1 /*- 2 * Implementation of Utility functions for all SCSI device types. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/types.h> 37 #include <sys/stdint.h> 38 39 #ifdef _KERNEL 40 #include "opt_scsi.h" 41 42 #include <sys/systm.h> 43 #include <sys/libkern.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/ctype.h> 50 #else 51 #include <errno.h> 52 #include <stdio.h> 53 #include <stdlib.h> 54 #include <string.h> 55 #include <ctype.h> 56 #endif 57 58 #include <cam/cam.h> 59 #include <cam/cam_ccb.h> 60 #include <cam/cam_queue.h> 61 #include <cam/cam_xpt.h> 62 #include <cam/scsi/scsi_all.h> 63 #include <sys/ata.h> 64 #include <sys/sbuf.h> 65 66 #ifdef _KERNEL 67 #include <cam/cam_periph.h> 68 #include <cam/cam_xpt_sim.h> 69 #include <cam/cam_xpt_periph.h> 70 #include <cam/cam_xpt_internal.h> 71 #else 72 #include <camlib.h> 73 #include <stddef.h> 74 75 #ifndef FALSE 76 #define FALSE 0 77 #endif /* FALSE */ 78 #ifndef TRUE 79 #define TRUE 1 80 #endif /* TRUE */ 81 #define ERESTART -1 /* restart syscall */ 82 #define EJUSTRETURN -2 /* don't modify regs, just return */ 83 #endif /* !_KERNEL */ 84 85 /* 86 * This is the default number of milliseconds we wait for devices to settle 87 * after a SCSI bus reset. 88 */ 89 #ifndef SCSI_DELAY 90 #define SCSI_DELAY 2000 91 #endif 92 /* 93 * All devices need _some_ sort of bus settle delay, so we'll set it to 94 * a minimum value of 100ms. Note that this is pertinent only for SPI- 95 * not transport like Fibre Channel or iSCSI where 'delay' is completely 96 * meaningless. 97 */ 98 #ifndef SCSI_MIN_DELAY 99 #define SCSI_MIN_DELAY 100 100 #endif 101 /* 102 * Make sure the user isn't using seconds instead of milliseconds. 103 */ 104 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) 105 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" 106 #endif 107 108 int scsi_delay; 109 110 static int ascentrycomp(const void *key, const void *member); 111 static int senseentrycomp(const void *key, const void *member); 112 static void fetchtableentries(int sense_key, int asc, int ascq, 113 struct scsi_inquiry_data *, 114 const struct sense_key_table_entry **, 115 const struct asc_table_entry **); 116 117 #ifdef _KERNEL 118 static void init_scsi_delay(void); 119 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); 120 static int set_scsi_delay(int delay); 121 #endif 122 123 #if !defined(SCSI_NO_OP_STRINGS) 124 125 #define D (1 << T_DIRECT) 126 #define T (1 << T_SEQUENTIAL) 127 #define L (1 << T_PRINTER) 128 #define P (1 << T_PROCESSOR) 129 #define W (1 << T_WORM) 130 #define R (1 << T_CDROM) 131 #define O (1 << T_OPTICAL) 132 #define M (1 << T_CHANGER) 133 #define A (1 << T_STORARRAY) 134 #define E (1 << T_ENCLOSURE) 135 #define B (1 << T_RBC) 136 #define K (1 << T_OCRW) 137 #define V (1 << T_ADC) 138 #define F (1 << T_OSD) 139 #define S (1 << T_SCANNER) 140 #define C (1 << T_COMM) 141 142 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) 143 144 static struct op_table_entry plextor_cd_ops[] = { 145 { 0xD8, R, "CD-DA READ" } 146 }; 147 148 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { 149 { 150 /* 151 * I believe that 0xD8 is the Plextor proprietary command 152 * to read CD-DA data. I'm not sure which Plextor CDROM 153 * models support the command, though. I know for sure 154 * that the 4X, 8X, and 12X models do, and presumably the 155 * 12-20X does. I don't know about any earlier models, 156 * though. If anyone has any more complete information, 157 * feel free to change this quirk entry. 158 */ 159 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, 160 nitems(plextor_cd_ops), 161 plextor_cd_ops 162 } 163 }; 164 165 static struct op_table_entry scsi_op_codes[] = { 166 /* 167 * From: http://www.t10.org/lists/op-num.txt 168 * Modifications by Kenneth Merry (ken@FreeBSD.ORG) 169 * and Jung-uk Kim (jkim@FreeBSD.org) 170 * 171 * Note: order is important in this table, scsi_op_desc() currently 172 * depends on the opcodes in the table being in order to save 173 * search time. 174 * Note: scanner and comm. devices are carried over from the previous 175 * version because they were removed in the latest spec. 176 */ 177 /* File: OP-NUM.TXT 178 * 179 * SCSI Operation Codes 180 * Numeric Sorted Listing 181 * as of 5/26/15 182 * 183 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 184 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- 185 * . L - PRINTER DEVICE (SSC) M = Mandatory 186 * . P - PROCESSOR DEVICE (SPC) O = Optional 187 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. 188 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete 189 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 190 * . . .M - MEDIA CHANGER DEVICE (SMC-2) 191 * . . . A - STORAGE ARRAY DEVICE (SCC-2) 192 * . . . .E - ENCLOSURE SERVICES DEVICE (SES) 193 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 194 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 195 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 196 * . . . . .F - OBJECT-BASED STORAGE (OSD) 197 * OP DTLPWROMAEBKVF Description 198 * -- -------------- ---------------------------------------------- */ 199 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ 200 { 0x00, ALL, "TEST UNIT READY" }, 201 /* 01 M REWIND */ 202 { 0x01, T, "REWIND" }, 203 /* 01 Z V ZZZZ REZERO UNIT */ 204 { 0x01, D | W | R | O | M, "REZERO UNIT" }, 205 /* 02 VVVVVV V */ 206 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ 207 { 0x03, ALL, "REQUEST SENSE" }, 208 /* 04 M OO FORMAT UNIT */ 209 { 0x04, D | R | O, "FORMAT UNIT" }, 210 /* 04 O FORMAT MEDIUM */ 211 { 0x04, T, "FORMAT MEDIUM" }, 212 /* 04 O FORMAT */ 213 { 0x04, L, "FORMAT" }, 214 /* 05 VMVVVV V READ BLOCK LIMITS */ 215 { 0x05, T, "READ BLOCK LIMITS" }, 216 /* 06 VVVVVV V */ 217 /* 07 OVV O OV REASSIGN BLOCKS */ 218 { 0x07, D | W | O, "REASSIGN BLOCKS" }, 219 /* 07 O INITIALIZE ELEMENT STATUS */ 220 { 0x07, M, "INITIALIZE ELEMENT STATUS" }, 221 /* 08 MOV O OV READ(6) */ 222 { 0x08, D | T | W | O, "READ(6)" }, 223 /* 08 O RECEIVE */ 224 { 0x08, P, "RECEIVE" }, 225 /* 08 GET MESSAGE(6) */ 226 { 0x08, C, "GET MESSAGE(6)" }, 227 /* 09 VVVVVV V */ 228 /* 0A OO O OV WRITE(6) */ 229 { 0x0A, D | T | W | O, "WRITE(6)" }, 230 /* 0A M SEND(6) */ 231 { 0x0A, P, "SEND(6)" }, 232 /* 0A SEND MESSAGE(6) */ 233 { 0x0A, C, "SEND MESSAGE(6)" }, 234 /* 0A M PRINT */ 235 { 0x0A, L, "PRINT" }, 236 /* 0B Z ZOZV SEEK(6) */ 237 { 0x0B, D | W | R | O, "SEEK(6)" }, 238 /* 0B O SET CAPACITY */ 239 { 0x0B, T, "SET CAPACITY" }, 240 /* 0B O SLEW AND PRINT */ 241 { 0x0B, L, "SLEW AND PRINT" }, 242 /* 0C VVVVVV V */ 243 /* 0D VVVVVV V */ 244 /* 0E VVVVVV V */ 245 /* 0F VOVVVV V READ REVERSE(6) */ 246 { 0x0F, T, "READ REVERSE(6)" }, 247 /* 10 VM VVV WRITE FILEMARKS(6) */ 248 { 0x10, T, "WRITE FILEMARKS(6)" }, 249 /* 10 O SYNCHRONIZE BUFFER */ 250 { 0x10, L, "SYNCHRONIZE BUFFER" }, 251 /* 11 VMVVVV SPACE(6) */ 252 { 0x11, T, "SPACE(6)" }, 253 /* 12 MMMMMMMMMMMMMM INQUIRY */ 254 { 0x12, ALL, "INQUIRY" }, 255 /* 13 V VVVV */ 256 /* 13 O VERIFY(6) */ 257 { 0x13, T, "VERIFY(6)" }, 258 /* 14 VOOVVV RECOVER BUFFERED DATA */ 259 { 0x14, T | L, "RECOVER BUFFERED DATA" }, 260 /* 15 OMO O OOOO OO MODE SELECT(6) */ 261 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, 262 /* 16 ZZMZO OOOZ O RESERVE(6) */ 263 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, 264 /* 16 Z RESERVE ELEMENT(6) */ 265 { 0x16, M, "RESERVE ELEMENT(6)" }, 266 /* 17 ZZMZO OOOZ O RELEASE(6) */ 267 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, 268 /* 17 Z RELEASE ELEMENT(6) */ 269 { 0x17, M, "RELEASE ELEMENT(6)" }, 270 /* 18 ZZZZOZO Z COPY */ 271 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, 272 /* 19 VMVVVV ERASE(6) */ 273 { 0x19, T, "ERASE(6)" }, 274 /* 1A OMO O OOOO OO MODE SENSE(6) */ 275 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, 276 /* 1B O OOO O MO O START STOP UNIT */ 277 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, 278 /* 1B O M LOAD UNLOAD */ 279 { 0x1B, T | V, "LOAD UNLOAD" }, 280 /* 1B SCAN */ 281 { 0x1B, S, "SCAN" }, 282 /* 1B O STOP PRINT */ 283 { 0x1B, L, "STOP PRINT" }, 284 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ 285 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, 286 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ 287 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, 288 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ 289 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, 290 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ 291 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, 292 /* 1F */ 293 /* 20 V VVV V */ 294 /* 21 V VVV V */ 295 /* 22 V VVV V */ 296 /* 23 V V V V */ 297 /* 23 O READ FORMAT CAPACITIES */ 298 { 0x23, R, "READ FORMAT CAPACITIES" }, 299 /* 24 V VV SET WINDOW */ 300 { 0x24, S, "SET WINDOW" }, 301 /* 25 M M M M READ CAPACITY(10) */ 302 { 0x25, D | W | O | B, "READ CAPACITY(10)" }, 303 /* 25 O READ CAPACITY */ 304 { 0x25, R, "READ CAPACITY" }, 305 /* 25 M READ CARD CAPACITY */ 306 { 0x25, K, "READ CARD CAPACITY" }, 307 /* 25 GET WINDOW */ 308 { 0x25, S, "GET WINDOW" }, 309 /* 26 V VV */ 310 /* 27 V VV */ 311 /* 28 M MOM MM READ(10) */ 312 { 0x28, D | W | R | O | B | K | S, "READ(10)" }, 313 /* 28 GET MESSAGE(10) */ 314 { 0x28, C, "GET MESSAGE(10)" }, 315 /* 29 V VVO READ GENERATION */ 316 { 0x29, O, "READ GENERATION" }, 317 /* 2A O MOM MO WRITE(10) */ 318 { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, 319 /* 2A SEND(10) */ 320 { 0x2A, S, "SEND(10)" }, 321 /* 2A SEND MESSAGE(10) */ 322 { 0x2A, C, "SEND MESSAGE(10)" }, 323 /* 2B Z OOO O SEEK(10) */ 324 { 0x2B, D | W | R | O | K, "SEEK(10)" }, 325 /* 2B O LOCATE(10) */ 326 { 0x2B, T, "LOCATE(10)" }, 327 /* 2B O POSITION TO ELEMENT */ 328 { 0x2B, M, "POSITION TO ELEMENT" }, 329 /* 2C V OO ERASE(10) */ 330 { 0x2C, R | O, "ERASE(10)" }, 331 /* 2D O READ UPDATED BLOCK */ 332 { 0x2D, O, "READ UPDATED BLOCK" }, 333 /* 2D V */ 334 /* 2E O OOO MO WRITE AND VERIFY(10) */ 335 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, 336 /* 2F O OOO VERIFY(10) */ 337 { 0x2F, D | W | R | O, "VERIFY(10)" }, 338 /* 30 Z ZZZ SEARCH DATA HIGH(10) */ 339 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, 340 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ 341 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, 342 /* 31 OBJECT POSITION */ 343 { 0x31, S, "OBJECT POSITION" }, 344 /* 32 Z ZZZ SEARCH DATA LOW(10) */ 345 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, 346 /* 33 Z OZO SET LIMITS(10) */ 347 { 0x33, D | W | R | O, "SET LIMITS(10)" }, 348 /* 34 O O O O PRE-FETCH(10) */ 349 { 0x34, D | W | O | K, "PRE-FETCH(10)" }, 350 /* 34 M READ POSITION */ 351 { 0x34, T, "READ POSITION" }, 352 /* 34 GET DATA BUFFER STATUS */ 353 { 0x34, S, "GET DATA BUFFER STATUS" }, 354 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ 355 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, 356 /* 36 Z O O O LOCK UNLOCK CACHE(10) */ 357 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, 358 /* 37 O O READ DEFECT DATA(10) */ 359 { 0x37, D | O, "READ DEFECT DATA(10)" }, 360 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ 361 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, 362 /* 38 O O O MEDIUM SCAN */ 363 { 0x38, W | O | K, "MEDIUM SCAN" }, 364 /* 39 ZZZZOZO Z COMPARE */ 365 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, 366 /* 3A ZZZZOZO Z COPY AND VERIFY */ 367 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, 368 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ 369 { 0x3B, ALL, "WRITE BUFFER" }, 370 /* 3C OOOOOOOOOO OOO READ BUFFER */ 371 { 0x3C, ALL & ~(B), "READ BUFFER" }, 372 /* 3D O UPDATE BLOCK */ 373 { 0x3D, O, "UPDATE BLOCK" }, 374 /* 3E O O O READ LONG(10) */ 375 { 0x3E, D | W | O, "READ LONG(10)" }, 376 /* 3F O O O WRITE LONG(10) */ 377 { 0x3F, D | W | O, "WRITE LONG(10)" }, 378 /* 40 ZZZZOZOZ CHANGE DEFINITION */ 379 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, 380 /* 41 O WRITE SAME(10) */ 381 { 0x41, D, "WRITE SAME(10)" }, 382 /* 42 O UNMAP */ 383 { 0x42, D, "UNMAP" }, 384 /* 42 O READ SUB-CHANNEL */ 385 { 0x42, R, "READ SUB-CHANNEL" }, 386 /* 43 O READ TOC/PMA/ATIP */ 387 { 0x43, R, "READ TOC/PMA/ATIP" }, 388 /* 44 M M REPORT DENSITY SUPPORT */ 389 { 0x44, T | V, "REPORT DENSITY SUPPORT" }, 390 /* 44 READ HEADER */ 391 /* 45 O PLAY AUDIO(10) */ 392 { 0x45, R, "PLAY AUDIO(10)" }, 393 /* 46 M GET CONFIGURATION */ 394 { 0x46, R, "GET CONFIGURATION" }, 395 /* 47 O PLAY AUDIO MSF */ 396 { 0x47, R, "PLAY AUDIO MSF" }, 397 /* 48 O SANITIZE */ 398 { 0x48, D, "SANITIZE" }, 399 /* 49 */ 400 /* 4A M GET EVENT STATUS NOTIFICATION */ 401 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, 402 /* 4B O PAUSE/RESUME */ 403 { 0x4B, R, "PAUSE/RESUME" }, 404 /* 4C OOOOO OOOO OOO LOG SELECT */ 405 { 0x4C, ALL & ~(R | B), "LOG SELECT" }, 406 /* 4D OOOOO OOOO OMO LOG SENSE */ 407 { 0x4D, ALL & ~(R | B), "LOG SENSE" }, 408 /* 4E O STOP PLAY/SCAN */ 409 { 0x4E, R, "STOP PLAY/SCAN" }, 410 /* 4F */ 411 /* 50 O XDWRITE(10) */ 412 { 0x50, D, "XDWRITE(10)" }, 413 /* 51 O XPWRITE(10) */ 414 { 0x51, D, "XPWRITE(10)" }, 415 /* 51 O READ DISC INFORMATION */ 416 { 0x51, R, "READ DISC INFORMATION" }, 417 /* 52 O XDREAD(10) */ 418 { 0x52, D, "XDREAD(10)" }, 419 /* 52 O READ TRACK INFORMATION */ 420 { 0x52, R, "READ TRACK INFORMATION" }, 421 /* 53 O RESERVE TRACK */ 422 { 0x53, R, "RESERVE TRACK" }, 423 /* 54 O SEND OPC INFORMATION */ 424 { 0x54, R, "SEND OPC INFORMATION" }, 425 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ 426 { 0x55, ALL & ~(P), "MODE SELECT(10)" }, 427 /* 56 ZZMZO OOOZ RESERVE(10) */ 428 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, 429 /* 56 Z RESERVE ELEMENT(10) */ 430 { 0x56, M, "RESERVE ELEMENT(10)" }, 431 /* 57 ZZMZO OOOZ RELEASE(10) */ 432 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, 433 /* 57 Z RELEASE ELEMENT(10) */ 434 { 0x57, M, "RELEASE ELEMENT(10)" }, 435 /* 58 O REPAIR TRACK */ 436 { 0x58, R, "REPAIR TRACK" }, 437 /* 59 */ 438 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ 439 { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, 440 /* 5B O CLOSE TRACK/SESSION */ 441 { 0x5B, R, "CLOSE TRACK/SESSION" }, 442 /* 5C O READ BUFFER CAPACITY */ 443 { 0x5C, R, "READ BUFFER CAPACITY" }, 444 /* 5D O SEND CUE SHEET */ 445 { 0x5D, R, "SEND CUE SHEET" }, 446 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ 447 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, 448 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ 449 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, 450 /* 7E OO O OOOO O extended CDB */ 451 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, 452 /* 7F O M variable length CDB (more than 16 bytes) */ 453 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, 454 /* 80 Z XDWRITE EXTENDED(16) */ 455 { 0x80, D, "XDWRITE EXTENDED(16)" }, 456 /* 80 M WRITE FILEMARKS(16) */ 457 { 0x80, T, "WRITE FILEMARKS(16)" }, 458 /* 81 Z REBUILD(16) */ 459 { 0x81, D, "REBUILD(16)" }, 460 /* 81 O READ REVERSE(16) */ 461 { 0x81, T, "READ REVERSE(16)" }, 462 /* 82 Z REGENERATE(16) */ 463 { 0x82, D, "REGENERATE(16)" }, 464 /* 83 OOOOO O OO EXTENDED COPY */ 465 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, 466 /* 84 OOOOO O OO RECEIVE COPY RESULTS */ 467 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, 468 /* 85 O O O ATA COMMAND PASS THROUGH(16) */ 469 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, 470 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ 471 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, 472 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ 473 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, 474 /* 88 MM O O O READ(16) */ 475 { 0x88, D | T | W | O | B, "READ(16)" }, 476 /* 89 O COMPARE AND WRITE*/ 477 { 0x89, D, "COMPARE AND WRITE" }, 478 /* 8A OM O O O WRITE(16) */ 479 { 0x8A, D | T | W | O | B, "WRITE(16)" }, 480 /* 8B O ORWRITE */ 481 { 0x8B, D, "ORWRITE" }, 482 /* 8C OO O OO O M READ ATTRIBUTE */ 483 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, 484 /* 8D OO O OO O O WRITE ATTRIBUTE */ 485 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, 486 /* 8E O O O O WRITE AND VERIFY(16) */ 487 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, 488 /* 8F OO O O O VERIFY(16) */ 489 { 0x8F, D | T | W | O | B, "VERIFY(16)" }, 490 /* 90 O O O O PRE-FETCH(16) */ 491 { 0x90, D | W | O | B, "PRE-FETCH(16)" }, 492 /* 91 O O O O SYNCHRONIZE CACHE(16) */ 493 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, 494 /* 91 O SPACE(16) */ 495 { 0x91, T, "SPACE(16)" }, 496 /* 92 Z O O LOCK UNLOCK CACHE(16) */ 497 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, 498 /* 92 O LOCATE(16) */ 499 { 0x92, T, "LOCATE(16)" }, 500 /* 93 O WRITE SAME(16) */ 501 { 0x93, D, "WRITE SAME(16)" }, 502 /* 93 M ERASE(16) */ 503 { 0x93, T, "ERASE(16)" }, 504 /* 94 O ZBC OUT */ 505 { 0x94, ALL, "ZBC OUT" }, 506 /* 95 O ZBC IN */ 507 { 0x95, ALL, "ZBC IN" }, 508 /* 96 */ 509 /* 97 */ 510 /* 98 */ 511 /* 99 */ 512 /* 9A O WRITE STREAM(16) */ 513 { 0x9A, D, "WRITE STREAM(16)" }, 514 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */ 515 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" }, 516 /* 9C O WRITE ATOMIC(16) */ 517 { 0x9C, D, "WRITE ATOMIC(16)" }, 518 /* 9D SERVICE ACTION BIDIRECTIONAL */ 519 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" }, 520 /* XXX KDM ALL for this? op-num.txt defines it for none.. */ 521 /* 9E SERVICE ACTION IN(16) */ 522 { 0x9E, ALL, "SERVICE ACTION IN(16)" }, 523 /* 9F M SERVICE ACTION OUT(16) */ 524 { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, 525 /* A0 MMOOO OMMM OMO REPORT LUNS */ 526 { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, 527 /* A1 O BLANK */ 528 { 0xA1, R, "BLANK" }, 529 /* A1 O O ATA COMMAND PASS THROUGH(12) */ 530 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, 531 /* A2 OO O O SECURITY PROTOCOL IN */ 532 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, 533 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ 534 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, 535 /* A3 O SEND KEY */ 536 { 0xA3, R, "SEND KEY" }, 537 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ 538 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, 539 /* A4 O REPORT KEY */ 540 { 0xA4, R, "REPORT KEY" }, 541 /* A5 O O OM MOVE MEDIUM */ 542 { 0xA5, T | W | O | M, "MOVE MEDIUM" }, 543 /* A5 O PLAY AUDIO(12) */ 544 { 0xA5, R, "PLAY AUDIO(12)" }, 545 /* A6 O EXCHANGE MEDIUM */ 546 { 0xA6, M, "EXCHANGE MEDIUM" }, 547 /* A6 O LOAD/UNLOAD C/DVD */ 548 { 0xA6, R, "LOAD/UNLOAD C/DVD" }, 549 /* A7 ZZ O O MOVE MEDIUM ATTACHED */ 550 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, 551 /* A7 O SET READ AHEAD */ 552 { 0xA7, R, "SET READ AHEAD" }, 553 /* A8 O OOO READ(12) */ 554 { 0xA8, D | W | R | O, "READ(12)" }, 555 /* A8 GET MESSAGE(12) */ 556 { 0xA8, C, "GET MESSAGE(12)" }, 557 /* A9 O SERVICE ACTION OUT(12) */ 558 { 0xA9, V, "SERVICE ACTION OUT(12)" }, 559 /* AA O OOO WRITE(12) */ 560 { 0xAA, D | W | R | O, "WRITE(12)" }, 561 /* AA SEND MESSAGE(12) */ 562 { 0xAA, C, "SEND MESSAGE(12)" }, 563 /* AB O O SERVICE ACTION IN(12) */ 564 { 0xAB, R | V, "SERVICE ACTION IN(12)" }, 565 /* AC O ERASE(12) */ 566 { 0xAC, O, "ERASE(12)" }, 567 /* AC O GET PERFORMANCE */ 568 { 0xAC, R, "GET PERFORMANCE" }, 569 /* AD O READ DVD STRUCTURE */ 570 { 0xAD, R, "READ DVD STRUCTURE" }, 571 /* AE O O O WRITE AND VERIFY(12) */ 572 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, 573 /* AF O OZO VERIFY(12) */ 574 { 0xAF, D | W | R | O, "VERIFY(12)" }, 575 /* B0 ZZZ SEARCH DATA HIGH(12) */ 576 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, 577 /* B1 ZZZ SEARCH DATA EQUAL(12) */ 578 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, 579 /* B2 ZZZ SEARCH DATA LOW(12) */ 580 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, 581 /* B3 Z OZO SET LIMITS(12) */ 582 { 0xB3, D | W | R | O, "SET LIMITS(12)" }, 583 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ 584 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, 585 /* B5 OO O O SECURITY PROTOCOL OUT */ 586 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, 587 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ 588 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, 589 /* B6 O SEND VOLUME TAG */ 590 { 0xB6, M, "SEND VOLUME TAG" }, 591 /* B6 O SET STREAMING */ 592 { 0xB6, R, "SET STREAMING" }, 593 /* B7 O O READ DEFECT DATA(12) */ 594 { 0xB7, D | O, "READ DEFECT DATA(12)" }, 595 /* B8 O OZOM READ ELEMENT STATUS */ 596 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, 597 /* B9 O READ CD MSF */ 598 { 0xB9, R, "READ CD MSF" }, 599 /* BA O O OOMO REDUNDANCY GROUP (IN) */ 600 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, 601 /* BA O SCAN */ 602 { 0xBA, R, "SCAN" }, 603 /* BB O O OOOO REDUNDANCY GROUP (OUT) */ 604 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, 605 /* BB O SET CD SPEED */ 606 { 0xBB, R, "SET CD SPEED" }, 607 /* BC O O OOMO SPARE (IN) */ 608 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, 609 /* BD O O OOOO SPARE (OUT) */ 610 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, 611 /* BD O MECHANISM STATUS */ 612 { 0xBD, R, "MECHANISM STATUS" }, 613 /* BE O O OOMO VOLUME SET (IN) */ 614 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, 615 /* BE O READ CD */ 616 { 0xBE, R, "READ CD" }, 617 /* BF O O OOOO VOLUME SET (OUT) */ 618 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, 619 /* BF O SEND DVD STRUCTURE */ 620 { 0xBF, R, "SEND DVD STRUCTURE" } 621 }; 622 623 const char * 624 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 625 { 626 caddr_t match; 627 int i, j; 628 u_int32_t opmask; 629 u_int16_t pd_type; 630 int num_ops[2]; 631 struct op_table_entry *table[2]; 632 int num_tables; 633 634 /* 635 * If we've got inquiry data, use it to determine what type of 636 * device we're dealing with here. Otherwise, assume direct 637 * access. 638 */ 639 if (inq_data == NULL) { 640 pd_type = T_DIRECT; 641 match = NULL; 642 } else { 643 pd_type = SID_TYPE(inq_data); 644 645 match = cam_quirkmatch((caddr_t)inq_data, 646 (caddr_t)scsi_op_quirk_table, 647 nitems(scsi_op_quirk_table), 648 sizeof(*scsi_op_quirk_table), 649 scsi_inquiry_match); 650 } 651 652 if (match != NULL) { 653 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; 654 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; 655 table[1] = scsi_op_codes; 656 num_ops[1] = nitems(scsi_op_codes); 657 num_tables = 2; 658 } else { 659 /* 660 * If this is true, we have a vendor specific opcode that 661 * wasn't covered in the quirk table. 662 */ 663 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) 664 return("Vendor Specific Command"); 665 666 table[0] = scsi_op_codes; 667 num_ops[0] = nitems(scsi_op_codes); 668 num_tables = 1; 669 } 670 671 /* RBC is 'Simplified' Direct Access Device */ 672 if (pd_type == T_RBC) 673 pd_type = T_DIRECT; 674 675 /* 676 * Host managed drives are direct access for the most part. 677 */ 678 if (pd_type == T_ZBC_HM) 679 pd_type = T_DIRECT; 680 681 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */ 682 if (pd_type == T_NODEVICE) 683 pd_type = T_DIRECT; 684 685 opmask = 1 << pd_type; 686 687 for (j = 0; j < num_tables; j++) { 688 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ 689 if ((table[j][i].opcode == opcode) 690 && ((table[j][i].opmask & opmask) != 0)) 691 return(table[j][i].desc); 692 } 693 } 694 695 /* 696 * If we can't find a match for the command in the table, we just 697 * assume it's a vendor specifc command. 698 */ 699 return("Vendor Specific Command"); 700 701 } 702 703 #else /* SCSI_NO_OP_STRINGS */ 704 705 const char * 706 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 707 { 708 return(""); 709 } 710 711 #endif 712 713 #if !defined(SCSI_NO_SENSE_STRINGS) 714 #define SST(asc, ascq, action, desc) \ 715 asc, ascq, action, desc 716 #else 717 const char empty_string[] = ""; 718 719 #define SST(asc, ascq, action, desc) \ 720 asc, ascq, action, empty_string 721 #endif 722 723 const struct sense_key_table_entry sense_key_table[] = 724 { 725 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, 726 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, 727 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" }, 728 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, 729 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, 730 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, 731 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, 732 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, 733 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, 734 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, 735 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, 736 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, 737 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, 738 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, 739 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, 740 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } 741 }; 742 743 static struct asc_table_entry quantum_fireball_entries[] = { 744 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 745 "Logical unit not ready, initializing cmd. required") } 746 }; 747 748 static struct asc_table_entry sony_mo_entries[] = { 749 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 750 "Logical unit not ready, cause not reportable") } 751 }; 752 753 static struct asc_table_entry hgst_entries[] = { 754 { SST(0x04, 0xF0, SS_RDEF, 755 "Vendor Unique - Logical Unit Not Ready") }, 756 { SST(0x0A, 0x01, SS_RDEF, 757 "Unrecovered Super Certification Log Write Error") }, 758 { SST(0x0A, 0x02, SS_RDEF, 759 "Unrecovered Super Certification Log Read Error") }, 760 { SST(0x15, 0x03, SS_RDEF, 761 "Unrecovered Sector Error") }, 762 { SST(0x3E, 0x04, SS_RDEF, 763 "Unrecovered Self-Test Hard-Cache Test Fail") }, 764 { SST(0x3E, 0x05, SS_RDEF, 765 "Unrecovered Self-Test OTF-Cache Fail") }, 766 { SST(0x40, 0x00, SS_RDEF, 767 "Unrecovered SAT No Buffer Overflow Error") }, 768 { SST(0x40, 0x01, SS_RDEF, 769 "Unrecovered SAT Buffer Overflow Error") }, 770 { SST(0x40, 0x02, SS_RDEF, 771 "Unrecovered SAT No Buffer Overflow With ECS Fault") }, 772 { SST(0x40, 0x03, SS_RDEF, 773 "Unrecovered SAT Buffer Overflow With ECS Fault") }, 774 { SST(0x40, 0x81, SS_RDEF, 775 "DRAM Failure") }, 776 { SST(0x44, 0x0B, SS_RDEF, 777 "Vendor Unique - Internal Target Failure") }, 778 { SST(0x44, 0xF2, SS_RDEF, 779 "Vendor Unique - Internal Target Failure") }, 780 { SST(0x44, 0xF6, SS_RDEF, 781 "Vendor Unique - Internal Target Failure") }, 782 { SST(0x44, 0xF9, SS_RDEF, 783 "Vendor Unique - Internal Target Failure") }, 784 { SST(0x44, 0xFA, SS_RDEF, 785 "Vendor Unique - Internal Target Failure") }, 786 { SST(0x5D, 0x22, SS_RDEF, 787 "Extreme Over-Temperature Warning") }, 788 { SST(0x5D, 0x50, SS_RDEF, 789 "Load/Unload cycle Count Warning") }, 790 { SST(0x81, 0x00, SS_RDEF, 791 "Vendor Unique - Internal Logic Error") }, 792 { SST(0x85, 0x00, SS_RDEF, 793 "Vendor Unique - Internal Key Seed Error") }, 794 }; 795 796 static struct asc_table_entry seagate_entries[] = { 797 { SST(0x04, 0xF0, SS_RDEF, 798 "Logical Unit Not Ready, super certify in Progress") }, 799 { SST(0x08, 0x86, SS_RDEF, 800 "Write Fault Data Corruption") }, 801 { SST(0x09, 0x0D, SS_RDEF, 802 "Tracking Failure") }, 803 { SST(0x09, 0x0E, SS_RDEF, 804 "ETF Failure") }, 805 { SST(0x0B, 0x5D, SS_RDEF, 806 "Pre-SMART Warning") }, 807 { SST(0x0B, 0x85, SS_RDEF, 808 "5V Voltage Warning") }, 809 { SST(0x0B, 0x8C, SS_RDEF, 810 "12V Voltage Warning") }, 811 { SST(0x0C, 0xFF, SS_RDEF, 812 "Write Error - Too many error recovery revs") }, 813 { SST(0x11, 0xFF, SS_RDEF, 814 "Unrecovered Read Error - Too many error recovery revs") }, 815 { SST(0x19, 0x0E, SS_RDEF, 816 "Fewer than 1/2 defect list copies") }, 817 { SST(0x20, 0xF3, SS_RDEF, 818 "Illegal CDB linked to skip mask cmd") }, 819 { SST(0x24, 0xF0, SS_RDEF, 820 "Illegal byte in CDB, LBA not matching") }, 821 { SST(0x24, 0xF1, SS_RDEF, 822 "Illegal byte in CDB, LEN not matching") }, 823 { SST(0x24, 0xF2, SS_RDEF, 824 "Mask not matching transfer length") }, 825 { SST(0x24, 0xF3, SS_RDEF, 826 "Drive formatted without plist") }, 827 { SST(0x26, 0x95, SS_RDEF, 828 "Invalid Field Parameter - CAP File") }, 829 { SST(0x26, 0x96, SS_RDEF, 830 "Invalid Field Parameter - RAP File") }, 831 { SST(0x26, 0x97, SS_RDEF, 832 "Invalid Field Parameter - TMS Firmware Tag") }, 833 { SST(0x26, 0x98, SS_RDEF, 834 "Invalid Field Parameter - Check Sum") }, 835 { SST(0x26, 0x99, SS_RDEF, 836 "Invalid Field Parameter - Firmware Tag") }, 837 { SST(0x29, 0x08, SS_RDEF, 838 "Write Log Dump data") }, 839 { SST(0x29, 0x09, SS_RDEF, 840 "Write Log Dump data") }, 841 { SST(0x29, 0x0A, SS_RDEF, 842 "Reserved disk space") }, 843 { SST(0x29, 0x0B, SS_RDEF, 844 "SDBP") }, 845 { SST(0x29, 0x0C, SS_RDEF, 846 "SDBP") }, 847 { SST(0x31, 0x91, SS_RDEF, 848 "Format Corrupted World Wide Name (WWN) is Invalid") }, 849 { SST(0x32, 0x03, SS_RDEF, 850 "Defect List - Length exceeds Command Allocated Length") }, 851 { SST(0x33, 0x00, SS_RDEF, 852 "Flash not ready for access") }, 853 { SST(0x3F, 0x70, SS_RDEF, 854 "Invalid RAP block") }, 855 { SST(0x3F, 0x71, SS_RDEF, 856 "RAP/ETF mismatch") }, 857 { SST(0x3F, 0x90, SS_RDEF, 858 "Invalid CAP block") }, 859 { SST(0x3F, 0x91, SS_RDEF, 860 "World Wide Name (WWN) Mismatch") }, 861 { SST(0x40, 0x01, SS_RDEF, 862 "DRAM Parity Error") }, 863 { SST(0x40, 0x02, SS_RDEF, 864 "DRAM Parity Error") }, 865 { SST(0x42, 0x0A, SS_RDEF, 866 "Loopback Test") }, 867 { SST(0x42, 0x0B, SS_RDEF, 868 "Loopback Test") }, 869 { SST(0x44, 0xF2, SS_RDEF, 870 "Compare error during data integrity check") }, 871 { SST(0x44, 0xF6, SS_RDEF, 872 "Unrecoverable error during data integrity check") }, 873 { SST(0x47, 0x80, SS_RDEF, 874 "Fibre Channel Sequence Error") }, 875 { SST(0x4E, 0x01, SS_RDEF, 876 "Information Unit Too Short") }, 877 { SST(0x80, 0x00, SS_RDEF, 878 "General Firmware Error / Command Timeout") }, 879 { SST(0x80, 0x01, SS_RDEF, 880 "Command Timeout") }, 881 { SST(0x80, 0x02, SS_RDEF, 882 "Command Timeout") }, 883 { SST(0x80, 0x80, SS_RDEF, 884 "FC FIFO Error During Read Transfer") }, 885 { SST(0x80, 0x81, SS_RDEF, 886 "FC FIFO Error During Write Transfer") }, 887 { SST(0x80, 0x82, SS_RDEF, 888 "DISC FIFO Error During Read Transfer") }, 889 { SST(0x80, 0x83, SS_RDEF, 890 "DISC FIFO Error During Write Transfer") }, 891 { SST(0x80, 0x84, SS_RDEF, 892 "LBA Seeded LRC Error on Read") }, 893 { SST(0x80, 0x85, SS_RDEF, 894 "LBA Seeded LRC Error on Write") }, 895 { SST(0x80, 0x86, SS_RDEF, 896 "IOEDC Error on Read") }, 897 { SST(0x80, 0x87, SS_RDEF, 898 "IOEDC Error on Write") }, 899 { SST(0x80, 0x88, SS_RDEF, 900 "Host Parity Check Failed") }, 901 { SST(0x80, 0x89, SS_RDEF, 902 "IOEDC error on read detected by formatter") }, 903 { SST(0x80, 0x8A, SS_RDEF, 904 "Host Parity Errors / Host FIFO Initialization Failed") }, 905 { SST(0x80, 0x8B, SS_RDEF, 906 "Host Parity Errors") }, 907 { SST(0x80, 0x8C, SS_RDEF, 908 "Host Parity Errors") }, 909 { SST(0x80, 0x8D, SS_RDEF, 910 "Host Parity Errors") }, 911 { SST(0x81, 0x00, SS_RDEF, 912 "LA Check Failed") }, 913 { SST(0x82, 0x00, SS_RDEF, 914 "Internal client detected insufficient buffer") }, 915 { SST(0x84, 0x00, SS_RDEF, 916 "Scheduled Diagnostic And Repair") }, 917 }; 918 919 static struct scsi_sense_quirk_entry sense_quirk_table[] = { 920 { 921 /* 922 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b 923 * when they really should return 0x04 0x02. 924 */ 925 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, 926 /*num_sense_keys*/0, 927 nitems(quantum_fireball_entries), 928 /*sense key entries*/NULL, 929 quantum_fireball_entries 930 }, 931 { 932 /* 933 * This Sony MO drive likes to return 0x04, 0x00 when it 934 * isn't spun up. 935 */ 936 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, 937 /*num_sense_keys*/0, 938 nitems(sony_mo_entries), 939 /*sense key entries*/NULL, 940 sony_mo_entries 941 }, 942 { 943 /* 944 * HGST vendor-specific error codes 945 */ 946 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"}, 947 /*num_sense_keys*/0, 948 nitems(hgst_entries), 949 /*sense key entries*/NULL, 950 hgst_entries 951 }, 952 { 953 /* 954 * SEAGATE vendor-specific error codes 955 */ 956 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"}, 957 /*num_sense_keys*/0, 958 nitems(seagate_entries), 959 /*sense key entries*/NULL, 960 seagate_entries 961 } 962 }; 963 964 const u_int sense_quirk_table_size = nitems(sense_quirk_table); 965 966 static struct asc_table_entry asc_table[] = { 967 /* 968 * From: http://www.t10.org/lists/asc-num.txt 969 * Modifications by Jung-uk Kim (jkim@FreeBSD.org) 970 */ 971 /* 972 * File: ASC-NUM.TXT 973 * 974 * SCSI ASC/ASCQ Assignments 975 * Numeric Sorted Listing 976 * as of 8/12/15 977 * 978 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 979 * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- 980 * . L - PRINTER DEVICE (SSC) blank = reserved 981 * . P - PROCESSOR DEVICE (SPC) not blank = allowed 982 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) 983 * . . R - CD DEVICE (MMC) 984 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 985 * . . .M - MEDIA CHANGER DEVICE (SMC) 986 * . . . A - STORAGE ARRAY DEVICE (SCC) 987 * . . . E - ENCLOSURE SERVICES DEVICE (SES) 988 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 989 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 990 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 991 * . . . . .F - OBJECT-BASED STORAGE (OSD) 992 * DTLPWROMAEBKVF 993 * ASC ASCQ Action 994 * Description 995 */ 996 /* DTLPWROMAEBKVF */ 997 { SST(0x00, 0x00, SS_NOP, 998 "No additional sense information") }, 999 /* T */ 1000 { SST(0x00, 0x01, SS_RDEF, 1001 "Filemark detected") }, 1002 /* T */ 1003 { SST(0x00, 0x02, SS_RDEF, 1004 "End-of-partition/medium detected") }, 1005 /* T */ 1006 { SST(0x00, 0x03, SS_RDEF, 1007 "Setmark detected") }, 1008 /* T */ 1009 { SST(0x00, 0x04, SS_RDEF, 1010 "Beginning-of-partition/medium detected") }, 1011 /* TL */ 1012 { SST(0x00, 0x05, SS_RDEF, 1013 "End-of-data detected") }, 1014 /* DTLPWROMAEBKVF */ 1015 { SST(0x00, 0x06, SS_RDEF, 1016 "I/O process terminated") }, 1017 /* T */ 1018 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ 1019 "Programmable early warning detected") }, 1020 /* R */ 1021 { SST(0x00, 0x11, SS_FATAL | EBUSY, 1022 "Audio play operation in progress") }, 1023 /* R */ 1024 { SST(0x00, 0x12, SS_NOP, 1025 "Audio play operation paused") }, 1026 /* R */ 1027 { SST(0x00, 0x13, SS_NOP, 1028 "Audio play operation successfully completed") }, 1029 /* R */ 1030 { SST(0x00, 0x14, SS_RDEF, 1031 "Audio play operation stopped due to error") }, 1032 /* R */ 1033 { SST(0x00, 0x15, SS_NOP, 1034 "No current audio status to return") }, 1035 /* DTLPWROMAEBKVF */ 1036 { SST(0x00, 0x16, SS_FATAL | EBUSY, 1037 "Operation in progress") }, 1038 /* DTL WROMAEBKVF */ 1039 { SST(0x00, 0x17, SS_RDEF, 1040 "Cleaning requested") }, 1041 /* T */ 1042 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ 1043 "Erase operation in progress") }, 1044 /* T */ 1045 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ 1046 "Locate operation in progress") }, 1047 /* T */ 1048 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ 1049 "Rewind operation in progress") }, 1050 /* T */ 1051 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ 1052 "Set capacity operation in progress") }, 1053 /* T */ 1054 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ 1055 "Verify operation in progress") }, 1056 /* DT B */ 1057 { SST(0x00, 0x1D, SS_NOP, 1058 "ATA pass through information available") }, 1059 /* DT R MAEBKV */ 1060 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ 1061 "Conflicting SA creation request") }, 1062 /* DT B */ 1063 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */ 1064 "Logical unit transitioning to another power condition") }, 1065 /* DT P B */ 1066 { SST(0x00, 0x20, SS_NOP, 1067 "Extended copy information available") }, 1068 /* D */ 1069 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */ 1070 "Atomic command aborted due to ACA") }, 1071 /* D W O BK */ 1072 { SST(0x01, 0x00, SS_RDEF, 1073 "No index/sector signal") }, 1074 /* D WRO BK */ 1075 { SST(0x02, 0x00, SS_RDEF, 1076 "No seek complete") }, 1077 /* DTL W O BK */ 1078 { SST(0x03, 0x00, SS_RDEF, 1079 "Peripheral device write fault") }, 1080 /* T */ 1081 { SST(0x03, 0x01, SS_RDEF, 1082 "No write current") }, 1083 /* T */ 1084 { SST(0x03, 0x02, SS_RDEF, 1085 "Excessive write errors") }, 1086 /* DTLPWROMAEBKVF */ 1087 { SST(0x04, 0x00, SS_RDEF, 1088 "Logical unit not ready, cause not reportable") }, 1089 /* DTLPWROMAEBKVF */ 1090 { SST(0x04, 0x01, SS_WAIT | EBUSY, 1091 "Logical unit is in process of becoming ready") }, 1092 /* DTLPWROMAEBKVF */ 1093 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1094 "Logical unit not ready, initializing command required") }, 1095 /* DTLPWROMAEBKVF */ 1096 { SST(0x04, 0x03, SS_FATAL | ENXIO, 1097 "Logical unit not ready, manual intervention required") }, 1098 /* DTL RO B */ 1099 { SST(0x04, 0x04, SS_FATAL | EBUSY, 1100 "Logical unit not ready, format in progress") }, 1101 /* DT W O A BK F */ 1102 { SST(0x04, 0x05, SS_FATAL | EBUSY, 1103 "Logical unit not ready, rebuild in progress") }, 1104 /* DT W O A BK */ 1105 { SST(0x04, 0x06, SS_FATAL | EBUSY, 1106 "Logical unit not ready, recalculation in progress") }, 1107 /* DTLPWROMAEBKVF */ 1108 { SST(0x04, 0x07, SS_FATAL | EBUSY, 1109 "Logical unit not ready, operation in progress") }, 1110 /* R */ 1111 { SST(0x04, 0x08, SS_FATAL | EBUSY, 1112 "Logical unit not ready, long write in progress") }, 1113 /* DTLPWROMAEBKVF */ 1114 { SST(0x04, 0x09, SS_FATAL | EBUSY, 1115 "Logical unit not ready, self-test in progress") }, 1116 /* DTLPWROMAEBKVF */ 1117 { SST(0x04, 0x0A, SS_WAIT | ENXIO, 1118 "Logical unit not accessible, asymmetric access state transition")}, 1119 /* DTLPWROMAEBKVF */ 1120 { SST(0x04, 0x0B, SS_FATAL | ENXIO, 1121 "Logical unit not accessible, target port in standby state") }, 1122 /* DTLPWROMAEBKVF */ 1123 { SST(0x04, 0x0C, SS_FATAL | ENXIO, 1124 "Logical unit not accessible, target port in unavailable state") }, 1125 /* F */ 1126 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ 1127 "Logical unit not ready, structure check required") }, 1128 /* DTL WR MAEBKVF */ 1129 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */ 1130 "Logical unit not ready, security session in progress") }, 1131 /* DT WROM B */ 1132 { SST(0x04, 0x10, SS_FATAL | ENODEV, 1133 "Logical unit not ready, auxiliary memory not accessible") }, 1134 /* DT WRO AEB VF */ 1135 { SST(0x04, 0x11, SS_WAIT | ENXIO, 1136 "Logical unit not ready, notify (enable spinup) required") }, 1137 /* M V */ 1138 { SST(0x04, 0x12, SS_FATAL | ENXIO, 1139 "Logical unit not ready, offline") }, 1140 /* DT R MAEBKV */ 1141 { SST(0x04, 0x13, SS_WAIT | EBUSY, 1142 "Logical unit not ready, SA creation in progress") }, 1143 /* D B */ 1144 { SST(0x04, 0x14, SS_WAIT | ENOSPC, 1145 "Logical unit not ready, space allocation in progress") }, 1146 /* M */ 1147 { SST(0x04, 0x15, SS_FATAL | ENXIO, 1148 "Logical unit not ready, robotics disabled") }, 1149 /* M */ 1150 { SST(0x04, 0x16, SS_FATAL | ENXIO, 1151 "Logical unit not ready, configuration required") }, 1152 /* M */ 1153 { SST(0x04, 0x17, SS_FATAL | ENXIO, 1154 "Logical unit not ready, calibration required") }, 1155 /* M */ 1156 { SST(0x04, 0x18, SS_FATAL | ENXIO, 1157 "Logical unit not ready, a door is open") }, 1158 /* M */ 1159 { SST(0x04, 0x19, SS_FATAL | ENODEV, 1160 "Logical unit not ready, operating in sequential mode") }, 1161 /* DT B */ 1162 { SST(0x04, 0x1A, SS_WAIT | EBUSY, 1163 "Logical unit not ready, START/STOP UNIT command in progress") }, 1164 /* D B */ 1165 { SST(0x04, 0x1B, SS_WAIT | EBUSY, 1166 "Logical unit not ready, sanitize in progress") }, 1167 /* DT MAEB */ 1168 { SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1169 "Logical unit not ready, additional power use not yet granted") }, 1170 /* D */ 1171 { SST(0x04, 0x1D, SS_WAIT | EBUSY, 1172 "Logical unit not ready, configuration in progress") }, 1173 /* D */ 1174 { SST(0x04, 0x1E, SS_FATAL | ENXIO, 1175 "Logical unit not ready, microcode activation required") }, 1176 /* DTLPWROMAEBKVF */ 1177 { SST(0x04, 0x1F, SS_FATAL | ENXIO, 1178 "Logical unit not ready, microcode download required") }, 1179 /* DTLPWROMAEBKVF */ 1180 { SST(0x04, 0x20, SS_FATAL | ENXIO, 1181 "Logical unit not ready, logical unit reset required") }, 1182 /* DTLPWROMAEBKVF */ 1183 { SST(0x04, 0x21, SS_FATAL | ENXIO, 1184 "Logical unit not ready, hard reset required") }, 1185 /* DTLPWROMAEBKVF */ 1186 { SST(0x04, 0x22, SS_FATAL | ENXIO, 1187 "Logical unit not ready, power cycle required") }, 1188 /* D */ 1189 { SST(0x04, 0x23, SS_FATAL | ENXIO, 1190 "Logical unit not ready, affiliation required") }, 1191 /* D */ 1192 { SST(0x04, 0x24, SS_FATAL | EBUSY, 1193 "Depopulation in progress") }, 1194 /* D */ 1195 { SST(0x04, 0x25, SS_FATAL | EBUSY, 1196 "Depopulation restoration in progress") }, 1197 /* DTL WROMAEBKVF */ 1198 { SST(0x05, 0x00, SS_RDEF, 1199 "Logical unit does not respond to selection") }, 1200 /* D WROM BK */ 1201 { SST(0x06, 0x00, SS_RDEF, 1202 "No reference position found") }, 1203 /* DTL WROM BK */ 1204 { SST(0x07, 0x00, SS_RDEF, 1205 "Multiple peripheral devices selected") }, 1206 /* DTL WROMAEBKVF */ 1207 { SST(0x08, 0x00, SS_RDEF, 1208 "Logical unit communication failure") }, 1209 /* DTL WROMAEBKVF */ 1210 { SST(0x08, 0x01, SS_RDEF, 1211 "Logical unit communication time-out") }, 1212 /* DTL WROMAEBKVF */ 1213 { SST(0x08, 0x02, SS_RDEF, 1214 "Logical unit communication parity error") }, 1215 /* DT ROM BK */ 1216 { SST(0x08, 0x03, SS_RDEF, 1217 "Logical unit communication CRC error (Ultra-DMA/32)") }, 1218 /* DTLPWRO K */ 1219 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ 1220 "Unreachable copy target") }, 1221 /* DT WRO B */ 1222 { SST(0x09, 0x00, SS_RDEF, 1223 "Track following error") }, 1224 /* WRO K */ 1225 { SST(0x09, 0x01, SS_RDEF, 1226 "Tracking servo failure") }, 1227 /* WRO K */ 1228 { SST(0x09, 0x02, SS_RDEF, 1229 "Focus servo failure") }, 1230 /* WRO */ 1231 { SST(0x09, 0x03, SS_RDEF, 1232 "Spindle servo failure") }, 1233 /* DT WRO B */ 1234 { SST(0x09, 0x04, SS_RDEF, 1235 "Head select fault") }, 1236 /* DT RO B */ 1237 { SST(0x09, 0x05, SS_RDEF, 1238 "Vibration induced tracking error") }, 1239 /* DTLPWROMAEBKVF */ 1240 { SST(0x0A, 0x00, SS_FATAL | ENOSPC, 1241 "Error log overflow") }, 1242 /* DTLPWROMAEBKVF */ 1243 { SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1244 "Warning") }, 1245 /* DTLPWROMAEBKVF */ 1246 { SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1247 "Warning - specified temperature exceeded") }, 1248 /* DTLPWROMAEBKVF */ 1249 { SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1250 "Warning - enclosure degraded") }, 1251 /* DTLPWROMAEBKVF */ 1252 { SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1253 "Warning - background self-test failed") }, 1254 /* DTLPWRO AEBKVF */ 1255 { SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1256 "Warning - background pre-scan detected medium error") }, 1257 /* DTLPWRO AEBKVF */ 1258 { SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1259 "Warning - background medium scan detected medium error") }, 1260 /* DTLPWROMAEBKVF */ 1261 { SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1262 "Warning - non-volatile cache now volatile") }, 1263 /* DTLPWROMAEBKVF */ 1264 { SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1265 "Warning - degraded power to non-volatile cache") }, 1266 /* DTLPWROMAEBKVF */ 1267 { SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1268 "Warning - power loss expected") }, 1269 /* D */ 1270 { SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1271 "Warning - device statistics notification available") }, 1272 /* DTLPWROMAEBKVF */ 1273 { SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE, 1274 "Warning - High critical temperature limit exceeded") }, 1275 /* DTLPWROMAEBKVF */ 1276 { SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE, 1277 "Warning - Low critical temperature limit exceeded") }, 1278 /* DTLPWROMAEBKVF */ 1279 { SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE, 1280 "Warning - High operating temperature limit exceeded") }, 1281 /* DTLPWROMAEBKVF */ 1282 { SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE, 1283 "Warning - Low operating temperature limit exceeded") }, 1284 /* DTLPWROMAEBKVF */ 1285 { SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE, 1286 "Warning - High citical humidity limit exceeded") }, 1287 /* DTLPWROMAEBKVF */ 1288 { SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE, 1289 "Warning - Low citical humidity limit exceeded") }, 1290 /* DTLPWROMAEBKVF */ 1291 { SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE, 1292 "Warning - High operating humidity limit exceeded") }, 1293 /* DTLPWROMAEBKVF */ 1294 { SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE, 1295 "Warning - Low operating humidity limit exceeded") }, 1296 /* T R */ 1297 { SST(0x0C, 0x00, SS_RDEF, 1298 "Write error") }, 1299 /* K */ 1300 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1301 "Write error - recovered with auto reallocation") }, 1302 /* D W O BK */ 1303 { SST(0x0C, 0x02, SS_RDEF, 1304 "Write error - auto reallocation failed") }, 1305 /* D W O BK */ 1306 { SST(0x0C, 0x03, SS_RDEF, 1307 "Write error - recommend reassignment") }, 1308 /* DT W O B */ 1309 { SST(0x0C, 0x04, SS_RDEF, 1310 "Compression check miscompare error") }, 1311 /* DT W O B */ 1312 { SST(0x0C, 0x05, SS_RDEF, 1313 "Data expansion occurred during compression") }, 1314 /* DT W O B */ 1315 { SST(0x0C, 0x06, SS_RDEF, 1316 "Block not compressible") }, 1317 /* R */ 1318 { SST(0x0C, 0x07, SS_RDEF, 1319 "Write error - recovery needed") }, 1320 /* R */ 1321 { SST(0x0C, 0x08, SS_RDEF, 1322 "Write error - recovery failed") }, 1323 /* R */ 1324 { SST(0x0C, 0x09, SS_RDEF, 1325 "Write error - loss of streaming") }, 1326 /* R */ 1327 { SST(0x0C, 0x0A, SS_RDEF, 1328 "Write error - padding blocks added") }, 1329 /* DT WROM B */ 1330 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ 1331 "Auxiliary memory write error") }, 1332 /* DTLPWRO AEBKVF */ 1333 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ 1334 "Write error - unexpected unsolicited data") }, 1335 /* DTLPWRO AEBKVF */ 1336 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ 1337 "Write error - not enough unsolicited data") }, 1338 /* DT W O BK */ 1339 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */ 1340 "Multiple write errors") }, 1341 /* R */ 1342 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ 1343 "Defects in error window") }, 1344 /* D */ 1345 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */ 1346 "Incomplete multiple atomic write operations") }, 1347 /* D */ 1348 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */ 1349 "Write error - recovery scan needed") }, 1350 /* D */ 1351 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */ 1352 "Write error - insufficient zone resources") }, 1353 /* DTLPWRO A K */ 1354 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ 1355 "Error detected by third party temporary initiator") }, 1356 /* DTLPWRO A K */ 1357 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ 1358 "Third party device failure") }, 1359 /* DTLPWRO A K */ 1360 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ 1361 "Copy target device not reachable") }, 1362 /* DTLPWRO A K */ 1363 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ 1364 "Incorrect copy target device type") }, 1365 /* DTLPWRO A K */ 1366 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ 1367 "Copy target device data underrun") }, 1368 /* DTLPWRO A K */ 1369 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ 1370 "Copy target device data overrun") }, 1371 /* DT PWROMAEBK F */ 1372 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ 1373 "Invalid information unit") }, 1374 /* DT PWROMAEBK F */ 1375 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ 1376 "Information unit too short") }, 1377 /* DT PWROMAEBK F */ 1378 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ 1379 "Information unit too long") }, 1380 /* DT P R MAEBK F */ 1381 { SST(0x0E, 0x03, SS_FATAL | EINVAL, 1382 "Invalid field in command information unit") }, 1383 /* D W O BK */ 1384 { SST(0x10, 0x00, SS_RDEF, 1385 "ID CRC or ECC error") }, 1386 /* DT W O */ 1387 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ 1388 "Logical block guard check failed") }, 1389 /* DT W O */ 1390 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ 1391 "Logical block application tag check failed") }, 1392 /* DT W O */ 1393 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ 1394 "Logical block reference tag check failed") }, 1395 /* T */ 1396 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */ 1397 "Logical block protection error on recovered buffer data") }, 1398 /* T */ 1399 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */ 1400 "Logical block protection method error") }, 1401 /* DT WRO BK */ 1402 { SST(0x11, 0x00, SS_FATAL|EIO, 1403 "Unrecovered read error") }, 1404 /* DT WRO BK */ 1405 { SST(0x11, 0x01, SS_FATAL|EIO, 1406 "Read retries exhausted") }, 1407 /* DT WRO BK */ 1408 { SST(0x11, 0x02, SS_FATAL|EIO, 1409 "Error too long to correct") }, 1410 /* DT W O BK */ 1411 { SST(0x11, 0x03, SS_FATAL|EIO, 1412 "Multiple read errors") }, 1413 /* D W O BK */ 1414 { SST(0x11, 0x04, SS_FATAL|EIO, 1415 "Unrecovered read error - auto reallocate failed") }, 1416 /* WRO B */ 1417 { SST(0x11, 0x05, SS_FATAL|EIO, 1418 "L-EC uncorrectable error") }, 1419 /* WRO B */ 1420 { SST(0x11, 0x06, SS_FATAL|EIO, 1421 "CIRC unrecovered error") }, 1422 /* W O B */ 1423 { SST(0x11, 0x07, SS_RDEF, 1424 "Data re-synchronization error") }, 1425 /* T */ 1426 { SST(0x11, 0x08, SS_RDEF, 1427 "Incomplete block read") }, 1428 /* T */ 1429 { SST(0x11, 0x09, SS_RDEF, 1430 "No gap found") }, 1431 /* DT O BK */ 1432 { SST(0x11, 0x0A, SS_RDEF, 1433 "Miscorrected error") }, 1434 /* D W O BK */ 1435 { SST(0x11, 0x0B, SS_FATAL|EIO, 1436 "Unrecovered read error - recommend reassignment") }, 1437 /* D W O BK */ 1438 { SST(0x11, 0x0C, SS_FATAL|EIO, 1439 "Unrecovered read error - recommend rewrite the data") }, 1440 /* DT WRO B */ 1441 { SST(0x11, 0x0D, SS_RDEF, 1442 "De-compression CRC error") }, 1443 /* DT WRO B */ 1444 { SST(0x11, 0x0E, SS_RDEF, 1445 "Cannot decompress using declared algorithm") }, 1446 /* R */ 1447 { SST(0x11, 0x0F, SS_RDEF, 1448 "Error reading UPC/EAN number") }, 1449 /* R */ 1450 { SST(0x11, 0x10, SS_RDEF, 1451 "Error reading ISRC number") }, 1452 /* R */ 1453 { SST(0x11, 0x11, SS_RDEF, 1454 "Read error - loss of streaming") }, 1455 /* DT WROM B */ 1456 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ 1457 "Auxiliary memory read error") }, 1458 /* DTLPWRO AEBKVF */ 1459 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ 1460 "Read error - failed retransmission request") }, 1461 /* D */ 1462 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ 1463 "Read error - LBA marked bad by application client") }, 1464 /* D */ 1465 { SST(0x11, 0x15, SS_FATAL | EIO, 1466 "Write after sanitize required") }, 1467 /* D W O BK */ 1468 { SST(0x12, 0x00, SS_RDEF, 1469 "Address mark not found for ID field") }, 1470 /* D W O BK */ 1471 { SST(0x13, 0x00, SS_RDEF, 1472 "Address mark not found for data field") }, 1473 /* DTL WRO BK */ 1474 { SST(0x14, 0x00, SS_RDEF, 1475 "Recorded entity not found") }, 1476 /* DT WRO BK */ 1477 { SST(0x14, 0x01, SS_RDEF, 1478 "Record not found") }, 1479 /* T */ 1480 { SST(0x14, 0x02, SS_RDEF, 1481 "Filemark or setmark not found") }, 1482 /* T */ 1483 { SST(0x14, 0x03, SS_RDEF, 1484 "End-of-data not found") }, 1485 /* T */ 1486 { SST(0x14, 0x04, SS_RDEF, 1487 "Block sequence error") }, 1488 /* DT W O BK */ 1489 { SST(0x14, 0x05, SS_RDEF, 1490 "Record not found - recommend reassignment") }, 1491 /* DT W O BK */ 1492 { SST(0x14, 0x06, SS_RDEF, 1493 "Record not found - data auto-reallocated") }, 1494 /* T */ 1495 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ 1496 "Locate operation failure") }, 1497 /* DTL WROM BK */ 1498 { SST(0x15, 0x00, SS_RDEF, 1499 "Random positioning error") }, 1500 /* DTL WROM BK */ 1501 { SST(0x15, 0x01, SS_RDEF, 1502 "Mechanical positioning error") }, 1503 /* DT WRO BK */ 1504 { SST(0x15, 0x02, SS_RDEF, 1505 "Positioning error detected by read of medium") }, 1506 /* D W O BK */ 1507 { SST(0x16, 0x00, SS_RDEF, 1508 "Data synchronization mark error") }, 1509 /* D W O BK */ 1510 { SST(0x16, 0x01, SS_RDEF, 1511 "Data sync error - data rewritten") }, 1512 /* D W O BK */ 1513 { SST(0x16, 0x02, SS_RDEF, 1514 "Data sync error - recommend rewrite") }, 1515 /* D W O BK */ 1516 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1517 "Data sync error - data auto-reallocated") }, 1518 /* D W O BK */ 1519 { SST(0x16, 0x04, SS_RDEF, 1520 "Data sync error - recommend reassignment") }, 1521 /* DT WRO BK */ 1522 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1523 "Recovered data with no error correction applied") }, 1524 /* DT WRO BK */ 1525 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1526 "Recovered data with retries") }, 1527 /* DT WRO BK */ 1528 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1529 "Recovered data with positive head offset") }, 1530 /* DT WRO BK */ 1531 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1532 "Recovered data with negative head offset") }, 1533 /* WRO B */ 1534 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1535 "Recovered data with retries and/or CIRC applied") }, 1536 /* D WRO BK */ 1537 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1538 "Recovered data using previous sector ID") }, 1539 /* D W O BK */ 1540 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1541 "Recovered data without ECC - data auto-reallocated") }, 1542 /* D WRO BK */ 1543 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1544 "Recovered data without ECC - recommend reassignment") }, 1545 /* D WRO BK */ 1546 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1547 "Recovered data without ECC - recommend rewrite") }, 1548 /* D WRO BK */ 1549 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1550 "Recovered data without ECC - data rewritten") }, 1551 /* DT WRO BK */ 1552 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1553 "Recovered data with error correction applied") }, 1554 /* D WRO BK */ 1555 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1556 "Recovered data with error corr. & retries applied") }, 1557 /* D WRO BK */ 1558 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1559 "Recovered data - data auto-reallocated") }, 1560 /* R */ 1561 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1562 "Recovered data with CIRC") }, 1563 /* R */ 1564 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1565 "Recovered data with L-EC") }, 1566 /* D WRO BK */ 1567 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1568 "Recovered data - recommend reassignment") }, 1569 /* D WRO BK */ 1570 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1571 "Recovered data - recommend rewrite") }, 1572 /* D W O BK */ 1573 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1574 "Recovered data with ECC - data rewritten") }, 1575 /* R */ 1576 { SST(0x18, 0x08, SS_RDEF, /* XXX TBD */ 1577 "Recovered data with linking") }, 1578 /* D O K */ 1579 { SST(0x19, 0x00, SS_RDEF, 1580 "Defect list error") }, 1581 /* D O K */ 1582 { SST(0x19, 0x01, SS_RDEF, 1583 "Defect list not available") }, 1584 /* D O K */ 1585 { SST(0x19, 0x02, SS_RDEF, 1586 "Defect list error in primary list") }, 1587 /* D O K */ 1588 { SST(0x19, 0x03, SS_RDEF, 1589 "Defect list error in grown list") }, 1590 /* DTLPWROMAEBKVF */ 1591 { SST(0x1A, 0x00, SS_RDEF, 1592 "Parameter list length error") }, 1593 /* DTLPWROMAEBKVF */ 1594 { SST(0x1B, 0x00, SS_RDEF, 1595 "Synchronous data transfer error") }, 1596 /* D O BK */ 1597 { SST(0x1C, 0x00, SS_RDEF, 1598 "Defect list not found") }, 1599 /* D O BK */ 1600 { SST(0x1C, 0x01, SS_RDEF, 1601 "Primary defect list not found") }, 1602 /* D O BK */ 1603 { SST(0x1C, 0x02, SS_RDEF, 1604 "Grown defect list not found") }, 1605 /* DT WRO BK */ 1606 { SST(0x1D, 0x00, SS_FATAL, 1607 "Miscompare during verify operation") }, 1608 /* D B */ 1609 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */ 1610 "Miscomparable verify of unmapped LBA") }, 1611 /* D W O BK */ 1612 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1613 "Recovered ID with ECC correction") }, 1614 /* D O K */ 1615 { SST(0x1F, 0x00, SS_RDEF, 1616 "Partial defect list transfer") }, 1617 /* DTLPWROMAEBKVF */ 1618 { SST(0x20, 0x00, SS_FATAL | EINVAL, 1619 "Invalid command operation code") }, 1620 /* DT PWROMAEBK */ 1621 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ 1622 "Access denied - initiator pending-enrolled") }, 1623 /* DT PWROMAEBK */ 1624 { SST(0x20, 0x02, SS_FATAL | EPERM, 1625 "Access denied - no access rights") }, 1626 /* DT PWROMAEBK */ 1627 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ 1628 "Access denied - invalid mgmt ID key") }, 1629 /* T */ 1630 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ 1631 "Illegal command while in write capable state") }, 1632 /* T */ 1633 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ 1634 "Obsolete") }, 1635 /* T */ 1636 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ 1637 "Illegal command while in explicit address mode") }, 1638 /* T */ 1639 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ 1640 "Illegal command while in implicit address mode") }, 1641 /* DT PWROMAEBK */ 1642 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ 1643 "Access denied - enrollment conflict") }, 1644 /* DT PWROMAEBK */ 1645 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ 1646 "Access denied - invalid LU identifier") }, 1647 /* DT PWROMAEBK */ 1648 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ 1649 "Access denied - invalid proxy token") }, 1650 /* DT PWROMAEBK */ 1651 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ 1652 "Access denied - ACL LUN conflict") }, 1653 /* T */ 1654 { SST(0x20, 0x0C, SS_FATAL | EINVAL, 1655 "Illegal command when not in append-only mode") }, 1656 /* DT WRO BK */ 1657 { SST(0x21, 0x00, SS_FATAL | EINVAL, 1658 "Logical block address out of range") }, 1659 /* DT WROM BK */ 1660 { SST(0x21, 0x01, SS_FATAL | EINVAL, 1661 "Invalid element address") }, 1662 /* R */ 1663 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ 1664 "Invalid address for write") }, 1665 /* R */ 1666 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ 1667 "Invalid write crossing layer jump") }, 1668 /* D */ 1669 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */ 1670 "Unaligned write command") }, 1671 /* D */ 1672 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */ 1673 "Write boundary violation") }, 1674 /* D */ 1675 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */ 1676 "Attempt to read invalid data") }, 1677 /* D */ 1678 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */ 1679 "Read boundary violation") }, 1680 /* D */ 1681 { SST(0x22, 0x00, SS_FATAL | EINVAL, 1682 "Illegal function (use 20 00, 24 00, or 26 00)") }, 1683 /* DT P B */ 1684 { SST(0x23, 0x00, SS_FATAL | EINVAL, 1685 "Invalid token operation, cause not reportable") }, 1686 /* DT P B */ 1687 { SST(0x23, 0x01, SS_FATAL | EINVAL, 1688 "Invalid token operation, unsupported token type") }, 1689 /* DT P B */ 1690 { SST(0x23, 0x02, SS_FATAL | EINVAL, 1691 "Invalid token operation, remote token usage not supported") }, 1692 /* DT P B */ 1693 { SST(0x23, 0x03, SS_FATAL | EINVAL, 1694 "Invalid token operation, remote ROD token creation not supported") }, 1695 /* DT P B */ 1696 { SST(0x23, 0x04, SS_FATAL | EINVAL, 1697 "Invalid token operation, token unknown") }, 1698 /* DT P B */ 1699 { SST(0x23, 0x05, SS_FATAL | EINVAL, 1700 "Invalid token operation, token corrupt") }, 1701 /* DT P B */ 1702 { SST(0x23, 0x06, SS_FATAL | EINVAL, 1703 "Invalid token operation, token revoked") }, 1704 /* DT P B */ 1705 { SST(0x23, 0x07, SS_FATAL | EINVAL, 1706 "Invalid token operation, token expired") }, 1707 /* DT P B */ 1708 { SST(0x23, 0x08, SS_FATAL | EINVAL, 1709 "Invalid token operation, token cancelled") }, 1710 /* DT P B */ 1711 { SST(0x23, 0x09, SS_FATAL | EINVAL, 1712 "Invalid token operation, token deleted") }, 1713 /* DT P B */ 1714 { SST(0x23, 0x0A, SS_FATAL | EINVAL, 1715 "Invalid token operation, invalid token length") }, 1716 /* DTLPWROMAEBKVF */ 1717 { SST(0x24, 0x00, SS_FATAL | EINVAL, 1718 "Invalid field in CDB") }, 1719 /* DTLPWRO AEBKVF */ 1720 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ 1721 "CDB decryption error") }, 1722 /* T */ 1723 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ 1724 "Obsolete") }, 1725 /* T */ 1726 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ 1727 "Obsolete") }, 1728 /* F */ 1729 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ 1730 "Security audit value frozen") }, 1731 /* F */ 1732 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ 1733 "Security working key frozen") }, 1734 /* F */ 1735 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ 1736 "NONCE not unique") }, 1737 /* F */ 1738 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ 1739 "NONCE timestamp out of range") }, 1740 /* DT R MAEBKV */ 1741 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ 1742 "Invalid XCDB") }, 1743 /* DTLPWROMAEBKVF */ 1744 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST, 1745 "Logical unit not supported") }, 1746 /* DTLPWROMAEBKVF */ 1747 { SST(0x26, 0x00, SS_FATAL | EINVAL, 1748 "Invalid field in parameter list") }, 1749 /* DTLPWROMAEBKVF */ 1750 { SST(0x26, 0x01, SS_FATAL | EINVAL, 1751 "Parameter not supported") }, 1752 /* DTLPWROMAEBKVF */ 1753 { SST(0x26, 0x02, SS_FATAL | EINVAL, 1754 "Parameter value invalid") }, 1755 /* DTLPWROMAE K */ 1756 { SST(0x26, 0x03, SS_FATAL | EINVAL, 1757 "Threshold parameters not supported") }, 1758 /* DTLPWROMAEBKVF */ 1759 { SST(0x26, 0x04, SS_FATAL | EINVAL, 1760 "Invalid release of persistent reservation") }, 1761 /* DTLPWRO A BK */ 1762 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ 1763 "Data decryption error") }, 1764 /* DTLPWRO K */ 1765 { SST(0x26, 0x06, SS_FATAL | EINVAL, 1766 "Too many target descriptors") }, 1767 /* DTLPWRO K */ 1768 { SST(0x26, 0x07, SS_FATAL | EINVAL, 1769 "Unsupported target descriptor type code") }, 1770 /* DTLPWRO K */ 1771 { SST(0x26, 0x08, SS_FATAL | EINVAL, 1772 "Too many segment descriptors") }, 1773 /* DTLPWRO K */ 1774 { SST(0x26, 0x09, SS_FATAL | EINVAL, 1775 "Unsupported segment descriptor type code") }, 1776 /* DTLPWRO K */ 1777 { SST(0x26, 0x0A, SS_FATAL | EINVAL, 1778 "Unexpected inexact segment") }, 1779 /* DTLPWRO K */ 1780 { SST(0x26, 0x0B, SS_FATAL | EINVAL, 1781 "Inline data length exceeded") }, 1782 /* DTLPWRO K */ 1783 { SST(0x26, 0x0C, SS_FATAL | EINVAL, 1784 "Invalid operation for copy source or destination") }, 1785 /* DTLPWRO K */ 1786 { SST(0x26, 0x0D, SS_FATAL | EINVAL, 1787 "Copy segment granularity violation") }, 1788 /* DT PWROMAEBK */ 1789 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ 1790 "Invalid parameter while port is enabled") }, 1791 /* F */ 1792 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ 1793 "Invalid data-out buffer integrity check value") }, 1794 /* T */ 1795 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ 1796 "Data decryption key fail limit reached") }, 1797 /* T */ 1798 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ 1799 "Incomplete key-associated data set") }, 1800 /* T */ 1801 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ 1802 "Vendor specific key reference not found") }, 1803 /* D */ 1804 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */ 1805 "Application tag mode page is invalid") }, 1806 /* DT WRO BK */ 1807 { SST(0x27, 0x00, SS_FATAL | EACCES, 1808 "Write protected") }, 1809 /* DT WRO BK */ 1810 { SST(0x27, 0x01, SS_FATAL | EACCES, 1811 "Hardware write protected") }, 1812 /* DT WRO BK */ 1813 { SST(0x27, 0x02, SS_FATAL | EACCES, 1814 "Logical unit software write protected") }, 1815 /* T R */ 1816 { SST(0x27, 0x03, SS_FATAL | EACCES, 1817 "Associated write protect") }, 1818 /* T R */ 1819 { SST(0x27, 0x04, SS_FATAL | EACCES, 1820 "Persistent write protect") }, 1821 /* T R */ 1822 { SST(0x27, 0x05, SS_FATAL | EACCES, 1823 "Permanent write protect") }, 1824 /* R F */ 1825 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ 1826 "Conditional write protect") }, 1827 /* D B */ 1828 { SST(0x27, 0x07, SS_FATAL | ENOSPC, 1829 "Space allocation failed write protect") }, 1830 /* D */ 1831 { SST(0x27, 0x08, SS_FATAL | EACCES, 1832 "Zone is read only") }, 1833 /* DTLPWROMAEBKVF */ 1834 { SST(0x28, 0x00, SS_FATAL | ENXIO, 1835 "Not ready to ready change, medium may have changed") }, 1836 /* DT WROM B */ 1837 { SST(0x28, 0x01, SS_FATAL | ENXIO, 1838 "Import or export element accessed") }, 1839 /* R */ 1840 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ 1841 "Format-layer may have changed") }, 1842 /* M */ 1843 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ 1844 "Import/export element accessed, medium changed") }, 1845 /* 1846 * XXX JGibbs - All of these should use the same errno, but I don't 1847 * think ENXIO is the correct choice. Should we borrow from 1848 * the networking errnos? ECONNRESET anyone? 1849 */ 1850 /* DTLPWROMAEBKVF */ 1851 { SST(0x29, 0x00, SS_FATAL | ENXIO, 1852 "Power on, reset, or bus device reset occurred") }, 1853 /* DTLPWROMAEBKVF */ 1854 { SST(0x29, 0x01, SS_RDEF, 1855 "Power on occurred") }, 1856 /* DTLPWROMAEBKVF */ 1857 { SST(0x29, 0x02, SS_RDEF, 1858 "SCSI bus reset occurred") }, 1859 /* DTLPWROMAEBKVF */ 1860 { SST(0x29, 0x03, SS_RDEF, 1861 "Bus device reset function occurred") }, 1862 /* DTLPWROMAEBKVF */ 1863 { SST(0x29, 0x04, SS_RDEF, 1864 "Device internal reset") }, 1865 /* DTLPWROMAEBKVF */ 1866 { SST(0x29, 0x05, SS_RDEF, 1867 "Transceiver mode changed to single-ended") }, 1868 /* DTLPWROMAEBKVF */ 1869 { SST(0x29, 0x06, SS_RDEF, 1870 "Transceiver mode changed to LVD") }, 1871 /* DTLPWROMAEBKVF */ 1872 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ 1873 "I_T nexus loss occurred") }, 1874 /* DTL WROMAEBKVF */ 1875 { SST(0x2A, 0x00, SS_RDEF, 1876 "Parameters changed") }, 1877 /* DTL WROMAEBKVF */ 1878 { SST(0x2A, 0x01, SS_RDEF, 1879 "Mode parameters changed") }, 1880 /* DTL WROMAE K */ 1881 { SST(0x2A, 0x02, SS_RDEF, 1882 "Log parameters changed") }, 1883 /* DTLPWROMAE K */ 1884 { SST(0x2A, 0x03, SS_RDEF, 1885 "Reservations preempted") }, 1886 /* DTLPWROMAE */ 1887 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ 1888 "Reservations released") }, 1889 /* DTLPWROMAE */ 1890 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ 1891 "Registrations preempted") }, 1892 /* DTLPWROMAEBKVF */ 1893 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ 1894 "Asymmetric access state changed") }, 1895 /* DTLPWROMAEBKVF */ 1896 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ 1897 "Implicit asymmetric access state transition failed") }, 1898 /* DT WROMAEBKVF */ 1899 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ 1900 "Priority changed") }, 1901 /* D */ 1902 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ 1903 "Capacity data has changed") }, 1904 /* DT */ 1905 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ 1906 "Error history I_T nexus cleared") }, 1907 /* DT */ 1908 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ 1909 "Error history snapshot released") }, 1910 /* F */ 1911 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ 1912 "Error recovery attributes have changed") }, 1913 /* T */ 1914 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ 1915 "Data encryption capabilities changed") }, 1916 /* DT M E V */ 1917 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ 1918 "Timestamp changed") }, 1919 /* T */ 1920 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ 1921 "Data encryption parameters changed by another I_T nexus") }, 1922 /* T */ 1923 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ 1924 "Data encryption parameters changed by vendor specific event") }, 1925 /* T */ 1926 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ 1927 "Data encryption key instance counter has changed") }, 1928 /* DT R MAEBKV */ 1929 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ 1930 "SA creation capabilities data has changed") }, 1931 /* T M V */ 1932 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */ 1933 "Medium removal prevention preempted") }, 1934 /* DTLPWRO K */ 1935 { SST(0x2B, 0x00, SS_RDEF, 1936 "Copy cannot execute since host cannot disconnect") }, 1937 /* DTLPWROMAEBKVF */ 1938 { SST(0x2C, 0x00, SS_RDEF, 1939 "Command sequence error") }, 1940 /* */ 1941 { SST(0x2C, 0x01, SS_RDEF, 1942 "Too many windows specified") }, 1943 /* */ 1944 { SST(0x2C, 0x02, SS_RDEF, 1945 "Invalid combination of windows specified") }, 1946 /* R */ 1947 { SST(0x2C, 0x03, SS_RDEF, 1948 "Current program area is not empty") }, 1949 /* R */ 1950 { SST(0x2C, 0x04, SS_RDEF, 1951 "Current program area is empty") }, 1952 /* B */ 1953 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ 1954 "Illegal power condition request") }, 1955 /* R */ 1956 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ 1957 "Persistent prevent conflict") }, 1958 /* DTLPWROMAEBKVF */ 1959 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ 1960 "Previous busy status") }, 1961 /* DTLPWROMAEBKVF */ 1962 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ 1963 "Previous task set full status") }, 1964 /* DTLPWROM EBKVF */ 1965 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ 1966 "Previous reservation conflict status") }, 1967 /* F */ 1968 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ 1969 "Partition or collection contains user objects") }, 1970 /* T */ 1971 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ 1972 "Not reserved") }, 1973 /* D */ 1974 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */ 1975 "ORWRITE generation does not match") }, 1976 /* D */ 1977 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */ 1978 "Reset write pointer not allowed") }, 1979 /* D */ 1980 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */ 1981 "Zone is offline") }, 1982 /* D */ 1983 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */ 1984 "Stream not open") }, 1985 /* D */ 1986 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */ 1987 "Unwritten data in zone") }, 1988 /* T */ 1989 { SST(0x2D, 0x00, SS_RDEF, 1990 "Overwrite error on update in place") }, 1991 /* R */ 1992 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ 1993 "Insufficient time for operation") }, 1994 /* D */ 1995 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */ 1996 "Command timeout before processing") }, 1997 /* D */ 1998 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */ 1999 "Command timeout during processing") }, 2000 /* D */ 2001 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */ 2002 "Command timeout during processing due to error recovery") }, 2003 /* DTLPWROMAEBKVF */ 2004 { SST(0x2F, 0x00, SS_RDEF, 2005 "Commands cleared by another initiator") }, 2006 /* D */ 2007 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ 2008 "Commands cleared by power loss notification") }, 2009 /* DTLPWROMAEBKVF */ 2010 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ 2011 "Commands cleared by device server") }, 2012 /* DTLPWROMAEBKVF */ 2013 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */ 2014 "Some commands cleared by queuing layer event") }, 2015 /* DT WROM BK */ 2016 { SST(0x30, 0x00, SS_RDEF, 2017 "Incompatible medium installed") }, 2018 /* DT WRO BK */ 2019 { SST(0x30, 0x01, SS_RDEF, 2020 "Cannot read medium - unknown format") }, 2021 /* DT WRO BK */ 2022 { SST(0x30, 0x02, SS_RDEF, 2023 "Cannot read medium - incompatible format") }, 2024 /* DT R K */ 2025 { SST(0x30, 0x03, SS_RDEF, 2026 "Cleaning cartridge installed") }, 2027 /* DT WRO BK */ 2028 { SST(0x30, 0x04, SS_RDEF, 2029 "Cannot write medium - unknown format") }, 2030 /* DT WRO BK */ 2031 { SST(0x30, 0x05, SS_RDEF, 2032 "Cannot write medium - incompatible format") }, 2033 /* DT WRO B */ 2034 { SST(0x30, 0x06, SS_RDEF, 2035 "Cannot format medium - incompatible medium") }, 2036 /* DTL WROMAEBKVF */ 2037 { SST(0x30, 0x07, SS_RDEF, 2038 "Cleaning failure") }, 2039 /* R */ 2040 { SST(0x30, 0x08, SS_RDEF, 2041 "Cannot write - application code mismatch") }, 2042 /* R */ 2043 { SST(0x30, 0x09, SS_RDEF, 2044 "Current session not fixated for append") }, 2045 /* DT WRO AEBK */ 2046 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ 2047 "Cleaning request rejected") }, 2048 /* T */ 2049 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ 2050 "WORM medium - overwrite attempted") }, 2051 /* T */ 2052 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ 2053 "WORM medium - integrity check") }, 2054 /* R */ 2055 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ 2056 "Medium not formatted") }, 2057 /* M */ 2058 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ 2059 "Incompatible volume type") }, 2060 /* M */ 2061 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ 2062 "Incompatible volume qualifier") }, 2063 /* M */ 2064 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */ 2065 "Cleaning volume expired") }, 2066 /* DT WRO BK */ 2067 { SST(0x31, 0x00, SS_FATAL | ENXIO, 2068 "Medium format corrupted") }, 2069 /* D L RO B */ 2070 { SST(0x31, 0x01, SS_RDEF, 2071 "Format command failed") }, 2072 /* R */ 2073 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ 2074 "Zoned formatting failed due to spare linking") }, 2075 /* D B */ 2076 { SST(0x31, 0x03, SS_FATAL | EIO, 2077 "SANITIZE command failed") }, 2078 /* D */ 2079 { SST(0x31, 0x04, SS_FATAL | EIO, 2080 "Depopulation failed") }, 2081 /* D */ 2082 { SST(0x31, 0x05, SS_FATAL | EIO, 2083 "Depopulation restoration failed") }, 2084 /* D W O BK */ 2085 { SST(0x32, 0x00, SS_RDEF, 2086 "No defect spare location available") }, 2087 /* D W O BK */ 2088 { SST(0x32, 0x01, SS_RDEF, 2089 "Defect list update failure") }, 2090 /* T */ 2091 { SST(0x33, 0x00, SS_RDEF, 2092 "Tape length error") }, 2093 /* DTLPWROMAEBKVF */ 2094 { SST(0x34, 0x00, SS_RDEF, 2095 "Enclosure failure") }, 2096 /* DTLPWROMAEBKVF */ 2097 { SST(0x35, 0x00, SS_RDEF, 2098 "Enclosure services failure") }, 2099 /* DTLPWROMAEBKVF */ 2100 { SST(0x35, 0x01, SS_RDEF, 2101 "Unsupported enclosure function") }, 2102 /* DTLPWROMAEBKVF */ 2103 { SST(0x35, 0x02, SS_RDEF, 2104 "Enclosure services unavailable") }, 2105 /* DTLPWROMAEBKVF */ 2106 { SST(0x35, 0x03, SS_RDEF, 2107 "Enclosure services transfer failure") }, 2108 /* DTLPWROMAEBKVF */ 2109 { SST(0x35, 0x04, SS_RDEF, 2110 "Enclosure services transfer refused") }, 2111 /* DTL WROMAEBKVF */ 2112 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ 2113 "Enclosure services checksum error") }, 2114 /* L */ 2115 { SST(0x36, 0x00, SS_RDEF, 2116 "Ribbon, ink, or toner failure") }, 2117 /* DTL WROMAEBKVF */ 2118 { SST(0x37, 0x00, SS_RDEF, 2119 "Rounded parameter") }, 2120 /* B */ 2121 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ 2122 "Event status notification") }, 2123 /* B */ 2124 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ 2125 "ESN - power management class event") }, 2126 /* B */ 2127 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ 2128 "ESN - media class event") }, 2129 /* B */ 2130 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ 2131 "ESN - device busy class event") }, 2132 /* D */ 2133 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */ 2134 "Thin provisioning soft threshold reached") }, 2135 /* DTL WROMAE K */ 2136 { SST(0x39, 0x00, SS_RDEF, 2137 "Saving parameters not supported") }, 2138 /* DTL WROM BK */ 2139 { SST(0x3A, 0x00, SS_FATAL | ENXIO, 2140 "Medium not present") }, 2141 /* DT WROM BK */ 2142 { SST(0x3A, 0x01, SS_FATAL | ENXIO, 2143 "Medium not present - tray closed") }, 2144 /* DT WROM BK */ 2145 { SST(0x3A, 0x02, SS_FATAL | ENXIO, 2146 "Medium not present - tray open") }, 2147 /* DT WROM B */ 2148 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ 2149 "Medium not present - loadable") }, 2150 /* DT WRO B */ 2151 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ 2152 "Medium not present - medium auxiliary memory accessible") }, 2153 /* TL */ 2154 { SST(0x3B, 0x00, SS_RDEF, 2155 "Sequential positioning error") }, 2156 /* T */ 2157 { SST(0x3B, 0x01, SS_RDEF, 2158 "Tape position error at beginning-of-medium") }, 2159 /* T */ 2160 { SST(0x3B, 0x02, SS_RDEF, 2161 "Tape position error at end-of-medium") }, 2162 /* L */ 2163 { SST(0x3B, 0x03, SS_RDEF, 2164 "Tape or electronic vertical forms unit not ready") }, 2165 /* L */ 2166 { SST(0x3B, 0x04, SS_RDEF, 2167 "Slew failure") }, 2168 /* L */ 2169 { SST(0x3B, 0x05, SS_RDEF, 2170 "Paper jam") }, 2171 /* L */ 2172 { SST(0x3B, 0x06, SS_RDEF, 2173 "Failed to sense top-of-form") }, 2174 /* L */ 2175 { SST(0x3B, 0x07, SS_RDEF, 2176 "Failed to sense bottom-of-form") }, 2177 /* T */ 2178 { SST(0x3B, 0x08, SS_RDEF, 2179 "Reposition error") }, 2180 /* */ 2181 { SST(0x3B, 0x09, SS_RDEF, 2182 "Read past end of medium") }, 2183 /* */ 2184 { SST(0x3B, 0x0A, SS_RDEF, 2185 "Read past beginning of medium") }, 2186 /* */ 2187 { SST(0x3B, 0x0B, SS_RDEF, 2188 "Position past end of medium") }, 2189 /* T */ 2190 { SST(0x3B, 0x0C, SS_RDEF, 2191 "Position past beginning of medium") }, 2192 /* DT WROM BK */ 2193 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, 2194 "Medium destination element full") }, 2195 /* DT WROM BK */ 2196 { SST(0x3B, 0x0E, SS_RDEF, 2197 "Medium source element empty") }, 2198 /* R */ 2199 { SST(0x3B, 0x0F, SS_RDEF, 2200 "End of medium reached") }, 2201 /* DT WROM BK */ 2202 { SST(0x3B, 0x11, SS_RDEF, 2203 "Medium magazine not accessible") }, 2204 /* DT WROM BK */ 2205 { SST(0x3B, 0x12, SS_RDEF, 2206 "Medium magazine removed") }, 2207 /* DT WROM BK */ 2208 { SST(0x3B, 0x13, SS_RDEF, 2209 "Medium magazine inserted") }, 2210 /* DT WROM BK */ 2211 { SST(0x3B, 0x14, SS_RDEF, 2212 "Medium magazine locked") }, 2213 /* DT WROM BK */ 2214 { SST(0x3B, 0x15, SS_RDEF, 2215 "Medium magazine unlocked") }, 2216 /* R */ 2217 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ 2218 "Mechanical positioning or changer error") }, 2219 /* F */ 2220 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ 2221 "Read past end of user object") }, 2222 /* M */ 2223 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ 2224 "Element disabled") }, 2225 /* M */ 2226 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ 2227 "Element enabled") }, 2228 /* M */ 2229 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ 2230 "Data transfer device removed") }, 2231 /* M */ 2232 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ 2233 "Data transfer device inserted") }, 2234 /* T */ 2235 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */ 2236 "Too many logical objects on partition to support operation") }, 2237 /* DTLPWROMAE K */ 2238 { SST(0x3D, 0x00, SS_RDEF, 2239 "Invalid bits in IDENTIFY message") }, 2240 /* DTLPWROMAEBKVF */ 2241 { SST(0x3E, 0x00, SS_RDEF, 2242 "Logical unit has not self-configured yet") }, 2243 /* DTLPWROMAEBKVF */ 2244 { SST(0x3E, 0x01, SS_RDEF, 2245 "Logical unit failure") }, 2246 /* DTLPWROMAEBKVF */ 2247 { SST(0x3E, 0x02, SS_RDEF, 2248 "Timeout on logical unit") }, 2249 /* DTLPWROMAEBKVF */ 2250 { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */ 2251 "Logical unit failed self-test") }, 2252 /* DTLPWROMAEBKVF */ 2253 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ 2254 "Logical unit unable to update self-test log") }, 2255 /* DTLPWROMAEBKVF */ 2256 { SST(0x3F, 0x00, SS_RDEF, 2257 "Target operating conditions have changed") }, 2258 /* DTLPWROMAEBKVF */ 2259 { SST(0x3F, 0x01, SS_RDEF, 2260 "Microcode has been changed") }, 2261 /* DTLPWROM BK */ 2262 { SST(0x3F, 0x02, SS_RDEF, 2263 "Changed operating definition") }, 2264 /* DTLPWROMAEBKVF */ 2265 { SST(0x3F, 0x03, SS_RDEF, 2266 "INQUIRY data has changed") }, 2267 /* DT WROMAEBK */ 2268 { SST(0x3F, 0x04, SS_RDEF, 2269 "Component device attached") }, 2270 /* DT WROMAEBK */ 2271 { SST(0x3F, 0x05, SS_RDEF, 2272 "Device identifier changed") }, 2273 /* DT WROMAEB */ 2274 { SST(0x3F, 0x06, SS_RDEF, 2275 "Redundancy group created or modified") }, 2276 /* DT WROMAEB */ 2277 { SST(0x3F, 0x07, SS_RDEF, 2278 "Redundancy group deleted") }, 2279 /* DT WROMAEB */ 2280 { SST(0x3F, 0x08, SS_RDEF, 2281 "Spare created or modified") }, 2282 /* DT WROMAEB */ 2283 { SST(0x3F, 0x09, SS_RDEF, 2284 "Spare deleted") }, 2285 /* DT WROMAEBK */ 2286 { SST(0x3F, 0x0A, SS_RDEF, 2287 "Volume set created or modified") }, 2288 /* DT WROMAEBK */ 2289 { SST(0x3F, 0x0B, SS_RDEF, 2290 "Volume set deleted") }, 2291 /* DT WROMAEBK */ 2292 { SST(0x3F, 0x0C, SS_RDEF, 2293 "Volume set deassigned") }, 2294 /* DT WROMAEBK */ 2295 { SST(0x3F, 0x0D, SS_RDEF, 2296 "Volume set reassigned") }, 2297 /* DTLPWROMAE */ 2298 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN , 2299 "Reported LUNs data has changed") }, 2300 /* DTLPWROMAEBKVF */ 2301 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ 2302 "Echo buffer overwritten") }, 2303 /* DT WROM B */ 2304 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ 2305 "Medium loadable") }, 2306 /* DT WROM B */ 2307 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ 2308 "Medium auxiliary memory accessible") }, 2309 /* DTLPWR MAEBK F */ 2310 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ 2311 "iSCSI IP address added") }, 2312 /* DTLPWR MAEBK F */ 2313 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ 2314 "iSCSI IP address removed") }, 2315 /* DTLPWR MAEBK F */ 2316 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ 2317 "iSCSI IP address changed") }, 2318 /* DTLPWR MAEBK */ 2319 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */ 2320 "Inspect referrals sense descriptors") }, 2321 /* DTLPWROMAEBKVF */ 2322 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */ 2323 "Microcode has been changed without reset") }, 2324 /* D */ 2325 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */ 2326 "Zone transition to full") }, 2327 /* D */ 2328 { SST(0x40, 0x00, SS_RDEF, 2329 "RAM failure") }, /* deprecated - use 40 NN instead */ 2330 /* DTLPWROMAEBKVF */ 2331 { SST(0x40, 0x80, SS_RDEF, 2332 "Diagnostic failure: ASCQ = Component ID") }, 2333 /* DTLPWROMAEBKVF */ 2334 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, 2335 NULL) }, /* Range 0x80->0xFF */ 2336 /* D */ 2337 { SST(0x41, 0x00, SS_RDEF, 2338 "Data path failure") }, /* deprecated - use 40 NN instead */ 2339 /* D */ 2340 { SST(0x42, 0x00, SS_RDEF, 2341 "Power-on or self-test failure") }, 2342 /* deprecated - use 40 NN instead */ 2343 /* DTLPWROMAEBKVF */ 2344 { SST(0x43, 0x00, SS_RDEF, 2345 "Message error") }, 2346 /* DTLPWROMAEBKVF */ 2347 { SST(0x44, 0x00, SS_FATAL | EIO, 2348 "Internal target failure") }, 2349 /* DT P MAEBKVF */ 2350 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */ 2351 "Persistent reservation information lost") }, 2352 /* DT B */ 2353 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ 2354 "ATA device failed set features") }, 2355 /* DTLPWROMAEBKVF */ 2356 { SST(0x45, 0x00, SS_RDEF, 2357 "Select or reselect failure") }, 2358 /* DTLPWROM BK */ 2359 { SST(0x46, 0x00, SS_RDEF, 2360 "Unsuccessful soft reset") }, 2361 /* DTLPWROMAEBKVF */ 2362 { SST(0x47, 0x00, SS_RDEF, 2363 "SCSI parity error") }, 2364 /* DTLPWROMAEBKVF */ 2365 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ 2366 "Data phase CRC error detected") }, 2367 /* DTLPWROMAEBKVF */ 2368 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ 2369 "SCSI parity error detected during ST data phase") }, 2370 /* DTLPWROMAEBKVF */ 2371 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ 2372 "Information unit iuCRC error detected") }, 2373 /* DTLPWROMAEBKVF */ 2374 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ 2375 "Asynchronous information protection error detected") }, 2376 /* DTLPWROMAEBKVF */ 2377 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ 2378 "Protocol service CRC error") }, 2379 /* DT MAEBKVF */ 2380 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ 2381 "PHY test function in progress") }, 2382 /* DT PWROMAEBK */ 2383 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ 2384 "Some commands cleared by iSCSI protocol event") }, 2385 /* DTLPWROMAEBKVF */ 2386 { SST(0x48, 0x00, SS_RDEF, 2387 "Initiator detected error message received") }, 2388 /* DTLPWROMAEBKVF */ 2389 { SST(0x49, 0x00, SS_RDEF, 2390 "Invalid message error") }, 2391 /* DTLPWROMAEBKVF */ 2392 { SST(0x4A, 0x00, SS_RDEF, 2393 "Command phase error") }, 2394 /* DTLPWROMAEBKVF */ 2395 { SST(0x4B, 0x00, SS_RDEF, 2396 "Data phase error") }, 2397 /* DT PWROMAEBK */ 2398 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ 2399 "Invalid target port transfer tag received") }, 2400 /* DT PWROMAEBK */ 2401 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ 2402 "Too much write data") }, 2403 /* DT PWROMAEBK */ 2404 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ 2405 "ACK/NAK timeout") }, 2406 /* DT PWROMAEBK */ 2407 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ 2408 "NAK received") }, 2409 /* DT PWROMAEBK */ 2410 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ 2411 "Data offset error") }, 2412 /* DT PWROMAEBK */ 2413 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ 2414 "Initiator response timeout") }, 2415 /* DT PWROMAEBK F */ 2416 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */ 2417 "Connection lost") }, 2418 /* DT PWROMAEBK F */ 2419 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */ 2420 "Data-in buffer overflow - data buffer size") }, 2421 /* DT PWROMAEBK F */ 2422 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */ 2423 "Data-in buffer overflow - data buffer descriptor area") }, 2424 /* DT PWROMAEBK F */ 2425 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */ 2426 "Data-in buffer error") }, 2427 /* DT PWROMAEBK F */ 2428 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */ 2429 "Data-out buffer overflow - data buffer size") }, 2430 /* DT PWROMAEBK F */ 2431 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */ 2432 "Data-out buffer overflow - data buffer descriptor area") }, 2433 /* DT PWROMAEBK F */ 2434 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */ 2435 "Data-out buffer error") }, 2436 /* DT PWROMAEBK F */ 2437 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */ 2438 "PCIe fabric error") }, 2439 /* DT PWROMAEBK F */ 2440 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */ 2441 "PCIe completion timeout") }, 2442 /* DT PWROMAEBK F */ 2443 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */ 2444 "PCIe completer abort") }, 2445 /* DT PWROMAEBK F */ 2446 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */ 2447 "PCIe poisoned TLP received") }, 2448 /* DT PWROMAEBK F */ 2449 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */ 2450 "PCIe ECRC check failed") }, 2451 /* DT PWROMAEBK F */ 2452 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */ 2453 "PCIe unsupported request") }, 2454 /* DT PWROMAEBK F */ 2455 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */ 2456 "PCIe ACS violation") }, 2457 /* DT PWROMAEBK F */ 2458 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */ 2459 "PCIe TLP prefix blocket") }, 2460 /* DTLPWROMAEBKVF */ 2461 { SST(0x4C, 0x00, SS_RDEF, 2462 "Logical unit failed self-configuration") }, 2463 /* DTLPWROMAEBKVF */ 2464 { SST(0x4D, 0x00, SS_RDEF, 2465 "Tagged overlapped commands: ASCQ = Queue tag ID") }, 2466 /* DTLPWROMAEBKVF */ 2467 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, 2468 NULL) }, /* Range 0x00->0xFF */ 2469 /* DTLPWROMAEBKVF */ 2470 { SST(0x4E, 0x00, SS_RDEF, 2471 "Overlapped commands attempted") }, 2472 /* T */ 2473 { SST(0x50, 0x00, SS_RDEF, 2474 "Write append error") }, 2475 /* T */ 2476 { SST(0x50, 0x01, SS_RDEF, 2477 "Write append position error") }, 2478 /* T */ 2479 { SST(0x50, 0x02, SS_RDEF, 2480 "Position error related to timing") }, 2481 /* T RO */ 2482 { SST(0x51, 0x00, SS_RDEF, 2483 "Erase failure") }, 2484 /* R */ 2485 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ 2486 "Erase failure - incomplete erase operation detected") }, 2487 /* T */ 2488 { SST(0x52, 0x00, SS_RDEF, 2489 "Cartridge fault") }, 2490 /* DTL WROM BK */ 2491 { SST(0x53, 0x00, SS_RDEF, 2492 "Media load or eject failed") }, 2493 /* T */ 2494 { SST(0x53, 0x01, SS_RDEF, 2495 "Unload tape failure") }, 2496 /* DT WROM BK */ 2497 { SST(0x53, 0x02, SS_RDEF, 2498 "Medium removal prevented") }, 2499 /* M */ 2500 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ 2501 "Medium removal prevented by data transfer element") }, 2502 /* T */ 2503 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ 2504 "Medium thread or unthread failure") }, 2505 /* M */ 2506 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */ 2507 "Volume identifier invalid") }, 2508 /* T */ 2509 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */ 2510 "Volume identifier missing") }, 2511 /* M */ 2512 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */ 2513 "Duplicate volume identifier") }, 2514 /* M */ 2515 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */ 2516 "Element status unknown") }, 2517 /* M */ 2518 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */ 2519 "Data transfer device error - load failed") }, 2520 /* M */ 2521 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */ 2522 "Data transfer device error - unload failed") }, 2523 /* M */ 2524 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */ 2525 "Data transfer device error - unload missing") }, 2526 /* M */ 2527 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */ 2528 "Data transfer device error - eject failed") }, 2529 /* M */ 2530 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */ 2531 "Data transfer device error - library communication failed") }, 2532 /* P */ 2533 { SST(0x54, 0x00, SS_RDEF, 2534 "SCSI to host system interface failure") }, 2535 /* P */ 2536 { SST(0x55, 0x00, SS_RDEF, 2537 "System resource failure") }, 2538 /* D O BK */ 2539 { SST(0x55, 0x01, SS_FATAL | ENOSPC, 2540 "System buffer full") }, 2541 /* DTLPWROMAE K */ 2542 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ 2543 "Insufficient reservation resources") }, 2544 /* DTLPWROMAE K */ 2545 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ 2546 "Insufficient resources") }, 2547 /* DTLPWROMAE K */ 2548 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ 2549 "Insufficient registration resources") }, 2550 /* DT PWROMAEBK */ 2551 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ 2552 "Insufficient access control resources") }, 2553 /* DT WROM B */ 2554 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ 2555 "Auxiliary memory out of space") }, 2556 /* F */ 2557 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ 2558 "Quota error") }, 2559 /* T */ 2560 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ 2561 "Maximum number of supplemental decryption keys exceeded") }, 2562 /* M */ 2563 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ 2564 "Medium auxiliary memory not accessible") }, 2565 /* M */ 2566 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ 2567 "Data currently unavailable") }, 2568 /* DTLPWROMAEBKVF */ 2569 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */ 2570 "Insufficient power for operation") }, 2571 /* DT P B */ 2572 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */ 2573 "Insufficient resources to create ROD") }, 2574 /* DT P B */ 2575 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */ 2576 "Insufficient resources to create ROD token") }, 2577 /* D */ 2578 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */ 2579 "Insufficient zone resources") }, 2580 /* D */ 2581 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */ 2582 "Insufficient zone resources to complete write") }, 2583 /* D */ 2584 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */ 2585 "Maximum number of streams open") }, 2586 /* R */ 2587 { SST(0x57, 0x00, SS_RDEF, 2588 "Unable to recover table-of-contents") }, 2589 /* O */ 2590 { SST(0x58, 0x00, SS_RDEF, 2591 "Generation does not exist") }, 2592 /* O */ 2593 { SST(0x59, 0x00, SS_RDEF, 2594 "Updated block read") }, 2595 /* DTLPWRO BK */ 2596 { SST(0x5A, 0x00, SS_RDEF, 2597 "Operator request or state change input") }, 2598 /* DT WROM BK */ 2599 { SST(0x5A, 0x01, SS_RDEF, 2600 "Operator medium removal request") }, 2601 /* DT WRO A BK */ 2602 { SST(0x5A, 0x02, SS_RDEF, 2603 "Operator selected write protect") }, 2604 /* DT WRO A BK */ 2605 { SST(0x5A, 0x03, SS_RDEF, 2606 "Operator selected write permit") }, 2607 /* DTLPWROM K */ 2608 { SST(0x5B, 0x00, SS_RDEF, 2609 "Log exception") }, 2610 /* DTLPWROM K */ 2611 { SST(0x5B, 0x01, SS_RDEF, 2612 "Threshold condition met") }, 2613 /* DTLPWROM K */ 2614 { SST(0x5B, 0x02, SS_RDEF, 2615 "Log counter at maximum") }, 2616 /* DTLPWROM K */ 2617 { SST(0x5B, 0x03, SS_RDEF, 2618 "Log list codes exhausted") }, 2619 /* D O */ 2620 { SST(0x5C, 0x00, SS_RDEF, 2621 "RPL status change") }, 2622 /* D O */ 2623 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2624 "Spindles synchronized") }, 2625 /* D O */ 2626 { SST(0x5C, 0x02, SS_RDEF, 2627 "Spindles not synchronized") }, 2628 /* DTLPWROMAEBKVF */ 2629 { SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE, 2630 "Failure prediction threshold exceeded") }, 2631 /* R B */ 2632 { SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2633 "Media failure prediction threshold exceeded") }, 2634 /* R */ 2635 { SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE, 2636 "Logical unit failure prediction threshold exceeded") }, 2637 /* R */ 2638 { SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE, 2639 "Spare area exhaustion prediction threshold exceeded") }, 2640 /* D B */ 2641 { SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE, 2642 "Hardware impending failure general hard drive failure") }, 2643 /* D B */ 2644 { SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE, 2645 "Hardware impending failure drive error rate too high") }, 2646 /* D B */ 2647 { SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE, 2648 "Hardware impending failure data error rate too high") }, 2649 /* D B */ 2650 { SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE, 2651 "Hardware impending failure seek error rate too high") }, 2652 /* D B */ 2653 { SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE, 2654 "Hardware impending failure too many block reassigns") }, 2655 /* D B */ 2656 { SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE, 2657 "Hardware impending failure access times too high") }, 2658 /* D B */ 2659 { SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE, 2660 "Hardware impending failure start unit times too high") }, 2661 /* D B */ 2662 { SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE, 2663 "Hardware impending failure channel parametrics") }, 2664 /* D B */ 2665 { SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE, 2666 "Hardware impending failure controller detected") }, 2667 /* D B */ 2668 { SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE, 2669 "Hardware impending failure throughput performance") }, 2670 /* D B */ 2671 { SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE, 2672 "Hardware impending failure seek time performance") }, 2673 /* D B */ 2674 { SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE, 2675 "Hardware impending failure spin-up retry count") }, 2676 /* D B */ 2677 { SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE, 2678 "Hardware impending failure drive calibration retry count") }, 2679 /* D B */ 2680 { SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE, 2681 "Hardware impending failure power loss protection circuit") }, 2682 /* D B */ 2683 { SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE, 2684 "Controller impending failure general hard drive failure") }, 2685 /* D B */ 2686 { SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE, 2687 "Controller impending failure drive error rate too high") }, 2688 /* D B */ 2689 { SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE, 2690 "Controller impending failure data error rate too high") }, 2691 /* D B */ 2692 { SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE, 2693 "Controller impending failure seek error rate too high") }, 2694 /* D B */ 2695 { SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE, 2696 "Controller impending failure too many block reassigns") }, 2697 /* D B */ 2698 { SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE, 2699 "Controller impending failure access times too high") }, 2700 /* D B */ 2701 { SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE, 2702 "Controller impending failure start unit times too high") }, 2703 /* D B */ 2704 { SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE, 2705 "Controller impending failure channel parametrics") }, 2706 /* D B */ 2707 { SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE, 2708 "Controller impending failure controller detected") }, 2709 /* D B */ 2710 { SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE, 2711 "Controller impending failure throughput performance") }, 2712 /* D B */ 2713 { SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE, 2714 "Controller impending failure seek time performance") }, 2715 /* D B */ 2716 { SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE, 2717 "Controller impending failure spin-up retry count") }, 2718 /* D B */ 2719 { SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE, 2720 "Controller impending failure drive calibration retry count") }, 2721 /* D B */ 2722 { SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE, 2723 "Data channel impending failure general hard drive failure") }, 2724 /* D B */ 2725 { SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE, 2726 "Data channel impending failure drive error rate too high") }, 2727 /* D B */ 2728 { SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE, 2729 "Data channel impending failure data error rate too high") }, 2730 /* D B */ 2731 { SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE, 2732 "Data channel impending failure seek error rate too high") }, 2733 /* D B */ 2734 { SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE, 2735 "Data channel impending failure too many block reassigns") }, 2736 /* D B */ 2737 { SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE, 2738 "Data channel impending failure access times too high") }, 2739 /* D B */ 2740 { SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE, 2741 "Data channel impending failure start unit times too high") }, 2742 /* D B */ 2743 { SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE, 2744 "Data channel impending failure channel parametrics") }, 2745 /* D B */ 2746 { SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE, 2747 "Data channel impending failure controller detected") }, 2748 /* D B */ 2749 { SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE, 2750 "Data channel impending failure throughput performance") }, 2751 /* D B */ 2752 { SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE, 2753 "Data channel impending failure seek time performance") }, 2754 /* D B */ 2755 { SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE, 2756 "Data channel impending failure spin-up retry count") }, 2757 /* D B */ 2758 { SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE, 2759 "Data channel impending failure drive calibration retry count") }, 2760 /* D B */ 2761 { SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE, 2762 "Servo impending failure general hard drive failure") }, 2763 /* D B */ 2764 { SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE, 2765 "Servo impending failure drive error rate too high") }, 2766 /* D B */ 2767 { SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE, 2768 "Servo impending failure data error rate too high") }, 2769 /* D B */ 2770 { SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE, 2771 "Servo impending failure seek error rate too high") }, 2772 /* D B */ 2773 { SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE, 2774 "Servo impending failure too many block reassigns") }, 2775 /* D B */ 2776 { SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE, 2777 "Servo impending failure access times too high") }, 2778 /* D B */ 2779 { SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE, 2780 "Servo impending failure start unit times too high") }, 2781 /* D B */ 2782 { SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE, 2783 "Servo impending failure channel parametrics") }, 2784 /* D B */ 2785 { SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE, 2786 "Servo impending failure controller detected") }, 2787 /* D B */ 2788 { SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE, 2789 "Servo impending failure throughput performance") }, 2790 /* D B */ 2791 { SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE, 2792 "Servo impending failure seek time performance") }, 2793 /* D B */ 2794 { SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE, 2795 "Servo impending failure spin-up retry count") }, 2796 /* D B */ 2797 { SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE, 2798 "Servo impending failure drive calibration retry count") }, 2799 /* D B */ 2800 { SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE, 2801 "Spindle impending failure general hard drive failure") }, 2802 /* D B */ 2803 { SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE, 2804 "Spindle impending failure drive error rate too high") }, 2805 /* D B */ 2806 { SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE, 2807 "Spindle impending failure data error rate too high") }, 2808 /* D B */ 2809 { SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE, 2810 "Spindle impending failure seek error rate too high") }, 2811 /* D B */ 2812 { SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE, 2813 "Spindle impending failure too many block reassigns") }, 2814 /* D B */ 2815 { SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE, 2816 "Spindle impending failure access times too high") }, 2817 /* D B */ 2818 { SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE, 2819 "Spindle impending failure start unit times too high") }, 2820 /* D B */ 2821 { SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE, 2822 "Spindle impending failure channel parametrics") }, 2823 /* D B */ 2824 { SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE, 2825 "Spindle impending failure controller detected") }, 2826 /* D B */ 2827 { SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE, 2828 "Spindle impending failure throughput performance") }, 2829 /* D B */ 2830 { SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE, 2831 "Spindle impending failure seek time performance") }, 2832 /* D B */ 2833 { SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE, 2834 "Spindle impending failure spin-up retry count") }, 2835 /* D B */ 2836 { SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE, 2837 "Spindle impending failure drive calibration retry count") }, 2838 /* D B */ 2839 { SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE, 2840 "Firmware impending failure general hard drive failure") }, 2841 /* D B */ 2842 { SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE, 2843 "Firmware impending failure drive error rate too high") }, 2844 /* D B */ 2845 { SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE, 2846 "Firmware impending failure data error rate too high") }, 2847 /* D B */ 2848 { SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE, 2849 "Firmware impending failure seek error rate too high") }, 2850 /* D B */ 2851 { SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE, 2852 "Firmware impending failure too many block reassigns") }, 2853 /* D B */ 2854 { SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE, 2855 "Firmware impending failure access times too high") }, 2856 /* D B */ 2857 { SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE, 2858 "Firmware impending failure start unit times too high") }, 2859 /* D B */ 2860 { SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE, 2861 "Firmware impending failure channel parametrics") }, 2862 /* D B */ 2863 { SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE, 2864 "Firmware impending failure controller detected") }, 2865 /* D B */ 2866 { SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE, 2867 "Firmware impending failure throughput performance") }, 2868 /* D B */ 2869 { SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE, 2870 "Firmware impending failure seek time performance") }, 2871 /* D B */ 2872 { SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE, 2873 "Firmware impending failure spin-up retry count") }, 2874 /* D B */ 2875 { SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE, 2876 "Firmware impending failure drive calibration retry count") }, 2877 /* D B */ 2878 { SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE, 2879 "Media impending failure endurance limit met") }, 2880 /* DTLPWROMAEBKVF */ 2881 { SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE, 2882 "Failure prediction threshold exceeded (false)") }, 2883 /* DTLPWRO A K */ 2884 { SST(0x5E, 0x00, SS_RDEF, 2885 "Low power condition on") }, 2886 /* DTLPWRO A K */ 2887 { SST(0x5E, 0x01, SS_RDEF, 2888 "Idle condition activated by timer") }, 2889 /* DTLPWRO A K */ 2890 { SST(0x5E, 0x02, SS_RDEF, 2891 "Standby condition activated by timer") }, 2892 /* DTLPWRO A K */ 2893 { SST(0x5E, 0x03, SS_RDEF, 2894 "Idle condition activated by command") }, 2895 /* DTLPWRO A K */ 2896 { SST(0x5E, 0x04, SS_RDEF, 2897 "Standby condition activated by command") }, 2898 /* DTLPWRO A K */ 2899 { SST(0x5E, 0x05, SS_RDEF, 2900 "Idle-B condition activated by timer") }, 2901 /* DTLPWRO A K */ 2902 { SST(0x5E, 0x06, SS_RDEF, 2903 "Idle-B condition activated by command") }, 2904 /* DTLPWRO A K */ 2905 { SST(0x5E, 0x07, SS_RDEF, 2906 "Idle-C condition activated by timer") }, 2907 /* DTLPWRO A K */ 2908 { SST(0x5E, 0x08, SS_RDEF, 2909 "Idle-C condition activated by command") }, 2910 /* DTLPWRO A K */ 2911 { SST(0x5E, 0x09, SS_RDEF, 2912 "Standby-Y condition activated by timer") }, 2913 /* DTLPWRO A K */ 2914 { SST(0x5E, 0x0A, SS_RDEF, 2915 "Standby-Y condition activated by command") }, 2916 /* B */ 2917 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ 2918 "Power state change to active") }, 2919 /* B */ 2920 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ 2921 "Power state change to idle") }, 2922 /* B */ 2923 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ 2924 "Power state change to standby") }, 2925 /* B */ 2926 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ 2927 "Power state change to sleep") }, 2928 /* BK */ 2929 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ 2930 "Power state change to device control") }, 2931 /* */ 2932 { SST(0x60, 0x00, SS_RDEF, 2933 "Lamp failure") }, 2934 /* */ 2935 { SST(0x61, 0x00, SS_RDEF, 2936 "Video acquisition error") }, 2937 /* */ 2938 { SST(0x61, 0x01, SS_RDEF, 2939 "Unable to acquire video") }, 2940 /* */ 2941 { SST(0x61, 0x02, SS_RDEF, 2942 "Out of focus") }, 2943 /* */ 2944 { SST(0x62, 0x00, SS_RDEF, 2945 "Scan head positioning error") }, 2946 /* R */ 2947 { SST(0x63, 0x00, SS_RDEF, 2948 "End of user area encountered on this track") }, 2949 /* R */ 2950 { SST(0x63, 0x01, SS_FATAL | ENOSPC, 2951 "Packet does not fit in available space") }, 2952 /* R */ 2953 { SST(0x64, 0x00, SS_FATAL | ENXIO, 2954 "Illegal mode for this track") }, 2955 /* R */ 2956 { SST(0x64, 0x01, SS_RDEF, 2957 "Invalid packet size") }, 2958 /* DTLPWROMAEBKVF */ 2959 { SST(0x65, 0x00, SS_RDEF, 2960 "Voltage fault") }, 2961 /* */ 2962 { SST(0x66, 0x00, SS_RDEF, 2963 "Automatic document feeder cover up") }, 2964 /* */ 2965 { SST(0x66, 0x01, SS_RDEF, 2966 "Automatic document feeder lift up") }, 2967 /* */ 2968 { SST(0x66, 0x02, SS_RDEF, 2969 "Document jam in automatic document feeder") }, 2970 /* */ 2971 { SST(0x66, 0x03, SS_RDEF, 2972 "Document miss feed automatic in document feeder") }, 2973 /* A */ 2974 { SST(0x67, 0x00, SS_RDEF, 2975 "Configuration failure") }, 2976 /* A */ 2977 { SST(0x67, 0x01, SS_RDEF, 2978 "Configuration of incapable logical units failed") }, 2979 /* A */ 2980 { SST(0x67, 0x02, SS_RDEF, 2981 "Add logical unit failed") }, 2982 /* A */ 2983 { SST(0x67, 0x03, SS_RDEF, 2984 "Modification of logical unit failed") }, 2985 /* A */ 2986 { SST(0x67, 0x04, SS_RDEF, 2987 "Exchange of logical unit failed") }, 2988 /* A */ 2989 { SST(0x67, 0x05, SS_RDEF, 2990 "Remove of logical unit failed") }, 2991 /* A */ 2992 { SST(0x67, 0x06, SS_RDEF, 2993 "Attachment of logical unit failed") }, 2994 /* A */ 2995 { SST(0x67, 0x07, SS_RDEF, 2996 "Creation of logical unit failed") }, 2997 /* A */ 2998 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ 2999 "Assign failure occurred") }, 3000 /* A */ 3001 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ 3002 "Multiply assigned logical unit") }, 3003 /* DTLPWROMAEBKVF */ 3004 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ 3005 "Set target port groups command failed") }, 3006 /* DT B */ 3007 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ 3008 "ATA device feature not enabled") }, 3009 /* A */ 3010 { SST(0x68, 0x00, SS_RDEF, 3011 "Logical unit not configured") }, 3012 /* D */ 3013 { SST(0x68, 0x01, SS_RDEF, 3014 "Subsidiary logical unit not configured") }, 3015 /* A */ 3016 { SST(0x69, 0x00, SS_RDEF, 3017 "Data loss on logical unit") }, 3018 /* A */ 3019 { SST(0x69, 0x01, SS_RDEF, 3020 "Multiple logical unit failures") }, 3021 /* A */ 3022 { SST(0x69, 0x02, SS_RDEF, 3023 "Parity/data mismatch") }, 3024 /* A */ 3025 { SST(0x6A, 0x00, SS_RDEF, 3026 "Informational, refer to log") }, 3027 /* A */ 3028 { SST(0x6B, 0x00, SS_RDEF, 3029 "State change has occurred") }, 3030 /* A */ 3031 { SST(0x6B, 0x01, SS_RDEF, 3032 "Redundancy level got better") }, 3033 /* A */ 3034 { SST(0x6B, 0x02, SS_RDEF, 3035 "Redundancy level got worse") }, 3036 /* A */ 3037 { SST(0x6C, 0x00, SS_RDEF, 3038 "Rebuild failure occurred") }, 3039 /* A */ 3040 { SST(0x6D, 0x00, SS_RDEF, 3041 "Recalculate failure occurred") }, 3042 /* A */ 3043 { SST(0x6E, 0x00, SS_RDEF, 3044 "Command to logical unit failed") }, 3045 /* R */ 3046 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ 3047 "Copy protection key exchange failure - authentication failure") }, 3048 /* R */ 3049 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ 3050 "Copy protection key exchange failure - key not present") }, 3051 /* R */ 3052 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ 3053 "Copy protection key exchange failure - key not established") }, 3054 /* R */ 3055 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ 3056 "Read of scrambled sector without authentication") }, 3057 /* R */ 3058 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ 3059 "Media region code is mismatched to logical unit region") }, 3060 /* R */ 3061 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ 3062 "Drive region must be permanent/region reset count error") }, 3063 /* R */ 3064 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ 3065 "Insufficient block count for binding NONCE recording") }, 3066 /* R */ 3067 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ 3068 "Conflict in binding NONCE recording") }, 3069 /* T */ 3070 { SST(0x70, 0x00, SS_RDEF, 3071 "Decompression exception short: ASCQ = Algorithm ID") }, 3072 /* T */ 3073 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, 3074 NULL) }, /* Range 0x00 -> 0xFF */ 3075 /* T */ 3076 { SST(0x71, 0x00, SS_RDEF, 3077 "Decompression exception long: ASCQ = Algorithm ID") }, 3078 /* T */ 3079 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, 3080 NULL) }, /* Range 0x00 -> 0xFF */ 3081 /* R */ 3082 { SST(0x72, 0x00, SS_RDEF, 3083 "Session fixation error") }, 3084 /* R */ 3085 { SST(0x72, 0x01, SS_RDEF, 3086 "Session fixation error writing lead-in") }, 3087 /* R */ 3088 { SST(0x72, 0x02, SS_RDEF, 3089 "Session fixation error writing lead-out") }, 3090 /* R */ 3091 { SST(0x72, 0x03, SS_RDEF, 3092 "Session fixation error - incomplete track in session") }, 3093 /* R */ 3094 { SST(0x72, 0x04, SS_RDEF, 3095 "Empty or partially written reserved track") }, 3096 /* R */ 3097 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ 3098 "No more track reservations allowed") }, 3099 /* R */ 3100 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ 3101 "RMZ extension is not allowed") }, 3102 /* R */ 3103 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ 3104 "No more test zone extensions are allowed") }, 3105 /* R */ 3106 { SST(0x73, 0x00, SS_RDEF, 3107 "CD control error") }, 3108 /* R */ 3109 { SST(0x73, 0x01, SS_RDEF, 3110 "Power calibration area almost full") }, 3111 /* R */ 3112 { SST(0x73, 0x02, SS_FATAL | ENOSPC, 3113 "Power calibration area is full") }, 3114 /* R */ 3115 { SST(0x73, 0x03, SS_RDEF, 3116 "Power calibration area error") }, 3117 /* R */ 3118 { SST(0x73, 0x04, SS_RDEF, 3119 "Program memory area update failure") }, 3120 /* R */ 3121 { SST(0x73, 0x05, SS_RDEF, 3122 "Program memory area is full") }, 3123 /* R */ 3124 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ 3125 "RMA/PMA is almost full") }, 3126 /* R */ 3127 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ 3128 "Current power calibration area almost full") }, 3129 /* R */ 3130 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ 3131 "Current power calibration area is full") }, 3132 /* R */ 3133 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ 3134 "RDZ is full") }, 3135 /* T */ 3136 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ 3137 "Security error") }, 3138 /* T */ 3139 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ 3140 "Unable to decrypt data") }, 3141 /* T */ 3142 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ 3143 "Unencrypted data encountered while decrypting") }, 3144 /* T */ 3145 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ 3146 "Incorrect data encryption key") }, 3147 /* T */ 3148 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ 3149 "Cryptographic integrity validation failed") }, 3150 /* T */ 3151 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ 3152 "Error decrypting data") }, 3153 /* T */ 3154 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ 3155 "Unknown signature verification key") }, 3156 /* T */ 3157 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ 3158 "Encryption parameters not useable") }, 3159 /* DT R M E VF */ 3160 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ 3161 "Digital signature validation failure") }, 3162 /* T */ 3163 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ 3164 "Encryption mode mismatch on read") }, 3165 /* T */ 3166 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ 3167 "Encrypted block not raw read enabled") }, 3168 /* T */ 3169 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ 3170 "Incorrect encryption parameters") }, 3171 /* DT R MAEBKV */ 3172 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ 3173 "Unable to decrypt parameter list") }, 3174 /* T */ 3175 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ 3176 "Encryption algorithm disabled") }, 3177 /* DT R MAEBKV */ 3178 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ 3179 "SA creation parameter value invalid") }, 3180 /* DT R MAEBKV */ 3181 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ 3182 "SA creation parameter value rejected") }, 3183 /* DT R MAEBKV */ 3184 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ 3185 "Invalid SA usage") }, 3186 /* T */ 3187 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ 3188 "Data encryption configuration prevented") }, 3189 /* DT R MAEBKV */ 3190 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ 3191 "SA creation parameter not supported") }, 3192 /* DT R MAEBKV */ 3193 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ 3194 "Authentication failed") }, 3195 /* V */ 3196 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ 3197 "External data encryption key manager access error") }, 3198 /* V */ 3199 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ 3200 "External data encryption key manager error") }, 3201 /* V */ 3202 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ 3203 "External data encryption key not found") }, 3204 /* V */ 3205 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ 3206 "External data encryption request not authorized") }, 3207 /* T */ 3208 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ 3209 "External data encryption control timeout") }, 3210 /* T */ 3211 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ 3212 "External data encryption control error") }, 3213 /* DT R M E V */ 3214 { SST(0x74, 0x71, SS_FATAL | EACCES, 3215 "Logical unit access not authorized") }, 3216 /* D */ 3217 { SST(0x74, 0x79, SS_FATAL | EACCES, 3218 "Security conflict in translated device") } 3219 }; 3220 3221 const u_int asc_table_size = nitems(asc_table); 3222 3223 struct asc_key 3224 { 3225 int asc; 3226 int ascq; 3227 }; 3228 3229 static int 3230 ascentrycomp(const void *key, const void *member) 3231 { 3232 int asc; 3233 int ascq; 3234 const struct asc_table_entry *table_entry; 3235 3236 asc = ((const struct asc_key *)key)->asc; 3237 ascq = ((const struct asc_key *)key)->ascq; 3238 table_entry = (const struct asc_table_entry *)member; 3239 3240 if (asc >= table_entry->asc) { 3241 if (asc > table_entry->asc) 3242 return (1); 3243 3244 if (ascq <= table_entry->ascq) { 3245 /* Check for ranges */ 3246 if (ascq == table_entry->ascq 3247 || ((table_entry->action & SSQ_RANGE) != 0 3248 && ascq >= (table_entry - 1)->ascq)) 3249 return (0); 3250 return (-1); 3251 } 3252 return (1); 3253 } 3254 return (-1); 3255 } 3256 3257 static int 3258 senseentrycomp(const void *key, const void *member) 3259 { 3260 int sense_key; 3261 const struct sense_key_table_entry *table_entry; 3262 3263 sense_key = *((const int *)key); 3264 table_entry = (const struct sense_key_table_entry *)member; 3265 3266 if (sense_key >= table_entry->sense_key) { 3267 if (sense_key == table_entry->sense_key) 3268 return (0); 3269 return (1); 3270 } 3271 return (-1); 3272 } 3273 3274 static void 3275 fetchtableentries(int sense_key, int asc, int ascq, 3276 struct scsi_inquiry_data *inq_data, 3277 const struct sense_key_table_entry **sense_entry, 3278 const struct asc_table_entry **asc_entry) 3279 { 3280 caddr_t match; 3281 const struct asc_table_entry *asc_tables[2]; 3282 const struct sense_key_table_entry *sense_tables[2]; 3283 struct asc_key asc_ascq; 3284 size_t asc_tables_size[2]; 3285 size_t sense_tables_size[2]; 3286 int num_asc_tables; 3287 int num_sense_tables; 3288 int i; 3289 3290 /* Default to failure */ 3291 *sense_entry = NULL; 3292 *asc_entry = NULL; 3293 match = NULL; 3294 if (inq_data != NULL) 3295 match = cam_quirkmatch((caddr_t)inq_data, 3296 (caddr_t)sense_quirk_table, 3297 sense_quirk_table_size, 3298 sizeof(*sense_quirk_table), 3299 scsi_inquiry_match); 3300 3301 if (match != NULL) { 3302 struct scsi_sense_quirk_entry *quirk; 3303 3304 quirk = (struct scsi_sense_quirk_entry *)match; 3305 asc_tables[0] = quirk->asc_info; 3306 asc_tables_size[0] = quirk->num_ascs; 3307 asc_tables[1] = asc_table; 3308 asc_tables_size[1] = asc_table_size; 3309 num_asc_tables = 2; 3310 sense_tables[0] = quirk->sense_key_info; 3311 sense_tables_size[0] = quirk->num_sense_keys; 3312 sense_tables[1] = sense_key_table; 3313 sense_tables_size[1] = nitems(sense_key_table); 3314 num_sense_tables = 2; 3315 } else { 3316 asc_tables[0] = asc_table; 3317 asc_tables_size[0] = asc_table_size; 3318 num_asc_tables = 1; 3319 sense_tables[0] = sense_key_table; 3320 sense_tables_size[0] = nitems(sense_key_table); 3321 num_sense_tables = 1; 3322 } 3323 3324 asc_ascq.asc = asc; 3325 asc_ascq.ascq = ascq; 3326 for (i = 0; i < num_asc_tables; i++) { 3327 void *found_entry; 3328 3329 found_entry = bsearch(&asc_ascq, asc_tables[i], 3330 asc_tables_size[i], 3331 sizeof(**asc_tables), 3332 ascentrycomp); 3333 3334 if (found_entry) { 3335 *asc_entry = (struct asc_table_entry *)found_entry; 3336 break; 3337 } 3338 } 3339 3340 for (i = 0; i < num_sense_tables; i++) { 3341 void *found_entry; 3342 3343 found_entry = bsearch(&sense_key, sense_tables[i], 3344 sense_tables_size[i], 3345 sizeof(**sense_tables), 3346 senseentrycomp); 3347 3348 if (found_entry) { 3349 *sense_entry = 3350 (struct sense_key_table_entry *)found_entry; 3351 break; 3352 } 3353 } 3354 } 3355 3356 void 3357 scsi_sense_desc(int sense_key, int asc, int ascq, 3358 struct scsi_inquiry_data *inq_data, 3359 const char **sense_key_desc, const char **asc_desc) 3360 { 3361 const struct asc_table_entry *asc_entry; 3362 const struct sense_key_table_entry *sense_entry; 3363 3364 fetchtableentries(sense_key, asc, ascq, 3365 inq_data, 3366 &sense_entry, 3367 &asc_entry); 3368 3369 if (sense_entry != NULL) 3370 *sense_key_desc = sense_entry->desc; 3371 else 3372 *sense_key_desc = "Invalid Sense Key"; 3373 3374 if (asc_entry != NULL) 3375 *asc_desc = asc_entry->desc; 3376 else if (asc >= 0x80 && asc <= 0xff) 3377 *asc_desc = "Vendor Specific ASC"; 3378 else if (ascq >= 0x80 && ascq <= 0xff) 3379 *asc_desc = "Vendor Specific ASCQ"; 3380 else 3381 *asc_desc = "Reserved ASC/ASCQ pair"; 3382 } 3383 3384 /* 3385 * Given sense and device type information, return the appropriate action. 3386 * If we do not understand the specific error as identified by the ASC/ASCQ 3387 * pair, fall back on the more generic actions derived from the sense key. 3388 */ 3389 scsi_sense_action 3390 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, 3391 u_int32_t sense_flags) 3392 { 3393 const struct asc_table_entry *asc_entry; 3394 const struct sense_key_table_entry *sense_entry; 3395 int error_code, sense_key, asc, ascq; 3396 scsi_sense_action action; 3397 3398 if (!scsi_extract_sense_ccb((union ccb *)csio, 3399 &error_code, &sense_key, &asc, &ascq)) { 3400 action = SS_RDEF; 3401 } else if ((error_code == SSD_DEFERRED_ERROR) 3402 || (error_code == SSD_DESC_DEFERRED_ERROR)) { 3403 /* 3404 * XXX dufault@FreeBSD.org 3405 * This error doesn't relate to the command associated 3406 * with this request sense. A deferred error is an error 3407 * for a command that has already returned GOOD status 3408 * (see SCSI2 8.2.14.2). 3409 * 3410 * By my reading of that section, it looks like the current 3411 * command has been cancelled, we should now clean things up 3412 * (hopefully recovering any lost data) and then retry the 3413 * current command. There are two easy choices, both wrong: 3414 * 3415 * 1. Drop through (like we had been doing), thus treating 3416 * this as if the error were for the current command and 3417 * return and stop the current command. 3418 * 3419 * 2. Issue a retry (like I made it do) thus hopefully 3420 * recovering the current transfer, and ignoring the 3421 * fact that we've dropped a command. 3422 * 3423 * These should probably be handled in a device specific 3424 * sense handler or punted back up to a user mode daemon 3425 */ 3426 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3427 } else { 3428 fetchtableentries(sense_key, asc, ascq, 3429 inq_data, 3430 &sense_entry, 3431 &asc_entry); 3432 3433 /* 3434 * Override the 'No additional Sense' entry (0,0) 3435 * with the error action of the sense key. 3436 */ 3437 if (asc_entry != NULL 3438 && (asc != 0 || ascq != 0)) 3439 action = asc_entry->action; 3440 else if (sense_entry != NULL) 3441 action = sense_entry->action; 3442 else 3443 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3444 3445 if (sense_key == SSD_KEY_RECOVERED_ERROR) { 3446 /* 3447 * The action succeeded but the device wants 3448 * the user to know that some recovery action 3449 * was required. 3450 */ 3451 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); 3452 action |= SS_NOP|SSQ_PRINT_SENSE; 3453 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { 3454 if ((sense_flags & SF_QUIET_IR) != 0) 3455 action &= ~SSQ_PRINT_SENSE; 3456 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { 3457 if ((sense_flags & SF_RETRY_UA) != 0 3458 && (action & SS_MASK) == SS_FAIL) { 3459 action &= ~(SS_MASK|SSQ_MASK); 3460 action |= SS_RETRY|SSQ_DECREMENT_COUNT| 3461 SSQ_PRINT_SENSE; 3462 } 3463 action |= SSQ_UA; 3464 } 3465 } 3466 if ((action & SS_MASK) >= SS_START && 3467 (sense_flags & SF_NO_RECOVERY)) { 3468 action &= ~SS_MASK; 3469 action |= SS_FAIL; 3470 } else if ((action & SS_MASK) == SS_RETRY && 3471 (sense_flags & SF_NO_RETRY)) { 3472 action &= ~SS_MASK; 3473 action |= SS_FAIL; 3474 } 3475 if ((sense_flags & SF_PRINT_ALWAYS) != 0) 3476 action |= SSQ_PRINT_SENSE; 3477 else if ((sense_flags & SF_NO_PRINT) != 0) 3478 action &= ~SSQ_PRINT_SENSE; 3479 3480 return (action); 3481 } 3482 3483 char * 3484 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len) 3485 { 3486 struct sbuf sb; 3487 int error; 3488 3489 if (len == 0) 3490 return (""); 3491 3492 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN); 3493 3494 scsi_cdb_sbuf(cdb_ptr, &sb); 3495 3496 /* ENOMEM just means that the fixed buffer is full, OK to ignore */ 3497 error = sbuf_finish(&sb); 3498 if (error != 0 && 3499 #ifdef _KERNEL 3500 error != ENOMEM) 3501 #else 3502 errno != ENOMEM) 3503 #endif 3504 return (""); 3505 3506 return(sbuf_data(&sb)); 3507 } 3508 3509 void 3510 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb) 3511 { 3512 u_int8_t cdb_len; 3513 int i; 3514 3515 if (cdb_ptr == NULL) 3516 return; 3517 3518 /* 3519 * This is taken from the SCSI-3 draft spec. 3520 * (T10/1157D revision 0.3) 3521 * The top 3 bits of an opcode are the group code. The next 5 bits 3522 * are the command code. 3523 * Group 0: six byte commands 3524 * Group 1: ten byte commands 3525 * Group 2: ten byte commands 3526 * Group 3: reserved 3527 * Group 4: sixteen byte commands 3528 * Group 5: twelve byte commands 3529 * Group 6: vendor specific 3530 * Group 7: vendor specific 3531 */ 3532 switch((*cdb_ptr >> 5) & 0x7) { 3533 case 0: 3534 cdb_len = 6; 3535 break; 3536 case 1: 3537 case 2: 3538 cdb_len = 10; 3539 break; 3540 case 3: 3541 case 6: 3542 case 7: 3543 /* in this case, just print out the opcode */ 3544 cdb_len = 1; 3545 break; 3546 case 4: 3547 cdb_len = 16; 3548 break; 3549 case 5: 3550 cdb_len = 12; 3551 break; 3552 } 3553 3554 for (i = 0; i < cdb_len; i++) 3555 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]); 3556 3557 return; 3558 } 3559 3560 const char * 3561 scsi_status_string(struct ccb_scsiio *csio) 3562 { 3563 switch(csio->scsi_status) { 3564 case SCSI_STATUS_OK: 3565 return("OK"); 3566 case SCSI_STATUS_CHECK_COND: 3567 return("Check Condition"); 3568 case SCSI_STATUS_BUSY: 3569 return("Busy"); 3570 case SCSI_STATUS_INTERMED: 3571 return("Intermediate"); 3572 case SCSI_STATUS_INTERMED_COND_MET: 3573 return("Intermediate-Condition Met"); 3574 case SCSI_STATUS_RESERV_CONFLICT: 3575 return("Reservation Conflict"); 3576 case SCSI_STATUS_CMD_TERMINATED: 3577 return("Command Terminated"); 3578 case SCSI_STATUS_QUEUE_FULL: 3579 return("Queue Full"); 3580 case SCSI_STATUS_ACA_ACTIVE: 3581 return("ACA Active"); 3582 case SCSI_STATUS_TASK_ABORTED: 3583 return("Task Aborted"); 3584 default: { 3585 static char unkstr[64]; 3586 snprintf(unkstr, sizeof(unkstr), "Unknown %#x", 3587 csio->scsi_status); 3588 return(unkstr); 3589 } 3590 } 3591 } 3592 3593 /* 3594 * scsi_command_string() returns 0 for success and -1 for failure. 3595 */ 3596 #ifdef _KERNEL 3597 int 3598 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) 3599 #else /* !_KERNEL */ 3600 int 3601 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, 3602 struct sbuf *sb) 3603 #endif /* _KERNEL/!_KERNEL */ 3604 { 3605 struct scsi_inquiry_data *inq_data; 3606 #ifdef _KERNEL 3607 struct ccb_getdev *cgd; 3608 #endif /* _KERNEL */ 3609 3610 #ifdef _KERNEL 3611 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 3612 return(-1); 3613 /* 3614 * Get the device information. 3615 */ 3616 xpt_setup_ccb(&cgd->ccb_h, 3617 csio->ccb_h.path, 3618 CAM_PRIORITY_NORMAL); 3619 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 3620 xpt_action((union ccb *)cgd); 3621 3622 /* 3623 * If the device is unconfigured, just pretend that it is a hard 3624 * drive. scsi_op_desc() needs this. 3625 */ 3626 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 3627 cgd->inq_data.device = T_DIRECT; 3628 3629 inq_data = &cgd->inq_data; 3630 3631 #else /* !_KERNEL */ 3632 3633 inq_data = &device->inq_data; 3634 3635 #endif /* _KERNEL/!_KERNEL */ 3636 3637 sbuf_printf(sb, "%s. CDB: ", 3638 scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data)); 3639 scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb); 3640 3641 #ifdef _KERNEL 3642 xpt_free_ccb((union ccb *)cgd); 3643 #endif 3644 3645 return(0); 3646 } 3647 3648 /* 3649 * Iterate over sense descriptors. Each descriptor is passed into iter_func(). 3650 * If iter_func() returns 0, list traversal continues. If iter_func() 3651 * returns non-zero, list traversal is stopped. 3652 */ 3653 void 3654 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, 3655 int (*iter_func)(struct scsi_sense_data_desc *sense, 3656 u_int, struct scsi_sense_desc_header *, 3657 void *), void *arg) 3658 { 3659 int cur_pos; 3660 int desc_len; 3661 3662 /* 3663 * First make sure the extra length field is present. 3664 */ 3665 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) 3666 return; 3667 3668 /* 3669 * The length of data actually returned may be different than the 3670 * extra_len recorded in the structure. 3671 */ 3672 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); 3673 3674 /* 3675 * Limit this further by the extra length reported, and the maximum 3676 * allowed extra length. 3677 */ 3678 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); 3679 3680 /* 3681 * Subtract the size of the header from the descriptor length. 3682 * This is to ensure that we have at least the header left, so we 3683 * don't have to check that inside the loop. This can wind up 3684 * being a negative value. 3685 */ 3686 desc_len -= sizeof(struct scsi_sense_desc_header); 3687 3688 for (cur_pos = 0; cur_pos < desc_len;) { 3689 struct scsi_sense_desc_header *header; 3690 3691 header = (struct scsi_sense_desc_header *) 3692 &sense->sense_desc[cur_pos]; 3693 3694 /* 3695 * Check to make sure we have the entire descriptor. We 3696 * don't call iter_func() unless we do. 3697 * 3698 * Note that although cur_pos is at the beginning of the 3699 * descriptor, desc_len already has the header length 3700 * subtracted. So the comparison of the length in the 3701 * header (which does not include the header itself) to 3702 * desc_len - cur_pos is correct. 3703 */ 3704 if (header->length > (desc_len - cur_pos)) 3705 break; 3706 3707 if (iter_func(sense, sense_len, header, arg) != 0) 3708 break; 3709 3710 cur_pos += sizeof(*header) + header->length; 3711 } 3712 } 3713 3714 struct scsi_find_desc_info { 3715 uint8_t desc_type; 3716 struct scsi_sense_desc_header *header; 3717 }; 3718 3719 static int 3720 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 3721 struct scsi_sense_desc_header *header, void *arg) 3722 { 3723 struct scsi_find_desc_info *desc_info; 3724 3725 desc_info = (struct scsi_find_desc_info *)arg; 3726 3727 if (header->desc_type == desc_info->desc_type) { 3728 desc_info->header = header; 3729 3730 /* We found the descriptor, tell the iterator to stop. */ 3731 return (1); 3732 } else 3733 return (0); 3734 } 3735 3736 /* 3737 * Given a descriptor type, return a pointer to it if it is in the sense 3738 * data and not truncated. Avoiding truncating sense data will simplify 3739 * things significantly for the caller. 3740 */ 3741 uint8_t * 3742 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, 3743 uint8_t desc_type) 3744 { 3745 struct scsi_find_desc_info desc_info; 3746 3747 desc_info.desc_type = desc_type; 3748 desc_info.header = NULL; 3749 3750 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); 3751 3752 return ((uint8_t *)desc_info.header); 3753 } 3754 3755 /* 3756 * Fill in SCSI descriptor sense data with the specified parameters. 3757 */ 3758 static void 3759 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data, 3760 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3761 int sense_key, int asc, int ascq, va_list ap) 3762 { 3763 struct scsi_sense_data_desc *sense; 3764 scsi_sense_elem_type elem_type; 3765 int space, len; 3766 uint8_t *desc, *data; 3767 3768 memset(sense_data, 0, sizeof(*sense_data)); 3769 sense = (struct scsi_sense_data_desc *)sense_data; 3770 if (current_error != 0) 3771 sense->error_code = SSD_DESC_CURRENT_ERROR; 3772 else 3773 sense->error_code = SSD_DESC_DEFERRED_ERROR; 3774 sense->sense_key = sense_key; 3775 sense->add_sense_code = asc; 3776 sense->add_sense_code_qual = ascq; 3777 sense->flags = 0; 3778 3779 desc = &sense->sense_desc[0]; 3780 space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc); 3781 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3782 SSD_ELEM_NONE) { 3783 if (elem_type >= SSD_ELEM_MAX) { 3784 printf("%s: invalid sense type %d\n", __func__, 3785 elem_type); 3786 break; 3787 } 3788 len = va_arg(ap, int); 3789 data = va_arg(ap, uint8_t *); 3790 3791 switch (elem_type) { 3792 case SSD_ELEM_SKIP: 3793 break; 3794 case SSD_ELEM_DESC: 3795 if (space < len) { 3796 sense->flags |= SSDD_SDAT_OVFL; 3797 break; 3798 } 3799 bcopy(data, desc, len); 3800 desc += len; 3801 space -= len; 3802 break; 3803 case SSD_ELEM_SKS: { 3804 struct scsi_sense_sks *sks = (void *)desc; 3805 3806 if (len > sizeof(sks->sense_key_spec)) 3807 break; 3808 if (space < sizeof(*sks)) { 3809 sense->flags |= SSDD_SDAT_OVFL; 3810 break; 3811 } 3812 sks->desc_type = SSD_DESC_SKS; 3813 sks->length = sizeof(*sks) - 3814 (offsetof(struct scsi_sense_sks, length) + 1); 3815 bcopy(data, &sks->sense_key_spec, len); 3816 desc += sizeof(*sks); 3817 space -= sizeof(*sks); 3818 break; 3819 } 3820 case SSD_ELEM_COMMAND: { 3821 struct scsi_sense_command *cmd = (void *)desc; 3822 3823 if (len > sizeof(cmd->command_info)) 3824 break; 3825 if (space < sizeof(*cmd)) { 3826 sense->flags |= SSDD_SDAT_OVFL; 3827 break; 3828 } 3829 cmd->desc_type = SSD_DESC_COMMAND; 3830 cmd->length = sizeof(*cmd) - 3831 (offsetof(struct scsi_sense_command, length) + 1); 3832 bcopy(data, &cmd->command_info[ 3833 sizeof(cmd->command_info) - len], len); 3834 desc += sizeof(*cmd); 3835 space -= sizeof(*cmd); 3836 break; 3837 } 3838 case SSD_ELEM_INFO: { 3839 struct scsi_sense_info *info = (void *)desc; 3840 3841 if (len > sizeof(info->info)) 3842 break; 3843 if (space < sizeof(*info)) { 3844 sense->flags |= SSDD_SDAT_OVFL; 3845 break; 3846 } 3847 info->desc_type = SSD_DESC_INFO; 3848 info->length = sizeof(*info) - 3849 (offsetof(struct scsi_sense_info, length) + 1); 3850 info->byte2 = SSD_INFO_VALID; 3851 bcopy(data, &info->info[sizeof(info->info) - len], len); 3852 desc += sizeof(*info); 3853 space -= sizeof(*info); 3854 break; 3855 } 3856 case SSD_ELEM_FRU: { 3857 struct scsi_sense_fru *fru = (void *)desc; 3858 3859 if (len > sizeof(fru->fru)) 3860 break; 3861 if (space < sizeof(*fru)) { 3862 sense->flags |= SSDD_SDAT_OVFL; 3863 break; 3864 } 3865 fru->desc_type = SSD_DESC_FRU; 3866 fru->length = sizeof(*fru) - 3867 (offsetof(struct scsi_sense_fru, length) + 1); 3868 fru->fru = *data; 3869 desc += sizeof(*fru); 3870 space -= sizeof(*fru); 3871 break; 3872 } 3873 case SSD_ELEM_STREAM: { 3874 struct scsi_sense_stream *stream = (void *)desc; 3875 3876 if (len > sizeof(stream->byte3)) 3877 break; 3878 if (space < sizeof(*stream)) { 3879 sense->flags |= SSDD_SDAT_OVFL; 3880 break; 3881 } 3882 stream->desc_type = SSD_DESC_STREAM; 3883 stream->length = sizeof(*stream) - 3884 (offsetof(struct scsi_sense_stream, length) + 1); 3885 stream->byte3 = *data; 3886 desc += sizeof(*stream); 3887 space -= sizeof(*stream); 3888 break; 3889 } 3890 default: 3891 /* 3892 * We shouldn't get here, but if we do, do nothing. 3893 * We've already consumed the arguments above. 3894 */ 3895 break; 3896 } 3897 } 3898 sense->extra_len = desc - &sense->sense_desc[0]; 3899 *sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 + 3900 sense->extra_len; 3901 } 3902 3903 /* 3904 * Fill in SCSI fixed sense data with the specified parameters. 3905 */ 3906 static void 3907 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data, 3908 u_int *sense_len, scsi_sense_data_type sense_format, int current_error, 3909 int sense_key, int asc, int ascq, va_list ap) 3910 { 3911 struct scsi_sense_data_fixed *sense; 3912 scsi_sense_elem_type elem_type; 3913 uint8_t *data; 3914 int len; 3915 3916 memset(sense_data, 0, sizeof(*sense_data)); 3917 sense = (struct scsi_sense_data_fixed *)sense_data; 3918 if (current_error != 0) 3919 sense->error_code = SSD_CURRENT_ERROR; 3920 else 3921 sense->error_code = SSD_DEFERRED_ERROR; 3922 sense->flags = sense_key & SSD_KEY; 3923 sense->extra_len = 0; 3924 if (*sense_len >= 13) { 3925 sense->add_sense_code = asc; 3926 sense->extra_len = MAX(sense->extra_len, 5); 3927 } else 3928 sense->flags |= SSD_SDAT_OVFL; 3929 if (*sense_len >= 14) { 3930 sense->add_sense_code_qual = ascq; 3931 sense->extra_len = MAX(sense->extra_len, 6); 3932 } else 3933 sense->flags |= SSD_SDAT_OVFL; 3934 3935 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) != 3936 SSD_ELEM_NONE) { 3937 if (elem_type >= SSD_ELEM_MAX) { 3938 printf("%s: invalid sense type %d\n", __func__, 3939 elem_type); 3940 break; 3941 } 3942 len = va_arg(ap, int); 3943 data = va_arg(ap, uint8_t *); 3944 3945 switch (elem_type) { 3946 case SSD_ELEM_SKIP: 3947 break; 3948 case SSD_ELEM_SKS: 3949 if (len > sizeof(sense->sense_key_spec)) 3950 break; 3951 if (*sense_len < 18) { 3952 sense->flags |= SSD_SDAT_OVFL; 3953 break; 3954 } 3955 bcopy(data, &sense->sense_key_spec[0], len); 3956 sense->extra_len = MAX(sense->extra_len, 10); 3957 break; 3958 case SSD_ELEM_COMMAND: 3959 if (*sense_len < 12) { 3960 sense->flags |= SSD_SDAT_OVFL; 3961 break; 3962 } 3963 if (len > sizeof(sense->cmd_spec_info)) { 3964 data += len - sizeof(sense->cmd_spec_info); 3965 len = sizeof(sense->cmd_spec_info); 3966 } 3967 bcopy(data, &sense->cmd_spec_info[ 3968 sizeof(sense->cmd_spec_info) - len], len); 3969 sense->extra_len = MAX(sense->extra_len, 4); 3970 break; 3971 case SSD_ELEM_INFO: 3972 /* Set VALID bit only if no overflow. */ 3973 sense->error_code |= SSD_ERRCODE_VALID; 3974 while (len > sizeof(sense->info)) { 3975 if (data[0] != 0) 3976 sense->error_code &= ~SSD_ERRCODE_VALID; 3977 data ++; 3978 len --; 3979 } 3980 bcopy(data, &sense->info[sizeof(sense->info) - len], len); 3981 break; 3982 case SSD_ELEM_FRU: 3983 if (*sense_len < 15) { 3984 sense->flags |= SSD_SDAT_OVFL; 3985 break; 3986 } 3987 sense->fru = *data; 3988 sense->extra_len = MAX(sense->extra_len, 7); 3989 break; 3990 case SSD_ELEM_STREAM: 3991 sense->flags |= *data & 3992 (SSD_ILI | SSD_EOM | SSD_FILEMARK); 3993 break; 3994 default: 3995 3996 /* 3997 * We can't handle that in fixed format. Skip it. 3998 */ 3999 break; 4000 } 4001 } 4002 *sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 + 4003 sense->extra_len; 4004 } 4005 4006 /* 4007 * Fill in SCSI sense data with the specified parameters. This routine can 4008 * fill in either fixed or descriptor type sense data. 4009 */ 4010 void 4011 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len, 4012 scsi_sense_data_type sense_format, int current_error, 4013 int sense_key, int asc, int ascq, va_list ap) 4014 { 4015 4016 if (*sense_len > SSD_FULL_SIZE) 4017 *sense_len = SSD_FULL_SIZE; 4018 if (sense_format == SSD_TYPE_DESC) 4019 scsi_set_sense_data_desc_va(sense_data, sense_len, 4020 sense_format, current_error, sense_key, asc, ascq, ap); 4021 else 4022 scsi_set_sense_data_fixed_va(sense_data, sense_len, 4023 sense_format, current_error, sense_key, asc, ascq, ap); 4024 } 4025 4026 void 4027 scsi_set_sense_data(struct scsi_sense_data *sense_data, 4028 scsi_sense_data_type sense_format, int current_error, 4029 int sense_key, int asc, int ascq, ...) 4030 { 4031 va_list ap; 4032 u_int sense_len = SSD_FULL_SIZE; 4033 4034 va_start(ap, ascq); 4035 scsi_set_sense_data_va(sense_data, &sense_len, sense_format, 4036 current_error, sense_key, asc, ascq, ap); 4037 va_end(ap); 4038 } 4039 4040 void 4041 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len, 4042 scsi_sense_data_type sense_format, int current_error, 4043 int sense_key, int asc, int ascq, ...) 4044 { 4045 va_list ap; 4046 4047 va_start(ap, ascq); 4048 scsi_set_sense_data_va(sense_data, sense_len, sense_format, 4049 current_error, sense_key, asc, ascq, ap); 4050 va_end(ap); 4051 } 4052 4053 /* 4054 * Get sense information for three similar sense data types. 4055 */ 4056 int 4057 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, 4058 uint8_t info_type, uint64_t *info, int64_t *signed_info) 4059 { 4060 scsi_sense_data_type sense_type; 4061 4062 if (sense_len == 0) 4063 goto bailout; 4064 4065 sense_type = scsi_sense_type(sense_data); 4066 4067 switch (sense_type) { 4068 case SSD_TYPE_DESC: { 4069 struct scsi_sense_data_desc *sense; 4070 uint8_t *desc; 4071 4072 sense = (struct scsi_sense_data_desc *)sense_data; 4073 4074 desc = scsi_find_desc(sense, sense_len, info_type); 4075 if (desc == NULL) 4076 goto bailout; 4077 4078 switch (info_type) { 4079 case SSD_DESC_INFO: { 4080 struct scsi_sense_info *info_desc; 4081 4082 info_desc = (struct scsi_sense_info *)desc; 4083 4084 if ((info_desc->byte2 & SSD_INFO_VALID) == 0) 4085 goto bailout; 4086 4087 *info = scsi_8btou64(info_desc->info); 4088 if (signed_info != NULL) 4089 *signed_info = *info; 4090 break; 4091 } 4092 case SSD_DESC_COMMAND: { 4093 struct scsi_sense_command *cmd_desc; 4094 4095 cmd_desc = (struct scsi_sense_command *)desc; 4096 4097 *info = scsi_8btou64(cmd_desc->command_info); 4098 if (signed_info != NULL) 4099 *signed_info = *info; 4100 break; 4101 } 4102 case SSD_DESC_FRU: { 4103 struct scsi_sense_fru *fru_desc; 4104 4105 fru_desc = (struct scsi_sense_fru *)desc; 4106 4107 if (fru_desc->fru == 0) 4108 goto bailout; 4109 4110 *info = fru_desc->fru; 4111 if (signed_info != NULL) 4112 *signed_info = (int8_t)fru_desc->fru; 4113 break; 4114 } 4115 default: 4116 goto bailout; 4117 break; 4118 } 4119 break; 4120 } 4121 case SSD_TYPE_FIXED: { 4122 struct scsi_sense_data_fixed *sense; 4123 4124 sense = (struct scsi_sense_data_fixed *)sense_data; 4125 4126 switch (info_type) { 4127 case SSD_DESC_INFO: { 4128 uint32_t info_val; 4129 4130 if ((sense->error_code & SSD_ERRCODE_VALID) == 0) 4131 goto bailout; 4132 4133 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) 4134 goto bailout; 4135 4136 info_val = scsi_4btoul(sense->info); 4137 4138 *info = info_val; 4139 if (signed_info != NULL) 4140 *signed_info = (int32_t)info_val; 4141 break; 4142 } 4143 case SSD_DESC_COMMAND: { 4144 uint32_t cmd_val; 4145 4146 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, 4147 cmd_spec_info) == 0) 4148 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) 4149 goto bailout; 4150 4151 cmd_val = scsi_4btoul(sense->cmd_spec_info); 4152 if (cmd_val == 0) 4153 goto bailout; 4154 4155 *info = cmd_val; 4156 if (signed_info != NULL) 4157 *signed_info = (int32_t)cmd_val; 4158 break; 4159 } 4160 case SSD_DESC_FRU: 4161 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) 4162 || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) 4163 goto bailout; 4164 4165 if (sense->fru == 0) 4166 goto bailout; 4167 4168 *info = sense->fru; 4169 if (signed_info != NULL) 4170 *signed_info = (int8_t)sense->fru; 4171 break; 4172 default: 4173 goto bailout; 4174 break; 4175 } 4176 break; 4177 } 4178 default: 4179 goto bailout; 4180 break; 4181 } 4182 4183 return (0); 4184 bailout: 4185 return (1); 4186 } 4187 4188 int 4189 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) 4190 { 4191 scsi_sense_data_type sense_type; 4192 4193 if (sense_len == 0) 4194 goto bailout; 4195 4196 sense_type = scsi_sense_type(sense_data); 4197 4198 switch (sense_type) { 4199 case SSD_TYPE_DESC: { 4200 struct scsi_sense_data_desc *sense; 4201 struct scsi_sense_sks *desc; 4202 4203 sense = (struct scsi_sense_data_desc *)sense_data; 4204 4205 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, 4206 SSD_DESC_SKS); 4207 if (desc == NULL) 4208 goto bailout; 4209 4210 if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4211 goto bailout; 4212 4213 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); 4214 break; 4215 } 4216 case SSD_TYPE_FIXED: { 4217 struct scsi_sense_data_fixed *sense; 4218 4219 sense = (struct scsi_sense_data_fixed *)sense_data; 4220 4221 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) 4222 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) 4223 goto bailout; 4224 4225 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) 4226 goto bailout; 4227 4228 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); 4229 break; 4230 } 4231 default: 4232 goto bailout; 4233 break; 4234 } 4235 return (0); 4236 bailout: 4237 return (1); 4238 } 4239 4240 /* 4241 * Provide a common interface for fixed and descriptor sense to detect 4242 * whether we have block-specific sense information. It is clear by the 4243 * presence of the block descriptor in descriptor mode, but we have to 4244 * infer from the inquiry data and ILI bit in fixed mode. 4245 */ 4246 int 4247 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, 4248 struct scsi_inquiry_data *inq_data, uint8_t *block_bits) 4249 { 4250 scsi_sense_data_type sense_type; 4251 4252 if (inq_data != NULL) { 4253 switch (SID_TYPE(inq_data)) { 4254 case T_DIRECT: 4255 case T_RBC: 4256 case T_ZBC_HM: 4257 break; 4258 default: 4259 goto bailout; 4260 break; 4261 } 4262 } 4263 4264 sense_type = scsi_sense_type(sense_data); 4265 4266 switch (sense_type) { 4267 case SSD_TYPE_DESC: { 4268 struct scsi_sense_data_desc *sense; 4269 struct scsi_sense_block *block; 4270 4271 sense = (struct scsi_sense_data_desc *)sense_data; 4272 4273 block = (struct scsi_sense_block *)scsi_find_desc(sense, 4274 sense_len, SSD_DESC_BLOCK); 4275 if (block == NULL) 4276 goto bailout; 4277 4278 *block_bits = block->byte3; 4279 break; 4280 } 4281 case SSD_TYPE_FIXED: { 4282 struct scsi_sense_data_fixed *sense; 4283 4284 sense = (struct scsi_sense_data_fixed *)sense_data; 4285 4286 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4287 goto bailout; 4288 4289 *block_bits = sense->flags & SSD_ILI; 4290 break; 4291 } 4292 default: 4293 goto bailout; 4294 break; 4295 } 4296 return (0); 4297 bailout: 4298 return (1); 4299 } 4300 4301 int 4302 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, 4303 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) 4304 { 4305 scsi_sense_data_type sense_type; 4306 4307 if (inq_data != NULL) { 4308 switch (SID_TYPE(inq_data)) { 4309 case T_SEQUENTIAL: 4310 break; 4311 default: 4312 goto bailout; 4313 break; 4314 } 4315 } 4316 4317 sense_type = scsi_sense_type(sense_data); 4318 4319 switch (sense_type) { 4320 case SSD_TYPE_DESC: { 4321 struct scsi_sense_data_desc *sense; 4322 struct scsi_sense_stream *stream; 4323 4324 sense = (struct scsi_sense_data_desc *)sense_data; 4325 4326 stream = (struct scsi_sense_stream *)scsi_find_desc(sense, 4327 sense_len, SSD_DESC_STREAM); 4328 if (stream == NULL) 4329 goto bailout; 4330 4331 *stream_bits = stream->byte3; 4332 break; 4333 } 4334 case SSD_TYPE_FIXED: { 4335 struct scsi_sense_data_fixed *sense; 4336 4337 sense = (struct scsi_sense_data_fixed *)sense_data; 4338 4339 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4340 goto bailout; 4341 4342 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); 4343 break; 4344 } 4345 default: 4346 goto bailout; 4347 break; 4348 } 4349 return (0); 4350 bailout: 4351 return (1); 4352 } 4353 4354 void 4355 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4356 struct scsi_inquiry_data *inq_data, uint64_t info) 4357 { 4358 sbuf_printf(sb, "Info: %#jx", info); 4359 } 4360 4361 void 4362 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4363 struct scsi_inquiry_data *inq_data, uint64_t csi) 4364 { 4365 sbuf_printf(sb, "Command Specific Info: %#jx", csi); 4366 } 4367 4368 void 4369 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) 4370 { 4371 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", 4372 (progress * 100) / SSD_SKS_PROGRESS_DENOM, 4373 progress, SSD_SKS_PROGRESS_DENOM); 4374 } 4375 4376 /* 4377 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. 4378 */ 4379 int 4380 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) 4381 { 4382 4383 switch (sense_key) { 4384 case SSD_KEY_ILLEGAL_REQUEST: { 4385 struct scsi_sense_sks_field *field; 4386 int bad_command; 4387 char tmpstr[40]; 4388 4389 /*Field Pointer*/ 4390 field = (struct scsi_sense_sks_field *)sks; 4391 4392 if (field->byte0 & SSD_SKS_FIELD_CMD) 4393 bad_command = 1; 4394 else 4395 bad_command = 0; 4396 4397 tmpstr[0] = '\0'; 4398 4399 /* Bit pointer is valid */ 4400 if (field->byte0 & SSD_SKS_BPV) 4401 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4402 field->byte0 & SSD_SKS_BIT_VALUE); 4403 4404 sbuf_printf(sb, "%s byte %d %sis invalid", 4405 bad_command ? "Command" : "Data", 4406 scsi_2btoul(field->field), tmpstr); 4407 break; 4408 } 4409 case SSD_KEY_UNIT_ATTENTION: { 4410 struct scsi_sense_sks_overflow *overflow; 4411 4412 overflow = (struct scsi_sense_sks_overflow *)sks; 4413 4414 /*UA Condition Queue Overflow*/ 4415 sbuf_printf(sb, "Unit Attention Condition Queue %s", 4416 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? 4417 "Overflowed" : "Did Not Overflow??"); 4418 break; 4419 } 4420 case SSD_KEY_RECOVERED_ERROR: 4421 case SSD_KEY_HARDWARE_ERROR: 4422 case SSD_KEY_MEDIUM_ERROR: { 4423 struct scsi_sense_sks_retry *retry; 4424 4425 /*Actual Retry Count*/ 4426 retry = (struct scsi_sense_sks_retry *)sks; 4427 4428 sbuf_printf(sb, "Actual Retry Count: %d", 4429 scsi_2btoul(retry->actual_retry_count)); 4430 break; 4431 } 4432 case SSD_KEY_NO_SENSE: 4433 case SSD_KEY_NOT_READY: { 4434 struct scsi_sense_sks_progress *progress; 4435 int progress_val; 4436 4437 /*Progress Indication*/ 4438 progress = (struct scsi_sense_sks_progress *)sks; 4439 progress_val = scsi_2btoul(progress->progress); 4440 4441 scsi_progress_sbuf(sb, progress_val); 4442 break; 4443 } 4444 case SSD_KEY_COPY_ABORTED: { 4445 struct scsi_sense_sks_segment *segment; 4446 char tmpstr[40]; 4447 4448 /*Segment Pointer*/ 4449 segment = (struct scsi_sense_sks_segment *)sks; 4450 4451 tmpstr[0] = '\0'; 4452 4453 if (segment->byte0 & SSD_SKS_SEGMENT_BPV) 4454 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4455 segment->byte0 & SSD_SKS_SEGMENT_BITPTR); 4456 4457 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & 4458 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", 4459 scsi_2btoul(segment->field), tmpstr); 4460 break; 4461 } 4462 default: 4463 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], 4464 scsi_2btoul(&sks[1])); 4465 break; 4466 } 4467 4468 return (0); 4469 } 4470 4471 void 4472 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) 4473 { 4474 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); 4475 } 4476 4477 void 4478 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits) 4479 { 4480 int need_comma; 4481 4482 need_comma = 0; 4483 /* 4484 * XXX KDM this needs more descriptive decoding. 4485 */ 4486 sbuf_printf(sb, "Stream Command Sense Data: "); 4487 if (stream_bits & SSD_DESC_STREAM_FM) { 4488 sbuf_printf(sb, "Filemark"); 4489 need_comma = 1; 4490 } 4491 4492 if (stream_bits & SSD_DESC_STREAM_EOM) { 4493 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); 4494 need_comma = 1; 4495 } 4496 4497 if (stream_bits & SSD_DESC_STREAM_ILI) 4498 sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); 4499 } 4500 4501 void 4502 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits) 4503 { 4504 4505 sbuf_printf(sb, "Block Command Sense Data: "); 4506 if (block_bits & SSD_DESC_BLOCK_ILI) 4507 sbuf_printf(sb, "ILI"); 4508 } 4509 4510 void 4511 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4512 u_int sense_len, uint8_t *cdb, int cdb_len, 4513 struct scsi_inquiry_data *inq_data, 4514 struct scsi_sense_desc_header *header) 4515 { 4516 struct scsi_sense_info *info; 4517 4518 info = (struct scsi_sense_info *)header; 4519 4520 if ((info->byte2 & SSD_INFO_VALID) == 0) 4521 return; 4522 4523 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); 4524 } 4525 4526 void 4527 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4528 u_int sense_len, uint8_t *cdb, int cdb_len, 4529 struct scsi_inquiry_data *inq_data, 4530 struct scsi_sense_desc_header *header) 4531 { 4532 struct scsi_sense_command *command; 4533 4534 command = (struct scsi_sense_command *)header; 4535 4536 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, 4537 scsi_8btou64(command->command_info)); 4538 } 4539 4540 void 4541 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4542 u_int sense_len, uint8_t *cdb, int cdb_len, 4543 struct scsi_inquiry_data *inq_data, 4544 struct scsi_sense_desc_header *header) 4545 { 4546 struct scsi_sense_sks *sks; 4547 int error_code, sense_key, asc, ascq; 4548 4549 sks = (struct scsi_sense_sks *)header; 4550 4551 if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0) 4552 return; 4553 4554 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4555 &asc, &ascq, /*show_errors*/ 1); 4556 4557 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); 4558 } 4559 4560 void 4561 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4562 u_int sense_len, uint8_t *cdb, int cdb_len, 4563 struct scsi_inquiry_data *inq_data, 4564 struct scsi_sense_desc_header *header) 4565 { 4566 struct scsi_sense_fru *fru; 4567 4568 fru = (struct scsi_sense_fru *)header; 4569 4570 if (fru->fru == 0) 4571 return; 4572 4573 scsi_fru_sbuf(sb, (uint64_t)fru->fru); 4574 } 4575 4576 void 4577 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4578 u_int sense_len, uint8_t *cdb, int cdb_len, 4579 struct scsi_inquiry_data *inq_data, 4580 struct scsi_sense_desc_header *header) 4581 { 4582 struct scsi_sense_stream *stream; 4583 4584 stream = (struct scsi_sense_stream *)header; 4585 scsi_stream_sbuf(sb, stream->byte3); 4586 } 4587 4588 void 4589 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4590 u_int sense_len, uint8_t *cdb, int cdb_len, 4591 struct scsi_inquiry_data *inq_data, 4592 struct scsi_sense_desc_header *header) 4593 { 4594 struct scsi_sense_block *block; 4595 4596 block = (struct scsi_sense_block *)header; 4597 scsi_block_sbuf(sb, block->byte3); 4598 } 4599 4600 void 4601 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4602 u_int sense_len, uint8_t *cdb, int cdb_len, 4603 struct scsi_inquiry_data *inq_data, 4604 struct scsi_sense_desc_header *header) 4605 { 4606 struct scsi_sense_progress *progress; 4607 const char *sense_key_desc; 4608 const char *asc_desc; 4609 int progress_val; 4610 4611 progress = (struct scsi_sense_progress *)header; 4612 4613 /* 4614 * Get descriptions for the sense key, ASC, and ASCQ in the 4615 * progress descriptor. These could be different than the values 4616 * in the overall sense data. 4617 */ 4618 scsi_sense_desc(progress->sense_key, progress->add_sense_code, 4619 progress->add_sense_code_qual, inq_data, 4620 &sense_key_desc, &asc_desc); 4621 4622 progress_val = scsi_2btoul(progress->progress); 4623 4624 /* 4625 * The progress indicator is for the operation described by the 4626 * sense key, ASC, and ASCQ in the descriptor. 4627 */ 4628 sbuf_cat(sb, sense_key_desc); 4629 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, 4630 progress->add_sense_code_qual, asc_desc); 4631 scsi_progress_sbuf(sb, progress_val); 4632 } 4633 4634 void 4635 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4636 u_int sense_len, uint8_t *cdb, int cdb_len, 4637 struct scsi_inquiry_data *inq_data, 4638 struct scsi_sense_desc_header *header) 4639 { 4640 struct scsi_sense_ata_ret_desc *res; 4641 4642 res = (struct scsi_sense_ata_ret_desc *)header; 4643 4644 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ", 4645 res->status, 4646 (res->status & 0x80) ? "BSY " : "", 4647 (res->status & 0x40) ? "DRDY " : "", 4648 (res->status & 0x20) ? "DF " : "", 4649 (res->status & 0x10) ? "SERV " : "", 4650 (res->status & 0x08) ? "DRQ " : "", 4651 (res->status & 0x04) ? "CORR " : "", 4652 (res->status & 0x02) ? "IDX " : "", 4653 (res->status & 0x01) ? "ERR" : ""); 4654 if (res->status & 1) { 4655 sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ", 4656 res->error, 4657 (res->error & 0x80) ? "ICRC " : "", 4658 (res->error & 0x40) ? "UNC " : "", 4659 (res->error & 0x20) ? "MC " : "", 4660 (res->error & 0x10) ? "IDNF " : "", 4661 (res->error & 0x08) ? "MCR " : "", 4662 (res->error & 0x04) ? "ABRT " : "", 4663 (res->error & 0x02) ? "NM " : "", 4664 (res->error & 0x01) ? "ILI" : ""); 4665 } 4666 4667 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) { 4668 sbuf_printf(sb, "count: %02x%02x, ", 4669 res->count_15_8, res->count_7_0); 4670 sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ", 4671 res->lba_47_40, res->lba_39_32, res->lba_31_24, 4672 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4673 } else { 4674 sbuf_printf(sb, "count: %02x, ", res->count_7_0); 4675 sbuf_printf(sb, "LBA: %02x%02x%02x, ", 4676 res->lba_23_16, res->lba_15_8, res->lba_7_0); 4677 } 4678 sbuf_printf(sb, "device: %02x, ", res->device); 4679 } 4680 4681 void 4682 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4683 u_int sense_len, uint8_t *cdb, int cdb_len, 4684 struct scsi_inquiry_data *inq_data, 4685 struct scsi_sense_desc_header *header) 4686 { 4687 struct scsi_sense_forwarded *forwarded; 4688 const char *sense_key_desc; 4689 const char *asc_desc; 4690 int error_code, sense_key, asc, ascq; 4691 4692 forwarded = (struct scsi_sense_forwarded *)header; 4693 scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data, 4694 forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1); 4695 scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc); 4696 4697 sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ", 4698 sense_key_desc, asc, ascq, asc_desc); 4699 } 4700 4701 /* 4702 * Generic sense descriptor printing routine. This is used when we have 4703 * not yet implemented a specific printing routine for this descriptor. 4704 */ 4705 void 4706 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4707 u_int sense_len, uint8_t *cdb, int cdb_len, 4708 struct scsi_inquiry_data *inq_data, 4709 struct scsi_sense_desc_header *header) 4710 { 4711 int i; 4712 uint8_t *buf_ptr; 4713 4714 sbuf_printf(sb, "Descriptor %#x:", header->desc_type); 4715 4716 buf_ptr = (uint8_t *)&header[1]; 4717 4718 for (i = 0; i < header->length; i++, buf_ptr++) 4719 sbuf_printf(sb, " %02x", *buf_ptr); 4720 } 4721 4722 /* 4723 * Keep this list in numeric order. This speeds the array traversal. 4724 */ 4725 struct scsi_sense_desc_printer { 4726 uint8_t desc_type; 4727 /* 4728 * The function arguments here are the superset of what is needed 4729 * to print out various different descriptors. Command and 4730 * information descriptors need inquiry data and command type. 4731 * Sense key specific descriptors need the sense key. 4732 * 4733 * The sense, cdb, and inquiry data arguments may be NULL, but the 4734 * information printed may not be fully decoded as a result. 4735 */ 4736 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, 4737 u_int sense_len, uint8_t *cdb, int cdb_len, 4738 struct scsi_inquiry_data *inq_data, 4739 struct scsi_sense_desc_header *header); 4740 } scsi_sense_printers[] = { 4741 {SSD_DESC_INFO, scsi_sense_info_sbuf}, 4742 {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, 4743 {SSD_DESC_SKS, scsi_sense_sks_sbuf}, 4744 {SSD_DESC_FRU, scsi_sense_fru_sbuf}, 4745 {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, 4746 {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, 4747 {SSD_DESC_ATA, scsi_sense_ata_sbuf}, 4748 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}, 4749 {SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf} 4750 }; 4751 4752 void 4753 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4754 u_int sense_len, uint8_t *cdb, int cdb_len, 4755 struct scsi_inquiry_data *inq_data, 4756 struct scsi_sense_desc_header *header) 4757 { 4758 u_int i; 4759 4760 for (i = 0; i < nitems(scsi_sense_printers); i++) { 4761 struct scsi_sense_desc_printer *printer; 4762 4763 printer = &scsi_sense_printers[i]; 4764 4765 /* 4766 * The list is sorted, so quit if we've passed our 4767 * descriptor number. 4768 */ 4769 if (printer->desc_type > header->desc_type) 4770 break; 4771 4772 if (printer->desc_type != header->desc_type) 4773 continue; 4774 4775 printer->print_func(sb, sense, sense_len, cdb, cdb_len, 4776 inq_data, header); 4777 4778 return; 4779 } 4780 4781 /* 4782 * No specific printing routine, so use the generic routine. 4783 */ 4784 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, 4785 inq_data, header); 4786 } 4787 4788 scsi_sense_data_type 4789 scsi_sense_type(struct scsi_sense_data *sense_data) 4790 { 4791 switch (sense_data->error_code & SSD_ERRCODE) { 4792 case SSD_DESC_CURRENT_ERROR: 4793 case SSD_DESC_DEFERRED_ERROR: 4794 return (SSD_TYPE_DESC); 4795 break; 4796 case SSD_CURRENT_ERROR: 4797 case SSD_DEFERRED_ERROR: 4798 return (SSD_TYPE_FIXED); 4799 break; 4800 default: 4801 break; 4802 } 4803 4804 return (SSD_TYPE_NONE); 4805 } 4806 4807 struct scsi_print_sense_info { 4808 struct sbuf *sb; 4809 char *path_str; 4810 uint8_t *cdb; 4811 int cdb_len; 4812 struct scsi_inquiry_data *inq_data; 4813 }; 4814 4815 static int 4816 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 4817 struct scsi_sense_desc_header *header, void *arg) 4818 { 4819 struct scsi_print_sense_info *print_info; 4820 4821 print_info = (struct scsi_print_sense_info *)arg; 4822 4823 switch (header->desc_type) { 4824 case SSD_DESC_INFO: 4825 case SSD_DESC_FRU: 4826 case SSD_DESC_COMMAND: 4827 case SSD_DESC_SKS: 4828 case SSD_DESC_BLOCK: 4829 case SSD_DESC_STREAM: 4830 /* 4831 * We have already printed these descriptors, if they are 4832 * present. 4833 */ 4834 break; 4835 default: { 4836 sbuf_printf(print_info->sb, "%s", print_info->path_str); 4837 scsi_sense_desc_sbuf(print_info->sb, 4838 (struct scsi_sense_data *)sense, sense_len, 4839 print_info->cdb, print_info->cdb_len, 4840 print_info->inq_data, header); 4841 sbuf_printf(print_info->sb, "\n"); 4842 break; 4843 } 4844 } 4845 4846 /* 4847 * Tell the iterator that we want to see more descriptors if they 4848 * are present. 4849 */ 4850 return (0); 4851 } 4852 4853 void 4854 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, 4855 struct sbuf *sb, char *path_str, 4856 struct scsi_inquiry_data *inq_data, uint8_t *cdb, 4857 int cdb_len) 4858 { 4859 int error_code, sense_key, asc, ascq; 4860 4861 sbuf_cat(sb, path_str); 4862 4863 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4864 &asc, &ascq, /*show_errors*/ 1); 4865 4866 sbuf_printf(sb, "SCSI sense: "); 4867 switch (error_code) { 4868 case SSD_DEFERRED_ERROR: 4869 case SSD_DESC_DEFERRED_ERROR: 4870 sbuf_printf(sb, "Deferred error: "); 4871 4872 /* FALLTHROUGH */ 4873 case SSD_CURRENT_ERROR: 4874 case SSD_DESC_CURRENT_ERROR: 4875 { 4876 struct scsi_sense_data_desc *desc_sense; 4877 struct scsi_print_sense_info print_info; 4878 const char *sense_key_desc; 4879 const char *asc_desc; 4880 uint8_t sks[3]; 4881 uint64_t val; 4882 uint8_t bits; 4883 4884 /* 4885 * Get descriptions for the sense key, ASC, and ASCQ. If 4886 * these aren't present in the sense data (i.e. the sense 4887 * data isn't long enough), the -1 values that 4888 * scsi_extract_sense_len() returns will yield default 4889 * or error descriptions. 4890 */ 4891 scsi_sense_desc(sense_key, asc, ascq, inq_data, 4892 &sense_key_desc, &asc_desc); 4893 4894 /* 4895 * We first print the sense key and ASC/ASCQ. 4896 */ 4897 sbuf_cat(sb, sense_key_desc); 4898 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); 4899 4900 /* 4901 * Print any block or stream device-specific information. 4902 */ 4903 if (scsi_get_block_info(sense, sense_len, inq_data, 4904 &bits) == 0 && bits != 0) { 4905 sbuf_cat(sb, path_str); 4906 scsi_block_sbuf(sb, bits); 4907 sbuf_printf(sb, "\n"); 4908 } else if (scsi_get_stream_info(sense, sense_len, inq_data, 4909 &bits) == 0 && bits != 0) { 4910 sbuf_cat(sb, path_str); 4911 scsi_stream_sbuf(sb, bits); 4912 sbuf_printf(sb, "\n"); 4913 } 4914 4915 /* 4916 * Print the info field. 4917 */ 4918 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, 4919 &val, NULL) == 0) { 4920 sbuf_cat(sb, path_str); 4921 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); 4922 sbuf_printf(sb, "\n"); 4923 } 4924 4925 /* 4926 * Print the FRU. 4927 */ 4928 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, 4929 &val, NULL) == 0) { 4930 sbuf_cat(sb, path_str); 4931 scsi_fru_sbuf(sb, val); 4932 sbuf_printf(sb, "\n"); 4933 } 4934 4935 /* 4936 * Print any command-specific information. 4937 */ 4938 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, 4939 &val, NULL) == 0) { 4940 sbuf_cat(sb, path_str); 4941 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); 4942 sbuf_printf(sb, "\n"); 4943 } 4944 4945 /* 4946 * Print out any sense-key-specific information. 4947 */ 4948 if (scsi_get_sks(sense, sense_len, sks) == 0) { 4949 sbuf_cat(sb, path_str); 4950 scsi_sks_sbuf(sb, sense_key, sks); 4951 sbuf_printf(sb, "\n"); 4952 } 4953 4954 /* 4955 * If this is fixed sense, we're done. If we have 4956 * descriptor sense, we might have more information 4957 * available. 4958 */ 4959 if (scsi_sense_type(sense) != SSD_TYPE_DESC) 4960 break; 4961 4962 desc_sense = (struct scsi_sense_data_desc *)sense; 4963 4964 print_info.sb = sb; 4965 print_info.path_str = path_str; 4966 print_info.cdb = cdb; 4967 print_info.cdb_len = cdb_len; 4968 print_info.inq_data = inq_data; 4969 4970 /* 4971 * Print any sense descriptors that we have not already printed. 4972 */ 4973 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, 4974 &print_info); 4975 break; 4976 } 4977 case -1: 4978 /* 4979 * scsi_extract_sense_len() sets values to -1 if the 4980 * show_errors flag is set and they aren't present in the 4981 * sense data. This means that sense_len is 0. 4982 */ 4983 sbuf_printf(sb, "No sense data present\n"); 4984 break; 4985 default: { 4986 sbuf_printf(sb, "Error code 0x%x", error_code); 4987 if (sense->error_code & SSD_ERRCODE_VALID) { 4988 struct scsi_sense_data_fixed *fixed_sense; 4989 4990 fixed_sense = (struct scsi_sense_data_fixed *)sense; 4991 4992 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ 4993 uint32_t info; 4994 4995 info = scsi_4btoul(fixed_sense->info); 4996 4997 sbuf_printf(sb, " at block no. %d (decimal)", 4998 info); 4999 } 5000 } 5001 sbuf_printf(sb, "\n"); 5002 break; 5003 } 5004 } 5005 } 5006 5007 /* 5008 * scsi_sense_sbuf() returns 0 for success and -1 for failure. 5009 */ 5010 #ifdef _KERNEL 5011 int 5012 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, 5013 scsi_sense_string_flags flags) 5014 #else /* !_KERNEL */ 5015 int 5016 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, 5017 struct sbuf *sb, scsi_sense_string_flags flags) 5018 #endif /* _KERNEL/!_KERNEL */ 5019 { 5020 struct scsi_sense_data *sense; 5021 struct scsi_inquiry_data *inq_data; 5022 #ifdef _KERNEL 5023 struct ccb_getdev *cgd; 5024 #endif /* _KERNEL */ 5025 char path_str[64]; 5026 5027 #ifndef _KERNEL 5028 if (device == NULL) 5029 return(-1); 5030 #endif /* !_KERNEL */ 5031 if ((csio == NULL) || (sb == NULL)) 5032 return(-1); 5033 5034 /* 5035 * If the CDB is a physical address, we can't deal with it.. 5036 */ 5037 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) 5038 flags &= ~SSS_FLAG_PRINT_COMMAND; 5039 5040 #ifdef _KERNEL 5041 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); 5042 #else /* !_KERNEL */ 5043 cam_path_string(device, path_str, sizeof(path_str)); 5044 #endif /* _KERNEL/!_KERNEL */ 5045 5046 #ifdef _KERNEL 5047 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 5048 return(-1); 5049 /* 5050 * Get the device information. 5051 */ 5052 xpt_setup_ccb(&cgd->ccb_h, 5053 csio->ccb_h.path, 5054 CAM_PRIORITY_NORMAL); 5055 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 5056 xpt_action((union ccb *)cgd); 5057 5058 /* 5059 * If the device is unconfigured, just pretend that it is a hard 5060 * drive. scsi_op_desc() needs this. 5061 */ 5062 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 5063 cgd->inq_data.device = T_DIRECT; 5064 5065 inq_data = &cgd->inq_data; 5066 5067 #else /* !_KERNEL */ 5068 5069 inq_data = &device->inq_data; 5070 5071 #endif /* _KERNEL/!_KERNEL */ 5072 5073 sense = NULL; 5074 5075 if (flags & SSS_FLAG_PRINT_COMMAND) { 5076 sbuf_cat(sb, path_str); 5077 5078 #ifdef _KERNEL 5079 scsi_command_string(csio, sb); 5080 #else /* !_KERNEL */ 5081 scsi_command_string(device, csio, sb); 5082 #endif /* _KERNEL/!_KERNEL */ 5083 sbuf_printf(sb, "\n"); 5084 } 5085 5086 /* 5087 * If the sense data is a physical pointer, forget it. 5088 */ 5089 if (csio->ccb_h.flags & CAM_SENSE_PTR) { 5090 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5091 #ifdef _KERNEL 5092 xpt_free_ccb((union ccb*)cgd); 5093 #endif /* _KERNEL/!_KERNEL */ 5094 return(-1); 5095 } else { 5096 /* 5097 * bcopy the pointer to avoid unaligned access 5098 * errors on finicky architectures. We don't 5099 * ensure that the sense data is pointer aligned. 5100 */ 5101 bcopy((struct scsi_sense_data **)&csio->sense_data, 5102 &sense, sizeof(struct scsi_sense_data *)); 5103 } 5104 } else { 5105 /* 5106 * If the physical sense flag is set, but the sense pointer 5107 * is not also set, we assume that the user is an idiot and 5108 * return. (Well, okay, it could be that somehow, the 5109 * entire csio is physical, but we would have probably core 5110 * dumped on one of the bogus pointer deferences above 5111 * already.) 5112 */ 5113 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5114 #ifdef _KERNEL 5115 xpt_free_ccb((union ccb*)cgd); 5116 #endif /* _KERNEL/!_KERNEL */ 5117 return(-1); 5118 } else 5119 sense = &csio->sense_data; 5120 } 5121 5122 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, 5123 path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len); 5124 5125 #ifdef _KERNEL 5126 xpt_free_ccb((union ccb*)cgd); 5127 #endif /* _KERNEL/!_KERNEL */ 5128 return(0); 5129 } 5130 5131 #ifdef _KERNEL 5132 char * 5133 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) 5134 #else /* !_KERNEL */ 5135 char * 5136 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, 5137 char *str, int str_len) 5138 #endif /* _KERNEL/!_KERNEL */ 5139 { 5140 struct sbuf sb; 5141 5142 sbuf_new(&sb, str, str_len, 0); 5143 5144 #ifdef _KERNEL 5145 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5146 #else /* !_KERNEL */ 5147 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5148 #endif /* _KERNEL/!_KERNEL */ 5149 5150 sbuf_finish(&sb); 5151 5152 return(sbuf_data(&sb)); 5153 } 5154 5155 #ifdef _KERNEL 5156 void 5157 scsi_sense_print(struct ccb_scsiio *csio) 5158 { 5159 struct sbuf sb; 5160 char str[512]; 5161 5162 sbuf_new(&sb, str, sizeof(str), 0); 5163 5164 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5165 5166 sbuf_finish(&sb); 5167 5168 sbuf_putbuf(&sb); 5169 } 5170 5171 #else /* !_KERNEL */ 5172 void 5173 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, 5174 FILE *ofile) 5175 { 5176 struct sbuf sb; 5177 char str[512]; 5178 5179 if ((device == NULL) || (csio == NULL) || (ofile == NULL)) 5180 return; 5181 5182 sbuf_new(&sb, str, sizeof(str), 0); 5183 5184 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5185 5186 sbuf_finish(&sb); 5187 5188 fprintf(ofile, "%s", sbuf_data(&sb)); 5189 } 5190 5191 #endif /* _KERNEL/!_KERNEL */ 5192 5193 /* 5194 * Extract basic sense information. This is backward-compatible with the 5195 * previous implementation. For new implementations, 5196 * scsi_extract_sense_len() is recommended. 5197 */ 5198 void 5199 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, 5200 int *sense_key, int *asc, int *ascq) 5201 { 5202 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, 5203 sense_key, asc, ascq, /*show_errors*/ 0); 5204 } 5205 5206 /* 5207 * Extract basic sense information from SCSI I/O CCB structure. 5208 */ 5209 int 5210 scsi_extract_sense_ccb(union ccb *ccb, 5211 int *error_code, int *sense_key, int *asc, int *ascq) 5212 { 5213 struct scsi_sense_data *sense_data; 5214 5215 /* Make sure there are some sense data we can access. */ 5216 if (ccb->ccb_h.func_code != XPT_SCSI_IO || 5217 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR || 5218 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) || 5219 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 || 5220 (ccb->ccb_h.flags & CAM_SENSE_PHYS)) 5221 return (0); 5222 5223 if (ccb->ccb_h.flags & CAM_SENSE_PTR) 5224 bcopy((struct scsi_sense_data **)&ccb->csio.sense_data, 5225 &sense_data, sizeof(struct scsi_sense_data *)); 5226 else 5227 sense_data = &ccb->csio.sense_data; 5228 scsi_extract_sense_len(sense_data, 5229 ccb->csio.sense_len - ccb->csio.sense_resid, 5230 error_code, sense_key, asc, ascq, 1); 5231 if (*error_code == -1) 5232 return (0); 5233 return (1); 5234 } 5235 5236 /* 5237 * Extract basic sense information. If show_errors is set, sense values 5238 * will be set to -1 if they are not present. 5239 */ 5240 void 5241 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, 5242 int *error_code, int *sense_key, int *asc, int *ascq, 5243 int show_errors) 5244 { 5245 /* 5246 * If we have no length, we have no sense. 5247 */ 5248 if (sense_len == 0) { 5249 if (show_errors == 0) { 5250 *error_code = 0; 5251 *sense_key = 0; 5252 *asc = 0; 5253 *ascq = 0; 5254 } else { 5255 *error_code = -1; 5256 *sense_key = -1; 5257 *asc = -1; 5258 *ascq = -1; 5259 } 5260 return; 5261 } 5262 5263 *error_code = sense_data->error_code & SSD_ERRCODE; 5264 5265 switch (*error_code) { 5266 case SSD_DESC_CURRENT_ERROR: 5267 case SSD_DESC_DEFERRED_ERROR: { 5268 struct scsi_sense_data_desc *sense; 5269 5270 sense = (struct scsi_sense_data_desc *)sense_data; 5271 5272 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) 5273 *sense_key = sense->sense_key & SSD_KEY; 5274 else 5275 *sense_key = (show_errors) ? -1 : 0; 5276 5277 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) 5278 *asc = sense->add_sense_code; 5279 else 5280 *asc = (show_errors) ? -1 : 0; 5281 5282 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) 5283 *ascq = sense->add_sense_code_qual; 5284 else 5285 *ascq = (show_errors) ? -1 : 0; 5286 break; 5287 } 5288 case SSD_CURRENT_ERROR: 5289 case SSD_DEFERRED_ERROR: 5290 default: { 5291 struct scsi_sense_data_fixed *sense; 5292 5293 sense = (struct scsi_sense_data_fixed *)sense_data; 5294 5295 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) 5296 *sense_key = sense->flags & SSD_KEY; 5297 else 5298 *sense_key = (show_errors) ? -1 : 0; 5299 5300 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) 5301 && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) 5302 *asc = sense->add_sense_code; 5303 else 5304 *asc = (show_errors) ? -1 : 0; 5305 5306 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) 5307 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) 5308 *ascq = sense->add_sense_code_qual; 5309 else 5310 *ascq = (show_errors) ? -1 : 0; 5311 break; 5312 } 5313 } 5314 } 5315 5316 int 5317 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, 5318 int show_errors) 5319 { 5320 int error_code, sense_key, asc, ascq; 5321 5322 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5323 &sense_key, &asc, &ascq, show_errors); 5324 5325 return (sense_key); 5326 } 5327 5328 int 5329 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, 5330 int show_errors) 5331 { 5332 int error_code, sense_key, asc, ascq; 5333 5334 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5335 &sense_key, &asc, &ascq, show_errors); 5336 5337 return (asc); 5338 } 5339 5340 int 5341 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, 5342 int show_errors) 5343 { 5344 int error_code, sense_key, asc, ascq; 5345 5346 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5347 &sense_key, &asc, &ascq, show_errors); 5348 5349 return (ascq); 5350 } 5351 5352 /* 5353 * This function currently requires at least 36 bytes, or 5354 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this 5355 * function needs more or less data in the future, another length should be 5356 * defined in scsi_all.h to indicate the minimum amount of data necessary 5357 * for this routine to function properly. 5358 */ 5359 void 5360 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5361 { 5362 u_int8_t type; 5363 char *dtype, *qtype; 5364 5365 type = SID_TYPE(inq_data); 5366 5367 /* 5368 * Figure out basic device type and qualifier. 5369 */ 5370 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { 5371 qtype = " (vendor-unique qualifier)"; 5372 } else { 5373 switch (SID_QUAL(inq_data)) { 5374 case SID_QUAL_LU_CONNECTED: 5375 qtype = ""; 5376 break; 5377 5378 case SID_QUAL_LU_OFFLINE: 5379 qtype = " (offline)"; 5380 break; 5381 5382 case SID_QUAL_RSVD: 5383 qtype = " (reserved qualifier)"; 5384 break; 5385 default: 5386 case SID_QUAL_BAD_LU: 5387 qtype = " (LUN not supported)"; 5388 break; 5389 } 5390 } 5391 5392 switch (type) { 5393 case T_DIRECT: 5394 dtype = "Direct Access"; 5395 break; 5396 case T_SEQUENTIAL: 5397 dtype = "Sequential Access"; 5398 break; 5399 case T_PRINTER: 5400 dtype = "Printer"; 5401 break; 5402 case T_PROCESSOR: 5403 dtype = "Processor"; 5404 break; 5405 case T_WORM: 5406 dtype = "WORM"; 5407 break; 5408 case T_CDROM: 5409 dtype = "CD-ROM"; 5410 break; 5411 case T_SCANNER: 5412 dtype = "Scanner"; 5413 break; 5414 case T_OPTICAL: 5415 dtype = "Optical"; 5416 break; 5417 case T_CHANGER: 5418 dtype = "Changer"; 5419 break; 5420 case T_COMM: 5421 dtype = "Communication"; 5422 break; 5423 case T_STORARRAY: 5424 dtype = "Storage Array"; 5425 break; 5426 case T_ENCLOSURE: 5427 dtype = "Enclosure Services"; 5428 break; 5429 case T_RBC: 5430 dtype = "Simplified Direct Access"; 5431 break; 5432 case T_OCRW: 5433 dtype = "Optical Card Read/Write"; 5434 break; 5435 case T_OSD: 5436 dtype = "Object-Based Storage"; 5437 break; 5438 case T_ADC: 5439 dtype = "Automation/Drive Interface"; 5440 break; 5441 case T_ZBC_HM: 5442 dtype = "Host Managed Zoned Block"; 5443 break; 5444 case T_NODEVICE: 5445 dtype = "Uninstalled"; 5446 break; 5447 default: 5448 dtype = "unknown"; 5449 break; 5450 } 5451 5452 scsi_print_inquiry_short_sbuf(sb, inq_data); 5453 5454 sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype); 5455 5456 if (SID_ANSI_REV(inq_data) == SCSI_REV_0) 5457 sbuf_printf(sb, "SCSI "); 5458 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) { 5459 sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data)); 5460 } else { 5461 sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2); 5462 } 5463 sbuf_printf(sb, "device%s\n", qtype); 5464 } 5465 5466 void 5467 scsi_print_inquiry(struct scsi_inquiry_data *inq_data) 5468 { 5469 struct sbuf sb; 5470 char buffer[120]; 5471 5472 sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN); 5473 scsi_print_inquiry_sbuf(&sb, inq_data); 5474 sbuf_finish(&sb); 5475 sbuf_putbuf(&sb); 5476 } 5477 5478 void 5479 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data) 5480 { 5481 5482 sbuf_printf(sb, "<"); 5483 cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0); 5484 sbuf_printf(sb, " "); 5485 cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0); 5486 sbuf_printf(sb, " "); 5487 cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0); 5488 sbuf_printf(sb, "> "); 5489 } 5490 5491 void 5492 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data) 5493 { 5494 struct sbuf sb; 5495 char buffer[84]; 5496 5497 sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN); 5498 scsi_print_inquiry_short_sbuf(&sb, inq_data); 5499 sbuf_finish(&sb); 5500 sbuf_putbuf(&sb); 5501 } 5502 5503 /* 5504 * Table of syncrates that don't follow the "divisible by 4" 5505 * rule. This table will be expanded in future SCSI specs. 5506 */ 5507 static struct { 5508 u_int period_factor; 5509 u_int period; /* in 100ths of ns */ 5510 } scsi_syncrates[] = { 5511 { 0x08, 625 }, /* FAST-160 */ 5512 { 0x09, 1250 }, /* FAST-80 */ 5513 { 0x0a, 2500 }, /* FAST-40 40MHz */ 5514 { 0x0b, 3030 }, /* FAST-40 33MHz */ 5515 { 0x0c, 5000 } /* FAST-20 */ 5516 }; 5517 5518 /* 5519 * Return the frequency in kHz corresponding to the given 5520 * sync period factor. 5521 */ 5522 u_int 5523 scsi_calc_syncsrate(u_int period_factor) 5524 { 5525 u_int i; 5526 u_int num_syncrates; 5527 5528 /* 5529 * It's a bug if period is zero, but if it is anyway, don't 5530 * die with a divide fault- instead return something which 5531 * 'approximates' async 5532 */ 5533 if (period_factor == 0) { 5534 return (3300); 5535 } 5536 5537 num_syncrates = nitems(scsi_syncrates); 5538 /* See if the period is in the "exception" table */ 5539 for (i = 0; i < num_syncrates; i++) { 5540 if (period_factor == scsi_syncrates[i].period_factor) { 5541 /* Period in kHz */ 5542 return (100000000 / scsi_syncrates[i].period); 5543 } 5544 } 5545 5546 /* 5547 * Wasn't in the table, so use the standard 5548 * 4 times conversion. 5549 */ 5550 return (10000000 / (period_factor * 4 * 10)); 5551 } 5552 5553 /* 5554 * Return the SCSI sync parameter that corresponds to 5555 * the passed in period in 10ths of ns. 5556 */ 5557 u_int 5558 scsi_calc_syncparam(u_int period) 5559 { 5560 u_int i; 5561 u_int num_syncrates; 5562 5563 if (period == 0) 5564 return (~0); /* Async */ 5565 5566 /* Adjust for exception table being in 100ths. */ 5567 period *= 10; 5568 num_syncrates = nitems(scsi_syncrates); 5569 /* See if the period is in the "exception" table */ 5570 for (i = 0; i < num_syncrates; i++) { 5571 if (period <= scsi_syncrates[i].period) { 5572 /* Period in 100ths of ns */ 5573 return (scsi_syncrates[i].period_factor); 5574 } 5575 } 5576 5577 /* 5578 * Wasn't in the table, so use the standard 5579 * 1/4 period in ns conversion. 5580 */ 5581 return (period/400); 5582 } 5583 5584 int 5585 scsi_devid_is_naa_ieee_reg(uint8_t *bufp) 5586 { 5587 struct scsi_vpd_id_descriptor *descr; 5588 struct scsi_vpd_id_naa_basic *naa; 5589 int n; 5590 5591 descr = (struct scsi_vpd_id_descriptor *)bufp; 5592 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; 5593 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5594 return 0; 5595 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) 5596 return 0; 5597 n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT; 5598 if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG) 5599 return 0; 5600 return 1; 5601 } 5602 5603 int 5604 scsi_devid_is_sas_target(uint8_t *bufp) 5605 { 5606 struct scsi_vpd_id_descriptor *descr; 5607 5608 descr = (struct scsi_vpd_id_descriptor *)bufp; 5609 if (!scsi_devid_is_naa_ieee_reg(bufp)) 5610 return 0; 5611 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ 5612 return 0; 5613 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) 5614 return 0; 5615 return 1; 5616 } 5617 5618 int 5619 scsi_devid_is_lun_eui64(uint8_t *bufp) 5620 { 5621 struct scsi_vpd_id_descriptor *descr; 5622 5623 descr = (struct scsi_vpd_id_descriptor *)bufp; 5624 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5625 return 0; 5626 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64) 5627 return 0; 5628 return 1; 5629 } 5630 5631 int 5632 scsi_devid_is_lun_naa(uint8_t *bufp) 5633 { 5634 struct scsi_vpd_id_descriptor *descr; 5635 5636 descr = (struct scsi_vpd_id_descriptor *)bufp; 5637 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5638 return 0; 5639 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5640 return 0; 5641 return 1; 5642 } 5643 5644 int 5645 scsi_devid_is_lun_t10(uint8_t *bufp) 5646 { 5647 struct scsi_vpd_id_descriptor *descr; 5648 5649 descr = (struct scsi_vpd_id_descriptor *)bufp; 5650 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5651 return 0; 5652 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10) 5653 return 0; 5654 return 1; 5655 } 5656 5657 int 5658 scsi_devid_is_lun_name(uint8_t *bufp) 5659 { 5660 struct scsi_vpd_id_descriptor *descr; 5661 5662 descr = (struct scsi_vpd_id_descriptor *)bufp; 5663 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5664 return 0; 5665 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME) 5666 return 0; 5667 return 1; 5668 } 5669 5670 int 5671 scsi_devid_is_lun_md5(uint8_t *bufp) 5672 { 5673 struct scsi_vpd_id_descriptor *descr; 5674 5675 descr = (struct scsi_vpd_id_descriptor *)bufp; 5676 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5677 return 0; 5678 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID) 5679 return 0; 5680 return 1; 5681 } 5682 5683 int 5684 scsi_devid_is_lun_uuid(uint8_t *bufp) 5685 { 5686 struct scsi_vpd_id_descriptor *descr; 5687 5688 descr = (struct scsi_vpd_id_descriptor *)bufp; 5689 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5690 return 0; 5691 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID) 5692 return 0; 5693 return 1; 5694 } 5695 5696 int 5697 scsi_devid_is_port_naa(uint8_t *bufp) 5698 { 5699 struct scsi_vpd_id_descriptor *descr; 5700 5701 descr = (struct scsi_vpd_id_descriptor *)bufp; 5702 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT) 5703 return 0; 5704 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5705 return 0; 5706 return 1; 5707 } 5708 5709 struct scsi_vpd_id_descriptor * 5710 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, 5711 scsi_devid_checkfn_t ck_fn) 5712 { 5713 uint8_t *desc_buf_end; 5714 5715 desc_buf_end = (uint8_t *)desc + len; 5716 5717 for (; desc->identifier <= desc_buf_end && 5718 desc->identifier + desc->length <= desc_buf_end; 5719 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier 5720 + desc->length)) { 5721 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) 5722 return (desc); 5723 } 5724 return (NULL); 5725 } 5726 5727 struct scsi_vpd_id_descriptor * 5728 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, 5729 scsi_devid_checkfn_t ck_fn) 5730 { 5731 uint32_t len; 5732 5733 if (page_len < sizeof(*id)) 5734 return (NULL); 5735 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id)); 5736 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *) 5737 id->desc_list, len, ck_fn)); 5738 } 5739 5740 int 5741 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, 5742 uint32_t valid_len) 5743 { 5744 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) { 5745 case SCSI_PROTO_FC: { 5746 struct scsi_transportid_fcp *fcp; 5747 uint64_t n_port_name; 5748 5749 fcp = (struct scsi_transportid_fcp *)hdr; 5750 5751 n_port_name = scsi_8btou64(fcp->n_port_name); 5752 5753 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name); 5754 break; 5755 } 5756 case SCSI_PROTO_SPI: { 5757 struct scsi_transportid_spi *spi; 5758 5759 spi = (struct scsi_transportid_spi *)hdr; 5760 5761 sbuf_printf(sb, "SPI address: %u,%u", 5762 scsi_2btoul(spi->scsi_addr), 5763 scsi_2btoul(spi->rel_trgt_port_id)); 5764 break; 5765 } 5766 case SCSI_PROTO_SSA: 5767 /* 5768 * XXX KDM there is no transport ID defined in SPC-4 for 5769 * SSA. 5770 */ 5771 break; 5772 case SCSI_PROTO_1394: { 5773 struct scsi_transportid_1394 *sbp; 5774 uint64_t eui64; 5775 5776 sbp = (struct scsi_transportid_1394 *)hdr; 5777 5778 eui64 = scsi_8btou64(sbp->eui64); 5779 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64); 5780 break; 5781 } 5782 case SCSI_PROTO_RDMA: { 5783 struct scsi_transportid_rdma *rdma; 5784 unsigned int i; 5785 5786 rdma = (struct scsi_transportid_rdma *)hdr; 5787 5788 sbuf_printf(sb, "RDMA address: 0x"); 5789 for (i = 0; i < sizeof(rdma->initiator_port_id); i++) 5790 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]); 5791 break; 5792 } 5793 case SCSI_PROTO_ISCSI: { 5794 uint32_t add_len, i; 5795 uint8_t *iscsi_name = NULL; 5796 int nul_found = 0; 5797 5798 sbuf_printf(sb, "iSCSI address: "); 5799 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5800 SCSI_TRN_ISCSI_FORMAT_DEVICE) { 5801 struct scsi_transportid_iscsi_device *dev; 5802 5803 dev = (struct scsi_transportid_iscsi_device *)hdr; 5804 5805 /* 5806 * Verify how much additional data we really have. 5807 */ 5808 add_len = scsi_2btoul(dev->additional_length); 5809 add_len = MIN(add_len, valid_len - 5810 __offsetof(struct scsi_transportid_iscsi_device, 5811 iscsi_name)); 5812 iscsi_name = &dev->iscsi_name[0]; 5813 5814 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5815 SCSI_TRN_ISCSI_FORMAT_PORT) { 5816 struct scsi_transportid_iscsi_port *port; 5817 5818 port = (struct scsi_transportid_iscsi_port *)hdr; 5819 5820 add_len = scsi_2btoul(port->additional_length); 5821 add_len = MIN(add_len, valid_len - 5822 __offsetof(struct scsi_transportid_iscsi_port, 5823 iscsi_name)); 5824 iscsi_name = &port->iscsi_name[0]; 5825 } else { 5826 sbuf_printf(sb, "unknown format %x", 5827 (hdr->format_protocol & 5828 SCSI_TRN_FORMAT_MASK) >> 5829 SCSI_TRN_FORMAT_SHIFT); 5830 break; 5831 } 5832 if (add_len == 0) { 5833 sbuf_printf(sb, "not enough data"); 5834 break; 5835 } 5836 /* 5837 * This is supposed to be a NUL-terminated ASCII 5838 * string, but you never know. So we're going to 5839 * check. We need to do this because there is no 5840 * sbuf equivalent of strncat(). 5841 */ 5842 for (i = 0; i < add_len; i++) { 5843 if (iscsi_name[i] == '\0') { 5844 nul_found = 1; 5845 break; 5846 } 5847 } 5848 /* 5849 * If there is a NUL in the name, we can just use 5850 * sbuf_cat(). Otherwise we need to use sbuf_bcat(). 5851 */ 5852 if (nul_found != 0) 5853 sbuf_cat(sb, iscsi_name); 5854 else 5855 sbuf_bcat(sb, iscsi_name, add_len); 5856 break; 5857 } 5858 case SCSI_PROTO_SAS: { 5859 struct scsi_transportid_sas *sas; 5860 uint64_t sas_addr; 5861 5862 sas = (struct scsi_transportid_sas *)hdr; 5863 5864 sas_addr = scsi_8btou64(sas->sas_address); 5865 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr); 5866 break; 5867 } 5868 case SCSI_PROTO_ADITP: 5869 case SCSI_PROTO_ATA: 5870 case SCSI_PROTO_UAS: 5871 /* 5872 * No Transport ID format for ADI, ATA or USB is defined in 5873 * SPC-4. 5874 */ 5875 sbuf_printf(sb, "No known Transport ID format for protocol " 5876 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5877 break; 5878 case SCSI_PROTO_SOP: { 5879 struct scsi_transportid_sop *sop; 5880 struct scsi_sop_routing_id_norm *rid; 5881 5882 sop = (struct scsi_transportid_sop *)hdr; 5883 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id; 5884 5885 /* 5886 * Note that there is no alternate format specified in SPC-4 5887 * for the PCIe routing ID, so we don't really have a way 5888 * to know whether the second byte of the routing ID is 5889 * a device and function or just a function. So we just 5890 * assume bus,device,function. 5891 */ 5892 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u", 5893 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT, 5894 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX); 5895 break; 5896 } 5897 case SCSI_PROTO_NONE: 5898 default: 5899 sbuf_printf(sb, "Unknown protocol %#x", 5900 hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5901 break; 5902 } 5903 5904 return (0); 5905 } 5906 5907 struct scsi_nv scsi_proto_map[] = { 5908 { "fcp", SCSI_PROTO_FC }, 5909 { "spi", SCSI_PROTO_SPI }, 5910 { "ssa", SCSI_PROTO_SSA }, 5911 { "sbp", SCSI_PROTO_1394 }, 5912 { "1394", SCSI_PROTO_1394 }, 5913 { "srp", SCSI_PROTO_RDMA }, 5914 { "rdma", SCSI_PROTO_RDMA }, 5915 { "iscsi", SCSI_PROTO_ISCSI }, 5916 { "iqn", SCSI_PROTO_ISCSI }, 5917 { "sas", SCSI_PROTO_SAS }, 5918 { "aditp", SCSI_PROTO_ADITP }, 5919 { "ata", SCSI_PROTO_ATA }, 5920 { "uas", SCSI_PROTO_UAS }, 5921 { "usb", SCSI_PROTO_UAS }, 5922 { "sop", SCSI_PROTO_SOP } 5923 }; 5924 5925 const char * 5926 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value) 5927 { 5928 int i; 5929 5930 for (i = 0; i < num_table_entries; i++) { 5931 if (table[i].value == value) 5932 return (table[i].name); 5933 } 5934 5935 return (NULL); 5936 } 5937 5938 /* 5939 * Given a name/value table, find a value matching the given name. 5940 * Return values: 5941 * SCSI_NV_FOUND - match found 5942 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact 5943 * SCSI_NV_NOT_FOUND - no match found 5944 */ 5945 scsi_nv_status 5946 scsi_get_nv(struct scsi_nv *table, int num_table_entries, 5947 char *name, int *table_entry, scsi_nv_flags flags) 5948 { 5949 int i, num_matches = 0; 5950 5951 for (i = 0; i < num_table_entries; i++) { 5952 size_t table_len, name_len; 5953 5954 table_len = strlen(table[i].name); 5955 name_len = strlen(name); 5956 5957 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0) 5958 && (strncasecmp(table[i].name, name, name_len) == 0)) 5959 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0) 5960 && (strncmp(table[i].name, name, name_len) == 0))) { 5961 *table_entry = i; 5962 5963 /* 5964 * Check for an exact match. If we have the same 5965 * number of characters in the table as the argument, 5966 * and we already know they're the same, we have 5967 * an exact match. 5968 */ 5969 if (table_len == name_len) 5970 return (SCSI_NV_FOUND); 5971 5972 /* 5973 * Otherwise, bump up the number of matches. We'll 5974 * see later how many we have. 5975 */ 5976 num_matches++; 5977 } 5978 } 5979 5980 if (num_matches > 1) 5981 return (SCSI_NV_AMBIGUOUS); 5982 else if (num_matches == 1) 5983 return (SCSI_NV_FOUND); 5984 else 5985 return (SCSI_NV_NOT_FOUND); 5986 } 5987 5988 /* 5989 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are 5990 * all 64-bit numbers, the code is similar. 5991 */ 5992 int 5993 scsi_parse_transportid_64bit(int proto_id, char *id_str, 5994 struct scsi_transportid_header **hdr, 5995 unsigned int *alloc_len, 5996 #ifdef _KERNEL 5997 struct malloc_type *type, int flags, 5998 #endif 5999 char *error_str, int error_str_len) 6000 { 6001 uint64_t value; 6002 char *endptr; 6003 int retval; 6004 size_t alloc_size; 6005 6006 retval = 0; 6007 6008 value = strtouq(id_str, &endptr, 0); 6009 if (*endptr != '\0') { 6010 if (error_str != NULL) { 6011 snprintf(error_str, error_str_len, "%s: error " 6012 "parsing ID %s, 64-bit number required", 6013 __func__, id_str); 6014 } 6015 retval = 1; 6016 goto bailout; 6017 } 6018 6019 switch (proto_id) { 6020 case SCSI_PROTO_FC: 6021 alloc_size = sizeof(struct scsi_transportid_fcp); 6022 break; 6023 case SCSI_PROTO_1394: 6024 alloc_size = sizeof(struct scsi_transportid_1394); 6025 break; 6026 case SCSI_PROTO_SAS: 6027 alloc_size = sizeof(struct scsi_transportid_sas); 6028 break; 6029 default: 6030 if (error_str != NULL) { 6031 snprintf(error_str, error_str_len, "%s: unsupported " 6032 "protocol %d", __func__, proto_id); 6033 } 6034 retval = 1; 6035 goto bailout; 6036 break; /* NOTREACHED */ 6037 } 6038 #ifdef _KERNEL 6039 *hdr = malloc(alloc_size, type, flags); 6040 #else /* _KERNEL */ 6041 *hdr = malloc(alloc_size); 6042 #endif /*_KERNEL */ 6043 if (*hdr == NULL) { 6044 if (error_str != NULL) { 6045 snprintf(error_str, error_str_len, "%s: unable to " 6046 "allocate %zu bytes", __func__, alloc_size); 6047 } 6048 retval = 1; 6049 goto bailout; 6050 } 6051 6052 *alloc_len = alloc_size; 6053 6054 bzero(*hdr, alloc_size); 6055 6056 switch (proto_id) { 6057 case SCSI_PROTO_FC: { 6058 struct scsi_transportid_fcp *fcp; 6059 6060 fcp = (struct scsi_transportid_fcp *)(*hdr); 6061 fcp->format_protocol = SCSI_PROTO_FC | 6062 SCSI_TRN_FCP_FORMAT_DEFAULT; 6063 scsi_u64to8b(value, fcp->n_port_name); 6064 break; 6065 } 6066 case SCSI_PROTO_1394: { 6067 struct scsi_transportid_1394 *sbp; 6068 6069 sbp = (struct scsi_transportid_1394 *)(*hdr); 6070 sbp->format_protocol = SCSI_PROTO_1394 | 6071 SCSI_TRN_1394_FORMAT_DEFAULT; 6072 scsi_u64to8b(value, sbp->eui64); 6073 break; 6074 } 6075 case SCSI_PROTO_SAS: { 6076 struct scsi_transportid_sas *sas; 6077 6078 sas = (struct scsi_transportid_sas *)(*hdr); 6079 sas->format_protocol = SCSI_PROTO_SAS | 6080 SCSI_TRN_SAS_FORMAT_DEFAULT; 6081 scsi_u64to8b(value, sas->sas_address); 6082 break; 6083 } 6084 default: 6085 break; 6086 } 6087 bailout: 6088 return (retval); 6089 } 6090 6091 /* 6092 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port 6093 */ 6094 int 6095 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, 6096 unsigned int *alloc_len, 6097 #ifdef _KERNEL 6098 struct malloc_type *type, int flags, 6099 #endif 6100 char *error_str, int error_str_len) 6101 { 6102 unsigned long scsi_addr, target_port; 6103 struct scsi_transportid_spi *spi; 6104 char *tmpstr, *endptr; 6105 int retval; 6106 6107 retval = 0; 6108 6109 tmpstr = strsep(&id_str, ","); 6110 if (tmpstr == NULL) { 6111 if (error_str != NULL) { 6112 snprintf(error_str, error_str_len, 6113 "%s: no ID found", __func__); 6114 } 6115 retval = 1; 6116 goto bailout; 6117 } 6118 scsi_addr = strtoul(tmpstr, &endptr, 0); 6119 if (*endptr != '\0') { 6120 if (error_str != NULL) { 6121 snprintf(error_str, error_str_len, "%s: error " 6122 "parsing SCSI ID %s, number required", 6123 __func__, tmpstr); 6124 } 6125 retval = 1; 6126 goto bailout; 6127 } 6128 6129 if (id_str == NULL) { 6130 if (error_str != NULL) { 6131 snprintf(error_str, error_str_len, "%s: no relative " 6132 "target port found", __func__); 6133 } 6134 retval = 1; 6135 goto bailout; 6136 } 6137 6138 target_port = strtoul(id_str, &endptr, 0); 6139 if (*endptr != '\0') { 6140 if (error_str != NULL) { 6141 snprintf(error_str, error_str_len, "%s: error " 6142 "parsing relative target port %s, number " 6143 "required", __func__, id_str); 6144 } 6145 retval = 1; 6146 goto bailout; 6147 } 6148 #ifdef _KERNEL 6149 spi = malloc(sizeof(*spi), type, flags); 6150 #else 6151 spi = malloc(sizeof(*spi)); 6152 #endif 6153 if (spi == NULL) { 6154 if (error_str != NULL) { 6155 snprintf(error_str, error_str_len, "%s: unable to " 6156 "allocate %zu bytes", __func__, 6157 sizeof(*spi)); 6158 } 6159 retval = 1; 6160 goto bailout; 6161 } 6162 *alloc_len = sizeof(*spi); 6163 bzero(spi, sizeof(*spi)); 6164 6165 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT; 6166 scsi_ulto2b(scsi_addr, spi->scsi_addr); 6167 scsi_ulto2b(target_port, spi->rel_trgt_port_id); 6168 6169 *hdr = (struct scsi_transportid_header *)spi; 6170 bailout: 6171 return (retval); 6172 } 6173 6174 /* 6175 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits, 6176 * optionally prefixed by "0x" or "0X". 6177 */ 6178 int 6179 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, 6180 unsigned int *alloc_len, 6181 #ifdef _KERNEL 6182 struct malloc_type *type, int flags, 6183 #endif 6184 char *error_str, int error_str_len) 6185 { 6186 struct scsi_transportid_rdma *rdma; 6187 int retval; 6188 size_t id_len, rdma_id_size; 6189 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN]; 6190 char *tmpstr; 6191 unsigned int i, j; 6192 6193 retval = 0; 6194 id_len = strlen(id_str); 6195 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN; 6196 6197 /* 6198 * Check the size. It needs to be either 32 or 34 characters long. 6199 */ 6200 if ((id_len != (rdma_id_size * 2)) 6201 && (id_len != ((rdma_id_size * 2) + 2))) { 6202 if (error_str != NULL) { 6203 snprintf(error_str, error_str_len, "%s: RDMA ID " 6204 "must be 32 hex digits (0x prefix " 6205 "optional), only %zu seen", __func__, id_len); 6206 } 6207 retval = 1; 6208 goto bailout; 6209 } 6210 6211 tmpstr = id_str; 6212 /* 6213 * If the user gave us 34 characters, the string needs to start 6214 * with '0x'. 6215 */ 6216 if (id_len == ((rdma_id_size * 2) + 2)) { 6217 if ((tmpstr[0] == '0') 6218 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) { 6219 tmpstr += 2; 6220 } else { 6221 if (error_str != NULL) { 6222 snprintf(error_str, error_str_len, "%s: RDMA " 6223 "ID prefix, if used, must be \"0x\", " 6224 "got %s", __func__, tmpstr); 6225 } 6226 retval = 1; 6227 goto bailout; 6228 } 6229 } 6230 bzero(rdma_id, sizeof(rdma_id)); 6231 6232 /* 6233 * Convert ASCII hex into binary bytes. There is no standard 6234 * 128-bit integer type, and so no strtou128t() routine to convert 6235 * from hex into a large integer. In the end, we're not going to 6236 * an integer, but rather to a byte array, so that and the fact 6237 * that we require the user to give us 32 hex digits simplifies the 6238 * logic. 6239 */ 6240 for (i = 0; i < (rdma_id_size * 2); i++) { 6241 int cur_shift; 6242 unsigned char c; 6243 6244 /* Increment the byte array one for every 2 hex digits */ 6245 j = i >> 1; 6246 6247 /* 6248 * The first digit in every pair is the most significant 6249 * 4 bits. The second is the least significant 4 bits. 6250 */ 6251 if ((i % 2) == 0) 6252 cur_shift = 4; 6253 else 6254 cur_shift = 0; 6255 6256 c = tmpstr[i]; 6257 /* Convert the ASCII hex character into a number */ 6258 if (isdigit(c)) 6259 c -= '0'; 6260 else if (isalpha(c)) 6261 c -= isupper(c) ? 'A' - 10 : 'a' - 10; 6262 else { 6263 if (error_str != NULL) { 6264 snprintf(error_str, error_str_len, "%s: " 6265 "RDMA ID must be hex digits, got " 6266 "invalid character %c", __func__, 6267 tmpstr[i]); 6268 } 6269 retval = 1; 6270 goto bailout; 6271 } 6272 /* 6273 * The converted number can't be less than 0; the type is 6274 * unsigned, and the subtraction logic will not give us 6275 * a negative number. So we only need to make sure that 6276 * the value is not greater than 0xf. (i.e. make sure the 6277 * user didn't give us a value like "0x12jklmno"). 6278 */ 6279 if (c > 0xf) { 6280 if (error_str != NULL) { 6281 snprintf(error_str, error_str_len, "%s: " 6282 "RDMA ID must be hex digits, got " 6283 "invalid character %c", __func__, 6284 tmpstr[i]); 6285 } 6286 retval = 1; 6287 goto bailout; 6288 } 6289 6290 rdma_id[j] |= c << cur_shift; 6291 } 6292 6293 #ifdef _KERNEL 6294 rdma = malloc(sizeof(*rdma), type, flags); 6295 #else 6296 rdma = malloc(sizeof(*rdma)); 6297 #endif 6298 if (rdma == NULL) { 6299 if (error_str != NULL) { 6300 snprintf(error_str, error_str_len, "%s: unable to " 6301 "allocate %zu bytes", __func__, 6302 sizeof(*rdma)); 6303 } 6304 retval = 1; 6305 goto bailout; 6306 } 6307 *alloc_len = sizeof(*rdma); 6308 bzero(rdma, *alloc_len); 6309 6310 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT; 6311 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN); 6312 6313 *hdr = (struct scsi_transportid_header *)rdma; 6314 6315 bailout: 6316 return (retval); 6317 } 6318 6319 /* 6320 * Parse an iSCSI name. The format is either just the name: 6321 * 6322 * iqn.2012-06.com.example:target0 6323 * or the name, separator and initiator session ID: 6324 * 6325 * iqn.2012-06.com.example:target0,i,0x123 6326 * 6327 * The separator format is exact. 6328 */ 6329 int 6330 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, 6331 unsigned int *alloc_len, 6332 #ifdef _KERNEL 6333 struct malloc_type *type, int flags, 6334 #endif 6335 char *error_str, int error_str_len) 6336 { 6337 size_t id_len, sep_len, id_size, name_len; 6338 int retval; 6339 unsigned int i, sep_pos, sep_found; 6340 const char *sep_template = ",i,0x"; 6341 const char *iqn_prefix = "iqn."; 6342 struct scsi_transportid_iscsi_device *iscsi; 6343 6344 retval = 0; 6345 sep_found = 0; 6346 6347 id_len = strlen(id_str); 6348 sep_len = strlen(sep_template); 6349 6350 /* 6351 * The separator is defined as exactly ',i,0x'. Any other commas, 6352 * or any other form, is an error. So look for a comma, and once 6353 * we find that, the next few characters must match the separator 6354 * exactly. Once we get through the separator, there should be at 6355 * least one character. 6356 */ 6357 for (i = 0, sep_pos = 0; i < id_len; i++) { 6358 if (sep_pos == 0) { 6359 if (id_str[i] == sep_template[sep_pos]) 6360 sep_pos++; 6361 6362 continue; 6363 } 6364 if (sep_pos < sep_len) { 6365 if (id_str[i] == sep_template[sep_pos]) { 6366 sep_pos++; 6367 continue; 6368 } 6369 if (error_str != NULL) { 6370 snprintf(error_str, error_str_len, "%s: " 6371 "invalid separator in iSCSI name " 6372 "\"%s\"", 6373 __func__, id_str); 6374 } 6375 retval = 1; 6376 goto bailout; 6377 } else { 6378 sep_found = 1; 6379 break; 6380 } 6381 } 6382 6383 /* 6384 * Check to see whether we have a separator but no digits after it. 6385 */ 6386 if ((sep_pos != 0) 6387 && (sep_found == 0)) { 6388 if (error_str != NULL) { 6389 snprintf(error_str, error_str_len, "%s: no digits " 6390 "found after separator in iSCSI name \"%s\"", 6391 __func__, id_str); 6392 } 6393 retval = 1; 6394 goto bailout; 6395 } 6396 6397 /* 6398 * The incoming ID string has the "iqn." prefix stripped off. We 6399 * need enough space for the base structure (the structures are the 6400 * same for the two iSCSI forms), the prefix, the ID string and a 6401 * terminating NUL. 6402 */ 6403 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1; 6404 6405 #ifdef _KERNEL 6406 iscsi = malloc(id_size, type, flags); 6407 #else 6408 iscsi = malloc(id_size); 6409 #endif 6410 if (iscsi == NULL) { 6411 if (error_str != NULL) { 6412 snprintf(error_str, error_str_len, "%s: unable to " 6413 "allocate %zu bytes", __func__, id_size); 6414 } 6415 retval = 1; 6416 goto bailout; 6417 } 6418 *alloc_len = id_size; 6419 bzero(iscsi, id_size); 6420 6421 iscsi->format_protocol = SCSI_PROTO_ISCSI; 6422 if (sep_found == 0) 6423 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE; 6424 else 6425 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT; 6426 name_len = id_size - sizeof(*iscsi); 6427 scsi_ulto2b(name_len, iscsi->additional_length); 6428 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str); 6429 6430 *hdr = (struct scsi_transportid_header *)iscsi; 6431 6432 bailout: 6433 return (retval); 6434 } 6435 6436 /* 6437 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be 6438 * of the form 'bus,device,function' or 'bus,function'. 6439 */ 6440 int 6441 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, 6442 unsigned int *alloc_len, 6443 #ifdef _KERNEL 6444 struct malloc_type *type, int flags, 6445 #endif 6446 char *error_str, int error_str_len) 6447 { 6448 struct scsi_transportid_sop *sop; 6449 unsigned long bus, device, function; 6450 char *tmpstr, *endptr; 6451 int retval, device_spec; 6452 6453 retval = 0; 6454 device_spec = 0; 6455 device = 0; 6456 6457 tmpstr = strsep(&id_str, ","); 6458 if ((tmpstr == NULL) 6459 || (*tmpstr == '\0')) { 6460 if (error_str != NULL) { 6461 snprintf(error_str, error_str_len, "%s: no ID found", 6462 __func__); 6463 } 6464 retval = 1; 6465 goto bailout; 6466 } 6467 bus = strtoul(tmpstr, &endptr, 0); 6468 if (*endptr != '\0') { 6469 if (error_str != NULL) { 6470 snprintf(error_str, error_str_len, "%s: error " 6471 "parsing PCIe bus %s, number required", 6472 __func__, tmpstr); 6473 } 6474 retval = 1; 6475 goto bailout; 6476 } 6477 if ((id_str == NULL) 6478 || (*id_str == '\0')) { 6479 if (error_str != NULL) { 6480 snprintf(error_str, error_str_len, "%s: no PCIe " 6481 "device or function found", __func__); 6482 } 6483 retval = 1; 6484 goto bailout; 6485 } 6486 tmpstr = strsep(&id_str, ","); 6487 function = strtoul(tmpstr, &endptr, 0); 6488 if (*endptr != '\0') { 6489 if (error_str != NULL) { 6490 snprintf(error_str, error_str_len, "%s: error " 6491 "parsing PCIe device/function %s, number " 6492 "required", __func__, tmpstr); 6493 } 6494 retval = 1; 6495 goto bailout; 6496 } 6497 /* 6498 * Check to see whether the user specified a third value. If so, 6499 * the second is the device. 6500 */ 6501 if (id_str != NULL) { 6502 if (*id_str == '\0') { 6503 if (error_str != NULL) { 6504 snprintf(error_str, error_str_len, "%s: " 6505 "no PCIe function found", __func__); 6506 } 6507 retval = 1; 6508 goto bailout; 6509 } 6510 device = function; 6511 device_spec = 1; 6512 function = strtoul(id_str, &endptr, 0); 6513 if (*endptr != '\0') { 6514 if (error_str != NULL) { 6515 snprintf(error_str, error_str_len, "%s: " 6516 "error parsing PCIe function %s, " 6517 "number required", __func__, id_str); 6518 } 6519 retval = 1; 6520 goto bailout; 6521 } 6522 } 6523 if (bus > SCSI_TRN_SOP_BUS_MAX) { 6524 if (error_str != NULL) { 6525 snprintf(error_str, error_str_len, "%s: bus value " 6526 "%lu greater than maximum %u", __func__, 6527 bus, SCSI_TRN_SOP_BUS_MAX); 6528 } 6529 retval = 1; 6530 goto bailout; 6531 } 6532 6533 if ((device_spec != 0) 6534 && (device > SCSI_TRN_SOP_DEV_MASK)) { 6535 if (error_str != NULL) { 6536 snprintf(error_str, error_str_len, "%s: device value " 6537 "%lu greater than maximum %u", __func__, 6538 device, SCSI_TRN_SOP_DEV_MAX); 6539 } 6540 retval = 1; 6541 goto bailout; 6542 } 6543 6544 if (((device_spec != 0) 6545 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX)) 6546 || ((device_spec == 0) 6547 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) { 6548 if (error_str != NULL) { 6549 snprintf(error_str, error_str_len, "%s: function value " 6550 "%lu greater than maximum %u", __func__, 6551 function, (device_spec == 0) ? 6552 SCSI_TRN_SOP_FUNC_ALT_MAX : 6553 SCSI_TRN_SOP_FUNC_NORM_MAX); 6554 } 6555 retval = 1; 6556 goto bailout; 6557 } 6558 6559 #ifdef _KERNEL 6560 sop = malloc(sizeof(*sop), type, flags); 6561 #else 6562 sop = malloc(sizeof(*sop)); 6563 #endif 6564 if (sop == NULL) { 6565 if (error_str != NULL) { 6566 snprintf(error_str, error_str_len, "%s: unable to " 6567 "allocate %zu bytes", __func__, sizeof(*sop)); 6568 } 6569 retval = 1; 6570 goto bailout; 6571 } 6572 *alloc_len = sizeof(*sop); 6573 bzero(sop, sizeof(*sop)); 6574 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT; 6575 if (device_spec != 0) { 6576 struct scsi_sop_routing_id_norm rid; 6577 6578 rid.bus = bus; 6579 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function; 6580 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6581 sizeof(sop->routing_id))); 6582 } else { 6583 struct scsi_sop_routing_id_alt rid; 6584 6585 rid.bus = bus; 6586 rid.function = function; 6587 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6588 sizeof(sop->routing_id))); 6589 } 6590 6591 *hdr = (struct scsi_transportid_header *)sop; 6592 bailout: 6593 return (retval); 6594 } 6595 6596 /* 6597 * transportid_str: NUL-terminated string with format: protcol,id 6598 * The ID is protocol specific. 6599 * hdr: Storage will be allocated for the transport ID. 6600 * alloc_len: The amount of memory allocated is returned here. 6601 * type: Malloc bucket (kernel only). 6602 * flags: Malloc flags (kernel only). 6603 * error_str: If non-NULL, it will contain error information (without 6604 * a terminating newline) if an error is returned. 6605 * error_str_len: Allocated length of the error string. 6606 * 6607 * Returns 0 for success, non-zero for failure. 6608 */ 6609 int 6610 scsi_parse_transportid(char *transportid_str, 6611 struct scsi_transportid_header **hdr, 6612 unsigned int *alloc_len, 6613 #ifdef _KERNEL 6614 struct malloc_type *type, int flags, 6615 #endif 6616 char *error_str, int error_str_len) 6617 { 6618 char *tmpstr; 6619 scsi_nv_status status; 6620 u_int num_proto_entries; 6621 int retval, table_entry; 6622 6623 retval = 0; 6624 table_entry = 0; 6625 6626 /* 6627 * We do allow a period as well as a comma to separate the protocol 6628 * from the ID string. This is to accommodate iSCSI names, which 6629 * start with "iqn.". 6630 */ 6631 tmpstr = strsep(&transportid_str, ",."); 6632 if (tmpstr == NULL) { 6633 if (error_str != NULL) { 6634 snprintf(error_str, error_str_len, 6635 "%s: transportid_str is NULL", __func__); 6636 } 6637 retval = 1; 6638 goto bailout; 6639 } 6640 6641 num_proto_entries = nitems(scsi_proto_map); 6642 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr, 6643 &table_entry, SCSI_NV_FLAG_IG_CASE); 6644 if (status != SCSI_NV_FOUND) { 6645 if (error_str != NULL) { 6646 snprintf(error_str, error_str_len, "%s: %s protocol " 6647 "name %s", __func__, 6648 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : 6649 "invalid", tmpstr); 6650 } 6651 retval = 1; 6652 goto bailout; 6653 } 6654 switch (scsi_proto_map[table_entry].value) { 6655 case SCSI_PROTO_FC: 6656 case SCSI_PROTO_1394: 6657 case SCSI_PROTO_SAS: 6658 retval = scsi_parse_transportid_64bit( 6659 scsi_proto_map[table_entry].value, transportid_str, hdr, 6660 alloc_len, 6661 #ifdef _KERNEL 6662 type, flags, 6663 #endif 6664 error_str, error_str_len); 6665 break; 6666 case SCSI_PROTO_SPI: 6667 retval = scsi_parse_transportid_spi(transportid_str, hdr, 6668 alloc_len, 6669 #ifdef _KERNEL 6670 type, flags, 6671 #endif 6672 error_str, error_str_len); 6673 break; 6674 case SCSI_PROTO_RDMA: 6675 retval = scsi_parse_transportid_rdma(transportid_str, hdr, 6676 alloc_len, 6677 #ifdef _KERNEL 6678 type, flags, 6679 #endif 6680 error_str, error_str_len); 6681 break; 6682 case SCSI_PROTO_ISCSI: 6683 retval = scsi_parse_transportid_iscsi(transportid_str, hdr, 6684 alloc_len, 6685 #ifdef _KERNEL 6686 type, flags, 6687 #endif 6688 error_str, error_str_len); 6689 break; 6690 case SCSI_PROTO_SOP: 6691 retval = scsi_parse_transportid_sop(transportid_str, hdr, 6692 alloc_len, 6693 #ifdef _KERNEL 6694 type, flags, 6695 #endif 6696 error_str, error_str_len); 6697 break; 6698 case SCSI_PROTO_SSA: 6699 case SCSI_PROTO_ADITP: 6700 case SCSI_PROTO_ATA: 6701 case SCSI_PROTO_UAS: 6702 case SCSI_PROTO_NONE: 6703 default: 6704 /* 6705 * There is no format defined for a Transport ID for these 6706 * protocols. So even if the user gives us something, we 6707 * have no way to turn it into a standard SCSI Transport ID. 6708 */ 6709 retval = 1; 6710 if (error_str != NULL) { 6711 snprintf(error_str, error_str_len, "%s: no Transport " 6712 "ID format exists for protocol %s", 6713 __func__, tmpstr); 6714 } 6715 goto bailout; 6716 break; /* NOTREACHED */ 6717 } 6718 bailout: 6719 return (retval); 6720 } 6721 6722 struct scsi_attrib_table_entry scsi_mam_attr_table[] = { 6723 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6724 "Remaining Capacity in Partition", 6725 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL }, 6726 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6727 "Maximum Capacity in Partition", 6728 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6729 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX, 6730 "TapeAlert Flags", 6731 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6732 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE, 6733 "Load Count", 6734 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6735 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE, 6736 "MAM Space Remaining", 6737 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6738 /*parse_str*/ NULL }, 6739 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6740 "Assigning Organization", 6741 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6742 /*parse_str*/ NULL }, 6743 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6744 "Format Density Code", 6745 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6746 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE, 6747 "Initialization Count", 6748 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6749 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE, 6750 "Volume Identifier", 6751 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6752 /*parse_str*/ NULL }, 6753 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX, 6754 "Volume Change Reference", 6755 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6756 /*parse_str*/ NULL }, 6757 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE, 6758 "Device Vendor/Serial at Last Load", 6759 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6760 /*parse_str*/ NULL }, 6761 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE, 6762 "Device Vendor/Serial at Last Load - 1", 6763 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6764 /*parse_str*/ NULL }, 6765 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE, 6766 "Device Vendor/Serial at Last Load - 2", 6767 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6768 /*parse_str*/ NULL }, 6769 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE, 6770 "Device Vendor/Serial at Last Load - 3", 6771 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6772 /*parse_str*/ NULL }, 6773 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE, 6774 "Total MB Written in Medium Life", 6775 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6776 /*parse_str*/ NULL }, 6777 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE, 6778 "Total MB Read in Medium Life", 6779 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6780 /*parse_str*/ NULL }, 6781 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE, 6782 "Total MB Written in Current/Last Load", 6783 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6784 /*parse_str*/ NULL }, 6785 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE, 6786 "Total MB Read in Current/Last Load", 6787 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6788 /*parse_str*/ NULL }, 6789 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6790 "Logical Position of First Encrypted Block", 6791 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6792 /*parse_str*/ NULL }, 6793 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6794 "Logical Position of First Unencrypted Block after First " 6795 "Encrypted Block", 6796 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6797 /*parse_str*/ NULL }, 6798 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6799 "Medium Usage History", 6800 /*suffix*/ NULL, /*to_str*/ NULL, 6801 /*parse_str*/ NULL }, 6802 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6803 "Partition Usage History", 6804 /*suffix*/ NULL, /*to_str*/ NULL, 6805 /*parse_str*/ NULL }, 6806 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE, 6807 "Medium Manufacturer", 6808 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6809 /*parse_str*/ NULL }, 6810 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE, 6811 "Medium Serial Number", 6812 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6813 /*parse_str*/ NULL }, 6814 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE, 6815 "Medium Length", 6816 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf, 6817 /*parse_str*/ NULL }, 6818 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 | 6819 SCSI_ATTR_FLAG_FP_1DIGIT, 6820 "Medium Width", 6821 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf, 6822 /*parse_str*/ NULL }, 6823 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6824 "Assigning Organization", 6825 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6826 /*parse_str*/ NULL }, 6827 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6828 "Medium Density Code", 6829 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6830 /*parse_str*/ NULL }, 6831 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE, 6832 "Medium Manufacture Date", 6833 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6834 /*parse_str*/ NULL }, 6835 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE, 6836 "MAM Capacity", 6837 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6838 /*parse_str*/ NULL }, 6839 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX, 6840 "Medium Type", 6841 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6842 /*parse_str*/ NULL }, 6843 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX, 6844 "Medium Type Information", 6845 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6846 /*parse_str*/ NULL }, 6847 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE, 6848 "Medium Serial Number", 6849 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6850 /*parse_str*/ NULL }, 6851 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE, 6852 "Application Vendor", 6853 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6854 /*parse_str*/ NULL }, 6855 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE, 6856 "Application Name", 6857 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6858 /*parse_str*/ NULL }, 6859 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE, 6860 "Application Version", 6861 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6862 /*parse_str*/ NULL }, 6863 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE, 6864 "User Medium Text Label", 6865 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6866 /*parse_str*/ NULL }, 6867 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE, 6868 "Date and Time Last Written", 6869 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6870 /*parse_str*/ NULL }, 6871 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX, 6872 "Text Localization Identifier", 6873 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6874 /*parse_str*/ NULL }, 6875 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE, 6876 "Barcode", 6877 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6878 /*parse_str*/ NULL }, 6879 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE, 6880 "Owning Host Textual Name", 6881 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6882 /*parse_str*/ NULL }, 6883 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE, 6884 "Media Pool", 6885 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6886 /*parse_str*/ NULL }, 6887 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE, 6888 "Partition User Text Label", 6889 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6890 /*parse_str*/ NULL }, 6891 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE, 6892 "Load/Unload at Partition", 6893 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6894 /*parse_str*/ NULL }, 6895 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE, 6896 "Application Format Version", 6897 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6898 /*parse_str*/ NULL }, 6899 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE, 6900 "Volume Coherency Information", 6901 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf, 6902 /*parse_str*/ NULL }, 6903 { 0x0ff1, SCSI_ATTR_FLAG_NONE, 6904 "Spectra MLM Creation", 6905 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6906 /*parse_str*/ NULL }, 6907 { 0x0ff2, SCSI_ATTR_FLAG_NONE, 6908 "Spectra MLM C3", 6909 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6910 /*parse_str*/ NULL }, 6911 { 0x0ff3, SCSI_ATTR_FLAG_NONE, 6912 "Spectra MLM RW", 6913 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6914 /*parse_str*/ NULL }, 6915 { 0x0ff4, SCSI_ATTR_FLAG_NONE, 6916 "Spectra MLM SDC List", 6917 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6918 /*parse_str*/ NULL }, 6919 { 0x0ff7, SCSI_ATTR_FLAG_NONE, 6920 "Spectra MLM Post Scan", 6921 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6922 /*parse_str*/ NULL }, 6923 { 0x0ffe, SCSI_ATTR_FLAG_NONE, 6924 "Spectra MLM Checksum", 6925 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6926 /*parse_str*/ NULL }, 6927 { 0x17f1, SCSI_ATTR_FLAG_NONE, 6928 "Spectra MLM Creation", 6929 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6930 /*parse_str*/ NULL }, 6931 { 0x17f2, SCSI_ATTR_FLAG_NONE, 6932 "Spectra MLM C3", 6933 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6934 /*parse_str*/ NULL }, 6935 { 0x17f3, SCSI_ATTR_FLAG_NONE, 6936 "Spectra MLM RW", 6937 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6938 /*parse_str*/ NULL }, 6939 { 0x17f4, SCSI_ATTR_FLAG_NONE, 6940 "Spectra MLM SDC List", 6941 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6942 /*parse_str*/ NULL }, 6943 { 0x17f7, SCSI_ATTR_FLAG_NONE, 6944 "Spectra MLM Post Scan", 6945 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6946 /*parse_str*/ NULL }, 6947 { 0x17ff, SCSI_ATTR_FLAG_NONE, 6948 "Spectra MLM Checksum", 6949 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6950 /*parse_str*/ NULL }, 6951 }; 6952 6953 /* 6954 * Print out Volume Coherency Information (Attribute 0x080c). 6955 * This field has two variable length members, including one at the 6956 * beginning, so it isn't practical to have a fixed structure definition. 6957 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25, 6958 * 2013. 6959 */ 6960 int 6961 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 6962 uint32_t valid_len, uint32_t flags, 6963 uint32_t output_flags, char *error_str, 6964 int error_str_len) 6965 { 6966 size_t avail_len; 6967 uint32_t field_size; 6968 uint64_t tmp_val; 6969 uint8_t *cur_ptr; 6970 int retval; 6971 int vcr_len, as_len; 6972 6973 retval = 0; 6974 tmp_val = 0; 6975 6976 field_size = scsi_2btoul(hdr->length); 6977 avail_len = valid_len - sizeof(*hdr); 6978 if (field_size > avail_len) { 6979 if (error_str != NULL) { 6980 snprintf(error_str, error_str_len, "Available " 6981 "length of attribute ID 0x%.4x %zu < field " 6982 "length %u", scsi_2btoul(hdr->id), avail_len, 6983 field_size); 6984 } 6985 retval = 1; 6986 goto bailout; 6987 } else if (field_size == 0) { 6988 /* 6989 * It isn't clear from the spec whether a field length of 6990 * 0 is invalid here. It probably is, but be lenient here 6991 * to avoid inconveniencing the user. 6992 */ 6993 goto bailout; 6994 } 6995 cur_ptr = hdr->attribute; 6996 vcr_len = *cur_ptr; 6997 cur_ptr++; 6998 6999 sbuf_printf(sb, "\n\tVolume Change Reference Value:"); 7000 7001 switch (vcr_len) { 7002 case 0: 7003 if (error_str != NULL) { 7004 snprintf(error_str, error_str_len, "Volume Change " 7005 "Reference value has length of 0"); 7006 } 7007 retval = 1; 7008 goto bailout; 7009 break; /*NOTREACHED*/ 7010 case 1: 7011 tmp_val = *cur_ptr; 7012 break; 7013 case 2: 7014 tmp_val = scsi_2btoul(cur_ptr); 7015 break; 7016 case 3: 7017 tmp_val = scsi_3btoul(cur_ptr); 7018 break; 7019 case 4: 7020 tmp_val = scsi_4btoul(cur_ptr); 7021 break; 7022 case 8: 7023 tmp_val = scsi_8btou64(cur_ptr); 7024 break; 7025 default: 7026 sbuf_printf(sb, "\n"); 7027 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0); 7028 break; 7029 } 7030 if (vcr_len <= 8) 7031 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val); 7032 7033 cur_ptr += vcr_len; 7034 tmp_val = scsi_8btou64(cur_ptr); 7035 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val); 7036 7037 cur_ptr += sizeof(tmp_val); 7038 tmp_val = scsi_8btou64(cur_ptr); 7039 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n", 7040 (uintmax_t)tmp_val); 7041 7042 /* 7043 * Figure out how long the Application Client Specific Information 7044 * is and produce a hexdump. 7045 */ 7046 cur_ptr += sizeof(tmp_val); 7047 as_len = scsi_2btoul(cur_ptr); 7048 cur_ptr += sizeof(uint16_t); 7049 sbuf_printf(sb, "\tApplication Client Specific Information: "); 7050 if (((as_len == SCSI_LTFS_VER0_LEN) 7051 || (as_len == SCSI_LTFS_VER1_LEN)) 7052 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) { 7053 sbuf_printf(sb, "LTFS\n"); 7054 cur_ptr += SCSI_LTFS_STR_LEN + 1; 7055 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0') 7056 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0'; 7057 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr); 7058 cur_ptr += SCSI_LTFS_UUID_LEN + 1; 7059 /* XXX KDM check the length */ 7060 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr); 7061 } else { 7062 sbuf_printf(sb, "Unknown\n"); 7063 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0); 7064 } 7065 7066 bailout: 7067 return (retval); 7068 } 7069 7070 int 7071 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7072 uint32_t valid_len, uint32_t flags, 7073 uint32_t output_flags, char *error_str, 7074 int error_str_len) 7075 { 7076 size_t avail_len; 7077 uint32_t field_size; 7078 struct scsi_attrib_vendser *vendser; 7079 cam_strvis_flags strvis_flags; 7080 int retval = 0; 7081 7082 field_size = scsi_2btoul(hdr->length); 7083 avail_len = valid_len - sizeof(*hdr); 7084 if (field_size > avail_len) { 7085 if (error_str != NULL) { 7086 snprintf(error_str, error_str_len, "Available " 7087 "length of attribute ID 0x%.4x %zu < field " 7088 "length %u", scsi_2btoul(hdr->id), avail_len, 7089 field_size); 7090 } 7091 retval = 1; 7092 goto bailout; 7093 } else if (field_size == 0) { 7094 /* 7095 * A field size of 0 doesn't make sense here. The device 7096 * can at least give you the vendor ID, even if it can't 7097 * give you the serial number. 7098 */ 7099 if (error_str != NULL) { 7100 snprintf(error_str, error_str_len, "The length of " 7101 "attribute ID 0x%.4x is 0", 7102 scsi_2btoul(hdr->id)); 7103 } 7104 retval = 1; 7105 goto bailout; 7106 } 7107 vendser = (struct scsi_attrib_vendser *)hdr->attribute; 7108 7109 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7110 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7111 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7112 break; 7113 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7114 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7115 break; 7116 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7117 default: 7118 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7119 break; 7120 } 7121 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor), 7122 strvis_flags); 7123 sbuf_putc(sb, ' '); 7124 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num), 7125 strvis_flags); 7126 bailout: 7127 return (retval); 7128 } 7129 7130 int 7131 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7132 uint32_t valid_len, uint32_t flags, 7133 uint32_t output_flags, char *error_str, 7134 int error_str_len) 7135 { 7136 uint32_t field_size; 7137 ssize_t avail_len; 7138 uint32_t print_len; 7139 uint8_t *num_ptr; 7140 int retval = 0; 7141 7142 field_size = scsi_2btoul(hdr->length); 7143 avail_len = valid_len - sizeof(*hdr); 7144 print_len = MIN(avail_len, field_size); 7145 num_ptr = hdr->attribute; 7146 7147 if (print_len > 0) { 7148 sbuf_printf(sb, "\n"); 7149 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0); 7150 } 7151 7152 return (retval); 7153 } 7154 7155 int 7156 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7157 uint32_t valid_len, uint32_t flags, 7158 uint32_t output_flags, char *error_str, 7159 int error_str_len) 7160 { 7161 uint64_t print_number; 7162 size_t avail_len; 7163 uint32_t number_size; 7164 int retval = 0; 7165 7166 number_size = scsi_2btoul(hdr->length); 7167 7168 avail_len = valid_len - sizeof(*hdr); 7169 if (avail_len < number_size) { 7170 if (error_str != NULL) { 7171 snprintf(error_str, error_str_len, "Available " 7172 "length of attribute ID 0x%.4x %zu < field " 7173 "length %u", scsi_2btoul(hdr->id), avail_len, 7174 number_size); 7175 } 7176 retval = 1; 7177 goto bailout; 7178 } 7179 7180 switch (number_size) { 7181 case 0: 7182 /* 7183 * We don't treat this as an error, since there may be 7184 * scenarios where a device reports a field but then gives 7185 * a length of 0. See the note in scsi_attrib_ascii_sbuf(). 7186 */ 7187 goto bailout; 7188 break; /*NOTREACHED*/ 7189 case 1: 7190 print_number = hdr->attribute[0]; 7191 break; 7192 case 2: 7193 print_number = scsi_2btoul(hdr->attribute); 7194 break; 7195 case 3: 7196 print_number = scsi_3btoul(hdr->attribute); 7197 break; 7198 case 4: 7199 print_number = scsi_4btoul(hdr->attribute); 7200 break; 7201 case 8: 7202 print_number = scsi_8btou64(hdr->attribute); 7203 break; 7204 default: 7205 /* 7206 * If we wind up here, the number is too big to print 7207 * normally, so just do a hexdump. 7208 */ 7209 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7210 flags, output_flags, 7211 error_str, error_str_len); 7212 goto bailout; 7213 break; 7214 } 7215 7216 if (flags & SCSI_ATTR_FLAG_FP) { 7217 #ifndef _KERNEL 7218 long double num_float; 7219 7220 num_float = (long double)print_number; 7221 7222 if (flags & SCSI_ATTR_FLAG_DIV_10) 7223 num_float /= 10; 7224 7225 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ? 7226 1 : 0, num_float); 7227 #else /* _KERNEL */ 7228 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ? 7229 (print_number / 10) : print_number); 7230 #endif /* _KERNEL */ 7231 } else if (flags & SCSI_ATTR_FLAG_HEX) { 7232 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number); 7233 } else 7234 sbuf_printf(sb, "%ju", (uintmax_t)print_number); 7235 7236 bailout: 7237 return (retval); 7238 } 7239 7240 int 7241 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7242 uint32_t valid_len, uint32_t flags, 7243 uint32_t output_flags, char *error_str, 7244 int error_str_len) 7245 { 7246 size_t avail_len; 7247 uint32_t field_size, print_size; 7248 int retval = 0; 7249 7250 avail_len = valid_len - sizeof(*hdr); 7251 field_size = scsi_2btoul(hdr->length); 7252 print_size = MIN(avail_len, field_size); 7253 7254 if (print_size > 0) { 7255 cam_strvis_flags strvis_flags; 7256 7257 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7258 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7259 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7260 break; 7261 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7262 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7263 break; 7264 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7265 default: 7266 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7267 break; 7268 } 7269 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags); 7270 } else if (avail_len < field_size) { 7271 /* 7272 * We only report an error if the user didn't allocate 7273 * enough space to hold the full value of this field. If 7274 * the field length is 0, that is allowed by the spec. 7275 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER 7276 * "This attribute indicates the current volume identifier 7277 * (see SMC-3) of the medium. If the device server supports 7278 * this attribute but does not have access to the volume 7279 * identifier, the device server shall report this attribute 7280 * with an attribute length value of zero." 7281 */ 7282 if (error_str != NULL) { 7283 snprintf(error_str, error_str_len, "Available " 7284 "length of attribute ID 0x%.4x %zu < field " 7285 "length %u", scsi_2btoul(hdr->id), avail_len, 7286 field_size); 7287 } 7288 retval = 1; 7289 } 7290 7291 return (retval); 7292 } 7293 7294 int 7295 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7296 uint32_t valid_len, uint32_t flags, 7297 uint32_t output_flags, char *error_str, 7298 int error_str_len) 7299 { 7300 size_t avail_len; 7301 uint32_t field_size, print_size; 7302 int retval = 0; 7303 int esc_text = 1; 7304 7305 avail_len = valid_len - sizeof(*hdr); 7306 field_size = scsi_2btoul(hdr->length); 7307 print_size = MIN(avail_len, field_size); 7308 7309 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) == 7310 SCSI_ATTR_OUTPUT_TEXT_RAW) 7311 esc_text = 0; 7312 7313 if (print_size > 0) { 7314 uint32_t i; 7315 7316 for (i = 0; i < print_size; i++) { 7317 if (hdr->attribute[i] == '\0') 7318 continue; 7319 else if (((unsigned char)hdr->attribute[i] < 0x80) 7320 || (esc_text == 0)) 7321 sbuf_putc(sb, hdr->attribute[i]); 7322 else 7323 sbuf_printf(sb, "%%%02x", 7324 (unsigned char)hdr->attribute[i]); 7325 } 7326 } else if (avail_len < field_size) { 7327 /* 7328 * We only report an error if the user didn't allocate 7329 * enough space to hold the full value of this field. 7330 */ 7331 if (error_str != NULL) { 7332 snprintf(error_str, error_str_len, "Available " 7333 "length of attribute ID 0x%.4x %zu < field " 7334 "length %u", scsi_2btoul(hdr->id), avail_len, 7335 field_size); 7336 } 7337 retval = 1; 7338 } 7339 7340 return (retval); 7341 } 7342 7343 struct scsi_attrib_table_entry * 7344 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table, 7345 size_t num_table_entries, uint32_t id) 7346 { 7347 uint32_t i; 7348 7349 for (i = 0; i < num_table_entries; i++) { 7350 if (table[i].id == id) 7351 return (&table[i]); 7352 } 7353 7354 return (NULL); 7355 } 7356 7357 struct scsi_attrib_table_entry * 7358 scsi_get_attrib_entry(uint32_t id) 7359 { 7360 return (scsi_find_attrib_entry(scsi_mam_attr_table, 7361 nitems(scsi_mam_attr_table), id)); 7362 } 7363 7364 int 7365 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, 7366 struct scsi_mam_attribute_header *hdr, uint32_t output_flags, 7367 char *error_str, size_t error_str_len) 7368 { 7369 int retval; 7370 7371 switch (hdr->byte2 & SMA_FORMAT_MASK) { 7372 case SMA_FORMAT_ASCII: 7373 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len, 7374 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len); 7375 break; 7376 case SMA_FORMAT_BINARY: 7377 if (scsi_2btoul(hdr->length) <= 8) 7378 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len, 7379 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7380 error_str_len); 7381 else 7382 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7383 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7384 error_str_len); 7385 break; 7386 case SMA_FORMAT_TEXT: 7387 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len, 7388 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7389 error_str_len); 7390 break; 7391 default: 7392 if (error_str != NULL) { 7393 snprintf(error_str, error_str_len, "Unknown attribute " 7394 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK); 7395 } 7396 retval = 1; 7397 goto bailout; 7398 break; /*NOTREACHED*/ 7399 } 7400 7401 sbuf_trim(sb); 7402 7403 bailout: 7404 7405 return (retval); 7406 } 7407 7408 void 7409 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, 7410 struct scsi_mam_attribute_header *hdr, 7411 uint32_t valid_len, const char *desc) 7412 { 7413 int need_space = 0; 7414 uint32_t len; 7415 uint32_t id; 7416 7417 /* 7418 * We can't do anything if we don't have enough valid data for the 7419 * header. 7420 */ 7421 if (valid_len < sizeof(*hdr)) 7422 return; 7423 7424 id = scsi_2btoul(hdr->id); 7425 /* 7426 * Note that we print out the value of the attribute listed in the 7427 * header, regardless of whether we actually got that many bytes 7428 * back from the device through the controller. A truncated result 7429 * could be the result of a failure to ask for enough data; the 7430 * header indicates how many bytes are allocated for this attribute 7431 * in the MAM. 7432 */ 7433 len = scsi_2btoul(hdr->length); 7434 7435 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) == 7436 SCSI_ATTR_OUTPUT_FIELD_NONE) 7437 return; 7438 7439 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC) 7440 && (desc != NULL)) { 7441 sbuf_printf(sb, "%s", desc); 7442 need_space = 1; 7443 } 7444 7445 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) { 7446 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id); 7447 need_space = 0; 7448 } 7449 7450 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) { 7451 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len); 7452 need_space = 0; 7453 } 7454 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) { 7455 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "", 7456 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW"); 7457 } 7458 sbuf_printf(sb, ": "); 7459 } 7460 7461 int 7462 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7463 uint32_t valid_len, struct scsi_attrib_table_entry *user_table, 7464 size_t num_user_entries, int prefer_user_table, 7465 uint32_t output_flags, char *error_str, int error_str_len) 7466 { 7467 int retval; 7468 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL; 7469 struct scsi_attrib_table_entry *entry = NULL; 7470 size_t table1_size = 0, table2_size = 0; 7471 uint32_t id; 7472 7473 retval = 0; 7474 7475 if (valid_len < sizeof(*hdr)) { 7476 retval = 1; 7477 goto bailout; 7478 } 7479 7480 id = scsi_2btoul(hdr->id); 7481 7482 if (user_table != NULL) { 7483 if (prefer_user_table != 0) { 7484 table1 = user_table; 7485 table1_size = num_user_entries; 7486 table2 = scsi_mam_attr_table; 7487 table2_size = nitems(scsi_mam_attr_table); 7488 } else { 7489 table1 = scsi_mam_attr_table; 7490 table1_size = nitems(scsi_mam_attr_table); 7491 table2 = user_table; 7492 table2_size = num_user_entries; 7493 } 7494 } else { 7495 table1 = scsi_mam_attr_table; 7496 table1_size = nitems(scsi_mam_attr_table); 7497 } 7498 7499 entry = scsi_find_attrib_entry(table1, table1_size, id); 7500 if (entry != NULL) { 7501 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, 7502 entry->desc); 7503 if (entry->to_str == NULL) 7504 goto print_default; 7505 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7506 output_flags, error_str, error_str_len); 7507 goto bailout; 7508 } 7509 if (table2 != NULL) { 7510 entry = scsi_find_attrib_entry(table2, table2_size, id); 7511 if (entry != NULL) { 7512 if (entry->to_str == NULL) 7513 goto print_default; 7514 7515 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, 7516 valid_len, entry->desc); 7517 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7518 output_flags, error_str, 7519 error_str_len); 7520 goto bailout; 7521 } 7522 } 7523 7524 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL); 7525 7526 print_default: 7527 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags, 7528 error_str, error_str_len); 7529 bailout: 7530 if (retval == 0) { 7531 if ((entry != NULL) 7532 && (entry->suffix != NULL)) 7533 sbuf_printf(sb, " %s", entry->suffix); 7534 7535 sbuf_trim(sb); 7536 sbuf_printf(sb, "\n"); 7537 } 7538 7539 return (retval); 7540 } 7541 7542 void 7543 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, 7544 void (*cbfcnp)(struct cam_periph *, union ccb *), 7545 u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout) 7546 { 7547 struct scsi_test_unit_ready *scsi_cmd; 7548 7549 cam_fill_csio(csio, 7550 retries, 7551 cbfcnp, 7552 CAM_DIR_NONE, 7553 tag_action, 7554 /*data_ptr*/NULL, 7555 /*dxfer_len*/0, 7556 sense_len, 7557 sizeof(*scsi_cmd), 7558 timeout); 7559 7560 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; 7561 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7562 scsi_cmd->opcode = TEST_UNIT_READY; 7563 } 7564 7565 void 7566 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, 7567 void (*cbfcnp)(struct cam_periph *, union ccb *), 7568 void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, 7569 u_int8_t sense_len, u_int32_t timeout) 7570 { 7571 struct scsi_request_sense *scsi_cmd; 7572 7573 cam_fill_csio(csio, 7574 retries, 7575 cbfcnp, 7576 CAM_DIR_IN, 7577 tag_action, 7578 data_ptr, 7579 dxfer_len, 7580 sense_len, 7581 sizeof(*scsi_cmd), 7582 timeout); 7583 7584 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; 7585 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7586 scsi_cmd->opcode = REQUEST_SENSE; 7587 scsi_cmd->length = dxfer_len; 7588 } 7589 7590 void 7591 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, 7592 void (*cbfcnp)(struct cam_periph *, union ccb *), 7593 u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, 7594 int evpd, u_int8_t page_code, u_int8_t sense_len, 7595 u_int32_t timeout) 7596 { 7597 struct scsi_inquiry *scsi_cmd; 7598 7599 cam_fill_csio(csio, 7600 retries, 7601 cbfcnp, 7602 /*flags*/CAM_DIR_IN, 7603 tag_action, 7604 /*data_ptr*/inq_buf, 7605 /*dxfer_len*/inq_len, 7606 sense_len, 7607 sizeof(*scsi_cmd), 7608 timeout); 7609 7610 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; 7611 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7612 scsi_cmd->opcode = INQUIRY; 7613 if (evpd) { 7614 scsi_cmd->byte2 |= SI_EVPD; 7615 scsi_cmd->page_code = page_code; 7616 } 7617 scsi_ulto2b(inq_len, scsi_cmd->length); 7618 } 7619 7620 void 7621 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries, 7622 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7623 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7624 uint8_t sense_len, uint32_t timeout) 7625 { 7626 7627 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7628 pc, page, 0, param_buf, param_len, 0, sense_len, timeout); 7629 } 7630 7631 void 7632 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries, 7633 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7634 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, 7635 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout) 7636 { 7637 7638 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd, 7639 pc, page, 0, param_buf, param_len, minimum_cmd_size, 7640 sense_len, timeout); 7641 } 7642 7643 void 7644 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries, 7645 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, 7646 int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf, 7647 uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, 7648 uint32_t timeout) 7649 { 7650 u_int8_t cdb_len; 7651 7652 /* 7653 * Use the smallest possible command to perform the operation. 7654 */ 7655 if ((param_len < 256) 7656 && (minimum_cmd_size < 10)) { 7657 /* 7658 * We can fit in a 6 byte cdb. 7659 */ 7660 struct scsi_mode_sense_6 *scsi_cmd; 7661 7662 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; 7663 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7664 scsi_cmd->opcode = MODE_SENSE_6; 7665 if (dbd != 0) 7666 scsi_cmd->byte2 |= SMS_DBD; 7667 scsi_cmd->page = pc | page; 7668 scsi_cmd->subpage = subpage; 7669 scsi_cmd->length = param_len; 7670 cdb_len = sizeof(*scsi_cmd); 7671 } else { 7672 /* 7673 * Need a 10 byte cdb. 7674 */ 7675 struct scsi_mode_sense_10 *scsi_cmd; 7676 7677 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; 7678 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7679 scsi_cmd->opcode = MODE_SENSE_10; 7680 if (dbd != 0) 7681 scsi_cmd->byte2 |= SMS_DBD; 7682 scsi_cmd->page = pc | page; 7683 scsi_cmd->subpage = subpage; 7684 scsi_ulto2b(param_len, scsi_cmd->length); 7685 cdb_len = sizeof(*scsi_cmd); 7686 } 7687 cam_fill_csio(csio, 7688 retries, 7689 cbfcnp, 7690 CAM_DIR_IN, 7691 tag_action, 7692 param_buf, 7693 param_len, 7694 sense_len, 7695 cdb_len, 7696 timeout); 7697 } 7698 7699 void 7700 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, 7701 void (*cbfcnp)(struct cam_periph *, union ccb *), 7702 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7703 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7704 u_int32_t timeout) 7705 { 7706 scsi_mode_select_len(csio, retries, cbfcnp, tag_action, 7707 scsi_page_fmt, save_pages, param_buf, 7708 param_len, 0, sense_len, timeout); 7709 } 7710 7711 void 7712 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, 7713 void (*cbfcnp)(struct cam_periph *, union ccb *), 7714 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7715 u_int8_t *param_buf, u_int32_t param_len, 7716 int minimum_cmd_size, u_int8_t sense_len, 7717 u_int32_t timeout) 7718 { 7719 u_int8_t cdb_len; 7720 7721 /* 7722 * Use the smallest possible command to perform the operation. 7723 */ 7724 if ((param_len < 256) 7725 && (minimum_cmd_size < 10)) { 7726 /* 7727 * We can fit in a 6 byte cdb. 7728 */ 7729 struct scsi_mode_select_6 *scsi_cmd; 7730 7731 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; 7732 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7733 scsi_cmd->opcode = MODE_SELECT_6; 7734 if (scsi_page_fmt != 0) 7735 scsi_cmd->byte2 |= SMS_PF; 7736 if (save_pages != 0) 7737 scsi_cmd->byte2 |= SMS_SP; 7738 scsi_cmd->length = param_len; 7739 cdb_len = sizeof(*scsi_cmd); 7740 } else { 7741 /* 7742 * Need a 10 byte cdb. 7743 */ 7744 struct scsi_mode_select_10 *scsi_cmd; 7745 7746 scsi_cmd = 7747 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; 7748 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7749 scsi_cmd->opcode = MODE_SELECT_10; 7750 if (scsi_page_fmt != 0) 7751 scsi_cmd->byte2 |= SMS_PF; 7752 if (save_pages != 0) 7753 scsi_cmd->byte2 |= SMS_SP; 7754 scsi_ulto2b(param_len, scsi_cmd->length); 7755 cdb_len = sizeof(*scsi_cmd); 7756 } 7757 cam_fill_csio(csio, 7758 retries, 7759 cbfcnp, 7760 CAM_DIR_OUT, 7761 tag_action, 7762 param_buf, 7763 param_len, 7764 sense_len, 7765 cdb_len, 7766 timeout); 7767 } 7768 7769 void 7770 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, 7771 void (*cbfcnp)(struct cam_periph *, union ccb *), 7772 u_int8_t tag_action, u_int8_t page_code, u_int8_t page, 7773 int save_pages, int ppc, u_int32_t paramptr, 7774 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7775 u_int32_t timeout) 7776 { 7777 struct scsi_log_sense *scsi_cmd; 7778 u_int8_t cdb_len; 7779 7780 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; 7781 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7782 scsi_cmd->opcode = LOG_SENSE; 7783 scsi_cmd->page = page_code | page; 7784 if (save_pages != 0) 7785 scsi_cmd->byte2 |= SLS_SP; 7786 if (ppc != 0) 7787 scsi_cmd->byte2 |= SLS_PPC; 7788 scsi_ulto2b(paramptr, scsi_cmd->paramptr); 7789 scsi_ulto2b(param_len, scsi_cmd->length); 7790 cdb_len = sizeof(*scsi_cmd); 7791 7792 cam_fill_csio(csio, 7793 retries, 7794 cbfcnp, 7795 /*flags*/CAM_DIR_IN, 7796 tag_action, 7797 /*data_ptr*/param_buf, 7798 /*dxfer_len*/param_len, 7799 sense_len, 7800 cdb_len, 7801 timeout); 7802 } 7803 7804 void 7805 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, 7806 void (*cbfcnp)(struct cam_periph *, union ccb *), 7807 u_int8_t tag_action, u_int8_t page_code, int save_pages, 7808 int pc_reset, u_int8_t *param_buf, u_int32_t param_len, 7809 u_int8_t sense_len, u_int32_t timeout) 7810 { 7811 struct scsi_log_select *scsi_cmd; 7812 u_int8_t cdb_len; 7813 7814 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; 7815 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7816 scsi_cmd->opcode = LOG_SELECT; 7817 scsi_cmd->page = page_code & SLS_PAGE_CODE; 7818 if (save_pages != 0) 7819 scsi_cmd->byte2 |= SLS_SP; 7820 if (pc_reset != 0) 7821 scsi_cmd->byte2 |= SLS_PCR; 7822 scsi_ulto2b(param_len, scsi_cmd->length); 7823 cdb_len = sizeof(*scsi_cmd); 7824 7825 cam_fill_csio(csio, 7826 retries, 7827 cbfcnp, 7828 /*flags*/CAM_DIR_OUT, 7829 tag_action, 7830 /*data_ptr*/param_buf, 7831 /*dxfer_len*/param_len, 7832 sense_len, 7833 cdb_len, 7834 timeout); 7835 } 7836 7837 /* 7838 * Prevent or allow the user to remove the media 7839 */ 7840 void 7841 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, 7842 void (*cbfcnp)(struct cam_periph *, union ccb *), 7843 u_int8_t tag_action, u_int8_t action, 7844 u_int8_t sense_len, u_int32_t timeout) 7845 { 7846 struct scsi_prevent *scsi_cmd; 7847 7848 cam_fill_csio(csio, 7849 retries, 7850 cbfcnp, 7851 /*flags*/CAM_DIR_NONE, 7852 tag_action, 7853 /*data_ptr*/NULL, 7854 /*dxfer_len*/0, 7855 sense_len, 7856 sizeof(*scsi_cmd), 7857 timeout); 7858 7859 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; 7860 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7861 scsi_cmd->opcode = PREVENT_ALLOW; 7862 scsi_cmd->how = action; 7863 } 7864 7865 /* XXX allow specification of address and PMI bit and LBA */ 7866 void 7867 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, 7868 void (*cbfcnp)(struct cam_periph *, union ccb *), 7869 u_int8_t tag_action, 7870 struct scsi_read_capacity_data *rcap_buf, 7871 u_int8_t sense_len, u_int32_t timeout) 7872 { 7873 struct scsi_read_capacity *scsi_cmd; 7874 7875 cam_fill_csio(csio, 7876 retries, 7877 cbfcnp, 7878 /*flags*/CAM_DIR_IN, 7879 tag_action, 7880 /*data_ptr*/(u_int8_t *)rcap_buf, 7881 /*dxfer_len*/sizeof(*rcap_buf), 7882 sense_len, 7883 sizeof(*scsi_cmd), 7884 timeout); 7885 7886 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; 7887 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7888 scsi_cmd->opcode = READ_CAPACITY; 7889 } 7890 7891 void 7892 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, 7893 void (*cbfcnp)(struct cam_periph *, union ccb *), 7894 uint8_t tag_action, uint64_t lba, int reladr, int pmi, 7895 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, 7896 uint32_t timeout) 7897 { 7898 struct scsi_read_capacity_16 *scsi_cmd; 7899 7900 cam_fill_csio(csio, 7901 retries, 7902 cbfcnp, 7903 /*flags*/CAM_DIR_IN, 7904 tag_action, 7905 /*data_ptr*/(u_int8_t *)rcap_buf, 7906 /*dxfer_len*/rcap_buf_len, 7907 sense_len, 7908 sizeof(*scsi_cmd), 7909 timeout); 7910 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 7911 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7912 scsi_cmd->opcode = SERVICE_ACTION_IN; 7913 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 7914 scsi_u64to8b(lba, scsi_cmd->addr); 7915 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); 7916 if (pmi) 7917 reladr |= SRC16_PMI; 7918 if (reladr) 7919 reladr |= SRC16_RELADR; 7920 } 7921 7922 void 7923 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, 7924 void (*cbfcnp)(struct cam_periph *, union ccb *), 7925 u_int8_t tag_action, u_int8_t select_report, 7926 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, 7927 u_int8_t sense_len, u_int32_t timeout) 7928 { 7929 struct scsi_report_luns *scsi_cmd; 7930 7931 cam_fill_csio(csio, 7932 retries, 7933 cbfcnp, 7934 /*flags*/CAM_DIR_IN, 7935 tag_action, 7936 /*data_ptr*/(u_int8_t *)rpl_buf, 7937 /*dxfer_len*/alloc_len, 7938 sense_len, 7939 sizeof(*scsi_cmd), 7940 timeout); 7941 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; 7942 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7943 scsi_cmd->opcode = REPORT_LUNS; 7944 scsi_cmd->select_report = select_report; 7945 scsi_ulto4b(alloc_len, scsi_cmd->length); 7946 } 7947 7948 void 7949 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7950 void (*cbfcnp)(struct cam_periph *, union ccb *), 7951 u_int8_t tag_action, u_int8_t pdf, 7952 void *buf, u_int32_t alloc_len, 7953 u_int8_t sense_len, u_int32_t timeout) 7954 { 7955 struct scsi_target_group *scsi_cmd; 7956 7957 cam_fill_csio(csio, 7958 retries, 7959 cbfcnp, 7960 /*flags*/CAM_DIR_IN, 7961 tag_action, 7962 /*data_ptr*/(u_int8_t *)buf, 7963 /*dxfer_len*/alloc_len, 7964 sense_len, 7965 sizeof(*scsi_cmd), 7966 timeout); 7967 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 7968 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7969 scsi_cmd->opcode = MAINTENANCE_IN; 7970 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; 7971 scsi_ulto4b(alloc_len, scsi_cmd->length); 7972 } 7973 7974 void 7975 scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 7976 void (*cbfcnp)(struct cam_periph *, union ccb *), 7977 u_int8_t tag_action, u_int8_t pdf, 7978 void *buf, u_int32_t alloc_len, 7979 u_int8_t sense_len, u_int32_t timeout) 7980 { 7981 struct scsi_timestamp *scsi_cmd; 7982 7983 cam_fill_csio(csio, 7984 retries, 7985 cbfcnp, 7986 /*flags*/CAM_DIR_IN, 7987 tag_action, 7988 /*data_ptr*/(u_int8_t *)buf, 7989 /*dxfer_len*/alloc_len, 7990 sense_len, 7991 sizeof(*scsi_cmd), 7992 timeout); 7993 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 7994 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7995 scsi_cmd->opcode = MAINTENANCE_IN; 7996 scsi_cmd->service_action = REPORT_TIMESTAMP | pdf; 7997 scsi_ulto4b(alloc_len, scsi_cmd->length); 7998 } 7999 8000 void 8001 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, 8002 void (*cbfcnp)(struct cam_periph *, union ccb *), 8003 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 8004 u_int8_t sense_len, u_int32_t timeout) 8005 { 8006 struct scsi_target_group *scsi_cmd; 8007 8008 cam_fill_csio(csio, 8009 retries, 8010 cbfcnp, 8011 /*flags*/CAM_DIR_OUT, 8012 tag_action, 8013 /*data_ptr*/(u_int8_t *)buf, 8014 /*dxfer_len*/alloc_len, 8015 sense_len, 8016 sizeof(*scsi_cmd), 8017 timeout); 8018 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 8019 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8020 scsi_cmd->opcode = MAINTENANCE_OUT; 8021 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; 8022 scsi_ulto4b(alloc_len, scsi_cmd->length); 8023 } 8024 8025 void 8026 scsi_create_timestamp(uint8_t *timestamp_6b_buf, 8027 uint64_t timestamp) 8028 { 8029 uint8_t buf[8]; 8030 scsi_u64to8b(timestamp, buf); 8031 /* 8032 * Using memcopy starting at buf[2] because the set timestamp parameters 8033 * only has six bytes for the timestamp to fit into, and we don't have a 8034 * scsi_u64to6b function. 8035 */ 8036 memcpy(timestamp_6b_buf, &buf[2], 6); 8037 } 8038 8039 void 8040 scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries, 8041 void (*cbfcnp)(struct cam_periph *, union ccb *), 8042 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 8043 u_int8_t sense_len, u_int32_t timeout) 8044 { 8045 struct scsi_timestamp *scsi_cmd; 8046 8047 cam_fill_csio(csio, 8048 retries, 8049 cbfcnp, 8050 /*flags*/CAM_DIR_OUT, 8051 tag_action, 8052 /*data_ptr*/(u_int8_t *) buf, 8053 /*dxfer_len*/alloc_len, 8054 sense_len, 8055 sizeof(*scsi_cmd), 8056 timeout); 8057 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes; 8058 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8059 scsi_cmd->opcode = MAINTENANCE_OUT; 8060 scsi_cmd->service_action = SET_TIMESTAMP; 8061 scsi_ulto4b(alloc_len, scsi_cmd->length); 8062 } 8063 8064 /* 8065 * Syncronize the media to the contents of the cache for 8066 * the given lba/count pair. Specifying 0/0 means sync 8067 * the whole cache. 8068 */ 8069 void 8070 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, 8071 void (*cbfcnp)(struct cam_periph *, union ccb *), 8072 u_int8_t tag_action, u_int32_t begin_lba, 8073 u_int16_t lb_count, u_int8_t sense_len, 8074 u_int32_t timeout) 8075 { 8076 struct scsi_sync_cache *scsi_cmd; 8077 8078 cam_fill_csio(csio, 8079 retries, 8080 cbfcnp, 8081 /*flags*/CAM_DIR_NONE, 8082 tag_action, 8083 /*data_ptr*/NULL, 8084 /*dxfer_len*/0, 8085 sense_len, 8086 sizeof(*scsi_cmd), 8087 timeout); 8088 8089 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; 8090 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8091 scsi_cmd->opcode = SYNCHRONIZE_CACHE; 8092 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); 8093 scsi_ulto2b(lb_count, scsi_cmd->lb_count); 8094 } 8095 8096 void 8097 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, 8098 void (*cbfcnp)(struct cam_periph *, union ccb *), 8099 u_int8_t tag_action, int readop, u_int8_t byte2, 8100 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8101 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8102 u_int32_t timeout) 8103 { 8104 int read; 8105 u_int8_t cdb_len; 8106 8107 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; 8108 8109 /* 8110 * Use the smallest possible command to perform the operation 8111 * as some legacy hardware does not support the 10 byte commands. 8112 * If any of the bits in byte2 is set, we have to go with a larger 8113 * command. 8114 */ 8115 if ((minimum_cmd_size < 10) 8116 && ((lba & 0x1fffff) == lba) 8117 && ((block_count & 0xff) == block_count) 8118 && (byte2 == 0)) { 8119 /* 8120 * We can fit in a 6 byte cdb. 8121 */ 8122 struct scsi_rw_6 *scsi_cmd; 8123 8124 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; 8125 scsi_cmd->opcode = read ? READ_6 : WRITE_6; 8126 scsi_ulto3b(lba, scsi_cmd->addr); 8127 scsi_cmd->length = block_count & 0xff; 8128 scsi_cmd->control = 0; 8129 cdb_len = sizeof(*scsi_cmd); 8130 8131 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8132 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], 8133 scsi_cmd->addr[1], scsi_cmd->addr[2], 8134 scsi_cmd->length, dxfer_len)); 8135 } else if ((minimum_cmd_size < 12) 8136 && ((block_count & 0xffff) == block_count) 8137 && ((lba & 0xffffffff) == lba)) { 8138 /* 8139 * Need a 10 byte cdb. 8140 */ 8141 struct scsi_rw_10 *scsi_cmd; 8142 8143 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; 8144 scsi_cmd->opcode = read ? READ_10 : WRITE_10; 8145 scsi_cmd->byte2 = byte2; 8146 scsi_ulto4b(lba, scsi_cmd->addr); 8147 scsi_cmd->reserved = 0; 8148 scsi_ulto2b(block_count, scsi_cmd->length); 8149 scsi_cmd->control = 0; 8150 cdb_len = sizeof(*scsi_cmd); 8151 8152 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8153 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8154 scsi_cmd->addr[1], scsi_cmd->addr[2], 8155 scsi_cmd->addr[3], scsi_cmd->length[0], 8156 scsi_cmd->length[1], dxfer_len)); 8157 } else if ((minimum_cmd_size < 16) 8158 && ((block_count & 0xffffffff) == block_count) 8159 && ((lba & 0xffffffff) == lba)) { 8160 /* 8161 * The block count is too big for a 10 byte CDB, use a 12 8162 * byte CDB. 8163 */ 8164 struct scsi_rw_12 *scsi_cmd; 8165 8166 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; 8167 scsi_cmd->opcode = read ? READ_12 : WRITE_12; 8168 scsi_cmd->byte2 = byte2; 8169 scsi_ulto4b(lba, scsi_cmd->addr); 8170 scsi_cmd->reserved = 0; 8171 scsi_ulto4b(block_count, scsi_cmd->length); 8172 scsi_cmd->control = 0; 8173 cdb_len = sizeof(*scsi_cmd); 8174 8175 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8176 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], 8177 scsi_cmd->addr[1], scsi_cmd->addr[2], 8178 scsi_cmd->addr[3], scsi_cmd->length[0], 8179 scsi_cmd->length[1], scsi_cmd->length[2], 8180 scsi_cmd->length[3], dxfer_len)); 8181 } else { 8182 /* 8183 * 16 byte CDB. We'll only get here if the LBA is larger 8184 * than 2^32, or if the user asks for a 16 byte command. 8185 */ 8186 struct scsi_rw_16 *scsi_cmd; 8187 8188 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; 8189 scsi_cmd->opcode = read ? READ_16 : WRITE_16; 8190 scsi_cmd->byte2 = byte2; 8191 scsi_u64to8b(lba, scsi_cmd->addr); 8192 scsi_cmd->reserved = 0; 8193 scsi_ulto4b(block_count, scsi_cmd->length); 8194 scsi_cmd->control = 0; 8195 cdb_len = sizeof(*scsi_cmd); 8196 } 8197 cam_fill_csio(csio, 8198 retries, 8199 cbfcnp, 8200 (read ? CAM_DIR_IN : CAM_DIR_OUT) | 8201 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), 8202 tag_action, 8203 data_ptr, 8204 dxfer_len, 8205 sense_len, 8206 cdb_len, 8207 timeout); 8208 } 8209 8210 void 8211 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, 8212 void (*cbfcnp)(struct cam_periph *, union ccb *), 8213 u_int8_t tag_action, u_int8_t byte2, 8214 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8215 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8216 u_int32_t timeout) 8217 { 8218 u_int8_t cdb_len; 8219 if ((minimum_cmd_size < 16) && 8220 ((block_count & 0xffff) == block_count) && 8221 ((lba & 0xffffffff) == lba)) { 8222 /* 8223 * Need a 10 byte cdb. 8224 */ 8225 struct scsi_write_same_10 *scsi_cmd; 8226 8227 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; 8228 scsi_cmd->opcode = WRITE_SAME_10; 8229 scsi_cmd->byte2 = byte2; 8230 scsi_ulto4b(lba, scsi_cmd->addr); 8231 scsi_cmd->group = 0; 8232 scsi_ulto2b(block_count, scsi_cmd->length); 8233 scsi_cmd->control = 0; 8234 cdb_len = sizeof(*scsi_cmd); 8235 8236 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8237 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8238 scsi_cmd->addr[1], scsi_cmd->addr[2], 8239 scsi_cmd->addr[3], scsi_cmd->length[0], 8240 scsi_cmd->length[1], dxfer_len)); 8241 } else { 8242 /* 8243 * 16 byte CDB. We'll only get here if the LBA is larger 8244 * than 2^32, or if the user asks for a 16 byte command. 8245 */ 8246 struct scsi_write_same_16 *scsi_cmd; 8247 8248 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; 8249 scsi_cmd->opcode = WRITE_SAME_16; 8250 scsi_cmd->byte2 = byte2; 8251 scsi_u64to8b(lba, scsi_cmd->addr); 8252 scsi_ulto4b(block_count, scsi_cmd->length); 8253 scsi_cmd->group = 0; 8254 scsi_cmd->control = 0; 8255 cdb_len = sizeof(*scsi_cmd); 8256 8257 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8258 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", 8259 scsi_cmd->addr[0], scsi_cmd->addr[1], 8260 scsi_cmd->addr[2], scsi_cmd->addr[3], 8261 scsi_cmd->addr[4], scsi_cmd->addr[5], 8262 scsi_cmd->addr[6], scsi_cmd->addr[7], 8263 scsi_cmd->length[0], scsi_cmd->length[1], 8264 scsi_cmd->length[2], scsi_cmd->length[3], 8265 dxfer_len)); 8266 } 8267 cam_fill_csio(csio, 8268 retries, 8269 cbfcnp, 8270 /*flags*/CAM_DIR_OUT, 8271 tag_action, 8272 data_ptr, 8273 dxfer_len, 8274 sense_len, 8275 cdb_len, 8276 timeout); 8277 } 8278 8279 void 8280 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries, 8281 void (*cbfcnp)(struct cam_periph *, union ccb *), 8282 u_int8_t tag_action, u_int8_t *data_ptr, 8283 u_int16_t dxfer_len, u_int8_t sense_len, 8284 u_int32_t timeout) 8285 { 8286 scsi_ata_pass(csio, 8287 retries, 8288 cbfcnp, 8289 /*flags*/CAM_DIR_IN, 8290 tag_action, 8291 /*protocol*/AP_PROTO_PIO_IN, 8292 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8293 AP_FLAG_BYT_BLOK_BLOCKS | 8294 AP_FLAG_TLEN_SECT_CNT, 8295 /*features*/0, 8296 /*sector_count*/dxfer_len / 512, 8297 /*lba*/0, 8298 /*command*/ATA_ATA_IDENTIFY, 8299 /*device*/ 0, 8300 /*icc*/ 0, 8301 /*auxiliary*/ 0, 8302 /*control*/0, 8303 data_ptr, 8304 dxfer_len, 8305 /*cdb_storage*/ NULL, 8306 /*cdb_storage_len*/ 0, 8307 /*minimum_cmd_size*/ 0, 8308 sense_len, 8309 timeout); 8310 } 8311 8312 void 8313 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries, 8314 void (*cbfcnp)(struct cam_periph *, union ccb *), 8315 u_int8_t tag_action, u_int16_t block_count, 8316 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8317 u_int32_t timeout) 8318 { 8319 scsi_ata_pass_16(csio, 8320 retries, 8321 cbfcnp, 8322 /*flags*/CAM_DIR_OUT, 8323 tag_action, 8324 /*protocol*/AP_EXTEND|AP_PROTO_DMA, 8325 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS, 8326 /*features*/ATA_DSM_TRIM, 8327 /*sector_count*/block_count, 8328 /*lba*/0, 8329 /*command*/ATA_DATA_SET_MANAGEMENT, 8330 /*control*/0, 8331 data_ptr, 8332 dxfer_len, 8333 sense_len, 8334 timeout); 8335 } 8336 8337 int 8338 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries, 8339 void (*cbfcnp)(struct cam_periph *, union ccb *), 8340 uint8_t tag_action, uint32_t log_address, 8341 uint32_t page_number, uint16_t block_count, 8342 uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, 8343 uint8_t sense_len, uint32_t timeout) 8344 { 8345 uint8_t command, protocol_out; 8346 uint16_t count_out; 8347 uint64_t lba; 8348 int retval; 8349 8350 retval = 0; 8351 8352 switch (protocol) { 8353 case AP_PROTO_DMA: 8354 count_out = block_count; 8355 command = ATA_READ_LOG_DMA_EXT; 8356 protocol_out = AP_PROTO_DMA; 8357 break; 8358 case AP_PROTO_PIO_IN: 8359 default: 8360 count_out = block_count; 8361 command = ATA_READ_LOG_EXT; 8362 protocol_out = AP_PROTO_PIO_IN; 8363 break; 8364 } 8365 8366 lba = (((uint64_t)page_number & 0xff00) << 32) | 8367 ((page_number & 0x00ff) << 8) | 8368 (log_address & 0xff); 8369 8370 protocol_out |= AP_EXTEND; 8371 8372 retval = scsi_ata_pass(csio, 8373 retries, 8374 cbfcnp, 8375 /*flags*/CAM_DIR_IN, 8376 tag_action, 8377 /*protocol*/ protocol_out, 8378 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT | 8379 AP_FLAG_BYT_BLOK_BLOCKS | 8380 AP_FLAG_TDIR_FROM_DEV, 8381 /*feature*/ 0, 8382 /*sector_count*/ count_out, 8383 /*lba*/ lba, 8384 /*command*/ command, 8385 /*device*/ 0, 8386 /*icc*/ 0, 8387 /*auxiliary*/ 0, 8388 /*control*/0, 8389 data_ptr, 8390 dxfer_len, 8391 /*cdb_storage*/ NULL, 8392 /*cdb_storage_len*/ 0, 8393 /*minimum_cmd_size*/ 0, 8394 sense_len, 8395 timeout); 8396 8397 return (retval); 8398 } 8399 8400 int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries, 8401 void (*cbfcnp)(struct cam_periph *, union ccb *), 8402 uint8_t tag_action, uint8_t feature, 8403 uint64_t lba, uint32_t count, 8404 uint8_t sense_len, uint32_t timeout) 8405 { 8406 return (scsi_ata_pass(csio, 8407 retries, 8408 cbfcnp, 8409 /*flags*/CAM_DIR_NONE, 8410 tag_action, 8411 /*protocol*/AP_PROTO_PIO_IN, 8412 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV | 8413 AP_FLAG_BYT_BLOK_BYTES | 8414 AP_FLAG_TLEN_SECT_CNT, 8415 /*features*/feature, 8416 /*sector_count*/count, 8417 /*lba*/lba, 8418 /*command*/ATA_SETFEATURES, 8419 /*device*/ 0, 8420 /*icc*/ 0, 8421 /*auxiliary*/0, 8422 /*control*/0, 8423 /*data_ptr*/NULL, 8424 /*dxfer_len*/0, 8425 /*cdb_storage*/NULL, 8426 /*cdb_storage_len*/0, 8427 /*minimum_cmd_size*/0, 8428 sense_len, 8429 timeout)); 8430 } 8431 8432 /* 8433 * Note! This is an unusual CDB building function because it can return 8434 * an error in the event that the command in question requires a variable 8435 * length CDB, but the caller has not given storage space for one or has not 8436 * given enough storage space. If there is enough space available in the 8437 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage. 8438 */ 8439 int 8440 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries, 8441 void (*cbfcnp)(struct cam_periph *, union ccb *), 8442 uint32_t flags, uint8_t tag_action, 8443 uint8_t protocol, uint8_t ata_flags, uint16_t features, 8444 uint16_t sector_count, uint64_t lba, uint8_t command, 8445 uint8_t device, uint8_t icc, uint32_t auxiliary, 8446 uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len, 8447 uint8_t *cdb_storage, size_t cdb_storage_len, 8448 int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) 8449 { 8450 uint32_t cam_flags; 8451 uint8_t *cdb_ptr; 8452 int cmd_size; 8453 int retval; 8454 uint8_t cdb_len; 8455 8456 retval = 0; 8457 cam_flags = flags; 8458 8459 /* 8460 * Round the user's request to the nearest command size that is at 8461 * least as big as what he requested. 8462 */ 8463 if (minimum_cmd_size <= 12) 8464 cmd_size = 12; 8465 else if (minimum_cmd_size > 16) 8466 cmd_size = 32; 8467 else 8468 cmd_size = 16; 8469 8470 /* 8471 * If we have parameters that require a 48-bit ATA command, we have to 8472 * use the 16 byte ATA PASS-THROUGH command at least. 8473 */ 8474 if (((lba > ATA_MAX_28BIT_LBA) 8475 || (sector_count > 255) 8476 || (features > 255) 8477 || (protocol & AP_EXTEND)) 8478 && ((cmd_size < 16) 8479 || ((protocol & AP_EXTEND) == 0))) { 8480 if (cmd_size < 16) 8481 cmd_size = 16; 8482 protocol |= AP_EXTEND; 8483 } 8484 8485 /* 8486 * The icc and auxiliary ATA registers are only supported in the 8487 * 32-byte version of the ATA PASS-THROUGH command. 8488 */ 8489 if ((icc != 0) 8490 || (auxiliary != 0)) { 8491 cmd_size = 32; 8492 protocol |= AP_EXTEND; 8493 } 8494 8495 if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes)) 8496 && ((cdb_storage == NULL) 8497 || (cdb_storage_len < cmd_size))) { 8498 retval = 1; 8499 goto bailout; 8500 } 8501 8502 /* 8503 * At this point we know we have enough space to store the command 8504 * in one place or another. We prefer the built-in array, but used 8505 * the passed in storage if necessary. 8506 */ 8507 if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes)) 8508 cdb_ptr = csio->cdb_io.cdb_bytes; 8509 else { 8510 cdb_ptr = cdb_storage; 8511 cam_flags |= CAM_CDB_POINTER; 8512 } 8513 8514 if (cmd_size <= 12) { 8515 struct ata_pass_12 *cdb; 8516 8517 cdb = (struct ata_pass_12 *)cdb_ptr; 8518 cdb_len = sizeof(*cdb); 8519 bzero(cdb, cdb_len); 8520 8521 cdb->opcode = ATA_PASS_12; 8522 cdb->protocol = protocol; 8523 cdb->flags = ata_flags; 8524 cdb->features = features; 8525 cdb->sector_count = sector_count; 8526 cdb->lba_low = lba & 0xff; 8527 cdb->lba_mid = (lba >> 8) & 0xff; 8528 cdb->lba_high = (lba >> 16) & 0xff; 8529 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8530 cdb->command = command; 8531 cdb->control = control; 8532 } else if (cmd_size <= 16) { 8533 struct ata_pass_16 *cdb; 8534 8535 cdb = (struct ata_pass_16 *)cdb_ptr; 8536 cdb_len = sizeof(*cdb); 8537 bzero(cdb, cdb_len); 8538 8539 cdb->opcode = ATA_PASS_16; 8540 cdb->protocol = protocol; 8541 cdb->flags = ata_flags; 8542 cdb->features = features & 0xff; 8543 cdb->sector_count = sector_count & 0xff; 8544 cdb->lba_low = lba & 0xff; 8545 cdb->lba_mid = (lba >> 8) & 0xff; 8546 cdb->lba_high = (lba >> 16) & 0xff; 8547 /* 8548 * If AP_EXTEND is set, we're sending a 48-bit command. 8549 * Otherwise it's a 28-bit command. 8550 */ 8551 if (protocol & AP_EXTEND) { 8552 cdb->lba_low_ext = (lba >> 24) & 0xff; 8553 cdb->lba_mid_ext = (lba >> 32) & 0xff; 8554 cdb->lba_high_ext = (lba >> 40) & 0xff; 8555 cdb->features_ext = (features >> 8) & 0xff; 8556 cdb->sector_count_ext = (sector_count >> 8) & 0xff; 8557 cdb->device = device | ATA_DEV_LBA; 8558 } else { 8559 cdb->lba_low_ext = (lba >> 24) & 0xf; 8560 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8561 } 8562 cdb->command = command; 8563 cdb->control = control; 8564 } else { 8565 struct ata_pass_32 *cdb; 8566 uint8_t tmp_lba[8]; 8567 8568 cdb = (struct ata_pass_32 *)cdb_ptr; 8569 cdb_len = sizeof(*cdb); 8570 bzero(cdb, cdb_len); 8571 cdb->opcode = VARIABLE_LEN_CDB; 8572 cdb->control = control; 8573 cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32, 8574 service_action); 8575 scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action); 8576 cdb->protocol = protocol; 8577 cdb->flags = ata_flags; 8578 8579 if ((protocol & AP_EXTEND) == 0) { 8580 lba &= 0x0fffffff; 8581 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA; 8582 features &= 0xff; 8583 sector_count &= 0xff; 8584 } else { 8585 cdb->device = device | ATA_DEV_LBA; 8586 } 8587 scsi_u64to8b(lba, tmp_lba); 8588 bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba)); 8589 scsi_ulto2b(features, cdb->features); 8590 scsi_ulto2b(sector_count, cdb->count); 8591 cdb->command = command; 8592 cdb->icc = icc; 8593 scsi_ulto4b(auxiliary, cdb->auxiliary); 8594 } 8595 8596 cam_fill_csio(csio, 8597 retries, 8598 cbfcnp, 8599 cam_flags, 8600 tag_action, 8601 data_ptr, 8602 dxfer_len, 8603 sense_len, 8604 cmd_size, 8605 timeout); 8606 bailout: 8607 return (retval); 8608 } 8609 8610 void 8611 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries, 8612 void (*cbfcnp)(struct cam_periph *, union ccb *), 8613 u_int32_t flags, u_int8_t tag_action, 8614 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features, 8615 u_int16_t sector_count, uint64_t lba, u_int8_t command, 8616 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len, 8617 u_int8_t sense_len, u_int32_t timeout) 8618 { 8619 struct ata_pass_16 *ata_cmd; 8620 8621 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes; 8622 ata_cmd->opcode = ATA_PASS_16; 8623 ata_cmd->protocol = protocol; 8624 ata_cmd->flags = ata_flags; 8625 ata_cmd->features_ext = features >> 8; 8626 ata_cmd->features = features; 8627 ata_cmd->sector_count_ext = sector_count >> 8; 8628 ata_cmd->sector_count = sector_count; 8629 ata_cmd->lba_low = lba; 8630 ata_cmd->lba_mid = lba >> 8; 8631 ata_cmd->lba_high = lba >> 16; 8632 ata_cmd->device = ATA_DEV_LBA; 8633 if (protocol & AP_EXTEND) { 8634 ata_cmd->lba_low_ext = lba >> 24; 8635 ata_cmd->lba_mid_ext = lba >> 32; 8636 ata_cmd->lba_high_ext = lba >> 40; 8637 } else 8638 ata_cmd->device |= (lba >> 24) & 0x0f; 8639 ata_cmd->command = command; 8640 ata_cmd->control = control; 8641 8642 cam_fill_csio(csio, 8643 retries, 8644 cbfcnp, 8645 flags, 8646 tag_action, 8647 data_ptr, 8648 dxfer_len, 8649 sense_len, 8650 sizeof(*ata_cmd), 8651 timeout); 8652 } 8653 8654 void 8655 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, 8656 void (*cbfcnp)(struct cam_periph *, union ccb *), 8657 u_int8_t tag_action, u_int8_t byte2, 8658 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8659 u_int32_t timeout) 8660 { 8661 struct scsi_unmap *scsi_cmd; 8662 8663 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; 8664 scsi_cmd->opcode = UNMAP; 8665 scsi_cmd->byte2 = byte2; 8666 scsi_ulto4b(0, scsi_cmd->reserved); 8667 scsi_cmd->group = 0; 8668 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8669 scsi_cmd->control = 0; 8670 8671 cam_fill_csio(csio, 8672 retries, 8673 cbfcnp, 8674 /*flags*/CAM_DIR_OUT, 8675 tag_action, 8676 data_ptr, 8677 dxfer_len, 8678 sense_len, 8679 sizeof(*scsi_cmd), 8680 timeout); 8681 } 8682 8683 void 8684 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, 8685 void (*cbfcnp)(struct cam_periph *, union ccb*), 8686 uint8_t tag_action, int pcv, uint8_t page_code, 8687 uint8_t *data_ptr, uint16_t allocation_length, 8688 uint8_t sense_len, uint32_t timeout) 8689 { 8690 struct scsi_receive_diag *scsi_cmd; 8691 8692 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; 8693 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8694 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; 8695 if (pcv) { 8696 scsi_cmd->byte2 |= SRD_PCV; 8697 scsi_cmd->page_code = page_code; 8698 } 8699 scsi_ulto2b(allocation_length, scsi_cmd->length); 8700 8701 cam_fill_csio(csio, 8702 retries, 8703 cbfcnp, 8704 /*flags*/CAM_DIR_IN, 8705 tag_action, 8706 data_ptr, 8707 allocation_length, 8708 sense_len, 8709 sizeof(*scsi_cmd), 8710 timeout); 8711 } 8712 8713 void 8714 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, 8715 void (*cbfcnp)(struct cam_periph *, union ccb *), 8716 uint8_t tag_action, int unit_offline, int device_offline, 8717 int self_test, int page_format, int self_test_code, 8718 uint8_t *data_ptr, uint16_t param_list_length, 8719 uint8_t sense_len, uint32_t timeout) 8720 { 8721 struct scsi_send_diag *scsi_cmd; 8722 8723 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; 8724 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8725 scsi_cmd->opcode = SEND_DIAGNOSTIC; 8726 8727 /* 8728 * The default self-test mode control and specific test 8729 * control are mutually exclusive. 8730 */ 8731 if (self_test) 8732 self_test_code = SSD_SELF_TEST_CODE_NONE; 8733 8734 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) 8735 & SSD_SELF_TEST_CODE_MASK) 8736 | (unit_offline ? SSD_UNITOFFL : 0) 8737 | (device_offline ? SSD_DEVOFFL : 0) 8738 | (self_test ? SSD_SELFTEST : 0) 8739 | (page_format ? SSD_PF : 0); 8740 scsi_ulto2b(param_list_length, scsi_cmd->length); 8741 8742 cam_fill_csio(csio, 8743 retries, 8744 cbfcnp, 8745 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8746 tag_action, 8747 data_ptr, 8748 param_list_length, 8749 sense_len, 8750 sizeof(*scsi_cmd), 8751 timeout); 8752 } 8753 8754 void 8755 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8756 void (*cbfcnp)(struct cam_periph *, union ccb*), 8757 uint8_t tag_action, int mode, 8758 uint8_t buffer_id, u_int32_t offset, 8759 uint8_t *data_ptr, uint32_t allocation_length, 8760 uint8_t sense_len, uint32_t timeout) 8761 { 8762 struct scsi_read_buffer *scsi_cmd; 8763 8764 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes; 8765 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8766 scsi_cmd->opcode = READ_BUFFER; 8767 scsi_cmd->byte2 = mode; 8768 scsi_cmd->buffer_id = buffer_id; 8769 scsi_ulto3b(offset, scsi_cmd->offset); 8770 scsi_ulto3b(allocation_length, scsi_cmd->length); 8771 8772 cam_fill_csio(csio, 8773 retries, 8774 cbfcnp, 8775 /*flags*/CAM_DIR_IN, 8776 tag_action, 8777 data_ptr, 8778 allocation_length, 8779 sense_len, 8780 sizeof(*scsi_cmd), 8781 timeout); 8782 } 8783 8784 void 8785 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8786 void (*cbfcnp)(struct cam_periph *, union ccb *), 8787 uint8_t tag_action, int mode, 8788 uint8_t buffer_id, u_int32_t offset, 8789 uint8_t *data_ptr, uint32_t param_list_length, 8790 uint8_t sense_len, uint32_t timeout) 8791 { 8792 struct scsi_write_buffer *scsi_cmd; 8793 8794 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes; 8795 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8796 scsi_cmd->opcode = WRITE_BUFFER; 8797 scsi_cmd->byte2 = mode; 8798 scsi_cmd->buffer_id = buffer_id; 8799 scsi_ulto3b(offset, scsi_cmd->offset); 8800 scsi_ulto3b(param_list_length, scsi_cmd->length); 8801 8802 cam_fill_csio(csio, 8803 retries, 8804 cbfcnp, 8805 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8806 tag_action, 8807 data_ptr, 8808 param_list_length, 8809 sense_len, 8810 sizeof(*scsi_cmd), 8811 timeout); 8812 } 8813 8814 void 8815 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, 8816 void (*cbfcnp)(struct cam_periph *, union ccb *), 8817 u_int8_t tag_action, int start, int load_eject, 8818 int immediate, u_int8_t sense_len, u_int32_t timeout) 8819 { 8820 struct scsi_start_stop_unit *scsi_cmd; 8821 int extra_flags = 0; 8822 8823 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; 8824 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8825 scsi_cmd->opcode = START_STOP_UNIT; 8826 if (start != 0) { 8827 scsi_cmd->how |= SSS_START; 8828 /* it takes a lot of power to start a drive */ 8829 extra_flags |= CAM_HIGH_POWER; 8830 } 8831 if (load_eject != 0) 8832 scsi_cmd->how |= SSS_LOEJ; 8833 if (immediate != 0) 8834 scsi_cmd->byte2 |= SSS_IMMED; 8835 8836 cam_fill_csio(csio, 8837 retries, 8838 cbfcnp, 8839 /*flags*/CAM_DIR_NONE | extra_flags, 8840 tag_action, 8841 /*data_ptr*/NULL, 8842 /*dxfer_len*/0, 8843 sense_len, 8844 sizeof(*scsi_cmd), 8845 timeout); 8846 } 8847 8848 void 8849 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8850 void (*cbfcnp)(struct cam_periph *, union ccb *), 8851 u_int8_t tag_action, u_int8_t service_action, 8852 uint32_t element, u_int8_t elem_type, int logical_volume, 8853 int partition, u_int32_t first_attribute, int cache, 8854 u_int8_t *data_ptr, u_int32_t length, int sense_len, 8855 u_int32_t timeout) 8856 { 8857 struct scsi_read_attribute *scsi_cmd; 8858 8859 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes; 8860 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8861 8862 scsi_cmd->opcode = READ_ATTRIBUTE; 8863 scsi_cmd->service_action = service_action; 8864 scsi_ulto2b(element, scsi_cmd->element); 8865 scsi_cmd->elem_type = elem_type; 8866 scsi_cmd->logical_volume = logical_volume; 8867 scsi_cmd->partition = partition; 8868 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute); 8869 scsi_ulto4b(length, scsi_cmd->length); 8870 if (cache != 0) 8871 scsi_cmd->cache |= SRA_CACHE; 8872 8873 cam_fill_csio(csio, 8874 retries, 8875 cbfcnp, 8876 /*flags*/CAM_DIR_IN, 8877 tag_action, 8878 /*data_ptr*/data_ptr, 8879 /*dxfer_len*/length, 8880 sense_len, 8881 sizeof(*scsi_cmd), 8882 timeout); 8883 } 8884 8885 void 8886 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8887 void (*cbfcnp)(struct cam_periph *, union ccb *), 8888 u_int8_t tag_action, uint32_t element, int logical_volume, 8889 int partition, int wtc, u_int8_t *data_ptr, 8890 u_int32_t length, int sense_len, u_int32_t timeout) 8891 { 8892 struct scsi_write_attribute *scsi_cmd; 8893 8894 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes; 8895 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8896 8897 scsi_cmd->opcode = WRITE_ATTRIBUTE; 8898 if (wtc != 0) 8899 scsi_cmd->byte2 = SWA_WTC; 8900 scsi_ulto3b(element, scsi_cmd->element); 8901 scsi_cmd->logical_volume = logical_volume; 8902 scsi_cmd->partition = partition; 8903 scsi_ulto4b(length, scsi_cmd->length); 8904 8905 cam_fill_csio(csio, 8906 retries, 8907 cbfcnp, 8908 /*flags*/CAM_DIR_OUT, 8909 tag_action, 8910 /*data_ptr*/data_ptr, 8911 /*dxfer_len*/length, 8912 sense_len, 8913 sizeof(*scsi_cmd), 8914 timeout); 8915 } 8916 8917 void 8918 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, 8919 void (*cbfcnp)(struct cam_periph *, union ccb *), 8920 uint8_t tag_action, int service_action, 8921 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8922 int timeout) 8923 { 8924 struct scsi_per_res_in *scsi_cmd; 8925 8926 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes; 8927 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8928 8929 scsi_cmd->opcode = PERSISTENT_RES_IN; 8930 scsi_cmd->action = service_action; 8931 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8932 8933 cam_fill_csio(csio, 8934 retries, 8935 cbfcnp, 8936 /*flags*/CAM_DIR_IN, 8937 tag_action, 8938 data_ptr, 8939 dxfer_len, 8940 sense_len, 8941 sizeof(*scsi_cmd), 8942 timeout); 8943 } 8944 8945 void 8946 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, 8947 void (*cbfcnp)(struct cam_periph *, union ccb *), 8948 uint8_t tag_action, int service_action, 8949 int scope, int res_type, uint8_t *data_ptr, 8950 uint32_t dxfer_len, int sense_len, int timeout) 8951 { 8952 struct scsi_per_res_out *scsi_cmd; 8953 8954 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes; 8955 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8956 8957 scsi_cmd->opcode = PERSISTENT_RES_OUT; 8958 scsi_cmd->action = service_action; 8959 scsi_cmd->scope_type = scope | res_type; 8960 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8961 8962 cam_fill_csio(csio, 8963 retries, 8964 cbfcnp, 8965 /*flags*/CAM_DIR_OUT, 8966 tag_action, 8967 /*data_ptr*/data_ptr, 8968 /*dxfer_len*/dxfer_len, 8969 sense_len, 8970 sizeof(*scsi_cmd), 8971 timeout); 8972 } 8973 8974 void 8975 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, 8976 void (*cbfcnp)(struct cam_periph *, union ccb *), 8977 uint8_t tag_action, uint32_t security_protocol, 8978 uint32_t security_protocol_specific, int byte4, 8979 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8980 int timeout) 8981 { 8982 struct scsi_security_protocol_in *scsi_cmd; 8983 8984 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes; 8985 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8986 8987 scsi_cmd->opcode = SECURITY_PROTOCOL_IN; 8988 8989 scsi_cmd->security_protocol = security_protocol; 8990 scsi_ulto2b(security_protocol_specific, 8991 scsi_cmd->security_protocol_specific); 8992 scsi_cmd->byte4 = byte4; 8993 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8994 8995 cam_fill_csio(csio, 8996 retries, 8997 cbfcnp, 8998 /*flags*/CAM_DIR_IN, 8999 tag_action, 9000 data_ptr, 9001 dxfer_len, 9002 sense_len, 9003 sizeof(*scsi_cmd), 9004 timeout); 9005 } 9006 9007 void 9008 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, 9009 void (*cbfcnp)(struct cam_periph *, union ccb *), 9010 uint8_t tag_action, uint32_t security_protocol, 9011 uint32_t security_protocol_specific, int byte4, 9012 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 9013 int timeout) 9014 { 9015 struct scsi_security_protocol_out *scsi_cmd; 9016 9017 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes; 9018 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9019 9020 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT; 9021 9022 scsi_cmd->security_protocol = security_protocol; 9023 scsi_ulto2b(security_protocol_specific, 9024 scsi_cmd->security_protocol_specific); 9025 scsi_cmd->byte4 = byte4; 9026 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9027 9028 cam_fill_csio(csio, 9029 retries, 9030 cbfcnp, 9031 /*flags*/CAM_DIR_OUT, 9032 tag_action, 9033 data_ptr, 9034 dxfer_len, 9035 sense_len, 9036 sizeof(*scsi_cmd), 9037 timeout); 9038 } 9039 9040 void 9041 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, 9042 void (*cbfcnp)(struct cam_periph *, union ccb *), 9043 uint8_t tag_action, int options, int req_opcode, 9044 int req_service_action, uint8_t *data_ptr, 9045 uint32_t dxfer_len, int sense_len, int timeout) 9046 { 9047 struct scsi_report_supported_opcodes *scsi_cmd; 9048 9049 scsi_cmd = (struct scsi_report_supported_opcodes *) 9050 &csio->cdb_io.cdb_bytes; 9051 bzero(scsi_cmd, sizeof(*scsi_cmd)); 9052 9053 scsi_cmd->opcode = MAINTENANCE_IN; 9054 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES; 9055 scsi_cmd->options = options; 9056 scsi_cmd->requested_opcode = req_opcode; 9057 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action); 9058 scsi_ulto4b(dxfer_len, scsi_cmd->length); 9059 9060 cam_fill_csio(csio, 9061 retries, 9062 cbfcnp, 9063 /*flags*/CAM_DIR_IN, 9064 tag_action, 9065 data_ptr, 9066 dxfer_len, 9067 sense_len, 9068 sizeof(*scsi_cmd), 9069 timeout); 9070 } 9071 9072 /* 9073 * Try make as good a match as possible with 9074 * available sub drivers 9075 */ 9076 int 9077 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9078 { 9079 struct scsi_inquiry_pattern *entry; 9080 struct scsi_inquiry_data *inq; 9081 9082 entry = (struct scsi_inquiry_pattern *)table_entry; 9083 inq = (struct scsi_inquiry_data *)inqbuffer; 9084 9085 if (((SID_TYPE(inq) == entry->type) 9086 || (entry->type == T_ANY)) 9087 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9088 : entry->media_type & SIP_MEDIA_FIXED) 9089 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9090 && (cam_strmatch(inq->product, entry->product, 9091 sizeof(inq->product)) == 0) 9092 && (cam_strmatch(inq->revision, entry->revision, 9093 sizeof(inq->revision)) == 0)) { 9094 return (0); 9095 } 9096 return (-1); 9097 } 9098 9099 /* 9100 * Try make as good a match as possible with 9101 * available sub drivers 9102 */ 9103 int 9104 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 9105 { 9106 struct scsi_static_inquiry_pattern *entry; 9107 struct scsi_inquiry_data *inq; 9108 9109 entry = (struct scsi_static_inquiry_pattern *)table_entry; 9110 inq = (struct scsi_inquiry_data *)inqbuffer; 9111 9112 if (((SID_TYPE(inq) == entry->type) 9113 || (entry->type == T_ANY)) 9114 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 9115 : entry->media_type & SIP_MEDIA_FIXED) 9116 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 9117 && (cam_strmatch(inq->product, entry->product, 9118 sizeof(inq->product)) == 0) 9119 && (cam_strmatch(inq->revision, entry->revision, 9120 sizeof(inq->revision)) == 0)) { 9121 return (0); 9122 } 9123 return (-1); 9124 } 9125 9126 /** 9127 * Compare two buffers of vpd device descriptors for a match. 9128 * 9129 * \param lhs Pointer to first buffer of descriptors to compare. 9130 * \param lhs_len The length of the first buffer. 9131 * \param rhs Pointer to second buffer of descriptors to compare. 9132 * \param rhs_len The length of the second buffer. 9133 * 9134 * \return 0 on a match, -1 otherwise. 9135 * 9136 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching 9137 * against each element in rhs until all data are exhausted or we have found 9138 * a match. 9139 */ 9140 int 9141 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) 9142 { 9143 struct scsi_vpd_id_descriptor *lhs_id; 9144 struct scsi_vpd_id_descriptor *lhs_last; 9145 struct scsi_vpd_id_descriptor *rhs_last; 9146 uint8_t *lhs_end; 9147 uint8_t *rhs_end; 9148 9149 lhs_end = lhs + lhs_len; 9150 rhs_end = rhs + rhs_len; 9151 9152 /* 9153 * rhs_last and lhs_last are the last posible position of a valid 9154 * descriptor assuming it had a zero length identifier. We use 9155 * these variables to insure we can safely dereference the length 9156 * field in our loop termination tests. 9157 */ 9158 lhs_last = (struct scsi_vpd_id_descriptor *) 9159 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9160 rhs_last = (struct scsi_vpd_id_descriptor *) 9161 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 9162 9163 lhs_id = (struct scsi_vpd_id_descriptor *)lhs; 9164 while (lhs_id <= lhs_last 9165 && (lhs_id->identifier + lhs_id->length) <= lhs_end) { 9166 struct scsi_vpd_id_descriptor *rhs_id; 9167 9168 rhs_id = (struct scsi_vpd_id_descriptor *)rhs; 9169 while (rhs_id <= rhs_last 9170 && (rhs_id->identifier + rhs_id->length) <= rhs_end) { 9171 if ((rhs_id->id_type & 9172 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) == 9173 (lhs_id->id_type & 9174 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) 9175 && rhs_id->length == lhs_id->length 9176 && memcmp(rhs_id->identifier, lhs_id->identifier, 9177 rhs_id->length) == 0) 9178 return (0); 9179 9180 rhs_id = (struct scsi_vpd_id_descriptor *) 9181 (rhs_id->identifier + rhs_id->length); 9182 } 9183 lhs_id = (struct scsi_vpd_id_descriptor *) 9184 (lhs_id->identifier + lhs_id->length); 9185 } 9186 return (-1); 9187 } 9188 9189 #ifdef _KERNEL 9190 int 9191 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id) 9192 { 9193 struct cam_ed *device; 9194 struct scsi_vpd_supported_pages *vpds; 9195 int i, num_pages; 9196 9197 device = periph->path->device; 9198 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; 9199 9200 if (vpds != NULL) { 9201 num_pages = device->supported_vpds_len - 9202 SVPD_SUPPORTED_PAGES_HDR_LEN; 9203 for (i = 0; i < num_pages; i++) { 9204 if (vpds->page_list[i] == page_id) 9205 return (1); 9206 } 9207 } 9208 9209 return (0); 9210 } 9211 9212 static void 9213 init_scsi_delay(void) 9214 { 9215 int delay; 9216 9217 delay = SCSI_DELAY; 9218 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); 9219 9220 if (set_scsi_delay(delay) != 0) { 9221 printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); 9222 set_scsi_delay(SCSI_DELAY); 9223 } 9224 } 9225 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); 9226 9227 static int 9228 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) 9229 { 9230 int error, delay; 9231 9232 delay = scsi_delay; 9233 error = sysctl_handle_int(oidp, &delay, 0, req); 9234 if (error != 0 || req->newptr == NULL) 9235 return (error); 9236 return (set_scsi_delay(delay)); 9237 } 9238 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, 9239 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, 0, sysctl_scsi_delay, "I", 9240 "Delay to allow devices to settle after a SCSI bus reset (ms)"); 9241 9242 static int 9243 set_scsi_delay(int delay) 9244 { 9245 /* 9246 * If someone sets this to 0, we assume that they want the 9247 * minimum allowable bus settle delay. 9248 */ 9249 if (delay == 0) { 9250 printf("cam: using minimum scsi_delay (%dms)\n", 9251 SCSI_MIN_DELAY); 9252 delay = SCSI_MIN_DELAY; 9253 } 9254 if (delay < SCSI_MIN_DELAY) 9255 return (EINVAL); 9256 scsi_delay = delay; 9257 return (0); 9258 } 9259 #endif /* _KERNEL */ 9260