1 /*- 2 * Implementation of Utility functions for all SCSI device types. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/types.h> 37 #include <sys/stdint.h> 38 39 #ifdef _KERNEL 40 #include "opt_scsi.h" 41 42 #include <sys/systm.h> 43 #include <sys/libkern.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/ctype.h> 50 #else 51 #include <errno.h> 52 #include <stdio.h> 53 #include <stdlib.h> 54 #include <string.h> 55 #include <ctype.h> 56 #endif 57 58 #include <cam/cam.h> 59 #include <cam/cam_ccb.h> 60 #include <cam/cam_queue.h> 61 #include <cam/cam_xpt.h> 62 #include <cam/scsi/scsi_all.h> 63 #include <sys/ata.h> 64 #include <sys/sbuf.h> 65 66 #ifdef _KERNEL 67 #include <cam/cam_periph.h> 68 #include <cam/cam_xpt_sim.h> 69 #include <cam/cam_xpt_periph.h> 70 #include <cam/cam_xpt_internal.h> 71 #else 72 #include <camlib.h> 73 #include <stddef.h> 74 75 #ifndef FALSE 76 #define FALSE 0 77 #endif /* FALSE */ 78 #ifndef TRUE 79 #define TRUE 1 80 #endif /* TRUE */ 81 #define ERESTART -1 /* restart syscall */ 82 #define EJUSTRETURN -2 /* don't modify regs, just return */ 83 #endif /* !_KERNEL */ 84 85 /* 86 * This is the default number of milliseconds we wait for devices to settle 87 * after a SCSI bus reset. 88 */ 89 #ifndef SCSI_DELAY 90 #define SCSI_DELAY 2000 91 #endif 92 /* 93 * All devices need _some_ sort of bus settle delay, so we'll set it to 94 * a minimum value of 100ms. Note that this is pertinent only for SPI- 95 * not transport like Fibre Channel or iSCSI where 'delay' is completely 96 * meaningless. 97 */ 98 #ifndef SCSI_MIN_DELAY 99 #define SCSI_MIN_DELAY 100 100 #endif 101 /* 102 * Make sure the user isn't using seconds instead of milliseconds. 103 */ 104 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) 105 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" 106 #endif 107 108 int scsi_delay; 109 110 static int ascentrycomp(const void *key, const void *member); 111 static int senseentrycomp(const void *key, const void *member); 112 static void fetchtableentries(int sense_key, int asc, int ascq, 113 struct scsi_inquiry_data *, 114 const struct sense_key_table_entry **, 115 const struct asc_table_entry **); 116 117 #ifdef _KERNEL 118 static void init_scsi_delay(void); 119 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); 120 static int set_scsi_delay(int delay); 121 #endif 122 123 #if !defined(SCSI_NO_OP_STRINGS) 124 125 #define D (1 << T_DIRECT) 126 #define T (1 << T_SEQUENTIAL) 127 #define L (1 << T_PRINTER) 128 #define P (1 << T_PROCESSOR) 129 #define W (1 << T_WORM) 130 #define R (1 << T_CDROM) 131 #define O (1 << T_OPTICAL) 132 #define M (1 << T_CHANGER) 133 #define A (1 << T_STORARRAY) 134 #define E (1 << T_ENCLOSURE) 135 #define B (1 << T_RBC) 136 #define K (1 << T_OCRW) 137 #define V (1 << T_ADC) 138 #define F (1 << T_OSD) 139 #define S (1 << T_SCANNER) 140 #define C (1 << T_COMM) 141 142 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) 143 144 static struct op_table_entry plextor_cd_ops[] = { 145 { 0xD8, R, "CD-DA READ" } 146 }; 147 148 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { 149 { 150 /* 151 * I believe that 0xD8 is the Plextor proprietary command 152 * to read CD-DA data. I'm not sure which Plextor CDROM 153 * models support the command, though. I know for sure 154 * that the 4X, 8X, and 12X models do, and presumably the 155 * 12-20X does. I don't know about any earlier models, 156 * though. If anyone has any more complete information, 157 * feel free to change this quirk entry. 158 */ 159 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, 160 nitems(plextor_cd_ops), 161 plextor_cd_ops 162 } 163 }; 164 165 static struct op_table_entry scsi_op_codes[] = { 166 /* 167 * From: http://www.t10.org/lists/op-num.txt 168 * Modifications by Kenneth Merry (ken@FreeBSD.ORG) 169 * and Jung-uk Kim (jkim@FreeBSD.org) 170 * 171 * Note: order is important in this table, scsi_op_desc() currently 172 * depends on the opcodes in the table being in order to save 173 * search time. 174 * Note: scanner and comm. devices are carried over from the previous 175 * version because they were removed in the latest spec. 176 */ 177 /* File: OP-NUM.TXT 178 * 179 * SCSI Operation Codes 180 * Numeric Sorted Listing 181 * as of 5/26/15 182 * 183 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 184 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- 185 * . L - PRINTER DEVICE (SSC) M = Mandatory 186 * . P - PROCESSOR DEVICE (SPC) O = Optional 187 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. 188 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete 189 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 190 * . . .M - MEDIA CHANGER DEVICE (SMC-2) 191 * . . . A - STORAGE ARRAY DEVICE (SCC-2) 192 * . . . .E - ENCLOSURE SERVICES DEVICE (SES) 193 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 194 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 195 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 196 * . . . . .F - OBJECT-BASED STORAGE (OSD) 197 * OP DTLPWROMAEBKVF Description 198 * -- -------------- ---------------------------------------------- */ 199 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ 200 { 0x00, ALL, "TEST UNIT READY" }, 201 /* 01 M REWIND */ 202 { 0x01, T, "REWIND" }, 203 /* 01 Z V ZZZZ REZERO UNIT */ 204 { 0x01, D | W | R | O | M, "REZERO UNIT" }, 205 /* 02 VVVVVV V */ 206 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ 207 { 0x03, ALL, "REQUEST SENSE" }, 208 /* 04 M OO FORMAT UNIT */ 209 { 0x04, D | R | O, "FORMAT UNIT" }, 210 /* 04 O FORMAT MEDIUM */ 211 { 0x04, T, "FORMAT MEDIUM" }, 212 /* 04 O FORMAT */ 213 { 0x04, L, "FORMAT" }, 214 /* 05 VMVVVV V READ BLOCK LIMITS */ 215 { 0x05, T, "READ BLOCK LIMITS" }, 216 /* 06 VVVVVV V */ 217 /* 07 OVV O OV REASSIGN BLOCKS */ 218 { 0x07, D | W | O, "REASSIGN BLOCKS" }, 219 /* 07 O INITIALIZE ELEMENT STATUS */ 220 { 0x07, M, "INITIALIZE ELEMENT STATUS" }, 221 /* 08 MOV O OV READ(6) */ 222 { 0x08, D | T | W | O, "READ(6)" }, 223 /* 08 O RECEIVE */ 224 { 0x08, P, "RECEIVE" }, 225 /* 08 GET MESSAGE(6) */ 226 { 0x08, C, "GET MESSAGE(6)" }, 227 /* 09 VVVVVV V */ 228 /* 0A OO O OV WRITE(6) */ 229 { 0x0A, D | T | W | O, "WRITE(6)" }, 230 /* 0A M SEND(6) */ 231 { 0x0A, P, "SEND(6)" }, 232 /* 0A SEND MESSAGE(6) */ 233 { 0x0A, C, "SEND MESSAGE(6)" }, 234 /* 0A M PRINT */ 235 { 0x0A, L, "PRINT" }, 236 /* 0B Z ZOZV SEEK(6) */ 237 { 0x0B, D | W | R | O, "SEEK(6)" }, 238 /* 0B O SET CAPACITY */ 239 { 0x0B, T, "SET CAPACITY" }, 240 /* 0B O SLEW AND PRINT */ 241 { 0x0B, L, "SLEW AND PRINT" }, 242 /* 0C VVVVVV V */ 243 /* 0D VVVVVV V */ 244 /* 0E VVVVVV V */ 245 /* 0F VOVVVV V READ REVERSE(6) */ 246 { 0x0F, T, "READ REVERSE(6)" }, 247 /* 10 VM VVV WRITE FILEMARKS(6) */ 248 { 0x10, T, "WRITE FILEMARKS(6)" }, 249 /* 10 O SYNCHRONIZE BUFFER */ 250 { 0x10, L, "SYNCHRONIZE BUFFER" }, 251 /* 11 VMVVVV SPACE(6) */ 252 { 0x11, T, "SPACE(6)" }, 253 /* 12 MMMMMMMMMMMMMM INQUIRY */ 254 { 0x12, ALL, "INQUIRY" }, 255 /* 13 V VVVV */ 256 /* 13 O VERIFY(6) */ 257 { 0x13, T, "VERIFY(6)" }, 258 /* 14 VOOVVV RECOVER BUFFERED DATA */ 259 { 0x14, T | L, "RECOVER BUFFERED DATA" }, 260 /* 15 OMO O OOOO OO MODE SELECT(6) */ 261 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, 262 /* 16 ZZMZO OOOZ O RESERVE(6) */ 263 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, 264 /* 16 Z RESERVE ELEMENT(6) */ 265 { 0x16, M, "RESERVE ELEMENT(6)" }, 266 /* 17 ZZMZO OOOZ O RELEASE(6) */ 267 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, 268 /* 17 Z RELEASE ELEMENT(6) */ 269 { 0x17, M, "RELEASE ELEMENT(6)" }, 270 /* 18 ZZZZOZO Z COPY */ 271 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, 272 /* 19 VMVVVV ERASE(6) */ 273 { 0x19, T, "ERASE(6)" }, 274 /* 1A OMO O OOOO OO MODE SENSE(6) */ 275 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, 276 /* 1B O OOO O MO O START STOP UNIT */ 277 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, 278 /* 1B O M LOAD UNLOAD */ 279 { 0x1B, T | V, "LOAD UNLOAD" }, 280 /* 1B SCAN */ 281 { 0x1B, S, "SCAN" }, 282 /* 1B O STOP PRINT */ 283 { 0x1B, L, "STOP PRINT" }, 284 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ 285 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, 286 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ 287 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, 288 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ 289 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, 290 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ 291 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, 292 /* 1F */ 293 /* 20 V VVV V */ 294 /* 21 V VVV V */ 295 /* 22 V VVV V */ 296 /* 23 V V V V */ 297 /* 23 O READ FORMAT CAPACITIES */ 298 { 0x23, R, "READ FORMAT CAPACITIES" }, 299 /* 24 V VV SET WINDOW */ 300 { 0x24, S, "SET WINDOW" }, 301 /* 25 M M M M READ CAPACITY(10) */ 302 { 0x25, D | W | O | B, "READ CAPACITY(10)" }, 303 /* 25 O READ CAPACITY */ 304 { 0x25, R, "READ CAPACITY" }, 305 /* 25 M READ CARD CAPACITY */ 306 { 0x25, K, "READ CARD CAPACITY" }, 307 /* 25 GET WINDOW */ 308 { 0x25, S, "GET WINDOW" }, 309 /* 26 V VV */ 310 /* 27 V VV */ 311 /* 28 M MOM MM READ(10) */ 312 { 0x28, D | W | R | O | B | K | S, "READ(10)" }, 313 /* 28 GET MESSAGE(10) */ 314 { 0x28, C, "GET MESSAGE(10)" }, 315 /* 29 V VVO READ GENERATION */ 316 { 0x29, O, "READ GENERATION" }, 317 /* 2A O MOM MO WRITE(10) */ 318 { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, 319 /* 2A SEND(10) */ 320 { 0x2A, S, "SEND(10)" }, 321 /* 2A SEND MESSAGE(10) */ 322 { 0x2A, C, "SEND MESSAGE(10)" }, 323 /* 2B Z OOO O SEEK(10) */ 324 { 0x2B, D | W | R | O | K, "SEEK(10)" }, 325 /* 2B O LOCATE(10) */ 326 { 0x2B, T, "LOCATE(10)" }, 327 /* 2B O POSITION TO ELEMENT */ 328 { 0x2B, M, "POSITION TO ELEMENT" }, 329 /* 2C V OO ERASE(10) */ 330 { 0x2C, R | O, "ERASE(10)" }, 331 /* 2D O READ UPDATED BLOCK */ 332 { 0x2D, O, "READ UPDATED BLOCK" }, 333 /* 2D V */ 334 /* 2E O OOO MO WRITE AND VERIFY(10) */ 335 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, 336 /* 2F O OOO VERIFY(10) */ 337 { 0x2F, D | W | R | O, "VERIFY(10)" }, 338 /* 30 Z ZZZ SEARCH DATA HIGH(10) */ 339 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, 340 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ 341 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, 342 /* 31 OBJECT POSITION */ 343 { 0x31, S, "OBJECT POSITION" }, 344 /* 32 Z ZZZ SEARCH DATA LOW(10) */ 345 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, 346 /* 33 Z OZO SET LIMITS(10) */ 347 { 0x33, D | W | R | O, "SET LIMITS(10)" }, 348 /* 34 O O O O PRE-FETCH(10) */ 349 { 0x34, D | W | O | K, "PRE-FETCH(10)" }, 350 /* 34 M READ POSITION */ 351 { 0x34, T, "READ POSITION" }, 352 /* 34 GET DATA BUFFER STATUS */ 353 { 0x34, S, "GET DATA BUFFER STATUS" }, 354 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ 355 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, 356 /* 36 Z O O O LOCK UNLOCK CACHE(10) */ 357 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, 358 /* 37 O O READ DEFECT DATA(10) */ 359 { 0x37, D | O, "READ DEFECT DATA(10)" }, 360 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ 361 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, 362 /* 38 O O O MEDIUM SCAN */ 363 { 0x38, W | O | K, "MEDIUM SCAN" }, 364 /* 39 ZZZZOZO Z COMPARE */ 365 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, 366 /* 3A ZZZZOZO Z COPY AND VERIFY */ 367 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, 368 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ 369 { 0x3B, ALL, "WRITE BUFFER" }, 370 /* 3C OOOOOOOOOO OOO READ BUFFER */ 371 { 0x3C, ALL & ~(B), "READ BUFFER" }, 372 /* 3D O UPDATE BLOCK */ 373 { 0x3D, O, "UPDATE BLOCK" }, 374 /* 3E O O O READ LONG(10) */ 375 { 0x3E, D | W | O, "READ LONG(10)" }, 376 /* 3F O O O WRITE LONG(10) */ 377 { 0x3F, D | W | O, "WRITE LONG(10)" }, 378 /* 40 ZZZZOZOZ CHANGE DEFINITION */ 379 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, 380 /* 41 O WRITE SAME(10) */ 381 { 0x41, D, "WRITE SAME(10)" }, 382 /* 42 O UNMAP */ 383 { 0x42, D, "UNMAP" }, 384 /* 42 O READ SUB-CHANNEL */ 385 { 0x42, R, "READ SUB-CHANNEL" }, 386 /* 43 O READ TOC/PMA/ATIP */ 387 { 0x43, R, "READ TOC/PMA/ATIP" }, 388 /* 44 M M REPORT DENSITY SUPPORT */ 389 { 0x44, T | V, "REPORT DENSITY SUPPORT" }, 390 /* 44 READ HEADER */ 391 /* 45 O PLAY AUDIO(10) */ 392 { 0x45, R, "PLAY AUDIO(10)" }, 393 /* 46 M GET CONFIGURATION */ 394 { 0x46, R, "GET CONFIGURATION" }, 395 /* 47 O PLAY AUDIO MSF */ 396 { 0x47, R, "PLAY AUDIO MSF" }, 397 /* 48 O SANITIZE */ 398 { 0x48, D, "SANITIZE" }, 399 /* 49 */ 400 /* 4A M GET EVENT STATUS NOTIFICATION */ 401 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, 402 /* 4B O PAUSE/RESUME */ 403 { 0x4B, R, "PAUSE/RESUME" }, 404 /* 4C OOOOO OOOO OOO LOG SELECT */ 405 { 0x4C, ALL & ~(R | B), "LOG SELECT" }, 406 /* 4D OOOOO OOOO OMO LOG SENSE */ 407 { 0x4D, ALL & ~(R | B), "LOG SENSE" }, 408 /* 4E O STOP PLAY/SCAN */ 409 { 0x4E, R, "STOP PLAY/SCAN" }, 410 /* 4F */ 411 /* 50 O XDWRITE(10) */ 412 { 0x50, D, "XDWRITE(10)" }, 413 /* 51 O XPWRITE(10) */ 414 { 0x51, D, "XPWRITE(10)" }, 415 /* 51 O READ DISC INFORMATION */ 416 { 0x51, R, "READ DISC INFORMATION" }, 417 /* 52 O XDREAD(10) */ 418 { 0x52, D, "XDREAD(10)" }, 419 /* 52 O READ TRACK INFORMATION */ 420 { 0x52, R, "READ TRACK INFORMATION" }, 421 /* 53 O RESERVE TRACK */ 422 { 0x53, R, "RESERVE TRACK" }, 423 /* 54 O SEND OPC INFORMATION */ 424 { 0x54, R, "SEND OPC INFORMATION" }, 425 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ 426 { 0x55, ALL & ~(P), "MODE SELECT(10)" }, 427 /* 56 ZZMZO OOOZ RESERVE(10) */ 428 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, 429 /* 56 Z RESERVE ELEMENT(10) */ 430 { 0x56, M, "RESERVE ELEMENT(10)" }, 431 /* 57 ZZMZO OOOZ RELEASE(10) */ 432 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, 433 /* 57 Z RELEASE ELEMENT(10) */ 434 { 0x57, M, "RELEASE ELEMENT(10)" }, 435 /* 58 O REPAIR TRACK */ 436 { 0x58, R, "REPAIR TRACK" }, 437 /* 59 */ 438 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ 439 { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, 440 /* 5B O CLOSE TRACK/SESSION */ 441 { 0x5B, R, "CLOSE TRACK/SESSION" }, 442 /* 5C O READ BUFFER CAPACITY */ 443 { 0x5C, R, "READ BUFFER CAPACITY" }, 444 /* 5D O SEND CUE SHEET */ 445 { 0x5D, R, "SEND CUE SHEET" }, 446 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ 447 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, 448 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ 449 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, 450 /* 7E OO O OOOO O extended CDB */ 451 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, 452 /* 7F O M variable length CDB (more than 16 bytes) */ 453 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, 454 /* 80 Z XDWRITE EXTENDED(16) */ 455 { 0x80, D, "XDWRITE EXTENDED(16)" }, 456 /* 80 M WRITE FILEMARKS(16) */ 457 { 0x80, T, "WRITE FILEMARKS(16)" }, 458 /* 81 Z REBUILD(16) */ 459 { 0x81, D, "REBUILD(16)" }, 460 /* 81 O READ REVERSE(16) */ 461 { 0x81, T, "READ REVERSE(16)" }, 462 /* 82 Z REGENERATE(16) */ 463 { 0x82, D, "REGENERATE(16)" }, 464 /* 83 OOOOO O OO EXTENDED COPY */ 465 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, 466 /* 84 OOOOO O OO RECEIVE COPY RESULTS */ 467 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, 468 /* 85 O O O ATA COMMAND PASS THROUGH(16) */ 469 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, 470 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ 471 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, 472 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ 473 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, 474 /* 88 MM O O O READ(16) */ 475 { 0x88, D | T | W | O | B, "READ(16)" }, 476 /* 89 O COMPARE AND WRITE*/ 477 { 0x89, D, "COMPARE AND WRITE" }, 478 /* 8A OM O O O WRITE(16) */ 479 { 0x8A, D | T | W | O | B, "WRITE(16)" }, 480 /* 8B O ORWRITE */ 481 { 0x8B, D, "ORWRITE" }, 482 /* 8C OO O OO O M READ ATTRIBUTE */ 483 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, 484 /* 8D OO O OO O O WRITE ATTRIBUTE */ 485 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, 486 /* 8E O O O O WRITE AND VERIFY(16) */ 487 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, 488 /* 8F OO O O O VERIFY(16) */ 489 { 0x8F, D | T | W | O | B, "VERIFY(16)" }, 490 /* 90 O O O O PRE-FETCH(16) */ 491 { 0x90, D | W | O | B, "PRE-FETCH(16)" }, 492 /* 91 O O O O SYNCHRONIZE CACHE(16) */ 493 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, 494 /* 91 O SPACE(16) */ 495 { 0x91, T, "SPACE(16)" }, 496 /* 92 Z O O LOCK UNLOCK CACHE(16) */ 497 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, 498 /* 92 O LOCATE(16) */ 499 { 0x92, T, "LOCATE(16)" }, 500 /* 93 O WRITE SAME(16) */ 501 { 0x93, D, "WRITE SAME(16)" }, 502 /* 93 M ERASE(16) */ 503 { 0x93, T, "ERASE(16)" }, 504 /* 94 O ZBC OUT */ 505 { 0x94, ALL, "ZBC OUT" }, 506 /* 95 O ZBC IN */ 507 { 0x95, ALL, "ZBC IN" }, 508 /* 96 */ 509 /* 97 */ 510 /* 98 */ 511 /* 99 */ 512 /* 9A O WRITE STREAM(16) */ 513 { 0x9A, D, "WRITE STREAM(16)" }, 514 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */ 515 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" }, 516 /* 9C O WRITE ATOMIC(16) */ 517 { 0x9C, D, "WRITE ATOMIC(16)" }, 518 /* 9D SERVICE ACTION BIDIRECTIONAL */ 519 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" }, 520 /* XXX KDM ALL for this? op-num.txt defines it for none.. */ 521 /* 9E SERVICE ACTION IN(16) */ 522 { 0x9E, ALL, "SERVICE ACTION IN(16)" }, 523 /* 9F M SERVICE ACTION OUT(16) */ 524 { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, 525 /* A0 MMOOO OMMM OMO REPORT LUNS */ 526 { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, 527 /* A1 O BLANK */ 528 { 0xA1, R, "BLANK" }, 529 /* A1 O O ATA COMMAND PASS THROUGH(12) */ 530 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, 531 /* A2 OO O O SECURITY PROTOCOL IN */ 532 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, 533 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ 534 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, 535 /* A3 O SEND KEY */ 536 { 0xA3, R, "SEND KEY" }, 537 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ 538 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, 539 /* A4 O REPORT KEY */ 540 { 0xA4, R, "REPORT KEY" }, 541 /* A5 O O OM MOVE MEDIUM */ 542 { 0xA5, T | W | O | M, "MOVE MEDIUM" }, 543 /* A5 O PLAY AUDIO(12) */ 544 { 0xA5, R, "PLAY AUDIO(12)" }, 545 /* A6 O EXCHANGE MEDIUM */ 546 { 0xA6, M, "EXCHANGE MEDIUM" }, 547 /* A6 O LOAD/UNLOAD C/DVD */ 548 { 0xA6, R, "LOAD/UNLOAD C/DVD" }, 549 /* A7 ZZ O O MOVE MEDIUM ATTACHED */ 550 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, 551 /* A7 O SET READ AHEAD */ 552 { 0xA7, R, "SET READ AHEAD" }, 553 /* A8 O OOO READ(12) */ 554 { 0xA8, D | W | R | O, "READ(12)" }, 555 /* A8 GET MESSAGE(12) */ 556 { 0xA8, C, "GET MESSAGE(12)" }, 557 /* A9 O SERVICE ACTION OUT(12) */ 558 { 0xA9, V, "SERVICE ACTION OUT(12)" }, 559 /* AA O OOO WRITE(12) */ 560 { 0xAA, D | W | R | O, "WRITE(12)" }, 561 /* AA SEND MESSAGE(12) */ 562 { 0xAA, C, "SEND MESSAGE(12)" }, 563 /* AB O O SERVICE ACTION IN(12) */ 564 { 0xAB, R | V, "SERVICE ACTION IN(12)" }, 565 /* AC O ERASE(12) */ 566 { 0xAC, O, "ERASE(12)" }, 567 /* AC O GET PERFORMANCE */ 568 { 0xAC, R, "GET PERFORMANCE" }, 569 /* AD O READ DVD STRUCTURE */ 570 { 0xAD, R, "READ DVD STRUCTURE" }, 571 /* AE O O O WRITE AND VERIFY(12) */ 572 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, 573 /* AF O OZO VERIFY(12) */ 574 { 0xAF, D | W | R | O, "VERIFY(12)" }, 575 /* B0 ZZZ SEARCH DATA HIGH(12) */ 576 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, 577 /* B1 ZZZ SEARCH DATA EQUAL(12) */ 578 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, 579 /* B2 ZZZ SEARCH DATA LOW(12) */ 580 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, 581 /* B3 Z OZO SET LIMITS(12) */ 582 { 0xB3, D | W | R | O, "SET LIMITS(12)" }, 583 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ 584 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, 585 /* B5 OO O O SECURITY PROTOCOL OUT */ 586 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, 587 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ 588 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, 589 /* B6 O SEND VOLUME TAG */ 590 { 0xB6, M, "SEND VOLUME TAG" }, 591 /* B6 O SET STREAMING */ 592 { 0xB6, R, "SET STREAMING" }, 593 /* B7 O O READ DEFECT DATA(12) */ 594 { 0xB7, D | O, "READ DEFECT DATA(12)" }, 595 /* B8 O OZOM READ ELEMENT STATUS */ 596 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, 597 /* B9 O READ CD MSF */ 598 { 0xB9, R, "READ CD MSF" }, 599 /* BA O O OOMO REDUNDANCY GROUP (IN) */ 600 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, 601 /* BA O SCAN */ 602 { 0xBA, R, "SCAN" }, 603 /* BB O O OOOO REDUNDANCY GROUP (OUT) */ 604 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, 605 /* BB O SET CD SPEED */ 606 { 0xBB, R, "SET CD SPEED" }, 607 /* BC O O OOMO SPARE (IN) */ 608 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, 609 /* BD O O OOOO SPARE (OUT) */ 610 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, 611 /* BD O MECHANISM STATUS */ 612 { 0xBD, R, "MECHANISM STATUS" }, 613 /* BE O O OOMO VOLUME SET (IN) */ 614 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, 615 /* BE O READ CD */ 616 { 0xBE, R, "READ CD" }, 617 /* BF O O OOOO VOLUME SET (OUT) */ 618 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, 619 /* BF O SEND DVD STRUCTURE */ 620 { 0xBF, R, "SEND DVD STRUCTURE" } 621 }; 622 623 const char * 624 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 625 { 626 caddr_t match; 627 int i, j; 628 u_int32_t opmask; 629 u_int16_t pd_type; 630 int num_ops[2]; 631 struct op_table_entry *table[2]; 632 int num_tables; 633 634 /* 635 * If we've got inquiry data, use it to determine what type of 636 * device we're dealing with here. Otherwise, assume direct 637 * access. 638 */ 639 if (inq_data == NULL) { 640 pd_type = T_DIRECT; 641 match = NULL; 642 } else { 643 pd_type = SID_TYPE(inq_data); 644 645 match = cam_quirkmatch((caddr_t)inq_data, 646 (caddr_t)scsi_op_quirk_table, 647 nitems(scsi_op_quirk_table), 648 sizeof(*scsi_op_quirk_table), 649 scsi_inquiry_match); 650 } 651 652 if (match != NULL) { 653 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; 654 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; 655 table[1] = scsi_op_codes; 656 num_ops[1] = nitems(scsi_op_codes); 657 num_tables = 2; 658 } else { 659 /* 660 * If this is true, we have a vendor specific opcode that 661 * wasn't covered in the quirk table. 662 */ 663 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) 664 return("Vendor Specific Command"); 665 666 table[0] = scsi_op_codes; 667 num_ops[0] = nitems(scsi_op_codes); 668 num_tables = 1; 669 } 670 671 /* RBC is 'Simplified' Direct Access Device */ 672 if (pd_type == T_RBC) 673 pd_type = T_DIRECT; 674 675 /* 676 * Host managed drives are direct access for the most part. 677 */ 678 if (pd_type == T_ZBC_HM) 679 pd_type = T_DIRECT; 680 681 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */ 682 if (pd_type == T_NODEVICE) 683 pd_type = T_DIRECT; 684 685 opmask = 1 << pd_type; 686 687 for (j = 0; j < num_tables; j++) { 688 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ 689 if ((table[j][i].opcode == opcode) 690 && ((table[j][i].opmask & opmask) != 0)) 691 return(table[j][i].desc); 692 } 693 } 694 695 /* 696 * If we can't find a match for the command in the table, we just 697 * assume it's a vendor specifc command. 698 */ 699 return("Vendor Specific Command"); 700 701 } 702 703 #else /* SCSI_NO_OP_STRINGS */ 704 705 const char * 706 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 707 { 708 return(""); 709 } 710 711 #endif 712 713 #if !defined(SCSI_NO_SENSE_STRINGS) 714 #define SST(asc, ascq, action, desc) \ 715 asc, ascq, action, desc 716 #else 717 const char empty_string[] = ""; 718 719 #define SST(asc, ascq, action, desc) \ 720 asc, ascq, action, empty_string 721 #endif 722 723 const struct sense_key_table_entry sense_key_table[] = 724 { 725 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, 726 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, 727 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" }, 728 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, 729 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, 730 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, 731 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, 732 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, 733 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, 734 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, 735 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, 736 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, 737 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, 738 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, 739 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, 740 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } 741 }; 742 743 static struct asc_table_entry quantum_fireball_entries[] = { 744 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 745 "Logical unit not ready, initializing cmd. required") } 746 }; 747 748 static struct asc_table_entry sony_mo_entries[] = { 749 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 750 "Logical unit not ready, cause not reportable") } 751 }; 752 753 static struct asc_table_entry hgst_entries[] = { 754 { SST(0x04, 0xF0, SS_RDEF, 755 "Vendor Unique - Logical Unit Not Ready") }, 756 { SST(0x0A, 0x01, SS_RDEF, 757 "Unrecovered Super Certification Log Write Error") }, 758 { SST(0x0A, 0x02, SS_RDEF, 759 "Unrecovered Super Certification Log Read Error") }, 760 { SST(0x15, 0x03, SS_RDEF, 761 "Unrecovered Sector Error") }, 762 { SST(0x3E, 0x04, SS_RDEF, 763 "Unrecovered Self-Test Hard-Cache Test Fail") }, 764 { SST(0x3E, 0x05, SS_RDEF, 765 "Unrecovered Self-Test OTF-Cache Fail") }, 766 { SST(0x40, 0x00, SS_RDEF, 767 "Unrecovered SAT No Buffer Overflow Error") }, 768 { SST(0x40, 0x01, SS_RDEF, 769 "Unrecovered SAT Buffer Overflow Error") }, 770 { SST(0x40, 0x02, SS_RDEF, 771 "Unrecovered SAT No Buffer Overflow With ECS Fault") }, 772 { SST(0x40, 0x03, SS_RDEF, 773 "Unrecovered SAT Buffer Overflow With ECS Fault") }, 774 { SST(0x40, 0x81, SS_RDEF, 775 "DRAM Failure") }, 776 { SST(0x44, 0x0B, SS_RDEF, 777 "Vendor Unique - Internal Target Failure") }, 778 { SST(0x44, 0xF2, SS_RDEF, 779 "Vendor Unique - Internal Target Failure") }, 780 { SST(0x44, 0xF6, SS_RDEF, 781 "Vendor Unique - Internal Target Failure") }, 782 { SST(0x44, 0xF9, SS_RDEF, 783 "Vendor Unique - Internal Target Failure") }, 784 { SST(0x44, 0xFA, SS_RDEF, 785 "Vendor Unique - Internal Target Failure") }, 786 { SST(0x5D, 0x22, SS_RDEF, 787 "Extreme Over-Temperature Warning") }, 788 { SST(0x5D, 0x50, SS_RDEF, 789 "Load/Unload cycle Count Warning") }, 790 { SST(0x81, 0x00, SS_RDEF, 791 "Vendor Unique - Internal Logic Error") }, 792 { SST(0x85, 0x00, SS_RDEF, 793 "Vendor Unique - Internal Key Seed Error") }, 794 }; 795 796 static struct asc_table_entry seagate_entries[] = { 797 { SST(0x04, 0xF0, SS_RDEF, 798 "Logical Unit Not Ready, super certify in Progress") }, 799 { SST(0x08, 0x86, SS_RDEF, 800 "Write Fault Data Corruption") }, 801 { SST(0x09, 0x0D, SS_RDEF, 802 "Tracking Failure") }, 803 { SST(0x09, 0x0E, SS_RDEF, 804 "ETF Failure") }, 805 { SST(0x0B, 0x5D, SS_RDEF, 806 "Pre-SMART Warning") }, 807 { SST(0x0B, 0x85, SS_RDEF, 808 "5V Voltage Warning") }, 809 { SST(0x0B, 0x8C, SS_RDEF, 810 "12V Voltage Warning") }, 811 { SST(0x0C, 0xFF, SS_RDEF, 812 "Write Error - Too many error recovery revs") }, 813 { SST(0x11, 0xFF, SS_RDEF, 814 "Unrecovered Read Error - Too many error recovery revs") }, 815 { SST(0x19, 0x0E, SS_RDEF, 816 "Fewer than 1/2 defect list copies") }, 817 { SST(0x20, 0xF3, SS_RDEF, 818 "Illegal CDB linked to skip mask cmd") }, 819 { SST(0x24, 0xF0, SS_RDEF, 820 "Illegal byte in CDB, LBA not matching") }, 821 { SST(0x24, 0xF1, SS_RDEF, 822 "Illegal byte in CDB, LEN not matching") }, 823 { SST(0x24, 0xF2, SS_RDEF, 824 "Mask not matching transfer length") }, 825 { SST(0x24, 0xF3, SS_RDEF, 826 "Drive formatted without plist") }, 827 { SST(0x26, 0x95, SS_RDEF, 828 "Invalid Field Parameter - CAP File") }, 829 { SST(0x26, 0x96, SS_RDEF, 830 "Invalid Field Parameter - RAP File") }, 831 { SST(0x26, 0x97, SS_RDEF, 832 "Invalid Field Parameter - TMS Firmware Tag") }, 833 { SST(0x26, 0x98, SS_RDEF, 834 "Invalid Field Parameter - Check Sum") }, 835 { SST(0x26, 0x99, SS_RDEF, 836 "Invalid Field Parameter - Firmware Tag") }, 837 { SST(0x29, 0x08, SS_RDEF, 838 "Write Log Dump data") }, 839 { SST(0x29, 0x09, SS_RDEF, 840 "Write Log Dump data") }, 841 { SST(0x29, 0x0A, SS_RDEF, 842 "Reserved disk space") }, 843 { SST(0x29, 0x0B, SS_RDEF, 844 "SDBP") }, 845 { SST(0x29, 0x0C, SS_RDEF, 846 "SDBP") }, 847 { SST(0x31, 0x91, SS_RDEF, 848 "Format Corrupted World Wide Name (WWN) is Invalid") }, 849 { SST(0x32, 0x03, SS_RDEF, 850 "Defect List - Length exceeds Command Allocated Length") }, 851 { SST(0x33, 0x00, SS_RDEF, 852 "Flash not ready for access") }, 853 { SST(0x3F, 0x70, SS_RDEF, 854 "Invalid RAP block") }, 855 { SST(0x3F, 0x71, SS_RDEF, 856 "RAP/ETF mismatch") }, 857 { SST(0x3F, 0x90, SS_RDEF, 858 "Invalid CAP block") }, 859 { SST(0x3F, 0x91, SS_RDEF, 860 "World Wide Name (WWN) Mismatch") }, 861 { SST(0x40, 0x01, SS_RDEF, 862 "DRAM Parity Error") }, 863 { SST(0x40, 0x02, SS_RDEF, 864 "DRAM Parity Error") }, 865 { SST(0x42, 0x0A, SS_RDEF, 866 "Loopback Test") }, 867 { SST(0x42, 0x0B, SS_RDEF, 868 "Loopback Test") }, 869 { SST(0x44, 0xF2, SS_RDEF, 870 "Compare error during data integrity check") }, 871 { SST(0x44, 0xF6, SS_RDEF, 872 "Unrecoverable error during data integrity check") }, 873 { SST(0x47, 0x80, SS_RDEF, 874 "Fibre Channel Sequence Error") }, 875 { SST(0x4E, 0x01, SS_RDEF, 876 "Information Unit Too Short") }, 877 { SST(0x80, 0x00, SS_RDEF, 878 "General Firmware Error / Command Timeout") }, 879 { SST(0x80, 0x01, SS_RDEF, 880 "Command Timeout") }, 881 { SST(0x80, 0x02, SS_RDEF, 882 "Command Timeout") }, 883 { SST(0x80, 0x80, SS_RDEF, 884 "FC FIFO Error During Read Transfer") }, 885 { SST(0x80, 0x81, SS_RDEF, 886 "FC FIFO Error During Write Transfer") }, 887 { SST(0x80, 0x82, SS_RDEF, 888 "DISC FIFO Error During Read Transfer") }, 889 { SST(0x80, 0x83, SS_RDEF, 890 "DISC FIFO Error During Write Transfer") }, 891 { SST(0x80, 0x84, SS_RDEF, 892 "LBA Seeded LRC Error on Read") }, 893 { SST(0x80, 0x85, SS_RDEF, 894 "LBA Seeded LRC Error on Write") }, 895 { SST(0x80, 0x86, SS_RDEF, 896 "IOEDC Error on Read") }, 897 { SST(0x80, 0x87, SS_RDEF, 898 "IOEDC Error on Write") }, 899 { SST(0x80, 0x88, SS_RDEF, 900 "Host Parity Check Failed") }, 901 { SST(0x80, 0x89, SS_RDEF, 902 "IOEDC error on read detected by formatter") }, 903 { SST(0x80, 0x8A, SS_RDEF, 904 "Host Parity Errors / Host FIFO Initialization Failed") }, 905 { SST(0x80, 0x8B, SS_RDEF, 906 "Host Parity Errors") }, 907 { SST(0x80, 0x8C, SS_RDEF, 908 "Host Parity Errors") }, 909 { SST(0x80, 0x8D, SS_RDEF, 910 "Host Parity Errors") }, 911 { SST(0x81, 0x00, SS_RDEF, 912 "LA Check Failed") }, 913 { SST(0x82, 0x00, SS_RDEF, 914 "Internal client detected insufficient buffer") }, 915 { SST(0x84, 0x00, SS_RDEF, 916 "Scheduled Diagnostic And Repair") }, 917 }; 918 919 static struct scsi_sense_quirk_entry sense_quirk_table[] = { 920 { 921 /* 922 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b 923 * when they really should return 0x04 0x02. 924 */ 925 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, 926 /*num_sense_keys*/0, 927 nitems(quantum_fireball_entries), 928 /*sense key entries*/NULL, 929 quantum_fireball_entries 930 }, 931 { 932 /* 933 * This Sony MO drive likes to return 0x04, 0x00 when it 934 * isn't spun up. 935 */ 936 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, 937 /*num_sense_keys*/0, 938 nitems(sony_mo_entries), 939 /*sense key entries*/NULL, 940 sony_mo_entries 941 }, 942 { 943 /* 944 * HGST vendor-specific error codes 945 */ 946 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"}, 947 /*num_sense_keys*/0, 948 nitems(hgst_entries), 949 /*sense key entries*/NULL, 950 hgst_entries 951 }, 952 { 953 /* 954 * SEAGATE vendor-specific error codes 955 */ 956 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"}, 957 /*num_sense_keys*/0, 958 nitems(seagate_entries), 959 /*sense key entries*/NULL, 960 seagate_entries 961 } 962 }; 963 964 const u_int sense_quirk_table_size = nitems(sense_quirk_table); 965 966 static struct asc_table_entry asc_table[] = { 967 /* 968 * From: http://www.t10.org/lists/asc-num.txt 969 * Modifications by Jung-uk Kim (jkim@FreeBSD.org) 970 */ 971 /* 972 * File: ASC-NUM.TXT 973 * 974 * SCSI ASC/ASCQ Assignments 975 * Numeric Sorted Listing 976 * as of 8/12/15 977 * 978 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 979 * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- 980 * . L - PRINTER DEVICE (SSC) blank = reserved 981 * . P - PROCESSOR DEVICE (SPC) not blank = allowed 982 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) 983 * . . R - CD DEVICE (MMC) 984 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 985 * . . .M - MEDIA CHANGER DEVICE (SMC) 986 * . . . A - STORAGE ARRAY DEVICE (SCC) 987 * . . . E - ENCLOSURE SERVICES DEVICE (SES) 988 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 989 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 990 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 991 * . . . . .F - OBJECT-BASED STORAGE (OSD) 992 * DTLPWROMAEBKVF 993 * ASC ASCQ Action 994 * Description 995 */ 996 /* DTLPWROMAEBKVF */ 997 { SST(0x00, 0x00, SS_NOP, 998 "No additional sense information") }, 999 /* T */ 1000 { SST(0x00, 0x01, SS_RDEF, 1001 "Filemark detected") }, 1002 /* T */ 1003 { SST(0x00, 0x02, SS_RDEF, 1004 "End-of-partition/medium detected") }, 1005 /* T */ 1006 { SST(0x00, 0x03, SS_RDEF, 1007 "Setmark detected") }, 1008 /* T */ 1009 { SST(0x00, 0x04, SS_RDEF, 1010 "Beginning-of-partition/medium detected") }, 1011 /* TL */ 1012 { SST(0x00, 0x05, SS_RDEF, 1013 "End-of-data detected") }, 1014 /* DTLPWROMAEBKVF */ 1015 { SST(0x00, 0x06, SS_RDEF, 1016 "I/O process terminated") }, 1017 /* T */ 1018 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ 1019 "Programmable early warning detected") }, 1020 /* R */ 1021 { SST(0x00, 0x11, SS_FATAL | EBUSY, 1022 "Audio play operation in progress") }, 1023 /* R */ 1024 { SST(0x00, 0x12, SS_NOP, 1025 "Audio play operation paused") }, 1026 /* R */ 1027 { SST(0x00, 0x13, SS_NOP, 1028 "Audio play operation successfully completed") }, 1029 /* R */ 1030 { SST(0x00, 0x14, SS_RDEF, 1031 "Audio play operation stopped due to error") }, 1032 /* R */ 1033 { SST(0x00, 0x15, SS_NOP, 1034 "No current audio status to return") }, 1035 /* DTLPWROMAEBKVF */ 1036 { SST(0x00, 0x16, SS_FATAL | EBUSY, 1037 "Operation in progress") }, 1038 /* DTL WROMAEBKVF */ 1039 { SST(0x00, 0x17, SS_RDEF, 1040 "Cleaning requested") }, 1041 /* T */ 1042 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ 1043 "Erase operation in progress") }, 1044 /* T */ 1045 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ 1046 "Locate operation in progress") }, 1047 /* T */ 1048 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ 1049 "Rewind operation in progress") }, 1050 /* T */ 1051 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ 1052 "Set capacity operation in progress") }, 1053 /* T */ 1054 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ 1055 "Verify operation in progress") }, 1056 /* DT B */ 1057 { SST(0x00, 0x1D, SS_NOP, 1058 "ATA pass through information available") }, 1059 /* DT R MAEBKV */ 1060 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ 1061 "Conflicting SA creation request") }, 1062 /* DT B */ 1063 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */ 1064 "Logical unit transitioning to another power condition") }, 1065 /* DT P B */ 1066 { SST(0x00, 0x20, SS_NOP, 1067 "Extended copy information available") }, 1068 /* D */ 1069 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */ 1070 "Atomic command aborted due to ACA") }, 1071 /* D W O BK */ 1072 { SST(0x01, 0x00, SS_RDEF, 1073 "No index/sector signal") }, 1074 /* D WRO BK */ 1075 { SST(0x02, 0x00, SS_RDEF, 1076 "No seek complete") }, 1077 /* DTL W O BK */ 1078 { SST(0x03, 0x00, SS_RDEF, 1079 "Peripheral device write fault") }, 1080 /* T */ 1081 { SST(0x03, 0x01, SS_RDEF, 1082 "No write current") }, 1083 /* T */ 1084 { SST(0x03, 0x02, SS_RDEF, 1085 "Excessive write errors") }, 1086 /* DTLPWROMAEBKVF */ 1087 { SST(0x04, 0x00, SS_RDEF, 1088 "Logical unit not ready, cause not reportable") }, 1089 /* DTLPWROMAEBKVF */ 1090 { SST(0x04, 0x01, SS_WAIT | EBUSY, 1091 "Logical unit is in process of becoming ready") }, 1092 /* DTLPWROMAEBKVF */ 1093 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1094 "Logical unit not ready, initializing command required") }, 1095 /* DTLPWROMAEBKVF */ 1096 { SST(0x04, 0x03, SS_FATAL | ENXIO, 1097 "Logical unit not ready, manual intervention required") }, 1098 /* DTL RO B */ 1099 { SST(0x04, 0x04, SS_FATAL | EBUSY, 1100 "Logical unit not ready, format in progress") }, 1101 /* DT W O A BK F */ 1102 { SST(0x04, 0x05, SS_FATAL | EBUSY, 1103 "Logical unit not ready, rebuild in progress") }, 1104 /* DT W O A BK */ 1105 { SST(0x04, 0x06, SS_FATAL | EBUSY, 1106 "Logical unit not ready, recalculation in progress") }, 1107 /* DTLPWROMAEBKVF */ 1108 { SST(0x04, 0x07, SS_FATAL | EBUSY, 1109 "Logical unit not ready, operation in progress") }, 1110 /* R */ 1111 { SST(0x04, 0x08, SS_FATAL | EBUSY, 1112 "Logical unit not ready, long write in progress") }, 1113 /* DTLPWROMAEBKVF */ 1114 { SST(0x04, 0x09, SS_FATAL | EBUSY, 1115 "Logical unit not ready, self-test in progress") }, 1116 /* DTLPWROMAEBKVF */ 1117 { SST(0x04, 0x0A, SS_WAIT | ENXIO, 1118 "Logical unit not accessible, asymmetric access state transition")}, 1119 /* DTLPWROMAEBKVF */ 1120 { SST(0x04, 0x0B, SS_FATAL | ENXIO, 1121 "Logical unit not accessible, target port in standby state") }, 1122 /* DTLPWROMAEBKVF */ 1123 { SST(0x04, 0x0C, SS_FATAL | ENXIO, 1124 "Logical unit not accessible, target port in unavailable state") }, 1125 /* F */ 1126 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ 1127 "Logical unit not ready, structure check required") }, 1128 /* DTL WR MAEBKVF */ 1129 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */ 1130 "Logical unit not ready, security session in progress") }, 1131 /* DT WROM B */ 1132 { SST(0x04, 0x10, SS_FATAL | ENODEV, 1133 "Logical unit not ready, auxiliary memory not accessible") }, 1134 /* DT WRO AEB VF */ 1135 { SST(0x04, 0x11, SS_WAIT | ENXIO, 1136 "Logical unit not ready, notify (enable spinup) required") }, 1137 /* M V */ 1138 { SST(0x04, 0x12, SS_FATAL | ENXIO, 1139 "Logical unit not ready, offline") }, 1140 /* DT R MAEBKV */ 1141 { SST(0x04, 0x13, SS_WAIT | EBUSY, 1142 "Logical unit not ready, SA creation in progress") }, 1143 /* D B */ 1144 { SST(0x04, 0x14, SS_WAIT | ENOSPC, 1145 "Logical unit not ready, space allocation in progress") }, 1146 /* M */ 1147 { SST(0x04, 0x15, SS_FATAL | ENXIO, 1148 "Logical unit not ready, robotics disabled") }, 1149 /* M */ 1150 { SST(0x04, 0x16, SS_FATAL | ENXIO, 1151 "Logical unit not ready, configuration required") }, 1152 /* M */ 1153 { SST(0x04, 0x17, SS_FATAL | ENXIO, 1154 "Logical unit not ready, calibration required") }, 1155 /* M */ 1156 { SST(0x04, 0x18, SS_FATAL | ENXIO, 1157 "Logical unit not ready, a door is open") }, 1158 /* M */ 1159 { SST(0x04, 0x19, SS_FATAL | ENODEV, 1160 "Logical unit not ready, operating in sequential mode") }, 1161 /* DT B */ 1162 { SST(0x04, 0x1A, SS_WAIT | EBUSY, 1163 "Logical unit not ready, START/STOP UNIT command in progress") }, 1164 /* D B */ 1165 { SST(0x04, 0x1B, SS_WAIT | EBUSY, 1166 "Logical unit not ready, sanitize in progress") }, 1167 /* DT MAEB */ 1168 { SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1169 "Logical unit not ready, additional power use not yet granted") }, 1170 /* D */ 1171 { SST(0x04, 0x1D, SS_WAIT | EBUSY, 1172 "Logical unit not ready, configuration in progress") }, 1173 /* D */ 1174 { SST(0x04, 0x1E, SS_FATAL | ENXIO, 1175 "Logical unit not ready, microcode activation required") }, 1176 /* DTLPWROMAEBKVF */ 1177 { SST(0x04, 0x1F, SS_FATAL | ENXIO, 1178 "Logical unit not ready, microcode download required") }, 1179 /* DTLPWROMAEBKVF */ 1180 { SST(0x04, 0x20, SS_FATAL | ENXIO, 1181 "Logical unit not ready, logical unit reset required") }, 1182 /* DTLPWROMAEBKVF */ 1183 { SST(0x04, 0x21, SS_FATAL | ENXIO, 1184 "Logical unit not ready, hard reset required") }, 1185 /* DTLPWROMAEBKVF */ 1186 { SST(0x04, 0x22, SS_FATAL | ENXIO, 1187 "Logical unit not ready, power cycle required") }, 1188 /* D */ 1189 { SST(0x04, 0x23, SS_FATAL | ENXIO, 1190 "Logical unit not ready, affiliation required") }, 1191 /* D */ 1192 { SST(0x04, 0x24, SS_FATAL | EBUSY, 1193 "Depopulation in progress") }, 1194 /* DTL WROMAEBKVF */ 1195 { SST(0x05, 0x00, SS_RDEF, 1196 "Logical unit does not respond to selection") }, 1197 /* D WROM BK */ 1198 { SST(0x06, 0x00, SS_RDEF, 1199 "No reference position found") }, 1200 /* DTL WROM BK */ 1201 { SST(0x07, 0x00, SS_RDEF, 1202 "Multiple peripheral devices selected") }, 1203 /* DTL WROMAEBKVF */ 1204 { SST(0x08, 0x00, SS_RDEF, 1205 "Logical unit communication failure") }, 1206 /* DTL WROMAEBKVF */ 1207 { SST(0x08, 0x01, SS_RDEF, 1208 "Logical unit communication time-out") }, 1209 /* DTL WROMAEBKVF */ 1210 { SST(0x08, 0x02, SS_RDEF, 1211 "Logical unit communication parity error") }, 1212 /* DT ROM BK */ 1213 { SST(0x08, 0x03, SS_RDEF, 1214 "Logical unit communication CRC error (Ultra-DMA/32)") }, 1215 /* DTLPWRO K */ 1216 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ 1217 "Unreachable copy target") }, 1218 /* DT WRO B */ 1219 { SST(0x09, 0x00, SS_RDEF, 1220 "Track following error") }, 1221 /* WRO K */ 1222 { SST(0x09, 0x01, SS_RDEF, 1223 "Tracking servo failure") }, 1224 /* WRO K */ 1225 { SST(0x09, 0x02, SS_RDEF, 1226 "Focus servo failure") }, 1227 /* WRO */ 1228 { SST(0x09, 0x03, SS_RDEF, 1229 "Spindle servo failure") }, 1230 /* DT WRO B */ 1231 { SST(0x09, 0x04, SS_RDEF, 1232 "Head select fault") }, 1233 /* DT RO B */ 1234 { SST(0x09, 0x05, SS_RDEF, 1235 "Vibration induced tracking error") }, 1236 /* DTLPWROMAEBKVF */ 1237 { SST(0x0A, 0x00, SS_FATAL | ENOSPC, 1238 "Error log overflow") }, 1239 /* DTLPWROMAEBKVF */ 1240 { SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1241 "Warning") }, 1242 /* DTLPWROMAEBKVF */ 1243 { SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1244 "Warning - specified temperature exceeded") }, 1245 /* DTLPWROMAEBKVF */ 1246 { SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1247 "Warning - enclosure degraded") }, 1248 /* DTLPWROMAEBKVF */ 1249 { SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1250 "Warning - background self-test failed") }, 1251 /* DTLPWRO AEBKVF */ 1252 { SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1253 "Warning - background pre-scan detected medium error") }, 1254 /* DTLPWRO AEBKVF */ 1255 { SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1256 "Warning - background medium scan detected medium error") }, 1257 /* DTLPWROMAEBKVF */ 1258 { SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1259 "Warning - non-volatile cache now volatile") }, 1260 /* DTLPWROMAEBKVF */ 1261 { SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1262 "Warning - degraded power to non-volatile cache") }, 1263 /* DTLPWROMAEBKVF */ 1264 { SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1265 "Warning - power loss expected") }, 1266 /* D */ 1267 { SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1268 "Warning - device statistics notification available") }, 1269 /* DTLPWROMAEBKVF */ 1270 { SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE, 1271 "Warning - High critical temperature limit exceeded") }, 1272 /* DTLPWROMAEBKVF */ 1273 { SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE, 1274 "Warning - Low critical temperature limit exceeded") }, 1275 /* DTLPWROMAEBKVF */ 1276 { SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE, 1277 "Warning - High operating temperature limit exceeded") }, 1278 /* DTLPWROMAEBKVF */ 1279 { SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE, 1280 "Warning - Low operating temperature limit exceeded") }, 1281 /* DTLPWROMAEBKVF */ 1282 { SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE, 1283 "Warning - High citical humidity limit exceeded") }, 1284 /* DTLPWROMAEBKVF */ 1285 { SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE, 1286 "Warning - Low citical humidity limit exceeded") }, 1287 /* DTLPWROMAEBKVF */ 1288 { SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE, 1289 "Warning - High operating humidity limit exceeded") }, 1290 /* DTLPWROMAEBKVF */ 1291 { SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE, 1292 "Warning - Low operating humidity limit exceeded") }, 1293 /* T R */ 1294 { SST(0x0C, 0x00, SS_RDEF, 1295 "Write error") }, 1296 /* K */ 1297 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1298 "Write error - recovered with auto reallocation") }, 1299 /* D W O BK */ 1300 { SST(0x0C, 0x02, SS_RDEF, 1301 "Write error - auto reallocation failed") }, 1302 /* D W O BK */ 1303 { SST(0x0C, 0x03, SS_RDEF, 1304 "Write error - recommend reassignment") }, 1305 /* DT W O B */ 1306 { SST(0x0C, 0x04, SS_RDEF, 1307 "Compression check miscompare error") }, 1308 /* DT W O B */ 1309 { SST(0x0C, 0x05, SS_RDEF, 1310 "Data expansion occurred during compression") }, 1311 /* DT W O B */ 1312 { SST(0x0C, 0x06, SS_RDEF, 1313 "Block not compressible") }, 1314 /* R */ 1315 { SST(0x0C, 0x07, SS_RDEF, 1316 "Write error - recovery needed") }, 1317 /* R */ 1318 { SST(0x0C, 0x08, SS_RDEF, 1319 "Write error - recovery failed") }, 1320 /* R */ 1321 { SST(0x0C, 0x09, SS_RDEF, 1322 "Write error - loss of streaming") }, 1323 /* R */ 1324 { SST(0x0C, 0x0A, SS_RDEF, 1325 "Write error - padding blocks added") }, 1326 /* DT WROM B */ 1327 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ 1328 "Auxiliary memory write error") }, 1329 /* DTLPWRO AEBKVF */ 1330 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ 1331 "Write error - unexpected unsolicited data") }, 1332 /* DTLPWRO AEBKVF */ 1333 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ 1334 "Write error - not enough unsolicited data") }, 1335 /* DT W O BK */ 1336 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */ 1337 "Multiple write errors") }, 1338 /* R */ 1339 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ 1340 "Defects in error window") }, 1341 /* D */ 1342 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */ 1343 "Incomplete multiple atomic write operations") }, 1344 /* D */ 1345 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */ 1346 "Write error - recovery scan needed") }, 1347 /* D */ 1348 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */ 1349 "Write error - insufficient zone resources") }, 1350 /* DTLPWRO A K */ 1351 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ 1352 "Error detected by third party temporary initiator") }, 1353 /* DTLPWRO A K */ 1354 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ 1355 "Third party device failure") }, 1356 /* DTLPWRO A K */ 1357 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ 1358 "Copy target device not reachable") }, 1359 /* DTLPWRO A K */ 1360 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ 1361 "Incorrect copy target device type") }, 1362 /* DTLPWRO A K */ 1363 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ 1364 "Copy target device data underrun") }, 1365 /* DTLPWRO A K */ 1366 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ 1367 "Copy target device data overrun") }, 1368 /* DT PWROMAEBK F */ 1369 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ 1370 "Invalid information unit") }, 1371 /* DT PWROMAEBK F */ 1372 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ 1373 "Information unit too short") }, 1374 /* DT PWROMAEBK F */ 1375 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ 1376 "Information unit too long") }, 1377 /* DT P R MAEBK F */ 1378 { SST(0x0E, 0x03, SS_FATAL | EINVAL, 1379 "Invalid field in command information unit") }, 1380 /* D W O BK */ 1381 { SST(0x10, 0x00, SS_RDEF, 1382 "ID CRC or ECC error") }, 1383 /* DT W O */ 1384 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ 1385 "Logical block guard check failed") }, 1386 /* DT W O */ 1387 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ 1388 "Logical block application tag check failed") }, 1389 /* DT W O */ 1390 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ 1391 "Logical block reference tag check failed") }, 1392 /* T */ 1393 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */ 1394 "Logical block protection error on recovered buffer data") }, 1395 /* T */ 1396 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */ 1397 "Logical block protection method error") }, 1398 /* DT WRO BK */ 1399 { SST(0x11, 0x00, SS_FATAL|EIO, 1400 "Unrecovered read error") }, 1401 /* DT WRO BK */ 1402 { SST(0x11, 0x01, SS_FATAL|EIO, 1403 "Read retries exhausted") }, 1404 /* DT WRO BK */ 1405 { SST(0x11, 0x02, SS_FATAL|EIO, 1406 "Error too long to correct") }, 1407 /* DT W O BK */ 1408 { SST(0x11, 0x03, SS_FATAL|EIO, 1409 "Multiple read errors") }, 1410 /* D W O BK */ 1411 { SST(0x11, 0x04, SS_FATAL|EIO, 1412 "Unrecovered read error - auto reallocate failed") }, 1413 /* WRO B */ 1414 { SST(0x11, 0x05, SS_FATAL|EIO, 1415 "L-EC uncorrectable error") }, 1416 /* WRO B */ 1417 { SST(0x11, 0x06, SS_FATAL|EIO, 1418 "CIRC unrecovered error") }, 1419 /* W O B */ 1420 { SST(0x11, 0x07, SS_RDEF, 1421 "Data re-synchronization error") }, 1422 /* T */ 1423 { SST(0x11, 0x08, SS_RDEF, 1424 "Incomplete block read") }, 1425 /* T */ 1426 { SST(0x11, 0x09, SS_RDEF, 1427 "No gap found") }, 1428 /* DT O BK */ 1429 { SST(0x11, 0x0A, SS_RDEF, 1430 "Miscorrected error") }, 1431 /* D W O BK */ 1432 { SST(0x11, 0x0B, SS_FATAL|EIO, 1433 "Unrecovered read error - recommend reassignment") }, 1434 /* D W O BK */ 1435 { SST(0x11, 0x0C, SS_FATAL|EIO, 1436 "Unrecovered read error - recommend rewrite the data") }, 1437 /* DT WRO B */ 1438 { SST(0x11, 0x0D, SS_RDEF, 1439 "De-compression CRC error") }, 1440 /* DT WRO B */ 1441 { SST(0x11, 0x0E, SS_RDEF, 1442 "Cannot decompress using declared algorithm") }, 1443 /* R */ 1444 { SST(0x11, 0x0F, SS_RDEF, 1445 "Error reading UPC/EAN number") }, 1446 /* R */ 1447 { SST(0x11, 0x10, SS_RDEF, 1448 "Error reading ISRC number") }, 1449 /* R */ 1450 { SST(0x11, 0x11, SS_RDEF, 1451 "Read error - loss of streaming") }, 1452 /* DT WROM B */ 1453 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ 1454 "Auxiliary memory read error") }, 1455 /* DTLPWRO AEBKVF */ 1456 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ 1457 "Read error - failed retransmission request") }, 1458 /* D */ 1459 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ 1460 "Read error - LBA marked bad by application client") }, 1461 /* D */ 1462 { SST(0x11, 0x15, SS_FATAL | EIO, 1463 "Write after sanitize required") }, 1464 /* D W O BK */ 1465 { SST(0x12, 0x00, SS_RDEF, 1466 "Address mark not found for ID field") }, 1467 /* D W O BK */ 1468 { SST(0x13, 0x00, SS_RDEF, 1469 "Address mark not found for data field") }, 1470 /* DTL WRO BK */ 1471 { SST(0x14, 0x00, SS_RDEF, 1472 "Recorded entity not found") }, 1473 /* DT WRO BK */ 1474 { SST(0x14, 0x01, SS_RDEF, 1475 "Record not found") }, 1476 /* T */ 1477 { SST(0x14, 0x02, SS_RDEF, 1478 "Filemark or setmark not found") }, 1479 /* T */ 1480 { SST(0x14, 0x03, SS_RDEF, 1481 "End-of-data not found") }, 1482 /* T */ 1483 { SST(0x14, 0x04, SS_RDEF, 1484 "Block sequence error") }, 1485 /* DT W O BK */ 1486 { SST(0x14, 0x05, SS_RDEF, 1487 "Record not found - recommend reassignment") }, 1488 /* DT W O BK */ 1489 { SST(0x14, 0x06, SS_RDEF, 1490 "Record not found - data auto-reallocated") }, 1491 /* T */ 1492 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ 1493 "Locate operation failure") }, 1494 /* DTL WROM BK */ 1495 { SST(0x15, 0x00, SS_RDEF, 1496 "Random positioning error") }, 1497 /* DTL WROM BK */ 1498 { SST(0x15, 0x01, SS_RDEF, 1499 "Mechanical positioning error") }, 1500 /* DT WRO BK */ 1501 { SST(0x15, 0x02, SS_RDEF, 1502 "Positioning error detected by read of medium") }, 1503 /* D W O BK */ 1504 { SST(0x16, 0x00, SS_RDEF, 1505 "Data synchronization mark error") }, 1506 /* D W O BK */ 1507 { SST(0x16, 0x01, SS_RDEF, 1508 "Data sync error - data rewritten") }, 1509 /* D W O BK */ 1510 { SST(0x16, 0x02, SS_RDEF, 1511 "Data sync error - recommend rewrite") }, 1512 /* D W O BK */ 1513 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1514 "Data sync error - data auto-reallocated") }, 1515 /* D W O BK */ 1516 { SST(0x16, 0x04, SS_RDEF, 1517 "Data sync error - recommend reassignment") }, 1518 /* DT WRO BK */ 1519 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1520 "Recovered data with no error correction applied") }, 1521 /* DT WRO BK */ 1522 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1523 "Recovered data with retries") }, 1524 /* DT WRO BK */ 1525 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1526 "Recovered data with positive head offset") }, 1527 /* DT WRO BK */ 1528 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1529 "Recovered data with negative head offset") }, 1530 /* WRO B */ 1531 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1532 "Recovered data with retries and/or CIRC applied") }, 1533 /* D WRO BK */ 1534 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1535 "Recovered data using previous sector ID") }, 1536 /* D W O BK */ 1537 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1538 "Recovered data without ECC - data auto-reallocated") }, 1539 /* D WRO BK */ 1540 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1541 "Recovered data without ECC - recommend reassignment") }, 1542 /* D WRO BK */ 1543 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1544 "Recovered data without ECC - recommend rewrite") }, 1545 /* D WRO BK */ 1546 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1547 "Recovered data without ECC - data rewritten") }, 1548 /* DT WRO BK */ 1549 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1550 "Recovered data with error correction applied") }, 1551 /* D WRO BK */ 1552 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1553 "Recovered data with error corr. & retries applied") }, 1554 /* D WRO BK */ 1555 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1556 "Recovered data - data auto-reallocated") }, 1557 /* R */ 1558 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1559 "Recovered data with CIRC") }, 1560 /* R */ 1561 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1562 "Recovered data with L-EC") }, 1563 /* D WRO BK */ 1564 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1565 "Recovered data - recommend reassignment") }, 1566 /* D WRO BK */ 1567 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1568 "Recovered data - recommend rewrite") }, 1569 /* D W O BK */ 1570 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1571 "Recovered data with ECC - data rewritten") }, 1572 /* R */ 1573 { SST(0x18, 0x08, SS_RDEF, /* XXX TBD */ 1574 "Recovered data with linking") }, 1575 /* D O K */ 1576 { SST(0x19, 0x00, SS_RDEF, 1577 "Defect list error") }, 1578 /* D O K */ 1579 { SST(0x19, 0x01, SS_RDEF, 1580 "Defect list not available") }, 1581 /* D O K */ 1582 { SST(0x19, 0x02, SS_RDEF, 1583 "Defect list error in primary list") }, 1584 /* D O K */ 1585 { SST(0x19, 0x03, SS_RDEF, 1586 "Defect list error in grown list") }, 1587 /* DTLPWROMAEBKVF */ 1588 { SST(0x1A, 0x00, SS_RDEF, 1589 "Parameter list length error") }, 1590 /* DTLPWROMAEBKVF */ 1591 { SST(0x1B, 0x00, SS_RDEF, 1592 "Synchronous data transfer error") }, 1593 /* D O BK */ 1594 { SST(0x1C, 0x00, SS_RDEF, 1595 "Defect list not found") }, 1596 /* D O BK */ 1597 { SST(0x1C, 0x01, SS_RDEF, 1598 "Primary defect list not found") }, 1599 /* D O BK */ 1600 { SST(0x1C, 0x02, SS_RDEF, 1601 "Grown defect list not found") }, 1602 /* DT WRO BK */ 1603 { SST(0x1D, 0x00, SS_FATAL, 1604 "Miscompare during verify operation") }, 1605 /* D B */ 1606 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */ 1607 "Miscomparable verify of unmapped LBA") }, 1608 /* D W O BK */ 1609 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1610 "Recovered ID with ECC correction") }, 1611 /* D O K */ 1612 { SST(0x1F, 0x00, SS_RDEF, 1613 "Partial defect list transfer") }, 1614 /* DTLPWROMAEBKVF */ 1615 { SST(0x20, 0x00, SS_FATAL | EINVAL, 1616 "Invalid command operation code") }, 1617 /* DT PWROMAEBK */ 1618 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ 1619 "Access denied - initiator pending-enrolled") }, 1620 /* DT PWROMAEBK */ 1621 { SST(0x20, 0x02, SS_FATAL | EPERM, 1622 "Access denied - no access rights") }, 1623 /* DT PWROMAEBK */ 1624 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ 1625 "Access denied - invalid mgmt ID key") }, 1626 /* T */ 1627 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ 1628 "Illegal command while in write capable state") }, 1629 /* T */ 1630 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ 1631 "Obsolete") }, 1632 /* T */ 1633 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ 1634 "Illegal command while in explicit address mode") }, 1635 /* T */ 1636 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ 1637 "Illegal command while in implicit address mode") }, 1638 /* DT PWROMAEBK */ 1639 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ 1640 "Access denied - enrollment conflict") }, 1641 /* DT PWROMAEBK */ 1642 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ 1643 "Access denied - invalid LU identifier") }, 1644 /* DT PWROMAEBK */ 1645 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ 1646 "Access denied - invalid proxy token") }, 1647 /* DT PWROMAEBK */ 1648 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ 1649 "Access denied - ACL LUN conflict") }, 1650 /* T */ 1651 { SST(0x20, 0x0C, SS_FATAL | EINVAL, 1652 "Illegal command when not in append-only mode") }, 1653 /* DT WRO BK */ 1654 { SST(0x21, 0x00, SS_FATAL | EINVAL, 1655 "Logical block address out of range") }, 1656 /* DT WROM BK */ 1657 { SST(0x21, 0x01, SS_FATAL | EINVAL, 1658 "Invalid element address") }, 1659 /* R */ 1660 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ 1661 "Invalid address for write") }, 1662 /* R */ 1663 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ 1664 "Invalid write crossing layer jump") }, 1665 /* D */ 1666 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */ 1667 "Unaligned write command") }, 1668 /* D */ 1669 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */ 1670 "Write boundary violation") }, 1671 /* D */ 1672 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */ 1673 "Attempt to read invalid data") }, 1674 /* D */ 1675 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */ 1676 "Read boundary violation") }, 1677 /* D */ 1678 { SST(0x22, 0x00, SS_FATAL | EINVAL, 1679 "Illegal function (use 20 00, 24 00, or 26 00)") }, 1680 /* DT P B */ 1681 { SST(0x23, 0x00, SS_FATAL | EINVAL, 1682 "Invalid token operation, cause not reportable") }, 1683 /* DT P B */ 1684 { SST(0x23, 0x01, SS_FATAL | EINVAL, 1685 "Invalid token operation, unsupported token type") }, 1686 /* DT P B */ 1687 { SST(0x23, 0x02, SS_FATAL | EINVAL, 1688 "Invalid token operation, remote token usage not supported") }, 1689 /* DT P B */ 1690 { SST(0x23, 0x03, SS_FATAL | EINVAL, 1691 "Invalid token operation, remote ROD token creation not supported") }, 1692 /* DT P B */ 1693 { SST(0x23, 0x04, SS_FATAL | EINVAL, 1694 "Invalid token operation, token unknown") }, 1695 /* DT P B */ 1696 { SST(0x23, 0x05, SS_FATAL | EINVAL, 1697 "Invalid token operation, token corrupt") }, 1698 /* DT P B */ 1699 { SST(0x23, 0x06, SS_FATAL | EINVAL, 1700 "Invalid token operation, token revoked") }, 1701 /* DT P B */ 1702 { SST(0x23, 0x07, SS_FATAL | EINVAL, 1703 "Invalid token operation, token expired") }, 1704 /* DT P B */ 1705 { SST(0x23, 0x08, SS_FATAL | EINVAL, 1706 "Invalid token operation, token cancelled") }, 1707 /* DT P B */ 1708 { SST(0x23, 0x09, SS_FATAL | EINVAL, 1709 "Invalid token operation, token deleted") }, 1710 /* DT P B */ 1711 { SST(0x23, 0x0A, SS_FATAL | EINVAL, 1712 "Invalid token operation, invalid token length") }, 1713 /* DTLPWROMAEBKVF */ 1714 { SST(0x24, 0x00, SS_FATAL | EINVAL, 1715 "Invalid field in CDB") }, 1716 /* DTLPWRO AEBKVF */ 1717 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ 1718 "CDB decryption error") }, 1719 /* T */ 1720 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ 1721 "Obsolete") }, 1722 /* T */ 1723 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ 1724 "Obsolete") }, 1725 /* F */ 1726 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ 1727 "Security audit value frozen") }, 1728 /* F */ 1729 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ 1730 "Security working key frozen") }, 1731 /* F */ 1732 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ 1733 "NONCE not unique") }, 1734 /* F */ 1735 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ 1736 "NONCE timestamp out of range") }, 1737 /* DT R MAEBKV */ 1738 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ 1739 "Invalid XCDB") }, 1740 /* DTLPWROMAEBKVF */ 1741 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST, 1742 "Logical unit not supported") }, 1743 /* DTLPWROMAEBKVF */ 1744 { SST(0x26, 0x00, SS_FATAL | EINVAL, 1745 "Invalid field in parameter list") }, 1746 /* DTLPWROMAEBKVF */ 1747 { SST(0x26, 0x01, SS_FATAL | EINVAL, 1748 "Parameter not supported") }, 1749 /* DTLPWROMAEBKVF */ 1750 { SST(0x26, 0x02, SS_FATAL | EINVAL, 1751 "Parameter value invalid") }, 1752 /* DTLPWROMAE K */ 1753 { SST(0x26, 0x03, SS_FATAL | EINVAL, 1754 "Threshold parameters not supported") }, 1755 /* DTLPWROMAEBKVF */ 1756 { SST(0x26, 0x04, SS_FATAL | EINVAL, 1757 "Invalid release of persistent reservation") }, 1758 /* DTLPWRO A BK */ 1759 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ 1760 "Data decryption error") }, 1761 /* DTLPWRO K */ 1762 { SST(0x26, 0x06, SS_FATAL | EINVAL, 1763 "Too many target descriptors") }, 1764 /* DTLPWRO K */ 1765 { SST(0x26, 0x07, SS_FATAL | EINVAL, 1766 "Unsupported target descriptor type code") }, 1767 /* DTLPWRO K */ 1768 { SST(0x26, 0x08, SS_FATAL | EINVAL, 1769 "Too many segment descriptors") }, 1770 /* DTLPWRO K */ 1771 { SST(0x26, 0x09, SS_FATAL | EINVAL, 1772 "Unsupported segment descriptor type code") }, 1773 /* DTLPWRO K */ 1774 { SST(0x26, 0x0A, SS_FATAL | EINVAL, 1775 "Unexpected inexact segment") }, 1776 /* DTLPWRO K */ 1777 { SST(0x26, 0x0B, SS_FATAL | EINVAL, 1778 "Inline data length exceeded") }, 1779 /* DTLPWRO K */ 1780 { SST(0x26, 0x0C, SS_FATAL | EINVAL, 1781 "Invalid operation for copy source or destination") }, 1782 /* DTLPWRO K */ 1783 { SST(0x26, 0x0D, SS_FATAL | EINVAL, 1784 "Copy segment granularity violation") }, 1785 /* DT PWROMAEBK */ 1786 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ 1787 "Invalid parameter while port is enabled") }, 1788 /* F */ 1789 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ 1790 "Invalid data-out buffer integrity check value") }, 1791 /* T */ 1792 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ 1793 "Data decryption key fail limit reached") }, 1794 /* T */ 1795 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ 1796 "Incomplete key-associated data set") }, 1797 /* T */ 1798 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ 1799 "Vendor specific key reference not found") }, 1800 /* D */ 1801 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */ 1802 "Application tag mode page is invalid") }, 1803 /* DT WRO BK */ 1804 { SST(0x27, 0x00, SS_FATAL | EACCES, 1805 "Write protected") }, 1806 /* DT WRO BK */ 1807 { SST(0x27, 0x01, SS_FATAL | EACCES, 1808 "Hardware write protected") }, 1809 /* DT WRO BK */ 1810 { SST(0x27, 0x02, SS_FATAL | EACCES, 1811 "Logical unit software write protected") }, 1812 /* T R */ 1813 { SST(0x27, 0x03, SS_FATAL | EACCES, 1814 "Associated write protect") }, 1815 /* T R */ 1816 { SST(0x27, 0x04, SS_FATAL | EACCES, 1817 "Persistent write protect") }, 1818 /* T R */ 1819 { SST(0x27, 0x05, SS_FATAL | EACCES, 1820 "Permanent write protect") }, 1821 /* R F */ 1822 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ 1823 "Conditional write protect") }, 1824 /* D B */ 1825 { SST(0x27, 0x07, SS_FATAL | ENOSPC, 1826 "Space allocation failed write protect") }, 1827 /* D */ 1828 { SST(0x27, 0x08, SS_FATAL | EACCES, 1829 "Zone is read only") }, 1830 /* DTLPWROMAEBKVF */ 1831 { SST(0x28, 0x00, SS_FATAL | ENXIO, 1832 "Not ready to ready change, medium may have changed") }, 1833 /* DT WROM B */ 1834 { SST(0x28, 0x01, SS_FATAL | ENXIO, 1835 "Import or export element accessed") }, 1836 /* R */ 1837 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ 1838 "Format-layer may have changed") }, 1839 /* M */ 1840 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ 1841 "Import/export element accessed, medium changed") }, 1842 /* 1843 * XXX JGibbs - All of these should use the same errno, but I don't 1844 * think ENXIO is the correct choice. Should we borrow from 1845 * the networking errnos? ECONNRESET anyone? 1846 */ 1847 /* DTLPWROMAEBKVF */ 1848 { SST(0x29, 0x00, SS_FATAL | ENXIO, 1849 "Power on, reset, or bus device reset occurred") }, 1850 /* DTLPWROMAEBKVF */ 1851 { SST(0x29, 0x01, SS_RDEF, 1852 "Power on occurred") }, 1853 /* DTLPWROMAEBKVF */ 1854 { SST(0x29, 0x02, SS_RDEF, 1855 "SCSI bus reset occurred") }, 1856 /* DTLPWROMAEBKVF */ 1857 { SST(0x29, 0x03, SS_RDEF, 1858 "Bus device reset function occurred") }, 1859 /* DTLPWROMAEBKVF */ 1860 { SST(0x29, 0x04, SS_RDEF, 1861 "Device internal reset") }, 1862 /* DTLPWROMAEBKVF */ 1863 { SST(0x29, 0x05, SS_RDEF, 1864 "Transceiver mode changed to single-ended") }, 1865 /* DTLPWROMAEBKVF */ 1866 { SST(0x29, 0x06, SS_RDEF, 1867 "Transceiver mode changed to LVD") }, 1868 /* DTLPWROMAEBKVF */ 1869 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ 1870 "I_T nexus loss occurred") }, 1871 /* DTL WROMAEBKVF */ 1872 { SST(0x2A, 0x00, SS_RDEF, 1873 "Parameters changed") }, 1874 /* DTL WROMAEBKVF */ 1875 { SST(0x2A, 0x01, SS_RDEF, 1876 "Mode parameters changed") }, 1877 /* DTL WROMAE K */ 1878 { SST(0x2A, 0x02, SS_RDEF, 1879 "Log parameters changed") }, 1880 /* DTLPWROMAE K */ 1881 { SST(0x2A, 0x03, SS_RDEF, 1882 "Reservations preempted") }, 1883 /* DTLPWROMAE */ 1884 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ 1885 "Reservations released") }, 1886 /* DTLPWROMAE */ 1887 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ 1888 "Registrations preempted") }, 1889 /* DTLPWROMAEBKVF */ 1890 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ 1891 "Asymmetric access state changed") }, 1892 /* DTLPWROMAEBKVF */ 1893 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ 1894 "Implicit asymmetric access state transition failed") }, 1895 /* DT WROMAEBKVF */ 1896 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ 1897 "Priority changed") }, 1898 /* D */ 1899 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ 1900 "Capacity data has changed") }, 1901 /* DT */ 1902 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ 1903 "Error history I_T nexus cleared") }, 1904 /* DT */ 1905 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ 1906 "Error history snapshot released") }, 1907 /* F */ 1908 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ 1909 "Error recovery attributes have changed") }, 1910 /* T */ 1911 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ 1912 "Data encryption capabilities changed") }, 1913 /* DT M E V */ 1914 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ 1915 "Timestamp changed") }, 1916 /* T */ 1917 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ 1918 "Data encryption parameters changed by another I_T nexus") }, 1919 /* T */ 1920 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ 1921 "Data encryption parameters changed by vendor specific event") }, 1922 /* T */ 1923 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ 1924 "Data encryption key instance counter has changed") }, 1925 /* DT R MAEBKV */ 1926 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ 1927 "SA creation capabilities data has changed") }, 1928 /* T M V */ 1929 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */ 1930 "Medium removal prevention preempted") }, 1931 /* DTLPWRO K */ 1932 { SST(0x2B, 0x00, SS_RDEF, 1933 "Copy cannot execute since host cannot disconnect") }, 1934 /* DTLPWROMAEBKVF */ 1935 { SST(0x2C, 0x00, SS_RDEF, 1936 "Command sequence error") }, 1937 /* */ 1938 { SST(0x2C, 0x01, SS_RDEF, 1939 "Too many windows specified") }, 1940 /* */ 1941 { SST(0x2C, 0x02, SS_RDEF, 1942 "Invalid combination of windows specified") }, 1943 /* R */ 1944 { SST(0x2C, 0x03, SS_RDEF, 1945 "Current program area is not empty") }, 1946 /* R */ 1947 { SST(0x2C, 0x04, SS_RDEF, 1948 "Current program area is empty") }, 1949 /* B */ 1950 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ 1951 "Illegal power condition request") }, 1952 /* R */ 1953 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ 1954 "Persistent prevent conflict") }, 1955 /* DTLPWROMAEBKVF */ 1956 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ 1957 "Previous busy status") }, 1958 /* DTLPWROMAEBKVF */ 1959 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ 1960 "Previous task set full status") }, 1961 /* DTLPWROM EBKVF */ 1962 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ 1963 "Previous reservation conflict status") }, 1964 /* F */ 1965 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ 1966 "Partition or collection contains user objects") }, 1967 /* T */ 1968 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ 1969 "Not reserved") }, 1970 /* D */ 1971 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */ 1972 "ORWRITE generation does not match") }, 1973 /* D */ 1974 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */ 1975 "Reset write pointer not allowed") }, 1976 /* D */ 1977 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */ 1978 "Zone is offline") }, 1979 /* D */ 1980 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */ 1981 "Stream not open") }, 1982 /* D */ 1983 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */ 1984 "Unwritten data in zone") }, 1985 /* T */ 1986 { SST(0x2D, 0x00, SS_RDEF, 1987 "Overwrite error on update in place") }, 1988 /* R */ 1989 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ 1990 "Insufficient time for operation") }, 1991 /* D */ 1992 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */ 1993 "Command timeout before processing") }, 1994 /* D */ 1995 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */ 1996 "Command timeout during processing") }, 1997 /* D */ 1998 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */ 1999 "Command timeout during processing due to error recovery") }, 2000 /* DTLPWROMAEBKVF */ 2001 { SST(0x2F, 0x00, SS_RDEF, 2002 "Commands cleared by another initiator") }, 2003 /* D */ 2004 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ 2005 "Commands cleared by power loss notification") }, 2006 /* DTLPWROMAEBKVF */ 2007 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ 2008 "Commands cleared by device server") }, 2009 /* DTLPWROMAEBKVF */ 2010 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */ 2011 "Some commands cleared by queuing layer event") }, 2012 /* DT WROM BK */ 2013 { SST(0x30, 0x00, SS_RDEF, 2014 "Incompatible medium installed") }, 2015 /* DT WRO BK */ 2016 { SST(0x30, 0x01, SS_RDEF, 2017 "Cannot read medium - unknown format") }, 2018 /* DT WRO BK */ 2019 { SST(0x30, 0x02, SS_RDEF, 2020 "Cannot read medium - incompatible format") }, 2021 /* DT R K */ 2022 { SST(0x30, 0x03, SS_RDEF, 2023 "Cleaning cartridge installed") }, 2024 /* DT WRO BK */ 2025 { SST(0x30, 0x04, SS_RDEF, 2026 "Cannot write medium - unknown format") }, 2027 /* DT WRO BK */ 2028 { SST(0x30, 0x05, SS_RDEF, 2029 "Cannot write medium - incompatible format") }, 2030 /* DT WRO B */ 2031 { SST(0x30, 0x06, SS_RDEF, 2032 "Cannot format medium - incompatible medium") }, 2033 /* DTL WROMAEBKVF */ 2034 { SST(0x30, 0x07, SS_RDEF, 2035 "Cleaning failure") }, 2036 /* R */ 2037 { SST(0x30, 0x08, SS_RDEF, 2038 "Cannot write - application code mismatch") }, 2039 /* R */ 2040 { SST(0x30, 0x09, SS_RDEF, 2041 "Current session not fixated for append") }, 2042 /* DT WRO AEBK */ 2043 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ 2044 "Cleaning request rejected") }, 2045 /* T */ 2046 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ 2047 "WORM medium - overwrite attempted") }, 2048 /* T */ 2049 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ 2050 "WORM medium - integrity check") }, 2051 /* R */ 2052 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ 2053 "Medium not formatted") }, 2054 /* M */ 2055 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ 2056 "Incompatible volume type") }, 2057 /* M */ 2058 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ 2059 "Incompatible volume qualifier") }, 2060 /* M */ 2061 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */ 2062 "Cleaning volume expired") }, 2063 /* DT WRO BK */ 2064 { SST(0x31, 0x00, SS_FATAL | ENXIO, 2065 "Medium format corrupted") }, 2066 /* D L RO B */ 2067 { SST(0x31, 0x01, SS_RDEF, 2068 "Format command failed") }, 2069 /* R */ 2070 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ 2071 "Zoned formatting failed due to spare linking") }, 2072 /* D B */ 2073 { SST(0x31, 0x03, SS_FATAL | EIO, 2074 "SANITIZE command failed") }, 2075 /* D W O BK */ 2076 { SST(0x32, 0x00, SS_RDEF, 2077 "No defect spare location available") }, 2078 /* D W O BK */ 2079 { SST(0x32, 0x01, SS_RDEF, 2080 "Defect list update failure") }, 2081 /* T */ 2082 { SST(0x33, 0x00, SS_RDEF, 2083 "Tape length error") }, 2084 /* DTLPWROMAEBKVF */ 2085 { SST(0x34, 0x00, SS_RDEF, 2086 "Enclosure failure") }, 2087 /* DTLPWROMAEBKVF */ 2088 { SST(0x35, 0x00, SS_RDEF, 2089 "Enclosure services failure") }, 2090 /* DTLPWROMAEBKVF */ 2091 { SST(0x35, 0x01, SS_RDEF, 2092 "Unsupported enclosure function") }, 2093 /* DTLPWROMAEBKVF */ 2094 { SST(0x35, 0x02, SS_RDEF, 2095 "Enclosure services unavailable") }, 2096 /* DTLPWROMAEBKVF */ 2097 { SST(0x35, 0x03, SS_RDEF, 2098 "Enclosure services transfer failure") }, 2099 /* DTLPWROMAEBKVF */ 2100 { SST(0x35, 0x04, SS_RDEF, 2101 "Enclosure services transfer refused") }, 2102 /* DTL WROMAEBKVF */ 2103 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ 2104 "Enclosure services checksum error") }, 2105 /* L */ 2106 { SST(0x36, 0x00, SS_RDEF, 2107 "Ribbon, ink, or toner failure") }, 2108 /* DTL WROMAEBKVF */ 2109 { SST(0x37, 0x00, SS_RDEF, 2110 "Rounded parameter") }, 2111 /* B */ 2112 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ 2113 "Event status notification") }, 2114 /* B */ 2115 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ 2116 "ESN - power management class event") }, 2117 /* B */ 2118 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ 2119 "ESN - media class event") }, 2120 /* B */ 2121 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ 2122 "ESN - device busy class event") }, 2123 /* D */ 2124 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */ 2125 "Thin provisioning soft threshold reached") }, 2126 /* DTL WROMAE K */ 2127 { SST(0x39, 0x00, SS_RDEF, 2128 "Saving parameters not supported") }, 2129 /* DTL WROM BK */ 2130 { SST(0x3A, 0x00, SS_FATAL | ENXIO, 2131 "Medium not present") }, 2132 /* DT WROM BK */ 2133 { SST(0x3A, 0x01, SS_FATAL | ENXIO, 2134 "Medium not present - tray closed") }, 2135 /* DT WROM BK */ 2136 { SST(0x3A, 0x02, SS_FATAL | ENXIO, 2137 "Medium not present - tray open") }, 2138 /* DT WROM B */ 2139 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ 2140 "Medium not present - loadable") }, 2141 /* DT WRO B */ 2142 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ 2143 "Medium not present - medium auxiliary memory accessible") }, 2144 /* TL */ 2145 { SST(0x3B, 0x00, SS_RDEF, 2146 "Sequential positioning error") }, 2147 /* T */ 2148 { SST(0x3B, 0x01, SS_RDEF, 2149 "Tape position error at beginning-of-medium") }, 2150 /* T */ 2151 { SST(0x3B, 0x02, SS_RDEF, 2152 "Tape position error at end-of-medium") }, 2153 /* L */ 2154 { SST(0x3B, 0x03, SS_RDEF, 2155 "Tape or electronic vertical forms unit not ready") }, 2156 /* L */ 2157 { SST(0x3B, 0x04, SS_RDEF, 2158 "Slew failure") }, 2159 /* L */ 2160 { SST(0x3B, 0x05, SS_RDEF, 2161 "Paper jam") }, 2162 /* L */ 2163 { SST(0x3B, 0x06, SS_RDEF, 2164 "Failed to sense top-of-form") }, 2165 /* L */ 2166 { SST(0x3B, 0x07, SS_RDEF, 2167 "Failed to sense bottom-of-form") }, 2168 /* T */ 2169 { SST(0x3B, 0x08, SS_RDEF, 2170 "Reposition error") }, 2171 /* */ 2172 { SST(0x3B, 0x09, SS_RDEF, 2173 "Read past end of medium") }, 2174 /* */ 2175 { SST(0x3B, 0x0A, SS_RDEF, 2176 "Read past beginning of medium") }, 2177 /* */ 2178 { SST(0x3B, 0x0B, SS_RDEF, 2179 "Position past end of medium") }, 2180 /* T */ 2181 { SST(0x3B, 0x0C, SS_RDEF, 2182 "Position past beginning of medium") }, 2183 /* DT WROM BK */ 2184 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, 2185 "Medium destination element full") }, 2186 /* DT WROM BK */ 2187 { SST(0x3B, 0x0E, SS_RDEF, 2188 "Medium source element empty") }, 2189 /* R */ 2190 { SST(0x3B, 0x0F, SS_RDEF, 2191 "End of medium reached") }, 2192 /* DT WROM BK */ 2193 { SST(0x3B, 0x11, SS_RDEF, 2194 "Medium magazine not accessible") }, 2195 /* DT WROM BK */ 2196 { SST(0x3B, 0x12, SS_RDEF, 2197 "Medium magazine removed") }, 2198 /* DT WROM BK */ 2199 { SST(0x3B, 0x13, SS_RDEF, 2200 "Medium magazine inserted") }, 2201 /* DT WROM BK */ 2202 { SST(0x3B, 0x14, SS_RDEF, 2203 "Medium magazine locked") }, 2204 /* DT WROM BK */ 2205 { SST(0x3B, 0x15, SS_RDEF, 2206 "Medium magazine unlocked") }, 2207 /* R */ 2208 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ 2209 "Mechanical positioning or changer error") }, 2210 /* F */ 2211 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ 2212 "Read past end of user object") }, 2213 /* M */ 2214 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ 2215 "Element disabled") }, 2216 /* M */ 2217 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ 2218 "Element enabled") }, 2219 /* M */ 2220 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ 2221 "Data transfer device removed") }, 2222 /* M */ 2223 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ 2224 "Data transfer device inserted") }, 2225 /* T */ 2226 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */ 2227 "Too many logical objects on partition to support operation") }, 2228 /* DTLPWROMAE K */ 2229 { SST(0x3D, 0x00, SS_RDEF, 2230 "Invalid bits in IDENTIFY message") }, 2231 /* DTLPWROMAEBKVF */ 2232 { SST(0x3E, 0x00, SS_RDEF, 2233 "Logical unit has not self-configured yet") }, 2234 /* DTLPWROMAEBKVF */ 2235 { SST(0x3E, 0x01, SS_RDEF, 2236 "Logical unit failure") }, 2237 /* DTLPWROMAEBKVF */ 2238 { SST(0x3E, 0x02, SS_RDEF, 2239 "Timeout on logical unit") }, 2240 /* DTLPWROMAEBKVF */ 2241 { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */ 2242 "Logical unit failed self-test") }, 2243 /* DTLPWROMAEBKVF */ 2244 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ 2245 "Logical unit unable to update self-test log") }, 2246 /* DTLPWROMAEBKVF */ 2247 { SST(0x3F, 0x00, SS_RDEF, 2248 "Target operating conditions have changed") }, 2249 /* DTLPWROMAEBKVF */ 2250 { SST(0x3F, 0x01, SS_RDEF, 2251 "Microcode has been changed") }, 2252 /* DTLPWROM BK */ 2253 { SST(0x3F, 0x02, SS_RDEF, 2254 "Changed operating definition") }, 2255 /* DTLPWROMAEBKVF */ 2256 { SST(0x3F, 0x03, SS_RDEF, 2257 "INQUIRY data has changed") }, 2258 /* DT WROMAEBK */ 2259 { SST(0x3F, 0x04, SS_RDEF, 2260 "Component device attached") }, 2261 /* DT WROMAEBK */ 2262 { SST(0x3F, 0x05, SS_RDEF, 2263 "Device identifier changed") }, 2264 /* DT WROMAEB */ 2265 { SST(0x3F, 0x06, SS_RDEF, 2266 "Redundancy group created or modified") }, 2267 /* DT WROMAEB */ 2268 { SST(0x3F, 0x07, SS_RDEF, 2269 "Redundancy group deleted") }, 2270 /* DT WROMAEB */ 2271 { SST(0x3F, 0x08, SS_RDEF, 2272 "Spare created or modified") }, 2273 /* DT WROMAEB */ 2274 { SST(0x3F, 0x09, SS_RDEF, 2275 "Spare deleted") }, 2276 /* DT WROMAEBK */ 2277 { SST(0x3F, 0x0A, SS_RDEF, 2278 "Volume set created or modified") }, 2279 /* DT WROMAEBK */ 2280 { SST(0x3F, 0x0B, SS_RDEF, 2281 "Volume set deleted") }, 2282 /* DT WROMAEBK */ 2283 { SST(0x3F, 0x0C, SS_RDEF, 2284 "Volume set deassigned") }, 2285 /* DT WROMAEBK */ 2286 { SST(0x3F, 0x0D, SS_RDEF, 2287 "Volume set reassigned") }, 2288 /* DTLPWROMAE */ 2289 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN , 2290 "Reported LUNs data has changed") }, 2291 /* DTLPWROMAEBKVF */ 2292 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ 2293 "Echo buffer overwritten") }, 2294 /* DT WROM B */ 2295 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ 2296 "Medium loadable") }, 2297 /* DT WROM B */ 2298 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ 2299 "Medium auxiliary memory accessible") }, 2300 /* DTLPWR MAEBK F */ 2301 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ 2302 "iSCSI IP address added") }, 2303 /* DTLPWR MAEBK F */ 2304 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ 2305 "iSCSI IP address removed") }, 2306 /* DTLPWR MAEBK F */ 2307 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ 2308 "iSCSI IP address changed") }, 2309 /* DTLPWR MAEBK */ 2310 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */ 2311 "Inspect referrals sense descriptors") }, 2312 /* DTLPWROMAEBKVF */ 2313 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */ 2314 "Microcode has been changed without reset") }, 2315 /* D */ 2316 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */ 2317 "Zone transition to full") }, 2318 /* D */ 2319 { SST(0x40, 0x00, SS_RDEF, 2320 "RAM failure") }, /* deprecated - use 40 NN instead */ 2321 /* DTLPWROMAEBKVF */ 2322 { SST(0x40, 0x80, SS_RDEF, 2323 "Diagnostic failure: ASCQ = Component ID") }, 2324 /* DTLPWROMAEBKVF */ 2325 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, 2326 NULL) }, /* Range 0x80->0xFF */ 2327 /* D */ 2328 { SST(0x41, 0x00, SS_RDEF, 2329 "Data path failure") }, /* deprecated - use 40 NN instead */ 2330 /* D */ 2331 { SST(0x42, 0x00, SS_RDEF, 2332 "Power-on or self-test failure") }, 2333 /* deprecated - use 40 NN instead */ 2334 /* DTLPWROMAEBKVF */ 2335 { SST(0x43, 0x00, SS_RDEF, 2336 "Message error") }, 2337 /* DTLPWROMAEBKVF */ 2338 { SST(0x44, 0x00, SS_FATAL | EIO, 2339 "Internal target failure") }, 2340 /* DT P MAEBKVF */ 2341 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */ 2342 "Persistent reservation information lost") }, 2343 /* DT B */ 2344 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ 2345 "ATA device failed set features") }, 2346 /* DTLPWROMAEBKVF */ 2347 { SST(0x45, 0x00, SS_RDEF, 2348 "Select or reselect failure") }, 2349 /* DTLPWROM BK */ 2350 { SST(0x46, 0x00, SS_RDEF, 2351 "Unsuccessful soft reset") }, 2352 /* DTLPWROMAEBKVF */ 2353 { SST(0x47, 0x00, SS_RDEF, 2354 "SCSI parity error") }, 2355 /* DTLPWROMAEBKVF */ 2356 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ 2357 "Data phase CRC error detected") }, 2358 /* DTLPWROMAEBKVF */ 2359 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ 2360 "SCSI parity error detected during ST data phase") }, 2361 /* DTLPWROMAEBKVF */ 2362 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ 2363 "Information unit iuCRC error detected") }, 2364 /* DTLPWROMAEBKVF */ 2365 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ 2366 "Asynchronous information protection error detected") }, 2367 /* DTLPWROMAEBKVF */ 2368 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ 2369 "Protocol service CRC error") }, 2370 /* DT MAEBKVF */ 2371 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ 2372 "PHY test function in progress") }, 2373 /* DT PWROMAEBK */ 2374 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ 2375 "Some commands cleared by iSCSI protocol event") }, 2376 /* DTLPWROMAEBKVF */ 2377 { SST(0x48, 0x00, SS_RDEF, 2378 "Initiator detected error message received") }, 2379 /* DTLPWROMAEBKVF */ 2380 { SST(0x49, 0x00, SS_RDEF, 2381 "Invalid message error") }, 2382 /* DTLPWROMAEBKVF */ 2383 { SST(0x4A, 0x00, SS_RDEF, 2384 "Command phase error") }, 2385 /* DTLPWROMAEBKVF */ 2386 { SST(0x4B, 0x00, SS_RDEF, 2387 "Data phase error") }, 2388 /* DT PWROMAEBK */ 2389 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ 2390 "Invalid target port transfer tag received") }, 2391 /* DT PWROMAEBK */ 2392 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ 2393 "Too much write data") }, 2394 /* DT PWROMAEBK */ 2395 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ 2396 "ACK/NAK timeout") }, 2397 /* DT PWROMAEBK */ 2398 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ 2399 "NAK received") }, 2400 /* DT PWROMAEBK */ 2401 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ 2402 "Data offset error") }, 2403 /* DT PWROMAEBK */ 2404 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ 2405 "Initiator response timeout") }, 2406 /* DT PWROMAEBK F */ 2407 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */ 2408 "Connection lost") }, 2409 /* DT PWROMAEBK F */ 2410 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */ 2411 "Data-in buffer overflow - data buffer size") }, 2412 /* DT PWROMAEBK F */ 2413 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */ 2414 "Data-in buffer overflow - data buffer descriptor area") }, 2415 /* DT PWROMAEBK F */ 2416 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */ 2417 "Data-in buffer error") }, 2418 /* DT PWROMAEBK F */ 2419 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */ 2420 "Data-out buffer overflow - data buffer size") }, 2421 /* DT PWROMAEBK F */ 2422 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */ 2423 "Data-out buffer overflow - data buffer descriptor area") }, 2424 /* DT PWROMAEBK F */ 2425 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */ 2426 "Data-out buffer error") }, 2427 /* DT PWROMAEBK F */ 2428 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */ 2429 "PCIe fabric error") }, 2430 /* DT PWROMAEBK F */ 2431 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */ 2432 "PCIe completion timeout") }, 2433 /* DT PWROMAEBK F */ 2434 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */ 2435 "PCIe completer abort") }, 2436 /* DT PWROMAEBK F */ 2437 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */ 2438 "PCIe poisoned TLP received") }, 2439 /* DT PWROMAEBK F */ 2440 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */ 2441 "PCIe ECRC check failed") }, 2442 /* DT PWROMAEBK F */ 2443 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */ 2444 "PCIe unsupported request") }, 2445 /* DT PWROMAEBK F */ 2446 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */ 2447 "PCIe ACS violation") }, 2448 /* DT PWROMAEBK F */ 2449 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */ 2450 "PCIe TLP prefix blocket") }, 2451 /* DTLPWROMAEBKVF */ 2452 { SST(0x4C, 0x00, SS_RDEF, 2453 "Logical unit failed self-configuration") }, 2454 /* DTLPWROMAEBKVF */ 2455 { SST(0x4D, 0x00, SS_RDEF, 2456 "Tagged overlapped commands: ASCQ = Queue tag ID") }, 2457 /* DTLPWROMAEBKVF */ 2458 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, 2459 NULL) }, /* Range 0x00->0xFF */ 2460 /* DTLPWROMAEBKVF */ 2461 { SST(0x4E, 0x00, SS_RDEF, 2462 "Overlapped commands attempted") }, 2463 /* T */ 2464 { SST(0x50, 0x00, SS_RDEF, 2465 "Write append error") }, 2466 /* T */ 2467 { SST(0x50, 0x01, SS_RDEF, 2468 "Write append position error") }, 2469 /* T */ 2470 { SST(0x50, 0x02, SS_RDEF, 2471 "Position error related to timing") }, 2472 /* T RO */ 2473 { SST(0x51, 0x00, SS_RDEF, 2474 "Erase failure") }, 2475 /* R */ 2476 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ 2477 "Erase failure - incomplete erase operation detected") }, 2478 /* T */ 2479 { SST(0x52, 0x00, SS_RDEF, 2480 "Cartridge fault") }, 2481 /* DTL WROM BK */ 2482 { SST(0x53, 0x00, SS_RDEF, 2483 "Media load or eject failed") }, 2484 /* T */ 2485 { SST(0x53, 0x01, SS_RDEF, 2486 "Unload tape failure") }, 2487 /* DT WROM BK */ 2488 { SST(0x53, 0x02, SS_RDEF, 2489 "Medium removal prevented") }, 2490 /* M */ 2491 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ 2492 "Medium removal prevented by data transfer element") }, 2493 /* T */ 2494 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ 2495 "Medium thread or unthread failure") }, 2496 /* M */ 2497 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */ 2498 "Volume identifier invalid") }, 2499 /* T */ 2500 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */ 2501 "Volume identifier missing") }, 2502 /* M */ 2503 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */ 2504 "Duplicate volume identifier") }, 2505 /* M */ 2506 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */ 2507 "Element status unknown") }, 2508 /* M */ 2509 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */ 2510 "Data transfer device error - load failed") }, 2511 /* M */ 2512 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */ 2513 "Data transfer device error - unload failed") }, 2514 /* M */ 2515 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */ 2516 "Data transfer device error - unload missing") }, 2517 /* M */ 2518 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */ 2519 "Data transfer device error - eject failed") }, 2520 /* M */ 2521 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */ 2522 "Data transfer device error - library communication failed") }, 2523 /* P */ 2524 { SST(0x54, 0x00, SS_RDEF, 2525 "SCSI to host system interface failure") }, 2526 /* P */ 2527 { SST(0x55, 0x00, SS_RDEF, 2528 "System resource failure") }, 2529 /* D O BK */ 2530 { SST(0x55, 0x01, SS_FATAL | ENOSPC, 2531 "System buffer full") }, 2532 /* DTLPWROMAE K */ 2533 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ 2534 "Insufficient reservation resources") }, 2535 /* DTLPWROMAE K */ 2536 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ 2537 "Insufficient resources") }, 2538 /* DTLPWROMAE K */ 2539 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ 2540 "Insufficient registration resources") }, 2541 /* DT PWROMAEBK */ 2542 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ 2543 "Insufficient access control resources") }, 2544 /* DT WROM B */ 2545 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ 2546 "Auxiliary memory out of space") }, 2547 /* F */ 2548 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ 2549 "Quota error") }, 2550 /* T */ 2551 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ 2552 "Maximum number of supplemental decryption keys exceeded") }, 2553 /* M */ 2554 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ 2555 "Medium auxiliary memory not accessible") }, 2556 /* M */ 2557 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ 2558 "Data currently unavailable") }, 2559 /* DTLPWROMAEBKVF */ 2560 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */ 2561 "Insufficient power for operation") }, 2562 /* DT P B */ 2563 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */ 2564 "Insufficient resources to create ROD") }, 2565 /* DT P B */ 2566 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */ 2567 "Insufficient resources to create ROD token") }, 2568 /* D */ 2569 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */ 2570 "Insufficient zone resources") }, 2571 /* D */ 2572 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */ 2573 "Insufficient zone resources to complete write") }, 2574 /* D */ 2575 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */ 2576 "Maximum number of streams open") }, 2577 /* R */ 2578 { SST(0x57, 0x00, SS_RDEF, 2579 "Unable to recover table-of-contents") }, 2580 /* O */ 2581 { SST(0x58, 0x00, SS_RDEF, 2582 "Generation does not exist") }, 2583 /* O */ 2584 { SST(0x59, 0x00, SS_RDEF, 2585 "Updated block read") }, 2586 /* DTLPWRO BK */ 2587 { SST(0x5A, 0x00, SS_RDEF, 2588 "Operator request or state change input") }, 2589 /* DT WROM BK */ 2590 { SST(0x5A, 0x01, SS_RDEF, 2591 "Operator medium removal request") }, 2592 /* DT WRO A BK */ 2593 { SST(0x5A, 0x02, SS_RDEF, 2594 "Operator selected write protect") }, 2595 /* DT WRO A BK */ 2596 { SST(0x5A, 0x03, SS_RDEF, 2597 "Operator selected write permit") }, 2598 /* DTLPWROM K */ 2599 { SST(0x5B, 0x00, SS_RDEF, 2600 "Log exception") }, 2601 /* DTLPWROM K */ 2602 { SST(0x5B, 0x01, SS_RDEF, 2603 "Threshold condition met") }, 2604 /* DTLPWROM K */ 2605 { SST(0x5B, 0x02, SS_RDEF, 2606 "Log counter at maximum") }, 2607 /* DTLPWROM K */ 2608 { SST(0x5B, 0x03, SS_RDEF, 2609 "Log list codes exhausted") }, 2610 /* D O */ 2611 { SST(0x5C, 0x00, SS_RDEF, 2612 "RPL status change") }, 2613 /* D O */ 2614 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2615 "Spindles synchronized") }, 2616 /* D O */ 2617 { SST(0x5C, 0x02, SS_RDEF, 2618 "Spindles not synchronized") }, 2619 /* DTLPWROMAEBKVF */ 2620 { SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE, 2621 "Failure prediction threshold exceeded") }, 2622 /* R B */ 2623 { SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2624 "Media failure prediction threshold exceeded") }, 2625 /* R */ 2626 { SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE, 2627 "Logical unit failure prediction threshold exceeded") }, 2628 /* R */ 2629 { SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE, 2630 "Spare area exhaustion prediction threshold exceeded") }, 2631 /* D B */ 2632 { SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE, 2633 "Hardware impending failure general hard drive failure") }, 2634 /* D B */ 2635 { SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE, 2636 "Hardware impending failure drive error rate too high") }, 2637 /* D B */ 2638 { SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE, 2639 "Hardware impending failure data error rate too high") }, 2640 /* D B */ 2641 { SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE, 2642 "Hardware impending failure seek error rate too high") }, 2643 /* D B */ 2644 { SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE, 2645 "Hardware impending failure too many block reassigns") }, 2646 /* D B */ 2647 { SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE, 2648 "Hardware impending failure access times too high") }, 2649 /* D B */ 2650 { SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE, 2651 "Hardware impending failure start unit times too high") }, 2652 /* D B */ 2653 { SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE, 2654 "Hardware impending failure channel parametrics") }, 2655 /* D B */ 2656 { SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE, 2657 "Hardware impending failure controller detected") }, 2658 /* D B */ 2659 { SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE, 2660 "Hardware impending failure throughput performance") }, 2661 /* D B */ 2662 { SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE, 2663 "Hardware impending failure seek time performance") }, 2664 /* D B */ 2665 { SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE, 2666 "Hardware impending failure spin-up retry count") }, 2667 /* D B */ 2668 { SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE, 2669 "Hardware impending failure drive calibration retry count") }, 2670 /* D B */ 2671 { SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE, 2672 "Hardware impending failure power loss protection circuit") }, 2673 /* D B */ 2674 { SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE, 2675 "Controller impending failure general hard drive failure") }, 2676 /* D B */ 2677 { SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE, 2678 "Controller impending failure drive error rate too high") }, 2679 /* D B */ 2680 { SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE, 2681 "Controller impending failure data error rate too high") }, 2682 /* D B */ 2683 { SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE, 2684 "Controller impending failure seek error rate too high") }, 2685 /* D B */ 2686 { SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE, 2687 "Controller impending failure too many block reassigns") }, 2688 /* D B */ 2689 { SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE, 2690 "Controller impending failure access times too high") }, 2691 /* D B */ 2692 { SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE, 2693 "Controller impending failure start unit times too high") }, 2694 /* D B */ 2695 { SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE, 2696 "Controller impending failure channel parametrics") }, 2697 /* D B */ 2698 { SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE, 2699 "Controller impending failure controller detected") }, 2700 /* D B */ 2701 { SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE, 2702 "Controller impending failure throughput performance") }, 2703 /* D B */ 2704 { SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE, 2705 "Controller impending failure seek time performance") }, 2706 /* D B */ 2707 { SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE, 2708 "Controller impending failure spin-up retry count") }, 2709 /* D B */ 2710 { SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE, 2711 "Controller impending failure drive calibration retry count") }, 2712 /* D B */ 2713 { SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE, 2714 "Data channel impending failure general hard drive failure") }, 2715 /* D B */ 2716 { SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE, 2717 "Data channel impending failure drive error rate too high") }, 2718 /* D B */ 2719 { SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE, 2720 "Data channel impending failure data error rate too high") }, 2721 /* D B */ 2722 { SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE, 2723 "Data channel impending failure seek error rate too high") }, 2724 /* D B */ 2725 { SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE, 2726 "Data channel impending failure too many block reassigns") }, 2727 /* D B */ 2728 { SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE, 2729 "Data channel impending failure access times too high") }, 2730 /* D B */ 2731 { SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE, 2732 "Data channel impending failure start unit times too high") }, 2733 /* D B */ 2734 { SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE, 2735 "Data channel impending failure channel parametrics") }, 2736 /* D B */ 2737 { SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE, 2738 "Data channel impending failure controller detected") }, 2739 /* D B */ 2740 { SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE, 2741 "Data channel impending failure throughput performance") }, 2742 /* D B */ 2743 { SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE, 2744 "Data channel impending failure seek time performance") }, 2745 /* D B */ 2746 { SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE, 2747 "Data channel impending failure spin-up retry count") }, 2748 /* D B */ 2749 { SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE, 2750 "Data channel impending failure drive calibration retry count") }, 2751 /* D B */ 2752 { SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE, 2753 "Servo impending failure general hard drive failure") }, 2754 /* D B */ 2755 { SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE, 2756 "Servo impending failure drive error rate too high") }, 2757 /* D B */ 2758 { SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE, 2759 "Servo impending failure data error rate too high") }, 2760 /* D B */ 2761 { SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE, 2762 "Servo impending failure seek error rate too high") }, 2763 /* D B */ 2764 { SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE, 2765 "Servo impending failure too many block reassigns") }, 2766 /* D B */ 2767 { SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE, 2768 "Servo impending failure access times too high") }, 2769 /* D B */ 2770 { SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE, 2771 "Servo impending failure start unit times too high") }, 2772 /* D B */ 2773 { SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE, 2774 "Servo impending failure channel parametrics") }, 2775 /* D B */ 2776 { SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE, 2777 "Servo impending failure controller detected") }, 2778 /* D B */ 2779 { SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE, 2780 "Servo impending failure throughput performance") }, 2781 /* D B */ 2782 { SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE, 2783 "Servo impending failure seek time performance") }, 2784 /* D B */ 2785 { SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE, 2786 "Servo impending failure spin-up retry count") }, 2787 /* D B */ 2788 { SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE, 2789 "Servo impending failure drive calibration retry count") }, 2790 /* D B */ 2791 { SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE, 2792 "Spindle impending failure general hard drive failure") }, 2793 /* D B */ 2794 { SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE, 2795 "Spindle impending failure drive error rate too high") }, 2796 /* D B */ 2797 { SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE, 2798 "Spindle impending failure data error rate too high") }, 2799 /* D B */ 2800 { SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE, 2801 "Spindle impending failure seek error rate too high") }, 2802 /* D B */ 2803 { SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE, 2804 "Spindle impending failure too many block reassigns") }, 2805 /* D B */ 2806 { SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE, 2807 "Spindle impending failure access times too high") }, 2808 /* D B */ 2809 { SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE, 2810 "Spindle impending failure start unit times too high") }, 2811 /* D B */ 2812 { SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE, 2813 "Spindle impending failure channel parametrics") }, 2814 /* D B */ 2815 { SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE, 2816 "Spindle impending failure controller detected") }, 2817 /* D B */ 2818 { SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE, 2819 "Spindle impending failure throughput performance") }, 2820 /* D B */ 2821 { SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE, 2822 "Spindle impending failure seek time performance") }, 2823 /* D B */ 2824 { SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE, 2825 "Spindle impending failure spin-up retry count") }, 2826 /* D B */ 2827 { SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE, 2828 "Spindle impending failure drive calibration retry count") }, 2829 /* D B */ 2830 { SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE, 2831 "Firmware impending failure general hard drive failure") }, 2832 /* D B */ 2833 { SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE, 2834 "Firmware impending failure drive error rate too high") }, 2835 /* D B */ 2836 { SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE, 2837 "Firmware impending failure data error rate too high") }, 2838 /* D B */ 2839 { SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE, 2840 "Firmware impending failure seek error rate too high") }, 2841 /* D B */ 2842 { SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE, 2843 "Firmware impending failure too many block reassigns") }, 2844 /* D B */ 2845 { SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE, 2846 "Firmware impending failure access times too high") }, 2847 /* D B */ 2848 { SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE, 2849 "Firmware impending failure start unit times too high") }, 2850 /* D B */ 2851 { SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE, 2852 "Firmware impending failure channel parametrics") }, 2853 /* D B */ 2854 { SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE, 2855 "Firmware impending failure controller detected") }, 2856 /* D B */ 2857 { SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE, 2858 "Firmware impending failure throughput performance") }, 2859 /* D B */ 2860 { SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE, 2861 "Firmware impending failure seek time performance") }, 2862 /* D B */ 2863 { SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE, 2864 "Firmware impending failure spin-up retry count") }, 2865 /* D B */ 2866 { SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE, 2867 "Firmware impending failure drive calibration retry count") }, 2868 /* D B */ 2869 { SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE, 2870 "Media impending failure endurance limit met") }, 2871 /* DTLPWROMAEBKVF */ 2872 { SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE, 2873 "Failure prediction threshold exceeded (false)") }, 2874 /* DTLPWRO A K */ 2875 { SST(0x5E, 0x00, SS_RDEF, 2876 "Low power condition on") }, 2877 /* DTLPWRO A K */ 2878 { SST(0x5E, 0x01, SS_RDEF, 2879 "Idle condition activated by timer") }, 2880 /* DTLPWRO A K */ 2881 { SST(0x5E, 0x02, SS_RDEF, 2882 "Standby condition activated by timer") }, 2883 /* DTLPWRO A K */ 2884 { SST(0x5E, 0x03, SS_RDEF, 2885 "Idle condition activated by command") }, 2886 /* DTLPWRO A K */ 2887 { SST(0x5E, 0x04, SS_RDEF, 2888 "Standby condition activated by command") }, 2889 /* DTLPWRO A K */ 2890 { SST(0x5E, 0x05, SS_RDEF, 2891 "Idle-B condition activated by timer") }, 2892 /* DTLPWRO A K */ 2893 { SST(0x5E, 0x06, SS_RDEF, 2894 "Idle-B condition activated by command") }, 2895 /* DTLPWRO A K */ 2896 { SST(0x5E, 0x07, SS_RDEF, 2897 "Idle-C condition activated by timer") }, 2898 /* DTLPWRO A K */ 2899 { SST(0x5E, 0x08, SS_RDEF, 2900 "Idle-C condition activated by command") }, 2901 /* DTLPWRO A K */ 2902 { SST(0x5E, 0x09, SS_RDEF, 2903 "Standby-Y condition activated by timer") }, 2904 /* DTLPWRO A K */ 2905 { SST(0x5E, 0x0A, SS_RDEF, 2906 "Standby-Y condition activated by command") }, 2907 /* B */ 2908 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ 2909 "Power state change to active") }, 2910 /* B */ 2911 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ 2912 "Power state change to idle") }, 2913 /* B */ 2914 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ 2915 "Power state change to standby") }, 2916 /* B */ 2917 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ 2918 "Power state change to sleep") }, 2919 /* BK */ 2920 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ 2921 "Power state change to device control") }, 2922 /* */ 2923 { SST(0x60, 0x00, SS_RDEF, 2924 "Lamp failure") }, 2925 /* */ 2926 { SST(0x61, 0x00, SS_RDEF, 2927 "Video acquisition error") }, 2928 /* */ 2929 { SST(0x61, 0x01, SS_RDEF, 2930 "Unable to acquire video") }, 2931 /* */ 2932 { SST(0x61, 0x02, SS_RDEF, 2933 "Out of focus") }, 2934 /* */ 2935 { SST(0x62, 0x00, SS_RDEF, 2936 "Scan head positioning error") }, 2937 /* R */ 2938 { SST(0x63, 0x00, SS_RDEF, 2939 "End of user area encountered on this track") }, 2940 /* R */ 2941 { SST(0x63, 0x01, SS_FATAL | ENOSPC, 2942 "Packet does not fit in available space") }, 2943 /* R */ 2944 { SST(0x64, 0x00, SS_FATAL | ENXIO, 2945 "Illegal mode for this track") }, 2946 /* R */ 2947 { SST(0x64, 0x01, SS_RDEF, 2948 "Invalid packet size") }, 2949 /* DTLPWROMAEBKVF */ 2950 { SST(0x65, 0x00, SS_RDEF, 2951 "Voltage fault") }, 2952 /* */ 2953 { SST(0x66, 0x00, SS_RDEF, 2954 "Automatic document feeder cover up") }, 2955 /* */ 2956 { SST(0x66, 0x01, SS_RDEF, 2957 "Automatic document feeder lift up") }, 2958 /* */ 2959 { SST(0x66, 0x02, SS_RDEF, 2960 "Document jam in automatic document feeder") }, 2961 /* */ 2962 { SST(0x66, 0x03, SS_RDEF, 2963 "Document miss feed automatic in document feeder") }, 2964 /* A */ 2965 { SST(0x67, 0x00, SS_RDEF, 2966 "Configuration failure") }, 2967 /* A */ 2968 { SST(0x67, 0x01, SS_RDEF, 2969 "Configuration of incapable logical units failed") }, 2970 /* A */ 2971 { SST(0x67, 0x02, SS_RDEF, 2972 "Add logical unit failed") }, 2973 /* A */ 2974 { SST(0x67, 0x03, SS_RDEF, 2975 "Modification of logical unit failed") }, 2976 /* A */ 2977 { SST(0x67, 0x04, SS_RDEF, 2978 "Exchange of logical unit failed") }, 2979 /* A */ 2980 { SST(0x67, 0x05, SS_RDEF, 2981 "Remove of logical unit failed") }, 2982 /* A */ 2983 { SST(0x67, 0x06, SS_RDEF, 2984 "Attachment of logical unit failed") }, 2985 /* A */ 2986 { SST(0x67, 0x07, SS_RDEF, 2987 "Creation of logical unit failed") }, 2988 /* A */ 2989 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ 2990 "Assign failure occurred") }, 2991 /* A */ 2992 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ 2993 "Multiply assigned logical unit") }, 2994 /* DTLPWROMAEBKVF */ 2995 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ 2996 "Set target port groups command failed") }, 2997 /* DT B */ 2998 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ 2999 "ATA device feature not enabled") }, 3000 /* A */ 3001 { SST(0x68, 0x00, SS_RDEF, 3002 "Logical unit not configured") }, 3003 /* D */ 3004 { SST(0x68, 0x01, SS_RDEF, 3005 "Subsidiary logical unit not configured") }, 3006 /* A */ 3007 { SST(0x69, 0x00, SS_RDEF, 3008 "Data loss on logical unit") }, 3009 /* A */ 3010 { SST(0x69, 0x01, SS_RDEF, 3011 "Multiple logical unit failures") }, 3012 /* A */ 3013 { SST(0x69, 0x02, SS_RDEF, 3014 "Parity/data mismatch") }, 3015 /* A */ 3016 { SST(0x6A, 0x00, SS_RDEF, 3017 "Informational, refer to log") }, 3018 /* A */ 3019 { SST(0x6B, 0x00, SS_RDEF, 3020 "State change has occurred") }, 3021 /* A */ 3022 { SST(0x6B, 0x01, SS_RDEF, 3023 "Redundancy level got better") }, 3024 /* A */ 3025 { SST(0x6B, 0x02, SS_RDEF, 3026 "Redundancy level got worse") }, 3027 /* A */ 3028 { SST(0x6C, 0x00, SS_RDEF, 3029 "Rebuild failure occurred") }, 3030 /* A */ 3031 { SST(0x6D, 0x00, SS_RDEF, 3032 "Recalculate failure occurred") }, 3033 /* A */ 3034 { SST(0x6E, 0x00, SS_RDEF, 3035 "Command to logical unit failed") }, 3036 /* R */ 3037 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ 3038 "Copy protection key exchange failure - authentication failure") }, 3039 /* R */ 3040 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ 3041 "Copy protection key exchange failure - key not present") }, 3042 /* R */ 3043 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ 3044 "Copy protection key exchange failure - key not established") }, 3045 /* R */ 3046 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ 3047 "Read of scrambled sector without authentication") }, 3048 /* R */ 3049 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ 3050 "Media region code is mismatched to logical unit region") }, 3051 /* R */ 3052 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ 3053 "Drive region must be permanent/region reset count error") }, 3054 /* R */ 3055 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ 3056 "Insufficient block count for binding NONCE recording") }, 3057 /* R */ 3058 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ 3059 "Conflict in binding NONCE recording") }, 3060 /* T */ 3061 { SST(0x70, 0x00, SS_RDEF, 3062 "Decompression exception short: ASCQ = Algorithm ID") }, 3063 /* T */ 3064 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, 3065 NULL) }, /* Range 0x00 -> 0xFF */ 3066 /* T */ 3067 { SST(0x71, 0x00, SS_RDEF, 3068 "Decompression exception long: ASCQ = Algorithm ID") }, 3069 /* T */ 3070 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, 3071 NULL) }, /* Range 0x00 -> 0xFF */ 3072 /* R */ 3073 { SST(0x72, 0x00, SS_RDEF, 3074 "Session fixation error") }, 3075 /* R */ 3076 { SST(0x72, 0x01, SS_RDEF, 3077 "Session fixation error writing lead-in") }, 3078 /* R */ 3079 { SST(0x72, 0x02, SS_RDEF, 3080 "Session fixation error writing lead-out") }, 3081 /* R */ 3082 { SST(0x72, 0x03, SS_RDEF, 3083 "Session fixation error - incomplete track in session") }, 3084 /* R */ 3085 { SST(0x72, 0x04, SS_RDEF, 3086 "Empty or partially written reserved track") }, 3087 /* R */ 3088 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ 3089 "No more track reservations allowed") }, 3090 /* R */ 3091 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ 3092 "RMZ extension is not allowed") }, 3093 /* R */ 3094 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ 3095 "No more test zone extensions are allowed") }, 3096 /* R */ 3097 { SST(0x73, 0x00, SS_RDEF, 3098 "CD control error") }, 3099 /* R */ 3100 { SST(0x73, 0x01, SS_RDEF, 3101 "Power calibration area almost full") }, 3102 /* R */ 3103 { SST(0x73, 0x02, SS_FATAL | ENOSPC, 3104 "Power calibration area is full") }, 3105 /* R */ 3106 { SST(0x73, 0x03, SS_RDEF, 3107 "Power calibration area error") }, 3108 /* R */ 3109 { SST(0x73, 0x04, SS_RDEF, 3110 "Program memory area update failure") }, 3111 /* R */ 3112 { SST(0x73, 0x05, SS_RDEF, 3113 "Program memory area is full") }, 3114 /* R */ 3115 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ 3116 "RMA/PMA is almost full") }, 3117 /* R */ 3118 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ 3119 "Current power calibration area almost full") }, 3120 /* R */ 3121 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ 3122 "Current power calibration area is full") }, 3123 /* R */ 3124 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ 3125 "RDZ is full") }, 3126 /* T */ 3127 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ 3128 "Security error") }, 3129 /* T */ 3130 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ 3131 "Unable to decrypt data") }, 3132 /* T */ 3133 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ 3134 "Unencrypted data encountered while decrypting") }, 3135 /* T */ 3136 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ 3137 "Incorrect data encryption key") }, 3138 /* T */ 3139 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ 3140 "Cryptographic integrity validation failed") }, 3141 /* T */ 3142 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ 3143 "Error decrypting data") }, 3144 /* T */ 3145 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ 3146 "Unknown signature verification key") }, 3147 /* T */ 3148 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ 3149 "Encryption parameters not useable") }, 3150 /* DT R M E VF */ 3151 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ 3152 "Digital signature validation failure") }, 3153 /* T */ 3154 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ 3155 "Encryption mode mismatch on read") }, 3156 /* T */ 3157 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ 3158 "Encrypted block not raw read enabled") }, 3159 /* T */ 3160 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ 3161 "Incorrect encryption parameters") }, 3162 /* DT R MAEBKV */ 3163 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ 3164 "Unable to decrypt parameter list") }, 3165 /* T */ 3166 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ 3167 "Encryption algorithm disabled") }, 3168 /* DT R MAEBKV */ 3169 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ 3170 "SA creation parameter value invalid") }, 3171 /* DT R MAEBKV */ 3172 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ 3173 "SA creation parameter value rejected") }, 3174 /* DT R MAEBKV */ 3175 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ 3176 "Invalid SA usage") }, 3177 /* T */ 3178 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ 3179 "Data encryption configuration prevented") }, 3180 /* DT R MAEBKV */ 3181 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ 3182 "SA creation parameter not supported") }, 3183 /* DT R MAEBKV */ 3184 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ 3185 "Authentication failed") }, 3186 /* V */ 3187 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ 3188 "External data encryption key manager access error") }, 3189 /* V */ 3190 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ 3191 "External data encryption key manager error") }, 3192 /* V */ 3193 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ 3194 "External data encryption key not found") }, 3195 /* V */ 3196 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ 3197 "External data encryption request not authorized") }, 3198 /* T */ 3199 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ 3200 "External data encryption control timeout") }, 3201 /* T */ 3202 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ 3203 "External data encryption control error") }, 3204 /* DT R M E V */ 3205 { SST(0x74, 0x71, SS_FATAL | EACCES, 3206 "Logical unit access not authorized") }, 3207 /* D */ 3208 { SST(0x74, 0x79, SS_FATAL | EACCES, 3209 "Security conflict in translated device") } 3210 }; 3211 3212 const u_int asc_table_size = nitems(asc_table); 3213 3214 struct asc_key 3215 { 3216 int asc; 3217 int ascq; 3218 }; 3219 3220 static int 3221 ascentrycomp(const void *key, const void *member) 3222 { 3223 int asc; 3224 int ascq; 3225 const struct asc_table_entry *table_entry; 3226 3227 asc = ((const struct asc_key *)key)->asc; 3228 ascq = ((const struct asc_key *)key)->ascq; 3229 table_entry = (const struct asc_table_entry *)member; 3230 3231 if (asc >= table_entry->asc) { 3232 if (asc > table_entry->asc) 3233 return (1); 3234 3235 if (ascq <= table_entry->ascq) { 3236 /* Check for ranges */ 3237 if (ascq == table_entry->ascq 3238 || ((table_entry->action & SSQ_RANGE) != 0 3239 && ascq >= (table_entry - 1)->ascq)) 3240 return (0); 3241 return (-1); 3242 } 3243 return (1); 3244 } 3245 return (-1); 3246 } 3247 3248 static int 3249 senseentrycomp(const void *key, const void *member) 3250 { 3251 int sense_key; 3252 const struct sense_key_table_entry *table_entry; 3253 3254 sense_key = *((const int *)key); 3255 table_entry = (const struct sense_key_table_entry *)member; 3256 3257 if (sense_key >= table_entry->sense_key) { 3258 if (sense_key == table_entry->sense_key) 3259 return (0); 3260 return (1); 3261 } 3262 return (-1); 3263 } 3264 3265 static void 3266 fetchtableentries(int sense_key, int asc, int ascq, 3267 struct scsi_inquiry_data *inq_data, 3268 const struct sense_key_table_entry **sense_entry, 3269 const struct asc_table_entry **asc_entry) 3270 { 3271 caddr_t match; 3272 const struct asc_table_entry *asc_tables[2]; 3273 const struct sense_key_table_entry *sense_tables[2]; 3274 struct asc_key asc_ascq; 3275 size_t asc_tables_size[2]; 3276 size_t sense_tables_size[2]; 3277 int num_asc_tables; 3278 int num_sense_tables; 3279 int i; 3280 3281 /* Default to failure */ 3282 *sense_entry = NULL; 3283 *asc_entry = NULL; 3284 match = NULL; 3285 if (inq_data != NULL) 3286 match = cam_quirkmatch((caddr_t)inq_data, 3287 (caddr_t)sense_quirk_table, 3288 sense_quirk_table_size, 3289 sizeof(*sense_quirk_table), 3290 scsi_inquiry_match); 3291 3292 if (match != NULL) { 3293 struct scsi_sense_quirk_entry *quirk; 3294 3295 quirk = (struct scsi_sense_quirk_entry *)match; 3296 asc_tables[0] = quirk->asc_info; 3297 asc_tables_size[0] = quirk->num_ascs; 3298 asc_tables[1] = asc_table; 3299 asc_tables_size[1] = asc_table_size; 3300 num_asc_tables = 2; 3301 sense_tables[0] = quirk->sense_key_info; 3302 sense_tables_size[0] = quirk->num_sense_keys; 3303 sense_tables[1] = sense_key_table; 3304 sense_tables_size[1] = nitems(sense_key_table); 3305 num_sense_tables = 2; 3306 } else { 3307 asc_tables[0] = asc_table; 3308 asc_tables_size[0] = asc_table_size; 3309 num_asc_tables = 1; 3310 sense_tables[0] = sense_key_table; 3311 sense_tables_size[0] = nitems(sense_key_table); 3312 num_sense_tables = 1; 3313 } 3314 3315 asc_ascq.asc = asc; 3316 asc_ascq.ascq = ascq; 3317 for (i = 0; i < num_asc_tables; i++) { 3318 void *found_entry; 3319 3320 found_entry = bsearch(&asc_ascq, asc_tables[i], 3321 asc_tables_size[i], 3322 sizeof(**asc_tables), 3323 ascentrycomp); 3324 3325 if (found_entry) { 3326 *asc_entry = (struct asc_table_entry *)found_entry; 3327 break; 3328 } 3329 } 3330 3331 for (i = 0; i < num_sense_tables; i++) { 3332 void *found_entry; 3333 3334 found_entry = bsearch(&sense_key, sense_tables[i], 3335 sense_tables_size[i], 3336 sizeof(**sense_tables), 3337 senseentrycomp); 3338 3339 if (found_entry) { 3340 *sense_entry = 3341 (struct sense_key_table_entry *)found_entry; 3342 break; 3343 } 3344 } 3345 } 3346 3347 void 3348 scsi_sense_desc(int sense_key, int asc, int ascq, 3349 struct scsi_inquiry_data *inq_data, 3350 const char **sense_key_desc, const char **asc_desc) 3351 { 3352 const struct asc_table_entry *asc_entry; 3353 const struct sense_key_table_entry *sense_entry; 3354 3355 fetchtableentries(sense_key, asc, ascq, 3356 inq_data, 3357 &sense_entry, 3358 &asc_entry); 3359 3360 if (sense_entry != NULL) 3361 *sense_key_desc = sense_entry->desc; 3362 else 3363 *sense_key_desc = "Invalid Sense Key"; 3364 3365 if (asc_entry != NULL) 3366 *asc_desc = asc_entry->desc; 3367 else if (asc >= 0x80 && asc <= 0xff) 3368 *asc_desc = "Vendor Specific ASC"; 3369 else if (ascq >= 0x80 && ascq <= 0xff) 3370 *asc_desc = "Vendor Specific ASCQ"; 3371 else 3372 *asc_desc = "Reserved ASC/ASCQ pair"; 3373 } 3374 3375 /* 3376 * Given sense and device type information, return the appropriate action. 3377 * If we do not understand the specific error as identified by the ASC/ASCQ 3378 * pair, fall back on the more generic actions derived from the sense key. 3379 */ 3380 scsi_sense_action 3381 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, 3382 u_int32_t sense_flags) 3383 { 3384 const struct asc_table_entry *asc_entry; 3385 const struct sense_key_table_entry *sense_entry; 3386 int error_code, sense_key, asc, ascq; 3387 scsi_sense_action action; 3388 3389 if (!scsi_extract_sense_ccb((union ccb *)csio, 3390 &error_code, &sense_key, &asc, &ascq)) { 3391 action = SS_RDEF; 3392 } else if ((error_code == SSD_DEFERRED_ERROR) 3393 || (error_code == SSD_DESC_DEFERRED_ERROR)) { 3394 /* 3395 * XXX dufault@FreeBSD.org 3396 * This error doesn't relate to the command associated 3397 * with this request sense. A deferred error is an error 3398 * for a command that has already returned GOOD status 3399 * (see SCSI2 8.2.14.2). 3400 * 3401 * By my reading of that section, it looks like the current 3402 * command has been cancelled, we should now clean things up 3403 * (hopefully recovering any lost data) and then retry the 3404 * current command. There are two easy choices, both wrong: 3405 * 3406 * 1. Drop through (like we had been doing), thus treating 3407 * this as if the error were for the current command and 3408 * return and stop the current command. 3409 * 3410 * 2. Issue a retry (like I made it do) thus hopefully 3411 * recovering the current transfer, and ignoring the 3412 * fact that we've dropped a command. 3413 * 3414 * These should probably be handled in a device specific 3415 * sense handler or punted back up to a user mode daemon 3416 */ 3417 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3418 } else { 3419 fetchtableentries(sense_key, asc, ascq, 3420 inq_data, 3421 &sense_entry, 3422 &asc_entry); 3423 3424 /* 3425 * Override the 'No additional Sense' entry (0,0) 3426 * with the error action of the sense key. 3427 */ 3428 if (asc_entry != NULL 3429 && (asc != 0 || ascq != 0)) 3430 action = asc_entry->action; 3431 else if (sense_entry != NULL) 3432 action = sense_entry->action; 3433 else 3434 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3435 3436 if (sense_key == SSD_KEY_RECOVERED_ERROR) { 3437 /* 3438 * The action succeeded but the device wants 3439 * the user to know that some recovery action 3440 * was required. 3441 */ 3442 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); 3443 action |= SS_NOP|SSQ_PRINT_SENSE; 3444 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { 3445 if ((sense_flags & SF_QUIET_IR) != 0) 3446 action &= ~SSQ_PRINT_SENSE; 3447 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { 3448 if ((sense_flags & SF_RETRY_UA) != 0 3449 && (action & SS_MASK) == SS_FAIL) { 3450 action &= ~(SS_MASK|SSQ_MASK); 3451 action |= SS_RETRY|SSQ_DECREMENT_COUNT| 3452 SSQ_PRINT_SENSE; 3453 } 3454 action |= SSQ_UA; 3455 } 3456 } 3457 if ((action & SS_MASK) >= SS_START && 3458 (sense_flags & SF_NO_RECOVERY)) { 3459 action &= ~SS_MASK; 3460 action |= SS_FAIL; 3461 } else if ((action & SS_MASK) == SS_RETRY && 3462 (sense_flags & SF_NO_RETRY)) { 3463 action &= ~SS_MASK; 3464 action |= SS_FAIL; 3465 } 3466 if ((sense_flags & SF_PRINT_ALWAYS) != 0) 3467 action |= SSQ_PRINT_SENSE; 3468 else if ((sense_flags & SF_NO_PRINT) != 0) 3469 action &= ~SSQ_PRINT_SENSE; 3470 3471 return (action); 3472 } 3473 3474 char * 3475 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len) 3476 { 3477 struct sbuf sb; 3478 int error; 3479 3480 if (len == 0) 3481 return (""); 3482 3483 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN); 3484 3485 scsi_cdb_sbuf(cdb_ptr, &sb); 3486 3487 /* ENOMEM just means that the fixed buffer is full, OK to ignore */ 3488 error = sbuf_finish(&sb); 3489 if (error != 0 && error != ENOMEM) 3490 return (""); 3491 3492 return(sbuf_data(&sb)); 3493 } 3494 3495 void 3496 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb) 3497 { 3498 u_int8_t cdb_len; 3499 int i; 3500 3501 if (cdb_ptr == NULL) 3502 return; 3503 3504 /* 3505 * This is taken from the SCSI-3 draft spec. 3506 * (T10/1157D revision 0.3) 3507 * The top 3 bits of an opcode are the group code. The next 5 bits 3508 * are the command code. 3509 * Group 0: six byte commands 3510 * Group 1: ten byte commands 3511 * Group 2: ten byte commands 3512 * Group 3: reserved 3513 * Group 4: sixteen byte commands 3514 * Group 5: twelve byte commands 3515 * Group 6: vendor specific 3516 * Group 7: vendor specific 3517 */ 3518 switch((*cdb_ptr >> 5) & 0x7) { 3519 case 0: 3520 cdb_len = 6; 3521 break; 3522 case 1: 3523 case 2: 3524 cdb_len = 10; 3525 break; 3526 case 3: 3527 case 6: 3528 case 7: 3529 /* in this case, just print out the opcode */ 3530 cdb_len = 1; 3531 break; 3532 case 4: 3533 cdb_len = 16; 3534 break; 3535 case 5: 3536 cdb_len = 12; 3537 break; 3538 } 3539 3540 for (i = 0; i < cdb_len; i++) 3541 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]); 3542 3543 return; 3544 } 3545 3546 const char * 3547 scsi_status_string(struct ccb_scsiio *csio) 3548 { 3549 switch(csio->scsi_status) { 3550 case SCSI_STATUS_OK: 3551 return("OK"); 3552 case SCSI_STATUS_CHECK_COND: 3553 return("Check Condition"); 3554 case SCSI_STATUS_BUSY: 3555 return("Busy"); 3556 case SCSI_STATUS_INTERMED: 3557 return("Intermediate"); 3558 case SCSI_STATUS_INTERMED_COND_MET: 3559 return("Intermediate-Condition Met"); 3560 case SCSI_STATUS_RESERV_CONFLICT: 3561 return("Reservation Conflict"); 3562 case SCSI_STATUS_CMD_TERMINATED: 3563 return("Command Terminated"); 3564 case SCSI_STATUS_QUEUE_FULL: 3565 return("Queue Full"); 3566 case SCSI_STATUS_ACA_ACTIVE: 3567 return("ACA Active"); 3568 case SCSI_STATUS_TASK_ABORTED: 3569 return("Task Aborted"); 3570 default: { 3571 static char unkstr[64]; 3572 snprintf(unkstr, sizeof(unkstr), "Unknown %#x", 3573 csio->scsi_status); 3574 return(unkstr); 3575 } 3576 } 3577 } 3578 3579 /* 3580 * scsi_command_string() returns 0 for success and -1 for failure. 3581 */ 3582 #ifdef _KERNEL 3583 int 3584 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) 3585 #else /* !_KERNEL */ 3586 int 3587 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, 3588 struct sbuf *sb) 3589 #endif /* _KERNEL/!_KERNEL */ 3590 { 3591 struct scsi_inquiry_data *inq_data; 3592 #ifdef _KERNEL 3593 struct ccb_getdev *cgd; 3594 #endif /* _KERNEL */ 3595 3596 #ifdef _KERNEL 3597 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 3598 return(-1); 3599 /* 3600 * Get the device information. 3601 */ 3602 xpt_setup_ccb(&cgd->ccb_h, 3603 csio->ccb_h.path, 3604 CAM_PRIORITY_NORMAL); 3605 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 3606 xpt_action((union ccb *)cgd); 3607 3608 /* 3609 * If the device is unconfigured, just pretend that it is a hard 3610 * drive. scsi_op_desc() needs this. 3611 */ 3612 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 3613 cgd->inq_data.device = T_DIRECT; 3614 3615 inq_data = &cgd->inq_data; 3616 3617 #else /* !_KERNEL */ 3618 3619 inq_data = &device->inq_data; 3620 3621 #endif /* _KERNEL/!_KERNEL */ 3622 3623 sbuf_printf(sb, "%s. CDB: ", 3624 scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data)); 3625 scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb); 3626 3627 #ifdef _KERNEL 3628 xpt_free_ccb((union ccb *)cgd); 3629 #endif 3630 3631 return(0); 3632 } 3633 3634 /* 3635 * Iterate over sense descriptors. Each descriptor is passed into iter_func(). 3636 * If iter_func() returns 0, list traversal continues. If iter_func() 3637 * returns non-zero, list traversal is stopped. 3638 */ 3639 void 3640 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, 3641 int (*iter_func)(struct scsi_sense_data_desc *sense, 3642 u_int, struct scsi_sense_desc_header *, 3643 void *), void *arg) 3644 { 3645 int cur_pos; 3646 int desc_len; 3647 3648 /* 3649 * First make sure the extra length field is present. 3650 */ 3651 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) 3652 return; 3653 3654 /* 3655 * The length of data actually returned may be different than the 3656 * extra_len recorded in the structure. 3657 */ 3658 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); 3659 3660 /* 3661 * Limit this further by the extra length reported, and the maximum 3662 * allowed extra length. 3663 */ 3664 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); 3665 3666 /* 3667 * Subtract the size of the header from the descriptor length. 3668 * This is to ensure that we have at least the header left, so we 3669 * don't have to check that inside the loop. This can wind up 3670 * being a negative value. 3671 */ 3672 desc_len -= sizeof(struct scsi_sense_desc_header); 3673 3674 for (cur_pos = 0; cur_pos < desc_len;) { 3675 struct scsi_sense_desc_header *header; 3676 3677 header = (struct scsi_sense_desc_header *) 3678 &sense->sense_desc[cur_pos]; 3679 3680 /* 3681 * Check to make sure we have the entire descriptor. We 3682 * don't call iter_func() unless we do. 3683 * 3684 * Note that although cur_pos is at the beginning of the 3685 * descriptor, desc_len already has the header length 3686 * subtracted. So the comparison of the length in the 3687 * header (which does not include the header itself) to 3688 * desc_len - cur_pos is correct. 3689 */ 3690 if (header->length > (desc_len - cur_pos)) 3691 break; 3692 3693 if (iter_func(sense, sense_len, header, arg) != 0) 3694 break; 3695 3696 cur_pos += sizeof(*header) + header->length; 3697 } 3698 } 3699 3700 struct scsi_find_desc_info { 3701 uint8_t desc_type; 3702 struct scsi_sense_desc_header *header; 3703 }; 3704 3705 static int 3706 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 3707 struct scsi_sense_desc_header *header, void *arg) 3708 { 3709 struct scsi_find_desc_info *desc_info; 3710 3711 desc_info = (struct scsi_find_desc_info *)arg; 3712 3713 if (header->desc_type == desc_info->desc_type) { 3714 desc_info->header = header; 3715 3716 /* We found the descriptor, tell the iterator to stop. */ 3717 return (1); 3718 } else 3719 return (0); 3720 } 3721 3722 /* 3723 * Given a descriptor type, return a pointer to it if it is in the sense 3724 * data and not truncated. Avoiding truncating sense data will simplify 3725 * things significantly for the caller. 3726 */ 3727 uint8_t * 3728 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, 3729 uint8_t desc_type) 3730 { 3731 struct scsi_find_desc_info desc_info; 3732 3733 desc_info.desc_type = desc_type; 3734 desc_info.header = NULL; 3735 3736 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); 3737 3738 return ((uint8_t *)desc_info.header); 3739 } 3740 3741 /* 3742 * Fill in SCSI descriptor sense data with the specified parameters. 3743 */ 3744 static void 3745 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data, 3746 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3747 int sense_key, int asc, int ascq, va_list ap) 3748 { 3749 struct scsi_sense_data_desc *sense; 3750 scsi_sense_elem_type elem_type; 3751 int space, len; 3752 uint8_t *desc, *data; 3753 3754 memset(sense_data, 0, sizeof(*sense_data)); 3755 sense = (struct scsi_sense_data_desc *)sense_data; 3756 if (current_error != 0) 3757 sense->error_code = SSD_DESC_CURRENT_ERROR; 3758 else 3759 sense->error_code = SSD_DESC_DEFERRED_ERROR; 3760 sense->sense_key = sense_key; 3761 sense->add_sense_code = asc; 3762 sense->add_sense_code_qual = ascq; 3763 sense->flags = 0; 3764 3765 desc = &sense->sense_desc[0]; 3766 space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc); 3767 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3768 SSD_ELEM_NONE) { 3769 if (elem_type >= SSD_ELEM_MAX) { 3770 printf("%s: invalid sense type %d\n", __func__, 3771 elem_type); 3772 break; 3773 } 3774 len = va_arg(ap, int); 3775 data = va_arg(ap, uint8_t *); 3776 3777 switch (elem_type) { 3778 case SSD_ELEM_SKIP: 3779 break; 3780 case SSD_ELEM_DESC: 3781 if (space < len) { 3782 sense->flags |= SSDD_SDAT_OVFL; 3783 break; 3784 } 3785 bcopy(data, desc, len); 3786 desc += len; 3787 space -= len; 3788 break; 3789 case SSD_ELEM_SKS: { 3790 struct scsi_sense_sks *sks = (void *)desc; 3791 3792 if (len > sizeof(sks->sense_key_spec)) 3793 break; 3794 if (space < sizeof(*sks)) { 3795 sense->flags |= SSDD_SDAT_OVFL; 3796 break; 3797 } 3798 sks->desc_type = SSD_DESC_SKS; 3799 sks->length = sizeof(*sks) - 3800 (offsetof(struct scsi_sense_sks, length) + 1); 3801 bcopy(data, &sks->sense_key_spec, len); 3802 desc += sizeof(*sks); 3803 space -= sizeof(*sks); 3804 break; 3805 } 3806 case SSD_ELEM_COMMAND: { 3807 struct scsi_sense_command *cmd = (void *)desc; 3808 3809 if (len > sizeof(cmd->command_info)) 3810 break; 3811 if (space < sizeof(*cmd)) { 3812 sense->flags |= SSDD_SDAT_OVFL; 3813 break; 3814 } 3815 cmd->desc_type = SSD_DESC_COMMAND; 3816 cmd->length = sizeof(*cmd) - 3817 (offsetof(struct scsi_sense_command, length) + 1); 3818 bcopy(data, &cmd->command_info[ 3819 sizeof(cmd->command_info) - len], len); 3820 desc += sizeof(*cmd); 3821 space -= sizeof(*cmd); 3822 break; 3823 } 3824 case SSD_ELEM_INFO: { 3825 struct scsi_sense_info *info = (void *)desc; 3826 3827 if (len > sizeof(info->info)) 3828 break; 3829 if (space < sizeof(*info)) { 3830 sense->flags |= SSDD_SDAT_OVFL; 3831 break; 3832 } 3833 info->desc_type = SSD_DESC_INFO; 3834 info->length = sizeof(*info) - 3835 (offsetof(struct scsi_sense_info, length) + 1); 3836 info->byte2 = SSD_INFO_VALID; 3837 bcopy(data, &info->info[sizeof(info->info) - len], len); 3838 desc += sizeof(*info); 3839 space -= sizeof(*info); 3840 break; 3841 } 3842 case SSD_ELEM_FRU: { 3843 struct scsi_sense_fru *fru = (void *)desc; 3844 3845 if (len > sizeof(fru->fru)) 3846 break; 3847 if (space < sizeof(*fru)) { 3848 sense->flags |= SSDD_SDAT_OVFL; 3849 break; 3850 } 3851 fru->desc_type = SSD_DESC_FRU; 3852 fru->length = sizeof(*fru) - 3853 (offsetof(struct scsi_sense_fru, length) + 1); 3854 fru->fru = *data; 3855 desc += sizeof(*fru); 3856 space -= sizeof(*fru); 3857 break; 3858 } 3859 case SSD_ELEM_STREAM: { 3860 struct scsi_sense_stream *stream = (void *)desc; 3861 3862 if (len > sizeof(stream->byte3)) 3863 break; 3864 if (space < sizeof(*stream)) { 3865 sense->flags |= SSDD_SDAT_OVFL; 3866 break; 3867 } 3868 stream->desc_type = SSD_DESC_STREAM; 3869 stream->length = sizeof(*stream) - 3870 (offsetof(struct scsi_sense_stream, length) + 1); 3871 stream->byte3 = *data; 3872 desc += sizeof(*stream); 3873 space -= sizeof(*stream); 3874 break; 3875 } 3876 default: 3877 /* 3878 * We shouldn't get here, but if we do, do nothing. 3879 * We've already consumed the arguments above. 3880 */ 3881 break; 3882 } 3883 } 3884 sense->extra_len = desc - &sense->sense_desc[0]; 3885 *sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 + 3886 sense->extra_len; 3887 } 3888 3889 /* 3890 * Fill in SCSI fixed sense data with the specified parameters. 3891 */ 3892 static void 3893 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data, 3894 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3895 int sense_key, int asc, int ascq, va_list ap) 3896 { 3897 struct scsi_sense_data_fixed *sense; 3898 scsi_sense_elem_type elem_type; 3899 uint8_t *data; 3900 int len; 3901 3902 memset(sense_data, 0, sizeof(*sense_data)); 3903 sense = (struct scsi_sense_data_fixed *)sense_data; 3904 if (current_error != 0) 3905 sense->error_code = SSD_CURRENT_ERROR; 3906 else 3907 sense->error_code = SSD_DEFERRED_ERROR; 3908 sense->flags = sense_key & SSD_KEY; 3909 sense->extra_len = 0; 3910 if (*sense_len >= 13) { 3911 sense->add_sense_code = asc; 3912 sense->extra_len = MAX(sense->extra_len, 5); 3913 } else 3914 sense->flags |= SSD_SDAT_OVFL; 3915 if (*sense_len >= 14) { 3916 sense->add_sense_code_qual = ascq; 3917 sense->extra_len = MAX(sense->extra_len, 6); 3918 } else 3919 sense->flags |= SSD_SDAT_OVFL; 3920 3921 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3922 SSD_ELEM_NONE) { 3923 if (elem_type >= SSD_ELEM_MAX) { 3924 printf("%s: invalid sense type %d\n", __func__, 3925 elem_type); 3926 break; 3927 } 3928 len = va_arg(ap, int); 3929 data = va_arg(ap, uint8_t *); 3930 3931 switch (elem_type) { 3932 case SSD_ELEM_SKIP: 3933 break; 3934 case SSD_ELEM_SKS: 3935 if (len > sizeof(sense->sense_key_spec)) 3936 break; 3937 if (*sense_len < 18) { 3938 sense->flags |= SSD_SDAT_OVFL; 3939 break; 3940 } 3941 bcopy(data, &sense->sense_key_spec[0], len); 3942 sense->extra_len = MAX(sense->extra_len, 10); 3943 break; 3944 case SSD_ELEM_COMMAND: 3945 if (*sense_len < 12) { 3946 sense->flags |= SSD_SDAT_OVFL; 3947 break; 3948 } 3949 if (len > sizeof(sense->cmd_spec_info)) { 3950 data += len - sizeof(sense->cmd_spec_info); 3951 len = sizeof(sense->cmd_spec_info); 3952 } 3953 bcopy(data, &sense->cmd_spec_info[ 3954 sizeof(sense->cmd_spec_info) - len], len); 3955 sense->extra_len = MAX(sense->extra_len, 4); 3956 break; 3957 case SSD_ELEM_INFO: 3958 /* Set VALID bit only if no overflow. */ 3959 sense->error_code |= SSD_ERRCODE_VALID; 3960 while (len > sizeof(sense->info)) { 3961 if (data[0] != 0) 3962 sense->error_code &= ~SSD_ERRCODE_VALID; 3963 data ++; 3964 len --; 3965 } 3966 bcopy(data, &sense->info[sizeof(sense->info) - len], len); 3967 break; 3968 case SSD_ELEM_FRU: 3969 if (*sense_len < 15) { 3970 sense->flags |= SSD_SDAT_OVFL; 3971 break; 3972 } 3973 sense->fru = *data; 3974 sense->extra_len = MAX(sense->extra_len, 7); 3975 break; 3976 case SSD_ELEM_STREAM: 3977 sense->flags |= *data & 3978 (SSD_ILI | SSD_EOM | SSD_FILEMARK); 3979 break; 3980 default: 3981 3982 /* 3983 * We can't handle that in fixed format. Skip it. 3984 */ 3985 break; 3986 } 3987 } 3988 *sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 + 3989 sense->extra_len; 3990 } 3991 3992 /* 3993 * Fill in SCSI sense data with the specified parameters. This routine can 3994 * fill in either fixed or descriptor type sense data. 3995 */ 3996 void 3997 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len, 3998 scsi_sense_data_type sense_format, int current_error, 3999 int sense_key, int asc, int ascq, va_list ap) 4000 { 4001 4002 if (*sense_len > SSD_FULL_SIZE) 4003 *sense_len = SSD_FULL_SIZE; 4004 if (sense_format == SSD_TYPE_DESC) 4005 scsi_set_sense_data_desc_va(sense_data, sense_len, 4006 sense_format, current_error, sense_key, asc, ascq, ap); 4007 else 4008 scsi_set_sense_data_fixed_va(sense_data, sense_len, 4009 sense_format, current_error, sense_key, asc, ascq, ap); 4010 } 4011 4012 void 4013 scsi_set_sense_data(struct scsi_sense_data *sense_data, 4014 scsi_sense_data_type sense_format, int current_error, 4015 int sense_key, int asc, int ascq, ...) 4016 { 4017 va_list ap; 4018 u_int sense_len = SSD_FULL_SIZE; 4019 4020 va_start(ap, ascq); 4021 scsi_set_sense_data_va(sense_data, &sense_len, sense_format, 4022 current_error, sense_key, asc, ascq, ap); 4023 va_end(ap); 4024 } 4025 4026 void 4027 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len, 4028 scsi_sense_data_type sense_format, int current_error, 4029 int sense_key, int asc, int ascq, ...) 4030 { 4031 va_list ap; 4032 4033 va_start(ap, ascq); 4034 scsi_set_sense_data_va(sense_data, sense_len, sense_format, 4035 current_error, sense_key, asc, ascq, ap); 4036 va_end(ap); 4037 } 4038 4039 /* 4040 * Get sense information for three similar sense data types. 4041 */ 4042 int 4043 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, 4044 uint8_t info_type, uint64_t *info, int64_t *signed_info) 4045 { 4046 scsi_sense_data_type sense_type; 4047 4048 if (sense_len == 0) 4049 goto bailout; 4050 4051 sense_type = scsi_sense_type(sense_data); 4052 4053 switch (sense_type) { 4054 case SSD_TYPE_DESC: { 4055 struct scsi_sense_data_desc *sense; 4056 uint8_t *desc; 4057 4058 sense = (struct scsi_sense_data_desc *)sense_data; 4059 4060 desc = scsi_find_desc(sense, sense_len, info_type); 4061 if (desc == NULL) 4062 goto bailout; 4063 4064 switch (info_type) { 4065 case SSD_DESC_INFO: { 4066 struct scsi_sense_info *info_desc; 4067 4068 info_desc = (struct scsi_sense_info *)desc; 4069 4070 if ((info_desc->byte2 & SSD_INFO_VALID) == 0) 4071 goto bailout; 4072 4073 *info = scsi_8btou64(info_desc->info); 4074 if (signed_info != NULL) 4075 *signed_info = *info; 4076 break; 4077 } 4078 case SSD_DESC_COMMAND: { 4079 struct scsi_sense_command *cmd_desc; 4080 4081 cmd_desc = (struct scsi_sense_command *)desc; 4082 4083 *info = scsi_8btou64(cmd_desc->command_info); 4084 if (signed_info != NULL) 4085 *signed_info = *info; 4086 break; 4087 } 4088 case SSD_DESC_FRU: { 4089 struct scsi_sense_fru *fru_desc; 4090 4091 fru_desc = (struct scsi_sense_fru *)desc; 4092 4093 if (fru_desc->fru == 0) 4094 goto bailout; 4095 4096 *info = fru_desc->fru; 4097 if (signed_info != NULL) 4098 *signed_info = (int8_t)fru_desc->fru; 4099 break; 4100 } 4101 default: 4102 goto bailout; 4103 break; 4104 } 4105 break; 4106 } 4107 case SSD_TYPE_FIXED: { 4108 struct scsi_sense_data_fixed *sense; 4109 4110 sense = (struct scsi_sense_data_fixed *)sense_data; 4111 4112 switch (info_type) { 4113 case SSD_DESC_INFO: { 4114 uint32_t info_val; 4115 4116 if ((sense->error_code & SSD_ERRCODE_VALID) == 0) 4117 goto bailout; 4118 4119 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) 4120 goto bailout; 4121 4122 info_val = scsi_4btoul(sense->info); 4123 4124 *info = info_val; 4125 if (signed_info != NULL) 4126 *signed_info = (int32_t)info_val; 4127 break; 4128 } 4129 case SSD_DESC_COMMAND: { 4130 uint32_t cmd_val; 4131 4132 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, 4133 cmd_spec_info) == 0) 4134 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) 4135 goto bailout; 4136 4137 cmd_val = scsi_4btoul(sense->cmd_spec_info); 4138 if (cmd_val == 0) 4139 goto bailout; 4140 4141 *info = cmd_val; 4142 if (signed_info != NULL) 4143 *signed_info = (int32_t)cmd_val; 4144 break; 4145 } 4146 case SSD_DESC_FRU: 4147 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) 4148 || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) 4149 goto bailout; 4150 4151 if (sense->fru == 0) 4152 goto bailout; 4153 4154 *info = sense->fru; 4155 if (signed_info != NULL) 4156 *signed_info = (int8_t)sense->fru; 4157 break; 4158 default: 4159 goto bailout; 4160 break; 4161 } 4162 break; 4163 } 4164 default: 4165 goto bailout; 4166 break; 4167 } 4168 4169 return (0); 4170 bailout: 4171 return (1); 4172 } 4173 4174 int 4175 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) 4176 { 4177 scsi_sense_data_type sense_type; 4178 4179 if (sense_len == 0) 4180 goto bailout; 4181 4182 sense_type = scsi_sense_type(sense_data); 4183 4184 switch (sense_type) { 4185 case SSD_TYPE_DESC: { 4186 struct scsi_sense_data_desc *sense; 4187 struct scsi_sense_sks *desc; 4188 4189 sense = (struct scsi_sense_data_desc *)sense_data; 4190 4191 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, 4192 SSD_DESC_SKS); 4193 if (desc == NULL) 4194 goto bailout; 4195 4196 if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4197 goto bailout; 4198 4199 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); 4200 break; 4201 } 4202 case SSD_TYPE_FIXED: { 4203 struct scsi_sense_data_fixed *sense; 4204 4205 sense = (struct scsi_sense_data_fixed *)sense_data; 4206 4207 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) 4208 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) 4209 goto bailout; 4210 4211 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) 4212 goto bailout; 4213 4214 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); 4215 break; 4216 } 4217 default: 4218 goto bailout; 4219 break; 4220 } 4221 return (0); 4222 bailout: 4223 return (1); 4224 } 4225 4226 /* 4227 * Provide a common interface for fixed and descriptor sense to detect 4228 * whether we have block-specific sense information. It is clear by the 4229 * presence of the block descriptor in descriptor mode, but we have to 4230 * infer from the inquiry data and ILI bit in fixed mode. 4231 */ 4232 int 4233 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, 4234 struct scsi_inquiry_data *inq_data, uint8_t *block_bits) 4235 { 4236 scsi_sense_data_type sense_type; 4237 4238 if (inq_data != NULL) { 4239 switch (SID_TYPE(inq_data)) { 4240 case T_DIRECT: 4241 case T_RBC: 4242 case T_ZBC_HM: 4243 break; 4244 default: 4245 goto bailout; 4246 break; 4247 } 4248 } 4249 4250 sense_type = scsi_sense_type(sense_data); 4251 4252 switch (sense_type) { 4253 case SSD_TYPE_DESC: { 4254 struct scsi_sense_data_desc *sense; 4255 struct scsi_sense_block *block; 4256 4257 sense = (struct scsi_sense_data_desc *)sense_data; 4258 4259 block = (struct scsi_sense_block *)scsi_find_desc(sense, 4260 sense_len, SSD_DESC_BLOCK); 4261 if (block == NULL) 4262 goto bailout; 4263 4264 *block_bits = block->byte3; 4265 break; 4266 } 4267 case SSD_TYPE_FIXED: { 4268 struct scsi_sense_data_fixed *sense; 4269 4270 sense = (struct scsi_sense_data_fixed *)sense_data; 4271 4272 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4273 goto bailout; 4274 4275 *block_bits = sense->flags & SSD_ILI; 4276 break; 4277 } 4278 default: 4279 goto bailout; 4280 break; 4281 } 4282 return (0); 4283 bailout: 4284 return (1); 4285 } 4286 4287 int 4288 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, 4289 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) 4290 { 4291 scsi_sense_data_type sense_type; 4292 4293 if (inq_data != NULL) { 4294 switch (SID_TYPE(inq_data)) { 4295 case T_SEQUENTIAL: 4296 break; 4297 default: 4298 goto bailout; 4299 break; 4300 } 4301 } 4302 4303 sense_type = scsi_sense_type(sense_data); 4304 4305 switch (sense_type) { 4306 case SSD_TYPE_DESC: { 4307 struct scsi_sense_data_desc *sense; 4308 struct scsi_sense_stream *stream; 4309 4310 sense = (struct scsi_sense_data_desc *)sense_data; 4311 4312 stream = (struct scsi_sense_stream *)scsi_find_desc(sense, 4313 sense_len, SSD_DESC_STREAM); 4314 if (stream == NULL) 4315 goto bailout; 4316 4317 *stream_bits = stream->byte3; 4318 break; 4319 } 4320 case SSD_TYPE_FIXED: { 4321 struct scsi_sense_data_fixed *sense; 4322 4323 sense = (struct scsi_sense_data_fixed *)sense_data; 4324 4325 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4326 goto bailout; 4327 4328 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); 4329 break; 4330 } 4331 default: 4332 goto bailout; 4333 break; 4334 } 4335 return (0); 4336 bailout: 4337 return (1); 4338 } 4339 4340 void 4341 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4342 struct scsi_inquiry_data *inq_data, uint64_t info) 4343 { 4344 sbuf_printf(sb, "Info: %#jx", info); 4345 } 4346 4347 void 4348 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4349 struct scsi_inquiry_data *inq_data, uint64_t csi) 4350 { 4351 sbuf_printf(sb, "Command Specific Info: %#jx", csi); 4352 } 4353 4354 void 4355 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) 4356 { 4357 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", 4358 (progress * 100) / SSD_SKS_PROGRESS_DENOM, 4359 progress, SSD_SKS_PROGRESS_DENOM); 4360 } 4361 4362 /* 4363 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. 4364 */ 4365 int 4366 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) 4367 { 4368 4369 switch (sense_key) { 4370 case SSD_KEY_ILLEGAL_REQUEST: { 4371 struct scsi_sense_sks_field *field; 4372 int bad_command; 4373 char tmpstr[40]; 4374 4375 /*Field Pointer*/ 4376 field = (struct scsi_sense_sks_field *)sks; 4377 4378 if (field->byte0 & SSD_SKS_FIELD_CMD) 4379 bad_command = 1; 4380 else 4381 bad_command = 0; 4382 4383 tmpstr[0] = '\0'; 4384 4385 /* Bit pointer is valid */ 4386 if (field->byte0 & SSD_SKS_BPV) 4387 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4388 field->byte0 & SSD_SKS_BIT_VALUE); 4389 4390 sbuf_printf(sb, "%s byte %d %sis invalid", 4391 bad_command ? "Command" : "Data", 4392 scsi_2btoul(field->field), tmpstr); 4393 break; 4394 } 4395 case SSD_KEY_UNIT_ATTENTION: { 4396 struct scsi_sense_sks_overflow *overflow; 4397 4398 overflow = (struct scsi_sense_sks_overflow *)sks; 4399 4400 /*UA Condition Queue Overflow*/ 4401 sbuf_printf(sb, "Unit Attention Condition Queue %s", 4402 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? 4403 "Overflowed" : "Did Not Overflow??"); 4404 break; 4405 } 4406 case SSD_KEY_RECOVERED_ERROR: 4407 case SSD_KEY_HARDWARE_ERROR: 4408 case SSD_KEY_MEDIUM_ERROR: { 4409 struct scsi_sense_sks_retry *retry; 4410 4411 /*Actual Retry Count*/ 4412 retry = (struct scsi_sense_sks_retry *)sks; 4413 4414 sbuf_printf(sb, "Actual Retry Count: %d", 4415 scsi_2btoul(retry->actual_retry_count)); 4416 break; 4417 } 4418 case SSD_KEY_NO_SENSE: 4419 case SSD_KEY_NOT_READY: { 4420 struct scsi_sense_sks_progress *progress; 4421 int progress_val; 4422 4423 /*Progress Indication*/ 4424 progress = (struct scsi_sense_sks_progress *)sks; 4425 progress_val = scsi_2btoul(progress->progress); 4426 4427 scsi_progress_sbuf(sb, progress_val); 4428 break; 4429 } 4430 case SSD_KEY_COPY_ABORTED: { 4431 struct scsi_sense_sks_segment *segment; 4432 char tmpstr[40]; 4433 4434 /*Segment Pointer*/ 4435 segment = (struct scsi_sense_sks_segment *)sks; 4436 4437 tmpstr[0] = '\0'; 4438 4439 if (segment->byte0 & SSD_SKS_SEGMENT_BPV) 4440 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4441 segment->byte0 & SSD_SKS_SEGMENT_BITPTR); 4442 4443 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & 4444 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", 4445 scsi_2btoul(segment->field), tmpstr); 4446 break; 4447 } 4448 default: 4449 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], 4450 scsi_2btoul(&sks[1])); 4451 break; 4452 } 4453 4454 return (0); 4455 } 4456 4457 void 4458 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) 4459 { 4460 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); 4461 } 4462 4463 void 4464 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits) 4465 { 4466 int need_comma; 4467 4468 need_comma = 0; 4469 /* 4470 * XXX KDM this needs more descriptive decoding. 4471 */ 4472 sbuf_printf(sb, "Stream Command Sense Data: "); 4473 if (stream_bits & SSD_DESC_STREAM_FM) { 4474 sbuf_printf(sb, "Filemark"); 4475 need_comma = 1; 4476 } 4477 4478 if (stream_bits & SSD_DESC_STREAM_EOM) { 4479 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); 4480 need_comma = 1; 4481 } 4482 4483 if (stream_bits & SSD_DESC_STREAM_ILI) 4484 sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); 4485 } 4486 4487 void 4488 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits) 4489 { 4490 4491 sbuf_printf(sb, "Block Command Sense Data: "); 4492 if (block_bits & SSD_DESC_BLOCK_ILI) 4493 sbuf_printf(sb, "ILI"); 4494 } 4495 4496 void 4497 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4498 u_int sense_len, uint8_t *cdb, int cdb_len, 4499 struct scsi_inquiry_data *inq_data, 4500 struct scsi_sense_desc_header *header) 4501 { 4502 struct scsi_sense_info *info; 4503 4504 info = (struct scsi_sense_info *)header; 4505 4506 if ((info->byte2 & SSD_INFO_VALID) == 0) 4507 return; 4508 4509 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); 4510 } 4511 4512 void 4513 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4514 u_int sense_len, uint8_t *cdb, int cdb_len, 4515 struct scsi_inquiry_data *inq_data, 4516 struct scsi_sense_desc_header *header) 4517 { 4518 struct scsi_sense_command *command; 4519 4520 command = (struct scsi_sense_command *)header; 4521 4522 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, 4523 scsi_8btou64(command->command_info)); 4524 } 4525 4526 void 4527 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4528 u_int sense_len, uint8_t *cdb, int cdb_len, 4529 struct scsi_inquiry_data *inq_data, 4530 struct scsi_sense_desc_header *header) 4531 { 4532 struct scsi_sense_sks *sks; 4533 int error_code, sense_key, asc, ascq; 4534 4535 sks = (struct scsi_sense_sks *)header; 4536 4537 if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4538 return; 4539 4540 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4541 &asc, &ascq, /*show_errors*/ 1); 4542 4543 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); 4544 } 4545 4546 void 4547 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4548 u_int sense_len, uint8_t *cdb, int cdb_len, 4549 struct scsi_inquiry_data *inq_data, 4550 struct scsi_sense_desc_header *header) 4551 { 4552 struct scsi_sense_fru *fru; 4553 4554 fru = (struct scsi_sense_fru *)header; 4555 4556 if (fru->fru == 0) 4557 return; 4558 4559 scsi_fru_sbuf(sb, (uint64_t)fru->fru); 4560 } 4561 4562 void 4563 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4564 u_int sense_len, uint8_t *cdb, int cdb_len, 4565 struct scsi_inquiry_data *inq_data, 4566 struct scsi_sense_desc_header *header) 4567 { 4568 struct scsi_sense_stream *stream; 4569 4570 stream = (struct scsi_sense_stream *)header; 4571 scsi_stream_sbuf(sb, stream->byte3); 4572 } 4573 4574 void 4575 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4576 u_int sense_len, uint8_t *cdb, int cdb_len, 4577 struct scsi_inquiry_data *inq_data, 4578 struct scsi_sense_desc_header *header) 4579 { 4580 struct scsi_sense_block *block; 4581 4582 block = (struct scsi_sense_block *)header; 4583 scsi_block_sbuf(sb, block->byte3); 4584 } 4585 4586 void 4587 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4588 u_int sense_len, uint8_t *cdb, int cdb_len, 4589 struct scsi_inquiry_data *inq_data, 4590 struct scsi_sense_desc_header *header) 4591 { 4592 struct scsi_sense_progress *progress; 4593 const char *sense_key_desc; 4594 const char *asc_desc; 4595 int progress_val; 4596 4597 progress = (struct scsi_sense_progress *)header; 4598 4599 /* 4600 * Get descriptions for the sense key, ASC, and ASCQ in the 4601 * progress descriptor. These could be different than the values 4602 * in the overall sense data. 4603 */ 4604 scsi_sense_desc(progress->sense_key, progress->add_sense_code, 4605 progress->add_sense_code_qual, inq_data, 4606 &sense_key_desc, &asc_desc); 4607 4608 progress_val = scsi_2btoul(progress->progress); 4609 4610 /* 4611 * The progress indicator is for the operation described by the 4612 * sense key, ASC, and ASCQ in the descriptor. 4613 */ 4614 sbuf_cat(sb, sense_key_desc); 4615 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, 4616 progress->add_sense_code_qual, asc_desc); 4617 scsi_progress_sbuf(sb, progress_val); 4618 } 4619 4620 void 4621 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4622 u_int sense_len, uint8_t *cdb, int cdb_len, 4623 struct scsi_inquiry_data *inq_data, 4624 struct scsi_sense_desc_header *header) 4625 { 4626 struct scsi_sense_ata_ret_desc *res; 4627 4628 res = (struct scsi_sense_ata_ret_desc *)header; 4629 4630 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ", 4631 res->status, 4632 (res->status & 0x80) ? "BSY " : "", 4633 (res->status & 0x40) ? "DRDY " : "", 4634 (res->status & 0x20) ? "DF " : "", 4635 (res->status & 0x10) ? "SERV " : "", 4636 (res->status & 0x08) ? "DRQ " : "", 4637 (res->status & 0x04) ? "CORR " : "", 4638 (res->status & 0x02) ? "IDX " : "", 4639 (res->status & 0x01) ? "ERR" : ""); 4640 if (res->status & 1) { 4641 sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ", 4642 res->error, 4643 (res->error & 0x80) ? "ICRC " : "", 4644 (res->error & 0x40) ? "UNC " : "", 4645 (res->error & 0x20) ? "MC " : "", 4646 (res->error & 0x10) ? "IDNF " : "", 4647 (res->error & 0x08) ? "MCR " : "", 4648 (res->error & 0x04) ? "ABRT " : "", 4649 (res->error & 0x02) ? "NM " : "", 4650 (res->error & 0x01) ? "ILI" : ""); 4651 } 4652 4653 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) { 4654 sbuf_printf(sb, "count: %02x%02x, ", 4655 res->count_15_8, res->count_7_0); 4656 sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ", 4657 res->lba_47_40, res->lba_39_32, res->lba_31_24, 4658 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4659 } else { 4660 sbuf_printf(sb, "count: %02x, ", res->count_7_0); 4661 sbuf_printf(sb, "LBA: %02x%02x%02x, ", 4662 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4663 } 4664 sbuf_printf(sb, "device: %02x, ", res->device); 4665 } 4666 4667 void 4668 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4669 u_int sense_len, uint8_t *cdb, int cdb_len, 4670 struct scsi_inquiry_data *inq_data, 4671 struct scsi_sense_desc_header *header) 4672 { 4673 struct scsi_sense_forwarded *forwarded; 4674 const char *sense_key_desc; 4675 const char *asc_desc; 4676 int error_code, sense_key, asc, ascq; 4677 4678 forwarded = (struct scsi_sense_forwarded *)header; 4679 scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data, 4680 forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1); 4681 scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc); 4682 4683 sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ", 4684 sense_key_desc, asc, ascq, asc_desc); 4685 } 4686 4687 /* 4688 * Generic sense descriptor printing routine. This is used when we have 4689 * not yet implemented a specific printing routine for this descriptor. 4690 */ 4691 void 4692 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4693 u_int sense_len, uint8_t *cdb, int cdb_len, 4694 struct scsi_inquiry_data *inq_data, 4695 struct scsi_sense_desc_header *header) 4696 { 4697 int i; 4698 uint8_t *buf_ptr; 4699 4700 sbuf_printf(sb, "Descriptor %#x:", header->desc_type); 4701 4702 buf_ptr = (uint8_t *)&header[1]; 4703 4704 for (i = 0; i < header->length; i++, buf_ptr++) 4705 sbuf_printf(sb, " %02x", *buf_ptr); 4706 } 4707 4708 /* 4709 * Keep this list in numeric order. This speeds the array traversal. 4710 */ 4711 struct scsi_sense_desc_printer { 4712 uint8_t desc_type; 4713 /* 4714 * The function arguments here are the superset of what is needed 4715 * to print out various different descriptors. Command and 4716 * information descriptors need inquiry data and command type. 4717 * Sense key specific descriptors need the sense key. 4718 * 4719 * The sense, cdb, and inquiry data arguments may be NULL, but the 4720 * information printed may not be fully decoded as a result. 4721 */ 4722 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, 4723 u_int sense_len, uint8_t *cdb, int cdb_len, 4724 struct scsi_inquiry_data *inq_data, 4725 struct scsi_sense_desc_header *header); 4726 } scsi_sense_printers[] = { 4727 {SSD_DESC_INFO, scsi_sense_info_sbuf}, 4728 {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, 4729 {SSD_DESC_SKS, scsi_sense_sks_sbuf}, 4730 {SSD_DESC_FRU, scsi_sense_fru_sbuf}, 4731 {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, 4732 {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, 4733 {SSD_DESC_ATA, scsi_sense_ata_sbuf}, 4734 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}, 4735 {SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf} 4736 }; 4737 4738 void 4739 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4740 u_int sense_len, uint8_t *cdb, int cdb_len, 4741 struct scsi_inquiry_data *inq_data, 4742 struct scsi_sense_desc_header *header) 4743 { 4744 u_int i; 4745 4746 for (i = 0; i < nitems(scsi_sense_printers); i++) { 4747 struct scsi_sense_desc_printer *printer; 4748 4749 printer = &scsi_sense_printers[i]; 4750 4751 /* 4752 * The list is sorted, so quit if we've passed our 4753 * descriptor number. 4754 */ 4755 if (printer->desc_type > header->desc_type) 4756 break; 4757 4758 if (printer->desc_type != header->desc_type) 4759 continue; 4760 4761 printer->print_func(sb, sense, sense_len, cdb, cdb_len, 4762 inq_data, header); 4763 4764 return; 4765 } 4766 4767 /* 4768 * No specific printing routine, so use the generic routine. 4769 */ 4770 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, 4771 inq_data, header); 4772 } 4773 4774 scsi_sense_data_type 4775 scsi_sense_type(struct scsi_sense_data *sense_data) 4776 { 4777 switch (sense_data->error_code & SSD_ERRCODE) { 4778 case SSD_DESC_CURRENT_ERROR: 4779 case SSD_DESC_DEFERRED_ERROR: 4780 return (SSD_TYPE_DESC); 4781 break; 4782 case SSD_CURRENT_ERROR: 4783 case SSD_DEFERRED_ERROR: 4784 return (SSD_TYPE_FIXED); 4785 break; 4786 default: 4787 break; 4788 } 4789 4790 return (SSD_TYPE_NONE); 4791 } 4792 4793 struct scsi_print_sense_info { 4794 struct sbuf *sb; 4795 char *path_str; 4796 uint8_t *cdb; 4797 int cdb_len; 4798 struct scsi_inquiry_data *inq_data; 4799 }; 4800 4801 static int 4802 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 4803 struct scsi_sense_desc_header *header, void *arg) 4804 { 4805 struct scsi_print_sense_info *print_info; 4806 4807 print_info = (struct scsi_print_sense_info *)arg; 4808 4809 switch (header->desc_type) { 4810 case SSD_DESC_INFO: 4811 case SSD_DESC_FRU: 4812 case SSD_DESC_COMMAND: 4813 case SSD_DESC_SKS: 4814 case SSD_DESC_BLOCK: 4815 case SSD_DESC_STREAM: 4816 /* 4817 * We have already printed these descriptors, if they are 4818 * present. 4819 */ 4820 break; 4821 default: { 4822 sbuf_printf(print_info->sb, "%s", print_info->path_str); 4823 scsi_sense_desc_sbuf(print_info->sb, 4824 (struct scsi_sense_data *)sense, sense_len, 4825 print_info->cdb, print_info->cdb_len, 4826 print_info->inq_data, header); 4827 sbuf_printf(print_info->sb, "\n"); 4828 break; 4829 } 4830 } 4831 4832 /* 4833 * Tell the iterator that we want to see more descriptors if they 4834 * are present. 4835 */ 4836 return (0); 4837 } 4838 4839 void 4840 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, 4841 struct sbuf *sb, char *path_str, 4842 struct scsi_inquiry_data *inq_data, uint8_t *cdb, 4843 int cdb_len) 4844 { 4845 int error_code, sense_key, asc, ascq; 4846 4847 sbuf_cat(sb, path_str); 4848 4849 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4850 &asc, &ascq, /*show_errors*/ 1); 4851 4852 sbuf_printf(sb, "SCSI sense: "); 4853 switch (error_code) { 4854 case SSD_DEFERRED_ERROR: 4855 case SSD_DESC_DEFERRED_ERROR: 4856 sbuf_printf(sb, "Deferred error: "); 4857 4858 /* FALLTHROUGH */ 4859 case SSD_CURRENT_ERROR: 4860 case SSD_DESC_CURRENT_ERROR: 4861 { 4862 struct scsi_sense_data_desc *desc_sense; 4863 struct scsi_print_sense_info print_info; 4864 const char *sense_key_desc; 4865 const char *asc_desc; 4866 uint8_t sks[3]; 4867 uint64_t val; 4868 uint8_t bits; 4869 4870 /* 4871 * Get descriptions for the sense key, ASC, and ASCQ. If 4872 * these aren't present in the sense data (i.e. the sense 4873 * data isn't long enough), the -1 values that 4874 * scsi_extract_sense_len() returns will yield default 4875 * or error descriptions. 4876 */ 4877 scsi_sense_desc(sense_key, asc, ascq, inq_data, 4878 &sense_key_desc, &asc_desc); 4879 4880 /* 4881 * We first print the sense key and ASC/ASCQ. 4882 */ 4883 sbuf_cat(sb, sense_key_desc); 4884 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); 4885 4886 /* 4887 * Print any block or stream device-specific information. 4888 */ 4889 if (scsi_get_block_info(sense, sense_len, inq_data, 4890 &bits) == 0 && bits != 0) { 4891 sbuf_cat(sb, path_str); 4892 scsi_block_sbuf(sb, bits); 4893 sbuf_printf(sb, "\n"); 4894 } else if (scsi_get_stream_info(sense, sense_len, inq_data, 4895 &bits) == 0 && bits != 0) { 4896 sbuf_cat(sb, path_str); 4897 scsi_stream_sbuf(sb, bits); 4898 sbuf_printf(sb, "\n"); 4899 } 4900 4901 /* 4902 * Print the info field. 4903 */ 4904 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, 4905 &val, NULL) == 0) { 4906 sbuf_cat(sb, path_str); 4907 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); 4908 sbuf_printf(sb, "\n"); 4909 } 4910 4911 /* 4912 * Print the FRU. 4913 */ 4914 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, 4915 &val, NULL) == 0) { 4916 sbuf_cat(sb, path_str); 4917 scsi_fru_sbuf(sb, val); 4918 sbuf_printf(sb, "\n"); 4919 } 4920 4921 /* 4922 * Print any command-specific information. 4923 */ 4924 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, 4925 &val, NULL) == 0) { 4926 sbuf_cat(sb, path_str); 4927 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); 4928 sbuf_printf(sb, "\n"); 4929 } 4930 4931 /* 4932 * Print out any sense-key-specific information. 4933 */ 4934 if (scsi_get_sks(sense, sense_len, sks) == 0) { 4935 sbuf_cat(sb, path_str); 4936 scsi_sks_sbuf(sb, sense_key, sks); 4937 sbuf_printf(sb, "\n"); 4938 } 4939 4940 /* 4941 * If this is fixed sense, we're done. If we have 4942 * descriptor sense, we might have more information 4943 * available. 4944 */ 4945 if (scsi_sense_type(sense) != SSD_TYPE_DESC) 4946 break; 4947 4948 desc_sense = (struct scsi_sense_data_desc *)sense; 4949 4950 print_info.sb = sb; 4951 print_info.path_str = path_str; 4952 print_info.cdb = cdb; 4953 print_info.cdb_len = cdb_len; 4954 print_info.inq_data = inq_data; 4955 4956 /* 4957 * Print any sense descriptors that we have not already printed. 4958 */ 4959 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, 4960 &print_info); 4961 break; 4962 } 4963 case -1: 4964 /* 4965 * scsi_extract_sense_len() sets values to -1 if the 4966 * show_errors flag is set and they aren't present in the 4967 * sense data. This means that sense_len is 0. 4968 */ 4969 sbuf_printf(sb, "No sense data present\n"); 4970 break; 4971 default: { 4972 sbuf_printf(sb, "Error code 0x%x", error_code); 4973 if (sense->error_code & SSD_ERRCODE_VALID) { 4974 struct scsi_sense_data_fixed *fixed_sense; 4975 4976 fixed_sense = (struct scsi_sense_data_fixed *)sense; 4977 4978 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ 4979 uint32_t info; 4980 4981 info = scsi_4btoul(fixed_sense->info); 4982 4983 sbuf_printf(sb, " at block no. %d (decimal)", 4984 info); 4985 } 4986 } 4987 sbuf_printf(sb, "\n"); 4988 break; 4989 } 4990 } 4991 } 4992 4993 /* 4994 * scsi_sense_sbuf() returns 0 for success and -1 for failure. 4995 */ 4996 #ifdef _KERNEL 4997 int 4998 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, 4999 scsi_sense_string_flags flags) 5000 #else /* !_KERNEL */ 5001 int 5002 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, 5003 struct sbuf *sb, scsi_sense_string_flags flags) 5004 #endif /* _KERNEL/!_KERNEL */ 5005 { 5006 struct scsi_sense_data *sense; 5007 struct scsi_inquiry_data *inq_data; 5008 #ifdef _KERNEL 5009 struct ccb_getdev *cgd; 5010 #endif /* _KERNEL */ 5011 char path_str[64]; 5012 5013 #ifndef _KERNEL 5014 if (device == NULL) 5015 return(-1); 5016 #endif /* !_KERNEL */ 5017 if ((csio == NULL) || (sb == NULL)) 5018 return(-1); 5019 5020 /* 5021 * If the CDB is a physical address, we can't deal with it.. 5022 */ 5023 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) 5024 flags &= ~SSS_FLAG_PRINT_COMMAND; 5025 5026 #ifdef _KERNEL 5027 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); 5028 #else /* !_KERNEL */ 5029 cam_path_string(device, path_str, sizeof(path_str)); 5030 #endif /* _KERNEL/!_KERNEL */ 5031 5032 #ifdef _KERNEL 5033 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 5034 return(-1); 5035 /* 5036 * Get the device information. 5037 */ 5038 xpt_setup_ccb(&cgd->ccb_h, 5039 csio->ccb_h.path, 5040 CAM_PRIORITY_NORMAL); 5041 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 5042 xpt_action((union ccb *)cgd); 5043 5044 /* 5045 * If the device is unconfigured, just pretend that it is a hard 5046 * drive. scsi_op_desc() needs this. 5047 */ 5048 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 5049 cgd->inq_data.device = T_DIRECT; 5050 5051 inq_data = &cgd->inq_data; 5052 5053 #else /* !_KERNEL */ 5054 5055 inq_data = &device->inq_data; 5056 5057 #endif /* _KERNEL/!_KERNEL */ 5058 5059 sense = NULL; 5060 5061 if (flags & SSS_FLAG_PRINT_COMMAND) { 5062 sbuf_cat(sb, path_str); 5063 5064 #ifdef _KERNEL 5065 scsi_command_string(csio, sb); 5066 #else /* !_KERNEL */ 5067 scsi_command_string(device, csio, sb); 5068 #endif /* _KERNEL/!_KERNEL */ 5069 sbuf_printf(sb, "\n"); 5070 } 5071 5072 /* 5073 * If the sense data is a physical pointer, forget it. 5074 */ 5075 if (csio->ccb_h.flags & CAM_SENSE_PTR) { 5076 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5077 #ifdef _KERNEL 5078 xpt_free_ccb((union ccb*)cgd); 5079 #endif /* _KERNEL/!_KERNEL */ 5080 return(-1); 5081 } else { 5082 /* 5083 * bcopy the pointer to avoid unaligned access 5084 * errors on finicky architectures. We don't 5085 * ensure that the sense data is pointer aligned. 5086 */ 5087 bcopy((struct scsi_sense_data **)&csio->sense_data, 5088 &sense, sizeof(struct scsi_sense_data *)); 5089 } 5090 } else { 5091 /* 5092 * If the physical sense flag is set, but the sense pointer 5093 * is not also set, we assume that the user is an idiot and 5094 * return. (Well, okay, it could be that somehow, the 5095 * entire csio is physical, but we would have probably core 5096 * dumped on one of the bogus pointer deferences above 5097 * already.) 5098 */ 5099 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5100 #ifdef _KERNEL 5101 xpt_free_ccb((union ccb*)cgd); 5102 #endif /* _KERNEL/!_KERNEL */ 5103 return(-1); 5104 } else 5105 sense = &csio->sense_data; 5106 } 5107 5108 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, 5109 path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len); 5110 5111 #ifdef _KERNEL 5112 xpt_free_ccb((union ccb*)cgd); 5113 #endif /* _KERNEL/!_KERNEL */ 5114 return(0); 5115 } 5116 5117 #ifdef _KERNEL 5118 char * 5119 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) 5120 #else /* !_KERNEL */ 5121 char * 5122 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, 5123 char *str, int str_len) 5124 #endif /* _KERNEL/!_KERNEL */ 5125 { 5126 struct sbuf sb; 5127 5128 sbuf_new(&sb, str, str_len, 0); 5129 5130 #ifdef _KERNEL 5131 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5132 #else /* !_KERNEL */ 5133 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5134 #endif /* _KERNEL/!_KERNEL */ 5135 5136 sbuf_finish(&sb); 5137 5138 return(sbuf_data(&sb)); 5139 } 5140 5141 #ifdef _KERNEL 5142 void 5143 scsi_sense_print(struct ccb_scsiio *csio) 5144 { 5145 struct sbuf sb; 5146 char str[512]; 5147 5148 sbuf_new(&sb, str, sizeof(str), 0); 5149 5150 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5151 5152 sbuf_finish(&sb); 5153 5154 sbuf_putbuf(&sb); 5155 } 5156 5157 #else /* !_KERNEL */ 5158 void 5159 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, 5160 FILE *ofile) 5161 { 5162 struct sbuf sb; 5163 char str[512]; 5164 5165 if ((device == NULL) || (csio == NULL) || (ofile == NULL)) 5166 return; 5167 5168 sbuf_new(&sb, str, sizeof(str), 0); 5169 5170 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5171 5172 sbuf_finish(&sb); 5173 5174 fprintf(ofile, "%s", sbuf_data(&sb)); 5175 } 5176 5177 #endif /* _KERNEL/!_KERNEL */ 5178 5179 /* 5180 * Extract basic sense information. This is backward-compatible with the 5181 * previous implementation. For new implementations, 5182 * scsi_extract_sense_len() is recommended. 5183 */ 5184 void 5185 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, 5186 int *sense_key, int *asc, int *ascq) 5187 { 5188 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, 5189 sense_key, asc, ascq, /*show_errors*/ 0); 5190 } 5191 5192 /* 5193 * Extract basic sense information from SCSI I/O CCB structure. 5194 */ 5195 int 5196 scsi_extract_sense_ccb(union ccb *ccb, 5197 int *error_code, int *sense_key, int *asc, int *ascq) 5198 { 5199 struct scsi_sense_data *sense_data; 5200 5201 /* Make sure there are some sense data we can access. */ 5202 if (ccb->ccb_h.func_code != XPT_SCSI_IO || 5203 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR || 5204 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) || 5205 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 || 5206 (ccb->ccb_h.flags & CAM_SENSE_PHYS)) 5207 return (0); 5208 5209 if (ccb->ccb_h.flags & CAM_SENSE_PTR) 5210 bcopy((struct scsi_sense_data **)&ccb->csio.sense_data, 5211 &sense_data, sizeof(struct scsi_sense_data *)); 5212 else 5213 sense_data = &ccb->csio.sense_data; 5214 scsi_extract_sense_len(sense_data, 5215 ccb->csio.sense_len - ccb->csio.sense_resid, 5216 error_code, sense_key, asc, ascq, 1); 5217 if (*error_code == -1) 5218 return (0); 5219 return (1); 5220 } 5221 5222 /* 5223 * Extract basic sense information. If show_errors is set, sense values 5224 * will be set to -1 if they are not present. 5225 */ 5226 void 5227 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, 5228 int *error_code, int *sense_key, int *asc, int *ascq, 5229 int show_errors) 5230 { 5231 /* 5232 * If we have no length, we have no sense. 5233 */ 5234 if (sense_len == 0) { 5235 if (show_errors == 0) { 5236 *error_code = 0; 5237 *sense_key = 0; 5238 *asc = 0; 5239 *ascq = 0; 5240 } else { 5241 *error_code = -1; 5242 *sense_key = -1; 5243 *asc = -1; 5244 *ascq = -1; 5245 } 5246 return; 5247 } 5248 5249 *error_code = sense_data->error_code & SSD_ERRCODE; 5250 5251 switch (*error_code) { 5252 case SSD_DESC_CURRENT_ERROR: 5253 case SSD_DESC_DEFERRED_ERROR: { 5254 struct scsi_sense_data_desc *sense; 5255 5256 sense = (struct scsi_sense_data_desc *)sense_data; 5257 5258 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) 5259 *sense_key = sense->sense_key & SSD_KEY; 5260 else 5261 *sense_key = (show_errors) ? -1 : 0; 5262 5263 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) 5264 *asc = sense->add_sense_code; 5265 else 5266 *asc = (show_errors) ? -1 : 0; 5267 5268 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) 5269 *ascq = sense->add_sense_code_qual; 5270 else 5271 *ascq = (show_errors) ? -1 : 0; 5272 break; 5273 } 5274 case SSD_CURRENT_ERROR: 5275 case SSD_DEFERRED_ERROR: 5276 default: { 5277 struct scsi_sense_data_fixed *sense; 5278 5279 sense = (struct scsi_sense_data_fixed *)sense_data; 5280 5281 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) 5282 *sense_key = sense->flags & SSD_KEY; 5283 else 5284 *sense_key = (show_errors) ? -1 : 0; 5285 5286 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) 5287 && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) 5288 *asc = sense->add_sense_code; 5289 else 5290 *asc = (show_errors) ? -1 : 0; 5291 5292 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) 5293 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) 5294 *ascq = sense->add_sense_code_qual; 5295 else 5296 *ascq = (show_errors) ? -1 : 0; 5297 break; 5298 } 5299 } 5300 } 5301 5302 int 5303 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, 5304 int show_errors) 5305 { 5306 int error_code, sense_key, asc, ascq; 5307 5308 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5309 &sense_key, &asc, &ascq, show_errors); 5310 5311 return (sense_key); 5312 } 5313 5314 int 5315 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, 5316 int show_errors) 5317 { 5318 int error_code, sense_key, asc, ascq; 5319 5320 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5321 &sense_key, &asc, &ascq, show_errors); 5322 5323 return (asc); 5324 } 5325 5326 int 5327 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, 5328 int show_errors) 5329 { 5330 int error_code, sense_key, asc, ascq; 5331 5332 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5333 &sense_key, &asc, &ascq, show_errors); 5334 5335 return (ascq); 5336 } 5337 5338 /* 5339 * This function currently requires at least 36 bytes, or 5340 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this 5341 * function needs more or less data in the future, another length should be 5342 * defined in scsi_all.h to indicate the minimum amount of data necessary 5343 * for this routine to function properly. 5344 */ 5345 void 5346 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5347 { 5348 u_int8_t type; 5349 char *dtype, *qtype; 5350 5351 type = SID_TYPE(inq_data); 5352 5353 /* 5354 * Figure out basic device type and qualifier. 5355 */ 5356 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { 5357 qtype = " (vendor-unique qualifier)"; 5358 } else { 5359 switch (SID_QUAL(inq_data)) { 5360 case SID_QUAL_LU_CONNECTED: 5361 qtype = ""; 5362 break; 5363 5364 case SID_QUAL_LU_OFFLINE: 5365 qtype = " (offline)"; 5366 break; 5367 5368 case SID_QUAL_RSVD: 5369 qtype = " (reserved qualifier)"; 5370 break; 5371 default: 5372 case SID_QUAL_BAD_LU: 5373 qtype = " (LUN not supported)"; 5374 break; 5375 } 5376 } 5377 5378 switch (type) { 5379 case T_DIRECT: 5380 dtype = "Direct Access"; 5381 break; 5382 case T_SEQUENTIAL: 5383 dtype = "Sequential Access"; 5384 break; 5385 case T_PRINTER: 5386 dtype = "Printer"; 5387 break; 5388 case T_PROCESSOR: 5389 dtype = "Processor"; 5390 break; 5391 case T_WORM: 5392 dtype = "WORM"; 5393 break; 5394 case T_CDROM: 5395 dtype = "CD-ROM"; 5396 break; 5397 case T_SCANNER: 5398 dtype = "Scanner"; 5399 break; 5400 case T_OPTICAL: 5401 dtype = "Optical"; 5402 break; 5403 case T_CHANGER: 5404 dtype = "Changer"; 5405 break; 5406 case T_COMM: 5407 dtype = "Communication"; 5408 break; 5409 case T_STORARRAY: 5410 dtype = "Storage Array"; 5411 break; 5412 case T_ENCLOSURE: 5413 dtype = "Enclosure Services"; 5414 break; 5415 case T_RBC: 5416 dtype = "Simplified Direct Access"; 5417 break; 5418 case T_OCRW: 5419 dtype = "Optical Card Read/Write"; 5420 break; 5421 case T_OSD: 5422 dtype = "Object-Based Storage"; 5423 break; 5424 case T_ADC: 5425 dtype = "Automation/Drive Interface"; 5426 break; 5427 case T_ZBC_HM: 5428 dtype = "Host Managed Zoned Block"; 5429 break; 5430 case T_NODEVICE: 5431 dtype = "Uninstalled"; 5432 break; 5433 default: 5434 dtype = "unknown"; 5435 break; 5436 } 5437 5438 scsi_print_inquiry_short_sbuf(sb, inq_data); 5439 5440 sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype); 5441 5442 if (SID_ANSI_REV(inq_data) == SCSI_REV_0) 5443 sbuf_printf(sb, "SCSI "); 5444 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) { 5445 sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data)); 5446 } else { 5447 sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2); 5448 } 5449 sbuf_printf(sb, "device%s\n", qtype); 5450 } 5451 5452 void 5453 scsi_print_inquiry(struct scsi_inquiry_data *inq_data) 5454 { 5455 struct sbuf sb; 5456 char buffer[120]; 5457 5458 sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN); 5459 scsi_print_inquiry_sbuf(&sb, inq_data); 5460 sbuf_finish(&sb); 5461 sbuf_putbuf(&sb); 5462 } 5463 5464 void 5465 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5466 { 5467 5468 sbuf_printf(sb, "<"); 5469 cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0); 5470 sbuf_printf(sb, " "); 5471 cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0); 5472 sbuf_printf(sb, " "); 5473 cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0); 5474 sbuf_printf(sb, "> "); 5475 } 5476 5477 void 5478 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data) 5479 { 5480 struct sbuf sb; 5481 char buffer[84]; 5482 5483 sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN); 5484 scsi_print_inquiry_short_sbuf(&sb, inq_data); 5485 sbuf_finish(&sb); 5486 sbuf_putbuf(&sb); 5487 } 5488 5489 /* 5490 * Table of syncrates that don't follow the "divisible by 4" 5491 * rule. This table will be expanded in future SCSI specs. 5492 */ 5493 static struct { 5494 u_int period_factor; 5495 u_int period; /* in 100ths of ns */ 5496 } scsi_syncrates[] = { 5497 { 0x08, 625 }, /* FAST-160 */ 5498 { 0x09, 1250 }, /* FAST-80 */ 5499 { 0x0a, 2500 }, /* FAST-40 40MHz */ 5500 { 0x0b, 3030 }, /* FAST-40 33MHz */ 5501 { 0x0c, 5000 } /* FAST-20 */ 5502 }; 5503 5504 /* 5505 * Return the frequency in kHz corresponding to the given 5506 * sync period factor. 5507 */ 5508 u_int 5509 scsi_calc_syncsrate(u_int period_factor) 5510 { 5511 u_int i; 5512 u_int num_syncrates; 5513 5514 /* 5515 * It's a bug if period is zero, but if it is anyway, don't 5516 * die with a divide fault- instead return something which 5517 * 'approximates' async 5518 */ 5519 if (period_factor == 0) { 5520 return (3300); 5521 } 5522 5523 num_syncrates = nitems(scsi_syncrates); 5524 /* See if the period is in the "exception" table */ 5525 for (i = 0; i < num_syncrates; i++) { 5526 if (period_factor == scsi_syncrates[i].period_factor) { 5527 /* Period in kHz */ 5528 return (100000000 / scsi_syncrates[i].period); 5529 } 5530 } 5531 5532 /* 5533 * Wasn't in the table, so use the standard 5534 * 4 times conversion. 5535 */ 5536 return (10000000 / (period_factor * 4 * 10)); 5537 } 5538 5539 /* 5540 * Return the SCSI sync parameter that corresponds to 5541 * the passed in period in 10ths of ns. 5542 */ 5543 u_int 5544 scsi_calc_syncparam(u_int period) 5545 { 5546 u_int i; 5547 u_int num_syncrates; 5548 5549 if (period == 0) 5550 return (~0); /* Async */ 5551 5552 /* Adjust for exception table being in 100ths. */ 5553 period *= 10; 5554 num_syncrates = nitems(scsi_syncrates); 5555 /* See if the period is in the "exception" table */ 5556 for (i = 0; i < num_syncrates; i++) { 5557 if (period <= scsi_syncrates[i].period) { 5558 /* Period in 100ths of ns */ 5559 return (scsi_syncrates[i].period_factor); 5560 } 5561 } 5562 5563 /* 5564 * Wasn't in the table, so use the standard 5565 * 1/4 period in ns conversion. 5566 */ 5567 return (period/400); 5568 } 5569 5570 int 5571 scsi_devid_is_naa_ieee_reg(uint8_t *bufp) 5572 { 5573 struct scsi_vpd_id_descriptor *descr; 5574 struct scsi_vpd_id_naa_basic *naa; 5575 int n; 5576 5577 descr = (struct scsi_vpd_id_descriptor *)bufp; 5578 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; 5579 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5580 return 0; 5581 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) 5582 return 0; 5583 n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT; 5584 if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG) 5585 return 0; 5586 return 1; 5587 } 5588 5589 int 5590 scsi_devid_is_sas_target(uint8_t *bufp) 5591 { 5592 struct scsi_vpd_id_descriptor *descr; 5593 5594 descr = (struct scsi_vpd_id_descriptor *)bufp; 5595 if (!scsi_devid_is_naa_ieee_reg(bufp)) 5596 return 0; 5597 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ 5598 return 0; 5599 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) 5600 return 0; 5601 return 1; 5602 } 5603 5604 int 5605 scsi_devid_is_lun_eui64(uint8_t *bufp) 5606 { 5607 struct scsi_vpd_id_descriptor *descr; 5608 5609 descr = (struct scsi_vpd_id_descriptor *)bufp; 5610 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5611 return 0; 5612 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64) 5613 return 0; 5614 return 1; 5615 } 5616 5617 int 5618 scsi_devid_is_lun_naa(uint8_t *bufp) 5619 { 5620 struct scsi_vpd_id_descriptor *descr; 5621 5622 descr = (struct scsi_vpd_id_descriptor *)bufp; 5623 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5624 return 0; 5625 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5626 return 0; 5627 return 1; 5628 } 5629 5630 int 5631 scsi_devid_is_lun_t10(uint8_t *bufp) 5632 { 5633 struct scsi_vpd_id_descriptor *descr; 5634 5635 descr = (struct scsi_vpd_id_descriptor *)bufp; 5636 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5637 return 0; 5638 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10) 5639 return 0; 5640 return 1; 5641 } 5642 5643 int 5644 scsi_devid_is_lun_name(uint8_t *bufp) 5645 { 5646 struct scsi_vpd_id_descriptor *descr; 5647 5648 descr = (struct scsi_vpd_id_descriptor *)bufp; 5649 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5650 return 0; 5651 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME) 5652 return 0; 5653 return 1; 5654 } 5655 5656 int 5657 scsi_devid_is_lun_md5(uint8_t *bufp) 5658 { 5659 struct scsi_vpd_id_descriptor *descr; 5660 5661 descr = (struct scsi_vpd_id_descriptor *)bufp; 5662 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5663 return 0; 5664 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID) 5665 return 0; 5666 return 1; 5667 } 5668 5669 int 5670 scsi_devid_is_lun_uuid(uint8_t *bufp) 5671 { 5672 struct scsi_vpd_id_descriptor *descr; 5673 5674 descr = (struct scsi_vpd_id_descriptor *)bufp; 5675 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5676 return 0; 5677 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID) 5678 return 0; 5679 return 1; 5680 } 5681 5682 int 5683 scsi_devid_is_port_naa(uint8_t *bufp) 5684 { 5685 struct scsi_vpd_id_descriptor *descr; 5686 5687 descr = (struct scsi_vpd_id_descriptor *)bufp; 5688 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT) 5689 return 0; 5690 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5691 return 0; 5692 return 1; 5693 } 5694 5695 struct scsi_vpd_id_descriptor * 5696 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, 5697 scsi_devid_checkfn_t ck_fn) 5698 { 5699 uint8_t *desc_buf_end; 5700 5701 desc_buf_end = (uint8_t *)desc + len; 5702 5703 for (; desc->identifier <= desc_buf_end && 5704 desc->identifier + desc->length <= desc_buf_end; 5705 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier 5706 + desc->length)) { 5707 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) 5708 return (desc); 5709 } 5710 return (NULL); 5711 } 5712 5713 struct scsi_vpd_id_descriptor * 5714 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, 5715 scsi_devid_checkfn_t ck_fn) 5716 { 5717 uint32_t len; 5718 5719 if (page_len < sizeof(*id)) 5720 return (NULL); 5721 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id)); 5722 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *) 5723 id->desc_list, len, ck_fn)); 5724 } 5725 5726 int 5727 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, 5728 uint32_t valid_len) 5729 { 5730 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) { 5731 case SCSI_PROTO_FC: { 5732 struct scsi_transportid_fcp *fcp; 5733 uint64_t n_port_name; 5734 5735 fcp = (struct scsi_transportid_fcp *)hdr; 5736 5737 n_port_name = scsi_8btou64(fcp->n_port_name); 5738 5739 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name); 5740 break; 5741 } 5742 case SCSI_PROTO_SPI: { 5743 struct scsi_transportid_spi *spi; 5744 5745 spi = (struct scsi_transportid_spi *)hdr; 5746 5747 sbuf_printf(sb, "SPI address: %u,%u", 5748 scsi_2btoul(spi->scsi_addr), 5749 scsi_2btoul(spi->rel_trgt_port_id)); 5750 break; 5751 } 5752 case SCSI_PROTO_SSA: 5753 /* 5754 * XXX KDM there is no transport ID defined in SPC-4 for 5755 * SSA. 5756 */ 5757 break; 5758 case SCSI_PROTO_1394: { 5759 struct scsi_transportid_1394 *sbp; 5760 uint64_t eui64; 5761 5762 sbp = (struct scsi_transportid_1394 *)hdr; 5763 5764 eui64 = scsi_8btou64(sbp->eui64); 5765 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64); 5766 break; 5767 } 5768 case SCSI_PROTO_RDMA: { 5769 struct scsi_transportid_rdma *rdma; 5770 unsigned int i; 5771 5772 rdma = (struct scsi_transportid_rdma *)hdr; 5773 5774 sbuf_printf(sb, "RDMA address: 0x"); 5775 for (i = 0; i < sizeof(rdma->initiator_port_id); i++) 5776 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]); 5777 break; 5778 } 5779 case SCSI_PROTO_ISCSI: { 5780 uint32_t add_len, i; 5781 uint8_t *iscsi_name = NULL; 5782 int nul_found = 0; 5783 5784 sbuf_printf(sb, "iSCSI address: "); 5785 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5786 SCSI_TRN_ISCSI_FORMAT_DEVICE) { 5787 struct scsi_transportid_iscsi_device *dev; 5788 5789 dev = (struct scsi_transportid_iscsi_device *)hdr; 5790 5791 /* 5792 * Verify how much additional data we really have. 5793 */ 5794 add_len = scsi_2btoul(dev->additional_length); 5795 add_len = MIN(add_len, valid_len - 5796 __offsetof(struct scsi_transportid_iscsi_device, 5797 iscsi_name)); 5798 iscsi_name = &dev->iscsi_name[0]; 5799 5800 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5801 SCSI_TRN_ISCSI_FORMAT_PORT) { 5802 struct scsi_transportid_iscsi_port *port; 5803 5804 port = (struct scsi_transportid_iscsi_port *)hdr; 5805 5806 add_len = scsi_2btoul(port->additional_length); 5807 add_len = MIN(add_len, valid_len - 5808 __offsetof(struct scsi_transportid_iscsi_port, 5809 iscsi_name)); 5810 iscsi_name = &port->iscsi_name[0]; 5811 } else { 5812 sbuf_printf(sb, "unknown format %x", 5813 (hdr->format_protocol & 5814 SCSI_TRN_FORMAT_MASK) >> 5815 SCSI_TRN_FORMAT_SHIFT); 5816 break; 5817 } 5818 if (add_len == 0) { 5819 sbuf_printf(sb, "not enough data"); 5820 break; 5821 } 5822 /* 5823 * This is supposed to be a NUL-terminated ASCII 5824 * string, but you never know. So we're going to 5825 * check. We need to do this because there is no 5826 * sbuf equivalent of strncat(). 5827 */ 5828 for (i = 0; i < add_len; i++) { 5829 if (iscsi_name[i] == '\0') { 5830 nul_found = 1; 5831 break; 5832 } 5833 } 5834 /* 5835 * If there is a NUL in the name, we can just use 5836 * sbuf_cat(). Otherwise we need to use sbuf_bcat(). 5837 */ 5838 if (nul_found != 0) 5839 sbuf_cat(sb, iscsi_name); 5840 else 5841 sbuf_bcat(sb, iscsi_name, add_len); 5842 break; 5843 } 5844 case SCSI_PROTO_SAS: { 5845 struct scsi_transportid_sas *sas; 5846 uint64_t sas_addr; 5847 5848 sas = (struct scsi_transportid_sas *)hdr; 5849 5850 sas_addr = scsi_8btou64(sas->sas_address); 5851 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr); 5852 break; 5853 } 5854 case SCSI_PROTO_ADITP: 5855 case SCSI_PROTO_ATA: 5856 case SCSI_PROTO_UAS: 5857 /* 5858 * No Transport ID format for ADI, ATA or USB is defined in 5859 * SPC-4. 5860 */ 5861 sbuf_printf(sb, "No known Transport ID format for protocol " 5862 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5863 break; 5864 case SCSI_PROTO_SOP: { 5865 struct scsi_transportid_sop *sop; 5866 struct scsi_sop_routing_id_norm *rid; 5867 5868 sop = (struct scsi_transportid_sop *)hdr; 5869 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id; 5870 5871 /* 5872 * Note that there is no alternate format specified in SPC-4 5873 * for the PCIe routing ID, so we don't really have a way 5874 * to know whether the second byte of the routing ID is 5875 * a device and function or just a function. So we just 5876 * assume bus,device,function. 5877 */ 5878 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u", 5879 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT, 5880 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX); 5881 break; 5882 } 5883 case SCSI_PROTO_NONE: 5884 default: 5885 sbuf_printf(sb, "Unknown protocol %#x", 5886 hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5887 break; 5888 } 5889 5890 return (0); 5891 } 5892 5893 struct scsi_nv scsi_proto_map[] = { 5894 { "fcp", SCSI_PROTO_FC }, 5895 { "spi", SCSI_PROTO_SPI }, 5896 { "ssa", SCSI_PROTO_SSA }, 5897 { "sbp", SCSI_PROTO_1394 }, 5898 { "1394", SCSI_PROTO_1394 }, 5899 { "srp", SCSI_PROTO_RDMA }, 5900 { "rdma", SCSI_PROTO_RDMA }, 5901 { "iscsi", SCSI_PROTO_ISCSI }, 5902 { "iqn", SCSI_PROTO_ISCSI }, 5903 { "sas", SCSI_PROTO_SAS }, 5904 { "aditp", SCSI_PROTO_ADITP }, 5905 { "ata", SCSI_PROTO_ATA }, 5906 { "uas", SCSI_PROTO_UAS }, 5907 { "usb", SCSI_PROTO_UAS }, 5908 { "sop", SCSI_PROTO_SOP } 5909 }; 5910 5911 const char * 5912 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value) 5913 { 5914 int i; 5915 5916 for (i = 0; i < num_table_entries; i++) { 5917 if (table[i].value == value) 5918 return (table[i].name); 5919 } 5920 5921 return (NULL); 5922 } 5923 5924 /* 5925 * Given a name/value table, find a value matching the given name. 5926 * Return values: 5927 * SCSI_NV_FOUND - match found 5928 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact 5929 * SCSI_NV_NOT_FOUND - no match found 5930 */ 5931 scsi_nv_status 5932 scsi_get_nv(struct scsi_nv *table, int num_table_entries, 5933 char *name, int *table_entry, scsi_nv_flags flags) 5934 { 5935 int i, num_matches = 0; 5936 5937 for (i = 0; i < num_table_entries; i++) { 5938 size_t table_len, name_len; 5939 5940 table_len = strlen(table[i].name); 5941 name_len = strlen(name); 5942 5943 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0) 5944 && (strncasecmp(table[i].name, name, name_len) == 0)) 5945 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0) 5946 && (strncmp(table[i].name, name, name_len) == 0))) { 5947 *table_entry = i; 5948 5949 /* 5950 * Check for an exact match. If we have the same 5951 * number of characters in the table as the argument, 5952 * and we already know they're the same, we have 5953 * an exact match. 5954 */ 5955 if (table_len == name_len) 5956 return (SCSI_NV_FOUND); 5957 5958 /* 5959 * Otherwise, bump up the number of matches. We'll 5960 * see later how many we have. 5961 */ 5962 num_matches++; 5963 } 5964 } 5965 5966 if (num_matches > 1) 5967 return (SCSI_NV_AMBIGUOUS); 5968 else if (num_matches == 1) 5969 return (SCSI_NV_FOUND); 5970 else 5971 return (SCSI_NV_NOT_FOUND); 5972 } 5973 5974 /* 5975 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are 5976 * all 64-bit numbers, the code is similar. 5977 */ 5978 int 5979 scsi_parse_transportid_64bit(int proto_id, char *id_str, 5980 struct scsi_transportid_header **hdr, 5981 unsigned int *alloc_len, 5982 #ifdef _KERNEL 5983 struct malloc_type *type, int flags, 5984 #endif 5985 char *error_str, int error_str_len) 5986 { 5987 uint64_t value; 5988 char *endptr; 5989 int retval; 5990 size_t alloc_size; 5991 5992 retval = 0; 5993 5994 value = strtouq(id_str, &endptr, 0); 5995 if (*endptr != '\0') { 5996 if (error_str != NULL) { 5997 snprintf(error_str, error_str_len, "%s: error " 5998 "parsing ID %s, 64-bit number required", 5999 __func__, id_str); 6000 } 6001 retval = 1; 6002 goto bailout; 6003 } 6004 6005 switch (proto_id) { 6006 case SCSI_PROTO_FC: 6007 alloc_size = sizeof(struct scsi_transportid_fcp); 6008 break; 6009 case SCSI_PROTO_1394: 6010 alloc_size = sizeof(struct scsi_transportid_1394); 6011 break; 6012 case SCSI_PROTO_SAS: 6013 alloc_size = sizeof(struct scsi_transportid_sas); 6014 break; 6015 default: 6016 if (error_str != NULL) { 6017 snprintf(error_str, error_str_len, "%s: unsupported " 6018 "protocol %d", __func__, proto_id); 6019 } 6020 retval = 1; 6021 goto bailout; 6022 break; /* NOTREACHED */ 6023 } 6024 #ifdef _KERNEL 6025 *hdr = malloc(alloc_size, type, flags); 6026 #else /* _KERNEL */ 6027 *hdr = malloc(alloc_size); 6028 #endif /*_KERNEL */ 6029 if (*hdr == NULL) { 6030 if (error_str != NULL) { 6031 snprintf(error_str, error_str_len, "%s: unable to " 6032 "allocate %zu bytes", __func__, alloc_size); 6033 } 6034 retval = 1; 6035 goto bailout; 6036 } 6037 6038 *alloc_len = alloc_size; 6039 6040 bzero(*hdr, alloc_size); 6041 6042 switch (proto_id) { 6043 case SCSI_PROTO_FC: { 6044 struct scsi_transportid_fcp *fcp; 6045 6046 fcp = (struct scsi_transportid_fcp *)(*hdr); 6047 fcp->format_protocol = SCSI_PROTO_FC | 6048 SCSI_TRN_FCP_FORMAT_DEFAULT; 6049 scsi_u64to8b(value, fcp->n_port_name); 6050 break; 6051 } 6052 case SCSI_PROTO_1394: { 6053 struct scsi_transportid_1394 *sbp; 6054 6055 sbp = (struct scsi_transportid_1394 *)(*hdr); 6056 sbp->format_protocol = SCSI_PROTO_1394 | 6057 SCSI_TRN_1394_FORMAT_DEFAULT; 6058 scsi_u64to8b(value, sbp->eui64); 6059 break; 6060 } 6061 case SCSI_PROTO_SAS: { 6062 struct scsi_transportid_sas *sas; 6063 6064 sas = (struct scsi_transportid_sas *)(*hdr); 6065 sas->format_protocol = SCSI_PROTO_SAS | 6066 SCSI_TRN_SAS_FORMAT_DEFAULT; 6067 scsi_u64to8b(value, sas->sas_address); 6068 break; 6069 } 6070 default: 6071 break; 6072 } 6073 bailout: 6074 return (retval); 6075 } 6076 6077 /* 6078 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port 6079 */ 6080 int 6081 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, 6082 unsigned int *alloc_len, 6083 #ifdef _KERNEL 6084 struct malloc_type *type, int flags, 6085 #endif 6086 char *error_str, int error_str_len) 6087 { 6088 unsigned long scsi_addr, target_port; 6089 struct scsi_transportid_spi *spi; 6090 char *tmpstr, *endptr; 6091 int retval; 6092 6093 retval = 0; 6094 6095 tmpstr = strsep(&id_str, ","); 6096 if (tmpstr == NULL) { 6097 if (error_str != NULL) { 6098 snprintf(error_str, error_str_len, 6099 "%s: no ID found", __func__); 6100 } 6101 retval = 1; 6102 goto bailout; 6103 } 6104 scsi_addr = strtoul(tmpstr, &endptr, 0); 6105 if (*endptr != '\0') { 6106 if (error_str != NULL) { 6107 snprintf(error_str, error_str_len, "%s: error " 6108 "parsing SCSI ID %s, number required", 6109 __func__, tmpstr); 6110 } 6111 retval = 1; 6112 goto bailout; 6113 } 6114 6115 if (id_str == NULL) { 6116 if (error_str != NULL) { 6117 snprintf(error_str, error_str_len, "%s: no relative " 6118 "target port found", __func__); 6119 } 6120 retval = 1; 6121 goto bailout; 6122 } 6123 6124 target_port = strtoul(id_str, &endptr, 0); 6125 if (*endptr != '\0') { 6126 if (error_str != NULL) { 6127 snprintf(error_str, error_str_len, "%s: error " 6128 "parsing relative target port %s, number " 6129 "required", __func__, id_str); 6130 } 6131 retval = 1; 6132 goto bailout; 6133 } 6134 #ifdef _KERNEL 6135 spi = malloc(sizeof(*spi), type, flags); 6136 #else 6137 spi = malloc(sizeof(*spi)); 6138 #endif 6139 if (spi == NULL) { 6140 if (error_str != NULL) { 6141 snprintf(error_str, error_str_len, "%s: unable to " 6142 "allocate %zu bytes", __func__, 6143 sizeof(*spi)); 6144 } 6145 retval = 1; 6146 goto bailout; 6147 } 6148 *alloc_len = sizeof(*spi); 6149 bzero(spi, sizeof(*spi)); 6150 6151 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT; 6152 scsi_ulto2b(scsi_addr, spi->scsi_addr); 6153 scsi_ulto2b(target_port, spi->rel_trgt_port_id); 6154 6155 *hdr = (struct scsi_transportid_header *)spi; 6156 bailout: 6157 return (retval); 6158 } 6159 6160 /* 6161 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits, 6162 * optionally prefixed by "0x" or "0X". 6163 */ 6164 int 6165 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, 6166 unsigned int *alloc_len, 6167 #ifdef _KERNEL 6168 struct malloc_type *type, int flags, 6169 #endif 6170 char *error_str, int error_str_len) 6171 { 6172 struct scsi_transportid_rdma *rdma; 6173 int retval; 6174 size_t id_len, rdma_id_size; 6175 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN]; 6176 char *tmpstr; 6177 unsigned int i, j; 6178 6179 retval = 0; 6180 id_len = strlen(id_str); 6181 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN; 6182 6183 /* 6184 * Check the size. It needs to be either 32 or 34 characters long. 6185 */ 6186 if ((id_len != (rdma_id_size * 2)) 6187 && (id_len != ((rdma_id_size * 2) + 2))) { 6188 if (error_str != NULL) { 6189 snprintf(error_str, error_str_len, "%s: RDMA ID " 6190 "must be 32 hex digits (0x prefix " 6191 "optional), only %zu seen", __func__, id_len); 6192 } 6193 retval = 1; 6194 goto bailout; 6195 } 6196 6197 tmpstr = id_str; 6198 /* 6199 * If the user gave us 34 characters, the string needs to start 6200 * with '0x'. 6201 */ 6202 if (id_len == ((rdma_id_size * 2) + 2)) { 6203 if ((tmpstr[0] == '0') 6204 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) { 6205 tmpstr += 2; 6206 } else { 6207 if (error_str != NULL) { 6208 snprintf(error_str, error_str_len, "%s: RDMA " 6209 "ID prefix, if used, must be \"0x\", " 6210 "got %s", __func__, tmpstr); 6211 } 6212 retval = 1; 6213 goto bailout; 6214 } 6215 } 6216 bzero(rdma_id, sizeof(rdma_id)); 6217 6218 /* 6219 * Convert ASCII hex into binary bytes. There is no standard 6220 * 128-bit integer type, and so no strtou128t() routine to convert 6221 * from hex into a large integer. In the end, we're not going to 6222 * an integer, but rather to a byte array, so that and the fact 6223 * that we require the user to give us 32 hex digits simplifies the 6224 * logic. 6225 */ 6226 for (i = 0; i < (rdma_id_size * 2); i++) { 6227 int cur_shift; 6228 unsigned char c; 6229 6230 /* Increment the byte array one for every 2 hex digits */ 6231 j = i >> 1; 6232 6233 /* 6234 * The first digit in every pair is the most significant 6235 * 4 bits. The second is the least significant 4 bits. 6236 */ 6237 if ((i % 2) == 0) 6238 cur_shift = 4; 6239 else 6240 cur_shift = 0; 6241 6242 c = tmpstr[i]; 6243 /* Convert the ASCII hex character into a number */ 6244 if (isdigit(c)) 6245 c -= '0'; 6246 else if (isalpha(c)) 6247 c -= isupper(c) ? 'A' - 10 : 'a' - 10; 6248 else { 6249 if (error_str != NULL) { 6250 snprintf(error_str, error_str_len, "%s: " 6251 "RDMA ID must be hex digits, got " 6252 "invalid character %c", __func__, 6253 tmpstr[i]); 6254 } 6255 retval = 1; 6256 goto bailout; 6257 } 6258 /* 6259 * The converted number can't be less than 0; the type is 6260 * unsigned, and the subtraction logic will not give us 6261 * a negative number. So we only need to make sure that 6262 * the value is not greater than 0xf. (i.e. make sure the 6263 * user didn't give us a value like "0x12jklmno"). 6264 */ 6265 if (c > 0xf) { 6266 if (error_str != NULL) { 6267 snprintf(error_str, error_str_len, "%s: " 6268 "RDMA ID must be hex digits, got " 6269 "invalid character %c", __func__, 6270 tmpstr[i]); 6271 } 6272 retval = 1; 6273 goto bailout; 6274 } 6275 6276 rdma_id[j] |= c << cur_shift; 6277 } 6278 6279 #ifdef _KERNEL 6280 rdma = malloc(sizeof(*rdma), type, flags); 6281 #else 6282 rdma = malloc(sizeof(*rdma)); 6283 #endif 6284 if (rdma == NULL) { 6285 if (error_str != NULL) { 6286 snprintf(error_str, error_str_len, "%s: unable to " 6287 "allocate %zu bytes", __func__, 6288 sizeof(*rdma)); 6289 } 6290 retval = 1; 6291 goto bailout; 6292 } 6293 *alloc_len = sizeof(*rdma); 6294 bzero(rdma, *alloc_len); 6295 6296 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT; 6297 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN); 6298 6299 *hdr = (struct scsi_transportid_header *)rdma; 6300 6301 bailout: 6302 return (retval); 6303 } 6304 6305 /* 6306 * Parse an iSCSI name. The format is either just the name: 6307 * 6308 * iqn.2012-06.com.example:target0 6309 * or the name, separator and initiator session ID: 6310 * 6311 * iqn.2012-06.com.example:target0,i,0x123 6312 * 6313 * The separator format is exact. 6314 */ 6315 int 6316 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, 6317 unsigned int *alloc_len, 6318 #ifdef _KERNEL 6319 struct malloc_type *type, int flags, 6320 #endif 6321 char *error_str, int error_str_len) 6322 { 6323 size_t id_len, sep_len, id_size, name_len; 6324 int retval; 6325 unsigned int i, sep_pos, sep_found; 6326 const char *sep_template = ",i,0x"; 6327 const char *iqn_prefix = "iqn."; 6328 struct scsi_transportid_iscsi_device *iscsi; 6329 6330 retval = 0; 6331 sep_found = 0; 6332 6333 id_len = strlen(id_str); 6334 sep_len = strlen(sep_template); 6335 6336 /* 6337 * The separator is defined as exactly ',i,0x'. Any other commas, 6338 * or any other form, is an error. So look for a comma, and once 6339 * we find that, the next few characters must match the separator 6340 * exactly. Once we get through the separator, there should be at 6341 * least one character. 6342 */ 6343 for (i = 0, sep_pos = 0; i < id_len; i++) { 6344 if (sep_pos == 0) { 6345 if (id_str[i] == sep_template[sep_pos]) 6346 sep_pos++; 6347 6348 continue; 6349 } 6350 if (sep_pos < sep_len) { 6351 if (id_str[i] == sep_template[sep_pos]) { 6352 sep_pos++; 6353 continue; 6354 } 6355 if (error_str != NULL) { 6356 snprintf(error_str, error_str_len, "%s: " 6357 "invalid separator in iSCSI name " 6358 "\"%s\"", 6359 __func__, id_str); 6360 } 6361 retval = 1; 6362 goto bailout; 6363 } else { 6364 sep_found = 1; 6365 break; 6366 } 6367 } 6368 6369 /* 6370 * Check to see whether we have a separator but no digits after it. 6371 */ 6372 if ((sep_pos != 0) 6373 && (sep_found == 0)) { 6374 if (error_str != NULL) { 6375 snprintf(error_str, error_str_len, "%s: no digits " 6376 "found after separator in iSCSI name \"%s\"", 6377 __func__, id_str); 6378 } 6379 retval = 1; 6380 goto bailout; 6381 } 6382 6383 /* 6384 * The incoming ID string has the "iqn." prefix stripped off. We 6385 * need enough space for the base structure (the structures are the 6386 * same for the two iSCSI forms), the prefix, the ID string and a 6387 * terminating NUL. 6388 */ 6389 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1; 6390 6391 #ifdef _KERNEL 6392 iscsi = malloc(id_size, type, flags); 6393 #else 6394 iscsi = malloc(id_size); 6395 #endif 6396 if (iscsi == NULL) { 6397 if (error_str != NULL) { 6398 snprintf(error_str, error_str_len, "%s: unable to " 6399 "allocate %zu bytes", __func__, id_size); 6400 } 6401 retval = 1; 6402 goto bailout; 6403 } 6404 *alloc_len = id_size; 6405 bzero(iscsi, id_size); 6406 6407 iscsi->format_protocol = SCSI_PROTO_ISCSI; 6408 if (sep_found == 0) 6409 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE; 6410 else 6411 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT; 6412 name_len = id_size - sizeof(*iscsi); 6413 scsi_ulto2b(name_len, iscsi->additional_length); 6414 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str); 6415 6416 *hdr = (struct scsi_transportid_header *)iscsi; 6417 6418 bailout: 6419 return (retval); 6420 } 6421 6422 /* 6423 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be 6424 * of the form 'bus,device,function' or 'bus,function'. 6425 */ 6426 int 6427 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, 6428 unsigned int *alloc_len, 6429 #ifdef _KERNEL 6430 struct malloc_type *type, int flags, 6431 #endif 6432 char *error_str, int error_str_len) 6433 { 6434 struct scsi_transportid_sop *sop; 6435 unsigned long bus, device, function; 6436 char *tmpstr, *endptr; 6437 int retval, device_spec; 6438 6439 retval = 0; 6440 device_spec = 0; 6441 device = 0; 6442 6443 tmpstr = strsep(&id_str, ","); 6444 if ((tmpstr == NULL) 6445 || (*tmpstr == '\0')) { 6446 if (error_str != NULL) { 6447 snprintf(error_str, error_str_len, "%s: no ID found", 6448 __func__); 6449 } 6450 retval = 1; 6451 goto bailout; 6452 } 6453 bus = strtoul(tmpstr, &endptr, 0); 6454 if (*endptr != '\0') { 6455 if (error_str != NULL) { 6456 snprintf(error_str, error_str_len, "%s: error " 6457 "parsing PCIe bus %s, number required", 6458 __func__, tmpstr); 6459 } 6460 retval = 1; 6461 goto bailout; 6462 } 6463 if ((id_str == NULL) 6464 || (*id_str == '\0')) { 6465 if (error_str != NULL) { 6466 snprintf(error_str, error_str_len, "%s: no PCIe " 6467 "device or function found", __func__); 6468 } 6469 retval = 1; 6470 goto bailout; 6471 } 6472 tmpstr = strsep(&id_str, ","); 6473 function = strtoul(tmpstr, &endptr, 0); 6474 if (*endptr != '\0') { 6475 if (error_str != NULL) { 6476 snprintf(error_str, error_str_len, "%s: error " 6477 "parsing PCIe device/function %s, number " 6478 "required", __func__, tmpstr); 6479 } 6480 retval = 1; 6481 goto bailout; 6482 } 6483 /* 6484 * Check to see whether the user specified a third value. If so, 6485 * the second is the device. 6486 */ 6487 if (id_str != NULL) { 6488 if (*id_str == '\0') { 6489 if (error_str != NULL) { 6490 snprintf(error_str, error_str_len, "%s: " 6491 "no PCIe function found", __func__); 6492 } 6493 retval = 1; 6494 goto bailout; 6495 } 6496 device = function; 6497 device_spec = 1; 6498 function = strtoul(id_str, &endptr, 0); 6499 if (*endptr != '\0') { 6500 if (error_str != NULL) { 6501 snprintf(error_str, error_str_len, "%s: " 6502 "error parsing PCIe function %s, " 6503 "number required", __func__, id_str); 6504 } 6505 retval = 1; 6506 goto bailout; 6507 } 6508 } 6509 if (bus > SCSI_TRN_SOP_BUS_MAX) { 6510 if (error_str != NULL) { 6511 snprintf(error_str, error_str_len, "%s: bus value " 6512 "%lu greater than maximum %u", __func__, 6513 bus, SCSI_TRN_SOP_BUS_MAX); 6514 } 6515 retval = 1; 6516 goto bailout; 6517 } 6518 6519 if ((device_spec != 0) 6520 && (device > SCSI_TRN_SOP_DEV_MASK)) { 6521 if (error_str != NULL) { 6522 snprintf(error_str, error_str_len, "%s: device value " 6523 "%lu greater than maximum %u", __func__, 6524 device, SCSI_TRN_SOP_DEV_MAX); 6525 } 6526 retval = 1; 6527 goto bailout; 6528 } 6529 6530 if (((device_spec != 0) 6531 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX)) 6532 || ((device_spec == 0) 6533 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) { 6534 if (error_str != NULL) { 6535 snprintf(error_str, error_str_len, "%s: function value " 6536 "%lu greater than maximum %u", __func__, 6537 function, (device_spec == 0) ? 6538 SCSI_TRN_SOP_FUNC_ALT_MAX : 6539 SCSI_TRN_SOP_FUNC_NORM_MAX); 6540 } 6541 retval = 1; 6542 goto bailout; 6543 } 6544 6545 #ifdef _KERNEL 6546 sop = malloc(sizeof(*sop), type, flags); 6547 #else 6548 sop = malloc(sizeof(*sop)); 6549 #endif 6550 if (sop == NULL) { 6551 if (error_str != NULL) { 6552 snprintf(error_str, error_str_len, "%s: unable to " 6553 "allocate %zu bytes", __func__, sizeof(*sop)); 6554 } 6555 retval = 1; 6556 goto bailout; 6557 } 6558 *alloc_len = sizeof(*sop); 6559 bzero(sop, sizeof(*sop)); 6560 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT; 6561 if (device_spec != 0) { 6562 struct scsi_sop_routing_id_norm rid; 6563 6564 rid.bus = bus; 6565 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function; 6566 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6567 sizeof(sop->routing_id))); 6568 } else { 6569 struct scsi_sop_routing_id_alt rid; 6570 6571 rid.bus = bus; 6572 rid.function = function; 6573 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6574 sizeof(sop->routing_id))); 6575 } 6576 6577 *hdr = (struct scsi_transportid_header *)sop; 6578 bailout: 6579 return (retval); 6580 } 6581 6582 /* 6583 * transportid_str: NUL-terminated string with format: protcol,id 6584 * The ID is protocol specific. 6585 * hdr: Storage will be allocated for the transport ID. 6586 * alloc_len: The amount of memory allocated is returned here. 6587 * type: Malloc bucket (kernel only). 6588 * flags: Malloc flags (kernel only). 6589 * error_str: If non-NULL, it will contain error information (without 6590 * a terminating newline) if an error is returned. 6591 * error_str_len: Allocated length of the error string. 6592 * 6593 * Returns 0 for success, non-zero for failure. 6594 */ 6595 int 6596 scsi_parse_transportid(char *transportid_str, 6597 struct scsi_transportid_header **hdr, 6598 unsigned int *alloc_len, 6599 #ifdef _KERNEL 6600 struct malloc_type *type, int flags, 6601 #endif 6602 char *error_str, int error_str_len) 6603 { 6604 char *tmpstr; 6605 scsi_nv_status status; 6606 u_int num_proto_entries; 6607 int retval, table_entry; 6608 6609 retval = 0; 6610 table_entry = 0; 6611 6612 /* 6613 * We do allow a period as well as a comma to separate the protocol 6614 * from the ID string. This is to accommodate iSCSI names, which 6615 * start with "iqn.". 6616 */ 6617 tmpstr = strsep(&transportid_str, ",."); 6618 if (tmpstr == NULL) { 6619 if (error_str != NULL) { 6620 snprintf(error_str, error_str_len, 6621 "%s: transportid_str is NULL", __func__); 6622 } 6623 retval = 1; 6624 goto bailout; 6625 } 6626 6627 num_proto_entries = nitems(scsi_proto_map); 6628 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr, 6629 &table_entry, SCSI_NV_FLAG_IG_CASE); 6630 if (status != SCSI_NV_FOUND) { 6631 if (error_str != NULL) { 6632 snprintf(error_str, error_str_len, "%s: %s protocol " 6633 "name %s", __func__, 6634 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : 6635 "invalid", tmpstr); 6636 } 6637 retval = 1; 6638 goto bailout; 6639 } 6640 switch (scsi_proto_map[table_entry].value) { 6641 case SCSI_PROTO_FC: 6642 case SCSI_PROTO_1394: 6643 case SCSI_PROTO_SAS: 6644 retval = scsi_parse_transportid_64bit( 6645 scsi_proto_map[table_entry].value, transportid_str, hdr, 6646 alloc_len, 6647 #ifdef _KERNEL 6648 type, flags, 6649 #endif 6650 error_str, error_str_len); 6651 break; 6652 case SCSI_PROTO_SPI: 6653 retval = scsi_parse_transportid_spi(transportid_str, hdr, 6654 alloc_len, 6655 #ifdef _KERNEL 6656 type, flags, 6657 #endif 6658 error_str, error_str_len); 6659 break; 6660 case SCSI_PROTO_RDMA: 6661 retval = scsi_parse_transportid_rdma(transportid_str, hdr, 6662 alloc_len, 6663 #ifdef _KERNEL 6664 type, flags, 6665 #endif 6666 error_str, error_str_len); 6667 break; 6668 case SCSI_PROTO_ISCSI: 6669 retval = scsi_parse_transportid_iscsi(transportid_str, hdr, 6670 alloc_len, 6671 #ifdef _KERNEL 6672 type, flags, 6673 #endif 6674 error_str, error_str_len); 6675 break; 6676 case SCSI_PROTO_SOP: 6677 retval = scsi_parse_transportid_sop(transportid_str, hdr, 6678 alloc_len, 6679 #ifdef _KERNEL 6680 type, flags, 6681 #endif 6682 error_str, error_str_len); 6683 break; 6684 case SCSI_PROTO_SSA: 6685 case SCSI_PROTO_ADITP: 6686 case SCSI_PROTO_ATA: 6687 case SCSI_PROTO_UAS: 6688 case SCSI_PROTO_NONE: 6689 default: 6690 /* 6691 * There is no format defined for a Transport ID for these 6692 * protocols. So even if the user gives us something, we 6693 * have no way to turn it into a standard SCSI Transport ID. 6694 */ 6695 retval = 1; 6696 if (error_str != NULL) { 6697 snprintf(error_str, error_str_len, "%s: no Transport " 6698 "ID format exists for protocol %s", 6699 __func__, tmpstr); 6700 } 6701 goto bailout; 6702 break; /* NOTREACHED */ 6703 } 6704 bailout: 6705 return (retval); 6706 } 6707 6708 struct scsi_attrib_table_entry scsi_mam_attr_table[] = { 6709 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6710 "Remaining Capacity in Partition", 6711 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL }, 6712 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6713 "Maximum Capacity in Partition", 6714 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6715 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX, 6716 "TapeAlert Flags", 6717 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6718 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE, 6719 "Load Count", 6720 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6721 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE, 6722 "MAM Space Remaining", 6723 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6724 /*parse_str*/ NULL }, 6725 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6726 "Assigning Organization", 6727 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6728 /*parse_str*/ NULL }, 6729 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6730 "Format Density Code", 6731 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6732 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE, 6733 "Initialization Count", 6734 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6735 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE, 6736 "Volume Identifier", 6737 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6738 /*parse_str*/ NULL }, 6739 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX, 6740 "Volume Change Reference", 6741 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6742 /*parse_str*/ NULL }, 6743 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE, 6744 "Device Vendor/Serial at Last Load", 6745 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6746 /*parse_str*/ NULL }, 6747 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE, 6748 "Device Vendor/Serial at Last Load - 1", 6749 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6750 /*parse_str*/ NULL }, 6751 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE, 6752 "Device Vendor/Serial at Last Load - 2", 6753 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6754 /*parse_str*/ NULL }, 6755 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE, 6756 "Device Vendor/Serial at Last Load - 3", 6757 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6758 /*parse_str*/ NULL }, 6759 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE, 6760 "Total MB Written in Medium Life", 6761 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6762 /*parse_str*/ NULL }, 6763 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE, 6764 "Total MB Read in Medium Life", 6765 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6766 /*parse_str*/ NULL }, 6767 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE, 6768 "Total MB Written in Current/Last Load", 6769 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6770 /*parse_str*/ NULL }, 6771 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE, 6772 "Total MB Read in Current/Last Load", 6773 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6774 /*parse_str*/ NULL }, 6775 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6776 "Logical Position of First Encrypted Block", 6777 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6778 /*parse_str*/ NULL }, 6779 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6780 "Logical Position of First Unencrypted Block after First " 6781 "Encrypted Block", 6782 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6783 /*parse_str*/ NULL }, 6784 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6785 "Medium Usage History", 6786 /*suffix*/ NULL, /*to_str*/ NULL, 6787 /*parse_str*/ NULL }, 6788 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6789 "Partition Usage History", 6790 /*suffix*/ NULL, /*to_str*/ NULL, 6791 /*parse_str*/ NULL }, 6792 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE, 6793 "Medium Manufacturer", 6794 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6795 /*parse_str*/ NULL }, 6796 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE, 6797 "Medium Serial Number", 6798 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6799 /*parse_str*/ NULL }, 6800 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE, 6801 "Medium Length", 6802 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf, 6803 /*parse_str*/ NULL }, 6804 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 | 6805 SCSI_ATTR_FLAG_FP_1DIGIT, 6806 "Medium Width", 6807 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf, 6808 /*parse_str*/ NULL }, 6809 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6810 "Assigning Organization", 6811 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6812 /*parse_str*/ NULL }, 6813 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6814 "Medium Density Code", 6815 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6816 /*parse_str*/ NULL }, 6817 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE, 6818 "Medium Manufacture Date", 6819 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6820 /*parse_str*/ NULL }, 6821 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE, 6822 "MAM Capacity", 6823 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6824 /*parse_str*/ NULL }, 6825 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX, 6826 "Medium Type", 6827 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6828 /*parse_str*/ NULL }, 6829 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX, 6830 "Medium Type Information", 6831 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6832 /*parse_str*/ NULL }, 6833 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE, 6834 "Medium Serial Number", 6835 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6836 /*parse_str*/ NULL }, 6837 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE, 6838 "Application Vendor", 6839 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6840 /*parse_str*/ NULL }, 6841 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE, 6842 "Application Name", 6843 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6844 /*parse_str*/ NULL }, 6845 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE, 6846 "Application Version", 6847 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6848 /*parse_str*/ NULL }, 6849 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE, 6850 "User Medium Text Label", 6851 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6852 /*parse_str*/ NULL }, 6853 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE, 6854 "Date and Time Last Written", 6855 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6856 /*parse_str*/ NULL }, 6857 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX, 6858 "Text Localization Identifier", 6859 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6860 /*parse_str*/ NULL }, 6861 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE, 6862 "Barcode", 6863 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6864 /*parse_str*/ NULL }, 6865 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE, 6866 "Owning Host Textual Name", 6867 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6868 /*parse_str*/ NULL }, 6869 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE, 6870 "Media Pool", 6871 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6872 /*parse_str*/ NULL }, 6873 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE, 6874 "Partition User Text Label", 6875 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6876 /*parse_str*/ NULL }, 6877 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE, 6878 "Load/Unload at Partition", 6879 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6880 /*parse_str*/ NULL }, 6881 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE, 6882 "Application Format Version", 6883 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6884 /*parse_str*/ NULL }, 6885 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE, 6886 "Volume Coherency Information", 6887 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf, 6888 /*parse_str*/ NULL }, 6889 { 0x0ff1, SCSI_ATTR_FLAG_NONE, 6890 "Spectra MLM Creation", 6891 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6892 /*parse_str*/ NULL }, 6893 { 0x0ff2, SCSI_ATTR_FLAG_NONE, 6894 "Spectra MLM C3", 6895 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6896 /*parse_str*/ NULL }, 6897 { 0x0ff3, SCSI_ATTR_FLAG_NONE, 6898 "Spectra MLM RW", 6899 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6900 /*parse_str*/ NULL }, 6901 { 0x0ff4, SCSI_ATTR_FLAG_NONE, 6902 "Spectra MLM SDC List", 6903 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6904 /*parse_str*/ NULL }, 6905 { 0x0ff7, SCSI_ATTR_FLAG_NONE, 6906 "Spectra MLM Post Scan", 6907 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6908 /*parse_str*/ NULL }, 6909 { 0x0ffe, SCSI_ATTR_FLAG_NONE, 6910 "Spectra MLM Checksum", 6911 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6912 /*parse_str*/ NULL }, 6913 { 0x17f1, SCSI_ATTR_FLAG_NONE, 6914 "Spectra MLM Creation", 6915 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6916 /*parse_str*/ NULL }, 6917 { 0x17f2, SCSI_ATTR_FLAG_NONE, 6918 "Spectra MLM C3", 6919 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6920 /*parse_str*/ NULL }, 6921 { 0x17f3, SCSI_ATTR_FLAG_NONE, 6922 "Spectra MLM RW", 6923 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6924 /*parse_str*/ NULL }, 6925 { 0x17f4, SCSI_ATTR_FLAG_NONE, 6926 "Spectra MLM SDC List", 6927 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6928 /*parse_str*/ NULL }, 6929 { 0x17f7, SCSI_ATTR_FLAG_NONE, 6930 "Spectra MLM Post Scan", 6931 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6932 /*parse_str*/ NULL }, 6933 { 0x17ff, SCSI_ATTR_FLAG_NONE, 6934 "Spectra MLM Checksum", 6935 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6936 /*parse_str*/ NULL }, 6937 }; 6938 6939 /* 6940 * Print out Volume Coherency Information (Attribute 0x080c). 6941 * This field has two variable length members, including one at the 6942 * beginning, so it isn't practical to have a fixed structure definition. 6943 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25, 6944 * 2013. 6945 */ 6946 int 6947 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 6948 uint32_t valid_len, uint32_t flags, 6949 uint32_t output_flags, char *error_str, 6950 int error_str_len) 6951 { 6952 size_t avail_len; 6953 uint32_t field_size; 6954 uint64_t tmp_val; 6955 uint8_t *cur_ptr; 6956 int retval; 6957 int vcr_len, as_len; 6958 6959 retval = 0; 6960 tmp_val = 0; 6961 6962 field_size = scsi_2btoul(hdr->length); 6963 avail_len = valid_len - sizeof(*hdr); 6964 if (field_size > avail_len) { 6965 if (error_str != NULL) { 6966 snprintf(error_str, error_str_len, "Available " 6967 "length of attribute ID 0x%.4x %zu < field " 6968 "length %u", scsi_2btoul(hdr->id), avail_len, 6969 field_size); 6970 } 6971 retval = 1; 6972 goto bailout; 6973 } else if (field_size == 0) { 6974 /* 6975 * It isn't clear from the spec whether a field length of 6976 * 0 is invalid here. It probably is, but be lenient here 6977 * to avoid inconveniencing the user. 6978 */ 6979 goto bailout; 6980 } 6981 cur_ptr = hdr->attribute; 6982 vcr_len = *cur_ptr; 6983 cur_ptr++; 6984 6985 sbuf_printf(sb, "\n\tVolume Change Reference Value:"); 6986 6987 switch (vcr_len) { 6988 case 0: 6989 if (error_str != NULL) { 6990 snprintf(error_str, error_str_len, "Volume Change " 6991 "Reference value has length of 0"); 6992 } 6993 retval = 1; 6994 goto bailout; 6995 break; /*NOTREACHED*/ 6996 case 1: 6997 tmp_val = *cur_ptr; 6998 break; 6999 case 2: 7000 tmp_val = scsi_2btoul(cur_ptr); 7001 break; 7002 case 3: 7003 tmp_val = scsi_3btoul(cur_ptr); 7004 break; 7005 case 4: 7006 tmp_val = scsi_4btoul(cur_ptr); 7007 break; 7008 case 8: 7009 tmp_val = scsi_8btou64(cur_ptr); 7010 break; 7011 default: 7012 sbuf_printf(sb, "\n"); 7013 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0); 7014 break; 7015 } 7016 if (vcr_len <= 8) 7017 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val); 7018 7019 cur_ptr += vcr_len; 7020 tmp_val = scsi_8btou64(cur_ptr); 7021 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val); 7022 7023 cur_ptr += sizeof(tmp_val); 7024 tmp_val = scsi_8btou64(cur_ptr); 7025 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n", 7026 (uintmax_t)tmp_val); 7027 7028 /* 7029 * Figure out how long the Application Client Specific Information 7030 * is and produce a hexdump. 7031 */ 7032 cur_ptr += sizeof(tmp_val); 7033 as_len = scsi_2btoul(cur_ptr); 7034 cur_ptr += sizeof(uint16_t); 7035 sbuf_printf(sb, "\tApplication Client Specific Information: "); 7036 if (((as_len == SCSI_LTFS_VER0_LEN) 7037 || (as_len == SCSI_LTFS_VER1_LEN)) 7038 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) { 7039 sbuf_printf(sb, "LTFS\n"); 7040 cur_ptr += SCSI_LTFS_STR_LEN + 1; 7041 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0') 7042 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0'; 7043 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr); 7044 cur_ptr += SCSI_LTFS_UUID_LEN + 1; 7045 /* XXX KDM check the length */ 7046 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr); 7047 } else { 7048 sbuf_printf(sb, "Unknown\n"); 7049 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0); 7050 } 7051 7052 bailout: 7053 return (retval); 7054 } 7055 7056 int 7057 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7058 uint32_t valid_len, uint32_t flags, 7059 uint32_t output_flags, char *error_str, 7060 int error_str_len) 7061 { 7062 size_t avail_len; 7063 uint32_t field_size; 7064 struct scsi_attrib_vendser *vendser; 7065 cam_strvis_flags strvis_flags; 7066 int retval = 0; 7067 7068 field_size = scsi_2btoul(hdr->length); 7069 avail_len = valid_len - sizeof(*hdr); 7070 if (field_size > avail_len) { 7071 if (error_str != NULL) { 7072 snprintf(error_str, error_str_len, "Available " 7073 "length of attribute ID 0x%.4x %zu < field " 7074 "length %u", scsi_2btoul(hdr->id), avail_len, 7075 field_size); 7076 } 7077 retval = 1; 7078 goto bailout; 7079 } else if (field_size == 0) { 7080 /* 7081 * A field size of 0 doesn't make sense here. The device 7082 * can at least give you the vendor ID, even if it can't 7083 * give you the serial number. 7084 */ 7085 if (error_str != NULL) { 7086 snprintf(error_str, error_str_len, "The length of " 7087 "attribute ID 0x%.4x is 0", 7088 scsi_2btoul(hdr->id)); 7089 } 7090 retval = 1; 7091 goto bailout; 7092 } 7093 vendser = (struct scsi_attrib_vendser *)hdr->attribute; 7094 7095 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7096 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7097 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7098 break; 7099 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7100 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7101 break; 7102 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7103 default: 7104 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7105 break; 7106 } 7107 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor), 7108 strvis_flags); 7109 sbuf_putc(sb, ' '); 7110 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num), 7111 strvis_flags); 7112 bailout: 7113 return (retval); 7114 } 7115 7116 int 7117 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7118 uint32_t valid_len, uint32_t flags, 7119 uint32_t output_flags, char *error_str, 7120 int error_str_len) 7121 { 7122 uint32_t field_size; 7123 ssize_t avail_len; 7124 uint32_t print_len; 7125 uint8_t *num_ptr; 7126 int retval = 0; 7127 7128 field_size = scsi_2btoul(hdr->length); 7129 avail_len = valid_len - sizeof(*hdr); 7130 print_len = MIN(avail_len, field_size); 7131 num_ptr = hdr->attribute; 7132 7133 if (print_len > 0) { 7134 sbuf_printf(sb, "\n"); 7135 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0); 7136 } 7137 7138 return (retval); 7139 } 7140 7141 int 7142 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7143 uint32_t valid_len, uint32_t flags, 7144 uint32_t output_flags, char *error_str, 7145 int error_str_len) 7146 { 7147 uint64_t print_number; 7148 size_t avail_len; 7149 uint32_t number_size; 7150 int retval = 0; 7151 7152 number_size = scsi_2btoul(hdr->length); 7153 7154 avail_len = valid_len - sizeof(*hdr); 7155 if (avail_len < number_size) { 7156 if (error_str != NULL) { 7157 snprintf(error_str, error_str_len, "Available " 7158 "length of attribute ID 0x%.4x %zu < field " 7159 "length %u", scsi_2btoul(hdr->id), avail_len, 7160 number_size); 7161 } 7162 retval = 1; 7163 goto bailout; 7164 } 7165 7166 switch (number_size) { 7167 case 0: 7168 /* 7169 * We don't treat this as an error, since there may be 7170 * scenarios where a device reports a field but then gives 7171 * a length of 0. See the note in scsi_attrib_ascii_sbuf(). 7172 */ 7173 goto bailout; 7174 break; /*NOTREACHED*/ 7175 case 1: 7176 print_number = hdr->attribute[0]; 7177 break; 7178 case 2: 7179 print_number = scsi_2btoul(hdr->attribute); 7180 break; 7181 case 3: 7182 print_number = scsi_3btoul(hdr->attribute); 7183 break; 7184 case 4: 7185 print_number = scsi_4btoul(hdr->attribute); 7186 break; 7187 case 8: 7188 print_number = scsi_8btou64(hdr->attribute); 7189 break; 7190 default: 7191 /* 7192 * If we wind up here, the number is too big to print 7193 * normally, so just do a hexdump. 7194 */ 7195 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7196 flags, output_flags, 7197 error_str, error_str_len); 7198 goto bailout; 7199 break; 7200 } 7201 7202 if (flags & SCSI_ATTR_FLAG_FP) { 7203 #ifndef _KERNEL 7204 long double num_float; 7205 7206 num_float = (long double)print_number; 7207 7208 if (flags & SCSI_ATTR_FLAG_DIV_10) 7209 num_float /= 10; 7210 7211 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ? 7212 1 : 0, num_float); 7213 #else /* _KERNEL */ 7214 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ? 7215 (print_number / 10) : print_number); 7216 #endif /* _KERNEL */ 7217 } else if (flags & SCSI_ATTR_FLAG_HEX) { 7218 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number); 7219 } else 7220 sbuf_printf(sb, "%ju", (uintmax_t)print_number); 7221 7222 bailout: 7223 return (retval); 7224 } 7225 7226 int 7227 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7228 uint32_t valid_len, uint32_t flags, 7229 uint32_t output_flags, char *error_str, 7230 int error_str_len) 7231 { 7232 size_t avail_len; 7233 uint32_t field_size, print_size; 7234 int retval = 0; 7235 7236 avail_len = valid_len - sizeof(*hdr); 7237 field_size = scsi_2btoul(hdr->length); 7238 print_size = MIN(avail_len, field_size); 7239 7240 if (print_size > 0) { 7241 cam_strvis_flags strvis_flags; 7242 7243 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7244 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7245 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7246 break; 7247 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7248 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7249 break; 7250 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7251 default: 7252 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7253 break; 7254 } 7255 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags); 7256 } else if (avail_len < field_size) { 7257 /* 7258 * We only report an error if the user didn't allocate 7259 * enough space to hold the full value of this field. If 7260 * the field length is 0, that is allowed by the spec. 7261 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER 7262 * "This attribute indicates the current volume identifier 7263 * (see SMC-3) of the medium. If the device server supports 7264 * this attribute but does not have access to the volume 7265 * identifier, the device server shall report this attribute 7266 * with an attribute length value of zero." 7267 */ 7268 if (error_str != NULL) { 7269 snprintf(error_str, error_str_len, "Available " 7270 "length of attribute ID 0x%.4x %zu < field " 7271 "length %u", scsi_2btoul(hdr->id), avail_len, 7272 field_size); 7273 } 7274 retval = 1; 7275 } 7276 7277 return (retval); 7278 } 7279 7280 int 7281 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7282 uint32_t valid_len, uint32_t flags, 7283 uint32_t output_flags, char *error_str, 7284 int error_str_len) 7285 { 7286 size_t avail_len; 7287 uint32_t field_size, print_size; 7288 int retval = 0; 7289 int esc_text = 1; 7290 7291 avail_len = valid_len - sizeof(*hdr); 7292 field_size = scsi_2btoul(hdr->length); 7293 print_size = MIN(avail_len, field_size); 7294 7295 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) == 7296 SCSI_ATTR_OUTPUT_TEXT_RAW) 7297 esc_text = 0; 7298 7299 if (print_size > 0) { 7300 uint32_t i; 7301 7302 for (i = 0; i < print_size; i++) { 7303 if (hdr->attribute[i] == '\0') 7304 continue; 7305 else if (((unsigned char)hdr->attribute[i] < 0x80) 7306 || (esc_text == 0)) 7307 sbuf_putc(sb, hdr->attribute[i]); 7308 else 7309 sbuf_printf(sb, "%%%02x", 7310 (unsigned char)hdr->attribute[i]); 7311 } 7312 } else if (avail_len < field_size) { 7313 /* 7314 * We only report an error if the user didn't allocate 7315 * enough space to hold the full value of this field. 7316 */ 7317 if (error_str != NULL) { 7318 snprintf(error_str, error_str_len, "Available " 7319 "length of attribute ID 0x%.4x %zu < field " 7320 "length %u", scsi_2btoul(hdr->id), avail_len, 7321 field_size); 7322 } 7323 retval = 1; 7324 } 7325 7326 return (retval); 7327 } 7328 7329 struct scsi_attrib_table_entry * 7330 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table, 7331 size_t num_table_entries, uint32_t id) 7332 { 7333 uint32_t i; 7334 7335 for (i = 0; i < num_table_entries; i++) { 7336 if (table[i].id == id) 7337 return (&table[i]); 7338 } 7339 7340 return (NULL); 7341 } 7342 7343 struct scsi_attrib_table_entry * 7344 scsi_get_attrib_entry(uint32_t id) 7345 { 7346 return (scsi_find_attrib_entry(scsi_mam_attr_table, 7347 nitems(scsi_mam_attr_table), id)); 7348 } 7349 7350 int 7351 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, 7352 struct scsi_mam_attribute_header *hdr, uint32_t output_flags, 7353 char *error_str, size_t error_str_len) 7354 { 7355 int retval; 7356 7357 switch (hdr->byte2 & SMA_FORMAT_MASK) { 7358 case SMA_FORMAT_ASCII: 7359 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len, 7360 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len); 7361 break; 7362 case SMA_FORMAT_BINARY: 7363 if (scsi_2btoul(hdr->length) <= 8) 7364 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len, 7365 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7366 error_str_len); 7367 else 7368 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7369 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7370 error_str_len); 7371 break; 7372 case SMA_FORMAT_TEXT: 7373 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len, 7374 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7375 error_str_len); 7376 break; 7377 default: 7378 if (error_str != NULL) { 7379 snprintf(error_str, error_str_len, "Unknown attribute " 7380 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK); 7381 } 7382 retval = 1; 7383 goto bailout; 7384 break; /*NOTREACHED*/ 7385 } 7386 7387 sbuf_trim(sb); 7388 7389 bailout: 7390 7391 return (retval); 7392 } 7393 7394 void 7395 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, 7396 struct scsi_mam_attribute_header *hdr, 7397 uint32_t valid_len, const char *desc) 7398 { 7399 int need_space = 0; 7400 uint32_t len; 7401 uint32_t id; 7402 7403 /* 7404 * We can't do anything if we don't have enough valid data for the 7405 * header. 7406 */ 7407 if (valid_len < sizeof(*hdr)) 7408 return; 7409 7410 id = scsi_2btoul(hdr->id); 7411 /* 7412 * Note that we print out the value of the attribute listed in the 7413 * header, regardless of whether we actually got that many bytes 7414 * back from the device through the controller. A truncated result 7415 * could be the result of a failure to ask for enough data; the 7416 * header indicates how many bytes are allocated for this attribute 7417 * in the MAM. 7418 */ 7419 len = scsi_2btoul(hdr->length); 7420 7421 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) == 7422 SCSI_ATTR_OUTPUT_FIELD_NONE) 7423 return; 7424 7425 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC) 7426 && (desc != NULL)) { 7427 sbuf_printf(sb, "%s", desc); 7428 need_space = 1; 7429 } 7430 7431 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) { 7432 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id); 7433 need_space = 0; 7434 } 7435 7436 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) { 7437 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len); 7438 need_space = 0; 7439 } 7440 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) { 7441 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "", 7442 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW"); 7443 } 7444 sbuf_printf(sb, ": "); 7445 } 7446 7447 int 7448 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7449 uint32_t valid_len, struct scsi_attrib_table_entry *user_table, 7450 size_t num_user_entries, int prefer_user_table, 7451 uint32_t output_flags, char *error_str, int error_str_len) 7452 { 7453 int retval; 7454 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL; 7455 struct scsi_attrib_table_entry *entry = NULL; 7456 size_t table1_size = 0, table2_size = 0; 7457 uint32_t id; 7458 7459 retval = 0; 7460 7461 if (valid_len < sizeof(*hdr)) { 7462 retval = 1; 7463 goto bailout; 7464 } 7465 7466 id = scsi_2btoul(hdr->id); 7467 7468 if (user_table != NULL) { 7469 if (prefer_user_table != 0) { 7470 table1 = user_table; 7471 table1_size = num_user_entries; 7472 table2 = scsi_mam_attr_table; 7473 table2_size = nitems(scsi_mam_attr_table); 7474 } else { 7475 table1 = scsi_mam_attr_table; 7476 table1_size = nitems(scsi_mam_attr_table); 7477 table2 = user_table; 7478 table2_size = num_user_entries; 7479 } 7480 } else { 7481 table1 = scsi_mam_attr_table; 7482 table1_size = nitems(scsi_mam_attr_table); 7483 } 7484 7485 entry = scsi_find_attrib_entry(table1, table1_size, id); 7486 if (entry != NULL) { 7487 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, 7488 entry->desc); 7489 if (entry->to_str == NULL) 7490 goto print_default; 7491 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7492 output_flags, error_str, error_str_len); 7493 goto bailout; 7494 } 7495 if (table2 != NULL) { 7496 entry = scsi_find_attrib_entry(table2, table2_size, id); 7497 if (entry != NULL) { 7498 if (entry->to_str == NULL) 7499 goto print_default; 7500 7501 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, 7502 valid_len, entry->desc); 7503 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7504 output_flags, error_str, 7505 error_str_len); 7506 goto bailout; 7507 } 7508 } 7509 7510 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL); 7511 7512 print_default: 7513 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags, 7514 error_str, error_str_len); 7515 bailout: 7516 if (retval == 0) { 7517 if ((entry != NULL) 7518 && (entry->suffix != NULL)) 7519 sbuf_printf(sb, " %s", entry->suffix); 7520 7521 sbuf_trim(sb); 7522 sbuf_printf(sb, "\n"); 7523 } 7524 7525 return (retval); 7526 } 7527 7528 void 7529 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, 7530 void (*cbfcnp)(struct cam_periph *, union ccb *), 7531 u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout) 7532 { 7533 struct scsi_test_unit_ready *scsi_cmd; 7534 7535 cam_fill_csio(csio, 7536 retries, 7537 cbfcnp, 7538 CAM_DIR_NONE, 7539 tag_action, 7540 /*data_ptr*/NULL, 7541 /*dxfer_len*/0, 7542 sense_len, 7543 sizeof(*scsi_cmd), 7544 timeout); 7545 7546 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; 7547 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7548 scsi_cmd->opcode = TEST_UNIT_READY; 7549 } 7550 7551 void 7552 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, 7553 void (*cbfcnp)(struct cam_periph *, union ccb *), 7554 void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, 7555 u_int8_t sense_len, u_int32_t timeout) 7556 { 7557 struct scsi_request_sense *scsi_cmd; 7558 7559 cam_fill_csio(csio, 7560 retries, 7561 cbfcnp, 7562 CAM_DIR_IN, 7563 tag_action, 7564 data_ptr, 7565 dxfer_len, 7566 sense_len, 7567 sizeof(*scsi_cmd), 7568 timeout); 7569 7570 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; 7571 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7572 scsi_cmd->opcode = REQUEST_SENSE; 7573 scsi_cmd->length = dxfer_len; 7574 } 7575 7576 void 7577 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, 7578 void (*cbfcnp)(struct cam_periph *, union ccb *), 7579 u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, 7580 int evpd, u_int8_t page_code, u_int8_t sense_len, 7581 u_int32_t timeout) 7582 { 7583 struct scsi_inquiry *scsi_cmd; 7584 7585 cam_fill_csio(csio, 7586 retries, 7587 cbfcnp, 7588 /*flags*/CAM_DIR_IN, 7589 tag_action, 7590 /*data_ptr*/inq_buf, 7591 /*dxfer_len*/inq_len, 7592 sense_len, 7593 sizeof(*scsi_cmd), 7594 timeout); 7595 7596 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; 7597 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7598 scsi_cmd->opcode = INQUIRY; 7599 if (evpd) { 7600 scsi_cmd->byte2 |= SI_EVPD; 7601 scsi_cmd->page_code = page_code; 7602 } 7603 scsi_ulto2b(inq_len, scsi_cmd->length); 7604 } 7605 7606 void 7607 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries, 7608 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7609 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7610 uint8_t sense_len, uint32_t timeout) 7611 { 7612 7613 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7614 pc, page, 0, param_buf, param_len, 0, sense_len, timeout); 7615 } 7616 7617 void 7618 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries, 7619 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7620 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7621 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout) 7622 { 7623 7624 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7625 pc, page, 0, param_buf, param_len, minimum_cmd_size, 7626 sense_len, timeout); 7627 } 7628 7629 void 7630 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries, 7631 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7632 int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf, 7633 uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, 7634 uint32_t timeout) 7635 { 7636 u_int8_t cdb_len; 7637 7638 /* 7639 * Use the smallest possible command to perform the operation. 7640 */ 7641 if ((param_len < 256) 7642 && (minimum_cmd_size < 10)) { 7643 /* 7644 * We can fit in a 6 byte cdb. 7645 */ 7646 struct scsi_mode_sense_6 *scsi_cmd; 7647 7648 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; 7649 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7650 scsi_cmd->opcode = MODE_SENSE_6; 7651 if (dbd != 0) 7652 scsi_cmd->byte2 |= SMS_DBD; 7653 scsi_cmd->page = pc | page; 7654 scsi_cmd->subpage = subpage; 7655 scsi_cmd->length = param_len; 7656 cdb_len = sizeof(*scsi_cmd); 7657 } else { 7658 /* 7659 * Need a 10 byte cdb. 7660 */ 7661 struct scsi_mode_sense_10 *scsi_cmd; 7662 7663 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; 7664 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7665 scsi_cmd->opcode = MODE_SENSE_10; 7666 if (dbd != 0) 7667 scsi_cmd->byte2 |= SMS_DBD; 7668 scsi_cmd->page = pc | page; 7669 scsi_cmd->subpage = subpage; 7670 scsi_ulto2b(param_len, scsi_cmd->length); 7671 cdb_len = sizeof(*scsi_cmd); 7672 } 7673 cam_fill_csio(csio, 7674 retries, 7675 cbfcnp, 7676 CAM_DIR_IN, 7677 tag_action, 7678 param_buf, 7679 param_len, 7680 sense_len, 7681 cdb_len, 7682 timeout); 7683 } 7684 7685 void 7686 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, 7687 void (*cbfcnp)(struct cam_periph *, union ccb *), 7688 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7689 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7690 u_int32_t timeout) 7691 { 7692 scsi_mode_select_len(csio, retries, cbfcnp, tag_action, 7693 scsi_page_fmt, save_pages, param_buf, 7694 param_len, 0, sense_len, timeout); 7695 } 7696 7697 void 7698 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, 7699 void (*cbfcnp)(struct cam_periph *, union ccb *), 7700 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7701 u_int8_t *param_buf, u_int32_t param_len, 7702 int minimum_cmd_size, u_int8_t sense_len, 7703 u_int32_t timeout) 7704 { 7705 u_int8_t cdb_len; 7706 7707 /* 7708 * Use the smallest possible command to perform the operation. 7709 */ 7710 if ((param_len < 256) 7711 && (minimum_cmd_size < 10)) { 7712 /* 7713 * We can fit in a 6 byte cdb. 7714 */ 7715 struct scsi_mode_select_6 *scsi_cmd; 7716 7717 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; 7718 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7719 scsi_cmd->opcode = MODE_SELECT_6; 7720 if (scsi_page_fmt != 0) 7721 scsi_cmd->byte2 |= SMS_PF; 7722 if (save_pages != 0) 7723 scsi_cmd->byte2 |= SMS_SP; 7724 scsi_cmd->length = param_len; 7725 cdb_len = sizeof(*scsi_cmd); 7726 } else { 7727 /* 7728 * Need a 10 byte cdb. 7729 */ 7730 struct scsi_mode_select_10 *scsi_cmd; 7731 7732 scsi_cmd = 7733 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; 7734 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7735 scsi_cmd->opcode = MODE_SELECT_10; 7736 if (scsi_page_fmt != 0) 7737 scsi_cmd->byte2 |= SMS_PF; 7738 if (save_pages != 0) 7739 scsi_cmd->byte2 |= SMS_SP; 7740 scsi_ulto2b(param_len, scsi_cmd->length); 7741 cdb_len = sizeof(*scsi_cmd); 7742 } 7743 cam_fill_csio(csio, 7744 retries, 7745 cbfcnp, 7746 CAM_DIR_OUT, 7747 tag_action, 7748 param_buf, 7749 param_len, 7750 sense_len, 7751 cdb_len, 7752 timeout); 7753 } 7754 7755 void 7756 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, 7757 void (*cbfcnp)(struct cam_periph *, union ccb *), 7758 u_int8_t tag_action, u_int8_t page_code, u_int8_t page, 7759 int save_pages, int ppc, u_int32_t paramptr, 7760 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7761 u_int32_t timeout) 7762 { 7763 struct scsi_log_sense *scsi_cmd; 7764 u_int8_t cdb_len; 7765 7766 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; 7767 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7768 scsi_cmd->opcode = LOG_SENSE; 7769 scsi_cmd->page = page_code | page; 7770 if (save_pages != 0) 7771 scsi_cmd->byte2 |= SLS_SP; 7772 if (ppc != 0) 7773 scsi_cmd->byte2 |= SLS_PPC; 7774 scsi_ulto2b(paramptr, scsi_cmd->paramptr); 7775 scsi_ulto2b(param_len, scsi_cmd->length); 7776 cdb_len = sizeof(*scsi_cmd); 7777 7778 cam_fill_csio(csio, 7779 retries, 7780 cbfcnp, 7781 /*flags*/CAM_DIR_IN, 7782 tag_action, 7783 /*data_ptr*/param_buf, 7784 /*dxfer_len*/param_len, 7785 sense_len, 7786 cdb_len, 7787 timeout); 7788 } 7789 7790 void 7791 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, 7792 void (*cbfcnp)(struct cam_periph *, union ccb *), 7793 u_int8_t tag_action, u_int8_t page_code, int save_pages, 7794 int pc_reset, u_int8_t *param_buf, u_int32_t param_len, 7795 u_int8_t sense_len, u_int32_t timeout) 7796 { 7797 struct scsi_log_select *scsi_cmd; 7798 u_int8_t cdb_len; 7799 7800 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; 7801 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7802 scsi_cmd->opcode = LOG_SELECT; 7803 scsi_cmd->page = page_code & SLS_PAGE_CODE; 7804 if (save_pages != 0) 7805 scsi_cmd->byte2 |= SLS_SP; 7806 if (pc_reset != 0) 7807 scsi_cmd->byte2 |= SLS_PCR; 7808 scsi_ulto2b(param_len, scsi_cmd->length); 7809 cdb_len = sizeof(*scsi_cmd); 7810 7811 cam_fill_csio(csio, 7812 retries, 7813 cbfcnp, 7814 /*flags*/CAM_DIR_OUT, 7815 tag_action, 7816 /*data_ptr*/param_buf, 7817 /*dxfer_len*/param_len, 7818 sense_len, 7819 cdb_len, 7820 timeout); 7821 } 7822 7823 /* 7824 * Prevent or allow the user to remove the media 7825 */ 7826 void 7827 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, 7828 void (*cbfcnp)(struct cam_periph *, union ccb *), 7829 u_int8_t tag_action, u_int8_t action, 7830 u_int8_t sense_len, u_int32_t timeout) 7831 { 7832 struct scsi_prevent *scsi_cmd; 7833 7834 cam_fill_csio(csio, 7835 retries, 7836 cbfcnp, 7837 /*flags*/CAM_DIR_NONE, 7838 tag_action, 7839 /*data_ptr*/NULL, 7840 /*dxfer_len*/0, 7841 sense_len, 7842 sizeof(*scsi_cmd), 7843 timeout); 7844 7845 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; 7846 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7847 scsi_cmd->opcode = PREVENT_ALLOW; 7848 scsi_cmd->how = action; 7849 } 7850 7851 /* XXX allow specification of address and PMI bit and LBA */ 7852 void 7853 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, 7854 void (*cbfcnp)(struct cam_periph *, union ccb *), 7855 u_int8_t tag_action, 7856 struct scsi_read_capacity_data *rcap_buf, 7857 u_int8_t sense_len, u_int32_t timeout) 7858 { 7859 struct scsi_read_capacity *scsi_cmd; 7860 7861 cam_fill_csio(csio, 7862 retries, 7863 cbfcnp, 7864 /*flags*/CAM_DIR_IN, 7865 tag_action, 7866 /*data_ptr*/(u_int8_t *)rcap_buf, 7867 /*dxfer_len*/sizeof(*rcap_buf), 7868 sense_len, 7869 sizeof(*scsi_cmd), 7870 timeout); 7871 7872 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; 7873 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7874 scsi_cmd->opcode = READ_CAPACITY; 7875 } 7876 7877 void 7878 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, 7879 void (*cbfcnp)(struct cam_periph *, union ccb *), 7880 uint8_t tag_action, uint64_t lba, int reladr, int pmi, 7881 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, 7882 uint32_t timeout) 7883 { 7884 struct scsi_read_capacity_16 *scsi_cmd; 7885 7886 cam_fill_csio(csio, 7887 retries, 7888 cbfcnp, 7889 /*flags*/CAM_DIR_IN, 7890 tag_action, 7891 /*data_ptr*/(u_int8_t *)rcap_buf, 7892 /*dxfer_len*/rcap_buf_len, 7893 sense_len, 7894 sizeof(*scsi_cmd), 7895 timeout); 7896 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 7897 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7898 scsi_cmd->opcode = SERVICE_ACTION_IN; 7899 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 7900 scsi_u64to8b(lba, scsi_cmd->addr); 7901 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); 7902 if (pmi) 7903 reladr |= SRC16_PMI; 7904 if (reladr) 7905 reladr |= SRC16_RELADR; 7906 } 7907 7908 void 7909 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, 7910 void (*cbfcnp)(struct cam_periph *, union ccb *), 7911 u_int8_t tag_action, u_int8_t select_report, 7912 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, 7913 u_int8_t sense_len, u_int32_t timeout) 7914 { 7915 struct scsi_report_luns *scsi_cmd; 7916 7917 cam_fill_csio(csio, 7918 retries, 7919 cbfcnp, 7920 /*flags*/CAM_DIR_IN, 7921 tag_action, 7922 /*data_ptr*/(u_int8_t *)rpl_buf, 7923 /*dxfer_len*/alloc_len, 7924 sense_len, 7925 sizeof(*scsi_cmd), 7926 timeout); 7927 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; 7928 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7929 scsi_cmd->opcode = REPORT_LUNS; 7930 scsi_cmd->select_report = select_report; 7931 scsi_ulto4b(alloc_len, scsi_cmd->length); 7932 } 7933 7934 void 7935 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7936 void (*cbfcnp)(struct cam_periph *, union ccb *), 7937 u_int8_t tag_action, u_int8_t pdf, 7938 void *buf, u_int32_t alloc_len, 7939 u_int8_t sense_len, u_int32_t timeout) 7940 { 7941 struct scsi_target_group *scsi_cmd; 7942 7943 cam_fill_csio(csio, 7944 retries, 7945 cbfcnp, 7946 /*flags*/CAM_DIR_IN, 7947 tag_action, 7948 /*data_ptr*/(u_int8_t *)buf, 7949 /*dxfer_len*/alloc_len, 7950 sense_len, 7951 sizeof(*scsi_cmd), 7952 timeout); 7953 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 7954 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7955 scsi_cmd->opcode = MAINTENANCE_IN; 7956 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; 7957 scsi_ulto4b(alloc_len, scsi_cmd->length); 7958 } 7959 7960 void 7961 scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 7962 void (*cbfcnp)(struct cam_periph *, union ccb *), 7963 u_int8_t tag_action, u_int8_t pdf, 7964 void *buf, u_int32_t alloc_len, 7965 u_int8_t sense_len, u_int32_t timeout) 7966 { 7967 struct scsi_timestamp *scsi_cmd; 7968 7969 cam_fill_csio(csio, 7970 retries, 7971 cbfcnp, 7972 /*flags*/CAM_DIR_IN, 7973 tag_action, 7974 /*data_ptr*/(u_int8_t *)buf, 7975 /*dxfer_len*/alloc_len, 7976 sense_len, 7977 sizeof(*scsi_cmd), 7978 timeout); 7979 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 7980 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7981 scsi_cmd->opcode = MAINTENANCE_IN; 7982 scsi_cmd->service_action = REPORT_TIMESTAMP | pdf; 7983 scsi_ulto4b(alloc_len, scsi_cmd->length); 7984 } 7985 7986 void 7987 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7988 void (*cbfcnp)(struct cam_periph *, union ccb *), 7989 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 7990 u_int8_t sense_len, u_int32_t timeout) 7991 { 7992 struct scsi_target_group *scsi_cmd; 7993 7994 cam_fill_csio(csio, 7995 retries, 7996 cbfcnp, 7997 /*flags*/CAM_DIR_OUT, 7998 tag_action, 7999 /*data_ptr*/(u_int8_t *)buf, 8000 /*dxfer_len*/alloc_len, 8001 sense_len, 8002 sizeof(*scsi_cmd), 8003 timeout); 8004 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 8005 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8006 scsi_cmd->opcode = MAINTENANCE_OUT; 8007 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; 8008 scsi_ulto4b(alloc_len, scsi_cmd->length); 8009 } 8010 8011 void 8012 scsi_create_timestamp(uint8_t *timestamp_6b_buf, 8013 uint64_t timestamp) 8014 { 8015 uint8_t buf[8]; 8016 scsi_u64to8b(timestamp, buf); 8017 /* 8018 * Using memcopy starting at buf[2] because the set timestamp parameters 8019 * only has six bytes for the timestamp to fit into, and we don't have a 8020 * scsi_u64to6b function. 8021 */ 8022 memcpy(timestamp_6b_buf, &buf[2], 6); 8023 } 8024 8025 void 8026 scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 8027 void (*cbfcnp)(struct cam_periph *, union ccb *), 8028 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 8029 u_int8_t sense_len, u_int32_t timeout) 8030 { 8031 struct scsi_timestamp *scsi_cmd; 8032 8033 cam_fill_csio(csio, 8034 retries, 8035 cbfcnp, 8036 /*flags*/CAM_DIR_OUT, 8037 tag_action, 8038 /*data_ptr*/(u_int8_t *) buf, 8039 /*dxfer_len*/alloc_len, 8040 sense_len, 8041 sizeof(*scsi_cmd), 8042 timeout); 8043 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 8044 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8045 scsi_cmd->opcode = MAINTENANCE_OUT; 8046 scsi_cmd->service_action = SET_TIMESTAMP; 8047 scsi_ulto4b(alloc_len, scsi_cmd->length); 8048 } 8049 8050 /* 8051 * Syncronize the media to the contents of the cache for 8052 * the given lba/count pair. Specifying 0/0 means sync 8053 * the whole cache. 8054 */ 8055 void 8056 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, 8057 void (*cbfcnp)(struct cam_periph *, union ccb *), 8058 u_int8_t tag_action, u_int32_t begin_lba, 8059 u_int16_t lb_count, u_int8_t sense_len, 8060 u_int32_t timeout) 8061 { 8062 struct scsi_sync_cache *scsi_cmd; 8063 8064 cam_fill_csio(csio, 8065 retries, 8066 cbfcnp, 8067 /*flags*/CAM_DIR_NONE, 8068 tag_action, 8069 /*data_ptr*/NULL, 8070 /*dxfer_len*/0, 8071 sense_len, 8072 sizeof(*scsi_cmd), 8073 timeout); 8074 8075 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; 8076 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8077 scsi_cmd->opcode = SYNCHRONIZE_CACHE; 8078 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); 8079 scsi_ulto2b(lb_count, scsi_cmd->lb_count); 8080 } 8081 8082 void 8083 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, 8084 void (*cbfcnp)(struct cam_periph *, union ccb *), 8085 u_int8_t tag_action, int readop, u_int8_t byte2, 8086 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8087 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8088 u_int32_t timeout) 8089 { 8090 int read; 8091 u_int8_t cdb_len; 8092 8093 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; 8094 8095 /* 8096 * Use the smallest possible command to perform the operation 8097 * as some legacy hardware does not support the 10 byte commands. 8098 * If any of the bits in byte2 is set, we have to go with a larger 8099 * command. 8100 */ 8101 if ((minimum_cmd_size < 10) 8102 && ((lba & 0x1fffff) == lba) 8103 && ((block_count & 0xff) == block_count) 8104 && (byte2 == 0)) { 8105 /* 8106 * We can fit in a 6 byte cdb. 8107 */ 8108 struct scsi_rw_6 *scsi_cmd; 8109 8110 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; 8111 scsi_cmd->opcode = read ? READ_6 : WRITE_6; 8112 scsi_ulto3b(lba, scsi_cmd->addr); 8113 scsi_cmd->length = block_count & 0xff; 8114 scsi_cmd->control = 0; 8115 cdb_len = sizeof(*scsi_cmd); 8116 8117 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8118 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], 8119 scsi_cmd->addr[1], scsi_cmd->addr[2], 8120 scsi_cmd->length, dxfer_len)); 8121 } else if ((minimum_cmd_size < 12) 8122 && ((block_count & 0xffff) == block_count) 8123 && ((lba & 0xffffffff) == lba)) { 8124 /* 8125 * Need a 10 byte cdb. 8126 */ 8127 struct scsi_rw_10 *scsi_cmd; 8128 8129 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; 8130 scsi_cmd->opcode = read ? READ_10 : WRITE_10; 8131 scsi_cmd->byte2 = byte2; 8132 scsi_ulto4b(lba, scsi_cmd->addr); 8133 scsi_cmd->reserved = 0; 8134 scsi_ulto2b(block_count, scsi_cmd->length); 8135 scsi_cmd->control = 0; 8136 cdb_len = sizeof(*scsi_cmd); 8137 8138 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8139 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8140 scsi_cmd->addr[1], scsi_cmd->addr[2], 8141 scsi_cmd->addr[3], scsi_cmd->length[0], 8142 scsi_cmd->length[1], dxfer_len)); 8143 } else if ((minimum_cmd_size < 16) 8144 && ((block_count & 0xffffffff) == block_count) 8145 && ((lba & 0xffffffff) == lba)) { 8146 /* 8147 * The block count is too big for a 10 byte CDB, use a 12 8148 * byte CDB. 8149 */ 8150 struct scsi_rw_12 *scsi_cmd; 8151 8152 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; 8153 scsi_cmd->opcode = read ? READ_12 : WRITE_12; 8154 scsi_cmd->byte2 = byte2; 8155 scsi_ulto4b(lba, scsi_cmd->addr); 8156 scsi_cmd->reserved = 0; 8157 scsi_ulto4b(block_count, scsi_cmd->length); 8158 scsi_cmd->control = 0; 8159 cdb_len = sizeof(*scsi_cmd); 8160 8161 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8162 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], 8163 scsi_cmd->addr[1], scsi_cmd->addr[2], 8164 scsi_cmd->addr[3], scsi_cmd->length[0], 8165 scsi_cmd->length[1], scsi_cmd->length[2], 8166 scsi_cmd->length[3], dxfer_len)); 8167 } else { 8168 /* 8169 * 16 byte CDB. We'll only get here if the LBA is larger 8170 * than 2^32, or if the user asks for a 16 byte command. 8171 */ 8172 struct scsi_rw_16 *scsi_cmd; 8173 8174 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; 8175 scsi_cmd->opcode = read ? READ_16 : WRITE_16; 8176 scsi_cmd->byte2 = byte2; 8177 scsi_u64to8b(lba, scsi_cmd->addr); 8178 scsi_cmd->reserved = 0; 8179 scsi_ulto4b(block_count, scsi_cmd->length); 8180 scsi_cmd->control = 0; 8181 cdb_len = sizeof(*scsi_cmd); 8182 } 8183 cam_fill_csio(csio, 8184 retries, 8185 cbfcnp, 8186 (read ? CAM_DIR_IN : CAM_DIR_OUT) | 8187 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), 8188 tag_action, 8189 data_ptr, 8190 dxfer_len, 8191 sense_len, 8192 cdb_len, 8193 timeout); 8194 } 8195 8196 void 8197 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, 8198 void (*cbfcnp)(struct cam_periph *, union ccb *), 8199 u_int8_t tag_action, u_int8_t byte2, 8200 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8201 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8202 u_int32_t timeout) 8203 { 8204 u_int8_t cdb_len; 8205 if ((minimum_cmd_size < 16) && 8206 ((block_count & 0xffff) == block_count) && 8207 ((lba & 0xffffffff) == lba)) { 8208 /* 8209 * Need a 10 byte cdb. 8210 */ 8211 struct scsi_write_same_10 *scsi_cmd; 8212 8213 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; 8214 scsi_cmd->opcode = WRITE_SAME_10; 8215 scsi_cmd->byte2 = byte2; 8216 scsi_ulto4b(lba, scsi_cmd->addr); 8217 scsi_cmd->group = 0; 8218 scsi_ulto2b(block_count, scsi_cmd->length); 8219 scsi_cmd->control = 0; 8220 cdb_len = sizeof(*scsi_cmd); 8221 8222 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8223 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8224 scsi_cmd->addr[1], scsi_cmd->addr[2], 8225 scsi_cmd->addr[3], scsi_cmd->length[0], 8226 scsi_cmd->length[1], dxfer_len)); 8227 } else { 8228 /* 8229 * 16 byte CDB. We'll only get here if the LBA is larger 8230 * than 2^32, or if the user asks for a 16 byte command. 8231 */ 8232 struct scsi_write_same_16 *scsi_cmd; 8233 8234 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; 8235 scsi_cmd->opcode = WRITE_SAME_16; 8236 scsi_cmd->byte2 = byte2; 8237 scsi_u64to8b(lba, scsi_cmd->addr); 8238 scsi_ulto4b(block_count, scsi_cmd->length); 8239 scsi_cmd->group = 0; 8240 scsi_cmd->control = 0; 8241 cdb_len = sizeof(*scsi_cmd); 8242 8243 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8244 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", 8245 scsi_cmd->addr[0], scsi_cmd->addr[1], 8246 scsi_cmd->addr[2], scsi_cmd->addr[3], 8247 scsi_cmd->addr[4], scsi_cmd->addr[5], 8248 scsi_cmd->addr[6], scsi_cmd->addr[7], 8249 scsi_cmd->length[0], scsi_cmd->length[1], 8250 scsi_cmd->length[2], scsi_cmd->length[3], 8251 dxfer_len)); 8252 } 8253 cam_fill_csio(csio, 8254 retries, 8255 cbfcnp, 8256 /*flags*/CAM_DIR_OUT, 8257 tag_action, 8258 data_ptr, 8259 dxfer_len, 8260 sense_len, 8261 cdb_len, 8262 timeout); 8263 } 8264 8265 void 8266 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries, 8267 void (*cbfcnp)(struct cam_periph *, union ccb *), 8268 u_int8_t tag_action, u_int8_t *data_ptr, 8269 u_int16_t dxfer_len, u_int8_t sense_len, 8270 u_int32_t timeout) 8271 { 8272 scsi_ata_pass(csio, 8273 retries, 8274 cbfcnp, 8275 /*flags*/CAM_DIR_IN, 8276 tag_action, 8277 /*protocol*/AP_PROTO_PIO_IN, 8278 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8279 AP_FLAG_BYT_BLOK_BLOCKS | 8280 AP_FLAG_TLEN_SECT_CNT, 8281 /*features*/0, 8282 /*sector_count*/dxfer_len / 512, 8283 /*lba*/0, 8284 /*command*/ATA_ATA_IDENTIFY, 8285 /*device*/ 0, 8286 /*icc*/ 0, 8287 /*auxiliary*/ 0, 8288 /*control*/0, 8289 data_ptr, 8290 dxfer_len, 8291 /*cdb_storage*/ NULL, 8292 /*cdb_storage_len*/ 0, 8293 /*minimum_cmd_size*/ 0, 8294 sense_len, 8295 timeout); 8296 } 8297 8298 void 8299 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries, 8300 void (*cbfcnp)(struct cam_periph *, union ccb *), 8301 u_int8_t tag_action, u_int16_t block_count, 8302 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8303 u_int32_t timeout) 8304 { 8305 scsi_ata_pass_16(csio, 8306 retries, 8307 cbfcnp, 8308 /*flags*/CAM_DIR_OUT, 8309 tag_action, 8310 /*protocol*/AP_EXTEND|AP_PROTO_DMA, 8311 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS, 8312 /*features*/ATA_DSM_TRIM, 8313 /*sector_count*/block_count, 8314 /*lba*/0, 8315 /*command*/ATA_DATA_SET_MANAGEMENT, 8316 /*control*/0, 8317 data_ptr, 8318 dxfer_len, 8319 sense_len, 8320 timeout); 8321 } 8322 8323 int 8324 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries, 8325 void (*cbfcnp)(struct cam_periph *, union ccb *), 8326 uint8_t tag_action, uint32_t log_address, 8327 uint32_t page_number, uint16_t block_count, 8328 uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, 8329 uint8_t sense_len, uint32_t timeout) 8330 { 8331 uint8_t command, protocol_out; 8332 uint16_t count_out; 8333 uint64_t lba; 8334 int retval; 8335 8336 retval = 0; 8337 8338 switch (protocol) { 8339 case AP_PROTO_DMA: 8340 count_out = block_count; 8341 command = ATA_READ_LOG_DMA_EXT; 8342 protocol_out = AP_PROTO_DMA; 8343 break; 8344 case AP_PROTO_PIO_IN: 8345 default: 8346 count_out = block_count; 8347 command = ATA_READ_LOG_EXT; 8348 protocol_out = AP_PROTO_PIO_IN; 8349 break; 8350 } 8351 8352 lba = (((uint64_t)page_number & 0xff00) << 32) | 8353 ((page_number & 0x00ff) << 8) | 8354 (log_address & 0xff); 8355 8356 protocol_out |= AP_EXTEND; 8357 8358 retval = scsi_ata_pass(csio, 8359 retries, 8360 cbfcnp, 8361 /*flags*/CAM_DIR_IN, 8362 tag_action, 8363 /*protocol*/ protocol_out, 8364 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT | 8365 AP_FLAG_BYT_BLOK_BLOCKS | 8366 AP_FLAG_TDIR_FROM_DEV, 8367 /*feature*/ 0, 8368 /*sector_count*/ count_out, 8369 /*lba*/ lba, 8370 /*command*/ command, 8371 /*device*/ 0, 8372 /*icc*/ 0, 8373 /*auxiliary*/ 0, 8374 /*control*/0, 8375 data_ptr, 8376 dxfer_len, 8377 /*cdb_storage*/ NULL, 8378 /*cdb_storage_len*/ 0, 8379 /*minimum_cmd_size*/ 0, 8380 sense_len, 8381 timeout); 8382 8383 return (retval); 8384 } 8385 8386 int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries, 8387 void (*cbfcnp)(struct cam_periph *, union ccb *), 8388 uint8_t tag_action, uint8_t feature, 8389 uint64_t lba, uint32_t count, 8390 uint8_t sense_len, uint32_t timeout) 8391 { 8392 return (scsi_ata_pass(csio, 8393 retries, 8394 cbfcnp, 8395 /*flags*/CAM_DIR_NONE, 8396 tag_action, 8397 /*protocol*/AP_PROTO_PIO_IN, 8398 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8399 AP_FLAG_BYT_BLOK_BYTES | 8400 AP_FLAG_TLEN_SECT_CNT, 8401 /*features*/feature, 8402 /*sector_count*/count, 8403 /*lba*/lba, 8404 /*command*/ATA_SETFEATURES, 8405 /*device*/ 0, 8406 /*icc*/ 0, 8407 /*auxiliary*/0, 8408 /*control*/0, 8409 /*data_ptr*/NULL, 8410 /*dxfer_len*/0, 8411 /*cdb_storage*/NULL, 8412 /*cdb_storage_len*/0, 8413 /*minimum_cmd_size*/0, 8414 sense_len, 8415 timeout)); 8416 } 8417 8418 /* 8419 * Note! This is an unusual CDB building function because it can return 8420 * an error in the event that the command in question requires a variable 8421 * length CDB, but the caller has not given storage space for one or has not 8422 * given enough storage space. If there is enough space available in the 8423 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage. 8424 */ 8425 int 8426 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries, 8427 void (*cbfcnp)(struct cam_periph *, union ccb *), 8428 uint32_t flags, uint8_t tag_action, 8429 uint8_t protocol, uint8_t ata_flags, uint16_t features, 8430 uint16_t sector_count, uint64_t lba, uint8_t command, 8431 uint8_t device, uint8_t icc, uint32_t auxiliary, 8432 uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len, 8433 uint8_t *cdb_storage, size_t cdb_storage_len, 8434 int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) 8435 { 8436 uint32_t cam_flags; 8437 uint8_t *cdb_ptr; 8438 int cmd_size; 8439 int retval; 8440 uint8_t cdb_len; 8441 8442 retval = 0; 8443 cam_flags = flags; 8444 8445 /* 8446 * Round the user's request to the nearest command size that is at 8447 * least as big as what he requested. 8448 */ 8449 if (minimum_cmd_size <= 12) 8450 cmd_size = 12; 8451 else if (minimum_cmd_size > 16) 8452 cmd_size = 32; 8453 else 8454 cmd_size = 16; 8455 8456 /* 8457 * If we have parameters that require a 48-bit ATA command, we have to 8458 * use the 16 byte ATA PASS-THROUGH command at least. 8459 */ 8460 if (((lba > ATA_MAX_28BIT_LBA) 8461 || (sector_count > 255) 8462 || (features > 255) 8463 || (protocol & AP_EXTEND)) 8464 && ((cmd_size < 16) 8465 || ((protocol & AP_EXTEND) == 0))) { 8466 if (cmd_size < 16) 8467 cmd_size = 16; 8468 protocol |= AP_EXTEND; 8469 } 8470 8471 /* 8472 * The icc and auxiliary ATA registers are only supported in the 8473 * 32-byte version of the ATA PASS-THROUGH command. 8474 */ 8475 if ((icc != 0) 8476 || (auxiliary != 0)) { 8477 cmd_size = 32; 8478 protocol |= AP_EXTEND; 8479 } 8480 8481 if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes)) 8482 && ((cdb_storage == NULL) 8483 || (cdb_storage_len < cmd_size))) { 8484 retval = 1; 8485 goto bailout; 8486 } 8487 8488 /* 8489 * At this point we know we have enough space to store the command 8490 * in one place or another. We prefer the built-in array, but used 8491 * the passed in storage if necessary. 8492 */ 8493 if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes)) 8494 cdb_ptr = csio->cdb_io.cdb_bytes; 8495 else { 8496 cdb_ptr = cdb_storage; 8497 cam_flags |= CAM_CDB_POINTER; 8498 } 8499 8500 if (cmd_size <= 12) { 8501 struct ata_pass_12 *cdb; 8502 8503 cdb = (struct ata_pass_12 *)cdb_ptr; 8504 cdb_len = sizeof(*cdb); 8505 bzero(cdb, cdb_len); 8506 8507 cdb->opcode = ATA_PASS_12; 8508 cdb->protocol = protocol; 8509 cdb->flags = ata_flags; 8510 cdb->features = features; 8511 cdb->sector_count = sector_count; 8512 cdb->lba_low = lba & 0xff; 8513 cdb->lba_mid = (lba >> 8) & 0xff; 8514 cdb->lba_high = (lba >> 16) & 0xff; 8515 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8516 cdb->command = command; 8517 cdb->control = control; 8518 } else if (cmd_size <= 16) { 8519 struct ata_pass_16 *cdb; 8520 8521 cdb = (struct ata_pass_16 *)cdb_ptr; 8522 cdb_len = sizeof(*cdb); 8523 bzero(cdb, cdb_len); 8524 8525 cdb->opcode = ATA_PASS_16; 8526 cdb->protocol = protocol; 8527 cdb->flags = ata_flags; 8528 cdb->features = features & 0xff; 8529 cdb->sector_count = sector_count & 0xff; 8530 cdb->lba_low = lba & 0xff; 8531 cdb->lba_mid = (lba >> 8) & 0xff; 8532 cdb->lba_high = (lba >> 16) & 0xff; 8533 /* 8534 * If AP_EXTEND is set, we're sending a 48-bit command. 8535 * Otherwise it's a 28-bit command. 8536 */ 8537 if (protocol & AP_EXTEND) { 8538 cdb->lba_low_ext = (lba >> 24) & 0xff; 8539 cdb->lba_mid_ext = (lba >> 32) & 0xff; 8540 cdb->lba_high_ext = (lba >> 40) & 0xff; 8541 cdb->features_ext = (features >> 8) & 0xff; 8542 cdb->sector_count_ext = (sector_count >> 8) & 0xff; 8543 cdb->device = device | ATA_DEV_LBA; 8544 } else { 8545 cdb->lba_low_ext = (lba >> 24) & 0xf; 8546 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8547 } 8548 cdb->command = command; 8549 cdb->control = control; 8550 } else { 8551 struct ata_pass_32 *cdb; 8552 uint8_t tmp_lba[8]; 8553 8554 cdb = (struct ata_pass_32 *)cdb_ptr; 8555 cdb_len = sizeof(*cdb); 8556 bzero(cdb, cdb_len); 8557 cdb->opcode = VARIABLE_LEN_CDB; 8558 cdb->control = control; 8559 cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32, 8560 service_action); 8561 scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action); 8562 cdb->protocol = protocol; 8563 cdb->flags = ata_flags; 8564 8565 if ((protocol & AP_EXTEND) == 0) { 8566 lba &= 0x0fffffff; 8567 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8568 features &= 0xff; 8569 sector_count &= 0xff; 8570 } else { 8571 cdb->device = device | ATA_DEV_LBA; 8572 } 8573 scsi_u64to8b(lba, tmp_lba); 8574 bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba)); 8575 scsi_ulto2b(features, cdb->features); 8576 scsi_ulto2b(sector_count, cdb->count); 8577 cdb->command = command; 8578 cdb->icc = icc; 8579 scsi_ulto4b(auxiliary, cdb->auxiliary); 8580 } 8581 8582 cam_fill_csio(csio, 8583 retries, 8584 cbfcnp, 8585 cam_flags, 8586 tag_action, 8587 data_ptr, 8588 dxfer_len, 8589 sense_len, 8590 cmd_size, 8591 timeout); 8592 bailout: 8593 return (retval); 8594 } 8595 8596 void 8597 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries, 8598 void (*cbfcnp)(struct cam_periph *, union ccb *), 8599 u_int32_t flags, u_int8_t tag_action, 8600 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features, 8601 u_int16_t sector_count, uint64_t lba, u_int8_t command, 8602 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len, 8603 u_int8_t sense_len, u_int32_t timeout) 8604 { 8605 struct ata_pass_16 *ata_cmd; 8606 8607 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes; 8608 ata_cmd->opcode = ATA_PASS_16; 8609 ata_cmd->protocol = protocol; 8610 ata_cmd->flags = ata_flags; 8611 ata_cmd->features_ext = features >> 8; 8612 ata_cmd->features = features; 8613 ata_cmd->sector_count_ext = sector_count >> 8; 8614 ata_cmd->sector_count = sector_count; 8615 ata_cmd->lba_low = lba; 8616 ata_cmd->lba_mid = lba >> 8; 8617 ata_cmd->lba_high = lba >> 16; 8618 ata_cmd->device = ATA_DEV_LBA; 8619 if (protocol & AP_EXTEND) { 8620 ata_cmd->lba_low_ext = lba >> 24; 8621 ata_cmd->lba_mid_ext = lba >> 32; 8622 ata_cmd->lba_high_ext = lba >> 40; 8623 } else 8624 ata_cmd->device |= (lba >> 24) & 0x0f; 8625 ata_cmd->command = command; 8626 ata_cmd->control = control; 8627 8628 cam_fill_csio(csio, 8629 retries, 8630 cbfcnp, 8631 flags, 8632 tag_action, 8633 data_ptr, 8634 dxfer_len, 8635 sense_len, 8636 sizeof(*ata_cmd), 8637 timeout); 8638 } 8639 8640 void 8641 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, 8642 void (*cbfcnp)(struct cam_periph *, union ccb *), 8643 u_int8_t tag_action, u_int8_t byte2, 8644 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8645 u_int32_t timeout) 8646 { 8647 struct scsi_unmap *scsi_cmd; 8648 8649 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; 8650 scsi_cmd->opcode = UNMAP; 8651 scsi_cmd->byte2 = byte2; 8652 scsi_ulto4b(0, scsi_cmd->reserved); 8653 scsi_cmd->group = 0; 8654 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8655 scsi_cmd->control = 0; 8656 8657 cam_fill_csio(csio, 8658 retries, 8659 cbfcnp, 8660 /*flags*/CAM_DIR_OUT, 8661 tag_action, 8662 data_ptr, 8663 dxfer_len, 8664 sense_len, 8665 sizeof(*scsi_cmd), 8666 timeout); 8667 } 8668 8669 void 8670 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, 8671 void (*cbfcnp)(struct cam_periph *, union ccb*), 8672 uint8_t tag_action, int pcv, uint8_t page_code, 8673 uint8_t *data_ptr, uint16_t allocation_length, 8674 uint8_t sense_len, uint32_t timeout) 8675 { 8676 struct scsi_receive_diag *scsi_cmd; 8677 8678 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; 8679 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8680 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; 8681 if (pcv) { 8682 scsi_cmd->byte2 |= SRD_PCV; 8683 scsi_cmd->page_code = page_code; 8684 } 8685 scsi_ulto2b(allocation_length, scsi_cmd->length); 8686 8687 cam_fill_csio(csio, 8688 retries, 8689 cbfcnp, 8690 /*flags*/CAM_DIR_IN, 8691 tag_action, 8692 data_ptr, 8693 allocation_length, 8694 sense_len, 8695 sizeof(*scsi_cmd), 8696 timeout); 8697 } 8698 8699 void 8700 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, 8701 void (*cbfcnp)(struct cam_periph *, union ccb *), 8702 uint8_t tag_action, int unit_offline, int device_offline, 8703 int self_test, int page_format, int self_test_code, 8704 uint8_t *data_ptr, uint16_t param_list_length, 8705 uint8_t sense_len, uint32_t timeout) 8706 { 8707 struct scsi_send_diag *scsi_cmd; 8708 8709 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; 8710 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8711 scsi_cmd->opcode = SEND_DIAGNOSTIC; 8712 8713 /* 8714 * The default self-test mode control and specific test 8715 * control are mutually exclusive. 8716 */ 8717 if (self_test) 8718 self_test_code = SSD_SELF_TEST_CODE_NONE; 8719 8720 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) 8721 & SSD_SELF_TEST_CODE_MASK) 8722 | (unit_offline ? SSD_UNITOFFL : 0) 8723 | (device_offline ? SSD_DEVOFFL : 0) 8724 | (self_test ? SSD_SELFTEST : 0) 8725 | (page_format ? SSD_PF : 0); 8726 scsi_ulto2b(param_list_length, scsi_cmd->length); 8727 8728 cam_fill_csio(csio, 8729 retries, 8730 cbfcnp, 8731 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8732 tag_action, 8733 data_ptr, 8734 param_list_length, 8735 sense_len, 8736 sizeof(*scsi_cmd), 8737 timeout); 8738 } 8739 8740 void 8741 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8742 void (*cbfcnp)(struct cam_periph *, union ccb*), 8743 uint8_t tag_action, int mode, 8744 uint8_t buffer_id, u_int32_t offset, 8745 uint8_t *data_ptr, uint32_t allocation_length, 8746 uint8_t sense_len, uint32_t timeout) 8747 { 8748 struct scsi_read_buffer *scsi_cmd; 8749 8750 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes; 8751 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8752 scsi_cmd->opcode = READ_BUFFER; 8753 scsi_cmd->byte2 = mode; 8754 scsi_cmd->buffer_id = buffer_id; 8755 scsi_ulto3b(offset, scsi_cmd->offset); 8756 scsi_ulto3b(allocation_length, scsi_cmd->length); 8757 8758 cam_fill_csio(csio, 8759 retries, 8760 cbfcnp, 8761 /*flags*/CAM_DIR_IN, 8762 tag_action, 8763 data_ptr, 8764 allocation_length, 8765 sense_len, 8766 sizeof(*scsi_cmd), 8767 timeout); 8768 } 8769 8770 void 8771 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8772 void (*cbfcnp)(struct cam_periph *, union ccb *), 8773 uint8_t tag_action, int mode, 8774 uint8_t buffer_id, u_int32_t offset, 8775 uint8_t *data_ptr, uint32_t param_list_length, 8776 uint8_t sense_len, uint32_t timeout) 8777 { 8778 struct scsi_write_buffer *scsi_cmd; 8779 8780 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes; 8781 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8782 scsi_cmd->opcode = WRITE_BUFFER; 8783 scsi_cmd->byte2 = mode; 8784 scsi_cmd->buffer_id = buffer_id; 8785 scsi_ulto3b(offset, scsi_cmd->offset); 8786 scsi_ulto3b(param_list_length, scsi_cmd->length); 8787 8788 cam_fill_csio(csio, 8789 retries, 8790 cbfcnp, 8791 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8792 tag_action, 8793 data_ptr, 8794 param_list_length, 8795 sense_len, 8796 sizeof(*scsi_cmd), 8797 timeout); 8798 } 8799 8800 void 8801 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, 8802 void (*cbfcnp)(struct cam_periph *, union ccb *), 8803 u_int8_t tag_action, int start, int load_eject, 8804 int immediate, u_int8_t sense_len, u_int32_t timeout) 8805 { 8806 struct scsi_start_stop_unit *scsi_cmd; 8807 int extra_flags = 0; 8808 8809 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; 8810 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8811 scsi_cmd->opcode = START_STOP_UNIT; 8812 if (start != 0) { 8813 scsi_cmd->how |= SSS_START; 8814 /* it takes a lot of power to start a drive */ 8815 extra_flags |= CAM_HIGH_POWER; 8816 } 8817 if (load_eject != 0) 8818 scsi_cmd->how |= SSS_LOEJ; 8819 if (immediate != 0) 8820 scsi_cmd->byte2 |= SSS_IMMED; 8821 8822 cam_fill_csio(csio, 8823 retries, 8824 cbfcnp, 8825 /*flags*/CAM_DIR_NONE | extra_flags, 8826 tag_action, 8827 /*data_ptr*/NULL, 8828 /*dxfer_len*/0, 8829 sense_len, 8830 sizeof(*scsi_cmd), 8831 timeout); 8832 } 8833 8834 void 8835 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8836 void (*cbfcnp)(struct cam_periph *, union ccb *), 8837 u_int8_t tag_action, u_int8_t service_action, 8838 uint32_t element, u_int8_t elem_type, int logical_volume, 8839 int partition, u_int32_t first_attribute, int cache, 8840 u_int8_t *data_ptr, u_int32_t length, int sense_len, 8841 u_int32_t timeout) 8842 { 8843 struct scsi_read_attribute *scsi_cmd; 8844 8845 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes; 8846 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8847 8848 scsi_cmd->opcode = READ_ATTRIBUTE; 8849 scsi_cmd->service_action = service_action; 8850 scsi_ulto2b(element, scsi_cmd->element); 8851 scsi_cmd->elem_type = elem_type; 8852 scsi_cmd->logical_volume = logical_volume; 8853 scsi_cmd->partition = partition; 8854 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute); 8855 scsi_ulto4b(length, scsi_cmd->length); 8856 if (cache != 0) 8857 scsi_cmd->cache |= SRA_CACHE; 8858 8859 cam_fill_csio(csio, 8860 retries, 8861 cbfcnp, 8862 /*flags*/CAM_DIR_IN, 8863 tag_action, 8864 /*data_ptr*/data_ptr, 8865 /*dxfer_len*/length, 8866 sense_len, 8867 sizeof(*scsi_cmd), 8868 timeout); 8869 } 8870 8871 void 8872 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8873 void (*cbfcnp)(struct cam_periph *, union ccb *), 8874 u_int8_t tag_action, uint32_t element, int logical_volume, 8875 int partition, int wtc, u_int8_t *data_ptr, 8876 u_int32_t length, int sense_len, u_int32_t timeout) 8877 { 8878 struct scsi_write_attribute *scsi_cmd; 8879 8880 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes; 8881 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8882 8883 scsi_cmd->opcode = WRITE_ATTRIBUTE; 8884 if (wtc != 0) 8885 scsi_cmd->byte2 = SWA_WTC; 8886 scsi_ulto3b(element, scsi_cmd->element); 8887 scsi_cmd->logical_volume = logical_volume; 8888 scsi_cmd->partition = partition; 8889 scsi_ulto4b(length, scsi_cmd->length); 8890 8891 cam_fill_csio(csio, 8892 retries, 8893 cbfcnp, 8894 /*flags*/CAM_DIR_OUT, 8895 tag_action, 8896 /*data_ptr*/data_ptr, 8897 /*dxfer_len*/length, 8898 sense_len, 8899 sizeof(*scsi_cmd), 8900 timeout); 8901 } 8902 8903 void 8904 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, 8905 void (*cbfcnp)(struct cam_periph *, union ccb *), 8906 uint8_t tag_action, int service_action, 8907 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8908 int timeout) 8909 { 8910 struct scsi_per_res_in *scsi_cmd; 8911 8912 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes; 8913 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8914 8915 scsi_cmd->opcode = PERSISTENT_RES_IN; 8916 scsi_cmd->action = service_action; 8917 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8918 8919 cam_fill_csio(csio, 8920 retries, 8921 cbfcnp, 8922 /*flags*/CAM_DIR_IN, 8923 tag_action, 8924 data_ptr, 8925 dxfer_len, 8926 sense_len, 8927 sizeof(*scsi_cmd), 8928 timeout); 8929 } 8930 8931 void 8932 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, 8933 void (*cbfcnp)(struct cam_periph *, union ccb *), 8934 uint8_t tag_action, int service_action, 8935 int scope, int res_type, uint8_t *data_ptr, 8936 uint32_t dxfer_len, int sense_len, int timeout) 8937 { 8938 struct scsi_per_res_out *scsi_cmd; 8939 8940 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes; 8941 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8942 8943 scsi_cmd->opcode = PERSISTENT_RES_OUT; 8944 scsi_cmd->action = service_action; 8945 scsi_cmd->scope_type = scope | res_type; 8946 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8947 8948 cam_fill_csio(csio, 8949 retries, 8950 cbfcnp, 8951 /*flags*/CAM_DIR_OUT, 8952 tag_action, 8953 /*data_ptr*/data_ptr, 8954 /*dxfer_len*/dxfer_len, 8955 sense_len, 8956 sizeof(*scsi_cmd), 8957 timeout); 8958 } 8959 8960 void 8961 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, 8962 void (*cbfcnp)(struct cam_periph *, union ccb *), 8963 uint8_t tag_action, uint32_t security_protocol, 8964 uint32_t security_protocol_specific, int byte4, 8965 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8966 int timeout) 8967 { 8968 struct scsi_security_protocol_in *scsi_cmd; 8969 8970 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes; 8971 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8972 8973 scsi_cmd->opcode = SECURITY_PROTOCOL_IN; 8974 8975 scsi_cmd->security_protocol = security_protocol; 8976 scsi_ulto2b(security_protocol_specific, 8977 scsi_cmd->security_protocol_specific); 8978 scsi_cmd->byte4 = byte4; 8979 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8980 8981 cam_fill_csio(csio, 8982 retries, 8983 cbfcnp, 8984 /*flags*/CAM_DIR_IN, 8985 tag_action, 8986 data_ptr, 8987 dxfer_len, 8988 sense_len, 8989 sizeof(*scsi_cmd), 8990 timeout); 8991 } 8992 8993 void 8994 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, 8995 void (*cbfcnp)(struct cam_periph *, union ccb *), 8996 uint8_t tag_action, uint32_t security_protocol, 8997 uint32_t security_protocol_specific, int byte4, 8998 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8999 int timeout) 9000 { 9001 struct scsi_security_protocol_out *scsi_cmd; 9002 9003 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes; 9004 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9005 9006 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT; 9007 9008 scsi_cmd->security_protocol = security_protocol; 9009 scsi_ulto2b(security_protocol_specific, 9010 scsi_cmd->security_protocol_specific); 9011 scsi_cmd->byte4 = byte4; 9012 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9013 9014 cam_fill_csio(csio, 9015 retries, 9016 cbfcnp, 9017 /*flags*/CAM_DIR_OUT, 9018 tag_action, 9019 data_ptr, 9020 dxfer_len, 9021 sense_len, 9022 sizeof(*scsi_cmd), 9023 timeout); 9024 } 9025 9026 void 9027 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, 9028 void (*cbfcnp)(struct cam_periph *, union ccb *), 9029 uint8_t tag_action, int options, int req_opcode, 9030 int req_service_action, uint8_t *data_ptr, 9031 uint32_t dxfer_len, int sense_len, int timeout) 9032 { 9033 struct scsi_report_supported_opcodes *scsi_cmd; 9034 9035 scsi_cmd = (struct scsi_report_supported_opcodes *) 9036 &csio->cdb_io.cdb_bytes; 9037 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9038 9039 scsi_cmd->opcode = MAINTENANCE_IN; 9040 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES; 9041 scsi_cmd->options = options; 9042 scsi_cmd->requested_opcode = req_opcode; 9043 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action); 9044 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9045 9046 cam_fill_csio(csio, 9047 retries, 9048 cbfcnp, 9049 /*flags*/CAM_DIR_IN, 9050 tag_action, 9051 data_ptr, 9052 dxfer_len, 9053 sense_len, 9054 sizeof(*scsi_cmd), 9055 timeout); 9056 } 9057 9058 /* 9059 * Try make as good a match as possible with 9060 * available sub drivers 9061 */ 9062 int 9063 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9064 { 9065 struct scsi_inquiry_pattern *entry; 9066 struct scsi_inquiry_data *inq; 9067 9068 entry = (struct scsi_inquiry_pattern *)table_entry; 9069 inq = (struct scsi_inquiry_data *)inqbuffer; 9070 9071 if (((SID_TYPE(inq) == entry->type) 9072 || (entry->type == T_ANY)) 9073 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9074 : entry->media_type & SIP_MEDIA_FIXED) 9075 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9076 && (cam_strmatch(inq->product, entry->product, 9077 sizeof(inq->product)) == 0) 9078 && (cam_strmatch(inq->revision, entry->revision, 9079 sizeof(inq->revision)) == 0)) { 9080 return (0); 9081 } 9082 return (-1); 9083 } 9084 9085 /* 9086 * Try make as good a match as possible with 9087 * available sub drivers 9088 */ 9089 int 9090 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9091 { 9092 struct scsi_static_inquiry_pattern *entry; 9093 struct scsi_inquiry_data *inq; 9094 9095 entry = (struct scsi_static_inquiry_pattern *)table_entry; 9096 inq = (struct scsi_inquiry_data *)inqbuffer; 9097 9098 if (((SID_TYPE(inq) == entry->type) 9099 || (entry->type == T_ANY)) 9100 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9101 : entry->media_type & SIP_MEDIA_FIXED) 9102 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9103 && (cam_strmatch(inq->product, entry->product, 9104 sizeof(inq->product)) == 0) 9105 && (cam_strmatch(inq->revision, entry->revision, 9106 sizeof(inq->revision)) == 0)) { 9107 return (0); 9108 } 9109 return (-1); 9110 } 9111 9112 /** 9113 * Compare two buffers of vpd device descriptors for a match. 9114 * 9115 * \param lhs Pointer to first buffer of descriptors to compare. 9116 * \param lhs_len The length of the first buffer. 9117 * \param rhs Pointer to second buffer of descriptors to compare. 9118 * \param rhs_len The length of the second buffer. 9119 * 9120 * \return 0 on a match, -1 otherwise. 9121 * 9122 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching 9123 * against each element in rhs until all data are exhausted or we have found 9124 * a match. 9125 */ 9126 int 9127 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) 9128 { 9129 struct scsi_vpd_id_descriptor *lhs_id; 9130 struct scsi_vpd_id_descriptor *lhs_last; 9131 struct scsi_vpd_id_descriptor *rhs_last; 9132 uint8_t *lhs_end; 9133 uint8_t *rhs_end; 9134 9135 lhs_end = lhs + lhs_len; 9136 rhs_end = rhs + rhs_len; 9137 9138 /* 9139 * rhs_last and lhs_last are the last posible position of a valid 9140 * descriptor assuming it had a zero length identifier. We use 9141 * these variables to insure we can safely dereference the length 9142 * field in our loop termination tests. 9143 */ 9144 lhs_last = (struct scsi_vpd_id_descriptor *) 9145 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9146 rhs_last = (struct scsi_vpd_id_descriptor *) 9147 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9148 9149 lhs_id = (struct scsi_vpd_id_descriptor *)lhs; 9150 while (lhs_id <= lhs_last 9151 && (lhs_id->identifier + lhs_id->length) <= lhs_end) { 9152 struct scsi_vpd_id_descriptor *rhs_id; 9153 9154 rhs_id = (struct scsi_vpd_id_descriptor *)rhs; 9155 while (rhs_id <= rhs_last 9156 && (rhs_id->identifier + rhs_id->length) <= rhs_end) { 9157 if ((rhs_id->id_type & 9158 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) == 9159 (lhs_id->id_type & 9160 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) 9161 && rhs_id->length == lhs_id->length 9162 && memcmp(rhs_id->identifier, lhs_id->identifier, 9163 rhs_id->length) == 0) 9164 return (0); 9165 9166 rhs_id = (struct scsi_vpd_id_descriptor *) 9167 (rhs_id->identifier + rhs_id->length); 9168 } 9169 lhs_id = (struct scsi_vpd_id_descriptor *) 9170 (lhs_id->identifier + lhs_id->length); 9171 } 9172 return (-1); 9173 } 9174 9175 #ifdef _KERNEL 9176 int 9177 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id) 9178 { 9179 struct cam_ed *device; 9180 struct scsi_vpd_supported_pages *vpds; 9181 int i, num_pages; 9182 9183 device = periph->path->device; 9184 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; 9185 9186 if (vpds != NULL) { 9187 num_pages = device->supported_vpds_len - 9188 SVPD_SUPPORTED_PAGES_HDR_LEN; 9189 for (i = 0; i < num_pages; i++) { 9190 if (vpds->page_list[i] == page_id) 9191 return (1); 9192 } 9193 } 9194 9195 return (0); 9196 } 9197 9198 static void 9199 init_scsi_delay(void) 9200 { 9201 int delay; 9202 9203 delay = SCSI_DELAY; 9204 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); 9205 9206 if (set_scsi_delay(delay) != 0) { 9207 printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); 9208 set_scsi_delay(SCSI_DELAY); 9209 } 9210 } 9211 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); 9212 9213 static int 9214 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) 9215 { 9216 int error, delay; 9217 9218 delay = scsi_delay; 9219 error = sysctl_handle_int(oidp, &delay, 0, req); 9220 if (error != 0 || req->newptr == NULL) 9221 return (error); 9222 return (set_scsi_delay(delay)); 9223 } 9224 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, 9225 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, 0, sysctl_scsi_delay, "I", 9226 "Delay to allow devices to settle after a SCSI bus reset (ms)"); 9227 9228 static int 9229 set_scsi_delay(int delay) 9230 { 9231 /* 9232 * If someone sets this to 0, we assume that they want the 9233 * minimum allowable bus settle delay. 9234 */ 9235 if (delay == 0) { 9236 printf("cam: using minimum scsi_delay (%dms)\n", 9237 SCSI_MIN_DELAY); 9238 delay = SCSI_MIN_DELAY; 9239 } 9240 if (delay < SCSI_MIN_DELAY) 9241 return (EINVAL); 9242 scsi_delay = delay; 9243 return (0); 9244 } 9245 #endif /* _KERNEL */ 9246