1 /*- 2 * Implementation of Utility functions for all SCSI device types. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/stdint.h> 36 37 #ifdef _KERNEL 38 #include <opt_scsi.h> 39 40 #include <sys/systm.h> 41 #include <sys/libkern.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mutex.h> 46 #include <sys/sysctl.h> 47 #include <sys/ctype.h> 48 #else 49 #include <errno.h> 50 #include <stdio.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <ctype.h> 54 #endif 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_queue.h> 59 #include <cam/cam_xpt.h> 60 #include <cam/scsi/scsi_all.h> 61 #include <sys/ata.h> 62 #include <sys/sbuf.h> 63 64 #ifdef _KERNEL 65 #include <cam/cam_periph.h> 66 #include <cam/cam_xpt_sim.h> 67 #include <cam/cam_xpt_periph.h> 68 #include <cam/cam_xpt_internal.h> 69 #else 70 #include <camlib.h> 71 #include <stddef.h> 72 73 #ifndef FALSE 74 #define FALSE 0 75 #endif /* FALSE */ 76 #ifndef TRUE 77 #define TRUE 1 78 #endif /* TRUE */ 79 #define ERESTART -1 /* restart syscall */ 80 #define EJUSTRETURN -2 /* don't modify regs, just return */ 81 #endif /* !_KERNEL */ 82 83 /* 84 * This is the default number of milliseconds we wait for devices to settle 85 * after a SCSI bus reset. 86 */ 87 #ifndef SCSI_DELAY 88 #define SCSI_DELAY 2000 89 #endif 90 /* 91 * All devices need _some_ sort of bus settle delay, so we'll set it to 92 * a minimum value of 100ms. Note that this is pertinent only for SPI- 93 * not transport like Fibre Channel or iSCSI where 'delay' is completely 94 * meaningless. 95 */ 96 #ifndef SCSI_MIN_DELAY 97 #define SCSI_MIN_DELAY 100 98 #endif 99 /* 100 * Make sure the user isn't using seconds instead of milliseconds. 101 */ 102 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0) 103 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value" 104 #endif 105 106 int scsi_delay; 107 108 static int ascentrycomp(const void *key, const void *member); 109 static int senseentrycomp(const void *key, const void *member); 110 static void fetchtableentries(int sense_key, int asc, int ascq, 111 struct scsi_inquiry_data *, 112 const struct sense_key_table_entry **, 113 const struct asc_table_entry **); 114 #ifdef _KERNEL 115 static void init_scsi_delay(void); 116 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS); 117 static int set_scsi_delay(int delay); 118 #endif 119 120 #if !defined(SCSI_NO_OP_STRINGS) 121 122 #define D (1 << T_DIRECT) 123 #define T (1 << T_SEQUENTIAL) 124 #define L (1 << T_PRINTER) 125 #define P (1 << T_PROCESSOR) 126 #define W (1 << T_WORM) 127 #define R (1 << T_CDROM) 128 #define O (1 << T_OPTICAL) 129 #define M (1 << T_CHANGER) 130 #define A (1 << T_STORARRAY) 131 #define E (1 << T_ENCLOSURE) 132 #define B (1 << T_RBC) 133 #define K (1 << T_OCRW) 134 #define V (1 << T_ADC) 135 #define F (1 << T_OSD) 136 #define S (1 << T_SCANNER) 137 #define C (1 << T_COMM) 138 139 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C) 140 141 static struct op_table_entry plextor_cd_ops[] = { 142 { 0xD8, R, "CD-DA READ" } 143 }; 144 145 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = { 146 { 147 /* 148 * I believe that 0xD8 is the Plextor proprietary command 149 * to read CD-DA data. I'm not sure which Plextor CDROM 150 * models support the command, though. I know for sure 151 * that the 4X, 8X, and 12X models do, and presumably the 152 * 12-20X does. I don't know about any earlier models, 153 * though. If anyone has any more complete information, 154 * feel free to change this quirk entry. 155 */ 156 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"}, 157 nitems(plextor_cd_ops), 158 plextor_cd_ops 159 } 160 }; 161 162 static struct op_table_entry scsi_op_codes[] = { 163 /* 164 * From: http://www.t10.org/lists/op-num.txt 165 * Modifications by Kenneth Merry (ken@FreeBSD.ORG) 166 * and Jung-uk Kim (jkim@FreeBSD.org) 167 * 168 * Note: order is important in this table, scsi_op_desc() currently 169 * depends on the opcodes in the table being in order to save 170 * search time. 171 * Note: scanner and comm. devices are carried over from the previous 172 * version because they were removed in the latest spec. 173 */ 174 /* File: OP-NUM.TXT 175 * 176 * SCSI Operation Codes 177 * Numeric Sorted Listing 178 * as of 5/26/15 179 * 180 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 181 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) ----------------- 182 * . L - PRINTER DEVICE (SSC) M = Mandatory 183 * . P - PROCESSOR DEVICE (SPC) O = Optional 184 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec. 185 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete 186 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 187 * . . .M - MEDIA CHANGER DEVICE (SMC-2) 188 * . . . A - STORAGE ARRAY DEVICE (SCC-2) 189 * . . . .E - ENCLOSURE SERVICES DEVICE (SES) 190 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 191 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 192 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 193 * . . . . .F - OBJECT-BASED STORAGE (OSD) 194 * OP DTLPWROMAEBKVF Description 195 * -- -------------- ---------------------------------------------- */ 196 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */ 197 { 0x00, ALL, "TEST UNIT READY" }, 198 /* 01 M REWIND */ 199 { 0x01, T, "REWIND" }, 200 /* 01 Z V ZZZZ REZERO UNIT */ 201 { 0x01, D | W | R | O | M, "REZERO UNIT" }, 202 /* 02 VVVVVV V */ 203 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */ 204 { 0x03, ALL, "REQUEST SENSE" }, 205 /* 04 M OO FORMAT UNIT */ 206 { 0x04, D | R | O, "FORMAT UNIT" }, 207 /* 04 O FORMAT MEDIUM */ 208 { 0x04, T, "FORMAT MEDIUM" }, 209 /* 04 O FORMAT */ 210 { 0x04, L, "FORMAT" }, 211 /* 05 VMVVVV V READ BLOCK LIMITS */ 212 { 0x05, T, "READ BLOCK LIMITS" }, 213 /* 06 VVVVVV V */ 214 /* 07 OVV O OV REASSIGN BLOCKS */ 215 { 0x07, D | W | O, "REASSIGN BLOCKS" }, 216 /* 07 O INITIALIZE ELEMENT STATUS */ 217 { 0x07, M, "INITIALIZE ELEMENT STATUS" }, 218 /* 08 MOV O OV READ(6) */ 219 { 0x08, D | T | W | O, "READ(6)" }, 220 /* 08 O RECEIVE */ 221 { 0x08, P, "RECEIVE" }, 222 /* 08 GET MESSAGE(6) */ 223 { 0x08, C, "GET MESSAGE(6)" }, 224 /* 09 VVVVVV V */ 225 /* 0A OO O OV WRITE(6) */ 226 { 0x0A, D | T | W | O, "WRITE(6)" }, 227 /* 0A M SEND(6) */ 228 { 0x0A, P, "SEND(6)" }, 229 /* 0A SEND MESSAGE(6) */ 230 { 0x0A, C, "SEND MESSAGE(6)" }, 231 /* 0A M PRINT */ 232 { 0x0A, L, "PRINT" }, 233 /* 0B Z ZOZV SEEK(6) */ 234 { 0x0B, D | W | R | O, "SEEK(6)" }, 235 /* 0B O SET CAPACITY */ 236 { 0x0B, T, "SET CAPACITY" }, 237 /* 0B O SLEW AND PRINT */ 238 { 0x0B, L, "SLEW AND PRINT" }, 239 /* 0C VVVVVV V */ 240 /* 0D VVVVVV V */ 241 /* 0E VVVVVV V */ 242 /* 0F VOVVVV V READ REVERSE(6) */ 243 { 0x0F, T, "READ REVERSE(6)" }, 244 /* 10 VM VVV WRITE FILEMARKS(6) */ 245 { 0x10, T, "WRITE FILEMARKS(6)" }, 246 /* 10 O SYNCHRONIZE BUFFER */ 247 { 0x10, L, "SYNCHRONIZE BUFFER" }, 248 /* 11 VMVVVV SPACE(6) */ 249 { 0x11, T, "SPACE(6)" }, 250 /* 12 MMMMMMMMMMMMMM INQUIRY */ 251 { 0x12, ALL, "INQUIRY" }, 252 /* 13 V VVVV */ 253 /* 13 O VERIFY(6) */ 254 { 0x13, T, "VERIFY(6)" }, 255 /* 14 VOOVVV RECOVER BUFFERED DATA */ 256 { 0x14, T | L, "RECOVER BUFFERED DATA" }, 257 /* 15 OMO O OOOO OO MODE SELECT(6) */ 258 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" }, 259 /* 16 ZZMZO OOOZ O RESERVE(6) */ 260 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" }, 261 /* 16 Z RESERVE ELEMENT(6) */ 262 { 0x16, M, "RESERVE ELEMENT(6)" }, 263 /* 17 ZZMZO OOOZ O RELEASE(6) */ 264 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" }, 265 /* 17 Z RELEASE ELEMENT(6) */ 266 { 0x17, M, "RELEASE ELEMENT(6)" }, 267 /* 18 ZZZZOZO Z COPY */ 268 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" }, 269 /* 19 VMVVVV ERASE(6) */ 270 { 0x19, T, "ERASE(6)" }, 271 /* 1A OMO O OOOO OO MODE SENSE(6) */ 272 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" }, 273 /* 1B O OOO O MO O START STOP UNIT */ 274 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" }, 275 /* 1B O M LOAD UNLOAD */ 276 { 0x1B, T | V, "LOAD UNLOAD" }, 277 /* 1B SCAN */ 278 { 0x1B, S, "SCAN" }, 279 /* 1B O STOP PRINT */ 280 { 0x1B, L, "STOP PRINT" }, 281 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */ 282 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" }, 283 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */ 284 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" }, 285 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */ 286 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" }, 287 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */ 288 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" }, 289 /* 1F */ 290 /* 20 V VVV V */ 291 /* 21 V VVV V */ 292 /* 22 V VVV V */ 293 /* 23 V V V V */ 294 /* 23 O READ FORMAT CAPACITIES */ 295 { 0x23, R, "READ FORMAT CAPACITIES" }, 296 /* 24 V VV SET WINDOW */ 297 { 0x24, S, "SET WINDOW" }, 298 /* 25 M M M M READ CAPACITY(10) */ 299 { 0x25, D | W | O | B, "READ CAPACITY(10)" }, 300 /* 25 O READ CAPACITY */ 301 { 0x25, R, "READ CAPACITY" }, 302 /* 25 M READ CARD CAPACITY */ 303 { 0x25, K, "READ CARD CAPACITY" }, 304 /* 25 GET WINDOW */ 305 { 0x25, S, "GET WINDOW" }, 306 /* 26 V VV */ 307 /* 27 V VV */ 308 /* 28 M MOM MM READ(10) */ 309 { 0x28, D | W | R | O | B | K | S, "READ(10)" }, 310 /* 28 GET MESSAGE(10) */ 311 { 0x28, C, "GET MESSAGE(10)" }, 312 /* 29 V VVO READ GENERATION */ 313 { 0x29, O, "READ GENERATION" }, 314 /* 2A O MOM MO WRITE(10) */ 315 { 0x2A, D | W | R | O | B | K, "WRITE(10)" }, 316 /* 2A SEND(10) */ 317 { 0x2A, S, "SEND(10)" }, 318 /* 2A SEND MESSAGE(10) */ 319 { 0x2A, C, "SEND MESSAGE(10)" }, 320 /* 2B Z OOO O SEEK(10) */ 321 { 0x2B, D | W | R | O | K, "SEEK(10)" }, 322 /* 2B O LOCATE(10) */ 323 { 0x2B, T, "LOCATE(10)" }, 324 /* 2B O POSITION TO ELEMENT */ 325 { 0x2B, M, "POSITION TO ELEMENT" }, 326 /* 2C V OO ERASE(10) */ 327 { 0x2C, R | O, "ERASE(10)" }, 328 /* 2D O READ UPDATED BLOCK */ 329 { 0x2D, O, "READ UPDATED BLOCK" }, 330 /* 2D V */ 331 /* 2E O OOO MO WRITE AND VERIFY(10) */ 332 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" }, 333 /* 2F O OOO VERIFY(10) */ 334 { 0x2F, D | W | R | O, "VERIFY(10)" }, 335 /* 30 Z ZZZ SEARCH DATA HIGH(10) */ 336 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" }, 337 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */ 338 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" }, 339 /* 31 OBJECT POSITION */ 340 { 0x31, S, "OBJECT POSITION" }, 341 /* 32 Z ZZZ SEARCH DATA LOW(10) */ 342 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" }, 343 /* 33 Z OZO SET LIMITS(10) */ 344 { 0x33, D | W | R | O, "SET LIMITS(10)" }, 345 /* 34 O O O O PRE-FETCH(10) */ 346 { 0x34, D | W | O | K, "PRE-FETCH(10)" }, 347 /* 34 M READ POSITION */ 348 { 0x34, T, "READ POSITION" }, 349 /* 34 GET DATA BUFFER STATUS */ 350 { 0x34, S, "GET DATA BUFFER STATUS" }, 351 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */ 352 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" }, 353 /* 36 Z O O O LOCK UNLOCK CACHE(10) */ 354 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" }, 355 /* 37 O O READ DEFECT DATA(10) */ 356 { 0x37, D | O, "READ DEFECT DATA(10)" }, 357 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */ 358 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" }, 359 /* 38 O O O MEDIUM SCAN */ 360 { 0x38, W | O | K, "MEDIUM SCAN" }, 361 /* 39 ZZZZOZO Z COMPARE */ 362 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" }, 363 /* 3A ZZZZOZO Z COPY AND VERIFY */ 364 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" }, 365 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */ 366 { 0x3B, ALL, "WRITE BUFFER" }, 367 /* 3C OOOOOOOOOO OOO READ BUFFER */ 368 { 0x3C, ALL & ~(B), "READ BUFFER" }, 369 /* 3D O UPDATE BLOCK */ 370 { 0x3D, O, "UPDATE BLOCK" }, 371 /* 3E O O O READ LONG(10) */ 372 { 0x3E, D | W | O, "READ LONG(10)" }, 373 /* 3F O O O WRITE LONG(10) */ 374 { 0x3F, D | W | O, "WRITE LONG(10)" }, 375 /* 40 ZZZZOZOZ CHANGE DEFINITION */ 376 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" }, 377 /* 41 O WRITE SAME(10) */ 378 { 0x41, D, "WRITE SAME(10)" }, 379 /* 42 O UNMAP */ 380 { 0x42, D, "UNMAP" }, 381 /* 42 O READ SUB-CHANNEL */ 382 { 0x42, R, "READ SUB-CHANNEL" }, 383 /* 43 O READ TOC/PMA/ATIP */ 384 { 0x43, R, "READ TOC/PMA/ATIP" }, 385 /* 44 M M REPORT DENSITY SUPPORT */ 386 { 0x44, T | V, "REPORT DENSITY SUPPORT" }, 387 /* 44 READ HEADER */ 388 /* 45 O PLAY AUDIO(10) */ 389 { 0x45, R, "PLAY AUDIO(10)" }, 390 /* 46 M GET CONFIGURATION */ 391 { 0x46, R, "GET CONFIGURATION" }, 392 /* 47 O PLAY AUDIO MSF */ 393 { 0x47, R, "PLAY AUDIO MSF" }, 394 /* 48 */ 395 /* 49 */ 396 /* 4A M GET EVENT STATUS NOTIFICATION */ 397 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" }, 398 /* 4B O PAUSE/RESUME */ 399 { 0x4B, R, "PAUSE/RESUME" }, 400 /* 4C OOOOO OOOO OOO LOG SELECT */ 401 { 0x4C, ALL & ~(R | B), "LOG SELECT" }, 402 /* 4D OOOOO OOOO OMO LOG SENSE */ 403 { 0x4D, ALL & ~(R | B), "LOG SENSE" }, 404 /* 4E O STOP PLAY/SCAN */ 405 { 0x4E, R, "STOP PLAY/SCAN" }, 406 /* 4F */ 407 /* 50 O XDWRITE(10) */ 408 { 0x50, D, "XDWRITE(10)" }, 409 /* 51 O XPWRITE(10) */ 410 { 0x51, D, "XPWRITE(10)" }, 411 /* 51 O READ DISC INFORMATION */ 412 { 0x51, R, "READ DISC INFORMATION" }, 413 /* 52 O XDREAD(10) */ 414 { 0x52, D, "XDREAD(10)" }, 415 /* 52 O READ TRACK INFORMATION */ 416 { 0x52, R, "READ TRACK INFORMATION" }, 417 /* 53 O RESERVE TRACK */ 418 { 0x53, R, "RESERVE TRACK" }, 419 /* 54 O SEND OPC INFORMATION */ 420 { 0x54, R, "SEND OPC INFORMATION" }, 421 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */ 422 { 0x55, ALL & ~(P), "MODE SELECT(10)" }, 423 /* 56 ZZMZO OOOZ RESERVE(10) */ 424 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" }, 425 /* 56 Z RESERVE ELEMENT(10) */ 426 { 0x56, M, "RESERVE ELEMENT(10)" }, 427 /* 57 ZZMZO OOOZ RELEASE(10) */ 428 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" }, 429 /* 57 Z RELEASE ELEMENT(10) */ 430 { 0x57, M, "RELEASE ELEMENT(10)" }, 431 /* 58 O REPAIR TRACK */ 432 { 0x58, R, "REPAIR TRACK" }, 433 /* 59 */ 434 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */ 435 { 0x5A, ALL & ~(P), "MODE SENSE(10)" }, 436 /* 5B O CLOSE TRACK/SESSION */ 437 { 0x5B, R, "CLOSE TRACK/SESSION" }, 438 /* 5C O READ BUFFER CAPACITY */ 439 { 0x5C, R, "READ BUFFER CAPACITY" }, 440 /* 5D O SEND CUE SHEET */ 441 { 0x5D, R, "SEND CUE SHEET" }, 442 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */ 443 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" }, 444 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */ 445 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" }, 446 /* 7E OO O OOOO O extended CDB */ 447 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" }, 448 /* 7F O M variable length CDB (more than 16 bytes) */ 449 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" }, 450 /* 80 Z XDWRITE EXTENDED(16) */ 451 { 0x80, D, "XDWRITE EXTENDED(16)" }, 452 /* 80 M WRITE FILEMARKS(16) */ 453 { 0x80, T, "WRITE FILEMARKS(16)" }, 454 /* 81 Z REBUILD(16) */ 455 { 0x81, D, "REBUILD(16)" }, 456 /* 81 O READ REVERSE(16) */ 457 { 0x81, T, "READ REVERSE(16)" }, 458 /* 82 Z REGENERATE(16) */ 459 { 0x82, D, "REGENERATE(16)" }, 460 /* 83 OOOOO O OO EXTENDED COPY */ 461 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" }, 462 /* 84 OOOOO O OO RECEIVE COPY RESULTS */ 463 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" }, 464 /* 85 O O O ATA COMMAND PASS THROUGH(16) */ 465 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" }, 466 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */ 467 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" }, 468 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */ 469 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" }, 470 /* 471 * XXX READ(16)/WRITE(16) were not listed for CD/DVE in op-num.txt 472 * but we had it since r1.40. Do we really want them? 473 */ 474 /* 88 MM O O O READ(16) */ 475 { 0x88, D | T | W | O | B, "READ(16)" }, 476 /* 89 O COMPARE AND WRITE*/ 477 { 0x89, D, "COMPARE AND WRITE" }, 478 /* 8A OM O O O WRITE(16) */ 479 { 0x8A, D | T | W | O | B, "WRITE(16)" }, 480 /* 8B O ORWRITE */ 481 { 0x8B, D, "ORWRITE" }, 482 /* 8C OO O OO O M READ ATTRIBUTE */ 483 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" }, 484 /* 8D OO O OO O O WRITE ATTRIBUTE */ 485 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" }, 486 /* 8E O O O O WRITE AND VERIFY(16) */ 487 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" }, 488 /* 8F OO O O O VERIFY(16) */ 489 { 0x8F, D | T | W | O | B, "VERIFY(16)" }, 490 /* 90 O O O O PRE-FETCH(16) */ 491 { 0x90, D | W | O | B, "PRE-FETCH(16)" }, 492 /* 91 O O O O SYNCHRONIZE CACHE(16) */ 493 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" }, 494 /* 91 O SPACE(16) */ 495 { 0x91, T, "SPACE(16)" }, 496 /* 92 Z O O LOCK UNLOCK CACHE(16) */ 497 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" }, 498 /* 92 O LOCATE(16) */ 499 { 0x92, T, "LOCATE(16)" }, 500 /* 93 O WRITE SAME(16) */ 501 { 0x93, D, "WRITE SAME(16)" }, 502 /* 93 M ERASE(16) */ 503 { 0x93, T, "ERASE(16)" }, 504 /* 94 O ZBC OUT */ 505 { 0x94, D, "ZBC OUT" }, 506 /* 95 O ZBC OUT */ 507 { 0x95, D, "ZBC OUT" }, 508 /* 96 */ 509 /* 97 */ 510 /* 98 */ 511 /* 99 */ 512 /* 9A O WRITE STREAM(16) */ 513 { 0x9A, D, "WRITE STREAM(16)" }, 514 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */ 515 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" }, 516 /* 9C O WRITE ATOMIC(16) */ 517 { 0x9C, D, "WRITE ATOMIC(16)" }, 518 /* 9D SERVICE ACTION BIDIRECTIONAL */ 519 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" }, 520 /* XXX KDM ALL for this? op-num.txt defines it for none.. */ 521 /* 9E SERVICE ACTION IN(16) */ 522 { 0x9E, ALL, "SERVICE ACTION IN(16)" }, 523 /* XXX KDM ALL for this? op-num.txt defines it for ADC.. */ 524 /* 9F M SERVICE ACTION OUT(16) */ 525 { 0x9F, ALL, "SERVICE ACTION OUT(16)" }, 526 /* A0 MMOOO OMMM OMO REPORT LUNS */ 527 { 0xA0, ALL & ~(R | B), "REPORT LUNS" }, 528 /* A1 O BLANK */ 529 { 0xA1, R, "BLANK" }, 530 /* A1 O O ATA COMMAND PASS THROUGH(12) */ 531 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" }, 532 /* A2 OO O O SECURITY PROTOCOL IN */ 533 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" }, 534 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */ 535 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" }, 536 /* A3 O SEND KEY */ 537 { 0xA3, R, "SEND KEY" }, 538 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */ 539 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" }, 540 /* A4 O REPORT KEY */ 541 { 0xA4, R, "REPORT KEY" }, 542 /* A5 O O OM MOVE MEDIUM */ 543 { 0xA5, T | W | O | M, "MOVE MEDIUM" }, 544 /* A5 O PLAY AUDIO(12) */ 545 { 0xA5, R, "PLAY AUDIO(12)" }, 546 /* A6 O EXCHANGE MEDIUM */ 547 { 0xA6, M, "EXCHANGE MEDIUM" }, 548 /* A6 O LOAD/UNLOAD C/DVD */ 549 { 0xA6, R, "LOAD/UNLOAD C/DVD" }, 550 /* A7 ZZ O O MOVE MEDIUM ATTACHED */ 551 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" }, 552 /* A7 O SET READ AHEAD */ 553 { 0xA7, R, "SET READ AHEAD" }, 554 /* A8 O OOO READ(12) */ 555 { 0xA8, D | W | R | O, "READ(12)" }, 556 /* A8 GET MESSAGE(12) */ 557 { 0xA8, C, "GET MESSAGE(12)" }, 558 /* A9 O SERVICE ACTION OUT(12) */ 559 { 0xA9, V, "SERVICE ACTION OUT(12)" }, 560 /* AA O OOO WRITE(12) */ 561 { 0xAA, D | W | R | O, "WRITE(12)" }, 562 /* AA SEND MESSAGE(12) */ 563 { 0xAA, C, "SEND MESSAGE(12)" }, 564 /* AB O O SERVICE ACTION IN(12) */ 565 { 0xAB, R | V, "SERVICE ACTION IN(12)" }, 566 /* AC O ERASE(12) */ 567 { 0xAC, O, "ERASE(12)" }, 568 /* AC O GET PERFORMANCE */ 569 { 0xAC, R, "GET PERFORMANCE" }, 570 /* AD O READ DVD STRUCTURE */ 571 { 0xAD, R, "READ DVD STRUCTURE" }, 572 /* AE O O O WRITE AND VERIFY(12) */ 573 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" }, 574 /* AF O OZO VERIFY(12) */ 575 { 0xAF, D | W | R | O, "VERIFY(12)" }, 576 /* B0 ZZZ SEARCH DATA HIGH(12) */ 577 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" }, 578 /* B1 ZZZ SEARCH DATA EQUAL(12) */ 579 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" }, 580 /* B2 ZZZ SEARCH DATA LOW(12) */ 581 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" }, 582 /* B3 Z OZO SET LIMITS(12) */ 583 { 0xB3, D | W | R | O, "SET LIMITS(12)" }, 584 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */ 585 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" }, 586 /* B5 OO O O SECURITY PROTOCOL OUT */ 587 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" }, 588 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */ 589 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" }, 590 /* B6 O SEND VOLUME TAG */ 591 { 0xB6, M, "SEND VOLUME TAG" }, 592 /* B6 O SET STREAMING */ 593 { 0xB6, R, "SET STREAMING" }, 594 /* B7 O O READ DEFECT DATA(12) */ 595 { 0xB7, D | O, "READ DEFECT DATA(12)" }, 596 /* B8 O OZOM READ ELEMENT STATUS */ 597 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" }, 598 /* B9 O READ CD MSF */ 599 { 0xB9, R, "READ CD MSF" }, 600 /* BA O O OOMO REDUNDANCY GROUP (IN) */ 601 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" }, 602 /* BA O SCAN */ 603 { 0xBA, R, "SCAN" }, 604 /* BB O O OOOO REDUNDANCY GROUP (OUT) */ 605 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" }, 606 /* BB O SET CD SPEED */ 607 { 0xBB, R, "SET CD SPEED" }, 608 /* BC O O OOMO SPARE (IN) */ 609 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" }, 610 /* BD O O OOOO SPARE (OUT) */ 611 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" }, 612 /* BD O MECHANISM STATUS */ 613 { 0xBD, R, "MECHANISM STATUS" }, 614 /* BE O O OOMO VOLUME SET (IN) */ 615 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" }, 616 /* BE O READ CD */ 617 { 0xBE, R, "READ CD" }, 618 /* BF O O OOOO VOLUME SET (OUT) */ 619 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" }, 620 /* BF O SEND DVD STRUCTURE */ 621 { 0xBF, R, "SEND DVD STRUCTURE" } 622 }; 623 624 const char * 625 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 626 { 627 caddr_t match; 628 int i, j; 629 u_int32_t opmask; 630 u_int16_t pd_type; 631 int num_ops[2]; 632 struct op_table_entry *table[2]; 633 int num_tables; 634 635 /* 636 * If we've got inquiry data, use it to determine what type of 637 * device we're dealing with here. Otherwise, assume direct 638 * access. 639 */ 640 if (inq_data == NULL) { 641 pd_type = T_DIRECT; 642 match = NULL; 643 } else { 644 pd_type = SID_TYPE(inq_data); 645 646 match = cam_quirkmatch((caddr_t)inq_data, 647 (caddr_t)scsi_op_quirk_table, 648 nitems(scsi_op_quirk_table), 649 sizeof(*scsi_op_quirk_table), 650 scsi_inquiry_match); 651 } 652 653 if (match != NULL) { 654 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table; 655 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops; 656 table[1] = scsi_op_codes; 657 num_ops[1] = nitems(scsi_op_codes); 658 num_tables = 2; 659 } else { 660 /* 661 * If this is true, we have a vendor specific opcode that 662 * wasn't covered in the quirk table. 663 */ 664 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80))) 665 return("Vendor Specific Command"); 666 667 table[0] = scsi_op_codes; 668 num_ops[0] = nitems(scsi_op_codes); 669 num_tables = 1; 670 } 671 672 /* RBC is 'Simplified' Direct Access Device */ 673 if (pd_type == T_RBC) 674 pd_type = T_DIRECT; 675 676 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */ 677 if (pd_type == T_NODEVICE) 678 pd_type = T_DIRECT; 679 680 opmask = 1 << pd_type; 681 682 for (j = 0; j < num_tables; j++) { 683 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){ 684 if ((table[j][i].opcode == opcode) 685 && ((table[j][i].opmask & opmask) != 0)) 686 return(table[j][i].desc); 687 } 688 } 689 690 /* 691 * If we can't find a match for the command in the table, we just 692 * assume it's a vendor specifc command. 693 */ 694 return("Vendor Specific Command"); 695 696 } 697 698 #else /* SCSI_NO_OP_STRINGS */ 699 700 const char * 701 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data) 702 { 703 return(""); 704 } 705 706 #endif 707 708 709 #if !defined(SCSI_NO_SENSE_STRINGS) 710 #define SST(asc, ascq, action, desc) \ 711 asc, ascq, action, desc 712 #else 713 const char empty_string[] = ""; 714 715 #define SST(asc, ascq, action, desc) \ 716 asc, ascq, action, empty_string 717 #endif 718 719 const struct sense_key_table_entry sense_key_table[] = 720 { 721 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" }, 722 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" }, 723 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" }, 724 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" }, 725 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" }, 726 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" }, 727 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" }, 728 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" }, 729 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" }, 730 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" }, 731 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" }, 732 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" }, 733 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" }, 734 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" }, 735 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" }, 736 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" } 737 }; 738 739 static struct asc_table_entry quantum_fireball_entries[] = { 740 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 741 "Logical unit not ready, initializing cmd. required") } 742 }; 743 744 static struct asc_table_entry sony_mo_entries[] = { 745 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 746 "Logical unit not ready, cause not reportable") } 747 }; 748 749 static struct asc_table_entry hgst_entries[] = { 750 { SST(0x04, 0xF0, SS_RDEF, 751 "Vendor Unique - Logical Unit Not Ready") }, 752 { SST(0x0A, 0x01, SS_RDEF, 753 "Unrecovered Super Certification Log Write Error") }, 754 { SST(0x0A, 0x02, SS_RDEF, 755 "Unrecovered Super Certification Log Read Error") }, 756 { SST(0x15, 0x03, SS_RDEF, 757 "Unrecovered Sector Error") }, 758 { SST(0x3E, 0x04, SS_RDEF, 759 "Unrecovered Self-Test Hard-Cache Test Fail") }, 760 { SST(0x3E, 0x05, SS_RDEF, 761 "Unrecovered Self-Test OTF-Cache Fail") }, 762 { SST(0x40, 0x00, SS_RDEF, 763 "Unrecovered SAT No Buffer Overflow Error") }, 764 { SST(0x40, 0x01, SS_RDEF, 765 "Unrecovered SAT Buffer Overflow Error") }, 766 { SST(0x40, 0x02, SS_RDEF, 767 "Unrecovered SAT No Buffer Overflow With ECS Fault") }, 768 { SST(0x40, 0x03, SS_RDEF, 769 "Unrecovered SAT Buffer Overflow With ECS Fault") }, 770 { SST(0x40, 0x81, SS_RDEF, 771 "DRAM Failure") }, 772 { SST(0x44, 0x0B, SS_RDEF, 773 "Vendor Unique - Internal Target Failure") }, 774 { SST(0x44, 0xF2, SS_RDEF, 775 "Vendor Unique - Internal Target Failure") }, 776 { SST(0x44, 0xF6, SS_RDEF, 777 "Vendor Unique - Internal Target Failure") }, 778 { SST(0x44, 0xF9, SS_RDEF, 779 "Vendor Unique - Internal Target Failure") }, 780 { SST(0x44, 0xFA, SS_RDEF, 781 "Vendor Unique - Internal Target Failure") }, 782 { SST(0x5D, 0x22, SS_RDEF, 783 "Extreme Over-Temperature Warning") }, 784 { SST(0x5D, 0x50, SS_RDEF, 785 "Load/Unload cycle Count Warning") }, 786 { SST(0x81, 0x00, SS_RDEF, 787 "Vendor Unique - Internal Logic Error") }, 788 { SST(0x85, 0x00, SS_RDEF, 789 "Vendor Unique - Internal Key Seed Error") }, 790 }; 791 792 static struct asc_table_entry seagate_entries[] = { 793 { SST(0x04, 0xF0, SS_RDEF, 794 "Logical Unit Not Ready, super certify in Progress") }, 795 { SST(0x08, 0x86, SS_RDEF, 796 "Write Fault Data Corruption") }, 797 { SST(0x09, 0x0D, SS_RDEF, 798 "Tracking Failure") }, 799 { SST(0x09, 0x0E, SS_RDEF, 800 "ETF Failure") }, 801 { SST(0x0B, 0x5D, SS_RDEF, 802 "Pre-SMART Warning") }, 803 { SST(0x0B, 0x85, SS_RDEF, 804 "5V Voltage Warning") }, 805 { SST(0x0B, 0x8C, SS_RDEF, 806 "12V Voltage Warning") }, 807 { SST(0x0C, 0xFF, SS_RDEF, 808 "Write Error - Too many error recovery revs") }, 809 { SST(0x11, 0xFF, SS_RDEF, 810 "Unrecovered Read Error - Too many error recovery revs") }, 811 { SST(0x19, 0x0E, SS_RDEF, 812 "Fewer than 1/2 defect list copies") }, 813 { SST(0x20, 0xF3, SS_RDEF, 814 "Illegal CDB linked to skip mask cmd") }, 815 { SST(0x24, 0xF0, SS_RDEF, 816 "Illegal byte in CDB, LBA not matching") }, 817 { SST(0x24, 0xF1, SS_RDEF, 818 "Illegal byte in CDB, LEN not matching") }, 819 { SST(0x24, 0xF2, SS_RDEF, 820 "Mask not matching transfer length") }, 821 { SST(0x24, 0xF3, SS_RDEF, 822 "Drive formatted without plist") }, 823 { SST(0x26, 0x95, SS_RDEF, 824 "Invalid Field Parameter - CAP File") }, 825 { SST(0x26, 0x96, SS_RDEF, 826 "Invalid Field Parameter - RAP File") }, 827 { SST(0x26, 0x97, SS_RDEF, 828 "Invalid Field Parameter - TMS Firmware Tag") }, 829 { SST(0x26, 0x98, SS_RDEF, 830 "Invalid Field Parameter - Check Sum") }, 831 { SST(0x26, 0x99, SS_RDEF, 832 "Invalid Field Parameter - Firmware Tag") }, 833 { SST(0x29, 0x08, SS_RDEF, 834 "Write Log Dump data") }, 835 { SST(0x29, 0x09, SS_RDEF, 836 "Write Log Dump data") }, 837 { SST(0x29, 0x0A, SS_RDEF, 838 "Reserved disk space") }, 839 { SST(0x29, 0x0B, SS_RDEF, 840 "SDBP") }, 841 { SST(0x29, 0x0C, SS_RDEF, 842 "SDBP") }, 843 { SST(0x31, 0x91, SS_RDEF, 844 "Format Corrupted World Wide Name (WWN) is Invalid") }, 845 { SST(0x32, 0x03, SS_RDEF, 846 "Defect List - Length exceeds Command Allocated Length") }, 847 { SST(0x33, 0x00, SS_RDEF, 848 "Flash not ready for access") }, 849 { SST(0x3F, 0x70, SS_RDEF, 850 "Invalid RAP block") }, 851 { SST(0x3F, 0x71, SS_RDEF, 852 "RAP/ETF mismatch") }, 853 { SST(0x3F, 0x90, SS_RDEF, 854 "Invalid CAP block") }, 855 { SST(0x3F, 0x91, SS_RDEF, 856 "World Wide Name (WWN) Mismatch") }, 857 { SST(0x40, 0x01, SS_RDEF, 858 "DRAM Parity Error") }, 859 { SST(0x40, 0x02, SS_RDEF, 860 "DRAM Parity Error") }, 861 { SST(0x42, 0x0A, SS_RDEF, 862 "Loopback Test") }, 863 { SST(0x42, 0x0B, SS_RDEF, 864 "Loopback Test") }, 865 { SST(0x44, 0xF2, SS_RDEF, 866 "Compare error during data integrity check") }, 867 { SST(0x44, 0xF6, SS_RDEF, 868 "Unrecoverable error during data integrity check") }, 869 { SST(0x47, 0x80, SS_RDEF, 870 "Fibre Channel Sequence Error") }, 871 { SST(0x4E, 0x01, SS_RDEF, 872 "Information Unit Too Short") }, 873 { SST(0x80, 0x00, SS_RDEF, 874 "General Firmware Error / Command Timeout") }, 875 { SST(0x80, 0x01, SS_RDEF, 876 "Command Timeout") }, 877 { SST(0x80, 0x02, SS_RDEF, 878 "Command Timeout") }, 879 { SST(0x80, 0x80, SS_RDEF, 880 "FC FIFO Error During Read Transfer") }, 881 { SST(0x80, 0x81, SS_RDEF, 882 "FC FIFO Error During Write Transfer") }, 883 { SST(0x80, 0x82, SS_RDEF, 884 "DISC FIFO Error During Read Transfer") }, 885 { SST(0x80, 0x83, SS_RDEF, 886 "DISC FIFO Error During Write Transfer") }, 887 { SST(0x80, 0x84, SS_RDEF, 888 "LBA Seeded LRC Error on Read") }, 889 { SST(0x80, 0x85, SS_RDEF, 890 "LBA Seeded LRC Error on Write") }, 891 { SST(0x80, 0x86, SS_RDEF, 892 "IOEDC Error on Read") }, 893 { SST(0x80, 0x87, SS_RDEF, 894 "IOEDC Error on Write") }, 895 { SST(0x80, 0x88, SS_RDEF, 896 "Host Parity Check Failed") }, 897 { SST(0x80, 0x89, SS_RDEF, 898 "IOEDC error on read detected by formatter") }, 899 { SST(0x80, 0x8A, SS_RDEF, 900 "Host Parity Errors / Host FIFO Initialization Failed") }, 901 { SST(0x80, 0x8B, SS_RDEF, 902 "Host Parity Errors") }, 903 { SST(0x80, 0x8C, SS_RDEF, 904 "Host Parity Errors") }, 905 { SST(0x80, 0x8D, SS_RDEF, 906 "Host Parity Errors") }, 907 { SST(0x81, 0x00, SS_RDEF, 908 "LA Check Failed") }, 909 { SST(0x82, 0x00, SS_RDEF, 910 "Internal client detected insufficient buffer") }, 911 { SST(0x84, 0x00, SS_RDEF, 912 "Scheduled Diagnostic And Repair") }, 913 }; 914 915 static struct scsi_sense_quirk_entry sense_quirk_table[] = { 916 { 917 /* 918 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b 919 * when they really should return 0x04 0x02. 920 */ 921 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"}, 922 /*num_sense_keys*/0, 923 nitems(quantum_fireball_entries), 924 /*sense key entries*/NULL, 925 quantum_fireball_entries 926 }, 927 { 928 /* 929 * This Sony MO drive likes to return 0x04, 0x00 when it 930 * isn't spun up. 931 */ 932 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"}, 933 /*num_sense_keys*/0, 934 nitems(sony_mo_entries), 935 /*sense key entries*/NULL, 936 sony_mo_entries 937 }, 938 { 939 /* 940 * HGST vendor-specific error codes 941 */ 942 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"}, 943 /*num_sense_keys*/0, 944 nitems(hgst_entries), 945 /*sense key entries*/NULL, 946 hgst_entries 947 }, 948 { 949 /* 950 * SEAGATE vendor-specific error codes 951 */ 952 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"}, 953 /*num_sense_keys*/0, 954 nitems(seagate_entries), 955 /*sense key entries*/NULL, 956 seagate_entries 957 } 958 }; 959 960 const u_int sense_quirk_table_size = nitems(sense_quirk_table); 961 962 static struct asc_table_entry asc_table[] = { 963 /* 964 * From: http://www.t10.org/lists/asc-num.txt 965 * Modifications by Jung-uk Kim (jkim@FreeBSD.org) 966 */ 967 /* 968 * File: ASC-NUM.TXT 969 * 970 * SCSI ASC/ASCQ Assignments 971 * Numeric Sorted Listing 972 * as of 8/12/15 973 * 974 * D - DIRECT ACCESS DEVICE (SBC-2) device column key 975 * .T - SEQUENTIAL ACCESS DEVICE (SSC) ------------------- 976 * . L - PRINTER DEVICE (SSC) blank = reserved 977 * . P - PROCESSOR DEVICE (SPC) not blank = allowed 978 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) 979 * . . R - CD DEVICE (MMC) 980 * . . O - OPTICAL MEMORY DEVICE (SBC-2) 981 * . . .M - MEDIA CHANGER DEVICE (SMC) 982 * . . . A - STORAGE ARRAY DEVICE (SCC) 983 * . . . E - ENCLOSURE SERVICES DEVICE (SES) 984 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC) 985 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW) 986 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC) 987 * . . . . .F - OBJECT-BASED STORAGE (OSD) 988 * DTLPWROMAEBKVF 989 * ASC ASCQ Action 990 * Description 991 */ 992 /* DTLPWROMAEBKVF */ 993 { SST(0x00, 0x00, SS_NOP, 994 "No additional sense information") }, 995 /* T */ 996 { SST(0x00, 0x01, SS_RDEF, 997 "Filemark detected") }, 998 /* T */ 999 { SST(0x00, 0x02, SS_RDEF, 1000 "End-of-partition/medium detected") }, 1001 /* T */ 1002 { SST(0x00, 0x03, SS_RDEF, 1003 "Setmark detected") }, 1004 /* T */ 1005 { SST(0x00, 0x04, SS_RDEF, 1006 "Beginning-of-partition/medium detected") }, 1007 /* TL */ 1008 { SST(0x00, 0x05, SS_RDEF, 1009 "End-of-data detected") }, 1010 /* DTLPWROMAEBKVF */ 1011 { SST(0x00, 0x06, SS_RDEF, 1012 "I/O process terminated") }, 1013 /* T */ 1014 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */ 1015 "Programmable early warning detected") }, 1016 /* R */ 1017 { SST(0x00, 0x11, SS_FATAL | EBUSY, 1018 "Audio play operation in progress") }, 1019 /* R */ 1020 { SST(0x00, 0x12, SS_NOP, 1021 "Audio play operation paused") }, 1022 /* R */ 1023 { SST(0x00, 0x13, SS_NOP, 1024 "Audio play operation successfully completed") }, 1025 /* R */ 1026 { SST(0x00, 0x14, SS_RDEF, 1027 "Audio play operation stopped due to error") }, 1028 /* R */ 1029 { SST(0x00, 0x15, SS_NOP, 1030 "No current audio status to return") }, 1031 /* DTLPWROMAEBKVF */ 1032 { SST(0x00, 0x16, SS_FATAL | EBUSY, 1033 "Operation in progress") }, 1034 /* DTL WROMAEBKVF */ 1035 { SST(0x00, 0x17, SS_RDEF, 1036 "Cleaning requested") }, 1037 /* T */ 1038 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */ 1039 "Erase operation in progress") }, 1040 /* T */ 1041 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */ 1042 "Locate operation in progress") }, 1043 /* T */ 1044 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */ 1045 "Rewind operation in progress") }, 1046 /* T */ 1047 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */ 1048 "Set capacity operation in progress") }, 1049 /* T */ 1050 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */ 1051 "Verify operation in progress") }, 1052 /* DT B */ 1053 { SST(0x00, 0x1D, SS_RDEF, /* XXX TBD */ 1054 "ATA pass through information available") }, 1055 /* DT R MAEBKV */ 1056 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */ 1057 "Conflicting SA creation request") }, 1058 /* DT B */ 1059 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */ 1060 "Logical unit transitioning to another power condition") }, 1061 /* DT P B */ 1062 { SST(0x00, 0x20, SS_RDEF, /* XXX TBD */ 1063 "Extended copy information available") }, 1064 /* D */ 1065 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */ 1066 "Atomic command aborted due to ACA") }, 1067 /* D W O BK */ 1068 { SST(0x01, 0x00, SS_RDEF, 1069 "No index/sector signal") }, 1070 /* D WRO BK */ 1071 { SST(0x02, 0x00, SS_RDEF, 1072 "No seek complete") }, 1073 /* DTL W O BK */ 1074 { SST(0x03, 0x00, SS_RDEF, 1075 "Peripheral device write fault") }, 1076 /* T */ 1077 { SST(0x03, 0x01, SS_RDEF, 1078 "No write current") }, 1079 /* T */ 1080 { SST(0x03, 0x02, SS_RDEF, 1081 "Excessive write errors") }, 1082 /* DTLPWROMAEBKVF */ 1083 { SST(0x04, 0x00, SS_RDEF, 1084 "Logical unit not ready, cause not reportable") }, 1085 /* DTLPWROMAEBKVF */ 1086 { SST(0x04, 0x01, SS_WAIT | EBUSY, 1087 "Logical unit is in process of becoming ready") }, 1088 /* DTLPWROMAEBKVF */ 1089 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO, 1090 "Logical unit not ready, initializing command required") }, 1091 /* DTLPWROMAEBKVF */ 1092 { SST(0x04, 0x03, SS_FATAL | ENXIO, 1093 "Logical unit not ready, manual intervention required") }, 1094 /* DTL RO B */ 1095 { SST(0x04, 0x04, SS_FATAL | EBUSY, 1096 "Logical unit not ready, format in progress") }, 1097 /* DT W O A BK F */ 1098 { SST(0x04, 0x05, SS_FATAL | EBUSY, 1099 "Logical unit not ready, rebuild in progress") }, 1100 /* DT W O A BK */ 1101 { SST(0x04, 0x06, SS_FATAL | EBUSY, 1102 "Logical unit not ready, recalculation in progress") }, 1103 /* DTLPWROMAEBKVF */ 1104 { SST(0x04, 0x07, SS_FATAL | EBUSY, 1105 "Logical unit not ready, operation in progress") }, 1106 /* R */ 1107 { SST(0x04, 0x08, SS_FATAL | EBUSY, 1108 "Logical unit not ready, long write in progress") }, 1109 /* DTLPWROMAEBKVF */ 1110 { SST(0x04, 0x09, SS_RDEF, /* XXX TBD */ 1111 "Logical unit not ready, self-test in progress") }, 1112 /* DTLPWROMAEBKVF */ 1113 { SST(0x04, 0x0A, SS_WAIT | ENXIO, 1114 "Logical unit not accessible, asymmetric access state transition")}, 1115 /* DTLPWROMAEBKVF */ 1116 { SST(0x04, 0x0B, SS_FATAL | ENXIO, 1117 "Logical unit not accessible, target port in standby state") }, 1118 /* DTLPWROMAEBKVF */ 1119 { SST(0x04, 0x0C, SS_FATAL | ENXIO, 1120 "Logical unit not accessible, target port in unavailable state") }, 1121 /* F */ 1122 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */ 1123 "Logical unit not ready, structure check required") }, 1124 /* DTL WR MAEBKVF */ 1125 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */ 1126 "Logical unit not ready, security session in progress") }, 1127 /* DT WROM B */ 1128 { SST(0x04, 0x10, SS_RDEF, /* XXX TBD */ 1129 "Logical unit not ready, auxiliary memory not accessible") }, 1130 /* DT WRO AEB VF */ 1131 { SST(0x04, 0x11, SS_WAIT | EBUSY, 1132 "Logical unit not ready, notify (enable spinup) required") }, 1133 /* M V */ 1134 { SST(0x04, 0x12, SS_RDEF, /* XXX TBD */ 1135 "Logical unit not ready, offline") }, 1136 /* DT R MAEBKV */ 1137 { SST(0x04, 0x13, SS_RDEF, /* XXX TBD */ 1138 "Logical unit not ready, SA creation in progress") }, 1139 /* D B */ 1140 { SST(0x04, 0x14, SS_RDEF, /* XXX TBD */ 1141 "Logical unit not ready, space allocation in progress") }, 1142 /* M */ 1143 { SST(0x04, 0x15, SS_RDEF, /* XXX TBD */ 1144 "Logical unit not ready, robotics disabled") }, 1145 /* M */ 1146 { SST(0x04, 0x16, SS_RDEF, /* XXX TBD */ 1147 "Logical unit not ready, configuration required") }, 1148 /* M */ 1149 { SST(0x04, 0x17, SS_RDEF, /* XXX TBD */ 1150 "Logical unit not ready, calibration required") }, 1151 /* M */ 1152 { SST(0x04, 0x18, SS_RDEF, /* XXX TBD */ 1153 "Logical unit not ready, a door is open") }, 1154 /* M */ 1155 { SST(0x04, 0x19, SS_RDEF, /* XXX TBD */ 1156 "Logical unit not ready, operating in sequential mode") }, 1157 /* DT B */ 1158 { SST(0x04, 0x1A, SS_RDEF, /* XXX TBD */ 1159 "Logical unit not ready, START/STOP UNIT command in progress") }, 1160 /* D B */ 1161 { SST(0x04, 0x1B, SS_RDEF, /* XXX TBD */ 1162 "Logical unit not ready, sanitize in progress") }, 1163 /* DT MAEB */ 1164 { SST(0x04, 0x1C, SS_RDEF, /* XXX TBD */ 1165 "Logical unit not ready, additional power use not yet granted") }, 1166 /* D */ 1167 { SST(0x04, 0x1D, SS_RDEF, /* XXX TBD */ 1168 "Logical unit not ready, configuration in progress") }, 1169 /* D */ 1170 { SST(0x04, 0x1E, SS_FATAL | ENXIO, 1171 "Logical unit not ready, microcode activation required") }, 1172 /* DTLPWROMAEBKVF */ 1173 { SST(0x04, 0x1F, SS_FATAL | ENXIO, 1174 "Logical unit not ready, microcode download required") }, 1175 /* DTLPWROMAEBKVF */ 1176 { SST(0x04, 0x20, SS_RDEF, /* XXX TBD */ 1177 "Logical unit not ready, logical unit reset required") }, 1178 /* DTLPWROMAEBKVF */ 1179 { SST(0x04, 0x21, SS_RDEF, /* XXX TBD */ 1180 "Logical unit not ready, hard reset required") }, 1181 /* DTLPWROMAEBKVF */ 1182 { SST(0x04, 0x22, SS_RDEF, /* XXX TBD */ 1183 "Logical unit not ready, power cycle required") }, 1184 /* DTL WROMAEBKVF */ 1185 { SST(0x05, 0x00, SS_RDEF, 1186 "Logical unit does not respond to selection") }, 1187 /* D WROM BK */ 1188 { SST(0x06, 0x00, SS_RDEF, 1189 "No reference position found") }, 1190 /* DTL WROM BK */ 1191 { SST(0x07, 0x00, SS_RDEF, 1192 "Multiple peripheral devices selected") }, 1193 /* DTL WROMAEBKVF */ 1194 { SST(0x08, 0x00, SS_RDEF, 1195 "Logical unit communication failure") }, 1196 /* DTL WROMAEBKVF */ 1197 { SST(0x08, 0x01, SS_RDEF, 1198 "Logical unit communication time-out") }, 1199 /* DTL WROMAEBKVF */ 1200 { SST(0x08, 0x02, SS_RDEF, 1201 "Logical unit communication parity error") }, 1202 /* DT ROM BK */ 1203 { SST(0x08, 0x03, SS_RDEF, 1204 "Logical unit communication CRC error (Ultra-DMA/32)") }, 1205 /* DTLPWRO K */ 1206 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */ 1207 "Unreachable copy target") }, 1208 /* DT WRO B */ 1209 { SST(0x09, 0x00, SS_RDEF, 1210 "Track following error") }, 1211 /* WRO K */ 1212 { SST(0x09, 0x01, SS_RDEF, 1213 "Tracking servo failure") }, 1214 /* WRO K */ 1215 { SST(0x09, 0x02, SS_RDEF, 1216 "Focus servo failure") }, 1217 /* WRO */ 1218 { SST(0x09, 0x03, SS_RDEF, 1219 "Spindle servo failure") }, 1220 /* DT WRO B */ 1221 { SST(0x09, 0x04, SS_RDEF, 1222 "Head select fault") }, 1223 /* DT RO B */ 1224 { SST(0x09, 0x05, SS_RDEF, 1225 "Vibration induced tracking error") }, 1226 /* DTLPWROMAEBKVF */ 1227 { SST(0x0A, 0x00, SS_FATAL | ENOSPC, 1228 "Error log overflow") }, 1229 /* DTLPWROMAEBKVF */ 1230 { SST(0x0B, 0x00, SS_RDEF, 1231 "Warning") }, 1232 /* DTLPWROMAEBKVF */ 1233 { SST(0x0B, 0x01, SS_RDEF, 1234 "Warning - specified temperature exceeded") }, 1235 /* DTLPWROMAEBKVF */ 1236 { SST(0x0B, 0x02, SS_RDEF, 1237 "Warning - enclosure degraded") }, 1238 /* DTLPWROMAEBKVF */ 1239 { SST(0x0B, 0x03, SS_RDEF, /* XXX TBD */ 1240 "Warning - background self-test failed") }, 1241 /* DTLPWRO AEBKVF */ 1242 { SST(0x0B, 0x04, SS_RDEF, /* XXX TBD */ 1243 "Warning - background pre-scan detected medium error") }, 1244 /* DTLPWRO AEBKVF */ 1245 { SST(0x0B, 0x05, SS_RDEF, /* XXX TBD */ 1246 "Warning - background medium scan detected medium error") }, 1247 /* DTLPWROMAEBKVF */ 1248 { SST(0x0B, 0x06, SS_RDEF, /* XXX TBD */ 1249 "Warning - non-volatile cache now volatile") }, 1250 /* DTLPWROMAEBKVF */ 1251 { SST(0x0B, 0x07, SS_RDEF, /* XXX TBD */ 1252 "Warning - degraded power to non-volatile cache") }, 1253 /* DTLPWROMAEBKVF */ 1254 { SST(0x0B, 0x08, SS_RDEF, /* XXX TBD */ 1255 "Warning - power loss expected") }, 1256 /* D */ 1257 { SST(0x0B, 0x09, SS_RDEF, /* XXX TBD */ 1258 "Warning - device statistics notification available") }, 1259 /* DTLPWROMAEBKVF */ 1260 { SST(0x0B, 0x0A, SS_RDEF, /* XXX TBD */ 1261 "Warning - High critical temperature limit exceeded") }, 1262 /* DTLPWROMAEBKVF */ 1263 { SST(0x0B, 0x0B, SS_RDEF, /* XXX TBD */ 1264 "Warning - Low critical temperature limit exceeded") }, 1265 /* DTLPWROMAEBKVF */ 1266 { SST(0x0B, 0x0C, SS_RDEF, /* XXX TBD */ 1267 "Warning - High operating temperature limit exceeded") }, 1268 /* DTLPWROMAEBKVF */ 1269 { SST(0x0B, 0x0D, SS_RDEF, /* XXX TBD */ 1270 "Warning - Low operating temperature limit exceeded") }, 1271 /* DTLPWROMAEBKVF */ 1272 { SST(0x0B, 0x0E, SS_RDEF, /* XXX TBD */ 1273 "Warning - High citical humidity limit exceeded") }, 1274 /* DTLPWROMAEBKVF */ 1275 { SST(0x0B, 0x0F, SS_RDEF, /* XXX TBD */ 1276 "Warning - Low citical humidity limit exceeded") }, 1277 /* DTLPWROMAEBKVF */ 1278 { SST(0x0B, 0x10, SS_RDEF, /* XXX TBD */ 1279 "Warning - High operating humidity limit exceeded") }, 1280 /* DTLPWROMAEBKVF */ 1281 { SST(0x0B, 0x11, SS_RDEF, /* XXX TBD */ 1282 "Warning - Low operating humidity limit exceeded") }, 1283 /* T R */ 1284 { SST(0x0C, 0x00, SS_RDEF, 1285 "Write error") }, 1286 /* K */ 1287 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1288 "Write error - recovered with auto reallocation") }, 1289 /* D W O BK */ 1290 { SST(0x0C, 0x02, SS_RDEF, 1291 "Write error - auto reallocation failed") }, 1292 /* D W O BK */ 1293 { SST(0x0C, 0x03, SS_RDEF, 1294 "Write error - recommend reassignment") }, 1295 /* DT W O B */ 1296 { SST(0x0C, 0x04, SS_RDEF, 1297 "Compression check miscompare error") }, 1298 /* DT W O B */ 1299 { SST(0x0C, 0x05, SS_RDEF, 1300 "Data expansion occurred during compression") }, 1301 /* DT W O B */ 1302 { SST(0x0C, 0x06, SS_RDEF, 1303 "Block not compressible") }, 1304 /* R */ 1305 { SST(0x0C, 0x07, SS_RDEF, 1306 "Write error - recovery needed") }, 1307 /* R */ 1308 { SST(0x0C, 0x08, SS_RDEF, 1309 "Write error - recovery failed") }, 1310 /* R */ 1311 { SST(0x0C, 0x09, SS_RDEF, 1312 "Write error - loss of streaming") }, 1313 /* R */ 1314 { SST(0x0C, 0x0A, SS_RDEF, 1315 "Write error - padding blocks added") }, 1316 /* DT WROM B */ 1317 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */ 1318 "Auxiliary memory write error") }, 1319 /* DTLPWRO AEBKVF */ 1320 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */ 1321 "Write error - unexpected unsolicited data") }, 1322 /* DTLPWRO AEBKVF */ 1323 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */ 1324 "Write error - not enough unsolicited data") }, 1325 /* DT W O BK */ 1326 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */ 1327 "Multiple write errors") }, 1328 /* R */ 1329 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */ 1330 "Defects in error window") }, 1331 /* D */ 1332 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */ 1333 "Incomplete multiple atomic write operations") }, 1334 /* D */ 1335 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */ 1336 "Write error - recovery scan needed") }, 1337 /* D */ 1338 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */ 1339 "Write error - insufficient zone resources") }, 1340 /* DTLPWRO A K */ 1341 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */ 1342 "Error detected by third party temporary initiator") }, 1343 /* DTLPWRO A K */ 1344 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */ 1345 "Third party device failure") }, 1346 /* DTLPWRO A K */ 1347 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */ 1348 "Copy target device not reachable") }, 1349 /* DTLPWRO A K */ 1350 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */ 1351 "Incorrect copy target device type") }, 1352 /* DTLPWRO A K */ 1353 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */ 1354 "Copy target device data underrun") }, 1355 /* DTLPWRO A K */ 1356 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */ 1357 "Copy target device data overrun") }, 1358 /* DT PWROMAEBK F */ 1359 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */ 1360 "Invalid information unit") }, 1361 /* DT PWROMAEBK F */ 1362 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */ 1363 "Information unit too short") }, 1364 /* DT PWROMAEBK F */ 1365 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */ 1366 "Information unit too long") }, 1367 /* DT P R MAEBK F */ 1368 { SST(0x0E, 0x03, SS_RDEF, /* XXX TBD */ 1369 "Invalid field in command information unit") }, 1370 /* D W O BK */ 1371 { SST(0x10, 0x00, SS_RDEF, 1372 "ID CRC or ECC error") }, 1373 /* DT W O */ 1374 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */ 1375 "Logical block guard check failed") }, 1376 /* DT W O */ 1377 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */ 1378 "Logical block application tag check failed") }, 1379 /* DT W O */ 1380 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */ 1381 "Logical block reference tag check failed") }, 1382 /* T */ 1383 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */ 1384 "Logical block protection error on recovered buffer data") }, 1385 /* T */ 1386 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */ 1387 "Logical block protection method error") }, 1388 /* DT WRO BK */ 1389 { SST(0x11, 0x00, SS_FATAL|EIO, 1390 "Unrecovered read error") }, 1391 /* DT WRO BK */ 1392 { SST(0x11, 0x01, SS_FATAL|EIO, 1393 "Read retries exhausted") }, 1394 /* DT WRO BK */ 1395 { SST(0x11, 0x02, SS_FATAL|EIO, 1396 "Error too long to correct") }, 1397 /* DT W O BK */ 1398 { SST(0x11, 0x03, SS_FATAL|EIO, 1399 "Multiple read errors") }, 1400 /* D W O BK */ 1401 { SST(0x11, 0x04, SS_FATAL|EIO, 1402 "Unrecovered read error - auto reallocate failed") }, 1403 /* WRO B */ 1404 { SST(0x11, 0x05, SS_FATAL|EIO, 1405 "L-EC uncorrectable error") }, 1406 /* WRO B */ 1407 { SST(0x11, 0x06, SS_FATAL|EIO, 1408 "CIRC unrecovered error") }, 1409 /* W O B */ 1410 { SST(0x11, 0x07, SS_RDEF, 1411 "Data re-synchronization error") }, 1412 /* T */ 1413 { SST(0x11, 0x08, SS_RDEF, 1414 "Incomplete block read") }, 1415 /* T */ 1416 { SST(0x11, 0x09, SS_RDEF, 1417 "No gap found") }, 1418 /* DT O BK */ 1419 { SST(0x11, 0x0A, SS_RDEF, 1420 "Miscorrected error") }, 1421 /* D W O BK */ 1422 { SST(0x11, 0x0B, SS_FATAL|EIO, 1423 "Unrecovered read error - recommend reassignment") }, 1424 /* D W O BK */ 1425 { SST(0x11, 0x0C, SS_FATAL|EIO, 1426 "Unrecovered read error - recommend rewrite the data") }, 1427 /* DT WRO B */ 1428 { SST(0x11, 0x0D, SS_RDEF, 1429 "De-compression CRC error") }, 1430 /* DT WRO B */ 1431 { SST(0x11, 0x0E, SS_RDEF, 1432 "Cannot decompress using declared algorithm") }, 1433 /* R */ 1434 { SST(0x11, 0x0F, SS_RDEF, 1435 "Error reading UPC/EAN number") }, 1436 /* R */ 1437 { SST(0x11, 0x10, SS_RDEF, 1438 "Error reading ISRC number") }, 1439 /* R */ 1440 { SST(0x11, 0x11, SS_RDEF, 1441 "Read error - loss of streaming") }, 1442 /* DT WROM B */ 1443 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */ 1444 "Auxiliary memory read error") }, 1445 /* DTLPWRO AEBKVF */ 1446 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */ 1447 "Read error - failed retransmission request") }, 1448 /* D */ 1449 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */ 1450 "Read error - LBA marked bad by application client") }, 1451 /* D */ 1452 { SST(0x11, 0x15, SS_RDEF, /* XXX TBD */ 1453 "Write after sanitize required") }, 1454 /* D W O BK */ 1455 { SST(0x12, 0x00, SS_RDEF, 1456 "Address mark not found for ID field") }, 1457 /* D W O BK */ 1458 { SST(0x13, 0x00, SS_RDEF, 1459 "Address mark not found for data field") }, 1460 /* DTL WRO BK */ 1461 { SST(0x14, 0x00, SS_RDEF, 1462 "Recorded entity not found") }, 1463 /* DT WRO BK */ 1464 { SST(0x14, 0x01, SS_RDEF, 1465 "Record not found") }, 1466 /* T */ 1467 { SST(0x14, 0x02, SS_RDEF, 1468 "Filemark or setmark not found") }, 1469 /* T */ 1470 { SST(0x14, 0x03, SS_RDEF, 1471 "End-of-data not found") }, 1472 /* T */ 1473 { SST(0x14, 0x04, SS_RDEF, 1474 "Block sequence error") }, 1475 /* DT W O BK */ 1476 { SST(0x14, 0x05, SS_RDEF, 1477 "Record not found - recommend reassignment") }, 1478 /* DT W O BK */ 1479 { SST(0x14, 0x06, SS_RDEF, 1480 "Record not found - data auto-reallocated") }, 1481 /* T */ 1482 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */ 1483 "Locate operation failure") }, 1484 /* DTL WROM BK */ 1485 { SST(0x15, 0x00, SS_RDEF, 1486 "Random positioning error") }, 1487 /* DTL WROM BK */ 1488 { SST(0x15, 0x01, SS_RDEF, 1489 "Mechanical positioning error") }, 1490 /* DT WRO BK */ 1491 { SST(0x15, 0x02, SS_RDEF, 1492 "Positioning error detected by read of medium") }, 1493 /* D W O BK */ 1494 { SST(0x16, 0x00, SS_RDEF, 1495 "Data synchronization mark error") }, 1496 /* D W O BK */ 1497 { SST(0x16, 0x01, SS_RDEF, 1498 "Data sync error - data rewritten") }, 1499 /* D W O BK */ 1500 { SST(0x16, 0x02, SS_RDEF, 1501 "Data sync error - recommend rewrite") }, 1502 /* D W O BK */ 1503 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1504 "Data sync error - data auto-reallocated") }, 1505 /* D W O BK */ 1506 { SST(0x16, 0x04, SS_RDEF, 1507 "Data sync error - recommend reassignment") }, 1508 /* DT WRO BK */ 1509 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1510 "Recovered data with no error correction applied") }, 1511 /* DT WRO BK */ 1512 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1513 "Recovered data with retries") }, 1514 /* DT WRO BK */ 1515 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1516 "Recovered data with positive head offset") }, 1517 /* DT WRO BK */ 1518 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1519 "Recovered data with negative head offset") }, 1520 /* WRO B */ 1521 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1522 "Recovered data with retries and/or CIRC applied") }, 1523 /* D WRO BK */ 1524 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1525 "Recovered data using previous sector ID") }, 1526 /* D W O BK */ 1527 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1528 "Recovered data without ECC - data auto-reallocated") }, 1529 /* D WRO BK */ 1530 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1531 "Recovered data without ECC - recommend reassignment") }, 1532 /* D WRO BK */ 1533 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE, 1534 "Recovered data without ECC - recommend rewrite") }, 1535 /* D WRO BK */ 1536 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE, 1537 "Recovered data without ECC - data rewritten") }, 1538 /* DT WRO BK */ 1539 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1540 "Recovered data with error correction applied") }, 1541 /* D WRO BK */ 1542 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE, 1543 "Recovered data with error corr. & retries applied") }, 1544 /* D WRO BK */ 1545 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE, 1546 "Recovered data - data auto-reallocated") }, 1547 /* R */ 1548 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE, 1549 "Recovered data with CIRC") }, 1550 /* R */ 1551 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE, 1552 "Recovered data with L-EC") }, 1553 /* D WRO BK */ 1554 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE, 1555 "Recovered data - recommend reassignment") }, 1556 /* D WRO BK */ 1557 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE, 1558 "Recovered data - recommend rewrite") }, 1559 /* D W O BK */ 1560 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE, 1561 "Recovered data with ECC - data rewritten") }, 1562 /* R */ 1563 { SST(0x18, 0x08, SS_RDEF, /* XXX TBD */ 1564 "Recovered data with linking") }, 1565 /* D O K */ 1566 { SST(0x19, 0x00, SS_RDEF, 1567 "Defect list error") }, 1568 /* D O K */ 1569 { SST(0x19, 0x01, SS_RDEF, 1570 "Defect list not available") }, 1571 /* D O K */ 1572 { SST(0x19, 0x02, SS_RDEF, 1573 "Defect list error in primary list") }, 1574 /* D O K */ 1575 { SST(0x19, 0x03, SS_RDEF, 1576 "Defect list error in grown list") }, 1577 /* DTLPWROMAEBKVF */ 1578 { SST(0x1A, 0x00, SS_RDEF, 1579 "Parameter list length error") }, 1580 /* DTLPWROMAEBKVF */ 1581 { SST(0x1B, 0x00, SS_RDEF, 1582 "Synchronous data transfer error") }, 1583 /* D O BK */ 1584 { SST(0x1C, 0x00, SS_RDEF, 1585 "Defect list not found") }, 1586 /* D O BK */ 1587 { SST(0x1C, 0x01, SS_RDEF, 1588 "Primary defect list not found") }, 1589 /* D O BK */ 1590 { SST(0x1C, 0x02, SS_RDEF, 1591 "Grown defect list not found") }, 1592 /* DT WRO BK */ 1593 { SST(0x1D, 0x00, SS_FATAL, 1594 "Miscompare during verify operation") }, 1595 /* D B */ 1596 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */ 1597 "Miscomparable verify of unmapped LBA") }, 1598 /* D W O BK */ 1599 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE, 1600 "Recovered ID with ECC correction") }, 1601 /* D O K */ 1602 { SST(0x1F, 0x00, SS_RDEF, 1603 "Partial defect list transfer") }, 1604 /* DTLPWROMAEBKVF */ 1605 { SST(0x20, 0x00, SS_FATAL | EINVAL, 1606 "Invalid command operation code") }, 1607 /* DT PWROMAEBK */ 1608 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */ 1609 "Access denied - initiator pending-enrolled") }, 1610 /* DT PWROMAEBK */ 1611 { SST(0x20, 0x02, SS_RDEF, /* XXX TBD */ 1612 "Access denied - no access rights") }, 1613 /* DT PWROMAEBK */ 1614 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */ 1615 "Access denied - invalid mgmt ID key") }, 1616 /* T */ 1617 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */ 1618 "Illegal command while in write capable state") }, 1619 /* T */ 1620 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */ 1621 "Obsolete") }, 1622 /* T */ 1623 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */ 1624 "Illegal command while in explicit address mode") }, 1625 /* T */ 1626 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */ 1627 "Illegal command while in implicit address mode") }, 1628 /* DT PWROMAEBK */ 1629 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */ 1630 "Access denied - enrollment conflict") }, 1631 /* DT PWROMAEBK */ 1632 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */ 1633 "Access denied - invalid LU identifier") }, 1634 /* DT PWROMAEBK */ 1635 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */ 1636 "Access denied - invalid proxy token") }, 1637 /* DT PWROMAEBK */ 1638 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */ 1639 "Access denied - ACL LUN conflict") }, 1640 /* T */ 1641 { SST(0x20, 0x0C, SS_FATAL | EINVAL, 1642 "Illegal command when not in append-only mode") }, 1643 /* DT WRO BK */ 1644 { SST(0x21, 0x00, SS_FATAL | EINVAL, 1645 "Logical block address out of range") }, 1646 /* DT WROM BK */ 1647 { SST(0x21, 0x01, SS_FATAL | EINVAL, 1648 "Invalid element address") }, 1649 /* R */ 1650 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */ 1651 "Invalid address for write") }, 1652 /* R */ 1653 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */ 1654 "Invalid write crossing layer jump") }, 1655 /* D */ 1656 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */ 1657 "Unaligned write command") }, 1658 /* D */ 1659 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */ 1660 "Write boundary violation") }, 1661 /* D */ 1662 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */ 1663 "Attempt to read invalid data") }, 1664 /* D */ 1665 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */ 1666 "Read boundary violation") }, 1667 /* D */ 1668 { SST(0x22, 0x00, SS_FATAL | EINVAL, 1669 "Illegal function (use 20 00, 24 00, or 26 00)") }, 1670 /* DT P B */ 1671 { SST(0x23, 0x00, SS_FATAL | EINVAL, 1672 "Invalid token operation, cause not reportable") }, 1673 /* DT P B */ 1674 { SST(0x23, 0x01, SS_FATAL | EINVAL, 1675 "Invalid token operation, unsupported token type") }, 1676 /* DT P B */ 1677 { SST(0x23, 0x02, SS_FATAL | EINVAL, 1678 "Invalid token operation, remote token usage not supported") }, 1679 /* DT P B */ 1680 { SST(0x23, 0x03, SS_FATAL | EINVAL, 1681 "Invalid token operation, remote ROD token creation not supported") }, 1682 /* DT P B */ 1683 { SST(0x23, 0x04, SS_FATAL | EINVAL, 1684 "Invalid token operation, token unknown") }, 1685 /* DT P B */ 1686 { SST(0x23, 0x05, SS_FATAL | EINVAL, 1687 "Invalid token operation, token corrupt") }, 1688 /* DT P B */ 1689 { SST(0x23, 0x06, SS_FATAL | EINVAL, 1690 "Invalid token operation, token revoked") }, 1691 /* DT P B */ 1692 { SST(0x23, 0x07, SS_FATAL | EINVAL, 1693 "Invalid token operation, token expired") }, 1694 /* DT P B */ 1695 { SST(0x23, 0x08, SS_FATAL | EINVAL, 1696 "Invalid token operation, token cancelled") }, 1697 /* DT P B */ 1698 { SST(0x23, 0x09, SS_FATAL | EINVAL, 1699 "Invalid token operation, token deleted") }, 1700 /* DT P B */ 1701 { SST(0x23, 0x0A, SS_FATAL | EINVAL, 1702 "Invalid token operation, invalid token length") }, 1703 /* DTLPWROMAEBKVF */ 1704 { SST(0x24, 0x00, SS_FATAL | EINVAL, 1705 "Invalid field in CDB") }, 1706 /* DTLPWRO AEBKVF */ 1707 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */ 1708 "CDB decryption error") }, 1709 /* T */ 1710 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */ 1711 "Obsolete") }, 1712 /* T */ 1713 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */ 1714 "Obsolete") }, 1715 /* F */ 1716 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */ 1717 "Security audit value frozen") }, 1718 /* F */ 1719 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */ 1720 "Security working key frozen") }, 1721 /* F */ 1722 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */ 1723 "NONCE not unique") }, 1724 /* F */ 1725 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */ 1726 "NONCE timestamp out of range") }, 1727 /* DT R MAEBKV */ 1728 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */ 1729 "Invalid XCDB") }, 1730 /* DTLPWROMAEBKVF */ 1731 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST, 1732 "Logical unit not supported") }, 1733 /* DTLPWROMAEBKVF */ 1734 { SST(0x26, 0x00, SS_FATAL | EINVAL, 1735 "Invalid field in parameter list") }, 1736 /* DTLPWROMAEBKVF */ 1737 { SST(0x26, 0x01, SS_FATAL | EINVAL, 1738 "Parameter not supported") }, 1739 /* DTLPWROMAEBKVF */ 1740 { SST(0x26, 0x02, SS_FATAL | EINVAL, 1741 "Parameter value invalid") }, 1742 /* DTLPWROMAE K */ 1743 { SST(0x26, 0x03, SS_FATAL | EINVAL, 1744 "Threshold parameters not supported") }, 1745 /* DTLPWROMAEBKVF */ 1746 { SST(0x26, 0x04, SS_FATAL | EINVAL, 1747 "Invalid release of persistent reservation") }, 1748 /* DTLPWRO A BK */ 1749 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */ 1750 "Data decryption error") }, 1751 /* DTLPWRO K */ 1752 { SST(0x26, 0x06, SS_FATAL | EINVAL, 1753 "Too many target descriptors") }, 1754 /* DTLPWRO K */ 1755 { SST(0x26, 0x07, SS_FATAL | EINVAL, 1756 "Unsupported target descriptor type code") }, 1757 /* DTLPWRO K */ 1758 { SST(0x26, 0x08, SS_FATAL | EINVAL, 1759 "Too many segment descriptors") }, 1760 /* DTLPWRO K */ 1761 { SST(0x26, 0x09, SS_FATAL | EINVAL, 1762 "Unsupported segment descriptor type code") }, 1763 /* DTLPWRO K */ 1764 { SST(0x26, 0x0A, SS_FATAL | EINVAL, 1765 "Unexpected inexact segment") }, 1766 /* DTLPWRO K */ 1767 { SST(0x26, 0x0B, SS_FATAL | EINVAL, 1768 "Inline data length exceeded") }, 1769 /* DTLPWRO K */ 1770 { SST(0x26, 0x0C, SS_FATAL | EINVAL, 1771 "Invalid operation for copy source or destination") }, 1772 /* DTLPWRO K */ 1773 { SST(0x26, 0x0D, SS_FATAL | EINVAL, 1774 "Copy segment granularity violation") }, 1775 /* DT PWROMAEBK */ 1776 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */ 1777 "Invalid parameter while port is enabled") }, 1778 /* F */ 1779 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */ 1780 "Invalid data-out buffer integrity check value") }, 1781 /* T */ 1782 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */ 1783 "Data decryption key fail limit reached") }, 1784 /* T */ 1785 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */ 1786 "Incomplete key-associated data set") }, 1787 /* T */ 1788 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */ 1789 "Vendor specific key reference not found") }, 1790 /* D */ 1791 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */ 1792 "Application tag mode page is invalid") }, 1793 /* DT WRO BK */ 1794 { SST(0x27, 0x00, SS_FATAL | EACCES, 1795 "Write protected") }, 1796 /* DT WRO BK */ 1797 { SST(0x27, 0x01, SS_FATAL | EACCES, 1798 "Hardware write protected") }, 1799 /* DT WRO BK */ 1800 { SST(0x27, 0x02, SS_FATAL | EACCES, 1801 "Logical unit software write protected") }, 1802 /* T R */ 1803 { SST(0x27, 0x03, SS_FATAL | EACCES, 1804 "Associated write protect") }, 1805 /* T R */ 1806 { SST(0x27, 0x04, SS_FATAL | EACCES, 1807 "Persistent write protect") }, 1808 /* T R */ 1809 { SST(0x27, 0x05, SS_FATAL | EACCES, 1810 "Permanent write protect") }, 1811 /* R F */ 1812 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */ 1813 "Conditional write protect") }, 1814 /* D B */ 1815 { SST(0x27, 0x07, SS_FATAL | ENOSPC, 1816 "Space allocation failed write protect") }, 1817 /* D */ 1818 { SST(0x27, 0x08, SS_FATAL | EACCES, 1819 "Zone is read only") }, 1820 /* DTLPWROMAEBKVF */ 1821 { SST(0x28, 0x00, SS_FATAL | ENXIO, 1822 "Not ready to ready change, medium may have changed") }, 1823 /* DT WROM B */ 1824 { SST(0x28, 0x01, SS_FATAL | ENXIO, 1825 "Import or export element accessed") }, 1826 /* R */ 1827 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */ 1828 "Format-layer may have changed") }, 1829 /* M */ 1830 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */ 1831 "Import/export element accessed, medium changed") }, 1832 /* 1833 * XXX JGibbs - All of these should use the same errno, but I don't 1834 * think ENXIO is the correct choice. Should we borrow from 1835 * the networking errnos? ECONNRESET anyone? 1836 */ 1837 /* DTLPWROMAEBKVF */ 1838 { SST(0x29, 0x00, SS_FATAL | ENXIO, 1839 "Power on, reset, or bus device reset occurred") }, 1840 /* DTLPWROMAEBKVF */ 1841 { SST(0x29, 0x01, SS_RDEF, 1842 "Power on occurred") }, 1843 /* DTLPWROMAEBKVF */ 1844 { SST(0x29, 0x02, SS_RDEF, 1845 "SCSI bus reset occurred") }, 1846 /* DTLPWROMAEBKVF */ 1847 { SST(0x29, 0x03, SS_RDEF, 1848 "Bus device reset function occurred") }, 1849 /* DTLPWROMAEBKVF */ 1850 { SST(0x29, 0x04, SS_RDEF, 1851 "Device internal reset") }, 1852 /* DTLPWROMAEBKVF */ 1853 { SST(0x29, 0x05, SS_RDEF, 1854 "Transceiver mode changed to single-ended") }, 1855 /* DTLPWROMAEBKVF */ 1856 { SST(0x29, 0x06, SS_RDEF, 1857 "Transceiver mode changed to LVD") }, 1858 /* DTLPWROMAEBKVF */ 1859 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */ 1860 "I_T nexus loss occurred") }, 1861 /* DTL WROMAEBKVF */ 1862 { SST(0x2A, 0x00, SS_RDEF, 1863 "Parameters changed") }, 1864 /* DTL WROMAEBKVF */ 1865 { SST(0x2A, 0x01, SS_RDEF, 1866 "Mode parameters changed") }, 1867 /* DTL WROMAE K */ 1868 { SST(0x2A, 0x02, SS_RDEF, 1869 "Log parameters changed") }, 1870 /* DTLPWROMAE K */ 1871 { SST(0x2A, 0x03, SS_RDEF, 1872 "Reservations preempted") }, 1873 /* DTLPWROMAE */ 1874 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */ 1875 "Reservations released") }, 1876 /* DTLPWROMAE */ 1877 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */ 1878 "Registrations preempted") }, 1879 /* DTLPWROMAEBKVF */ 1880 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */ 1881 "Asymmetric access state changed") }, 1882 /* DTLPWROMAEBKVF */ 1883 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */ 1884 "Implicit asymmetric access state transition failed") }, 1885 /* DT WROMAEBKVF */ 1886 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */ 1887 "Priority changed") }, 1888 /* D */ 1889 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */ 1890 "Capacity data has changed") }, 1891 /* DT */ 1892 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */ 1893 "Error history I_T nexus cleared") }, 1894 /* DT */ 1895 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */ 1896 "Error history snapshot released") }, 1897 /* F */ 1898 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */ 1899 "Error recovery attributes have changed") }, 1900 /* T */ 1901 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */ 1902 "Data encryption capabilities changed") }, 1903 /* DT M E V */ 1904 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */ 1905 "Timestamp changed") }, 1906 /* T */ 1907 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */ 1908 "Data encryption parameters changed by another I_T nexus") }, 1909 /* T */ 1910 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */ 1911 "Data encryption parameters changed by vendor specific event") }, 1912 /* T */ 1913 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */ 1914 "Data encryption key instance counter has changed") }, 1915 /* DT R MAEBKV */ 1916 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */ 1917 "SA creation capabilities data has changed") }, 1918 /* T M V */ 1919 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */ 1920 "Medium removal prevention preempted") }, 1921 /* DTLPWRO K */ 1922 { SST(0x2B, 0x00, SS_RDEF, 1923 "Copy cannot execute since host cannot disconnect") }, 1924 /* DTLPWROMAEBKVF */ 1925 { SST(0x2C, 0x00, SS_RDEF, 1926 "Command sequence error") }, 1927 /* */ 1928 { SST(0x2C, 0x01, SS_RDEF, 1929 "Too many windows specified") }, 1930 /* */ 1931 { SST(0x2C, 0x02, SS_RDEF, 1932 "Invalid combination of windows specified") }, 1933 /* R */ 1934 { SST(0x2C, 0x03, SS_RDEF, 1935 "Current program area is not empty") }, 1936 /* R */ 1937 { SST(0x2C, 0x04, SS_RDEF, 1938 "Current program area is empty") }, 1939 /* B */ 1940 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */ 1941 "Illegal power condition request") }, 1942 /* R */ 1943 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */ 1944 "Persistent prevent conflict") }, 1945 /* DTLPWROMAEBKVF */ 1946 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */ 1947 "Previous busy status") }, 1948 /* DTLPWROMAEBKVF */ 1949 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */ 1950 "Previous task set full status") }, 1951 /* DTLPWROM EBKVF */ 1952 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */ 1953 "Previous reservation conflict status") }, 1954 /* F */ 1955 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */ 1956 "Partition or collection contains user objects") }, 1957 /* T */ 1958 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */ 1959 "Not reserved") }, 1960 /* D */ 1961 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */ 1962 "ORWRITE generation does not match") }, 1963 /* D */ 1964 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */ 1965 "Reset write pointer not allowed") }, 1966 /* D */ 1967 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */ 1968 "Zone is offline") }, 1969 /* D */ 1970 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */ 1971 "Stream not open") }, 1972 /* D */ 1973 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */ 1974 "Unwritten data in zone") }, 1975 /* T */ 1976 { SST(0x2D, 0x00, SS_RDEF, 1977 "Overwrite error on update in place") }, 1978 /* R */ 1979 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */ 1980 "Insufficient time for operation") }, 1981 /* D */ 1982 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */ 1983 "Command timeout before processing") }, 1984 /* D */ 1985 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */ 1986 "Command timeout during processing") }, 1987 /* D */ 1988 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */ 1989 "Command timeout during processing due to error recovery") }, 1990 /* DTLPWROMAEBKVF */ 1991 { SST(0x2F, 0x00, SS_RDEF, 1992 "Commands cleared by another initiator") }, 1993 /* D */ 1994 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */ 1995 "Commands cleared by power loss notification") }, 1996 /* DTLPWROMAEBKVF */ 1997 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */ 1998 "Commands cleared by device server") }, 1999 /* DTLPWROMAEBKVF */ 2000 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */ 2001 "Some commands cleared by queuing layer event") }, 2002 /* DT WROM BK */ 2003 { SST(0x30, 0x00, SS_RDEF, 2004 "Incompatible medium installed") }, 2005 /* DT WRO BK */ 2006 { SST(0x30, 0x01, SS_RDEF, 2007 "Cannot read medium - unknown format") }, 2008 /* DT WRO BK */ 2009 { SST(0x30, 0x02, SS_RDEF, 2010 "Cannot read medium - incompatible format") }, 2011 /* DT R K */ 2012 { SST(0x30, 0x03, SS_RDEF, 2013 "Cleaning cartridge installed") }, 2014 /* DT WRO BK */ 2015 { SST(0x30, 0x04, SS_RDEF, 2016 "Cannot write medium - unknown format") }, 2017 /* DT WRO BK */ 2018 { SST(0x30, 0x05, SS_RDEF, 2019 "Cannot write medium - incompatible format") }, 2020 /* DT WRO B */ 2021 { SST(0x30, 0x06, SS_RDEF, 2022 "Cannot format medium - incompatible medium") }, 2023 /* DTL WROMAEBKVF */ 2024 { SST(0x30, 0x07, SS_RDEF, 2025 "Cleaning failure") }, 2026 /* R */ 2027 { SST(0x30, 0x08, SS_RDEF, 2028 "Cannot write - application code mismatch") }, 2029 /* R */ 2030 { SST(0x30, 0x09, SS_RDEF, 2031 "Current session not fixated for append") }, 2032 /* DT WRO AEBK */ 2033 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */ 2034 "Cleaning request rejected") }, 2035 /* T */ 2036 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */ 2037 "WORM medium - overwrite attempted") }, 2038 /* T */ 2039 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */ 2040 "WORM medium - integrity check") }, 2041 /* R */ 2042 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */ 2043 "Medium not formatted") }, 2044 /* M */ 2045 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */ 2046 "Incompatible volume type") }, 2047 /* M */ 2048 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */ 2049 "Incompatible volume qualifier") }, 2050 /* M */ 2051 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */ 2052 "Cleaning volume expired") }, 2053 /* DT WRO BK */ 2054 { SST(0x31, 0x00, SS_RDEF, 2055 "Medium format corrupted") }, 2056 /* D L RO B */ 2057 { SST(0x31, 0x01, SS_RDEF, 2058 "Format command failed") }, 2059 /* R */ 2060 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */ 2061 "Zoned formatting failed due to spare linking") }, 2062 /* D B */ 2063 { SST(0x31, 0x03, SS_RDEF, /* XXX TBD */ 2064 "SANITIZE command failed") }, 2065 /* D W O BK */ 2066 { SST(0x32, 0x00, SS_RDEF, 2067 "No defect spare location available") }, 2068 /* D W O BK */ 2069 { SST(0x32, 0x01, SS_RDEF, 2070 "Defect list update failure") }, 2071 /* T */ 2072 { SST(0x33, 0x00, SS_RDEF, 2073 "Tape length error") }, 2074 /* DTLPWROMAEBKVF */ 2075 { SST(0x34, 0x00, SS_RDEF, 2076 "Enclosure failure") }, 2077 /* DTLPWROMAEBKVF */ 2078 { SST(0x35, 0x00, SS_RDEF, 2079 "Enclosure services failure") }, 2080 /* DTLPWROMAEBKVF */ 2081 { SST(0x35, 0x01, SS_RDEF, 2082 "Unsupported enclosure function") }, 2083 /* DTLPWROMAEBKVF */ 2084 { SST(0x35, 0x02, SS_RDEF, 2085 "Enclosure services unavailable") }, 2086 /* DTLPWROMAEBKVF */ 2087 { SST(0x35, 0x03, SS_RDEF, 2088 "Enclosure services transfer failure") }, 2089 /* DTLPWROMAEBKVF */ 2090 { SST(0x35, 0x04, SS_RDEF, 2091 "Enclosure services transfer refused") }, 2092 /* DTL WROMAEBKVF */ 2093 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */ 2094 "Enclosure services checksum error") }, 2095 /* L */ 2096 { SST(0x36, 0x00, SS_RDEF, 2097 "Ribbon, ink, or toner failure") }, 2098 /* DTL WROMAEBKVF */ 2099 { SST(0x37, 0x00, SS_RDEF, 2100 "Rounded parameter") }, 2101 /* B */ 2102 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */ 2103 "Event status notification") }, 2104 /* B */ 2105 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */ 2106 "ESN - power management class event") }, 2107 /* B */ 2108 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */ 2109 "ESN - media class event") }, 2110 /* B */ 2111 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */ 2112 "ESN - device busy class event") }, 2113 /* D */ 2114 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */ 2115 "Thin provisioning soft threshold reached") }, 2116 /* DTL WROMAE K */ 2117 { SST(0x39, 0x00, SS_RDEF, 2118 "Saving parameters not supported") }, 2119 /* DTL WROM BK */ 2120 { SST(0x3A, 0x00, SS_FATAL | ENXIO, 2121 "Medium not present") }, 2122 /* DT WROM BK */ 2123 { SST(0x3A, 0x01, SS_FATAL | ENXIO, 2124 "Medium not present - tray closed") }, 2125 /* DT WROM BK */ 2126 { SST(0x3A, 0x02, SS_FATAL | ENXIO, 2127 "Medium not present - tray open") }, 2128 /* DT WROM B */ 2129 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */ 2130 "Medium not present - loadable") }, 2131 /* DT WRO B */ 2132 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */ 2133 "Medium not present - medium auxiliary memory accessible") }, 2134 /* TL */ 2135 { SST(0x3B, 0x00, SS_RDEF, 2136 "Sequential positioning error") }, 2137 /* T */ 2138 { SST(0x3B, 0x01, SS_RDEF, 2139 "Tape position error at beginning-of-medium") }, 2140 /* T */ 2141 { SST(0x3B, 0x02, SS_RDEF, 2142 "Tape position error at end-of-medium") }, 2143 /* L */ 2144 { SST(0x3B, 0x03, SS_RDEF, 2145 "Tape or electronic vertical forms unit not ready") }, 2146 /* L */ 2147 { SST(0x3B, 0x04, SS_RDEF, 2148 "Slew failure") }, 2149 /* L */ 2150 { SST(0x3B, 0x05, SS_RDEF, 2151 "Paper jam") }, 2152 /* L */ 2153 { SST(0x3B, 0x06, SS_RDEF, 2154 "Failed to sense top-of-form") }, 2155 /* L */ 2156 { SST(0x3B, 0x07, SS_RDEF, 2157 "Failed to sense bottom-of-form") }, 2158 /* T */ 2159 { SST(0x3B, 0x08, SS_RDEF, 2160 "Reposition error") }, 2161 /* */ 2162 { SST(0x3B, 0x09, SS_RDEF, 2163 "Read past end of medium") }, 2164 /* */ 2165 { SST(0x3B, 0x0A, SS_RDEF, 2166 "Read past beginning of medium") }, 2167 /* */ 2168 { SST(0x3B, 0x0B, SS_RDEF, 2169 "Position past end of medium") }, 2170 /* T */ 2171 { SST(0x3B, 0x0C, SS_RDEF, 2172 "Position past beginning of medium") }, 2173 /* DT WROM BK */ 2174 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC, 2175 "Medium destination element full") }, 2176 /* DT WROM BK */ 2177 { SST(0x3B, 0x0E, SS_RDEF, 2178 "Medium source element empty") }, 2179 /* R */ 2180 { SST(0x3B, 0x0F, SS_RDEF, 2181 "End of medium reached") }, 2182 /* DT WROM BK */ 2183 { SST(0x3B, 0x11, SS_RDEF, 2184 "Medium magazine not accessible") }, 2185 /* DT WROM BK */ 2186 { SST(0x3B, 0x12, SS_RDEF, 2187 "Medium magazine removed") }, 2188 /* DT WROM BK */ 2189 { SST(0x3B, 0x13, SS_RDEF, 2190 "Medium magazine inserted") }, 2191 /* DT WROM BK */ 2192 { SST(0x3B, 0x14, SS_RDEF, 2193 "Medium magazine locked") }, 2194 /* DT WROM BK */ 2195 { SST(0x3B, 0x15, SS_RDEF, 2196 "Medium magazine unlocked") }, 2197 /* R */ 2198 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */ 2199 "Mechanical positioning or changer error") }, 2200 /* F */ 2201 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */ 2202 "Read past end of user object") }, 2203 /* M */ 2204 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */ 2205 "Element disabled") }, 2206 /* M */ 2207 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */ 2208 "Element enabled") }, 2209 /* M */ 2210 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */ 2211 "Data transfer device removed") }, 2212 /* M */ 2213 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */ 2214 "Data transfer device inserted") }, 2215 /* T */ 2216 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */ 2217 "Too many logical objects on partition to support operation") }, 2218 /* DTLPWROMAE K */ 2219 { SST(0x3D, 0x00, SS_RDEF, 2220 "Invalid bits in IDENTIFY message") }, 2221 /* DTLPWROMAEBKVF */ 2222 { SST(0x3E, 0x00, SS_RDEF, 2223 "Logical unit has not self-configured yet") }, 2224 /* DTLPWROMAEBKVF */ 2225 { SST(0x3E, 0x01, SS_RDEF, 2226 "Logical unit failure") }, 2227 /* DTLPWROMAEBKVF */ 2228 { SST(0x3E, 0x02, SS_RDEF, 2229 "Timeout on logical unit") }, 2230 /* DTLPWROMAEBKVF */ 2231 { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */ 2232 "Logical unit failed self-test") }, 2233 /* DTLPWROMAEBKVF */ 2234 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */ 2235 "Logical unit unable to update self-test log") }, 2236 /* DTLPWROMAEBKVF */ 2237 { SST(0x3F, 0x00, SS_RDEF, 2238 "Target operating conditions have changed") }, 2239 /* DTLPWROMAEBKVF */ 2240 { SST(0x3F, 0x01, SS_RDEF, 2241 "Microcode has been changed") }, 2242 /* DTLPWROM BK */ 2243 { SST(0x3F, 0x02, SS_RDEF, 2244 "Changed operating definition") }, 2245 /* DTLPWROMAEBKVF */ 2246 { SST(0x3F, 0x03, SS_RDEF, 2247 "INQUIRY data has changed") }, 2248 /* DT WROMAEBK */ 2249 { SST(0x3F, 0x04, SS_RDEF, 2250 "Component device attached") }, 2251 /* DT WROMAEBK */ 2252 { SST(0x3F, 0x05, SS_RDEF, 2253 "Device identifier changed") }, 2254 /* DT WROMAEB */ 2255 { SST(0x3F, 0x06, SS_RDEF, 2256 "Redundancy group created or modified") }, 2257 /* DT WROMAEB */ 2258 { SST(0x3F, 0x07, SS_RDEF, 2259 "Redundancy group deleted") }, 2260 /* DT WROMAEB */ 2261 { SST(0x3F, 0x08, SS_RDEF, 2262 "Spare created or modified") }, 2263 /* DT WROMAEB */ 2264 { SST(0x3F, 0x09, SS_RDEF, 2265 "Spare deleted") }, 2266 /* DT WROMAEBK */ 2267 { SST(0x3F, 0x0A, SS_RDEF, 2268 "Volume set created or modified") }, 2269 /* DT WROMAEBK */ 2270 { SST(0x3F, 0x0B, SS_RDEF, 2271 "Volume set deleted") }, 2272 /* DT WROMAEBK */ 2273 { SST(0x3F, 0x0C, SS_RDEF, 2274 "Volume set deassigned") }, 2275 /* DT WROMAEBK */ 2276 { SST(0x3F, 0x0D, SS_RDEF, 2277 "Volume set reassigned") }, 2278 /* DTLPWROMAE */ 2279 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN , 2280 "Reported LUNs data has changed") }, 2281 /* DTLPWROMAEBKVF */ 2282 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */ 2283 "Echo buffer overwritten") }, 2284 /* DT WROM B */ 2285 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */ 2286 "Medium loadable") }, 2287 /* DT WROM B */ 2288 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */ 2289 "Medium auxiliary memory accessible") }, 2290 /* DTLPWR MAEBK F */ 2291 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */ 2292 "iSCSI IP address added") }, 2293 /* DTLPWR MAEBK F */ 2294 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */ 2295 "iSCSI IP address removed") }, 2296 /* DTLPWR MAEBK F */ 2297 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */ 2298 "iSCSI IP address changed") }, 2299 /* DTLPWR MAEBK */ 2300 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */ 2301 "Inspect referrals sense descriptors") }, 2302 /* DTLPWROMAEBKVF */ 2303 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */ 2304 "Microcode has been changed without reset") }, 2305 /* D */ 2306 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */ 2307 "Zone transition to full") }, 2308 /* D */ 2309 { SST(0x40, 0x00, SS_RDEF, 2310 "RAM failure") }, /* deprecated - use 40 NN instead */ 2311 /* DTLPWROMAEBKVF */ 2312 { SST(0x40, 0x80, SS_RDEF, 2313 "Diagnostic failure: ASCQ = Component ID") }, 2314 /* DTLPWROMAEBKVF */ 2315 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE, 2316 NULL) }, /* Range 0x80->0xFF */ 2317 /* D */ 2318 { SST(0x41, 0x00, SS_RDEF, 2319 "Data path failure") }, /* deprecated - use 40 NN instead */ 2320 /* D */ 2321 { SST(0x42, 0x00, SS_RDEF, 2322 "Power-on or self-test failure") }, 2323 /* deprecated - use 40 NN instead */ 2324 /* DTLPWROMAEBKVF */ 2325 { SST(0x43, 0x00, SS_RDEF, 2326 "Message error") }, 2327 /* DTLPWROMAEBKVF */ 2328 { SST(0x44, 0x00, SS_RDEF, 2329 "Internal target failure") }, 2330 /* DT P MAEBKVF */ 2331 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */ 2332 "Persistent reservation information lost") }, 2333 /* DT B */ 2334 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */ 2335 "ATA device failed set features") }, 2336 /* DTLPWROMAEBKVF */ 2337 { SST(0x45, 0x00, SS_RDEF, 2338 "Select or reselect failure") }, 2339 /* DTLPWROM BK */ 2340 { SST(0x46, 0x00, SS_RDEF, 2341 "Unsuccessful soft reset") }, 2342 /* DTLPWROMAEBKVF */ 2343 { SST(0x47, 0x00, SS_RDEF, 2344 "SCSI parity error") }, 2345 /* DTLPWROMAEBKVF */ 2346 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */ 2347 "Data phase CRC error detected") }, 2348 /* DTLPWROMAEBKVF */ 2349 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */ 2350 "SCSI parity error detected during ST data phase") }, 2351 /* DTLPWROMAEBKVF */ 2352 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */ 2353 "Information unit iuCRC error detected") }, 2354 /* DTLPWROMAEBKVF */ 2355 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */ 2356 "Asynchronous information protection error detected") }, 2357 /* DTLPWROMAEBKVF */ 2358 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */ 2359 "Protocol service CRC error") }, 2360 /* DT MAEBKVF */ 2361 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */ 2362 "PHY test function in progress") }, 2363 /* DT PWROMAEBK */ 2364 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */ 2365 "Some commands cleared by iSCSI protocol event") }, 2366 /* DTLPWROMAEBKVF */ 2367 { SST(0x48, 0x00, SS_RDEF, 2368 "Initiator detected error message received") }, 2369 /* DTLPWROMAEBKVF */ 2370 { SST(0x49, 0x00, SS_RDEF, 2371 "Invalid message error") }, 2372 /* DTLPWROMAEBKVF */ 2373 { SST(0x4A, 0x00, SS_RDEF, 2374 "Command phase error") }, 2375 /* DTLPWROMAEBKVF */ 2376 { SST(0x4B, 0x00, SS_RDEF, 2377 "Data phase error") }, 2378 /* DT PWROMAEBK */ 2379 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */ 2380 "Invalid target port transfer tag received") }, 2381 /* DT PWROMAEBK */ 2382 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */ 2383 "Too much write data") }, 2384 /* DT PWROMAEBK */ 2385 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */ 2386 "ACK/NAK timeout") }, 2387 /* DT PWROMAEBK */ 2388 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */ 2389 "NAK received") }, 2390 /* DT PWROMAEBK */ 2391 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */ 2392 "Data offset error") }, 2393 /* DT PWROMAEBK */ 2394 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */ 2395 "Initiator response timeout") }, 2396 /* DT PWROMAEBK F */ 2397 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */ 2398 "Connection lost") }, 2399 /* DT PWROMAEBK F */ 2400 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */ 2401 "Data-in buffer overflow - data buffer size") }, 2402 /* DT PWROMAEBK F */ 2403 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */ 2404 "Data-in buffer overflow - data buffer descriptor area") }, 2405 /* DT PWROMAEBK F */ 2406 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */ 2407 "Data-in buffer error") }, 2408 /* DT PWROMAEBK F */ 2409 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */ 2410 "Data-out buffer overflow - data buffer size") }, 2411 /* DT PWROMAEBK F */ 2412 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */ 2413 "Data-out buffer overflow - data buffer descriptor area") }, 2414 /* DT PWROMAEBK F */ 2415 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */ 2416 "Data-out buffer error") }, 2417 /* DT PWROMAEBK F */ 2418 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */ 2419 "PCIe fabric error") }, 2420 /* DT PWROMAEBK F */ 2421 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */ 2422 "PCIe completion timeout") }, 2423 /* DT PWROMAEBK F */ 2424 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */ 2425 "PCIe completer abort") }, 2426 /* DT PWROMAEBK F */ 2427 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */ 2428 "PCIe poisoned TLP received") }, 2429 /* DT PWROMAEBK F */ 2430 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */ 2431 "PCIe ECRC check failed") }, 2432 /* DT PWROMAEBK F */ 2433 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */ 2434 "PCIe unsupported request") }, 2435 /* DT PWROMAEBK F */ 2436 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */ 2437 "PCIe ACS violation") }, 2438 /* DT PWROMAEBK F */ 2439 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */ 2440 "PCIe TLP prefix blocket") }, 2441 /* DTLPWROMAEBKVF */ 2442 { SST(0x4C, 0x00, SS_RDEF, 2443 "Logical unit failed self-configuration") }, 2444 /* DTLPWROMAEBKVF */ 2445 { SST(0x4D, 0x00, SS_RDEF, 2446 "Tagged overlapped commands: ASCQ = Queue tag ID") }, 2447 /* DTLPWROMAEBKVF */ 2448 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE, 2449 NULL) }, /* Range 0x00->0xFF */ 2450 /* DTLPWROMAEBKVF */ 2451 { SST(0x4E, 0x00, SS_RDEF, 2452 "Overlapped commands attempted") }, 2453 /* T */ 2454 { SST(0x50, 0x00, SS_RDEF, 2455 "Write append error") }, 2456 /* T */ 2457 { SST(0x50, 0x01, SS_RDEF, 2458 "Write append position error") }, 2459 /* T */ 2460 { SST(0x50, 0x02, SS_RDEF, 2461 "Position error related to timing") }, 2462 /* T RO */ 2463 { SST(0x51, 0x00, SS_RDEF, 2464 "Erase failure") }, 2465 /* R */ 2466 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */ 2467 "Erase failure - incomplete erase operation detected") }, 2468 /* T */ 2469 { SST(0x52, 0x00, SS_RDEF, 2470 "Cartridge fault") }, 2471 /* DTL WROM BK */ 2472 { SST(0x53, 0x00, SS_RDEF, 2473 "Media load or eject failed") }, 2474 /* T */ 2475 { SST(0x53, 0x01, SS_RDEF, 2476 "Unload tape failure") }, 2477 /* DT WROM BK */ 2478 { SST(0x53, 0x02, SS_RDEF, 2479 "Medium removal prevented") }, 2480 /* M */ 2481 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */ 2482 "Medium removal prevented by data transfer element") }, 2483 /* T */ 2484 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */ 2485 "Medium thread or unthread failure") }, 2486 /* M */ 2487 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */ 2488 "Volume identifier invalid") }, 2489 /* T */ 2490 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */ 2491 "Volume identifier missing") }, 2492 /* M */ 2493 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */ 2494 "Duplicate volume identifier") }, 2495 /* M */ 2496 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */ 2497 "Element status unknown") }, 2498 /* M */ 2499 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */ 2500 "Data transfer device error - load failed") }, 2501 /* M */ 2502 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */ 2503 "Data transfer device error - unload failed") }, 2504 /* M */ 2505 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */ 2506 "Data transfer device error - unload missing") }, 2507 /* M */ 2508 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */ 2509 "Data transfer device error - eject failed") }, 2510 /* M */ 2511 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */ 2512 "Data transfer device error - library communication failed") }, 2513 /* P */ 2514 { SST(0x54, 0x00, SS_RDEF, 2515 "SCSI to host system interface failure") }, 2516 /* P */ 2517 { SST(0x55, 0x00, SS_RDEF, 2518 "System resource failure") }, 2519 /* D O BK */ 2520 { SST(0x55, 0x01, SS_FATAL | ENOSPC, 2521 "System buffer full") }, 2522 /* DTLPWROMAE K */ 2523 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */ 2524 "Insufficient reservation resources") }, 2525 /* DTLPWROMAE K */ 2526 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */ 2527 "Insufficient resources") }, 2528 /* DTLPWROMAE K */ 2529 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */ 2530 "Insufficient registration resources") }, 2531 /* DT PWROMAEBK */ 2532 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */ 2533 "Insufficient access control resources") }, 2534 /* DT WROM B */ 2535 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */ 2536 "Auxiliary memory out of space") }, 2537 /* F */ 2538 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */ 2539 "Quota error") }, 2540 /* T */ 2541 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */ 2542 "Maximum number of supplemental decryption keys exceeded") }, 2543 /* M */ 2544 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */ 2545 "Medium auxiliary memory not accessible") }, 2546 /* M */ 2547 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */ 2548 "Data currently unavailable") }, 2549 /* DTLPWROMAEBKVF */ 2550 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */ 2551 "Insufficient power for operation") }, 2552 /* DT P B */ 2553 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */ 2554 "Insufficient resources to create ROD") }, 2555 /* DT P B */ 2556 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */ 2557 "Insufficient resources to create ROD token") }, 2558 /* D */ 2559 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */ 2560 "Insufficient zone resources") }, 2561 /* D */ 2562 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */ 2563 "Insufficient zone resources to complete write") }, 2564 /* D */ 2565 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */ 2566 "Maximum number of streams open") }, 2567 /* R */ 2568 { SST(0x57, 0x00, SS_RDEF, 2569 "Unable to recover table-of-contents") }, 2570 /* O */ 2571 { SST(0x58, 0x00, SS_RDEF, 2572 "Generation does not exist") }, 2573 /* O */ 2574 { SST(0x59, 0x00, SS_RDEF, 2575 "Updated block read") }, 2576 /* DTLPWRO BK */ 2577 { SST(0x5A, 0x00, SS_RDEF, 2578 "Operator request or state change input") }, 2579 /* DT WROM BK */ 2580 { SST(0x5A, 0x01, SS_RDEF, 2581 "Operator medium removal request") }, 2582 /* DT WRO A BK */ 2583 { SST(0x5A, 0x02, SS_RDEF, 2584 "Operator selected write protect") }, 2585 /* DT WRO A BK */ 2586 { SST(0x5A, 0x03, SS_RDEF, 2587 "Operator selected write permit") }, 2588 /* DTLPWROM K */ 2589 { SST(0x5B, 0x00, SS_RDEF, 2590 "Log exception") }, 2591 /* DTLPWROM K */ 2592 { SST(0x5B, 0x01, SS_RDEF, 2593 "Threshold condition met") }, 2594 /* DTLPWROM K */ 2595 { SST(0x5B, 0x02, SS_RDEF, 2596 "Log counter at maximum") }, 2597 /* DTLPWROM K */ 2598 { SST(0x5B, 0x03, SS_RDEF, 2599 "Log list codes exhausted") }, 2600 /* D O */ 2601 { SST(0x5C, 0x00, SS_RDEF, 2602 "RPL status change") }, 2603 /* D O */ 2604 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE, 2605 "Spindles synchronized") }, 2606 /* D O */ 2607 { SST(0x5C, 0x02, SS_RDEF, 2608 "Spindles not synchronized") }, 2609 /* DTLPWROMAEBKVF */ 2610 { SST(0x5D, 0x00, SS_RDEF, 2611 "Failure prediction threshold exceeded") }, 2612 /* R B */ 2613 { SST(0x5D, 0x01, SS_RDEF, /* XXX TBD */ 2614 "Media failure prediction threshold exceeded") }, 2615 /* R */ 2616 { SST(0x5D, 0x02, SS_RDEF, /* XXX TBD */ 2617 "Logical unit failure prediction threshold exceeded") }, 2618 /* R */ 2619 { SST(0x5D, 0x03, SS_RDEF, /* XXX TBD */ 2620 "Spare area exhaustion prediction threshold exceeded") }, 2621 /* D B */ 2622 { SST(0x5D, 0x10, SS_RDEF, /* XXX TBD */ 2623 "Hardware impending failure general hard drive failure") }, 2624 /* D B */ 2625 { SST(0x5D, 0x11, SS_RDEF, /* XXX TBD */ 2626 "Hardware impending failure drive error rate too high") }, 2627 /* D B */ 2628 { SST(0x5D, 0x12, SS_RDEF, /* XXX TBD */ 2629 "Hardware impending failure data error rate too high") }, 2630 /* D B */ 2631 { SST(0x5D, 0x13, SS_RDEF, /* XXX TBD */ 2632 "Hardware impending failure seek error rate too high") }, 2633 /* D B */ 2634 { SST(0x5D, 0x14, SS_RDEF, /* XXX TBD */ 2635 "Hardware impending failure too many block reassigns") }, 2636 /* D B */ 2637 { SST(0x5D, 0x15, SS_RDEF, /* XXX TBD */ 2638 "Hardware impending failure access times too high") }, 2639 /* D B */ 2640 { SST(0x5D, 0x16, SS_RDEF, /* XXX TBD */ 2641 "Hardware impending failure start unit times too high") }, 2642 /* D B */ 2643 { SST(0x5D, 0x17, SS_RDEF, /* XXX TBD */ 2644 "Hardware impending failure channel parametrics") }, 2645 /* D B */ 2646 { SST(0x5D, 0x18, SS_RDEF, /* XXX TBD */ 2647 "Hardware impending failure controller detected") }, 2648 /* D B */ 2649 { SST(0x5D, 0x19, SS_RDEF, /* XXX TBD */ 2650 "Hardware impending failure throughput performance") }, 2651 /* D B */ 2652 { SST(0x5D, 0x1A, SS_RDEF, /* XXX TBD */ 2653 "Hardware impending failure seek time performance") }, 2654 /* D B */ 2655 { SST(0x5D, 0x1B, SS_RDEF, /* XXX TBD */ 2656 "Hardware impending failure spin-up retry count") }, 2657 /* D B */ 2658 { SST(0x5D, 0x1C, SS_RDEF, /* XXX TBD */ 2659 "Hardware impending failure drive calibration retry count") }, 2660 /* D B */ 2661 { SST(0x5D, 0x20, SS_RDEF, /* XXX TBD */ 2662 "Controller impending failure general hard drive failure") }, 2663 /* D B */ 2664 { SST(0x5D, 0x21, SS_RDEF, /* XXX TBD */ 2665 "Controller impending failure drive error rate too high") }, 2666 /* D B */ 2667 { SST(0x5D, 0x22, SS_RDEF, /* XXX TBD */ 2668 "Controller impending failure data error rate too high") }, 2669 /* D B */ 2670 { SST(0x5D, 0x23, SS_RDEF, /* XXX TBD */ 2671 "Controller impending failure seek error rate too high") }, 2672 /* D B */ 2673 { SST(0x5D, 0x24, SS_RDEF, /* XXX TBD */ 2674 "Controller impending failure too many block reassigns") }, 2675 /* D B */ 2676 { SST(0x5D, 0x25, SS_RDEF, /* XXX TBD */ 2677 "Controller impending failure access times too high") }, 2678 /* D B */ 2679 { SST(0x5D, 0x26, SS_RDEF, /* XXX TBD */ 2680 "Controller impending failure start unit times too high") }, 2681 /* D B */ 2682 { SST(0x5D, 0x27, SS_RDEF, /* XXX TBD */ 2683 "Controller impending failure channel parametrics") }, 2684 /* D B */ 2685 { SST(0x5D, 0x28, SS_RDEF, /* XXX TBD */ 2686 "Controller impending failure controller detected") }, 2687 /* D B */ 2688 { SST(0x5D, 0x29, SS_RDEF, /* XXX TBD */ 2689 "Controller impending failure throughput performance") }, 2690 /* D B */ 2691 { SST(0x5D, 0x2A, SS_RDEF, /* XXX TBD */ 2692 "Controller impending failure seek time performance") }, 2693 /* D B */ 2694 { SST(0x5D, 0x2B, SS_RDEF, /* XXX TBD */ 2695 "Controller impending failure spin-up retry count") }, 2696 /* D B */ 2697 { SST(0x5D, 0x2C, SS_RDEF, /* XXX TBD */ 2698 "Controller impending failure drive calibration retry count") }, 2699 /* D B */ 2700 { SST(0x5D, 0x30, SS_RDEF, /* XXX TBD */ 2701 "Data channel impending failure general hard drive failure") }, 2702 /* D B */ 2703 { SST(0x5D, 0x31, SS_RDEF, /* XXX TBD */ 2704 "Data channel impending failure drive error rate too high") }, 2705 /* D B */ 2706 { SST(0x5D, 0x32, SS_RDEF, /* XXX TBD */ 2707 "Data channel impending failure data error rate too high") }, 2708 /* D B */ 2709 { SST(0x5D, 0x33, SS_RDEF, /* XXX TBD */ 2710 "Data channel impending failure seek error rate too high") }, 2711 /* D B */ 2712 { SST(0x5D, 0x34, SS_RDEF, /* XXX TBD */ 2713 "Data channel impending failure too many block reassigns") }, 2714 /* D B */ 2715 { SST(0x5D, 0x35, SS_RDEF, /* XXX TBD */ 2716 "Data channel impending failure access times too high") }, 2717 /* D B */ 2718 { SST(0x5D, 0x36, SS_RDEF, /* XXX TBD */ 2719 "Data channel impending failure start unit times too high") }, 2720 /* D B */ 2721 { SST(0x5D, 0x37, SS_RDEF, /* XXX TBD */ 2722 "Data channel impending failure channel parametrics") }, 2723 /* D B */ 2724 { SST(0x5D, 0x38, SS_RDEF, /* XXX TBD */ 2725 "Data channel impending failure controller detected") }, 2726 /* D B */ 2727 { SST(0x5D, 0x39, SS_RDEF, /* XXX TBD */ 2728 "Data channel impending failure throughput performance") }, 2729 /* D B */ 2730 { SST(0x5D, 0x3A, SS_RDEF, /* XXX TBD */ 2731 "Data channel impending failure seek time performance") }, 2732 /* D B */ 2733 { SST(0x5D, 0x3B, SS_RDEF, /* XXX TBD */ 2734 "Data channel impending failure spin-up retry count") }, 2735 /* D B */ 2736 { SST(0x5D, 0x3C, SS_RDEF, /* XXX TBD */ 2737 "Data channel impending failure drive calibration retry count") }, 2738 /* D B */ 2739 { SST(0x5D, 0x40, SS_RDEF, /* XXX TBD */ 2740 "Servo impending failure general hard drive failure") }, 2741 /* D B */ 2742 { SST(0x5D, 0x41, SS_RDEF, /* XXX TBD */ 2743 "Servo impending failure drive error rate too high") }, 2744 /* D B */ 2745 { SST(0x5D, 0x42, SS_RDEF, /* XXX TBD */ 2746 "Servo impending failure data error rate too high") }, 2747 /* D B */ 2748 { SST(0x5D, 0x43, SS_RDEF, /* XXX TBD */ 2749 "Servo impending failure seek error rate too high") }, 2750 /* D B */ 2751 { SST(0x5D, 0x44, SS_RDEF, /* XXX TBD */ 2752 "Servo impending failure too many block reassigns") }, 2753 /* D B */ 2754 { SST(0x5D, 0x45, SS_RDEF, /* XXX TBD */ 2755 "Servo impending failure access times too high") }, 2756 /* D B */ 2757 { SST(0x5D, 0x46, SS_RDEF, /* XXX TBD */ 2758 "Servo impending failure start unit times too high") }, 2759 /* D B */ 2760 { SST(0x5D, 0x47, SS_RDEF, /* XXX TBD */ 2761 "Servo impending failure channel parametrics") }, 2762 /* D B */ 2763 { SST(0x5D, 0x48, SS_RDEF, /* XXX TBD */ 2764 "Servo impending failure controller detected") }, 2765 /* D B */ 2766 { SST(0x5D, 0x49, SS_RDEF, /* XXX TBD */ 2767 "Servo impending failure throughput performance") }, 2768 /* D B */ 2769 { SST(0x5D, 0x4A, SS_RDEF, /* XXX TBD */ 2770 "Servo impending failure seek time performance") }, 2771 /* D B */ 2772 { SST(0x5D, 0x4B, SS_RDEF, /* XXX TBD */ 2773 "Servo impending failure spin-up retry count") }, 2774 /* D B */ 2775 { SST(0x5D, 0x4C, SS_RDEF, /* XXX TBD */ 2776 "Servo impending failure drive calibration retry count") }, 2777 /* D B */ 2778 { SST(0x5D, 0x50, SS_RDEF, /* XXX TBD */ 2779 "Spindle impending failure general hard drive failure") }, 2780 /* D B */ 2781 { SST(0x5D, 0x51, SS_RDEF, /* XXX TBD */ 2782 "Spindle impending failure drive error rate too high") }, 2783 /* D B */ 2784 { SST(0x5D, 0x52, SS_RDEF, /* XXX TBD */ 2785 "Spindle impending failure data error rate too high") }, 2786 /* D B */ 2787 { SST(0x5D, 0x53, SS_RDEF, /* XXX TBD */ 2788 "Spindle impending failure seek error rate too high") }, 2789 /* D B */ 2790 { SST(0x5D, 0x54, SS_RDEF, /* XXX TBD */ 2791 "Spindle impending failure too many block reassigns") }, 2792 /* D B */ 2793 { SST(0x5D, 0x55, SS_RDEF, /* XXX TBD */ 2794 "Spindle impending failure access times too high") }, 2795 /* D B */ 2796 { SST(0x5D, 0x56, SS_RDEF, /* XXX TBD */ 2797 "Spindle impending failure start unit times too high") }, 2798 /* D B */ 2799 { SST(0x5D, 0x57, SS_RDEF, /* XXX TBD */ 2800 "Spindle impending failure channel parametrics") }, 2801 /* D B */ 2802 { SST(0x5D, 0x58, SS_RDEF, /* XXX TBD */ 2803 "Spindle impending failure controller detected") }, 2804 /* D B */ 2805 { SST(0x5D, 0x59, SS_RDEF, /* XXX TBD */ 2806 "Spindle impending failure throughput performance") }, 2807 /* D B */ 2808 { SST(0x5D, 0x5A, SS_RDEF, /* XXX TBD */ 2809 "Spindle impending failure seek time performance") }, 2810 /* D B */ 2811 { SST(0x5D, 0x5B, SS_RDEF, /* XXX TBD */ 2812 "Spindle impending failure spin-up retry count") }, 2813 /* D B */ 2814 { SST(0x5D, 0x5C, SS_RDEF, /* XXX TBD */ 2815 "Spindle impending failure drive calibration retry count") }, 2816 /* D B */ 2817 { SST(0x5D, 0x60, SS_RDEF, /* XXX TBD */ 2818 "Firmware impending failure general hard drive failure") }, 2819 /* D B */ 2820 { SST(0x5D, 0x61, SS_RDEF, /* XXX TBD */ 2821 "Firmware impending failure drive error rate too high") }, 2822 /* D B */ 2823 { SST(0x5D, 0x62, SS_RDEF, /* XXX TBD */ 2824 "Firmware impending failure data error rate too high") }, 2825 /* D B */ 2826 { SST(0x5D, 0x63, SS_RDEF, /* XXX TBD */ 2827 "Firmware impending failure seek error rate too high") }, 2828 /* D B */ 2829 { SST(0x5D, 0x64, SS_RDEF, /* XXX TBD */ 2830 "Firmware impending failure too many block reassigns") }, 2831 /* D B */ 2832 { SST(0x5D, 0x65, SS_RDEF, /* XXX TBD */ 2833 "Firmware impending failure access times too high") }, 2834 /* D B */ 2835 { SST(0x5D, 0x66, SS_RDEF, /* XXX TBD */ 2836 "Firmware impending failure start unit times too high") }, 2837 /* D B */ 2838 { SST(0x5D, 0x67, SS_RDEF, /* XXX TBD */ 2839 "Firmware impending failure channel parametrics") }, 2840 /* D B */ 2841 { SST(0x5D, 0x68, SS_RDEF, /* XXX TBD */ 2842 "Firmware impending failure controller detected") }, 2843 /* D B */ 2844 { SST(0x5D, 0x69, SS_RDEF, /* XXX TBD */ 2845 "Firmware impending failure throughput performance") }, 2846 /* D B */ 2847 { SST(0x5D, 0x6A, SS_RDEF, /* XXX TBD */ 2848 "Firmware impending failure seek time performance") }, 2849 /* D B */ 2850 { SST(0x5D, 0x6B, SS_RDEF, /* XXX TBD */ 2851 "Firmware impending failure spin-up retry count") }, 2852 /* D B */ 2853 { SST(0x5D, 0x6C, SS_RDEF, /* XXX TBD */ 2854 "Firmware impending failure drive calibration retry count") }, 2855 /* DTLPWROMAEBKVF */ 2856 { SST(0x5D, 0xFF, SS_RDEF, 2857 "Failure prediction threshold exceeded (false)") }, 2858 /* DTLPWRO A K */ 2859 { SST(0x5E, 0x00, SS_RDEF, 2860 "Low power condition on") }, 2861 /* DTLPWRO A K */ 2862 { SST(0x5E, 0x01, SS_RDEF, 2863 "Idle condition activated by timer") }, 2864 /* DTLPWRO A K */ 2865 { SST(0x5E, 0x02, SS_RDEF, 2866 "Standby condition activated by timer") }, 2867 /* DTLPWRO A K */ 2868 { SST(0x5E, 0x03, SS_RDEF, 2869 "Idle condition activated by command") }, 2870 /* DTLPWRO A K */ 2871 { SST(0x5E, 0x04, SS_RDEF, 2872 "Standby condition activated by command") }, 2873 /* DTLPWRO A K */ 2874 { SST(0x5E, 0x05, SS_RDEF, 2875 "Idle-B condition activated by timer") }, 2876 /* DTLPWRO A K */ 2877 { SST(0x5E, 0x06, SS_RDEF, 2878 "Idle-B condition activated by command") }, 2879 /* DTLPWRO A K */ 2880 { SST(0x5E, 0x07, SS_RDEF, 2881 "Idle-C condition activated by timer") }, 2882 /* DTLPWRO A K */ 2883 { SST(0x5E, 0x08, SS_RDEF, 2884 "Idle-C condition activated by command") }, 2885 /* DTLPWRO A K */ 2886 { SST(0x5E, 0x09, SS_RDEF, 2887 "Standby-Y condition activated by timer") }, 2888 /* DTLPWRO A K */ 2889 { SST(0x5E, 0x0A, SS_RDEF, 2890 "Standby-Y condition activated by command") }, 2891 /* B */ 2892 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */ 2893 "Power state change to active") }, 2894 /* B */ 2895 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */ 2896 "Power state change to idle") }, 2897 /* B */ 2898 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */ 2899 "Power state change to standby") }, 2900 /* B */ 2901 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */ 2902 "Power state change to sleep") }, 2903 /* BK */ 2904 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */ 2905 "Power state change to device control") }, 2906 /* */ 2907 { SST(0x60, 0x00, SS_RDEF, 2908 "Lamp failure") }, 2909 /* */ 2910 { SST(0x61, 0x00, SS_RDEF, 2911 "Video acquisition error") }, 2912 /* */ 2913 { SST(0x61, 0x01, SS_RDEF, 2914 "Unable to acquire video") }, 2915 /* */ 2916 { SST(0x61, 0x02, SS_RDEF, 2917 "Out of focus") }, 2918 /* */ 2919 { SST(0x62, 0x00, SS_RDEF, 2920 "Scan head positioning error") }, 2921 /* R */ 2922 { SST(0x63, 0x00, SS_RDEF, 2923 "End of user area encountered on this track") }, 2924 /* R */ 2925 { SST(0x63, 0x01, SS_FATAL | ENOSPC, 2926 "Packet does not fit in available space") }, 2927 /* R */ 2928 { SST(0x64, 0x00, SS_FATAL | ENXIO, 2929 "Illegal mode for this track") }, 2930 /* R */ 2931 { SST(0x64, 0x01, SS_RDEF, 2932 "Invalid packet size") }, 2933 /* DTLPWROMAEBKVF */ 2934 { SST(0x65, 0x00, SS_RDEF, 2935 "Voltage fault") }, 2936 /* */ 2937 { SST(0x66, 0x00, SS_RDEF, 2938 "Automatic document feeder cover up") }, 2939 /* */ 2940 { SST(0x66, 0x01, SS_RDEF, 2941 "Automatic document feeder lift up") }, 2942 /* */ 2943 { SST(0x66, 0x02, SS_RDEF, 2944 "Document jam in automatic document feeder") }, 2945 /* */ 2946 { SST(0x66, 0x03, SS_RDEF, 2947 "Document miss feed automatic in document feeder") }, 2948 /* A */ 2949 { SST(0x67, 0x00, SS_RDEF, 2950 "Configuration failure") }, 2951 /* A */ 2952 { SST(0x67, 0x01, SS_RDEF, 2953 "Configuration of incapable logical units failed") }, 2954 /* A */ 2955 { SST(0x67, 0x02, SS_RDEF, 2956 "Add logical unit failed") }, 2957 /* A */ 2958 { SST(0x67, 0x03, SS_RDEF, 2959 "Modification of logical unit failed") }, 2960 /* A */ 2961 { SST(0x67, 0x04, SS_RDEF, 2962 "Exchange of logical unit failed") }, 2963 /* A */ 2964 { SST(0x67, 0x05, SS_RDEF, 2965 "Remove of logical unit failed") }, 2966 /* A */ 2967 { SST(0x67, 0x06, SS_RDEF, 2968 "Attachment of logical unit failed") }, 2969 /* A */ 2970 { SST(0x67, 0x07, SS_RDEF, 2971 "Creation of logical unit failed") }, 2972 /* A */ 2973 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */ 2974 "Assign failure occurred") }, 2975 /* A */ 2976 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */ 2977 "Multiply assigned logical unit") }, 2978 /* DTLPWROMAEBKVF */ 2979 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */ 2980 "Set target port groups command failed") }, 2981 /* DT B */ 2982 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */ 2983 "ATA device feature not enabled") }, 2984 /* A */ 2985 { SST(0x68, 0x00, SS_RDEF, 2986 "Logical unit not configured") }, 2987 /* D */ 2988 { SST(0x68, 0x01, SS_RDEF, 2989 "Subsidiary logical unit not configured") }, 2990 /* A */ 2991 { SST(0x69, 0x00, SS_RDEF, 2992 "Data loss on logical unit") }, 2993 /* A */ 2994 { SST(0x69, 0x01, SS_RDEF, 2995 "Multiple logical unit failures") }, 2996 /* A */ 2997 { SST(0x69, 0x02, SS_RDEF, 2998 "Parity/data mismatch") }, 2999 /* A */ 3000 { SST(0x6A, 0x00, SS_RDEF, 3001 "Informational, refer to log") }, 3002 /* A */ 3003 { SST(0x6B, 0x00, SS_RDEF, 3004 "State change has occurred") }, 3005 /* A */ 3006 { SST(0x6B, 0x01, SS_RDEF, 3007 "Redundancy level got better") }, 3008 /* A */ 3009 { SST(0x6B, 0x02, SS_RDEF, 3010 "Redundancy level got worse") }, 3011 /* A */ 3012 { SST(0x6C, 0x00, SS_RDEF, 3013 "Rebuild failure occurred") }, 3014 /* A */ 3015 { SST(0x6D, 0x00, SS_RDEF, 3016 "Recalculate failure occurred") }, 3017 /* A */ 3018 { SST(0x6E, 0x00, SS_RDEF, 3019 "Command to logical unit failed") }, 3020 /* R */ 3021 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */ 3022 "Copy protection key exchange failure - authentication failure") }, 3023 /* R */ 3024 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */ 3025 "Copy protection key exchange failure - key not present") }, 3026 /* R */ 3027 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */ 3028 "Copy protection key exchange failure - key not established") }, 3029 /* R */ 3030 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */ 3031 "Read of scrambled sector without authentication") }, 3032 /* R */ 3033 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */ 3034 "Media region code is mismatched to logical unit region") }, 3035 /* R */ 3036 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */ 3037 "Drive region must be permanent/region reset count error") }, 3038 /* R */ 3039 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */ 3040 "Insufficient block count for binding NONCE recording") }, 3041 /* R */ 3042 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */ 3043 "Conflict in binding NONCE recording") }, 3044 /* T */ 3045 { SST(0x70, 0x00, SS_RDEF, 3046 "Decompression exception short: ASCQ = Algorithm ID") }, 3047 /* T */ 3048 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE, 3049 NULL) }, /* Range 0x00 -> 0xFF */ 3050 /* T */ 3051 { SST(0x71, 0x00, SS_RDEF, 3052 "Decompression exception long: ASCQ = Algorithm ID") }, 3053 /* T */ 3054 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE, 3055 NULL) }, /* Range 0x00 -> 0xFF */ 3056 /* R */ 3057 { SST(0x72, 0x00, SS_RDEF, 3058 "Session fixation error") }, 3059 /* R */ 3060 { SST(0x72, 0x01, SS_RDEF, 3061 "Session fixation error writing lead-in") }, 3062 /* R */ 3063 { SST(0x72, 0x02, SS_RDEF, 3064 "Session fixation error writing lead-out") }, 3065 /* R */ 3066 { SST(0x72, 0x03, SS_RDEF, 3067 "Session fixation error - incomplete track in session") }, 3068 /* R */ 3069 { SST(0x72, 0x04, SS_RDEF, 3070 "Empty or partially written reserved track") }, 3071 /* R */ 3072 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */ 3073 "No more track reservations allowed") }, 3074 /* R */ 3075 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */ 3076 "RMZ extension is not allowed") }, 3077 /* R */ 3078 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */ 3079 "No more test zone extensions are allowed") }, 3080 /* R */ 3081 { SST(0x73, 0x00, SS_RDEF, 3082 "CD control error") }, 3083 /* R */ 3084 { SST(0x73, 0x01, SS_RDEF, 3085 "Power calibration area almost full") }, 3086 /* R */ 3087 { SST(0x73, 0x02, SS_FATAL | ENOSPC, 3088 "Power calibration area is full") }, 3089 /* R */ 3090 { SST(0x73, 0x03, SS_RDEF, 3091 "Power calibration area error") }, 3092 /* R */ 3093 { SST(0x73, 0x04, SS_RDEF, 3094 "Program memory area update failure") }, 3095 /* R */ 3096 { SST(0x73, 0x05, SS_RDEF, 3097 "Program memory area is full") }, 3098 /* R */ 3099 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */ 3100 "RMA/PMA is almost full") }, 3101 /* R */ 3102 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */ 3103 "Current power calibration area almost full") }, 3104 /* R */ 3105 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */ 3106 "Current power calibration area is full") }, 3107 /* R */ 3108 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */ 3109 "RDZ is full") }, 3110 /* T */ 3111 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */ 3112 "Security error") }, 3113 /* T */ 3114 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */ 3115 "Unable to decrypt data") }, 3116 /* T */ 3117 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */ 3118 "Unencrypted data encountered while decrypting") }, 3119 /* T */ 3120 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */ 3121 "Incorrect data encryption key") }, 3122 /* T */ 3123 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */ 3124 "Cryptographic integrity validation failed") }, 3125 /* T */ 3126 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */ 3127 "Error decrypting data") }, 3128 /* T */ 3129 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */ 3130 "Unknown signature verification key") }, 3131 /* T */ 3132 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */ 3133 "Encryption parameters not useable") }, 3134 /* DT R M E VF */ 3135 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */ 3136 "Digital signature validation failure") }, 3137 /* T */ 3138 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */ 3139 "Encryption mode mismatch on read") }, 3140 /* T */ 3141 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */ 3142 "Encrypted block not raw read enabled") }, 3143 /* T */ 3144 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */ 3145 "Incorrect encryption parameters") }, 3146 /* DT R MAEBKV */ 3147 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */ 3148 "Unable to decrypt parameter list") }, 3149 /* T */ 3150 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */ 3151 "Encryption algorithm disabled") }, 3152 /* DT R MAEBKV */ 3153 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */ 3154 "SA creation parameter value invalid") }, 3155 /* DT R MAEBKV */ 3156 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */ 3157 "SA creation parameter value rejected") }, 3158 /* DT R MAEBKV */ 3159 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */ 3160 "Invalid SA usage") }, 3161 /* T */ 3162 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */ 3163 "Data encryption configuration prevented") }, 3164 /* DT R MAEBKV */ 3165 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */ 3166 "SA creation parameter not supported") }, 3167 /* DT R MAEBKV */ 3168 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */ 3169 "Authentication failed") }, 3170 /* V */ 3171 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */ 3172 "External data encryption key manager access error") }, 3173 /* V */ 3174 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */ 3175 "External data encryption key manager error") }, 3176 /* V */ 3177 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */ 3178 "External data encryption key not found") }, 3179 /* V */ 3180 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */ 3181 "External data encryption request not authorized") }, 3182 /* T */ 3183 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */ 3184 "External data encryption control timeout") }, 3185 /* T */ 3186 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */ 3187 "External data encryption control error") }, 3188 /* DT R M E V */ 3189 { SST(0x74, 0x71, SS_RDEF, /* XXX TBD */ 3190 "Logical unit access not authorized") }, 3191 /* D */ 3192 { SST(0x74, 0x79, SS_RDEF, /* XXX TBD */ 3193 "Security conflict in translated device") } 3194 }; 3195 3196 const u_int asc_table_size = nitems(asc_table); 3197 3198 struct asc_key 3199 { 3200 int asc; 3201 int ascq; 3202 }; 3203 3204 static int 3205 ascentrycomp(const void *key, const void *member) 3206 { 3207 int asc; 3208 int ascq; 3209 const struct asc_table_entry *table_entry; 3210 3211 asc = ((const struct asc_key *)key)->asc; 3212 ascq = ((const struct asc_key *)key)->ascq; 3213 table_entry = (const struct asc_table_entry *)member; 3214 3215 if (asc >= table_entry->asc) { 3216 3217 if (asc > table_entry->asc) 3218 return (1); 3219 3220 if (ascq <= table_entry->ascq) { 3221 /* Check for ranges */ 3222 if (ascq == table_entry->ascq 3223 || ((table_entry->action & SSQ_RANGE) != 0 3224 && ascq >= (table_entry - 1)->ascq)) 3225 return (0); 3226 return (-1); 3227 } 3228 return (1); 3229 } 3230 return (-1); 3231 } 3232 3233 static int 3234 senseentrycomp(const void *key, const void *member) 3235 { 3236 int sense_key; 3237 const struct sense_key_table_entry *table_entry; 3238 3239 sense_key = *((const int *)key); 3240 table_entry = (const struct sense_key_table_entry *)member; 3241 3242 if (sense_key >= table_entry->sense_key) { 3243 if (sense_key == table_entry->sense_key) 3244 return (0); 3245 return (1); 3246 } 3247 return (-1); 3248 } 3249 3250 static void 3251 fetchtableentries(int sense_key, int asc, int ascq, 3252 struct scsi_inquiry_data *inq_data, 3253 const struct sense_key_table_entry **sense_entry, 3254 const struct asc_table_entry **asc_entry) 3255 { 3256 caddr_t match; 3257 const struct asc_table_entry *asc_tables[2]; 3258 const struct sense_key_table_entry *sense_tables[2]; 3259 struct asc_key asc_ascq; 3260 size_t asc_tables_size[2]; 3261 size_t sense_tables_size[2]; 3262 int num_asc_tables; 3263 int num_sense_tables; 3264 int i; 3265 3266 /* Default to failure */ 3267 *sense_entry = NULL; 3268 *asc_entry = NULL; 3269 match = NULL; 3270 if (inq_data != NULL) 3271 match = cam_quirkmatch((caddr_t)inq_data, 3272 (caddr_t)sense_quirk_table, 3273 sense_quirk_table_size, 3274 sizeof(*sense_quirk_table), 3275 scsi_inquiry_match); 3276 3277 if (match != NULL) { 3278 struct scsi_sense_quirk_entry *quirk; 3279 3280 quirk = (struct scsi_sense_quirk_entry *)match; 3281 asc_tables[0] = quirk->asc_info; 3282 asc_tables_size[0] = quirk->num_ascs; 3283 asc_tables[1] = asc_table; 3284 asc_tables_size[1] = asc_table_size; 3285 num_asc_tables = 2; 3286 sense_tables[0] = quirk->sense_key_info; 3287 sense_tables_size[0] = quirk->num_sense_keys; 3288 sense_tables[1] = sense_key_table; 3289 sense_tables_size[1] = nitems(sense_key_table); 3290 num_sense_tables = 2; 3291 } else { 3292 asc_tables[0] = asc_table; 3293 asc_tables_size[0] = asc_table_size; 3294 num_asc_tables = 1; 3295 sense_tables[0] = sense_key_table; 3296 sense_tables_size[0] = nitems(sense_key_table); 3297 num_sense_tables = 1; 3298 } 3299 3300 asc_ascq.asc = asc; 3301 asc_ascq.ascq = ascq; 3302 for (i = 0; i < num_asc_tables; i++) { 3303 void *found_entry; 3304 3305 found_entry = bsearch(&asc_ascq, asc_tables[i], 3306 asc_tables_size[i], 3307 sizeof(**asc_tables), 3308 ascentrycomp); 3309 3310 if (found_entry) { 3311 *asc_entry = (struct asc_table_entry *)found_entry; 3312 break; 3313 } 3314 } 3315 3316 for (i = 0; i < num_sense_tables; i++) { 3317 void *found_entry; 3318 3319 found_entry = bsearch(&sense_key, sense_tables[i], 3320 sense_tables_size[i], 3321 sizeof(**sense_tables), 3322 senseentrycomp); 3323 3324 if (found_entry) { 3325 *sense_entry = 3326 (struct sense_key_table_entry *)found_entry; 3327 break; 3328 } 3329 } 3330 } 3331 3332 void 3333 scsi_sense_desc(int sense_key, int asc, int ascq, 3334 struct scsi_inquiry_data *inq_data, 3335 const char **sense_key_desc, const char **asc_desc) 3336 { 3337 const struct asc_table_entry *asc_entry; 3338 const struct sense_key_table_entry *sense_entry; 3339 3340 fetchtableentries(sense_key, asc, ascq, 3341 inq_data, 3342 &sense_entry, 3343 &asc_entry); 3344 3345 if (sense_entry != NULL) 3346 *sense_key_desc = sense_entry->desc; 3347 else 3348 *sense_key_desc = "Invalid Sense Key"; 3349 3350 if (asc_entry != NULL) 3351 *asc_desc = asc_entry->desc; 3352 else if (asc >= 0x80 && asc <= 0xff) 3353 *asc_desc = "Vendor Specific ASC"; 3354 else if (ascq >= 0x80 && ascq <= 0xff) 3355 *asc_desc = "Vendor Specific ASCQ"; 3356 else 3357 *asc_desc = "Reserved ASC/ASCQ pair"; 3358 } 3359 3360 /* 3361 * Given sense and device type information, return the appropriate action. 3362 * If we do not understand the specific error as identified by the ASC/ASCQ 3363 * pair, fall back on the more generic actions derived from the sense key. 3364 */ 3365 scsi_sense_action 3366 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data, 3367 u_int32_t sense_flags) 3368 { 3369 const struct asc_table_entry *asc_entry; 3370 const struct sense_key_table_entry *sense_entry; 3371 int error_code, sense_key, asc, ascq; 3372 scsi_sense_action action; 3373 3374 if (!scsi_extract_sense_ccb((union ccb *)csio, 3375 &error_code, &sense_key, &asc, &ascq)) { 3376 action = SS_RETRY | SSQ_DECREMENT_COUNT | SSQ_PRINT_SENSE | EIO; 3377 } else if ((error_code == SSD_DEFERRED_ERROR) 3378 || (error_code == SSD_DESC_DEFERRED_ERROR)) { 3379 /* 3380 * XXX dufault@FreeBSD.org 3381 * This error doesn't relate to the command associated 3382 * with this request sense. A deferred error is an error 3383 * for a command that has already returned GOOD status 3384 * (see SCSI2 8.2.14.2). 3385 * 3386 * By my reading of that section, it looks like the current 3387 * command has been cancelled, we should now clean things up 3388 * (hopefully recovering any lost data) and then retry the 3389 * current command. There are two easy choices, both wrong: 3390 * 3391 * 1. Drop through (like we had been doing), thus treating 3392 * this as if the error were for the current command and 3393 * return and stop the current command. 3394 * 3395 * 2. Issue a retry (like I made it do) thus hopefully 3396 * recovering the current transfer, and ignoring the 3397 * fact that we've dropped a command. 3398 * 3399 * These should probably be handled in a device specific 3400 * sense handler or punted back up to a user mode daemon 3401 */ 3402 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3403 } else { 3404 fetchtableentries(sense_key, asc, ascq, 3405 inq_data, 3406 &sense_entry, 3407 &asc_entry); 3408 3409 /* 3410 * Override the 'No additional Sense' entry (0,0) 3411 * with the error action of the sense key. 3412 */ 3413 if (asc_entry != NULL 3414 && (asc != 0 || ascq != 0)) 3415 action = asc_entry->action; 3416 else if (sense_entry != NULL) 3417 action = sense_entry->action; 3418 else 3419 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE; 3420 3421 if (sense_key == SSD_KEY_RECOVERED_ERROR) { 3422 /* 3423 * The action succeeded but the device wants 3424 * the user to know that some recovery action 3425 * was required. 3426 */ 3427 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK); 3428 action |= SS_NOP|SSQ_PRINT_SENSE; 3429 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) { 3430 if ((sense_flags & SF_QUIET_IR) != 0) 3431 action &= ~SSQ_PRINT_SENSE; 3432 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) { 3433 if ((sense_flags & SF_RETRY_UA) != 0 3434 && (action & SS_MASK) == SS_FAIL) { 3435 action &= ~(SS_MASK|SSQ_MASK); 3436 action |= SS_RETRY|SSQ_DECREMENT_COUNT| 3437 SSQ_PRINT_SENSE; 3438 } 3439 action |= SSQ_UA; 3440 } 3441 } 3442 if ((action & SS_MASK) >= SS_START && 3443 (sense_flags & SF_NO_RECOVERY)) { 3444 action &= ~SS_MASK; 3445 action |= SS_FAIL; 3446 } else if ((action & SS_MASK) == SS_RETRY && 3447 (sense_flags & SF_NO_RETRY)) { 3448 action &= ~SS_MASK; 3449 action |= SS_FAIL; 3450 } 3451 if ((sense_flags & SF_PRINT_ALWAYS) != 0) 3452 action |= SSQ_PRINT_SENSE; 3453 else if ((sense_flags & SF_NO_PRINT) != 0) 3454 action &= ~SSQ_PRINT_SENSE; 3455 3456 return (action); 3457 } 3458 3459 char * 3460 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len) 3461 { 3462 struct sbuf sb; 3463 int error; 3464 3465 if (len == 0) 3466 return (""); 3467 3468 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN); 3469 3470 scsi_cdb_sbuf(cdb_ptr, &sb); 3471 3472 /* ENOMEM just means that the fixed buffer is full, OK to ignore */ 3473 error = sbuf_finish(&sb); 3474 if (error != 0 && error != ENOMEM) 3475 return (""); 3476 3477 return(sbuf_data(&sb)); 3478 } 3479 3480 void 3481 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb) 3482 { 3483 u_int8_t cdb_len; 3484 int i; 3485 3486 if (cdb_ptr == NULL) 3487 return; 3488 3489 /* 3490 * This is taken from the SCSI-3 draft spec. 3491 * (T10/1157D revision 0.3) 3492 * The top 3 bits of an opcode are the group code. The next 5 bits 3493 * are the command code. 3494 * Group 0: six byte commands 3495 * Group 1: ten byte commands 3496 * Group 2: ten byte commands 3497 * Group 3: reserved 3498 * Group 4: sixteen byte commands 3499 * Group 5: twelve byte commands 3500 * Group 6: vendor specific 3501 * Group 7: vendor specific 3502 */ 3503 switch((*cdb_ptr >> 5) & 0x7) { 3504 case 0: 3505 cdb_len = 6; 3506 break; 3507 case 1: 3508 case 2: 3509 cdb_len = 10; 3510 break; 3511 case 3: 3512 case 6: 3513 case 7: 3514 /* in this case, just print out the opcode */ 3515 cdb_len = 1; 3516 break; 3517 case 4: 3518 cdb_len = 16; 3519 break; 3520 case 5: 3521 cdb_len = 12; 3522 break; 3523 } 3524 3525 for (i = 0; i < cdb_len; i++) 3526 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]); 3527 3528 return; 3529 } 3530 3531 const char * 3532 scsi_status_string(struct ccb_scsiio *csio) 3533 { 3534 switch(csio->scsi_status) { 3535 case SCSI_STATUS_OK: 3536 return("OK"); 3537 case SCSI_STATUS_CHECK_COND: 3538 return("Check Condition"); 3539 case SCSI_STATUS_BUSY: 3540 return("Busy"); 3541 case SCSI_STATUS_INTERMED: 3542 return("Intermediate"); 3543 case SCSI_STATUS_INTERMED_COND_MET: 3544 return("Intermediate-Condition Met"); 3545 case SCSI_STATUS_RESERV_CONFLICT: 3546 return("Reservation Conflict"); 3547 case SCSI_STATUS_CMD_TERMINATED: 3548 return("Command Terminated"); 3549 case SCSI_STATUS_QUEUE_FULL: 3550 return("Queue Full"); 3551 case SCSI_STATUS_ACA_ACTIVE: 3552 return("ACA Active"); 3553 case SCSI_STATUS_TASK_ABORTED: 3554 return("Task Aborted"); 3555 default: { 3556 static char unkstr[64]; 3557 snprintf(unkstr, sizeof(unkstr), "Unknown %#x", 3558 csio->scsi_status); 3559 return(unkstr); 3560 } 3561 } 3562 } 3563 3564 /* 3565 * scsi_command_string() returns 0 for success and -1 for failure. 3566 */ 3567 #ifdef _KERNEL 3568 int 3569 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb) 3570 #else /* !_KERNEL */ 3571 int 3572 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, 3573 struct sbuf *sb) 3574 #endif /* _KERNEL/!_KERNEL */ 3575 { 3576 struct scsi_inquiry_data *inq_data; 3577 #ifdef _KERNEL 3578 struct ccb_getdev *cgd; 3579 #endif /* _KERNEL */ 3580 3581 #ifdef _KERNEL 3582 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 3583 return(-1); 3584 /* 3585 * Get the device information. 3586 */ 3587 xpt_setup_ccb(&cgd->ccb_h, 3588 csio->ccb_h.path, 3589 CAM_PRIORITY_NORMAL); 3590 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 3591 xpt_action((union ccb *)cgd); 3592 3593 /* 3594 * If the device is unconfigured, just pretend that it is a hard 3595 * drive. scsi_op_desc() needs this. 3596 */ 3597 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 3598 cgd->inq_data.device = T_DIRECT; 3599 3600 inq_data = &cgd->inq_data; 3601 3602 #else /* !_KERNEL */ 3603 3604 inq_data = &device->inq_data; 3605 3606 #endif /* _KERNEL/!_KERNEL */ 3607 3608 if ((csio->ccb_h.flags & CAM_CDB_POINTER) != 0) { 3609 sbuf_printf(sb, "%s. CDB: ", 3610 scsi_op_desc(csio->cdb_io.cdb_ptr[0], inq_data)); 3611 scsi_cdb_sbuf(csio->cdb_io.cdb_ptr, sb); 3612 } else { 3613 sbuf_printf(sb, "%s. CDB: ", 3614 scsi_op_desc(csio->cdb_io.cdb_bytes[0], inq_data)); 3615 scsi_cdb_sbuf(csio->cdb_io.cdb_bytes, sb); 3616 } 3617 3618 #ifdef _KERNEL 3619 xpt_free_ccb((union ccb *)cgd); 3620 #endif 3621 3622 return(0); 3623 } 3624 3625 /* 3626 * Iterate over sense descriptors. Each descriptor is passed into iter_func(). 3627 * If iter_func() returns 0, list traversal continues. If iter_func() 3628 * returns non-zero, list traversal is stopped. 3629 */ 3630 void 3631 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, 3632 int (*iter_func)(struct scsi_sense_data_desc *sense, 3633 u_int, struct scsi_sense_desc_header *, 3634 void *), void *arg) 3635 { 3636 int cur_pos; 3637 int desc_len; 3638 3639 /* 3640 * First make sure the extra length field is present. 3641 */ 3642 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0) 3643 return; 3644 3645 /* 3646 * The length of data actually returned may be different than the 3647 * extra_len recorded in the structure. 3648 */ 3649 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc); 3650 3651 /* 3652 * Limit this further by the extra length reported, and the maximum 3653 * allowed extra length. 3654 */ 3655 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX)); 3656 3657 /* 3658 * Subtract the size of the header from the descriptor length. 3659 * This is to ensure that we have at least the header left, so we 3660 * don't have to check that inside the loop. This can wind up 3661 * being a negative value. 3662 */ 3663 desc_len -= sizeof(struct scsi_sense_desc_header); 3664 3665 for (cur_pos = 0; cur_pos < desc_len;) { 3666 struct scsi_sense_desc_header *header; 3667 3668 header = (struct scsi_sense_desc_header *) 3669 &sense->sense_desc[cur_pos]; 3670 3671 /* 3672 * Check to make sure we have the entire descriptor. We 3673 * don't call iter_func() unless we do. 3674 * 3675 * Note that although cur_pos is at the beginning of the 3676 * descriptor, desc_len already has the header length 3677 * subtracted. So the comparison of the length in the 3678 * header (which does not include the header itself) to 3679 * desc_len - cur_pos is correct. 3680 */ 3681 if (header->length > (desc_len - cur_pos)) 3682 break; 3683 3684 if (iter_func(sense, sense_len, header, arg) != 0) 3685 break; 3686 3687 cur_pos += sizeof(*header) + header->length; 3688 } 3689 } 3690 3691 struct scsi_find_desc_info { 3692 uint8_t desc_type; 3693 struct scsi_sense_desc_header *header; 3694 }; 3695 3696 static int 3697 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 3698 struct scsi_sense_desc_header *header, void *arg) 3699 { 3700 struct scsi_find_desc_info *desc_info; 3701 3702 desc_info = (struct scsi_find_desc_info *)arg; 3703 3704 if (header->desc_type == desc_info->desc_type) { 3705 desc_info->header = header; 3706 3707 /* We found the descriptor, tell the iterator to stop. */ 3708 return (1); 3709 } else 3710 return (0); 3711 } 3712 3713 /* 3714 * Given a descriptor type, return a pointer to it if it is in the sense 3715 * data and not truncated. Avoiding truncating sense data will simplify 3716 * things significantly for the caller. 3717 */ 3718 uint8_t * 3719 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, 3720 uint8_t desc_type) 3721 { 3722 struct scsi_find_desc_info desc_info; 3723 3724 desc_info.desc_type = desc_type; 3725 desc_info.header = NULL; 3726 3727 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info); 3728 3729 return ((uint8_t *)desc_info.header); 3730 } 3731 3732 /* 3733 * Fill in SCSI sense data with the specified parameters. This routine can 3734 * fill in either fixed or descriptor type sense data. 3735 */ 3736 void 3737 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, 3738 scsi_sense_data_type sense_format, int current_error, 3739 int sense_key, int asc, int ascq, va_list ap) 3740 { 3741 int descriptor_sense; 3742 scsi_sense_elem_type elem_type; 3743 3744 /* 3745 * Determine whether to return fixed or descriptor format sense 3746 * data. If the user specifies SSD_TYPE_NONE for some reason, 3747 * they'll just get fixed sense data. 3748 */ 3749 if (sense_format == SSD_TYPE_DESC) 3750 descriptor_sense = 1; 3751 else 3752 descriptor_sense = 0; 3753 3754 /* 3755 * Zero the sense data, so that we don't pass back any garbage data 3756 * to the user. 3757 */ 3758 memset(sense_data, 0, sizeof(*sense_data)); 3759 3760 if (descriptor_sense != 0) { 3761 struct scsi_sense_data_desc *sense; 3762 3763 sense = (struct scsi_sense_data_desc *)sense_data; 3764 /* 3765 * The descriptor sense format eliminates the use of the 3766 * valid bit. 3767 */ 3768 if (current_error != 0) 3769 sense->error_code = SSD_DESC_CURRENT_ERROR; 3770 else 3771 sense->error_code = SSD_DESC_DEFERRED_ERROR; 3772 sense->sense_key = sense_key; 3773 sense->add_sense_code = asc; 3774 sense->add_sense_code_qual = ascq; 3775 /* 3776 * Start off with no extra length, since the above data 3777 * fits in the standard descriptor sense information. 3778 */ 3779 sense->extra_len = 0; 3780 while ((elem_type = (scsi_sense_elem_type)va_arg(ap, 3781 scsi_sense_elem_type)) != SSD_ELEM_NONE) { 3782 int sense_len, len_to_copy; 3783 uint8_t *data; 3784 3785 if (elem_type >= SSD_ELEM_MAX) { 3786 printf("%s: invalid sense type %d\n", __func__, 3787 elem_type); 3788 break; 3789 } 3790 3791 sense_len = (int)va_arg(ap, int); 3792 len_to_copy = MIN(sense_len, SSD_EXTRA_MAX - 3793 sense->extra_len); 3794 data = (uint8_t *)va_arg(ap, uint8_t *); 3795 3796 /* 3797 * We've already consumed the arguments for this one. 3798 */ 3799 if (elem_type == SSD_ELEM_SKIP) 3800 continue; 3801 3802 switch (elem_type) { 3803 case SSD_ELEM_DESC: { 3804 3805 /* 3806 * This is a straight descriptor. All we 3807 * need to do is copy the data in. 3808 */ 3809 bcopy(data, &sense->sense_desc[ 3810 sense->extra_len], len_to_copy); 3811 sense->extra_len += len_to_copy; 3812 break; 3813 } 3814 case SSD_ELEM_SKS: { 3815 struct scsi_sense_sks sks; 3816 3817 bzero(&sks, sizeof(sks)); 3818 3819 /* 3820 * This is already-formatted sense key 3821 * specific data. We just need to fill out 3822 * the header and copy everything in. 3823 */ 3824 bcopy(data, &sks.sense_key_spec, 3825 MIN(len_to_copy, 3826 sizeof(sks.sense_key_spec))); 3827 3828 sks.desc_type = SSD_DESC_SKS; 3829 sks.length = sizeof(sks) - 3830 offsetof(struct scsi_sense_sks, reserved1); 3831 bcopy(&sks,&sense->sense_desc[sense->extra_len], 3832 sizeof(sks)); 3833 sense->extra_len += sizeof(sks); 3834 break; 3835 } 3836 case SSD_ELEM_INFO: 3837 case SSD_ELEM_COMMAND: { 3838 struct scsi_sense_command cmd; 3839 struct scsi_sense_info info; 3840 uint8_t *data_dest; 3841 uint8_t *descriptor; 3842 int descriptor_size, i, copy_len; 3843 3844 bzero(&cmd, sizeof(cmd)); 3845 bzero(&info, sizeof(info)); 3846 3847 /* 3848 * Command or information data. The 3849 * operate in pretty much the same way. 3850 */ 3851 if (elem_type == SSD_ELEM_COMMAND) { 3852 len_to_copy = MIN(len_to_copy, 3853 sizeof(cmd.command_info)); 3854 descriptor = (uint8_t *)&cmd; 3855 descriptor_size = sizeof(cmd); 3856 data_dest =(uint8_t *)&cmd.command_info; 3857 cmd.desc_type = SSD_DESC_COMMAND; 3858 cmd.length = sizeof(cmd) - 3859 offsetof(struct scsi_sense_command, 3860 reserved); 3861 } else { 3862 len_to_copy = MIN(len_to_copy, 3863 sizeof(info.info)); 3864 descriptor = (uint8_t *)&info; 3865 descriptor_size = sizeof(cmd); 3866 data_dest = (uint8_t *)&info.info; 3867 info.desc_type = SSD_DESC_INFO; 3868 info.byte2 = SSD_INFO_VALID; 3869 info.length = sizeof(info) - 3870 offsetof(struct scsi_sense_info, 3871 byte2); 3872 } 3873 3874 /* 3875 * Copy this in reverse because the spec 3876 * (SPC-4) says that when 4 byte quantities 3877 * are stored in this 8 byte field, the 3878 * first four bytes shall be 0. 3879 * 3880 * So we fill the bytes in from the end, and 3881 * if we have less than 8 bytes to copy, 3882 * the initial, most significant bytes will 3883 * be 0. 3884 */ 3885 for (i = sense_len - 1; i >= 0 && 3886 len_to_copy > 0; i--, len_to_copy--) 3887 data_dest[len_to_copy - 1] = data[i]; 3888 3889 /* 3890 * This calculation looks much like the 3891 * initial len_to_copy calculation, but 3892 * we have to do it again here, because 3893 * we're looking at a larger amount that 3894 * may or may not fit. It's not only the 3895 * data the user passed in, but also the 3896 * rest of the descriptor. 3897 */ 3898 copy_len = MIN(descriptor_size, 3899 SSD_EXTRA_MAX - sense->extra_len); 3900 bcopy(descriptor, &sense->sense_desc[ 3901 sense->extra_len], copy_len); 3902 sense->extra_len += copy_len; 3903 break; 3904 } 3905 case SSD_ELEM_FRU: { 3906 struct scsi_sense_fru fru; 3907 int copy_len; 3908 3909 bzero(&fru, sizeof(fru)); 3910 3911 fru.desc_type = SSD_DESC_FRU; 3912 fru.length = sizeof(fru) - 3913 offsetof(struct scsi_sense_fru, reserved); 3914 fru.fru = *data; 3915 3916 copy_len = MIN(sizeof(fru), SSD_EXTRA_MAX - 3917 sense->extra_len); 3918 bcopy(&fru, &sense->sense_desc[ 3919 sense->extra_len], copy_len); 3920 sense->extra_len += copy_len; 3921 break; 3922 } 3923 case SSD_ELEM_STREAM: { 3924 struct scsi_sense_stream stream_sense; 3925 int copy_len; 3926 3927 bzero(&stream_sense, sizeof(stream_sense)); 3928 stream_sense.desc_type = SSD_DESC_STREAM; 3929 stream_sense.length = sizeof(stream_sense) - 3930 offsetof(struct scsi_sense_stream, reserved); 3931 stream_sense.byte3 = *data; 3932 3933 copy_len = MIN(sizeof(stream_sense), 3934 SSD_EXTRA_MAX - sense->extra_len); 3935 bcopy(&stream_sense, &sense->sense_desc[ 3936 sense->extra_len], copy_len); 3937 sense->extra_len += copy_len; 3938 break; 3939 } 3940 default: 3941 /* 3942 * We shouldn't get here, but if we do, do 3943 * nothing. We've already consumed the 3944 * arguments above. 3945 */ 3946 break; 3947 } 3948 } 3949 } else { 3950 struct scsi_sense_data_fixed *sense; 3951 3952 sense = (struct scsi_sense_data_fixed *)sense_data; 3953 3954 if (current_error != 0) 3955 sense->error_code = SSD_CURRENT_ERROR; 3956 else 3957 sense->error_code = SSD_DEFERRED_ERROR; 3958 3959 sense->flags = sense_key; 3960 sense->add_sense_code = asc; 3961 sense->add_sense_code_qual = ascq; 3962 /* 3963 * We've set the ASC and ASCQ, so we have 6 more bytes of 3964 * valid data. If we wind up setting any of the other 3965 * fields, we'll bump this to 10 extra bytes. 3966 */ 3967 sense->extra_len = 6; 3968 3969 while ((elem_type = (scsi_sense_elem_type)va_arg(ap, 3970 scsi_sense_elem_type)) != SSD_ELEM_NONE) { 3971 int sense_len, len_to_copy; 3972 uint8_t *data; 3973 3974 if (elem_type >= SSD_ELEM_MAX) { 3975 printf("%s: invalid sense type %d\n", __func__, 3976 elem_type); 3977 break; 3978 } 3979 /* 3980 * If we get in here, just bump the extra length to 3981 * 10 bytes. That will encompass anything we're 3982 * going to set here. 3983 */ 3984 sense->extra_len = 10; 3985 sense_len = (int)va_arg(ap, int); 3986 data = (uint8_t *)va_arg(ap, uint8_t *); 3987 3988 switch (elem_type) { 3989 case SSD_ELEM_SKS: 3990 /* 3991 * The user passed in pre-formatted sense 3992 * key specific data. 3993 */ 3994 bcopy(data, &sense->sense_key_spec[0], 3995 MIN(sizeof(sense->sense_key_spec), 3996 sense_len)); 3997 break; 3998 case SSD_ELEM_INFO: 3999 case SSD_ELEM_COMMAND: { 4000 uint8_t *data_dest; 4001 int i; 4002 4003 if (elem_type == SSD_ELEM_COMMAND) { 4004 data_dest = &sense->cmd_spec_info[0]; 4005 len_to_copy = MIN(sense_len, 4006 sizeof(sense->cmd_spec_info)); 4007 } else { 4008 data_dest = &sense->info[0]; 4009 len_to_copy = MIN(sense_len, 4010 sizeof(sense->info)); 4011 /* 4012 * We're setting the info field, so 4013 * set the valid bit. 4014 */ 4015 sense->error_code |= SSD_ERRCODE_VALID; 4016 } 4017 4018 /* 4019 * Copy this in reverse so that if we have 4020 * less than 4 bytes to fill, the least 4021 * significant bytes will be at the end. 4022 * If we have more than 4 bytes, only the 4023 * least significant bytes will be included. 4024 */ 4025 for (i = sense_len - 1; i >= 0 && 4026 len_to_copy > 0; i--, len_to_copy--) 4027 data_dest[len_to_copy - 1] = data[i]; 4028 4029 break; 4030 } 4031 case SSD_ELEM_FRU: 4032 sense->fru = *data; 4033 break; 4034 case SSD_ELEM_STREAM: 4035 sense->flags |= *data; 4036 break; 4037 case SSD_ELEM_DESC: 4038 default: 4039 4040 /* 4041 * If the user passes in descriptor sense, 4042 * we can't handle that in fixed format. 4043 * So just skip it, and any unknown argument 4044 * types. 4045 */ 4046 break; 4047 } 4048 } 4049 } 4050 } 4051 4052 void 4053 scsi_set_sense_data(struct scsi_sense_data *sense_data, 4054 scsi_sense_data_type sense_format, int current_error, 4055 int sense_key, int asc, int ascq, ...) 4056 { 4057 va_list ap; 4058 4059 va_start(ap, ascq); 4060 scsi_set_sense_data_va(sense_data, sense_format, current_error, 4061 sense_key, asc, ascq, ap); 4062 va_end(ap); 4063 } 4064 4065 /* 4066 * Get sense information for three similar sense data types. 4067 */ 4068 int 4069 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, 4070 uint8_t info_type, uint64_t *info, int64_t *signed_info) 4071 { 4072 scsi_sense_data_type sense_type; 4073 4074 if (sense_len == 0) 4075 goto bailout; 4076 4077 sense_type = scsi_sense_type(sense_data); 4078 4079 switch (sense_type) { 4080 case SSD_TYPE_DESC: { 4081 struct scsi_sense_data_desc *sense; 4082 uint8_t *desc; 4083 4084 sense = (struct scsi_sense_data_desc *)sense_data; 4085 4086 desc = scsi_find_desc(sense, sense_len, info_type); 4087 if (desc == NULL) 4088 goto bailout; 4089 4090 switch (info_type) { 4091 case SSD_DESC_INFO: { 4092 struct scsi_sense_info *info_desc; 4093 4094 info_desc = (struct scsi_sense_info *)desc; 4095 *info = scsi_8btou64(info_desc->info); 4096 if (signed_info != NULL) 4097 *signed_info = *info; 4098 break; 4099 } 4100 case SSD_DESC_COMMAND: { 4101 struct scsi_sense_command *cmd_desc; 4102 4103 cmd_desc = (struct scsi_sense_command *)desc; 4104 4105 *info = scsi_8btou64(cmd_desc->command_info); 4106 if (signed_info != NULL) 4107 *signed_info = *info; 4108 break; 4109 } 4110 case SSD_DESC_FRU: { 4111 struct scsi_sense_fru *fru_desc; 4112 4113 fru_desc = (struct scsi_sense_fru *)desc; 4114 4115 *info = fru_desc->fru; 4116 if (signed_info != NULL) 4117 *signed_info = (int8_t)fru_desc->fru; 4118 break; 4119 } 4120 default: 4121 goto bailout; 4122 break; 4123 } 4124 break; 4125 } 4126 case SSD_TYPE_FIXED: { 4127 struct scsi_sense_data_fixed *sense; 4128 4129 sense = (struct scsi_sense_data_fixed *)sense_data; 4130 4131 switch (info_type) { 4132 case SSD_DESC_INFO: { 4133 uint32_t info_val; 4134 4135 if ((sense->error_code & SSD_ERRCODE_VALID) == 0) 4136 goto bailout; 4137 4138 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0) 4139 goto bailout; 4140 4141 info_val = scsi_4btoul(sense->info); 4142 4143 *info = info_val; 4144 if (signed_info != NULL) 4145 *signed_info = (int32_t)info_val; 4146 break; 4147 } 4148 case SSD_DESC_COMMAND: { 4149 uint32_t cmd_val; 4150 4151 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, 4152 cmd_spec_info) == 0) 4153 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0)) 4154 goto bailout; 4155 4156 cmd_val = scsi_4btoul(sense->cmd_spec_info); 4157 if (cmd_val == 0) 4158 goto bailout; 4159 4160 *info = cmd_val; 4161 if (signed_info != NULL) 4162 *signed_info = (int32_t)cmd_val; 4163 break; 4164 } 4165 case SSD_DESC_FRU: 4166 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0) 4167 || (SSD_FIXED_IS_FILLED(sense, fru) == 0)) 4168 goto bailout; 4169 4170 if (sense->fru == 0) 4171 goto bailout; 4172 4173 *info = sense->fru; 4174 if (signed_info != NULL) 4175 *signed_info = (int8_t)sense->fru; 4176 break; 4177 default: 4178 goto bailout; 4179 break; 4180 } 4181 break; 4182 } 4183 default: 4184 goto bailout; 4185 break; 4186 } 4187 4188 return (0); 4189 bailout: 4190 return (1); 4191 } 4192 4193 int 4194 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks) 4195 { 4196 scsi_sense_data_type sense_type; 4197 4198 if (sense_len == 0) 4199 goto bailout; 4200 4201 sense_type = scsi_sense_type(sense_data); 4202 4203 switch (sense_type) { 4204 case SSD_TYPE_DESC: { 4205 struct scsi_sense_data_desc *sense; 4206 struct scsi_sense_sks *desc; 4207 4208 sense = (struct scsi_sense_data_desc *)sense_data; 4209 4210 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len, 4211 SSD_DESC_SKS); 4212 if (desc == NULL) 4213 goto bailout; 4214 4215 /* 4216 * No need to check the SKS valid bit for descriptor sense. 4217 * If the descriptor is present, it is valid. 4218 */ 4219 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec)); 4220 break; 4221 } 4222 case SSD_TYPE_FIXED: { 4223 struct scsi_sense_data_fixed *sense; 4224 4225 sense = (struct scsi_sense_data_fixed *)sense_data; 4226 4227 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0) 4228 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0)) 4229 goto bailout; 4230 4231 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0) 4232 goto bailout; 4233 4234 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec)); 4235 break; 4236 } 4237 default: 4238 goto bailout; 4239 break; 4240 } 4241 return (0); 4242 bailout: 4243 return (1); 4244 } 4245 4246 /* 4247 * Provide a common interface for fixed and descriptor sense to detect 4248 * whether we have block-specific sense information. It is clear by the 4249 * presence of the block descriptor in descriptor mode, but we have to 4250 * infer from the inquiry data and ILI bit in fixed mode. 4251 */ 4252 int 4253 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, 4254 struct scsi_inquiry_data *inq_data, uint8_t *block_bits) 4255 { 4256 scsi_sense_data_type sense_type; 4257 4258 if (inq_data != NULL) { 4259 switch (SID_TYPE(inq_data)) { 4260 case T_DIRECT: 4261 case T_RBC: 4262 break; 4263 default: 4264 goto bailout; 4265 break; 4266 } 4267 } 4268 4269 sense_type = scsi_sense_type(sense_data); 4270 4271 switch (sense_type) { 4272 case SSD_TYPE_DESC: { 4273 struct scsi_sense_data_desc *sense; 4274 struct scsi_sense_block *block; 4275 4276 sense = (struct scsi_sense_data_desc *)sense_data; 4277 4278 block = (struct scsi_sense_block *)scsi_find_desc(sense, 4279 sense_len, SSD_DESC_BLOCK); 4280 if (block == NULL) 4281 goto bailout; 4282 4283 *block_bits = block->byte3; 4284 break; 4285 } 4286 case SSD_TYPE_FIXED: { 4287 struct scsi_sense_data_fixed *sense; 4288 4289 sense = (struct scsi_sense_data_fixed *)sense_data; 4290 4291 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4292 goto bailout; 4293 4294 if ((sense->flags & SSD_ILI) == 0) 4295 goto bailout; 4296 4297 *block_bits = sense->flags & SSD_ILI; 4298 break; 4299 } 4300 default: 4301 goto bailout; 4302 break; 4303 } 4304 return (0); 4305 bailout: 4306 return (1); 4307 } 4308 4309 int 4310 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, 4311 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits) 4312 { 4313 scsi_sense_data_type sense_type; 4314 4315 if (inq_data != NULL) { 4316 switch (SID_TYPE(inq_data)) { 4317 case T_SEQUENTIAL: 4318 break; 4319 default: 4320 goto bailout; 4321 break; 4322 } 4323 } 4324 4325 sense_type = scsi_sense_type(sense_data); 4326 4327 switch (sense_type) { 4328 case SSD_TYPE_DESC: { 4329 struct scsi_sense_data_desc *sense; 4330 struct scsi_sense_stream *stream; 4331 4332 sense = (struct scsi_sense_data_desc *)sense_data; 4333 4334 stream = (struct scsi_sense_stream *)scsi_find_desc(sense, 4335 sense_len, SSD_DESC_STREAM); 4336 if (stream == NULL) 4337 goto bailout; 4338 4339 *stream_bits = stream->byte3; 4340 break; 4341 } 4342 case SSD_TYPE_FIXED: { 4343 struct scsi_sense_data_fixed *sense; 4344 4345 sense = (struct scsi_sense_data_fixed *)sense_data; 4346 4347 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0) 4348 goto bailout; 4349 4350 if ((sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK)) == 0) 4351 goto bailout; 4352 4353 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK); 4354 break; 4355 } 4356 default: 4357 goto bailout; 4358 break; 4359 } 4360 return (0); 4361 bailout: 4362 return (1); 4363 } 4364 4365 void 4366 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4367 struct scsi_inquiry_data *inq_data, uint64_t info) 4368 { 4369 sbuf_printf(sb, "Info: %#jx", info); 4370 } 4371 4372 void 4373 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, 4374 struct scsi_inquiry_data *inq_data, uint64_t csi) 4375 { 4376 sbuf_printf(sb, "Command Specific Info: %#jx", csi); 4377 } 4378 4379 4380 void 4381 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress) 4382 { 4383 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete", 4384 (progress * 100) / SSD_SKS_PROGRESS_DENOM, 4385 progress, SSD_SKS_PROGRESS_DENOM); 4386 } 4387 4388 /* 4389 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success. 4390 */ 4391 int 4392 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks) 4393 { 4394 if ((sks[0] & SSD_SKS_VALID) == 0) 4395 return (1); 4396 4397 switch (sense_key) { 4398 case SSD_KEY_ILLEGAL_REQUEST: { 4399 struct scsi_sense_sks_field *field; 4400 int bad_command; 4401 char tmpstr[40]; 4402 4403 /*Field Pointer*/ 4404 field = (struct scsi_sense_sks_field *)sks; 4405 4406 if (field->byte0 & SSD_SKS_FIELD_CMD) 4407 bad_command = 1; 4408 else 4409 bad_command = 0; 4410 4411 tmpstr[0] = '\0'; 4412 4413 /* Bit pointer is valid */ 4414 if (field->byte0 & SSD_SKS_BPV) 4415 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4416 field->byte0 & SSD_SKS_BIT_VALUE); 4417 4418 sbuf_printf(sb, "%s byte %d %sis invalid", 4419 bad_command ? "Command" : "Data", 4420 scsi_2btoul(field->field), tmpstr); 4421 break; 4422 } 4423 case SSD_KEY_UNIT_ATTENTION: { 4424 struct scsi_sense_sks_overflow *overflow; 4425 4426 overflow = (struct scsi_sense_sks_overflow *)sks; 4427 4428 /*UA Condition Queue Overflow*/ 4429 sbuf_printf(sb, "Unit Attention Condition Queue %s", 4430 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ? 4431 "Overflowed" : "Did Not Overflow??"); 4432 break; 4433 } 4434 case SSD_KEY_RECOVERED_ERROR: 4435 case SSD_KEY_HARDWARE_ERROR: 4436 case SSD_KEY_MEDIUM_ERROR: { 4437 struct scsi_sense_sks_retry *retry; 4438 4439 /*Actual Retry Count*/ 4440 retry = (struct scsi_sense_sks_retry *)sks; 4441 4442 sbuf_printf(sb, "Actual Retry Count: %d", 4443 scsi_2btoul(retry->actual_retry_count)); 4444 break; 4445 } 4446 case SSD_KEY_NO_SENSE: 4447 case SSD_KEY_NOT_READY: { 4448 struct scsi_sense_sks_progress *progress; 4449 int progress_val; 4450 4451 /*Progress Indication*/ 4452 progress = (struct scsi_sense_sks_progress *)sks; 4453 progress_val = scsi_2btoul(progress->progress); 4454 4455 scsi_progress_sbuf(sb, progress_val); 4456 break; 4457 } 4458 case SSD_KEY_COPY_ABORTED: { 4459 struct scsi_sense_sks_segment *segment; 4460 char tmpstr[40]; 4461 4462 /*Segment Pointer*/ 4463 segment = (struct scsi_sense_sks_segment *)sks; 4464 4465 tmpstr[0] = '\0'; 4466 4467 if (segment->byte0 & SSD_SKS_SEGMENT_BPV) 4468 snprintf(tmpstr, sizeof(tmpstr), "bit %d ", 4469 segment->byte0 & SSD_SKS_SEGMENT_BITPTR); 4470 4471 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 & 4472 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data", 4473 scsi_2btoul(segment->field), tmpstr); 4474 break; 4475 } 4476 default: 4477 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0], 4478 scsi_2btoul(&sks[1])); 4479 break; 4480 } 4481 4482 return (0); 4483 } 4484 4485 void 4486 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru) 4487 { 4488 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru); 4489 } 4490 4491 void 4492 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits, uint64_t info) 4493 { 4494 int need_comma; 4495 4496 need_comma = 0; 4497 /* 4498 * XXX KDM this needs more descriptive decoding. 4499 */ 4500 if (stream_bits & SSD_DESC_STREAM_FM) { 4501 sbuf_printf(sb, "Filemark"); 4502 need_comma = 1; 4503 } 4504 4505 if (stream_bits & SSD_DESC_STREAM_EOM) { 4506 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : ""); 4507 need_comma = 1; 4508 } 4509 4510 if (stream_bits & SSD_DESC_STREAM_ILI) 4511 sbuf_printf(sb, "%sILI", (need_comma) ? "," : ""); 4512 4513 sbuf_printf(sb, ": Info: %#jx", (uintmax_t) info); 4514 } 4515 4516 void 4517 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits, uint64_t info) 4518 { 4519 if (block_bits & SSD_DESC_BLOCK_ILI) 4520 sbuf_printf(sb, "ILI: residue %#jx", (uintmax_t) info); 4521 } 4522 4523 void 4524 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4525 u_int sense_len, uint8_t *cdb, int cdb_len, 4526 struct scsi_inquiry_data *inq_data, 4527 struct scsi_sense_desc_header *header) 4528 { 4529 struct scsi_sense_info *info; 4530 4531 info = (struct scsi_sense_info *)header; 4532 4533 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info)); 4534 } 4535 4536 void 4537 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4538 u_int sense_len, uint8_t *cdb, int cdb_len, 4539 struct scsi_inquiry_data *inq_data, 4540 struct scsi_sense_desc_header *header) 4541 { 4542 struct scsi_sense_command *command; 4543 4544 command = (struct scsi_sense_command *)header; 4545 4546 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, 4547 scsi_8btou64(command->command_info)); 4548 } 4549 4550 void 4551 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4552 u_int sense_len, uint8_t *cdb, int cdb_len, 4553 struct scsi_inquiry_data *inq_data, 4554 struct scsi_sense_desc_header *header) 4555 { 4556 struct scsi_sense_sks *sks; 4557 int error_code, sense_key, asc, ascq; 4558 4559 sks = (struct scsi_sense_sks *)header; 4560 4561 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4562 &asc, &ascq, /*show_errors*/ 1); 4563 4564 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec); 4565 } 4566 4567 void 4568 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4569 u_int sense_len, uint8_t *cdb, int cdb_len, 4570 struct scsi_inquiry_data *inq_data, 4571 struct scsi_sense_desc_header *header) 4572 { 4573 struct scsi_sense_fru *fru; 4574 4575 fru = (struct scsi_sense_fru *)header; 4576 4577 scsi_fru_sbuf(sb, (uint64_t)fru->fru); 4578 } 4579 4580 void 4581 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4582 u_int sense_len, uint8_t *cdb, int cdb_len, 4583 struct scsi_inquiry_data *inq_data, 4584 struct scsi_sense_desc_header *header) 4585 { 4586 struct scsi_sense_stream *stream; 4587 uint64_t info; 4588 4589 stream = (struct scsi_sense_stream *)header; 4590 info = 0; 4591 4592 scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL); 4593 4594 scsi_stream_sbuf(sb, stream->byte3, info); 4595 } 4596 4597 void 4598 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4599 u_int sense_len, uint8_t *cdb, int cdb_len, 4600 struct scsi_inquiry_data *inq_data, 4601 struct scsi_sense_desc_header *header) 4602 { 4603 struct scsi_sense_block *block; 4604 uint64_t info; 4605 4606 block = (struct scsi_sense_block *)header; 4607 info = 0; 4608 4609 scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL); 4610 4611 scsi_block_sbuf(sb, block->byte3, info); 4612 } 4613 4614 void 4615 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4616 u_int sense_len, uint8_t *cdb, int cdb_len, 4617 struct scsi_inquiry_data *inq_data, 4618 struct scsi_sense_desc_header *header) 4619 { 4620 struct scsi_sense_progress *progress; 4621 const char *sense_key_desc; 4622 const char *asc_desc; 4623 int progress_val; 4624 4625 progress = (struct scsi_sense_progress *)header; 4626 4627 /* 4628 * Get descriptions for the sense key, ASC, and ASCQ in the 4629 * progress descriptor. These could be different than the values 4630 * in the overall sense data. 4631 */ 4632 scsi_sense_desc(progress->sense_key, progress->add_sense_code, 4633 progress->add_sense_code_qual, inq_data, 4634 &sense_key_desc, &asc_desc); 4635 4636 progress_val = scsi_2btoul(progress->progress); 4637 4638 /* 4639 * The progress indicator is for the operation described by the 4640 * sense key, ASC, and ASCQ in the descriptor. 4641 */ 4642 sbuf_cat(sb, sense_key_desc); 4643 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code, 4644 progress->add_sense_code_qual, asc_desc); 4645 scsi_progress_sbuf(sb, progress_val); 4646 } 4647 4648 /* 4649 * Generic sense descriptor printing routine. This is used when we have 4650 * not yet implemented a specific printing routine for this descriptor. 4651 */ 4652 void 4653 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4654 u_int sense_len, uint8_t *cdb, int cdb_len, 4655 struct scsi_inquiry_data *inq_data, 4656 struct scsi_sense_desc_header *header) 4657 { 4658 int i; 4659 uint8_t *buf_ptr; 4660 4661 sbuf_printf(sb, "Descriptor %#x:", header->desc_type); 4662 4663 buf_ptr = (uint8_t *)&header[1]; 4664 4665 for (i = 0; i < header->length; i++, buf_ptr++) 4666 sbuf_printf(sb, " %02x", *buf_ptr); 4667 } 4668 4669 /* 4670 * Keep this list in numeric order. This speeds the array traversal. 4671 */ 4672 struct scsi_sense_desc_printer { 4673 uint8_t desc_type; 4674 /* 4675 * The function arguments here are the superset of what is needed 4676 * to print out various different descriptors. Command and 4677 * information descriptors need inquiry data and command type. 4678 * Sense key specific descriptors need the sense key. 4679 * 4680 * The sense, cdb, and inquiry data arguments may be NULL, but the 4681 * information printed may not be fully decoded as a result. 4682 */ 4683 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense, 4684 u_int sense_len, uint8_t *cdb, int cdb_len, 4685 struct scsi_inquiry_data *inq_data, 4686 struct scsi_sense_desc_header *header); 4687 } scsi_sense_printers[] = { 4688 {SSD_DESC_INFO, scsi_sense_info_sbuf}, 4689 {SSD_DESC_COMMAND, scsi_sense_command_sbuf}, 4690 {SSD_DESC_SKS, scsi_sense_sks_sbuf}, 4691 {SSD_DESC_FRU, scsi_sense_fru_sbuf}, 4692 {SSD_DESC_STREAM, scsi_sense_stream_sbuf}, 4693 {SSD_DESC_BLOCK, scsi_sense_block_sbuf}, 4694 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf} 4695 }; 4696 4697 void 4698 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, 4699 u_int sense_len, uint8_t *cdb, int cdb_len, 4700 struct scsi_inquiry_data *inq_data, 4701 struct scsi_sense_desc_header *header) 4702 { 4703 u_int i; 4704 4705 for (i = 0; i < nitems(scsi_sense_printers); i++) { 4706 struct scsi_sense_desc_printer *printer; 4707 4708 printer = &scsi_sense_printers[i]; 4709 4710 /* 4711 * The list is sorted, so quit if we've passed our 4712 * descriptor number. 4713 */ 4714 if (printer->desc_type > header->desc_type) 4715 break; 4716 4717 if (printer->desc_type != header->desc_type) 4718 continue; 4719 4720 printer->print_func(sb, sense, sense_len, cdb, cdb_len, 4721 inq_data, header); 4722 4723 return; 4724 } 4725 4726 /* 4727 * No specific printing routine, so use the generic routine. 4728 */ 4729 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len, 4730 inq_data, header); 4731 } 4732 4733 scsi_sense_data_type 4734 scsi_sense_type(struct scsi_sense_data *sense_data) 4735 { 4736 switch (sense_data->error_code & SSD_ERRCODE) { 4737 case SSD_DESC_CURRENT_ERROR: 4738 case SSD_DESC_DEFERRED_ERROR: 4739 return (SSD_TYPE_DESC); 4740 break; 4741 case SSD_CURRENT_ERROR: 4742 case SSD_DEFERRED_ERROR: 4743 return (SSD_TYPE_FIXED); 4744 break; 4745 default: 4746 break; 4747 } 4748 4749 return (SSD_TYPE_NONE); 4750 } 4751 4752 struct scsi_print_sense_info { 4753 struct sbuf *sb; 4754 char *path_str; 4755 uint8_t *cdb; 4756 int cdb_len; 4757 struct scsi_inquiry_data *inq_data; 4758 }; 4759 4760 static int 4761 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len, 4762 struct scsi_sense_desc_header *header, void *arg) 4763 { 4764 struct scsi_print_sense_info *print_info; 4765 4766 print_info = (struct scsi_print_sense_info *)arg; 4767 4768 switch (header->desc_type) { 4769 case SSD_DESC_INFO: 4770 case SSD_DESC_FRU: 4771 case SSD_DESC_COMMAND: 4772 case SSD_DESC_SKS: 4773 case SSD_DESC_BLOCK: 4774 case SSD_DESC_STREAM: 4775 /* 4776 * We have already printed these descriptors, if they are 4777 * present. 4778 */ 4779 break; 4780 default: { 4781 sbuf_printf(print_info->sb, "%s", print_info->path_str); 4782 scsi_sense_desc_sbuf(print_info->sb, 4783 (struct scsi_sense_data *)sense, sense_len, 4784 print_info->cdb, print_info->cdb_len, 4785 print_info->inq_data, header); 4786 sbuf_printf(print_info->sb, "\n"); 4787 break; 4788 } 4789 } 4790 4791 /* 4792 * Tell the iterator that we want to see more descriptors if they 4793 * are present. 4794 */ 4795 return (0); 4796 } 4797 4798 void 4799 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, 4800 struct sbuf *sb, char *path_str, 4801 struct scsi_inquiry_data *inq_data, uint8_t *cdb, 4802 int cdb_len) 4803 { 4804 int error_code, sense_key, asc, ascq; 4805 4806 sbuf_cat(sb, path_str); 4807 4808 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key, 4809 &asc, &ascq, /*show_errors*/ 1); 4810 4811 sbuf_printf(sb, "SCSI sense: "); 4812 switch (error_code) { 4813 case SSD_DEFERRED_ERROR: 4814 case SSD_DESC_DEFERRED_ERROR: 4815 sbuf_printf(sb, "Deferred error: "); 4816 4817 /* FALLTHROUGH */ 4818 case SSD_CURRENT_ERROR: 4819 case SSD_DESC_CURRENT_ERROR: 4820 { 4821 struct scsi_sense_data_desc *desc_sense; 4822 struct scsi_print_sense_info print_info; 4823 const char *sense_key_desc; 4824 const char *asc_desc; 4825 uint8_t sks[3]; 4826 uint64_t val; 4827 int info_valid; 4828 4829 /* 4830 * Get descriptions for the sense key, ASC, and ASCQ. If 4831 * these aren't present in the sense data (i.e. the sense 4832 * data isn't long enough), the -1 values that 4833 * scsi_extract_sense_len() returns will yield default 4834 * or error descriptions. 4835 */ 4836 scsi_sense_desc(sense_key, asc, ascq, inq_data, 4837 &sense_key_desc, &asc_desc); 4838 4839 /* 4840 * We first print the sense key and ASC/ASCQ. 4841 */ 4842 sbuf_cat(sb, sense_key_desc); 4843 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc); 4844 4845 /* 4846 * Get the info field if it is valid. 4847 */ 4848 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, 4849 &val, NULL) == 0) 4850 info_valid = 1; 4851 else 4852 info_valid = 0; 4853 4854 if (info_valid != 0) { 4855 uint8_t bits; 4856 4857 /* 4858 * Determine whether we have any block or stream 4859 * device-specific information. 4860 */ 4861 if (scsi_get_block_info(sense, sense_len, inq_data, 4862 &bits) == 0) { 4863 sbuf_cat(sb, path_str); 4864 scsi_block_sbuf(sb, bits, val); 4865 sbuf_printf(sb, "\n"); 4866 } else if (scsi_get_stream_info(sense, sense_len, 4867 inq_data, &bits) == 0) { 4868 sbuf_cat(sb, path_str); 4869 scsi_stream_sbuf(sb, bits, val); 4870 sbuf_printf(sb, "\n"); 4871 } else if (val != 0) { 4872 /* 4873 * The information field can be valid but 0. 4874 * If the block or stream bits aren't set, 4875 * and this is 0, it isn't terribly useful 4876 * to print it out. 4877 */ 4878 sbuf_cat(sb, path_str); 4879 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val); 4880 sbuf_printf(sb, "\n"); 4881 } 4882 } 4883 4884 /* 4885 * Print the FRU. 4886 */ 4887 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU, 4888 &val, NULL) == 0) { 4889 sbuf_cat(sb, path_str); 4890 scsi_fru_sbuf(sb, val); 4891 sbuf_printf(sb, "\n"); 4892 } 4893 4894 /* 4895 * Print any command-specific information. 4896 */ 4897 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND, 4898 &val, NULL) == 0) { 4899 sbuf_cat(sb, path_str); 4900 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val); 4901 sbuf_printf(sb, "\n"); 4902 } 4903 4904 /* 4905 * Print out any sense-key-specific information. 4906 */ 4907 if (scsi_get_sks(sense, sense_len, sks) == 0) { 4908 sbuf_cat(sb, path_str); 4909 scsi_sks_sbuf(sb, sense_key, sks); 4910 sbuf_printf(sb, "\n"); 4911 } 4912 4913 /* 4914 * If this is fixed sense, we're done. If we have 4915 * descriptor sense, we might have more information 4916 * available. 4917 */ 4918 if (scsi_sense_type(sense) != SSD_TYPE_DESC) 4919 break; 4920 4921 desc_sense = (struct scsi_sense_data_desc *)sense; 4922 4923 print_info.sb = sb; 4924 print_info.path_str = path_str; 4925 print_info.cdb = cdb; 4926 print_info.cdb_len = cdb_len; 4927 print_info.inq_data = inq_data; 4928 4929 /* 4930 * Print any sense descriptors that we have not already printed. 4931 */ 4932 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func, 4933 &print_info); 4934 break; 4935 4936 } 4937 case -1: 4938 /* 4939 * scsi_extract_sense_len() sets values to -1 if the 4940 * show_errors flag is set and they aren't present in the 4941 * sense data. This means that sense_len is 0. 4942 */ 4943 sbuf_printf(sb, "No sense data present\n"); 4944 break; 4945 default: { 4946 sbuf_printf(sb, "Error code 0x%x", error_code); 4947 if (sense->error_code & SSD_ERRCODE_VALID) { 4948 struct scsi_sense_data_fixed *fixed_sense; 4949 4950 fixed_sense = (struct scsi_sense_data_fixed *)sense; 4951 4952 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){ 4953 uint32_t info; 4954 4955 info = scsi_4btoul(fixed_sense->info); 4956 4957 sbuf_printf(sb, " at block no. %d (decimal)", 4958 info); 4959 } 4960 } 4961 sbuf_printf(sb, "\n"); 4962 break; 4963 } 4964 } 4965 } 4966 4967 /* 4968 * scsi_sense_sbuf() returns 0 for success and -1 for failure. 4969 */ 4970 #ifdef _KERNEL 4971 int 4972 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, 4973 scsi_sense_string_flags flags) 4974 #else /* !_KERNEL */ 4975 int 4976 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, 4977 struct sbuf *sb, scsi_sense_string_flags flags) 4978 #endif /* _KERNEL/!_KERNEL */ 4979 { 4980 struct scsi_sense_data *sense; 4981 struct scsi_inquiry_data *inq_data; 4982 #ifdef _KERNEL 4983 struct ccb_getdev *cgd; 4984 #endif /* _KERNEL */ 4985 char path_str[64]; 4986 uint8_t *cdb; 4987 4988 #ifndef _KERNEL 4989 if (device == NULL) 4990 return(-1); 4991 #endif /* !_KERNEL */ 4992 if ((csio == NULL) || (sb == NULL)) 4993 return(-1); 4994 4995 /* 4996 * If the CDB is a physical address, we can't deal with it.. 4997 */ 4998 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0) 4999 flags &= ~SSS_FLAG_PRINT_COMMAND; 5000 5001 #ifdef _KERNEL 5002 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str)); 5003 #else /* !_KERNEL */ 5004 cam_path_string(device, path_str, sizeof(path_str)); 5005 #endif /* _KERNEL/!_KERNEL */ 5006 5007 #ifdef _KERNEL 5008 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL) 5009 return(-1); 5010 /* 5011 * Get the device information. 5012 */ 5013 xpt_setup_ccb(&cgd->ccb_h, 5014 csio->ccb_h.path, 5015 CAM_PRIORITY_NORMAL); 5016 cgd->ccb_h.func_code = XPT_GDEV_TYPE; 5017 xpt_action((union ccb *)cgd); 5018 5019 /* 5020 * If the device is unconfigured, just pretend that it is a hard 5021 * drive. scsi_op_desc() needs this. 5022 */ 5023 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE) 5024 cgd->inq_data.device = T_DIRECT; 5025 5026 inq_data = &cgd->inq_data; 5027 5028 #else /* !_KERNEL */ 5029 5030 inq_data = &device->inq_data; 5031 5032 #endif /* _KERNEL/!_KERNEL */ 5033 5034 sense = NULL; 5035 5036 if (flags & SSS_FLAG_PRINT_COMMAND) { 5037 5038 sbuf_cat(sb, path_str); 5039 5040 #ifdef _KERNEL 5041 scsi_command_string(csio, sb); 5042 #else /* !_KERNEL */ 5043 scsi_command_string(device, csio, sb); 5044 #endif /* _KERNEL/!_KERNEL */ 5045 sbuf_printf(sb, "\n"); 5046 } 5047 5048 /* 5049 * If the sense data is a physical pointer, forget it. 5050 */ 5051 if (csio->ccb_h.flags & CAM_SENSE_PTR) { 5052 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5053 #ifdef _KERNEL 5054 xpt_free_ccb((union ccb*)cgd); 5055 #endif /* _KERNEL/!_KERNEL */ 5056 return(-1); 5057 } else { 5058 /* 5059 * bcopy the pointer to avoid unaligned access 5060 * errors on finicky architectures. We don't 5061 * ensure that the sense data is pointer aligned. 5062 */ 5063 bcopy(&csio->sense_data, &sense, 5064 sizeof(struct scsi_sense_data *)); 5065 } 5066 } else { 5067 /* 5068 * If the physical sense flag is set, but the sense pointer 5069 * is not also set, we assume that the user is an idiot and 5070 * return. (Well, okay, it could be that somehow, the 5071 * entire csio is physical, but we would have probably core 5072 * dumped on one of the bogus pointer deferences above 5073 * already.) 5074 */ 5075 if (csio->ccb_h.flags & CAM_SENSE_PHYS) { 5076 #ifdef _KERNEL 5077 xpt_free_ccb((union ccb*)cgd); 5078 #endif /* _KERNEL/!_KERNEL */ 5079 return(-1); 5080 } else 5081 sense = &csio->sense_data; 5082 } 5083 5084 if (csio->ccb_h.flags & CAM_CDB_POINTER) 5085 cdb = csio->cdb_io.cdb_ptr; 5086 else 5087 cdb = csio->cdb_io.cdb_bytes; 5088 5089 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb, 5090 path_str, inq_data, cdb, csio->cdb_len); 5091 5092 #ifdef _KERNEL 5093 xpt_free_ccb((union ccb*)cgd); 5094 #endif /* _KERNEL/!_KERNEL */ 5095 return(0); 5096 } 5097 5098 5099 5100 #ifdef _KERNEL 5101 char * 5102 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len) 5103 #else /* !_KERNEL */ 5104 char * 5105 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, 5106 char *str, int str_len) 5107 #endif /* _KERNEL/!_KERNEL */ 5108 { 5109 struct sbuf sb; 5110 5111 sbuf_new(&sb, str, str_len, 0); 5112 5113 #ifdef _KERNEL 5114 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5115 #else /* !_KERNEL */ 5116 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5117 #endif /* _KERNEL/!_KERNEL */ 5118 5119 sbuf_finish(&sb); 5120 5121 return(sbuf_data(&sb)); 5122 } 5123 5124 #ifdef _KERNEL 5125 void 5126 scsi_sense_print(struct ccb_scsiio *csio) 5127 { 5128 struct sbuf sb; 5129 char str[512]; 5130 5131 sbuf_new(&sb, str, sizeof(str), 0); 5132 5133 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND); 5134 5135 sbuf_finish(&sb); 5136 5137 printf("%s", sbuf_data(&sb)); 5138 } 5139 5140 #else /* !_KERNEL */ 5141 void 5142 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, 5143 FILE *ofile) 5144 { 5145 struct sbuf sb; 5146 char str[512]; 5147 5148 if ((device == NULL) || (csio == NULL) || (ofile == NULL)) 5149 return; 5150 5151 sbuf_new(&sb, str, sizeof(str), 0); 5152 5153 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND); 5154 5155 sbuf_finish(&sb); 5156 5157 fprintf(ofile, "%s", sbuf_data(&sb)); 5158 } 5159 5160 #endif /* _KERNEL/!_KERNEL */ 5161 5162 /* 5163 * Extract basic sense information. This is backward-compatible with the 5164 * previous implementation. For new implementations, 5165 * scsi_extract_sense_len() is recommended. 5166 */ 5167 void 5168 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code, 5169 int *sense_key, int *asc, int *ascq) 5170 { 5171 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code, 5172 sense_key, asc, ascq, /*show_errors*/ 0); 5173 } 5174 5175 /* 5176 * Extract basic sense information from SCSI I/O CCB structure. 5177 */ 5178 int 5179 scsi_extract_sense_ccb(union ccb *ccb, 5180 int *error_code, int *sense_key, int *asc, int *ascq) 5181 { 5182 struct scsi_sense_data *sense_data; 5183 5184 /* Make sure there are some sense data we can access. */ 5185 if (ccb->ccb_h.func_code != XPT_SCSI_IO || 5186 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR || 5187 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) || 5188 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 || 5189 (ccb->ccb_h.flags & CAM_SENSE_PHYS)) 5190 return (0); 5191 5192 if (ccb->ccb_h.flags & CAM_SENSE_PTR) 5193 bcopy(&ccb->csio.sense_data, &sense_data, 5194 sizeof(struct scsi_sense_data *)); 5195 else 5196 sense_data = &ccb->csio.sense_data; 5197 scsi_extract_sense_len(sense_data, 5198 ccb->csio.sense_len - ccb->csio.sense_resid, 5199 error_code, sense_key, asc, ascq, 1); 5200 if (*error_code == -1) 5201 return (0); 5202 return (1); 5203 } 5204 5205 /* 5206 * Extract basic sense information. If show_errors is set, sense values 5207 * will be set to -1 if they are not present. 5208 */ 5209 void 5210 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len, 5211 int *error_code, int *sense_key, int *asc, int *ascq, 5212 int show_errors) 5213 { 5214 /* 5215 * If we have no length, we have no sense. 5216 */ 5217 if (sense_len == 0) { 5218 if (show_errors == 0) { 5219 *error_code = 0; 5220 *sense_key = 0; 5221 *asc = 0; 5222 *ascq = 0; 5223 } else { 5224 *error_code = -1; 5225 *sense_key = -1; 5226 *asc = -1; 5227 *ascq = -1; 5228 } 5229 return; 5230 } 5231 5232 *error_code = sense_data->error_code & SSD_ERRCODE; 5233 5234 switch (*error_code) { 5235 case SSD_DESC_CURRENT_ERROR: 5236 case SSD_DESC_DEFERRED_ERROR: { 5237 struct scsi_sense_data_desc *sense; 5238 5239 sense = (struct scsi_sense_data_desc *)sense_data; 5240 5241 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key)) 5242 *sense_key = sense->sense_key & SSD_KEY; 5243 else 5244 *sense_key = (show_errors) ? -1 : 0; 5245 5246 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code)) 5247 *asc = sense->add_sense_code; 5248 else 5249 *asc = (show_errors) ? -1 : 0; 5250 5251 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual)) 5252 *ascq = sense->add_sense_code_qual; 5253 else 5254 *ascq = (show_errors) ? -1 : 0; 5255 break; 5256 } 5257 case SSD_CURRENT_ERROR: 5258 case SSD_DEFERRED_ERROR: 5259 default: { 5260 struct scsi_sense_data_fixed *sense; 5261 5262 sense = (struct scsi_sense_data_fixed *)sense_data; 5263 5264 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags)) 5265 *sense_key = sense->flags & SSD_KEY; 5266 else 5267 *sense_key = (show_errors) ? -1 : 0; 5268 5269 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code)) 5270 && (SSD_FIXED_IS_FILLED(sense, add_sense_code))) 5271 *asc = sense->add_sense_code; 5272 else 5273 *asc = (show_errors) ? -1 : 0; 5274 5275 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual)) 5276 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual))) 5277 *ascq = sense->add_sense_code_qual; 5278 else 5279 *ascq = (show_errors) ? -1 : 0; 5280 break; 5281 } 5282 } 5283 } 5284 5285 int 5286 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len, 5287 int show_errors) 5288 { 5289 int error_code, sense_key, asc, ascq; 5290 5291 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5292 &sense_key, &asc, &ascq, show_errors); 5293 5294 return (sense_key); 5295 } 5296 5297 int 5298 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len, 5299 int show_errors) 5300 { 5301 int error_code, sense_key, asc, ascq; 5302 5303 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5304 &sense_key, &asc, &ascq, show_errors); 5305 5306 return (asc); 5307 } 5308 5309 int 5310 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len, 5311 int show_errors) 5312 { 5313 int error_code, sense_key, asc, ascq; 5314 5315 scsi_extract_sense_len(sense_data, sense_len, &error_code, 5316 &sense_key, &asc, &ascq, show_errors); 5317 5318 return (ascq); 5319 } 5320 5321 /* 5322 * This function currently requires at least 36 bytes, or 5323 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this 5324 * function needs more or less data in the future, another length should be 5325 * defined in scsi_all.h to indicate the minimum amount of data necessary 5326 * for this routine to function properly. 5327 */ 5328 void 5329 scsi_print_inquiry(struct scsi_inquiry_data *inq_data) 5330 { 5331 u_int8_t type; 5332 char *dtype, *qtype; 5333 char vendor[16], product[48], revision[16], rstr[12]; 5334 5335 type = SID_TYPE(inq_data); 5336 5337 /* 5338 * Figure out basic device type and qualifier. 5339 */ 5340 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) { 5341 qtype = " (vendor-unique qualifier)"; 5342 } else { 5343 switch (SID_QUAL(inq_data)) { 5344 case SID_QUAL_LU_CONNECTED: 5345 qtype = ""; 5346 break; 5347 5348 case SID_QUAL_LU_OFFLINE: 5349 qtype = " (offline)"; 5350 break; 5351 5352 case SID_QUAL_RSVD: 5353 qtype = " (reserved qualifier)"; 5354 break; 5355 default: 5356 case SID_QUAL_BAD_LU: 5357 qtype = " (LUN not supported)"; 5358 break; 5359 } 5360 } 5361 5362 switch (type) { 5363 case T_DIRECT: 5364 dtype = "Direct Access"; 5365 break; 5366 case T_SEQUENTIAL: 5367 dtype = "Sequential Access"; 5368 break; 5369 case T_PRINTER: 5370 dtype = "Printer"; 5371 break; 5372 case T_PROCESSOR: 5373 dtype = "Processor"; 5374 break; 5375 case T_WORM: 5376 dtype = "WORM"; 5377 break; 5378 case T_CDROM: 5379 dtype = "CD-ROM"; 5380 break; 5381 case T_SCANNER: 5382 dtype = "Scanner"; 5383 break; 5384 case T_OPTICAL: 5385 dtype = "Optical"; 5386 break; 5387 case T_CHANGER: 5388 dtype = "Changer"; 5389 break; 5390 case T_COMM: 5391 dtype = "Communication"; 5392 break; 5393 case T_STORARRAY: 5394 dtype = "Storage Array"; 5395 break; 5396 case T_ENCLOSURE: 5397 dtype = "Enclosure Services"; 5398 break; 5399 case T_RBC: 5400 dtype = "Simplified Direct Access"; 5401 break; 5402 case T_OCRW: 5403 dtype = "Optical Card Read/Write"; 5404 break; 5405 case T_OSD: 5406 dtype = "Object-Based Storage"; 5407 break; 5408 case T_ADC: 5409 dtype = "Automation/Drive Interface"; 5410 break; 5411 case T_NODEVICE: 5412 dtype = "Uninstalled"; 5413 break; 5414 default: 5415 dtype = "unknown"; 5416 break; 5417 } 5418 5419 cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor), 5420 sizeof(vendor)); 5421 cam_strvis(product, inq_data->product, sizeof(inq_data->product), 5422 sizeof(product)); 5423 cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision), 5424 sizeof(revision)); 5425 5426 if (SID_ANSI_REV(inq_data) == SCSI_REV_0) 5427 snprintf(rstr, sizeof(rstr), "SCSI"); 5428 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) { 5429 snprintf(rstr, sizeof(rstr), "SCSI-%d", 5430 SID_ANSI_REV(inq_data)); 5431 } else { 5432 snprintf(rstr, sizeof(rstr), "SPC-%d SCSI", 5433 SID_ANSI_REV(inq_data) - 2); 5434 } 5435 printf("<%s %s %s> %s %s %s device%s\n", 5436 vendor, product, revision, 5437 SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", 5438 dtype, rstr, qtype); 5439 } 5440 5441 void 5442 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data) 5443 { 5444 char vendor[16], product[48], revision[16]; 5445 5446 cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor), 5447 sizeof(vendor)); 5448 cam_strvis(product, inq_data->product, sizeof(inq_data->product), 5449 sizeof(product)); 5450 cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision), 5451 sizeof(revision)); 5452 5453 printf("<%s %s %s>", vendor, product, revision); 5454 } 5455 5456 /* 5457 * Table of syncrates that don't follow the "divisible by 4" 5458 * rule. This table will be expanded in future SCSI specs. 5459 */ 5460 static struct { 5461 u_int period_factor; 5462 u_int period; /* in 100ths of ns */ 5463 } scsi_syncrates[] = { 5464 { 0x08, 625 }, /* FAST-160 */ 5465 { 0x09, 1250 }, /* FAST-80 */ 5466 { 0x0a, 2500 }, /* FAST-40 40MHz */ 5467 { 0x0b, 3030 }, /* FAST-40 33MHz */ 5468 { 0x0c, 5000 } /* FAST-20 */ 5469 }; 5470 5471 /* 5472 * Return the frequency in kHz corresponding to the given 5473 * sync period factor. 5474 */ 5475 u_int 5476 scsi_calc_syncsrate(u_int period_factor) 5477 { 5478 u_int i; 5479 u_int num_syncrates; 5480 5481 /* 5482 * It's a bug if period is zero, but if it is anyway, don't 5483 * die with a divide fault- instead return something which 5484 * 'approximates' async 5485 */ 5486 if (period_factor == 0) { 5487 return (3300); 5488 } 5489 5490 num_syncrates = nitems(scsi_syncrates); 5491 /* See if the period is in the "exception" table */ 5492 for (i = 0; i < num_syncrates; i++) { 5493 5494 if (period_factor == scsi_syncrates[i].period_factor) { 5495 /* Period in kHz */ 5496 return (100000000 / scsi_syncrates[i].period); 5497 } 5498 } 5499 5500 /* 5501 * Wasn't in the table, so use the standard 5502 * 4 times conversion. 5503 */ 5504 return (10000000 / (period_factor * 4 * 10)); 5505 } 5506 5507 /* 5508 * Return the SCSI sync parameter that corresponds to 5509 * the passed in period in 10ths of ns. 5510 */ 5511 u_int 5512 scsi_calc_syncparam(u_int period) 5513 { 5514 u_int i; 5515 u_int num_syncrates; 5516 5517 if (period == 0) 5518 return (~0); /* Async */ 5519 5520 /* Adjust for exception table being in 100ths. */ 5521 period *= 10; 5522 num_syncrates = nitems(scsi_syncrates); 5523 /* See if the period is in the "exception" table */ 5524 for (i = 0; i < num_syncrates; i++) { 5525 5526 if (period <= scsi_syncrates[i].period) { 5527 /* Period in 100ths of ns */ 5528 return (scsi_syncrates[i].period_factor); 5529 } 5530 } 5531 5532 /* 5533 * Wasn't in the table, so use the standard 5534 * 1/4 period in ns conversion. 5535 */ 5536 return (period/400); 5537 } 5538 5539 int 5540 scsi_devid_is_naa_ieee_reg(uint8_t *bufp) 5541 { 5542 struct scsi_vpd_id_descriptor *descr; 5543 struct scsi_vpd_id_naa_basic *naa; 5544 5545 descr = (struct scsi_vpd_id_descriptor *)bufp; 5546 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier; 5547 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5548 return 0; 5549 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg)) 5550 return 0; 5551 if ((naa->naa >> SVPD_ID_NAA_NAA_SHIFT) != SVPD_ID_NAA_IEEE_REG) 5552 return 0; 5553 return 1; 5554 } 5555 5556 int 5557 scsi_devid_is_sas_target(uint8_t *bufp) 5558 { 5559 struct scsi_vpd_id_descriptor *descr; 5560 5561 descr = (struct scsi_vpd_id_descriptor *)bufp; 5562 if (!scsi_devid_is_naa_ieee_reg(bufp)) 5563 return 0; 5564 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */ 5565 return 0; 5566 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS) 5567 return 0; 5568 return 1; 5569 } 5570 5571 int 5572 scsi_devid_is_lun_eui64(uint8_t *bufp) 5573 { 5574 struct scsi_vpd_id_descriptor *descr; 5575 5576 descr = (struct scsi_vpd_id_descriptor *)bufp; 5577 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5578 return 0; 5579 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64) 5580 return 0; 5581 return 1; 5582 } 5583 5584 int 5585 scsi_devid_is_lun_naa(uint8_t *bufp) 5586 { 5587 struct scsi_vpd_id_descriptor *descr; 5588 5589 descr = (struct scsi_vpd_id_descriptor *)bufp; 5590 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5591 return 0; 5592 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5593 return 0; 5594 return 1; 5595 } 5596 5597 int 5598 scsi_devid_is_lun_t10(uint8_t *bufp) 5599 { 5600 struct scsi_vpd_id_descriptor *descr; 5601 5602 descr = (struct scsi_vpd_id_descriptor *)bufp; 5603 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5604 return 0; 5605 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10) 5606 return 0; 5607 return 1; 5608 } 5609 5610 int 5611 scsi_devid_is_lun_name(uint8_t *bufp) 5612 { 5613 struct scsi_vpd_id_descriptor *descr; 5614 5615 descr = (struct scsi_vpd_id_descriptor *)bufp; 5616 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN) 5617 return 0; 5618 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME) 5619 return 0; 5620 return 1; 5621 } 5622 5623 int 5624 scsi_devid_is_port_naa(uint8_t *bufp) 5625 { 5626 struct scsi_vpd_id_descriptor *descr; 5627 5628 descr = (struct scsi_vpd_id_descriptor *)bufp; 5629 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT) 5630 return 0; 5631 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA) 5632 return 0; 5633 return 1; 5634 } 5635 5636 struct scsi_vpd_id_descriptor * 5637 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, 5638 scsi_devid_checkfn_t ck_fn) 5639 { 5640 uint8_t *desc_buf_end; 5641 5642 desc_buf_end = (uint8_t *)desc + len; 5643 5644 for (; desc->identifier <= desc_buf_end && 5645 desc->identifier + desc->length <= desc_buf_end; 5646 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier 5647 + desc->length)) { 5648 5649 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0) 5650 return (desc); 5651 } 5652 return (NULL); 5653 } 5654 5655 struct scsi_vpd_id_descriptor * 5656 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len, 5657 scsi_devid_checkfn_t ck_fn) 5658 { 5659 uint32_t len; 5660 5661 if (page_len < sizeof(*id)) 5662 return (NULL); 5663 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id)); 5664 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *) 5665 id->desc_list, len, ck_fn)); 5666 } 5667 5668 int 5669 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, 5670 uint32_t valid_len) 5671 { 5672 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) { 5673 case SCSI_PROTO_FC: { 5674 struct scsi_transportid_fcp *fcp; 5675 uint64_t n_port_name; 5676 5677 fcp = (struct scsi_transportid_fcp *)hdr; 5678 5679 n_port_name = scsi_8btou64(fcp->n_port_name); 5680 5681 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name); 5682 break; 5683 } 5684 case SCSI_PROTO_SPI: { 5685 struct scsi_transportid_spi *spi; 5686 5687 spi = (struct scsi_transportid_spi *)hdr; 5688 5689 sbuf_printf(sb, "SPI address: %u,%u", 5690 scsi_2btoul(spi->scsi_addr), 5691 scsi_2btoul(spi->rel_trgt_port_id)); 5692 break; 5693 } 5694 case SCSI_PROTO_SSA: 5695 /* 5696 * XXX KDM there is no transport ID defined in SPC-4 for 5697 * SSA. 5698 */ 5699 break; 5700 case SCSI_PROTO_1394: { 5701 struct scsi_transportid_1394 *sbp; 5702 uint64_t eui64; 5703 5704 sbp = (struct scsi_transportid_1394 *)hdr; 5705 5706 eui64 = scsi_8btou64(sbp->eui64); 5707 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64); 5708 break; 5709 } 5710 case SCSI_PROTO_RDMA: { 5711 struct scsi_transportid_rdma *rdma; 5712 unsigned int i; 5713 5714 rdma = (struct scsi_transportid_rdma *)hdr; 5715 5716 sbuf_printf(sb, "RDMA address: 0x"); 5717 for (i = 0; i < sizeof(rdma->initiator_port_id); i++) 5718 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]); 5719 break; 5720 } 5721 case SCSI_PROTO_ISCSI: { 5722 uint32_t add_len, i; 5723 uint8_t *iscsi_name = NULL; 5724 int nul_found = 0; 5725 5726 sbuf_printf(sb, "iSCSI address: "); 5727 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5728 SCSI_TRN_ISCSI_FORMAT_DEVICE) { 5729 struct scsi_transportid_iscsi_device *dev; 5730 5731 dev = (struct scsi_transportid_iscsi_device *)hdr; 5732 5733 /* 5734 * Verify how much additional data we really have. 5735 */ 5736 add_len = scsi_2btoul(dev->additional_length); 5737 add_len = MIN(add_len, valid_len - 5738 __offsetof(struct scsi_transportid_iscsi_device, 5739 iscsi_name)); 5740 iscsi_name = &dev->iscsi_name[0]; 5741 5742 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) == 5743 SCSI_TRN_ISCSI_FORMAT_PORT) { 5744 struct scsi_transportid_iscsi_port *port; 5745 5746 port = (struct scsi_transportid_iscsi_port *)hdr; 5747 5748 add_len = scsi_2btoul(port->additional_length); 5749 add_len = MIN(add_len, valid_len - 5750 __offsetof(struct scsi_transportid_iscsi_port, 5751 iscsi_name)); 5752 iscsi_name = &port->iscsi_name[0]; 5753 } else { 5754 sbuf_printf(sb, "unknown format %x", 5755 (hdr->format_protocol & 5756 SCSI_TRN_FORMAT_MASK) >> 5757 SCSI_TRN_FORMAT_SHIFT); 5758 break; 5759 } 5760 if (add_len == 0) { 5761 sbuf_printf(sb, "not enough data"); 5762 break; 5763 } 5764 /* 5765 * This is supposed to be a NUL-terminated ASCII 5766 * string, but you never know. So we're going to 5767 * check. We need to do this because there is no 5768 * sbuf equivalent of strncat(). 5769 */ 5770 for (i = 0; i < add_len; i++) { 5771 if (iscsi_name[i] == '\0') { 5772 nul_found = 1; 5773 break; 5774 } 5775 } 5776 /* 5777 * If there is a NUL in the name, we can just use 5778 * sbuf_cat(). Otherwise we need to use sbuf_bcat(). 5779 */ 5780 if (nul_found != 0) 5781 sbuf_cat(sb, iscsi_name); 5782 else 5783 sbuf_bcat(sb, iscsi_name, add_len); 5784 break; 5785 } 5786 case SCSI_PROTO_SAS: { 5787 struct scsi_transportid_sas *sas; 5788 uint64_t sas_addr; 5789 5790 sas = (struct scsi_transportid_sas *)hdr; 5791 5792 sas_addr = scsi_8btou64(sas->sas_address); 5793 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr); 5794 break; 5795 } 5796 case SCSI_PROTO_ADITP: 5797 case SCSI_PROTO_ATA: 5798 case SCSI_PROTO_UAS: 5799 /* 5800 * No Transport ID format for ADI, ATA or USB is defined in 5801 * SPC-4. 5802 */ 5803 sbuf_printf(sb, "No known Transport ID format for protocol " 5804 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5805 break; 5806 case SCSI_PROTO_SOP: { 5807 struct scsi_transportid_sop *sop; 5808 struct scsi_sop_routing_id_norm *rid; 5809 5810 sop = (struct scsi_transportid_sop *)hdr; 5811 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id; 5812 5813 /* 5814 * Note that there is no alternate format specified in SPC-4 5815 * for the PCIe routing ID, so we don't really have a way 5816 * to know whether the second byte of the routing ID is 5817 * a device and function or just a function. So we just 5818 * assume bus,device,function. 5819 */ 5820 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u", 5821 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT, 5822 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX); 5823 break; 5824 } 5825 case SCSI_PROTO_NONE: 5826 default: 5827 sbuf_printf(sb, "Unknown protocol %#x", 5828 hdr->format_protocol & SCSI_TRN_PROTO_MASK); 5829 break; 5830 } 5831 5832 return (0); 5833 } 5834 5835 struct scsi_nv scsi_proto_map[] = { 5836 { "fcp", SCSI_PROTO_FC }, 5837 { "spi", SCSI_PROTO_SPI }, 5838 { "ssa", SCSI_PROTO_SSA }, 5839 { "sbp", SCSI_PROTO_1394 }, 5840 { "1394", SCSI_PROTO_1394 }, 5841 { "srp", SCSI_PROTO_RDMA }, 5842 { "rdma", SCSI_PROTO_RDMA }, 5843 { "iscsi", SCSI_PROTO_ISCSI }, 5844 { "iqn", SCSI_PROTO_ISCSI }, 5845 { "sas", SCSI_PROTO_SAS }, 5846 { "aditp", SCSI_PROTO_ADITP }, 5847 { "ata", SCSI_PROTO_ATA }, 5848 { "uas", SCSI_PROTO_UAS }, 5849 { "usb", SCSI_PROTO_UAS }, 5850 { "sop", SCSI_PROTO_SOP } 5851 }; 5852 5853 const char * 5854 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value) 5855 { 5856 int i; 5857 5858 for (i = 0; i < num_table_entries; i++) { 5859 if (table[i].value == value) 5860 return (table[i].name); 5861 } 5862 5863 return (NULL); 5864 } 5865 5866 /* 5867 * Given a name/value table, find a value matching the given name. 5868 * Return values: 5869 * SCSI_NV_FOUND - match found 5870 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact 5871 * SCSI_NV_NOT_FOUND - no match found 5872 */ 5873 scsi_nv_status 5874 scsi_get_nv(struct scsi_nv *table, int num_table_entries, 5875 char *name, int *table_entry, scsi_nv_flags flags) 5876 { 5877 int i, num_matches = 0; 5878 5879 for (i = 0; i < num_table_entries; i++) { 5880 size_t table_len, name_len; 5881 5882 table_len = strlen(table[i].name); 5883 name_len = strlen(name); 5884 5885 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0) 5886 && (strncasecmp(table[i].name, name, name_len) == 0)) 5887 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0) 5888 && (strncmp(table[i].name, name, name_len) == 0))) { 5889 *table_entry = i; 5890 5891 /* 5892 * Check for an exact match. If we have the same 5893 * number of characters in the table as the argument, 5894 * and we already know they're the same, we have 5895 * an exact match. 5896 */ 5897 if (table_len == name_len) 5898 return (SCSI_NV_FOUND); 5899 5900 /* 5901 * Otherwise, bump up the number of matches. We'll 5902 * see later how many we have. 5903 */ 5904 num_matches++; 5905 } 5906 } 5907 5908 if (num_matches > 1) 5909 return (SCSI_NV_AMBIGUOUS); 5910 else if (num_matches == 1) 5911 return (SCSI_NV_FOUND); 5912 else 5913 return (SCSI_NV_NOT_FOUND); 5914 } 5915 5916 /* 5917 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are 5918 * all 64-bit numbers, the code is similar. 5919 */ 5920 int 5921 scsi_parse_transportid_64bit(int proto_id, char *id_str, 5922 struct scsi_transportid_header **hdr, 5923 unsigned int *alloc_len, 5924 #ifdef _KERNEL 5925 struct malloc_type *type, int flags, 5926 #endif 5927 char *error_str, int error_str_len) 5928 { 5929 uint64_t value; 5930 char *endptr; 5931 int retval; 5932 size_t alloc_size; 5933 5934 retval = 0; 5935 5936 value = strtouq(id_str, &endptr, 0); 5937 if (*endptr != '\0') { 5938 if (error_str != NULL) { 5939 snprintf(error_str, error_str_len, "%s: error " 5940 "parsing ID %s, 64-bit number required", 5941 __func__, id_str); 5942 } 5943 retval = 1; 5944 goto bailout; 5945 } 5946 5947 switch (proto_id) { 5948 case SCSI_PROTO_FC: 5949 alloc_size = sizeof(struct scsi_transportid_fcp); 5950 break; 5951 case SCSI_PROTO_1394: 5952 alloc_size = sizeof(struct scsi_transportid_1394); 5953 break; 5954 case SCSI_PROTO_SAS: 5955 alloc_size = sizeof(struct scsi_transportid_sas); 5956 break; 5957 default: 5958 if (error_str != NULL) { 5959 snprintf(error_str, error_str_len, "%s: unsupported " 5960 "protocol %d", __func__, proto_id); 5961 } 5962 retval = 1; 5963 goto bailout; 5964 break; /* NOTREACHED */ 5965 } 5966 #ifdef _KERNEL 5967 *hdr = malloc(alloc_size, type, flags); 5968 #else /* _KERNEL */ 5969 *hdr = malloc(alloc_size); 5970 #endif /*_KERNEL */ 5971 if (*hdr == NULL) { 5972 if (error_str != NULL) { 5973 snprintf(error_str, error_str_len, "%s: unable to " 5974 "allocate %zu bytes", __func__, alloc_size); 5975 } 5976 retval = 1; 5977 goto bailout; 5978 } 5979 5980 *alloc_len = alloc_size; 5981 5982 bzero(*hdr, alloc_size); 5983 5984 switch (proto_id) { 5985 case SCSI_PROTO_FC: { 5986 struct scsi_transportid_fcp *fcp; 5987 5988 fcp = (struct scsi_transportid_fcp *)(*hdr); 5989 fcp->format_protocol = SCSI_PROTO_FC | 5990 SCSI_TRN_FCP_FORMAT_DEFAULT; 5991 scsi_u64to8b(value, fcp->n_port_name); 5992 break; 5993 } 5994 case SCSI_PROTO_1394: { 5995 struct scsi_transportid_1394 *sbp; 5996 5997 sbp = (struct scsi_transportid_1394 *)(*hdr); 5998 sbp->format_protocol = SCSI_PROTO_1394 | 5999 SCSI_TRN_1394_FORMAT_DEFAULT; 6000 scsi_u64to8b(value, sbp->eui64); 6001 break; 6002 } 6003 case SCSI_PROTO_SAS: { 6004 struct scsi_transportid_sas *sas; 6005 6006 sas = (struct scsi_transportid_sas *)(*hdr); 6007 sas->format_protocol = SCSI_PROTO_SAS | 6008 SCSI_TRN_SAS_FORMAT_DEFAULT; 6009 scsi_u64to8b(value, sas->sas_address); 6010 break; 6011 } 6012 default: 6013 break; 6014 } 6015 bailout: 6016 return (retval); 6017 } 6018 6019 /* 6020 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port 6021 */ 6022 int 6023 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, 6024 unsigned int *alloc_len, 6025 #ifdef _KERNEL 6026 struct malloc_type *type, int flags, 6027 #endif 6028 char *error_str, int error_str_len) 6029 { 6030 unsigned long scsi_addr, target_port; 6031 struct scsi_transportid_spi *spi; 6032 char *tmpstr, *endptr; 6033 int retval; 6034 6035 retval = 0; 6036 6037 tmpstr = strsep(&id_str, ","); 6038 if (tmpstr == NULL) { 6039 if (error_str != NULL) { 6040 snprintf(error_str, error_str_len, 6041 "%s: no ID found", __func__); 6042 } 6043 retval = 1; 6044 goto bailout; 6045 } 6046 scsi_addr = strtoul(tmpstr, &endptr, 0); 6047 if (*endptr != '\0') { 6048 if (error_str != NULL) { 6049 snprintf(error_str, error_str_len, "%s: error " 6050 "parsing SCSI ID %s, number required", 6051 __func__, tmpstr); 6052 } 6053 retval = 1; 6054 goto bailout; 6055 } 6056 6057 if (id_str == NULL) { 6058 if (error_str != NULL) { 6059 snprintf(error_str, error_str_len, "%s: no relative " 6060 "target port found", __func__); 6061 } 6062 retval = 1; 6063 goto bailout; 6064 } 6065 6066 target_port = strtoul(id_str, &endptr, 0); 6067 if (*endptr != '\0') { 6068 if (error_str != NULL) { 6069 snprintf(error_str, error_str_len, "%s: error " 6070 "parsing relative target port %s, number " 6071 "required", __func__, id_str); 6072 } 6073 retval = 1; 6074 goto bailout; 6075 } 6076 #ifdef _KERNEL 6077 spi = malloc(sizeof(*spi), type, flags); 6078 #else 6079 spi = malloc(sizeof(*spi)); 6080 #endif 6081 if (spi == NULL) { 6082 if (error_str != NULL) { 6083 snprintf(error_str, error_str_len, "%s: unable to " 6084 "allocate %zu bytes", __func__, 6085 sizeof(*spi)); 6086 } 6087 retval = 1; 6088 goto bailout; 6089 } 6090 *alloc_len = sizeof(*spi); 6091 bzero(spi, sizeof(*spi)); 6092 6093 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT; 6094 scsi_ulto2b(scsi_addr, spi->scsi_addr); 6095 scsi_ulto2b(target_port, spi->rel_trgt_port_id); 6096 6097 *hdr = (struct scsi_transportid_header *)spi; 6098 bailout: 6099 return (retval); 6100 } 6101 6102 /* 6103 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits, 6104 * optionally prefixed by "0x" or "0X". 6105 */ 6106 int 6107 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, 6108 unsigned int *alloc_len, 6109 #ifdef _KERNEL 6110 struct malloc_type *type, int flags, 6111 #endif 6112 char *error_str, int error_str_len) 6113 { 6114 struct scsi_transportid_rdma *rdma; 6115 int retval; 6116 size_t id_len, rdma_id_size; 6117 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN]; 6118 char *tmpstr; 6119 unsigned int i, j; 6120 6121 retval = 0; 6122 id_len = strlen(id_str); 6123 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN; 6124 6125 /* 6126 * Check the size. It needs to be either 32 or 34 characters long. 6127 */ 6128 if ((id_len != (rdma_id_size * 2)) 6129 && (id_len != ((rdma_id_size * 2) + 2))) { 6130 if (error_str != NULL) { 6131 snprintf(error_str, error_str_len, "%s: RDMA ID " 6132 "must be 32 hex digits (0x prefix " 6133 "optional), only %zu seen", __func__, id_len); 6134 } 6135 retval = 1; 6136 goto bailout; 6137 } 6138 6139 tmpstr = id_str; 6140 /* 6141 * If the user gave us 34 characters, the string needs to start 6142 * with '0x'. 6143 */ 6144 if (id_len == ((rdma_id_size * 2) + 2)) { 6145 if ((tmpstr[0] == '0') 6146 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) { 6147 tmpstr += 2; 6148 } else { 6149 if (error_str != NULL) { 6150 snprintf(error_str, error_str_len, "%s: RDMA " 6151 "ID prefix, if used, must be \"0x\", " 6152 "got %s", __func__, tmpstr); 6153 } 6154 retval = 1; 6155 goto bailout; 6156 } 6157 } 6158 bzero(rdma_id, sizeof(rdma_id)); 6159 6160 /* 6161 * Convert ASCII hex into binary bytes. There is no standard 6162 * 128-bit integer type, and so no strtou128t() routine to convert 6163 * from hex into a large integer. In the end, we're not going to 6164 * an integer, but rather to a byte array, so that and the fact 6165 * that we require the user to give us 32 hex digits simplifies the 6166 * logic. 6167 */ 6168 for (i = 0; i < (rdma_id_size * 2); i++) { 6169 int cur_shift; 6170 unsigned char c; 6171 6172 /* Increment the byte array one for every 2 hex digits */ 6173 j = i >> 1; 6174 6175 /* 6176 * The first digit in every pair is the most significant 6177 * 4 bits. The second is the least significant 4 bits. 6178 */ 6179 if ((i % 2) == 0) 6180 cur_shift = 4; 6181 else 6182 cur_shift = 0; 6183 6184 c = tmpstr[i]; 6185 /* Convert the ASCII hex character into a number */ 6186 if (isdigit(c)) 6187 c -= '0'; 6188 else if (isalpha(c)) 6189 c -= isupper(c) ? 'A' - 10 : 'a' - 10; 6190 else { 6191 if (error_str != NULL) { 6192 snprintf(error_str, error_str_len, "%s: " 6193 "RDMA ID must be hex digits, got " 6194 "invalid character %c", __func__, 6195 tmpstr[i]); 6196 } 6197 retval = 1; 6198 goto bailout; 6199 } 6200 /* 6201 * The converted number can't be less than 0; the type is 6202 * unsigned, and the subtraction logic will not give us 6203 * a negative number. So we only need to make sure that 6204 * the value is not greater than 0xf. (i.e. make sure the 6205 * user didn't give us a value like "0x12jklmno"). 6206 */ 6207 if (c > 0xf) { 6208 if (error_str != NULL) { 6209 snprintf(error_str, error_str_len, "%s: " 6210 "RDMA ID must be hex digits, got " 6211 "invalid character %c", __func__, 6212 tmpstr[i]); 6213 } 6214 retval = 1; 6215 goto bailout; 6216 } 6217 6218 rdma_id[j] |= c << cur_shift; 6219 } 6220 6221 #ifdef _KERNEL 6222 rdma = malloc(sizeof(*rdma), type, flags); 6223 #else 6224 rdma = malloc(sizeof(*rdma)); 6225 #endif 6226 if (rdma == NULL) { 6227 if (error_str != NULL) { 6228 snprintf(error_str, error_str_len, "%s: unable to " 6229 "allocate %zu bytes", __func__, 6230 sizeof(*rdma)); 6231 } 6232 retval = 1; 6233 goto bailout; 6234 } 6235 *alloc_len = sizeof(*rdma); 6236 bzero(rdma, *alloc_len); 6237 6238 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT; 6239 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN); 6240 6241 *hdr = (struct scsi_transportid_header *)rdma; 6242 6243 bailout: 6244 return (retval); 6245 } 6246 6247 /* 6248 * Parse an iSCSI name. The format is either just the name: 6249 * 6250 * iqn.2012-06.com.example:target0 6251 * or the name, separator and initiator session ID: 6252 * 6253 * iqn.2012-06.com.example:target0,i,0x123 6254 * 6255 * The separator format is exact. 6256 */ 6257 int 6258 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, 6259 unsigned int *alloc_len, 6260 #ifdef _KERNEL 6261 struct malloc_type *type, int flags, 6262 #endif 6263 char *error_str, int error_str_len) 6264 { 6265 size_t id_len, sep_len, id_size, name_len; 6266 int retval; 6267 unsigned int i, sep_pos, sep_found; 6268 const char *sep_template = ",i,0x"; 6269 const char *iqn_prefix = "iqn."; 6270 struct scsi_transportid_iscsi_device *iscsi; 6271 6272 retval = 0; 6273 sep_found = 0; 6274 6275 id_len = strlen(id_str); 6276 sep_len = strlen(sep_template); 6277 6278 /* 6279 * The separator is defined as exactly ',i,0x'. Any other commas, 6280 * or any other form, is an error. So look for a comma, and once 6281 * we find that, the next few characters must match the separator 6282 * exactly. Once we get through the separator, there should be at 6283 * least one character. 6284 */ 6285 for (i = 0, sep_pos = 0; i < id_len; i++) { 6286 if (sep_pos == 0) { 6287 if (id_str[i] == sep_template[sep_pos]) 6288 sep_pos++; 6289 6290 continue; 6291 } 6292 if (sep_pos < sep_len) { 6293 if (id_str[i] == sep_template[sep_pos]) { 6294 sep_pos++; 6295 continue; 6296 } 6297 if (error_str != NULL) { 6298 snprintf(error_str, error_str_len, "%s: " 6299 "invalid separator in iSCSI name " 6300 "\"%s\"", 6301 __func__, id_str); 6302 } 6303 retval = 1; 6304 goto bailout; 6305 } else { 6306 sep_found = 1; 6307 break; 6308 } 6309 } 6310 6311 /* 6312 * Check to see whether we have a separator but no digits after it. 6313 */ 6314 if ((sep_pos != 0) 6315 && (sep_found == 0)) { 6316 if (error_str != NULL) { 6317 snprintf(error_str, error_str_len, "%s: no digits " 6318 "found after separator in iSCSI name \"%s\"", 6319 __func__, id_str); 6320 } 6321 retval = 1; 6322 goto bailout; 6323 } 6324 6325 /* 6326 * The incoming ID string has the "iqn." prefix stripped off. We 6327 * need enough space for the base structure (the structures are the 6328 * same for the two iSCSI forms), the prefix, the ID string and a 6329 * terminating NUL. 6330 */ 6331 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1; 6332 6333 #ifdef _KERNEL 6334 iscsi = malloc(id_size, type, flags); 6335 #else 6336 iscsi = malloc(id_size); 6337 #endif 6338 if (iscsi == NULL) { 6339 if (error_str != NULL) { 6340 snprintf(error_str, error_str_len, "%s: unable to " 6341 "allocate %zu bytes", __func__, id_size); 6342 } 6343 retval = 1; 6344 goto bailout; 6345 } 6346 *alloc_len = id_size; 6347 bzero(iscsi, id_size); 6348 6349 iscsi->format_protocol = SCSI_PROTO_ISCSI; 6350 if (sep_found == 0) 6351 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE; 6352 else 6353 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT; 6354 name_len = id_size - sizeof(*iscsi); 6355 scsi_ulto2b(name_len, iscsi->additional_length); 6356 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str); 6357 6358 *hdr = (struct scsi_transportid_header *)iscsi; 6359 6360 bailout: 6361 return (retval); 6362 } 6363 6364 /* 6365 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be 6366 * of the form 'bus,device,function' or 'bus,function'. 6367 */ 6368 int 6369 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, 6370 unsigned int *alloc_len, 6371 #ifdef _KERNEL 6372 struct malloc_type *type, int flags, 6373 #endif 6374 char *error_str, int error_str_len) 6375 { 6376 struct scsi_transportid_sop *sop; 6377 unsigned long bus, device, function; 6378 char *tmpstr, *endptr; 6379 int retval, device_spec; 6380 6381 retval = 0; 6382 device_spec = 0; 6383 device = 0; 6384 6385 tmpstr = strsep(&id_str, ","); 6386 if ((tmpstr == NULL) 6387 || (*tmpstr == '\0')) { 6388 if (error_str != NULL) { 6389 snprintf(error_str, error_str_len, "%s: no ID found", 6390 __func__); 6391 } 6392 retval = 1; 6393 goto bailout; 6394 } 6395 bus = strtoul(tmpstr, &endptr, 0); 6396 if (*endptr != '\0') { 6397 if (error_str != NULL) { 6398 snprintf(error_str, error_str_len, "%s: error " 6399 "parsing PCIe bus %s, number required", 6400 __func__, tmpstr); 6401 } 6402 retval = 1; 6403 goto bailout; 6404 } 6405 if ((id_str == NULL) 6406 || (*id_str == '\0')) { 6407 if (error_str != NULL) { 6408 snprintf(error_str, error_str_len, "%s: no PCIe " 6409 "device or function found", __func__); 6410 } 6411 retval = 1; 6412 goto bailout; 6413 } 6414 tmpstr = strsep(&id_str, ","); 6415 function = strtoul(tmpstr, &endptr, 0); 6416 if (*endptr != '\0') { 6417 if (error_str != NULL) { 6418 snprintf(error_str, error_str_len, "%s: error " 6419 "parsing PCIe device/function %s, number " 6420 "required", __func__, tmpstr); 6421 } 6422 retval = 1; 6423 goto bailout; 6424 } 6425 /* 6426 * Check to see whether the user specified a third value. If so, 6427 * the second is the device. 6428 */ 6429 if (id_str != NULL) { 6430 if (*id_str == '\0') { 6431 if (error_str != NULL) { 6432 snprintf(error_str, error_str_len, "%s: " 6433 "no PCIe function found", __func__); 6434 } 6435 retval = 1; 6436 goto bailout; 6437 } 6438 device = function; 6439 device_spec = 1; 6440 function = strtoul(id_str, &endptr, 0); 6441 if (*endptr != '\0') { 6442 if (error_str != NULL) { 6443 snprintf(error_str, error_str_len, "%s: " 6444 "error parsing PCIe function %s, " 6445 "number required", __func__, id_str); 6446 } 6447 retval = 1; 6448 goto bailout; 6449 } 6450 } 6451 if (bus > SCSI_TRN_SOP_BUS_MAX) { 6452 if (error_str != NULL) { 6453 snprintf(error_str, error_str_len, "%s: bus value " 6454 "%lu greater than maximum %u", __func__, 6455 bus, SCSI_TRN_SOP_BUS_MAX); 6456 } 6457 retval = 1; 6458 goto bailout; 6459 } 6460 6461 if ((device_spec != 0) 6462 && (device > SCSI_TRN_SOP_DEV_MASK)) { 6463 if (error_str != NULL) { 6464 snprintf(error_str, error_str_len, "%s: device value " 6465 "%lu greater than maximum %u", __func__, 6466 device, SCSI_TRN_SOP_DEV_MAX); 6467 } 6468 retval = 1; 6469 goto bailout; 6470 } 6471 6472 if (((device_spec != 0) 6473 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX)) 6474 || ((device_spec == 0) 6475 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) { 6476 if (error_str != NULL) { 6477 snprintf(error_str, error_str_len, "%s: function value " 6478 "%lu greater than maximum %u", __func__, 6479 function, (device_spec == 0) ? 6480 SCSI_TRN_SOP_FUNC_ALT_MAX : 6481 SCSI_TRN_SOP_FUNC_NORM_MAX); 6482 } 6483 retval = 1; 6484 goto bailout; 6485 } 6486 6487 #ifdef _KERNEL 6488 sop = malloc(sizeof(*sop), type, flags); 6489 #else 6490 sop = malloc(sizeof(*sop)); 6491 #endif 6492 if (sop == NULL) { 6493 if (error_str != NULL) { 6494 snprintf(error_str, error_str_len, "%s: unable to " 6495 "allocate %zu bytes", __func__, sizeof(*sop)); 6496 } 6497 retval = 1; 6498 goto bailout; 6499 } 6500 *alloc_len = sizeof(*sop); 6501 bzero(sop, sizeof(*sop)); 6502 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT; 6503 if (device_spec != 0) { 6504 struct scsi_sop_routing_id_norm rid; 6505 6506 rid.bus = bus; 6507 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function; 6508 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6509 sizeof(sop->routing_id))); 6510 } else { 6511 struct scsi_sop_routing_id_alt rid; 6512 6513 rid.bus = bus; 6514 rid.function = function; 6515 bcopy(&rid, sop->routing_id, MIN(sizeof(rid), 6516 sizeof(sop->routing_id))); 6517 } 6518 6519 *hdr = (struct scsi_transportid_header *)sop; 6520 bailout: 6521 return (retval); 6522 } 6523 6524 /* 6525 * transportid_str: NUL-terminated string with format: protcol,id 6526 * The ID is protocol specific. 6527 * hdr: Storage will be allocated for the transport ID. 6528 * alloc_len: The amount of memory allocated is returned here. 6529 * type: Malloc bucket (kernel only). 6530 * flags: Malloc flags (kernel only). 6531 * error_str: If non-NULL, it will contain error information (without 6532 * a terminating newline) if an error is returned. 6533 * error_str_len: Allocated length of the error string. 6534 * 6535 * Returns 0 for success, non-zero for failure. 6536 */ 6537 int 6538 scsi_parse_transportid(char *transportid_str, 6539 struct scsi_transportid_header **hdr, 6540 unsigned int *alloc_len, 6541 #ifdef _KERNEL 6542 struct malloc_type *type, int flags, 6543 #endif 6544 char *error_str, int error_str_len) 6545 { 6546 char *tmpstr; 6547 scsi_nv_status status; 6548 u_int num_proto_entries; 6549 int retval, table_entry; 6550 6551 retval = 0; 6552 table_entry = 0; 6553 6554 /* 6555 * We do allow a period as well as a comma to separate the protocol 6556 * from the ID string. This is to accommodate iSCSI names, which 6557 * start with "iqn.". 6558 */ 6559 tmpstr = strsep(&transportid_str, ",."); 6560 if (tmpstr == NULL) { 6561 if (error_str != NULL) { 6562 snprintf(error_str, error_str_len, 6563 "%s: transportid_str is NULL", __func__); 6564 } 6565 retval = 1; 6566 goto bailout; 6567 } 6568 6569 num_proto_entries = nitems(scsi_proto_map); 6570 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr, 6571 &table_entry, SCSI_NV_FLAG_IG_CASE); 6572 if (status != SCSI_NV_FOUND) { 6573 if (error_str != NULL) { 6574 snprintf(error_str, error_str_len, "%s: %s protocol " 6575 "name %s", __func__, 6576 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" : 6577 "invalid", tmpstr); 6578 } 6579 retval = 1; 6580 goto bailout; 6581 } 6582 switch (scsi_proto_map[table_entry].value) { 6583 case SCSI_PROTO_FC: 6584 case SCSI_PROTO_1394: 6585 case SCSI_PROTO_SAS: 6586 retval = scsi_parse_transportid_64bit( 6587 scsi_proto_map[table_entry].value, transportid_str, hdr, 6588 alloc_len, 6589 #ifdef _KERNEL 6590 type, flags, 6591 #endif 6592 error_str, error_str_len); 6593 break; 6594 case SCSI_PROTO_SPI: 6595 retval = scsi_parse_transportid_spi(transportid_str, hdr, 6596 alloc_len, 6597 #ifdef _KERNEL 6598 type, flags, 6599 #endif 6600 error_str, error_str_len); 6601 break; 6602 case SCSI_PROTO_RDMA: 6603 retval = scsi_parse_transportid_rdma(transportid_str, hdr, 6604 alloc_len, 6605 #ifdef _KERNEL 6606 type, flags, 6607 #endif 6608 error_str, error_str_len); 6609 break; 6610 case SCSI_PROTO_ISCSI: 6611 retval = scsi_parse_transportid_iscsi(transportid_str, hdr, 6612 alloc_len, 6613 #ifdef _KERNEL 6614 type, flags, 6615 #endif 6616 error_str, error_str_len); 6617 break; 6618 case SCSI_PROTO_SOP: 6619 retval = scsi_parse_transportid_sop(transportid_str, hdr, 6620 alloc_len, 6621 #ifdef _KERNEL 6622 type, flags, 6623 #endif 6624 error_str, error_str_len); 6625 break; 6626 case SCSI_PROTO_SSA: 6627 case SCSI_PROTO_ADITP: 6628 case SCSI_PROTO_ATA: 6629 case SCSI_PROTO_UAS: 6630 case SCSI_PROTO_NONE: 6631 default: 6632 /* 6633 * There is no format defined for a Transport ID for these 6634 * protocols. So even if the user gives us something, we 6635 * have no way to turn it into a standard SCSI Transport ID. 6636 */ 6637 retval = 1; 6638 if (error_str != NULL) { 6639 snprintf(error_str, error_str_len, "%s: no Transport " 6640 "ID format exists for protocol %s", 6641 __func__, tmpstr); 6642 } 6643 goto bailout; 6644 break; /* NOTREACHED */ 6645 } 6646 bailout: 6647 return (retval); 6648 } 6649 6650 struct scsi_attrib_table_entry scsi_mam_attr_table[] = { 6651 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6652 "Remaining Capacity in Partition", 6653 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL }, 6654 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE, 6655 "Maximum Capacity in Partition", 6656 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6657 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX, 6658 "TapeAlert Flags", 6659 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6660 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE, 6661 "Load Count", 6662 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6663 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE, 6664 "MAM Space Remaining", 6665 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6666 /*parse_str*/ NULL }, 6667 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6668 "Assigning Organization", 6669 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6670 /*parse_str*/ NULL }, 6671 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6672 "Format Density Code", 6673 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6674 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE, 6675 "Initialization Count", 6676 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL }, 6677 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE, 6678 "Volume Identifier", 6679 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6680 /*parse_str*/ NULL }, 6681 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX, 6682 "Volume Change Reference", 6683 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6684 /*parse_str*/ NULL }, 6685 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE, 6686 "Device Vendor/Serial at Last Load", 6687 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6688 /*parse_str*/ NULL }, 6689 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE, 6690 "Device Vendor/Serial at Last Load - 1", 6691 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6692 /*parse_str*/ NULL }, 6693 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE, 6694 "Device Vendor/Serial at Last Load - 2", 6695 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6696 /*parse_str*/ NULL }, 6697 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE, 6698 "Device Vendor/Serial at Last Load - 3", 6699 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf, 6700 /*parse_str*/ NULL }, 6701 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE, 6702 "Total MB Written in Medium Life", 6703 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6704 /*parse_str*/ NULL }, 6705 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE, 6706 "Total MB Read in Medium Life", 6707 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6708 /*parse_str*/ NULL }, 6709 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE, 6710 "Total MB Written in Current/Last Load", 6711 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6712 /*parse_str*/ NULL }, 6713 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE, 6714 "Total MB Read in Current/Last Load", 6715 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf, 6716 /*parse_str*/ NULL }, 6717 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6718 "Logical Position of First Encrypted Block", 6719 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6720 /*parse_str*/ NULL }, 6721 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE, 6722 "Logical Position of First Unencrypted Block after First " 6723 "Encrypted Block", 6724 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf, 6725 /*parse_str*/ NULL }, 6726 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6727 "Medium Usage History", 6728 /*suffix*/ NULL, /*to_str*/ NULL, 6729 /*parse_str*/ NULL }, 6730 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE, 6731 "Partition Usage History", 6732 /*suffix*/ NULL, /*to_str*/ NULL, 6733 /*parse_str*/ NULL }, 6734 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE, 6735 "Medium Manufacturer", 6736 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6737 /*parse_str*/ NULL }, 6738 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE, 6739 "Medium Serial Number", 6740 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6741 /*parse_str*/ NULL }, 6742 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE, 6743 "Medium Length", 6744 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf, 6745 /*parse_str*/ NULL }, 6746 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 | 6747 SCSI_ATTR_FLAG_FP_1DIGIT, 6748 "Medium Width", 6749 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf, 6750 /*parse_str*/ NULL }, 6751 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE, 6752 "Assigning Organization", 6753 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6754 /*parse_str*/ NULL }, 6755 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX, 6756 "Medium Density Code", 6757 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6758 /*parse_str*/ NULL }, 6759 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE, 6760 "Medium Manufacture Date", 6761 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6762 /*parse_str*/ NULL }, 6763 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE, 6764 "MAM Capacity", 6765 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf, 6766 /*parse_str*/ NULL }, 6767 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX, 6768 "Medium Type", 6769 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6770 /*parse_str*/ NULL }, 6771 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX, 6772 "Medium Type Information", 6773 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6774 /*parse_str*/ NULL }, 6775 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE, 6776 "Medium Serial Number", 6777 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6778 /*parse_str*/ NULL }, 6779 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE, 6780 "Application Vendor", 6781 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6782 /*parse_str*/ NULL }, 6783 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE, 6784 "Application Name", 6785 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6786 /*parse_str*/ NULL }, 6787 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE, 6788 "Application Version", 6789 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6790 /*parse_str*/ NULL }, 6791 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE, 6792 "User Medium Text Label", 6793 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6794 /*parse_str*/ NULL }, 6795 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE, 6796 "Date and Time Last Written", 6797 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6798 /*parse_str*/ NULL }, 6799 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX, 6800 "Text Localization Identifier", 6801 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6802 /*parse_str*/ NULL }, 6803 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE, 6804 "Barcode", 6805 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6806 /*parse_str*/ NULL }, 6807 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE, 6808 "Owning Host Textual Name", 6809 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6810 /*parse_str*/ NULL }, 6811 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE, 6812 "Media Pool", 6813 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf, 6814 /*parse_str*/ NULL }, 6815 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE, 6816 "Partition User Text Label", 6817 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6818 /*parse_str*/ NULL }, 6819 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE, 6820 "Load/Unload at Partition", 6821 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, 6822 /*parse_str*/ NULL }, 6823 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE, 6824 "Application Format Version", 6825 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf, 6826 /*parse_str*/ NULL }, 6827 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE, 6828 "Volume Coherency Information", 6829 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf, 6830 /*parse_str*/ NULL }, 6831 { 0x0ff1, SCSI_ATTR_FLAG_NONE, 6832 "Spectra MLM Creation", 6833 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6834 /*parse_str*/ NULL }, 6835 { 0x0ff2, SCSI_ATTR_FLAG_NONE, 6836 "Spectra MLM C3", 6837 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6838 /*parse_str*/ NULL }, 6839 { 0x0ff3, SCSI_ATTR_FLAG_NONE, 6840 "Spectra MLM RW", 6841 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6842 /*parse_str*/ NULL }, 6843 { 0x0ff4, SCSI_ATTR_FLAG_NONE, 6844 "Spectra MLM SDC List", 6845 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6846 /*parse_str*/ NULL }, 6847 { 0x0ff7, SCSI_ATTR_FLAG_NONE, 6848 "Spectra MLM Post Scan", 6849 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6850 /*parse_str*/ NULL }, 6851 { 0x0ffe, SCSI_ATTR_FLAG_NONE, 6852 "Spectra MLM Checksum", 6853 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6854 /*parse_str*/ NULL }, 6855 { 0x17f1, SCSI_ATTR_FLAG_NONE, 6856 "Spectra MLM Creation", 6857 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6858 /*parse_str*/ NULL }, 6859 { 0x17f2, SCSI_ATTR_FLAG_NONE, 6860 "Spectra MLM C3", 6861 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6862 /*parse_str*/ NULL }, 6863 { 0x17f3, SCSI_ATTR_FLAG_NONE, 6864 "Spectra MLM RW", 6865 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6866 /*parse_str*/ NULL }, 6867 { 0x17f4, SCSI_ATTR_FLAG_NONE, 6868 "Spectra MLM SDC List", 6869 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6870 /*parse_str*/ NULL }, 6871 { 0x17f7, SCSI_ATTR_FLAG_NONE, 6872 "Spectra MLM Post Scan", 6873 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6874 /*parse_str*/ NULL }, 6875 { 0x17ff, SCSI_ATTR_FLAG_NONE, 6876 "Spectra MLM Checksum", 6877 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf, 6878 /*parse_str*/ NULL }, 6879 }; 6880 6881 /* 6882 * Print out Volume Coherency Information (Attribute 0x080c). 6883 * This field has two variable length members, including one at the 6884 * beginning, so it isn't practical to have a fixed structure definition. 6885 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25, 6886 * 2013. 6887 */ 6888 int 6889 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 6890 uint32_t valid_len, uint32_t flags, 6891 uint32_t output_flags, char *error_str, 6892 int error_str_len) 6893 { 6894 size_t avail_len; 6895 uint32_t field_size; 6896 uint64_t tmp_val; 6897 uint8_t *cur_ptr; 6898 int retval; 6899 int vcr_len, as_len; 6900 6901 retval = 0; 6902 tmp_val = 0; 6903 6904 field_size = scsi_2btoul(hdr->length); 6905 avail_len = valid_len - sizeof(*hdr); 6906 if (field_size > avail_len) { 6907 if (error_str != NULL) { 6908 snprintf(error_str, error_str_len, "Available " 6909 "length of attribute ID 0x%.4x %zu < field " 6910 "length %u", scsi_2btoul(hdr->id), avail_len, 6911 field_size); 6912 } 6913 retval = 1; 6914 goto bailout; 6915 } else if (field_size == 0) { 6916 /* 6917 * It isn't clear from the spec whether a field length of 6918 * 0 is invalid here. It probably is, but be lenient here 6919 * to avoid inconveniencing the user. 6920 */ 6921 goto bailout; 6922 } 6923 cur_ptr = hdr->attribute; 6924 vcr_len = *cur_ptr; 6925 cur_ptr++; 6926 6927 sbuf_printf(sb, "\n\tVolume Change Reference Value:"); 6928 6929 switch (vcr_len) { 6930 case 0: 6931 if (error_str != NULL) { 6932 snprintf(error_str, error_str_len, "Volume Change " 6933 "Reference value has length of 0"); 6934 } 6935 retval = 1; 6936 goto bailout; 6937 break; /*NOTREACHED*/ 6938 case 1: 6939 tmp_val = *cur_ptr; 6940 break; 6941 case 2: 6942 tmp_val = scsi_2btoul(cur_ptr); 6943 break; 6944 case 3: 6945 tmp_val = scsi_3btoul(cur_ptr); 6946 break; 6947 case 4: 6948 tmp_val = scsi_4btoul(cur_ptr); 6949 break; 6950 case 8: 6951 tmp_val = scsi_8btou64(cur_ptr); 6952 break; 6953 default: 6954 sbuf_printf(sb, "\n"); 6955 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0); 6956 break; 6957 } 6958 if (vcr_len <= 8) 6959 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val); 6960 6961 cur_ptr += vcr_len; 6962 tmp_val = scsi_8btou64(cur_ptr); 6963 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val); 6964 6965 cur_ptr += sizeof(tmp_val); 6966 tmp_val = scsi_8btou64(cur_ptr); 6967 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n", 6968 (uintmax_t)tmp_val); 6969 6970 /* 6971 * Figure out how long the Application Client Specific Information 6972 * is and produce a hexdump. 6973 */ 6974 cur_ptr += sizeof(tmp_val); 6975 as_len = scsi_2btoul(cur_ptr); 6976 cur_ptr += sizeof(uint16_t); 6977 sbuf_printf(sb, "\tApplication Client Specific Information: "); 6978 if (((as_len == SCSI_LTFS_VER0_LEN) 6979 || (as_len == SCSI_LTFS_VER1_LEN)) 6980 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) { 6981 sbuf_printf(sb, "LTFS\n"); 6982 cur_ptr += SCSI_LTFS_STR_LEN + 1; 6983 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0') 6984 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0'; 6985 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr); 6986 cur_ptr += SCSI_LTFS_UUID_LEN + 1; 6987 /* XXX KDM check the length */ 6988 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr); 6989 } else { 6990 sbuf_printf(sb, "Unknown\n"); 6991 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0); 6992 } 6993 6994 bailout: 6995 return (retval); 6996 } 6997 6998 int 6999 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7000 uint32_t valid_len, uint32_t flags, 7001 uint32_t output_flags, char *error_str, 7002 int error_str_len) 7003 { 7004 size_t avail_len; 7005 uint32_t field_size; 7006 struct scsi_attrib_vendser *vendser; 7007 cam_strvis_flags strvis_flags; 7008 int retval = 0; 7009 7010 field_size = scsi_2btoul(hdr->length); 7011 avail_len = valid_len - sizeof(*hdr); 7012 if (field_size > avail_len) { 7013 if (error_str != NULL) { 7014 snprintf(error_str, error_str_len, "Available " 7015 "length of attribute ID 0x%.4x %zu < field " 7016 "length %u", scsi_2btoul(hdr->id), avail_len, 7017 field_size); 7018 } 7019 retval = 1; 7020 goto bailout; 7021 } else if (field_size == 0) { 7022 /* 7023 * A field size of 0 doesn't make sense here. The device 7024 * can at least give you the vendor ID, even if it can't 7025 * give you the serial number. 7026 */ 7027 if (error_str != NULL) { 7028 snprintf(error_str, error_str_len, "The length of " 7029 "attribute ID 0x%.4x is 0", 7030 scsi_2btoul(hdr->id)); 7031 } 7032 retval = 1; 7033 goto bailout; 7034 } 7035 vendser = (struct scsi_attrib_vendser *)hdr->attribute; 7036 7037 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7038 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7039 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7040 break; 7041 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7042 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7043 break; 7044 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7045 default: 7046 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7047 break;; 7048 } 7049 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor), 7050 strvis_flags); 7051 sbuf_putc(sb, ' '); 7052 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num), 7053 strvis_flags); 7054 bailout: 7055 return (retval); 7056 } 7057 7058 int 7059 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7060 uint32_t valid_len, uint32_t flags, 7061 uint32_t output_flags, char *error_str, 7062 int error_str_len) 7063 { 7064 uint32_t field_size; 7065 ssize_t avail_len; 7066 uint32_t print_len; 7067 uint8_t *num_ptr; 7068 int retval = 0; 7069 7070 field_size = scsi_2btoul(hdr->length); 7071 avail_len = valid_len - sizeof(*hdr); 7072 print_len = MIN(avail_len, field_size); 7073 num_ptr = hdr->attribute; 7074 7075 if (print_len > 0) { 7076 sbuf_printf(sb, "\n"); 7077 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0); 7078 } 7079 7080 return (retval); 7081 } 7082 7083 int 7084 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7085 uint32_t valid_len, uint32_t flags, 7086 uint32_t output_flags, char *error_str, 7087 int error_str_len) 7088 { 7089 uint64_t print_number; 7090 size_t avail_len; 7091 uint32_t number_size; 7092 int retval = 0; 7093 7094 number_size = scsi_2btoul(hdr->length); 7095 7096 avail_len = valid_len - sizeof(*hdr); 7097 if (avail_len < number_size) { 7098 if (error_str != NULL) { 7099 snprintf(error_str, error_str_len, "Available " 7100 "length of attribute ID 0x%.4x %zu < field " 7101 "length %u", scsi_2btoul(hdr->id), avail_len, 7102 number_size); 7103 } 7104 retval = 1; 7105 goto bailout; 7106 } 7107 7108 switch (number_size) { 7109 case 0: 7110 /* 7111 * We don't treat this as an error, since there may be 7112 * scenarios where a device reports a field but then gives 7113 * a length of 0. See the note in scsi_attrib_ascii_sbuf(). 7114 */ 7115 goto bailout; 7116 break; /*NOTREACHED*/ 7117 case 1: 7118 print_number = hdr->attribute[0]; 7119 break; 7120 case 2: 7121 print_number = scsi_2btoul(hdr->attribute); 7122 break; 7123 case 3: 7124 print_number = scsi_3btoul(hdr->attribute); 7125 break; 7126 case 4: 7127 print_number = scsi_4btoul(hdr->attribute); 7128 break; 7129 case 8: 7130 print_number = scsi_8btou64(hdr->attribute); 7131 break; 7132 default: 7133 /* 7134 * If we wind up here, the number is too big to print 7135 * normally, so just do a hexdump. 7136 */ 7137 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7138 flags, output_flags, 7139 error_str, error_str_len); 7140 goto bailout; 7141 break; 7142 } 7143 7144 if (flags & SCSI_ATTR_FLAG_FP) { 7145 #ifndef _KERNEL 7146 long double num_float; 7147 7148 num_float = (long double)print_number; 7149 7150 if (flags & SCSI_ATTR_FLAG_DIV_10) 7151 num_float /= 10; 7152 7153 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ? 7154 1 : 0, num_float); 7155 #else /* _KERNEL */ 7156 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ? 7157 (print_number / 10) : print_number); 7158 #endif /* _KERNEL */ 7159 } else if (flags & SCSI_ATTR_FLAG_HEX) { 7160 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number); 7161 } else 7162 sbuf_printf(sb, "%ju", (uintmax_t)print_number); 7163 7164 bailout: 7165 return (retval); 7166 } 7167 7168 int 7169 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7170 uint32_t valid_len, uint32_t flags, 7171 uint32_t output_flags, char *error_str, 7172 int error_str_len) 7173 { 7174 size_t avail_len; 7175 uint32_t field_size, print_size; 7176 int retval = 0; 7177 7178 avail_len = valid_len - sizeof(*hdr); 7179 field_size = scsi_2btoul(hdr->length); 7180 print_size = MIN(avail_len, field_size); 7181 7182 if (print_size > 0) { 7183 cam_strvis_flags strvis_flags; 7184 7185 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) { 7186 case SCSI_ATTR_OUTPUT_NONASCII_TRIM: 7187 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM; 7188 break; 7189 case SCSI_ATTR_OUTPUT_NONASCII_RAW: 7190 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW; 7191 break; 7192 case SCSI_ATTR_OUTPUT_NONASCII_ESC: 7193 default: 7194 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC; 7195 break; 7196 } 7197 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags); 7198 } else if (avail_len < field_size) { 7199 /* 7200 * We only report an error if the user didn't allocate 7201 * enough space to hold the full value of this field. If 7202 * the field length is 0, that is allowed by the spec. 7203 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER 7204 * "This attribute indicates the current volume identifier 7205 * (see SMC-3) of the medium. If the device server supports 7206 * this attribute but does not have access to the volume 7207 * identifier, the device server shall report this attribute 7208 * with an attribute length value of zero." 7209 */ 7210 if (error_str != NULL) { 7211 snprintf(error_str, error_str_len, "Available " 7212 "length of attribute ID 0x%.4x %zu < field " 7213 "length %u", scsi_2btoul(hdr->id), avail_len, 7214 field_size); 7215 } 7216 retval = 1; 7217 } 7218 7219 return (retval); 7220 } 7221 7222 int 7223 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7224 uint32_t valid_len, uint32_t flags, 7225 uint32_t output_flags, char *error_str, 7226 int error_str_len) 7227 { 7228 size_t avail_len; 7229 uint32_t field_size, print_size; 7230 int retval = 0; 7231 int esc_text = 1; 7232 7233 avail_len = valid_len - sizeof(*hdr); 7234 field_size = scsi_2btoul(hdr->length); 7235 print_size = MIN(avail_len, field_size); 7236 7237 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) == 7238 SCSI_ATTR_OUTPUT_TEXT_RAW) 7239 esc_text = 0; 7240 7241 if (print_size > 0) { 7242 uint32_t i; 7243 7244 for (i = 0; i < print_size; i++) { 7245 if (hdr->attribute[i] == '\0') 7246 continue; 7247 else if (((unsigned char)hdr->attribute[i] < 0x80) 7248 || (esc_text == 0)) 7249 sbuf_putc(sb, hdr->attribute[i]); 7250 else 7251 sbuf_printf(sb, "%%%02x", 7252 (unsigned char)hdr->attribute[i]); 7253 } 7254 } else if (avail_len < field_size) { 7255 /* 7256 * We only report an error if the user didn't allocate 7257 * enough space to hold the full value of this field. 7258 */ 7259 if (error_str != NULL) { 7260 snprintf(error_str, error_str_len, "Available " 7261 "length of attribute ID 0x%.4x %zu < field " 7262 "length %u", scsi_2btoul(hdr->id), avail_len, 7263 field_size); 7264 } 7265 retval = 1; 7266 } 7267 7268 return (retval); 7269 } 7270 7271 struct scsi_attrib_table_entry * 7272 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table, 7273 size_t num_table_entries, uint32_t id) 7274 { 7275 uint32_t i; 7276 7277 for (i = 0; i < num_table_entries; i++) { 7278 if (table[i].id == id) 7279 return (&table[i]); 7280 } 7281 7282 return (NULL); 7283 } 7284 7285 struct scsi_attrib_table_entry * 7286 scsi_get_attrib_entry(uint32_t id) 7287 { 7288 return (scsi_find_attrib_entry(scsi_mam_attr_table, 7289 nitems(scsi_mam_attr_table), id)); 7290 } 7291 7292 int 7293 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, 7294 struct scsi_mam_attribute_header *hdr, uint32_t output_flags, 7295 char *error_str, size_t error_str_len) 7296 { 7297 int retval; 7298 7299 switch (hdr->byte2 & SMA_FORMAT_MASK) { 7300 case SMA_FORMAT_ASCII: 7301 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len, 7302 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len); 7303 break; 7304 case SMA_FORMAT_BINARY: 7305 if (scsi_2btoul(hdr->length) <= 8) 7306 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len, 7307 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7308 error_str_len); 7309 else 7310 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len, 7311 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7312 error_str_len); 7313 break; 7314 case SMA_FORMAT_TEXT: 7315 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len, 7316 SCSI_ATTR_FLAG_NONE, output_flags, error_str, 7317 error_str_len); 7318 break; 7319 default: 7320 if (error_str != NULL) { 7321 snprintf(error_str, error_str_len, "Unknown attribute " 7322 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK); 7323 } 7324 retval = 1; 7325 goto bailout; 7326 break; /*NOTREACHED*/ 7327 } 7328 7329 sbuf_trim(sb); 7330 7331 bailout: 7332 7333 return (retval); 7334 } 7335 7336 void 7337 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, 7338 struct scsi_mam_attribute_header *hdr, 7339 uint32_t valid_len, const char *desc) 7340 { 7341 int need_space = 0; 7342 uint32_t len; 7343 uint32_t id; 7344 7345 /* 7346 * We can't do anything if we don't have enough valid data for the 7347 * header. 7348 */ 7349 if (valid_len < sizeof(*hdr)) 7350 return; 7351 7352 id = scsi_2btoul(hdr->id); 7353 /* 7354 * Note that we print out the value of the attribute listed in the 7355 * header, regardless of whether we actually got that many bytes 7356 * back from the device through the controller. A truncated result 7357 * could be the result of a failure to ask for enough data; the 7358 * header indicates how many bytes are allocated for this attribute 7359 * in the MAM. 7360 */ 7361 len = scsi_2btoul(hdr->length); 7362 7363 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) == 7364 SCSI_ATTR_OUTPUT_FIELD_NONE) 7365 return; 7366 7367 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC) 7368 && (desc != NULL)) { 7369 sbuf_printf(sb, "%s", desc); 7370 need_space = 1; 7371 } 7372 7373 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) { 7374 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id); 7375 need_space = 0; 7376 } 7377 7378 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) { 7379 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len); 7380 need_space = 0; 7381 } 7382 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) { 7383 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "", 7384 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW"); 7385 } 7386 sbuf_printf(sb, ": "); 7387 } 7388 7389 int 7390 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, 7391 uint32_t valid_len, struct scsi_attrib_table_entry *user_table, 7392 size_t num_user_entries, int prefer_user_table, 7393 uint32_t output_flags, char *error_str, int error_str_len) 7394 { 7395 int retval; 7396 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL; 7397 struct scsi_attrib_table_entry *entry = NULL; 7398 size_t table1_size = 0, table2_size = 0; 7399 uint32_t id; 7400 7401 retval = 0; 7402 7403 if (valid_len < sizeof(*hdr)) { 7404 retval = 1; 7405 goto bailout; 7406 } 7407 7408 id = scsi_2btoul(hdr->id); 7409 7410 if (user_table != NULL) { 7411 if (prefer_user_table != 0) { 7412 table1 = user_table; 7413 table1_size = num_user_entries; 7414 table2 = scsi_mam_attr_table; 7415 table2_size = nitems(scsi_mam_attr_table); 7416 } else { 7417 table1 = scsi_mam_attr_table; 7418 table1_size = nitems(scsi_mam_attr_table); 7419 table2 = user_table; 7420 table2_size = num_user_entries; 7421 } 7422 } else { 7423 table1 = scsi_mam_attr_table; 7424 table1_size = nitems(scsi_mam_attr_table); 7425 } 7426 7427 entry = scsi_find_attrib_entry(table1, table1_size, id); 7428 if (entry != NULL) { 7429 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, 7430 entry->desc); 7431 if (entry->to_str == NULL) 7432 goto print_default; 7433 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7434 output_flags, error_str, error_str_len); 7435 goto bailout; 7436 } 7437 if (table2 != NULL) { 7438 entry = scsi_find_attrib_entry(table2, table2_size, id); 7439 if (entry != NULL) { 7440 if (entry->to_str == NULL) 7441 goto print_default; 7442 7443 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, 7444 valid_len, entry->desc); 7445 retval = entry->to_str(sb, hdr, valid_len, entry->flags, 7446 output_flags, error_str, 7447 error_str_len); 7448 goto bailout; 7449 } 7450 } 7451 7452 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL); 7453 7454 print_default: 7455 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags, 7456 error_str, error_str_len); 7457 bailout: 7458 if (retval == 0) { 7459 if ((entry != NULL) 7460 && (entry->suffix != NULL)) 7461 sbuf_printf(sb, " %s", entry->suffix); 7462 7463 sbuf_trim(sb); 7464 sbuf_printf(sb, "\n"); 7465 } 7466 7467 return (retval); 7468 } 7469 7470 void 7471 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, 7472 void (*cbfcnp)(struct cam_periph *, union ccb *), 7473 u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout) 7474 { 7475 struct scsi_test_unit_ready *scsi_cmd; 7476 7477 cam_fill_csio(csio, 7478 retries, 7479 cbfcnp, 7480 CAM_DIR_NONE, 7481 tag_action, 7482 /*data_ptr*/NULL, 7483 /*dxfer_len*/0, 7484 sense_len, 7485 sizeof(*scsi_cmd), 7486 timeout); 7487 7488 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes; 7489 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7490 scsi_cmd->opcode = TEST_UNIT_READY; 7491 } 7492 7493 void 7494 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, 7495 void (*cbfcnp)(struct cam_periph *, union ccb *), 7496 void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, 7497 u_int8_t sense_len, u_int32_t timeout) 7498 { 7499 struct scsi_request_sense *scsi_cmd; 7500 7501 cam_fill_csio(csio, 7502 retries, 7503 cbfcnp, 7504 CAM_DIR_IN, 7505 tag_action, 7506 data_ptr, 7507 dxfer_len, 7508 sense_len, 7509 sizeof(*scsi_cmd), 7510 timeout); 7511 7512 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes; 7513 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7514 scsi_cmd->opcode = REQUEST_SENSE; 7515 scsi_cmd->length = dxfer_len; 7516 } 7517 7518 void 7519 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, 7520 void (*cbfcnp)(struct cam_periph *, union ccb *), 7521 u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, 7522 int evpd, u_int8_t page_code, u_int8_t sense_len, 7523 u_int32_t timeout) 7524 { 7525 struct scsi_inquiry *scsi_cmd; 7526 7527 cam_fill_csio(csio, 7528 retries, 7529 cbfcnp, 7530 /*flags*/CAM_DIR_IN, 7531 tag_action, 7532 /*data_ptr*/inq_buf, 7533 /*dxfer_len*/inq_len, 7534 sense_len, 7535 sizeof(*scsi_cmd), 7536 timeout); 7537 7538 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes; 7539 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7540 scsi_cmd->opcode = INQUIRY; 7541 if (evpd) { 7542 scsi_cmd->byte2 |= SI_EVPD; 7543 scsi_cmd->page_code = page_code; 7544 } 7545 scsi_ulto2b(inq_len, scsi_cmd->length); 7546 } 7547 7548 void 7549 scsi_mode_sense(struct ccb_scsiio *csio, u_int32_t retries, 7550 void (*cbfcnp)(struct cam_periph *, union ccb *), 7551 u_int8_t tag_action, int dbd, u_int8_t page_code, 7552 u_int8_t page, u_int8_t *param_buf, u_int32_t param_len, 7553 u_int8_t sense_len, u_int32_t timeout) 7554 { 7555 7556 scsi_mode_sense_len(csio, retries, cbfcnp, tag_action, dbd, 7557 page_code, page, param_buf, param_len, 0, 7558 sense_len, timeout); 7559 } 7560 7561 void 7562 scsi_mode_sense_len(struct ccb_scsiio *csio, u_int32_t retries, 7563 void (*cbfcnp)(struct cam_periph *, union ccb *), 7564 u_int8_t tag_action, int dbd, u_int8_t page_code, 7565 u_int8_t page, u_int8_t *param_buf, u_int32_t param_len, 7566 int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout) 7567 { 7568 u_int8_t cdb_len; 7569 7570 /* 7571 * Use the smallest possible command to perform the operation. 7572 */ 7573 if ((param_len < 256) 7574 && (minimum_cmd_size < 10)) { 7575 /* 7576 * We can fit in a 6 byte cdb. 7577 */ 7578 struct scsi_mode_sense_6 *scsi_cmd; 7579 7580 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes; 7581 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7582 scsi_cmd->opcode = MODE_SENSE_6; 7583 if (dbd != 0) 7584 scsi_cmd->byte2 |= SMS_DBD; 7585 scsi_cmd->page = page_code | page; 7586 scsi_cmd->length = param_len; 7587 cdb_len = sizeof(*scsi_cmd); 7588 } else { 7589 /* 7590 * Need a 10 byte cdb. 7591 */ 7592 struct scsi_mode_sense_10 *scsi_cmd; 7593 7594 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes; 7595 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7596 scsi_cmd->opcode = MODE_SENSE_10; 7597 if (dbd != 0) 7598 scsi_cmd->byte2 |= SMS_DBD; 7599 scsi_cmd->page = page_code | page; 7600 scsi_ulto2b(param_len, scsi_cmd->length); 7601 cdb_len = sizeof(*scsi_cmd); 7602 } 7603 cam_fill_csio(csio, 7604 retries, 7605 cbfcnp, 7606 CAM_DIR_IN, 7607 tag_action, 7608 param_buf, 7609 param_len, 7610 sense_len, 7611 cdb_len, 7612 timeout); 7613 } 7614 7615 void 7616 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, 7617 void (*cbfcnp)(struct cam_periph *, union ccb *), 7618 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7619 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7620 u_int32_t timeout) 7621 { 7622 scsi_mode_select_len(csio, retries, cbfcnp, tag_action, 7623 scsi_page_fmt, save_pages, param_buf, 7624 param_len, 0, sense_len, timeout); 7625 } 7626 7627 void 7628 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, 7629 void (*cbfcnp)(struct cam_periph *, union ccb *), 7630 u_int8_t tag_action, int scsi_page_fmt, int save_pages, 7631 u_int8_t *param_buf, u_int32_t param_len, 7632 int minimum_cmd_size, u_int8_t sense_len, 7633 u_int32_t timeout) 7634 { 7635 u_int8_t cdb_len; 7636 7637 /* 7638 * Use the smallest possible command to perform the operation. 7639 */ 7640 if ((param_len < 256) 7641 && (minimum_cmd_size < 10)) { 7642 /* 7643 * We can fit in a 6 byte cdb. 7644 */ 7645 struct scsi_mode_select_6 *scsi_cmd; 7646 7647 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes; 7648 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7649 scsi_cmd->opcode = MODE_SELECT_6; 7650 if (scsi_page_fmt != 0) 7651 scsi_cmd->byte2 |= SMS_PF; 7652 if (save_pages != 0) 7653 scsi_cmd->byte2 |= SMS_SP; 7654 scsi_cmd->length = param_len; 7655 cdb_len = sizeof(*scsi_cmd); 7656 } else { 7657 /* 7658 * Need a 10 byte cdb. 7659 */ 7660 struct scsi_mode_select_10 *scsi_cmd; 7661 7662 scsi_cmd = 7663 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes; 7664 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7665 scsi_cmd->opcode = MODE_SELECT_10; 7666 if (scsi_page_fmt != 0) 7667 scsi_cmd->byte2 |= SMS_PF; 7668 if (save_pages != 0) 7669 scsi_cmd->byte2 |= SMS_SP; 7670 scsi_ulto2b(param_len, scsi_cmd->length); 7671 cdb_len = sizeof(*scsi_cmd); 7672 } 7673 cam_fill_csio(csio, 7674 retries, 7675 cbfcnp, 7676 CAM_DIR_OUT, 7677 tag_action, 7678 param_buf, 7679 param_len, 7680 sense_len, 7681 cdb_len, 7682 timeout); 7683 } 7684 7685 void 7686 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, 7687 void (*cbfcnp)(struct cam_periph *, union ccb *), 7688 u_int8_t tag_action, u_int8_t page_code, u_int8_t page, 7689 int save_pages, int ppc, u_int32_t paramptr, 7690 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, 7691 u_int32_t timeout) 7692 { 7693 struct scsi_log_sense *scsi_cmd; 7694 u_int8_t cdb_len; 7695 7696 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes; 7697 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7698 scsi_cmd->opcode = LOG_SENSE; 7699 scsi_cmd->page = page_code | page; 7700 if (save_pages != 0) 7701 scsi_cmd->byte2 |= SLS_SP; 7702 if (ppc != 0) 7703 scsi_cmd->byte2 |= SLS_PPC; 7704 scsi_ulto2b(paramptr, scsi_cmd->paramptr); 7705 scsi_ulto2b(param_len, scsi_cmd->length); 7706 cdb_len = sizeof(*scsi_cmd); 7707 7708 cam_fill_csio(csio, 7709 retries, 7710 cbfcnp, 7711 /*flags*/CAM_DIR_IN, 7712 tag_action, 7713 /*data_ptr*/param_buf, 7714 /*dxfer_len*/param_len, 7715 sense_len, 7716 cdb_len, 7717 timeout); 7718 } 7719 7720 void 7721 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, 7722 void (*cbfcnp)(struct cam_periph *, union ccb *), 7723 u_int8_t tag_action, u_int8_t page_code, int save_pages, 7724 int pc_reset, u_int8_t *param_buf, u_int32_t param_len, 7725 u_int8_t sense_len, u_int32_t timeout) 7726 { 7727 struct scsi_log_select *scsi_cmd; 7728 u_int8_t cdb_len; 7729 7730 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes; 7731 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7732 scsi_cmd->opcode = LOG_SELECT; 7733 scsi_cmd->page = page_code & SLS_PAGE_CODE; 7734 if (save_pages != 0) 7735 scsi_cmd->byte2 |= SLS_SP; 7736 if (pc_reset != 0) 7737 scsi_cmd->byte2 |= SLS_PCR; 7738 scsi_ulto2b(param_len, scsi_cmd->length); 7739 cdb_len = sizeof(*scsi_cmd); 7740 7741 cam_fill_csio(csio, 7742 retries, 7743 cbfcnp, 7744 /*flags*/CAM_DIR_OUT, 7745 tag_action, 7746 /*data_ptr*/param_buf, 7747 /*dxfer_len*/param_len, 7748 sense_len, 7749 cdb_len, 7750 timeout); 7751 } 7752 7753 /* 7754 * Prevent or allow the user to remove the media 7755 */ 7756 void 7757 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, 7758 void (*cbfcnp)(struct cam_periph *, union ccb *), 7759 u_int8_t tag_action, u_int8_t action, 7760 u_int8_t sense_len, u_int32_t timeout) 7761 { 7762 struct scsi_prevent *scsi_cmd; 7763 7764 cam_fill_csio(csio, 7765 retries, 7766 cbfcnp, 7767 /*flags*/CAM_DIR_NONE, 7768 tag_action, 7769 /*data_ptr*/NULL, 7770 /*dxfer_len*/0, 7771 sense_len, 7772 sizeof(*scsi_cmd), 7773 timeout); 7774 7775 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes; 7776 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7777 scsi_cmd->opcode = PREVENT_ALLOW; 7778 scsi_cmd->how = action; 7779 } 7780 7781 /* XXX allow specification of address and PMI bit and LBA */ 7782 void 7783 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, 7784 void (*cbfcnp)(struct cam_periph *, union ccb *), 7785 u_int8_t tag_action, 7786 struct scsi_read_capacity_data *rcap_buf, 7787 u_int8_t sense_len, u_int32_t timeout) 7788 { 7789 struct scsi_read_capacity *scsi_cmd; 7790 7791 cam_fill_csio(csio, 7792 retries, 7793 cbfcnp, 7794 /*flags*/CAM_DIR_IN, 7795 tag_action, 7796 /*data_ptr*/(u_int8_t *)rcap_buf, 7797 /*dxfer_len*/sizeof(*rcap_buf), 7798 sense_len, 7799 sizeof(*scsi_cmd), 7800 timeout); 7801 7802 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes; 7803 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7804 scsi_cmd->opcode = READ_CAPACITY; 7805 } 7806 7807 void 7808 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, 7809 void (*cbfcnp)(struct cam_periph *, union ccb *), 7810 uint8_t tag_action, uint64_t lba, int reladr, int pmi, 7811 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, 7812 uint32_t timeout) 7813 { 7814 struct scsi_read_capacity_16 *scsi_cmd; 7815 7816 7817 cam_fill_csio(csio, 7818 retries, 7819 cbfcnp, 7820 /*flags*/CAM_DIR_IN, 7821 tag_action, 7822 /*data_ptr*/(u_int8_t *)rcap_buf, 7823 /*dxfer_len*/rcap_buf_len, 7824 sense_len, 7825 sizeof(*scsi_cmd), 7826 timeout); 7827 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes; 7828 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7829 scsi_cmd->opcode = SERVICE_ACTION_IN; 7830 scsi_cmd->service_action = SRC16_SERVICE_ACTION; 7831 scsi_u64to8b(lba, scsi_cmd->addr); 7832 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len); 7833 if (pmi) 7834 reladr |= SRC16_PMI; 7835 if (reladr) 7836 reladr |= SRC16_RELADR; 7837 } 7838 7839 void 7840 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, 7841 void (*cbfcnp)(struct cam_periph *, union ccb *), 7842 u_int8_t tag_action, u_int8_t select_report, 7843 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, 7844 u_int8_t sense_len, u_int32_t timeout) 7845 { 7846 struct scsi_report_luns *scsi_cmd; 7847 7848 cam_fill_csio(csio, 7849 retries, 7850 cbfcnp, 7851 /*flags*/CAM_DIR_IN, 7852 tag_action, 7853 /*data_ptr*/(u_int8_t *)rpl_buf, 7854 /*dxfer_len*/alloc_len, 7855 sense_len, 7856 sizeof(*scsi_cmd), 7857 timeout); 7858 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes; 7859 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7860 scsi_cmd->opcode = REPORT_LUNS; 7861 scsi_cmd->select_report = select_report; 7862 scsi_ulto4b(alloc_len, scsi_cmd->length); 7863 } 7864 7865 void 7866 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7867 void (*cbfcnp)(struct cam_periph *, union ccb *), 7868 u_int8_t tag_action, u_int8_t pdf, 7869 void *buf, u_int32_t alloc_len, 7870 u_int8_t sense_len, u_int32_t timeout) 7871 { 7872 struct scsi_target_group *scsi_cmd; 7873 7874 cam_fill_csio(csio, 7875 retries, 7876 cbfcnp, 7877 /*flags*/CAM_DIR_IN, 7878 tag_action, 7879 /*data_ptr*/(u_int8_t *)buf, 7880 /*dxfer_len*/alloc_len, 7881 sense_len, 7882 sizeof(*scsi_cmd), 7883 timeout); 7884 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 7885 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7886 scsi_cmd->opcode = MAINTENANCE_IN; 7887 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf; 7888 scsi_ulto4b(alloc_len, scsi_cmd->length); 7889 } 7890 7891 void 7892 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, 7893 void (*cbfcnp)(struct cam_periph *, union ccb *), 7894 u_int8_t tag_action, void *buf, u_int32_t alloc_len, 7895 u_int8_t sense_len, u_int32_t timeout) 7896 { 7897 struct scsi_target_group *scsi_cmd; 7898 7899 cam_fill_csio(csio, 7900 retries, 7901 cbfcnp, 7902 /*flags*/CAM_DIR_OUT, 7903 tag_action, 7904 /*data_ptr*/(u_int8_t *)buf, 7905 /*dxfer_len*/alloc_len, 7906 sense_len, 7907 sizeof(*scsi_cmd), 7908 timeout); 7909 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes; 7910 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7911 scsi_cmd->opcode = MAINTENANCE_OUT; 7912 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS; 7913 scsi_ulto4b(alloc_len, scsi_cmd->length); 7914 } 7915 7916 /* 7917 * Syncronize the media to the contents of the cache for 7918 * the given lba/count pair. Specifying 0/0 means sync 7919 * the whole cache. 7920 */ 7921 void 7922 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, 7923 void (*cbfcnp)(struct cam_periph *, union ccb *), 7924 u_int8_t tag_action, u_int32_t begin_lba, 7925 u_int16_t lb_count, u_int8_t sense_len, 7926 u_int32_t timeout) 7927 { 7928 struct scsi_sync_cache *scsi_cmd; 7929 7930 cam_fill_csio(csio, 7931 retries, 7932 cbfcnp, 7933 /*flags*/CAM_DIR_NONE, 7934 tag_action, 7935 /*data_ptr*/NULL, 7936 /*dxfer_len*/0, 7937 sense_len, 7938 sizeof(*scsi_cmd), 7939 timeout); 7940 7941 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes; 7942 bzero(scsi_cmd, sizeof(*scsi_cmd)); 7943 scsi_cmd->opcode = SYNCHRONIZE_CACHE; 7944 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba); 7945 scsi_ulto2b(lb_count, scsi_cmd->lb_count); 7946 } 7947 7948 void 7949 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, 7950 void (*cbfcnp)(struct cam_periph *, union ccb *), 7951 u_int8_t tag_action, int readop, u_int8_t byte2, 7952 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 7953 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 7954 u_int32_t timeout) 7955 { 7956 int read; 7957 u_int8_t cdb_len; 7958 7959 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ; 7960 7961 /* 7962 * Use the smallest possible command to perform the operation 7963 * as some legacy hardware does not support the 10 byte commands. 7964 * If any of the bits in byte2 is set, we have to go with a larger 7965 * command. 7966 */ 7967 if ((minimum_cmd_size < 10) 7968 && ((lba & 0x1fffff) == lba) 7969 && ((block_count & 0xff) == block_count) 7970 && (byte2 == 0)) { 7971 /* 7972 * We can fit in a 6 byte cdb. 7973 */ 7974 struct scsi_rw_6 *scsi_cmd; 7975 7976 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes; 7977 scsi_cmd->opcode = read ? READ_6 : WRITE_6; 7978 scsi_ulto3b(lba, scsi_cmd->addr); 7979 scsi_cmd->length = block_count & 0xff; 7980 scsi_cmd->control = 0; 7981 cdb_len = sizeof(*scsi_cmd); 7982 7983 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 7984 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0], 7985 scsi_cmd->addr[1], scsi_cmd->addr[2], 7986 scsi_cmd->length, dxfer_len)); 7987 } else if ((minimum_cmd_size < 12) 7988 && ((block_count & 0xffff) == block_count) 7989 && ((lba & 0xffffffff) == lba)) { 7990 /* 7991 * Need a 10 byte cdb. 7992 */ 7993 struct scsi_rw_10 *scsi_cmd; 7994 7995 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes; 7996 scsi_cmd->opcode = read ? READ_10 : WRITE_10; 7997 scsi_cmd->byte2 = byte2; 7998 scsi_ulto4b(lba, scsi_cmd->addr); 7999 scsi_cmd->reserved = 0; 8000 scsi_ulto2b(block_count, scsi_cmd->length); 8001 scsi_cmd->control = 0; 8002 cdb_len = sizeof(*scsi_cmd); 8003 8004 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8005 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8006 scsi_cmd->addr[1], scsi_cmd->addr[2], 8007 scsi_cmd->addr[3], scsi_cmd->length[0], 8008 scsi_cmd->length[1], dxfer_len)); 8009 } else if ((minimum_cmd_size < 16) 8010 && ((block_count & 0xffffffff) == block_count) 8011 && ((lba & 0xffffffff) == lba)) { 8012 /* 8013 * The block count is too big for a 10 byte CDB, use a 12 8014 * byte CDB. 8015 */ 8016 struct scsi_rw_12 *scsi_cmd; 8017 8018 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes; 8019 scsi_cmd->opcode = read ? READ_12 : WRITE_12; 8020 scsi_cmd->byte2 = byte2; 8021 scsi_ulto4b(lba, scsi_cmd->addr); 8022 scsi_cmd->reserved = 0; 8023 scsi_ulto4b(block_count, scsi_cmd->length); 8024 scsi_cmd->control = 0; 8025 cdb_len = sizeof(*scsi_cmd); 8026 8027 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8028 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0], 8029 scsi_cmd->addr[1], scsi_cmd->addr[2], 8030 scsi_cmd->addr[3], scsi_cmd->length[0], 8031 scsi_cmd->length[1], scsi_cmd->length[2], 8032 scsi_cmd->length[3], dxfer_len)); 8033 } else { 8034 /* 8035 * 16 byte CDB. We'll only get here if the LBA is larger 8036 * than 2^32, or if the user asks for a 16 byte command. 8037 */ 8038 struct scsi_rw_16 *scsi_cmd; 8039 8040 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes; 8041 scsi_cmd->opcode = read ? READ_16 : WRITE_16; 8042 scsi_cmd->byte2 = byte2; 8043 scsi_u64to8b(lba, scsi_cmd->addr); 8044 scsi_cmd->reserved = 0; 8045 scsi_ulto4b(block_count, scsi_cmd->length); 8046 scsi_cmd->control = 0; 8047 cdb_len = sizeof(*scsi_cmd); 8048 } 8049 cam_fill_csio(csio, 8050 retries, 8051 cbfcnp, 8052 (read ? CAM_DIR_IN : CAM_DIR_OUT) | 8053 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0), 8054 tag_action, 8055 data_ptr, 8056 dxfer_len, 8057 sense_len, 8058 cdb_len, 8059 timeout); 8060 } 8061 8062 void 8063 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, 8064 void (*cbfcnp)(struct cam_periph *, union ccb *), 8065 u_int8_t tag_action, u_int8_t byte2, 8066 int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, 8067 u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, 8068 u_int32_t timeout) 8069 { 8070 u_int8_t cdb_len; 8071 if ((minimum_cmd_size < 16) && 8072 ((block_count & 0xffff) == block_count) && 8073 ((lba & 0xffffffff) == lba)) { 8074 /* 8075 * Need a 10 byte cdb. 8076 */ 8077 struct scsi_write_same_10 *scsi_cmd; 8078 8079 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes; 8080 scsi_cmd->opcode = WRITE_SAME_10; 8081 scsi_cmd->byte2 = byte2; 8082 scsi_ulto4b(lba, scsi_cmd->addr); 8083 scsi_cmd->group = 0; 8084 scsi_ulto2b(block_count, scsi_cmd->length); 8085 scsi_cmd->control = 0; 8086 cdb_len = sizeof(*scsi_cmd); 8087 8088 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8089 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0], 8090 scsi_cmd->addr[1], scsi_cmd->addr[2], 8091 scsi_cmd->addr[3], scsi_cmd->length[0], 8092 scsi_cmd->length[1], dxfer_len)); 8093 } else { 8094 /* 8095 * 16 byte CDB. We'll only get here if the LBA is larger 8096 * than 2^32, or if the user asks for a 16 byte command. 8097 */ 8098 struct scsi_write_same_16 *scsi_cmd; 8099 8100 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes; 8101 scsi_cmd->opcode = WRITE_SAME_16; 8102 scsi_cmd->byte2 = byte2; 8103 scsi_u64to8b(lba, scsi_cmd->addr); 8104 scsi_ulto4b(block_count, scsi_cmd->length); 8105 scsi_cmd->group = 0; 8106 scsi_cmd->control = 0; 8107 cdb_len = sizeof(*scsi_cmd); 8108 8109 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE, 8110 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n", 8111 scsi_cmd->addr[0], scsi_cmd->addr[1], 8112 scsi_cmd->addr[2], scsi_cmd->addr[3], 8113 scsi_cmd->addr[4], scsi_cmd->addr[5], 8114 scsi_cmd->addr[6], scsi_cmd->addr[7], 8115 scsi_cmd->length[0], scsi_cmd->length[1], 8116 scsi_cmd->length[2], scsi_cmd->length[3], 8117 dxfer_len)); 8118 } 8119 cam_fill_csio(csio, 8120 retries, 8121 cbfcnp, 8122 /*flags*/CAM_DIR_OUT, 8123 tag_action, 8124 data_ptr, 8125 dxfer_len, 8126 sense_len, 8127 cdb_len, 8128 timeout); 8129 } 8130 8131 void 8132 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries, 8133 void (*cbfcnp)(struct cam_periph *, union ccb *), 8134 u_int8_t tag_action, u_int8_t *data_ptr, 8135 u_int16_t dxfer_len, u_int8_t sense_len, 8136 u_int32_t timeout) 8137 { 8138 scsi_ata_pass_16(csio, 8139 retries, 8140 cbfcnp, 8141 /*flags*/CAM_DIR_IN, 8142 tag_action, 8143 /*protocol*/AP_PROTO_PIO_IN, 8144 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV| 8145 AP_FLAG_BYT_BLOK_BYTES|AP_FLAG_TLEN_SECT_CNT, 8146 /*features*/0, 8147 /*sector_count*/dxfer_len, 8148 /*lba*/0, 8149 /*command*/ATA_ATA_IDENTIFY, 8150 /*control*/0, 8151 data_ptr, 8152 dxfer_len, 8153 sense_len, 8154 timeout); 8155 } 8156 8157 void 8158 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries, 8159 void (*cbfcnp)(struct cam_periph *, union ccb *), 8160 u_int8_t tag_action, u_int16_t block_count, 8161 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8162 u_int32_t timeout) 8163 { 8164 scsi_ata_pass_16(csio, 8165 retries, 8166 cbfcnp, 8167 /*flags*/CAM_DIR_OUT, 8168 tag_action, 8169 /*protocol*/AP_EXTEND|AP_PROTO_DMA, 8170 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS, 8171 /*features*/ATA_DSM_TRIM, 8172 /*sector_count*/block_count, 8173 /*lba*/0, 8174 /*command*/ATA_DATA_SET_MANAGEMENT, 8175 /*control*/0, 8176 data_ptr, 8177 dxfer_len, 8178 sense_len, 8179 timeout); 8180 } 8181 8182 void 8183 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries, 8184 void (*cbfcnp)(struct cam_periph *, union ccb *), 8185 u_int32_t flags, u_int8_t tag_action, 8186 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features, 8187 u_int16_t sector_count, uint64_t lba, u_int8_t command, 8188 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len, 8189 u_int8_t sense_len, u_int32_t timeout) 8190 { 8191 struct ata_pass_16 *ata_cmd; 8192 8193 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes; 8194 ata_cmd->opcode = ATA_PASS_16; 8195 ata_cmd->protocol = protocol; 8196 ata_cmd->flags = ata_flags; 8197 ata_cmd->features_ext = features >> 8; 8198 ata_cmd->features = features; 8199 ata_cmd->sector_count_ext = sector_count >> 8; 8200 ata_cmd->sector_count = sector_count; 8201 ata_cmd->lba_low = lba; 8202 ata_cmd->lba_mid = lba >> 8; 8203 ata_cmd->lba_high = lba >> 16; 8204 ata_cmd->device = ATA_DEV_LBA; 8205 if (protocol & AP_EXTEND) { 8206 ata_cmd->lba_low_ext = lba >> 24; 8207 ata_cmd->lba_mid_ext = lba >> 32; 8208 ata_cmd->lba_high_ext = lba >> 40; 8209 } else 8210 ata_cmd->device |= (lba >> 24) & 0x0f; 8211 ata_cmd->command = command; 8212 ata_cmd->control = control; 8213 8214 cam_fill_csio(csio, 8215 retries, 8216 cbfcnp, 8217 flags, 8218 tag_action, 8219 data_ptr, 8220 dxfer_len, 8221 sense_len, 8222 sizeof(*ata_cmd), 8223 timeout); 8224 } 8225 8226 void 8227 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, 8228 void (*cbfcnp)(struct cam_periph *, union ccb *), 8229 u_int8_t tag_action, u_int8_t byte2, 8230 u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, 8231 u_int32_t timeout) 8232 { 8233 struct scsi_unmap *scsi_cmd; 8234 8235 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes; 8236 scsi_cmd->opcode = UNMAP; 8237 scsi_cmd->byte2 = byte2; 8238 scsi_ulto4b(0, scsi_cmd->reserved); 8239 scsi_cmd->group = 0; 8240 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8241 scsi_cmd->control = 0; 8242 8243 cam_fill_csio(csio, 8244 retries, 8245 cbfcnp, 8246 /*flags*/CAM_DIR_OUT, 8247 tag_action, 8248 data_ptr, 8249 dxfer_len, 8250 sense_len, 8251 sizeof(*scsi_cmd), 8252 timeout); 8253 } 8254 8255 void 8256 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, 8257 void (*cbfcnp)(struct cam_periph *, union ccb*), 8258 uint8_t tag_action, int pcv, uint8_t page_code, 8259 uint8_t *data_ptr, uint16_t allocation_length, 8260 uint8_t sense_len, uint32_t timeout) 8261 { 8262 struct scsi_receive_diag *scsi_cmd; 8263 8264 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes; 8265 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8266 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC; 8267 if (pcv) { 8268 scsi_cmd->byte2 |= SRD_PCV; 8269 scsi_cmd->page_code = page_code; 8270 } 8271 scsi_ulto2b(allocation_length, scsi_cmd->length); 8272 8273 cam_fill_csio(csio, 8274 retries, 8275 cbfcnp, 8276 /*flags*/CAM_DIR_IN, 8277 tag_action, 8278 data_ptr, 8279 allocation_length, 8280 sense_len, 8281 sizeof(*scsi_cmd), 8282 timeout); 8283 } 8284 8285 void 8286 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, 8287 void (*cbfcnp)(struct cam_periph *, union ccb *), 8288 uint8_t tag_action, int unit_offline, int device_offline, 8289 int self_test, int page_format, int self_test_code, 8290 uint8_t *data_ptr, uint16_t param_list_length, 8291 uint8_t sense_len, uint32_t timeout) 8292 { 8293 struct scsi_send_diag *scsi_cmd; 8294 8295 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes; 8296 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8297 scsi_cmd->opcode = SEND_DIAGNOSTIC; 8298 8299 /* 8300 * The default self-test mode control and specific test 8301 * control are mutually exclusive. 8302 */ 8303 if (self_test) 8304 self_test_code = SSD_SELF_TEST_CODE_NONE; 8305 8306 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT) 8307 & SSD_SELF_TEST_CODE_MASK) 8308 | (unit_offline ? SSD_UNITOFFL : 0) 8309 | (device_offline ? SSD_DEVOFFL : 0) 8310 | (self_test ? SSD_SELFTEST : 0) 8311 | (page_format ? SSD_PF : 0); 8312 scsi_ulto2b(param_list_length, scsi_cmd->length); 8313 8314 cam_fill_csio(csio, 8315 retries, 8316 cbfcnp, 8317 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8318 tag_action, 8319 data_ptr, 8320 param_list_length, 8321 sense_len, 8322 sizeof(*scsi_cmd), 8323 timeout); 8324 } 8325 8326 void 8327 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8328 void (*cbfcnp)(struct cam_periph *, union ccb*), 8329 uint8_t tag_action, int mode, 8330 uint8_t buffer_id, u_int32_t offset, 8331 uint8_t *data_ptr, uint32_t allocation_length, 8332 uint8_t sense_len, uint32_t timeout) 8333 { 8334 struct scsi_read_buffer *scsi_cmd; 8335 8336 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes; 8337 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8338 scsi_cmd->opcode = READ_BUFFER; 8339 scsi_cmd->byte2 = mode; 8340 scsi_cmd->buffer_id = buffer_id; 8341 scsi_ulto3b(offset, scsi_cmd->offset); 8342 scsi_ulto3b(allocation_length, scsi_cmd->length); 8343 8344 cam_fill_csio(csio, 8345 retries, 8346 cbfcnp, 8347 /*flags*/CAM_DIR_IN, 8348 tag_action, 8349 data_ptr, 8350 allocation_length, 8351 sense_len, 8352 sizeof(*scsi_cmd), 8353 timeout); 8354 } 8355 8356 void 8357 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries, 8358 void (*cbfcnp)(struct cam_periph *, union ccb *), 8359 uint8_t tag_action, int mode, 8360 uint8_t buffer_id, u_int32_t offset, 8361 uint8_t *data_ptr, uint32_t param_list_length, 8362 uint8_t sense_len, uint32_t timeout) 8363 { 8364 struct scsi_write_buffer *scsi_cmd; 8365 8366 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes; 8367 memset(scsi_cmd, 0, sizeof(*scsi_cmd)); 8368 scsi_cmd->opcode = WRITE_BUFFER; 8369 scsi_cmd->byte2 = mode; 8370 scsi_cmd->buffer_id = buffer_id; 8371 scsi_ulto3b(offset, scsi_cmd->offset); 8372 scsi_ulto3b(param_list_length, scsi_cmd->length); 8373 8374 cam_fill_csio(csio, 8375 retries, 8376 cbfcnp, 8377 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE, 8378 tag_action, 8379 data_ptr, 8380 param_list_length, 8381 sense_len, 8382 sizeof(*scsi_cmd), 8383 timeout); 8384 } 8385 8386 void 8387 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, 8388 void (*cbfcnp)(struct cam_periph *, union ccb *), 8389 u_int8_t tag_action, int start, int load_eject, 8390 int immediate, u_int8_t sense_len, u_int32_t timeout) 8391 { 8392 struct scsi_start_stop_unit *scsi_cmd; 8393 int extra_flags = 0; 8394 8395 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes; 8396 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8397 scsi_cmd->opcode = START_STOP_UNIT; 8398 if (start != 0) { 8399 scsi_cmd->how |= SSS_START; 8400 /* it takes a lot of power to start a drive */ 8401 extra_flags |= CAM_HIGH_POWER; 8402 } 8403 if (load_eject != 0) 8404 scsi_cmd->how |= SSS_LOEJ; 8405 if (immediate != 0) 8406 scsi_cmd->byte2 |= SSS_IMMED; 8407 8408 cam_fill_csio(csio, 8409 retries, 8410 cbfcnp, 8411 /*flags*/CAM_DIR_NONE | extra_flags, 8412 tag_action, 8413 /*data_ptr*/NULL, 8414 /*dxfer_len*/0, 8415 sense_len, 8416 sizeof(*scsi_cmd), 8417 timeout); 8418 } 8419 8420 void 8421 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8422 void (*cbfcnp)(struct cam_periph *, union ccb *), 8423 u_int8_t tag_action, u_int8_t service_action, 8424 uint32_t element, u_int8_t elem_type, int logical_volume, 8425 int partition, u_int32_t first_attribute, int cache, 8426 u_int8_t *data_ptr, u_int32_t length, int sense_len, 8427 u_int32_t timeout) 8428 { 8429 struct scsi_read_attribute *scsi_cmd; 8430 8431 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes; 8432 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8433 8434 scsi_cmd->opcode = READ_ATTRIBUTE; 8435 scsi_cmd->service_action = service_action, 8436 scsi_ulto2b(element, scsi_cmd->element); 8437 scsi_cmd->elem_type = elem_type; 8438 scsi_cmd->logical_volume = logical_volume; 8439 scsi_cmd->partition = partition; 8440 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute); 8441 scsi_ulto4b(length, scsi_cmd->length); 8442 if (cache != 0) 8443 scsi_cmd->cache |= SRA_CACHE; 8444 8445 cam_fill_csio(csio, 8446 retries, 8447 cbfcnp, 8448 /*flags*/CAM_DIR_IN, 8449 tag_action, 8450 /*data_ptr*/data_ptr, 8451 /*dxfer_len*/length, 8452 sense_len, 8453 sizeof(*scsi_cmd), 8454 timeout); 8455 } 8456 8457 void 8458 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries, 8459 void (*cbfcnp)(struct cam_periph *, union ccb *), 8460 u_int8_t tag_action, uint32_t element, int logical_volume, 8461 int partition, int wtc, u_int8_t *data_ptr, 8462 u_int32_t length, int sense_len, u_int32_t timeout) 8463 { 8464 struct scsi_write_attribute *scsi_cmd; 8465 8466 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes; 8467 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8468 8469 scsi_cmd->opcode = WRITE_ATTRIBUTE; 8470 if (wtc != 0) 8471 scsi_cmd->byte2 = SWA_WTC; 8472 scsi_ulto3b(element, scsi_cmd->element); 8473 scsi_cmd->logical_volume = logical_volume; 8474 scsi_cmd->partition = partition; 8475 scsi_ulto4b(length, scsi_cmd->length); 8476 8477 cam_fill_csio(csio, 8478 retries, 8479 cbfcnp, 8480 /*flags*/CAM_DIR_OUT, 8481 tag_action, 8482 /*data_ptr*/data_ptr, 8483 /*dxfer_len*/length, 8484 sense_len, 8485 sizeof(*scsi_cmd), 8486 timeout); 8487 } 8488 8489 void 8490 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, 8491 void (*cbfcnp)(struct cam_periph *, union ccb *), 8492 uint8_t tag_action, int service_action, 8493 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8494 int timeout) 8495 { 8496 struct scsi_per_res_in *scsi_cmd; 8497 8498 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes; 8499 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8500 8501 scsi_cmd->opcode = PERSISTENT_RES_IN; 8502 scsi_cmd->action = service_action; 8503 scsi_ulto2b(dxfer_len, scsi_cmd->length); 8504 8505 cam_fill_csio(csio, 8506 retries, 8507 cbfcnp, 8508 /*flags*/CAM_DIR_IN, 8509 tag_action, 8510 data_ptr, 8511 dxfer_len, 8512 sense_len, 8513 sizeof(*scsi_cmd), 8514 timeout); 8515 } 8516 8517 void 8518 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, 8519 void (*cbfcnp)(struct cam_periph *, union ccb *), 8520 uint8_t tag_action, int service_action, 8521 int scope, int res_type, uint8_t *data_ptr, 8522 uint32_t dxfer_len, int sense_len, int timeout) 8523 { 8524 struct scsi_per_res_out *scsi_cmd; 8525 8526 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes; 8527 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8528 8529 scsi_cmd->opcode = PERSISTENT_RES_OUT; 8530 scsi_cmd->action = service_action; 8531 scsi_cmd->scope_type = scope | res_type; 8532 8533 cam_fill_csio(csio, 8534 retries, 8535 cbfcnp, 8536 /*flags*/CAM_DIR_OUT, 8537 tag_action, 8538 /*data_ptr*/data_ptr, 8539 /*dxfer_len*/dxfer_len, 8540 sense_len, 8541 sizeof(*scsi_cmd), 8542 timeout); 8543 } 8544 8545 void 8546 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, 8547 void (*cbfcnp)(struct cam_periph *, union ccb *), 8548 uint8_t tag_action, uint32_t security_protocol, 8549 uint32_t security_protocol_specific, int byte4, 8550 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8551 int timeout) 8552 { 8553 struct scsi_security_protocol_in *scsi_cmd; 8554 8555 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes; 8556 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8557 8558 scsi_cmd->opcode = SECURITY_PROTOCOL_IN; 8559 8560 scsi_cmd->security_protocol = security_protocol; 8561 scsi_ulto2b(security_protocol_specific, 8562 scsi_cmd->security_protocol_specific); 8563 scsi_cmd->byte4 = byte4; 8564 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8565 8566 cam_fill_csio(csio, 8567 retries, 8568 cbfcnp, 8569 /*flags*/CAM_DIR_IN, 8570 tag_action, 8571 data_ptr, 8572 dxfer_len, 8573 sense_len, 8574 sizeof(*scsi_cmd), 8575 timeout); 8576 } 8577 8578 void 8579 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, 8580 void (*cbfcnp)(struct cam_periph *, union ccb *), 8581 uint8_t tag_action, uint32_t security_protocol, 8582 uint32_t security_protocol_specific, int byte4, 8583 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, 8584 int timeout) 8585 { 8586 struct scsi_security_protocol_out *scsi_cmd; 8587 8588 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes; 8589 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8590 8591 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT; 8592 8593 scsi_cmd->security_protocol = security_protocol; 8594 scsi_ulto2b(security_protocol_specific, 8595 scsi_cmd->security_protocol_specific); 8596 scsi_cmd->byte4 = byte4; 8597 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8598 8599 cam_fill_csio(csio, 8600 retries, 8601 cbfcnp, 8602 /*flags*/CAM_DIR_OUT, 8603 tag_action, 8604 data_ptr, 8605 dxfer_len, 8606 sense_len, 8607 sizeof(*scsi_cmd), 8608 timeout); 8609 } 8610 8611 void 8612 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, 8613 void (*cbfcnp)(struct cam_periph *, union ccb *), 8614 uint8_t tag_action, int options, int req_opcode, 8615 int req_service_action, uint8_t *data_ptr, 8616 uint32_t dxfer_len, int sense_len, int timeout) 8617 { 8618 struct scsi_report_supported_opcodes *scsi_cmd; 8619 8620 scsi_cmd = (struct scsi_report_supported_opcodes *) 8621 &csio->cdb_io.cdb_bytes; 8622 bzero(scsi_cmd, sizeof(*scsi_cmd)); 8623 8624 scsi_cmd->opcode = MAINTENANCE_IN; 8625 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES; 8626 scsi_cmd->options = options; 8627 scsi_cmd->requested_opcode = req_opcode; 8628 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action); 8629 scsi_ulto4b(dxfer_len, scsi_cmd->length); 8630 8631 cam_fill_csio(csio, 8632 retries, 8633 cbfcnp, 8634 /*flags*/CAM_DIR_IN, 8635 tag_action, 8636 data_ptr, 8637 dxfer_len, 8638 sense_len, 8639 sizeof(*scsi_cmd), 8640 timeout); 8641 } 8642 8643 /* 8644 * Try make as good a match as possible with 8645 * available sub drivers 8646 */ 8647 int 8648 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 8649 { 8650 struct scsi_inquiry_pattern *entry; 8651 struct scsi_inquiry_data *inq; 8652 8653 entry = (struct scsi_inquiry_pattern *)table_entry; 8654 inq = (struct scsi_inquiry_data *)inqbuffer; 8655 8656 if (((SID_TYPE(inq) == entry->type) 8657 || (entry->type == T_ANY)) 8658 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 8659 : entry->media_type & SIP_MEDIA_FIXED) 8660 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 8661 && (cam_strmatch(inq->product, entry->product, 8662 sizeof(inq->product)) == 0) 8663 && (cam_strmatch(inq->revision, entry->revision, 8664 sizeof(inq->revision)) == 0)) { 8665 return (0); 8666 } 8667 return (-1); 8668 } 8669 8670 /* 8671 * Try make as good a match as possible with 8672 * available sub drivers 8673 */ 8674 int 8675 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry) 8676 { 8677 struct scsi_static_inquiry_pattern *entry; 8678 struct scsi_inquiry_data *inq; 8679 8680 entry = (struct scsi_static_inquiry_pattern *)table_entry; 8681 inq = (struct scsi_inquiry_data *)inqbuffer; 8682 8683 if (((SID_TYPE(inq) == entry->type) 8684 || (entry->type == T_ANY)) 8685 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE 8686 : entry->media_type & SIP_MEDIA_FIXED) 8687 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0) 8688 && (cam_strmatch(inq->product, entry->product, 8689 sizeof(inq->product)) == 0) 8690 && (cam_strmatch(inq->revision, entry->revision, 8691 sizeof(inq->revision)) == 0)) { 8692 return (0); 8693 } 8694 return (-1); 8695 } 8696 8697 /** 8698 * Compare two buffers of vpd device descriptors for a match. 8699 * 8700 * \param lhs Pointer to first buffer of descriptors to compare. 8701 * \param lhs_len The length of the first buffer. 8702 * \param rhs Pointer to second buffer of descriptors to compare. 8703 * \param rhs_len The length of the second buffer. 8704 * 8705 * \return 0 on a match, -1 otherwise. 8706 * 8707 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching 8708 * against each element in rhs until all data are exhausted or we have found 8709 * a match. 8710 */ 8711 int 8712 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len) 8713 { 8714 struct scsi_vpd_id_descriptor *lhs_id; 8715 struct scsi_vpd_id_descriptor *lhs_last; 8716 struct scsi_vpd_id_descriptor *rhs_last; 8717 uint8_t *lhs_end; 8718 uint8_t *rhs_end; 8719 8720 lhs_end = lhs + lhs_len; 8721 rhs_end = rhs + rhs_len; 8722 8723 /* 8724 * rhs_last and lhs_last are the last posible position of a valid 8725 * descriptor assuming it had a zero length identifier. We use 8726 * these variables to insure we can safely dereference the length 8727 * field in our loop termination tests. 8728 */ 8729 lhs_last = (struct scsi_vpd_id_descriptor *) 8730 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 8731 rhs_last = (struct scsi_vpd_id_descriptor *) 8732 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier)); 8733 8734 lhs_id = (struct scsi_vpd_id_descriptor *)lhs; 8735 while (lhs_id <= lhs_last 8736 && (lhs_id->identifier + lhs_id->length) <= lhs_end) { 8737 struct scsi_vpd_id_descriptor *rhs_id; 8738 8739 rhs_id = (struct scsi_vpd_id_descriptor *)rhs; 8740 while (rhs_id <= rhs_last 8741 && (rhs_id->identifier + rhs_id->length) <= rhs_end) { 8742 8743 if ((rhs_id->id_type & 8744 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) == 8745 (lhs_id->id_type & 8746 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) 8747 && rhs_id->length == lhs_id->length 8748 && memcmp(rhs_id->identifier, lhs_id->identifier, 8749 rhs_id->length) == 0) 8750 return (0); 8751 8752 rhs_id = (struct scsi_vpd_id_descriptor *) 8753 (rhs_id->identifier + rhs_id->length); 8754 } 8755 lhs_id = (struct scsi_vpd_id_descriptor *) 8756 (lhs_id->identifier + lhs_id->length); 8757 } 8758 return (-1); 8759 } 8760 8761 #ifdef _KERNEL 8762 int 8763 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id) 8764 { 8765 struct cam_ed *device; 8766 struct scsi_vpd_supported_pages *vpds; 8767 int i, num_pages; 8768 8769 device = periph->path->device; 8770 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds; 8771 8772 if (vpds != NULL) { 8773 num_pages = device->supported_vpds_len - 8774 SVPD_SUPPORTED_PAGES_HDR_LEN; 8775 for (i = 0; i < num_pages; i++) { 8776 if (vpds->page_list[i] == page_id) 8777 return (1); 8778 } 8779 } 8780 8781 return (0); 8782 } 8783 8784 static void 8785 init_scsi_delay(void) 8786 { 8787 int delay; 8788 8789 delay = SCSI_DELAY; 8790 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay); 8791 8792 if (set_scsi_delay(delay) != 0) { 8793 printf("cam: invalid value for tunable kern.cam.scsi_delay\n"); 8794 set_scsi_delay(SCSI_DELAY); 8795 } 8796 } 8797 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL); 8798 8799 static int 8800 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS) 8801 { 8802 int error, delay; 8803 8804 delay = scsi_delay; 8805 error = sysctl_handle_int(oidp, &delay, 0, req); 8806 if (error != 0 || req->newptr == NULL) 8807 return (error); 8808 return (set_scsi_delay(delay)); 8809 } 8810 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT|CTLFLAG_RW, 8811 0, 0, sysctl_scsi_delay, "I", 8812 "Delay to allow devices to settle after a SCSI bus reset (ms)"); 8813 8814 static int 8815 set_scsi_delay(int delay) 8816 { 8817 /* 8818 * If someone sets this to 0, we assume that they want the 8819 * minimum allowable bus settle delay. 8820 */ 8821 if (delay == 0) { 8822 printf("cam: using minimum scsi_delay (%dms)\n", 8823 SCSI_MIN_DELAY); 8824 delay = SCSI_MIN_DELAY; 8825 } 8826 if (delay < SCSI_MIN_DELAY) 8827 return (EINVAL); 8828 scsi_delay = delay; 8829 return (0); 8830 } 8831 #endif /* _KERNEL */ 8832