1 /*- 2 * Implementation of Utility functions for all SCSI device types. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/stdint.h> 36 37 #ifdef _KERNEL 38 #include <opt_scsi.h> 39 40 #include <sys/systm.h> 41 #include <sys/libkern.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mutex.h> 46 #include <sys/sysctl.h> 47 #include <sys/ctype.h> 48 #else 49 #include <errno.h> 50 #include <stdio.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <ctype.h> 54 #endif 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_queue.h> 59 #include <cam/cam_xpt.h> 60 #include <cam/scsi/scsi_all.h> 61 #include <sys/ata.h> 62 #include <sys/sbuf.h> 63 64 #ifdef _KERNEL 65 #include <cam/cam_periph.h> 66 #include <cam/cam_xpt_sim.h> 67 #include <cam/cam_xpt_periph.h> 68 #include <cam/cam_xpt_internal.h> 69 #else 70 #include <camlib.h> 71 #include <stddef.h> 72 73 #ifndef FALSE 74 #define FALSE 0 75 #endif /* FALSE */ 76 #ifndef TRUE 77 #define TRUE 1 78 #endif /* TRUE */ 79 #define ERESTART -1 /* restart syscall */ 80 #define EJUSTRETURN -2 /* don't modify regs, just return */ 81 #endif /* !_KERNEL */ 82 83 /* 84 * This is the default number of milliseconds we wait for devices to settle 85 * after a SCSI bus reset. 86 */ 87 #ifndef SCSI_DELAY 88 #define SCSI_DELAY 2000 89 #endif 90 /* 91 * All devices need _some_ sort of bus settle delay, so we'll set it to 92 * a minimum value of 100ms. Note that this is pertinent only for SPI- 93 * not transport like Fibre Channel or iSCSI where 'delay' is completely 94 * meaningless. 95 */ 96 #ifndef SCSI_MIN_DELAY 97 #define SCSI_MIN_DELAY 100 98 #endif 99 /* 100 * Make sure the user isn't using seconds instead of milliseconds. 101 */ 102 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) 103 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" 104 #endif 105 106 int scsi_delay; 107 108 static int ascentrycomp(const void *key, const void *member); 109 static int senseentrycomp(const void *key, const void *member); 110 static void fetchtableentries(int sense_key, int asc, int ascq, 111 struct scsi_inquiry_data *, 112 const struct sense_key_table_entry **, 113 const struct asc_table_entry **); 114 #ifdef _KERNEL 115 static void init_scsi_delay(void); 116 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); 117 static int set_scsi_delay(int delay); 118 #endif 119 120 #if !defined(SCSI_NO_OP_STRINGS) 121 122 #define D (1 << T_DIRECT) 123 #define T (1 << T_SEQUENTIAL) 124 #define L (1 << T_PRINTER) 125 #define P (1 << T_PROCESSOR) 126 #define W (1 << T_WORM) 127 #define R (1 << T_CDROM) 128 #define O (1 << T_OPTICAL) 129 #define M (1 << T_CHANGER) 130 #define A (1 << T_STORARRAY) 131 #define E (1 << T_ENCLOSURE) 132 #define B (1 << T_RBC) 133 #define K (1 << T_OCRW) 134 #define V (1 << T_ADC) 135 #define F (1 << T_OSD) 136 #define S (1 << T_SCANNER) 137 #define C (1 << T_COMM) 138 139 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) 140 141 static struct op_table_entry plextor_cd_ops[] = { 142 { 0xD8, R, "CD-DA READ" } 143 }; 144 145 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { 146 { 147 /* 148 * I believe that 0xD8 is the Plextor proprietary command 149 * to read CD-DA data. I'm not sure which Plextor CDROM 150 * models support the command, though. I know for sure 151 * that the 4X, 8X, and 12X models do, and presumably the 152 * 12-20X does. I don't know about any earlier models, 153 * though. If anyone has any more complete information, 154 * feel free to change this quirk entry. 155 */ 156 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, 157 sizeof(plextor_cd_ops)/sizeof(struct op_table_entry), 158 plextor_cd_ops 159 } 160 }; 161 162 static struct op_table_entry scsi_op_codes[] = { 163 /* 164 * From: http://www.t10.org/lists/op-num.txt 165 * Modifications by Kenneth Merry (ken@FreeBSD.ORG) 166 * and Jung-uk Kim (jkim@FreeBSD.org) 167 * 168 * Note: order is important in this table, scsi_op_desc() currently 169 * depends on the opcodes in the table being in order to save 170 * search time. 171 * Note: scanner and comm. devices are carried over from the previous 172 * version because they were removed in the latest spec. 173 */ 174 /* File: OP-NUM.TXT 175 * 176 * SCSI Operation Codes 177 * Numeric Sorted Listing 178 * as of 5/26/15 179 * 180 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 181 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- 182 * . L - PRINTER DEVICE (SSC) M = Mandatory 183 * . P - PROCESSOR DEVICE (SPC) O = Optional 184 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. 185 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete 186 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 187 * . . .M - MEDIA CHANGER DEVICE (SMC-2) 188 * . . . A - STORAGE ARRAY DEVICE (SCC-2) 189 * . . . .E - ENCLOSURE SERVICES DEVICE (SES) 190 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 191 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 192 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 193 * . . . . .F - OBJECT-BASED STORAGE (OSD) 194 * OP DTLPWROMAEBKVF Description 195 * -- -------------- ---------------------------------------------- */ 196 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ 197 { 0x00, ALL, "TEST UNIT READY" }, 198 /* 01 M REWIND */ 199 { 0x01, T, "REWIND" }, 200 /* 01 Z V ZZZZ REZERO UNIT */ 201 { 0x01, D | W | R | O | M, "REZERO UNIT" }, 202 /* 02 VVVVVV V */ 203 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ 204 { 0x03, ALL, "REQUEST SENSE" }, 205 /* 04 M OO FORMAT UNIT */ 206 { 0x04, D | R | O, "FORMAT UNIT" }, 207 /* 04 O FORMAT MEDIUM */ 208 { 0x04, T, "FORMAT MEDIUM" }, 209 /* 04 O FORMAT */ 210 { 0x04, L, "FORMAT" }, 211 /* 05 VMVVVV V READ BLOCK LIMITS */ 212 { 0x05, T, "READ BLOCK LIMITS" }, 213 /* 06 VVVVVV V */ 214 /* 07 OVV O OV REASSIGN BLOCKS */ 215 { 0x07, D | W | O, "REASSIGN BLOCKS" }, 216 /* 07 O INITIALIZE ELEMENT STATUS */ 217 { 0x07, M, "INITIALIZE ELEMENT STATUS" }, 218 /* 08 MOV O OV READ(6) */ 219 { 0x08, D | T | W | O, "READ(6)" }, 220 /* 08 O RECEIVE */ 221 { 0x08, P, "RECEIVE" }, 222 /* 08 GET MESSAGE(6) */ 223 { 0x08, C, "GET MESSAGE(6)" }, 224 /* 09 VVVVVV V */ 225 /* 0A OO O OV WRITE(6) */ 226 { 0x0A, D | T | W | O, "WRITE(6)" }, 227 /* 0A M SEND(6) */ 228 { 0x0A, P, "SEND(6)" }, 229 /* 0A SEND MESSAGE(6) */ 230 { 0x0A, C, "SEND MESSAGE(6)" }, 231 /* 0A M PRINT */ 232 { 0x0A, L, "PRINT" }, 233 /* 0B Z ZOZV SEEK(6) */ 234 { 0x0B, D | W | R | O, "SEEK(6)" }, 235 /* 0B O SET CAPACITY */ 236 { 0x0B, T, "SET CAPACITY" }, 237 /* 0B O SLEW AND PRINT */ 238 { 0x0B, L, "SLEW AND PRINT" }, 239 /* 0C VVVVVV V */ 240 /* 0D VVVVVV V */ 241 /* 0E VVVVVV V */ 242 /* 0F VOVVVV V READ REVERSE(6) */ 243 { 0x0F, T, "READ REVERSE(6)" }, 244 /* 10 VM VVV WRITE FILEMARKS(6) */ 245 { 0x10, T, "WRITE FILEMARKS(6)" }, 246 /* 10 O SYNCHRONIZE BUFFER */ 247 { 0x10, L, "SYNCHRONIZE BUFFER" }, 248 /* 11 VMVVVV SPACE(6) */ 249 { 0x11, T, "SPACE(6)" }, 250 /* 12 MMMMMMMMMMMMMM INQUIRY */ 251 { 0x12, ALL, "INQUIRY" }, 252 /* 13 V VVVV */ 253 /* 13 O VERIFY(6) */ 254 { 0x13, T, "VERIFY(6)" }, 255 /* 14 VOOVVV RECOVER BUFFERED DATA */ 256 { 0x14, T | L, "RECOVER BUFFERED DATA" }, 257 /* 15 OMO O OOOO OO MODE SELECT(6) */ 258 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, 259 /* 16 ZZMZO OOOZ O RESERVE(6) */ 260 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, 261 /* 16 Z RESERVE ELEMENT(6) */ 262 { 0x16, M, "RESERVE ELEMENT(6)" }, 263 /* 17 ZZMZO OOOZ O RELEASE(6) */ 264 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, 265 /* 17 Z RELEASE ELEMENT(6) */ 266 { 0x17, M, "RELEASE ELEMENT(6)" }, 267 /* 18 ZZZZOZO Z COPY */ 268 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, 269 /* 19 VMVVVV ERASE(6) */ 270 { 0x19, T, "ERASE(6)" }, 271 /* 1A OMO O OOOO OO MODE SENSE(6) */ 272 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, 273 /* 1B O OOO O MO O START STOP UNIT */ 274 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, 275 /* 1B O M LOAD UNLOAD */ 276 { 0x1B, T | V, "LOAD UNLOAD" }, 277 /* 1B SCAN */ 278 { 0x1B, S, "SCAN" }, 279 /* 1B O STOP PRINT */ 280 { 0x1B, L, "STOP PRINT" }, 281 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ 282 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, 283 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ 284 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, 285 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ 286 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, 287 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ 288 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, 289 /* 1F */ 290 /* 20 V VVV V */ 291 /* 21 V VVV V */ 292 /* 22 V VVV V */ 293 /* 23 V V V V */ 294 /* 23 O READ FORMAT CAPACITIES */ 295 { 0x23, R, "READ FORMAT CAPACITIES" }, 296 /* 24 V VV SET WINDOW */ 297 { 0x24, S, "SET WINDOW" }, 298 /* 25 M M M M READ CAPACITY(10) */ 299 { 0x25, D | W | O | B, "READ CAPACITY(10)" }, 300 /* 25 O READ CAPACITY */ 301 { 0x25, R, "READ CAPACITY" }, 302 /* 25 M READ CARD CAPACITY */ 303 { 0x25, K, "READ CARD CAPACITY" }, 304 /* 25 GET WINDOW */ 305 { 0x25, S, "GET WINDOW" }, 306 /* 26 V VV */ 307 /* 27 V VV */ 308 /* 28 M MOM MM READ(10) */ 309 { 0x28, D | W | R | O | B | K | S, "READ(10)" }, 310 /* 28 GET MESSAGE(10) */ 311 { 0x28, C, "GET MESSAGE(10)" }, 312 /* 29 V VVO READ GENERATION */ 313 { 0x29, O, "READ GENERATION" }, 314 /* 2A O MOM MO WRITE(10) */ 315 { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, 316 /* 2A SEND(10) */ 317 { 0x2A, S, "SEND(10)" }, 318 /* 2A SEND MESSAGE(10) */ 319 { 0x2A, C, "SEND MESSAGE(10)" }, 320 /* 2B Z OOO O SEEK(10) */ 321 { 0x2B, D | W | R | O | K, "SEEK(10)" }, 322 /* 2B O LOCATE(10) */ 323 { 0x2B, T, "LOCATE(10)" }, 324 /* 2B O POSITION TO ELEMENT */ 325 { 0x2B, M, "POSITION TO ELEMENT" }, 326 /* 2C V OO ERASE(10) */ 327 { 0x2C, R | O, "ERASE(10)" }, 328 /* 2D O READ UPDATED BLOCK */ 329 { 0x2D, O, "READ UPDATED BLOCK" }, 330 /* 2D V */ 331 /* 2E O OOO MO WRITE AND VERIFY(10) */ 332 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, 333 /* 2F O OOO VERIFY(10) */ 334 { 0x2F, D | W | R | O, "VERIFY(10)" }, 335 /* 30 Z ZZZ SEARCH DATA HIGH(10) */ 336 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, 337 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ 338 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, 339 /* 31 OBJECT POSITION */ 340 { 0x31, S, "OBJECT POSITION" }, 341 /* 32 Z ZZZ SEARCH DATA LOW(10) */ 342 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, 343 /* 33 Z OZO SET LIMITS(10) */ 344 { 0x33, D | W | R | O, "SET LIMITS(10)" }, 345 /* 34 O O O O PRE-FETCH(10) */ 346 { 0x34, D | W | O | K, "PRE-FETCH(10)" }, 347 /* 34 M READ POSITION */ 348 { 0x34, T, "READ POSITION" }, 349 /* 34 GET DATA BUFFER STATUS */ 350 { 0x34, S, "GET DATA BUFFER STATUS" }, 351 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ 352 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, 353 /* 36 Z O O O LOCK UNLOCK CACHE(10) */ 354 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, 355 /* 37 O O READ DEFECT DATA(10) */ 356 { 0x37, D | O, "READ DEFECT DATA(10)" }, 357 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ 358 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, 359 /* 38 O O O MEDIUM SCAN */ 360 { 0x38, W | O | K, "MEDIUM SCAN" }, 361 /* 39 ZZZZOZO Z COMPARE */ 362 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, 363 /* 3A ZZZZOZO Z COPY AND VERIFY */ 364 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, 365 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ 366 { 0x3B, ALL, "WRITE BUFFER" }, 367 /* 3C OOOOOOOOOO OOO READ BUFFER */ 368 { 0x3C, ALL & ~(B), "READ BUFFER" }, 369 /* 3D O UPDATE BLOCK */ 370 { 0x3D, O, "UPDATE BLOCK" }, 371 /* 3E O O O READ LONG(10) */ 372 { 0x3E, D | W | O, "READ LONG(10)" }, 373 /* 3F O O O WRITE LONG(10) */ 374 { 0x3F, D | W | O, "WRITE LONG(10)" }, 375 /* 40 ZZZZOZOZ CHANGE DEFINITION */ 376 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, 377 /* 41 O WRITE SAME(10) */ 378 { 0x41, D, "WRITE SAME(10)" }, 379 /* 42 O UNMAP */ 380 { 0x42, D, "UNMAP" }, 381 /* 42 O READ SUB-CHANNEL */ 382 { 0x42, R, "READ SUB-CHANNEL" }, 383 /* 43 O READ TOC/PMA/ATIP */ 384 { 0x43, R, "READ TOC/PMA/ATIP" }, 385 /* 44 M M REPORT DENSITY SUPPORT */ 386 { 0x44, T | V, "REPORT DENSITY SUPPORT" }, 387 /* 44 READ HEADER */ 388 /* 45 O PLAY AUDIO(10) */ 389 { 0x45, R, "PLAY AUDIO(10)" }, 390 /* 46 M GET CONFIGURATION */ 391 { 0x46, R, "GET CONFIGURATION" }, 392 /* 47 O PLAY AUDIO MSF */ 393 { 0x47, R, "PLAY AUDIO MSF" }, 394 /* 48 */ 395 /* 49 */ 396 /* 4A M GET EVENT STATUS NOTIFICATION */ 397 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, 398 /* 4B O PAUSE/RESUME */ 399 { 0x4B, R, "PAUSE/RESUME" }, 400 /* 4C OOOOO OOOO OOO LOG SELECT */ 401 { 0x4C, ALL & ~(R | B), "LOG SELECT" }, 402 /* 4D OOOOO OOOO OMO LOG SENSE */ 403 { 0x4D, ALL & ~(R | B), "LOG SENSE" }, 404 /* 4E O STOP PLAY/SCAN */ 405 { 0x4E, R, "STOP PLAY/SCAN" }, 406 /* 4F */ 407 /* 50 O XDWRITE(10) */ 408 { 0x50, D, "XDWRITE(10)" }, 409 /* 51 O XPWRITE(10) */ 410 { 0x51, D, "XPWRITE(10)" }, 411 /* 51 O READ DISC INFORMATION */ 412 { 0x51, R, "READ DISC INFORMATION" }, 413 /* 52 O XDREAD(10) */ 414 { 0x52, D, "XDREAD(10)" }, 415 /* 52 O READ TRACK INFORMATION */ 416 { 0x52, R, "READ TRACK INFORMATION" }, 417 /* 53 O RESERVE TRACK */ 418 { 0x53, R, "RESERVE TRACK" }, 419 /* 54 O SEND OPC INFORMATION */ 420 { 0x54, R, "SEND OPC INFORMATION" }, 421 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ 422 { 0x55, ALL & ~(P), "MODE SELECT(10)" }, 423 /* 56 ZZMZO OOOZ RESERVE(10) */ 424 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, 425 /* 56 Z RESERVE ELEMENT(10) */ 426 { 0x56, M, "RESERVE ELEMENT(10)" }, 427 /* 57 ZZMZO OOOZ RELEASE(10) */ 428 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, 429 /* 57 Z RELEASE ELEMENT(10) */ 430 { 0x57, M, "RELEASE ELEMENT(10)" }, 431 /* 58 O REPAIR TRACK */ 432 { 0x58, R, "REPAIR TRACK" }, 433 /* 59 */ 434 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ 435 { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, 436 /* 5B O CLOSE TRACK/SESSION */ 437 { 0x5B, R, "CLOSE TRACK/SESSION" }, 438 /* 5C O READ BUFFER CAPACITY */ 439 { 0x5C, R, "READ BUFFER CAPACITY" }, 440 /* 5D O SEND CUE SHEET */ 441 { 0x5D, R, "SEND CUE SHEET" }, 442 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ 443 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, 444 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ 445 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, 446 /* 7E OO O OOOO O extended CDB */ 447 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, 448 /* 7F O M variable length CDB (more than 16 bytes) */ 449 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, 450 /* 80 Z XDWRITE EXTENDED(16) */ 451 { 0x80, D, "XDWRITE EXTENDED(16)" }, 452 /* 80 M WRITE FILEMARKS(16) */ 453 { 0x80, T, "WRITE FILEMARKS(16)" }, 454 /* 81 Z REBUILD(16) */ 455 { 0x81, D, "REBUILD(16)" }, 456 /* 81 O READ REVERSE(16) */ 457 { 0x81, T, "READ REVERSE(16)" }, 458 /* 82 Z REGENERATE(16) */ 459 { 0x82, D, "REGENERATE(16)" }, 460 /* 83 OOOOO O OO EXTENDED COPY */ 461 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, 462 /* 84 OOOOO O OO RECEIVE COPY RESULTS */ 463 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, 464 /* 85 O O O ATA COMMAND PASS THROUGH(16) */ 465 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, 466 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ 467 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, 468 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ 469 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, 470 /* 471 * XXX READ(16)/WRITE(16) were not listed for CD/DVE in op-num.txt 472 * but we had it since r1.40. Do we really want them? 473 */ 474 /* 88 MM O O O READ(16) */ 475 { 0x88, D | T | W | O | B, "READ(16)" }, 476 /* 89 O COMPARE AND WRITE*/ 477 { 0x89, D, "COMPARE AND WRITE" }, 478 /* 8A OM O O O WRITE(16) */ 479 { 0x8A, D | T | W | O | B, "WRITE(16)" }, 480 /* 8B O ORWRITE */ 481 { 0x8B, D, "ORWRITE" }, 482 /* 8C OO O OO O M READ ATTRIBUTE */ 483 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, 484 /* 8D OO O OO O O WRITE ATTRIBUTE */ 485 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, 486 /* 8E O O O O WRITE AND VERIFY(16) */ 487 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, 488 /* 8F OO O O O VERIFY(16) */ 489 { 0x8F, D | T | W | O | B, "VERIFY(16)" }, 490 /* 90 O O O O PRE-FETCH(16) */ 491 { 0x90, D | W | O | B, "PRE-FETCH(16)" }, 492 /* 91 O O O O SYNCHRONIZE CACHE(16) */ 493 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, 494 /* 91 O SPACE(16) */ 495 { 0x91, T, "SPACE(16)" }, 496 /* 92 Z O O LOCK UNLOCK CACHE(16) */ 497 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, 498 /* 92 O LOCATE(16) */ 499 { 0x92, T, "LOCATE(16)" }, 500 /* 93 O WRITE SAME(16) */ 501 { 0x93, D, "WRITE SAME(16)" }, 502 /* 93 M ERASE(16) */ 503 { 0x93, T, "ERASE(16)" }, 504 /* 94 O ZBC OUT */ 505 { 0x94, D, "ZBC OUT" }, 506 /* 95 O ZBC OUT */ 507 { 0x95, D, "ZBC OUT" }, 508 /* 96 */ 509 /* 97 */ 510 /* 98 */ 511 /* 99 */ 512 /* 9A O WRITE STREAM(16) */ 513 { 0x9A, D, "WRITE STREAM(16)" }, 514 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */ 515 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" }, 516 /* 9C O WRITE ATOMIC(16) */ 517 { 0x9C, D, "WRITE ATOMIC(16)" }, 518 /* 9D SERVICE ACTION BIDIRECTIONAL */ 519 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" }, 520 /* XXX KDM ALL for this? op-num.txt defines it for none.. */ 521 /* 9E SERVICE ACTION IN(16) */ 522 { 0x9E, ALL, "SERVICE ACTION IN(16)" }, 523 /* XXX KDM ALL for this? op-num.txt defines it for ADC.. */ 524 /* 9F M SERVICE ACTION OUT(16) */ 525 { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, 526 /* A0 MMOOO OMMM OMO REPORT LUNS */ 527 { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, 528 /* A1 O BLANK */ 529 { 0xA1, R, "BLANK" }, 530 /* A1 O O ATA COMMAND PASS THROUGH(12) */ 531 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, 532 /* A2 OO O O SECURITY PROTOCOL IN */ 533 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, 534 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ 535 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, 536 /* A3 O SEND KEY */ 537 { 0xA3, R, "SEND KEY" }, 538 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ 539 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, 540 /* A4 O REPORT KEY */ 541 { 0xA4, R, "REPORT KEY" }, 542 /* A5 O O OM MOVE MEDIUM */ 543 { 0xA5, T | W | O | M, "MOVE MEDIUM" }, 544 /* A5 O PLAY AUDIO(12) */ 545 { 0xA5, R, "PLAY AUDIO(12)" }, 546 /* A6 O EXCHANGE MEDIUM */ 547 { 0xA6, M, "EXCHANGE MEDIUM" }, 548 /* A6 O LOAD/UNLOAD C/DVD */ 549 { 0xA6, R, "LOAD/UNLOAD C/DVD" }, 550 /* A7 ZZ O O MOVE MEDIUM ATTACHED */ 551 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, 552 /* A7 O SET READ AHEAD */ 553 { 0xA7, R, "SET READ AHEAD" }, 554 /* A8 O OOO READ(12) */ 555 { 0xA8, D | W | R | O, "READ(12)" }, 556 /* A8 GET MESSAGE(12) */ 557 { 0xA8, C, "GET MESSAGE(12)" }, 558 /* A9 O SERVICE ACTION OUT(12) */ 559 { 0xA9, V, "SERVICE ACTION OUT(12)" }, 560 /* AA O OOO WRITE(12) */ 561 { 0xAA, D | W | R | O, "WRITE(12)" }, 562 /* AA SEND MESSAGE(12) */ 563 { 0xAA, C, "SEND MESSAGE(12)" }, 564 /* AB O O SERVICE ACTION IN(12) */ 565 { 0xAB, R | V, "SERVICE ACTION IN(12)" }, 566 /* AC O ERASE(12) */ 567 { 0xAC, O, "ERASE(12)" }, 568 /* AC O GET PERFORMANCE */ 569 { 0xAC, R, "GET PERFORMANCE" }, 570 /* AD O READ DVD STRUCTURE */ 571 { 0xAD, R, "READ DVD STRUCTURE" }, 572 /* AE O O O WRITE AND VERIFY(12) */ 573 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, 574 /* AF O OZO VERIFY(12) */ 575 { 0xAF, D | W | R | O, "VERIFY(12)" }, 576 /* B0 ZZZ SEARCH DATA HIGH(12) */ 577 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, 578 /* B1 ZZZ SEARCH DATA EQUAL(12) */ 579 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, 580 /* B2 ZZZ SEARCH DATA LOW(12) */ 581 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, 582 /* B3 Z OZO SET LIMITS(12) */ 583 { 0xB3, D | W | R | O, "SET LIMITS(12)" }, 584 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ 585 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, 586 /* B5 OO O O SECURITY PROTOCOL OUT */ 587 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, 588 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ 589 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, 590 /* B6 O SEND VOLUME TAG */ 591 { 0xB6, M, "SEND VOLUME TAG" }, 592 /* B6 O SET STREAMING */ 593 { 0xB6, R, "SET STREAMING" }, 594 /* B7 O O READ DEFECT DATA(12) */ 595 { 0xB7, D | O, "READ DEFECT DATA(12)" }, 596 /* B8 O OZOM READ ELEMENT STATUS */ 597 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, 598 /* B9 O READ CD MSF */ 599 { 0xB9, R, "READ CD MSF" }, 600 /* BA O O OOMO REDUNDANCY GROUP (IN) */ 601 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, 602 /* BA O SCAN */ 603 { 0xBA, R, "SCAN" }, 604 /* BB O O OOOO REDUNDANCY GROUP (OUT) */ 605 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, 606 /* BB O SET CD SPEED */ 607 { 0xBB, R, "SET CD SPEED" }, 608 /* BC O O OOMO SPARE (IN) */ 609 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, 610 /* BD O O OOOO SPARE (OUT) */ 611 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, 612 /* BD O MECHANISM STATUS */ 613 { 0xBD, R, "MECHANISM STATUS" }, 614 /* BE O O OOMO VOLUME SET (IN) */ 615 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, 616 /* BE O READ CD */ 617 { 0xBE, R, "READ CD" }, 618 /* BF O O OOOO VOLUME SET (OUT) */ 619 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, 620 /* BF O SEND DVD STRUCTURE */ 621 { 0xBF, R, "SEND DVD STRUCTURE" } 622 }; 623 624 const char * 625 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 626 { 627 caddr_t match; 628 int i, j; 629 u_int32_t opmask; 630 u_int16_t pd_type; 631 int num_ops[2]; 632 struct op_table_entry *table[2]; 633 int num_tables; 634 635 /* 636 * If we've got inquiry data, use it to determine what type of 637 * device we're dealing with here. Otherwise, assume direct 638 * access. 639 */ 640 if (inq_data == NULL) { 641 pd_type = T_DIRECT; 642 match = NULL; 643 } else { 644 pd_type = SID_TYPE(inq_data); 645 646 match = cam_quirkmatch((caddr_t)inq_data, 647 (caddr_t)scsi_op_quirk_table, 648 sizeof(scsi_op_quirk_table)/ 649 sizeof(*scsi_op_quirk_table), 650 sizeof(*scsi_op_quirk_table), 651 scsi_inquiry_match); 652 } 653 654 if (match != NULL) { 655 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; 656 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; 657 table[1] = scsi_op_codes; 658 num_ops[1] = sizeof(scsi_op_codes)/sizeof(scsi_op_codes[0]); 659 num_tables = 2; 660 } else { 661 /* 662 * If this is true, we have a vendor specific opcode that 663 * wasn't covered in the quirk table. 664 */ 665 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) 666 return("Vendor Specific Command"); 667 668 table[0] = scsi_op_codes; 669 num_ops[0] = sizeof(scsi_op_codes)/sizeof(scsi_op_codes[0]); 670 num_tables = 1; 671 } 672 673 /* RBC is 'Simplified' Direct Access Device */ 674 if (pd_type == T_RBC) 675 pd_type = T_DIRECT; 676 677 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */ 678 if (pd_type == T_NODEVICE) 679 pd_type = T_DIRECT; 680 681 opmask = 1 << pd_type; 682 683 for (j = 0; j < num_tables; j++) { 684 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ 685 if ((table[j][i].opcode == opcode) 686 && ((table[j][i].opmask & opmask) != 0)) 687 return(table[j][i].desc); 688 } 689 } 690 691 /* 692 * If we can't find a match for the command in the table, we just 693 * assume it's a vendor specifc command. 694 */ 695 return("Vendor Specific Command"); 696 697 } 698 699 #else /* SCSI_NO_OP_STRINGS */ 700 701 const char * 702 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 703 { 704 return(""); 705 } 706 707 #endif 708 709 710 #if !defined(SCSI_NO_SENSE_STRINGS) 711 #define SST(asc, ascq, action, desc) \ 712 asc, ascq, action, desc 713 #else 714 const char empty_string[] = ""; 715 716 #define SST(asc, ascq, action, desc) \ 717 asc, ascq, action, empty_string 718 #endif 719 720 const struct sense_key_table_entry sense_key_table[] = 721 { 722 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, 723 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, 724 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" }, 725 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, 726 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, 727 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, 728 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, 729 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, 730 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, 731 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, 732 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, 733 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, 734 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, 735 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, 736 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, 737 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } 738 }; 739 740 const int sense_key_table_size = 741 sizeof(sense_key_table)/sizeof(sense_key_table[0]); 742 743 static struct asc_table_entry quantum_fireball_entries[] = { 744 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 745 "Logical unit not ready, initializing cmd. required") } 746 }; 747 748 static struct asc_table_entry sony_mo_entries[] = { 749 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 750 "Logical unit not ready, cause not reportable") } 751 }; 752 753 static struct asc_table_entry hgst_entries[] = { 754 { SST(0x04, 0xF0, SS_RDEF, 755 "Vendor Unique - Logical Unit Not Ready") }, 756 { SST(0x0A, 0x01, SS_RDEF, 757 "Unrecovered Super Certification Log Write Error") }, 758 { SST(0x0A, 0x02, SS_RDEF, 759 "Unrecovered Super Certification Log Read Error") }, 760 { SST(0x15, 0x03, SS_RDEF, 761 "Unrecovered Sector Error") }, 762 { SST(0x3E, 0x04, SS_RDEF, 763 "Unrecovered Self-Test Hard-Cache Test Fail") }, 764 { SST(0x3E, 0x05, SS_RDEF, 765 "Unrecovered Self-Test OTF-Cache Fail") }, 766 { SST(0x40, 0x00, SS_RDEF, 767 "Unrecovered SAT No Buffer Overflow Error") }, 768 { SST(0x40, 0x01, SS_RDEF, 769 "Unrecovered SAT Buffer Overflow Error") }, 770 { SST(0x40, 0x02, SS_RDEF, 771 "Unrecovered SAT No Buffer Overflow With ECS Fault") }, 772 { SST(0x40, 0x03, SS_RDEF, 773 "Unrecovered SAT Buffer Overflow With ECS Fault") }, 774 { SST(0x40, 0x81, SS_RDEF, 775 "DRAM Failure") }, 776 { SST(0x44, 0x0B, SS_RDEF, 777 "Vendor Unique - Internal Target Failure") }, 778 { SST(0x44, 0xF2, SS_RDEF, 779 "Vendor Unique - Internal Target Failure") }, 780 { SST(0x44, 0xF6, SS_RDEF, 781 "Vendor Unique - Internal Target Failure") }, 782 { SST(0x44, 0xF9, SS_RDEF, 783 "Vendor Unique - Internal Target Failure") }, 784 { SST(0x44, 0xFA, SS_RDEF, 785 "Vendor Unique - Internal Target Failure") }, 786 { SST(0x5D, 0x22, SS_RDEF, 787 "Extreme Over-Temperature Warning") }, 788 { SST(0x5D, 0x50, SS_RDEF, 789 "Load/Unload cycle Count Warning") }, 790 { SST(0x81, 0x00, SS_RDEF, 791 "Vendor Unique - Internal Logic Error") }, 792 { SST(0x85, 0x00, SS_RDEF, 793 "Vendor Unique - Internal Key Seed Error") }, 794 }; 795 796 static struct asc_table_entry seagate_entries[] = { 797 { SST(0x04, 0xF0, SS_RDEF, 798 "Logical Unit Not Ready, super certify in Progress") }, 799 { SST(0x08, 0x86, SS_RDEF, 800 "Write Fault Data Corruption") }, 801 { SST(0x09, 0x0D, SS_RDEF, 802 "Tracking Failure") }, 803 { SST(0x09, 0x0E, SS_RDEF, 804 "ETF Failure") }, 805 { SST(0x0B, 0x5D, SS_RDEF, 806 "Pre-SMART Warning") }, 807 { SST(0x0B, 0x85, SS_RDEF, 808 "5V Voltage Warning") }, 809 { SST(0x0B, 0x8C, SS_RDEF, 810 "12V Voltage Warning") }, 811 { SST(0x0C, 0xFF, SS_RDEF, 812 "Write Error - Too many error recovery revs") }, 813 { SST(0x11, 0xFF, SS_RDEF, 814 "Unrecovered Read Error - Too many error recovery revs") }, 815 { SST(0x19, 0x0E, SS_RDEF, 816 "Fewer than 1/2 defect list copies") }, 817 { SST(0x20, 0xF3, SS_RDEF, 818 "Illegal CDB linked to skip mask cmd") }, 819 { SST(0x24, 0xF0, SS_RDEF, 820 "Illegal byte in CDB, LBA not matching") }, 821 { SST(0x24, 0xF1, SS_RDEF, 822 "Illegal byte in CDB, LEN not matching") }, 823 { SST(0x24, 0xF2, SS_RDEF, 824 "Mask not matching transfer length") }, 825 { SST(0x24, 0xF3, SS_RDEF, 826 "Drive formatted without plist") }, 827 { SST(0x26, 0x95, SS_RDEF, 828 "Invalid Field Parameter - CAP File") }, 829 { SST(0x26, 0x96, SS_RDEF, 830 "Invalid Field Parameter - RAP File") }, 831 { SST(0x26, 0x97, SS_RDEF, 832 "Invalid Field Parameter - TMS Firmware Tag") }, 833 { SST(0x26, 0x98, SS_RDEF, 834 "Invalid Field Parameter - Check Sum") }, 835 { SST(0x26, 0x99, SS_RDEF, 836 "Invalid Field Parameter - Firmware Tag") }, 837 { SST(0x29, 0x08, SS_RDEF, 838 "Write Log Dump data") }, 839 { SST(0x29, 0x09, SS_RDEF, 840 "Write Log Dump data") }, 841 { SST(0x29, 0x0A, SS_RDEF, 842 "Reserved disk space") }, 843 { SST(0x29, 0x0B, SS_RDEF, 844 "SDBP") }, 845 { SST(0x29, 0x0C, SS_RDEF, 846 "SDBP") }, 847 { SST(0x31, 0x91, SS_RDEF, 848 "Format Corrupted World Wide Name (WWN) is Invalid") }, 849 { SST(0x32, 0x03, SS_RDEF, 850 "Defect List - Length exceeds Command Allocated Length") }, 851 { SST(0x33, 0x00, SS_RDEF, 852 "Flash not ready for access") }, 853 { SST(0x3F, 0x70, SS_RDEF, 854 "Invalid RAP block") }, 855 { SST(0x3F, 0x71, SS_RDEF, 856 "RAP/ETF mismatch") }, 857 { SST(0x3F, 0x90, SS_RDEF, 858 "Invalid CAP block") }, 859 { SST(0x3F, 0x91, SS_RDEF, 860 "World Wide Name (WWN) Mismatch") }, 861 { SST(0x40, 0x01, SS_RDEF, 862 "DRAM Parity Error") }, 863 { SST(0x40, 0x02, SS_RDEF, 864 "DRAM Parity Error") }, 865 { SST(0x42, 0x0A, SS_RDEF, 866 "Loopback Test") }, 867 { SST(0x42, 0x0B, SS_RDEF, 868 "Loopback Test") }, 869 { SST(0x44, 0xF2, SS_RDEF, 870 "Compare error during data integrity check") }, 871 { SST(0x44, 0xF6, SS_RDEF, 872 "Unrecoverable error during data integrity check") }, 873 { SST(0x47, 0x80, SS_RDEF, 874 "Fibre Channel Sequence Error") }, 875 { SST(0x4E, 0x01, SS_RDEF, 876 "Information Unit Too Short") }, 877 { SST(0x80, 0x00, SS_RDEF, 878 "General Firmware Error / Command Timeout") }, 879 { SST(0x80, 0x01, SS_RDEF, 880 "Command Timeout") }, 881 { SST(0x80, 0x02, SS_RDEF, 882 "Command Timeout") }, 883 { SST(0x80, 0x80, SS_RDEF, 884 "FC FIFO Error During Read Transfer") }, 885 { SST(0x80, 0x81, SS_RDEF, 886 "FC FIFO Error During Write Transfer") }, 887 { SST(0x80, 0x82, SS_RDEF, 888 "DISC FIFO Error During Read Transfer") }, 889 { SST(0x80, 0x83, SS_RDEF, 890 "DISC FIFO Error During Write Transfer") }, 891 { SST(0x80, 0x84, SS_RDEF, 892 "LBA Seeded LRC Error on Read") }, 893 { SST(0x80, 0x85, SS_RDEF, 894 "LBA Seeded LRC Error on Write") }, 895 { SST(0x80, 0x86, SS_RDEF, 896 "IOEDC Error on Read") }, 897 { SST(0x80, 0x87, SS_RDEF, 898 "IOEDC Error on Write") }, 899 { SST(0x80, 0x88, SS_RDEF, 900 "Host Parity Check Failed") }, 901 { SST(0x80, 0x89, SS_RDEF, 902 "IOEDC error on read detected by formatter") }, 903 { SST(0x80, 0x8A, SS_RDEF, 904 "Host Parity Errors / Host FIFO Initialization Failed") }, 905 { SST(0x80, 0x8B, SS_RDEF, 906 "Host Parity Errors") }, 907 { SST(0x80, 0x8C, SS_RDEF, 908 "Host Parity Errors") }, 909 { SST(0x80, 0x8D, SS_RDEF, 910 "Host Parity Errors") }, 911 { SST(0x81, 0x00, SS_RDEF, 912 "LA Check Failed") }, 913 { SST(0x82, 0x00, SS_RDEF, 914 "Internal client detected insufficient buffer") }, 915 { SST(0x84, 0x00, SS_RDEF, 916 "Scheduled Diagnostic And Repair") }, 917 }; 918 919 static struct scsi_sense_quirk_entry sense_quirk_table[] = { 920 { 921 /* 922 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b 923 * when they really should return 0x04 0x02. 924 */ 925 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, 926 /*num_sense_keys*/0, 927 sizeof(quantum_fireball_entries)/sizeof(struct asc_table_entry), 928 /*sense key entries*/NULL, 929 quantum_fireball_entries 930 }, 931 { 932 /* 933 * This Sony MO drive likes to return 0x04, 0x00 when it 934 * isn't spun up. 935 */ 936 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, 937 /*num_sense_keys*/0, 938 sizeof(sony_mo_entries)/sizeof(struct asc_table_entry), 939 /*sense key entries*/NULL, 940 sony_mo_entries 941 }, 942 { 943 /* 944 * HGST vendor-specific error codes 945 */ 946 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"}, 947 /*num_sense_keys*/0, 948 sizeof(hgst_entries)/sizeof(struct asc_table_entry), 949 /*sense key entries*/NULL, 950 hgst_entries 951 }, 952 { 953 /* 954 * SEAGATE vendor-specific error codes 955 */ 956 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"}, 957 /*num_sense_keys*/0, 958 sizeof(seagate_entries)/sizeof(struct asc_table_entry), 959 /*sense key entries*/NULL, 960 seagate_entries 961 } 962 }; 963 964 const int sense_quirk_table_size = 965 sizeof(sense_quirk_table)/sizeof(sense_quirk_table[0]); 966 967 static struct asc_table_entry asc_table[] = { 968 /* 969 * From: http://www.t10.org/lists/asc-num.txt 970 * Modifications by Jung-uk Kim (jkim@FreeBSD.org) 971 */ 972 /* 973 * File: ASC-NUM.TXT 974 * 975 * SCSI ASC/ASCQ Assignments 976 * Numeric Sorted Listing 977 * as of 8/12/15 978 * 979 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 980 * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- 981 * . L - PRINTER DEVICE (SSC) blank = reserved 982 * . P - PROCESSOR DEVICE (SPC) not blank = allowed 983 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) 984 * . . R - CD DEVICE (MMC) 985 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 986 * . . .M - MEDIA CHANGER DEVICE (SMC) 987 * . . . A - STORAGE ARRAY DEVICE (SCC) 988 * . . . E - ENCLOSURE SERVICES DEVICE (SES) 989 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 990 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 991 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 992 * . . . . .F - OBJECT-BASED STORAGE (OSD) 993 * DTLPWROMAEBKVF 994 * ASC ASCQ Action 995 * Description 996 */ 997 /* DTLPWROMAEBKVF */ 998 { SST(0x00, 0x00, SS_NOP, 999 "No additional sense information") }, 1000 /* T */ 1001 { SST(0x00, 0x01, SS_RDEF, 1002 "Filemark detected") }, 1003 /* T */ 1004 { SST(0x00, 0x02, SS_RDEF, 1005 "End-of-partition/medium detected") }, 1006 /* T */ 1007 { SST(0x00, 0x03, SS_RDEF, 1008 "Setmark detected") }, 1009 /* T */ 1010 { SST(0x00, 0x04, SS_RDEF, 1011 "Beginning-of-partition/medium detected") }, 1012 /* TL */ 1013 { SST(0x00, 0x05, SS_RDEF, 1014 "End-of-data detected") }, 1015 /* DTLPWROMAEBKVF */ 1016 { SST(0x00, 0x06, SS_RDEF, 1017 "I/O process terminated") }, 1018 /* T */ 1019 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ 1020 "Programmable early warning detected") }, 1021 /* R */ 1022 { SST(0x00, 0x11, SS_FATAL | EBUSY, 1023 "Audio play operation in progress") }, 1024 /* R */ 1025 { SST(0x00, 0x12, SS_NOP, 1026 "Audio play operation paused") }, 1027 /* R */ 1028 { SST(0x00, 0x13, SS_NOP, 1029 "Audio play operation successfully completed") }, 1030 /* R */ 1031 { SST(0x00, 0x14, SS_RDEF, 1032 "Audio play operation stopped due to error") }, 1033 /* R */ 1034 { SST(0x00, 0x15, SS_NOP, 1035 "No current audio status to return") }, 1036 /* DTLPWROMAEBKVF */ 1037 { SST(0x00, 0x16, SS_FATAL | EBUSY, 1038 "Operation in progress") }, 1039 /* DTL WROMAEBKVF */ 1040 { SST(0x00, 0x17, SS_RDEF, 1041 "Cleaning requested") }, 1042 /* T */ 1043 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ 1044 "Erase operation in progress") }, 1045 /* T */ 1046 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ 1047 "Locate operation in progress") }, 1048 /* T */ 1049 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ 1050 "Rewind operation in progress") }, 1051 /* T */ 1052 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ 1053 "Set capacity operation in progress") }, 1054 /* T */ 1055 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ 1056 "Verify operation in progress") }, 1057 /* DT B */ 1058 { SST(0x00, 0x1D, SS_RDEF, /* XXX TBD */ 1059 "ATA pass through information available") }, 1060 /* DT R MAEBKV */ 1061 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ 1062 "Conflicting SA creation request") }, 1063 /* DT B */ 1064 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */ 1065 "Logical unit transitioning to another power condition") }, 1066 /* DT P B */ 1067 { SST(0x00, 0x20, SS_RDEF, /* XXX TBD */ 1068 "Extended copy information available") }, 1069 /* D */ 1070 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */ 1071 "Atomic command aborted due to ACA") }, 1072 /* D W O BK */ 1073 { SST(0x01, 0x00, SS_RDEF, 1074 "No index/sector signal") }, 1075 /* D WRO BK */ 1076 { SST(0x02, 0x00, SS_RDEF, 1077 "No seek complete") }, 1078 /* DTL W O BK */ 1079 { SST(0x03, 0x00, SS_RDEF, 1080 "Peripheral device write fault") }, 1081 /* T */ 1082 { SST(0x03, 0x01, SS_RDEF, 1083 "No write current") }, 1084 /* T */ 1085 { SST(0x03, 0x02, SS_RDEF, 1086 "Excessive write errors") }, 1087 /* DTLPWROMAEBKVF */ 1088 { SST(0x04, 0x00, SS_RDEF, 1089 "Logical unit not ready, cause not reportable") }, 1090 /* DTLPWROMAEBKVF */ 1091 { SST(0x04, 0x01, SS_WAIT | EBUSY, 1092 "Logical unit is in process of becoming ready") }, 1093 /* DTLPWROMAEBKVF */ 1094 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1095 "Logical unit not ready, initializing command required") }, 1096 /* DTLPWROMAEBKVF */ 1097 { SST(0x04, 0x03, SS_FATAL | ENXIO, 1098 "Logical unit not ready, manual intervention required") }, 1099 /* DTL RO B */ 1100 { SST(0x04, 0x04, SS_FATAL | EBUSY, 1101 "Logical unit not ready, format in progress") }, 1102 /* DT W O A BK F */ 1103 { SST(0x04, 0x05, SS_FATAL | EBUSY, 1104 "Logical unit not ready, rebuild in progress") }, 1105 /* DT W O A BK */ 1106 { SST(0x04, 0x06, SS_FATAL | EBUSY, 1107 "Logical unit not ready, recalculation in progress") }, 1108 /* DTLPWROMAEBKVF */ 1109 { SST(0x04, 0x07, SS_FATAL | EBUSY, 1110 "Logical unit not ready, operation in progress") }, 1111 /* R */ 1112 { SST(0x04, 0x08, SS_FATAL | EBUSY, 1113 "Logical unit not ready, long write in progress") }, 1114 /* DTLPWROMAEBKVF */ 1115 { SST(0x04, 0x09, SS_RDEF, /* XXX TBD */ 1116 "Logical unit not ready, self-test in progress") }, 1117 /* DTLPWROMAEBKVF */ 1118 { SST(0x04, 0x0A, SS_WAIT | ENXIO, 1119 "Logical unit not accessible, asymmetric access state transition")}, 1120 /* DTLPWROMAEBKVF */ 1121 { SST(0x04, 0x0B, SS_FATAL | ENXIO, 1122 "Logical unit not accessible, target port in standby state") }, 1123 /* DTLPWROMAEBKVF */ 1124 { SST(0x04, 0x0C, SS_FATAL | ENXIO, 1125 "Logical unit not accessible, target port in unavailable state") }, 1126 /* F */ 1127 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ 1128 "Logical unit not ready, structure check required") }, 1129 /* DTL WR MAEBKVF */ 1130 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */ 1131 "Logical unit not ready, security session in progress") }, 1132 /* DT WROM B */ 1133 { SST(0x04, 0x10, SS_RDEF, /* XXX TBD */ 1134 "Logical unit not ready, auxiliary memory not accessible") }, 1135 /* DT WRO AEB VF */ 1136 { SST(0x04, 0x11, SS_WAIT | EBUSY, 1137 "Logical unit not ready, notify (enable spinup) required") }, 1138 /* M V */ 1139 { SST(0x04, 0x12, SS_RDEF, /* XXX TBD */ 1140 "Logical unit not ready, offline") }, 1141 /* DT R MAEBKV */ 1142 { SST(0x04, 0x13, SS_RDEF, /* XXX TBD */ 1143 "Logical unit not ready, SA creation in progress") }, 1144 /* D B */ 1145 { SST(0x04, 0x14, SS_RDEF, /* XXX TBD */ 1146 "Logical unit not ready, space allocation in progress") }, 1147 /* M */ 1148 { SST(0x04, 0x15, SS_RDEF, /* XXX TBD */ 1149 "Logical unit not ready, robotics disabled") }, 1150 /* M */ 1151 { SST(0x04, 0x16, SS_RDEF, /* XXX TBD */ 1152 "Logical unit not ready, configuration required") }, 1153 /* M */ 1154 { SST(0x04, 0x17, SS_RDEF, /* XXX TBD */ 1155 "Logical unit not ready, calibration required") }, 1156 /* M */ 1157 { SST(0x04, 0x18, SS_RDEF, /* XXX TBD */ 1158 "Logical unit not ready, a door is open") }, 1159 /* M */ 1160 { SST(0x04, 0x19, SS_RDEF, /* XXX TBD */ 1161 "Logical unit not ready, operating in sequential mode") }, 1162 /* DT B */ 1163 { SST(0x04, 0x1A, SS_RDEF, /* XXX TBD */ 1164 "Logical unit not ready, START/STOP UNIT command in progress") }, 1165 /* D B */ 1166 { SST(0x04, 0x1B, SS_RDEF, /* XXX TBD */ 1167 "Logical unit not ready, sanitize in progress") }, 1168 /* DT MAEB */ 1169 { SST(0x04, 0x1C, SS_RDEF, /* XXX TBD */ 1170 "Logical unit not ready, additional power use not yet granted") }, 1171 /* D */ 1172 { SST(0x04, 0x1D, SS_RDEF, /* XXX TBD */ 1173 "Logical unit not ready, configuration in progress") }, 1174 /* D */ 1175 { SST(0x04, 0x1E, SS_FATAL | ENXIO, 1176 "Logical unit not ready, microcode activation required") }, 1177 /* DTLPWROMAEBKVF */ 1178 { SST(0x04, 0x1F, SS_FATAL | ENXIO, 1179 "Logical unit not ready, microcode download required") }, 1180 /* DTLPWROMAEBKVF */ 1181 { SST(0x04, 0x20, SS_RDEF, /* XXX TBD */ 1182 "Logical unit not ready, logical unit reset required") }, 1183 /* DTLPWROMAEBKVF */ 1184 { SST(0x04, 0x21, SS_RDEF, /* XXX TBD */ 1185 "Logical unit not ready, hard reset required") }, 1186 /* DTLPWROMAEBKVF */ 1187 { SST(0x04, 0x22, SS_RDEF, /* XXX TBD */ 1188 "Logical unit not ready, power cycle required") }, 1189 /* DTL WROMAEBKVF */ 1190 { SST(0x05, 0x00, SS_RDEF, 1191 "Logical unit does not respond to selection") }, 1192 /* D WROM BK */ 1193 { SST(0x06, 0x00, SS_RDEF, 1194 "No reference position found") }, 1195 /* DTL WROM BK */ 1196 { SST(0x07, 0x00, SS_RDEF, 1197 "Multiple peripheral devices selected") }, 1198 /* DTL WROMAEBKVF */ 1199 { SST(0x08, 0x00, SS_RDEF, 1200 "Logical unit communication failure") }, 1201 /* DTL WROMAEBKVF */ 1202 { SST(0x08, 0x01, SS_RDEF, 1203 "Logical unit communication time-out") }, 1204 /* DTL WROMAEBKVF */ 1205 { SST(0x08, 0x02, SS_RDEF, 1206 "Logical unit communication parity error") }, 1207 /* DT ROM BK */ 1208 { SST(0x08, 0x03, SS_RDEF, 1209 "Logical unit communication CRC error (Ultra-DMA/32)") }, 1210 /* DTLPWRO K */ 1211 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ 1212 "Unreachable copy target") }, 1213 /* DT WRO B */ 1214 { SST(0x09, 0x00, SS_RDEF, 1215 "Track following error") }, 1216 /* WRO K */ 1217 { SST(0x09, 0x01, SS_RDEF, 1218 "Tracking servo failure") }, 1219 /* WRO K */ 1220 { SST(0x09, 0x02, SS_RDEF, 1221 "Focus servo failure") }, 1222 /* WRO */ 1223 { SST(0x09, 0x03, SS_RDEF, 1224 "Spindle servo failure") }, 1225 /* DT WRO B */ 1226 { SST(0x09, 0x04, SS_RDEF, 1227 "Head select fault") }, 1228 /* DT RO B */ 1229 { SST(0x09, 0x05, SS_RDEF, 1230 "Vibration induced tracking error") }, 1231 /* DTLPWROMAEBKVF */ 1232 { SST(0x0A, 0x00, SS_FATAL | ENOSPC, 1233 "Error log overflow") }, 1234 /* DTLPWROMAEBKVF */ 1235 { SST(0x0B, 0x00, SS_RDEF, 1236 "Warning") }, 1237 /* DTLPWROMAEBKVF */ 1238 { SST(0x0B, 0x01, SS_RDEF, 1239 "Warning - specified temperature exceeded") }, 1240 /* DTLPWROMAEBKVF */ 1241 { SST(0x0B, 0x02, SS_RDEF, 1242 "Warning - enclosure degraded") }, 1243 /* DTLPWROMAEBKVF */ 1244 { SST(0x0B, 0x03, SS_RDEF, /* XXX TBD */ 1245 "Warning - background self-test failed") }, 1246 /* DTLPWRO AEBKVF */ 1247 { SST(0x0B, 0x04, SS_RDEF, /* XXX TBD */ 1248 "Warning - background pre-scan detected medium error") }, 1249 /* DTLPWRO AEBKVF */ 1250 { SST(0x0B, 0x05, SS_RDEF, /* XXX TBD */ 1251 "Warning - background medium scan detected medium error") }, 1252 /* DTLPWROMAEBKVF */ 1253 { SST(0x0B, 0x06, SS_RDEF, /* XXX TBD */ 1254 "Warning - non-volatile cache now volatile") }, 1255 /* DTLPWROMAEBKVF */ 1256 { SST(0x0B, 0x07, SS_RDEF, /* XXX TBD */ 1257 "Warning - degraded power to non-volatile cache") }, 1258 /* DTLPWROMAEBKVF */ 1259 { SST(0x0B, 0x08, SS_RDEF, /* XXX TBD */ 1260 "Warning - power loss expected") }, 1261 /* D */ 1262 { SST(0x0B, 0x09, SS_RDEF, /* XXX TBD */ 1263 "Warning - device statistics notification available") }, 1264 /* DTLPWROMAEBKVF */ 1265 { SST(0x0B, 0x0A, SS_RDEF, /* XXX TBD */ 1266 "Warning - High critical temperature limit exceeded") }, 1267 /* DTLPWROMAEBKVF */ 1268 { SST(0x0B, 0x0B, SS_RDEF, /* XXX TBD */ 1269 "Warning - Low critical temperature limit exceeded") }, 1270 /* DTLPWROMAEBKVF */ 1271 { SST(0x0B, 0x0C, SS_RDEF, /* XXX TBD */ 1272 "Warning - High operating temperature limit exceeded") }, 1273 /* DTLPWROMAEBKVF */ 1274 { SST(0x0B, 0x0D, SS_RDEF, /* XXX TBD */ 1275 "Warning - Low operating temperature limit exceeded") }, 1276 /* DTLPWROMAEBKVF */ 1277 { SST(0x0B, 0x0E, SS_RDEF, /* XXX TBD */ 1278 "Warning - High citical humidity limit exceeded") }, 1279 /* DTLPWROMAEBKVF */ 1280 { SST(0x0B, 0x0F, SS_RDEF, /* XXX TBD */ 1281 "Warning - Low citical humidity limit exceeded") }, 1282 /* DTLPWROMAEBKVF */ 1283 { SST(0x0B, 0x10, SS_RDEF, /* XXX TBD */ 1284 "Warning - High operating humidity limit exceeded") }, 1285 /* DTLPWROMAEBKVF */ 1286 { SST(0x0B, 0x11, SS_RDEF, /* XXX TBD */ 1287 "Warning - Low operating humidity limit exceeded") }, 1288 /* T R */ 1289 { SST(0x0C, 0x00, SS_RDEF, 1290 "Write error") }, 1291 /* K */ 1292 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1293 "Write error - recovered with auto reallocation") }, 1294 /* D W O BK */ 1295 { SST(0x0C, 0x02, SS_RDEF, 1296 "Write error - auto reallocation failed") }, 1297 /* D W O BK */ 1298 { SST(0x0C, 0x03, SS_RDEF, 1299 "Write error - recommend reassignment") }, 1300 /* DT W O B */ 1301 { SST(0x0C, 0x04, SS_RDEF, 1302 "Compression check miscompare error") }, 1303 /* DT W O B */ 1304 { SST(0x0C, 0x05, SS_RDEF, 1305 "Data expansion occurred during compression") }, 1306 /* DT W O B */ 1307 { SST(0x0C, 0x06, SS_RDEF, 1308 "Block not compressible") }, 1309 /* R */ 1310 { SST(0x0C, 0x07, SS_RDEF, 1311 "Write error - recovery needed") }, 1312 /* R */ 1313 { SST(0x0C, 0x08, SS_RDEF, 1314 "Write error - recovery failed") }, 1315 /* R */ 1316 { SST(0x0C, 0x09, SS_RDEF, 1317 "Write error - loss of streaming") }, 1318 /* R */ 1319 { SST(0x0C, 0x0A, SS_RDEF, 1320 "Write error - padding blocks added") }, 1321 /* DT WROM B */ 1322 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ 1323 "Auxiliary memory write error") }, 1324 /* DTLPWRO AEBKVF */ 1325 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ 1326 "Write error - unexpected unsolicited data") }, 1327 /* DTLPWRO AEBKVF */ 1328 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ 1329 "Write error - not enough unsolicited data") }, 1330 /* DT W O BK */ 1331 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */ 1332 "Multiple write errors") }, 1333 /* R */ 1334 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ 1335 "Defects in error window") }, 1336 /* D */ 1337 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */ 1338 "Incomplete multiple atomic write operations") }, 1339 /* D */ 1340 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */ 1341 "Write error - recovery scan needed") }, 1342 /* D */ 1343 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */ 1344 "Write error - insufficient zone resources") }, 1345 /* DTLPWRO A K */ 1346 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ 1347 "Error detected by third party temporary initiator") }, 1348 /* DTLPWRO A K */ 1349 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ 1350 "Third party device failure") }, 1351 /* DTLPWRO A K */ 1352 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ 1353 "Copy target device not reachable") }, 1354 /* DTLPWRO A K */ 1355 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ 1356 "Incorrect copy target device type") }, 1357 /* DTLPWRO A K */ 1358 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ 1359 "Copy target device data underrun") }, 1360 /* DTLPWRO A K */ 1361 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ 1362 "Copy target device data overrun") }, 1363 /* DT PWROMAEBK F */ 1364 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ 1365 "Invalid information unit") }, 1366 /* DT PWROMAEBK F */ 1367 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ 1368 "Information unit too short") }, 1369 /* DT PWROMAEBK F */ 1370 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ 1371 "Information unit too long") }, 1372 /* DT P R MAEBK F */ 1373 { SST(0x0E, 0x03, SS_RDEF, /* XXX TBD */ 1374 "Invalid field in command information unit") }, 1375 /* D W O BK */ 1376 { SST(0x10, 0x00, SS_RDEF, 1377 "ID CRC or ECC error") }, 1378 /* DT W O */ 1379 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ 1380 "Logical block guard check failed") }, 1381 /* DT W O */ 1382 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ 1383 "Logical block application tag check failed") }, 1384 /* DT W O */ 1385 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ 1386 "Logical block reference tag check failed") }, 1387 /* T */ 1388 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */ 1389 "Logical block protection error on recovered buffer data") }, 1390 /* T */ 1391 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */ 1392 "Logical block protection method error") }, 1393 /* DT WRO BK */ 1394 { SST(0x11, 0x00, SS_FATAL|EIO, 1395 "Unrecovered read error") }, 1396 /* DT WRO BK */ 1397 { SST(0x11, 0x01, SS_FATAL|EIO, 1398 "Read retries exhausted") }, 1399 /* DT WRO BK */ 1400 { SST(0x11, 0x02, SS_FATAL|EIO, 1401 "Error too long to correct") }, 1402 /* DT W O BK */ 1403 { SST(0x11, 0x03, SS_FATAL|EIO, 1404 "Multiple read errors") }, 1405 /* D W O BK */ 1406 { SST(0x11, 0x04, SS_FATAL|EIO, 1407 "Unrecovered read error - auto reallocate failed") }, 1408 /* WRO B */ 1409 { SST(0x11, 0x05, SS_FATAL|EIO, 1410 "L-EC uncorrectable error") }, 1411 /* WRO B */ 1412 { SST(0x11, 0x06, SS_FATAL|EIO, 1413 "CIRC unrecovered error") }, 1414 /* W O B */ 1415 { SST(0x11, 0x07, SS_RDEF, 1416 "Data re-synchronization error") }, 1417 /* T */ 1418 { SST(0x11, 0x08, SS_RDEF, 1419 "Incomplete block read") }, 1420 /* T */ 1421 { SST(0x11, 0x09, SS_RDEF, 1422 "No gap found") }, 1423 /* DT O BK */ 1424 { SST(0x11, 0x0A, SS_RDEF, 1425 "Miscorrected error") }, 1426 /* D W O BK */ 1427 { SST(0x11, 0x0B, SS_FATAL|EIO, 1428 "Unrecovered read error - recommend reassignment") }, 1429 /* D W O BK */ 1430 { SST(0x11, 0x0C, SS_FATAL|EIO, 1431 "Unrecovered read error - recommend rewrite the data") }, 1432 /* DT WRO B */ 1433 { SST(0x11, 0x0D, SS_RDEF, 1434 "De-compression CRC error") }, 1435 /* DT WRO B */ 1436 { SST(0x11, 0x0E, SS_RDEF, 1437 "Cannot decompress using declared algorithm") }, 1438 /* R */ 1439 { SST(0x11, 0x0F, SS_RDEF, 1440 "Error reading UPC/EAN number") }, 1441 /* R */ 1442 { SST(0x11, 0x10, SS_RDEF, 1443 "Error reading ISRC number") }, 1444 /* R */ 1445 { SST(0x11, 0x11, SS_RDEF, 1446 "Read error - loss of streaming") }, 1447 /* DT WROM B */ 1448 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ 1449 "Auxiliary memory read error") }, 1450 /* DTLPWRO AEBKVF */ 1451 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ 1452 "Read error - failed retransmission request") }, 1453 /* D */ 1454 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ 1455 "Read error - LBA marked bad by application client") }, 1456 /* D */ 1457 { SST(0x11, 0x15, SS_RDEF, /* XXX TBD */ 1458 "Write after sanitize required") }, 1459 /* D W O BK */ 1460 { SST(0x12, 0x00, SS_RDEF, 1461 "Address mark not found for ID field") }, 1462 /* D W O BK */ 1463 { SST(0x13, 0x00, SS_RDEF, 1464 "Address mark not found for data field") }, 1465 /* DTL WRO BK */ 1466 { SST(0x14, 0x00, SS_RDEF, 1467 "Recorded entity not found") }, 1468 /* DT WRO BK */ 1469 { SST(0x14, 0x01, SS_RDEF, 1470 "Record not found") }, 1471 /* T */ 1472 { SST(0x14, 0x02, SS_RDEF, 1473 "Filemark or setmark not found") }, 1474 /* T */ 1475 { SST(0x14, 0x03, SS_RDEF, 1476 "End-of-data not found") }, 1477 /* T */ 1478 { SST(0x14, 0x04, SS_RDEF, 1479 "Block sequence error") }, 1480 /* DT W O BK */ 1481 { SST(0x14, 0x05, SS_RDEF, 1482 "Record not found - recommend reassignment") }, 1483 /* DT W O BK */ 1484 { SST(0x14, 0x06, SS_RDEF, 1485 "Record not found - data auto-reallocated") }, 1486 /* T */ 1487 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ 1488 "Locate operation failure") }, 1489 /* DTL WROM BK */ 1490 { SST(0x15, 0x00, SS_RDEF, 1491 "Random positioning error") }, 1492 /* DTL WROM BK */ 1493 { SST(0x15, 0x01, SS_RDEF, 1494 "Mechanical positioning error") }, 1495 /* DT WRO BK */ 1496 { SST(0x15, 0x02, SS_RDEF, 1497 "Positioning error detected by read of medium") }, 1498 /* D W O BK */ 1499 { SST(0x16, 0x00, SS_RDEF, 1500 "Data synchronization mark error") }, 1501 /* D W O BK */ 1502 { SST(0x16, 0x01, SS_RDEF, 1503 "Data sync error - data rewritten") }, 1504 /* D W O BK */ 1505 { SST(0x16, 0x02, SS_RDEF, 1506 "Data sync error - recommend rewrite") }, 1507 /* D W O BK */ 1508 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1509 "Data sync error - data auto-reallocated") }, 1510 /* D W O BK */ 1511 { SST(0x16, 0x04, SS_RDEF, 1512 "Data sync error - recommend reassignment") }, 1513 /* DT WRO BK */ 1514 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1515 "Recovered data with no error correction applied") }, 1516 /* DT WRO BK */ 1517 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1518 "Recovered data with retries") }, 1519 /* DT WRO BK */ 1520 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1521 "Recovered data with positive head offset") }, 1522 /* DT WRO BK */ 1523 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1524 "Recovered data with negative head offset") }, 1525 /* WRO B */ 1526 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1527 "Recovered data with retries and/or CIRC applied") }, 1528 /* D WRO BK */ 1529 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1530 "Recovered data using previous sector ID") }, 1531 /* D W O BK */ 1532 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1533 "Recovered data without ECC - data auto-reallocated") }, 1534 /* D WRO BK */ 1535 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1536 "Recovered data without ECC - recommend reassignment") }, 1537 /* D WRO BK */ 1538 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1539 "Recovered data without ECC - recommend rewrite") }, 1540 /* D WRO BK */ 1541 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1542 "Recovered data without ECC - data rewritten") }, 1543 /* DT WRO BK */ 1544 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1545 "Recovered data with error correction applied") }, 1546 /* D WRO BK */ 1547 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1548 "Recovered data with error corr. & retries applied") }, 1549 /* D WRO BK */ 1550 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1551 "Recovered data - data auto-reallocated") }, 1552 /* R */ 1553 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1554 "Recovered data with CIRC") }, 1555 /* R */ 1556 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1557 "Recovered data with L-EC") }, 1558 /* D WRO BK */ 1559 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1560 "Recovered data - recommend reassignment") }, 1561 /* D WRO BK */ 1562 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1563 "Recovered data - recommend rewrite") }, 1564 /* D W O BK */ 1565 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1566 "Recovered data with ECC - data rewritten") }, 1567 /* R */ 1568 { SST(0x18, 0x08, SS_RDEF, /* XXX TBD */ 1569 "Recovered data with linking") }, 1570 /* D O K */ 1571 { SST(0x19, 0x00, SS_RDEF, 1572 "Defect list error") }, 1573 /* D O K */ 1574 { SST(0x19, 0x01, SS_RDEF, 1575 "Defect list not available") }, 1576 /* D O K */ 1577 { SST(0x19, 0x02, SS_RDEF, 1578 "Defect list error in primary list") }, 1579 /* D O K */ 1580 { SST(0x19, 0x03, SS_RDEF, 1581 "Defect list error in grown list") }, 1582 /* DTLPWROMAEBKVF */ 1583 { SST(0x1A, 0x00, SS_RDEF, 1584 "Parameter list length error") }, 1585 /* DTLPWROMAEBKVF */ 1586 { SST(0x1B, 0x00, SS_RDEF, 1587 "Synchronous data transfer error") }, 1588 /* D O BK */ 1589 { SST(0x1C, 0x00, SS_RDEF, 1590 "Defect list not found") }, 1591 /* D O BK */ 1592 { SST(0x1C, 0x01, SS_RDEF, 1593 "Primary defect list not found") }, 1594 /* D O BK */ 1595 { SST(0x1C, 0x02, SS_RDEF, 1596 "Grown defect list not found") }, 1597 /* DT WRO BK */ 1598 { SST(0x1D, 0x00, SS_FATAL, 1599 "Miscompare during verify operation") }, 1600 /* D B */ 1601 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */ 1602 "Miscomparable verify of unmapped LBA") }, 1603 /* D W O BK */ 1604 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1605 "Recovered ID with ECC correction") }, 1606 /* D O K */ 1607 { SST(0x1F, 0x00, SS_RDEF, 1608 "Partial defect list transfer") }, 1609 /* DTLPWROMAEBKVF */ 1610 { SST(0x20, 0x00, SS_FATAL | EINVAL, 1611 "Invalid command operation code") }, 1612 /* DT PWROMAEBK */ 1613 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ 1614 "Access denied - initiator pending-enrolled") }, 1615 /* DT PWROMAEBK */ 1616 { SST(0x20, 0x02, SS_RDEF, /* XXX TBD */ 1617 "Access denied - no access rights") }, 1618 /* DT PWROMAEBK */ 1619 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ 1620 "Access denied - invalid mgmt ID key") }, 1621 /* T */ 1622 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ 1623 "Illegal command while in write capable state") }, 1624 /* T */ 1625 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ 1626 "Obsolete") }, 1627 /* T */ 1628 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ 1629 "Illegal command while in explicit address mode") }, 1630 /* T */ 1631 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ 1632 "Illegal command while in implicit address mode") }, 1633 /* DT PWROMAEBK */ 1634 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ 1635 "Access denied - enrollment conflict") }, 1636 /* DT PWROMAEBK */ 1637 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ 1638 "Access denied - invalid LU identifier") }, 1639 /* DT PWROMAEBK */ 1640 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ 1641 "Access denied - invalid proxy token") }, 1642 /* DT PWROMAEBK */ 1643 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ 1644 "Access denied - ACL LUN conflict") }, 1645 /* T */ 1646 { SST(0x20, 0x0C, SS_FATAL | EINVAL, 1647 "Illegal command when not in append-only mode") }, 1648 /* DT WRO BK */ 1649 { SST(0x21, 0x00, SS_FATAL | EINVAL, 1650 "Logical block address out of range") }, 1651 /* DT WROM BK */ 1652 { SST(0x21, 0x01, SS_FATAL | EINVAL, 1653 "Invalid element address") }, 1654 /* R */ 1655 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ 1656 "Invalid address for write") }, 1657 /* R */ 1658 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ 1659 "Invalid write crossing layer jump") }, 1660 /* D */ 1661 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */ 1662 "Unaligned write command") }, 1663 /* D */ 1664 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */ 1665 "Write boundary violation") }, 1666 /* D */ 1667 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */ 1668 "Attempt to read invalid data") }, 1669 /* D */ 1670 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */ 1671 "Read boundary violation") }, 1672 /* D */ 1673 { SST(0x22, 0x00, SS_FATAL | EINVAL, 1674 "Illegal function (use 20 00, 24 00, or 26 00)") }, 1675 /* DT P B */ 1676 { SST(0x23, 0x00, SS_FATAL | EINVAL, 1677 "Invalid token operation, cause not reportable") }, 1678 /* DT P B */ 1679 { SST(0x23, 0x01, SS_FATAL | EINVAL, 1680 "Invalid token operation, unsupported token type") }, 1681 /* DT P B */ 1682 { SST(0x23, 0x02, SS_FATAL | EINVAL, 1683 "Invalid token operation, remote token usage not supported") }, 1684 /* DT P B */ 1685 { SST(0x23, 0x03, SS_FATAL | EINVAL, 1686 "Invalid token operation, remote ROD token creation not supported") }, 1687 /* DT P B */ 1688 { SST(0x23, 0x04, SS_FATAL | EINVAL, 1689 "Invalid token operation, token unknown") }, 1690 /* DT P B */ 1691 { SST(0x23, 0x05, SS_FATAL | EINVAL, 1692 "Invalid token operation, token corrupt") }, 1693 /* DT P B */ 1694 { SST(0x23, 0x06, SS_FATAL | EINVAL, 1695 "Invalid token operation, token revoked") }, 1696 /* DT P B */ 1697 { SST(0x23, 0x07, SS_FATAL | EINVAL, 1698 "Invalid token operation, token expired") }, 1699 /* DT P B */ 1700 { SST(0x23, 0x08, SS_FATAL | EINVAL, 1701 "Invalid token operation, token cancelled") }, 1702 /* DT P B */ 1703 { SST(0x23, 0x09, SS_FATAL | EINVAL, 1704 "Invalid token operation, token deleted") }, 1705 /* DT P B */ 1706 { SST(0x23, 0x0A, SS_FATAL | EINVAL, 1707 "Invalid token operation, invalid token length") }, 1708 /* DTLPWROMAEBKVF */ 1709 { SST(0x24, 0x00, SS_FATAL | EINVAL, 1710 "Invalid field in CDB") }, 1711 /* DTLPWRO AEBKVF */ 1712 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ 1713 "CDB decryption error") }, 1714 /* T */ 1715 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ 1716 "Obsolete") }, 1717 /* T */ 1718 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ 1719 "Obsolete") }, 1720 /* F */ 1721 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ 1722 "Security audit value frozen") }, 1723 /* F */ 1724 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ 1725 "Security working key frozen") }, 1726 /* F */ 1727 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ 1728 "NONCE not unique") }, 1729 /* F */ 1730 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ 1731 "NONCE timestamp out of range") }, 1732 /* DT R MAEBKV */ 1733 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ 1734 "Invalid XCDB") }, 1735 /* DTLPWROMAEBKVF */ 1736 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST, 1737 "Logical unit not supported") }, 1738 /* DTLPWROMAEBKVF */ 1739 { SST(0x26, 0x00, SS_FATAL | EINVAL, 1740 "Invalid field in parameter list") }, 1741 /* DTLPWROMAEBKVF */ 1742 { SST(0x26, 0x01, SS_FATAL | EINVAL, 1743 "Parameter not supported") }, 1744 /* DTLPWROMAEBKVF */ 1745 { SST(0x26, 0x02, SS_FATAL | EINVAL, 1746 "Parameter value invalid") }, 1747 /* DTLPWROMAE K */ 1748 { SST(0x26, 0x03, SS_FATAL | EINVAL, 1749 "Threshold parameters not supported") }, 1750 /* DTLPWROMAEBKVF */ 1751 { SST(0x26, 0x04, SS_FATAL | EINVAL, 1752 "Invalid release of persistent reservation") }, 1753 /* DTLPWRO A BK */ 1754 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ 1755 "Data decryption error") }, 1756 /* DTLPWRO K */ 1757 { SST(0x26, 0x06, SS_FATAL | EINVAL, 1758 "Too many target descriptors") }, 1759 /* DTLPWRO K */ 1760 { SST(0x26, 0x07, SS_FATAL | EINVAL, 1761 "Unsupported target descriptor type code") }, 1762 /* DTLPWRO K */ 1763 { SST(0x26, 0x08, SS_FATAL | EINVAL, 1764 "Too many segment descriptors") }, 1765 /* DTLPWRO K */ 1766 { SST(0x26, 0x09, SS_FATAL | EINVAL, 1767 "Unsupported segment descriptor type code") }, 1768 /* DTLPWRO K */ 1769 { SST(0x26, 0x0A, SS_FATAL | EINVAL, 1770 "Unexpected inexact segment") }, 1771 /* DTLPWRO K */ 1772 { SST(0x26, 0x0B, SS_FATAL | EINVAL, 1773 "Inline data length exceeded") }, 1774 /* DTLPWRO K */ 1775 { SST(0x26, 0x0C, SS_FATAL | EINVAL, 1776 "Invalid operation for copy source or destination") }, 1777 /* DTLPWRO K */ 1778 { SST(0x26, 0x0D, SS_FATAL | EINVAL, 1779 "Copy segment granularity violation") }, 1780 /* DT PWROMAEBK */ 1781 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ 1782 "Invalid parameter while port is enabled") }, 1783 /* F */ 1784 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ 1785 "Invalid data-out buffer integrity check value") }, 1786 /* T */ 1787 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ 1788 "Data decryption key fail limit reached") }, 1789 /* T */ 1790 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ 1791 "Incomplete key-associated data set") }, 1792 /* T */ 1793 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ 1794 "Vendor specific key reference not found") }, 1795 /* D */ 1796 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */ 1797 "Application tag mode page is invalid") }, 1798 /* DT WRO BK */ 1799 { SST(0x27, 0x00, SS_FATAL | EACCES, 1800 "Write protected") }, 1801 /* DT WRO BK */ 1802 { SST(0x27, 0x01, SS_FATAL | EACCES, 1803 "Hardware write protected") }, 1804 /* DT WRO BK */ 1805 { SST(0x27, 0x02, SS_FATAL | EACCES, 1806 "Logical unit software write protected") }, 1807 /* T R */ 1808 { SST(0x27, 0x03, SS_FATAL | EACCES, 1809 "Associated write protect") }, 1810 /* T R */ 1811 { SST(0x27, 0x04, SS_FATAL | EACCES, 1812 "Persistent write protect") }, 1813 /* T R */ 1814 { SST(0x27, 0x05, SS_FATAL | EACCES, 1815 "Permanent write protect") }, 1816 /* R F */ 1817 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ 1818 "Conditional write protect") }, 1819 /* D B */ 1820 { SST(0x27, 0x07, SS_FATAL | ENOSPC, 1821 "Space allocation failed write protect") }, 1822 /* D */ 1823 { SST(0x27, 0x08, SS_FATAL | EACCES, 1824 "Zone is read only") }, 1825 /* DTLPWROMAEBKVF */ 1826 { SST(0x28, 0x00, SS_FATAL | ENXIO, 1827 "Not ready to ready change, medium may have changed") }, 1828 /* DT WROM B */ 1829 { SST(0x28, 0x01, SS_FATAL | ENXIO, 1830 "Import or export element accessed") }, 1831 /* R */ 1832 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ 1833 "Format-layer may have changed") }, 1834 /* M */ 1835 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ 1836 "Import/export element accessed, medium changed") }, 1837 /* 1838 * XXX JGibbs - All of these should use the same errno, but I don't 1839 * think ENXIO is the correct choice. Should we borrow from 1840 * the networking errnos? ECONNRESET anyone? 1841 */ 1842 /* DTLPWROMAEBKVF */ 1843 { SST(0x29, 0x00, SS_FATAL | ENXIO, 1844 "Power on, reset, or bus device reset occurred") }, 1845 /* DTLPWROMAEBKVF */ 1846 { SST(0x29, 0x01, SS_RDEF, 1847 "Power on occurred") }, 1848 /* DTLPWROMAEBKVF */ 1849 { SST(0x29, 0x02, SS_RDEF, 1850 "SCSI bus reset occurred") }, 1851 /* DTLPWROMAEBKVF */ 1852 { SST(0x29, 0x03, SS_RDEF, 1853 "Bus device reset function occurred") }, 1854 /* DTLPWROMAEBKVF */ 1855 { SST(0x29, 0x04, SS_RDEF, 1856 "Device internal reset") }, 1857 /* DTLPWROMAEBKVF */ 1858 { SST(0x29, 0x05, SS_RDEF, 1859 "Transceiver mode changed to single-ended") }, 1860 /* DTLPWROMAEBKVF */ 1861 { SST(0x29, 0x06, SS_RDEF, 1862 "Transceiver mode changed to LVD") }, 1863 /* DTLPWROMAEBKVF */ 1864 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ 1865 "I_T nexus loss occurred") }, 1866 /* DTL WROMAEBKVF */ 1867 { SST(0x2A, 0x00, SS_RDEF, 1868 "Parameters changed") }, 1869 /* DTL WROMAEBKVF */ 1870 { SST(0x2A, 0x01, SS_RDEF, 1871 "Mode parameters changed") }, 1872 /* DTL WROMAE K */ 1873 { SST(0x2A, 0x02, SS_RDEF, 1874 "Log parameters changed") }, 1875 /* DTLPWROMAE K */ 1876 { SST(0x2A, 0x03, SS_RDEF, 1877 "Reservations preempted") }, 1878 /* DTLPWROMAE */ 1879 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ 1880 "Reservations released") }, 1881 /* DTLPWROMAE */ 1882 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ 1883 "Registrations preempted") }, 1884 /* DTLPWROMAEBKVF */ 1885 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ 1886 "Asymmetric access state changed") }, 1887 /* DTLPWROMAEBKVF */ 1888 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ 1889 "Implicit asymmetric access state transition failed") }, 1890 /* DT WROMAEBKVF */ 1891 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ 1892 "Priority changed") }, 1893 /* D */ 1894 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ 1895 "Capacity data has changed") }, 1896 /* DT */ 1897 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ 1898 "Error history I_T nexus cleared") }, 1899 /* DT */ 1900 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ 1901 "Error history snapshot released") }, 1902 /* F */ 1903 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ 1904 "Error recovery attributes have changed") }, 1905 /* T */ 1906 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ 1907 "Data encryption capabilities changed") }, 1908 /* DT M E V */ 1909 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ 1910 "Timestamp changed") }, 1911 /* T */ 1912 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ 1913 "Data encryption parameters changed by another I_T nexus") }, 1914 /* T */ 1915 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ 1916 "Data encryption parameters changed by vendor specific event") }, 1917 /* T */ 1918 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ 1919 "Data encryption key instance counter has changed") }, 1920 /* DT R MAEBKV */ 1921 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ 1922 "SA creation capabilities data has changed") }, 1923 /* T M V */ 1924 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */ 1925 "Medium removal prevention preempted") }, 1926 /* DTLPWRO K */ 1927 { SST(0x2B, 0x00, SS_RDEF, 1928 "Copy cannot execute since host cannot disconnect") }, 1929 /* DTLPWROMAEBKVF */ 1930 { SST(0x2C, 0x00, SS_RDEF, 1931 "Command sequence error") }, 1932 /* */ 1933 { SST(0x2C, 0x01, SS_RDEF, 1934 "Too many windows specified") }, 1935 /* */ 1936 { SST(0x2C, 0x02, SS_RDEF, 1937 "Invalid combination of windows specified") }, 1938 /* R */ 1939 { SST(0x2C, 0x03, SS_RDEF, 1940 "Current program area is not empty") }, 1941 /* R */ 1942 { SST(0x2C, 0x04, SS_RDEF, 1943 "Current program area is empty") }, 1944 /* B */ 1945 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ 1946 "Illegal power condition request") }, 1947 /* R */ 1948 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ 1949 "Persistent prevent conflict") }, 1950 /* DTLPWROMAEBKVF */ 1951 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ 1952 "Previous busy status") }, 1953 /* DTLPWROMAEBKVF */ 1954 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ 1955 "Previous task set full status") }, 1956 /* DTLPWROM EBKVF */ 1957 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ 1958 "Previous reservation conflict status") }, 1959 /* F */ 1960 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ 1961 "Partition or collection contains user objects") }, 1962 /* T */ 1963 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ 1964 "Not reserved") }, 1965 /* D */ 1966 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */ 1967 "ORWRITE generation does not match") }, 1968 /* D */ 1969 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */ 1970 "Reset write pointer not allowed") }, 1971 /* D */ 1972 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */ 1973 "Zone is offline") }, 1974 /* D */ 1975 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */ 1976 "Stream not open") }, 1977 /* D */ 1978 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */ 1979 "Unwritten data in zone") }, 1980 /* T */ 1981 { SST(0x2D, 0x00, SS_RDEF, 1982 "Overwrite error on update in place") }, 1983 /* R */ 1984 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ 1985 "Insufficient time for operation") }, 1986 /* D */ 1987 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */ 1988 "Command timeout before processing") }, 1989 /* D */ 1990 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */ 1991 "Command timeout during processing") }, 1992 /* D */ 1993 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */ 1994 "Command timeout during processing due to error recovery") }, 1995 /* DTLPWROMAEBKVF */ 1996 { SST(0x2F, 0x00, SS_RDEF, 1997 "Commands cleared by another initiator") }, 1998 /* D */ 1999 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ 2000 "Commands cleared by power loss notification") }, 2001 /* DTLPWROMAEBKVF */ 2002 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ 2003 "Commands cleared by device server") }, 2004 /* DTLPWROMAEBKVF */ 2005 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */ 2006 "Some commands cleared by queuing layer event") }, 2007 /* DT WROM BK */ 2008 { SST(0x30, 0x00, SS_RDEF, 2009 "Incompatible medium installed") }, 2010 /* DT WRO BK */ 2011 { SST(0x30, 0x01, SS_RDEF, 2012 "Cannot read medium - unknown format") }, 2013 /* DT WRO BK */ 2014 { SST(0x30, 0x02, SS_RDEF, 2015 "Cannot read medium - incompatible format") }, 2016 /* DT R K */ 2017 { SST(0x30, 0x03, SS_RDEF, 2018 "Cleaning cartridge installed") }, 2019 /* DT WRO BK */ 2020 { SST(0x30, 0x04, SS_RDEF, 2021 "Cannot write medium - unknown format") }, 2022 /* DT WRO BK */ 2023 { SST(0x30, 0x05, SS_RDEF, 2024 "Cannot write medium - incompatible format") }, 2025 /* DT WRO B */ 2026 { SST(0x30, 0x06, SS_RDEF, 2027 "Cannot format medium - incompatible medium") }, 2028 /* DTL WROMAEBKVF */ 2029 { SST(0x30, 0x07, SS_RDEF, 2030 "Cleaning failure") }, 2031 /* R */ 2032 { SST(0x30, 0x08, SS_RDEF, 2033 "Cannot write - application code mismatch") }, 2034 /* R */ 2035 { SST(0x30, 0x09, SS_RDEF, 2036 "Current session not fixated for append") }, 2037 /* DT WRO AEBK */ 2038 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ 2039 "Cleaning request rejected") }, 2040 /* T */ 2041 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ 2042 "WORM medium - overwrite attempted") }, 2043 /* T */ 2044 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ 2045 "WORM medium - integrity check") }, 2046 /* R */ 2047 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ 2048 "Medium not formatted") }, 2049 /* M */ 2050 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ 2051 "Incompatible volume type") }, 2052 /* M */ 2053 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ 2054 "Incompatible volume qualifier") }, 2055 /* M */ 2056 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */ 2057 "Cleaning volume expired") }, 2058 /* DT WRO BK */ 2059 { SST(0x31, 0x00, SS_RDEF, 2060 "Medium format corrupted") }, 2061 /* D L RO B */ 2062 { SST(0x31, 0x01, SS_RDEF, 2063 "Format command failed") }, 2064 /* R */ 2065 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ 2066 "Zoned formatting failed due to spare linking") }, 2067 /* D B */ 2068 { SST(0x31, 0x03, SS_RDEF, /* XXX TBD */ 2069 "SANITIZE command failed") }, 2070 /* D W O BK */ 2071 { SST(0x32, 0x00, SS_RDEF, 2072 "No defect spare location available") }, 2073 /* D W O BK */ 2074 { SST(0x32, 0x01, SS_RDEF, 2075 "Defect list update failure") }, 2076 /* T */ 2077 { SST(0x33, 0x00, SS_RDEF, 2078 "Tape length error") }, 2079 /* DTLPWROMAEBKVF */ 2080 { SST(0x34, 0x00, SS_RDEF, 2081 "Enclosure failure") }, 2082 /* DTLPWROMAEBKVF */ 2083 { SST(0x35, 0x00, SS_RDEF, 2084 "Enclosure services failure") }, 2085 /* DTLPWROMAEBKVF */ 2086 { SST(0x35, 0x01, SS_RDEF, 2087 "Unsupported enclosure function") }, 2088 /* DTLPWROMAEBKVF */ 2089 { SST(0x35, 0x02, SS_RDEF, 2090 "Enclosure services unavailable") }, 2091 /* DTLPWROMAEBKVF */ 2092 { SST(0x35, 0x03, SS_RDEF, 2093 "Enclosure services transfer failure") }, 2094 /* DTLPWROMAEBKVF */ 2095 { SST(0x35, 0x04, SS_RDEF, 2096 "Enclosure services transfer refused") }, 2097 /* DTL WROMAEBKVF */ 2098 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ 2099 "Enclosure services checksum error") }, 2100 /* L */ 2101 { SST(0x36, 0x00, SS_RDEF, 2102 "Ribbon, ink, or toner failure") }, 2103 /* DTL WROMAEBKVF */ 2104 { SST(0x37, 0x00, SS_RDEF, 2105 "Rounded parameter") }, 2106 /* B */ 2107 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ 2108 "Event status notification") }, 2109 /* B */ 2110 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ 2111 "ESN - power management class event") }, 2112 /* B */ 2113 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ 2114 "ESN - media class event") }, 2115 /* B */ 2116 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ 2117 "ESN - device busy class event") }, 2118 /* D */ 2119 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */ 2120 "Thin provisioning soft threshold reached") }, 2121 /* DTL WROMAE K */ 2122 { SST(0x39, 0x00, SS_RDEF, 2123 "Saving parameters not supported") }, 2124 /* DTL WROM BK */ 2125 { SST(0x3A, 0x00, SS_FATAL | ENXIO, 2126 "Medium not present") }, 2127 /* DT WROM BK */ 2128 { SST(0x3A, 0x01, SS_FATAL | ENXIO, 2129 "Medium not present - tray closed") }, 2130 /* DT WROM BK */ 2131 { SST(0x3A, 0x02, SS_FATAL | ENXIO, 2132 "Medium not present - tray open") }, 2133 /* DT WROM B */ 2134 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ 2135 "Medium not present - loadable") }, 2136 /* DT WRO B */ 2137 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ 2138 "Medium not present - medium auxiliary memory accessible") }, 2139 /* TL */ 2140 { SST(0x3B, 0x00, SS_RDEF, 2141 "Sequential positioning error") }, 2142 /* T */ 2143 { SST(0x3B, 0x01, SS_RDEF, 2144 "Tape position error at beginning-of-medium") }, 2145 /* T */ 2146 { SST(0x3B, 0x02, SS_RDEF, 2147 "Tape position error at end-of-medium") }, 2148 /* L */ 2149 { SST(0x3B, 0x03, SS_RDEF, 2150 "Tape or electronic vertical forms unit not ready") }, 2151 /* L */ 2152 { SST(0x3B, 0x04, SS_RDEF, 2153 "Slew failure") }, 2154 /* L */ 2155 { SST(0x3B, 0x05, SS_RDEF, 2156 "Paper jam") }, 2157 /* L */ 2158 { SST(0x3B, 0x06, SS_RDEF, 2159 "Failed to sense top-of-form") }, 2160 /* L */ 2161 { SST(0x3B, 0x07, SS_RDEF, 2162 "Failed to sense bottom-of-form") }, 2163 /* T */ 2164 { SST(0x3B, 0x08, SS_RDEF, 2165 "Reposition error") }, 2166 /* */ 2167 { SST(0x3B, 0x09, SS_RDEF, 2168 "Read past end of medium") }, 2169 /* */ 2170 { SST(0x3B, 0x0A, SS_RDEF, 2171 "Read past beginning of medium") }, 2172 /* */ 2173 { SST(0x3B, 0x0B, SS_RDEF, 2174 "Position past end of medium") }, 2175 /* T */ 2176 { SST(0x3B, 0x0C, SS_RDEF, 2177 "Position past beginning of medium") }, 2178 /* DT WROM BK */ 2179 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, 2180 "Medium destination element full") }, 2181 /* DT WROM BK */ 2182 { SST(0x3B, 0x0E, SS_RDEF, 2183 "Medium source element empty") }, 2184 /* R */ 2185 { SST(0x3B, 0x0F, SS_RDEF, 2186 "End of medium reached") }, 2187 /* DT WROM BK */ 2188 { SST(0x3B, 0x11, SS_RDEF, 2189 "Medium magazine not accessible") }, 2190 /* DT WROM BK */ 2191 { SST(0x3B, 0x12, SS_RDEF, 2192 "Medium magazine removed") }, 2193 /* DT WROM BK */ 2194 { SST(0x3B, 0x13, SS_RDEF, 2195 "Medium magazine inserted") }, 2196 /* DT WROM BK */ 2197 { SST(0x3B, 0x14, SS_RDEF, 2198 "Medium magazine locked") }, 2199 /* DT WROM BK */ 2200 { SST(0x3B, 0x15, SS_RDEF, 2201 "Medium magazine unlocked") }, 2202 /* R */ 2203 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ 2204 "Mechanical positioning or changer error") }, 2205 /* F */ 2206 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ 2207 "Read past end of user object") }, 2208 /* M */ 2209 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ 2210 "Element disabled") }, 2211 /* M */ 2212 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ 2213 "Element enabled") }, 2214 /* M */ 2215 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ 2216 "Data transfer device removed") }, 2217 /* M */ 2218 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ 2219 "Data transfer device inserted") }, 2220 /* T */ 2221 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */ 2222 "Too many logical objects on partition to support operation") }, 2223 /* DTLPWROMAE K */ 2224 { SST(0x3D, 0x00, SS_RDEF, 2225 "Invalid bits in IDENTIFY message") }, 2226 /* DTLPWROMAEBKVF */ 2227 { SST(0x3E, 0x00, SS_RDEF, 2228 "Logical unit has not self-configured yet") }, 2229 /* DTLPWROMAEBKVF */ 2230 { SST(0x3E, 0x01, SS_RDEF, 2231 "Logical unit failure") }, 2232 /* DTLPWROMAEBKVF */ 2233 { SST(0x3E, 0x02, SS_RDEF, 2234 "Timeout on logical unit") }, 2235 /* DTLPWROMAEBKVF */ 2236 { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */ 2237 "Logical unit failed self-test") }, 2238 /* DTLPWROMAEBKVF */ 2239 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ 2240 "Logical unit unable to update self-test log") }, 2241 /* DTLPWROMAEBKVF */ 2242 { SST(0x3F, 0x00, SS_RDEF, 2243 "Target operating conditions have changed") }, 2244 /* DTLPWROMAEBKVF */ 2245 { SST(0x3F, 0x01, SS_RDEF, 2246 "Microcode has been changed") }, 2247 /* DTLPWROM BK */ 2248 { SST(0x3F, 0x02, SS_RDEF, 2249 "Changed operating definition") }, 2250 /* DTLPWROMAEBKVF */ 2251 { SST(0x3F, 0x03, SS_RDEF, 2252 "INQUIRY data has changed") }, 2253 /* DT WROMAEBK */ 2254 { SST(0x3F, 0x04, SS_RDEF, 2255 "Component device attached") }, 2256 /* DT WROMAEBK */ 2257 { SST(0x3F, 0x05, SS_RDEF, 2258 "Device identifier changed") }, 2259 /* DT WROMAEB */ 2260 { SST(0x3F, 0x06, SS_RDEF, 2261 "Redundancy group created or modified") }, 2262 /* DT WROMAEB */ 2263 { SST(0x3F, 0x07, SS_RDEF, 2264 "Redundancy group deleted") }, 2265 /* DT WROMAEB */ 2266 { SST(0x3F, 0x08, SS_RDEF, 2267 "Spare created or modified") }, 2268 /* DT WROMAEB */ 2269 { SST(0x3F, 0x09, SS_RDEF, 2270 "Spare deleted") }, 2271 /* DT WROMAEBK */ 2272 { SST(0x3F, 0x0A, SS_RDEF, 2273 "Volume set created or modified") }, 2274 /* DT WROMAEBK */ 2275 { SST(0x3F, 0x0B, SS_RDEF, 2276 "Volume set deleted") }, 2277 /* DT WROMAEBK */ 2278 { SST(0x3F, 0x0C, SS_RDEF, 2279 "Volume set deassigned") }, 2280 /* DT WROMAEBK */ 2281 { SST(0x3F, 0x0D, SS_RDEF, 2282 "Volume set reassigned") }, 2283 /* DTLPWROMAE */ 2284 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN , 2285 "Reported LUNs data has changed") }, 2286 /* DTLPWROMAEBKVF */ 2287 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ 2288 "Echo buffer overwritten") }, 2289 /* DT WROM B */ 2290 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ 2291 "Medium loadable") }, 2292 /* DT WROM B */ 2293 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ 2294 "Medium auxiliary memory accessible") }, 2295 /* DTLPWR MAEBK F */ 2296 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ 2297 "iSCSI IP address added") }, 2298 /* DTLPWR MAEBK F */ 2299 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ 2300 "iSCSI IP address removed") }, 2301 /* DTLPWR MAEBK F */ 2302 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ 2303 "iSCSI IP address changed") }, 2304 /* DTLPWR MAEBK */ 2305 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */ 2306 "Inspect referrals sense descriptors") }, 2307 /* DTLPWROMAEBKVF */ 2308 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */ 2309 "Microcode has been changed without reset") }, 2310 /* D */ 2311 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */ 2312 "Zone transition to full") }, 2313 /* D */ 2314 { SST(0x40, 0x00, SS_RDEF, 2315 "RAM failure") }, /* deprecated - use 40 NN instead */ 2316 /* DTLPWROMAEBKVF */ 2317 { SST(0x40, 0x80, SS_RDEF, 2318 "Diagnostic failure: ASCQ = Component ID") }, 2319 /* DTLPWROMAEBKVF */ 2320 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, 2321 NULL) }, /* Range 0x80->0xFF */ 2322 /* D */ 2323 { SST(0x41, 0x00, SS_RDEF, 2324 "Data path failure") }, /* deprecated - use 40 NN instead */ 2325 /* D */ 2326 { SST(0x42, 0x00, SS_RDEF, 2327 "Power-on or self-test failure") }, 2328 /* deprecated - use 40 NN instead */ 2329 /* DTLPWROMAEBKVF */ 2330 { SST(0x43, 0x00, SS_RDEF, 2331 "Message error") }, 2332 /* DTLPWROMAEBKVF */ 2333 { SST(0x44, 0x00, SS_RDEF, 2334 "Internal target failure") }, 2335 /* DT P MAEBKVF */ 2336 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */ 2337 "Persistent reservation information lost") }, 2338 /* DT B */ 2339 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ 2340 "ATA device failed set features") }, 2341 /* DTLPWROMAEBKVF */ 2342 { SST(0x45, 0x00, SS_RDEF, 2343 "Select or reselect failure") }, 2344 /* DTLPWROM BK */ 2345 { SST(0x46, 0x00, SS_RDEF, 2346 "Unsuccessful soft reset") }, 2347 /* DTLPWROMAEBKVF */ 2348 { SST(0x47, 0x00, SS_RDEF, 2349 "SCSI parity error") }, 2350 /* DTLPWROMAEBKVF */ 2351 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ 2352 "Data phase CRC error detected") }, 2353 /* DTLPWROMAEBKVF */ 2354 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ 2355 "SCSI parity error detected during ST data phase") }, 2356 /* DTLPWROMAEBKVF */ 2357 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ 2358 "Information unit iuCRC error detected") }, 2359 /* DTLPWROMAEBKVF */ 2360 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ 2361 "Asynchronous information protection error detected") }, 2362 /* DTLPWROMAEBKVF */ 2363 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ 2364 "Protocol service CRC error") }, 2365 /* DT MAEBKVF */ 2366 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ 2367 "PHY test function in progress") }, 2368 /* DT PWROMAEBK */ 2369 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ 2370 "Some commands cleared by iSCSI protocol event") }, 2371 /* DTLPWROMAEBKVF */ 2372 { SST(0x48, 0x00, SS_RDEF, 2373 "Initiator detected error message received") }, 2374 /* DTLPWROMAEBKVF */ 2375 { SST(0x49, 0x00, SS_RDEF, 2376 "Invalid message error") }, 2377 /* DTLPWROMAEBKVF */ 2378 { SST(0x4A, 0x00, SS_RDEF, 2379 "Command phase error") }, 2380 /* DTLPWROMAEBKVF */ 2381 { SST(0x4B, 0x00, SS_RDEF, 2382 "Data phase error") }, 2383 /* DT PWROMAEBK */ 2384 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ 2385 "Invalid target port transfer tag received") }, 2386 /* DT PWROMAEBK */ 2387 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ 2388 "Too much write data") }, 2389 /* DT PWROMAEBK */ 2390 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ 2391 "ACK/NAK timeout") }, 2392 /* DT PWROMAEBK */ 2393 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ 2394 "NAK received") }, 2395 /* DT PWROMAEBK */ 2396 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ 2397 "Data offset error") }, 2398 /* DT PWROMAEBK */ 2399 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ 2400 "Initiator response timeout") }, 2401 /* DT PWROMAEBK F */ 2402 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */ 2403 "Connection lost") }, 2404 /* DT PWROMAEBK F */ 2405 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */ 2406 "Data-in buffer overflow - data buffer size") }, 2407 /* DT PWROMAEBK F */ 2408 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */ 2409 "Data-in buffer overflow - data buffer descriptor area") }, 2410 /* DT PWROMAEBK F */ 2411 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */ 2412 "Data-in buffer error") }, 2413 /* DT PWROMAEBK F */ 2414 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */ 2415 "Data-out buffer overflow - data buffer size") }, 2416 /* DT PWROMAEBK F */ 2417 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */ 2418 "Data-out buffer overflow - data buffer descriptor area") }, 2419 /* DT PWROMAEBK F */ 2420 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */ 2421 "Data-out buffer error") }, 2422 /* DT PWROMAEBK F */ 2423 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */ 2424 "PCIe fabric error") }, 2425 /* DT PWROMAEBK F */ 2426 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */ 2427 "PCIe completion timeout") }, 2428 /* DT PWROMAEBK F */ 2429 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */ 2430 "PCIe completer abort") }, 2431 /* DT PWROMAEBK F */ 2432 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */ 2433 "PCIe poisoned TLP received") }, 2434 /* DT PWROMAEBK F */ 2435 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */ 2436 "PCIe ECRC check failed") }, 2437 /* DT PWROMAEBK F */ 2438 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */ 2439 "PCIe unsupported request") }, 2440 /* DT PWROMAEBK F */ 2441 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */ 2442 "PCIe ACS violation") }, 2443 /* DT PWROMAEBK F */ 2444 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */ 2445 "PCIe TLP prefix blocket") }, 2446 /* DTLPWROMAEBKVF */ 2447 { SST(0x4C, 0x00, SS_RDEF, 2448 "Logical unit failed self-configuration") }, 2449 /* DTLPWROMAEBKVF */ 2450 { SST(0x4D, 0x00, SS_RDEF, 2451 "Tagged overlapped commands: ASCQ = Queue tag ID") }, 2452 /* DTLPWROMAEBKVF */ 2453 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, 2454 NULL) }, /* Range 0x00->0xFF */ 2455 /* DTLPWROMAEBKVF */ 2456 { SST(0x4E, 0x00, SS_RDEF, 2457 "Overlapped commands attempted") }, 2458 /* T */ 2459 { SST(0x50, 0x00, SS_RDEF, 2460 "Write append error") }, 2461 /* T */ 2462 { SST(0x50, 0x01, SS_RDEF, 2463 "Write append position error") }, 2464 /* T */ 2465 { SST(0x50, 0x02, SS_RDEF, 2466 "Position error related to timing") }, 2467 /* T RO */ 2468 { SST(0x51, 0x00, SS_RDEF, 2469 "Erase failure") }, 2470 /* R */ 2471 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ 2472 "Erase failure - incomplete erase operation detected") }, 2473 /* T */ 2474 { SST(0x52, 0x00, SS_RDEF, 2475 "Cartridge fault") }, 2476 /* DTL WROM BK */ 2477 { SST(0x53, 0x00, SS_RDEF, 2478 "Media load or eject failed") }, 2479 /* T */ 2480 { SST(0x53, 0x01, SS_RDEF, 2481 "Unload tape failure") }, 2482 /* DT WROM BK */ 2483 { SST(0x53, 0x02, SS_RDEF, 2484 "Medium removal prevented") }, 2485 /* M */ 2486 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ 2487 "Medium removal prevented by data transfer element") }, 2488 /* T */ 2489 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ 2490 "Medium thread or unthread failure") }, 2491 /* M */ 2492 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */ 2493 "Volume identifier invalid") }, 2494 /* T */ 2495 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */ 2496 "Volume identifier missing") }, 2497 /* M */ 2498 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */ 2499 "Duplicate volume identifier") }, 2500 /* M */ 2501 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */ 2502 "Element status unknown") }, 2503 /* M */ 2504 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */ 2505 "Data transfer device error - load failed") }, 2506 /* M */ 2507 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */ 2508 "Data transfer device error - unload failed") }, 2509 /* M */ 2510 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */ 2511 "Data transfer device error - unload missing") }, 2512 /* M */ 2513 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */ 2514 "Data transfer device error - eject failed") }, 2515 /* M */ 2516 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */ 2517 "Data transfer device error - library communication failed") }, 2518 /* P */ 2519 { SST(0x54, 0x00, SS_RDEF, 2520 "SCSI to host system interface failure") }, 2521 /* P */ 2522 { SST(0x55, 0x00, SS_RDEF, 2523 "System resource failure") }, 2524 /* D O BK */ 2525 { SST(0x55, 0x01, SS_FATAL | ENOSPC, 2526 "System buffer full") }, 2527 /* DTLPWROMAE K */ 2528 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ 2529 "Insufficient reservation resources") }, 2530 /* DTLPWROMAE K */ 2531 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ 2532 "Insufficient resources") }, 2533 /* DTLPWROMAE K */ 2534 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ 2535 "Insufficient registration resources") }, 2536 /* DT PWROMAEBK */ 2537 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ 2538 "Insufficient access control resources") }, 2539 /* DT WROM B */ 2540 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ 2541 "Auxiliary memory out of space") }, 2542 /* F */ 2543 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ 2544 "Quota error") }, 2545 /* T */ 2546 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ 2547 "Maximum number of supplemental decryption keys exceeded") }, 2548 /* M */ 2549 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ 2550 "Medium auxiliary memory not accessible") }, 2551 /* M */ 2552 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ 2553 "Data currently unavailable") }, 2554 /* DTLPWROMAEBKVF */ 2555 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */ 2556 "Insufficient power for operation") }, 2557 /* DT P B */ 2558 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */ 2559 "Insufficient resources to create ROD") }, 2560 /* DT P B */ 2561 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */ 2562 "Insufficient resources to create ROD token") }, 2563 /* D */ 2564 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */ 2565 "Insufficient zone resources") }, 2566 /* D */ 2567 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */ 2568 "Insufficient zone resources to complete write") }, 2569 /* D */ 2570 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */ 2571 "Maximum number of streams open") }, 2572 /* R */ 2573 { SST(0x57, 0x00, SS_RDEF, 2574 "Unable to recover table-of-contents") }, 2575 /* O */ 2576 { SST(0x58, 0x00, SS_RDEF, 2577 "Generation does not exist") }, 2578 /* O */ 2579 { SST(0x59, 0x00, SS_RDEF, 2580 "Updated block read") }, 2581 /* DTLPWRO BK */ 2582 { SST(0x5A, 0x00, SS_RDEF, 2583 "Operator request or state change input") }, 2584 /* DT WROM BK */ 2585 { SST(0x5A, 0x01, SS_RDEF, 2586 "Operator medium removal request") }, 2587 /* DT WRO A BK */ 2588 { SST(0x5A, 0x02, SS_RDEF, 2589 "Operator selected write protect") }, 2590 /* DT WRO A BK */ 2591 { SST(0x5A, 0x03, SS_RDEF, 2592 "Operator selected write permit") }, 2593 /* DTLPWROM K */ 2594 { SST(0x5B, 0x00, SS_RDEF, 2595 "Log exception") }, 2596 /* DTLPWROM K */ 2597 { SST(0x5B, 0x01, SS_RDEF, 2598 "Threshold condition met") }, 2599 /* DTLPWROM K */ 2600 { SST(0x5B, 0x02, SS_RDEF, 2601 "Log counter at maximum") }, 2602 /* DTLPWROM K */ 2603 { SST(0x5B, 0x03, SS_RDEF, 2604 "Log list codes exhausted") }, 2605 /* D O */ 2606 { SST(0x5C, 0x00, SS_RDEF, 2607 "RPL status change") }, 2608 /* D O */ 2609 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2610 "Spindles synchronized") }, 2611 /* D O */ 2612 { SST(0x5C, 0x02, SS_RDEF, 2613 "Spindles not synchronized") }, 2614 /* DTLPWROMAEBKVF */ 2615 { SST(0x5D, 0x00, SS_RDEF, 2616 "Failure prediction threshold exceeded") }, 2617 /* R B */ 2618 { SST(0x5D, 0x01, SS_RDEF, /* XXX TBD */ 2619 "Media failure prediction threshold exceeded") }, 2620 /* R */ 2621 { SST(0x5D, 0x02, SS_RDEF, /* XXX TBD */ 2622 "Logical unit failure prediction threshold exceeded") }, 2623 /* R */ 2624 { SST(0x5D, 0x03, SS_RDEF, /* XXX TBD */ 2625 "Spare area exhaustion prediction threshold exceeded") }, 2626 /* D B */ 2627 { SST(0x5D, 0x10, SS_RDEF, /* XXX TBD */ 2628 "Hardware impending failure general hard drive failure") }, 2629 /* D B */ 2630 { SST(0x5D, 0x11, SS_RDEF, /* XXX TBD */ 2631 "Hardware impending failure drive error rate too high") }, 2632 /* D B */ 2633 { SST(0x5D, 0x12, SS_RDEF, /* XXX TBD */ 2634 "Hardware impending failure data error rate too high") }, 2635 /* D B */ 2636 { SST(0x5D, 0x13, SS_RDEF, /* XXX TBD */ 2637 "Hardware impending failure seek error rate too high") }, 2638 /* D B */ 2639 { SST(0x5D, 0x14, SS_RDEF, /* XXX TBD */ 2640 "Hardware impending failure too many block reassigns") }, 2641 /* D B */ 2642 { SST(0x5D, 0x15, SS_RDEF, /* XXX TBD */ 2643 "Hardware impending failure access times too high") }, 2644 /* D B */ 2645 { SST(0x5D, 0x16, SS_RDEF, /* XXX TBD */ 2646 "Hardware impending failure start unit times too high") }, 2647 /* D B */ 2648 { SST(0x5D, 0x17, SS_RDEF, /* XXX TBD */ 2649 "Hardware impending failure channel parametrics") }, 2650 /* D B */ 2651 { SST(0x5D, 0x18, SS_RDEF, /* XXX TBD */ 2652 "Hardware impending failure controller detected") }, 2653 /* D B */ 2654 { SST(0x5D, 0x19, SS_RDEF, /* XXX TBD */ 2655 "Hardware impending failure throughput performance") }, 2656 /* D B */ 2657 { SST(0x5D, 0x1A, SS_RDEF, /* XXX TBD */ 2658 "Hardware impending failure seek time performance") }, 2659 /* D B */ 2660 { SST(0x5D, 0x1B, SS_RDEF, /* XXX TBD */ 2661 "Hardware impending failure spin-up retry count") }, 2662 /* D B */ 2663 { SST(0x5D, 0x1C, SS_RDEF, /* XXX TBD */ 2664 "Hardware impending failure drive calibration retry count") }, 2665 /* D B */ 2666 { SST(0x5D, 0x20, SS_RDEF, /* XXX TBD */ 2667 "Controller impending failure general hard drive failure") }, 2668 /* D B */ 2669 { SST(0x5D, 0x21, SS_RDEF, /* XXX TBD */ 2670 "Controller impending failure drive error rate too high") }, 2671 /* D B */ 2672 { SST(0x5D, 0x22, SS_RDEF, /* XXX TBD */ 2673 "Controller impending failure data error rate too high") }, 2674 /* D B */ 2675 { SST(0x5D, 0x23, SS_RDEF, /* XXX TBD */ 2676 "Controller impending failure seek error rate too high") }, 2677 /* D B */ 2678 { SST(0x5D, 0x24, SS_RDEF, /* XXX TBD */ 2679 "Controller impending failure too many block reassigns") }, 2680 /* D B */ 2681 { SST(0x5D, 0x25, SS_RDEF, /* XXX TBD */ 2682 "Controller impending failure access times too high") }, 2683 /* D B */ 2684 { SST(0x5D, 0x26, SS_RDEF, /* XXX TBD */ 2685 "Controller impending failure start unit times too high") }, 2686 /* D B */ 2687 { SST(0x5D, 0x27, SS_RDEF, /* XXX TBD */ 2688 "Controller impending failure channel parametrics") }, 2689 /* D B */ 2690 { SST(0x5D, 0x28, SS_RDEF, /* XXX TBD */ 2691 "Controller impending failure controller detected") }, 2692 /* D B */ 2693 { SST(0x5D, 0x29, SS_RDEF, /* XXX TBD */ 2694 "Controller impending failure throughput performance") }, 2695 /* D B */ 2696 { SST(0x5D, 0x2A, SS_RDEF, /* XXX TBD */ 2697 "Controller impending failure seek time performance") }, 2698 /* D B */ 2699 { SST(0x5D, 0x2B, SS_RDEF, /* XXX TBD */ 2700 "Controller impending failure spin-up retry count") }, 2701 /* D B */ 2702 { SST(0x5D, 0x2C, SS_RDEF, /* XXX TBD */ 2703 "Controller impending failure drive calibration retry count") }, 2704 /* D B */ 2705 { SST(0x5D, 0x30, SS_RDEF, /* XXX TBD */ 2706 "Data channel impending failure general hard drive failure") }, 2707 /* D B */ 2708 { SST(0x5D, 0x31, SS_RDEF, /* XXX TBD */ 2709 "Data channel impending failure drive error rate too high") }, 2710 /* D B */ 2711 { SST(0x5D, 0x32, SS_RDEF, /* XXX TBD */ 2712 "Data channel impending failure data error rate too high") }, 2713 /* D B */ 2714 { SST(0x5D, 0x33, SS_RDEF, /* XXX TBD */ 2715 "Data channel impending failure seek error rate too high") }, 2716 /* D B */ 2717 { SST(0x5D, 0x34, SS_RDEF, /* XXX TBD */ 2718 "Data channel impending failure too many block reassigns") }, 2719 /* D B */ 2720 { SST(0x5D, 0x35, SS_RDEF, /* XXX TBD */ 2721 "Data channel impending failure access times too high") }, 2722 /* D B */ 2723 { SST(0x5D, 0x36, SS_RDEF, /* XXX TBD */ 2724 "Data channel impending failure start unit times too high") }, 2725 /* D B */ 2726 { SST(0x5D, 0x37, SS_RDEF, /* XXX TBD */ 2727 "Data channel impending failure channel parametrics") }, 2728 /* D B */ 2729 { SST(0x5D, 0x38, SS_RDEF, /* XXX TBD */ 2730 "Data channel impending failure controller detected") }, 2731 /* D B */ 2732 { SST(0x5D, 0x39, SS_RDEF, /* XXX TBD */ 2733 "Data channel impending failure throughput performance") }, 2734 /* D B */ 2735 { SST(0x5D, 0x3A, SS_RDEF, /* XXX TBD */ 2736 "Data channel impending failure seek time performance") }, 2737 /* D B */ 2738 { SST(0x5D, 0x3B, SS_RDEF, /* XXX TBD */ 2739 "Data channel impending failure spin-up retry count") }, 2740 /* D B */ 2741 { SST(0x5D, 0x3C, SS_RDEF, /* XXX TBD */ 2742 "Data channel impending failure drive calibration retry count") }, 2743 /* D B */ 2744 { SST(0x5D, 0x40, SS_RDEF, /* XXX TBD */ 2745 "Servo impending failure general hard drive failure") }, 2746 /* D B */ 2747 { SST(0x5D, 0x41, SS_RDEF, /* XXX TBD */ 2748 "Servo impending failure drive error rate too high") }, 2749 /* D B */ 2750 { SST(0x5D, 0x42, SS_RDEF, /* XXX TBD */ 2751 "Servo impending failure data error rate too high") }, 2752 /* D B */ 2753 { SST(0x5D, 0x43, SS_RDEF, /* XXX TBD */ 2754 "Servo impending failure seek error rate too high") }, 2755 /* D B */ 2756 { SST(0x5D, 0x44, SS_RDEF, /* XXX TBD */ 2757 "Servo impending failure too many block reassigns") }, 2758 /* D B */ 2759 { SST(0x5D, 0x45, SS_RDEF, /* XXX TBD */ 2760 "Servo impending failure access times too high") }, 2761 /* D B */ 2762 { SST(0x5D, 0x46, SS_RDEF, /* XXX TBD */ 2763 "Servo impending failure start unit times too high") }, 2764 /* D B */ 2765 { SST(0x5D, 0x47, SS_RDEF, /* XXX TBD */ 2766 "Servo impending failure channel parametrics") }, 2767 /* D B */ 2768 { SST(0x5D, 0x48, SS_RDEF, /* XXX TBD */ 2769 "Servo impending failure controller detected") }, 2770 /* D B */ 2771 { SST(0x5D, 0x49, SS_RDEF, /* XXX TBD */ 2772 "Servo impending failure throughput performance") }, 2773 /* D B */ 2774 { SST(0x5D, 0x4A, SS_RDEF, /* XXX TBD */ 2775 "Servo impending failure seek time performance") }, 2776 /* D B */ 2777 { SST(0x5D, 0x4B, SS_RDEF, /* XXX TBD */ 2778 "Servo impending failure spin-up retry count") }, 2779 /* D B */ 2780 { SST(0x5D, 0x4C, SS_RDEF, /* XXX TBD */ 2781 "Servo impending failure drive calibration retry count") }, 2782 /* D B */ 2783 { SST(0x5D, 0x50, SS_RDEF, /* XXX TBD */ 2784 "Spindle impending failure general hard drive failure") }, 2785 /* D B */ 2786 { SST(0x5D, 0x51, SS_RDEF, /* XXX TBD */ 2787 "Spindle impending failure drive error rate too high") }, 2788 /* D B */ 2789 { SST(0x5D, 0x52, SS_RDEF, /* XXX TBD */ 2790 "Spindle impending failure data error rate too high") }, 2791 /* D B */ 2792 { SST(0x5D, 0x53, SS_RDEF, /* XXX TBD */ 2793 "Spindle impending failure seek error rate too high") }, 2794 /* D B */ 2795 { SST(0x5D, 0x54, SS_RDEF, /* XXX TBD */ 2796 "Spindle impending failure too many block reassigns") }, 2797 /* D B */ 2798 { SST(0x5D, 0x55, SS_RDEF, /* XXX TBD */ 2799 "Spindle impending failure access times too high") }, 2800 /* D B */ 2801 { SST(0x5D, 0x56, SS_RDEF, /* XXX TBD */ 2802 "Spindle impending failure start unit times too high") }, 2803 /* D B */ 2804 { SST(0x5D, 0x57, SS_RDEF, /* XXX TBD */ 2805 "Spindle impending failure channel parametrics") }, 2806 /* D B */ 2807 { SST(0x5D, 0x58, SS_RDEF, /* XXX TBD */ 2808 "Spindle impending failure controller detected") }, 2809 /* D B */ 2810 { SST(0x5D, 0x59, SS_RDEF, /* XXX TBD */ 2811 "Spindle impending failure throughput performance") }, 2812 /* D B */ 2813 { SST(0x5D, 0x5A, SS_RDEF, /* XXX TBD */ 2814 "Spindle impending failure seek time performance") }, 2815 /* D B */ 2816 { SST(0x5D, 0x5B, SS_RDEF, /* XXX TBD */ 2817 "Spindle impending failure spin-up retry count") }, 2818 /* D B */ 2819 { SST(0x5D, 0x5C, SS_RDEF, /* XXX TBD */ 2820 "Spindle impending failure drive calibration retry count") }, 2821 /* D B */ 2822 { SST(0x5D, 0x60, SS_RDEF, /* XXX TBD */ 2823 "Firmware impending failure general hard drive failure") }, 2824 /* D B */ 2825 { SST(0x5D, 0x61, SS_RDEF, /* XXX TBD */ 2826 "Firmware impending failure drive error rate too high") }, 2827 /* D B */ 2828 { SST(0x5D, 0x62, SS_RDEF, /* XXX TBD */ 2829 "Firmware impending failure data error rate too high") }, 2830 /* D B */ 2831 { SST(0x5D, 0x63, SS_RDEF, /* XXX TBD */ 2832 "Firmware impending failure seek error rate too high") }, 2833 /* D B */ 2834 { SST(0x5D, 0x64, SS_RDEF, /* XXX TBD */ 2835 "Firmware impending failure too many block reassigns") }, 2836 /* D B */ 2837 { SST(0x5D, 0x65, SS_RDEF, /* XXX TBD */ 2838 "Firmware impending failure access times too high") }, 2839 /* D B */ 2840 { SST(0x5D, 0x66, SS_RDEF, /* XXX TBD */ 2841 "Firmware impending failure start unit times too high") }, 2842 /* D B */ 2843 { SST(0x5D, 0x67, SS_RDEF, /* XXX TBD */ 2844 "Firmware impending failure channel parametrics") }, 2845 /* D B */ 2846 { SST(0x5D, 0x68, SS_RDEF, /* XXX TBD */ 2847 "Firmware impending failure controller detected") }, 2848 /* D B */ 2849 { SST(0x5D, 0x69, SS_RDEF, /* XXX TBD */ 2850 "Firmware impending failure throughput performance") }, 2851 /* D B */ 2852 { SST(0x5D, 0x6A, SS_RDEF, /* XXX TBD */ 2853 "Firmware impending failure seek time performance") }, 2854 /* D B */ 2855 { SST(0x5D, 0x6B, SS_RDEF, /* XXX TBD */ 2856 "Firmware impending failure spin-up retry count") }, 2857 /* D B */ 2858 { SST(0x5D, 0x6C, SS_RDEF, /* XXX TBD */ 2859 "Firmware impending failure drive calibration retry count") }, 2860 /* DTLPWROMAEBKVF */ 2861 { SST(0x5D, 0xFF, SS_RDEF, 2862 "Failure prediction threshold exceeded (false)") }, 2863 /* DTLPWRO A K */ 2864 { SST(0x5E, 0x00, SS_RDEF, 2865 "Low power condition on") }, 2866 /* DTLPWRO A K */ 2867 { SST(0x5E, 0x01, SS_RDEF, 2868 "Idle condition activated by timer") }, 2869 /* DTLPWRO A K */ 2870 { SST(0x5E, 0x02, SS_RDEF, 2871 "Standby condition activated by timer") }, 2872 /* DTLPWRO A K */ 2873 { SST(0x5E, 0x03, SS_RDEF, 2874 "Idle condition activated by command") }, 2875 /* DTLPWRO A K */ 2876 { SST(0x5E, 0x04, SS_RDEF, 2877 "Standby condition activated by command") }, 2878 /* DTLPWRO A K */ 2879 { SST(0x5E, 0x05, SS_RDEF, 2880 "Idle-B condition activated by timer") }, 2881 /* DTLPWRO A K */ 2882 { SST(0x5E, 0x06, SS_RDEF, 2883 "Idle-B condition activated by command") }, 2884 /* DTLPWRO A K */ 2885 { SST(0x5E, 0x07, SS_RDEF, 2886 "Idle-C condition activated by timer") }, 2887 /* DTLPWRO A K */ 2888 { SST(0x5E, 0x08, SS_RDEF, 2889 "Idle-C condition activated by command") }, 2890 /* DTLPWRO A K */ 2891 { SST(0x5E, 0x09, SS_RDEF, 2892 "Standby-Y condition activated by timer") }, 2893 /* DTLPWRO A K */ 2894 { SST(0x5E, 0x0A, SS_RDEF, 2895 "Standby-Y condition activated by command") }, 2896 /* B */ 2897 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ 2898 "Power state change to active") }, 2899 /* B */ 2900 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ 2901 "Power state change to idle") }, 2902 /* B */ 2903 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ 2904 "Power state change to standby") }, 2905 /* B */ 2906 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ 2907 "Power state change to sleep") }, 2908 /* BK */ 2909 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ 2910 "Power state change to device control") }, 2911 /* */ 2912 { SST(0x60, 0x00, SS_RDEF, 2913 "Lamp failure") }, 2914 /* */ 2915 { SST(0x61, 0x00, SS_RDEF, 2916 "Video acquisition error") }, 2917 /* */ 2918 { SST(0x61, 0x01, SS_RDEF, 2919 "Unable to acquire video") }, 2920 /* */ 2921 { SST(0x61, 0x02, SS_RDEF, 2922 "Out of focus") }, 2923 /* */ 2924 { SST(0x62, 0x00, SS_RDEF, 2925 "Scan head positioning error") }, 2926 /* R */ 2927 { SST(0x63, 0x00, SS_RDEF, 2928 "End of user area encountered on this track") }, 2929 /* R */ 2930 { SST(0x63, 0x01, SS_FATAL | ENOSPC, 2931 "Packet does not fit in available space") }, 2932 /* R */ 2933 { SST(0x64, 0x00, SS_FATAL | ENXIO, 2934 "Illegal mode for this track") }, 2935 /* R */ 2936 { SST(0x64, 0x01, SS_RDEF, 2937 "Invalid packet size") }, 2938 /* DTLPWROMAEBKVF */ 2939 { SST(0x65, 0x00, SS_RDEF, 2940 "Voltage fault") }, 2941 /* */ 2942 { SST(0x66, 0x00, SS_RDEF, 2943 "Automatic document feeder cover up") }, 2944 /* */ 2945 { SST(0x66, 0x01, SS_RDEF, 2946 "Automatic document feeder lift up") }, 2947 /* */ 2948 { SST(0x66, 0x02, SS_RDEF, 2949 "Document jam in automatic document feeder") }, 2950 /* */ 2951 { SST(0x66, 0x03, SS_RDEF, 2952 "Document miss feed automatic in document feeder") }, 2953 /* A */ 2954 { SST(0x67, 0x00, SS_RDEF, 2955 "Configuration failure") }, 2956 /* A */ 2957 { SST(0x67, 0x01, SS_RDEF, 2958 "Configuration of incapable logical units failed") }, 2959 /* A */ 2960 { SST(0x67, 0x02, SS_RDEF, 2961 "Add logical unit failed") }, 2962 /* A */ 2963 { SST(0x67, 0x03, SS_RDEF, 2964 "Modification of logical unit failed") }, 2965 /* A */ 2966 { SST(0x67, 0x04, SS_RDEF, 2967 "Exchange of logical unit failed") }, 2968 /* A */ 2969 { SST(0x67, 0x05, SS_RDEF, 2970 "Remove of logical unit failed") }, 2971 /* A */ 2972 { SST(0x67, 0x06, SS_RDEF, 2973 "Attachment of logical unit failed") }, 2974 /* A */ 2975 { SST(0x67, 0x07, SS_RDEF, 2976 "Creation of logical unit failed") }, 2977 /* A */ 2978 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ 2979 "Assign failure occurred") }, 2980 /* A */ 2981 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ 2982 "Multiply assigned logical unit") }, 2983 /* DTLPWROMAEBKVF */ 2984 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ 2985 "Set target port groups command failed") }, 2986 /* DT B */ 2987 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ 2988 "ATA device feature not enabled") }, 2989 /* A */ 2990 { SST(0x68, 0x00, SS_RDEF, 2991 "Logical unit not configured") }, 2992 /* D */ 2993 { SST(0x68, 0x01, SS_RDEF, 2994 "Subsidiary logical unit not configured") }, 2995 /* A */ 2996 { SST(0x69, 0x00, SS_RDEF, 2997 "Data loss on logical unit") }, 2998 /* A */ 2999 { SST(0x69, 0x01, SS_RDEF, 3000 "Multiple logical unit failures") }, 3001 /* A */ 3002 { SST(0x69, 0x02, SS_RDEF, 3003 "Parity/data mismatch") }, 3004 /* A */ 3005 { SST(0x6A, 0x00, SS_RDEF, 3006 "Informational, refer to log") }, 3007 /* A */ 3008 { SST(0x6B, 0x00, SS_RDEF, 3009 "State change has occurred") }, 3010 /* A */ 3011 { SST(0x6B, 0x01, SS_RDEF, 3012 "Redundancy level got better") }, 3013 /* A */ 3014 { SST(0x6B, 0x02, SS_RDEF, 3015 "Redundancy level got worse") }, 3016 /* A */ 3017 { SST(0x6C, 0x00, SS_RDEF, 3018 "Rebuild failure occurred") }, 3019 /* A */ 3020 { SST(0x6D, 0x00, SS_RDEF, 3021 "Recalculate failure occurred") }, 3022 /* A */ 3023 { SST(0x6E, 0x00, SS_RDEF, 3024 "Command to logical unit failed") }, 3025 /* R */ 3026 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ 3027 "Copy protection key exchange failure - authentication failure") }, 3028 /* R */ 3029 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ 3030 "Copy protection key exchange failure - key not present") }, 3031 /* R */ 3032 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ 3033 "Copy protection key exchange failure - key not established") }, 3034 /* R */ 3035 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ 3036 "Read of scrambled sector without authentication") }, 3037 /* R */ 3038 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ 3039 "Media region code is mismatched to logical unit region") }, 3040 /* R */ 3041 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ 3042 "Drive region must be permanent/region reset count error") }, 3043 /* R */ 3044 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ 3045 "Insufficient block count for binding NONCE recording") }, 3046 /* R */ 3047 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ 3048 "Conflict in binding NONCE recording") }, 3049 /* T */ 3050 { SST(0x70, 0x00, SS_RDEF, 3051 "Decompression exception short: ASCQ = Algorithm ID") }, 3052 /* T */ 3053 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, 3054 NULL) }, /* Range 0x00 -> 0xFF */ 3055 /* T */ 3056 { SST(0x71, 0x00, SS_RDEF, 3057 "Decompression exception long: ASCQ = Algorithm ID") }, 3058 /* T */ 3059 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, 3060 NULL) }, /* Range 0x00 -> 0xFF */ 3061 /* R */ 3062 { SST(0x72, 0x00, SS_RDEF, 3063 "Session fixation error") }, 3064 /* R */ 3065 { SST(0x72, 0x01, SS_RDEF, 3066 "Session fixation error writing lead-in") }, 3067 /* R */ 3068 { SST(0x72, 0x02, SS_RDEF, 3069 "Session fixation error writing lead-out") }, 3070 /* R */ 3071 { SST(0x72, 0x03, SS_RDEF, 3072 "Session fixation error - incomplete track in session") }, 3073 /* R */ 3074 { SST(0x72, 0x04, SS_RDEF, 3075 "Empty or partially written reserved track") }, 3076 /* R */ 3077 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ 3078 "No more track reservations allowed") }, 3079 /* R */ 3080 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ 3081 "RMZ extension is not allowed") }, 3082 /* R */ 3083 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ 3084 "No more test zone extensions are allowed") }, 3085 /* R */ 3086 { SST(0x73, 0x00, SS_RDEF, 3087 "CD control error") }, 3088 /* R */ 3089 { SST(0x73, 0x01, SS_RDEF, 3090 "Power calibration area almost full") }, 3091 /* R */ 3092 { SST(0x73, 0x02, SS_FATAL | ENOSPC, 3093 "Power calibration area is full") }, 3094 /* R */ 3095 { SST(0x73, 0x03, SS_RDEF, 3096 "Power calibration area error") }, 3097 /* R */ 3098 { SST(0x73, 0x04, SS_RDEF, 3099 "Program memory area update failure") }, 3100 /* R */ 3101 { SST(0x73, 0x05, SS_RDEF, 3102 "Program memory area is full") }, 3103 /* R */ 3104 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ 3105 "RMA/PMA is almost full") }, 3106 /* R */ 3107 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ 3108 "Current power calibration area almost full") }, 3109 /* R */ 3110 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ 3111 "Current power calibration area is full") }, 3112 /* R */ 3113 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ 3114 "RDZ is full") }, 3115 /* T */ 3116 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ 3117 "Security error") }, 3118 /* T */ 3119 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ 3120 "Unable to decrypt data") }, 3121 /* T */ 3122 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ 3123 "Unencrypted data encountered while decrypting") }, 3124 /* T */ 3125 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ 3126 "Incorrect data encryption key") }, 3127 /* T */ 3128 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ 3129 "Cryptographic integrity validation failed") }, 3130 /* T */ 3131 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ 3132 "Error decrypting data") }, 3133 /* T */ 3134 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ 3135 "Unknown signature verification key") }, 3136 /* T */ 3137 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ 3138 "Encryption parameters not useable") }, 3139 /* DT R M E VF */ 3140 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ 3141 "Digital signature validation failure") }, 3142 /* T */ 3143 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ 3144 "Encryption mode mismatch on read") }, 3145 /* T */ 3146 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ 3147 "Encrypted block not raw read enabled") }, 3148 /* T */ 3149 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ 3150 "Incorrect encryption parameters") }, 3151 /* DT R MAEBKV */ 3152 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ 3153 "Unable to decrypt parameter list") }, 3154 /* T */ 3155 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ 3156 "Encryption algorithm disabled") }, 3157 /* DT R MAEBKV */ 3158 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ 3159 "SA creation parameter value invalid") }, 3160 /* DT R MAEBKV */ 3161 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ 3162 "SA creation parameter value rejected") }, 3163 /* DT R MAEBKV */ 3164 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ 3165 "Invalid SA usage") }, 3166 /* T */ 3167 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ 3168 "Data encryption configuration prevented") }, 3169 /* DT R MAEBKV */ 3170 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ 3171 "SA creation parameter not supported") }, 3172 /* DT R MAEBKV */ 3173 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ 3174 "Authentication failed") }, 3175 /* V */ 3176 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ 3177 "External data encryption key manager access error") }, 3178 /* V */ 3179 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ 3180 "External data encryption key manager error") }, 3181 /* V */ 3182 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ 3183 "External data encryption key not found") }, 3184 /* V */ 3185 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ 3186 "External data encryption request not authorized") }, 3187 /* T */ 3188 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ 3189 "External data encryption control timeout") }, 3190 /* T */ 3191 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ 3192 "External data encryption control error") }, 3193 /* DT R M E V */ 3194 { SST(0x74, 0x71, SS_RDEF, /* XXX TBD */ 3195 "Logical unit access not authorized") }, 3196 /* D */ 3197 { SST(0x74, 0x79, SS_RDEF, /* XXX TBD */ 3198 "Security conflict in translated device") } 3199 }; 3200 3201 const int asc_table_size = sizeof(asc_table)/sizeof(asc_table[0]); 3202 3203 struct asc_key 3204 { 3205 int asc; 3206 int ascq; 3207 }; 3208 3209 static int 3210 ascentrycomp(const void *key, const void *member) 3211 { 3212 int asc; 3213 int ascq; 3214 const struct asc_table_entry *table_entry; 3215 3216 asc = ((const struct asc_key *)key)->asc; 3217 ascq = ((const struct asc_key *)key)->ascq; 3218 table_entry = (const struct asc_table_entry *)member; 3219 3220 if (asc >= table_entry->asc) { 3221 3222 if (asc > table_entry->asc) 3223 return (1); 3224 3225 if (ascq <= table_entry->ascq) { 3226 /* Check for ranges */ 3227 if (ascq == table_entry->ascq 3228 || ((table_entry->action & SSQ_RANGE) != 0 3229 && ascq >= (table_entry - 1)->ascq)) 3230 return (0); 3231 return (-1); 3232 } 3233 return (1); 3234 } 3235 return (-1); 3236 } 3237 3238 static int 3239 senseentrycomp(const void *key, const void *member) 3240 { 3241 int sense_key; 3242 const struct sense_key_table_entry *table_entry; 3243 3244 sense_key = *((const int *)key); 3245 table_entry = (const struct sense_key_table_entry *)member; 3246 3247 if (sense_key >= table_entry->sense_key) { 3248 if (sense_key == table_entry->sense_key) 3249 return (0); 3250 return (1); 3251 } 3252 return (-1); 3253 } 3254 3255 static void 3256 fetchtableentries(int sense_key, int asc, int ascq, 3257 struct scsi_inquiry_data *inq_data, 3258 const struct sense_key_table_entry **sense_entry, 3259 const struct asc_table_entry **asc_entry) 3260 { 3261 caddr_t match; 3262 const struct asc_table_entry *asc_tables[2]; 3263 const struct sense_key_table_entry *sense_tables[2]; 3264 struct asc_key asc_ascq; 3265 size_t asc_tables_size[2]; 3266 size_t sense_tables_size[2]; 3267 int num_asc_tables; 3268 int num_sense_tables; 3269 int i; 3270 3271 /* Default to failure */ 3272 *sense_entry = NULL; 3273 *asc_entry = NULL; 3274 match = NULL; 3275 if (inq_data != NULL) 3276 match = cam_quirkmatch((caddr_t)inq_data, 3277 (caddr_t)sense_quirk_table, 3278 sense_quirk_table_size, 3279 sizeof(*sense_quirk_table), 3280 scsi_inquiry_match); 3281 3282 if (match != NULL) { 3283 struct scsi_sense_quirk_entry *quirk; 3284 3285 quirk = (struct scsi_sense_quirk_entry *)match; 3286 asc_tables[0] = quirk->asc_info; 3287 asc_tables_size[0] = quirk->num_ascs; 3288 asc_tables[1] = asc_table; 3289 asc_tables_size[1] = asc_table_size; 3290 num_asc_tables = 2; 3291 sense_tables[0] = quirk->sense_key_info; 3292 sense_tables_size[0] = quirk->num_sense_keys; 3293 sense_tables[1] = sense_key_table; 3294 sense_tables_size[1] = sense_key_table_size; 3295 num_sense_tables = 2; 3296 } else { 3297 asc_tables[0] = asc_table; 3298 asc_tables_size[0] = asc_table_size; 3299 num_asc_tables = 1; 3300 sense_tables[0] = sense_key_table; 3301 sense_tables_size[0] = sense_key_table_size; 3302 num_sense_tables = 1; 3303 } 3304 3305 asc_ascq.asc = asc; 3306 asc_ascq.ascq = ascq; 3307 for (i = 0; i < num_asc_tables; i++) { 3308 void *found_entry; 3309 3310 found_entry = bsearch(&asc_ascq, asc_tables[i], 3311 asc_tables_size[i], 3312 sizeof(**asc_tables), 3313 ascentrycomp); 3314 3315 if (found_entry) { 3316 *asc_entry = (struct asc_table_entry *)found_entry; 3317 break; 3318 } 3319 } 3320 3321 for (i = 0; i < num_sense_tables; i++) { 3322 void *found_entry; 3323 3324 found_entry = bsearch(&sense_key, sense_tables[i], 3325 sense_tables_size[i], 3326 sizeof(**sense_tables), 3327 senseentrycomp); 3328 3329 if (found_entry) { 3330 *sense_entry = 3331 (struct sense_key_table_entry *)found_entry; 3332 break; 3333 } 3334 } 3335 } 3336 3337 void 3338 scsi_sense_desc(int sense_key, int asc, int ascq, 3339 struct scsi_inquiry_data *inq_data, 3340 const char **sense_key_desc, const char **asc_desc) 3341 { 3342 const struct asc_table_entry *asc_entry; 3343 const struct sense_key_table_entry *sense_entry; 3344 3345 fetchtableentries(sense_key, asc, ascq, 3346 inq_data, 3347 &sense_entry, 3348 &asc_entry); 3349 3350 if (sense_entry != NULL) 3351 *sense_key_desc = sense_entry->desc; 3352 else 3353 *sense_key_desc = "Invalid Sense Key"; 3354 3355 if (asc_entry != NULL) 3356 *asc_desc = asc_entry->desc; 3357 else if (asc >= 0x80 && asc <= 0xff) 3358 *asc_desc = "Vendor Specific ASC"; 3359 else if (ascq >= 0x80 && ascq <= 0xff) 3360 *asc_desc = "Vendor Specific ASCQ"; 3361 else 3362 *asc_desc = "Reserved ASC/ASCQ pair"; 3363 } 3364 3365 /* 3366 * Given sense and device type information, return the appropriate action. 3367 * If we do not understand the specific error as identified by the ASC/ASCQ 3368 * pair, fall back on the more generic actions derived from the sense key. 3369 */ 3370 scsi_sense_action 3371 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, 3372 u_int32_t sense_flags) 3373 { 3374 const struct asc_table_entry *asc_entry; 3375 const struct sense_key_table_entry *sense_entry; 3376 int error_code, sense_key, asc, ascq; 3377 scsi_sense_action action; 3378 3379 if (!scsi_extract_sense_ccb((union ccb *)csio, 3380 &error_code, &sense_key, &asc, &ascq)) { 3381 action = SS_RETRY | SSQ_DECREMENT_COUNT | SSQ_PRINT_SENSE | EIO; 3382 } else if ((error_code == SSD_DEFERRED_ERROR) 3383 || (error_code == SSD_DESC_DEFERRED_ERROR)) { 3384 /* 3385 * XXX dufault@FreeBSD.org 3386 * This error doesn't relate to the command associated 3387 * with this request sense. A deferred error is an error 3388 * for a command that has already returned GOOD status 3389 * (see SCSI2 8.2.14.2). 3390 * 3391 * By my reading of that section, it looks like the current 3392 * command has been cancelled, we should now clean things up 3393 * (hopefully recovering any lost data) and then retry the 3394 * current command. There are two easy choices, both wrong: 3395 * 3396 * 1. Drop through (like we had been doing), thus treating 3397 * this as if the error were for the current command and 3398 * return and stop the current command. 3399 * 3400 * 2. Issue a retry (like I made it do) thus hopefully 3401 * recovering the current transfer, and ignoring the 3402 * fact that we've dropped a command. 3403 * 3404 * These should probably be handled in a device specific 3405 * sense handler or punted back up to a user mode daemon 3406 */ 3407 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3408 } else { 3409 fetchtableentries(sense_key, asc, ascq, 3410 inq_data, 3411 &sense_entry, 3412 &asc_entry); 3413 3414 /* 3415 * Override the 'No additional Sense' entry (0,0) 3416 * with the error action of the sense key. 3417 */ 3418 if (asc_entry != NULL 3419 && (asc != 0 || ascq != 0)) 3420 action = asc_entry->action; 3421 else if (sense_entry != NULL) 3422 action = sense_entry->action; 3423 else 3424 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3425 3426 if (sense_key == SSD_KEY_RECOVERED_ERROR) { 3427 /* 3428 * The action succeeded but the device wants 3429 * the user to know that some recovery action 3430 * was required. 3431 */ 3432 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); 3433 action |= SS_NOP|SSQ_PRINT_SENSE; 3434 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { 3435 if ((sense_flags & SF_QUIET_IR) != 0) 3436 action &= ~SSQ_PRINT_SENSE; 3437 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { 3438 if ((sense_flags & SF_RETRY_UA) != 0 3439 && (action & SS_MASK) == SS_FAIL) { 3440 action &= ~(SS_MASK|SSQ_MASK); 3441 action |= SS_RETRY|SSQ_DECREMENT_COUNT| 3442 SSQ_PRINT_SENSE; 3443 } 3444 action |= SSQ_UA; 3445 } 3446 } 3447 if ((action & SS_MASK) >= SS_START && 3448 (sense_flags & SF_NO_RECOVERY)) { 3449 action &= ~SS_MASK; 3450 action |= SS_FAIL; 3451 } else if ((action & SS_MASK) == SS_RETRY && 3452 (sense_flags & SF_NO_RETRY)) { 3453 action &= ~SS_MASK; 3454 action |= SS_FAIL; 3455 } 3456 if ((sense_flags & SF_PRINT_ALWAYS) != 0) 3457 action |= SSQ_PRINT_SENSE; 3458 else if ((sense_flags & SF_NO_PRINT) != 0) 3459 action &= ~SSQ_PRINT_SENSE; 3460 3461 return (action); 3462 } 3463 3464 char * 3465 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len) 3466 { 3467 struct sbuf sb; 3468 int error; 3469 3470 if (len == 0) 3471 return (""); 3472 3473 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN); 3474 3475 scsi_cdb_sbuf(cdb_ptr, &sb); 3476 3477 /* ENOMEM just means that the fixed buffer is full, OK to ignore */ 3478 error = sbuf_finish(&sb); 3479 if (error != 0 && error != ENOMEM) 3480 return (""); 3481 3482 return(sbuf_data(&sb)); 3483 } 3484 3485 void 3486 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb) 3487 { 3488 u_int8_t cdb_len; 3489 int i; 3490 3491 if (cdb_ptr == NULL) 3492 return; 3493 3494 /* 3495 * This is taken from the SCSI-3 draft spec. 3496 * (T10/1157D revision 0.3) 3497 * The top 3 bits of an opcode are the group code. The next 5 bits 3498 * are the command code. 3499 * Group 0: six byte commands 3500 * Group 1: ten byte commands 3501 * Group 2: ten byte commands 3502 * Group 3: reserved 3503 * Group 4: sixteen byte commands 3504 * Group 5: twelve byte commands 3505 * Group 6: vendor specific 3506 * Group 7: vendor specific 3507 */ 3508 switch((*cdb_ptr >> 5) & 0x7) { 3509 case 0: 3510 cdb_len = 6; 3511 break; 3512 case 1: 3513 case 2: 3514 cdb_len = 10; 3515 break; 3516 case 3: 3517 case 6: 3518 case 7: 3519 /* in this case, just print out the opcode */ 3520 cdb_len = 1; 3521 break; 3522 case 4: 3523 cdb_len = 16; 3524 break; 3525 case 5: 3526 cdb_len = 12; 3527 break; 3528 } 3529 3530 for (i = 0; i < cdb_len; i++) 3531 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]); 3532 3533 return; 3534 } 3535 3536 const char * 3537 scsi_status_string(struct ccb_scsiio *csio) 3538 { 3539 switch(csio->scsi_status) { 3540 case SCSI_STATUS_OK: 3541 return("OK"); 3542 case SCSI_STATUS_CHECK_COND: 3543 return("Check Condition"); 3544 case SCSI_STATUS_BUSY: 3545 return("Busy"); 3546 case SCSI_STATUS_INTERMED: 3547 return("Intermediate"); 3548 case SCSI_STATUS_INTERMED_COND_MET: 3549 return("Intermediate-Condition Met"); 3550 case SCSI_STATUS_RESERV_CONFLICT: 3551 return("Reservation Conflict"); 3552 case SCSI_STATUS_CMD_TERMINATED: 3553 return("Command Terminated"); 3554 case SCSI_STATUS_QUEUE_FULL: 3555 return("Queue Full"); 3556 case SCSI_STATUS_ACA_ACTIVE: 3557 return("ACA Active"); 3558 case SCSI_STATUS_TASK_ABORTED: 3559 return("Task Aborted"); 3560 default: { 3561 static char unkstr[64]; 3562 snprintf(unkstr, sizeof(unkstr), "Unknown %#x", 3563 csio->scsi_status); 3564 return(unkstr); 3565 } 3566 } 3567 } 3568 3569 /* 3570 * scsi_command_string() returns 0 for success and -1 for failure. 3571 */ 3572 #ifdef _KERNEL 3573 int 3574 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) 3575 #else /* !_KERNEL */ 3576 int 3577 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, 3578 struct sbuf *sb) 3579 #endif /* _KERNEL/!_KERNEL */ 3580 { 3581 struct scsi_inquiry_data *inq_data; 3582 #ifdef _KERNEL 3583 struct ccb_getdev *cgd; 3584 #endif /* _KERNEL */ 3585 3586 #ifdef _KERNEL 3587 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 3588 return(-1); 3589 /* 3590 * Get the device information. 3591 */ 3592 xpt_setup_ccb(&cgd->ccb_h, 3593 csio->ccb_h.path, 3594 CAM_PRIORITY_NORMAL); 3595 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 3596 xpt_action((union ccb *)cgd); 3597 3598 /* 3599 * If the device is unconfigured, just pretend that it is a hard 3600 * drive. scsi_op_desc() needs this. 3601 */ 3602 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 3603 cgd->inq_data.device = T_DIRECT; 3604 3605 inq_data = &cgd->inq_data; 3606 3607 #else /* !_KERNEL */ 3608 3609 inq_data = &device->inq_data; 3610 3611 #endif /* _KERNEL/!_KERNEL */ 3612 3613 if ((csio->ccb_h.flags & CAM_CDB_POINTER) != 0) { 3614 sbuf_printf(sb, "%s. CDB: ", 3615 scsi_op_desc(csio->cdb_io.cdb_ptr[0], inq_data)); 3616 scsi_cdb_sbuf(csio->cdb_io.cdb_ptr, sb); 3617 } else { 3618 sbuf_printf(sb, "%s. CDB: ", 3619 scsi_op_desc(csio->cdb_io.cdb_bytes[0], inq_data)); 3620 scsi_cdb_sbuf(csio->cdb_io.cdb_bytes, sb); 3621 } 3622 3623 #ifdef _KERNEL 3624 xpt_free_ccb((union ccb *)cgd); 3625 #endif 3626 3627 return(0); 3628 } 3629 3630 /* 3631 * Iterate over sense descriptors. Each descriptor is passed into iter_func(). 3632 * If iter_func() returns 0, list traversal continues. If iter_func() 3633 * returns non-zero, list traversal is stopped. 3634 */ 3635 void 3636 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, 3637 int (*iter_func)(struct scsi_sense_data_desc *sense, 3638 u_int, struct scsi_sense_desc_header *, 3639 void *), void *arg) 3640 { 3641 int cur_pos; 3642 int desc_len; 3643 3644 /* 3645 * First make sure the extra length field is present. 3646 */ 3647 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) 3648 return; 3649 3650 /* 3651 * The length of data actually returned may be different than the 3652 * extra_len recorded in the sturcture. 3653 */ 3654 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); 3655 3656 /* 3657 * Limit this further by the extra length reported, and the maximum 3658 * allowed extra length. 3659 */ 3660 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); 3661 3662 /* 3663 * Subtract the size of the header from the descriptor length. 3664 * This is to ensure that we have at least the header left, so we 3665 * don't have to check that inside the loop. This can wind up 3666 * being a negative value. 3667 */ 3668 desc_len -= sizeof(struct scsi_sense_desc_header); 3669 3670 for (cur_pos = 0; cur_pos < desc_len;) { 3671 struct scsi_sense_desc_header *header; 3672 3673 header = (struct scsi_sense_desc_header *) 3674 &sense->sense_desc[cur_pos]; 3675 3676 /* 3677 * Check to make sure we have the entire descriptor. We 3678 * don't call iter_func() unless we do. 3679 * 3680 * Note that although cur_pos is at the beginning of the 3681 * descriptor, desc_len already has the header length 3682 * subtracted. So the comparison of the length in the 3683 * header (which does not include the header itself) to 3684 * desc_len - cur_pos is correct. 3685 */ 3686 if (header->length > (desc_len - cur_pos)) 3687 break; 3688 3689 if (iter_func(sense, sense_len, header, arg) != 0) 3690 break; 3691 3692 cur_pos += sizeof(*header) + header->length; 3693 } 3694 } 3695 3696 struct scsi_find_desc_info { 3697 uint8_t desc_type; 3698 struct scsi_sense_desc_header *header; 3699 }; 3700 3701 static int 3702 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 3703 struct scsi_sense_desc_header *header, void *arg) 3704 { 3705 struct scsi_find_desc_info *desc_info; 3706 3707 desc_info = (struct scsi_find_desc_info *)arg; 3708 3709 if (header->desc_type == desc_info->desc_type) { 3710 desc_info->header = header; 3711 3712 /* We found the descriptor, tell the iterator to stop. */ 3713 return (1); 3714 } else 3715 return (0); 3716 } 3717 3718 /* 3719 * Given a descriptor type, return a pointer to it if it is in the sense 3720 * data and not truncated. Avoiding truncating sense data will simplify 3721 * things significantly for the caller. 3722 */ 3723 uint8_t * 3724 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, 3725 uint8_t desc_type) 3726 { 3727 struct scsi_find_desc_info desc_info; 3728 3729 desc_info.desc_type = desc_type; 3730 desc_info.header = NULL; 3731 3732 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); 3733 3734 return ((uint8_t *)desc_info.header); 3735 } 3736 3737 /* 3738 * Fill in SCSI sense data with the specified parameters. This routine can 3739 * fill in either fixed or descriptor type sense data. 3740 */ 3741 void 3742 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, 3743 scsi_sense_data_type sense_format, int current_error, 3744 int sense_key, int asc, int ascq, va_list ap) 3745 { 3746 int descriptor_sense; 3747 scsi_sense_elem_type elem_type; 3748 3749 /* 3750 * Determine whether to return fixed or descriptor format sense 3751 * data. If the user specifies SSD_TYPE_NONE for some reason, 3752 * they'll just get fixed sense data. 3753 */ 3754 if (sense_format == SSD_TYPE_DESC) 3755 descriptor_sense = 1; 3756 else 3757 descriptor_sense = 0; 3758 3759 /* 3760 * Zero the sense data, so that we don't pass back any garbage data 3761 * to the user. 3762 */ 3763 memset(sense_data, 0, sizeof(*sense_data)); 3764 3765 if (descriptor_sense != 0) { 3766 struct scsi_sense_data_desc *sense; 3767 3768 sense = (struct scsi_sense_data_desc *)sense_data; 3769 /* 3770 * The descriptor sense format eliminates the use of the 3771 * valid bit. 3772 */ 3773 if (current_error != 0) 3774 sense->error_code = SSD_DESC_CURRENT_ERROR; 3775 else 3776 sense->error_code = SSD_DESC_DEFERRED_ERROR; 3777 sense->sense_key = sense_key; 3778 sense->add_sense_code = asc; 3779 sense->add_sense_code_qual = ascq; 3780 /* 3781 * Start off with no extra length, since the above data 3782 * fits in the standard descriptor sense information. 3783 */ 3784 sense->extra_len = 0; 3785 while ((elem_type = (scsi_sense_elem_type)va_arg(ap, 3786 scsi_sense_elem_type)) != SSD_ELEM_NONE) { 3787 int sense_len, len_to_copy; 3788 uint8_t *data; 3789 3790 if (elem_type >= SSD_ELEM_MAX) { 3791 printf("%s: invalid sense type %d\n", __func__, 3792 elem_type); 3793 break; 3794 } 3795 3796 sense_len = (int)va_arg(ap, int); 3797 len_to_copy = MIN(sense_len, SSD_EXTRA_MAX - 3798 sense->extra_len); 3799 data = (uint8_t *)va_arg(ap, uint8_t *); 3800 3801 /* 3802 * We've already consumed the arguments for this one. 3803 */ 3804 if (elem_type == SSD_ELEM_SKIP) 3805 continue; 3806 3807 switch (elem_type) { 3808 case SSD_ELEM_DESC: { 3809 3810 /* 3811 * This is a straight descriptor. All we 3812 * need to do is copy the data in. 3813 */ 3814 bcopy(data, &sense->sense_desc[ 3815 sense->extra_len], len_to_copy); 3816 sense->extra_len += len_to_copy; 3817 break; 3818 } 3819 case SSD_ELEM_SKS: { 3820 struct scsi_sense_sks sks; 3821 3822 bzero(&sks, sizeof(sks)); 3823 3824 /* 3825 * This is already-formatted sense key 3826 * specific data. We just need to fill out 3827 * the header and copy everything in. 3828 */ 3829 bcopy(data, &sks.sense_key_spec, 3830 MIN(len_to_copy, 3831 sizeof(sks.sense_key_spec))); 3832 3833 sks.desc_type = SSD_DESC_SKS; 3834 sks.length = sizeof(sks) - 3835 offsetof(struct scsi_sense_sks, reserved1); 3836 bcopy(&sks,&sense->sense_desc[sense->extra_len], 3837 sizeof(sks)); 3838 sense->extra_len += sizeof(sks); 3839 break; 3840 } 3841 case SSD_ELEM_INFO: 3842 case SSD_ELEM_COMMAND: { 3843 struct scsi_sense_command cmd; 3844 struct scsi_sense_info info; 3845 uint8_t *data_dest; 3846 uint8_t *descriptor; 3847 int descriptor_size, i, copy_len; 3848 3849 bzero(&cmd, sizeof(cmd)); 3850 bzero(&info, sizeof(info)); 3851 3852 /* 3853 * Command or information data. The 3854 * operate in pretty much the same way. 3855 */ 3856 if (elem_type == SSD_ELEM_COMMAND) { 3857 len_to_copy = MIN(len_to_copy, 3858 sizeof(cmd.command_info)); 3859 descriptor = (uint8_t *)&cmd; 3860 descriptor_size = sizeof(cmd); 3861 data_dest =(uint8_t *)&cmd.command_info; 3862 cmd.desc_type = SSD_DESC_COMMAND; 3863 cmd.length = sizeof(cmd) - 3864 offsetof(struct scsi_sense_command, 3865 reserved); 3866 } else { 3867 len_to_copy = MIN(len_to_copy, 3868 sizeof(info.info)); 3869 descriptor = (uint8_t *)&info; 3870 descriptor_size = sizeof(cmd); 3871 data_dest = (uint8_t *)&info.info; 3872 info.desc_type = SSD_DESC_INFO; 3873 info.byte2 = SSD_INFO_VALID; 3874 info.length = sizeof(info) - 3875 offsetof(struct scsi_sense_info, 3876 byte2); 3877 } 3878 3879 /* 3880 * Copy this in reverse because the spec 3881 * (SPC-4) says that when 4 byte quantities 3882 * are stored in this 8 byte field, the 3883 * first four bytes shall be 0. 3884 * 3885 * So we fill the bytes in from the end, and 3886 * if we have less than 8 bytes to copy, 3887 * the initial, most significant bytes will 3888 * be 0. 3889 */ 3890 for (i = sense_len - 1; i >= 0 && 3891 len_to_copy > 0; i--, len_to_copy--) 3892 data_dest[len_to_copy - 1] = data[i]; 3893 3894 /* 3895 * This calculation looks much like the 3896 * initial len_to_copy calculation, but 3897 * we have to do it again here, because 3898 * we're looking at a larger amount that 3899 * may or may not fit. It's not only the 3900 * data the user passed in, but also the 3901 * rest of the descriptor. 3902 */ 3903 copy_len = MIN(descriptor_size, 3904 SSD_EXTRA_MAX - sense->extra_len); 3905 bcopy(descriptor, &sense->sense_desc[ 3906 sense->extra_len], copy_len); 3907 sense->extra_len += copy_len; 3908 break; 3909 } 3910 case SSD_ELEM_FRU: { 3911 struct scsi_sense_fru fru; 3912 int copy_len; 3913 3914 bzero(&fru, sizeof(fru)); 3915 3916 fru.desc_type = SSD_DESC_FRU; 3917 fru.length = sizeof(fru) - 3918 offsetof(struct scsi_sense_fru, reserved); 3919 fru.fru = *data; 3920 3921 copy_len = MIN(sizeof(fru), SSD_EXTRA_MAX - 3922 sense->extra_len); 3923 bcopy(&fru, &sense->sense_desc[ 3924 sense->extra_len], copy_len); 3925 sense->extra_len += copy_len; 3926 break; 3927 } 3928 case SSD_ELEM_STREAM: { 3929 struct scsi_sense_stream stream_sense; 3930 int copy_len; 3931 3932 bzero(&stream_sense, sizeof(stream_sense)); 3933 stream_sense.desc_type = SSD_DESC_STREAM; 3934 stream_sense.length = sizeof(stream_sense) - 3935 offsetof(struct scsi_sense_stream, reserved); 3936 stream_sense.byte3 = *data; 3937 3938 copy_len = MIN(sizeof(stream_sense), 3939 SSD_EXTRA_MAX - sense->extra_len); 3940 bcopy(&stream_sense, &sense->sense_desc[ 3941 sense->extra_len], copy_len); 3942 sense->extra_len += copy_len; 3943 break; 3944 } 3945 default: 3946 /* 3947 * We shouldn't get here, but if we do, do 3948 * nothing. We've already consumed the 3949 * arguments above. 3950 */ 3951 break; 3952 } 3953 } 3954 } else { 3955 struct scsi_sense_data_fixed *sense; 3956 3957 sense = (struct scsi_sense_data_fixed *)sense_data; 3958 3959 if (current_error != 0) 3960 sense->error_code = SSD_CURRENT_ERROR; 3961 else 3962 sense->error_code = SSD_DEFERRED_ERROR; 3963 3964 sense->flags = sense_key; 3965 sense->add_sense_code = asc; 3966 sense->add_sense_code_qual = ascq; 3967 /* 3968 * We've set the ASC and ASCQ, so we have 6 more bytes of 3969 * valid data. If we wind up setting any of the other 3970 * fields, we'll bump this to 10 extra bytes. 3971 */ 3972 sense->extra_len = 6; 3973 3974 while ((elem_type = (scsi_sense_elem_type)va_arg(ap, 3975 scsi_sense_elem_type)) != SSD_ELEM_NONE) { 3976 int sense_len, len_to_copy; 3977 uint8_t *data; 3978 3979 if (elem_type >= SSD_ELEM_MAX) { 3980 printf("%s: invalid sense type %d\n", __func__, 3981 elem_type); 3982 break; 3983 } 3984 /* 3985 * If we get in here, just bump the extra length to 3986 * 10 bytes. That will encompass anything we're 3987 * going to set here. 3988 */ 3989 sense->extra_len = 10; 3990 sense_len = (int)va_arg(ap, int); 3991 data = (uint8_t *)va_arg(ap, uint8_t *); 3992 3993 switch (elem_type) { 3994 case SSD_ELEM_SKS: 3995 /* 3996 * The user passed in pre-formatted sense 3997 * key specific data. 3998 */ 3999 bcopy(data, &sense->sense_key_spec[0], 4000 MIN(sizeof(sense->sense_key_spec), 4001 sense_len)); 4002 break; 4003 case SSD_ELEM_INFO: 4004 case SSD_ELEM_COMMAND: { 4005 uint8_t *data_dest; 4006 int i; 4007 4008 if (elem_type == SSD_ELEM_COMMAND) { 4009 data_dest = &sense->cmd_spec_info[0]; 4010 len_to_copy = MIN(sense_len, 4011 sizeof(sense->cmd_spec_info)); 4012 } else { 4013 data_dest = &sense->info[0]; 4014 len_to_copy = MIN(sense_len, 4015 sizeof(sense->info)); 4016 /* 4017 * We're setting the info field, so 4018 * set the valid bit. 4019 */ 4020 sense->error_code |= SSD_ERRCODE_VALID; 4021 } 4022 4023 /* 4024 * Copy this in reverse so that if we have 4025 * less than 4 bytes to fill, the least 4026 * significant bytes will be at the end. 4027 * If we have more than 4 bytes, only the 4028 * least significant bytes will be included. 4029 */ 4030 for (i = sense_len - 1; i >= 0 && 4031 len_to_copy > 0; i--, len_to_copy--) 4032 data_dest[len_to_copy - 1] = data[i]; 4033 4034 break; 4035 } 4036 case SSD_ELEM_FRU: 4037 sense->fru = *data; 4038 break; 4039 case SSD_ELEM_STREAM: 4040 sense->flags |= *data; 4041 break; 4042 case SSD_ELEM_DESC: 4043 default: 4044 4045 /* 4046 * If the user passes in descriptor sense, 4047 * we can't handle that in fixed format. 4048 * So just skip it, and any unknown argument 4049 * types. 4050 */ 4051 break; 4052 } 4053 } 4054 } 4055 } 4056 4057 void 4058 scsi_set_sense_data(struct scsi_sense_data *sense_data, 4059 scsi_sense_data_type sense_format, int current_error, 4060 int sense_key, int asc, int ascq, ...) 4061 { 4062 va_list ap; 4063 4064 va_start(ap, ascq); 4065 scsi_set_sense_data_va(sense_data, sense_format, current_error, 4066 sense_key, asc, ascq, ap); 4067 va_end(ap); 4068 } 4069 4070 /* 4071 * Get sense information for three similar sense data types. 4072 */ 4073 int 4074 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, 4075 uint8_t info_type, uint64_t *info, int64_t *signed_info) 4076 { 4077 scsi_sense_data_type sense_type; 4078 4079 if (sense_len == 0) 4080 goto bailout; 4081 4082 sense_type = scsi_sense_type(sense_data); 4083 4084 switch (sense_type) { 4085 case SSD_TYPE_DESC: { 4086 struct scsi_sense_data_desc *sense; 4087 uint8_t *desc; 4088 4089 sense = (struct scsi_sense_data_desc *)sense_data; 4090 4091 desc = scsi_find_desc(sense, sense_len, info_type); 4092 if (desc == NULL) 4093 goto bailout; 4094 4095 switch (info_type) { 4096 case SSD_DESC_INFO: { 4097 struct scsi_sense_info *info_desc; 4098 4099 info_desc = (struct scsi_sense_info *)desc; 4100 *info = scsi_8btou64(info_desc->info); 4101 if (signed_info != NULL) 4102 *signed_info = *info; 4103 break; 4104 } 4105 case SSD_DESC_COMMAND: { 4106 struct scsi_sense_command *cmd_desc; 4107 4108 cmd_desc = (struct scsi_sense_command *)desc; 4109 4110 *info = scsi_8btou64(cmd_desc->command_info); 4111 if (signed_info != NULL) 4112 *signed_info = *info; 4113 break; 4114 } 4115 case SSD_DESC_FRU: { 4116 struct scsi_sense_fru *fru_desc; 4117 4118 fru_desc = (struct scsi_sense_fru *)desc; 4119 4120 *info = fru_desc->fru; 4121 if (signed_info != NULL) 4122 *signed_info = (int8_t)fru_desc->fru; 4123 break; 4124 } 4125 default: 4126 goto bailout; 4127 break; 4128 } 4129 break; 4130 } 4131 case SSD_TYPE_FIXED: { 4132 struct scsi_sense_data_fixed *sense; 4133 4134 sense = (struct scsi_sense_data_fixed *)sense_data; 4135 4136 switch (info_type) { 4137 case SSD_DESC_INFO: { 4138 uint32_t info_val; 4139 4140 if ((sense->error_code & SSD_ERRCODE_VALID) == 0) 4141 goto bailout; 4142 4143 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) 4144 goto bailout; 4145 4146 info_val = scsi_4btoul(sense->info); 4147 4148 *info = info_val; 4149 if (signed_info != NULL) 4150 *signed_info = (int32_t)info_val; 4151 break; 4152 } 4153 case SSD_DESC_COMMAND: { 4154 uint32_t cmd_val; 4155 4156 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, 4157 cmd_spec_info) == 0) 4158 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) 4159 goto bailout; 4160 4161 cmd_val = scsi_4btoul(sense->cmd_spec_info); 4162 if (cmd_val == 0) 4163 goto bailout; 4164 4165 *info = cmd_val; 4166 if (signed_info != NULL) 4167 *signed_info = (int32_t)cmd_val; 4168 break; 4169 } 4170 case SSD_DESC_FRU: 4171 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) 4172 || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) 4173 goto bailout; 4174 4175 if (sense->fru == 0) 4176 goto bailout; 4177 4178 *info = sense->fru; 4179 if (signed_info != NULL) 4180 *signed_info = (int8_t)sense->fru; 4181 break; 4182 default: 4183 goto bailout; 4184 break; 4185 } 4186 break; 4187 } 4188 default: 4189 goto bailout; 4190 break; 4191 } 4192 4193 return (0); 4194 bailout: 4195 return (1); 4196 } 4197 4198 int 4199 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) 4200 { 4201 scsi_sense_data_type sense_type; 4202 4203 if (sense_len == 0) 4204 goto bailout; 4205 4206 sense_type = scsi_sense_type(sense_data); 4207 4208 switch (sense_type) { 4209 case SSD_TYPE_DESC: { 4210 struct scsi_sense_data_desc *sense; 4211 struct scsi_sense_sks *desc; 4212 4213 sense = (struct scsi_sense_data_desc *)sense_data; 4214 4215 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, 4216 SSD_DESC_SKS); 4217 if (desc == NULL) 4218 goto bailout; 4219 4220 /* 4221 * No need to check the SKS valid bit for descriptor sense. 4222 * If the descriptor is present, it is valid. 4223 */ 4224 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); 4225 break; 4226 } 4227 case SSD_TYPE_FIXED: { 4228 struct scsi_sense_data_fixed *sense; 4229 4230 sense = (struct scsi_sense_data_fixed *)sense_data; 4231 4232 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) 4233 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) 4234 goto bailout; 4235 4236 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) 4237 goto bailout; 4238 4239 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); 4240 break; 4241 } 4242 default: 4243 goto bailout; 4244 break; 4245 } 4246 return (0); 4247 bailout: 4248 return (1); 4249 } 4250 4251 /* 4252 * Provide a common interface for fixed and descriptor sense to detect 4253 * whether we have block-specific sense information. It is clear by the 4254 * presence of the block descriptor in descriptor mode, but we have to 4255 * infer from the inquiry data and ILI bit in fixed mode. 4256 */ 4257 int 4258 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, 4259 struct scsi_inquiry_data *inq_data, uint8_t *block_bits) 4260 { 4261 scsi_sense_data_type sense_type; 4262 4263 if (inq_data != NULL) { 4264 switch (SID_TYPE(inq_data)) { 4265 case T_DIRECT: 4266 case T_RBC: 4267 break; 4268 default: 4269 goto bailout; 4270 break; 4271 } 4272 } 4273 4274 sense_type = scsi_sense_type(sense_data); 4275 4276 switch (sense_type) { 4277 case SSD_TYPE_DESC: { 4278 struct scsi_sense_data_desc *sense; 4279 struct scsi_sense_block *block; 4280 4281 sense = (struct scsi_sense_data_desc *)sense_data; 4282 4283 block = (struct scsi_sense_block *)scsi_find_desc(sense, 4284 sense_len, SSD_DESC_BLOCK); 4285 if (block == NULL) 4286 goto bailout; 4287 4288 *block_bits = block->byte3; 4289 break; 4290 } 4291 case SSD_TYPE_FIXED: { 4292 struct scsi_sense_data_fixed *sense; 4293 4294 sense = (struct scsi_sense_data_fixed *)sense_data; 4295 4296 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4297 goto bailout; 4298 4299 if ((sense->flags & SSD_ILI) == 0) 4300 goto bailout; 4301 4302 *block_bits = sense->flags & SSD_ILI; 4303 break; 4304 } 4305 default: 4306 goto bailout; 4307 break; 4308 } 4309 return (0); 4310 bailout: 4311 return (1); 4312 } 4313 4314 int 4315 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, 4316 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) 4317 { 4318 scsi_sense_data_type sense_type; 4319 4320 if (inq_data != NULL) { 4321 switch (SID_TYPE(inq_data)) { 4322 case T_SEQUENTIAL: 4323 break; 4324 default: 4325 goto bailout; 4326 break; 4327 } 4328 } 4329 4330 sense_type = scsi_sense_type(sense_data); 4331 4332 switch (sense_type) { 4333 case SSD_TYPE_DESC: { 4334 struct scsi_sense_data_desc *sense; 4335 struct scsi_sense_stream *stream; 4336 4337 sense = (struct scsi_sense_data_desc *)sense_data; 4338 4339 stream = (struct scsi_sense_stream *)scsi_find_desc(sense, 4340 sense_len, SSD_DESC_STREAM); 4341 if (stream == NULL) 4342 goto bailout; 4343 4344 *stream_bits = stream->byte3; 4345 break; 4346 } 4347 case SSD_TYPE_FIXED: { 4348 struct scsi_sense_data_fixed *sense; 4349 4350 sense = (struct scsi_sense_data_fixed *)sense_data; 4351 4352 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4353 goto bailout; 4354 4355 if ((sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK)) == 0) 4356 goto bailout; 4357 4358 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); 4359 break; 4360 } 4361 default: 4362 goto bailout; 4363 break; 4364 } 4365 return (0); 4366 bailout: 4367 return (1); 4368 } 4369 4370 void 4371 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4372 struct scsi_inquiry_data *inq_data, uint64_t info) 4373 { 4374 sbuf_printf(sb, "Info: %#jx", info); 4375 } 4376 4377 void 4378 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4379 struct scsi_inquiry_data *inq_data, uint64_t csi) 4380 { 4381 sbuf_printf(sb, "Command Specific Info: %#jx", csi); 4382 } 4383 4384 4385 void 4386 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) 4387 { 4388 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", 4389 (progress * 100) / SSD_SKS_PROGRESS_DENOM, 4390 progress, SSD_SKS_PROGRESS_DENOM); 4391 } 4392 4393 /* 4394 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. 4395 */ 4396 int 4397 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) 4398 { 4399 if ((sks[0] & SSD_SKS_VALID) == 0) 4400 return (1); 4401 4402 switch (sense_key) { 4403 case SSD_KEY_ILLEGAL_REQUEST: { 4404 struct scsi_sense_sks_field *field; 4405 int bad_command; 4406 char tmpstr[40]; 4407 4408 /*Field Pointer*/ 4409 field = (struct scsi_sense_sks_field *)sks; 4410 4411 if (field->byte0 & SSD_SKS_FIELD_CMD) 4412 bad_command = 1; 4413 else 4414 bad_command = 0; 4415 4416 tmpstr[0] = '\0'; 4417 4418 /* Bit pointer is valid */ 4419 if (field->byte0 & SSD_SKS_BPV) 4420 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4421 field->byte0 & SSD_SKS_BIT_VALUE); 4422 4423 sbuf_printf(sb, "%s byte %d %sis invalid", 4424 bad_command ? "Command" : "Data", 4425 scsi_2btoul(field->field), tmpstr); 4426 break; 4427 } 4428 case SSD_KEY_UNIT_ATTENTION: { 4429 struct scsi_sense_sks_overflow *overflow; 4430 4431 overflow = (struct scsi_sense_sks_overflow *)sks; 4432 4433 /*UA Condition Queue Overflow*/ 4434 sbuf_printf(sb, "Unit Attention Condition Queue %s", 4435 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? 4436 "Overflowed" : "Did Not Overflow??"); 4437 break; 4438 } 4439 case SSD_KEY_RECOVERED_ERROR: 4440 case SSD_KEY_HARDWARE_ERROR: 4441 case SSD_KEY_MEDIUM_ERROR: { 4442 struct scsi_sense_sks_retry *retry; 4443 4444 /*Actual Retry Count*/ 4445 retry = (struct scsi_sense_sks_retry *)sks; 4446 4447 sbuf_printf(sb, "Actual Retry Count: %d", 4448 scsi_2btoul(retry->actual_retry_count)); 4449 break; 4450 } 4451 case SSD_KEY_NO_SENSE: 4452 case SSD_KEY_NOT_READY: { 4453 struct scsi_sense_sks_progress *progress; 4454 int progress_val; 4455 4456 /*Progress Indication*/ 4457 progress = (struct scsi_sense_sks_progress *)sks; 4458 progress_val = scsi_2btoul(progress->progress); 4459 4460 scsi_progress_sbuf(sb, progress_val); 4461 break; 4462 } 4463 case SSD_KEY_COPY_ABORTED: { 4464 struct scsi_sense_sks_segment *segment; 4465 char tmpstr[40]; 4466 4467 /*Segment Pointer*/ 4468 segment = (struct scsi_sense_sks_segment *)sks; 4469 4470 tmpstr[0] = '\0'; 4471 4472 if (segment->byte0 & SSD_SKS_SEGMENT_BPV) 4473 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4474 segment->byte0 & SSD_SKS_SEGMENT_BITPTR); 4475 4476 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & 4477 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", 4478 scsi_2btoul(segment->field), tmpstr); 4479 break; 4480 } 4481 default: 4482 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], 4483 scsi_2btoul(&sks[1])); 4484 break; 4485 } 4486 4487 return (0); 4488 } 4489 4490 void 4491 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) 4492 { 4493 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); 4494 } 4495 4496 void 4497 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits, uint64_t info) 4498 { 4499 int need_comma; 4500 4501 need_comma = 0; 4502 /* 4503 * XXX KDM this needs more descriptive decoding. 4504 */ 4505 if (stream_bits & SSD_DESC_STREAM_FM) { 4506 sbuf_printf(sb, "Filemark"); 4507 need_comma = 1; 4508 } 4509 4510 if (stream_bits & SSD_DESC_STREAM_EOM) { 4511 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); 4512 need_comma = 1; 4513 } 4514 4515 if (stream_bits & SSD_DESC_STREAM_ILI) 4516 sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); 4517 4518 sbuf_printf(sb, ": Info: %#jx", (uintmax_t) info); 4519 } 4520 4521 void 4522 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits, uint64_t info) 4523 { 4524 if (block_bits & SSD_DESC_BLOCK_ILI) 4525 sbuf_printf(sb, "ILI: residue %#jx", (uintmax_t) info); 4526 } 4527 4528 void 4529 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4530 u_int sense_len, uint8_t *cdb, int cdb_len, 4531 struct scsi_inquiry_data *inq_data, 4532 struct scsi_sense_desc_header *header) 4533 { 4534 struct scsi_sense_info *info; 4535 4536 info = (struct scsi_sense_info *)header; 4537 4538 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); 4539 } 4540 4541 void 4542 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4543 u_int sense_len, uint8_t *cdb, int cdb_len, 4544 struct scsi_inquiry_data *inq_data, 4545 struct scsi_sense_desc_header *header) 4546 { 4547 struct scsi_sense_command *command; 4548 4549 command = (struct scsi_sense_command *)header; 4550 4551 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, 4552 scsi_8btou64(command->command_info)); 4553 } 4554 4555 void 4556 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4557 u_int sense_len, uint8_t *cdb, int cdb_len, 4558 struct scsi_inquiry_data *inq_data, 4559 struct scsi_sense_desc_header *header) 4560 { 4561 struct scsi_sense_sks *sks; 4562 int error_code, sense_key, asc, ascq; 4563 4564 sks = (struct scsi_sense_sks *)header; 4565 4566 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4567 &asc, &ascq, /*show_errors*/ 1); 4568 4569 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); 4570 } 4571 4572 void 4573 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4574 u_int sense_len, uint8_t *cdb, int cdb_len, 4575 struct scsi_inquiry_data *inq_data, 4576 struct scsi_sense_desc_header *header) 4577 { 4578 struct scsi_sense_fru *fru; 4579 4580 fru = (struct scsi_sense_fru *)header; 4581 4582 scsi_fru_sbuf(sb, (uint64_t)fru->fru); 4583 } 4584 4585 void 4586 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4587 u_int sense_len, uint8_t *cdb, int cdb_len, 4588 struct scsi_inquiry_data *inq_data, 4589 struct scsi_sense_desc_header *header) 4590 { 4591 struct scsi_sense_stream *stream; 4592 uint64_t info; 4593 4594 stream = (struct scsi_sense_stream *)header; 4595 info = 0; 4596 4597 scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL); 4598 4599 scsi_stream_sbuf(sb, stream->byte3, info); 4600 } 4601 4602 void 4603 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4604 u_int sense_len, uint8_t *cdb, int cdb_len, 4605 struct scsi_inquiry_data *inq_data, 4606 struct scsi_sense_desc_header *header) 4607 { 4608 struct scsi_sense_block *block; 4609 uint64_t info; 4610 4611 block = (struct scsi_sense_block *)header; 4612 info = 0; 4613 4614 scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL); 4615 4616 scsi_block_sbuf(sb, block->byte3, info); 4617 } 4618 4619 void 4620 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4621 u_int sense_len, uint8_t *cdb, int cdb_len, 4622 struct scsi_inquiry_data *inq_data, 4623 struct scsi_sense_desc_header *header) 4624 { 4625 struct scsi_sense_progress *progress; 4626 const char *sense_key_desc; 4627 const char *asc_desc; 4628 int progress_val; 4629 4630 progress = (struct scsi_sense_progress *)header; 4631 4632 /* 4633 * Get descriptions for the sense key, ASC, and ASCQ in the 4634 * progress descriptor. These could be different than the values 4635 * in the overall sense data. 4636 */ 4637 scsi_sense_desc(progress->sense_key, progress->add_sense_code, 4638 progress->add_sense_code_qual, inq_data, 4639 &sense_key_desc, &asc_desc); 4640 4641 progress_val = scsi_2btoul(progress->progress); 4642 4643 /* 4644 * The progress indicator is for the operation described by the 4645 * sense key, ASC, and ASCQ in the descriptor. 4646 */ 4647 sbuf_cat(sb, sense_key_desc); 4648 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, 4649 progress->add_sense_code_qual, asc_desc); 4650 scsi_progress_sbuf(sb, progress_val); 4651 } 4652 4653 /* 4654 * Generic sense descriptor printing routine. This is used when we have 4655 * not yet implemented a specific printing routine for this descriptor. 4656 */ 4657 void 4658 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4659 u_int sense_len, uint8_t *cdb, int cdb_len, 4660 struct scsi_inquiry_data *inq_data, 4661 struct scsi_sense_desc_header *header) 4662 { 4663 int i; 4664 uint8_t *buf_ptr; 4665 4666 sbuf_printf(sb, "Descriptor %#x:", header->desc_type); 4667 4668 buf_ptr = (uint8_t *)&header[1]; 4669 4670 for (i = 0; i < header->length; i++, buf_ptr++) 4671 sbuf_printf(sb, " %02x", *buf_ptr); 4672 } 4673 4674 /* 4675 * Keep this list in numeric order. This speeds the array traversal. 4676 */ 4677 struct scsi_sense_desc_printer { 4678 uint8_t desc_type; 4679 /* 4680 * The function arguments here are the superset of what is needed 4681 * to print out various different descriptors. Command and 4682 * information descriptors need inquiry data and command type. 4683 * Sense key specific descriptors need the sense key. 4684 * 4685 * The sense, cdb, and inquiry data arguments may be NULL, but the 4686 * information printed may not be fully decoded as a result. 4687 */ 4688 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, 4689 u_int sense_len, uint8_t *cdb, int cdb_len, 4690 struct scsi_inquiry_data *inq_data, 4691 struct scsi_sense_desc_header *header); 4692 } scsi_sense_printers[] = { 4693 {SSD_DESC_INFO, scsi_sense_info_sbuf}, 4694 {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, 4695 {SSD_DESC_SKS, scsi_sense_sks_sbuf}, 4696 {SSD_DESC_FRU, scsi_sense_fru_sbuf}, 4697 {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, 4698 {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, 4699 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf} 4700 }; 4701 4702 void 4703 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4704 u_int sense_len, uint8_t *cdb, int cdb_len, 4705 struct scsi_inquiry_data *inq_data, 4706 struct scsi_sense_desc_header *header) 4707 { 4708 int i; 4709 4710 for (i = 0; i < (sizeof(scsi_sense_printers) / 4711 sizeof(scsi_sense_printers[0])); i++) { 4712 struct scsi_sense_desc_printer *printer; 4713 4714 printer = &scsi_sense_printers[i]; 4715 4716 /* 4717 * The list is sorted, so quit if we've passed our 4718 * descriptor number. 4719 */ 4720 if (printer->desc_type > header->desc_type) 4721 break; 4722 4723 if (printer->desc_type != header->desc_type) 4724 continue; 4725 4726 printer->print_func(sb, sense, sense_len, cdb, cdb_len, 4727 inq_data, header); 4728 4729 return; 4730 } 4731 4732 /* 4733 * No specific printing routine, so use the generic routine. 4734 */ 4735 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, 4736 inq_data, header); 4737 } 4738 4739 scsi_sense_data_type 4740 scsi_sense_type(struct scsi_sense_data *sense_data) 4741 { 4742 switch (sense_data->error_code & SSD_ERRCODE) { 4743 case SSD_DESC_CURRENT_ERROR: 4744 case SSD_DESC_DEFERRED_ERROR: 4745 return (SSD_TYPE_DESC); 4746 break; 4747 case SSD_CURRENT_ERROR: 4748 case SSD_DEFERRED_ERROR: 4749 return (SSD_TYPE_FIXED); 4750 break; 4751 default: 4752 break; 4753 } 4754 4755 return (SSD_TYPE_NONE); 4756 } 4757 4758 struct scsi_print_sense_info { 4759 struct sbuf *sb; 4760 char *path_str; 4761 uint8_t *cdb; 4762 int cdb_len; 4763 struct scsi_inquiry_data *inq_data; 4764 }; 4765 4766 static int 4767 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 4768 struct scsi_sense_desc_header *header, void *arg) 4769 { 4770 struct scsi_print_sense_info *print_info; 4771 4772 print_info = (struct scsi_print_sense_info *)arg; 4773 4774 switch (header->desc_type) { 4775 case SSD_DESC_INFO: 4776 case SSD_DESC_FRU: 4777 case SSD_DESC_COMMAND: 4778 case SSD_DESC_SKS: 4779 case SSD_DESC_BLOCK: 4780 case SSD_DESC_STREAM: 4781 /* 4782 * We have already printed these descriptors, if they are 4783 * present. 4784 */ 4785 break; 4786 default: { 4787 sbuf_printf(print_info->sb, "%s", print_info->path_str); 4788 scsi_sense_desc_sbuf(print_info->sb, 4789 (struct scsi_sense_data *)sense, sense_len, 4790 print_info->cdb, print_info->cdb_len, 4791 print_info->inq_data, header); 4792 sbuf_printf(print_info->sb, "\n"); 4793 break; 4794 } 4795 } 4796 4797 /* 4798 * Tell the iterator that we want to see more descriptors if they 4799 * are present. 4800 */ 4801 return (0); 4802 } 4803 4804 void 4805 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, 4806 struct sbuf *sb, char *path_str, 4807 struct scsi_inquiry_data *inq_data, uint8_t *cdb, 4808 int cdb_len) 4809 { 4810 int error_code, sense_key, asc, ascq; 4811 4812 sbuf_cat(sb, path_str); 4813 4814 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4815 &asc, &ascq, /*show_errors*/ 1); 4816 4817 sbuf_printf(sb, "SCSI sense: "); 4818 switch (error_code) { 4819 case SSD_DEFERRED_ERROR: 4820 case SSD_DESC_DEFERRED_ERROR: 4821 sbuf_printf(sb, "Deferred error: "); 4822 4823 /* FALLTHROUGH */ 4824 case SSD_CURRENT_ERROR: 4825 case SSD_DESC_CURRENT_ERROR: 4826 { 4827 struct scsi_sense_data_desc *desc_sense; 4828 struct scsi_print_sense_info print_info; 4829 const char *sense_key_desc; 4830 const char *asc_desc; 4831 uint8_t sks[3]; 4832 uint64_t val; 4833 int info_valid; 4834 4835 /* 4836 * Get descriptions for the sense key, ASC, and ASCQ. If 4837 * these aren't present in the sense data (i.e. the sense 4838 * data isn't long enough), the -1 values that 4839 * scsi_extract_sense_len() returns will yield default 4840 * or error descriptions. 4841 */ 4842 scsi_sense_desc(sense_key, asc, ascq, inq_data, 4843 &sense_key_desc, &asc_desc); 4844 4845 /* 4846 * We first print the sense key and ASC/ASCQ. 4847 */ 4848 sbuf_cat(sb, sense_key_desc); 4849 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); 4850 4851 /* 4852 * Get the info field if it is valid. 4853 */ 4854 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, 4855 &val, NULL) == 0) 4856 info_valid = 1; 4857 else 4858 info_valid = 0; 4859 4860 if (info_valid != 0) { 4861 uint8_t bits; 4862 4863 /* 4864 * Determine whether we have any block or stream 4865 * device-specific information. 4866 */ 4867 if (scsi_get_block_info(sense, sense_len, inq_data, 4868 &bits) == 0) { 4869 sbuf_cat(sb, path_str); 4870 scsi_block_sbuf(sb, bits, val); 4871 sbuf_printf(sb, "\n"); 4872 } else if (scsi_get_stream_info(sense, sense_len, 4873 inq_data, &bits) == 0) { 4874 sbuf_cat(sb, path_str); 4875 scsi_stream_sbuf(sb, bits, val); 4876 sbuf_printf(sb, "\n"); 4877 } else if (val != 0) { 4878 /* 4879 * The information field can be valid but 0. 4880 * If the block or stream bits aren't set, 4881 * and this is 0, it isn't terribly useful 4882 * to print it out. 4883 */ 4884 sbuf_cat(sb, path_str); 4885 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); 4886 sbuf_printf(sb, "\n"); 4887 } 4888 } 4889 4890 /* 4891 * Print the FRU. 4892 */ 4893 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, 4894 &val, NULL) == 0) { 4895 sbuf_cat(sb, path_str); 4896 scsi_fru_sbuf(sb, val); 4897 sbuf_printf(sb, "\n"); 4898 } 4899 4900 /* 4901 * Print any command-specific information. 4902 */ 4903 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, 4904 &val, NULL) == 0) { 4905 sbuf_cat(sb, path_str); 4906 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); 4907 sbuf_printf(sb, "\n"); 4908 } 4909 4910 /* 4911 * Print out any sense-key-specific information. 4912 */ 4913 if (scsi_get_sks(sense, sense_len, sks) == 0) { 4914 sbuf_cat(sb, path_str); 4915 scsi_sks_sbuf(sb, sense_key, sks); 4916 sbuf_printf(sb, "\n"); 4917 } 4918 4919 /* 4920 * If this is fixed sense, we're done. If we have 4921 * descriptor sense, we might have more information 4922 * available. 4923 */ 4924 if (scsi_sense_type(sense) != SSD_TYPE_DESC) 4925 break; 4926 4927 desc_sense = (struct scsi_sense_data_desc *)sense; 4928 4929 print_info.sb = sb; 4930 print_info.path_str = path_str; 4931 print_info.cdb = cdb; 4932 print_info.cdb_len = cdb_len; 4933 print_info.inq_data = inq_data; 4934 4935 /* 4936 * Print any sense descriptors that we have not already printed. 4937 */ 4938 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, 4939 &print_info); 4940 break; 4941 4942 } 4943 case -1: 4944 /* 4945 * scsi_extract_sense_len() sets values to -1 if the 4946 * show_errors flag is set and they aren't present in the 4947 * sense data. This means that sense_len is 0. 4948 */ 4949 sbuf_printf(sb, "No sense data present\n"); 4950 break; 4951 default: { 4952 sbuf_printf(sb, "Error code 0x%x", error_code); 4953 if (sense->error_code & SSD_ERRCODE_VALID) { 4954 struct scsi_sense_data_fixed *fixed_sense; 4955 4956 fixed_sense = (struct scsi_sense_data_fixed *)sense; 4957 4958 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ 4959 uint32_t info; 4960 4961 info = scsi_4btoul(fixed_sense->info); 4962 4963 sbuf_printf(sb, " at block no. %d (decimal)", 4964 info); 4965 } 4966 } 4967 sbuf_printf(sb, "\n"); 4968 break; 4969 } 4970 } 4971 } 4972 4973 /* 4974 * scsi_sense_sbuf() returns 0 for success and -1 for failure. 4975 */ 4976 #ifdef _KERNEL 4977 int 4978 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, 4979 scsi_sense_string_flags flags) 4980 #else /* !_KERNEL */ 4981 int 4982 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, 4983 struct sbuf *sb, scsi_sense_string_flags flags) 4984 #endif /* _KERNEL/!_KERNEL */ 4985 { 4986 struct scsi_sense_data *sense; 4987 struct scsi_inquiry_data *inq_data; 4988 #ifdef _KERNEL 4989 struct ccb_getdev *cgd; 4990 #endif /* _KERNEL */ 4991 char path_str[64]; 4992 uint8_t *cdb; 4993 4994 #ifndef _KERNEL 4995 if (device == NULL) 4996 return(-1); 4997 #endif /* !_KERNEL */ 4998 if ((csio == NULL) || (sb == NULL)) 4999 return(-1); 5000 5001 /* 5002 * If the CDB is a physical address, we can't deal with it.. 5003 */ 5004 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) 5005 flags &= ~SSS_FLAG_PRINT_COMMAND; 5006 5007 #ifdef _KERNEL 5008 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); 5009 #else /* !_KERNEL */ 5010 cam_path_string(device, path_str, sizeof(path_str)); 5011 #endif /* _KERNEL/!_KERNEL */ 5012 5013 #ifdef _KERNEL 5014 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 5015 return(-1); 5016 /* 5017 * Get the device information. 5018 */ 5019 xpt_setup_ccb(&cgd->ccb_h, 5020 csio->ccb_h.path, 5021 CAM_PRIORITY_NORMAL); 5022 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 5023 xpt_action((union ccb *)cgd); 5024 5025 /* 5026 * If the device is unconfigured, just pretend that it is a hard 5027 * drive. scsi_op_desc() needs this. 5028 */ 5029 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 5030 cgd->inq_data.device = T_DIRECT; 5031 5032 inq_data = &cgd->inq_data; 5033 5034 #else /* !_KERNEL */ 5035 5036 inq_data = &device->inq_data; 5037 5038 #endif /* _KERNEL/!_KERNEL */ 5039 5040 sense = NULL; 5041 5042 if (flags & SSS_FLAG_PRINT_COMMAND) { 5043 5044 sbuf_cat(sb, path_str); 5045 5046 #ifdef _KERNEL 5047 scsi_command_string(csio, sb); 5048 #else /* !_KERNEL */ 5049 scsi_command_string(device, csio, sb); 5050 #endif /* _KERNEL/!_KERNEL */ 5051 sbuf_printf(sb, "\n"); 5052 } 5053 5054 /* 5055 * If the sense data is a physical pointer, forget it. 5056 */ 5057 if (csio->ccb_h.flags & CAM_SENSE_PTR) { 5058 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5059 #ifdef _KERNEL 5060 xpt_free_ccb((union ccb*)cgd); 5061 #endif /* _KERNEL/!_KERNEL */ 5062 return(-1); 5063 } else { 5064 /* 5065 * bcopy the pointer to avoid unaligned access 5066 * errors on finicky architectures. We don't 5067 * ensure that the sense data is pointer aligned. 5068 */ 5069 bcopy(&csio->sense_data, &sense, 5070 sizeof(struct scsi_sense_data *)); 5071 } 5072 } else { 5073 /* 5074 * If the physical sense flag is set, but the sense pointer 5075 * is not also set, we assume that the user is an idiot and 5076 * return. (Well, okay, it could be that somehow, the 5077 * entire csio is physical, but we would have probably core 5078 * dumped on one of the bogus pointer deferences above 5079 * already.) 5080 */ 5081 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5082 #ifdef _KERNEL 5083 xpt_free_ccb((union ccb*)cgd); 5084 #endif /* _KERNEL/!_KERNEL */ 5085 return(-1); 5086 } else 5087 sense = &csio->sense_data; 5088 } 5089 5090 if (csio->ccb_h.flags & CAM_CDB_POINTER) 5091 cdb = csio->cdb_io.cdb_ptr; 5092 else 5093 cdb = csio->cdb_io.cdb_bytes; 5094 5095 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, 5096 path_str, inq_data, cdb, csio->cdb_len); 5097 5098 #ifdef _KERNEL 5099 xpt_free_ccb((union ccb*)cgd); 5100 #endif /* _KERNEL/!_KERNEL */ 5101 return(0); 5102 } 5103 5104 5105 5106 #ifdef _KERNEL 5107 char * 5108 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) 5109 #else /* !_KERNEL */ 5110 char * 5111 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, 5112 char *str, int str_len) 5113 #endif /* _KERNEL/!_KERNEL */ 5114 { 5115 struct sbuf sb; 5116 5117 sbuf_new(&sb, str, str_len, 0); 5118 5119 #ifdef _KERNEL 5120 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5121 #else /* !_KERNEL */ 5122 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5123 #endif /* _KERNEL/!_KERNEL */ 5124 5125 sbuf_finish(&sb); 5126 5127 return(sbuf_data(&sb)); 5128 } 5129 5130 #ifdef _KERNEL 5131 void 5132 scsi_sense_print(struct ccb_scsiio *csio) 5133 { 5134 struct sbuf sb; 5135 char str[512]; 5136 5137 sbuf_new(&sb, str, sizeof(str), 0); 5138 5139 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5140 5141 sbuf_finish(&sb); 5142 5143 printf("%s", sbuf_data(&sb)); 5144 } 5145 5146 #else /* !_KERNEL */ 5147 void 5148 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, 5149 FILE *ofile) 5150 { 5151 struct sbuf sb; 5152 char str[512]; 5153 5154 if ((device == NULL) || (csio == NULL) || (ofile == NULL)) 5155 return; 5156 5157 sbuf_new(&sb, str, sizeof(str), 0); 5158 5159 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5160 5161 sbuf_finish(&sb); 5162 5163 fprintf(ofile, "%s", sbuf_data(&sb)); 5164 } 5165 5166 #endif /* _KERNEL/!_KERNEL */ 5167 5168 /* 5169 * Extract basic sense information. This is backward-compatible with the 5170 * previous implementation. For new implementations, 5171 * scsi_extract_sense_len() is recommended. 5172 */ 5173 void 5174 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, 5175 int *sense_key, int *asc, int *ascq) 5176 { 5177 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, 5178 sense_key, asc, ascq, /*show_errors*/ 0); 5179 } 5180 5181 /* 5182 * Extract basic sense information from SCSI I/O CCB structure. 5183 */ 5184 int 5185 scsi_extract_sense_ccb(union ccb *ccb, 5186 int *error_code, int *sense_key, int *asc, int *ascq) 5187 { 5188 struct scsi_sense_data *sense_data; 5189 5190 /* Make sure there are some sense data we can access. */ 5191 if (ccb->ccb_h.func_code != XPT_SCSI_IO || 5192 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR || 5193 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) || 5194 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 || 5195 (ccb->ccb_h.flags & CAM_SENSE_PHYS)) 5196 return (0); 5197 5198 if (ccb->ccb_h.flags & CAM_SENSE_PTR) 5199 bcopy(&ccb->csio.sense_data, &sense_data, 5200 sizeof(struct scsi_sense_data *)); 5201 else 5202 sense_data = &ccb->csio.sense_data; 5203 scsi_extract_sense_len(sense_data, 5204 ccb->csio.sense_len - ccb->csio.sense_resid, 5205 error_code, sense_key, asc, ascq, 1); 5206 if (*error_code == -1) 5207 return (0); 5208 return (1); 5209 } 5210 5211 /* 5212 * Extract basic sense information. If show_errors is set, sense values 5213 * will be set to -1 if they are not present. 5214 */ 5215 void 5216 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, 5217 int *error_code, int *sense_key, int *asc, int *ascq, 5218 int show_errors) 5219 { 5220 /* 5221 * If we have no length, we have no sense. 5222 */ 5223 if (sense_len == 0) { 5224 if (show_errors == 0) { 5225 *error_code = 0; 5226 *sense_key = 0; 5227 *asc = 0; 5228 *ascq = 0; 5229 } else { 5230 *error_code = -1; 5231 *sense_key = -1; 5232 *asc = -1; 5233 *ascq = -1; 5234 } 5235 return; 5236 } 5237 5238 *error_code = sense_data->error_code & SSD_ERRCODE; 5239 5240 switch (*error_code) { 5241 case SSD_DESC_CURRENT_ERROR: 5242 case SSD_DESC_DEFERRED_ERROR: { 5243 struct scsi_sense_data_desc *sense; 5244 5245 sense = (struct scsi_sense_data_desc *)sense_data; 5246 5247 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) 5248 *sense_key = sense->sense_key & SSD_KEY; 5249 else 5250 *sense_key = (show_errors) ? -1 : 0; 5251 5252 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) 5253 *asc = sense->add_sense_code; 5254 else 5255 *asc = (show_errors) ? -1 : 0; 5256 5257 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) 5258 *ascq = sense->add_sense_code_qual; 5259 else 5260 *ascq = (show_errors) ? -1 : 0; 5261 break; 5262 } 5263 case SSD_CURRENT_ERROR: 5264 case SSD_DEFERRED_ERROR: 5265 default: { 5266 struct scsi_sense_data_fixed *sense; 5267 5268 sense = (struct scsi_sense_data_fixed *)sense_data; 5269 5270 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) 5271 *sense_key = sense->flags & SSD_KEY; 5272 else 5273 *sense_key = (show_errors) ? -1 : 0; 5274 5275 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) 5276 && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) 5277 *asc = sense->add_sense_code; 5278 else 5279 *asc = (show_errors) ? -1 : 0; 5280 5281 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) 5282 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) 5283 *ascq = sense->add_sense_code_qual; 5284 else 5285 *ascq = (show_errors) ? -1 : 0; 5286 break; 5287 } 5288 } 5289 } 5290 5291 int 5292 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, 5293 int show_errors) 5294 { 5295 int error_code, sense_key, asc, ascq; 5296 5297 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5298 &sense_key, &asc, &ascq, show_errors); 5299 5300 return (sense_key); 5301 } 5302 5303 int 5304 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, 5305 int show_errors) 5306 { 5307 int error_code, sense_key, asc, ascq; 5308 5309 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5310 &sense_key, &asc, &ascq, show_errors); 5311 5312 return (asc); 5313 } 5314 5315 int 5316 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, 5317 int show_errors) 5318 { 5319 int error_code, sense_key, asc, ascq; 5320 5321 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5322 &sense_key, &asc, &ascq, show_errors); 5323 5324 return (ascq); 5325 } 5326 5327 /* 5328 * This function currently requires at least 36 bytes, or 5329 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this 5330 * function needs more or less data in the future, another length should be 5331 * defined in scsi_all.h to indicate the minimum amount of data necessary 5332 * for this routine to function properly. 5333 */ 5334 void 5335 scsi_print_inquiry(struct scsi_inquiry_data *inq_data) 5336 { 5337 u_int8_t type; 5338 char *dtype, *qtype; 5339 char vendor[16], product[48], revision[16], rstr[12]; 5340 5341 type = SID_TYPE(inq_data); 5342 5343 /* 5344 * Figure out basic device type and qualifier. 5345 */ 5346 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { 5347 qtype = " (vendor-unique qualifier)"; 5348 } else { 5349 switch (SID_QUAL(inq_data)) { 5350 case SID_QUAL_LU_CONNECTED: 5351 qtype = ""; 5352 break; 5353 5354 case SID_QUAL_LU_OFFLINE: 5355 qtype = " (offline)"; 5356 break; 5357 5358 case SID_QUAL_RSVD: 5359 qtype = " (reserved qualifier)"; 5360 break; 5361 default: 5362 case SID_QUAL_BAD_LU: 5363 qtype = " (LUN not supported)"; 5364 break; 5365 } 5366 } 5367 5368 switch (type) { 5369 case T_DIRECT: 5370 dtype = "Direct Access"; 5371 break; 5372 case T_SEQUENTIAL: 5373 dtype = "Sequential Access"; 5374 break; 5375 case T_PRINTER: 5376 dtype = "Printer"; 5377 break; 5378 case T_PROCESSOR: 5379 dtype = "Processor"; 5380 break; 5381 case T_WORM: 5382 dtype = "WORM"; 5383 break; 5384 case T_CDROM: 5385 dtype = "CD-ROM"; 5386 break; 5387 case T_SCANNER: 5388 dtype = "Scanner"; 5389 break; 5390 case T_OPTICAL: 5391 dtype = "Optical"; 5392 break; 5393 case T_CHANGER: 5394 dtype = "Changer"; 5395 break; 5396 case T_COMM: 5397 dtype = "Communication"; 5398 break; 5399 case T_STORARRAY: 5400 dtype = "Storage Array"; 5401 break; 5402 case T_ENCLOSURE: 5403 dtype = "Enclosure Services"; 5404 break; 5405 case T_RBC: 5406 dtype = "Simplified Direct Access"; 5407 break; 5408 case T_OCRW: 5409 dtype = "Optical Card Read/Write"; 5410 break; 5411 case T_OSD: 5412 dtype = "Object-Based Storage"; 5413 break; 5414 case T_ADC: 5415 dtype = "Automation/Drive Interface"; 5416 break; 5417 case T_NODEVICE: 5418 dtype = "Uninstalled"; 5419 break; 5420 default: 5421 dtype = "unknown"; 5422 break; 5423 } 5424 5425 cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor), 5426 sizeof(vendor)); 5427 cam_strvis(product, inq_data->product, sizeof(inq_data->product), 5428 sizeof(product)); 5429 cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision), 5430 sizeof(revision)); 5431 5432 if (SID_ANSI_REV(inq_data) == SCSI_REV_0) 5433 snprintf(rstr, sizeof(rstr), "SCSI"); 5434 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) { 5435 snprintf(rstr, sizeof(rstr), "SCSI-%d", 5436 SID_ANSI_REV(inq_data)); 5437 } else { 5438 snprintf(rstr, sizeof(rstr), "SPC-%d SCSI", 5439 SID_ANSI_REV(inq_data) - 2); 5440 } 5441 printf("<%s %s %s> %s %s %s device%s\n", 5442 vendor, product, revision, 5443 SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", 5444 dtype, rstr, qtype); 5445 } 5446 5447 void 5448 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data) 5449 { 5450 char vendor[16], product[48], revision[16]; 5451 5452 cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor), 5453 sizeof(vendor)); 5454 cam_strvis(product, inq_data->product, sizeof(inq_data->product), 5455 sizeof(product)); 5456 cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision), 5457 sizeof(revision)); 5458 5459 printf("<%s %s %s>", vendor, product, revision); 5460 } 5461 5462 /* 5463 * Table of syncrates that don't follow the "divisible by 4" 5464 * rule. This table will be expanded in future SCSI specs. 5465 */ 5466 static struct { 5467 u_int period_factor; 5468 u_int period; /* in 100ths of ns */ 5469 } scsi_syncrates[] = { 5470 { 0x08, 625 }, /* FAST-160 */ 5471 { 0x09, 1250 }, /* FAST-80 */ 5472 { 0x0a, 2500 }, /* FAST-40 40MHz */ 5473 { 0x0b, 3030 }, /* FAST-40 33MHz */ 5474 { 0x0c, 5000 } /* FAST-20 */ 5475 }; 5476 5477 /* 5478 * Return the frequency in kHz corresponding to the given 5479 * sync period factor. 5480 */ 5481 u_int 5482 scsi_calc_syncsrate(u_int period_factor) 5483 { 5484 int i; 5485 int num_syncrates; 5486 5487 /* 5488 * It's a bug if period is zero, but if it is anyway, don't 5489 * die with a divide fault- instead return something which 5490 * 'approximates' async 5491 */ 5492 if (period_factor == 0) { 5493 return (3300); 5494 } 5495 5496 num_syncrates = sizeof(scsi_syncrates) / sizeof(scsi_syncrates[0]); 5497 /* See if the period is in the "exception" table */ 5498 for (i = 0; i < num_syncrates; i++) { 5499 5500 if (period_factor == scsi_syncrates[i].period_factor) { 5501 /* Period in kHz */ 5502 return (100000000 / scsi_syncrates[i].period); 5503 } 5504 } 5505 5506 /* 5507 * Wasn't in the table, so use the standard 5508 * 4 times conversion. 5509 */ 5510 return (10000000 / (period_factor * 4 * 10)); 5511 } 5512 5513 /* 5514 * Return the SCSI sync parameter that corresponsd to 5515 * the passed in period in 10ths of ns. 5516 */ 5517 u_int 5518 scsi_calc_syncparam(u_int period) 5519 { 5520 int i; 5521 int num_syncrates; 5522 5523 if (period == 0) 5524 return (~0); /* Async */ 5525 5526 /* Adjust for exception table being in 100ths. */ 5527 period *= 10; 5528 num_syncrates = sizeof(scsi_syncrates) / sizeof(scsi_syncrates[0]); 5529 /* See if the period is in the "exception" table */ 5530 for (i = 0; i < num_syncrates; i++) { 5531 5532 if (period <= scsi_syncrates[i].period) { 5533 /* Period in 100ths of ns */ 5534 return (scsi_syncrates[i].period_factor); 5535 } 5536 } 5537 5538 /* 5539 * Wasn't in the table, so use the standard 5540 * 1/4 period in ns conversion. 5541 */ 5542 return (period/400); 5543 } 5544 5545 int 5546 scsi_devid_is_naa_ieee_reg(uint8_t *bufp) 5547 { 5548 struct scsi_vpd_id_descriptor *descr; 5549 struct scsi_vpd_id_naa_basic *naa; 5550 5551 descr = (struct scsi_vpd_id_descriptor *)bufp; 5552 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; 5553 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5554 return 0; 5555 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) 5556 return 0; 5557 if ((naa->naa >> SVPD_ID_NAA_NAA_SHIFT) != SVPD_ID_NAA_IEEE_REG) 5558 return 0; 5559 return 1; 5560 } 5561 5562 int 5563 scsi_devid_is_sas_target(uint8_t *bufp) 5564 { 5565 struct scsi_vpd_id_descriptor *descr; 5566 5567 descr = (struct scsi_vpd_id_descriptor *)bufp; 5568 if (!scsi_devid_is_naa_ieee_reg(bufp)) 5569 return 0; 5570 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ 5571 return 0; 5572 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) 5573 return 0; 5574 return 1; 5575 } 5576 5577 int 5578 scsi_devid_is_lun_eui64(uint8_t *bufp) 5579 { 5580 struct scsi_vpd_id_descriptor *descr; 5581 5582 descr = (struct scsi_vpd_id_descriptor *)bufp; 5583 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5584 return 0; 5585 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64) 5586 return 0; 5587 return 1; 5588 } 5589 5590 int 5591 scsi_devid_is_lun_naa(uint8_t *bufp) 5592 { 5593 struct scsi_vpd_id_descriptor *descr; 5594 5595 descr = (struct scsi_vpd_id_descriptor *)bufp; 5596 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5597 return 0; 5598 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5599 return 0; 5600 return 1; 5601 } 5602 5603 int 5604 scsi_devid_is_lun_t10(uint8_t *bufp) 5605 { 5606 struct scsi_vpd_id_descriptor *descr; 5607 5608 descr = (struct scsi_vpd_id_descriptor *)bufp; 5609 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5610 return 0; 5611 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10) 5612 return 0; 5613 return 1; 5614 } 5615 5616 int 5617 scsi_devid_is_lun_name(uint8_t *bufp) 5618 { 5619 struct scsi_vpd_id_descriptor *descr; 5620 5621 descr = (struct scsi_vpd_id_descriptor *)bufp; 5622 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5623 return 0; 5624 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME) 5625 return 0; 5626 return 1; 5627 } 5628 5629 int 5630 scsi_devid_is_port_naa(uint8_t *bufp) 5631 { 5632 struct scsi_vpd_id_descriptor *descr; 5633 5634 descr = (struct scsi_vpd_id_descriptor *)bufp; 5635 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT) 5636 return 0; 5637 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5638 return 0; 5639 return 1; 5640 } 5641 5642 struct scsi_vpd_id_descriptor * 5643 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, 5644 scsi_devid_checkfn_t ck_fn) 5645 { 5646 uint8_t *desc_buf_end; 5647 5648 desc_buf_end = (uint8_t *)desc + len; 5649 5650 for (; desc->identifier <= desc_buf_end && 5651 desc->identifier + desc->length <= desc_buf_end; 5652 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier 5653 + desc->length)) { 5654 5655 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) 5656 return (desc); 5657 } 5658 return (NULL); 5659 } 5660 5661 struct scsi_vpd_id_descriptor * 5662 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, 5663 scsi_devid_checkfn_t ck_fn) 5664 { 5665 uint32_t len; 5666 5667 if (page_len < sizeof(*id)) 5668 return (NULL); 5669 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id)); 5670 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *) 5671 id->desc_list, len, ck_fn)); 5672 } 5673 5674 int 5675 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, 5676 uint32_t valid_len) 5677 { 5678 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) { 5679 case SCSI_PROTO_FC: { 5680 struct scsi_transportid_fcp *fcp; 5681 uint64_t n_port_name; 5682 5683 fcp = (struct scsi_transportid_fcp *)hdr; 5684 5685 n_port_name = scsi_8btou64(fcp->n_port_name); 5686 5687 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name); 5688 break; 5689 } 5690 case SCSI_PROTO_SPI: { 5691 struct scsi_transportid_spi *spi; 5692 5693 spi = (struct scsi_transportid_spi *)hdr; 5694 5695 sbuf_printf(sb, "SPI address: %u,%u", 5696 scsi_2btoul(spi->scsi_addr), 5697 scsi_2btoul(spi->rel_trgt_port_id)); 5698 break; 5699 } 5700 case SCSI_PROTO_SSA: 5701 /* 5702 * XXX KDM there is no transport ID defined in SPC-4 for 5703 * SSA. 5704 */ 5705 break; 5706 case SCSI_PROTO_1394: { 5707 struct scsi_transportid_1394 *sbp; 5708 uint64_t eui64; 5709 5710 sbp = (struct scsi_transportid_1394 *)hdr; 5711 5712 eui64 = scsi_8btou64(sbp->eui64); 5713 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64); 5714 break; 5715 } 5716 case SCSI_PROTO_RDMA: { 5717 struct scsi_transportid_rdma *rdma; 5718 unsigned int i; 5719 5720 rdma = (struct scsi_transportid_rdma *)hdr; 5721 5722 sbuf_printf(sb, "RDMA address: 0x"); 5723 for (i = 0; i < sizeof(rdma->initiator_port_id); i++) 5724 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]); 5725 break; 5726 } 5727 case SCSI_PROTO_ISCSI: { 5728 uint32_t add_len, i; 5729 uint8_t *iscsi_name = NULL; 5730 int nul_found = 0; 5731 5732 sbuf_printf(sb, "iSCSI address: "); 5733 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5734 SCSI_TRN_ISCSI_FORMAT_DEVICE) { 5735 struct scsi_transportid_iscsi_device *dev; 5736 5737 dev = (struct scsi_transportid_iscsi_device *)hdr; 5738 5739 /* 5740 * Verify how much additional data we really have. 5741 */ 5742 add_len = scsi_2btoul(dev->additional_length); 5743 add_len = MIN(add_len, valid_len - 5744 __offsetof(struct scsi_transportid_iscsi_device, 5745 iscsi_name)); 5746 iscsi_name = &dev->iscsi_name[0]; 5747 5748 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5749 SCSI_TRN_ISCSI_FORMAT_PORT) { 5750 struct scsi_transportid_iscsi_port *port; 5751 5752 port = (struct scsi_transportid_iscsi_port *)hdr; 5753 5754 add_len = scsi_2btoul(port->additional_length); 5755 add_len = MIN(add_len, valid_len - 5756 __offsetof(struct scsi_transportid_iscsi_port, 5757 iscsi_name)); 5758 iscsi_name = &port->iscsi_name[0]; 5759 } else { 5760 sbuf_printf(sb, "unknown format %x", 5761 (hdr->format_protocol & 5762 SCSI_TRN_FORMAT_MASK) >> 5763 SCSI_TRN_FORMAT_SHIFT); 5764 break; 5765 } 5766 if (add_len == 0) { 5767 sbuf_printf(sb, "not enough data"); 5768 break; 5769 } 5770 /* 5771 * This is supposed to be a NUL-terminated ASCII 5772 * string, but you never know. So we're going to 5773 * check. We need to do this because there is no 5774 * sbuf equivalent of strncat(). 5775 */ 5776 for (i = 0; i < add_len; i++) { 5777 if (iscsi_name[i] == '\0') { 5778 nul_found = 1; 5779 break; 5780 } 5781 } 5782 /* 5783 * If there is a NUL in the name, we can just use 5784 * sbuf_cat(). Otherwise we need to use sbuf_bcat(). 5785 */ 5786 if (nul_found != 0) 5787 sbuf_cat(sb, iscsi_name); 5788 else 5789 sbuf_bcat(sb, iscsi_name, add_len); 5790 break; 5791 } 5792 case SCSI_PROTO_SAS: { 5793 struct scsi_transportid_sas *sas; 5794 uint64_t sas_addr; 5795 5796 sas = (struct scsi_transportid_sas *)hdr; 5797 5798 sas_addr = scsi_8btou64(sas->sas_address); 5799 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr); 5800 break; 5801 } 5802 case SCSI_PROTO_ADITP: 5803 case SCSI_PROTO_ATA: 5804 case SCSI_PROTO_UAS: 5805 /* 5806 * No Transport ID format for ADI, ATA or USB is defined in 5807 * SPC-4. 5808 */ 5809 sbuf_printf(sb, "No known Transport ID format for protocol " 5810 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5811 break; 5812 case SCSI_PROTO_SOP: { 5813 struct scsi_transportid_sop *sop; 5814 struct scsi_sop_routing_id_norm *rid; 5815 5816 sop = (struct scsi_transportid_sop *)hdr; 5817 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id; 5818 5819 /* 5820 * Note that there is no alternate format specified in SPC-4 5821 * for the PCIe routing ID, so we don't really have a way 5822 * to know whether the second byte of the routing ID is 5823 * a device and function or just a function. So we just 5824 * assume bus,device,function. 5825 */ 5826 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u", 5827 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT, 5828 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX); 5829 break; 5830 } 5831 case SCSI_PROTO_NONE: 5832 default: 5833 sbuf_printf(sb, "Unknown protocol %#x", 5834 hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5835 break; 5836 } 5837 5838 return (0); 5839 } 5840 5841 struct scsi_nv scsi_proto_map[] = { 5842 { "fcp", SCSI_PROTO_FC }, 5843 { "spi", SCSI_PROTO_SPI }, 5844 { "ssa", SCSI_PROTO_SSA }, 5845 { "sbp", SCSI_PROTO_1394 }, 5846 { "1394", SCSI_PROTO_1394 }, 5847 { "srp", SCSI_PROTO_RDMA }, 5848 { "rdma", SCSI_PROTO_RDMA }, 5849 { "iscsi", SCSI_PROTO_ISCSI }, 5850 { "iqn", SCSI_PROTO_ISCSI }, 5851 { "sas", SCSI_PROTO_SAS }, 5852 { "aditp", SCSI_PROTO_ADITP }, 5853 { "ata", SCSI_PROTO_ATA }, 5854 { "uas", SCSI_PROTO_UAS }, 5855 { "usb", SCSI_PROTO_UAS }, 5856 { "sop", SCSI_PROTO_SOP } 5857 }; 5858 5859 const char * 5860 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value) 5861 { 5862 int i; 5863 5864 for (i = 0; i < num_table_entries; i++) { 5865 if (table[i].value == value) 5866 return (table[i].name); 5867 } 5868 5869 return (NULL); 5870 } 5871 5872 /* 5873 * Given a name/value table, find a value matching the given name. 5874 * Return values: 5875 * SCSI_NV_FOUND - match found 5876 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact 5877 * SCSI_NV_NOT_FOUND - no match found 5878 */ 5879 scsi_nv_status 5880 scsi_get_nv(struct scsi_nv *table, int num_table_entries, 5881 char *name, int *table_entry, scsi_nv_flags flags) 5882 { 5883 int i, num_matches = 0; 5884 5885 for (i = 0; i < num_table_entries; i++) { 5886 size_t table_len, name_len; 5887 5888 table_len = strlen(table[i].name); 5889 name_len = strlen(name); 5890 5891 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0) 5892 && (strncasecmp(table[i].name, name, name_len) == 0)) 5893 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0) 5894 && (strncmp(table[i].name, name, name_len) == 0))) { 5895 *table_entry = i; 5896 5897 /* 5898 * Check for an exact match. If we have the same 5899 * number of characters in the table as the argument, 5900 * and we already know they're the same, we have 5901 * an exact match. 5902 */ 5903 if (table_len == name_len) 5904 return (SCSI_NV_FOUND); 5905 5906 /* 5907 * Otherwise, bump up the number of matches. We'll 5908 * see later how many we have. 5909 */ 5910 num_matches++; 5911 } 5912 } 5913 5914 if (num_matches > 1) 5915 return (SCSI_NV_AMBIGUOUS); 5916 else if (num_matches == 1) 5917 return (SCSI_NV_FOUND); 5918 else 5919 return (SCSI_NV_NOT_FOUND); 5920 } 5921 5922 /* 5923 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are 5924 * all 64-bit numbers, the code is similar. 5925 */ 5926 int 5927 scsi_parse_transportid_64bit(int proto_id, char *id_str, 5928 struct scsi_transportid_header **hdr, 5929 unsigned int *alloc_len, 5930 #ifdef _KERNEL 5931 struct malloc_type *type, int flags, 5932 #endif 5933 char *error_str, int error_str_len) 5934 { 5935 uint64_t value; 5936 char *endptr; 5937 int retval; 5938 size_t alloc_size; 5939 5940 retval = 0; 5941 5942 value = strtouq(id_str, &endptr, 0); 5943 if (*endptr != '\0') { 5944 if (error_str != NULL) { 5945 snprintf(error_str, error_str_len, "%s: error " 5946 "parsing ID %s, 64-bit number required", 5947 __func__, id_str); 5948 } 5949 retval = 1; 5950 goto bailout; 5951 } 5952 5953 switch (proto_id) { 5954 case SCSI_PROTO_FC: 5955 alloc_size = sizeof(struct scsi_transportid_fcp); 5956 break; 5957 case SCSI_PROTO_1394: 5958 alloc_size = sizeof(struct scsi_transportid_1394); 5959 break; 5960 case SCSI_PROTO_SAS: 5961 alloc_size = sizeof(struct scsi_transportid_sas); 5962 break; 5963 default: 5964 if (error_str != NULL) { 5965 snprintf(error_str, error_str_len, "%s: unsupoprted " 5966 "protocol %d", __func__, proto_id); 5967 } 5968 retval = 1; 5969 goto bailout; 5970 break; /* NOTREACHED */ 5971 } 5972 #ifdef _KERNEL 5973 *hdr = malloc(alloc_size, type, flags); 5974 #else /* _KERNEL */ 5975 *hdr = malloc(alloc_size); 5976 #endif /*_KERNEL */ 5977 if (*hdr == NULL) { 5978 if (error_str != NULL) { 5979 snprintf(error_str, error_str_len, "%s: unable to " 5980 "allocate %zu bytes", __func__, alloc_size); 5981 } 5982 retval = 1; 5983 goto bailout; 5984 } 5985 5986 *alloc_len = alloc_size; 5987 5988 bzero(*hdr, alloc_size); 5989 5990 switch (proto_id) { 5991 case SCSI_PROTO_FC: { 5992 struct scsi_transportid_fcp *fcp; 5993 5994 fcp = (struct scsi_transportid_fcp *)(*hdr); 5995 fcp->format_protocol = SCSI_PROTO_FC | 5996 SCSI_TRN_FCP_FORMAT_DEFAULT; 5997 scsi_u64to8b(value, fcp->n_port_name); 5998 break; 5999 } 6000 case SCSI_PROTO_1394: { 6001 struct scsi_transportid_1394 *sbp; 6002 6003 sbp = (struct scsi_transportid_1394 *)(*hdr); 6004 sbp->format_protocol = SCSI_PROTO_1394 | 6005 SCSI_TRN_1394_FORMAT_DEFAULT; 6006 scsi_u64to8b(value, sbp->eui64); 6007 break; 6008 } 6009 case SCSI_PROTO_SAS: { 6010 struct scsi_transportid_sas *sas; 6011 6012 sas = (struct scsi_transportid_sas *)(*hdr); 6013 sas->format_protocol = SCSI_PROTO_SAS | 6014 SCSI_TRN_SAS_FORMAT_DEFAULT; 6015 scsi_u64to8b(value, sas->sas_address); 6016 break; 6017 } 6018 default: 6019 break; 6020 } 6021 bailout: 6022 return (retval); 6023 } 6024 6025 /* 6026 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port 6027 */ 6028 int 6029 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, 6030 unsigned int *alloc_len, 6031 #ifdef _KERNEL 6032 struct malloc_type *type, int flags, 6033 #endif 6034 char *error_str, int error_str_len) 6035 { 6036 unsigned long scsi_addr, target_port; 6037 struct scsi_transportid_spi *spi; 6038 char *tmpstr, *endptr; 6039 int retval; 6040 6041 retval = 0; 6042 6043 tmpstr = strsep(&id_str, ","); 6044 if (tmpstr == NULL) { 6045 if (error_str != NULL) { 6046 snprintf(error_str, error_str_len, 6047 "%s: no ID found", __func__); 6048 } 6049 retval = 1; 6050 goto bailout; 6051 } 6052 scsi_addr = strtoul(tmpstr, &endptr, 0); 6053 if (*endptr != '\0') { 6054 if (error_str != NULL) { 6055 snprintf(error_str, error_str_len, "%s: error " 6056 "parsing SCSI ID %s, number required", 6057 __func__, tmpstr); 6058 } 6059 retval = 1; 6060 goto bailout; 6061 } 6062 6063 if (id_str == NULL) { 6064 if (error_str != NULL) { 6065 snprintf(error_str, error_str_len, "%s: no relative " 6066 "target port found", __func__); 6067 } 6068 retval = 1; 6069 goto bailout; 6070 } 6071 6072 target_port = strtoul(id_str, &endptr, 0); 6073 if (*endptr != '\0') { 6074 if (error_str != NULL) { 6075 snprintf(error_str, error_str_len, "%s: error " 6076 "parsing relative target port %s, number " 6077 "required", __func__, id_str); 6078 } 6079 retval = 1; 6080 goto bailout; 6081 } 6082 #ifdef _KERNEL 6083 spi = malloc(sizeof(*spi), type, flags); 6084 #else 6085 spi = malloc(sizeof(*spi)); 6086 #endif 6087 if (spi == NULL) { 6088 if (error_str != NULL) { 6089 snprintf(error_str, error_str_len, "%s: unable to " 6090 "allocate %zu bytes", __func__, 6091 sizeof(*spi)); 6092 } 6093 retval = 1; 6094 goto bailout; 6095 } 6096 *alloc_len = sizeof(*spi); 6097 bzero(spi, sizeof(*spi)); 6098 6099 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT; 6100 scsi_ulto2b(scsi_addr, spi->scsi_addr); 6101 scsi_ulto2b(target_port, spi->rel_trgt_port_id); 6102 6103 *hdr = (struct scsi_transportid_header *)spi; 6104 bailout: 6105 return (retval); 6106 } 6107 6108 /* 6109 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits, 6110 * optionally prefixed by "0x" or "0X". 6111 */ 6112 int 6113 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, 6114 unsigned int *alloc_len, 6115 #ifdef _KERNEL 6116 struct malloc_type *type, int flags, 6117 #endif 6118 char *error_str, int error_str_len) 6119 { 6120 struct scsi_transportid_rdma *rdma; 6121 int retval; 6122 size_t id_len, rdma_id_size; 6123 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN]; 6124 char *tmpstr; 6125 unsigned int i, j; 6126 6127 retval = 0; 6128 id_len = strlen(id_str); 6129 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN; 6130 6131 /* 6132 * Check the size. It needs to be either 32 or 34 characters long. 6133 */ 6134 if ((id_len != (rdma_id_size * 2)) 6135 && (id_len != ((rdma_id_size * 2) + 2))) { 6136 if (error_str != NULL) { 6137 snprintf(error_str, error_str_len, "%s: RDMA ID " 6138 "must be 32 hex digits (0x prefix " 6139 "optional), only %zu seen", __func__, id_len); 6140 } 6141 retval = 1; 6142 goto bailout; 6143 } 6144 6145 tmpstr = id_str; 6146 /* 6147 * If the user gave us 34 characters, the string needs to start 6148 * with '0x'. 6149 */ 6150 if (id_len == ((rdma_id_size * 2) + 2)) { 6151 if ((tmpstr[0] == '0') 6152 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) { 6153 tmpstr += 2; 6154 } else { 6155 if (error_str != NULL) { 6156 snprintf(error_str, error_str_len, "%s: RDMA " 6157 "ID prefix, if used, must be \"0x\", " 6158 "got %s", __func__, tmpstr); 6159 } 6160 retval = 1; 6161 goto bailout; 6162 } 6163 } 6164 bzero(rdma_id, sizeof(rdma_id)); 6165 6166 /* 6167 * Convert ASCII hex into binary bytes. There is no standard 6168 * 128-bit integer type, and so no strtou128t() routine to convert 6169 * from hex into a large integer. In the end, we're not going to 6170 * an integer, but rather to a byte array, so that and the fact 6171 * that we require the user to give us 32 hex digits simplifies the 6172 * logic. 6173 */ 6174 for (i = 0; i < (rdma_id_size * 2); i++) { 6175 int cur_shift; 6176 unsigned char c; 6177 6178 /* Increment the byte array one for every 2 hex digits */ 6179 j = i >> 1; 6180 6181 /* 6182 * The first digit in every pair is the most significant 6183 * 4 bits. The second is the least significant 4 bits. 6184 */ 6185 if ((i % 2) == 0) 6186 cur_shift = 4; 6187 else 6188 cur_shift = 0; 6189 6190 c = tmpstr[i]; 6191 /* Convert the ASCII hex character into a number */ 6192 if (isdigit(c)) 6193 c -= '0'; 6194 else if (isalpha(c)) 6195 c -= isupper(c) ? 'A' - 10 : 'a' - 10; 6196 else { 6197 if (error_str != NULL) { 6198 snprintf(error_str, error_str_len, "%s: " 6199 "RDMA ID must be hex digits, got " 6200 "invalid character %c", __func__, 6201 tmpstr[i]); 6202 } 6203 retval = 1; 6204 goto bailout; 6205 } 6206 /* 6207 * The converted number can't be less than 0; the type is 6208 * unsigned, and the subtraction logic will not give us 6209 * a negative number. So we only need to make sure that 6210 * the value is not greater than 0xf. (i.e. make sure the 6211 * user didn't give us a value like "0x12jklmno"). 6212 */ 6213 if (c > 0xf) { 6214 if (error_str != NULL) { 6215 snprintf(error_str, error_str_len, "%s: " 6216 "RDMA ID must be hex digits, got " 6217 "invalid character %c", __func__, 6218 tmpstr[i]); 6219 } 6220 retval = 1; 6221 goto bailout; 6222 } 6223 6224 rdma_id[j] |= c << cur_shift; 6225 } 6226 6227 #ifdef _KERNEL 6228 rdma = malloc(sizeof(*rdma), type, flags); 6229 #else 6230 rdma = malloc(sizeof(*rdma)); 6231 #endif 6232 if (rdma == NULL) { 6233 if (error_str != NULL) { 6234 snprintf(error_str, error_str_len, "%s: unable to " 6235 "allocate %zu bytes", __func__, 6236 sizeof(*rdma)); 6237 } 6238 retval = 1; 6239 goto bailout; 6240 } 6241 *alloc_len = sizeof(*rdma); 6242 bzero(rdma, *alloc_len); 6243 6244 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT; 6245 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN); 6246 6247 *hdr = (struct scsi_transportid_header *)rdma; 6248 6249 bailout: 6250 return (retval); 6251 } 6252 6253 /* 6254 * Parse an iSCSI name. The format is either just the name: 6255 * 6256 * iqn.2012-06.com.example:target0 6257 * or the name, separator and initiator session ID: 6258 * 6259 * iqn.2012-06.com.example:target0,i,0x123 6260 * 6261 * The separator format is exact. 6262 */ 6263 int 6264 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, 6265 unsigned int *alloc_len, 6266 #ifdef _KERNEL 6267 struct malloc_type *type, int flags, 6268 #endif 6269 char *error_str, int error_str_len) 6270 { 6271 size_t id_len, sep_len, id_size, name_len; 6272 int retval; 6273 unsigned int i, sep_pos, sep_found; 6274 const char *sep_template = ",i,0x"; 6275 const char *iqn_prefix = "iqn."; 6276 struct scsi_transportid_iscsi_device *iscsi; 6277 6278 retval = 0; 6279 sep_found = 0; 6280 6281 id_len = strlen(id_str); 6282 sep_len = strlen(sep_template); 6283 6284 /* 6285 * The separator is defined as exactly ',i,0x'. Any other commas, 6286 * or any other form, is an error. So look for a comma, and once 6287 * we find that, the next few characters must match the separator 6288 * exactly. Once we get through the separator, there should be at 6289 * least one character. 6290 */ 6291 for (i = 0, sep_pos = 0; i < id_len; i++) { 6292 if (sep_pos == 0) { 6293 if (id_str[i] == sep_template[sep_pos]) 6294 sep_pos++; 6295 6296 continue; 6297 } 6298 if (sep_pos < sep_len) { 6299 if (id_str[i] == sep_template[sep_pos]) { 6300 sep_pos++; 6301 continue; 6302 } 6303 if (error_str != NULL) { 6304 snprintf(error_str, error_str_len, "%s: " 6305 "invalid separator in iSCSI name " 6306 "\"%s\"", 6307 __func__, id_str); 6308 } 6309 retval = 1; 6310 goto bailout; 6311 } else { 6312 sep_found = 1; 6313 break; 6314 } 6315 } 6316 6317 /* 6318 * Check to see whether we have a separator but no digits after it. 6319 */ 6320 if ((sep_pos != 0) 6321 && (sep_found == 0)) { 6322 if (error_str != NULL) { 6323 snprintf(error_str, error_str_len, "%s: no digits " 6324 "found after separator in iSCSI name \"%s\"", 6325 __func__, id_str); 6326 } 6327 retval = 1; 6328 goto bailout; 6329 } 6330 6331 /* 6332 * The incoming ID string has the "iqn." prefix stripped off. We 6333 * need enough space for the base structure (the structures are the 6334 * same for the two iSCSI forms), the prefix, the ID string and a 6335 * terminating NUL. 6336 */ 6337 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1; 6338 6339 #ifdef _KERNEL 6340 iscsi = malloc(id_size, type, flags); 6341 #else 6342 iscsi = malloc(id_size); 6343 #endif 6344 if (iscsi == NULL) { 6345 if (error_str != NULL) { 6346 snprintf(error_str, error_str_len, "%s: unable to " 6347 "allocate %zu bytes", __func__, id_size); 6348 } 6349 retval = 1; 6350 goto bailout; 6351 } 6352 *alloc_len = id_size; 6353 bzero(iscsi, id_size); 6354 6355 iscsi->format_protocol = SCSI_PROTO_ISCSI; 6356 if (sep_found == 0) 6357 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE; 6358 else 6359 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT; 6360 name_len = id_size - sizeof(*iscsi); 6361 scsi_ulto2b(name_len, iscsi->additional_length); 6362 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str); 6363 6364 *hdr = (struct scsi_transportid_header *)iscsi; 6365 6366 bailout: 6367 return (retval); 6368 } 6369 6370 /* 6371 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be 6372 * of the form 'bus,device,function' or 'bus,function'. 6373 */ 6374 int 6375 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, 6376 unsigned int *alloc_len, 6377 #ifdef _KERNEL 6378 struct malloc_type *type, int flags, 6379 #endif 6380 char *error_str, int error_str_len) 6381 { 6382 struct scsi_transportid_sop *sop; 6383 unsigned long bus, device, function; 6384 char *tmpstr, *endptr; 6385 int retval, device_spec; 6386 6387 retval = 0; 6388 device_spec = 0; 6389 device = 0; 6390 6391 tmpstr = strsep(&id_str, ","); 6392 if ((tmpstr == NULL) 6393 || (*tmpstr == '\0')) { 6394 if (error_str != NULL) { 6395 snprintf(error_str, error_str_len, "%s: no ID found", 6396 __func__); 6397 } 6398 retval = 1; 6399 goto bailout; 6400 } 6401 bus = strtoul(tmpstr, &endptr, 0); 6402 if (*endptr != '\0') { 6403 if (error_str != NULL) { 6404 snprintf(error_str, error_str_len, "%s: error " 6405 "parsing PCIe bus %s, number required", 6406 __func__, tmpstr); 6407 } 6408 retval = 1; 6409 goto bailout; 6410 } 6411 if ((id_str == NULL) 6412 || (*id_str == '\0')) { 6413 if (error_str != NULL) { 6414 snprintf(error_str, error_str_len, "%s: no PCIe " 6415 "device or function found", __func__); 6416 } 6417 retval = 1; 6418 goto bailout; 6419 } 6420 tmpstr = strsep(&id_str, ","); 6421 function = strtoul(tmpstr, &endptr, 0); 6422 if (*endptr != '\0') { 6423 if (error_str != NULL) { 6424 snprintf(error_str, error_str_len, "%s: error " 6425 "parsing PCIe device/function %s, number " 6426 "required", __func__, tmpstr); 6427 } 6428 retval = 1; 6429 goto bailout; 6430 } 6431 /* 6432 * Check to see whether the user specified a third value. If so, 6433 * the second is the device. 6434 */ 6435 if (id_str != NULL) { 6436 if (*id_str == '\0') { 6437 if (error_str != NULL) { 6438 snprintf(error_str, error_str_len, "%s: " 6439 "no PCIe function found", __func__); 6440 } 6441 retval = 1; 6442 goto bailout; 6443 } 6444 device = function; 6445 device_spec = 1; 6446 function = strtoul(id_str, &endptr, 0); 6447 if (*endptr != '\0') { 6448 if (error_str != NULL) { 6449 snprintf(error_str, error_str_len, "%s: " 6450 "error parsing PCIe function %s, " 6451 "number required", __func__, id_str); 6452 } 6453 retval = 1; 6454 goto bailout; 6455 } 6456 } 6457 if (bus > SCSI_TRN_SOP_BUS_MAX) { 6458 if (error_str != NULL) { 6459 snprintf(error_str, error_str_len, "%s: bus value " 6460 "%lu greater than maximum %u", __func__, 6461 bus, SCSI_TRN_SOP_BUS_MAX); 6462 } 6463 retval = 1; 6464 goto bailout; 6465 } 6466 6467 if ((device_spec != 0) 6468 && (device > SCSI_TRN_SOP_DEV_MASK)) { 6469 if (error_str != NULL) { 6470 snprintf(error_str, error_str_len, "%s: device value " 6471 "%lu greater than maximum %u", __func__, 6472 device, SCSI_TRN_SOP_DEV_MAX); 6473 } 6474 retval = 1; 6475 goto bailout; 6476 } 6477 6478 if (((device_spec != 0) 6479 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX)) 6480 || ((device_spec == 0) 6481 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) { 6482 if (error_str != NULL) { 6483 snprintf(error_str, error_str_len, "%s: function value " 6484 "%lu greater than maximum %u", __func__, 6485 function, (device_spec == 0) ? 6486 SCSI_TRN_SOP_FUNC_ALT_MAX : 6487 SCSI_TRN_SOP_FUNC_NORM_MAX); 6488 } 6489 retval = 1; 6490 goto bailout; 6491 } 6492 6493 #ifdef _KERNEL 6494 sop = malloc(sizeof(*sop), type, flags); 6495 #else 6496 sop = malloc(sizeof(*sop)); 6497 #endif 6498 if (sop == NULL) { 6499 if (error_str != NULL) { 6500 snprintf(error_str, error_str_len, "%s: unable to " 6501 "allocate %zu bytes", __func__, sizeof(*sop)); 6502 } 6503 retval = 1; 6504 goto bailout; 6505 } 6506 *alloc_len = sizeof(*sop); 6507 bzero(sop, sizeof(*sop)); 6508 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT; 6509 if (device_spec != 0) { 6510 struct scsi_sop_routing_id_norm rid; 6511 6512 rid.bus = bus; 6513 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function; 6514 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6515 sizeof(sop->routing_id))); 6516 } else { 6517 struct scsi_sop_routing_id_alt rid; 6518 6519 rid.bus = bus; 6520 rid.function = function; 6521 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6522 sizeof(sop->routing_id))); 6523 } 6524 6525 *hdr = (struct scsi_transportid_header *)sop; 6526 bailout: 6527 return (retval); 6528 } 6529 6530 /* 6531 * transportid_str: NUL-terminated string with format: protcol,id 6532 * The ID is protocol specific. 6533 * hdr: Storage will be allocated for the transport ID. 6534 * alloc_len: The amount of memory allocated is returned here. 6535 * type: Malloc bucket (kernel only). 6536 * flags: Malloc flags (kernel only). 6537 * error_str: If non-NULL, it will contain error information (without 6538 * a terminating newline) if an error is returned. 6539 * error_str_len: Allocated length of the error string. 6540 * 6541 * Returns 0 for success, non-zero for failure. 6542 */ 6543 int 6544 scsi_parse_transportid(char *transportid_str, 6545 struct scsi_transportid_header **hdr, 6546 unsigned int *alloc_len, 6547 #ifdef _KERNEL 6548 struct malloc_type *type, int flags, 6549 #endif 6550 char *error_str, int error_str_len) 6551 { 6552 char *tmpstr; 6553 scsi_nv_status status; 6554 int retval, num_proto_entries, table_entry; 6555 6556 retval = 0; 6557 table_entry = 0; 6558 6559 /* 6560 * We do allow a period as well as a comma to separate the protocol 6561 * from the ID string. This is to accommodate iSCSI names, which 6562 * start with "iqn.". 6563 */ 6564 tmpstr = strsep(&transportid_str, ",."); 6565 if (tmpstr == NULL) { 6566 if (error_str != NULL) { 6567 snprintf(error_str, error_str_len, 6568 "%s: transportid_str is NULL", __func__); 6569 } 6570 retval = 1; 6571 goto bailout; 6572 } 6573 6574 num_proto_entries = sizeof(scsi_proto_map) / 6575 sizeof(scsi_proto_map[0]); 6576 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr, 6577 &table_entry, SCSI_NV_FLAG_IG_CASE); 6578 if (status != SCSI_NV_FOUND) { 6579 if (error_str != NULL) { 6580 snprintf(error_str, error_str_len, "%s: %s protocol " 6581 "name %s", __func__, 6582 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : 6583 "invalid", tmpstr); 6584 } 6585 retval = 1; 6586 goto bailout; 6587 } 6588 switch (scsi_proto_map[table_entry].value) { 6589 case SCSI_PROTO_FC: 6590 case SCSI_PROTO_1394: 6591 case SCSI_PROTO_SAS: 6592 retval = scsi_parse_transportid_64bit( 6593 scsi_proto_map[table_entry].value, transportid_str, hdr, 6594 alloc_len, 6595 #ifdef _KERNEL 6596 type, flags, 6597 #endif 6598 error_str, error_str_len); 6599 break; 6600 case SCSI_PROTO_SPI: 6601 retval = scsi_parse_transportid_spi(transportid_str, hdr, 6602 alloc_len, 6603 #ifdef _KERNEL 6604 type, flags, 6605 #endif 6606 error_str, error_str_len); 6607 break; 6608 case SCSI_PROTO_RDMA: 6609 retval = scsi_parse_transportid_rdma(transportid_str, hdr, 6610 alloc_len, 6611 #ifdef _KERNEL 6612 type, flags, 6613 #endif 6614 error_str, error_str_len); 6615 break; 6616 case SCSI_PROTO_ISCSI: 6617 retval = scsi_parse_transportid_iscsi(transportid_str, hdr, 6618 alloc_len, 6619 #ifdef _KERNEL 6620 type, flags, 6621 #endif 6622 error_str, error_str_len); 6623 break; 6624 case SCSI_PROTO_SOP: 6625 retval = scsi_parse_transportid_sop(transportid_str, hdr, 6626 alloc_len, 6627 #ifdef _KERNEL 6628 type, flags, 6629 #endif 6630 error_str, error_str_len); 6631 break; 6632 case SCSI_PROTO_SSA: 6633 case SCSI_PROTO_ADITP: 6634 case SCSI_PROTO_ATA: 6635 case SCSI_PROTO_UAS: 6636 case SCSI_PROTO_NONE: 6637 default: 6638 /* 6639 * There is no format defined for a Transport ID for these 6640 * protocols. So even if the user gives us something, we 6641 * have no way to turn it into a standard SCSI Transport ID. 6642 */ 6643 retval = 1; 6644 if (error_str != NULL) { 6645 snprintf(error_str, error_str_len, "%s: no Transport " 6646 "ID format exists for protocol %s", 6647 __func__, tmpstr); 6648 } 6649 goto bailout; 6650 break; /* NOTREACHED */ 6651 } 6652 bailout: 6653 return (retval); 6654 } 6655 6656 struct scsi_attrib_table_entry scsi_mam_attr_table[] = { 6657 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6658 "Remaining Capacity in Partition", 6659 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL }, 6660 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6661 "Maximum Capacity in Partition", 6662 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6663 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX, 6664 "TapeAlert Flags", 6665 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6666 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE, 6667 "Load Count", 6668 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6669 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE, 6670 "MAM Space Remaining", 6671 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6672 /*parse_str*/ NULL }, 6673 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6674 "Assigning Organization", 6675 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6676 /*parse_str*/ NULL }, 6677 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6678 "Format Density Code", 6679 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6680 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE, 6681 "Initialization Count", 6682 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6683 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE, 6684 "Volume Identifier", 6685 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6686 /*parse_str*/ NULL }, 6687 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX, 6688 "Volume Change Reference", 6689 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6690 /*parse_str*/ NULL }, 6691 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE, 6692 "Device Vendor/Serial at Last Load", 6693 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6694 /*parse_str*/ NULL }, 6695 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE, 6696 "Device Vendor/Serial at Last Load - 1", 6697 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6698 /*parse_str*/ NULL }, 6699 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE, 6700 "Device Vendor/Serial at Last Load - 2", 6701 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6702 /*parse_str*/ NULL }, 6703 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE, 6704 "Device Vendor/Serial at Last Load - 3", 6705 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6706 /*parse_str*/ NULL }, 6707 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE, 6708 "Total MB Written in Medium Life", 6709 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6710 /*parse_str*/ NULL }, 6711 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE, 6712 "Total MB Read in Medium Life", 6713 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6714 /*parse_str*/ NULL }, 6715 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE, 6716 "Total MB Written in Current/Last Load", 6717 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6718 /*parse_str*/ NULL }, 6719 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE, 6720 "Total MB Read in Current/Last Load", 6721 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6722 /*parse_str*/ NULL }, 6723 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6724 "Logical Position of First Encrypted Block", 6725 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6726 /*parse_str*/ NULL }, 6727 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6728 "Logical Position of First Unencrypted Block after First " 6729 "Encrypted Block", 6730 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6731 /*parse_str*/ NULL }, 6732 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6733 "Medium Usage History", 6734 /*suffix*/ NULL, /*to_str*/ NULL, 6735 /*parse_str*/ NULL }, 6736 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6737 "Partition Usage History", 6738 /*suffix*/ NULL, /*to_str*/ NULL, 6739 /*parse_str*/ NULL }, 6740 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE, 6741 "Medium Manufacturer", 6742 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6743 /*parse_str*/ NULL }, 6744 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE, 6745 "Medium Serial Number", 6746 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6747 /*parse_str*/ NULL }, 6748 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE, 6749 "Medium Length", 6750 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf, 6751 /*parse_str*/ NULL }, 6752 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 | 6753 SCSI_ATTR_FLAG_FP_1DIGIT, 6754 "Medium Width", 6755 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf, 6756 /*parse_str*/ NULL }, 6757 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6758 "Assigning Organization", 6759 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6760 /*parse_str*/ NULL }, 6761 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6762 "Medium Density Code", 6763 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6764 /*parse_str*/ NULL }, 6765 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE, 6766 "Medium Manufacture Date", 6767 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6768 /*parse_str*/ NULL }, 6769 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE, 6770 "MAM Capacity", 6771 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6772 /*parse_str*/ NULL }, 6773 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX, 6774 "Medium Type", 6775 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6776 /*parse_str*/ NULL }, 6777 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX, 6778 "Medium Type Information", 6779 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6780 /*parse_str*/ NULL }, 6781 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE, 6782 "Medium Serial Number", 6783 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6784 /*parse_str*/ NULL }, 6785 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE, 6786 "Application Vendor", 6787 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6788 /*parse_str*/ NULL }, 6789 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE, 6790 "Application Name", 6791 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6792 /*parse_str*/ NULL }, 6793 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE, 6794 "Application Version", 6795 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6796 /*parse_str*/ NULL }, 6797 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE, 6798 "User Medium Text Label", 6799 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6800 /*parse_str*/ NULL }, 6801 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE, 6802 "Date and Time Last Written", 6803 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6804 /*parse_str*/ NULL }, 6805 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX, 6806 "Text Localization Identifier", 6807 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6808 /*parse_str*/ NULL }, 6809 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE, 6810 "Barcode", 6811 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6812 /*parse_str*/ NULL }, 6813 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE, 6814 "Owning Host Textual Name", 6815 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6816 /*parse_str*/ NULL }, 6817 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE, 6818 "Media Pool", 6819 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6820 /*parse_str*/ NULL }, 6821 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE, 6822 "Partition User Text Label", 6823 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6824 /*parse_str*/ NULL }, 6825 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE, 6826 "Load/Unload at Partition", 6827 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6828 /*parse_str*/ NULL }, 6829 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE, 6830 "Application Format Version", 6831 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6832 /*parse_str*/ NULL }, 6833 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE, 6834 "Volume Coherency Information", 6835 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf, 6836 /*parse_str*/ NULL }, 6837 { 0x0ff1, SCSI_ATTR_FLAG_NONE, 6838 "Spectra MLM Creation", 6839 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6840 /*parse_str*/ NULL }, 6841 { 0x0ff2, SCSI_ATTR_FLAG_NONE, 6842 "Spectra MLM C3", 6843 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6844 /*parse_str*/ NULL }, 6845 { 0x0ff3, SCSI_ATTR_FLAG_NONE, 6846 "Spectra MLM RW", 6847 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6848 /*parse_str*/ NULL }, 6849 { 0x0ff4, SCSI_ATTR_FLAG_NONE, 6850 "Spectra MLM SDC List", 6851 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6852 /*parse_str*/ NULL }, 6853 { 0x0ff7, SCSI_ATTR_FLAG_NONE, 6854 "Spectra MLM Post Scan", 6855 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6856 /*parse_str*/ NULL }, 6857 { 0x0ffe, SCSI_ATTR_FLAG_NONE, 6858 "Spectra MLM Checksum", 6859 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6860 /*parse_str*/ NULL }, 6861 { 0x17f1, SCSI_ATTR_FLAG_NONE, 6862 "Spectra MLM Creation", 6863 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6864 /*parse_str*/ NULL }, 6865 { 0x17f2, SCSI_ATTR_FLAG_NONE, 6866 "Spectra MLM C3", 6867 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6868 /*parse_str*/ NULL }, 6869 { 0x17f3, SCSI_ATTR_FLAG_NONE, 6870 "Spectra MLM RW", 6871 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6872 /*parse_str*/ NULL }, 6873 { 0x17f4, SCSI_ATTR_FLAG_NONE, 6874 "Spectra MLM SDC List", 6875 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6876 /*parse_str*/ NULL }, 6877 { 0x17f7, SCSI_ATTR_FLAG_NONE, 6878 "Spectra MLM Post Scan", 6879 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6880 /*parse_str*/ NULL }, 6881 { 0x17ff, SCSI_ATTR_FLAG_NONE, 6882 "Spectra MLM Checksum", 6883 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6884 /*parse_str*/ NULL }, 6885 }; 6886 6887 /* 6888 * Print out Volume Coherency Information (Attribute 0x080c). 6889 * This field has two variable length members, including one at the 6890 * beginning, so it isn't practical to have a fixed structure definition. 6891 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25, 6892 * 2013. 6893 */ 6894 int 6895 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 6896 uint32_t valid_len, uint32_t flags, 6897 uint32_t output_flags, char *error_str, 6898 int error_str_len) 6899 { 6900 size_t avail_len; 6901 uint32_t field_size; 6902 uint64_t tmp_val; 6903 uint8_t *cur_ptr; 6904 int retval; 6905 int vcr_len, as_len; 6906 6907 retval = 0; 6908 tmp_val = 0; 6909 6910 field_size = scsi_2btoul(hdr->length); 6911 avail_len = valid_len - sizeof(*hdr); 6912 if (field_size > avail_len) { 6913 if (error_str != NULL) { 6914 snprintf(error_str, error_str_len, "Available " 6915 "length of attribute ID 0x%.4x %zu < field " 6916 "length %u", scsi_2btoul(hdr->id), avail_len, 6917 field_size); 6918 } 6919 retval = 1; 6920 goto bailout; 6921 } else if (field_size == 0) { 6922 /* 6923 * It isn't clear from the spec whether a field length of 6924 * 0 is invalid here. It probably is, but be lenient here 6925 * to avoid inconveniencing the user. 6926 */ 6927 goto bailout; 6928 } 6929 cur_ptr = hdr->attribute; 6930 vcr_len = *cur_ptr; 6931 cur_ptr++; 6932 6933 sbuf_printf(sb, "\n\tVolume Change Reference Value:"); 6934 6935 switch (vcr_len) { 6936 case 0: 6937 if (error_str != NULL) { 6938 snprintf(error_str, error_str_len, "Volume Change " 6939 "Reference value has length of 0"); 6940 } 6941 retval = 1; 6942 goto bailout; 6943 break; /*NOTREACHED*/ 6944 case 1: 6945 tmp_val = *cur_ptr; 6946 break; 6947 case 2: 6948 tmp_val = scsi_2btoul(cur_ptr); 6949 break; 6950 case 3: 6951 tmp_val = scsi_3btoul(cur_ptr); 6952 break; 6953 case 4: 6954 tmp_val = scsi_4btoul(cur_ptr); 6955 break; 6956 case 8: 6957 tmp_val = scsi_8btou64(cur_ptr); 6958 break; 6959 default: 6960 sbuf_printf(sb, "\n"); 6961 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0); 6962 break; 6963 } 6964 if (vcr_len <= 8) 6965 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val); 6966 6967 cur_ptr += vcr_len; 6968 tmp_val = scsi_8btou64(cur_ptr); 6969 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val); 6970 6971 cur_ptr += sizeof(tmp_val); 6972 tmp_val = scsi_8btou64(cur_ptr); 6973 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n", 6974 (uintmax_t)tmp_val); 6975 6976 /* 6977 * Figure out how long the Application Client Specific Information 6978 * is and produce a hexdump. 6979 */ 6980 cur_ptr += sizeof(tmp_val); 6981 as_len = scsi_2btoul(cur_ptr); 6982 cur_ptr += sizeof(uint16_t); 6983 sbuf_printf(sb, "\tApplication Client Specific Information: "); 6984 if (((as_len == SCSI_LTFS_VER0_LEN) 6985 || (as_len == SCSI_LTFS_VER1_LEN)) 6986 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) { 6987 sbuf_printf(sb, "LTFS\n"); 6988 cur_ptr += SCSI_LTFS_STR_LEN + 1; 6989 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0') 6990 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0'; 6991 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr); 6992 cur_ptr += SCSI_LTFS_UUID_LEN + 1; 6993 /* XXX KDM check the length */ 6994 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr); 6995 } else { 6996 sbuf_printf(sb, "Unknown\n"); 6997 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0); 6998 } 6999 7000 bailout: 7001 return (retval); 7002 } 7003 7004 int 7005 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7006 uint32_t valid_len, uint32_t flags, 7007 uint32_t output_flags, char *error_str, 7008 int error_str_len) 7009 { 7010 size_t avail_len; 7011 uint32_t field_size; 7012 struct scsi_attrib_vendser *vendser; 7013 cam_strvis_flags strvis_flags; 7014 int retval = 0; 7015 7016 field_size = scsi_2btoul(hdr->length); 7017 avail_len = valid_len - sizeof(*hdr); 7018 if (field_size > avail_len) { 7019 if (error_str != NULL) { 7020 snprintf(error_str, error_str_len, "Available " 7021 "length of attribute ID 0x%.4x %zu < field " 7022 "length %u", scsi_2btoul(hdr->id), avail_len, 7023 field_size); 7024 } 7025 retval = 1; 7026 goto bailout; 7027 } else if (field_size == 0) { 7028 /* 7029 * A field size of 0 doesn't make sense here. The device 7030 * can at least give you the vendor ID, even if it can't 7031 * give you the serial number. 7032 */ 7033 if (error_str != NULL) { 7034 snprintf(error_str, error_str_len, "The length of " 7035 "attribute ID 0x%.4x is 0", 7036 scsi_2btoul(hdr->id)); 7037 } 7038 retval = 1; 7039 goto bailout; 7040 } 7041 vendser = (struct scsi_attrib_vendser *)hdr->attribute; 7042 7043 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7044 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7045 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7046 break; 7047 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7048 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7049 break; 7050 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7051 default: 7052 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7053 break;; 7054 } 7055 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor), 7056 strvis_flags); 7057 sbuf_putc(sb, ' '); 7058 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num), 7059 strvis_flags); 7060 bailout: 7061 return (retval); 7062 } 7063 7064 int 7065 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7066 uint32_t valid_len, uint32_t flags, 7067 uint32_t output_flags, char *error_str, 7068 int error_str_len) 7069 { 7070 uint32_t field_size; 7071 ssize_t avail_len; 7072 uint32_t print_len; 7073 uint8_t *num_ptr; 7074 int retval = 0; 7075 7076 field_size = scsi_2btoul(hdr->length); 7077 avail_len = valid_len - sizeof(*hdr); 7078 print_len = MIN(avail_len, field_size); 7079 num_ptr = hdr->attribute; 7080 7081 if (print_len > 0) { 7082 sbuf_printf(sb, "\n"); 7083 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0); 7084 } 7085 7086 return (retval); 7087 } 7088 7089 int 7090 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7091 uint32_t valid_len, uint32_t flags, 7092 uint32_t output_flags, char *error_str, 7093 int error_str_len) 7094 { 7095 uint64_t print_number; 7096 size_t avail_len; 7097 uint32_t number_size; 7098 int retval = 0; 7099 7100 number_size = scsi_2btoul(hdr->length); 7101 7102 avail_len = valid_len - sizeof(*hdr); 7103 if (avail_len < number_size) { 7104 if (error_str != NULL) { 7105 snprintf(error_str, error_str_len, "Available " 7106 "length of attribute ID 0x%.4x %zu < field " 7107 "length %u", scsi_2btoul(hdr->id), avail_len, 7108 number_size); 7109 } 7110 retval = 1; 7111 goto bailout; 7112 } 7113 7114 switch (number_size) { 7115 case 0: 7116 /* 7117 * We don't treat this as an error, since there may be 7118 * scenarios where a device reports a field but then gives 7119 * a length of 0. See the note in scsi_attrib_ascii_sbuf(). 7120 */ 7121 goto bailout; 7122 break; /*NOTREACHED*/ 7123 case 1: 7124 print_number = hdr->attribute[0]; 7125 break; 7126 case 2: 7127 print_number = scsi_2btoul(hdr->attribute); 7128 break; 7129 case 3: 7130 print_number = scsi_3btoul(hdr->attribute); 7131 break; 7132 case 4: 7133 print_number = scsi_4btoul(hdr->attribute); 7134 break; 7135 case 8: 7136 print_number = scsi_8btou64(hdr->attribute); 7137 break; 7138 default: 7139 /* 7140 * If we wind up here, the number is too big to print 7141 * normally, so just do a hexdump. 7142 */ 7143 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7144 flags, output_flags, 7145 error_str, error_str_len); 7146 goto bailout; 7147 break; 7148 } 7149 7150 if (flags & SCSI_ATTR_FLAG_FP) { 7151 #ifndef _KERNEL 7152 long double num_float; 7153 7154 num_float = (long double)print_number; 7155 7156 if (flags & SCSI_ATTR_FLAG_DIV_10) 7157 num_float /= 10; 7158 7159 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ? 7160 1 : 0, num_float); 7161 #else /* _KERNEL */ 7162 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ? 7163 (print_number / 10) : print_number); 7164 #endif /* _KERNEL */ 7165 } else if (flags & SCSI_ATTR_FLAG_HEX) { 7166 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number); 7167 } else 7168 sbuf_printf(sb, "%ju", (uintmax_t)print_number); 7169 7170 bailout: 7171 return (retval); 7172 } 7173 7174 int 7175 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7176 uint32_t valid_len, uint32_t flags, 7177 uint32_t output_flags, char *error_str, 7178 int error_str_len) 7179 { 7180 size_t avail_len; 7181 uint32_t field_size, print_size; 7182 int retval = 0; 7183 7184 avail_len = valid_len - sizeof(*hdr); 7185 field_size = scsi_2btoul(hdr->length); 7186 print_size = MIN(avail_len, field_size); 7187 7188 if (print_size > 0) { 7189 cam_strvis_flags strvis_flags; 7190 7191 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7192 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7193 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7194 break; 7195 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7196 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7197 break; 7198 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7199 default: 7200 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7201 break; 7202 } 7203 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags); 7204 } else if (avail_len < field_size) { 7205 /* 7206 * We only report an error if the user didn't allocate 7207 * enough space to hold the full value of this field. If 7208 * the field length is 0, that is allowed by the spec. 7209 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER 7210 * "This attribute indicates the current volume identifier 7211 * (see SMC-3) of the medium. If the device server supports 7212 * this attribute but does not have access to the volume 7213 * identifier, the device server shall report this attribute 7214 * with an attribute length value of zero." 7215 */ 7216 if (error_str != NULL) { 7217 snprintf(error_str, error_str_len, "Available " 7218 "length of attribute ID 0x%.4x %zu < field " 7219 "length %u", scsi_2btoul(hdr->id), avail_len, 7220 field_size); 7221 } 7222 retval = 1; 7223 } 7224 7225 return (retval); 7226 } 7227 7228 int 7229 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7230 uint32_t valid_len, uint32_t flags, 7231 uint32_t output_flags, char *error_str, 7232 int error_str_len) 7233 { 7234 size_t avail_len; 7235 uint32_t field_size, print_size; 7236 int retval = 0; 7237 int esc_text = 1; 7238 7239 avail_len = valid_len - sizeof(*hdr); 7240 field_size = scsi_2btoul(hdr->length); 7241 print_size = MIN(avail_len, field_size); 7242 7243 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) == 7244 SCSI_ATTR_OUTPUT_TEXT_RAW) 7245 esc_text = 0; 7246 7247 if (print_size > 0) { 7248 uint32_t i; 7249 7250 for (i = 0; i < print_size; i++) { 7251 if (hdr->attribute[i] == '\0') 7252 continue; 7253 else if (((unsigned char)hdr->attribute[i] < 0x80) 7254 || (esc_text == 0)) 7255 sbuf_putc(sb, hdr->attribute[i]); 7256 else 7257 sbuf_printf(sb, "%%%02x", 7258 (unsigned char)hdr->attribute[i]); 7259 } 7260 } else if (avail_len < field_size) { 7261 /* 7262 * We only report an error if the user didn't allocate 7263 * enough space to hold the full value of this field. 7264 */ 7265 if (error_str != NULL) { 7266 snprintf(error_str, error_str_len, "Available " 7267 "length of attribute ID 0x%.4x %zu < field " 7268 "length %u", scsi_2btoul(hdr->id), avail_len, 7269 field_size); 7270 } 7271 retval = 1; 7272 } 7273 7274 return (retval); 7275 } 7276 7277 struct scsi_attrib_table_entry * 7278 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table, 7279 size_t num_table_entries, uint32_t id) 7280 { 7281 uint32_t i; 7282 7283 for (i = 0; i < num_table_entries; i++) { 7284 if (table[i].id == id) 7285 return (&table[i]); 7286 } 7287 7288 return (NULL); 7289 } 7290 7291 struct scsi_attrib_table_entry * 7292 scsi_get_attrib_entry(uint32_t id) 7293 { 7294 return (scsi_find_attrib_entry(scsi_mam_attr_table, 7295 sizeof(scsi_mam_attr_table) / sizeof(scsi_mam_attr_table[0]), 7296 id)); 7297 } 7298 7299 int 7300 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, 7301 struct scsi_mam_attribute_header *hdr, uint32_t output_flags, 7302 char *error_str, size_t error_str_len) 7303 { 7304 int retval; 7305 7306 switch (hdr->byte2 & SMA_FORMAT_MASK) { 7307 case SMA_FORMAT_ASCII: 7308 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len, 7309 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len); 7310 break; 7311 case SMA_FORMAT_BINARY: 7312 if (scsi_2btoul(hdr->length) <= 8) 7313 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len, 7314 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7315 error_str_len); 7316 else 7317 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7318 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7319 error_str_len); 7320 break; 7321 case SMA_FORMAT_TEXT: 7322 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len, 7323 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7324 error_str_len); 7325 break; 7326 default: 7327 if (error_str != NULL) { 7328 snprintf(error_str, error_str_len, "Unknown attribute " 7329 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK); 7330 } 7331 retval = 1; 7332 goto bailout; 7333 break; /*NOTREACHED*/ 7334 } 7335 7336 sbuf_trim(sb); 7337 7338 bailout: 7339 7340 return (retval); 7341 } 7342 7343 void 7344 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, 7345 struct scsi_mam_attribute_header *hdr, 7346 uint32_t valid_len, const char *desc) 7347 { 7348 int need_space = 0; 7349 uint32_t len; 7350 uint32_t id; 7351 7352 /* 7353 * We can't do anything if we don't have enough valid data for the 7354 * header. 7355 */ 7356 if (valid_len < sizeof(*hdr)) 7357 return; 7358 7359 id = scsi_2btoul(hdr->id); 7360 /* 7361 * Note that we print out the value of the attribute listed in the 7362 * header, regardless of whether we actually got that many bytes 7363 * back from the device through the controller. A truncated result 7364 * could be the result of a failure to ask for enough data; the 7365 * header indicates how many bytes are allocated for this attribute 7366 * in the MAM. 7367 */ 7368 len = scsi_2btoul(hdr->length); 7369 7370 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) == 7371 SCSI_ATTR_OUTPUT_FIELD_NONE) 7372 return; 7373 7374 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC) 7375 && (desc != NULL)) { 7376 sbuf_printf(sb, "%s", desc); 7377 need_space = 1; 7378 } 7379 7380 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) { 7381 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id); 7382 need_space = 0; 7383 } 7384 7385 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) { 7386 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len); 7387 need_space = 0; 7388 } 7389 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) { 7390 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "", 7391 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW"); 7392 } 7393 sbuf_printf(sb, ": "); 7394 } 7395 7396 int 7397 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7398 uint32_t valid_len, struct scsi_attrib_table_entry *user_table, 7399 size_t num_user_entries, int prefer_user_table, 7400 uint32_t output_flags, char *error_str, int error_str_len) 7401 { 7402 int retval; 7403 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL; 7404 struct scsi_attrib_table_entry *entry = NULL; 7405 size_t table1_size = 0, table2_size = 0; 7406 uint32_t id; 7407 7408 retval = 0; 7409 7410 if (valid_len < sizeof(*hdr)) { 7411 retval = 1; 7412 goto bailout; 7413 } 7414 7415 id = scsi_2btoul(hdr->id); 7416 7417 if (user_table != NULL) { 7418 if (prefer_user_table != 0) { 7419 table1 = user_table; 7420 table1_size = num_user_entries; 7421 table2 = scsi_mam_attr_table; 7422 table2_size = sizeof(scsi_mam_attr_table) / 7423 sizeof(scsi_mam_attr_table[0]); 7424 } else { 7425 table1 = scsi_mam_attr_table; 7426 table1_size = sizeof(scsi_mam_attr_table) / 7427 sizeof(scsi_mam_attr_table[0]); 7428 table2 = user_table; 7429 table2_size = num_user_entries; 7430 } 7431 } else { 7432 table1 = scsi_mam_attr_table; 7433 table1_size = sizeof(scsi_mam_attr_table) / 7434 sizeof(scsi_mam_attr_table[0]); 7435 } 7436 7437 entry = scsi_find_attrib_entry(table1, table1_size, id); 7438 if (entry != NULL) { 7439 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, 7440 entry->desc); 7441 if (entry->to_str == NULL) 7442 goto print_default; 7443 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7444 output_flags, error_str, error_str_len); 7445 goto bailout; 7446 } 7447 if (table2 != NULL) { 7448 entry = scsi_find_attrib_entry(table2, table2_size, id); 7449 if (entry != NULL) { 7450 if (entry->to_str == NULL) 7451 goto print_default; 7452 7453 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, 7454 valid_len, entry->desc); 7455 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7456 output_flags, error_str, 7457 error_str_len); 7458 goto bailout; 7459 } 7460 } 7461 7462 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL); 7463 7464 print_default: 7465 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags, 7466 error_str, error_str_len); 7467 bailout: 7468 if (retval == 0) { 7469 if ((entry != NULL) 7470 && (entry->suffix != NULL)) 7471 sbuf_printf(sb, " %s", entry->suffix); 7472 7473 sbuf_trim(sb); 7474 sbuf_printf(sb, "\n"); 7475 } 7476 7477 return (retval); 7478 } 7479 7480 void 7481 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, 7482 void (*cbfcnp)(struct cam_periph *, union ccb *), 7483 u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout) 7484 { 7485 struct scsi_test_unit_ready *scsi_cmd; 7486 7487 cam_fill_csio(csio, 7488 retries, 7489 cbfcnp, 7490 CAM_DIR_NONE, 7491 tag_action, 7492 /*data_ptr*/NULL, 7493 /*dxfer_len*/0, 7494 sense_len, 7495 sizeof(*scsi_cmd), 7496 timeout); 7497 7498 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; 7499 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7500 scsi_cmd->opcode = TEST_UNIT_READY; 7501 } 7502 7503 void 7504 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, 7505 void (*cbfcnp)(struct cam_periph *, union ccb *), 7506 void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, 7507 u_int8_t sense_len, u_int32_t timeout) 7508 { 7509 struct scsi_request_sense *scsi_cmd; 7510 7511 cam_fill_csio(csio, 7512 retries, 7513 cbfcnp, 7514 CAM_DIR_IN, 7515 tag_action, 7516 data_ptr, 7517 dxfer_len, 7518 sense_len, 7519 sizeof(*scsi_cmd), 7520 timeout); 7521 7522 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; 7523 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7524 scsi_cmd->opcode = REQUEST_SENSE; 7525 scsi_cmd->length = dxfer_len; 7526 } 7527 7528 void 7529 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, 7530 void (*cbfcnp)(struct cam_periph *, union ccb *), 7531 u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, 7532 int evpd, u_int8_t page_code, u_int8_t sense_len, 7533 u_int32_t timeout) 7534 { 7535 struct scsi_inquiry *scsi_cmd; 7536 7537 cam_fill_csio(csio, 7538 retries, 7539 cbfcnp, 7540 /*flags*/CAM_DIR_IN, 7541 tag_action, 7542 /*data_ptr*/inq_buf, 7543 /*dxfer_len*/inq_len, 7544 sense_len, 7545 sizeof(*scsi_cmd), 7546 timeout); 7547 7548 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; 7549 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7550 scsi_cmd->opcode = INQUIRY; 7551 if (evpd) { 7552 scsi_cmd->byte2 |= SI_EVPD; 7553 scsi_cmd->page_code = page_code; 7554 } 7555 scsi_ulto2b(inq_len, scsi_cmd->length); 7556 } 7557 7558 void 7559 scsi_mode_sense(struct ccb_scsiio *csio, u_int32_t retries, 7560 void (*cbfcnp)(struct cam_periph *, union ccb *), 7561 u_int8_t tag_action, int dbd, u_int8_t page_code, 7562 u_int8_t page, u_int8_t *param_buf, u_int32_t param_len, 7563 u_int8_t sense_len, u_int32_t timeout) 7564 { 7565 7566 scsi_mode_sense_len(csio, retries, cbfcnp, tag_action, dbd, 7567 page_code, page, param_buf, param_len, 0, 7568 sense_len, timeout); 7569 } 7570 7571 void 7572 scsi_mode_sense_len(struct ccb_scsiio *csio, u_int32_t retries, 7573 void (*cbfcnp)(struct cam_periph *, union ccb *), 7574 u_int8_t tag_action, int dbd, u_int8_t page_code, 7575 u_int8_t page, u_int8_t *param_buf, u_int32_t param_len, 7576 int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) 7577 { 7578 u_int8_t cdb_len; 7579 7580 /* 7581 * Use the smallest possible command to perform the operation. 7582 */ 7583 if ((param_len < 256) 7584 && (minimum_cmd_size < 10)) { 7585 /* 7586 * We can fit in a 6 byte cdb. 7587 */ 7588 struct scsi_mode_sense_6 *scsi_cmd; 7589 7590 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; 7591 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7592 scsi_cmd->opcode = MODE_SENSE_6; 7593 if (dbd != 0) 7594 scsi_cmd->byte2 |= SMS_DBD; 7595 scsi_cmd->page = page_code | page; 7596 scsi_cmd->length = param_len; 7597 cdb_len = sizeof(*scsi_cmd); 7598 } else { 7599 /* 7600 * Need a 10 byte cdb. 7601 */ 7602 struct scsi_mode_sense_10 *scsi_cmd; 7603 7604 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; 7605 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7606 scsi_cmd->opcode = MODE_SENSE_10; 7607 if (dbd != 0) 7608 scsi_cmd->byte2 |= SMS_DBD; 7609 scsi_cmd->page = page_code | page; 7610 scsi_ulto2b(param_len, scsi_cmd->length); 7611 cdb_len = sizeof(*scsi_cmd); 7612 } 7613 cam_fill_csio(csio, 7614 retries, 7615 cbfcnp, 7616 CAM_DIR_IN, 7617 tag_action, 7618 param_buf, 7619 param_len, 7620 sense_len, 7621 cdb_len, 7622 timeout); 7623 } 7624 7625 void 7626 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, 7627 void (*cbfcnp)(struct cam_periph *, union ccb *), 7628 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7629 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7630 u_int32_t timeout) 7631 { 7632 scsi_mode_select_len(csio, retries, cbfcnp, tag_action, 7633 scsi_page_fmt, save_pages, param_buf, 7634 param_len, 0, sense_len, timeout); 7635 } 7636 7637 void 7638 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, 7639 void (*cbfcnp)(struct cam_periph *, union ccb *), 7640 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7641 u_int8_t *param_buf, u_int32_t param_len, 7642 int minimum_cmd_size, u_int8_t sense_len, 7643 u_int32_t timeout) 7644 { 7645 u_int8_t cdb_len; 7646 7647 /* 7648 * Use the smallest possible command to perform the operation. 7649 */ 7650 if ((param_len < 256) 7651 && (minimum_cmd_size < 10)) { 7652 /* 7653 * We can fit in a 6 byte cdb. 7654 */ 7655 struct scsi_mode_select_6 *scsi_cmd; 7656 7657 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; 7658 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7659 scsi_cmd->opcode = MODE_SELECT_6; 7660 if (scsi_page_fmt != 0) 7661 scsi_cmd->byte2 |= SMS_PF; 7662 if (save_pages != 0) 7663 scsi_cmd->byte2 |= SMS_SP; 7664 scsi_cmd->length = param_len; 7665 cdb_len = sizeof(*scsi_cmd); 7666 } else { 7667 /* 7668 * Need a 10 byte cdb. 7669 */ 7670 struct scsi_mode_select_10 *scsi_cmd; 7671 7672 scsi_cmd = 7673 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; 7674 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7675 scsi_cmd->opcode = MODE_SELECT_10; 7676 if (scsi_page_fmt != 0) 7677 scsi_cmd->byte2 |= SMS_PF; 7678 if (save_pages != 0) 7679 scsi_cmd->byte2 |= SMS_SP; 7680 scsi_ulto2b(param_len, scsi_cmd->length); 7681 cdb_len = sizeof(*scsi_cmd); 7682 } 7683 cam_fill_csio(csio, 7684 retries, 7685 cbfcnp, 7686 CAM_DIR_OUT, 7687 tag_action, 7688 param_buf, 7689 param_len, 7690 sense_len, 7691 cdb_len, 7692 timeout); 7693 } 7694 7695 void 7696 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, 7697 void (*cbfcnp)(struct cam_periph *, union ccb *), 7698 u_int8_t tag_action, u_int8_t page_code, u_int8_t page, 7699 int save_pages, int ppc, u_int32_t paramptr, 7700 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7701 u_int32_t timeout) 7702 { 7703 struct scsi_log_sense *scsi_cmd; 7704 u_int8_t cdb_len; 7705 7706 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; 7707 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7708 scsi_cmd->opcode = LOG_SENSE; 7709 scsi_cmd->page = page_code | page; 7710 if (save_pages != 0) 7711 scsi_cmd->byte2 |= SLS_SP; 7712 if (ppc != 0) 7713 scsi_cmd->byte2 |= SLS_PPC; 7714 scsi_ulto2b(paramptr, scsi_cmd->paramptr); 7715 scsi_ulto2b(param_len, scsi_cmd->length); 7716 cdb_len = sizeof(*scsi_cmd); 7717 7718 cam_fill_csio(csio, 7719 retries, 7720 cbfcnp, 7721 /*flags*/CAM_DIR_IN, 7722 tag_action, 7723 /*data_ptr*/param_buf, 7724 /*dxfer_len*/param_len, 7725 sense_len, 7726 cdb_len, 7727 timeout); 7728 } 7729 7730 void 7731 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, 7732 void (*cbfcnp)(struct cam_periph *, union ccb *), 7733 u_int8_t tag_action, u_int8_t page_code, int save_pages, 7734 int pc_reset, u_int8_t *param_buf, u_int32_t param_len, 7735 u_int8_t sense_len, u_int32_t timeout) 7736 { 7737 struct scsi_log_select *scsi_cmd; 7738 u_int8_t cdb_len; 7739 7740 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; 7741 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7742 scsi_cmd->opcode = LOG_SELECT; 7743 scsi_cmd->page = page_code & SLS_PAGE_CODE; 7744 if (save_pages != 0) 7745 scsi_cmd->byte2 |= SLS_SP; 7746 if (pc_reset != 0) 7747 scsi_cmd->byte2 |= SLS_PCR; 7748 scsi_ulto2b(param_len, scsi_cmd->length); 7749 cdb_len = sizeof(*scsi_cmd); 7750 7751 cam_fill_csio(csio, 7752 retries, 7753 cbfcnp, 7754 /*flags*/CAM_DIR_OUT, 7755 tag_action, 7756 /*data_ptr*/param_buf, 7757 /*dxfer_len*/param_len, 7758 sense_len, 7759 cdb_len, 7760 timeout); 7761 } 7762 7763 /* 7764 * Prevent or allow the user to remove the media 7765 */ 7766 void 7767 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, 7768 void (*cbfcnp)(struct cam_periph *, union ccb *), 7769 u_int8_t tag_action, u_int8_t action, 7770 u_int8_t sense_len, u_int32_t timeout) 7771 { 7772 struct scsi_prevent *scsi_cmd; 7773 7774 cam_fill_csio(csio, 7775 retries, 7776 cbfcnp, 7777 /*flags*/CAM_DIR_NONE, 7778 tag_action, 7779 /*data_ptr*/NULL, 7780 /*dxfer_len*/0, 7781 sense_len, 7782 sizeof(*scsi_cmd), 7783 timeout); 7784 7785 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; 7786 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7787 scsi_cmd->opcode = PREVENT_ALLOW; 7788 scsi_cmd->how = action; 7789 } 7790 7791 /* XXX allow specification of address and PMI bit and LBA */ 7792 void 7793 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, 7794 void (*cbfcnp)(struct cam_periph *, union ccb *), 7795 u_int8_t tag_action, 7796 struct scsi_read_capacity_data *rcap_buf, 7797 u_int8_t sense_len, u_int32_t timeout) 7798 { 7799 struct scsi_read_capacity *scsi_cmd; 7800 7801 cam_fill_csio(csio, 7802 retries, 7803 cbfcnp, 7804 /*flags*/CAM_DIR_IN, 7805 tag_action, 7806 /*data_ptr*/(u_int8_t *)rcap_buf, 7807 /*dxfer_len*/sizeof(*rcap_buf), 7808 sense_len, 7809 sizeof(*scsi_cmd), 7810 timeout); 7811 7812 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; 7813 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7814 scsi_cmd->opcode = READ_CAPACITY; 7815 } 7816 7817 void 7818 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, 7819 void (*cbfcnp)(struct cam_periph *, union ccb *), 7820 uint8_t tag_action, uint64_t lba, int reladr, int pmi, 7821 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, 7822 uint32_t timeout) 7823 { 7824 struct scsi_read_capacity_16 *scsi_cmd; 7825 7826 7827 cam_fill_csio(csio, 7828 retries, 7829 cbfcnp, 7830 /*flags*/CAM_DIR_IN, 7831 tag_action, 7832 /*data_ptr*/(u_int8_t *)rcap_buf, 7833 /*dxfer_len*/rcap_buf_len, 7834 sense_len, 7835 sizeof(*scsi_cmd), 7836 timeout); 7837 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 7838 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7839 scsi_cmd->opcode = SERVICE_ACTION_IN; 7840 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 7841 scsi_u64to8b(lba, scsi_cmd->addr); 7842 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); 7843 if (pmi) 7844 reladr |= SRC16_PMI; 7845 if (reladr) 7846 reladr |= SRC16_RELADR; 7847 } 7848 7849 void 7850 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, 7851 void (*cbfcnp)(struct cam_periph *, union ccb *), 7852 u_int8_t tag_action, u_int8_t select_report, 7853 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, 7854 u_int8_t sense_len, u_int32_t timeout) 7855 { 7856 struct scsi_report_luns *scsi_cmd; 7857 7858 cam_fill_csio(csio, 7859 retries, 7860 cbfcnp, 7861 /*flags*/CAM_DIR_IN, 7862 tag_action, 7863 /*data_ptr*/(u_int8_t *)rpl_buf, 7864 /*dxfer_len*/alloc_len, 7865 sense_len, 7866 sizeof(*scsi_cmd), 7867 timeout); 7868 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; 7869 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7870 scsi_cmd->opcode = REPORT_LUNS; 7871 scsi_cmd->select_report = select_report; 7872 scsi_ulto4b(alloc_len, scsi_cmd->length); 7873 } 7874 7875 void 7876 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7877 void (*cbfcnp)(struct cam_periph *, union ccb *), 7878 u_int8_t tag_action, u_int8_t pdf, 7879 void *buf, u_int32_t alloc_len, 7880 u_int8_t sense_len, u_int32_t timeout) 7881 { 7882 struct scsi_target_group *scsi_cmd; 7883 7884 cam_fill_csio(csio, 7885 retries, 7886 cbfcnp, 7887 /*flags*/CAM_DIR_IN, 7888 tag_action, 7889 /*data_ptr*/(u_int8_t *)buf, 7890 /*dxfer_len*/alloc_len, 7891 sense_len, 7892 sizeof(*scsi_cmd), 7893 timeout); 7894 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 7895 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7896 scsi_cmd->opcode = MAINTENANCE_IN; 7897 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; 7898 scsi_ulto4b(alloc_len, scsi_cmd->length); 7899 } 7900 7901 void 7902 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7903 void (*cbfcnp)(struct cam_periph *, union ccb *), 7904 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 7905 u_int8_t sense_len, u_int32_t timeout) 7906 { 7907 struct scsi_target_group *scsi_cmd; 7908 7909 cam_fill_csio(csio, 7910 retries, 7911 cbfcnp, 7912 /*flags*/CAM_DIR_OUT, 7913 tag_action, 7914 /*data_ptr*/(u_int8_t *)buf, 7915 /*dxfer_len*/alloc_len, 7916 sense_len, 7917 sizeof(*scsi_cmd), 7918 timeout); 7919 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 7920 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7921 scsi_cmd->opcode = MAINTENANCE_OUT; 7922 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; 7923 scsi_ulto4b(alloc_len, scsi_cmd->length); 7924 } 7925 7926 /* 7927 * Syncronize the media to the contents of the cache for 7928 * the given lba/count pair. Specifying 0/0 means sync 7929 * the whole cache. 7930 */ 7931 void 7932 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, 7933 void (*cbfcnp)(struct cam_periph *, union ccb *), 7934 u_int8_t tag_action, u_int32_t begin_lba, 7935 u_int16_t lb_count, u_int8_t sense_len, 7936 u_int32_t timeout) 7937 { 7938 struct scsi_sync_cache *scsi_cmd; 7939 7940 cam_fill_csio(csio, 7941 retries, 7942 cbfcnp, 7943 /*flags*/CAM_DIR_NONE, 7944 tag_action, 7945 /*data_ptr*/NULL, 7946 /*dxfer_len*/0, 7947 sense_len, 7948 sizeof(*scsi_cmd), 7949 timeout); 7950 7951 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; 7952 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7953 scsi_cmd->opcode = SYNCHRONIZE_CACHE; 7954 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); 7955 scsi_ulto2b(lb_count, scsi_cmd->lb_count); 7956 } 7957 7958 void 7959 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, 7960 void (*cbfcnp)(struct cam_periph *, union ccb *), 7961 u_int8_t tag_action, int readop, u_int8_t byte2, 7962 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 7963 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 7964 u_int32_t timeout) 7965 { 7966 int read; 7967 u_int8_t cdb_len; 7968 7969 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; 7970 7971 /* 7972 * Use the smallest possible command to perform the operation 7973 * as some legacy hardware does not support the 10 byte commands. 7974 * If any of the bits in byte2 is set, we have to go with a larger 7975 * command. 7976 */ 7977 if ((minimum_cmd_size < 10) 7978 && ((lba & 0x1fffff) == lba) 7979 && ((block_count & 0xff) == block_count) 7980 && (byte2 == 0)) { 7981 /* 7982 * We can fit in a 6 byte cdb. 7983 */ 7984 struct scsi_rw_6 *scsi_cmd; 7985 7986 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; 7987 scsi_cmd->opcode = read ? READ_6 : WRITE_6; 7988 scsi_ulto3b(lba, scsi_cmd->addr); 7989 scsi_cmd->length = block_count & 0xff; 7990 scsi_cmd->control = 0; 7991 cdb_len = sizeof(*scsi_cmd); 7992 7993 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 7994 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], 7995 scsi_cmd->addr[1], scsi_cmd->addr[2], 7996 scsi_cmd->length, dxfer_len)); 7997 } else if ((minimum_cmd_size < 12) 7998 && ((block_count & 0xffff) == block_count) 7999 && ((lba & 0xffffffff) == lba)) { 8000 /* 8001 * Need a 10 byte cdb. 8002 */ 8003 struct scsi_rw_10 *scsi_cmd; 8004 8005 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; 8006 scsi_cmd->opcode = read ? READ_10 : WRITE_10; 8007 scsi_cmd->byte2 = byte2; 8008 scsi_ulto4b(lba, scsi_cmd->addr); 8009 scsi_cmd->reserved = 0; 8010 scsi_ulto2b(block_count, scsi_cmd->length); 8011 scsi_cmd->control = 0; 8012 cdb_len = sizeof(*scsi_cmd); 8013 8014 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8015 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8016 scsi_cmd->addr[1], scsi_cmd->addr[2], 8017 scsi_cmd->addr[3], scsi_cmd->length[0], 8018 scsi_cmd->length[1], dxfer_len)); 8019 } else if ((minimum_cmd_size < 16) 8020 && ((block_count & 0xffffffff) == block_count) 8021 && ((lba & 0xffffffff) == lba)) { 8022 /* 8023 * The block count is too big for a 10 byte CDB, use a 12 8024 * byte CDB. 8025 */ 8026 struct scsi_rw_12 *scsi_cmd; 8027 8028 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; 8029 scsi_cmd->opcode = read ? READ_12 : WRITE_12; 8030 scsi_cmd->byte2 = byte2; 8031 scsi_ulto4b(lba, scsi_cmd->addr); 8032 scsi_cmd->reserved = 0; 8033 scsi_ulto4b(block_count, scsi_cmd->length); 8034 scsi_cmd->control = 0; 8035 cdb_len = sizeof(*scsi_cmd); 8036 8037 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8038 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], 8039 scsi_cmd->addr[1], scsi_cmd->addr[2], 8040 scsi_cmd->addr[3], scsi_cmd->length[0], 8041 scsi_cmd->length[1], scsi_cmd->length[2], 8042 scsi_cmd->length[3], dxfer_len)); 8043 } else { 8044 /* 8045 * 16 byte CDB. We'll only get here if the LBA is larger 8046 * than 2^32, or if the user asks for a 16 byte command. 8047 */ 8048 struct scsi_rw_16 *scsi_cmd; 8049 8050 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; 8051 scsi_cmd->opcode = read ? READ_16 : WRITE_16; 8052 scsi_cmd->byte2 = byte2; 8053 scsi_u64to8b(lba, scsi_cmd->addr); 8054 scsi_cmd->reserved = 0; 8055 scsi_ulto4b(block_count, scsi_cmd->length); 8056 scsi_cmd->control = 0; 8057 cdb_len = sizeof(*scsi_cmd); 8058 } 8059 cam_fill_csio(csio, 8060 retries, 8061 cbfcnp, 8062 (read ? CAM_DIR_IN : CAM_DIR_OUT) | 8063 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), 8064 tag_action, 8065 data_ptr, 8066 dxfer_len, 8067 sense_len, 8068 cdb_len, 8069 timeout); 8070 } 8071 8072 void 8073 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, 8074 void (*cbfcnp)(struct cam_periph *, union ccb *), 8075 u_int8_t tag_action, u_int8_t byte2, 8076 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8077 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8078 u_int32_t timeout) 8079 { 8080 u_int8_t cdb_len; 8081 if ((minimum_cmd_size < 16) && 8082 ((block_count & 0xffff) == block_count) && 8083 ((lba & 0xffffffff) == lba)) { 8084 /* 8085 * Need a 10 byte cdb. 8086 */ 8087 struct scsi_write_same_10 *scsi_cmd; 8088 8089 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; 8090 scsi_cmd->opcode = WRITE_SAME_10; 8091 scsi_cmd->byte2 = byte2; 8092 scsi_ulto4b(lba, scsi_cmd->addr); 8093 scsi_cmd->group = 0; 8094 scsi_ulto2b(block_count, scsi_cmd->length); 8095 scsi_cmd->control = 0; 8096 cdb_len = sizeof(*scsi_cmd); 8097 8098 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8099 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8100 scsi_cmd->addr[1], scsi_cmd->addr[2], 8101 scsi_cmd->addr[3], scsi_cmd->length[0], 8102 scsi_cmd->length[1], dxfer_len)); 8103 } else { 8104 /* 8105 * 16 byte CDB. We'll only get here if the LBA is larger 8106 * than 2^32, or if the user asks for a 16 byte command. 8107 */ 8108 struct scsi_write_same_16 *scsi_cmd; 8109 8110 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; 8111 scsi_cmd->opcode = WRITE_SAME_16; 8112 scsi_cmd->byte2 = byte2; 8113 scsi_u64to8b(lba, scsi_cmd->addr); 8114 scsi_ulto4b(block_count, scsi_cmd->length); 8115 scsi_cmd->group = 0; 8116 scsi_cmd->control = 0; 8117 cdb_len = sizeof(*scsi_cmd); 8118 8119 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8120 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", 8121 scsi_cmd->addr[0], scsi_cmd->addr[1], 8122 scsi_cmd->addr[2], scsi_cmd->addr[3], 8123 scsi_cmd->addr[4], scsi_cmd->addr[5], 8124 scsi_cmd->addr[6], scsi_cmd->addr[7], 8125 scsi_cmd->length[0], scsi_cmd->length[1], 8126 scsi_cmd->length[2], scsi_cmd->length[3], 8127 dxfer_len)); 8128 } 8129 cam_fill_csio(csio, 8130 retries, 8131 cbfcnp, 8132 /*flags*/CAM_DIR_OUT, 8133 tag_action, 8134 data_ptr, 8135 dxfer_len, 8136 sense_len, 8137 cdb_len, 8138 timeout); 8139 } 8140 8141 void 8142 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries, 8143 void (*cbfcnp)(struct cam_periph *, union ccb *), 8144 u_int8_t tag_action, u_int8_t *data_ptr, 8145 u_int16_t dxfer_len, u_int8_t sense_len, 8146 u_int32_t timeout) 8147 { 8148 scsi_ata_pass_16(csio, 8149 retries, 8150 cbfcnp, 8151 /*flags*/CAM_DIR_IN, 8152 tag_action, 8153 /*protocol*/AP_PROTO_PIO_IN, 8154 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV| 8155 AP_FLAG_BYT_BLOK_BYTES|AP_FLAG_TLEN_SECT_CNT, 8156 /*features*/0, 8157 /*sector_count*/dxfer_len, 8158 /*lba*/0, 8159 /*command*/ATA_ATA_IDENTIFY, 8160 /*control*/0, 8161 data_ptr, 8162 dxfer_len, 8163 sense_len, 8164 timeout); 8165 } 8166 8167 void 8168 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries, 8169 void (*cbfcnp)(struct cam_periph *, union ccb *), 8170 u_int8_t tag_action, u_int16_t block_count, 8171 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8172 u_int32_t timeout) 8173 { 8174 scsi_ata_pass_16(csio, 8175 retries, 8176 cbfcnp, 8177 /*flags*/CAM_DIR_OUT, 8178 tag_action, 8179 /*protocol*/AP_EXTEND|AP_PROTO_DMA, 8180 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS, 8181 /*features*/ATA_DSM_TRIM, 8182 /*sector_count*/block_count, 8183 /*lba*/0, 8184 /*command*/ATA_DATA_SET_MANAGEMENT, 8185 /*control*/0, 8186 data_ptr, 8187 dxfer_len, 8188 sense_len, 8189 timeout); 8190 } 8191 8192 void 8193 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries, 8194 void (*cbfcnp)(struct cam_periph *, union ccb *), 8195 u_int32_t flags, u_int8_t tag_action, 8196 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features, 8197 u_int16_t sector_count, uint64_t lba, u_int8_t command, 8198 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len, 8199 u_int8_t sense_len, u_int32_t timeout) 8200 { 8201 struct ata_pass_16 *ata_cmd; 8202 8203 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes; 8204 ata_cmd->opcode = ATA_PASS_16; 8205 ata_cmd->protocol = protocol; 8206 ata_cmd->flags = ata_flags; 8207 ata_cmd->features_ext = features >> 8; 8208 ata_cmd->features = features; 8209 ata_cmd->sector_count_ext = sector_count >> 8; 8210 ata_cmd->sector_count = sector_count; 8211 ata_cmd->lba_low = lba; 8212 ata_cmd->lba_mid = lba >> 8; 8213 ata_cmd->lba_high = lba >> 16; 8214 ata_cmd->device = ATA_DEV_LBA; 8215 if (protocol & AP_EXTEND) { 8216 ata_cmd->lba_low_ext = lba >> 24; 8217 ata_cmd->lba_mid_ext = lba >> 32; 8218 ata_cmd->lba_high_ext = lba >> 40; 8219 } else 8220 ata_cmd->device |= (lba >> 24) & 0x0f; 8221 ata_cmd->command = command; 8222 ata_cmd->control = control; 8223 8224 cam_fill_csio(csio, 8225 retries, 8226 cbfcnp, 8227 flags, 8228 tag_action, 8229 data_ptr, 8230 dxfer_len, 8231 sense_len, 8232 sizeof(*ata_cmd), 8233 timeout); 8234 } 8235 8236 void 8237 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, 8238 void (*cbfcnp)(struct cam_periph *, union ccb *), 8239 u_int8_t tag_action, u_int8_t byte2, 8240 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8241 u_int32_t timeout) 8242 { 8243 struct scsi_unmap *scsi_cmd; 8244 8245 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; 8246 scsi_cmd->opcode = UNMAP; 8247 scsi_cmd->byte2 = byte2; 8248 scsi_ulto4b(0, scsi_cmd->reserved); 8249 scsi_cmd->group = 0; 8250 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8251 scsi_cmd->control = 0; 8252 8253 cam_fill_csio(csio, 8254 retries, 8255 cbfcnp, 8256 /*flags*/CAM_DIR_OUT, 8257 tag_action, 8258 data_ptr, 8259 dxfer_len, 8260 sense_len, 8261 sizeof(*scsi_cmd), 8262 timeout); 8263 } 8264 8265 void 8266 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, 8267 void (*cbfcnp)(struct cam_periph *, union ccb*), 8268 uint8_t tag_action, int pcv, uint8_t page_code, 8269 uint8_t *data_ptr, uint16_t allocation_length, 8270 uint8_t sense_len, uint32_t timeout) 8271 { 8272 struct scsi_receive_diag *scsi_cmd; 8273 8274 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; 8275 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8276 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; 8277 if (pcv) { 8278 scsi_cmd->byte2 |= SRD_PCV; 8279 scsi_cmd->page_code = page_code; 8280 } 8281 scsi_ulto2b(allocation_length, scsi_cmd->length); 8282 8283 cam_fill_csio(csio, 8284 retries, 8285 cbfcnp, 8286 /*flags*/CAM_DIR_IN, 8287 tag_action, 8288 data_ptr, 8289 allocation_length, 8290 sense_len, 8291 sizeof(*scsi_cmd), 8292 timeout); 8293 } 8294 8295 void 8296 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, 8297 void (*cbfcnp)(struct cam_periph *, union ccb *), 8298 uint8_t tag_action, int unit_offline, int device_offline, 8299 int self_test, int page_format, int self_test_code, 8300 uint8_t *data_ptr, uint16_t param_list_length, 8301 uint8_t sense_len, uint32_t timeout) 8302 { 8303 struct scsi_send_diag *scsi_cmd; 8304 8305 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; 8306 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8307 scsi_cmd->opcode = SEND_DIAGNOSTIC; 8308 8309 /* 8310 * The default self-test mode control and specific test 8311 * control are mutually exclusive. 8312 */ 8313 if (self_test) 8314 self_test_code = SSD_SELF_TEST_CODE_NONE; 8315 8316 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) 8317 & SSD_SELF_TEST_CODE_MASK) 8318 | (unit_offline ? SSD_UNITOFFL : 0) 8319 | (device_offline ? SSD_DEVOFFL : 0) 8320 | (self_test ? SSD_SELFTEST : 0) 8321 | (page_format ? SSD_PF : 0); 8322 scsi_ulto2b(param_list_length, scsi_cmd->length); 8323 8324 cam_fill_csio(csio, 8325 retries, 8326 cbfcnp, 8327 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8328 tag_action, 8329 data_ptr, 8330 param_list_length, 8331 sense_len, 8332 sizeof(*scsi_cmd), 8333 timeout); 8334 } 8335 8336 void 8337 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8338 void (*cbfcnp)(struct cam_periph *, union ccb*), 8339 uint8_t tag_action, int mode, 8340 uint8_t buffer_id, u_int32_t offset, 8341 uint8_t *data_ptr, uint32_t allocation_length, 8342 uint8_t sense_len, uint32_t timeout) 8343 { 8344 struct scsi_read_buffer *scsi_cmd; 8345 8346 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes; 8347 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8348 scsi_cmd->opcode = READ_BUFFER; 8349 scsi_cmd->byte2 = mode; 8350 scsi_cmd->buffer_id = buffer_id; 8351 scsi_ulto3b(offset, scsi_cmd->offset); 8352 scsi_ulto3b(allocation_length, scsi_cmd->length); 8353 8354 cam_fill_csio(csio, 8355 retries, 8356 cbfcnp, 8357 /*flags*/CAM_DIR_IN, 8358 tag_action, 8359 data_ptr, 8360 allocation_length, 8361 sense_len, 8362 sizeof(*scsi_cmd), 8363 timeout); 8364 } 8365 8366 void 8367 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8368 void (*cbfcnp)(struct cam_periph *, union ccb *), 8369 uint8_t tag_action, int mode, 8370 uint8_t buffer_id, u_int32_t offset, 8371 uint8_t *data_ptr, uint32_t param_list_length, 8372 uint8_t sense_len, uint32_t timeout) 8373 { 8374 struct scsi_write_buffer *scsi_cmd; 8375 8376 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes; 8377 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8378 scsi_cmd->opcode = WRITE_BUFFER; 8379 scsi_cmd->byte2 = mode; 8380 scsi_cmd->buffer_id = buffer_id; 8381 scsi_ulto3b(offset, scsi_cmd->offset); 8382 scsi_ulto3b(param_list_length, scsi_cmd->length); 8383 8384 cam_fill_csio(csio, 8385 retries, 8386 cbfcnp, 8387 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8388 tag_action, 8389 data_ptr, 8390 param_list_length, 8391 sense_len, 8392 sizeof(*scsi_cmd), 8393 timeout); 8394 } 8395 8396 void 8397 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, 8398 void (*cbfcnp)(struct cam_periph *, union ccb *), 8399 u_int8_t tag_action, int start, int load_eject, 8400 int immediate, u_int8_t sense_len, u_int32_t timeout) 8401 { 8402 struct scsi_start_stop_unit *scsi_cmd; 8403 int extra_flags = 0; 8404 8405 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; 8406 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8407 scsi_cmd->opcode = START_STOP_UNIT; 8408 if (start != 0) { 8409 scsi_cmd->how |= SSS_START; 8410 /* it takes a lot of power to start a drive */ 8411 extra_flags |= CAM_HIGH_POWER; 8412 } 8413 if (load_eject != 0) 8414 scsi_cmd->how |= SSS_LOEJ; 8415 if (immediate != 0) 8416 scsi_cmd->byte2 |= SSS_IMMED; 8417 8418 cam_fill_csio(csio, 8419 retries, 8420 cbfcnp, 8421 /*flags*/CAM_DIR_NONE | extra_flags, 8422 tag_action, 8423 /*data_ptr*/NULL, 8424 /*dxfer_len*/0, 8425 sense_len, 8426 sizeof(*scsi_cmd), 8427 timeout); 8428 } 8429 8430 void 8431 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8432 void (*cbfcnp)(struct cam_periph *, union ccb *), 8433 u_int8_t tag_action, u_int8_t service_action, 8434 uint32_t element, u_int8_t elem_type, int logical_volume, 8435 int partition, u_int32_t first_attribute, int cache, 8436 u_int8_t *data_ptr, u_int32_t length, int sense_len, 8437 u_int32_t timeout) 8438 { 8439 struct scsi_read_attribute *scsi_cmd; 8440 8441 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes; 8442 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8443 8444 scsi_cmd->opcode = READ_ATTRIBUTE; 8445 scsi_cmd->service_action = service_action, 8446 scsi_ulto2b(element, scsi_cmd->element); 8447 scsi_cmd->elem_type = elem_type; 8448 scsi_cmd->logical_volume = logical_volume; 8449 scsi_cmd->partition = partition; 8450 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute); 8451 scsi_ulto4b(length, scsi_cmd->length); 8452 if (cache != 0) 8453 scsi_cmd->cache |= SRA_CACHE; 8454 8455 cam_fill_csio(csio, 8456 retries, 8457 cbfcnp, 8458 /*flags*/CAM_DIR_IN, 8459 tag_action, 8460 /*data_ptr*/data_ptr, 8461 /*dxfer_len*/length, 8462 sense_len, 8463 sizeof(*scsi_cmd), 8464 timeout); 8465 } 8466 8467 void 8468 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8469 void (*cbfcnp)(struct cam_periph *, union ccb *), 8470 u_int8_t tag_action, uint32_t element, int logical_volume, 8471 int partition, int wtc, u_int8_t *data_ptr, 8472 u_int32_t length, int sense_len, u_int32_t timeout) 8473 { 8474 struct scsi_write_attribute *scsi_cmd; 8475 8476 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes; 8477 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8478 8479 scsi_cmd->opcode = WRITE_ATTRIBUTE; 8480 if (wtc != 0) 8481 scsi_cmd->byte2 = SWA_WTC; 8482 scsi_ulto3b(element, scsi_cmd->element); 8483 scsi_cmd->logical_volume = logical_volume; 8484 scsi_cmd->partition = partition; 8485 scsi_ulto4b(length, scsi_cmd->length); 8486 8487 cam_fill_csio(csio, 8488 retries, 8489 cbfcnp, 8490 /*flags*/CAM_DIR_OUT, 8491 tag_action, 8492 /*data_ptr*/data_ptr, 8493 /*dxfer_len*/length, 8494 sense_len, 8495 sizeof(*scsi_cmd), 8496 timeout); 8497 } 8498 8499 void 8500 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, 8501 void (*cbfcnp)(struct cam_periph *, union ccb *), 8502 uint8_t tag_action, int service_action, 8503 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8504 int timeout) 8505 { 8506 struct scsi_per_res_in *scsi_cmd; 8507 8508 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes; 8509 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8510 8511 scsi_cmd->opcode = PERSISTENT_RES_IN; 8512 scsi_cmd->action = service_action; 8513 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8514 8515 cam_fill_csio(csio, 8516 retries, 8517 cbfcnp, 8518 /*flags*/CAM_DIR_IN, 8519 tag_action, 8520 data_ptr, 8521 dxfer_len, 8522 sense_len, 8523 sizeof(*scsi_cmd), 8524 timeout); 8525 } 8526 8527 void 8528 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, 8529 void (*cbfcnp)(struct cam_periph *, union ccb *), 8530 uint8_t tag_action, int service_action, 8531 int scope, int res_type, uint8_t *data_ptr, 8532 uint32_t dxfer_len, int sense_len, int timeout) 8533 { 8534 struct scsi_per_res_out *scsi_cmd; 8535 8536 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes; 8537 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8538 8539 scsi_cmd->opcode = PERSISTENT_RES_OUT; 8540 scsi_cmd->action = service_action; 8541 scsi_cmd->scope_type = scope | res_type; 8542 8543 cam_fill_csio(csio, 8544 retries, 8545 cbfcnp, 8546 /*flags*/CAM_DIR_OUT, 8547 tag_action, 8548 /*data_ptr*/data_ptr, 8549 /*dxfer_len*/dxfer_len, 8550 sense_len, 8551 sizeof(*scsi_cmd), 8552 timeout); 8553 } 8554 8555 void 8556 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, 8557 void (*cbfcnp)(struct cam_periph *, union ccb *), 8558 uint8_t tag_action, uint32_t security_protocol, 8559 uint32_t security_protocol_specific, int byte4, 8560 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8561 int timeout) 8562 { 8563 struct scsi_security_protocol_in *scsi_cmd; 8564 8565 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes; 8566 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8567 8568 scsi_cmd->opcode = SECURITY_PROTOCOL_IN; 8569 8570 scsi_cmd->security_protocol = security_protocol; 8571 scsi_ulto2b(security_protocol_specific, 8572 scsi_cmd->security_protocol_specific); 8573 scsi_cmd->byte4 = byte4; 8574 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8575 8576 cam_fill_csio(csio, 8577 retries, 8578 cbfcnp, 8579 /*flags*/CAM_DIR_IN, 8580 tag_action, 8581 data_ptr, 8582 dxfer_len, 8583 sense_len, 8584 sizeof(*scsi_cmd), 8585 timeout); 8586 } 8587 8588 void 8589 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, 8590 void (*cbfcnp)(struct cam_periph *, union ccb *), 8591 uint8_t tag_action, uint32_t security_protocol, 8592 uint32_t security_protocol_specific, int byte4, 8593 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8594 int timeout) 8595 { 8596 struct scsi_security_protocol_out *scsi_cmd; 8597 8598 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes; 8599 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8600 8601 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT; 8602 8603 scsi_cmd->security_protocol = security_protocol; 8604 scsi_ulto2b(security_protocol_specific, 8605 scsi_cmd->security_protocol_specific); 8606 scsi_cmd->byte4 = byte4; 8607 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8608 8609 cam_fill_csio(csio, 8610 retries, 8611 cbfcnp, 8612 /*flags*/CAM_DIR_OUT, 8613 tag_action, 8614 data_ptr, 8615 dxfer_len, 8616 sense_len, 8617 sizeof(*scsi_cmd), 8618 timeout); 8619 } 8620 8621 void 8622 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, 8623 void (*cbfcnp)(struct cam_periph *, union ccb *), 8624 uint8_t tag_action, int options, int req_opcode, 8625 int req_service_action, uint8_t *data_ptr, 8626 uint32_t dxfer_len, int sense_len, int timeout) 8627 { 8628 struct scsi_report_supported_opcodes *scsi_cmd; 8629 8630 scsi_cmd = (struct scsi_report_supported_opcodes *) 8631 &csio->cdb_io.cdb_bytes; 8632 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8633 8634 scsi_cmd->opcode = MAINTENANCE_IN; 8635 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES; 8636 scsi_cmd->options = options; 8637 scsi_cmd->requested_opcode = req_opcode; 8638 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action); 8639 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8640 8641 cam_fill_csio(csio, 8642 retries, 8643 cbfcnp, 8644 /*flags*/CAM_DIR_IN, 8645 tag_action, 8646 data_ptr, 8647 dxfer_len, 8648 sense_len, 8649 sizeof(*scsi_cmd), 8650 timeout); 8651 } 8652 8653 /* 8654 * Try make as good a match as possible with 8655 * available sub drivers 8656 */ 8657 int 8658 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 8659 { 8660 struct scsi_inquiry_pattern *entry; 8661 struct scsi_inquiry_data *inq; 8662 8663 entry = (struct scsi_inquiry_pattern *)table_entry; 8664 inq = (struct scsi_inquiry_data *)inqbuffer; 8665 8666 if (((SID_TYPE(inq) == entry->type) 8667 || (entry->type == T_ANY)) 8668 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 8669 : entry->media_type & SIP_MEDIA_FIXED) 8670 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 8671 && (cam_strmatch(inq->product, entry->product, 8672 sizeof(inq->product)) == 0) 8673 && (cam_strmatch(inq->revision, entry->revision, 8674 sizeof(inq->revision)) == 0)) { 8675 return (0); 8676 } 8677 return (-1); 8678 } 8679 8680 /* 8681 * Try make as good a match as possible with 8682 * available sub drivers 8683 */ 8684 int 8685 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 8686 { 8687 struct scsi_static_inquiry_pattern *entry; 8688 struct scsi_inquiry_data *inq; 8689 8690 entry = (struct scsi_static_inquiry_pattern *)table_entry; 8691 inq = (struct scsi_inquiry_data *)inqbuffer; 8692 8693 if (((SID_TYPE(inq) == entry->type) 8694 || (entry->type == T_ANY)) 8695 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 8696 : entry->media_type & SIP_MEDIA_FIXED) 8697 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 8698 && (cam_strmatch(inq->product, entry->product, 8699 sizeof(inq->product)) == 0) 8700 && (cam_strmatch(inq->revision, entry->revision, 8701 sizeof(inq->revision)) == 0)) { 8702 return (0); 8703 } 8704 return (-1); 8705 } 8706 8707 /** 8708 * Compare two buffers of vpd device descriptors for a match. 8709 * 8710 * \param lhs Pointer to first buffer of descriptors to compare. 8711 * \param lhs_len The length of the first buffer. 8712 * \param rhs Pointer to second buffer of descriptors to compare. 8713 * \param rhs_len The length of the second buffer. 8714 * 8715 * \return 0 on a match, -1 otherwise. 8716 * 8717 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching 8718 * agains each element in rhs until all data are exhausted or we have found 8719 * a match. 8720 */ 8721 int 8722 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) 8723 { 8724 struct scsi_vpd_id_descriptor *lhs_id; 8725 struct scsi_vpd_id_descriptor *lhs_last; 8726 struct scsi_vpd_id_descriptor *rhs_last; 8727 uint8_t *lhs_end; 8728 uint8_t *rhs_end; 8729 8730 lhs_end = lhs + lhs_len; 8731 rhs_end = rhs + rhs_len; 8732 8733 /* 8734 * rhs_last and lhs_last are the last posible position of a valid 8735 * descriptor assuming it had a zero length identifier. We use 8736 * these variables to insure we can safely dereference the length 8737 * field in our loop termination tests. 8738 */ 8739 lhs_last = (struct scsi_vpd_id_descriptor *) 8740 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 8741 rhs_last = (struct scsi_vpd_id_descriptor *) 8742 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 8743 8744 lhs_id = (struct scsi_vpd_id_descriptor *)lhs; 8745 while (lhs_id <= lhs_last 8746 && (lhs_id->identifier + lhs_id->length) <= lhs_end) { 8747 struct scsi_vpd_id_descriptor *rhs_id; 8748 8749 rhs_id = (struct scsi_vpd_id_descriptor *)rhs; 8750 while (rhs_id <= rhs_last 8751 && (rhs_id->identifier + rhs_id->length) <= rhs_end) { 8752 8753 if ((rhs_id->id_type & 8754 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) == 8755 (lhs_id->id_type & 8756 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) 8757 && rhs_id->length == lhs_id->length 8758 && memcmp(rhs_id->identifier, lhs_id->identifier, 8759 rhs_id->length) == 0) 8760 return (0); 8761 8762 rhs_id = (struct scsi_vpd_id_descriptor *) 8763 (rhs_id->identifier + rhs_id->length); 8764 } 8765 lhs_id = (struct scsi_vpd_id_descriptor *) 8766 (lhs_id->identifier + lhs_id->length); 8767 } 8768 return (-1); 8769 } 8770 8771 #ifdef _KERNEL 8772 int 8773 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id) 8774 { 8775 struct cam_ed *device; 8776 struct scsi_vpd_supported_pages *vpds; 8777 int i, num_pages; 8778 8779 device = periph->path->device; 8780 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; 8781 8782 if (vpds != NULL) { 8783 num_pages = device->supported_vpds_len - 8784 SVPD_SUPPORTED_PAGES_HDR_LEN; 8785 for (i = 0; i < num_pages; i++) { 8786 if (vpds->page_list[i] == page_id) 8787 return (1); 8788 } 8789 } 8790 8791 return (0); 8792 } 8793 8794 static void 8795 init_scsi_delay(void) 8796 { 8797 int delay; 8798 8799 delay = SCSI_DELAY; 8800 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); 8801 8802 if (set_scsi_delay(delay) != 0) { 8803 printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); 8804 set_scsi_delay(SCSI_DELAY); 8805 } 8806 } 8807 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); 8808 8809 static int 8810 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) 8811 { 8812 int error, delay; 8813 8814 delay = scsi_delay; 8815 error = sysctl_handle_int(oidp, &delay, 0, req); 8816 if (error != 0 || req->newptr == NULL) 8817 return (error); 8818 return (set_scsi_delay(delay)); 8819 } 8820 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT|CTLFLAG_RW, 8821 0, 0, sysctl_scsi_delay, "I", 8822 "Delay to allow devices to settle after a SCSI bus reset (ms)"); 8823 8824 static int 8825 set_scsi_delay(int delay) 8826 { 8827 /* 8828 * If someone sets this to 0, we assume that they want the 8829 * minimum allowable bus settle delay. 8830 */ 8831 if (delay == 0) { 8832 printf("cam: using minimum scsi_delay (%dms)\n", 8833 SCSI_MIN_DELAY); 8834 delay = SCSI_MIN_DELAY; 8835 } 8836 if (delay < SCSI_MIN_DELAY) 8837 return (EINVAL); 8838 scsi_delay = delay; 8839 return (0); 8840 } 8841 #endif /* _KERNEL */ 8842