1 /*- 2 * Implementation of Utility functions for all SCSI device types. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/stdint.h> 35 36 #ifdef _KERNEL 37 #include "opt_scsi.h" 38 39 #include <sys/systm.h> 40 #include <sys/libkern.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mutex.h> 45 #include <sys/sysctl.h> 46 #include <sys/ctype.h> 47 #else 48 #include <errno.h> 49 #include <stdio.h> 50 #include <stdlib.h> 51 #include <string.h> 52 #include <ctype.h> 53 #endif 54 55 #include <cam/cam.h> 56 #include <cam/cam_ccb.h> 57 #include <cam/cam_queue.h> 58 #include <cam/cam_xpt.h> 59 #include <cam/scsi/scsi_all.h> 60 #include <sys/ata.h> 61 #include <sys/sbuf.h> 62 63 #ifdef _KERNEL 64 #include <cam/cam_periph.h> 65 #include <cam/cam_xpt_sim.h> 66 #include <cam/cam_xpt_periph.h> 67 #include <cam/cam_xpt_internal.h> 68 #else 69 #include <camlib.h> 70 #include <stddef.h> 71 72 #ifndef FALSE 73 #define FALSE 0 74 #endif /* FALSE */ 75 #ifndef TRUE 76 #define TRUE 1 77 #endif /* TRUE */ 78 #define ERESTART -1 /* restart syscall */ 79 #define EJUSTRETURN -2 /* don't modify regs, just return */ 80 #endif /* !_KERNEL */ 81 82 /* 83 * This is the default number of milliseconds we wait for devices to settle 84 * after a SCSI bus reset. 85 */ 86 #ifndef SCSI_DELAY 87 #define SCSI_DELAY 2000 88 #endif 89 /* 90 * All devices need _some_ sort of bus settle delay, so we'll set it to 91 * a minimum value of 100ms. Note that this is pertinent only for SPI- 92 * not transport like Fibre Channel or iSCSI where 'delay' is completely 93 * meaningless. 94 */ 95 #ifndef SCSI_MIN_DELAY 96 #define SCSI_MIN_DELAY 100 97 #endif 98 /* 99 * Make sure the user isn't using seconds instead of milliseconds. 100 */ 101 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) 102 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" 103 #endif 104 105 int scsi_delay; 106 107 static int ascentrycomp(const void *key, const void *member); 108 static int senseentrycomp(const void *key, const void *member); 109 static void fetchtableentries(int sense_key, int asc, int ascq, 110 struct scsi_inquiry_data *, 111 const struct sense_key_table_entry **, 112 const struct asc_table_entry **); 113 114 #ifdef _KERNEL 115 static void init_scsi_delay(void); 116 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); 117 static int set_scsi_delay(int delay); 118 #endif 119 120 #if !defined(SCSI_NO_OP_STRINGS) 121 122 #define D (1 << T_DIRECT) 123 #define T (1 << T_SEQUENTIAL) 124 #define L (1 << T_PRINTER) 125 #define P (1 << T_PROCESSOR) 126 #define W (1 << T_WORM) 127 #define R (1 << T_CDROM) 128 #define O (1 << T_OPTICAL) 129 #define M (1 << T_CHANGER) 130 #define A (1 << T_STORARRAY) 131 #define E (1 << T_ENCLOSURE) 132 #define B (1 << T_RBC) 133 #define K (1 << T_OCRW) 134 #define V (1 << T_ADC) 135 #define F (1 << T_OSD) 136 #define S (1 << T_SCANNER) 137 #define C (1 << T_COMM) 138 139 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) 140 141 static struct op_table_entry plextor_cd_ops[] = { 142 { 0xD8, R, "CD-DA READ" } 143 }; 144 145 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { 146 { 147 /* 148 * I believe that 0xD8 is the Plextor proprietary command 149 * to read CD-DA data. I'm not sure which Plextor CDROM 150 * models support the command, though. I know for sure 151 * that the 4X, 8X, and 12X models do, and presumably the 152 * 12-20X does. I don't know about any earlier models, 153 * though. If anyone has any more complete information, 154 * feel free to change this quirk entry. 155 */ 156 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, 157 nitems(plextor_cd_ops), 158 plextor_cd_ops 159 } 160 }; 161 162 static struct op_table_entry scsi_op_codes[] = { 163 /* 164 * From: http://www.t10.org/lists/op-num.txt 165 * Modifications by Kenneth Merry (ken@FreeBSD.ORG) 166 * and Jung-uk Kim (jkim@FreeBSD.org) 167 * 168 * Note: order is important in this table, scsi_op_desc() currently 169 * depends on the opcodes in the table being in order to save 170 * search time. 171 * Note: scanner and comm. devices are carried over from the previous 172 * version because they were removed in the latest spec. 173 */ 174 /* File: OP-NUM.TXT 175 * 176 * SCSI Operation Codes 177 * Numeric Sorted Listing 178 * as of 5/26/15 179 * 180 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 181 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- 182 * . L - PRINTER DEVICE (SSC) M = Mandatory 183 * . P - PROCESSOR DEVICE (SPC) O = Optional 184 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. 185 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete 186 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 187 * . . .M - MEDIA CHANGER DEVICE (SMC-2) 188 * . . . A - STORAGE ARRAY DEVICE (SCC-2) 189 * . . . .E - ENCLOSURE SERVICES DEVICE (SES) 190 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 191 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 192 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 193 * . . . . .F - OBJECT-BASED STORAGE (OSD) 194 * OP DTLPWROMAEBKVF Description 195 * -- -------------- ---------------------------------------------- */ 196 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ 197 { 0x00, ALL, "TEST UNIT READY" }, 198 /* 01 M REWIND */ 199 { 0x01, T, "REWIND" }, 200 /* 01 Z V ZZZZ REZERO UNIT */ 201 { 0x01, D | W | R | O | M, "REZERO UNIT" }, 202 /* 02 VVVVVV V */ 203 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ 204 { 0x03, ALL, "REQUEST SENSE" }, 205 /* 04 M OO FORMAT UNIT */ 206 { 0x04, D | R | O, "FORMAT UNIT" }, 207 /* 04 O FORMAT MEDIUM */ 208 { 0x04, T, "FORMAT MEDIUM" }, 209 /* 04 O FORMAT */ 210 { 0x04, L, "FORMAT" }, 211 /* 05 VMVVVV V READ BLOCK LIMITS */ 212 { 0x05, T, "READ BLOCK LIMITS" }, 213 /* 06 VVVVVV V */ 214 /* 07 OVV O OV REASSIGN BLOCKS */ 215 { 0x07, D | W | O, "REASSIGN BLOCKS" }, 216 /* 07 O INITIALIZE ELEMENT STATUS */ 217 { 0x07, M, "INITIALIZE ELEMENT STATUS" }, 218 /* 08 MOV O OV READ(6) */ 219 { 0x08, D | T | W | O, "READ(6)" }, 220 /* 08 O RECEIVE */ 221 { 0x08, P, "RECEIVE" }, 222 /* 08 GET MESSAGE(6) */ 223 { 0x08, C, "GET MESSAGE(6)" }, 224 /* 09 VVVVVV V */ 225 /* 0A OO O OV WRITE(6) */ 226 { 0x0A, D | T | W | O, "WRITE(6)" }, 227 /* 0A M SEND(6) */ 228 { 0x0A, P, "SEND(6)" }, 229 /* 0A SEND MESSAGE(6) */ 230 { 0x0A, C, "SEND MESSAGE(6)" }, 231 /* 0A M PRINT */ 232 { 0x0A, L, "PRINT" }, 233 /* 0B Z ZOZV SEEK(6) */ 234 { 0x0B, D | W | R | O, "SEEK(6)" }, 235 /* 0B O SET CAPACITY */ 236 { 0x0B, T, "SET CAPACITY" }, 237 /* 0B O SLEW AND PRINT */ 238 { 0x0B, L, "SLEW AND PRINT" }, 239 /* 0C VVVVVV V */ 240 /* 0D VVVVVV V */ 241 /* 0E VVVVVV V */ 242 /* 0F VOVVVV V READ REVERSE(6) */ 243 { 0x0F, T, "READ REVERSE(6)" }, 244 /* 10 VM VVV WRITE FILEMARKS(6) */ 245 { 0x10, T, "WRITE FILEMARKS(6)" }, 246 /* 10 O SYNCHRONIZE BUFFER */ 247 { 0x10, L, "SYNCHRONIZE BUFFER" }, 248 /* 11 VMVVVV SPACE(6) */ 249 { 0x11, T, "SPACE(6)" }, 250 /* 12 MMMMMMMMMMMMMM INQUIRY */ 251 { 0x12, ALL, "INQUIRY" }, 252 /* 13 V VVVV */ 253 /* 13 O VERIFY(6) */ 254 { 0x13, T, "VERIFY(6)" }, 255 /* 14 VOOVVV RECOVER BUFFERED DATA */ 256 { 0x14, T | L, "RECOVER BUFFERED DATA" }, 257 /* 15 OMO O OOOO OO MODE SELECT(6) */ 258 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, 259 /* 16 ZZMZO OOOZ O RESERVE(6) */ 260 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, 261 /* 16 Z RESERVE ELEMENT(6) */ 262 { 0x16, M, "RESERVE ELEMENT(6)" }, 263 /* 17 ZZMZO OOOZ O RELEASE(6) */ 264 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, 265 /* 17 Z RELEASE ELEMENT(6) */ 266 { 0x17, M, "RELEASE ELEMENT(6)" }, 267 /* 18 ZZZZOZO Z COPY */ 268 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, 269 /* 19 VMVVVV ERASE(6) */ 270 { 0x19, T, "ERASE(6)" }, 271 /* 1A OMO O OOOO OO MODE SENSE(6) */ 272 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, 273 /* 1B O OOO O MO O START STOP UNIT */ 274 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, 275 /* 1B O M LOAD UNLOAD */ 276 { 0x1B, T | V, "LOAD UNLOAD" }, 277 /* 1B SCAN */ 278 { 0x1B, S, "SCAN" }, 279 /* 1B O STOP PRINT */ 280 { 0x1B, L, "STOP PRINT" }, 281 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ 282 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, 283 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ 284 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, 285 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ 286 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, 287 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ 288 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, 289 /* 1F */ 290 /* 20 V VVV V */ 291 /* 21 V VVV V */ 292 /* 22 V VVV V */ 293 /* 23 V V V V */ 294 /* 23 O READ FORMAT CAPACITIES */ 295 { 0x23, R, "READ FORMAT CAPACITIES" }, 296 /* 24 V VV SET WINDOW */ 297 { 0x24, S, "SET WINDOW" }, 298 /* 25 M M M M READ CAPACITY(10) */ 299 { 0x25, D | W | O | B, "READ CAPACITY(10)" }, 300 /* 25 O READ CAPACITY */ 301 { 0x25, R, "READ CAPACITY" }, 302 /* 25 M READ CARD CAPACITY */ 303 { 0x25, K, "READ CARD CAPACITY" }, 304 /* 25 GET WINDOW */ 305 { 0x25, S, "GET WINDOW" }, 306 /* 26 V VV */ 307 /* 27 V VV */ 308 /* 28 M MOM MM READ(10) */ 309 { 0x28, D | W | R | O | B | K | S, "READ(10)" }, 310 /* 28 GET MESSAGE(10) */ 311 { 0x28, C, "GET MESSAGE(10)" }, 312 /* 29 V VVO READ GENERATION */ 313 { 0x29, O, "READ GENERATION" }, 314 /* 2A O MOM MO WRITE(10) */ 315 { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, 316 /* 2A SEND(10) */ 317 { 0x2A, S, "SEND(10)" }, 318 /* 2A SEND MESSAGE(10) */ 319 { 0x2A, C, "SEND MESSAGE(10)" }, 320 /* 2B Z OOO O SEEK(10) */ 321 { 0x2B, D | W | R | O | K, "SEEK(10)" }, 322 /* 2B O LOCATE(10) */ 323 { 0x2B, T, "LOCATE(10)" }, 324 /* 2B O POSITION TO ELEMENT */ 325 { 0x2B, M, "POSITION TO ELEMENT" }, 326 /* 2C V OO ERASE(10) */ 327 { 0x2C, R | O, "ERASE(10)" }, 328 /* 2D O READ UPDATED BLOCK */ 329 { 0x2D, O, "READ UPDATED BLOCK" }, 330 /* 2D V */ 331 /* 2E O OOO MO WRITE AND VERIFY(10) */ 332 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, 333 /* 2F O OOO VERIFY(10) */ 334 { 0x2F, D | W | R | O, "VERIFY(10)" }, 335 /* 30 Z ZZZ SEARCH DATA HIGH(10) */ 336 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, 337 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ 338 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, 339 /* 31 OBJECT POSITION */ 340 { 0x31, S, "OBJECT POSITION" }, 341 /* 32 Z ZZZ SEARCH DATA LOW(10) */ 342 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, 343 /* 33 Z OZO SET LIMITS(10) */ 344 { 0x33, D | W | R | O, "SET LIMITS(10)" }, 345 /* 34 O O O O PRE-FETCH(10) */ 346 { 0x34, D | W | O | K, "PRE-FETCH(10)" }, 347 /* 34 M READ POSITION */ 348 { 0x34, T, "READ POSITION" }, 349 /* 34 GET DATA BUFFER STATUS */ 350 { 0x34, S, "GET DATA BUFFER STATUS" }, 351 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ 352 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, 353 /* 36 Z O O O LOCK UNLOCK CACHE(10) */ 354 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, 355 /* 37 O O READ DEFECT DATA(10) */ 356 { 0x37, D | O, "READ DEFECT DATA(10)" }, 357 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ 358 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, 359 /* 38 O O O MEDIUM SCAN */ 360 { 0x38, W | O | K, "MEDIUM SCAN" }, 361 /* 39 ZZZZOZO Z COMPARE */ 362 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, 363 /* 3A ZZZZOZO Z COPY AND VERIFY */ 364 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, 365 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ 366 { 0x3B, ALL, "WRITE BUFFER" }, 367 /* 3C OOOOOOOOOO OOO READ BUFFER */ 368 { 0x3C, ALL & ~(B), "READ BUFFER" }, 369 /* 3D O UPDATE BLOCK */ 370 { 0x3D, O, "UPDATE BLOCK" }, 371 /* 3E O O O READ LONG(10) */ 372 { 0x3E, D | W | O, "READ LONG(10)" }, 373 /* 3F O O O WRITE LONG(10) */ 374 { 0x3F, D | W | O, "WRITE LONG(10)" }, 375 /* 40 ZZZZOZOZ CHANGE DEFINITION */ 376 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, 377 /* 41 O WRITE SAME(10) */ 378 { 0x41, D, "WRITE SAME(10)" }, 379 /* 42 O UNMAP */ 380 { 0x42, D, "UNMAP" }, 381 /* 42 O READ SUB-CHANNEL */ 382 { 0x42, R, "READ SUB-CHANNEL" }, 383 /* 43 O READ TOC/PMA/ATIP */ 384 { 0x43, R, "READ TOC/PMA/ATIP" }, 385 /* 44 M M REPORT DENSITY SUPPORT */ 386 { 0x44, T | V, "REPORT DENSITY SUPPORT" }, 387 /* 44 READ HEADER */ 388 /* 45 O PLAY AUDIO(10) */ 389 { 0x45, R, "PLAY AUDIO(10)" }, 390 /* 46 M GET CONFIGURATION */ 391 { 0x46, R, "GET CONFIGURATION" }, 392 /* 47 O PLAY AUDIO MSF */ 393 { 0x47, R, "PLAY AUDIO MSF" }, 394 /* 48 O SANITIZE */ 395 { 0x48, D, "SANITIZE" }, 396 /* 49 */ 397 /* 4A M GET EVENT STATUS NOTIFICATION */ 398 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, 399 /* 4B O PAUSE/RESUME */ 400 { 0x4B, R, "PAUSE/RESUME" }, 401 /* 4C OOOOO OOOO OOO LOG SELECT */ 402 { 0x4C, ALL & ~(R | B), "LOG SELECT" }, 403 /* 4D OOOOO OOOO OMO LOG SENSE */ 404 { 0x4D, ALL & ~(R | B), "LOG SENSE" }, 405 /* 4E O STOP PLAY/SCAN */ 406 { 0x4E, R, "STOP PLAY/SCAN" }, 407 /* 4F */ 408 /* 50 O XDWRITE(10) */ 409 { 0x50, D, "XDWRITE(10)" }, 410 /* 51 O XPWRITE(10) */ 411 { 0x51, D, "XPWRITE(10)" }, 412 /* 51 O READ DISC INFORMATION */ 413 { 0x51, R, "READ DISC INFORMATION" }, 414 /* 52 O XDREAD(10) */ 415 { 0x52, D, "XDREAD(10)" }, 416 /* 52 O READ TRACK INFORMATION */ 417 { 0x52, R, "READ TRACK INFORMATION" }, 418 /* 53 O XDWRITEREAD(10) */ 419 { 0x53, D, "XDWRITEREAD(10)" }, 420 /* 53 O RESERVE TRACK */ 421 { 0x53, R, "RESERVE TRACK" }, 422 /* 54 O SEND OPC INFORMATION */ 423 { 0x54, R, "SEND OPC INFORMATION" }, 424 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ 425 { 0x55, ALL & ~(P), "MODE SELECT(10)" }, 426 /* 56 ZZMZO OOOZ RESERVE(10) */ 427 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, 428 /* 56 Z RESERVE ELEMENT(10) */ 429 { 0x56, M, "RESERVE ELEMENT(10)" }, 430 /* 57 ZZMZO OOOZ RELEASE(10) */ 431 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, 432 /* 57 Z RELEASE ELEMENT(10) */ 433 { 0x57, M, "RELEASE ELEMENT(10)" }, 434 /* 58 O REPAIR TRACK */ 435 { 0x58, R, "REPAIR TRACK" }, 436 /* 59 */ 437 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ 438 { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, 439 /* 5B O CLOSE TRACK/SESSION */ 440 { 0x5B, R, "CLOSE TRACK/SESSION" }, 441 /* 5C O READ BUFFER CAPACITY */ 442 { 0x5C, R, "READ BUFFER CAPACITY" }, 443 /* 5D O SEND CUE SHEET */ 444 { 0x5D, R, "SEND CUE SHEET" }, 445 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ 446 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, 447 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ 448 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, 449 /* 7E OO O OOOO O extended CDB */ 450 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, 451 /* 7F O M variable length CDB (more than 16 bytes) */ 452 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, 453 /* 80 Z XDWRITE EXTENDED(16) */ 454 { 0x80, D, "XDWRITE EXTENDED(16)" }, 455 /* 80 M WRITE FILEMARKS(16) */ 456 { 0x80, T, "WRITE FILEMARKS(16)" }, 457 /* 81 Z REBUILD(16) */ 458 { 0x81, D, "REBUILD(16)" }, 459 /* 81 O READ REVERSE(16) */ 460 { 0x81, T, "READ REVERSE(16)" }, 461 /* 82 Z REGENERATE(16) */ 462 { 0x82, D, "REGENERATE(16)" }, 463 /* 82 O ALLOW OVERWRITE */ 464 { 0x82, T, "ALLOW OVERWRITE" }, 465 /* 83 OOOOO O OO EXTENDED COPY */ 466 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, 467 /* 84 OOOOO O OO RECEIVE COPY RESULTS */ 468 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, 469 /* 85 O O O ATA COMMAND PASS THROUGH(16) */ 470 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, 471 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ 472 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, 473 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ 474 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, 475 /* 88 MM O O O READ(16) */ 476 { 0x88, D | T | W | O | B, "READ(16)" }, 477 /* 89 O COMPARE AND WRITE*/ 478 { 0x89, D, "COMPARE AND WRITE" }, 479 /* 8A OM O O O WRITE(16) */ 480 { 0x8A, D | T | W | O | B, "WRITE(16)" }, 481 /* 8B O ORWRITE */ 482 { 0x8B, D, "ORWRITE" }, 483 /* 8C OO O OO O M READ ATTRIBUTE */ 484 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, 485 /* 8D OO O OO O O WRITE ATTRIBUTE */ 486 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, 487 /* 8E O O O O WRITE AND VERIFY(16) */ 488 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, 489 /* 8F OO O O O VERIFY(16) */ 490 { 0x8F, D | T | W | O | B, "VERIFY(16)" }, 491 /* 90 O O O O PRE-FETCH(16) */ 492 { 0x90, D | W | O | B, "PRE-FETCH(16)" }, 493 /* 91 O O O O SYNCHRONIZE CACHE(16) */ 494 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, 495 /* 91 O SPACE(16) */ 496 { 0x91, T, "SPACE(16)" }, 497 /* 92 Z O O LOCK UNLOCK CACHE(16) */ 498 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, 499 /* 92 O LOCATE(16) */ 500 { 0x92, T, "LOCATE(16)" }, 501 /* 93 O WRITE SAME(16) */ 502 { 0x93, D, "WRITE SAME(16)" }, 503 /* 93 M ERASE(16) */ 504 { 0x93, T, "ERASE(16)" }, 505 /* 94 O ZBC OUT */ 506 { 0x94, ALL, "ZBC OUT" }, 507 /* 95 O ZBC IN */ 508 { 0x95, ALL, "ZBC IN" }, 509 /* 96 */ 510 /* 97 */ 511 /* 98 */ 512 /* 99 */ 513 /* 9A O WRITE STREAM(16) */ 514 { 0x9A, D, "WRITE STREAM(16)" }, 515 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */ 516 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" }, 517 /* 9C O WRITE ATOMIC(16) */ 518 { 0x9C, D, "WRITE ATOMIC(16)" }, 519 /* 9D SERVICE ACTION BIDIRECTIONAL */ 520 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" }, 521 /* XXX KDM ALL for this? op-num.txt defines it for none.. */ 522 /* 9E SERVICE ACTION IN(16) */ 523 { 0x9E, ALL, "SERVICE ACTION IN(16)" }, 524 /* 9F M SERVICE ACTION OUT(16) */ 525 { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, 526 /* A0 MMOOO OMMM OMO REPORT LUNS */ 527 { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, 528 /* A1 O BLANK */ 529 { 0xA1, R, "BLANK" }, 530 /* A1 O O ATA COMMAND PASS THROUGH(12) */ 531 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, 532 /* A2 OO O O SECURITY PROTOCOL IN */ 533 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, 534 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ 535 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, 536 /* A3 O SEND KEY */ 537 { 0xA3, R, "SEND KEY" }, 538 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ 539 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, 540 /* A4 O REPORT KEY */ 541 { 0xA4, R, "REPORT KEY" }, 542 /* A5 O O OM MOVE MEDIUM */ 543 { 0xA5, T | W | O | M, "MOVE MEDIUM" }, 544 /* A5 O PLAY AUDIO(12) */ 545 { 0xA5, R, "PLAY AUDIO(12)" }, 546 /* A6 O EXCHANGE MEDIUM */ 547 { 0xA6, M, "EXCHANGE MEDIUM" }, 548 /* A6 O LOAD/UNLOAD C/DVD */ 549 { 0xA6, R, "LOAD/UNLOAD C/DVD" }, 550 /* A7 ZZ O O MOVE MEDIUM ATTACHED */ 551 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, 552 /* A7 O SET READ AHEAD */ 553 { 0xA7, R, "SET READ AHEAD" }, 554 /* A8 O OOO READ(12) */ 555 { 0xA8, D | W | R | O, "READ(12)" }, 556 /* A8 GET MESSAGE(12) */ 557 { 0xA8, C, "GET MESSAGE(12)" }, 558 /* A9 O SERVICE ACTION OUT(12) */ 559 { 0xA9, V, "SERVICE ACTION OUT(12)" }, 560 /* AA O OOO WRITE(12) */ 561 { 0xAA, D | W | R | O, "WRITE(12)" }, 562 /* AA SEND MESSAGE(12) */ 563 { 0xAA, C, "SEND MESSAGE(12)" }, 564 /* AB O O SERVICE ACTION IN(12) */ 565 { 0xAB, R | V, "SERVICE ACTION IN(12)" }, 566 /* AC O ERASE(12) */ 567 { 0xAC, O, "ERASE(12)" }, 568 /* AC O GET PERFORMANCE */ 569 { 0xAC, R, "GET PERFORMANCE" }, 570 /* AD O READ DVD STRUCTURE */ 571 { 0xAD, R, "READ DVD STRUCTURE" }, 572 /* AE O O O WRITE AND VERIFY(12) */ 573 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, 574 /* AF O OZO VERIFY(12) */ 575 { 0xAF, D | W | R | O, "VERIFY(12)" }, 576 /* B0 ZZZ SEARCH DATA HIGH(12) */ 577 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, 578 /* B1 ZZZ SEARCH DATA EQUAL(12) */ 579 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, 580 /* B2 ZZZ SEARCH DATA LOW(12) */ 581 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, 582 /* B3 Z OZO SET LIMITS(12) */ 583 { 0xB3, D | W | R | O, "SET LIMITS(12)" }, 584 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ 585 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, 586 /* B5 OO O O SECURITY PROTOCOL OUT */ 587 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, 588 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ 589 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, 590 /* B6 O SEND VOLUME TAG */ 591 { 0xB6, M, "SEND VOLUME TAG" }, 592 /* B6 O SET STREAMING */ 593 { 0xB6, R, "SET STREAMING" }, 594 /* B7 O O READ DEFECT DATA(12) */ 595 { 0xB7, D | O, "READ DEFECT DATA(12)" }, 596 /* B8 O OZOM READ ELEMENT STATUS */ 597 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, 598 /* B9 O READ CD MSF */ 599 { 0xB9, R, "READ CD MSF" }, 600 /* BA O O OOMO REDUNDANCY GROUP (IN) */ 601 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, 602 /* BA O SCAN */ 603 { 0xBA, R, "SCAN" }, 604 /* BB O O OOOO REDUNDANCY GROUP (OUT) */ 605 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, 606 /* BB O SET CD SPEED */ 607 { 0xBB, R, "SET CD SPEED" }, 608 /* BC O O OOMO SPARE (IN) */ 609 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, 610 /* BD O O OOOO SPARE (OUT) */ 611 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, 612 /* BD O MECHANISM STATUS */ 613 { 0xBD, R, "MECHANISM STATUS" }, 614 /* BE O O OOMO VOLUME SET (IN) */ 615 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, 616 /* BE O READ CD */ 617 { 0xBE, R, "READ CD" }, 618 /* BF O O OOOO VOLUME SET (OUT) */ 619 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, 620 /* BF O SEND DVD STRUCTURE */ 621 { 0xBF, R, "SEND DVD STRUCTURE" } 622 }; 623 624 const char * 625 scsi_op_desc(uint16_t opcode, struct scsi_inquiry_data *inq_data) 626 { 627 caddr_t match; 628 int i, j; 629 uint32_t opmask; 630 uint16_t pd_type; 631 int num_ops[2]; 632 struct op_table_entry *table[2]; 633 int num_tables; 634 635 /* 636 * If we've got inquiry data, use it to determine what type of 637 * device we're dealing with here. Otherwise, assume direct 638 * access. 639 */ 640 if (inq_data == NULL) { 641 pd_type = T_DIRECT; 642 match = NULL; 643 } else { 644 pd_type = SID_TYPE(inq_data); 645 646 match = cam_quirkmatch((caddr_t)inq_data, 647 (caddr_t)scsi_op_quirk_table, 648 nitems(scsi_op_quirk_table), 649 sizeof(*scsi_op_quirk_table), 650 scsi_inquiry_match); 651 } 652 653 if (match != NULL) { 654 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; 655 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; 656 table[1] = scsi_op_codes; 657 num_ops[1] = nitems(scsi_op_codes); 658 num_tables = 2; 659 } else { 660 /* 661 * If this is true, we have a vendor specific opcode that 662 * wasn't covered in the quirk table. 663 */ 664 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) 665 return("Vendor Specific Command"); 666 667 table[0] = scsi_op_codes; 668 num_ops[0] = nitems(scsi_op_codes); 669 num_tables = 1; 670 } 671 672 /* RBC is 'Simplified' Direct Access Device */ 673 if (pd_type == T_RBC) 674 pd_type = T_DIRECT; 675 676 /* 677 * Host managed drives are direct access for the most part. 678 */ 679 if (pd_type == T_ZBC_HM) 680 pd_type = T_DIRECT; 681 682 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */ 683 if (pd_type == T_NODEVICE) 684 pd_type = T_DIRECT; 685 686 opmask = 1 << pd_type; 687 688 for (j = 0; j < num_tables; j++) { 689 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ 690 if ((table[j][i].opcode == opcode) 691 && ((table[j][i].opmask & opmask) != 0)) 692 return(table[j][i].desc); 693 } 694 } 695 696 /* 697 * If we can't find a match for the command in the table, we just 698 * assume it's a vendor specifc command. 699 */ 700 return("Vendor Specific Command"); 701 702 } 703 704 #else /* SCSI_NO_OP_STRINGS */ 705 706 const char * 707 scsi_op_desc(uint16_t opcode, struct scsi_inquiry_data *inq_data) 708 { 709 return(""); 710 } 711 712 #endif 713 714 #if !defined(SCSI_NO_SENSE_STRINGS) 715 #define SST(asc, ascq, action, desc) \ 716 asc, ascq, action, desc 717 #else 718 const char empty_string[] = ""; 719 720 #define SST(asc, ascq, action, desc) \ 721 asc, ascq, action, empty_string 722 #endif 723 724 const struct sense_key_table_entry sense_key_table[] = 725 { 726 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, 727 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, 728 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" }, 729 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, 730 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, 731 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, 732 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, 733 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, 734 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, 735 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, 736 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, 737 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, 738 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, 739 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, 740 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, 741 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } 742 }; 743 744 static struct asc_table_entry quantum_fireball_entries[] = { 745 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 746 "Logical unit not ready, initializing cmd. required") } 747 }; 748 749 static struct asc_table_entry sony_mo_entries[] = { 750 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 751 "Logical unit not ready, cause not reportable") } 752 }; 753 754 static struct asc_table_entry hgst_entries[] = { 755 { SST(0x04, 0xF0, SS_RDEF, 756 "Vendor Unique - Logical Unit Not Ready") }, 757 { SST(0x0A, 0x01, SS_RDEF, 758 "Unrecovered Super Certification Log Write Error") }, 759 { SST(0x0A, 0x02, SS_RDEF, 760 "Unrecovered Super Certification Log Read Error") }, 761 { SST(0x15, 0x03, SS_RDEF, 762 "Unrecovered Sector Error") }, 763 { SST(0x3E, 0x04, SS_RDEF, 764 "Unrecovered Self-Test Hard-Cache Test Fail") }, 765 { SST(0x3E, 0x05, SS_RDEF, 766 "Unrecovered Self-Test OTF-Cache Fail") }, 767 { SST(0x40, 0x00, SS_RDEF, 768 "Unrecovered SAT No Buffer Overflow Error") }, 769 { SST(0x40, 0x01, SS_RDEF, 770 "Unrecovered SAT Buffer Overflow Error") }, 771 { SST(0x40, 0x02, SS_RDEF, 772 "Unrecovered SAT No Buffer Overflow With ECS Fault") }, 773 { SST(0x40, 0x03, SS_RDEF, 774 "Unrecovered SAT Buffer Overflow With ECS Fault") }, 775 { SST(0x40, 0x81, SS_RDEF, 776 "DRAM Failure") }, 777 { SST(0x44, 0x0B, SS_RDEF, 778 "Vendor Unique - Internal Target Failure") }, 779 { SST(0x44, 0xF2, SS_RDEF, 780 "Vendor Unique - Internal Target Failure") }, 781 { SST(0x44, 0xF6, SS_RDEF, 782 "Vendor Unique - Internal Target Failure") }, 783 { SST(0x44, 0xF9, SS_RDEF, 784 "Vendor Unique - Internal Target Failure") }, 785 { SST(0x44, 0xFA, SS_RDEF, 786 "Vendor Unique - Internal Target Failure") }, 787 { SST(0x5D, 0x22, SS_RDEF, 788 "Extreme Over-Temperature Warning") }, 789 { SST(0x5D, 0x50, SS_RDEF, 790 "Load/Unload cycle Count Warning") }, 791 { SST(0x81, 0x00, SS_RDEF, 792 "Vendor Unique - Internal Logic Error") }, 793 { SST(0x85, 0x00, SS_RDEF, 794 "Vendor Unique - Internal Key Seed Error") }, 795 }; 796 797 static struct asc_table_entry seagate_entries[] = { 798 { SST(0x04, 0xF0, SS_RDEF, 799 "Logical Unit Not Ready, super certify in Progress") }, 800 { SST(0x08, 0x86, SS_RDEF, 801 "Write Fault Data Corruption") }, 802 { SST(0x09, 0x0D, SS_RDEF, 803 "Tracking Failure") }, 804 { SST(0x09, 0x0E, SS_RDEF, 805 "ETF Failure") }, 806 { SST(0x0B, 0x5D, SS_RDEF, 807 "Pre-SMART Warning") }, 808 { SST(0x0B, 0x85, SS_RDEF, 809 "5V Voltage Warning") }, 810 { SST(0x0B, 0x8C, SS_RDEF, 811 "12V Voltage Warning") }, 812 { SST(0x0C, 0xFF, SS_RDEF, 813 "Write Error - Too many error recovery revs") }, 814 { SST(0x11, 0xFF, SS_RDEF, 815 "Unrecovered Read Error - Too many error recovery revs") }, 816 { SST(0x19, 0x0E, SS_RDEF, 817 "Fewer than 1/2 defect list copies") }, 818 { SST(0x20, 0xF3, SS_RDEF, 819 "Illegal CDB linked to skip mask cmd") }, 820 { SST(0x24, 0xF0, SS_RDEF, 821 "Illegal byte in CDB, LBA not matching") }, 822 { SST(0x24, 0xF1, SS_RDEF, 823 "Illegal byte in CDB, LEN not matching") }, 824 { SST(0x24, 0xF2, SS_RDEF, 825 "Mask not matching transfer length") }, 826 { SST(0x24, 0xF3, SS_RDEF, 827 "Drive formatted without plist") }, 828 { SST(0x26, 0x95, SS_RDEF, 829 "Invalid Field Parameter - CAP File") }, 830 { SST(0x26, 0x96, SS_RDEF, 831 "Invalid Field Parameter - RAP File") }, 832 { SST(0x26, 0x97, SS_RDEF, 833 "Invalid Field Parameter - TMS Firmware Tag") }, 834 { SST(0x26, 0x98, SS_RDEF, 835 "Invalid Field Parameter - Check Sum") }, 836 { SST(0x26, 0x99, SS_RDEF, 837 "Invalid Field Parameter - Firmware Tag") }, 838 { SST(0x29, 0x08, SS_RDEF, 839 "Write Log Dump data") }, 840 { SST(0x29, 0x09, SS_RDEF, 841 "Write Log Dump data") }, 842 { SST(0x29, 0x0A, SS_RDEF, 843 "Reserved disk space") }, 844 { SST(0x29, 0x0B, SS_RDEF, 845 "SDBP") }, 846 { SST(0x29, 0x0C, SS_RDEF, 847 "SDBP") }, 848 { SST(0x31, 0x91, SS_RDEF, 849 "Format Corrupted World Wide Name (WWN) is Invalid") }, 850 { SST(0x32, 0x03, SS_RDEF, 851 "Defect List - Length exceeds Command Allocated Length") }, 852 { SST(0x33, 0x00, SS_RDEF, 853 "Flash not ready for access") }, 854 { SST(0x3F, 0x70, SS_RDEF, 855 "Invalid RAP block") }, 856 { SST(0x3F, 0x71, SS_RDEF, 857 "RAP/ETF mismatch") }, 858 { SST(0x3F, 0x90, SS_RDEF, 859 "Invalid CAP block") }, 860 { SST(0x3F, 0x91, SS_RDEF, 861 "World Wide Name (WWN) Mismatch") }, 862 { SST(0x40, 0x01, SS_RDEF, 863 "DRAM Parity Error") }, 864 { SST(0x40, 0x02, SS_RDEF, 865 "DRAM Parity Error") }, 866 { SST(0x42, 0x0A, SS_RDEF, 867 "Loopback Test") }, 868 { SST(0x42, 0x0B, SS_RDEF, 869 "Loopback Test") }, 870 { SST(0x44, 0xF2, SS_RDEF, 871 "Compare error during data integrity check") }, 872 { SST(0x44, 0xF6, SS_RDEF, 873 "Unrecoverable error during data integrity check") }, 874 { SST(0x47, 0x80, SS_RDEF, 875 "Fibre Channel Sequence Error") }, 876 { SST(0x4E, 0x01, SS_RDEF, 877 "Information Unit Too Short") }, 878 { SST(0x80, 0x00, SS_RDEF, 879 "General Firmware Error / Command Timeout") }, 880 { SST(0x80, 0x01, SS_RDEF, 881 "Command Timeout") }, 882 { SST(0x80, 0x02, SS_RDEF, 883 "Command Timeout") }, 884 { SST(0x80, 0x80, SS_RDEF, 885 "FC FIFO Error During Read Transfer") }, 886 { SST(0x80, 0x81, SS_RDEF, 887 "FC FIFO Error During Write Transfer") }, 888 { SST(0x80, 0x82, SS_RDEF, 889 "DISC FIFO Error During Read Transfer") }, 890 { SST(0x80, 0x83, SS_RDEF, 891 "DISC FIFO Error During Write Transfer") }, 892 { SST(0x80, 0x84, SS_RDEF, 893 "LBA Seeded LRC Error on Read") }, 894 { SST(0x80, 0x85, SS_RDEF, 895 "LBA Seeded LRC Error on Write") }, 896 { SST(0x80, 0x86, SS_RDEF, 897 "IOEDC Error on Read") }, 898 { SST(0x80, 0x87, SS_RDEF, 899 "IOEDC Error on Write") }, 900 { SST(0x80, 0x88, SS_RDEF, 901 "Host Parity Check Failed") }, 902 { SST(0x80, 0x89, SS_RDEF, 903 "IOEDC error on read detected by formatter") }, 904 { SST(0x80, 0x8A, SS_RDEF, 905 "Host Parity Errors / Host FIFO Initialization Failed") }, 906 { SST(0x80, 0x8B, SS_RDEF, 907 "Host Parity Errors") }, 908 { SST(0x80, 0x8C, SS_RDEF, 909 "Host Parity Errors") }, 910 { SST(0x80, 0x8D, SS_RDEF, 911 "Host Parity Errors") }, 912 { SST(0x81, 0x00, SS_RDEF, 913 "LA Check Failed") }, 914 { SST(0x82, 0x00, SS_RDEF, 915 "Internal client detected insufficient buffer") }, 916 { SST(0x84, 0x00, SS_RDEF, 917 "Scheduled Diagnostic And Repair") }, 918 }; 919 920 static struct scsi_sense_quirk_entry sense_quirk_table[] = { 921 { 922 /* 923 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b 924 * when they really should return 0x04 0x02. 925 */ 926 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, 927 /*num_sense_keys*/0, 928 nitems(quantum_fireball_entries), 929 /*sense key entries*/NULL, 930 quantum_fireball_entries 931 }, 932 { 933 /* 934 * This Sony MO drive likes to return 0x04, 0x00 when it 935 * isn't spun up. 936 */ 937 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, 938 /*num_sense_keys*/0, 939 nitems(sony_mo_entries), 940 /*sense key entries*/NULL, 941 sony_mo_entries 942 }, 943 { 944 /* 945 * HGST vendor-specific error codes 946 */ 947 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"}, 948 /*num_sense_keys*/0, 949 nitems(hgst_entries), 950 /*sense key entries*/NULL, 951 hgst_entries 952 }, 953 { 954 /* 955 * SEAGATE vendor-specific error codes 956 */ 957 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"}, 958 /*num_sense_keys*/0, 959 nitems(seagate_entries), 960 /*sense key entries*/NULL, 961 seagate_entries 962 } 963 }; 964 965 const u_int sense_quirk_table_size = nitems(sense_quirk_table); 966 967 static struct asc_table_entry asc_table[] = { 968 /* 969 * From: http://www.t10.org/lists/asc-num.txt 970 * Modifications by Jung-uk Kim (jkim@FreeBSD.org) 971 */ 972 /* 973 * File: ASC-NUM.TXT 974 * 975 * SCSI ASC/ASCQ Assignments 976 * Numeric Sorted Listing 977 * as of Sat Mar 25 2023 at 04:30 (using old columns) 978 * 979 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 980 * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- 981 * . L - PRINTER DEVICE (SSC) blank = reserved 982 * . P - PROCESSOR DEVICE (SPC) not blank = allowed 983 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) 984 * . . R - CD DEVICE (MMC) 985 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 986 * . . .M - MEDIA CHANGER DEVICE (SMC) 987 * . . . A - STORAGE ARRAY DEVICE (SCC) 988 * . . . E - ENCLOSURE SERVICES DEVICE (SES) 989 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 990 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 991 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 992 * . . . . .F - OBJECT-BASED STORAGE (OSD) 993 * DTLPWROMAEBKVF 994 * ASC ASCQ Action 995 * Description 996 */ 997 /* DTLPWROMAEBKVF */ 998 { SST(0x00, 0x00, SS_NOP, 999 "No additional sense information") }, 1000 /* T */ 1001 { SST(0x00, 0x01, SS_RDEF, 1002 "Filemark detected") }, 1003 /* T */ 1004 { SST(0x00, 0x02, SS_RDEF, 1005 "End-of-partition/medium detected") }, 1006 /* T */ 1007 { SST(0x00, 0x03, SS_RDEF, 1008 "Setmark detected") }, 1009 /* T */ 1010 { SST(0x00, 0x04, SS_RDEF, 1011 "Beginning-of-partition/medium detected") }, 1012 /* TL */ 1013 { SST(0x00, 0x05, SS_RDEF, 1014 "End-of-data detected") }, 1015 /* DTLPWROMAEBKVF */ 1016 { SST(0x00, 0x06, SS_RDEF, 1017 "I/O process terminated") }, 1018 /* T */ 1019 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ 1020 "Programmable early warning detected") }, 1021 /* R */ 1022 { SST(0x00, 0x11, SS_FATAL | EBUSY, 1023 "Audio play operation in progress") }, 1024 /* R */ 1025 { SST(0x00, 0x12, SS_NOP, 1026 "Audio play operation paused") }, 1027 /* R */ 1028 { SST(0x00, 0x13, SS_NOP, 1029 "Audio play operation successfully completed") }, 1030 /* R */ 1031 { SST(0x00, 0x14, SS_RDEF, 1032 "Audio play operation stopped due to error") }, 1033 /* R */ 1034 { SST(0x00, 0x15, SS_NOP, 1035 "No current audio status to return") }, 1036 /* DTLPWROMAEBKVF */ 1037 { SST(0x00, 0x16, SS_FATAL | EBUSY, 1038 "Operation in progress") }, 1039 /* DTL WROMAEBKVF */ 1040 { SST(0x00, 0x17, SS_RDEF, 1041 "Cleaning requested") }, 1042 /* T */ 1043 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ 1044 "Erase operation in progress") }, 1045 /* T */ 1046 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ 1047 "Locate operation in progress") }, 1048 /* T */ 1049 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ 1050 "Rewind operation in progress") }, 1051 /* T */ 1052 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ 1053 "Set capacity operation in progress") }, 1054 /* T */ 1055 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ 1056 "Verify operation in progress") }, 1057 /* DT B */ 1058 { SST(0x00, 0x1D, SS_NOP, 1059 "ATA pass through information available") }, 1060 /* DT R MAEBKV */ 1061 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ 1062 "Conflicting SA creation request") }, 1063 /* DT B */ 1064 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */ 1065 "Logical unit transitioning to another power condition") }, 1066 /* DT P B */ 1067 { SST(0x00, 0x20, SS_NOP, 1068 "Extended copy information available") }, 1069 /* D */ 1070 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */ 1071 "Atomic command aborted due to ACA") }, 1072 /* D */ 1073 { SST(0x00, 0x22, SS_RDEF, /* XXX TBD */ 1074 "Deferred microcode is pending") }, 1075 /* D */ 1076 { SST(0x00, 0x23, SS_RDEF, /* XXX TBD */ 1077 "Overlapping atomic command in progress") }, 1078 /* D W O BK */ 1079 { SST(0x01, 0x00, SS_RDEF, 1080 "No index/sector signal") }, 1081 /* D WRO BK */ 1082 { SST(0x02, 0x00, SS_FATAL | EIO, 1083 "No seek complete") }, 1084 /* DTL W O BK */ 1085 { SST(0x03, 0x00, SS_RDEF, 1086 "Peripheral device write fault") }, 1087 /* T */ 1088 { SST(0x03, 0x01, SS_RDEF, 1089 "No write current") }, 1090 /* T */ 1091 { SST(0x03, 0x02, SS_RDEF, 1092 "Excessive write errors") }, 1093 /* DTLPWROMAEBKVF */ 1094 { SST(0x04, 0x00, SS_RDEF, 1095 "Logical unit not ready, cause not reportable") }, 1096 /* DTLPWROMAEBKVF */ 1097 { SST(0x04, 0x01, SS_WAIT | EBUSY, 1098 "Logical unit is in process of becoming ready") }, 1099 /* DTLPWROMAEBKVF */ 1100 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1101 "Logical unit not ready, initializing command required") }, 1102 /* DTLPWROMAEBKVF */ 1103 { SST(0x04, 0x03, SS_FATAL | ENXIO, 1104 "Logical unit not ready, manual intervention required") }, 1105 /* DTL RO B */ 1106 { SST(0x04, 0x04, SS_FATAL | EBUSY, 1107 "Logical unit not ready, format in progress") }, 1108 /* DT W O A BK F */ 1109 { SST(0x04, 0x05, SS_FATAL | EBUSY, 1110 "Logical unit not ready, rebuild in progress") }, 1111 /* DT W O A BK */ 1112 { SST(0x04, 0x06, SS_FATAL | EBUSY, 1113 "Logical unit not ready, recalculation in progress") }, 1114 /* DTLPWROMAEBKVF */ 1115 { SST(0x04, 0x07, SS_FATAL | EBUSY, 1116 "Logical unit not ready, operation in progress") }, 1117 /* R */ 1118 { SST(0x04, 0x08, SS_FATAL | EBUSY, 1119 "Logical unit not ready, long write in progress") }, 1120 /* DTLPWROMAEBKVF */ 1121 { SST(0x04, 0x09, SS_FATAL | EBUSY, 1122 "Logical unit not ready, self-test in progress") }, 1123 /* DTLPWROMAEBKVF */ 1124 { SST(0x04, 0x0A, SS_WAIT | ENXIO, 1125 "Logical unit not accessible, asymmetric access state transition")}, 1126 /* DTLPWROMAEBKVF */ 1127 { SST(0x04, 0x0B, SS_FATAL | ENXIO, 1128 "Logical unit not accessible, target port in standby state") }, 1129 /* DTLPWROMAEBKVF */ 1130 { SST(0x04, 0x0C, SS_FATAL | ENXIO, 1131 "Logical unit not accessible, target port in unavailable state") }, 1132 /* F */ 1133 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ 1134 "Logical unit not ready, structure check required") }, 1135 /* DTL WR MAEBKVF */ 1136 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */ 1137 "Logical unit not ready, security session in progress") }, 1138 /* DT WROM B */ 1139 { SST(0x04, 0x10, SS_FATAL | ENODEV, 1140 "Logical unit not ready, auxiliary memory not accessible") }, 1141 /* DT WRO AEB VF */ 1142 { SST(0x04, 0x11, SS_WAIT | ENXIO, 1143 "Logical unit not ready, notify (enable spinup) required") }, 1144 /* M V */ 1145 { SST(0x04, 0x12, SS_FATAL | ENXIO, 1146 "Logical unit not ready, offline") }, 1147 /* DT R MAEBKV */ 1148 { SST(0x04, 0x13, SS_WAIT | EBUSY, 1149 "Logical unit not ready, SA creation in progress") }, 1150 /* D B */ 1151 { SST(0x04, 0x14, SS_WAIT | ENOSPC, 1152 "Logical unit not ready, space allocation in progress") }, 1153 /* M */ 1154 { SST(0x04, 0x15, SS_FATAL | ENXIO, 1155 "Logical unit not ready, robotics disabled") }, 1156 /* M */ 1157 { SST(0x04, 0x16, SS_FATAL | ENXIO, 1158 "Logical unit not ready, configuration required") }, 1159 /* M */ 1160 { SST(0x04, 0x17, SS_FATAL | ENXIO, 1161 "Logical unit not ready, calibration required") }, 1162 /* M */ 1163 { SST(0x04, 0x18, SS_FATAL | ENXIO, 1164 "Logical unit not ready, a door is open") }, 1165 /* M */ 1166 { SST(0x04, 0x19, SS_FATAL | ENODEV, 1167 "Logical unit not ready, operating in sequential mode") }, 1168 /* DT B */ 1169 { SST(0x04, 0x1A, SS_WAIT | EBUSY, 1170 "Logical unit not ready, START/STOP UNIT command in progress") }, 1171 /* D B */ 1172 { SST(0x04, 0x1B, SS_WAIT | EBUSY, 1173 "Logical unit not ready, sanitize in progress") }, 1174 /* DT MAEB */ 1175 { SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1176 "Logical unit not ready, additional power use not yet granted") }, 1177 /* D */ 1178 { SST(0x04, 0x1D, SS_WAIT | EBUSY, 1179 "Logical unit not ready, configuration in progress") }, 1180 /* D */ 1181 { SST(0x04, 0x1E, SS_FATAL | ENXIO, 1182 "Logical unit not ready, microcode activation required") }, 1183 /* DTLPWROMAEBKVF */ 1184 { SST(0x04, 0x1F, SS_FATAL | ENXIO, 1185 "Logical unit not ready, microcode download required") }, 1186 /* DTLPWROMAEBKVF */ 1187 { SST(0x04, 0x20, SS_FATAL | ENXIO, 1188 "Logical unit not ready, logical unit reset required") }, 1189 /* DTLPWROMAEBKVF */ 1190 { SST(0x04, 0x21, SS_FATAL | ENXIO, 1191 "Logical unit not ready, hard reset required") }, 1192 /* DTLPWROMAEBKVF */ 1193 { SST(0x04, 0x22, SS_FATAL | ENXIO, 1194 "Logical unit not ready, power cycle required") }, 1195 /* D */ 1196 { SST(0x04, 0x23, SS_FATAL | ENXIO, 1197 "Logical unit not ready, affiliation required") }, 1198 /* D */ 1199 { SST(0x04, 0x24, SS_FATAL | EBUSY, 1200 "Depopulation in progress") }, 1201 /* D */ 1202 { SST(0x04, 0x25, SS_FATAL | EBUSY, 1203 "Depopulation restoration in progress") }, 1204 /* DTL WROMAEBKVF */ 1205 { SST(0x05, 0x00, SS_RDEF, 1206 "Logical unit does not respond to selection") }, 1207 /* D WROM BK */ 1208 { SST(0x06, 0x00, SS_RDEF, 1209 "No reference position found") }, 1210 /* DTL WROM BK */ 1211 { SST(0x07, 0x00, SS_RDEF, 1212 "Multiple peripheral devices selected") }, 1213 /* DTL WROMAEBKVF */ 1214 { SST(0x08, 0x00, SS_RDEF, 1215 "Logical unit communication failure") }, 1216 /* DTL WROMAEBKVF */ 1217 { SST(0x08, 0x01, SS_RDEF, 1218 "Logical unit communication time-out") }, 1219 /* DTL WROMAEBKVF */ 1220 { SST(0x08, 0x02, SS_RDEF, 1221 "Logical unit communication parity error") }, 1222 /* DT ROM BK */ 1223 { SST(0x08, 0x03, SS_RDEF, 1224 "Logical unit communication CRC error (Ultra-DMA/32)") }, 1225 /* DTLPWRO K */ 1226 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ 1227 "Unreachable copy target") }, 1228 /* DT WRO B */ 1229 { SST(0x09, 0x00, SS_RDEF, 1230 "Track following error") }, 1231 /* WRO K */ 1232 { SST(0x09, 0x01, SS_RDEF, 1233 "Tracking servo failure") }, 1234 /* WRO K */ 1235 { SST(0x09, 0x02, SS_RDEF, 1236 "Focus servo failure") }, 1237 /* WRO */ 1238 { SST(0x09, 0x03, SS_RDEF, 1239 "Spindle servo failure") }, 1240 /* DT WRO B */ 1241 { SST(0x09, 0x04, SS_RDEF, 1242 "Head select fault") }, 1243 /* DT RO B */ 1244 { SST(0x09, 0x05, SS_RDEF, 1245 "Vibration induced tracking error") }, 1246 /* DTLPWROMAEBKVF */ 1247 { SST(0x0A, 0x00, SS_FATAL | ENOSPC, 1248 "Error log overflow") }, 1249 /* DTLPWROMAEBKVF */ 1250 { SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1251 "Warning") }, 1252 /* DTLPWROMAEBKVF */ 1253 { SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1254 "Warning - specified temperature exceeded") }, 1255 /* DTLPWROMAEBKVF */ 1256 { SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1257 "Warning - enclosure degraded") }, 1258 /* DTLPWROMAEBKVF */ 1259 { SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1260 "Warning - background self-test failed") }, 1261 /* DTLPWRO AEBKVF */ 1262 { SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1263 "Warning - background pre-scan detected medium error") }, 1264 /* DTLPWRO AEBKVF */ 1265 { SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1266 "Warning - background medium scan detected medium error") }, 1267 /* DTLPWROMAEBKVF */ 1268 { SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1269 "Warning - non-volatile cache now volatile") }, 1270 /* DTLPWROMAEBKVF */ 1271 { SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1272 "Warning - degraded power to non-volatile cache") }, 1273 /* DTLPWROMAEBKVF */ 1274 { SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1275 "Warning - power loss expected") }, 1276 /* D */ 1277 { SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1278 "Warning - device statistics notification available") }, 1279 /* DTLPWROMAEBKV */ 1280 { SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE, 1281 "Warning - High critical temperature limit exceeded") }, 1282 /* DTLPWROMAEBKV */ 1283 { SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE, 1284 "Warning - Low critical temperature limit exceeded") }, 1285 /* DTLPWROMAEBKV */ 1286 { SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE, 1287 "Warning - High operating temperature limit exceeded") }, 1288 /* DTLPWROMAEBKV */ 1289 { SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE, 1290 "Warning - Low operating temperature limit exceeded") }, 1291 /* DTLPWROMAEBKV */ 1292 { SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE, 1293 "Warning - High citical humidity limit exceeded") }, 1294 /* DTLPWROMAEBKV */ 1295 { SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE, 1296 "Warning - Low citical humidity limit exceeded") }, 1297 /* DTLPWROMAEBKV */ 1298 { SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE, 1299 "Warning - High operating humidity limit exceeded") }, 1300 /* DTLPWROMAEBKV */ 1301 { SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE, 1302 "Warning - Low operating humidity limit exceeded") }, 1303 /* DTLPWROMAEBKVF */ 1304 { SST(0x0B, 0x12, SS_NOP | SSQ_PRINT_SENSE, 1305 "Warning - Microcode security at risk") }, 1306 /* DTLPWROMAEBKVF */ 1307 { SST(0x0B, 0x13, SS_NOP | SSQ_PRINT_SENSE, 1308 "Warning - Microcode digital signature validation failure") }, 1309 /* D */ 1310 { SST(0x0B, 0x14, SS_NOP | SSQ_PRINT_SENSE, 1311 "Warning - Physical element status change") }, 1312 /* T R */ 1313 { SST(0x0C, 0x00, SS_RDEF, 1314 "Write error") }, 1315 /* K */ 1316 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1317 "Write error - recovered with auto reallocation") }, 1318 /* D W O BK */ 1319 { SST(0x0C, 0x02, SS_RDEF, 1320 "Write error - auto reallocation failed") }, 1321 /* D W O BK */ 1322 { SST(0x0C, 0x03, SS_RDEF, 1323 "Write error - recommend reassignment") }, 1324 /* DT W O B */ 1325 { SST(0x0C, 0x04, SS_RDEF, 1326 "Compression check miscompare error") }, 1327 /* DT W O B */ 1328 { SST(0x0C, 0x05, SS_RDEF, 1329 "Data expansion occurred during compression") }, 1330 /* DT W O B */ 1331 { SST(0x0C, 0x06, SS_RDEF, 1332 "Block not compressible") }, 1333 /* R */ 1334 { SST(0x0C, 0x07, SS_RDEF, 1335 "Write error - recovery needed") }, 1336 /* R */ 1337 { SST(0x0C, 0x08, SS_RDEF, 1338 "Write error - recovery failed") }, 1339 /* R */ 1340 { SST(0x0C, 0x09, SS_RDEF, 1341 "Write error - loss of streaming") }, 1342 /* R */ 1343 { SST(0x0C, 0x0A, SS_RDEF, 1344 "Write error - padding blocks added") }, 1345 /* DT WROM B */ 1346 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ 1347 "Auxiliary memory write error") }, 1348 /* DTLPWRO AEBKVF */ 1349 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ 1350 "Write error - unexpected unsolicited data") }, 1351 /* DTLPWRO AEBKVF */ 1352 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ 1353 "Write error - not enough unsolicited data") }, 1354 /* DT W O BK */ 1355 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */ 1356 "Multiple write errors") }, 1357 /* R */ 1358 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ 1359 "Defects in error window") }, 1360 /* D */ 1361 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */ 1362 "Incomplete multiple atomic write operations") }, 1363 /* D */ 1364 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */ 1365 "Write error - recovery scan needed") }, 1366 /* D */ 1367 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */ 1368 "Write error - insufficient zone resources") }, 1369 /* DTLPWRO A K */ 1370 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ 1371 "Error detected by third party temporary initiator") }, 1372 /* DTLPWRO A K */ 1373 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ 1374 "Third party device failure") }, 1375 /* DTLPWRO A K */ 1376 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ 1377 "Copy target device not reachable") }, 1378 /* DTLPWRO A K */ 1379 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ 1380 "Incorrect copy target device type") }, 1381 /* DTLPWRO A K */ 1382 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ 1383 "Copy target device data underrun") }, 1384 /* DTLPWRO A K */ 1385 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ 1386 "Copy target device data overrun") }, 1387 /* DT PWROMAEBK F */ 1388 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ 1389 "Invalid information unit") }, 1390 /* DT PWROMAEBK F */ 1391 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ 1392 "Information unit too short") }, 1393 /* DT PWROMAEBK F */ 1394 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ 1395 "Information unit too long") }, 1396 /* DT P R MAEBK F */ 1397 { SST(0x0E, 0x03, SS_FATAL | EINVAL, 1398 "Invalid field in command information unit") }, 1399 /* D W O BK */ 1400 { SST(0x10, 0x00, SS_RDEF, 1401 "ID CRC or ECC error") }, 1402 /* DT W O */ 1403 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ 1404 "Logical block guard check failed") }, 1405 /* DT W O */ 1406 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ 1407 "Logical block application tag check failed") }, 1408 /* DT W O */ 1409 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ 1410 "Logical block reference tag check failed") }, 1411 /* T */ 1412 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */ 1413 "Logical block protection error on recovered buffer data") }, 1414 /* T */ 1415 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */ 1416 "Logical block protection method error") }, 1417 /* DT WRO BK */ 1418 { SST(0x11, 0x00, SS_FATAL|EIO, 1419 "Unrecovered read error") }, 1420 /* DT WRO BK */ 1421 { SST(0x11, 0x01, SS_FATAL|EIO, 1422 "Read retries exhausted") }, 1423 /* DT WRO BK */ 1424 { SST(0x11, 0x02, SS_FATAL|EIO, 1425 "Error too long to correct") }, 1426 /* DT W O BK */ 1427 { SST(0x11, 0x03, SS_FATAL|EIO, 1428 "Multiple read errors") }, 1429 /* D W O BK */ 1430 { SST(0x11, 0x04, SS_FATAL|EIO, 1431 "Unrecovered read error - auto reallocate failed") }, 1432 /* WRO B */ 1433 { SST(0x11, 0x05, SS_FATAL|EIO, 1434 "L-EC uncorrectable error") }, 1435 /* WRO B */ 1436 { SST(0x11, 0x06, SS_FATAL|EIO, 1437 "CIRC unrecovered error") }, 1438 /* W O B */ 1439 { SST(0x11, 0x07, SS_RDEF, 1440 "Data re-synchronization error") }, 1441 /* T */ 1442 { SST(0x11, 0x08, SS_RDEF, 1443 "Incomplete block read") }, 1444 /* T */ 1445 { SST(0x11, 0x09, SS_RDEF, 1446 "No gap found") }, 1447 /* DT O BK */ 1448 { SST(0x11, 0x0A, SS_RDEF, 1449 "Miscorrected error") }, 1450 /* D W O BK */ 1451 { SST(0x11, 0x0B, SS_FATAL|EIO, 1452 "Unrecovered read error - recommend reassignment") }, 1453 /* D W O BK */ 1454 { SST(0x11, 0x0C, SS_FATAL|EIO, 1455 "Unrecovered read error - recommend rewrite the data") }, 1456 /* DT WRO B */ 1457 { SST(0x11, 0x0D, SS_RDEF, 1458 "De-compression CRC error") }, 1459 /* DT WRO B */ 1460 { SST(0x11, 0x0E, SS_RDEF, 1461 "Cannot decompress using declared algorithm") }, 1462 /* R */ 1463 { SST(0x11, 0x0F, SS_RDEF, 1464 "Error reading UPC/EAN number") }, 1465 /* R */ 1466 { SST(0x11, 0x10, SS_RDEF, 1467 "Error reading ISRC number") }, 1468 /* R */ 1469 { SST(0x11, 0x11, SS_RDEF, 1470 "Read error - loss of streaming") }, 1471 /* DT WROM B */ 1472 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ 1473 "Auxiliary memory read error") }, 1474 /* DTLPWRO AEBKVF */ 1475 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ 1476 "Read error - failed retransmission request") }, 1477 /* D */ 1478 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ 1479 "Read error - LBA marked bad by application client") }, 1480 /* D */ 1481 { SST(0x11, 0x15, SS_FATAL | EIO, 1482 "Write after sanitize required") }, 1483 /* D W O BK */ 1484 { SST(0x12, 0x00, SS_RDEF, 1485 "Address mark not found for ID field") }, 1486 /* D W O BK */ 1487 { SST(0x13, 0x00, SS_RDEF, 1488 "Address mark not found for data field") }, 1489 /* DTL WRO BK */ 1490 { SST(0x14, 0x00, SS_RDEF, 1491 "Recorded entity not found") }, 1492 /* DT WRO BK */ 1493 { SST(0x14, 0x01, SS_RDEF, 1494 "Record not found") }, 1495 /* T */ 1496 { SST(0x14, 0x02, SS_RDEF, 1497 "Filemark or setmark not found") }, 1498 /* T */ 1499 { SST(0x14, 0x03, SS_RDEF, 1500 "End-of-data not found") }, 1501 /* T */ 1502 { SST(0x14, 0x04, SS_RDEF, 1503 "Block sequence error") }, 1504 /* DT W O BK */ 1505 { SST(0x14, 0x05, SS_RDEF, 1506 "Record not found - recommend reassignment") }, 1507 /* DT W O BK */ 1508 { SST(0x14, 0x06, SS_RDEF, 1509 "Record not found - data auto-reallocated") }, 1510 /* T */ 1511 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ 1512 "Locate operation failure") }, 1513 /* DTL WROM BK */ 1514 { SST(0x15, 0x00, SS_RDEF, 1515 "Random positioning error") }, 1516 /* DTL WROM BK */ 1517 { SST(0x15, 0x01, SS_RDEF, 1518 "Mechanical positioning error") }, 1519 /* DT WRO BK */ 1520 { SST(0x15, 0x02, SS_RDEF, 1521 "Positioning error detected by read of medium") }, 1522 /* D W O BK */ 1523 { SST(0x16, 0x00, SS_RDEF, 1524 "Data synchronization mark error") }, 1525 /* D W O BK */ 1526 { SST(0x16, 0x01, SS_RDEF, 1527 "Data sync error - data rewritten") }, 1528 /* D W O BK */ 1529 { SST(0x16, 0x02, SS_RDEF, 1530 "Data sync error - recommend rewrite") }, 1531 /* D W O BK */ 1532 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1533 "Data sync error - data auto-reallocated") }, 1534 /* D W O BK */ 1535 { SST(0x16, 0x04, SS_RDEF, 1536 "Data sync error - recommend reassignment") }, 1537 /* DT WRO BK */ 1538 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1539 "Recovered data with no error correction applied") }, 1540 /* DT WRO BK */ 1541 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1542 "Recovered data with retries") }, 1543 /* DT WRO BK */ 1544 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1545 "Recovered data with positive head offset") }, 1546 /* DT WRO BK */ 1547 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1548 "Recovered data with negative head offset") }, 1549 /* WRO B */ 1550 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1551 "Recovered data with retries and/or CIRC applied") }, 1552 /* D WRO BK */ 1553 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1554 "Recovered data using previous sector ID") }, 1555 /* D W O BK */ 1556 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1557 "Recovered data without ECC - data auto-reallocated") }, 1558 /* D WRO BK */ 1559 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1560 "Recovered data without ECC - recommend reassignment") }, 1561 /* D WRO BK */ 1562 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1563 "Recovered data without ECC - recommend rewrite") }, 1564 /* D WRO BK */ 1565 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1566 "Recovered data without ECC - data rewritten") }, 1567 /* DT WRO BK */ 1568 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1569 "Recovered data with error correction applied") }, 1570 /* D WRO BK */ 1571 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1572 "Recovered data with error corr. & retries applied") }, 1573 /* D WRO BK */ 1574 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1575 "Recovered data - data auto-reallocated") }, 1576 /* R */ 1577 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1578 "Recovered data with CIRC") }, 1579 /* R */ 1580 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1581 "Recovered data with L-EC") }, 1582 /* D WRO BK */ 1583 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1584 "Recovered data - recommend reassignment") }, 1585 /* D WRO BK */ 1586 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1587 "Recovered data - recommend rewrite") }, 1588 /* D W O BK */ 1589 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1590 "Recovered data with ECC - data rewritten") }, 1591 /* R */ 1592 { SST(0x18, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1593 "Recovered data with linking") }, 1594 /* D O K */ 1595 { SST(0x19, 0x00, SS_RDEF, 1596 "Defect list error") }, 1597 /* D O K */ 1598 { SST(0x19, 0x01, SS_RDEF, 1599 "Defect list not available") }, 1600 /* D O K */ 1601 { SST(0x19, 0x02, SS_RDEF, 1602 "Defect list error in primary list") }, 1603 /* D O K */ 1604 { SST(0x19, 0x03, SS_RDEF, 1605 "Defect list error in grown list") }, 1606 /* DTLPWROMAEBKVF */ 1607 { SST(0x1A, 0x00, SS_RDEF, 1608 "Parameter list length error") }, 1609 /* DTLPWROMAEBKVF */ 1610 { SST(0x1B, 0x00, SS_RDEF, 1611 "Synchronous data transfer error") }, 1612 /* D O BK */ 1613 { SST(0x1C, 0x00, SS_RDEF, 1614 "Defect list not found") }, 1615 /* D O BK */ 1616 { SST(0x1C, 0x01, SS_RDEF, 1617 "Primary defect list not found") }, 1618 /* D O BK */ 1619 { SST(0x1C, 0x02, SS_RDEF, 1620 "Grown defect list not found") }, 1621 /* DT WRO BK */ 1622 { SST(0x1D, 0x00, SS_FATAL, 1623 "Miscompare during verify operation") }, 1624 /* D B */ 1625 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */ 1626 "Miscomparable verify of unmapped LBA") }, 1627 /* D W O BK */ 1628 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1629 "Recovered ID with ECC correction") }, 1630 /* D O K */ 1631 { SST(0x1F, 0x00, SS_RDEF, 1632 "Partial defect list transfer") }, 1633 /* DTLPWROMAEBKVF */ 1634 { SST(0x20, 0x00, SS_FATAL | EINVAL, 1635 "Invalid command operation code") }, 1636 /* DT PWROMAEBK */ 1637 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ 1638 "Access denied - initiator pending-enrolled") }, 1639 /* DT PWROMAEBK */ 1640 { SST(0x20, 0x02, SS_FATAL | EPERM, 1641 "Access denied - no access rights") }, 1642 /* DT PWROMAEBK */ 1643 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ 1644 "Access denied - invalid mgmt ID key") }, 1645 /* T */ 1646 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ 1647 "Illegal command while in write capable state") }, 1648 /* T */ 1649 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ 1650 "Obsolete") }, 1651 /* T */ 1652 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ 1653 "Illegal command while in explicit address mode") }, 1654 /* T */ 1655 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ 1656 "Illegal command while in implicit address mode") }, 1657 /* DT PWROMAEBK */ 1658 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ 1659 "Access denied - enrollment conflict") }, 1660 /* DT PWROMAEBK */ 1661 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ 1662 "Access denied - invalid LU identifier") }, 1663 /* DT PWROMAEBK */ 1664 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ 1665 "Access denied - invalid proxy token") }, 1666 /* DT PWROMAEBK */ 1667 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ 1668 "Access denied - ACL LUN conflict") }, 1669 /* T */ 1670 { SST(0x20, 0x0C, SS_FATAL | EINVAL, 1671 "Illegal command when not in append-only mode") }, 1672 /* D */ 1673 { SST(0x20, 0x0D, SS_FATAL | EINVAL, 1674 "Not an administrative logical unit") }, 1675 /* D */ 1676 { SST(0x20, 0x0E, SS_FATAL | EINVAL, 1677 "Not a subsidiary logical unit") }, 1678 /* D */ 1679 { SST(0x20, 0x0F, SS_FATAL | EINVAL, 1680 "Not a conglomerate logical unit") }, 1681 /* DT WRO BK */ 1682 { SST(0x21, 0x00, SS_FATAL | EINVAL, 1683 "Logical block address out of range") }, 1684 /* DT WROM BK */ 1685 { SST(0x21, 0x01, SS_FATAL | EINVAL, 1686 "Invalid element address") }, 1687 /* R */ 1688 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ 1689 "Invalid address for write") }, 1690 /* R */ 1691 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ 1692 "Invalid write crossing layer jump") }, 1693 /* D */ 1694 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */ 1695 "Unaligned write command") }, 1696 /* D */ 1697 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */ 1698 "Write boundary violation") }, 1699 /* D */ 1700 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */ 1701 "Attempt to read invalid data") }, 1702 /* D */ 1703 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */ 1704 "Read boundary violation") }, 1705 /* D */ 1706 { SST(0x21, 0x08, SS_FATAL | EINVAL, 1707 "Misaligned write command") }, 1708 /* D */ 1709 { SST(0x21, 0x09, SS_FATAL | EINVAL, 1710 "Attempt to access gap zone") }, 1711 /* D */ 1712 { SST(0x22, 0x00, SS_FATAL | EINVAL, 1713 "Illegal function (use 20 00, 24 00, or 26 00)") }, 1714 /* DT P B */ 1715 { SST(0x23, 0x00, SS_FATAL | EINVAL, 1716 "Invalid token operation, cause not reportable") }, 1717 /* DT P B */ 1718 { SST(0x23, 0x01, SS_FATAL | EINVAL, 1719 "Invalid token operation, unsupported token type") }, 1720 /* DT P B */ 1721 { SST(0x23, 0x02, SS_FATAL | EINVAL, 1722 "Invalid token operation, remote token usage not supported") }, 1723 /* DT P B */ 1724 { SST(0x23, 0x03, SS_FATAL | EINVAL, 1725 "Invalid token operation, remote ROD token creation not supported") }, 1726 /* DT P B */ 1727 { SST(0x23, 0x04, SS_FATAL | EINVAL, 1728 "Invalid token operation, token unknown") }, 1729 /* DT P B */ 1730 { SST(0x23, 0x05, SS_FATAL | EINVAL, 1731 "Invalid token operation, token corrupt") }, 1732 /* DT P B */ 1733 { SST(0x23, 0x06, SS_FATAL | EINVAL, 1734 "Invalid token operation, token revoked") }, 1735 /* DT P B */ 1736 { SST(0x23, 0x07, SS_FATAL | EINVAL, 1737 "Invalid token operation, token expired") }, 1738 /* DT P B */ 1739 { SST(0x23, 0x08, SS_FATAL | EINVAL, 1740 "Invalid token operation, token cancelled") }, 1741 /* DT P B */ 1742 { SST(0x23, 0x09, SS_FATAL | EINVAL, 1743 "Invalid token operation, token deleted") }, 1744 /* DT P B */ 1745 { SST(0x23, 0x0A, SS_FATAL | EINVAL, 1746 "Invalid token operation, invalid token length") }, 1747 /* DTLPWROMAEBKVF */ 1748 { SST(0x24, 0x00, SS_FATAL | EINVAL, 1749 "Invalid field in CDB") }, 1750 /* DTLPWRO AEBKVF */ 1751 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ 1752 "CDB decryption error") }, 1753 /* T */ 1754 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ 1755 "Obsolete") }, 1756 /* T */ 1757 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ 1758 "Obsolete") }, 1759 /* F */ 1760 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ 1761 "Security audit value frozen") }, 1762 /* F */ 1763 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ 1764 "Security working key frozen") }, 1765 /* F */ 1766 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ 1767 "NONCE not unique") }, 1768 /* F */ 1769 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ 1770 "NONCE timestamp out of range") }, 1771 /* DT R MAEBKV */ 1772 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ 1773 "Invalid XCDB") }, 1774 /* D */ 1775 { SST(0x24, 0x09, SS_FATAL | EINVAL, 1776 "Invalid fast format") }, 1777 /* DTLPWROMAEBKVF */ 1778 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST, 1779 "Logical unit not supported") }, 1780 /* DTLPWROMAEBKVF */ 1781 { SST(0x26, 0x00, SS_FATAL | EINVAL, 1782 "Invalid field in parameter list") }, 1783 /* DTLPWROMAEBKVF */ 1784 { SST(0x26, 0x01, SS_FATAL | EINVAL, 1785 "Parameter not supported") }, 1786 /* DTLPWROMAEBKVF */ 1787 { SST(0x26, 0x02, SS_FATAL | EINVAL, 1788 "Parameter value invalid") }, 1789 /* DTLPWROMAE K */ 1790 { SST(0x26, 0x03, SS_FATAL | EINVAL, 1791 "Threshold parameters not supported") }, 1792 /* DTLPWROMAEBKVF */ 1793 { SST(0x26, 0x04, SS_FATAL | EINVAL, 1794 "Invalid release of persistent reservation") }, 1795 /* DTLPWRO A BK */ 1796 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ 1797 "Data decryption error") }, 1798 /* DTLPWRO K */ 1799 { SST(0x26, 0x06, SS_FATAL | EINVAL, 1800 "Too many target descriptors") }, 1801 /* DTLPWRO K */ 1802 { SST(0x26, 0x07, SS_FATAL | EINVAL, 1803 "Unsupported target descriptor type code") }, 1804 /* DTLPWRO K */ 1805 { SST(0x26, 0x08, SS_FATAL | EINVAL, 1806 "Too many segment descriptors") }, 1807 /* DTLPWRO K */ 1808 { SST(0x26, 0x09, SS_FATAL | EINVAL, 1809 "Unsupported segment descriptor type code") }, 1810 /* DTLPWRO K */ 1811 { SST(0x26, 0x0A, SS_FATAL | EINVAL, 1812 "Unexpected inexact segment") }, 1813 /* DTLPWRO K */ 1814 { SST(0x26, 0x0B, SS_FATAL | EINVAL, 1815 "Inline data length exceeded") }, 1816 /* DTLPWRO K */ 1817 { SST(0x26, 0x0C, SS_FATAL | EINVAL, 1818 "Invalid operation for copy source or destination") }, 1819 /* DTLPWRO K */ 1820 { SST(0x26, 0x0D, SS_FATAL | EINVAL, 1821 "Copy segment granularity violation") }, 1822 /* DT PWROMAEBK */ 1823 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ 1824 "Invalid parameter while port is enabled") }, 1825 /* F */ 1826 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ 1827 "Invalid data-out buffer integrity check value") }, 1828 /* T */ 1829 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ 1830 "Data decryption key fail limit reached") }, 1831 /* T */ 1832 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ 1833 "Incomplete key-associated data set") }, 1834 /* T */ 1835 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ 1836 "Vendor specific key reference not found") }, 1837 /* D */ 1838 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */ 1839 "Application tag mode page is invalid") }, 1840 /* T */ 1841 { SST(0x26, 0x14, SS_RDEF, /* XXX TBD */ 1842 "Tape stream mirroring prevented") }, 1843 /* T */ 1844 { SST(0x26, 0x15, SS_FATAL | EINVAL, 1845 "Copy source or copy destination not authorized") }, 1846 /* D */ 1847 { SST(0x26, 0x16, SS_FATAL | EINVAL, 1848 "Fast copy not possible") }, 1849 /* DT WRO BK */ 1850 { SST(0x27, 0x00, SS_FATAL | EACCES, 1851 "Write protected") }, 1852 /* DT WRO BK */ 1853 { SST(0x27, 0x01, SS_FATAL | EACCES, 1854 "Hardware write protected") }, 1855 /* DT WRO BK */ 1856 { SST(0x27, 0x02, SS_FATAL | EACCES, 1857 "Logical unit software write protected") }, 1858 /* T R */ 1859 { SST(0x27, 0x03, SS_FATAL | EACCES, 1860 "Associated write protect") }, 1861 /* T R */ 1862 { SST(0x27, 0x04, SS_FATAL | EACCES, 1863 "Persistent write protect") }, 1864 /* T R */ 1865 { SST(0x27, 0x05, SS_FATAL | EACCES, 1866 "Permanent write protect") }, 1867 /* R F */ 1868 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ 1869 "Conditional write protect") }, 1870 /* D B */ 1871 { SST(0x27, 0x07, SS_FATAL | ENOSPC, 1872 "Space allocation failed write protect") }, 1873 /* D */ 1874 { SST(0x27, 0x08, SS_FATAL | EACCES, 1875 "Zone is read only") }, 1876 /* DTLPWROMAEBKVF */ 1877 { SST(0x28, 0x00, SS_FATAL | ENXIO, 1878 "Not ready to ready change, medium may have changed") }, 1879 /* DT WROM B */ 1880 { SST(0x28, 0x01, SS_FATAL | ENXIO, 1881 "Import or export element accessed") }, 1882 /* R */ 1883 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ 1884 "Format-layer may have changed") }, 1885 /* M */ 1886 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ 1887 "Import/export element accessed, medium changed") }, 1888 /* 1889 * XXX JGibbs - All of these should use the same errno, but I don't 1890 * think ENXIO is the correct choice. Should we borrow from 1891 * the networking errnos? ECONNRESET anyone? 1892 */ 1893 /* DTLPWROMAEBKVF */ 1894 { SST(0x29, 0x00, SS_FATAL | ENXIO, 1895 "Power on, reset, or bus device reset occurred") }, 1896 /* DTLPWROMAEBKVF */ 1897 { SST(0x29, 0x01, SS_RDEF, 1898 "Power on occurred") }, 1899 /* DTLPWROMAEBKVF */ 1900 { SST(0x29, 0x02, SS_RDEF, 1901 "SCSI bus reset occurred") }, 1902 /* DTLPWROMAEBKVF */ 1903 { SST(0x29, 0x03, SS_RDEF, 1904 "Bus device reset function occurred") }, 1905 /* DTLPWROMAEBKVF */ 1906 { SST(0x29, 0x04, SS_RDEF, 1907 "Device internal reset") }, 1908 /* DTLPWROMAEBKVF */ 1909 { SST(0x29, 0x05, SS_RDEF, 1910 "Transceiver mode changed to single-ended") }, 1911 /* DTLPWROMAEBKVF */ 1912 { SST(0x29, 0x06, SS_RDEF, 1913 "Transceiver mode changed to LVD") }, 1914 /* DTLPWROMAEBKVF */ 1915 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ 1916 "I_T nexus loss occurred") }, 1917 /* DTL WROMAEBKVF */ 1918 { SST(0x2A, 0x00, SS_RDEF, 1919 "Parameters changed") }, 1920 /* DTL WROMAEBKVF */ 1921 { SST(0x2A, 0x01, SS_RDEF, 1922 "Mode parameters changed") }, 1923 /* DTL WROMAE K */ 1924 { SST(0x2A, 0x02, SS_RDEF, 1925 "Log parameters changed") }, 1926 /* DTLPWROMAE K */ 1927 { SST(0x2A, 0x03, SS_RDEF, 1928 "Reservations preempted") }, 1929 /* DTLPWROMAE */ 1930 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ 1931 "Reservations released") }, 1932 /* DTLPWROMAE */ 1933 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ 1934 "Registrations preempted") }, 1935 /* DTLPWROMAEBKVF */ 1936 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ 1937 "Asymmetric access state changed") }, 1938 /* DTLPWROMAEBKVF */ 1939 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ 1940 "Implicit asymmetric access state transition failed") }, 1941 /* DT WROMAEBKVF */ 1942 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ 1943 "Priority changed") }, 1944 /* D */ 1945 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ 1946 "Capacity data has changed") }, 1947 /* DT */ 1948 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ 1949 "Error history I_T nexus cleared") }, 1950 /* DT */ 1951 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ 1952 "Error history snapshot released") }, 1953 /* F */ 1954 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ 1955 "Error recovery attributes have changed") }, 1956 /* T */ 1957 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ 1958 "Data encryption capabilities changed") }, 1959 /* DT M E V */ 1960 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ 1961 "Timestamp changed") }, 1962 /* T */ 1963 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ 1964 "Data encryption parameters changed by another I_T nexus") }, 1965 /* T */ 1966 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ 1967 "Data encryption parameters changed by vendor specific event") }, 1968 /* T */ 1969 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ 1970 "Data encryption key instance counter has changed") }, 1971 /* DT R MAEBKV */ 1972 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ 1973 "SA creation capabilities data has changed") }, 1974 /* T M V */ 1975 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */ 1976 "Medium removal prevention preempted") }, 1977 /* D */ 1978 { SST(0x2A, 0x16, SS_RDEF, /* XXX TBD */ 1979 "Zone reset write pointer recommended") }, 1980 /* DTLPWRO K */ 1981 { SST(0x2B, 0x00, SS_RDEF, 1982 "Copy cannot execute since host cannot disconnect") }, 1983 /* DTLPWROMAEBKVF */ 1984 { SST(0x2C, 0x00, SS_RDEF, 1985 "Command sequence error") }, 1986 /* */ 1987 { SST(0x2C, 0x01, SS_RDEF, 1988 "Too many windows specified") }, 1989 /* */ 1990 { SST(0x2C, 0x02, SS_RDEF, 1991 "Invalid combination of windows specified") }, 1992 /* R */ 1993 { SST(0x2C, 0x03, SS_RDEF, 1994 "Current program area is not empty") }, 1995 /* R */ 1996 { SST(0x2C, 0x04, SS_RDEF, 1997 "Current program area is empty") }, 1998 /* B */ 1999 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ 2000 "Illegal power condition request") }, 2001 /* R */ 2002 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ 2003 "Persistent prevent conflict") }, 2004 /* DTLPWROMAEBKVF */ 2005 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ 2006 "Previous busy status") }, 2007 /* DTLPWROMAEBKVF */ 2008 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ 2009 "Previous task set full status") }, 2010 /* DTLPWROM EBKVF */ 2011 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ 2012 "Previous reservation conflict status") }, 2013 /* F */ 2014 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ 2015 "Partition or collection contains user objects") }, 2016 /* T */ 2017 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ 2018 "Not reserved") }, 2019 /* D */ 2020 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */ 2021 "ORWRITE generation does not match") }, 2022 /* D */ 2023 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */ 2024 "Reset write pointer not allowed") }, 2025 /* D */ 2026 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */ 2027 "Zone is offline") }, 2028 /* D */ 2029 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */ 2030 "Stream not open") }, 2031 /* D */ 2032 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */ 2033 "Unwritten data in zone") }, 2034 /* D */ 2035 { SST(0x2C, 0x11, SS_FATAL | EINVAL, 2036 "Descriptor format sense data required") }, 2037 /* D */ 2038 { SST(0x2C, 0x12, SS_FATAL | EINVAL, 2039 "Zone is inactive") }, 2040 /* DTPEROMAEBKVF */ 2041 { SST(0x2C, 0x13, SS_FATAL | EINVAL, 2042 "Well known logical unit access required") }, 2043 /* T */ 2044 { SST(0x2D, 0x00, SS_RDEF, 2045 "Overwrite error on update in place") }, 2046 /* R */ 2047 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ 2048 "Insufficient time for operation") }, 2049 /* D */ 2050 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */ 2051 "Command timeout before processing") }, 2052 /* D */ 2053 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */ 2054 "Command timeout during processing") }, 2055 /* D */ 2056 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */ 2057 "Command timeout during processing due to error recovery") }, 2058 /* DTLPWROMAEBKVF */ 2059 { SST(0x2F, 0x00, SS_RDEF, 2060 "Commands cleared by another initiator") }, 2061 /* D */ 2062 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ 2063 "Commands cleared by power loss notification") }, 2064 /* DTLPWROMAEBKVF */ 2065 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ 2066 "Commands cleared by device server") }, 2067 /* DTLPWROMAEBKVF */ 2068 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */ 2069 "Some commands cleared by queuing layer event") }, 2070 /* DT WROM BK */ 2071 { SST(0x30, 0x00, SS_RDEF, 2072 "Incompatible medium installed") }, 2073 /* DT WRO BK */ 2074 { SST(0x30, 0x01, SS_RDEF, 2075 "Cannot read medium - unknown format") }, 2076 /* DT WRO BK */ 2077 { SST(0x30, 0x02, SS_RDEF, 2078 "Cannot read medium - incompatible format") }, 2079 /* DT R K */ 2080 { SST(0x30, 0x03, SS_RDEF, 2081 "Cleaning cartridge installed") }, 2082 /* DT WRO BK */ 2083 { SST(0x30, 0x04, SS_RDEF, 2084 "Cannot write medium - unknown format") }, 2085 /* DT WRO BK */ 2086 { SST(0x30, 0x05, SS_RDEF, 2087 "Cannot write medium - incompatible format") }, 2088 /* DT WRO B */ 2089 { SST(0x30, 0x06, SS_RDEF, 2090 "Cannot format medium - incompatible medium") }, 2091 /* DTL WROMAEBKVF */ 2092 { SST(0x30, 0x07, SS_RDEF, 2093 "Cleaning failure") }, 2094 /* R */ 2095 { SST(0x30, 0x08, SS_RDEF, 2096 "Cannot write - application code mismatch") }, 2097 /* R */ 2098 { SST(0x30, 0x09, SS_RDEF, 2099 "Current session not fixated for append") }, 2100 /* DT WRO AEBK */ 2101 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ 2102 "Cleaning request rejected") }, 2103 /* T */ 2104 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ 2105 "WORM medium - overwrite attempted") }, 2106 /* T */ 2107 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ 2108 "WORM medium - integrity check") }, 2109 /* R */ 2110 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ 2111 "Medium not formatted") }, 2112 /* M */ 2113 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ 2114 "Incompatible volume type") }, 2115 /* M */ 2116 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ 2117 "Incompatible volume qualifier") }, 2118 /* M */ 2119 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */ 2120 "Cleaning volume expired") }, 2121 /* DT WRO BK */ 2122 { SST(0x31, 0x00, SS_FATAL | ENXIO, 2123 "Medium format corrupted") }, 2124 /* D L RO B */ 2125 { SST(0x31, 0x01, SS_RDEF, 2126 "Format command failed") }, 2127 /* R */ 2128 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ 2129 "Zoned formatting failed due to spare linking") }, 2130 /* D B */ 2131 { SST(0x31, 0x03, SS_FATAL | EIO, 2132 "SANITIZE command failed") }, 2133 /* D */ 2134 { SST(0x31, 0x04, SS_FATAL | EIO, 2135 "Depopulation failed") }, 2136 /* D */ 2137 { SST(0x31, 0x05, SS_FATAL | EIO, 2138 "Depopulation restoration failed") }, 2139 /* D W O BK */ 2140 { SST(0x32, 0x00, SS_RDEF, 2141 "No defect spare location available") }, 2142 /* D W O BK */ 2143 { SST(0x32, 0x01, SS_RDEF, 2144 "Defect list update failure") }, 2145 /* T */ 2146 { SST(0x33, 0x00, SS_RDEF, 2147 "Tape length error") }, 2148 /* DTLPWROMAEBKVF */ 2149 { SST(0x34, 0x00, SS_RDEF, 2150 "Enclosure failure") }, 2151 /* DTLPWROMAEBKVF */ 2152 { SST(0x35, 0x00, SS_RDEF, 2153 "Enclosure services failure") }, 2154 /* DTLPWROMAEBKVF */ 2155 { SST(0x35, 0x01, SS_RDEF, 2156 "Unsupported enclosure function") }, 2157 /* DTLPWROMAEBKVF */ 2158 { SST(0x35, 0x02, SS_RDEF, 2159 "Enclosure services unavailable") }, 2160 /* DTLPWROMAEBKVF */ 2161 { SST(0x35, 0x03, SS_RDEF, 2162 "Enclosure services transfer failure") }, 2163 /* DTLPWROMAEBKVF */ 2164 { SST(0x35, 0x04, SS_RDEF, 2165 "Enclosure services transfer refused") }, 2166 /* DTL WROMAEBKVF */ 2167 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ 2168 "Enclosure services checksum error") }, 2169 /* L */ 2170 { SST(0x36, 0x00, SS_RDEF, 2171 "Ribbon, ink, or toner failure") }, 2172 /* DTL WROMAEBKVF */ 2173 { SST(0x37, 0x00, SS_RDEF, 2174 "Rounded parameter") }, 2175 /* B */ 2176 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ 2177 "Event status notification") }, 2178 /* B */ 2179 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ 2180 "ESN - power management class event") }, 2181 /* B */ 2182 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ 2183 "ESN - media class event") }, 2184 /* B */ 2185 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ 2186 "ESN - device busy class event") }, 2187 /* D */ 2188 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */ 2189 "Thin provisioning soft threshold reached") }, 2190 /* D */ 2191 { SST(0x38, 0x08, SS_NOP | SSQ_PRINT_SENSE, 2192 "Depopulation interrupted") }, 2193 /* DTL WROMAE K */ 2194 { SST(0x39, 0x00, SS_RDEF, 2195 "Saving parameters not supported") }, 2196 /* DTL WROM BK */ 2197 { SST(0x3A, 0x00, SS_FATAL | ENXIO, 2198 "Medium not present") }, 2199 /* DT WROM BK */ 2200 { SST(0x3A, 0x01, SS_FATAL | ENXIO, 2201 "Medium not present - tray closed") }, 2202 /* DT WROM BK */ 2203 { SST(0x3A, 0x02, SS_FATAL | ENXIO, 2204 "Medium not present - tray open") }, 2205 /* DT WROM B */ 2206 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ 2207 "Medium not present - loadable") }, 2208 /* DT WRO B */ 2209 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ 2210 "Medium not present - medium auxiliary memory accessible") }, 2211 /* TL */ 2212 { SST(0x3B, 0x00, SS_RDEF, 2213 "Sequential positioning error") }, 2214 /* T */ 2215 { SST(0x3B, 0x01, SS_RDEF, 2216 "Tape position error at beginning-of-medium") }, 2217 /* T */ 2218 { SST(0x3B, 0x02, SS_RDEF, 2219 "Tape position error at end-of-medium") }, 2220 /* L */ 2221 { SST(0x3B, 0x03, SS_RDEF, 2222 "Tape or electronic vertical forms unit not ready") }, 2223 /* L */ 2224 { SST(0x3B, 0x04, SS_RDEF, 2225 "Slew failure") }, 2226 /* L */ 2227 { SST(0x3B, 0x05, SS_RDEF, 2228 "Paper jam") }, 2229 /* L */ 2230 { SST(0x3B, 0x06, SS_RDEF, 2231 "Failed to sense top-of-form") }, 2232 /* L */ 2233 { SST(0x3B, 0x07, SS_RDEF, 2234 "Failed to sense bottom-of-form") }, 2235 /* T */ 2236 { SST(0x3B, 0x08, SS_RDEF, 2237 "Reposition error") }, 2238 /* */ 2239 { SST(0x3B, 0x09, SS_RDEF, 2240 "Read past end of medium") }, 2241 /* */ 2242 { SST(0x3B, 0x0A, SS_RDEF, 2243 "Read past beginning of medium") }, 2244 /* */ 2245 { SST(0x3B, 0x0B, SS_RDEF, 2246 "Position past end of medium") }, 2247 /* T */ 2248 { SST(0x3B, 0x0C, SS_RDEF, 2249 "Position past beginning of medium") }, 2250 /* DT WROM BK */ 2251 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, 2252 "Medium destination element full") }, 2253 /* DT WROM BK */ 2254 { SST(0x3B, 0x0E, SS_RDEF, 2255 "Medium source element empty") }, 2256 /* R */ 2257 { SST(0x3B, 0x0F, SS_RDEF, 2258 "End of medium reached") }, 2259 /* DT WROM BK */ 2260 { SST(0x3B, 0x11, SS_RDEF, 2261 "Medium magazine not accessible") }, 2262 /* DT WROM BK */ 2263 { SST(0x3B, 0x12, SS_RDEF, 2264 "Medium magazine removed") }, 2265 /* DT WROM BK */ 2266 { SST(0x3B, 0x13, SS_RDEF, 2267 "Medium magazine inserted") }, 2268 /* DT WROM BK */ 2269 { SST(0x3B, 0x14, SS_RDEF, 2270 "Medium magazine locked") }, 2271 /* DT WROM BK */ 2272 { SST(0x3B, 0x15, SS_RDEF, 2273 "Medium magazine unlocked") }, 2274 /* R */ 2275 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ 2276 "Mechanical positioning or changer error") }, 2277 /* F */ 2278 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ 2279 "Read past end of user object") }, 2280 /* M */ 2281 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ 2282 "Element disabled") }, 2283 /* M */ 2284 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ 2285 "Element enabled") }, 2286 /* M */ 2287 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ 2288 "Data transfer device removed") }, 2289 /* M */ 2290 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ 2291 "Data transfer device inserted") }, 2292 /* T */ 2293 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */ 2294 "Too many logical objects on partition to support operation") }, 2295 /* M */ 2296 { SST(0x3B, 0x20, SS_RDEF, /* XXX TBD */ 2297 "Element static information changed") }, 2298 /* DTLPWROMAE K */ 2299 { SST(0x3D, 0x00, SS_RDEF, 2300 "Invalid bits in IDENTIFY message") }, 2301 /* DTLPWROMAEBKVF */ 2302 { SST(0x3E, 0x00, SS_RDEF, 2303 "Logical unit has not self-configured yet") }, 2304 /* DTLPWROMAEBKVF */ 2305 { SST(0x3E, 0x01, SS_RDEF, 2306 "Logical unit failure") }, 2307 /* DTLPWROMAEBKVF */ 2308 { SST(0x3E, 0x02, SS_RDEF, 2309 "Timeout on logical unit") }, 2310 /* DTLPWROMAEBKVF */ 2311 { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */ 2312 "Logical unit failed self-test") }, 2313 /* DTLPWROMAEBKVF */ 2314 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ 2315 "Logical unit unable to update self-test log") }, 2316 /* DTLPWROMAEBKVF */ 2317 { SST(0x3F, 0x00, SS_RDEF, 2318 "Target operating conditions have changed") }, 2319 /* DTLPWROMAEBKVF */ 2320 { SST(0x3F, 0x01, SS_RDEF, 2321 "Microcode has been changed") }, 2322 /* DTLPWROM BK */ 2323 { SST(0x3F, 0x02, SS_RDEF, 2324 "Changed operating definition") }, 2325 /* DTLPWROMAEBKVF */ 2326 { SST(0x3F, 0x03, SS_RDEF, 2327 "INQUIRY data has changed") }, 2328 /* DT WROMAEBK */ 2329 { SST(0x3F, 0x04, SS_RDEF, 2330 "Component device attached") }, 2331 /* DT WROMAEBK */ 2332 { SST(0x3F, 0x05, SS_RDEF, 2333 "Device identifier changed") }, 2334 /* DT WROMAEB */ 2335 { SST(0x3F, 0x06, SS_RDEF, 2336 "Redundancy group created or modified") }, 2337 /* DT WROMAEB */ 2338 { SST(0x3F, 0x07, SS_RDEF, 2339 "Redundancy group deleted") }, 2340 /* DT WROMAEB */ 2341 { SST(0x3F, 0x08, SS_RDEF, 2342 "Spare created or modified") }, 2343 /* DT WROMAEB */ 2344 { SST(0x3F, 0x09, SS_RDEF, 2345 "Spare deleted") }, 2346 /* DT WROMAEBK */ 2347 { SST(0x3F, 0x0A, SS_RDEF, 2348 "Volume set created or modified") }, 2349 /* DT WROMAEBK */ 2350 { SST(0x3F, 0x0B, SS_RDEF, 2351 "Volume set deleted") }, 2352 /* DT WROMAEBK */ 2353 { SST(0x3F, 0x0C, SS_RDEF, 2354 "Volume set deassigned") }, 2355 /* DT WROMAEBK */ 2356 { SST(0x3F, 0x0D, SS_RDEF, 2357 "Volume set reassigned") }, 2358 /* DTLPWROMAE */ 2359 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN , 2360 "Reported LUNs data has changed") }, 2361 /* DTLPWROMAEBKVF */ 2362 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ 2363 "Echo buffer overwritten") }, 2364 /* DT WROM B */ 2365 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ 2366 "Medium loadable") }, 2367 /* DT WROM B */ 2368 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ 2369 "Medium auxiliary memory accessible") }, 2370 /* DTLPWR MAEBK F */ 2371 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ 2372 "iSCSI IP address added") }, 2373 /* DTLPWR MAEBK F */ 2374 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ 2375 "iSCSI IP address removed") }, 2376 /* DTLPWR MAEBK F */ 2377 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ 2378 "iSCSI IP address changed") }, 2379 /* DTLPWR MAEBK */ 2380 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */ 2381 "Inspect referrals sense descriptors") }, 2382 /* DTLPWROMAEBKVF */ 2383 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */ 2384 "Microcode has been changed without reset") }, 2385 /* D */ 2386 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */ 2387 "Zone transition to full") }, 2388 /* D */ 2389 { SST(0x3F, 0x18, SS_RDEF, /* XXX TBD */ 2390 "Bind completed") }, 2391 /* D */ 2392 { SST(0x3F, 0x19, SS_RDEF, /* XXX TBD */ 2393 "Bind redirected") }, 2394 /* D */ 2395 { SST(0x3F, 0x1A, SS_RDEF, /* XXX TBD */ 2396 "Subsidiary binding changed") }, 2397 { SST(0x40, 0x00, SS_RDEF, 2398 "RAM failure") }, /* deprecated - use 40 NN instead */ 2399 /* DTLPWROMAEBKVF */ 2400 { SST(0x40, 0x80, SS_RDEF, 2401 "Diagnostic failure: ASCQ = Component ID") }, 2402 /* DTLPWROMAEBKVF */ 2403 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, 2404 NULL) }, /* Range 0x80->0xFF */ 2405 /* D */ 2406 { SST(0x41, 0x00, SS_RDEF, 2407 "Data path failure") }, /* deprecated - use 40 NN instead */ 2408 /* D */ 2409 { SST(0x42, 0x00, SS_RDEF, 2410 "Power-on or self-test failure") }, 2411 /* deprecated - use 40 NN instead */ 2412 /* DTLPWROMAEBKVF */ 2413 { SST(0x43, 0x00, SS_RDEF, 2414 "Message error") }, 2415 /* DTLPWROMAEBKVF */ 2416 { SST(0x44, 0x00, SS_FATAL | ENXIO, 2417 "Internal target failure") }, 2418 /* DT P MAEBKVF */ 2419 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */ 2420 "Persistent reservation information lost") }, 2421 /* DT B */ 2422 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ 2423 "ATA device failed set features") }, 2424 /* DTLPWROMAEBKVF */ 2425 { SST(0x45, 0x00, SS_RDEF, 2426 "Select or reselect failure") }, 2427 /* DTLPWROM BK */ 2428 { SST(0x46, 0x00, SS_RDEF, 2429 "Unsuccessful soft reset") }, 2430 /* DTLPWROMAEBKVF */ 2431 { SST(0x47, 0x00, SS_RDEF, 2432 "SCSI parity error") }, 2433 /* DTLPWROMAEBKVF */ 2434 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ 2435 "Data phase CRC error detected") }, 2436 /* DTLPWROMAEBKVF */ 2437 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ 2438 "SCSI parity error detected during ST data phase") }, 2439 /* DTLPWROMAEBKVF */ 2440 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ 2441 "Information unit iuCRC error detected") }, 2442 /* DTLPWROMAEBKVF */ 2443 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ 2444 "Asynchronous information protection error detected") }, 2445 /* DTLPWROMAEBKVF */ 2446 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ 2447 "Protocol service CRC error") }, 2448 /* DT MAEBKVF */ 2449 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ 2450 "PHY test function in progress") }, 2451 /* DT PWROMAEBK */ 2452 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ 2453 "Some commands cleared by iSCSI protocol event") }, 2454 /* DTLPWROMAEBKVF */ 2455 { SST(0x48, 0x00, SS_RDEF, 2456 "Initiator detected error message received") }, 2457 /* DTLPWROMAEBKVF */ 2458 { SST(0x49, 0x00, SS_RDEF, 2459 "Invalid message error") }, 2460 /* DTLPWROMAEBKVF */ 2461 { SST(0x4A, 0x00, SS_RDEF, 2462 "Command phase error") }, 2463 /* DTLPWROMAEBKVF */ 2464 { SST(0x4B, 0x00, SS_RDEF, 2465 "Data phase error") }, 2466 /* DT PWROMAEBK */ 2467 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ 2468 "Invalid target port transfer tag received") }, 2469 /* DT PWROMAEBK */ 2470 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ 2471 "Too much write data") }, 2472 /* DT PWROMAEBK */ 2473 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ 2474 "ACK/NAK timeout") }, 2475 /* DT PWROMAEBK */ 2476 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ 2477 "NAK received") }, 2478 /* DT PWROMAEBK */ 2479 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ 2480 "Data offset error") }, 2481 /* DT PWROMAEBK */ 2482 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ 2483 "Initiator response timeout") }, 2484 /* DT PWROMAEBK F */ 2485 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */ 2486 "Connection lost") }, 2487 /* DT PWROMAEBK F */ 2488 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */ 2489 "Data-in buffer overflow - data buffer size") }, 2490 /* DT PWROMAEBK F */ 2491 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */ 2492 "Data-in buffer overflow - data buffer descriptor area") }, 2493 /* DT PWROMAEBK F */ 2494 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */ 2495 "Data-in buffer error") }, 2496 /* DT PWROMAEBK F */ 2497 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */ 2498 "Data-out buffer overflow - data buffer size") }, 2499 /* DT PWROMAEBK F */ 2500 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */ 2501 "Data-out buffer overflow - data buffer descriptor area") }, 2502 /* DT PWROMAEBK F */ 2503 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */ 2504 "Data-out buffer error") }, 2505 /* DT PWROMAEBK F */ 2506 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */ 2507 "PCIe fabric error") }, 2508 /* DT PWROMAEBK F */ 2509 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */ 2510 "PCIe completion timeout") }, 2511 /* DT PWROMAEBK F */ 2512 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */ 2513 "PCIe completer abort") }, 2514 /* DT PWROMAEBK F */ 2515 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */ 2516 "PCIe poisoned TLP received") }, 2517 /* DT PWROMAEBK F */ 2518 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */ 2519 "PCIe ECRC check failed") }, 2520 /* DT PWROMAEBK F */ 2521 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */ 2522 "PCIe unsupported request") }, 2523 /* DT PWROMAEBK F */ 2524 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */ 2525 "PCIe ACS violation") }, 2526 /* DT PWROMAEBK F */ 2527 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */ 2528 "PCIe TLP prefix blocket") }, 2529 /* DTLPWROMAEBKVF */ 2530 { SST(0x4C, 0x00, SS_RDEF, 2531 "Logical unit failed self-configuration") }, 2532 /* DTLPWROMAEBKVF */ 2533 { SST(0x4D, 0x00, SS_RDEF, 2534 "Tagged overlapped commands: ASCQ = Queue tag ID") }, 2535 /* DTLPWROMAEBKVF */ 2536 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, 2537 NULL) }, /* Range 0x00->0xFF */ 2538 /* DTLPWROMAEBKVF */ 2539 { SST(0x4E, 0x00, SS_RDEF, 2540 "Overlapped commands attempted") }, 2541 /* T */ 2542 { SST(0x50, 0x00, SS_RDEF, 2543 "Write append error") }, 2544 /* T */ 2545 { SST(0x50, 0x01, SS_RDEF, 2546 "Write append position error") }, 2547 /* T */ 2548 { SST(0x50, 0x02, SS_RDEF, 2549 "Position error related to timing") }, 2550 /* T RO */ 2551 { SST(0x51, 0x00, SS_RDEF, 2552 "Erase failure") }, 2553 /* R */ 2554 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ 2555 "Erase failure - incomplete erase operation detected") }, 2556 /* T */ 2557 { SST(0x52, 0x00, SS_RDEF, 2558 "Cartridge fault") }, 2559 /* DTL WROM BK */ 2560 { SST(0x53, 0x00, SS_RDEF, 2561 "Media load or eject failed") }, 2562 /* T */ 2563 { SST(0x53, 0x01, SS_RDEF, 2564 "Unload tape failure") }, 2565 /* DT WROM BK */ 2566 { SST(0x53, 0x02, SS_RDEF, 2567 "Medium removal prevented") }, 2568 /* M */ 2569 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ 2570 "Medium removal prevented by data transfer element") }, 2571 /* T */ 2572 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ 2573 "Medium thread or unthread failure") }, 2574 /* M */ 2575 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */ 2576 "Volume identifier invalid") }, 2577 /* T */ 2578 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */ 2579 "Volume identifier missing") }, 2580 /* M */ 2581 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */ 2582 "Duplicate volume identifier") }, 2583 /* M */ 2584 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */ 2585 "Element status unknown") }, 2586 /* M */ 2587 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */ 2588 "Data transfer device error - load failed") }, 2589 /* M */ 2590 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */ 2591 "Data transfer device error - unload failed") }, 2592 /* M */ 2593 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */ 2594 "Data transfer device error - unload missing") }, 2595 /* M */ 2596 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */ 2597 "Data transfer device error - eject failed") }, 2598 /* M */ 2599 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */ 2600 "Data transfer device error - library communication failed") }, 2601 /* P */ 2602 { SST(0x54, 0x00, SS_RDEF, 2603 "SCSI to host system interface failure") }, 2604 /* P */ 2605 { SST(0x55, 0x00, SS_RDEF, 2606 "System resource failure") }, 2607 /* D O BK */ 2608 { SST(0x55, 0x01, SS_FATAL | ENOSPC, 2609 "System buffer full") }, 2610 /* DTLPWROMAE K */ 2611 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ 2612 "Insufficient reservation resources") }, 2613 /* DTLPWROMAE K */ 2614 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ 2615 "Insufficient resources") }, 2616 /* DTLPWROMAE K */ 2617 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ 2618 "Insufficient registration resources") }, 2619 /* DT PWROMAEBK */ 2620 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ 2621 "Insufficient access control resources") }, 2622 /* DT WROM B */ 2623 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ 2624 "Auxiliary memory out of space") }, 2625 /* F */ 2626 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ 2627 "Quota error") }, 2628 /* T */ 2629 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ 2630 "Maximum number of supplemental decryption keys exceeded") }, 2631 /* M */ 2632 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ 2633 "Medium auxiliary memory not accessible") }, 2634 /* M */ 2635 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ 2636 "Data currently unavailable") }, 2637 /* DTLPWROMAEBKVF */ 2638 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */ 2639 "Insufficient power for operation") }, 2640 /* DT P B */ 2641 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */ 2642 "Insufficient resources to create ROD") }, 2643 /* DT P B */ 2644 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */ 2645 "Insufficient resources to create ROD token") }, 2646 /* D */ 2647 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */ 2648 "Insufficient zone resources") }, 2649 /* D */ 2650 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */ 2651 "Insufficient zone resources to complete write") }, 2652 /* D */ 2653 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */ 2654 "Maximum number of streams open") }, 2655 /* D */ 2656 { SST(0x55, 0x11, SS_RDEF, /* XXX TBD */ 2657 "Insufficient resources to bind") }, 2658 /* R */ 2659 { SST(0x57, 0x00, SS_RDEF, 2660 "Unable to recover table-of-contents") }, 2661 /* O */ 2662 { SST(0x58, 0x00, SS_RDEF, 2663 "Generation does not exist") }, 2664 /* O */ 2665 { SST(0x59, 0x00, SS_RDEF, 2666 "Updated block read") }, 2667 /* DTLPWRO BK */ 2668 { SST(0x5A, 0x00, SS_RDEF, 2669 "Operator request or state change input") }, 2670 /* DT WROM BK */ 2671 { SST(0x5A, 0x01, SS_RDEF, 2672 "Operator medium removal request") }, 2673 /* DT WRO A BK */ 2674 { SST(0x5A, 0x02, SS_RDEF, 2675 "Operator selected write protect") }, 2676 /* DT WRO A BK */ 2677 { SST(0x5A, 0x03, SS_RDEF, 2678 "Operator selected write permit") }, 2679 /* DTLPWROM K */ 2680 { SST(0x5B, 0x00, SS_RDEF, 2681 "Log exception") }, 2682 /* DTLPWROM K */ 2683 { SST(0x5B, 0x01, SS_RDEF, 2684 "Threshold condition met") }, 2685 /* DTLPWROM K */ 2686 { SST(0x5B, 0x02, SS_RDEF, 2687 "Log counter at maximum") }, 2688 /* DTLPWROM K */ 2689 { SST(0x5B, 0x03, SS_RDEF, 2690 "Log list codes exhausted") }, 2691 /* D O */ 2692 { SST(0x5C, 0x00, SS_RDEF, 2693 "RPL status change") }, 2694 /* D O */ 2695 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2696 "Spindles synchronized") }, 2697 /* D O */ 2698 { SST(0x5C, 0x02, SS_RDEF, 2699 "Spindles not synchronized") }, 2700 /* DTLPWROMAEBKVF */ 2701 { SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE, 2702 "Failure prediction threshold exceeded") }, 2703 /* R B */ 2704 { SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2705 "Media failure prediction threshold exceeded") }, 2706 /* R */ 2707 { SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE, 2708 "Logical unit failure prediction threshold exceeded") }, 2709 /* R */ 2710 { SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE, 2711 "Spare area exhaustion prediction threshold exceeded") }, 2712 /* D B */ 2713 { SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE, 2714 "Hardware impending failure general hard drive failure") }, 2715 /* D B */ 2716 { SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE, 2717 "Hardware impending failure drive error rate too high") }, 2718 /* D B */ 2719 { SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE, 2720 "Hardware impending failure data error rate too high") }, 2721 /* D B */ 2722 { SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE, 2723 "Hardware impending failure seek error rate too high") }, 2724 /* D B */ 2725 { SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE, 2726 "Hardware impending failure too many block reassigns") }, 2727 /* D B */ 2728 { SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE, 2729 "Hardware impending failure access times too high") }, 2730 /* D B */ 2731 { SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE, 2732 "Hardware impending failure start unit times too high") }, 2733 /* D B */ 2734 { SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE, 2735 "Hardware impending failure channel parametrics") }, 2736 /* D B */ 2737 { SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE, 2738 "Hardware impending failure controller detected") }, 2739 /* D B */ 2740 { SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE, 2741 "Hardware impending failure throughput performance") }, 2742 /* D B */ 2743 { SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE, 2744 "Hardware impending failure seek time performance") }, 2745 /* D B */ 2746 { SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE, 2747 "Hardware impending failure spin-up retry count") }, 2748 /* D B */ 2749 { SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE, 2750 "Hardware impending failure drive calibration retry count") }, 2751 /* D B */ 2752 { SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE, 2753 "Hardware impending failure power loss protection circuit") }, 2754 /* D B */ 2755 { SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE, 2756 "Controller impending failure general hard drive failure") }, 2757 /* D B */ 2758 { SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE, 2759 "Controller impending failure drive error rate too high") }, 2760 /* D B */ 2761 { SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE, 2762 "Controller impending failure data error rate too high") }, 2763 /* D B */ 2764 { SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE, 2765 "Controller impending failure seek error rate too high") }, 2766 /* D B */ 2767 { SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE, 2768 "Controller impending failure too many block reassigns") }, 2769 /* D B */ 2770 { SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE, 2771 "Controller impending failure access times too high") }, 2772 /* D B */ 2773 { SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE, 2774 "Controller impending failure start unit times too high") }, 2775 /* D B */ 2776 { SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE, 2777 "Controller impending failure channel parametrics") }, 2778 /* D B */ 2779 { SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE, 2780 "Controller impending failure controller detected") }, 2781 /* D B */ 2782 { SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE, 2783 "Controller impending failure throughput performance") }, 2784 /* D B */ 2785 { SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE, 2786 "Controller impending failure seek time performance") }, 2787 /* D B */ 2788 { SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE, 2789 "Controller impending failure spin-up retry count") }, 2790 /* D B */ 2791 { SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE, 2792 "Controller impending failure drive calibration retry count") }, 2793 /* D B */ 2794 { SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE, 2795 "Data channel impending failure general hard drive failure") }, 2796 /* D B */ 2797 { SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE, 2798 "Data channel impending failure drive error rate too high") }, 2799 /* D B */ 2800 { SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE, 2801 "Data channel impending failure data error rate too high") }, 2802 /* D B */ 2803 { SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE, 2804 "Data channel impending failure seek error rate too high") }, 2805 /* D B */ 2806 { SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE, 2807 "Data channel impending failure too many block reassigns") }, 2808 /* D B */ 2809 { SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE, 2810 "Data channel impending failure access times too high") }, 2811 /* D B */ 2812 { SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE, 2813 "Data channel impending failure start unit times too high") }, 2814 /* D B */ 2815 { SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE, 2816 "Data channel impending failure channel parametrics") }, 2817 /* D B */ 2818 { SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE, 2819 "Data channel impending failure controller detected") }, 2820 /* D B */ 2821 { SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE, 2822 "Data channel impending failure throughput performance") }, 2823 /* D B */ 2824 { SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE, 2825 "Data channel impending failure seek time performance") }, 2826 /* D B */ 2827 { SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE, 2828 "Data channel impending failure spin-up retry count") }, 2829 /* D B */ 2830 { SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE, 2831 "Data channel impending failure drive calibration retry count") }, 2832 /* D B */ 2833 { SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE, 2834 "Servo impending failure general hard drive failure") }, 2835 /* D B */ 2836 { SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE, 2837 "Servo impending failure drive error rate too high") }, 2838 /* D B */ 2839 { SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE, 2840 "Servo impending failure data error rate too high") }, 2841 /* D B */ 2842 { SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE, 2843 "Servo impending failure seek error rate too high") }, 2844 /* D B */ 2845 { SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE, 2846 "Servo impending failure too many block reassigns") }, 2847 /* D B */ 2848 { SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE, 2849 "Servo impending failure access times too high") }, 2850 /* D B */ 2851 { SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE, 2852 "Servo impending failure start unit times too high") }, 2853 /* D B */ 2854 { SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE, 2855 "Servo impending failure channel parametrics") }, 2856 /* D B */ 2857 { SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE, 2858 "Servo impending failure controller detected") }, 2859 /* D B */ 2860 { SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE, 2861 "Servo impending failure throughput performance") }, 2862 /* D B */ 2863 { SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE, 2864 "Servo impending failure seek time performance") }, 2865 /* D B */ 2866 { SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE, 2867 "Servo impending failure spin-up retry count") }, 2868 /* D B */ 2869 { SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE, 2870 "Servo impending failure drive calibration retry count") }, 2871 /* D B */ 2872 { SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE, 2873 "Spindle impending failure general hard drive failure") }, 2874 /* D B */ 2875 { SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE, 2876 "Spindle impending failure drive error rate too high") }, 2877 /* D B */ 2878 { SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE, 2879 "Spindle impending failure data error rate too high") }, 2880 /* D B */ 2881 { SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE, 2882 "Spindle impending failure seek error rate too high") }, 2883 /* D B */ 2884 { SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE, 2885 "Spindle impending failure too many block reassigns") }, 2886 /* D B */ 2887 { SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE, 2888 "Spindle impending failure access times too high") }, 2889 /* D B */ 2890 { SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE, 2891 "Spindle impending failure start unit times too high") }, 2892 /* D B */ 2893 { SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE, 2894 "Spindle impending failure channel parametrics") }, 2895 /* D B */ 2896 { SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE, 2897 "Spindle impending failure controller detected") }, 2898 /* D B */ 2899 { SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE, 2900 "Spindle impending failure throughput performance") }, 2901 /* D B */ 2902 { SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE, 2903 "Spindle impending failure seek time performance") }, 2904 /* D B */ 2905 { SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE, 2906 "Spindle impending failure spin-up retry count") }, 2907 /* D B */ 2908 { SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE, 2909 "Spindle impending failure drive calibration retry count") }, 2910 /* D B */ 2911 { SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE, 2912 "Firmware impending failure general hard drive failure") }, 2913 /* D B */ 2914 { SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE, 2915 "Firmware impending failure drive error rate too high") }, 2916 /* D B */ 2917 { SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE, 2918 "Firmware impending failure data error rate too high") }, 2919 /* D B */ 2920 { SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE, 2921 "Firmware impending failure seek error rate too high") }, 2922 /* D B */ 2923 { SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE, 2924 "Firmware impending failure too many block reassigns") }, 2925 /* D B */ 2926 { SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE, 2927 "Firmware impending failure access times too high") }, 2928 /* D B */ 2929 { SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE, 2930 "Firmware impending failure start unit times too high") }, 2931 /* D B */ 2932 { SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE, 2933 "Firmware impending failure channel parametrics") }, 2934 /* D B */ 2935 { SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE, 2936 "Firmware impending failure controller detected") }, 2937 /* D B */ 2938 { SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE, 2939 "Firmware impending failure throughput performance") }, 2940 /* D B */ 2941 { SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE, 2942 "Firmware impending failure seek time performance") }, 2943 /* D B */ 2944 { SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE, 2945 "Firmware impending failure spin-up retry count") }, 2946 /* D B */ 2947 { SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE, 2948 "Firmware impending failure drive calibration retry count") }, 2949 /* D B */ 2950 { SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE, 2951 "Media impending failure endurance limit met") }, 2952 /* DTLPWROMAEBKVF */ 2953 { SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE, 2954 "Failure prediction threshold exceeded (false)") }, 2955 /* DTLPWRO A K */ 2956 { SST(0x5E, 0x00, SS_RDEF, 2957 "Low power condition on") }, 2958 /* DTLPWRO A K */ 2959 { SST(0x5E, 0x01, SS_RDEF, 2960 "Idle condition activated by timer") }, 2961 /* DTLPWRO A K */ 2962 { SST(0x5E, 0x02, SS_RDEF, 2963 "Standby condition activated by timer") }, 2964 /* DTLPWRO A K */ 2965 { SST(0x5E, 0x03, SS_RDEF, 2966 "Idle condition activated by command") }, 2967 /* DTLPWRO A K */ 2968 { SST(0x5E, 0x04, SS_RDEF, 2969 "Standby condition activated by command") }, 2970 /* DTLPWRO A K */ 2971 { SST(0x5E, 0x05, SS_RDEF, 2972 "Idle-B condition activated by timer") }, 2973 /* DTLPWRO A K */ 2974 { SST(0x5E, 0x06, SS_RDEF, 2975 "Idle-B condition activated by command") }, 2976 /* DTLPWRO A K */ 2977 { SST(0x5E, 0x07, SS_RDEF, 2978 "Idle-C condition activated by timer") }, 2979 /* DTLPWRO A K */ 2980 { SST(0x5E, 0x08, SS_RDEF, 2981 "Idle-C condition activated by command") }, 2982 /* DTLPWRO A K */ 2983 { SST(0x5E, 0x09, SS_RDEF, 2984 "Standby-Y condition activated by timer") }, 2985 /* DTLPWRO A K */ 2986 { SST(0x5E, 0x0A, SS_RDEF, 2987 "Standby-Y condition activated by command") }, 2988 /* B */ 2989 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ 2990 "Power state change to active") }, 2991 /* B */ 2992 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ 2993 "Power state change to idle") }, 2994 /* B */ 2995 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ 2996 "Power state change to standby") }, 2997 /* B */ 2998 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ 2999 "Power state change to sleep") }, 3000 /* BK */ 3001 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ 3002 "Power state change to device control") }, 3003 /* */ 3004 { SST(0x60, 0x00, SS_RDEF, 3005 "Lamp failure") }, 3006 /* */ 3007 { SST(0x61, 0x00, SS_RDEF, 3008 "Video acquisition error") }, 3009 /* */ 3010 { SST(0x61, 0x01, SS_RDEF, 3011 "Unable to acquire video") }, 3012 /* */ 3013 { SST(0x61, 0x02, SS_RDEF, 3014 "Out of focus") }, 3015 /* */ 3016 { SST(0x62, 0x00, SS_RDEF, 3017 "Scan head positioning error") }, 3018 /* R */ 3019 { SST(0x63, 0x00, SS_RDEF, 3020 "End of user area encountered on this track") }, 3021 /* R */ 3022 { SST(0x63, 0x01, SS_FATAL | ENOSPC, 3023 "Packet does not fit in available space") }, 3024 /* R */ 3025 { SST(0x64, 0x00, SS_FATAL | ENXIO, 3026 "Illegal mode for this track") }, 3027 /* R */ 3028 { SST(0x64, 0x01, SS_RDEF, 3029 "Invalid packet size") }, 3030 /* DTLPWROMAEBKVF */ 3031 { SST(0x65, 0x00, SS_RDEF, 3032 "Voltage fault") }, 3033 /* */ 3034 { SST(0x66, 0x00, SS_RDEF, 3035 "Automatic document feeder cover up") }, 3036 /* */ 3037 { SST(0x66, 0x01, SS_RDEF, 3038 "Automatic document feeder lift up") }, 3039 /* */ 3040 { SST(0x66, 0x02, SS_RDEF, 3041 "Document jam in automatic document feeder") }, 3042 /* */ 3043 { SST(0x66, 0x03, SS_RDEF, 3044 "Document miss feed automatic in document feeder") }, 3045 /* A */ 3046 { SST(0x67, 0x00, SS_RDEF, 3047 "Configuration failure") }, 3048 /* A */ 3049 { SST(0x67, 0x01, SS_RDEF, 3050 "Configuration of incapable logical units failed") }, 3051 /* A */ 3052 { SST(0x67, 0x02, SS_RDEF, 3053 "Add logical unit failed") }, 3054 /* A */ 3055 { SST(0x67, 0x03, SS_RDEF, 3056 "Modification of logical unit failed") }, 3057 /* A */ 3058 { SST(0x67, 0x04, SS_RDEF, 3059 "Exchange of logical unit failed") }, 3060 /* A */ 3061 { SST(0x67, 0x05, SS_RDEF, 3062 "Remove of logical unit failed") }, 3063 /* A */ 3064 { SST(0x67, 0x06, SS_RDEF, 3065 "Attachment of logical unit failed") }, 3066 /* A */ 3067 { SST(0x67, 0x07, SS_RDEF, 3068 "Creation of logical unit failed") }, 3069 /* A */ 3070 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ 3071 "Assign failure occurred") }, 3072 /* A */ 3073 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ 3074 "Multiply assigned logical unit") }, 3075 /* DTLPWROMAEBKVF */ 3076 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ 3077 "Set target port groups command failed") }, 3078 /* DT B */ 3079 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ 3080 "ATA device feature not enabled") }, 3081 /* D */ 3082 { SST(0x67, 0x0C, SS_FATAL | EIO, 3083 "Command rejected") }, 3084 /* D */ 3085 { SST(0x67, 0x0D, SS_FATAL | EINVAL, 3086 "Explicit bind not allowed") }, 3087 /* A */ 3088 { SST(0x68, 0x00, SS_RDEF, 3089 "Logical unit not configured") }, 3090 /* D */ 3091 { SST(0x68, 0x01, SS_RDEF, 3092 "Subsidiary logical unit not configured") }, 3093 /* A */ 3094 { SST(0x69, 0x00, SS_RDEF, 3095 "Data loss on logical unit") }, 3096 /* A */ 3097 { SST(0x69, 0x01, SS_RDEF, 3098 "Multiple logical unit failures") }, 3099 /* A */ 3100 { SST(0x69, 0x02, SS_RDEF, 3101 "Parity/data mismatch") }, 3102 /* A */ 3103 { SST(0x6A, 0x00, SS_RDEF, 3104 "Informational, refer to log") }, 3105 /* A */ 3106 { SST(0x6B, 0x00, SS_RDEF, 3107 "State change has occurred") }, 3108 /* A */ 3109 { SST(0x6B, 0x01, SS_RDEF, 3110 "Redundancy level got better") }, 3111 /* A */ 3112 { SST(0x6B, 0x02, SS_RDEF, 3113 "Redundancy level got worse") }, 3114 /* A */ 3115 { SST(0x6C, 0x00, SS_RDEF, 3116 "Rebuild failure occurred") }, 3117 /* A */ 3118 { SST(0x6D, 0x00, SS_RDEF, 3119 "Recalculate failure occurred") }, 3120 /* A */ 3121 { SST(0x6E, 0x00, SS_RDEF, 3122 "Command to logical unit failed") }, 3123 /* R */ 3124 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ 3125 "Copy protection key exchange failure - authentication failure") }, 3126 /* R */ 3127 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ 3128 "Copy protection key exchange failure - key not present") }, 3129 /* R */ 3130 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ 3131 "Copy protection key exchange failure - key not established") }, 3132 /* R */ 3133 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ 3134 "Read of scrambled sector without authentication") }, 3135 /* R */ 3136 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ 3137 "Media region code is mismatched to logical unit region") }, 3138 /* R */ 3139 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ 3140 "Drive region must be permanent/region reset count error") }, 3141 /* R */ 3142 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ 3143 "Insufficient block count for binding NONCE recording") }, 3144 /* R */ 3145 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ 3146 "Conflict in binding NONCE recording") }, 3147 /* R */ 3148 { SST(0x6F, 0x08, SS_FATAL | EPERM, 3149 "Insufficient permission") }, 3150 /* R */ 3151 { SST(0x6F, 0x09, SS_FATAL | EINVAL, 3152 "Invalid drive-host pairing server") }, 3153 /* R */ 3154 { SST(0x6F, 0x0A, SS_RDEF, /* XXX TBD */ 3155 "Drive-host pairing suspended") }, 3156 /* T */ 3157 { SST(0x70, 0x00, SS_RDEF, 3158 "Decompression exception short: ASCQ = Algorithm ID") }, 3159 /* T */ 3160 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, 3161 NULL) }, /* Range 0x00 -> 0xFF */ 3162 /* T */ 3163 { SST(0x71, 0x00, SS_RDEF, 3164 "Decompression exception long: ASCQ = Algorithm ID") }, 3165 /* T */ 3166 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, 3167 NULL) }, /* Range 0x00 -> 0xFF */ 3168 /* R */ 3169 { SST(0x72, 0x00, SS_RDEF, 3170 "Session fixation error") }, 3171 /* R */ 3172 { SST(0x72, 0x01, SS_RDEF, 3173 "Session fixation error writing lead-in") }, 3174 /* R */ 3175 { SST(0x72, 0x02, SS_RDEF, 3176 "Session fixation error writing lead-out") }, 3177 /* R */ 3178 { SST(0x72, 0x03, SS_RDEF, 3179 "Session fixation error - incomplete track in session") }, 3180 /* R */ 3181 { SST(0x72, 0x04, SS_RDEF, 3182 "Empty or partially written reserved track") }, 3183 /* R */ 3184 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ 3185 "No more track reservations allowed") }, 3186 /* R */ 3187 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ 3188 "RMZ extension is not allowed") }, 3189 /* R */ 3190 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ 3191 "No more test zone extensions are allowed") }, 3192 /* R */ 3193 { SST(0x73, 0x00, SS_RDEF, 3194 "CD control error") }, 3195 /* R */ 3196 { SST(0x73, 0x01, SS_RDEF, 3197 "Power calibration area almost full") }, 3198 /* R */ 3199 { SST(0x73, 0x02, SS_FATAL | ENOSPC, 3200 "Power calibration area is full") }, 3201 /* R */ 3202 { SST(0x73, 0x03, SS_RDEF, 3203 "Power calibration area error") }, 3204 /* R */ 3205 { SST(0x73, 0x04, SS_RDEF, 3206 "Program memory area update failure") }, 3207 /* R */ 3208 { SST(0x73, 0x05, SS_RDEF, 3209 "Program memory area is full") }, 3210 /* R */ 3211 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ 3212 "RMA/PMA is almost full") }, 3213 /* R */ 3214 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ 3215 "Current power calibration area almost full") }, 3216 /* R */ 3217 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ 3218 "Current power calibration area is full") }, 3219 /* R */ 3220 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ 3221 "RDZ is full") }, 3222 /* T */ 3223 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ 3224 "Security error") }, 3225 /* T */ 3226 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ 3227 "Unable to decrypt data") }, 3228 /* T */ 3229 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ 3230 "Unencrypted data encountered while decrypting") }, 3231 /* T */ 3232 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ 3233 "Incorrect data encryption key") }, 3234 /* T */ 3235 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ 3236 "Cryptographic integrity validation failed") }, 3237 /* T */ 3238 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ 3239 "Error decrypting data") }, 3240 /* T */ 3241 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ 3242 "Unknown signature verification key") }, 3243 /* T */ 3244 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ 3245 "Encryption parameters not useable") }, 3246 /* DT R M E VF */ 3247 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ 3248 "Digital signature validation failure") }, 3249 /* T */ 3250 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ 3251 "Encryption mode mismatch on read") }, 3252 /* T */ 3253 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ 3254 "Encrypted block not raw read enabled") }, 3255 /* T */ 3256 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ 3257 "Incorrect encryption parameters") }, 3258 /* DT R MAEBKV */ 3259 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ 3260 "Unable to decrypt parameter list") }, 3261 /* T */ 3262 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ 3263 "Encryption algorithm disabled") }, 3264 /* DT R MAEBKV */ 3265 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ 3266 "SA creation parameter value invalid") }, 3267 /* DT R MAEBKV */ 3268 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ 3269 "SA creation parameter value rejected") }, 3270 /* DT R MAEBKV */ 3271 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ 3272 "Invalid SA usage") }, 3273 /* T */ 3274 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ 3275 "Data encryption configuration prevented") }, 3276 /* DT R MAEBKV */ 3277 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ 3278 "SA creation parameter not supported") }, 3279 /* DT R MAEBKV */ 3280 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ 3281 "Authentication failed") }, 3282 /* V */ 3283 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ 3284 "External data encryption key manager access error") }, 3285 /* V */ 3286 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ 3287 "External data encryption key manager error") }, 3288 /* V */ 3289 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ 3290 "External data encryption key not found") }, 3291 /* V */ 3292 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ 3293 "External data encryption request not authorized") }, 3294 /* T */ 3295 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ 3296 "External data encryption control timeout") }, 3297 /* T */ 3298 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ 3299 "External data encryption control error") }, 3300 /* DT R M E V */ 3301 { SST(0x74, 0x71, SS_FATAL | EACCES, 3302 "Logical unit access not authorized") }, 3303 /* D */ 3304 { SST(0x74, 0x79, SS_FATAL | EACCES, 3305 "Security conflict in translated device") } 3306 }; 3307 3308 const u_int asc_table_size = nitems(asc_table); 3309 3310 struct asc_key 3311 { 3312 int asc; 3313 int ascq; 3314 }; 3315 3316 static int 3317 ascentrycomp(const void *key, const void *member) 3318 { 3319 int asc; 3320 int ascq; 3321 const struct asc_table_entry *table_entry; 3322 3323 asc = ((const struct asc_key *)key)->asc; 3324 ascq = ((const struct asc_key *)key)->ascq; 3325 table_entry = (const struct asc_table_entry *)member; 3326 3327 if (asc >= table_entry->asc) { 3328 if (asc > table_entry->asc) 3329 return (1); 3330 3331 if (ascq <= table_entry->ascq) { 3332 /* Check for ranges */ 3333 if (ascq == table_entry->ascq 3334 || ((table_entry->action & SSQ_RANGE) != 0 3335 && ascq >= (table_entry - 1)->ascq)) 3336 return (0); 3337 return (-1); 3338 } 3339 return (1); 3340 } 3341 return (-1); 3342 } 3343 3344 static int 3345 senseentrycomp(const void *key, const void *member) 3346 { 3347 int sense_key; 3348 const struct sense_key_table_entry *table_entry; 3349 3350 sense_key = *((const int *)key); 3351 table_entry = (const struct sense_key_table_entry *)member; 3352 3353 if (sense_key >= table_entry->sense_key) { 3354 if (sense_key == table_entry->sense_key) 3355 return (0); 3356 return (1); 3357 } 3358 return (-1); 3359 } 3360 3361 static void 3362 fetchtableentries(int sense_key, int asc, int ascq, 3363 struct scsi_inquiry_data *inq_data, 3364 const struct sense_key_table_entry **sense_entry, 3365 const struct asc_table_entry **asc_entry) 3366 { 3367 caddr_t match; 3368 const struct asc_table_entry *asc_tables[2]; 3369 const struct sense_key_table_entry *sense_tables[2]; 3370 struct asc_key asc_ascq; 3371 size_t asc_tables_size[2]; 3372 size_t sense_tables_size[2]; 3373 int num_asc_tables; 3374 int num_sense_tables; 3375 int i; 3376 3377 /* Default to failure */ 3378 *sense_entry = NULL; 3379 *asc_entry = NULL; 3380 match = NULL; 3381 if (inq_data != NULL) 3382 match = cam_quirkmatch((caddr_t)inq_data, 3383 (caddr_t)sense_quirk_table, 3384 sense_quirk_table_size, 3385 sizeof(*sense_quirk_table), 3386 scsi_inquiry_match); 3387 3388 if (match != NULL) { 3389 struct scsi_sense_quirk_entry *quirk; 3390 3391 quirk = (struct scsi_sense_quirk_entry *)match; 3392 asc_tables[0] = quirk->asc_info; 3393 asc_tables_size[0] = quirk->num_ascs; 3394 asc_tables[1] = asc_table; 3395 asc_tables_size[1] = asc_table_size; 3396 num_asc_tables = 2; 3397 sense_tables[0] = quirk->sense_key_info; 3398 sense_tables_size[0] = quirk->num_sense_keys; 3399 sense_tables[1] = sense_key_table; 3400 sense_tables_size[1] = nitems(sense_key_table); 3401 num_sense_tables = 2; 3402 } else { 3403 asc_tables[0] = asc_table; 3404 asc_tables_size[0] = asc_table_size; 3405 num_asc_tables = 1; 3406 sense_tables[0] = sense_key_table; 3407 sense_tables_size[0] = nitems(sense_key_table); 3408 num_sense_tables = 1; 3409 } 3410 3411 asc_ascq.asc = asc; 3412 asc_ascq.ascq = ascq; 3413 for (i = 0; i < num_asc_tables; i++) { 3414 void *found_entry; 3415 3416 found_entry = bsearch(&asc_ascq, asc_tables[i], 3417 asc_tables_size[i], 3418 sizeof(**asc_tables), 3419 ascentrycomp); 3420 3421 if (found_entry) { 3422 *asc_entry = (struct asc_table_entry *)found_entry; 3423 break; 3424 } 3425 } 3426 3427 for (i = 0; i < num_sense_tables; i++) { 3428 void *found_entry; 3429 3430 found_entry = bsearch(&sense_key, sense_tables[i], 3431 sense_tables_size[i], 3432 sizeof(**sense_tables), 3433 senseentrycomp); 3434 3435 if (found_entry) { 3436 *sense_entry = 3437 (struct sense_key_table_entry *)found_entry; 3438 break; 3439 } 3440 } 3441 } 3442 3443 void 3444 scsi_sense_desc(int sense_key, int asc, int ascq, 3445 struct scsi_inquiry_data *inq_data, 3446 const char **sense_key_desc, const char **asc_desc) 3447 { 3448 const struct asc_table_entry *asc_entry; 3449 const struct sense_key_table_entry *sense_entry; 3450 3451 fetchtableentries(sense_key, asc, ascq, 3452 inq_data, 3453 &sense_entry, 3454 &asc_entry); 3455 3456 if (sense_entry != NULL) 3457 *sense_key_desc = sense_entry->desc; 3458 else 3459 *sense_key_desc = "Invalid Sense Key"; 3460 3461 if (asc_entry != NULL) 3462 *asc_desc = asc_entry->desc; 3463 else if (asc >= 0x80 && asc <= 0xff) 3464 *asc_desc = "Vendor Specific ASC"; 3465 else if (ascq >= 0x80 && ascq <= 0xff) 3466 *asc_desc = "Vendor Specific ASCQ"; 3467 else 3468 *asc_desc = "Reserved ASC/ASCQ pair"; 3469 } 3470 3471 /* 3472 * Given sense and device type information, return the appropriate action. 3473 * If we do not understand the specific error as identified by the ASC/ASCQ 3474 * pair, fall back on the more generic actions derived from the sense key. 3475 */ 3476 scsi_sense_action 3477 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, 3478 uint32_t sense_flags) 3479 { 3480 const struct asc_table_entry *asc_entry; 3481 const struct sense_key_table_entry *sense_entry; 3482 int error_code, sense_key, asc, ascq; 3483 scsi_sense_action action; 3484 3485 if (!scsi_extract_sense_ccb((union ccb *)csio, 3486 &error_code, &sense_key, &asc, &ascq)) { 3487 action = SS_RDEF; 3488 } else if ((error_code == SSD_DEFERRED_ERROR) 3489 || (error_code == SSD_DESC_DEFERRED_ERROR)) { 3490 /* 3491 * XXX dufault@FreeBSD.org 3492 * This error doesn't relate to the command associated 3493 * with this request sense. A deferred error is an error 3494 * for a command that has already returned GOOD status 3495 * (see SCSI2 8.2.14.2). 3496 * 3497 * By my reading of that section, it looks like the current 3498 * command has been cancelled, we should now clean things up 3499 * (hopefully recovering any lost data) and then retry the 3500 * current command. There are two easy choices, both wrong: 3501 * 3502 * 1. Drop through (like we had been doing), thus treating 3503 * this as if the error were for the current command and 3504 * return and stop the current command. 3505 * 3506 * 2. Issue a retry (like I made it do) thus hopefully 3507 * recovering the current transfer, and ignoring the 3508 * fact that we've dropped a command. 3509 * 3510 * These should probably be handled in a device specific 3511 * sense handler or punted back up to a user mode daemon 3512 */ 3513 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3514 } else { 3515 fetchtableentries(sense_key, asc, ascq, 3516 inq_data, 3517 &sense_entry, 3518 &asc_entry); 3519 3520 /* 3521 * Override the 'No additional Sense' entry (0,0) 3522 * with the error action of the sense key. 3523 */ 3524 if (asc_entry != NULL 3525 && (asc != 0 || ascq != 0)) 3526 action = asc_entry->action; 3527 else if (sense_entry != NULL) 3528 action = sense_entry->action; 3529 else 3530 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3531 3532 if (sense_key == SSD_KEY_RECOVERED_ERROR) { 3533 /* 3534 * The action succeeded but the device wants 3535 * the user to know that some recovery action 3536 * was required. 3537 */ 3538 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); 3539 action |= SS_NOP|SSQ_PRINT_SENSE; 3540 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { 3541 if ((sense_flags & SF_QUIET_IR) != 0) 3542 action &= ~SSQ_PRINT_SENSE; 3543 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { 3544 if ((sense_flags & SF_RETRY_UA) != 0 3545 && (action & SS_MASK) == SS_FAIL) { 3546 action &= ~(SS_MASK|SSQ_MASK); 3547 action |= SS_RETRY|SSQ_DECREMENT_COUNT| 3548 SSQ_PRINT_SENSE; 3549 } 3550 action |= SSQ_UA; 3551 } 3552 } 3553 if ((action & SS_MASK) >= SS_START && 3554 (sense_flags & SF_NO_RECOVERY)) { 3555 action &= ~SS_MASK; 3556 action |= SS_FAIL; 3557 } else if ((action & SS_MASK) == SS_RETRY && 3558 (sense_flags & SF_NO_RETRY)) { 3559 action &= ~SS_MASK; 3560 action |= SS_FAIL; 3561 } 3562 if ((sense_flags & SF_PRINT_ALWAYS) != 0) 3563 action |= SSQ_PRINT_SENSE; 3564 else if ((sense_flags & SF_NO_PRINT) != 0) 3565 action &= ~SSQ_PRINT_SENSE; 3566 3567 return (action); 3568 } 3569 3570 char * 3571 scsi_cdb_string(uint8_t *cdb_ptr, char *cdb_string, size_t len) 3572 { 3573 struct sbuf sb; 3574 int error; 3575 3576 if (len == 0) 3577 return (""); 3578 3579 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN); 3580 3581 scsi_cdb_sbuf(cdb_ptr, &sb); 3582 3583 /* ENOMEM just means that the fixed buffer is full, OK to ignore */ 3584 error = sbuf_finish(&sb); 3585 if (error != 0 && 3586 #ifdef _KERNEL 3587 error != ENOMEM) 3588 #else 3589 errno != ENOMEM) 3590 #endif 3591 return (""); 3592 3593 return(sbuf_data(&sb)); 3594 } 3595 3596 void 3597 scsi_cdb_sbuf(uint8_t *cdb_ptr, struct sbuf *sb) 3598 { 3599 uint8_t cdb_len; 3600 int i; 3601 3602 if (cdb_ptr == NULL) 3603 return; 3604 3605 /* 3606 * This is taken from the SCSI-3 draft spec. 3607 * (T10/1157D revision 0.3) 3608 * The top 3 bits of an opcode are the group code. The next 5 bits 3609 * are the command code. 3610 * Group 0: six byte commands 3611 * Group 1: ten byte commands 3612 * Group 2: ten byte commands 3613 * Group 3: reserved 3614 * Group 4: sixteen byte commands 3615 * Group 5: twelve byte commands 3616 * Group 6: vendor specific 3617 * Group 7: vendor specific 3618 */ 3619 switch((*cdb_ptr >> 5) & 0x7) { 3620 case 0: 3621 cdb_len = 6; 3622 break; 3623 case 1: 3624 case 2: 3625 cdb_len = 10; 3626 break; 3627 case 3: 3628 case 6: 3629 case 7: 3630 /* in this case, just print out the opcode */ 3631 cdb_len = 1; 3632 break; 3633 case 4: 3634 cdb_len = 16; 3635 break; 3636 case 5: 3637 cdb_len = 12; 3638 break; 3639 } 3640 3641 for (i = 0; i < cdb_len; i++) 3642 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]); 3643 3644 return; 3645 } 3646 3647 const char * 3648 scsi_status_string(struct ccb_scsiio *csio) 3649 { 3650 switch(csio->scsi_status) { 3651 case SCSI_STATUS_OK: 3652 return("OK"); 3653 case SCSI_STATUS_CHECK_COND: 3654 return("Check Condition"); 3655 case SCSI_STATUS_BUSY: 3656 return("Busy"); 3657 case SCSI_STATUS_INTERMED: 3658 return("Intermediate"); 3659 case SCSI_STATUS_INTERMED_COND_MET: 3660 return("Intermediate-Condition Met"); 3661 case SCSI_STATUS_RESERV_CONFLICT: 3662 return("Reservation Conflict"); 3663 case SCSI_STATUS_CMD_TERMINATED: 3664 return("Command Terminated"); 3665 case SCSI_STATUS_QUEUE_FULL: 3666 return("Queue Full"); 3667 case SCSI_STATUS_ACA_ACTIVE: 3668 return("ACA Active"); 3669 case SCSI_STATUS_TASK_ABORTED: 3670 return("Task Aborted"); 3671 default: { 3672 static char unkstr[64]; 3673 snprintf(unkstr, sizeof(unkstr), "Unknown %#x", 3674 csio->scsi_status); 3675 return(unkstr); 3676 } 3677 } 3678 } 3679 3680 /* 3681 * scsi_command_string() returns 0 for success and -1 for failure. 3682 */ 3683 #ifdef _KERNEL 3684 int 3685 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) 3686 #else /* !_KERNEL */ 3687 int 3688 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, 3689 struct sbuf *sb) 3690 #endif /* _KERNEL/!_KERNEL */ 3691 { 3692 struct scsi_inquiry_data *inq_data; 3693 #ifdef _KERNEL 3694 struct ccb_getdev *cgd; 3695 #endif /* _KERNEL */ 3696 3697 #ifdef _KERNEL 3698 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 3699 return(-1); 3700 /* 3701 * Get the device information. 3702 */ 3703 xpt_setup_ccb(&cgd->ccb_h, 3704 csio->ccb_h.path, 3705 CAM_PRIORITY_NORMAL); 3706 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 3707 xpt_action((union ccb *)cgd); 3708 3709 /* 3710 * If the device is unconfigured, just pretend that it is a hard 3711 * drive. scsi_op_desc() needs this. 3712 */ 3713 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 3714 cgd->inq_data.device = T_DIRECT; 3715 3716 inq_data = &cgd->inq_data; 3717 3718 #else /* !_KERNEL */ 3719 3720 inq_data = &device->inq_data; 3721 3722 #endif /* _KERNEL/!_KERNEL */ 3723 3724 sbuf_printf(sb, "%s. CDB: ", 3725 scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data)); 3726 scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb); 3727 3728 #ifdef _KERNEL 3729 xpt_free_ccb((union ccb *)cgd); 3730 #endif 3731 3732 return(0); 3733 } 3734 3735 /* 3736 * Iterate over sense descriptors. Each descriptor is passed into iter_func(). 3737 * If iter_func() returns 0, list traversal continues. If iter_func() 3738 * returns non-zero, list traversal is stopped. 3739 */ 3740 void 3741 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, 3742 int (*iter_func)(struct scsi_sense_data_desc *sense, 3743 u_int, struct scsi_sense_desc_header *, 3744 void *), void *arg) 3745 { 3746 int cur_pos; 3747 int desc_len; 3748 3749 /* 3750 * First make sure the extra length field is present. 3751 */ 3752 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) 3753 return; 3754 3755 /* 3756 * The length of data actually returned may be different than the 3757 * extra_len recorded in the structure. 3758 */ 3759 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); 3760 3761 /* 3762 * Limit this further by the extra length reported, and the maximum 3763 * allowed extra length. 3764 */ 3765 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); 3766 3767 /* 3768 * Subtract the size of the header from the descriptor length. 3769 * This is to ensure that we have at least the header left, so we 3770 * don't have to check that inside the loop. This can wind up 3771 * being a negative value. 3772 */ 3773 desc_len -= sizeof(struct scsi_sense_desc_header); 3774 3775 for (cur_pos = 0; cur_pos < desc_len;) { 3776 struct scsi_sense_desc_header *header; 3777 3778 header = (struct scsi_sense_desc_header *) 3779 &sense->sense_desc[cur_pos]; 3780 3781 /* 3782 * Check to make sure we have the entire descriptor. We 3783 * don't call iter_func() unless we do. 3784 * 3785 * Note that although cur_pos is at the beginning of the 3786 * descriptor, desc_len already has the header length 3787 * subtracted. So the comparison of the length in the 3788 * header (which does not include the header itself) to 3789 * desc_len - cur_pos is correct. 3790 */ 3791 if (header->length > (desc_len - cur_pos)) 3792 break; 3793 3794 if (iter_func(sense, sense_len, header, arg) != 0) 3795 break; 3796 3797 cur_pos += sizeof(*header) + header->length; 3798 } 3799 } 3800 3801 struct scsi_find_desc_info { 3802 uint8_t desc_type; 3803 struct scsi_sense_desc_header *header; 3804 }; 3805 3806 static int 3807 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 3808 struct scsi_sense_desc_header *header, void *arg) 3809 { 3810 struct scsi_find_desc_info *desc_info; 3811 3812 desc_info = (struct scsi_find_desc_info *)arg; 3813 3814 if (header->desc_type == desc_info->desc_type) { 3815 desc_info->header = header; 3816 3817 /* We found the descriptor, tell the iterator to stop. */ 3818 return (1); 3819 } else 3820 return (0); 3821 } 3822 3823 /* 3824 * Given a descriptor type, return a pointer to it if it is in the sense 3825 * data and not truncated. Avoiding truncating sense data will simplify 3826 * things significantly for the caller. 3827 */ 3828 uint8_t * 3829 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, 3830 uint8_t desc_type) 3831 { 3832 struct scsi_find_desc_info desc_info; 3833 3834 desc_info.desc_type = desc_type; 3835 desc_info.header = NULL; 3836 3837 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); 3838 3839 return ((uint8_t *)desc_info.header); 3840 } 3841 3842 /* 3843 * Fill in SCSI descriptor sense data with the specified parameters. 3844 */ 3845 static void 3846 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data, 3847 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3848 int sense_key, int asc, int ascq, va_list ap) 3849 { 3850 struct scsi_sense_data_desc *sense; 3851 scsi_sense_elem_type elem_type; 3852 int space, len; 3853 uint8_t *desc, *data; 3854 3855 memset(sense_data, 0, sizeof(*sense_data)); 3856 sense = (struct scsi_sense_data_desc *)sense_data; 3857 if (current_error != 0) 3858 sense->error_code = SSD_DESC_CURRENT_ERROR; 3859 else 3860 sense->error_code = SSD_DESC_DEFERRED_ERROR; 3861 sense->sense_key = sense_key; 3862 sense->add_sense_code = asc; 3863 sense->add_sense_code_qual = ascq; 3864 sense->flags = 0; 3865 3866 desc = &sense->sense_desc[0]; 3867 space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc); 3868 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3869 SSD_ELEM_NONE) { 3870 if (elem_type >= SSD_ELEM_MAX) { 3871 printf("%s: invalid sense type %d\n", __func__, 3872 elem_type); 3873 break; 3874 } 3875 len = va_arg(ap, int); 3876 data = va_arg(ap, uint8_t *); 3877 3878 switch (elem_type) { 3879 case SSD_ELEM_SKIP: 3880 break; 3881 case SSD_ELEM_DESC: 3882 if (space < len) { 3883 sense->flags |= SSDD_SDAT_OVFL; 3884 break; 3885 } 3886 bcopy(data, desc, len); 3887 desc += len; 3888 space -= len; 3889 break; 3890 case SSD_ELEM_SKS: { 3891 struct scsi_sense_sks *sks = (void *)desc; 3892 3893 if (len > sizeof(sks->sense_key_spec)) 3894 break; 3895 if (space < sizeof(*sks)) { 3896 sense->flags |= SSDD_SDAT_OVFL; 3897 break; 3898 } 3899 sks->desc_type = SSD_DESC_SKS; 3900 sks->length = sizeof(*sks) - 3901 (offsetof(struct scsi_sense_sks, length) + 1); 3902 bcopy(data, &sks->sense_key_spec, len); 3903 desc += sizeof(*sks); 3904 space -= sizeof(*sks); 3905 break; 3906 } 3907 case SSD_ELEM_COMMAND: { 3908 struct scsi_sense_command *cmd = (void *)desc; 3909 3910 if (len > sizeof(cmd->command_info)) 3911 break; 3912 if (space < sizeof(*cmd)) { 3913 sense->flags |= SSDD_SDAT_OVFL; 3914 break; 3915 } 3916 cmd->desc_type = SSD_DESC_COMMAND; 3917 cmd->length = sizeof(*cmd) - 3918 (offsetof(struct scsi_sense_command, length) + 1); 3919 bcopy(data, &cmd->command_info[ 3920 sizeof(cmd->command_info) - len], len); 3921 desc += sizeof(*cmd); 3922 space -= sizeof(*cmd); 3923 break; 3924 } 3925 case SSD_ELEM_INFO: { 3926 struct scsi_sense_info *info = (void *)desc; 3927 3928 if (len > sizeof(info->info)) 3929 break; 3930 if (space < sizeof(*info)) { 3931 sense->flags |= SSDD_SDAT_OVFL; 3932 break; 3933 } 3934 info->desc_type = SSD_DESC_INFO; 3935 info->length = sizeof(*info) - 3936 (offsetof(struct scsi_sense_info, length) + 1); 3937 info->byte2 = SSD_INFO_VALID; 3938 bcopy(data, &info->info[sizeof(info->info) - len], len); 3939 desc += sizeof(*info); 3940 space -= sizeof(*info); 3941 break; 3942 } 3943 case SSD_ELEM_FRU: { 3944 struct scsi_sense_fru *fru = (void *)desc; 3945 3946 if (len > sizeof(fru->fru)) 3947 break; 3948 if (space < sizeof(*fru)) { 3949 sense->flags |= SSDD_SDAT_OVFL; 3950 break; 3951 } 3952 fru->desc_type = SSD_DESC_FRU; 3953 fru->length = sizeof(*fru) - 3954 (offsetof(struct scsi_sense_fru, length) + 1); 3955 fru->fru = *data; 3956 desc += sizeof(*fru); 3957 space -= sizeof(*fru); 3958 break; 3959 } 3960 case SSD_ELEM_STREAM: { 3961 struct scsi_sense_stream *stream = (void *)desc; 3962 3963 if (len > sizeof(stream->byte3)) 3964 break; 3965 if (space < sizeof(*stream)) { 3966 sense->flags |= SSDD_SDAT_OVFL; 3967 break; 3968 } 3969 stream->desc_type = SSD_DESC_STREAM; 3970 stream->length = sizeof(*stream) - 3971 (offsetof(struct scsi_sense_stream, length) + 1); 3972 stream->byte3 = *data; 3973 desc += sizeof(*stream); 3974 space -= sizeof(*stream); 3975 break; 3976 } 3977 default: 3978 /* 3979 * We shouldn't get here, but if we do, do nothing. 3980 * We've already consumed the arguments above. 3981 */ 3982 break; 3983 } 3984 } 3985 sense->extra_len = desc - &sense->sense_desc[0]; 3986 *sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 + 3987 sense->extra_len; 3988 } 3989 3990 /* 3991 * Fill in SCSI fixed sense data with the specified parameters. 3992 */ 3993 static void 3994 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data, 3995 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3996 int sense_key, int asc, int ascq, va_list ap) 3997 { 3998 struct scsi_sense_data_fixed *sense; 3999 scsi_sense_elem_type elem_type; 4000 uint8_t *data; 4001 int len; 4002 4003 memset(sense_data, 0, sizeof(*sense_data)); 4004 sense = (struct scsi_sense_data_fixed *)sense_data; 4005 if (current_error != 0) 4006 sense->error_code = SSD_CURRENT_ERROR; 4007 else 4008 sense->error_code = SSD_DEFERRED_ERROR; 4009 sense->flags = sense_key & SSD_KEY; 4010 sense->extra_len = 0; 4011 if (*sense_len >= 13) { 4012 sense->add_sense_code = asc; 4013 sense->extra_len = MAX(sense->extra_len, 5); 4014 } else 4015 sense->flags |= SSD_SDAT_OVFL; 4016 if (*sense_len >= 14) { 4017 sense->add_sense_code_qual = ascq; 4018 sense->extra_len = MAX(sense->extra_len, 6); 4019 } else 4020 sense->flags |= SSD_SDAT_OVFL; 4021 4022 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 4023 SSD_ELEM_NONE) { 4024 if (elem_type >= SSD_ELEM_MAX) { 4025 printf("%s: invalid sense type %d\n", __func__, 4026 elem_type); 4027 break; 4028 } 4029 len = va_arg(ap, int); 4030 data = va_arg(ap, uint8_t *); 4031 4032 switch (elem_type) { 4033 case SSD_ELEM_SKIP: 4034 break; 4035 case SSD_ELEM_SKS: 4036 if (len > sizeof(sense->sense_key_spec)) 4037 break; 4038 if (*sense_len < 18) { 4039 sense->flags |= SSD_SDAT_OVFL; 4040 break; 4041 } 4042 bcopy(data, &sense->sense_key_spec[0], len); 4043 sense->extra_len = MAX(sense->extra_len, 10); 4044 break; 4045 case SSD_ELEM_COMMAND: 4046 if (*sense_len < 12) { 4047 sense->flags |= SSD_SDAT_OVFL; 4048 break; 4049 } 4050 if (len > sizeof(sense->cmd_spec_info)) { 4051 data += len - sizeof(sense->cmd_spec_info); 4052 len = sizeof(sense->cmd_spec_info); 4053 } 4054 bcopy(data, &sense->cmd_spec_info[ 4055 sizeof(sense->cmd_spec_info) - len], len); 4056 sense->extra_len = MAX(sense->extra_len, 4); 4057 break; 4058 case SSD_ELEM_INFO: 4059 /* Set VALID bit only if no overflow. */ 4060 sense->error_code |= SSD_ERRCODE_VALID; 4061 while (len > sizeof(sense->info)) { 4062 if (data[0] != 0) 4063 sense->error_code &= ~SSD_ERRCODE_VALID; 4064 data ++; 4065 len --; 4066 } 4067 bcopy(data, &sense->info[sizeof(sense->info) - len], len); 4068 break; 4069 case SSD_ELEM_FRU: 4070 if (*sense_len < 15) { 4071 sense->flags |= SSD_SDAT_OVFL; 4072 break; 4073 } 4074 sense->fru = *data; 4075 sense->extra_len = MAX(sense->extra_len, 7); 4076 break; 4077 case SSD_ELEM_STREAM: 4078 sense->flags |= *data & 4079 (SSD_ILI | SSD_EOM | SSD_FILEMARK); 4080 break; 4081 default: 4082 4083 /* 4084 * We can't handle that in fixed format. Skip it. 4085 */ 4086 break; 4087 } 4088 } 4089 *sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 + 4090 sense->extra_len; 4091 } 4092 4093 /* 4094 * Fill in SCSI sense data with the specified parameters. This routine can 4095 * fill in either fixed or descriptor type sense data. 4096 */ 4097 void 4098 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len, 4099 scsi_sense_data_type sense_format, int current_error, 4100 int sense_key, int asc, int ascq, va_list ap) 4101 { 4102 4103 if (*sense_len > SSD_FULL_SIZE) 4104 *sense_len = SSD_FULL_SIZE; 4105 if (sense_format == SSD_TYPE_DESC) 4106 scsi_set_sense_data_desc_va(sense_data, sense_len, 4107 sense_format, current_error, sense_key, asc, ascq, ap); 4108 else 4109 scsi_set_sense_data_fixed_va(sense_data, sense_len, 4110 sense_format, current_error, sense_key, asc, ascq, ap); 4111 } 4112 4113 void 4114 scsi_set_sense_data(struct scsi_sense_data *sense_data, 4115 scsi_sense_data_type sense_format, int current_error, 4116 int sense_key, int asc, int ascq, ...) 4117 { 4118 va_list ap; 4119 u_int sense_len = SSD_FULL_SIZE; 4120 4121 va_start(ap, ascq); 4122 scsi_set_sense_data_va(sense_data, &sense_len, sense_format, 4123 current_error, sense_key, asc, ascq, ap); 4124 va_end(ap); 4125 } 4126 4127 void 4128 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len, 4129 scsi_sense_data_type sense_format, int current_error, 4130 int sense_key, int asc, int ascq, ...) 4131 { 4132 va_list ap; 4133 4134 va_start(ap, ascq); 4135 scsi_set_sense_data_va(sense_data, sense_len, sense_format, 4136 current_error, sense_key, asc, ascq, ap); 4137 va_end(ap); 4138 } 4139 4140 /* 4141 * Get sense information for three similar sense data types. 4142 */ 4143 int 4144 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, 4145 uint8_t info_type, uint64_t *info, int64_t *signed_info) 4146 { 4147 scsi_sense_data_type sense_type; 4148 4149 if (sense_len == 0) 4150 goto bailout; 4151 4152 sense_type = scsi_sense_type(sense_data); 4153 4154 switch (sense_type) { 4155 case SSD_TYPE_DESC: { 4156 struct scsi_sense_data_desc *sense; 4157 uint8_t *desc; 4158 4159 sense = (struct scsi_sense_data_desc *)sense_data; 4160 4161 desc = scsi_find_desc(sense, sense_len, info_type); 4162 if (desc == NULL) 4163 goto bailout; 4164 4165 switch (info_type) { 4166 case SSD_DESC_INFO: { 4167 struct scsi_sense_info *info_desc; 4168 4169 info_desc = (struct scsi_sense_info *)desc; 4170 4171 if ((info_desc->byte2 & SSD_INFO_VALID) == 0) 4172 goto bailout; 4173 4174 *info = scsi_8btou64(info_desc->info); 4175 if (signed_info != NULL) 4176 *signed_info = *info; 4177 break; 4178 } 4179 case SSD_DESC_COMMAND: { 4180 struct scsi_sense_command *cmd_desc; 4181 4182 cmd_desc = (struct scsi_sense_command *)desc; 4183 4184 *info = scsi_8btou64(cmd_desc->command_info); 4185 if (signed_info != NULL) 4186 *signed_info = *info; 4187 break; 4188 } 4189 case SSD_DESC_FRU: { 4190 struct scsi_sense_fru *fru_desc; 4191 4192 fru_desc = (struct scsi_sense_fru *)desc; 4193 4194 if (fru_desc->fru == 0) 4195 goto bailout; 4196 4197 *info = fru_desc->fru; 4198 if (signed_info != NULL) 4199 *signed_info = (int8_t)fru_desc->fru; 4200 break; 4201 } 4202 default: 4203 goto bailout; 4204 break; 4205 } 4206 break; 4207 } 4208 case SSD_TYPE_FIXED: { 4209 struct scsi_sense_data_fixed *sense; 4210 4211 sense = (struct scsi_sense_data_fixed *)sense_data; 4212 4213 switch (info_type) { 4214 case SSD_DESC_INFO: { 4215 uint32_t info_val; 4216 4217 if ((sense->error_code & SSD_ERRCODE_VALID) == 0) 4218 goto bailout; 4219 4220 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) 4221 goto bailout; 4222 4223 info_val = scsi_4btoul(sense->info); 4224 4225 *info = info_val; 4226 if (signed_info != NULL) 4227 *signed_info = (int32_t)info_val; 4228 break; 4229 } 4230 case SSD_DESC_COMMAND: { 4231 uint32_t cmd_val; 4232 4233 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, 4234 cmd_spec_info) == 0) 4235 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) 4236 goto bailout; 4237 4238 cmd_val = scsi_4btoul(sense->cmd_spec_info); 4239 if (cmd_val == 0) 4240 goto bailout; 4241 4242 *info = cmd_val; 4243 if (signed_info != NULL) 4244 *signed_info = (int32_t)cmd_val; 4245 break; 4246 } 4247 case SSD_DESC_FRU: 4248 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) 4249 || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) 4250 goto bailout; 4251 4252 if (sense->fru == 0) 4253 goto bailout; 4254 4255 *info = sense->fru; 4256 if (signed_info != NULL) 4257 *signed_info = (int8_t)sense->fru; 4258 break; 4259 default: 4260 goto bailout; 4261 break; 4262 } 4263 break; 4264 } 4265 default: 4266 goto bailout; 4267 break; 4268 } 4269 4270 return (0); 4271 bailout: 4272 return (1); 4273 } 4274 4275 int 4276 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) 4277 { 4278 scsi_sense_data_type sense_type; 4279 4280 if (sense_len == 0) 4281 goto bailout; 4282 4283 sense_type = scsi_sense_type(sense_data); 4284 4285 switch (sense_type) { 4286 case SSD_TYPE_DESC: { 4287 struct scsi_sense_data_desc *sense; 4288 struct scsi_sense_sks *desc; 4289 4290 sense = (struct scsi_sense_data_desc *)sense_data; 4291 4292 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, 4293 SSD_DESC_SKS); 4294 if (desc == NULL) 4295 goto bailout; 4296 4297 if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4298 goto bailout; 4299 4300 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); 4301 break; 4302 } 4303 case SSD_TYPE_FIXED: { 4304 struct scsi_sense_data_fixed *sense; 4305 4306 sense = (struct scsi_sense_data_fixed *)sense_data; 4307 4308 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) 4309 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) 4310 goto bailout; 4311 4312 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) 4313 goto bailout; 4314 4315 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); 4316 break; 4317 } 4318 default: 4319 goto bailout; 4320 break; 4321 } 4322 return (0); 4323 bailout: 4324 return (1); 4325 } 4326 4327 /* 4328 * Provide a common interface for fixed and descriptor sense to detect 4329 * whether we have block-specific sense information. It is clear by the 4330 * presence of the block descriptor in descriptor mode, but we have to 4331 * infer from the inquiry data and ILI bit in fixed mode. 4332 */ 4333 int 4334 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, 4335 struct scsi_inquiry_data *inq_data, uint8_t *block_bits) 4336 { 4337 scsi_sense_data_type sense_type; 4338 4339 if (inq_data != NULL) { 4340 switch (SID_TYPE(inq_data)) { 4341 case T_DIRECT: 4342 case T_RBC: 4343 case T_ZBC_HM: 4344 break; 4345 default: 4346 goto bailout; 4347 break; 4348 } 4349 } 4350 4351 sense_type = scsi_sense_type(sense_data); 4352 4353 switch (sense_type) { 4354 case SSD_TYPE_DESC: { 4355 struct scsi_sense_data_desc *sense; 4356 struct scsi_sense_block *block; 4357 4358 sense = (struct scsi_sense_data_desc *)sense_data; 4359 4360 block = (struct scsi_sense_block *)scsi_find_desc(sense, 4361 sense_len, SSD_DESC_BLOCK); 4362 if (block == NULL) 4363 goto bailout; 4364 4365 *block_bits = block->byte3; 4366 break; 4367 } 4368 case SSD_TYPE_FIXED: { 4369 struct scsi_sense_data_fixed *sense; 4370 4371 sense = (struct scsi_sense_data_fixed *)sense_data; 4372 4373 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4374 goto bailout; 4375 4376 *block_bits = sense->flags & SSD_ILI; 4377 break; 4378 } 4379 default: 4380 goto bailout; 4381 break; 4382 } 4383 return (0); 4384 bailout: 4385 return (1); 4386 } 4387 4388 int 4389 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, 4390 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) 4391 { 4392 scsi_sense_data_type sense_type; 4393 4394 if (inq_data != NULL) { 4395 switch (SID_TYPE(inq_data)) { 4396 case T_SEQUENTIAL: 4397 break; 4398 default: 4399 goto bailout; 4400 break; 4401 } 4402 } 4403 4404 sense_type = scsi_sense_type(sense_data); 4405 4406 switch (sense_type) { 4407 case SSD_TYPE_DESC: { 4408 struct scsi_sense_data_desc *sense; 4409 struct scsi_sense_stream *stream; 4410 4411 sense = (struct scsi_sense_data_desc *)sense_data; 4412 4413 stream = (struct scsi_sense_stream *)scsi_find_desc(sense, 4414 sense_len, SSD_DESC_STREAM); 4415 if (stream == NULL) 4416 goto bailout; 4417 4418 *stream_bits = stream->byte3; 4419 break; 4420 } 4421 case SSD_TYPE_FIXED: { 4422 struct scsi_sense_data_fixed *sense; 4423 4424 sense = (struct scsi_sense_data_fixed *)sense_data; 4425 4426 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4427 goto bailout; 4428 4429 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); 4430 break; 4431 } 4432 default: 4433 goto bailout; 4434 break; 4435 } 4436 return (0); 4437 bailout: 4438 return (1); 4439 } 4440 4441 void 4442 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4443 struct scsi_inquiry_data *inq_data, uint64_t info) 4444 { 4445 sbuf_printf(sb, "Info: %#jx", info); 4446 } 4447 4448 void 4449 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4450 struct scsi_inquiry_data *inq_data, uint64_t csi) 4451 { 4452 sbuf_printf(sb, "Command Specific Info: %#jx", csi); 4453 } 4454 4455 void 4456 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) 4457 { 4458 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", 4459 (progress * 100) / SSD_SKS_PROGRESS_DENOM, 4460 progress, SSD_SKS_PROGRESS_DENOM); 4461 } 4462 4463 /* 4464 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. 4465 */ 4466 int 4467 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) 4468 { 4469 4470 switch (sense_key) { 4471 case SSD_KEY_ILLEGAL_REQUEST: { 4472 struct scsi_sense_sks_field *field; 4473 int bad_command; 4474 char tmpstr[40]; 4475 4476 /*Field Pointer*/ 4477 field = (struct scsi_sense_sks_field *)sks; 4478 4479 if (field->byte0 & SSD_SKS_FIELD_CMD) 4480 bad_command = 1; 4481 else 4482 bad_command = 0; 4483 4484 tmpstr[0] = '\0'; 4485 4486 /* Bit pointer is valid */ 4487 if (field->byte0 & SSD_SKS_BPV) 4488 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4489 field->byte0 & SSD_SKS_BIT_VALUE); 4490 4491 sbuf_printf(sb, "%s byte %d %sis invalid", 4492 bad_command ? "Command" : "Data", 4493 scsi_2btoul(field->field), tmpstr); 4494 break; 4495 } 4496 case SSD_KEY_UNIT_ATTENTION: { 4497 struct scsi_sense_sks_overflow *overflow; 4498 4499 overflow = (struct scsi_sense_sks_overflow *)sks; 4500 4501 /*UA Condition Queue Overflow*/ 4502 sbuf_printf(sb, "Unit Attention Condition Queue %s", 4503 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? 4504 "Overflowed" : "Did Not Overflow??"); 4505 break; 4506 } 4507 case SSD_KEY_RECOVERED_ERROR: 4508 case SSD_KEY_HARDWARE_ERROR: 4509 case SSD_KEY_MEDIUM_ERROR: { 4510 struct scsi_sense_sks_retry *retry; 4511 4512 /*Actual Retry Count*/ 4513 retry = (struct scsi_sense_sks_retry *)sks; 4514 4515 sbuf_printf(sb, "Actual Retry Count: %d", 4516 scsi_2btoul(retry->actual_retry_count)); 4517 break; 4518 } 4519 case SSD_KEY_NO_SENSE: 4520 case SSD_KEY_NOT_READY: { 4521 struct scsi_sense_sks_progress *progress; 4522 int progress_val; 4523 4524 /*Progress Indication*/ 4525 progress = (struct scsi_sense_sks_progress *)sks; 4526 progress_val = scsi_2btoul(progress->progress); 4527 4528 scsi_progress_sbuf(sb, progress_val); 4529 break; 4530 } 4531 case SSD_KEY_COPY_ABORTED: { 4532 struct scsi_sense_sks_segment *segment; 4533 char tmpstr[40]; 4534 4535 /*Segment Pointer*/ 4536 segment = (struct scsi_sense_sks_segment *)sks; 4537 4538 tmpstr[0] = '\0'; 4539 4540 if (segment->byte0 & SSD_SKS_SEGMENT_BPV) 4541 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4542 segment->byte0 & SSD_SKS_SEGMENT_BITPTR); 4543 4544 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & 4545 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", 4546 scsi_2btoul(segment->field), tmpstr); 4547 break; 4548 } 4549 default: 4550 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], 4551 scsi_2btoul(&sks[1])); 4552 break; 4553 } 4554 4555 return (0); 4556 } 4557 4558 void 4559 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) 4560 { 4561 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); 4562 } 4563 4564 void 4565 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits) 4566 { 4567 int need_comma; 4568 4569 need_comma = 0; 4570 /* 4571 * XXX KDM this needs more descriptive decoding. 4572 */ 4573 sbuf_cat(sb, "Stream Command Sense Data: "); 4574 if (stream_bits & SSD_DESC_STREAM_FM) { 4575 sbuf_cat(sb, "Filemark"); 4576 need_comma = 1; 4577 } 4578 4579 if (stream_bits & SSD_DESC_STREAM_EOM) { 4580 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); 4581 need_comma = 1; 4582 } 4583 4584 if (stream_bits & SSD_DESC_STREAM_ILI) 4585 sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); 4586 } 4587 4588 void 4589 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits) 4590 { 4591 4592 sbuf_cat(sb, "Block Command Sense Data: "); 4593 if (block_bits & SSD_DESC_BLOCK_ILI) 4594 sbuf_cat(sb, "ILI"); 4595 } 4596 4597 void 4598 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4599 u_int sense_len, uint8_t *cdb, int cdb_len, 4600 struct scsi_inquiry_data *inq_data, 4601 struct scsi_sense_desc_header *header) 4602 { 4603 struct scsi_sense_info *info; 4604 4605 info = (struct scsi_sense_info *)header; 4606 4607 if ((info->byte2 & SSD_INFO_VALID) == 0) 4608 return; 4609 4610 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); 4611 } 4612 4613 void 4614 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4615 u_int sense_len, uint8_t *cdb, int cdb_len, 4616 struct scsi_inquiry_data *inq_data, 4617 struct scsi_sense_desc_header *header) 4618 { 4619 struct scsi_sense_command *command; 4620 4621 command = (struct scsi_sense_command *)header; 4622 4623 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, 4624 scsi_8btou64(command->command_info)); 4625 } 4626 4627 void 4628 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4629 u_int sense_len, uint8_t *cdb, int cdb_len, 4630 struct scsi_inquiry_data *inq_data, 4631 struct scsi_sense_desc_header *header) 4632 { 4633 struct scsi_sense_sks *sks; 4634 int error_code, sense_key, asc, ascq; 4635 4636 sks = (struct scsi_sense_sks *)header; 4637 4638 if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4639 return; 4640 4641 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4642 &asc, &ascq, /*show_errors*/ 1); 4643 4644 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); 4645 } 4646 4647 void 4648 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4649 u_int sense_len, uint8_t *cdb, int cdb_len, 4650 struct scsi_inquiry_data *inq_data, 4651 struct scsi_sense_desc_header *header) 4652 { 4653 struct scsi_sense_fru *fru; 4654 4655 fru = (struct scsi_sense_fru *)header; 4656 4657 if (fru->fru == 0) 4658 return; 4659 4660 scsi_fru_sbuf(sb, (uint64_t)fru->fru); 4661 } 4662 4663 void 4664 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4665 u_int sense_len, uint8_t *cdb, int cdb_len, 4666 struct scsi_inquiry_data *inq_data, 4667 struct scsi_sense_desc_header *header) 4668 { 4669 struct scsi_sense_stream *stream; 4670 4671 stream = (struct scsi_sense_stream *)header; 4672 scsi_stream_sbuf(sb, stream->byte3); 4673 } 4674 4675 void 4676 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4677 u_int sense_len, uint8_t *cdb, int cdb_len, 4678 struct scsi_inquiry_data *inq_data, 4679 struct scsi_sense_desc_header *header) 4680 { 4681 struct scsi_sense_block *block; 4682 4683 block = (struct scsi_sense_block *)header; 4684 scsi_block_sbuf(sb, block->byte3); 4685 } 4686 4687 void 4688 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4689 u_int sense_len, uint8_t *cdb, int cdb_len, 4690 struct scsi_inquiry_data *inq_data, 4691 struct scsi_sense_desc_header *header) 4692 { 4693 struct scsi_sense_progress *progress; 4694 const char *sense_key_desc; 4695 const char *asc_desc; 4696 int progress_val; 4697 4698 progress = (struct scsi_sense_progress *)header; 4699 4700 /* 4701 * Get descriptions for the sense key, ASC, and ASCQ in the 4702 * progress descriptor. These could be different than the values 4703 * in the overall sense data. 4704 */ 4705 scsi_sense_desc(progress->sense_key, progress->add_sense_code, 4706 progress->add_sense_code_qual, inq_data, 4707 &sense_key_desc, &asc_desc); 4708 4709 progress_val = scsi_2btoul(progress->progress); 4710 4711 /* 4712 * The progress indicator is for the operation described by the 4713 * sense key, ASC, and ASCQ in the descriptor. 4714 */ 4715 sbuf_cat(sb, sense_key_desc); 4716 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, 4717 progress->add_sense_code_qual, asc_desc); 4718 scsi_progress_sbuf(sb, progress_val); 4719 } 4720 4721 void 4722 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4723 u_int sense_len, uint8_t *cdb, int cdb_len, 4724 struct scsi_inquiry_data *inq_data, 4725 struct scsi_sense_desc_header *header) 4726 { 4727 struct scsi_sense_ata_ret_desc *res; 4728 4729 res = (struct scsi_sense_ata_ret_desc *)header; 4730 4731 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ", 4732 res->status, 4733 (res->status & 0x80) ? "BSY " : "", 4734 (res->status & 0x40) ? "DRDY " : "", 4735 (res->status & 0x20) ? "DF " : "", 4736 (res->status & 0x10) ? "SERV " : "", 4737 (res->status & 0x08) ? "DRQ " : "", 4738 (res->status & 0x04) ? "CORR " : "", 4739 (res->status & 0x02) ? "IDX " : "", 4740 (res->status & 0x01) ? "ERR" : ""); 4741 if (res->status & 1) { 4742 sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ", 4743 res->error, 4744 (res->error & 0x80) ? "ICRC " : "", 4745 (res->error & 0x40) ? "UNC " : "", 4746 (res->error & 0x20) ? "MC " : "", 4747 (res->error & 0x10) ? "IDNF " : "", 4748 (res->error & 0x08) ? "MCR " : "", 4749 (res->error & 0x04) ? "ABRT " : "", 4750 (res->error & 0x02) ? "NM " : "", 4751 (res->error & 0x01) ? "ILI" : ""); 4752 } 4753 4754 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) { 4755 sbuf_printf(sb, "count: %02x%02x, ", 4756 res->count_15_8, res->count_7_0); 4757 sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ", 4758 res->lba_47_40, res->lba_39_32, res->lba_31_24, 4759 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4760 } else { 4761 sbuf_printf(sb, "count: %02x, ", res->count_7_0); 4762 sbuf_printf(sb, "LBA: %02x%02x%02x, ", 4763 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4764 } 4765 sbuf_printf(sb, "device: %02x, ", res->device); 4766 } 4767 4768 void 4769 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4770 u_int sense_len, uint8_t *cdb, int cdb_len, 4771 struct scsi_inquiry_data *inq_data, 4772 struct scsi_sense_desc_header *header) 4773 { 4774 struct scsi_sense_forwarded *forwarded; 4775 const char *sense_key_desc; 4776 const char *asc_desc; 4777 int error_code, sense_key, asc, ascq; 4778 4779 forwarded = (struct scsi_sense_forwarded *)header; 4780 scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data, 4781 forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1); 4782 scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc); 4783 4784 sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ", 4785 sense_key_desc, asc, ascq, asc_desc); 4786 } 4787 4788 /* 4789 * Generic sense descriptor printing routine. This is used when we have 4790 * not yet implemented a specific printing routine for this descriptor. 4791 */ 4792 void 4793 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4794 u_int sense_len, uint8_t *cdb, int cdb_len, 4795 struct scsi_inquiry_data *inq_data, 4796 struct scsi_sense_desc_header *header) 4797 { 4798 int i; 4799 uint8_t *buf_ptr; 4800 4801 sbuf_printf(sb, "Descriptor %#x:", header->desc_type); 4802 4803 buf_ptr = (uint8_t *)&header[1]; 4804 4805 for (i = 0; i < header->length; i++, buf_ptr++) 4806 sbuf_printf(sb, " %02x", *buf_ptr); 4807 } 4808 4809 /* 4810 * Keep this list in numeric order. This speeds the array traversal. 4811 */ 4812 struct scsi_sense_desc_printer { 4813 uint8_t desc_type; 4814 /* 4815 * The function arguments here are the superset of what is needed 4816 * to print out various different descriptors. Command and 4817 * information descriptors need inquiry data and command type. 4818 * Sense key specific descriptors need the sense key. 4819 * 4820 * The sense, cdb, and inquiry data arguments may be NULL, but the 4821 * information printed may not be fully decoded as a result. 4822 */ 4823 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, 4824 u_int sense_len, uint8_t *cdb, int cdb_len, 4825 struct scsi_inquiry_data *inq_data, 4826 struct scsi_sense_desc_header *header); 4827 } scsi_sense_printers[] = { 4828 {SSD_DESC_INFO, scsi_sense_info_sbuf}, 4829 {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, 4830 {SSD_DESC_SKS, scsi_sense_sks_sbuf}, 4831 {SSD_DESC_FRU, scsi_sense_fru_sbuf}, 4832 {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, 4833 {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, 4834 {SSD_DESC_ATA, scsi_sense_ata_sbuf}, 4835 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}, 4836 {SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf} 4837 }; 4838 4839 void 4840 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4841 u_int sense_len, uint8_t *cdb, int cdb_len, 4842 struct scsi_inquiry_data *inq_data, 4843 struct scsi_sense_desc_header *header) 4844 { 4845 u_int i; 4846 4847 for (i = 0; i < nitems(scsi_sense_printers); i++) { 4848 struct scsi_sense_desc_printer *printer; 4849 4850 printer = &scsi_sense_printers[i]; 4851 4852 /* 4853 * The list is sorted, so quit if we've passed our 4854 * descriptor number. 4855 */ 4856 if (printer->desc_type > header->desc_type) 4857 break; 4858 4859 if (printer->desc_type != header->desc_type) 4860 continue; 4861 4862 printer->print_func(sb, sense, sense_len, cdb, cdb_len, 4863 inq_data, header); 4864 4865 return; 4866 } 4867 4868 /* 4869 * No specific printing routine, so use the generic routine. 4870 */ 4871 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, 4872 inq_data, header); 4873 } 4874 4875 scsi_sense_data_type 4876 scsi_sense_type(struct scsi_sense_data *sense_data) 4877 { 4878 switch (sense_data->error_code & SSD_ERRCODE) { 4879 case SSD_DESC_CURRENT_ERROR: 4880 case SSD_DESC_DEFERRED_ERROR: 4881 return (SSD_TYPE_DESC); 4882 break; 4883 case SSD_CURRENT_ERROR: 4884 case SSD_DEFERRED_ERROR: 4885 return (SSD_TYPE_FIXED); 4886 break; 4887 default: 4888 break; 4889 } 4890 4891 return (SSD_TYPE_NONE); 4892 } 4893 4894 struct scsi_print_sense_info { 4895 struct sbuf *sb; 4896 char *path_str; 4897 uint8_t *cdb; 4898 int cdb_len; 4899 struct scsi_inquiry_data *inq_data; 4900 }; 4901 4902 static int 4903 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 4904 struct scsi_sense_desc_header *header, void *arg) 4905 { 4906 struct scsi_print_sense_info *print_info; 4907 4908 print_info = (struct scsi_print_sense_info *)arg; 4909 4910 switch (header->desc_type) { 4911 case SSD_DESC_INFO: 4912 case SSD_DESC_FRU: 4913 case SSD_DESC_COMMAND: 4914 case SSD_DESC_SKS: 4915 case SSD_DESC_BLOCK: 4916 case SSD_DESC_STREAM: 4917 /* 4918 * We have already printed these descriptors, if they are 4919 * present. 4920 */ 4921 break; 4922 default: { 4923 sbuf_printf(print_info->sb, "%s", print_info->path_str); 4924 scsi_sense_desc_sbuf(print_info->sb, 4925 (struct scsi_sense_data *)sense, sense_len, 4926 print_info->cdb, print_info->cdb_len, 4927 print_info->inq_data, header); 4928 sbuf_putc(print_info->sb, '\n'); 4929 break; 4930 } 4931 } 4932 4933 /* 4934 * Tell the iterator that we want to see more descriptors if they 4935 * are present. 4936 */ 4937 return (0); 4938 } 4939 4940 void 4941 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, 4942 struct sbuf *sb, char *path_str, 4943 struct scsi_inquiry_data *inq_data, uint8_t *cdb, 4944 int cdb_len) 4945 { 4946 int error_code, sense_key, asc, ascq; 4947 4948 sbuf_cat(sb, path_str); 4949 4950 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4951 &asc, &ascq, /*show_errors*/ 1); 4952 4953 sbuf_cat(sb, "SCSI sense: "); 4954 switch (error_code) { 4955 case SSD_DEFERRED_ERROR: 4956 case SSD_DESC_DEFERRED_ERROR: 4957 sbuf_cat(sb, "Deferred error: "); 4958 4959 /* FALLTHROUGH */ 4960 case SSD_CURRENT_ERROR: 4961 case SSD_DESC_CURRENT_ERROR: 4962 { 4963 struct scsi_sense_data_desc *desc_sense; 4964 struct scsi_print_sense_info print_info; 4965 const char *sense_key_desc; 4966 const char *asc_desc; 4967 uint8_t sks[3]; 4968 uint64_t val; 4969 uint8_t bits; 4970 4971 /* 4972 * Get descriptions for the sense key, ASC, and ASCQ. If 4973 * these aren't present in the sense data (i.e. the sense 4974 * data isn't long enough), the -1 values that 4975 * scsi_extract_sense_len() returns will yield default 4976 * or error descriptions. 4977 */ 4978 scsi_sense_desc(sense_key, asc, ascq, inq_data, 4979 &sense_key_desc, &asc_desc); 4980 4981 /* 4982 * We first print the sense key and ASC/ASCQ. 4983 */ 4984 sbuf_cat(sb, sense_key_desc); 4985 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); 4986 4987 /* 4988 * Print any block or stream device-specific information. 4989 */ 4990 if (scsi_get_block_info(sense, sense_len, inq_data, 4991 &bits) == 0 && bits != 0) { 4992 sbuf_cat(sb, path_str); 4993 scsi_block_sbuf(sb, bits); 4994 sbuf_putc(sb, '\n'); 4995 } else if (scsi_get_stream_info(sense, sense_len, inq_data, 4996 &bits) == 0 && bits != 0) { 4997 sbuf_cat(sb, path_str); 4998 scsi_stream_sbuf(sb, bits); 4999 sbuf_putc(sb, '\n'); 5000 } 5001 5002 /* 5003 * Print the info field. 5004 */ 5005 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, 5006 &val, NULL) == 0) { 5007 sbuf_cat(sb, path_str); 5008 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); 5009 sbuf_putc(sb, '\n'); 5010 } 5011 5012 /* 5013 * Print the FRU. 5014 */ 5015 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, 5016 &val, NULL) == 0) { 5017 sbuf_cat(sb, path_str); 5018 scsi_fru_sbuf(sb, val); 5019 sbuf_putc(sb, '\n'); 5020 } 5021 5022 /* 5023 * Print any command-specific information. 5024 */ 5025 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, 5026 &val, NULL) == 0) { 5027 sbuf_cat(sb, path_str); 5028 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); 5029 sbuf_putc(sb, '\n'); 5030 } 5031 5032 /* 5033 * Print out any sense-key-specific information. 5034 */ 5035 if (scsi_get_sks(sense, sense_len, sks) == 0) { 5036 sbuf_cat(sb, path_str); 5037 scsi_sks_sbuf(sb, sense_key, sks); 5038 sbuf_putc(sb, '\n'); 5039 } 5040 5041 /* 5042 * If this is fixed sense, we're done. If we have 5043 * descriptor sense, we might have more information 5044 * available. 5045 */ 5046 if (scsi_sense_type(sense) != SSD_TYPE_DESC) 5047 break; 5048 5049 desc_sense = (struct scsi_sense_data_desc *)sense; 5050 5051 print_info.sb = sb; 5052 print_info.path_str = path_str; 5053 print_info.cdb = cdb; 5054 print_info.cdb_len = cdb_len; 5055 print_info.inq_data = inq_data; 5056 5057 /* 5058 * Print any sense descriptors that we have not already printed. 5059 */ 5060 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, 5061 &print_info); 5062 break; 5063 } 5064 case -1: 5065 /* 5066 * scsi_extract_sense_len() sets values to -1 if the 5067 * show_errors flag is set and they aren't present in the 5068 * sense data. This means that sense_len is 0. 5069 */ 5070 sbuf_cat(sb, "No sense data present\n"); 5071 break; 5072 default: { 5073 sbuf_printf(sb, "Error code 0x%x", error_code); 5074 if (sense->error_code & SSD_ERRCODE_VALID) { 5075 struct scsi_sense_data_fixed *fixed_sense; 5076 5077 fixed_sense = (struct scsi_sense_data_fixed *)sense; 5078 5079 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ 5080 uint32_t info; 5081 5082 info = scsi_4btoul(fixed_sense->info); 5083 5084 sbuf_printf(sb, " at block no. %d (decimal)", 5085 info); 5086 } 5087 } 5088 sbuf_putc(sb, '\n'); 5089 break; 5090 } 5091 } 5092 } 5093 5094 /* 5095 * scsi_sense_sbuf() returns 0 for success and -1 for failure. 5096 */ 5097 #ifdef _KERNEL 5098 int 5099 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, 5100 scsi_sense_string_flags flags) 5101 #else /* !_KERNEL */ 5102 int 5103 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, 5104 struct sbuf *sb, scsi_sense_string_flags flags) 5105 #endif /* _KERNEL/!_KERNEL */ 5106 { 5107 struct scsi_sense_data *sense; 5108 struct scsi_inquiry_data *inq_data; 5109 #ifdef _KERNEL 5110 struct ccb_getdev *cgd; 5111 #endif /* _KERNEL */ 5112 char path_str[64]; 5113 5114 #ifndef _KERNEL 5115 if (device == NULL) 5116 return(-1); 5117 #endif /* !_KERNEL */ 5118 if ((csio == NULL) || (sb == NULL)) 5119 return(-1); 5120 5121 /* 5122 * If the CDB is a physical address, we can't deal with it.. 5123 */ 5124 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) 5125 flags &= ~SSS_FLAG_PRINT_COMMAND; 5126 5127 #ifdef _KERNEL 5128 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); 5129 #else /* !_KERNEL */ 5130 cam_path_string(device, path_str, sizeof(path_str)); 5131 #endif /* _KERNEL/!_KERNEL */ 5132 5133 #ifdef _KERNEL 5134 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 5135 return(-1); 5136 /* 5137 * Get the device information. 5138 */ 5139 xpt_setup_ccb(&cgd->ccb_h, 5140 csio->ccb_h.path, 5141 CAM_PRIORITY_NORMAL); 5142 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 5143 xpt_action((union ccb *)cgd); 5144 5145 /* 5146 * If the device is unconfigured, just pretend that it is a hard 5147 * drive. scsi_op_desc() needs this. 5148 */ 5149 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 5150 cgd->inq_data.device = T_DIRECT; 5151 5152 inq_data = &cgd->inq_data; 5153 5154 #else /* !_KERNEL */ 5155 5156 inq_data = &device->inq_data; 5157 5158 #endif /* _KERNEL/!_KERNEL */ 5159 5160 sense = NULL; 5161 5162 if (flags & SSS_FLAG_PRINT_COMMAND) { 5163 sbuf_cat(sb, path_str); 5164 5165 #ifdef _KERNEL 5166 scsi_command_string(csio, sb); 5167 #else /* !_KERNEL */ 5168 scsi_command_string(device, csio, sb); 5169 #endif /* _KERNEL/!_KERNEL */ 5170 sbuf_putc(sb, '\n'); 5171 } 5172 5173 /* 5174 * If the sense data is a physical pointer, forget it. 5175 */ 5176 if (csio->ccb_h.flags & CAM_SENSE_PTR) { 5177 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5178 #ifdef _KERNEL 5179 xpt_free_ccb((union ccb*)cgd); 5180 #endif /* _KERNEL/!_KERNEL */ 5181 return(-1); 5182 } else { 5183 /* 5184 * bcopy the pointer to avoid unaligned access 5185 * errors on finicky architectures. We don't 5186 * ensure that the sense data is pointer aligned. 5187 */ 5188 bcopy((struct scsi_sense_data **)&csio->sense_data, 5189 &sense, sizeof(struct scsi_sense_data *)); 5190 } 5191 } else { 5192 /* 5193 * If the physical sense flag is set, but the sense pointer 5194 * is not also set, we assume that the user is an idiot and 5195 * return. (Well, okay, it could be that somehow, the 5196 * entire csio is physical, but we would have probably core 5197 * dumped on one of the bogus pointer deferences above 5198 * already.) 5199 */ 5200 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5201 #ifdef _KERNEL 5202 xpt_free_ccb((union ccb*)cgd); 5203 #endif /* _KERNEL/!_KERNEL */ 5204 return(-1); 5205 } else 5206 sense = &csio->sense_data; 5207 } 5208 5209 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, 5210 path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len); 5211 5212 #ifdef _KERNEL 5213 xpt_free_ccb((union ccb*)cgd); 5214 #endif /* _KERNEL/!_KERNEL */ 5215 return(0); 5216 } 5217 5218 #ifdef _KERNEL 5219 char * 5220 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) 5221 #else /* !_KERNEL */ 5222 char * 5223 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, 5224 char *str, int str_len) 5225 #endif /* _KERNEL/!_KERNEL */ 5226 { 5227 struct sbuf sb; 5228 5229 sbuf_new(&sb, str, str_len, 0); 5230 5231 #ifdef _KERNEL 5232 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5233 #else /* !_KERNEL */ 5234 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5235 #endif /* _KERNEL/!_KERNEL */ 5236 5237 sbuf_finish(&sb); 5238 5239 return(sbuf_data(&sb)); 5240 } 5241 5242 #ifdef _KERNEL 5243 void 5244 scsi_sense_print(struct ccb_scsiio *csio) 5245 { 5246 struct sbuf sb; 5247 char str[512]; 5248 5249 sbuf_new(&sb, str, sizeof(str), 0); 5250 5251 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5252 5253 sbuf_finish(&sb); 5254 5255 sbuf_putbuf(&sb); 5256 } 5257 5258 #else /* !_KERNEL */ 5259 void 5260 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, 5261 FILE *ofile) 5262 { 5263 struct sbuf sb; 5264 char str[512]; 5265 5266 if ((device == NULL) || (csio == NULL) || (ofile == NULL)) 5267 return; 5268 5269 sbuf_new(&sb, str, sizeof(str), 0); 5270 5271 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5272 5273 sbuf_finish(&sb); 5274 5275 fprintf(ofile, "%s", sbuf_data(&sb)); 5276 } 5277 5278 #endif /* _KERNEL/!_KERNEL */ 5279 5280 /* 5281 * Extract basic sense information. This is backward-compatible with the 5282 * previous implementation. For new implementations, 5283 * scsi_extract_sense_len() is recommended. 5284 */ 5285 void 5286 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, 5287 int *sense_key, int *asc, int *ascq) 5288 { 5289 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, 5290 sense_key, asc, ascq, /*show_errors*/ 0); 5291 } 5292 5293 /* 5294 * Extract basic sense information from SCSI I/O CCB structure. 5295 */ 5296 int 5297 scsi_extract_sense_ccb(union ccb *ccb, 5298 int *error_code, int *sense_key, int *asc, int *ascq) 5299 { 5300 struct scsi_sense_data *sense_data; 5301 5302 /* Make sure there are some sense data we can access. */ 5303 if (ccb->ccb_h.func_code != XPT_SCSI_IO || 5304 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR || 5305 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) || 5306 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 || 5307 (ccb->ccb_h.flags & CAM_SENSE_PHYS)) 5308 return (0); 5309 5310 if (ccb->ccb_h.flags & CAM_SENSE_PTR) 5311 bcopy((struct scsi_sense_data **)&ccb->csio.sense_data, 5312 &sense_data, sizeof(struct scsi_sense_data *)); 5313 else 5314 sense_data = &ccb->csio.sense_data; 5315 scsi_extract_sense_len(sense_data, 5316 ccb->csio.sense_len - ccb->csio.sense_resid, 5317 error_code, sense_key, asc, ascq, 1); 5318 if (*error_code == -1) 5319 return (0); 5320 return (1); 5321 } 5322 5323 /* 5324 * Extract basic sense information. If show_errors is set, sense values 5325 * will be set to -1 if they are not present. 5326 */ 5327 void 5328 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, 5329 int *error_code, int *sense_key, int *asc, int *ascq, 5330 int show_errors) 5331 { 5332 /* 5333 * If we have no length, we have no sense. 5334 */ 5335 if (sense_len == 0) { 5336 if (show_errors == 0) { 5337 *error_code = 0; 5338 *sense_key = 0; 5339 *asc = 0; 5340 *ascq = 0; 5341 } else { 5342 *error_code = -1; 5343 *sense_key = -1; 5344 *asc = -1; 5345 *ascq = -1; 5346 } 5347 return; 5348 } 5349 5350 *error_code = sense_data->error_code & SSD_ERRCODE; 5351 5352 switch (*error_code) { 5353 case SSD_DESC_CURRENT_ERROR: 5354 case SSD_DESC_DEFERRED_ERROR: { 5355 struct scsi_sense_data_desc *sense; 5356 5357 sense = (struct scsi_sense_data_desc *)sense_data; 5358 5359 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) 5360 *sense_key = sense->sense_key & SSD_KEY; 5361 else 5362 *sense_key = (show_errors) ? -1 : 0; 5363 5364 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) 5365 *asc = sense->add_sense_code; 5366 else 5367 *asc = (show_errors) ? -1 : 0; 5368 5369 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) 5370 *ascq = sense->add_sense_code_qual; 5371 else 5372 *ascq = (show_errors) ? -1 : 0; 5373 break; 5374 } 5375 case SSD_CURRENT_ERROR: 5376 case SSD_DEFERRED_ERROR: 5377 default: { 5378 struct scsi_sense_data_fixed *sense; 5379 5380 sense = (struct scsi_sense_data_fixed *)sense_data; 5381 5382 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) 5383 *sense_key = sense->flags & SSD_KEY; 5384 else 5385 *sense_key = (show_errors) ? -1 : 0; 5386 5387 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) 5388 && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) 5389 *asc = sense->add_sense_code; 5390 else 5391 *asc = (show_errors) ? -1 : 0; 5392 5393 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) 5394 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) 5395 *ascq = sense->add_sense_code_qual; 5396 else 5397 *ascq = (show_errors) ? -1 : 0; 5398 break; 5399 } 5400 } 5401 } 5402 5403 int 5404 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, 5405 int show_errors) 5406 { 5407 int error_code, sense_key, asc, ascq; 5408 5409 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5410 &sense_key, &asc, &ascq, show_errors); 5411 5412 return (sense_key); 5413 } 5414 5415 int 5416 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, 5417 int show_errors) 5418 { 5419 int error_code, sense_key, asc, ascq; 5420 5421 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5422 &sense_key, &asc, &ascq, show_errors); 5423 5424 return (asc); 5425 } 5426 5427 int 5428 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, 5429 int show_errors) 5430 { 5431 int error_code, sense_key, asc, ascq; 5432 5433 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5434 &sense_key, &asc, &ascq, show_errors); 5435 5436 return (ascq); 5437 } 5438 5439 /* 5440 * This function currently requires at least 36 bytes, or 5441 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this 5442 * function needs more or less data in the future, another length should be 5443 * defined in scsi_all.h to indicate the minimum amount of data necessary 5444 * for this routine to function properly. 5445 */ 5446 void 5447 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5448 { 5449 uint8_t type; 5450 char *dtype, *qtype; 5451 5452 type = SID_TYPE(inq_data); 5453 5454 /* 5455 * Figure out basic device type and qualifier. 5456 */ 5457 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { 5458 qtype = " (vendor-unique qualifier)"; 5459 } else { 5460 switch (SID_QUAL(inq_data)) { 5461 case SID_QUAL_LU_CONNECTED: 5462 qtype = ""; 5463 break; 5464 5465 case SID_QUAL_LU_OFFLINE: 5466 qtype = " (offline)"; 5467 break; 5468 5469 case SID_QUAL_RSVD: 5470 qtype = " (reserved qualifier)"; 5471 break; 5472 default: 5473 case SID_QUAL_BAD_LU: 5474 qtype = " (LUN not supported)"; 5475 break; 5476 } 5477 } 5478 5479 switch (type) { 5480 case T_DIRECT: 5481 dtype = "Direct Access"; 5482 break; 5483 case T_SEQUENTIAL: 5484 dtype = "Sequential Access"; 5485 break; 5486 case T_PRINTER: 5487 dtype = "Printer"; 5488 break; 5489 case T_PROCESSOR: 5490 dtype = "Processor"; 5491 break; 5492 case T_WORM: 5493 dtype = "WORM"; 5494 break; 5495 case T_CDROM: 5496 dtype = "CD-ROM"; 5497 break; 5498 case T_SCANNER: 5499 dtype = "Scanner"; 5500 break; 5501 case T_OPTICAL: 5502 dtype = "Optical"; 5503 break; 5504 case T_CHANGER: 5505 dtype = "Changer"; 5506 break; 5507 case T_COMM: 5508 dtype = "Communication"; 5509 break; 5510 case T_STORARRAY: 5511 dtype = "Storage Array"; 5512 break; 5513 case T_ENCLOSURE: 5514 dtype = "Enclosure Services"; 5515 break; 5516 case T_RBC: 5517 dtype = "Simplified Direct Access"; 5518 break; 5519 case T_OCRW: 5520 dtype = "Optical Card Read/Write"; 5521 break; 5522 case T_OSD: 5523 dtype = "Object-Based Storage"; 5524 break; 5525 case T_ADC: 5526 dtype = "Automation/Drive Interface"; 5527 break; 5528 case T_ZBC_HM: 5529 dtype = "Host Managed Zoned Block"; 5530 break; 5531 case T_NODEVICE: 5532 dtype = "Uninstalled"; 5533 break; 5534 default: 5535 dtype = "unknown"; 5536 break; 5537 } 5538 5539 scsi_print_inquiry_short_sbuf(sb, inq_data); 5540 5541 sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype); 5542 5543 if (SID_ANSI_REV(inq_data) == SCSI_REV_0) 5544 sbuf_cat(sb, "SCSI "); 5545 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) { 5546 sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data)); 5547 } else { 5548 sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2); 5549 } 5550 sbuf_printf(sb, "device%s\n", qtype); 5551 } 5552 5553 void 5554 scsi_print_inquiry(struct scsi_inquiry_data *inq_data) 5555 { 5556 struct sbuf sb; 5557 char buffer[120]; 5558 5559 sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN); 5560 scsi_print_inquiry_sbuf(&sb, inq_data); 5561 sbuf_finish(&sb); 5562 sbuf_putbuf(&sb); 5563 } 5564 5565 void 5566 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5567 { 5568 5569 sbuf_putc(sb, '<'); 5570 cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0); 5571 sbuf_putc(sb, ' '); 5572 cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0); 5573 sbuf_putc(sb, ' '); 5574 cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0); 5575 sbuf_cat(sb, "> "); 5576 } 5577 5578 void 5579 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data) 5580 { 5581 struct sbuf sb; 5582 char buffer[84]; 5583 5584 sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN); 5585 scsi_print_inquiry_short_sbuf(&sb, inq_data); 5586 sbuf_finish(&sb); 5587 sbuf_putbuf(&sb); 5588 } 5589 5590 /* 5591 * Table of syncrates that don't follow the "divisible by 4" 5592 * rule. This table will be expanded in future SCSI specs. 5593 */ 5594 static struct { 5595 u_int period_factor; 5596 u_int period; /* in 100ths of ns */ 5597 } scsi_syncrates[] = { 5598 { 0x08, 625 }, /* FAST-160 */ 5599 { 0x09, 1250 }, /* FAST-80 */ 5600 { 0x0a, 2500 }, /* FAST-40 40MHz */ 5601 { 0x0b, 3030 }, /* FAST-40 33MHz */ 5602 { 0x0c, 5000 } /* FAST-20 */ 5603 }; 5604 5605 /* 5606 * Return the frequency in kHz corresponding to the given 5607 * sync period factor. 5608 */ 5609 u_int 5610 scsi_calc_syncsrate(u_int period_factor) 5611 { 5612 u_int i; 5613 u_int num_syncrates; 5614 5615 /* 5616 * It's a bug if period is zero, but if it is anyway, don't 5617 * die with a divide fault- instead return something which 5618 * 'approximates' async 5619 */ 5620 if (period_factor == 0) { 5621 return (3300); 5622 } 5623 5624 num_syncrates = nitems(scsi_syncrates); 5625 /* See if the period is in the "exception" table */ 5626 for (i = 0; i < num_syncrates; i++) { 5627 if (period_factor == scsi_syncrates[i].period_factor) { 5628 /* Period in kHz */ 5629 return (100000000 / scsi_syncrates[i].period); 5630 } 5631 } 5632 5633 /* 5634 * Wasn't in the table, so use the standard 5635 * 4 times conversion. 5636 */ 5637 return (10000000 / (period_factor * 4 * 10)); 5638 } 5639 5640 /* 5641 * Return the SCSI sync parameter that corresponds to 5642 * the passed in period in 10ths of ns. 5643 */ 5644 u_int 5645 scsi_calc_syncparam(u_int period) 5646 { 5647 u_int i; 5648 u_int num_syncrates; 5649 5650 if (period == 0) 5651 return (~0); /* Async */ 5652 5653 /* Adjust for exception table being in 100ths. */ 5654 period *= 10; 5655 num_syncrates = nitems(scsi_syncrates); 5656 /* See if the period is in the "exception" table */ 5657 for (i = 0; i < num_syncrates; i++) { 5658 if (period <= scsi_syncrates[i].period) { 5659 /* Period in 100ths of ns */ 5660 return (scsi_syncrates[i].period_factor); 5661 } 5662 } 5663 5664 /* 5665 * Wasn't in the table, so use the standard 5666 * 1/4 period in ns conversion. 5667 */ 5668 return (period/400); 5669 } 5670 5671 int 5672 scsi_devid_is_naa_ieee_reg(uint8_t *bufp) 5673 { 5674 struct scsi_vpd_id_descriptor *descr; 5675 struct scsi_vpd_id_naa_basic *naa; 5676 int n; 5677 5678 descr = (struct scsi_vpd_id_descriptor *)bufp; 5679 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; 5680 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5681 return 0; 5682 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) 5683 return 0; 5684 n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT; 5685 if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG) 5686 return 0; 5687 return 1; 5688 } 5689 5690 int 5691 scsi_devid_is_sas_target(uint8_t *bufp) 5692 { 5693 struct scsi_vpd_id_descriptor *descr; 5694 5695 descr = (struct scsi_vpd_id_descriptor *)bufp; 5696 if (!scsi_devid_is_naa_ieee_reg(bufp)) 5697 return 0; 5698 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ 5699 return 0; 5700 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) 5701 return 0; 5702 return 1; 5703 } 5704 5705 int 5706 scsi_devid_is_lun_eui64(uint8_t *bufp) 5707 { 5708 struct scsi_vpd_id_descriptor *descr; 5709 5710 descr = (struct scsi_vpd_id_descriptor *)bufp; 5711 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5712 return 0; 5713 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64) 5714 return 0; 5715 return 1; 5716 } 5717 5718 int 5719 scsi_devid_is_lun_naa(uint8_t *bufp) 5720 { 5721 struct scsi_vpd_id_descriptor *descr; 5722 5723 descr = (struct scsi_vpd_id_descriptor *)bufp; 5724 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5725 return 0; 5726 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5727 return 0; 5728 return 1; 5729 } 5730 5731 int 5732 scsi_devid_is_lun_t10(uint8_t *bufp) 5733 { 5734 struct scsi_vpd_id_descriptor *descr; 5735 5736 descr = (struct scsi_vpd_id_descriptor *)bufp; 5737 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5738 return 0; 5739 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10) 5740 return 0; 5741 return 1; 5742 } 5743 5744 int 5745 scsi_devid_is_lun_name(uint8_t *bufp) 5746 { 5747 struct scsi_vpd_id_descriptor *descr; 5748 5749 descr = (struct scsi_vpd_id_descriptor *)bufp; 5750 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5751 return 0; 5752 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME) 5753 return 0; 5754 return 1; 5755 } 5756 5757 int 5758 scsi_devid_is_lun_md5(uint8_t *bufp) 5759 { 5760 struct scsi_vpd_id_descriptor *descr; 5761 5762 descr = (struct scsi_vpd_id_descriptor *)bufp; 5763 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5764 return 0; 5765 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID) 5766 return 0; 5767 return 1; 5768 } 5769 5770 int 5771 scsi_devid_is_lun_uuid(uint8_t *bufp) 5772 { 5773 struct scsi_vpd_id_descriptor *descr; 5774 5775 descr = (struct scsi_vpd_id_descriptor *)bufp; 5776 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5777 return 0; 5778 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID) 5779 return 0; 5780 return 1; 5781 } 5782 5783 int 5784 scsi_devid_is_port_naa(uint8_t *bufp) 5785 { 5786 struct scsi_vpd_id_descriptor *descr; 5787 5788 descr = (struct scsi_vpd_id_descriptor *)bufp; 5789 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT) 5790 return 0; 5791 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5792 return 0; 5793 return 1; 5794 } 5795 5796 struct scsi_vpd_id_descriptor * 5797 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, 5798 scsi_devid_checkfn_t ck_fn) 5799 { 5800 uint8_t *desc_buf_end; 5801 5802 desc_buf_end = (uint8_t *)desc + len; 5803 5804 for (; desc->identifier <= desc_buf_end && 5805 desc->identifier + desc->length <= desc_buf_end; 5806 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier 5807 + desc->length)) { 5808 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) 5809 return (desc); 5810 } 5811 return (NULL); 5812 } 5813 5814 struct scsi_vpd_id_descriptor * 5815 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, 5816 scsi_devid_checkfn_t ck_fn) 5817 { 5818 uint32_t len; 5819 5820 if (page_len < sizeof(*id)) 5821 return (NULL); 5822 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id)); 5823 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *) 5824 id->desc_list, len, ck_fn)); 5825 } 5826 5827 int 5828 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, 5829 uint32_t valid_len) 5830 { 5831 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) { 5832 case SCSI_PROTO_FC: { 5833 struct scsi_transportid_fcp *fcp; 5834 uint64_t n_port_name; 5835 5836 fcp = (struct scsi_transportid_fcp *)hdr; 5837 5838 n_port_name = scsi_8btou64(fcp->n_port_name); 5839 5840 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name); 5841 break; 5842 } 5843 case SCSI_PROTO_SPI: { 5844 struct scsi_transportid_spi *spi; 5845 5846 spi = (struct scsi_transportid_spi *)hdr; 5847 5848 sbuf_printf(sb, "SPI address: %u,%u", 5849 scsi_2btoul(spi->scsi_addr), 5850 scsi_2btoul(spi->rel_trgt_port_id)); 5851 break; 5852 } 5853 case SCSI_PROTO_SSA: 5854 /* 5855 * XXX KDM there is no transport ID defined in SPC-4 for 5856 * SSA. 5857 */ 5858 break; 5859 case SCSI_PROTO_1394: { 5860 struct scsi_transportid_1394 *sbp; 5861 uint64_t eui64; 5862 5863 sbp = (struct scsi_transportid_1394 *)hdr; 5864 5865 eui64 = scsi_8btou64(sbp->eui64); 5866 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64); 5867 break; 5868 } 5869 case SCSI_PROTO_RDMA: { 5870 struct scsi_transportid_rdma *rdma; 5871 unsigned int i; 5872 5873 rdma = (struct scsi_transportid_rdma *)hdr; 5874 5875 sbuf_cat(sb, "RDMA address: 0x"); 5876 for (i = 0; i < sizeof(rdma->initiator_port_id); i++) 5877 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]); 5878 break; 5879 } 5880 case SCSI_PROTO_ISCSI: { 5881 uint32_t add_len, i; 5882 uint8_t *iscsi_name = NULL; 5883 int nul_found = 0; 5884 5885 sbuf_cat(sb, "iSCSI address: "); 5886 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5887 SCSI_TRN_ISCSI_FORMAT_DEVICE) { 5888 struct scsi_transportid_iscsi_device *dev; 5889 5890 dev = (struct scsi_transportid_iscsi_device *)hdr; 5891 5892 /* 5893 * Verify how much additional data we really have. 5894 */ 5895 add_len = scsi_2btoul(dev->additional_length); 5896 add_len = MIN(add_len, valid_len - 5897 __offsetof(struct scsi_transportid_iscsi_device, 5898 iscsi_name)); 5899 iscsi_name = &dev->iscsi_name[0]; 5900 5901 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5902 SCSI_TRN_ISCSI_FORMAT_PORT) { 5903 struct scsi_transportid_iscsi_port *port; 5904 5905 port = (struct scsi_transportid_iscsi_port *)hdr; 5906 5907 add_len = scsi_2btoul(port->additional_length); 5908 add_len = MIN(add_len, valid_len - 5909 __offsetof(struct scsi_transportid_iscsi_port, 5910 iscsi_name)); 5911 iscsi_name = &port->iscsi_name[0]; 5912 } else { 5913 sbuf_printf(sb, "unknown format %x", 5914 (hdr->format_protocol & 5915 SCSI_TRN_FORMAT_MASK) >> 5916 SCSI_TRN_FORMAT_SHIFT); 5917 break; 5918 } 5919 if (add_len == 0) { 5920 sbuf_cat(sb, "not enough data"); 5921 break; 5922 } 5923 /* 5924 * This is supposed to be a NUL-terminated ASCII 5925 * string, but you never know. So we're going to 5926 * check. We need to do this because there is no 5927 * sbuf equivalent of strncat(). 5928 */ 5929 for (i = 0; i < add_len; i++) { 5930 if (iscsi_name[i] == '\0') { 5931 nul_found = 1; 5932 break; 5933 } 5934 } 5935 /* 5936 * If there is a NUL in the name, we can just use 5937 * sbuf_cat(). Otherwise we need to use sbuf_bcat(). 5938 */ 5939 if (nul_found != 0) 5940 sbuf_cat(sb, iscsi_name); 5941 else 5942 sbuf_bcat(sb, iscsi_name, add_len); 5943 break; 5944 } 5945 case SCSI_PROTO_SAS: { 5946 struct scsi_transportid_sas *sas; 5947 uint64_t sas_addr; 5948 5949 sas = (struct scsi_transportid_sas *)hdr; 5950 5951 sas_addr = scsi_8btou64(sas->sas_address); 5952 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr); 5953 break; 5954 } 5955 case SCSI_PROTO_ADITP: 5956 case SCSI_PROTO_ATA: 5957 case SCSI_PROTO_UAS: 5958 /* 5959 * No Transport ID format for ADI, ATA or USB is defined in 5960 * SPC-4. 5961 */ 5962 sbuf_printf(sb, "No known Transport ID format for protocol " 5963 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5964 break; 5965 case SCSI_PROTO_SOP: { 5966 struct scsi_transportid_sop *sop; 5967 struct scsi_sop_routing_id_norm *rid; 5968 5969 sop = (struct scsi_transportid_sop *)hdr; 5970 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id; 5971 5972 /* 5973 * Note that there is no alternate format specified in SPC-4 5974 * for the PCIe routing ID, so we don't really have a way 5975 * to know whether the second byte of the routing ID is 5976 * a device and function or just a function. So we just 5977 * assume bus,device,function. 5978 */ 5979 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u", 5980 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT, 5981 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX); 5982 break; 5983 } 5984 case SCSI_PROTO_NONE: 5985 default: 5986 sbuf_printf(sb, "Unknown protocol %#x", 5987 hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5988 break; 5989 } 5990 5991 return (0); 5992 } 5993 5994 struct scsi_nv scsi_proto_map[] = { 5995 { "fcp", SCSI_PROTO_FC }, 5996 { "spi", SCSI_PROTO_SPI }, 5997 { "ssa", SCSI_PROTO_SSA }, 5998 { "sbp", SCSI_PROTO_1394 }, 5999 { "1394", SCSI_PROTO_1394 }, 6000 { "srp", SCSI_PROTO_RDMA }, 6001 { "rdma", SCSI_PROTO_RDMA }, 6002 { "iscsi", SCSI_PROTO_ISCSI }, 6003 { "iqn", SCSI_PROTO_ISCSI }, 6004 { "sas", SCSI_PROTO_SAS }, 6005 { "aditp", SCSI_PROTO_ADITP }, 6006 { "ata", SCSI_PROTO_ATA }, 6007 { "uas", SCSI_PROTO_UAS }, 6008 { "usb", SCSI_PROTO_UAS }, 6009 { "sop", SCSI_PROTO_SOP } 6010 }; 6011 6012 const char * 6013 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value) 6014 { 6015 int i; 6016 6017 for (i = 0; i < num_table_entries; i++) { 6018 if (table[i].value == value) 6019 return (table[i].name); 6020 } 6021 6022 return (NULL); 6023 } 6024 6025 /* 6026 * Given a name/value table, find a value matching the given name. 6027 * Return values: 6028 * SCSI_NV_FOUND - match found 6029 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact 6030 * SCSI_NV_NOT_FOUND - no match found 6031 */ 6032 scsi_nv_status 6033 scsi_get_nv(struct scsi_nv *table, int num_table_entries, 6034 char *name, int *table_entry, scsi_nv_flags flags) 6035 { 6036 int i, num_matches = 0; 6037 6038 for (i = 0; i < num_table_entries; i++) { 6039 size_t table_len, name_len; 6040 6041 table_len = strlen(table[i].name); 6042 name_len = strlen(name); 6043 6044 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0) 6045 && (strncasecmp(table[i].name, name, name_len) == 0)) 6046 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0) 6047 && (strncmp(table[i].name, name, name_len) == 0))) { 6048 *table_entry = i; 6049 6050 /* 6051 * Check for an exact match. If we have the same 6052 * number of characters in the table as the argument, 6053 * and we already know they're the same, we have 6054 * an exact match. 6055 */ 6056 if (table_len == name_len) 6057 return (SCSI_NV_FOUND); 6058 6059 /* 6060 * Otherwise, bump up the number of matches. We'll 6061 * see later how many we have. 6062 */ 6063 num_matches++; 6064 } 6065 } 6066 6067 if (num_matches > 1) 6068 return (SCSI_NV_AMBIGUOUS); 6069 else if (num_matches == 1) 6070 return (SCSI_NV_FOUND); 6071 else 6072 return (SCSI_NV_NOT_FOUND); 6073 } 6074 6075 /* 6076 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are 6077 * all 64-bit numbers, the code is similar. 6078 */ 6079 int 6080 scsi_parse_transportid_64bit(int proto_id, char *id_str, 6081 struct scsi_transportid_header **hdr, 6082 unsigned int *alloc_len, 6083 #ifdef _KERNEL 6084 struct malloc_type *type, int flags, 6085 #endif 6086 char *error_str, int error_str_len) 6087 { 6088 uint64_t value; 6089 char *endptr; 6090 int retval; 6091 size_t alloc_size; 6092 6093 retval = 0; 6094 6095 value = strtouq(id_str, &endptr, 0); 6096 if (*endptr != '\0') { 6097 if (error_str != NULL) { 6098 snprintf(error_str, error_str_len, "%s: error " 6099 "parsing ID %s, 64-bit number required", 6100 __func__, id_str); 6101 } 6102 retval = 1; 6103 goto bailout; 6104 } 6105 6106 switch (proto_id) { 6107 case SCSI_PROTO_FC: 6108 alloc_size = sizeof(struct scsi_transportid_fcp); 6109 break; 6110 case SCSI_PROTO_1394: 6111 alloc_size = sizeof(struct scsi_transportid_1394); 6112 break; 6113 case SCSI_PROTO_SAS: 6114 alloc_size = sizeof(struct scsi_transportid_sas); 6115 break; 6116 default: 6117 if (error_str != NULL) { 6118 snprintf(error_str, error_str_len, "%s: unsupported " 6119 "protocol %d", __func__, proto_id); 6120 } 6121 retval = 1; 6122 goto bailout; 6123 break; /* NOTREACHED */ 6124 } 6125 #ifdef _KERNEL 6126 *hdr = malloc(alloc_size, type, flags); 6127 #else /* _KERNEL */ 6128 *hdr = malloc(alloc_size); 6129 #endif /*_KERNEL */ 6130 if (*hdr == NULL) { 6131 if (error_str != NULL) { 6132 snprintf(error_str, error_str_len, "%s: unable to " 6133 "allocate %zu bytes", __func__, alloc_size); 6134 } 6135 retval = 1; 6136 goto bailout; 6137 } 6138 6139 *alloc_len = alloc_size; 6140 6141 bzero(*hdr, alloc_size); 6142 6143 switch (proto_id) { 6144 case SCSI_PROTO_FC: { 6145 struct scsi_transportid_fcp *fcp; 6146 6147 fcp = (struct scsi_transportid_fcp *)(*hdr); 6148 fcp->format_protocol = SCSI_PROTO_FC | 6149 SCSI_TRN_FCP_FORMAT_DEFAULT; 6150 scsi_u64to8b(value, fcp->n_port_name); 6151 break; 6152 } 6153 case SCSI_PROTO_1394: { 6154 struct scsi_transportid_1394 *sbp; 6155 6156 sbp = (struct scsi_transportid_1394 *)(*hdr); 6157 sbp->format_protocol = SCSI_PROTO_1394 | 6158 SCSI_TRN_1394_FORMAT_DEFAULT; 6159 scsi_u64to8b(value, sbp->eui64); 6160 break; 6161 } 6162 case SCSI_PROTO_SAS: { 6163 struct scsi_transportid_sas *sas; 6164 6165 sas = (struct scsi_transportid_sas *)(*hdr); 6166 sas->format_protocol = SCSI_PROTO_SAS | 6167 SCSI_TRN_SAS_FORMAT_DEFAULT; 6168 scsi_u64to8b(value, sas->sas_address); 6169 break; 6170 } 6171 default: 6172 break; 6173 } 6174 bailout: 6175 return (retval); 6176 } 6177 6178 /* 6179 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port 6180 */ 6181 int 6182 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, 6183 unsigned int *alloc_len, 6184 #ifdef _KERNEL 6185 struct malloc_type *type, int flags, 6186 #endif 6187 char *error_str, int error_str_len) 6188 { 6189 unsigned long scsi_addr, target_port; 6190 struct scsi_transportid_spi *spi; 6191 char *tmpstr, *endptr; 6192 int retval; 6193 6194 retval = 0; 6195 6196 tmpstr = strsep(&id_str, ","); 6197 if (tmpstr == NULL) { 6198 if (error_str != NULL) { 6199 snprintf(error_str, error_str_len, 6200 "%s: no ID found", __func__); 6201 } 6202 retval = 1; 6203 goto bailout; 6204 } 6205 scsi_addr = strtoul(tmpstr, &endptr, 0); 6206 if (*endptr != '\0') { 6207 if (error_str != NULL) { 6208 snprintf(error_str, error_str_len, "%s: error " 6209 "parsing SCSI ID %s, number required", 6210 __func__, tmpstr); 6211 } 6212 retval = 1; 6213 goto bailout; 6214 } 6215 6216 if (id_str == NULL) { 6217 if (error_str != NULL) { 6218 snprintf(error_str, error_str_len, "%s: no relative " 6219 "target port found", __func__); 6220 } 6221 retval = 1; 6222 goto bailout; 6223 } 6224 6225 target_port = strtoul(id_str, &endptr, 0); 6226 if (*endptr != '\0') { 6227 if (error_str != NULL) { 6228 snprintf(error_str, error_str_len, "%s: error " 6229 "parsing relative target port %s, number " 6230 "required", __func__, id_str); 6231 } 6232 retval = 1; 6233 goto bailout; 6234 } 6235 #ifdef _KERNEL 6236 spi = malloc(sizeof(*spi), type, flags); 6237 #else 6238 spi = malloc(sizeof(*spi)); 6239 #endif 6240 if (spi == NULL) { 6241 if (error_str != NULL) { 6242 snprintf(error_str, error_str_len, "%s: unable to " 6243 "allocate %zu bytes", __func__, 6244 sizeof(*spi)); 6245 } 6246 retval = 1; 6247 goto bailout; 6248 } 6249 *alloc_len = sizeof(*spi); 6250 bzero(spi, sizeof(*spi)); 6251 6252 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT; 6253 scsi_ulto2b(scsi_addr, spi->scsi_addr); 6254 scsi_ulto2b(target_port, spi->rel_trgt_port_id); 6255 6256 *hdr = (struct scsi_transportid_header *)spi; 6257 bailout: 6258 return (retval); 6259 } 6260 6261 /* 6262 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits, 6263 * optionally prefixed by "0x" or "0X". 6264 */ 6265 int 6266 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, 6267 unsigned int *alloc_len, 6268 #ifdef _KERNEL 6269 struct malloc_type *type, int flags, 6270 #endif 6271 char *error_str, int error_str_len) 6272 { 6273 struct scsi_transportid_rdma *rdma; 6274 int retval; 6275 size_t id_len, rdma_id_size; 6276 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN]; 6277 char *tmpstr; 6278 unsigned int i, j; 6279 6280 retval = 0; 6281 id_len = strlen(id_str); 6282 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN; 6283 6284 /* 6285 * Check the size. It needs to be either 32 or 34 characters long. 6286 */ 6287 if ((id_len != (rdma_id_size * 2)) 6288 && (id_len != ((rdma_id_size * 2) + 2))) { 6289 if (error_str != NULL) { 6290 snprintf(error_str, error_str_len, "%s: RDMA ID " 6291 "must be 32 hex digits (0x prefix " 6292 "optional), only %zu seen", __func__, id_len); 6293 } 6294 retval = 1; 6295 goto bailout; 6296 } 6297 6298 tmpstr = id_str; 6299 /* 6300 * If the user gave us 34 characters, the string needs to start 6301 * with '0x'. 6302 */ 6303 if (id_len == ((rdma_id_size * 2) + 2)) { 6304 if ((tmpstr[0] == '0') 6305 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) { 6306 tmpstr += 2; 6307 } else { 6308 if (error_str != NULL) { 6309 snprintf(error_str, error_str_len, "%s: RDMA " 6310 "ID prefix, if used, must be \"0x\", " 6311 "got %s", __func__, tmpstr); 6312 } 6313 retval = 1; 6314 goto bailout; 6315 } 6316 } 6317 bzero(rdma_id, sizeof(rdma_id)); 6318 6319 /* 6320 * Convert ASCII hex into binary bytes. There is no standard 6321 * 128-bit integer type, and so no strtou128t() routine to convert 6322 * from hex into a large integer. In the end, we're not going to 6323 * an integer, but rather to a byte array, so that and the fact 6324 * that we require the user to give us 32 hex digits simplifies the 6325 * logic. 6326 */ 6327 for (i = 0; i < (rdma_id_size * 2); i++) { 6328 int cur_shift; 6329 unsigned char c; 6330 6331 /* Increment the byte array one for every 2 hex digits */ 6332 j = i >> 1; 6333 6334 /* 6335 * The first digit in every pair is the most significant 6336 * 4 bits. The second is the least significant 4 bits. 6337 */ 6338 if ((i % 2) == 0) 6339 cur_shift = 4; 6340 else 6341 cur_shift = 0; 6342 6343 c = tmpstr[i]; 6344 /* Convert the ASCII hex character into a number */ 6345 if (isdigit(c)) 6346 c -= '0'; 6347 else if (isalpha(c)) 6348 c -= isupper(c) ? 'A' - 10 : 'a' - 10; 6349 else { 6350 if (error_str != NULL) { 6351 snprintf(error_str, error_str_len, "%s: " 6352 "RDMA ID must be hex digits, got " 6353 "invalid character %c", __func__, 6354 tmpstr[i]); 6355 } 6356 retval = 1; 6357 goto bailout; 6358 } 6359 /* 6360 * The converted number can't be less than 0; the type is 6361 * unsigned, and the subtraction logic will not give us 6362 * a negative number. So we only need to make sure that 6363 * the value is not greater than 0xf. (i.e. make sure the 6364 * user didn't give us a value like "0x12jklmno"). 6365 */ 6366 if (c > 0xf) { 6367 if (error_str != NULL) { 6368 snprintf(error_str, error_str_len, "%s: " 6369 "RDMA ID must be hex digits, got " 6370 "invalid character %c", __func__, 6371 tmpstr[i]); 6372 } 6373 retval = 1; 6374 goto bailout; 6375 } 6376 6377 rdma_id[j] |= c << cur_shift; 6378 } 6379 6380 #ifdef _KERNEL 6381 rdma = malloc(sizeof(*rdma), type, flags); 6382 #else 6383 rdma = malloc(sizeof(*rdma)); 6384 #endif 6385 if (rdma == NULL) { 6386 if (error_str != NULL) { 6387 snprintf(error_str, error_str_len, "%s: unable to " 6388 "allocate %zu bytes", __func__, 6389 sizeof(*rdma)); 6390 } 6391 retval = 1; 6392 goto bailout; 6393 } 6394 *alloc_len = sizeof(*rdma); 6395 bzero(rdma, *alloc_len); 6396 6397 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT; 6398 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN); 6399 6400 *hdr = (struct scsi_transportid_header *)rdma; 6401 6402 bailout: 6403 return (retval); 6404 } 6405 6406 /* 6407 * Parse an iSCSI name. The format is either just the name: 6408 * 6409 * iqn.2012-06.com.example:target0 6410 * or the name, separator and initiator session ID: 6411 * 6412 * iqn.2012-06.com.example:target0,i,0x123 6413 * 6414 * The separator format is exact. 6415 */ 6416 int 6417 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, 6418 unsigned int *alloc_len, 6419 #ifdef _KERNEL 6420 struct malloc_type *type, int flags, 6421 #endif 6422 char *error_str, int error_str_len) 6423 { 6424 size_t id_len, sep_len, id_size, name_len; 6425 int retval; 6426 unsigned int i, sep_pos, sep_found; 6427 const char *sep_template = ",i,0x"; 6428 const char *iqn_prefix = "iqn."; 6429 struct scsi_transportid_iscsi_device *iscsi; 6430 6431 retval = 0; 6432 sep_found = 0; 6433 6434 id_len = strlen(id_str); 6435 sep_len = strlen(sep_template); 6436 6437 /* 6438 * The separator is defined as exactly ',i,0x'. Any other commas, 6439 * or any other form, is an error. So look for a comma, and once 6440 * we find that, the next few characters must match the separator 6441 * exactly. Once we get through the separator, there should be at 6442 * least one character. 6443 */ 6444 for (i = 0, sep_pos = 0; i < id_len; i++) { 6445 if (sep_pos == 0) { 6446 if (id_str[i] == sep_template[sep_pos]) 6447 sep_pos++; 6448 6449 continue; 6450 } 6451 if (sep_pos < sep_len) { 6452 if (id_str[i] == sep_template[sep_pos]) { 6453 sep_pos++; 6454 continue; 6455 } 6456 if (error_str != NULL) { 6457 snprintf(error_str, error_str_len, "%s: " 6458 "invalid separator in iSCSI name " 6459 "\"%s\"", 6460 __func__, id_str); 6461 } 6462 retval = 1; 6463 goto bailout; 6464 } else { 6465 sep_found = 1; 6466 break; 6467 } 6468 } 6469 6470 /* 6471 * Check to see whether we have a separator but no digits after it. 6472 */ 6473 if ((sep_pos != 0) 6474 && (sep_found == 0)) { 6475 if (error_str != NULL) { 6476 snprintf(error_str, error_str_len, "%s: no digits " 6477 "found after separator in iSCSI name \"%s\"", 6478 __func__, id_str); 6479 } 6480 retval = 1; 6481 goto bailout; 6482 } 6483 6484 /* 6485 * The incoming ID string has the "iqn." prefix stripped off. We 6486 * need enough space for the base structure (the structures are the 6487 * same for the two iSCSI forms), the prefix, the ID string and a 6488 * terminating NUL. 6489 */ 6490 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1; 6491 6492 #ifdef _KERNEL 6493 iscsi = malloc(id_size, type, flags); 6494 #else 6495 iscsi = malloc(id_size); 6496 #endif 6497 if (iscsi == NULL) { 6498 if (error_str != NULL) { 6499 snprintf(error_str, error_str_len, "%s: unable to " 6500 "allocate %zu bytes", __func__, id_size); 6501 } 6502 retval = 1; 6503 goto bailout; 6504 } 6505 *alloc_len = id_size; 6506 bzero(iscsi, id_size); 6507 6508 iscsi->format_protocol = SCSI_PROTO_ISCSI; 6509 if (sep_found == 0) 6510 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE; 6511 else 6512 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT; 6513 name_len = id_size - sizeof(*iscsi); 6514 scsi_ulto2b(name_len, iscsi->additional_length); 6515 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str); 6516 6517 *hdr = (struct scsi_transportid_header *)iscsi; 6518 6519 bailout: 6520 return (retval); 6521 } 6522 6523 /* 6524 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be 6525 * of the form 'bus,device,function' or 'bus,function'. 6526 */ 6527 int 6528 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, 6529 unsigned int *alloc_len, 6530 #ifdef _KERNEL 6531 struct malloc_type *type, int flags, 6532 #endif 6533 char *error_str, int error_str_len) 6534 { 6535 struct scsi_transportid_sop *sop; 6536 unsigned long bus, device, function; 6537 char *tmpstr, *endptr; 6538 int retval, device_spec; 6539 6540 retval = 0; 6541 device_spec = 0; 6542 device = 0; 6543 6544 tmpstr = strsep(&id_str, ","); 6545 if ((tmpstr == NULL) 6546 || (*tmpstr == '\0')) { 6547 if (error_str != NULL) { 6548 snprintf(error_str, error_str_len, "%s: no ID found", 6549 __func__); 6550 } 6551 retval = 1; 6552 goto bailout; 6553 } 6554 bus = strtoul(tmpstr, &endptr, 0); 6555 if (*endptr != '\0') { 6556 if (error_str != NULL) { 6557 snprintf(error_str, error_str_len, "%s: error " 6558 "parsing PCIe bus %s, number required", 6559 __func__, tmpstr); 6560 } 6561 retval = 1; 6562 goto bailout; 6563 } 6564 if ((id_str == NULL) 6565 || (*id_str == '\0')) { 6566 if (error_str != NULL) { 6567 snprintf(error_str, error_str_len, "%s: no PCIe " 6568 "device or function found", __func__); 6569 } 6570 retval = 1; 6571 goto bailout; 6572 } 6573 tmpstr = strsep(&id_str, ","); 6574 function = strtoul(tmpstr, &endptr, 0); 6575 if (*endptr != '\0') { 6576 if (error_str != NULL) { 6577 snprintf(error_str, error_str_len, "%s: error " 6578 "parsing PCIe device/function %s, number " 6579 "required", __func__, tmpstr); 6580 } 6581 retval = 1; 6582 goto bailout; 6583 } 6584 /* 6585 * Check to see whether the user specified a third value. If so, 6586 * the second is the device. 6587 */ 6588 if (id_str != NULL) { 6589 if (*id_str == '\0') { 6590 if (error_str != NULL) { 6591 snprintf(error_str, error_str_len, "%s: " 6592 "no PCIe function found", __func__); 6593 } 6594 retval = 1; 6595 goto bailout; 6596 } 6597 device = function; 6598 device_spec = 1; 6599 function = strtoul(id_str, &endptr, 0); 6600 if (*endptr != '\0') { 6601 if (error_str != NULL) { 6602 snprintf(error_str, error_str_len, "%s: " 6603 "error parsing PCIe function %s, " 6604 "number required", __func__, id_str); 6605 } 6606 retval = 1; 6607 goto bailout; 6608 } 6609 } 6610 if (bus > SCSI_TRN_SOP_BUS_MAX) { 6611 if (error_str != NULL) { 6612 snprintf(error_str, error_str_len, "%s: bus value " 6613 "%lu greater than maximum %u", __func__, 6614 bus, SCSI_TRN_SOP_BUS_MAX); 6615 } 6616 retval = 1; 6617 goto bailout; 6618 } 6619 6620 if ((device_spec != 0) 6621 && (device > SCSI_TRN_SOP_DEV_MASK)) { 6622 if (error_str != NULL) { 6623 snprintf(error_str, error_str_len, "%s: device value " 6624 "%lu greater than maximum %u", __func__, 6625 device, SCSI_TRN_SOP_DEV_MAX); 6626 } 6627 retval = 1; 6628 goto bailout; 6629 } 6630 6631 if (((device_spec != 0) 6632 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX)) 6633 || ((device_spec == 0) 6634 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) { 6635 if (error_str != NULL) { 6636 snprintf(error_str, error_str_len, "%s: function value " 6637 "%lu greater than maximum %u", __func__, 6638 function, (device_spec == 0) ? 6639 SCSI_TRN_SOP_FUNC_ALT_MAX : 6640 SCSI_TRN_SOP_FUNC_NORM_MAX); 6641 } 6642 retval = 1; 6643 goto bailout; 6644 } 6645 6646 #ifdef _KERNEL 6647 sop = malloc(sizeof(*sop), type, flags); 6648 #else 6649 sop = malloc(sizeof(*sop)); 6650 #endif 6651 if (sop == NULL) { 6652 if (error_str != NULL) { 6653 snprintf(error_str, error_str_len, "%s: unable to " 6654 "allocate %zu bytes", __func__, sizeof(*sop)); 6655 } 6656 retval = 1; 6657 goto bailout; 6658 } 6659 *alloc_len = sizeof(*sop); 6660 bzero(sop, sizeof(*sop)); 6661 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT; 6662 if (device_spec != 0) { 6663 struct scsi_sop_routing_id_norm rid; 6664 6665 rid.bus = bus; 6666 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function; 6667 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6668 sizeof(sop->routing_id))); 6669 } else { 6670 struct scsi_sop_routing_id_alt rid; 6671 6672 rid.bus = bus; 6673 rid.function = function; 6674 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6675 sizeof(sop->routing_id))); 6676 } 6677 6678 *hdr = (struct scsi_transportid_header *)sop; 6679 bailout: 6680 return (retval); 6681 } 6682 6683 /* 6684 * transportid_str: NUL-terminated string with format: protcol,id 6685 * The ID is protocol specific. 6686 * hdr: Storage will be allocated for the transport ID. 6687 * alloc_len: The amount of memory allocated is returned here. 6688 * type: Malloc bucket (kernel only). 6689 * flags: Malloc flags (kernel only). 6690 * error_str: If non-NULL, it will contain error information (without 6691 * a terminating newline) if an error is returned. 6692 * error_str_len: Allocated length of the error string. 6693 * 6694 * Returns 0 for success, non-zero for failure. 6695 */ 6696 int 6697 scsi_parse_transportid(char *transportid_str, 6698 struct scsi_transportid_header **hdr, 6699 unsigned int *alloc_len, 6700 #ifdef _KERNEL 6701 struct malloc_type *type, int flags, 6702 #endif 6703 char *error_str, int error_str_len) 6704 { 6705 char *tmpstr; 6706 scsi_nv_status status; 6707 u_int num_proto_entries; 6708 int retval, table_entry; 6709 6710 retval = 0; 6711 table_entry = 0; 6712 6713 /* 6714 * We do allow a period as well as a comma to separate the protocol 6715 * from the ID string. This is to accommodate iSCSI names, which 6716 * start with "iqn.". 6717 */ 6718 tmpstr = strsep(&transportid_str, ",."); 6719 if (tmpstr == NULL) { 6720 if (error_str != NULL) { 6721 snprintf(error_str, error_str_len, 6722 "%s: transportid_str is NULL", __func__); 6723 } 6724 retval = 1; 6725 goto bailout; 6726 } 6727 6728 num_proto_entries = nitems(scsi_proto_map); 6729 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr, 6730 &table_entry, SCSI_NV_FLAG_IG_CASE); 6731 if (status != SCSI_NV_FOUND) { 6732 if (error_str != NULL) { 6733 snprintf(error_str, error_str_len, "%s: %s protocol " 6734 "name %s", __func__, 6735 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : 6736 "invalid", tmpstr); 6737 } 6738 retval = 1; 6739 goto bailout; 6740 } 6741 switch (scsi_proto_map[table_entry].value) { 6742 case SCSI_PROTO_FC: 6743 case SCSI_PROTO_1394: 6744 case SCSI_PROTO_SAS: 6745 retval = scsi_parse_transportid_64bit( 6746 scsi_proto_map[table_entry].value, transportid_str, hdr, 6747 alloc_len, 6748 #ifdef _KERNEL 6749 type, flags, 6750 #endif 6751 error_str, error_str_len); 6752 break; 6753 case SCSI_PROTO_SPI: 6754 retval = scsi_parse_transportid_spi(transportid_str, hdr, 6755 alloc_len, 6756 #ifdef _KERNEL 6757 type, flags, 6758 #endif 6759 error_str, error_str_len); 6760 break; 6761 case SCSI_PROTO_RDMA: 6762 retval = scsi_parse_transportid_rdma(transportid_str, hdr, 6763 alloc_len, 6764 #ifdef _KERNEL 6765 type, flags, 6766 #endif 6767 error_str, error_str_len); 6768 break; 6769 case SCSI_PROTO_ISCSI: 6770 retval = scsi_parse_transportid_iscsi(transportid_str, hdr, 6771 alloc_len, 6772 #ifdef _KERNEL 6773 type, flags, 6774 #endif 6775 error_str, error_str_len); 6776 break; 6777 case SCSI_PROTO_SOP: 6778 retval = scsi_parse_transportid_sop(transportid_str, hdr, 6779 alloc_len, 6780 #ifdef _KERNEL 6781 type, flags, 6782 #endif 6783 error_str, error_str_len); 6784 break; 6785 case SCSI_PROTO_SSA: 6786 case SCSI_PROTO_ADITP: 6787 case SCSI_PROTO_ATA: 6788 case SCSI_PROTO_UAS: 6789 case SCSI_PROTO_NONE: 6790 default: 6791 /* 6792 * There is no format defined for a Transport ID for these 6793 * protocols. So even if the user gives us something, we 6794 * have no way to turn it into a standard SCSI Transport ID. 6795 */ 6796 retval = 1; 6797 if (error_str != NULL) { 6798 snprintf(error_str, error_str_len, "%s: no Transport " 6799 "ID format exists for protocol %s", 6800 __func__, tmpstr); 6801 } 6802 goto bailout; 6803 break; /* NOTREACHED */ 6804 } 6805 bailout: 6806 return (retval); 6807 } 6808 6809 struct scsi_attrib_table_entry scsi_mam_attr_table[] = { 6810 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6811 "Remaining Capacity in Partition", 6812 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL }, 6813 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6814 "Maximum Capacity in Partition", 6815 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6816 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX, 6817 "TapeAlert Flags", 6818 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6819 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE, 6820 "Load Count", 6821 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6822 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE, 6823 "MAM Space Remaining", 6824 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6825 /*parse_str*/ NULL }, 6826 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6827 "Assigning Organization", 6828 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6829 /*parse_str*/ NULL }, 6830 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6831 "Format Density Code", 6832 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6833 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE, 6834 "Initialization Count", 6835 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6836 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE, 6837 "Volume Identifier", 6838 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6839 /*parse_str*/ NULL }, 6840 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX, 6841 "Volume Change Reference", 6842 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6843 /*parse_str*/ NULL }, 6844 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE, 6845 "Device Vendor/Serial at Last Load", 6846 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6847 /*parse_str*/ NULL }, 6848 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE, 6849 "Device Vendor/Serial at Last Load - 1", 6850 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6851 /*parse_str*/ NULL }, 6852 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE, 6853 "Device Vendor/Serial at Last Load - 2", 6854 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6855 /*parse_str*/ NULL }, 6856 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE, 6857 "Device Vendor/Serial at Last Load - 3", 6858 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6859 /*parse_str*/ NULL }, 6860 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE, 6861 "Total MB Written in Medium Life", 6862 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6863 /*parse_str*/ NULL }, 6864 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE, 6865 "Total MB Read in Medium Life", 6866 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6867 /*parse_str*/ NULL }, 6868 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE, 6869 "Total MB Written in Current/Last Load", 6870 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6871 /*parse_str*/ NULL }, 6872 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE, 6873 "Total MB Read in Current/Last Load", 6874 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6875 /*parse_str*/ NULL }, 6876 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6877 "Logical Position of First Encrypted Block", 6878 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6879 /*parse_str*/ NULL }, 6880 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6881 "Logical Position of First Unencrypted Block after First " 6882 "Encrypted Block", 6883 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6884 /*parse_str*/ NULL }, 6885 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6886 "Medium Usage History", 6887 /*suffix*/ NULL, /*to_str*/ NULL, 6888 /*parse_str*/ NULL }, 6889 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6890 "Partition Usage History", 6891 /*suffix*/ NULL, /*to_str*/ NULL, 6892 /*parse_str*/ NULL }, 6893 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE, 6894 "Medium Manufacturer", 6895 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6896 /*parse_str*/ NULL }, 6897 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE, 6898 "Medium Serial Number", 6899 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6900 /*parse_str*/ NULL }, 6901 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE, 6902 "Medium Length", 6903 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf, 6904 /*parse_str*/ NULL }, 6905 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 | 6906 SCSI_ATTR_FLAG_FP_1DIGIT, 6907 "Medium Width", 6908 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf, 6909 /*parse_str*/ NULL }, 6910 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6911 "Assigning Organization", 6912 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6913 /*parse_str*/ NULL }, 6914 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6915 "Medium Density Code", 6916 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6917 /*parse_str*/ NULL }, 6918 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE, 6919 "Medium Manufacture Date", 6920 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6921 /*parse_str*/ NULL }, 6922 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE, 6923 "MAM Capacity", 6924 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6925 /*parse_str*/ NULL }, 6926 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX, 6927 "Medium Type", 6928 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6929 /*parse_str*/ NULL }, 6930 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX, 6931 "Medium Type Information", 6932 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6933 /*parse_str*/ NULL }, 6934 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE, 6935 "Medium Serial Number", 6936 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6937 /*parse_str*/ NULL }, 6938 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE, 6939 "Application Vendor", 6940 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6941 /*parse_str*/ NULL }, 6942 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE, 6943 "Application Name", 6944 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6945 /*parse_str*/ NULL }, 6946 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE, 6947 "Application Version", 6948 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6949 /*parse_str*/ NULL }, 6950 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE, 6951 "User Medium Text Label", 6952 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6953 /*parse_str*/ NULL }, 6954 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE, 6955 "Date and Time Last Written", 6956 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6957 /*parse_str*/ NULL }, 6958 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX, 6959 "Text Localization Identifier", 6960 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6961 /*parse_str*/ NULL }, 6962 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE, 6963 "Barcode", 6964 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6965 /*parse_str*/ NULL }, 6966 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE, 6967 "Owning Host Textual Name", 6968 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6969 /*parse_str*/ NULL }, 6970 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE, 6971 "Media Pool", 6972 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6973 /*parse_str*/ NULL }, 6974 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE, 6975 "Partition User Text Label", 6976 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6977 /*parse_str*/ NULL }, 6978 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE, 6979 "Load/Unload at Partition", 6980 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6981 /*parse_str*/ NULL }, 6982 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE, 6983 "Application Format Version", 6984 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6985 /*parse_str*/ NULL }, 6986 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE, 6987 "Volume Coherency Information", 6988 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf, 6989 /*parse_str*/ NULL }, 6990 { 0x0ff1, SCSI_ATTR_FLAG_NONE, 6991 "Spectra MLM Creation", 6992 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6993 /*parse_str*/ NULL }, 6994 { 0x0ff2, SCSI_ATTR_FLAG_NONE, 6995 "Spectra MLM C3", 6996 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6997 /*parse_str*/ NULL }, 6998 { 0x0ff3, SCSI_ATTR_FLAG_NONE, 6999 "Spectra MLM RW", 7000 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7001 /*parse_str*/ NULL }, 7002 { 0x0ff4, SCSI_ATTR_FLAG_NONE, 7003 "Spectra MLM SDC List", 7004 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7005 /*parse_str*/ NULL }, 7006 { 0x0ff7, SCSI_ATTR_FLAG_NONE, 7007 "Spectra MLM Post Scan", 7008 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7009 /*parse_str*/ NULL }, 7010 { 0x0ffe, SCSI_ATTR_FLAG_NONE, 7011 "Spectra MLM Checksum", 7012 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7013 /*parse_str*/ NULL }, 7014 { 0x17f1, SCSI_ATTR_FLAG_NONE, 7015 "Spectra MLM Creation", 7016 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7017 /*parse_str*/ NULL }, 7018 { 0x17f2, SCSI_ATTR_FLAG_NONE, 7019 "Spectra MLM C3", 7020 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7021 /*parse_str*/ NULL }, 7022 { 0x17f3, SCSI_ATTR_FLAG_NONE, 7023 "Spectra MLM RW", 7024 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7025 /*parse_str*/ NULL }, 7026 { 0x17f4, SCSI_ATTR_FLAG_NONE, 7027 "Spectra MLM SDC List", 7028 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7029 /*parse_str*/ NULL }, 7030 { 0x17f7, SCSI_ATTR_FLAG_NONE, 7031 "Spectra MLM Post Scan", 7032 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7033 /*parse_str*/ NULL }, 7034 { 0x17ff, SCSI_ATTR_FLAG_NONE, 7035 "Spectra MLM Checksum", 7036 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 7037 /*parse_str*/ NULL }, 7038 }; 7039 7040 /* 7041 * Print out Volume Coherency Information (Attribute 0x080c). 7042 * This field has two variable length members, including one at the 7043 * beginning, so it isn't practical to have a fixed structure definition. 7044 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25, 7045 * 2013. 7046 */ 7047 int 7048 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7049 uint32_t valid_len, uint32_t flags, 7050 uint32_t output_flags, char *error_str, 7051 int error_str_len) 7052 { 7053 size_t avail_len; 7054 uint32_t field_size; 7055 uint64_t tmp_val; 7056 uint8_t *cur_ptr; 7057 int retval; 7058 int vcr_len, as_len; 7059 7060 retval = 0; 7061 tmp_val = 0; 7062 7063 field_size = scsi_2btoul(hdr->length); 7064 avail_len = valid_len - sizeof(*hdr); 7065 if (field_size > avail_len) { 7066 if (error_str != NULL) { 7067 snprintf(error_str, error_str_len, "Available " 7068 "length of attribute ID 0x%.4x %zu < field " 7069 "length %u", scsi_2btoul(hdr->id), avail_len, 7070 field_size); 7071 } 7072 retval = 1; 7073 goto bailout; 7074 } else if (field_size == 0) { 7075 /* 7076 * It isn't clear from the spec whether a field length of 7077 * 0 is invalid here. It probably is, but be lenient here 7078 * to avoid inconveniencing the user. 7079 */ 7080 goto bailout; 7081 } 7082 cur_ptr = hdr->attribute; 7083 vcr_len = *cur_ptr; 7084 cur_ptr++; 7085 7086 sbuf_cat(sb, "\n\tVolume Change Reference Value:"); 7087 7088 switch (vcr_len) { 7089 case 0: 7090 if (error_str != NULL) { 7091 snprintf(error_str, error_str_len, "Volume Change " 7092 "Reference value has length of 0"); 7093 } 7094 retval = 1; 7095 goto bailout; 7096 break; /*NOTREACHED*/ 7097 case 1: 7098 tmp_val = *cur_ptr; 7099 break; 7100 case 2: 7101 tmp_val = scsi_2btoul(cur_ptr); 7102 break; 7103 case 3: 7104 tmp_val = scsi_3btoul(cur_ptr); 7105 break; 7106 case 4: 7107 tmp_val = scsi_4btoul(cur_ptr); 7108 break; 7109 case 8: 7110 tmp_val = scsi_8btou64(cur_ptr); 7111 break; 7112 default: 7113 sbuf_putc(sb, '\n'); 7114 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0); 7115 break; 7116 } 7117 if (vcr_len <= 8) 7118 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val); 7119 7120 cur_ptr += vcr_len; 7121 tmp_val = scsi_8btou64(cur_ptr); 7122 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val); 7123 7124 cur_ptr += sizeof(tmp_val); 7125 tmp_val = scsi_8btou64(cur_ptr); 7126 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n", 7127 (uintmax_t)tmp_val); 7128 7129 /* 7130 * Figure out how long the Application Client Specific Information 7131 * is and produce a hexdump. 7132 */ 7133 cur_ptr += sizeof(tmp_val); 7134 as_len = scsi_2btoul(cur_ptr); 7135 cur_ptr += sizeof(uint16_t); 7136 sbuf_cat(sb, "\tApplication Client Specific Information: "); 7137 if (((as_len == SCSI_LTFS_VER0_LEN) 7138 || (as_len == SCSI_LTFS_VER1_LEN)) 7139 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) { 7140 sbuf_cat(sb, "LTFS\n"); 7141 cur_ptr += SCSI_LTFS_STR_LEN + 1; 7142 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0') 7143 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0'; 7144 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr); 7145 cur_ptr += SCSI_LTFS_UUID_LEN + 1; 7146 /* XXX KDM check the length */ 7147 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr); 7148 } else { 7149 sbuf_cat(sb, "Unknown\n"); 7150 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0); 7151 } 7152 7153 bailout: 7154 return (retval); 7155 } 7156 7157 int 7158 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7159 uint32_t valid_len, uint32_t flags, 7160 uint32_t output_flags, char *error_str, 7161 int error_str_len) 7162 { 7163 size_t avail_len; 7164 uint32_t field_size; 7165 struct scsi_attrib_vendser *vendser; 7166 cam_strvis_flags strvis_flags; 7167 int retval = 0; 7168 7169 field_size = scsi_2btoul(hdr->length); 7170 avail_len = valid_len - sizeof(*hdr); 7171 if (field_size > avail_len) { 7172 if (error_str != NULL) { 7173 snprintf(error_str, error_str_len, "Available " 7174 "length of attribute ID 0x%.4x %zu < field " 7175 "length %u", scsi_2btoul(hdr->id), avail_len, 7176 field_size); 7177 } 7178 retval = 1; 7179 goto bailout; 7180 } else if (field_size == 0) { 7181 /* 7182 * A field size of 0 doesn't make sense here. The device 7183 * can at least give you the vendor ID, even if it can't 7184 * give you the serial number. 7185 */ 7186 if (error_str != NULL) { 7187 snprintf(error_str, error_str_len, "The length of " 7188 "attribute ID 0x%.4x is 0", 7189 scsi_2btoul(hdr->id)); 7190 } 7191 retval = 1; 7192 goto bailout; 7193 } 7194 vendser = (struct scsi_attrib_vendser *)hdr->attribute; 7195 7196 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7197 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7198 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7199 break; 7200 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7201 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7202 break; 7203 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7204 default: 7205 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7206 break; 7207 } 7208 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor), 7209 strvis_flags); 7210 sbuf_putc(sb, ' '); 7211 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num), 7212 strvis_flags); 7213 bailout: 7214 return (retval); 7215 } 7216 7217 int 7218 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7219 uint32_t valid_len, uint32_t flags, 7220 uint32_t output_flags, char *error_str, 7221 int error_str_len) 7222 { 7223 uint32_t field_size; 7224 ssize_t avail_len; 7225 uint32_t print_len; 7226 uint8_t *num_ptr; 7227 int retval = 0; 7228 7229 field_size = scsi_2btoul(hdr->length); 7230 avail_len = valid_len - sizeof(*hdr); 7231 print_len = MIN(avail_len, field_size); 7232 num_ptr = hdr->attribute; 7233 7234 if (print_len > 0) { 7235 sbuf_putc(sb, '\n'); 7236 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0); 7237 } 7238 7239 return (retval); 7240 } 7241 7242 int 7243 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7244 uint32_t valid_len, uint32_t flags, 7245 uint32_t output_flags, char *error_str, 7246 int error_str_len) 7247 { 7248 uint64_t print_number; 7249 size_t avail_len; 7250 uint32_t number_size; 7251 int retval = 0; 7252 7253 number_size = scsi_2btoul(hdr->length); 7254 7255 avail_len = valid_len - sizeof(*hdr); 7256 if (avail_len < number_size) { 7257 if (error_str != NULL) { 7258 snprintf(error_str, error_str_len, "Available " 7259 "length of attribute ID 0x%.4x %zu < field " 7260 "length %u", scsi_2btoul(hdr->id), avail_len, 7261 number_size); 7262 } 7263 retval = 1; 7264 goto bailout; 7265 } 7266 7267 switch (number_size) { 7268 case 0: 7269 /* 7270 * We don't treat this as an error, since there may be 7271 * scenarios where a device reports a field but then gives 7272 * a length of 0. See the note in scsi_attrib_ascii_sbuf(). 7273 */ 7274 goto bailout; 7275 break; /*NOTREACHED*/ 7276 case 1: 7277 print_number = hdr->attribute[0]; 7278 break; 7279 case 2: 7280 print_number = scsi_2btoul(hdr->attribute); 7281 break; 7282 case 3: 7283 print_number = scsi_3btoul(hdr->attribute); 7284 break; 7285 case 4: 7286 print_number = scsi_4btoul(hdr->attribute); 7287 break; 7288 case 8: 7289 print_number = scsi_8btou64(hdr->attribute); 7290 break; 7291 default: 7292 /* 7293 * If we wind up here, the number is too big to print 7294 * normally, so just do a hexdump. 7295 */ 7296 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7297 flags, output_flags, 7298 error_str, error_str_len); 7299 goto bailout; 7300 break; 7301 } 7302 7303 if (flags & SCSI_ATTR_FLAG_FP) { 7304 #ifndef _KERNEL 7305 long double num_float; 7306 7307 num_float = (long double)print_number; 7308 7309 if (flags & SCSI_ATTR_FLAG_DIV_10) 7310 num_float /= 10; 7311 7312 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ? 7313 1 : 0, num_float); 7314 #else /* _KERNEL */ 7315 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ? 7316 (print_number / 10) : print_number); 7317 #endif /* _KERNEL */ 7318 } else if (flags & SCSI_ATTR_FLAG_HEX) { 7319 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number); 7320 } else 7321 sbuf_printf(sb, "%ju", (uintmax_t)print_number); 7322 7323 bailout: 7324 return (retval); 7325 } 7326 7327 int 7328 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7329 uint32_t valid_len, uint32_t flags, 7330 uint32_t output_flags, char *error_str, 7331 int error_str_len) 7332 { 7333 size_t avail_len; 7334 uint32_t field_size, print_size; 7335 int retval = 0; 7336 7337 avail_len = valid_len - sizeof(*hdr); 7338 field_size = scsi_2btoul(hdr->length); 7339 print_size = MIN(avail_len, field_size); 7340 7341 if (print_size > 0) { 7342 cam_strvis_flags strvis_flags; 7343 7344 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7345 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7346 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7347 break; 7348 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7349 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7350 break; 7351 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7352 default: 7353 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7354 break; 7355 } 7356 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags); 7357 } else if (avail_len < field_size) { 7358 /* 7359 * We only report an error if the user didn't allocate 7360 * enough space to hold the full value of this field. If 7361 * the field length is 0, that is allowed by the spec. 7362 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER 7363 * "This attribute indicates the current volume identifier 7364 * (see SMC-3) of the medium. If the device server supports 7365 * this attribute but does not have access to the volume 7366 * identifier, the device server shall report this attribute 7367 * with an attribute length value of zero." 7368 */ 7369 if (error_str != NULL) { 7370 snprintf(error_str, error_str_len, "Available " 7371 "length of attribute ID 0x%.4x %zu < field " 7372 "length %u", scsi_2btoul(hdr->id), avail_len, 7373 field_size); 7374 } 7375 retval = 1; 7376 } 7377 7378 return (retval); 7379 } 7380 7381 int 7382 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7383 uint32_t valid_len, uint32_t flags, 7384 uint32_t output_flags, char *error_str, 7385 int error_str_len) 7386 { 7387 size_t avail_len; 7388 uint32_t field_size, print_size; 7389 int retval = 0; 7390 int esc_text = 1; 7391 7392 avail_len = valid_len - sizeof(*hdr); 7393 field_size = scsi_2btoul(hdr->length); 7394 print_size = MIN(avail_len, field_size); 7395 7396 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) == 7397 SCSI_ATTR_OUTPUT_TEXT_RAW) 7398 esc_text = 0; 7399 7400 if (print_size > 0) { 7401 uint32_t i; 7402 7403 for (i = 0; i < print_size; i++) { 7404 if (hdr->attribute[i] == '\0') 7405 continue; 7406 else if (((unsigned char)hdr->attribute[i] < 0x80) 7407 || (esc_text == 0)) 7408 sbuf_putc(sb, hdr->attribute[i]); 7409 else 7410 sbuf_printf(sb, "%%%02x", 7411 (unsigned char)hdr->attribute[i]); 7412 } 7413 } else if (avail_len < field_size) { 7414 /* 7415 * We only report an error if the user didn't allocate 7416 * enough space to hold the full value of this field. 7417 */ 7418 if (error_str != NULL) { 7419 snprintf(error_str, error_str_len, "Available " 7420 "length of attribute ID 0x%.4x %zu < field " 7421 "length %u", scsi_2btoul(hdr->id), avail_len, 7422 field_size); 7423 } 7424 retval = 1; 7425 } 7426 7427 return (retval); 7428 } 7429 7430 struct scsi_attrib_table_entry * 7431 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table, 7432 size_t num_table_entries, uint32_t id) 7433 { 7434 uint32_t i; 7435 7436 for (i = 0; i < num_table_entries; i++) { 7437 if (table[i].id == id) 7438 return (&table[i]); 7439 } 7440 7441 return (NULL); 7442 } 7443 7444 struct scsi_attrib_table_entry * 7445 scsi_get_attrib_entry(uint32_t id) 7446 { 7447 return (scsi_find_attrib_entry(scsi_mam_attr_table, 7448 nitems(scsi_mam_attr_table), id)); 7449 } 7450 7451 int 7452 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, 7453 struct scsi_mam_attribute_header *hdr, uint32_t output_flags, 7454 char *error_str, size_t error_str_len) 7455 { 7456 int retval; 7457 7458 switch (hdr->byte2 & SMA_FORMAT_MASK) { 7459 case SMA_FORMAT_ASCII: 7460 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len, 7461 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len); 7462 break; 7463 case SMA_FORMAT_BINARY: 7464 if (scsi_2btoul(hdr->length) <= 8) 7465 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len, 7466 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7467 error_str_len); 7468 else 7469 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7470 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7471 error_str_len); 7472 break; 7473 case SMA_FORMAT_TEXT: 7474 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len, 7475 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7476 error_str_len); 7477 break; 7478 default: 7479 if (error_str != NULL) { 7480 snprintf(error_str, error_str_len, "Unknown attribute " 7481 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK); 7482 } 7483 retval = 1; 7484 goto bailout; 7485 break; /*NOTREACHED*/ 7486 } 7487 7488 sbuf_trim(sb); 7489 7490 bailout: 7491 7492 return (retval); 7493 } 7494 7495 void 7496 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, 7497 struct scsi_mam_attribute_header *hdr, 7498 uint32_t valid_len, const char *desc) 7499 { 7500 int need_space = 0; 7501 uint32_t len; 7502 uint32_t id; 7503 7504 /* 7505 * We can't do anything if we don't have enough valid data for the 7506 * header. 7507 */ 7508 if (valid_len < sizeof(*hdr)) 7509 return; 7510 7511 id = scsi_2btoul(hdr->id); 7512 /* 7513 * Note that we print out the value of the attribute listed in the 7514 * header, regardless of whether we actually got that many bytes 7515 * back from the device through the controller. A truncated result 7516 * could be the result of a failure to ask for enough data; the 7517 * header indicates how many bytes are allocated for this attribute 7518 * in the MAM. 7519 */ 7520 len = scsi_2btoul(hdr->length); 7521 7522 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) == 7523 SCSI_ATTR_OUTPUT_FIELD_NONE) 7524 return; 7525 7526 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC) 7527 && (desc != NULL)) { 7528 sbuf_cat(sb, desc); 7529 need_space = 1; 7530 } 7531 7532 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) { 7533 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id); 7534 need_space = 0; 7535 } 7536 7537 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) { 7538 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len); 7539 need_space = 0; 7540 } 7541 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) { 7542 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "", 7543 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW"); 7544 } 7545 sbuf_cat(sb, ": "); 7546 } 7547 7548 int 7549 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7550 uint32_t valid_len, struct scsi_attrib_table_entry *user_table, 7551 size_t num_user_entries, int prefer_user_table, 7552 uint32_t output_flags, char *error_str, int error_str_len) 7553 { 7554 int retval; 7555 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL; 7556 struct scsi_attrib_table_entry *entry = NULL; 7557 size_t table1_size = 0, table2_size = 0; 7558 uint32_t id; 7559 7560 retval = 0; 7561 7562 if (valid_len < sizeof(*hdr)) { 7563 retval = 1; 7564 goto bailout; 7565 } 7566 7567 id = scsi_2btoul(hdr->id); 7568 7569 if (user_table != NULL) { 7570 if (prefer_user_table != 0) { 7571 table1 = user_table; 7572 table1_size = num_user_entries; 7573 table2 = scsi_mam_attr_table; 7574 table2_size = nitems(scsi_mam_attr_table); 7575 } else { 7576 table1 = scsi_mam_attr_table; 7577 table1_size = nitems(scsi_mam_attr_table); 7578 table2 = user_table; 7579 table2_size = num_user_entries; 7580 } 7581 } else { 7582 table1 = scsi_mam_attr_table; 7583 table1_size = nitems(scsi_mam_attr_table); 7584 } 7585 7586 entry = scsi_find_attrib_entry(table1, table1_size, id); 7587 if (entry != NULL) { 7588 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, 7589 entry->desc); 7590 if (entry->to_str == NULL) 7591 goto print_default; 7592 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7593 output_flags, error_str, error_str_len); 7594 goto bailout; 7595 } 7596 if (table2 != NULL) { 7597 entry = scsi_find_attrib_entry(table2, table2_size, id); 7598 if (entry != NULL) { 7599 if (entry->to_str == NULL) 7600 goto print_default; 7601 7602 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, 7603 valid_len, entry->desc); 7604 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7605 output_flags, error_str, 7606 error_str_len); 7607 goto bailout; 7608 } 7609 } 7610 7611 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL); 7612 7613 print_default: 7614 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags, 7615 error_str, error_str_len); 7616 bailout: 7617 if (retval == 0) { 7618 if ((entry != NULL) 7619 && (entry->suffix != NULL)) 7620 sbuf_printf(sb, " %s", entry->suffix); 7621 7622 sbuf_trim(sb); 7623 sbuf_putc(sb, '\n'); 7624 } 7625 7626 return (retval); 7627 } 7628 7629 void 7630 scsi_test_unit_ready(struct ccb_scsiio *csio, uint32_t retries, 7631 void (*cbfcnp)(struct cam_periph *, union ccb *), 7632 uint8_t tag_action, uint8_t sense_len, uint32_t timeout) 7633 { 7634 struct scsi_test_unit_ready *scsi_cmd; 7635 7636 cam_fill_csio(csio, 7637 retries, 7638 cbfcnp, 7639 CAM_DIR_NONE, 7640 tag_action, 7641 /*data_ptr*/NULL, 7642 /*dxfer_len*/0, 7643 sense_len, 7644 sizeof(*scsi_cmd), 7645 timeout); 7646 7647 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; 7648 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7649 scsi_cmd->opcode = TEST_UNIT_READY; 7650 } 7651 7652 void 7653 scsi_request_sense(struct ccb_scsiio *csio, uint32_t retries, 7654 void (*cbfcnp)(struct cam_periph *, union ccb *), 7655 void *data_ptr, uint8_t dxfer_len, uint8_t tag_action, 7656 uint8_t sense_len, uint32_t timeout) 7657 { 7658 struct scsi_request_sense *scsi_cmd; 7659 7660 cam_fill_csio(csio, 7661 retries, 7662 cbfcnp, 7663 CAM_DIR_IN, 7664 tag_action, 7665 data_ptr, 7666 dxfer_len, 7667 sense_len, 7668 sizeof(*scsi_cmd), 7669 timeout); 7670 7671 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; 7672 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7673 scsi_cmd->opcode = REQUEST_SENSE; 7674 scsi_cmd->length = dxfer_len; 7675 } 7676 7677 void 7678 scsi_inquiry(struct ccb_scsiio *csio, uint32_t retries, 7679 void (*cbfcnp)(struct cam_periph *, union ccb *), 7680 uint8_t tag_action, uint8_t *inq_buf, uint32_t inq_len, 7681 int evpd, uint8_t page_code, uint8_t sense_len, 7682 uint32_t timeout) 7683 { 7684 struct scsi_inquiry *scsi_cmd; 7685 7686 cam_fill_csio(csio, 7687 retries, 7688 cbfcnp, 7689 /*flags*/CAM_DIR_IN, 7690 tag_action, 7691 /*data_ptr*/inq_buf, 7692 /*dxfer_len*/inq_len, 7693 sense_len, 7694 sizeof(*scsi_cmd), 7695 timeout); 7696 7697 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; 7698 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7699 scsi_cmd->opcode = INQUIRY; 7700 if (evpd) { 7701 scsi_cmd->byte2 |= SI_EVPD; 7702 scsi_cmd->page_code = page_code; 7703 } 7704 scsi_ulto2b(inq_len, scsi_cmd->length); 7705 } 7706 7707 void 7708 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries, 7709 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7710 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7711 uint8_t sense_len, uint32_t timeout) 7712 { 7713 7714 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7715 pc, page, 0, param_buf, param_len, 0, sense_len, timeout); 7716 } 7717 7718 void 7719 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries, 7720 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7721 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7722 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout) 7723 { 7724 7725 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7726 pc, page, 0, param_buf, param_len, minimum_cmd_size, 7727 sense_len, timeout); 7728 } 7729 7730 void 7731 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries, 7732 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7733 int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf, 7734 uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, 7735 uint32_t timeout) 7736 { 7737 uint8_t cdb_len; 7738 7739 /* 7740 * Use the smallest possible command to perform the operation. 7741 */ 7742 if ((param_len < 256) 7743 && (minimum_cmd_size < 10)) { 7744 /* 7745 * We can fit in a 6 byte cdb. 7746 */ 7747 struct scsi_mode_sense_6 *scsi_cmd; 7748 7749 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; 7750 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7751 scsi_cmd->opcode = MODE_SENSE_6; 7752 if (dbd != 0) 7753 scsi_cmd->byte2 |= SMS_DBD; 7754 scsi_cmd->page = pc | page; 7755 scsi_cmd->subpage = subpage; 7756 scsi_cmd->length = param_len; 7757 cdb_len = sizeof(*scsi_cmd); 7758 } else { 7759 /* 7760 * Need a 10 byte cdb. 7761 */ 7762 struct scsi_mode_sense_10 *scsi_cmd; 7763 7764 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; 7765 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7766 scsi_cmd->opcode = MODE_SENSE_10; 7767 if (dbd != 0) 7768 scsi_cmd->byte2 |= SMS_DBD; 7769 scsi_cmd->page = pc | page; 7770 scsi_cmd->subpage = subpage; 7771 scsi_ulto2b(param_len, scsi_cmd->length); 7772 cdb_len = sizeof(*scsi_cmd); 7773 } 7774 cam_fill_csio(csio, 7775 retries, 7776 cbfcnp, 7777 CAM_DIR_IN, 7778 tag_action, 7779 param_buf, 7780 param_len, 7781 sense_len, 7782 cdb_len, 7783 timeout); 7784 } 7785 7786 void 7787 scsi_mode_select(struct ccb_scsiio *csio, uint32_t retries, 7788 void (*cbfcnp)(struct cam_periph *, union ccb *), 7789 uint8_t tag_action, int scsi_page_fmt, int save_pages, 7790 uint8_t *param_buf, uint32_t param_len, uint8_t sense_len, 7791 uint32_t timeout) 7792 { 7793 scsi_mode_select_len(csio, retries, cbfcnp, tag_action, 7794 scsi_page_fmt, save_pages, param_buf, 7795 param_len, 0, sense_len, timeout); 7796 } 7797 7798 void 7799 scsi_mode_select_len(struct ccb_scsiio *csio, uint32_t retries, 7800 void (*cbfcnp)(struct cam_periph *, union ccb *), 7801 uint8_t tag_action, int scsi_page_fmt, int save_pages, 7802 uint8_t *param_buf, uint32_t param_len, 7803 int minimum_cmd_size, uint8_t sense_len, 7804 uint32_t timeout) 7805 { 7806 uint8_t cdb_len; 7807 7808 /* 7809 * Use the smallest possible command to perform the operation. 7810 */ 7811 if ((param_len < 256) 7812 && (minimum_cmd_size < 10)) { 7813 /* 7814 * We can fit in a 6 byte cdb. 7815 */ 7816 struct scsi_mode_select_6 *scsi_cmd; 7817 7818 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; 7819 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7820 scsi_cmd->opcode = MODE_SELECT_6; 7821 if (scsi_page_fmt != 0) 7822 scsi_cmd->byte2 |= SMS_PF; 7823 if (save_pages != 0) 7824 scsi_cmd->byte2 |= SMS_SP; 7825 scsi_cmd->length = param_len; 7826 cdb_len = sizeof(*scsi_cmd); 7827 } else { 7828 /* 7829 * Need a 10 byte cdb. 7830 */ 7831 struct scsi_mode_select_10 *scsi_cmd; 7832 7833 scsi_cmd = 7834 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; 7835 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7836 scsi_cmd->opcode = MODE_SELECT_10; 7837 if (scsi_page_fmt != 0) 7838 scsi_cmd->byte2 |= SMS_PF; 7839 if (save_pages != 0) 7840 scsi_cmd->byte2 |= SMS_SP; 7841 scsi_ulto2b(param_len, scsi_cmd->length); 7842 cdb_len = sizeof(*scsi_cmd); 7843 } 7844 cam_fill_csio(csio, 7845 retries, 7846 cbfcnp, 7847 CAM_DIR_OUT, 7848 tag_action, 7849 param_buf, 7850 param_len, 7851 sense_len, 7852 cdb_len, 7853 timeout); 7854 } 7855 7856 void 7857 scsi_log_sense(struct ccb_scsiio *csio, uint32_t retries, 7858 void (*cbfcnp)(struct cam_periph *, union ccb *), 7859 uint8_t tag_action, uint8_t page_code, uint8_t page, 7860 int save_pages, int ppc, uint32_t paramptr, 7861 uint8_t *param_buf, uint32_t param_len, uint8_t sense_len, 7862 uint32_t timeout) 7863 { 7864 struct scsi_log_sense *scsi_cmd; 7865 uint8_t cdb_len; 7866 7867 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; 7868 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7869 scsi_cmd->opcode = LOG_SENSE; 7870 scsi_cmd->page = page_code | page; 7871 if (save_pages != 0) 7872 scsi_cmd->byte2 |= SLS_SP; 7873 if (ppc != 0) 7874 scsi_cmd->byte2 |= SLS_PPC; 7875 scsi_ulto2b(paramptr, scsi_cmd->paramptr); 7876 scsi_ulto2b(param_len, scsi_cmd->length); 7877 cdb_len = sizeof(*scsi_cmd); 7878 7879 cam_fill_csio(csio, 7880 retries, 7881 cbfcnp, 7882 /*flags*/CAM_DIR_IN, 7883 tag_action, 7884 /*data_ptr*/param_buf, 7885 /*dxfer_len*/param_len, 7886 sense_len, 7887 cdb_len, 7888 timeout); 7889 } 7890 7891 void 7892 scsi_log_select(struct ccb_scsiio *csio, uint32_t retries, 7893 void (*cbfcnp)(struct cam_periph *, union ccb *), 7894 uint8_t tag_action, uint8_t page_code, int save_pages, 7895 int pc_reset, uint8_t *param_buf, uint32_t param_len, 7896 uint8_t sense_len, uint32_t timeout) 7897 { 7898 struct scsi_log_select *scsi_cmd; 7899 uint8_t cdb_len; 7900 7901 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; 7902 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7903 scsi_cmd->opcode = LOG_SELECT; 7904 scsi_cmd->page = page_code & SLS_PAGE_CODE; 7905 if (save_pages != 0) 7906 scsi_cmd->byte2 |= SLS_SP; 7907 if (pc_reset != 0) 7908 scsi_cmd->byte2 |= SLS_PCR; 7909 scsi_ulto2b(param_len, scsi_cmd->length); 7910 cdb_len = sizeof(*scsi_cmd); 7911 7912 cam_fill_csio(csio, 7913 retries, 7914 cbfcnp, 7915 /*flags*/CAM_DIR_OUT, 7916 tag_action, 7917 /*data_ptr*/param_buf, 7918 /*dxfer_len*/param_len, 7919 sense_len, 7920 cdb_len, 7921 timeout); 7922 } 7923 7924 /* 7925 * Prevent or allow the user to remove the media 7926 */ 7927 void 7928 scsi_prevent(struct ccb_scsiio *csio, uint32_t retries, 7929 void (*cbfcnp)(struct cam_periph *, union ccb *), 7930 uint8_t tag_action, uint8_t action, 7931 uint8_t sense_len, uint32_t timeout) 7932 { 7933 struct scsi_prevent *scsi_cmd; 7934 7935 cam_fill_csio(csio, 7936 retries, 7937 cbfcnp, 7938 /*flags*/CAM_DIR_NONE, 7939 tag_action, 7940 /*data_ptr*/NULL, 7941 /*dxfer_len*/0, 7942 sense_len, 7943 sizeof(*scsi_cmd), 7944 timeout); 7945 7946 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; 7947 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7948 scsi_cmd->opcode = PREVENT_ALLOW; 7949 scsi_cmd->how = action; 7950 } 7951 7952 /* XXX allow specification of address and PMI bit and LBA */ 7953 void 7954 scsi_read_capacity(struct ccb_scsiio *csio, uint32_t retries, 7955 void (*cbfcnp)(struct cam_periph *, union ccb *), 7956 uint8_t tag_action, 7957 struct scsi_read_capacity_data *rcap_buf, 7958 uint8_t sense_len, uint32_t timeout) 7959 { 7960 struct scsi_read_capacity *scsi_cmd; 7961 7962 cam_fill_csio(csio, 7963 retries, 7964 cbfcnp, 7965 /*flags*/CAM_DIR_IN, 7966 tag_action, 7967 /*data_ptr*/(uint8_t *)rcap_buf, 7968 /*dxfer_len*/sizeof(*rcap_buf), 7969 sense_len, 7970 sizeof(*scsi_cmd), 7971 timeout); 7972 7973 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; 7974 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7975 scsi_cmd->opcode = READ_CAPACITY; 7976 } 7977 7978 void 7979 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, 7980 void (*cbfcnp)(struct cam_periph *, union ccb *), 7981 uint8_t tag_action, uint64_t lba, int reladr, int pmi, 7982 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, 7983 uint32_t timeout) 7984 { 7985 struct scsi_read_capacity_16 *scsi_cmd; 7986 7987 cam_fill_csio(csio, 7988 retries, 7989 cbfcnp, 7990 /*flags*/CAM_DIR_IN, 7991 tag_action, 7992 /*data_ptr*/(uint8_t *)rcap_buf, 7993 /*dxfer_len*/rcap_buf_len, 7994 sense_len, 7995 sizeof(*scsi_cmd), 7996 timeout); 7997 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 7998 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7999 scsi_cmd->opcode = SERVICE_ACTION_IN; 8000 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 8001 scsi_u64to8b(lba, scsi_cmd->addr); 8002 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); 8003 if (pmi) 8004 reladr |= SRC16_PMI; 8005 if (reladr) 8006 reladr |= SRC16_RELADR; 8007 } 8008 8009 void 8010 scsi_report_luns(struct ccb_scsiio *csio, uint32_t retries, 8011 void (*cbfcnp)(struct cam_periph *, union ccb *), 8012 uint8_t tag_action, uint8_t select_report, 8013 struct scsi_report_luns_data *rpl_buf, uint32_t alloc_len, 8014 uint8_t sense_len, uint32_t timeout) 8015 { 8016 struct scsi_report_luns *scsi_cmd; 8017 8018 cam_fill_csio(csio, 8019 retries, 8020 cbfcnp, 8021 /*flags*/CAM_DIR_IN, 8022 tag_action, 8023 /*data_ptr*/(uint8_t *)rpl_buf, 8024 /*dxfer_len*/alloc_len, 8025 sense_len, 8026 sizeof(*scsi_cmd), 8027 timeout); 8028 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; 8029 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8030 scsi_cmd->opcode = REPORT_LUNS; 8031 scsi_cmd->select_report = select_report; 8032 scsi_ulto4b(alloc_len, scsi_cmd->length); 8033 } 8034 8035 void 8036 scsi_report_target_group(struct ccb_scsiio *csio, uint32_t retries, 8037 void (*cbfcnp)(struct cam_periph *, union ccb *), 8038 uint8_t tag_action, uint8_t pdf, 8039 void *buf, uint32_t alloc_len, 8040 uint8_t sense_len, uint32_t timeout) 8041 { 8042 struct scsi_target_group *scsi_cmd; 8043 8044 cam_fill_csio(csio, 8045 retries, 8046 cbfcnp, 8047 /*flags*/CAM_DIR_IN, 8048 tag_action, 8049 /*data_ptr*/(uint8_t *)buf, 8050 /*dxfer_len*/alloc_len, 8051 sense_len, 8052 sizeof(*scsi_cmd), 8053 timeout); 8054 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 8055 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8056 scsi_cmd->opcode = MAINTENANCE_IN; 8057 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; 8058 scsi_ulto4b(alloc_len, scsi_cmd->length); 8059 } 8060 8061 void 8062 scsi_report_timestamp(struct ccb_scsiio *csio, uint32_t retries, 8063 void (*cbfcnp)(struct cam_periph *, union ccb *), 8064 uint8_t tag_action, uint8_t pdf, 8065 void *buf, uint32_t alloc_len, 8066 uint8_t sense_len, uint32_t timeout) 8067 { 8068 struct scsi_timestamp *scsi_cmd; 8069 8070 cam_fill_csio(csio, 8071 retries, 8072 cbfcnp, 8073 /*flags*/CAM_DIR_IN, 8074 tag_action, 8075 /*data_ptr*/(uint8_t *)buf, 8076 /*dxfer_len*/alloc_len, 8077 sense_len, 8078 sizeof(*scsi_cmd), 8079 timeout); 8080 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 8081 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8082 scsi_cmd->opcode = MAINTENANCE_IN; 8083 scsi_cmd->service_action = REPORT_TIMESTAMP | pdf; 8084 scsi_ulto4b(alloc_len, scsi_cmd->length); 8085 } 8086 8087 void 8088 scsi_set_target_group(struct ccb_scsiio *csio, uint32_t retries, 8089 void (*cbfcnp)(struct cam_periph *, union ccb *), 8090 uint8_t tag_action, void *buf, uint32_t alloc_len, 8091 uint8_t sense_len, uint32_t timeout) 8092 { 8093 struct scsi_target_group *scsi_cmd; 8094 8095 cam_fill_csio(csio, 8096 retries, 8097 cbfcnp, 8098 /*flags*/CAM_DIR_OUT, 8099 tag_action, 8100 /*data_ptr*/(uint8_t *)buf, 8101 /*dxfer_len*/alloc_len, 8102 sense_len, 8103 sizeof(*scsi_cmd), 8104 timeout); 8105 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 8106 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8107 scsi_cmd->opcode = MAINTENANCE_OUT; 8108 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; 8109 scsi_ulto4b(alloc_len, scsi_cmd->length); 8110 } 8111 8112 void 8113 scsi_create_timestamp(uint8_t *timestamp_6b_buf, 8114 uint64_t timestamp) 8115 { 8116 uint8_t buf[8]; 8117 scsi_u64to8b(timestamp, buf); 8118 /* 8119 * Using memcopy starting at buf[2] because the set timestamp parameters 8120 * only has six bytes for the timestamp to fit into, and we don't have a 8121 * scsi_u64to6b function. 8122 */ 8123 memcpy(timestamp_6b_buf, &buf[2], 6); 8124 } 8125 8126 void 8127 scsi_set_timestamp(struct ccb_scsiio *csio, uint32_t retries, 8128 void (*cbfcnp)(struct cam_periph *, union ccb *), 8129 uint8_t tag_action, void *buf, uint32_t alloc_len, 8130 uint8_t sense_len, uint32_t timeout) 8131 { 8132 struct scsi_timestamp *scsi_cmd; 8133 8134 cam_fill_csio(csio, 8135 retries, 8136 cbfcnp, 8137 /*flags*/CAM_DIR_OUT, 8138 tag_action, 8139 /*data_ptr*/(uint8_t *) buf, 8140 /*dxfer_len*/alloc_len, 8141 sense_len, 8142 sizeof(*scsi_cmd), 8143 timeout); 8144 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 8145 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8146 scsi_cmd->opcode = MAINTENANCE_OUT; 8147 scsi_cmd->service_action = SET_TIMESTAMP; 8148 scsi_ulto4b(alloc_len, scsi_cmd->length); 8149 } 8150 8151 /* 8152 * Syncronize the media to the contents of the cache for 8153 * the given lba/count pair. Specifying 0/0 means sync 8154 * the whole cache. 8155 */ 8156 void 8157 scsi_synchronize_cache(struct ccb_scsiio *csio, uint32_t retries, 8158 void (*cbfcnp)(struct cam_periph *, union ccb *), 8159 uint8_t tag_action, uint32_t begin_lba, 8160 uint16_t lb_count, uint8_t sense_len, 8161 uint32_t timeout) 8162 { 8163 struct scsi_sync_cache *scsi_cmd; 8164 8165 cam_fill_csio(csio, 8166 retries, 8167 cbfcnp, 8168 /*flags*/CAM_DIR_NONE, 8169 tag_action, 8170 /*data_ptr*/NULL, 8171 /*dxfer_len*/0, 8172 sense_len, 8173 sizeof(*scsi_cmd), 8174 timeout); 8175 8176 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; 8177 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8178 scsi_cmd->opcode = SYNCHRONIZE_CACHE; 8179 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); 8180 scsi_ulto2b(lb_count, scsi_cmd->lb_count); 8181 } 8182 8183 void 8184 scsi_read_write(struct ccb_scsiio *csio, uint32_t retries, 8185 void (*cbfcnp)(struct cam_periph *, union ccb *), 8186 uint8_t tag_action, int readop, uint8_t byte2, 8187 int minimum_cmd_size, uint64_t lba, uint32_t block_count, 8188 uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len, 8189 uint32_t timeout) 8190 { 8191 int read; 8192 uint8_t cdb_len; 8193 8194 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; 8195 8196 /* 8197 * Use the smallest possible command to perform the operation 8198 * as some legacy hardware does not support the 10 byte commands. 8199 * If any of the bits in byte2 is set, we have to go with a larger 8200 * command. 8201 */ 8202 if ((minimum_cmd_size < 10) 8203 && ((lba & 0x1fffff) == lba) 8204 && ((block_count & 0xff) == block_count) 8205 && (byte2 == 0)) { 8206 /* 8207 * We can fit in a 6 byte cdb. 8208 */ 8209 struct scsi_rw_6 *scsi_cmd; 8210 8211 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; 8212 scsi_cmd->opcode = read ? READ_6 : WRITE_6; 8213 scsi_ulto3b(lba, scsi_cmd->addr); 8214 scsi_cmd->length = block_count & 0xff; 8215 scsi_cmd->control = 0; 8216 cdb_len = sizeof(*scsi_cmd); 8217 8218 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8219 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], 8220 scsi_cmd->addr[1], scsi_cmd->addr[2], 8221 scsi_cmd->length, dxfer_len)); 8222 } else if ((minimum_cmd_size < 12) 8223 && ((block_count & 0xffff) == block_count) 8224 && ((lba & 0xffffffff) == lba)) { 8225 /* 8226 * Need a 10 byte cdb. 8227 */ 8228 struct scsi_rw_10 *scsi_cmd; 8229 8230 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; 8231 scsi_cmd->opcode = read ? READ_10 : WRITE_10; 8232 scsi_cmd->byte2 = byte2; 8233 scsi_ulto4b(lba, scsi_cmd->addr); 8234 scsi_cmd->reserved = 0; 8235 scsi_ulto2b(block_count, scsi_cmd->length); 8236 scsi_cmd->control = 0; 8237 cdb_len = sizeof(*scsi_cmd); 8238 8239 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8240 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8241 scsi_cmd->addr[1], scsi_cmd->addr[2], 8242 scsi_cmd->addr[3], scsi_cmd->length[0], 8243 scsi_cmd->length[1], dxfer_len)); 8244 } else if ((minimum_cmd_size < 16) 8245 && ((block_count & 0xffffffff) == block_count) 8246 && ((lba & 0xffffffff) == lba)) { 8247 /* 8248 * The block count is too big for a 10 byte CDB, use a 12 8249 * byte CDB. 8250 */ 8251 struct scsi_rw_12 *scsi_cmd; 8252 8253 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; 8254 scsi_cmd->opcode = read ? READ_12 : WRITE_12; 8255 scsi_cmd->byte2 = byte2; 8256 scsi_ulto4b(lba, scsi_cmd->addr); 8257 scsi_cmd->reserved = 0; 8258 scsi_ulto4b(block_count, scsi_cmd->length); 8259 scsi_cmd->control = 0; 8260 cdb_len = sizeof(*scsi_cmd); 8261 8262 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8263 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], 8264 scsi_cmd->addr[1], scsi_cmd->addr[2], 8265 scsi_cmd->addr[3], scsi_cmd->length[0], 8266 scsi_cmd->length[1], scsi_cmd->length[2], 8267 scsi_cmd->length[3], dxfer_len)); 8268 } else { 8269 /* 8270 * 16 byte CDB. We'll only get here if the LBA is larger 8271 * than 2^32, or if the user asks for a 16 byte command. 8272 */ 8273 struct scsi_rw_16 *scsi_cmd; 8274 8275 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; 8276 scsi_cmd->opcode = read ? READ_16 : WRITE_16; 8277 scsi_cmd->byte2 = byte2; 8278 scsi_u64to8b(lba, scsi_cmd->addr); 8279 scsi_cmd->reserved = 0; 8280 scsi_ulto4b(block_count, scsi_cmd->length); 8281 scsi_cmd->control = 0; 8282 cdb_len = sizeof(*scsi_cmd); 8283 } 8284 cam_fill_csio(csio, 8285 retries, 8286 cbfcnp, 8287 (read ? CAM_DIR_IN : CAM_DIR_OUT) | 8288 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), 8289 tag_action, 8290 data_ptr, 8291 dxfer_len, 8292 sense_len, 8293 cdb_len, 8294 timeout); 8295 } 8296 8297 void 8298 scsi_write_same(struct ccb_scsiio *csio, uint32_t retries, 8299 void (*cbfcnp)(struct cam_periph *, union ccb *), 8300 uint8_t tag_action, uint8_t byte2, 8301 int minimum_cmd_size, uint64_t lba, uint32_t block_count, 8302 uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len, 8303 uint32_t timeout) 8304 { 8305 uint8_t cdb_len; 8306 if ((minimum_cmd_size < 16) && 8307 ((block_count & 0xffff) == block_count) && 8308 ((lba & 0xffffffff) == lba)) { 8309 /* 8310 * Need a 10 byte cdb. 8311 */ 8312 struct scsi_write_same_10 *scsi_cmd; 8313 8314 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; 8315 scsi_cmd->opcode = WRITE_SAME_10; 8316 scsi_cmd->byte2 = byte2; 8317 scsi_ulto4b(lba, scsi_cmd->addr); 8318 scsi_cmd->group = 0; 8319 scsi_ulto2b(block_count, scsi_cmd->length); 8320 scsi_cmd->control = 0; 8321 cdb_len = sizeof(*scsi_cmd); 8322 8323 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8324 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8325 scsi_cmd->addr[1], scsi_cmd->addr[2], 8326 scsi_cmd->addr[3], scsi_cmd->length[0], 8327 scsi_cmd->length[1], dxfer_len)); 8328 } else { 8329 /* 8330 * 16 byte CDB. We'll only get here if the LBA is larger 8331 * than 2^32, or if the user asks for a 16 byte command. 8332 */ 8333 struct scsi_write_same_16 *scsi_cmd; 8334 8335 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; 8336 scsi_cmd->opcode = WRITE_SAME_16; 8337 scsi_cmd->byte2 = byte2; 8338 scsi_u64to8b(lba, scsi_cmd->addr); 8339 scsi_ulto4b(block_count, scsi_cmd->length); 8340 scsi_cmd->group = 0; 8341 scsi_cmd->control = 0; 8342 cdb_len = sizeof(*scsi_cmd); 8343 8344 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8345 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", 8346 scsi_cmd->addr[0], scsi_cmd->addr[1], 8347 scsi_cmd->addr[2], scsi_cmd->addr[3], 8348 scsi_cmd->addr[4], scsi_cmd->addr[5], 8349 scsi_cmd->addr[6], scsi_cmd->addr[7], 8350 scsi_cmd->length[0], scsi_cmd->length[1], 8351 scsi_cmd->length[2], scsi_cmd->length[3], 8352 dxfer_len)); 8353 } 8354 cam_fill_csio(csio, 8355 retries, 8356 cbfcnp, 8357 /*flags*/CAM_DIR_OUT, 8358 tag_action, 8359 data_ptr, 8360 dxfer_len, 8361 sense_len, 8362 cdb_len, 8363 timeout); 8364 } 8365 8366 void 8367 scsi_ata_identify(struct ccb_scsiio *csio, uint32_t retries, 8368 void (*cbfcnp)(struct cam_periph *, union ccb *), 8369 uint8_t tag_action, uint8_t *data_ptr, 8370 uint16_t dxfer_len, uint8_t sense_len, 8371 uint32_t timeout) 8372 { 8373 scsi_ata_pass(csio, 8374 retries, 8375 cbfcnp, 8376 /*flags*/CAM_DIR_IN, 8377 tag_action, 8378 /*protocol*/AP_PROTO_PIO_IN, 8379 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8380 AP_FLAG_BYT_BLOK_BLOCKS | 8381 AP_FLAG_TLEN_SECT_CNT, 8382 /*features*/0, 8383 /*sector_count*/dxfer_len / 512, 8384 /*lba*/0, 8385 /*command*/ATA_ATA_IDENTIFY, 8386 /*device*/ 0, 8387 /*icc*/ 0, 8388 /*auxiliary*/ 0, 8389 /*control*/0, 8390 data_ptr, 8391 dxfer_len, 8392 /*cdb_storage*/ NULL, 8393 /*cdb_storage_len*/ 0, 8394 /*minimum_cmd_size*/ 0, 8395 sense_len, 8396 timeout); 8397 } 8398 8399 void 8400 scsi_ata_trim(struct ccb_scsiio *csio, uint32_t retries, 8401 void (*cbfcnp)(struct cam_periph *, union ccb *), 8402 uint8_t tag_action, uint16_t block_count, 8403 uint8_t *data_ptr, uint16_t dxfer_len, uint8_t sense_len, 8404 uint32_t timeout) 8405 { 8406 scsi_ata_pass_16(csio, 8407 retries, 8408 cbfcnp, 8409 /*flags*/CAM_DIR_OUT, 8410 tag_action, 8411 /*protocol*/AP_EXTEND|AP_PROTO_DMA, 8412 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS, 8413 /*features*/ATA_DSM_TRIM, 8414 /*sector_count*/block_count, 8415 /*lba*/0, 8416 /*command*/ATA_DATA_SET_MANAGEMENT, 8417 /*control*/0, 8418 data_ptr, 8419 dxfer_len, 8420 sense_len, 8421 timeout); 8422 } 8423 8424 int 8425 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries, 8426 void (*cbfcnp)(struct cam_periph *, union ccb *), 8427 uint8_t tag_action, uint32_t log_address, 8428 uint32_t page_number, uint16_t block_count, 8429 uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, 8430 uint8_t sense_len, uint32_t timeout) 8431 { 8432 uint8_t command, protocol_out; 8433 uint16_t count_out; 8434 uint64_t lba; 8435 int retval; 8436 8437 retval = 0; 8438 8439 switch (protocol) { 8440 case AP_PROTO_DMA: 8441 count_out = block_count; 8442 command = ATA_READ_LOG_DMA_EXT; 8443 protocol_out = AP_PROTO_DMA; 8444 break; 8445 case AP_PROTO_PIO_IN: 8446 default: 8447 count_out = block_count; 8448 command = ATA_READ_LOG_EXT; 8449 protocol_out = AP_PROTO_PIO_IN; 8450 break; 8451 } 8452 8453 lba = (((uint64_t)page_number & 0xff00) << 32) | 8454 ((page_number & 0x00ff) << 8) | 8455 (log_address & 0xff); 8456 8457 protocol_out |= AP_EXTEND; 8458 8459 retval = scsi_ata_pass(csio, 8460 retries, 8461 cbfcnp, 8462 /*flags*/CAM_DIR_IN, 8463 tag_action, 8464 /*protocol*/ protocol_out, 8465 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT | 8466 AP_FLAG_BYT_BLOK_BLOCKS | 8467 AP_FLAG_TDIR_FROM_DEV, 8468 /*feature*/ 0, 8469 /*sector_count*/ count_out, 8470 /*lba*/ lba, 8471 /*command*/ command, 8472 /*device*/ 0, 8473 /*icc*/ 0, 8474 /*auxiliary*/ 0, 8475 /*control*/0, 8476 data_ptr, 8477 dxfer_len, 8478 /*cdb_storage*/ NULL, 8479 /*cdb_storage_len*/ 0, 8480 /*minimum_cmd_size*/ 0, 8481 sense_len, 8482 timeout); 8483 8484 return (retval); 8485 } 8486 8487 int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries, 8488 void (*cbfcnp)(struct cam_periph *, union ccb *), 8489 uint8_t tag_action, uint8_t feature, 8490 uint64_t lba, uint32_t count, 8491 uint8_t sense_len, uint32_t timeout) 8492 { 8493 return (scsi_ata_pass(csio, 8494 retries, 8495 cbfcnp, 8496 /*flags*/CAM_DIR_NONE, 8497 tag_action, 8498 /*protocol*/AP_PROTO_PIO_IN, 8499 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8500 AP_FLAG_BYT_BLOK_BYTES | 8501 AP_FLAG_TLEN_SECT_CNT, 8502 /*features*/feature, 8503 /*sector_count*/count, 8504 /*lba*/lba, 8505 /*command*/ATA_SETFEATURES, 8506 /*device*/ 0, 8507 /*icc*/ 0, 8508 /*auxiliary*/0, 8509 /*control*/0, 8510 /*data_ptr*/NULL, 8511 /*dxfer_len*/0, 8512 /*cdb_storage*/NULL, 8513 /*cdb_storage_len*/0, 8514 /*minimum_cmd_size*/0, 8515 sense_len, 8516 timeout)); 8517 } 8518 8519 /* 8520 * Note! This is an unusual CDB building function because it can return 8521 * an error in the event that the command in question requires a variable 8522 * length CDB, but the caller has not given storage space for one or has not 8523 * given enough storage space. If there is enough space available in the 8524 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage. 8525 */ 8526 int 8527 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries, 8528 void (*cbfcnp)(struct cam_periph *, union ccb *), 8529 uint32_t flags, uint8_t tag_action, 8530 uint8_t protocol, uint8_t ata_flags, uint16_t features, 8531 uint16_t sector_count, uint64_t lba, uint8_t command, 8532 uint8_t device, uint8_t icc, uint32_t auxiliary, 8533 uint8_t control, uint8_t *data_ptr, uint32_t dxfer_len, 8534 uint8_t *cdb_storage, size_t cdb_storage_len, 8535 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout) 8536 { 8537 uint32_t cam_flags; 8538 uint8_t *cdb_ptr; 8539 int cmd_size; 8540 int retval; 8541 uint8_t cdb_len; 8542 8543 retval = 0; 8544 cam_flags = flags; 8545 8546 /* 8547 * Round the user's request to the nearest command size that is at 8548 * least as big as what he requested. 8549 */ 8550 if (minimum_cmd_size <= 12) 8551 cmd_size = 12; 8552 else if (minimum_cmd_size > 16) 8553 cmd_size = 32; 8554 else 8555 cmd_size = 16; 8556 8557 /* 8558 * If we have parameters that require a 48-bit ATA command, we have to 8559 * use the 16 byte ATA PASS-THROUGH command at least. 8560 */ 8561 if (((lba > ATA_MAX_28BIT_LBA) 8562 || (sector_count > 255) 8563 || (features > 255) 8564 || (protocol & AP_EXTEND)) 8565 && ((cmd_size < 16) 8566 || ((protocol & AP_EXTEND) == 0))) { 8567 if (cmd_size < 16) 8568 cmd_size = 16; 8569 protocol |= AP_EXTEND; 8570 } 8571 8572 /* 8573 * The icc and auxiliary ATA registers are only supported in the 8574 * 32-byte version of the ATA PASS-THROUGH command. 8575 */ 8576 if ((icc != 0) 8577 || (auxiliary != 0)) { 8578 cmd_size = 32; 8579 protocol |= AP_EXTEND; 8580 } 8581 8582 if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes)) 8583 && ((cdb_storage == NULL) 8584 || (cdb_storage_len < cmd_size))) { 8585 retval = 1; 8586 goto bailout; 8587 } 8588 8589 /* 8590 * At this point we know we have enough space to store the command 8591 * in one place or another. We prefer the built-in array, but used 8592 * the passed in storage if necessary. 8593 */ 8594 if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes)) 8595 cdb_ptr = csio->cdb_io.cdb_bytes; 8596 else { 8597 cdb_ptr = cdb_storage; 8598 cam_flags |= CAM_CDB_POINTER; 8599 } 8600 8601 if (cmd_size <= 12) { 8602 struct ata_pass_12 *cdb; 8603 8604 cdb = (struct ata_pass_12 *)cdb_ptr; 8605 cdb_len = sizeof(*cdb); 8606 bzero(cdb, cdb_len); 8607 8608 cdb->opcode = ATA_PASS_12; 8609 cdb->protocol = protocol; 8610 cdb->flags = ata_flags; 8611 cdb->features = features; 8612 cdb->sector_count = sector_count; 8613 cdb->lba_low = lba & 0xff; 8614 cdb->lba_mid = (lba >> 8) & 0xff; 8615 cdb->lba_high = (lba >> 16) & 0xff; 8616 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8617 cdb->command = command; 8618 cdb->control = control; 8619 } else if (cmd_size <= 16) { 8620 struct ata_pass_16 *cdb; 8621 8622 cdb = (struct ata_pass_16 *)cdb_ptr; 8623 cdb_len = sizeof(*cdb); 8624 bzero(cdb, cdb_len); 8625 8626 cdb->opcode = ATA_PASS_16; 8627 cdb->protocol = protocol; 8628 cdb->flags = ata_flags; 8629 cdb->features = features & 0xff; 8630 cdb->sector_count = sector_count & 0xff; 8631 cdb->lba_low = lba & 0xff; 8632 cdb->lba_mid = (lba >> 8) & 0xff; 8633 cdb->lba_high = (lba >> 16) & 0xff; 8634 /* 8635 * If AP_EXTEND is set, we're sending a 48-bit command. 8636 * Otherwise it's a 28-bit command. 8637 */ 8638 if (protocol & AP_EXTEND) { 8639 cdb->lba_low_ext = (lba >> 24) & 0xff; 8640 cdb->lba_mid_ext = (lba >> 32) & 0xff; 8641 cdb->lba_high_ext = (lba >> 40) & 0xff; 8642 cdb->features_ext = (features >> 8) & 0xff; 8643 cdb->sector_count_ext = (sector_count >> 8) & 0xff; 8644 cdb->device = device | ATA_DEV_LBA; 8645 } else { 8646 cdb->lba_low_ext = (lba >> 24) & 0xf; 8647 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8648 } 8649 cdb->command = command; 8650 cdb->control = control; 8651 } else { 8652 struct ata_pass_32 *cdb; 8653 uint8_t tmp_lba[8]; 8654 8655 cdb = (struct ata_pass_32 *)cdb_ptr; 8656 cdb_len = sizeof(*cdb); 8657 bzero(cdb, cdb_len); 8658 cdb->opcode = VARIABLE_LEN_CDB; 8659 cdb->control = control; 8660 cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32, 8661 service_action); 8662 scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action); 8663 cdb->protocol = protocol; 8664 cdb->flags = ata_flags; 8665 8666 if ((protocol & AP_EXTEND) == 0) { 8667 lba &= 0x0fffffff; 8668 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8669 features &= 0xff; 8670 sector_count &= 0xff; 8671 } else { 8672 cdb->device = device | ATA_DEV_LBA; 8673 } 8674 scsi_u64to8b(lba, tmp_lba); 8675 bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba)); 8676 scsi_ulto2b(features, cdb->features); 8677 scsi_ulto2b(sector_count, cdb->count); 8678 cdb->command = command; 8679 cdb->icc = icc; 8680 scsi_ulto4b(auxiliary, cdb->auxiliary); 8681 } 8682 8683 cam_fill_csio(csio, 8684 retries, 8685 cbfcnp, 8686 cam_flags, 8687 tag_action, 8688 data_ptr, 8689 dxfer_len, 8690 sense_len, 8691 cmd_size, 8692 timeout); 8693 bailout: 8694 return (retval); 8695 } 8696 8697 void 8698 scsi_ata_pass_16(struct ccb_scsiio *csio, uint32_t retries, 8699 void (*cbfcnp)(struct cam_periph *, union ccb *), 8700 uint32_t flags, uint8_t tag_action, 8701 uint8_t protocol, uint8_t ata_flags, uint16_t features, 8702 uint16_t sector_count, uint64_t lba, uint8_t command, 8703 uint8_t control, uint8_t *data_ptr, uint16_t dxfer_len, 8704 uint8_t sense_len, uint32_t timeout) 8705 { 8706 struct ata_pass_16 *ata_cmd; 8707 8708 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes; 8709 ata_cmd->opcode = ATA_PASS_16; 8710 ata_cmd->protocol = protocol; 8711 ata_cmd->flags = ata_flags; 8712 ata_cmd->features_ext = features >> 8; 8713 ata_cmd->features = features; 8714 ata_cmd->sector_count_ext = sector_count >> 8; 8715 ata_cmd->sector_count = sector_count; 8716 ata_cmd->lba_low = lba; 8717 ata_cmd->lba_mid = lba >> 8; 8718 ata_cmd->lba_high = lba >> 16; 8719 ata_cmd->device = ATA_DEV_LBA; 8720 if (protocol & AP_EXTEND) { 8721 ata_cmd->lba_low_ext = lba >> 24; 8722 ata_cmd->lba_mid_ext = lba >> 32; 8723 ata_cmd->lba_high_ext = lba >> 40; 8724 } else 8725 ata_cmd->device |= (lba >> 24) & 0x0f; 8726 ata_cmd->command = command; 8727 ata_cmd->control = control; 8728 8729 cam_fill_csio(csio, 8730 retries, 8731 cbfcnp, 8732 flags, 8733 tag_action, 8734 data_ptr, 8735 dxfer_len, 8736 sense_len, 8737 sizeof(*ata_cmd), 8738 timeout); 8739 } 8740 8741 void 8742 scsi_unmap(struct ccb_scsiio *csio, uint32_t retries, 8743 void (*cbfcnp)(struct cam_periph *, union ccb *), 8744 uint8_t tag_action, uint8_t byte2, 8745 uint8_t *data_ptr, uint16_t dxfer_len, uint8_t sense_len, 8746 uint32_t timeout) 8747 { 8748 struct scsi_unmap *scsi_cmd; 8749 8750 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; 8751 scsi_cmd->opcode = UNMAP; 8752 scsi_cmd->byte2 = byte2; 8753 scsi_ulto4b(0, scsi_cmd->reserved); 8754 scsi_cmd->group = 0; 8755 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8756 scsi_cmd->control = 0; 8757 8758 cam_fill_csio(csio, 8759 retries, 8760 cbfcnp, 8761 /*flags*/CAM_DIR_OUT, 8762 tag_action, 8763 data_ptr, 8764 dxfer_len, 8765 sense_len, 8766 sizeof(*scsi_cmd), 8767 timeout); 8768 } 8769 8770 void 8771 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, uint32_t retries, 8772 void (*cbfcnp)(struct cam_periph *, union ccb*), 8773 uint8_t tag_action, int pcv, uint8_t page_code, 8774 uint8_t *data_ptr, uint16_t allocation_length, 8775 uint8_t sense_len, uint32_t timeout) 8776 { 8777 struct scsi_receive_diag *scsi_cmd; 8778 8779 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; 8780 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8781 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; 8782 if (pcv) { 8783 scsi_cmd->byte2 |= SRD_PCV; 8784 scsi_cmd->page_code = page_code; 8785 } 8786 scsi_ulto2b(allocation_length, scsi_cmd->length); 8787 8788 cam_fill_csio(csio, 8789 retries, 8790 cbfcnp, 8791 /*flags*/CAM_DIR_IN, 8792 tag_action, 8793 data_ptr, 8794 allocation_length, 8795 sense_len, 8796 sizeof(*scsi_cmd), 8797 timeout); 8798 } 8799 8800 void 8801 scsi_send_diagnostic(struct ccb_scsiio *csio, uint32_t retries, 8802 void (*cbfcnp)(struct cam_periph *, union ccb *), 8803 uint8_t tag_action, int unit_offline, int device_offline, 8804 int self_test, int page_format, int self_test_code, 8805 uint8_t *data_ptr, uint16_t param_list_length, 8806 uint8_t sense_len, uint32_t timeout) 8807 { 8808 struct scsi_send_diag *scsi_cmd; 8809 8810 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; 8811 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8812 scsi_cmd->opcode = SEND_DIAGNOSTIC; 8813 8814 /* 8815 * The default self-test mode control and specific test 8816 * control are mutually exclusive. 8817 */ 8818 if (self_test) 8819 self_test_code = SSD_SELF_TEST_CODE_NONE; 8820 8821 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) 8822 & SSD_SELF_TEST_CODE_MASK) 8823 | (unit_offline ? SSD_UNITOFFL : 0) 8824 | (device_offline ? SSD_DEVOFFL : 0) 8825 | (self_test ? SSD_SELFTEST : 0) 8826 | (page_format ? SSD_PF : 0); 8827 scsi_ulto2b(param_list_length, scsi_cmd->length); 8828 8829 cam_fill_csio(csio, 8830 retries, 8831 cbfcnp, 8832 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8833 tag_action, 8834 data_ptr, 8835 param_list_length, 8836 sense_len, 8837 sizeof(*scsi_cmd), 8838 timeout); 8839 } 8840 8841 void 8842 scsi_get_physical_element_status(struct ccb_scsiio *csio, uint32_t retries, 8843 void (*cbfcnp)(struct cam_periph *, union ccb *), 8844 uint8_t tag_action, uint8_t *data_ptr, 8845 uint16_t allocation_length, uint8_t report_type, 8846 uint32_t starting_element, 8847 uint8_t sense_len, uint32_t timeout) 8848 { 8849 struct scsi_get_physical_element_status *scsi_cmd; 8850 8851 scsi_cmd = (struct scsi_get_physical_element_status *)&csio->cdb_io.cdb_bytes; 8852 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8853 scsi_cmd->opcode = SERVICE_ACTION_IN; 8854 scsi_cmd->service_action = GET_PHYSICAL_ELEMENT_STATUS; 8855 scsi_ulto4b(starting_element, scsi_cmd->starting_element); 8856 scsi_ulto4b(allocation_length, scsi_cmd->allocation_length); 8857 8858 cam_fill_csio(csio, 8859 retries, 8860 cbfcnp, 8861 /*flags*/ CAM_DIR_IN, 8862 tag_action, 8863 data_ptr, 8864 allocation_length, 8865 sense_len, 8866 sizeof(*scsi_cmd), 8867 timeout); 8868 } 8869 8870 void 8871 scsi_remove_element_and_truncate(struct ccb_scsiio *csio, uint32_t retries, 8872 void (*cbfcnp)(struct cam_periph *, union ccb *), 8873 uint8_t tag_action, 8874 uint64_t requested_capacity, uint32_t element_id, 8875 uint8_t sense_len, uint32_t timeout) 8876 { 8877 struct scsi_remove_element_and_truncate *scsi_cmd; 8878 8879 scsi_cmd = (struct scsi_remove_element_and_truncate *)&csio->cdb_io.cdb_bytes; 8880 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8881 scsi_cmd->opcode = SERVICE_ACTION_IN; 8882 scsi_cmd->service_action = REMOVE_ELEMENT_AND_TRUNCATE; 8883 scsi_u64to8b(requested_capacity, scsi_cmd->requested_capacity); 8884 scsi_ulto4b(element_id, scsi_cmd->element_identifier); 8885 8886 cam_fill_csio(csio, 8887 retries, 8888 cbfcnp, 8889 /*flags*/ CAM_DIR_OUT, 8890 tag_action, 8891 NULL, 8892 0, 8893 sense_len, 8894 sizeof(*scsi_cmd), 8895 timeout); 8896 } 8897 8898 void 8899 scsi_restore_elements_and_rebuild(struct ccb_scsiio *csio, uint32_t retries, 8900 void (*cbfcnp)(struct cam_periph *, union ccb *), 8901 uint8_t tag_action, 8902 uint8_t sense_len, uint32_t timeout) 8903 { 8904 struct scsi_service_action_in *scsi_cmd; 8905 8906 scsi_cmd = (struct scsi_service_action_in *)&csio->cdb_io.cdb_bytes; 8907 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8908 scsi_cmd->opcode = SERVICE_ACTION_IN; 8909 scsi_cmd->service_action = RESTORE_ELEMENTS_AND_REBUILD; 8910 8911 cam_fill_csio(csio, 8912 retries, 8913 cbfcnp, 8914 /*flags*/ CAM_DIR_OUT, 8915 tag_action, 8916 NULL, 8917 0, 8918 sense_len, 8919 sizeof(*scsi_cmd), 8920 timeout); 8921 } 8922 8923 void 8924 scsi_read_buffer(struct ccb_scsiio *csio, uint32_t retries, 8925 void (*cbfcnp)(struct cam_periph *, union ccb*), 8926 uint8_t tag_action, int mode, 8927 uint8_t buffer_id, uint32_t offset, 8928 uint8_t *data_ptr, uint32_t allocation_length, 8929 uint8_t sense_len, uint32_t timeout) 8930 { 8931 struct scsi_read_buffer *scsi_cmd; 8932 8933 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes; 8934 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8935 scsi_cmd->opcode = READ_BUFFER; 8936 scsi_cmd->byte2 = mode; 8937 scsi_cmd->buffer_id = buffer_id; 8938 scsi_ulto3b(offset, scsi_cmd->offset); 8939 scsi_ulto3b(allocation_length, scsi_cmd->length); 8940 8941 cam_fill_csio(csio, 8942 retries, 8943 cbfcnp, 8944 /*flags*/CAM_DIR_IN, 8945 tag_action, 8946 data_ptr, 8947 allocation_length, 8948 sense_len, 8949 sizeof(*scsi_cmd), 8950 timeout); 8951 } 8952 8953 void 8954 scsi_write_buffer(struct ccb_scsiio *csio, uint32_t retries, 8955 void (*cbfcnp)(struct cam_periph *, union ccb *), 8956 uint8_t tag_action, int mode, 8957 uint8_t buffer_id, uint32_t offset, 8958 uint8_t *data_ptr, uint32_t param_list_length, 8959 uint8_t sense_len, uint32_t timeout) 8960 { 8961 struct scsi_write_buffer *scsi_cmd; 8962 8963 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes; 8964 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8965 scsi_cmd->opcode = WRITE_BUFFER; 8966 scsi_cmd->byte2 = mode; 8967 scsi_cmd->buffer_id = buffer_id; 8968 scsi_ulto3b(offset, scsi_cmd->offset); 8969 scsi_ulto3b(param_list_length, scsi_cmd->length); 8970 8971 cam_fill_csio(csio, 8972 retries, 8973 cbfcnp, 8974 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8975 tag_action, 8976 data_ptr, 8977 param_list_length, 8978 sense_len, 8979 sizeof(*scsi_cmd), 8980 timeout); 8981 } 8982 8983 void 8984 scsi_start_stop(struct ccb_scsiio *csio, uint32_t retries, 8985 void (*cbfcnp)(struct cam_periph *, union ccb *), 8986 uint8_t tag_action, int start, int load_eject, 8987 int immediate, uint8_t sense_len, uint32_t timeout) 8988 { 8989 struct scsi_start_stop_unit *scsi_cmd; 8990 int extra_flags = 0; 8991 8992 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; 8993 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8994 scsi_cmd->opcode = START_STOP_UNIT; 8995 if (start != 0) { 8996 scsi_cmd->how |= SSS_START; 8997 /* it takes a lot of power to start a drive */ 8998 extra_flags |= CAM_HIGH_POWER; 8999 } 9000 if (load_eject != 0) 9001 scsi_cmd->how |= SSS_LOEJ; 9002 if (immediate != 0) 9003 scsi_cmd->byte2 |= SSS_IMMED; 9004 9005 cam_fill_csio(csio, 9006 retries, 9007 cbfcnp, 9008 /*flags*/CAM_DIR_NONE | extra_flags, 9009 tag_action, 9010 /*data_ptr*/NULL, 9011 /*dxfer_len*/0, 9012 sense_len, 9013 sizeof(*scsi_cmd), 9014 timeout); 9015 } 9016 9017 void 9018 scsi_read_attribute(struct ccb_scsiio *csio, uint32_t retries, 9019 void (*cbfcnp)(struct cam_periph *, union ccb *), 9020 uint8_t tag_action, uint8_t service_action, 9021 uint32_t element, uint8_t elem_type, int logical_volume, 9022 int partition, uint32_t first_attribute, int cache, 9023 uint8_t *data_ptr, uint32_t length, int sense_len, 9024 uint32_t timeout) 9025 { 9026 struct scsi_read_attribute *scsi_cmd; 9027 9028 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes; 9029 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9030 9031 scsi_cmd->opcode = READ_ATTRIBUTE; 9032 scsi_cmd->service_action = service_action; 9033 scsi_ulto2b(element, scsi_cmd->element); 9034 scsi_cmd->elem_type = elem_type; 9035 scsi_cmd->logical_volume = logical_volume; 9036 scsi_cmd->partition = partition; 9037 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute); 9038 scsi_ulto4b(length, scsi_cmd->length); 9039 if (cache != 0) 9040 scsi_cmd->cache |= SRA_CACHE; 9041 9042 cam_fill_csio(csio, 9043 retries, 9044 cbfcnp, 9045 /*flags*/CAM_DIR_IN, 9046 tag_action, 9047 /*data_ptr*/data_ptr, 9048 /*dxfer_len*/length, 9049 sense_len, 9050 sizeof(*scsi_cmd), 9051 timeout); 9052 } 9053 9054 void 9055 scsi_write_attribute(struct ccb_scsiio *csio, uint32_t retries, 9056 void (*cbfcnp)(struct cam_periph *, union ccb *), 9057 uint8_t tag_action, uint32_t element, int logical_volume, 9058 int partition, int wtc, uint8_t *data_ptr, 9059 uint32_t length, int sense_len, uint32_t timeout) 9060 { 9061 struct scsi_write_attribute *scsi_cmd; 9062 9063 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes; 9064 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9065 9066 scsi_cmd->opcode = WRITE_ATTRIBUTE; 9067 if (wtc != 0) 9068 scsi_cmd->byte2 = SWA_WTC; 9069 scsi_ulto3b(element, scsi_cmd->element); 9070 scsi_cmd->logical_volume = logical_volume; 9071 scsi_cmd->partition = partition; 9072 scsi_ulto4b(length, scsi_cmd->length); 9073 9074 cam_fill_csio(csio, 9075 retries, 9076 cbfcnp, 9077 /*flags*/CAM_DIR_OUT, 9078 tag_action, 9079 /*data_ptr*/data_ptr, 9080 /*dxfer_len*/length, 9081 sense_len, 9082 sizeof(*scsi_cmd), 9083 timeout); 9084 } 9085 9086 void 9087 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, 9088 void (*cbfcnp)(struct cam_periph *, union ccb *), 9089 uint8_t tag_action, int service_action, 9090 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9091 int timeout) 9092 { 9093 struct scsi_per_res_in *scsi_cmd; 9094 9095 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes; 9096 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9097 9098 scsi_cmd->opcode = PERSISTENT_RES_IN; 9099 scsi_cmd->action = service_action; 9100 scsi_ulto2b(dxfer_len, scsi_cmd->length); 9101 9102 cam_fill_csio(csio, 9103 retries, 9104 cbfcnp, 9105 /*flags*/CAM_DIR_IN, 9106 tag_action, 9107 data_ptr, 9108 dxfer_len, 9109 sense_len, 9110 sizeof(*scsi_cmd), 9111 timeout); 9112 } 9113 9114 void 9115 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, 9116 void (*cbfcnp)(struct cam_periph *, union ccb *), 9117 uint8_t tag_action, int service_action, 9118 int scope, int res_type, uint8_t *data_ptr, 9119 uint32_t dxfer_len, int sense_len, int timeout) 9120 { 9121 struct scsi_per_res_out *scsi_cmd; 9122 9123 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes; 9124 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9125 9126 scsi_cmd->opcode = PERSISTENT_RES_OUT; 9127 scsi_cmd->action = service_action; 9128 scsi_cmd->scope_type = scope | res_type; 9129 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9130 9131 cam_fill_csio(csio, 9132 retries, 9133 cbfcnp, 9134 /*flags*/CAM_DIR_OUT, 9135 tag_action, 9136 /*data_ptr*/data_ptr, 9137 /*dxfer_len*/dxfer_len, 9138 sense_len, 9139 sizeof(*scsi_cmd), 9140 timeout); 9141 } 9142 9143 void 9144 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, 9145 void (*cbfcnp)(struct cam_periph *, union ccb *), 9146 uint8_t tag_action, uint32_t security_protocol, 9147 uint32_t security_protocol_specific, int byte4, 9148 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9149 int timeout) 9150 { 9151 struct scsi_security_protocol_in *scsi_cmd; 9152 9153 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes; 9154 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9155 9156 scsi_cmd->opcode = SECURITY_PROTOCOL_IN; 9157 9158 scsi_cmd->security_protocol = security_protocol; 9159 scsi_ulto2b(security_protocol_specific, 9160 scsi_cmd->security_protocol_specific); 9161 scsi_cmd->byte4 = byte4; 9162 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9163 9164 cam_fill_csio(csio, 9165 retries, 9166 cbfcnp, 9167 /*flags*/CAM_DIR_IN, 9168 tag_action, 9169 data_ptr, 9170 dxfer_len, 9171 sense_len, 9172 sizeof(*scsi_cmd), 9173 timeout); 9174 } 9175 9176 void 9177 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, 9178 void (*cbfcnp)(struct cam_periph *, union ccb *), 9179 uint8_t tag_action, uint32_t security_protocol, 9180 uint32_t security_protocol_specific, int byte4, 9181 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9182 int timeout) 9183 { 9184 struct scsi_security_protocol_out *scsi_cmd; 9185 9186 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes; 9187 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9188 9189 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT; 9190 9191 scsi_cmd->security_protocol = security_protocol; 9192 scsi_ulto2b(security_protocol_specific, 9193 scsi_cmd->security_protocol_specific); 9194 scsi_cmd->byte4 = byte4; 9195 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9196 9197 cam_fill_csio(csio, 9198 retries, 9199 cbfcnp, 9200 /*flags*/CAM_DIR_OUT, 9201 tag_action, 9202 data_ptr, 9203 dxfer_len, 9204 sense_len, 9205 sizeof(*scsi_cmd), 9206 timeout); 9207 } 9208 9209 void 9210 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, 9211 void (*cbfcnp)(struct cam_periph *, union ccb *), 9212 uint8_t tag_action, int options, int req_opcode, 9213 int req_service_action, uint8_t *data_ptr, 9214 uint32_t dxfer_len, int sense_len, int timeout) 9215 { 9216 struct scsi_report_supported_opcodes *scsi_cmd; 9217 9218 scsi_cmd = (struct scsi_report_supported_opcodes *) 9219 &csio->cdb_io.cdb_bytes; 9220 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9221 9222 scsi_cmd->opcode = MAINTENANCE_IN; 9223 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES; 9224 scsi_cmd->options = options; 9225 scsi_cmd->requested_opcode = req_opcode; 9226 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action); 9227 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9228 9229 cam_fill_csio(csio, 9230 retries, 9231 cbfcnp, 9232 /*flags*/CAM_DIR_IN, 9233 tag_action, 9234 data_ptr, 9235 dxfer_len, 9236 sense_len, 9237 sizeof(*scsi_cmd), 9238 timeout); 9239 } 9240 9241 /* 9242 * Try make as good a match as possible with 9243 * available sub drivers 9244 */ 9245 int 9246 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9247 { 9248 struct scsi_inquiry_pattern *entry; 9249 struct scsi_inquiry_data *inq; 9250 9251 entry = (struct scsi_inquiry_pattern *)table_entry; 9252 inq = (struct scsi_inquiry_data *)inqbuffer; 9253 9254 if (((SID_TYPE(inq) == entry->type) 9255 || (entry->type == T_ANY)) 9256 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9257 : entry->media_type & SIP_MEDIA_FIXED) 9258 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9259 && (cam_strmatch(inq->product, entry->product, 9260 sizeof(inq->product)) == 0) 9261 && (cam_strmatch(inq->revision, entry->revision, 9262 sizeof(inq->revision)) == 0)) { 9263 return (0); 9264 } 9265 return (-1); 9266 } 9267 9268 /* 9269 * Try make as good a match as possible with 9270 * available sub drivers 9271 */ 9272 int 9273 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9274 { 9275 struct scsi_static_inquiry_pattern *entry; 9276 struct scsi_inquiry_data *inq; 9277 9278 entry = (struct scsi_static_inquiry_pattern *)table_entry; 9279 inq = (struct scsi_inquiry_data *)inqbuffer; 9280 9281 if (((SID_TYPE(inq) == entry->type) 9282 || (entry->type == T_ANY)) 9283 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9284 : entry->media_type & SIP_MEDIA_FIXED) 9285 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9286 && (cam_strmatch(inq->product, entry->product, 9287 sizeof(inq->product)) == 0) 9288 && (cam_strmatch(inq->revision, entry->revision, 9289 sizeof(inq->revision)) == 0)) { 9290 return (0); 9291 } 9292 return (-1); 9293 } 9294 9295 /** 9296 * Compare two buffers of vpd device descriptors for a match. 9297 * 9298 * \param lhs Pointer to first buffer of descriptors to compare. 9299 * \param lhs_len The length of the first buffer. 9300 * \param rhs Pointer to second buffer of descriptors to compare. 9301 * \param rhs_len The length of the second buffer. 9302 * 9303 * \return 0 on a match, -1 otherwise. 9304 * 9305 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching 9306 * against each element in rhs until all data are exhausted or we have found 9307 * a match. 9308 */ 9309 int 9310 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) 9311 { 9312 struct scsi_vpd_id_descriptor *lhs_id; 9313 struct scsi_vpd_id_descriptor *lhs_last; 9314 struct scsi_vpd_id_descriptor *rhs_last; 9315 uint8_t *lhs_end; 9316 uint8_t *rhs_end; 9317 9318 lhs_end = lhs + lhs_len; 9319 rhs_end = rhs + rhs_len; 9320 9321 /* 9322 * rhs_last and lhs_last are the last possible position of a valid 9323 * descriptor assuming it had a zero length identifier. We use 9324 * these variables to insure we can safely dereference the length 9325 * field in our loop termination tests. 9326 */ 9327 lhs_last = (struct scsi_vpd_id_descriptor *) 9328 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9329 rhs_last = (struct scsi_vpd_id_descriptor *) 9330 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9331 9332 lhs_id = (struct scsi_vpd_id_descriptor *)lhs; 9333 while (lhs_id <= lhs_last 9334 && (lhs_id->identifier + lhs_id->length) <= lhs_end) { 9335 struct scsi_vpd_id_descriptor *rhs_id; 9336 9337 rhs_id = (struct scsi_vpd_id_descriptor *)rhs; 9338 while (rhs_id <= rhs_last 9339 && (rhs_id->identifier + rhs_id->length) <= rhs_end) { 9340 if ((rhs_id->id_type & 9341 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) == 9342 (lhs_id->id_type & 9343 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) 9344 && rhs_id->length == lhs_id->length 9345 && memcmp(rhs_id->identifier, lhs_id->identifier, 9346 rhs_id->length) == 0) 9347 return (0); 9348 9349 rhs_id = (struct scsi_vpd_id_descriptor *) 9350 (rhs_id->identifier + rhs_id->length); 9351 } 9352 lhs_id = (struct scsi_vpd_id_descriptor *) 9353 (lhs_id->identifier + lhs_id->length); 9354 } 9355 return (-1); 9356 } 9357 9358 #ifdef _KERNEL 9359 int 9360 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id) 9361 { 9362 struct cam_ed *device; 9363 struct scsi_vpd_supported_pages *vpds; 9364 int i, num_pages; 9365 9366 device = periph->path->device; 9367 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; 9368 9369 if (vpds != NULL) { 9370 num_pages = device->supported_vpds_len - 9371 SVPD_SUPPORTED_PAGES_HDR_LEN; 9372 for (i = 0; i < num_pages; i++) { 9373 if (vpds->page_list[i] == page_id) 9374 return (1); 9375 } 9376 } 9377 9378 return (0); 9379 } 9380 9381 static void 9382 init_scsi_delay(void) 9383 { 9384 int delay; 9385 9386 delay = SCSI_DELAY; 9387 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); 9388 9389 if (set_scsi_delay(delay) != 0) { 9390 printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); 9391 set_scsi_delay(SCSI_DELAY); 9392 } 9393 } 9394 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); 9395 9396 static int 9397 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) 9398 { 9399 int error, delay; 9400 9401 delay = scsi_delay; 9402 error = sysctl_handle_int(oidp, &delay, 0, req); 9403 if (error != 0 || req->newptr == NULL) 9404 return (error); 9405 return (set_scsi_delay(delay)); 9406 } 9407 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, 9408 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 9409 0, 0, sysctl_scsi_delay, "I", 9410 "Delay to allow devices to settle after a SCSI bus reset (ms)"); 9411 9412 static int 9413 set_scsi_delay(int delay) 9414 { 9415 /* 9416 * If someone sets this to 0, we assume that they want the 9417 * minimum allowable bus settle delay. 9418 */ 9419 if (delay == 0) { 9420 printf("cam: using minimum scsi_delay (%dms)\n", 9421 SCSI_MIN_DELAY); 9422 delay = SCSI_MIN_DELAY; 9423 } 9424 if (delay < SCSI_MIN_DELAY) 9425 return (EINVAL); 9426 scsi_delay = delay; 9427 return (0); 9428 } 9429 #endif /* _KERNEL */ 9430