1 /*- 2 * Implementation of Utility functions for all SCSI device types. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/types.h> 37 #include <sys/stdint.h> 38 39 #ifdef _KERNEL 40 #include "opt_scsi.h" 41 42 #include <sys/systm.h> 43 #include <sys/libkern.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/ctype.h> 50 #else 51 #include <errno.h> 52 #include <stdio.h> 53 #include <stdlib.h> 54 #include <string.h> 55 #include <ctype.h> 56 #endif 57 58 #include <cam/cam.h> 59 #include <cam/cam_ccb.h> 60 #include <cam/cam_queue.h> 61 #include <cam/cam_xpt.h> 62 #include <cam/scsi/scsi_all.h> 63 #include <sys/ata.h> 64 #include <sys/sbuf.h> 65 66 #ifdef _KERNEL 67 #include <cam/cam_periph.h> 68 #include <cam/cam_xpt_sim.h> 69 #include <cam/cam_xpt_periph.h> 70 #include <cam/cam_xpt_internal.h> 71 #else 72 #include <camlib.h> 73 #include <stddef.h> 74 75 #ifndef FALSE 76 #define FALSE 0 77 #endif /* FALSE */ 78 #ifndef TRUE 79 #define TRUE 1 80 #endif /* TRUE */ 81 #define ERESTART -1 /* restart syscall */ 82 #define EJUSTRETURN -2 /* don't modify regs, just return */ 83 #endif /* !_KERNEL */ 84 85 /* 86 * This is the default number of milliseconds we wait for devices to settle 87 * after a SCSI bus reset. 88 */ 89 #ifndef SCSI_DELAY 90 #define SCSI_DELAY 2000 91 #endif 92 /* 93 * All devices need _some_ sort of bus settle delay, so we'll set it to 94 * a minimum value of 100ms. Note that this is pertinent only for SPI- 95 * not transport like Fibre Channel or iSCSI where 'delay' is completely 96 * meaningless. 97 */ 98 #ifndef SCSI_MIN_DELAY 99 #define SCSI_MIN_DELAY 100 100 #endif 101 /* 102 * Make sure the user isn't using seconds instead of milliseconds. 103 */ 104 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) 105 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" 106 #endif 107 108 int scsi_delay; 109 110 static int ascentrycomp(const void *key, const void *member); 111 static int senseentrycomp(const void *key, const void *member); 112 static void fetchtableentries(int sense_key, int asc, int ascq, 113 struct scsi_inquiry_data *, 114 const struct sense_key_table_entry **, 115 const struct asc_table_entry **); 116 117 #ifdef _KERNEL 118 static void init_scsi_delay(void); 119 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); 120 static int set_scsi_delay(int delay); 121 #endif 122 123 #if !defined(SCSI_NO_OP_STRINGS) 124 125 #define D (1 << T_DIRECT) 126 #define T (1 << T_SEQUENTIAL) 127 #define L (1 << T_PRINTER) 128 #define P (1 << T_PROCESSOR) 129 #define W (1 << T_WORM) 130 #define R (1 << T_CDROM) 131 #define O (1 << T_OPTICAL) 132 #define M (1 << T_CHANGER) 133 #define A (1 << T_STORARRAY) 134 #define E (1 << T_ENCLOSURE) 135 #define B (1 << T_RBC) 136 #define K (1 << T_OCRW) 137 #define V (1 << T_ADC) 138 #define F (1 << T_OSD) 139 #define S (1 << T_SCANNER) 140 #define C (1 << T_COMM) 141 142 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) 143 144 static struct op_table_entry plextor_cd_ops[] = { 145 { 0xD8, R, "CD-DA READ" } 146 }; 147 148 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { 149 { 150 /* 151 * I believe that 0xD8 is the Plextor proprietary command 152 * to read CD-DA data. I'm not sure which Plextor CDROM 153 * models support the command, though. I know for sure 154 * that the 4X, 8X, and 12X models do, and presumably the 155 * 12-20X does. I don't know about any earlier models, 156 * though. If anyone has any more complete information, 157 * feel free to change this quirk entry. 158 */ 159 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, 160 nitems(plextor_cd_ops), 161 plextor_cd_ops 162 } 163 }; 164 165 static struct op_table_entry scsi_op_codes[] = { 166 /* 167 * From: http://www.t10.org/lists/op-num.txt 168 * Modifications by Kenneth Merry (ken@FreeBSD.ORG) 169 * and Jung-uk Kim (jkim@FreeBSD.org) 170 * 171 * Note: order is important in this table, scsi_op_desc() currently 172 * depends on the opcodes in the table being in order to save 173 * search time. 174 * Note: scanner and comm. devices are carried over from the previous 175 * version because they were removed in the latest spec. 176 */ 177 /* File: OP-NUM.TXT 178 * 179 * SCSI Operation Codes 180 * Numeric Sorted Listing 181 * as of 5/26/15 182 * 183 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 184 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- 185 * . L - PRINTER DEVICE (SSC) M = Mandatory 186 * . P - PROCESSOR DEVICE (SPC) O = Optional 187 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. 188 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete 189 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 190 * . . .M - MEDIA CHANGER DEVICE (SMC-2) 191 * . . . A - STORAGE ARRAY DEVICE (SCC-2) 192 * . . . .E - ENCLOSURE SERVICES DEVICE (SES) 193 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 194 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 195 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 196 * . . . . .F - OBJECT-BASED STORAGE (OSD) 197 * OP DTLPWROMAEBKVF Description 198 * -- -------------- ---------------------------------------------- */ 199 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ 200 { 0x00, ALL, "TEST UNIT READY" }, 201 /* 01 M REWIND */ 202 { 0x01, T, "REWIND" }, 203 /* 01 Z V ZZZZ REZERO UNIT */ 204 { 0x01, D | W | R | O | M, "REZERO UNIT" }, 205 /* 02 VVVVVV V */ 206 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ 207 { 0x03, ALL, "REQUEST SENSE" }, 208 /* 04 M OO FORMAT UNIT */ 209 { 0x04, D | R | O, "FORMAT UNIT" }, 210 /* 04 O FORMAT MEDIUM */ 211 { 0x04, T, "FORMAT MEDIUM" }, 212 /* 04 O FORMAT */ 213 { 0x04, L, "FORMAT" }, 214 /* 05 VMVVVV V READ BLOCK LIMITS */ 215 { 0x05, T, "READ BLOCK LIMITS" }, 216 /* 06 VVVVVV V */ 217 /* 07 OVV O OV REASSIGN BLOCKS */ 218 { 0x07, D | W | O, "REASSIGN BLOCKS" }, 219 /* 07 O INITIALIZE ELEMENT STATUS */ 220 { 0x07, M, "INITIALIZE ELEMENT STATUS" }, 221 /* 08 MOV O OV READ(6) */ 222 { 0x08, D | T | W | O, "READ(6)" }, 223 /* 08 O RECEIVE */ 224 { 0x08, P, "RECEIVE" }, 225 /* 08 GET MESSAGE(6) */ 226 { 0x08, C, "GET MESSAGE(6)" }, 227 /* 09 VVVVVV V */ 228 /* 0A OO O OV WRITE(6) */ 229 { 0x0A, D | T | W | O, "WRITE(6)" }, 230 /* 0A M SEND(6) */ 231 { 0x0A, P, "SEND(6)" }, 232 /* 0A SEND MESSAGE(6) */ 233 { 0x0A, C, "SEND MESSAGE(6)" }, 234 /* 0A M PRINT */ 235 { 0x0A, L, "PRINT" }, 236 /* 0B Z ZOZV SEEK(6) */ 237 { 0x0B, D | W | R | O, "SEEK(6)" }, 238 /* 0B O SET CAPACITY */ 239 { 0x0B, T, "SET CAPACITY" }, 240 /* 0B O SLEW AND PRINT */ 241 { 0x0B, L, "SLEW AND PRINT" }, 242 /* 0C VVVVVV V */ 243 /* 0D VVVVVV V */ 244 /* 0E VVVVVV V */ 245 /* 0F VOVVVV V READ REVERSE(6) */ 246 { 0x0F, T, "READ REVERSE(6)" }, 247 /* 10 VM VVV WRITE FILEMARKS(6) */ 248 { 0x10, T, "WRITE FILEMARKS(6)" }, 249 /* 10 O SYNCHRONIZE BUFFER */ 250 { 0x10, L, "SYNCHRONIZE BUFFER" }, 251 /* 11 VMVVVV SPACE(6) */ 252 { 0x11, T, "SPACE(6)" }, 253 /* 12 MMMMMMMMMMMMMM INQUIRY */ 254 { 0x12, ALL, "INQUIRY" }, 255 /* 13 V VVVV */ 256 /* 13 O VERIFY(6) */ 257 { 0x13, T, "VERIFY(6)" }, 258 /* 14 VOOVVV RECOVER BUFFERED DATA */ 259 { 0x14, T | L, "RECOVER BUFFERED DATA" }, 260 /* 15 OMO O OOOO OO MODE SELECT(6) */ 261 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, 262 /* 16 ZZMZO OOOZ O RESERVE(6) */ 263 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, 264 /* 16 Z RESERVE ELEMENT(6) */ 265 { 0x16, M, "RESERVE ELEMENT(6)" }, 266 /* 17 ZZMZO OOOZ O RELEASE(6) */ 267 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, 268 /* 17 Z RELEASE ELEMENT(6) */ 269 { 0x17, M, "RELEASE ELEMENT(6)" }, 270 /* 18 ZZZZOZO Z COPY */ 271 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, 272 /* 19 VMVVVV ERASE(6) */ 273 { 0x19, T, "ERASE(6)" }, 274 /* 1A OMO O OOOO OO MODE SENSE(6) */ 275 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, 276 /* 1B O OOO O MO O START STOP UNIT */ 277 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, 278 /* 1B O M LOAD UNLOAD */ 279 { 0x1B, T | V, "LOAD UNLOAD" }, 280 /* 1B SCAN */ 281 { 0x1B, S, "SCAN" }, 282 /* 1B O STOP PRINT */ 283 { 0x1B, L, "STOP PRINT" }, 284 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ 285 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, 286 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ 287 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, 288 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ 289 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, 290 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ 291 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, 292 /* 1F */ 293 /* 20 V VVV V */ 294 /* 21 V VVV V */ 295 /* 22 V VVV V */ 296 /* 23 V V V V */ 297 /* 23 O READ FORMAT CAPACITIES */ 298 { 0x23, R, "READ FORMAT CAPACITIES" }, 299 /* 24 V VV SET WINDOW */ 300 { 0x24, S, "SET WINDOW" }, 301 /* 25 M M M M READ CAPACITY(10) */ 302 { 0x25, D | W | O | B, "READ CAPACITY(10)" }, 303 /* 25 O READ CAPACITY */ 304 { 0x25, R, "READ CAPACITY" }, 305 /* 25 M READ CARD CAPACITY */ 306 { 0x25, K, "READ CARD CAPACITY" }, 307 /* 25 GET WINDOW */ 308 { 0x25, S, "GET WINDOW" }, 309 /* 26 V VV */ 310 /* 27 V VV */ 311 /* 28 M MOM MM READ(10) */ 312 { 0x28, D | W | R | O | B | K | S, "READ(10)" }, 313 /* 28 GET MESSAGE(10) */ 314 { 0x28, C, "GET MESSAGE(10)" }, 315 /* 29 V VVO READ GENERATION */ 316 { 0x29, O, "READ GENERATION" }, 317 /* 2A O MOM MO WRITE(10) */ 318 { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, 319 /* 2A SEND(10) */ 320 { 0x2A, S, "SEND(10)" }, 321 /* 2A SEND MESSAGE(10) */ 322 { 0x2A, C, "SEND MESSAGE(10)" }, 323 /* 2B Z OOO O SEEK(10) */ 324 { 0x2B, D | W | R | O | K, "SEEK(10)" }, 325 /* 2B O LOCATE(10) */ 326 { 0x2B, T, "LOCATE(10)" }, 327 /* 2B O POSITION TO ELEMENT */ 328 { 0x2B, M, "POSITION TO ELEMENT" }, 329 /* 2C V OO ERASE(10) */ 330 { 0x2C, R | O, "ERASE(10)" }, 331 /* 2D O READ UPDATED BLOCK */ 332 { 0x2D, O, "READ UPDATED BLOCK" }, 333 /* 2D V */ 334 /* 2E O OOO MO WRITE AND VERIFY(10) */ 335 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, 336 /* 2F O OOO VERIFY(10) */ 337 { 0x2F, D | W | R | O, "VERIFY(10)" }, 338 /* 30 Z ZZZ SEARCH DATA HIGH(10) */ 339 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, 340 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ 341 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, 342 /* 31 OBJECT POSITION */ 343 { 0x31, S, "OBJECT POSITION" }, 344 /* 32 Z ZZZ SEARCH DATA LOW(10) */ 345 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, 346 /* 33 Z OZO SET LIMITS(10) */ 347 { 0x33, D | W | R | O, "SET LIMITS(10)" }, 348 /* 34 O O O O PRE-FETCH(10) */ 349 { 0x34, D | W | O | K, "PRE-FETCH(10)" }, 350 /* 34 M READ POSITION */ 351 { 0x34, T, "READ POSITION" }, 352 /* 34 GET DATA BUFFER STATUS */ 353 { 0x34, S, "GET DATA BUFFER STATUS" }, 354 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ 355 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, 356 /* 36 Z O O O LOCK UNLOCK CACHE(10) */ 357 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, 358 /* 37 O O READ DEFECT DATA(10) */ 359 { 0x37, D | O, "READ DEFECT DATA(10)" }, 360 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ 361 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, 362 /* 38 O O O MEDIUM SCAN */ 363 { 0x38, W | O | K, "MEDIUM SCAN" }, 364 /* 39 ZZZZOZO Z COMPARE */ 365 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, 366 /* 3A ZZZZOZO Z COPY AND VERIFY */ 367 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, 368 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ 369 { 0x3B, ALL, "WRITE BUFFER" }, 370 /* 3C OOOOOOOOOO OOO READ BUFFER */ 371 { 0x3C, ALL & ~(B), "READ BUFFER" }, 372 /* 3D O UPDATE BLOCK */ 373 { 0x3D, O, "UPDATE BLOCK" }, 374 /* 3E O O O READ LONG(10) */ 375 { 0x3E, D | W | O, "READ LONG(10)" }, 376 /* 3F O O O WRITE LONG(10) */ 377 { 0x3F, D | W | O, "WRITE LONG(10)" }, 378 /* 40 ZZZZOZOZ CHANGE DEFINITION */ 379 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, 380 /* 41 O WRITE SAME(10) */ 381 { 0x41, D, "WRITE SAME(10)" }, 382 /* 42 O UNMAP */ 383 { 0x42, D, "UNMAP" }, 384 /* 42 O READ SUB-CHANNEL */ 385 { 0x42, R, "READ SUB-CHANNEL" }, 386 /* 43 O READ TOC/PMA/ATIP */ 387 { 0x43, R, "READ TOC/PMA/ATIP" }, 388 /* 44 M M REPORT DENSITY SUPPORT */ 389 { 0x44, T | V, "REPORT DENSITY SUPPORT" }, 390 /* 44 READ HEADER */ 391 /* 45 O PLAY AUDIO(10) */ 392 { 0x45, R, "PLAY AUDIO(10)" }, 393 /* 46 M GET CONFIGURATION */ 394 { 0x46, R, "GET CONFIGURATION" }, 395 /* 47 O PLAY AUDIO MSF */ 396 { 0x47, R, "PLAY AUDIO MSF" }, 397 /* 48 O SANITIZE */ 398 { 0x48, D, "SANITIZE" }, 399 /* 49 */ 400 /* 4A M GET EVENT STATUS NOTIFICATION */ 401 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, 402 /* 4B O PAUSE/RESUME */ 403 { 0x4B, R, "PAUSE/RESUME" }, 404 /* 4C OOOOO OOOO OOO LOG SELECT */ 405 { 0x4C, ALL & ~(R | B), "LOG SELECT" }, 406 /* 4D OOOOO OOOO OMO LOG SENSE */ 407 { 0x4D, ALL & ~(R | B), "LOG SENSE" }, 408 /* 4E O STOP PLAY/SCAN */ 409 { 0x4E, R, "STOP PLAY/SCAN" }, 410 /* 4F */ 411 /* 50 O XDWRITE(10) */ 412 { 0x50, D, "XDWRITE(10)" }, 413 /* 51 O XPWRITE(10) */ 414 { 0x51, D, "XPWRITE(10)" }, 415 /* 51 O READ DISC INFORMATION */ 416 { 0x51, R, "READ DISC INFORMATION" }, 417 /* 52 O XDREAD(10) */ 418 { 0x52, D, "XDREAD(10)" }, 419 /* 52 O READ TRACK INFORMATION */ 420 { 0x52, R, "READ TRACK INFORMATION" }, 421 /* 53 O XDWRITEREAD(10) */ 422 { 0x53, D, "XDWRITEREAD(10)" }, 423 /* 53 O RESERVE TRACK */ 424 { 0x53, R, "RESERVE TRACK" }, 425 /* 54 O SEND OPC INFORMATION */ 426 { 0x54, R, "SEND OPC INFORMATION" }, 427 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ 428 { 0x55, ALL & ~(P), "MODE SELECT(10)" }, 429 /* 56 ZZMZO OOOZ RESERVE(10) */ 430 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, 431 /* 56 Z RESERVE ELEMENT(10) */ 432 { 0x56, M, "RESERVE ELEMENT(10)" }, 433 /* 57 ZZMZO OOOZ RELEASE(10) */ 434 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, 435 /* 57 Z RELEASE ELEMENT(10) */ 436 { 0x57, M, "RELEASE ELEMENT(10)" }, 437 /* 58 O REPAIR TRACK */ 438 { 0x58, R, "REPAIR TRACK" }, 439 /* 59 */ 440 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ 441 { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, 442 /* 5B O CLOSE TRACK/SESSION */ 443 { 0x5B, R, "CLOSE TRACK/SESSION" }, 444 /* 5C O READ BUFFER CAPACITY */ 445 { 0x5C, R, "READ BUFFER CAPACITY" }, 446 /* 5D O SEND CUE SHEET */ 447 { 0x5D, R, "SEND CUE SHEET" }, 448 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ 449 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, 450 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ 451 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, 452 /* 7E OO O OOOO O extended CDB */ 453 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, 454 /* 7F O M variable length CDB (more than 16 bytes) */ 455 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, 456 /* 80 Z XDWRITE EXTENDED(16) */ 457 { 0x80, D, "XDWRITE EXTENDED(16)" }, 458 /* 80 M WRITE FILEMARKS(16) */ 459 { 0x80, T, "WRITE FILEMARKS(16)" }, 460 /* 81 Z REBUILD(16) */ 461 { 0x81, D, "REBUILD(16)" }, 462 /* 81 O READ REVERSE(16) */ 463 { 0x81, T, "READ REVERSE(16)" }, 464 /* 82 Z REGENERATE(16) */ 465 { 0x82, D, "REGENERATE(16)" }, 466 /* 82 O ALLOW OVERWRITE */ 467 { 0x82, T, "ALLOW OVERWRITE" }, 468 /* 83 OOOOO O OO EXTENDED COPY */ 469 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, 470 /* 84 OOOOO O OO RECEIVE COPY RESULTS */ 471 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, 472 /* 85 O O O ATA COMMAND PASS THROUGH(16) */ 473 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, 474 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ 475 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, 476 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ 477 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, 478 /* 88 MM O O O READ(16) */ 479 { 0x88, D | T | W | O | B, "READ(16)" }, 480 /* 89 O COMPARE AND WRITE*/ 481 { 0x89, D, "COMPARE AND WRITE" }, 482 /* 8A OM O O O WRITE(16) */ 483 { 0x8A, D | T | W | O | B, "WRITE(16)" }, 484 /* 8B O ORWRITE */ 485 { 0x8B, D, "ORWRITE" }, 486 /* 8C OO O OO O M READ ATTRIBUTE */ 487 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, 488 /* 8D OO O OO O O WRITE ATTRIBUTE */ 489 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, 490 /* 8E O O O O WRITE AND VERIFY(16) */ 491 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, 492 /* 8F OO O O O VERIFY(16) */ 493 { 0x8F, D | T | W | O | B, "VERIFY(16)" }, 494 /* 90 O O O O PRE-FETCH(16) */ 495 { 0x90, D | W | O | B, "PRE-FETCH(16)" }, 496 /* 91 O O O O SYNCHRONIZE CACHE(16) */ 497 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, 498 /* 91 O SPACE(16) */ 499 { 0x91, T, "SPACE(16)" }, 500 /* 92 Z O O LOCK UNLOCK CACHE(16) */ 501 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, 502 /* 92 O LOCATE(16) */ 503 { 0x92, T, "LOCATE(16)" }, 504 /* 93 O WRITE SAME(16) */ 505 { 0x93, D, "WRITE SAME(16)" }, 506 /* 93 M ERASE(16) */ 507 { 0x93, T, "ERASE(16)" }, 508 /* 94 O ZBC OUT */ 509 { 0x94, ALL, "ZBC OUT" }, 510 /* 95 O ZBC IN */ 511 { 0x95, ALL, "ZBC IN" }, 512 /* 96 */ 513 /* 97 */ 514 /* 98 */ 515 /* 99 */ 516 /* 9A O WRITE STREAM(16) */ 517 { 0x9A, D, "WRITE STREAM(16)" }, 518 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */ 519 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" }, 520 /* 9C O WRITE ATOMIC(16) */ 521 { 0x9C, D, "WRITE ATOMIC(16)" }, 522 /* 9D SERVICE ACTION BIDIRECTIONAL */ 523 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" }, 524 /* XXX KDM ALL for this? op-num.txt defines it for none.. */ 525 /* 9E SERVICE ACTION IN(16) */ 526 { 0x9E, ALL, "SERVICE ACTION IN(16)" }, 527 /* 9F M SERVICE ACTION OUT(16) */ 528 { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, 529 /* A0 MMOOO OMMM OMO REPORT LUNS */ 530 { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, 531 /* A1 O BLANK */ 532 { 0xA1, R, "BLANK" }, 533 /* A1 O O ATA COMMAND PASS THROUGH(12) */ 534 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, 535 /* A2 OO O O SECURITY PROTOCOL IN */ 536 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, 537 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ 538 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, 539 /* A3 O SEND KEY */ 540 { 0xA3, R, "SEND KEY" }, 541 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ 542 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, 543 /* A4 O REPORT KEY */ 544 { 0xA4, R, "REPORT KEY" }, 545 /* A5 O O OM MOVE MEDIUM */ 546 { 0xA5, T | W | O | M, "MOVE MEDIUM" }, 547 /* A5 O PLAY AUDIO(12) */ 548 { 0xA5, R, "PLAY AUDIO(12)" }, 549 /* A6 O EXCHANGE MEDIUM */ 550 { 0xA6, M, "EXCHANGE MEDIUM" }, 551 /* A6 O LOAD/UNLOAD C/DVD */ 552 { 0xA6, R, "LOAD/UNLOAD C/DVD" }, 553 /* A7 ZZ O O MOVE MEDIUM ATTACHED */ 554 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, 555 /* A7 O SET READ AHEAD */ 556 { 0xA7, R, "SET READ AHEAD" }, 557 /* A8 O OOO READ(12) */ 558 { 0xA8, D | W | R | O, "READ(12)" }, 559 /* A8 GET MESSAGE(12) */ 560 { 0xA8, C, "GET MESSAGE(12)" }, 561 /* A9 O SERVICE ACTION OUT(12) */ 562 { 0xA9, V, "SERVICE ACTION OUT(12)" }, 563 /* AA O OOO WRITE(12) */ 564 { 0xAA, D | W | R | O, "WRITE(12)" }, 565 /* AA SEND MESSAGE(12) */ 566 { 0xAA, C, "SEND MESSAGE(12)" }, 567 /* AB O O SERVICE ACTION IN(12) */ 568 { 0xAB, R | V, "SERVICE ACTION IN(12)" }, 569 /* AC O ERASE(12) */ 570 { 0xAC, O, "ERASE(12)" }, 571 /* AC O GET PERFORMANCE */ 572 { 0xAC, R, "GET PERFORMANCE" }, 573 /* AD O READ DVD STRUCTURE */ 574 { 0xAD, R, "READ DVD STRUCTURE" }, 575 /* AE O O O WRITE AND VERIFY(12) */ 576 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, 577 /* AF O OZO VERIFY(12) */ 578 { 0xAF, D | W | R | O, "VERIFY(12)" }, 579 /* B0 ZZZ SEARCH DATA HIGH(12) */ 580 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, 581 /* B1 ZZZ SEARCH DATA EQUAL(12) */ 582 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, 583 /* B2 ZZZ SEARCH DATA LOW(12) */ 584 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, 585 /* B3 Z OZO SET LIMITS(12) */ 586 { 0xB3, D | W | R | O, "SET LIMITS(12)" }, 587 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ 588 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, 589 /* B5 OO O O SECURITY PROTOCOL OUT */ 590 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, 591 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ 592 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, 593 /* B6 O SEND VOLUME TAG */ 594 { 0xB6, M, "SEND VOLUME TAG" }, 595 /* B6 O SET STREAMING */ 596 { 0xB6, R, "SET STREAMING" }, 597 /* B7 O O READ DEFECT DATA(12) */ 598 { 0xB7, D | O, "READ DEFECT DATA(12)" }, 599 /* B8 O OZOM READ ELEMENT STATUS */ 600 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, 601 /* B9 O READ CD MSF */ 602 { 0xB9, R, "READ CD MSF" }, 603 /* BA O O OOMO REDUNDANCY GROUP (IN) */ 604 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, 605 /* BA O SCAN */ 606 { 0xBA, R, "SCAN" }, 607 /* BB O O OOOO REDUNDANCY GROUP (OUT) */ 608 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, 609 /* BB O SET CD SPEED */ 610 { 0xBB, R, "SET CD SPEED" }, 611 /* BC O O OOMO SPARE (IN) */ 612 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, 613 /* BD O O OOOO SPARE (OUT) */ 614 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, 615 /* BD O MECHANISM STATUS */ 616 { 0xBD, R, "MECHANISM STATUS" }, 617 /* BE O O OOMO VOLUME SET (IN) */ 618 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, 619 /* BE O READ CD */ 620 { 0xBE, R, "READ CD" }, 621 /* BF O O OOOO VOLUME SET (OUT) */ 622 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, 623 /* BF O SEND DVD STRUCTURE */ 624 { 0xBF, R, "SEND DVD STRUCTURE" } 625 }; 626 627 const char * 628 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 629 { 630 caddr_t match; 631 int i, j; 632 u_int32_t opmask; 633 u_int16_t pd_type; 634 int num_ops[2]; 635 struct op_table_entry *table[2]; 636 int num_tables; 637 638 /* 639 * If we've got inquiry data, use it to determine what type of 640 * device we're dealing with here. Otherwise, assume direct 641 * access. 642 */ 643 if (inq_data == NULL) { 644 pd_type = T_DIRECT; 645 match = NULL; 646 } else { 647 pd_type = SID_TYPE(inq_data); 648 649 match = cam_quirkmatch((caddr_t)inq_data, 650 (caddr_t)scsi_op_quirk_table, 651 nitems(scsi_op_quirk_table), 652 sizeof(*scsi_op_quirk_table), 653 scsi_inquiry_match); 654 } 655 656 if (match != NULL) { 657 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; 658 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; 659 table[1] = scsi_op_codes; 660 num_ops[1] = nitems(scsi_op_codes); 661 num_tables = 2; 662 } else { 663 /* 664 * If this is true, we have a vendor specific opcode that 665 * wasn't covered in the quirk table. 666 */ 667 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) 668 return("Vendor Specific Command"); 669 670 table[0] = scsi_op_codes; 671 num_ops[0] = nitems(scsi_op_codes); 672 num_tables = 1; 673 } 674 675 /* RBC is 'Simplified' Direct Access Device */ 676 if (pd_type == T_RBC) 677 pd_type = T_DIRECT; 678 679 /* 680 * Host managed drives are direct access for the most part. 681 */ 682 if (pd_type == T_ZBC_HM) 683 pd_type = T_DIRECT; 684 685 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */ 686 if (pd_type == T_NODEVICE) 687 pd_type = T_DIRECT; 688 689 opmask = 1 << pd_type; 690 691 for (j = 0; j < num_tables; j++) { 692 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ 693 if ((table[j][i].opcode == opcode) 694 && ((table[j][i].opmask & opmask) != 0)) 695 return(table[j][i].desc); 696 } 697 } 698 699 /* 700 * If we can't find a match for the command in the table, we just 701 * assume it's a vendor specifc command. 702 */ 703 return("Vendor Specific Command"); 704 705 } 706 707 #else /* SCSI_NO_OP_STRINGS */ 708 709 const char * 710 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 711 { 712 return(""); 713 } 714 715 #endif 716 717 #if !defined(SCSI_NO_SENSE_STRINGS) 718 #define SST(asc, ascq, action, desc) \ 719 asc, ascq, action, desc 720 #else 721 const char empty_string[] = ""; 722 723 #define SST(asc, ascq, action, desc) \ 724 asc, ascq, action, empty_string 725 #endif 726 727 const struct sense_key_table_entry sense_key_table[] = 728 { 729 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, 730 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, 731 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" }, 732 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, 733 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, 734 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, 735 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, 736 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, 737 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, 738 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, 739 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, 740 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, 741 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, 742 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, 743 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, 744 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } 745 }; 746 747 static struct asc_table_entry quantum_fireball_entries[] = { 748 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 749 "Logical unit not ready, initializing cmd. required") } 750 }; 751 752 static struct asc_table_entry sony_mo_entries[] = { 753 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 754 "Logical unit not ready, cause not reportable") } 755 }; 756 757 static struct asc_table_entry hgst_entries[] = { 758 { SST(0x04, 0xF0, SS_RDEF, 759 "Vendor Unique - Logical Unit Not Ready") }, 760 { SST(0x0A, 0x01, SS_RDEF, 761 "Unrecovered Super Certification Log Write Error") }, 762 { SST(0x0A, 0x02, SS_RDEF, 763 "Unrecovered Super Certification Log Read Error") }, 764 { SST(0x15, 0x03, SS_RDEF, 765 "Unrecovered Sector Error") }, 766 { SST(0x3E, 0x04, SS_RDEF, 767 "Unrecovered Self-Test Hard-Cache Test Fail") }, 768 { SST(0x3E, 0x05, SS_RDEF, 769 "Unrecovered Self-Test OTF-Cache Fail") }, 770 { SST(0x40, 0x00, SS_RDEF, 771 "Unrecovered SAT No Buffer Overflow Error") }, 772 { SST(0x40, 0x01, SS_RDEF, 773 "Unrecovered SAT Buffer Overflow Error") }, 774 { SST(0x40, 0x02, SS_RDEF, 775 "Unrecovered SAT No Buffer Overflow With ECS Fault") }, 776 { SST(0x40, 0x03, SS_RDEF, 777 "Unrecovered SAT Buffer Overflow With ECS Fault") }, 778 { SST(0x40, 0x81, SS_RDEF, 779 "DRAM Failure") }, 780 { SST(0x44, 0x0B, SS_RDEF, 781 "Vendor Unique - Internal Target Failure") }, 782 { SST(0x44, 0xF2, SS_RDEF, 783 "Vendor Unique - Internal Target Failure") }, 784 { SST(0x44, 0xF6, SS_RDEF, 785 "Vendor Unique - Internal Target Failure") }, 786 { SST(0x44, 0xF9, SS_RDEF, 787 "Vendor Unique - Internal Target Failure") }, 788 { SST(0x44, 0xFA, SS_RDEF, 789 "Vendor Unique - Internal Target Failure") }, 790 { SST(0x5D, 0x22, SS_RDEF, 791 "Extreme Over-Temperature Warning") }, 792 { SST(0x5D, 0x50, SS_RDEF, 793 "Load/Unload cycle Count Warning") }, 794 { SST(0x81, 0x00, SS_RDEF, 795 "Vendor Unique - Internal Logic Error") }, 796 { SST(0x85, 0x00, SS_RDEF, 797 "Vendor Unique - Internal Key Seed Error") }, 798 }; 799 800 static struct asc_table_entry seagate_entries[] = { 801 { SST(0x04, 0xF0, SS_RDEF, 802 "Logical Unit Not Ready, super certify in Progress") }, 803 { SST(0x08, 0x86, SS_RDEF, 804 "Write Fault Data Corruption") }, 805 { SST(0x09, 0x0D, SS_RDEF, 806 "Tracking Failure") }, 807 { SST(0x09, 0x0E, SS_RDEF, 808 "ETF Failure") }, 809 { SST(0x0B, 0x5D, SS_RDEF, 810 "Pre-SMART Warning") }, 811 { SST(0x0B, 0x85, SS_RDEF, 812 "5V Voltage Warning") }, 813 { SST(0x0B, 0x8C, SS_RDEF, 814 "12V Voltage Warning") }, 815 { SST(0x0C, 0xFF, SS_RDEF, 816 "Write Error - Too many error recovery revs") }, 817 { SST(0x11, 0xFF, SS_RDEF, 818 "Unrecovered Read Error - Too many error recovery revs") }, 819 { SST(0x19, 0x0E, SS_RDEF, 820 "Fewer than 1/2 defect list copies") }, 821 { SST(0x20, 0xF3, SS_RDEF, 822 "Illegal CDB linked to skip mask cmd") }, 823 { SST(0x24, 0xF0, SS_RDEF, 824 "Illegal byte in CDB, LBA not matching") }, 825 { SST(0x24, 0xF1, SS_RDEF, 826 "Illegal byte in CDB, LEN not matching") }, 827 { SST(0x24, 0xF2, SS_RDEF, 828 "Mask not matching transfer length") }, 829 { SST(0x24, 0xF3, SS_RDEF, 830 "Drive formatted without plist") }, 831 { SST(0x26, 0x95, SS_RDEF, 832 "Invalid Field Parameter - CAP File") }, 833 { SST(0x26, 0x96, SS_RDEF, 834 "Invalid Field Parameter - RAP File") }, 835 { SST(0x26, 0x97, SS_RDEF, 836 "Invalid Field Parameter - TMS Firmware Tag") }, 837 { SST(0x26, 0x98, SS_RDEF, 838 "Invalid Field Parameter - Check Sum") }, 839 { SST(0x26, 0x99, SS_RDEF, 840 "Invalid Field Parameter - Firmware Tag") }, 841 { SST(0x29, 0x08, SS_RDEF, 842 "Write Log Dump data") }, 843 { SST(0x29, 0x09, SS_RDEF, 844 "Write Log Dump data") }, 845 { SST(0x29, 0x0A, SS_RDEF, 846 "Reserved disk space") }, 847 { SST(0x29, 0x0B, SS_RDEF, 848 "SDBP") }, 849 { SST(0x29, 0x0C, SS_RDEF, 850 "SDBP") }, 851 { SST(0x31, 0x91, SS_RDEF, 852 "Format Corrupted World Wide Name (WWN) is Invalid") }, 853 { SST(0x32, 0x03, SS_RDEF, 854 "Defect List - Length exceeds Command Allocated Length") }, 855 { SST(0x33, 0x00, SS_RDEF, 856 "Flash not ready for access") }, 857 { SST(0x3F, 0x70, SS_RDEF, 858 "Invalid RAP block") }, 859 { SST(0x3F, 0x71, SS_RDEF, 860 "RAP/ETF mismatch") }, 861 { SST(0x3F, 0x90, SS_RDEF, 862 "Invalid CAP block") }, 863 { SST(0x3F, 0x91, SS_RDEF, 864 "World Wide Name (WWN) Mismatch") }, 865 { SST(0x40, 0x01, SS_RDEF, 866 "DRAM Parity Error") }, 867 { SST(0x40, 0x02, SS_RDEF, 868 "DRAM Parity Error") }, 869 { SST(0x42, 0x0A, SS_RDEF, 870 "Loopback Test") }, 871 { SST(0x42, 0x0B, SS_RDEF, 872 "Loopback Test") }, 873 { SST(0x44, 0xF2, SS_RDEF, 874 "Compare error during data integrity check") }, 875 { SST(0x44, 0xF6, SS_RDEF, 876 "Unrecoverable error during data integrity check") }, 877 { SST(0x47, 0x80, SS_RDEF, 878 "Fibre Channel Sequence Error") }, 879 { SST(0x4E, 0x01, SS_RDEF, 880 "Information Unit Too Short") }, 881 { SST(0x80, 0x00, SS_RDEF, 882 "General Firmware Error / Command Timeout") }, 883 { SST(0x80, 0x01, SS_RDEF, 884 "Command Timeout") }, 885 { SST(0x80, 0x02, SS_RDEF, 886 "Command Timeout") }, 887 { SST(0x80, 0x80, SS_RDEF, 888 "FC FIFO Error During Read Transfer") }, 889 { SST(0x80, 0x81, SS_RDEF, 890 "FC FIFO Error During Write Transfer") }, 891 { SST(0x80, 0x82, SS_RDEF, 892 "DISC FIFO Error During Read Transfer") }, 893 { SST(0x80, 0x83, SS_RDEF, 894 "DISC FIFO Error During Write Transfer") }, 895 { SST(0x80, 0x84, SS_RDEF, 896 "LBA Seeded LRC Error on Read") }, 897 { SST(0x80, 0x85, SS_RDEF, 898 "LBA Seeded LRC Error on Write") }, 899 { SST(0x80, 0x86, SS_RDEF, 900 "IOEDC Error on Read") }, 901 { SST(0x80, 0x87, SS_RDEF, 902 "IOEDC Error on Write") }, 903 { SST(0x80, 0x88, SS_RDEF, 904 "Host Parity Check Failed") }, 905 { SST(0x80, 0x89, SS_RDEF, 906 "IOEDC error on read detected by formatter") }, 907 { SST(0x80, 0x8A, SS_RDEF, 908 "Host Parity Errors / Host FIFO Initialization Failed") }, 909 { SST(0x80, 0x8B, SS_RDEF, 910 "Host Parity Errors") }, 911 { SST(0x80, 0x8C, SS_RDEF, 912 "Host Parity Errors") }, 913 { SST(0x80, 0x8D, SS_RDEF, 914 "Host Parity Errors") }, 915 { SST(0x81, 0x00, SS_RDEF, 916 "LA Check Failed") }, 917 { SST(0x82, 0x00, SS_RDEF, 918 "Internal client detected insufficient buffer") }, 919 { SST(0x84, 0x00, SS_RDEF, 920 "Scheduled Diagnostic And Repair") }, 921 }; 922 923 static struct scsi_sense_quirk_entry sense_quirk_table[] = { 924 { 925 /* 926 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b 927 * when they really should return 0x04 0x02. 928 */ 929 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, 930 /*num_sense_keys*/0, 931 nitems(quantum_fireball_entries), 932 /*sense key entries*/NULL, 933 quantum_fireball_entries 934 }, 935 { 936 /* 937 * This Sony MO drive likes to return 0x04, 0x00 when it 938 * isn't spun up. 939 */ 940 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, 941 /*num_sense_keys*/0, 942 nitems(sony_mo_entries), 943 /*sense key entries*/NULL, 944 sony_mo_entries 945 }, 946 { 947 /* 948 * HGST vendor-specific error codes 949 */ 950 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"}, 951 /*num_sense_keys*/0, 952 nitems(hgst_entries), 953 /*sense key entries*/NULL, 954 hgst_entries 955 }, 956 { 957 /* 958 * SEAGATE vendor-specific error codes 959 */ 960 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"}, 961 /*num_sense_keys*/0, 962 nitems(seagate_entries), 963 /*sense key entries*/NULL, 964 seagate_entries 965 } 966 }; 967 968 const u_int sense_quirk_table_size = nitems(sense_quirk_table); 969 970 static struct asc_table_entry asc_table[] = { 971 /* 972 * From: http://www.t10.org/lists/asc-num.txt 973 * Modifications by Jung-uk Kim (jkim@FreeBSD.org) 974 */ 975 /* 976 * File: ASC-NUM.TXT 977 * 978 * SCSI ASC/ASCQ Assignments 979 * Numeric Sorted Listing 980 * as of Sat Mar 25 2023 at 04:30 (using old columns) 981 * 982 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 983 * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- 984 * . L - PRINTER DEVICE (SSC) blank = reserved 985 * . P - PROCESSOR DEVICE (SPC) not blank = allowed 986 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) 987 * . . R - CD DEVICE (MMC) 988 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 989 * . . .M - MEDIA CHANGER DEVICE (SMC) 990 * . . . A - STORAGE ARRAY DEVICE (SCC) 991 * . . . E - ENCLOSURE SERVICES DEVICE (SES) 992 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 993 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 994 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 995 * . . . . .F - OBJECT-BASED STORAGE (OSD) 996 * DTLPWROMAEBKVF 997 * ASC ASCQ Action 998 * Description 999 */ 1000 /* DTLPWROMAEBKVF */ 1001 { SST(0x00, 0x00, SS_NOP, 1002 "No additional sense information") }, 1003 /* T */ 1004 { SST(0x00, 0x01, SS_RDEF, 1005 "Filemark detected") }, 1006 /* T */ 1007 { SST(0x00, 0x02, SS_RDEF, 1008 "End-of-partition/medium detected") }, 1009 /* T */ 1010 { SST(0x00, 0x03, SS_RDEF, 1011 "Setmark detected") }, 1012 /* T */ 1013 { SST(0x00, 0x04, SS_RDEF, 1014 "Beginning-of-partition/medium detected") }, 1015 /* TL */ 1016 { SST(0x00, 0x05, SS_RDEF, 1017 "End-of-data detected") }, 1018 /* DTLPWROMAEBKVF */ 1019 { SST(0x00, 0x06, SS_RDEF, 1020 "I/O process terminated") }, 1021 /* T */ 1022 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ 1023 "Programmable early warning detected") }, 1024 /* R */ 1025 { SST(0x00, 0x11, SS_FATAL | EBUSY, 1026 "Audio play operation in progress") }, 1027 /* R */ 1028 { SST(0x00, 0x12, SS_NOP, 1029 "Audio play operation paused") }, 1030 /* R */ 1031 { SST(0x00, 0x13, SS_NOP, 1032 "Audio play operation successfully completed") }, 1033 /* R */ 1034 { SST(0x00, 0x14, SS_RDEF, 1035 "Audio play operation stopped due to error") }, 1036 /* R */ 1037 { SST(0x00, 0x15, SS_NOP, 1038 "No current audio status to return") }, 1039 /* DTLPWROMAEBKVF */ 1040 { SST(0x00, 0x16, SS_FATAL | EBUSY, 1041 "Operation in progress") }, 1042 /* DTL WROMAEBKVF */ 1043 { SST(0x00, 0x17, SS_RDEF, 1044 "Cleaning requested") }, 1045 /* T */ 1046 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ 1047 "Erase operation in progress") }, 1048 /* T */ 1049 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ 1050 "Locate operation in progress") }, 1051 /* T */ 1052 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ 1053 "Rewind operation in progress") }, 1054 /* T */ 1055 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ 1056 "Set capacity operation in progress") }, 1057 /* T */ 1058 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ 1059 "Verify operation in progress") }, 1060 /* DT B */ 1061 { SST(0x00, 0x1D, SS_NOP, 1062 "ATA pass through information available") }, 1063 /* DT R MAEBKV */ 1064 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ 1065 "Conflicting SA creation request") }, 1066 /* DT B */ 1067 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */ 1068 "Logical unit transitioning to another power condition") }, 1069 /* DT P B */ 1070 { SST(0x00, 0x20, SS_NOP, 1071 "Extended copy information available") }, 1072 /* D */ 1073 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */ 1074 "Atomic command aborted due to ACA") }, 1075 /* D */ 1076 { SST(0x00, 0x22, SS_RDEF, /* XXX TBD */ 1077 "Deferred microcode is pending") }, 1078 /* D */ 1079 { SST(0x00, 0x23, SS_RDEF, /* XXX TBD */ 1080 "Overlapping atomic command in progress") }, 1081 /* D W O BK */ 1082 { SST(0x01, 0x00, SS_RDEF, 1083 "No index/sector signal") }, 1084 /* D WRO BK */ 1085 { SST(0x02, 0x00, SS_RDEF, 1086 "No seek complete") }, 1087 /* DTL W O BK */ 1088 { SST(0x03, 0x00, SS_RDEF, 1089 "Peripheral device write fault") }, 1090 /* T */ 1091 { SST(0x03, 0x01, SS_RDEF, 1092 "No write current") }, 1093 /* T */ 1094 { SST(0x03, 0x02, SS_RDEF, 1095 "Excessive write errors") }, 1096 /* DTLPWROMAEBKVF */ 1097 { SST(0x04, 0x00, SS_RDEF, 1098 "Logical unit not ready, cause not reportable") }, 1099 /* DTLPWROMAEBKVF */ 1100 { SST(0x04, 0x01, SS_WAIT | EBUSY, 1101 "Logical unit is in process of becoming ready") }, 1102 /* DTLPWROMAEBKVF */ 1103 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1104 "Logical unit not ready, initializing command required") }, 1105 /* DTLPWROMAEBKVF */ 1106 { SST(0x04, 0x03, SS_FATAL | ENXIO, 1107 "Logical unit not ready, manual intervention required") }, 1108 /* DTL RO B */ 1109 { SST(0x04, 0x04, SS_FATAL | EBUSY, 1110 "Logical unit not ready, format in progress") }, 1111 /* DT W O A BK F */ 1112 { SST(0x04, 0x05, SS_FATAL | EBUSY, 1113 "Logical unit not ready, rebuild in progress") }, 1114 /* DT W O A BK */ 1115 { SST(0x04, 0x06, SS_FATAL | EBUSY, 1116 "Logical unit not ready, recalculation in progress") }, 1117 /* DTLPWROMAEBKVF */ 1118 { SST(0x04, 0x07, SS_FATAL | EBUSY, 1119 "Logical unit not ready, operation in progress") }, 1120 /* R */ 1121 { SST(0x04, 0x08, SS_FATAL | EBUSY, 1122 "Logical unit not ready, long write in progress") }, 1123 /* DTLPWROMAEBKVF */ 1124 { SST(0x04, 0x09, SS_FATAL | EBUSY, 1125 "Logical unit not ready, self-test in progress") }, 1126 /* DTLPWROMAEBKVF */ 1127 { SST(0x04, 0x0A, SS_WAIT | ENXIO, 1128 "Logical unit not accessible, asymmetric access state transition")}, 1129 /* DTLPWROMAEBKVF */ 1130 { SST(0x04, 0x0B, SS_FATAL | ENXIO, 1131 "Logical unit not accessible, target port in standby state") }, 1132 /* DTLPWROMAEBKVF */ 1133 { SST(0x04, 0x0C, SS_FATAL | ENXIO, 1134 "Logical unit not accessible, target port in unavailable state") }, 1135 /* F */ 1136 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ 1137 "Logical unit not ready, structure check required") }, 1138 /* DTL WR MAEBKVF */ 1139 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */ 1140 "Logical unit not ready, security session in progress") }, 1141 /* DT WROM B */ 1142 { SST(0x04, 0x10, SS_FATAL | ENODEV, 1143 "Logical unit not ready, auxiliary memory not accessible") }, 1144 /* DT WRO AEB VF */ 1145 { SST(0x04, 0x11, SS_WAIT | ENXIO, 1146 "Logical unit not ready, notify (enable spinup) required") }, 1147 /* M V */ 1148 { SST(0x04, 0x12, SS_FATAL | ENXIO, 1149 "Logical unit not ready, offline") }, 1150 /* DT R MAEBKV */ 1151 { SST(0x04, 0x13, SS_WAIT | EBUSY, 1152 "Logical unit not ready, SA creation in progress") }, 1153 /* D B */ 1154 { SST(0x04, 0x14, SS_WAIT | ENOSPC, 1155 "Logical unit not ready, space allocation in progress") }, 1156 /* M */ 1157 { SST(0x04, 0x15, SS_FATAL | ENXIO, 1158 "Logical unit not ready, robotics disabled") }, 1159 /* M */ 1160 { SST(0x04, 0x16, SS_FATAL | ENXIO, 1161 "Logical unit not ready, configuration required") }, 1162 /* M */ 1163 { SST(0x04, 0x17, SS_FATAL | ENXIO, 1164 "Logical unit not ready, calibration required") }, 1165 /* M */ 1166 { SST(0x04, 0x18, SS_FATAL | ENXIO, 1167 "Logical unit not ready, a door is open") }, 1168 /* M */ 1169 { SST(0x04, 0x19, SS_FATAL | ENODEV, 1170 "Logical unit not ready, operating in sequential mode") }, 1171 /* DT B */ 1172 { SST(0x04, 0x1A, SS_WAIT | EBUSY, 1173 "Logical unit not ready, START/STOP UNIT command in progress") }, 1174 /* D B */ 1175 { SST(0x04, 0x1B, SS_WAIT | EBUSY, 1176 "Logical unit not ready, sanitize in progress") }, 1177 /* DT MAEB */ 1178 { SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1179 "Logical unit not ready, additional power use not yet granted") }, 1180 /* D */ 1181 { SST(0x04, 0x1D, SS_WAIT | EBUSY, 1182 "Logical unit not ready, configuration in progress") }, 1183 /* D */ 1184 { SST(0x04, 0x1E, SS_FATAL | ENXIO, 1185 "Logical unit not ready, microcode activation required") }, 1186 /* DTLPWROMAEBKVF */ 1187 { SST(0x04, 0x1F, SS_FATAL | ENXIO, 1188 "Logical unit not ready, microcode download required") }, 1189 /* DTLPWROMAEBKVF */ 1190 { SST(0x04, 0x20, SS_FATAL | ENXIO, 1191 "Logical unit not ready, logical unit reset required") }, 1192 /* DTLPWROMAEBKVF */ 1193 { SST(0x04, 0x21, SS_FATAL | ENXIO, 1194 "Logical unit not ready, hard reset required") }, 1195 /* DTLPWROMAEBKVF */ 1196 { SST(0x04, 0x22, SS_FATAL | ENXIO, 1197 "Logical unit not ready, power cycle required") }, 1198 /* D */ 1199 { SST(0x04, 0x23, SS_FATAL | ENXIO, 1200 "Logical unit not ready, affiliation required") }, 1201 /* D */ 1202 { SST(0x04, 0x24, SS_FATAL | EBUSY, 1203 "Depopulation in progress") }, 1204 /* D */ 1205 { SST(0x04, 0x25, SS_FATAL | EBUSY, 1206 "Depopulation restoration in progress") }, 1207 /* DTL WROMAEBKVF */ 1208 { SST(0x05, 0x00, SS_RDEF, 1209 "Logical unit does not respond to selection") }, 1210 /* D WROM BK */ 1211 { SST(0x06, 0x00, SS_RDEF, 1212 "No reference position found") }, 1213 /* DTL WROM BK */ 1214 { SST(0x07, 0x00, SS_RDEF, 1215 "Multiple peripheral devices selected") }, 1216 /* DTL WROMAEBKVF */ 1217 { SST(0x08, 0x00, SS_RDEF, 1218 "Logical unit communication failure") }, 1219 /* DTL WROMAEBKVF */ 1220 { SST(0x08, 0x01, SS_RDEF, 1221 "Logical unit communication time-out") }, 1222 /* DTL WROMAEBKVF */ 1223 { SST(0x08, 0x02, SS_RDEF, 1224 "Logical unit communication parity error") }, 1225 /* DT ROM BK */ 1226 { SST(0x08, 0x03, SS_RDEF, 1227 "Logical unit communication CRC error (Ultra-DMA/32)") }, 1228 /* DTLPWRO K */ 1229 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ 1230 "Unreachable copy target") }, 1231 /* DT WRO B */ 1232 { SST(0x09, 0x00, SS_RDEF, 1233 "Track following error") }, 1234 /* WRO K */ 1235 { SST(0x09, 0x01, SS_RDEF, 1236 "Tracking servo failure") }, 1237 /* WRO K */ 1238 { SST(0x09, 0x02, SS_RDEF, 1239 "Focus servo failure") }, 1240 /* WRO */ 1241 { SST(0x09, 0x03, SS_RDEF, 1242 "Spindle servo failure") }, 1243 /* DT WRO B */ 1244 { SST(0x09, 0x04, SS_RDEF, 1245 "Head select fault") }, 1246 /* DT RO B */ 1247 { SST(0x09, 0x05, SS_RDEF, 1248 "Vibration induced tracking error") }, 1249 /* DTLPWROMAEBKVF */ 1250 { SST(0x0A, 0x00, SS_FATAL | ENOSPC, 1251 "Error log overflow") }, 1252 /* DTLPWROMAEBKVF */ 1253 { SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1254 "Warning") }, 1255 /* DTLPWROMAEBKVF */ 1256 { SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1257 "Warning - specified temperature exceeded") }, 1258 /* DTLPWROMAEBKVF */ 1259 { SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1260 "Warning - enclosure degraded") }, 1261 /* DTLPWROMAEBKVF */ 1262 { SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1263 "Warning - background self-test failed") }, 1264 /* DTLPWRO AEBKVF */ 1265 { SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1266 "Warning - background pre-scan detected medium error") }, 1267 /* DTLPWRO AEBKVF */ 1268 { SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1269 "Warning - background medium scan detected medium error") }, 1270 /* DTLPWROMAEBKVF */ 1271 { SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1272 "Warning - non-volatile cache now volatile") }, 1273 /* DTLPWROMAEBKVF */ 1274 { SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1275 "Warning - degraded power to non-volatile cache") }, 1276 /* DTLPWROMAEBKVF */ 1277 { SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1278 "Warning - power loss expected") }, 1279 /* D */ 1280 { SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1281 "Warning - device statistics notification available") }, 1282 /* DTLPWROMAEBKV */ 1283 { SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE, 1284 "Warning - High critical temperature limit exceeded") }, 1285 /* DTLPWROMAEBKV */ 1286 { SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE, 1287 "Warning - Low critical temperature limit exceeded") }, 1288 /* DTLPWROMAEBKV */ 1289 { SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE, 1290 "Warning - High operating temperature limit exceeded") }, 1291 /* DTLPWROMAEBKV */ 1292 { SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE, 1293 "Warning - Low operating temperature limit exceeded") }, 1294 /* DTLPWROMAEBKV */ 1295 { SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE, 1296 "Warning - High citical humidity limit exceeded") }, 1297 /* DTLPWROMAEBKV */ 1298 { SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE, 1299 "Warning - Low citical humidity limit exceeded") }, 1300 /* DTLPWROMAEBKV */ 1301 { SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE, 1302 "Warning - High operating humidity limit exceeded") }, 1303 /* DTLPWROMAEBKV */ 1304 { SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE, 1305 "Warning - Low operating humidity limit exceeded") }, 1306 /* DTLPWROMAEBKVF */ 1307 { SST(0x0B, 0x12, SS_NOP | SSQ_PRINT_SENSE, 1308 "Warning - Microcode security at risk") }, 1309 /* DTLPWROMAEBKVF */ 1310 { SST(0x0B, 0x13, SS_NOP | SSQ_PRINT_SENSE, 1311 "Warning - Microcode digital signature validation failure") }, 1312 /* D */ 1313 { SST(0x0B, 0x14, SS_NOP | SSQ_PRINT_SENSE, 1314 "Warning - Physical element status change") }, 1315 /* T R */ 1316 { SST(0x0C, 0x00, SS_RDEF, 1317 "Write error") }, 1318 /* K */ 1319 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1320 "Write error - recovered with auto reallocation") }, 1321 /* D W O BK */ 1322 { SST(0x0C, 0x02, SS_RDEF, 1323 "Write error - auto reallocation failed") }, 1324 /* D W O BK */ 1325 { SST(0x0C, 0x03, SS_RDEF, 1326 "Write error - recommend reassignment") }, 1327 /* DT W O B */ 1328 { SST(0x0C, 0x04, SS_RDEF, 1329 "Compression check miscompare error") }, 1330 /* DT W O B */ 1331 { SST(0x0C, 0x05, SS_RDEF, 1332 "Data expansion occurred during compression") }, 1333 /* DT W O B */ 1334 { SST(0x0C, 0x06, SS_RDEF, 1335 "Block not compressible") }, 1336 /* R */ 1337 { SST(0x0C, 0x07, SS_RDEF, 1338 "Write error - recovery needed") }, 1339 /* R */ 1340 { SST(0x0C, 0x08, SS_RDEF, 1341 "Write error - recovery failed") }, 1342 /* R */ 1343 { SST(0x0C, 0x09, SS_RDEF, 1344 "Write error - loss of streaming") }, 1345 /* R */ 1346 { SST(0x0C, 0x0A, SS_RDEF, 1347 "Write error - padding blocks added") }, 1348 /* DT WROM B */ 1349 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ 1350 "Auxiliary memory write error") }, 1351 /* DTLPWRO AEBKVF */ 1352 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ 1353 "Write error - unexpected unsolicited data") }, 1354 /* DTLPWRO AEBKVF */ 1355 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ 1356 "Write error - not enough unsolicited data") }, 1357 /* DT W O BK */ 1358 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */ 1359 "Multiple write errors") }, 1360 /* R */ 1361 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ 1362 "Defects in error window") }, 1363 /* D */ 1364 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */ 1365 "Incomplete multiple atomic write operations") }, 1366 /* D */ 1367 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */ 1368 "Write error - recovery scan needed") }, 1369 /* D */ 1370 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */ 1371 "Write error - insufficient zone resources") }, 1372 /* DTLPWRO A K */ 1373 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ 1374 "Error detected by third party temporary initiator") }, 1375 /* DTLPWRO A K */ 1376 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ 1377 "Third party device failure") }, 1378 /* DTLPWRO A K */ 1379 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ 1380 "Copy target device not reachable") }, 1381 /* DTLPWRO A K */ 1382 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ 1383 "Incorrect copy target device type") }, 1384 /* DTLPWRO A K */ 1385 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ 1386 "Copy target device data underrun") }, 1387 /* DTLPWRO A K */ 1388 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ 1389 "Copy target device data overrun") }, 1390 /* DT PWROMAEBK F */ 1391 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ 1392 "Invalid information unit") }, 1393 /* DT PWROMAEBK F */ 1394 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ 1395 "Information unit too short") }, 1396 /* DT PWROMAEBK F */ 1397 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ 1398 "Information unit too long") }, 1399 /* DT P R MAEBK F */ 1400 { SST(0x0E, 0x03, SS_FATAL | EINVAL, 1401 "Invalid field in command information unit") }, 1402 /* D W O BK */ 1403 { SST(0x10, 0x00, SS_RDEF, 1404 "ID CRC or ECC error") }, 1405 /* DT W O */ 1406 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ 1407 "Logical block guard check failed") }, 1408 /* DT W O */ 1409 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ 1410 "Logical block application tag check failed") }, 1411 /* DT W O */ 1412 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ 1413 "Logical block reference tag check failed") }, 1414 /* T */ 1415 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */ 1416 "Logical block protection error on recovered buffer data") }, 1417 /* T */ 1418 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */ 1419 "Logical block protection method error") }, 1420 /* DT WRO BK */ 1421 { SST(0x11, 0x00, SS_FATAL|EIO, 1422 "Unrecovered read error") }, 1423 /* DT WRO BK */ 1424 { SST(0x11, 0x01, SS_FATAL|EIO, 1425 "Read retries exhausted") }, 1426 /* DT WRO BK */ 1427 { SST(0x11, 0x02, SS_FATAL|EIO, 1428 "Error too long to correct") }, 1429 /* DT W O BK */ 1430 { SST(0x11, 0x03, SS_FATAL|EIO, 1431 "Multiple read errors") }, 1432 /* D W O BK */ 1433 { SST(0x11, 0x04, SS_FATAL|EIO, 1434 "Unrecovered read error - auto reallocate failed") }, 1435 /* WRO B */ 1436 { SST(0x11, 0x05, SS_FATAL|EIO, 1437 "L-EC uncorrectable error") }, 1438 /* WRO B */ 1439 { SST(0x11, 0x06, SS_FATAL|EIO, 1440 "CIRC unrecovered error") }, 1441 /* W O B */ 1442 { SST(0x11, 0x07, SS_RDEF, 1443 "Data re-synchronization error") }, 1444 /* T */ 1445 { SST(0x11, 0x08, SS_RDEF, 1446 "Incomplete block read") }, 1447 /* T */ 1448 { SST(0x11, 0x09, SS_RDEF, 1449 "No gap found") }, 1450 /* DT O BK */ 1451 { SST(0x11, 0x0A, SS_RDEF, 1452 "Miscorrected error") }, 1453 /* D W O BK */ 1454 { SST(0x11, 0x0B, SS_FATAL|EIO, 1455 "Unrecovered read error - recommend reassignment") }, 1456 /* D W O BK */ 1457 { SST(0x11, 0x0C, SS_FATAL|EIO, 1458 "Unrecovered read error - recommend rewrite the data") }, 1459 /* DT WRO B */ 1460 { SST(0x11, 0x0D, SS_RDEF, 1461 "De-compression CRC error") }, 1462 /* DT WRO B */ 1463 { SST(0x11, 0x0E, SS_RDEF, 1464 "Cannot decompress using declared algorithm") }, 1465 /* R */ 1466 { SST(0x11, 0x0F, SS_RDEF, 1467 "Error reading UPC/EAN number") }, 1468 /* R */ 1469 { SST(0x11, 0x10, SS_RDEF, 1470 "Error reading ISRC number") }, 1471 /* R */ 1472 { SST(0x11, 0x11, SS_RDEF, 1473 "Read error - loss of streaming") }, 1474 /* DT WROM B */ 1475 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ 1476 "Auxiliary memory read error") }, 1477 /* DTLPWRO AEBKVF */ 1478 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ 1479 "Read error - failed retransmission request") }, 1480 /* D */ 1481 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ 1482 "Read error - LBA marked bad by application client") }, 1483 /* D */ 1484 { SST(0x11, 0x15, SS_FATAL | EIO, 1485 "Write after sanitize required") }, 1486 /* D W O BK */ 1487 { SST(0x12, 0x00, SS_RDEF, 1488 "Address mark not found for ID field") }, 1489 /* D W O BK */ 1490 { SST(0x13, 0x00, SS_RDEF, 1491 "Address mark not found for data field") }, 1492 /* DTL WRO BK */ 1493 { SST(0x14, 0x00, SS_RDEF, 1494 "Recorded entity not found") }, 1495 /* DT WRO BK */ 1496 { SST(0x14, 0x01, SS_RDEF, 1497 "Record not found") }, 1498 /* T */ 1499 { SST(0x14, 0x02, SS_RDEF, 1500 "Filemark or setmark not found") }, 1501 /* T */ 1502 { SST(0x14, 0x03, SS_RDEF, 1503 "End-of-data not found") }, 1504 /* T */ 1505 { SST(0x14, 0x04, SS_RDEF, 1506 "Block sequence error") }, 1507 /* DT W O BK */ 1508 { SST(0x14, 0x05, SS_RDEF, 1509 "Record not found - recommend reassignment") }, 1510 /* DT W O BK */ 1511 { SST(0x14, 0x06, SS_RDEF, 1512 "Record not found - data auto-reallocated") }, 1513 /* T */ 1514 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ 1515 "Locate operation failure") }, 1516 /* DTL WROM BK */ 1517 { SST(0x15, 0x00, SS_RDEF, 1518 "Random positioning error") }, 1519 /* DTL WROM BK */ 1520 { SST(0x15, 0x01, SS_RDEF, 1521 "Mechanical positioning error") }, 1522 /* DT WRO BK */ 1523 { SST(0x15, 0x02, SS_RDEF, 1524 "Positioning error detected by read of medium") }, 1525 /* D W O BK */ 1526 { SST(0x16, 0x00, SS_RDEF, 1527 "Data synchronization mark error") }, 1528 /* D W O BK */ 1529 { SST(0x16, 0x01, SS_RDEF, 1530 "Data sync error - data rewritten") }, 1531 /* D W O BK */ 1532 { SST(0x16, 0x02, SS_RDEF, 1533 "Data sync error - recommend rewrite") }, 1534 /* D W O BK */ 1535 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1536 "Data sync error - data auto-reallocated") }, 1537 /* D W O BK */ 1538 { SST(0x16, 0x04, SS_RDEF, 1539 "Data sync error - recommend reassignment") }, 1540 /* DT WRO BK */ 1541 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1542 "Recovered data with no error correction applied") }, 1543 /* DT WRO BK */ 1544 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1545 "Recovered data with retries") }, 1546 /* DT WRO BK */ 1547 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1548 "Recovered data with positive head offset") }, 1549 /* DT WRO BK */ 1550 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1551 "Recovered data with negative head offset") }, 1552 /* WRO B */ 1553 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1554 "Recovered data with retries and/or CIRC applied") }, 1555 /* D WRO BK */ 1556 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1557 "Recovered data using previous sector ID") }, 1558 /* D W O BK */ 1559 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1560 "Recovered data without ECC - data auto-reallocated") }, 1561 /* D WRO BK */ 1562 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1563 "Recovered data without ECC - recommend reassignment") }, 1564 /* D WRO BK */ 1565 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1566 "Recovered data without ECC - recommend rewrite") }, 1567 /* D WRO BK */ 1568 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1569 "Recovered data without ECC - data rewritten") }, 1570 /* DT WRO BK */ 1571 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1572 "Recovered data with error correction applied") }, 1573 /* D WRO BK */ 1574 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1575 "Recovered data with error corr. & retries applied") }, 1576 /* D WRO BK */ 1577 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1578 "Recovered data - data auto-reallocated") }, 1579 /* R */ 1580 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1581 "Recovered data with CIRC") }, 1582 /* R */ 1583 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1584 "Recovered data with L-EC") }, 1585 /* D WRO BK */ 1586 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1587 "Recovered data - recommend reassignment") }, 1588 /* D WRO BK */ 1589 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1590 "Recovered data - recommend rewrite") }, 1591 /* D W O BK */ 1592 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1593 "Recovered data with ECC - data rewritten") }, 1594 /* R */ 1595 { SST(0x18, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1596 "Recovered data with linking") }, 1597 /* D O K */ 1598 { SST(0x19, 0x00, SS_RDEF, 1599 "Defect list error") }, 1600 /* D O K */ 1601 { SST(0x19, 0x01, SS_RDEF, 1602 "Defect list not available") }, 1603 /* D O K */ 1604 { SST(0x19, 0x02, SS_RDEF, 1605 "Defect list error in primary list") }, 1606 /* D O K */ 1607 { SST(0x19, 0x03, SS_RDEF, 1608 "Defect list error in grown list") }, 1609 /* DTLPWROMAEBKVF */ 1610 { SST(0x1A, 0x00, SS_RDEF, 1611 "Parameter list length error") }, 1612 /* DTLPWROMAEBKVF */ 1613 { SST(0x1B, 0x00, SS_RDEF, 1614 "Synchronous data transfer error") }, 1615 /* D O BK */ 1616 { SST(0x1C, 0x00, SS_RDEF, 1617 "Defect list not found") }, 1618 /* D O BK */ 1619 { SST(0x1C, 0x01, SS_RDEF, 1620 "Primary defect list not found") }, 1621 /* D O BK */ 1622 { SST(0x1C, 0x02, SS_RDEF, 1623 "Grown defect list not found") }, 1624 /* DT WRO BK */ 1625 { SST(0x1D, 0x00, SS_FATAL, 1626 "Miscompare during verify operation") }, 1627 /* D B */ 1628 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */ 1629 "Miscomparable verify of unmapped LBA") }, 1630 /* D W O BK */ 1631 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1632 "Recovered ID with ECC correction") }, 1633 /* D O K */ 1634 { SST(0x1F, 0x00, SS_RDEF, 1635 "Partial defect list transfer") }, 1636 /* DTLPWROMAEBKVF */ 1637 { SST(0x20, 0x00, SS_FATAL | EINVAL, 1638 "Invalid command operation code") }, 1639 /* DT PWROMAEBK */ 1640 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ 1641 "Access denied - initiator pending-enrolled") }, 1642 /* DT PWROMAEBK */ 1643 { SST(0x20, 0x02, SS_FATAL | EPERM, 1644 "Access denied - no access rights") }, 1645 /* DT PWROMAEBK */ 1646 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ 1647 "Access denied - invalid mgmt ID key") }, 1648 /* T */ 1649 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ 1650 "Illegal command while in write capable state") }, 1651 /* T */ 1652 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ 1653 "Obsolete") }, 1654 /* T */ 1655 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ 1656 "Illegal command while in explicit address mode") }, 1657 /* T */ 1658 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ 1659 "Illegal command while in implicit address mode") }, 1660 /* DT PWROMAEBK */ 1661 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ 1662 "Access denied - enrollment conflict") }, 1663 /* DT PWROMAEBK */ 1664 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ 1665 "Access denied - invalid LU identifier") }, 1666 /* DT PWROMAEBK */ 1667 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ 1668 "Access denied - invalid proxy token") }, 1669 /* DT PWROMAEBK */ 1670 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ 1671 "Access denied - ACL LUN conflict") }, 1672 /* T */ 1673 { SST(0x20, 0x0C, SS_FATAL | EINVAL, 1674 "Illegal command when not in append-only mode") }, 1675 /* D */ 1676 { SST(0x20, 0x0D, SS_FATAL | EINVAL, 1677 "Not an administrative logical unit") }, 1678 /* D */ 1679 { SST(0x20, 0x0E, SS_FATAL | EINVAL, 1680 "Not a subsidiary logical unit") }, 1681 /* D */ 1682 { SST(0x20, 0x0F, SS_FATAL | EINVAL, 1683 "Not a conglomerate logical unit") }, 1684 /* DT WRO BK */ 1685 { SST(0x21, 0x00, SS_FATAL | EINVAL, 1686 "Logical block address out of range") }, 1687 /* DT WROM BK */ 1688 { SST(0x21, 0x01, SS_FATAL | EINVAL, 1689 "Invalid element address") }, 1690 /* R */ 1691 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ 1692 "Invalid address for write") }, 1693 /* R */ 1694 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ 1695 "Invalid write crossing layer jump") }, 1696 /* D */ 1697 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */ 1698 "Unaligned write command") }, 1699 /* D */ 1700 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */ 1701 "Write boundary violation") }, 1702 /* D */ 1703 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */ 1704 "Attempt to read invalid data") }, 1705 /* D */ 1706 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */ 1707 "Read boundary violation") }, 1708 /* D */ 1709 { SST(0x21, 0x08, SS_FATAL | EINVAL, 1710 "Misaligned write command") }, 1711 /* D */ 1712 { SST(0x21, 0x09, SS_FATAL | EINVAL, 1713 "Attempt to access gap zone") }, 1714 /* D */ 1715 { SST(0x22, 0x00, SS_FATAL | EINVAL, 1716 "Illegal function (use 20 00, 24 00, or 26 00)") }, 1717 /* DT P B */ 1718 { SST(0x23, 0x00, SS_FATAL | EINVAL, 1719 "Invalid token operation, cause not reportable") }, 1720 /* DT P B */ 1721 { SST(0x23, 0x01, SS_FATAL | EINVAL, 1722 "Invalid token operation, unsupported token type") }, 1723 /* DT P B */ 1724 { SST(0x23, 0x02, SS_FATAL | EINVAL, 1725 "Invalid token operation, remote token usage not supported") }, 1726 /* DT P B */ 1727 { SST(0x23, 0x03, SS_FATAL | EINVAL, 1728 "Invalid token operation, remote ROD token creation not supported") }, 1729 /* DT P B */ 1730 { SST(0x23, 0x04, SS_FATAL | EINVAL, 1731 "Invalid token operation, token unknown") }, 1732 /* DT P B */ 1733 { SST(0x23, 0x05, SS_FATAL | EINVAL, 1734 "Invalid token operation, token corrupt") }, 1735 /* DT P B */ 1736 { SST(0x23, 0x06, SS_FATAL | EINVAL, 1737 "Invalid token operation, token revoked") }, 1738 /* DT P B */ 1739 { SST(0x23, 0x07, SS_FATAL | EINVAL, 1740 "Invalid token operation, token expired") }, 1741 /* DT P B */ 1742 { SST(0x23, 0x08, SS_FATAL | EINVAL, 1743 "Invalid token operation, token cancelled") }, 1744 /* DT P B */ 1745 { SST(0x23, 0x09, SS_FATAL | EINVAL, 1746 "Invalid token operation, token deleted") }, 1747 /* DT P B */ 1748 { SST(0x23, 0x0A, SS_FATAL | EINVAL, 1749 "Invalid token operation, invalid token length") }, 1750 /* DTLPWROMAEBKVF */ 1751 { SST(0x24, 0x00, SS_FATAL | EINVAL, 1752 "Invalid field in CDB") }, 1753 /* DTLPWRO AEBKVF */ 1754 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ 1755 "CDB decryption error") }, 1756 /* T */ 1757 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ 1758 "Obsolete") }, 1759 /* T */ 1760 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ 1761 "Obsolete") }, 1762 /* F */ 1763 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ 1764 "Security audit value frozen") }, 1765 /* F */ 1766 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ 1767 "Security working key frozen") }, 1768 /* F */ 1769 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ 1770 "NONCE not unique") }, 1771 /* F */ 1772 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ 1773 "NONCE timestamp out of range") }, 1774 /* DT R MAEBKV */ 1775 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ 1776 "Invalid XCDB") }, 1777 /* D */ 1778 { SST(0x24, 0x09, SS_FATAL | EINVAL, 1779 "Invalid fast format") }, 1780 /* DTLPWROMAEBKVF */ 1781 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST, 1782 "Logical unit not supported") }, 1783 /* DTLPWROMAEBKVF */ 1784 { SST(0x26, 0x00, SS_FATAL | EINVAL, 1785 "Invalid field in parameter list") }, 1786 /* DTLPWROMAEBKVF */ 1787 { SST(0x26, 0x01, SS_FATAL | EINVAL, 1788 "Parameter not supported") }, 1789 /* DTLPWROMAEBKVF */ 1790 { SST(0x26, 0x02, SS_FATAL | EINVAL, 1791 "Parameter value invalid") }, 1792 /* DTLPWROMAE K */ 1793 { SST(0x26, 0x03, SS_FATAL | EINVAL, 1794 "Threshold parameters not supported") }, 1795 /* DTLPWROMAEBKVF */ 1796 { SST(0x26, 0x04, SS_FATAL | EINVAL, 1797 "Invalid release of persistent reservation") }, 1798 /* DTLPWRO A BK */ 1799 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ 1800 "Data decryption error") }, 1801 /* DTLPWRO K */ 1802 { SST(0x26, 0x06, SS_FATAL | EINVAL, 1803 "Too many target descriptors") }, 1804 /* DTLPWRO K */ 1805 { SST(0x26, 0x07, SS_FATAL | EINVAL, 1806 "Unsupported target descriptor type code") }, 1807 /* DTLPWRO K */ 1808 { SST(0x26, 0x08, SS_FATAL | EINVAL, 1809 "Too many segment descriptors") }, 1810 /* DTLPWRO K */ 1811 { SST(0x26, 0x09, SS_FATAL | EINVAL, 1812 "Unsupported segment descriptor type code") }, 1813 /* DTLPWRO K */ 1814 { SST(0x26, 0x0A, SS_FATAL | EINVAL, 1815 "Unexpected inexact segment") }, 1816 /* DTLPWRO K */ 1817 { SST(0x26, 0x0B, SS_FATAL | EINVAL, 1818 "Inline data length exceeded") }, 1819 /* DTLPWRO K */ 1820 { SST(0x26, 0x0C, SS_FATAL | EINVAL, 1821 "Invalid operation for copy source or destination") }, 1822 /* DTLPWRO K */ 1823 { SST(0x26, 0x0D, SS_FATAL | EINVAL, 1824 "Copy segment granularity violation") }, 1825 /* DT PWROMAEBK */ 1826 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ 1827 "Invalid parameter while port is enabled") }, 1828 /* F */ 1829 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ 1830 "Invalid data-out buffer integrity check value") }, 1831 /* T */ 1832 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ 1833 "Data decryption key fail limit reached") }, 1834 /* T */ 1835 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ 1836 "Incomplete key-associated data set") }, 1837 /* T */ 1838 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ 1839 "Vendor specific key reference not found") }, 1840 /* D */ 1841 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */ 1842 "Application tag mode page is invalid") }, 1843 /* T */ 1844 { SST(0x26, 0x14, SS_RDEF, /* XXX TBD */ 1845 "Tape stream mirroring prevented") }, 1846 /* T */ 1847 { SST(0x26, 0x15, SS_FATAL | EINVAL, 1848 "Copy source or copy destination not authorized") }, 1849 /* D */ 1850 { SST(0x26, 0x16, SS_FATAL | EINVAL, 1851 "Fast copy not possible") }, 1852 /* DT WRO BK */ 1853 { SST(0x27, 0x00, SS_FATAL | EACCES, 1854 "Write protected") }, 1855 /* DT WRO BK */ 1856 { SST(0x27, 0x01, SS_FATAL | EACCES, 1857 "Hardware write protected") }, 1858 /* DT WRO BK */ 1859 { SST(0x27, 0x02, SS_FATAL | EACCES, 1860 "Logical unit software write protected") }, 1861 /* T R */ 1862 { SST(0x27, 0x03, SS_FATAL | EACCES, 1863 "Associated write protect") }, 1864 /* T R */ 1865 { SST(0x27, 0x04, SS_FATAL | EACCES, 1866 "Persistent write protect") }, 1867 /* T R */ 1868 { SST(0x27, 0x05, SS_FATAL | EACCES, 1869 "Permanent write protect") }, 1870 /* R F */ 1871 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ 1872 "Conditional write protect") }, 1873 /* D B */ 1874 { SST(0x27, 0x07, SS_FATAL | ENOSPC, 1875 "Space allocation failed write protect") }, 1876 /* D */ 1877 { SST(0x27, 0x08, SS_FATAL | EACCES, 1878 "Zone is read only") }, 1879 /* DTLPWROMAEBKVF */ 1880 { SST(0x28, 0x00, SS_FATAL | ENXIO, 1881 "Not ready to ready change, medium may have changed") }, 1882 /* DT WROM B */ 1883 { SST(0x28, 0x01, SS_FATAL | ENXIO, 1884 "Import or export element accessed") }, 1885 /* R */ 1886 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ 1887 "Format-layer may have changed") }, 1888 /* M */ 1889 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ 1890 "Import/export element accessed, medium changed") }, 1891 /* 1892 * XXX JGibbs - All of these should use the same errno, but I don't 1893 * think ENXIO is the correct choice. Should we borrow from 1894 * the networking errnos? ECONNRESET anyone? 1895 */ 1896 /* DTLPWROMAEBKVF */ 1897 { SST(0x29, 0x00, SS_FATAL | ENXIO, 1898 "Power on, reset, or bus device reset occurred") }, 1899 /* DTLPWROMAEBKVF */ 1900 { SST(0x29, 0x01, SS_RDEF, 1901 "Power on occurred") }, 1902 /* DTLPWROMAEBKVF */ 1903 { SST(0x29, 0x02, SS_RDEF, 1904 "SCSI bus reset occurred") }, 1905 /* DTLPWROMAEBKVF */ 1906 { SST(0x29, 0x03, SS_RDEF, 1907 "Bus device reset function occurred") }, 1908 /* DTLPWROMAEBKVF */ 1909 { SST(0x29, 0x04, SS_RDEF, 1910 "Device internal reset") }, 1911 /* DTLPWROMAEBKVF */ 1912 { SST(0x29, 0x05, SS_RDEF, 1913 "Transceiver mode changed to single-ended") }, 1914 /* DTLPWROMAEBKVF */ 1915 { SST(0x29, 0x06, SS_RDEF, 1916 "Transceiver mode changed to LVD") }, 1917 /* DTLPWROMAEBKVF */ 1918 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ 1919 "I_T nexus loss occurred") }, 1920 /* DTL WROMAEBKVF */ 1921 { SST(0x2A, 0x00, SS_RDEF, 1922 "Parameters changed") }, 1923 /* DTL WROMAEBKVF */ 1924 { SST(0x2A, 0x01, SS_RDEF, 1925 "Mode parameters changed") }, 1926 /* DTL WROMAE K */ 1927 { SST(0x2A, 0x02, SS_RDEF, 1928 "Log parameters changed") }, 1929 /* DTLPWROMAE K */ 1930 { SST(0x2A, 0x03, SS_RDEF, 1931 "Reservations preempted") }, 1932 /* DTLPWROMAE */ 1933 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ 1934 "Reservations released") }, 1935 /* DTLPWROMAE */ 1936 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ 1937 "Registrations preempted") }, 1938 /* DTLPWROMAEBKVF */ 1939 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ 1940 "Asymmetric access state changed") }, 1941 /* DTLPWROMAEBKVF */ 1942 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ 1943 "Implicit asymmetric access state transition failed") }, 1944 /* DT WROMAEBKVF */ 1945 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ 1946 "Priority changed") }, 1947 /* D */ 1948 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ 1949 "Capacity data has changed") }, 1950 /* DT */ 1951 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ 1952 "Error history I_T nexus cleared") }, 1953 /* DT */ 1954 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ 1955 "Error history snapshot released") }, 1956 /* F */ 1957 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ 1958 "Error recovery attributes have changed") }, 1959 /* T */ 1960 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ 1961 "Data encryption capabilities changed") }, 1962 /* DT M E V */ 1963 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ 1964 "Timestamp changed") }, 1965 /* T */ 1966 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ 1967 "Data encryption parameters changed by another I_T nexus") }, 1968 /* T */ 1969 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ 1970 "Data encryption parameters changed by vendor specific event") }, 1971 /* T */ 1972 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ 1973 "Data encryption key instance counter has changed") }, 1974 /* DT R MAEBKV */ 1975 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ 1976 "SA creation capabilities data has changed") }, 1977 /* T M V */ 1978 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */ 1979 "Medium removal prevention preempted") }, 1980 /* D */ 1981 { SST(0x2A, 0x16, SS_RDEF, /* XXX TBD */ 1982 "Zone reset write pointer recommended") }, 1983 /* DTLPWRO K */ 1984 { SST(0x2B, 0x00, SS_RDEF, 1985 "Copy cannot execute since host cannot disconnect") }, 1986 /* DTLPWROMAEBKVF */ 1987 { SST(0x2C, 0x00, SS_RDEF, 1988 "Command sequence error") }, 1989 /* */ 1990 { SST(0x2C, 0x01, SS_RDEF, 1991 "Too many windows specified") }, 1992 /* */ 1993 { SST(0x2C, 0x02, SS_RDEF, 1994 "Invalid combination of windows specified") }, 1995 /* R */ 1996 { SST(0x2C, 0x03, SS_RDEF, 1997 "Current program area is not empty") }, 1998 /* R */ 1999 { SST(0x2C, 0x04, SS_RDEF, 2000 "Current program area is empty") }, 2001 /* B */ 2002 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ 2003 "Illegal power condition request") }, 2004 /* R */ 2005 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ 2006 "Persistent prevent conflict") }, 2007 /* DTLPWROMAEBKVF */ 2008 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ 2009 "Previous busy status") }, 2010 /* DTLPWROMAEBKVF */ 2011 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ 2012 "Previous task set full status") }, 2013 /* DTLPWROM EBKVF */ 2014 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ 2015 "Previous reservation conflict status") }, 2016 /* F */ 2017 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ 2018 "Partition or collection contains user objects") }, 2019 /* T */ 2020 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ 2021 "Not reserved") }, 2022 /* D */ 2023 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */ 2024 "ORWRITE generation does not match") }, 2025 /* D */ 2026 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */ 2027 "Reset write pointer not allowed") }, 2028 /* D */ 2029 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */ 2030 "Zone is offline") }, 2031 /* D */ 2032 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */ 2033 "Stream not open") }, 2034 /* D */ 2035 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */ 2036 "Unwritten data in zone") }, 2037 /* D */ 2038 { SST(0x2C, 0x11, SS_FATAL | EINVAL, 2039 "Descriptor format sense data required") }, 2040 /* D */ 2041 { SST(0x2C, 0x12, SS_FATAL | EINVAL, 2042 "Zone is inactive") }, 2043 /* DTPEROMAEBKVF */ 2044 { SST(0x2C, 0x13, SS_FATAL | EINVAL, 2045 "Well known logical unit access required") }, 2046 /* T */ 2047 { SST(0x2D, 0x00, SS_RDEF, 2048 "Overwrite error on update in place") }, 2049 /* R */ 2050 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ 2051 "Insufficient time for operation") }, 2052 /* D */ 2053 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */ 2054 "Command timeout before processing") }, 2055 /* D */ 2056 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */ 2057 "Command timeout during processing") }, 2058 /* D */ 2059 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */ 2060 "Command timeout during processing due to error recovery") }, 2061 /* DTLPWROMAEBKVF */ 2062 { SST(0x2F, 0x00, SS_RDEF, 2063 "Commands cleared by another initiator") }, 2064 /* D */ 2065 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ 2066 "Commands cleared by power loss notification") }, 2067 /* DTLPWROMAEBKVF */ 2068 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ 2069 "Commands cleared by device server") }, 2070 /* DTLPWROMAEBKVF */ 2071 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */ 2072 "Some commands cleared by queuing layer event") }, 2073 /* DT WROM BK */ 2074 { SST(0x30, 0x00, SS_RDEF, 2075 "Incompatible medium installed") }, 2076 /* DT WRO BK */ 2077 { SST(0x30, 0x01, SS_RDEF, 2078 "Cannot read medium - unknown format") }, 2079 /* DT WRO BK */ 2080 { SST(0x30, 0x02, SS_RDEF, 2081 "Cannot read medium - incompatible format") }, 2082 /* DT R K */ 2083 { SST(0x30, 0x03, SS_RDEF, 2084 "Cleaning cartridge installed") }, 2085 /* DT WRO BK */ 2086 { SST(0x30, 0x04, SS_RDEF, 2087 "Cannot write medium - unknown format") }, 2088 /* DT WRO BK */ 2089 { SST(0x30, 0x05, SS_RDEF, 2090 "Cannot write medium - incompatible format") }, 2091 /* DT WRO B */ 2092 { SST(0x30, 0x06, SS_RDEF, 2093 "Cannot format medium - incompatible medium") }, 2094 /* DTL WROMAEBKVF */ 2095 { SST(0x30, 0x07, SS_RDEF, 2096 "Cleaning failure") }, 2097 /* R */ 2098 { SST(0x30, 0x08, SS_RDEF, 2099 "Cannot write - application code mismatch") }, 2100 /* R */ 2101 { SST(0x30, 0x09, SS_RDEF, 2102 "Current session not fixated for append") }, 2103 /* DT WRO AEBK */ 2104 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ 2105 "Cleaning request rejected") }, 2106 /* T */ 2107 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ 2108 "WORM medium - overwrite attempted") }, 2109 /* T */ 2110 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ 2111 "WORM medium - integrity check") }, 2112 /* R */ 2113 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ 2114 "Medium not formatted") }, 2115 /* M */ 2116 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ 2117 "Incompatible volume type") }, 2118 /* M */ 2119 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ 2120 "Incompatible volume qualifier") }, 2121 /* M */ 2122 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */ 2123 "Cleaning volume expired") }, 2124 /* DT WRO BK */ 2125 { SST(0x31, 0x00, SS_FATAL | ENXIO, 2126 "Medium format corrupted") }, 2127 /* D L RO B */ 2128 { SST(0x31, 0x01, SS_RDEF, 2129 "Format command failed") }, 2130 /* R */ 2131 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ 2132 "Zoned formatting failed due to spare linking") }, 2133 /* D B */ 2134 { SST(0x31, 0x03, SS_FATAL | EIO, 2135 "SANITIZE command failed") }, 2136 /* D */ 2137 { SST(0x31, 0x04, SS_FATAL | EIO, 2138 "Depopulation failed") }, 2139 /* D */ 2140 { SST(0x31, 0x05, SS_FATAL | EIO, 2141 "Depopulation restoration failed") }, 2142 /* D W O BK */ 2143 { SST(0x32, 0x00, SS_RDEF, 2144 "No defect spare location available") }, 2145 /* D W O BK */ 2146 { SST(0x32, 0x01, SS_RDEF, 2147 "Defect list update failure") }, 2148 /* T */ 2149 { SST(0x33, 0x00, SS_RDEF, 2150 "Tape length error") }, 2151 /* DTLPWROMAEBKVF */ 2152 { SST(0x34, 0x00, SS_RDEF, 2153 "Enclosure failure") }, 2154 /* DTLPWROMAEBKVF */ 2155 { SST(0x35, 0x00, SS_RDEF, 2156 "Enclosure services failure") }, 2157 /* DTLPWROMAEBKVF */ 2158 { SST(0x35, 0x01, SS_RDEF, 2159 "Unsupported enclosure function") }, 2160 /* DTLPWROMAEBKVF */ 2161 { SST(0x35, 0x02, SS_RDEF, 2162 "Enclosure services unavailable") }, 2163 /* DTLPWROMAEBKVF */ 2164 { SST(0x35, 0x03, SS_RDEF, 2165 "Enclosure services transfer failure") }, 2166 /* DTLPWROMAEBKVF */ 2167 { SST(0x35, 0x04, SS_RDEF, 2168 "Enclosure services transfer refused") }, 2169 /* DTL WROMAEBKVF */ 2170 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ 2171 "Enclosure services checksum error") }, 2172 /* L */ 2173 { SST(0x36, 0x00, SS_RDEF, 2174 "Ribbon, ink, or toner failure") }, 2175 /* DTL WROMAEBKVF */ 2176 { SST(0x37, 0x00, SS_RDEF, 2177 "Rounded parameter") }, 2178 /* B */ 2179 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ 2180 "Event status notification") }, 2181 /* B */ 2182 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ 2183 "ESN - power management class event") }, 2184 /* B */ 2185 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ 2186 "ESN - media class event") }, 2187 /* B */ 2188 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ 2189 "ESN - device busy class event") }, 2190 /* D */ 2191 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */ 2192 "Thin provisioning soft threshold reached") }, 2193 /* D */ 2194 { SST(0x38, 0x08, SS_NOP | SSQ_PRINT_SENSE, 2195 "Depopulation interrupted") }, 2196 /* DTL WROMAE K */ 2197 { SST(0x39, 0x00, SS_RDEF, 2198 "Saving parameters not supported") }, 2199 /* DTL WROM BK */ 2200 { SST(0x3A, 0x00, SS_FATAL | ENXIO, 2201 "Medium not present") }, 2202 /* DT WROM BK */ 2203 { SST(0x3A, 0x01, SS_FATAL | ENXIO, 2204 "Medium not present - tray closed") }, 2205 /* DT WROM BK */ 2206 { SST(0x3A, 0x02, SS_FATAL | ENXIO, 2207 "Medium not present - tray open") }, 2208 /* DT WROM B */ 2209 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ 2210 "Medium not present - loadable") }, 2211 /* DT WRO B */ 2212 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ 2213 "Medium not present - medium auxiliary memory accessible") }, 2214 /* TL */ 2215 { SST(0x3B, 0x00, SS_RDEF, 2216 "Sequential positioning error") }, 2217 /* T */ 2218 { SST(0x3B, 0x01, SS_RDEF, 2219 "Tape position error at beginning-of-medium") }, 2220 /* T */ 2221 { SST(0x3B, 0x02, SS_RDEF, 2222 "Tape position error at end-of-medium") }, 2223 /* L */ 2224 { SST(0x3B, 0x03, SS_RDEF, 2225 "Tape or electronic vertical forms unit not ready") }, 2226 /* L */ 2227 { SST(0x3B, 0x04, SS_RDEF, 2228 "Slew failure") }, 2229 /* L */ 2230 { SST(0x3B, 0x05, SS_RDEF, 2231 "Paper jam") }, 2232 /* L */ 2233 { SST(0x3B, 0x06, SS_RDEF, 2234 "Failed to sense top-of-form") }, 2235 /* L */ 2236 { SST(0x3B, 0x07, SS_RDEF, 2237 "Failed to sense bottom-of-form") }, 2238 /* T */ 2239 { SST(0x3B, 0x08, SS_RDEF, 2240 "Reposition error") }, 2241 /* */ 2242 { SST(0x3B, 0x09, SS_RDEF, 2243 "Read past end of medium") }, 2244 /* */ 2245 { SST(0x3B, 0x0A, SS_RDEF, 2246 "Read past beginning of medium") }, 2247 /* */ 2248 { SST(0x3B, 0x0B, SS_RDEF, 2249 "Position past end of medium") }, 2250 /* T */ 2251 { SST(0x3B, 0x0C, SS_RDEF, 2252 "Position past beginning of medium") }, 2253 /* DT WROM BK */ 2254 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, 2255 "Medium destination element full") }, 2256 /* DT WROM BK */ 2257 { SST(0x3B, 0x0E, SS_RDEF, 2258 "Medium source element empty") }, 2259 /* R */ 2260 { SST(0x3B, 0x0F, SS_RDEF, 2261 "End of medium reached") }, 2262 /* DT WROM BK */ 2263 { SST(0x3B, 0x11, SS_RDEF, 2264 "Medium magazine not accessible") }, 2265 /* DT WROM BK */ 2266 { SST(0x3B, 0x12, SS_RDEF, 2267 "Medium magazine removed") }, 2268 /* DT WROM BK */ 2269 { SST(0x3B, 0x13, SS_RDEF, 2270 "Medium magazine inserted") }, 2271 /* DT WROM BK */ 2272 { SST(0x3B, 0x14, SS_RDEF, 2273 "Medium magazine locked") }, 2274 /* DT WROM BK */ 2275 { SST(0x3B, 0x15, SS_RDEF, 2276 "Medium magazine unlocked") }, 2277 /* R */ 2278 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ 2279 "Mechanical positioning or changer error") }, 2280 /* F */ 2281 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ 2282 "Read past end of user object") }, 2283 /* M */ 2284 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ 2285 "Element disabled") }, 2286 /* M */ 2287 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ 2288 "Element enabled") }, 2289 /* M */ 2290 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ 2291 "Data transfer device removed") }, 2292 /* M */ 2293 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ 2294 "Data transfer device inserted") }, 2295 /* T */ 2296 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */ 2297 "Too many logical objects on partition to support operation") }, 2298 /* M */ 2299 { SST(0x3B, 0x20, SS_RDEF, /* XXX TBD */ 2300 "Element static information changed") }, 2301 /* DTLPWROMAE K */ 2302 { SST(0x3D, 0x00, SS_RDEF, 2303 "Invalid bits in IDENTIFY message") }, 2304 /* DTLPWROMAEBKVF */ 2305 { SST(0x3E, 0x00, SS_RDEF, 2306 "Logical unit has not self-configured yet") }, 2307 /* DTLPWROMAEBKVF */ 2308 { SST(0x3E, 0x01, SS_RDEF, 2309 "Logical unit failure") }, 2310 /* DTLPWROMAEBKVF */ 2311 { SST(0x3E, 0x02, SS_RDEF, 2312 "Timeout on logical unit") }, 2313 /* DTLPWROMAEBKVF */ 2314 { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */ 2315 "Logical unit failed self-test") }, 2316 /* DTLPWROMAEBKVF */ 2317 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ 2318 "Logical unit unable to update self-test log") }, 2319 /* DTLPWROMAEBKVF */ 2320 { SST(0x3F, 0x00, SS_RDEF, 2321 "Target operating conditions have changed") }, 2322 /* DTLPWROMAEBKVF */ 2323 { SST(0x3F, 0x01, SS_RDEF, 2324 "Microcode has been changed") }, 2325 /* DTLPWROM BK */ 2326 { SST(0x3F, 0x02, SS_RDEF, 2327 "Changed operating definition") }, 2328 /* DTLPWROMAEBKVF */ 2329 { SST(0x3F, 0x03, SS_RDEF, 2330 "INQUIRY data has changed") }, 2331 /* DT WROMAEBK */ 2332 { SST(0x3F, 0x04, SS_RDEF, 2333 "Component device attached") }, 2334 /* DT WROMAEBK */ 2335 { SST(0x3F, 0x05, SS_RDEF, 2336 "Device identifier changed") }, 2337 /* DT WROMAEB */ 2338 { SST(0x3F, 0x06, SS_RDEF, 2339 "Redundancy group created or modified") }, 2340 /* DT WROMAEB */ 2341 { SST(0x3F, 0x07, SS_RDEF, 2342 "Redundancy group deleted") }, 2343 /* DT WROMAEB */ 2344 { SST(0x3F, 0x08, SS_RDEF, 2345 "Spare created or modified") }, 2346 /* DT WROMAEB */ 2347 { SST(0x3F, 0x09, SS_RDEF, 2348 "Spare deleted") }, 2349 /* DT WROMAEBK */ 2350 { SST(0x3F, 0x0A, SS_RDEF, 2351 "Volume set created or modified") }, 2352 /* DT WROMAEBK */ 2353 { SST(0x3F, 0x0B, SS_RDEF, 2354 "Volume set deleted") }, 2355 /* DT WROMAEBK */ 2356 { SST(0x3F, 0x0C, SS_RDEF, 2357 "Volume set deassigned") }, 2358 /* DT WROMAEBK */ 2359 { SST(0x3F, 0x0D, SS_RDEF, 2360 "Volume set reassigned") }, 2361 /* DTLPWROMAE */ 2362 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN , 2363 "Reported LUNs data has changed") }, 2364 /* DTLPWROMAEBKVF */ 2365 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ 2366 "Echo buffer overwritten") }, 2367 /* DT WROM B */ 2368 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ 2369 "Medium loadable") }, 2370 /* DT WROM B */ 2371 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ 2372 "Medium auxiliary memory accessible") }, 2373 /* DTLPWR MAEBK F */ 2374 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ 2375 "iSCSI IP address added") }, 2376 /* DTLPWR MAEBK F */ 2377 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ 2378 "iSCSI IP address removed") }, 2379 /* DTLPWR MAEBK F */ 2380 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ 2381 "iSCSI IP address changed") }, 2382 /* DTLPWR MAEBK */ 2383 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */ 2384 "Inspect referrals sense descriptors") }, 2385 /* DTLPWROMAEBKVF */ 2386 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */ 2387 "Microcode has been changed without reset") }, 2388 /* D */ 2389 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */ 2390 "Zone transition to full") }, 2391 /* D */ 2392 { SST(0x3F, 0x18, SS_RDEF, /* XXX TBD */ 2393 "Bind completed") }, 2394 /* D */ 2395 { SST(0x3F, 0x19, SS_RDEF, /* XXX TBD */ 2396 "Bind redirected") }, 2397 /* D */ 2398 { SST(0x3F, 0x1A, SS_RDEF, /* XXX TBD */ 2399 "Subsidiary binding changed") }, 2400 { SST(0x40, 0x00, SS_RDEF, 2401 "RAM failure") }, /* deprecated - use 40 NN instead */ 2402 /* DTLPWROMAEBKVF */ 2403 { SST(0x40, 0x80, SS_RDEF, 2404 "Diagnostic failure: ASCQ = Component ID") }, 2405 /* DTLPWROMAEBKVF */ 2406 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, 2407 NULL) }, /* Range 0x80->0xFF */ 2408 /* D */ 2409 { SST(0x41, 0x00, SS_RDEF, 2410 "Data path failure") }, /* deprecated - use 40 NN instead */ 2411 /* D */ 2412 { SST(0x42, 0x00, SS_RDEF, 2413 "Power-on or self-test failure") }, 2414 /* deprecated - use 40 NN instead */ 2415 /* DTLPWROMAEBKVF */ 2416 { SST(0x43, 0x00, SS_RDEF, 2417 "Message error") }, 2418 /* DTLPWROMAEBKVF */ 2419 { SST(0x44, 0x00, SS_FATAL | EIO, 2420 "Internal target failure") }, 2421 /* DT P MAEBKVF */ 2422 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */ 2423 "Persistent reservation information lost") }, 2424 /* DT B */ 2425 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ 2426 "ATA device failed set features") }, 2427 /* DTLPWROMAEBKVF */ 2428 { SST(0x45, 0x00, SS_RDEF, 2429 "Select or reselect failure") }, 2430 /* DTLPWROM BK */ 2431 { SST(0x46, 0x00, SS_RDEF, 2432 "Unsuccessful soft reset") }, 2433 /* DTLPWROMAEBKVF */ 2434 { SST(0x47, 0x00, SS_RDEF, 2435 "SCSI parity error") }, 2436 /* DTLPWROMAEBKVF */ 2437 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ 2438 "Data phase CRC error detected") }, 2439 /* DTLPWROMAEBKVF */ 2440 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ 2441 "SCSI parity error detected during ST data phase") }, 2442 /* DTLPWROMAEBKVF */ 2443 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ 2444 "Information unit iuCRC error detected") }, 2445 /* DTLPWROMAEBKVF */ 2446 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ 2447 "Asynchronous information protection error detected") }, 2448 /* DTLPWROMAEBKVF */ 2449 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ 2450 "Protocol service CRC error") }, 2451 /* DT MAEBKVF */ 2452 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ 2453 "PHY test function in progress") }, 2454 /* DT PWROMAEBK */ 2455 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ 2456 "Some commands cleared by iSCSI protocol event") }, 2457 /* DTLPWROMAEBKVF */ 2458 { SST(0x48, 0x00, SS_RDEF, 2459 "Initiator detected error message received") }, 2460 /* DTLPWROMAEBKVF */ 2461 { SST(0x49, 0x00, SS_RDEF, 2462 "Invalid message error") }, 2463 /* DTLPWROMAEBKVF */ 2464 { SST(0x4A, 0x00, SS_RDEF, 2465 "Command phase error") }, 2466 /* DTLPWROMAEBKVF */ 2467 { SST(0x4B, 0x00, SS_RDEF, 2468 "Data phase error") }, 2469 /* DT PWROMAEBK */ 2470 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ 2471 "Invalid target port transfer tag received") }, 2472 /* DT PWROMAEBK */ 2473 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ 2474 "Too much write data") }, 2475 /* DT PWROMAEBK */ 2476 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ 2477 "ACK/NAK timeout") }, 2478 /* DT PWROMAEBK */ 2479 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ 2480 "NAK received") }, 2481 /* DT PWROMAEBK */ 2482 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ 2483 "Data offset error") }, 2484 /* DT PWROMAEBK */ 2485 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ 2486 "Initiator response timeout") }, 2487 /* DT PWROMAEBK F */ 2488 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */ 2489 "Connection lost") }, 2490 /* DT PWROMAEBK F */ 2491 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */ 2492 "Data-in buffer overflow - data buffer size") }, 2493 /* DT PWROMAEBK F */ 2494 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */ 2495 "Data-in buffer overflow - data buffer descriptor area") }, 2496 /* DT PWROMAEBK F */ 2497 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */ 2498 "Data-in buffer error") }, 2499 /* DT PWROMAEBK F */ 2500 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */ 2501 "Data-out buffer overflow - data buffer size") }, 2502 /* DT PWROMAEBK F */ 2503 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */ 2504 "Data-out buffer overflow - data buffer descriptor area") }, 2505 /* DT PWROMAEBK F */ 2506 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */ 2507 "Data-out buffer error") }, 2508 /* DT PWROMAEBK F */ 2509 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */ 2510 "PCIe fabric error") }, 2511 /* DT PWROMAEBK F */ 2512 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */ 2513 "PCIe completion timeout") }, 2514 /* DT PWROMAEBK F */ 2515 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */ 2516 "PCIe completer abort") }, 2517 /* DT PWROMAEBK F */ 2518 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */ 2519 "PCIe poisoned TLP received") }, 2520 /* DT PWROMAEBK F */ 2521 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */ 2522 "PCIe ECRC check failed") }, 2523 /* DT PWROMAEBK F */ 2524 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */ 2525 "PCIe unsupported request") }, 2526 /* DT PWROMAEBK F */ 2527 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */ 2528 "PCIe ACS violation") }, 2529 /* DT PWROMAEBK F */ 2530 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */ 2531 "PCIe TLP prefix blocket") }, 2532 /* DTLPWROMAEBKVF */ 2533 { SST(0x4C, 0x00, SS_RDEF, 2534 "Logical unit failed self-configuration") }, 2535 /* DTLPWROMAEBKVF */ 2536 { SST(0x4D, 0x00, SS_RDEF, 2537 "Tagged overlapped commands: ASCQ = Queue tag ID") }, 2538 /* DTLPWROMAEBKVF */ 2539 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, 2540 NULL) }, /* Range 0x00->0xFF */ 2541 /* DTLPWROMAEBKVF */ 2542 { SST(0x4E, 0x00, SS_RDEF, 2543 "Overlapped commands attempted") }, 2544 /* T */ 2545 { SST(0x50, 0x00, SS_RDEF, 2546 "Write append error") }, 2547 /* T */ 2548 { SST(0x50, 0x01, SS_RDEF, 2549 "Write append position error") }, 2550 /* T */ 2551 { SST(0x50, 0x02, SS_RDEF, 2552 "Position error related to timing") }, 2553 /* T RO */ 2554 { SST(0x51, 0x00, SS_RDEF, 2555 "Erase failure") }, 2556 /* R */ 2557 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ 2558 "Erase failure - incomplete erase operation detected") }, 2559 /* T */ 2560 { SST(0x52, 0x00, SS_RDEF, 2561 "Cartridge fault") }, 2562 /* DTL WROM BK */ 2563 { SST(0x53, 0x00, SS_RDEF, 2564 "Media load or eject failed") }, 2565 /* T */ 2566 { SST(0x53, 0x01, SS_RDEF, 2567 "Unload tape failure") }, 2568 /* DT WROM BK */ 2569 { SST(0x53, 0x02, SS_RDEF, 2570 "Medium removal prevented") }, 2571 /* M */ 2572 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ 2573 "Medium removal prevented by data transfer element") }, 2574 /* T */ 2575 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ 2576 "Medium thread or unthread failure") }, 2577 /* M */ 2578 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */ 2579 "Volume identifier invalid") }, 2580 /* T */ 2581 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */ 2582 "Volume identifier missing") }, 2583 /* M */ 2584 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */ 2585 "Duplicate volume identifier") }, 2586 /* M */ 2587 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */ 2588 "Element status unknown") }, 2589 /* M */ 2590 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */ 2591 "Data transfer device error - load failed") }, 2592 /* M */ 2593 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */ 2594 "Data transfer device error - unload failed") }, 2595 /* M */ 2596 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */ 2597 "Data transfer device error - unload missing") }, 2598 /* M */ 2599 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */ 2600 "Data transfer device error - eject failed") }, 2601 /* M */ 2602 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */ 2603 "Data transfer device error - library communication failed") }, 2604 /* P */ 2605 { SST(0x54, 0x00, SS_RDEF, 2606 "SCSI to host system interface failure") }, 2607 /* P */ 2608 { SST(0x55, 0x00, SS_RDEF, 2609 "System resource failure") }, 2610 /* D O BK */ 2611 { SST(0x55, 0x01, SS_FATAL | ENOSPC, 2612 "System buffer full") }, 2613 /* DTLPWROMAE K */ 2614 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ 2615 "Insufficient reservation resources") }, 2616 /* DTLPWROMAE K */ 2617 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ 2618 "Insufficient resources") }, 2619 /* DTLPWROMAE K */ 2620 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ 2621 "Insufficient registration resources") }, 2622 /* DT PWROMAEBK */ 2623 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ 2624 "Insufficient access control resources") }, 2625 /* DT WROM B */ 2626 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ 2627 "Auxiliary memory out of space") }, 2628 /* F */ 2629 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ 2630 "Quota error") }, 2631 /* T */ 2632 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ 2633 "Maximum number of supplemental decryption keys exceeded") }, 2634 /* M */ 2635 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ 2636 "Medium auxiliary memory not accessible") }, 2637 /* M */ 2638 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ 2639 "Data currently unavailable") }, 2640 /* DTLPWROMAEBKVF */ 2641 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */ 2642 "Insufficient power for operation") }, 2643 /* DT P B */ 2644 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */ 2645 "Insufficient resources to create ROD") }, 2646 /* DT P B */ 2647 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */ 2648 "Insufficient resources to create ROD token") }, 2649 /* D */ 2650 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */ 2651 "Insufficient zone resources") }, 2652 /* D */ 2653 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */ 2654 "Insufficient zone resources to complete write") }, 2655 /* D */ 2656 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */ 2657 "Maximum number of streams open") }, 2658 /* D */ 2659 { SST(0x55, 0x11, SS_RDEF, /* XXX TBD */ 2660 "Insufficient resources to bind") }, 2661 /* R */ 2662 { SST(0x57, 0x00, SS_RDEF, 2663 "Unable to recover table-of-contents") }, 2664 /* O */ 2665 { SST(0x58, 0x00, SS_RDEF, 2666 "Generation does not exist") }, 2667 /* O */ 2668 { SST(0x59, 0x00, SS_RDEF, 2669 "Updated block read") }, 2670 /* DTLPWRO BK */ 2671 { SST(0x5A, 0x00, SS_RDEF, 2672 "Operator request or state change input") }, 2673 /* DT WROM BK */ 2674 { SST(0x5A, 0x01, SS_RDEF, 2675 "Operator medium removal request") }, 2676 /* DT WRO A BK */ 2677 { SST(0x5A, 0x02, SS_RDEF, 2678 "Operator selected write protect") }, 2679 /* DT WRO A BK */ 2680 { SST(0x5A, 0x03, SS_RDEF, 2681 "Operator selected write permit") }, 2682 /* DTLPWROM K */ 2683 { SST(0x5B, 0x00, SS_RDEF, 2684 "Log exception") }, 2685 /* DTLPWROM K */ 2686 { SST(0x5B, 0x01, SS_RDEF, 2687 "Threshold condition met") }, 2688 /* DTLPWROM K */ 2689 { SST(0x5B, 0x02, SS_RDEF, 2690 "Log counter at maximum") }, 2691 /* DTLPWROM K */ 2692 { SST(0x5B, 0x03, SS_RDEF, 2693 "Log list codes exhausted") }, 2694 /* D O */ 2695 { SST(0x5C, 0x00, SS_RDEF, 2696 "RPL status change") }, 2697 /* D O */ 2698 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2699 "Spindles synchronized") }, 2700 /* D O */ 2701 { SST(0x5C, 0x02, SS_RDEF, 2702 "Spindles not synchronized") }, 2703 /* DTLPWROMAEBKVF */ 2704 { SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE, 2705 "Failure prediction threshold exceeded") }, 2706 /* R B */ 2707 { SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2708 "Media failure prediction threshold exceeded") }, 2709 /* R */ 2710 { SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE, 2711 "Logical unit failure prediction threshold exceeded") }, 2712 /* R */ 2713 { SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE, 2714 "Spare area exhaustion prediction threshold exceeded") }, 2715 /* D B */ 2716 { SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE, 2717 "Hardware impending failure general hard drive failure") }, 2718 /* D B */ 2719 { SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE, 2720 "Hardware impending failure drive error rate too high") }, 2721 /* D B */ 2722 { SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE, 2723 "Hardware impending failure data error rate too high") }, 2724 /* D B */ 2725 { SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE, 2726 "Hardware impending failure seek error rate too high") }, 2727 /* D B */ 2728 { SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE, 2729 "Hardware impending failure too many block reassigns") }, 2730 /* D B */ 2731 { SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE, 2732 "Hardware impending failure access times too high") }, 2733 /* D B */ 2734 { SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE, 2735 "Hardware impending failure start unit times too high") }, 2736 /* D B */ 2737 { SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE, 2738 "Hardware impending failure channel parametrics") }, 2739 /* D B */ 2740 { SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE, 2741 "Hardware impending failure controller detected") }, 2742 /* D B */ 2743 { SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE, 2744 "Hardware impending failure throughput performance") }, 2745 /* D B */ 2746 { SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE, 2747 "Hardware impending failure seek time performance") }, 2748 /* D B */ 2749 { SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE, 2750 "Hardware impending failure spin-up retry count") }, 2751 /* D B */ 2752 { SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE, 2753 "Hardware impending failure drive calibration retry count") }, 2754 /* D B */ 2755 { SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE, 2756 "Hardware impending failure power loss protection circuit") }, 2757 /* D B */ 2758 { SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE, 2759 "Controller impending failure general hard drive failure") }, 2760 /* D B */ 2761 { SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE, 2762 "Controller impending failure drive error rate too high") }, 2763 /* D B */ 2764 { SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE, 2765 "Controller impending failure data error rate too high") }, 2766 /* D B */ 2767 { SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE, 2768 "Controller impending failure seek error rate too high") }, 2769 /* D B */ 2770 { SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE, 2771 "Controller impending failure too many block reassigns") }, 2772 /* D B */ 2773 { SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE, 2774 "Controller impending failure access times too high") }, 2775 /* D B */ 2776 { SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE, 2777 "Controller impending failure start unit times too high") }, 2778 /* D B */ 2779 { SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE, 2780 "Controller impending failure channel parametrics") }, 2781 /* D B */ 2782 { SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE, 2783 "Controller impending failure controller detected") }, 2784 /* D B */ 2785 { SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE, 2786 "Controller impending failure throughput performance") }, 2787 /* D B */ 2788 { SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE, 2789 "Controller impending failure seek time performance") }, 2790 /* D B */ 2791 { SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE, 2792 "Controller impending failure spin-up retry count") }, 2793 /* D B */ 2794 { SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE, 2795 "Controller impending failure drive calibration retry count") }, 2796 /* D B */ 2797 { SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE, 2798 "Data channel impending failure general hard drive failure") }, 2799 /* D B */ 2800 { SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE, 2801 "Data channel impending failure drive error rate too high") }, 2802 /* D B */ 2803 { SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE, 2804 "Data channel impending failure data error rate too high") }, 2805 /* D B */ 2806 { SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE, 2807 "Data channel impending failure seek error rate too high") }, 2808 /* D B */ 2809 { SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE, 2810 "Data channel impending failure too many block reassigns") }, 2811 /* D B */ 2812 { SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE, 2813 "Data channel impending failure access times too high") }, 2814 /* D B */ 2815 { SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE, 2816 "Data channel impending failure start unit times too high") }, 2817 /* D B */ 2818 { SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE, 2819 "Data channel impending failure channel parametrics") }, 2820 /* D B */ 2821 { SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE, 2822 "Data channel impending failure controller detected") }, 2823 /* D B */ 2824 { SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE, 2825 "Data channel impending failure throughput performance") }, 2826 /* D B */ 2827 { SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE, 2828 "Data channel impending failure seek time performance") }, 2829 /* D B */ 2830 { SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE, 2831 "Data channel impending failure spin-up retry count") }, 2832 /* D B */ 2833 { SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE, 2834 "Data channel impending failure drive calibration retry count") }, 2835 /* D B */ 2836 { SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE, 2837 "Servo impending failure general hard drive failure") }, 2838 /* D B */ 2839 { SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE, 2840 "Servo impending failure drive error rate too high") }, 2841 /* D B */ 2842 { SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE, 2843 "Servo impending failure data error rate too high") }, 2844 /* D B */ 2845 { SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE, 2846 "Servo impending failure seek error rate too high") }, 2847 /* D B */ 2848 { SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE, 2849 "Servo impending failure too many block reassigns") }, 2850 /* D B */ 2851 { SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE, 2852 "Servo impending failure access times too high") }, 2853 /* D B */ 2854 { SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE, 2855 "Servo impending failure start unit times too high") }, 2856 /* D B */ 2857 { SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE, 2858 "Servo impending failure channel parametrics") }, 2859 /* D B */ 2860 { SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE, 2861 "Servo impending failure controller detected") }, 2862 /* D B */ 2863 { SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE, 2864 "Servo impending failure throughput performance") }, 2865 /* D B */ 2866 { SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE, 2867 "Servo impending failure seek time performance") }, 2868 /* D B */ 2869 { SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE, 2870 "Servo impending failure spin-up retry count") }, 2871 /* D B */ 2872 { SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE, 2873 "Servo impending failure drive calibration retry count") }, 2874 /* D B */ 2875 { SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE, 2876 "Spindle impending failure general hard drive failure") }, 2877 /* D B */ 2878 { SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE, 2879 "Spindle impending failure drive error rate too high") }, 2880 /* D B */ 2881 { SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE, 2882 "Spindle impending failure data error rate too high") }, 2883 /* D B */ 2884 { SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE, 2885 "Spindle impending failure seek error rate too high") }, 2886 /* D B */ 2887 { SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE, 2888 "Spindle impending failure too many block reassigns") }, 2889 /* D B */ 2890 { SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE, 2891 "Spindle impending failure access times too high") }, 2892 /* D B */ 2893 { SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE, 2894 "Spindle impending failure start unit times too high") }, 2895 /* D B */ 2896 { SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE, 2897 "Spindle impending failure channel parametrics") }, 2898 /* D B */ 2899 { SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE, 2900 "Spindle impending failure controller detected") }, 2901 /* D B */ 2902 { SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE, 2903 "Spindle impending failure throughput performance") }, 2904 /* D B */ 2905 { SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE, 2906 "Spindle impending failure seek time performance") }, 2907 /* D B */ 2908 { SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE, 2909 "Spindle impending failure spin-up retry count") }, 2910 /* D B */ 2911 { SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE, 2912 "Spindle impending failure drive calibration retry count") }, 2913 /* D B */ 2914 { SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE, 2915 "Firmware impending failure general hard drive failure") }, 2916 /* D B */ 2917 { SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE, 2918 "Firmware impending failure drive error rate too high") }, 2919 /* D B */ 2920 { SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE, 2921 "Firmware impending failure data error rate too high") }, 2922 /* D B */ 2923 { SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE, 2924 "Firmware impending failure seek error rate too high") }, 2925 /* D B */ 2926 { SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE, 2927 "Firmware impending failure too many block reassigns") }, 2928 /* D B */ 2929 { SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE, 2930 "Firmware impending failure access times too high") }, 2931 /* D B */ 2932 { SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE, 2933 "Firmware impending failure start unit times too high") }, 2934 /* D B */ 2935 { SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE, 2936 "Firmware impending failure channel parametrics") }, 2937 /* D B */ 2938 { SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE, 2939 "Firmware impending failure controller detected") }, 2940 /* D B */ 2941 { SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE, 2942 "Firmware impending failure throughput performance") }, 2943 /* D B */ 2944 { SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE, 2945 "Firmware impending failure seek time performance") }, 2946 /* D B */ 2947 { SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE, 2948 "Firmware impending failure spin-up retry count") }, 2949 /* D B */ 2950 { SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE, 2951 "Firmware impending failure drive calibration retry count") }, 2952 /* D B */ 2953 { SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE, 2954 "Media impending failure endurance limit met") }, 2955 /* DTLPWROMAEBKVF */ 2956 { SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE, 2957 "Failure prediction threshold exceeded (false)") }, 2958 /* DTLPWRO A K */ 2959 { SST(0x5E, 0x00, SS_RDEF, 2960 "Low power condition on") }, 2961 /* DTLPWRO A K */ 2962 { SST(0x5E, 0x01, SS_RDEF, 2963 "Idle condition activated by timer") }, 2964 /* DTLPWRO A K */ 2965 { SST(0x5E, 0x02, SS_RDEF, 2966 "Standby condition activated by timer") }, 2967 /* DTLPWRO A K */ 2968 { SST(0x5E, 0x03, SS_RDEF, 2969 "Idle condition activated by command") }, 2970 /* DTLPWRO A K */ 2971 { SST(0x5E, 0x04, SS_RDEF, 2972 "Standby condition activated by command") }, 2973 /* DTLPWRO A K */ 2974 { SST(0x5E, 0x05, SS_RDEF, 2975 "Idle-B condition activated by timer") }, 2976 /* DTLPWRO A K */ 2977 { SST(0x5E, 0x06, SS_RDEF, 2978 "Idle-B condition activated by command") }, 2979 /* DTLPWRO A K */ 2980 { SST(0x5E, 0x07, SS_RDEF, 2981 "Idle-C condition activated by timer") }, 2982 /* DTLPWRO A K */ 2983 { SST(0x5E, 0x08, SS_RDEF, 2984 "Idle-C condition activated by command") }, 2985 /* DTLPWRO A K */ 2986 { SST(0x5E, 0x09, SS_RDEF, 2987 "Standby-Y condition activated by timer") }, 2988 /* DTLPWRO A K */ 2989 { SST(0x5E, 0x0A, SS_RDEF, 2990 "Standby-Y condition activated by command") }, 2991 /* B */ 2992 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ 2993 "Power state change to active") }, 2994 /* B */ 2995 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ 2996 "Power state change to idle") }, 2997 /* B */ 2998 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ 2999 "Power state change to standby") }, 3000 /* B */ 3001 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ 3002 "Power state change to sleep") }, 3003 /* BK */ 3004 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ 3005 "Power state change to device control") }, 3006 /* */ 3007 { SST(0x60, 0x00, SS_RDEF, 3008 "Lamp failure") }, 3009 /* */ 3010 { SST(0x61, 0x00, SS_RDEF, 3011 "Video acquisition error") }, 3012 /* */ 3013 { SST(0x61, 0x01, SS_RDEF, 3014 "Unable to acquire video") }, 3015 /* */ 3016 { SST(0x61, 0x02, SS_RDEF, 3017 "Out of focus") }, 3018 /* */ 3019 { SST(0x62, 0x00, SS_RDEF, 3020 "Scan head positioning error") }, 3021 /* R */ 3022 { SST(0x63, 0x00, SS_RDEF, 3023 "End of user area encountered on this track") }, 3024 /* R */ 3025 { SST(0x63, 0x01, SS_FATAL | ENOSPC, 3026 "Packet does not fit in available space") }, 3027 /* R */ 3028 { SST(0x64, 0x00, SS_FATAL | ENXIO, 3029 "Illegal mode for this track") }, 3030 /* R */ 3031 { SST(0x64, 0x01, SS_RDEF, 3032 "Invalid packet size") }, 3033 /* DTLPWROMAEBKVF */ 3034 { SST(0x65, 0x00, SS_RDEF, 3035 "Voltage fault") }, 3036 /* */ 3037 { SST(0x66, 0x00, SS_RDEF, 3038 "Automatic document feeder cover up") }, 3039 /* */ 3040 { SST(0x66, 0x01, SS_RDEF, 3041 "Automatic document feeder lift up") }, 3042 /* */ 3043 { SST(0x66, 0x02, SS_RDEF, 3044 "Document jam in automatic document feeder") }, 3045 /* */ 3046 { SST(0x66, 0x03, SS_RDEF, 3047 "Document miss feed automatic in document feeder") }, 3048 /* A */ 3049 { SST(0x67, 0x00, SS_RDEF, 3050 "Configuration failure") }, 3051 /* A */ 3052 { SST(0x67, 0x01, SS_RDEF, 3053 "Configuration of incapable logical units failed") }, 3054 /* A */ 3055 { SST(0x67, 0x02, SS_RDEF, 3056 "Add logical unit failed") }, 3057 /* A */ 3058 { SST(0x67, 0x03, SS_RDEF, 3059 "Modification of logical unit failed") }, 3060 /* A */ 3061 { SST(0x67, 0x04, SS_RDEF, 3062 "Exchange of logical unit failed") }, 3063 /* A */ 3064 { SST(0x67, 0x05, SS_RDEF, 3065 "Remove of logical unit failed") }, 3066 /* A */ 3067 { SST(0x67, 0x06, SS_RDEF, 3068 "Attachment of logical unit failed") }, 3069 /* A */ 3070 { SST(0x67, 0x07, SS_RDEF, 3071 "Creation of logical unit failed") }, 3072 /* A */ 3073 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ 3074 "Assign failure occurred") }, 3075 /* A */ 3076 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ 3077 "Multiply assigned logical unit") }, 3078 /* DTLPWROMAEBKVF */ 3079 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ 3080 "Set target port groups command failed") }, 3081 /* DT B */ 3082 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ 3083 "ATA device feature not enabled") }, 3084 /* D */ 3085 { SST(0x67, 0x0C, SS_FATAL | EIO, 3086 "Command rejected") }, 3087 /* D */ 3088 { SST(0x67, 0x0D, SS_FATAL | EINVAL, 3089 "Explicit bind not allowed") }, 3090 /* A */ 3091 { SST(0x68, 0x00, SS_RDEF, 3092 "Logical unit not configured") }, 3093 /* D */ 3094 { SST(0x68, 0x01, SS_RDEF, 3095 "Subsidiary logical unit not configured") }, 3096 /* A */ 3097 { SST(0x69, 0x00, SS_RDEF, 3098 "Data loss on logical unit") }, 3099 /* A */ 3100 { SST(0x69, 0x01, SS_RDEF, 3101 "Multiple logical unit failures") }, 3102 /* A */ 3103 { SST(0x69, 0x02, SS_RDEF, 3104 "Parity/data mismatch") }, 3105 /* A */ 3106 { SST(0x6A, 0x00, SS_RDEF, 3107 "Informational, refer to log") }, 3108 /* A */ 3109 { SST(0x6B, 0x00, SS_RDEF, 3110 "State change has occurred") }, 3111 /* A */ 3112 { SST(0x6B, 0x01, SS_RDEF, 3113 "Redundancy level got better") }, 3114 /* A */ 3115 { SST(0x6B, 0x02, SS_RDEF, 3116 "Redundancy level got worse") }, 3117 /* A */ 3118 { SST(0x6C, 0x00, SS_RDEF, 3119 "Rebuild failure occurred") }, 3120 /* A */ 3121 { SST(0x6D, 0x00, SS_RDEF, 3122 "Recalculate failure occurred") }, 3123 /* A */ 3124 { SST(0x6E, 0x00, SS_RDEF, 3125 "Command to logical unit failed") }, 3126 /* R */ 3127 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ 3128 "Copy protection key exchange failure - authentication failure") }, 3129 /* R */ 3130 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ 3131 "Copy protection key exchange failure - key not present") }, 3132 /* R */ 3133 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ 3134 "Copy protection key exchange failure - key not established") }, 3135 /* R */ 3136 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ 3137 "Read of scrambled sector without authentication") }, 3138 /* R */ 3139 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ 3140 "Media region code is mismatched to logical unit region") }, 3141 /* R */ 3142 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ 3143 "Drive region must be permanent/region reset count error") }, 3144 /* R */ 3145 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ 3146 "Insufficient block count for binding NONCE recording") }, 3147 /* R */ 3148 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ 3149 "Conflict in binding NONCE recording") }, 3150 /* R */ 3151 { SST(0x6F, 0x08, SS_FATAL | EPERM, 3152 "Insufficient permission") }, 3153 /* R */ 3154 { SST(0x6F, 0x09, SS_FATAL | EINVAL, 3155 "Invalid drive-host pairing server") }, 3156 /* R */ 3157 { SST(0x6F, 0x0A, SS_RDEF, /* XXX TBD */ 3158 "Drive-host pairing suspended") }, 3159 /* T */ 3160 { SST(0x70, 0x00, SS_RDEF, 3161 "Decompression exception short: ASCQ = Algorithm ID") }, 3162 /* T */ 3163 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, 3164 NULL) }, /* Range 0x00 -> 0xFF */ 3165 /* T */ 3166 { SST(0x71, 0x00, SS_RDEF, 3167 "Decompression exception long: ASCQ = Algorithm ID") }, 3168 /* T */ 3169 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, 3170 NULL) }, /* Range 0x00 -> 0xFF */ 3171 /* R */ 3172 { SST(0x72, 0x00, SS_RDEF, 3173 "Session fixation error") }, 3174 /* R */ 3175 { SST(0x72, 0x01, SS_RDEF, 3176 "Session fixation error writing lead-in") }, 3177 /* R */ 3178 { SST(0x72, 0x02, SS_RDEF, 3179 "Session fixation error writing lead-out") }, 3180 /* R */ 3181 { SST(0x72, 0x03, SS_RDEF, 3182 "Session fixation error - incomplete track in session") }, 3183 /* R */ 3184 { SST(0x72, 0x04, SS_RDEF, 3185 "Empty or partially written reserved track") }, 3186 /* R */ 3187 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ 3188 "No more track reservations allowed") }, 3189 /* R */ 3190 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ 3191 "RMZ extension is not allowed") }, 3192 /* R */ 3193 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ 3194 "No more test zone extensions are allowed") }, 3195 /* R */ 3196 { SST(0x73, 0x00, SS_RDEF, 3197 "CD control error") }, 3198 /* R */ 3199 { SST(0x73, 0x01, SS_RDEF, 3200 "Power calibration area almost full") }, 3201 /* R */ 3202 { SST(0x73, 0x02, SS_FATAL | ENOSPC, 3203 "Power calibration area is full") }, 3204 /* R */ 3205 { SST(0x73, 0x03, SS_RDEF, 3206 "Power calibration area error") }, 3207 /* R */ 3208 { SST(0x73, 0x04, SS_RDEF, 3209 "Program memory area update failure") }, 3210 /* R */ 3211 { SST(0x73, 0x05, SS_RDEF, 3212 "Program memory area is full") }, 3213 /* R */ 3214 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ 3215 "RMA/PMA is almost full") }, 3216 /* R */ 3217 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ 3218 "Current power calibration area almost full") }, 3219 /* R */ 3220 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ 3221 "Current power calibration area is full") }, 3222 /* R */ 3223 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ 3224 "RDZ is full") }, 3225 /* T */ 3226 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ 3227 "Security error") }, 3228 /* T */ 3229 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ 3230 "Unable to decrypt data") }, 3231 /* T */ 3232 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ 3233 "Unencrypted data encountered while decrypting") }, 3234 /* T */ 3235 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ 3236 "Incorrect data encryption key") }, 3237 /* T */ 3238 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ 3239 "Cryptographic integrity validation failed") }, 3240 /* T */ 3241 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ 3242 "Error decrypting data") }, 3243 /* T */ 3244 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ 3245 "Unknown signature verification key") }, 3246 /* T */ 3247 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ 3248 "Encryption parameters not useable") }, 3249 /* DT R M E VF */ 3250 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ 3251 "Digital signature validation failure") }, 3252 /* T */ 3253 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ 3254 "Encryption mode mismatch on read") }, 3255 /* T */ 3256 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ 3257 "Encrypted block not raw read enabled") }, 3258 /* T */ 3259 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ 3260 "Incorrect encryption parameters") }, 3261 /* DT R MAEBKV */ 3262 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ 3263 "Unable to decrypt parameter list") }, 3264 /* T */ 3265 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ 3266 "Encryption algorithm disabled") }, 3267 /* DT R MAEBKV */ 3268 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ 3269 "SA creation parameter value invalid") }, 3270 /* DT R MAEBKV */ 3271 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ 3272 "SA creation parameter value rejected") }, 3273 /* DT R MAEBKV */ 3274 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ 3275 "Invalid SA usage") }, 3276 /* T */ 3277 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ 3278 "Data encryption configuration prevented") }, 3279 /* DT R MAEBKV */ 3280 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ 3281 "SA creation parameter not supported") }, 3282 /* DT R MAEBKV */ 3283 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ 3284 "Authentication failed") }, 3285 /* V */ 3286 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ 3287 "External data encryption key manager access error") }, 3288 /* V */ 3289 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ 3290 "External data encryption key manager error") }, 3291 /* V */ 3292 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ 3293 "External data encryption key not found") }, 3294 /* V */ 3295 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ 3296 "External data encryption request not authorized") }, 3297 /* T */ 3298 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ 3299 "External data encryption control timeout") }, 3300 /* T */ 3301 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ 3302 "External data encryption control error") }, 3303 /* DT R M E V */ 3304 { SST(0x74, 0x71, SS_FATAL | EACCES, 3305 "Logical unit access not authorized") }, 3306 /* D */ 3307 { SST(0x74, 0x79, SS_FATAL | EACCES, 3308 "Security conflict in translated device") } 3309 }; 3310 3311 const u_int asc_table_size = nitems(asc_table); 3312 3313 struct asc_key 3314 { 3315 int asc; 3316 int ascq; 3317 }; 3318 3319 static int 3320 ascentrycomp(const void *key, const void *member) 3321 { 3322 int asc; 3323 int ascq; 3324 const struct asc_table_entry *table_entry; 3325 3326 asc = ((const struct asc_key *)key)->asc; 3327 ascq = ((const struct asc_key *)key)->ascq; 3328 table_entry = (const struct asc_table_entry *)member; 3329 3330 if (asc >= table_entry->asc) { 3331 if (asc > table_entry->asc) 3332 return (1); 3333 3334 if (ascq <= table_entry->ascq) { 3335 /* Check for ranges */ 3336 if (ascq == table_entry->ascq 3337 || ((table_entry->action & SSQ_RANGE) != 0 3338 && ascq >= (table_entry - 1)->ascq)) 3339 return (0); 3340 return (-1); 3341 } 3342 return (1); 3343 } 3344 return (-1); 3345 } 3346 3347 static int 3348 senseentrycomp(const void *key, const void *member) 3349 { 3350 int sense_key; 3351 const struct sense_key_table_entry *table_entry; 3352 3353 sense_key = *((const int *)key); 3354 table_entry = (const struct sense_key_table_entry *)member; 3355 3356 if (sense_key >= table_entry->sense_key) { 3357 if (sense_key == table_entry->sense_key) 3358 return (0); 3359 return (1); 3360 } 3361 return (-1); 3362 } 3363 3364 static void 3365 fetchtableentries(int sense_key, int asc, int ascq, 3366 struct scsi_inquiry_data *inq_data, 3367 const struct sense_key_table_entry **sense_entry, 3368 const struct asc_table_entry **asc_entry) 3369 { 3370 caddr_t match; 3371 const struct asc_table_entry *asc_tables[2]; 3372 const struct sense_key_table_entry *sense_tables[2]; 3373 struct asc_key asc_ascq; 3374 size_t asc_tables_size[2]; 3375 size_t sense_tables_size[2]; 3376 int num_asc_tables; 3377 int num_sense_tables; 3378 int i; 3379 3380 /* Default to failure */ 3381 *sense_entry = NULL; 3382 *asc_entry = NULL; 3383 match = NULL; 3384 if (inq_data != NULL) 3385 match = cam_quirkmatch((caddr_t)inq_data, 3386 (caddr_t)sense_quirk_table, 3387 sense_quirk_table_size, 3388 sizeof(*sense_quirk_table), 3389 scsi_inquiry_match); 3390 3391 if (match != NULL) { 3392 struct scsi_sense_quirk_entry *quirk; 3393 3394 quirk = (struct scsi_sense_quirk_entry *)match; 3395 asc_tables[0] = quirk->asc_info; 3396 asc_tables_size[0] = quirk->num_ascs; 3397 asc_tables[1] = asc_table; 3398 asc_tables_size[1] = asc_table_size; 3399 num_asc_tables = 2; 3400 sense_tables[0] = quirk->sense_key_info; 3401 sense_tables_size[0] = quirk->num_sense_keys; 3402 sense_tables[1] = sense_key_table; 3403 sense_tables_size[1] = nitems(sense_key_table); 3404 num_sense_tables = 2; 3405 } else { 3406 asc_tables[0] = asc_table; 3407 asc_tables_size[0] = asc_table_size; 3408 num_asc_tables = 1; 3409 sense_tables[0] = sense_key_table; 3410 sense_tables_size[0] = nitems(sense_key_table); 3411 num_sense_tables = 1; 3412 } 3413 3414 asc_ascq.asc = asc; 3415 asc_ascq.ascq = ascq; 3416 for (i = 0; i < num_asc_tables; i++) { 3417 void *found_entry; 3418 3419 found_entry = bsearch(&asc_ascq, asc_tables[i], 3420 asc_tables_size[i], 3421 sizeof(**asc_tables), 3422 ascentrycomp); 3423 3424 if (found_entry) { 3425 *asc_entry = (struct asc_table_entry *)found_entry; 3426 break; 3427 } 3428 } 3429 3430 for (i = 0; i < num_sense_tables; i++) { 3431 void *found_entry; 3432 3433 found_entry = bsearch(&sense_key, sense_tables[i], 3434 sense_tables_size[i], 3435 sizeof(**sense_tables), 3436 senseentrycomp); 3437 3438 if (found_entry) { 3439 *sense_entry = 3440 (struct sense_key_table_entry *)found_entry; 3441 break; 3442 } 3443 } 3444 } 3445 3446 void 3447 scsi_sense_desc(int sense_key, int asc, int ascq, 3448 struct scsi_inquiry_data *inq_data, 3449 const char **sense_key_desc, const char **asc_desc) 3450 { 3451 const struct asc_table_entry *asc_entry; 3452 const struct sense_key_table_entry *sense_entry; 3453 3454 fetchtableentries(sense_key, asc, ascq, 3455 inq_data, 3456 &sense_entry, 3457 &asc_entry); 3458 3459 if (sense_entry != NULL) 3460 *sense_key_desc = sense_entry->desc; 3461 else 3462 *sense_key_desc = "Invalid Sense Key"; 3463 3464 if (asc_entry != NULL) 3465 *asc_desc = asc_entry->desc; 3466 else if (asc >= 0x80 && asc <= 0xff) 3467 *asc_desc = "Vendor Specific ASC"; 3468 else if (ascq >= 0x80 && ascq <= 0xff) 3469 *asc_desc = "Vendor Specific ASCQ"; 3470 else 3471 *asc_desc = "Reserved ASC/ASCQ pair"; 3472 } 3473 3474 /* 3475 * Given sense and device type information, return the appropriate action. 3476 * If we do not understand the specific error as identified by the ASC/ASCQ 3477 * pair, fall back on the more generic actions derived from the sense key. 3478 */ 3479 scsi_sense_action 3480 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, 3481 u_int32_t sense_flags) 3482 { 3483 const struct asc_table_entry *asc_entry; 3484 const struct sense_key_table_entry *sense_entry; 3485 int error_code, sense_key, asc, ascq; 3486 scsi_sense_action action; 3487 3488 if (!scsi_extract_sense_ccb((union ccb *)csio, 3489 &error_code, &sense_key, &asc, &ascq)) { 3490 action = SS_RDEF; 3491 } else if ((error_code == SSD_DEFERRED_ERROR) 3492 || (error_code == SSD_DESC_DEFERRED_ERROR)) { 3493 /* 3494 * XXX dufault@FreeBSD.org 3495 * This error doesn't relate to the command associated 3496 * with this request sense. A deferred error is an error 3497 * for a command that has already returned GOOD status 3498 * (see SCSI2 8.2.14.2). 3499 * 3500 * By my reading of that section, it looks like the current 3501 * command has been cancelled, we should now clean things up 3502 * (hopefully recovering any lost data) and then retry the 3503 * current command. There are two easy choices, both wrong: 3504 * 3505 * 1. Drop through (like we had been doing), thus treating 3506 * this as if the error were for the current command and 3507 * return and stop the current command. 3508 * 3509 * 2. Issue a retry (like I made it do) thus hopefully 3510 * recovering the current transfer, and ignoring the 3511 * fact that we've dropped a command. 3512 * 3513 * These should probably be handled in a device specific 3514 * sense handler or punted back up to a user mode daemon 3515 */ 3516 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3517 } else { 3518 fetchtableentries(sense_key, asc, ascq, 3519 inq_data, 3520 &sense_entry, 3521 &asc_entry); 3522 3523 /* 3524 * Override the 'No additional Sense' entry (0,0) 3525 * with the error action of the sense key. 3526 */ 3527 if (asc_entry != NULL 3528 && (asc != 0 || ascq != 0)) 3529 action = asc_entry->action; 3530 else if (sense_entry != NULL) 3531 action = sense_entry->action; 3532 else 3533 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3534 3535 if (sense_key == SSD_KEY_RECOVERED_ERROR) { 3536 /* 3537 * The action succeeded but the device wants 3538 * the user to know that some recovery action 3539 * was required. 3540 */ 3541 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); 3542 action |= SS_NOP|SSQ_PRINT_SENSE; 3543 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { 3544 if ((sense_flags & SF_QUIET_IR) != 0) 3545 action &= ~SSQ_PRINT_SENSE; 3546 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { 3547 if ((sense_flags & SF_RETRY_UA) != 0 3548 && (action & SS_MASK) == SS_FAIL) { 3549 action &= ~(SS_MASK|SSQ_MASK); 3550 action |= SS_RETRY|SSQ_DECREMENT_COUNT| 3551 SSQ_PRINT_SENSE; 3552 } 3553 action |= SSQ_UA; 3554 } 3555 } 3556 if ((action & SS_MASK) >= SS_START && 3557 (sense_flags & SF_NO_RECOVERY)) { 3558 action &= ~SS_MASK; 3559 action |= SS_FAIL; 3560 } else if ((action & SS_MASK) == SS_RETRY && 3561 (sense_flags & SF_NO_RETRY)) { 3562 action &= ~SS_MASK; 3563 action |= SS_FAIL; 3564 } 3565 if ((sense_flags & SF_PRINT_ALWAYS) != 0) 3566 action |= SSQ_PRINT_SENSE; 3567 else if ((sense_flags & SF_NO_PRINT) != 0) 3568 action &= ~SSQ_PRINT_SENSE; 3569 3570 return (action); 3571 } 3572 3573 char * 3574 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len) 3575 { 3576 struct sbuf sb; 3577 int error; 3578 3579 if (len == 0) 3580 return (""); 3581 3582 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN); 3583 3584 scsi_cdb_sbuf(cdb_ptr, &sb); 3585 3586 /* ENOMEM just means that the fixed buffer is full, OK to ignore */ 3587 error = sbuf_finish(&sb); 3588 if (error != 0 && 3589 #ifdef _KERNEL 3590 error != ENOMEM) 3591 #else 3592 errno != ENOMEM) 3593 #endif 3594 return (""); 3595 3596 return(sbuf_data(&sb)); 3597 } 3598 3599 void 3600 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb) 3601 { 3602 u_int8_t cdb_len; 3603 int i; 3604 3605 if (cdb_ptr == NULL) 3606 return; 3607 3608 /* 3609 * This is taken from the SCSI-3 draft spec. 3610 * (T10/1157D revision 0.3) 3611 * The top 3 bits of an opcode are the group code. The next 5 bits 3612 * are the command code. 3613 * Group 0: six byte commands 3614 * Group 1: ten byte commands 3615 * Group 2: ten byte commands 3616 * Group 3: reserved 3617 * Group 4: sixteen byte commands 3618 * Group 5: twelve byte commands 3619 * Group 6: vendor specific 3620 * Group 7: vendor specific 3621 */ 3622 switch((*cdb_ptr >> 5) & 0x7) { 3623 case 0: 3624 cdb_len = 6; 3625 break; 3626 case 1: 3627 case 2: 3628 cdb_len = 10; 3629 break; 3630 case 3: 3631 case 6: 3632 case 7: 3633 /* in this case, just print out the opcode */ 3634 cdb_len = 1; 3635 break; 3636 case 4: 3637 cdb_len = 16; 3638 break; 3639 case 5: 3640 cdb_len = 12; 3641 break; 3642 } 3643 3644 for (i = 0; i < cdb_len; i++) 3645 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]); 3646 3647 return; 3648 } 3649 3650 const char * 3651 scsi_status_string(struct ccb_scsiio *csio) 3652 { 3653 switch(csio->scsi_status) { 3654 case SCSI_STATUS_OK: 3655 return("OK"); 3656 case SCSI_STATUS_CHECK_COND: 3657 return("Check Condition"); 3658 case SCSI_STATUS_BUSY: 3659 return("Busy"); 3660 case SCSI_STATUS_INTERMED: 3661 return("Intermediate"); 3662 case SCSI_STATUS_INTERMED_COND_MET: 3663 return("Intermediate-Condition Met"); 3664 case SCSI_STATUS_RESERV_CONFLICT: 3665 return("Reservation Conflict"); 3666 case SCSI_STATUS_CMD_TERMINATED: 3667 return("Command Terminated"); 3668 case SCSI_STATUS_QUEUE_FULL: 3669 return("Queue Full"); 3670 case SCSI_STATUS_ACA_ACTIVE: 3671 return("ACA Active"); 3672 case SCSI_STATUS_TASK_ABORTED: 3673 return("Task Aborted"); 3674 default: { 3675 static char unkstr[64]; 3676 snprintf(unkstr, sizeof(unkstr), "Unknown %#x", 3677 csio->scsi_status); 3678 return(unkstr); 3679 } 3680 } 3681 } 3682 3683 /* 3684 * scsi_command_string() returns 0 for success and -1 for failure. 3685 */ 3686 #ifdef _KERNEL 3687 int 3688 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) 3689 #else /* !_KERNEL */ 3690 int 3691 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, 3692 struct sbuf *sb) 3693 #endif /* _KERNEL/!_KERNEL */ 3694 { 3695 struct scsi_inquiry_data *inq_data; 3696 #ifdef _KERNEL 3697 struct ccb_getdev *cgd; 3698 #endif /* _KERNEL */ 3699 3700 #ifdef _KERNEL 3701 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 3702 return(-1); 3703 /* 3704 * Get the device information. 3705 */ 3706 xpt_setup_ccb(&cgd->ccb_h, 3707 csio->ccb_h.path, 3708 CAM_PRIORITY_NORMAL); 3709 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 3710 xpt_action((union ccb *)cgd); 3711 3712 /* 3713 * If the device is unconfigured, just pretend that it is a hard 3714 * drive. scsi_op_desc() needs this. 3715 */ 3716 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 3717 cgd->inq_data.device = T_DIRECT; 3718 3719 inq_data = &cgd->inq_data; 3720 3721 #else /* !_KERNEL */ 3722 3723 inq_data = &device->inq_data; 3724 3725 #endif /* _KERNEL/!_KERNEL */ 3726 3727 sbuf_printf(sb, "%s. CDB: ", 3728 scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data)); 3729 scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb); 3730 3731 #ifdef _KERNEL 3732 xpt_free_ccb((union ccb *)cgd); 3733 #endif 3734 3735 return(0); 3736 } 3737 3738 /* 3739 * Iterate over sense descriptors. Each descriptor is passed into iter_func(). 3740 * If iter_func() returns 0, list traversal continues. If iter_func() 3741 * returns non-zero, list traversal is stopped. 3742 */ 3743 void 3744 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, 3745 int (*iter_func)(struct scsi_sense_data_desc *sense, 3746 u_int, struct scsi_sense_desc_header *, 3747 void *), void *arg) 3748 { 3749 int cur_pos; 3750 int desc_len; 3751 3752 /* 3753 * First make sure the extra length field is present. 3754 */ 3755 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) 3756 return; 3757 3758 /* 3759 * The length of data actually returned may be different than the 3760 * extra_len recorded in the structure. 3761 */ 3762 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); 3763 3764 /* 3765 * Limit this further by the extra length reported, and the maximum 3766 * allowed extra length. 3767 */ 3768 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); 3769 3770 /* 3771 * Subtract the size of the header from the descriptor length. 3772 * This is to ensure that we have at least the header left, so we 3773 * don't have to check that inside the loop. This can wind up 3774 * being a negative value. 3775 */ 3776 desc_len -= sizeof(struct scsi_sense_desc_header); 3777 3778 for (cur_pos = 0; cur_pos < desc_len;) { 3779 struct scsi_sense_desc_header *header; 3780 3781 header = (struct scsi_sense_desc_header *) 3782 &sense->sense_desc[cur_pos]; 3783 3784 /* 3785 * Check to make sure we have the entire descriptor. We 3786 * don't call iter_func() unless we do. 3787 * 3788 * Note that although cur_pos is at the beginning of the 3789 * descriptor, desc_len already has the header length 3790 * subtracted. So the comparison of the length in the 3791 * header (which does not include the header itself) to 3792 * desc_len - cur_pos is correct. 3793 */ 3794 if (header->length > (desc_len - cur_pos)) 3795 break; 3796 3797 if (iter_func(sense, sense_len, header, arg) != 0) 3798 break; 3799 3800 cur_pos += sizeof(*header) + header->length; 3801 } 3802 } 3803 3804 struct scsi_find_desc_info { 3805 uint8_t desc_type; 3806 struct scsi_sense_desc_header *header; 3807 }; 3808 3809 static int 3810 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 3811 struct scsi_sense_desc_header *header, void *arg) 3812 { 3813 struct scsi_find_desc_info *desc_info; 3814 3815 desc_info = (struct scsi_find_desc_info *)arg; 3816 3817 if (header->desc_type == desc_info->desc_type) { 3818 desc_info->header = header; 3819 3820 /* We found the descriptor, tell the iterator to stop. */ 3821 return (1); 3822 } else 3823 return (0); 3824 } 3825 3826 /* 3827 * Given a descriptor type, return a pointer to it if it is in the sense 3828 * data and not truncated. Avoiding truncating sense data will simplify 3829 * things significantly for the caller. 3830 */ 3831 uint8_t * 3832 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, 3833 uint8_t desc_type) 3834 { 3835 struct scsi_find_desc_info desc_info; 3836 3837 desc_info.desc_type = desc_type; 3838 desc_info.header = NULL; 3839 3840 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); 3841 3842 return ((uint8_t *)desc_info.header); 3843 } 3844 3845 /* 3846 * Fill in SCSI descriptor sense data with the specified parameters. 3847 */ 3848 static void 3849 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data, 3850 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3851 int sense_key, int asc, int ascq, va_list ap) 3852 { 3853 struct scsi_sense_data_desc *sense; 3854 scsi_sense_elem_type elem_type; 3855 int space, len; 3856 uint8_t *desc, *data; 3857 3858 memset(sense_data, 0, sizeof(*sense_data)); 3859 sense = (struct scsi_sense_data_desc *)sense_data; 3860 if (current_error != 0) 3861 sense->error_code = SSD_DESC_CURRENT_ERROR; 3862 else 3863 sense->error_code = SSD_DESC_DEFERRED_ERROR; 3864 sense->sense_key = sense_key; 3865 sense->add_sense_code = asc; 3866 sense->add_sense_code_qual = ascq; 3867 sense->flags = 0; 3868 3869 desc = &sense->sense_desc[0]; 3870 space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc); 3871 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3872 SSD_ELEM_NONE) { 3873 if (elem_type >= SSD_ELEM_MAX) { 3874 printf("%s: invalid sense type %d\n", __func__, 3875 elem_type); 3876 break; 3877 } 3878 len = va_arg(ap, int); 3879 data = va_arg(ap, uint8_t *); 3880 3881 switch (elem_type) { 3882 case SSD_ELEM_SKIP: 3883 break; 3884 case SSD_ELEM_DESC: 3885 if (space < len) { 3886 sense->flags |= SSDD_SDAT_OVFL; 3887 break; 3888 } 3889 bcopy(data, desc, len); 3890 desc += len; 3891 space -= len; 3892 break; 3893 case SSD_ELEM_SKS: { 3894 struct scsi_sense_sks *sks = (void *)desc; 3895 3896 if (len > sizeof(sks->sense_key_spec)) 3897 break; 3898 if (space < sizeof(*sks)) { 3899 sense->flags |= SSDD_SDAT_OVFL; 3900 break; 3901 } 3902 sks->desc_type = SSD_DESC_SKS; 3903 sks->length = sizeof(*sks) - 3904 (offsetof(struct scsi_sense_sks, length) + 1); 3905 bcopy(data, &sks->sense_key_spec, len); 3906 desc += sizeof(*sks); 3907 space -= sizeof(*sks); 3908 break; 3909 } 3910 case SSD_ELEM_COMMAND: { 3911 struct scsi_sense_command *cmd = (void *)desc; 3912 3913 if (len > sizeof(cmd->command_info)) 3914 break; 3915 if (space < sizeof(*cmd)) { 3916 sense->flags |= SSDD_SDAT_OVFL; 3917 break; 3918 } 3919 cmd->desc_type = SSD_DESC_COMMAND; 3920 cmd->length = sizeof(*cmd) - 3921 (offsetof(struct scsi_sense_command, length) + 1); 3922 bcopy(data, &cmd->command_info[ 3923 sizeof(cmd->command_info) - len], len); 3924 desc += sizeof(*cmd); 3925 space -= sizeof(*cmd); 3926 break; 3927 } 3928 case SSD_ELEM_INFO: { 3929 struct scsi_sense_info *info = (void *)desc; 3930 3931 if (len > sizeof(info->info)) 3932 break; 3933 if (space < sizeof(*info)) { 3934 sense->flags |= SSDD_SDAT_OVFL; 3935 break; 3936 } 3937 info->desc_type = SSD_DESC_INFO; 3938 info->length = sizeof(*info) - 3939 (offsetof(struct scsi_sense_info, length) + 1); 3940 info->byte2 = SSD_INFO_VALID; 3941 bcopy(data, &info->info[sizeof(info->info) - len], len); 3942 desc += sizeof(*info); 3943 space -= sizeof(*info); 3944 break; 3945 } 3946 case SSD_ELEM_FRU: { 3947 struct scsi_sense_fru *fru = (void *)desc; 3948 3949 if (len > sizeof(fru->fru)) 3950 break; 3951 if (space < sizeof(*fru)) { 3952 sense->flags |= SSDD_SDAT_OVFL; 3953 break; 3954 } 3955 fru->desc_type = SSD_DESC_FRU; 3956 fru->length = sizeof(*fru) - 3957 (offsetof(struct scsi_sense_fru, length) + 1); 3958 fru->fru = *data; 3959 desc += sizeof(*fru); 3960 space -= sizeof(*fru); 3961 break; 3962 } 3963 case SSD_ELEM_STREAM: { 3964 struct scsi_sense_stream *stream = (void *)desc; 3965 3966 if (len > sizeof(stream->byte3)) 3967 break; 3968 if (space < sizeof(*stream)) { 3969 sense->flags |= SSDD_SDAT_OVFL; 3970 break; 3971 } 3972 stream->desc_type = SSD_DESC_STREAM; 3973 stream->length = sizeof(*stream) - 3974 (offsetof(struct scsi_sense_stream, length) + 1); 3975 stream->byte3 = *data; 3976 desc += sizeof(*stream); 3977 space -= sizeof(*stream); 3978 break; 3979 } 3980 default: 3981 /* 3982 * We shouldn't get here, but if we do, do nothing. 3983 * We've already consumed the arguments above. 3984 */ 3985 break; 3986 } 3987 } 3988 sense->extra_len = desc - &sense->sense_desc[0]; 3989 *sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 + 3990 sense->extra_len; 3991 } 3992 3993 /* 3994 * Fill in SCSI fixed sense data with the specified parameters. 3995 */ 3996 static void 3997 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data, 3998 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3999 int sense_key, int asc, int ascq, va_list ap) 4000 { 4001 struct scsi_sense_data_fixed *sense; 4002 scsi_sense_elem_type elem_type; 4003 uint8_t *data; 4004 int len; 4005 4006 memset(sense_data, 0, sizeof(*sense_data)); 4007 sense = (struct scsi_sense_data_fixed *)sense_data; 4008 if (current_error != 0) 4009 sense->error_code = SSD_CURRENT_ERROR; 4010 else 4011 sense->error_code = SSD_DEFERRED_ERROR; 4012 sense->flags = sense_key & SSD_KEY; 4013 sense->extra_len = 0; 4014 if (*sense_len >= 13) { 4015 sense->add_sense_code = asc; 4016 sense->extra_len = MAX(sense->extra_len, 5); 4017 } else 4018 sense->flags |= SSD_SDAT_OVFL; 4019 if (*sense_len >= 14) { 4020 sense->add_sense_code_qual = ascq; 4021 sense->extra_len = MAX(sense->extra_len, 6); 4022 } else 4023 sense->flags |= SSD_SDAT_OVFL; 4024 4025 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 4026 SSD_ELEM_NONE) { 4027 if (elem_type >= SSD_ELEM_MAX) { 4028 printf("%s: invalid sense type %d\n", __func__, 4029 elem_type); 4030 break; 4031 } 4032 len = va_arg(ap, int); 4033 data = va_arg(ap, uint8_t *); 4034 4035 switch (elem_type) { 4036 case SSD_ELEM_SKIP: 4037 break; 4038 case SSD_ELEM_SKS: 4039 if (len > sizeof(sense->sense_key_spec)) 4040 break; 4041 if (*sense_len < 18) { 4042 sense->flags |= SSD_SDAT_OVFL; 4043 break; 4044 } 4045 bcopy(data, &sense->sense_key_spec[0], len); 4046 sense->extra_len = MAX(sense->extra_len, 10); 4047 break; 4048 case SSD_ELEM_COMMAND: 4049 if (*sense_len < 12) { 4050 sense->flags |= SSD_SDAT_OVFL; 4051 break; 4052 } 4053 if (len > sizeof(sense->cmd_spec_info)) { 4054 data += len - sizeof(sense->cmd_spec_info); 4055 len = sizeof(sense->cmd_spec_info); 4056 } 4057 bcopy(data, &sense->cmd_spec_info[ 4058 sizeof(sense->cmd_spec_info) - len], len); 4059 sense->extra_len = MAX(sense->extra_len, 4); 4060 break; 4061 case SSD_ELEM_INFO: 4062 /* Set VALID bit only if no overflow. */ 4063 sense->error_code |= SSD_ERRCODE_VALID; 4064 while (len > sizeof(sense->info)) { 4065 if (data[0] != 0) 4066 sense->error_code &= ~SSD_ERRCODE_VALID; 4067 data ++; 4068 len --; 4069 } 4070 bcopy(data, &sense->info[sizeof(sense->info) - len], len); 4071 break; 4072 case SSD_ELEM_FRU: 4073 if (*sense_len < 15) { 4074 sense->flags |= SSD_SDAT_OVFL; 4075 break; 4076 } 4077 sense->fru = *data; 4078 sense->extra_len = MAX(sense->extra_len, 7); 4079 break; 4080 case SSD_ELEM_STREAM: 4081 sense->flags |= *data & 4082 (SSD_ILI | SSD_EOM | SSD_FILEMARK); 4083 break; 4084 default: 4085 4086 /* 4087 * We can't handle that in fixed format. Skip it. 4088 */ 4089 break; 4090 } 4091 } 4092 *sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 + 4093 sense->extra_len; 4094 } 4095 4096 /* 4097 * Fill in SCSI sense data with the specified parameters. This routine can 4098 * fill in either fixed or descriptor type sense data. 4099 */ 4100 void 4101 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len, 4102 scsi_sense_data_type sense_format, int current_error, 4103 int sense_key, int asc, int ascq, va_list ap) 4104 { 4105 4106 if (*sense_len > SSD_FULL_SIZE) 4107 *sense_len = SSD_FULL_SIZE; 4108 if (sense_format == SSD_TYPE_DESC) 4109 scsi_set_sense_data_desc_va(sense_data, sense_len, 4110 sense_format, current_error, sense_key, asc, ascq, ap); 4111 else 4112 scsi_set_sense_data_fixed_va(sense_data, sense_len, 4113 sense_format, current_error, sense_key, asc, ascq, ap); 4114 } 4115 4116 void 4117 scsi_set_sense_data(struct scsi_sense_data *sense_data, 4118 scsi_sense_data_type sense_format, int current_error, 4119 int sense_key, int asc, int ascq, ...) 4120 { 4121 va_list ap; 4122 u_int sense_len = SSD_FULL_SIZE; 4123 4124 va_start(ap, ascq); 4125 scsi_set_sense_data_va(sense_data, &sense_len, sense_format, 4126 current_error, sense_key, asc, ascq, ap); 4127 va_end(ap); 4128 } 4129 4130 void 4131 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len, 4132 scsi_sense_data_type sense_format, int current_error, 4133 int sense_key, int asc, int ascq, ...) 4134 { 4135 va_list ap; 4136 4137 va_start(ap, ascq); 4138 scsi_set_sense_data_va(sense_data, sense_len, sense_format, 4139 current_error, sense_key, asc, ascq, ap); 4140 va_end(ap); 4141 } 4142 4143 /* 4144 * Get sense information for three similar sense data types. 4145 */ 4146 int 4147 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, 4148 uint8_t info_type, uint64_t *info, int64_t *signed_info) 4149 { 4150 scsi_sense_data_type sense_type; 4151 4152 if (sense_len == 0) 4153 goto bailout; 4154 4155 sense_type = scsi_sense_type(sense_data); 4156 4157 switch (sense_type) { 4158 case SSD_TYPE_DESC: { 4159 struct scsi_sense_data_desc *sense; 4160 uint8_t *desc; 4161 4162 sense = (struct scsi_sense_data_desc *)sense_data; 4163 4164 desc = scsi_find_desc(sense, sense_len, info_type); 4165 if (desc == NULL) 4166 goto bailout; 4167 4168 switch (info_type) { 4169 case SSD_DESC_INFO: { 4170 struct scsi_sense_info *info_desc; 4171 4172 info_desc = (struct scsi_sense_info *)desc; 4173 4174 if ((info_desc->byte2 & SSD_INFO_VALID) == 0) 4175 goto bailout; 4176 4177 *info = scsi_8btou64(info_desc->info); 4178 if (signed_info != NULL) 4179 *signed_info = *info; 4180 break; 4181 } 4182 case SSD_DESC_COMMAND: { 4183 struct scsi_sense_command *cmd_desc; 4184 4185 cmd_desc = (struct scsi_sense_command *)desc; 4186 4187 *info = scsi_8btou64(cmd_desc->command_info); 4188 if (signed_info != NULL) 4189 *signed_info = *info; 4190 break; 4191 } 4192 case SSD_DESC_FRU: { 4193 struct scsi_sense_fru *fru_desc; 4194 4195 fru_desc = (struct scsi_sense_fru *)desc; 4196 4197 if (fru_desc->fru == 0) 4198 goto bailout; 4199 4200 *info = fru_desc->fru; 4201 if (signed_info != NULL) 4202 *signed_info = (int8_t)fru_desc->fru; 4203 break; 4204 } 4205 default: 4206 goto bailout; 4207 break; 4208 } 4209 break; 4210 } 4211 case SSD_TYPE_FIXED: { 4212 struct scsi_sense_data_fixed *sense; 4213 4214 sense = (struct scsi_sense_data_fixed *)sense_data; 4215 4216 switch (info_type) { 4217 case SSD_DESC_INFO: { 4218 uint32_t info_val; 4219 4220 if ((sense->error_code & SSD_ERRCODE_VALID) == 0) 4221 goto bailout; 4222 4223 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) 4224 goto bailout; 4225 4226 info_val = scsi_4btoul(sense->info); 4227 4228 *info = info_val; 4229 if (signed_info != NULL) 4230 *signed_info = (int32_t)info_val; 4231 break; 4232 } 4233 case SSD_DESC_COMMAND: { 4234 uint32_t cmd_val; 4235 4236 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, 4237 cmd_spec_info) == 0) 4238 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) 4239 goto bailout; 4240 4241 cmd_val = scsi_4btoul(sense->cmd_spec_info); 4242 if (cmd_val == 0) 4243 goto bailout; 4244 4245 *info = cmd_val; 4246 if (signed_info != NULL) 4247 *signed_info = (int32_t)cmd_val; 4248 break; 4249 } 4250 case SSD_DESC_FRU: 4251 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) 4252 || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) 4253 goto bailout; 4254 4255 if (sense->fru == 0) 4256 goto bailout; 4257 4258 *info = sense->fru; 4259 if (signed_info != NULL) 4260 *signed_info = (int8_t)sense->fru; 4261 break; 4262 default: 4263 goto bailout; 4264 break; 4265 } 4266 break; 4267 } 4268 default: 4269 goto bailout; 4270 break; 4271 } 4272 4273 return (0); 4274 bailout: 4275 return (1); 4276 } 4277 4278 int 4279 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) 4280 { 4281 scsi_sense_data_type sense_type; 4282 4283 if (sense_len == 0) 4284 goto bailout; 4285 4286 sense_type = scsi_sense_type(sense_data); 4287 4288 switch (sense_type) { 4289 case SSD_TYPE_DESC: { 4290 struct scsi_sense_data_desc *sense; 4291 struct scsi_sense_sks *desc; 4292 4293 sense = (struct scsi_sense_data_desc *)sense_data; 4294 4295 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, 4296 SSD_DESC_SKS); 4297 if (desc == NULL) 4298 goto bailout; 4299 4300 if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4301 goto bailout; 4302 4303 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); 4304 break; 4305 } 4306 case SSD_TYPE_FIXED: { 4307 struct scsi_sense_data_fixed *sense; 4308 4309 sense = (struct scsi_sense_data_fixed *)sense_data; 4310 4311 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) 4312 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) 4313 goto bailout; 4314 4315 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) 4316 goto bailout; 4317 4318 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); 4319 break; 4320 } 4321 default: 4322 goto bailout; 4323 break; 4324 } 4325 return (0); 4326 bailout: 4327 return (1); 4328 } 4329 4330 /* 4331 * Provide a common interface for fixed and descriptor sense to detect 4332 * whether we have block-specific sense information. It is clear by the 4333 * presence of the block descriptor in descriptor mode, but we have to 4334 * infer from the inquiry data and ILI bit in fixed mode. 4335 */ 4336 int 4337 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, 4338 struct scsi_inquiry_data *inq_data, uint8_t *block_bits) 4339 { 4340 scsi_sense_data_type sense_type; 4341 4342 if (inq_data != NULL) { 4343 switch (SID_TYPE(inq_data)) { 4344 case T_DIRECT: 4345 case T_RBC: 4346 case T_ZBC_HM: 4347 break; 4348 default: 4349 goto bailout; 4350 break; 4351 } 4352 } 4353 4354 sense_type = scsi_sense_type(sense_data); 4355 4356 switch (sense_type) { 4357 case SSD_TYPE_DESC: { 4358 struct scsi_sense_data_desc *sense; 4359 struct scsi_sense_block *block; 4360 4361 sense = (struct scsi_sense_data_desc *)sense_data; 4362 4363 block = (struct scsi_sense_block *)scsi_find_desc(sense, 4364 sense_len, SSD_DESC_BLOCK); 4365 if (block == NULL) 4366 goto bailout; 4367 4368 *block_bits = block->byte3; 4369 break; 4370 } 4371 case SSD_TYPE_FIXED: { 4372 struct scsi_sense_data_fixed *sense; 4373 4374 sense = (struct scsi_sense_data_fixed *)sense_data; 4375 4376 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4377 goto bailout; 4378 4379 *block_bits = sense->flags & SSD_ILI; 4380 break; 4381 } 4382 default: 4383 goto bailout; 4384 break; 4385 } 4386 return (0); 4387 bailout: 4388 return (1); 4389 } 4390 4391 int 4392 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, 4393 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) 4394 { 4395 scsi_sense_data_type sense_type; 4396 4397 if (inq_data != NULL) { 4398 switch (SID_TYPE(inq_data)) { 4399 case T_SEQUENTIAL: 4400 break; 4401 default: 4402 goto bailout; 4403 break; 4404 } 4405 } 4406 4407 sense_type = scsi_sense_type(sense_data); 4408 4409 switch (sense_type) { 4410 case SSD_TYPE_DESC: { 4411 struct scsi_sense_data_desc *sense; 4412 struct scsi_sense_stream *stream; 4413 4414 sense = (struct scsi_sense_data_desc *)sense_data; 4415 4416 stream = (struct scsi_sense_stream *)scsi_find_desc(sense, 4417 sense_len, SSD_DESC_STREAM); 4418 if (stream == NULL) 4419 goto bailout; 4420 4421 *stream_bits = stream->byte3; 4422 break; 4423 } 4424 case SSD_TYPE_FIXED: { 4425 struct scsi_sense_data_fixed *sense; 4426 4427 sense = (struct scsi_sense_data_fixed *)sense_data; 4428 4429 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4430 goto bailout; 4431 4432 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); 4433 break; 4434 } 4435 default: 4436 goto bailout; 4437 break; 4438 } 4439 return (0); 4440 bailout: 4441 return (1); 4442 } 4443 4444 void 4445 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4446 struct scsi_inquiry_data *inq_data, uint64_t info) 4447 { 4448 sbuf_printf(sb, "Info: %#jx", info); 4449 } 4450 4451 void 4452 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4453 struct scsi_inquiry_data *inq_data, uint64_t csi) 4454 { 4455 sbuf_printf(sb, "Command Specific Info: %#jx", csi); 4456 } 4457 4458 void 4459 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) 4460 { 4461 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", 4462 (progress * 100) / SSD_SKS_PROGRESS_DENOM, 4463 progress, SSD_SKS_PROGRESS_DENOM); 4464 } 4465 4466 /* 4467 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. 4468 */ 4469 int 4470 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) 4471 { 4472 4473 switch (sense_key) { 4474 case SSD_KEY_ILLEGAL_REQUEST: { 4475 struct scsi_sense_sks_field *field; 4476 int bad_command; 4477 char tmpstr[40]; 4478 4479 /*Field Pointer*/ 4480 field = (struct scsi_sense_sks_field *)sks; 4481 4482 if (field->byte0 & SSD_SKS_FIELD_CMD) 4483 bad_command = 1; 4484 else 4485 bad_command = 0; 4486 4487 tmpstr[0] = '\0'; 4488 4489 /* Bit pointer is valid */ 4490 if (field->byte0 & SSD_SKS_BPV) 4491 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4492 field->byte0 & SSD_SKS_BIT_VALUE); 4493 4494 sbuf_printf(sb, "%s byte %d %sis invalid", 4495 bad_command ? "Command" : "Data", 4496 scsi_2btoul(field->field), tmpstr); 4497 break; 4498 } 4499 case SSD_KEY_UNIT_ATTENTION: { 4500 struct scsi_sense_sks_overflow *overflow; 4501 4502 overflow = (struct scsi_sense_sks_overflow *)sks; 4503 4504 /*UA Condition Queue Overflow*/ 4505 sbuf_printf(sb, "Unit Attention Condition Queue %s", 4506 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? 4507 "Overflowed" : "Did Not Overflow??"); 4508 break; 4509 } 4510 case SSD_KEY_RECOVERED_ERROR: 4511 case SSD_KEY_HARDWARE_ERROR: 4512 case SSD_KEY_MEDIUM_ERROR: { 4513 struct scsi_sense_sks_retry *retry; 4514 4515 /*Actual Retry Count*/ 4516 retry = (struct scsi_sense_sks_retry *)sks; 4517 4518 sbuf_printf(sb, "Actual Retry Count: %d", 4519 scsi_2btoul(retry->actual_retry_count)); 4520 break; 4521 } 4522 case SSD_KEY_NO_SENSE: 4523 case SSD_KEY_NOT_READY: { 4524 struct scsi_sense_sks_progress *progress; 4525 int progress_val; 4526 4527 /*Progress Indication*/ 4528 progress = (struct scsi_sense_sks_progress *)sks; 4529 progress_val = scsi_2btoul(progress->progress); 4530 4531 scsi_progress_sbuf(sb, progress_val); 4532 break; 4533 } 4534 case SSD_KEY_COPY_ABORTED: { 4535 struct scsi_sense_sks_segment *segment; 4536 char tmpstr[40]; 4537 4538 /*Segment Pointer*/ 4539 segment = (struct scsi_sense_sks_segment *)sks; 4540 4541 tmpstr[0] = '\0'; 4542 4543 if (segment->byte0 & SSD_SKS_SEGMENT_BPV) 4544 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4545 segment->byte0 & SSD_SKS_SEGMENT_BITPTR); 4546 4547 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & 4548 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", 4549 scsi_2btoul(segment->field), tmpstr); 4550 break; 4551 } 4552 default: 4553 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], 4554 scsi_2btoul(&sks[1])); 4555 break; 4556 } 4557 4558 return (0); 4559 } 4560 4561 void 4562 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) 4563 { 4564 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); 4565 } 4566 4567 void 4568 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits) 4569 { 4570 int need_comma; 4571 4572 need_comma = 0; 4573 /* 4574 * XXX KDM this needs more descriptive decoding. 4575 */ 4576 sbuf_printf(sb, "Stream Command Sense Data: "); 4577 if (stream_bits & SSD_DESC_STREAM_FM) { 4578 sbuf_printf(sb, "Filemark"); 4579 need_comma = 1; 4580 } 4581 4582 if (stream_bits & SSD_DESC_STREAM_EOM) { 4583 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); 4584 need_comma = 1; 4585 } 4586 4587 if (stream_bits & SSD_DESC_STREAM_ILI) 4588 sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); 4589 } 4590 4591 void 4592 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits) 4593 { 4594 4595 sbuf_printf(sb, "Block Command Sense Data: "); 4596 if (block_bits & SSD_DESC_BLOCK_ILI) 4597 sbuf_printf(sb, "ILI"); 4598 } 4599 4600 void 4601 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4602 u_int sense_len, uint8_t *cdb, int cdb_len, 4603 struct scsi_inquiry_data *inq_data, 4604 struct scsi_sense_desc_header *header) 4605 { 4606 struct scsi_sense_info *info; 4607 4608 info = (struct scsi_sense_info *)header; 4609 4610 if ((info->byte2 & SSD_INFO_VALID) == 0) 4611 return; 4612 4613 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); 4614 } 4615 4616 void 4617 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4618 u_int sense_len, uint8_t *cdb, int cdb_len, 4619 struct scsi_inquiry_data *inq_data, 4620 struct scsi_sense_desc_header *header) 4621 { 4622 struct scsi_sense_command *command; 4623 4624 command = (struct scsi_sense_command *)header; 4625 4626 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, 4627 scsi_8btou64(command->command_info)); 4628 } 4629 4630 void 4631 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4632 u_int sense_len, uint8_t *cdb, int cdb_len, 4633 struct scsi_inquiry_data *inq_data, 4634 struct scsi_sense_desc_header *header) 4635 { 4636 struct scsi_sense_sks *sks; 4637 int error_code, sense_key, asc, ascq; 4638 4639 sks = (struct scsi_sense_sks *)header; 4640 4641 if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4642 return; 4643 4644 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4645 &asc, &ascq, /*show_errors*/ 1); 4646 4647 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); 4648 } 4649 4650 void 4651 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4652 u_int sense_len, uint8_t *cdb, int cdb_len, 4653 struct scsi_inquiry_data *inq_data, 4654 struct scsi_sense_desc_header *header) 4655 { 4656 struct scsi_sense_fru *fru; 4657 4658 fru = (struct scsi_sense_fru *)header; 4659 4660 if (fru->fru == 0) 4661 return; 4662 4663 scsi_fru_sbuf(sb, (uint64_t)fru->fru); 4664 } 4665 4666 void 4667 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4668 u_int sense_len, uint8_t *cdb, int cdb_len, 4669 struct scsi_inquiry_data *inq_data, 4670 struct scsi_sense_desc_header *header) 4671 { 4672 struct scsi_sense_stream *stream; 4673 4674 stream = (struct scsi_sense_stream *)header; 4675 scsi_stream_sbuf(sb, stream->byte3); 4676 } 4677 4678 void 4679 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4680 u_int sense_len, uint8_t *cdb, int cdb_len, 4681 struct scsi_inquiry_data *inq_data, 4682 struct scsi_sense_desc_header *header) 4683 { 4684 struct scsi_sense_block *block; 4685 4686 block = (struct scsi_sense_block *)header; 4687 scsi_block_sbuf(sb, block->byte3); 4688 } 4689 4690 void 4691 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4692 u_int sense_len, uint8_t *cdb, int cdb_len, 4693 struct scsi_inquiry_data *inq_data, 4694 struct scsi_sense_desc_header *header) 4695 { 4696 struct scsi_sense_progress *progress; 4697 const char *sense_key_desc; 4698 const char *asc_desc; 4699 int progress_val; 4700 4701 progress = (struct scsi_sense_progress *)header; 4702 4703 /* 4704 * Get descriptions for the sense key, ASC, and ASCQ in the 4705 * progress descriptor. These could be different than the values 4706 * in the overall sense data. 4707 */ 4708 scsi_sense_desc(progress->sense_key, progress->add_sense_code, 4709 progress->add_sense_code_qual, inq_data, 4710 &sense_key_desc, &asc_desc); 4711 4712 progress_val = scsi_2btoul(progress->progress); 4713 4714 /* 4715 * The progress indicator is for the operation described by the 4716 * sense key, ASC, and ASCQ in the descriptor. 4717 */ 4718 sbuf_cat(sb, sense_key_desc); 4719 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, 4720 progress->add_sense_code_qual, asc_desc); 4721 scsi_progress_sbuf(sb, progress_val); 4722 } 4723 4724 void 4725 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4726 u_int sense_len, uint8_t *cdb, int cdb_len, 4727 struct scsi_inquiry_data *inq_data, 4728 struct scsi_sense_desc_header *header) 4729 { 4730 struct scsi_sense_ata_ret_desc *res; 4731 4732 res = (struct scsi_sense_ata_ret_desc *)header; 4733 4734 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ", 4735 res->status, 4736 (res->status & 0x80) ? "BSY " : "", 4737 (res->status & 0x40) ? "DRDY " : "", 4738 (res->status & 0x20) ? "DF " : "", 4739 (res->status & 0x10) ? "SERV " : "", 4740 (res->status & 0x08) ? "DRQ " : "", 4741 (res->status & 0x04) ? "CORR " : "", 4742 (res->status & 0x02) ? "IDX " : "", 4743 (res->status & 0x01) ? "ERR" : ""); 4744 if (res->status & 1) { 4745 sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ", 4746 res->error, 4747 (res->error & 0x80) ? "ICRC " : "", 4748 (res->error & 0x40) ? "UNC " : "", 4749 (res->error & 0x20) ? "MC " : "", 4750 (res->error & 0x10) ? "IDNF " : "", 4751 (res->error & 0x08) ? "MCR " : "", 4752 (res->error & 0x04) ? "ABRT " : "", 4753 (res->error & 0x02) ? "NM " : "", 4754 (res->error & 0x01) ? "ILI" : ""); 4755 } 4756 4757 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) { 4758 sbuf_printf(sb, "count: %02x%02x, ", 4759 res->count_15_8, res->count_7_0); 4760 sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ", 4761 res->lba_47_40, res->lba_39_32, res->lba_31_24, 4762 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4763 } else { 4764 sbuf_printf(sb, "count: %02x, ", res->count_7_0); 4765 sbuf_printf(sb, "LBA: %02x%02x%02x, ", 4766 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4767 } 4768 sbuf_printf(sb, "device: %02x, ", res->device); 4769 } 4770 4771 void 4772 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4773 u_int sense_len, uint8_t *cdb, int cdb_len, 4774 struct scsi_inquiry_data *inq_data, 4775 struct scsi_sense_desc_header *header) 4776 { 4777 struct scsi_sense_forwarded *forwarded; 4778 const char *sense_key_desc; 4779 const char *asc_desc; 4780 int error_code, sense_key, asc, ascq; 4781 4782 forwarded = (struct scsi_sense_forwarded *)header; 4783 scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data, 4784 forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1); 4785 scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc); 4786 4787 sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ", 4788 sense_key_desc, asc, ascq, asc_desc); 4789 } 4790 4791 /* 4792 * Generic sense descriptor printing routine. This is used when we have 4793 * not yet implemented a specific printing routine for this descriptor. 4794 */ 4795 void 4796 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4797 u_int sense_len, uint8_t *cdb, int cdb_len, 4798 struct scsi_inquiry_data *inq_data, 4799 struct scsi_sense_desc_header *header) 4800 { 4801 int i; 4802 uint8_t *buf_ptr; 4803 4804 sbuf_printf(sb, "Descriptor %#x:", header->desc_type); 4805 4806 buf_ptr = (uint8_t *)&header[1]; 4807 4808 for (i = 0; i < header->length; i++, buf_ptr++) 4809 sbuf_printf(sb, " %02x", *buf_ptr); 4810 } 4811 4812 /* 4813 * Keep this list in numeric order. This speeds the array traversal. 4814 */ 4815 struct scsi_sense_desc_printer { 4816 uint8_t desc_type; 4817 /* 4818 * The function arguments here are the superset of what is needed 4819 * to print out various different descriptors. Command and 4820 * information descriptors need inquiry data and command type. 4821 * Sense key specific descriptors need the sense key. 4822 * 4823 * The sense, cdb, and inquiry data arguments may be NULL, but the 4824 * information printed may not be fully decoded as a result. 4825 */ 4826 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, 4827 u_int sense_len, uint8_t *cdb, int cdb_len, 4828 struct scsi_inquiry_data *inq_data, 4829 struct scsi_sense_desc_header *header); 4830 } scsi_sense_printers[] = { 4831 {SSD_DESC_INFO, scsi_sense_info_sbuf}, 4832 {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, 4833 {SSD_DESC_SKS, scsi_sense_sks_sbuf}, 4834 {SSD_DESC_FRU, scsi_sense_fru_sbuf}, 4835 {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, 4836 {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, 4837 {SSD_DESC_ATA, scsi_sense_ata_sbuf}, 4838 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}, 4839 {SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf} 4840 }; 4841 4842 void 4843 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4844 u_int sense_len, uint8_t *cdb, int cdb_len, 4845 struct scsi_inquiry_data *inq_data, 4846 struct scsi_sense_desc_header *header) 4847 { 4848 u_int i; 4849 4850 for (i = 0; i < nitems(scsi_sense_printers); i++) { 4851 struct scsi_sense_desc_printer *printer; 4852 4853 printer = &scsi_sense_printers[i]; 4854 4855 /* 4856 * The list is sorted, so quit if we've passed our 4857 * descriptor number. 4858 */ 4859 if (printer->desc_type > header->desc_type) 4860 break; 4861 4862 if (printer->desc_type != header->desc_type) 4863 continue; 4864 4865 printer->print_func(sb, sense, sense_len, cdb, cdb_len, 4866 inq_data, header); 4867 4868 return; 4869 } 4870 4871 /* 4872 * No specific printing routine, so use the generic routine. 4873 */ 4874 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, 4875 inq_data, header); 4876 } 4877 4878 scsi_sense_data_type 4879 scsi_sense_type(struct scsi_sense_data *sense_data) 4880 { 4881 switch (sense_data->error_code & SSD_ERRCODE) { 4882 case SSD_DESC_CURRENT_ERROR: 4883 case SSD_DESC_DEFERRED_ERROR: 4884 return (SSD_TYPE_DESC); 4885 break; 4886 case SSD_CURRENT_ERROR: 4887 case SSD_DEFERRED_ERROR: 4888 return (SSD_TYPE_FIXED); 4889 break; 4890 default: 4891 break; 4892 } 4893 4894 return (SSD_TYPE_NONE); 4895 } 4896 4897 struct scsi_print_sense_info { 4898 struct sbuf *sb; 4899 char *path_str; 4900 uint8_t *cdb; 4901 int cdb_len; 4902 struct scsi_inquiry_data *inq_data; 4903 }; 4904 4905 static int 4906 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 4907 struct scsi_sense_desc_header *header, void *arg) 4908 { 4909 struct scsi_print_sense_info *print_info; 4910 4911 print_info = (struct scsi_print_sense_info *)arg; 4912 4913 switch (header->desc_type) { 4914 case SSD_DESC_INFO: 4915 case SSD_DESC_FRU: 4916 case SSD_DESC_COMMAND: 4917 case SSD_DESC_SKS: 4918 case SSD_DESC_BLOCK: 4919 case SSD_DESC_STREAM: 4920 /* 4921 * We have already printed these descriptors, if they are 4922 * present. 4923 */ 4924 break; 4925 default: { 4926 sbuf_printf(print_info->sb, "%s", print_info->path_str); 4927 scsi_sense_desc_sbuf(print_info->sb, 4928 (struct scsi_sense_data *)sense, sense_len, 4929 print_info->cdb, print_info->cdb_len, 4930 print_info->inq_data, header); 4931 sbuf_printf(print_info->sb, "\n"); 4932 break; 4933 } 4934 } 4935 4936 /* 4937 * Tell the iterator that we want to see more descriptors if they 4938 * are present. 4939 */ 4940 return (0); 4941 } 4942 4943 void 4944 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, 4945 struct sbuf *sb, char *path_str, 4946 struct scsi_inquiry_data *inq_data, uint8_t *cdb, 4947 int cdb_len) 4948 { 4949 int error_code, sense_key, asc, ascq; 4950 4951 sbuf_cat(sb, path_str); 4952 4953 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4954 &asc, &ascq, /*show_errors*/ 1); 4955 4956 sbuf_printf(sb, "SCSI sense: "); 4957 switch (error_code) { 4958 case SSD_DEFERRED_ERROR: 4959 case SSD_DESC_DEFERRED_ERROR: 4960 sbuf_printf(sb, "Deferred error: "); 4961 4962 /* FALLTHROUGH */ 4963 case SSD_CURRENT_ERROR: 4964 case SSD_DESC_CURRENT_ERROR: 4965 { 4966 struct scsi_sense_data_desc *desc_sense; 4967 struct scsi_print_sense_info print_info; 4968 const char *sense_key_desc; 4969 const char *asc_desc; 4970 uint8_t sks[3]; 4971 uint64_t val; 4972 uint8_t bits; 4973 4974 /* 4975 * Get descriptions for the sense key, ASC, and ASCQ. If 4976 * these aren't present in the sense data (i.e. the sense 4977 * data isn't long enough), the -1 values that 4978 * scsi_extract_sense_len() returns will yield default 4979 * or error descriptions. 4980 */ 4981 scsi_sense_desc(sense_key, asc, ascq, inq_data, 4982 &sense_key_desc, &asc_desc); 4983 4984 /* 4985 * We first print the sense key and ASC/ASCQ. 4986 */ 4987 sbuf_cat(sb, sense_key_desc); 4988 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); 4989 4990 /* 4991 * Print any block or stream device-specific information. 4992 */ 4993 if (scsi_get_block_info(sense, sense_len, inq_data, 4994 &bits) == 0 && bits != 0) { 4995 sbuf_cat(sb, path_str); 4996 scsi_block_sbuf(sb, bits); 4997 sbuf_printf(sb, "\n"); 4998 } else if (scsi_get_stream_info(sense, sense_len, inq_data, 4999 &bits) == 0 && bits != 0) { 5000 sbuf_cat(sb, path_str); 5001 scsi_stream_sbuf(sb, bits); 5002 sbuf_printf(sb, "\n"); 5003 } 5004 5005 /* 5006 * Print the info field. 5007 */ 5008 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, 5009 &val, NULL) == 0) { 5010 sbuf_cat(sb, path_str); 5011 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); 5012 sbuf_printf(sb, "\n"); 5013 } 5014 5015 /* 5016 * Print the FRU. 5017 */ 5018 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, 5019 &val, NULL) == 0) { 5020 sbuf_cat(sb, path_str); 5021 scsi_fru_sbuf(sb, val); 5022 sbuf_printf(sb, "\n"); 5023 } 5024 5025 /* 5026 * Print any command-specific information. 5027 */ 5028 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, 5029 &val, NULL) == 0) { 5030 sbuf_cat(sb, path_str); 5031 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); 5032 sbuf_printf(sb, "\n"); 5033 } 5034 5035 /* 5036 * Print out any sense-key-specific information. 5037 */ 5038 if (scsi_get_sks(sense, sense_len, sks) == 0) { 5039 sbuf_cat(sb, path_str); 5040 scsi_sks_sbuf(sb, sense_key, sks); 5041 sbuf_printf(sb, "\n"); 5042 } 5043 5044 /* 5045 * If this is fixed sense, we're done. If we have 5046 * descriptor sense, we might have more information 5047 * available. 5048 */ 5049 if (scsi_sense_type(sense) != SSD_TYPE_DESC) 5050 break; 5051 5052 desc_sense = (struct scsi_sense_data_desc *)sense; 5053 5054 print_info.sb = sb; 5055 print_info.path_str = path_str; 5056 print_info.cdb = cdb; 5057 print_info.cdb_len = cdb_len; 5058 print_info.inq_data = inq_data; 5059 5060 /* 5061 * Print any sense descriptors that we have not already printed. 5062 */ 5063 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, 5064 &print_info); 5065 break; 5066 } 5067 case -1: 5068 /* 5069 * scsi_extract_sense_len() sets values to -1 if the 5070 * show_errors flag is set and they aren't present in the 5071 * sense data. This means that sense_len is 0. 5072 */ 5073 sbuf_printf(sb, "No sense data present\n"); 5074 break; 5075 default: { 5076 sbuf_printf(sb, "Error code 0x%x", error_code); 5077 if (sense->error_code & SSD_ERRCODE_VALID) { 5078 struct scsi_sense_data_fixed *fixed_sense; 5079 5080 fixed_sense = (struct scsi_sense_data_fixed *)sense; 5081 5082 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ 5083 uint32_t info; 5084 5085 info = scsi_4btoul(fixed_sense->info); 5086 5087 sbuf_printf(sb, " at block no. %d (decimal)", 5088 info); 5089 } 5090 } 5091 sbuf_printf(sb, "\n"); 5092 break; 5093 } 5094 } 5095 } 5096 5097 /* 5098 * scsi_sense_sbuf() returns 0 for success and -1 for failure. 5099 */ 5100 #ifdef _KERNEL 5101 int 5102 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, 5103 scsi_sense_string_flags flags) 5104 #else /* !_KERNEL */ 5105 int 5106 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, 5107 struct sbuf *sb, scsi_sense_string_flags flags) 5108 #endif /* _KERNEL/!_KERNEL */ 5109 { 5110 struct scsi_sense_data *sense; 5111 struct scsi_inquiry_data *inq_data; 5112 #ifdef _KERNEL 5113 struct ccb_getdev *cgd; 5114 #endif /* _KERNEL */ 5115 char path_str[64]; 5116 5117 #ifndef _KERNEL 5118 if (device == NULL) 5119 return(-1); 5120 #endif /* !_KERNEL */ 5121 if ((csio == NULL) || (sb == NULL)) 5122 return(-1); 5123 5124 /* 5125 * If the CDB is a physical address, we can't deal with it.. 5126 */ 5127 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) 5128 flags &= ~SSS_FLAG_PRINT_COMMAND; 5129 5130 #ifdef _KERNEL 5131 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); 5132 #else /* !_KERNEL */ 5133 cam_path_string(device, path_str, sizeof(path_str)); 5134 #endif /* _KERNEL/!_KERNEL */ 5135 5136 #ifdef _KERNEL 5137 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 5138 return(-1); 5139 /* 5140 * Get the device information. 5141 */ 5142 xpt_setup_ccb(&cgd->ccb_h, 5143 csio->ccb_h.path, 5144 CAM_PRIORITY_NORMAL); 5145 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 5146 xpt_action((union ccb *)cgd); 5147 5148 /* 5149 * If the device is unconfigured, just pretend that it is a hard 5150 * drive. scsi_op_desc() needs this. 5151 */ 5152 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 5153 cgd->inq_data.device = T_DIRECT; 5154 5155 inq_data = &cgd->inq_data; 5156 5157 #else /* !_KERNEL */ 5158 5159 inq_data = &device->inq_data; 5160 5161 #endif /* _KERNEL/!_KERNEL */ 5162 5163 sense = NULL; 5164 5165 if (flags & SSS_FLAG_PRINT_COMMAND) { 5166 sbuf_cat(sb, path_str); 5167 5168 #ifdef _KERNEL 5169 scsi_command_string(csio, sb); 5170 #else /* !_KERNEL */ 5171 scsi_command_string(device, csio, sb); 5172 #endif /* _KERNEL/!_KERNEL */ 5173 sbuf_printf(sb, "\n"); 5174 } 5175 5176 /* 5177 * If the sense data is a physical pointer, forget it. 5178 */ 5179 if (csio->ccb_h.flags & CAM_SENSE_PTR) { 5180 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5181 #ifdef _KERNEL 5182 xpt_free_ccb((union ccb*)cgd); 5183 #endif /* _KERNEL/!_KERNEL */ 5184 return(-1); 5185 } else { 5186 /* 5187 * bcopy the pointer to avoid unaligned access 5188 * errors on finicky architectures. We don't 5189 * ensure that the sense data is pointer aligned. 5190 */ 5191 bcopy((struct scsi_sense_data **)&csio->sense_data, 5192 &sense, sizeof(struct scsi_sense_data *)); 5193 } 5194 } else { 5195 /* 5196 * If the physical sense flag is set, but the sense pointer 5197 * is not also set, we assume that the user is an idiot and 5198 * return. (Well, okay, it could be that somehow, the 5199 * entire csio is physical, but we would have probably core 5200 * dumped on one of the bogus pointer deferences above 5201 * already.) 5202 */ 5203 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5204 #ifdef _KERNEL 5205 xpt_free_ccb((union ccb*)cgd); 5206 #endif /* _KERNEL/!_KERNEL */ 5207 return(-1); 5208 } else 5209 sense = &csio->sense_data; 5210 } 5211 5212 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, 5213 path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len); 5214 5215 #ifdef _KERNEL 5216 xpt_free_ccb((union ccb*)cgd); 5217 #endif /* _KERNEL/!_KERNEL */ 5218 return(0); 5219 } 5220 5221 #ifdef _KERNEL 5222 char * 5223 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) 5224 #else /* !_KERNEL */ 5225 char * 5226 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, 5227 char *str, int str_len) 5228 #endif /* _KERNEL/!_KERNEL */ 5229 { 5230 struct sbuf sb; 5231 5232 sbuf_new(&sb, str, str_len, 0); 5233 5234 #ifdef _KERNEL 5235 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5236 #else /* !_KERNEL */ 5237 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5238 #endif /* _KERNEL/!_KERNEL */ 5239 5240 sbuf_finish(&sb); 5241 5242 return(sbuf_data(&sb)); 5243 } 5244 5245 #ifdef _KERNEL 5246 void 5247 scsi_sense_print(struct ccb_scsiio *csio) 5248 { 5249 struct sbuf sb; 5250 char str[512]; 5251 5252 sbuf_new(&sb, str, sizeof(str), 0); 5253 5254 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5255 5256 sbuf_finish(&sb); 5257 5258 sbuf_putbuf(&sb); 5259 } 5260 5261 #else /* !_KERNEL */ 5262 void 5263 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, 5264 FILE *ofile) 5265 { 5266 struct sbuf sb; 5267 char str[512]; 5268 5269 if ((device == NULL) || (csio == NULL) || (ofile == NULL)) 5270 return; 5271 5272 sbuf_new(&sb, str, sizeof(str), 0); 5273 5274 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5275 5276 sbuf_finish(&sb); 5277 5278 fprintf(ofile, "%s", sbuf_data(&sb)); 5279 } 5280 5281 #endif /* _KERNEL/!_KERNEL */ 5282 5283 /* 5284 * Extract basic sense information. This is backward-compatible with the 5285 * previous implementation. For new implementations, 5286 * scsi_extract_sense_len() is recommended. 5287 */ 5288 void 5289 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, 5290 int *sense_key, int *asc, int *ascq) 5291 { 5292 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, 5293 sense_key, asc, ascq, /*show_errors*/ 0); 5294 } 5295 5296 /* 5297 * Extract basic sense information from SCSI I/O CCB structure. 5298 */ 5299 int 5300 scsi_extract_sense_ccb(union ccb *ccb, 5301 int *error_code, int *sense_key, int *asc, int *ascq) 5302 { 5303 struct scsi_sense_data *sense_data; 5304 5305 /* Make sure there are some sense data we can access. */ 5306 if (ccb->ccb_h.func_code != XPT_SCSI_IO || 5307 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR || 5308 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) || 5309 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 || 5310 (ccb->ccb_h.flags & CAM_SENSE_PHYS)) 5311 return (0); 5312 5313 if (ccb->ccb_h.flags & CAM_SENSE_PTR) 5314 bcopy((struct scsi_sense_data **)&ccb->csio.sense_data, 5315 &sense_data, sizeof(struct scsi_sense_data *)); 5316 else 5317 sense_data = &ccb->csio.sense_data; 5318 scsi_extract_sense_len(sense_data, 5319 ccb->csio.sense_len - ccb->csio.sense_resid, 5320 error_code, sense_key, asc, ascq, 1); 5321 if (*error_code == -1) 5322 return (0); 5323 return (1); 5324 } 5325 5326 /* 5327 * Extract basic sense information. If show_errors is set, sense values 5328 * will be set to -1 if they are not present. 5329 */ 5330 void 5331 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, 5332 int *error_code, int *sense_key, int *asc, int *ascq, 5333 int show_errors) 5334 { 5335 /* 5336 * If we have no length, we have no sense. 5337 */ 5338 if (sense_len == 0) { 5339 if (show_errors == 0) { 5340 *error_code = 0; 5341 *sense_key = 0; 5342 *asc = 0; 5343 *ascq = 0; 5344 } else { 5345 *error_code = -1; 5346 *sense_key = -1; 5347 *asc = -1; 5348 *ascq = -1; 5349 } 5350 return; 5351 } 5352 5353 *error_code = sense_data->error_code & SSD_ERRCODE; 5354 5355 switch (*error_code) { 5356 case SSD_DESC_CURRENT_ERROR: 5357 case SSD_DESC_DEFERRED_ERROR: { 5358 struct scsi_sense_data_desc *sense; 5359 5360 sense = (struct scsi_sense_data_desc *)sense_data; 5361 5362 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) 5363 *sense_key = sense->sense_key & SSD_KEY; 5364 else 5365 *sense_key = (show_errors) ? -1 : 0; 5366 5367 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) 5368 *asc = sense->add_sense_code; 5369 else 5370 *asc = (show_errors) ? -1 : 0; 5371 5372 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) 5373 *ascq = sense->add_sense_code_qual; 5374 else 5375 *ascq = (show_errors) ? -1 : 0; 5376 break; 5377 } 5378 case SSD_CURRENT_ERROR: 5379 case SSD_DEFERRED_ERROR: 5380 default: { 5381 struct scsi_sense_data_fixed *sense; 5382 5383 sense = (struct scsi_sense_data_fixed *)sense_data; 5384 5385 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) 5386 *sense_key = sense->flags & SSD_KEY; 5387 else 5388 *sense_key = (show_errors) ? -1 : 0; 5389 5390 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) 5391 && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) 5392 *asc = sense->add_sense_code; 5393 else 5394 *asc = (show_errors) ? -1 : 0; 5395 5396 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) 5397 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) 5398 *ascq = sense->add_sense_code_qual; 5399 else 5400 *ascq = (show_errors) ? -1 : 0; 5401 break; 5402 } 5403 } 5404 } 5405 5406 int 5407 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, 5408 int show_errors) 5409 { 5410 int error_code, sense_key, asc, ascq; 5411 5412 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5413 &sense_key, &asc, &ascq, show_errors); 5414 5415 return (sense_key); 5416 } 5417 5418 int 5419 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, 5420 int show_errors) 5421 { 5422 int error_code, sense_key, asc, ascq; 5423 5424 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5425 &sense_key, &asc, &ascq, show_errors); 5426 5427 return (asc); 5428 } 5429 5430 int 5431 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, 5432 int show_errors) 5433 { 5434 int error_code, sense_key, asc, ascq; 5435 5436 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5437 &sense_key, &asc, &ascq, show_errors); 5438 5439 return (ascq); 5440 } 5441 5442 /* 5443 * This function currently requires at least 36 bytes, or 5444 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this 5445 * function needs more or less data in the future, another length should be 5446 * defined in scsi_all.h to indicate the minimum amount of data necessary 5447 * for this routine to function properly. 5448 */ 5449 void 5450 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5451 { 5452 u_int8_t type; 5453 char *dtype, *qtype; 5454 5455 type = SID_TYPE(inq_data); 5456 5457 /* 5458 * Figure out basic device type and qualifier. 5459 */ 5460 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { 5461 qtype = " (vendor-unique qualifier)"; 5462 } else { 5463 switch (SID_QUAL(inq_data)) { 5464 case SID_QUAL_LU_CONNECTED: 5465 qtype = ""; 5466 break; 5467 5468 case SID_QUAL_LU_OFFLINE: 5469 qtype = " (offline)"; 5470 break; 5471 5472 case SID_QUAL_RSVD: 5473 qtype = " (reserved qualifier)"; 5474 break; 5475 default: 5476 case SID_QUAL_BAD_LU: 5477 qtype = " (LUN not supported)"; 5478 break; 5479 } 5480 } 5481 5482 switch (type) { 5483 case T_DIRECT: 5484 dtype = "Direct Access"; 5485 break; 5486 case T_SEQUENTIAL: 5487 dtype = "Sequential Access"; 5488 break; 5489 case T_PRINTER: 5490 dtype = "Printer"; 5491 break; 5492 case T_PROCESSOR: 5493 dtype = "Processor"; 5494 break; 5495 case T_WORM: 5496 dtype = "WORM"; 5497 break; 5498 case T_CDROM: 5499 dtype = "CD-ROM"; 5500 break; 5501 case T_SCANNER: 5502 dtype = "Scanner"; 5503 break; 5504 case T_OPTICAL: 5505 dtype = "Optical"; 5506 break; 5507 case T_CHANGER: 5508 dtype = "Changer"; 5509 break; 5510 case T_COMM: 5511 dtype = "Communication"; 5512 break; 5513 case T_STORARRAY: 5514 dtype = "Storage Array"; 5515 break; 5516 case T_ENCLOSURE: 5517 dtype = "Enclosure Services"; 5518 break; 5519 case T_RBC: 5520 dtype = "Simplified Direct Access"; 5521 break; 5522 case T_OCRW: 5523 dtype = "Optical Card Read/Write"; 5524 break; 5525 case T_OSD: 5526 dtype = "Object-Based Storage"; 5527 break; 5528 case T_ADC: 5529 dtype = "Automation/Drive Interface"; 5530 break; 5531 case T_ZBC_HM: 5532 dtype = "Host Managed Zoned Block"; 5533 break; 5534 case T_NODEVICE: 5535 dtype = "Uninstalled"; 5536 break; 5537 default: 5538 dtype = "unknown"; 5539 break; 5540 } 5541 5542 scsi_print_inquiry_short_sbuf(sb, inq_data); 5543 5544 sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype); 5545 5546 if (SID_ANSI_REV(inq_data) == SCSI_REV_0) 5547 sbuf_printf(sb, "SCSI "); 5548 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) { 5549 sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data)); 5550 } else { 5551 sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2); 5552 } 5553 sbuf_printf(sb, "device%s\n", qtype); 5554 } 5555 5556 void 5557 scsi_print_inquiry(struct scsi_inquiry_data *inq_data) 5558 { 5559 struct sbuf sb; 5560 char buffer[120]; 5561 5562 sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN); 5563 scsi_print_inquiry_sbuf(&sb, inq_data); 5564 sbuf_finish(&sb); 5565 sbuf_putbuf(&sb); 5566 } 5567 5568 void 5569 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5570 { 5571 5572 sbuf_printf(sb, "<"); 5573 cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0); 5574 sbuf_printf(sb, " "); 5575 cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0); 5576 sbuf_printf(sb, " "); 5577 cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0); 5578 sbuf_printf(sb, "> "); 5579 } 5580 5581 void 5582 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data) 5583 { 5584 struct sbuf sb; 5585 char buffer[84]; 5586 5587 sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN); 5588 scsi_print_inquiry_short_sbuf(&sb, inq_data); 5589 sbuf_finish(&sb); 5590 sbuf_putbuf(&sb); 5591 } 5592 5593 /* 5594 * Table of syncrates that don't follow the "divisible by 4" 5595 * rule. This table will be expanded in future SCSI specs. 5596 */ 5597 static struct { 5598 u_int period_factor; 5599 u_int period; /* in 100ths of ns */ 5600 } scsi_syncrates[] = { 5601 { 0x08, 625 }, /* FAST-160 */ 5602 { 0x09, 1250 }, /* FAST-80 */ 5603 { 0x0a, 2500 }, /* FAST-40 40MHz */ 5604 { 0x0b, 3030 }, /* FAST-40 33MHz */ 5605 { 0x0c, 5000 } /* FAST-20 */ 5606 }; 5607 5608 /* 5609 * Return the frequency in kHz corresponding to the given 5610 * sync period factor. 5611 */ 5612 u_int 5613 scsi_calc_syncsrate(u_int period_factor) 5614 { 5615 u_int i; 5616 u_int num_syncrates; 5617 5618 /* 5619 * It's a bug if period is zero, but if it is anyway, don't 5620 * die with a divide fault- instead return something which 5621 * 'approximates' async 5622 */ 5623 if (period_factor == 0) { 5624 return (3300); 5625 } 5626 5627 num_syncrates = nitems(scsi_syncrates); 5628 /* See if the period is in the "exception" table */ 5629 for (i = 0; i < num_syncrates; i++) { 5630 if (period_factor == scsi_syncrates[i].period_factor) { 5631 /* Period in kHz */ 5632 return (100000000 / scsi_syncrates[i].period); 5633 } 5634 } 5635 5636 /* 5637 * Wasn't in the table, so use the standard 5638 * 4 times conversion. 5639 */ 5640 return (10000000 / (period_factor * 4 * 10)); 5641 } 5642 5643 /* 5644 * Return the SCSI sync parameter that corresponds to 5645 * the passed in period in 10ths of ns. 5646 */ 5647 u_int 5648 scsi_calc_syncparam(u_int period) 5649 { 5650 u_int i; 5651 u_int num_syncrates; 5652 5653 if (period == 0) 5654 return (~0); /* Async */ 5655 5656 /* Adjust for exception table being in 100ths. */ 5657 period *= 10; 5658 num_syncrates = nitems(scsi_syncrates); 5659 /* See if the period is in the "exception" table */ 5660 for (i = 0; i < num_syncrates; i++) { 5661 if (period <= scsi_syncrates[i].period) { 5662 /* Period in 100ths of ns */ 5663 return (scsi_syncrates[i].period_factor); 5664 } 5665 } 5666 5667 /* 5668 * Wasn't in the table, so use the standard 5669 * 1/4 period in ns conversion. 5670 */ 5671 return (period/400); 5672 } 5673 5674 int 5675 scsi_devid_is_naa_ieee_reg(uint8_t *bufp) 5676 { 5677 struct scsi_vpd_id_descriptor *descr; 5678 struct scsi_vpd_id_naa_basic *naa; 5679 int n; 5680 5681 descr = (struct scsi_vpd_id_descriptor *)bufp; 5682 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; 5683 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5684 return 0; 5685 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) 5686 return 0; 5687 n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT; 5688 if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG) 5689 return 0; 5690 return 1; 5691 } 5692 5693 int 5694 scsi_devid_is_sas_target(uint8_t *bufp) 5695 { 5696 struct scsi_vpd_id_descriptor *descr; 5697 5698 descr = (struct scsi_vpd_id_descriptor *)bufp; 5699 if (!scsi_devid_is_naa_ieee_reg(bufp)) 5700 return 0; 5701 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ 5702 return 0; 5703 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) 5704 return 0; 5705 return 1; 5706 } 5707 5708 int 5709 scsi_devid_is_lun_eui64(uint8_t *bufp) 5710 { 5711 struct scsi_vpd_id_descriptor *descr; 5712 5713 descr = (struct scsi_vpd_id_descriptor *)bufp; 5714 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5715 return 0; 5716 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64) 5717 return 0; 5718 return 1; 5719 } 5720 5721 int 5722 scsi_devid_is_lun_naa(uint8_t *bufp) 5723 { 5724 struct scsi_vpd_id_descriptor *descr; 5725 5726 descr = (struct scsi_vpd_id_descriptor *)bufp; 5727 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5728 return 0; 5729 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5730 return 0; 5731 return 1; 5732 } 5733 5734 int 5735 scsi_devid_is_lun_t10(uint8_t *bufp) 5736 { 5737 struct scsi_vpd_id_descriptor *descr; 5738 5739 descr = (struct scsi_vpd_id_descriptor *)bufp; 5740 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5741 return 0; 5742 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10) 5743 return 0; 5744 return 1; 5745 } 5746 5747 int 5748 scsi_devid_is_lun_name(uint8_t *bufp) 5749 { 5750 struct scsi_vpd_id_descriptor *descr; 5751 5752 descr = (struct scsi_vpd_id_descriptor *)bufp; 5753 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5754 return 0; 5755 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME) 5756 return 0; 5757 return 1; 5758 } 5759 5760 int 5761 scsi_devid_is_lun_md5(uint8_t *bufp) 5762 { 5763 struct scsi_vpd_id_descriptor *descr; 5764 5765 descr = (struct scsi_vpd_id_descriptor *)bufp; 5766 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5767 return 0; 5768 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID) 5769 return 0; 5770 return 1; 5771 } 5772 5773 int 5774 scsi_devid_is_lun_uuid(uint8_t *bufp) 5775 { 5776 struct scsi_vpd_id_descriptor *descr; 5777 5778 descr = (struct scsi_vpd_id_descriptor *)bufp; 5779 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5780 return 0; 5781 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID) 5782 return 0; 5783 return 1; 5784 } 5785 5786 int 5787 scsi_devid_is_port_naa(uint8_t *bufp) 5788 { 5789 struct scsi_vpd_id_descriptor *descr; 5790 5791 descr = (struct scsi_vpd_id_descriptor *)bufp; 5792 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT) 5793 return 0; 5794 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5795 return 0; 5796 return 1; 5797 } 5798 5799 struct scsi_vpd_id_descriptor * 5800 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, 5801 scsi_devid_checkfn_t ck_fn) 5802 { 5803 uint8_t *desc_buf_end; 5804 5805 desc_buf_end = (uint8_t *)desc + len; 5806 5807 for (; desc->identifier <= desc_buf_end && 5808 desc->identifier + desc->length <= desc_buf_end; 5809 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier 5810 + desc->length)) { 5811 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) 5812 return (desc); 5813 } 5814 return (NULL); 5815 } 5816 5817 struct scsi_vpd_id_descriptor * 5818 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, 5819 scsi_devid_checkfn_t ck_fn) 5820 { 5821 uint32_t len; 5822 5823 if (page_len < sizeof(*id)) 5824 return (NULL); 5825 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id)); 5826 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *) 5827 id->desc_list, len, ck_fn)); 5828 } 5829 5830 int 5831 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, 5832 uint32_t valid_len) 5833 { 5834 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) { 5835 case SCSI_PROTO_FC: { 5836 struct scsi_transportid_fcp *fcp; 5837 uint64_t n_port_name; 5838 5839 fcp = (struct scsi_transportid_fcp *)hdr; 5840 5841 n_port_name = scsi_8btou64(fcp->n_port_name); 5842 5843 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name); 5844 break; 5845 } 5846 case SCSI_PROTO_SPI: { 5847 struct scsi_transportid_spi *spi; 5848 5849 spi = (struct scsi_transportid_spi *)hdr; 5850 5851 sbuf_printf(sb, "SPI address: %u,%u", 5852 scsi_2btoul(spi->scsi_addr), 5853 scsi_2btoul(spi->rel_trgt_port_id)); 5854 break; 5855 } 5856 case SCSI_PROTO_SSA: 5857 /* 5858 * XXX KDM there is no transport ID defined in SPC-4 for 5859 * SSA. 5860 */ 5861 break; 5862 case SCSI_PROTO_1394: { 5863 struct scsi_transportid_1394 *sbp; 5864 uint64_t eui64; 5865 5866 sbp = (struct scsi_transportid_1394 *)hdr; 5867 5868 eui64 = scsi_8btou64(sbp->eui64); 5869 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64); 5870 break; 5871 } 5872 case SCSI_PROTO_RDMA: { 5873 struct scsi_transportid_rdma *rdma; 5874 unsigned int i; 5875 5876 rdma = (struct scsi_transportid_rdma *)hdr; 5877 5878 sbuf_printf(sb, "RDMA address: 0x"); 5879 for (i = 0; i < sizeof(rdma->initiator_port_id); i++) 5880 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]); 5881 break; 5882 } 5883 case SCSI_PROTO_ISCSI: { 5884 uint32_t add_len, i; 5885 uint8_t *iscsi_name = NULL; 5886 int nul_found = 0; 5887 5888 sbuf_printf(sb, "iSCSI address: "); 5889 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5890 SCSI_TRN_ISCSI_FORMAT_DEVICE) { 5891 struct scsi_transportid_iscsi_device *dev; 5892 5893 dev = (struct scsi_transportid_iscsi_device *)hdr; 5894 5895 /* 5896 * Verify how much additional data we really have. 5897 */ 5898 add_len = scsi_2btoul(dev->additional_length); 5899 add_len = MIN(add_len, valid_len - 5900 __offsetof(struct scsi_transportid_iscsi_device, 5901 iscsi_name)); 5902 iscsi_name = &dev->iscsi_name[0]; 5903 5904 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5905 SCSI_TRN_ISCSI_FORMAT_PORT) { 5906 struct scsi_transportid_iscsi_port *port; 5907 5908 port = (struct scsi_transportid_iscsi_port *)hdr; 5909 5910 add_len = scsi_2btoul(port->additional_length); 5911 add_len = MIN(add_len, valid_len - 5912 __offsetof(struct scsi_transportid_iscsi_port, 5913 iscsi_name)); 5914 iscsi_name = &port->iscsi_name[0]; 5915 } else { 5916 sbuf_printf(sb, "unknown format %x", 5917 (hdr->format_protocol & 5918 SCSI_TRN_FORMAT_MASK) >> 5919 SCSI_TRN_FORMAT_SHIFT); 5920 break; 5921 } 5922 if (add_len == 0) { 5923 sbuf_printf(sb, "not enough data"); 5924 break; 5925 } 5926 /* 5927 * This is supposed to be a NUL-terminated ASCII 5928 * string, but you never know. So we're going to 5929 * check. We need to do this because there is no 5930 * sbuf equivalent of strncat(). 5931 */ 5932 for (i = 0; i < add_len; i++) { 5933 if (iscsi_name[i] == '\0') { 5934 nul_found = 1; 5935 break; 5936 } 5937 } 5938 /* 5939 * If there is a NUL in the name, we can just use 5940 * sbuf_cat(). Otherwise we need to use sbuf_bcat(). 5941 */ 5942 if (nul_found != 0) 5943 sbuf_cat(sb, iscsi_name); 5944 else 5945 sbuf_bcat(sb, iscsi_name, add_len); 5946 break; 5947 } 5948 case SCSI_PROTO_SAS: { 5949 struct scsi_transportid_sas *sas; 5950 uint64_t sas_addr; 5951 5952 sas = (struct scsi_transportid_sas *)hdr; 5953 5954 sas_addr = scsi_8btou64(sas->sas_address); 5955 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr); 5956 break; 5957 } 5958 case SCSI_PROTO_ADITP: 5959 case SCSI_PROTO_ATA: 5960 case SCSI_PROTO_UAS: 5961 /* 5962 * No Transport ID format for ADI, ATA or USB is defined in 5963 * SPC-4. 5964 */ 5965 sbuf_printf(sb, "No known Transport ID format for protocol " 5966 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5967 break; 5968 case SCSI_PROTO_SOP: { 5969 struct scsi_transportid_sop *sop; 5970 struct scsi_sop_routing_id_norm *rid; 5971 5972 sop = (struct scsi_transportid_sop *)hdr; 5973 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id; 5974 5975 /* 5976 * Note that there is no alternate format specified in SPC-4 5977 * for the PCIe routing ID, so we don't really have a way 5978 * to know whether the second byte of the routing ID is 5979 * a device and function or just a function. So we just 5980 * assume bus,device,function. 5981 */ 5982 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u", 5983 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT, 5984 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX); 5985 break; 5986 } 5987 case SCSI_PROTO_NONE: 5988 default: 5989 sbuf_printf(sb, "Unknown protocol %#x", 5990 hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5991 break; 5992 } 5993 5994 return (0); 5995 } 5996 5997 struct scsi_nv scsi_proto_map[] = { 5998 { "fcp", SCSI_PROTO_FC }, 5999 { "spi", SCSI_PROTO_SPI }, 6000 { "ssa", SCSI_PROTO_SSA }, 6001 { "sbp", SCSI_PROTO_1394 }, 6002 { "1394", SCSI_PROTO_1394 }, 6003 { "srp", SCSI_PROTO_RDMA }, 6004 { "rdma", SCSI_PROTO_RDMA }, 6005 { "iscsi", SCSI_PROTO_ISCSI }, 6006 { "iqn", SCSI_PROTO_ISCSI }, 6007 { "sas", SCSI_PROTO_SAS }, 6008 { "aditp", SCSI_PROTO_ADITP }, 6009 { "ata", SCSI_PROTO_ATA }, 6010 { "uas", SCSI_PROTO_UAS }, 6011 { "usb", SCSI_PROTO_UAS }, 6012 { "sop", SCSI_PROTO_SOP } 6013 }; 6014 6015 const char * 6016 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value) 6017 { 6018 int i; 6019 6020 for (i = 0; i < num_table_entries; i++) { 6021 if (table[i].value == value) 6022 return (table[i].name); 6023 } 6024 6025 return (NULL); 6026 } 6027 6028 /* 6029 * Given a name/value table, find a value matching the given name. 6030 * Return values: 6031 * SCSI_NV_FOUND - match found 6032 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact 6033 * SCSI_NV_NOT_FOUND - no match found 6034 */ 6035 scsi_nv_status 6036 scsi_get_nv(struct scsi_nv *table, int num_table_entries, 6037 char *name, int *table_entry, scsi_nv_flags flags) 6038 { 6039 int i, num_matches = 0; 6040 6041 for (i = 0; i < num_table_entries; i++) { 6042 size_t table_len, name_len; 6043 6044 table_len = strlen(table[i].name); 6045 name_len = strlen(name); 6046 6047 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0) 6048 && (strncasecmp(table[i].name, name, name_len) == 0)) 6049 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0) 6050 && (strncmp(table[i].name, name, name_len) == 0))) { 6051 *table_entry = i; 6052 6053 /* 6054 * Check for an exact match. If we have the same 6055 * number of characters in the table as the argument, 6056 * and we already know they're the same, we have 6057 * an exact match. 6058 */ 6059 if (table_len == name_len) 6060 return (SCSI_NV_FOUND); 6061 6062 /* 6063 * Otherwise, bump up the number of matches. We'll 6064 * see later how many we have. 6065 */ 6066 num_matches++; 6067 } 6068 } 6069 6070 if (num_matches > 1) 6071 return (SCSI_NV_AMBIGUOUS); 6072 else if (num_matches == 1) 6073 return (SCSI_NV_FOUND); 6074 else 6075 return (SCSI_NV_NOT_FOUND); 6076 } 6077 6078 /* 6079 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are 6080 * all 64-bit numbers, the code is similar. 6081 */ 6082 int 6083 scsi_parse_transportid_64bit(int proto_id, char *id_str, 6084 struct scsi_transportid_header **hdr, 6085 unsigned int *alloc_len, 6086 #ifdef _KERNEL 6087 struct malloc_type *type, int flags, 6088 #endif 6089 char *error_str, int error_str_len) 6090 { 6091 uint64_t value; 6092 char *endptr; 6093 int retval; 6094 size_t alloc_size; 6095 6096 retval = 0; 6097 6098 value = strtouq(id_str, &endptr, 0); 6099 if (*endptr != '\0') { 6100 if (error_str != NULL) { 6101 snprintf(error_str, error_str_len, "%s: error " 6102 "parsing ID %s, 64-bit number required", 6103 __func__, id_str); 6104 } 6105 retval = 1; 6106 goto bailout; 6107 } 6108 6109 switch (proto_id) { 6110 case SCSI_PROTO_FC: 6111 alloc_size = sizeof(struct scsi_transportid_fcp); 6112 break; 6113 case SCSI_PROTO_1394: 6114 alloc_size = sizeof(struct scsi_transportid_1394); 6115 break; 6116 case SCSI_PROTO_SAS: 6117 alloc_size = sizeof(struct scsi_transportid_sas); 6118 break; 6119 default: 6120 if (error_str != NULL) { 6121 snprintf(error_str, error_str_len, "%s: unsupported " 6122 "protocol %d", __func__, proto_id); 6123 } 6124 retval = 1; 6125 goto bailout; 6126 break; /* NOTREACHED */ 6127 } 6128 #ifdef _KERNEL 6129 *hdr = malloc(alloc_size, type, flags); 6130 #else /* _KERNEL */ 6131 *hdr = malloc(alloc_size); 6132 #endif /*_KERNEL */ 6133 if (*hdr == NULL) { 6134 if (error_str != NULL) { 6135 snprintf(error_str, error_str_len, "%s: unable to " 6136 "allocate %zu bytes", __func__, alloc_size); 6137 } 6138 retval = 1; 6139 goto bailout; 6140 } 6141 6142 *alloc_len = alloc_size; 6143 6144 bzero(*hdr, alloc_size); 6145 6146 switch (proto_id) { 6147 case SCSI_PROTO_FC: { 6148 struct scsi_transportid_fcp *fcp; 6149 6150 fcp = (struct scsi_transportid_fcp *)(*hdr); 6151 fcp->format_protocol = SCSI_PROTO_FC | 6152 SCSI_TRN_FCP_FORMAT_DEFAULT; 6153 scsi_u64to8b(value, fcp->n_port_name); 6154 break; 6155 } 6156 case SCSI_PROTO_1394: { 6157 struct scsi_transportid_1394 *sbp; 6158 6159 sbp = (struct scsi_transportid_1394 *)(*hdr); 6160 sbp->format_protocol = SCSI_PROTO_1394 | 6161 SCSI_TRN_1394_FORMAT_DEFAULT; 6162 scsi_u64to8b(value, sbp->eui64); 6163 break; 6164 } 6165 case SCSI_PROTO_SAS: { 6166 struct scsi_transportid_sas *sas; 6167 6168 sas = (struct scsi_transportid_sas *)(*hdr); 6169 sas->format_protocol = SCSI_PROTO_SAS | 6170 SCSI_TRN_SAS_FORMAT_DEFAULT; 6171 scsi_u64to8b(value, sas->sas_address); 6172 break; 6173 } 6174 default: 6175 break; 6176 } 6177 bailout: 6178 return (retval); 6179 } 6180 6181 /* 6182 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port 6183 */ 6184 int 6185 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, 6186 unsigned int *alloc_len, 6187 #ifdef _KERNEL 6188 struct malloc_type *type, int flags, 6189 #endif 6190 char *error_str, int error_str_len) 6191 { 6192 unsigned long scsi_addr, target_port; 6193 struct scsi_transportid_spi *spi; 6194 char *tmpstr, *endptr; 6195 int retval; 6196 6197 retval = 0; 6198 6199 tmpstr = strsep(&id_str, ","); 6200 if (tmpstr == NULL) { 6201 if (error_str != NULL) { 6202 snprintf(error_str, error_str_len, 6203 "%s: no ID found", __func__); 6204 } 6205 retval = 1; 6206 goto bailout; 6207 } 6208 scsi_addr = strtoul(tmpstr, &endptr, 0); 6209 if (*endptr != '\0') { 6210 if (error_str != NULL) { 6211 snprintf(error_str, error_str_len, "%s: error " 6212 "parsing SCSI ID %s, number required", 6213 __func__, tmpstr); 6214 } 6215 retval = 1; 6216 goto bailout; 6217 } 6218 6219 if (id_str == NULL) { 6220 if (error_str != NULL) { 6221 snprintf(error_str, error_str_len, "%s: no relative " 6222 "target port found", __func__); 6223 } 6224 retval = 1; 6225 goto bailout; 6226 } 6227 6228 target_port = strtoul(id_str, &endptr, 0); 6229 if (*endptr != '\0') { 6230 if (error_str != NULL) { 6231 snprintf(error_str, error_str_len, "%s: error " 6232 "parsing relative target port %s, number " 6233 "required", __func__, id_str); 6234 } 6235 retval = 1; 6236 goto bailout; 6237 } 6238 #ifdef _KERNEL 6239 spi = malloc(sizeof(*spi), type, flags); 6240 #else 6241 spi = malloc(sizeof(*spi)); 6242 #endif 6243 if (spi == NULL) { 6244 if (error_str != NULL) { 6245 snprintf(error_str, error_str_len, "%s: unable to " 6246 "allocate %zu bytes", __func__, 6247 sizeof(*spi)); 6248 } 6249 retval = 1; 6250 goto bailout; 6251 } 6252 *alloc_len = sizeof(*spi); 6253 bzero(spi, sizeof(*spi)); 6254 6255 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT; 6256 scsi_ulto2b(scsi_addr, spi->scsi_addr); 6257 scsi_ulto2b(target_port, spi->rel_trgt_port_id); 6258 6259 *hdr = (struct scsi_transportid_header *)spi; 6260 bailout: 6261 return (retval); 6262 } 6263 6264 /* 6265 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits, 6266 * optionally prefixed by "0x" or "0X". 6267 */ 6268 int 6269 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, 6270 unsigned int *alloc_len, 6271 #ifdef _KERNEL 6272 struct malloc_type *type, int flags, 6273 #endif 6274 char *error_str, int error_str_len) 6275 { 6276 struct scsi_transportid_rdma *rdma; 6277 int retval; 6278 size_t id_len, rdma_id_size; 6279 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN]; 6280 char *tmpstr; 6281 unsigned int i, j; 6282 6283 retval = 0; 6284 id_len = strlen(id_str); 6285 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN; 6286 6287 /* 6288 * Check the size. It needs to be either 32 or 34 characters long. 6289 */ 6290 if ((id_len != (rdma_id_size * 2)) 6291 && (id_len != ((rdma_id_size * 2) + 2))) { 6292 if (error_str != NULL) { 6293 snprintf(error_str, error_str_len, "%s: RDMA ID " 6294 "must be 32 hex digits (0x prefix " 6295 "optional), only %zu seen", __func__, id_len); 6296 } 6297 retval = 1; 6298 goto bailout; 6299 } 6300 6301 tmpstr = id_str; 6302 /* 6303 * If the user gave us 34 characters, the string needs to start 6304 * with '0x'. 6305 */ 6306 if (id_len == ((rdma_id_size * 2) + 2)) { 6307 if ((tmpstr[0] == '0') 6308 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) { 6309 tmpstr += 2; 6310 } else { 6311 if (error_str != NULL) { 6312 snprintf(error_str, error_str_len, "%s: RDMA " 6313 "ID prefix, if used, must be \"0x\", " 6314 "got %s", __func__, tmpstr); 6315 } 6316 retval = 1; 6317 goto bailout; 6318 } 6319 } 6320 bzero(rdma_id, sizeof(rdma_id)); 6321 6322 /* 6323 * Convert ASCII hex into binary bytes. There is no standard 6324 * 128-bit integer type, and so no strtou128t() routine to convert 6325 * from hex into a large integer. In the end, we're not going to 6326 * an integer, but rather to a byte array, so that and the fact 6327 * that we require the user to give us 32 hex digits simplifies the 6328 * logic. 6329 */ 6330 for (i = 0; i < (rdma_id_size * 2); i++) { 6331 int cur_shift; 6332 unsigned char c; 6333 6334 /* Increment the byte array one for every 2 hex digits */ 6335 j = i >> 1; 6336 6337 /* 6338 * The first digit in every pair is the most significant 6339 * 4 bits. The second is the least significant 4 bits. 6340 */ 6341 if ((i % 2) == 0) 6342 cur_shift = 4; 6343 else 6344 cur_shift = 0; 6345 6346 c = tmpstr[i]; 6347 /* Convert the ASCII hex character into a number */ 6348 if (isdigit(c)) 6349 c -= '0'; 6350 else if (isalpha(c)) 6351 c -= isupper(c) ? 'A' - 10 : 'a' - 10; 6352 else { 6353 if (error_str != NULL) { 6354 snprintf(error_str, error_str_len, "%s: " 6355 "RDMA ID must be hex digits, got " 6356 "invalid character %c", __func__, 6357 tmpstr[i]); 6358 } 6359 retval = 1; 6360 goto bailout; 6361 } 6362 /* 6363 * The converted number can't be less than 0; the type is 6364 * unsigned, and the subtraction logic will not give us 6365 * a negative number. So we only need to make sure that 6366 * the value is not greater than 0xf. (i.e. make sure the 6367 * user didn't give us a value like "0x12jklmno"). 6368 */ 6369 if (c > 0xf) { 6370 if (error_str != NULL) { 6371 snprintf(error_str, error_str_len, "%s: " 6372 "RDMA ID must be hex digits, got " 6373 "invalid character %c", __func__, 6374 tmpstr[i]); 6375 } 6376 retval = 1; 6377 goto bailout; 6378 } 6379 6380 rdma_id[j] |= c << cur_shift; 6381 } 6382 6383 #ifdef _KERNEL 6384 rdma = malloc(sizeof(*rdma), type, flags); 6385 #else 6386 rdma = malloc(sizeof(*rdma)); 6387 #endif 6388 if (rdma == NULL) { 6389 if (error_str != NULL) { 6390 snprintf(error_str, error_str_len, "%s: unable to " 6391 "allocate %zu bytes", __func__, 6392 sizeof(*rdma)); 6393 } 6394 retval = 1; 6395 goto bailout; 6396 } 6397 *alloc_len = sizeof(*rdma); 6398 bzero(rdma, *alloc_len); 6399 6400 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT; 6401 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN); 6402 6403 *hdr = (struct scsi_transportid_header *)rdma; 6404 6405 bailout: 6406 return (retval); 6407 } 6408 6409 /* 6410 * Parse an iSCSI name. The format is either just the name: 6411 * 6412 * iqn.2012-06.com.example:target0 6413 * or the name, separator and initiator session ID: 6414 * 6415 * iqn.2012-06.com.example:target0,i,0x123 6416 * 6417 * The separator format is exact. 6418 */ 6419 int 6420 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, 6421 unsigned int *alloc_len, 6422 #ifdef _KERNEL 6423 struct malloc_type *type, int flags, 6424 #endif 6425 char *error_str, int error_str_len) 6426 { 6427 size_t id_len, sep_len, id_size, name_len; 6428 int retval; 6429 unsigned int i, sep_pos, sep_found; 6430 const char *sep_template = ",i,0x"; 6431 const char *iqn_prefix = "iqn."; 6432 struct scsi_transportid_iscsi_device *iscsi; 6433 6434 retval = 0; 6435 sep_found = 0; 6436 6437 id_len = strlen(id_str); 6438 sep_len = strlen(sep_template); 6439 6440 /* 6441 * The separator is defined as exactly ',i,0x'. Any other commas, 6442 * or any other form, is an error. So look for a comma, and once 6443 * we find that, the next few characters must match the separator 6444 * exactly. Once we get through the separator, there should be at 6445 * least one character. 6446 */ 6447 for (i = 0, sep_pos = 0; i < id_len; i++) { 6448 if (sep_pos == 0) { 6449 if (id_str[i] == sep_template[sep_pos]) 6450 sep_pos++; 6451 6452 continue; 6453 } 6454 if (sep_pos < sep_len) { 6455 if (id_str[i] == sep_template[sep_pos]) { 6456 sep_pos++; 6457 continue; 6458 } 6459 if (error_str != NULL) { 6460 snprintf(error_str, error_str_len, "%s: " 6461 "invalid separator in iSCSI name " 6462 "\"%s\"", 6463 __func__, id_str); 6464 } 6465 retval = 1; 6466 goto bailout; 6467 } else { 6468 sep_found = 1; 6469 break; 6470 } 6471 } 6472 6473 /* 6474 * Check to see whether we have a separator but no digits after it. 6475 */ 6476 if ((sep_pos != 0) 6477 && (sep_found == 0)) { 6478 if (error_str != NULL) { 6479 snprintf(error_str, error_str_len, "%s: no digits " 6480 "found after separator in iSCSI name \"%s\"", 6481 __func__, id_str); 6482 } 6483 retval = 1; 6484 goto bailout; 6485 } 6486 6487 /* 6488 * The incoming ID string has the "iqn." prefix stripped off. We 6489 * need enough space for the base structure (the structures are the 6490 * same for the two iSCSI forms), the prefix, the ID string and a 6491 * terminating NUL. 6492 */ 6493 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1; 6494 6495 #ifdef _KERNEL 6496 iscsi = malloc(id_size, type, flags); 6497 #else 6498 iscsi = malloc(id_size); 6499 #endif 6500 if (iscsi == NULL) { 6501 if (error_str != NULL) { 6502 snprintf(error_str, error_str_len, "%s: unable to " 6503 "allocate %zu bytes", __func__, id_size); 6504 } 6505 retval = 1; 6506 goto bailout; 6507 } 6508 *alloc_len = id_size; 6509 bzero(iscsi, id_size); 6510 6511 iscsi->format_protocol = SCSI_PROTO_ISCSI; 6512 if (sep_found == 0) 6513 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE; 6514 else 6515 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT; 6516 name_len = id_size - sizeof(*iscsi); 6517 scsi_ulto2b(name_len, iscsi->additional_length); 6518 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str); 6519 6520 *hdr = (struct scsi_transportid_header *)iscsi; 6521 6522 bailout: 6523 return (retval); 6524 } 6525 6526 /* 6527 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be 6528 * of the form 'bus,device,function' or 'bus,function'. 6529 */ 6530 int 6531 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, 6532 unsigned int *alloc_len, 6533 #ifdef _KERNEL 6534 struct malloc_type *type, int flags, 6535 #endif 6536 char *error_str, int error_str_len) 6537 { 6538 struct scsi_transportid_sop *sop; 6539 unsigned long bus, device, function; 6540 char *tmpstr, *endptr; 6541 int retval, device_spec; 6542 6543 retval = 0; 6544 device_spec = 0; 6545 device = 0; 6546 6547 tmpstr = strsep(&id_str, ","); 6548 if ((tmpstr == NULL) 6549 || (*tmpstr == '\0')) { 6550 if (error_str != NULL) { 6551 snprintf(error_str, error_str_len, "%s: no ID found", 6552 __func__); 6553 } 6554 retval = 1; 6555 goto bailout; 6556 } 6557 bus = strtoul(tmpstr, &endptr, 0); 6558 if (*endptr != '\0') { 6559 if (error_str != NULL) { 6560 snprintf(error_str, error_str_len, "%s: error " 6561 "parsing PCIe bus %s, number required", 6562 __func__, tmpstr); 6563 } 6564 retval = 1; 6565 goto bailout; 6566 } 6567 if ((id_str == NULL) 6568 || (*id_str == '\0')) { 6569 if (error_str != NULL) { 6570 snprintf(error_str, error_str_len, "%s: no PCIe " 6571 "device or function found", __func__); 6572 } 6573 retval = 1; 6574 goto bailout; 6575 } 6576 tmpstr = strsep(&id_str, ","); 6577 function = strtoul(tmpstr, &endptr, 0); 6578 if (*endptr != '\0') { 6579 if (error_str != NULL) { 6580 snprintf(error_str, error_str_len, "%s: error " 6581 "parsing PCIe device/function %s, number " 6582 "required", __func__, tmpstr); 6583 } 6584 retval = 1; 6585 goto bailout; 6586 } 6587 /* 6588 * Check to see whether the user specified a third value. If so, 6589 * the second is the device. 6590 */ 6591 if (id_str != NULL) { 6592 if (*id_str == '\0') { 6593 if (error_str != NULL) { 6594 snprintf(error_str, error_str_len, "%s: " 6595 "no PCIe function found", __func__); 6596 } 6597 retval = 1; 6598 goto bailout; 6599 } 6600 device = function; 6601 device_spec = 1; 6602 function = strtoul(id_str, &endptr, 0); 6603 if (*endptr != '\0') { 6604 if (error_str != NULL) { 6605 snprintf(error_str, error_str_len, "%s: " 6606 "error parsing PCIe function %s, " 6607 "number required", __func__, id_str); 6608 } 6609 retval = 1; 6610 goto bailout; 6611 } 6612 } 6613 if (bus > SCSI_TRN_SOP_BUS_MAX) { 6614 if (error_str != NULL) { 6615 snprintf(error_str, error_str_len, "%s: bus value " 6616 "%lu greater than maximum %u", __func__, 6617 bus, SCSI_TRN_SOP_BUS_MAX); 6618 } 6619 retval = 1; 6620 goto bailout; 6621 } 6622 6623 if ((device_spec != 0) 6624 && (device > SCSI_TRN_SOP_DEV_MASK)) { 6625 if (error_str != NULL) { 6626 snprintf(error_str, error_str_len, "%s: device value " 6627 "%lu greater than maximum %u", __func__, 6628 device, SCSI_TRN_SOP_DEV_MAX); 6629 } 6630 retval = 1; 6631 goto bailout; 6632 } 6633 6634 if (((device_spec != 0) 6635 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX)) 6636 || ((device_spec == 0) 6637 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) { 6638 if (error_str != NULL) { 6639 snprintf(error_str, error_str_len, "%s: function value " 6640 "%lu greater than maximum %u", __func__, 6641 function, (device_spec == 0) ? 6642 SCSI_TRN_SOP_FUNC_ALT_MAX : 6643 SCSI_TRN_SOP_FUNC_NORM_MAX); 6644 } 6645 retval = 1; 6646 goto bailout; 6647 } 6648 6649 #ifdef _KERNEL 6650 sop = malloc(sizeof(*sop), type, flags); 6651 #else 6652 sop = malloc(sizeof(*sop)); 6653 #endif 6654 if (sop == NULL) { 6655 if (error_str != NULL) { 6656 snprintf(error_str, error_str_len, "%s: unable to " 6657 "allocate %zu bytes", __func__, sizeof(*sop)); 6658 } 6659 retval = 1; 6660 goto bailout; 6661 } 6662 *alloc_len = sizeof(*sop); 6663 bzero(sop, sizeof(*sop)); 6664 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT; 6665 if (device_spec != 0) { 6666 struct scsi_sop_routing_id_norm rid; 6667 6668 rid.bus = bus; 6669 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function; 6670 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6671 sizeof(sop->routing_id))); 6672 } else { 6673 struct scsi_sop_routing_id_alt rid; 6674 6675 rid.bus = bus; 6676 rid.function = function; 6677 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6678 sizeof(sop->routing_id))); 6679 } 6680 6681 *hdr = (struct scsi_transportid_header *)sop; 6682 bailout: 6683 return (retval); 6684 } 6685 6686 /* 6687 * transportid_str: NUL-terminated string with format: protcol,id 6688 * The ID is protocol specific. 6689 * hdr: Storage will be allocated for the transport ID. 6690 * alloc_len: The amount of memory allocated is returned here. 6691 * type: Malloc bucket (kernel only). 6692 * flags: Malloc flags (kernel only). 6693 * error_str: If non-NULL, it will contain error information (without 6694 * a terminating newline) if an error is returned. 6695 * error_str_len: Allocated length of the error string. 6696 * 6697 * Returns 0 for success, non-zero for failure. 6698 */ 6699 int 6700 scsi_parse_transportid(char *transportid_str, 6701 struct scsi_transportid_header **hdr, 6702 unsigned int *alloc_len, 6703 #ifdef _KERNEL 6704 struct malloc_type *type, int flags, 6705 #endif 6706 char *error_str, int error_str_len) 6707 { 6708 char *tmpstr; 6709 scsi_nv_status status; 6710 u_int num_proto_entries; 6711 int retval, table_entry; 6712 6713 retval = 0; 6714 table_entry = 0; 6715 6716 /* 6717 * We do allow a period as well as a comma to separate the protocol 6718 * from the ID string. This is to accommodate iSCSI names, which 6719 * start with "iqn.". 6720 */ 6721 tmpstr = strsep(&transportid_str, ",."); 6722 if (tmpstr == NULL) { 6723 if (error_str != NULL) { 6724 snprintf(error_str, error_str_len, 6725 "%s: transportid_str is NULL", __func__); 6726 } 6727 retval = 1; 6728 goto bailout; 6729 } 6730 6731 num_proto_entries = nitems(scsi_proto_map); 6732 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr, 6733 &table_entry, SCSI_NV_FLAG_IG_CASE); 6734 if (status != SCSI_NV_FOUND) { 6735 if (error_str != NULL) { 6736 snprintf(error_str, error_str_len, "%s: %s protocol " 6737 "name %s", __func__, 6738 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : 6739 "invalid", tmpstr); 6740 } 6741 retval = 1; 6742 goto bailout; 6743 } 6744 switch (scsi_proto_map[table_entry].value) { 6745 case SCSI_PROTO_FC: 6746 case SCSI_PROTO_1394: 6747 case SCSI_PROTO_SAS: 6748 retval = scsi_parse_transportid_64bit( 6749 scsi_proto_map[table_entry].value, transportid_str, hdr, 6750 alloc_len, 6751 #ifdef _KERNEL 6752 type, flags, 6753 #endif 6754 error_str, error_str_len); 6755 break; 6756 case SCSI_PROTO_SPI: 6757 retval = scsi_parse_transportid_spi(transportid_str, hdr, 6758 alloc_len, 6759 #ifdef _KERNEL 6760 type, flags, 6761 #endif 6762 error_str, error_str_len); 6763 break; 6764 case SCSI_PROTO_RDMA: 6765 retval = scsi_parse_transportid_rdma(transportid_str, hdr, 6766 alloc_len, 6767 #ifdef _KERNEL 6768 type, flags, 6769 #endif 6770 error_str, error_str_len); 6771 break; 6772 case SCSI_PROTO_ISCSI: 6773 retval = scsi_parse_transportid_iscsi(transportid_str, hdr, 6774 alloc_len, 6775 #ifdef _KERNEL 6776 type, flags, 6777 #endif 6778 error_str, error_str_len); 6779 break; 6780 case SCSI_PROTO_SOP: 6781 retval = scsi_parse_transportid_sop(transportid_str, hdr, 6782 alloc_len, 6783 #ifdef _KERNEL 6784 type, flags, 6785 #endif 6786 error_str, error_str_len); 6787 break; 6788 case SCSI_PROTO_SSA: 6789 case SCSI_PROTO_ADITP: 6790 case SCSI_PROTO_ATA: 6791 case SCSI_PROTO_UAS: 6792 case SCSI_PROTO_NONE: 6793 default: 6794 /* 6795 * There is no format defined for a Transport ID for these 6796 * protocols. So even if the user gives us something, we 6797 * have no way to turn it into a standard SCSI Transport ID. 6798 */ 6799 retval = 1; 6800 if (error_str != NULL) { 6801 snprintf(error_str, error_str_len, "%s: no Transport " 6802 "ID format exists for protocol %s", 6803 __func__, tmpstr); 6804 } 6805 goto bailout; 6806 break; /* NOTREACHED */ 6807 } 6808 bailout: 6809 return (retval); 6810 } 6811 6812 struct scsi_attrib_table_entry scsi_mam_attr_table[] = { 6813 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6814 "Remaining Capacity in Partition", 6815 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL }, 6816 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6817 "Maximum Capacity in Partition", 6818 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6819 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX, 6820 "TapeAlert Flags", 6821 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6822 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE, 6823 "Load Count", 6824 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6825 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE, 6826 "MAM Space Remaining", 6827 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6828 /*parse_str*/ NULL }, 6829 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6830 "Assigning Organization", 6831 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6832 /*parse_str*/ NULL }, 6833 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6834 "Format Density Code", 6835 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6836 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE, 6837 "Initialization Count", 6838 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6839 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE, 6840 "Volume Identifier", 6841 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6842 /*parse_str*/ NULL }, 6843 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX, 6844 "Volume Change Reference", 6845 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6846 /*parse_str*/ NULL }, 6847 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE, 6848 "Device Vendor/Serial at Last Load", 6849 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6850 /*parse_str*/ NULL }, 6851 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE, 6852 "Device Vendor/Serial at Last Load - 1", 6853 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6854 /*parse_str*/ NULL }, 6855 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE, 6856 "Device Vendor/Serial at Last Load - 2", 6857 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6858 /*parse_str*/ NULL }, 6859 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE, 6860 "Device Vendor/Serial at Last Load - 3", 6861 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6862 /*parse_str*/ NULL }, 6863 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE, 6864 "Total MB Written in Medium Life", 6865 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6866 /*parse_str*/ NULL }, 6867 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE, 6868 "Total MB Read in Medium Life", 6869 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6870 /*parse_str*/ NULL }, 6871 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE, 6872 "Total MB Written in Current/Last Load", 6873 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6874 /*parse_str*/ NULL }, 6875 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE, 6876 "Total MB Read in Current/Last Load", 6877 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6878 /*parse_str*/ NULL }, 6879 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6880 "Logical Position of First Encrypted Block", 6881 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6882 /*parse_str*/ NULL }, 6883 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6884 "Logical Position of First Unencrypted Block after First " 6885 "Encrypted Block", 6886 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6887 /*parse_str*/ NULL }, 6888 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6889 "Medium Usage History", 6890 /*suffix*/ NULL, /*to_str*/ NULL, 6891 /*parse_str*/ NULL }, 6892 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6893 "Partition Usage History", 6894 /*suffix*/ NULL, /*to_str*/ NULL, 6895 /*parse_str*/ NULL }, 6896 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE, 6897 "Medium Manufacturer", 6898 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6899 /*parse_str*/ NULL }, 6900 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE, 6901 "Medium Serial Number", 6902 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6903 /*parse_str*/ NULL }, 6904 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE, 6905 "Medium Length", 6906 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf, 6907 /*parse_str*/ NULL }, 6908 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 | 6909 SCSI_ATTR_FLAG_FP_1DIGIT, 6910 "Medium Width", 6911 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf, 6912 /*parse_str*/ NULL }, 6913 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6914 "Assigning Organization", 6915 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6916 /*parse_str*/ NULL }, 6917 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6918 "Medium Density Code", 6919 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6920 /*parse_str*/ NULL }, 6921 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE, 6922 "Medium Manufacture Date", 6923 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6924 /*parse_str*/ NULL }, 6925 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE, 6926 "MAM Capacity", 6927 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6928 /*parse_str*/ NULL }, 6929 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX, 6930 "Medium Type", 6931 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6932 /*parse_str*/ NULL }, 6933 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX, 6934 "Medium Type Information", 6935 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6936 /*parse_str*/ NULL }, 6937 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE, 6938 "Medium Serial Number", 6939 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6940 /*parse_str*/ NULL }, 6941 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE, 6942 "Application Vendor", 6943 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6944 /*parse_str*/ NULL }, 6945 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE, 6946 "Application Name", 6947 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6948 /*parse_str*/ NULL }, 6949 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE, 6950 "Application Version", 6951 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6952 /*parse_str*/ NULL }, 6953 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE, 6954 "User Medium Text Label", 6955 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6956 /*parse_str*/ NULL }, 6957 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE, 6958 "Date and Time Last Written", 6959 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6960 /*parse_str*/ NULL }, 6961 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX, 6962 "Text Localization Identifier", 6963 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6964 /*parse_str*/ NULL }, 6965 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE, 6966 "Barcode", 6967 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6968 /*parse_str*/ NULL }, 6969 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE, 6970 "Owning Host Textual Name", 6971 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6972 /*parse_str*/ NULL }, 6973 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE, 6974 "Media Pool", 6975 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6976 /*parse_str*/ NULL }, 6977 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE, 6978 "Partition User Text Label", 6979 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6980 /*parse_str*/ NULL }, 6981 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE, 6982 "Load/Unload at Partition", 6983 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6984 /*parse_str*/ NULL }, 6985 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE, 6986 "Application Format Version", 6987 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6988 /*parse_str*/ NULL }, 6989 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE, 6990 "Volume Coherency Information", 6991 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf, 6992 /*parse_str*/ NULL }, 6993 { 0x0ff1, SCSI_ATTR_FLAG_NONE, 6994 "Spectra MLM Creation", 6995 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6996 /*parse_str*/ NULL }, 6997 { 0x0ff2, SCSI_ATTR_FLAG_NONE, 6998 "Spectra MLM C3", 6999 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7000 /*parse_str*/ NULL }, 7001 { 0x0ff3, SCSI_ATTR_FLAG_NONE, 7002 "Spectra MLM RW", 7003 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7004 /*parse_str*/ NULL }, 7005 { 0x0ff4, SCSI_ATTR_FLAG_NONE, 7006 "Spectra MLM SDC List", 7007 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7008 /*parse_str*/ NULL }, 7009 { 0x0ff7, SCSI_ATTR_FLAG_NONE, 7010 "Spectra MLM Post Scan", 7011 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7012 /*parse_str*/ NULL }, 7013 { 0x0ffe, SCSI_ATTR_FLAG_NONE, 7014 "Spectra MLM Checksum", 7015 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7016 /*parse_str*/ NULL }, 7017 { 0x17f1, SCSI_ATTR_FLAG_NONE, 7018 "Spectra MLM Creation", 7019 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7020 /*parse_str*/ NULL }, 7021 { 0x17f2, SCSI_ATTR_FLAG_NONE, 7022 "Spectra MLM C3", 7023 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7024 /*parse_str*/ NULL }, 7025 { 0x17f3, SCSI_ATTR_FLAG_NONE, 7026 "Spectra MLM RW", 7027 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7028 /*parse_str*/ NULL }, 7029 { 0x17f4, SCSI_ATTR_FLAG_NONE, 7030 "Spectra MLM SDC List", 7031 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7032 /*parse_str*/ NULL }, 7033 { 0x17f7, SCSI_ATTR_FLAG_NONE, 7034 "Spectra MLM Post Scan", 7035 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7036 /*parse_str*/ NULL }, 7037 { 0x17ff, SCSI_ATTR_FLAG_NONE, 7038 "Spectra MLM Checksum", 7039 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7040 /*parse_str*/ NULL }, 7041 }; 7042 7043 /* 7044 * Print out Volume Coherency Information (Attribute 0x080c). 7045 * This field has two variable length members, including one at the 7046 * beginning, so it isn't practical to have a fixed structure definition. 7047 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25, 7048 * 2013. 7049 */ 7050 int 7051 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7052 uint32_t valid_len, uint32_t flags, 7053 uint32_t output_flags, char *error_str, 7054 int error_str_len) 7055 { 7056 size_t avail_len; 7057 uint32_t field_size; 7058 uint64_t tmp_val; 7059 uint8_t *cur_ptr; 7060 int retval; 7061 int vcr_len, as_len; 7062 7063 retval = 0; 7064 tmp_val = 0; 7065 7066 field_size = scsi_2btoul(hdr->length); 7067 avail_len = valid_len - sizeof(*hdr); 7068 if (field_size > avail_len) { 7069 if (error_str != NULL) { 7070 snprintf(error_str, error_str_len, "Available " 7071 "length of attribute ID 0x%.4x %zu < field " 7072 "length %u", scsi_2btoul(hdr->id), avail_len, 7073 field_size); 7074 } 7075 retval = 1; 7076 goto bailout; 7077 } else if (field_size == 0) { 7078 /* 7079 * It isn't clear from the spec whether a field length of 7080 * 0 is invalid here. It probably is, but be lenient here 7081 * to avoid inconveniencing the user. 7082 */ 7083 goto bailout; 7084 } 7085 cur_ptr = hdr->attribute; 7086 vcr_len = *cur_ptr; 7087 cur_ptr++; 7088 7089 sbuf_printf(sb, "\n\tVolume Change Reference Value:"); 7090 7091 switch (vcr_len) { 7092 case 0: 7093 if (error_str != NULL) { 7094 snprintf(error_str, error_str_len, "Volume Change " 7095 "Reference value has length of 0"); 7096 } 7097 retval = 1; 7098 goto bailout; 7099 break; /*NOTREACHED*/ 7100 case 1: 7101 tmp_val = *cur_ptr; 7102 break; 7103 case 2: 7104 tmp_val = scsi_2btoul(cur_ptr); 7105 break; 7106 case 3: 7107 tmp_val = scsi_3btoul(cur_ptr); 7108 break; 7109 case 4: 7110 tmp_val = scsi_4btoul(cur_ptr); 7111 break; 7112 case 8: 7113 tmp_val = scsi_8btou64(cur_ptr); 7114 break; 7115 default: 7116 sbuf_printf(sb, "\n"); 7117 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0); 7118 break; 7119 } 7120 if (vcr_len <= 8) 7121 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val); 7122 7123 cur_ptr += vcr_len; 7124 tmp_val = scsi_8btou64(cur_ptr); 7125 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val); 7126 7127 cur_ptr += sizeof(tmp_val); 7128 tmp_val = scsi_8btou64(cur_ptr); 7129 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n", 7130 (uintmax_t)tmp_val); 7131 7132 /* 7133 * Figure out how long the Application Client Specific Information 7134 * is and produce a hexdump. 7135 */ 7136 cur_ptr += sizeof(tmp_val); 7137 as_len = scsi_2btoul(cur_ptr); 7138 cur_ptr += sizeof(uint16_t); 7139 sbuf_printf(sb, "\tApplication Client Specific Information: "); 7140 if (((as_len == SCSI_LTFS_VER0_LEN) 7141 || (as_len == SCSI_LTFS_VER1_LEN)) 7142 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) { 7143 sbuf_printf(sb, "LTFS\n"); 7144 cur_ptr += SCSI_LTFS_STR_LEN + 1; 7145 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0') 7146 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0'; 7147 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr); 7148 cur_ptr += SCSI_LTFS_UUID_LEN + 1; 7149 /* XXX KDM check the length */ 7150 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr); 7151 } else { 7152 sbuf_printf(sb, "Unknown\n"); 7153 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0); 7154 } 7155 7156 bailout: 7157 return (retval); 7158 } 7159 7160 int 7161 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7162 uint32_t valid_len, uint32_t flags, 7163 uint32_t output_flags, char *error_str, 7164 int error_str_len) 7165 { 7166 size_t avail_len; 7167 uint32_t field_size; 7168 struct scsi_attrib_vendser *vendser; 7169 cam_strvis_flags strvis_flags; 7170 int retval = 0; 7171 7172 field_size = scsi_2btoul(hdr->length); 7173 avail_len = valid_len - sizeof(*hdr); 7174 if (field_size > avail_len) { 7175 if (error_str != NULL) { 7176 snprintf(error_str, error_str_len, "Available " 7177 "length of attribute ID 0x%.4x %zu < field " 7178 "length %u", scsi_2btoul(hdr->id), avail_len, 7179 field_size); 7180 } 7181 retval = 1; 7182 goto bailout; 7183 } else if (field_size == 0) { 7184 /* 7185 * A field size of 0 doesn't make sense here. The device 7186 * can at least give you the vendor ID, even if it can't 7187 * give you the serial number. 7188 */ 7189 if (error_str != NULL) { 7190 snprintf(error_str, error_str_len, "The length of " 7191 "attribute ID 0x%.4x is 0", 7192 scsi_2btoul(hdr->id)); 7193 } 7194 retval = 1; 7195 goto bailout; 7196 } 7197 vendser = (struct scsi_attrib_vendser *)hdr->attribute; 7198 7199 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7200 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7201 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7202 break; 7203 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7204 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7205 break; 7206 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7207 default: 7208 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7209 break; 7210 } 7211 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor), 7212 strvis_flags); 7213 sbuf_putc(sb, ' '); 7214 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num), 7215 strvis_flags); 7216 bailout: 7217 return (retval); 7218 } 7219 7220 int 7221 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7222 uint32_t valid_len, uint32_t flags, 7223 uint32_t output_flags, char *error_str, 7224 int error_str_len) 7225 { 7226 uint32_t field_size; 7227 ssize_t avail_len; 7228 uint32_t print_len; 7229 uint8_t *num_ptr; 7230 int retval = 0; 7231 7232 field_size = scsi_2btoul(hdr->length); 7233 avail_len = valid_len - sizeof(*hdr); 7234 print_len = MIN(avail_len, field_size); 7235 num_ptr = hdr->attribute; 7236 7237 if (print_len > 0) { 7238 sbuf_printf(sb, "\n"); 7239 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0); 7240 } 7241 7242 return (retval); 7243 } 7244 7245 int 7246 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7247 uint32_t valid_len, uint32_t flags, 7248 uint32_t output_flags, char *error_str, 7249 int error_str_len) 7250 { 7251 uint64_t print_number; 7252 size_t avail_len; 7253 uint32_t number_size; 7254 int retval = 0; 7255 7256 number_size = scsi_2btoul(hdr->length); 7257 7258 avail_len = valid_len - sizeof(*hdr); 7259 if (avail_len < number_size) { 7260 if (error_str != NULL) { 7261 snprintf(error_str, error_str_len, "Available " 7262 "length of attribute ID 0x%.4x %zu < field " 7263 "length %u", scsi_2btoul(hdr->id), avail_len, 7264 number_size); 7265 } 7266 retval = 1; 7267 goto bailout; 7268 } 7269 7270 switch (number_size) { 7271 case 0: 7272 /* 7273 * We don't treat this as an error, since there may be 7274 * scenarios where a device reports a field but then gives 7275 * a length of 0. See the note in scsi_attrib_ascii_sbuf(). 7276 */ 7277 goto bailout; 7278 break; /*NOTREACHED*/ 7279 case 1: 7280 print_number = hdr->attribute[0]; 7281 break; 7282 case 2: 7283 print_number = scsi_2btoul(hdr->attribute); 7284 break; 7285 case 3: 7286 print_number = scsi_3btoul(hdr->attribute); 7287 break; 7288 case 4: 7289 print_number = scsi_4btoul(hdr->attribute); 7290 break; 7291 case 8: 7292 print_number = scsi_8btou64(hdr->attribute); 7293 break; 7294 default: 7295 /* 7296 * If we wind up here, the number is too big to print 7297 * normally, so just do a hexdump. 7298 */ 7299 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7300 flags, output_flags, 7301 error_str, error_str_len); 7302 goto bailout; 7303 break; 7304 } 7305 7306 if (flags & SCSI_ATTR_FLAG_FP) { 7307 #ifndef _KERNEL 7308 long double num_float; 7309 7310 num_float = (long double)print_number; 7311 7312 if (flags & SCSI_ATTR_FLAG_DIV_10) 7313 num_float /= 10; 7314 7315 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ? 7316 1 : 0, num_float); 7317 #else /* _KERNEL */ 7318 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ? 7319 (print_number / 10) : print_number); 7320 #endif /* _KERNEL */ 7321 } else if (flags & SCSI_ATTR_FLAG_HEX) { 7322 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number); 7323 } else 7324 sbuf_printf(sb, "%ju", (uintmax_t)print_number); 7325 7326 bailout: 7327 return (retval); 7328 } 7329 7330 int 7331 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7332 uint32_t valid_len, uint32_t flags, 7333 uint32_t output_flags, char *error_str, 7334 int error_str_len) 7335 { 7336 size_t avail_len; 7337 uint32_t field_size, print_size; 7338 int retval = 0; 7339 7340 avail_len = valid_len - sizeof(*hdr); 7341 field_size = scsi_2btoul(hdr->length); 7342 print_size = MIN(avail_len, field_size); 7343 7344 if (print_size > 0) { 7345 cam_strvis_flags strvis_flags; 7346 7347 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7348 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7349 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7350 break; 7351 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7352 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7353 break; 7354 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7355 default: 7356 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7357 break; 7358 } 7359 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags); 7360 } else if (avail_len < field_size) { 7361 /* 7362 * We only report an error if the user didn't allocate 7363 * enough space to hold the full value of this field. If 7364 * the field length is 0, that is allowed by the spec. 7365 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER 7366 * "This attribute indicates the current volume identifier 7367 * (see SMC-3) of the medium. If the device server supports 7368 * this attribute but does not have access to the volume 7369 * identifier, the device server shall report this attribute 7370 * with an attribute length value of zero." 7371 */ 7372 if (error_str != NULL) { 7373 snprintf(error_str, error_str_len, "Available " 7374 "length of attribute ID 0x%.4x %zu < field " 7375 "length %u", scsi_2btoul(hdr->id), avail_len, 7376 field_size); 7377 } 7378 retval = 1; 7379 } 7380 7381 return (retval); 7382 } 7383 7384 int 7385 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7386 uint32_t valid_len, uint32_t flags, 7387 uint32_t output_flags, char *error_str, 7388 int error_str_len) 7389 { 7390 size_t avail_len; 7391 uint32_t field_size, print_size; 7392 int retval = 0; 7393 int esc_text = 1; 7394 7395 avail_len = valid_len - sizeof(*hdr); 7396 field_size = scsi_2btoul(hdr->length); 7397 print_size = MIN(avail_len, field_size); 7398 7399 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) == 7400 SCSI_ATTR_OUTPUT_TEXT_RAW) 7401 esc_text = 0; 7402 7403 if (print_size > 0) { 7404 uint32_t i; 7405 7406 for (i = 0; i < print_size; i++) { 7407 if (hdr->attribute[i] == '\0') 7408 continue; 7409 else if (((unsigned char)hdr->attribute[i] < 0x80) 7410 || (esc_text == 0)) 7411 sbuf_putc(sb, hdr->attribute[i]); 7412 else 7413 sbuf_printf(sb, "%%%02x", 7414 (unsigned char)hdr->attribute[i]); 7415 } 7416 } else if (avail_len < field_size) { 7417 /* 7418 * We only report an error if the user didn't allocate 7419 * enough space to hold the full value of this field. 7420 */ 7421 if (error_str != NULL) { 7422 snprintf(error_str, error_str_len, "Available " 7423 "length of attribute ID 0x%.4x %zu < field " 7424 "length %u", scsi_2btoul(hdr->id), avail_len, 7425 field_size); 7426 } 7427 retval = 1; 7428 } 7429 7430 return (retval); 7431 } 7432 7433 struct scsi_attrib_table_entry * 7434 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table, 7435 size_t num_table_entries, uint32_t id) 7436 { 7437 uint32_t i; 7438 7439 for (i = 0; i < num_table_entries; i++) { 7440 if (table[i].id == id) 7441 return (&table[i]); 7442 } 7443 7444 return (NULL); 7445 } 7446 7447 struct scsi_attrib_table_entry * 7448 scsi_get_attrib_entry(uint32_t id) 7449 { 7450 return (scsi_find_attrib_entry(scsi_mam_attr_table, 7451 nitems(scsi_mam_attr_table), id)); 7452 } 7453 7454 int 7455 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, 7456 struct scsi_mam_attribute_header *hdr, uint32_t output_flags, 7457 char *error_str, size_t error_str_len) 7458 { 7459 int retval; 7460 7461 switch (hdr->byte2 & SMA_FORMAT_MASK) { 7462 case SMA_FORMAT_ASCII: 7463 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len, 7464 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len); 7465 break; 7466 case SMA_FORMAT_BINARY: 7467 if (scsi_2btoul(hdr->length) <= 8) 7468 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len, 7469 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7470 error_str_len); 7471 else 7472 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7473 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7474 error_str_len); 7475 break; 7476 case SMA_FORMAT_TEXT: 7477 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len, 7478 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7479 error_str_len); 7480 break; 7481 default: 7482 if (error_str != NULL) { 7483 snprintf(error_str, error_str_len, "Unknown attribute " 7484 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK); 7485 } 7486 retval = 1; 7487 goto bailout; 7488 break; /*NOTREACHED*/ 7489 } 7490 7491 sbuf_trim(sb); 7492 7493 bailout: 7494 7495 return (retval); 7496 } 7497 7498 void 7499 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, 7500 struct scsi_mam_attribute_header *hdr, 7501 uint32_t valid_len, const char *desc) 7502 { 7503 int need_space = 0; 7504 uint32_t len; 7505 uint32_t id; 7506 7507 /* 7508 * We can't do anything if we don't have enough valid data for the 7509 * header. 7510 */ 7511 if (valid_len < sizeof(*hdr)) 7512 return; 7513 7514 id = scsi_2btoul(hdr->id); 7515 /* 7516 * Note that we print out the value of the attribute listed in the 7517 * header, regardless of whether we actually got that many bytes 7518 * back from the device through the controller. A truncated result 7519 * could be the result of a failure to ask for enough data; the 7520 * header indicates how many bytes are allocated for this attribute 7521 * in the MAM. 7522 */ 7523 len = scsi_2btoul(hdr->length); 7524 7525 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) == 7526 SCSI_ATTR_OUTPUT_FIELD_NONE) 7527 return; 7528 7529 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC) 7530 && (desc != NULL)) { 7531 sbuf_printf(sb, "%s", desc); 7532 need_space = 1; 7533 } 7534 7535 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) { 7536 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id); 7537 need_space = 0; 7538 } 7539 7540 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) { 7541 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len); 7542 need_space = 0; 7543 } 7544 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) { 7545 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "", 7546 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW"); 7547 } 7548 sbuf_printf(sb, ": "); 7549 } 7550 7551 int 7552 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7553 uint32_t valid_len, struct scsi_attrib_table_entry *user_table, 7554 size_t num_user_entries, int prefer_user_table, 7555 uint32_t output_flags, char *error_str, int error_str_len) 7556 { 7557 int retval; 7558 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL; 7559 struct scsi_attrib_table_entry *entry = NULL; 7560 size_t table1_size = 0, table2_size = 0; 7561 uint32_t id; 7562 7563 retval = 0; 7564 7565 if (valid_len < sizeof(*hdr)) { 7566 retval = 1; 7567 goto bailout; 7568 } 7569 7570 id = scsi_2btoul(hdr->id); 7571 7572 if (user_table != NULL) { 7573 if (prefer_user_table != 0) { 7574 table1 = user_table; 7575 table1_size = num_user_entries; 7576 table2 = scsi_mam_attr_table; 7577 table2_size = nitems(scsi_mam_attr_table); 7578 } else { 7579 table1 = scsi_mam_attr_table; 7580 table1_size = nitems(scsi_mam_attr_table); 7581 table2 = user_table; 7582 table2_size = num_user_entries; 7583 } 7584 } else { 7585 table1 = scsi_mam_attr_table; 7586 table1_size = nitems(scsi_mam_attr_table); 7587 } 7588 7589 entry = scsi_find_attrib_entry(table1, table1_size, id); 7590 if (entry != NULL) { 7591 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, 7592 entry->desc); 7593 if (entry->to_str == NULL) 7594 goto print_default; 7595 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7596 output_flags, error_str, error_str_len); 7597 goto bailout; 7598 } 7599 if (table2 != NULL) { 7600 entry = scsi_find_attrib_entry(table2, table2_size, id); 7601 if (entry != NULL) { 7602 if (entry->to_str == NULL) 7603 goto print_default; 7604 7605 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, 7606 valid_len, entry->desc); 7607 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7608 output_flags, error_str, 7609 error_str_len); 7610 goto bailout; 7611 } 7612 } 7613 7614 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL); 7615 7616 print_default: 7617 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags, 7618 error_str, error_str_len); 7619 bailout: 7620 if (retval == 0) { 7621 if ((entry != NULL) 7622 && (entry->suffix != NULL)) 7623 sbuf_printf(sb, " %s", entry->suffix); 7624 7625 sbuf_trim(sb); 7626 sbuf_printf(sb, "\n"); 7627 } 7628 7629 return (retval); 7630 } 7631 7632 void 7633 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, 7634 void (*cbfcnp)(struct cam_periph *, union ccb *), 7635 u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout) 7636 { 7637 struct scsi_test_unit_ready *scsi_cmd; 7638 7639 cam_fill_csio(csio, 7640 retries, 7641 cbfcnp, 7642 CAM_DIR_NONE, 7643 tag_action, 7644 /*data_ptr*/NULL, 7645 /*dxfer_len*/0, 7646 sense_len, 7647 sizeof(*scsi_cmd), 7648 timeout); 7649 7650 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; 7651 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7652 scsi_cmd->opcode = TEST_UNIT_READY; 7653 } 7654 7655 void 7656 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, 7657 void (*cbfcnp)(struct cam_periph *, union ccb *), 7658 void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, 7659 u_int8_t sense_len, u_int32_t timeout) 7660 { 7661 struct scsi_request_sense *scsi_cmd; 7662 7663 cam_fill_csio(csio, 7664 retries, 7665 cbfcnp, 7666 CAM_DIR_IN, 7667 tag_action, 7668 data_ptr, 7669 dxfer_len, 7670 sense_len, 7671 sizeof(*scsi_cmd), 7672 timeout); 7673 7674 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; 7675 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7676 scsi_cmd->opcode = REQUEST_SENSE; 7677 scsi_cmd->length = dxfer_len; 7678 } 7679 7680 void 7681 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, 7682 void (*cbfcnp)(struct cam_periph *, union ccb *), 7683 u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, 7684 int evpd, u_int8_t page_code, u_int8_t sense_len, 7685 u_int32_t timeout) 7686 { 7687 struct scsi_inquiry *scsi_cmd; 7688 7689 cam_fill_csio(csio, 7690 retries, 7691 cbfcnp, 7692 /*flags*/CAM_DIR_IN, 7693 tag_action, 7694 /*data_ptr*/inq_buf, 7695 /*dxfer_len*/inq_len, 7696 sense_len, 7697 sizeof(*scsi_cmd), 7698 timeout); 7699 7700 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; 7701 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7702 scsi_cmd->opcode = INQUIRY; 7703 if (evpd) { 7704 scsi_cmd->byte2 |= SI_EVPD; 7705 scsi_cmd->page_code = page_code; 7706 } 7707 scsi_ulto2b(inq_len, scsi_cmd->length); 7708 } 7709 7710 void 7711 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries, 7712 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7713 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7714 uint8_t sense_len, uint32_t timeout) 7715 { 7716 7717 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7718 pc, page, 0, param_buf, param_len, 0, sense_len, timeout); 7719 } 7720 7721 void 7722 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries, 7723 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7724 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7725 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout) 7726 { 7727 7728 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7729 pc, page, 0, param_buf, param_len, minimum_cmd_size, 7730 sense_len, timeout); 7731 } 7732 7733 void 7734 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries, 7735 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7736 int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf, 7737 uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, 7738 uint32_t timeout) 7739 { 7740 u_int8_t cdb_len; 7741 7742 /* 7743 * Use the smallest possible command to perform the operation. 7744 */ 7745 if ((param_len < 256) 7746 && (minimum_cmd_size < 10)) { 7747 /* 7748 * We can fit in a 6 byte cdb. 7749 */ 7750 struct scsi_mode_sense_6 *scsi_cmd; 7751 7752 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; 7753 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7754 scsi_cmd->opcode = MODE_SENSE_6; 7755 if (dbd != 0) 7756 scsi_cmd->byte2 |= SMS_DBD; 7757 scsi_cmd->page = pc | page; 7758 scsi_cmd->subpage = subpage; 7759 scsi_cmd->length = param_len; 7760 cdb_len = sizeof(*scsi_cmd); 7761 } else { 7762 /* 7763 * Need a 10 byte cdb. 7764 */ 7765 struct scsi_mode_sense_10 *scsi_cmd; 7766 7767 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; 7768 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7769 scsi_cmd->opcode = MODE_SENSE_10; 7770 if (dbd != 0) 7771 scsi_cmd->byte2 |= SMS_DBD; 7772 scsi_cmd->page = pc | page; 7773 scsi_cmd->subpage = subpage; 7774 scsi_ulto2b(param_len, scsi_cmd->length); 7775 cdb_len = sizeof(*scsi_cmd); 7776 } 7777 cam_fill_csio(csio, 7778 retries, 7779 cbfcnp, 7780 CAM_DIR_IN, 7781 tag_action, 7782 param_buf, 7783 param_len, 7784 sense_len, 7785 cdb_len, 7786 timeout); 7787 } 7788 7789 void 7790 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, 7791 void (*cbfcnp)(struct cam_periph *, union ccb *), 7792 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7793 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7794 u_int32_t timeout) 7795 { 7796 scsi_mode_select_len(csio, retries, cbfcnp, tag_action, 7797 scsi_page_fmt, save_pages, param_buf, 7798 param_len, 0, sense_len, timeout); 7799 } 7800 7801 void 7802 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, 7803 void (*cbfcnp)(struct cam_periph *, union ccb *), 7804 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7805 u_int8_t *param_buf, u_int32_t param_len, 7806 int minimum_cmd_size, u_int8_t sense_len, 7807 u_int32_t timeout) 7808 { 7809 u_int8_t cdb_len; 7810 7811 /* 7812 * Use the smallest possible command to perform the operation. 7813 */ 7814 if ((param_len < 256) 7815 && (minimum_cmd_size < 10)) { 7816 /* 7817 * We can fit in a 6 byte cdb. 7818 */ 7819 struct scsi_mode_select_6 *scsi_cmd; 7820 7821 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; 7822 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7823 scsi_cmd->opcode = MODE_SELECT_6; 7824 if (scsi_page_fmt != 0) 7825 scsi_cmd->byte2 |= SMS_PF; 7826 if (save_pages != 0) 7827 scsi_cmd->byte2 |= SMS_SP; 7828 scsi_cmd->length = param_len; 7829 cdb_len = sizeof(*scsi_cmd); 7830 } else { 7831 /* 7832 * Need a 10 byte cdb. 7833 */ 7834 struct scsi_mode_select_10 *scsi_cmd; 7835 7836 scsi_cmd = 7837 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; 7838 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7839 scsi_cmd->opcode = MODE_SELECT_10; 7840 if (scsi_page_fmt != 0) 7841 scsi_cmd->byte2 |= SMS_PF; 7842 if (save_pages != 0) 7843 scsi_cmd->byte2 |= SMS_SP; 7844 scsi_ulto2b(param_len, scsi_cmd->length); 7845 cdb_len = sizeof(*scsi_cmd); 7846 } 7847 cam_fill_csio(csio, 7848 retries, 7849 cbfcnp, 7850 CAM_DIR_OUT, 7851 tag_action, 7852 param_buf, 7853 param_len, 7854 sense_len, 7855 cdb_len, 7856 timeout); 7857 } 7858 7859 void 7860 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, 7861 void (*cbfcnp)(struct cam_periph *, union ccb *), 7862 u_int8_t tag_action, u_int8_t page_code, u_int8_t page, 7863 int save_pages, int ppc, u_int32_t paramptr, 7864 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7865 u_int32_t timeout) 7866 { 7867 struct scsi_log_sense *scsi_cmd; 7868 u_int8_t cdb_len; 7869 7870 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; 7871 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7872 scsi_cmd->opcode = LOG_SENSE; 7873 scsi_cmd->page = page_code | page; 7874 if (save_pages != 0) 7875 scsi_cmd->byte2 |= SLS_SP; 7876 if (ppc != 0) 7877 scsi_cmd->byte2 |= SLS_PPC; 7878 scsi_ulto2b(paramptr, scsi_cmd->paramptr); 7879 scsi_ulto2b(param_len, scsi_cmd->length); 7880 cdb_len = sizeof(*scsi_cmd); 7881 7882 cam_fill_csio(csio, 7883 retries, 7884 cbfcnp, 7885 /*flags*/CAM_DIR_IN, 7886 tag_action, 7887 /*data_ptr*/param_buf, 7888 /*dxfer_len*/param_len, 7889 sense_len, 7890 cdb_len, 7891 timeout); 7892 } 7893 7894 void 7895 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, 7896 void (*cbfcnp)(struct cam_periph *, union ccb *), 7897 u_int8_t tag_action, u_int8_t page_code, int save_pages, 7898 int pc_reset, u_int8_t *param_buf, u_int32_t param_len, 7899 u_int8_t sense_len, u_int32_t timeout) 7900 { 7901 struct scsi_log_select *scsi_cmd; 7902 u_int8_t cdb_len; 7903 7904 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; 7905 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7906 scsi_cmd->opcode = LOG_SELECT; 7907 scsi_cmd->page = page_code & SLS_PAGE_CODE; 7908 if (save_pages != 0) 7909 scsi_cmd->byte2 |= SLS_SP; 7910 if (pc_reset != 0) 7911 scsi_cmd->byte2 |= SLS_PCR; 7912 scsi_ulto2b(param_len, scsi_cmd->length); 7913 cdb_len = sizeof(*scsi_cmd); 7914 7915 cam_fill_csio(csio, 7916 retries, 7917 cbfcnp, 7918 /*flags*/CAM_DIR_OUT, 7919 tag_action, 7920 /*data_ptr*/param_buf, 7921 /*dxfer_len*/param_len, 7922 sense_len, 7923 cdb_len, 7924 timeout); 7925 } 7926 7927 /* 7928 * Prevent or allow the user to remove the media 7929 */ 7930 void 7931 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, 7932 void (*cbfcnp)(struct cam_periph *, union ccb *), 7933 u_int8_t tag_action, u_int8_t action, 7934 u_int8_t sense_len, u_int32_t timeout) 7935 { 7936 struct scsi_prevent *scsi_cmd; 7937 7938 cam_fill_csio(csio, 7939 retries, 7940 cbfcnp, 7941 /*flags*/CAM_DIR_NONE, 7942 tag_action, 7943 /*data_ptr*/NULL, 7944 /*dxfer_len*/0, 7945 sense_len, 7946 sizeof(*scsi_cmd), 7947 timeout); 7948 7949 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; 7950 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7951 scsi_cmd->opcode = PREVENT_ALLOW; 7952 scsi_cmd->how = action; 7953 } 7954 7955 /* XXX allow specification of address and PMI bit and LBA */ 7956 void 7957 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, 7958 void (*cbfcnp)(struct cam_periph *, union ccb *), 7959 u_int8_t tag_action, 7960 struct scsi_read_capacity_data *rcap_buf, 7961 u_int8_t sense_len, u_int32_t timeout) 7962 { 7963 struct scsi_read_capacity *scsi_cmd; 7964 7965 cam_fill_csio(csio, 7966 retries, 7967 cbfcnp, 7968 /*flags*/CAM_DIR_IN, 7969 tag_action, 7970 /*data_ptr*/(u_int8_t *)rcap_buf, 7971 /*dxfer_len*/sizeof(*rcap_buf), 7972 sense_len, 7973 sizeof(*scsi_cmd), 7974 timeout); 7975 7976 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; 7977 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7978 scsi_cmd->opcode = READ_CAPACITY; 7979 } 7980 7981 void 7982 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, 7983 void (*cbfcnp)(struct cam_periph *, union ccb *), 7984 uint8_t tag_action, uint64_t lba, int reladr, int pmi, 7985 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, 7986 uint32_t timeout) 7987 { 7988 struct scsi_read_capacity_16 *scsi_cmd; 7989 7990 cam_fill_csio(csio, 7991 retries, 7992 cbfcnp, 7993 /*flags*/CAM_DIR_IN, 7994 tag_action, 7995 /*data_ptr*/(u_int8_t *)rcap_buf, 7996 /*dxfer_len*/rcap_buf_len, 7997 sense_len, 7998 sizeof(*scsi_cmd), 7999 timeout); 8000 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 8001 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8002 scsi_cmd->opcode = SERVICE_ACTION_IN; 8003 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 8004 scsi_u64to8b(lba, scsi_cmd->addr); 8005 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); 8006 if (pmi) 8007 reladr |= SRC16_PMI; 8008 if (reladr) 8009 reladr |= SRC16_RELADR; 8010 } 8011 8012 void 8013 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, 8014 void (*cbfcnp)(struct cam_periph *, union ccb *), 8015 u_int8_t tag_action, u_int8_t select_report, 8016 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, 8017 u_int8_t sense_len, u_int32_t timeout) 8018 { 8019 struct scsi_report_luns *scsi_cmd; 8020 8021 cam_fill_csio(csio, 8022 retries, 8023 cbfcnp, 8024 /*flags*/CAM_DIR_IN, 8025 tag_action, 8026 /*data_ptr*/(u_int8_t *)rpl_buf, 8027 /*dxfer_len*/alloc_len, 8028 sense_len, 8029 sizeof(*scsi_cmd), 8030 timeout); 8031 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; 8032 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8033 scsi_cmd->opcode = REPORT_LUNS; 8034 scsi_cmd->select_report = select_report; 8035 scsi_ulto4b(alloc_len, scsi_cmd->length); 8036 } 8037 8038 void 8039 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, 8040 void (*cbfcnp)(struct cam_periph *, union ccb *), 8041 u_int8_t tag_action, u_int8_t pdf, 8042 void *buf, u_int32_t alloc_len, 8043 u_int8_t sense_len, u_int32_t timeout) 8044 { 8045 struct scsi_target_group *scsi_cmd; 8046 8047 cam_fill_csio(csio, 8048 retries, 8049 cbfcnp, 8050 /*flags*/CAM_DIR_IN, 8051 tag_action, 8052 /*data_ptr*/(u_int8_t *)buf, 8053 /*dxfer_len*/alloc_len, 8054 sense_len, 8055 sizeof(*scsi_cmd), 8056 timeout); 8057 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 8058 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8059 scsi_cmd->opcode = MAINTENANCE_IN; 8060 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; 8061 scsi_ulto4b(alloc_len, scsi_cmd->length); 8062 } 8063 8064 void 8065 scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 8066 void (*cbfcnp)(struct cam_periph *, union ccb *), 8067 u_int8_t tag_action, u_int8_t pdf, 8068 void *buf, u_int32_t alloc_len, 8069 u_int8_t sense_len, u_int32_t timeout) 8070 { 8071 struct scsi_timestamp *scsi_cmd; 8072 8073 cam_fill_csio(csio, 8074 retries, 8075 cbfcnp, 8076 /*flags*/CAM_DIR_IN, 8077 tag_action, 8078 /*data_ptr*/(u_int8_t *)buf, 8079 /*dxfer_len*/alloc_len, 8080 sense_len, 8081 sizeof(*scsi_cmd), 8082 timeout); 8083 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 8084 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8085 scsi_cmd->opcode = MAINTENANCE_IN; 8086 scsi_cmd->service_action = REPORT_TIMESTAMP | pdf; 8087 scsi_ulto4b(alloc_len, scsi_cmd->length); 8088 } 8089 8090 void 8091 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, 8092 void (*cbfcnp)(struct cam_periph *, union ccb *), 8093 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 8094 u_int8_t sense_len, u_int32_t timeout) 8095 { 8096 struct scsi_target_group *scsi_cmd; 8097 8098 cam_fill_csio(csio, 8099 retries, 8100 cbfcnp, 8101 /*flags*/CAM_DIR_OUT, 8102 tag_action, 8103 /*data_ptr*/(u_int8_t *)buf, 8104 /*dxfer_len*/alloc_len, 8105 sense_len, 8106 sizeof(*scsi_cmd), 8107 timeout); 8108 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 8109 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8110 scsi_cmd->opcode = MAINTENANCE_OUT; 8111 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; 8112 scsi_ulto4b(alloc_len, scsi_cmd->length); 8113 } 8114 8115 void 8116 scsi_create_timestamp(uint8_t *timestamp_6b_buf, 8117 uint64_t timestamp) 8118 { 8119 uint8_t buf[8]; 8120 scsi_u64to8b(timestamp, buf); 8121 /* 8122 * Using memcopy starting at buf[2] because the set timestamp parameters 8123 * only has six bytes for the timestamp to fit into, and we don't have a 8124 * scsi_u64to6b function. 8125 */ 8126 memcpy(timestamp_6b_buf, &buf[2], 6); 8127 } 8128 8129 void 8130 scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 8131 void (*cbfcnp)(struct cam_periph *, union ccb *), 8132 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 8133 u_int8_t sense_len, u_int32_t timeout) 8134 { 8135 struct scsi_timestamp *scsi_cmd; 8136 8137 cam_fill_csio(csio, 8138 retries, 8139 cbfcnp, 8140 /*flags*/CAM_DIR_OUT, 8141 tag_action, 8142 /*data_ptr*/(u_int8_t *) buf, 8143 /*dxfer_len*/alloc_len, 8144 sense_len, 8145 sizeof(*scsi_cmd), 8146 timeout); 8147 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 8148 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8149 scsi_cmd->opcode = MAINTENANCE_OUT; 8150 scsi_cmd->service_action = SET_TIMESTAMP; 8151 scsi_ulto4b(alloc_len, scsi_cmd->length); 8152 } 8153 8154 /* 8155 * Syncronize the media to the contents of the cache for 8156 * the given lba/count pair. Specifying 0/0 means sync 8157 * the whole cache. 8158 */ 8159 void 8160 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, 8161 void (*cbfcnp)(struct cam_periph *, union ccb *), 8162 u_int8_t tag_action, u_int32_t begin_lba, 8163 u_int16_t lb_count, u_int8_t sense_len, 8164 u_int32_t timeout) 8165 { 8166 struct scsi_sync_cache *scsi_cmd; 8167 8168 cam_fill_csio(csio, 8169 retries, 8170 cbfcnp, 8171 /*flags*/CAM_DIR_NONE, 8172 tag_action, 8173 /*data_ptr*/NULL, 8174 /*dxfer_len*/0, 8175 sense_len, 8176 sizeof(*scsi_cmd), 8177 timeout); 8178 8179 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; 8180 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8181 scsi_cmd->opcode = SYNCHRONIZE_CACHE; 8182 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); 8183 scsi_ulto2b(lb_count, scsi_cmd->lb_count); 8184 } 8185 8186 void 8187 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, 8188 void (*cbfcnp)(struct cam_periph *, union ccb *), 8189 u_int8_t tag_action, int readop, u_int8_t byte2, 8190 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8191 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8192 u_int32_t timeout) 8193 { 8194 int read; 8195 u_int8_t cdb_len; 8196 8197 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; 8198 8199 /* 8200 * Use the smallest possible command to perform the operation 8201 * as some legacy hardware does not support the 10 byte commands. 8202 * If any of the bits in byte2 is set, we have to go with a larger 8203 * command. 8204 */ 8205 if ((minimum_cmd_size < 10) 8206 && ((lba & 0x1fffff) == lba) 8207 && ((block_count & 0xff) == block_count) 8208 && (byte2 == 0)) { 8209 /* 8210 * We can fit in a 6 byte cdb. 8211 */ 8212 struct scsi_rw_6 *scsi_cmd; 8213 8214 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; 8215 scsi_cmd->opcode = read ? READ_6 : WRITE_6; 8216 scsi_ulto3b(lba, scsi_cmd->addr); 8217 scsi_cmd->length = block_count & 0xff; 8218 scsi_cmd->control = 0; 8219 cdb_len = sizeof(*scsi_cmd); 8220 8221 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8222 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], 8223 scsi_cmd->addr[1], scsi_cmd->addr[2], 8224 scsi_cmd->length, dxfer_len)); 8225 } else if ((minimum_cmd_size < 12) 8226 && ((block_count & 0xffff) == block_count) 8227 && ((lba & 0xffffffff) == lba)) { 8228 /* 8229 * Need a 10 byte cdb. 8230 */ 8231 struct scsi_rw_10 *scsi_cmd; 8232 8233 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; 8234 scsi_cmd->opcode = read ? READ_10 : WRITE_10; 8235 scsi_cmd->byte2 = byte2; 8236 scsi_ulto4b(lba, scsi_cmd->addr); 8237 scsi_cmd->reserved = 0; 8238 scsi_ulto2b(block_count, scsi_cmd->length); 8239 scsi_cmd->control = 0; 8240 cdb_len = sizeof(*scsi_cmd); 8241 8242 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8243 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8244 scsi_cmd->addr[1], scsi_cmd->addr[2], 8245 scsi_cmd->addr[3], scsi_cmd->length[0], 8246 scsi_cmd->length[1], dxfer_len)); 8247 } else if ((minimum_cmd_size < 16) 8248 && ((block_count & 0xffffffff) == block_count) 8249 && ((lba & 0xffffffff) == lba)) { 8250 /* 8251 * The block count is too big for a 10 byte CDB, use a 12 8252 * byte CDB. 8253 */ 8254 struct scsi_rw_12 *scsi_cmd; 8255 8256 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; 8257 scsi_cmd->opcode = read ? READ_12 : WRITE_12; 8258 scsi_cmd->byte2 = byte2; 8259 scsi_ulto4b(lba, scsi_cmd->addr); 8260 scsi_cmd->reserved = 0; 8261 scsi_ulto4b(block_count, scsi_cmd->length); 8262 scsi_cmd->control = 0; 8263 cdb_len = sizeof(*scsi_cmd); 8264 8265 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8266 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], 8267 scsi_cmd->addr[1], scsi_cmd->addr[2], 8268 scsi_cmd->addr[3], scsi_cmd->length[0], 8269 scsi_cmd->length[1], scsi_cmd->length[2], 8270 scsi_cmd->length[3], dxfer_len)); 8271 } else { 8272 /* 8273 * 16 byte CDB. We'll only get here if the LBA is larger 8274 * than 2^32, or if the user asks for a 16 byte command. 8275 */ 8276 struct scsi_rw_16 *scsi_cmd; 8277 8278 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; 8279 scsi_cmd->opcode = read ? READ_16 : WRITE_16; 8280 scsi_cmd->byte2 = byte2; 8281 scsi_u64to8b(lba, scsi_cmd->addr); 8282 scsi_cmd->reserved = 0; 8283 scsi_ulto4b(block_count, scsi_cmd->length); 8284 scsi_cmd->control = 0; 8285 cdb_len = sizeof(*scsi_cmd); 8286 } 8287 cam_fill_csio(csio, 8288 retries, 8289 cbfcnp, 8290 (read ? CAM_DIR_IN : CAM_DIR_OUT) | 8291 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), 8292 tag_action, 8293 data_ptr, 8294 dxfer_len, 8295 sense_len, 8296 cdb_len, 8297 timeout); 8298 } 8299 8300 void 8301 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, 8302 void (*cbfcnp)(struct cam_periph *, union ccb *), 8303 u_int8_t tag_action, u_int8_t byte2, 8304 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8305 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8306 u_int32_t timeout) 8307 { 8308 u_int8_t cdb_len; 8309 if ((minimum_cmd_size < 16) && 8310 ((block_count & 0xffff) == block_count) && 8311 ((lba & 0xffffffff) == lba)) { 8312 /* 8313 * Need a 10 byte cdb. 8314 */ 8315 struct scsi_write_same_10 *scsi_cmd; 8316 8317 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; 8318 scsi_cmd->opcode = WRITE_SAME_10; 8319 scsi_cmd->byte2 = byte2; 8320 scsi_ulto4b(lba, scsi_cmd->addr); 8321 scsi_cmd->group = 0; 8322 scsi_ulto2b(block_count, scsi_cmd->length); 8323 scsi_cmd->control = 0; 8324 cdb_len = sizeof(*scsi_cmd); 8325 8326 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8327 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8328 scsi_cmd->addr[1], scsi_cmd->addr[2], 8329 scsi_cmd->addr[3], scsi_cmd->length[0], 8330 scsi_cmd->length[1], dxfer_len)); 8331 } else { 8332 /* 8333 * 16 byte CDB. We'll only get here if the LBA is larger 8334 * than 2^32, or if the user asks for a 16 byte command. 8335 */ 8336 struct scsi_write_same_16 *scsi_cmd; 8337 8338 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; 8339 scsi_cmd->opcode = WRITE_SAME_16; 8340 scsi_cmd->byte2 = byte2; 8341 scsi_u64to8b(lba, scsi_cmd->addr); 8342 scsi_ulto4b(block_count, scsi_cmd->length); 8343 scsi_cmd->group = 0; 8344 scsi_cmd->control = 0; 8345 cdb_len = sizeof(*scsi_cmd); 8346 8347 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8348 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", 8349 scsi_cmd->addr[0], scsi_cmd->addr[1], 8350 scsi_cmd->addr[2], scsi_cmd->addr[3], 8351 scsi_cmd->addr[4], scsi_cmd->addr[5], 8352 scsi_cmd->addr[6], scsi_cmd->addr[7], 8353 scsi_cmd->length[0], scsi_cmd->length[1], 8354 scsi_cmd->length[2], scsi_cmd->length[3], 8355 dxfer_len)); 8356 } 8357 cam_fill_csio(csio, 8358 retries, 8359 cbfcnp, 8360 /*flags*/CAM_DIR_OUT, 8361 tag_action, 8362 data_ptr, 8363 dxfer_len, 8364 sense_len, 8365 cdb_len, 8366 timeout); 8367 } 8368 8369 void 8370 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries, 8371 void (*cbfcnp)(struct cam_periph *, union ccb *), 8372 u_int8_t tag_action, u_int8_t *data_ptr, 8373 u_int16_t dxfer_len, u_int8_t sense_len, 8374 u_int32_t timeout) 8375 { 8376 scsi_ata_pass(csio, 8377 retries, 8378 cbfcnp, 8379 /*flags*/CAM_DIR_IN, 8380 tag_action, 8381 /*protocol*/AP_PROTO_PIO_IN, 8382 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8383 AP_FLAG_BYT_BLOK_BLOCKS | 8384 AP_FLAG_TLEN_SECT_CNT, 8385 /*features*/0, 8386 /*sector_count*/dxfer_len / 512, 8387 /*lba*/0, 8388 /*command*/ATA_ATA_IDENTIFY, 8389 /*device*/ 0, 8390 /*icc*/ 0, 8391 /*auxiliary*/ 0, 8392 /*control*/0, 8393 data_ptr, 8394 dxfer_len, 8395 /*cdb_storage*/ NULL, 8396 /*cdb_storage_len*/ 0, 8397 /*minimum_cmd_size*/ 0, 8398 sense_len, 8399 timeout); 8400 } 8401 8402 void 8403 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries, 8404 void (*cbfcnp)(struct cam_periph *, union ccb *), 8405 u_int8_t tag_action, u_int16_t block_count, 8406 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8407 u_int32_t timeout) 8408 { 8409 scsi_ata_pass_16(csio, 8410 retries, 8411 cbfcnp, 8412 /*flags*/CAM_DIR_OUT, 8413 tag_action, 8414 /*protocol*/AP_EXTEND|AP_PROTO_DMA, 8415 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS, 8416 /*features*/ATA_DSM_TRIM, 8417 /*sector_count*/block_count, 8418 /*lba*/0, 8419 /*command*/ATA_DATA_SET_MANAGEMENT, 8420 /*control*/0, 8421 data_ptr, 8422 dxfer_len, 8423 sense_len, 8424 timeout); 8425 } 8426 8427 int 8428 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries, 8429 void (*cbfcnp)(struct cam_periph *, union ccb *), 8430 uint8_t tag_action, uint32_t log_address, 8431 uint32_t page_number, uint16_t block_count, 8432 uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, 8433 uint8_t sense_len, uint32_t timeout) 8434 { 8435 uint8_t command, protocol_out; 8436 uint16_t count_out; 8437 uint64_t lba; 8438 int retval; 8439 8440 retval = 0; 8441 8442 switch (protocol) { 8443 case AP_PROTO_DMA: 8444 count_out = block_count; 8445 command = ATA_READ_LOG_DMA_EXT; 8446 protocol_out = AP_PROTO_DMA; 8447 break; 8448 case AP_PROTO_PIO_IN: 8449 default: 8450 count_out = block_count; 8451 command = ATA_READ_LOG_EXT; 8452 protocol_out = AP_PROTO_PIO_IN; 8453 break; 8454 } 8455 8456 lba = (((uint64_t)page_number & 0xff00) << 32) | 8457 ((page_number & 0x00ff) << 8) | 8458 (log_address & 0xff); 8459 8460 protocol_out |= AP_EXTEND; 8461 8462 retval = scsi_ata_pass(csio, 8463 retries, 8464 cbfcnp, 8465 /*flags*/CAM_DIR_IN, 8466 tag_action, 8467 /*protocol*/ protocol_out, 8468 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT | 8469 AP_FLAG_BYT_BLOK_BLOCKS | 8470 AP_FLAG_TDIR_FROM_DEV, 8471 /*feature*/ 0, 8472 /*sector_count*/ count_out, 8473 /*lba*/ lba, 8474 /*command*/ command, 8475 /*device*/ 0, 8476 /*icc*/ 0, 8477 /*auxiliary*/ 0, 8478 /*control*/0, 8479 data_ptr, 8480 dxfer_len, 8481 /*cdb_storage*/ NULL, 8482 /*cdb_storage_len*/ 0, 8483 /*minimum_cmd_size*/ 0, 8484 sense_len, 8485 timeout); 8486 8487 return (retval); 8488 } 8489 8490 int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries, 8491 void (*cbfcnp)(struct cam_periph *, union ccb *), 8492 uint8_t tag_action, uint8_t feature, 8493 uint64_t lba, uint32_t count, 8494 uint8_t sense_len, uint32_t timeout) 8495 { 8496 return (scsi_ata_pass(csio, 8497 retries, 8498 cbfcnp, 8499 /*flags*/CAM_DIR_NONE, 8500 tag_action, 8501 /*protocol*/AP_PROTO_PIO_IN, 8502 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8503 AP_FLAG_BYT_BLOK_BYTES | 8504 AP_FLAG_TLEN_SECT_CNT, 8505 /*features*/feature, 8506 /*sector_count*/count, 8507 /*lba*/lba, 8508 /*command*/ATA_SETFEATURES, 8509 /*device*/ 0, 8510 /*icc*/ 0, 8511 /*auxiliary*/0, 8512 /*control*/0, 8513 /*data_ptr*/NULL, 8514 /*dxfer_len*/0, 8515 /*cdb_storage*/NULL, 8516 /*cdb_storage_len*/0, 8517 /*minimum_cmd_size*/0, 8518 sense_len, 8519 timeout)); 8520 } 8521 8522 /* 8523 * Note! This is an unusual CDB building function because it can return 8524 * an error in the event that the command in question requires a variable 8525 * length CDB, but the caller has not given storage space for one or has not 8526 * given enough storage space. If there is enough space available in the 8527 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage. 8528 */ 8529 int 8530 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries, 8531 void (*cbfcnp)(struct cam_periph *, union ccb *), 8532 uint32_t flags, uint8_t tag_action, 8533 uint8_t protocol, uint8_t ata_flags, uint16_t features, 8534 uint16_t sector_count, uint64_t lba, uint8_t command, 8535 uint8_t device, uint8_t icc, uint32_t auxiliary, 8536 uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len, 8537 uint8_t *cdb_storage, size_t cdb_storage_len, 8538 int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) 8539 { 8540 uint32_t cam_flags; 8541 uint8_t *cdb_ptr; 8542 int cmd_size; 8543 int retval; 8544 uint8_t cdb_len; 8545 8546 retval = 0; 8547 cam_flags = flags; 8548 8549 /* 8550 * Round the user's request to the nearest command size that is at 8551 * least as big as what he requested. 8552 */ 8553 if (minimum_cmd_size <= 12) 8554 cmd_size = 12; 8555 else if (minimum_cmd_size > 16) 8556 cmd_size = 32; 8557 else 8558 cmd_size = 16; 8559 8560 /* 8561 * If we have parameters that require a 48-bit ATA command, we have to 8562 * use the 16 byte ATA PASS-THROUGH command at least. 8563 */ 8564 if (((lba > ATA_MAX_28BIT_LBA) 8565 || (sector_count > 255) 8566 || (features > 255) 8567 || (protocol & AP_EXTEND)) 8568 && ((cmd_size < 16) 8569 || ((protocol & AP_EXTEND) == 0))) { 8570 if (cmd_size < 16) 8571 cmd_size = 16; 8572 protocol |= AP_EXTEND; 8573 } 8574 8575 /* 8576 * The icc and auxiliary ATA registers are only supported in the 8577 * 32-byte version of the ATA PASS-THROUGH command. 8578 */ 8579 if ((icc != 0) 8580 || (auxiliary != 0)) { 8581 cmd_size = 32; 8582 protocol |= AP_EXTEND; 8583 } 8584 8585 if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes)) 8586 && ((cdb_storage == NULL) 8587 || (cdb_storage_len < cmd_size))) { 8588 retval = 1; 8589 goto bailout; 8590 } 8591 8592 /* 8593 * At this point we know we have enough space to store the command 8594 * in one place or another. We prefer the built-in array, but used 8595 * the passed in storage if necessary. 8596 */ 8597 if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes)) 8598 cdb_ptr = csio->cdb_io.cdb_bytes; 8599 else { 8600 cdb_ptr = cdb_storage; 8601 cam_flags |= CAM_CDB_POINTER; 8602 } 8603 8604 if (cmd_size <= 12) { 8605 struct ata_pass_12 *cdb; 8606 8607 cdb = (struct ata_pass_12 *)cdb_ptr; 8608 cdb_len = sizeof(*cdb); 8609 bzero(cdb, cdb_len); 8610 8611 cdb->opcode = ATA_PASS_12; 8612 cdb->protocol = protocol; 8613 cdb->flags = ata_flags; 8614 cdb->features = features; 8615 cdb->sector_count = sector_count; 8616 cdb->lba_low = lba & 0xff; 8617 cdb->lba_mid = (lba >> 8) & 0xff; 8618 cdb->lba_high = (lba >> 16) & 0xff; 8619 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8620 cdb->command = command; 8621 cdb->control = control; 8622 } else if (cmd_size <= 16) { 8623 struct ata_pass_16 *cdb; 8624 8625 cdb = (struct ata_pass_16 *)cdb_ptr; 8626 cdb_len = sizeof(*cdb); 8627 bzero(cdb, cdb_len); 8628 8629 cdb->opcode = ATA_PASS_16; 8630 cdb->protocol = protocol; 8631 cdb->flags = ata_flags; 8632 cdb->features = features & 0xff; 8633 cdb->sector_count = sector_count & 0xff; 8634 cdb->lba_low = lba & 0xff; 8635 cdb->lba_mid = (lba >> 8) & 0xff; 8636 cdb->lba_high = (lba >> 16) & 0xff; 8637 /* 8638 * If AP_EXTEND is set, we're sending a 48-bit command. 8639 * Otherwise it's a 28-bit command. 8640 */ 8641 if (protocol & AP_EXTEND) { 8642 cdb->lba_low_ext = (lba >> 24) & 0xff; 8643 cdb->lba_mid_ext = (lba >> 32) & 0xff; 8644 cdb->lba_high_ext = (lba >> 40) & 0xff; 8645 cdb->features_ext = (features >> 8) & 0xff; 8646 cdb->sector_count_ext = (sector_count >> 8) & 0xff; 8647 cdb->device = device | ATA_DEV_LBA; 8648 } else { 8649 cdb->lba_low_ext = (lba >> 24) & 0xf; 8650 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8651 } 8652 cdb->command = command; 8653 cdb->control = control; 8654 } else { 8655 struct ata_pass_32 *cdb; 8656 uint8_t tmp_lba[8]; 8657 8658 cdb = (struct ata_pass_32 *)cdb_ptr; 8659 cdb_len = sizeof(*cdb); 8660 bzero(cdb, cdb_len); 8661 cdb->opcode = VARIABLE_LEN_CDB; 8662 cdb->control = control; 8663 cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32, 8664 service_action); 8665 scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action); 8666 cdb->protocol = protocol; 8667 cdb->flags = ata_flags; 8668 8669 if ((protocol & AP_EXTEND) == 0) { 8670 lba &= 0x0fffffff; 8671 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8672 features &= 0xff; 8673 sector_count &= 0xff; 8674 } else { 8675 cdb->device = device | ATA_DEV_LBA; 8676 } 8677 scsi_u64to8b(lba, tmp_lba); 8678 bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba)); 8679 scsi_ulto2b(features, cdb->features); 8680 scsi_ulto2b(sector_count, cdb->count); 8681 cdb->command = command; 8682 cdb->icc = icc; 8683 scsi_ulto4b(auxiliary, cdb->auxiliary); 8684 } 8685 8686 cam_fill_csio(csio, 8687 retries, 8688 cbfcnp, 8689 cam_flags, 8690 tag_action, 8691 data_ptr, 8692 dxfer_len, 8693 sense_len, 8694 cmd_size, 8695 timeout); 8696 bailout: 8697 return (retval); 8698 } 8699 8700 void 8701 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries, 8702 void (*cbfcnp)(struct cam_periph *, union ccb *), 8703 u_int32_t flags, u_int8_t tag_action, 8704 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features, 8705 u_int16_t sector_count, uint64_t lba, u_int8_t command, 8706 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len, 8707 u_int8_t sense_len, u_int32_t timeout) 8708 { 8709 struct ata_pass_16 *ata_cmd; 8710 8711 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes; 8712 ata_cmd->opcode = ATA_PASS_16; 8713 ata_cmd->protocol = protocol; 8714 ata_cmd->flags = ata_flags; 8715 ata_cmd->features_ext = features >> 8; 8716 ata_cmd->features = features; 8717 ata_cmd->sector_count_ext = sector_count >> 8; 8718 ata_cmd->sector_count = sector_count; 8719 ata_cmd->lba_low = lba; 8720 ata_cmd->lba_mid = lba >> 8; 8721 ata_cmd->lba_high = lba >> 16; 8722 ata_cmd->device = ATA_DEV_LBA; 8723 if (protocol & AP_EXTEND) { 8724 ata_cmd->lba_low_ext = lba >> 24; 8725 ata_cmd->lba_mid_ext = lba >> 32; 8726 ata_cmd->lba_high_ext = lba >> 40; 8727 } else 8728 ata_cmd->device |= (lba >> 24) & 0x0f; 8729 ata_cmd->command = command; 8730 ata_cmd->control = control; 8731 8732 cam_fill_csio(csio, 8733 retries, 8734 cbfcnp, 8735 flags, 8736 tag_action, 8737 data_ptr, 8738 dxfer_len, 8739 sense_len, 8740 sizeof(*ata_cmd), 8741 timeout); 8742 } 8743 8744 void 8745 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, 8746 void (*cbfcnp)(struct cam_periph *, union ccb *), 8747 u_int8_t tag_action, u_int8_t byte2, 8748 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8749 u_int32_t timeout) 8750 { 8751 struct scsi_unmap *scsi_cmd; 8752 8753 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; 8754 scsi_cmd->opcode = UNMAP; 8755 scsi_cmd->byte2 = byte2; 8756 scsi_ulto4b(0, scsi_cmd->reserved); 8757 scsi_cmd->group = 0; 8758 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8759 scsi_cmd->control = 0; 8760 8761 cam_fill_csio(csio, 8762 retries, 8763 cbfcnp, 8764 /*flags*/CAM_DIR_OUT, 8765 tag_action, 8766 data_ptr, 8767 dxfer_len, 8768 sense_len, 8769 sizeof(*scsi_cmd), 8770 timeout); 8771 } 8772 8773 void 8774 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, 8775 void (*cbfcnp)(struct cam_periph *, union ccb*), 8776 uint8_t tag_action, int pcv, uint8_t page_code, 8777 uint8_t *data_ptr, uint16_t allocation_length, 8778 uint8_t sense_len, uint32_t timeout) 8779 { 8780 struct scsi_receive_diag *scsi_cmd; 8781 8782 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; 8783 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8784 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; 8785 if (pcv) { 8786 scsi_cmd->byte2 |= SRD_PCV; 8787 scsi_cmd->page_code = page_code; 8788 } 8789 scsi_ulto2b(allocation_length, scsi_cmd->length); 8790 8791 cam_fill_csio(csio, 8792 retries, 8793 cbfcnp, 8794 /*flags*/CAM_DIR_IN, 8795 tag_action, 8796 data_ptr, 8797 allocation_length, 8798 sense_len, 8799 sizeof(*scsi_cmd), 8800 timeout); 8801 } 8802 8803 void 8804 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, 8805 void (*cbfcnp)(struct cam_periph *, union ccb *), 8806 uint8_t tag_action, int unit_offline, int device_offline, 8807 int self_test, int page_format, int self_test_code, 8808 uint8_t *data_ptr, uint16_t param_list_length, 8809 uint8_t sense_len, uint32_t timeout) 8810 { 8811 struct scsi_send_diag *scsi_cmd; 8812 8813 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; 8814 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8815 scsi_cmd->opcode = SEND_DIAGNOSTIC; 8816 8817 /* 8818 * The default self-test mode control and specific test 8819 * control are mutually exclusive. 8820 */ 8821 if (self_test) 8822 self_test_code = SSD_SELF_TEST_CODE_NONE; 8823 8824 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) 8825 & SSD_SELF_TEST_CODE_MASK) 8826 | (unit_offline ? SSD_UNITOFFL : 0) 8827 | (device_offline ? SSD_DEVOFFL : 0) 8828 | (self_test ? SSD_SELFTEST : 0) 8829 | (page_format ? SSD_PF : 0); 8830 scsi_ulto2b(param_list_length, scsi_cmd->length); 8831 8832 cam_fill_csio(csio, 8833 retries, 8834 cbfcnp, 8835 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8836 tag_action, 8837 data_ptr, 8838 param_list_length, 8839 sense_len, 8840 sizeof(*scsi_cmd), 8841 timeout); 8842 } 8843 8844 void 8845 scsi_get_physical_element_status(struct ccb_scsiio *csio, u_int32_t retries, 8846 void (*cbfcnp)(struct cam_periph *, union ccb *), 8847 uint8_t tag_action, uint8_t *data_ptr, 8848 uint16_t allocation_length, uint8_t report_type, 8849 uint32_t starting_element, 8850 uint8_t sense_len, uint32_t timeout) 8851 { 8852 struct scsi_get_physical_element_status *scsi_cmd; 8853 8854 scsi_cmd = (struct scsi_get_physical_element_status *)&csio->cdb_io.cdb_bytes; 8855 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8856 scsi_cmd->opcode = SERVICE_ACTION_IN; 8857 scsi_cmd->service_action = GET_PHYSICAL_ELEMENT_STATUS; 8858 scsi_ulto4b(starting_element, scsi_cmd->starting_element); 8859 scsi_ulto4b(allocation_length, scsi_cmd->allocation_length); 8860 8861 cam_fill_csio(csio, 8862 retries, 8863 cbfcnp, 8864 /*flags*/ CAM_DIR_IN, 8865 tag_action, 8866 data_ptr, 8867 allocation_length, 8868 sense_len, 8869 sizeof(*scsi_cmd), 8870 timeout); 8871 } 8872 8873 void 8874 scsi_remove_element_and_truncate(struct ccb_scsiio *csio, u_int32_t retries, 8875 void (*cbfcnp)(struct cam_periph *, union ccb *), 8876 uint8_t tag_action, 8877 uint64_t requested_capacity, uint32_t element_id, 8878 uint8_t sense_len, uint32_t timeout) 8879 { 8880 struct scsi_remove_element_and_truncate *scsi_cmd; 8881 8882 scsi_cmd = (struct scsi_remove_element_and_truncate *)&csio->cdb_io.cdb_bytes; 8883 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8884 scsi_cmd->opcode = SERVICE_ACTION_IN; 8885 scsi_cmd->service_action = REMOVE_ELEMENT_AND_TRUNCATE; 8886 scsi_u64to8b(requested_capacity, scsi_cmd->requested_capacity); 8887 scsi_ulto4b(element_id, scsi_cmd->element_identifier); 8888 8889 cam_fill_csio(csio, 8890 retries, 8891 cbfcnp, 8892 /*flags*/ CAM_DIR_OUT, 8893 tag_action, 8894 NULL, 8895 0, 8896 sense_len, 8897 sizeof(*scsi_cmd), 8898 timeout); 8899 } 8900 8901 void 8902 scsi_restore_elements_and_rebuild(struct ccb_scsiio *csio, u_int32_t retries, 8903 void (*cbfcnp)(struct cam_periph *, union ccb *), 8904 uint8_t tag_action, 8905 uint8_t sense_len, uint32_t timeout) 8906 { 8907 struct scsi_service_action_in *scsi_cmd; 8908 8909 scsi_cmd = (struct scsi_service_action_in *)&csio->cdb_io.cdb_bytes; 8910 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8911 scsi_cmd->opcode = SERVICE_ACTION_IN; 8912 scsi_cmd->service_action = RESTORE_ELEMENTS_AND_REBUILD; 8913 8914 cam_fill_csio(csio, 8915 retries, 8916 cbfcnp, 8917 /*flags*/ CAM_DIR_OUT, 8918 tag_action, 8919 NULL, 8920 0, 8921 sense_len, 8922 sizeof(*scsi_cmd), 8923 timeout); 8924 } 8925 8926 void 8927 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8928 void (*cbfcnp)(struct cam_periph *, union ccb*), 8929 uint8_t tag_action, int mode, 8930 uint8_t buffer_id, u_int32_t offset, 8931 uint8_t *data_ptr, uint32_t allocation_length, 8932 uint8_t sense_len, uint32_t timeout) 8933 { 8934 struct scsi_read_buffer *scsi_cmd; 8935 8936 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes; 8937 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8938 scsi_cmd->opcode = READ_BUFFER; 8939 scsi_cmd->byte2 = mode; 8940 scsi_cmd->buffer_id = buffer_id; 8941 scsi_ulto3b(offset, scsi_cmd->offset); 8942 scsi_ulto3b(allocation_length, scsi_cmd->length); 8943 8944 cam_fill_csio(csio, 8945 retries, 8946 cbfcnp, 8947 /*flags*/CAM_DIR_IN, 8948 tag_action, 8949 data_ptr, 8950 allocation_length, 8951 sense_len, 8952 sizeof(*scsi_cmd), 8953 timeout); 8954 } 8955 8956 void 8957 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8958 void (*cbfcnp)(struct cam_periph *, union ccb *), 8959 uint8_t tag_action, int mode, 8960 uint8_t buffer_id, u_int32_t offset, 8961 uint8_t *data_ptr, uint32_t param_list_length, 8962 uint8_t sense_len, uint32_t timeout) 8963 { 8964 struct scsi_write_buffer *scsi_cmd; 8965 8966 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes; 8967 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8968 scsi_cmd->opcode = WRITE_BUFFER; 8969 scsi_cmd->byte2 = mode; 8970 scsi_cmd->buffer_id = buffer_id; 8971 scsi_ulto3b(offset, scsi_cmd->offset); 8972 scsi_ulto3b(param_list_length, scsi_cmd->length); 8973 8974 cam_fill_csio(csio, 8975 retries, 8976 cbfcnp, 8977 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8978 tag_action, 8979 data_ptr, 8980 param_list_length, 8981 sense_len, 8982 sizeof(*scsi_cmd), 8983 timeout); 8984 } 8985 8986 void 8987 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, 8988 void (*cbfcnp)(struct cam_periph *, union ccb *), 8989 u_int8_t tag_action, int start, int load_eject, 8990 int immediate, u_int8_t sense_len, u_int32_t timeout) 8991 { 8992 struct scsi_start_stop_unit *scsi_cmd; 8993 int extra_flags = 0; 8994 8995 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; 8996 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8997 scsi_cmd->opcode = START_STOP_UNIT; 8998 if (start != 0) { 8999 scsi_cmd->how |= SSS_START; 9000 /* it takes a lot of power to start a drive */ 9001 extra_flags |= CAM_HIGH_POWER; 9002 } 9003 if (load_eject != 0) 9004 scsi_cmd->how |= SSS_LOEJ; 9005 if (immediate != 0) 9006 scsi_cmd->byte2 |= SSS_IMMED; 9007 9008 cam_fill_csio(csio, 9009 retries, 9010 cbfcnp, 9011 /*flags*/CAM_DIR_NONE | extra_flags, 9012 tag_action, 9013 /*data_ptr*/NULL, 9014 /*dxfer_len*/0, 9015 sense_len, 9016 sizeof(*scsi_cmd), 9017 timeout); 9018 } 9019 9020 void 9021 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries, 9022 void (*cbfcnp)(struct cam_periph *, union ccb *), 9023 u_int8_t tag_action, u_int8_t service_action, 9024 uint32_t element, u_int8_t elem_type, int logical_volume, 9025 int partition, u_int32_t first_attribute, int cache, 9026 u_int8_t *data_ptr, u_int32_t length, int sense_len, 9027 u_int32_t timeout) 9028 { 9029 struct scsi_read_attribute *scsi_cmd; 9030 9031 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes; 9032 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9033 9034 scsi_cmd->opcode = READ_ATTRIBUTE; 9035 scsi_cmd->service_action = service_action; 9036 scsi_ulto2b(element, scsi_cmd->element); 9037 scsi_cmd->elem_type = elem_type; 9038 scsi_cmd->logical_volume = logical_volume; 9039 scsi_cmd->partition = partition; 9040 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute); 9041 scsi_ulto4b(length, scsi_cmd->length); 9042 if (cache != 0) 9043 scsi_cmd->cache |= SRA_CACHE; 9044 9045 cam_fill_csio(csio, 9046 retries, 9047 cbfcnp, 9048 /*flags*/CAM_DIR_IN, 9049 tag_action, 9050 /*data_ptr*/data_ptr, 9051 /*dxfer_len*/length, 9052 sense_len, 9053 sizeof(*scsi_cmd), 9054 timeout); 9055 } 9056 9057 void 9058 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries, 9059 void (*cbfcnp)(struct cam_periph *, union ccb *), 9060 u_int8_t tag_action, uint32_t element, int logical_volume, 9061 int partition, int wtc, u_int8_t *data_ptr, 9062 u_int32_t length, int sense_len, u_int32_t timeout) 9063 { 9064 struct scsi_write_attribute *scsi_cmd; 9065 9066 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes; 9067 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9068 9069 scsi_cmd->opcode = WRITE_ATTRIBUTE; 9070 if (wtc != 0) 9071 scsi_cmd->byte2 = SWA_WTC; 9072 scsi_ulto3b(element, scsi_cmd->element); 9073 scsi_cmd->logical_volume = logical_volume; 9074 scsi_cmd->partition = partition; 9075 scsi_ulto4b(length, scsi_cmd->length); 9076 9077 cam_fill_csio(csio, 9078 retries, 9079 cbfcnp, 9080 /*flags*/CAM_DIR_OUT, 9081 tag_action, 9082 /*data_ptr*/data_ptr, 9083 /*dxfer_len*/length, 9084 sense_len, 9085 sizeof(*scsi_cmd), 9086 timeout); 9087 } 9088 9089 void 9090 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, 9091 void (*cbfcnp)(struct cam_periph *, union ccb *), 9092 uint8_t tag_action, int service_action, 9093 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9094 int timeout) 9095 { 9096 struct scsi_per_res_in *scsi_cmd; 9097 9098 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes; 9099 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9100 9101 scsi_cmd->opcode = PERSISTENT_RES_IN; 9102 scsi_cmd->action = service_action; 9103 scsi_ulto2b(dxfer_len, scsi_cmd->length); 9104 9105 cam_fill_csio(csio, 9106 retries, 9107 cbfcnp, 9108 /*flags*/CAM_DIR_IN, 9109 tag_action, 9110 data_ptr, 9111 dxfer_len, 9112 sense_len, 9113 sizeof(*scsi_cmd), 9114 timeout); 9115 } 9116 9117 void 9118 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, 9119 void (*cbfcnp)(struct cam_periph *, union ccb *), 9120 uint8_t tag_action, int service_action, 9121 int scope, int res_type, uint8_t *data_ptr, 9122 uint32_t dxfer_len, int sense_len, int timeout) 9123 { 9124 struct scsi_per_res_out *scsi_cmd; 9125 9126 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes; 9127 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9128 9129 scsi_cmd->opcode = PERSISTENT_RES_OUT; 9130 scsi_cmd->action = service_action; 9131 scsi_cmd->scope_type = scope | res_type; 9132 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9133 9134 cam_fill_csio(csio, 9135 retries, 9136 cbfcnp, 9137 /*flags*/CAM_DIR_OUT, 9138 tag_action, 9139 /*data_ptr*/data_ptr, 9140 /*dxfer_len*/dxfer_len, 9141 sense_len, 9142 sizeof(*scsi_cmd), 9143 timeout); 9144 } 9145 9146 void 9147 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, 9148 void (*cbfcnp)(struct cam_periph *, union ccb *), 9149 uint8_t tag_action, uint32_t security_protocol, 9150 uint32_t security_protocol_specific, int byte4, 9151 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9152 int timeout) 9153 { 9154 struct scsi_security_protocol_in *scsi_cmd; 9155 9156 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes; 9157 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9158 9159 scsi_cmd->opcode = SECURITY_PROTOCOL_IN; 9160 9161 scsi_cmd->security_protocol = security_protocol; 9162 scsi_ulto2b(security_protocol_specific, 9163 scsi_cmd->security_protocol_specific); 9164 scsi_cmd->byte4 = byte4; 9165 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9166 9167 cam_fill_csio(csio, 9168 retries, 9169 cbfcnp, 9170 /*flags*/CAM_DIR_IN, 9171 tag_action, 9172 data_ptr, 9173 dxfer_len, 9174 sense_len, 9175 sizeof(*scsi_cmd), 9176 timeout); 9177 } 9178 9179 void 9180 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, 9181 void (*cbfcnp)(struct cam_periph *, union ccb *), 9182 uint8_t tag_action, uint32_t security_protocol, 9183 uint32_t security_protocol_specific, int byte4, 9184 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9185 int timeout) 9186 { 9187 struct scsi_security_protocol_out *scsi_cmd; 9188 9189 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes; 9190 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9191 9192 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT; 9193 9194 scsi_cmd->security_protocol = security_protocol; 9195 scsi_ulto2b(security_protocol_specific, 9196 scsi_cmd->security_protocol_specific); 9197 scsi_cmd->byte4 = byte4; 9198 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9199 9200 cam_fill_csio(csio, 9201 retries, 9202 cbfcnp, 9203 /*flags*/CAM_DIR_OUT, 9204 tag_action, 9205 data_ptr, 9206 dxfer_len, 9207 sense_len, 9208 sizeof(*scsi_cmd), 9209 timeout); 9210 } 9211 9212 void 9213 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, 9214 void (*cbfcnp)(struct cam_periph *, union ccb *), 9215 uint8_t tag_action, int options, int req_opcode, 9216 int req_service_action, uint8_t *data_ptr, 9217 uint32_t dxfer_len, int sense_len, int timeout) 9218 { 9219 struct scsi_report_supported_opcodes *scsi_cmd; 9220 9221 scsi_cmd = (struct scsi_report_supported_opcodes *) 9222 &csio->cdb_io.cdb_bytes; 9223 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9224 9225 scsi_cmd->opcode = MAINTENANCE_IN; 9226 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES; 9227 scsi_cmd->options = options; 9228 scsi_cmd->requested_opcode = req_opcode; 9229 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action); 9230 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9231 9232 cam_fill_csio(csio, 9233 retries, 9234 cbfcnp, 9235 /*flags*/CAM_DIR_IN, 9236 tag_action, 9237 data_ptr, 9238 dxfer_len, 9239 sense_len, 9240 sizeof(*scsi_cmd), 9241 timeout); 9242 } 9243 9244 /* 9245 * Try make as good a match as possible with 9246 * available sub drivers 9247 */ 9248 int 9249 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9250 { 9251 struct scsi_inquiry_pattern *entry; 9252 struct scsi_inquiry_data *inq; 9253 9254 entry = (struct scsi_inquiry_pattern *)table_entry; 9255 inq = (struct scsi_inquiry_data *)inqbuffer; 9256 9257 if (((SID_TYPE(inq) == entry->type) 9258 || (entry->type == T_ANY)) 9259 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9260 : entry->media_type & SIP_MEDIA_FIXED) 9261 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9262 && (cam_strmatch(inq->product, entry->product, 9263 sizeof(inq->product)) == 0) 9264 && (cam_strmatch(inq->revision, entry->revision, 9265 sizeof(inq->revision)) == 0)) { 9266 return (0); 9267 } 9268 return (-1); 9269 } 9270 9271 /* 9272 * Try make as good a match as possible with 9273 * available sub drivers 9274 */ 9275 int 9276 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9277 { 9278 struct scsi_static_inquiry_pattern *entry; 9279 struct scsi_inquiry_data *inq; 9280 9281 entry = (struct scsi_static_inquiry_pattern *)table_entry; 9282 inq = (struct scsi_inquiry_data *)inqbuffer; 9283 9284 if (((SID_TYPE(inq) == entry->type) 9285 || (entry->type == T_ANY)) 9286 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9287 : entry->media_type & SIP_MEDIA_FIXED) 9288 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9289 && (cam_strmatch(inq->product, entry->product, 9290 sizeof(inq->product)) == 0) 9291 && (cam_strmatch(inq->revision, entry->revision, 9292 sizeof(inq->revision)) == 0)) { 9293 return (0); 9294 } 9295 return (-1); 9296 } 9297 9298 /** 9299 * Compare two buffers of vpd device descriptors for a match. 9300 * 9301 * \param lhs Pointer to first buffer of descriptors to compare. 9302 * \param lhs_len The length of the first buffer. 9303 * \param rhs Pointer to second buffer of descriptors to compare. 9304 * \param rhs_len The length of the second buffer. 9305 * 9306 * \return 0 on a match, -1 otherwise. 9307 * 9308 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching 9309 * against each element in rhs until all data are exhausted or we have found 9310 * a match. 9311 */ 9312 int 9313 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) 9314 { 9315 struct scsi_vpd_id_descriptor *lhs_id; 9316 struct scsi_vpd_id_descriptor *lhs_last; 9317 struct scsi_vpd_id_descriptor *rhs_last; 9318 uint8_t *lhs_end; 9319 uint8_t *rhs_end; 9320 9321 lhs_end = lhs + lhs_len; 9322 rhs_end = rhs + rhs_len; 9323 9324 /* 9325 * rhs_last and lhs_last are the last possible position of a valid 9326 * descriptor assuming it had a zero length identifier. We use 9327 * these variables to insure we can safely dereference the length 9328 * field in our loop termination tests. 9329 */ 9330 lhs_last = (struct scsi_vpd_id_descriptor *) 9331 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9332 rhs_last = (struct scsi_vpd_id_descriptor *) 9333 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9334 9335 lhs_id = (struct scsi_vpd_id_descriptor *)lhs; 9336 while (lhs_id <= lhs_last 9337 && (lhs_id->identifier + lhs_id->length) <= lhs_end) { 9338 struct scsi_vpd_id_descriptor *rhs_id; 9339 9340 rhs_id = (struct scsi_vpd_id_descriptor *)rhs; 9341 while (rhs_id <= rhs_last 9342 && (rhs_id->identifier + rhs_id->length) <= rhs_end) { 9343 if ((rhs_id->id_type & 9344 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) == 9345 (lhs_id->id_type & 9346 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) 9347 && rhs_id->length == lhs_id->length 9348 && memcmp(rhs_id->identifier, lhs_id->identifier, 9349 rhs_id->length) == 0) 9350 return (0); 9351 9352 rhs_id = (struct scsi_vpd_id_descriptor *) 9353 (rhs_id->identifier + rhs_id->length); 9354 } 9355 lhs_id = (struct scsi_vpd_id_descriptor *) 9356 (lhs_id->identifier + lhs_id->length); 9357 } 9358 return (-1); 9359 } 9360 9361 #ifdef _KERNEL 9362 int 9363 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id) 9364 { 9365 struct cam_ed *device; 9366 struct scsi_vpd_supported_pages *vpds; 9367 int i, num_pages; 9368 9369 device = periph->path->device; 9370 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; 9371 9372 if (vpds != NULL) { 9373 num_pages = device->supported_vpds_len - 9374 SVPD_SUPPORTED_PAGES_HDR_LEN; 9375 for (i = 0; i < num_pages; i++) { 9376 if (vpds->page_list[i] == page_id) 9377 return (1); 9378 } 9379 } 9380 9381 return (0); 9382 } 9383 9384 static void 9385 init_scsi_delay(void) 9386 { 9387 int delay; 9388 9389 delay = SCSI_DELAY; 9390 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); 9391 9392 if (set_scsi_delay(delay) != 0) { 9393 printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); 9394 set_scsi_delay(SCSI_DELAY); 9395 } 9396 } 9397 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); 9398 9399 static int 9400 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) 9401 { 9402 int error, delay; 9403 9404 delay = scsi_delay; 9405 error = sysctl_handle_int(oidp, &delay, 0, req); 9406 if (error != 0 || req->newptr == NULL) 9407 return (error); 9408 return (set_scsi_delay(delay)); 9409 } 9410 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, 9411 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_scsi_delay, "I", 9412 "Delay to allow devices to settle after a SCSI bus reset (ms)"); 9413 9414 static int 9415 set_scsi_delay(int delay) 9416 { 9417 /* 9418 * If someone sets this to 0, we assume that they want the 9419 * minimum allowable bus settle delay. 9420 */ 9421 if (delay == 0) { 9422 printf("cam: using minimum scsi_delay (%dms)\n", 9423 SCSI_MIN_DELAY); 9424 delay = SCSI_MIN_DELAY; 9425 } 9426 if (delay < SCSI_MIN_DELAY) 9427 return (EINVAL); 9428 scsi_delay = delay; 9429 return (0); 9430 } 9431 #endif /* _KERNEL */ 9432