */
1631 	{ SST(0x20, 0x07, SS_RDEF,	/* XXX TBD */
1632 	    "Illegal command while in implicit address mode") },
1633 	/* DT PWROMAEBK   */
1634 	{ SST(0x20, 0x08, SS_RDEF,	/* XXX TBD */
1635 	    "Access denied - enrollment conflict") },
1636 	/* DT PWROMAEBK   */
1637 	{ SST(0x20, 0x09, SS_RDEF,	/* XXX TBD */
1638 	    "Access denied - invalid LU identifier") },
1639 	/* DT PWROMAEBK   */
1640 	{ SST(0x20, 0x0A, SS_RDEF,	/* XXX TBD */
1641 	    "Access denied - invalid proxy token") },
1642 	/* DT PWROMAEBK   */
1643 	{ SST(0x20, 0x0B, SS_RDEF,	/* XXX TBD */
1644 	    "Access denied - ACL LUN conflict") },
1645 	/*  T             */
1646 	{ SST(0x20, 0x0C, SS_FATAL | EINVAL,
1647 	    "Illegal command when not in append-only mode") },
1648 	/* DT  WRO   BK   */
1649 	{ SST(0x21, 0x00, SS_FATAL | EINVAL,
1650 	    "Logical block address out of range") },
1651 	/* DT  WROM  BK   */
1652 	{ SST(0x21, 0x01, SS_FATAL | EINVAL,
1653 	    "Invalid element address") },
1654 	/*      R         */
1655 	{ SST(0x21, 0x02, SS_RDEF,	/* XXX TBD */
1656 	    "Invalid address for write") },
1657 	/*      R         */
1658 	{ SST(0x21, 0x03, SS_RDEF,	/* XXX TBD */
1659 	    "Invalid write crossing layer jump") },
1660 	/* D              */
1661 	{ SST(0x21, 0x04, SS_RDEF,	/* XXX TBD */
1662 	    "Unaligned write command") },
1663 	/* D              */
1664 	{ SST(0x21, 0x05, SS_RDEF,	/* XXX TBD */
1665 	    "Write boundary violation") },
1666 	/* D              */
1667 	{ SST(0x21, 0x06, SS_RDEF,	/* XXX TBD */
1668 	    "Attempt to read invalid data") },
1669 	/* D              */
1670 	{ SST(0x21, 0x07, SS_RDEF,	/* XXX TBD */
1671 	    "Read boundary violation") },
1672 	/* D              */
1673 	{ SST(0x22, 0x00, SS_FATAL | EINVAL,
1674 	    "Illegal function (use 20 00, 24 00, or 26 00)") },
1675 	/* DT P      B    */
1676 	{ SST(0x23, 0x00, SS_FATAL | EINVAL,
1677 	    "Invalid token operation, cause not reportable") },
1678 	/* DT P      B    */
1679 	{ SST(0x23, 0x01, SS_FATAL | EINVAL,
1680 	    "Invalid token operation, unsupported token type") },
1681 	/* DT P      B    */
1682 	{ SST(0x23, 0x02, SS_FATAL | EINVAL,
1683 	    "Invalid token operation, remote token usage not supported") },
1684 	/* DT P      B    */
1685 	{ SST(0x23, 0x03, SS_FATAL | EINVAL,
1686 	    "Invalid token operation, remote ROD token creation not supported") },
1687 	/* DT P      B    */
1688 	{ SST(0x23, 0x04, SS_FATAL | EINVAL,
1689 	    "Invalid token operation, token unknown") },
1690 	/* DT P      B    */
1691 	{ SST(0x23, 0x05, SS_FATAL | EINVAL,
1692 	    "Invalid token operation, token corrupt") },
1693 	/* DT P      B    */
1694 	{ SST(0x23, 0x06, SS_FATAL | EINVAL,
1695 	    "Invalid token operation, token revoked") },
1696 	/* DT P      B    */
1697 	{ SST(0x23, 0x07, SS_FATAL | EINVAL,
1698 	    "Invalid token operation, token expired") },
1699 	/* DT P      B    */
1700 	{ SST(0x23, 0x08, SS_FATAL | EINVAL,
1701 	    "Invalid token operation, token cancelled") },
1702 	/* DT P      B    */
1703 	{ SST(0x23, 0x09, SS_FATAL | EINVAL,
1704 	    "Invalid token operation, token deleted") },
1705 	/* DT P      B    */
1706 	{ SST(0x23, 0x0A, SS_FATAL | EINVAL,
1707 	    "Invalid token operation, invalid token length") },
1708 	/* DTLPWROMAEBKVF */
1709 	{ SST(0x24, 0x00, SS_FATAL | EINVAL,
1710 	    "Invalid field in CDB") },
1711 	/* DTLPWRO AEBKVF */
1712 	{ SST(0x24, 0x01, SS_RDEF,	/* XXX TBD */
1713 	    "CDB decryption error") },
1714 	/*  T             */
1715 	{ SST(0x24, 0x02, SS_RDEF,	/* XXX TBD */
1716 	    "Obsolete") },
1717 	/*  T             */
1718 	{ SST(0x24, 0x03, SS_RDEF,	/* XXX TBD */
1719 	    "Obsolete") },
1720 	/*              F */
1721 	{ SST(0x24, 0x04, SS_RDEF,	/* XXX TBD */
1722 	    "Security audit value frozen") },
1723 	/*              F */
1724 	{ SST(0x24, 0x05, SS_RDEF,	/* XXX TBD */
1725 	    "Security working key frozen") },
1726 	/*              F */
1727 	{ SST(0x24, 0x06, SS_RDEF,	/* XXX TBD */
1728 	    "NONCE not unique") },
1729 	/*              F */
1730 	{ SST(0x24, 0x07, SS_RDEF,	/* XXX TBD */
1731 	    "NONCE timestamp out of range") },
1732 	/* DT   R MAEBKV  */
1733 	{ SST(0x24, 0x08, SS_RDEF,	/* XXX TBD */
1734 	    "Invalid XCDB") },
1735 	/* DTLPWROMAEBKVF */
1736 	{ SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST,
1737 	    "Logical unit not supported") },
1738 	/* DTLPWROMAEBKVF */
1739 	{ SST(0x26, 0x00, SS_FATAL | EINVAL,
1740 	    "Invalid field in parameter list") },
1741 	/* DTLPWROMAEBKVF */
1742 	{ SST(0x26, 0x01, SS_FATAL | EINVAL,
1743 	    "Parameter not supported") },
1744 	/* DTLPWROMAEBKVF */
1745 	{ SST(0x26, 0x02, SS_FATAL | EINVAL,
1746 	    "Parameter value invalid") },
1747 	/* DTLPWROMAE K   */
1748 	{ SST(0x26, 0x03, SS_FATAL | EINVAL,
1749 	    "Threshold parameters not supported") },
1750 	/* DTLPWROMAEBKVF */
1751 	{ SST(0x26, 0x04, SS_FATAL | EINVAL,
1752 	    "Invalid release of persistent reservation") },
1753 	/* DTLPWRO A BK   */
1754 	{ SST(0x26, 0x05, SS_RDEF,	/* XXX TBD */
1755 	    "Data decryption error") },
1756 	/* DTLPWRO    K   */
1757 	{ SST(0x26, 0x06, SS_FATAL | EINVAL,
1758 	    "Too many target descriptors") },
1759 	/* DTLPWRO    K   */
1760 	{ SST(0x26, 0x07, SS_FATAL | EINVAL,
1761 	    "Unsupported target descriptor type code") },
1762 	/* DTLPWRO    K   */
1763 	{ SST(0x26, 0x08, SS_FATAL | EINVAL,
1764 	    "Too many segment descriptors") },
1765 	/* DTLPWRO    K   */
1766 	{ SST(0x26, 0x09, SS_FATAL | EINVAL,
1767 	    "Unsupported segment descriptor type code") },
1768 	/* DTLPWRO    K   */
1769 	{ SST(0x26, 0x0A, SS_FATAL | EINVAL,
1770 	    "Unexpected inexact segment") },
1771 	/* DTLPWRO    K   */
1772 	{ SST(0x26, 0x0B, SS_FATAL | EINVAL,
1773 	    "Inline data length exceeded") },
1774 	/* DTLPWRO    K   */
1775 	{ SST(0x26, 0x0C, SS_FATAL | EINVAL,
1776 	    "Invalid operation for copy source or destination") },
1777 	/* DTLPWRO    K   */
1778 	{ SST(0x26, 0x0D, SS_FATAL | EINVAL,
1779 	    "Copy segment granularity violation") },
1780 	/* DT PWROMAEBK   */
1781 	{ SST(0x26, 0x0E, SS_RDEF,	/* XXX TBD */
1782 	    "Invalid parameter while port is enabled") },
1783 	/*              F */
1784 	{ SST(0x26, 0x0F, SS_RDEF,	/* XXX TBD */
1785 	    "Invalid data-out buffer integrity check value") },
1786 	/*  T             */
1787 	{ SST(0x26, 0x10, SS_RDEF,	/* XXX TBD */
1788 	    "Data decryption key fail limit reached") },
1789 	/*  T             */
1790 	{ SST(0x26, 0x11, SS_RDEF,	/* XXX TBD */
1791 	    "Incomplete key-associated data set") },
1792 	/*  T             */
1793 	{ SST(0x26, 0x12, SS_RDEF,	/* XXX TBD */
1794 	    "Vendor specific key reference not found") },
1795 	/* D              */
1796 	{ SST(0x26, 0x13, SS_RDEF,	/* XXX TBD */
1797 	    "Application tag mode page is invalid") },
1798 	/* DT  WRO   BK   */
1799 	{ SST(0x27, 0x00, SS_FATAL | EACCES,
1800 	    "Write protected") },
1801 	/* DT  WRO   BK   */
1802 	{ SST(0x27, 0x01, SS_FATAL | EACCES,
1803 	    "Hardware write protected") },
1804 	/* DT  WRO   BK   */
1805 	{ SST(0x27, 0x02, SS_FATAL | EACCES,
1806 	    "Logical unit software write protected") },
1807 	/*  T   R         */
1808 	{ SST(0x27, 0x03, SS_FATAL | EACCES,
1809 	    "Associated write protect") },
1810 	/*  T   R         */
1811 	{ SST(0x27, 0x04, SS_FATAL | EACCES,
1812 	    "Persistent write protect") },
1813 	/*  T   R         */
1814 	{ SST(0x27, 0x05, SS_FATAL | EACCES,
1815 	    "Permanent write protect") },
1816 	/*      R       F */
1817 	{ SST(0x27, 0x06, SS_RDEF,	/* XXX TBD */
1818 	    "Conditional write protect") },
1819 	/* D         B    */
1820 	{ SST(0x27, 0x07, SS_FATAL | ENOSPC,
1821 	    "Space allocation failed write protect") },
1822 	/* D              */
1823 	{ SST(0x27, 0x08, SS_FATAL | EACCES,
1824 	    "Zone is read only") },
1825 	/* DTLPWROMAEBKVF */
1826 	{ SST(0x28, 0x00, SS_FATAL | ENXIO,
1827 	    "Not ready to ready change, medium may have changed") },
1828 	/* DT  WROM  B    */
1829 	{ SST(0x28, 0x01, SS_FATAL | ENXIO,
1830 	    "Import or export element accessed") },
1831 	/*      R         */
1832 	{ SST(0x28, 0x02, SS_RDEF,	/* XXX TBD */
1833 	    "Format-layer may have changed") },
1834 	/*        M       */
1835 	{ SST(0x28, 0x03, SS_RDEF,	/* XXX TBD */
1836 	    "Import/export element accessed, medium changed") },
1837 	/*
1838 	 * XXX JGibbs - All of these should use the same errno, but I don't
1839 	 * think ENXIO is the correct choice.  Should we borrow from
1840 	 * the networking errnos?  ECONNRESET anyone?
1841 	 */
1842 	/* DTLPWROMAEBKVF */
1843 	{ SST(0x29, 0x00, SS_FATAL | ENXIO,
1844 	    "Power on, reset, or bus device reset occurred") },
1845 	/* DTLPWROMAEBKVF */
1846 	{ SST(0x29, 0x01, SS_RDEF,
1847 	    "Power on occurred") },
1848 	/* DTLPWROMAEBKVF */
1849 	{ SST(0x29, 0x02, SS_RDEF,
1850 	    "SCSI bus reset occurred") },
1851 	/* DTLPWROMAEBKVF */
1852 	{ SST(0x29, 0x03, SS_RDEF,
1853 	    "Bus device reset function occurred") },
1854 	/* DTLPWROMAEBKVF */
1855 	{ SST(0x29, 0x04, SS_RDEF,
1856 	    "Device internal reset") },
1857 	/* DTLPWROMAEBKVF */
1858 	{ SST(0x29, 0x05, SS_RDEF,
1859 	    "Transceiver mode changed to single-ended") },
1860 	/* DTLPWROMAEBKVF */
1861 	{ SST(0x29, 0x06, SS_RDEF,
1862 	    "Transceiver mode changed to LVD") },
1863 	/* DTLPWROMAEBKVF */
1864 	{ SST(0x29, 0x07, SS_RDEF,	/* XXX TBD */
1865 	    "I_T nexus loss occurred") },
1866 	/* DTL WROMAEBKVF */
1867 	{ SST(0x2A, 0x00, SS_RDEF,
1868 	    "Parameters changed") },
1869 	/* DTL WROMAEBKVF */
1870 	{ SST(0x2A, 0x01, SS_RDEF,
1871 	    "Mode parameters changed") },
1872 	/* DTL WROMAE K   */
1873 	{ SST(0x2A, 0x02, SS_RDEF,
1874 	    "Log parameters changed") },
1875 	/* DTLPWROMAE K   */
1876 	{ SST(0x2A, 0x03, SS_RDEF,
1877 	    "Reservations preempted") },
1878 	/* DTLPWROMAE     */
1879 	{ SST(0x2A, 0x04, SS_RDEF,	/* XXX TBD */
1880 	    "Reservations released") },
1881 	/* DTLPWROMAE     */
1882 	{ SST(0x2A, 0x05, SS_RDEF,	/* XXX TBD */
1883 	    "Registrations preempted") },
1884 	/* DTLPWROMAEBKVF */
1885 	{ SST(0x2A, 0x06, SS_RDEF,	/* XXX TBD */
1886 	    "Asymmetric access state changed") },
1887 	/* DTLPWROMAEBKVF */
1888 	{ SST(0x2A, 0x07, SS_RDEF,	/* XXX TBD */
1889 	    "Implicit asymmetric access state transition failed") },
1890 	/* DT  WROMAEBKVF */
1891 	{ SST(0x2A, 0x08, SS_RDEF,	/* XXX TBD */
1892 	    "Priority changed") },
1893 	/* D              */
1894 	{ SST(0x2A, 0x09, SS_RDEF,	/* XXX TBD */
1895 	    "Capacity data has changed") },
1896 	/* DT             */
1897 	{ SST(0x2A, 0x0A, SS_RDEF,	/* XXX TBD */
1898 	    "Error history I_T nexus cleared") },
1899 	/* DT             */
1900 	{ SST(0x2A, 0x0B, SS_RDEF,	/* XXX TBD */
1901 	    "Error history snapshot released") },
1902 	/*              F */
1903 	{ SST(0x2A, 0x0C, SS_RDEF,	/* XXX TBD */
1904 	    "Error recovery attributes have changed") },
1905 	/*  T             */
1906 	{ SST(0x2A, 0x0D, SS_RDEF,	/* XXX TBD */
1907 	    "Data encryption capabilities changed") },
1908 	/* DT     M E  V  */
1909 	{ SST(0x2A, 0x10, SS_RDEF,	/* XXX TBD */
1910 	    "Timestamp changed") },
1911 	/*  T             */
1912 	{ SST(0x2A, 0x11, SS_RDEF,	/* XXX TBD */
1913 	    "Data encryption parameters changed by another I_T nexus") },
1914 	/*  T             */
1915 	{ SST(0x2A, 0x12, SS_RDEF,	/* XXX TBD */
1916 	    "Data encryption parameters changed by vendor specific event") },
1917 	/*  T             */
1918 	{ SST(0x2A, 0x13, SS_RDEF,	/* XXX TBD */
1919 	    "Data encryption key instance counter has changed") },
1920 	/* DT   R MAEBKV  */
1921 	{ SST(0x2A, 0x14, SS_RDEF,	/* XXX TBD */
1922 	    "SA creation capabilities data has changed") },
1923 	/*  T     M    V  */
1924 	{ SST(0x2A, 0x15, SS_RDEF,	/* XXX TBD */
1925 	    "Medium removal prevention preempted") },
1926 	/* DTLPWRO    K   */
1927 	{ SST(0x2B, 0x00, SS_RDEF,
1928 	    "Copy cannot execute since host cannot disconnect") },
1929 	/* DTLPWROMAEBKVF */
1930 	{ SST(0x2C, 0x00, SS_RDEF,
1931 	    "Command sequence error") },
1932 	/*                */
1933 	{ SST(0x2C, 0x01, SS_RDEF,
1934 	    "Too many windows specified") },
1935 	/*                */
1936 	{ SST(0x2C, 0x02, SS_RDEF,
1937 	    "Invalid combination of windows specified") },
1938 	/*      R         */
1939 	{ SST(0x2C, 0x03, SS_RDEF,
1940 	    "Current program area is not empty") },
1941 	/*      R         */
1942 	{ SST(0x2C, 0x04, SS_RDEF,
1943 	    "Current program area is empty") },
1944 	/*           B    */
1945 	{ SST(0x2C, 0x05, SS_RDEF,	/* XXX TBD */
1946 	    "Illegal power condition request") },
1947 	/*      R         */
1948 	{ SST(0x2C, 0x06, SS_RDEF,	/* XXX TBD */
1949 	    "Persistent prevent conflict") },
1950 	/* DTLPWROMAEBKVF */
1951 	{ SST(0x2C, 0x07, SS_RDEF,	/* XXX TBD */
1952 	    "Previous busy status") },
1953 	/* DTLPWROMAEBKVF */
1954 	{ SST(0x2C, 0x08, SS_RDEF,	/* XXX TBD */
1955 	    "Previous task set full status") },
1956 	/* DTLPWROM EBKVF */
1957 	{ SST(0x2C, 0x09, SS_RDEF,	/* XXX TBD */
1958 	    "Previous reservation conflict status") },
1959 	/*              F */
1960 	{ SST(0x2C, 0x0A, SS_RDEF,	/* XXX TBD */
1961 	    "Partition or collection contains user objects") },
1962 	/*  T             */
1963 	{ SST(0x2C, 0x0B, SS_RDEF,	/* XXX TBD */
1964 	    "Not reserved") },
1965 	/* D              */
1966 	{ SST(0x2C, 0x0C, SS_RDEF,	/* XXX TBD */
1967 	    "ORWRITE generation does not match") },
1968 	/* D              */
1969 	{ SST(0x2C, 0x0D, SS_RDEF,	/* XXX TBD */
1970 	    "Reset write pointer not allowed") },
1971 	/* D              */
1972 	{ SST(0x2C, 0x0E, SS_RDEF,	/* XXX TBD */
1973 	    "Zone is offline") },
1974 	/* D              */
1975 	{ SST(0x2C, 0x0F, SS_RDEF,	/* XXX TBD */
1976 	    "Stream not open") },
1977 	/* D              */
1978 	{ SST(0x2C, 0x10, SS_RDEF,	/* XXX TBD */
1979 	    "Unwritten data in zone") },
1980 	/*  T             */
1981 	{ SST(0x2D, 0x00, SS_RDEF,
1982 	    "Overwrite error on update in place") },
1983 	/*      R         */
1984 	{ SST(0x2E, 0x00, SS_RDEF,	/* XXX TBD */
1985 	    "Insufficient time for operation") },
1986 	/* D              */
1987 	{ SST(0x2E, 0x01, SS_RDEF,	/* XXX TBD */
1988 	    "Command timeout before processing") },
1989 	/* D              */
1990 	{ SST(0x2E, 0x02, SS_RDEF,	/* XXX TBD */
1991 	    "Command timeout during processing") },
1992 	/* D              */
1993 	{ SST(0x2E, 0x03, SS_RDEF,	/* XXX TBD */
1994 	    "Command timeout during processing due to error recovery") },
1995 	/* DTLPWROMAEBKVF */
1996 	{ SST(0x2F, 0x00, SS_RDEF,
1997 	    "Commands cleared by another initiator") },
1998 	/* D              */
1999 	{ SST(0x2F, 0x01, SS_RDEF,	/* XXX TBD */
2000 	    "Commands cleared by power loss notification") },
2001 	/* DTLPWROMAEBKVF */
2002 	{ SST(0x2F, 0x02, SS_RDEF,	/* XXX TBD */
2003 	    "Commands cleared by device server") },
2004 	/* DTLPWROMAEBKVF */
2005 	{ SST(0x2F, 0x03, SS_RDEF,	/* XXX TBD */
2006 	    "Some commands cleared by queuing layer event") },
2007 	/* DT  WROM  BK   */
2008 	{ SST(0x30, 0x00, SS_RDEF,
2009 	    "Incompatible medium installed") },
2010 	/* DT  WRO   BK   */
2011 	{ SST(0x30, 0x01, SS_RDEF,
2012 	    "Cannot read medium - unknown format") },
2013 	/* DT  WRO   BK   */
2014 	{ SST(0x30, 0x02, SS_RDEF,
2015 	    "Cannot read medium - incompatible format") },
2016 	/* DT   R     K   */
2017 	{ SST(0x30, 0x03, SS_RDEF,
2018 	    "Cleaning cartridge installed") },
2019 	/* DT  WRO   BK   */
2020 	{ SST(0x30, 0x04, SS_RDEF,
2021 	    "Cannot write medium - unknown format") },
2022 	/* DT  WRO   BK   */
2023 	{ SST(0x30, 0x05, SS_RDEF,
2024 	    "Cannot write medium - incompatible format") },
2025 	/* DT  WRO   B    */
2026 	{ SST(0x30, 0x06, SS_RDEF,
2027 	    "Cannot format medium - incompatible medium") },
2028 	/* DTL WROMAEBKVF */
2029 	{ SST(0x30, 0x07, SS_RDEF,
2030 	    "Cleaning failure") },
2031 	/*      R         */
2032 	{ SST(0x30, 0x08, SS_RDEF,
2033 	    "Cannot write - application code mismatch") },
2034 	/*      R         */
2035 	{ SST(0x30, 0x09, SS_RDEF,
2036 	    "Current session not fixated for append") },
2037 	/* DT  WRO AEBK   */
2038 	{ SST(0x30, 0x0A, SS_RDEF,	/* XXX TBD */
2039 	    "Cleaning request rejected") },
2040 	/*  T             */
2041 	{ SST(0x30, 0x0C, SS_RDEF,	/* XXX TBD */
2042 	    "WORM medium - overwrite attempted") },
2043 	/*  T             */
2044 	{ SST(0x30, 0x0D, SS_RDEF,	/* XXX TBD */
2045 	    "WORM medium - integrity check") },
2046 	/*      R         */
2047 	{ SST(0x30, 0x10, SS_RDEF,	/* XXX TBD */
2048 	    "Medium not formatted") },
2049 	/*        M       */
2050 	{ SST(0x30, 0x11, SS_RDEF,	/* XXX TBD */
2051 	    "Incompatible volume type") },
2052 	/*        M       */
2053 	{ SST(0x30, 0x12, SS_RDEF,	/* XXX TBD */
2054 	    "Incompatible volume qualifier") },
2055 	/*        M       */
2056 	{ SST(0x30, 0x13, SS_RDEF,	/* XXX TBD */
2057 	    "Cleaning volume expired") },
2058 	/* DT  WRO   BK   */
2059 	{ SST(0x31, 0x00, SS_RDEF,
2060 	    "Medium format corrupted") },
2061 	/* D L  RO   B    */
2062 	{ SST(0x31, 0x01, SS_RDEF,
2063 	    "Format command failed") },
2064 	/*      R         */
2065 	{ SST(0x31, 0x02, SS_RDEF,	/* XXX TBD */
2066 	    "Zoned formatting failed due to spare linking") },
2067 	/* D         B    */
2068 	{ SST(0x31, 0x03, SS_RDEF,	/* XXX TBD */
2069 	    "SANITIZE command failed") },
2070 	/* D   W O   BK   */
2071 	{ SST(0x32, 0x00, SS_RDEF,
2072 	    "No defect spare location available") },
2073 	/* D   W O   BK   */
2074 	{ SST(0x32, 0x01, SS_RDEF,
2075 	    "Defect list update failure") },
2076 	/*  T             */
2077 	{ SST(0x33, 0x00, SS_RDEF,
2078 	    "Tape length error") },
2079 	/* DTLPWROMAEBKVF */
2080 	{ SST(0x34, 0x00, SS_RDEF,
2081 	    "Enclosure failure") },
2082 	/* DTLPWROMAEBKVF */
2083 	{ SST(0x35, 0x00, SS_RDEF,
2084 	    "Enclosure services failure") },
2085 	/* DTLPWROMAEBKVF */
2086 	{ SST(0x35, 0x01, SS_RDEF,
2087 	    "Unsupported enclosure function") },
2088 	/* DTLPWROMAEBKVF */
2089 	{ SST(0x35, 0x02, SS_RDEF,
2090 	    "Enclosure services unavailable") },
2091 	/* DTLPWROMAEBKVF */
2092 	{ SST(0x35, 0x03, SS_RDEF,
2093 	    "Enclosure services transfer failure") },
2094 	/* DTLPWROMAEBKVF */
2095 	{ SST(0x35, 0x04, SS_RDEF,
2096 	    "Enclosure services transfer refused") },
2097 	/* DTL WROMAEBKVF */
2098 	{ SST(0x35, 0x05, SS_RDEF,	/* XXX TBD */
2099 	    "Enclosure services checksum error") },
2100 	/*   L            */
2101 	{ SST(0x36, 0x00, SS_RDEF,
2102 	    "Ribbon, ink, or toner failure") },
2103 	/* DTL WROMAEBKVF */
2104 	{ SST(0x37, 0x00, SS_RDEF,
2105 	    "Rounded parameter") },
2106 	/*           B    */
2107 	{ SST(0x38, 0x00, SS_RDEF,	/* XXX TBD */
2108 	    "Event status notification") },
2109 	/*           B    */
2110 	{ SST(0x38, 0x02, SS_RDEF,	/* XXX TBD */
2111 	    "ESN - power management class event") },
2112 	/*           B    */
2113 	{ SST(0x38, 0x04, SS_RDEF,	/* XXX TBD */
2114 	    "ESN - media class event") },
2115 	/*           B    */
2116 	{ SST(0x38, 0x06, SS_RDEF,	/* XXX TBD */
2117 	    "ESN - device busy class event") },
2118 	/* D              */
2119 	{ SST(0x38, 0x07, SS_RDEF,	/* XXX TBD */
2120 	    "Thin provisioning soft threshold reached") },
2121 	/* DTL WROMAE K   */
2122 	{ SST(0x39, 0x00, SS_RDEF,
2123 	    "Saving parameters not supported") },
2124 	/* DTL WROM  BK   */
2125 	{ SST(0x3A, 0x00, SS_FATAL | ENXIO,
2126 	    "Medium not present") },
2127 	/* DT  WROM  BK   */
2128 	{ SST(0x3A, 0x01, SS_FATAL | ENXIO,
2129 	    "Medium not present - tray closed") },
2130 	/* DT  WROM  BK   */
2131 	{ SST(0x3A, 0x02, SS_FATAL | ENXIO,
2132 	    "Medium not present - tray open") },
2133 	/* DT  WROM  B    */
2134 	{ SST(0x3A, 0x03, SS_RDEF,	/* XXX TBD */
2135 	    "Medium not present - loadable") },
2136 	/* DT  WRO   B    */
2137 	{ SST(0x3A, 0x04, SS_RDEF,	/* XXX TBD */
2138 	    "Medium not present - medium auxiliary memory accessible") },
2139 	/*  TL            */
2140 	{ SST(0x3B, 0x00, SS_RDEF,
2141 	    "Sequential positioning error") },
2142 	/*  T             */
2143 	{ SST(0x3B, 0x01, SS_RDEF,
2144 	    "Tape position error at beginning-of-medium") },
2145 	/*  T             */
2146 	{ SST(0x3B, 0x02, SS_RDEF,
2147 	    "Tape position error at end-of-medium") },
2148 	/*   L            */
2149 	{ SST(0x3B, 0x03, SS_RDEF,
2150 	    "Tape or electronic vertical forms unit not ready") },
2151 	/*   L            */
2152 	{ SST(0x3B, 0x04, SS_RDEF,
2153 	    "Slew failure") },
2154 	/*   L            */
2155 	{ SST(0x3B, 0x05, SS_RDEF,
2156 	    "Paper jam") },
2157 	/*   L            */
2158 	{ SST(0x3B, 0x06, SS_RDEF,
2159 	    "Failed to sense top-of-form") },
2160 	/*   L            */
2161 	{ SST(0x3B, 0x07, SS_RDEF,
2162 	    "Failed to sense bottom-of-form") },
2163 	/*  T             */
2164 	{ SST(0x3B, 0x08, SS_RDEF,
2165 	    "Reposition error") },
2166 	/*                */
2167 	{ SST(0x3B, 0x09, SS_RDEF,
2168 	    "Read past end of medium") },
2169 	/*                */
2170 	{ SST(0x3B, 0x0A, SS_RDEF,
2171 	    "Read past beginning of medium") },
2172 	/*                */
2173 	{ SST(0x3B, 0x0B, SS_RDEF,
2174 	    "Position past end of medium") },
2175 	/*  T             */
2176 	{ SST(0x3B, 0x0C, SS_RDEF,
2177 	    "Position past beginning of medium") },
2178 	/* DT  WROM  BK   */
2179 	{ SST(0x3B, 0x0D, SS_FATAL | ENOSPC,
2180 	    "Medium destination element full") },
2181 	/* DT  WROM  BK   */
2182 	{ SST(0x3B, 0x0E, SS_RDEF,
2183 	    "Medium source element empty") },
2184 	/*      R         */
2185 	{ SST(0x3B, 0x0F, SS_RDEF,
2186 	    "End of medium reached") },
2187 	/* DT  WROM  BK   */
2188 	{ SST(0x3B, 0x11, SS_RDEF,
2189 	    "Medium magazine not accessible") },
2190 	/* DT  WROM  BK   */
2191 	{ SST(0x3B, 0x12, SS_RDEF,
2192 	    "Medium magazine removed") },
2193 	/* DT  WROM  BK   */
2194 	{ SST(0x3B, 0x13, SS_RDEF,
2195 	    "Medium magazine inserted") },
2196 	/* DT  WROM  BK   */
2197 	{ SST(0x3B, 0x14, SS_RDEF,
2198 	    "Medium magazine locked") },
2199 	/* DT  WROM  BK   */
2200 	{ SST(0x3B, 0x15, SS_RDEF,
2201 	    "Medium magazine unlocked") },
2202 	/*      R         */
2203 	{ SST(0x3B, 0x16, SS_RDEF,	/* XXX TBD */
2204 	    "Mechanical positioning or changer error") },
2205 	/*              F */
2206 	{ SST(0x3B, 0x17, SS_RDEF,	/* XXX TBD */
2207 	    "Read past end of user object") },
2208 	/*        M       */
2209 	{ SST(0x3B, 0x18, SS_RDEF,	/* XXX TBD */
2210 	    "Element disabled") },
2211 	/*        M       */
2212 	{ SST(0x3B, 0x19, SS_RDEF,	/* XXX TBD */
2213 	    "Element enabled") },
2214 	/*        M       */
2215 	{ SST(0x3B, 0x1A, SS_RDEF,	/* XXX TBD */
2216 	    "Data transfer device removed") },
2217 	/*        M       */
2218 	{ SST(0x3B, 0x1B, SS_RDEF,	/* XXX TBD */
2219 	    "Data transfer device inserted") },
2220 	/*  T             */
2221 	{ SST(0x3B, 0x1C, SS_RDEF,	/* XXX TBD */
2222 	    "Too many logical objects on partition to support operation") },
2223 	/* DTLPWROMAE K   */
2224 	{ SST(0x3D, 0x00, SS_RDEF,
2225 	    "Invalid bits in IDENTIFY message") },
2226 	/* DTLPWROMAEBKVF */
2227 	{ SST(0x3E, 0x00, SS_RDEF,
2228 	    "Logical unit has not self-configured yet") },
2229 	/* DTLPWROMAEBKVF */
2230 	{ SST(0x3E, 0x01, SS_RDEF,
2231 	    "Logical unit failure") },
2232 	/* DTLPWROMAEBKVF */
2233 	{ SST(0x3E, 0x02, SS_RDEF,
2234 	    "Timeout on logical unit") },
2235 	/* DTLPWROMAEBKVF */
2236 	{ SST(0x3E, 0x03, SS_RDEF,	/* XXX TBD */
2237 	    "Logical unit failed self-test") },
2238 	/* DTLPWROMAEBKVF */
2239 	{ SST(0x3E, 0x04, SS_RDEF,	/* XXX TBD */
2240 	    "Logical unit unable to update self-test log") },
2241 	/* DTLPWROMAEBKVF */
2242 	{ SST(0x3F, 0x00, SS_RDEF,
2243 	    "Target operating conditions have changed") },
2244 	/* DTLPWROMAEBKVF */
2245 	{ SST(0x3F, 0x01, SS_RDEF,
2246 	    "Microcode has been changed") },
2247 	/* DTLPWROM  BK   */
2248 	{ SST(0x3F, 0x02, SS_RDEF,
2249 	    "Changed operating definition") },
2250 	/* DTLPWROMAEBKVF */
2251 	{ SST(0x3F, 0x03, SS_RDEF,
2252 	    "INQUIRY data has changed") },
2253 	/* DT  WROMAEBK   */
2254 	{ SST(0x3F, 0x04, SS_RDEF,
2255 	    "Component device attached") },
2256 	/* DT  WROMAEBK   */
2257 	{ SST(0x3F, 0x05, SS_RDEF,
2258 	    "Device identifier changed") },
2259 	/* DT  WROMAEB    */
2260 	{ SST(0x3F, 0x06, SS_RDEF,
2261 	    "Redundancy group created or modified") },
2262 	/* DT  WROMAEB    */
2263 	{ SST(0x3F, 0x07, SS_RDEF,
2264 	    "Redundancy group deleted") },
2265 	/* DT  WROMAEB    */
2266 	{ SST(0x3F, 0x08, SS_RDEF,
2267 	    "Spare created or modified") },
2268 	/* DT  WROMAEB    */
2269 	{ SST(0x3F, 0x09, SS_RDEF,
2270 	    "Spare deleted") },
2271 	/* DT  WROMAEBK   */
2272 	{ SST(0x3F, 0x0A, SS_RDEF,
2273 	    "Volume set created or modified") },
2274 	/* DT  WROMAEBK   */
2275 	{ SST(0x3F, 0x0B, SS_RDEF,
2276 	    "Volume set deleted") },
2277 	/* DT  WROMAEBK   */
2278 	{ SST(0x3F, 0x0C, SS_RDEF,
2279 	    "Volume set deassigned") },
2280 	/* DT  WROMAEBK   */
2281 	{ SST(0x3F, 0x0D, SS_RDEF,
2282 	    "Volume set reassigned") },
2283 	/* DTLPWROMAE     */
2284 	{ SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN ,
2285 	    "Reported LUNs data has changed") },
2286 	/* DTLPWROMAEBKVF */
2287 	{ SST(0x3F, 0x0F, SS_RDEF,	/* XXX TBD */
2288 	    "Echo buffer overwritten") },
2289 	/* DT  WROM  B    */
2290 	{ SST(0x3F, 0x10, SS_RDEF,	/* XXX TBD */
2291 	    "Medium loadable") },
2292 	/* DT  WROM  B    */
2293 	{ SST(0x3F, 0x11, SS_RDEF,	/* XXX TBD */
2294 	    "Medium auxiliary memory accessible") },
2295 	/* DTLPWR MAEBK F */
2296 	{ SST(0x3F, 0x12, SS_RDEF,	/* XXX TBD */
2297 	    "iSCSI IP address added") },
2298 	/* DTLPWR MAEBK F */
2299 	{ SST(0x3F, 0x13, SS_RDEF,	/* XXX TBD */
2300 	    "iSCSI IP address removed") },
2301 	/* DTLPWR MAEBK F */
2302 	{ SST(0x3F, 0x14, SS_RDEF,	/* XXX TBD */
2303 	    "iSCSI IP address changed") },
2304 	/* DTLPWR MAEBK   */
2305 	{ SST(0x3F, 0x15, SS_RDEF,	/* XXX TBD */
2306 	    "Inspect referrals sense descriptors") },
2307 	/* DTLPWROMAEBKVF */
2308 	{ SST(0x3F, 0x16, SS_RDEF,	/* XXX TBD */
2309 	    "Microcode has been changed without reset") },
2310 	/* D              */
2311 	{ SST(0x3F, 0x17, SS_RDEF,	/* XXX TBD */
2312 	    "Zone transition to full") },
2313 	/* D              */
2314 	{ SST(0x40, 0x00, SS_RDEF,
2315 	    "RAM failure") },		/* deprecated - use 40 NN instead */
2316 	/* DTLPWROMAEBKVF */
2317 	{ SST(0x40, 0x80, SS_RDEF,
2318 	    "Diagnostic failure: ASCQ = Component ID") },
2319 	/* DTLPWROMAEBKVF */
2320 	{ SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE,
2321 	    NULL) },			/* Range 0x80->0xFF */
2322 	/* D              */
2323 	{ SST(0x41, 0x00, SS_RDEF,
2324 	    "Data path failure") },	/* deprecated - use 40 NN instead */
2325 	/* D              */
2326 	{ SST(0x42, 0x00, SS_RDEF,
2327 	    "Power-on or self-test failure") },
2328 					/* deprecated - use 40 NN instead */
2329 	/* DTLPWROMAEBKVF */
2330 	{ SST(0x43, 0x00, SS_RDEF,
2331 	    "Message error") },
2332 	/* DTLPWROMAEBKVF */
2333 	{ SST(0x44, 0x00, SS_RDEF,
2334 	    "Internal target failure") },
2335 	/* DT P   MAEBKVF */
2336 	{ SST(0x44, 0x01, SS_RDEF,	/* XXX TBD */
2337 	    "Persistent reservation information lost") },
2338 	/* DT        B    */
2339 	{ SST(0x44, 0x71, SS_RDEF,	/* XXX TBD */
2340 	    "ATA device failed set features") },
2341 	/* DTLPWROMAEBKVF */
2342 	{ SST(0x45, 0x00, SS_RDEF,
2343 	    "Select or reselect failure") },
2344 	/* DTLPWROM  BK   */
2345 	{ SST(0x46, 0x00, SS_RDEF,
2346 	    "Unsuccessful soft reset") },
2347 	/* DTLPWROMAEBKVF */
2348 	{ SST(0x47, 0x00, SS_RDEF,
2349 	    "SCSI parity error") },
2350 	/* DTLPWROMAEBKVF */
2351 	{ SST(0x47, 0x01, SS_RDEF,	/* XXX TBD */
2352 	    "Data phase CRC error detected") },
2353 	/* DTLPWROMAEBKVF */
2354 	{ SST(0x47, 0x02, SS_RDEF,	/* XXX TBD */
2355 	    "SCSI parity error detected during ST data phase") },
2356 	/* DTLPWROMAEBKVF */
2357 	{ SST(0x47, 0x03, SS_RDEF,	/* XXX TBD */
2358 	    "Information unit iuCRC error detected") },
2359 	/* DTLPWROMAEBKVF */
2360 	{ SST(0x47, 0x04, SS_RDEF,	/* XXX TBD */
2361 	    "Asynchronous information protection error detected") },
2362 	/* DTLPWROMAEBKVF */
2363 	{ SST(0x47, 0x05, SS_RDEF,	/* XXX TBD */
2364 	    "Protocol service CRC error") },
2365 	/* DT     MAEBKVF */
2366 	{ SST(0x47, 0x06, SS_RDEF,	/* XXX TBD */
2367 	    "PHY test function in progress") },
2368 	/* DT PWROMAEBK   */
2369 	{ SST(0x47, 0x7F, SS_RDEF,	/* XXX TBD */
2370 	    "Some commands cleared by iSCSI protocol event") },
2371 	/* DTLPWROMAEBKVF */
2372 	{ SST(0x48, 0x00, SS_RDEF,
2373 	    "Initiator detected error message received") },
2374 	/* DTLPWROMAEBKVF */
2375 	{ SST(0x49, 0x00, SS_RDEF,
2376 	    "Invalid message error") },
2377 	/* DTLPWROMAEBKVF */
2378 	{ SST(0x4A, 0x00, SS_RDEF,
2379 	    "Command phase error") },
2380 	/* DTLPWROMAEBKVF */
2381 	{ SST(0x4B, 0x00, SS_RDEF,
2382 	    "Data phase error") },
2383 	/* DT PWROMAEBK   */
2384 	{ SST(0x4B, 0x01, SS_RDEF,	/* XXX TBD */
2385 	    "Invalid target port transfer tag received") },
2386 	/* DT PWROMAEBK   */
2387 	{ SST(0x4B, 0x02, SS_RDEF,	/* XXX TBD */
2388 	    "Too much write data") },
2389 	/* DT PWROMAEBK   */
2390 	{ SST(0x4B, 0x03, SS_RDEF,	/* XXX TBD */
2391 	    "ACK/NAK timeout") },
2392 	/* DT PWROMAEBK   */
2393 	{ SST(0x4B, 0x04, SS_RDEF,	/* XXX TBD */
2394 	    "NAK received") },
2395 	/* DT PWROMAEBK   */
2396 	{ SST(0x4B, 0x05, SS_RDEF,	/* XXX TBD */
2397 	    "Data offset error") },
2398 	/* DT PWROMAEBK   */
2399 	{ SST(0x4B, 0x06, SS_RDEF,	/* XXX TBD */
2400 	    "Initiator response timeout") },
2401 	/* DT PWROMAEBK F */
2402 	{ SST(0x4B, 0x07, SS_RDEF,	/* XXX TBD */
2403 	    "Connection lost") },
2404 	/* DT PWROMAEBK F */
2405 	{ SST(0x4B, 0x08, SS_RDEF,	/* XXX TBD */
2406 	    "Data-in buffer overflow - data buffer size") },
2407 	/* DT PWROMAEBK F */
2408 	{ SST(0x4B, 0x09, SS_RDEF,	/* XXX TBD */
2409 	    "Data-in buffer overflow - data buffer descriptor area") },
2410 	/* DT PWROMAEBK F */
2411 	{ SST(0x4B, 0x0A, SS_RDEF,	/* XXX TBD */
2412 	    "Data-in buffer error") },
2413 	/* DT PWROMAEBK F */
2414 	{ SST(0x4B, 0x0B, SS_RDEF,	/* XXX TBD */
2415 	    "Data-out buffer overflow - data buffer size") },
2416 	/* DT PWROMAEBK F */
2417 	{ SST(0x4B, 0x0C, SS_RDEF,	/* XXX TBD */
2418 	    "Data-out buffer overflow - data buffer descriptor area") },
2419 	/* DT PWROMAEBK F */
2420 	{ SST(0x4B, 0x0D, SS_RDEF,	/* XXX TBD */
2421 	    "Data-out buffer error") },
2422 	/* DT PWROMAEBK F */
2423 	{ SST(0x4B, 0x0E, SS_RDEF,	/* XXX TBD */
2424 	    "PCIe fabric error") },
2425 	/* DT PWROMAEBK F */
2426 	{ SST(0x4B, 0x0F, SS_RDEF,	/* XXX TBD */
2427 	    "PCIe completion timeout") },
2428 	/* DT PWROMAEBK F */
2429 	{ SST(0x4B, 0x10, SS_RDEF,	/* XXX TBD */
2430 	    "PCIe completer abort") },
2431 	/* DT PWROMAEBK F */
2432 	{ SST(0x4B, 0x11, SS_RDEF,	/* XXX TBD */
2433 	    "PCIe poisoned TLP received") },
2434 	/* DT PWROMAEBK F */
2435 	{ SST(0x4B, 0x12, SS_RDEF,	/* XXX TBD */
2436 	    "PCIe ECRC check failed") },
2437 	/* DT PWROMAEBK F */
2438 	{ SST(0x4B, 0x13, SS_RDEF,	/* XXX TBD */
2439 	    "PCIe unsupported request") },
2440 	/* DT PWROMAEBK F */
2441 	{ SST(0x4B, 0x14, SS_RDEF,	/* XXX TBD */
2442 	    "PCIe ACS violation") },
2443 	/* DT PWROMAEBK F */
2444 	{ SST(0x4B, 0x15, SS_RDEF,	/* XXX TBD */
2445 	    "PCIe TLP prefix blocket") },
2446 	/* DTLPWROMAEBKVF */
2447 	{ SST(0x4C, 0x00, SS_RDEF,
2448 	    "Logical unit failed self-configuration") },
2449 	/* DTLPWROMAEBKVF */
2450 	{ SST(0x4D, 0x00, SS_RDEF,
2451 	    "Tagged overlapped commands: ASCQ = Queue tag ID") },
2452 	/* DTLPWROMAEBKVF */
2453 	{ SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE,
2454 	    NULL) },			/* Range 0x00->0xFF */
2455 	/* DTLPWROMAEBKVF */
2456 	{ SST(0x4E, 0x00, SS_RDEF,
2457 	    "Overlapped commands attempted") },
2458 	/*  T             */
2459 	{ SST(0x50, 0x00, SS_RDEF,
2460 	    "Write append error") },
2461 	/*  T             */
2462 	{ SST(0x50, 0x01, SS_RDEF,
2463 	    "Write append position error") },
2464 	/*  T             */
2465 	{ SST(0x50, 0x02, SS_RDEF,
2466 	    "Position error related to timing") },
2467 	/*  T   RO        */
2468 	{ SST(0x51, 0x00, SS_RDEF,
2469 	    "Erase failure") },
2470 	/*      R         */
2471 	{ SST(0x51, 0x01, SS_RDEF,	/* XXX TBD */
2472 	    "Erase failure - incomplete erase operation detected") },
2473 	/*  T             */
2474 	{ SST(0x52, 0x00, SS_RDEF,
2475 	    "Cartridge fault") },
2476 	/* DTL WROM  BK   */
2477 	{ SST(0x53, 0x00, SS_RDEF,
2478 	    "Media load or eject failed") },
2479 	/*  T             */
2480 	{ SST(0x53, 0x01, SS_RDEF,
2481 	    "Unload tape failure") },
2482 	/* DT  WROM  BK   */
2483 	{ SST(0x53, 0x02, SS_RDEF,
2484 	    "Medium removal prevented") },
2485 	/*        M       */
2486 	{ SST(0x53, 0x03, SS_RDEF,	/* XXX TBD */
2487 	    "Medium removal prevented by data transfer element") },
2488 	/*  T             */
2489 	{ SST(0x53, 0x04, SS_RDEF,	/* XXX TBD */
2490 	    "Medium thread or unthread failure") },
2491 	/*        M       */
2492 	{ SST(0x53, 0x05, SS_RDEF,	/* XXX TBD */
2493 	    "Volume identifier invalid") },
2494 	/*  T             */
2495 	{ SST(0x53, 0x06, SS_RDEF,	/* XXX TBD */
2496 	    "Volume identifier missing") },
2497 	/*        M       */
2498 	{ SST(0x53, 0x07, SS_RDEF,	/* XXX TBD */
2499 	    "Duplicate volume identifier") },
2500 	/*        M       */
2501 	{ SST(0x53, 0x08, SS_RDEF,	/* XXX TBD */
2502 	    "Element status unknown") },
2503 	/*        M       */
2504 	{ SST(0x53, 0x09, SS_RDEF,	/* XXX TBD */
2505 	    "Data transfer device error - load failed") },
2506 	/*        M       */
2507 	{ SST(0x53, 0x0A, SS_RDEF,	/* XXX TBD */
2508 	    "Data transfer device error - unload failed") },
2509 	/*        M       */
2510 	{ SST(0x53, 0x0B, SS_RDEF,	/* XXX TBD */
2511 	    "Data transfer device error - unload missing") },
2512 	/*        M       */
2513 	{ SST(0x53, 0x0C, SS_RDEF,	/* XXX TBD */
2514 	    "Data transfer device error - eject failed") },
2515 	/*        M       */
2516 	{ SST(0x53, 0x0D, SS_RDEF,	/* XXX TBD */
2517 	    "Data transfer device error - library communication failed") },
2518 	/*    P           */
2519 	{ SST(0x54, 0x00, SS_RDEF,
2520 	    "SCSI to host system interface failure") },
2521 	/*    P           */
2522 	{ SST(0x55, 0x00, SS_RDEF,
2523 	    "System resource failure") },
2524 	/* D     O   BK   */
2525 	{ SST(0x55, 0x01, SS_FATAL | ENOSPC,
2526 	    "System buffer full") },
2527 	/* DTLPWROMAE K   */
2528 	{ SST(0x55, 0x02, SS_RDEF,	/* XXX TBD */
2529 	    "Insufficient reservation resources") },
2530 	/* DTLPWROMAE K   */
2531 	{ SST(0x55, 0x03, SS_RDEF,	/* XXX TBD */
2532 	    "Insufficient resources") },
2533 	/* DTLPWROMAE K   */
2534 	{ SST(0x55, 0x04, SS_RDEF,	/* XXX TBD */
2535 	    "Insufficient registration resources") },
2536 	/* DT PWROMAEBK   */
2537 	{ SST(0x55, 0x05, SS_RDEF,	/* XXX TBD */
2538 	    "Insufficient access control resources") },
2539 	/* DT  WROM  B    */
2540 	{ SST(0x55, 0x06, SS_RDEF,	/* XXX TBD */
2541 	    "Auxiliary memory out of space") },
2542 	/*              F */
2543 	{ SST(0x55, 0x07, SS_RDEF,	/* XXX TBD */
2544 	    "Quota error") },
2545 	/*  T             */
2546 	{ SST(0x55, 0x08, SS_RDEF,	/* XXX TBD */
2547 	    "Maximum number of supplemental decryption keys exceeded") },
2548 	/*        M       */
2549 	{ SST(0x55, 0x09, SS_RDEF,	/* XXX TBD */
2550 	    "Medium auxiliary memory not accessible") },
2551 	/*        M       */
2552 	{ SST(0x55, 0x0A, SS_RDEF,	/* XXX TBD */
2553 	    "Data currently unavailable") },
2554 	/* DTLPWROMAEBKVF */
2555 	{ SST(0x55, 0x0B, SS_RDEF,	/* XXX TBD */
2556 	    "Insufficient power for operation") },
2557 	/* DT P      B    */
2558 	{ SST(0x55, 0x0C, SS_RDEF,	/* XXX TBD */
2559 	    "Insufficient resources to create ROD") },
2560 	/* DT P      B    */
2561 	{ SST(0x55, 0x0D, SS_RDEF,	/* XXX TBD */
2562 	    "Insufficient resources to create ROD token") },
2563 	/* D              */
2564 	{ SST(0x55, 0x0E, SS_RDEF,	/* XXX TBD */
2565 	    "Insufficient zone resources") },
2566 	/* D              */
2567 	{ SST(0x55, 0x0F, SS_RDEF,	/* XXX TBD */
2568 	    "Insufficient zone resources to complete write") },
2569 	/* D              */
2570 	{ SST(0x55, 0x10, SS_RDEF,	/* XXX TBD */
2571 	    "Maximum number of streams open") },
2572 	/*      R         */
2573 	{ SST(0x57, 0x00, SS_RDEF,
2574 	    "Unable to recover table-of-contents") },
2575 	/*       O        */
2576 	{ SST(0x58, 0x00, SS_RDEF,
2577 	    "Generation does not exist") },
2578 	/*       O        */
2579 	{ SST(0x59, 0x00, SS_RDEF,
2580 	    "Updated block read") },
2581 	/* DTLPWRO   BK   */
2582 	{ SST(0x5A, 0x00, SS_RDEF,
2583 	    "Operator request or state change input") },
2584 	/* DT  WROM  BK   */
2585 	{ SST(0x5A, 0x01, SS_RDEF,
2586 	    "Operator medium removal request") },
2587 	/* DT  WRO A BK   */
2588 	{ SST(0x5A, 0x02, SS_RDEF,
2589 	    "Operator selected write protect") },
2590 	/* DT  WRO A BK   */
2591 	{ SST(0x5A, 0x03, SS_RDEF,
2592 	    "Operator selected write permit") },
2593 	/* DTLPWROM   K   */
2594 	{ SST(0x5B, 0x00, SS_RDEF,
2595 	    "Log exception") },
2596 	/* DTLPWROM   K   */
2597 	{ SST(0x5B, 0x01, SS_RDEF,
2598 	    "Threshold condition met") },
2599 	/* DTLPWROM   K   */
2600 	{ SST(0x5B, 0x02, SS_RDEF,
2601 	    "Log counter at maximum") },
2602 	/* DTLPWROM   K   */
2603 	{ SST(0x5B, 0x03, SS_RDEF,
2604 	    "Log list codes exhausted") },
2605 	/* D     O        */
2606 	{ SST(0x5C, 0x00, SS_RDEF,
2607 	    "RPL status change") },
2608 	/* D     O        */
2609 	{ SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2610 	    "Spindles synchronized") },
2611 	/* D     O        */
2612 	{ SST(0x5C, 0x02, SS_RDEF,
2613 	    "Spindles not synchronized") },
2614 	/* DTLPWROMAEBKVF */
2615 	{ SST(0x5D, 0x00, SS_RDEF,
2616 	    "Failure prediction threshold exceeded") },
2617 	/*      R    B    */
2618 	{ SST(0x5D, 0x01, SS_RDEF,	/* XXX TBD */
2619 	    "Media failure prediction threshold exceeded") },
2620 	/*      R         */
2621 	{ SST(0x5D, 0x02, SS_RDEF,	/* XXX TBD */
2622 	    "Logical unit failure prediction threshold exceeded") },
2623 	/*      R         */
2624 	{ SST(0x5D, 0x03, SS_RDEF,	/* XXX TBD */
2625 	    "Spare area exhaustion prediction threshold exceeded") },
2626 	/* D         B    */
2627 	{ SST(0x5D, 0x10, SS_RDEF,	/* XXX TBD */
2628 	    "Hardware impending failure general hard drive failure") },
2629 	/* D         B    */
2630 	{ SST(0x5D, 0x11, SS_RDEF,	/* XXX TBD */
2631 	    "Hardware impending failure drive error rate too high") },
2632 	/* D         B    */
2633 	{ SST(0x5D, 0x12, SS_RDEF,	/* XXX TBD */
2634 	    "Hardware impending failure data error rate too high") },
2635 	/* D         B    */
2636 	{ SST(0x5D, 0x13, SS_RDEF,	/* XXX TBD */
2637 	    "Hardware impending failure seek error rate too high") },
2638 	/* D         B    */
2639 	{ SST(0x5D, 0x14, SS_RDEF,	/* XXX TBD */
2640 	    "Hardware impending failure too many block reassigns") },
2641 	/* D         B    */
2642 	{ SST(0x5D, 0x15, SS_RDEF,	/* XXX TBD */
2643 	    "Hardware impending failure access times too high") },
2644 	/* D         B    */
2645 	{ SST(0x5D, 0x16, SS_RDEF,	/* XXX TBD */
2646 	    "Hardware impending failure start unit times too high") },
2647 	/* D         B    */
2648 	{ SST(0x5D, 0x17, SS_RDEF,	/* XXX TBD */
2649 	    "Hardware impending failure channel parametrics") },
2650 	/* D         B    */
2651 	{ SST(0x5D, 0x18, SS_RDEF,	/* XXX TBD */
2652 	    "Hardware impending failure controller detected") },
2653 	/* D         B    */
2654 	{ SST(0x5D, 0x19, SS_RDEF,	/* XXX TBD */
2655 	    "Hardware impending failure throughput performance") },
2656 	/* D         B    */
2657 	{ SST(0x5D, 0x1A, SS_RDEF,	/* XXX TBD */
2658 	    "Hardware impending failure seek time performance") },
2659 	/* D         B    */
2660 	{ SST(0x5D, 0x1B, SS_RDEF,	/* XXX TBD */
2661 	    "Hardware impending failure spin-up retry count") },
2662 	/* D         B    */
2663 	{ SST(0x5D, 0x1C, SS_RDEF,	/* XXX TBD */
2664 	    "Hardware impending failure drive calibration retry count") },
2665 	/* D         B    */
2666 	{ SST(0x5D, 0x20, SS_RDEF,	/* XXX TBD */
2667 	    "Controller impending failure general hard drive failure") },
2668 	/* D         B    */
2669 	{ SST(0x5D, 0x21, SS_RDEF,	/* XXX TBD */
2670 	    "Controller impending failure drive error rate too high") },
2671 	/* D         B    */
2672 	{ SST(0x5D, 0x22, SS_RDEF,	/* XXX TBD */
2673 	    "Controller impending failure data error rate too high") },
2674 	/* D         B    */
2675 	{ SST(0x5D, 0x23, SS_RDEF,	/* XXX TBD */
2676 	    "Controller impending failure seek error rate too high") },
2677 	/* D         B    */
2678 	{ SST(0x5D, 0x24, SS_RDEF,	/* XXX TBD */
2679 	    "Controller impending failure too many block reassigns") },
2680 	/* D         B    */
2681 	{ SST(0x5D, 0x25, SS_RDEF,	/* XXX TBD */
2682 	    "Controller impending failure access times too high") },
2683 	/* D         B    */
2684 	{ SST(0x5D, 0x26, SS_RDEF,	/* XXX TBD */
2685 	    "Controller impending failure start unit times too high") },
2686 	/* D         B    */
2687 	{ SST(0x5D, 0x27, SS_RDEF,	/* XXX TBD */
2688 	    "Controller impending failure channel parametrics") },
2689 	/* D         B    */
2690 	{ SST(0x5D, 0x28, SS_RDEF,	/* XXX TBD */
2691 	    "Controller impending failure controller detected") },
2692 	/* D         B    */
2693 	{ SST(0x5D, 0x29, SS_RDEF,	/* XXX TBD */
2694 	    "Controller impending failure throughput performance") },
2695 	/* D         B    */
2696 	{ SST(0x5D, 0x2A, SS_RDEF,	/* XXX TBD */
2697 	    "Controller impending failure seek time performance") },
2698 	/* D         B    */
2699 	{ SST(0x5D, 0x2B, SS_RDEF,	/* XXX TBD */
2700 	    "Controller impending failure spin-up retry count") },
2701 	/* D         B    */
2702 	{ SST(0x5D, 0x2C, SS_RDEF,	/* XXX TBD */
2703 	    "Controller impending failure drive calibration retry count") },
2704 	/* D         B    */
2705 	{ SST(0x5D, 0x30, SS_RDEF,	/* XXX TBD */
2706 	    "Data channel impending failure general hard drive failure") },
2707 	/* D         B    */
2708 	{ SST(0x5D, 0x31, SS_RDEF,	/* XXX TBD */
2709 	    "Data channel impending failure drive error rate too high") },
2710 	/* D         B    */
2711 	{ SST(0x5D, 0x32, SS_RDEF,	/* XXX TBD */
2712 	    "Data channel impending failure data error rate too high") },
2713 	/* D         B    */
2714 	{ SST(0x5D, 0x33, SS_RDEF,	/* XXX TBD */
2715 	    "Data channel impending failure seek error rate too high") },
2716 	/* D         B    */
2717 	{ SST(0x5D, 0x34, SS_RDEF,	/* XXX TBD */
2718 	    "Data channel impending failure too many block reassigns") },
2719 	/* D         B    */
2720 	{ SST(0x5D, 0x35, SS_RDEF,	/* XXX TBD */
2721 	    "Data channel impending failure access times too high") },
2722 	/* D         B    */
2723 	{ SST(0x5D, 0x36, SS_RDEF,	/* XXX TBD */
2724 	    "Data channel impending failure start unit times too high") },
2725 	/* D         B    */
2726 	{ SST(0x5D, 0x37, SS_RDEF,	/* XXX TBD */
2727 	    "Data channel impending failure channel parametrics") },
2728 	/* D         B    */
2729 	{ SST(0x5D, 0x38, SS_RDEF,	/* XXX TBD */
2730 	    "Data channel impending failure controller detected") },
2731 	/* D         B    */
2732 	{ SST(0x5D, 0x39, SS_RDEF,	/* XXX TBD */
2733 	    "Data channel impending failure throughput performance") },
2734 	/* D         B    */
2735 	{ SST(0x5D, 0x3A, SS_RDEF,	/* XXX TBD */
2736 	    "Data channel impending failure seek time performance") },
2737 	/* D         B    */
2738 	{ SST(0x5D, 0x3B, SS_RDEF,	/* XXX TBD */
2739 	    "Data channel impending failure spin-up retry count") },
2740 	/* D         B    */
2741 	{ SST(0x5D, 0x3C, SS_RDEF,	/* XXX TBD */
2742 	    "Data channel impending failure drive calibration retry count") },
2743 	/* D         B    */
2744 	{ SST(0x5D, 0x40, SS_RDEF,	/* XXX TBD */
2745 	    "Servo impending failure general hard drive failure") },
2746 	/* D         B    */
2747 	{ SST(0x5D, 0x41, SS_RDEF,	/* XXX TBD */
2748 	    "Servo impending failure drive error rate too high") },
2749 	/* D         B    */
2750 	{ SST(0x5D, 0x42, SS_RDEF,	/* XXX TBD */
2751 	    "Servo impending failure data error rate too high") },
2752 	/* D         B    */
2753 	{ SST(0x5D, 0x43, SS_RDEF,	/* XXX TBD */
2754 	    "Servo impending failure seek error rate too high") },
2755 	/* D         B    */
2756 	{ SST(0x5D, 0x44, SS_RDEF,	/* XXX TBD */
2757 	    "Servo impending failure too many block reassigns") },
2758 	/* D         B    */
2759 	{ SST(0x5D, 0x45, SS_RDEF,	/* XXX TBD */
2760 	    "Servo impending failure access times too high") },
2761 	/* D         B    */
2762 	{ SST(0x5D, 0x46, SS_RDEF,	/* XXX TBD */
2763 	    "Servo impending failure start unit times too high") },
2764 	/* D         B    */
2765 	{ SST(0x5D, 0x47, SS_RDEF,	/* XXX TBD */
2766 	    "Servo impending failure channel parametrics") },
2767 	/* D         B    */
2768 	{ SST(0x5D, 0x48, SS_RDEF,	/* XXX TBD */
2769 	    "Servo impending failure controller detected") },
2770 	/* D         B    */
2771 	{ SST(0x5D, 0x49, SS_RDEF,	/* XXX TBD */
2772 	    "Servo impending failure throughput performance") },
2773 	/* D         B    */
2774 	{ SST(0x5D, 0x4A, SS_RDEF,	/* XXX TBD */
2775 	    "Servo impending failure seek time performance") },
2776 	/* D         B    */
2777 	{ SST(0x5D, 0x4B, SS_RDEF,	/* XXX TBD */
2778 	    "Servo impending failure spin-up retry count") },
2779 	/* D         B    */
2780 	{ SST(0x5D, 0x4C, SS_RDEF,	/* XXX TBD */
2781 	    "Servo impending failure drive calibration retry count") },
2782 	/* D         B    */
2783 	{ SST(0x5D, 0x50, SS_RDEF,	/* XXX TBD */
2784 	    "Spindle impending failure general hard drive failure") },
2785 	/* D         B    */
2786 	{ SST(0x5D, 0x51, SS_RDEF,	/* XXX TBD */
2787 	    "Spindle impending failure drive error rate too high") },
2788 	/* D         B    */
2789 	{ SST(0x5D, 0x52, SS_RDEF,	/* XXX TBD */
2790 	    "Spindle impending failure data error rate too high") },
2791 	/* D         B    */
2792 	{ SST(0x5D, 0x53, SS_RDEF,	/* XXX TBD */
2793 	    "Spindle impending failure seek error rate too high") },
2794 	/* D         B    */
2795 	{ SST(0x5D, 0x54, SS_RDEF,	/* XXX TBD */
2796 	    "Spindle impending failure too many block reassigns") },
2797 	/* D         B    */
2798 	{ SST(0x5D, 0x55, SS_RDEF,	/* XXX TBD */
2799 	    "Spindle impending failure access times too high") },
2800 	/* D         B    */
2801 	{ SST(0x5D, 0x56, SS_RDEF,	/* XXX TBD */
2802 	    "Spindle impending failure start unit times too high") },
2803 	/* D         B    */
2804 	{ SST(0x5D, 0x57, SS_RDEF,	/* XXX TBD */
2805 	    "Spindle impending failure channel parametrics") },
2806 	/* D         B    */
2807 	{ SST(0x5D, 0x58, SS_RDEF,	/* XXX TBD */
2808 	    "Spindle impending failure controller detected") },
2809 	/* D         B    */
2810 	{ SST(0x5D, 0x59, SS_RDEF,	/* XXX TBD */
2811 	    "Spindle impending failure throughput performance") },
2812 	/* D         B    */
2813 	{ SST(0x5D, 0x5A, SS_RDEF,	/* XXX TBD */
2814 	    "Spindle impending failure seek time performance") },
2815 	/* D         B    */
2816 	{ SST(0x5D, 0x5B, SS_RDEF,	/* XXX TBD */
2817 	    "Spindle impending failure spin-up retry count") },
2818 	/* D         B    */
2819 	{ SST(0x5D, 0x5C, SS_RDEF,	/* XXX TBD */
2820 	    "Spindle impending failure drive calibration retry count") },
2821 	/* D         B    */
2822 	{ SST(0x5D, 0x60, SS_RDEF,	/* XXX TBD */
2823 	    "Firmware impending failure general hard drive failure") },
2824 	/* D         B    */
2825 	{ SST(0x5D, 0x61, SS_RDEF,	/* XXX TBD */
2826 	    "Firmware impending failure drive error rate too high") },
2827 	/* D         B    */
2828 	{ SST(0x5D, 0x62, SS_RDEF,	/* XXX TBD */
2829 	    "Firmware impending failure data error rate too high") },
2830 	/* D         B    */
2831 	{ SST(0x5D, 0x63, SS_RDEF,	/* XXX TBD */
2832 	    "Firmware impending failure seek error rate too high") },
2833 	/* D         B    */
2834 	{ SST(0x5D, 0x64, SS_RDEF,	/* XXX TBD */
2835 	    "Firmware impending failure too many block reassigns") },
2836 	/* D         B    */
2837 	{ SST(0x5D, 0x65, SS_RDEF,	/* XXX TBD */
2838 	    "Firmware impending failure access times too high") },
2839 	/* D         B    */
2840 	{ SST(0x5D, 0x66, SS_RDEF,	/* XXX TBD */
2841 	    "Firmware impending failure start unit times too high") },
2842 	/* D         B    */
2843 	{ SST(0x5D, 0x67, SS_RDEF,	/* XXX TBD */
2844 	    "Firmware impending failure channel parametrics") },
2845 	/* D         B    */
2846 	{ SST(0x5D, 0x68, SS_RDEF,	/* XXX TBD */
2847 	    "Firmware impending failure controller detected") },
2848 	/* D         B    */
2849 	{ SST(0x5D, 0x69, SS_RDEF,	/* XXX TBD */
2850 	    "Firmware impending failure throughput performance") },
2851 	/* D         B    */
2852 	{ SST(0x5D, 0x6A, SS_RDEF,	/* XXX TBD */
2853 	    "Firmware impending failure seek time performance") },
2854 	/* D         B    */
2855 	{ SST(0x5D, 0x6B, SS_RDEF,	/* XXX TBD */
2856 	    "Firmware impending failure spin-up retry count") },
2857 	/* D         B    */
2858 	{ SST(0x5D, 0x6C, SS_RDEF,	/* XXX TBD */
2859 	    "Firmware impending failure drive calibration retry count") },
2860 	/* DTLPWROMAEBKVF */
2861 	{ SST(0x5D, 0xFF, SS_RDEF,
2862 	    "Failure prediction threshold exceeded (false)") },
2863 	/* DTLPWRO A  K   */
2864 	{ SST(0x5E, 0x00, SS_RDEF,
2865 	    "Low power condition on") },
2866 	/* DTLPWRO A  K   */
2867 	{ SST(0x5E, 0x01, SS_RDEF,
2868 	    "Idle condition activated by timer") },
2869 	/* DTLPWRO A  K   */
2870 	{ SST(0x5E, 0x02, SS_RDEF,
2871 	    "Standby condition activated by timer") },
2872 	/* DTLPWRO A  K   */
2873 	{ SST(0x5E, 0x03, SS_RDEF,
2874 	    "Idle condition activated by command") },
2875 	/* DTLPWRO A  K   */
2876 	{ SST(0x5E, 0x04, SS_RDEF,
2877 	    "Standby condition activated by command") },
2878 	/* DTLPWRO A  K   */
2879 	{ SST(0x5E, 0x05, SS_RDEF,
2880 	    "Idle-B condition activated by timer") },
2881 	/* DTLPWRO A  K   */
2882 	{ SST(0x5E, 0x06, SS_RDEF,
2883 	    "Idle-B condition activated by command") },
2884 	/* DTLPWRO A  K   */
2885 	{ SST(0x5E, 0x07, SS_RDEF,
2886 	    "Idle-C condition activated by timer") },
2887 	/* DTLPWRO A  K   */
2888 	{ SST(0x5E, 0x08, SS_RDEF,
2889 	    "Idle-C condition activated by command") },
2890 	/* DTLPWRO A  K   */
2891 	{ SST(0x5E, 0x09, SS_RDEF,
2892 	    "Standby-Y condition activated by timer") },
2893 	/* DTLPWRO A  K   */
2894 	{ SST(0x5E, 0x0A, SS_RDEF,
2895 	    "Standby-Y condition activated by command") },
2896 	/*           B    */
2897 	{ SST(0x5E, 0x41, SS_RDEF,	/* XXX TBD */
2898 	    "Power state change to active") },
2899 	/*           B    */
2900 	{ SST(0x5E, 0x42, SS_RDEF,	/* XXX TBD */
2901 	    "Power state change to idle") },
2902 	/*           B    */
2903 	{ SST(0x5E, 0x43, SS_RDEF,	/* XXX TBD */
2904 	    "Power state change to standby") },
2905 	/*           B    */
2906 	{ SST(0x5E, 0x45, SS_RDEF,	/* XXX TBD */
2907 	    "Power state change to sleep") },
2908 	/*           BK   */
2909 	{ SST(0x5E, 0x47, SS_RDEF,	/* XXX TBD */
2910 	    "Power state change to device control") },
2911 	/*                */
2912 	{ SST(0x60, 0x00, SS_RDEF,
2913 	    "Lamp failure") },
2914 	/*                */
2915 	{ SST(0x61, 0x00, SS_RDEF,
2916 	    "Video acquisition error") },
2917 	/*                */
2918 	{ SST(0x61, 0x01, SS_RDEF,
2919 	    "Unable to acquire video") },
2920 	/*                */
2921 	{ SST(0x61, 0x02, SS_RDEF,
2922 	    "Out of focus") },
2923 	/*                */
2924 	{ SST(0x62, 0x00, SS_RDEF,
2925 	    "Scan head positioning error") },
2926 	/*      R         */
2927 	{ SST(0x63, 0x00, SS_RDEF,
2928 	    "End of user area encountered on this track") },
2929 	/*      R         */
2930 	{ SST(0x63, 0x01, SS_FATAL | ENOSPC,
2931 	    "Packet does not fit in available space") },
2932 	/*      R         */
2933 	{ SST(0x64, 0x00, SS_FATAL | ENXIO,
2934 	    "Illegal mode for this track") },
2935 	/*      R         */
2936 	{ SST(0x64, 0x01, SS_RDEF,
2937 	    "Invalid packet size") },
2938 	/* DTLPWROMAEBKVF */
2939 	{ SST(0x65, 0x00, SS_RDEF,
2940 	    "Voltage fault") },
2941 	/*                */
2942 	{ SST(0x66, 0x00, SS_RDEF,
2943 	    "Automatic document feeder cover up") },
2944 	/*                */
2945 	{ SST(0x66, 0x01, SS_RDEF,
2946 	    "Automatic document feeder lift up") },
2947 	/*                */
2948 	{ SST(0x66, 0x02, SS_RDEF,
2949 	    "Document jam in automatic document feeder") },
2950 	/*                */
2951 	{ SST(0x66, 0x03, SS_RDEF,
2952 	    "Document miss feed automatic in document feeder") },
2953 	/*         A      */
2954 	{ SST(0x67, 0x00, SS_RDEF,
2955 	    "Configuration failure") },
2956 	/*         A      */
2957 	{ SST(0x67, 0x01, SS_RDEF,
2958 	    "Configuration of incapable logical units failed") },
2959 	/*         A      */
2960 	{ SST(0x67, 0x02, SS_RDEF,
2961 	    "Add logical unit failed") },
2962 	/*         A      */
2963 	{ SST(0x67, 0x03, SS_RDEF,
2964 	    "Modification of logical unit failed") },
2965 	/*         A      */
2966 	{ SST(0x67, 0x04, SS_RDEF,
2967 	    "Exchange of logical unit failed") },
2968 	/*         A      */
2969 	{ SST(0x67, 0x05, SS_RDEF,
2970 	    "Remove of logical unit failed") },
2971 	/*         A      */
2972 	{ SST(0x67, 0x06, SS_RDEF,
2973 	    "Attachment of logical unit failed") },
2974 	/*         A      */
2975 	{ SST(0x67, 0x07, SS_RDEF,
2976 	    "Creation of logical unit failed") },
2977 	/*         A      */
2978 	{ SST(0x67, 0x08, SS_RDEF,	/* XXX TBD */
2979 	    "Assign failure occurred") },
2980 	/*         A      */
2981 	{ SST(0x67, 0x09, SS_RDEF,	/* XXX TBD */
2982 	    "Multiply assigned logical unit") },
2983 	/* DTLPWROMAEBKVF */
2984 	{ SST(0x67, 0x0A, SS_RDEF,	/* XXX TBD */
2985 	    "Set target port groups command failed") },
2986 	/* DT        B    */
2987 	{ SST(0x67, 0x0B, SS_RDEF,	/* XXX TBD */
2988 	    "ATA device feature not enabled") },
2989 	/*         A      */
2990 	{ SST(0x68, 0x00, SS_RDEF,
2991 	    "Logical unit not configured") },
2992 	/* D              */
2993 	{ SST(0x68, 0x01, SS_RDEF,
2994 	    "Subsidiary logical unit not configured") },
2995 	/*         A      */
2996 	{ SST(0x69, 0x00, SS_RDEF,
2997 	    "Data loss on logical unit") },
2998 	/*         A      */
2999 	{ SST(0x69, 0x01, SS_RDEF,
3000 	    "Multiple logical unit failures") },
3001 	/*         A      */
3002 	{ SST(0x69, 0x02, SS_RDEF,
3003 	    "Parity/data mismatch") },
3004 	/*         A      */
3005 	{ SST(0x6A, 0x00, SS_RDEF,
3006 	    "Informational, refer to log") },
3007 	/*         A      */
3008 	{ SST(0x6B, 0x00, SS_RDEF,
3009 	    "State change has occurred") },
3010 	/*         A      */
3011 	{ SST(0x6B, 0x01, SS_RDEF,
3012 	    "Redundancy level got better") },
3013 	/*         A      */
3014 	{ SST(0x6B, 0x02, SS_RDEF,
3015 	    "Redundancy level got worse") },
3016 	/*         A      */
3017 	{ SST(0x6C, 0x00, SS_RDEF,
3018 	    "Rebuild failure occurred") },
3019 	/*         A      */
3020 	{ SST(0x6D, 0x00, SS_RDEF,
3021 	    "Recalculate failure occurred") },
3022 	/*         A      */
3023 	{ SST(0x6E, 0x00, SS_RDEF,
3024 	    "Command to logical unit failed") },
3025 	/*      R         */
3026 	{ SST(0x6F, 0x00, SS_RDEF,	/* XXX TBD */
3027 	    "Copy protection key exchange failure - authentication failure") },
3028 	/*      R         */
3029 	{ SST(0x6F, 0x01, SS_RDEF,	/* XXX TBD */
3030 	    "Copy protection key exchange failure - key not present") },
3031 	/*      R         */
3032 	{ SST(0x6F, 0x02, SS_RDEF,	/* XXX TBD */
3033 	    "Copy protection key exchange failure - key not established") },
3034 	/*      R         */
3035 	{ SST(0x6F, 0x03, SS_RDEF,	/* XXX TBD */
3036 	    "Read of scrambled sector without authentication") },
3037 	/*      R         */
3038 	{ SST(0x6F, 0x04, SS_RDEF,	/* XXX TBD */
3039 	    "Media region code is mismatched to logical unit region") },
3040 	/*      R         */
3041 	{ SST(0x6F, 0x05, SS_RDEF,	/* XXX TBD */
3042 	    "Drive region must be permanent/region reset count error") },
3043 	/*      R         */
3044 	{ SST(0x6F, 0x06, SS_RDEF,	/* XXX TBD */
3045 	    "Insufficient block count for binding NONCE recording") },
3046 	/*      R         */
3047 	{ SST(0x6F, 0x07, SS_RDEF,	/* XXX TBD */
3048 	    "Conflict in binding NONCE recording") },
3049 	/*  T             */
3050 	{ SST(0x70, 0x00, SS_RDEF,
3051 	    "Decompression exception short: ASCQ = Algorithm ID") },
3052 	/*  T             */
3053 	{ SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE,
3054 	    NULL) },			/* Range 0x00 -> 0xFF */
3055 	/*  T             */
3056 	{ SST(0x71, 0x00, SS_RDEF,
3057 	    "Decompression exception long: ASCQ = Algorithm ID") },
3058 	/*  T             */
3059 	{ SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE,
3060 	    NULL) },			/* Range 0x00 -> 0xFF */
3061 	/*      R         */
3062 	{ SST(0x72, 0x00, SS_RDEF,
3063 	    "Session fixation error") },
3064 	/*      R         */
3065 	{ SST(0x72, 0x01, SS_RDEF,
3066 	    "Session fixation error writing lead-in") },
3067 	/*      R         */
3068 	{ SST(0x72, 0x02, SS_RDEF,
3069 	    "Session fixation error writing lead-out") },
3070 	/*      R         */
3071 	{ SST(0x72, 0x03, SS_RDEF,
3072 	    "Session fixation error - incomplete track in session") },
3073 	/*      R         */
3074 	{ SST(0x72, 0x04, SS_RDEF,
3075 	    "Empty or partially written reserved track") },
3076 	/*      R         */
3077 	{ SST(0x72, 0x05, SS_RDEF,	/* XXX TBD */
3078 	    "No more track reservations allowed") },
3079 	/*      R         */
3080 	{ SST(0x72, 0x06, SS_RDEF,	/* XXX TBD */
3081 	    "RMZ extension is not allowed") },
3082 	/*      R         */
3083 	{ SST(0x72, 0x07, SS_RDEF,	/* XXX TBD */
3084 	    "No more test zone extensions are allowed") },
3085 	/*      R         */
3086 	{ SST(0x73, 0x00, SS_RDEF,
3087 	    "CD control error") },
3088 	/*      R         */
3089 	{ SST(0x73, 0x01, SS_RDEF,
3090 	    "Power calibration area almost full") },
3091 	/*      R         */
3092 	{ SST(0x73, 0x02, SS_FATAL | ENOSPC,
3093 	    "Power calibration area is full") },
3094 	/*      R         */
3095 	{ SST(0x73, 0x03, SS_RDEF,
3096 	    "Power calibration area error") },
3097 	/*      R         */
3098 	{ SST(0x73, 0x04, SS_RDEF,
3099 	    "Program memory area update failure") },
3100 	/*      R         */
3101 	{ SST(0x73, 0x05, SS_RDEF,
3102 	    "Program memory area is full") },
3103 	/*      R         */
3104 	{ SST(0x73, 0x06, SS_RDEF,	/* XXX TBD */
3105 	    "RMA/PMA is almost full") },
3106 	/*      R         */
3107 	{ SST(0x73, 0x10, SS_RDEF,	/* XXX TBD */
3108 	    "Current power calibration area almost full") },
3109 	/*      R         */
3110 	{ SST(0x73, 0x11, SS_RDEF,	/* XXX TBD */
3111 	    "Current power calibration area is full") },
3112 	/*      R         */
3113 	{ SST(0x73, 0x17, SS_RDEF,	/* XXX TBD */
3114 	    "RDZ is full") },
3115 	/*  T             */
3116 	{ SST(0x74, 0x00, SS_RDEF,	/* XXX TBD */
3117 	    "Security error") },
3118 	/*  T             */
3119 	{ SST(0x74, 0x01, SS_RDEF,	/* XXX TBD */
3120 	    "Unable to decrypt data") },
3121 	/*  T             */
3122 	{ SST(0x74, 0x02, SS_RDEF,	/* XXX TBD */
3123 	    "Unencrypted data encountered while decrypting") },
3124 	/*  T             */
3125 	{ SST(0x74, 0x03, SS_RDEF,	/* XXX TBD */
3126 	    "Incorrect data encryption key") },
3127 	/*  T             */
3128 	{ SST(0x74, 0x04, SS_RDEF,	/* XXX TBD */
3129 	    "Cryptographic integrity validation failed") },
3130 	/*  T             */
3131 	{ SST(0x74, 0x05, SS_RDEF,	/* XXX TBD */
3132 	    "Error decrypting data") },
3133 	/*  T             */
3134 	{ SST(0x74, 0x06, SS_RDEF,	/* XXX TBD */
3135 	    "Unknown signature verification key") },
3136 	/*  T             */
3137 	{ SST(0x74, 0x07, SS_RDEF,	/* XXX TBD */
3138 	    "Encryption parameters not useable") },
3139 	/* DT   R M E  VF */
3140 	{ SST(0x74, 0x08, SS_RDEF,	/* XXX TBD */
3141 	    "Digital signature validation failure") },
3142 	/*  T             */
3143 	{ SST(0x74, 0x09, SS_RDEF,	/* XXX TBD */
3144 	    "Encryption mode mismatch on read") },
3145 	/*  T             */
3146 	{ SST(0x74, 0x0A, SS_RDEF,	/* XXX TBD */
3147 	    "Encrypted block not raw read enabled") },
3148 	/*  T             */
3149 	{ SST(0x74, 0x0B, SS_RDEF,	/* XXX TBD */
3150 	    "Incorrect encryption parameters") },
3151 	/* DT   R MAEBKV  */
3152 	{ SST(0x74, 0x0C, SS_RDEF,	/* XXX TBD */
3153 	    "Unable to decrypt parameter list") },
3154 	/*  T             */
3155 	{ SST(0x74, 0x0D, SS_RDEF,	/* XXX TBD */
3156 	    "Encryption algorithm disabled") },
3157 	/* DT   R MAEBKV  */
3158 	{ SST(0x74, 0x10, SS_RDEF,	/* XXX TBD */
3159 	    "SA creation parameter value invalid") },
3160 	/* DT   R MAEBKV  */
3161 	{ SST(0x74, 0x11, SS_RDEF,	/* XXX TBD */
3162 	    "SA creation parameter value rejected") },
3163 	/* DT   R MAEBKV  */
3164 	{ SST(0x74, 0x12, SS_RDEF,	/* XXX TBD */
3165 	    "Invalid SA usage") },
3166 	/*  T             */
3167 	{ SST(0x74, 0x21, SS_RDEF,	/* XXX TBD */
3168 	    "Data encryption configuration prevented") },
3169 	/* DT   R MAEBKV  */
3170 	{ SST(0x74, 0x30, SS_RDEF,	/* XXX TBD */
3171 	    "SA creation parameter not supported") },
3172 	/* DT   R MAEBKV  */
3173 	{ SST(0x74, 0x40, SS_RDEF,	/* XXX TBD */
3174 	    "Authentication failed") },
3175 	/*             V  */
3176 	{ SST(0x74, 0x61, SS_RDEF,	/* XXX TBD */
3177 	    "External data encryption key manager access error") },
3178 	/*             V  */
3179 	{ SST(0x74, 0x62, SS_RDEF,	/* XXX TBD */
3180 	    "External data encryption key manager error") },
3181 	/*             V  */
3182 	{ SST(0x74, 0x63, SS_RDEF,	/* XXX TBD */
3183 	    "External data encryption key not found") },
3184 	/*             V  */
3185 	{ SST(0x74, 0x64, SS_RDEF,	/* XXX TBD */
3186 	    "External data encryption request not authorized") },
3187 	/*  T             */
3188 	{ SST(0x74, 0x6E, SS_RDEF,	/* XXX TBD */
3189 	    "External data encryption control timeout") },
3190 	/*  T             */
3191 	{ SST(0x74, 0x6F, SS_RDEF,	/* XXX TBD */
3192 	    "External data encryption control error") },
3193 	/* DT   R M E  V  */
3194 	{ SST(0x74, 0x71, SS_RDEF,	/* XXX TBD */
3195 	    "Logical unit access not authorized") },
3196 	/* D              */
3197 	{ SST(0x74, 0x79, SS_RDEF,	/* XXX TBD */
3198 	    "Security conflict in translated device") }
3199 };
3200 
3201 const int asc_table_size = sizeof(asc_table)/sizeof(asc_table[0]);
3202 
3203 struct asc_key
3204 {
3205 	int asc;
3206 	int ascq;
3207 };
3208 
3209 static int
3210 ascentrycomp(const void *key, const void *member)
3211 {
3212 	int asc;
3213 	int ascq;
3214 	const struct asc_table_entry *table_entry;
3215 
3216 	asc = ((const struct asc_key *)key)->asc;
3217 	ascq = ((const struct asc_key *)key)->ascq;
3218 	table_entry = (const struct asc_table_entry *)member;
3219 
3220 	if (asc >= table_entry->asc) {
3221 
3222 		if (asc > table_entry->asc)
3223 			return (1);
3224 
3225 		if (ascq <= table_entry->ascq) {
3226 			/* Check for ranges */
3227 			if (ascq == table_entry->ascq
3228 		 	 || ((table_entry->action & SSQ_RANGE) != 0
3229 		  	   && ascq >= (table_entry - 1)->ascq))
3230 				return (0);
3231 			return (-1);
3232 		}
3233 		return (1);
3234 	}
3235 	return (-1);
3236 }
3237 
3238 static int
3239 senseentrycomp(const void *key, const void *member)
3240 {
3241 	int sense_key;
3242 	const struct sense_key_table_entry *table_entry;
3243 
3244 	sense_key = *((const int *)key);
3245 	table_entry = (const struct sense_key_table_entry *)member;
3246 
3247 	if (sense_key >= table_entry->sense_key) {
3248 		if (sense_key == table_entry->sense_key)
3249 			return (0);
3250 		return (1);
3251 	}
3252 	return (-1);
3253 }
3254 
3255 static void
3256 fetchtableentries(int sense_key, int asc, int ascq,
3257 		  struct scsi_inquiry_data *inq_data,
3258 		  const struct sense_key_table_entry **sense_entry,
3259 		  const struct asc_table_entry **asc_entry)
3260 {
3261 	caddr_t match;
3262 	const struct asc_table_entry *asc_tables[2];
3263 	const struct sense_key_table_entry *sense_tables[2];
3264 	struct asc_key asc_ascq;
3265 	size_t asc_tables_size[2];
3266 	size_t sense_tables_size[2];
3267 	int num_asc_tables;
3268 	int num_sense_tables;
3269 	int i;
3270 
3271 	/* Default to failure */
3272 	*sense_entry = NULL;
3273 	*asc_entry = NULL;
3274 	match = NULL;
3275 	if (inq_data != NULL)
3276 		match = cam_quirkmatch((caddr_t)inq_data,
3277 				       (caddr_t)sense_quirk_table,
3278 				       sense_quirk_table_size,
3279 				       sizeof(*sense_quirk_table),
3280 				       scsi_inquiry_match);
3281 
3282 	if (match != NULL) {
3283 		struct scsi_sense_quirk_entry *quirk;
3284 
3285 		quirk = (struct scsi_sense_quirk_entry *)match;
3286 		asc_tables[0] = quirk->asc_info;
3287 		asc_tables_size[0] = quirk->num_ascs;
3288 		asc_tables[1] = asc_table;
3289 		asc_tables_size[1] = asc_table_size;
3290 		num_asc_tables = 2;
3291 		sense_tables[0] = quirk->sense_key_info;
3292 		sense_tables_size[0] = quirk->num_sense_keys;
3293 		sense_tables[1] = sense_key_table;
3294 		sense_tables_size[1] = sense_key_table_size;
3295 		num_sense_tables = 2;
3296 	} else {
3297 		asc_tables[0] = asc_table;
3298 		asc_tables_size[0] = asc_table_size;
3299 		num_asc_tables = 1;
3300 		sense_tables[0] = sense_key_table;
3301 		sense_tables_size[0] = sense_key_table_size;
3302 		num_sense_tables = 1;
3303 	}
3304 
3305 	asc_ascq.asc = asc;
3306 	asc_ascq.ascq = ascq;
3307 	for (i = 0; i < num_asc_tables; i++) {
3308 		void *found_entry;
3309 
3310 		found_entry = bsearch(&asc_ascq, asc_tables[i],
3311 				      asc_tables_size[i],
3312 				      sizeof(**asc_tables),
3313 				      ascentrycomp);
3314 
3315 		if (found_entry) {
3316 			*asc_entry = (struct asc_table_entry *)found_entry;
3317 			break;
3318 		}
3319 	}
3320 
3321 	for (i = 0; i < num_sense_tables; i++) {
3322 		void *found_entry;
3323 
3324 		found_entry = bsearch(&sense_key, sense_tables[i],
3325 				      sense_tables_size[i],
3326 				      sizeof(**sense_tables),
3327 				      senseentrycomp);
3328 
3329 		if (found_entry) {
3330 			*sense_entry =
3331 			    (struct sense_key_table_entry *)found_entry;
3332 			break;
3333 		}
3334 	}
3335 }
3336 
3337 void
3338 scsi_sense_desc(int sense_key, int asc, int ascq,
3339 		struct scsi_inquiry_data *inq_data,
3340 		const char **sense_key_desc, const char **asc_desc)
3341 {
3342 	const struct asc_table_entry *asc_entry;
3343 	const struct sense_key_table_entry *sense_entry;
3344 
3345 	fetchtableentries(sense_key, asc, ascq,
3346 			  inq_data,
3347 			  &sense_entry,
3348 			  &asc_entry);
3349 
3350 	if (sense_entry != NULL)
3351 		*sense_key_desc = sense_entry->desc;
3352 	else
3353 		*sense_key_desc = "Invalid Sense Key";
3354 
3355 	if (asc_entry != NULL)
3356 		*asc_desc = asc_entry->desc;
3357 	else if (asc >= 0x80 && asc <= 0xff)
3358 		*asc_desc = "Vendor Specific ASC";
3359 	else if (ascq >= 0x80 && ascq <= 0xff)
3360 		*asc_desc = "Vendor Specific ASCQ";
3361 	else
3362 		*asc_desc = "Reserved ASC/ASCQ pair";
3363 }
3364 
3365 /*
3366  * Given sense and device type information, return the appropriate action.
3367  * If we do not understand the specific error as identified by the ASC/ASCQ
3368  * pair, fall back on the more generic actions derived from the sense key.
3369  */
3370 scsi_sense_action
3371 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data,
3372 		  u_int32_t sense_flags)
3373 {
3374 	const struct asc_table_entry *asc_entry;
3375 	const struct sense_key_table_entry *sense_entry;
3376 	int error_code, sense_key, asc, ascq;
3377 	scsi_sense_action action;
3378 
3379 	if (!scsi_extract_sense_ccb((union ccb *)csio,
3380 	    &error_code, &sense_key, &asc, &ascq)) {
3381 		action = SS_RETRY | SSQ_DECREMENT_COUNT | SSQ_PRINT_SENSE | EIO;
3382 	} else if ((error_code == SSD_DEFERRED_ERROR)
3383 	 || (error_code == SSD_DESC_DEFERRED_ERROR)) {
3384 		/*
3385 		 * XXX dufault@FreeBSD.org
3386 		 * This error doesn't relate to the command associated
3387 		 * with this request sense.  A deferred error is an error
3388 		 * for a command that has already returned GOOD status
3389 		 * (see SCSI2 8.2.14.2).
3390 		 *
3391 		 * By my reading of that section, it looks like the current
3392 		 * command has been cancelled, we should now clean things up
3393 		 * (hopefully recovering any lost data) and then retry the
3394 		 * current command.  There are two easy choices, both wrong:
3395 		 *
3396 		 * 1. Drop through (like we had been doing), thus treating
3397 		 *    this as if the error were for the current command and
3398 		 *    return and stop the current command.
3399 		 *
3400 		 * 2. Issue a retry (like I made it do) thus hopefully
3401 		 *    recovering the current transfer, and ignoring the
3402 		 *    fact that we've dropped a command.
3403 		 *
3404 		 * These should probably be handled in a device specific
3405 		 * sense handler or punted back up to a user mode daemon
3406 		 */
3407 		action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3408 	} else {
3409 		fetchtableentries(sense_key, asc, ascq,
3410 				  inq_data,
3411 				  &sense_entry,
3412 				  &asc_entry);
3413 
3414 		/*
3415 		 * Override the 'No additional Sense' entry (0,0)
3416 		 * with the error action of the sense key.
3417 		 */
3418 		if (asc_entry != NULL
3419 		 && (asc != 0 || ascq != 0))
3420 			action = asc_entry->action;
3421 		else if (sense_entry != NULL)
3422 			action = sense_entry->action;
3423 		else
3424 			action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3425 
3426 		if (sense_key == SSD_KEY_RECOVERED_ERROR) {
3427 			/*
3428 			 * The action succeeded but the device wants
3429 			 * the user to know that some recovery action
3430 			 * was required.
3431 			 */
3432 			action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK);
3433 			action |= SS_NOP|SSQ_PRINT_SENSE;
3434 		} else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) {
3435 			if ((sense_flags & SF_QUIET_IR) != 0)
3436 				action &= ~SSQ_PRINT_SENSE;
3437 		} else if (sense_key == SSD_KEY_UNIT_ATTENTION) {
3438 			if ((sense_flags & SF_RETRY_UA) != 0
3439 			 && (action & SS_MASK) == SS_FAIL) {
3440 				action &= ~(SS_MASK|SSQ_MASK);
3441 				action |= SS_RETRY|SSQ_DECREMENT_COUNT|
3442 					  SSQ_PRINT_SENSE;
3443 			}
3444 			action |= SSQ_UA;
3445 		}
3446 	}
3447 	if ((action & SS_MASK) >= SS_START &&
3448 	    (sense_flags & SF_NO_RECOVERY)) {
3449 		action &= ~SS_MASK;
3450 		action |= SS_FAIL;
3451 	} else if ((action & SS_MASK) == SS_RETRY &&
3452 	    (sense_flags & SF_NO_RETRY)) {
3453 		action &= ~SS_MASK;
3454 		action |= SS_FAIL;
3455 	}
3456 	if ((sense_flags & SF_PRINT_ALWAYS) != 0)
3457 		action |= SSQ_PRINT_SENSE;
3458 	else if ((sense_flags & SF_NO_PRINT) != 0)
3459 		action &= ~SSQ_PRINT_SENSE;
3460 
3461 	return (action);
3462 }
3463 
3464 char *
3465 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len)
3466 {
3467 	struct sbuf sb;
3468 	int error;
3469 
3470 	if (len == 0)
3471 		return ("");
3472 
3473 	sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN);
3474 
3475 	scsi_cdb_sbuf(cdb_ptr, &sb);
3476 
3477 	/* ENOMEM just means that the fixed buffer is full, OK to ignore */
3478 	error = sbuf_finish(&sb);
3479 	if (error != 0 && error != ENOMEM)
3480 		return ("");
3481 
3482 	return(sbuf_data(&sb));
3483 }
3484 
3485 void
3486 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb)
3487 {
3488 	u_int8_t cdb_len;
3489 	int i;
3490 
3491 	if (cdb_ptr == NULL)
3492 		return;
3493 
3494 	/*
3495 	 * This is taken from the SCSI-3 draft spec.
3496 	 * (T10/1157D revision 0.3)
3497 	 * The top 3 bits of an opcode are the group code.  The next 5 bits
3498 	 * are the command code.
3499 	 * Group 0:  six byte commands
3500 	 * Group 1:  ten byte commands
3501 	 * Group 2:  ten byte commands
3502 	 * Group 3:  reserved
3503 	 * Group 4:  sixteen byte commands
3504 	 * Group 5:  twelve byte commands
3505 	 * Group 6:  vendor specific
3506 	 * Group 7:  vendor specific
3507 	 */
3508 	switch((*cdb_ptr >> 5) & 0x7) {
3509 		case 0:
3510 			cdb_len = 6;
3511 			break;
3512 		case 1:
3513 		case 2:
3514 			cdb_len = 10;
3515 			break;
3516 		case 3:
3517 		case 6:
3518 		case 7:
3519 			/* in this case, just print out the opcode */
3520 			cdb_len = 1;
3521 			break;
3522 		case 4:
3523 			cdb_len = 16;
3524 			break;
3525 		case 5:
3526 			cdb_len = 12;
3527 			break;
3528 	}
3529 
3530 	for (i = 0; i < cdb_len; i++)
3531 		sbuf_printf(sb, "%02hhx ", cdb_ptr[i]);
3532 
3533 	return;
3534 }
3535 
3536 const char *
3537 scsi_status_string(struct ccb_scsiio *csio)
3538 {
3539 	switch(csio->scsi_status) {
3540 	case SCSI_STATUS_OK:
3541 		return("OK");
3542 	case SCSI_STATUS_CHECK_COND:
3543 		return("Check Condition");
3544 	case SCSI_STATUS_BUSY:
3545 		return("Busy");
3546 	case SCSI_STATUS_INTERMED:
3547 		return("Intermediate");
3548 	case SCSI_STATUS_INTERMED_COND_MET:
3549 		return("Intermediate-Condition Met");
3550 	case SCSI_STATUS_RESERV_CONFLICT:
3551 		return("Reservation Conflict");
3552 	case SCSI_STATUS_CMD_TERMINATED:
3553 		return("Command Terminated");
3554 	case SCSI_STATUS_QUEUE_FULL:
3555 		return("Queue Full");
3556 	case SCSI_STATUS_ACA_ACTIVE:
3557 		return("ACA Active");
3558 	case SCSI_STATUS_TASK_ABORTED:
3559 		return("Task Aborted");
3560 	default: {
3561 		static char unkstr[64];
3562 		snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
3563 			 csio->scsi_status);
3564 		return(unkstr);
3565 	}
3566 	}
3567 }
3568 
3569 /*
3570  * scsi_command_string() returns 0 for success and -1 for failure.
3571  */
3572 #ifdef _KERNEL
3573 int
3574 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb)
3575 #else /* !_KERNEL */
3576 int
3577 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio,
3578 		    struct sbuf *sb)
3579 #endif /* _KERNEL/!_KERNEL */
3580 {
3581 	struct scsi_inquiry_data *inq_data;
3582 #ifdef _KERNEL
3583 	struct	  ccb_getdev *cgd;
3584 #endif /* _KERNEL */
3585 
3586 #ifdef _KERNEL
3587 	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
3588 		return(-1);
3589 	/*
3590 	 * Get the device information.
3591 	 */
3592 	xpt_setup_ccb(&cgd->ccb_h,
3593 		      csio->ccb_h.path,
3594 		      CAM_PRIORITY_NORMAL);
3595 	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
3596 	xpt_action((union ccb *)cgd);
3597 
3598 	/*
3599 	 * If the device is unconfigured, just pretend that it is a hard
3600 	 * drive.  scsi_op_desc() needs this.
3601 	 */
3602 	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
3603 		cgd->inq_data.device = T_DIRECT;
3604 
3605 	inq_data = &cgd->inq_data;
3606 
3607 #else /* !_KERNEL */
3608 
3609 	inq_data = &device->inq_data;
3610 
3611 #endif /* _KERNEL/!_KERNEL */
3612 
3613 	if ((csio->ccb_h.flags & CAM_CDB_POINTER) != 0) {
3614 		sbuf_printf(sb, "%s. CDB: ",
3615 			    scsi_op_desc(csio->cdb_io.cdb_ptr[0], inq_data));
3616 		scsi_cdb_sbuf(csio->cdb_io.cdb_ptr, sb);
3617 	} else {
3618 		sbuf_printf(sb, "%s. CDB: ",
3619 			    scsi_op_desc(csio->cdb_io.cdb_bytes[0], inq_data));
3620 		scsi_cdb_sbuf(csio->cdb_io.cdb_bytes, sb);
3621 	}
3622 
3623 #ifdef _KERNEL
3624 	xpt_free_ccb((union ccb *)cgd);
3625 #endif
3626 
3627 	return(0);
3628 }
3629 
3630 /*
3631  * Iterate over sense descriptors.  Each descriptor is passed into iter_func().
3632  * If iter_func() returns 0, list traversal continues.  If iter_func()
3633  * returns non-zero, list traversal is stopped.
3634  */
3635 void
3636 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
3637 		  int (*iter_func)(struct scsi_sense_data_desc *sense,
3638 				   u_int, struct scsi_sense_desc_header *,
3639 				   void *), void *arg)
3640 {
3641 	int cur_pos;
3642 	int desc_len;
3643 
3644 	/*
3645 	 * First make sure the extra length field is present.
3646 	 */
3647 	if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0)
3648 		return;
3649 
3650 	/*
3651 	 * The length of data actually returned may be different than the
3652 	 * extra_len recorded in the sturcture.
3653 	 */
3654 	desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc);
3655 
3656 	/*
3657 	 * Limit this further by the extra length reported, and the maximum
3658 	 * allowed extra length.
3659 	 */
3660 	desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX));
3661 
3662 	/*
3663 	 * Subtract the size of the header from the descriptor length.
3664 	 * This is to ensure that we have at least the header left, so we
3665 	 * don't have to check that inside the loop.  This can wind up
3666 	 * being a negative value.
3667 	 */
3668 	desc_len -= sizeof(struct scsi_sense_desc_header);
3669 
3670 	for (cur_pos = 0; cur_pos < desc_len;) {
3671 		struct scsi_sense_desc_header *header;
3672 
3673 		header = (struct scsi_sense_desc_header *)
3674 			&sense->sense_desc[cur_pos];
3675 
3676 		/*
3677 		 * Check to make sure we have the entire descriptor.  We
3678 		 * don't call iter_func() unless we do.
3679 		 *
3680 		 * Note that although cur_pos is at the beginning of the
3681 		 * descriptor, desc_len already has the header length
3682 		 * subtracted.  So the comparison of the length in the
3683 		 * header (which does not include the header itself) to
3684 		 * desc_len - cur_pos is correct.
3685 		 */
3686 		if (header->length > (desc_len - cur_pos))
3687 			break;
3688 
3689 		if (iter_func(sense, sense_len, header, arg) != 0)
3690 			break;
3691 
3692 		cur_pos += sizeof(*header) + header->length;
3693 	}
3694 }
3695 
3696 struct scsi_find_desc_info {
3697 	uint8_t desc_type;
3698 	struct scsi_sense_desc_header *header;
3699 };
3700 
3701 static int
3702 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
3703 		    struct scsi_sense_desc_header *header, void *arg)
3704 {
3705 	struct scsi_find_desc_info *desc_info;
3706 
3707 	desc_info = (struct scsi_find_desc_info *)arg;
3708 
3709 	if (header->desc_type == desc_info->desc_type) {
3710 		desc_info->header = header;
3711 
3712 		/* We found the descriptor, tell the iterator to stop. */
3713 		return (1);
3714 	} else
3715 		return (0);
3716 }
3717 
3718 /*
3719  * Given a descriptor type, return a pointer to it if it is in the sense
3720  * data and not truncated.  Avoiding truncating sense data will simplify
3721  * things significantly for the caller.
3722  */
3723 uint8_t *
3724 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
3725 	       uint8_t desc_type)
3726 {
3727 	struct scsi_find_desc_info desc_info;
3728 
3729 	desc_info.desc_type = desc_type;
3730 	desc_info.header = NULL;
3731 
3732 	scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info);
3733 
3734 	return ((uint8_t *)desc_info.header);
3735 }
3736 
3737 /*
3738  * Fill in SCSI sense data with the specified parameters.  This routine can
3739  * fill in either fixed or descriptor type sense data.
3740  */
3741 void
3742 scsi_set_sense_data_va(struct scsi_sense_data *sense_data,
3743 		      scsi_sense_data_type sense_format, int current_error,
3744 		      int sense_key, int asc, int ascq, va_list ap)
3745 {
3746 	int descriptor_sense;
3747 	scsi_sense_elem_type elem_type;
3748 
3749 	/*
3750 	 * Determine whether to return fixed or descriptor format sense
3751 	 * data.  If the user specifies SSD_TYPE_NONE for some reason,
3752 	 * they'll just get fixed sense data.
3753 	 */
3754 	if (sense_format == SSD_TYPE_DESC)
3755 		descriptor_sense = 1;
3756 	else
3757 		descriptor_sense = 0;
3758 
3759 	/*
3760 	 * Zero the sense data, so that we don't pass back any garbage data
3761 	 * to the user.
3762 	 */
3763 	memset(sense_data, 0, sizeof(*sense_data));
3764 
3765 	if (descriptor_sense != 0) {
3766 		struct scsi_sense_data_desc *sense;
3767 
3768 		sense = (struct scsi_sense_data_desc *)sense_data;
3769 		/*
3770 		 * The descriptor sense format eliminates the use of the
3771 		 * valid bit.
3772 		 */
3773 		if (current_error != 0)
3774 			sense->error_code = SSD_DESC_CURRENT_ERROR;
3775 		else
3776 			sense->error_code = SSD_DESC_DEFERRED_ERROR;
3777 		sense->sense_key = sense_key;
3778 		sense->add_sense_code = asc;
3779 		sense->add_sense_code_qual = ascq;
3780 		/*
3781 		 * Start off with no extra length, since the above data
3782 		 * fits in the standard descriptor sense information.
3783 		 */
3784 		sense->extra_len = 0;
3785 		while ((elem_type = (scsi_sense_elem_type)va_arg(ap,
3786 			scsi_sense_elem_type)) != SSD_ELEM_NONE) {
3787 			int sense_len, len_to_copy;
3788 			uint8_t *data;
3789 
3790 			if (elem_type >= SSD_ELEM_MAX) {
3791 				printf("%s: invalid sense type %d\n", __func__,
3792 				       elem_type);
3793 				break;
3794 			}
3795 
3796 			sense_len = (int)va_arg(ap, int);
3797 			len_to_copy = MIN(sense_len, SSD_EXTRA_MAX -
3798 					  sense->extra_len);
3799 			data = (uint8_t *)va_arg(ap, uint8_t *);
3800 
3801 			/*
3802 			 * We've already consumed the arguments for this one.
3803 			 */
3804 			if (elem_type == SSD_ELEM_SKIP)
3805 				continue;
3806 
3807 			switch (elem_type) {
3808 			case SSD_ELEM_DESC: {
3809 
3810 				/*
3811 				 * This is a straight descriptor.  All we
3812 				 * need to do is copy the data in.
3813 				 */
3814 				bcopy(data, &sense->sense_desc[
3815 				      sense->extra_len], len_to_copy);
3816 				sense->extra_len += len_to_copy;
3817 				break;
3818 			}
3819 			case SSD_ELEM_SKS: {
3820 				struct scsi_sense_sks sks;
3821 
3822 				bzero(&sks, sizeof(sks));
3823 
3824 				/*
3825 				 * This is already-formatted sense key
3826 				 * specific data.  We just need to fill out
3827 				 * the header and copy everything in.
3828 				 */
3829 				bcopy(data, &sks.sense_key_spec,
3830 				      MIN(len_to_copy,
3831 				          sizeof(sks.sense_key_spec)));
3832 
3833 				sks.desc_type = SSD_DESC_SKS;
3834 				sks.length = sizeof(sks) -
3835 				    offsetof(struct scsi_sense_sks, reserved1);
3836 				bcopy(&sks,&sense->sense_desc[sense->extra_len],
3837 				      sizeof(sks));
3838 				sense->extra_len += sizeof(sks);
3839 				break;
3840 			}
3841 			case SSD_ELEM_INFO:
3842 			case SSD_ELEM_COMMAND: {
3843 				struct scsi_sense_command cmd;
3844 				struct scsi_sense_info info;
3845 				uint8_t *data_dest;
3846 				uint8_t *descriptor;
3847 				int descriptor_size, i, copy_len;
3848 
3849 				bzero(&cmd, sizeof(cmd));
3850 				bzero(&info, sizeof(info));
3851 
3852 				/*
3853 				 * Command or information data.  The
3854 				 * operate in pretty much the same way.
3855 				 */
3856 				if (elem_type == SSD_ELEM_COMMAND) {
3857 					len_to_copy = MIN(len_to_copy,
3858 					    sizeof(cmd.command_info));
3859 					descriptor = (uint8_t *)&cmd;
3860 					descriptor_size  = sizeof(cmd);
3861 					data_dest =(uint8_t *)&cmd.command_info;
3862 					cmd.desc_type = SSD_DESC_COMMAND;
3863 					cmd.length = sizeof(cmd) -
3864 					    offsetof(struct scsi_sense_command,
3865 						     reserved);
3866 				} else {
3867 					len_to_copy = MIN(len_to_copy,
3868 					    sizeof(info.info));
3869 					descriptor = (uint8_t *)&info;
3870 					descriptor_size = sizeof(cmd);
3871 					data_dest = (uint8_t *)&info.info;
3872 					info.desc_type = SSD_DESC_INFO;
3873 					info.byte2 = SSD_INFO_VALID;
3874 					info.length = sizeof(info) -
3875 					    offsetof(struct scsi_sense_info,
3876 						     byte2);
3877 				}
3878 
3879 				/*
3880 				 * Copy this in reverse because the spec
3881 				 * (SPC-4) says that when 4 byte quantities
3882 				 * are stored in this 8 byte field, the
3883 				 * first four bytes shall be 0.
3884 				 *
3885 				 * So we fill the bytes in from the end, and
3886 				 * if we have less than 8 bytes to copy,
3887 				 * the initial, most significant bytes will
3888 				 * be 0.
3889 				 */
3890 				for (i = sense_len - 1; i >= 0 &&
3891 				     len_to_copy > 0; i--, len_to_copy--)
3892 					data_dest[len_to_copy - 1] = data[i];
3893 
3894 				/*
3895 				 * This calculation looks much like the
3896 				 * initial len_to_copy calculation, but
3897 				 * we have to do it again here, because
3898 				 * we're looking at a larger amount that
3899 				 * may or may not fit.  It's not only the
3900 				 * data the user passed in, but also the
3901 				 * rest of the descriptor.
3902 				 */
3903 				copy_len = MIN(descriptor_size,
3904 				    SSD_EXTRA_MAX - sense->extra_len);
3905 				bcopy(descriptor, &sense->sense_desc[
3906 				      sense->extra_len], copy_len);
3907 				sense->extra_len += copy_len;
3908 				break;
3909 			}
3910 			case SSD_ELEM_FRU: {
3911 				struct scsi_sense_fru fru;
3912 				int copy_len;
3913 
3914 				bzero(&fru, sizeof(fru));
3915 
3916 				fru.desc_type = SSD_DESC_FRU;
3917 				fru.length = sizeof(fru) -
3918 				    offsetof(struct scsi_sense_fru, reserved);
3919 				fru.fru = *data;
3920 
3921 				copy_len = MIN(sizeof(fru), SSD_EXTRA_MAX -
3922 					       sense->extra_len);
3923 				bcopy(&fru, &sense->sense_desc[
3924 				      sense->extra_len], copy_len);
3925 				sense->extra_len += copy_len;
3926 				break;
3927 			}
3928 			case SSD_ELEM_STREAM: {
3929 				struct scsi_sense_stream stream_sense;
3930 				int copy_len;
3931 
3932 				bzero(&stream_sense, sizeof(stream_sense));
3933 				stream_sense.desc_type = SSD_DESC_STREAM;
3934 				stream_sense.length = sizeof(stream_sense) -
3935 				   offsetof(struct scsi_sense_stream, reserved);
3936 				stream_sense.byte3 = *data;
3937 
3938 				copy_len = MIN(sizeof(stream_sense),
3939 				    SSD_EXTRA_MAX - sense->extra_len);
3940 				bcopy(&stream_sense, &sense->sense_desc[
3941 				      sense->extra_len], copy_len);
3942 				sense->extra_len += copy_len;
3943 				break;
3944 			}
3945 			default:
3946 				/*
3947 				 * We shouldn't get here, but if we do, do
3948 				 * nothing.  We've already consumed the
3949 				 * arguments above.
3950 				 */
3951 				break;
3952 			}
3953 		}
3954 	} else {
3955 		struct scsi_sense_data_fixed *sense;
3956 
3957 		sense = (struct scsi_sense_data_fixed *)sense_data;
3958 
3959 		if (current_error != 0)
3960 			sense->error_code = SSD_CURRENT_ERROR;
3961 		else
3962 			sense->error_code = SSD_DEFERRED_ERROR;
3963 
3964 		sense->flags = sense_key;
3965 		sense->add_sense_code = asc;
3966 		sense->add_sense_code_qual = ascq;
3967 		/*
3968 		 * We've set the ASC and ASCQ, so we have 6 more bytes of
3969 		 * valid data.  If we wind up setting any of the other
3970 		 * fields, we'll bump this to 10 extra bytes.
3971 		 */
3972 		sense->extra_len = 6;
3973 
3974 		while ((elem_type = (scsi_sense_elem_type)va_arg(ap,
3975 			scsi_sense_elem_type)) != SSD_ELEM_NONE) {
3976 			int sense_len, len_to_copy;
3977 			uint8_t *data;
3978 
3979 			if (elem_type >= SSD_ELEM_MAX) {
3980 				printf("%s: invalid sense type %d\n", __func__,
3981 				       elem_type);
3982 				break;
3983 			}
3984 			/*
3985 			 * If we get in here, just bump the extra length to
3986 			 * 10 bytes.  That will encompass anything we're
3987 			 * going to set here.
3988 			 */
3989 			sense->extra_len = 10;
3990 			sense_len = (int)va_arg(ap, int);
3991 			data = (uint8_t *)va_arg(ap, uint8_t *);
3992 
3993 			switch (elem_type) {
3994 			case SSD_ELEM_SKS:
3995 				/*
3996 				 * The user passed in pre-formatted sense
3997 				 * key specific data.
3998 				 */
3999 				bcopy(data, &sense->sense_key_spec[0],
4000 				      MIN(sizeof(sense->sense_key_spec),
4001 				      sense_len));
4002 				break;
4003 			case SSD_ELEM_INFO:
4004 			case SSD_ELEM_COMMAND: {
4005 				uint8_t *data_dest;
4006 				int i;
4007 
4008 				if (elem_type == SSD_ELEM_COMMAND) {
4009 					data_dest = &sense->cmd_spec_info[0];
4010 					len_to_copy = MIN(sense_len,
4011 					    sizeof(sense->cmd_spec_info));
4012 				} else {
4013 					data_dest = &sense->info[0];
4014 					len_to_copy = MIN(sense_len,
4015 					    sizeof(sense->info));
4016 					/*
4017 					 * We're setting the info field, so
4018 					 * set the valid bit.
4019 					 */
4020 					sense->error_code |= SSD_ERRCODE_VALID;
4021 				}
4022 
4023 				/*
4024 			 	 * Copy this in reverse so that if we have
4025 				 * less than 4 bytes to fill, the least
4026 				 * significant bytes will be at the end.
4027 				 * If we have more than 4 bytes, only the
4028 				 * least significant bytes will be included.
4029 				 */
4030 				for (i = sense_len - 1; i >= 0 &&
4031 				     len_to_copy > 0; i--, len_to_copy--)
4032 					data_dest[len_to_copy - 1] = data[i];
4033 
4034 				break;
4035 			}
4036 			case SSD_ELEM_FRU:
4037 				sense->fru = *data;
4038 				break;
4039 			case SSD_ELEM_STREAM:
4040 				sense->flags |= *data;
4041 				break;
4042 			case SSD_ELEM_DESC:
4043 			default:
4044 
4045 				/*
4046 				 * If the user passes in descriptor sense,
4047 				 * we can't handle that in fixed format.
4048 				 * So just skip it, and any unknown argument
4049 				 * types.
4050 				 */
4051 				break;
4052 			}
4053 		}
4054 	}
4055 }
4056 
4057 void
4058 scsi_set_sense_data(struct scsi_sense_data *sense_data,
4059 		    scsi_sense_data_type sense_format, int current_error,
4060 		    int sense_key, int asc, int ascq, ...)
4061 {
4062 	va_list ap;
4063 
4064 	va_start(ap, ascq);
4065 	scsi_set_sense_data_va(sense_data, sense_format, current_error,
4066 			       sense_key, asc, ascq, ap);
4067 	va_end(ap);
4068 }
4069 
4070 /*
4071  * Get sense information for three similar sense data types.
4072  */
4073 int
4074 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
4075 		    uint8_t info_type, uint64_t *info, int64_t *signed_info)
4076 {
4077 	scsi_sense_data_type sense_type;
4078 
4079 	if (sense_len == 0)
4080 		goto bailout;
4081 
4082 	sense_type = scsi_sense_type(sense_data);
4083 
4084 	switch (sense_type) {
4085 	case SSD_TYPE_DESC: {
4086 		struct scsi_sense_data_desc *sense;
4087 		uint8_t *desc;
4088 
4089 		sense = (struct scsi_sense_data_desc *)sense_data;
4090 
4091 		desc = scsi_find_desc(sense, sense_len, info_type);
4092 		if (desc == NULL)
4093 			goto bailout;
4094 
4095 		switch (info_type) {
4096 		case SSD_DESC_INFO: {
4097 			struct scsi_sense_info *info_desc;
4098 
4099 			info_desc = (struct scsi_sense_info *)desc;
4100 			*info = scsi_8btou64(info_desc->info);
4101 			if (signed_info != NULL)
4102 				*signed_info = *info;
4103 			break;
4104 		}
4105 		case SSD_DESC_COMMAND: {
4106 			struct scsi_sense_command *cmd_desc;
4107 
4108 			cmd_desc = (struct scsi_sense_command *)desc;
4109 
4110 			*info = scsi_8btou64(cmd_desc->command_info);
4111 			if (signed_info != NULL)
4112 				*signed_info = *info;
4113 			break;
4114 		}
4115 		case SSD_DESC_FRU: {
4116 			struct scsi_sense_fru *fru_desc;
4117 
4118 			fru_desc = (struct scsi_sense_fru *)desc;
4119 
4120 			*info = fru_desc->fru;
4121 			if (signed_info != NULL)
4122 				*signed_info = (int8_t)fru_desc->fru;
4123 			break;
4124 		}
4125 		default:
4126 			goto bailout;
4127 			break;
4128 		}
4129 		break;
4130 	}
4131 	case SSD_TYPE_FIXED: {
4132 		struct scsi_sense_data_fixed *sense;
4133 
4134 		sense = (struct scsi_sense_data_fixed *)sense_data;
4135 
4136 		switch (info_type) {
4137 		case SSD_DESC_INFO: {
4138 			uint32_t info_val;
4139 
4140 			if ((sense->error_code & SSD_ERRCODE_VALID) == 0)
4141 				goto bailout;
4142 
4143 			if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0)
4144 				goto bailout;
4145 
4146 			info_val = scsi_4btoul(sense->info);
4147 
4148 			*info = info_val;
4149 			if (signed_info != NULL)
4150 				*signed_info = (int32_t)info_val;
4151 			break;
4152 		}
4153 		case SSD_DESC_COMMAND: {
4154 			uint32_t cmd_val;
4155 
4156 			if ((SSD_FIXED_IS_PRESENT(sense, sense_len,
4157 			     cmd_spec_info) == 0)
4158 			 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0))
4159 				goto bailout;
4160 
4161 			cmd_val = scsi_4btoul(sense->cmd_spec_info);
4162 			if (cmd_val == 0)
4163 				goto bailout;
4164 
4165 			*info = cmd_val;
4166 			if (signed_info != NULL)
4167 				*signed_info = (int32_t)cmd_val;
4168 			break;
4169 		}
4170 		case SSD_DESC_FRU:
4171 			if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0)
4172 			 || (SSD_FIXED_IS_FILLED(sense, fru) == 0))
4173 				goto bailout;
4174 
4175 			if (sense->fru == 0)
4176 				goto bailout;
4177 
4178 			*info = sense->fru;
4179 			if (signed_info != NULL)
4180 				*signed_info = (int8_t)sense->fru;
4181 			break;
4182 		default:
4183 			goto bailout;
4184 			break;
4185 		}
4186 		break;
4187 	}
4188 	default:
4189 		goto bailout;
4190 		break;
4191 	}
4192 
4193 	return (0);
4194 bailout:
4195 	return (1);
4196 }
4197 
4198 int
4199 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks)
4200 {
4201 	scsi_sense_data_type sense_type;
4202 
4203 	if (sense_len == 0)
4204 		goto bailout;
4205 
4206 	sense_type = scsi_sense_type(sense_data);
4207 
4208 	switch (sense_type) {
4209 	case SSD_TYPE_DESC: {
4210 		struct scsi_sense_data_desc *sense;
4211 		struct scsi_sense_sks *desc;
4212 
4213 		sense = (struct scsi_sense_data_desc *)sense_data;
4214 
4215 		desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len,
4216 							       SSD_DESC_SKS);
4217 		if (desc == NULL)
4218 			goto bailout;
4219 
4220 		/*
4221 		 * No need to check the SKS valid bit for descriptor sense.
4222 		 * If the descriptor is present, it is valid.
4223 		 */
4224 		bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec));
4225 		break;
4226 	}
4227 	case SSD_TYPE_FIXED: {
4228 		struct scsi_sense_data_fixed *sense;
4229 
4230 		sense = (struct scsi_sense_data_fixed *)sense_data;
4231 
4232 		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0)
4233 		 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0))
4234 			goto bailout;
4235 
4236 		if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0)
4237 			goto bailout;
4238 
4239 		bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec));
4240 		break;
4241 	}
4242 	default:
4243 		goto bailout;
4244 		break;
4245 	}
4246 	return (0);
4247 bailout:
4248 	return (1);
4249 }
4250 
4251 /*
4252  * Provide a common interface for fixed and descriptor sense to detect
4253  * whether we have block-specific sense information.  It is clear by the
4254  * presence of the block descriptor in descriptor mode, but we have to
4255  * infer from the inquiry data and ILI bit in fixed mode.
4256  */
4257 int
4258 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
4259 		    struct scsi_inquiry_data *inq_data, uint8_t *block_bits)
4260 {
4261 	scsi_sense_data_type sense_type;
4262 
4263 	if (inq_data != NULL) {
4264 		switch (SID_TYPE(inq_data)) {
4265 		case T_DIRECT:
4266 		case T_RBC:
4267 			break;
4268 		default:
4269 			goto bailout;
4270 			break;
4271 		}
4272 	}
4273 
4274 	sense_type = scsi_sense_type(sense_data);
4275 
4276 	switch (sense_type) {
4277 	case SSD_TYPE_DESC: {
4278 		struct scsi_sense_data_desc *sense;
4279 		struct scsi_sense_block *block;
4280 
4281 		sense = (struct scsi_sense_data_desc *)sense_data;
4282 
4283 		block = (struct scsi_sense_block *)scsi_find_desc(sense,
4284 		    sense_len, SSD_DESC_BLOCK);
4285 		if (block == NULL)
4286 			goto bailout;
4287 
4288 		*block_bits = block->byte3;
4289 		break;
4290 	}
4291 	case SSD_TYPE_FIXED: {
4292 		struct scsi_sense_data_fixed *sense;
4293 
4294 		sense = (struct scsi_sense_data_fixed *)sense_data;
4295 
4296 		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4297 			goto bailout;
4298 
4299 		if ((sense->flags & SSD_ILI) == 0)
4300 			goto bailout;
4301 
4302 		*block_bits = sense->flags & SSD_ILI;
4303 		break;
4304 	}
4305 	default:
4306 		goto bailout;
4307 		break;
4308 	}
4309 	return (0);
4310 bailout:
4311 	return (1);
4312 }
4313 
4314 int
4315 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
4316 		     struct scsi_inquiry_data *inq_data, uint8_t *stream_bits)
4317 {
4318 	scsi_sense_data_type sense_type;
4319 
4320 	if (inq_data != NULL) {
4321 		switch (SID_TYPE(inq_data)) {
4322 		case T_SEQUENTIAL:
4323 			break;
4324 		default:
4325 			goto bailout;
4326 			break;
4327 		}
4328 	}
4329 
4330 	sense_type = scsi_sense_type(sense_data);
4331 
4332 	switch (sense_type) {
4333 	case SSD_TYPE_DESC: {
4334 		struct scsi_sense_data_desc *sense;
4335 		struct scsi_sense_stream *stream;
4336 
4337 		sense = (struct scsi_sense_data_desc *)sense_data;
4338 
4339 		stream = (struct scsi_sense_stream *)scsi_find_desc(sense,
4340 		    sense_len, SSD_DESC_STREAM);
4341 		if (stream == NULL)
4342 			goto bailout;
4343 
4344 		*stream_bits = stream->byte3;
4345 		break;
4346 	}
4347 	case SSD_TYPE_FIXED: {
4348 		struct scsi_sense_data_fixed *sense;
4349 
4350 		sense = (struct scsi_sense_data_fixed *)sense_data;
4351 
4352 		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4353 			goto bailout;
4354 
4355 		if ((sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK)) == 0)
4356 			goto bailout;
4357 
4358 		*stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK);
4359 		break;
4360 	}
4361 	default:
4362 		goto bailout;
4363 		break;
4364 	}
4365 	return (0);
4366 bailout:
4367 	return (1);
4368 }
4369 
4370 void
4371 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4372 	       struct scsi_inquiry_data *inq_data, uint64_t info)
4373 {
4374 	sbuf_printf(sb, "Info: %#jx", info);
4375 }
4376 
4377 void
4378 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4379 		  struct scsi_inquiry_data *inq_data, uint64_t csi)
4380 {
4381 	sbuf_printf(sb, "Command Specific Info: %#jx", csi);
4382 }
4383 
4384 
4385 void
4386 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress)
4387 {
4388 	sbuf_printf(sb, "Progress: %d%% (%d/%d) complete",
4389 		    (progress * 100) / SSD_SKS_PROGRESS_DENOM,
4390 		    progress, SSD_SKS_PROGRESS_DENOM);
4391 }
4392 
4393 /*
4394  * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success.
4395  */
4396 int
4397 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks)
4398 {
4399 	if ((sks[0] & SSD_SKS_VALID) == 0)
4400 		return (1);
4401 
4402 	switch (sense_key) {
4403 	case SSD_KEY_ILLEGAL_REQUEST: {
4404 		struct scsi_sense_sks_field *field;
4405 		int bad_command;
4406 		char tmpstr[40];
4407 
4408 		/*Field Pointer*/
4409 		field = (struct scsi_sense_sks_field *)sks;
4410 
4411 		if (field->byte0 & SSD_SKS_FIELD_CMD)
4412 			bad_command = 1;
4413 		else
4414 			bad_command = 0;
4415 
4416 		tmpstr[0] = '\0';
4417 
4418 		/* Bit pointer is valid */
4419 		if (field->byte0 & SSD_SKS_BPV)
4420 			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4421 				 field->byte0 & SSD_SKS_BIT_VALUE);
4422 
4423 		sbuf_printf(sb, "%s byte %d %sis invalid",
4424 			    bad_command ? "Command" : "Data",
4425 			    scsi_2btoul(field->field), tmpstr);
4426 		break;
4427 	}
4428 	case SSD_KEY_UNIT_ATTENTION: {
4429 		struct scsi_sense_sks_overflow *overflow;
4430 
4431 		overflow = (struct scsi_sense_sks_overflow *)sks;
4432 
4433 		/*UA Condition Queue Overflow*/
4434 		sbuf_printf(sb, "Unit Attention Condition Queue %s",
4435 			    (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ?
4436 			    "Overflowed" : "Did Not Overflow??");
4437 		break;
4438 	}
4439 	case SSD_KEY_RECOVERED_ERROR:
4440 	case SSD_KEY_HARDWARE_ERROR:
4441 	case SSD_KEY_MEDIUM_ERROR: {
4442 		struct scsi_sense_sks_retry *retry;
4443 
4444 		/*Actual Retry Count*/
4445 		retry = (struct scsi_sense_sks_retry *)sks;
4446 
4447 		sbuf_printf(sb, "Actual Retry Count: %d",
4448 			    scsi_2btoul(retry->actual_retry_count));
4449 		break;
4450 	}
4451 	case SSD_KEY_NO_SENSE:
4452 	case SSD_KEY_NOT_READY: {
4453 		struct scsi_sense_sks_progress *progress;
4454 		int progress_val;
4455 
4456 		/*Progress Indication*/
4457 		progress = (struct scsi_sense_sks_progress *)sks;
4458 		progress_val = scsi_2btoul(progress->progress);
4459 
4460 		scsi_progress_sbuf(sb, progress_val);
4461 		break;
4462 	}
4463 	case SSD_KEY_COPY_ABORTED: {
4464 		struct scsi_sense_sks_segment *segment;
4465 		char tmpstr[40];
4466 
4467 		/*Segment Pointer*/
4468 		segment = (struct scsi_sense_sks_segment *)sks;
4469 
4470 		tmpstr[0] = '\0';
4471 
4472 		if (segment->byte0 & SSD_SKS_SEGMENT_BPV)
4473 			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4474 				 segment->byte0 & SSD_SKS_SEGMENT_BITPTR);
4475 
4476 		sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 &
4477 			    SSD_SKS_SEGMENT_SD) ? "Segment" : "Data",
4478 			    scsi_2btoul(segment->field), tmpstr);
4479 		break;
4480 	}
4481 	default:
4482 		sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0],
4483 			    scsi_2btoul(&sks[1]));
4484 		break;
4485 	}
4486 
4487 	return (0);
4488 }
4489 
4490 void
4491 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru)
4492 {
4493 	sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru);
4494 }
4495 
4496 void
4497 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits, uint64_t info)
4498 {
4499 	int need_comma;
4500 
4501 	need_comma = 0;
4502 	/*
4503 	 * XXX KDM this needs more descriptive decoding.
4504 	 */
4505 	if (stream_bits & SSD_DESC_STREAM_FM) {
4506 		sbuf_printf(sb, "Filemark");
4507 		need_comma = 1;
4508 	}
4509 
4510 	if (stream_bits & SSD_DESC_STREAM_EOM) {
4511 		sbuf_printf(sb, "%sEOM", (need_comma) ? "," : "");
4512 		need_comma = 1;
4513 	}
4514 
4515 	if (stream_bits & SSD_DESC_STREAM_ILI)
4516 		sbuf_printf(sb, "%sILI", (need_comma) ? "," : "");
4517 
4518 	sbuf_printf(sb, ": Info: %#jx", (uintmax_t) info);
4519 }
4520 
4521 void
4522 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits, uint64_t info)
4523 {
4524 	if (block_bits & SSD_DESC_BLOCK_ILI)
4525 		sbuf_printf(sb, "ILI: residue %#jx", (uintmax_t) info);
4526 }
4527 
4528 void
4529 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4530 		     u_int sense_len, uint8_t *cdb, int cdb_len,
4531 		     struct scsi_inquiry_data *inq_data,
4532 		     struct scsi_sense_desc_header *header)
4533 {
4534 	struct scsi_sense_info *info;
4535 
4536 	info = (struct scsi_sense_info *)header;
4537 
4538 	scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info));
4539 }
4540 
4541 void
4542 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4543 			u_int sense_len, uint8_t *cdb, int cdb_len,
4544 			struct scsi_inquiry_data *inq_data,
4545 			struct scsi_sense_desc_header *header)
4546 {
4547 	struct scsi_sense_command *command;
4548 
4549 	command = (struct scsi_sense_command *)header;
4550 
4551 	scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
4552 			  scsi_8btou64(command->command_info));
4553 }
4554 
4555 void
4556 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4557 		    u_int sense_len, uint8_t *cdb, int cdb_len,
4558 		    struct scsi_inquiry_data *inq_data,
4559 		    struct scsi_sense_desc_header *header)
4560 {
4561 	struct scsi_sense_sks *sks;
4562 	int error_code, sense_key, asc, ascq;
4563 
4564 	sks = (struct scsi_sense_sks *)header;
4565 
4566 	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4567 			       &asc, &ascq, /*show_errors*/ 1);
4568 
4569 	scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec);
4570 }
4571 
4572 void
4573 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4574 		    u_int sense_len, uint8_t *cdb, int cdb_len,
4575 		    struct scsi_inquiry_data *inq_data,
4576 		    struct scsi_sense_desc_header *header)
4577 {
4578 	struct scsi_sense_fru *fru;
4579 
4580 	fru = (struct scsi_sense_fru *)header;
4581 
4582 	scsi_fru_sbuf(sb, (uint64_t)fru->fru);
4583 }
4584 
4585 void
4586 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4587 		       u_int sense_len, uint8_t *cdb, int cdb_len,
4588 		       struct scsi_inquiry_data *inq_data,
4589 		       struct scsi_sense_desc_header *header)
4590 {
4591 	struct scsi_sense_stream *stream;
4592 	uint64_t info;
4593 
4594 	stream = (struct scsi_sense_stream *)header;
4595 	info = 0;
4596 
4597 	scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL);
4598 
4599 	scsi_stream_sbuf(sb, stream->byte3, info);
4600 }
4601 
4602 void
4603 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4604 		      u_int sense_len, uint8_t *cdb, int cdb_len,
4605 		      struct scsi_inquiry_data *inq_data,
4606 		      struct scsi_sense_desc_header *header)
4607 {
4608 	struct scsi_sense_block *block;
4609 	uint64_t info;
4610 
4611 	block = (struct scsi_sense_block *)header;
4612 	info = 0;
4613 
4614 	scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL);
4615 
4616 	scsi_block_sbuf(sb, block->byte3, info);
4617 }
4618 
4619 void
4620 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4621 			 u_int sense_len, uint8_t *cdb, int cdb_len,
4622 			 struct scsi_inquiry_data *inq_data,
4623 			 struct scsi_sense_desc_header *header)
4624 {
4625 	struct scsi_sense_progress *progress;
4626 	const char *sense_key_desc;
4627 	const char *asc_desc;
4628 	int progress_val;
4629 
4630 	progress = (struct scsi_sense_progress *)header;
4631 
4632 	/*
4633 	 * Get descriptions for the sense key, ASC, and ASCQ in the
4634 	 * progress descriptor.  These could be different than the values
4635 	 * in the overall sense data.
4636 	 */
4637 	scsi_sense_desc(progress->sense_key, progress->add_sense_code,
4638 			progress->add_sense_code_qual, inq_data,
4639 			&sense_key_desc, &asc_desc);
4640 
4641 	progress_val = scsi_2btoul(progress->progress);
4642 
4643 	/*
4644 	 * The progress indicator is for the operation described by the
4645 	 * sense key, ASC, and ASCQ in the descriptor.
4646 	 */
4647 	sbuf_cat(sb, sense_key_desc);
4648 	sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code,
4649 		    progress->add_sense_code_qual, asc_desc);
4650 	scsi_progress_sbuf(sb, progress_val);
4651 }
4652 
4653 /*
4654  * Generic sense descriptor printing routine.  This is used when we have
4655  * not yet implemented a specific printing routine for this descriptor.
4656  */
4657 void
4658 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4659 			u_int sense_len, uint8_t *cdb, int cdb_len,
4660 			struct scsi_inquiry_data *inq_data,
4661 			struct scsi_sense_desc_header *header)
4662 {
4663 	int i;
4664 	uint8_t *buf_ptr;
4665 
4666 	sbuf_printf(sb, "Descriptor %#x:", header->desc_type);
4667 
4668 	buf_ptr = (uint8_t *)&header[1];
4669 
4670 	for (i = 0; i < header->length; i++, buf_ptr++)
4671 		sbuf_printf(sb, " %02x", *buf_ptr);
4672 }
4673 
4674 /*
4675  * Keep this list in numeric order.  This speeds the array traversal.
4676  */
4677 struct scsi_sense_desc_printer {
4678 	uint8_t desc_type;
4679 	/*
4680 	 * The function arguments here are the superset of what is needed
4681 	 * to print out various different descriptors.  Command and
4682 	 * information descriptors need inquiry data and command type.
4683 	 * Sense key specific descriptors need the sense key.
4684 	 *
4685 	 * The sense, cdb, and inquiry data arguments may be NULL, but the
4686 	 * information printed may not be fully decoded as a result.
4687 	 */
4688 	void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense,
4689 			   u_int sense_len, uint8_t *cdb, int cdb_len,
4690 			   struct scsi_inquiry_data *inq_data,
4691 			   struct scsi_sense_desc_header *header);
4692 } scsi_sense_printers[] = {
4693 	{SSD_DESC_INFO, scsi_sense_info_sbuf},
4694 	{SSD_DESC_COMMAND, scsi_sense_command_sbuf},
4695 	{SSD_DESC_SKS, scsi_sense_sks_sbuf},
4696 	{SSD_DESC_FRU, scsi_sense_fru_sbuf},
4697 	{SSD_DESC_STREAM, scsi_sense_stream_sbuf},
4698 	{SSD_DESC_BLOCK, scsi_sense_block_sbuf},
4699 	{SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}
4700 };
4701 
4702 void
4703 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4704 		     u_int sense_len, uint8_t *cdb, int cdb_len,
4705 		     struct scsi_inquiry_data *inq_data,
4706 		     struct scsi_sense_desc_header *header)
4707 {
4708 	int i;
4709 
4710 	for (i = 0; i < (sizeof(scsi_sense_printers) /
4711 	     sizeof(scsi_sense_printers[0])); i++) {
4712 		struct scsi_sense_desc_printer *printer;
4713 
4714 		printer = &scsi_sense_printers[i];
4715 
4716 		/*
4717 		 * The list is sorted, so quit if we've passed our
4718 		 * descriptor number.
4719 		 */
4720 		if (printer->desc_type > header->desc_type)
4721 			break;
4722 
4723 		if (printer->desc_type != header->desc_type)
4724 			continue;
4725 
4726 		printer->print_func(sb, sense, sense_len, cdb, cdb_len,
4727 				    inq_data, header);
4728 
4729 		return;
4730 	}
4731 
4732 	/*
4733 	 * No specific printing routine, so use the generic routine.
4734 	 */
4735 	scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len,
4736 				inq_data, header);
4737 }
4738 
4739 scsi_sense_data_type
4740 scsi_sense_type(struct scsi_sense_data *sense_data)
4741 {
4742 	switch (sense_data->error_code & SSD_ERRCODE) {
4743 	case SSD_DESC_CURRENT_ERROR:
4744 	case SSD_DESC_DEFERRED_ERROR:
4745 		return (SSD_TYPE_DESC);
4746 		break;
4747 	case SSD_CURRENT_ERROR:
4748 	case SSD_DEFERRED_ERROR:
4749 		return (SSD_TYPE_FIXED);
4750 		break;
4751 	default:
4752 		break;
4753 	}
4754 
4755 	return (SSD_TYPE_NONE);
4756 }
4757 
4758 struct scsi_print_sense_info {
4759 	struct sbuf *sb;
4760 	char *path_str;
4761 	uint8_t *cdb;
4762 	int cdb_len;
4763 	struct scsi_inquiry_data *inq_data;
4764 };
4765 
4766 static int
4767 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
4768 		     struct scsi_sense_desc_header *header, void *arg)
4769 {
4770 	struct scsi_print_sense_info *print_info;
4771 
4772 	print_info = (struct scsi_print_sense_info *)arg;
4773 
4774 	switch (header->desc_type) {
4775 	case SSD_DESC_INFO:
4776 	case SSD_DESC_FRU:
4777 	case SSD_DESC_COMMAND:
4778 	case SSD_DESC_SKS:
4779 	case SSD_DESC_BLOCK:
4780 	case SSD_DESC_STREAM:
4781 		/*
4782 		 * We have already printed these descriptors, if they are
4783 		 * present.
4784 		 */
4785 		break;
4786 	default: {
4787 		sbuf_printf(print_info->sb, "%s", print_info->path_str);
4788 		scsi_sense_desc_sbuf(print_info->sb,
4789 				     (struct scsi_sense_data *)sense, sense_len,
4790 				     print_info->cdb, print_info->cdb_len,
4791 				     print_info->inq_data, header);
4792 		sbuf_printf(print_info->sb, "\n");
4793 		break;
4794 	}
4795 	}
4796 
4797 	/*
4798 	 * Tell the iterator that we want to see more descriptors if they
4799 	 * are present.
4800 	 */
4801 	return (0);
4802 }
4803 
4804 void
4805 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
4806 		     struct sbuf *sb, char *path_str,
4807 		     struct scsi_inquiry_data *inq_data, uint8_t *cdb,
4808 		     int cdb_len)
4809 {
4810 	int error_code, sense_key, asc, ascq;
4811 
4812 	sbuf_cat(sb, path_str);
4813 
4814 	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4815 			       &asc, &ascq, /*show_errors*/ 1);
4816 
4817 	sbuf_printf(sb, "SCSI sense: ");
4818 	switch (error_code) {
4819 	case SSD_DEFERRED_ERROR:
4820 	case SSD_DESC_DEFERRED_ERROR:
4821 		sbuf_printf(sb, "Deferred error: ");
4822 
4823 		/* FALLTHROUGH */
4824 	case SSD_CURRENT_ERROR:
4825 	case SSD_DESC_CURRENT_ERROR:
4826 	{
4827 		struct scsi_sense_data_desc *desc_sense;
4828 		struct scsi_print_sense_info print_info;
4829 		const char *sense_key_desc;
4830 		const char *asc_desc;
4831 		uint8_t sks[3];
4832 		uint64_t val;
4833 		int info_valid;
4834 
4835 		/*
4836 		 * Get descriptions for the sense key, ASC, and ASCQ.  If
4837 		 * these aren't present in the sense data (i.e. the sense
4838 		 * data isn't long enough), the -1 values that
4839 		 * scsi_extract_sense_len() returns will yield default
4840 		 * or error descriptions.
4841 		 */
4842 		scsi_sense_desc(sense_key, asc, ascq, inq_data,
4843 				&sense_key_desc, &asc_desc);
4844 
4845 		/*
4846 		 * We first print the sense key and ASC/ASCQ.
4847 		 */
4848 		sbuf_cat(sb, sense_key_desc);
4849 		sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc);
4850 
4851 		/*
4852 		 * Get the info field if it is valid.
4853 		 */
4854 		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO,
4855 					&val, NULL) == 0)
4856 			info_valid = 1;
4857 		else
4858 			info_valid = 0;
4859 
4860 		if (info_valid != 0) {
4861 			uint8_t bits;
4862 
4863 			/*
4864 			 * Determine whether we have any block or stream
4865 			 * device-specific information.
4866 			 */
4867 			if (scsi_get_block_info(sense, sense_len, inq_data,
4868 						&bits) == 0) {
4869 				sbuf_cat(sb, path_str);
4870 				scsi_block_sbuf(sb, bits, val);
4871 				sbuf_printf(sb, "\n");
4872 			} else if (scsi_get_stream_info(sense, sense_len,
4873 							inq_data, &bits) == 0) {
4874 				sbuf_cat(sb, path_str);
4875 				scsi_stream_sbuf(sb, bits, val);
4876 				sbuf_printf(sb, "\n");
4877 			} else if (val != 0) {
4878 				/*
4879 				 * The information field can be valid but 0.
4880 				 * If the block or stream bits aren't set,
4881 				 * and this is 0, it isn't terribly useful
4882 				 * to print it out.
4883 				 */
4884 				sbuf_cat(sb, path_str);
4885 				scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val);
4886 				sbuf_printf(sb, "\n");
4887 			}
4888 		}
4889 
4890 		/*
4891 		 * Print the FRU.
4892 		 */
4893 		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU,
4894 					&val, NULL) == 0) {
4895 			sbuf_cat(sb, path_str);
4896 			scsi_fru_sbuf(sb, val);
4897 			sbuf_printf(sb, "\n");
4898 		}
4899 
4900 		/*
4901 		 * Print any command-specific information.
4902 		 */
4903 		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND,
4904 					&val, NULL) == 0) {
4905 			sbuf_cat(sb, path_str);
4906 			scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val);
4907 			sbuf_printf(sb, "\n");
4908 		}
4909 
4910 		/*
4911 		 * Print out any sense-key-specific information.
4912 		 */
4913 		if (scsi_get_sks(sense, sense_len, sks) == 0) {
4914 			sbuf_cat(sb, path_str);
4915 			scsi_sks_sbuf(sb, sense_key, sks);
4916 			sbuf_printf(sb, "\n");
4917 		}
4918 
4919 		/*
4920 		 * If this is fixed sense, we're done.  If we have
4921 		 * descriptor sense, we might have more information
4922 		 * available.
4923 		 */
4924 		if (scsi_sense_type(sense) != SSD_TYPE_DESC)
4925 			break;
4926 
4927 		desc_sense = (struct scsi_sense_data_desc *)sense;
4928 
4929 		print_info.sb = sb;
4930 		print_info.path_str = path_str;
4931 		print_info.cdb = cdb;
4932 		print_info.cdb_len = cdb_len;
4933 		print_info.inq_data = inq_data;
4934 
4935 		/*
4936 		 * Print any sense descriptors that we have not already printed.
4937 		 */
4938 		scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func,
4939 				  &print_info);
4940 		break;
4941 
4942 	}
4943 	case -1:
4944 		/*
4945 		 * scsi_extract_sense_len() sets values to -1 if the
4946 		 * show_errors flag is set and they aren't present in the
4947 		 * sense data.  This means that sense_len is 0.
4948 		 */
4949 		sbuf_printf(sb, "No sense data present\n");
4950 		break;
4951 	default: {
4952 		sbuf_printf(sb, "Error code 0x%x", error_code);
4953 		if (sense->error_code & SSD_ERRCODE_VALID) {
4954 			struct scsi_sense_data_fixed *fixed_sense;
4955 
4956 			fixed_sense = (struct scsi_sense_data_fixed *)sense;
4957 
4958 			if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){
4959 				uint32_t info;
4960 
4961 				info = scsi_4btoul(fixed_sense->info);
4962 
4963 				sbuf_printf(sb, " at block no. %d (decimal)",
4964 					    info);
4965 			}
4966 		}
4967 		sbuf_printf(sb, "\n");
4968 		break;
4969 	}
4970 	}
4971 }
4972 
4973 /*
4974  * scsi_sense_sbuf() returns 0 for success and -1 for failure.
4975  */
4976 #ifdef _KERNEL
4977 int
4978 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
4979 		scsi_sense_string_flags flags)
4980 #else /* !_KERNEL */
4981 int
4982 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio,
4983 		struct sbuf *sb, scsi_sense_string_flags flags)
4984 #endif /* _KERNEL/!_KERNEL */
4985 {
4986 	struct	  scsi_sense_data *sense;
4987 	struct	  scsi_inquiry_data *inq_data;
4988 #ifdef _KERNEL
4989 	struct	  ccb_getdev *cgd;
4990 #endif /* _KERNEL */
4991 	char	  path_str[64];
4992 	uint8_t	  *cdb;
4993 
4994 #ifndef _KERNEL
4995 	if (device == NULL)
4996 		return(-1);
4997 #endif /* !_KERNEL */
4998 	if ((csio == NULL) || (sb == NULL))
4999 		return(-1);
5000 
5001 	/*
5002 	 * If the CDB is a physical address, we can't deal with it..
5003 	 */
5004 	if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0)
5005 		flags &= ~SSS_FLAG_PRINT_COMMAND;
5006 
5007 #ifdef _KERNEL
5008 	xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str));
5009 #else /* !_KERNEL */
5010 	cam_path_string(device, path_str, sizeof(path_str));
5011 #endif /* _KERNEL/!_KERNEL */
5012 
5013 #ifdef _KERNEL
5014 	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
5015 		return(-1);
5016 	/*
5017 	 * Get the device information.
5018 	 */
5019 	xpt_setup_ccb(&cgd->ccb_h,
5020 		      csio->ccb_h.path,
5021 		      CAM_PRIORITY_NORMAL);
5022 	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
5023 	xpt_action((union ccb *)cgd);
5024 
5025 	/*
5026 	 * If the device is unconfigured, just pretend that it is a hard
5027 	 * drive.  scsi_op_desc() needs this.
5028 	 */
5029 	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
5030 		cgd->inq_data.device = T_DIRECT;
5031 
5032 	inq_data = &cgd->inq_data;
5033 
5034 #else /* !_KERNEL */
5035 
5036 	inq_data = &device->inq_data;
5037 
5038 #endif /* _KERNEL/!_KERNEL */
5039 
5040 	sense = NULL;
5041 
5042 	if (flags & SSS_FLAG_PRINT_COMMAND) {
5043 
5044 		sbuf_cat(sb, path_str);
5045 
5046 #ifdef _KERNEL
5047 		scsi_command_string(csio, sb);
5048 #else /* !_KERNEL */
5049 		scsi_command_string(device, csio, sb);
5050 #endif /* _KERNEL/!_KERNEL */
5051 		sbuf_printf(sb, "\n");
5052 	}
5053 
5054 	/*
5055 	 * If the sense data is a physical pointer, forget it.
5056 	 */
5057 	if (csio->ccb_h.flags & CAM_SENSE_PTR) {
5058 		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5059 #ifdef _KERNEL
5060 			xpt_free_ccb((union ccb*)cgd);
5061 #endif /* _KERNEL/!_KERNEL */
5062 			return(-1);
5063 		} else {
5064 			/*
5065 			 * bcopy the pointer to avoid unaligned access
5066 			 * errors on finicky architectures.  We don't
5067 			 * ensure that the sense data is pointer aligned.
5068 			 */
5069 			bcopy(&csio->sense_data, &sense,
5070 			      sizeof(struct scsi_sense_data *));
5071 		}
5072 	} else {
5073 		/*
5074 		 * If the physical sense flag is set, but the sense pointer
5075 		 * is not also set, we assume that the user is an idiot and
5076 		 * return.  (Well, okay, it could be that somehow, the
5077 		 * entire csio is physical, but we would have probably core
5078 		 * dumped on one of the bogus pointer deferences above
5079 		 * already.)
5080 		 */
5081 		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5082 #ifdef _KERNEL
5083 			xpt_free_ccb((union ccb*)cgd);
5084 #endif /* _KERNEL/!_KERNEL */
5085 			return(-1);
5086 		} else
5087 			sense = &csio->sense_data;
5088 	}
5089 
5090 	if (csio->ccb_h.flags & CAM_CDB_POINTER)
5091 		cdb = csio->cdb_io.cdb_ptr;
5092 	else
5093 		cdb = csio->cdb_io.cdb_bytes;
5094 
5095 	scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb,
5096 			     path_str, inq_data, cdb, csio->cdb_len);
5097 
5098 #ifdef _KERNEL
5099 	xpt_free_ccb((union ccb*)cgd);
5100 #endif /* _KERNEL/!_KERNEL */
5101 	return(0);
5102 }
5103 
5104 
5105 
5106 #ifdef _KERNEL
5107 char *
5108 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len)
5109 #else /* !_KERNEL */
5110 char *
5111 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio,
5112 		  char *str, int str_len)
5113 #endif /* _KERNEL/!_KERNEL */
5114 {
5115 	struct sbuf sb;
5116 
5117 	sbuf_new(&sb, str, str_len, 0);
5118 
5119 #ifdef _KERNEL
5120 	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5121 #else /* !_KERNEL */
5122 	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5123 #endif /* _KERNEL/!_KERNEL */
5124 
5125 	sbuf_finish(&sb);
5126 
5127 	return(sbuf_data(&sb));
5128 }
5129 
5130 #ifdef _KERNEL
5131 void
5132 scsi_sense_print(struct ccb_scsiio *csio)
5133 {
5134 	struct sbuf sb;
5135 	char str[512];
5136 
5137 	sbuf_new(&sb, str, sizeof(str), 0);
5138 
5139 	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5140 
5141 	sbuf_finish(&sb);
5142 
5143 	printf("%s", sbuf_data(&sb));
5144 }
5145 
5146 #else /* !_KERNEL */
5147 void
5148 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio,
5149 		 FILE *ofile)
5150 {
5151 	struct sbuf sb;
5152 	char str[512];
5153 
5154 	if ((device == NULL) || (csio == NULL) || (ofile == NULL))
5155 		return;
5156 
5157 	sbuf_new(&sb, str, sizeof(str), 0);
5158 
5159 	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5160 
5161 	sbuf_finish(&sb);
5162 
5163 	fprintf(ofile, "%s", sbuf_data(&sb));
5164 }
5165 
5166 #endif /* _KERNEL/!_KERNEL */
5167 
5168 /*
5169  * Extract basic sense information.  This is backward-compatible with the
5170  * previous implementation.  For new implementations,
5171  * scsi_extract_sense_len() is recommended.
5172  */
5173 void
5174 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code,
5175 		   int *sense_key, int *asc, int *ascq)
5176 {
5177 	scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code,
5178 			       sense_key, asc, ascq, /*show_errors*/ 0);
5179 }
5180 
5181 /*
5182  * Extract basic sense information from SCSI I/O CCB structure.
5183  */
5184 int
5185 scsi_extract_sense_ccb(union ccb *ccb,
5186     int *error_code, int *sense_key, int *asc, int *ascq)
5187 {
5188 	struct scsi_sense_data *sense_data;
5189 
5190 	/* Make sure there are some sense data we can access. */
5191 	if (ccb->ccb_h.func_code != XPT_SCSI_IO ||
5192 	    (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR ||
5193 	    (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) ||
5194 	    (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 ||
5195 	    (ccb->ccb_h.flags & CAM_SENSE_PHYS))
5196 		return (0);
5197 
5198 	if (ccb->ccb_h.flags & CAM_SENSE_PTR)
5199 		bcopy(&ccb->csio.sense_data, &sense_data,
5200 		    sizeof(struct scsi_sense_data *));
5201 	else
5202 		sense_data = &ccb->csio.sense_data;
5203 	scsi_extract_sense_len(sense_data,
5204 	    ccb->csio.sense_len - ccb->csio.sense_resid,
5205 	    error_code, sense_key, asc, ascq, 1);
5206 	if (*error_code == -1)
5207 		return (0);
5208 	return (1);
5209 }
5210 
5211 /*
5212  * Extract basic sense information.  If show_errors is set, sense values
5213  * will be set to -1 if they are not present.
5214  */
5215 void
5216 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len,
5217 		       int *error_code, int *sense_key, int *asc, int *ascq,
5218 		       int show_errors)
5219 {
5220 	/*
5221 	 * If we have no length, we have no sense.
5222 	 */
5223 	if (sense_len == 0) {
5224 		if (show_errors == 0) {
5225 			*error_code = 0;
5226 			*sense_key = 0;
5227 			*asc = 0;
5228 			*ascq = 0;
5229 		} else {
5230 			*error_code = -1;
5231 			*sense_key = -1;
5232 			*asc = -1;
5233 			*ascq = -1;
5234 		}
5235 		return;
5236 	}
5237 
5238 	*error_code = sense_data->error_code & SSD_ERRCODE;
5239 
5240 	switch (*error_code) {
5241 	case SSD_DESC_CURRENT_ERROR:
5242 	case SSD_DESC_DEFERRED_ERROR: {
5243 		struct scsi_sense_data_desc *sense;
5244 
5245 		sense = (struct scsi_sense_data_desc *)sense_data;
5246 
5247 		if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key))
5248 			*sense_key = sense->sense_key & SSD_KEY;
5249 		else
5250 			*sense_key = (show_errors) ? -1 : 0;
5251 
5252 		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code))
5253 			*asc = sense->add_sense_code;
5254 		else
5255 			*asc = (show_errors) ? -1 : 0;
5256 
5257 		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual))
5258 			*ascq = sense->add_sense_code_qual;
5259 		else
5260 			*ascq = (show_errors) ? -1 : 0;
5261 		break;
5262 	}
5263 	case SSD_CURRENT_ERROR:
5264 	case SSD_DEFERRED_ERROR:
5265 	default: {
5266 		struct scsi_sense_data_fixed *sense;
5267 
5268 		sense = (struct scsi_sense_data_fixed *)sense_data;
5269 
5270 		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags))
5271 			*sense_key = sense->flags & SSD_KEY;
5272 		else
5273 			*sense_key = (show_errors) ? -1 : 0;
5274 
5275 		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code))
5276 		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code)))
5277 			*asc = sense->add_sense_code;
5278 		else
5279 			*asc = (show_errors) ? -1 : 0;
5280 
5281 		if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual))
5282 		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual)))
5283 			*ascq = sense->add_sense_code_qual;
5284 		else
5285 			*ascq = (show_errors) ? -1 : 0;
5286 		break;
5287 	}
5288 	}
5289 }
5290 
5291 int
5292 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len,
5293 		   int show_errors)
5294 {
5295 	int error_code, sense_key, asc, ascq;
5296 
5297 	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5298 			       &sense_key, &asc, &ascq, show_errors);
5299 
5300 	return (sense_key);
5301 }
5302 
5303 int
5304 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len,
5305 	     int show_errors)
5306 {
5307 	int error_code, sense_key, asc, ascq;
5308 
5309 	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5310 			       &sense_key, &asc, &ascq, show_errors);
5311 
5312 	return (asc);
5313 }
5314 
5315 int
5316 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len,
5317 	      int show_errors)
5318 {
5319 	int error_code, sense_key, asc, ascq;
5320 
5321 	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5322 			       &sense_key, &asc, &ascq, show_errors);
5323 
5324 	return (ascq);
5325 }
5326 
5327 /*
5328  * This function currently requires at least 36 bytes, or
5329  * SHORT_INQUIRY_LENGTH, worth of data to function properly.  If this
5330  * function needs more or less data in the future, another length should be
5331  * defined in scsi_all.h to indicate the minimum amount of data necessary
5332  * for this routine to function properly.
5333  */
5334 void
5335 scsi_print_inquiry(struct scsi_inquiry_data *inq_data)
5336 {
5337 	u_int8_t type;
5338 	char *dtype, *qtype;
5339 	char vendor[16], product[48], revision[16], rstr[12];
5340 
5341 	type = SID_TYPE(inq_data);
5342 
5343 	/*
5344 	 * Figure out basic device type and qualifier.
5345 	 */
5346 	if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) {
5347 		qtype = " (vendor-unique qualifier)";
5348 	} else {
5349 		switch (SID_QUAL(inq_data)) {
5350 		case SID_QUAL_LU_CONNECTED:
5351 			qtype = "";
5352 			break;
5353 
5354 		case SID_QUAL_LU_OFFLINE:
5355 			qtype = " (offline)";
5356 			break;
5357 
5358 		case SID_QUAL_RSVD:
5359 			qtype = " (reserved qualifier)";
5360 			break;
5361 		default:
5362 		case SID_QUAL_BAD_LU:
5363 			qtype = " (LUN not supported)";
5364 			break;
5365 		}
5366 	}
5367 
5368 	switch (type) {
5369 	case T_DIRECT:
5370 		dtype = "Direct Access";
5371 		break;
5372 	case T_SEQUENTIAL:
5373 		dtype = "Sequential Access";
5374 		break;
5375 	case T_PRINTER:
5376 		dtype = "Printer";
5377 		break;
5378 	case T_PROCESSOR:
5379 		dtype = "Processor";
5380 		break;
5381 	case T_WORM:
5382 		dtype = "WORM";
5383 		break;
5384 	case T_CDROM:
5385 		dtype = "CD-ROM";
5386 		break;
5387 	case T_SCANNER:
5388 		dtype = "Scanner";
5389 		break;
5390 	case T_OPTICAL:
5391 		dtype = "Optical";
5392 		break;
5393 	case T_CHANGER:
5394 		dtype = "Changer";
5395 		break;
5396 	case T_COMM:
5397 		dtype = "Communication";
5398 		break;
5399 	case T_STORARRAY:
5400 		dtype = "Storage Array";
5401 		break;
5402 	case T_ENCLOSURE:
5403 		dtype = "Enclosure Services";
5404 		break;
5405 	case T_RBC:
5406 		dtype = "Simplified Direct Access";
5407 		break;
5408 	case T_OCRW:
5409 		dtype = "Optical Card Read/Write";
5410 		break;
5411 	case T_OSD:
5412 		dtype = "Object-Based Storage";
5413 		break;
5414 	case T_ADC:
5415 		dtype = "Automation/Drive Interface";
5416 		break;
5417 	case T_NODEVICE:
5418 		dtype = "Uninstalled";
5419 		break;
5420 	default:
5421 		dtype = "unknown";
5422 		break;
5423 	}
5424 
5425 	cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor),
5426 		   sizeof(vendor));
5427 	cam_strvis(product, inq_data->product, sizeof(inq_data->product),
5428 		   sizeof(product));
5429 	cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision),
5430 		   sizeof(revision));
5431 
5432 	if (SID_ANSI_REV(inq_data) == SCSI_REV_0)
5433 		snprintf(rstr, sizeof(rstr), "SCSI");
5434 	else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) {
5435 		snprintf(rstr, sizeof(rstr), "SCSI-%d",
5436 		    SID_ANSI_REV(inq_data));
5437 	} else {
5438 		snprintf(rstr, sizeof(rstr), "SPC-%d SCSI",
5439 		    SID_ANSI_REV(inq_data) - 2);
5440 	}
5441 	printf("<%s %s %s> %s %s %s device%s\n",
5442 	       vendor, product, revision,
5443 	       SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed",
5444 	       dtype, rstr, qtype);
5445 }
5446 
5447 void
5448 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data)
5449 {
5450 	char vendor[16], product[48], revision[16];
5451 
5452 	cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor),
5453 		   sizeof(vendor));
5454 	cam_strvis(product, inq_data->product, sizeof(inq_data->product),
5455 		   sizeof(product));
5456 	cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision),
5457 		   sizeof(revision));
5458 
5459 	printf("<%s %s %s>", vendor, product, revision);
5460 }
5461 
5462 /*
5463  * Table of syncrates that don't follow the "divisible by 4"
5464  * rule. This table will be expanded in future SCSI specs.
5465  */
5466 static struct {
5467 	u_int period_factor;
5468 	u_int period;	/* in 100ths of ns */
5469 } scsi_syncrates[] = {
5470 	{ 0x08, 625 },	/* FAST-160 */
5471 	{ 0x09, 1250 },	/* FAST-80 */
5472 	{ 0x0a, 2500 },	/* FAST-40 40MHz */
5473 	{ 0x0b, 3030 },	/* FAST-40 33MHz */
5474 	{ 0x0c, 5000 }	/* FAST-20 */
5475 };
5476 
5477 /*
5478  * Return the frequency in kHz corresponding to the given
5479  * sync period factor.
5480  */
5481 u_int
5482 scsi_calc_syncsrate(u_int period_factor)
5483 {
5484 	int i;
5485 	int num_syncrates;
5486 
5487 	/*
5488 	 * It's a bug if period is zero, but if it is anyway, don't
5489 	 * die with a divide fault- instead return something which
5490 	 * 'approximates' async
5491 	 */
5492 	if (period_factor == 0) {
5493 		return (3300);
5494 	}
5495 
5496 	num_syncrates = sizeof(scsi_syncrates) / sizeof(scsi_syncrates[0]);
5497 	/* See if the period is in the "exception" table */
5498 	for (i = 0; i < num_syncrates; i++) {
5499 
5500 		if (period_factor == scsi_syncrates[i].period_factor) {
5501 			/* Period in kHz */
5502 			return (100000000 / scsi_syncrates[i].period);
5503 		}
5504 	}
5505 
5506 	/*
5507 	 * Wasn't in the table, so use the standard
5508 	 * 4 times conversion.
5509 	 */
5510 	return (10000000 / (period_factor * 4 * 10));
5511 }
5512 
5513 /*
5514  * Return the SCSI sync parameter that corresponsd to
5515  * the passed in period in 10ths of ns.
5516  */
5517 u_int
5518 scsi_calc_syncparam(u_int period)
5519 {
5520 	int i;
5521 	int num_syncrates;
5522 
5523 	if (period == 0)
5524 		return (~0);	/* Async */
5525 
5526 	/* Adjust for exception table being in 100ths. */
5527 	period *= 10;
5528 	num_syncrates = sizeof(scsi_syncrates) / sizeof(scsi_syncrates[0]);
5529 	/* See if the period is in the "exception" table */
5530 	for (i = 0; i < num_syncrates; i++) {
5531 
5532 		if (period <= scsi_syncrates[i].period) {
5533 			/* Period in 100ths of ns */
5534 			return (scsi_syncrates[i].period_factor);
5535 		}
5536 	}
5537 
5538 	/*
5539 	 * Wasn't in the table, so use the standard
5540 	 * 1/4 period in ns conversion.
5541 	 */
5542 	return (period/400);
5543 }
5544 
5545 int
5546 scsi_devid_is_naa_ieee_reg(uint8_t *bufp)
5547 {
5548 	struct scsi_vpd_id_descriptor *descr;
5549 	struct scsi_vpd_id_naa_basic *naa;
5550 
5551 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5552 	naa = (struct scsi_vpd_id_naa_basic *)descr->identifier;
5553 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5554 		return 0;
5555 	if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg))
5556 		return 0;
5557 	if ((naa->naa >> SVPD_ID_NAA_NAA_SHIFT) != SVPD_ID_NAA_IEEE_REG)
5558 		return 0;
5559 	return 1;
5560 }
5561 
5562 int
5563 scsi_devid_is_sas_target(uint8_t *bufp)
5564 {
5565 	struct scsi_vpd_id_descriptor *descr;
5566 
5567 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5568 	if (!scsi_devid_is_naa_ieee_reg(bufp))
5569 		return 0;
5570 	if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */
5571 		return 0;
5572 	if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS)
5573 		return 0;
5574 	return 1;
5575 }
5576 
5577 int
5578 scsi_devid_is_lun_eui64(uint8_t *bufp)
5579 {
5580 	struct scsi_vpd_id_descriptor *descr;
5581 
5582 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5583 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5584 		return 0;
5585 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64)
5586 		return 0;
5587 	return 1;
5588 }
5589 
5590 int
5591 scsi_devid_is_lun_naa(uint8_t *bufp)
5592 {
5593 	struct scsi_vpd_id_descriptor *descr;
5594 
5595 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5596 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5597 		return 0;
5598 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5599 		return 0;
5600 	return 1;
5601 }
5602 
5603 int
5604 scsi_devid_is_lun_t10(uint8_t *bufp)
5605 {
5606 	struct scsi_vpd_id_descriptor *descr;
5607 
5608 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5609 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5610 		return 0;
5611 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10)
5612 		return 0;
5613 	return 1;
5614 }
5615 
5616 int
5617 scsi_devid_is_lun_name(uint8_t *bufp)
5618 {
5619 	struct scsi_vpd_id_descriptor *descr;
5620 
5621 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5622 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5623 		return 0;
5624 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME)
5625 		return 0;
5626 	return 1;
5627 }
5628 
5629 int
5630 scsi_devid_is_port_naa(uint8_t *bufp)
5631 {
5632 	struct scsi_vpd_id_descriptor *descr;
5633 
5634 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5635 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT)
5636 		return 0;
5637 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5638 		return 0;
5639 	return 1;
5640 }
5641 
5642 struct scsi_vpd_id_descriptor *
5643 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
5644     scsi_devid_checkfn_t ck_fn)
5645 {
5646 	uint8_t *desc_buf_end;
5647 
5648 	desc_buf_end = (uint8_t *)desc + len;
5649 
5650 	for (; desc->identifier <= desc_buf_end &&
5651 	    desc->identifier + desc->length <= desc_buf_end;
5652 	    desc = (struct scsi_vpd_id_descriptor *)(desc->identifier
5653 						    + desc->length)) {
5654 
5655 		if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0)
5656 			return (desc);
5657 	}
5658 	return (NULL);
5659 }
5660 
5661 struct scsi_vpd_id_descriptor *
5662 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len,
5663     scsi_devid_checkfn_t ck_fn)
5664 {
5665 	uint32_t len;
5666 
5667 	if (page_len < sizeof(*id))
5668 		return (NULL);
5669 	len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id));
5670 	return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *)
5671 	    id->desc_list, len, ck_fn));
5672 }
5673 
5674 int
5675 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr,
5676 		      uint32_t valid_len)
5677 {
5678 	switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) {
5679 	case SCSI_PROTO_FC: {
5680 		struct scsi_transportid_fcp *fcp;
5681 		uint64_t n_port_name;
5682 
5683 		fcp = (struct scsi_transportid_fcp *)hdr;
5684 
5685 		n_port_name = scsi_8btou64(fcp->n_port_name);
5686 
5687 		sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name);
5688 		break;
5689 	}
5690 	case SCSI_PROTO_SPI: {
5691 		struct scsi_transportid_spi *spi;
5692 
5693 		spi = (struct scsi_transportid_spi *)hdr;
5694 
5695 		sbuf_printf(sb, "SPI address: %u,%u",
5696 			    scsi_2btoul(spi->scsi_addr),
5697 			    scsi_2btoul(spi->rel_trgt_port_id));
5698 		break;
5699 	}
5700 	case SCSI_PROTO_SSA:
5701 		/*
5702 		 * XXX KDM there is no transport ID defined in SPC-4 for
5703 		 * SSA.
5704 		 */
5705 		break;
5706 	case SCSI_PROTO_1394: {
5707 		struct scsi_transportid_1394 *sbp;
5708 		uint64_t eui64;
5709 
5710 		sbp = (struct scsi_transportid_1394 *)hdr;
5711 
5712 		eui64 = scsi_8btou64(sbp->eui64);
5713 		sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64);
5714 		break;
5715 	}
5716 	case SCSI_PROTO_RDMA: {
5717 		struct scsi_transportid_rdma *rdma;
5718 		unsigned int i;
5719 
5720 		rdma = (struct scsi_transportid_rdma *)hdr;
5721 
5722 		sbuf_printf(sb, "RDMA address: 0x");
5723 		for (i = 0; i < sizeof(rdma->initiator_port_id); i++)
5724 			sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]);
5725 		break;
5726 	}
5727 	case SCSI_PROTO_ISCSI: {
5728 		uint32_t add_len, i;
5729 		uint8_t *iscsi_name = NULL;
5730 		int nul_found = 0;
5731 
5732 		sbuf_printf(sb, "iSCSI address: ");
5733 		if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5734 		    SCSI_TRN_ISCSI_FORMAT_DEVICE) {
5735 			struct scsi_transportid_iscsi_device *dev;
5736 
5737 			dev = (struct scsi_transportid_iscsi_device *)hdr;
5738 
5739 			/*
5740 			 * Verify how much additional data we really have.
5741 			 */
5742 			add_len = scsi_2btoul(dev->additional_length);
5743 			add_len = MIN(add_len, valid_len -
5744 				__offsetof(struct scsi_transportid_iscsi_device,
5745 					   iscsi_name));
5746 			iscsi_name = &dev->iscsi_name[0];
5747 
5748 		} else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5749 			    SCSI_TRN_ISCSI_FORMAT_PORT) {
5750 			struct scsi_transportid_iscsi_port *port;
5751 
5752 			port = (struct scsi_transportid_iscsi_port *)hdr;
5753 
5754 			add_len = scsi_2btoul(port->additional_length);
5755 			add_len = MIN(add_len, valid_len -
5756 				__offsetof(struct scsi_transportid_iscsi_port,
5757 					   iscsi_name));
5758 			iscsi_name = &port->iscsi_name[0];
5759 		} else {
5760 			sbuf_printf(sb, "unknown format %x",
5761 				    (hdr->format_protocol &
5762 				     SCSI_TRN_FORMAT_MASK) >>
5763 				     SCSI_TRN_FORMAT_SHIFT);
5764 			break;
5765 		}
5766 		if (add_len == 0) {
5767 			sbuf_printf(sb, "not enough data");
5768 			break;
5769 		}
5770 		/*
5771 		 * This is supposed to be a NUL-terminated ASCII
5772 		 * string, but you never know.  So we're going to
5773 		 * check.  We need to do this because there is no
5774 		 * sbuf equivalent of strncat().
5775 		 */
5776 		for (i = 0; i < add_len; i++) {
5777 			if (iscsi_name[i] == '\0') {
5778 				nul_found = 1;
5779 				break;
5780 			}
5781 		}
5782 		/*
5783 		 * If there is a NUL in the name, we can just use
5784 		 * sbuf_cat().  Otherwise we need to use sbuf_bcat().
5785 		 */
5786 		if (nul_found != 0)
5787 			sbuf_cat(sb, iscsi_name);
5788 		else
5789 			sbuf_bcat(sb, iscsi_name, add_len);
5790 		break;
5791 	}
5792 	case SCSI_PROTO_SAS: {
5793 		struct scsi_transportid_sas *sas;
5794 		uint64_t sas_addr;
5795 
5796 		sas = (struct scsi_transportid_sas *)hdr;
5797 
5798 		sas_addr = scsi_8btou64(sas->sas_address);
5799 		sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr);
5800 		break;
5801 	}
5802 	case SCSI_PROTO_ADITP:
5803 	case SCSI_PROTO_ATA:
5804 	case SCSI_PROTO_UAS:
5805 		/*
5806 		 * No Transport ID format for ADI, ATA or USB is defined in
5807 		 * SPC-4.
5808 		 */
5809 		sbuf_printf(sb, "No known Transport ID format for protocol "
5810 			    "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5811 		break;
5812 	case SCSI_PROTO_SOP: {
5813 		struct scsi_transportid_sop *sop;
5814 		struct scsi_sop_routing_id_norm *rid;
5815 
5816 		sop = (struct scsi_transportid_sop *)hdr;
5817 		rid = (struct scsi_sop_routing_id_norm *)sop->routing_id;
5818 
5819 		/*
5820 		 * Note that there is no alternate format specified in SPC-4
5821 		 * for the PCIe routing ID, so we don't really have a way
5822 		 * to know whether the second byte of the routing ID is
5823 		 * a device and function or just a function.  So we just
5824 		 * assume bus,device,function.
5825 		 */
5826 		sbuf_printf(sb, "SOP Routing ID: %u,%u,%u",
5827 			    rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT,
5828 			    rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX);
5829 		break;
5830 	}
5831 	case SCSI_PROTO_NONE:
5832 	default:
5833 		sbuf_printf(sb, "Unknown protocol %#x",
5834 			    hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5835 		break;
5836 	}
5837 
5838 	return (0);
5839 }
5840 
5841 struct scsi_nv scsi_proto_map[] = {
5842 	{ "fcp", SCSI_PROTO_FC },
5843 	{ "spi", SCSI_PROTO_SPI },
5844 	{ "ssa", SCSI_PROTO_SSA },
5845 	{ "sbp", SCSI_PROTO_1394 },
5846 	{ "1394", SCSI_PROTO_1394 },
5847 	{ "srp", SCSI_PROTO_RDMA },
5848 	{ "rdma", SCSI_PROTO_RDMA },
5849 	{ "iscsi", SCSI_PROTO_ISCSI },
5850 	{ "iqn", SCSI_PROTO_ISCSI },
5851 	{ "sas", SCSI_PROTO_SAS },
5852 	{ "aditp", SCSI_PROTO_ADITP },
5853 	{ "ata", SCSI_PROTO_ATA },
5854 	{ "uas", SCSI_PROTO_UAS },
5855 	{ "usb", SCSI_PROTO_UAS },
5856 	{ "sop", SCSI_PROTO_SOP }
5857 };
5858 
5859 const char *
5860 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value)
5861 {
5862 	int i;
5863 
5864 	for (i = 0; i < num_table_entries; i++) {
5865 		if (table[i].value == value)
5866 			return (table[i].name);
5867 	}
5868 
5869 	return (NULL);
5870 }
5871 
5872 /*
5873  * Given a name/value table, find a value matching the given name.
5874  * Return values:
5875  *	SCSI_NV_FOUND - match found
5876  *	SCSI_NV_AMBIGUOUS - more than one match, none of them exact
5877  *	SCSI_NV_NOT_FOUND - no match found
5878  */
5879 scsi_nv_status
5880 scsi_get_nv(struct scsi_nv *table, int num_table_entries,
5881 	    char *name, int *table_entry, scsi_nv_flags flags)
5882 {
5883 	int i, num_matches = 0;
5884 
5885 	for (i = 0; i < num_table_entries; i++) {
5886 		size_t table_len, name_len;
5887 
5888 		table_len = strlen(table[i].name);
5889 		name_len = strlen(name);
5890 
5891 		if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0)
5892 		  && (strncasecmp(table[i].name, name, name_len) == 0))
5893 		|| (((flags & SCSI_NV_FLAG_IG_CASE) == 0)
5894 		 && (strncmp(table[i].name, name, name_len) == 0))) {
5895 			*table_entry = i;
5896 
5897 			/*
5898 			 * Check for an exact match.  If we have the same
5899 			 * number of characters in the table as the argument,
5900 			 * and we already know they're the same, we have
5901 			 * an exact match.
5902 		 	 */
5903 			if (table_len == name_len)
5904 				return (SCSI_NV_FOUND);
5905 
5906 			/*
5907 			 * Otherwise, bump up the number of matches.  We'll
5908 			 * see later how many we have.
5909 			 */
5910 			num_matches++;
5911 		}
5912 	}
5913 
5914 	if (num_matches > 1)
5915 		return (SCSI_NV_AMBIGUOUS);
5916 	else if (num_matches == 1)
5917 		return (SCSI_NV_FOUND);
5918 	else
5919 		return (SCSI_NV_NOT_FOUND);
5920 }
5921 
5922 /*
5923  * Parse transport IDs for Fibre Channel, 1394 and SAS.  Since these are
5924  * all 64-bit numbers, the code is similar.
5925  */
5926 int
5927 scsi_parse_transportid_64bit(int proto_id, char *id_str,
5928 			     struct scsi_transportid_header **hdr,
5929 			     unsigned int *alloc_len,
5930 #ifdef _KERNEL
5931 			     struct malloc_type *type, int flags,
5932 #endif
5933 			     char *error_str, int error_str_len)
5934 {
5935 	uint64_t value;
5936 	char *endptr;
5937 	int retval;
5938 	size_t alloc_size;
5939 
5940 	retval = 0;
5941 
5942 	value = strtouq(id_str, &endptr, 0);
5943 	if (*endptr != '\0') {
5944 		if (error_str != NULL) {
5945 			snprintf(error_str, error_str_len, "%s: error "
5946 				 "parsing ID %s, 64-bit number required",
5947 				 __func__, id_str);
5948 		}
5949 		retval = 1;
5950 		goto bailout;
5951 	}
5952 
5953 	switch (proto_id) {
5954 	case SCSI_PROTO_FC:
5955 		alloc_size = sizeof(struct scsi_transportid_fcp);
5956 		break;
5957 	case SCSI_PROTO_1394:
5958 		alloc_size = sizeof(struct scsi_transportid_1394);
5959 		break;
5960 	case SCSI_PROTO_SAS:
5961 		alloc_size = sizeof(struct scsi_transportid_sas);
5962 		break;
5963 	default:
5964 		if (error_str != NULL) {
5965 			snprintf(error_str, error_str_len, "%s: unsupoprted "
5966 				 "protocol %d", __func__, proto_id);
5967 		}
5968 		retval = 1;
5969 		goto bailout;
5970 		break; /* NOTREACHED */
5971 	}
5972 #ifdef _KERNEL
5973 	*hdr = malloc(alloc_size, type, flags);
5974 #else /* _KERNEL */
5975 	*hdr = malloc(alloc_size);
5976 #endif /*_KERNEL */
5977 	if (*hdr == NULL) {
5978 		if (error_str != NULL) {
5979 			snprintf(error_str, error_str_len, "%s: unable to "
5980 				 "allocate %zu bytes", __func__, alloc_size);
5981 		}
5982 		retval = 1;
5983 		goto bailout;
5984 	}
5985 
5986 	*alloc_len = alloc_size;
5987 
5988 	bzero(*hdr, alloc_size);
5989 
5990 	switch (proto_id) {
5991 	case SCSI_PROTO_FC: {
5992 		struct scsi_transportid_fcp *fcp;
5993 
5994 		fcp = (struct scsi_transportid_fcp *)(*hdr);
5995 		fcp->format_protocol = SCSI_PROTO_FC |
5996 				       SCSI_TRN_FCP_FORMAT_DEFAULT;
5997 		scsi_u64to8b(value, fcp->n_port_name);
5998 		break;
5999 	}
6000 	case SCSI_PROTO_1394: {
6001 		struct scsi_transportid_1394 *sbp;
6002 
6003 		sbp = (struct scsi_transportid_1394 *)(*hdr);
6004 		sbp->format_protocol = SCSI_PROTO_1394 |
6005 				       SCSI_TRN_1394_FORMAT_DEFAULT;
6006 		scsi_u64to8b(value, sbp->eui64);
6007 		break;
6008 	}
6009 	case SCSI_PROTO_SAS: {
6010 		struct scsi_transportid_sas *sas;
6011 
6012 		sas = (struct scsi_transportid_sas *)(*hdr);
6013 		sas->format_protocol = SCSI_PROTO_SAS |
6014 				       SCSI_TRN_SAS_FORMAT_DEFAULT;
6015 		scsi_u64to8b(value, sas->sas_address);
6016 		break;
6017 	}
6018 	default:
6019 		break;
6020 	}
6021 bailout:
6022 	return (retval);
6023 }
6024 
6025 /*
6026  * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port
6027  */
6028 int
6029 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr,
6030 			   unsigned int *alloc_len,
6031 #ifdef _KERNEL
6032 			   struct malloc_type *type, int flags,
6033 #endif
6034 			   char *error_str, int error_str_len)
6035 {
6036 	unsigned long scsi_addr, target_port;
6037 	struct scsi_transportid_spi *spi;
6038 	char *tmpstr, *endptr;
6039 	int retval;
6040 
6041 	retval = 0;
6042 
6043 	tmpstr = strsep(&id_str, ",");
6044 	if (tmpstr == NULL) {
6045 		if (error_str != NULL) {
6046 			snprintf(error_str, error_str_len,
6047 				 "%s: no ID found", __func__);
6048 		}
6049 		retval = 1;
6050 		goto bailout;
6051 	}
6052 	scsi_addr = strtoul(tmpstr, &endptr, 0);
6053 	if (*endptr != '\0') {
6054 		if (error_str != NULL) {
6055 			snprintf(error_str, error_str_len, "%s: error "
6056 				 "parsing SCSI ID %s, number required",
6057 				 __func__, tmpstr);
6058 		}
6059 		retval = 1;
6060 		goto bailout;
6061 	}
6062 
6063 	if (id_str == NULL) {
6064 		if (error_str != NULL) {
6065 			snprintf(error_str, error_str_len, "%s: no relative "
6066 				 "target port found", __func__);
6067 		}
6068 		retval = 1;
6069 		goto bailout;
6070 	}
6071 
6072 	target_port = strtoul(id_str, &endptr, 0);
6073 	if (*endptr != '\0') {
6074 		if (error_str != NULL) {
6075 			snprintf(error_str, error_str_len, "%s: error "
6076 				 "parsing relative target port %s, number "
6077 				 "required", __func__, id_str);
6078 		}
6079 		retval = 1;
6080 		goto bailout;
6081 	}
6082 #ifdef _KERNEL
6083 	spi = malloc(sizeof(*spi), type, flags);
6084 #else
6085 	spi = malloc(sizeof(*spi));
6086 #endif
6087 	if (spi == NULL) {
6088 		if (error_str != NULL) {
6089 			snprintf(error_str, error_str_len, "%s: unable to "
6090 				 "allocate %zu bytes", __func__,
6091 				 sizeof(*spi));
6092 		}
6093 		retval = 1;
6094 		goto bailout;
6095 	}
6096 	*alloc_len = sizeof(*spi);
6097 	bzero(spi, sizeof(*spi));
6098 
6099 	spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT;
6100 	scsi_ulto2b(scsi_addr, spi->scsi_addr);
6101 	scsi_ulto2b(target_port, spi->rel_trgt_port_id);
6102 
6103 	*hdr = (struct scsi_transportid_header *)spi;
6104 bailout:
6105 	return (retval);
6106 }
6107 
6108 /*
6109  * Parse an RDMA/SRP Initiator Port ID string.  This is 32 hexadecimal digits,
6110  * optionally prefixed by "0x" or "0X".
6111  */
6112 int
6113 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr,
6114 			    unsigned int *alloc_len,
6115 #ifdef _KERNEL
6116 			    struct malloc_type *type, int flags,
6117 #endif
6118 			    char *error_str, int error_str_len)
6119 {
6120 	struct scsi_transportid_rdma *rdma;
6121 	int retval;
6122 	size_t id_len, rdma_id_size;
6123 	uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN];
6124 	char *tmpstr;
6125 	unsigned int i, j;
6126 
6127 	retval = 0;
6128 	id_len = strlen(id_str);
6129 	rdma_id_size = SCSI_TRN_RDMA_PORT_LEN;
6130 
6131 	/*
6132 	 * Check the size.  It needs to be either 32 or 34 characters long.
6133 	 */
6134 	if ((id_len != (rdma_id_size * 2))
6135 	 && (id_len != ((rdma_id_size * 2) + 2))) {
6136 		if (error_str != NULL) {
6137 			snprintf(error_str, error_str_len, "%s: RDMA ID "
6138 				 "must be 32 hex digits (0x prefix "
6139 				 "optional), only %zu seen", __func__, id_len);
6140 		}
6141 		retval = 1;
6142 		goto bailout;
6143 	}
6144 
6145 	tmpstr = id_str;
6146 	/*
6147 	 * If the user gave us 34 characters, the string needs to start
6148 	 * with '0x'.
6149 	 */
6150 	if (id_len == ((rdma_id_size * 2) + 2)) {
6151 	 	if ((tmpstr[0] == '0')
6152 		 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) {
6153 			tmpstr += 2;
6154 		} else {
6155 			if (error_str != NULL) {
6156 				snprintf(error_str, error_str_len, "%s: RDMA "
6157 					 "ID prefix, if used, must be \"0x\", "
6158 					 "got %s", __func__, tmpstr);
6159 			}
6160 			retval = 1;
6161 			goto bailout;
6162 		}
6163 	}
6164 	bzero(rdma_id, sizeof(rdma_id));
6165 
6166 	/*
6167 	 * Convert ASCII hex into binary bytes.  There is no standard
6168 	 * 128-bit integer type, and so no strtou128t() routine to convert
6169 	 * from hex into a large integer.  In the end, we're not going to
6170 	 * an integer, but rather to a byte array, so that and the fact
6171 	 * that we require the user to give us 32 hex digits simplifies the
6172 	 * logic.
6173 	 */
6174 	for (i = 0; i < (rdma_id_size * 2); i++) {
6175 		int cur_shift;
6176 		unsigned char c;
6177 
6178 		/* Increment the byte array one for every 2 hex digits */
6179 		j = i >> 1;
6180 
6181 		/*
6182 		 * The first digit in every pair is the most significant
6183 		 * 4 bits.  The second is the least significant 4 bits.
6184 		 */
6185 		if ((i % 2) == 0)
6186 			cur_shift = 4;
6187 		else
6188 			cur_shift = 0;
6189 
6190 		c = tmpstr[i];
6191 		/* Convert the ASCII hex character into a number */
6192 		if (isdigit(c))
6193 			c -= '0';
6194 		else if (isalpha(c))
6195 			c -= isupper(c) ? 'A' - 10 : 'a' - 10;
6196 		else {
6197 			if (error_str != NULL) {
6198 				snprintf(error_str, error_str_len, "%s: "
6199 					 "RDMA ID must be hex digits, got "
6200 					 "invalid character %c", __func__,
6201 					 tmpstr[i]);
6202 			}
6203 			retval = 1;
6204 			goto bailout;
6205 		}
6206 		/*
6207 		 * The converted number can't be less than 0; the type is
6208 		 * unsigned, and the subtraction logic will not give us
6209 		 * a negative number.  So we only need to make sure that
6210 		 * the value is not greater than 0xf.  (i.e. make sure the
6211 		 * user didn't give us a value like "0x12jklmno").
6212 		 */
6213 		if (c > 0xf) {
6214 			if (error_str != NULL) {
6215 				snprintf(error_str, error_str_len, "%s: "
6216 					 "RDMA ID must be hex digits, got "
6217 					 "invalid character %c", __func__,
6218 					 tmpstr[i]);
6219 			}
6220 			retval = 1;
6221 			goto bailout;
6222 		}
6223 
6224 		rdma_id[j] |= c << cur_shift;
6225 	}
6226 
6227 #ifdef _KERNEL
6228 	rdma = malloc(sizeof(*rdma), type, flags);
6229 #else
6230 	rdma = malloc(sizeof(*rdma));
6231 #endif
6232 	if (rdma == NULL) {
6233 		if (error_str != NULL) {
6234 			snprintf(error_str, error_str_len, "%s: unable to "
6235 				 "allocate %zu bytes", __func__,
6236 				 sizeof(*rdma));
6237 		}
6238 		retval = 1;
6239 		goto bailout;
6240 	}
6241 	*alloc_len = sizeof(*rdma);
6242 	bzero(rdma, *alloc_len);
6243 
6244 	rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT;
6245 	bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN);
6246 
6247 	*hdr = (struct scsi_transportid_header *)rdma;
6248 
6249 bailout:
6250 	return (retval);
6251 }
6252 
6253 /*
6254  * Parse an iSCSI name.  The format is either just the name:
6255  *
6256  *	iqn.2012-06.com.example:target0
6257  * or the name, separator and initiator session ID:
6258  *
6259  *	iqn.2012-06.com.example:target0,i,0x123
6260  *
6261  * The separator format is exact.
6262  */
6263 int
6264 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr,
6265 			     unsigned int *alloc_len,
6266 #ifdef _KERNEL
6267 			     struct malloc_type *type, int flags,
6268 #endif
6269 			     char *error_str, int error_str_len)
6270 {
6271 	size_t id_len, sep_len, id_size, name_len;
6272 	int retval;
6273 	unsigned int i, sep_pos, sep_found;
6274 	const char *sep_template = ",i,0x";
6275 	const char *iqn_prefix = "iqn.";
6276 	struct scsi_transportid_iscsi_device *iscsi;
6277 
6278 	retval = 0;
6279 	sep_found = 0;
6280 
6281 	id_len = strlen(id_str);
6282 	sep_len = strlen(sep_template);
6283 
6284 	/*
6285 	 * The separator is defined as exactly ',i,0x'.  Any other commas,
6286 	 * or any other form, is an error.  So look for a comma, and once
6287 	 * we find that, the next few characters must match the separator
6288 	 * exactly.  Once we get through the separator, there should be at
6289 	 * least one character.
6290 	 */
6291 	for (i = 0, sep_pos = 0; i < id_len; i++) {
6292 		if (sep_pos == 0) {
6293 		 	if (id_str[i] == sep_template[sep_pos])
6294 				sep_pos++;
6295 
6296 			continue;
6297 		}
6298 		if (sep_pos < sep_len) {
6299 			if (id_str[i] == sep_template[sep_pos]) {
6300 				sep_pos++;
6301 				continue;
6302 			}
6303 			if (error_str != NULL) {
6304 				snprintf(error_str, error_str_len, "%s: "
6305 					 "invalid separator in iSCSI name "
6306 					 "\"%s\"",
6307 					 __func__, id_str);
6308 			}
6309 			retval = 1;
6310 			goto bailout;
6311 		} else {
6312 			sep_found = 1;
6313 			break;
6314 		}
6315 	}
6316 
6317 	/*
6318 	 * Check to see whether we have a separator but no digits after it.
6319 	 */
6320 	if ((sep_pos != 0)
6321 	 && (sep_found == 0)) {
6322 		if (error_str != NULL) {
6323 			snprintf(error_str, error_str_len, "%s: no digits "
6324 				 "found after separator in iSCSI name \"%s\"",
6325 				 __func__, id_str);
6326 		}
6327 		retval = 1;
6328 		goto bailout;
6329 	}
6330 
6331 	/*
6332 	 * The incoming ID string has the "iqn." prefix stripped off.  We
6333 	 * need enough space for the base structure (the structures are the
6334 	 * same for the two iSCSI forms), the prefix, the ID string and a
6335 	 * terminating NUL.
6336 	 */
6337 	id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1;
6338 
6339 #ifdef _KERNEL
6340 	iscsi = malloc(id_size, type, flags);
6341 #else
6342 	iscsi = malloc(id_size);
6343 #endif
6344 	if (iscsi == NULL) {
6345 		if (error_str != NULL) {
6346 			snprintf(error_str, error_str_len, "%s: unable to "
6347 				 "allocate %zu bytes", __func__, id_size);
6348 		}
6349 		retval = 1;
6350 		goto bailout;
6351 	}
6352 	*alloc_len = id_size;
6353 	bzero(iscsi, id_size);
6354 
6355 	iscsi->format_protocol = SCSI_PROTO_ISCSI;
6356 	if (sep_found == 0)
6357 		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE;
6358 	else
6359 		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT;
6360 	name_len = id_size - sizeof(*iscsi);
6361 	scsi_ulto2b(name_len, iscsi->additional_length);
6362 	snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str);
6363 
6364 	*hdr = (struct scsi_transportid_header *)iscsi;
6365 
6366 bailout:
6367 	return (retval);
6368 }
6369 
6370 /*
6371  * Parse a SCSI over PCIe (SOP) identifier.  The Routing ID can either be
6372  * of the form 'bus,device,function' or 'bus,function'.
6373  */
6374 int
6375 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr,
6376 			   unsigned int *alloc_len,
6377 #ifdef _KERNEL
6378 			   struct malloc_type *type, int flags,
6379 #endif
6380 			   char *error_str, int error_str_len)
6381 {
6382 	struct scsi_transportid_sop *sop;
6383 	unsigned long bus, device, function;
6384 	char *tmpstr, *endptr;
6385 	int retval, device_spec;
6386 
6387 	retval = 0;
6388 	device_spec = 0;
6389 	device = 0;
6390 
6391 	tmpstr = strsep(&id_str, ",");
6392 	if ((tmpstr == NULL)
6393 	 || (*tmpstr == '\0')) {
6394 		if (error_str != NULL) {
6395 			snprintf(error_str, error_str_len, "%s: no ID found",
6396 				 __func__);
6397 		}
6398 		retval = 1;
6399 		goto bailout;
6400 	}
6401 	bus = strtoul(tmpstr, &endptr, 0);
6402 	if (*endptr != '\0') {
6403 		if (error_str != NULL) {
6404 			snprintf(error_str, error_str_len, "%s: error "
6405 				 "parsing PCIe bus %s, number required",
6406 				 __func__, tmpstr);
6407 		}
6408 		retval = 1;
6409 		goto bailout;
6410 	}
6411 	if ((id_str == NULL)
6412 	 || (*id_str == '\0')) {
6413 		if (error_str != NULL) {
6414 			snprintf(error_str, error_str_len, "%s: no PCIe "
6415 				 "device or function found", __func__);
6416 		}
6417 		retval = 1;
6418 		goto bailout;
6419 	}
6420 	tmpstr = strsep(&id_str, ",");
6421 	function = strtoul(tmpstr, &endptr, 0);
6422 	if (*endptr != '\0') {
6423 		if (error_str != NULL) {
6424 			snprintf(error_str, error_str_len, "%s: error "
6425 				 "parsing PCIe device/function %s, number "
6426 				 "required", __func__, tmpstr);
6427 		}
6428 		retval = 1;
6429 		goto bailout;
6430 	}
6431 	/*
6432 	 * Check to see whether the user specified a third value.  If so,
6433 	 * the second is the device.
6434 	 */
6435 	if (id_str != NULL) {
6436 		if (*id_str == '\0') {
6437 			if (error_str != NULL) {
6438 				snprintf(error_str, error_str_len, "%s: "
6439 					 "no PCIe function found", __func__);
6440 			}
6441 			retval = 1;
6442 			goto bailout;
6443 		}
6444 		device = function;
6445 		device_spec = 1;
6446 		function = strtoul(id_str, &endptr, 0);
6447 		if (*endptr != '\0') {
6448 			if (error_str != NULL) {
6449 				snprintf(error_str, error_str_len, "%s: "
6450 					 "error parsing PCIe function %s, "
6451 					 "number required", __func__, id_str);
6452 			}
6453 			retval = 1;
6454 			goto bailout;
6455 		}
6456 	}
6457 	if (bus > SCSI_TRN_SOP_BUS_MAX) {
6458 		if (error_str != NULL) {
6459 			snprintf(error_str, error_str_len, "%s: bus value "
6460 				 "%lu greater than maximum %u", __func__,
6461 				 bus, SCSI_TRN_SOP_BUS_MAX);
6462 		}
6463 		retval = 1;
6464 		goto bailout;
6465 	}
6466 
6467 	if ((device_spec != 0)
6468 	 && (device > SCSI_TRN_SOP_DEV_MASK)) {
6469 		if (error_str != NULL) {
6470 			snprintf(error_str, error_str_len, "%s: device value "
6471 				 "%lu greater than maximum %u", __func__,
6472 				 device, SCSI_TRN_SOP_DEV_MAX);
6473 		}
6474 		retval = 1;
6475 		goto bailout;
6476 	}
6477 
6478 	if (((device_spec != 0)
6479 	  && (function > SCSI_TRN_SOP_FUNC_NORM_MAX))
6480 	 || ((device_spec == 0)
6481 	  && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) {
6482 		if (error_str != NULL) {
6483 			snprintf(error_str, error_str_len, "%s: function value "
6484 				 "%lu greater than maximum %u", __func__,
6485 				 function, (device_spec == 0) ?
6486 				 SCSI_TRN_SOP_FUNC_ALT_MAX :
6487 				 SCSI_TRN_SOP_FUNC_NORM_MAX);
6488 		}
6489 		retval = 1;
6490 		goto bailout;
6491 	}
6492 
6493 #ifdef _KERNEL
6494 	sop = malloc(sizeof(*sop), type, flags);
6495 #else
6496 	sop = malloc(sizeof(*sop));
6497 #endif
6498 	if (sop == NULL) {
6499 		if (error_str != NULL) {
6500 			snprintf(error_str, error_str_len, "%s: unable to "
6501 				 "allocate %zu bytes", __func__, sizeof(*sop));
6502 		}
6503 		retval = 1;
6504 		goto bailout;
6505 	}
6506 	*alloc_len = sizeof(*sop);
6507 	bzero(sop, sizeof(*sop));
6508 	sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT;
6509 	if (device_spec != 0) {
6510 		struct scsi_sop_routing_id_norm rid;
6511 
6512 		rid.bus = bus;
6513 		rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function;
6514 		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6515 		      sizeof(sop->routing_id)));
6516 	} else {
6517 		struct scsi_sop_routing_id_alt rid;
6518 
6519 		rid.bus = bus;
6520 		rid.function = function;
6521 		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6522 		      sizeof(sop->routing_id)));
6523 	}
6524 
6525 	*hdr = (struct scsi_transportid_header *)sop;
6526 bailout:
6527 	return (retval);
6528 }
6529 
6530 /*
6531  * transportid_str: NUL-terminated string with format: protcol,id
6532  *		    The ID is protocol specific.
6533  * hdr:		    Storage will be allocated for the transport ID.
6534  * alloc_len:	    The amount of memory allocated is returned here.
6535  * type:	    Malloc bucket (kernel only).
6536  * flags:	    Malloc flags (kernel only).
6537  * error_str:	    If non-NULL, it will contain error information (without
6538  * 		    a terminating newline) if an error is returned.
6539  * error_str_len:   Allocated length of the error string.
6540  *
6541  * Returns 0 for success, non-zero for failure.
6542  */
6543 int
6544 scsi_parse_transportid(char *transportid_str,
6545 		       struct scsi_transportid_header **hdr,
6546 		       unsigned int *alloc_len,
6547 #ifdef _KERNEL
6548 		       struct malloc_type *type, int flags,
6549 #endif
6550 		       char *error_str, int error_str_len)
6551 {
6552 	char *tmpstr;
6553 	scsi_nv_status status;
6554 	int retval, num_proto_entries, table_entry;
6555 
6556 	retval = 0;
6557 	table_entry = 0;
6558 
6559 	/*
6560 	 * We do allow a period as well as a comma to separate the protocol
6561 	 * from the ID string.  This is to accommodate iSCSI names, which
6562 	 * start with "iqn.".
6563 	 */
6564 	tmpstr = strsep(&transportid_str, ",.");
6565 	if (tmpstr == NULL) {
6566 		if (error_str != NULL) {
6567 			snprintf(error_str, error_str_len,
6568 				 "%s: transportid_str is NULL", __func__);
6569 		}
6570 		retval = 1;
6571 		goto bailout;
6572 	}
6573 
6574 	num_proto_entries = sizeof(scsi_proto_map) /
6575 			    sizeof(scsi_proto_map[0]);
6576 	status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr,
6577 			     &table_entry, SCSI_NV_FLAG_IG_CASE);
6578 	if (status != SCSI_NV_FOUND) {
6579 		if (error_str != NULL) {
6580 			snprintf(error_str, error_str_len, "%s: %s protocol "
6581 				 "name %s", __func__,
6582 				 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" :
6583 				 "invalid", tmpstr);
6584 		}
6585 		retval = 1;
6586 		goto bailout;
6587 	}
6588 	switch (scsi_proto_map[table_entry].value) {
6589 	case SCSI_PROTO_FC:
6590 	case SCSI_PROTO_1394:
6591 	case SCSI_PROTO_SAS:
6592 		retval = scsi_parse_transportid_64bit(
6593 		    scsi_proto_map[table_entry].value, transportid_str, hdr,
6594 		    alloc_len,
6595 #ifdef _KERNEL
6596 		    type, flags,
6597 #endif
6598 		    error_str, error_str_len);
6599 		break;
6600 	case SCSI_PROTO_SPI:
6601 		retval = scsi_parse_transportid_spi(transportid_str, hdr,
6602 		    alloc_len,
6603 #ifdef _KERNEL
6604 		    type, flags,
6605 #endif
6606 		    error_str, error_str_len);
6607 		break;
6608 	case SCSI_PROTO_RDMA:
6609 		retval = scsi_parse_transportid_rdma(transportid_str, hdr,
6610 		    alloc_len,
6611 #ifdef _KERNEL
6612 		    type, flags,
6613 #endif
6614 		    error_str, error_str_len);
6615 		break;
6616 	case SCSI_PROTO_ISCSI:
6617 		retval = scsi_parse_transportid_iscsi(transportid_str, hdr,
6618 		    alloc_len,
6619 #ifdef _KERNEL
6620 		    type, flags,
6621 #endif
6622 		    error_str, error_str_len);
6623 		break;
6624 	case SCSI_PROTO_SOP:
6625 		retval = scsi_parse_transportid_sop(transportid_str, hdr,
6626 		    alloc_len,
6627 #ifdef _KERNEL
6628 		    type, flags,
6629 #endif
6630 		    error_str, error_str_len);
6631 		break;
6632 	case SCSI_PROTO_SSA:
6633 	case SCSI_PROTO_ADITP:
6634 	case SCSI_PROTO_ATA:
6635 	case SCSI_PROTO_UAS:
6636 	case SCSI_PROTO_NONE:
6637 	default:
6638 		/*
6639 		 * There is no format defined for a Transport ID for these
6640 		 * protocols.  So even if the user gives us something, we
6641 		 * have no way to turn it into a standard SCSI Transport ID.
6642 		 */
6643 		retval = 1;
6644 		if (error_str != NULL) {
6645 			snprintf(error_str, error_str_len, "%s: no Transport "
6646 				 "ID format exists for protocol %s",
6647 				 __func__, tmpstr);
6648 		}
6649 		goto bailout;
6650 		break;	/* NOTREACHED */
6651 	}
6652 bailout:
6653 	return (retval);
6654 }
6655 
6656 struct scsi_attrib_table_entry scsi_mam_attr_table[] = {
6657 	{ SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6658 	  "Remaining Capacity in Partition",
6659 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL },
6660 	{ SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6661 	  "Maximum Capacity in Partition",
6662 	  /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6663 	{ SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX,
6664 	  "TapeAlert Flags",
6665 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6666 	{ SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE,
6667 	  "Load Count",
6668 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6669 	{ SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE,
6670 	  "MAM Space Remaining",
6671 	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6672 	  /*parse_str*/ NULL },
6673 	{ SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6674 	  "Assigning Organization",
6675 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6676 	  /*parse_str*/ NULL },
6677 	{ SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6678 	  "Format Density Code",
6679 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6680 	{ SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE,
6681 	  "Initialization Count",
6682 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6683 	{ SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE,
6684 	  "Volume Identifier",
6685 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6686 	  /*parse_str*/ NULL },
6687 	{ SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX,
6688 	  "Volume Change Reference",
6689 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6690 	  /*parse_str*/ NULL },
6691 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE,
6692 	  "Device Vendor/Serial at Last Load",
6693 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6694 	  /*parse_str*/ NULL },
6695 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE,
6696 	  "Device Vendor/Serial at Last Load - 1",
6697 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6698 	  /*parse_str*/ NULL },
6699 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE,
6700 	  "Device Vendor/Serial at Last Load - 2",
6701 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6702 	  /*parse_str*/ NULL },
6703 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE,
6704 	  "Device Vendor/Serial at Last Load - 3",
6705 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6706 	  /*parse_str*/ NULL },
6707 	{ SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE,
6708 	  "Total MB Written in Medium Life",
6709 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6710 	  /*parse_str*/ NULL },
6711 	{ SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE,
6712 	  "Total MB Read in Medium Life",
6713 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6714 	  /*parse_str*/ NULL },
6715 	{ SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE,
6716 	  "Total MB Written in Current/Last Load",
6717 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6718 	  /*parse_str*/ NULL },
6719 	{ SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE,
6720 	  "Total MB Read in Current/Last Load",
6721 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6722 	  /*parse_str*/ NULL },
6723 	{ SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6724 	  "Logical Position of First Encrypted Block",
6725 	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6726 	  /*parse_str*/ NULL },
6727 	{ SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6728 	  "Logical Position of First Unencrypted Block after First "
6729 	  "Encrypted Block",
6730 	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6731 	  /*parse_str*/ NULL },
6732 	{ SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6733 	  "Medium Usage History",
6734 	  /*suffix*/ NULL, /*to_str*/ NULL,
6735 	  /*parse_str*/ NULL },
6736 	{ SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6737 	  "Partition Usage History",
6738 	  /*suffix*/ NULL, /*to_str*/ NULL,
6739 	  /*parse_str*/ NULL },
6740 	{ SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE,
6741 	  "Medium Manufacturer",
6742 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6743 	  /*parse_str*/ NULL },
6744 	{ SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE,
6745 	  "Medium Serial Number",
6746 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6747 	  /*parse_str*/ NULL },
6748 	{ SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE,
6749 	  "Medium Length",
6750 	  /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf,
6751 	  /*parse_str*/ NULL },
6752 	{ SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 |
6753 	  SCSI_ATTR_FLAG_FP_1DIGIT,
6754 	  "Medium Width",
6755 	  /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf,
6756 	  /*parse_str*/ NULL },
6757 	{ SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6758 	  "Assigning Organization",
6759 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6760 	  /*parse_str*/ NULL },
6761 	{ SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6762 	  "Medium Density Code",
6763 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6764 	  /*parse_str*/ NULL },
6765 	{ SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE,
6766 	  "Medium Manufacture Date",
6767 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6768 	  /*parse_str*/ NULL },
6769 	{ SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE,
6770 	  "MAM Capacity",
6771 	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6772 	  /*parse_str*/ NULL },
6773 	{ SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX,
6774 	  "Medium Type",
6775 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6776 	  /*parse_str*/ NULL },
6777 	{ SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX,
6778 	  "Medium Type Information",
6779 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6780 	  /*parse_str*/ NULL },
6781 	{ SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE,
6782 	  "Medium Serial Number",
6783 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6784 	  /*parse_str*/ NULL },
6785 	{ SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE,
6786 	  "Application Vendor",
6787 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6788 	  /*parse_str*/ NULL },
6789 	{ SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE,
6790 	  "Application Name",
6791 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6792 	  /*parse_str*/ NULL },
6793 	{ SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE,
6794 	  "Application Version",
6795 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6796 	  /*parse_str*/ NULL },
6797 	{ SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE,
6798 	  "User Medium Text Label",
6799 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6800 	  /*parse_str*/ NULL },
6801 	{ SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE,
6802 	  "Date and Time Last Written",
6803 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6804 	  /*parse_str*/ NULL },
6805 	{ SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX,
6806 	  "Text Localization Identifier",
6807 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6808 	  /*parse_str*/ NULL },
6809 	{ SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE,
6810 	  "Barcode",
6811 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6812 	  /*parse_str*/ NULL },
6813 	{ SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE,
6814 	  "Owning Host Textual Name",
6815 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6816 	  /*parse_str*/ NULL },
6817 	{ SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE,
6818 	  "Media Pool",
6819 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6820 	  /*parse_str*/ NULL },
6821 	{ SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE,
6822 	  "Partition User Text Label",
6823 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6824 	  /*parse_str*/ NULL },
6825 	{ SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE,
6826 	  "Load/Unload at Partition",
6827 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6828 	  /*parse_str*/ NULL },
6829 	{ SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE,
6830 	  "Application Format Version",
6831 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6832 	  /*parse_str*/ NULL },
6833 	{ SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE,
6834 	  "Volume Coherency Information",
6835 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf,
6836 	  /*parse_str*/ NULL },
6837 	{ 0x0ff1, SCSI_ATTR_FLAG_NONE,
6838 	  "Spectra MLM Creation",
6839 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6840 	  /*parse_str*/ NULL },
6841 	{ 0x0ff2, SCSI_ATTR_FLAG_NONE,
6842 	  "Spectra MLM C3",
6843 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6844 	  /*parse_str*/ NULL },
6845 	{ 0x0ff3, SCSI_ATTR_FLAG_NONE,
6846 	  "Spectra MLM RW",
6847 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6848 	  /*parse_str*/ NULL },
6849 	{ 0x0ff4, SCSI_ATTR_FLAG_NONE,
6850 	  "Spectra MLM SDC List",
6851 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6852 	  /*parse_str*/ NULL },
6853 	{ 0x0ff7, SCSI_ATTR_FLAG_NONE,
6854 	  "Spectra MLM Post Scan",
6855 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6856 	  /*parse_str*/ NULL },
6857 	{ 0x0ffe, SCSI_ATTR_FLAG_NONE,
6858 	  "Spectra MLM Checksum",
6859 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6860 	  /*parse_str*/ NULL },
6861 	{ 0x17f1, SCSI_ATTR_FLAG_NONE,
6862 	  "Spectra MLM Creation",
6863 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6864 	  /*parse_str*/ NULL },
6865 	{ 0x17f2, SCSI_ATTR_FLAG_NONE,
6866 	  "Spectra MLM C3",
6867 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6868 	  /*parse_str*/ NULL },
6869 	{ 0x17f3, SCSI_ATTR_FLAG_NONE,
6870 	  "Spectra MLM RW",
6871 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6872 	  /*parse_str*/ NULL },
6873 	{ 0x17f4, SCSI_ATTR_FLAG_NONE,
6874 	  "Spectra MLM SDC List",
6875 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6876 	  /*parse_str*/ NULL },
6877 	{ 0x17f7, SCSI_ATTR_FLAG_NONE,
6878 	  "Spectra MLM Post Scan",
6879 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6880 	  /*parse_str*/ NULL },
6881 	{ 0x17ff, SCSI_ATTR_FLAG_NONE,
6882 	  "Spectra MLM Checksum",
6883 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6884 	  /*parse_str*/ NULL },
6885 };
6886 
6887 /*
6888  * Print out Volume Coherency Information (Attribute 0x080c).
6889  * This field has two variable length members, including one at the
6890  * beginning, so it isn't practical to have a fixed structure definition.
6891  * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25,
6892  * 2013.
6893  */
6894 int
6895 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
6896 			 uint32_t valid_len, uint32_t flags,
6897 			 uint32_t output_flags, char *error_str,
6898 			 int error_str_len)
6899 {
6900 	size_t avail_len;
6901 	uint32_t field_size;
6902 	uint64_t tmp_val;
6903 	uint8_t *cur_ptr;
6904 	int retval;
6905 	int vcr_len, as_len;
6906 
6907 	retval = 0;
6908 	tmp_val = 0;
6909 
6910 	field_size = scsi_2btoul(hdr->length);
6911 	avail_len = valid_len - sizeof(*hdr);
6912 	if (field_size > avail_len) {
6913 		if (error_str != NULL) {
6914 			snprintf(error_str, error_str_len, "Available "
6915 				 "length of attribute ID 0x%.4x %zu < field "
6916 				 "length %u", scsi_2btoul(hdr->id), avail_len,
6917 				 field_size);
6918 		}
6919 		retval = 1;
6920 		goto bailout;
6921 	} else if (field_size == 0) {
6922 		/*
6923 		 * It isn't clear from the spec whether a field length of
6924 		 * 0 is invalid here.  It probably is, but be lenient here
6925 		 * to avoid inconveniencing the user.
6926 		 */
6927 		goto bailout;
6928 	}
6929 	cur_ptr = hdr->attribute;
6930 	vcr_len = *cur_ptr;
6931 	cur_ptr++;
6932 
6933 	sbuf_printf(sb, "\n\tVolume Change Reference Value:");
6934 
6935 	switch (vcr_len) {
6936 	case 0:
6937 		if (error_str != NULL) {
6938 			snprintf(error_str, error_str_len, "Volume Change "
6939 				 "Reference value has length of 0");
6940 		}
6941 		retval = 1;
6942 		goto bailout;
6943 		break; /*NOTREACHED*/
6944 	case 1:
6945 		tmp_val = *cur_ptr;
6946 		break;
6947 	case 2:
6948 		tmp_val = scsi_2btoul(cur_ptr);
6949 		break;
6950 	case 3:
6951 		tmp_val = scsi_3btoul(cur_ptr);
6952 		break;
6953 	case 4:
6954 		tmp_val = scsi_4btoul(cur_ptr);
6955 		break;
6956 	case 8:
6957 		tmp_val = scsi_8btou64(cur_ptr);
6958 		break;
6959 	default:
6960 		sbuf_printf(sb, "\n");
6961 		sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0);
6962 		break;
6963 	}
6964 	if (vcr_len <= 8)
6965 		sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val);
6966 
6967 	cur_ptr += vcr_len;
6968 	tmp_val = scsi_8btou64(cur_ptr);
6969 	sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val);
6970 
6971 	cur_ptr += sizeof(tmp_val);
6972 	tmp_val = scsi_8btou64(cur_ptr);
6973 	sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n",
6974 		    (uintmax_t)tmp_val);
6975 
6976 	/*
6977 	 * Figure out how long the Application Client Specific Information
6978 	 * is and produce a hexdump.
6979 	 */
6980 	cur_ptr += sizeof(tmp_val);
6981 	as_len = scsi_2btoul(cur_ptr);
6982 	cur_ptr += sizeof(uint16_t);
6983 	sbuf_printf(sb, "\tApplication Client Specific Information: ");
6984 	if (((as_len == SCSI_LTFS_VER0_LEN)
6985 	  || (as_len == SCSI_LTFS_VER1_LEN))
6986 	 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) {
6987 		sbuf_printf(sb, "LTFS\n");
6988 		cur_ptr += SCSI_LTFS_STR_LEN + 1;
6989 		if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0')
6990 			cur_ptr[SCSI_LTFS_UUID_LEN] = '\0';
6991 		sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr);
6992 		cur_ptr += SCSI_LTFS_UUID_LEN + 1;
6993 		/* XXX KDM check the length */
6994 		sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr);
6995 	} else {
6996 		sbuf_printf(sb, "Unknown\n");
6997 		sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0);
6998 	}
6999 
7000 bailout:
7001 	return (retval);
7002 }
7003 
7004 int
7005 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7006 			 uint32_t valid_len, uint32_t flags,
7007 			 uint32_t output_flags, char *error_str,
7008 			 int error_str_len)
7009 {
7010 	size_t avail_len;
7011 	uint32_t field_size;
7012 	struct scsi_attrib_vendser *vendser;
7013 	cam_strvis_flags strvis_flags;
7014 	int retval = 0;
7015 
7016 	field_size = scsi_2btoul(hdr->length);
7017 	avail_len = valid_len - sizeof(*hdr);
7018 	if (field_size > avail_len) {
7019 		if (error_str != NULL) {
7020 			snprintf(error_str, error_str_len, "Available "
7021 				 "length of attribute ID 0x%.4x %zu < field "
7022 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7023 				 field_size);
7024 		}
7025 		retval = 1;
7026 		goto bailout;
7027 	} else if (field_size == 0) {
7028 		/*
7029 		 * A field size of 0 doesn't make sense here.  The device
7030 		 * can at least give you the vendor ID, even if it can't
7031 		 * give you the serial number.
7032 		 */
7033 		if (error_str != NULL) {
7034 			snprintf(error_str, error_str_len, "The length of "
7035 				 "attribute ID 0x%.4x is 0",
7036 				 scsi_2btoul(hdr->id));
7037 		}
7038 		retval = 1;
7039 		goto bailout;
7040 	}
7041 	vendser = (struct scsi_attrib_vendser *)hdr->attribute;
7042 
7043 	switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7044 	case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7045 		strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7046 		break;
7047 	case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7048 		strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7049 		break;
7050 	case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7051 	default:
7052 		strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7053 		break;;
7054 	}
7055 	cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor),
7056 	    strvis_flags);
7057 	sbuf_putc(sb, ' ');
7058 	cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num),
7059 	    strvis_flags);
7060 bailout:
7061 	return (retval);
7062 }
7063 
7064 int
7065 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7066 			 uint32_t valid_len, uint32_t flags,
7067 			 uint32_t output_flags, char *error_str,
7068 			 int error_str_len)
7069 {
7070 	uint32_t field_size;
7071 	ssize_t avail_len;
7072 	uint32_t print_len;
7073 	uint8_t *num_ptr;
7074 	int retval = 0;
7075 
7076 	field_size = scsi_2btoul(hdr->length);
7077 	avail_len = valid_len - sizeof(*hdr);
7078 	print_len = MIN(avail_len, field_size);
7079 	num_ptr = hdr->attribute;
7080 
7081 	if (print_len > 0) {
7082 		sbuf_printf(sb, "\n");
7083 		sbuf_hexdump(sb, num_ptr, print_len, NULL, 0);
7084 	}
7085 
7086 	return (retval);
7087 }
7088 
7089 int
7090 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7091 		     uint32_t valid_len, uint32_t flags,
7092 		     uint32_t output_flags, char *error_str,
7093 		     int error_str_len)
7094 {
7095 	uint64_t print_number;
7096 	size_t avail_len;
7097 	uint32_t number_size;
7098 	int retval = 0;
7099 
7100 	number_size = scsi_2btoul(hdr->length);
7101 
7102 	avail_len = valid_len - sizeof(*hdr);
7103 	if (avail_len < number_size) {
7104 		if (error_str != NULL) {
7105 			snprintf(error_str, error_str_len, "Available "
7106 				 "length of attribute ID 0x%.4x %zu < field "
7107 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7108 				 number_size);
7109 		}
7110 		retval = 1;
7111 		goto bailout;
7112 	}
7113 
7114 	switch (number_size) {
7115 	case 0:
7116 		/*
7117 		 * We don't treat this as an error, since there may be
7118 		 * scenarios where a device reports a field but then gives
7119 		 * a length of 0.  See the note in scsi_attrib_ascii_sbuf().
7120 		 */
7121 		goto bailout;
7122 		break; /*NOTREACHED*/
7123 	case 1:
7124 		print_number = hdr->attribute[0];
7125 		break;
7126 	case 2:
7127 		print_number = scsi_2btoul(hdr->attribute);
7128 		break;
7129 	case 3:
7130 		print_number = scsi_3btoul(hdr->attribute);
7131 		break;
7132 	case 4:
7133 		print_number = scsi_4btoul(hdr->attribute);
7134 		break;
7135 	case 8:
7136 		print_number = scsi_8btou64(hdr->attribute);
7137 		break;
7138 	default:
7139 		/*
7140 		 * If we wind up here, the number is too big to print
7141 		 * normally, so just do a hexdump.
7142 		 */
7143 		retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7144 						  flags, output_flags,
7145 						  error_str, error_str_len);
7146 		goto bailout;
7147 		break;
7148 	}
7149 
7150 	if (flags & SCSI_ATTR_FLAG_FP) {
7151 #ifndef _KERNEL
7152 		long double num_float;
7153 
7154 		num_float = (long double)print_number;
7155 
7156 		if (flags & SCSI_ATTR_FLAG_DIV_10)
7157 			num_float /= 10;
7158 
7159 		sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ?
7160 			    1 : 0, num_float);
7161 #else /* _KERNEL */
7162 		sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ?
7163 			    (print_number / 10) : print_number);
7164 #endif /* _KERNEL */
7165 	} else if (flags & SCSI_ATTR_FLAG_HEX) {
7166 		sbuf_printf(sb, "0x%jx", (uintmax_t)print_number);
7167 	} else
7168 		sbuf_printf(sb, "%ju", (uintmax_t)print_number);
7169 
7170 bailout:
7171 	return (retval);
7172 }
7173 
7174 int
7175 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7176 		       uint32_t valid_len, uint32_t flags,
7177 		       uint32_t output_flags, char *error_str,
7178 		       int error_str_len)
7179 {
7180 	size_t avail_len;
7181 	uint32_t field_size, print_size;
7182 	int retval = 0;
7183 
7184 	avail_len = valid_len - sizeof(*hdr);
7185 	field_size = scsi_2btoul(hdr->length);
7186 	print_size = MIN(avail_len, field_size);
7187 
7188 	if (print_size > 0) {
7189 		cam_strvis_flags strvis_flags;
7190 
7191 		switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7192 		case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7193 			strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7194 			break;
7195 		case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7196 			strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7197 			break;
7198 		case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7199 		default:
7200 			strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7201 			break;
7202 		}
7203 		cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags);
7204 	} else if (avail_len < field_size) {
7205 		/*
7206 		 * We only report an error if the user didn't allocate
7207 		 * enough space to hold the full value of this field.  If
7208 		 * the field length is 0, that is allowed by the spec.
7209 		 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER
7210 		 * "This attribute indicates the current volume identifier
7211 		 * (see SMC-3) of the medium. If the device server supports
7212 		 * this attribute but does not have access to the volume
7213 		 * identifier, the device server shall report this attribute
7214 		 * with an attribute length value of zero."
7215 		 */
7216 		if (error_str != NULL) {
7217 			snprintf(error_str, error_str_len, "Available "
7218 				 "length of attribute ID 0x%.4x %zu < field "
7219 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7220 				 field_size);
7221 		}
7222 		retval = 1;
7223 	}
7224 
7225 	return (retval);
7226 }
7227 
7228 int
7229 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7230 		      uint32_t valid_len, uint32_t flags,
7231 		      uint32_t output_flags, char *error_str,
7232 		      int error_str_len)
7233 {
7234 	size_t avail_len;
7235 	uint32_t field_size, print_size;
7236 	int retval = 0;
7237 	int esc_text = 1;
7238 
7239 	avail_len = valid_len - sizeof(*hdr);
7240 	field_size = scsi_2btoul(hdr->length);
7241 	print_size = MIN(avail_len, field_size);
7242 
7243 	if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) ==
7244 	     SCSI_ATTR_OUTPUT_TEXT_RAW)
7245 		esc_text = 0;
7246 
7247 	if (print_size > 0) {
7248 		uint32_t i;
7249 
7250 		for (i = 0; i < print_size; i++) {
7251 			if (hdr->attribute[i] == '\0')
7252 				continue;
7253 			else if (((unsigned char)hdr->attribute[i] < 0x80)
7254 			      || (esc_text == 0))
7255 				sbuf_putc(sb, hdr->attribute[i]);
7256 			else
7257 				sbuf_printf(sb, "%%%02x",
7258 				    (unsigned char)hdr->attribute[i]);
7259 		}
7260 	} else if (avail_len < field_size) {
7261 		/*
7262 		 * We only report an error if the user didn't allocate
7263 		 * enough space to hold the full value of this field.
7264 		 */
7265 		if (error_str != NULL) {
7266 			snprintf(error_str, error_str_len, "Available "
7267 				 "length of attribute ID 0x%.4x %zu < field "
7268 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7269 				 field_size);
7270 		}
7271 		retval = 1;
7272 	}
7273 
7274 	return (retval);
7275 }
7276 
7277 struct scsi_attrib_table_entry *
7278 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table,
7279 		       size_t num_table_entries, uint32_t id)
7280 {
7281 	uint32_t i;
7282 
7283 	for (i = 0; i < num_table_entries; i++) {
7284 		if (table[i].id == id)
7285 			return (&table[i]);
7286 	}
7287 
7288 	return (NULL);
7289 }
7290 
7291 struct scsi_attrib_table_entry *
7292 scsi_get_attrib_entry(uint32_t id)
7293 {
7294 	return (scsi_find_attrib_entry(scsi_mam_attr_table,
7295 		sizeof(scsi_mam_attr_table) / sizeof(scsi_mam_attr_table[0]),
7296 		id));
7297 }
7298 
7299 int
7300 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len,
7301    struct scsi_mam_attribute_header *hdr, uint32_t output_flags,
7302    char *error_str, size_t error_str_len)
7303 {
7304 	int retval;
7305 
7306 	switch (hdr->byte2 & SMA_FORMAT_MASK) {
7307 	case SMA_FORMAT_ASCII:
7308 		retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len,
7309 		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len);
7310 		break;
7311 	case SMA_FORMAT_BINARY:
7312 		if (scsi_2btoul(hdr->length) <= 8)
7313 			retval = scsi_attrib_int_sbuf(sb, hdr, valid_len,
7314 			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7315 			    error_str_len);
7316 		else
7317 			retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7318 			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7319 			    error_str_len);
7320 		break;
7321 	case SMA_FORMAT_TEXT:
7322 		retval = scsi_attrib_text_sbuf(sb, hdr, valid_len,
7323 		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7324 		    error_str_len);
7325 		break;
7326 	default:
7327 		if (error_str != NULL) {
7328 			snprintf(error_str, error_str_len, "Unknown attribute "
7329 			    "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK);
7330 		}
7331 		retval = 1;
7332 		goto bailout;
7333 		break; /*NOTREACHED*/
7334 	}
7335 
7336 	sbuf_trim(sb);
7337 
7338 bailout:
7339 
7340 	return (retval);
7341 }
7342 
7343 void
7344 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags,
7345 			struct scsi_mam_attribute_header *hdr,
7346 			uint32_t valid_len, const char *desc)
7347 {
7348 	int need_space = 0;
7349 	uint32_t len;
7350 	uint32_t id;
7351 
7352 	/*
7353 	 * We can't do anything if we don't have enough valid data for the
7354 	 * header.
7355 	 */
7356 	if (valid_len < sizeof(*hdr))
7357 		return;
7358 
7359 	id = scsi_2btoul(hdr->id);
7360 	/*
7361 	 * Note that we print out the value of the attribute listed in the
7362 	 * header, regardless of whether we actually got that many bytes
7363 	 * back from the device through the controller.  A truncated result
7364 	 * could be the result of a failure to ask for enough data; the
7365 	 * header indicates how many bytes are allocated for this attribute
7366 	 * in the MAM.
7367 	 */
7368 	len = scsi_2btoul(hdr->length);
7369 
7370 	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) ==
7371 	    SCSI_ATTR_OUTPUT_FIELD_NONE)
7372 		return;
7373 
7374 	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC)
7375 	 && (desc != NULL)) {
7376 		sbuf_printf(sb, "%s", desc);
7377 		need_space = 1;
7378 	}
7379 
7380 	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) {
7381 		sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id);
7382 		need_space = 0;
7383 	}
7384 
7385 	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) {
7386 		sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len);
7387 		need_space = 0;
7388 	}
7389 	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) {
7390 		sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "",
7391 			    (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW");
7392 	}
7393 	sbuf_printf(sb, ": ");
7394 }
7395 
7396 int
7397 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7398 		 uint32_t valid_len, struct scsi_attrib_table_entry *user_table,
7399 		 size_t num_user_entries, int prefer_user_table,
7400 		 uint32_t output_flags, char *error_str, int error_str_len)
7401 {
7402 	int retval;
7403 	struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL;
7404 	struct scsi_attrib_table_entry *entry = NULL;
7405 	size_t table1_size = 0, table2_size = 0;
7406 	uint32_t id;
7407 
7408 	retval = 0;
7409 
7410 	if (valid_len < sizeof(*hdr)) {
7411 		retval = 1;
7412 		goto bailout;
7413 	}
7414 
7415 	id = scsi_2btoul(hdr->id);
7416 
7417 	if (user_table != NULL) {
7418 		if (prefer_user_table != 0) {
7419 			table1 = user_table;
7420 			table1_size = num_user_entries;
7421 			table2 = scsi_mam_attr_table;
7422 			table2_size = sizeof(scsi_mam_attr_table) /
7423 				      sizeof(scsi_mam_attr_table[0]);
7424 		} else {
7425 			table1 = scsi_mam_attr_table;
7426 			table1_size = sizeof(scsi_mam_attr_table) /
7427 				      sizeof(scsi_mam_attr_table[0]);
7428 			table2 = user_table;
7429 			table2_size = num_user_entries;
7430 		}
7431 	} else {
7432 		table1 = scsi_mam_attr_table;
7433 		table1_size = sizeof(scsi_mam_attr_table) /
7434 			      sizeof(scsi_mam_attr_table[0]);
7435 	}
7436 
7437 	entry = scsi_find_attrib_entry(table1, table1_size, id);
7438 	if (entry != NULL) {
7439 		scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len,
7440 					entry->desc);
7441 		if (entry->to_str == NULL)
7442 			goto print_default;
7443 		retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7444 				       output_flags, error_str, error_str_len);
7445 		goto bailout;
7446 	}
7447 	if (table2 != NULL) {
7448 		entry = scsi_find_attrib_entry(table2, table2_size, id);
7449 		if (entry != NULL) {
7450 			if (entry->to_str == NULL)
7451 				goto print_default;
7452 
7453 			scsi_attrib_prefix_sbuf(sb, output_flags, hdr,
7454 						valid_len, entry->desc);
7455 			retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7456 					       output_flags, error_str,
7457 					       error_str_len);
7458 			goto bailout;
7459 		}
7460 	}
7461 
7462 	scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL);
7463 
7464 print_default:
7465 	retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags,
7466 	    error_str, error_str_len);
7467 bailout:
7468 	if (retval == 0) {
7469 	 	if ((entry != NULL)
7470 		 && (entry->suffix != NULL))
7471 			sbuf_printf(sb, " %s", entry->suffix);
7472 
7473 		sbuf_trim(sb);
7474 		sbuf_printf(sb, "\n");
7475 	}
7476 
7477 	return (retval);
7478 }
7479 
7480 void
7481 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries,
7482 		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7483 		     u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout)
7484 {
7485 	struct scsi_test_unit_ready *scsi_cmd;
7486 
7487 	cam_fill_csio(csio,
7488 		      retries,
7489 		      cbfcnp,
7490 		      CAM_DIR_NONE,
7491 		      tag_action,
7492 		      /*data_ptr*/NULL,
7493 		      /*dxfer_len*/0,
7494 		      sense_len,
7495 		      sizeof(*scsi_cmd),
7496 		      timeout);
7497 
7498 	scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes;
7499 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7500 	scsi_cmd->opcode = TEST_UNIT_READY;
7501 }
7502 
7503 void
7504 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries,
7505 		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7506 		   void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action,
7507 		   u_int8_t sense_len, u_int32_t timeout)
7508 {
7509 	struct scsi_request_sense *scsi_cmd;
7510 
7511 	cam_fill_csio(csio,
7512 		      retries,
7513 		      cbfcnp,
7514 		      CAM_DIR_IN,
7515 		      tag_action,
7516 		      data_ptr,
7517 		      dxfer_len,
7518 		      sense_len,
7519 		      sizeof(*scsi_cmd),
7520 		      timeout);
7521 
7522 	scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes;
7523 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7524 	scsi_cmd->opcode = REQUEST_SENSE;
7525 	scsi_cmd->length = dxfer_len;
7526 }
7527 
7528 void
7529 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries,
7530 	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7531 	     u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len,
7532 	     int evpd, u_int8_t page_code, u_int8_t sense_len,
7533 	     u_int32_t timeout)
7534 {
7535 	struct scsi_inquiry *scsi_cmd;
7536 
7537 	cam_fill_csio(csio,
7538 		      retries,
7539 		      cbfcnp,
7540 		      /*flags*/CAM_DIR_IN,
7541 		      tag_action,
7542 		      /*data_ptr*/inq_buf,
7543 		      /*dxfer_len*/inq_len,
7544 		      sense_len,
7545 		      sizeof(*scsi_cmd),
7546 		      timeout);
7547 
7548 	scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes;
7549 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7550 	scsi_cmd->opcode = INQUIRY;
7551 	if (evpd) {
7552 		scsi_cmd->byte2 |= SI_EVPD;
7553 		scsi_cmd->page_code = page_code;
7554 	}
7555 	scsi_ulto2b(inq_len, scsi_cmd->length);
7556 }
7557 
7558 void
7559 scsi_mode_sense(struct ccb_scsiio *csio, u_int32_t retries,
7560 		void (*cbfcnp)(struct cam_periph *, union ccb *),
7561 		u_int8_t tag_action, int dbd, u_int8_t page_code,
7562 		u_int8_t page, u_int8_t *param_buf, u_int32_t param_len,
7563 		u_int8_t sense_len, u_int32_t timeout)
7564 {
7565 
7566 	scsi_mode_sense_len(csio, retries, cbfcnp, tag_action, dbd,
7567 			    page_code, page, param_buf, param_len, 0,
7568 			    sense_len, timeout);
7569 }
7570 
7571 void
7572 scsi_mode_sense_len(struct ccb_scsiio *csio, u_int32_t retries,
7573 		    void (*cbfcnp)(struct cam_periph *, union ccb *),
7574 		    u_int8_t tag_action, int dbd, u_int8_t page_code,
7575 		    u_int8_t page, u_int8_t *param_buf, u_int32_t param_len,
7576 		    int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout)
7577 {
7578 	u_int8_t cdb_len;
7579 
7580 	/*
7581 	 * Use the smallest possible command to perform the operation.
7582 	 */
7583 	if ((param_len < 256)
7584 	 && (minimum_cmd_size < 10)) {
7585 		/*
7586 		 * We can fit in a 6 byte cdb.
7587 		 */
7588 		struct scsi_mode_sense_6 *scsi_cmd;
7589 
7590 		scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes;
7591 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7592 		scsi_cmd->opcode = MODE_SENSE_6;
7593 		if (dbd != 0)
7594 			scsi_cmd->byte2 |= SMS_DBD;
7595 		scsi_cmd->page = page_code | page;
7596 		scsi_cmd->length = param_len;
7597 		cdb_len = sizeof(*scsi_cmd);
7598 	} else {
7599 		/*
7600 		 * Need a 10 byte cdb.
7601 		 */
7602 		struct scsi_mode_sense_10 *scsi_cmd;
7603 
7604 		scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes;
7605 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7606 		scsi_cmd->opcode = MODE_SENSE_10;
7607 		if (dbd != 0)
7608 			scsi_cmd->byte2 |= SMS_DBD;
7609 		scsi_cmd->page = page_code | page;
7610 		scsi_ulto2b(param_len, scsi_cmd->length);
7611 		cdb_len = sizeof(*scsi_cmd);
7612 	}
7613 	cam_fill_csio(csio,
7614 		      retries,
7615 		      cbfcnp,
7616 		      CAM_DIR_IN,
7617 		      tag_action,
7618 		      param_buf,
7619 		      param_len,
7620 		      sense_len,
7621 		      cdb_len,
7622 		      timeout);
7623 }
7624 
7625 void
7626 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries,
7627 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7628 		 u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7629 		 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7630 		 u_int32_t timeout)
7631 {
7632 	scsi_mode_select_len(csio, retries, cbfcnp, tag_action,
7633 			     scsi_page_fmt, save_pages, param_buf,
7634 			     param_len, 0, sense_len, timeout);
7635 }
7636 
7637 void
7638 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries,
7639 		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7640 		     u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7641 		     u_int8_t *param_buf, u_int32_t param_len,
7642 		     int minimum_cmd_size, u_int8_t sense_len,
7643 		     u_int32_t timeout)
7644 {
7645 	u_int8_t cdb_len;
7646 
7647 	/*
7648 	 * Use the smallest possible command to perform the operation.
7649 	 */
7650 	if ((param_len < 256)
7651 	 && (minimum_cmd_size < 10)) {
7652 		/*
7653 		 * We can fit in a 6 byte cdb.
7654 		 */
7655 		struct scsi_mode_select_6 *scsi_cmd;
7656 
7657 		scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes;
7658 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7659 		scsi_cmd->opcode = MODE_SELECT_6;
7660 		if (scsi_page_fmt != 0)
7661 			scsi_cmd->byte2 |= SMS_PF;
7662 		if (save_pages != 0)
7663 			scsi_cmd->byte2 |= SMS_SP;
7664 		scsi_cmd->length = param_len;
7665 		cdb_len = sizeof(*scsi_cmd);
7666 	} else {
7667 		/*
7668 		 * Need a 10 byte cdb.
7669 		 */
7670 		struct scsi_mode_select_10 *scsi_cmd;
7671 
7672 		scsi_cmd =
7673 		    (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes;
7674 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7675 		scsi_cmd->opcode = MODE_SELECT_10;
7676 		if (scsi_page_fmt != 0)
7677 			scsi_cmd->byte2 |= SMS_PF;
7678 		if (save_pages != 0)
7679 			scsi_cmd->byte2 |= SMS_SP;
7680 		scsi_ulto2b(param_len, scsi_cmd->length);
7681 		cdb_len = sizeof(*scsi_cmd);
7682 	}
7683 	cam_fill_csio(csio,
7684 		      retries,
7685 		      cbfcnp,
7686 		      CAM_DIR_OUT,
7687 		      tag_action,
7688 		      param_buf,
7689 		      param_len,
7690 		      sense_len,
7691 		      cdb_len,
7692 		      timeout);
7693 }
7694 
7695 void
7696 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries,
7697 	       void (*cbfcnp)(struct cam_periph *, union ccb *),
7698 	       u_int8_t tag_action, u_int8_t page_code, u_int8_t page,
7699 	       int save_pages, int ppc, u_int32_t paramptr,
7700 	       u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7701 	       u_int32_t timeout)
7702 {
7703 	struct scsi_log_sense *scsi_cmd;
7704 	u_int8_t cdb_len;
7705 
7706 	scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes;
7707 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7708 	scsi_cmd->opcode = LOG_SENSE;
7709 	scsi_cmd->page = page_code | page;
7710 	if (save_pages != 0)
7711 		scsi_cmd->byte2 |= SLS_SP;
7712 	if (ppc != 0)
7713 		scsi_cmd->byte2 |= SLS_PPC;
7714 	scsi_ulto2b(paramptr, scsi_cmd->paramptr);
7715 	scsi_ulto2b(param_len, scsi_cmd->length);
7716 	cdb_len = sizeof(*scsi_cmd);
7717 
7718 	cam_fill_csio(csio,
7719 		      retries,
7720 		      cbfcnp,
7721 		      /*flags*/CAM_DIR_IN,
7722 		      tag_action,
7723 		      /*data_ptr*/param_buf,
7724 		      /*dxfer_len*/param_len,
7725 		      sense_len,
7726 		      cdb_len,
7727 		      timeout);
7728 }
7729 
7730 void
7731 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries,
7732 		void (*cbfcnp)(struct cam_periph *, union ccb *),
7733 		u_int8_t tag_action, u_int8_t page_code, int save_pages,
7734 		int pc_reset, u_int8_t *param_buf, u_int32_t param_len,
7735 		u_int8_t sense_len, u_int32_t timeout)
7736 {
7737 	struct scsi_log_select *scsi_cmd;
7738 	u_int8_t cdb_len;
7739 
7740 	scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes;
7741 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7742 	scsi_cmd->opcode = LOG_SELECT;
7743 	scsi_cmd->page = page_code & SLS_PAGE_CODE;
7744 	if (save_pages != 0)
7745 		scsi_cmd->byte2 |= SLS_SP;
7746 	if (pc_reset != 0)
7747 		scsi_cmd->byte2 |= SLS_PCR;
7748 	scsi_ulto2b(param_len, scsi_cmd->length);
7749 	cdb_len = sizeof(*scsi_cmd);
7750 
7751 	cam_fill_csio(csio,
7752 		      retries,
7753 		      cbfcnp,
7754 		      /*flags*/CAM_DIR_OUT,
7755 		      tag_action,
7756 		      /*data_ptr*/param_buf,
7757 		      /*dxfer_len*/param_len,
7758 		      sense_len,
7759 		      cdb_len,
7760 		      timeout);
7761 }
7762 
7763 /*
7764  * Prevent or allow the user to remove the media
7765  */
7766 void
7767 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries,
7768 	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7769 	     u_int8_t tag_action, u_int8_t action,
7770 	     u_int8_t sense_len, u_int32_t timeout)
7771 {
7772 	struct scsi_prevent *scsi_cmd;
7773 
7774 	cam_fill_csio(csio,
7775 		      retries,
7776 		      cbfcnp,
7777 		      /*flags*/CAM_DIR_NONE,
7778 		      tag_action,
7779 		      /*data_ptr*/NULL,
7780 		      /*dxfer_len*/0,
7781 		      sense_len,
7782 		      sizeof(*scsi_cmd),
7783 		      timeout);
7784 
7785 	scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes;
7786 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7787 	scsi_cmd->opcode = PREVENT_ALLOW;
7788 	scsi_cmd->how = action;
7789 }
7790 
7791 /* XXX allow specification of address and PMI bit and LBA */
7792 void
7793 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries,
7794 		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7795 		   u_int8_t tag_action,
7796 		   struct scsi_read_capacity_data *rcap_buf,
7797 		   u_int8_t sense_len, u_int32_t timeout)
7798 {
7799 	struct scsi_read_capacity *scsi_cmd;
7800 
7801 	cam_fill_csio(csio,
7802 		      retries,
7803 		      cbfcnp,
7804 		      /*flags*/CAM_DIR_IN,
7805 		      tag_action,
7806 		      /*data_ptr*/(u_int8_t *)rcap_buf,
7807 		      /*dxfer_len*/sizeof(*rcap_buf),
7808 		      sense_len,
7809 		      sizeof(*scsi_cmd),
7810 		      timeout);
7811 
7812 	scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes;
7813 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7814 	scsi_cmd->opcode = READ_CAPACITY;
7815 }
7816 
7817 void
7818 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
7819 		      void (*cbfcnp)(struct cam_periph *, union ccb *),
7820 		      uint8_t tag_action, uint64_t lba, int reladr, int pmi,
7821 		      uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len,
7822 		      uint32_t timeout)
7823 {
7824 	struct scsi_read_capacity_16 *scsi_cmd;
7825 
7826 
7827 	cam_fill_csio(csio,
7828 		      retries,
7829 		      cbfcnp,
7830 		      /*flags*/CAM_DIR_IN,
7831 		      tag_action,
7832 		      /*data_ptr*/(u_int8_t *)rcap_buf,
7833 		      /*dxfer_len*/rcap_buf_len,
7834 		      sense_len,
7835 		      sizeof(*scsi_cmd),
7836 		      timeout);
7837 	scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
7838 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7839 	scsi_cmd->opcode = SERVICE_ACTION_IN;
7840 	scsi_cmd->service_action = SRC16_SERVICE_ACTION;
7841 	scsi_u64to8b(lba, scsi_cmd->addr);
7842 	scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len);
7843 	if (pmi)
7844 		reladr |= SRC16_PMI;
7845 	if (reladr)
7846 		reladr |= SRC16_RELADR;
7847 }
7848 
7849 void
7850 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries,
7851 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7852 		 u_int8_t tag_action, u_int8_t select_report,
7853 		 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len,
7854 		 u_int8_t sense_len, u_int32_t timeout)
7855 {
7856 	struct scsi_report_luns *scsi_cmd;
7857 
7858 	cam_fill_csio(csio,
7859 		      retries,
7860 		      cbfcnp,
7861 		      /*flags*/CAM_DIR_IN,
7862 		      tag_action,
7863 		      /*data_ptr*/(u_int8_t *)rpl_buf,
7864 		      /*dxfer_len*/alloc_len,
7865 		      sense_len,
7866 		      sizeof(*scsi_cmd),
7867 		      timeout);
7868 	scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes;
7869 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7870 	scsi_cmd->opcode = REPORT_LUNS;
7871 	scsi_cmd->select_report = select_report;
7872 	scsi_ulto4b(alloc_len, scsi_cmd->length);
7873 }
7874 
7875 void
7876 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries,
7877 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7878 		 u_int8_t tag_action, u_int8_t pdf,
7879 		 void *buf, u_int32_t alloc_len,
7880 		 u_int8_t sense_len, u_int32_t timeout)
7881 {
7882 	struct scsi_target_group *scsi_cmd;
7883 
7884 	cam_fill_csio(csio,
7885 		      retries,
7886 		      cbfcnp,
7887 		      /*flags*/CAM_DIR_IN,
7888 		      tag_action,
7889 		      /*data_ptr*/(u_int8_t *)buf,
7890 		      /*dxfer_len*/alloc_len,
7891 		      sense_len,
7892 		      sizeof(*scsi_cmd),
7893 		      timeout);
7894 	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
7895 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7896 	scsi_cmd->opcode = MAINTENANCE_IN;
7897 	scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf;
7898 	scsi_ulto4b(alloc_len, scsi_cmd->length);
7899 }
7900 
7901 void
7902 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries,
7903 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7904 		 u_int8_t tag_action, void *buf, u_int32_t alloc_len,
7905 		 u_int8_t sense_len, u_int32_t timeout)
7906 {
7907 	struct scsi_target_group *scsi_cmd;
7908 
7909 	cam_fill_csio(csio,
7910 		      retries,
7911 		      cbfcnp,
7912 		      /*flags*/CAM_DIR_OUT,
7913 		      tag_action,
7914 		      /*data_ptr*/(u_int8_t *)buf,
7915 		      /*dxfer_len*/alloc_len,
7916 		      sense_len,
7917 		      sizeof(*scsi_cmd),
7918 		      timeout);
7919 	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
7920 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7921 	scsi_cmd->opcode = MAINTENANCE_OUT;
7922 	scsi_cmd->service_action = SET_TARGET_PORT_GROUPS;
7923 	scsi_ulto4b(alloc_len, scsi_cmd->length);
7924 }
7925 
7926 /*
7927  * Syncronize the media to the contents of the cache for
7928  * the given lba/count pair.  Specifying 0/0 means sync
7929  * the whole cache.
7930  */
7931 void
7932 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries,
7933 		       void (*cbfcnp)(struct cam_periph *, union ccb *),
7934 		       u_int8_t tag_action, u_int32_t begin_lba,
7935 		       u_int16_t lb_count, u_int8_t sense_len,
7936 		       u_int32_t timeout)
7937 {
7938 	struct scsi_sync_cache *scsi_cmd;
7939 
7940 	cam_fill_csio(csio,
7941 		      retries,
7942 		      cbfcnp,
7943 		      /*flags*/CAM_DIR_NONE,
7944 		      tag_action,
7945 		      /*data_ptr*/NULL,
7946 		      /*dxfer_len*/0,
7947 		      sense_len,
7948 		      sizeof(*scsi_cmd),
7949 		      timeout);
7950 
7951 	scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes;
7952 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7953 	scsi_cmd->opcode = SYNCHRONIZE_CACHE;
7954 	scsi_ulto4b(begin_lba, scsi_cmd->begin_lba);
7955 	scsi_ulto2b(lb_count, scsi_cmd->lb_count);
7956 }
7957 
7958 void
7959 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries,
7960 		void (*cbfcnp)(struct cam_periph *, union ccb *),
7961 		u_int8_t tag_action, int readop, u_int8_t byte2,
7962 		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
7963 		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
7964 		u_int32_t timeout)
7965 {
7966 	int read;
7967 	u_int8_t cdb_len;
7968 
7969 	read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ;
7970 
7971 	/*
7972 	 * Use the smallest possible command to perform the operation
7973 	 * as some legacy hardware does not support the 10 byte commands.
7974 	 * If any of the bits in byte2 is set, we have to go with a larger
7975 	 * command.
7976 	 */
7977 	if ((minimum_cmd_size < 10)
7978 	 && ((lba & 0x1fffff) == lba)
7979 	 && ((block_count & 0xff) == block_count)
7980 	 && (byte2 == 0)) {
7981 		/*
7982 		 * We can fit in a 6 byte cdb.
7983 		 */
7984 		struct scsi_rw_6 *scsi_cmd;
7985 
7986 		scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes;
7987 		scsi_cmd->opcode = read ? READ_6 : WRITE_6;
7988 		scsi_ulto3b(lba, scsi_cmd->addr);
7989 		scsi_cmd->length = block_count & 0xff;
7990 		scsi_cmd->control = 0;
7991 		cdb_len = sizeof(*scsi_cmd);
7992 
7993 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
7994 			  ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0],
7995 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
7996 			   scsi_cmd->length, dxfer_len));
7997 	} else if ((minimum_cmd_size < 12)
7998 		&& ((block_count & 0xffff) == block_count)
7999 		&& ((lba & 0xffffffff) == lba)) {
8000 		/*
8001 		 * Need a 10 byte cdb.
8002 		 */
8003 		struct scsi_rw_10 *scsi_cmd;
8004 
8005 		scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes;
8006 		scsi_cmd->opcode = read ? READ_10 : WRITE_10;
8007 		scsi_cmd->byte2 = byte2;
8008 		scsi_ulto4b(lba, scsi_cmd->addr);
8009 		scsi_cmd->reserved = 0;
8010 		scsi_ulto2b(block_count, scsi_cmd->length);
8011 		scsi_cmd->control = 0;
8012 		cdb_len = sizeof(*scsi_cmd);
8013 
8014 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8015 			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8016 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8017 			   scsi_cmd->addr[3], scsi_cmd->length[0],
8018 			   scsi_cmd->length[1], dxfer_len));
8019 	} else if ((minimum_cmd_size < 16)
8020 		&& ((block_count & 0xffffffff) == block_count)
8021 		&& ((lba & 0xffffffff) == lba)) {
8022 		/*
8023 		 * The block count is too big for a 10 byte CDB, use a 12
8024 		 * byte CDB.
8025 		 */
8026 		struct scsi_rw_12 *scsi_cmd;
8027 
8028 		scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes;
8029 		scsi_cmd->opcode = read ? READ_12 : WRITE_12;
8030 		scsi_cmd->byte2 = byte2;
8031 		scsi_ulto4b(lba, scsi_cmd->addr);
8032 		scsi_cmd->reserved = 0;
8033 		scsi_ulto4b(block_count, scsi_cmd->length);
8034 		scsi_cmd->control = 0;
8035 		cdb_len = sizeof(*scsi_cmd);
8036 
8037 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8038 			  ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0],
8039 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8040 			   scsi_cmd->addr[3], scsi_cmd->length[0],
8041 			   scsi_cmd->length[1], scsi_cmd->length[2],
8042 			   scsi_cmd->length[3], dxfer_len));
8043 	} else {
8044 		/*
8045 		 * 16 byte CDB.  We'll only get here if the LBA is larger
8046 		 * than 2^32, or if the user asks for a 16 byte command.
8047 		 */
8048 		struct scsi_rw_16 *scsi_cmd;
8049 
8050 		scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes;
8051 		scsi_cmd->opcode = read ? READ_16 : WRITE_16;
8052 		scsi_cmd->byte2 = byte2;
8053 		scsi_u64to8b(lba, scsi_cmd->addr);
8054 		scsi_cmd->reserved = 0;
8055 		scsi_ulto4b(block_count, scsi_cmd->length);
8056 		scsi_cmd->control = 0;
8057 		cdb_len = sizeof(*scsi_cmd);
8058 	}
8059 	cam_fill_csio(csio,
8060 		      retries,
8061 		      cbfcnp,
8062 		      (read ? CAM_DIR_IN : CAM_DIR_OUT) |
8063 		      ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0),
8064 		      tag_action,
8065 		      data_ptr,
8066 		      dxfer_len,
8067 		      sense_len,
8068 		      cdb_len,
8069 		      timeout);
8070 }
8071 
8072 void
8073 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries,
8074 		void (*cbfcnp)(struct cam_periph *, union ccb *),
8075 		u_int8_t tag_action, u_int8_t byte2,
8076 		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
8077 		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
8078 		u_int32_t timeout)
8079 {
8080 	u_int8_t cdb_len;
8081 	if ((minimum_cmd_size < 16) &&
8082 	    ((block_count & 0xffff) == block_count) &&
8083 	    ((lba & 0xffffffff) == lba)) {
8084 		/*
8085 		 * Need a 10 byte cdb.
8086 		 */
8087 		struct scsi_write_same_10 *scsi_cmd;
8088 
8089 		scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes;
8090 		scsi_cmd->opcode = WRITE_SAME_10;
8091 		scsi_cmd->byte2 = byte2;
8092 		scsi_ulto4b(lba, scsi_cmd->addr);
8093 		scsi_cmd->group = 0;
8094 		scsi_ulto2b(block_count, scsi_cmd->length);
8095 		scsi_cmd->control = 0;
8096 		cdb_len = sizeof(*scsi_cmd);
8097 
8098 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8099 			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8100 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8101 			   scsi_cmd->addr[3], scsi_cmd->length[0],
8102 			   scsi_cmd->length[1], dxfer_len));
8103 	} else {
8104 		/*
8105 		 * 16 byte CDB.  We'll only get here if the LBA is larger
8106 		 * than 2^32, or if the user asks for a 16 byte command.
8107 		 */
8108 		struct scsi_write_same_16 *scsi_cmd;
8109 
8110 		scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes;
8111 		scsi_cmd->opcode = WRITE_SAME_16;
8112 		scsi_cmd->byte2 = byte2;
8113 		scsi_u64to8b(lba, scsi_cmd->addr);
8114 		scsi_ulto4b(block_count, scsi_cmd->length);
8115 		scsi_cmd->group = 0;
8116 		scsi_cmd->control = 0;
8117 		cdb_len = sizeof(*scsi_cmd);
8118 
8119 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8120 			  ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n",
8121 			   scsi_cmd->addr[0], scsi_cmd->addr[1],
8122 			   scsi_cmd->addr[2], scsi_cmd->addr[3],
8123 			   scsi_cmd->addr[4], scsi_cmd->addr[5],
8124 			   scsi_cmd->addr[6], scsi_cmd->addr[7],
8125 			   scsi_cmd->length[0], scsi_cmd->length[1],
8126 			   scsi_cmd->length[2], scsi_cmd->length[3],
8127 			   dxfer_len));
8128 	}
8129 	cam_fill_csio(csio,
8130 		      retries,
8131 		      cbfcnp,
8132 		      /*flags*/CAM_DIR_OUT,
8133 		      tag_action,
8134 		      data_ptr,
8135 		      dxfer_len,
8136 		      sense_len,
8137 		      cdb_len,
8138 		      timeout);
8139 }
8140 
8141 void
8142 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries,
8143 		  void (*cbfcnp)(struct cam_periph *, union ccb *),
8144 		  u_int8_t tag_action, u_int8_t *data_ptr,
8145 		  u_int16_t dxfer_len, u_int8_t sense_len,
8146 		  u_int32_t timeout)
8147 {
8148 	scsi_ata_pass_16(csio,
8149 			 retries,
8150 			 cbfcnp,
8151 			 /*flags*/CAM_DIR_IN,
8152 			 tag_action,
8153 			 /*protocol*/AP_PROTO_PIO_IN,
8154 			 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV|
8155 				AP_FLAG_BYT_BLOK_BYTES|AP_FLAG_TLEN_SECT_CNT,
8156 			 /*features*/0,
8157 			 /*sector_count*/dxfer_len,
8158 			 /*lba*/0,
8159 			 /*command*/ATA_ATA_IDENTIFY,
8160 			 /*control*/0,
8161 			 data_ptr,
8162 			 dxfer_len,
8163 			 sense_len,
8164 			 timeout);
8165 }
8166 
8167 void
8168 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries,
8169 	      void (*cbfcnp)(struct cam_periph *, union ccb *),
8170 	      u_int8_t tag_action, u_int16_t block_count,
8171 	      u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8172 	      u_int32_t timeout)
8173 {
8174 	scsi_ata_pass_16(csio,
8175 			 retries,
8176 			 cbfcnp,
8177 			 /*flags*/CAM_DIR_OUT,
8178 			 tag_action,
8179 			 /*protocol*/AP_EXTEND|AP_PROTO_DMA,
8180 			 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS,
8181 			 /*features*/ATA_DSM_TRIM,
8182 			 /*sector_count*/block_count,
8183 			 /*lba*/0,
8184 			 /*command*/ATA_DATA_SET_MANAGEMENT,
8185 			 /*control*/0,
8186 			 data_ptr,
8187 			 dxfer_len,
8188 			 sense_len,
8189 			 timeout);
8190 }
8191 
8192 void
8193 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries,
8194 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
8195 		 u_int32_t flags, u_int8_t tag_action,
8196 		 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features,
8197 		 u_int16_t sector_count, uint64_t lba, u_int8_t command,
8198 		 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len,
8199 		 u_int8_t sense_len, u_int32_t timeout)
8200 {
8201 	struct ata_pass_16 *ata_cmd;
8202 
8203 	ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes;
8204 	ata_cmd->opcode = ATA_PASS_16;
8205 	ata_cmd->protocol = protocol;
8206 	ata_cmd->flags = ata_flags;
8207 	ata_cmd->features_ext = features >> 8;
8208 	ata_cmd->features = features;
8209 	ata_cmd->sector_count_ext = sector_count >> 8;
8210 	ata_cmd->sector_count = sector_count;
8211 	ata_cmd->lba_low = lba;
8212 	ata_cmd->lba_mid = lba >> 8;
8213 	ata_cmd->lba_high = lba >> 16;
8214 	ata_cmd->device = ATA_DEV_LBA;
8215 	if (protocol & AP_EXTEND) {
8216 		ata_cmd->lba_low_ext = lba >> 24;
8217 		ata_cmd->lba_mid_ext = lba >> 32;
8218 		ata_cmd->lba_high_ext = lba >> 40;
8219 	} else
8220 		ata_cmd->device |= (lba >> 24) & 0x0f;
8221 	ata_cmd->command = command;
8222 	ata_cmd->control = control;
8223 
8224 	cam_fill_csio(csio,
8225 		      retries,
8226 		      cbfcnp,
8227 		      flags,
8228 		      tag_action,
8229 		      data_ptr,
8230 		      dxfer_len,
8231 		      sense_len,
8232 		      sizeof(*ata_cmd),
8233 		      timeout);
8234 }
8235 
8236 void
8237 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries,
8238 	   void (*cbfcnp)(struct cam_periph *, union ccb *),
8239 	   u_int8_t tag_action, u_int8_t byte2,
8240 	   u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8241 	   u_int32_t timeout)
8242 {
8243 	struct scsi_unmap *scsi_cmd;
8244 
8245 	scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes;
8246 	scsi_cmd->opcode = UNMAP;
8247 	scsi_cmd->byte2 = byte2;
8248 	scsi_ulto4b(0, scsi_cmd->reserved);
8249 	scsi_cmd->group = 0;
8250 	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8251 	scsi_cmd->control = 0;
8252 
8253 	cam_fill_csio(csio,
8254 		      retries,
8255 		      cbfcnp,
8256 		      /*flags*/CAM_DIR_OUT,
8257 		      tag_action,
8258 		      data_ptr,
8259 		      dxfer_len,
8260 		      sense_len,
8261 		      sizeof(*scsi_cmd),
8262 		      timeout);
8263 }
8264 
8265 void
8266 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries,
8267 				void (*cbfcnp)(struct cam_periph *, union ccb*),
8268 				uint8_t tag_action, int pcv, uint8_t page_code,
8269 				uint8_t *data_ptr, uint16_t allocation_length,
8270 				uint8_t sense_len, uint32_t timeout)
8271 {
8272 	struct scsi_receive_diag *scsi_cmd;
8273 
8274 	scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes;
8275 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8276 	scsi_cmd->opcode = RECEIVE_DIAGNOSTIC;
8277 	if (pcv) {
8278 		scsi_cmd->byte2 |= SRD_PCV;
8279 		scsi_cmd->page_code = page_code;
8280 	}
8281 	scsi_ulto2b(allocation_length, scsi_cmd->length);
8282 
8283 	cam_fill_csio(csio,
8284 		      retries,
8285 		      cbfcnp,
8286 		      /*flags*/CAM_DIR_IN,
8287 		      tag_action,
8288 		      data_ptr,
8289 		      allocation_length,
8290 		      sense_len,
8291 		      sizeof(*scsi_cmd),
8292 		      timeout);
8293 }
8294 
8295 void
8296 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries,
8297 		     void (*cbfcnp)(struct cam_periph *, union ccb *),
8298 		     uint8_t tag_action, int unit_offline, int device_offline,
8299 		     int self_test, int page_format, int self_test_code,
8300 		     uint8_t *data_ptr, uint16_t param_list_length,
8301 		     uint8_t sense_len, uint32_t timeout)
8302 {
8303 	struct scsi_send_diag *scsi_cmd;
8304 
8305 	scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes;
8306 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8307 	scsi_cmd->opcode = SEND_DIAGNOSTIC;
8308 
8309 	/*
8310 	 * The default self-test mode control and specific test
8311 	 * control are mutually exclusive.
8312 	 */
8313 	if (self_test)
8314 		self_test_code = SSD_SELF_TEST_CODE_NONE;
8315 
8316 	scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT)
8317 			 & SSD_SELF_TEST_CODE_MASK)
8318 			| (unit_offline   ? SSD_UNITOFFL : 0)
8319 			| (device_offline ? SSD_DEVOFFL  : 0)
8320 			| (self_test      ? SSD_SELFTEST : 0)
8321 			| (page_format    ? SSD_PF       : 0);
8322 	scsi_ulto2b(param_list_length, scsi_cmd->length);
8323 
8324 	cam_fill_csio(csio,
8325 		      retries,
8326 		      cbfcnp,
8327 		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8328 		      tag_action,
8329 		      data_ptr,
8330 		      param_list_length,
8331 		      sense_len,
8332 		      sizeof(*scsi_cmd),
8333 		      timeout);
8334 }
8335 
8336 void
8337 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8338 			void (*cbfcnp)(struct cam_periph *, union ccb*),
8339 			uint8_t tag_action, int mode,
8340 			uint8_t buffer_id, u_int32_t offset,
8341 			uint8_t *data_ptr, uint32_t allocation_length,
8342 			uint8_t sense_len, uint32_t timeout)
8343 {
8344 	struct scsi_read_buffer *scsi_cmd;
8345 
8346 	scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes;
8347 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8348 	scsi_cmd->opcode = READ_BUFFER;
8349 	scsi_cmd->byte2 = mode;
8350 	scsi_cmd->buffer_id = buffer_id;
8351 	scsi_ulto3b(offset, scsi_cmd->offset);
8352 	scsi_ulto3b(allocation_length, scsi_cmd->length);
8353 
8354 	cam_fill_csio(csio,
8355 		      retries,
8356 		      cbfcnp,
8357 		      /*flags*/CAM_DIR_IN,
8358 		      tag_action,
8359 		      data_ptr,
8360 		      allocation_length,
8361 		      sense_len,
8362 		      sizeof(*scsi_cmd),
8363 		      timeout);
8364 }
8365 
8366 void
8367 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8368 			void (*cbfcnp)(struct cam_periph *, union ccb *),
8369 			uint8_t tag_action, int mode,
8370 			uint8_t buffer_id, u_int32_t offset,
8371 			uint8_t *data_ptr, uint32_t param_list_length,
8372 			uint8_t sense_len, uint32_t timeout)
8373 {
8374 	struct scsi_write_buffer *scsi_cmd;
8375 
8376 	scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes;
8377 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8378 	scsi_cmd->opcode = WRITE_BUFFER;
8379 	scsi_cmd->byte2 = mode;
8380 	scsi_cmd->buffer_id = buffer_id;
8381 	scsi_ulto3b(offset, scsi_cmd->offset);
8382 	scsi_ulto3b(param_list_length, scsi_cmd->length);
8383 
8384 	cam_fill_csio(csio,
8385 		      retries,
8386 		      cbfcnp,
8387 		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8388 		      tag_action,
8389 		      data_ptr,
8390 		      param_list_length,
8391 		      sense_len,
8392 		      sizeof(*scsi_cmd),
8393 		      timeout);
8394 }
8395 
8396 void
8397 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries,
8398 		void (*cbfcnp)(struct cam_periph *, union ccb *),
8399 		u_int8_t tag_action, int start, int load_eject,
8400 		int immediate, u_int8_t sense_len, u_int32_t timeout)
8401 {
8402 	struct scsi_start_stop_unit *scsi_cmd;
8403 	int extra_flags = 0;
8404 
8405 	scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
8406 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8407 	scsi_cmd->opcode = START_STOP_UNIT;
8408 	if (start != 0) {
8409 		scsi_cmd->how |= SSS_START;
8410 		/* it takes a lot of power to start a drive */
8411 		extra_flags |= CAM_HIGH_POWER;
8412 	}
8413 	if (load_eject != 0)
8414 		scsi_cmd->how |= SSS_LOEJ;
8415 	if (immediate != 0)
8416 		scsi_cmd->byte2 |= SSS_IMMED;
8417 
8418 	cam_fill_csio(csio,
8419 		      retries,
8420 		      cbfcnp,
8421 		      /*flags*/CAM_DIR_NONE | extra_flags,
8422 		      tag_action,
8423 		      /*data_ptr*/NULL,
8424 		      /*dxfer_len*/0,
8425 		      sense_len,
8426 		      sizeof(*scsi_cmd),
8427 		      timeout);
8428 }
8429 
8430 void
8431 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8432 		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8433 		    u_int8_t tag_action, u_int8_t service_action,
8434 		    uint32_t element, u_int8_t elem_type, int logical_volume,
8435 		    int partition, u_int32_t first_attribute, int cache,
8436 		    u_int8_t *data_ptr, u_int32_t length, int sense_len,
8437 		    u_int32_t timeout)
8438 {
8439 	struct scsi_read_attribute *scsi_cmd;
8440 
8441 	scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes;
8442 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8443 
8444 	scsi_cmd->opcode = READ_ATTRIBUTE;
8445 	scsi_cmd->service_action = service_action,
8446 	scsi_ulto2b(element, scsi_cmd->element);
8447 	scsi_cmd->elem_type = elem_type;
8448 	scsi_cmd->logical_volume = logical_volume;
8449 	scsi_cmd->partition = partition;
8450 	scsi_ulto2b(first_attribute, scsi_cmd->first_attribute);
8451 	scsi_ulto4b(length, scsi_cmd->length);
8452 	if (cache != 0)
8453 		scsi_cmd->cache |= SRA_CACHE;
8454 
8455 	cam_fill_csio(csio,
8456 		      retries,
8457 		      cbfcnp,
8458 		      /*flags*/CAM_DIR_IN,
8459 		      tag_action,
8460 		      /*data_ptr*/data_ptr,
8461 		      /*dxfer_len*/length,
8462 		      sense_len,
8463 		      sizeof(*scsi_cmd),
8464 		      timeout);
8465 }
8466 
8467 void
8468 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8469 		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8470 		    u_int8_t tag_action, uint32_t element, int logical_volume,
8471 		    int partition, int wtc, u_int8_t *data_ptr,
8472 		    u_int32_t length, int sense_len, u_int32_t timeout)
8473 {
8474 	struct scsi_write_attribute *scsi_cmd;
8475 
8476 	scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes;
8477 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8478 
8479 	scsi_cmd->opcode = WRITE_ATTRIBUTE;
8480 	if (wtc != 0)
8481 		scsi_cmd->byte2 = SWA_WTC;
8482 	scsi_ulto3b(element, scsi_cmd->element);
8483 	scsi_cmd->logical_volume = logical_volume;
8484 	scsi_cmd->partition = partition;
8485 	scsi_ulto4b(length, scsi_cmd->length);
8486 
8487 	cam_fill_csio(csio,
8488 		      retries,
8489 		      cbfcnp,
8490 		      /*flags*/CAM_DIR_OUT,
8491 		      tag_action,
8492 		      /*data_ptr*/data_ptr,
8493 		      /*dxfer_len*/length,
8494 		      sense_len,
8495 		      sizeof(*scsi_cmd),
8496 		      timeout);
8497 }
8498 
8499 void
8500 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
8501 			   void (*cbfcnp)(struct cam_periph *, union ccb *),
8502 			   uint8_t tag_action, int service_action,
8503 			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8504 			   int timeout)
8505 {
8506 	struct scsi_per_res_in *scsi_cmd;
8507 
8508 	scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes;
8509 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8510 
8511 	scsi_cmd->opcode = PERSISTENT_RES_IN;
8512 	scsi_cmd->action = service_action;
8513 	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8514 
8515 	cam_fill_csio(csio,
8516 		      retries,
8517 		      cbfcnp,
8518 		      /*flags*/CAM_DIR_IN,
8519 		      tag_action,
8520 		      data_ptr,
8521 		      dxfer_len,
8522 		      sense_len,
8523 		      sizeof(*scsi_cmd),
8524 		      timeout);
8525 }
8526 
8527 void
8528 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
8529 			    void (*cbfcnp)(struct cam_periph *, union ccb *),
8530 			    uint8_t tag_action, int service_action,
8531 			    int scope, int res_type, uint8_t *data_ptr,
8532 			    uint32_t dxfer_len, int sense_len, int timeout)
8533 {
8534 	struct scsi_per_res_out *scsi_cmd;
8535 
8536 	scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes;
8537 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8538 
8539 	scsi_cmd->opcode = PERSISTENT_RES_OUT;
8540 	scsi_cmd->action = service_action;
8541 	scsi_cmd->scope_type = scope | res_type;
8542 
8543 	cam_fill_csio(csio,
8544 		      retries,
8545 		      cbfcnp,
8546 		      /*flags*/CAM_DIR_OUT,
8547 		      tag_action,
8548 		      /*data_ptr*/data_ptr,
8549 		      /*dxfer_len*/dxfer_len,
8550 		      sense_len,
8551 		      sizeof(*scsi_cmd),
8552 		      timeout);
8553 }
8554 
8555 void
8556 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries,
8557 			  void (*cbfcnp)(struct cam_periph *, union ccb *),
8558 			  uint8_t tag_action, uint32_t security_protocol,
8559 			  uint32_t security_protocol_specific, int byte4,
8560 			  uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8561 			  int timeout)
8562 {
8563 	struct scsi_security_protocol_in *scsi_cmd;
8564 
8565 	scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes;
8566 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8567 
8568 	scsi_cmd->opcode = SECURITY_PROTOCOL_IN;
8569 
8570 	scsi_cmd->security_protocol = security_protocol;
8571 	scsi_ulto2b(security_protocol_specific,
8572 		    scsi_cmd->security_protocol_specific);
8573 	scsi_cmd->byte4 = byte4;
8574 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8575 
8576 	cam_fill_csio(csio,
8577 		      retries,
8578 		      cbfcnp,
8579 		      /*flags*/CAM_DIR_IN,
8580 		      tag_action,
8581 		      data_ptr,
8582 		      dxfer_len,
8583 		      sense_len,
8584 		      sizeof(*scsi_cmd),
8585 		      timeout);
8586 }
8587 
8588 void
8589 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries,
8590 			   void (*cbfcnp)(struct cam_periph *, union ccb *),
8591 			   uint8_t tag_action, uint32_t security_protocol,
8592 			   uint32_t security_protocol_specific, int byte4,
8593 			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8594 			   int timeout)
8595 {
8596 	struct scsi_security_protocol_out *scsi_cmd;
8597 
8598 	scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes;
8599 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8600 
8601 	scsi_cmd->opcode = SECURITY_PROTOCOL_OUT;
8602 
8603 	scsi_cmd->security_protocol = security_protocol;
8604 	scsi_ulto2b(security_protocol_specific,
8605 		    scsi_cmd->security_protocol_specific);
8606 	scsi_cmd->byte4 = byte4;
8607 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8608 
8609 	cam_fill_csio(csio,
8610 		      retries,
8611 		      cbfcnp,
8612 		      /*flags*/CAM_DIR_OUT,
8613 		      tag_action,
8614 		      data_ptr,
8615 		      dxfer_len,
8616 		      sense_len,
8617 		      sizeof(*scsi_cmd),
8618 		      timeout);
8619 }
8620 
8621 void
8622 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries,
8623 			      void (*cbfcnp)(struct cam_periph *, union ccb *),
8624 			      uint8_t tag_action, int options, int req_opcode,
8625 			      int req_service_action, uint8_t *data_ptr,
8626 			      uint32_t dxfer_len, int sense_len, int timeout)
8627 {
8628 	struct scsi_report_supported_opcodes *scsi_cmd;
8629 
8630 	scsi_cmd = (struct scsi_report_supported_opcodes *)
8631 	    &csio->cdb_io.cdb_bytes;
8632 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8633 
8634 	scsi_cmd->opcode = MAINTENANCE_IN;
8635 	scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES;
8636 	scsi_cmd->options = options;
8637 	scsi_cmd->requested_opcode = req_opcode;
8638 	scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action);
8639 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8640 
8641 	cam_fill_csio(csio,
8642 		      retries,
8643 		      cbfcnp,
8644 		      /*flags*/CAM_DIR_IN,
8645 		      tag_action,
8646 		      data_ptr,
8647 		      dxfer_len,
8648 		      sense_len,
8649 		      sizeof(*scsi_cmd),
8650 		      timeout);
8651 }
8652 
8653 /*
8654  * Try make as good a match as possible with
8655  * available sub drivers
8656  */
8657 int
8658 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
8659 {
8660 	struct scsi_inquiry_pattern *entry;
8661 	struct scsi_inquiry_data *inq;
8662 
8663 	entry = (struct scsi_inquiry_pattern *)table_entry;
8664 	inq = (struct scsi_inquiry_data *)inqbuffer;
8665 
8666 	if (((SID_TYPE(inq) == entry->type)
8667 	  || (entry->type == T_ANY))
8668 	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
8669 				   : entry->media_type & SIP_MEDIA_FIXED)
8670 	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
8671 	 && (cam_strmatch(inq->product, entry->product,
8672 			  sizeof(inq->product)) == 0)
8673 	 && (cam_strmatch(inq->revision, entry->revision,
8674 			  sizeof(inq->revision)) == 0)) {
8675 		return (0);
8676 	}
8677         return (-1);
8678 }
8679 
8680 /*
8681  * Try make as good a match as possible with
8682  * available sub drivers
8683  */
8684 int
8685 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
8686 {
8687 	struct scsi_static_inquiry_pattern *entry;
8688 	struct scsi_inquiry_data *inq;
8689 
8690 	entry = (struct scsi_static_inquiry_pattern *)table_entry;
8691 	inq = (struct scsi_inquiry_data *)inqbuffer;
8692 
8693 	if (((SID_TYPE(inq) == entry->type)
8694 	  || (entry->type == T_ANY))
8695 	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
8696 				   : entry->media_type & SIP_MEDIA_FIXED)
8697 	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
8698 	 && (cam_strmatch(inq->product, entry->product,
8699 			  sizeof(inq->product)) == 0)
8700 	 && (cam_strmatch(inq->revision, entry->revision,
8701 			  sizeof(inq->revision)) == 0)) {
8702 		return (0);
8703 	}
8704         return (-1);
8705 }
8706 
8707 /**
8708  * Compare two buffers of vpd device descriptors for a match.
8709  *
8710  * \param lhs      Pointer to first buffer of descriptors to compare.
8711  * \param lhs_len  The length of the first buffer.
8712  * \param rhs	   Pointer to second buffer of descriptors to compare.
8713  * \param rhs_len  The length of the second buffer.
8714  *
8715  * \return  0 on a match, -1 otherwise.
8716  *
8717  * Treat rhs and lhs as arrays of vpd device id descriptors.  Walk lhs matching
8718  * agains each element in rhs until all data are exhausted or we have found
8719  * a match.
8720  */
8721 int
8722 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len)
8723 {
8724 	struct scsi_vpd_id_descriptor *lhs_id;
8725 	struct scsi_vpd_id_descriptor *lhs_last;
8726 	struct scsi_vpd_id_descriptor *rhs_last;
8727 	uint8_t *lhs_end;
8728 	uint8_t *rhs_end;
8729 
8730 	lhs_end = lhs + lhs_len;
8731 	rhs_end = rhs + rhs_len;
8732 
8733 	/*
8734 	 * rhs_last and lhs_last are the last posible position of a valid
8735 	 * descriptor assuming it had a zero length identifier.  We use
8736 	 * these variables to insure we can safely dereference the length
8737 	 * field in our loop termination tests.
8738 	 */
8739 	lhs_last = (struct scsi_vpd_id_descriptor *)
8740 	    (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
8741 	rhs_last = (struct scsi_vpd_id_descriptor *)
8742 	    (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
8743 
8744 	lhs_id = (struct scsi_vpd_id_descriptor *)lhs;
8745 	while (lhs_id <= lhs_last
8746 	    && (lhs_id->identifier + lhs_id->length) <= lhs_end) {
8747 		struct scsi_vpd_id_descriptor *rhs_id;
8748 
8749 		rhs_id = (struct scsi_vpd_id_descriptor *)rhs;
8750 		while (rhs_id <= rhs_last
8751 		    && (rhs_id->identifier + rhs_id->length) <= rhs_end) {
8752 
8753 			if ((rhs_id->id_type &
8754 			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) ==
8755 			    (lhs_id->id_type &
8756 			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK))
8757 			 && rhs_id->length == lhs_id->length
8758 			 && memcmp(rhs_id->identifier, lhs_id->identifier,
8759 				   rhs_id->length) == 0)
8760 				return (0);
8761 
8762 			rhs_id = (struct scsi_vpd_id_descriptor *)
8763 			   (rhs_id->identifier + rhs_id->length);
8764 		}
8765 		lhs_id = (struct scsi_vpd_id_descriptor *)
8766 		   (lhs_id->identifier + lhs_id->length);
8767 	}
8768 	return (-1);
8769 }
8770 
8771 #ifdef _KERNEL
8772 int
8773 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id)
8774 {
8775 	struct cam_ed *device;
8776 	struct scsi_vpd_supported_pages *vpds;
8777 	int i, num_pages;
8778 
8779 	device = periph->path->device;
8780 	vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
8781 
8782 	if (vpds != NULL) {
8783 		num_pages = device->supported_vpds_len -
8784 		    SVPD_SUPPORTED_PAGES_HDR_LEN;
8785 		for (i = 0; i < num_pages; i++) {
8786 			if (vpds->page_list[i] == page_id)
8787 				return (1);
8788 		}
8789 	}
8790 
8791 	return (0);
8792 }
8793 
8794 static void
8795 init_scsi_delay(void)
8796 {
8797 	int delay;
8798 
8799 	delay = SCSI_DELAY;
8800 	TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay);
8801 
8802 	if (set_scsi_delay(delay) != 0) {
8803 		printf("cam: invalid value for tunable kern.cam.scsi_delay\n");
8804 		set_scsi_delay(SCSI_DELAY);
8805 	}
8806 }
8807 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL);
8808 
8809 static int
8810 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)
8811 {
8812 	int error, delay;
8813 
8814 	delay = scsi_delay;
8815 	error = sysctl_handle_int(oidp, &delay, 0, req);
8816 	if (error != 0 || req->newptr == NULL)
8817 		return (error);
8818 	return (set_scsi_delay(delay));
8819 }
8820 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT|CTLFLAG_RW,
8821     0, 0, sysctl_scsi_delay, "I",
8822     "Delay to allow devices to settle after a SCSI bus reset (ms)");
8823 
8824 static int
8825 set_scsi_delay(int delay)
8826 {
8827 	/*
8828          * If someone sets this to 0, we assume that they want the
8829          * minimum allowable bus settle delay.
8830 	 */
8831 	if (delay == 0) {
8832 		printf("cam: using minimum scsi_delay (%dms)\n",
8833 		    SCSI_MIN_DELAY);
8834 		delay = SCSI_MIN_DELAY;
8835 	}
8836 	if (delay < SCSI_MIN_DELAY)
8837 		return (EINVAL);
8838 	scsi_delay = delay;
8839 	return (0);
8840 }
8841 #endif /* _KERNEL */
8842