1 /*- 2 * Implementation of Utility functions for all SCSI device types. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/stdint.h> 36 37 #ifdef _KERNEL 38 #include <opt_scsi.h> 39 40 #include <sys/systm.h> 41 #include <sys/libkern.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mutex.h> 46 #include <sys/sysctl.h> 47 #include <sys/ctype.h> 48 #else 49 #include <errno.h> 50 #include <stdio.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <ctype.h> 54 #endif 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_queue.h> 59 #include <cam/cam_xpt.h> 60 #include <cam/scsi/scsi_all.h> 61 #include <sys/ata.h> 62 #include <sys/sbuf.h> 63 64 #ifdef _KERNEL 65 #include <cam/cam_periph.h> 66 #include <cam/cam_xpt_sim.h> 67 #include <cam/cam_xpt_periph.h> 68 #include <cam/cam_xpt_internal.h> 69 #else 70 #include <camlib.h> 71 #include <stddef.h> 72 73 #ifndef FALSE 74 #define FALSE 0 75 #endif /* FALSE */ 76 #ifndef TRUE 77 #define TRUE 1 78 #endif /* TRUE */ 79 #define ERESTART -1 /* restart syscall */ 80 #define EJUSTRETURN -2 /* don't modify regs, just return */ 81 #endif /* !_KERNEL */ 82 83 /* 84 * This is the default number of milliseconds we wait for devices to settle 85 * after a SCSI bus reset. 86 */ 87 #ifndef SCSI_DELAY 88 #define SCSI_DELAY 2000 89 #endif 90 /* 91 * All devices need _some_ sort of bus settle delay, so we'll set it to 92 * a minimum value of 100ms. Note that this is pertinent only for SPI- 93 * not transport like Fibre Channel or iSCSI where 'delay' is completely 94 * meaningless. 95 */ 96 #ifndef SCSI_MIN_DELAY 97 #define SCSI_MIN_DELAY 100 98 #endif 99 /* 100 * Make sure the user isn't using seconds instead of milliseconds. 101 */ 102 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) 103 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" 104 #endif 105 106 int scsi_delay; 107 108 static int ascentrycomp(const void *key, const void *member); 109 static int senseentrycomp(const void *key, const void *member); 110 static void fetchtableentries(int sense_key, int asc, int ascq, 111 struct scsi_inquiry_data *, 112 const struct sense_key_table_entry **, 113 const struct asc_table_entry **); 114 115 #ifdef _KERNEL 116 static void init_scsi_delay(void); 117 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); 118 static int set_scsi_delay(int delay); 119 #endif 120 121 #if !defined(SCSI_NO_OP_STRINGS) 122 123 #define D (1 << T_DIRECT) 124 #define T (1 << T_SEQUENTIAL) 125 #define L (1 << T_PRINTER) 126 #define P (1 << T_PROCESSOR) 127 #define W (1 << T_WORM) 128 #define R (1 << T_CDROM) 129 #define O (1 << T_OPTICAL) 130 #define M (1 << T_CHANGER) 131 #define A (1 << T_STORARRAY) 132 #define E (1 << T_ENCLOSURE) 133 #define B (1 << T_RBC) 134 #define K (1 << T_OCRW) 135 #define V (1 << T_ADC) 136 #define F (1 << T_OSD) 137 #define S (1 << T_SCANNER) 138 #define C (1 << T_COMM) 139 140 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) 141 142 static struct op_table_entry plextor_cd_ops[] = { 143 { 0xD8, R, "CD-DA READ" } 144 }; 145 146 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { 147 { 148 /* 149 * I believe that 0xD8 is the Plextor proprietary command 150 * to read CD-DA data. I'm not sure which Plextor CDROM 151 * models support the command, though. I know for sure 152 * that the 4X, 8X, and 12X models do, and presumably the 153 * 12-20X does. I don't know about any earlier models, 154 * though. If anyone has any more complete information, 155 * feel free to change this quirk entry. 156 */ 157 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, 158 nitems(plextor_cd_ops), 159 plextor_cd_ops 160 } 161 }; 162 163 static struct op_table_entry scsi_op_codes[] = { 164 /* 165 * From: http://www.t10.org/lists/op-num.txt 166 * Modifications by Kenneth Merry (ken@FreeBSD.ORG) 167 * and Jung-uk Kim (jkim@FreeBSD.org) 168 * 169 * Note: order is important in this table, scsi_op_desc() currently 170 * depends on the opcodes in the table being in order to save 171 * search time. 172 * Note: scanner and comm. devices are carried over from the previous 173 * version because they were removed in the latest spec. 174 */ 175 /* File: OP-NUM.TXT 176 * 177 * SCSI Operation Codes 178 * Numeric Sorted Listing 179 * as of 5/26/15 180 * 181 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 182 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- 183 * . L - PRINTER DEVICE (SSC) M = Mandatory 184 * . P - PROCESSOR DEVICE (SPC) O = Optional 185 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. 186 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete 187 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 188 * . . .M - MEDIA CHANGER DEVICE (SMC-2) 189 * . . . A - STORAGE ARRAY DEVICE (SCC-2) 190 * . . . .E - ENCLOSURE SERVICES DEVICE (SES) 191 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 192 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 193 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 194 * . . . . .F - OBJECT-BASED STORAGE (OSD) 195 * OP DTLPWROMAEBKVF Description 196 * -- -------------- ---------------------------------------------- */ 197 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ 198 { 0x00, ALL, "TEST UNIT READY" }, 199 /* 01 M REWIND */ 200 { 0x01, T, "REWIND" }, 201 /* 01 Z V ZZZZ REZERO UNIT */ 202 { 0x01, D | W | R | O | M, "REZERO UNIT" }, 203 /* 02 VVVVVV V */ 204 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ 205 { 0x03, ALL, "REQUEST SENSE" }, 206 /* 04 M OO FORMAT UNIT */ 207 { 0x04, D | R | O, "FORMAT UNIT" }, 208 /* 04 O FORMAT MEDIUM */ 209 { 0x04, T, "FORMAT MEDIUM" }, 210 /* 04 O FORMAT */ 211 { 0x04, L, "FORMAT" }, 212 /* 05 VMVVVV V READ BLOCK LIMITS */ 213 { 0x05, T, "READ BLOCK LIMITS" }, 214 /* 06 VVVVVV V */ 215 /* 07 OVV O OV REASSIGN BLOCKS */ 216 { 0x07, D | W | O, "REASSIGN BLOCKS" }, 217 /* 07 O INITIALIZE ELEMENT STATUS */ 218 { 0x07, M, "INITIALIZE ELEMENT STATUS" }, 219 /* 08 MOV O OV READ(6) */ 220 { 0x08, D | T | W | O, "READ(6)" }, 221 /* 08 O RECEIVE */ 222 { 0x08, P, "RECEIVE" }, 223 /* 08 GET MESSAGE(6) */ 224 { 0x08, C, "GET MESSAGE(6)" }, 225 /* 09 VVVVVV V */ 226 /* 0A OO O OV WRITE(6) */ 227 { 0x0A, D | T | W | O, "WRITE(6)" }, 228 /* 0A M SEND(6) */ 229 { 0x0A, P, "SEND(6)" }, 230 /* 0A SEND MESSAGE(6) */ 231 { 0x0A, C, "SEND MESSAGE(6)" }, 232 /* 0A M PRINT */ 233 { 0x0A, L, "PRINT" }, 234 /* 0B Z ZOZV SEEK(6) */ 235 { 0x0B, D | W | R | O, "SEEK(6)" }, 236 /* 0B O SET CAPACITY */ 237 { 0x0B, T, "SET CAPACITY" }, 238 /* 0B O SLEW AND PRINT */ 239 { 0x0B, L, "SLEW AND PRINT" }, 240 /* 0C VVVVVV V */ 241 /* 0D VVVVVV V */ 242 /* 0E VVVVVV V */ 243 /* 0F VOVVVV V READ REVERSE(6) */ 244 { 0x0F, T, "READ REVERSE(6)" }, 245 /* 10 VM VVV WRITE FILEMARKS(6) */ 246 { 0x10, T, "WRITE FILEMARKS(6)" }, 247 /* 10 O SYNCHRONIZE BUFFER */ 248 { 0x10, L, "SYNCHRONIZE BUFFER" }, 249 /* 11 VMVVVV SPACE(6) */ 250 { 0x11, T, "SPACE(6)" }, 251 /* 12 MMMMMMMMMMMMMM INQUIRY */ 252 { 0x12, ALL, "INQUIRY" }, 253 /* 13 V VVVV */ 254 /* 13 O VERIFY(6) */ 255 { 0x13, T, "VERIFY(6)" }, 256 /* 14 VOOVVV RECOVER BUFFERED DATA */ 257 { 0x14, T | L, "RECOVER BUFFERED DATA" }, 258 /* 15 OMO O OOOO OO MODE SELECT(6) */ 259 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, 260 /* 16 ZZMZO OOOZ O RESERVE(6) */ 261 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, 262 /* 16 Z RESERVE ELEMENT(6) */ 263 { 0x16, M, "RESERVE ELEMENT(6)" }, 264 /* 17 ZZMZO OOOZ O RELEASE(6) */ 265 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, 266 /* 17 Z RELEASE ELEMENT(6) */ 267 { 0x17, M, "RELEASE ELEMENT(6)" }, 268 /* 18 ZZZZOZO Z COPY */ 269 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, 270 /* 19 VMVVVV ERASE(6) */ 271 { 0x19, T, "ERASE(6)" }, 272 /* 1A OMO O OOOO OO MODE SENSE(6) */ 273 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, 274 /* 1B O OOO O MO O START STOP UNIT */ 275 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, 276 /* 1B O M LOAD UNLOAD */ 277 { 0x1B, T | V, "LOAD UNLOAD" }, 278 /* 1B SCAN */ 279 { 0x1B, S, "SCAN" }, 280 /* 1B O STOP PRINT */ 281 { 0x1B, L, "STOP PRINT" }, 282 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ 283 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, 284 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ 285 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, 286 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ 287 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, 288 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ 289 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, 290 /* 1F */ 291 /* 20 V VVV V */ 292 /* 21 V VVV V */ 293 /* 22 V VVV V */ 294 /* 23 V V V V */ 295 /* 23 O READ FORMAT CAPACITIES */ 296 { 0x23, R, "READ FORMAT CAPACITIES" }, 297 /* 24 V VV SET WINDOW */ 298 { 0x24, S, "SET WINDOW" }, 299 /* 25 M M M M READ CAPACITY(10) */ 300 { 0x25, D | W | O | B, "READ CAPACITY(10)" }, 301 /* 25 O READ CAPACITY */ 302 { 0x25, R, "READ CAPACITY" }, 303 /* 25 M READ CARD CAPACITY */ 304 { 0x25, K, "READ CARD CAPACITY" }, 305 /* 25 GET WINDOW */ 306 { 0x25, S, "GET WINDOW" }, 307 /* 26 V VV */ 308 /* 27 V VV */ 309 /* 28 M MOM MM READ(10) */ 310 { 0x28, D | W | R | O | B | K | S, "READ(10)" }, 311 /* 28 GET MESSAGE(10) */ 312 { 0x28, C, "GET MESSAGE(10)" }, 313 /* 29 V VVO READ GENERATION */ 314 { 0x29, O, "READ GENERATION" }, 315 /* 2A O MOM MO WRITE(10) */ 316 { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, 317 /* 2A SEND(10) */ 318 { 0x2A, S, "SEND(10)" }, 319 /* 2A SEND MESSAGE(10) */ 320 { 0x2A, C, "SEND MESSAGE(10)" }, 321 /* 2B Z OOO O SEEK(10) */ 322 { 0x2B, D | W | R | O | K, "SEEK(10)" }, 323 /* 2B O LOCATE(10) */ 324 { 0x2B, T, "LOCATE(10)" }, 325 /* 2B O POSITION TO ELEMENT */ 326 { 0x2B, M, "POSITION TO ELEMENT" }, 327 /* 2C V OO ERASE(10) */ 328 { 0x2C, R | O, "ERASE(10)" }, 329 /* 2D O READ UPDATED BLOCK */ 330 { 0x2D, O, "READ UPDATED BLOCK" }, 331 /* 2D V */ 332 /* 2E O OOO MO WRITE AND VERIFY(10) */ 333 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, 334 /* 2F O OOO VERIFY(10) */ 335 { 0x2F, D | W | R | O, "VERIFY(10)" }, 336 /* 30 Z ZZZ SEARCH DATA HIGH(10) */ 337 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, 338 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ 339 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, 340 /* 31 OBJECT POSITION */ 341 { 0x31, S, "OBJECT POSITION" }, 342 /* 32 Z ZZZ SEARCH DATA LOW(10) */ 343 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, 344 /* 33 Z OZO SET LIMITS(10) */ 345 { 0x33, D | W | R | O, "SET LIMITS(10)" }, 346 /* 34 O O O O PRE-FETCH(10) */ 347 { 0x34, D | W | O | K, "PRE-FETCH(10)" }, 348 /* 34 M READ POSITION */ 349 { 0x34, T, "READ POSITION" }, 350 /* 34 GET DATA BUFFER STATUS */ 351 { 0x34, S, "GET DATA BUFFER STATUS" }, 352 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ 353 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, 354 /* 36 Z O O O LOCK UNLOCK CACHE(10) */ 355 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, 356 /* 37 O O READ DEFECT DATA(10) */ 357 { 0x37, D | O, "READ DEFECT DATA(10)" }, 358 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ 359 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, 360 /* 38 O O O MEDIUM SCAN */ 361 { 0x38, W | O | K, "MEDIUM SCAN" }, 362 /* 39 ZZZZOZO Z COMPARE */ 363 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, 364 /* 3A ZZZZOZO Z COPY AND VERIFY */ 365 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, 366 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ 367 { 0x3B, ALL, "WRITE BUFFER" }, 368 /* 3C OOOOOOOOOO OOO READ BUFFER */ 369 { 0x3C, ALL & ~(B), "READ BUFFER" }, 370 /* 3D O UPDATE BLOCK */ 371 { 0x3D, O, "UPDATE BLOCK" }, 372 /* 3E O O O READ LONG(10) */ 373 { 0x3E, D | W | O, "READ LONG(10)" }, 374 /* 3F O O O WRITE LONG(10) */ 375 { 0x3F, D | W | O, "WRITE LONG(10)" }, 376 /* 40 ZZZZOZOZ CHANGE DEFINITION */ 377 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, 378 /* 41 O WRITE SAME(10) */ 379 { 0x41, D, "WRITE SAME(10)" }, 380 /* 42 O UNMAP */ 381 { 0x42, D, "UNMAP" }, 382 /* 42 O READ SUB-CHANNEL */ 383 { 0x42, R, "READ SUB-CHANNEL" }, 384 /* 43 O READ TOC/PMA/ATIP */ 385 { 0x43, R, "READ TOC/PMA/ATIP" }, 386 /* 44 M M REPORT DENSITY SUPPORT */ 387 { 0x44, T | V, "REPORT DENSITY SUPPORT" }, 388 /* 44 READ HEADER */ 389 /* 45 O PLAY AUDIO(10) */ 390 { 0x45, R, "PLAY AUDIO(10)" }, 391 /* 46 M GET CONFIGURATION */ 392 { 0x46, R, "GET CONFIGURATION" }, 393 /* 47 O PLAY AUDIO MSF */ 394 { 0x47, R, "PLAY AUDIO MSF" }, 395 /* 48 */ 396 /* 49 */ 397 /* 4A M GET EVENT STATUS NOTIFICATION */ 398 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, 399 /* 4B O PAUSE/RESUME */ 400 { 0x4B, R, "PAUSE/RESUME" }, 401 /* 4C OOOOO OOOO OOO LOG SELECT */ 402 { 0x4C, ALL & ~(R | B), "LOG SELECT" }, 403 /* 4D OOOOO OOOO OMO LOG SENSE */ 404 { 0x4D, ALL & ~(R | B), "LOG SENSE" }, 405 /* 4E O STOP PLAY/SCAN */ 406 { 0x4E, R, "STOP PLAY/SCAN" }, 407 /* 4F */ 408 /* 50 O XDWRITE(10) */ 409 { 0x50, D, "XDWRITE(10)" }, 410 /* 51 O XPWRITE(10) */ 411 { 0x51, D, "XPWRITE(10)" }, 412 /* 51 O READ DISC INFORMATION */ 413 { 0x51, R, "READ DISC INFORMATION" }, 414 /* 52 O XDREAD(10) */ 415 { 0x52, D, "XDREAD(10)" }, 416 /* 52 O READ TRACK INFORMATION */ 417 { 0x52, R, "READ TRACK INFORMATION" }, 418 /* 53 O RESERVE TRACK */ 419 { 0x53, R, "RESERVE TRACK" }, 420 /* 54 O SEND OPC INFORMATION */ 421 { 0x54, R, "SEND OPC INFORMATION" }, 422 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ 423 { 0x55, ALL & ~(P), "MODE SELECT(10)" }, 424 /* 56 ZZMZO OOOZ RESERVE(10) */ 425 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, 426 /* 56 Z RESERVE ELEMENT(10) */ 427 { 0x56, M, "RESERVE ELEMENT(10)" }, 428 /* 57 ZZMZO OOOZ RELEASE(10) */ 429 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, 430 /* 57 Z RELEASE ELEMENT(10) */ 431 { 0x57, M, "RELEASE ELEMENT(10)" }, 432 /* 58 O REPAIR TRACK */ 433 { 0x58, R, "REPAIR TRACK" }, 434 /* 59 */ 435 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ 436 { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, 437 /* 5B O CLOSE TRACK/SESSION */ 438 { 0x5B, R, "CLOSE TRACK/SESSION" }, 439 /* 5C O READ BUFFER CAPACITY */ 440 { 0x5C, R, "READ BUFFER CAPACITY" }, 441 /* 5D O SEND CUE SHEET */ 442 { 0x5D, R, "SEND CUE SHEET" }, 443 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ 444 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, 445 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ 446 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, 447 /* 7E OO O OOOO O extended CDB */ 448 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, 449 /* 7F O M variable length CDB (more than 16 bytes) */ 450 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, 451 /* 80 Z XDWRITE EXTENDED(16) */ 452 { 0x80, D, "XDWRITE EXTENDED(16)" }, 453 /* 80 M WRITE FILEMARKS(16) */ 454 { 0x80, T, "WRITE FILEMARKS(16)" }, 455 /* 81 Z REBUILD(16) */ 456 { 0x81, D, "REBUILD(16)" }, 457 /* 81 O READ REVERSE(16) */ 458 { 0x81, T, "READ REVERSE(16)" }, 459 /* 82 Z REGENERATE(16) */ 460 { 0x82, D, "REGENERATE(16)" }, 461 /* 83 OOOOO O OO EXTENDED COPY */ 462 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, 463 /* 84 OOOOO O OO RECEIVE COPY RESULTS */ 464 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, 465 /* 85 O O O ATA COMMAND PASS THROUGH(16) */ 466 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, 467 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ 468 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, 469 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ 470 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, 471 /* 472 * XXX READ(16)/WRITE(16) were not listed for CD/DVE in op-num.txt 473 * but we had it since r1.40. Do we really want them? 474 */ 475 /* 88 MM O O O READ(16) */ 476 { 0x88, D | T | W | O | B, "READ(16)" }, 477 /* 89 O COMPARE AND WRITE*/ 478 { 0x89, D, "COMPARE AND WRITE" }, 479 /* 8A OM O O O WRITE(16) */ 480 { 0x8A, D | T | W | O | B, "WRITE(16)" }, 481 /* 8B O ORWRITE */ 482 { 0x8B, D, "ORWRITE" }, 483 /* 8C OO O OO O M READ ATTRIBUTE */ 484 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, 485 /* 8D OO O OO O O WRITE ATTRIBUTE */ 486 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, 487 /* 8E O O O O WRITE AND VERIFY(16) */ 488 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, 489 /* 8F OO O O O VERIFY(16) */ 490 { 0x8F, D | T | W | O | B, "VERIFY(16)" }, 491 /* 90 O O O O PRE-FETCH(16) */ 492 { 0x90, D | W | O | B, "PRE-FETCH(16)" }, 493 /* 91 O O O O SYNCHRONIZE CACHE(16) */ 494 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, 495 /* 91 O SPACE(16) */ 496 { 0x91, T, "SPACE(16)" }, 497 /* 92 Z O O LOCK UNLOCK CACHE(16) */ 498 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, 499 /* 92 O LOCATE(16) */ 500 { 0x92, T, "LOCATE(16)" }, 501 /* 93 O WRITE SAME(16) */ 502 { 0x93, D, "WRITE SAME(16)" }, 503 /* 93 M ERASE(16) */ 504 { 0x93, T, "ERASE(16)" }, 505 /* 94 O ZBC OUT */ 506 { 0x94, ALL, "ZBC OUT" }, 507 /* 95 O ZBC IN */ 508 { 0x95, ALL, "ZBC IN" }, 509 /* 96 */ 510 /* 97 */ 511 /* 98 */ 512 /* 99 */ 513 /* 9A O WRITE STREAM(16) */ 514 { 0x9A, D, "WRITE STREAM(16)" }, 515 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */ 516 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" }, 517 /* 9C O WRITE ATOMIC(16) */ 518 { 0x9C, D, "WRITE ATOMIC(16)" }, 519 /* 9D SERVICE ACTION BIDIRECTIONAL */ 520 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" }, 521 /* XXX KDM ALL for this? op-num.txt defines it for none.. */ 522 /* 9E SERVICE ACTION IN(16) */ 523 { 0x9E, ALL, "SERVICE ACTION IN(16)" }, 524 /* 9F M SERVICE ACTION OUT(16) */ 525 { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, 526 /* A0 MMOOO OMMM OMO REPORT LUNS */ 527 { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, 528 /* A1 O BLANK */ 529 { 0xA1, R, "BLANK" }, 530 /* A1 O O ATA COMMAND PASS THROUGH(12) */ 531 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, 532 /* A2 OO O O SECURITY PROTOCOL IN */ 533 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, 534 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ 535 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, 536 /* A3 O SEND KEY */ 537 { 0xA3, R, "SEND KEY" }, 538 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ 539 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, 540 /* A4 O REPORT KEY */ 541 { 0xA4, R, "REPORT KEY" }, 542 /* A5 O O OM MOVE MEDIUM */ 543 { 0xA5, T | W | O | M, "MOVE MEDIUM" }, 544 /* A5 O PLAY AUDIO(12) */ 545 { 0xA5, R, "PLAY AUDIO(12)" }, 546 /* A6 O EXCHANGE MEDIUM */ 547 { 0xA6, M, "EXCHANGE MEDIUM" }, 548 /* A6 O LOAD/UNLOAD C/DVD */ 549 { 0xA6, R, "LOAD/UNLOAD C/DVD" }, 550 /* A7 ZZ O O MOVE MEDIUM ATTACHED */ 551 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, 552 /* A7 O SET READ AHEAD */ 553 { 0xA7, R, "SET READ AHEAD" }, 554 /* A8 O OOO READ(12) */ 555 { 0xA8, D | W | R | O, "READ(12)" }, 556 /* A8 GET MESSAGE(12) */ 557 { 0xA8, C, "GET MESSAGE(12)" }, 558 /* A9 O SERVICE ACTION OUT(12) */ 559 { 0xA9, V, "SERVICE ACTION OUT(12)" }, 560 /* AA O OOO WRITE(12) */ 561 { 0xAA, D | W | R | O, "WRITE(12)" }, 562 /* AA SEND MESSAGE(12) */ 563 { 0xAA, C, "SEND MESSAGE(12)" }, 564 /* AB O O SERVICE ACTION IN(12) */ 565 { 0xAB, R | V, "SERVICE ACTION IN(12)" }, 566 /* AC O ERASE(12) */ 567 { 0xAC, O, "ERASE(12)" }, 568 /* AC O GET PERFORMANCE */ 569 { 0xAC, R, "GET PERFORMANCE" }, 570 /* AD O READ DVD STRUCTURE */ 571 { 0xAD, R, "READ DVD STRUCTURE" }, 572 /* AE O O O WRITE AND VERIFY(12) */ 573 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, 574 /* AF O OZO VERIFY(12) */ 575 { 0xAF, D | W | R | O, "VERIFY(12)" }, 576 /* B0 ZZZ SEARCH DATA HIGH(12) */ 577 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, 578 /* B1 ZZZ SEARCH DATA EQUAL(12) */ 579 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, 580 /* B2 ZZZ SEARCH DATA LOW(12) */ 581 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, 582 /* B3 Z OZO SET LIMITS(12) */ 583 { 0xB3, D | W | R | O, "SET LIMITS(12)" }, 584 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ 585 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, 586 /* B5 OO O O SECURITY PROTOCOL OUT */ 587 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, 588 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ 589 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, 590 /* B6 O SEND VOLUME TAG */ 591 { 0xB6, M, "SEND VOLUME TAG" }, 592 /* B6 O SET STREAMING */ 593 { 0xB6, R, "SET STREAMING" }, 594 /* B7 O O READ DEFECT DATA(12) */ 595 { 0xB7, D | O, "READ DEFECT DATA(12)" }, 596 /* B8 O OZOM READ ELEMENT STATUS */ 597 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, 598 /* B9 O READ CD MSF */ 599 { 0xB9, R, "READ CD MSF" }, 600 /* BA O O OOMO REDUNDANCY GROUP (IN) */ 601 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, 602 /* BA O SCAN */ 603 { 0xBA, R, "SCAN" }, 604 /* BB O O OOOO REDUNDANCY GROUP (OUT) */ 605 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, 606 /* BB O SET CD SPEED */ 607 { 0xBB, R, "SET CD SPEED" }, 608 /* BC O O OOMO SPARE (IN) */ 609 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, 610 /* BD O O OOOO SPARE (OUT) */ 611 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, 612 /* BD O MECHANISM STATUS */ 613 { 0xBD, R, "MECHANISM STATUS" }, 614 /* BE O O OOMO VOLUME SET (IN) */ 615 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, 616 /* BE O READ CD */ 617 { 0xBE, R, "READ CD" }, 618 /* BF O O OOOO VOLUME SET (OUT) */ 619 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, 620 /* BF O SEND DVD STRUCTURE */ 621 { 0xBF, R, "SEND DVD STRUCTURE" } 622 }; 623 624 const char * 625 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 626 { 627 caddr_t match; 628 int i, j; 629 u_int32_t opmask; 630 u_int16_t pd_type; 631 int num_ops[2]; 632 struct op_table_entry *table[2]; 633 int num_tables; 634 635 /* 636 * If we've got inquiry data, use it to determine what type of 637 * device we're dealing with here. Otherwise, assume direct 638 * access. 639 */ 640 if (inq_data == NULL) { 641 pd_type = T_DIRECT; 642 match = NULL; 643 } else { 644 pd_type = SID_TYPE(inq_data); 645 646 match = cam_quirkmatch((caddr_t)inq_data, 647 (caddr_t)scsi_op_quirk_table, 648 nitems(scsi_op_quirk_table), 649 sizeof(*scsi_op_quirk_table), 650 scsi_inquiry_match); 651 } 652 653 if (match != NULL) { 654 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; 655 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; 656 table[1] = scsi_op_codes; 657 num_ops[1] = nitems(scsi_op_codes); 658 num_tables = 2; 659 } else { 660 /* 661 * If this is true, we have a vendor specific opcode that 662 * wasn't covered in the quirk table. 663 */ 664 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) 665 return("Vendor Specific Command"); 666 667 table[0] = scsi_op_codes; 668 num_ops[0] = nitems(scsi_op_codes); 669 num_tables = 1; 670 } 671 672 /* RBC is 'Simplified' Direct Access Device */ 673 if (pd_type == T_RBC) 674 pd_type = T_DIRECT; 675 676 /* 677 * Host managed drives are direct access for the most part. 678 */ 679 if (pd_type == T_ZBC_HM) 680 pd_type = T_DIRECT; 681 682 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */ 683 if (pd_type == T_NODEVICE) 684 pd_type = T_DIRECT; 685 686 opmask = 1 << pd_type; 687 688 for (j = 0; j < num_tables; j++) { 689 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ 690 if ((table[j][i].opcode == opcode) 691 && ((table[j][i].opmask & opmask) != 0)) 692 return(table[j][i].desc); 693 } 694 } 695 696 /* 697 * If we can't find a match for the command in the table, we just 698 * assume it's a vendor specifc command. 699 */ 700 return("Vendor Specific Command"); 701 702 } 703 704 #else /* SCSI_NO_OP_STRINGS */ 705 706 const char * 707 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 708 { 709 return(""); 710 } 711 712 #endif 713 714 715 #if !defined(SCSI_NO_SENSE_STRINGS) 716 #define SST(asc, ascq, action, desc) \ 717 asc, ascq, action, desc 718 #else 719 const char empty_string[] = ""; 720 721 #define SST(asc, ascq, action, desc) \ 722 asc, ascq, action, empty_string 723 #endif 724 725 const struct sense_key_table_entry sense_key_table[] = 726 { 727 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, 728 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, 729 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" }, 730 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, 731 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, 732 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, 733 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, 734 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, 735 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, 736 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, 737 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, 738 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, 739 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, 740 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, 741 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, 742 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } 743 }; 744 745 static struct asc_table_entry quantum_fireball_entries[] = { 746 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 747 "Logical unit not ready, initializing cmd. required") } 748 }; 749 750 static struct asc_table_entry sony_mo_entries[] = { 751 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 752 "Logical unit not ready, cause not reportable") } 753 }; 754 755 static struct asc_table_entry hgst_entries[] = { 756 { SST(0x04, 0xF0, SS_RDEF, 757 "Vendor Unique - Logical Unit Not Ready") }, 758 { SST(0x0A, 0x01, SS_RDEF, 759 "Unrecovered Super Certification Log Write Error") }, 760 { SST(0x0A, 0x02, SS_RDEF, 761 "Unrecovered Super Certification Log Read Error") }, 762 { SST(0x15, 0x03, SS_RDEF, 763 "Unrecovered Sector Error") }, 764 { SST(0x3E, 0x04, SS_RDEF, 765 "Unrecovered Self-Test Hard-Cache Test Fail") }, 766 { SST(0x3E, 0x05, SS_RDEF, 767 "Unrecovered Self-Test OTF-Cache Fail") }, 768 { SST(0x40, 0x00, SS_RDEF, 769 "Unrecovered SAT No Buffer Overflow Error") }, 770 { SST(0x40, 0x01, SS_RDEF, 771 "Unrecovered SAT Buffer Overflow Error") }, 772 { SST(0x40, 0x02, SS_RDEF, 773 "Unrecovered SAT No Buffer Overflow With ECS Fault") }, 774 { SST(0x40, 0x03, SS_RDEF, 775 "Unrecovered SAT Buffer Overflow With ECS Fault") }, 776 { SST(0x40, 0x81, SS_RDEF, 777 "DRAM Failure") }, 778 { SST(0x44, 0x0B, SS_RDEF, 779 "Vendor Unique - Internal Target Failure") }, 780 { SST(0x44, 0xF2, SS_RDEF, 781 "Vendor Unique - Internal Target Failure") }, 782 { SST(0x44, 0xF6, SS_RDEF, 783 "Vendor Unique - Internal Target Failure") }, 784 { SST(0x44, 0xF9, SS_RDEF, 785 "Vendor Unique - Internal Target Failure") }, 786 { SST(0x44, 0xFA, SS_RDEF, 787 "Vendor Unique - Internal Target Failure") }, 788 { SST(0x5D, 0x22, SS_RDEF, 789 "Extreme Over-Temperature Warning") }, 790 { SST(0x5D, 0x50, SS_RDEF, 791 "Load/Unload cycle Count Warning") }, 792 { SST(0x81, 0x00, SS_RDEF, 793 "Vendor Unique - Internal Logic Error") }, 794 { SST(0x85, 0x00, SS_RDEF, 795 "Vendor Unique - Internal Key Seed Error") }, 796 }; 797 798 static struct asc_table_entry seagate_entries[] = { 799 { SST(0x04, 0xF0, SS_RDEF, 800 "Logical Unit Not Ready, super certify in Progress") }, 801 { SST(0x08, 0x86, SS_RDEF, 802 "Write Fault Data Corruption") }, 803 { SST(0x09, 0x0D, SS_RDEF, 804 "Tracking Failure") }, 805 { SST(0x09, 0x0E, SS_RDEF, 806 "ETF Failure") }, 807 { SST(0x0B, 0x5D, SS_RDEF, 808 "Pre-SMART Warning") }, 809 { SST(0x0B, 0x85, SS_RDEF, 810 "5V Voltage Warning") }, 811 { SST(0x0B, 0x8C, SS_RDEF, 812 "12V Voltage Warning") }, 813 { SST(0x0C, 0xFF, SS_RDEF, 814 "Write Error - Too many error recovery revs") }, 815 { SST(0x11, 0xFF, SS_RDEF, 816 "Unrecovered Read Error - Too many error recovery revs") }, 817 { SST(0x19, 0x0E, SS_RDEF, 818 "Fewer than 1/2 defect list copies") }, 819 { SST(0x20, 0xF3, SS_RDEF, 820 "Illegal CDB linked to skip mask cmd") }, 821 { SST(0x24, 0xF0, SS_RDEF, 822 "Illegal byte in CDB, LBA not matching") }, 823 { SST(0x24, 0xF1, SS_RDEF, 824 "Illegal byte in CDB, LEN not matching") }, 825 { SST(0x24, 0xF2, SS_RDEF, 826 "Mask not matching transfer length") }, 827 { SST(0x24, 0xF3, SS_RDEF, 828 "Drive formatted without plist") }, 829 { SST(0x26, 0x95, SS_RDEF, 830 "Invalid Field Parameter - CAP File") }, 831 { SST(0x26, 0x96, SS_RDEF, 832 "Invalid Field Parameter - RAP File") }, 833 { SST(0x26, 0x97, SS_RDEF, 834 "Invalid Field Parameter - TMS Firmware Tag") }, 835 { SST(0x26, 0x98, SS_RDEF, 836 "Invalid Field Parameter - Check Sum") }, 837 { SST(0x26, 0x99, SS_RDEF, 838 "Invalid Field Parameter - Firmware Tag") }, 839 { SST(0x29, 0x08, SS_RDEF, 840 "Write Log Dump data") }, 841 { SST(0x29, 0x09, SS_RDEF, 842 "Write Log Dump data") }, 843 { SST(0x29, 0x0A, SS_RDEF, 844 "Reserved disk space") }, 845 { SST(0x29, 0x0B, SS_RDEF, 846 "SDBP") }, 847 { SST(0x29, 0x0C, SS_RDEF, 848 "SDBP") }, 849 { SST(0x31, 0x91, SS_RDEF, 850 "Format Corrupted World Wide Name (WWN) is Invalid") }, 851 { SST(0x32, 0x03, SS_RDEF, 852 "Defect List - Length exceeds Command Allocated Length") }, 853 { SST(0x33, 0x00, SS_RDEF, 854 "Flash not ready for access") }, 855 { SST(0x3F, 0x70, SS_RDEF, 856 "Invalid RAP block") }, 857 { SST(0x3F, 0x71, SS_RDEF, 858 "RAP/ETF mismatch") }, 859 { SST(0x3F, 0x90, SS_RDEF, 860 "Invalid CAP block") }, 861 { SST(0x3F, 0x91, SS_RDEF, 862 "World Wide Name (WWN) Mismatch") }, 863 { SST(0x40, 0x01, SS_RDEF, 864 "DRAM Parity Error") }, 865 { SST(0x40, 0x02, SS_RDEF, 866 "DRAM Parity Error") }, 867 { SST(0x42, 0x0A, SS_RDEF, 868 "Loopback Test") }, 869 { SST(0x42, 0x0B, SS_RDEF, 870 "Loopback Test") }, 871 { SST(0x44, 0xF2, SS_RDEF, 872 "Compare error during data integrity check") }, 873 { SST(0x44, 0xF6, SS_RDEF, 874 "Unrecoverable error during data integrity check") }, 875 { SST(0x47, 0x80, SS_RDEF, 876 "Fibre Channel Sequence Error") }, 877 { SST(0x4E, 0x01, SS_RDEF, 878 "Information Unit Too Short") }, 879 { SST(0x80, 0x00, SS_RDEF, 880 "General Firmware Error / Command Timeout") }, 881 { SST(0x80, 0x01, SS_RDEF, 882 "Command Timeout") }, 883 { SST(0x80, 0x02, SS_RDEF, 884 "Command Timeout") }, 885 { SST(0x80, 0x80, SS_RDEF, 886 "FC FIFO Error During Read Transfer") }, 887 { SST(0x80, 0x81, SS_RDEF, 888 "FC FIFO Error During Write Transfer") }, 889 { SST(0x80, 0x82, SS_RDEF, 890 "DISC FIFO Error During Read Transfer") }, 891 { SST(0x80, 0x83, SS_RDEF, 892 "DISC FIFO Error During Write Transfer") }, 893 { SST(0x80, 0x84, SS_RDEF, 894 "LBA Seeded LRC Error on Read") }, 895 { SST(0x80, 0x85, SS_RDEF, 896 "LBA Seeded LRC Error on Write") }, 897 { SST(0x80, 0x86, SS_RDEF, 898 "IOEDC Error on Read") }, 899 { SST(0x80, 0x87, SS_RDEF, 900 "IOEDC Error on Write") }, 901 { SST(0x80, 0x88, SS_RDEF, 902 "Host Parity Check Failed") }, 903 { SST(0x80, 0x89, SS_RDEF, 904 "IOEDC error on read detected by formatter") }, 905 { SST(0x80, 0x8A, SS_RDEF, 906 "Host Parity Errors / Host FIFO Initialization Failed") }, 907 { SST(0x80, 0x8B, SS_RDEF, 908 "Host Parity Errors") }, 909 { SST(0x80, 0x8C, SS_RDEF, 910 "Host Parity Errors") }, 911 { SST(0x80, 0x8D, SS_RDEF, 912 "Host Parity Errors") }, 913 { SST(0x81, 0x00, SS_RDEF, 914 "LA Check Failed") }, 915 { SST(0x82, 0x00, SS_RDEF, 916 "Internal client detected insufficient buffer") }, 917 { SST(0x84, 0x00, SS_RDEF, 918 "Scheduled Diagnostic And Repair") }, 919 }; 920 921 static struct scsi_sense_quirk_entry sense_quirk_table[] = { 922 { 923 /* 924 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b 925 * when they really should return 0x04 0x02. 926 */ 927 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, 928 /*num_sense_keys*/0, 929 nitems(quantum_fireball_entries), 930 /*sense key entries*/NULL, 931 quantum_fireball_entries 932 }, 933 { 934 /* 935 * This Sony MO drive likes to return 0x04, 0x00 when it 936 * isn't spun up. 937 */ 938 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, 939 /*num_sense_keys*/0, 940 nitems(sony_mo_entries), 941 /*sense key entries*/NULL, 942 sony_mo_entries 943 }, 944 { 945 /* 946 * HGST vendor-specific error codes 947 */ 948 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"}, 949 /*num_sense_keys*/0, 950 nitems(hgst_entries), 951 /*sense key entries*/NULL, 952 hgst_entries 953 }, 954 { 955 /* 956 * SEAGATE vendor-specific error codes 957 */ 958 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"}, 959 /*num_sense_keys*/0, 960 nitems(seagate_entries), 961 /*sense key entries*/NULL, 962 seagate_entries 963 } 964 }; 965 966 const u_int sense_quirk_table_size = nitems(sense_quirk_table); 967 968 static struct asc_table_entry asc_table[] = { 969 /* 970 * From: http://www.t10.org/lists/asc-num.txt 971 * Modifications by Jung-uk Kim (jkim@FreeBSD.org) 972 */ 973 /* 974 * File: ASC-NUM.TXT 975 * 976 * SCSI ASC/ASCQ Assignments 977 * Numeric Sorted Listing 978 * as of 8/12/15 979 * 980 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 981 * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- 982 * . L - PRINTER DEVICE (SSC) blank = reserved 983 * . P - PROCESSOR DEVICE (SPC) not blank = allowed 984 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) 985 * . . R - CD DEVICE (MMC) 986 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 987 * . . .M - MEDIA CHANGER DEVICE (SMC) 988 * . . . A - STORAGE ARRAY DEVICE (SCC) 989 * . . . E - ENCLOSURE SERVICES DEVICE (SES) 990 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 991 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 992 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 993 * . . . . .F - OBJECT-BASED STORAGE (OSD) 994 * DTLPWROMAEBKVF 995 * ASC ASCQ Action 996 * Description 997 */ 998 /* DTLPWROMAEBKVF */ 999 { SST(0x00, 0x00, SS_NOP, 1000 "No additional sense information") }, 1001 /* T */ 1002 { SST(0x00, 0x01, SS_RDEF, 1003 "Filemark detected") }, 1004 /* T */ 1005 { SST(0x00, 0x02, SS_RDEF, 1006 "End-of-partition/medium detected") }, 1007 /* T */ 1008 { SST(0x00, 0x03, SS_RDEF, 1009 "Setmark detected") }, 1010 /* T */ 1011 { SST(0x00, 0x04, SS_RDEF, 1012 "Beginning-of-partition/medium detected") }, 1013 /* TL */ 1014 { SST(0x00, 0x05, SS_RDEF, 1015 "End-of-data detected") }, 1016 /* DTLPWROMAEBKVF */ 1017 { SST(0x00, 0x06, SS_RDEF, 1018 "I/O process terminated") }, 1019 /* T */ 1020 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ 1021 "Programmable early warning detected") }, 1022 /* R */ 1023 { SST(0x00, 0x11, SS_FATAL | EBUSY, 1024 "Audio play operation in progress") }, 1025 /* R */ 1026 { SST(0x00, 0x12, SS_NOP, 1027 "Audio play operation paused") }, 1028 /* R */ 1029 { SST(0x00, 0x13, SS_NOP, 1030 "Audio play operation successfully completed") }, 1031 /* R */ 1032 { SST(0x00, 0x14, SS_RDEF, 1033 "Audio play operation stopped due to error") }, 1034 /* R */ 1035 { SST(0x00, 0x15, SS_NOP, 1036 "No current audio status to return") }, 1037 /* DTLPWROMAEBKVF */ 1038 { SST(0x00, 0x16, SS_FATAL | EBUSY, 1039 "Operation in progress") }, 1040 /* DTL WROMAEBKVF */ 1041 { SST(0x00, 0x17, SS_RDEF, 1042 "Cleaning requested") }, 1043 /* T */ 1044 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ 1045 "Erase operation in progress") }, 1046 /* T */ 1047 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ 1048 "Locate operation in progress") }, 1049 /* T */ 1050 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ 1051 "Rewind operation in progress") }, 1052 /* T */ 1053 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ 1054 "Set capacity operation in progress") }, 1055 /* T */ 1056 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ 1057 "Verify operation in progress") }, 1058 /* DT B */ 1059 { SST(0x00, 0x1D, SS_NOP, 1060 "ATA pass through information available") }, 1061 /* DT R MAEBKV */ 1062 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ 1063 "Conflicting SA creation request") }, 1064 /* DT B */ 1065 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */ 1066 "Logical unit transitioning to another power condition") }, 1067 /* DT P B */ 1068 { SST(0x00, 0x20, SS_NOP, 1069 "Extended copy information available") }, 1070 /* D */ 1071 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */ 1072 "Atomic command aborted due to ACA") }, 1073 /* D W O BK */ 1074 { SST(0x01, 0x00, SS_RDEF, 1075 "No index/sector signal") }, 1076 /* D WRO BK */ 1077 { SST(0x02, 0x00, SS_RDEF, 1078 "No seek complete") }, 1079 /* DTL W O BK */ 1080 { SST(0x03, 0x00, SS_RDEF, 1081 "Peripheral device write fault") }, 1082 /* T */ 1083 { SST(0x03, 0x01, SS_RDEF, 1084 "No write current") }, 1085 /* T */ 1086 { SST(0x03, 0x02, SS_RDEF, 1087 "Excessive write errors") }, 1088 /* DTLPWROMAEBKVF */ 1089 { SST(0x04, 0x00, SS_RDEF, 1090 "Logical unit not ready, cause not reportable") }, 1091 /* DTLPWROMAEBKVF */ 1092 { SST(0x04, 0x01, SS_WAIT | EBUSY, 1093 "Logical unit is in process of becoming ready") }, 1094 /* DTLPWROMAEBKVF */ 1095 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1096 "Logical unit not ready, initializing command required") }, 1097 /* DTLPWROMAEBKVF */ 1098 { SST(0x04, 0x03, SS_FATAL | ENXIO, 1099 "Logical unit not ready, manual intervention required") }, 1100 /* DTL RO B */ 1101 { SST(0x04, 0x04, SS_FATAL | EBUSY, 1102 "Logical unit not ready, format in progress") }, 1103 /* DT W O A BK F */ 1104 { SST(0x04, 0x05, SS_FATAL | EBUSY, 1105 "Logical unit not ready, rebuild in progress") }, 1106 /* DT W O A BK */ 1107 { SST(0x04, 0x06, SS_FATAL | EBUSY, 1108 "Logical unit not ready, recalculation in progress") }, 1109 /* DTLPWROMAEBKVF */ 1110 { SST(0x04, 0x07, SS_FATAL | EBUSY, 1111 "Logical unit not ready, operation in progress") }, 1112 /* R */ 1113 { SST(0x04, 0x08, SS_FATAL | EBUSY, 1114 "Logical unit not ready, long write in progress") }, 1115 /* DTLPWROMAEBKVF */ 1116 { SST(0x04, 0x09, SS_RDEF, /* XXX TBD */ 1117 "Logical unit not ready, self-test in progress") }, 1118 /* DTLPWROMAEBKVF */ 1119 { SST(0x04, 0x0A, SS_WAIT | ENXIO, 1120 "Logical unit not accessible, asymmetric access state transition")}, 1121 /* DTLPWROMAEBKVF */ 1122 { SST(0x04, 0x0B, SS_FATAL | ENXIO, 1123 "Logical unit not accessible, target port in standby state") }, 1124 /* DTLPWROMAEBKVF */ 1125 { SST(0x04, 0x0C, SS_FATAL | ENXIO, 1126 "Logical unit not accessible, target port in unavailable state") }, 1127 /* F */ 1128 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ 1129 "Logical unit not ready, structure check required") }, 1130 /* DTL WR MAEBKVF */ 1131 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */ 1132 "Logical unit not ready, security session in progress") }, 1133 /* DT WROM B */ 1134 { SST(0x04, 0x10, SS_RDEF, /* XXX TBD */ 1135 "Logical unit not ready, auxiliary memory not accessible") }, 1136 /* DT WRO AEB VF */ 1137 { SST(0x04, 0x11, SS_WAIT | EBUSY, 1138 "Logical unit not ready, notify (enable spinup) required") }, 1139 /* M V */ 1140 { SST(0x04, 0x12, SS_RDEF, /* XXX TBD */ 1141 "Logical unit not ready, offline") }, 1142 /* DT R MAEBKV */ 1143 { SST(0x04, 0x13, SS_RDEF, /* XXX TBD */ 1144 "Logical unit not ready, SA creation in progress") }, 1145 /* D B */ 1146 { SST(0x04, 0x14, SS_RDEF, /* XXX TBD */ 1147 "Logical unit not ready, space allocation in progress") }, 1148 /* M */ 1149 { SST(0x04, 0x15, SS_RDEF, /* XXX TBD */ 1150 "Logical unit not ready, robotics disabled") }, 1151 /* M */ 1152 { SST(0x04, 0x16, SS_RDEF, /* XXX TBD */ 1153 "Logical unit not ready, configuration required") }, 1154 /* M */ 1155 { SST(0x04, 0x17, SS_RDEF, /* XXX TBD */ 1156 "Logical unit not ready, calibration required") }, 1157 /* M */ 1158 { SST(0x04, 0x18, SS_RDEF, /* XXX TBD */ 1159 "Logical unit not ready, a door is open") }, 1160 /* M */ 1161 { SST(0x04, 0x19, SS_RDEF, /* XXX TBD */ 1162 "Logical unit not ready, operating in sequential mode") }, 1163 /* DT B */ 1164 { SST(0x04, 0x1A, SS_RDEF, /* XXX TBD */ 1165 "Logical unit not ready, START/STOP UNIT command in progress") }, 1166 /* D B */ 1167 { SST(0x04, 0x1B, SS_RDEF, /* XXX TBD */ 1168 "Logical unit not ready, sanitize in progress") }, 1169 /* DT MAEB */ 1170 { SST(0x04, 0x1C, SS_RDEF, /* XXX TBD */ 1171 "Logical unit not ready, additional power use not yet granted") }, 1172 /* D */ 1173 { SST(0x04, 0x1D, SS_RDEF, /* XXX TBD */ 1174 "Logical unit not ready, configuration in progress") }, 1175 /* D */ 1176 { SST(0x04, 0x1E, SS_FATAL | ENXIO, 1177 "Logical unit not ready, microcode activation required") }, 1178 /* DTLPWROMAEBKVF */ 1179 { SST(0x04, 0x1F, SS_FATAL | ENXIO, 1180 "Logical unit not ready, microcode download required") }, 1181 /* DTLPWROMAEBKVF */ 1182 { SST(0x04, 0x20, SS_RDEF, /* XXX TBD */ 1183 "Logical unit not ready, logical unit reset required") }, 1184 /* DTLPWROMAEBKVF */ 1185 { SST(0x04, 0x21, SS_RDEF, /* XXX TBD */ 1186 "Logical unit not ready, hard reset required") }, 1187 /* DTLPWROMAEBKVF */ 1188 { SST(0x04, 0x22, SS_RDEF, /* XXX TBD */ 1189 "Logical unit not ready, power cycle required") }, 1190 /* DTL WROMAEBKVF */ 1191 { SST(0x05, 0x00, SS_RDEF, 1192 "Logical unit does not respond to selection") }, 1193 /* D WROM BK */ 1194 { SST(0x06, 0x00, SS_RDEF, 1195 "No reference position found") }, 1196 /* DTL WROM BK */ 1197 { SST(0x07, 0x00, SS_RDEF, 1198 "Multiple peripheral devices selected") }, 1199 /* DTL WROMAEBKVF */ 1200 { SST(0x08, 0x00, SS_RDEF, 1201 "Logical unit communication failure") }, 1202 /* DTL WROMAEBKVF */ 1203 { SST(0x08, 0x01, SS_RDEF, 1204 "Logical unit communication time-out") }, 1205 /* DTL WROMAEBKVF */ 1206 { SST(0x08, 0x02, SS_RDEF, 1207 "Logical unit communication parity error") }, 1208 /* DT ROM BK */ 1209 { SST(0x08, 0x03, SS_RDEF, 1210 "Logical unit communication CRC error (Ultra-DMA/32)") }, 1211 /* DTLPWRO K */ 1212 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ 1213 "Unreachable copy target") }, 1214 /* DT WRO B */ 1215 { SST(0x09, 0x00, SS_RDEF, 1216 "Track following error") }, 1217 /* WRO K */ 1218 { SST(0x09, 0x01, SS_RDEF, 1219 "Tracking servo failure") }, 1220 /* WRO K */ 1221 { SST(0x09, 0x02, SS_RDEF, 1222 "Focus servo failure") }, 1223 /* WRO */ 1224 { SST(0x09, 0x03, SS_RDEF, 1225 "Spindle servo failure") }, 1226 /* DT WRO B */ 1227 { SST(0x09, 0x04, SS_RDEF, 1228 "Head select fault") }, 1229 /* DT RO B */ 1230 { SST(0x09, 0x05, SS_RDEF, 1231 "Vibration induced tracking error") }, 1232 /* DTLPWROMAEBKVF */ 1233 { SST(0x0A, 0x00, SS_FATAL | ENOSPC, 1234 "Error log overflow") }, 1235 /* DTLPWROMAEBKVF */ 1236 { SST(0x0B, 0x00, SS_RDEF, 1237 "Warning") }, 1238 /* DTLPWROMAEBKVF */ 1239 { SST(0x0B, 0x01, SS_RDEF, 1240 "Warning - specified temperature exceeded") }, 1241 /* DTLPWROMAEBKVF */ 1242 { SST(0x0B, 0x02, SS_RDEF, 1243 "Warning - enclosure degraded") }, 1244 /* DTLPWROMAEBKVF */ 1245 { SST(0x0B, 0x03, SS_RDEF, /* XXX TBD */ 1246 "Warning - background self-test failed") }, 1247 /* DTLPWRO AEBKVF */ 1248 { SST(0x0B, 0x04, SS_RDEF, /* XXX TBD */ 1249 "Warning - background pre-scan detected medium error") }, 1250 /* DTLPWRO AEBKVF */ 1251 { SST(0x0B, 0x05, SS_RDEF, /* XXX TBD */ 1252 "Warning - background medium scan detected medium error") }, 1253 /* DTLPWROMAEBKVF */ 1254 { SST(0x0B, 0x06, SS_RDEF, /* XXX TBD */ 1255 "Warning - non-volatile cache now volatile") }, 1256 /* DTLPWROMAEBKVF */ 1257 { SST(0x0B, 0x07, SS_RDEF, /* XXX TBD */ 1258 "Warning - degraded power to non-volatile cache") }, 1259 /* DTLPWROMAEBKVF */ 1260 { SST(0x0B, 0x08, SS_RDEF, /* XXX TBD */ 1261 "Warning - power loss expected") }, 1262 /* D */ 1263 { SST(0x0B, 0x09, SS_RDEF, /* XXX TBD */ 1264 "Warning - device statistics notification available") }, 1265 /* DTLPWROMAEBKVF */ 1266 { SST(0x0B, 0x0A, SS_RDEF, /* XXX TBD */ 1267 "Warning - High critical temperature limit exceeded") }, 1268 /* DTLPWROMAEBKVF */ 1269 { SST(0x0B, 0x0B, SS_RDEF, /* XXX TBD */ 1270 "Warning - Low critical temperature limit exceeded") }, 1271 /* DTLPWROMAEBKVF */ 1272 { SST(0x0B, 0x0C, SS_RDEF, /* XXX TBD */ 1273 "Warning - High operating temperature limit exceeded") }, 1274 /* DTLPWROMAEBKVF */ 1275 { SST(0x0B, 0x0D, SS_RDEF, /* XXX TBD */ 1276 "Warning - Low operating temperature limit exceeded") }, 1277 /* DTLPWROMAEBKVF */ 1278 { SST(0x0B, 0x0E, SS_RDEF, /* XXX TBD */ 1279 "Warning - High citical humidity limit exceeded") }, 1280 /* DTLPWROMAEBKVF */ 1281 { SST(0x0B, 0x0F, SS_RDEF, /* XXX TBD */ 1282 "Warning - Low citical humidity limit exceeded") }, 1283 /* DTLPWROMAEBKVF */ 1284 { SST(0x0B, 0x10, SS_RDEF, /* XXX TBD */ 1285 "Warning - High operating humidity limit exceeded") }, 1286 /* DTLPWROMAEBKVF */ 1287 { SST(0x0B, 0x11, SS_RDEF, /* XXX TBD */ 1288 "Warning - Low operating humidity limit exceeded") }, 1289 /* T R */ 1290 { SST(0x0C, 0x00, SS_RDEF, 1291 "Write error") }, 1292 /* K */ 1293 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1294 "Write error - recovered with auto reallocation") }, 1295 /* D W O BK */ 1296 { SST(0x0C, 0x02, SS_RDEF, 1297 "Write error - auto reallocation failed") }, 1298 /* D W O BK */ 1299 { SST(0x0C, 0x03, SS_RDEF, 1300 "Write error - recommend reassignment") }, 1301 /* DT W O B */ 1302 { SST(0x0C, 0x04, SS_RDEF, 1303 "Compression check miscompare error") }, 1304 /* DT W O B */ 1305 { SST(0x0C, 0x05, SS_RDEF, 1306 "Data expansion occurred during compression") }, 1307 /* DT W O B */ 1308 { SST(0x0C, 0x06, SS_RDEF, 1309 "Block not compressible") }, 1310 /* R */ 1311 { SST(0x0C, 0x07, SS_RDEF, 1312 "Write error - recovery needed") }, 1313 /* R */ 1314 { SST(0x0C, 0x08, SS_RDEF, 1315 "Write error - recovery failed") }, 1316 /* R */ 1317 { SST(0x0C, 0x09, SS_RDEF, 1318 "Write error - loss of streaming") }, 1319 /* R */ 1320 { SST(0x0C, 0x0A, SS_RDEF, 1321 "Write error - padding blocks added") }, 1322 /* DT WROM B */ 1323 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ 1324 "Auxiliary memory write error") }, 1325 /* DTLPWRO AEBKVF */ 1326 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ 1327 "Write error - unexpected unsolicited data") }, 1328 /* DTLPWRO AEBKVF */ 1329 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ 1330 "Write error - not enough unsolicited data") }, 1331 /* DT W O BK */ 1332 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */ 1333 "Multiple write errors") }, 1334 /* R */ 1335 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ 1336 "Defects in error window") }, 1337 /* D */ 1338 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */ 1339 "Incomplete multiple atomic write operations") }, 1340 /* D */ 1341 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */ 1342 "Write error - recovery scan needed") }, 1343 /* D */ 1344 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */ 1345 "Write error - insufficient zone resources") }, 1346 /* DTLPWRO A K */ 1347 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ 1348 "Error detected by third party temporary initiator") }, 1349 /* DTLPWRO A K */ 1350 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ 1351 "Third party device failure") }, 1352 /* DTLPWRO A K */ 1353 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ 1354 "Copy target device not reachable") }, 1355 /* DTLPWRO A K */ 1356 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ 1357 "Incorrect copy target device type") }, 1358 /* DTLPWRO A K */ 1359 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ 1360 "Copy target device data underrun") }, 1361 /* DTLPWRO A K */ 1362 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ 1363 "Copy target device data overrun") }, 1364 /* DT PWROMAEBK F */ 1365 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ 1366 "Invalid information unit") }, 1367 /* DT PWROMAEBK F */ 1368 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ 1369 "Information unit too short") }, 1370 /* DT PWROMAEBK F */ 1371 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ 1372 "Information unit too long") }, 1373 /* DT P R MAEBK F */ 1374 { SST(0x0E, 0x03, SS_RDEF, /* XXX TBD */ 1375 "Invalid field in command information unit") }, 1376 /* D W O BK */ 1377 { SST(0x10, 0x00, SS_RDEF, 1378 "ID CRC or ECC error") }, 1379 /* DT W O */ 1380 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ 1381 "Logical block guard check failed") }, 1382 /* DT W O */ 1383 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ 1384 "Logical block application tag check failed") }, 1385 /* DT W O */ 1386 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ 1387 "Logical block reference tag check failed") }, 1388 /* T */ 1389 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */ 1390 "Logical block protection error on recovered buffer data") }, 1391 /* T */ 1392 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */ 1393 "Logical block protection method error") }, 1394 /* DT WRO BK */ 1395 { SST(0x11, 0x00, SS_FATAL|EIO, 1396 "Unrecovered read error") }, 1397 /* DT WRO BK */ 1398 { SST(0x11, 0x01, SS_FATAL|EIO, 1399 "Read retries exhausted") }, 1400 /* DT WRO BK */ 1401 { SST(0x11, 0x02, SS_FATAL|EIO, 1402 "Error too long to correct") }, 1403 /* DT W O BK */ 1404 { SST(0x11, 0x03, SS_FATAL|EIO, 1405 "Multiple read errors") }, 1406 /* D W O BK */ 1407 { SST(0x11, 0x04, SS_FATAL|EIO, 1408 "Unrecovered read error - auto reallocate failed") }, 1409 /* WRO B */ 1410 { SST(0x11, 0x05, SS_FATAL|EIO, 1411 "L-EC uncorrectable error") }, 1412 /* WRO B */ 1413 { SST(0x11, 0x06, SS_FATAL|EIO, 1414 "CIRC unrecovered error") }, 1415 /* W O B */ 1416 { SST(0x11, 0x07, SS_RDEF, 1417 "Data re-synchronization error") }, 1418 /* T */ 1419 { SST(0x11, 0x08, SS_RDEF, 1420 "Incomplete block read") }, 1421 /* T */ 1422 { SST(0x11, 0x09, SS_RDEF, 1423 "No gap found") }, 1424 /* DT O BK */ 1425 { SST(0x11, 0x0A, SS_RDEF, 1426 "Miscorrected error") }, 1427 /* D W O BK */ 1428 { SST(0x11, 0x0B, SS_FATAL|EIO, 1429 "Unrecovered read error - recommend reassignment") }, 1430 /* D W O BK */ 1431 { SST(0x11, 0x0C, SS_FATAL|EIO, 1432 "Unrecovered read error - recommend rewrite the data") }, 1433 /* DT WRO B */ 1434 { SST(0x11, 0x0D, SS_RDEF, 1435 "De-compression CRC error") }, 1436 /* DT WRO B */ 1437 { SST(0x11, 0x0E, SS_RDEF, 1438 "Cannot decompress using declared algorithm") }, 1439 /* R */ 1440 { SST(0x11, 0x0F, SS_RDEF, 1441 "Error reading UPC/EAN number") }, 1442 /* R */ 1443 { SST(0x11, 0x10, SS_RDEF, 1444 "Error reading ISRC number") }, 1445 /* R */ 1446 { SST(0x11, 0x11, SS_RDEF, 1447 "Read error - loss of streaming") }, 1448 /* DT WROM B */ 1449 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ 1450 "Auxiliary memory read error") }, 1451 /* DTLPWRO AEBKVF */ 1452 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ 1453 "Read error - failed retransmission request") }, 1454 /* D */ 1455 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ 1456 "Read error - LBA marked bad by application client") }, 1457 /* D */ 1458 { SST(0x11, 0x15, SS_RDEF, /* XXX TBD */ 1459 "Write after sanitize required") }, 1460 /* D W O BK */ 1461 { SST(0x12, 0x00, SS_RDEF, 1462 "Address mark not found for ID field") }, 1463 /* D W O BK */ 1464 { SST(0x13, 0x00, SS_RDEF, 1465 "Address mark not found for data field") }, 1466 /* DTL WRO BK */ 1467 { SST(0x14, 0x00, SS_RDEF, 1468 "Recorded entity not found") }, 1469 /* DT WRO BK */ 1470 { SST(0x14, 0x01, SS_RDEF, 1471 "Record not found") }, 1472 /* T */ 1473 { SST(0x14, 0x02, SS_RDEF, 1474 "Filemark or setmark not found") }, 1475 /* T */ 1476 { SST(0x14, 0x03, SS_RDEF, 1477 "End-of-data not found") }, 1478 /* T */ 1479 { SST(0x14, 0x04, SS_RDEF, 1480 "Block sequence error") }, 1481 /* DT W O BK */ 1482 { SST(0x14, 0x05, SS_RDEF, 1483 "Record not found - recommend reassignment") }, 1484 /* DT W O BK */ 1485 { SST(0x14, 0x06, SS_RDEF, 1486 "Record not found - data auto-reallocated") }, 1487 /* T */ 1488 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ 1489 "Locate operation failure") }, 1490 /* DTL WROM BK */ 1491 { SST(0x15, 0x00, SS_RDEF, 1492 "Random positioning error") }, 1493 /* DTL WROM BK */ 1494 { SST(0x15, 0x01, SS_RDEF, 1495 "Mechanical positioning error") }, 1496 /* DT WRO BK */ 1497 { SST(0x15, 0x02, SS_RDEF, 1498 "Positioning error detected by read of medium") }, 1499 /* D W O BK */ 1500 { SST(0x16, 0x00, SS_RDEF, 1501 "Data synchronization mark error") }, 1502 /* D W O BK */ 1503 { SST(0x16, 0x01, SS_RDEF, 1504 "Data sync error - data rewritten") }, 1505 /* D W O BK */ 1506 { SST(0x16, 0x02, SS_RDEF, 1507 "Data sync error - recommend rewrite") }, 1508 /* D W O BK */ 1509 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1510 "Data sync error - data auto-reallocated") }, 1511 /* D W O BK */ 1512 { SST(0x16, 0x04, SS_RDEF, 1513 "Data sync error - recommend reassignment") }, 1514 /* DT WRO BK */ 1515 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1516 "Recovered data with no error correction applied") }, 1517 /* DT WRO BK */ 1518 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1519 "Recovered data with retries") }, 1520 /* DT WRO BK */ 1521 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1522 "Recovered data with positive head offset") }, 1523 /* DT WRO BK */ 1524 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1525 "Recovered data with negative head offset") }, 1526 /* WRO B */ 1527 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1528 "Recovered data with retries and/or CIRC applied") }, 1529 /* D WRO BK */ 1530 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1531 "Recovered data using previous sector ID") }, 1532 /* D W O BK */ 1533 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1534 "Recovered data without ECC - data auto-reallocated") }, 1535 /* D WRO BK */ 1536 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1537 "Recovered data without ECC - recommend reassignment") }, 1538 /* D WRO BK */ 1539 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1540 "Recovered data without ECC - recommend rewrite") }, 1541 /* D WRO BK */ 1542 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1543 "Recovered data without ECC - data rewritten") }, 1544 /* DT WRO BK */ 1545 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1546 "Recovered data with error correction applied") }, 1547 /* D WRO BK */ 1548 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1549 "Recovered data with error corr. & retries applied") }, 1550 /* D WRO BK */ 1551 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1552 "Recovered data - data auto-reallocated") }, 1553 /* R */ 1554 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1555 "Recovered data with CIRC") }, 1556 /* R */ 1557 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1558 "Recovered data with L-EC") }, 1559 /* D WRO BK */ 1560 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1561 "Recovered data - recommend reassignment") }, 1562 /* D WRO BK */ 1563 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1564 "Recovered data - recommend rewrite") }, 1565 /* D W O BK */ 1566 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1567 "Recovered data with ECC - data rewritten") }, 1568 /* R */ 1569 { SST(0x18, 0x08, SS_RDEF, /* XXX TBD */ 1570 "Recovered data with linking") }, 1571 /* D O K */ 1572 { SST(0x19, 0x00, SS_RDEF, 1573 "Defect list error") }, 1574 /* D O K */ 1575 { SST(0x19, 0x01, SS_RDEF, 1576 "Defect list not available") }, 1577 /* D O K */ 1578 { SST(0x19, 0x02, SS_RDEF, 1579 "Defect list error in primary list") }, 1580 /* D O K */ 1581 { SST(0x19, 0x03, SS_RDEF, 1582 "Defect list error in grown list") }, 1583 /* DTLPWROMAEBKVF */ 1584 { SST(0x1A, 0x00, SS_RDEF, 1585 "Parameter list length error") }, 1586 /* DTLPWROMAEBKVF */ 1587 { SST(0x1B, 0x00, SS_RDEF, 1588 "Synchronous data transfer error") }, 1589 /* D O BK */ 1590 { SST(0x1C, 0x00, SS_RDEF, 1591 "Defect list not found") }, 1592 /* D O BK */ 1593 { SST(0x1C, 0x01, SS_RDEF, 1594 "Primary defect list not found") }, 1595 /* D O BK */ 1596 { SST(0x1C, 0x02, SS_RDEF, 1597 "Grown defect list not found") }, 1598 /* DT WRO BK */ 1599 { SST(0x1D, 0x00, SS_FATAL, 1600 "Miscompare during verify operation") }, 1601 /* D B */ 1602 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */ 1603 "Miscomparable verify of unmapped LBA") }, 1604 /* D W O BK */ 1605 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1606 "Recovered ID with ECC correction") }, 1607 /* D O K */ 1608 { SST(0x1F, 0x00, SS_RDEF, 1609 "Partial defect list transfer") }, 1610 /* DTLPWROMAEBKVF */ 1611 { SST(0x20, 0x00, SS_FATAL | EINVAL, 1612 "Invalid command operation code") }, 1613 /* DT PWROMAEBK */ 1614 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ 1615 "Access denied - initiator pending-enrolled") }, 1616 /* DT PWROMAEBK */ 1617 { SST(0x20, 0x02, SS_RDEF, /* XXX TBD */ 1618 "Access denied - no access rights") }, 1619 /* DT PWROMAEBK */ 1620 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ 1621 "Access denied - invalid mgmt ID key") }, 1622 /* T */ 1623 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ 1624 "Illegal command while in write capable state") }, 1625 /* T */ 1626 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ 1627 "Obsolete") }, 1628 /* T */ 1629 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ 1630 "Illegal command while in explicit address mode") }, 1631 /* T */ 1632 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ 1633 "Illegal command while in implicit address mode") }, 1634 /* DT PWROMAEBK */ 1635 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ 1636 "Access denied - enrollment conflict") }, 1637 /* DT PWROMAEBK */ 1638 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ 1639 "Access denied - invalid LU identifier") }, 1640 /* DT PWROMAEBK */ 1641 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ 1642 "Access denied - invalid proxy token") }, 1643 /* DT PWROMAEBK */ 1644 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ 1645 "Access denied - ACL LUN conflict") }, 1646 /* T */ 1647 { SST(0x20, 0x0C, SS_FATAL | EINVAL, 1648 "Illegal command when not in append-only mode") }, 1649 /* DT WRO BK */ 1650 { SST(0x21, 0x00, SS_FATAL | EINVAL, 1651 "Logical block address out of range") }, 1652 /* DT WROM BK */ 1653 { SST(0x21, 0x01, SS_FATAL | EINVAL, 1654 "Invalid element address") }, 1655 /* R */ 1656 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ 1657 "Invalid address for write") }, 1658 /* R */ 1659 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ 1660 "Invalid write crossing layer jump") }, 1661 /* D */ 1662 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */ 1663 "Unaligned write command") }, 1664 /* D */ 1665 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */ 1666 "Write boundary violation") }, 1667 /* D */ 1668 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */ 1669 "Attempt to read invalid data") }, 1670 /* D */ 1671 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */ 1672 "Read boundary violation") }, 1673 /* D */ 1674 { SST(0x22, 0x00, SS_FATAL | EINVAL, 1675 "Illegal function (use 20 00, 24 00, or 26 00)") }, 1676 /* DT P B */ 1677 { SST(0x23, 0x00, SS_FATAL | EINVAL, 1678 "Invalid token operation, cause not reportable") }, 1679 /* DT P B */ 1680 { SST(0x23, 0x01, SS_FATAL | EINVAL, 1681 "Invalid token operation, unsupported token type") }, 1682 /* DT P B */ 1683 { SST(0x23, 0x02, SS_FATAL | EINVAL, 1684 "Invalid token operation, remote token usage not supported") }, 1685 /* DT P B */ 1686 { SST(0x23, 0x03, SS_FATAL | EINVAL, 1687 "Invalid token operation, remote ROD token creation not supported") }, 1688 /* DT P B */ 1689 { SST(0x23, 0x04, SS_FATAL | EINVAL, 1690 "Invalid token operation, token unknown") }, 1691 /* DT P B */ 1692 { SST(0x23, 0x05, SS_FATAL | EINVAL, 1693 "Invalid token operation, token corrupt") }, 1694 /* DT P B */ 1695 { SST(0x23, 0x06, SS_FATAL | EINVAL, 1696 "Invalid token operation, token revoked") }, 1697 /* DT P B */ 1698 { SST(0x23, 0x07, SS_FATAL | EINVAL, 1699 "Invalid token operation, token expired") }, 1700 /* DT P B */ 1701 { SST(0x23, 0x08, SS_FATAL | EINVAL, 1702 "Invalid token operation, token cancelled") }, 1703 /* DT P B */ 1704 { SST(0x23, 0x09, SS_FATAL | EINVAL, 1705 "Invalid token operation, token deleted") }, 1706 /* DT P B */ 1707 { SST(0x23, 0x0A, SS_FATAL | EINVAL, 1708 "Invalid token operation, invalid token length") }, 1709 /* DTLPWROMAEBKVF */ 1710 { SST(0x24, 0x00, SS_FATAL | EINVAL, 1711 "Invalid field in CDB") }, 1712 /* DTLPWRO AEBKVF */ 1713 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ 1714 "CDB decryption error") }, 1715 /* T */ 1716 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ 1717 "Obsolete") }, 1718 /* T */ 1719 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ 1720 "Obsolete") }, 1721 /* F */ 1722 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ 1723 "Security audit value frozen") }, 1724 /* F */ 1725 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ 1726 "Security working key frozen") }, 1727 /* F */ 1728 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ 1729 "NONCE not unique") }, 1730 /* F */ 1731 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ 1732 "NONCE timestamp out of range") }, 1733 /* DT R MAEBKV */ 1734 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ 1735 "Invalid XCDB") }, 1736 /* DTLPWROMAEBKVF */ 1737 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST, 1738 "Logical unit not supported") }, 1739 /* DTLPWROMAEBKVF */ 1740 { SST(0x26, 0x00, SS_FATAL | EINVAL, 1741 "Invalid field in parameter list") }, 1742 /* DTLPWROMAEBKVF */ 1743 { SST(0x26, 0x01, SS_FATAL | EINVAL, 1744 "Parameter not supported") }, 1745 /* DTLPWROMAEBKVF */ 1746 { SST(0x26, 0x02, SS_FATAL | EINVAL, 1747 "Parameter value invalid") }, 1748 /* DTLPWROMAE K */ 1749 { SST(0x26, 0x03, SS_FATAL | EINVAL, 1750 "Threshold parameters not supported") }, 1751 /* DTLPWROMAEBKVF */ 1752 { SST(0x26, 0x04, SS_FATAL | EINVAL, 1753 "Invalid release of persistent reservation") }, 1754 /* DTLPWRO A BK */ 1755 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ 1756 "Data decryption error") }, 1757 /* DTLPWRO K */ 1758 { SST(0x26, 0x06, SS_FATAL | EINVAL, 1759 "Too many target descriptors") }, 1760 /* DTLPWRO K */ 1761 { SST(0x26, 0x07, SS_FATAL | EINVAL, 1762 "Unsupported target descriptor type code") }, 1763 /* DTLPWRO K */ 1764 { SST(0x26, 0x08, SS_FATAL | EINVAL, 1765 "Too many segment descriptors") }, 1766 /* DTLPWRO K */ 1767 { SST(0x26, 0x09, SS_FATAL | EINVAL, 1768 "Unsupported segment descriptor type code") }, 1769 /* DTLPWRO K */ 1770 { SST(0x26, 0x0A, SS_FATAL | EINVAL, 1771 "Unexpected inexact segment") }, 1772 /* DTLPWRO K */ 1773 { SST(0x26, 0x0B, SS_FATAL | EINVAL, 1774 "Inline data length exceeded") }, 1775 /* DTLPWRO K */ 1776 { SST(0x26, 0x0C, SS_FATAL | EINVAL, 1777 "Invalid operation for copy source or destination") }, 1778 /* DTLPWRO K */ 1779 { SST(0x26, 0x0D, SS_FATAL | EINVAL, 1780 "Copy segment granularity violation") }, 1781 /* DT PWROMAEBK */ 1782 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ 1783 "Invalid parameter while port is enabled") }, 1784 /* F */ 1785 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ 1786 "Invalid data-out buffer integrity check value") }, 1787 /* T */ 1788 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ 1789 "Data decryption key fail limit reached") }, 1790 /* T */ 1791 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ 1792 "Incomplete key-associated data set") }, 1793 /* T */ 1794 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ 1795 "Vendor specific key reference not found") }, 1796 /* D */ 1797 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */ 1798 "Application tag mode page is invalid") }, 1799 /* DT WRO BK */ 1800 { SST(0x27, 0x00, SS_FATAL | EACCES, 1801 "Write protected") }, 1802 /* DT WRO BK */ 1803 { SST(0x27, 0x01, SS_FATAL | EACCES, 1804 "Hardware write protected") }, 1805 /* DT WRO BK */ 1806 { SST(0x27, 0x02, SS_FATAL | EACCES, 1807 "Logical unit software write protected") }, 1808 /* T R */ 1809 { SST(0x27, 0x03, SS_FATAL | EACCES, 1810 "Associated write protect") }, 1811 /* T R */ 1812 { SST(0x27, 0x04, SS_FATAL | EACCES, 1813 "Persistent write protect") }, 1814 /* T R */ 1815 { SST(0x27, 0x05, SS_FATAL | EACCES, 1816 "Permanent write protect") }, 1817 /* R F */ 1818 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ 1819 "Conditional write protect") }, 1820 /* D B */ 1821 { SST(0x27, 0x07, SS_FATAL | ENOSPC, 1822 "Space allocation failed write protect") }, 1823 /* D */ 1824 { SST(0x27, 0x08, SS_FATAL | EACCES, 1825 "Zone is read only") }, 1826 /* DTLPWROMAEBKVF */ 1827 { SST(0x28, 0x00, SS_FATAL | ENXIO, 1828 "Not ready to ready change, medium may have changed") }, 1829 /* DT WROM B */ 1830 { SST(0x28, 0x01, SS_FATAL | ENXIO, 1831 "Import or export element accessed") }, 1832 /* R */ 1833 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ 1834 "Format-layer may have changed") }, 1835 /* M */ 1836 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ 1837 "Import/export element accessed, medium changed") }, 1838 /* 1839 * XXX JGibbs - All of these should use the same errno, but I don't 1840 * think ENXIO is the correct choice. Should we borrow from 1841 * the networking errnos? ECONNRESET anyone? 1842 */ 1843 /* DTLPWROMAEBKVF */ 1844 { SST(0x29, 0x00, SS_FATAL | ENXIO, 1845 "Power on, reset, or bus device reset occurred") }, 1846 /* DTLPWROMAEBKVF */ 1847 { SST(0x29, 0x01, SS_RDEF, 1848 "Power on occurred") }, 1849 /* DTLPWROMAEBKVF */ 1850 { SST(0x29, 0x02, SS_RDEF, 1851 "SCSI bus reset occurred") }, 1852 /* DTLPWROMAEBKVF */ 1853 { SST(0x29, 0x03, SS_RDEF, 1854 "Bus device reset function occurred") }, 1855 /* DTLPWROMAEBKVF */ 1856 { SST(0x29, 0x04, SS_RDEF, 1857 "Device internal reset") }, 1858 /* DTLPWROMAEBKVF */ 1859 { SST(0x29, 0x05, SS_RDEF, 1860 "Transceiver mode changed to single-ended") }, 1861 /* DTLPWROMAEBKVF */ 1862 { SST(0x29, 0x06, SS_RDEF, 1863 "Transceiver mode changed to LVD") }, 1864 /* DTLPWROMAEBKVF */ 1865 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ 1866 "I_T nexus loss occurred") }, 1867 /* DTL WROMAEBKVF */ 1868 { SST(0x2A, 0x00, SS_RDEF, 1869 "Parameters changed") }, 1870 /* DTL WROMAEBKVF */ 1871 { SST(0x2A, 0x01, SS_RDEF, 1872 "Mode parameters changed") }, 1873 /* DTL WROMAE K */ 1874 { SST(0x2A, 0x02, SS_RDEF, 1875 "Log parameters changed") }, 1876 /* DTLPWROMAE K */ 1877 { SST(0x2A, 0x03, SS_RDEF, 1878 "Reservations preempted") }, 1879 /* DTLPWROMAE */ 1880 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ 1881 "Reservations released") }, 1882 /* DTLPWROMAE */ 1883 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ 1884 "Registrations preempted") }, 1885 /* DTLPWROMAEBKVF */ 1886 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ 1887 "Asymmetric access state changed") }, 1888 /* DTLPWROMAEBKVF */ 1889 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ 1890 "Implicit asymmetric access state transition failed") }, 1891 /* DT WROMAEBKVF */ 1892 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ 1893 "Priority changed") }, 1894 /* D */ 1895 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ 1896 "Capacity data has changed") }, 1897 /* DT */ 1898 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ 1899 "Error history I_T nexus cleared") }, 1900 /* DT */ 1901 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ 1902 "Error history snapshot released") }, 1903 /* F */ 1904 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ 1905 "Error recovery attributes have changed") }, 1906 /* T */ 1907 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ 1908 "Data encryption capabilities changed") }, 1909 /* DT M E V */ 1910 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ 1911 "Timestamp changed") }, 1912 /* T */ 1913 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ 1914 "Data encryption parameters changed by another I_T nexus") }, 1915 /* T */ 1916 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ 1917 "Data encryption parameters changed by vendor specific event") }, 1918 /* T */ 1919 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ 1920 "Data encryption key instance counter has changed") }, 1921 /* DT R MAEBKV */ 1922 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ 1923 "SA creation capabilities data has changed") }, 1924 /* T M V */ 1925 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */ 1926 "Medium removal prevention preempted") }, 1927 /* DTLPWRO K */ 1928 { SST(0x2B, 0x00, SS_RDEF, 1929 "Copy cannot execute since host cannot disconnect") }, 1930 /* DTLPWROMAEBKVF */ 1931 { SST(0x2C, 0x00, SS_RDEF, 1932 "Command sequence error") }, 1933 /* */ 1934 { SST(0x2C, 0x01, SS_RDEF, 1935 "Too many windows specified") }, 1936 /* */ 1937 { SST(0x2C, 0x02, SS_RDEF, 1938 "Invalid combination of windows specified") }, 1939 /* R */ 1940 { SST(0x2C, 0x03, SS_RDEF, 1941 "Current program area is not empty") }, 1942 /* R */ 1943 { SST(0x2C, 0x04, SS_RDEF, 1944 "Current program area is empty") }, 1945 /* B */ 1946 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ 1947 "Illegal power condition request") }, 1948 /* R */ 1949 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ 1950 "Persistent prevent conflict") }, 1951 /* DTLPWROMAEBKVF */ 1952 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ 1953 "Previous busy status") }, 1954 /* DTLPWROMAEBKVF */ 1955 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ 1956 "Previous task set full status") }, 1957 /* DTLPWROM EBKVF */ 1958 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ 1959 "Previous reservation conflict status") }, 1960 /* F */ 1961 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ 1962 "Partition or collection contains user objects") }, 1963 /* T */ 1964 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ 1965 "Not reserved") }, 1966 /* D */ 1967 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */ 1968 "ORWRITE generation does not match") }, 1969 /* D */ 1970 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */ 1971 "Reset write pointer not allowed") }, 1972 /* D */ 1973 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */ 1974 "Zone is offline") }, 1975 /* D */ 1976 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */ 1977 "Stream not open") }, 1978 /* D */ 1979 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */ 1980 "Unwritten data in zone") }, 1981 /* T */ 1982 { SST(0x2D, 0x00, SS_RDEF, 1983 "Overwrite error on update in place") }, 1984 /* R */ 1985 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ 1986 "Insufficient time for operation") }, 1987 /* D */ 1988 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */ 1989 "Command timeout before processing") }, 1990 /* D */ 1991 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */ 1992 "Command timeout during processing") }, 1993 /* D */ 1994 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */ 1995 "Command timeout during processing due to error recovery") }, 1996 /* DTLPWROMAEBKVF */ 1997 { SST(0x2F, 0x00, SS_RDEF, 1998 "Commands cleared by another initiator") }, 1999 /* D */ 2000 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ 2001 "Commands cleared by power loss notification") }, 2002 /* DTLPWROMAEBKVF */ 2003 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ 2004 "Commands cleared by device server") }, 2005 /* DTLPWROMAEBKVF */ 2006 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */ 2007 "Some commands cleared by queuing layer event") }, 2008 /* DT WROM BK */ 2009 { SST(0x30, 0x00, SS_RDEF, 2010 "Incompatible medium installed") }, 2011 /* DT WRO BK */ 2012 { SST(0x30, 0x01, SS_RDEF, 2013 "Cannot read medium - unknown format") }, 2014 /* DT WRO BK */ 2015 { SST(0x30, 0x02, SS_RDEF, 2016 "Cannot read medium - incompatible format") }, 2017 /* DT R K */ 2018 { SST(0x30, 0x03, SS_RDEF, 2019 "Cleaning cartridge installed") }, 2020 /* DT WRO BK */ 2021 { SST(0x30, 0x04, SS_RDEF, 2022 "Cannot write medium - unknown format") }, 2023 /* DT WRO BK */ 2024 { SST(0x30, 0x05, SS_RDEF, 2025 "Cannot write medium - incompatible format") }, 2026 /* DT WRO B */ 2027 { SST(0x30, 0x06, SS_RDEF, 2028 "Cannot format medium - incompatible medium") }, 2029 /* DTL WROMAEBKVF */ 2030 { SST(0x30, 0x07, SS_RDEF, 2031 "Cleaning failure") }, 2032 /* R */ 2033 { SST(0x30, 0x08, SS_RDEF, 2034 "Cannot write - application code mismatch") }, 2035 /* R */ 2036 { SST(0x30, 0x09, SS_RDEF, 2037 "Current session not fixated for append") }, 2038 /* DT WRO AEBK */ 2039 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ 2040 "Cleaning request rejected") }, 2041 /* T */ 2042 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ 2043 "WORM medium - overwrite attempted") }, 2044 /* T */ 2045 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ 2046 "WORM medium - integrity check") }, 2047 /* R */ 2048 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ 2049 "Medium not formatted") }, 2050 /* M */ 2051 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ 2052 "Incompatible volume type") }, 2053 /* M */ 2054 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ 2055 "Incompatible volume qualifier") }, 2056 /* M */ 2057 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */ 2058 "Cleaning volume expired") }, 2059 /* DT WRO BK */ 2060 { SST(0x31, 0x00, SS_RDEF, 2061 "Medium format corrupted") }, 2062 /* D L RO B */ 2063 { SST(0x31, 0x01, SS_RDEF, 2064 "Format command failed") }, 2065 /* R */ 2066 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ 2067 "Zoned formatting failed due to spare linking") }, 2068 /* D B */ 2069 { SST(0x31, 0x03, SS_RDEF, /* XXX TBD */ 2070 "SANITIZE command failed") }, 2071 /* D W O BK */ 2072 { SST(0x32, 0x00, SS_RDEF, 2073 "No defect spare location available") }, 2074 /* D W O BK */ 2075 { SST(0x32, 0x01, SS_RDEF, 2076 "Defect list update failure") }, 2077 /* T */ 2078 { SST(0x33, 0x00, SS_RDEF, 2079 "Tape length error") }, 2080 /* DTLPWROMAEBKVF */ 2081 { SST(0x34, 0x00, SS_RDEF, 2082 "Enclosure failure") }, 2083 /* DTLPWROMAEBKVF */ 2084 { SST(0x35, 0x00, SS_RDEF, 2085 "Enclosure services failure") }, 2086 /* DTLPWROMAEBKVF */ 2087 { SST(0x35, 0x01, SS_RDEF, 2088 "Unsupported enclosure function") }, 2089 /* DTLPWROMAEBKVF */ 2090 { SST(0x35, 0x02, SS_RDEF, 2091 "Enclosure services unavailable") }, 2092 /* DTLPWROMAEBKVF */ 2093 { SST(0x35, 0x03, SS_RDEF, 2094 "Enclosure services transfer failure") }, 2095 /* DTLPWROMAEBKVF */ 2096 { SST(0x35, 0x04, SS_RDEF, 2097 "Enclosure services transfer refused") }, 2098 /* DTL WROMAEBKVF */ 2099 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ 2100 "Enclosure services checksum error") }, 2101 /* L */ 2102 { SST(0x36, 0x00, SS_RDEF, 2103 "Ribbon, ink, or toner failure") }, 2104 /* DTL WROMAEBKVF */ 2105 { SST(0x37, 0x00, SS_RDEF, 2106 "Rounded parameter") }, 2107 /* B */ 2108 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ 2109 "Event status notification") }, 2110 /* B */ 2111 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ 2112 "ESN - power management class event") }, 2113 /* B */ 2114 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ 2115 "ESN - media class event") }, 2116 /* B */ 2117 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ 2118 "ESN - device busy class event") }, 2119 /* D */ 2120 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */ 2121 "Thin provisioning soft threshold reached") }, 2122 /* DTL WROMAE K */ 2123 { SST(0x39, 0x00, SS_RDEF, 2124 "Saving parameters not supported") }, 2125 /* DTL WROM BK */ 2126 { SST(0x3A, 0x00, SS_FATAL | ENXIO, 2127 "Medium not present") }, 2128 /* DT WROM BK */ 2129 { SST(0x3A, 0x01, SS_FATAL | ENXIO, 2130 "Medium not present - tray closed") }, 2131 /* DT WROM BK */ 2132 { SST(0x3A, 0x02, SS_FATAL | ENXIO, 2133 "Medium not present - tray open") }, 2134 /* DT WROM B */ 2135 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ 2136 "Medium not present - loadable") }, 2137 /* DT WRO B */ 2138 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ 2139 "Medium not present - medium auxiliary memory accessible") }, 2140 /* TL */ 2141 { SST(0x3B, 0x00, SS_RDEF, 2142 "Sequential positioning error") }, 2143 /* T */ 2144 { SST(0x3B, 0x01, SS_RDEF, 2145 "Tape position error at beginning-of-medium") }, 2146 /* T */ 2147 { SST(0x3B, 0x02, SS_RDEF, 2148 "Tape position error at end-of-medium") }, 2149 /* L */ 2150 { SST(0x3B, 0x03, SS_RDEF, 2151 "Tape or electronic vertical forms unit not ready") }, 2152 /* L */ 2153 { SST(0x3B, 0x04, SS_RDEF, 2154 "Slew failure") }, 2155 /* L */ 2156 { SST(0x3B, 0x05, SS_RDEF, 2157 "Paper jam") }, 2158 /* L */ 2159 { SST(0x3B, 0x06, SS_RDEF, 2160 "Failed to sense top-of-form") }, 2161 /* L */ 2162 { SST(0x3B, 0x07, SS_RDEF, 2163 "Failed to sense bottom-of-form") }, 2164 /* T */ 2165 { SST(0x3B, 0x08, SS_RDEF, 2166 "Reposition error") }, 2167 /* */ 2168 { SST(0x3B, 0x09, SS_RDEF, 2169 "Read past end of medium") }, 2170 /* */ 2171 { SST(0x3B, 0x0A, SS_RDEF, 2172 "Read past beginning of medium") }, 2173 /* */ 2174 { SST(0x3B, 0x0B, SS_RDEF, 2175 "Position past end of medium") }, 2176 /* T */ 2177 { SST(0x3B, 0x0C, SS_RDEF, 2178 "Position past beginning of medium") }, 2179 /* DT WROM BK */ 2180 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, 2181 "Medium destination element full") }, 2182 /* DT WROM BK */ 2183 { SST(0x3B, 0x0E, SS_RDEF, 2184 "Medium source element empty") }, 2185 /* R */ 2186 { SST(0x3B, 0x0F, SS_RDEF, 2187 "End of medium reached") }, 2188 /* DT WROM BK */ 2189 { SST(0x3B, 0x11, SS_RDEF, 2190 "Medium magazine not accessible") }, 2191 /* DT WROM BK */ 2192 { SST(0x3B, 0x12, SS_RDEF, 2193 "Medium magazine removed") }, 2194 /* DT WROM BK */ 2195 { SST(0x3B, 0x13, SS_RDEF, 2196 "Medium magazine inserted") }, 2197 /* DT WROM BK */ 2198 { SST(0x3B, 0x14, SS_RDEF, 2199 "Medium magazine locked") }, 2200 /* DT WROM BK */ 2201 { SST(0x3B, 0x15, SS_RDEF, 2202 "Medium magazine unlocked") }, 2203 /* R */ 2204 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ 2205 "Mechanical positioning or changer error") }, 2206 /* F */ 2207 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ 2208 "Read past end of user object") }, 2209 /* M */ 2210 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ 2211 "Element disabled") }, 2212 /* M */ 2213 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ 2214 "Element enabled") }, 2215 /* M */ 2216 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ 2217 "Data transfer device removed") }, 2218 /* M */ 2219 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ 2220 "Data transfer device inserted") }, 2221 /* T */ 2222 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */ 2223 "Too many logical objects on partition to support operation") }, 2224 /* DTLPWROMAE K */ 2225 { SST(0x3D, 0x00, SS_RDEF, 2226 "Invalid bits in IDENTIFY message") }, 2227 /* DTLPWROMAEBKVF */ 2228 { SST(0x3E, 0x00, SS_RDEF, 2229 "Logical unit has not self-configured yet") }, 2230 /* DTLPWROMAEBKVF */ 2231 { SST(0x3E, 0x01, SS_RDEF, 2232 "Logical unit failure") }, 2233 /* DTLPWROMAEBKVF */ 2234 { SST(0x3E, 0x02, SS_RDEF, 2235 "Timeout on logical unit") }, 2236 /* DTLPWROMAEBKVF */ 2237 { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */ 2238 "Logical unit failed self-test") }, 2239 /* DTLPWROMAEBKVF */ 2240 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ 2241 "Logical unit unable to update self-test log") }, 2242 /* DTLPWROMAEBKVF */ 2243 { SST(0x3F, 0x00, SS_RDEF, 2244 "Target operating conditions have changed") }, 2245 /* DTLPWROMAEBKVF */ 2246 { SST(0x3F, 0x01, SS_RDEF, 2247 "Microcode has been changed") }, 2248 /* DTLPWROM BK */ 2249 { SST(0x3F, 0x02, SS_RDEF, 2250 "Changed operating definition") }, 2251 /* DTLPWROMAEBKVF */ 2252 { SST(0x3F, 0x03, SS_RDEF, 2253 "INQUIRY data has changed") }, 2254 /* DT WROMAEBK */ 2255 { SST(0x3F, 0x04, SS_RDEF, 2256 "Component device attached") }, 2257 /* DT WROMAEBK */ 2258 { SST(0x3F, 0x05, SS_RDEF, 2259 "Device identifier changed") }, 2260 /* DT WROMAEB */ 2261 { SST(0x3F, 0x06, SS_RDEF, 2262 "Redundancy group created or modified") }, 2263 /* DT WROMAEB */ 2264 { SST(0x3F, 0x07, SS_RDEF, 2265 "Redundancy group deleted") }, 2266 /* DT WROMAEB */ 2267 { SST(0x3F, 0x08, SS_RDEF, 2268 "Spare created or modified") }, 2269 /* DT WROMAEB */ 2270 { SST(0x3F, 0x09, SS_RDEF, 2271 "Spare deleted") }, 2272 /* DT WROMAEBK */ 2273 { SST(0x3F, 0x0A, SS_RDEF, 2274 "Volume set created or modified") }, 2275 /* DT WROMAEBK */ 2276 { SST(0x3F, 0x0B, SS_RDEF, 2277 "Volume set deleted") }, 2278 /* DT WROMAEBK */ 2279 { SST(0x3F, 0x0C, SS_RDEF, 2280 "Volume set deassigned") }, 2281 /* DT WROMAEBK */ 2282 { SST(0x3F, 0x0D, SS_RDEF, 2283 "Volume set reassigned") }, 2284 /* DTLPWROMAE */ 2285 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN , 2286 "Reported LUNs data has changed") }, 2287 /* DTLPWROMAEBKVF */ 2288 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ 2289 "Echo buffer overwritten") }, 2290 /* DT WROM B */ 2291 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ 2292 "Medium loadable") }, 2293 /* DT WROM B */ 2294 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ 2295 "Medium auxiliary memory accessible") }, 2296 /* DTLPWR MAEBK F */ 2297 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ 2298 "iSCSI IP address added") }, 2299 /* DTLPWR MAEBK F */ 2300 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ 2301 "iSCSI IP address removed") }, 2302 /* DTLPWR MAEBK F */ 2303 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ 2304 "iSCSI IP address changed") }, 2305 /* DTLPWR MAEBK */ 2306 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */ 2307 "Inspect referrals sense descriptors") }, 2308 /* DTLPWROMAEBKVF */ 2309 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */ 2310 "Microcode has been changed without reset") }, 2311 /* D */ 2312 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */ 2313 "Zone transition to full") }, 2314 /* D */ 2315 { SST(0x40, 0x00, SS_RDEF, 2316 "RAM failure") }, /* deprecated - use 40 NN instead */ 2317 /* DTLPWROMAEBKVF */ 2318 { SST(0x40, 0x80, SS_RDEF, 2319 "Diagnostic failure: ASCQ = Component ID") }, 2320 /* DTLPWROMAEBKVF */ 2321 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, 2322 NULL) }, /* Range 0x80->0xFF */ 2323 /* D */ 2324 { SST(0x41, 0x00, SS_RDEF, 2325 "Data path failure") }, /* deprecated - use 40 NN instead */ 2326 /* D */ 2327 { SST(0x42, 0x00, SS_RDEF, 2328 "Power-on or self-test failure") }, 2329 /* deprecated - use 40 NN instead */ 2330 /* DTLPWROMAEBKVF */ 2331 { SST(0x43, 0x00, SS_RDEF, 2332 "Message error") }, 2333 /* DTLPWROMAEBKVF */ 2334 { SST(0x44, 0x00, SS_FATAL | EIO, 2335 "Internal target failure") }, 2336 /* DT P MAEBKVF */ 2337 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */ 2338 "Persistent reservation information lost") }, 2339 /* DT B */ 2340 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ 2341 "ATA device failed set features") }, 2342 /* DTLPWROMAEBKVF */ 2343 { SST(0x45, 0x00, SS_RDEF, 2344 "Select or reselect failure") }, 2345 /* DTLPWROM BK */ 2346 { SST(0x46, 0x00, SS_RDEF, 2347 "Unsuccessful soft reset") }, 2348 /* DTLPWROMAEBKVF */ 2349 { SST(0x47, 0x00, SS_RDEF, 2350 "SCSI parity error") }, 2351 /* DTLPWROMAEBKVF */ 2352 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ 2353 "Data phase CRC error detected") }, 2354 /* DTLPWROMAEBKVF */ 2355 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ 2356 "SCSI parity error detected during ST data phase") }, 2357 /* DTLPWROMAEBKVF */ 2358 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ 2359 "Information unit iuCRC error detected") }, 2360 /* DTLPWROMAEBKVF */ 2361 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ 2362 "Asynchronous information protection error detected") }, 2363 /* DTLPWROMAEBKVF */ 2364 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ 2365 "Protocol service CRC error") }, 2366 /* DT MAEBKVF */ 2367 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ 2368 "PHY test function in progress") }, 2369 /* DT PWROMAEBK */ 2370 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ 2371 "Some commands cleared by iSCSI protocol event") }, 2372 /* DTLPWROMAEBKVF */ 2373 { SST(0x48, 0x00, SS_RDEF, 2374 "Initiator detected error message received") }, 2375 /* DTLPWROMAEBKVF */ 2376 { SST(0x49, 0x00, SS_RDEF, 2377 "Invalid message error") }, 2378 /* DTLPWROMAEBKVF */ 2379 { SST(0x4A, 0x00, SS_RDEF, 2380 "Command phase error") }, 2381 /* DTLPWROMAEBKVF */ 2382 { SST(0x4B, 0x00, SS_RDEF, 2383 "Data phase error") }, 2384 /* DT PWROMAEBK */ 2385 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ 2386 "Invalid target port transfer tag received") }, 2387 /* DT PWROMAEBK */ 2388 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ 2389 "Too much write data") }, 2390 /* DT PWROMAEBK */ 2391 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ 2392 "ACK/NAK timeout") }, 2393 /* DT PWROMAEBK */ 2394 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ 2395 "NAK received") }, 2396 /* DT PWROMAEBK */ 2397 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ 2398 "Data offset error") }, 2399 /* DT PWROMAEBK */ 2400 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ 2401 "Initiator response timeout") }, 2402 /* DT PWROMAEBK F */ 2403 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */ 2404 "Connection lost") }, 2405 /* DT PWROMAEBK F */ 2406 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */ 2407 "Data-in buffer overflow - data buffer size") }, 2408 /* DT PWROMAEBK F */ 2409 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */ 2410 "Data-in buffer overflow - data buffer descriptor area") }, 2411 /* DT PWROMAEBK F */ 2412 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */ 2413 "Data-in buffer error") }, 2414 /* DT PWROMAEBK F */ 2415 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */ 2416 "Data-out buffer overflow - data buffer size") }, 2417 /* DT PWROMAEBK F */ 2418 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */ 2419 "Data-out buffer overflow - data buffer descriptor area") }, 2420 /* DT PWROMAEBK F */ 2421 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */ 2422 "Data-out buffer error") }, 2423 /* DT PWROMAEBK F */ 2424 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */ 2425 "PCIe fabric error") }, 2426 /* DT PWROMAEBK F */ 2427 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */ 2428 "PCIe completion timeout") }, 2429 /* DT PWROMAEBK F */ 2430 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */ 2431 "PCIe completer abort") }, 2432 /* DT PWROMAEBK F */ 2433 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */ 2434 "PCIe poisoned TLP received") }, 2435 /* DT PWROMAEBK F */ 2436 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */ 2437 "PCIe ECRC check failed") }, 2438 /* DT PWROMAEBK F */ 2439 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */ 2440 "PCIe unsupported request") }, 2441 /* DT PWROMAEBK F */ 2442 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */ 2443 "PCIe ACS violation") }, 2444 /* DT PWROMAEBK F */ 2445 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */ 2446 "PCIe TLP prefix blocket") }, 2447 /* DTLPWROMAEBKVF */ 2448 { SST(0x4C, 0x00, SS_RDEF, 2449 "Logical unit failed self-configuration") }, 2450 /* DTLPWROMAEBKVF */ 2451 { SST(0x4D, 0x00, SS_RDEF, 2452 "Tagged overlapped commands: ASCQ = Queue tag ID") }, 2453 /* DTLPWROMAEBKVF */ 2454 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, 2455 NULL) }, /* Range 0x00->0xFF */ 2456 /* DTLPWROMAEBKVF */ 2457 { SST(0x4E, 0x00, SS_RDEF, 2458 "Overlapped commands attempted") }, 2459 /* T */ 2460 { SST(0x50, 0x00, SS_RDEF, 2461 "Write append error") }, 2462 /* T */ 2463 { SST(0x50, 0x01, SS_RDEF, 2464 "Write append position error") }, 2465 /* T */ 2466 { SST(0x50, 0x02, SS_RDEF, 2467 "Position error related to timing") }, 2468 /* T RO */ 2469 { SST(0x51, 0x00, SS_RDEF, 2470 "Erase failure") }, 2471 /* R */ 2472 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ 2473 "Erase failure - incomplete erase operation detected") }, 2474 /* T */ 2475 { SST(0x52, 0x00, SS_RDEF, 2476 "Cartridge fault") }, 2477 /* DTL WROM BK */ 2478 { SST(0x53, 0x00, SS_RDEF, 2479 "Media load or eject failed") }, 2480 /* T */ 2481 { SST(0x53, 0x01, SS_RDEF, 2482 "Unload tape failure") }, 2483 /* DT WROM BK */ 2484 { SST(0x53, 0x02, SS_RDEF, 2485 "Medium removal prevented") }, 2486 /* M */ 2487 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ 2488 "Medium removal prevented by data transfer element") }, 2489 /* T */ 2490 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ 2491 "Medium thread or unthread failure") }, 2492 /* M */ 2493 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */ 2494 "Volume identifier invalid") }, 2495 /* T */ 2496 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */ 2497 "Volume identifier missing") }, 2498 /* M */ 2499 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */ 2500 "Duplicate volume identifier") }, 2501 /* M */ 2502 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */ 2503 "Element status unknown") }, 2504 /* M */ 2505 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */ 2506 "Data transfer device error - load failed") }, 2507 /* M */ 2508 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */ 2509 "Data transfer device error - unload failed") }, 2510 /* M */ 2511 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */ 2512 "Data transfer device error - unload missing") }, 2513 /* M */ 2514 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */ 2515 "Data transfer device error - eject failed") }, 2516 /* M */ 2517 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */ 2518 "Data transfer device error - library communication failed") }, 2519 /* P */ 2520 { SST(0x54, 0x00, SS_RDEF, 2521 "SCSI to host system interface failure") }, 2522 /* P */ 2523 { SST(0x55, 0x00, SS_RDEF, 2524 "System resource failure") }, 2525 /* D O BK */ 2526 { SST(0x55, 0x01, SS_FATAL | ENOSPC, 2527 "System buffer full") }, 2528 /* DTLPWROMAE K */ 2529 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ 2530 "Insufficient reservation resources") }, 2531 /* DTLPWROMAE K */ 2532 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ 2533 "Insufficient resources") }, 2534 /* DTLPWROMAE K */ 2535 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ 2536 "Insufficient registration resources") }, 2537 /* DT PWROMAEBK */ 2538 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ 2539 "Insufficient access control resources") }, 2540 /* DT WROM B */ 2541 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ 2542 "Auxiliary memory out of space") }, 2543 /* F */ 2544 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ 2545 "Quota error") }, 2546 /* T */ 2547 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ 2548 "Maximum number of supplemental decryption keys exceeded") }, 2549 /* M */ 2550 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ 2551 "Medium auxiliary memory not accessible") }, 2552 /* M */ 2553 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ 2554 "Data currently unavailable") }, 2555 /* DTLPWROMAEBKVF */ 2556 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */ 2557 "Insufficient power for operation") }, 2558 /* DT P B */ 2559 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */ 2560 "Insufficient resources to create ROD") }, 2561 /* DT P B */ 2562 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */ 2563 "Insufficient resources to create ROD token") }, 2564 /* D */ 2565 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */ 2566 "Insufficient zone resources") }, 2567 /* D */ 2568 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */ 2569 "Insufficient zone resources to complete write") }, 2570 /* D */ 2571 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */ 2572 "Maximum number of streams open") }, 2573 /* R */ 2574 { SST(0x57, 0x00, SS_RDEF, 2575 "Unable to recover table-of-contents") }, 2576 /* O */ 2577 { SST(0x58, 0x00, SS_RDEF, 2578 "Generation does not exist") }, 2579 /* O */ 2580 { SST(0x59, 0x00, SS_RDEF, 2581 "Updated block read") }, 2582 /* DTLPWRO BK */ 2583 { SST(0x5A, 0x00, SS_RDEF, 2584 "Operator request or state change input") }, 2585 /* DT WROM BK */ 2586 { SST(0x5A, 0x01, SS_RDEF, 2587 "Operator medium removal request") }, 2588 /* DT WRO A BK */ 2589 { SST(0x5A, 0x02, SS_RDEF, 2590 "Operator selected write protect") }, 2591 /* DT WRO A BK */ 2592 { SST(0x5A, 0x03, SS_RDEF, 2593 "Operator selected write permit") }, 2594 /* DTLPWROM K */ 2595 { SST(0x5B, 0x00, SS_RDEF, 2596 "Log exception") }, 2597 /* DTLPWROM K */ 2598 { SST(0x5B, 0x01, SS_RDEF, 2599 "Threshold condition met") }, 2600 /* DTLPWROM K */ 2601 { SST(0x5B, 0x02, SS_RDEF, 2602 "Log counter at maximum") }, 2603 /* DTLPWROM K */ 2604 { SST(0x5B, 0x03, SS_RDEF, 2605 "Log list codes exhausted") }, 2606 /* D O */ 2607 { SST(0x5C, 0x00, SS_RDEF, 2608 "RPL status change") }, 2609 /* D O */ 2610 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2611 "Spindles synchronized") }, 2612 /* D O */ 2613 { SST(0x5C, 0x02, SS_RDEF, 2614 "Spindles not synchronized") }, 2615 /* DTLPWROMAEBKVF */ 2616 { SST(0x5D, 0x00, SS_RDEF, 2617 "Failure prediction threshold exceeded") }, 2618 /* R B */ 2619 { SST(0x5D, 0x01, SS_RDEF, /* XXX TBD */ 2620 "Media failure prediction threshold exceeded") }, 2621 /* R */ 2622 { SST(0x5D, 0x02, SS_RDEF, /* XXX TBD */ 2623 "Logical unit failure prediction threshold exceeded") }, 2624 /* R */ 2625 { SST(0x5D, 0x03, SS_RDEF, /* XXX TBD */ 2626 "Spare area exhaustion prediction threshold exceeded") }, 2627 /* D B */ 2628 { SST(0x5D, 0x10, SS_RDEF, /* XXX TBD */ 2629 "Hardware impending failure general hard drive failure") }, 2630 /* D B */ 2631 { SST(0x5D, 0x11, SS_RDEF, /* XXX TBD */ 2632 "Hardware impending failure drive error rate too high") }, 2633 /* D B */ 2634 { SST(0x5D, 0x12, SS_RDEF, /* XXX TBD */ 2635 "Hardware impending failure data error rate too high") }, 2636 /* D B */ 2637 { SST(0x5D, 0x13, SS_RDEF, /* XXX TBD */ 2638 "Hardware impending failure seek error rate too high") }, 2639 /* D B */ 2640 { SST(0x5D, 0x14, SS_RDEF, /* XXX TBD */ 2641 "Hardware impending failure too many block reassigns") }, 2642 /* D B */ 2643 { SST(0x5D, 0x15, SS_RDEF, /* XXX TBD */ 2644 "Hardware impending failure access times too high") }, 2645 /* D B */ 2646 { SST(0x5D, 0x16, SS_RDEF, /* XXX TBD */ 2647 "Hardware impending failure start unit times too high") }, 2648 /* D B */ 2649 { SST(0x5D, 0x17, SS_RDEF, /* XXX TBD */ 2650 "Hardware impending failure channel parametrics") }, 2651 /* D B */ 2652 { SST(0x5D, 0x18, SS_RDEF, /* XXX TBD */ 2653 "Hardware impending failure controller detected") }, 2654 /* D B */ 2655 { SST(0x5D, 0x19, SS_RDEF, /* XXX TBD */ 2656 "Hardware impending failure throughput performance") }, 2657 /* D B */ 2658 { SST(0x5D, 0x1A, SS_RDEF, /* XXX TBD */ 2659 "Hardware impending failure seek time performance") }, 2660 /* D B */ 2661 { SST(0x5D, 0x1B, SS_RDEF, /* XXX TBD */ 2662 "Hardware impending failure spin-up retry count") }, 2663 /* D B */ 2664 { SST(0x5D, 0x1C, SS_RDEF, /* XXX TBD */ 2665 "Hardware impending failure drive calibration retry count") }, 2666 /* D B */ 2667 { SST(0x5D, 0x20, SS_RDEF, /* XXX TBD */ 2668 "Controller impending failure general hard drive failure") }, 2669 /* D B */ 2670 { SST(0x5D, 0x21, SS_RDEF, /* XXX TBD */ 2671 "Controller impending failure drive error rate too high") }, 2672 /* D B */ 2673 { SST(0x5D, 0x22, SS_RDEF, /* XXX TBD */ 2674 "Controller impending failure data error rate too high") }, 2675 /* D B */ 2676 { SST(0x5D, 0x23, SS_RDEF, /* XXX TBD */ 2677 "Controller impending failure seek error rate too high") }, 2678 /* D B */ 2679 { SST(0x5D, 0x24, SS_RDEF, /* XXX TBD */ 2680 "Controller impending failure too many block reassigns") }, 2681 /* D B */ 2682 { SST(0x5D, 0x25, SS_RDEF, /* XXX TBD */ 2683 "Controller impending failure access times too high") }, 2684 /* D B */ 2685 { SST(0x5D, 0x26, SS_RDEF, /* XXX TBD */ 2686 "Controller impending failure start unit times too high") }, 2687 /* D B */ 2688 { SST(0x5D, 0x27, SS_RDEF, /* XXX TBD */ 2689 "Controller impending failure channel parametrics") }, 2690 /* D B */ 2691 { SST(0x5D, 0x28, SS_RDEF, /* XXX TBD */ 2692 "Controller impending failure controller detected") }, 2693 /* D B */ 2694 { SST(0x5D, 0x29, SS_RDEF, /* XXX TBD */ 2695 "Controller impending failure throughput performance") }, 2696 /* D B */ 2697 { SST(0x5D, 0x2A, SS_RDEF, /* XXX TBD */ 2698 "Controller impending failure seek time performance") }, 2699 /* D B */ 2700 { SST(0x5D, 0x2B, SS_RDEF, /* XXX TBD */ 2701 "Controller impending failure spin-up retry count") }, 2702 /* D B */ 2703 { SST(0x5D, 0x2C, SS_RDEF, /* XXX TBD */ 2704 "Controller impending failure drive calibration retry count") }, 2705 /* D B */ 2706 { SST(0x5D, 0x30, SS_RDEF, /* XXX TBD */ 2707 "Data channel impending failure general hard drive failure") }, 2708 /* D B */ 2709 { SST(0x5D, 0x31, SS_RDEF, /* XXX TBD */ 2710 "Data channel impending failure drive error rate too high") }, 2711 /* D B */ 2712 { SST(0x5D, 0x32, SS_RDEF, /* XXX TBD */ 2713 "Data channel impending failure data error rate too high") }, 2714 /* D B */ 2715 { SST(0x5D, 0x33, SS_RDEF, /* XXX TBD */ 2716 "Data channel impending failure seek error rate too high") }, 2717 /* D B */ 2718 { SST(0x5D, 0x34, SS_RDEF, /* XXX TBD */ 2719 "Data channel impending failure too many block reassigns") }, 2720 /* D B */ 2721 { SST(0x5D, 0x35, SS_RDEF, /* XXX TBD */ 2722 "Data channel impending failure access times too high") }, 2723 /* D B */ 2724 { SST(0x5D, 0x36, SS_RDEF, /* XXX TBD */ 2725 "Data channel impending failure start unit times too high") }, 2726 /* D B */ 2727 { SST(0x5D, 0x37, SS_RDEF, /* XXX TBD */ 2728 "Data channel impending failure channel parametrics") }, 2729 /* D B */ 2730 { SST(0x5D, 0x38, SS_RDEF, /* XXX TBD */ 2731 "Data channel impending failure controller detected") }, 2732 /* D B */ 2733 { SST(0x5D, 0x39, SS_RDEF, /* XXX TBD */ 2734 "Data channel impending failure throughput performance") }, 2735 /* D B */ 2736 { SST(0x5D, 0x3A, SS_RDEF, /* XXX TBD */ 2737 "Data channel impending failure seek time performance") }, 2738 /* D B */ 2739 { SST(0x5D, 0x3B, SS_RDEF, /* XXX TBD */ 2740 "Data channel impending failure spin-up retry count") }, 2741 /* D B */ 2742 { SST(0x5D, 0x3C, SS_RDEF, /* XXX TBD */ 2743 "Data channel impending failure drive calibration retry count") }, 2744 /* D B */ 2745 { SST(0x5D, 0x40, SS_RDEF, /* XXX TBD */ 2746 "Servo impending failure general hard drive failure") }, 2747 /* D B */ 2748 { SST(0x5D, 0x41, SS_RDEF, /* XXX TBD */ 2749 "Servo impending failure drive error rate too high") }, 2750 /* D B */ 2751 { SST(0x5D, 0x42, SS_RDEF, /* XXX TBD */ 2752 "Servo impending failure data error rate too high") }, 2753 /* D B */ 2754 { SST(0x5D, 0x43, SS_RDEF, /* XXX TBD */ 2755 "Servo impending failure seek error rate too high") }, 2756 /* D B */ 2757 { SST(0x5D, 0x44, SS_RDEF, /* XXX TBD */ 2758 "Servo impending failure too many block reassigns") }, 2759 /* D B */ 2760 { SST(0x5D, 0x45, SS_RDEF, /* XXX TBD */ 2761 "Servo impending failure access times too high") }, 2762 /* D B */ 2763 { SST(0x5D, 0x46, SS_RDEF, /* XXX TBD */ 2764 "Servo impending failure start unit times too high") }, 2765 /* D B */ 2766 { SST(0x5D, 0x47, SS_RDEF, /* XXX TBD */ 2767 "Servo impending failure channel parametrics") }, 2768 /* D B */ 2769 { SST(0x5D, 0x48, SS_RDEF, /* XXX TBD */ 2770 "Servo impending failure controller detected") }, 2771 /* D B */ 2772 { SST(0x5D, 0x49, SS_RDEF, /* XXX TBD */ 2773 "Servo impending failure throughput performance") }, 2774 /* D B */ 2775 { SST(0x5D, 0x4A, SS_RDEF, /* XXX TBD */ 2776 "Servo impending failure seek time performance") }, 2777 /* D B */ 2778 { SST(0x5D, 0x4B, SS_RDEF, /* XXX TBD */ 2779 "Servo impending failure spin-up retry count") }, 2780 /* D B */ 2781 { SST(0x5D, 0x4C, SS_RDEF, /* XXX TBD */ 2782 "Servo impending failure drive calibration retry count") }, 2783 /* D B */ 2784 { SST(0x5D, 0x50, SS_RDEF, /* XXX TBD */ 2785 "Spindle impending failure general hard drive failure") }, 2786 /* D B */ 2787 { SST(0x5D, 0x51, SS_RDEF, /* XXX TBD */ 2788 "Spindle impending failure drive error rate too high") }, 2789 /* D B */ 2790 { SST(0x5D, 0x52, SS_RDEF, /* XXX TBD */ 2791 "Spindle impending failure data error rate too high") }, 2792 /* D B */ 2793 { SST(0x5D, 0x53, SS_RDEF, /* XXX TBD */ 2794 "Spindle impending failure seek error rate too high") }, 2795 /* D B */ 2796 { SST(0x5D, 0x54, SS_RDEF, /* XXX TBD */ 2797 "Spindle impending failure too many block reassigns") }, 2798 /* D B */ 2799 { SST(0x5D, 0x55, SS_RDEF, /* XXX TBD */ 2800 "Spindle impending failure access times too high") }, 2801 /* D B */ 2802 { SST(0x5D, 0x56, SS_RDEF, /* XXX TBD */ 2803 "Spindle impending failure start unit times too high") }, 2804 /* D B */ 2805 { SST(0x5D, 0x57, SS_RDEF, /* XXX TBD */ 2806 "Spindle impending failure channel parametrics") }, 2807 /* D B */ 2808 { SST(0x5D, 0x58, SS_RDEF, /* XXX TBD */ 2809 "Spindle impending failure controller detected") }, 2810 /* D B */ 2811 { SST(0x5D, 0x59, SS_RDEF, /* XXX TBD */ 2812 "Spindle impending failure throughput performance") }, 2813 /* D B */ 2814 { SST(0x5D, 0x5A, SS_RDEF, /* XXX TBD */ 2815 "Spindle impending failure seek time performance") }, 2816 /* D B */ 2817 { SST(0x5D, 0x5B, SS_RDEF, /* XXX TBD */ 2818 "Spindle impending failure spin-up retry count") }, 2819 /* D B */ 2820 { SST(0x5D, 0x5C, SS_RDEF, /* XXX TBD */ 2821 "Spindle impending failure drive calibration retry count") }, 2822 /* D B */ 2823 { SST(0x5D, 0x60, SS_RDEF, /* XXX TBD */ 2824 "Firmware impending failure general hard drive failure") }, 2825 /* D B */ 2826 { SST(0x5D, 0x61, SS_RDEF, /* XXX TBD */ 2827 "Firmware impending failure drive error rate too high") }, 2828 /* D B */ 2829 { SST(0x5D, 0x62, SS_RDEF, /* XXX TBD */ 2830 "Firmware impending failure data error rate too high") }, 2831 /* D B */ 2832 { SST(0x5D, 0x63, SS_RDEF, /* XXX TBD */ 2833 "Firmware impending failure seek error rate too high") }, 2834 /* D B */ 2835 { SST(0x5D, 0x64, SS_RDEF, /* XXX TBD */ 2836 "Firmware impending failure too many block reassigns") }, 2837 /* D B */ 2838 { SST(0x5D, 0x65, SS_RDEF, /* XXX TBD */ 2839 "Firmware impending failure access times too high") }, 2840 /* D B */ 2841 { SST(0x5D, 0x66, SS_RDEF, /* XXX TBD */ 2842 "Firmware impending failure start unit times too high") }, 2843 /* D B */ 2844 { SST(0x5D, 0x67, SS_RDEF, /* XXX TBD */ 2845 "Firmware impending failure channel parametrics") }, 2846 /* D B */ 2847 { SST(0x5D, 0x68, SS_RDEF, /* XXX TBD */ 2848 "Firmware impending failure controller detected") }, 2849 /* D B */ 2850 { SST(0x5D, 0x69, SS_RDEF, /* XXX TBD */ 2851 "Firmware impending failure throughput performance") }, 2852 /* D B */ 2853 { SST(0x5D, 0x6A, SS_RDEF, /* XXX TBD */ 2854 "Firmware impending failure seek time performance") }, 2855 /* D B */ 2856 { SST(0x5D, 0x6B, SS_RDEF, /* XXX TBD */ 2857 "Firmware impending failure spin-up retry count") }, 2858 /* D B */ 2859 { SST(0x5D, 0x6C, SS_RDEF, /* XXX TBD */ 2860 "Firmware impending failure drive calibration retry count") }, 2861 /* DTLPWROMAEBKVF */ 2862 { SST(0x5D, 0xFF, SS_RDEF, 2863 "Failure prediction threshold exceeded (false)") }, 2864 /* DTLPWRO A K */ 2865 { SST(0x5E, 0x00, SS_RDEF, 2866 "Low power condition on") }, 2867 /* DTLPWRO A K */ 2868 { SST(0x5E, 0x01, SS_RDEF, 2869 "Idle condition activated by timer") }, 2870 /* DTLPWRO A K */ 2871 { SST(0x5E, 0x02, SS_RDEF, 2872 "Standby condition activated by timer") }, 2873 /* DTLPWRO A K */ 2874 { SST(0x5E, 0x03, SS_RDEF, 2875 "Idle condition activated by command") }, 2876 /* DTLPWRO A K */ 2877 { SST(0x5E, 0x04, SS_RDEF, 2878 "Standby condition activated by command") }, 2879 /* DTLPWRO A K */ 2880 { SST(0x5E, 0x05, SS_RDEF, 2881 "Idle-B condition activated by timer") }, 2882 /* DTLPWRO A K */ 2883 { SST(0x5E, 0x06, SS_RDEF, 2884 "Idle-B condition activated by command") }, 2885 /* DTLPWRO A K */ 2886 { SST(0x5E, 0x07, SS_RDEF, 2887 "Idle-C condition activated by timer") }, 2888 /* DTLPWRO A K */ 2889 { SST(0x5E, 0x08, SS_RDEF, 2890 "Idle-C condition activated by command") }, 2891 /* DTLPWRO A K */ 2892 { SST(0x5E, 0x09, SS_RDEF, 2893 "Standby-Y condition activated by timer") }, 2894 /* DTLPWRO A K */ 2895 { SST(0x5E, 0x0A, SS_RDEF, 2896 "Standby-Y condition activated by command") }, 2897 /* B */ 2898 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ 2899 "Power state change to active") }, 2900 /* B */ 2901 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ 2902 "Power state change to idle") }, 2903 /* B */ 2904 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ 2905 "Power state change to standby") }, 2906 /* B */ 2907 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ 2908 "Power state change to sleep") }, 2909 /* BK */ 2910 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ 2911 "Power state change to device control") }, 2912 /* */ 2913 { SST(0x60, 0x00, SS_RDEF, 2914 "Lamp failure") }, 2915 /* */ 2916 { SST(0x61, 0x00, SS_RDEF, 2917 "Video acquisition error") }, 2918 /* */ 2919 { SST(0x61, 0x01, SS_RDEF, 2920 "Unable to acquire video") }, 2921 /* */ 2922 { SST(0x61, 0x02, SS_RDEF, 2923 "Out of focus") }, 2924 /* */ 2925 { SST(0x62, 0x00, SS_RDEF, 2926 "Scan head positioning error") }, 2927 /* R */ 2928 { SST(0x63, 0x00, SS_RDEF, 2929 "End of user area encountered on this track") }, 2930 /* R */ 2931 { SST(0x63, 0x01, SS_FATAL | ENOSPC, 2932 "Packet does not fit in available space") }, 2933 /* R */ 2934 { SST(0x64, 0x00, SS_FATAL | ENXIO, 2935 "Illegal mode for this track") }, 2936 /* R */ 2937 { SST(0x64, 0x01, SS_RDEF, 2938 "Invalid packet size") }, 2939 /* DTLPWROMAEBKVF */ 2940 { SST(0x65, 0x00, SS_RDEF, 2941 "Voltage fault") }, 2942 /* */ 2943 { SST(0x66, 0x00, SS_RDEF, 2944 "Automatic document feeder cover up") }, 2945 /* */ 2946 { SST(0x66, 0x01, SS_RDEF, 2947 "Automatic document feeder lift up") }, 2948 /* */ 2949 { SST(0x66, 0x02, SS_RDEF, 2950 "Document jam in automatic document feeder") }, 2951 /* */ 2952 { SST(0x66, 0x03, SS_RDEF, 2953 "Document miss feed automatic in document feeder") }, 2954 /* A */ 2955 { SST(0x67, 0x00, SS_RDEF, 2956 "Configuration failure") }, 2957 /* A */ 2958 { SST(0x67, 0x01, SS_RDEF, 2959 "Configuration of incapable logical units failed") }, 2960 /* A */ 2961 { SST(0x67, 0x02, SS_RDEF, 2962 "Add logical unit failed") }, 2963 /* A */ 2964 { SST(0x67, 0x03, SS_RDEF, 2965 "Modification of logical unit failed") }, 2966 /* A */ 2967 { SST(0x67, 0x04, SS_RDEF, 2968 "Exchange of logical unit failed") }, 2969 /* A */ 2970 { SST(0x67, 0x05, SS_RDEF, 2971 "Remove of logical unit failed") }, 2972 /* A */ 2973 { SST(0x67, 0x06, SS_RDEF, 2974 "Attachment of logical unit failed") }, 2975 /* A */ 2976 { SST(0x67, 0x07, SS_RDEF, 2977 "Creation of logical unit failed") }, 2978 /* A */ 2979 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ 2980 "Assign failure occurred") }, 2981 /* A */ 2982 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ 2983 "Multiply assigned logical unit") }, 2984 /* DTLPWROMAEBKVF */ 2985 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ 2986 "Set target port groups command failed") }, 2987 /* DT B */ 2988 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ 2989 "ATA device feature not enabled") }, 2990 /* A */ 2991 { SST(0x68, 0x00, SS_RDEF, 2992 "Logical unit not configured") }, 2993 /* D */ 2994 { SST(0x68, 0x01, SS_RDEF, 2995 "Subsidiary logical unit not configured") }, 2996 /* A */ 2997 { SST(0x69, 0x00, SS_RDEF, 2998 "Data loss on logical unit") }, 2999 /* A */ 3000 { SST(0x69, 0x01, SS_RDEF, 3001 "Multiple logical unit failures") }, 3002 /* A */ 3003 { SST(0x69, 0x02, SS_RDEF, 3004 "Parity/data mismatch") }, 3005 /* A */ 3006 { SST(0x6A, 0x00, SS_RDEF, 3007 "Informational, refer to log") }, 3008 /* A */ 3009 { SST(0x6B, 0x00, SS_RDEF, 3010 "State change has occurred") }, 3011 /* A */ 3012 { SST(0x6B, 0x01, SS_RDEF, 3013 "Redundancy level got better") }, 3014 /* A */ 3015 { SST(0x6B, 0x02, SS_RDEF, 3016 "Redundancy level got worse") }, 3017 /* A */ 3018 { SST(0x6C, 0x00, SS_RDEF, 3019 "Rebuild failure occurred") }, 3020 /* A */ 3021 { SST(0x6D, 0x00, SS_RDEF, 3022 "Recalculate failure occurred") }, 3023 /* A */ 3024 { SST(0x6E, 0x00, SS_RDEF, 3025 "Command to logical unit failed") }, 3026 /* R */ 3027 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ 3028 "Copy protection key exchange failure - authentication failure") }, 3029 /* R */ 3030 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ 3031 "Copy protection key exchange failure - key not present") }, 3032 /* R */ 3033 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ 3034 "Copy protection key exchange failure - key not established") }, 3035 /* R */ 3036 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ 3037 "Read of scrambled sector without authentication") }, 3038 /* R */ 3039 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ 3040 "Media region code is mismatched to logical unit region") }, 3041 /* R */ 3042 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ 3043 "Drive region must be permanent/region reset count error") }, 3044 /* R */ 3045 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ 3046 "Insufficient block count for binding NONCE recording") }, 3047 /* R */ 3048 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ 3049 "Conflict in binding NONCE recording") }, 3050 /* T */ 3051 { SST(0x70, 0x00, SS_RDEF, 3052 "Decompression exception short: ASCQ = Algorithm ID") }, 3053 /* T */ 3054 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, 3055 NULL) }, /* Range 0x00 -> 0xFF */ 3056 /* T */ 3057 { SST(0x71, 0x00, SS_RDEF, 3058 "Decompression exception long: ASCQ = Algorithm ID") }, 3059 /* T */ 3060 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, 3061 NULL) }, /* Range 0x00 -> 0xFF */ 3062 /* R */ 3063 { SST(0x72, 0x00, SS_RDEF, 3064 "Session fixation error") }, 3065 /* R */ 3066 { SST(0x72, 0x01, SS_RDEF, 3067 "Session fixation error writing lead-in") }, 3068 /* R */ 3069 { SST(0x72, 0x02, SS_RDEF, 3070 "Session fixation error writing lead-out") }, 3071 /* R */ 3072 { SST(0x72, 0x03, SS_RDEF, 3073 "Session fixation error - incomplete track in session") }, 3074 /* R */ 3075 { SST(0x72, 0x04, SS_RDEF, 3076 "Empty or partially written reserved track") }, 3077 /* R */ 3078 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ 3079 "No more track reservations allowed") }, 3080 /* R */ 3081 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ 3082 "RMZ extension is not allowed") }, 3083 /* R */ 3084 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ 3085 "No more test zone extensions are allowed") }, 3086 /* R */ 3087 { SST(0x73, 0x00, SS_RDEF, 3088 "CD control error") }, 3089 /* R */ 3090 { SST(0x73, 0x01, SS_RDEF, 3091 "Power calibration area almost full") }, 3092 /* R */ 3093 { SST(0x73, 0x02, SS_FATAL | ENOSPC, 3094 "Power calibration area is full") }, 3095 /* R */ 3096 { SST(0x73, 0x03, SS_RDEF, 3097 "Power calibration area error") }, 3098 /* R */ 3099 { SST(0x73, 0x04, SS_RDEF, 3100 "Program memory area update failure") }, 3101 /* R */ 3102 { SST(0x73, 0x05, SS_RDEF, 3103 "Program memory area is full") }, 3104 /* R */ 3105 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ 3106 "RMA/PMA is almost full") }, 3107 /* R */ 3108 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ 3109 "Current power calibration area almost full") }, 3110 /* R */ 3111 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ 3112 "Current power calibration area is full") }, 3113 /* R */ 3114 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ 3115 "RDZ is full") }, 3116 /* T */ 3117 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ 3118 "Security error") }, 3119 /* T */ 3120 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ 3121 "Unable to decrypt data") }, 3122 /* T */ 3123 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ 3124 "Unencrypted data encountered while decrypting") }, 3125 /* T */ 3126 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ 3127 "Incorrect data encryption key") }, 3128 /* T */ 3129 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ 3130 "Cryptographic integrity validation failed") }, 3131 /* T */ 3132 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ 3133 "Error decrypting data") }, 3134 /* T */ 3135 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ 3136 "Unknown signature verification key") }, 3137 /* T */ 3138 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ 3139 "Encryption parameters not useable") }, 3140 /* DT R M E VF */ 3141 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ 3142 "Digital signature validation failure") }, 3143 /* T */ 3144 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ 3145 "Encryption mode mismatch on read") }, 3146 /* T */ 3147 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ 3148 "Encrypted block not raw read enabled") }, 3149 /* T */ 3150 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ 3151 "Incorrect encryption parameters") }, 3152 /* DT R MAEBKV */ 3153 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ 3154 "Unable to decrypt parameter list") }, 3155 /* T */ 3156 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ 3157 "Encryption algorithm disabled") }, 3158 /* DT R MAEBKV */ 3159 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ 3160 "SA creation parameter value invalid") }, 3161 /* DT R MAEBKV */ 3162 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ 3163 "SA creation parameter value rejected") }, 3164 /* DT R MAEBKV */ 3165 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ 3166 "Invalid SA usage") }, 3167 /* T */ 3168 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ 3169 "Data encryption configuration prevented") }, 3170 /* DT R MAEBKV */ 3171 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ 3172 "SA creation parameter not supported") }, 3173 /* DT R MAEBKV */ 3174 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ 3175 "Authentication failed") }, 3176 /* V */ 3177 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ 3178 "External data encryption key manager access error") }, 3179 /* V */ 3180 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ 3181 "External data encryption key manager error") }, 3182 /* V */ 3183 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ 3184 "External data encryption key not found") }, 3185 /* V */ 3186 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ 3187 "External data encryption request not authorized") }, 3188 /* T */ 3189 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ 3190 "External data encryption control timeout") }, 3191 /* T */ 3192 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ 3193 "External data encryption control error") }, 3194 /* DT R M E V */ 3195 { SST(0x74, 0x71, SS_FATAL | EACCES, 3196 "Logical unit access not authorized") }, 3197 /* D */ 3198 { SST(0x74, 0x79, SS_FATAL | EACCES, 3199 "Security conflict in translated device") } 3200 }; 3201 3202 const u_int asc_table_size = nitems(asc_table); 3203 3204 struct asc_key 3205 { 3206 int asc; 3207 int ascq; 3208 }; 3209 3210 static int 3211 ascentrycomp(const void *key, const void *member) 3212 { 3213 int asc; 3214 int ascq; 3215 const struct asc_table_entry *table_entry; 3216 3217 asc = ((const struct asc_key *)key)->asc; 3218 ascq = ((const struct asc_key *)key)->ascq; 3219 table_entry = (const struct asc_table_entry *)member; 3220 3221 if (asc >= table_entry->asc) { 3222 3223 if (asc > table_entry->asc) 3224 return (1); 3225 3226 if (ascq <= table_entry->ascq) { 3227 /* Check for ranges */ 3228 if (ascq == table_entry->ascq 3229 || ((table_entry->action & SSQ_RANGE) != 0 3230 && ascq >= (table_entry - 1)->ascq)) 3231 return (0); 3232 return (-1); 3233 } 3234 return (1); 3235 } 3236 return (-1); 3237 } 3238 3239 static int 3240 senseentrycomp(const void *key, const void *member) 3241 { 3242 int sense_key; 3243 const struct sense_key_table_entry *table_entry; 3244 3245 sense_key = *((const int *)key); 3246 table_entry = (const struct sense_key_table_entry *)member; 3247 3248 if (sense_key >= table_entry->sense_key) { 3249 if (sense_key == table_entry->sense_key) 3250 return (0); 3251 return (1); 3252 } 3253 return (-1); 3254 } 3255 3256 static void 3257 fetchtableentries(int sense_key, int asc, int ascq, 3258 struct scsi_inquiry_data *inq_data, 3259 const struct sense_key_table_entry **sense_entry, 3260 const struct asc_table_entry **asc_entry) 3261 { 3262 caddr_t match; 3263 const struct asc_table_entry *asc_tables[2]; 3264 const struct sense_key_table_entry *sense_tables[2]; 3265 struct asc_key asc_ascq; 3266 size_t asc_tables_size[2]; 3267 size_t sense_tables_size[2]; 3268 int num_asc_tables; 3269 int num_sense_tables; 3270 int i; 3271 3272 /* Default to failure */ 3273 *sense_entry = NULL; 3274 *asc_entry = NULL; 3275 match = NULL; 3276 if (inq_data != NULL) 3277 match = cam_quirkmatch((caddr_t)inq_data, 3278 (caddr_t)sense_quirk_table, 3279 sense_quirk_table_size, 3280 sizeof(*sense_quirk_table), 3281 scsi_inquiry_match); 3282 3283 if (match != NULL) { 3284 struct scsi_sense_quirk_entry *quirk; 3285 3286 quirk = (struct scsi_sense_quirk_entry *)match; 3287 asc_tables[0] = quirk->asc_info; 3288 asc_tables_size[0] = quirk->num_ascs; 3289 asc_tables[1] = asc_table; 3290 asc_tables_size[1] = asc_table_size; 3291 num_asc_tables = 2; 3292 sense_tables[0] = quirk->sense_key_info; 3293 sense_tables_size[0] = quirk->num_sense_keys; 3294 sense_tables[1] = sense_key_table; 3295 sense_tables_size[1] = nitems(sense_key_table); 3296 num_sense_tables = 2; 3297 } else { 3298 asc_tables[0] = asc_table; 3299 asc_tables_size[0] = asc_table_size; 3300 num_asc_tables = 1; 3301 sense_tables[0] = sense_key_table; 3302 sense_tables_size[0] = nitems(sense_key_table); 3303 num_sense_tables = 1; 3304 } 3305 3306 asc_ascq.asc = asc; 3307 asc_ascq.ascq = ascq; 3308 for (i = 0; i < num_asc_tables; i++) { 3309 void *found_entry; 3310 3311 found_entry = bsearch(&asc_ascq, asc_tables[i], 3312 asc_tables_size[i], 3313 sizeof(**asc_tables), 3314 ascentrycomp); 3315 3316 if (found_entry) { 3317 *asc_entry = (struct asc_table_entry *)found_entry; 3318 break; 3319 } 3320 } 3321 3322 for (i = 0; i < num_sense_tables; i++) { 3323 void *found_entry; 3324 3325 found_entry = bsearch(&sense_key, sense_tables[i], 3326 sense_tables_size[i], 3327 sizeof(**sense_tables), 3328 senseentrycomp); 3329 3330 if (found_entry) { 3331 *sense_entry = 3332 (struct sense_key_table_entry *)found_entry; 3333 break; 3334 } 3335 } 3336 } 3337 3338 void 3339 scsi_sense_desc(int sense_key, int asc, int ascq, 3340 struct scsi_inquiry_data *inq_data, 3341 const char **sense_key_desc, const char **asc_desc) 3342 { 3343 const struct asc_table_entry *asc_entry; 3344 const struct sense_key_table_entry *sense_entry; 3345 3346 fetchtableentries(sense_key, asc, ascq, 3347 inq_data, 3348 &sense_entry, 3349 &asc_entry); 3350 3351 if (sense_entry != NULL) 3352 *sense_key_desc = sense_entry->desc; 3353 else 3354 *sense_key_desc = "Invalid Sense Key"; 3355 3356 if (asc_entry != NULL) 3357 *asc_desc = asc_entry->desc; 3358 else if (asc >= 0x80 && asc <= 0xff) 3359 *asc_desc = "Vendor Specific ASC"; 3360 else if (ascq >= 0x80 && ascq <= 0xff) 3361 *asc_desc = "Vendor Specific ASCQ"; 3362 else 3363 *asc_desc = "Reserved ASC/ASCQ pair"; 3364 } 3365 3366 /* 3367 * Given sense and device type information, return the appropriate action. 3368 * If we do not understand the specific error as identified by the ASC/ASCQ 3369 * pair, fall back on the more generic actions derived from the sense key. 3370 */ 3371 scsi_sense_action 3372 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, 3373 u_int32_t sense_flags) 3374 { 3375 const struct asc_table_entry *asc_entry; 3376 const struct sense_key_table_entry *sense_entry; 3377 int error_code, sense_key, asc, ascq; 3378 scsi_sense_action action; 3379 3380 if (!scsi_extract_sense_ccb((union ccb *)csio, 3381 &error_code, &sense_key, &asc, &ascq)) { 3382 action = SS_RETRY | SSQ_DECREMENT_COUNT | SSQ_PRINT_SENSE | EIO; 3383 } else if ((error_code == SSD_DEFERRED_ERROR) 3384 || (error_code == SSD_DESC_DEFERRED_ERROR)) { 3385 /* 3386 * XXX dufault@FreeBSD.org 3387 * This error doesn't relate to the command associated 3388 * with this request sense. A deferred error is an error 3389 * for a command that has already returned GOOD status 3390 * (see SCSI2 8.2.14.2). 3391 * 3392 * By my reading of that section, it looks like the current 3393 * command has been cancelled, we should now clean things up 3394 * (hopefully recovering any lost data) and then retry the 3395 * current command. There are two easy choices, both wrong: 3396 * 3397 * 1. Drop through (like we had been doing), thus treating 3398 * this as if the error were for the current command and 3399 * return and stop the current command. 3400 * 3401 * 2. Issue a retry (like I made it do) thus hopefully 3402 * recovering the current transfer, and ignoring the 3403 * fact that we've dropped a command. 3404 * 3405 * These should probably be handled in a device specific 3406 * sense handler or punted back up to a user mode daemon 3407 */ 3408 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3409 } else { 3410 fetchtableentries(sense_key, asc, ascq, 3411 inq_data, 3412 &sense_entry, 3413 &asc_entry); 3414 3415 /* 3416 * Override the 'No additional Sense' entry (0,0) 3417 * with the error action of the sense key. 3418 */ 3419 if (asc_entry != NULL 3420 && (asc != 0 || ascq != 0)) 3421 action = asc_entry->action; 3422 else if (sense_entry != NULL) 3423 action = sense_entry->action; 3424 else 3425 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3426 3427 if (sense_key == SSD_KEY_RECOVERED_ERROR) { 3428 /* 3429 * The action succeeded but the device wants 3430 * the user to know that some recovery action 3431 * was required. 3432 */ 3433 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); 3434 action |= SS_NOP|SSQ_PRINT_SENSE; 3435 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { 3436 if ((sense_flags & SF_QUIET_IR) != 0) 3437 action &= ~SSQ_PRINT_SENSE; 3438 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { 3439 if ((sense_flags & SF_RETRY_UA) != 0 3440 && (action & SS_MASK) == SS_FAIL) { 3441 action &= ~(SS_MASK|SSQ_MASK); 3442 action |= SS_RETRY|SSQ_DECREMENT_COUNT| 3443 SSQ_PRINT_SENSE; 3444 } 3445 action |= SSQ_UA; 3446 } 3447 } 3448 if ((action & SS_MASK) >= SS_START && 3449 (sense_flags & SF_NO_RECOVERY)) { 3450 action &= ~SS_MASK; 3451 action |= SS_FAIL; 3452 } else if ((action & SS_MASK) == SS_RETRY && 3453 (sense_flags & SF_NO_RETRY)) { 3454 action &= ~SS_MASK; 3455 action |= SS_FAIL; 3456 } 3457 if ((sense_flags & SF_PRINT_ALWAYS) != 0) 3458 action |= SSQ_PRINT_SENSE; 3459 else if ((sense_flags & SF_NO_PRINT) != 0) 3460 action &= ~SSQ_PRINT_SENSE; 3461 3462 return (action); 3463 } 3464 3465 char * 3466 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len) 3467 { 3468 struct sbuf sb; 3469 int error; 3470 3471 if (len == 0) 3472 return (""); 3473 3474 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN); 3475 3476 scsi_cdb_sbuf(cdb_ptr, &sb); 3477 3478 /* ENOMEM just means that the fixed buffer is full, OK to ignore */ 3479 error = sbuf_finish(&sb); 3480 if (error != 0 && error != ENOMEM) 3481 return (""); 3482 3483 return(sbuf_data(&sb)); 3484 } 3485 3486 void 3487 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb) 3488 { 3489 u_int8_t cdb_len; 3490 int i; 3491 3492 if (cdb_ptr == NULL) 3493 return; 3494 3495 /* 3496 * This is taken from the SCSI-3 draft spec. 3497 * (T10/1157D revision 0.3) 3498 * The top 3 bits of an opcode are the group code. The next 5 bits 3499 * are the command code. 3500 * Group 0: six byte commands 3501 * Group 1: ten byte commands 3502 * Group 2: ten byte commands 3503 * Group 3: reserved 3504 * Group 4: sixteen byte commands 3505 * Group 5: twelve byte commands 3506 * Group 6: vendor specific 3507 * Group 7: vendor specific 3508 */ 3509 switch((*cdb_ptr >> 5) & 0x7) { 3510 case 0: 3511 cdb_len = 6; 3512 break; 3513 case 1: 3514 case 2: 3515 cdb_len = 10; 3516 break; 3517 case 3: 3518 case 6: 3519 case 7: 3520 /* in this case, just print out the opcode */ 3521 cdb_len = 1; 3522 break; 3523 case 4: 3524 cdb_len = 16; 3525 break; 3526 case 5: 3527 cdb_len = 12; 3528 break; 3529 } 3530 3531 for (i = 0; i < cdb_len; i++) 3532 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]); 3533 3534 return; 3535 } 3536 3537 const char * 3538 scsi_status_string(struct ccb_scsiio *csio) 3539 { 3540 switch(csio->scsi_status) { 3541 case SCSI_STATUS_OK: 3542 return("OK"); 3543 case SCSI_STATUS_CHECK_COND: 3544 return("Check Condition"); 3545 case SCSI_STATUS_BUSY: 3546 return("Busy"); 3547 case SCSI_STATUS_INTERMED: 3548 return("Intermediate"); 3549 case SCSI_STATUS_INTERMED_COND_MET: 3550 return("Intermediate-Condition Met"); 3551 case SCSI_STATUS_RESERV_CONFLICT: 3552 return("Reservation Conflict"); 3553 case SCSI_STATUS_CMD_TERMINATED: 3554 return("Command Terminated"); 3555 case SCSI_STATUS_QUEUE_FULL: 3556 return("Queue Full"); 3557 case SCSI_STATUS_ACA_ACTIVE: 3558 return("ACA Active"); 3559 case SCSI_STATUS_TASK_ABORTED: 3560 return("Task Aborted"); 3561 default: { 3562 static char unkstr[64]; 3563 snprintf(unkstr, sizeof(unkstr), "Unknown %#x", 3564 csio->scsi_status); 3565 return(unkstr); 3566 } 3567 } 3568 } 3569 3570 /* 3571 * scsi_command_string() returns 0 for success and -1 for failure. 3572 */ 3573 #ifdef _KERNEL 3574 int 3575 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) 3576 #else /* !_KERNEL */ 3577 int 3578 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, 3579 struct sbuf *sb) 3580 #endif /* _KERNEL/!_KERNEL */ 3581 { 3582 struct scsi_inquiry_data *inq_data; 3583 #ifdef _KERNEL 3584 struct ccb_getdev *cgd; 3585 #endif /* _KERNEL */ 3586 3587 #ifdef _KERNEL 3588 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 3589 return(-1); 3590 /* 3591 * Get the device information. 3592 */ 3593 xpt_setup_ccb(&cgd->ccb_h, 3594 csio->ccb_h.path, 3595 CAM_PRIORITY_NORMAL); 3596 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 3597 xpt_action((union ccb *)cgd); 3598 3599 /* 3600 * If the device is unconfigured, just pretend that it is a hard 3601 * drive. scsi_op_desc() needs this. 3602 */ 3603 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 3604 cgd->inq_data.device = T_DIRECT; 3605 3606 inq_data = &cgd->inq_data; 3607 3608 #else /* !_KERNEL */ 3609 3610 inq_data = &device->inq_data; 3611 3612 #endif /* _KERNEL/!_KERNEL */ 3613 3614 if ((csio->ccb_h.flags & CAM_CDB_POINTER) != 0) { 3615 sbuf_printf(sb, "%s. CDB: ", 3616 scsi_op_desc(csio->cdb_io.cdb_ptr[0], inq_data)); 3617 scsi_cdb_sbuf(csio->cdb_io.cdb_ptr, sb); 3618 } else { 3619 sbuf_printf(sb, "%s. CDB: ", 3620 scsi_op_desc(csio->cdb_io.cdb_bytes[0], inq_data)); 3621 scsi_cdb_sbuf(csio->cdb_io.cdb_bytes, sb); 3622 } 3623 3624 #ifdef _KERNEL 3625 xpt_free_ccb((union ccb *)cgd); 3626 #endif 3627 3628 return(0); 3629 } 3630 3631 /* 3632 * Iterate over sense descriptors. Each descriptor is passed into iter_func(). 3633 * If iter_func() returns 0, list traversal continues. If iter_func() 3634 * returns non-zero, list traversal is stopped. 3635 */ 3636 void 3637 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, 3638 int (*iter_func)(struct scsi_sense_data_desc *sense, 3639 u_int, struct scsi_sense_desc_header *, 3640 void *), void *arg) 3641 { 3642 int cur_pos; 3643 int desc_len; 3644 3645 /* 3646 * First make sure the extra length field is present. 3647 */ 3648 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) 3649 return; 3650 3651 /* 3652 * The length of data actually returned may be different than the 3653 * extra_len recorded in the structure. 3654 */ 3655 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); 3656 3657 /* 3658 * Limit this further by the extra length reported, and the maximum 3659 * allowed extra length. 3660 */ 3661 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); 3662 3663 /* 3664 * Subtract the size of the header from the descriptor length. 3665 * This is to ensure that we have at least the header left, so we 3666 * don't have to check that inside the loop. This can wind up 3667 * being a negative value. 3668 */ 3669 desc_len -= sizeof(struct scsi_sense_desc_header); 3670 3671 for (cur_pos = 0; cur_pos < desc_len;) { 3672 struct scsi_sense_desc_header *header; 3673 3674 header = (struct scsi_sense_desc_header *) 3675 &sense->sense_desc[cur_pos]; 3676 3677 /* 3678 * Check to make sure we have the entire descriptor. We 3679 * don't call iter_func() unless we do. 3680 * 3681 * Note that although cur_pos is at the beginning of the 3682 * descriptor, desc_len already has the header length 3683 * subtracted. So the comparison of the length in the 3684 * header (which does not include the header itself) to 3685 * desc_len - cur_pos is correct. 3686 */ 3687 if (header->length > (desc_len - cur_pos)) 3688 break; 3689 3690 if (iter_func(sense, sense_len, header, arg) != 0) 3691 break; 3692 3693 cur_pos += sizeof(*header) + header->length; 3694 } 3695 } 3696 3697 struct scsi_find_desc_info { 3698 uint8_t desc_type; 3699 struct scsi_sense_desc_header *header; 3700 }; 3701 3702 static int 3703 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 3704 struct scsi_sense_desc_header *header, void *arg) 3705 { 3706 struct scsi_find_desc_info *desc_info; 3707 3708 desc_info = (struct scsi_find_desc_info *)arg; 3709 3710 if (header->desc_type == desc_info->desc_type) { 3711 desc_info->header = header; 3712 3713 /* We found the descriptor, tell the iterator to stop. */ 3714 return (1); 3715 } else 3716 return (0); 3717 } 3718 3719 /* 3720 * Given a descriptor type, return a pointer to it if it is in the sense 3721 * data and not truncated. Avoiding truncating sense data will simplify 3722 * things significantly for the caller. 3723 */ 3724 uint8_t * 3725 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, 3726 uint8_t desc_type) 3727 { 3728 struct scsi_find_desc_info desc_info; 3729 3730 desc_info.desc_type = desc_type; 3731 desc_info.header = NULL; 3732 3733 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); 3734 3735 return ((uint8_t *)desc_info.header); 3736 } 3737 3738 /* 3739 * Fill in SCSI sense data with the specified parameters. This routine can 3740 * fill in either fixed or descriptor type sense data. 3741 */ 3742 void 3743 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, 3744 scsi_sense_data_type sense_format, int current_error, 3745 int sense_key, int asc, int ascq, va_list ap) 3746 { 3747 int descriptor_sense; 3748 scsi_sense_elem_type elem_type; 3749 3750 /* 3751 * Determine whether to return fixed or descriptor format sense 3752 * data. If the user specifies SSD_TYPE_NONE for some reason, 3753 * they'll just get fixed sense data. 3754 */ 3755 if (sense_format == SSD_TYPE_DESC) 3756 descriptor_sense = 1; 3757 else 3758 descriptor_sense = 0; 3759 3760 /* 3761 * Zero the sense data, so that we don't pass back any garbage data 3762 * to the user. 3763 */ 3764 memset(sense_data, 0, sizeof(*sense_data)); 3765 3766 if (descriptor_sense != 0) { 3767 struct scsi_sense_data_desc *sense; 3768 3769 sense = (struct scsi_sense_data_desc *)sense_data; 3770 /* 3771 * The descriptor sense format eliminates the use of the 3772 * valid bit. 3773 */ 3774 if (current_error != 0) 3775 sense->error_code = SSD_DESC_CURRENT_ERROR; 3776 else 3777 sense->error_code = SSD_DESC_DEFERRED_ERROR; 3778 sense->sense_key = sense_key; 3779 sense->add_sense_code = asc; 3780 sense->add_sense_code_qual = ascq; 3781 /* 3782 * Start off with no extra length, since the above data 3783 * fits in the standard descriptor sense information. 3784 */ 3785 sense->extra_len = 0; 3786 while ((elem_type = (scsi_sense_elem_type)va_arg(ap, 3787 scsi_sense_elem_type)) != SSD_ELEM_NONE) { 3788 int sense_len, len_to_copy; 3789 uint8_t *data; 3790 3791 if (elem_type >= SSD_ELEM_MAX) { 3792 printf("%s: invalid sense type %d\n", __func__, 3793 elem_type); 3794 break; 3795 } 3796 3797 sense_len = (int)va_arg(ap, int); 3798 len_to_copy = MIN(sense_len, SSD_EXTRA_MAX - 3799 sense->extra_len); 3800 data = (uint8_t *)va_arg(ap, uint8_t *); 3801 3802 /* 3803 * We've already consumed the arguments for this one. 3804 */ 3805 if (elem_type == SSD_ELEM_SKIP) 3806 continue; 3807 3808 switch (elem_type) { 3809 case SSD_ELEM_DESC: { 3810 3811 /* 3812 * This is a straight descriptor. All we 3813 * need to do is copy the data in. 3814 */ 3815 bcopy(data, &sense->sense_desc[ 3816 sense->extra_len], len_to_copy); 3817 sense->extra_len += len_to_copy; 3818 break; 3819 } 3820 case SSD_ELEM_SKS: { 3821 struct scsi_sense_sks sks; 3822 3823 bzero(&sks, sizeof(sks)); 3824 3825 /* 3826 * This is already-formatted sense key 3827 * specific data. We just need to fill out 3828 * the header and copy everything in. 3829 */ 3830 bcopy(data, &sks.sense_key_spec, 3831 MIN(len_to_copy, 3832 sizeof(sks.sense_key_spec))); 3833 3834 sks.desc_type = SSD_DESC_SKS; 3835 sks.length = sizeof(sks) - 3836 offsetof(struct scsi_sense_sks, reserved1); 3837 bcopy(&sks,&sense->sense_desc[sense->extra_len], 3838 sizeof(sks)); 3839 sense->extra_len += sizeof(sks); 3840 break; 3841 } 3842 case SSD_ELEM_INFO: 3843 case SSD_ELEM_COMMAND: { 3844 struct scsi_sense_command cmd; 3845 struct scsi_sense_info info; 3846 uint8_t *data_dest; 3847 uint8_t *descriptor; 3848 int descriptor_size, i, copy_len; 3849 3850 bzero(&cmd, sizeof(cmd)); 3851 bzero(&info, sizeof(info)); 3852 3853 /* 3854 * Command or information data. The 3855 * operate in pretty much the same way. 3856 */ 3857 if (elem_type == SSD_ELEM_COMMAND) { 3858 len_to_copy = MIN(len_to_copy, 3859 sizeof(cmd.command_info)); 3860 descriptor = (uint8_t *)&cmd; 3861 descriptor_size = sizeof(cmd); 3862 data_dest =(uint8_t *)&cmd.command_info; 3863 cmd.desc_type = SSD_DESC_COMMAND; 3864 cmd.length = sizeof(cmd) - 3865 offsetof(struct scsi_sense_command, 3866 reserved); 3867 } else { 3868 len_to_copy = MIN(len_to_copy, 3869 sizeof(info.info)); 3870 descriptor = (uint8_t *)&info; 3871 descriptor_size = sizeof(cmd); 3872 data_dest = (uint8_t *)&info.info; 3873 info.desc_type = SSD_DESC_INFO; 3874 info.byte2 = SSD_INFO_VALID; 3875 info.length = sizeof(info) - 3876 offsetof(struct scsi_sense_info, 3877 byte2); 3878 } 3879 3880 /* 3881 * Copy this in reverse because the spec 3882 * (SPC-4) says that when 4 byte quantities 3883 * are stored in this 8 byte field, the 3884 * first four bytes shall be 0. 3885 * 3886 * So we fill the bytes in from the end, and 3887 * if we have less than 8 bytes to copy, 3888 * the initial, most significant bytes will 3889 * be 0. 3890 */ 3891 for (i = sense_len - 1; i >= 0 && 3892 len_to_copy > 0; i--, len_to_copy--) 3893 data_dest[len_to_copy - 1] = data[i]; 3894 3895 /* 3896 * This calculation looks much like the 3897 * initial len_to_copy calculation, but 3898 * we have to do it again here, because 3899 * we're looking at a larger amount that 3900 * may or may not fit. It's not only the 3901 * data the user passed in, but also the 3902 * rest of the descriptor. 3903 */ 3904 copy_len = MIN(descriptor_size, 3905 SSD_EXTRA_MAX - sense->extra_len); 3906 bcopy(descriptor, &sense->sense_desc[ 3907 sense->extra_len], copy_len); 3908 sense->extra_len += copy_len; 3909 break; 3910 } 3911 case SSD_ELEM_FRU: { 3912 struct scsi_sense_fru fru; 3913 int copy_len; 3914 3915 bzero(&fru, sizeof(fru)); 3916 3917 fru.desc_type = SSD_DESC_FRU; 3918 fru.length = sizeof(fru) - 3919 offsetof(struct scsi_sense_fru, reserved); 3920 fru.fru = *data; 3921 3922 copy_len = MIN(sizeof(fru), SSD_EXTRA_MAX - 3923 sense->extra_len); 3924 bcopy(&fru, &sense->sense_desc[ 3925 sense->extra_len], copy_len); 3926 sense->extra_len += copy_len; 3927 break; 3928 } 3929 case SSD_ELEM_STREAM: { 3930 struct scsi_sense_stream stream_sense; 3931 int copy_len; 3932 3933 bzero(&stream_sense, sizeof(stream_sense)); 3934 stream_sense.desc_type = SSD_DESC_STREAM; 3935 stream_sense.length = sizeof(stream_sense) - 3936 offsetof(struct scsi_sense_stream, reserved); 3937 stream_sense.byte3 = *data; 3938 3939 copy_len = MIN(sizeof(stream_sense), 3940 SSD_EXTRA_MAX - sense->extra_len); 3941 bcopy(&stream_sense, &sense->sense_desc[ 3942 sense->extra_len], copy_len); 3943 sense->extra_len += copy_len; 3944 break; 3945 } 3946 default: 3947 /* 3948 * We shouldn't get here, but if we do, do 3949 * nothing. We've already consumed the 3950 * arguments above. 3951 */ 3952 break; 3953 } 3954 } 3955 } else { 3956 struct scsi_sense_data_fixed *sense; 3957 3958 sense = (struct scsi_sense_data_fixed *)sense_data; 3959 3960 if (current_error != 0) 3961 sense->error_code = SSD_CURRENT_ERROR; 3962 else 3963 sense->error_code = SSD_DEFERRED_ERROR; 3964 3965 sense->flags = sense_key; 3966 sense->add_sense_code = asc; 3967 sense->add_sense_code_qual = ascq; 3968 /* 3969 * We've set the ASC and ASCQ, so we have 6 more bytes of 3970 * valid data. If we wind up setting any of the other 3971 * fields, we'll bump this to 10 extra bytes. 3972 */ 3973 sense->extra_len = 6; 3974 3975 while ((elem_type = (scsi_sense_elem_type)va_arg(ap, 3976 scsi_sense_elem_type)) != SSD_ELEM_NONE) { 3977 int sense_len, len_to_copy; 3978 uint8_t *data; 3979 3980 if (elem_type >= SSD_ELEM_MAX) { 3981 printf("%s: invalid sense type %d\n", __func__, 3982 elem_type); 3983 break; 3984 } 3985 /* 3986 * If we get in here, just bump the extra length to 3987 * 10 bytes. That will encompass anything we're 3988 * going to set here. 3989 */ 3990 sense->extra_len = 10; 3991 sense_len = (int)va_arg(ap, int); 3992 data = (uint8_t *)va_arg(ap, uint8_t *); 3993 3994 switch (elem_type) { 3995 case SSD_ELEM_SKS: 3996 /* 3997 * The user passed in pre-formatted sense 3998 * key specific data. 3999 */ 4000 bcopy(data, &sense->sense_key_spec[0], 4001 MIN(sizeof(sense->sense_key_spec), 4002 sense_len)); 4003 break; 4004 case SSD_ELEM_INFO: 4005 case SSD_ELEM_COMMAND: { 4006 uint8_t *data_dest; 4007 int i; 4008 4009 if (elem_type == SSD_ELEM_COMMAND) { 4010 data_dest = &sense->cmd_spec_info[0]; 4011 len_to_copy = MIN(sense_len, 4012 sizeof(sense->cmd_spec_info)); 4013 } else { 4014 data_dest = &sense->info[0]; 4015 len_to_copy = MIN(sense_len, 4016 sizeof(sense->info)); 4017 /* 4018 * We're setting the info field, so 4019 * set the valid bit. 4020 */ 4021 sense->error_code |= SSD_ERRCODE_VALID; 4022 } 4023 4024 /* 4025 * Copy this in reverse so that if we have 4026 * less than 4 bytes to fill, the least 4027 * significant bytes will be at the end. 4028 * If we have more than 4 bytes, only the 4029 * least significant bytes will be included. 4030 */ 4031 for (i = sense_len - 1; i >= 0 && 4032 len_to_copy > 0; i--, len_to_copy--) 4033 data_dest[len_to_copy - 1] = data[i]; 4034 4035 break; 4036 } 4037 case SSD_ELEM_FRU: 4038 sense->fru = *data; 4039 break; 4040 case SSD_ELEM_STREAM: 4041 sense->flags |= *data; 4042 break; 4043 case SSD_ELEM_DESC: 4044 default: 4045 4046 /* 4047 * If the user passes in descriptor sense, 4048 * we can't handle that in fixed format. 4049 * So just skip it, and any unknown argument 4050 * types. 4051 */ 4052 break; 4053 } 4054 } 4055 } 4056 } 4057 4058 void 4059 scsi_set_sense_data(struct scsi_sense_data *sense_data, 4060 scsi_sense_data_type sense_format, int current_error, 4061 int sense_key, int asc, int ascq, ...) 4062 { 4063 va_list ap; 4064 4065 va_start(ap, ascq); 4066 scsi_set_sense_data_va(sense_data, sense_format, current_error, 4067 sense_key, asc, ascq, ap); 4068 va_end(ap); 4069 } 4070 4071 /* 4072 * Get sense information for three similar sense data types. 4073 */ 4074 int 4075 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, 4076 uint8_t info_type, uint64_t *info, int64_t *signed_info) 4077 { 4078 scsi_sense_data_type sense_type; 4079 4080 if (sense_len == 0) 4081 goto bailout; 4082 4083 sense_type = scsi_sense_type(sense_data); 4084 4085 switch (sense_type) { 4086 case SSD_TYPE_DESC: { 4087 struct scsi_sense_data_desc *sense; 4088 uint8_t *desc; 4089 4090 sense = (struct scsi_sense_data_desc *)sense_data; 4091 4092 desc = scsi_find_desc(sense, sense_len, info_type); 4093 if (desc == NULL) 4094 goto bailout; 4095 4096 switch (info_type) { 4097 case SSD_DESC_INFO: { 4098 struct scsi_sense_info *info_desc; 4099 4100 info_desc = (struct scsi_sense_info *)desc; 4101 *info = scsi_8btou64(info_desc->info); 4102 if (signed_info != NULL) 4103 *signed_info = *info; 4104 break; 4105 } 4106 case SSD_DESC_COMMAND: { 4107 struct scsi_sense_command *cmd_desc; 4108 4109 cmd_desc = (struct scsi_sense_command *)desc; 4110 4111 *info = scsi_8btou64(cmd_desc->command_info); 4112 if (signed_info != NULL) 4113 *signed_info = *info; 4114 break; 4115 } 4116 case SSD_DESC_FRU: { 4117 struct scsi_sense_fru *fru_desc; 4118 4119 fru_desc = (struct scsi_sense_fru *)desc; 4120 4121 *info = fru_desc->fru; 4122 if (signed_info != NULL) 4123 *signed_info = (int8_t)fru_desc->fru; 4124 break; 4125 } 4126 default: 4127 goto bailout; 4128 break; 4129 } 4130 break; 4131 } 4132 case SSD_TYPE_FIXED: { 4133 struct scsi_sense_data_fixed *sense; 4134 4135 sense = (struct scsi_sense_data_fixed *)sense_data; 4136 4137 switch (info_type) { 4138 case SSD_DESC_INFO: { 4139 uint32_t info_val; 4140 4141 if ((sense->error_code & SSD_ERRCODE_VALID) == 0) 4142 goto bailout; 4143 4144 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) 4145 goto bailout; 4146 4147 info_val = scsi_4btoul(sense->info); 4148 4149 *info = info_val; 4150 if (signed_info != NULL) 4151 *signed_info = (int32_t)info_val; 4152 break; 4153 } 4154 case SSD_DESC_COMMAND: { 4155 uint32_t cmd_val; 4156 4157 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, 4158 cmd_spec_info) == 0) 4159 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) 4160 goto bailout; 4161 4162 cmd_val = scsi_4btoul(sense->cmd_spec_info); 4163 if (cmd_val == 0) 4164 goto bailout; 4165 4166 *info = cmd_val; 4167 if (signed_info != NULL) 4168 *signed_info = (int32_t)cmd_val; 4169 break; 4170 } 4171 case SSD_DESC_FRU: 4172 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) 4173 || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) 4174 goto bailout; 4175 4176 if (sense->fru == 0) 4177 goto bailout; 4178 4179 *info = sense->fru; 4180 if (signed_info != NULL) 4181 *signed_info = (int8_t)sense->fru; 4182 break; 4183 default: 4184 goto bailout; 4185 break; 4186 } 4187 break; 4188 } 4189 default: 4190 goto bailout; 4191 break; 4192 } 4193 4194 return (0); 4195 bailout: 4196 return (1); 4197 } 4198 4199 int 4200 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) 4201 { 4202 scsi_sense_data_type sense_type; 4203 4204 if (sense_len == 0) 4205 goto bailout; 4206 4207 sense_type = scsi_sense_type(sense_data); 4208 4209 switch (sense_type) { 4210 case SSD_TYPE_DESC: { 4211 struct scsi_sense_data_desc *sense; 4212 struct scsi_sense_sks *desc; 4213 4214 sense = (struct scsi_sense_data_desc *)sense_data; 4215 4216 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, 4217 SSD_DESC_SKS); 4218 if (desc == NULL) 4219 goto bailout; 4220 4221 /* 4222 * No need to check the SKS valid bit for descriptor sense. 4223 * If the descriptor is present, it is valid. 4224 */ 4225 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); 4226 break; 4227 } 4228 case SSD_TYPE_FIXED: { 4229 struct scsi_sense_data_fixed *sense; 4230 4231 sense = (struct scsi_sense_data_fixed *)sense_data; 4232 4233 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) 4234 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) 4235 goto bailout; 4236 4237 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) 4238 goto bailout; 4239 4240 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); 4241 break; 4242 } 4243 default: 4244 goto bailout; 4245 break; 4246 } 4247 return (0); 4248 bailout: 4249 return (1); 4250 } 4251 4252 /* 4253 * Provide a common interface for fixed and descriptor sense to detect 4254 * whether we have block-specific sense information. It is clear by the 4255 * presence of the block descriptor in descriptor mode, but we have to 4256 * infer from the inquiry data and ILI bit in fixed mode. 4257 */ 4258 int 4259 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, 4260 struct scsi_inquiry_data *inq_data, uint8_t *block_bits) 4261 { 4262 scsi_sense_data_type sense_type; 4263 4264 if (inq_data != NULL) { 4265 switch (SID_TYPE(inq_data)) { 4266 case T_DIRECT: 4267 case T_RBC: 4268 case T_ZBC_HM: 4269 break; 4270 default: 4271 goto bailout; 4272 break; 4273 } 4274 } 4275 4276 sense_type = scsi_sense_type(sense_data); 4277 4278 switch (sense_type) { 4279 case SSD_TYPE_DESC: { 4280 struct scsi_sense_data_desc *sense; 4281 struct scsi_sense_block *block; 4282 4283 sense = (struct scsi_sense_data_desc *)sense_data; 4284 4285 block = (struct scsi_sense_block *)scsi_find_desc(sense, 4286 sense_len, SSD_DESC_BLOCK); 4287 if (block == NULL) 4288 goto bailout; 4289 4290 *block_bits = block->byte3; 4291 break; 4292 } 4293 case SSD_TYPE_FIXED: { 4294 struct scsi_sense_data_fixed *sense; 4295 4296 sense = (struct scsi_sense_data_fixed *)sense_data; 4297 4298 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4299 goto bailout; 4300 4301 if ((sense->flags & SSD_ILI) == 0) 4302 goto bailout; 4303 4304 *block_bits = sense->flags & SSD_ILI; 4305 break; 4306 } 4307 default: 4308 goto bailout; 4309 break; 4310 } 4311 return (0); 4312 bailout: 4313 return (1); 4314 } 4315 4316 int 4317 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, 4318 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) 4319 { 4320 scsi_sense_data_type sense_type; 4321 4322 if (inq_data != NULL) { 4323 switch (SID_TYPE(inq_data)) { 4324 case T_SEQUENTIAL: 4325 break; 4326 default: 4327 goto bailout; 4328 break; 4329 } 4330 } 4331 4332 sense_type = scsi_sense_type(sense_data); 4333 4334 switch (sense_type) { 4335 case SSD_TYPE_DESC: { 4336 struct scsi_sense_data_desc *sense; 4337 struct scsi_sense_stream *stream; 4338 4339 sense = (struct scsi_sense_data_desc *)sense_data; 4340 4341 stream = (struct scsi_sense_stream *)scsi_find_desc(sense, 4342 sense_len, SSD_DESC_STREAM); 4343 if (stream == NULL) 4344 goto bailout; 4345 4346 *stream_bits = stream->byte3; 4347 break; 4348 } 4349 case SSD_TYPE_FIXED: { 4350 struct scsi_sense_data_fixed *sense; 4351 4352 sense = (struct scsi_sense_data_fixed *)sense_data; 4353 4354 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4355 goto bailout; 4356 4357 if ((sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK)) == 0) 4358 goto bailout; 4359 4360 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); 4361 break; 4362 } 4363 default: 4364 goto bailout; 4365 break; 4366 } 4367 return (0); 4368 bailout: 4369 return (1); 4370 } 4371 4372 void 4373 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4374 struct scsi_inquiry_data *inq_data, uint64_t info) 4375 { 4376 sbuf_printf(sb, "Info: %#jx", info); 4377 } 4378 4379 void 4380 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4381 struct scsi_inquiry_data *inq_data, uint64_t csi) 4382 { 4383 sbuf_printf(sb, "Command Specific Info: %#jx", csi); 4384 } 4385 4386 4387 void 4388 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) 4389 { 4390 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", 4391 (progress * 100) / SSD_SKS_PROGRESS_DENOM, 4392 progress, SSD_SKS_PROGRESS_DENOM); 4393 } 4394 4395 /* 4396 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. 4397 */ 4398 int 4399 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) 4400 { 4401 if ((sks[0] & SSD_SKS_VALID) == 0) 4402 return (1); 4403 4404 switch (sense_key) { 4405 case SSD_KEY_ILLEGAL_REQUEST: { 4406 struct scsi_sense_sks_field *field; 4407 int bad_command; 4408 char tmpstr[40]; 4409 4410 /*Field Pointer*/ 4411 field = (struct scsi_sense_sks_field *)sks; 4412 4413 if (field->byte0 & SSD_SKS_FIELD_CMD) 4414 bad_command = 1; 4415 else 4416 bad_command = 0; 4417 4418 tmpstr[0] = '\0'; 4419 4420 /* Bit pointer is valid */ 4421 if (field->byte0 & SSD_SKS_BPV) 4422 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4423 field->byte0 & SSD_SKS_BIT_VALUE); 4424 4425 sbuf_printf(sb, "%s byte %d %sis invalid", 4426 bad_command ? "Command" : "Data", 4427 scsi_2btoul(field->field), tmpstr); 4428 break; 4429 } 4430 case SSD_KEY_UNIT_ATTENTION: { 4431 struct scsi_sense_sks_overflow *overflow; 4432 4433 overflow = (struct scsi_sense_sks_overflow *)sks; 4434 4435 /*UA Condition Queue Overflow*/ 4436 sbuf_printf(sb, "Unit Attention Condition Queue %s", 4437 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? 4438 "Overflowed" : "Did Not Overflow??"); 4439 break; 4440 } 4441 case SSD_KEY_RECOVERED_ERROR: 4442 case SSD_KEY_HARDWARE_ERROR: 4443 case SSD_KEY_MEDIUM_ERROR: { 4444 struct scsi_sense_sks_retry *retry; 4445 4446 /*Actual Retry Count*/ 4447 retry = (struct scsi_sense_sks_retry *)sks; 4448 4449 sbuf_printf(sb, "Actual Retry Count: %d", 4450 scsi_2btoul(retry->actual_retry_count)); 4451 break; 4452 } 4453 case SSD_KEY_NO_SENSE: 4454 case SSD_KEY_NOT_READY: { 4455 struct scsi_sense_sks_progress *progress; 4456 int progress_val; 4457 4458 /*Progress Indication*/ 4459 progress = (struct scsi_sense_sks_progress *)sks; 4460 progress_val = scsi_2btoul(progress->progress); 4461 4462 scsi_progress_sbuf(sb, progress_val); 4463 break; 4464 } 4465 case SSD_KEY_COPY_ABORTED: { 4466 struct scsi_sense_sks_segment *segment; 4467 char tmpstr[40]; 4468 4469 /*Segment Pointer*/ 4470 segment = (struct scsi_sense_sks_segment *)sks; 4471 4472 tmpstr[0] = '\0'; 4473 4474 if (segment->byte0 & SSD_SKS_SEGMENT_BPV) 4475 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4476 segment->byte0 & SSD_SKS_SEGMENT_BITPTR); 4477 4478 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & 4479 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", 4480 scsi_2btoul(segment->field), tmpstr); 4481 break; 4482 } 4483 default: 4484 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], 4485 scsi_2btoul(&sks[1])); 4486 break; 4487 } 4488 4489 return (0); 4490 } 4491 4492 void 4493 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) 4494 { 4495 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); 4496 } 4497 4498 void 4499 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits, uint64_t info) 4500 { 4501 int need_comma; 4502 4503 need_comma = 0; 4504 /* 4505 * XXX KDM this needs more descriptive decoding. 4506 */ 4507 if (stream_bits & SSD_DESC_STREAM_FM) { 4508 sbuf_printf(sb, "Filemark"); 4509 need_comma = 1; 4510 } 4511 4512 if (stream_bits & SSD_DESC_STREAM_EOM) { 4513 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); 4514 need_comma = 1; 4515 } 4516 4517 if (stream_bits & SSD_DESC_STREAM_ILI) 4518 sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); 4519 4520 sbuf_printf(sb, ": Info: %#jx", (uintmax_t) info); 4521 } 4522 4523 void 4524 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits, uint64_t info) 4525 { 4526 if (block_bits & SSD_DESC_BLOCK_ILI) 4527 sbuf_printf(sb, "ILI: residue %#jx", (uintmax_t) info); 4528 } 4529 4530 void 4531 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4532 u_int sense_len, uint8_t *cdb, int cdb_len, 4533 struct scsi_inquiry_data *inq_data, 4534 struct scsi_sense_desc_header *header) 4535 { 4536 struct scsi_sense_info *info; 4537 4538 info = (struct scsi_sense_info *)header; 4539 4540 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); 4541 } 4542 4543 void 4544 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4545 u_int sense_len, uint8_t *cdb, int cdb_len, 4546 struct scsi_inquiry_data *inq_data, 4547 struct scsi_sense_desc_header *header) 4548 { 4549 struct scsi_sense_command *command; 4550 4551 command = (struct scsi_sense_command *)header; 4552 4553 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, 4554 scsi_8btou64(command->command_info)); 4555 } 4556 4557 void 4558 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4559 u_int sense_len, uint8_t *cdb, int cdb_len, 4560 struct scsi_inquiry_data *inq_data, 4561 struct scsi_sense_desc_header *header) 4562 { 4563 struct scsi_sense_sks *sks; 4564 int error_code, sense_key, asc, ascq; 4565 4566 sks = (struct scsi_sense_sks *)header; 4567 4568 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4569 &asc, &ascq, /*show_errors*/ 1); 4570 4571 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); 4572 } 4573 4574 void 4575 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4576 u_int sense_len, uint8_t *cdb, int cdb_len, 4577 struct scsi_inquiry_data *inq_data, 4578 struct scsi_sense_desc_header *header) 4579 { 4580 struct scsi_sense_fru *fru; 4581 4582 fru = (struct scsi_sense_fru *)header; 4583 4584 scsi_fru_sbuf(sb, (uint64_t)fru->fru); 4585 } 4586 4587 void 4588 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4589 u_int sense_len, uint8_t *cdb, int cdb_len, 4590 struct scsi_inquiry_data *inq_data, 4591 struct scsi_sense_desc_header *header) 4592 { 4593 struct scsi_sense_stream *stream; 4594 uint64_t info; 4595 4596 stream = (struct scsi_sense_stream *)header; 4597 info = 0; 4598 4599 scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL); 4600 4601 scsi_stream_sbuf(sb, stream->byte3, info); 4602 } 4603 4604 void 4605 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4606 u_int sense_len, uint8_t *cdb, int cdb_len, 4607 struct scsi_inquiry_data *inq_data, 4608 struct scsi_sense_desc_header *header) 4609 { 4610 struct scsi_sense_block *block; 4611 uint64_t info; 4612 4613 block = (struct scsi_sense_block *)header; 4614 info = 0; 4615 4616 scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL); 4617 4618 scsi_block_sbuf(sb, block->byte3, info); 4619 } 4620 4621 void 4622 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4623 u_int sense_len, uint8_t *cdb, int cdb_len, 4624 struct scsi_inquiry_data *inq_data, 4625 struct scsi_sense_desc_header *header) 4626 { 4627 struct scsi_sense_progress *progress; 4628 const char *sense_key_desc; 4629 const char *asc_desc; 4630 int progress_val; 4631 4632 progress = (struct scsi_sense_progress *)header; 4633 4634 /* 4635 * Get descriptions for the sense key, ASC, and ASCQ in the 4636 * progress descriptor. These could be different than the values 4637 * in the overall sense data. 4638 */ 4639 scsi_sense_desc(progress->sense_key, progress->add_sense_code, 4640 progress->add_sense_code_qual, inq_data, 4641 &sense_key_desc, &asc_desc); 4642 4643 progress_val = scsi_2btoul(progress->progress); 4644 4645 /* 4646 * The progress indicator is for the operation described by the 4647 * sense key, ASC, and ASCQ in the descriptor. 4648 */ 4649 sbuf_cat(sb, sense_key_desc); 4650 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, 4651 progress->add_sense_code_qual, asc_desc); 4652 scsi_progress_sbuf(sb, progress_val); 4653 } 4654 4655 void 4656 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4657 u_int sense_len, uint8_t *cdb, int cdb_len, 4658 struct scsi_inquiry_data *inq_data, 4659 struct scsi_sense_desc_header *header) 4660 { 4661 struct scsi_sense_ata_ret_desc *res; 4662 4663 res = (struct scsi_sense_ata_ret_desc *)header; 4664 4665 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ", 4666 res->status, 4667 (res->status & 0x80) ? "BSY " : "", 4668 (res->status & 0x40) ? "DRDY " : "", 4669 (res->status & 0x20) ? "DF " : "", 4670 (res->status & 0x10) ? "SERV " : "", 4671 (res->status & 0x08) ? "DRQ " : "", 4672 (res->status & 0x04) ? "CORR " : "", 4673 (res->status & 0x02) ? "IDX " : "", 4674 (res->status & 0x01) ? "ERR" : ""); 4675 if (res->status & 1) { 4676 sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ", 4677 res->error, 4678 (res->error & 0x80) ? "ICRC " : "", 4679 (res->error & 0x40) ? "UNC " : "", 4680 (res->error & 0x20) ? "MC " : "", 4681 (res->error & 0x10) ? "IDNF " : "", 4682 (res->error & 0x08) ? "MCR " : "", 4683 (res->error & 0x04) ? "ABRT " : "", 4684 (res->error & 0x02) ? "NM " : "", 4685 (res->error & 0x01) ? "ILI" : ""); 4686 } 4687 4688 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) { 4689 sbuf_printf(sb, "count: %02x%02x, ", 4690 res->count_15_8, res->count_7_0); 4691 sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ", 4692 res->lba_47_40, res->lba_39_32, res->lba_31_24, 4693 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4694 } else { 4695 sbuf_printf(sb, "count: %02x, ", res->count_7_0); 4696 sbuf_printf(sb, "LBA: %02x%02x%02x, ", 4697 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4698 } 4699 sbuf_printf(sb, "device: %02x, ", res->device); 4700 } 4701 4702 /* 4703 * Generic sense descriptor printing routine. This is used when we have 4704 * not yet implemented a specific printing routine for this descriptor. 4705 */ 4706 void 4707 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4708 u_int sense_len, uint8_t *cdb, int cdb_len, 4709 struct scsi_inquiry_data *inq_data, 4710 struct scsi_sense_desc_header *header) 4711 { 4712 int i; 4713 uint8_t *buf_ptr; 4714 4715 sbuf_printf(sb, "Descriptor %#x:", header->desc_type); 4716 4717 buf_ptr = (uint8_t *)&header[1]; 4718 4719 for (i = 0; i < header->length; i++, buf_ptr++) 4720 sbuf_printf(sb, " %02x", *buf_ptr); 4721 } 4722 4723 /* 4724 * Keep this list in numeric order. This speeds the array traversal. 4725 */ 4726 struct scsi_sense_desc_printer { 4727 uint8_t desc_type; 4728 /* 4729 * The function arguments here are the superset of what is needed 4730 * to print out various different descriptors. Command and 4731 * information descriptors need inquiry data and command type. 4732 * Sense key specific descriptors need the sense key. 4733 * 4734 * The sense, cdb, and inquiry data arguments may be NULL, but the 4735 * information printed may not be fully decoded as a result. 4736 */ 4737 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, 4738 u_int sense_len, uint8_t *cdb, int cdb_len, 4739 struct scsi_inquiry_data *inq_data, 4740 struct scsi_sense_desc_header *header); 4741 } scsi_sense_printers[] = { 4742 {SSD_DESC_INFO, scsi_sense_info_sbuf}, 4743 {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, 4744 {SSD_DESC_SKS, scsi_sense_sks_sbuf}, 4745 {SSD_DESC_FRU, scsi_sense_fru_sbuf}, 4746 {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, 4747 {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, 4748 {SSD_DESC_ATA, scsi_sense_ata_sbuf}, 4749 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf} 4750 }; 4751 4752 void 4753 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4754 u_int sense_len, uint8_t *cdb, int cdb_len, 4755 struct scsi_inquiry_data *inq_data, 4756 struct scsi_sense_desc_header *header) 4757 { 4758 u_int i; 4759 4760 for (i = 0; i < nitems(scsi_sense_printers); i++) { 4761 struct scsi_sense_desc_printer *printer; 4762 4763 printer = &scsi_sense_printers[i]; 4764 4765 /* 4766 * The list is sorted, so quit if we've passed our 4767 * descriptor number. 4768 */ 4769 if (printer->desc_type > header->desc_type) 4770 break; 4771 4772 if (printer->desc_type != header->desc_type) 4773 continue; 4774 4775 printer->print_func(sb, sense, sense_len, cdb, cdb_len, 4776 inq_data, header); 4777 4778 return; 4779 } 4780 4781 /* 4782 * No specific printing routine, so use the generic routine. 4783 */ 4784 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, 4785 inq_data, header); 4786 } 4787 4788 scsi_sense_data_type 4789 scsi_sense_type(struct scsi_sense_data *sense_data) 4790 { 4791 switch (sense_data->error_code & SSD_ERRCODE) { 4792 case SSD_DESC_CURRENT_ERROR: 4793 case SSD_DESC_DEFERRED_ERROR: 4794 return (SSD_TYPE_DESC); 4795 break; 4796 case SSD_CURRENT_ERROR: 4797 case SSD_DEFERRED_ERROR: 4798 return (SSD_TYPE_FIXED); 4799 break; 4800 default: 4801 break; 4802 } 4803 4804 return (SSD_TYPE_NONE); 4805 } 4806 4807 struct scsi_print_sense_info { 4808 struct sbuf *sb; 4809 char *path_str; 4810 uint8_t *cdb; 4811 int cdb_len; 4812 struct scsi_inquiry_data *inq_data; 4813 }; 4814 4815 static int 4816 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 4817 struct scsi_sense_desc_header *header, void *arg) 4818 { 4819 struct scsi_print_sense_info *print_info; 4820 4821 print_info = (struct scsi_print_sense_info *)arg; 4822 4823 switch (header->desc_type) { 4824 case SSD_DESC_INFO: 4825 case SSD_DESC_FRU: 4826 case SSD_DESC_COMMAND: 4827 case SSD_DESC_SKS: 4828 case SSD_DESC_BLOCK: 4829 case SSD_DESC_STREAM: 4830 /* 4831 * We have already printed these descriptors, if they are 4832 * present. 4833 */ 4834 break; 4835 default: { 4836 sbuf_printf(print_info->sb, "%s", print_info->path_str); 4837 scsi_sense_desc_sbuf(print_info->sb, 4838 (struct scsi_sense_data *)sense, sense_len, 4839 print_info->cdb, print_info->cdb_len, 4840 print_info->inq_data, header); 4841 sbuf_printf(print_info->sb, "\n"); 4842 break; 4843 } 4844 } 4845 4846 /* 4847 * Tell the iterator that we want to see more descriptors if they 4848 * are present. 4849 */ 4850 return (0); 4851 } 4852 4853 void 4854 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, 4855 struct sbuf *sb, char *path_str, 4856 struct scsi_inquiry_data *inq_data, uint8_t *cdb, 4857 int cdb_len) 4858 { 4859 int error_code, sense_key, asc, ascq; 4860 4861 sbuf_cat(sb, path_str); 4862 4863 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4864 &asc, &ascq, /*show_errors*/ 1); 4865 4866 sbuf_printf(sb, "SCSI sense: "); 4867 switch (error_code) { 4868 case SSD_DEFERRED_ERROR: 4869 case SSD_DESC_DEFERRED_ERROR: 4870 sbuf_printf(sb, "Deferred error: "); 4871 4872 /* FALLTHROUGH */ 4873 case SSD_CURRENT_ERROR: 4874 case SSD_DESC_CURRENT_ERROR: 4875 { 4876 struct scsi_sense_data_desc *desc_sense; 4877 struct scsi_print_sense_info print_info; 4878 const char *sense_key_desc; 4879 const char *asc_desc; 4880 uint8_t sks[3]; 4881 uint64_t val; 4882 int info_valid; 4883 4884 /* 4885 * Get descriptions for the sense key, ASC, and ASCQ. If 4886 * these aren't present in the sense data (i.e. the sense 4887 * data isn't long enough), the -1 values that 4888 * scsi_extract_sense_len() returns will yield default 4889 * or error descriptions. 4890 */ 4891 scsi_sense_desc(sense_key, asc, ascq, inq_data, 4892 &sense_key_desc, &asc_desc); 4893 4894 /* 4895 * We first print the sense key and ASC/ASCQ. 4896 */ 4897 sbuf_cat(sb, sense_key_desc); 4898 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); 4899 4900 /* 4901 * Get the info field if it is valid. 4902 */ 4903 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, 4904 &val, NULL) == 0) 4905 info_valid = 1; 4906 else 4907 info_valid = 0; 4908 4909 if (info_valid != 0) { 4910 uint8_t bits; 4911 4912 /* 4913 * Determine whether we have any block or stream 4914 * device-specific information. 4915 */ 4916 if (scsi_get_block_info(sense, sense_len, inq_data, 4917 &bits) == 0) { 4918 sbuf_cat(sb, path_str); 4919 scsi_block_sbuf(sb, bits, val); 4920 sbuf_printf(sb, "\n"); 4921 } else if (scsi_get_stream_info(sense, sense_len, 4922 inq_data, &bits) == 0) { 4923 sbuf_cat(sb, path_str); 4924 scsi_stream_sbuf(sb, bits, val); 4925 sbuf_printf(sb, "\n"); 4926 } else if (val != 0) { 4927 /* 4928 * The information field can be valid but 0. 4929 * If the block or stream bits aren't set, 4930 * and this is 0, it isn't terribly useful 4931 * to print it out. 4932 */ 4933 sbuf_cat(sb, path_str); 4934 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); 4935 sbuf_printf(sb, "\n"); 4936 } 4937 } 4938 4939 /* 4940 * Print the FRU. 4941 */ 4942 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, 4943 &val, NULL) == 0) { 4944 sbuf_cat(sb, path_str); 4945 scsi_fru_sbuf(sb, val); 4946 sbuf_printf(sb, "\n"); 4947 } 4948 4949 /* 4950 * Print any command-specific information. 4951 */ 4952 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, 4953 &val, NULL) == 0) { 4954 sbuf_cat(sb, path_str); 4955 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); 4956 sbuf_printf(sb, "\n"); 4957 } 4958 4959 /* 4960 * Print out any sense-key-specific information. 4961 */ 4962 if (scsi_get_sks(sense, sense_len, sks) == 0) { 4963 sbuf_cat(sb, path_str); 4964 scsi_sks_sbuf(sb, sense_key, sks); 4965 sbuf_printf(sb, "\n"); 4966 } 4967 4968 /* 4969 * If this is fixed sense, we're done. If we have 4970 * descriptor sense, we might have more information 4971 * available. 4972 */ 4973 if (scsi_sense_type(sense) != SSD_TYPE_DESC) 4974 break; 4975 4976 desc_sense = (struct scsi_sense_data_desc *)sense; 4977 4978 print_info.sb = sb; 4979 print_info.path_str = path_str; 4980 print_info.cdb = cdb; 4981 print_info.cdb_len = cdb_len; 4982 print_info.inq_data = inq_data; 4983 4984 /* 4985 * Print any sense descriptors that we have not already printed. 4986 */ 4987 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, 4988 &print_info); 4989 break; 4990 4991 } 4992 case -1: 4993 /* 4994 * scsi_extract_sense_len() sets values to -1 if the 4995 * show_errors flag is set and they aren't present in the 4996 * sense data. This means that sense_len is 0. 4997 */ 4998 sbuf_printf(sb, "No sense data present\n"); 4999 break; 5000 default: { 5001 sbuf_printf(sb, "Error code 0x%x", error_code); 5002 if (sense->error_code & SSD_ERRCODE_VALID) { 5003 struct scsi_sense_data_fixed *fixed_sense; 5004 5005 fixed_sense = (struct scsi_sense_data_fixed *)sense; 5006 5007 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ 5008 uint32_t info; 5009 5010 info = scsi_4btoul(fixed_sense->info); 5011 5012 sbuf_printf(sb, " at block no. %d (decimal)", 5013 info); 5014 } 5015 } 5016 sbuf_printf(sb, "\n"); 5017 break; 5018 } 5019 } 5020 } 5021 5022 /* 5023 * scsi_sense_sbuf() returns 0 for success and -1 for failure. 5024 */ 5025 #ifdef _KERNEL 5026 int 5027 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, 5028 scsi_sense_string_flags flags) 5029 #else /* !_KERNEL */ 5030 int 5031 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, 5032 struct sbuf *sb, scsi_sense_string_flags flags) 5033 #endif /* _KERNEL/!_KERNEL */ 5034 { 5035 struct scsi_sense_data *sense; 5036 struct scsi_inquiry_data *inq_data; 5037 #ifdef _KERNEL 5038 struct ccb_getdev *cgd; 5039 #endif /* _KERNEL */ 5040 char path_str[64]; 5041 uint8_t *cdb; 5042 5043 #ifndef _KERNEL 5044 if (device == NULL) 5045 return(-1); 5046 #endif /* !_KERNEL */ 5047 if ((csio == NULL) || (sb == NULL)) 5048 return(-1); 5049 5050 /* 5051 * If the CDB is a physical address, we can't deal with it.. 5052 */ 5053 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) 5054 flags &= ~SSS_FLAG_PRINT_COMMAND; 5055 5056 #ifdef _KERNEL 5057 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); 5058 #else /* !_KERNEL */ 5059 cam_path_string(device, path_str, sizeof(path_str)); 5060 #endif /* _KERNEL/!_KERNEL */ 5061 5062 #ifdef _KERNEL 5063 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 5064 return(-1); 5065 /* 5066 * Get the device information. 5067 */ 5068 xpt_setup_ccb(&cgd->ccb_h, 5069 csio->ccb_h.path, 5070 CAM_PRIORITY_NORMAL); 5071 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 5072 xpt_action((union ccb *)cgd); 5073 5074 /* 5075 * If the device is unconfigured, just pretend that it is a hard 5076 * drive. scsi_op_desc() needs this. 5077 */ 5078 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 5079 cgd->inq_data.device = T_DIRECT; 5080 5081 inq_data = &cgd->inq_data; 5082 5083 #else /* !_KERNEL */ 5084 5085 inq_data = &device->inq_data; 5086 5087 #endif /* _KERNEL/!_KERNEL */ 5088 5089 sense = NULL; 5090 5091 if (flags & SSS_FLAG_PRINT_COMMAND) { 5092 5093 sbuf_cat(sb, path_str); 5094 5095 #ifdef _KERNEL 5096 scsi_command_string(csio, sb); 5097 #else /* !_KERNEL */ 5098 scsi_command_string(device, csio, sb); 5099 #endif /* _KERNEL/!_KERNEL */ 5100 sbuf_printf(sb, "\n"); 5101 } 5102 5103 /* 5104 * If the sense data is a physical pointer, forget it. 5105 */ 5106 if (csio->ccb_h.flags & CAM_SENSE_PTR) { 5107 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5108 #ifdef _KERNEL 5109 xpt_free_ccb((union ccb*)cgd); 5110 #endif /* _KERNEL/!_KERNEL */ 5111 return(-1); 5112 } else { 5113 /* 5114 * bcopy the pointer to avoid unaligned access 5115 * errors on finicky architectures. We don't 5116 * ensure that the sense data is pointer aligned. 5117 */ 5118 bcopy(&csio->sense_data, &sense, 5119 sizeof(struct scsi_sense_data *)); 5120 } 5121 } else { 5122 /* 5123 * If the physical sense flag is set, but the sense pointer 5124 * is not also set, we assume that the user is an idiot and 5125 * return. (Well, okay, it could be that somehow, the 5126 * entire csio is physical, but we would have probably core 5127 * dumped on one of the bogus pointer deferences above 5128 * already.) 5129 */ 5130 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5131 #ifdef _KERNEL 5132 xpt_free_ccb((union ccb*)cgd); 5133 #endif /* _KERNEL/!_KERNEL */ 5134 return(-1); 5135 } else 5136 sense = &csio->sense_data; 5137 } 5138 5139 if (csio->ccb_h.flags & CAM_CDB_POINTER) 5140 cdb = csio->cdb_io.cdb_ptr; 5141 else 5142 cdb = csio->cdb_io.cdb_bytes; 5143 5144 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, 5145 path_str, inq_data, cdb, csio->cdb_len); 5146 5147 #ifdef _KERNEL 5148 xpt_free_ccb((union ccb*)cgd); 5149 #endif /* _KERNEL/!_KERNEL */ 5150 return(0); 5151 } 5152 5153 5154 5155 #ifdef _KERNEL 5156 char * 5157 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) 5158 #else /* !_KERNEL */ 5159 char * 5160 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, 5161 char *str, int str_len) 5162 #endif /* _KERNEL/!_KERNEL */ 5163 { 5164 struct sbuf sb; 5165 5166 sbuf_new(&sb, str, str_len, 0); 5167 5168 #ifdef _KERNEL 5169 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5170 #else /* !_KERNEL */ 5171 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5172 #endif /* _KERNEL/!_KERNEL */ 5173 5174 sbuf_finish(&sb); 5175 5176 return(sbuf_data(&sb)); 5177 } 5178 5179 #ifdef _KERNEL 5180 void 5181 scsi_sense_print(struct ccb_scsiio *csio) 5182 { 5183 struct sbuf sb; 5184 char str[512]; 5185 5186 sbuf_new(&sb, str, sizeof(str), 0); 5187 5188 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5189 5190 sbuf_finish(&sb); 5191 5192 printf("%s", sbuf_data(&sb)); 5193 } 5194 5195 #else /* !_KERNEL */ 5196 void 5197 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, 5198 FILE *ofile) 5199 { 5200 struct sbuf sb; 5201 char str[512]; 5202 5203 if ((device == NULL) || (csio == NULL) || (ofile == NULL)) 5204 return; 5205 5206 sbuf_new(&sb, str, sizeof(str), 0); 5207 5208 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5209 5210 sbuf_finish(&sb); 5211 5212 fprintf(ofile, "%s", sbuf_data(&sb)); 5213 } 5214 5215 #endif /* _KERNEL/!_KERNEL */ 5216 5217 /* 5218 * Extract basic sense information. This is backward-compatible with the 5219 * previous implementation. For new implementations, 5220 * scsi_extract_sense_len() is recommended. 5221 */ 5222 void 5223 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, 5224 int *sense_key, int *asc, int *ascq) 5225 { 5226 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, 5227 sense_key, asc, ascq, /*show_errors*/ 0); 5228 } 5229 5230 /* 5231 * Extract basic sense information from SCSI I/O CCB structure. 5232 */ 5233 int 5234 scsi_extract_sense_ccb(union ccb *ccb, 5235 int *error_code, int *sense_key, int *asc, int *ascq) 5236 { 5237 struct scsi_sense_data *sense_data; 5238 5239 /* Make sure there are some sense data we can access. */ 5240 if (ccb->ccb_h.func_code != XPT_SCSI_IO || 5241 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR || 5242 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) || 5243 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 || 5244 (ccb->ccb_h.flags & CAM_SENSE_PHYS)) 5245 return (0); 5246 5247 if (ccb->ccb_h.flags & CAM_SENSE_PTR) 5248 bcopy(&ccb->csio.sense_data, &sense_data, 5249 sizeof(struct scsi_sense_data *)); 5250 else 5251 sense_data = &ccb->csio.sense_data; 5252 scsi_extract_sense_len(sense_data, 5253 ccb->csio.sense_len - ccb->csio.sense_resid, 5254 error_code, sense_key, asc, ascq, 1); 5255 if (*error_code == -1) 5256 return (0); 5257 return (1); 5258 } 5259 5260 /* 5261 * Extract basic sense information. If show_errors is set, sense values 5262 * will be set to -1 if they are not present. 5263 */ 5264 void 5265 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, 5266 int *error_code, int *sense_key, int *asc, int *ascq, 5267 int show_errors) 5268 { 5269 /* 5270 * If we have no length, we have no sense. 5271 */ 5272 if (sense_len == 0) { 5273 if (show_errors == 0) { 5274 *error_code = 0; 5275 *sense_key = 0; 5276 *asc = 0; 5277 *ascq = 0; 5278 } else { 5279 *error_code = -1; 5280 *sense_key = -1; 5281 *asc = -1; 5282 *ascq = -1; 5283 } 5284 return; 5285 } 5286 5287 *error_code = sense_data->error_code & SSD_ERRCODE; 5288 5289 switch (*error_code) { 5290 case SSD_DESC_CURRENT_ERROR: 5291 case SSD_DESC_DEFERRED_ERROR: { 5292 struct scsi_sense_data_desc *sense; 5293 5294 sense = (struct scsi_sense_data_desc *)sense_data; 5295 5296 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) 5297 *sense_key = sense->sense_key & SSD_KEY; 5298 else 5299 *sense_key = (show_errors) ? -1 : 0; 5300 5301 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) 5302 *asc = sense->add_sense_code; 5303 else 5304 *asc = (show_errors) ? -1 : 0; 5305 5306 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) 5307 *ascq = sense->add_sense_code_qual; 5308 else 5309 *ascq = (show_errors) ? -1 : 0; 5310 break; 5311 } 5312 case SSD_CURRENT_ERROR: 5313 case SSD_DEFERRED_ERROR: 5314 default: { 5315 struct scsi_sense_data_fixed *sense; 5316 5317 sense = (struct scsi_sense_data_fixed *)sense_data; 5318 5319 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) 5320 *sense_key = sense->flags & SSD_KEY; 5321 else 5322 *sense_key = (show_errors) ? -1 : 0; 5323 5324 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) 5325 && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) 5326 *asc = sense->add_sense_code; 5327 else 5328 *asc = (show_errors) ? -1 : 0; 5329 5330 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) 5331 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) 5332 *ascq = sense->add_sense_code_qual; 5333 else 5334 *ascq = (show_errors) ? -1 : 0; 5335 break; 5336 } 5337 } 5338 } 5339 5340 int 5341 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, 5342 int show_errors) 5343 { 5344 int error_code, sense_key, asc, ascq; 5345 5346 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5347 &sense_key, &asc, &ascq, show_errors); 5348 5349 return (sense_key); 5350 } 5351 5352 int 5353 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, 5354 int show_errors) 5355 { 5356 int error_code, sense_key, asc, ascq; 5357 5358 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5359 &sense_key, &asc, &ascq, show_errors); 5360 5361 return (asc); 5362 } 5363 5364 int 5365 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, 5366 int show_errors) 5367 { 5368 int error_code, sense_key, asc, ascq; 5369 5370 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5371 &sense_key, &asc, &ascq, show_errors); 5372 5373 return (ascq); 5374 } 5375 5376 /* 5377 * This function currently requires at least 36 bytes, or 5378 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this 5379 * function needs more or less data in the future, another length should be 5380 * defined in scsi_all.h to indicate the minimum amount of data necessary 5381 * for this routine to function properly. 5382 */ 5383 void 5384 scsi_print_inquiry(struct scsi_inquiry_data *inq_data) 5385 { 5386 u_int8_t type; 5387 char *dtype, *qtype; 5388 char vendor[16], product[48], revision[16], rstr[12]; 5389 5390 type = SID_TYPE(inq_data); 5391 5392 /* 5393 * Figure out basic device type and qualifier. 5394 */ 5395 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { 5396 qtype = " (vendor-unique qualifier)"; 5397 } else { 5398 switch (SID_QUAL(inq_data)) { 5399 case SID_QUAL_LU_CONNECTED: 5400 qtype = ""; 5401 break; 5402 5403 case SID_QUAL_LU_OFFLINE: 5404 qtype = " (offline)"; 5405 break; 5406 5407 case SID_QUAL_RSVD: 5408 qtype = " (reserved qualifier)"; 5409 break; 5410 default: 5411 case SID_QUAL_BAD_LU: 5412 qtype = " (LUN not supported)"; 5413 break; 5414 } 5415 } 5416 5417 switch (type) { 5418 case T_DIRECT: 5419 dtype = "Direct Access"; 5420 break; 5421 case T_SEQUENTIAL: 5422 dtype = "Sequential Access"; 5423 break; 5424 case T_PRINTER: 5425 dtype = "Printer"; 5426 break; 5427 case T_PROCESSOR: 5428 dtype = "Processor"; 5429 break; 5430 case T_WORM: 5431 dtype = "WORM"; 5432 break; 5433 case T_CDROM: 5434 dtype = "CD-ROM"; 5435 break; 5436 case T_SCANNER: 5437 dtype = "Scanner"; 5438 break; 5439 case T_OPTICAL: 5440 dtype = "Optical"; 5441 break; 5442 case T_CHANGER: 5443 dtype = "Changer"; 5444 break; 5445 case T_COMM: 5446 dtype = "Communication"; 5447 break; 5448 case T_STORARRAY: 5449 dtype = "Storage Array"; 5450 break; 5451 case T_ENCLOSURE: 5452 dtype = "Enclosure Services"; 5453 break; 5454 case T_RBC: 5455 dtype = "Simplified Direct Access"; 5456 break; 5457 case T_OCRW: 5458 dtype = "Optical Card Read/Write"; 5459 break; 5460 case T_OSD: 5461 dtype = "Object-Based Storage"; 5462 break; 5463 case T_ADC: 5464 dtype = "Automation/Drive Interface"; 5465 break; 5466 case T_ZBC_HM: 5467 dtype = "Host Managed Zoned Block"; 5468 break; 5469 case T_NODEVICE: 5470 dtype = "Uninstalled"; 5471 break; 5472 default: 5473 dtype = "unknown"; 5474 break; 5475 } 5476 5477 cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor), 5478 sizeof(vendor)); 5479 cam_strvis(product, inq_data->product, sizeof(inq_data->product), 5480 sizeof(product)); 5481 cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision), 5482 sizeof(revision)); 5483 5484 if (SID_ANSI_REV(inq_data) == SCSI_REV_0) 5485 snprintf(rstr, sizeof(rstr), "SCSI"); 5486 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) { 5487 snprintf(rstr, sizeof(rstr), "SCSI-%d", 5488 SID_ANSI_REV(inq_data)); 5489 } else { 5490 snprintf(rstr, sizeof(rstr), "SPC-%d SCSI", 5491 SID_ANSI_REV(inq_data) - 2); 5492 } 5493 printf("<%s %s %s> %s %s %s device%s\n", 5494 vendor, product, revision, 5495 SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", 5496 dtype, rstr, qtype); 5497 } 5498 5499 void 5500 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data) 5501 { 5502 char vendor[16], product[48], revision[16]; 5503 5504 cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor), 5505 sizeof(vendor)); 5506 cam_strvis(product, inq_data->product, sizeof(inq_data->product), 5507 sizeof(product)); 5508 cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision), 5509 sizeof(revision)); 5510 5511 printf("<%s %s %s>", vendor, product, revision); 5512 } 5513 5514 /* 5515 * Table of syncrates that don't follow the "divisible by 4" 5516 * rule. This table will be expanded in future SCSI specs. 5517 */ 5518 static struct { 5519 u_int period_factor; 5520 u_int period; /* in 100ths of ns */ 5521 } scsi_syncrates[] = { 5522 { 0x08, 625 }, /* FAST-160 */ 5523 { 0x09, 1250 }, /* FAST-80 */ 5524 { 0x0a, 2500 }, /* FAST-40 40MHz */ 5525 { 0x0b, 3030 }, /* FAST-40 33MHz */ 5526 { 0x0c, 5000 } /* FAST-20 */ 5527 }; 5528 5529 /* 5530 * Return the frequency in kHz corresponding to the given 5531 * sync period factor. 5532 */ 5533 u_int 5534 scsi_calc_syncsrate(u_int period_factor) 5535 { 5536 u_int i; 5537 u_int num_syncrates; 5538 5539 /* 5540 * It's a bug if period is zero, but if it is anyway, don't 5541 * die with a divide fault- instead return something which 5542 * 'approximates' async 5543 */ 5544 if (period_factor == 0) { 5545 return (3300); 5546 } 5547 5548 num_syncrates = nitems(scsi_syncrates); 5549 /* See if the period is in the "exception" table */ 5550 for (i = 0; i < num_syncrates; i++) { 5551 5552 if (period_factor == scsi_syncrates[i].period_factor) { 5553 /* Period in kHz */ 5554 return (100000000 / scsi_syncrates[i].period); 5555 } 5556 } 5557 5558 /* 5559 * Wasn't in the table, so use the standard 5560 * 4 times conversion. 5561 */ 5562 return (10000000 / (period_factor * 4 * 10)); 5563 } 5564 5565 /* 5566 * Return the SCSI sync parameter that corresponds to 5567 * the passed in period in 10ths of ns. 5568 */ 5569 u_int 5570 scsi_calc_syncparam(u_int period) 5571 { 5572 u_int i; 5573 u_int num_syncrates; 5574 5575 if (period == 0) 5576 return (~0); /* Async */ 5577 5578 /* Adjust for exception table being in 100ths. */ 5579 period *= 10; 5580 num_syncrates = nitems(scsi_syncrates); 5581 /* See if the period is in the "exception" table */ 5582 for (i = 0; i < num_syncrates; i++) { 5583 5584 if (period <= scsi_syncrates[i].period) { 5585 /* Period in 100ths of ns */ 5586 return (scsi_syncrates[i].period_factor); 5587 } 5588 } 5589 5590 /* 5591 * Wasn't in the table, so use the standard 5592 * 1/4 period in ns conversion. 5593 */ 5594 return (period/400); 5595 } 5596 5597 int 5598 scsi_devid_is_naa_ieee_reg(uint8_t *bufp) 5599 { 5600 struct scsi_vpd_id_descriptor *descr; 5601 struct scsi_vpd_id_naa_basic *naa; 5602 5603 descr = (struct scsi_vpd_id_descriptor *)bufp; 5604 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; 5605 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5606 return 0; 5607 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) 5608 return 0; 5609 if ((naa->naa >> SVPD_ID_NAA_NAA_SHIFT) != SVPD_ID_NAA_IEEE_REG) 5610 return 0; 5611 return 1; 5612 } 5613 5614 int 5615 scsi_devid_is_sas_target(uint8_t *bufp) 5616 { 5617 struct scsi_vpd_id_descriptor *descr; 5618 5619 descr = (struct scsi_vpd_id_descriptor *)bufp; 5620 if (!scsi_devid_is_naa_ieee_reg(bufp)) 5621 return 0; 5622 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ 5623 return 0; 5624 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) 5625 return 0; 5626 return 1; 5627 } 5628 5629 int 5630 scsi_devid_is_lun_eui64(uint8_t *bufp) 5631 { 5632 struct scsi_vpd_id_descriptor *descr; 5633 5634 descr = (struct scsi_vpd_id_descriptor *)bufp; 5635 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5636 return 0; 5637 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64) 5638 return 0; 5639 return 1; 5640 } 5641 5642 int 5643 scsi_devid_is_lun_naa(uint8_t *bufp) 5644 { 5645 struct scsi_vpd_id_descriptor *descr; 5646 5647 descr = (struct scsi_vpd_id_descriptor *)bufp; 5648 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5649 return 0; 5650 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5651 return 0; 5652 return 1; 5653 } 5654 5655 int 5656 scsi_devid_is_lun_t10(uint8_t *bufp) 5657 { 5658 struct scsi_vpd_id_descriptor *descr; 5659 5660 descr = (struct scsi_vpd_id_descriptor *)bufp; 5661 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5662 return 0; 5663 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10) 5664 return 0; 5665 return 1; 5666 } 5667 5668 int 5669 scsi_devid_is_lun_name(uint8_t *bufp) 5670 { 5671 struct scsi_vpd_id_descriptor *descr; 5672 5673 descr = (struct scsi_vpd_id_descriptor *)bufp; 5674 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5675 return 0; 5676 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME) 5677 return 0; 5678 return 1; 5679 } 5680 5681 int 5682 scsi_devid_is_port_naa(uint8_t *bufp) 5683 { 5684 struct scsi_vpd_id_descriptor *descr; 5685 5686 descr = (struct scsi_vpd_id_descriptor *)bufp; 5687 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT) 5688 return 0; 5689 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5690 return 0; 5691 return 1; 5692 } 5693 5694 struct scsi_vpd_id_descriptor * 5695 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, 5696 scsi_devid_checkfn_t ck_fn) 5697 { 5698 uint8_t *desc_buf_end; 5699 5700 desc_buf_end = (uint8_t *)desc + len; 5701 5702 for (; desc->identifier <= desc_buf_end && 5703 desc->identifier + desc->length <= desc_buf_end; 5704 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier 5705 + desc->length)) { 5706 5707 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) 5708 return (desc); 5709 } 5710 return (NULL); 5711 } 5712 5713 struct scsi_vpd_id_descriptor * 5714 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, 5715 scsi_devid_checkfn_t ck_fn) 5716 { 5717 uint32_t len; 5718 5719 if (page_len < sizeof(*id)) 5720 return (NULL); 5721 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id)); 5722 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *) 5723 id->desc_list, len, ck_fn)); 5724 } 5725 5726 int 5727 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, 5728 uint32_t valid_len) 5729 { 5730 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) { 5731 case SCSI_PROTO_FC: { 5732 struct scsi_transportid_fcp *fcp; 5733 uint64_t n_port_name; 5734 5735 fcp = (struct scsi_transportid_fcp *)hdr; 5736 5737 n_port_name = scsi_8btou64(fcp->n_port_name); 5738 5739 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name); 5740 break; 5741 } 5742 case SCSI_PROTO_SPI: { 5743 struct scsi_transportid_spi *spi; 5744 5745 spi = (struct scsi_transportid_spi *)hdr; 5746 5747 sbuf_printf(sb, "SPI address: %u,%u", 5748 scsi_2btoul(spi->scsi_addr), 5749 scsi_2btoul(spi->rel_trgt_port_id)); 5750 break; 5751 } 5752 case SCSI_PROTO_SSA: 5753 /* 5754 * XXX KDM there is no transport ID defined in SPC-4 for 5755 * SSA. 5756 */ 5757 break; 5758 case SCSI_PROTO_1394: { 5759 struct scsi_transportid_1394 *sbp; 5760 uint64_t eui64; 5761 5762 sbp = (struct scsi_transportid_1394 *)hdr; 5763 5764 eui64 = scsi_8btou64(sbp->eui64); 5765 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64); 5766 break; 5767 } 5768 case SCSI_PROTO_RDMA: { 5769 struct scsi_transportid_rdma *rdma; 5770 unsigned int i; 5771 5772 rdma = (struct scsi_transportid_rdma *)hdr; 5773 5774 sbuf_printf(sb, "RDMA address: 0x"); 5775 for (i = 0; i < sizeof(rdma->initiator_port_id); i++) 5776 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]); 5777 break; 5778 } 5779 case SCSI_PROTO_ISCSI: { 5780 uint32_t add_len, i; 5781 uint8_t *iscsi_name = NULL; 5782 int nul_found = 0; 5783 5784 sbuf_printf(sb, "iSCSI address: "); 5785 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5786 SCSI_TRN_ISCSI_FORMAT_DEVICE) { 5787 struct scsi_transportid_iscsi_device *dev; 5788 5789 dev = (struct scsi_transportid_iscsi_device *)hdr; 5790 5791 /* 5792 * Verify how much additional data we really have. 5793 */ 5794 add_len = scsi_2btoul(dev->additional_length); 5795 add_len = MIN(add_len, valid_len - 5796 __offsetof(struct scsi_transportid_iscsi_device, 5797 iscsi_name)); 5798 iscsi_name = &dev->iscsi_name[0]; 5799 5800 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5801 SCSI_TRN_ISCSI_FORMAT_PORT) { 5802 struct scsi_transportid_iscsi_port *port; 5803 5804 port = (struct scsi_transportid_iscsi_port *)hdr; 5805 5806 add_len = scsi_2btoul(port->additional_length); 5807 add_len = MIN(add_len, valid_len - 5808 __offsetof(struct scsi_transportid_iscsi_port, 5809 iscsi_name)); 5810 iscsi_name = &port->iscsi_name[0]; 5811 } else { 5812 sbuf_printf(sb, "unknown format %x", 5813 (hdr->format_protocol & 5814 SCSI_TRN_FORMAT_MASK) >> 5815 SCSI_TRN_FORMAT_SHIFT); 5816 break; 5817 } 5818 if (add_len == 0) { 5819 sbuf_printf(sb, "not enough data"); 5820 break; 5821 } 5822 /* 5823 * This is supposed to be a NUL-terminated ASCII 5824 * string, but you never know. So we're going to 5825 * check. We need to do this because there is no 5826 * sbuf equivalent of strncat(). 5827 */ 5828 for (i = 0; i < add_len; i++) { 5829 if (iscsi_name[i] == '\0') { 5830 nul_found = 1; 5831 break; 5832 } 5833 } 5834 /* 5835 * If there is a NUL in the name, we can just use 5836 * sbuf_cat(). Otherwise we need to use sbuf_bcat(). 5837 */ 5838 if (nul_found != 0) 5839 sbuf_cat(sb, iscsi_name); 5840 else 5841 sbuf_bcat(sb, iscsi_name, add_len); 5842 break; 5843 } 5844 case SCSI_PROTO_SAS: { 5845 struct scsi_transportid_sas *sas; 5846 uint64_t sas_addr; 5847 5848 sas = (struct scsi_transportid_sas *)hdr; 5849 5850 sas_addr = scsi_8btou64(sas->sas_address); 5851 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr); 5852 break; 5853 } 5854 case SCSI_PROTO_ADITP: 5855 case SCSI_PROTO_ATA: 5856 case SCSI_PROTO_UAS: 5857 /* 5858 * No Transport ID format for ADI, ATA or USB is defined in 5859 * SPC-4. 5860 */ 5861 sbuf_printf(sb, "No known Transport ID format for protocol " 5862 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5863 break; 5864 case SCSI_PROTO_SOP: { 5865 struct scsi_transportid_sop *sop; 5866 struct scsi_sop_routing_id_norm *rid; 5867 5868 sop = (struct scsi_transportid_sop *)hdr; 5869 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id; 5870 5871 /* 5872 * Note that there is no alternate format specified in SPC-4 5873 * for the PCIe routing ID, so we don't really have a way 5874 * to know whether the second byte of the routing ID is 5875 * a device and function or just a function. So we just 5876 * assume bus,device,function. 5877 */ 5878 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u", 5879 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT, 5880 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX); 5881 break; 5882 } 5883 case SCSI_PROTO_NONE: 5884 default: 5885 sbuf_printf(sb, "Unknown protocol %#x", 5886 hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5887 break; 5888 } 5889 5890 return (0); 5891 } 5892 5893 struct scsi_nv scsi_proto_map[] = { 5894 { "fcp", SCSI_PROTO_FC }, 5895 { "spi", SCSI_PROTO_SPI }, 5896 { "ssa", SCSI_PROTO_SSA }, 5897 { "sbp", SCSI_PROTO_1394 }, 5898 { "1394", SCSI_PROTO_1394 }, 5899 { "srp", SCSI_PROTO_RDMA }, 5900 { "rdma", SCSI_PROTO_RDMA }, 5901 { "iscsi", SCSI_PROTO_ISCSI }, 5902 { "iqn", SCSI_PROTO_ISCSI }, 5903 { "sas", SCSI_PROTO_SAS }, 5904 { "aditp", SCSI_PROTO_ADITP }, 5905 { "ata", SCSI_PROTO_ATA }, 5906 { "uas", SCSI_PROTO_UAS }, 5907 { "usb", SCSI_PROTO_UAS }, 5908 { "sop", SCSI_PROTO_SOP } 5909 }; 5910 5911 const char * 5912 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value) 5913 { 5914 int i; 5915 5916 for (i = 0; i < num_table_entries; i++) { 5917 if (table[i].value == value) 5918 return (table[i].name); 5919 } 5920 5921 return (NULL); 5922 } 5923 5924 /* 5925 * Given a name/value table, find a value matching the given name. 5926 * Return values: 5927 * SCSI_NV_FOUND - match found 5928 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact 5929 * SCSI_NV_NOT_FOUND - no match found 5930 */ 5931 scsi_nv_status 5932 scsi_get_nv(struct scsi_nv *table, int num_table_entries, 5933 char *name, int *table_entry, scsi_nv_flags flags) 5934 { 5935 int i, num_matches = 0; 5936 5937 for (i = 0; i < num_table_entries; i++) { 5938 size_t table_len, name_len; 5939 5940 table_len = strlen(table[i].name); 5941 name_len = strlen(name); 5942 5943 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0) 5944 && (strncasecmp(table[i].name, name, name_len) == 0)) 5945 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0) 5946 && (strncmp(table[i].name, name, name_len) == 0))) { 5947 *table_entry = i; 5948 5949 /* 5950 * Check for an exact match. If we have the same 5951 * number of characters in the table as the argument, 5952 * and we already know they're the same, we have 5953 * an exact match. 5954 */ 5955 if (table_len == name_len) 5956 return (SCSI_NV_FOUND); 5957 5958 /* 5959 * Otherwise, bump up the number of matches. We'll 5960 * see later how many we have. 5961 */ 5962 num_matches++; 5963 } 5964 } 5965 5966 if (num_matches > 1) 5967 return (SCSI_NV_AMBIGUOUS); 5968 else if (num_matches == 1) 5969 return (SCSI_NV_FOUND); 5970 else 5971 return (SCSI_NV_NOT_FOUND); 5972 } 5973 5974 /* 5975 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are 5976 * all 64-bit numbers, the code is similar. 5977 */ 5978 int 5979 scsi_parse_transportid_64bit(int proto_id, char *id_str, 5980 struct scsi_transportid_header **hdr, 5981 unsigned int *alloc_len, 5982 #ifdef _KERNEL 5983 struct malloc_type *type, int flags, 5984 #endif 5985 char *error_str, int error_str_len) 5986 { 5987 uint64_t value; 5988 char *endptr; 5989 int retval; 5990 size_t alloc_size; 5991 5992 retval = 0; 5993 5994 value = strtouq(id_str, &endptr, 0); 5995 if (*endptr != '\0') { 5996 if (error_str != NULL) { 5997 snprintf(error_str, error_str_len, "%s: error " 5998 "parsing ID %s, 64-bit number required", 5999 __func__, id_str); 6000 } 6001 retval = 1; 6002 goto bailout; 6003 } 6004 6005 switch (proto_id) { 6006 case SCSI_PROTO_FC: 6007 alloc_size = sizeof(struct scsi_transportid_fcp); 6008 break; 6009 case SCSI_PROTO_1394: 6010 alloc_size = sizeof(struct scsi_transportid_1394); 6011 break; 6012 case SCSI_PROTO_SAS: 6013 alloc_size = sizeof(struct scsi_transportid_sas); 6014 break; 6015 default: 6016 if (error_str != NULL) { 6017 snprintf(error_str, error_str_len, "%s: unsupported " 6018 "protocol %d", __func__, proto_id); 6019 } 6020 retval = 1; 6021 goto bailout; 6022 break; /* NOTREACHED */ 6023 } 6024 #ifdef _KERNEL 6025 *hdr = malloc(alloc_size, type, flags); 6026 #else /* _KERNEL */ 6027 *hdr = malloc(alloc_size); 6028 #endif /*_KERNEL */ 6029 if (*hdr == NULL) { 6030 if (error_str != NULL) { 6031 snprintf(error_str, error_str_len, "%s: unable to " 6032 "allocate %zu bytes", __func__, alloc_size); 6033 } 6034 retval = 1; 6035 goto bailout; 6036 } 6037 6038 *alloc_len = alloc_size; 6039 6040 bzero(*hdr, alloc_size); 6041 6042 switch (proto_id) { 6043 case SCSI_PROTO_FC: { 6044 struct scsi_transportid_fcp *fcp; 6045 6046 fcp = (struct scsi_transportid_fcp *)(*hdr); 6047 fcp->format_protocol = SCSI_PROTO_FC | 6048 SCSI_TRN_FCP_FORMAT_DEFAULT; 6049 scsi_u64to8b(value, fcp->n_port_name); 6050 break; 6051 } 6052 case SCSI_PROTO_1394: { 6053 struct scsi_transportid_1394 *sbp; 6054 6055 sbp = (struct scsi_transportid_1394 *)(*hdr); 6056 sbp->format_protocol = SCSI_PROTO_1394 | 6057 SCSI_TRN_1394_FORMAT_DEFAULT; 6058 scsi_u64to8b(value, sbp->eui64); 6059 break; 6060 } 6061 case SCSI_PROTO_SAS: { 6062 struct scsi_transportid_sas *sas; 6063 6064 sas = (struct scsi_transportid_sas *)(*hdr); 6065 sas->format_protocol = SCSI_PROTO_SAS | 6066 SCSI_TRN_SAS_FORMAT_DEFAULT; 6067 scsi_u64to8b(value, sas->sas_address); 6068 break; 6069 } 6070 default: 6071 break; 6072 } 6073 bailout: 6074 return (retval); 6075 } 6076 6077 /* 6078 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port 6079 */ 6080 int 6081 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, 6082 unsigned int *alloc_len, 6083 #ifdef _KERNEL 6084 struct malloc_type *type, int flags, 6085 #endif 6086 char *error_str, int error_str_len) 6087 { 6088 unsigned long scsi_addr, target_port; 6089 struct scsi_transportid_spi *spi; 6090 char *tmpstr, *endptr; 6091 int retval; 6092 6093 retval = 0; 6094 6095 tmpstr = strsep(&id_str, ","); 6096 if (tmpstr == NULL) { 6097 if (error_str != NULL) { 6098 snprintf(error_str, error_str_len, 6099 "%s: no ID found", __func__); 6100 } 6101 retval = 1; 6102 goto bailout; 6103 } 6104 scsi_addr = strtoul(tmpstr, &endptr, 0); 6105 if (*endptr != '\0') { 6106 if (error_str != NULL) { 6107 snprintf(error_str, error_str_len, "%s: error " 6108 "parsing SCSI ID %s, number required", 6109 __func__, tmpstr); 6110 } 6111 retval = 1; 6112 goto bailout; 6113 } 6114 6115 if (id_str == NULL) { 6116 if (error_str != NULL) { 6117 snprintf(error_str, error_str_len, "%s: no relative " 6118 "target port found", __func__); 6119 } 6120 retval = 1; 6121 goto bailout; 6122 } 6123 6124 target_port = strtoul(id_str, &endptr, 0); 6125 if (*endptr != '\0') { 6126 if (error_str != NULL) { 6127 snprintf(error_str, error_str_len, "%s: error " 6128 "parsing relative target port %s, number " 6129 "required", __func__, id_str); 6130 } 6131 retval = 1; 6132 goto bailout; 6133 } 6134 #ifdef _KERNEL 6135 spi = malloc(sizeof(*spi), type, flags); 6136 #else 6137 spi = malloc(sizeof(*spi)); 6138 #endif 6139 if (spi == NULL) { 6140 if (error_str != NULL) { 6141 snprintf(error_str, error_str_len, "%s: unable to " 6142 "allocate %zu bytes", __func__, 6143 sizeof(*spi)); 6144 } 6145 retval = 1; 6146 goto bailout; 6147 } 6148 *alloc_len = sizeof(*spi); 6149 bzero(spi, sizeof(*spi)); 6150 6151 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT; 6152 scsi_ulto2b(scsi_addr, spi->scsi_addr); 6153 scsi_ulto2b(target_port, spi->rel_trgt_port_id); 6154 6155 *hdr = (struct scsi_transportid_header *)spi; 6156 bailout: 6157 return (retval); 6158 } 6159 6160 /* 6161 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits, 6162 * optionally prefixed by "0x" or "0X". 6163 */ 6164 int 6165 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, 6166 unsigned int *alloc_len, 6167 #ifdef _KERNEL 6168 struct malloc_type *type, int flags, 6169 #endif 6170 char *error_str, int error_str_len) 6171 { 6172 struct scsi_transportid_rdma *rdma; 6173 int retval; 6174 size_t id_len, rdma_id_size; 6175 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN]; 6176 char *tmpstr; 6177 unsigned int i, j; 6178 6179 retval = 0; 6180 id_len = strlen(id_str); 6181 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN; 6182 6183 /* 6184 * Check the size. It needs to be either 32 or 34 characters long. 6185 */ 6186 if ((id_len != (rdma_id_size * 2)) 6187 && (id_len != ((rdma_id_size * 2) + 2))) { 6188 if (error_str != NULL) { 6189 snprintf(error_str, error_str_len, "%s: RDMA ID " 6190 "must be 32 hex digits (0x prefix " 6191 "optional), only %zu seen", __func__, id_len); 6192 } 6193 retval = 1; 6194 goto bailout; 6195 } 6196 6197 tmpstr = id_str; 6198 /* 6199 * If the user gave us 34 characters, the string needs to start 6200 * with '0x'. 6201 */ 6202 if (id_len == ((rdma_id_size * 2) + 2)) { 6203 if ((tmpstr[0] == '0') 6204 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) { 6205 tmpstr += 2; 6206 } else { 6207 if (error_str != NULL) { 6208 snprintf(error_str, error_str_len, "%s: RDMA " 6209 "ID prefix, if used, must be \"0x\", " 6210 "got %s", __func__, tmpstr); 6211 } 6212 retval = 1; 6213 goto bailout; 6214 } 6215 } 6216 bzero(rdma_id, sizeof(rdma_id)); 6217 6218 /* 6219 * Convert ASCII hex into binary bytes. There is no standard 6220 * 128-bit integer type, and so no strtou128t() routine to convert 6221 * from hex into a large integer. In the end, we're not going to 6222 * an integer, but rather to a byte array, so that and the fact 6223 * that we require the user to give us 32 hex digits simplifies the 6224 * logic. 6225 */ 6226 for (i = 0; i < (rdma_id_size * 2); i++) { 6227 int cur_shift; 6228 unsigned char c; 6229 6230 /* Increment the byte array one for every 2 hex digits */ 6231 j = i >> 1; 6232 6233 /* 6234 * The first digit in every pair is the most significant 6235 * 4 bits. The second is the least significant 4 bits. 6236 */ 6237 if ((i % 2) == 0) 6238 cur_shift = 4; 6239 else 6240 cur_shift = 0; 6241 6242 c = tmpstr[i]; 6243 /* Convert the ASCII hex character into a number */ 6244 if (isdigit(c)) 6245 c -= '0'; 6246 else if (isalpha(c)) 6247 c -= isupper(c) ? 'A' - 10 : 'a' - 10; 6248 else { 6249 if (error_str != NULL) { 6250 snprintf(error_str, error_str_len, "%s: " 6251 "RDMA ID must be hex digits, got " 6252 "invalid character %c", __func__, 6253 tmpstr[i]); 6254 } 6255 retval = 1; 6256 goto bailout; 6257 } 6258 /* 6259 * The converted number can't be less than 0; the type is 6260 * unsigned, and the subtraction logic will not give us 6261 * a negative number. So we only need to make sure that 6262 * the value is not greater than 0xf. (i.e. make sure the 6263 * user didn't give us a value like "0x12jklmno"). 6264 */ 6265 if (c > 0xf) { 6266 if (error_str != NULL) { 6267 snprintf(error_str, error_str_len, "%s: " 6268 "RDMA ID must be hex digits, got " 6269 "invalid character %c", __func__, 6270 tmpstr[i]); 6271 } 6272 retval = 1; 6273 goto bailout; 6274 } 6275 6276 rdma_id[j] |= c << cur_shift; 6277 } 6278 6279 #ifdef _KERNEL 6280 rdma = malloc(sizeof(*rdma), type, flags); 6281 #else 6282 rdma = malloc(sizeof(*rdma)); 6283 #endif 6284 if (rdma == NULL) { 6285 if (error_str != NULL) { 6286 snprintf(error_str, error_str_len, "%s: unable to " 6287 "allocate %zu bytes", __func__, 6288 sizeof(*rdma)); 6289 } 6290 retval = 1; 6291 goto bailout; 6292 } 6293 *alloc_len = sizeof(*rdma); 6294 bzero(rdma, *alloc_len); 6295 6296 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT; 6297 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN); 6298 6299 *hdr = (struct scsi_transportid_header *)rdma; 6300 6301 bailout: 6302 return (retval); 6303 } 6304 6305 /* 6306 * Parse an iSCSI name. The format is either just the name: 6307 * 6308 * iqn.2012-06.com.example:target0 6309 * or the name, separator and initiator session ID: 6310 * 6311 * iqn.2012-06.com.example:target0,i,0x123 6312 * 6313 * The separator format is exact. 6314 */ 6315 int 6316 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, 6317 unsigned int *alloc_len, 6318 #ifdef _KERNEL 6319 struct malloc_type *type, int flags, 6320 #endif 6321 char *error_str, int error_str_len) 6322 { 6323 size_t id_len, sep_len, id_size, name_len; 6324 int retval; 6325 unsigned int i, sep_pos, sep_found; 6326 const char *sep_template = ",i,0x"; 6327 const char *iqn_prefix = "iqn."; 6328 struct scsi_transportid_iscsi_device *iscsi; 6329 6330 retval = 0; 6331 sep_found = 0; 6332 6333 id_len = strlen(id_str); 6334 sep_len = strlen(sep_template); 6335 6336 /* 6337 * The separator is defined as exactly ',i,0x'. Any other commas, 6338 * or any other form, is an error. So look for a comma, and once 6339 * we find that, the next few characters must match the separator 6340 * exactly. Once we get through the separator, there should be at 6341 * least one character. 6342 */ 6343 for (i = 0, sep_pos = 0; i < id_len; i++) { 6344 if (sep_pos == 0) { 6345 if (id_str[i] == sep_template[sep_pos]) 6346 sep_pos++; 6347 6348 continue; 6349 } 6350 if (sep_pos < sep_len) { 6351 if (id_str[i] == sep_template[sep_pos]) { 6352 sep_pos++; 6353 continue; 6354 } 6355 if (error_str != NULL) { 6356 snprintf(error_str, error_str_len, "%s: " 6357 "invalid separator in iSCSI name " 6358 "\"%s\"", 6359 __func__, id_str); 6360 } 6361 retval = 1; 6362 goto bailout; 6363 } else { 6364 sep_found = 1; 6365 break; 6366 } 6367 } 6368 6369 /* 6370 * Check to see whether we have a separator but no digits after it. 6371 */ 6372 if ((sep_pos != 0) 6373 && (sep_found == 0)) { 6374 if (error_str != NULL) { 6375 snprintf(error_str, error_str_len, "%s: no digits " 6376 "found after separator in iSCSI name \"%s\"", 6377 __func__, id_str); 6378 } 6379 retval = 1; 6380 goto bailout; 6381 } 6382 6383 /* 6384 * The incoming ID string has the "iqn." prefix stripped off. We 6385 * need enough space for the base structure (the structures are the 6386 * same for the two iSCSI forms), the prefix, the ID string and a 6387 * terminating NUL. 6388 */ 6389 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1; 6390 6391 #ifdef _KERNEL 6392 iscsi = malloc(id_size, type, flags); 6393 #else 6394 iscsi = malloc(id_size); 6395 #endif 6396 if (iscsi == NULL) { 6397 if (error_str != NULL) { 6398 snprintf(error_str, error_str_len, "%s: unable to " 6399 "allocate %zu bytes", __func__, id_size); 6400 } 6401 retval = 1; 6402 goto bailout; 6403 } 6404 *alloc_len = id_size; 6405 bzero(iscsi, id_size); 6406 6407 iscsi->format_protocol = SCSI_PROTO_ISCSI; 6408 if (sep_found == 0) 6409 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE; 6410 else 6411 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT; 6412 name_len = id_size - sizeof(*iscsi); 6413 scsi_ulto2b(name_len, iscsi->additional_length); 6414 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str); 6415 6416 *hdr = (struct scsi_transportid_header *)iscsi; 6417 6418 bailout: 6419 return (retval); 6420 } 6421 6422 /* 6423 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be 6424 * of the form 'bus,device,function' or 'bus,function'. 6425 */ 6426 int 6427 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, 6428 unsigned int *alloc_len, 6429 #ifdef _KERNEL 6430 struct malloc_type *type, int flags, 6431 #endif 6432 char *error_str, int error_str_len) 6433 { 6434 struct scsi_transportid_sop *sop; 6435 unsigned long bus, device, function; 6436 char *tmpstr, *endptr; 6437 int retval, device_spec; 6438 6439 retval = 0; 6440 device_spec = 0; 6441 device = 0; 6442 6443 tmpstr = strsep(&id_str, ","); 6444 if ((tmpstr == NULL) 6445 || (*tmpstr == '\0')) { 6446 if (error_str != NULL) { 6447 snprintf(error_str, error_str_len, "%s: no ID found", 6448 __func__); 6449 } 6450 retval = 1; 6451 goto bailout; 6452 } 6453 bus = strtoul(tmpstr, &endptr, 0); 6454 if (*endptr != '\0') { 6455 if (error_str != NULL) { 6456 snprintf(error_str, error_str_len, "%s: error " 6457 "parsing PCIe bus %s, number required", 6458 __func__, tmpstr); 6459 } 6460 retval = 1; 6461 goto bailout; 6462 } 6463 if ((id_str == NULL) 6464 || (*id_str == '\0')) { 6465 if (error_str != NULL) { 6466 snprintf(error_str, error_str_len, "%s: no PCIe " 6467 "device or function found", __func__); 6468 } 6469 retval = 1; 6470 goto bailout; 6471 } 6472 tmpstr = strsep(&id_str, ","); 6473 function = strtoul(tmpstr, &endptr, 0); 6474 if (*endptr != '\0') { 6475 if (error_str != NULL) { 6476 snprintf(error_str, error_str_len, "%s: error " 6477 "parsing PCIe device/function %s, number " 6478 "required", __func__, tmpstr); 6479 } 6480 retval = 1; 6481 goto bailout; 6482 } 6483 /* 6484 * Check to see whether the user specified a third value. If so, 6485 * the second is the device. 6486 */ 6487 if (id_str != NULL) { 6488 if (*id_str == '\0') { 6489 if (error_str != NULL) { 6490 snprintf(error_str, error_str_len, "%s: " 6491 "no PCIe function found", __func__); 6492 } 6493 retval = 1; 6494 goto bailout; 6495 } 6496 device = function; 6497 device_spec = 1; 6498 function = strtoul(id_str, &endptr, 0); 6499 if (*endptr != '\0') { 6500 if (error_str != NULL) { 6501 snprintf(error_str, error_str_len, "%s: " 6502 "error parsing PCIe function %s, " 6503 "number required", __func__, id_str); 6504 } 6505 retval = 1; 6506 goto bailout; 6507 } 6508 } 6509 if (bus > SCSI_TRN_SOP_BUS_MAX) { 6510 if (error_str != NULL) { 6511 snprintf(error_str, error_str_len, "%s: bus value " 6512 "%lu greater than maximum %u", __func__, 6513 bus, SCSI_TRN_SOP_BUS_MAX); 6514 } 6515 retval = 1; 6516 goto bailout; 6517 } 6518 6519 if ((device_spec != 0) 6520 && (device > SCSI_TRN_SOP_DEV_MASK)) { 6521 if (error_str != NULL) { 6522 snprintf(error_str, error_str_len, "%s: device value " 6523 "%lu greater than maximum %u", __func__, 6524 device, SCSI_TRN_SOP_DEV_MAX); 6525 } 6526 retval = 1; 6527 goto bailout; 6528 } 6529 6530 if (((device_spec != 0) 6531 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX)) 6532 || ((device_spec == 0) 6533 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) { 6534 if (error_str != NULL) { 6535 snprintf(error_str, error_str_len, "%s: function value " 6536 "%lu greater than maximum %u", __func__, 6537 function, (device_spec == 0) ? 6538 SCSI_TRN_SOP_FUNC_ALT_MAX : 6539 SCSI_TRN_SOP_FUNC_NORM_MAX); 6540 } 6541 retval = 1; 6542 goto bailout; 6543 } 6544 6545 #ifdef _KERNEL 6546 sop = malloc(sizeof(*sop), type, flags); 6547 #else 6548 sop = malloc(sizeof(*sop)); 6549 #endif 6550 if (sop == NULL) { 6551 if (error_str != NULL) { 6552 snprintf(error_str, error_str_len, "%s: unable to " 6553 "allocate %zu bytes", __func__, sizeof(*sop)); 6554 } 6555 retval = 1; 6556 goto bailout; 6557 } 6558 *alloc_len = sizeof(*sop); 6559 bzero(sop, sizeof(*sop)); 6560 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT; 6561 if (device_spec != 0) { 6562 struct scsi_sop_routing_id_norm rid; 6563 6564 rid.bus = bus; 6565 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function; 6566 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6567 sizeof(sop->routing_id))); 6568 } else { 6569 struct scsi_sop_routing_id_alt rid; 6570 6571 rid.bus = bus; 6572 rid.function = function; 6573 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6574 sizeof(sop->routing_id))); 6575 } 6576 6577 *hdr = (struct scsi_transportid_header *)sop; 6578 bailout: 6579 return (retval); 6580 } 6581 6582 /* 6583 * transportid_str: NUL-terminated string with format: protcol,id 6584 * The ID is protocol specific. 6585 * hdr: Storage will be allocated for the transport ID. 6586 * alloc_len: The amount of memory allocated is returned here. 6587 * type: Malloc bucket (kernel only). 6588 * flags: Malloc flags (kernel only). 6589 * error_str: If non-NULL, it will contain error information (without 6590 * a terminating newline) if an error is returned. 6591 * error_str_len: Allocated length of the error string. 6592 * 6593 * Returns 0 for success, non-zero for failure. 6594 */ 6595 int 6596 scsi_parse_transportid(char *transportid_str, 6597 struct scsi_transportid_header **hdr, 6598 unsigned int *alloc_len, 6599 #ifdef _KERNEL 6600 struct malloc_type *type, int flags, 6601 #endif 6602 char *error_str, int error_str_len) 6603 { 6604 char *tmpstr; 6605 scsi_nv_status status; 6606 u_int num_proto_entries; 6607 int retval, table_entry; 6608 6609 retval = 0; 6610 table_entry = 0; 6611 6612 /* 6613 * We do allow a period as well as a comma to separate the protocol 6614 * from the ID string. This is to accommodate iSCSI names, which 6615 * start with "iqn.". 6616 */ 6617 tmpstr = strsep(&transportid_str, ",."); 6618 if (tmpstr == NULL) { 6619 if (error_str != NULL) { 6620 snprintf(error_str, error_str_len, 6621 "%s: transportid_str is NULL", __func__); 6622 } 6623 retval = 1; 6624 goto bailout; 6625 } 6626 6627 num_proto_entries = nitems(scsi_proto_map); 6628 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr, 6629 &table_entry, SCSI_NV_FLAG_IG_CASE); 6630 if (status != SCSI_NV_FOUND) { 6631 if (error_str != NULL) { 6632 snprintf(error_str, error_str_len, "%s: %s protocol " 6633 "name %s", __func__, 6634 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : 6635 "invalid", tmpstr); 6636 } 6637 retval = 1; 6638 goto bailout; 6639 } 6640 switch (scsi_proto_map[table_entry].value) { 6641 case SCSI_PROTO_FC: 6642 case SCSI_PROTO_1394: 6643 case SCSI_PROTO_SAS: 6644 retval = scsi_parse_transportid_64bit( 6645 scsi_proto_map[table_entry].value, transportid_str, hdr, 6646 alloc_len, 6647 #ifdef _KERNEL 6648 type, flags, 6649 #endif 6650 error_str, error_str_len); 6651 break; 6652 case SCSI_PROTO_SPI: 6653 retval = scsi_parse_transportid_spi(transportid_str, hdr, 6654 alloc_len, 6655 #ifdef _KERNEL 6656 type, flags, 6657 #endif 6658 error_str, error_str_len); 6659 break; 6660 case SCSI_PROTO_RDMA: 6661 retval = scsi_parse_transportid_rdma(transportid_str, hdr, 6662 alloc_len, 6663 #ifdef _KERNEL 6664 type, flags, 6665 #endif 6666 error_str, error_str_len); 6667 break; 6668 case SCSI_PROTO_ISCSI: 6669 retval = scsi_parse_transportid_iscsi(transportid_str, hdr, 6670 alloc_len, 6671 #ifdef _KERNEL 6672 type, flags, 6673 #endif 6674 error_str, error_str_len); 6675 break; 6676 case SCSI_PROTO_SOP: 6677 retval = scsi_parse_transportid_sop(transportid_str, hdr, 6678 alloc_len, 6679 #ifdef _KERNEL 6680 type, flags, 6681 #endif 6682 error_str, error_str_len); 6683 break; 6684 case SCSI_PROTO_SSA: 6685 case SCSI_PROTO_ADITP: 6686 case SCSI_PROTO_ATA: 6687 case SCSI_PROTO_UAS: 6688 case SCSI_PROTO_NONE: 6689 default: 6690 /* 6691 * There is no format defined for a Transport ID for these 6692 * protocols. So even if the user gives us something, we 6693 * have no way to turn it into a standard SCSI Transport ID. 6694 */ 6695 retval = 1; 6696 if (error_str != NULL) { 6697 snprintf(error_str, error_str_len, "%s: no Transport " 6698 "ID format exists for protocol %s", 6699 __func__, tmpstr); 6700 } 6701 goto bailout; 6702 break; /* NOTREACHED */ 6703 } 6704 bailout: 6705 return (retval); 6706 } 6707 6708 struct scsi_attrib_table_entry scsi_mam_attr_table[] = { 6709 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6710 "Remaining Capacity in Partition", 6711 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL }, 6712 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6713 "Maximum Capacity in Partition", 6714 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6715 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX, 6716 "TapeAlert Flags", 6717 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6718 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE, 6719 "Load Count", 6720 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6721 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE, 6722 "MAM Space Remaining", 6723 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6724 /*parse_str*/ NULL }, 6725 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6726 "Assigning Organization", 6727 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6728 /*parse_str*/ NULL }, 6729 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6730 "Format Density Code", 6731 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6732 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE, 6733 "Initialization Count", 6734 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6735 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE, 6736 "Volume Identifier", 6737 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6738 /*parse_str*/ NULL }, 6739 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX, 6740 "Volume Change Reference", 6741 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6742 /*parse_str*/ NULL }, 6743 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE, 6744 "Device Vendor/Serial at Last Load", 6745 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6746 /*parse_str*/ NULL }, 6747 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE, 6748 "Device Vendor/Serial at Last Load - 1", 6749 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6750 /*parse_str*/ NULL }, 6751 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE, 6752 "Device Vendor/Serial at Last Load - 2", 6753 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6754 /*parse_str*/ NULL }, 6755 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE, 6756 "Device Vendor/Serial at Last Load - 3", 6757 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6758 /*parse_str*/ NULL }, 6759 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE, 6760 "Total MB Written in Medium Life", 6761 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6762 /*parse_str*/ NULL }, 6763 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE, 6764 "Total MB Read in Medium Life", 6765 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6766 /*parse_str*/ NULL }, 6767 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE, 6768 "Total MB Written in Current/Last Load", 6769 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6770 /*parse_str*/ NULL }, 6771 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE, 6772 "Total MB Read in Current/Last Load", 6773 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6774 /*parse_str*/ NULL }, 6775 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6776 "Logical Position of First Encrypted Block", 6777 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6778 /*parse_str*/ NULL }, 6779 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6780 "Logical Position of First Unencrypted Block after First " 6781 "Encrypted Block", 6782 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6783 /*parse_str*/ NULL }, 6784 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6785 "Medium Usage History", 6786 /*suffix*/ NULL, /*to_str*/ NULL, 6787 /*parse_str*/ NULL }, 6788 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6789 "Partition Usage History", 6790 /*suffix*/ NULL, /*to_str*/ NULL, 6791 /*parse_str*/ NULL }, 6792 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE, 6793 "Medium Manufacturer", 6794 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6795 /*parse_str*/ NULL }, 6796 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE, 6797 "Medium Serial Number", 6798 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6799 /*parse_str*/ NULL }, 6800 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE, 6801 "Medium Length", 6802 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf, 6803 /*parse_str*/ NULL }, 6804 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 | 6805 SCSI_ATTR_FLAG_FP_1DIGIT, 6806 "Medium Width", 6807 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf, 6808 /*parse_str*/ NULL }, 6809 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6810 "Assigning Organization", 6811 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6812 /*parse_str*/ NULL }, 6813 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6814 "Medium Density Code", 6815 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6816 /*parse_str*/ NULL }, 6817 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE, 6818 "Medium Manufacture Date", 6819 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6820 /*parse_str*/ NULL }, 6821 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE, 6822 "MAM Capacity", 6823 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6824 /*parse_str*/ NULL }, 6825 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX, 6826 "Medium Type", 6827 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6828 /*parse_str*/ NULL }, 6829 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX, 6830 "Medium Type Information", 6831 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6832 /*parse_str*/ NULL }, 6833 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE, 6834 "Medium Serial Number", 6835 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6836 /*parse_str*/ NULL }, 6837 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE, 6838 "Application Vendor", 6839 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6840 /*parse_str*/ NULL }, 6841 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE, 6842 "Application Name", 6843 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6844 /*parse_str*/ NULL }, 6845 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE, 6846 "Application Version", 6847 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6848 /*parse_str*/ NULL }, 6849 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE, 6850 "User Medium Text Label", 6851 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6852 /*parse_str*/ NULL }, 6853 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE, 6854 "Date and Time Last Written", 6855 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6856 /*parse_str*/ NULL }, 6857 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX, 6858 "Text Localization Identifier", 6859 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6860 /*parse_str*/ NULL }, 6861 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE, 6862 "Barcode", 6863 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6864 /*parse_str*/ NULL }, 6865 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE, 6866 "Owning Host Textual Name", 6867 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6868 /*parse_str*/ NULL }, 6869 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE, 6870 "Media Pool", 6871 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6872 /*parse_str*/ NULL }, 6873 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE, 6874 "Partition User Text Label", 6875 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6876 /*parse_str*/ NULL }, 6877 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE, 6878 "Load/Unload at Partition", 6879 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6880 /*parse_str*/ NULL }, 6881 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE, 6882 "Application Format Version", 6883 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6884 /*parse_str*/ NULL }, 6885 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE, 6886 "Volume Coherency Information", 6887 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf, 6888 /*parse_str*/ NULL }, 6889 { 0x0ff1, SCSI_ATTR_FLAG_NONE, 6890 "Spectra MLM Creation", 6891 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6892 /*parse_str*/ NULL }, 6893 { 0x0ff2, SCSI_ATTR_FLAG_NONE, 6894 "Spectra MLM C3", 6895 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6896 /*parse_str*/ NULL }, 6897 { 0x0ff3, SCSI_ATTR_FLAG_NONE, 6898 "Spectra MLM RW", 6899 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6900 /*parse_str*/ NULL }, 6901 { 0x0ff4, SCSI_ATTR_FLAG_NONE, 6902 "Spectra MLM SDC List", 6903 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6904 /*parse_str*/ NULL }, 6905 { 0x0ff7, SCSI_ATTR_FLAG_NONE, 6906 "Spectra MLM Post Scan", 6907 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6908 /*parse_str*/ NULL }, 6909 { 0x0ffe, SCSI_ATTR_FLAG_NONE, 6910 "Spectra MLM Checksum", 6911 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6912 /*parse_str*/ NULL }, 6913 { 0x17f1, SCSI_ATTR_FLAG_NONE, 6914 "Spectra MLM Creation", 6915 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6916 /*parse_str*/ NULL }, 6917 { 0x17f2, SCSI_ATTR_FLAG_NONE, 6918 "Spectra MLM C3", 6919 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6920 /*parse_str*/ NULL }, 6921 { 0x17f3, SCSI_ATTR_FLAG_NONE, 6922 "Spectra MLM RW", 6923 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6924 /*parse_str*/ NULL }, 6925 { 0x17f4, SCSI_ATTR_FLAG_NONE, 6926 "Spectra MLM SDC List", 6927 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6928 /*parse_str*/ NULL }, 6929 { 0x17f7, SCSI_ATTR_FLAG_NONE, 6930 "Spectra MLM Post Scan", 6931 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6932 /*parse_str*/ NULL }, 6933 { 0x17ff, SCSI_ATTR_FLAG_NONE, 6934 "Spectra MLM Checksum", 6935 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6936 /*parse_str*/ NULL }, 6937 }; 6938 6939 /* 6940 * Print out Volume Coherency Information (Attribute 0x080c). 6941 * This field has two variable length members, including one at the 6942 * beginning, so it isn't practical to have a fixed structure definition. 6943 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25, 6944 * 2013. 6945 */ 6946 int 6947 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 6948 uint32_t valid_len, uint32_t flags, 6949 uint32_t output_flags, char *error_str, 6950 int error_str_len) 6951 { 6952 size_t avail_len; 6953 uint32_t field_size; 6954 uint64_t tmp_val; 6955 uint8_t *cur_ptr; 6956 int retval; 6957 int vcr_len, as_len; 6958 6959 retval = 0; 6960 tmp_val = 0; 6961 6962 field_size = scsi_2btoul(hdr->length); 6963 avail_len = valid_len - sizeof(*hdr); 6964 if (field_size > avail_len) { 6965 if (error_str != NULL) { 6966 snprintf(error_str, error_str_len, "Available " 6967 "length of attribute ID 0x%.4x %zu < field " 6968 "length %u", scsi_2btoul(hdr->id), avail_len, 6969 field_size); 6970 } 6971 retval = 1; 6972 goto bailout; 6973 } else if (field_size == 0) { 6974 /* 6975 * It isn't clear from the spec whether a field length of 6976 * 0 is invalid here. It probably is, but be lenient here 6977 * to avoid inconveniencing the user. 6978 */ 6979 goto bailout; 6980 } 6981 cur_ptr = hdr->attribute; 6982 vcr_len = *cur_ptr; 6983 cur_ptr++; 6984 6985 sbuf_printf(sb, "\n\tVolume Change Reference Value:"); 6986 6987 switch (vcr_len) { 6988 case 0: 6989 if (error_str != NULL) { 6990 snprintf(error_str, error_str_len, "Volume Change " 6991 "Reference value has length of 0"); 6992 } 6993 retval = 1; 6994 goto bailout; 6995 break; /*NOTREACHED*/ 6996 case 1: 6997 tmp_val = *cur_ptr; 6998 break; 6999 case 2: 7000 tmp_val = scsi_2btoul(cur_ptr); 7001 break; 7002 case 3: 7003 tmp_val = scsi_3btoul(cur_ptr); 7004 break; 7005 case 4: 7006 tmp_val = scsi_4btoul(cur_ptr); 7007 break; 7008 case 8: 7009 tmp_val = scsi_8btou64(cur_ptr); 7010 break; 7011 default: 7012 sbuf_printf(sb, "\n"); 7013 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0); 7014 break; 7015 } 7016 if (vcr_len <= 8) 7017 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val); 7018 7019 cur_ptr += vcr_len; 7020 tmp_val = scsi_8btou64(cur_ptr); 7021 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val); 7022 7023 cur_ptr += sizeof(tmp_val); 7024 tmp_val = scsi_8btou64(cur_ptr); 7025 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n", 7026 (uintmax_t)tmp_val); 7027 7028 /* 7029 * Figure out how long the Application Client Specific Information 7030 * is and produce a hexdump. 7031 */ 7032 cur_ptr += sizeof(tmp_val); 7033 as_len = scsi_2btoul(cur_ptr); 7034 cur_ptr += sizeof(uint16_t); 7035 sbuf_printf(sb, "\tApplication Client Specific Information: "); 7036 if (((as_len == SCSI_LTFS_VER0_LEN) 7037 || (as_len == SCSI_LTFS_VER1_LEN)) 7038 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) { 7039 sbuf_printf(sb, "LTFS\n"); 7040 cur_ptr += SCSI_LTFS_STR_LEN + 1; 7041 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0') 7042 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0'; 7043 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr); 7044 cur_ptr += SCSI_LTFS_UUID_LEN + 1; 7045 /* XXX KDM check the length */ 7046 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr); 7047 } else { 7048 sbuf_printf(sb, "Unknown\n"); 7049 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0); 7050 } 7051 7052 bailout: 7053 return (retval); 7054 } 7055 7056 int 7057 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7058 uint32_t valid_len, uint32_t flags, 7059 uint32_t output_flags, char *error_str, 7060 int error_str_len) 7061 { 7062 size_t avail_len; 7063 uint32_t field_size; 7064 struct scsi_attrib_vendser *vendser; 7065 cam_strvis_flags strvis_flags; 7066 int retval = 0; 7067 7068 field_size = scsi_2btoul(hdr->length); 7069 avail_len = valid_len - sizeof(*hdr); 7070 if (field_size > avail_len) { 7071 if (error_str != NULL) { 7072 snprintf(error_str, error_str_len, "Available " 7073 "length of attribute ID 0x%.4x %zu < field " 7074 "length %u", scsi_2btoul(hdr->id), avail_len, 7075 field_size); 7076 } 7077 retval = 1; 7078 goto bailout; 7079 } else if (field_size == 0) { 7080 /* 7081 * A field size of 0 doesn't make sense here. The device 7082 * can at least give you the vendor ID, even if it can't 7083 * give you the serial number. 7084 */ 7085 if (error_str != NULL) { 7086 snprintf(error_str, error_str_len, "The length of " 7087 "attribute ID 0x%.4x is 0", 7088 scsi_2btoul(hdr->id)); 7089 } 7090 retval = 1; 7091 goto bailout; 7092 } 7093 vendser = (struct scsi_attrib_vendser *)hdr->attribute; 7094 7095 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7096 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7097 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7098 break; 7099 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7100 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7101 break; 7102 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7103 default: 7104 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7105 break;; 7106 } 7107 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor), 7108 strvis_flags); 7109 sbuf_putc(sb, ' '); 7110 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num), 7111 strvis_flags); 7112 bailout: 7113 return (retval); 7114 } 7115 7116 int 7117 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7118 uint32_t valid_len, uint32_t flags, 7119 uint32_t output_flags, char *error_str, 7120 int error_str_len) 7121 { 7122 uint32_t field_size; 7123 ssize_t avail_len; 7124 uint32_t print_len; 7125 uint8_t *num_ptr; 7126 int retval = 0; 7127 7128 field_size = scsi_2btoul(hdr->length); 7129 avail_len = valid_len - sizeof(*hdr); 7130 print_len = MIN(avail_len, field_size); 7131 num_ptr = hdr->attribute; 7132 7133 if (print_len > 0) { 7134 sbuf_printf(sb, "\n"); 7135 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0); 7136 } 7137 7138 return (retval); 7139 } 7140 7141 int 7142 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7143 uint32_t valid_len, uint32_t flags, 7144 uint32_t output_flags, char *error_str, 7145 int error_str_len) 7146 { 7147 uint64_t print_number; 7148 size_t avail_len; 7149 uint32_t number_size; 7150 int retval = 0; 7151 7152 number_size = scsi_2btoul(hdr->length); 7153 7154 avail_len = valid_len - sizeof(*hdr); 7155 if (avail_len < number_size) { 7156 if (error_str != NULL) { 7157 snprintf(error_str, error_str_len, "Available " 7158 "length of attribute ID 0x%.4x %zu < field " 7159 "length %u", scsi_2btoul(hdr->id), avail_len, 7160 number_size); 7161 } 7162 retval = 1; 7163 goto bailout; 7164 } 7165 7166 switch (number_size) { 7167 case 0: 7168 /* 7169 * We don't treat this as an error, since there may be 7170 * scenarios where a device reports a field but then gives 7171 * a length of 0. See the note in scsi_attrib_ascii_sbuf(). 7172 */ 7173 goto bailout; 7174 break; /*NOTREACHED*/ 7175 case 1: 7176 print_number = hdr->attribute[0]; 7177 break; 7178 case 2: 7179 print_number = scsi_2btoul(hdr->attribute); 7180 break; 7181 case 3: 7182 print_number = scsi_3btoul(hdr->attribute); 7183 break; 7184 case 4: 7185 print_number = scsi_4btoul(hdr->attribute); 7186 break; 7187 case 8: 7188 print_number = scsi_8btou64(hdr->attribute); 7189 break; 7190 default: 7191 /* 7192 * If we wind up here, the number is too big to print 7193 * normally, so just do a hexdump. 7194 */ 7195 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7196 flags, output_flags, 7197 error_str, error_str_len); 7198 goto bailout; 7199 break; 7200 } 7201 7202 if (flags & SCSI_ATTR_FLAG_FP) { 7203 #ifndef _KERNEL 7204 long double num_float; 7205 7206 num_float = (long double)print_number; 7207 7208 if (flags & SCSI_ATTR_FLAG_DIV_10) 7209 num_float /= 10; 7210 7211 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ? 7212 1 : 0, num_float); 7213 #else /* _KERNEL */ 7214 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ? 7215 (print_number / 10) : print_number); 7216 #endif /* _KERNEL */ 7217 } else if (flags & SCSI_ATTR_FLAG_HEX) { 7218 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number); 7219 } else 7220 sbuf_printf(sb, "%ju", (uintmax_t)print_number); 7221 7222 bailout: 7223 return (retval); 7224 } 7225 7226 int 7227 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7228 uint32_t valid_len, uint32_t flags, 7229 uint32_t output_flags, char *error_str, 7230 int error_str_len) 7231 { 7232 size_t avail_len; 7233 uint32_t field_size, print_size; 7234 int retval = 0; 7235 7236 avail_len = valid_len - sizeof(*hdr); 7237 field_size = scsi_2btoul(hdr->length); 7238 print_size = MIN(avail_len, field_size); 7239 7240 if (print_size > 0) { 7241 cam_strvis_flags strvis_flags; 7242 7243 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7244 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7245 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7246 break; 7247 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7248 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7249 break; 7250 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7251 default: 7252 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7253 break; 7254 } 7255 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags); 7256 } else if (avail_len < field_size) { 7257 /* 7258 * We only report an error if the user didn't allocate 7259 * enough space to hold the full value of this field. If 7260 * the field length is 0, that is allowed by the spec. 7261 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER 7262 * "This attribute indicates the current volume identifier 7263 * (see SMC-3) of the medium. If the device server supports 7264 * this attribute but does not have access to the volume 7265 * identifier, the device server shall report this attribute 7266 * with an attribute length value of zero." 7267 */ 7268 if (error_str != NULL) { 7269 snprintf(error_str, error_str_len, "Available " 7270 "length of attribute ID 0x%.4x %zu < field " 7271 "length %u", scsi_2btoul(hdr->id), avail_len, 7272 field_size); 7273 } 7274 retval = 1; 7275 } 7276 7277 return (retval); 7278 } 7279 7280 int 7281 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7282 uint32_t valid_len, uint32_t flags, 7283 uint32_t output_flags, char *error_str, 7284 int error_str_len) 7285 { 7286 size_t avail_len; 7287 uint32_t field_size, print_size; 7288 int retval = 0; 7289 int esc_text = 1; 7290 7291 avail_len = valid_len - sizeof(*hdr); 7292 field_size = scsi_2btoul(hdr->length); 7293 print_size = MIN(avail_len, field_size); 7294 7295 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) == 7296 SCSI_ATTR_OUTPUT_TEXT_RAW) 7297 esc_text = 0; 7298 7299 if (print_size > 0) { 7300 uint32_t i; 7301 7302 for (i = 0; i < print_size; i++) { 7303 if (hdr->attribute[i] == '\0') 7304 continue; 7305 else if (((unsigned char)hdr->attribute[i] < 0x80) 7306 || (esc_text == 0)) 7307 sbuf_putc(sb, hdr->attribute[i]); 7308 else 7309 sbuf_printf(sb, "%%%02x", 7310 (unsigned char)hdr->attribute[i]); 7311 } 7312 } else if (avail_len < field_size) { 7313 /* 7314 * We only report an error if the user didn't allocate 7315 * enough space to hold the full value of this field. 7316 */ 7317 if (error_str != NULL) { 7318 snprintf(error_str, error_str_len, "Available " 7319 "length of attribute ID 0x%.4x %zu < field " 7320 "length %u", scsi_2btoul(hdr->id), avail_len, 7321 field_size); 7322 } 7323 retval = 1; 7324 } 7325 7326 return (retval); 7327 } 7328 7329 struct scsi_attrib_table_entry * 7330 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table, 7331 size_t num_table_entries, uint32_t id) 7332 { 7333 uint32_t i; 7334 7335 for (i = 0; i < num_table_entries; i++) { 7336 if (table[i].id == id) 7337 return (&table[i]); 7338 } 7339 7340 return (NULL); 7341 } 7342 7343 struct scsi_attrib_table_entry * 7344 scsi_get_attrib_entry(uint32_t id) 7345 { 7346 return (scsi_find_attrib_entry(scsi_mam_attr_table, 7347 nitems(scsi_mam_attr_table), id)); 7348 } 7349 7350 int 7351 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, 7352 struct scsi_mam_attribute_header *hdr, uint32_t output_flags, 7353 char *error_str, size_t error_str_len) 7354 { 7355 int retval; 7356 7357 switch (hdr->byte2 & SMA_FORMAT_MASK) { 7358 case SMA_FORMAT_ASCII: 7359 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len, 7360 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len); 7361 break; 7362 case SMA_FORMAT_BINARY: 7363 if (scsi_2btoul(hdr->length) <= 8) 7364 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len, 7365 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7366 error_str_len); 7367 else 7368 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7369 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7370 error_str_len); 7371 break; 7372 case SMA_FORMAT_TEXT: 7373 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len, 7374 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7375 error_str_len); 7376 break; 7377 default: 7378 if (error_str != NULL) { 7379 snprintf(error_str, error_str_len, "Unknown attribute " 7380 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK); 7381 } 7382 retval = 1; 7383 goto bailout; 7384 break; /*NOTREACHED*/ 7385 } 7386 7387 sbuf_trim(sb); 7388 7389 bailout: 7390 7391 return (retval); 7392 } 7393 7394 void 7395 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, 7396 struct scsi_mam_attribute_header *hdr, 7397 uint32_t valid_len, const char *desc) 7398 { 7399 int need_space = 0; 7400 uint32_t len; 7401 uint32_t id; 7402 7403 /* 7404 * We can't do anything if we don't have enough valid data for the 7405 * header. 7406 */ 7407 if (valid_len < sizeof(*hdr)) 7408 return; 7409 7410 id = scsi_2btoul(hdr->id); 7411 /* 7412 * Note that we print out the value of the attribute listed in the 7413 * header, regardless of whether we actually got that many bytes 7414 * back from the device through the controller. A truncated result 7415 * could be the result of a failure to ask for enough data; the 7416 * header indicates how many bytes are allocated for this attribute 7417 * in the MAM. 7418 */ 7419 len = scsi_2btoul(hdr->length); 7420 7421 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) == 7422 SCSI_ATTR_OUTPUT_FIELD_NONE) 7423 return; 7424 7425 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC) 7426 && (desc != NULL)) { 7427 sbuf_printf(sb, "%s", desc); 7428 need_space = 1; 7429 } 7430 7431 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) { 7432 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id); 7433 need_space = 0; 7434 } 7435 7436 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) { 7437 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len); 7438 need_space = 0; 7439 } 7440 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) { 7441 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "", 7442 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW"); 7443 } 7444 sbuf_printf(sb, ": "); 7445 } 7446 7447 int 7448 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7449 uint32_t valid_len, struct scsi_attrib_table_entry *user_table, 7450 size_t num_user_entries, int prefer_user_table, 7451 uint32_t output_flags, char *error_str, int error_str_len) 7452 { 7453 int retval; 7454 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL; 7455 struct scsi_attrib_table_entry *entry = NULL; 7456 size_t table1_size = 0, table2_size = 0; 7457 uint32_t id; 7458 7459 retval = 0; 7460 7461 if (valid_len < sizeof(*hdr)) { 7462 retval = 1; 7463 goto bailout; 7464 } 7465 7466 id = scsi_2btoul(hdr->id); 7467 7468 if (user_table != NULL) { 7469 if (prefer_user_table != 0) { 7470 table1 = user_table; 7471 table1_size = num_user_entries; 7472 table2 = scsi_mam_attr_table; 7473 table2_size = nitems(scsi_mam_attr_table); 7474 } else { 7475 table1 = scsi_mam_attr_table; 7476 table1_size = nitems(scsi_mam_attr_table); 7477 table2 = user_table; 7478 table2_size = num_user_entries; 7479 } 7480 } else { 7481 table1 = scsi_mam_attr_table; 7482 table1_size = nitems(scsi_mam_attr_table); 7483 } 7484 7485 entry = scsi_find_attrib_entry(table1, table1_size, id); 7486 if (entry != NULL) { 7487 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, 7488 entry->desc); 7489 if (entry->to_str == NULL) 7490 goto print_default; 7491 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7492 output_flags, error_str, error_str_len); 7493 goto bailout; 7494 } 7495 if (table2 != NULL) { 7496 entry = scsi_find_attrib_entry(table2, table2_size, id); 7497 if (entry != NULL) { 7498 if (entry->to_str == NULL) 7499 goto print_default; 7500 7501 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, 7502 valid_len, entry->desc); 7503 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7504 output_flags, error_str, 7505 error_str_len); 7506 goto bailout; 7507 } 7508 } 7509 7510 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL); 7511 7512 print_default: 7513 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags, 7514 error_str, error_str_len); 7515 bailout: 7516 if (retval == 0) { 7517 if ((entry != NULL) 7518 && (entry->suffix != NULL)) 7519 sbuf_printf(sb, " %s", entry->suffix); 7520 7521 sbuf_trim(sb); 7522 sbuf_printf(sb, "\n"); 7523 } 7524 7525 return (retval); 7526 } 7527 7528 void 7529 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, 7530 void (*cbfcnp)(struct cam_periph *, union ccb *), 7531 u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout) 7532 { 7533 struct scsi_test_unit_ready *scsi_cmd; 7534 7535 cam_fill_csio(csio, 7536 retries, 7537 cbfcnp, 7538 CAM_DIR_NONE, 7539 tag_action, 7540 /*data_ptr*/NULL, 7541 /*dxfer_len*/0, 7542 sense_len, 7543 sizeof(*scsi_cmd), 7544 timeout); 7545 7546 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; 7547 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7548 scsi_cmd->opcode = TEST_UNIT_READY; 7549 } 7550 7551 void 7552 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, 7553 void (*cbfcnp)(struct cam_periph *, union ccb *), 7554 void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, 7555 u_int8_t sense_len, u_int32_t timeout) 7556 { 7557 struct scsi_request_sense *scsi_cmd; 7558 7559 cam_fill_csio(csio, 7560 retries, 7561 cbfcnp, 7562 CAM_DIR_IN, 7563 tag_action, 7564 data_ptr, 7565 dxfer_len, 7566 sense_len, 7567 sizeof(*scsi_cmd), 7568 timeout); 7569 7570 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; 7571 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7572 scsi_cmd->opcode = REQUEST_SENSE; 7573 scsi_cmd->length = dxfer_len; 7574 } 7575 7576 void 7577 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, 7578 void (*cbfcnp)(struct cam_periph *, union ccb *), 7579 u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, 7580 int evpd, u_int8_t page_code, u_int8_t sense_len, 7581 u_int32_t timeout) 7582 { 7583 struct scsi_inquiry *scsi_cmd; 7584 7585 cam_fill_csio(csio, 7586 retries, 7587 cbfcnp, 7588 /*flags*/CAM_DIR_IN, 7589 tag_action, 7590 /*data_ptr*/inq_buf, 7591 /*dxfer_len*/inq_len, 7592 sense_len, 7593 sizeof(*scsi_cmd), 7594 timeout); 7595 7596 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; 7597 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7598 scsi_cmd->opcode = INQUIRY; 7599 if (evpd) { 7600 scsi_cmd->byte2 |= SI_EVPD; 7601 scsi_cmd->page_code = page_code; 7602 } 7603 scsi_ulto2b(inq_len, scsi_cmd->length); 7604 } 7605 7606 void 7607 scsi_mode_sense(struct ccb_scsiio *csio, u_int32_t retries, 7608 void (*cbfcnp)(struct cam_periph *, union ccb *), 7609 u_int8_t tag_action, int dbd, u_int8_t page_code, 7610 u_int8_t page, u_int8_t *param_buf, u_int32_t param_len, 7611 u_int8_t sense_len, u_int32_t timeout) 7612 { 7613 7614 scsi_mode_sense_len(csio, retries, cbfcnp, tag_action, dbd, 7615 page_code, page, param_buf, param_len, 0, 7616 sense_len, timeout); 7617 } 7618 7619 void 7620 scsi_mode_sense_len(struct ccb_scsiio *csio, u_int32_t retries, 7621 void (*cbfcnp)(struct cam_periph *, union ccb *), 7622 u_int8_t tag_action, int dbd, u_int8_t page_code, 7623 u_int8_t page, u_int8_t *param_buf, u_int32_t param_len, 7624 int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) 7625 { 7626 u_int8_t cdb_len; 7627 7628 /* 7629 * Use the smallest possible command to perform the operation. 7630 */ 7631 if ((param_len < 256) 7632 && (minimum_cmd_size < 10)) { 7633 /* 7634 * We can fit in a 6 byte cdb. 7635 */ 7636 struct scsi_mode_sense_6 *scsi_cmd; 7637 7638 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; 7639 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7640 scsi_cmd->opcode = MODE_SENSE_6; 7641 if (dbd != 0) 7642 scsi_cmd->byte2 |= SMS_DBD; 7643 scsi_cmd->page = page_code | page; 7644 scsi_cmd->length = param_len; 7645 cdb_len = sizeof(*scsi_cmd); 7646 } else { 7647 /* 7648 * Need a 10 byte cdb. 7649 */ 7650 struct scsi_mode_sense_10 *scsi_cmd; 7651 7652 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; 7653 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7654 scsi_cmd->opcode = MODE_SENSE_10; 7655 if (dbd != 0) 7656 scsi_cmd->byte2 |= SMS_DBD; 7657 scsi_cmd->page = page_code | page; 7658 scsi_ulto2b(param_len, scsi_cmd->length); 7659 cdb_len = sizeof(*scsi_cmd); 7660 } 7661 cam_fill_csio(csio, 7662 retries, 7663 cbfcnp, 7664 CAM_DIR_IN, 7665 tag_action, 7666 param_buf, 7667 param_len, 7668 sense_len, 7669 cdb_len, 7670 timeout); 7671 } 7672 7673 void 7674 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, 7675 void (*cbfcnp)(struct cam_periph *, union ccb *), 7676 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7677 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7678 u_int32_t timeout) 7679 { 7680 scsi_mode_select_len(csio, retries, cbfcnp, tag_action, 7681 scsi_page_fmt, save_pages, param_buf, 7682 param_len, 0, sense_len, timeout); 7683 } 7684 7685 void 7686 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, 7687 void (*cbfcnp)(struct cam_periph *, union ccb *), 7688 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7689 u_int8_t *param_buf, u_int32_t param_len, 7690 int minimum_cmd_size, u_int8_t sense_len, 7691 u_int32_t timeout) 7692 { 7693 u_int8_t cdb_len; 7694 7695 /* 7696 * Use the smallest possible command to perform the operation. 7697 */ 7698 if ((param_len < 256) 7699 && (minimum_cmd_size < 10)) { 7700 /* 7701 * We can fit in a 6 byte cdb. 7702 */ 7703 struct scsi_mode_select_6 *scsi_cmd; 7704 7705 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; 7706 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7707 scsi_cmd->opcode = MODE_SELECT_6; 7708 if (scsi_page_fmt != 0) 7709 scsi_cmd->byte2 |= SMS_PF; 7710 if (save_pages != 0) 7711 scsi_cmd->byte2 |= SMS_SP; 7712 scsi_cmd->length = param_len; 7713 cdb_len = sizeof(*scsi_cmd); 7714 } else { 7715 /* 7716 * Need a 10 byte cdb. 7717 */ 7718 struct scsi_mode_select_10 *scsi_cmd; 7719 7720 scsi_cmd = 7721 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; 7722 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7723 scsi_cmd->opcode = MODE_SELECT_10; 7724 if (scsi_page_fmt != 0) 7725 scsi_cmd->byte2 |= SMS_PF; 7726 if (save_pages != 0) 7727 scsi_cmd->byte2 |= SMS_SP; 7728 scsi_ulto2b(param_len, scsi_cmd->length); 7729 cdb_len = sizeof(*scsi_cmd); 7730 } 7731 cam_fill_csio(csio, 7732 retries, 7733 cbfcnp, 7734 CAM_DIR_OUT, 7735 tag_action, 7736 param_buf, 7737 param_len, 7738 sense_len, 7739 cdb_len, 7740 timeout); 7741 } 7742 7743 void 7744 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, 7745 void (*cbfcnp)(struct cam_periph *, union ccb *), 7746 u_int8_t tag_action, u_int8_t page_code, u_int8_t page, 7747 int save_pages, int ppc, u_int32_t paramptr, 7748 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7749 u_int32_t timeout) 7750 { 7751 struct scsi_log_sense *scsi_cmd; 7752 u_int8_t cdb_len; 7753 7754 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; 7755 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7756 scsi_cmd->opcode = LOG_SENSE; 7757 scsi_cmd->page = page_code | page; 7758 if (save_pages != 0) 7759 scsi_cmd->byte2 |= SLS_SP; 7760 if (ppc != 0) 7761 scsi_cmd->byte2 |= SLS_PPC; 7762 scsi_ulto2b(paramptr, scsi_cmd->paramptr); 7763 scsi_ulto2b(param_len, scsi_cmd->length); 7764 cdb_len = sizeof(*scsi_cmd); 7765 7766 cam_fill_csio(csio, 7767 retries, 7768 cbfcnp, 7769 /*flags*/CAM_DIR_IN, 7770 tag_action, 7771 /*data_ptr*/param_buf, 7772 /*dxfer_len*/param_len, 7773 sense_len, 7774 cdb_len, 7775 timeout); 7776 } 7777 7778 void 7779 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, 7780 void (*cbfcnp)(struct cam_periph *, union ccb *), 7781 u_int8_t tag_action, u_int8_t page_code, int save_pages, 7782 int pc_reset, u_int8_t *param_buf, u_int32_t param_len, 7783 u_int8_t sense_len, u_int32_t timeout) 7784 { 7785 struct scsi_log_select *scsi_cmd; 7786 u_int8_t cdb_len; 7787 7788 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; 7789 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7790 scsi_cmd->opcode = LOG_SELECT; 7791 scsi_cmd->page = page_code & SLS_PAGE_CODE; 7792 if (save_pages != 0) 7793 scsi_cmd->byte2 |= SLS_SP; 7794 if (pc_reset != 0) 7795 scsi_cmd->byte2 |= SLS_PCR; 7796 scsi_ulto2b(param_len, scsi_cmd->length); 7797 cdb_len = sizeof(*scsi_cmd); 7798 7799 cam_fill_csio(csio, 7800 retries, 7801 cbfcnp, 7802 /*flags*/CAM_DIR_OUT, 7803 tag_action, 7804 /*data_ptr*/param_buf, 7805 /*dxfer_len*/param_len, 7806 sense_len, 7807 cdb_len, 7808 timeout); 7809 } 7810 7811 /* 7812 * Prevent or allow the user to remove the media 7813 */ 7814 void 7815 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, 7816 void (*cbfcnp)(struct cam_periph *, union ccb *), 7817 u_int8_t tag_action, u_int8_t action, 7818 u_int8_t sense_len, u_int32_t timeout) 7819 { 7820 struct scsi_prevent *scsi_cmd; 7821 7822 cam_fill_csio(csio, 7823 retries, 7824 cbfcnp, 7825 /*flags*/CAM_DIR_NONE, 7826 tag_action, 7827 /*data_ptr*/NULL, 7828 /*dxfer_len*/0, 7829 sense_len, 7830 sizeof(*scsi_cmd), 7831 timeout); 7832 7833 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; 7834 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7835 scsi_cmd->opcode = PREVENT_ALLOW; 7836 scsi_cmd->how = action; 7837 } 7838 7839 /* XXX allow specification of address and PMI bit and LBA */ 7840 void 7841 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, 7842 void (*cbfcnp)(struct cam_periph *, union ccb *), 7843 u_int8_t tag_action, 7844 struct scsi_read_capacity_data *rcap_buf, 7845 u_int8_t sense_len, u_int32_t timeout) 7846 { 7847 struct scsi_read_capacity *scsi_cmd; 7848 7849 cam_fill_csio(csio, 7850 retries, 7851 cbfcnp, 7852 /*flags*/CAM_DIR_IN, 7853 tag_action, 7854 /*data_ptr*/(u_int8_t *)rcap_buf, 7855 /*dxfer_len*/sizeof(*rcap_buf), 7856 sense_len, 7857 sizeof(*scsi_cmd), 7858 timeout); 7859 7860 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; 7861 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7862 scsi_cmd->opcode = READ_CAPACITY; 7863 } 7864 7865 void 7866 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, 7867 void (*cbfcnp)(struct cam_periph *, union ccb *), 7868 uint8_t tag_action, uint64_t lba, int reladr, int pmi, 7869 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, 7870 uint32_t timeout) 7871 { 7872 struct scsi_read_capacity_16 *scsi_cmd; 7873 7874 7875 cam_fill_csio(csio, 7876 retries, 7877 cbfcnp, 7878 /*flags*/CAM_DIR_IN, 7879 tag_action, 7880 /*data_ptr*/(u_int8_t *)rcap_buf, 7881 /*dxfer_len*/rcap_buf_len, 7882 sense_len, 7883 sizeof(*scsi_cmd), 7884 timeout); 7885 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 7886 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7887 scsi_cmd->opcode = SERVICE_ACTION_IN; 7888 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 7889 scsi_u64to8b(lba, scsi_cmd->addr); 7890 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); 7891 if (pmi) 7892 reladr |= SRC16_PMI; 7893 if (reladr) 7894 reladr |= SRC16_RELADR; 7895 } 7896 7897 void 7898 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, 7899 void (*cbfcnp)(struct cam_periph *, union ccb *), 7900 u_int8_t tag_action, u_int8_t select_report, 7901 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, 7902 u_int8_t sense_len, u_int32_t timeout) 7903 { 7904 struct scsi_report_luns *scsi_cmd; 7905 7906 cam_fill_csio(csio, 7907 retries, 7908 cbfcnp, 7909 /*flags*/CAM_DIR_IN, 7910 tag_action, 7911 /*data_ptr*/(u_int8_t *)rpl_buf, 7912 /*dxfer_len*/alloc_len, 7913 sense_len, 7914 sizeof(*scsi_cmd), 7915 timeout); 7916 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; 7917 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7918 scsi_cmd->opcode = REPORT_LUNS; 7919 scsi_cmd->select_report = select_report; 7920 scsi_ulto4b(alloc_len, scsi_cmd->length); 7921 } 7922 7923 void 7924 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7925 void (*cbfcnp)(struct cam_periph *, union ccb *), 7926 u_int8_t tag_action, u_int8_t pdf, 7927 void *buf, u_int32_t alloc_len, 7928 u_int8_t sense_len, u_int32_t timeout) 7929 { 7930 struct scsi_target_group *scsi_cmd; 7931 7932 cam_fill_csio(csio, 7933 retries, 7934 cbfcnp, 7935 /*flags*/CAM_DIR_IN, 7936 tag_action, 7937 /*data_ptr*/(u_int8_t *)buf, 7938 /*dxfer_len*/alloc_len, 7939 sense_len, 7940 sizeof(*scsi_cmd), 7941 timeout); 7942 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 7943 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7944 scsi_cmd->opcode = MAINTENANCE_IN; 7945 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; 7946 scsi_ulto4b(alloc_len, scsi_cmd->length); 7947 } 7948 7949 void 7950 scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 7951 void (*cbfcnp)(struct cam_periph *, union ccb *), 7952 u_int8_t tag_action, u_int8_t pdf, 7953 void *buf, u_int32_t alloc_len, 7954 u_int8_t sense_len, u_int32_t timeout) 7955 { 7956 struct scsi_timestamp *scsi_cmd; 7957 7958 cam_fill_csio(csio, 7959 retries, 7960 cbfcnp, 7961 /*flags*/CAM_DIR_IN, 7962 tag_action, 7963 /*data_ptr*/(u_int8_t *)buf, 7964 /*dxfer_len*/alloc_len, 7965 sense_len, 7966 sizeof(*scsi_cmd), 7967 timeout); 7968 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 7969 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7970 scsi_cmd->opcode = MAINTENANCE_IN; 7971 scsi_cmd->service_action = REPORT_TIMESTAMP | pdf; 7972 scsi_ulto4b(alloc_len, scsi_cmd->length); 7973 } 7974 7975 void 7976 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7977 void (*cbfcnp)(struct cam_periph *, union ccb *), 7978 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 7979 u_int8_t sense_len, u_int32_t timeout) 7980 { 7981 struct scsi_target_group *scsi_cmd; 7982 7983 cam_fill_csio(csio, 7984 retries, 7985 cbfcnp, 7986 /*flags*/CAM_DIR_OUT, 7987 tag_action, 7988 /*data_ptr*/(u_int8_t *)buf, 7989 /*dxfer_len*/alloc_len, 7990 sense_len, 7991 sizeof(*scsi_cmd), 7992 timeout); 7993 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 7994 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7995 scsi_cmd->opcode = MAINTENANCE_OUT; 7996 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; 7997 scsi_ulto4b(alloc_len, scsi_cmd->length); 7998 } 7999 8000 void 8001 scsi_create_timestamp(uint8_t *timestamp_6b_buf, 8002 uint64_t timestamp) 8003 { 8004 uint8_t buf[8]; 8005 scsi_u64to8b(timestamp, buf); 8006 /* 8007 * Using memcopy starting at buf[2] because the set timestamp parameters 8008 * only has six bytes for the timestamp to fit into, and we don't have a 8009 * scsi_u64to6b function. 8010 */ 8011 memcpy(timestamp_6b_buf, &buf[2], 6); 8012 } 8013 8014 void 8015 scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 8016 void (*cbfcnp)(struct cam_periph *, union ccb *), 8017 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 8018 u_int8_t sense_len, u_int32_t timeout) 8019 { 8020 struct scsi_timestamp *scsi_cmd; 8021 8022 cam_fill_csio(csio, 8023 retries, 8024 cbfcnp, 8025 /*flags*/CAM_DIR_OUT, 8026 tag_action, 8027 /*data_ptr*/(u_int8_t *) buf, 8028 /*dxfer_len*/alloc_len, 8029 sense_len, 8030 sizeof(*scsi_cmd), 8031 timeout); 8032 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 8033 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8034 scsi_cmd->opcode = MAINTENANCE_OUT; 8035 scsi_cmd->service_action = SET_TIMESTAMP; 8036 scsi_ulto4b(alloc_len, scsi_cmd->length); 8037 } 8038 8039 /* 8040 * Syncronize the media to the contents of the cache for 8041 * the given lba/count pair. Specifying 0/0 means sync 8042 * the whole cache. 8043 */ 8044 void 8045 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, 8046 void (*cbfcnp)(struct cam_periph *, union ccb *), 8047 u_int8_t tag_action, u_int32_t begin_lba, 8048 u_int16_t lb_count, u_int8_t sense_len, 8049 u_int32_t timeout) 8050 { 8051 struct scsi_sync_cache *scsi_cmd; 8052 8053 cam_fill_csio(csio, 8054 retries, 8055 cbfcnp, 8056 /*flags*/CAM_DIR_NONE, 8057 tag_action, 8058 /*data_ptr*/NULL, 8059 /*dxfer_len*/0, 8060 sense_len, 8061 sizeof(*scsi_cmd), 8062 timeout); 8063 8064 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; 8065 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8066 scsi_cmd->opcode = SYNCHRONIZE_CACHE; 8067 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); 8068 scsi_ulto2b(lb_count, scsi_cmd->lb_count); 8069 } 8070 8071 void 8072 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, 8073 void (*cbfcnp)(struct cam_periph *, union ccb *), 8074 u_int8_t tag_action, int readop, u_int8_t byte2, 8075 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8076 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8077 u_int32_t timeout) 8078 { 8079 int read; 8080 u_int8_t cdb_len; 8081 8082 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; 8083 8084 /* 8085 * Use the smallest possible command to perform the operation 8086 * as some legacy hardware does not support the 10 byte commands. 8087 * If any of the bits in byte2 is set, we have to go with a larger 8088 * command. 8089 */ 8090 if ((minimum_cmd_size < 10) 8091 && ((lba & 0x1fffff) == lba) 8092 && ((block_count & 0xff) == block_count) 8093 && (byte2 == 0)) { 8094 /* 8095 * We can fit in a 6 byte cdb. 8096 */ 8097 struct scsi_rw_6 *scsi_cmd; 8098 8099 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; 8100 scsi_cmd->opcode = read ? READ_6 : WRITE_6; 8101 scsi_ulto3b(lba, scsi_cmd->addr); 8102 scsi_cmd->length = block_count & 0xff; 8103 scsi_cmd->control = 0; 8104 cdb_len = sizeof(*scsi_cmd); 8105 8106 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8107 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], 8108 scsi_cmd->addr[1], scsi_cmd->addr[2], 8109 scsi_cmd->length, dxfer_len)); 8110 } else if ((minimum_cmd_size < 12) 8111 && ((block_count & 0xffff) == block_count) 8112 && ((lba & 0xffffffff) == lba)) { 8113 /* 8114 * Need a 10 byte cdb. 8115 */ 8116 struct scsi_rw_10 *scsi_cmd; 8117 8118 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; 8119 scsi_cmd->opcode = read ? READ_10 : WRITE_10; 8120 scsi_cmd->byte2 = byte2; 8121 scsi_ulto4b(lba, scsi_cmd->addr); 8122 scsi_cmd->reserved = 0; 8123 scsi_ulto2b(block_count, scsi_cmd->length); 8124 scsi_cmd->control = 0; 8125 cdb_len = sizeof(*scsi_cmd); 8126 8127 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8128 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8129 scsi_cmd->addr[1], scsi_cmd->addr[2], 8130 scsi_cmd->addr[3], scsi_cmd->length[0], 8131 scsi_cmd->length[1], dxfer_len)); 8132 } else if ((minimum_cmd_size < 16) 8133 && ((block_count & 0xffffffff) == block_count) 8134 && ((lba & 0xffffffff) == lba)) { 8135 /* 8136 * The block count is too big for a 10 byte CDB, use a 12 8137 * byte CDB. 8138 */ 8139 struct scsi_rw_12 *scsi_cmd; 8140 8141 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; 8142 scsi_cmd->opcode = read ? READ_12 : WRITE_12; 8143 scsi_cmd->byte2 = byte2; 8144 scsi_ulto4b(lba, scsi_cmd->addr); 8145 scsi_cmd->reserved = 0; 8146 scsi_ulto4b(block_count, scsi_cmd->length); 8147 scsi_cmd->control = 0; 8148 cdb_len = sizeof(*scsi_cmd); 8149 8150 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8151 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], 8152 scsi_cmd->addr[1], scsi_cmd->addr[2], 8153 scsi_cmd->addr[3], scsi_cmd->length[0], 8154 scsi_cmd->length[1], scsi_cmd->length[2], 8155 scsi_cmd->length[3], dxfer_len)); 8156 } else { 8157 /* 8158 * 16 byte CDB. We'll only get here if the LBA is larger 8159 * than 2^32, or if the user asks for a 16 byte command. 8160 */ 8161 struct scsi_rw_16 *scsi_cmd; 8162 8163 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; 8164 scsi_cmd->opcode = read ? READ_16 : WRITE_16; 8165 scsi_cmd->byte2 = byte2; 8166 scsi_u64to8b(lba, scsi_cmd->addr); 8167 scsi_cmd->reserved = 0; 8168 scsi_ulto4b(block_count, scsi_cmd->length); 8169 scsi_cmd->control = 0; 8170 cdb_len = sizeof(*scsi_cmd); 8171 } 8172 cam_fill_csio(csio, 8173 retries, 8174 cbfcnp, 8175 (read ? CAM_DIR_IN : CAM_DIR_OUT) | 8176 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), 8177 tag_action, 8178 data_ptr, 8179 dxfer_len, 8180 sense_len, 8181 cdb_len, 8182 timeout); 8183 } 8184 8185 void 8186 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, 8187 void (*cbfcnp)(struct cam_periph *, union ccb *), 8188 u_int8_t tag_action, u_int8_t byte2, 8189 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8190 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8191 u_int32_t timeout) 8192 { 8193 u_int8_t cdb_len; 8194 if ((minimum_cmd_size < 16) && 8195 ((block_count & 0xffff) == block_count) && 8196 ((lba & 0xffffffff) == lba)) { 8197 /* 8198 * Need a 10 byte cdb. 8199 */ 8200 struct scsi_write_same_10 *scsi_cmd; 8201 8202 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; 8203 scsi_cmd->opcode = WRITE_SAME_10; 8204 scsi_cmd->byte2 = byte2; 8205 scsi_ulto4b(lba, scsi_cmd->addr); 8206 scsi_cmd->group = 0; 8207 scsi_ulto2b(block_count, scsi_cmd->length); 8208 scsi_cmd->control = 0; 8209 cdb_len = sizeof(*scsi_cmd); 8210 8211 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8212 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8213 scsi_cmd->addr[1], scsi_cmd->addr[2], 8214 scsi_cmd->addr[3], scsi_cmd->length[0], 8215 scsi_cmd->length[1], dxfer_len)); 8216 } else { 8217 /* 8218 * 16 byte CDB. We'll only get here if the LBA is larger 8219 * than 2^32, or if the user asks for a 16 byte command. 8220 */ 8221 struct scsi_write_same_16 *scsi_cmd; 8222 8223 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; 8224 scsi_cmd->opcode = WRITE_SAME_16; 8225 scsi_cmd->byte2 = byte2; 8226 scsi_u64to8b(lba, scsi_cmd->addr); 8227 scsi_ulto4b(block_count, scsi_cmd->length); 8228 scsi_cmd->group = 0; 8229 scsi_cmd->control = 0; 8230 cdb_len = sizeof(*scsi_cmd); 8231 8232 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8233 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", 8234 scsi_cmd->addr[0], scsi_cmd->addr[1], 8235 scsi_cmd->addr[2], scsi_cmd->addr[3], 8236 scsi_cmd->addr[4], scsi_cmd->addr[5], 8237 scsi_cmd->addr[6], scsi_cmd->addr[7], 8238 scsi_cmd->length[0], scsi_cmd->length[1], 8239 scsi_cmd->length[2], scsi_cmd->length[3], 8240 dxfer_len)); 8241 } 8242 cam_fill_csio(csio, 8243 retries, 8244 cbfcnp, 8245 /*flags*/CAM_DIR_OUT, 8246 tag_action, 8247 data_ptr, 8248 dxfer_len, 8249 sense_len, 8250 cdb_len, 8251 timeout); 8252 } 8253 8254 void 8255 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries, 8256 void (*cbfcnp)(struct cam_periph *, union ccb *), 8257 u_int8_t tag_action, u_int8_t *data_ptr, 8258 u_int16_t dxfer_len, u_int8_t sense_len, 8259 u_int32_t timeout) 8260 { 8261 scsi_ata_pass(csio, 8262 retries, 8263 cbfcnp, 8264 /*flags*/CAM_DIR_IN, 8265 tag_action, 8266 /*protocol*/AP_PROTO_PIO_IN, 8267 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8268 AP_FLAG_BYT_BLOK_BYTES | 8269 AP_FLAG_TLEN_SECT_CNT, 8270 /*features*/0, 8271 /*sector_count*/dxfer_len, 8272 /*lba*/0, 8273 /*command*/ATA_ATA_IDENTIFY, 8274 /*device*/ 0, 8275 /*icc*/ 0, 8276 /*auxiliary*/ 0, 8277 /*control*/0, 8278 data_ptr, 8279 dxfer_len, 8280 /*cdb_storage*/ NULL, 8281 /*cdb_storage_len*/ 0, 8282 /*minimum_cmd_size*/ 0, 8283 sense_len, 8284 timeout); 8285 } 8286 8287 void 8288 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries, 8289 void (*cbfcnp)(struct cam_periph *, union ccb *), 8290 u_int8_t tag_action, u_int16_t block_count, 8291 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8292 u_int32_t timeout) 8293 { 8294 scsi_ata_pass_16(csio, 8295 retries, 8296 cbfcnp, 8297 /*flags*/CAM_DIR_OUT, 8298 tag_action, 8299 /*protocol*/AP_EXTEND|AP_PROTO_DMA, 8300 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS, 8301 /*features*/ATA_DSM_TRIM, 8302 /*sector_count*/block_count, 8303 /*lba*/0, 8304 /*command*/ATA_DATA_SET_MANAGEMENT, 8305 /*control*/0, 8306 data_ptr, 8307 dxfer_len, 8308 sense_len, 8309 timeout); 8310 } 8311 8312 int 8313 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries, 8314 void (*cbfcnp)(struct cam_periph *, union ccb *), 8315 uint8_t tag_action, uint32_t log_address, 8316 uint32_t page_number, uint16_t block_count, 8317 uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, 8318 uint8_t sense_len, uint32_t timeout) 8319 { 8320 uint8_t command, protocol_out; 8321 uint16_t count_out; 8322 uint64_t lba; 8323 int retval; 8324 8325 retval = 0; 8326 8327 switch (protocol) { 8328 case AP_PROTO_DMA: 8329 count_out = block_count; 8330 command = ATA_READ_LOG_DMA_EXT; 8331 protocol_out = AP_PROTO_DMA; 8332 break; 8333 case AP_PROTO_PIO_IN: 8334 default: 8335 count_out = block_count; 8336 command = ATA_READ_LOG_EXT; 8337 protocol_out = AP_PROTO_PIO_IN; 8338 break; 8339 } 8340 8341 lba = (((uint64_t)page_number & 0xff00) << 32) | 8342 ((page_number & 0x00ff) << 8) | 8343 (log_address & 0xff); 8344 8345 protocol_out |= AP_EXTEND; 8346 8347 retval = scsi_ata_pass(csio, 8348 retries, 8349 cbfcnp, 8350 /*flags*/CAM_DIR_IN, 8351 tag_action, 8352 /*protocol*/ protocol_out, 8353 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT | 8354 AP_FLAG_BYT_BLOK_BLOCKS | 8355 AP_FLAG_TDIR_FROM_DEV, 8356 /*feature*/ 0, 8357 /*sector_count*/ count_out, 8358 /*lba*/ lba, 8359 /*command*/ command, 8360 /*device*/ 0, 8361 /*icc*/ 0, 8362 /*auxiliary*/ 0, 8363 /*control*/0, 8364 data_ptr, 8365 dxfer_len, 8366 /*cdb_storage*/ NULL, 8367 /*cdb_storage_len*/ 0, 8368 /*minimum_cmd_size*/ 0, 8369 sense_len, 8370 timeout); 8371 8372 return (retval); 8373 } 8374 8375 /* 8376 * Note! This is an unusual CDB building function because it can return 8377 * an error in the event that the command in question requires a variable 8378 * length CDB, but the caller has not given storage space for one or has not 8379 * given enough storage space. If there is enough space available in the 8380 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage. 8381 */ 8382 int 8383 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries, 8384 void (*cbfcnp)(struct cam_periph *, union ccb *), 8385 uint32_t flags, uint8_t tag_action, 8386 uint8_t protocol, uint8_t ata_flags, uint16_t features, 8387 uint16_t sector_count, uint64_t lba, uint8_t command, 8388 uint8_t device, uint8_t icc, uint32_t auxiliary, 8389 uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len, 8390 uint8_t *cdb_storage, size_t cdb_storage_len, 8391 int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) 8392 { 8393 uint32_t cam_flags; 8394 uint8_t *cdb_ptr; 8395 int cmd_size; 8396 int retval; 8397 uint8_t cdb_len; 8398 8399 retval = 0; 8400 cam_flags = flags; 8401 8402 /* 8403 * Round the user's request to the nearest command size that is at 8404 * least as big as what he requested. 8405 */ 8406 if (minimum_cmd_size <= 12) 8407 cmd_size = 12; 8408 else if (minimum_cmd_size > 16) 8409 cmd_size = 32; 8410 else 8411 cmd_size = 16; 8412 8413 /* 8414 * If we have parameters that require a 48-bit ATA command, we have to 8415 * use the 16 byte ATA PASS-THROUGH command at least. 8416 */ 8417 if (((lba > ATA_MAX_28BIT_LBA) 8418 || (sector_count > 255) 8419 || (features > 255) 8420 || (protocol & AP_EXTEND)) 8421 && ((cmd_size < 16) 8422 || ((protocol & AP_EXTEND) == 0))) { 8423 if (cmd_size < 16) 8424 cmd_size = 16; 8425 protocol |= AP_EXTEND; 8426 } 8427 8428 /* 8429 * The icc and auxiliary ATA registers are only supported in the 8430 * 32-byte version of the ATA PASS-THROUGH command. 8431 */ 8432 if ((icc != 0) 8433 || (auxiliary != 0)) { 8434 cmd_size = 32; 8435 protocol |= AP_EXTEND; 8436 } 8437 8438 8439 if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes)) 8440 && ((cdb_storage == NULL) 8441 || (cdb_storage_len < cmd_size))) { 8442 retval = 1; 8443 goto bailout; 8444 } 8445 8446 /* 8447 * At this point we know we have enough space to store the command 8448 * in one place or another. We prefer the built-in array, but used 8449 * the passed in storage if necessary. 8450 */ 8451 if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes)) 8452 cdb_ptr = csio->cdb_io.cdb_bytes; 8453 else { 8454 cdb_ptr = cdb_storage; 8455 cam_flags |= CAM_CDB_POINTER; 8456 } 8457 8458 if (cmd_size <= 12) { 8459 struct ata_pass_12 *cdb; 8460 8461 cdb = (struct ata_pass_12 *)cdb_ptr; 8462 cdb_len = sizeof(*cdb); 8463 bzero(cdb, cdb_len); 8464 8465 cdb->opcode = ATA_PASS_12; 8466 cdb->protocol = protocol; 8467 cdb->flags = ata_flags; 8468 cdb->features = features; 8469 cdb->sector_count = sector_count; 8470 cdb->lba_low = lba & 0xff; 8471 cdb->lba_mid = (lba >> 8) & 0xff; 8472 cdb->lba_high = (lba >> 16) & 0xff; 8473 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8474 cdb->command = command; 8475 cdb->control = control; 8476 } else if (cmd_size <= 16) { 8477 struct ata_pass_16 *cdb; 8478 8479 cdb = (struct ata_pass_16 *)cdb_ptr; 8480 cdb_len = sizeof(*cdb); 8481 bzero(cdb, cdb_len); 8482 8483 cdb->opcode = ATA_PASS_16; 8484 cdb->protocol = protocol; 8485 cdb->flags = ata_flags; 8486 cdb->features = features & 0xff; 8487 cdb->sector_count = sector_count & 0xff; 8488 cdb->lba_low = lba & 0xff; 8489 cdb->lba_mid = (lba >> 8) & 0xff; 8490 cdb->lba_high = (lba >> 16) & 0xff; 8491 /* 8492 * If AP_EXTEND is set, we're sending a 48-bit command. 8493 * Otherwise it's a 28-bit command. 8494 */ 8495 if (protocol & AP_EXTEND) { 8496 cdb->lba_low_ext = (lba >> 24) & 0xff; 8497 cdb->lba_mid_ext = (lba >> 32) & 0xff; 8498 cdb->lba_high_ext = (lba >> 40) & 0xff; 8499 cdb->features_ext = (features >> 8) & 0xff; 8500 cdb->sector_count_ext = (sector_count >> 8) & 0xff; 8501 cdb->device = device | ATA_DEV_LBA; 8502 } else { 8503 cdb->lba_low_ext = (lba >> 24) & 0xf; 8504 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8505 } 8506 cdb->command = command; 8507 cdb->control = control; 8508 } else { 8509 struct ata_pass_32 *cdb; 8510 uint8_t tmp_lba[8]; 8511 8512 cdb = (struct ata_pass_32 *)cdb_ptr; 8513 cdb_len = sizeof(*cdb); 8514 bzero(cdb, cdb_len); 8515 cdb->opcode = VARIABLE_LEN_CDB; 8516 cdb->control = control; 8517 cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32, 8518 service_action); 8519 scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action); 8520 cdb->protocol = protocol; 8521 cdb->flags = ata_flags; 8522 8523 if ((protocol & AP_EXTEND) == 0) { 8524 lba &= 0x0fffffff; 8525 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8526 features &= 0xff; 8527 sector_count &= 0xff; 8528 } else { 8529 cdb->device = device | ATA_DEV_LBA; 8530 } 8531 scsi_u64to8b(lba, tmp_lba); 8532 bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba)); 8533 scsi_ulto2b(features, cdb->features); 8534 scsi_ulto2b(sector_count, cdb->count); 8535 cdb->command = command; 8536 cdb->icc = icc; 8537 scsi_ulto4b(auxiliary, cdb->auxiliary); 8538 } 8539 8540 cam_fill_csio(csio, 8541 retries, 8542 cbfcnp, 8543 cam_flags, 8544 tag_action, 8545 data_ptr, 8546 dxfer_len, 8547 sense_len, 8548 cmd_size, 8549 timeout); 8550 bailout: 8551 return (retval); 8552 } 8553 8554 void 8555 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries, 8556 void (*cbfcnp)(struct cam_periph *, union ccb *), 8557 u_int32_t flags, u_int8_t tag_action, 8558 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features, 8559 u_int16_t sector_count, uint64_t lba, u_int8_t command, 8560 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len, 8561 u_int8_t sense_len, u_int32_t timeout) 8562 { 8563 struct ata_pass_16 *ata_cmd; 8564 8565 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes; 8566 ata_cmd->opcode = ATA_PASS_16; 8567 ata_cmd->protocol = protocol; 8568 ata_cmd->flags = ata_flags; 8569 ata_cmd->features_ext = features >> 8; 8570 ata_cmd->features = features; 8571 ata_cmd->sector_count_ext = sector_count >> 8; 8572 ata_cmd->sector_count = sector_count; 8573 ata_cmd->lba_low = lba; 8574 ata_cmd->lba_mid = lba >> 8; 8575 ata_cmd->lba_high = lba >> 16; 8576 ata_cmd->device = ATA_DEV_LBA; 8577 if (protocol & AP_EXTEND) { 8578 ata_cmd->lba_low_ext = lba >> 24; 8579 ata_cmd->lba_mid_ext = lba >> 32; 8580 ata_cmd->lba_high_ext = lba >> 40; 8581 } else 8582 ata_cmd->device |= (lba >> 24) & 0x0f; 8583 ata_cmd->command = command; 8584 ata_cmd->control = control; 8585 8586 cam_fill_csio(csio, 8587 retries, 8588 cbfcnp, 8589 flags, 8590 tag_action, 8591 data_ptr, 8592 dxfer_len, 8593 sense_len, 8594 sizeof(*ata_cmd), 8595 timeout); 8596 } 8597 8598 void 8599 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, 8600 void (*cbfcnp)(struct cam_periph *, union ccb *), 8601 u_int8_t tag_action, u_int8_t byte2, 8602 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8603 u_int32_t timeout) 8604 { 8605 struct scsi_unmap *scsi_cmd; 8606 8607 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; 8608 scsi_cmd->opcode = UNMAP; 8609 scsi_cmd->byte2 = byte2; 8610 scsi_ulto4b(0, scsi_cmd->reserved); 8611 scsi_cmd->group = 0; 8612 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8613 scsi_cmd->control = 0; 8614 8615 cam_fill_csio(csio, 8616 retries, 8617 cbfcnp, 8618 /*flags*/CAM_DIR_OUT, 8619 tag_action, 8620 data_ptr, 8621 dxfer_len, 8622 sense_len, 8623 sizeof(*scsi_cmd), 8624 timeout); 8625 } 8626 8627 void 8628 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, 8629 void (*cbfcnp)(struct cam_periph *, union ccb*), 8630 uint8_t tag_action, int pcv, uint8_t page_code, 8631 uint8_t *data_ptr, uint16_t allocation_length, 8632 uint8_t sense_len, uint32_t timeout) 8633 { 8634 struct scsi_receive_diag *scsi_cmd; 8635 8636 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; 8637 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8638 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; 8639 if (pcv) { 8640 scsi_cmd->byte2 |= SRD_PCV; 8641 scsi_cmd->page_code = page_code; 8642 } 8643 scsi_ulto2b(allocation_length, scsi_cmd->length); 8644 8645 cam_fill_csio(csio, 8646 retries, 8647 cbfcnp, 8648 /*flags*/CAM_DIR_IN, 8649 tag_action, 8650 data_ptr, 8651 allocation_length, 8652 sense_len, 8653 sizeof(*scsi_cmd), 8654 timeout); 8655 } 8656 8657 void 8658 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, 8659 void (*cbfcnp)(struct cam_periph *, union ccb *), 8660 uint8_t tag_action, int unit_offline, int device_offline, 8661 int self_test, int page_format, int self_test_code, 8662 uint8_t *data_ptr, uint16_t param_list_length, 8663 uint8_t sense_len, uint32_t timeout) 8664 { 8665 struct scsi_send_diag *scsi_cmd; 8666 8667 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; 8668 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8669 scsi_cmd->opcode = SEND_DIAGNOSTIC; 8670 8671 /* 8672 * The default self-test mode control and specific test 8673 * control are mutually exclusive. 8674 */ 8675 if (self_test) 8676 self_test_code = SSD_SELF_TEST_CODE_NONE; 8677 8678 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) 8679 & SSD_SELF_TEST_CODE_MASK) 8680 | (unit_offline ? SSD_UNITOFFL : 0) 8681 | (device_offline ? SSD_DEVOFFL : 0) 8682 | (self_test ? SSD_SELFTEST : 0) 8683 | (page_format ? SSD_PF : 0); 8684 scsi_ulto2b(param_list_length, scsi_cmd->length); 8685 8686 cam_fill_csio(csio, 8687 retries, 8688 cbfcnp, 8689 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8690 tag_action, 8691 data_ptr, 8692 param_list_length, 8693 sense_len, 8694 sizeof(*scsi_cmd), 8695 timeout); 8696 } 8697 8698 void 8699 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8700 void (*cbfcnp)(struct cam_periph *, union ccb*), 8701 uint8_t tag_action, int mode, 8702 uint8_t buffer_id, u_int32_t offset, 8703 uint8_t *data_ptr, uint32_t allocation_length, 8704 uint8_t sense_len, uint32_t timeout) 8705 { 8706 struct scsi_read_buffer *scsi_cmd; 8707 8708 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes; 8709 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8710 scsi_cmd->opcode = READ_BUFFER; 8711 scsi_cmd->byte2 = mode; 8712 scsi_cmd->buffer_id = buffer_id; 8713 scsi_ulto3b(offset, scsi_cmd->offset); 8714 scsi_ulto3b(allocation_length, scsi_cmd->length); 8715 8716 cam_fill_csio(csio, 8717 retries, 8718 cbfcnp, 8719 /*flags*/CAM_DIR_IN, 8720 tag_action, 8721 data_ptr, 8722 allocation_length, 8723 sense_len, 8724 sizeof(*scsi_cmd), 8725 timeout); 8726 } 8727 8728 void 8729 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8730 void (*cbfcnp)(struct cam_periph *, union ccb *), 8731 uint8_t tag_action, int mode, 8732 uint8_t buffer_id, u_int32_t offset, 8733 uint8_t *data_ptr, uint32_t param_list_length, 8734 uint8_t sense_len, uint32_t timeout) 8735 { 8736 struct scsi_write_buffer *scsi_cmd; 8737 8738 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes; 8739 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8740 scsi_cmd->opcode = WRITE_BUFFER; 8741 scsi_cmd->byte2 = mode; 8742 scsi_cmd->buffer_id = buffer_id; 8743 scsi_ulto3b(offset, scsi_cmd->offset); 8744 scsi_ulto3b(param_list_length, scsi_cmd->length); 8745 8746 cam_fill_csio(csio, 8747 retries, 8748 cbfcnp, 8749 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8750 tag_action, 8751 data_ptr, 8752 param_list_length, 8753 sense_len, 8754 sizeof(*scsi_cmd), 8755 timeout); 8756 } 8757 8758 void 8759 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, 8760 void (*cbfcnp)(struct cam_periph *, union ccb *), 8761 u_int8_t tag_action, int start, int load_eject, 8762 int immediate, u_int8_t sense_len, u_int32_t timeout) 8763 { 8764 struct scsi_start_stop_unit *scsi_cmd; 8765 int extra_flags = 0; 8766 8767 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; 8768 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8769 scsi_cmd->opcode = START_STOP_UNIT; 8770 if (start != 0) { 8771 scsi_cmd->how |= SSS_START; 8772 /* it takes a lot of power to start a drive */ 8773 extra_flags |= CAM_HIGH_POWER; 8774 } 8775 if (load_eject != 0) 8776 scsi_cmd->how |= SSS_LOEJ; 8777 if (immediate != 0) 8778 scsi_cmd->byte2 |= SSS_IMMED; 8779 8780 cam_fill_csio(csio, 8781 retries, 8782 cbfcnp, 8783 /*flags*/CAM_DIR_NONE | extra_flags, 8784 tag_action, 8785 /*data_ptr*/NULL, 8786 /*dxfer_len*/0, 8787 sense_len, 8788 sizeof(*scsi_cmd), 8789 timeout); 8790 } 8791 8792 void 8793 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8794 void (*cbfcnp)(struct cam_periph *, union ccb *), 8795 u_int8_t tag_action, u_int8_t service_action, 8796 uint32_t element, u_int8_t elem_type, int logical_volume, 8797 int partition, u_int32_t first_attribute, int cache, 8798 u_int8_t *data_ptr, u_int32_t length, int sense_len, 8799 u_int32_t timeout) 8800 { 8801 struct scsi_read_attribute *scsi_cmd; 8802 8803 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes; 8804 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8805 8806 scsi_cmd->opcode = READ_ATTRIBUTE; 8807 scsi_cmd->service_action = service_action; 8808 scsi_ulto2b(element, scsi_cmd->element); 8809 scsi_cmd->elem_type = elem_type; 8810 scsi_cmd->logical_volume = logical_volume; 8811 scsi_cmd->partition = partition; 8812 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute); 8813 scsi_ulto4b(length, scsi_cmd->length); 8814 if (cache != 0) 8815 scsi_cmd->cache |= SRA_CACHE; 8816 8817 cam_fill_csio(csio, 8818 retries, 8819 cbfcnp, 8820 /*flags*/CAM_DIR_IN, 8821 tag_action, 8822 /*data_ptr*/data_ptr, 8823 /*dxfer_len*/length, 8824 sense_len, 8825 sizeof(*scsi_cmd), 8826 timeout); 8827 } 8828 8829 void 8830 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8831 void (*cbfcnp)(struct cam_periph *, union ccb *), 8832 u_int8_t tag_action, uint32_t element, int logical_volume, 8833 int partition, int wtc, u_int8_t *data_ptr, 8834 u_int32_t length, int sense_len, u_int32_t timeout) 8835 { 8836 struct scsi_write_attribute *scsi_cmd; 8837 8838 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes; 8839 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8840 8841 scsi_cmd->opcode = WRITE_ATTRIBUTE; 8842 if (wtc != 0) 8843 scsi_cmd->byte2 = SWA_WTC; 8844 scsi_ulto3b(element, scsi_cmd->element); 8845 scsi_cmd->logical_volume = logical_volume; 8846 scsi_cmd->partition = partition; 8847 scsi_ulto4b(length, scsi_cmd->length); 8848 8849 cam_fill_csio(csio, 8850 retries, 8851 cbfcnp, 8852 /*flags*/CAM_DIR_OUT, 8853 tag_action, 8854 /*data_ptr*/data_ptr, 8855 /*dxfer_len*/length, 8856 sense_len, 8857 sizeof(*scsi_cmd), 8858 timeout); 8859 } 8860 8861 void 8862 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, 8863 void (*cbfcnp)(struct cam_periph *, union ccb *), 8864 uint8_t tag_action, int service_action, 8865 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8866 int timeout) 8867 { 8868 struct scsi_per_res_in *scsi_cmd; 8869 8870 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes; 8871 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8872 8873 scsi_cmd->opcode = PERSISTENT_RES_IN; 8874 scsi_cmd->action = service_action; 8875 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8876 8877 cam_fill_csio(csio, 8878 retries, 8879 cbfcnp, 8880 /*flags*/CAM_DIR_IN, 8881 tag_action, 8882 data_ptr, 8883 dxfer_len, 8884 sense_len, 8885 sizeof(*scsi_cmd), 8886 timeout); 8887 } 8888 8889 void 8890 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, 8891 void (*cbfcnp)(struct cam_periph *, union ccb *), 8892 uint8_t tag_action, int service_action, 8893 int scope, int res_type, uint8_t *data_ptr, 8894 uint32_t dxfer_len, int sense_len, int timeout) 8895 { 8896 struct scsi_per_res_out *scsi_cmd; 8897 8898 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes; 8899 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8900 8901 scsi_cmd->opcode = PERSISTENT_RES_OUT; 8902 scsi_cmd->action = service_action; 8903 scsi_cmd->scope_type = scope | res_type; 8904 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8905 8906 cam_fill_csio(csio, 8907 retries, 8908 cbfcnp, 8909 /*flags*/CAM_DIR_OUT, 8910 tag_action, 8911 /*data_ptr*/data_ptr, 8912 /*dxfer_len*/dxfer_len, 8913 sense_len, 8914 sizeof(*scsi_cmd), 8915 timeout); 8916 } 8917 8918 void 8919 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, 8920 void (*cbfcnp)(struct cam_periph *, union ccb *), 8921 uint8_t tag_action, uint32_t security_protocol, 8922 uint32_t security_protocol_specific, int byte4, 8923 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8924 int timeout) 8925 { 8926 struct scsi_security_protocol_in *scsi_cmd; 8927 8928 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes; 8929 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8930 8931 scsi_cmd->opcode = SECURITY_PROTOCOL_IN; 8932 8933 scsi_cmd->security_protocol = security_protocol; 8934 scsi_ulto2b(security_protocol_specific, 8935 scsi_cmd->security_protocol_specific); 8936 scsi_cmd->byte4 = byte4; 8937 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8938 8939 cam_fill_csio(csio, 8940 retries, 8941 cbfcnp, 8942 /*flags*/CAM_DIR_IN, 8943 tag_action, 8944 data_ptr, 8945 dxfer_len, 8946 sense_len, 8947 sizeof(*scsi_cmd), 8948 timeout); 8949 } 8950 8951 void 8952 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, 8953 void (*cbfcnp)(struct cam_periph *, union ccb *), 8954 uint8_t tag_action, uint32_t security_protocol, 8955 uint32_t security_protocol_specific, int byte4, 8956 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8957 int timeout) 8958 { 8959 struct scsi_security_protocol_out *scsi_cmd; 8960 8961 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes; 8962 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8963 8964 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT; 8965 8966 scsi_cmd->security_protocol = security_protocol; 8967 scsi_ulto2b(security_protocol_specific, 8968 scsi_cmd->security_protocol_specific); 8969 scsi_cmd->byte4 = byte4; 8970 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8971 8972 cam_fill_csio(csio, 8973 retries, 8974 cbfcnp, 8975 /*flags*/CAM_DIR_OUT, 8976 tag_action, 8977 data_ptr, 8978 dxfer_len, 8979 sense_len, 8980 sizeof(*scsi_cmd), 8981 timeout); 8982 } 8983 8984 void 8985 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, 8986 void (*cbfcnp)(struct cam_periph *, union ccb *), 8987 uint8_t tag_action, int options, int req_opcode, 8988 int req_service_action, uint8_t *data_ptr, 8989 uint32_t dxfer_len, int sense_len, int timeout) 8990 { 8991 struct scsi_report_supported_opcodes *scsi_cmd; 8992 8993 scsi_cmd = (struct scsi_report_supported_opcodes *) 8994 &csio->cdb_io.cdb_bytes; 8995 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8996 8997 scsi_cmd->opcode = MAINTENANCE_IN; 8998 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES; 8999 scsi_cmd->options = options; 9000 scsi_cmd->requested_opcode = req_opcode; 9001 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action); 9002 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9003 9004 cam_fill_csio(csio, 9005 retries, 9006 cbfcnp, 9007 /*flags*/CAM_DIR_IN, 9008 tag_action, 9009 data_ptr, 9010 dxfer_len, 9011 sense_len, 9012 sizeof(*scsi_cmd), 9013 timeout); 9014 } 9015 9016 /* 9017 * Try make as good a match as possible with 9018 * available sub drivers 9019 */ 9020 int 9021 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9022 { 9023 struct scsi_inquiry_pattern *entry; 9024 struct scsi_inquiry_data *inq; 9025 9026 entry = (struct scsi_inquiry_pattern *)table_entry; 9027 inq = (struct scsi_inquiry_data *)inqbuffer; 9028 9029 if (((SID_TYPE(inq) == entry->type) 9030 || (entry->type == T_ANY)) 9031 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9032 : entry->media_type & SIP_MEDIA_FIXED) 9033 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9034 && (cam_strmatch(inq->product, entry->product, 9035 sizeof(inq->product)) == 0) 9036 && (cam_strmatch(inq->revision, entry->revision, 9037 sizeof(inq->revision)) == 0)) { 9038 return (0); 9039 } 9040 return (-1); 9041 } 9042 9043 /* 9044 * Try make as good a match as possible with 9045 * available sub drivers 9046 */ 9047 int 9048 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9049 { 9050 struct scsi_static_inquiry_pattern *entry; 9051 struct scsi_inquiry_data *inq; 9052 9053 entry = (struct scsi_static_inquiry_pattern *)table_entry; 9054 inq = (struct scsi_inquiry_data *)inqbuffer; 9055 9056 if (((SID_TYPE(inq) == entry->type) 9057 || (entry->type == T_ANY)) 9058 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9059 : entry->media_type & SIP_MEDIA_FIXED) 9060 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9061 && (cam_strmatch(inq->product, entry->product, 9062 sizeof(inq->product)) == 0) 9063 && (cam_strmatch(inq->revision, entry->revision, 9064 sizeof(inq->revision)) == 0)) { 9065 return (0); 9066 } 9067 return (-1); 9068 } 9069 9070 /** 9071 * Compare two buffers of vpd device descriptors for a match. 9072 * 9073 * \param lhs Pointer to first buffer of descriptors to compare. 9074 * \param lhs_len The length of the first buffer. 9075 * \param rhs Pointer to second buffer of descriptors to compare. 9076 * \param rhs_len The length of the second buffer. 9077 * 9078 * \return 0 on a match, -1 otherwise. 9079 * 9080 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching 9081 * against each element in rhs until all data are exhausted or we have found 9082 * a match. 9083 */ 9084 int 9085 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) 9086 { 9087 struct scsi_vpd_id_descriptor *lhs_id; 9088 struct scsi_vpd_id_descriptor *lhs_last; 9089 struct scsi_vpd_id_descriptor *rhs_last; 9090 uint8_t *lhs_end; 9091 uint8_t *rhs_end; 9092 9093 lhs_end = lhs + lhs_len; 9094 rhs_end = rhs + rhs_len; 9095 9096 /* 9097 * rhs_last and lhs_last are the last posible position of a valid 9098 * descriptor assuming it had a zero length identifier. We use 9099 * these variables to insure we can safely dereference the length 9100 * field in our loop termination tests. 9101 */ 9102 lhs_last = (struct scsi_vpd_id_descriptor *) 9103 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9104 rhs_last = (struct scsi_vpd_id_descriptor *) 9105 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9106 9107 lhs_id = (struct scsi_vpd_id_descriptor *)lhs; 9108 while (lhs_id <= lhs_last 9109 && (lhs_id->identifier + lhs_id->length) <= lhs_end) { 9110 struct scsi_vpd_id_descriptor *rhs_id; 9111 9112 rhs_id = (struct scsi_vpd_id_descriptor *)rhs; 9113 while (rhs_id <= rhs_last 9114 && (rhs_id->identifier + rhs_id->length) <= rhs_end) { 9115 9116 if ((rhs_id->id_type & 9117 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) == 9118 (lhs_id->id_type & 9119 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) 9120 && rhs_id->length == lhs_id->length 9121 && memcmp(rhs_id->identifier, lhs_id->identifier, 9122 rhs_id->length) == 0) 9123 return (0); 9124 9125 rhs_id = (struct scsi_vpd_id_descriptor *) 9126 (rhs_id->identifier + rhs_id->length); 9127 } 9128 lhs_id = (struct scsi_vpd_id_descriptor *) 9129 (lhs_id->identifier + lhs_id->length); 9130 } 9131 return (-1); 9132 } 9133 9134 #ifdef _KERNEL 9135 int 9136 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id) 9137 { 9138 struct cam_ed *device; 9139 struct scsi_vpd_supported_pages *vpds; 9140 int i, num_pages; 9141 9142 device = periph->path->device; 9143 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; 9144 9145 if (vpds != NULL) { 9146 num_pages = device->supported_vpds_len - 9147 SVPD_SUPPORTED_PAGES_HDR_LEN; 9148 for (i = 0; i < num_pages; i++) { 9149 if (vpds->page_list[i] == page_id) 9150 return (1); 9151 } 9152 } 9153 9154 return (0); 9155 } 9156 9157 static void 9158 init_scsi_delay(void) 9159 { 9160 int delay; 9161 9162 delay = SCSI_DELAY; 9163 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); 9164 9165 if (set_scsi_delay(delay) != 0) { 9166 printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); 9167 set_scsi_delay(SCSI_DELAY); 9168 } 9169 } 9170 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); 9171 9172 static int 9173 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) 9174 { 9175 int error, delay; 9176 9177 delay = scsi_delay; 9178 error = sysctl_handle_int(oidp, &delay, 0, req); 9179 if (error != 0 || req->newptr == NULL) 9180 return (error); 9181 return (set_scsi_delay(delay)); 9182 } 9183 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT|CTLFLAG_RW, 9184 0, 0, sysctl_scsi_delay, "I", 9185 "Delay to allow devices to settle after a SCSI bus reset (ms)"); 9186 9187 static int 9188 set_scsi_delay(int delay) 9189 { 9190 /* 9191 * If someone sets this to 0, we assume that they want the 9192 * minimum allowable bus settle delay. 9193 */ 9194 if (delay == 0) { 9195 printf("cam: using minimum scsi_delay (%dms)\n", 9196 SCSI_MIN_DELAY); 9197 delay = SCSI_MIN_DELAY; 9198 } 9199 if (delay < SCSI_MIN_DELAY) 9200 return (EINVAL); 9201 scsi_delay = delay; 9202 return (0); 9203 } 9204 #endif /* _KERNEL */ 9205