xref: /freebsd/sys/cam/scsi/scsi_all.c (revision 079171874c9bf263b69e3af10784ad2bcd1fe699)
1 /*-
2  * Implementation of Utility functions for all SCSI device types.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/stdint.h>
36 
37 #ifdef _KERNEL
38 #include <opt_scsi.h>
39 
40 #include <sys/systm.h>
41 #include <sys/libkern.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/ctype.h>
48 #else
49 #include <errno.h>
50 #include <stdio.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <ctype.h>
54 #endif
55 
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_queue.h>
59 #include <cam/cam_xpt.h>
60 #include <cam/scsi/scsi_all.h>
61 #include <sys/ata.h>
62 #include <sys/sbuf.h>
63 
64 #ifdef _KERNEL
65 #include <cam/cam_periph.h>
66 #include <cam/cam_xpt_sim.h>
67 #include <cam/cam_xpt_periph.h>
68 #include <cam/cam_xpt_internal.h>
69 #else
70 #include <camlib.h>
71 #include <stddef.h>
72 
73 #ifndef FALSE
74 #define FALSE   0
75 #endif /* FALSE */
76 #ifndef TRUE
77 #define TRUE    1
78 #endif /* TRUE */
79 #define ERESTART        -1              /* restart syscall */
80 #define EJUSTRETURN     -2              /* don't modify regs, just return */
81 #endif /* !_KERNEL */
82 
83 /*
84  * This is the default number of milliseconds we wait for devices to settle
85  * after a SCSI bus reset.
86  */
87 #ifndef SCSI_DELAY
88 #define SCSI_DELAY 2000
89 #endif
90 /*
91  * All devices need _some_ sort of bus settle delay, so we'll set it to
92  * a minimum value of 100ms. Note that this is pertinent only for SPI-
93  * not transport like Fibre Channel or iSCSI where 'delay' is completely
94  * meaningless.
95  */
96 #ifndef SCSI_MIN_DELAY
97 #define SCSI_MIN_DELAY 100
98 #endif
99 /*
100  * Make sure the user isn't using seconds instead of milliseconds.
101  */
102 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0)
103 #error "SCSI_DELAY is in milliseconds, not seconds!  Please use a larger value"
104 #endif
105 
106 int scsi_delay;
107 
108 static int	ascentrycomp(const void *key, const void *member);
109 static int	senseentrycomp(const void *key, const void *member);
110 static void	fetchtableentries(int sense_key, int asc, int ascq,
111 				  struct scsi_inquiry_data *,
112 				  const struct sense_key_table_entry **,
113 				  const struct asc_table_entry **);
114 #ifdef _KERNEL
115 static void	init_scsi_delay(void);
116 static int	sysctl_scsi_delay(SYSCTL_HANDLER_ARGS);
117 static int	set_scsi_delay(int delay);
118 #endif
119 
120 #if !defined(SCSI_NO_OP_STRINGS)
121 
122 #define	D	(1 << T_DIRECT)
123 #define	T	(1 << T_SEQUENTIAL)
124 #define	L	(1 << T_PRINTER)
125 #define	P	(1 << T_PROCESSOR)
126 #define	W	(1 << T_WORM)
127 #define	R	(1 << T_CDROM)
128 #define	O	(1 << T_OPTICAL)
129 #define	M	(1 << T_CHANGER)
130 #define	A	(1 << T_STORARRAY)
131 #define	E	(1 << T_ENCLOSURE)
132 #define	B	(1 << T_RBC)
133 #define	K	(1 << T_OCRW)
134 #define	V	(1 << T_ADC)
135 #define	F	(1 << T_OSD)
136 #define	S	(1 << T_SCANNER)
137 #define	C	(1 << T_COMM)
138 
139 #define ALL	(D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C)
140 
141 static struct op_table_entry plextor_cd_ops[] = {
142 	{ 0xD8, R, "CD-DA READ" }
143 };
144 
145 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = {
146 	{
147 		/*
148 		 * I believe that 0xD8 is the Plextor proprietary command
149 		 * to read CD-DA data.  I'm not sure which Plextor CDROM
150 		 * models support the command, though.  I know for sure
151 		 * that the 4X, 8X, and 12X models do, and presumably the
152 		 * 12-20X does.  I don't know about any earlier models,
153 		 * though.  If anyone has any more complete information,
154 		 * feel free to change this quirk entry.
155 		 */
156 		{T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"},
157 		nitems(plextor_cd_ops),
158 		plextor_cd_ops
159 	}
160 };
161 
162 static struct op_table_entry scsi_op_codes[] = {
163 	/*
164 	 * From: http://www.t10.org/lists/op-num.txt
165 	 * Modifications by Kenneth Merry (ken@FreeBSD.ORG)
166 	 *              and Jung-uk Kim (jkim@FreeBSD.org)
167 	 *
168 	 * Note:  order is important in this table, scsi_op_desc() currently
169 	 * depends on the opcodes in the table being in order to save
170 	 * search time.
171 	 * Note:  scanner and comm. devices are carried over from the previous
172 	 * version because they were removed in the latest spec.
173 	 */
174 	/* File: OP-NUM.TXT
175 	 *
176 	 * SCSI Operation Codes
177 	 * Numeric Sorted Listing
178 	 * as of  5/26/15
179 	 *
180 	 *     D - DIRECT ACCESS DEVICE (SBC-2)                device column key
181 	 *     .T - SEQUENTIAL ACCESS DEVICE (SSC-2)           -----------------
182 	 *     . L - PRINTER DEVICE (SSC)                      M = Mandatory
183 	 *     .  P - PROCESSOR DEVICE (SPC)                   O = Optional
184 	 *     .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec.
185 	 *     .  . R - CD/DVE DEVICE (MMC-3)                  Z = Obsolete
186 	 *     .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
187 	 *     .  .  .M - MEDIA CHANGER DEVICE (SMC-2)
188 	 *     .  .  . A - STORAGE ARRAY DEVICE (SCC-2)
189 	 *     .  .  . .E - ENCLOSURE SERVICES DEVICE (SES)
190 	 *     .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
191 	 *     .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
192 	 *     .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
193 	 *     .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
194 	 * OP  DTLPWROMAEBKVF  Description
195 	 * --  --------------  ---------------------------------------------- */
196 	/* 00  MMMMMMMMMMMMMM  TEST UNIT READY */
197 	{ 0x00,	ALL, "TEST UNIT READY" },
198 	/* 01   M              REWIND */
199 	{ 0x01,	T, "REWIND" },
200 	/* 01  Z V ZZZZ        REZERO UNIT */
201 	{ 0x01,	D | W | R | O | M, "REZERO UNIT" },
202 	/* 02  VVVVVV V */
203 	/* 03  MMMMMMMMMMOMMM  REQUEST SENSE */
204 	{ 0x03,	ALL, "REQUEST SENSE" },
205 	/* 04  M    OO         FORMAT UNIT */
206 	{ 0x04,	D | R | O, "FORMAT UNIT" },
207 	/* 04   O              FORMAT MEDIUM */
208 	{ 0x04,	T, "FORMAT MEDIUM" },
209 	/* 04    O             FORMAT */
210 	{ 0x04,	L, "FORMAT" },
211 	/* 05  VMVVVV V        READ BLOCK LIMITS */
212 	{ 0x05,	T, "READ BLOCK LIMITS" },
213 	/* 06  VVVVVV V */
214 	/* 07  OVV O OV        REASSIGN BLOCKS */
215 	{ 0x07,	D | W | O, "REASSIGN BLOCKS" },
216 	/* 07         O        INITIALIZE ELEMENT STATUS */
217 	{ 0x07,	M, "INITIALIZE ELEMENT STATUS" },
218 	/* 08  MOV O OV        READ(6) */
219 	{ 0x08,	D | T | W | O, "READ(6)" },
220 	/* 08     O            RECEIVE */
221 	{ 0x08,	P, "RECEIVE" },
222 	/* 08                  GET MESSAGE(6) */
223 	{ 0x08, C, "GET MESSAGE(6)" },
224 	/* 09  VVVVVV V */
225 	/* 0A  OO  O OV        WRITE(6) */
226 	{ 0x0A,	D | T | W | O, "WRITE(6)" },
227 	/* 0A     M            SEND(6) */
228 	{ 0x0A,	P, "SEND(6)" },
229 	/* 0A                  SEND MESSAGE(6) */
230 	{ 0x0A, C, "SEND MESSAGE(6)" },
231 	/* 0A    M             PRINT */
232 	{ 0x0A,	L, "PRINT" },
233 	/* 0B  Z   ZOZV        SEEK(6) */
234 	{ 0x0B,	D | W | R | O, "SEEK(6)" },
235 	/* 0B   O              SET CAPACITY */
236 	{ 0x0B,	T, "SET CAPACITY" },
237 	/* 0B    O             SLEW AND PRINT */
238 	{ 0x0B,	L, "SLEW AND PRINT" },
239 	/* 0C  VVVVVV V */
240 	/* 0D  VVVVVV V */
241 	/* 0E  VVVVVV V */
242 	/* 0F  VOVVVV V        READ REVERSE(6) */
243 	{ 0x0F,	T, "READ REVERSE(6)" },
244 	/* 10  VM VVV          WRITE FILEMARKS(6) */
245 	{ 0x10,	T, "WRITE FILEMARKS(6)" },
246 	/* 10    O             SYNCHRONIZE BUFFER */
247 	{ 0x10,	L, "SYNCHRONIZE BUFFER" },
248 	/* 11  VMVVVV          SPACE(6) */
249 	{ 0x11,	T, "SPACE(6)" },
250 	/* 12  MMMMMMMMMMMMMM  INQUIRY */
251 	{ 0x12,	ALL, "INQUIRY" },
252 	/* 13  V VVVV */
253 	/* 13   O              VERIFY(6) */
254 	{ 0x13,	T, "VERIFY(6)" },
255 	/* 14  VOOVVV          RECOVER BUFFERED DATA */
256 	{ 0x14,	T | L, "RECOVER BUFFERED DATA" },
257 	/* 15  OMO O OOOO OO   MODE SELECT(6) */
258 	{ 0x15,	ALL & ~(P | R | B | F), "MODE SELECT(6)" },
259 	/* 16  ZZMZO OOOZ O    RESERVE(6) */
260 	{ 0x16,	ALL & ~(R | B | V | F | C), "RESERVE(6)" },
261 	/* 16         Z        RESERVE ELEMENT(6) */
262 	{ 0x16,	M, "RESERVE ELEMENT(6)" },
263 	/* 17  ZZMZO OOOZ O    RELEASE(6) */
264 	{ 0x17,	ALL & ~(R | B | V | F | C), "RELEASE(6)" },
265 	/* 17         Z        RELEASE ELEMENT(6) */
266 	{ 0x17,	M, "RELEASE ELEMENT(6)" },
267 	/* 18  ZZZZOZO    Z    COPY */
268 	{ 0x18,	D | T | L | P | W | R | O | K | S, "COPY" },
269 	/* 19  VMVVVV          ERASE(6) */
270 	{ 0x19,	T, "ERASE(6)" },
271 	/* 1A  OMO O OOOO OO   MODE SENSE(6) */
272 	{ 0x1A,	ALL & ~(P | R | B | F), "MODE SENSE(6)" },
273 	/* 1B  O   OOO O MO O  START STOP UNIT */
274 	{ 0x1B,	D | W | R | O | A | B | K | F, "START STOP UNIT" },
275 	/* 1B   O          M   LOAD UNLOAD */
276 	{ 0x1B,	T | V, "LOAD UNLOAD" },
277 	/* 1B                  SCAN */
278 	{ 0x1B, S, "SCAN" },
279 	/* 1B    O             STOP PRINT */
280 	{ 0x1B,	L, "STOP PRINT" },
281 	/* 1B         O        OPEN/CLOSE IMPORT/EXPORT ELEMENT */
282 	{ 0x1B,	M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" },
283 	/* 1C  OOOOO OOOM OOO  RECEIVE DIAGNOSTIC RESULTS */
284 	{ 0x1C,	ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" },
285 	/* 1D  MMMMM MMOM MMM  SEND DIAGNOSTIC */
286 	{ 0x1D,	ALL & ~(R | B), "SEND DIAGNOSTIC" },
287 	/* 1E  OO  OOOO   O O  PREVENT ALLOW MEDIUM REMOVAL */
288 	{ 0x1E,	D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" },
289 	/* 1F */
290 	/* 20  V   VVV    V */
291 	/* 21  V   VVV    V */
292 	/* 22  V   VVV    V */
293 	/* 23  V   V V    V */
294 	/* 23       O          READ FORMAT CAPACITIES */
295 	{ 0x23,	R, "READ FORMAT CAPACITIES" },
296 	/* 24  V   VV          SET WINDOW */
297 	{ 0x24, S, "SET WINDOW" },
298 	/* 25  M   M M   M     READ CAPACITY(10) */
299 	{ 0x25,	D | W | O | B, "READ CAPACITY(10)" },
300 	/* 25       O          READ CAPACITY */
301 	{ 0x25,	R, "READ CAPACITY" },
302 	/* 25             M    READ CARD CAPACITY */
303 	{ 0x25,	K, "READ CARD CAPACITY" },
304 	/* 25                  GET WINDOW */
305 	{ 0x25, S, "GET WINDOW" },
306 	/* 26  V   VV */
307 	/* 27  V   VV */
308 	/* 28  M   MOM   MM    READ(10) */
309 	{ 0x28,	D | W | R | O | B | K | S, "READ(10)" },
310 	/* 28                  GET MESSAGE(10) */
311 	{ 0x28, C, "GET MESSAGE(10)" },
312 	/* 29  V   VVO         READ GENERATION */
313 	{ 0x29,	O, "READ GENERATION" },
314 	/* 2A  O   MOM   MO    WRITE(10) */
315 	{ 0x2A,	D | W | R | O | B | K, "WRITE(10)" },
316 	/* 2A                  SEND(10) */
317 	{ 0x2A, S, "SEND(10)" },
318 	/* 2A                  SEND MESSAGE(10) */
319 	{ 0x2A, C, "SEND MESSAGE(10)" },
320 	/* 2B  Z   OOO    O    SEEK(10) */
321 	{ 0x2B,	D | W | R | O | K, "SEEK(10)" },
322 	/* 2B   O              LOCATE(10) */
323 	{ 0x2B,	T, "LOCATE(10)" },
324 	/* 2B         O        POSITION TO ELEMENT */
325 	{ 0x2B,	M, "POSITION TO ELEMENT" },
326 	/* 2C  V    OO         ERASE(10) */
327 	{ 0x2C,	R | O, "ERASE(10)" },
328 	/* 2D        O         READ UPDATED BLOCK */
329 	{ 0x2D,	O, "READ UPDATED BLOCK" },
330 	/* 2D  V */
331 	/* 2E  O   OOO   MO    WRITE AND VERIFY(10) */
332 	{ 0x2E,	D | W | R | O | B | K, "WRITE AND VERIFY(10)" },
333 	/* 2F  O   OOO         VERIFY(10) */
334 	{ 0x2F,	D | W | R | O, "VERIFY(10)" },
335 	/* 30  Z   ZZZ         SEARCH DATA HIGH(10) */
336 	{ 0x30,	D | W | R | O, "SEARCH DATA HIGH(10)" },
337 	/* 31  Z   ZZZ         SEARCH DATA EQUAL(10) */
338 	{ 0x31,	D | W | R | O, "SEARCH DATA EQUAL(10)" },
339 	/* 31                  OBJECT POSITION */
340 	{ 0x31, S, "OBJECT POSITION" },
341 	/* 32  Z   ZZZ         SEARCH DATA LOW(10) */
342 	{ 0x32,	D | W | R | O, "SEARCH DATA LOW(10)" },
343 	/* 33  Z   OZO         SET LIMITS(10) */
344 	{ 0x33,	D | W | R | O, "SET LIMITS(10)" },
345 	/* 34  O   O O    O    PRE-FETCH(10) */
346 	{ 0x34,	D | W | O | K, "PRE-FETCH(10)" },
347 	/* 34   M              READ POSITION */
348 	{ 0x34,	T, "READ POSITION" },
349 	/* 34                  GET DATA BUFFER STATUS */
350 	{ 0x34, S, "GET DATA BUFFER STATUS" },
351 	/* 35  O   OOO   MO    SYNCHRONIZE CACHE(10) */
352 	{ 0x35,	D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" },
353 	/* 36  Z   O O    O    LOCK UNLOCK CACHE(10) */
354 	{ 0x36,	D | W | O | K, "LOCK UNLOCK CACHE(10)" },
355 	/* 37  O     O         READ DEFECT DATA(10) */
356 	{ 0x37,	D | O, "READ DEFECT DATA(10)" },
357 	/* 37         O        INITIALIZE ELEMENT STATUS WITH RANGE */
358 	{ 0x37,	M, "INITIALIZE ELEMENT STATUS WITH RANGE" },
359 	/* 38      O O    O    MEDIUM SCAN */
360 	{ 0x38,	W | O | K, "MEDIUM SCAN" },
361 	/* 39  ZZZZOZO    Z    COMPARE */
362 	{ 0x39,	D | T | L | P | W | R | O | K | S, "COMPARE" },
363 	/* 3A  ZZZZOZO    Z    COPY AND VERIFY */
364 	{ 0x3A,	D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" },
365 	/* 3B  OOOOOOOOOOMOOO  WRITE BUFFER */
366 	{ 0x3B,	ALL, "WRITE BUFFER" },
367 	/* 3C  OOOOOOOOOO OOO  READ BUFFER */
368 	{ 0x3C,	ALL & ~(B), "READ BUFFER" },
369 	/* 3D        O         UPDATE BLOCK */
370 	{ 0x3D,	O, "UPDATE BLOCK" },
371 	/* 3E  O   O O         READ LONG(10) */
372 	{ 0x3E,	D | W | O, "READ LONG(10)" },
373 	/* 3F  O   O O         WRITE LONG(10) */
374 	{ 0x3F,	D | W | O, "WRITE LONG(10)" },
375 	/* 40  ZZZZOZOZ        CHANGE DEFINITION */
376 	{ 0x40,	D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" },
377 	/* 41  O               WRITE SAME(10) */
378 	{ 0x41,	D, "WRITE SAME(10)" },
379 	/* 42       O          UNMAP */
380 	{ 0x42,	D, "UNMAP" },
381 	/* 42       O          READ SUB-CHANNEL */
382 	{ 0x42,	R, "READ SUB-CHANNEL" },
383 	/* 43       O          READ TOC/PMA/ATIP */
384 	{ 0x43,	R, "READ TOC/PMA/ATIP" },
385 	/* 44   M          M   REPORT DENSITY SUPPORT */
386 	{ 0x44,	T | V, "REPORT DENSITY SUPPORT" },
387 	/* 44                  READ HEADER */
388 	/* 45       O          PLAY AUDIO(10) */
389 	{ 0x45,	R, "PLAY AUDIO(10)" },
390 	/* 46       M          GET CONFIGURATION */
391 	{ 0x46,	R, "GET CONFIGURATION" },
392 	/* 47       O          PLAY AUDIO MSF */
393 	{ 0x47,	R, "PLAY AUDIO MSF" },
394 	/* 48 */
395 	/* 49 */
396 	/* 4A       M          GET EVENT STATUS NOTIFICATION */
397 	{ 0x4A,	R, "GET EVENT STATUS NOTIFICATION" },
398 	/* 4B       O          PAUSE/RESUME */
399 	{ 0x4B,	R, "PAUSE/RESUME" },
400 	/* 4C  OOOOO OOOO OOO  LOG SELECT */
401 	{ 0x4C,	ALL & ~(R | B), "LOG SELECT" },
402 	/* 4D  OOOOO OOOO OMO  LOG SENSE */
403 	{ 0x4D,	ALL & ~(R | B), "LOG SENSE" },
404 	/* 4E       O          STOP PLAY/SCAN */
405 	{ 0x4E,	R, "STOP PLAY/SCAN" },
406 	/* 4F */
407 	/* 50  O               XDWRITE(10) */
408 	{ 0x50,	D, "XDWRITE(10)" },
409 	/* 51  O               XPWRITE(10) */
410 	{ 0x51,	D, "XPWRITE(10)" },
411 	/* 51       O          READ DISC INFORMATION */
412 	{ 0x51,	R, "READ DISC INFORMATION" },
413 	/* 52  O               XDREAD(10) */
414 	{ 0x52,	D, "XDREAD(10)" },
415 	/* 52       O          READ TRACK INFORMATION */
416 	{ 0x52,	R, "READ TRACK INFORMATION" },
417 	/* 53       O          RESERVE TRACK */
418 	{ 0x53,	R, "RESERVE TRACK" },
419 	/* 54       O          SEND OPC INFORMATION */
420 	{ 0x54,	R, "SEND OPC INFORMATION" },
421 	/* 55  OOO OMOOOOMOMO  MODE SELECT(10) */
422 	{ 0x55,	ALL & ~(P), "MODE SELECT(10)" },
423 	/* 56  ZZMZO OOOZ      RESERVE(10) */
424 	{ 0x56,	ALL & ~(R | B | K | V | F | C), "RESERVE(10)" },
425 	/* 56         Z        RESERVE ELEMENT(10) */
426 	{ 0x56,	M, "RESERVE ELEMENT(10)" },
427 	/* 57  ZZMZO OOOZ      RELEASE(10) */
428 	{ 0x57,	ALL & ~(R | B | K | V | F | C), "RELEASE(10)" },
429 	/* 57         Z        RELEASE ELEMENT(10) */
430 	{ 0x57,	M, "RELEASE ELEMENT(10)" },
431 	/* 58       O          REPAIR TRACK */
432 	{ 0x58,	R, "REPAIR TRACK" },
433 	/* 59 */
434 	/* 5A  OOO OMOOOOMOMO  MODE SENSE(10) */
435 	{ 0x5A,	ALL & ~(P), "MODE SENSE(10)" },
436 	/* 5B       O          CLOSE TRACK/SESSION */
437 	{ 0x5B,	R, "CLOSE TRACK/SESSION" },
438 	/* 5C       O          READ BUFFER CAPACITY */
439 	{ 0x5C,	R, "READ BUFFER CAPACITY" },
440 	/* 5D       O          SEND CUE SHEET */
441 	{ 0x5D,	R, "SEND CUE SHEET" },
442 	/* 5E  OOOOO OOOO   M  PERSISTENT RESERVE IN */
443 	{ 0x5E,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" },
444 	/* 5F  OOOOO OOOO   M  PERSISTENT RESERVE OUT */
445 	{ 0x5F,	ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" },
446 	/* 7E  OO   O OOOO O   extended CDB */
447 	{ 0x7E,	D | T | R | M | A | E | B | V, "extended CDB" },
448 	/* 7F  O            M  variable length CDB (more than 16 bytes) */
449 	{ 0x7F,	D | F, "variable length CDB (more than 16 bytes)" },
450 	/* 80  Z               XDWRITE EXTENDED(16) */
451 	{ 0x80,	D, "XDWRITE EXTENDED(16)" },
452 	/* 80   M              WRITE FILEMARKS(16) */
453 	{ 0x80,	T, "WRITE FILEMARKS(16)" },
454 	/* 81  Z               REBUILD(16) */
455 	{ 0x81,	D, "REBUILD(16)" },
456 	/* 81   O              READ REVERSE(16) */
457 	{ 0x81,	T, "READ REVERSE(16)" },
458 	/* 82  Z               REGENERATE(16) */
459 	{ 0x82,	D, "REGENERATE(16)" },
460 	/* 83  OOOOO O    OO   EXTENDED COPY */
461 	{ 0x83,	D | T | L | P | W | O | K | V, "EXTENDED COPY" },
462 	/* 84  OOOOO O    OO   RECEIVE COPY RESULTS */
463 	{ 0x84,	D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" },
464 	/* 85  O    O    O     ATA COMMAND PASS THROUGH(16) */
465 	{ 0x85,	D | R | B, "ATA COMMAND PASS THROUGH(16)" },
466 	/* 86  OO OO OOOOOOO   ACCESS CONTROL IN */
467 	{ 0x86,	ALL & ~(L | R | F), "ACCESS CONTROL IN" },
468 	/* 87  OO OO OOOOOOO   ACCESS CONTROL OUT */
469 	{ 0x87,	ALL & ~(L | R | F), "ACCESS CONTROL OUT" },
470 	/*
471 	 * XXX READ(16)/WRITE(16) were not listed for CD/DVE in op-num.txt
472 	 * but we had it since r1.40.  Do we really want them?
473 	 */
474 	/* 88  MM  O O   O     READ(16) */
475 	{ 0x88,	D | T | W | O | B, "READ(16)" },
476 	/* 89  O               COMPARE AND WRITE*/
477 	{ 0x89,	D, "COMPARE AND WRITE" },
478 	/* 8A  OM  O O   O     WRITE(16) */
479 	{ 0x8A,	D | T | W | O | B, "WRITE(16)" },
480 	/* 8B  O               ORWRITE */
481 	{ 0x8B,	D, "ORWRITE" },
482 	/* 8C  OO  O OO  O M   READ ATTRIBUTE */
483 	{ 0x8C,	D | T | W | O | M | B | V, "READ ATTRIBUTE" },
484 	/* 8D  OO  O OO  O O   WRITE ATTRIBUTE */
485 	{ 0x8D,	D | T | W | O | M | B | V, "WRITE ATTRIBUTE" },
486 	/* 8E  O   O O   O     WRITE AND VERIFY(16) */
487 	{ 0x8E,	D | W | O | B, "WRITE AND VERIFY(16)" },
488 	/* 8F  OO  O O   O     VERIFY(16) */
489 	{ 0x8F,	D | T | W | O | B, "VERIFY(16)" },
490 	/* 90  O   O O   O     PRE-FETCH(16) */
491 	{ 0x90,	D | W | O | B, "PRE-FETCH(16)" },
492 	/* 91  O   O O   O     SYNCHRONIZE CACHE(16) */
493 	{ 0x91,	D | W | O | B, "SYNCHRONIZE CACHE(16)" },
494 	/* 91   O              SPACE(16) */
495 	{ 0x91,	T, "SPACE(16)" },
496 	/* 92  Z   O O         LOCK UNLOCK CACHE(16) */
497 	{ 0x92,	D | W | O, "LOCK UNLOCK CACHE(16)" },
498 	/* 92   O              LOCATE(16) */
499 	{ 0x92,	T, "LOCATE(16)" },
500 	/* 93  O               WRITE SAME(16) */
501 	{ 0x93,	D, "WRITE SAME(16)" },
502 	/* 93   M              ERASE(16) */
503 	{ 0x93,	T, "ERASE(16)" },
504 	/* 94  O               ZBC OUT */
505 	{ 0x94,	D, "ZBC OUT" },
506 	/* 95  O               ZBC OUT */
507 	{ 0x95,	D, "ZBC OUT" },
508 	/* 96 */
509 	/* 97 */
510 	/* 98 */
511 	/* 99 */
512 	/* 9A  O               WRITE STREAM(16) */
513 	{ 0x9A,	D, "WRITE STREAM(16)" },
514 	/* 9B  OOOOOOOOOO OOO  READ BUFFER(16) */
515 	{ 0x9B,	ALL & ~(B) , "READ BUFFER(16)" },
516 	/* 9C  O              WRITE ATOMIC(16) */
517 	{ 0x9C, D, "WRITE ATOMIC(16)" },
518 	/* 9D                  SERVICE ACTION BIDIRECTIONAL */
519 	{ 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" },
520 	/* XXX KDM ALL for this?  op-num.txt defines it for none.. */
521 	/* 9E                  SERVICE ACTION IN(16) */
522 	{ 0x9E, ALL, "SERVICE ACTION IN(16)" },
523 	/* XXX KDM ALL for this?  op-num.txt defines it for ADC.. */
524 	/* 9F              M   SERVICE ACTION OUT(16) */
525 	{ 0x9F,	ALL, "SERVICE ACTION OUT(16)" },
526 	/* A0  MMOOO OMMM OMO  REPORT LUNS */
527 	{ 0xA0,	ALL & ~(R | B), "REPORT LUNS" },
528 	/* A1       O          BLANK */
529 	{ 0xA1,	R, "BLANK" },
530 	/* A1  O         O     ATA COMMAND PASS THROUGH(12) */
531 	{ 0xA1,	D | B, "ATA COMMAND PASS THROUGH(12)" },
532 	/* A2  OO   O      O   SECURITY PROTOCOL IN */
533 	{ 0xA2,	D | T | R | V, "SECURITY PROTOCOL IN" },
534 	/* A3  OOO O OOMOOOM   MAINTENANCE (IN) */
535 	{ 0xA3,	ALL & ~(P | R | F), "MAINTENANCE (IN)" },
536 	/* A3       O          SEND KEY */
537 	{ 0xA3,	R, "SEND KEY" },
538 	/* A4  OOO O OOOOOOO   MAINTENANCE (OUT) */
539 	{ 0xA4,	ALL & ~(P | R | F), "MAINTENANCE (OUT)" },
540 	/* A4       O          REPORT KEY */
541 	{ 0xA4,	R, "REPORT KEY" },
542 	/* A5   O  O OM        MOVE MEDIUM */
543 	{ 0xA5,	T | W | O | M, "MOVE MEDIUM" },
544 	/* A5       O          PLAY AUDIO(12) */
545 	{ 0xA5,	R, "PLAY AUDIO(12)" },
546 	/* A6         O        EXCHANGE MEDIUM */
547 	{ 0xA6,	M, "EXCHANGE MEDIUM" },
548 	/* A6       O          LOAD/UNLOAD C/DVD */
549 	{ 0xA6,	R, "LOAD/UNLOAD C/DVD" },
550 	/* A7  ZZ  O O         MOVE MEDIUM ATTACHED */
551 	{ 0xA7,	D | T | W | O, "MOVE MEDIUM ATTACHED" },
552 	/* A7       O          SET READ AHEAD */
553 	{ 0xA7,	R, "SET READ AHEAD" },
554 	/* A8  O   OOO         READ(12) */
555 	{ 0xA8,	D | W | R | O, "READ(12)" },
556 	/* A8                  GET MESSAGE(12) */
557 	{ 0xA8, C, "GET MESSAGE(12)" },
558 	/* A9              O   SERVICE ACTION OUT(12) */
559 	{ 0xA9,	V, "SERVICE ACTION OUT(12)" },
560 	/* AA  O   OOO         WRITE(12) */
561 	{ 0xAA,	D | W | R | O, "WRITE(12)" },
562 	/* AA                  SEND MESSAGE(12) */
563 	{ 0xAA, C, "SEND MESSAGE(12)" },
564 	/* AB       O      O   SERVICE ACTION IN(12) */
565 	{ 0xAB,	R | V, "SERVICE ACTION IN(12)" },
566 	/* AC        O         ERASE(12) */
567 	{ 0xAC,	O, "ERASE(12)" },
568 	/* AC       O          GET PERFORMANCE */
569 	{ 0xAC,	R, "GET PERFORMANCE" },
570 	/* AD       O          READ DVD STRUCTURE */
571 	{ 0xAD,	R, "READ DVD STRUCTURE" },
572 	/* AE  O   O O         WRITE AND VERIFY(12) */
573 	{ 0xAE,	D | W | O, "WRITE AND VERIFY(12)" },
574 	/* AF  O   OZO         VERIFY(12) */
575 	{ 0xAF,	D | W | R | O, "VERIFY(12)" },
576 	/* B0      ZZZ         SEARCH DATA HIGH(12) */
577 	{ 0xB0,	W | R | O, "SEARCH DATA HIGH(12)" },
578 	/* B1      ZZZ         SEARCH DATA EQUAL(12) */
579 	{ 0xB1,	W | R | O, "SEARCH DATA EQUAL(12)" },
580 	/* B2      ZZZ         SEARCH DATA LOW(12) */
581 	{ 0xB2,	W | R | O, "SEARCH DATA LOW(12)" },
582 	/* B3  Z   OZO         SET LIMITS(12) */
583 	{ 0xB3,	D | W | R | O, "SET LIMITS(12)" },
584 	/* B4  ZZ  OZO         READ ELEMENT STATUS ATTACHED */
585 	{ 0xB4,	D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" },
586 	/* B5  OO   O      O   SECURITY PROTOCOL OUT */
587 	{ 0xB5,	D | T | R | V, "SECURITY PROTOCOL OUT" },
588 	/* B5         O        REQUEST VOLUME ELEMENT ADDRESS */
589 	{ 0xB5,	M, "REQUEST VOLUME ELEMENT ADDRESS" },
590 	/* B6         O        SEND VOLUME TAG */
591 	{ 0xB6,	M, "SEND VOLUME TAG" },
592 	/* B6       O          SET STREAMING */
593 	{ 0xB6,	R, "SET STREAMING" },
594 	/* B7  O     O         READ DEFECT DATA(12) */
595 	{ 0xB7,	D | O, "READ DEFECT DATA(12)" },
596 	/* B8   O  OZOM        READ ELEMENT STATUS */
597 	{ 0xB8,	T | W | R | O | M, "READ ELEMENT STATUS" },
598 	/* B9       O          READ CD MSF */
599 	{ 0xB9,	R, "READ CD MSF" },
600 	/* BA  O   O OOMO      REDUNDANCY GROUP (IN) */
601 	{ 0xBA,	D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" },
602 	/* BA       O          SCAN */
603 	{ 0xBA,	R, "SCAN" },
604 	/* BB  O   O OOOO      REDUNDANCY GROUP (OUT) */
605 	{ 0xBB,	D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" },
606 	/* BB       O          SET CD SPEED */
607 	{ 0xBB,	R, "SET CD SPEED" },
608 	/* BC  O   O OOMO      SPARE (IN) */
609 	{ 0xBC,	D | W | O | M | A | E, "SPARE (IN)" },
610 	/* BD  O   O OOOO      SPARE (OUT) */
611 	{ 0xBD,	D | W | O | M | A | E, "SPARE (OUT)" },
612 	/* BD       O          MECHANISM STATUS */
613 	{ 0xBD,	R, "MECHANISM STATUS" },
614 	/* BE  O   O OOMO      VOLUME SET (IN) */
615 	{ 0xBE,	D | W | O | M | A | E, "VOLUME SET (IN)" },
616 	/* BE       O          READ CD */
617 	{ 0xBE,	R, "READ CD" },
618 	/* BF  O   O OOOO      VOLUME SET (OUT) */
619 	{ 0xBF,	D | W | O | M | A | E, "VOLUME SET (OUT)" },
620 	/* BF       O          SEND DVD STRUCTURE */
621 	{ 0xBF,	R, "SEND DVD STRUCTURE" }
622 };
623 
624 const char *
625 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
626 {
627 	caddr_t match;
628 	int i, j;
629 	u_int32_t opmask;
630 	u_int16_t pd_type;
631 	int       num_ops[2];
632 	struct op_table_entry *table[2];
633 	int num_tables;
634 
635 	/*
636 	 * If we've got inquiry data, use it to determine what type of
637 	 * device we're dealing with here.  Otherwise, assume direct
638 	 * access.
639 	 */
640 	if (inq_data == NULL) {
641 		pd_type = T_DIRECT;
642 		match = NULL;
643 	} else {
644 		pd_type = SID_TYPE(inq_data);
645 
646 		match = cam_quirkmatch((caddr_t)inq_data,
647 				       (caddr_t)scsi_op_quirk_table,
648 				       nitems(scsi_op_quirk_table),
649 				       sizeof(*scsi_op_quirk_table),
650 				       scsi_inquiry_match);
651 	}
652 
653 	if (match != NULL) {
654 		table[0] = ((struct scsi_op_quirk_entry *)match)->op_table;
655 		num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops;
656 		table[1] = scsi_op_codes;
657 		num_ops[1] = nitems(scsi_op_codes);
658 		num_tables = 2;
659 	} else {
660 		/*
661 		 * If this is true, we have a vendor specific opcode that
662 		 * wasn't covered in the quirk table.
663 		 */
664 		if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80)))
665 			return("Vendor Specific Command");
666 
667 		table[0] = scsi_op_codes;
668 		num_ops[0] = nitems(scsi_op_codes);
669 		num_tables = 1;
670 	}
671 
672 	/* RBC is 'Simplified' Direct Access Device */
673 	if (pd_type == T_RBC)
674 		pd_type = T_DIRECT;
675 
676 	/* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */
677 	if (pd_type == T_NODEVICE)
678 		pd_type = T_DIRECT;
679 
680 	opmask = 1 << pd_type;
681 
682 	for (j = 0; j < num_tables; j++) {
683 		for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){
684 			if ((table[j][i].opcode == opcode)
685 			 && ((table[j][i].opmask & opmask) != 0))
686 				return(table[j][i].desc);
687 		}
688 	}
689 
690 	/*
691 	 * If we can't find a match for the command in the table, we just
692 	 * assume it's a vendor specifc command.
693 	 */
694 	return("Vendor Specific Command");
695 
696 }
697 
698 #else /* SCSI_NO_OP_STRINGS */
699 
700 const char *
701 scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data)
702 {
703 	return("");
704 }
705 
706 #endif
707 
708 
709 #if !defined(SCSI_NO_SENSE_STRINGS)
710 #define SST(asc, ascq, action, desc) \
711 	asc, ascq, action, desc
712 #else
713 const char empty_string[] = "";
714 
715 #define SST(asc, ascq, action, desc) \
716 	asc, ascq, action, empty_string
717 #endif
718 
719 const struct sense_key_table_entry sense_key_table[] =
720 {
721 	{ SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" },
722 	{ SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" },
723 	{ SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" },
724 	{ SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" },
725 	{ SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" },
726 	{ SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" },
727 	{ SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" },
728 	{ SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" },
729 	{ SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" },
730 	{ SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" },
731 	{ SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" },
732 	{ SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" },
733 	{ SSD_KEY_EQUAL, SS_NOP, "EQUAL" },
734 	{ SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" },
735 	{ SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" },
736 	{ SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" }
737 };
738 
739 static struct asc_table_entry quantum_fireball_entries[] = {
740 	{ SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
741 	     "Logical unit not ready, initializing cmd. required") }
742 };
743 
744 static struct asc_table_entry sony_mo_entries[] = {
745 	{ SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
746 	     "Logical unit not ready, cause not reportable") }
747 };
748 
749 static struct asc_table_entry hgst_entries[] = {
750 	{ SST(0x04, 0xF0, SS_RDEF,
751 	    "Vendor Unique - Logical Unit Not Ready") },
752 	{ SST(0x0A, 0x01, SS_RDEF,
753 	    "Unrecovered Super Certification Log Write Error") },
754 	{ SST(0x0A, 0x02, SS_RDEF,
755 	    "Unrecovered Super Certification Log Read Error") },
756 	{ SST(0x15, 0x03, SS_RDEF,
757 	    "Unrecovered Sector Error") },
758 	{ SST(0x3E, 0x04, SS_RDEF,
759 	    "Unrecovered Self-Test Hard-Cache Test Fail") },
760 	{ SST(0x3E, 0x05, SS_RDEF,
761 	    "Unrecovered Self-Test OTF-Cache Fail") },
762 	{ SST(0x40, 0x00, SS_RDEF,
763 	    "Unrecovered SAT No Buffer Overflow Error") },
764 	{ SST(0x40, 0x01, SS_RDEF,
765 	    "Unrecovered SAT Buffer Overflow Error") },
766 	{ SST(0x40, 0x02, SS_RDEF,
767 	    "Unrecovered SAT No Buffer Overflow With ECS Fault") },
768 	{ SST(0x40, 0x03, SS_RDEF,
769 	    "Unrecovered SAT Buffer Overflow With ECS Fault") },
770 	{ SST(0x40, 0x81, SS_RDEF,
771 	    "DRAM Failure") },
772 	{ SST(0x44, 0x0B, SS_RDEF,
773 	    "Vendor Unique - Internal Target Failure") },
774 	{ SST(0x44, 0xF2, SS_RDEF,
775 	    "Vendor Unique - Internal Target Failure") },
776 	{ SST(0x44, 0xF6, SS_RDEF,
777 	    "Vendor Unique - Internal Target Failure") },
778 	{ SST(0x44, 0xF9, SS_RDEF,
779 	    "Vendor Unique - Internal Target Failure") },
780 	{ SST(0x44, 0xFA, SS_RDEF,
781 	    "Vendor Unique - Internal Target Failure") },
782 	{ SST(0x5D, 0x22, SS_RDEF,
783 	    "Extreme Over-Temperature Warning") },
784 	{ SST(0x5D, 0x50, SS_RDEF,
785 	    "Load/Unload cycle Count Warning") },
786 	{ SST(0x81, 0x00, SS_RDEF,
787 	    "Vendor Unique - Internal Logic Error") },
788 	{ SST(0x85, 0x00, SS_RDEF,
789 	    "Vendor Unique - Internal Key Seed Error") },
790 };
791 
792 static struct asc_table_entry seagate_entries[] = {
793 	{ SST(0x04, 0xF0, SS_RDEF,
794 	    "Logical Unit Not Ready, super certify in Progress") },
795 	{ SST(0x08, 0x86, SS_RDEF,
796 	    "Write Fault Data Corruption") },
797 	{ SST(0x09, 0x0D, SS_RDEF,
798 	    "Tracking Failure") },
799 	{ SST(0x09, 0x0E, SS_RDEF,
800 	    "ETF Failure") },
801 	{ SST(0x0B, 0x5D, SS_RDEF,
802 	    "Pre-SMART Warning") },
803 	{ SST(0x0B, 0x85, SS_RDEF,
804 	    "5V Voltage Warning") },
805 	{ SST(0x0B, 0x8C, SS_RDEF,
806 	    "12V Voltage Warning") },
807 	{ SST(0x0C, 0xFF, SS_RDEF,
808 	    "Write Error - Too many error recovery revs") },
809 	{ SST(0x11, 0xFF, SS_RDEF,
810 	    "Unrecovered Read Error - Too many error recovery revs") },
811 	{ SST(0x19, 0x0E, SS_RDEF,
812 	    "Fewer than 1/2 defect list copies") },
813 	{ SST(0x20, 0xF3, SS_RDEF,
814 	    "Illegal CDB linked to skip mask cmd") },
815 	{ SST(0x24, 0xF0, SS_RDEF,
816 	    "Illegal byte in CDB, LBA not matching") },
817 	{ SST(0x24, 0xF1, SS_RDEF,
818 	    "Illegal byte in CDB, LEN not matching") },
819 	{ SST(0x24, 0xF2, SS_RDEF,
820 	    "Mask not matching transfer length") },
821 	{ SST(0x24, 0xF3, SS_RDEF,
822 	    "Drive formatted without plist") },
823 	{ SST(0x26, 0x95, SS_RDEF,
824 	    "Invalid Field Parameter - CAP File") },
825 	{ SST(0x26, 0x96, SS_RDEF,
826 	    "Invalid Field Parameter - RAP File") },
827 	{ SST(0x26, 0x97, SS_RDEF,
828 	    "Invalid Field Parameter - TMS Firmware Tag") },
829 	{ SST(0x26, 0x98, SS_RDEF,
830 	    "Invalid Field Parameter - Check Sum") },
831 	{ SST(0x26, 0x99, SS_RDEF,
832 	    "Invalid Field Parameter - Firmware Tag") },
833 	{ SST(0x29, 0x08, SS_RDEF,
834 	    "Write Log Dump data") },
835 	{ SST(0x29, 0x09, SS_RDEF,
836 	    "Write Log Dump data") },
837 	{ SST(0x29, 0x0A, SS_RDEF,
838 	    "Reserved disk space") },
839 	{ SST(0x29, 0x0B, SS_RDEF,
840 	    "SDBP") },
841 	{ SST(0x29, 0x0C, SS_RDEF,
842 	    "SDBP") },
843 	{ SST(0x31, 0x91, SS_RDEF,
844 	    "Format Corrupted World Wide Name (WWN) is Invalid") },
845 	{ SST(0x32, 0x03, SS_RDEF,
846 	    "Defect List - Length exceeds Command Allocated Length") },
847 	{ SST(0x33, 0x00, SS_RDEF,
848 	    "Flash not ready for access") },
849 	{ SST(0x3F, 0x70, SS_RDEF,
850 	    "Invalid RAP block") },
851 	{ SST(0x3F, 0x71, SS_RDEF,
852 	    "RAP/ETF mismatch") },
853 	{ SST(0x3F, 0x90, SS_RDEF,
854 	    "Invalid CAP block") },
855 	{ SST(0x3F, 0x91, SS_RDEF,
856 	    "World Wide Name (WWN) Mismatch") },
857 	{ SST(0x40, 0x01, SS_RDEF,
858 	    "DRAM Parity Error") },
859 	{ SST(0x40, 0x02, SS_RDEF,
860 	    "DRAM Parity Error") },
861 	{ SST(0x42, 0x0A, SS_RDEF,
862 	    "Loopback Test") },
863 	{ SST(0x42, 0x0B, SS_RDEF,
864 	    "Loopback Test") },
865 	{ SST(0x44, 0xF2, SS_RDEF,
866 	    "Compare error during data integrity check") },
867 	{ SST(0x44, 0xF6, SS_RDEF,
868 	    "Unrecoverable error during data integrity check") },
869 	{ SST(0x47, 0x80, SS_RDEF,
870 	    "Fibre Channel Sequence Error") },
871 	{ SST(0x4E, 0x01, SS_RDEF,
872 	    "Information Unit Too Short") },
873 	{ SST(0x80, 0x00, SS_RDEF,
874 	    "General Firmware Error / Command Timeout") },
875 	{ SST(0x80, 0x01, SS_RDEF,
876 	    "Command Timeout") },
877 	{ SST(0x80, 0x02, SS_RDEF,
878 	    "Command Timeout") },
879 	{ SST(0x80, 0x80, SS_RDEF,
880 	    "FC FIFO Error During Read Transfer") },
881 	{ SST(0x80, 0x81, SS_RDEF,
882 	    "FC FIFO Error During Write Transfer") },
883 	{ SST(0x80, 0x82, SS_RDEF,
884 	    "DISC FIFO Error During Read Transfer") },
885 	{ SST(0x80, 0x83, SS_RDEF,
886 	    "DISC FIFO Error During Write Transfer") },
887 	{ SST(0x80, 0x84, SS_RDEF,
888 	    "LBA Seeded LRC Error on Read") },
889 	{ SST(0x80, 0x85, SS_RDEF,
890 	    "LBA Seeded LRC Error on Write") },
891 	{ SST(0x80, 0x86, SS_RDEF,
892 	    "IOEDC Error on Read") },
893 	{ SST(0x80, 0x87, SS_RDEF,
894 	    "IOEDC Error on Write") },
895 	{ SST(0x80, 0x88, SS_RDEF,
896 	    "Host Parity Check Failed") },
897 	{ SST(0x80, 0x89, SS_RDEF,
898 	    "IOEDC error on read detected by formatter") },
899 	{ SST(0x80, 0x8A, SS_RDEF,
900 	    "Host Parity Errors / Host FIFO Initialization Failed") },
901 	{ SST(0x80, 0x8B, SS_RDEF,
902 	    "Host Parity Errors") },
903 	{ SST(0x80, 0x8C, SS_RDEF,
904 	    "Host Parity Errors") },
905 	{ SST(0x80, 0x8D, SS_RDEF,
906 	    "Host Parity Errors") },
907 	{ SST(0x81, 0x00, SS_RDEF,
908 	    "LA Check Failed") },
909 	{ SST(0x82, 0x00, SS_RDEF,
910 	    "Internal client detected insufficient buffer") },
911 	{ SST(0x84, 0x00, SS_RDEF,
912 	    "Scheduled Diagnostic And Repair") },
913 };
914 
915 static struct scsi_sense_quirk_entry sense_quirk_table[] = {
916 	{
917 		/*
918 		 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b
919 		 * when they really should return 0x04 0x02.
920 		 */
921 		{T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"},
922 		/*num_sense_keys*/0,
923 		nitems(quantum_fireball_entries),
924 		/*sense key entries*/NULL,
925 		quantum_fireball_entries
926 	},
927 	{
928 		/*
929 		 * This Sony MO drive likes to return 0x04, 0x00 when it
930 		 * isn't spun up.
931 		 */
932 		{T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"},
933 		/*num_sense_keys*/0,
934 		nitems(sony_mo_entries),
935 		/*sense key entries*/NULL,
936 		sony_mo_entries
937 	},
938 	{
939 		/*
940 		 * HGST vendor-specific error codes
941 		 */
942 		{T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"},
943 		/*num_sense_keys*/0,
944 		nitems(hgst_entries),
945 		/*sense key entries*/NULL,
946 		hgst_entries
947 	},
948 	{
949 		/*
950 		 * SEAGATE vendor-specific error codes
951 		 */
952 		{T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"},
953 		/*num_sense_keys*/0,
954 		nitems(seagate_entries),
955 		/*sense key entries*/NULL,
956 		seagate_entries
957 	}
958 };
959 
960 const u_int sense_quirk_table_size = nitems(sense_quirk_table);
961 
962 static struct asc_table_entry asc_table[] = {
963 	/*
964 	 * From: http://www.t10.org/lists/asc-num.txt
965 	 * Modifications by Jung-uk Kim (jkim@FreeBSD.org)
966 	 */
967 	/*
968 	 * File: ASC-NUM.TXT
969 	 *
970 	 * SCSI ASC/ASCQ Assignments
971 	 * Numeric Sorted Listing
972 	 * as of  8/12/15
973 	 *
974 	 * D - DIRECT ACCESS DEVICE (SBC-2)                   device column key
975 	 * .T - SEQUENTIAL ACCESS DEVICE (SSC)               -------------------
976 	 * . L - PRINTER DEVICE (SSC)                           blank = reserved
977 	 * .  P - PROCESSOR DEVICE (SPC)                     not blank = allowed
978 	 * .  .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2)
979 	 * .  . R - CD DEVICE (MMC)
980 	 * .  .  O - OPTICAL MEMORY DEVICE (SBC-2)
981 	 * .  .  .M - MEDIA CHANGER DEVICE (SMC)
982 	 * .  .  . A - STORAGE ARRAY DEVICE (SCC)
983 	 * .  .  .  E - ENCLOSURE SERVICES DEVICE (SES)
984 	 * .  .  .  .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
985 	 * .  .  .  . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
986 	 * .  .  .  .  V - AUTOMATION/DRIVE INTERFACE (ADC)
987 	 * .  .  .  .  .F - OBJECT-BASED STORAGE (OSD)
988 	 * DTLPWROMAEBKVF
989 	 * ASC      ASCQ  Action
990 	 * Description
991 	 */
992 	/* DTLPWROMAEBKVF */
993 	{ SST(0x00, 0x00, SS_NOP,
994 	    "No additional sense information") },
995 	/*  T             */
996 	{ SST(0x00, 0x01, SS_RDEF,
997 	    "Filemark detected") },
998 	/*  T             */
999 	{ SST(0x00, 0x02, SS_RDEF,
1000 	    "End-of-partition/medium detected") },
1001 	/*  T             */
1002 	{ SST(0x00, 0x03, SS_RDEF,
1003 	    "Setmark detected") },
1004 	/*  T             */
1005 	{ SST(0x00, 0x04, SS_RDEF,
1006 	    "Beginning-of-partition/medium detected") },
1007 	/*  TL            */
1008 	{ SST(0x00, 0x05, SS_RDEF,
1009 	    "End-of-data detected") },
1010 	/* DTLPWROMAEBKVF */
1011 	{ SST(0x00, 0x06, SS_RDEF,
1012 	    "I/O process terminated") },
1013 	/*  T             */
1014 	{ SST(0x00, 0x07, SS_RDEF,	/* XXX TBD */
1015 	    "Programmable early warning detected") },
1016 	/*      R         */
1017 	{ SST(0x00, 0x11, SS_FATAL | EBUSY,
1018 	    "Audio play operation in progress") },
1019 	/*      R         */
1020 	{ SST(0x00, 0x12, SS_NOP,
1021 	    "Audio play operation paused") },
1022 	/*      R         */
1023 	{ SST(0x00, 0x13, SS_NOP,
1024 	    "Audio play operation successfully completed") },
1025 	/*      R         */
1026 	{ SST(0x00, 0x14, SS_RDEF,
1027 	    "Audio play operation stopped due to error") },
1028 	/*      R         */
1029 	{ SST(0x00, 0x15, SS_NOP,
1030 	    "No current audio status to return") },
1031 	/* DTLPWROMAEBKVF */
1032 	{ SST(0x00, 0x16, SS_FATAL | EBUSY,
1033 	    "Operation in progress") },
1034 	/* DTL WROMAEBKVF */
1035 	{ SST(0x00, 0x17, SS_RDEF,
1036 	    "Cleaning requested") },
1037 	/*  T             */
1038 	{ SST(0x00, 0x18, SS_RDEF,	/* XXX TBD */
1039 	    "Erase operation in progress") },
1040 	/*  T             */
1041 	{ SST(0x00, 0x19, SS_RDEF,	/* XXX TBD */
1042 	    "Locate operation in progress") },
1043 	/*  T             */
1044 	{ SST(0x00, 0x1A, SS_RDEF,	/* XXX TBD */
1045 	    "Rewind operation in progress") },
1046 	/*  T             */
1047 	{ SST(0x00, 0x1B, SS_RDEF,	/* XXX TBD */
1048 	    "Set capacity operation in progress") },
1049 	/*  T             */
1050 	{ SST(0x00, 0x1C, SS_RDEF,	/* XXX TBD */
1051 	    "Verify operation in progress") },
1052 	/* DT        B    */
1053 	{ SST(0x00, 0x1D, SS_RDEF,	/* XXX TBD */
1054 	    "ATA pass through information available") },
1055 	/* DT   R MAEBKV  */
1056 	{ SST(0x00, 0x1E, SS_RDEF,	/* XXX TBD */
1057 	    "Conflicting SA creation request") },
1058 	/* DT        B    */
1059 	{ SST(0x00, 0x1F, SS_RDEF,	/* XXX TBD */
1060 	    "Logical unit transitioning to another power condition") },
1061 	/* DT P      B    */
1062 	{ SST(0x00, 0x20, SS_RDEF,	/* XXX TBD */
1063 	    "Extended copy information available") },
1064 	/* D              */
1065 	{ SST(0x00, 0x21, SS_RDEF,	/* XXX TBD */
1066 	    "Atomic command aborted due to ACA") },
1067 	/* D   W O   BK   */
1068 	{ SST(0x01, 0x00, SS_RDEF,
1069 	    "No index/sector signal") },
1070 	/* D   WRO   BK   */
1071 	{ SST(0x02, 0x00, SS_RDEF,
1072 	    "No seek complete") },
1073 	/* DTL W O   BK   */
1074 	{ SST(0x03, 0x00, SS_RDEF,
1075 	    "Peripheral device write fault") },
1076 	/*  T             */
1077 	{ SST(0x03, 0x01, SS_RDEF,
1078 	    "No write current") },
1079 	/*  T             */
1080 	{ SST(0x03, 0x02, SS_RDEF,
1081 	    "Excessive write errors") },
1082 	/* DTLPWROMAEBKVF */
1083 	{ SST(0x04, 0x00, SS_RDEF,
1084 	    "Logical unit not ready, cause not reportable") },
1085 	/* DTLPWROMAEBKVF */
1086 	{ SST(0x04, 0x01, SS_WAIT | EBUSY,
1087 	    "Logical unit is in process of becoming ready") },
1088 	/* DTLPWROMAEBKVF */
1089 	{ SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1090 	    "Logical unit not ready, initializing command required") },
1091 	/* DTLPWROMAEBKVF */
1092 	{ SST(0x04, 0x03, SS_FATAL | ENXIO,
1093 	    "Logical unit not ready, manual intervention required") },
1094 	/* DTL  RO   B    */
1095 	{ SST(0x04, 0x04, SS_FATAL | EBUSY,
1096 	    "Logical unit not ready, format in progress") },
1097 	/* DT  W O A BK F */
1098 	{ SST(0x04, 0x05, SS_FATAL | EBUSY,
1099 	    "Logical unit not ready, rebuild in progress") },
1100 	/* DT  W O A BK   */
1101 	{ SST(0x04, 0x06, SS_FATAL | EBUSY,
1102 	    "Logical unit not ready, recalculation in progress") },
1103 	/* DTLPWROMAEBKVF */
1104 	{ SST(0x04, 0x07, SS_FATAL | EBUSY,
1105 	    "Logical unit not ready, operation in progress") },
1106 	/*      R         */
1107 	{ SST(0x04, 0x08, SS_FATAL | EBUSY,
1108 	    "Logical unit not ready, long write in progress") },
1109 	/* DTLPWROMAEBKVF */
1110 	{ SST(0x04, 0x09, SS_RDEF,	/* XXX TBD */
1111 	    "Logical unit not ready, self-test in progress") },
1112 	/* DTLPWROMAEBKVF */
1113 	{ SST(0x04, 0x0A, SS_WAIT | ENXIO,
1114 	    "Logical unit not accessible, asymmetric access state transition")},
1115 	/* DTLPWROMAEBKVF */
1116 	{ SST(0x04, 0x0B, SS_FATAL | ENXIO,
1117 	    "Logical unit not accessible, target port in standby state") },
1118 	/* DTLPWROMAEBKVF */
1119 	{ SST(0x04, 0x0C, SS_FATAL | ENXIO,
1120 	    "Logical unit not accessible, target port in unavailable state") },
1121 	/*              F */
1122 	{ SST(0x04, 0x0D, SS_RDEF,	/* XXX TBD */
1123 	    "Logical unit not ready, structure check required") },
1124 	/* DTL WR MAEBKVF */
1125 	{ SST(0x04, 0x0E, SS_RDEF,	/* XXX TBD */
1126 	    "Logical unit not ready, security session in progress") },
1127 	/* DT  WROM  B    */
1128 	{ SST(0x04, 0x10, SS_RDEF,	/* XXX TBD */
1129 	    "Logical unit not ready, auxiliary memory not accessible") },
1130 	/* DT  WRO AEB VF */
1131 	{ SST(0x04, 0x11, SS_WAIT | EBUSY,
1132 	    "Logical unit not ready, notify (enable spinup) required") },
1133 	/*        M    V  */
1134 	{ SST(0x04, 0x12, SS_RDEF,	/* XXX TBD */
1135 	    "Logical unit not ready, offline") },
1136 	/* DT   R MAEBKV  */
1137 	{ SST(0x04, 0x13, SS_RDEF,	/* XXX TBD */
1138 	    "Logical unit not ready, SA creation in progress") },
1139 	/* D         B    */
1140 	{ SST(0x04, 0x14, SS_RDEF,	/* XXX TBD */
1141 	    "Logical unit not ready, space allocation in progress") },
1142 	/*        M       */
1143 	{ SST(0x04, 0x15, SS_RDEF,	/* XXX TBD */
1144 	    "Logical unit not ready, robotics disabled") },
1145 	/*        M       */
1146 	{ SST(0x04, 0x16, SS_RDEF,	/* XXX TBD */
1147 	    "Logical unit not ready, configuration required") },
1148 	/*        M       */
1149 	{ SST(0x04, 0x17, SS_RDEF,	/* XXX TBD */
1150 	    "Logical unit not ready, calibration required") },
1151 	/*        M       */
1152 	{ SST(0x04, 0x18, SS_RDEF,	/* XXX TBD */
1153 	    "Logical unit not ready, a door is open") },
1154 	/*        M       */
1155 	{ SST(0x04, 0x19, SS_RDEF,	/* XXX TBD */
1156 	    "Logical unit not ready, operating in sequential mode") },
1157 	/* DT        B    */
1158 	{ SST(0x04, 0x1A, SS_RDEF,	/* XXX TBD */
1159 	    "Logical unit not ready, START/STOP UNIT command in progress") },
1160 	/* D         B    */
1161 	{ SST(0x04, 0x1B, SS_RDEF,	/* XXX TBD */
1162 	    "Logical unit not ready, sanitize in progress") },
1163 	/* DT     MAEB    */
1164 	{ SST(0x04, 0x1C, SS_RDEF,	/* XXX TBD */
1165 	    "Logical unit not ready, additional power use not yet granted") },
1166 	/* D              */
1167 	{ SST(0x04, 0x1D, SS_RDEF,	/* XXX TBD */
1168 	    "Logical unit not ready, configuration in progress") },
1169 	/* D              */
1170 	{ SST(0x04, 0x1E, SS_FATAL | ENXIO,
1171 	    "Logical unit not ready, microcode activation required") },
1172 	/* DTLPWROMAEBKVF */
1173 	{ SST(0x04, 0x1F, SS_FATAL | ENXIO,
1174 	    "Logical unit not ready, microcode download required") },
1175 	/* DTLPWROMAEBKVF */
1176 	{ SST(0x04, 0x20, SS_RDEF,	/* XXX TBD */
1177 	    "Logical unit not ready, logical unit reset required") },
1178 	/* DTLPWROMAEBKVF */
1179 	{ SST(0x04, 0x21, SS_RDEF,	/* XXX TBD */
1180 	    "Logical unit not ready, hard reset required") },
1181 	/* DTLPWROMAEBKVF */
1182 	{ SST(0x04, 0x22, SS_RDEF,	/* XXX TBD */
1183 	    "Logical unit not ready, power cycle required") },
1184 	/* DTL WROMAEBKVF */
1185 	{ SST(0x05, 0x00, SS_RDEF,
1186 	    "Logical unit does not respond to selection") },
1187 	/* D   WROM  BK   */
1188 	{ SST(0x06, 0x00, SS_RDEF,
1189 	    "No reference position found") },
1190 	/* DTL WROM  BK   */
1191 	{ SST(0x07, 0x00, SS_RDEF,
1192 	    "Multiple peripheral devices selected") },
1193 	/* DTL WROMAEBKVF */
1194 	{ SST(0x08, 0x00, SS_RDEF,
1195 	    "Logical unit communication failure") },
1196 	/* DTL WROMAEBKVF */
1197 	{ SST(0x08, 0x01, SS_RDEF,
1198 	    "Logical unit communication time-out") },
1199 	/* DTL WROMAEBKVF */
1200 	{ SST(0x08, 0x02, SS_RDEF,
1201 	    "Logical unit communication parity error") },
1202 	/* DT   ROM  BK   */
1203 	{ SST(0x08, 0x03, SS_RDEF,
1204 	    "Logical unit communication CRC error (Ultra-DMA/32)") },
1205 	/* DTLPWRO    K   */
1206 	{ SST(0x08, 0x04, SS_RDEF,	/* XXX TBD */
1207 	    "Unreachable copy target") },
1208 	/* DT  WRO   B    */
1209 	{ SST(0x09, 0x00, SS_RDEF,
1210 	    "Track following error") },
1211 	/*     WRO    K   */
1212 	{ SST(0x09, 0x01, SS_RDEF,
1213 	    "Tracking servo failure") },
1214 	/*     WRO    K   */
1215 	{ SST(0x09, 0x02, SS_RDEF,
1216 	    "Focus servo failure") },
1217 	/*     WRO        */
1218 	{ SST(0x09, 0x03, SS_RDEF,
1219 	    "Spindle servo failure") },
1220 	/* DT  WRO   B    */
1221 	{ SST(0x09, 0x04, SS_RDEF,
1222 	    "Head select fault") },
1223 	/* DT   RO   B    */
1224 	{ SST(0x09, 0x05, SS_RDEF,
1225 	    "Vibration induced tracking error") },
1226 	/* DTLPWROMAEBKVF */
1227 	{ SST(0x0A, 0x00, SS_FATAL | ENOSPC,
1228 	    "Error log overflow") },
1229 	/* DTLPWROMAEBKVF */
1230 	{ SST(0x0B, 0x00, SS_RDEF,
1231 	    "Warning") },
1232 	/* DTLPWROMAEBKVF */
1233 	{ SST(0x0B, 0x01, SS_RDEF,
1234 	    "Warning - specified temperature exceeded") },
1235 	/* DTLPWROMAEBKVF */
1236 	{ SST(0x0B, 0x02, SS_RDEF,
1237 	    "Warning - enclosure degraded") },
1238 	/* DTLPWROMAEBKVF */
1239 	{ SST(0x0B, 0x03, SS_RDEF,	/* XXX TBD */
1240 	    "Warning - background self-test failed") },
1241 	/* DTLPWRO AEBKVF */
1242 	{ SST(0x0B, 0x04, SS_RDEF,	/* XXX TBD */
1243 	    "Warning - background pre-scan detected medium error") },
1244 	/* DTLPWRO AEBKVF */
1245 	{ SST(0x0B, 0x05, SS_RDEF,	/* XXX TBD */
1246 	    "Warning - background medium scan detected medium error") },
1247 	/* DTLPWROMAEBKVF */
1248 	{ SST(0x0B, 0x06, SS_RDEF,	/* XXX TBD */
1249 	    "Warning - non-volatile cache now volatile") },
1250 	/* DTLPWROMAEBKVF */
1251 	{ SST(0x0B, 0x07, SS_RDEF,	/* XXX TBD */
1252 	    "Warning - degraded power to non-volatile cache") },
1253 	/* DTLPWROMAEBKVF */
1254 	{ SST(0x0B, 0x08, SS_RDEF,	/* XXX TBD */
1255 	    "Warning - power loss expected") },
1256 	/* D              */
1257 	{ SST(0x0B, 0x09, SS_RDEF,	/* XXX TBD */
1258 	    "Warning - device statistics notification available") },
1259 	/* DTLPWROMAEBKVF */
1260 	{ SST(0x0B, 0x0A, SS_RDEF,	/* XXX TBD */
1261 	    "Warning - High critical temperature limit exceeded") },
1262 	/* DTLPWROMAEBKVF */
1263 	{ SST(0x0B, 0x0B, SS_RDEF,	/* XXX TBD */
1264 	    "Warning - Low critical temperature limit exceeded") },
1265 	/* DTLPWROMAEBKVF */
1266 	{ SST(0x0B, 0x0C, SS_RDEF,	/* XXX TBD */
1267 	    "Warning - High operating temperature limit exceeded") },
1268 	/* DTLPWROMAEBKVF */
1269 	{ SST(0x0B, 0x0D, SS_RDEF,	/* XXX TBD */
1270 	    "Warning - Low operating temperature limit exceeded") },
1271 	/* DTLPWROMAEBKVF */
1272 	{ SST(0x0B, 0x0E, SS_RDEF,	/* XXX TBD */
1273 	    "Warning - High citical humidity limit exceeded") },
1274 	/* DTLPWROMAEBKVF */
1275 	{ SST(0x0B, 0x0F, SS_RDEF,	/* XXX TBD */
1276 	    "Warning - Low citical humidity limit exceeded") },
1277 	/* DTLPWROMAEBKVF */
1278 	{ SST(0x0B, 0x10, SS_RDEF,	/* XXX TBD */
1279 	    "Warning - High operating humidity limit exceeded") },
1280 	/* DTLPWROMAEBKVF */
1281 	{ SST(0x0B, 0x11, SS_RDEF,	/* XXX TBD */
1282 	    "Warning - Low operating humidity limit exceeded") },
1283 	/*  T   R         */
1284 	{ SST(0x0C, 0x00, SS_RDEF,
1285 	    "Write error") },
1286 	/*            K   */
1287 	{ SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1288 	    "Write error - recovered with auto reallocation") },
1289 	/* D   W O   BK   */
1290 	{ SST(0x0C, 0x02, SS_RDEF,
1291 	    "Write error - auto reallocation failed") },
1292 	/* D   W O   BK   */
1293 	{ SST(0x0C, 0x03, SS_RDEF,
1294 	    "Write error - recommend reassignment") },
1295 	/* DT  W O   B    */
1296 	{ SST(0x0C, 0x04, SS_RDEF,
1297 	    "Compression check miscompare error") },
1298 	/* DT  W O   B    */
1299 	{ SST(0x0C, 0x05, SS_RDEF,
1300 	    "Data expansion occurred during compression") },
1301 	/* DT  W O   B    */
1302 	{ SST(0x0C, 0x06, SS_RDEF,
1303 	    "Block not compressible") },
1304 	/*      R         */
1305 	{ SST(0x0C, 0x07, SS_RDEF,
1306 	    "Write error - recovery needed") },
1307 	/*      R         */
1308 	{ SST(0x0C, 0x08, SS_RDEF,
1309 	    "Write error - recovery failed") },
1310 	/*      R         */
1311 	{ SST(0x0C, 0x09, SS_RDEF,
1312 	    "Write error - loss of streaming") },
1313 	/*      R         */
1314 	{ SST(0x0C, 0x0A, SS_RDEF,
1315 	    "Write error - padding blocks added") },
1316 	/* DT  WROM  B    */
1317 	{ SST(0x0C, 0x0B, SS_RDEF,	/* XXX TBD */
1318 	    "Auxiliary memory write error") },
1319 	/* DTLPWRO AEBKVF */
1320 	{ SST(0x0C, 0x0C, SS_RDEF,	/* XXX TBD */
1321 	    "Write error - unexpected unsolicited data") },
1322 	/* DTLPWRO AEBKVF */
1323 	{ SST(0x0C, 0x0D, SS_RDEF,	/* XXX TBD */
1324 	    "Write error - not enough unsolicited data") },
1325 	/* DT  W O   BK   */
1326 	{ SST(0x0C, 0x0E, SS_RDEF,	/* XXX TBD */
1327 	    "Multiple write errors") },
1328 	/*      R         */
1329 	{ SST(0x0C, 0x0F, SS_RDEF,	/* XXX TBD */
1330 	    "Defects in error window") },
1331 	/* D              */
1332 	{ SST(0x0C, 0x10, SS_RDEF,	/* XXX TBD */
1333 	    "Incomplete multiple atomic write operations") },
1334 	/* D              */
1335 	{ SST(0x0C, 0x11, SS_RDEF,	/* XXX TBD */
1336 	    "Write error - recovery scan needed") },
1337 	/* D              */
1338 	{ SST(0x0C, 0x12, SS_RDEF,	/* XXX TBD */
1339 	    "Write error - insufficient zone resources") },
1340 	/* DTLPWRO A  K   */
1341 	{ SST(0x0D, 0x00, SS_RDEF,	/* XXX TBD */
1342 	    "Error detected by third party temporary initiator") },
1343 	/* DTLPWRO A  K   */
1344 	{ SST(0x0D, 0x01, SS_RDEF,	/* XXX TBD */
1345 	    "Third party device failure") },
1346 	/* DTLPWRO A  K   */
1347 	{ SST(0x0D, 0x02, SS_RDEF,	/* XXX TBD */
1348 	    "Copy target device not reachable") },
1349 	/* DTLPWRO A  K   */
1350 	{ SST(0x0D, 0x03, SS_RDEF,	/* XXX TBD */
1351 	    "Incorrect copy target device type") },
1352 	/* DTLPWRO A  K   */
1353 	{ SST(0x0D, 0x04, SS_RDEF,	/* XXX TBD */
1354 	    "Copy target device data underrun") },
1355 	/* DTLPWRO A  K   */
1356 	{ SST(0x0D, 0x05, SS_RDEF,	/* XXX TBD */
1357 	    "Copy target device data overrun") },
1358 	/* DT PWROMAEBK F */
1359 	{ SST(0x0E, 0x00, SS_RDEF,	/* XXX TBD */
1360 	    "Invalid information unit") },
1361 	/* DT PWROMAEBK F */
1362 	{ SST(0x0E, 0x01, SS_RDEF,	/* XXX TBD */
1363 	    "Information unit too short") },
1364 	/* DT PWROMAEBK F */
1365 	{ SST(0x0E, 0x02, SS_RDEF,	/* XXX TBD */
1366 	    "Information unit too long") },
1367 	/* DT P R MAEBK F */
1368 	{ SST(0x0E, 0x03, SS_RDEF,	/* XXX TBD */
1369 	    "Invalid field in command information unit") },
1370 	/* D   W O   BK   */
1371 	{ SST(0x10, 0x00, SS_RDEF,
1372 	    "ID CRC or ECC error") },
1373 	/* DT  W O        */
1374 	{ SST(0x10, 0x01, SS_RDEF,	/* XXX TBD */
1375 	    "Logical block guard check failed") },
1376 	/* DT  W O        */
1377 	{ SST(0x10, 0x02, SS_RDEF,	/* XXX TBD */
1378 	    "Logical block application tag check failed") },
1379 	/* DT  W O        */
1380 	{ SST(0x10, 0x03, SS_RDEF,	/* XXX TBD */
1381 	    "Logical block reference tag check failed") },
1382 	/*  T             */
1383 	{ SST(0x10, 0x04, SS_RDEF,	/* XXX TBD */
1384 	    "Logical block protection error on recovered buffer data") },
1385 	/*  T             */
1386 	{ SST(0x10, 0x05, SS_RDEF,	/* XXX TBD */
1387 	    "Logical block protection method error") },
1388 	/* DT  WRO   BK   */
1389 	{ SST(0x11, 0x00, SS_FATAL|EIO,
1390 	    "Unrecovered read error") },
1391 	/* DT  WRO   BK   */
1392 	{ SST(0x11, 0x01, SS_FATAL|EIO,
1393 	    "Read retries exhausted") },
1394 	/* DT  WRO   BK   */
1395 	{ SST(0x11, 0x02, SS_FATAL|EIO,
1396 	    "Error too long to correct") },
1397 	/* DT  W O   BK   */
1398 	{ SST(0x11, 0x03, SS_FATAL|EIO,
1399 	    "Multiple read errors") },
1400 	/* D   W O   BK   */
1401 	{ SST(0x11, 0x04, SS_FATAL|EIO,
1402 	    "Unrecovered read error - auto reallocate failed") },
1403 	/*     WRO   B    */
1404 	{ SST(0x11, 0x05, SS_FATAL|EIO,
1405 	    "L-EC uncorrectable error") },
1406 	/*     WRO   B    */
1407 	{ SST(0x11, 0x06, SS_FATAL|EIO,
1408 	    "CIRC unrecovered error") },
1409 	/*     W O   B    */
1410 	{ SST(0x11, 0x07, SS_RDEF,
1411 	    "Data re-synchronization error") },
1412 	/*  T             */
1413 	{ SST(0x11, 0x08, SS_RDEF,
1414 	    "Incomplete block read") },
1415 	/*  T             */
1416 	{ SST(0x11, 0x09, SS_RDEF,
1417 	    "No gap found") },
1418 	/* DT    O   BK   */
1419 	{ SST(0x11, 0x0A, SS_RDEF,
1420 	    "Miscorrected error") },
1421 	/* D   W O   BK   */
1422 	{ SST(0x11, 0x0B, SS_FATAL|EIO,
1423 	    "Unrecovered read error - recommend reassignment") },
1424 	/* D   W O   BK   */
1425 	{ SST(0x11, 0x0C, SS_FATAL|EIO,
1426 	    "Unrecovered read error - recommend rewrite the data") },
1427 	/* DT  WRO   B    */
1428 	{ SST(0x11, 0x0D, SS_RDEF,
1429 	    "De-compression CRC error") },
1430 	/* DT  WRO   B    */
1431 	{ SST(0x11, 0x0E, SS_RDEF,
1432 	    "Cannot decompress using declared algorithm") },
1433 	/*      R         */
1434 	{ SST(0x11, 0x0F, SS_RDEF,
1435 	    "Error reading UPC/EAN number") },
1436 	/*      R         */
1437 	{ SST(0x11, 0x10, SS_RDEF,
1438 	    "Error reading ISRC number") },
1439 	/*      R         */
1440 	{ SST(0x11, 0x11, SS_RDEF,
1441 	    "Read error - loss of streaming") },
1442 	/* DT  WROM  B    */
1443 	{ SST(0x11, 0x12, SS_RDEF,	/* XXX TBD */
1444 	    "Auxiliary memory read error") },
1445 	/* DTLPWRO AEBKVF */
1446 	{ SST(0x11, 0x13, SS_RDEF,	/* XXX TBD */
1447 	    "Read error - failed retransmission request") },
1448 	/* D              */
1449 	{ SST(0x11, 0x14, SS_RDEF,	/* XXX TBD */
1450 	    "Read error - LBA marked bad by application client") },
1451 	/* D              */
1452 	{ SST(0x11, 0x15, SS_RDEF,	/* XXX TBD */
1453 	    "Write after sanitize required") },
1454 	/* D   W O   BK   */
1455 	{ SST(0x12, 0x00, SS_RDEF,
1456 	    "Address mark not found for ID field") },
1457 	/* D   W O   BK   */
1458 	{ SST(0x13, 0x00, SS_RDEF,
1459 	    "Address mark not found for data field") },
1460 	/* DTL WRO   BK   */
1461 	{ SST(0x14, 0x00, SS_RDEF,
1462 	    "Recorded entity not found") },
1463 	/* DT  WRO   BK   */
1464 	{ SST(0x14, 0x01, SS_RDEF,
1465 	    "Record not found") },
1466 	/*  T             */
1467 	{ SST(0x14, 0x02, SS_RDEF,
1468 	    "Filemark or setmark not found") },
1469 	/*  T             */
1470 	{ SST(0x14, 0x03, SS_RDEF,
1471 	    "End-of-data not found") },
1472 	/*  T             */
1473 	{ SST(0x14, 0x04, SS_RDEF,
1474 	    "Block sequence error") },
1475 	/* DT  W O   BK   */
1476 	{ SST(0x14, 0x05, SS_RDEF,
1477 	    "Record not found - recommend reassignment") },
1478 	/* DT  W O   BK   */
1479 	{ SST(0x14, 0x06, SS_RDEF,
1480 	    "Record not found - data auto-reallocated") },
1481 	/*  T             */
1482 	{ SST(0x14, 0x07, SS_RDEF,	/* XXX TBD */
1483 	    "Locate operation failure") },
1484 	/* DTL WROM  BK   */
1485 	{ SST(0x15, 0x00, SS_RDEF,
1486 	    "Random positioning error") },
1487 	/* DTL WROM  BK   */
1488 	{ SST(0x15, 0x01, SS_RDEF,
1489 	    "Mechanical positioning error") },
1490 	/* DT  WRO   BK   */
1491 	{ SST(0x15, 0x02, SS_RDEF,
1492 	    "Positioning error detected by read of medium") },
1493 	/* D   W O   BK   */
1494 	{ SST(0x16, 0x00, SS_RDEF,
1495 	    "Data synchronization mark error") },
1496 	/* D   W O   BK   */
1497 	{ SST(0x16, 0x01, SS_RDEF,
1498 	    "Data sync error - data rewritten") },
1499 	/* D   W O   BK   */
1500 	{ SST(0x16, 0x02, SS_RDEF,
1501 	    "Data sync error - recommend rewrite") },
1502 	/* D   W O   BK   */
1503 	{ SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1504 	    "Data sync error - data auto-reallocated") },
1505 	/* D   W O   BK   */
1506 	{ SST(0x16, 0x04, SS_RDEF,
1507 	    "Data sync error - recommend reassignment") },
1508 	/* DT  WRO   BK   */
1509 	{ SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1510 	    "Recovered data with no error correction applied") },
1511 	/* DT  WRO   BK   */
1512 	{ SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1513 	    "Recovered data with retries") },
1514 	/* DT  WRO   BK   */
1515 	{ SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1516 	    "Recovered data with positive head offset") },
1517 	/* DT  WRO   BK   */
1518 	{ SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1519 	    "Recovered data with negative head offset") },
1520 	/*     WRO   B    */
1521 	{ SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1522 	    "Recovered data with retries and/or CIRC applied") },
1523 	/* D   WRO   BK   */
1524 	{ SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1525 	    "Recovered data using previous sector ID") },
1526 	/* D   W O   BK   */
1527 	{ SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1528 	    "Recovered data without ECC - data auto-reallocated") },
1529 	/* D   WRO   BK   */
1530 	{ SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1531 	    "Recovered data without ECC - recommend reassignment") },
1532 	/* D   WRO   BK   */
1533 	{ SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1534 	    "Recovered data without ECC - recommend rewrite") },
1535 	/* D   WRO   BK   */
1536 	{ SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1537 	    "Recovered data without ECC - data rewritten") },
1538 	/* DT  WRO   BK   */
1539 	{ SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1540 	    "Recovered data with error correction applied") },
1541 	/* D   WRO   BK   */
1542 	{ SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1543 	    "Recovered data with error corr. & retries applied") },
1544 	/* D   WRO   BK   */
1545 	{ SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1546 	    "Recovered data - data auto-reallocated") },
1547 	/*      R         */
1548 	{ SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1549 	    "Recovered data with CIRC") },
1550 	/*      R         */
1551 	{ SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1552 	    "Recovered data with L-EC") },
1553 	/* D   WRO   BK   */
1554 	{ SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1555 	    "Recovered data - recommend reassignment") },
1556 	/* D   WRO   BK   */
1557 	{ SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1558 	    "Recovered data - recommend rewrite") },
1559 	/* D   W O   BK   */
1560 	{ SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1561 	    "Recovered data with ECC - data rewritten") },
1562 	/*      R         */
1563 	{ SST(0x18, 0x08, SS_RDEF,	/* XXX TBD */
1564 	    "Recovered data with linking") },
1565 	/* D     O    K   */
1566 	{ SST(0x19, 0x00, SS_RDEF,
1567 	    "Defect list error") },
1568 	/* D     O    K   */
1569 	{ SST(0x19, 0x01, SS_RDEF,
1570 	    "Defect list not available") },
1571 	/* D     O    K   */
1572 	{ SST(0x19, 0x02, SS_RDEF,
1573 	    "Defect list error in primary list") },
1574 	/* D     O    K   */
1575 	{ SST(0x19, 0x03, SS_RDEF,
1576 	    "Defect list error in grown list") },
1577 	/* DTLPWROMAEBKVF */
1578 	{ SST(0x1A, 0x00, SS_RDEF,
1579 	    "Parameter list length error") },
1580 	/* DTLPWROMAEBKVF */
1581 	{ SST(0x1B, 0x00, SS_RDEF,
1582 	    "Synchronous data transfer error") },
1583 	/* D     O   BK   */
1584 	{ SST(0x1C, 0x00, SS_RDEF,
1585 	    "Defect list not found") },
1586 	/* D     O   BK   */
1587 	{ SST(0x1C, 0x01, SS_RDEF,
1588 	    "Primary defect list not found") },
1589 	/* D     O   BK   */
1590 	{ SST(0x1C, 0x02, SS_RDEF,
1591 	    "Grown defect list not found") },
1592 	/* DT  WRO   BK   */
1593 	{ SST(0x1D, 0x00, SS_FATAL,
1594 	    "Miscompare during verify operation") },
1595 	/* D         B    */
1596 	{ SST(0x1D, 0x01, SS_RDEF,	/* XXX TBD */
1597 	    "Miscomparable verify of unmapped LBA") },
1598 	/* D   W O   BK   */
1599 	{ SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1600 	    "Recovered ID with ECC correction") },
1601 	/* D     O    K   */
1602 	{ SST(0x1F, 0x00, SS_RDEF,
1603 	    "Partial defect list transfer") },
1604 	/* DTLPWROMAEBKVF */
1605 	{ SST(0x20, 0x00, SS_FATAL | EINVAL,
1606 	    "Invalid command operation code") },
1607 	/* DT PWROMAEBK   */
1608 	{ SST(0x20, 0x01, SS_RDEF,	/* XXX TBD */
1609 	    "Access denied - initiator pending-enrolled") },
1610 	/* DT PWROMAEBK   */
1611 	{ SST(0x20, 0x02, SS_RDEF,	/* XXX TBD */
1612 	    "Access denied - no access rights") },
1613 	/* DT PWROMAEBK   */
1614 	{ SST(0x20, 0x03, SS_RDEF,	/* XXX TBD */
1615 	    "Access denied - invalid mgmt ID key") },
1616 	/*  T             */
1617 	{ SST(0x20, 0x04, SS_RDEF,	/* XXX TBD */
1618 	    "Illegal command while in write capable state") },
1619 	/*  T             */
1620 	{ SST(0x20, 0x05, SS_RDEF,	/* XXX TBD */
1621 	    "Obsolete") },
1622 	/*  T             */
1623 	{ SST(0x20, 0x06, SS_RDEF,	/* XXX TBD */
1624 	    "Illegal command while in explicit address mode") },
1625 	/*  T             */
1626 	{ SST(0x20, 0x07, SS_RDEF,	/* XXX TBD */
1627 	    "Illegal command while in implicit address mode") },
1628 	/* DT PWROMAEBK   */
1629 	{ SST(0x20, 0x08, SS_RDEF,	/* XXX TBD */
1630 	    "Access denied - enrollment conflict") },
1631 	/* DT PWROMAEBK   */
1632 	{ SST(0x20, 0x09, SS_RDEF,	/* XXX TBD */
1633 	    "Access denied - invalid LU identifier") },
1634 	/* DT PWROMAEBK   */
1635 	{ SST(0x20, 0x0A, SS_RDEF,	/* XXX TBD */
1636 	    "Access denied - invalid proxy token") },
1637 	/* DT PWROMAEBK   */
1638 	{ SST(0x20, 0x0B, SS_RDEF,	/* XXX TBD */
1639 	    "Access denied - ACL LUN conflict") },
1640 	/*  T             */
1641 	{ SST(0x20, 0x0C, SS_FATAL | EINVAL,
1642 	    "Illegal command when not in append-only mode") },
1643 	/* DT  WRO   BK   */
1644 	{ SST(0x21, 0x00, SS_FATAL | EINVAL,
1645 	    "Logical block address out of range") },
1646 	/* DT  WROM  BK   */
1647 	{ SST(0x21, 0x01, SS_FATAL | EINVAL,
1648 	    "Invalid element address") },
1649 	/*      R         */
1650 	{ SST(0x21, 0x02, SS_RDEF,	/* XXX TBD */
1651 	    "Invalid address for write") },
1652 	/*      R         */
1653 	{ SST(0x21, 0x03, SS_RDEF,	/* XXX TBD */
1654 	    "Invalid write crossing layer jump") },
1655 	/* D              */
1656 	{ SST(0x21, 0x04, SS_RDEF,	/* XXX TBD */
1657 	    "Unaligned write command") },
1658 	/* D              */
1659 	{ SST(0x21, 0x05, SS_RDEF,	/* XXX TBD */
1660 	    "Write boundary violation") },
1661 	/* D              */
1662 	{ SST(0x21, 0x06, SS_RDEF,	/* XXX TBD */
1663 	    "Attempt to read invalid data") },
1664 	/* D              */
1665 	{ SST(0x21, 0x07, SS_RDEF,	/* XXX TBD */
1666 	    "Read boundary violation") },
1667 	/* D              */
1668 	{ SST(0x22, 0x00, SS_FATAL | EINVAL,
1669 	    "Illegal function (use 20 00, 24 00, or 26 00)") },
1670 	/* DT P      B    */
1671 	{ SST(0x23, 0x00, SS_FATAL | EINVAL,
1672 	    "Invalid token operation, cause not reportable") },
1673 	/* DT P      B    */
1674 	{ SST(0x23, 0x01, SS_FATAL | EINVAL,
1675 	    "Invalid token operation, unsupported token type") },
1676 	/* DT P      B    */
1677 	{ SST(0x23, 0x02, SS_FATAL | EINVAL,
1678 	    "Invalid token operation, remote token usage not supported") },
1679 	/* DT P      B    */
1680 	{ SST(0x23, 0x03, SS_FATAL | EINVAL,
1681 	    "Invalid token operation, remote ROD token creation not supported") },
1682 	/* DT P      B    */
1683 	{ SST(0x23, 0x04, SS_FATAL | EINVAL,
1684 	    "Invalid token operation, token unknown") },
1685 	/* DT P      B    */
1686 	{ SST(0x23, 0x05, SS_FATAL | EINVAL,
1687 	    "Invalid token operation, token corrupt") },
1688 	/* DT P      B    */
1689 	{ SST(0x23, 0x06, SS_FATAL | EINVAL,
1690 	    "Invalid token operation, token revoked") },
1691 	/* DT P      B    */
1692 	{ SST(0x23, 0x07, SS_FATAL | EINVAL,
1693 	    "Invalid token operation, token expired") },
1694 	/* DT P      B    */
1695 	{ SST(0x23, 0x08, SS_FATAL | EINVAL,
1696 	    "Invalid token operation, token cancelled") },
1697 	/* DT P      B    */
1698 	{ SST(0x23, 0x09, SS_FATAL | EINVAL,
1699 	    "Invalid token operation, token deleted") },
1700 	/* DT P      B    */
1701 	{ SST(0x23, 0x0A, SS_FATAL | EINVAL,
1702 	    "Invalid token operation, invalid token length") },
1703 	/* DTLPWROMAEBKVF */
1704 	{ SST(0x24, 0x00, SS_FATAL | EINVAL,
1705 	    "Invalid field in CDB") },
1706 	/* DTLPWRO AEBKVF */
1707 	{ SST(0x24, 0x01, SS_RDEF,	/* XXX TBD */
1708 	    "CDB decryption error") },
1709 	/*  T             */
1710 	{ SST(0x24, 0x02, SS_RDEF,	/* XXX TBD */
1711 	    "Obsolete") },
1712 	/*  T             */
1713 	{ SST(0x24, 0x03, SS_RDEF,	/* XXX TBD */
1714 	    "Obsolete") },
1715 	/*              F */
1716 	{ SST(0x24, 0x04, SS_RDEF,	/* XXX TBD */
1717 	    "Security audit value frozen") },
1718 	/*              F */
1719 	{ SST(0x24, 0x05, SS_RDEF,	/* XXX TBD */
1720 	    "Security working key frozen") },
1721 	/*              F */
1722 	{ SST(0x24, 0x06, SS_RDEF,	/* XXX TBD */
1723 	    "NONCE not unique") },
1724 	/*              F */
1725 	{ SST(0x24, 0x07, SS_RDEF,	/* XXX TBD */
1726 	    "NONCE timestamp out of range") },
1727 	/* DT   R MAEBKV  */
1728 	{ SST(0x24, 0x08, SS_RDEF,	/* XXX TBD */
1729 	    "Invalid XCDB") },
1730 	/* DTLPWROMAEBKVF */
1731 	{ SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST,
1732 	    "Logical unit not supported") },
1733 	/* DTLPWROMAEBKVF */
1734 	{ SST(0x26, 0x00, SS_FATAL | EINVAL,
1735 	    "Invalid field in parameter list") },
1736 	/* DTLPWROMAEBKVF */
1737 	{ SST(0x26, 0x01, SS_FATAL | EINVAL,
1738 	    "Parameter not supported") },
1739 	/* DTLPWROMAEBKVF */
1740 	{ SST(0x26, 0x02, SS_FATAL | EINVAL,
1741 	    "Parameter value invalid") },
1742 	/* DTLPWROMAE K   */
1743 	{ SST(0x26, 0x03, SS_FATAL | EINVAL,
1744 	    "Threshold parameters not supported") },
1745 	/* DTLPWROMAEBKVF */
1746 	{ SST(0x26, 0x04, SS_FATAL | EINVAL,
1747 	    "Invalid release of persistent reservation") },
1748 	/* DTLPWRO A BK   */
1749 	{ SST(0x26, 0x05, SS_RDEF,	/* XXX TBD */
1750 	    "Data decryption error") },
1751 	/* DTLPWRO    K   */
1752 	{ SST(0x26, 0x06, SS_FATAL | EINVAL,
1753 	    "Too many target descriptors") },
1754 	/* DTLPWRO    K   */
1755 	{ SST(0x26, 0x07, SS_FATAL | EINVAL,
1756 	    "Unsupported target descriptor type code") },
1757 	/* DTLPWRO    K   */
1758 	{ SST(0x26, 0x08, SS_FATAL | EINVAL,
1759 	    "Too many segment descriptors") },
1760 	/* DTLPWRO    K   */
1761 	{ SST(0x26, 0x09, SS_FATAL | EINVAL,
1762 	    "Unsupported segment descriptor type code") },
1763 	/* DTLPWRO    K   */
1764 	{ SST(0x26, 0x0A, SS_FATAL | EINVAL,
1765 	    "Unexpected inexact segment") },
1766 	/* DTLPWRO    K   */
1767 	{ SST(0x26, 0x0B, SS_FATAL | EINVAL,
1768 	    "Inline data length exceeded") },
1769 	/* DTLPWRO    K   */
1770 	{ SST(0x26, 0x0C, SS_FATAL | EINVAL,
1771 	    "Invalid operation for copy source or destination") },
1772 	/* DTLPWRO    K   */
1773 	{ SST(0x26, 0x0D, SS_FATAL | EINVAL,
1774 	    "Copy segment granularity violation") },
1775 	/* DT PWROMAEBK   */
1776 	{ SST(0x26, 0x0E, SS_RDEF,	/* XXX TBD */
1777 	    "Invalid parameter while port is enabled") },
1778 	/*              F */
1779 	{ SST(0x26, 0x0F, SS_RDEF,	/* XXX TBD */
1780 	    "Invalid data-out buffer integrity check value") },
1781 	/*  T             */
1782 	{ SST(0x26, 0x10, SS_RDEF,	/* XXX TBD */
1783 	    "Data decryption key fail limit reached") },
1784 	/*  T             */
1785 	{ SST(0x26, 0x11, SS_RDEF,	/* XXX TBD */
1786 	    "Incomplete key-associated data set") },
1787 	/*  T             */
1788 	{ SST(0x26, 0x12, SS_RDEF,	/* XXX TBD */
1789 	    "Vendor specific key reference not found") },
1790 	/* D              */
1791 	{ SST(0x26, 0x13, SS_RDEF,	/* XXX TBD */
1792 	    "Application tag mode page is invalid") },
1793 	/* DT  WRO   BK   */
1794 	{ SST(0x27, 0x00, SS_FATAL | EACCES,
1795 	    "Write protected") },
1796 	/* DT  WRO   BK   */
1797 	{ SST(0x27, 0x01, SS_FATAL | EACCES,
1798 	    "Hardware write protected") },
1799 	/* DT  WRO   BK   */
1800 	{ SST(0x27, 0x02, SS_FATAL | EACCES,
1801 	    "Logical unit software write protected") },
1802 	/*  T   R         */
1803 	{ SST(0x27, 0x03, SS_FATAL | EACCES,
1804 	    "Associated write protect") },
1805 	/*  T   R         */
1806 	{ SST(0x27, 0x04, SS_FATAL | EACCES,
1807 	    "Persistent write protect") },
1808 	/*  T   R         */
1809 	{ SST(0x27, 0x05, SS_FATAL | EACCES,
1810 	    "Permanent write protect") },
1811 	/*      R       F */
1812 	{ SST(0x27, 0x06, SS_RDEF,	/* XXX TBD */
1813 	    "Conditional write protect") },
1814 	/* D         B    */
1815 	{ SST(0x27, 0x07, SS_FATAL | ENOSPC,
1816 	    "Space allocation failed write protect") },
1817 	/* D              */
1818 	{ SST(0x27, 0x08, SS_FATAL | EACCES,
1819 	    "Zone is read only") },
1820 	/* DTLPWROMAEBKVF */
1821 	{ SST(0x28, 0x00, SS_FATAL | ENXIO,
1822 	    "Not ready to ready change, medium may have changed") },
1823 	/* DT  WROM  B    */
1824 	{ SST(0x28, 0x01, SS_FATAL | ENXIO,
1825 	    "Import or export element accessed") },
1826 	/*      R         */
1827 	{ SST(0x28, 0x02, SS_RDEF,	/* XXX TBD */
1828 	    "Format-layer may have changed") },
1829 	/*        M       */
1830 	{ SST(0x28, 0x03, SS_RDEF,	/* XXX TBD */
1831 	    "Import/export element accessed, medium changed") },
1832 	/*
1833 	 * XXX JGibbs - All of these should use the same errno, but I don't
1834 	 * think ENXIO is the correct choice.  Should we borrow from
1835 	 * the networking errnos?  ECONNRESET anyone?
1836 	 */
1837 	/* DTLPWROMAEBKVF */
1838 	{ SST(0x29, 0x00, SS_FATAL | ENXIO,
1839 	    "Power on, reset, or bus device reset occurred") },
1840 	/* DTLPWROMAEBKVF */
1841 	{ SST(0x29, 0x01, SS_RDEF,
1842 	    "Power on occurred") },
1843 	/* DTLPWROMAEBKVF */
1844 	{ SST(0x29, 0x02, SS_RDEF,
1845 	    "SCSI bus reset occurred") },
1846 	/* DTLPWROMAEBKVF */
1847 	{ SST(0x29, 0x03, SS_RDEF,
1848 	    "Bus device reset function occurred") },
1849 	/* DTLPWROMAEBKVF */
1850 	{ SST(0x29, 0x04, SS_RDEF,
1851 	    "Device internal reset") },
1852 	/* DTLPWROMAEBKVF */
1853 	{ SST(0x29, 0x05, SS_RDEF,
1854 	    "Transceiver mode changed to single-ended") },
1855 	/* DTLPWROMAEBKVF */
1856 	{ SST(0x29, 0x06, SS_RDEF,
1857 	    "Transceiver mode changed to LVD") },
1858 	/* DTLPWROMAEBKVF */
1859 	{ SST(0x29, 0x07, SS_RDEF,	/* XXX TBD */
1860 	    "I_T nexus loss occurred") },
1861 	/* DTL WROMAEBKVF */
1862 	{ SST(0x2A, 0x00, SS_RDEF,
1863 	    "Parameters changed") },
1864 	/* DTL WROMAEBKVF */
1865 	{ SST(0x2A, 0x01, SS_RDEF,
1866 	    "Mode parameters changed") },
1867 	/* DTL WROMAE K   */
1868 	{ SST(0x2A, 0x02, SS_RDEF,
1869 	    "Log parameters changed") },
1870 	/* DTLPWROMAE K   */
1871 	{ SST(0x2A, 0x03, SS_RDEF,
1872 	    "Reservations preempted") },
1873 	/* DTLPWROMAE     */
1874 	{ SST(0x2A, 0x04, SS_RDEF,	/* XXX TBD */
1875 	    "Reservations released") },
1876 	/* DTLPWROMAE     */
1877 	{ SST(0x2A, 0x05, SS_RDEF,	/* XXX TBD */
1878 	    "Registrations preempted") },
1879 	/* DTLPWROMAEBKVF */
1880 	{ SST(0x2A, 0x06, SS_RDEF,	/* XXX TBD */
1881 	    "Asymmetric access state changed") },
1882 	/* DTLPWROMAEBKVF */
1883 	{ SST(0x2A, 0x07, SS_RDEF,	/* XXX TBD */
1884 	    "Implicit asymmetric access state transition failed") },
1885 	/* DT  WROMAEBKVF */
1886 	{ SST(0x2A, 0x08, SS_RDEF,	/* XXX TBD */
1887 	    "Priority changed") },
1888 	/* D              */
1889 	{ SST(0x2A, 0x09, SS_RDEF,	/* XXX TBD */
1890 	    "Capacity data has changed") },
1891 	/* DT             */
1892 	{ SST(0x2A, 0x0A, SS_RDEF,	/* XXX TBD */
1893 	    "Error history I_T nexus cleared") },
1894 	/* DT             */
1895 	{ SST(0x2A, 0x0B, SS_RDEF,	/* XXX TBD */
1896 	    "Error history snapshot released") },
1897 	/*              F */
1898 	{ SST(0x2A, 0x0C, SS_RDEF,	/* XXX TBD */
1899 	    "Error recovery attributes have changed") },
1900 	/*  T             */
1901 	{ SST(0x2A, 0x0D, SS_RDEF,	/* XXX TBD */
1902 	    "Data encryption capabilities changed") },
1903 	/* DT     M E  V  */
1904 	{ SST(0x2A, 0x10, SS_RDEF,	/* XXX TBD */
1905 	    "Timestamp changed") },
1906 	/*  T             */
1907 	{ SST(0x2A, 0x11, SS_RDEF,	/* XXX TBD */
1908 	    "Data encryption parameters changed by another I_T nexus") },
1909 	/*  T             */
1910 	{ SST(0x2A, 0x12, SS_RDEF,	/* XXX TBD */
1911 	    "Data encryption parameters changed by vendor specific event") },
1912 	/*  T             */
1913 	{ SST(0x2A, 0x13, SS_RDEF,	/* XXX TBD */
1914 	    "Data encryption key instance counter has changed") },
1915 	/* DT   R MAEBKV  */
1916 	{ SST(0x2A, 0x14, SS_RDEF,	/* XXX TBD */
1917 	    "SA creation capabilities data has changed") },
1918 	/*  T     M    V  */
1919 	{ SST(0x2A, 0x15, SS_RDEF,	/* XXX TBD */
1920 	    "Medium removal prevention preempted") },
1921 	/* DTLPWRO    K   */
1922 	{ SST(0x2B, 0x00, SS_RDEF,
1923 	    "Copy cannot execute since host cannot disconnect") },
1924 	/* DTLPWROMAEBKVF */
1925 	{ SST(0x2C, 0x00, SS_RDEF,
1926 	    "Command sequence error") },
1927 	/*                */
1928 	{ SST(0x2C, 0x01, SS_RDEF,
1929 	    "Too many windows specified") },
1930 	/*                */
1931 	{ SST(0x2C, 0x02, SS_RDEF,
1932 	    "Invalid combination of windows specified") },
1933 	/*      R         */
1934 	{ SST(0x2C, 0x03, SS_RDEF,
1935 	    "Current program area is not empty") },
1936 	/*      R         */
1937 	{ SST(0x2C, 0x04, SS_RDEF,
1938 	    "Current program area is empty") },
1939 	/*           B    */
1940 	{ SST(0x2C, 0x05, SS_RDEF,	/* XXX TBD */
1941 	    "Illegal power condition request") },
1942 	/*      R         */
1943 	{ SST(0x2C, 0x06, SS_RDEF,	/* XXX TBD */
1944 	    "Persistent prevent conflict") },
1945 	/* DTLPWROMAEBKVF */
1946 	{ SST(0x2C, 0x07, SS_RDEF,	/* XXX TBD */
1947 	    "Previous busy status") },
1948 	/* DTLPWROMAEBKVF */
1949 	{ SST(0x2C, 0x08, SS_RDEF,	/* XXX TBD */
1950 	    "Previous task set full status") },
1951 	/* DTLPWROM EBKVF */
1952 	{ SST(0x2C, 0x09, SS_RDEF,	/* XXX TBD */
1953 	    "Previous reservation conflict status") },
1954 	/*              F */
1955 	{ SST(0x2C, 0x0A, SS_RDEF,	/* XXX TBD */
1956 	    "Partition or collection contains user objects") },
1957 	/*  T             */
1958 	{ SST(0x2C, 0x0B, SS_RDEF,	/* XXX TBD */
1959 	    "Not reserved") },
1960 	/* D              */
1961 	{ SST(0x2C, 0x0C, SS_RDEF,	/* XXX TBD */
1962 	    "ORWRITE generation does not match") },
1963 	/* D              */
1964 	{ SST(0x2C, 0x0D, SS_RDEF,	/* XXX TBD */
1965 	    "Reset write pointer not allowed") },
1966 	/* D              */
1967 	{ SST(0x2C, 0x0E, SS_RDEF,	/* XXX TBD */
1968 	    "Zone is offline") },
1969 	/* D              */
1970 	{ SST(0x2C, 0x0F, SS_RDEF,	/* XXX TBD */
1971 	    "Stream not open") },
1972 	/* D              */
1973 	{ SST(0x2C, 0x10, SS_RDEF,	/* XXX TBD */
1974 	    "Unwritten data in zone") },
1975 	/*  T             */
1976 	{ SST(0x2D, 0x00, SS_RDEF,
1977 	    "Overwrite error on update in place") },
1978 	/*      R         */
1979 	{ SST(0x2E, 0x00, SS_RDEF,	/* XXX TBD */
1980 	    "Insufficient time for operation") },
1981 	/* D              */
1982 	{ SST(0x2E, 0x01, SS_RDEF,	/* XXX TBD */
1983 	    "Command timeout before processing") },
1984 	/* D              */
1985 	{ SST(0x2E, 0x02, SS_RDEF,	/* XXX TBD */
1986 	    "Command timeout during processing") },
1987 	/* D              */
1988 	{ SST(0x2E, 0x03, SS_RDEF,	/* XXX TBD */
1989 	    "Command timeout during processing due to error recovery") },
1990 	/* DTLPWROMAEBKVF */
1991 	{ SST(0x2F, 0x00, SS_RDEF,
1992 	    "Commands cleared by another initiator") },
1993 	/* D              */
1994 	{ SST(0x2F, 0x01, SS_RDEF,	/* XXX TBD */
1995 	    "Commands cleared by power loss notification") },
1996 	/* DTLPWROMAEBKVF */
1997 	{ SST(0x2F, 0x02, SS_RDEF,	/* XXX TBD */
1998 	    "Commands cleared by device server") },
1999 	/* DTLPWROMAEBKVF */
2000 	{ SST(0x2F, 0x03, SS_RDEF,	/* XXX TBD */
2001 	    "Some commands cleared by queuing layer event") },
2002 	/* DT  WROM  BK   */
2003 	{ SST(0x30, 0x00, SS_RDEF,
2004 	    "Incompatible medium installed") },
2005 	/* DT  WRO   BK   */
2006 	{ SST(0x30, 0x01, SS_RDEF,
2007 	    "Cannot read medium - unknown format") },
2008 	/* DT  WRO   BK   */
2009 	{ SST(0x30, 0x02, SS_RDEF,
2010 	    "Cannot read medium - incompatible format") },
2011 	/* DT   R     K   */
2012 	{ SST(0x30, 0x03, SS_RDEF,
2013 	    "Cleaning cartridge installed") },
2014 	/* DT  WRO   BK   */
2015 	{ SST(0x30, 0x04, SS_RDEF,
2016 	    "Cannot write medium - unknown format") },
2017 	/* DT  WRO   BK   */
2018 	{ SST(0x30, 0x05, SS_RDEF,
2019 	    "Cannot write medium - incompatible format") },
2020 	/* DT  WRO   B    */
2021 	{ SST(0x30, 0x06, SS_RDEF,
2022 	    "Cannot format medium - incompatible medium") },
2023 	/* DTL WROMAEBKVF */
2024 	{ SST(0x30, 0x07, SS_RDEF,
2025 	    "Cleaning failure") },
2026 	/*      R         */
2027 	{ SST(0x30, 0x08, SS_RDEF,
2028 	    "Cannot write - application code mismatch") },
2029 	/*      R         */
2030 	{ SST(0x30, 0x09, SS_RDEF,
2031 	    "Current session not fixated for append") },
2032 	/* DT  WRO AEBK   */
2033 	{ SST(0x30, 0x0A, SS_RDEF,	/* XXX TBD */
2034 	    "Cleaning request rejected") },
2035 	/*  T             */
2036 	{ SST(0x30, 0x0C, SS_RDEF,	/* XXX TBD */
2037 	    "WORM medium - overwrite attempted") },
2038 	/*  T             */
2039 	{ SST(0x30, 0x0D, SS_RDEF,	/* XXX TBD */
2040 	    "WORM medium - integrity check") },
2041 	/*      R         */
2042 	{ SST(0x30, 0x10, SS_RDEF,	/* XXX TBD */
2043 	    "Medium not formatted") },
2044 	/*        M       */
2045 	{ SST(0x30, 0x11, SS_RDEF,	/* XXX TBD */
2046 	    "Incompatible volume type") },
2047 	/*        M       */
2048 	{ SST(0x30, 0x12, SS_RDEF,	/* XXX TBD */
2049 	    "Incompatible volume qualifier") },
2050 	/*        M       */
2051 	{ SST(0x30, 0x13, SS_RDEF,	/* XXX TBD */
2052 	    "Cleaning volume expired") },
2053 	/* DT  WRO   BK   */
2054 	{ SST(0x31, 0x00, SS_RDEF,
2055 	    "Medium format corrupted") },
2056 	/* D L  RO   B    */
2057 	{ SST(0x31, 0x01, SS_RDEF,
2058 	    "Format command failed") },
2059 	/*      R         */
2060 	{ SST(0x31, 0x02, SS_RDEF,	/* XXX TBD */
2061 	    "Zoned formatting failed due to spare linking") },
2062 	/* D         B    */
2063 	{ SST(0x31, 0x03, SS_RDEF,	/* XXX TBD */
2064 	    "SANITIZE command failed") },
2065 	/* D   W O   BK   */
2066 	{ SST(0x32, 0x00, SS_RDEF,
2067 	    "No defect spare location available") },
2068 	/* D   W O   BK   */
2069 	{ SST(0x32, 0x01, SS_RDEF,
2070 	    "Defect list update failure") },
2071 	/*  T             */
2072 	{ SST(0x33, 0x00, SS_RDEF,
2073 	    "Tape length error") },
2074 	/* DTLPWROMAEBKVF */
2075 	{ SST(0x34, 0x00, SS_RDEF,
2076 	    "Enclosure failure") },
2077 	/* DTLPWROMAEBKVF */
2078 	{ SST(0x35, 0x00, SS_RDEF,
2079 	    "Enclosure services failure") },
2080 	/* DTLPWROMAEBKVF */
2081 	{ SST(0x35, 0x01, SS_RDEF,
2082 	    "Unsupported enclosure function") },
2083 	/* DTLPWROMAEBKVF */
2084 	{ SST(0x35, 0x02, SS_RDEF,
2085 	    "Enclosure services unavailable") },
2086 	/* DTLPWROMAEBKVF */
2087 	{ SST(0x35, 0x03, SS_RDEF,
2088 	    "Enclosure services transfer failure") },
2089 	/* DTLPWROMAEBKVF */
2090 	{ SST(0x35, 0x04, SS_RDEF,
2091 	    "Enclosure services transfer refused") },
2092 	/* DTL WROMAEBKVF */
2093 	{ SST(0x35, 0x05, SS_RDEF,	/* XXX TBD */
2094 	    "Enclosure services checksum error") },
2095 	/*   L            */
2096 	{ SST(0x36, 0x00, SS_RDEF,
2097 	    "Ribbon, ink, or toner failure") },
2098 	/* DTL WROMAEBKVF */
2099 	{ SST(0x37, 0x00, SS_RDEF,
2100 	    "Rounded parameter") },
2101 	/*           B    */
2102 	{ SST(0x38, 0x00, SS_RDEF,	/* XXX TBD */
2103 	    "Event status notification") },
2104 	/*           B    */
2105 	{ SST(0x38, 0x02, SS_RDEF,	/* XXX TBD */
2106 	    "ESN - power management class event") },
2107 	/*           B    */
2108 	{ SST(0x38, 0x04, SS_RDEF,	/* XXX TBD */
2109 	    "ESN - media class event") },
2110 	/*           B    */
2111 	{ SST(0x38, 0x06, SS_RDEF,	/* XXX TBD */
2112 	    "ESN - device busy class event") },
2113 	/* D              */
2114 	{ SST(0x38, 0x07, SS_RDEF,	/* XXX TBD */
2115 	    "Thin provisioning soft threshold reached") },
2116 	/* DTL WROMAE K   */
2117 	{ SST(0x39, 0x00, SS_RDEF,
2118 	    "Saving parameters not supported") },
2119 	/* DTL WROM  BK   */
2120 	{ SST(0x3A, 0x00, SS_FATAL | ENXIO,
2121 	    "Medium not present") },
2122 	/* DT  WROM  BK   */
2123 	{ SST(0x3A, 0x01, SS_FATAL | ENXIO,
2124 	    "Medium not present - tray closed") },
2125 	/* DT  WROM  BK   */
2126 	{ SST(0x3A, 0x02, SS_FATAL | ENXIO,
2127 	    "Medium not present - tray open") },
2128 	/* DT  WROM  B    */
2129 	{ SST(0x3A, 0x03, SS_RDEF,	/* XXX TBD */
2130 	    "Medium not present - loadable") },
2131 	/* DT  WRO   B    */
2132 	{ SST(0x3A, 0x04, SS_RDEF,	/* XXX TBD */
2133 	    "Medium not present - medium auxiliary memory accessible") },
2134 	/*  TL            */
2135 	{ SST(0x3B, 0x00, SS_RDEF,
2136 	    "Sequential positioning error") },
2137 	/*  T             */
2138 	{ SST(0x3B, 0x01, SS_RDEF,
2139 	    "Tape position error at beginning-of-medium") },
2140 	/*  T             */
2141 	{ SST(0x3B, 0x02, SS_RDEF,
2142 	    "Tape position error at end-of-medium") },
2143 	/*   L            */
2144 	{ SST(0x3B, 0x03, SS_RDEF,
2145 	    "Tape or electronic vertical forms unit not ready") },
2146 	/*   L            */
2147 	{ SST(0x3B, 0x04, SS_RDEF,
2148 	    "Slew failure") },
2149 	/*   L            */
2150 	{ SST(0x3B, 0x05, SS_RDEF,
2151 	    "Paper jam") },
2152 	/*   L            */
2153 	{ SST(0x3B, 0x06, SS_RDEF,
2154 	    "Failed to sense top-of-form") },
2155 	/*   L            */
2156 	{ SST(0x3B, 0x07, SS_RDEF,
2157 	    "Failed to sense bottom-of-form") },
2158 	/*  T             */
2159 	{ SST(0x3B, 0x08, SS_RDEF,
2160 	    "Reposition error") },
2161 	/*                */
2162 	{ SST(0x3B, 0x09, SS_RDEF,
2163 	    "Read past end of medium") },
2164 	/*                */
2165 	{ SST(0x3B, 0x0A, SS_RDEF,
2166 	    "Read past beginning of medium") },
2167 	/*                */
2168 	{ SST(0x3B, 0x0B, SS_RDEF,
2169 	    "Position past end of medium") },
2170 	/*  T             */
2171 	{ SST(0x3B, 0x0C, SS_RDEF,
2172 	    "Position past beginning of medium") },
2173 	/* DT  WROM  BK   */
2174 	{ SST(0x3B, 0x0D, SS_FATAL | ENOSPC,
2175 	    "Medium destination element full") },
2176 	/* DT  WROM  BK   */
2177 	{ SST(0x3B, 0x0E, SS_RDEF,
2178 	    "Medium source element empty") },
2179 	/*      R         */
2180 	{ SST(0x3B, 0x0F, SS_RDEF,
2181 	    "End of medium reached") },
2182 	/* DT  WROM  BK   */
2183 	{ SST(0x3B, 0x11, SS_RDEF,
2184 	    "Medium magazine not accessible") },
2185 	/* DT  WROM  BK   */
2186 	{ SST(0x3B, 0x12, SS_RDEF,
2187 	    "Medium magazine removed") },
2188 	/* DT  WROM  BK   */
2189 	{ SST(0x3B, 0x13, SS_RDEF,
2190 	    "Medium magazine inserted") },
2191 	/* DT  WROM  BK   */
2192 	{ SST(0x3B, 0x14, SS_RDEF,
2193 	    "Medium magazine locked") },
2194 	/* DT  WROM  BK   */
2195 	{ SST(0x3B, 0x15, SS_RDEF,
2196 	    "Medium magazine unlocked") },
2197 	/*      R         */
2198 	{ SST(0x3B, 0x16, SS_RDEF,	/* XXX TBD */
2199 	    "Mechanical positioning or changer error") },
2200 	/*              F */
2201 	{ SST(0x3B, 0x17, SS_RDEF,	/* XXX TBD */
2202 	    "Read past end of user object") },
2203 	/*        M       */
2204 	{ SST(0x3B, 0x18, SS_RDEF,	/* XXX TBD */
2205 	    "Element disabled") },
2206 	/*        M       */
2207 	{ SST(0x3B, 0x19, SS_RDEF,	/* XXX TBD */
2208 	    "Element enabled") },
2209 	/*        M       */
2210 	{ SST(0x3B, 0x1A, SS_RDEF,	/* XXX TBD */
2211 	    "Data transfer device removed") },
2212 	/*        M       */
2213 	{ SST(0x3B, 0x1B, SS_RDEF,	/* XXX TBD */
2214 	    "Data transfer device inserted") },
2215 	/*  T             */
2216 	{ SST(0x3B, 0x1C, SS_RDEF,	/* XXX TBD */
2217 	    "Too many logical objects on partition to support operation") },
2218 	/* DTLPWROMAE K   */
2219 	{ SST(0x3D, 0x00, SS_RDEF,
2220 	    "Invalid bits in IDENTIFY message") },
2221 	/* DTLPWROMAEBKVF */
2222 	{ SST(0x3E, 0x00, SS_RDEF,
2223 	    "Logical unit has not self-configured yet") },
2224 	/* DTLPWROMAEBKVF */
2225 	{ SST(0x3E, 0x01, SS_RDEF,
2226 	    "Logical unit failure") },
2227 	/* DTLPWROMAEBKVF */
2228 	{ SST(0x3E, 0x02, SS_RDEF,
2229 	    "Timeout on logical unit") },
2230 	/* DTLPWROMAEBKVF */
2231 	{ SST(0x3E, 0x03, SS_RDEF,	/* XXX TBD */
2232 	    "Logical unit failed self-test") },
2233 	/* DTLPWROMAEBKVF */
2234 	{ SST(0x3E, 0x04, SS_RDEF,	/* XXX TBD */
2235 	    "Logical unit unable to update self-test log") },
2236 	/* DTLPWROMAEBKVF */
2237 	{ SST(0x3F, 0x00, SS_RDEF,
2238 	    "Target operating conditions have changed") },
2239 	/* DTLPWROMAEBKVF */
2240 	{ SST(0x3F, 0x01, SS_RDEF,
2241 	    "Microcode has been changed") },
2242 	/* DTLPWROM  BK   */
2243 	{ SST(0x3F, 0x02, SS_RDEF,
2244 	    "Changed operating definition") },
2245 	/* DTLPWROMAEBKVF */
2246 	{ SST(0x3F, 0x03, SS_RDEF,
2247 	    "INQUIRY data has changed") },
2248 	/* DT  WROMAEBK   */
2249 	{ SST(0x3F, 0x04, SS_RDEF,
2250 	    "Component device attached") },
2251 	/* DT  WROMAEBK   */
2252 	{ SST(0x3F, 0x05, SS_RDEF,
2253 	    "Device identifier changed") },
2254 	/* DT  WROMAEB    */
2255 	{ SST(0x3F, 0x06, SS_RDEF,
2256 	    "Redundancy group created or modified") },
2257 	/* DT  WROMAEB    */
2258 	{ SST(0x3F, 0x07, SS_RDEF,
2259 	    "Redundancy group deleted") },
2260 	/* DT  WROMAEB    */
2261 	{ SST(0x3F, 0x08, SS_RDEF,
2262 	    "Spare created or modified") },
2263 	/* DT  WROMAEB    */
2264 	{ SST(0x3F, 0x09, SS_RDEF,
2265 	    "Spare deleted") },
2266 	/* DT  WROMAEBK   */
2267 	{ SST(0x3F, 0x0A, SS_RDEF,
2268 	    "Volume set created or modified") },
2269 	/* DT  WROMAEBK   */
2270 	{ SST(0x3F, 0x0B, SS_RDEF,
2271 	    "Volume set deleted") },
2272 	/* DT  WROMAEBK   */
2273 	{ SST(0x3F, 0x0C, SS_RDEF,
2274 	    "Volume set deassigned") },
2275 	/* DT  WROMAEBK   */
2276 	{ SST(0x3F, 0x0D, SS_RDEF,
2277 	    "Volume set reassigned") },
2278 	/* DTLPWROMAE     */
2279 	{ SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN ,
2280 	    "Reported LUNs data has changed") },
2281 	/* DTLPWROMAEBKVF */
2282 	{ SST(0x3F, 0x0F, SS_RDEF,	/* XXX TBD */
2283 	    "Echo buffer overwritten") },
2284 	/* DT  WROM  B    */
2285 	{ SST(0x3F, 0x10, SS_RDEF,	/* XXX TBD */
2286 	    "Medium loadable") },
2287 	/* DT  WROM  B    */
2288 	{ SST(0x3F, 0x11, SS_RDEF,	/* XXX TBD */
2289 	    "Medium auxiliary memory accessible") },
2290 	/* DTLPWR MAEBK F */
2291 	{ SST(0x3F, 0x12, SS_RDEF,	/* XXX TBD */
2292 	    "iSCSI IP address added") },
2293 	/* DTLPWR MAEBK F */
2294 	{ SST(0x3F, 0x13, SS_RDEF,	/* XXX TBD */
2295 	    "iSCSI IP address removed") },
2296 	/* DTLPWR MAEBK F */
2297 	{ SST(0x3F, 0x14, SS_RDEF,	/* XXX TBD */
2298 	    "iSCSI IP address changed") },
2299 	/* DTLPWR MAEBK   */
2300 	{ SST(0x3F, 0x15, SS_RDEF,	/* XXX TBD */
2301 	    "Inspect referrals sense descriptors") },
2302 	/* DTLPWROMAEBKVF */
2303 	{ SST(0x3F, 0x16, SS_RDEF,	/* XXX TBD */
2304 	    "Microcode has been changed without reset") },
2305 	/* D              */
2306 	{ SST(0x3F, 0x17, SS_RDEF,	/* XXX TBD */
2307 	    "Zone transition to full") },
2308 	/* D              */
2309 	{ SST(0x40, 0x00, SS_RDEF,
2310 	    "RAM failure") },		/* deprecated - use 40 NN instead */
2311 	/* DTLPWROMAEBKVF */
2312 	{ SST(0x40, 0x80, SS_RDEF,
2313 	    "Diagnostic failure: ASCQ = Component ID") },
2314 	/* DTLPWROMAEBKVF */
2315 	{ SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE,
2316 	    NULL) },			/* Range 0x80->0xFF */
2317 	/* D              */
2318 	{ SST(0x41, 0x00, SS_RDEF,
2319 	    "Data path failure") },	/* deprecated - use 40 NN instead */
2320 	/* D              */
2321 	{ SST(0x42, 0x00, SS_RDEF,
2322 	    "Power-on or self-test failure") },
2323 					/* deprecated - use 40 NN instead */
2324 	/* DTLPWROMAEBKVF */
2325 	{ SST(0x43, 0x00, SS_RDEF,
2326 	    "Message error") },
2327 	/* DTLPWROMAEBKVF */
2328 	{ SST(0x44, 0x00, SS_RDEF,
2329 	    "Internal target failure") },
2330 	/* DT P   MAEBKVF */
2331 	{ SST(0x44, 0x01, SS_RDEF,	/* XXX TBD */
2332 	    "Persistent reservation information lost") },
2333 	/* DT        B    */
2334 	{ SST(0x44, 0x71, SS_RDEF,	/* XXX TBD */
2335 	    "ATA device failed set features") },
2336 	/* DTLPWROMAEBKVF */
2337 	{ SST(0x45, 0x00, SS_RDEF,
2338 	    "Select or reselect failure") },
2339 	/* DTLPWROM  BK   */
2340 	{ SST(0x46, 0x00, SS_RDEF,
2341 	    "Unsuccessful soft reset") },
2342 	/* DTLPWROMAEBKVF */
2343 	{ SST(0x47, 0x00, SS_RDEF,
2344 	    "SCSI parity error") },
2345 	/* DTLPWROMAEBKVF */
2346 	{ SST(0x47, 0x01, SS_RDEF,	/* XXX TBD */
2347 	    "Data phase CRC error detected") },
2348 	/* DTLPWROMAEBKVF */
2349 	{ SST(0x47, 0x02, SS_RDEF,	/* XXX TBD */
2350 	    "SCSI parity error detected during ST data phase") },
2351 	/* DTLPWROMAEBKVF */
2352 	{ SST(0x47, 0x03, SS_RDEF,	/* XXX TBD */
2353 	    "Information unit iuCRC error detected") },
2354 	/* DTLPWROMAEBKVF */
2355 	{ SST(0x47, 0x04, SS_RDEF,	/* XXX TBD */
2356 	    "Asynchronous information protection error detected") },
2357 	/* DTLPWROMAEBKVF */
2358 	{ SST(0x47, 0x05, SS_RDEF,	/* XXX TBD */
2359 	    "Protocol service CRC error") },
2360 	/* DT     MAEBKVF */
2361 	{ SST(0x47, 0x06, SS_RDEF,	/* XXX TBD */
2362 	    "PHY test function in progress") },
2363 	/* DT PWROMAEBK   */
2364 	{ SST(0x47, 0x7F, SS_RDEF,	/* XXX TBD */
2365 	    "Some commands cleared by iSCSI protocol event") },
2366 	/* DTLPWROMAEBKVF */
2367 	{ SST(0x48, 0x00, SS_RDEF,
2368 	    "Initiator detected error message received") },
2369 	/* DTLPWROMAEBKVF */
2370 	{ SST(0x49, 0x00, SS_RDEF,
2371 	    "Invalid message error") },
2372 	/* DTLPWROMAEBKVF */
2373 	{ SST(0x4A, 0x00, SS_RDEF,
2374 	    "Command phase error") },
2375 	/* DTLPWROMAEBKVF */
2376 	{ SST(0x4B, 0x00, SS_RDEF,
2377 	    "Data phase error") },
2378 	/* DT PWROMAEBK   */
2379 	{ SST(0x4B, 0x01, SS_RDEF,	/* XXX TBD */
2380 	    "Invalid target port transfer tag received") },
2381 	/* DT PWROMAEBK   */
2382 	{ SST(0x4B, 0x02, SS_RDEF,	/* XXX TBD */
2383 	    "Too much write data") },
2384 	/* DT PWROMAEBK   */
2385 	{ SST(0x4B, 0x03, SS_RDEF,	/* XXX TBD */
2386 	    "ACK/NAK timeout") },
2387 	/* DT PWROMAEBK   */
2388 	{ SST(0x4B, 0x04, SS_RDEF,	/* XXX TBD */
2389 	    "NAK received") },
2390 	/* DT PWROMAEBK   */
2391 	{ SST(0x4B, 0x05, SS_RDEF,	/* XXX TBD */
2392 	    "Data offset error") },
2393 	/* DT PWROMAEBK   */
2394 	{ SST(0x4B, 0x06, SS_RDEF,	/* XXX TBD */
2395 	    "Initiator response timeout") },
2396 	/* DT PWROMAEBK F */
2397 	{ SST(0x4B, 0x07, SS_RDEF,	/* XXX TBD */
2398 	    "Connection lost") },
2399 	/* DT PWROMAEBK F */
2400 	{ SST(0x4B, 0x08, SS_RDEF,	/* XXX TBD */
2401 	    "Data-in buffer overflow - data buffer size") },
2402 	/* DT PWROMAEBK F */
2403 	{ SST(0x4B, 0x09, SS_RDEF,	/* XXX TBD */
2404 	    "Data-in buffer overflow - data buffer descriptor area") },
2405 	/* DT PWROMAEBK F */
2406 	{ SST(0x4B, 0x0A, SS_RDEF,	/* XXX TBD */
2407 	    "Data-in buffer error") },
2408 	/* DT PWROMAEBK F */
2409 	{ SST(0x4B, 0x0B, SS_RDEF,	/* XXX TBD */
2410 	    "Data-out buffer overflow - data buffer size") },
2411 	/* DT PWROMAEBK F */
2412 	{ SST(0x4B, 0x0C, SS_RDEF,	/* XXX TBD */
2413 	    "Data-out buffer overflow - data buffer descriptor area") },
2414 	/* DT PWROMAEBK F */
2415 	{ SST(0x4B, 0x0D, SS_RDEF,	/* XXX TBD */
2416 	    "Data-out buffer error") },
2417 	/* DT PWROMAEBK F */
2418 	{ SST(0x4B, 0x0E, SS_RDEF,	/* XXX TBD */
2419 	    "PCIe fabric error") },
2420 	/* DT PWROMAEBK F */
2421 	{ SST(0x4B, 0x0F, SS_RDEF,	/* XXX TBD */
2422 	    "PCIe completion timeout") },
2423 	/* DT PWROMAEBK F */
2424 	{ SST(0x4B, 0x10, SS_RDEF,	/* XXX TBD */
2425 	    "PCIe completer abort") },
2426 	/* DT PWROMAEBK F */
2427 	{ SST(0x4B, 0x11, SS_RDEF,	/* XXX TBD */
2428 	    "PCIe poisoned TLP received") },
2429 	/* DT PWROMAEBK F */
2430 	{ SST(0x4B, 0x12, SS_RDEF,	/* XXX TBD */
2431 	    "PCIe ECRC check failed") },
2432 	/* DT PWROMAEBK F */
2433 	{ SST(0x4B, 0x13, SS_RDEF,	/* XXX TBD */
2434 	    "PCIe unsupported request") },
2435 	/* DT PWROMAEBK F */
2436 	{ SST(0x4B, 0x14, SS_RDEF,	/* XXX TBD */
2437 	    "PCIe ACS violation") },
2438 	/* DT PWROMAEBK F */
2439 	{ SST(0x4B, 0x15, SS_RDEF,	/* XXX TBD */
2440 	    "PCIe TLP prefix blocket") },
2441 	/* DTLPWROMAEBKVF */
2442 	{ SST(0x4C, 0x00, SS_RDEF,
2443 	    "Logical unit failed self-configuration") },
2444 	/* DTLPWROMAEBKVF */
2445 	{ SST(0x4D, 0x00, SS_RDEF,
2446 	    "Tagged overlapped commands: ASCQ = Queue tag ID") },
2447 	/* DTLPWROMAEBKVF */
2448 	{ SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE,
2449 	    NULL) },			/* Range 0x00->0xFF */
2450 	/* DTLPWROMAEBKVF */
2451 	{ SST(0x4E, 0x00, SS_RDEF,
2452 	    "Overlapped commands attempted") },
2453 	/*  T             */
2454 	{ SST(0x50, 0x00, SS_RDEF,
2455 	    "Write append error") },
2456 	/*  T             */
2457 	{ SST(0x50, 0x01, SS_RDEF,
2458 	    "Write append position error") },
2459 	/*  T             */
2460 	{ SST(0x50, 0x02, SS_RDEF,
2461 	    "Position error related to timing") },
2462 	/*  T   RO        */
2463 	{ SST(0x51, 0x00, SS_RDEF,
2464 	    "Erase failure") },
2465 	/*      R         */
2466 	{ SST(0x51, 0x01, SS_RDEF,	/* XXX TBD */
2467 	    "Erase failure - incomplete erase operation detected") },
2468 	/*  T             */
2469 	{ SST(0x52, 0x00, SS_RDEF,
2470 	    "Cartridge fault") },
2471 	/* DTL WROM  BK   */
2472 	{ SST(0x53, 0x00, SS_RDEF,
2473 	    "Media load or eject failed") },
2474 	/*  T             */
2475 	{ SST(0x53, 0x01, SS_RDEF,
2476 	    "Unload tape failure") },
2477 	/* DT  WROM  BK   */
2478 	{ SST(0x53, 0x02, SS_RDEF,
2479 	    "Medium removal prevented") },
2480 	/*        M       */
2481 	{ SST(0x53, 0x03, SS_RDEF,	/* XXX TBD */
2482 	    "Medium removal prevented by data transfer element") },
2483 	/*  T             */
2484 	{ SST(0x53, 0x04, SS_RDEF,	/* XXX TBD */
2485 	    "Medium thread or unthread failure") },
2486 	/*        M       */
2487 	{ SST(0x53, 0x05, SS_RDEF,	/* XXX TBD */
2488 	    "Volume identifier invalid") },
2489 	/*  T             */
2490 	{ SST(0x53, 0x06, SS_RDEF,	/* XXX TBD */
2491 	    "Volume identifier missing") },
2492 	/*        M       */
2493 	{ SST(0x53, 0x07, SS_RDEF,	/* XXX TBD */
2494 	    "Duplicate volume identifier") },
2495 	/*        M       */
2496 	{ SST(0x53, 0x08, SS_RDEF,	/* XXX TBD */
2497 	    "Element status unknown") },
2498 	/*        M       */
2499 	{ SST(0x53, 0x09, SS_RDEF,	/* XXX TBD */
2500 	    "Data transfer device error - load failed") },
2501 	/*        M       */
2502 	{ SST(0x53, 0x0A, SS_RDEF,	/* XXX TBD */
2503 	    "Data transfer device error - unload failed") },
2504 	/*        M       */
2505 	{ SST(0x53, 0x0B, SS_RDEF,	/* XXX TBD */
2506 	    "Data transfer device error - unload missing") },
2507 	/*        M       */
2508 	{ SST(0x53, 0x0C, SS_RDEF,	/* XXX TBD */
2509 	    "Data transfer device error - eject failed") },
2510 	/*        M       */
2511 	{ SST(0x53, 0x0D, SS_RDEF,	/* XXX TBD */
2512 	    "Data transfer device error - library communication failed") },
2513 	/*    P           */
2514 	{ SST(0x54, 0x00, SS_RDEF,
2515 	    "SCSI to host system interface failure") },
2516 	/*    P           */
2517 	{ SST(0x55, 0x00, SS_RDEF,
2518 	    "System resource failure") },
2519 	/* D     O   BK   */
2520 	{ SST(0x55, 0x01, SS_FATAL | ENOSPC,
2521 	    "System buffer full") },
2522 	/* DTLPWROMAE K   */
2523 	{ SST(0x55, 0x02, SS_RDEF,	/* XXX TBD */
2524 	    "Insufficient reservation resources") },
2525 	/* DTLPWROMAE K   */
2526 	{ SST(0x55, 0x03, SS_RDEF,	/* XXX TBD */
2527 	    "Insufficient resources") },
2528 	/* DTLPWROMAE K   */
2529 	{ SST(0x55, 0x04, SS_RDEF,	/* XXX TBD */
2530 	    "Insufficient registration resources") },
2531 	/* DT PWROMAEBK   */
2532 	{ SST(0x55, 0x05, SS_RDEF,	/* XXX TBD */
2533 	    "Insufficient access control resources") },
2534 	/* DT  WROM  B    */
2535 	{ SST(0x55, 0x06, SS_RDEF,	/* XXX TBD */
2536 	    "Auxiliary memory out of space") },
2537 	/*              F */
2538 	{ SST(0x55, 0x07, SS_RDEF,	/* XXX TBD */
2539 	    "Quota error") },
2540 	/*  T             */
2541 	{ SST(0x55, 0x08, SS_RDEF,	/* XXX TBD */
2542 	    "Maximum number of supplemental decryption keys exceeded") },
2543 	/*        M       */
2544 	{ SST(0x55, 0x09, SS_RDEF,	/* XXX TBD */
2545 	    "Medium auxiliary memory not accessible") },
2546 	/*        M       */
2547 	{ SST(0x55, 0x0A, SS_RDEF,	/* XXX TBD */
2548 	    "Data currently unavailable") },
2549 	/* DTLPWROMAEBKVF */
2550 	{ SST(0x55, 0x0B, SS_RDEF,	/* XXX TBD */
2551 	    "Insufficient power for operation") },
2552 	/* DT P      B    */
2553 	{ SST(0x55, 0x0C, SS_RDEF,	/* XXX TBD */
2554 	    "Insufficient resources to create ROD") },
2555 	/* DT P      B    */
2556 	{ SST(0x55, 0x0D, SS_RDEF,	/* XXX TBD */
2557 	    "Insufficient resources to create ROD token") },
2558 	/* D              */
2559 	{ SST(0x55, 0x0E, SS_RDEF,	/* XXX TBD */
2560 	    "Insufficient zone resources") },
2561 	/* D              */
2562 	{ SST(0x55, 0x0F, SS_RDEF,	/* XXX TBD */
2563 	    "Insufficient zone resources to complete write") },
2564 	/* D              */
2565 	{ SST(0x55, 0x10, SS_RDEF,	/* XXX TBD */
2566 	    "Maximum number of streams open") },
2567 	/*      R         */
2568 	{ SST(0x57, 0x00, SS_RDEF,
2569 	    "Unable to recover table-of-contents") },
2570 	/*       O        */
2571 	{ SST(0x58, 0x00, SS_RDEF,
2572 	    "Generation does not exist") },
2573 	/*       O        */
2574 	{ SST(0x59, 0x00, SS_RDEF,
2575 	    "Updated block read") },
2576 	/* DTLPWRO   BK   */
2577 	{ SST(0x5A, 0x00, SS_RDEF,
2578 	    "Operator request or state change input") },
2579 	/* DT  WROM  BK   */
2580 	{ SST(0x5A, 0x01, SS_RDEF,
2581 	    "Operator medium removal request") },
2582 	/* DT  WRO A BK   */
2583 	{ SST(0x5A, 0x02, SS_RDEF,
2584 	    "Operator selected write protect") },
2585 	/* DT  WRO A BK   */
2586 	{ SST(0x5A, 0x03, SS_RDEF,
2587 	    "Operator selected write permit") },
2588 	/* DTLPWROM   K   */
2589 	{ SST(0x5B, 0x00, SS_RDEF,
2590 	    "Log exception") },
2591 	/* DTLPWROM   K   */
2592 	{ SST(0x5B, 0x01, SS_RDEF,
2593 	    "Threshold condition met") },
2594 	/* DTLPWROM   K   */
2595 	{ SST(0x5B, 0x02, SS_RDEF,
2596 	    "Log counter at maximum") },
2597 	/* DTLPWROM   K   */
2598 	{ SST(0x5B, 0x03, SS_RDEF,
2599 	    "Log list codes exhausted") },
2600 	/* D     O        */
2601 	{ SST(0x5C, 0x00, SS_RDEF,
2602 	    "RPL status change") },
2603 	/* D     O        */
2604 	{ SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2605 	    "Spindles synchronized") },
2606 	/* D     O        */
2607 	{ SST(0x5C, 0x02, SS_RDEF,
2608 	    "Spindles not synchronized") },
2609 	/* DTLPWROMAEBKVF */
2610 	{ SST(0x5D, 0x00, SS_RDEF,
2611 	    "Failure prediction threshold exceeded") },
2612 	/*      R    B    */
2613 	{ SST(0x5D, 0x01, SS_RDEF,	/* XXX TBD */
2614 	    "Media failure prediction threshold exceeded") },
2615 	/*      R         */
2616 	{ SST(0x5D, 0x02, SS_RDEF,	/* XXX TBD */
2617 	    "Logical unit failure prediction threshold exceeded") },
2618 	/*      R         */
2619 	{ SST(0x5D, 0x03, SS_RDEF,	/* XXX TBD */
2620 	    "Spare area exhaustion prediction threshold exceeded") },
2621 	/* D         B    */
2622 	{ SST(0x5D, 0x10, SS_RDEF,	/* XXX TBD */
2623 	    "Hardware impending failure general hard drive failure") },
2624 	/* D         B    */
2625 	{ SST(0x5D, 0x11, SS_RDEF,	/* XXX TBD */
2626 	    "Hardware impending failure drive error rate too high") },
2627 	/* D         B    */
2628 	{ SST(0x5D, 0x12, SS_RDEF,	/* XXX TBD */
2629 	    "Hardware impending failure data error rate too high") },
2630 	/* D         B    */
2631 	{ SST(0x5D, 0x13, SS_RDEF,	/* XXX TBD */
2632 	    "Hardware impending failure seek error rate too high") },
2633 	/* D         B    */
2634 	{ SST(0x5D, 0x14, SS_RDEF,	/* XXX TBD */
2635 	    "Hardware impending failure too many block reassigns") },
2636 	/* D         B    */
2637 	{ SST(0x5D, 0x15, SS_RDEF,	/* XXX TBD */
2638 	    "Hardware impending failure access times too high") },
2639 	/* D         B    */
2640 	{ SST(0x5D, 0x16, SS_RDEF,	/* XXX TBD */
2641 	    "Hardware impending failure start unit times too high") },
2642 	/* D         B    */
2643 	{ SST(0x5D, 0x17, SS_RDEF,	/* XXX TBD */
2644 	    "Hardware impending failure channel parametrics") },
2645 	/* D         B    */
2646 	{ SST(0x5D, 0x18, SS_RDEF,	/* XXX TBD */
2647 	    "Hardware impending failure controller detected") },
2648 	/* D         B    */
2649 	{ SST(0x5D, 0x19, SS_RDEF,	/* XXX TBD */
2650 	    "Hardware impending failure throughput performance") },
2651 	/* D         B    */
2652 	{ SST(0x5D, 0x1A, SS_RDEF,	/* XXX TBD */
2653 	    "Hardware impending failure seek time performance") },
2654 	/* D         B    */
2655 	{ SST(0x5D, 0x1B, SS_RDEF,	/* XXX TBD */
2656 	    "Hardware impending failure spin-up retry count") },
2657 	/* D         B    */
2658 	{ SST(0x5D, 0x1C, SS_RDEF,	/* XXX TBD */
2659 	    "Hardware impending failure drive calibration retry count") },
2660 	/* D         B    */
2661 	{ SST(0x5D, 0x20, SS_RDEF,	/* XXX TBD */
2662 	    "Controller impending failure general hard drive failure") },
2663 	/* D         B    */
2664 	{ SST(0x5D, 0x21, SS_RDEF,	/* XXX TBD */
2665 	    "Controller impending failure drive error rate too high") },
2666 	/* D         B    */
2667 	{ SST(0x5D, 0x22, SS_RDEF,	/* XXX TBD */
2668 	    "Controller impending failure data error rate too high") },
2669 	/* D         B    */
2670 	{ SST(0x5D, 0x23, SS_RDEF,	/* XXX TBD */
2671 	    "Controller impending failure seek error rate too high") },
2672 	/* D         B    */
2673 	{ SST(0x5D, 0x24, SS_RDEF,	/* XXX TBD */
2674 	    "Controller impending failure too many block reassigns") },
2675 	/* D         B    */
2676 	{ SST(0x5D, 0x25, SS_RDEF,	/* XXX TBD */
2677 	    "Controller impending failure access times too high") },
2678 	/* D         B    */
2679 	{ SST(0x5D, 0x26, SS_RDEF,	/* XXX TBD */
2680 	    "Controller impending failure start unit times too high") },
2681 	/* D         B    */
2682 	{ SST(0x5D, 0x27, SS_RDEF,	/* XXX TBD */
2683 	    "Controller impending failure channel parametrics") },
2684 	/* D         B    */
2685 	{ SST(0x5D, 0x28, SS_RDEF,	/* XXX TBD */
2686 	    "Controller impending failure controller detected") },
2687 	/* D         B    */
2688 	{ SST(0x5D, 0x29, SS_RDEF,	/* XXX TBD */
2689 	    "Controller impending failure throughput performance") },
2690 	/* D         B    */
2691 	{ SST(0x5D, 0x2A, SS_RDEF,	/* XXX TBD */
2692 	    "Controller impending failure seek time performance") },
2693 	/* D         B    */
2694 	{ SST(0x5D, 0x2B, SS_RDEF,	/* XXX TBD */
2695 	    "Controller impending failure spin-up retry count") },
2696 	/* D         B    */
2697 	{ SST(0x5D, 0x2C, SS_RDEF,	/* XXX TBD */
2698 	    "Controller impending failure drive calibration retry count") },
2699 	/* D         B    */
2700 	{ SST(0x5D, 0x30, SS_RDEF,	/* XXX TBD */
2701 	    "Data channel impending failure general hard drive failure") },
2702 	/* D         B    */
2703 	{ SST(0x5D, 0x31, SS_RDEF,	/* XXX TBD */
2704 	    "Data channel impending failure drive error rate too high") },
2705 	/* D         B    */
2706 	{ SST(0x5D, 0x32, SS_RDEF,	/* XXX TBD */
2707 	    "Data channel impending failure data error rate too high") },
2708 	/* D         B    */
2709 	{ SST(0x5D, 0x33, SS_RDEF,	/* XXX TBD */
2710 	    "Data channel impending failure seek error rate too high") },
2711 	/* D         B    */
2712 	{ SST(0x5D, 0x34, SS_RDEF,	/* XXX TBD */
2713 	    "Data channel impending failure too many block reassigns") },
2714 	/* D         B    */
2715 	{ SST(0x5D, 0x35, SS_RDEF,	/* XXX TBD */
2716 	    "Data channel impending failure access times too high") },
2717 	/* D         B    */
2718 	{ SST(0x5D, 0x36, SS_RDEF,	/* XXX TBD */
2719 	    "Data channel impending failure start unit times too high") },
2720 	/* D         B    */
2721 	{ SST(0x5D, 0x37, SS_RDEF,	/* XXX TBD */
2722 	    "Data channel impending failure channel parametrics") },
2723 	/* D         B    */
2724 	{ SST(0x5D, 0x38, SS_RDEF,	/* XXX TBD */
2725 	    "Data channel impending failure controller detected") },
2726 	/* D         B    */
2727 	{ SST(0x5D, 0x39, SS_RDEF,	/* XXX TBD */
2728 	    "Data channel impending failure throughput performance") },
2729 	/* D         B    */
2730 	{ SST(0x5D, 0x3A, SS_RDEF,	/* XXX TBD */
2731 	    "Data channel impending failure seek time performance") },
2732 	/* D         B    */
2733 	{ SST(0x5D, 0x3B, SS_RDEF,	/* XXX TBD */
2734 	    "Data channel impending failure spin-up retry count") },
2735 	/* D         B    */
2736 	{ SST(0x5D, 0x3C, SS_RDEF,	/* XXX TBD */
2737 	    "Data channel impending failure drive calibration retry count") },
2738 	/* D         B    */
2739 	{ SST(0x5D, 0x40, SS_RDEF,	/* XXX TBD */
2740 	    "Servo impending failure general hard drive failure") },
2741 	/* D         B    */
2742 	{ SST(0x5D, 0x41, SS_RDEF,	/* XXX TBD */
2743 	    "Servo impending failure drive error rate too high") },
2744 	/* D         B    */
2745 	{ SST(0x5D, 0x42, SS_RDEF,	/* XXX TBD */
2746 	    "Servo impending failure data error rate too high") },
2747 	/* D         B    */
2748 	{ SST(0x5D, 0x43, SS_RDEF,	/* XXX TBD */
2749 	    "Servo impending failure seek error rate too high") },
2750 	/* D         B    */
2751 	{ SST(0x5D, 0x44, SS_RDEF,	/* XXX TBD */
2752 	    "Servo impending failure too many block reassigns") },
2753 	/* D         B    */
2754 	{ SST(0x5D, 0x45, SS_RDEF,	/* XXX TBD */
2755 	    "Servo impending failure access times too high") },
2756 	/* D         B    */
2757 	{ SST(0x5D, 0x46, SS_RDEF,	/* XXX TBD */
2758 	    "Servo impending failure start unit times too high") },
2759 	/* D         B    */
2760 	{ SST(0x5D, 0x47, SS_RDEF,	/* XXX TBD */
2761 	    "Servo impending failure channel parametrics") },
2762 	/* D         B    */
2763 	{ SST(0x5D, 0x48, SS_RDEF,	/* XXX TBD */
2764 	    "Servo impending failure controller detected") },
2765 	/* D         B    */
2766 	{ SST(0x5D, 0x49, SS_RDEF,	/* XXX TBD */
2767 	    "Servo impending failure throughput performance") },
2768 	/* D         B    */
2769 	{ SST(0x5D, 0x4A, SS_RDEF,	/* XXX TBD */
2770 	    "Servo impending failure seek time performance") },
2771 	/* D         B    */
2772 	{ SST(0x5D, 0x4B, SS_RDEF,	/* XXX TBD */
2773 	    "Servo impending failure spin-up retry count") },
2774 	/* D         B    */
2775 	{ SST(0x5D, 0x4C, SS_RDEF,	/* XXX TBD */
2776 	    "Servo impending failure drive calibration retry count") },
2777 	/* D         B    */
2778 	{ SST(0x5D, 0x50, SS_RDEF,	/* XXX TBD */
2779 	    "Spindle impending failure general hard drive failure") },
2780 	/* D         B    */
2781 	{ SST(0x5D, 0x51, SS_RDEF,	/* XXX TBD */
2782 	    "Spindle impending failure drive error rate too high") },
2783 	/* D         B    */
2784 	{ SST(0x5D, 0x52, SS_RDEF,	/* XXX TBD */
2785 	    "Spindle impending failure data error rate too high") },
2786 	/* D         B    */
2787 	{ SST(0x5D, 0x53, SS_RDEF,	/* XXX TBD */
2788 	    "Spindle impending failure seek error rate too high") },
2789 	/* D         B    */
2790 	{ SST(0x5D, 0x54, SS_RDEF,	/* XXX TBD */
2791 	    "Spindle impending failure too many block reassigns") },
2792 	/* D         B    */
2793 	{ SST(0x5D, 0x55, SS_RDEF,	/* XXX TBD */
2794 	    "Spindle impending failure access times too high") },
2795 	/* D         B    */
2796 	{ SST(0x5D, 0x56, SS_RDEF,	/* XXX TBD */
2797 	    "Spindle impending failure start unit times too high") },
2798 	/* D         B    */
2799 	{ SST(0x5D, 0x57, SS_RDEF,	/* XXX TBD */
2800 	    "Spindle impending failure channel parametrics") },
2801 	/* D         B    */
2802 	{ SST(0x5D, 0x58, SS_RDEF,	/* XXX TBD */
2803 	    "Spindle impending failure controller detected") },
2804 	/* D         B    */
2805 	{ SST(0x5D, 0x59, SS_RDEF,	/* XXX TBD */
2806 	    "Spindle impending failure throughput performance") },
2807 	/* D         B    */
2808 	{ SST(0x5D, 0x5A, SS_RDEF,	/* XXX TBD */
2809 	    "Spindle impending failure seek time performance") },
2810 	/* D         B    */
2811 	{ SST(0x5D, 0x5B, SS_RDEF,	/* XXX TBD */
2812 	    "Spindle impending failure spin-up retry count") },
2813 	/* D         B    */
2814 	{ SST(0x5D, 0x5C, SS_RDEF,	/* XXX TBD */
2815 	    "Spindle impending failure drive calibration retry count") },
2816 	/* D         B    */
2817 	{ SST(0x5D, 0x60, SS_RDEF,	/* XXX TBD */
2818 	    "Firmware impending failure general hard drive failure") },
2819 	/* D         B    */
2820 	{ SST(0x5D, 0x61, SS_RDEF,	/* XXX TBD */
2821 	    "Firmware impending failure drive error rate too high") },
2822 	/* D         B    */
2823 	{ SST(0x5D, 0x62, SS_RDEF,	/* XXX TBD */
2824 	    "Firmware impending failure data error rate too high") },
2825 	/* D         B    */
2826 	{ SST(0x5D, 0x63, SS_RDEF,	/* XXX TBD */
2827 	    "Firmware impending failure seek error rate too high") },
2828 	/* D         B    */
2829 	{ SST(0x5D, 0x64, SS_RDEF,	/* XXX TBD */
2830 	    "Firmware impending failure too many block reassigns") },
2831 	/* D         B    */
2832 	{ SST(0x5D, 0x65, SS_RDEF,	/* XXX TBD */
2833 	    "Firmware impending failure access times too high") },
2834 	/* D         B    */
2835 	{ SST(0x5D, 0x66, SS_RDEF,	/* XXX TBD */
2836 	    "Firmware impending failure start unit times too high") },
2837 	/* D         B    */
2838 	{ SST(0x5D, 0x67, SS_RDEF,	/* XXX TBD */
2839 	    "Firmware impending failure channel parametrics") },
2840 	/* D         B    */
2841 	{ SST(0x5D, 0x68, SS_RDEF,	/* XXX TBD */
2842 	    "Firmware impending failure controller detected") },
2843 	/* D         B    */
2844 	{ SST(0x5D, 0x69, SS_RDEF,	/* XXX TBD */
2845 	    "Firmware impending failure throughput performance") },
2846 	/* D         B    */
2847 	{ SST(0x5D, 0x6A, SS_RDEF,	/* XXX TBD */
2848 	    "Firmware impending failure seek time performance") },
2849 	/* D         B    */
2850 	{ SST(0x5D, 0x6B, SS_RDEF,	/* XXX TBD */
2851 	    "Firmware impending failure spin-up retry count") },
2852 	/* D         B    */
2853 	{ SST(0x5D, 0x6C, SS_RDEF,	/* XXX TBD */
2854 	    "Firmware impending failure drive calibration retry count") },
2855 	/* DTLPWROMAEBKVF */
2856 	{ SST(0x5D, 0xFF, SS_RDEF,
2857 	    "Failure prediction threshold exceeded (false)") },
2858 	/* DTLPWRO A  K   */
2859 	{ SST(0x5E, 0x00, SS_RDEF,
2860 	    "Low power condition on") },
2861 	/* DTLPWRO A  K   */
2862 	{ SST(0x5E, 0x01, SS_RDEF,
2863 	    "Idle condition activated by timer") },
2864 	/* DTLPWRO A  K   */
2865 	{ SST(0x5E, 0x02, SS_RDEF,
2866 	    "Standby condition activated by timer") },
2867 	/* DTLPWRO A  K   */
2868 	{ SST(0x5E, 0x03, SS_RDEF,
2869 	    "Idle condition activated by command") },
2870 	/* DTLPWRO A  K   */
2871 	{ SST(0x5E, 0x04, SS_RDEF,
2872 	    "Standby condition activated by command") },
2873 	/* DTLPWRO A  K   */
2874 	{ SST(0x5E, 0x05, SS_RDEF,
2875 	    "Idle-B condition activated by timer") },
2876 	/* DTLPWRO A  K   */
2877 	{ SST(0x5E, 0x06, SS_RDEF,
2878 	    "Idle-B condition activated by command") },
2879 	/* DTLPWRO A  K   */
2880 	{ SST(0x5E, 0x07, SS_RDEF,
2881 	    "Idle-C condition activated by timer") },
2882 	/* DTLPWRO A  K   */
2883 	{ SST(0x5E, 0x08, SS_RDEF,
2884 	    "Idle-C condition activated by command") },
2885 	/* DTLPWRO A  K   */
2886 	{ SST(0x5E, 0x09, SS_RDEF,
2887 	    "Standby-Y condition activated by timer") },
2888 	/* DTLPWRO A  K   */
2889 	{ SST(0x5E, 0x0A, SS_RDEF,
2890 	    "Standby-Y condition activated by command") },
2891 	/*           B    */
2892 	{ SST(0x5E, 0x41, SS_RDEF,	/* XXX TBD */
2893 	    "Power state change to active") },
2894 	/*           B    */
2895 	{ SST(0x5E, 0x42, SS_RDEF,	/* XXX TBD */
2896 	    "Power state change to idle") },
2897 	/*           B    */
2898 	{ SST(0x5E, 0x43, SS_RDEF,	/* XXX TBD */
2899 	    "Power state change to standby") },
2900 	/*           B    */
2901 	{ SST(0x5E, 0x45, SS_RDEF,	/* XXX TBD */
2902 	    "Power state change to sleep") },
2903 	/*           BK   */
2904 	{ SST(0x5E, 0x47, SS_RDEF,	/* XXX TBD */
2905 	    "Power state change to device control") },
2906 	/*                */
2907 	{ SST(0x60, 0x00, SS_RDEF,
2908 	    "Lamp failure") },
2909 	/*                */
2910 	{ SST(0x61, 0x00, SS_RDEF,
2911 	    "Video acquisition error") },
2912 	/*                */
2913 	{ SST(0x61, 0x01, SS_RDEF,
2914 	    "Unable to acquire video") },
2915 	/*                */
2916 	{ SST(0x61, 0x02, SS_RDEF,
2917 	    "Out of focus") },
2918 	/*                */
2919 	{ SST(0x62, 0x00, SS_RDEF,
2920 	    "Scan head positioning error") },
2921 	/*      R         */
2922 	{ SST(0x63, 0x00, SS_RDEF,
2923 	    "End of user area encountered on this track") },
2924 	/*      R         */
2925 	{ SST(0x63, 0x01, SS_FATAL | ENOSPC,
2926 	    "Packet does not fit in available space") },
2927 	/*      R         */
2928 	{ SST(0x64, 0x00, SS_FATAL | ENXIO,
2929 	    "Illegal mode for this track") },
2930 	/*      R         */
2931 	{ SST(0x64, 0x01, SS_RDEF,
2932 	    "Invalid packet size") },
2933 	/* DTLPWROMAEBKVF */
2934 	{ SST(0x65, 0x00, SS_RDEF,
2935 	    "Voltage fault") },
2936 	/*                */
2937 	{ SST(0x66, 0x00, SS_RDEF,
2938 	    "Automatic document feeder cover up") },
2939 	/*                */
2940 	{ SST(0x66, 0x01, SS_RDEF,
2941 	    "Automatic document feeder lift up") },
2942 	/*                */
2943 	{ SST(0x66, 0x02, SS_RDEF,
2944 	    "Document jam in automatic document feeder") },
2945 	/*                */
2946 	{ SST(0x66, 0x03, SS_RDEF,
2947 	    "Document miss feed automatic in document feeder") },
2948 	/*         A      */
2949 	{ SST(0x67, 0x00, SS_RDEF,
2950 	    "Configuration failure") },
2951 	/*         A      */
2952 	{ SST(0x67, 0x01, SS_RDEF,
2953 	    "Configuration of incapable logical units failed") },
2954 	/*         A      */
2955 	{ SST(0x67, 0x02, SS_RDEF,
2956 	    "Add logical unit failed") },
2957 	/*         A      */
2958 	{ SST(0x67, 0x03, SS_RDEF,
2959 	    "Modification of logical unit failed") },
2960 	/*         A      */
2961 	{ SST(0x67, 0x04, SS_RDEF,
2962 	    "Exchange of logical unit failed") },
2963 	/*         A      */
2964 	{ SST(0x67, 0x05, SS_RDEF,
2965 	    "Remove of logical unit failed") },
2966 	/*         A      */
2967 	{ SST(0x67, 0x06, SS_RDEF,
2968 	    "Attachment of logical unit failed") },
2969 	/*         A      */
2970 	{ SST(0x67, 0x07, SS_RDEF,
2971 	    "Creation of logical unit failed") },
2972 	/*         A      */
2973 	{ SST(0x67, 0x08, SS_RDEF,	/* XXX TBD */
2974 	    "Assign failure occurred") },
2975 	/*         A      */
2976 	{ SST(0x67, 0x09, SS_RDEF,	/* XXX TBD */
2977 	    "Multiply assigned logical unit") },
2978 	/* DTLPWROMAEBKVF */
2979 	{ SST(0x67, 0x0A, SS_RDEF,	/* XXX TBD */
2980 	    "Set target port groups command failed") },
2981 	/* DT        B    */
2982 	{ SST(0x67, 0x0B, SS_RDEF,	/* XXX TBD */
2983 	    "ATA device feature not enabled") },
2984 	/*         A      */
2985 	{ SST(0x68, 0x00, SS_RDEF,
2986 	    "Logical unit not configured") },
2987 	/* D              */
2988 	{ SST(0x68, 0x01, SS_RDEF,
2989 	    "Subsidiary logical unit not configured") },
2990 	/*         A      */
2991 	{ SST(0x69, 0x00, SS_RDEF,
2992 	    "Data loss on logical unit") },
2993 	/*         A      */
2994 	{ SST(0x69, 0x01, SS_RDEF,
2995 	    "Multiple logical unit failures") },
2996 	/*         A      */
2997 	{ SST(0x69, 0x02, SS_RDEF,
2998 	    "Parity/data mismatch") },
2999 	/*         A      */
3000 	{ SST(0x6A, 0x00, SS_RDEF,
3001 	    "Informational, refer to log") },
3002 	/*         A      */
3003 	{ SST(0x6B, 0x00, SS_RDEF,
3004 	    "State change has occurred") },
3005 	/*         A      */
3006 	{ SST(0x6B, 0x01, SS_RDEF,
3007 	    "Redundancy level got better") },
3008 	/*         A      */
3009 	{ SST(0x6B, 0x02, SS_RDEF,
3010 	    "Redundancy level got worse") },
3011 	/*         A      */
3012 	{ SST(0x6C, 0x00, SS_RDEF,
3013 	    "Rebuild failure occurred") },
3014 	/*         A      */
3015 	{ SST(0x6D, 0x00, SS_RDEF,
3016 	    "Recalculate failure occurred") },
3017 	/*         A      */
3018 	{ SST(0x6E, 0x00, SS_RDEF,
3019 	    "Command to logical unit failed") },
3020 	/*      R         */
3021 	{ SST(0x6F, 0x00, SS_RDEF,	/* XXX TBD */
3022 	    "Copy protection key exchange failure - authentication failure") },
3023 	/*      R         */
3024 	{ SST(0x6F, 0x01, SS_RDEF,	/* XXX TBD */
3025 	    "Copy protection key exchange failure - key not present") },
3026 	/*      R         */
3027 	{ SST(0x6F, 0x02, SS_RDEF,	/* XXX TBD */
3028 	    "Copy protection key exchange failure - key not established") },
3029 	/*      R         */
3030 	{ SST(0x6F, 0x03, SS_RDEF,	/* XXX TBD */
3031 	    "Read of scrambled sector without authentication") },
3032 	/*      R         */
3033 	{ SST(0x6F, 0x04, SS_RDEF,	/* XXX TBD */
3034 	    "Media region code is mismatched to logical unit region") },
3035 	/*      R         */
3036 	{ SST(0x6F, 0x05, SS_RDEF,	/* XXX TBD */
3037 	    "Drive region must be permanent/region reset count error") },
3038 	/*      R         */
3039 	{ SST(0x6F, 0x06, SS_RDEF,	/* XXX TBD */
3040 	    "Insufficient block count for binding NONCE recording") },
3041 	/*      R         */
3042 	{ SST(0x6F, 0x07, SS_RDEF,	/* XXX TBD */
3043 	    "Conflict in binding NONCE recording") },
3044 	/*  T             */
3045 	{ SST(0x70, 0x00, SS_RDEF,
3046 	    "Decompression exception short: ASCQ = Algorithm ID") },
3047 	/*  T             */
3048 	{ SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE,
3049 	    NULL) },			/* Range 0x00 -> 0xFF */
3050 	/*  T             */
3051 	{ SST(0x71, 0x00, SS_RDEF,
3052 	    "Decompression exception long: ASCQ = Algorithm ID") },
3053 	/*  T             */
3054 	{ SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE,
3055 	    NULL) },			/* Range 0x00 -> 0xFF */
3056 	/*      R         */
3057 	{ SST(0x72, 0x00, SS_RDEF,
3058 	    "Session fixation error") },
3059 	/*      R         */
3060 	{ SST(0x72, 0x01, SS_RDEF,
3061 	    "Session fixation error writing lead-in") },
3062 	/*      R         */
3063 	{ SST(0x72, 0x02, SS_RDEF,
3064 	    "Session fixation error writing lead-out") },
3065 	/*      R         */
3066 	{ SST(0x72, 0x03, SS_RDEF,
3067 	    "Session fixation error - incomplete track in session") },
3068 	/*      R         */
3069 	{ SST(0x72, 0x04, SS_RDEF,
3070 	    "Empty or partially written reserved track") },
3071 	/*      R         */
3072 	{ SST(0x72, 0x05, SS_RDEF,	/* XXX TBD */
3073 	    "No more track reservations allowed") },
3074 	/*      R         */
3075 	{ SST(0x72, 0x06, SS_RDEF,	/* XXX TBD */
3076 	    "RMZ extension is not allowed") },
3077 	/*      R         */
3078 	{ SST(0x72, 0x07, SS_RDEF,	/* XXX TBD */
3079 	    "No more test zone extensions are allowed") },
3080 	/*      R         */
3081 	{ SST(0x73, 0x00, SS_RDEF,
3082 	    "CD control error") },
3083 	/*      R         */
3084 	{ SST(0x73, 0x01, SS_RDEF,
3085 	    "Power calibration area almost full") },
3086 	/*      R         */
3087 	{ SST(0x73, 0x02, SS_FATAL | ENOSPC,
3088 	    "Power calibration area is full") },
3089 	/*      R         */
3090 	{ SST(0x73, 0x03, SS_RDEF,
3091 	    "Power calibration area error") },
3092 	/*      R         */
3093 	{ SST(0x73, 0x04, SS_RDEF,
3094 	    "Program memory area update failure") },
3095 	/*      R         */
3096 	{ SST(0x73, 0x05, SS_RDEF,
3097 	    "Program memory area is full") },
3098 	/*      R         */
3099 	{ SST(0x73, 0x06, SS_RDEF,	/* XXX TBD */
3100 	    "RMA/PMA is almost full") },
3101 	/*      R         */
3102 	{ SST(0x73, 0x10, SS_RDEF,	/* XXX TBD */
3103 	    "Current power calibration area almost full") },
3104 	/*      R         */
3105 	{ SST(0x73, 0x11, SS_RDEF,	/* XXX TBD */
3106 	    "Current power calibration area is full") },
3107 	/*      R         */
3108 	{ SST(0x73, 0x17, SS_RDEF,	/* XXX TBD */
3109 	    "RDZ is full") },
3110 	/*  T             */
3111 	{ SST(0x74, 0x00, SS_RDEF,	/* XXX TBD */
3112 	    "Security error") },
3113 	/*  T             */
3114 	{ SST(0x74, 0x01, SS_RDEF,	/* XXX TBD */
3115 	    "Unable to decrypt data") },
3116 	/*  T             */
3117 	{ SST(0x74, 0x02, SS_RDEF,	/* XXX TBD */
3118 	    "Unencrypted data encountered while decrypting") },
3119 	/*  T             */
3120 	{ SST(0x74, 0x03, SS_RDEF,	/* XXX TBD */
3121 	    "Incorrect data encryption key") },
3122 	/*  T             */
3123 	{ SST(0x74, 0x04, SS_RDEF,	/* XXX TBD */
3124 	    "Cryptographic integrity validation failed") },
3125 	/*  T             */
3126 	{ SST(0x74, 0x05, SS_RDEF,	/* XXX TBD */
3127 	    "Error decrypting data") },
3128 	/*  T             */
3129 	{ SST(0x74, 0x06, SS_RDEF,	/* XXX TBD */
3130 	    "Unknown signature verification key") },
3131 	/*  T             */
3132 	{ SST(0x74, 0x07, SS_RDEF,	/* XXX TBD */
3133 	    "Encryption parameters not useable") },
3134 	/* DT   R M E  VF */
3135 	{ SST(0x74, 0x08, SS_RDEF,	/* XXX TBD */
3136 	    "Digital signature validation failure") },
3137 	/*  T             */
3138 	{ SST(0x74, 0x09, SS_RDEF,	/* XXX TBD */
3139 	    "Encryption mode mismatch on read") },
3140 	/*  T             */
3141 	{ SST(0x74, 0x0A, SS_RDEF,	/* XXX TBD */
3142 	    "Encrypted block not raw read enabled") },
3143 	/*  T             */
3144 	{ SST(0x74, 0x0B, SS_RDEF,	/* XXX TBD */
3145 	    "Incorrect encryption parameters") },
3146 	/* DT   R MAEBKV  */
3147 	{ SST(0x74, 0x0C, SS_RDEF,	/* XXX TBD */
3148 	    "Unable to decrypt parameter list") },
3149 	/*  T             */
3150 	{ SST(0x74, 0x0D, SS_RDEF,	/* XXX TBD */
3151 	    "Encryption algorithm disabled") },
3152 	/* DT   R MAEBKV  */
3153 	{ SST(0x74, 0x10, SS_RDEF,	/* XXX TBD */
3154 	    "SA creation parameter value invalid") },
3155 	/* DT   R MAEBKV  */
3156 	{ SST(0x74, 0x11, SS_RDEF,	/* XXX TBD */
3157 	    "SA creation parameter value rejected") },
3158 	/* DT   R MAEBKV  */
3159 	{ SST(0x74, 0x12, SS_RDEF,	/* XXX TBD */
3160 	    "Invalid SA usage") },
3161 	/*  T             */
3162 	{ SST(0x74, 0x21, SS_RDEF,	/* XXX TBD */
3163 	    "Data encryption configuration prevented") },
3164 	/* DT   R MAEBKV  */
3165 	{ SST(0x74, 0x30, SS_RDEF,	/* XXX TBD */
3166 	    "SA creation parameter not supported") },
3167 	/* DT   R MAEBKV  */
3168 	{ SST(0x74, 0x40, SS_RDEF,	/* XXX TBD */
3169 	    "Authentication failed") },
3170 	/*             V  */
3171 	{ SST(0x74, 0x61, SS_RDEF,	/* XXX TBD */
3172 	    "External data encryption key manager access error") },
3173 	/*             V  */
3174 	{ SST(0x74, 0x62, SS_RDEF,	/* XXX TBD */
3175 	    "External data encryption key manager error") },
3176 	/*             V  */
3177 	{ SST(0x74, 0x63, SS_RDEF,	/* XXX TBD */
3178 	    "External data encryption key not found") },
3179 	/*             V  */
3180 	{ SST(0x74, 0x64, SS_RDEF,	/* XXX TBD */
3181 	    "External data encryption request not authorized") },
3182 	/*  T             */
3183 	{ SST(0x74, 0x6E, SS_RDEF,	/* XXX TBD */
3184 	    "External data encryption control timeout") },
3185 	/*  T             */
3186 	{ SST(0x74, 0x6F, SS_RDEF,	/* XXX TBD */
3187 	    "External data encryption control error") },
3188 	/* DT   R M E  V  */
3189 	{ SST(0x74, 0x71, SS_RDEF,	/* XXX TBD */
3190 	    "Logical unit access not authorized") },
3191 	/* D              */
3192 	{ SST(0x74, 0x79, SS_RDEF,	/* XXX TBD */
3193 	    "Security conflict in translated device") }
3194 };
3195 
3196 const u_int asc_table_size = nitems(asc_table);
3197 
3198 struct asc_key
3199 {
3200 	int asc;
3201 	int ascq;
3202 };
3203 
3204 static int
3205 ascentrycomp(const void *key, const void *member)
3206 {
3207 	int asc;
3208 	int ascq;
3209 	const struct asc_table_entry *table_entry;
3210 
3211 	asc = ((const struct asc_key *)key)->asc;
3212 	ascq = ((const struct asc_key *)key)->ascq;
3213 	table_entry = (const struct asc_table_entry *)member;
3214 
3215 	if (asc >= table_entry->asc) {
3216 
3217 		if (asc > table_entry->asc)
3218 			return (1);
3219 
3220 		if (ascq <= table_entry->ascq) {
3221 			/* Check for ranges */
3222 			if (ascq == table_entry->ascq
3223 		 	 || ((table_entry->action & SSQ_RANGE) != 0
3224 		  	   && ascq >= (table_entry - 1)->ascq))
3225 				return (0);
3226 			return (-1);
3227 		}
3228 		return (1);
3229 	}
3230 	return (-1);
3231 }
3232 
3233 static int
3234 senseentrycomp(const void *key, const void *member)
3235 {
3236 	int sense_key;
3237 	const struct sense_key_table_entry *table_entry;
3238 
3239 	sense_key = *((const int *)key);
3240 	table_entry = (const struct sense_key_table_entry *)member;
3241 
3242 	if (sense_key >= table_entry->sense_key) {
3243 		if (sense_key == table_entry->sense_key)
3244 			return (0);
3245 		return (1);
3246 	}
3247 	return (-1);
3248 }
3249 
3250 static void
3251 fetchtableentries(int sense_key, int asc, int ascq,
3252 		  struct scsi_inquiry_data *inq_data,
3253 		  const struct sense_key_table_entry **sense_entry,
3254 		  const struct asc_table_entry **asc_entry)
3255 {
3256 	caddr_t match;
3257 	const struct asc_table_entry *asc_tables[2];
3258 	const struct sense_key_table_entry *sense_tables[2];
3259 	struct asc_key asc_ascq;
3260 	size_t asc_tables_size[2];
3261 	size_t sense_tables_size[2];
3262 	int num_asc_tables;
3263 	int num_sense_tables;
3264 	int i;
3265 
3266 	/* Default to failure */
3267 	*sense_entry = NULL;
3268 	*asc_entry = NULL;
3269 	match = NULL;
3270 	if (inq_data != NULL)
3271 		match = cam_quirkmatch((caddr_t)inq_data,
3272 				       (caddr_t)sense_quirk_table,
3273 				       sense_quirk_table_size,
3274 				       sizeof(*sense_quirk_table),
3275 				       scsi_inquiry_match);
3276 
3277 	if (match != NULL) {
3278 		struct scsi_sense_quirk_entry *quirk;
3279 
3280 		quirk = (struct scsi_sense_quirk_entry *)match;
3281 		asc_tables[0] = quirk->asc_info;
3282 		asc_tables_size[0] = quirk->num_ascs;
3283 		asc_tables[1] = asc_table;
3284 		asc_tables_size[1] = asc_table_size;
3285 		num_asc_tables = 2;
3286 		sense_tables[0] = quirk->sense_key_info;
3287 		sense_tables_size[0] = quirk->num_sense_keys;
3288 		sense_tables[1] = sense_key_table;
3289 		sense_tables_size[1] = nitems(sense_key_table);
3290 		num_sense_tables = 2;
3291 	} else {
3292 		asc_tables[0] = asc_table;
3293 		asc_tables_size[0] = asc_table_size;
3294 		num_asc_tables = 1;
3295 		sense_tables[0] = sense_key_table;
3296 		sense_tables_size[0] = nitems(sense_key_table);
3297 		num_sense_tables = 1;
3298 	}
3299 
3300 	asc_ascq.asc = asc;
3301 	asc_ascq.ascq = ascq;
3302 	for (i = 0; i < num_asc_tables; i++) {
3303 		void *found_entry;
3304 
3305 		found_entry = bsearch(&asc_ascq, asc_tables[i],
3306 				      asc_tables_size[i],
3307 				      sizeof(**asc_tables),
3308 				      ascentrycomp);
3309 
3310 		if (found_entry) {
3311 			*asc_entry = (struct asc_table_entry *)found_entry;
3312 			break;
3313 		}
3314 	}
3315 
3316 	for (i = 0; i < num_sense_tables; i++) {
3317 		void *found_entry;
3318 
3319 		found_entry = bsearch(&sense_key, sense_tables[i],
3320 				      sense_tables_size[i],
3321 				      sizeof(**sense_tables),
3322 				      senseentrycomp);
3323 
3324 		if (found_entry) {
3325 			*sense_entry =
3326 			    (struct sense_key_table_entry *)found_entry;
3327 			break;
3328 		}
3329 	}
3330 }
3331 
3332 void
3333 scsi_sense_desc(int sense_key, int asc, int ascq,
3334 		struct scsi_inquiry_data *inq_data,
3335 		const char **sense_key_desc, const char **asc_desc)
3336 {
3337 	const struct asc_table_entry *asc_entry;
3338 	const struct sense_key_table_entry *sense_entry;
3339 
3340 	fetchtableentries(sense_key, asc, ascq,
3341 			  inq_data,
3342 			  &sense_entry,
3343 			  &asc_entry);
3344 
3345 	if (sense_entry != NULL)
3346 		*sense_key_desc = sense_entry->desc;
3347 	else
3348 		*sense_key_desc = "Invalid Sense Key";
3349 
3350 	if (asc_entry != NULL)
3351 		*asc_desc = asc_entry->desc;
3352 	else if (asc >= 0x80 && asc <= 0xff)
3353 		*asc_desc = "Vendor Specific ASC";
3354 	else if (ascq >= 0x80 && ascq <= 0xff)
3355 		*asc_desc = "Vendor Specific ASCQ";
3356 	else
3357 		*asc_desc = "Reserved ASC/ASCQ pair";
3358 }
3359 
3360 /*
3361  * Given sense and device type information, return the appropriate action.
3362  * If we do not understand the specific error as identified by the ASC/ASCQ
3363  * pair, fall back on the more generic actions derived from the sense key.
3364  */
3365 scsi_sense_action
3366 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data,
3367 		  u_int32_t sense_flags)
3368 {
3369 	const struct asc_table_entry *asc_entry;
3370 	const struct sense_key_table_entry *sense_entry;
3371 	int error_code, sense_key, asc, ascq;
3372 	scsi_sense_action action;
3373 
3374 	if (!scsi_extract_sense_ccb((union ccb *)csio,
3375 	    &error_code, &sense_key, &asc, &ascq)) {
3376 		action = SS_RETRY | SSQ_DECREMENT_COUNT | SSQ_PRINT_SENSE | EIO;
3377 	} else if ((error_code == SSD_DEFERRED_ERROR)
3378 	 || (error_code == SSD_DESC_DEFERRED_ERROR)) {
3379 		/*
3380 		 * XXX dufault@FreeBSD.org
3381 		 * This error doesn't relate to the command associated
3382 		 * with this request sense.  A deferred error is an error
3383 		 * for a command that has already returned GOOD status
3384 		 * (see SCSI2 8.2.14.2).
3385 		 *
3386 		 * By my reading of that section, it looks like the current
3387 		 * command has been cancelled, we should now clean things up
3388 		 * (hopefully recovering any lost data) and then retry the
3389 		 * current command.  There are two easy choices, both wrong:
3390 		 *
3391 		 * 1. Drop through (like we had been doing), thus treating
3392 		 *    this as if the error were for the current command and
3393 		 *    return and stop the current command.
3394 		 *
3395 		 * 2. Issue a retry (like I made it do) thus hopefully
3396 		 *    recovering the current transfer, and ignoring the
3397 		 *    fact that we've dropped a command.
3398 		 *
3399 		 * These should probably be handled in a device specific
3400 		 * sense handler or punted back up to a user mode daemon
3401 		 */
3402 		action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3403 	} else {
3404 		fetchtableentries(sense_key, asc, ascq,
3405 				  inq_data,
3406 				  &sense_entry,
3407 				  &asc_entry);
3408 
3409 		/*
3410 		 * Override the 'No additional Sense' entry (0,0)
3411 		 * with the error action of the sense key.
3412 		 */
3413 		if (asc_entry != NULL
3414 		 && (asc != 0 || ascq != 0))
3415 			action = asc_entry->action;
3416 		else if (sense_entry != NULL)
3417 			action = sense_entry->action;
3418 		else
3419 			action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3420 
3421 		if (sense_key == SSD_KEY_RECOVERED_ERROR) {
3422 			/*
3423 			 * The action succeeded but the device wants
3424 			 * the user to know that some recovery action
3425 			 * was required.
3426 			 */
3427 			action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK);
3428 			action |= SS_NOP|SSQ_PRINT_SENSE;
3429 		} else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) {
3430 			if ((sense_flags & SF_QUIET_IR) != 0)
3431 				action &= ~SSQ_PRINT_SENSE;
3432 		} else if (sense_key == SSD_KEY_UNIT_ATTENTION) {
3433 			if ((sense_flags & SF_RETRY_UA) != 0
3434 			 && (action & SS_MASK) == SS_FAIL) {
3435 				action &= ~(SS_MASK|SSQ_MASK);
3436 				action |= SS_RETRY|SSQ_DECREMENT_COUNT|
3437 					  SSQ_PRINT_SENSE;
3438 			}
3439 			action |= SSQ_UA;
3440 		}
3441 	}
3442 	if ((action & SS_MASK) >= SS_START &&
3443 	    (sense_flags & SF_NO_RECOVERY)) {
3444 		action &= ~SS_MASK;
3445 		action |= SS_FAIL;
3446 	} else if ((action & SS_MASK) == SS_RETRY &&
3447 	    (sense_flags & SF_NO_RETRY)) {
3448 		action &= ~SS_MASK;
3449 		action |= SS_FAIL;
3450 	}
3451 	if ((sense_flags & SF_PRINT_ALWAYS) != 0)
3452 		action |= SSQ_PRINT_SENSE;
3453 	else if ((sense_flags & SF_NO_PRINT) != 0)
3454 		action &= ~SSQ_PRINT_SENSE;
3455 
3456 	return (action);
3457 }
3458 
3459 char *
3460 scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len)
3461 {
3462 	struct sbuf sb;
3463 	int error;
3464 
3465 	if (len == 0)
3466 		return ("");
3467 
3468 	sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN);
3469 
3470 	scsi_cdb_sbuf(cdb_ptr, &sb);
3471 
3472 	/* ENOMEM just means that the fixed buffer is full, OK to ignore */
3473 	error = sbuf_finish(&sb);
3474 	if (error != 0 && error != ENOMEM)
3475 		return ("");
3476 
3477 	return(sbuf_data(&sb));
3478 }
3479 
3480 void
3481 scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb)
3482 {
3483 	u_int8_t cdb_len;
3484 	int i;
3485 
3486 	if (cdb_ptr == NULL)
3487 		return;
3488 
3489 	/*
3490 	 * This is taken from the SCSI-3 draft spec.
3491 	 * (T10/1157D revision 0.3)
3492 	 * The top 3 bits of an opcode are the group code.  The next 5 bits
3493 	 * are the command code.
3494 	 * Group 0:  six byte commands
3495 	 * Group 1:  ten byte commands
3496 	 * Group 2:  ten byte commands
3497 	 * Group 3:  reserved
3498 	 * Group 4:  sixteen byte commands
3499 	 * Group 5:  twelve byte commands
3500 	 * Group 6:  vendor specific
3501 	 * Group 7:  vendor specific
3502 	 */
3503 	switch((*cdb_ptr >> 5) & 0x7) {
3504 		case 0:
3505 			cdb_len = 6;
3506 			break;
3507 		case 1:
3508 		case 2:
3509 			cdb_len = 10;
3510 			break;
3511 		case 3:
3512 		case 6:
3513 		case 7:
3514 			/* in this case, just print out the opcode */
3515 			cdb_len = 1;
3516 			break;
3517 		case 4:
3518 			cdb_len = 16;
3519 			break;
3520 		case 5:
3521 			cdb_len = 12;
3522 			break;
3523 	}
3524 
3525 	for (i = 0; i < cdb_len; i++)
3526 		sbuf_printf(sb, "%02hhx ", cdb_ptr[i]);
3527 
3528 	return;
3529 }
3530 
3531 const char *
3532 scsi_status_string(struct ccb_scsiio *csio)
3533 {
3534 	switch(csio->scsi_status) {
3535 	case SCSI_STATUS_OK:
3536 		return("OK");
3537 	case SCSI_STATUS_CHECK_COND:
3538 		return("Check Condition");
3539 	case SCSI_STATUS_BUSY:
3540 		return("Busy");
3541 	case SCSI_STATUS_INTERMED:
3542 		return("Intermediate");
3543 	case SCSI_STATUS_INTERMED_COND_MET:
3544 		return("Intermediate-Condition Met");
3545 	case SCSI_STATUS_RESERV_CONFLICT:
3546 		return("Reservation Conflict");
3547 	case SCSI_STATUS_CMD_TERMINATED:
3548 		return("Command Terminated");
3549 	case SCSI_STATUS_QUEUE_FULL:
3550 		return("Queue Full");
3551 	case SCSI_STATUS_ACA_ACTIVE:
3552 		return("ACA Active");
3553 	case SCSI_STATUS_TASK_ABORTED:
3554 		return("Task Aborted");
3555 	default: {
3556 		static char unkstr[64];
3557 		snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
3558 			 csio->scsi_status);
3559 		return(unkstr);
3560 	}
3561 	}
3562 }
3563 
3564 /*
3565  * scsi_command_string() returns 0 for success and -1 for failure.
3566  */
3567 #ifdef _KERNEL
3568 int
3569 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb)
3570 #else /* !_KERNEL */
3571 int
3572 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio,
3573 		    struct sbuf *sb)
3574 #endif /* _KERNEL/!_KERNEL */
3575 {
3576 	struct scsi_inquiry_data *inq_data;
3577 #ifdef _KERNEL
3578 	struct	  ccb_getdev *cgd;
3579 #endif /* _KERNEL */
3580 
3581 #ifdef _KERNEL
3582 	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
3583 		return(-1);
3584 	/*
3585 	 * Get the device information.
3586 	 */
3587 	xpt_setup_ccb(&cgd->ccb_h,
3588 		      csio->ccb_h.path,
3589 		      CAM_PRIORITY_NORMAL);
3590 	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
3591 	xpt_action((union ccb *)cgd);
3592 
3593 	/*
3594 	 * If the device is unconfigured, just pretend that it is a hard
3595 	 * drive.  scsi_op_desc() needs this.
3596 	 */
3597 	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
3598 		cgd->inq_data.device = T_DIRECT;
3599 
3600 	inq_data = &cgd->inq_data;
3601 
3602 #else /* !_KERNEL */
3603 
3604 	inq_data = &device->inq_data;
3605 
3606 #endif /* _KERNEL/!_KERNEL */
3607 
3608 	if ((csio->ccb_h.flags & CAM_CDB_POINTER) != 0) {
3609 		sbuf_printf(sb, "%s. CDB: ",
3610 			    scsi_op_desc(csio->cdb_io.cdb_ptr[0], inq_data));
3611 		scsi_cdb_sbuf(csio->cdb_io.cdb_ptr, sb);
3612 	} else {
3613 		sbuf_printf(sb, "%s. CDB: ",
3614 			    scsi_op_desc(csio->cdb_io.cdb_bytes[0], inq_data));
3615 		scsi_cdb_sbuf(csio->cdb_io.cdb_bytes, sb);
3616 	}
3617 
3618 #ifdef _KERNEL
3619 	xpt_free_ccb((union ccb *)cgd);
3620 #endif
3621 
3622 	return(0);
3623 }
3624 
3625 /*
3626  * Iterate over sense descriptors.  Each descriptor is passed into iter_func().
3627  * If iter_func() returns 0, list traversal continues.  If iter_func()
3628  * returns non-zero, list traversal is stopped.
3629  */
3630 void
3631 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
3632 		  int (*iter_func)(struct scsi_sense_data_desc *sense,
3633 				   u_int, struct scsi_sense_desc_header *,
3634 				   void *), void *arg)
3635 {
3636 	int cur_pos;
3637 	int desc_len;
3638 
3639 	/*
3640 	 * First make sure the extra length field is present.
3641 	 */
3642 	if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0)
3643 		return;
3644 
3645 	/*
3646 	 * The length of data actually returned may be different than the
3647 	 * extra_len recorded in the structure.
3648 	 */
3649 	desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc);
3650 
3651 	/*
3652 	 * Limit this further by the extra length reported, and the maximum
3653 	 * allowed extra length.
3654 	 */
3655 	desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX));
3656 
3657 	/*
3658 	 * Subtract the size of the header from the descriptor length.
3659 	 * This is to ensure that we have at least the header left, so we
3660 	 * don't have to check that inside the loop.  This can wind up
3661 	 * being a negative value.
3662 	 */
3663 	desc_len -= sizeof(struct scsi_sense_desc_header);
3664 
3665 	for (cur_pos = 0; cur_pos < desc_len;) {
3666 		struct scsi_sense_desc_header *header;
3667 
3668 		header = (struct scsi_sense_desc_header *)
3669 			&sense->sense_desc[cur_pos];
3670 
3671 		/*
3672 		 * Check to make sure we have the entire descriptor.  We
3673 		 * don't call iter_func() unless we do.
3674 		 *
3675 		 * Note that although cur_pos is at the beginning of the
3676 		 * descriptor, desc_len already has the header length
3677 		 * subtracted.  So the comparison of the length in the
3678 		 * header (which does not include the header itself) to
3679 		 * desc_len - cur_pos is correct.
3680 		 */
3681 		if (header->length > (desc_len - cur_pos))
3682 			break;
3683 
3684 		if (iter_func(sense, sense_len, header, arg) != 0)
3685 			break;
3686 
3687 		cur_pos += sizeof(*header) + header->length;
3688 	}
3689 }
3690 
3691 struct scsi_find_desc_info {
3692 	uint8_t desc_type;
3693 	struct scsi_sense_desc_header *header;
3694 };
3695 
3696 static int
3697 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
3698 		    struct scsi_sense_desc_header *header, void *arg)
3699 {
3700 	struct scsi_find_desc_info *desc_info;
3701 
3702 	desc_info = (struct scsi_find_desc_info *)arg;
3703 
3704 	if (header->desc_type == desc_info->desc_type) {
3705 		desc_info->header = header;
3706 
3707 		/* We found the descriptor, tell the iterator to stop. */
3708 		return (1);
3709 	} else
3710 		return (0);
3711 }
3712 
3713 /*
3714  * Given a descriptor type, return a pointer to it if it is in the sense
3715  * data and not truncated.  Avoiding truncating sense data will simplify
3716  * things significantly for the caller.
3717  */
3718 uint8_t *
3719 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
3720 	       uint8_t desc_type)
3721 {
3722 	struct scsi_find_desc_info desc_info;
3723 
3724 	desc_info.desc_type = desc_type;
3725 	desc_info.header = NULL;
3726 
3727 	scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info);
3728 
3729 	return ((uint8_t *)desc_info.header);
3730 }
3731 
3732 /*
3733  * Fill in SCSI sense data with the specified parameters.  This routine can
3734  * fill in either fixed or descriptor type sense data.
3735  */
3736 void
3737 scsi_set_sense_data_va(struct scsi_sense_data *sense_data,
3738 		      scsi_sense_data_type sense_format, int current_error,
3739 		      int sense_key, int asc, int ascq, va_list ap)
3740 {
3741 	int descriptor_sense;
3742 	scsi_sense_elem_type elem_type;
3743 
3744 	/*
3745 	 * Determine whether to return fixed or descriptor format sense
3746 	 * data.  If the user specifies SSD_TYPE_NONE for some reason,
3747 	 * they'll just get fixed sense data.
3748 	 */
3749 	if (sense_format == SSD_TYPE_DESC)
3750 		descriptor_sense = 1;
3751 	else
3752 		descriptor_sense = 0;
3753 
3754 	/*
3755 	 * Zero the sense data, so that we don't pass back any garbage data
3756 	 * to the user.
3757 	 */
3758 	memset(sense_data, 0, sizeof(*sense_data));
3759 
3760 	if (descriptor_sense != 0) {
3761 		struct scsi_sense_data_desc *sense;
3762 
3763 		sense = (struct scsi_sense_data_desc *)sense_data;
3764 		/*
3765 		 * The descriptor sense format eliminates the use of the
3766 		 * valid bit.
3767 		 */
3768 		if (current_error != 0)
3769 			sense->error_code = SSD_DESC_CURRENT_ERROR;
3770 		else
3771 			sense->error_code = SSD_DESC_DEFERRED_ERROR;
3772 		sense->sense_key = sense_key;
3773 		sense->add_sense_code = asc;
3774 		sense->add_sense_code_qual = ascq;
3775 		/*
3776 		 * Start off with no extra length, since the above data
3777 		 * fits in the standard descriptor sense information.
3778 		 */
3779 		sense->extra_len = 0;
3780 		while ((elem_type = (scsi_sense_elem_type)va_arg(ap,
3781 			scsi_sense_elem_type)) != SSD_ELEM_NONE) {
3782 			int sense_len, len_to_copy;
3783 			uint8_t *data;
3784 
3785 			if (elem_type >= SSD_ELEM_MAX) {
3786 				printf("%s: invalid sense type %d\n", __func__,
3787 				       elem_type);
3788 				break;
3789 			}
3790 
3791 			sense_len = (int)va_arg(ap, int);
3792 			len_to_copy = MIN(sense_len, SSD_EXTRA_MAX -
3793 					  sense->extra_len);
3794 			data = (uint8_t *)va_arg(ap, uint8_t *);
3795 
3796 			/*
3797 			 * We've already consumed the arguments for this one.
3798 			 */
3799 			if (elem_type == SSD_ELEM_SKIP)
3800 				continue;
3801 
3802 			switch (elem_type) {
3803 			case SSD_ELEM_DESC: {
3804 
3805 				/*
3806 				 * This is a straight descriptor.  All we
3807 				 * need to do is copy the data in.
3808 				 */
3809 				bcopy(data, &sense->sense_desc[
3810 				      sense->extra_len], len_to_copy);
3811 				sense->extra_len += len_to_copy;
3812 				break;
3813 			}
3814 			case SSD_ELEM_SKS: {
3815 				struct scsi_sense_sks sks;
3816 
3817 				bzero(&sks, sizeof(sks));
3818 
3819 				/*
3820 				 * This is already-formatted sense key
3821 				 * specific data.  We just need to fill out
3822 				 * the header and copy everything in.
3823 				 */
3824 				bcopy(data, &sks.sense_key_spec,
3825 				      MIN(len_to_copy,
3826 				          sizeof(sks.sense_key_spec)));
3827 
3828 				sks.desc_type = SSD_DESC_SKS;
3829 				sks.length = sizeof(sks) -
3830 				    offsetof(struct scsi_sense_sks, reserved1);
3831 				bcopy(&sks,&sense->sense_desc[sense->extra_len],
3832 				      sizeof(sks));
3833 				sense->extra_len += sizeof(sks);
3834 				break;
3835 			}
3836 			case SSD_ELEM_INFO:
3837 			case SSD_ELEM_COMMAND: {
3838 				struct scsi_sense_command cmd;
3839 				struct scsi_sense_info info;
3840 				uint8_t *data_dest;
3841 				uint8_t *descriptor;
3842 				int descriptor_size, i, copy_len;
3843 
3844 				bzero(&cmd, sizeof(cmd));
3845 				bzero(&info, sizeof(info));
3846 
3847 				/*
3848 				 * Command or information data.  The
3849 				 * operate in pretty much the same way.
3850 				 */
3851 				if (elem_type == SSD_ELEM_COMMAND) {
3852 					len_to_copy = MIN(len_to_copy,
3853 					    sizeof(cmd.command_info));
3854 					descriptor = (uint8_t *)&cmd;
3855 					descriptor_size  = sizeof(cmd);
3856 					data_dest =(uint8_t *)&cmd.command_info;
3857 					cmd.desc_type = SSD_DESC_COMMAND;
3858 					cmd.length = sizeof(cmd) -
3859 					    offsetof(struct scsi_sense_command,
3860 						     reserved);
3861 				} else {
3862 					len_to_copy = MIN(len_to_copy,
3863 					    sizeof(info.info));
3864 					descriptor = (uint8_t *)&info;
3865 					descriptor_size = sizeof(cmd);
3866 					data_dest = (uint8_t *)&info.info;
3867 					info.desc_type = SSD_DESC_INFO;
3868 					info.byte2 = SSD_INFO_VALID;
3869 					info.length = sizeof(info) -
3870 					    offsetof(struct scsi_sense_info,
3871 						     byte2);
3872 				}
3873 
3874 				/*
3875 				 * Copy this in reverse because the spec
3876 				 * (SPC-4) says that when 4 byte quantities
3877 				 * are stored in this 8 byte field, the
3878 				 * first four bytes shall be 0.
3879 				 *
3880 				 * So we fill the bytes in from the end, and
3881 				 * if we have less than 8 bytes to copy,
3882 				 * the initial, most significant bytes will
3883 				 * be 0.
3884 				 */
3885 				for (i = sense_len - 1; i >= 0 &&
3886 				     len_to_copy > 0; i--, len_to_copy--)
3887 					data_dest[len_to_copy - 1] = data[i];
3888 
3889 				/*
3890 				 * This calculation looks much like the
3891 				 * initial len_to_copy calculation, but
3892 				 * we have to do it again here, because
3893 				 * we're looking at a larger amount that
3894 				 * may or may not fit.  It's not only the
3895 				 * data the user passed in, but also the
3896 				 * rest of the descriptor.
3897 				 */
3898 				copy_len = MIN(descriptor_size,
3899 				    SSD_EXTRA_MAX - sense->extra_len);
3900 				bcopy(descriptor, &sense->sense_desc[
3901 				      sense->extra_len], copy_len);
3902 				sense->extra_len += copy_len;
3903 				break;
3904 			}
3905 			case SSD_ELEM_FRU: {
3906 				struct scsi_sense_fru fru;
3907 				int copy_len;
3908 
3909 				bzero(&fru, sizeof(fru));
3910 
3911 				fru.desc_type = SSD_DESC_FRU;
3912 				fru.length = sizeof(fru) -
3913 				    offsetof(struct scsi_sense_fru, reserved);
3914 				fru.fru = *data;
3915 
3916 				copy_len = MIN(sizeof(fru), SSD_EXTRA_MAX -
3917 					       sense->extra_len);
3918 				bcopy(&fru, &sense->sense_desc[
3919 				      sense->extra_len], copy_len);
3920 				sense->extra_len += copy_len;
3921 				break;
3922 			}
3923 			case SSD_ELEM_STREAM: {
3924 				struct scsi_sense_stream stream_sense;
3925 				int copy_len;
3926 
3927 				bzero(&stream_sense, sizeof(stream_sense));
3928 				stream_sense.desc_type = SSD_DESC_STREAM;
3929 				stream_sense.length = sizeof(stream_sense) -
3930 				   offsetof(struct scsi_sense_stream, reserved);
3931 				stream_sense.byte3 = *data;
3932 
3933 				copy_len = MIN(sizeof(stream_sense),
3934 				    SSD_EXTRA_MAX - sense->extra_len);
3935 				bcopy(&stream_sense, &sense->sense_desc[
3936 				      sense->extra_len], copy_len);
3937 				sense->extra_len += copy_len;
3938 				break;
3939 			}
3940 			default:
3941 				/*
3942 				 * We shouldn't get here, but if we do, do
3943 				 * nothing.  We've already consumed the
3944 				 * arguments above.
3945 				 */
3946 				break;
3947 			}
3948 		}
3949 	} else {
3950 		struct scsi_sense_data_fixed *sense;
3951 
3952 		sense = (struct scsi_sense_data_fixed *)sense_data;
3953 
3954 		if (current_error != 0)
3955 			sense->error_code = SSD_CURRENT_ERROR;
3956 		else
3957 			sense->error_code = SSD_DEFERRED_ERROR;
3958 
3959 		sense->flags = sense_key;
3960 		sense->add_sense_code = asc;
3961 		sense->add_sense_code_qual = ascq;
3962 		/*
3963 		 * We've set the ASC and ASCQ, so we have 6 more bytes of
3964 		 * valid data.  If we wind up setting any of the other
3965 		 * fields, we'll bump this to 10 extra bytes.
3966 		 */
3967 		sense->extra_len = 6;
3968 
3969 		while ((elem_type = (scsi_sense_elem_type)va_arg(ap,
3970 			scsi_sense_elem_type)) != SSD_ELEM_NONE) {
3971 			int sense_len, len_to_copy;
3972 			uint8_t *data;
3973 
3974 			if (elem_type >= SSD_ELEM_MAX) {
3975 				printf("%s: invalid sense type %d\n", __func__,
3976 				       elem_type);
3977 				break;
3978 			}
3979 			/*
3980 			 * If we get in here, just bump the extra length to
3981 			 * 10 bytes.  That will encompass anything we're
3982 			 * going to set here.
3983 			 */
3984 			sense->extra_len = 10;
3985 			sense_len = (int)va_arg(ap, int);
3986 			data = (uint8_t *)va_arg(ap, uint8_t *);
3987 
3988 			switch (elem_type) {
3989 			case SSD_ELEM_SKS:
3990 				/*
3991 				 * The user passed in pre-formatted sense
3992 				 * key specific data.
3993 				 */
3994 				bcopy(data, &sense->sense_key_spec[0],
3995 				      MIN(sizeof(sense->sense_key_spec),
3996 				      sense_len));
3997 				break;
3998 			case SSD_ELEM_INFO:
3999 			case SSD_ELEM_COMMAND: {
4000 				uint8_t *data_dest;
4001 				int i;
4002 
4003 				if (elem_type == SSD_ELEM_COMMAND) {
4004 					data_dest = &sense->cmd_spec_info[0];
4005 					len_to_copy = MIN(sense_len,
4006 					    sizeof(sense->cmd_spec_info));
4007 				} else {
4008 					data_dest = &sense->info[0];
4009 					len_to_copy = MIN(sense_len,
4010 					    sizeof(sense->info));
4011 					/*
4012 					 * We're setting the info field, so
4013 					 * set the valid bit.
4014 					 */
4015 					sense->error_code |= SSD_ERRCODE_VALID;
4016 				}
4017 
4018 				/*
4019 			 	 * Copy this in reverse so that if we have
4020 				 * less than 4 bytes to fill, the least
4021 				 * significant bytes will be at the end.
4022 				 * If we have more than 4 bytes, only the
4023 				 * least significant bytes will be included.
4024 				 */
4025 				for (i = sense_len - 1; i >= 0 &&
4026 				     len_to_copy > 0; i--, len_to_copy--)
4027 					data_dest[len_to_copy - 1] = data[i];
4028 
4029 				break;
4030 			}
4031 			case SSD_ELEM_FRU:
4032 				sense->fru = *data;
4033 				break;
4034 			case SSD_ELEM_STREAM:
4035 				sense->flags |= *data;
4036 				break;
4037 			case SSD_ELEM_DESC:
4038 			default:
4039 
4040 				/*
4041 				 * If the user passes in descriptor sense,
4042 				 * we can't handle that in fixed format.
4043 				 * So just skip it, and any unknown argument
4044 				 * types.
4045 				 */
4046 				break;
4047 			}
4048 		}
4049 	}
4050 }
4051 
4052 void
4053 scsi_set_sense_data(struct scsi_sense_data *sense_data,
4054 		    scsi_sense_data_type sense_format, int current_error,
4055 		    int sense_key, int asc, int ascq, ...)
4056 {
4057 	va_list ap;
4058 
4059 	va_start(ap, ascq);
4060 	scsi_set_sense_data_va(sense_data, sense_format, current_error,
4061 			       sense_key, asc, ascq, ap);
4062 	va_end(ap);
4063 }
4064 
4065 /*
4066  * Get sense information for three similar sense data types.
4067  */
4068 int
4069 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
4070 		    uint8_t info_type, uint64_t *info, int64_t *signed_info)
4071 {
4072 	scsi_sense_data_type sense_type;
4073 
4074 	if (sense_len == 0)
4075 		goto bailout;
4076 
4077 	sense_type = scsi_sense_type(sense_data);
4078 
4079 	switch (sense_type) {
4080 	case SSD_TYPE_DESC: {
4081 		struct scsi_sense_data_desc *sense;
4082 		uint8_t *desc;
4083 
4084 		sense = (struct scsi_sense_data_desc *)sense_data;
4085 
4086 		desc = scsi_find_desc(sense, sense_len, info_type);
4087 		if (desc == NULL)
4088 			goto bailout;
4089 
4090 		switch (info_type) {
4091 		case SSD_DESC_INFO: {
4092 			struct scsi_sense_info *info_desc;
4093 
4094 			info_desc = (struct scsi_sense_info *)desc;
4095 			*info = scsi_8btou64(info_desc->info);
4096 			if (signed_info != NULL)
4097 				*signed_info = *info;
4098 			break;
4099 		}
4100 		case SSD_DESC_COMMAND: {
4101 			struct scsi_sense_command *cmd_desc;
4102 
4103 			cmd_desc = (struct scsi_sense_command *)desc;
4104 
4105 			*info = scsi_8btou64(cmd_desc->command_info);
4106 			if (signed_info != NULL)
4107 				*signed_info = *info;
4108 			break;
4109 		}
4110 		case SSD_DESC_FRU: {
4111 			struct scsi_sense_fru *fru_desc;
4112 
4113 			fru_desc = (struct scsi_sense_fru *)desc;
4114 
4115 			*info = fru_desc->fru;
4116 			if (signed_info != NULL)
4117 				*signed_info = (int8_t)fru_desc->fru;
4118 			break;
4119 		}
4120 		default:
4121 			goto bailout;
4122 			break;
4123 		}
4124 		break;
4125 	}
4126 	case SSD_TYPE_FIXED: {
4127 		struct scsi_sense_data_fixed *sense;
4128 
4129 		sense = (struct scsi_sense_data_fixed *)sense_data;
4130 
4131 		switch (info_type) {
4132 		case SSD_DESC_INFO: {
4133 			uint32_t info_val;
4134 
4135 			if ((sense->error_code & SSD_ERRCODE_VALID) == 0)
4136 				goto bailout;
4137 
4138 			if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0)
4139 				goto bailout;
4140 
4141 			info_val = scsi_4btoul(sense->info);
4142 
4143 			*info = info_val;
4144 			if (signed_info != NULL)
4145 				*signed_info = (int32_t)info_val;
4146 			break;
4147 		}
4148 		case SSD_DESC_COMMAND: {
4149 			uint32_t cmd_val;
4150 
4151 			if ((SSD_FIXED_IS_PRESENT(sense, sense_len,
4152 			     cmd_spec_info) == 0)
4153 			 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0))
4154 				goto bailout;
4155 
4156 			cmd_val = scsi_4btoul(sense->cmd_spec_info);
4157 			if (cmd_val == 0)
4158 				goto bailout;
4159 
4160 			*info = cmd_val;
4161 			if (signed_info != NULL)
4162 				*signed_info = (int32_t)cmd_val;
4163 			break;
4164 		}
4165 		case SSD_DESC_FRU:
4166 			if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0)
4167 			 || (SSD_FIXED_IS_FILLED(sense, fru) == 0))
4168 				goto bailout;
4169 
4170 			if (sense->fru == 0)
4171 				goto bailout;
4172 
4173 			*info = sense->fru;
4174 			if (signed_info != NULL)
4175 				*signed_info = (int8_t)sense->fru;
4176 			break;
4177 		default:
4178 			goto bailout;
4179 			break;
4180 		}
4181 		break;
4182 	}
4183 	default:
4184 		goto bailout;
4185 		break;
4186 	}
4187 
4188 	return (0);
4189 bailout:
4190 	return (1);
4191 }
4192 
4193 int
4194 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks)
4195 {
4196 	scsi_sense_data_type sense_type;
4197 
4198 	if (sense_len == 0)
4199 		goto bailout;
4200 
4201 	sense_type = scsi_sense_type(sense_data);
4202 
4203 	switch (sense_type) {
4204 	case SSD_TYPE_DESC: {
4205 		struct scsi_sense_data_desc *sense;
4206 		struct scsi_sense_sks *desc;
4207 
4208 		sense = (struct scsi_sense_data_desc *)sense_data;
4209 
4210 		desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len,
4211 							       SSD_DESC_SKS);
4212 		if (desc == NULL)
4213 			goto bailout;
4214 
4215 		/*
4216 		 * No need to check the SKS valid bit for descriptor sense.
4217 		 * If the descriptor is present, it is valid.
4218 		 */
4219 		bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec));
4220 		break;
4221 	}
4222 	case SSD_TYPE_FIXED: {
4223 		struct scsi_sense_data_fixed *sense;
4224 
4225 		sense = (struct scsi_sense_data_fixed *)sense_data;
4226 
4227 		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0)
4228 		 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0))
4229 			goto bailout;
4230 
4231 		if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0)
4232 			goto bailout;
4233 
4234 		bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec));
4235 		break;
4236 	}
4237 	default:
4238 		goto bailout;
4239 		break;
4240 	}
4241 	return (0);
4242 bailout:
4243 	return (1);
4244 }
4245 
4246 /*
4247  * Provide a common interface for fixed and descriptor sense to detect
4248  * whether we have block-specific sense information.  It is clear by the
4249  * presence of the block descriptor in descriptor mode, but we have to
4250  * infer from the inquiry data and ILI bit in fixed mode.
4251  */
4252 int
4253 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
4254 		    struct scsi_inquiry_data *inq_data, uint8_t *block_bits)
4255 {
4256 	scsi_sense_data_type sense_type;
4257 
4258 	if (inq_data != NULL) {
4259 		switch (SID_TYPE(inq_data)) {
4260 		case T_DIRECT:
4261 		case T_RBC:
4262 			break;
4263 		default:
4264 			goto bailout;
4265 			break;
4266 		}
4267 	}
4268 
4269 	sense_type = scsi_sense_type(sense_data);
4270 
4271 	switch (sense_type) {
4272 	case SSD_TYPE_DESC: {
4273 		struct scsi_sense_data_desc *sense;
4274 		struct scsi_sense_block *block;
4275 
4276 		sense = (struct scsi_sense_data_desc *)sense_data;
4277 
4278 		block = (struct scsi_sense_block *)scsi_find_desc(sense,
4279 		    sense_len, SSD_DESC_BLOCK);
4280 		if (block == NULL)
4281 			goto bailout;
4282 
4283 		*block_bits = block->byte3;
4284 		break;
4285 	}
4286 	case SSD_TYPE_FIXED: {
4287 		struct scsi_sense_data_fixed *sense;
4288 
4289 		sense = (struct scsi_sense_data_fixed *)sense_data;
4290 
4291 		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4292 			goto bailout;
4293 
4294 		if ((sense->flags & SSD_ILI) == 0)
4295 			goto bailout;
4296 
4297 		*block_bits = sense->flags & SSD_ILI;
4298 		break;
4299 	}
4300 	default:
4301 		goto bailout;
4302 		break;
4303 	}
4304 	return (0);
4305 bailout:
4306 	return (1);
4307 }
4308 
4309 int
4310 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
4311 		     struct scsi_inquiry_data *inq_data, uint8_t *stream_bits)
4312 {
4313 	scsi_sense_data_type sense_type;
4314 
4315 	if (inq_data != NULL) {
4316 		switch (SID_TYPE(inq_data)) {
4317 		case T_SEQUENTIAL:
4318 			break;
4319 		default:
4320 			goto bailout;
4321 			break;
4322 		}
4323 	}
4324 
4325 	sense_type = scsi_sense_type(sense_data);
4326 
4327 	switch (sense_type) {
4328 	case SSD_TYPE_DESC: {
4329 		struct scsi_sense_data_desc *sense;
4330 		struct scsi_sense_stream *stream;
4331 
4332 		sense = (struct scsi_sense_data_desc *)sense_data;
4333 
4334 		stream = (struct scsi_sense_stream *)scsi_find_desc(sense,
4335 		    sense_len, SSD_DESC_STREAM);
4336 		if (stream == NULL)
4337 			goto bailout;
4338 
4339 		*stream_bits = stream->byte3;
4340 		break;
4341 	}
4342 	case SSD_TYPE_FIXED: {
4343 		struct scsi_sense_data_fixed *sense;
4344 
4345 		sense = (struct scsi_sense_data_fixed *)sense_data;
4346 
4347 		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4348 			goto bailout;
4349 
4350 		if ((sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK)) == 0)
4351 			goto bailout;
4352 
4353 		*stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK);
4354 		break;
4355 	}
4356 	default:
4357 		goto bailout;
4358 		break;
4359 	}
4360 	return (0);
4361 bailout:
4362 	return (1);
4363 }
4364 
4365 void
4366 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4367 	       struct scsi_inquiry_data *inq_data, uint64_t info)
4368 {
4369 	sbuf_printf(sb, "Info: %#jx", info);
4370 }
4371 
4372 void
4373 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4374 		  struct scsi_inquiry_data *inq_data, uint64_t csi)
4375 {
4376 	sbuf_printf(sb, "Command Specific Info: %#jx", csi);
4377 }
4378 
4379 
4380 void
4381 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress)
4382 {
4383 	sbuf_printf(sb, "Progress: %d%% (%d/%d) complete",
4384 		    (progress * 100) / SSD_SKS_PROGRESS_DENOM,
4385 		    progress, SSD_SKS_PROGRESS_DENOM);
4386 }
4387 
4388 /*
4389  * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success.
4390  */
4391 int
4392 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks)
4393 {
4394 	if ((sks[0] & SSD_SKS_VALID) == 0)
4395 		return (1);
4396 
4397 	switch (sense_key) {
4398 	case SSD_KEY_ILLEGAL_REQUEST: {
4399 		struct scsi_sense_sks_field *field;
4400 		int bad_command;
4401 		char tmpstr[40];
4402 
4403 		/*Field Pointer*/
4404 		field = (struct scsi_sense_sks_field *)sks;
4405 
4406 		if (field->byte0 & SSD_SKS_FIELD_CMD)
4407 			bad_command = 1;
4408 		else
4409 			bad_command = 0;
4410 
4411 		tmpstr[0] = '\0';
4412 
4413 		/* Bit pointer is valid */
4414 		if (field->byte0 & SSD_SKS_BPV)
4415 			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4416 				 field->byte0 & SSD_SKS_BIT_VALUE);
4417 
4418 		sbuf_printf(sb, "%s byte %d %sis invalid",
4419 			    bad_command ? "Command" : "Data",
4420 			    scsi_2btoul(field->field), tmpstr);
4421 		break;
4422 	}
4423 	case SSD_KEY_UNIT_ATTENTION: {
4424 		struct scsi_sense_sks_overflow *overflow;
4425 
4426 		overflow = (struct scsi_sense_sks_overflow *)sks;
4427 
4428 		/*UA Condition Queue Overflow*/
4429 		sbuf_printf(sb, "Unit Attention Condition Queue %s",
4430 			    (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ?
4431 			    "Overflowed" : "Did Not Overflow??");
4432 		break;
4433 	}
4434 	case SSD_KEY_RECOVERED_ERROR:
4435 	case SSD_KEY_HARDWARE_ERROR:
4436 	case SSD_KEY_MEDIUM_ERROR: {
4437 		struct scsi_sense_sks_retry *retry;
4438 
4439 		/*Actual Retry Count*/
4440 		retry = (struct scsi_sense_sks_retry *)sks;
4441 
4442 		sbuf_printf(sb, "Actual Retry Count: %d",
4443 			    scsi_2btoul(retry->actual_retry_count));
4444 		break;
4445 	}
4446 	case SSD_KEY_NO_SENSE:
4447 	case SSD_KEY_NOT_READY: {
4448 		struct scsi_sense_sks_progress *progress;
4449 		int progress_val;
4450 
4451 		/*Progress Indication*/
4452 		progress = (struct scsi_sense_sks_progress *)sks;
4453 		progress_val = scsi_2btoul(progress->progress);
4454 
4455 		scsi_progress_sbuf(sb, progress_val);
4456 		break;
4457 	}
4458 	case SSD_KEY_COPY_ABORTED: {
4459 		struct scsi_sense_sks_segment *segment;
4460 		char tmpstr[40];
4461 
4462 		/*Segment Pointer*/
4463 		segment = (struct scsi_sense_sks_segment *)sks;
4464 
4465 		tmpstr[0] = '\0';
4466 
4467 		if (segment->byte0 & SSD_SKS_SEGMENT_BPV)
4468 			snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4469 				 segment->byte0 & SSD_SKS_SEGMENT_BITPTR);
4470 
4471 		sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 &
4472 			    SSD_SKS_SEGMENT_SD) ? "Segment" : "Data",
4473 			    scsi_2btoul(segment->field), tmpstr);
4474 		break;
4475 	}
4476 	default:
4477 		sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0],
4478 			    scsi_2btoul(&sks[1]));
4479 		break;
4480 	}
4481 
4482 	return (0);
4483 }
4484 
4485 void
4486 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru)
4487 {
4488 	sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru);
4489 }
4490 
4491 void
4492 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits, uint64_t info)
4493 {
4494 	int need_comma;
4495 
4496 	need_comma = 0;
4497 	/*
4498 	 * XXX KDM this needs more descriptive decoding.
4499 	 */
4500 	if (stream_bits & SSD_DESC_STREAM_FM) {
4501 		sbuf_printf(sb, "Filemark");
4502 		need_comma = 1;
4503 	}
4504 
4505 	if (stream_bits & SSD_DESC_STREAM_EOM) {
4506 		sbuf_printf(sb, "%sEOM", (need_comma) ? "," : "");
4507 		need_comma = 1;
4508 	}
4509 
4510 	if (stream_bits & SSD_DESC_STREAM_ILI)
4511 		sbuf_printf(sb, "%sILI", (need_comma) ? "," : "");
4512 
4513 	sbuf_printf(sb, ": Info: %#jx", (uintmax_t) info);
4514 }
4515 
4516 void
4517 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits, uint64_t info)
4518 {
4519 	if (block_bits & SSD_DESC_BLOCK_ILI)
4520 		sbuf_printf(sb, "ILI: residue %#jx", (uintmax_t) info);
4521 }
4522 
4523 void
4524 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4525 		     u_int sense_len, uint8_t *cdb, int cdb_len,
4526 		     struct scsi_inquiry_data *inq_data,
4527 		     struct scsi_sense_desc_header *header)
4528 {
4529 	struct scsi_sense_info *info;
4530 
4531 	info = (struct scsi_sense_info *)header;
4532 
4533 	scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info));
4534 }
4535 
4536 void
4537 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4538 			u_int sense_len, uint8_t *cdb, int cdb_len,
4539 			struct scsi_inquiry_data *inq_data,
4540 			struct scsi_sense_desc_header *header)
4541 {
4542 	struct scsi_sense_command *command;
4543 
4544 	command = (struct scsi_sense_command *)header;
4545 
4546 	scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
4547 			  scsi_8btou64(command->command_info));
4548 }
4549 
4550 void
4551 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4552 		    u_int sense_len, uint8_t *cdb, int cdb_len,
4553 		    struct scsi_inquiry_data *inq_data,
4554 		    struct scsi_sense_desc_header *header)
4555 {
4556 	struct scsi_sense_sks *sks;
4557 	int error_code, sense_key, asc, ascq;
4558 
4559 	sks = (struct scsi_sense_sks *)header;
4560 
4561 	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4562 			       &asc, &ascq, /*show_errors*/ 1);
4563 
4564 	scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec);
4565 }
4566 
4567 void
4568 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4569 		    u_int sense_len, uint8_t *cdb, int cdb_len,
4570 		    struct scsi_inquiry_data *inq_data,
4571 		    struct scsi_sense_desc_header *header)
4572 {
4573 	struct scsi_sense_fru *fru;
4574 
4575 	fru = (struct scsi_sense_fru *)header;
4576 
4577 	scsi_fru_sbuf(sb, (uint64_t)fru->fru);
4578 }
4579 
4580 void
4581 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4582 		       u_int sense_len, uint8_t *cdb, int cdb_len,
4583 		       struct scsi_inquiry_data *inq_data,
4584 		       struct scsi_sense_desc_header *header)
4585 {
4586 	struct scsi_sense_stream *stream;
4587 	uint64_t info;
4588 
4589 	stream = (struct scsi_sense_stream *)header;
4590 	info = 0;
4591 
4592 	scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL);
4593 
4594 	scsi_stream_sbuf(sb, stream->byte3, info);
4595 }
4596 
4597 void
4598 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4599 		      u_int sense_len, uint8_t *cdb, int cdb_len,
4600 		      struct scsi_inquiry_data *inq_data,
4601 		      struct scsi_sense_desc_header *header)
4602 {
4603 	struct scsi_sense_block *block;
4604 	uint64_t info;
4605 
4606 	block = (struct scsi_sense_block *)header;
4607 	info = 0;
4608 
4609 	scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO, &info, NULL);
4610 
4611 	scsi_block_sbuf(sb, block->byte3, info);
4612 }
4613 
4614 void
4615 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4616 			 u_int sense_len, uint8_t *cdb, int cdb_len,
4617 			 struct scsi_inquiry_data *inq_data,
4618 			 struct scsi_sense_desc_header *header)
4619 {
4620 	struct scsi_sense_progress *progress;
4621 	const char *sense_key_desc;
4622 	const char *asc_desc;
4623 	int progress_val;
4624 
4625 	progress = (struct scsi_sense_progress *)header;
4626 
4627 	/*
4628 	 * Get descriptions for the sense key, ASC, and ASCQ in the
4629 	 * progress descriptor.  These could be different than the values
4630 	 * in the overall sense data.
4631 	 */
4632 	scsi_sense_desc(progress->sense_key, progress->add_sense_code,
4633 			progress->add_sense_code_qual, inq_data,
4634 			&sense_key_desc, &asc_desc);
4635 
4636 	progress_val = scsi_2btoul(progress->progress);
4637 
4638 	/*
4639 	 * The progress indicator is for the operation described by the
4640 	 * sense key, ASC, and ASCQ in the descriptor.
4641 	 */
4642 	sbuf_cat(sb, sense_key_desc);
4643 	sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code,
4644 		    progress->add_sense_code_qual, asc_desc);
4645 	scsi_progress_sbuf(sb, progress_val);
4646 }
4647 
4648 /*
4649  * Generic sense descriptor printing routine.  This is used when we have
4650  * not yet implemented a specific printing routine for this descriptor.
4651  */
4652 void
4653 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4654 			u_int sense_len, uint8_t *cdb, int cdb_len,
4655 			struct scsi_inquiry_data *inq_data,
4656 			struct scsi_sense_desc_header *header)
4657 {
4658 	int i;
4659 	uint8_t *buf_ptr;
4660 
4661 	sbuf_printf(sb, "Descriptor %#x:", header->desc_type);
4662 
4663 	buf_ptr = (uint8_t *)&header[1];
4664 
4665 	for (i = 0; i < header->length; i++, buf_ptr++)
4666 		sbuf_printf(sb, " %02x", *buf_ptr);
4667 }
4668 
4669 /*
4670  * Keep this list in numeric order.  This speeds the array traversal.
4671  */
4672 struct scsi_sense_desc_printer {
4673 	uint8_t desc_type;
4674 	/*
4675 	 * The function arguments here are the superset of what is needed
4676 	 * to print out various different descriptors.  Command and
4677 	 * information descriptors need inquiry data and command type.
4678 	 * Sense key specific descriptors need the sense key.
4679 	 *
4680 	 * The sense, cdb, and inquiry data arguments may be NULL, but the
4681 	 * information printed may not be fully decoded as a result.
4682 	 */
4683 	void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense,
4684 			   u_int sense_len, uint8_t *cdb, int cdb_len,
4685 			   struct scsi_inquiry_data *inq_data,
4686 			   struct scsi_sense_desc_header *header);
4687 } scsi_sense_printers[] = {
4688 	{SSD_DESC_INFO, scsi_sense_info_sbuf},
4689 	{SSD_DESC_COMMAND, scsi_sense_command_sbuf},
4690 	{SSD_DESC_SKS, scsi_sense_sks_sbuf},
4691 	{SSD_DESC_FRU, scsi_sense_fru_sbuf},
4692 	{SSD_DESC_STREAM, scsi_sense_stream_sbuf},
4693 	{SSD_DESC_BLOCK, scsi_sense_block_sbuf},
4694 	{SSD_DESC_PROGRESS, scsi_sense_progress_sbuf}
4695 };
4696 
4697 void
4698 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4699 		     u_int sense_len, uint8_t *cdb, int cdb_len,
4700 		     struct scsi_inquiry_data *inq_data,
4701 		     struct scsi_sense_desc_header *header)
4702 {
4703 	u_int i;
4704 
4705 	for (i = 0; i < nitems(scsi_sense_printers); i++) {
4706 		struct scsi_sense_desc_printer *printer;
4707 
4708 		printer = &scsi_sense_printers[i];
4709 
4710 		/*
4711 		 * The list is sorted, so quit if we've passed our
4712 		 * descriptor number.
4713 		 */
4714 		if (printer->desc_type > header->desc_type)
4715 			break;
4716 
4717 		if (printer->desc_type != header->desc_type)
4718 			continue;
4719 
4720 		printer->print_func(sb, sense, sense_len, cdb, cdb_len,
4721 				    inq_data, header);
4722 
4723 		return;
4724 	}
4725 
4726 	/*
4727 	 * No specific printing routine, so use the generic routine.
4728 	 */
4729 	scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len,
4730 				inq_data, header);
4731 }
4732 
4733 scsi_sense_data_type
4734 scsi_sense_type(struct scsi_sense_data *sense_data)
4735 {
4736 	switch (sense_data->error_code & SSD_ERRCODE) {
4737 	case SSD_DESC_CURRENT_ERROR:
4738 	case SSD_DESC_DEFERRED_ERROR:
4739 		return (SSD_TYPE_DESC);
4740 		break;
4741 	case SSD_CURRENT_ERROR:
4742 	case SSD_DEFERRED_ERROR:
4743 		return (SSD_TYPE_FIXED);
4744 		break;
4745 	default:
4746 		break;
4747 	}
4748 
4749 	return (SSD_TYPE_NONE);
4750 }
4751 
4752 struct scsi_print_sense_info {
4753 	struct sbuf *sb;
4754 	char *path_str;
4755 	uint8_t *cdb;
4756 	int cdb_len;
4757 	struct scsi_inquiry_data *inq_data;
4758 };
4759 
4760 static int
4761 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
4762 		     struct scsi_sense_desc_header *header, void *arg)
4763 {
4764 	struct scsi_print_sense_info *print_info;
4765 
4766 	print_info = (struct scsi_print_sense_info *)arg;
4767 
4768 	switch (header->desc_type) {
4769 	case SSD_DESC_INFO:
4770 	case SSD_DESC_FRU:
4771 	case SSD_DESC_COMMAND:
4772 	case SSD_DESC_SKS:
4773 	case SSD_DESC_BLOCK:
4774 	case SSD_DESC_STREAM:
4775 		/*
4776 		 * We have already printed these descriptors, if they are
4777 		 * present.
4778 		 */
4779 		break;
4780 	default: {
4781 		sbuf_printf(print_info->sb, "%s", print_info->path_str);
4782 		scsi_sense_desc_sbuf(print_info->sb,
4783 				     (struct scsi_sense_data *)sense, sense_len,
4784 				     print_info->cdb, print_info->cdb_len,
4785 				     print_info->inq_data, header);
4786 		sbuf_printf(print_info->sb, "\n");
4787 		break;
4788 	}
4789 	}
4790 
4791 	/*
4792 	 * Tell the iterator that we want to see more descriptors if they
4793 	 * are present.
4794 	 */
4795 	return (0);
4796 }
4797 
4798 void
4799 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
4800 		     struct sbuf *sb, char *path_str,
4801 		     struct scsi_inquiry_data *inq_data, uint8_t *cdb,
4802 		     int cdb_len)
4803 {
4804 	int error_code, sense_key, asc, ascq;
4805 
4806 	sbuf_cat(sb, path_str);
4807 
4808 	scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4809 			       &asc, &ascq, /*show_errors*/ 1);
4810 
4811 	sbuf_printf(sb, "SCSI sense: ");
4812 	switch (error_code) {
4813 	case SSD_DEFERRED_ERROR:
4814 	case SSD_DESC_DEFERRED_ERROR:
4815 		sbuf_printf(sb, "Deferred error: ");
4816 
4817 		/* FALLTHROUGH */
4818 	case SSD_CURRENT_ERROR:
4819 	case SSD_DESC_CURRENT_ERROR:
4820 	{
4821 		struct scsi_sense_data_desc *desc_sense;
4822 		struct scsi_print_sense_info print_info;
4823 		const char *sense_key_desc;
4824 		const char *asc_desc;
4825 		uint8_t sks[3];
4826 		uint64_t val;
4827 		int info_valid;
4828 
4829 		/*
4830 		 * Get descriptions for the sense key, ASC, and ASCQ.  If
4831 		 * these aren't present in the sense data (i.e. the sense
4832 		 * data isn't long enough), the -1 values that
4833 		 * scsi_extract_sense_len() returns will yield default
4834 		 * or error descriptions.
4835 		 */
4836 		scsi_sense_desc(sense_key, asc, ascq, inq_data,
4837 				&sense_key_desc, &asc_desc);
4838 
4839 		/*
4840 		 * We first print the sense key and ASC/ASCQ.
4841 		 */
4842 		sbuf_cat(sb, sense_key_desc);
4843 		sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc);
4844 
4845 		/*
4846 		 * Get the info field if it is valid.
4847 		 */
4848 		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO,
4849 					&val, NULL) == 0)
4850 			info_valid = 1;
4851 		else
4852 			info_valid = 0;
4853 
4854 		if (info_valid != 0) {
4855 			uint8_t bits;
4856 
4857 			/*
4858 			 * Determine whether we have any block or stream
4859 			 * device-specific information.
4860 			 */
4861 			if (scsi_get_block_info(sense, sense_len, inq_data,
4862 						&bits) == 0) {
4863 				sbuf_cat(sb, path_str);
4864 				scsi_block_sbuf(sb, bits, val);
4865 				sbuf_printf(sb, "\n");
4866 			} else if (scsi_get_stream_info(sense, sense_len,
4867 							inq_data, &bits) == 0) {
4868 				sbuf_cat(sb, path_str);
4869 				scsi_stream_sbuf(sb, bits, val);
4870 				sbuf_printf(sb, "\n");
4871 			} else if (val != 0) {
4872 				/*
4873 				 * The information field can be valid but 0.
4874 				 * If the block or stream bits aren't set,
4875 				 * and this is 0, it isn't terribly useful
4876 				 * to print it out.
4877 				 */
4878 				sbuf_cat(sb, path_str);
4879 				scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val);
4880 				sbuf_printf(sb, "\n");
4881 			}
4882 		}
4883 
4884 		/*
4885 		 * Print the FRU.
4886 		 */
4887 		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU,
4888 					&val, NULL) == 0) {
4889 			sbuf_cat(sb, path_str);
4890 			scsi_fru_sbuf(sb, val);
4891 			sbuf_printf(sb, "\n");
4892 		}
4893 
4894 		/*
4895 		 * Print any command-specific information.
4896 		 */
4897 		if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND,
4898 					&val, NULL) == 0) {
4899 			sbuf_cat(sb, path_str);
4900 			scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val);
4901 			sbuf_printf(sb, "\n");
4902 		}
4903 
4904 		/*
4905 		 * Print out any sense-key-specific information.
4906 		 */
4907 		if (scsi_get_sks(sense, sense_len, sks) == 0) {
4908 			sbuf_cat(sb, path_str);
4909 			scsi_sks_sbuf(sb, sense_key, sks);
4910 			sbuf_printf(sb, "\n");
4911 		}
4912 
4913 		/*
4914 		 * If this is fixed sense, we're done.  If we have
4915 		 * descriptor sense, we might have more information
4916 		 * available.
4917 		 */
4918 		if (scsi_sense_type(sense) != SSD_TYPE_DESC)
4919 			break;
4920 
4921 		desc_sense = (struct scsi_sense_data_desc *)sense;
4922 
4923 		print_info.sb = sb;
4924 		print_info.path_str = path_str;
4925 		print_info.cdb = cdb;
4926 		print_info.cdb_len = cdb_len;
4927 		print_info.inq_data = inq_data;
4928 
4929 		/*
4930 		 * Print any sense descriptors that we have not already printed.
4931 		 */
4932 		scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func,
4933 				  &print_info);
4934 		break;
4935 
4936 	}
4937 	case -1:
4938 		/*
4939 		 * scsi_extract_sense_len() sets values to -1 if the
4940 		 * show_errors flag is set and they aren't present in the
4941 		 * sense data.  This means that sense_len is 0.
4942 		 */
4943 		sbuf_printf(sb, "No sense data present\n");
4944 		break;
4945 	default: {
4946 		sbuf_printf(sb, "Error code 0x%x", error_code);
4947 		if (sense->error_code & SSD_ERRCODE_VALID) {
4948 			struct scsi_sense_data_fixed *fixed_sense;
4949 
4950 			fixed_sense = (struct scsi_sense_data_fixed *)sense;
4951 
4952 			if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){
4953 				uint32_t info;
4954 
4955 				info = scsi_4btoul(fixed_sense->info);
4956 
4957 				sbuf_printf(sb, " at block no. %d (decimal)",
4958 					    info);
4959 			}
4960 		}
4961 		sbuf_printf(sb, "\n");
4962 		break;
4963 	}
4964 	}
4965 }
4966 
4967 /*
4968  * scsi_sense_sbuf() returns 0 for success and -1 for failure.
4969  */
4970 #ifdef _KERNEL
4971 int
4972 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
4973 		scsi_sense_string_flags flags)
4974 #else /* !_KERNEL */
4975 int
4976 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio,
4977 		struct sbuf *sb, scsi_sense_string_flags flags)
4978 #endif /* _KERNEL/!_KERNEL */
4979 {
4980 	struct	  scsi_sense_data *sense;
4981 	struct	  scsi_inquiry_data *inq_data;
4982 #ifdef _KERNEL
4983 	struct	  ccb_getdev *cgd;
4984 #endif /* _KERNEL */
4985 	char	  path_str[64];
4986 	uint8_t	  *cdb;
4987 
4988 #ifndef _KERNEL
4989 	if (device == NULL)
4990 		return(-1);
4991 #endif /* !_KERNEL */
4992 	if ((csio == NULL) || (sb == NULL))
4993 		return(-1);
4994 
4995 	/*
4996 	 * If the CDB is a physical address, we can't deal with it..
4997 	 */
4998 	if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0)
4999 		flags &= ~SSS_FLAG_PRINT_COMMAND;
5000 
5001 #ifdef _KERNEL
5002 	xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str));
5003 #else /* !_KERNEL */
5004 	cam_path_string(device, path_str, sizeof(path_str));
5005 #endif /* _KERNEL/!_KERNEL */
5006 
5007 #ifdef _KERNEL
5008 	if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
5009 		return(-1);
5010 	/*
5011 	 * Get the device information.
5012 	 */
5013 	xpt_setup_ccb(&cgd->ccb_h,
5014 		      csio->ccb_h.path,
5015 		      CAM_PRIORITY_NORMAL);
5016 	cgd->ccb_h.func_code = XPT_GDEV_TYPE;
5017 	xpt_action((union ccb *)cgd);
5018 
5019 	/*
5020 	 * If the device is unconfigured, just pretend that it is a hard
5021 	 * drive.  scsi_op_desc() needs this.
5022 	 */
5023 	if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
5024 		cgd->inq_data.device = T_DIRECT;
5025 
5026 	inq_data = &cgd->inq_data;
5027 
5028 #else /* !_KERNEL */
5029 
5030 	inq_data = &device->inq_data;
5031 
5032 #endif /* _KERNEL/!_KERNEL */
5033 
5034 	sense = NULL;
5035 
5036 	if (flags & SSS_FLAG_PRINT_COMMAND) {
5037 
5038 		sbuf_cat(sb, path_str);
5039 
5040 #ifdef _KERNEL
5041 		scsi_command_string(csio, sb);
5042 #else /* !_KERNEL */
5043 		scsi_command_string(device, csio, sb);
5044 #endif /* _KERNEL/!_KERNEL */
5045 		sbuf_printf(sb, "\n");
5046 	}
5047 
5048 	/*
5049 	 * If the sense data is a physical pointer, forget it.
5050 	 */
5051 	if (csio->ccb_h.flags & CAM_SENSE_PTR) {
5052 		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5053 #ifdef _KERNEL
5054 			xpt_free_ccb((union ccb*)cgd);
5055 #endif /* _KERNEL/!_KERNEL */
5056 			return(-1);
5057 		} else {
5058 			/*
5059 			 * bcopy the pointer to avoid unaligned access
5060 			 * errors on finicky architectures.  We don't
5061 			 * ensure that the sense data is pointer aligned.
5062 			 */
5063 			bcopy(&csio->sense_data, &sense,
5064 			      sizeof(struct scsi_sense_data *));
5065 		}
5066 	} else {
5067 		/*
5068 		 * If the physical sense flag is set, but the sense pointer
5069 		 * is not also set, we assume that the user is an idiot and
5070 		 * return.  (Well, okay, it could be that somehow, the
5071 		 * entire csio is physical, but we would have probably core
5072 		 * dumped on one of the bogus pointer deferences above
5073 		 * already.)
5074 		 */
5075 		if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5076 #ifdef _KERNEL
5077 			xpt_free_ccb((union ccb*)cgd);
5078 #endif /* _KERNEL/!_KERNEL */
5079 			return(-1);
5080 		} else
5081 			sense = &csio->sense_data;
5082 	}
5083 
5084 	if (csio->ccb_h.flags & CAM_CDB_POINTER)
5085 		cdb = csio->cdb_io.cdb_ptr;
5086 	else
5087 		cdb = csio->cdb_io.cdb_bytes;
5088 
5089 	scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb,
5090 			     path_str, inq_data, cdb, csio->cdb_len);
5091 
5092 #ifdef _KERNEL
5093 	xpt_free_ccb((union ccb*)cgd);
5094 #endif /* _KERNEL/!_KERNEL */
5095 	return(0);
5096 }
5097 
5098 
5099 
5100 #ifdef _KERNEL
5101 char *
5102 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len)
5103 #else /* !_KERNEL */
5104 char *
5105 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio,
5106 		  char *str, int str_len)
5107 #endif /* _KERNEL/!_KERNEL */
5108 {
5109 	struct sbuf sb;
5110 
5111 	sbuf_new(&sb, str, str_len, 0);
5112 
5113 #ifdef _KERNEL
5114 	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5115 #else /* !_KERNEL */
5116 	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5117 #endif /* _KERNEL/!_KERNEL */
5118 
5119 	sbuf_finish(&sb);
5120 
5121 	return(sbuf_data(&sb));
5122 }
5123 
5124 #ifdef _KERNEL
5125 void
5126 scsi_sense_print(struct ccb_scsiio *csio)
5127 {
5128 	struct sbuf sb;
5129 	char str[512];
5130 
5131 	sbuf_new(&sb, str, sizeof(str), 0);
5132 
5133 	scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5134 
5135 	sbuf_finish(&sb);
5136 
5137 	printf("%s", sbuf_data(&sb));
5138 }
5139 
5140 #else /* !_KERNEL */
5141 void
5142 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio,
5143 		 FILE *ofile)
5144 {
5145 	struct sbuf sb;
5146 	char str[512];
5147 
5148 	if ((device == NULL) || (csio == NULL) || (ofile == NULL))
5149 		return;
5150 
5151 	sbuf_new(&sb, str, sizeof(str), 0);
5152 
5153 	scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5154 
5155 	sbuf_finish(&sb);
5156 
5157 	fprintf(ofile, "%s", sbuf_data(&sb));
5158 }
5159 
5160 #endif /* _KERNEL/!_KERNEL */
5161 
5162 /*
5163  * Extract basic sense information.  This is backward-compatible with the
5164  * previous implementation.  For new implementations,
5165  * scsi_extract_sense_len() is recommended.
5166  */
5167 void
5168 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code,
5169 		   int *sense_key, int *asc, int *ascq)
5170 {
5171 	scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code,
5172 			       sense_key, asc, ascq, /*show_errors*/ 0);
5173 }
5174 
5175 /*
5176  * Extract basic sense information from SCSI I/O CCB structure.
5177  */
5178 int
5179 scsi_extract_sense_ccb(union ccb *ccb,
5180     int *error_code, int *sense_key, int *asc, int *ascq)
5181 {
5182 	struct scsi_sense_data *sense_data;
5183 
5184 	/* Make sure there are some sense data we can access. */
5185 	if (ccb->ccb_h.func_code != XPT_SCSI_IO ||
5186 	    (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR ||
5187 	    (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) ||
5188 	    (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 ||
5189 	    (ccb->ccb_h.flags & CAM_SENSE_PHYS))
5190 		return (0);
5191 
5192 	if (ccb->ccb_h.flags & CAM_SENSE_PTR)
5193 		bcopy(&ccb->csio.sense_data, &sense_data,
5194 		    sizeof(struct scsi_sense_data *));
5195 	else
5196 		sense_data = &ccb->csio.sense_data;
5197 	scsi_extract_sense_len(sense_data,
5198 	    ccb->csio.sense_len - ccb->csio.sense_resid,
5199 	    error_code, sense_key, asc, ascq, 1);
5200 	if (*error_code == -1)
5201 		return (0);
5202 	return (1);
5203 }
5204 
5205 /*
5206  * Extract basic sense information.  If show_errors is set, sense values
5207  * will be set to -1 if they are not present.
5208  */
5209 void
5210 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len,
5211 		       int *error_code, int *sense_key, int *asc, int *ascq,
5212 		       int show_errors)
5213 {
5214 	/*
5215 	 * If we have no length, we have no sense.
5216 	 */
5217 	if (sense_len == 0) {
5218 		if (show_errors == 0) {
5219 			*error_code = 0;
5220 			*sense_key = 0;
5221 			*asc = 0;
5222 			*ascq = 0;
5223 		} else {
5224 			*error_code = -1;
5225 			*sense_key = -1;
5226 			*asc = -1;
5227 			*ascq = -1;
5228 		}
5229 		return;
5230 	}
5231 
5232 	*error_code = sense_data->error_code & SSD_ERRCODE;
5233 
5234 	switch (*error_code) {
5235 	case SSD_DESC_CURRENT_ERROR:
5236 	case SSD_DESC_DEFERRED_ERROR: {
5237 		struct scsi_sense_data_desc *sense;
5238 
5239 		sense = (struct scsi_sense_data_desc *)sense_data;
5240 
5241 		if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key))
5242 			*sense_key = sense->sense_key & SSD_KEY;
5243 		else
5244 			*sense_key = (show_errors) ? -1 : 0;
5245 
5246 		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code))
5247 			*asc = sense->add_sense_code;
5248 		else
5249 			*asc = (show_errors) ? -1 : 0;
5250 
5251 		if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual))
5252 			*ascq = sense->add_sense_code_qual;
5253 		else
5254 			*ascq = (show_errors) ? -1 : 0;
5255 		break;
5256 	}
5257 	case SSD_CURRENT_ERROR:
5258 	case SSD_DEFERRED_ERROR:
5259 	default: {
5260 		struct scsi_sense_data_fixed *sense;
5261 
5262 		sense = (struct scsi_sense_data_fixed *)sense_data;
5263 
5264 		if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags))
5265 			*sense_key = sense->flags & SSD_KEY;
5266 		else
5267 			*sense_key = (show_errors) ? -1 : 0;
5268 
5269 		if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code))
5270 		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code)))
5271 			*asc = sense->add_sense_code;
5272 		else
5273 			*asc = (show_errors) ? -1 : 0;
5274 
5275 		if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual))
5276 		 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual)))
5277 			*ascq = sense->add_sense_code_qual;
5278 		else
5279 			*ascq = (show_errors) ? -1 : 0;
5280 		break;
5281 	}
5282 	}
5283 }
5284 
5285 int
5286 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len,
5287 		   int show_errors)
5288 {
5289 	int error_code, sense_key, asc, ascq;
5290 
5291 	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5292 			       &sense_key, &asc, &ascq, show_errors);
5293 
5294 	return (sense_key);
5295 }
5296 
5297 int
5298 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len,
5299 	     int show_errors)
5300 {
5301 	int error_code, sense_key, asc, ascq;
5302 
5303 	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5304 			       &sense_key, &asc, &ascq, show_errors);
5305 
5306 	return (asc);
5307 }
5308 
5309 int
5310 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len,
5311 	      int show_errors)
5312 {
5313 	int error_code, sense_key, asc, ascq;
5314 
5315 	scsi_extract_sense_len(sense_data, sense_len, &error_code,
5316 			       &sense_key, &asc, &ascq, show_errors);
5317 
5318 	return (ascq);
5319 }
5320 
5321 /*
5322  * This function currently requires at least 36 bytes, or
5323  * SHORT_INQUIRY_LENGTH, worth of data to function properly.  If this
5324  * function needs more or less data in the future, another length should be
5325  * defined in scsi_all.h to indicate the minimum amount of data necessary
5326  * for this routine to function properly.
5327  */
5328 void
5329 scsi_print_inquiry(struct scsi_inquiry_data *inq_data)
5330 {
5331 	u_int8_t type;
5332 	char *dtype, *qtype;
5333 	char vendor[16], product[48], revision[16], rstr[12];
5334 
5335 	type = SID_TYPE(inq_data);
5336 
5337 	/*
5338 	 * Figure out basic device type and qualifier.
5339 	 */
5340 	if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) {
5341 		qtype = " (vendor-unique qualifier)";
5342 	} else {
5343 		switch (SID_QUAL(inq_data)) {
5344 		case SID_QUAL_LU_CONNECTED:
5345 			qtype = "";
5346 			break;
5347 
5348 		case SID_QUAL_LU_OFFLINE:
5349 			qtype = " (offline)";
5350 			break;
5351 
5352 		case SID_QUAL_RSVD:
5353 			qtype = " (reserved qualifier)";
5354 			break;
5355 		default:
5356 		case SID_QUAL_BAD_LU:
5357 			qtype = " (LUN not supported)";
5358 			break;
5359 		}
5360 	}
5361 
5362 	switch (type) {
5363 	case T_DIRECT:
5364 		dtype = "Direct Access";
5365 		break;
5366 	case T_SEQUENTIAL:
5367 		dtype = "Sequential Access";
5368 		break;
5369 	case T_PRINTER:
5370 		dtype = "Printer";
5371 		break;
5372 	case T_PROCESSOR:
5373 		dtype = "Processor";
5374 		break;
5375 	case T_WORM:
5376 		dtype = "WORM";
5377 		break;
5378 	case T_CDROM:
5379 		dtype = "CD-ROM";
5380 		break;
5381 	case T_SCANNER:
5382 		dtype = "Scanner";
5383 		break;
5384 	case T_OPTICAL:
5385 		dtype = "Optical";
5386 		break;
5387 	case T_CHANGER:
5388 		dtype = "Changer";
5389 		break;
5390 	case T_COMM:
5391 		dtype = "Communication";
5392 		break;
5393 	case T_STORARRAY:
5394 		dtype = "Storage Array";
5395 		break;
5396 	case T_ENCLOSURE:
5397 		dtype = "Enclosure Services";
5398 		break;
5399 	case T_RBC:
5400 		dtype = "Simplified Direct Access";
5401 		break;
5402 	case T_OCRW:
5403 		dtype = "Optical Card Read/Write";
5404 		break;
5405 	case T_OSD:
5406 		dtype = "Object-Based Storage";
5407 		break;
5408 	case T_ADC:
5409 		dtype = "Automation/Drive Interface";
5410 		break;
5411 	case T_NODEVICE:
5412 		dtype = "Uninstalled";
5413 		break;
5414 	default:
5415 		dtype = "unknown";
5416 		break;
5417 	}
5418 
5419 	cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor),
5420 		   sizeof(vendor));
5421 	cam_strvis(product, inq_data->product, sizeof(inq_data->product),
5422 		   sizeof(product));
5423 	cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision),
5424 		   sizeof(revision));
5425 
5426 	if (SID_ANSI_REV(inq_data) == SCSI_REV_0)
5427 		snprintf(rstr, sizeof(rstr), "SCSI");
5428 	else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) {
5429 		snprintf(rstr, sizeof(rstr), "SCSI-%d",
5430 		    SID_ANSI_REV(inq_data));
5431 	} else {
5432 		snprintf(rstr, sizeof(rstr), "SPC-%d SCSI",
5433 		    SID_ANSI_REV(inq_data) - 2);
5434 	}
5435 	printf("<%s %s %s> %s %s %s device%s\n",
5436 	       vendor, product, revision,
5437 	       SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed",
5438 	       dtype, rstr, qtype);
5439 }
5440 
5441 void
5442 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data)
5443 {
5444 	char vendor[16], product[48], revision[16];
5445 
5446 	cam_strvis(vendor, inq_data->vendor, sizeof(inq_data->vendor),
5447 		   sizeof(vendor));
5448 	cam_strvis(product, inq_data->product, sizeof(inq_data->product),
5449 		   sizeof(product));
5450 	cam_strvis(revision, inq_data->revision, sizeof(inq_data->revision),
5451 		   sizeof(revision));
5452 
5453 	printf("<%s %s %s>", vendor, product, revision);
5454 }
5455 
5456 /*
5457  * Table of syncrates that don't follow the "divisible by 4"
5458  * rule. This table will be expanded in future SCSI specs.
5459  */
5460 static struct {
5461 	u_int period_factor;
5462 	u_int period;	/* in 100ths of ns */
5463 } scsi_syncrates[] = {
5464 	{ 0x08, 625 },	/* FAST-160 */
5465 	{ 0x09, 1250 },	/* FAST-80 */
5466 	{ 0x0a, 2500 },	/* FAST-40 40MHz */
5467 	{ 0x0b, 3030 },	/* FAST-40 33MHz */
5468 	{ 0x0c, 5000 }	/* FAST-20 */
5469 };
5470 
5471 /*
5472  * Return the frequency in kHz corresponding to the given
5473  * sync period factor.
5474  */
5475 u_int
5476 scsi_calc_syncsrate(u_int period_factor)
5477 {
5478 	u_int i;
5479 	u_int num_syncrates;
5480 
5481 	/*
5482 	 * It's a bug if period is zero, but if it is anyway, don't
5483 	 * die with a divide fault- instead return something which
5484 	 * 'approximates' async
5485 	 */
5486 	if (period_factor == 0) {
5487 		return (3300);
5488 	}
5489 
5490 	num_syncrates = nitems(scsi_syncrates);
5491 	/* See if the period is in the "exception" table */
5492 	for (i = 0; i < num_syncrates; i++) {
5493 
5494 		if (period_factor == scsi_syncrates[i].period_factor) {
5495 			/* Period in kHz */
5496 			return (100000000 / scsi_syncrates[i].period);
5497 		}
5498 	}
5499 
5500 	/*
5501 	 * Wasn't in the table, so use the standard
5502 	 * 4 times conversion.
5503 	 */
5504 	return (10000000 / (period_factor * 4 * 10));
5505 }
5506 
5507 /*
5508  * Return the SCSI sync parameter that corresponds to
5509  * the passed in period in 10ths of ns.
5510  */
5511 u_int
5512 scsi_calc_syncparam(u_int period)
5513 {
5514 	u_int i;
5515 	u_int num_syncrates;
5516 
5517 	if (period == 0)
5518 		return (~0);	/* Async */
5519 
5520 	/* Adjust for exception table being in 100ths. */
5521 	period *= 10;
5522 	num_syncrates = nitems(scsi_syncrates);
5523 	/* See if the period is in the "exception" table */
5524 	for (i = 0; i < num_syncrates; i++) {
5525 
5526 		if (period <= scsi_syncrates[i].period) {
5527 			/* Period in 100ths of ns */
5528 			return (scsi_syncrates[i].period_factor);
5529 		}
5530 	}
5531 
5532 	/*
5533 	 * Wasn't in the table, so use the standard
5534 	 * 1/4 period in ns conversion.
5535 	 */
5536 	return (period/400);
5537 }
5538 
5539 int
5540 scsi_devid_is_naa_ieee_reg(uint8_t *bufp)
5541 {
5542 	struct scsi_vpd_id_descriptor *descr;
5543 	struct scsi_vpd_id_naa_basic *naa;
5544 
5545 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5546 	naa = (struct scsi_vpd_id_naa_basic *)descr->identifier;
5547 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5548 		return 0;
5549 	if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg))
5550 		return 0;
5551 	if ((naa->naa >> SVPD_ID_NAA_NAA_SHIFT) != SVPD_ID_NAA_IEEE_REG)
5552 		return 0;
5553 	return 1;
5554 }
5555 
5556 int
5557 scsi_devid_is_sas_target(uint8_t *bufp)
5558 {
5559 	struct scsi_vpd_id_descriptor *descr;
5560 
5561 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5562 	if (!scsi_devid_is_naa_ieee_reg(bufp))
5563 		return 0;
5564 	if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */
5565 		return 0;
5566 	if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS)
5567 		return 0;
5568 	return 1;
5569 }
5570 
5571 int
5572 scsi_devid_is_lun_eui64(uint8_t *bufp)
5573 {
5574 	struct scsi_vpd_id_descriptor *descr;
5575 
5576 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5577 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5578 		return 0;
5579 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64)
5580 		return 0;
5581 	return 1;
5582 }
5583 
5584 int
5585 scsi_devid_is_lun_naa(uint8_t *bufp)
5586 {
5587 	struct scsi_vpd_id_descriptor *descr;
5588 
5589 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5590 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5591 		return 0;
5592 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5593 		return 0;
5594 	return 1;
5595 }
5596 
5597 int
5598 scsi_devid_is_lun_t10(uint8_t *bufp)
5599 {
5600 	struct scsi_vpd_id_descriptor *descr;
5601 
5602 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5603 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5604 		return 0;
5605 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10)
5606 		return 0;
5607 	return 1;
5608 }
5609 
5610 int
5611 scsi_devid_is_lun_name(uint8_t *bufp)
5612 {
5613 	struct scsi_vpd_id_descriptor *descr;
5614 
5615 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5616 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5617 		return 0;
5618 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME)
5619 		return 0;
5620 	return 1;
5621 }
5622 
5623 int
5624 scsi_devid_is_port_naa(uint8_t *bufp)
5625 {
5626 	struct scsi_vpd_id_descriptor *descr;
5627 
5628 	descr = (struct scsi_vpd_id_descriptor *)bufp;
5629 	if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT)
5630 		return 0;
5631 	if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5632 		return 0;
5633 	return 1;
5634 }
5635 
5636 struct scsi_vpd_id_descriptor *
5637 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
5638     scsi_devid_checkfn_t ck_fn)
5639 {
5640 	uint8_t *desc_buf_end;
5641 
5642 	desc_buf_end = (uint8_t *)desc + len;
5643 
5644 	for (; desc->identifier <= desc_buf_end &&
5645 	    desc->identifier + desc->length <= desc_buf_end;
5646 	    desc = (struct scsi_vpd_id_descriptor *)(desc->identifier
5647 						    + desc->length)) {
5648 
5649 		if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0)
5650 			return (desc);
5651 	}
5652 	return (NULL);
5653 }
5654 
5655 struct scsi_vpd_id_descriptor *
5656 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len,
5657     scsi_devid_checkfn_t ck_fn)
5658 {
5659 	uint32_t len;
5660 
5661 	if (page_len < sizeof(*id))
5662 		return (NULL);
5663 	len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id));
5664 	return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *)
5665 	    id->desc_list, len, ck_fn));
5666 }
5667 
5668 int
5669 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr,
5670 		      uint32_t valid_len)
5671 {
5672 	switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) {
5673 	case SCSI_PROTO_FC: {
5674 		struct scsi_transportid_fcp *fcp;
5675 		uint64_t n_port_name;
5676 
5677 		fcp = (struct scsi_transportid_fcp *)hdr;
5678 
5679 		n_port_name = scsi_8btou64(fcp->n_port_name);
5680 
5681 		sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name);
5682 		break;
5683 	}
5684 	case SCSI_PROTO_SPI: {
5685 		struct scsi_transportid_spi *spi;
5686 
5687 		spi = (struct scsi_transportid_spi *)hdr;
5688 
5689 		sbuf_printf(sb, "SPI address: %u,%u",
5690 			    scsi_2btoul(spi->scsi_addr),
5691 			    scsi_2btoul(spi->rel_trgt_port_id));
5692 		break;
5693 	}
5694 	case SCSI_PROTO_SSA:
5695 		/*
5696 		 * XXX KDM there is no transport ID defined in SPC-4 for
5697 		 * SSA.
5698 		 */
5699 		break;
5700 	case SCSI_PROTO_1394: {
5701 		struct scsi_transportid_1394 *sbp;
5702 		uint64_t eui64;
5703 
5704 		sbp = (struct scsi_transportid_1394 *)hdr;
5705 
5706 		eui64 = scsi_8btou64(sbp->eui64);
5707 		sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64);
5708 		break;
5709 	}
5710 	case SCSI_PROTO_RDMA: {
5711 		struct scsi_transportid_rdma *rdma;
5712 		unsigned int i;
5713 
5714 		rdma = (struct scsi_transportid_rdma *)hdr;
5715 
5716 		sbuf_printf(sb, "RDMA address: 0x");
5717 		for (i = 0; i < sizeof(rdma->initiator_port_id); i++)
5718 			sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]);
5719 		break;
5720 	}
5721 	case SCSI_PROTO_ISCSI: {
5722 		uint32_t add_len, i;
5723 		uint8_t *iscsi_name = NULL;
5724 		int nul_found = 0;
5725 
5726 		sbuf_printf(sb, "iSCSI address: ");
5727 		if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5728 		    SCSI_TRN_ISCSI_FORMAT_DEVICE) {
5729 			struct scsi_transportid_iscsi_device *dev;
5730 
5731 			dev = (struct scsi_transportid_iscsi_device *)hdr;
5732 
5733 			/*
5734 			 * Verify how much additional data we really have.
5735 			 */
5736 			add_len = scsi_2btoul(dev->additional_length);
5737 			add_len = MIN(add_len, valid_len -
5738 				__offsetof(struct scsi_transportid_iscsi_device,
5739 					   iscsi_name));
5740 			iscsi_name = &dev->iscsi_name[0];
5741 
5742 		} else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5743 			    SCSI_TRN_ISCSI_FORMAT_PORT) {
5744 			struct scsi_transportid_iscsi_port *port;
5745 
5746 			port = (struct scsi_transportid_iscsi_port *)hdr;
5747 
5748 			add_len = scsi_2btoul(port->additional_length);
5749 			add_len = MIN(add_len, valid_len -
5750 				__offsetof(struct scsi_transportid_iscsi_port,
5751 					   iscsi_name));
5752 			iscsi_name = &port->iscsi_name[0];
5753 		} else {
5754 			sbuf_printf(sb, "unknown format %x",
5755 				    (hdr->format_protocol &
5756 				     SCSI_TRN_FORMAT_MASK) >>
5757 				     SCSI_TRN_FORMAT_SHIFT);
5758 			break;
5759 		}
5760 		if (add_len == 0) {
5761 			sbuf_printf(sb, "not enough data");
5762 			break;
5763 		}
5764 		/*
5765 		 * This is supposed to be a NUL-terminated ASCII
5766 		 * string, but you never know.  So we're going to
5767 		 * check.  We need to do this because there is no
5768 		 * sbuf equivalent of strncat().
5769 		 */
5770 		for (i = 0; i < add_len; i++) {
5771 			if (iscsi_name[i] == '\0') {
5772 				nul_found = 1;
5773 				break;
5774 			}
5775 		}
5776 		/*
5777 		 * If there is a NUL in the name, we can just use
5778 		 * sbuf_cat().  Otherwise we need to use sbuf_bcat().
5779 		 */
5780 		if (nul_found != 0)
5781 			sbuf_cat(sb, iscsi_name);
5782 		else
5783 			sbuf_bcat(sb, iscsi_name, add_len);
5784 		break;
5785 	}
5786 	case SCSI_PROTO_SAS: {
5787 		struct scsi_transportid_sas *sas;
5788 		uint64_t sas_addr;
5789 
5790 		sas = (struct scsi_transportid_sas *)hdr;
5791 
5792 		sas_addr = scsi_8btou64(sas->sas_address);
5793 		sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr);
5794 		break;
5795 	}
5796 	case SCSI_PROTO_ADITP:
5797 	case SCSI_PROTO_ATA:
5798 	case SCSI_PROTO_UAS:
5799 		/*
5800 		 * No Transport ID format for ADI, ATA or USB is defined in
5801 		 * SPC-4.
5802 		 */
5803 		sbuf_printf(sb, "No known Transport ID format for protocol "
5804 			    "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5805 		break;
5806 	case SCSI_PROTO_SOP: {
5807 		struct scsi_transportid_sop *sop;
5808 		struct scsi_sop_routing_id_norm *rid;
5809 
5810 		sop = (struct scsi_transportid_sop *)hdr;
5811 		rid = (struct scsi_sop_routing_id_norm *)sop->routing_id;
5812 
5813 		/*
5814 		 * Note that there is no alternate format specified in SPC-4
5815 		 * for the PCIe routing ID, so we don't really have a way
5816 		 * to know whether the second byte of the routing ID is
5817 		 * a device and function or just a function.  So we just
5818 		 * assume bus,device,function.
5819 		 */
5820 		sbuf_printf(sb, "SOP Routing ID: %u,%u,%u",
5821 			    rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT,
5822 			    rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX);
5823 		break;
5824 	}
5825 	case SCSI_PROTO_NONE:
5826 	default:
5827 		sbuf_printf(sb, "Unknown protocol %#x",
5828 			    hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5829 		break;
5830 	}
5831 
5832 	return (0);
5833 }
5834 
5835 struct scsi_nv scsi_proto_map[] = {
5836 	{ "fcp", SCSI_PROTO_FC },
5837 	{ "spi", SCSI_PROTO_SPI },
5838 	{ "ssa", SCSI_PROTO_SSA },
5839 	{ "sbp", SCSI_PROTO_1394 },
5840 	{ "1394", SCSI_PROTO_1394 },
5841 	{ "srp", SCSI_PROTO_RDMA },
5842 	{ "rdma", SCSI_PROTO_RDMA },
5843 	{ "iscsi", SCSI_PROTO_ISCSI },
5844 	{ "iqn", SCSI_PROTO_ISCSI },
5845 	{ "sas", SCSI_PROTO_SAS },
5846 	{ "aditp", SCSI_PROTO_ADITP },
5847 	{ "ata", SCSI_PROTO_ATA },
5848 	{ "uas", SCSI_PROTO_UAS },
5849 	{ "usb", SCSI_PROTO_UAS },
5850 	{ "sop", SCSI_PROTO_SOP }
5851 };
5852 
5853 const char *
5854 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value)
5855 {
5856 	int i;
5857 
5858 	for (i = 0; i < num_table_entries; i++) {
5859 		if (table[i].value == value)
5860 			return (table[i].name);
5861 	}
5862 
5863 	return (NULL);
5864 }
5865 
5866 /*
5867  * Given a name/value table, find a value matching the given name.
5868  * Return values:
5869  *	SCSI_NV_FOUND - match found
5870  *	SCSI_NV_AMBIGUOUS - more than one match, none of them exact
5871  *	SCSI_NV_NOT_FOUND - no match found
5872  */
5873 scsi_nv_status
5874 scsi_get_nv(struct scsi_nv *table, int num_table_entries,
5875 	    char *name, int *table_entry, scsi_nv_flags flags)
5876 {
5877 	int i, num_matches = 0;
5878 
5879 	for (i = 0; i < num_table_entries; i++) {
5880 		size_t table_len, name_len;
5881 
5882 		table_len = strlen(table[i].name);
5883 		name_len = strlen(name);
5884 
5885 		if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0)
5886 		  && (strncasecmp(table[i].name, name, name_len) == 0))
5887 		|| (((flags & SCSI_NV_FLAG_IG_CASE) == 0)
5888 		 && (strncmp(table[i].name, name, name_len) == 0))) {
5889 			*table_entry = i;
5890 
5891 			/*
5892 			 * Check for an exact match.  If we have the same
5893 			 * number of characters in the table as the argument,
5894 			 * and we already know they're the same, we have
5895 			 * an exact match.
5896 		 	 */
5897 			if (table_len == name_len)
5898 				return (SCSI_NV_FOUND);
5899 
5900 			/*
5901 			 * Otherwise, bump up the number of matches.  We'll
5902 			 * see later how many we have.
5903 			 */
5904 			num_matches++;
5905 		}
5906 	}
5907 
5908 	if (num_matches > 1)
5909 		return (SCSI_NV_AMBIGUOUS);
5910 	else if (num_matches == 1)
5911 		return (SCSI_NV_FOUND);
5912 	else
5913 		return (SCSI_NV_NOT_FOUND);
5914 }
5915 
5916 /*
5917  * Parse transport IDs for Fibre Channel, 1394 and SAS.  Since these are
5918  * all 64-bit numbers, the code is similar.
5919  */
5920 int
5921 scsi_parse_transportid_64bit(int proto_id, char *id_str,
5922 			     struct scsi_transportid_header **hdr,
5923 			     unsigned int *alloc_len,
5924 #ifdef _KERNEL
5925 			     struct malloc_type *type, int flags,
5926 #endif
5927 			     char *error_str, int error_str_len)
5928 {
5929 	uint64_t value;
5930 	char *endptr;
5931 	int retval;
5932 	size_t alloc_size;
5933 
5934 	retval = 0;
5935 
5936 	value = strtouq(id_str, &endptr, 0);
5937 	if (*endptr != '\0') {
5938 		if (error_str != NULL) {
5939 			snprintf(error_str, error_str_len, "%s: error "
5940 				 "parsing ID %s, 64-bit number required",
5941 				 __func__, id_str);
5942 		}
5943 		retval = 1;
5944 		goto bailout;
5945 	}
5946 
5947 	switch (proto_id) {
5948 	case SCSI_PROTO_FC:
5949 		alloc_size = sizeof(struct scsi_transportid_fcp);
5950 		break;
5951 	case SCSI_PROTO_1394:
5952 		alloc_size = sizeof(struct scsi_transportid_1394);
5953 		break;
5954 	case SCSI_PROTO_SAS:
5955 		alloc_size = sizeof(struct scsi_transportid_sas);
5956 		break;
5957 	default:
5958 		if (error_str != NULL) {
5959 			snprintf(error_str, error_str_len, "%s: unsupported "
5960 				 "protocol %d", __func__, proto_id);
5961 		}
5962 		retval = 1;
5963 		goto bailout;
5964 		break; /* NOTREACHED */
5965 	}
5966 #ifdef _KERNEL
5967 	*hdr = malloc(alloc_size, type, flags);
5968 #else /* _KERNEL */
5969 	*hdr = malloc(alloc_size);
5970 #endif /*_KERNEL */
5971 	if (*hdr == NULL) {
5972 		if (error_str != NULL) {
5973 			snprintf(error_str, error_str_len, "%s: unable to "
5974 				 "allocate %zu bytes", __func__, alloc_size);
5975 		}
5976 		retval = 1;
5977 		goto bailout;
5978 	}
5979 
5980 	*alloc_len = alloc_size;
5981 
5982 	bzero(*hdr, alloc_size);
5983 
5984 	switch (proto_id) {
5985 	case SCSI_PROTO_FC: {
5986 		struct scsi_transportid_fcp *fcp;
5987 
5988 		fcp = (struct scsi_transportid_fcp *)(*hdr);
5989 		fcp->format_protocol = SCSI_PROTO_FC |
5990 				       SCSI_TRN_FCP_FORMAT_DEFAULT;
5991 		scsi_u64to8b(value, fcp->n_port_name);
5992 		break;
5993 	}
5994 	case SCSI_PROTO_1394: {
5995 		struct scsi_transportid_1394 *sbp;
5996 
5997 		sbp = (struct scsi_transportid_1394 *)(*hdr);
5998 		sbp->format_protocol = SCSI_PROTO_1394 |
5999 				       SCSI_TRN_1394_FORMAT_DEFAULT;
6000 		scsi_u64to8b(value, sbp->eui64);
6001 		break;
6002 	}
6003 	case SCSI_PROTO_SAS: {
6004 		struct scsi_transportid_sas *sas;
6005 
6006 		sas = (struct scsi_transportid_sas *)(*hdr);
6007 		sas->format_protocol = SCSI_PROTO_SAS |
6008 				       SCSI_TRN_SAS_FORMAT_DEFAULT;
6009 		scsi_u64to8b(value, sas->sas_address);
6010 		break;
6011 	}
6012 	default:
6013 		break;
6014 	}
6015 bailout:
6016 	return (retval);
6017 }
6018 
6019 /*
6020  * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port
6021  */
6022 int
6023 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr,
6024 			   unsigned int *alloc_len,
6025 #ifdef _KERNEL
6026 			   struct malloc_type *type, int flags,
6027 #endif
6028 			   char *error_str, int error_str_len)
6029 {
6030 	unsigned long scsi_addr, target_port;
6031 	struct scsi_transportid_spi *spi;
6032 	char *tmpstr, *endptr;
6033 	int retval;
6034 
6035 	retval = 0;
6036 
6037 	tmpstr = strsep(&id_str, ",");
6038 	if (tmpstr == NULL) {
6039 		if (error_str != NULL) {
6040 			snprintf(error_str, error_str_len,
6041 				 "%s: no ID found", __func__);
6042 		}
6043 		retval = 1;
6044 		goto bailout;
6045 	}
6046 	scsi_addr = strtoul(tmpstr, &endptr, 0);
6047 	if (*endptr != '\0') {
6048 		if (error_str != NULL) {
6049 			snprintf(error_str, error_str_len, "%s: error "
6050 				 "parsing SCSI ID %s, number required",
6051 				 __func__, tmpstr);
6052 		}
6053 		retval = 1;
6054 		goto bailout;
6055 	}
6056 
6057 	if (id_str == NULL) {
6058 		if (error_str != NULL) {
6059 			snprintf(error_str, error_str_len, "%s: no relative "
6060 				 "target port found", __func__);
6061 		}
6062 		retval = 1;
6063 		goto bailout;
6064 	}
6065 
6066 	target_port = strtoul(id_str, &endptr, 0);
6067 	if (*endptr != '\0') {
6068 		if (error_str != NULL) {
6069 			snprintf(error_str, error_str_len, "%s: error "
6070 				 "parsing relative target port %s, number "
6071 				 "required", __func__, id_str);
6072 		}
6073 		retval = 1;
6074 		goto bailout;
6075 	}
6076 #ifdef _KERNEL
6077 	spi = malloc(sizeof(*spi), type, flags);
6078 #else
6079 	spi = malloc(sizeof(*spi));
6080 #endif
6081 	if (spi == NULL) {
6082 		if (error_str != NULL) {
6083 			snprintf(error_str, error_str_len, "%s: unable to "
6084 				 "allocate %zu bytes", __func__,
6085 				 sizeof(*spi));
6086 		}
6087 		retval = 1;
6088 		goto bailout;
6089 	}
6090 	*alloc_len = sizeof(*spi);
6091 	bzero(spi, sizeof(*spi));
6092 
6093 	spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT;
6094 	scsi_ulto2b(scsi_addr, spi->scsi_addr);
6095 	scsi_ulto2b(target_port, spi->rel_trgt_port_id);
6096 
6097 	*hdr = (struct scsi_transportid_header *)spi;
6098 bailout:
6099 	return (retval);
6100 }
6101 
6102 /*
6103  * Parse an RDMA/SRP Initiator Port ID string.  This is 32 hexadecimal digits,
6104  * optionally prefixed by "0x" or "0X".
6105  */
6106 int
6107 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr,
6108 			    unsigned int *alloc_len,
6109 #ifdef _KERNEL
6110 			    struct malloc_type *type, int flags,
6111 #endif
6112 			    char *error_str, int error_str_len)
6113 {
6114 	struct scsi_transportid_rdma *rdma;
6115 	int retval;
6116 	size_t id_len, rdma_id_size;
6117 	uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN];
6118 	char *tmpstr;
6119 	unsigned int i, j;
6120 
6121 	retval = 0;
6122 	id_len = strlen(id_str);
6123 	rdma_id_size = SCSI_TRN_RDMA_PORT_LEN;
6124 
6125 	/*
6126 	 * Check the size.  It needs to be either 32 or 34 characters long.
6127 	 */
6128 	if ((id_len != (rdma_id_size * 2))
6129 	 && (id_len != ((rdma_id_size * 2) + 2))) {
6130 		if (error_str != NULL) {
6131 			snprintf(error_str, error_str_len, "%s: RDMA ID "
6132 				 "must be 32 hex digits (0x prefix "
6133 				 "optional), only %zu seen", __func__, id_len);
6134 		}
6135 		retval = 1;
6136 		goto bailout;
6137 	}
6138 
6139 	tmpstr = id_str;
6140 	/*
6141 	 * If the user gave us 34 characters, the string needs to start
6142 	 * with '0x'.
6143 	 */
6144 	if (id_len == ((rdma_id_size * 2) + 2)) {
6145 	 	if ((tmpstr[0] == '0')
6146 		 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) {
6147 			tmpstr += 2;
6148 		} else {
6149 			if (error_str != NULL) {
6150 				snprintf(error_str, error_str_len, "%s: RDMA "
6151 					 "ID prefix, if used, must be \"0x\", "
6152 					 "got %s", __func__, tmpstr);
6153 			}
6154 			retval = 1;
6155 			goto bailout;
6156 		}
6157 	}
6158 	bzero(rdma_id, sizeof(rdma_id));
6159 
6160 	/*
6161 	 * Convert ASCII hex into binary bytes.  There is no standard
6162 	 * 128-bit integer type, and so no strtou128t() routine to convert
6163 	 * from hex into a large integer.  In the end, we're not going to
6164 	 * an integer, but rather to a byte array, so that and the fact
6165 	 * that we require the user to give us 32 hex digits simplifies the
6166 	 * logic.
6167 	 */
6168 	for (i = 0; i < (rdma_id_size * 2); i++) {
6169 		int cur_shift;
6170 		unsigned char c;
6171 
6172 		/* Increment the byte array one for every 2 hex digits */
6173 		j = i >> 1;
6174 
6175 		/*
6176 		 * The first digit in every pair is the most significant
6177 		 * 4 bits.  The second is the least significant 4 bits.
6178 		 */
6179 		if ((i % 2) == 0)
6180 			cur_shift = 4;
6181 		else
6182 			cur_shift = 0;
6183 
6184 		c = tmpstr[i];
6185 		/* Convert the ASCII hex character into a number */
6186 		if (isdigit(c))
6187 			c -= '0';
6188 		else if (isalpha(c))
6189 			c -= isupper(c) ? 'A' - 10 : 'a' - 10;
6190 		else {
6191 			if (error_str != NULL) {
6192 				snprintf(error_str, error_str_len, "%s: "
6193 					 "RDMA ID must be hex digits, got "
6194 					 "invalid character %c", __func__,
6195 					 tmpstr[i]);
6196 			}
6197 			retval = 1;
6198 			goto bailout;
6199 		}
6200 		/*
6201 		 * The converted number can't be less than 0; the type is
6202 		 * unsigned, and the subtraction logic will not give us
6203 		 * a negative number.  So we only need to make sure that
6204 		 * the value is not greater than 0xf.  (i.e. make sure the
6205 		 * user didn't give us a value like "0x12jklmno").
6206 		 */
6207 		if (c > 0xf) {
6208 			if (error_str != NULL) {
6209 				snprintf(error_str, error_str_len, "%s: "
6210 					 "RDMA ID must be hex digits, got "
6211 					 "invalid character %c", __func__,
6212 					 tmpstr[i]);
6213 			}
6214 			retval = 1;
6215 			goto bailout;
6216 		}
6217 
6218 		rdma_id[j] |= c << cur_shift;
6219 	}
6220 
6221 #ifdef _KERNEL
6222 	rdma = malloc(sizeof(*rdma), type, flags);
6223 #else
6224 	rdma = malloc(sizeof(*rdma));
6225 #endif
6226 	if (rdma == NULL) {
6227 		if (error_str != NULL) {
6228 			snprintf(error_str, error_str_len, "%s: unable to "
6229 				 "allocate %zu bytes", __func__,
6230 				 sizeof(*rdma));
6231 		}
6232 		retval = 1;
6233 		goto bailout;
6234 	}
6235 	*alloc_len = sizeof(*rdma);
6236 	bzero(rdma, *alloc_len);
6237 
6238 	rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT;
6239 	bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN);
6240 
6241 	*hdr = (struct scsi_transportid_header *)rdma;
6242 
6243 bailout:
6244 	return (retval);
6245 }
6246 
6247 /*
6248  * Parse an iSCSI name.  The format is either just the name:
6249  *
6250  *	iqn.2012-06.com.example:target0
6251  * or the name, separator and initiator session ID:
6252  *
6253  *	iqn.2012-06.com.example:target0,i,0x123
6254  *
6255  * The separator format is exact.
6256  */
6257 int
6258 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr,
6259 			     unsigned int *alloc_len,
6260 #ifdef _KERNEL
6261 			     struct malloc_type *type, int flags,
6262 #endif
6263 			     char *error_str, int error_str_len)
6264 {
6265 	size_t id_len, sep_len, id_size, name_len;
6266 	int retval;
6267 	unsigned int i, sep_pos, sep_found;
6268 	const char *sep_template = ",i,0x";
6269 	const char *iqn_prefix = "iqn.";
6270 	struct scsi_transportid_iscsi_device *iscsi;
6271 
6272 	retval = 0;
6273 	sep_found = 0;
6274 
6275 	id_len = strlen(id_str);
6276 	sep_len = strlen(sep_template);
6277 
6278 	/*
6279 	 * The separator is defined as exactly ',i,0x'.  Any other commas,
6280 	 * or any other form, is an error.  So look for a comma, and once
6281 	 * we find that, the next few characters must match the separator
6282 	 * exactly.  Once we get through the separator, there should be at
6283 	 * least one character.
6284 	 */
6285 	for (i = 0, sep_pos = 0; i < id_len; i++) {
6286 		if (sep_pos == 0) {
6287 		 	if (id_str[i] == sep_template[sep_pos])
6288 				sep_pos++;
6289 
6290 			continue;
6291 		}
6292 		if (sep_pos < sep_len) {
6293 			if (id_str[i] == sep_template[sep_pos]) {
6294 				sep_pos++;
6295 				continue;
6296 			}
6297 			if (error_str != NULL) {
6298 				snprintf(error_str, error_str_len, "%s: "
6299 					 "invalid separator in iSCSI name "
6300 					 "\"%s\"",
6301 					 __func__, id_str);
6302 			}
6303 			retval = 1;
6304 			goto bailout;
6305 		} else {
6306 			sep_found = 1;
6307 			break;
6308 		}
6309 	}
6310 
6311 	/*
6312 	 * Check to see whether we have a separator but no digits after it.
6313 	 */
6314 	if ((sep_pos != 0)
6315 	 && (sep_found == 0)) {
6316 		if (error_str != NULL) {
6317 			snprintf(error_str, error_str_len, "%s: no digits "
6318 				 "found after separator in iSCSI name \"%s\"",
6319 				 __func__, id_str);
6320 		}
6321 		retval = 1;
6322 		goto bailout;
6323 	}
6324 
6325 	/*
6326 	 * The incoming ID string has the "iqn." prefix stripped off.  We
6327 	 * need enough space for the base structure (the structures are the
6328 	 * same for the two iSCSI forms), the prefix, the ID string and a
6329 	 * terminating NUL.
6330 	 */
6331 	id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1;
6332 
6333 #ifdef _KERNEL
6334 	iscsi = malloc(id_size, type, flags);
6335 #else
6336 	iscsi = malloc(id_size);
6337 #endif
6338 	if (iscsi == NULL) {
6339 		if (error_str != NULL) {
6340 			snprintf(error_str, error_str_len, "%s: unable to "
6341 				 "allocate %zu bytes", __func__, id_size);
6342 		}
6343 		retval = 1;
6344 		goto bailout;
6345 	}
6346 	*alloc_len = id_size;
6347 	bzero(iscsi, id_size);
6348 
6349 	iscsi->format_protocol = SCSI_PROTO_ISCSI;
6350 	if (sep_found == 0)
6351 		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE;
6352 	else
6353 		iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT;
6354 	name_len = id_size - sizeof(*iscsi);
6355 	scsi_ulto2b(name_len, iscsi->additional_length);
6356 	snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str);
6357 
6358 	*hdr = (struct scsi_transportid_header *)iscsi;
6359 
6360 bailout:
6361 	return (retval);
6362 }
6363 
6364 /*
6365  * Parse a SCSI over PCIe (SOP) identifier.  The Routing ID can either be
6366  * of the form 'bus,device,function' or 'bus,function'.
6367  */
6368 int
6369 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr,
6370 			   unsigned int *alloc_len,
6371 #ifdef _KERNEL
6372 			   struct malloc_type *type, int flags,
6373 #endif
6374 			   char *error_str, int error_str_len)
6375 {
6376 	struct scsi_transportid_sop *sop;
6377 	unsigned long bus, device, function;
6378 	char *tmpstr, *endptr;
6379 	int retval, device_spec;
6380 
6381 	retval = 0;
6382 	device_spec = 0;
6383 	device = 0;
6384 
6385 	tmpstr = strsep(&id_str, ",");
6386 	if ((tmpstr == NULL)
6387 	 || (*tmpstr == '\0')) {
6388 		if (error_str != NULL) {
6389 			snprintf(error_str, error_str_len, "%s: no ID found",
6390 				 __func__);
6391 		}
6392 		retval = 1;
6393 		goto bailout;
6394 	}
6395 	bus = strtoul(tmpstr, &endptr, 0);
6396 	if (*endptr != '\0') {
6397 		if (error_str != NULL) {
6398 			snprintf(error_str, error_str_len, "%s: error "
6399 				 "parsing PCIe bus %s, number required",
6400 				 __func__, tmpstr);
6401 		}
6402 		retval = 1;
6403 		goto bailout;
6404 	}
6405 	if ((id_str == NULL)
6406 	 || (*id_str == '\0')) {
6407 		if (error_str != NULL) {
6408 			snprintf(error_str, error_str_len, "%s: no PCIe "
6409 				 "device or function found", __func__);
6410 		}
6411 		retval = 1;
6412 		goto bailout;
6413 	}
6414 	tmpstr = strsep(&id_str, ",");
6415 	function = strtoul(tmpstr, &endptr, 0);
6416 	if (*endptr != '\0') {
6417 		if (error_str != NULL) {
6418 			snprintf(error_str, error_str_len, "%s: error "
6419 				 "parsing PCIe device/function %s, number "
6420 				 "required", __func__, tmpstr);
6421 		}
6422 		retval = 1;
6423 		goto bailout;
6424 	}
6425 	/*
6426 	 * Check to see whether the user specified a third value.  If so,
6427 	 * the second is the device.
6428 	 */
6429 	if (id_str != NULL) {
6430 		if (*id_str == '\0') {
6431 			if (error_str != NULL) {
6432 				snprintf(error_str, error_str_len, "%s: "
6433 					 "no PCIe function found", __func__);
6434 			}
6435 			retval = 1;
6436 			goto bailout;
6437 		}
6438 		device = function;
6439 		device_spec = 1;
6440 		function = strtoul(id_str, &endptr, 0);
6441 		if (*endptr != '\0') {
6442 			if (error_str != NULL) {
6443 				snprintf(error_str, error_str_len, "%s: "
6444 					 "error parsing PCIe function %s, "
6445 					 "number required", __func__, id_str);
6446 			}
6447 			retval = 1;
6448 			goto bailout;
6449 		}
6450 	}
6451 	if (bus > SCSI_TRN_SOP_BUS_MAX) {
6452 		if (error_str != NULL) {
6453 			snprintf(error_str, error_str_len, "%s: bus value "
6454 				 "%lu greater than maximum %u", __func__,
6455 				 bus, SCSI_TRN_SOP_BUS_MAX);
6456 		}
6457 		retval = 1;
6458 		goto bailout;
6459 	}
6460 
6461 	if ((device_spec != 0)
6462 	 && (device > SCSI_TRN_SOP_DEV_MASK)) {
6463 		if (error_str != NULL) {
6464 			snprintf(error_str, error_str_len, "%s: device value "
6465 				 "%lu greater than maximum %u", __func__,
6466 				 device, SCSI_TRN_SOP_DEV_MAX);
6467 		}
6468 		retval = 1;
6469 		goto bailout;
6470 	}
6471 
6472 	if (((device_spec != 0)
6473 	  && (function > SCSI_TRN_SOP_FUNC_NORM_MAX))
6474 	 || ((device_spec == 0)
6475 	  && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) {
6476 		if (error_str != NULL) {
6477 			snprintf(error_str, error_str_len, "%s: function value "
6478 				 "%lu greater than maximum %u", __func__,
6479 				 function, (device_spec == 0) ?
6480 				 SCSI_TRN_SOP_FUNC_ALT_MAX :
6481 				 SCSI_TRN_SOP_FUNC_NORM_MAX);
6482 		}
6483 		retval = 1;
6484 		goto bailout;
6485 	}
6486 
6487 #ifdef _KERNEL
6488 	sop = malloc(sizeof(*sop), type, flags);
6489 #else
6490 	sop = malloc(sizeof(*sop));
6491 #endif
6492 	if (sop == NULL) {
6493 		if (error_str != NULL) {
6494 			snprintf(error_str, error_str_len, "%s: unable to "
6495 				 "allocate %zu bytes", __func__, sizeof(*sop));
6496 		}
6497 		retval = 1;
6498 		goto bailout;
6499 	}
6500 	*alloc_len = sizeof(*sop);
6501 	bzero(sop, sizeof(*sop));
6502 	sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT;
6503 	if (device_spec != 0) {
6504 		struct scsi_sop_routing_id_norm rid;
6505 
6506 		rid.bus = bus;
6507 		rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function;
6508 		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6509 		      sizeof(sop->routing_id)));
6510 	} else {
6511 		struct scsi_sop_routing_id_alt rid;
6512 
6513 		rid.bus = bus;
6514 		rid.function = function;
6515 		bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6516 		      sizeof(sop->routing_id)));
6517 	}
6518 
6519 	*hdr = (struct scsi_transportid_header *)sop;
6520 bailout:
6521 	return (retval);
6522 }
6523 
6524 /*
6525  * transportid_str: NUL-terminated string with format: protcol,id
6526  *		    The ID is protocol specific.
6527  * hdr:		    Storage will be allocated for the transport ID.
6528  * alloc_len:	    The amount of memory allocated is returned here.
6529  * type:	    Malloc bucket (kernel only).
6530  * flags:	    Malloc flags (kernel only).
6531  * error_str:	    If non-NULL, it will contain error information (without
6532  * 		    a terminating newline) if an error is returned.
6533  * error_str_len:   Allocated length of the error string.
6534  *
6535  * Returns 0 for success, non-zero for failure.
6536  */
6537 int
6538 scsi_parse_transportid(char *transportid_str,
6539 		       struct scsi_transportid_header **hdr,
6540 		       unsigned int *alloc_len,
6541 #ifdef _KERNEL
6542 		       struct malloc_type *type, int flags,
6543 #endif
6544 		       char *error_str, int error_str_len)
6545 {
6546 	char *tmpstr;
6547 	scsi_nv_status status;
6548 	u_int num_proto_entries;
6549 	int retval, table_entry;
6550 
6551 	retval = 0;
6552 	table_entry = 0;
6553 
6554 	/*
6555 	 * We do allow a period as well as a comma to separate the protocol
6556 	 * from the ID string.  This is to accommodate iSCSI names, which
6557 	 * start with "iqn.".
6558 	 */
6559 	tmpstr = strsep(&transportid_str, ",.");
6560 	if (tmpstr == NULL) {
6561 		if (error_str != NULL) {
6562 			snprintf(error_str, error_str_len,
6563 				 "%s: transportid_str is NULL", __func__);
6564 		}
6565 		retval = 1;
6566 		goto bailout;
6567 	}
6568 
6569 	num_proto_entries = nitems(scsi_proto_map);
6570 	status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr,
6571 			     &table_entry, SCSI_NV_FLAG_IG_CASE);
6572 	if (status != SCSI_NV_FOUND) {
6573 		if (error_str != NULL) {
6574 			snprintf(error_str, error_str_len, "%s: %s protocol "
6575 				 "name %s", __func__,
6576 				 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" :
6577 				 "invalid", tmpstr);
6578 		}
6579 		retval = 1;
6580 		goto bailout;
6581 	}
6582 	switch (scsi_proto_map[table_entry].value) {
6583 	case SCSI_PROTO_FC:
6584 	case SCSI_PROTO_1394:
6585 	case SCSI_PROTO_SAS:
6586 		retval = scsi_parse_transportid_64bit(
6587 		    scsi_proto_map[table_entry].value, transportid_str, hdr,
6588 		    alloc_len,
6589 #ifdef _KERNEL
6590 		    type, flags,
6591 #endif
6592 		    error_str, error_str_len);
6593 		break;
6594 	case SCSI_PROTO_SPI:
6595 		retval = scsi_parse_transportid_spi(transportid_str, hdr,
6596 		    alloc_len,
6597 #ifdef _KERNEL
6598 		    type, flags,
6599 #endif
6600 		    error_str, error_str_len);
6601 		break;
6602 	case SCSI_PROTO_RDMA:
6603 		retval = scsi_parse_transportid_rdma(transportid_str, hdr,
6604 		    alloc_len,
6605 #ifdef _KERNEL
6606 		    type, flags,
6607 #endif
6608 		    error_str, error_str_len);
6609 		break;
6610 	case SCSI_PROTO_ISCSI:
6611 		retval = scsi_parse_transportid_iscsi(transportid_str, hdr,
6612 		    alloc_len,
6613 #ifdef _KERNEL
6614 		    type, flags,
6615 #endif
6616 		    error_str, error_str_len);
6617 		break;
6618 	case SCSI_PROTO_SOP:
6619 		retval = scsi_parse_transportid_sop(transportid_str, hdr,
6620 		    alloc_len,
6621 #ifdef _KERNEL
6622 		    type, flags,
6623 #endif
6624 		    error_str, error_str_len);
6625 		break;
6626 	case SCSI_PROTO_SSA:
6627 	case SCSI_PROTO_ADITP:
6628 	case SCSI_PROTO_ATA:
6629 	case SCSI_PROTO_UAS:
6630 	case SCSI_PROTO_NONE:
6631 	default:
6632 		/*
6633 		 * There is no format defined for a Transport ID for these
6634 		 * protocols.  So even if the user gives us something, we
6635 		 * have no way to turn it into a standard SCSI Transport ID.
6636 		 */
6637 		retval = 1;
6638 		if (error_str != NULL) {
6639 			snprintf(error_str, error_str_len, "%s: no Transport "
6640 				 "ID format exists for protocol %s",
6641 				 __func__, tmpstr);
6642 		}
6643 		goto bailout;
6644 		break;	/* NOTREACHED */
6645 	}
6646 bailout:
6647 	return (retval);
6648 }
6649 
6650 struct scsi_attrib_table_entry scsi_mam_attr_table[] = {
6651 	{ SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6652 	  "Remaining Capacity in Partition",
6653 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL },
6654 	{ SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6655 	  "Maximum Capacity in Partition",
6656 	  /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6657 	{ SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX,
6658 	  "TapeAlert Flags",
6659 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6660 	{ SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE,
6661 	  "Load Count",
6662 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6663 	{ SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE,
6664 	  "MAM Space Remaining",
6665 	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6666 	  /*parse_str*/ NULL },
6667 	{ SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6668 	  "Assigning Organization",
6669 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6670 	  /*parse_str*/ NULL },
6671 	{ SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6672 	  "Format Density Code",
6673 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6674 	{ SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE,
6675 	  "Initialization Count",
6676 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6677 	{ SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE,
6678 	  "Volume Identifier",
6679 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6680 	  /*parse_str*/ NULL },
6681 	{ SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX,
6682 	  "Volume Change Reference",
6683 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6684 	  /*parse_str*/ NULL },
6685 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE,
6686 	  "Device Vendor/Serial at Last Load",
6687 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6688 	  /*parse_str*/ NULL },
6689 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE,
6690 	  "Device Vendor/Serial at Last Load - 1",
6691 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6692 	  /*parse_str*/ NULL },
6693 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE,
6694 	  "Device Vendor/Serial at Last Load - 2",
6695 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6696 	  /*parse_str*/ NULL },
6697 	{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE,
6698 	  "Device Vendor/Serial at Last Load - 3",
6699 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6700 	  /*parse_str*/ NULL },
6701 	{ SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE,
6702 	  "Total MB Written in Medium Life",
6703 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6704 	  /*parse_str*/ NULL },
6705 	{ SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE,
6706 	  "Total MB Read in Medium Life",
6707 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6708 	  /*parse_str*/ NULL },
6709 	{ SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE,
6710 	  "Total MB Written in Current/Last Load",
6711 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6712 	  /*parse_str*/ NULL },
6713 	{ SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE,
6714 	  "Total MB Read in Current/Last Load",
6715 	  /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6716 	  /*parse_str*/ NULL },
6717 	{ SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6718 	  "Logical Position of First Encrypted Block",
6719 	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6720 	  /*parse_str*/ NULL },
6721 	{ SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6722 	  "Logical Position of First Unencrypted Block after First "
6723 	  "Encrypted Block",
6724 	  /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6725 	  /*parse_str*/ NULL },
6726 	{ SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6727 	  "Medium Usage History",
6728 	  /*suffix*/ NULL, /*to_str*/ NULL,
6729 	  /*parse_str*/ NULL },
6730 	{ SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6731 	  "Partition Usage History",
6732 	  /*suffix*/ NULL, /*to_str*/ NULL,
6733 	  /*parse_str*/ NULL },
6734 	{ SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE,
6735 	  "Medium Manufacturer",
6736 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6737 	  /*parse_str*/ NULL },
6738 	{ SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE,
6739 	  "Medium Serial Number",
6740 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6741 	  /*parse_str*/ NULL },
6742 	{ SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE,
6743 	  "Medium Length",
6744 	  /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf,
6745 	  /*parse_str*/ NULL },
6746 	{ SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 |
6747 	  SCSI_ATTR_FLAG_FP_1DIGIT,
6748 	  "Medium Width",
6749 	  /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf,
6750 	  /*parse_str*/ NULL },
6751 	{ SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6752 	  "Assigning Organization",
6753 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6754 	  /*parse_str*/ NULL },
6755 	{ SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6756 	  "Medium Density Code",
6757 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6758 	  /*parse_str*/ NULL },
6759 	{ SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE,
6760 	  "Medium Manufacture Date",
6761 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6762 	  /*parse_str*/ NULL },
6763 	{ SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE,
6764 	  "MAM Capacity",
6765 	  /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6766 	  /*parse_str*/ NULL },
6767 	{ SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX,
6768 	  "Medium Type",
6769 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6770 	  /*parse_str*/ NULL },
6771 	{ SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX,
6772 	  "Medium Type Information",
6773 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6774 	  /*parse_str*/ NULL },
6775 	{ SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE,
6776 	  "Medium Serial Number",
6777 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6778 	  /*parse_str*/ NULL },
6779 	{ SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE,
6780 	  "Application Vendor",
6781 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6782 	  /*parse_str*/ NULL },
6783 	{ SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE,
6784 	  "Application Name",
6785 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6786 	  /*parse_str*/ NULL },
6787 	{ SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE,
6788 	  "Application Version",
6789 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6790 	  /*parse_str*/ NULL },
6791 	{ SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE,
6792 	  "User Medium Text Label",
6793 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6794 	  /*parse_str*/ NULL },
6795 	{ SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE,
6796 	  "Date and Time Last Written",
6797 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6798 	  /*parse_str*/ NULL },
6799 	{ SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX,
6800 	  "Text Localization Identifier",
6801 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6802 	  /*parse_str*/ NULL },
6803 	{ SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE,
6804 	  "Barcode",
6805 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6806 	  /*parse_str*/ NULL },
6807 	{ SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE,
6808 	  "Owning Host Textual Name",
6809 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6810 	  /*parse_str*/ NULL },
6811 	{ SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE,
6812 	  "Media Pool",
6813 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6814 	  /*parse_str*/ NULL },
6815 	{ SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE,
6816 	  "Partition User Text Label",
6817 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6818 	  /*parse_str*/ NULL },
6819 	{ SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE,
6820 	  "Load/Unload at Partition",
6821 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6822 	  /*parse_str*/ NULL },
6823 	{ SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE,
6824 	  "Application Format Version",
6825 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6826 	  /*parse_str*/ NULL },
6827 	{ SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE,
6828 	  "Volume Coherency Information",
6829 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf,
6830 	  /*parse_str*/ NULL },
6831 	{ 0x0ff1, SCSI_ATTR_FLAG_NONE,
6832 	  "Spectra MLM Creation",
6833 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6834 	  /*parse_str*/ NULL },
6835 	{ 0x0ff2, SCSI_ATTR_FLAG_NONE,
6836 	  "Spectra MLM C3",
6837 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6838 	  /*parse_str*/ NULL },
6839 	{ 0x0ff3, SCSI_ATTR_FLAG_NONE,
6840 	  "Spectra MLM RW",
6841 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6842 	  /*parse_str*/ NULL },
6843 	{ 0x0ff4, SCSI_ATTR_FLAG_NONE,
6844 	  "Spectra MLM SDC List",
6845 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6846 	  /*parse_str*/ NULL },
6847 	{ 0x0ff7, SCSI_ATTR_FLAG_NONE,
6848 	  "Spectra MLM Post Scan",
6849 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6850 	  /*parse_str*/ NULL },
6851 	{ 0x0ffe, SCSI_ATTR_FLAG_NONE,
6852 	  "Spectra MLM Checksum",
6853 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6854 	  /*parse_str*/ NULL },
6855 	{ 0x17f1, SCSI_ATTR_FLAG_NONE,
6856 	  "Spectra MLM Creation",
6857 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6858 	  /*parse_str*/ NULL },
6859 	{ 0x17f2, SCSI_ATTR_FLAG_NONE,
6860 	  "Spectra MLM C3",
6861 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6862 	  /*parse_str*/ NULL },
6863 	{ 0x17f3, SCSI_ATTR_FLAG_NONE,
6864 	  "Spectra MLM RW",
6865 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6866 	  /*parse_str*/ NULL },
6867 	{ 0x17f4, SCSI_ATTR_FLAG_NONE,
6868 	  "Spectra MLM SDC List",
6869 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6870 	  /*parse_str*/ NULL },
6871 	{ 0x17f7, SCSI_ATTR_FLAG_NONE,
6872 	  "Spectra MLM Post Scan",
6873 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6874 	  /*parse_str*/ NULL },
6875 	{ 0x17ff, SCSI_ATTR_FLAG_NONE,
6876 	  "Spectra MLM Checksum",
6877 	  /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6878 	  /*parse_str*/ NULL },
6879 };
6880 
6881 /*
6882  * Print out Volume Coherency Information (Attribute 0x080c).
6883  * This field has two variable length members, including one at the
6884  * beginning, so it isn't practical to have a fixed structure definition.
6885  * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25,
6886  * 2013.
6887  */
6888 int
6889 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
6890 			 uint32_t valid_len, uint32_t flags,
6891 			 uint32_t output_flags, char *error_str,
6892 			 int error_str_len)
6893 {
6894 	size_t avail_len;
6895 	uint32_t field_size;
6896 	uint64_t tmp_val;
6897 	uint8_t *cur_ptr;
6898 	int retval;
6899 	int vcr_len, as_len;
6900 
6901 	retval = 0;
6902 	tmp_val = 0;
6903 
6904 	field_size = scsi_2btoul(hdr->length);
6905 	avail_len = valid_len - sizeof(*hdr);
6906 	if (field_size > avail_len) {
6907 		if (error_str != NULL) {
6908 			snprintf(error_str, error_str_len, "Available "
6909 				 "length of attribute ID 0x%.4x %zu < field "
6910 				 "length %u", scsi_2btoul(hdr->id), avail_len,
6911 				 field_size);
6912 		}
6913 		retval = 1;
6914 		goto bailout;
6915 	} else if (field_size == 0) {
6916 		/*
6917 		 * It isn't clear from the spec whether a field length of
6918 		 * 0 is invalid here.  It probably is, but be lenient here
6919 		 * to avoid inconveniencing the user.
6920 		 */
6921 		goto bailout;
6922 	}
6923 	cur_ptr = hdr->attribute;
6924 	vcr_len = *cur_ptr;
6925 	cur_ptr++;
6926 
6927 	sbuf_printf(sb, "\n\tVolume Change Reference Value:");
6928 
6929 	switch (vcr_len) {
6930 	case 0:
6931 		if (error_str != NULL) {
6932 			snprintf(error_str, error_str_len, "Volume Change "
6933 				 "Reference value has length of 0");
6934 		}
6935 		retval = 1;
6936 		goto bailout;
6937 		break; /*NOTREACHED*/
6938 	case 1:
6939 		tmp_val = *cur_ptr;
6940 		break;
6941 	case 2:
6942 		tmp_val = scsi_2btoul(cur_ptr);
6943 		break;
6944 	case 3:
6945 		tmp_val = scsi_3btoul(cur_ptr);
6946 		break;
6947 	case 4:
6948 		tmp_val = scsi_4btoul(cur_ptr);
6949 		break;
6950 	case 8:
6951 		tmp_val = scsi_8btou64(cur_ptr);
6952 		break;
6953 	default:
6954 		sbuf_printf(sb, "\n");
6955 		sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0);
6956 		break;
6957 	}
6958 	if (vcr_len <= 8)
6959 		sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val);
6960 
6961 	cur_ptr += vcr_len;
6962 	tmp_val = scsi_8btou64(cur_ptr);
6963 	sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val);
6964 
6965 	cur_ptr += sizeof(tmp_val);
6966 	tmp_val = scsi_8btou64(cur_ptr);
6967 	sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n",
6968 		    (uintmax_t)tmp_val);
6969 
6970 	/*
6971 	 * Figure out how long the Application Client Specific Information
6972 	 * is and produce a hexdump.
6973 	 */
6974 	cur_ptr += sizeof(tmp_val);
6975 	as_len = scsi_2btoul(cur_ptr);
6976 	cur_ptr += sizeof(uint16_t);
6977 	sbuf_printf(sb, "\tApplication Client Specific Information: ");
6978 	if (((as_len == SCSI_LTFS_VER0_LEN)
6979 	  || (as_len == SCSI_LTFS_VER1_LEN))
6980 	 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) {
6981 		sbuf_printf(sb, "LTFS\n");
6982 		cur_ptr += SCSI_LTFS_STR_LEN + 1;
6983 		if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0')
6984 			cur_ptr[SCSI_LTFS_UUID_LEN] = '\0';
6985 		sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr);
6986 		cur_ptr += SCSI_LTFS_UUID_LEN + 1;
6987 		/* XXX KDM check the length */
6988 		sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr);
6989 	} else {
6990 		sbuf_printf(sb, "Unknown\n");
6991 		sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0);
6992 	}
6993 
6994 bailout:
6995 	return (retval);
6996 }
6997 
6998 int
6999 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7000 			 uint32_t valid_len, uint32_t flags,
7001 			 uint32_t output_flags, char *error_str,
7002 			 int error_str_len)
7003 {
7004 	size_t avail_len;
7005 	uint32_t field_size;
7006 	struct scsi_attrib_vendser *vendser;
7007 	cam_strvis_flags strvis_flags;
7008 	int retval = 0;
7009 
7010 	field_size = scsi_2btoul(hdr->length);
7011 	avail_len = valid_len - sizeof(*hdr);
7012 	if (field_size > avail_len) {
7013 		if (error_str != NULL) {
7014 			snprintf(error_str, error_str_len, "Available "
7015 				 "length of attribute ID 0x%.4x %zu < field "
7016 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7017 				 field_size);
7018 		}
7019 		retval = 1;
7020 		goto bailout;
7021 	} else if (field_size == 0) {
7022 		/*
7023 		 * A field size of 0 doesn't make sense here.  The device
7024 		 * can at least give you the vendor ID, even if it can't
7025 		 * give you the serial number.
7026 		 */
7027 		if (error_str != NULL) {
7028 			snprintf(error_str, error_str_len, "The length of "
7029 				 "attribute ID 0x%.4x is 0",
7030 				 scsi_2btoul(hdr->id));
7031 		}
7032 		retval = 1;
7033 		goto bailout;
7034 	}
7035 	vendser = (struct scsi_attrib_vendser *)hdr->attribute;
7036 
7037 	switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7038 	case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7039 		strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7040 		break;
7041 	case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7042 		strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7043 		break;
7044 	case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7045 	default:
7046 		strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7047 		break;;
7048 	}
7049 	cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor),
7050 	    strvis_flags);
7051 	sbuf_putc(sb, ' ');
7052 	cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num),
7053 	    strvis_flags);
7054 bailout:
7055 	return (retval);
7056 }
7057 
7058 int
7059 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7060 			 uint32_t valid_len, uint32_t flags,
7061 			 uint32_t output_flags, char *error_str,
7062 			 int error_str_len)
7063 {
7064 	uint32_t field_size;
7065 	ssize_t avail_len;
7066 	uint32_t print_len;
7067 	uint8_t *num_ptr;
7068 	int retval = 0;
7069 
7070 	field_size = scsi_2btoul(hdr->length);
7071 	avail_len = valid_len - sizeof(*hdr);
7072 	print_len = MIN(avail_len, field_size);
7073 	num_ptr = hdr->attribute;
7074 
7075 	if (print_len > 0) {
7076 		sbuf_printf(sb, "\n");
7077 		sbuf_hexdump(sb, num_ptr, print_len, NULL, 0);
7078 	}
7079 
7080 	return (retval);
7081 }
7082 
7083 int
7084 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7085 		     uint32_t valid_len, uint32_t flags,
7086 		     uint32_t output_flags, char *error_str,
7087 		     int error_str_len)
7088 {
7089 	uint64_t print_number;
7090 	size_t avail_len;
7091 	uint32_t number_size;
7092 	int retval = 0;
7093 
7094 	number_size = scsi_2btoul(hdr->length);
7095 
7096 	avail_len = valid_len - sizeof(*hdr);
7097 	if (avail_len < number_size) {
7098 		if (error_str != NULL) {
7099 			snprintf(error_str, error_str_len, "Available "
7100 				 "length of attribute ID 0x%.4x %zu < field "
7101 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7102 				 number_size);
7103 		}
7104 		retval = 1;
7105 		goto bailout;
7106 	}
7107 
7108 	switch (number_size) {
7109 	case 0:
7110 		/*
7111 		 * We don't treat this as an error, since there may be
7112 		 * scenarios where a device reports a field but then gives
7113 		 * a length of 0.  See the note in scsi_attrib_ascii_sbuf().
7114 		 */
7115 		goto bailout;
7116 		break; /*NOTREACHED*/
7117 	case 1:
7118 		print_number = hdr->attribute[0];
7119 		break;
7120 	case 2:
7121 		print_number = scsi_2btoul(hdr->attribute);
7122 		break;
7123 	case 3:
7124 		print_number = scsi_3btoul(hdr->attribute);
7125 		break;
7126 	case 4:
7127 		print_number = scsi_4btoul(hdr->attribute);
7128 		break;
7129 	case 8:
7130 		print_number = scsi_8btou64(hdr->attribute);
7131 		break;
7132 	default:
7133 		/*
7134 		 * If we wind up here, the number is too big to print
7135 		 * normally, so just do a hexdump.
7136 		 */
7137 		retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7138 						  flags, output_flags,
7139 						  error_str, error_str_len);
7140 		goto bailout;
7141 		break;
7142 	}
7143 
7144 	if (flags & SCSI_ATTR_FLAG_FP) {
7145 #ifndef _KERNEL
7146 		long double num_float;
7147 
7148 		num_float = (long double)print_number;
7149 
7150 		if (flags & SCSI_ATTR_FLAG_DIV_10)
7151 			num_float /= 10;
7152 
7153 		sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ?
7154 			    1 : 0, num_float);
7155 #else /* _KERNEL */
7156 		sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ?
7157 			    (print_number / 10) : print_number);
7158 #endif /* _KERNEL */
7159 	} else if (flags & SCSI_ATTR_FLAG_HEX) {
7160 		sbuf_printf(sb, "0x%jx", (uintmax_t)print_number);
7161 	} else
7162 		sbuf_printf(sb, "%ju", (uintmax_t)print_number);
7163 
7164 bailout:
7165 	return (retval);
7166 }
7167 
7168 int
7169 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7170 		       uint32_t valid_len, uint32_t flags,
7171 		       uint32_t output_flags, char *error_str,
7172 		       int error_str_len)
7173 {
7174 	size_t avail_len;
7175 	uint32_t field_size, print_size;
7176 	int retval = 0;
7177 
7178 	avail_len = valid_len - sizeof(*hdr);
7179 	field_size = scsi_2btoul(hdr->length);
7180 	print_size = MIN(avail_len, field_size);
7181 
7182 	if (print_size > 0) {
7183 		cam_strvis_flags strvis_flags;
7184 
7185 		switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7186 		case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7187 			strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7188 			break;
7189 		case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7190 			strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7191 			break;
7192 		case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7193 		default:
7194 			strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7195 			break;
7196 		}
7197 		cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags);
7198 	} else if (avail_len < field_size) {
7199 		/*
7200 		 * We only report an error if the user didn't allocate
7201 		 * enough space to hold the full value of this field.  If
7202 		 * the field length is 0, that is allowed by the spec.
7203 		 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER
7204 		 * "This attribute indicates the current volume identifier
7205 		 * (see SMC-3) of the medium. If the device server supports
7206 		 * this attribute but does not have access to the volume
7207 		 * identifier, the device server shall report this attribute
7208 		 * with an attribute length value of zero."
7209 		 */
7210 		if (error_str != NULL) {
7211 			snprintf(error_str, error_str_len, "Available "
7212 				 "length of attribute ID 0x%.4x %zu < field "
7213 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7214 				 field_size);
7215 		}
7216 		retval = 1;
7217 	}
7218 
7219 	return (retval);
7220 }
7221 
7222 int
7223 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7224 		      uint32_t valid_len, uint32_t flags,
7225 		      uint32_t output_flags, char *error_str,
7226 		      int error_str_len)
7227 {
7228 	size_t avail_len;
7229 	uint32_t field_size, print_size;
7230 	int retval = 0;
7231 	int esc_text = 1;
7232 
7233 	avail_len = valid_len - sizeof(*hdr);
7234 	field_size = scsi_2btoul(hdr->length);
7235 	print_size = MIN(avail_len, field_size);
7236 
7237 	if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) ==
7238 	     SCSI_ATTR_OUTPUT_TEXT_RAW)
7239 		esc_text = 0;
7240 
7241 	if (print_size > 0) {
7242 		uint32_t i;
7243 
7244 		for (i = 0; i < print_size; i++) {
7245 			if (hdr->attribute[i] == '\0')
7246 				continue;
7247 			else if (((unsigned char)hdr->attribute[i] < 0x80)
7248 			      || (esc_text == 0))
7249 				sbuf_putc(sb, hdr->attribute[i]);
7250 			else
7251 				sbuf_printf(sb, "%%%02x",
7252 				    (unsigned char)hdr->attribute[i]);
7253 		}
7254 	} else if (avail_len < field_size) {
7255 		/*
7256 		 * We only report an error if the user didn't allocate
7257 		 * enough space to hold the full value of this field.
7258 		 */
7259 		if (error_str != NULL) {
7260 			snprintf(error_str, error_str_len, "Available "
7261 				 "length of attribute ID 0x%.4x %zu < field "
7262 				 "length %u", scsi_2btoul(hdr->id), avail_len,
7263 				 field_size);
7264 		}
7265 		retval = 1;
7266 	}
7267 
7268 	return (retval);
7269 }
7270 
7271 struct scsi_attrib_table_entry *
7272 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table,
7273 		       size_t num_table_entries, uint32_t id)
7274 {
7275 	uint32_t i;
7276 
7277 	for (i = 0; i < num_table_entries; i++) {
7278 		if (table[i].id == id)
7279 			return (&table[i]);
7280 	}
7281 
7282 	return (NULL);
7283 }
7284 
7285 struct scsi_attrib_table_entry *
7286 scsi_get_attrib_entry(uint32_t id)
7287 {
7288 	return (scsi_find_attrib_entry(scsi_mam_attr_table,
7289 	    nitems(scsi_mam_attr_table), id));
7290 }
7291 
7292 int
7293 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len,
7294    struct scsi_mam_attribute_header *hdr, uint32_t output_flags,
7295    char *error_str, size_t error_str_len)
7296 {
7297 	int retval;
7298 
7299 	switch (hdr->byte2 & SMA_FORMAT_MASK) {
7300 	case SMA_FORMAT_ASCII:
7301 		retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len,
7302 		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len);
7303 		break;
7304 	case SMA_FORMAT_BINARY:
7305 		if (scsi_2btoul(hdr->length) <= 8)
7306 			retval = scsi_attrib_int_sbuf(sb, hdr, valid_len,
7307 			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7308 			    error_str_len);
7309 		else
7310 			retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7311 			    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7312 			    error_str_len);
7313 		break;
7314 	case SMA_FORMAT_TEXT:
7315 		retval = scsi_attrib_text_sbuf(sb, hdr, valid_len,
7316 		    SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7317 		    error_str_len);
7318 		break;
7319 	default:
7320 		if (error_str != NULL) {
7321 			snprintf(error_str, error_str_len, "Unknown attribute "
7322 			    "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK);
7323 		}
7324 		retval = 1;
7325 		goto bailout;
7326 		break; /*NOTREACHED*/
7327 	}
7328 
7329 	sbuf_trim(sb);
7330 
7331 bailout:
7332 
7333 	return (retval);
7334 }
7335 
7336 void
7337 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags,
7338 			struct scsi_mam_attribute_header *hdr,
7339 			uint32_t valid_len, const char *desc)
7340 {
7341 	int need_space = 0;
7342 	uint32_t len;
7343 	uint32_t id;
7344 
7345 	/*
7346 	 * We can't do anything if we don't have enough valid data for the
7347 	 * header.
7348 	 */
7349 	if (valid_len < sizeof(*hdr))
7350 		return;
7351 
7352 	id = scsi_2btoul(hdr->id);
7353 	/*
7354 	 * Note that we print out the value of the attribute listed in the
7355 	 * header, regardless of whether we actually got that many bytes
7356 	 * back from the device through the controller.  A truncated result
7357 	 * could be the result of a failure to ask for enough data; the
7358 	 * header indicates how many bytes are allocated for this attribute
7359 	 * in the MAM.
7360 	 */
7361 	len = scsi_2btoul(hdr->length);
7362 
7363 	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) ==
7364 	    SCSI_ATTR_OUTPUT_FIELD_NONE)
7365 		return;
7366 
7367 	if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC)
7368 	 && (desc != NULL)) {
7369 		sbuf_printf(sb, "%s", desc);
7370 		need_space = 1;
7371 	}
7372 
7373 	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) {
7374 		sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id);
7375 		need_space = 0;
7376 	}
7377 
7378 	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) {
7379 		sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len);
7380 		need_space = 0;
7381 	}
7382 	if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) {
7383 		sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "",
7384 			    (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW");
7385 	}
7386 	sbuf_printf(sb, ": ");
7387 }
7388 
7389 int
7390 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7391 		 uint32_t valid_len, struct scsi_attrib_table_entry *user_table,
7392 		 size_t num_user_entries, int prefer_user_table,
7393 		 uint32_t output_flags, char *error_str, int error_str_len)
7394 {
7395 	int retval;
7396 	struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL;
7397 	struct scsi_attrib_table_entry *entry = NULL;
7398 	size_t table1_size = 0, table2_size = 0;
7399 	uint32_t id;
7400 
7401 	retval = 0;
7402 
7403 	if (valid_len < sizeof(*hdr)) {
7404 		retval = 1;
7405 		goto bailout;
7406 	}
7407 
7408 	id = scsi_2btoul(hdr->id);
7409 
7410 	if (user_table != NULL) {
7411 		if (prefer_user_table != 0) {
7412 			table1 = user_table;
7413 			table1_size = num_user_entries;
7414 			table2 = scsi_mam_attr_table;
7415 			table2_size = nitems(scsi_mam_attr_table);
7416 		} else {
7417 			table1 = scsi_mam_attr_table;
7418 			table1_size = nitems(scsi_mam_attr_table);
7419 			table2 = user_table;
7420 			table2_size = num_user_entries;
7421 		}
7422 	} else {
7423 		table1 = scsi_mam_attr_table;
7424 		table1_size = nitems(scsi_mam_attr_table);
7425 	}
7426 
7427 	entry = scsi_find_attrib_entry(table1, table1_size, id);
7428 	if (entry != NULL) {
7429 		scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len,
7430 					entry->desc);
7431 		if (entry->to_str == NULL)
7432 			goto print_default;
7433 		retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7434 				       output_flags, error_str, error_str_len);
7435 		goto bailout;
7436 	}
7437 	if (table2 != NULL) {
7438 		entry = scsi_find_attrib_entry(table2, table2_size, id);
7439 		if (entry != NULL) {
7440 			if (entry->to_str == NULL)
7441 				goto print_default;
7442 
7443 			scsi_attrib_prefix_sbuf(sb, output_flags, hdr,
7444 						valid_len, entry->desc);
7445 			retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7446 					       output_flags, error_str,
7447 					       error_str_len);
7448 			goto bailout;
7449 		}
7450 	}
7451 
7452 	scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL);
7453 
7454 print_default:
7455 	retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags,
7456 	    error_str, error_str_len);
7457 bailout:
7458 	if (retval == 0) {
7459 	 	if ((entry != NULL)
7460 		 && (entry->suffix != NULL))
7461 			sbuf_printf(sb, " %s", entry->suffix);
7462 
7463 		sbuf_trim(sb);
7464 		sbuf_printf(sb, "\n");
7465 	}
7466 
7467 	return (retval);
7468 }
7469 
7470 void
7471 scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries,
7472 		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7473 		     u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout)
7474 {
7475 	struct scsi_test_unit_ready *scsi_cmd;
7476 
7477 	cam_fill_csio(csio,
7478 		      retries,
7479 		      cbfcnp,
7480 		      CAM_DIR_NONE,
7481 		      tag_action,
7482 		      /*data_ptr*/NULL,
7483 		      /*dxfer_len*/0,
7484 		      sense_len,
7485 		      sizeof(*scsi_cmd),
7486 		      timeout);
7487 
7488 	scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes;
7489 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7490 	scsi_cmd->opcode = TEST_UNIT_READY;
7491 }
7492 
7493 void
7494 scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries,
7495 		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7496 		   void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action,
7497 		   u_int8_t sense_len, u_int32_t timeout)
7498 {
7499 	struct scsi_request_sense *scsi_cmd;
7500 
7501 	cam_fill_csio(csio,
7502 		      retries,
7503 		      cbfcnp,
7504 		      CAM_DIR_IN,
7505 		      tag_action,
7506 		      data_ptr,
7507 		      dxfer_len,
7508 		      sense_len,
7509 		      sizeof(*scsi_cmd),
7510 		      timeout);
7511 
7512 	scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes;
7513 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7514 	scsi_cmd->opcode = REQUEST_SENSE;
7515 	scsi_cmd->length = dxfer_len;
7516 }
7517 
7518 void
7519 scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries,
7520 	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7521 	     u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len,
7522 	     int evpd, u_int8_t page_code, u_int8_t sense_len,
7523 	     u_int32_t timeout)
7524 {
7525 	struct scsi_inquiry *scsi_cmd;
7526 
7527 	cam_fill_csio(csio,
7528 		      retries,
7529 		      cbfcnp,
7530 		      /*flags*/CAM_DIR_IN,
7531 		      tag_action,
7532 		      /*data_ptr*/inq_buf,
7533 		      /*dxfer_len*/inq_len,
7534 		      sense_len,
7535 		      sizeof(*scsi_cmd),
7536 		      timeout);
7537 
7538 	scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes;
7539 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7540 	scsi_cmd->opcode = INQUIRY;
7541 	if (evpd) {
7542 		scsi_cmd->byte2 |= SI_EVPD;
7543 		scsi_cmd->page_code = page_code;
7544 	}
7545 	scsi_ulto2b(inq_len, scsi_cmd->length);
7546 }
7547 
7548 void
7549 scsi_mode_sense(struct ccb_scsiio *csio, u_int32_t retries,
7550 		void (*cbfcnp)(struct cam_periph *, union ccb *),
7551 		u_int8_t tag_action, int dbd, u_int8_t page_code,
7552 		u_int8_t page, u_int8_t *param_buf, u_int32_t param_len,
7553 		u_int8_t sense_len, u_int32_t timeout)
7554 {
7555 
7556 	scsi_mode_sense_len(csio, retries, cbfcnp, tag_action, dbd,
7557 			    page_code, page, param_buf, param_len, 0,
7558 			    sense_len, timeout);
7559 }
7560 
7561 void
7562 scsi_mode_sense_len(struct ccb_scsiio *csio, u_int32_t retries,
7563 		    void (*cbfcnp)(struct cam_periph *, union ccb *),
7564 		    u_int8_t tag_action, int dbd, u_int8_t page_code,
7565 		    u_int8_t page, u_int8_t *param_buf, u_int32_t param_len,
7566 		    int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout)
7567 {
7568 	u_int8_t cdb_len;
7569 
7570 	/*
7571 	 * Use the smallest possible command to perform the operation.
7572 	 */
7573 	if ((param_len < 256)
7574 	 && (minimum_cmd_size < 10)) {
7575 		/*
7576 		 * We can fit in a 6 byte cdb.
7577 		 */
7578 		struct scsi_mode_sense_6 *scsi_cmd;
7579 
7580 		scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes;
7581 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7582 		scsi_cmd->opcode = MODE_SENSE_6;
7583 		if (dbd != 0)
7584 			scsi_cmd->byte2 |= SMS_DBD;
7585 		scsi_cmd->page = page_code | page;
7586 		scsi_cmd->length = param_len;
7587 		cdb_len = sizeof(*scsi_cmd);
7588 	} else {
7589 		/*
7590 		 * Need a 10 byte cdb.
7591 		 */
7592 		struct scsi_mode_sense_10 *scsi_cmd;
7593 
7594 		scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes;
7595 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7596 		scsi_cmd->opcode = MODE_SENSE_10;
7597 		if (dbd != 0)
7598 			scsi_cmd->byte2 |= SMS_DBD;
7599 		scsi_cmd->page = page_code | page;
7600 		scsi_ulto2b(param_len, scsi_cmd->length);
7601 		cdb_len = sizeof(*scsi_cmd);
7602 	}
7603 	cam_fill_csio(csio,
7604 		      retries,
7605 		      cbfcnp,
7606 		      CAM_DIR_IN,
7607 		      tag_action,
7608 		      param_buf,
7609 		      param_len,
7610 		      sense_len,
7611 		      cdb_len,
7612 		      timeout);
7613 }
7614 
7615 void
7616 scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries,
7617 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7618 		 u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7619 		 u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7620 		 u_int32_t timeout)
7621 {
7622 	scsi_mode_select_len(csio, retries, cbfcnp, tag_action,
7623 			     scsi_page_fmt, save_pages, param_buf,
7624 			     param_len, 0, sense_len, timeout);
7625 }
7626 
7627 void
7628 scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries,
7629 		     void (*cbfcnp)(struct cam_periph *, union ccb *),
7630 		     u_int8_t tag_action, int scsi_page_fmt, int save_pages,
7631 		     u_int8_t *param_buf, u_int32_t param_len,
7632 		     int minimum_cmd_size, u_int8_t sense_len,
7633 		     u_int32_t timeout)
7634 {
7635 	u_int8_t cdb_len;
7636 
7637 	/*
7638 	 * Use the smallest possible command to perform the operation.
7639 	 */
7640 	if ((param_len < 256)
7641 	 && (minimum_cmd_size < 10)) {
7642 		/*
7643 		 * We can fit in a 6 byte cdb.
7644 		 */
7645 		struct scsi_mode_select_6 *scsi_cmd;
7646 
7647 		scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes;
7648 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7649 		scsi_cmd->opcode = MODE_SELECT_6;
7650 		if (scsi_page_fmt != 0)
7651 			scsi_cmd->byte2 |= SMS_PF;
7652 		if (save_pages != 0)
7653 			scsi_cmd->byte2 |= SMS_SP;
7654 		scsi_cmd->length = param_len;
7655 		cdb_len = sizeof(*scsi_cmd);
7656 	} else {
7657 		/*
7658 		 * Need a 10 byte cdb.
7659 		 */
7660 		struct scsi_mode_select_10 *scsi_cmd;
7661 
7662 		scsi_cmd =
7663 		    (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes;
7664 		bzero(scsi_cmd, sizeof(*scsi_cmd));
7665 		scsi_cmd->opcode = MODE_SELECT_10;
7666 		if (scsi_page_fmt != 0)
7667 			scsi_cmd->byte2 |= SMS_PF;
7668 		if (save_pages != 0)
7669 			scsi_cmd->byte2 |= SMS_SP;
7670 		scsi_ulto2b(param_len, scsi_cmd->length);
7671 		cdb_len = sizeof(*scsi_cmd);
7672 	}
7673 	cam_fill_csio(csio,
7674 		      retries,
7675 		      cbfcnp,
7676 		      CAM_DIR_OUT,
7677 		      tag_action,
7678 		      param_buf,
7679 		      param_len,
7680 		      sense_len,
7681 		      cdb_len,
7682 		      timeout);
7683 }
7684 
7685 void
7686 scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries,
7687 	       void (*cbfcnp)(struct cam_periph *, union ccb *),
7688 	       u_int8_t tag_action, u_int8_t page_code, u_int8_t page,
7689 	       int save_pages, int ppc, u_int32_t paramptr,
7690 	       u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len,
7691 	       u_int32_t timeout)
7692 {
7693 	struct scsi_log_sense *scsi_cmd;
7694 	u_int8_t cdb_len;
7695 
7696 	scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes;
7697 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7698 	scsi_cmd->opcode = LOG_SENSE;
7699 	scsi_cmd->page = page_code | page;
7700 	if (save_pages != 0)
7701 		scsi_cmd->byte2 |= SLS_SP;
7702 	if (ppc != 0)
7703 		scsi_cmd->byte2 |= SLS_PPC;
7704 	scsi_ulto2b(paramptr, scsi_cmd->paramptr);
7705 	scsi_ulto2b(param_len, scsi_cmd->length);
7706 	cdb_len = sizeof(*scsi_cmd);
7707 
7708 	cam_fill_csio(csio,
7709 		      retries,
7710 		      cbfcnp,
7711 		      /*flags*/CAM_DIR_IN,
7712 		      tag_action,
7713 		      /*data_ptr*/param_buf,
7714 		      /*dxfer_len*/param_len,
7715 		      sense_len,
7716 		      cdb_len,
7717 		      timeout);
7718 }
7719 
7720 void
7721 scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries,
7722 		void (*cbfcnp)(struct cam_periph *, union ccb *),
7723 		u_int8_t tag_action, u_int8_t page_code, int save_pages,
7724 		int pc_reset, u_int8_t *param_buf, u_int32_t param_len,
7725 		u_int8_t sense_len, u_int32_t timeout)
7726 {
7727 	struct scsi_log_select *scsi_cmd;
7728 	u_int8_t cdb_len;
7729 
7730 	scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes;
7731 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7732 	scsi_cmd->opcode = LOG_SELECT;
7733 	scsi_cmd->page = page_code & SLS_PAGE_CODE;
7734 	if (save_pages != 0)
7735 		scsi_cmd->byte2 |= SLS_SP;
7736 	if (pc_reset != 0)
7737 		scsi_cmd->byte2 |= SLS_PCR;
7738 	scsi_ulto2b(param_len, scsi_cmd->length);
7739 	cdb_len = sizeof(*scsi_cmd);
7740 
7741 	cam_fill_csio(csio,
7742 		      retries,
7743 		      cbfcnp,
7744 		      /*flags*/CAM_DIR_OUT,
7745 		      tag_action,
7746 		      /*data_ptr*/param_buf,
7747 		      /*dxfer_len*/param_len,
7748 		      sense_len,
7749 		      cdb_len,
7750 		      timeout);
7751 }
7752 
7753 /*
7754  * Prevent or allow the user to remove the media
7755  */
7756 void
7757 scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries,
7758 	     void (*cbfcnp)(struct cam_periph *, union ccb *),
7759 	     u_int8_t tag_action, u_int8_t action,
7760 	     u_int8_t sense_len, u_int32_t timeout)
7761 {
7762 	struct scsi_prevent *scsi_cmd;
7763 
7764 	cam_fill_csio(csio,
7765 		      retries,
7766 		      cbfcnp,
7767 		      /*flags*/CAM_DIR_NONE,
7768 		      tag_action,
7769 		      /*data_ptr*/NULL,
7770 		      /*dxfer_len*/0,
7771 		      sense_len,
7772 		      sizeof(*scsi_cmd),
7773 		      timeout);
7774 
7775 	scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes;
7776 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7777 	scsi_cmd->opcode = PREVENT_ALLOW;
7778 	scsi_cmd->how = action;
7779 }
7780 
7781 /* XXX allow specification of address and PMI bit and LBA */
7782 void
7783 scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries,
7784 		   void (*cbfcnp)(struct cam_periph *, union ccb *),
7785 		   u_int8_t tag_action,
7786 		   struct scsi_read_capacity_data *rcap_buf,
7787 		   u_int8_t sense_len, u_int32_t timeout)
7788 {
7789 	struct scsi_read_capacity *scsi_cmd;
7790 
7791 	cam_fill_csio(csio,
7792 		      retries,
7793 		      cbfcnp,
7794 		      /*flags*/CAM_DIR_IN,
7795 		      tag_action,
7796 		      /*data_ptr*/(u_int8_t *)rcap_buf,
7797 		      /*dxfer_len*/sizeof(*rcap_buf),
7798 		      sense_len,
7799 		      sizeof(*scsi_cmd),
7800 		      timeout);
7801 
7802 	scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes;
7803 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7804 	scsi_cmd->opcode = READ_CAPACITY;
7805 }
7806 
7807 void
7808 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
7809 		      void (*cbfcnp)(struct cam_periph *, union ccb *),
7810 		      uint8_t tag_action, uint64_t lba, int reladr, int pmi,
7811 		      uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len,
7812 		      uint32_t timeout)
7813 {
7814 	struct scsi_read_capacity_16 *scsi_cmd;
7815 
7816 
7817 	cam_fill_csio(csio,
7818 		      retries,
7819 		      cbfcnp,
7820 		      /*flags*/CAM_DIR_IN,
7821 		      tag_action,
7822 		      /*data_ptr*/(u_int8_t *)rcap_buf,
7823 		      /*dxfer_len*/rcap_buf_len,
7824 		      sense_len,
7825 		      sizeof(*scsi_cmd),
7826 		      timeout);
7827 	scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
7828 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7829 	scsi_cmd->opcode = SERVICE_ACTION_IN;
7830 	scsi_cmd->service_action = SRC16_SERVICE_ACTION;
7831 	scsi_u64to8b(lba, scsi_cmd->addr);
7832 	scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len);
7833 	if (pmi)
7834 		reladr |= SRC16_PMI;
7835 	if (reladr)
7836 		reladr |= SRC16_RELADR;
7837 }
7838 
7839 void
7840 scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries,
7841 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7842 		 u_int8_t tag_action, u_int8_t select_report,
7843 		 struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len,
7844 		 u_int8_t sense_len, u_int32_t timeout)
7845 {
7846 	struct scsi_report_luns *scsi_cmd;
7847 
7848 	cam_fill_csio(csio,
7849 		      retries,
7850 		      cbfcnp,
7851 		      /*flags*/CAM_DIR_IN,
7852 		      tag_action,
7853 		      /*data_ptr*/(u_int8_t *)rpl_buf,
7854 		      /*dxfer_len*/alloc_len,
7855 		      sense_len,
7856 		      sizeof(*scsi_cmd),
7857 		      timeout);
7858 	scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes;
7859 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7860 	scsi_cmd->opcode = REPORT_LUNS;
7861 	scsi_cmd->select_report = select_report;
7862 	scsi_ulto4b(alloc_len, scsi_cmd->length);
7863 }
7864 
7865 void
7866 scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries,
7867 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7868 		 u_int8_t tag_action, u_int8_t pdf,
7869 		 void *buf, u_int32_t alloc_len,
7870 		 u_int8_t sense_len, u_int32_t timeout)
7871 {
7872 	struct scsi_target_group *scsi_cmd;
7873 
7874 	cam_fill_csio(csio,
7875 		      retries,
7876 		      cbfcnp,
7877 		      /*flags*/CAM_DIR_IN,
7878 		      tag_action,
7879 		      /*data_ptr*/(u_int8_t *)buf,
7880 		      /*dxfer_len*/alloc_len,
7881 		      sense_len,
7882 		      sizeof(*scsi_cmd),
7883 		      timeout);
7884 	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
7885 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7886 	scsi_cmd->opcode = MAINTENANCE_IN;
7887 	scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf;
7888 	scsi_ulto4b(alloc_len, scsi_cmd->length);
7889 }
7890 
7891 void
7892 scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries,
7893 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
7894 		 u_int8_t tag_action, void *buf, u_int32_t alloc_len,
7895 		 u_int8_t sense_len, u_int32_t timeout)
7896 {
7897 	struct scsi_target_group *scsi_cmd;
7898 
7899 	cam_fill_csio(csio,
7900 		      retries,
7901 		      cbfcnp,
7902 		      /*flags*/CAM_DIR_OUT,
7903 		      tag_action,
7904 		      /*data_ptr*/(u_int8_t *)buf,
7905 		      /*dxfer_len*/alloc_len,
7906 		      sense_len,
7907 		      sizeof(*scsi_cmd),
7908 		      timeout);
7909 	scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
7910 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7911 	scsi_cmd->opcode = MAINTENANCE_OUT;
7912 	scsi_cmd->service_action = SET_TARGET_PORT_GROUPS;
7913 	scsi_ulto4b(alloc_len, scsi_cmd->length);
7914 }
7915 
7916 /*
7917  * Syncronize the media to the contents of the cache for
7918  * the given lba/count pair.  Specifying 0/0 means sync
7919  * the whole cache.
7920  */
7921 void
7922 scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries,
7923 		       void (*cbfcnp)(struct cam_periph *, union ccb *),
7924 		       u_int8_t tag_action, u_int32_t begin_lba,
7925 		       u_int16_t lb_count, u_int8_t sense_len,
7926 		       u_int32_t timeout)
7927 {
7928 	struct scsi_sync_cache *scsi_cmd;
7929 
7930 	cam_fill_csio(csio,
7931 		      retries,
7932 		      cbfcnp,
7933 		      /*flags*/CAM_DIR_NONE,
7934 		      tag_action,
7935 		      /*data_ptr*/NULL,
7936 		      /*dxfer_len*/0,
7937 		      sense_len,
7938 		      sizeof(*scsi_cmd),
7939 		      timeout);
7940 
7941 	scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes;
7942 	bzero(scsi_cmd, sizeof(*scsi_cmd));
7943 	scsi_cmd->opcode = SYNCHRONIZE_CACHE;
7944 	scsi_ulto4b(begin_lba, scsi_cmd->begin_lba);
7945 	scsi_ulto2b(lb_count, scsi_cmd->lb_count);
7946 }
7947 
7948 void
7949 scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries,
7950 		void (*cbfcnp)(struct cam_periph *, union ccb *),
7951 		u_int8_t tag_action, int readop, u_int8_t byte2,
7952 		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
7953 		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
7954 		u_int32_t timeout)
7955 {
7956 	int read;
7957 	u_int8_t cdb_len;
7958 
7959 	read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ;
7960 
7961 	/*
7962 	 * Use the smallest possible command to perform the operation
7963 	 * as some legacy hardware does not support the 10 byte commands.
7964 	 * If any of the bits in byte2 is set, we have to go with a larger
7965 	 * command.
7966 	 */
7967 	if ((minimum_cmd_size < 10)
7968 	 && ((lba & 0x1fffff) == lba)
7969 	 && ((block_count & 0xff) == block_count)
7970 	 && (byte2 == 0)) {
7971 		/*
7972 		 * We can fit in a 6 byte cdb.
7973 		 */
7974 		struct scsi_rw_6 *scsi_cmd;
7975 
7976 		scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes;
7977 		scsi_cmd->opcode = read ? READ_6 : WRITE_6;
7978 		scsi_ulto3b(lba, scsi_cmd->addr);
7979 		scsi_cmd->length = block_count & 0xff;
7980 		scsi_cmd->control = 0;
7981 		cdb_len = sizeof(*scsi_cmd);
7982 
7983 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
7984 			  ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0],
7985 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
7986 			   scsi_cmd->length, dxfer_len));
7987 	} else if ((minimum_cmd_size < 12)
7988 		&& ((block_count & 0xffff) == block_count)
7989 		&& ((lba & 0xffffffff) == lba)) {
7990 		/*
7991 		 * Need a 10 byte cdb.
7992 		 */
7993 		struct scsi_rw_10 *scsi_cmd;
7994 
7995 		scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes;
7996 		scsi_cmd->opcode = read ? READ_10 : WRITE_10;
7997 		scsi_cmd->byte2 = byte2;
7998 		scsi_ulto4b(lba, scsi_cmd->addr);
7999 		scsi_cmd->reserved = 0;
8000 		scsi_ulto2b(block_count, scsi_cmd->length);
8001 		scsi_cmd->control = 0;
8002 		cdb_len = sizeof(*scsi_cmd);
8003 
8004 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8005 			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8006 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8007 			   scsi_cmd->addr[3], scsi_cmd->length[0],
8008 			   scsi_cmd->length[1], dxfer_len));
8009 	} else if ((minimum_cmd_size < 16)
8010 		&& ((block_count & 0xffffffff) == block_count)
8011 		&& ((lba & 0xffffffff) == lba)) {
8012 		/*
8013 		 * The block count is too big for a 10 byte CDB, use a 12
8014 		 * byte CDB.
8015 		 */
8016 		struct scsi_rw_12 *scsi_cmd;
8017 
8018 		scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes;
8019 		scsi_cmd->opcode = read ? READ_12 : WRITE_12;
8020 		scsi_cmd->byte2 = byte2;
8021 		scsi_ulto4b(lba, scsi_cmd->addr);
8022 		scsi_cmd->reserved = 0;
8023 		scsi_ulto4b(block_count, scsi_cmd->length);
8024 		scsi_cmd->control = 0;
8025 		cdb_len = sizeof(*scsi_cmd);
8026 
8027 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8028 			  ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0],
8029 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8030 			   scsi_cmd->addr[3], scsi_cmd->length[0],
8031 			   scsi_cmd->length[1], scsi_cmd->length[2],
8032 			   scsi_cmd->length[3], dxfer_len));
8033 	} else {
8034 		/*
8035 		 * 16 byte CDB.  We'll only get here if the LBA is larger
8036 		 * than 2^32, or if the user asks for a 16 byte command.
8037 		 */
8038 		struct scsi_rw_16 *scsi_cmd;
8039 
8040 		scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes;
8041 		scsi_cmd->opcode = read ? READ_16 : WRITE_16;
8042 		scsi_cmd->byte2 = byte2;
8043 		scsi_u64to8b(lba, scsi_cmd->addr);
8044 		scsi_cmd->reserved = 0;
8045 		scsi_ulto4b(block_count, scsi_cmd->length);
8046 		scsi_cmd->control = 0;
8047 		cdb_len = sizeof(*scsi_cmd);
8048 	}
8049 	cam_fill_csio(csio,
8050 		      retries,
8051 		      cbfcnp,
8052 		      (read ? CAM_DIR_IN : CAM_DIR_OUT) |
8053 		      ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0),
8054 		      tag_action,
8055 		      data_ptr,
8056 		      dxfer_len,
8057 		      sense_len,
8058 		      cdb_len,
8059 		      timeout);
8060 }
8061 
8062 void
8063 scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries,
8064 		void (*cbfcnp)(struct cam_periph *, union ccb *),
8065 		u_int8_t tag_action, u_int8_t byte2,
8066 		int minimum_cmd_size, u_int64_t lba, u_int32_t block_count,
8067 		u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len,
8068 		u_int32_t timeout)
8069 {
8070 	u_int8_t cdb_len;
8071 	if ((minimum_cmd_size < 16) &&
8072 	    ((block_count & 0xffff) == block_count) &&
8073 	    ((lba & 0xffffffff) == lba)) {
8074 		/*
8075 		 * Need a 10 byte cdb.
8076 		 */
8077 		struct scsi_write_same_10 *scsi_cmd;
8078 
8079 		scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes;
8080 		scsi_cmd->opcode = WRITE_SAME_10;
8081 		scsi_cmd->byte2 = byte2;
8082 		scsi_ulto4b(lba, scsi_cmd->addr);
8083 		scsi_cmd->group = 0;
8084 		scsi_ulto2b(block_count, scsi_cmd->length);
8085 		scsi_cmd->control = 0;
8086 		cdb_len = sizeof(*scsi_cmd);
8087 
8088 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8089 			  ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8090 			   scsi_cmd->addr[1], scsi_cmd->addr[2],
8091 			   scsi_cmd->addr[3], scsi_cmd->length[0],
8092 			   scsi_cmd->length[1], dxfer_len));
8093 	} else {
8094 		/*
8095 		 * 16 byte CDB.  We'll only get here if the LBA is larger
8096 		 * than 2^32, or if the user asks for a 16 byte command.
8097 		 */
8098 		struct scsi_write_same_16 *scsi_cmd;
8099 
8100 		scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes;
8101 		scsi_cmd->opcode = WRITE_SAME_16;
8102 		scsi_cmd->byte2 = byte2;
8103 		scsi_u64to8b(lba, scsi_cmd->addr);
8104 		scsi_ulto4b(block_count, scsi_cmd->length);
8105 		scsi_cmd->group = 0;
8106 		scsi_cmd->control = 0;
8107 		cdb_len = sizeof(*scsi_cmd);
8108 
8109 		CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8110 			  ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n",
8111 			   scsi_cmd->addr[0], scsi_cmd->addr[1],
8112 			   scsi_cmd->addr[2], scsi_cmd->addr[3],
8113 			   scsi_cmd->addr[4], scsi_cmd->addr[5],
8114 			   scsi_cmd->addr[6], scsi_cmd->addr[7],
8115 			   scsi_cmd->length[0], scsi_cmd->length[1],
8116 			   scsi_cmd->length[2], scsi_cmd->length[3],
8117 			   dxfer_len));
8118 	}
8119 	cam_fill_csio(csio,
8120 		      retries,
8121 		      cbfcnp,
8122 		      /*flags*/CAM_DIR_OUT,
8123 		      tag_action,
8124 		      data_ptr,
8125 		      dxfer_len,
8126 		      sense_len,
8127 		      cdb_len,
8128 		      timeout);
8129 }
8130 
8131 void
8132 scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries,
8133 		  void (*cbfcnp)(struct cam_periph *, union ccb *),
8134 		  u_int8_t tag_action, u_int8_t *data_ptr,
8135 		  u_int16_t dxfer_len, u_int8_t sense_len,
8136 		  u_int32_t timeout)
8137 {
8138 	scsi_ata_pass_16(csio,
8139 			 retries,
8140 			 cbfcnp,
8141 			 /*flags*/CAM_DIR_IN,
8142 			 tag_action,
8143 			 /*protocol*/AP_PROTO_PIO_IN,
8144 			 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV|
8145 				AP_FLAG_BYT_BLOK_BYTES|AP_FLAG_TLEN_SECT_CNT,
8146 			 /*features*/0,
8147 			 /*sector_count*/dxfer_len,
8148 			 /*lba*/0,
8149 			 /*command*/ATA_ATA_IDENTIFY,
8150 			 /*control*/0,
8151 			 data_ptr,
8152 			 dxfer_len,
8153 			 sense_len,
8154 			 timeout);
8155 }
8156 
8157 void
8158 scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries,
8159 	      void (*cbfcnp)(struct cam_periph *, union ccb *),
8160 	      u_int8_t tag_action, u_int16_t block_count,
8161 	      u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8162 	      u_int32_t timeout)
8163 {
8164 	scsi_ata_pass_16(csio,
8165 			 retries,
8166 			 cbfcnp,
8167 			 /*flags*/CAM_DIR_OUT,
8168 			 tag_action,
8169 			 /*protocol*/AP_EXTEND|AP_PROTO_DMA,
8170 			 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS,
8171 			 /*features*/ATA_DSM_TRIM,
8172 			 /*sector_count*/block_count,
8173 			 /*lba*/0,
8174 			 /*command*/ATA_DATA_SET_MANAGEMENT,
8175 			 /*control*/0,
8176 			 data_ptr,
8177 			 dxfer_len,
8178 			 sense_len,
8179 			 timeout);
8180 }
8181 
8182 void
8183 scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries,
8184 		 void (*cbfcnp)(struct cam_periph *, union ccb *),
8185 		 u_int32_t flags, u_int8_t tag_action,
8186 		 u_int8_t protocol, u_int8_t ata_flags, u_int16_t features,
8187 		 u_int16_t sector_count, uint64_t lba, u_int8_t command,
8188 		 u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len,
8189 		 u_int8_t sense_len, u_int32_t timeout)
8190 {
8191 	struct ata_pass_16 *ata_cmd;
8192 
8193 	ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes;
8194 	ata_cmd->opcode = ATA_PASS_16;
8195 	ata_cmd->protocol = protocol;
8196 	ata_cmd->flags = ata_flags;
8197 	ata_cmd->features_ext = features >> 8;
8198 	ata_cmd->features = features;
8199 	ata_cmd->sector_count_ext = sector_count >> 8;
8200 	ata_cmd->sector_count = sector_count;
8201 	ata_cmd->lba_low = lba;
8202 	ata_cmd->lba_mid = lba >> 8;
8203 	ata_cmd->lba_high = lba >> 16;
8204 	ata_cmd->device = ATA_DEV_LBA;
8205 	if (protocol & AP_EXTEND) {
8206 		ata_cmd->lba_low_ext = lba >> 24;
8207 		ata_cmd->lba_mid_ext = lba >> 32;
8208 		ata_cmd->lba_high_ext = lba >> 40;
8209 	} else
8210 		ata_cmd->device |= (lba >> 24) & 0x0f;
8211 	ata_cmd->command = command;
8212 	ata_cmd->control = control;
8213 
8214 	cam_fill_csio(csio,
8215 		      retries,
8216 		      cbfcnp,
8217 		      flags,
8218 		      tag_action,
8219 		      data_ptr,
8220 		      dxfer_len,
8221 		      sense_len,
8222 		      sizeof(*ata_cmd),
8223 		      timeout);
8224 }
8225 
8226 void
8227 scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries,
8228 	   void (*cbfcnp)(struct cam_periph *, union ccb *),
8229 	   u_int8_t tag_action, u_int8_t byte2,
8230 	   u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len,
8231 	   u_int32_t timeout)
8232 {
8233 	struct scsi_unmap *scsi_cmd;
8234 
8235 	scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes;
8236 	scsi_cmd->opcode = UNMAP;
8237 	scsi_cmd->byte2 = byte2;
8238 	scsi_ulto4b(0, scsi_cmd->reserved);
8239 	scsi_cmd->group = 0;
8240 	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8241 	scsi_cmd->control = 0;
8242 
8243 	cam_fill_csio(csio,
8244 		      retries,
8245 		      cbfcnp,
8246 		      /*flags*/CAM_DIR_OUT,
8247 		      tag_action,
8248 		      data_ptr,
8249 		      dxfer_len,
8250 		      sense_len,
8251 		      sizeof(*scsi_cmd),
8252 		      timeout);
8253 }
8254 
8255 void
8256 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries,
8257 				void (*cbfcnp)(struct cam_periph *, union ccb*),
8258 				uint8_t tag_action, int pcv, uint8_t page_code,
8259 				uint8_t *data_ptr, uint16_t allocation_length,
8260 				uint8_t sense_len, uint32_t timeout)
8261 {
8262 	struct scsi_receive_diag *scsi_cmd;
8263 
8264 	scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes;
8265 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8266 	scsi_cmd->opcode = RECEIVE_DIAGNOSTIC;
8267 	if (pcv) {
8268 		scsi_cmd->byte2 |= SRD_PCV;
8269 		scsi_cmd->page_code = page_code;
8270 	}
8271 	scsi_ulto2b(allocation_length, scsi_cmd->length);
8272 
8273 	cam_fill_csio(csio,
8274 		      retries,
8275 		      cbfcnp,
8276 		      /*flags*/CAM_DIR_IN,
8277 		      tag_action,
8278 		      data_ptr,
8279 		      allocation_length,
8280 		      sense_len,
8281 		      sizeof(*scsi_cmd),
8282 		      timeout);
8283 }
8284 
8285 void
8286 scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries,
8287 		     void (*cbfcnp)(struct cam_periph *, union ccb *),
8288 		     uint8_t tag_action, int unit_offline, int device_offline,
8289 		     int self_test, int page_format, int self_test_code,
8290 		     uint8_t *data_ptr, uint16_t param_list_length,
8291 		     uint8_t sense_len, uint32_t timeout)
8292 {
8293 	struct scsi_send_diag *scsi_cmd;
8294 
8295 	scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes;
8296 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8297 	scsi_cmd->opcode = SEND_DIAGNOSTIC;
8298 
8299 	/*
8300 	 * The default self-test mode control and specific test
8301 	 * control are mutually exclusive.
8302 	 */
8303 	if (self_test)
8304 		self_test_code = SSD_SELF_TEST_CODE_NONE;
8305 
8306 	scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT)
8307 			 & SSD_SELF_TEST_CODE_MASK)
8308 			| (unit_offline   ? SSD_UNITOFFL : 0)
8309 			| (device_offline ? SSD_DEVOFFL  : 0)
8310 			| (self_test      ? SSD_SELFTEST : 0)
8311 			| (page_format    ? SSD_PF       : 0);
8312 	scsi_ulto2b(param_list_length, scsi_cmd->length);
8313 
8314 	cam_fill_csio(csio,
8315 		      retries,
8316 		      cbfcnp,
8317 		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8318 		      tag_action,
8319 		      data_ptr,
8320 		      param_list_length,
8321 		      sense_len,
8322 		      sizeof(*scsi_cmd),
8323 		      timeout);
8324 }
8325 
8326 void
8327 scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8328 			void (*cbfcnp)(struct cam_periph *, union ccb*),
8329 			uint8_t tag_action, int mode,
8330 			uint8_t buffer_id, u_int32_t offset,
8331 			uint8_t *data_ptr, uint32_t allocation_length,
8332 			uint8_t sense_len, uint32_t timeout)
8333 {
8334 	struct scsi_read_buffer *scsi_cmd;
8335 
8336 	scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes;
8337 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8338 	scsi_cmd->opcode = READ_BUFFER;
8339 	scsi_cmd->byte2 = mode;
8340 	scsi_cmd->buffer_id = buffer_id;
8341 	scsi_ulto3b(offset, scsi_cmd->offset);
8342 	scsi_ulto3b(allocation_length, scsi_cmd->length);
8343 
8344 	cam_fill_csio(csio,
8345 		      retries,
8346 		      cbfcnp,
8347 		      /*flags*/CAM_DIR_IN,
8348 		      tag_action,
8349 		      data_ptr,
8350 		      allocation_length,
8351 		      sense_len,
8352 		      sizeof(*scsi_cmd),
8353 		      timeout);
8354 }
8355 
8356 void
8357 scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries,
8358 			void (*cbfcnp)(struct cam_periph *, union ccb *),
8359 			uint8_t tag_action, int mode,
8360 			uint8_t buffer_id, u_int32_t offset,
8361 			uint8_t *data_ptr, uint32_t param_list_length,
8362 			uint8_t sense_len, uint32_t timeout)
8363 {
8364 	struct scsi_write_buffer *scsi_cmd;
8365 
8366 	scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes;
8367 	memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8368 	scsi_cmd->opcode = WRITE_BUFFER;
8369 	scsi_cmd->byte2 = mode;
8370 	scsi_cmd->buffer_id = buffer_id;
8371 	scsi_ulto3b(offset, scsi_cmd->offset);
8372 	scsi_ulto3b(param_list_length, scsi_cmd->length);
8373 
8374 	cam_fill_csio(csio,
8375 		      retries,
8376 		      cbfcnp,
8377 		      /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8378 		      tag_action,
8379 		      data_ptr,
8380 		      param_list_length,
8381 		      sense_len,
8382 		      sizeof(*scsi_cmd),
8383 		      timeout);
8384 }
8385 
8386 void
8387 scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries,
8388 		void (*cbfcnp)(struct cam_periph *, union ccb *),
8389 		u_int8_t tag_action, int start, int load_eject,
8390 		int immediate, u_int8_t sense_len, u_int32_t timeout)
8391 {
8392 	struct scsi_start_stop_unit *scsi_cmd;
8393 	int extra_flags = 0;
8394 
8395 	scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
8396 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8397 	scsi_cmd->opcode = START_STOP_UNIT;
8398 	if (start != 0) {
8399 		scsi_cmd->how |= SSS_START;
8400 		/* it takes a lot of power to start a drive */
8401 		extra_flags |= CAM_HIGH_POWER;
8402 	}
8403 	if (load_eject != 0)
8404 		scsi_cmd->how |= SSS_LOEJ;
8405 	if (immediate != 0)
8406 		scsi_cmd->byte2 |= SSS_IMMED;
8407 
8408 	cam_fill_csio(csio,
8409 		      retries,
8410 		      cbfcnp,
8411 		      /*flags*/CAM_DIR_NONE | extra_flags,
8412 		      tag_action,
8413 		      /*data_ptr*/NULL,
8414 		      /*dxfer_len*/0,
8415 		      sense_len,
8416 		      sizeof(*scsi_cmd),
8417 		      timeout);
8418 }
8419 
8420 void
8421 scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8422 		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8423 		    u_int8_t tag_action, u_int8_t service_action,
8424 		    uint32_t element, u_int8_t elem_type, int logical_volume,
8425 		    int partition, u_int32_t first_attribute, int cache,
8426 		    u_int8_t *data_ptr, u_int32_t length, int sense_len,
8427 		    u_int32_t timeout)
8428 {
8429 	struct scsi_read_attribute *scsi_cmd;
8430 
8431 	scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes;
8432 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8433 
8434 	scsi_cmd->opcode = READ_ATTRIBUTE;
8435 	scsi_cmd->service_action = service_action,
8436 	scsi_ulto2b(element, scsi_cmd->element);
8437 	scsi_cmd->elem_type = elem_type;
8438 	scsi_cmd->logical_volume = logical_volume;
8439 	scsi_cmd->partition = partition;
8440 	scsi_ulto2b(first_attribute, scsi_cmd->first_attribute);
8441 	scsi_ulto4b(length, scsi_cmd->length);
8442 	if (cache != 0)
8443 		scsi_cmd->cache |= SRA_CACHE;
8444 
8445 	cam_fill_csio(csio,
8446 		      retries,
8447 		      cbfcnp,
8448 		      /*flags*/CAM_DIR_IN,
8449 		      tag_action,
8450 		      /*data_ptr*/data_ptr,
8451 		      /*dxfer_len*/length,
8452 		      sense_len,
8453 		      sizeof(*scsi_cmd),
8454 		      timeout);
8455 }
8456 
8457 void
8458 scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries,
8459 		    void (*cbfcnp)(struct cam_periph *, union ccb *),
8460 		    u_int8_t tag_action, uint32_t element, int logical_volume,
8461 		    int partition, int wtc, u_int8_t *data_ptr,
8462 		    u_int32_t length, int sense_len, u_int32_t timeout)
8463 {
8464 	struct scsi_write_attribute *scsi_cmd;
8465 
8466 	scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes;
8467 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8468 
8469 	scsi_cmd->opcode = WRITE_ATTRIBUTE;
8470 	if (wtc != 0)
8471 		scsi_cmd->byte2 = SWA_WTC;
8472 	scsi_ulto3b(element, scsi_cmd->element);
8473 	scsi_cmd->logical_volume = logical_volume;
8474 	scsi_cmd->partition = partition;
8475 	scsi_ulto4b(length, scsi_cmd->length);
8476 
8477 	cam_fill_csio(csio,
8478 		      retries,
8479 		      cbfcnp,
8480 		      /*flags*/CAM_DIR_OUT,
8481 		      tag_action,
8482 		      /*data_ptr*/data_ptr,
8483 		      /*dxfer_len*/length,
8484 		      sense_len,
8485 		      sizeof(*scsi_cmd),
8486 		      timeout);
8487 }
8488 
8489 void
8490 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
8491 			   void (*cbfcnp)(struct cam_periph *, union ccb *),
8492 			   uint8_t tag_action, int service_action,
8493 			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8494 			   int timeout)
8495 {
8496 	struct scsi_per_res_in *scsi_cmd;
8497 
8498 	scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes;
8499 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8500 
8501 	scsi_cmd->opcode = PERSISTENT_RES_IN;
8502 	scsi_cmd->action = service_action;
8503 	scsi_ulto2b(dxfer_len, scsi_cmd->length);
8504 
8505 	cam_fill_csio(csio,
8506 		      retries,
8507 		      cbfcnp,
8508 		      /*flags*/CAM_DIR_IN,
8509 		      tag_action,
8510 		      data_ptr,
8511 		      dxfer_len,
8512 		      sense_len,
8513 		      sizeof(*scsi_cmd),
8514 		      timeout);
8515 }
8516 
8517 void
8518 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
8519 			    void (*cbfcnp)(struct cam_periph *, union ccb *),
8520 			    uint8_t tag_action, int service_action,
8521 			    int scope, int res_type, uint8_t *data_ptr,
8522 			    uint32_t dxfer_len, int sense_len, int timeout)
8523 {
8524 	struct scsi_per_res_out *scsi_cmd;
8525 
8526 	scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes;
8527 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8528 
8529 	scsi_cmd->opcode = PERSISTENT_RES_OUT;
8530 	scsi_cmd->action = service_action;
8531 	scsi_cmd->scope_type = scope | res_type;
8532 
8533 	cam_fill_csio(csio,
8534 		      retries,
8535 		      cbfcnp,
8536 		      /*flags*/CAM_DIR_OUT,
8537 		      tag_action,
8538 		      /*data_ptr*/data_ptr,
8539 		      /*dxfer_len*/dxfer_len,
8540 		      sense_len,
8541 		      sizeof(*scsi_cmd),
8542 		      timeout);
8543 }
8544 
8545 void
8546 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries,
8547 			  void (*cbfcnp)(struct cam_periph *, union ccb *),
8548 			  uint8_t tag_action, uint32_t security_protocol,
8549 			  uint32_t security_protocol_specific, int byte4,
8550 			  uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8551 			  int timeout)
8552 {
8553 	struct scsi_security_protocol_in *scsi_cmd;
8554 
8555 	scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes;
8556 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8557 
8558 	scsi_cmd->opcode = SECURITY_PROTOCOL_IN;
8559 
8560 	scsi_cmd->security_protocol = security_protocol;
8561 	scsi_ulto2b(security_protocol_specific,
8562 		    scsi_cmd->security_protocol_specific);
8563 	scsi_cmd->byte4 = byte4;
8564 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8565 
8566 	cam_fill_csio(csio,
8567 		      retries,
8568 		      cbfcnp,
8569 		      /*flags*/CAM_DIR_IN,
8570 		      tag_action,
8571 		      data_ptr,
8572 		      dxfer_len,
8573 		      sense_len,
8574 		      sizeof(*scsi_cmd),
8575 		      timeout);
8576 }
8577 
8578 void
8579 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries,
8580 			   void (*cbfcnp)(struct cam_periph *, union ccb *),
8581 			   uint8_t tag_action, uint32_t security_protocol,
8582 			   uint32_t security_protocol_specific, int byte4,
8583 			   uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
8584 			   int timeout)
8585 {
8586 	struct scsi_security_protocol_out *scsi_cmd;
8587 
8588 	scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes;
8589 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8590 
8591 	scsi_cmd->opcode = SECURITY_PROTOCOL_OUT;
8592 
8593 	scsi_cmd->security_protocol = security_protocol;
8594 	scsi_ulto2b(security_protocol_specific,
8595 		    scsi_cmd->security_protocol_specific);
8596 	scsi_cmd->byte4 = byte4;
8597 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8598 
8599 	cam_fill_csio(csio,
8600 		      retries,
8601 		      cbfcnp,
8602 		      /*flags*/CAM_DIR_OUT,
8603 		      tag_action,
8604 		      data_ptr,
8605 		      dxfer_len,
8606 		      sense_len,
8607 		      sizeof(*scsi_cmd),
8608 		      timeout);
8609 }
8610 
8611 void
8612 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries,
8613 			      void (*cbfcnp)(struct cam_periph *, union ccb *),
8614 			      uint8_t tag_action, int options, int req_opcode,
8615 			      int req_service_action, uint8_t *data_ptr,
8616 			      uint32_t dxfer_len, int sense_len, int timeout)
8617 {
8618 	struct scsi_report_supported_opcodes *scsi_cmd;
8619 
8620 	scsi_cmd = (struct scsi_report_supported_opcodes *)
8621 	    &csio->cdb_io.cdb_bytes;
8622 	bzero(scsi_cmd, sizeof(*scsi_cmd));
8623 
8624 	scsi_cmd->opcode = MAINTENANCE_IN;
8625 	scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES;
8626 	scsi_cmd->options = options;
8627 	scsi_cmd->requested_opcode = req_opcode;
8628 	scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action);
8629 	scsi_ulto4b(dxfer_len, scsi_cmd->length);
8630 
8631 	cam_fill_csio(csio,
8632 		      retries,
8633 		      cbfcnp,
8634 		      /*flags*/CAM_DIR_IN,
8635 		      tag_action,
8636 		      data_ptr,
8637 		      dxfer_len,
8638 		      sense_len,
8639 		      sizeof(*scsi_cmd),
8640 		      timeout);
8641 }
8642 
8643 /*
8644  * Try make as good a match as possible with
8645  * available sub drivers
8646  */
8647 int
8648 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
8649 {
8650 	struct scsi_inquiry_pattern *entry;
8651 	struct scsi_inquiry_data *inq;
8652 
8653 	entry = (struct scsi_inquiry_pattern *)table_entry;
8654 	inq = (struct scsi_inquiry_data *)inqbuffer;
8655 
8656 	if (((SID_TYPE(inq) == entry->type)
8657 	  || (entry->type == T_ANY))
8658 	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
8659 				   : entry->media_type & SIP_MEDIA_FIXED)
8660 	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
8661 	 && (cam_strmatch(inq->product, entry->product,
8662 			  sizeof(inq->product)) == 0)
8663 	 && (cam_strmatch(inq->revision, entry->revision,
8664 			  sizeof(inq->revision)) == 0)) {
8665 		return (0);
8666 	}
8667         return (-1);
8668 }
8669 
8670 /*
8671  * Try make as good a match as possible with
8672  * available sub drivers
8673  */
8674 int
8675 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
8676 {
8677 	struct scsi_static_inquiry_pattern *entry;
8678 	struct scsi_inquiry_data *inq;
8679 
8680 	entry = (struct scsi_static_inquiry_pattern *)table_entry;
8681 	inq = (struct scsi_inquiry_data *)inqbuffer;
8682 
8683 	if (((SID_TYPE(inq) == entry->type)
8684 	  || (entry->type == T_ANY))
8685 	 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
8686 				   : entry->media_type & SIP_MEDIA_FIXED)
8687 	 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
8688 	 && (cam_strmatch(inq->product, entry->product,
8689 			  sizeof(inq->product)) == 0)
8690 	 && (cam_strmatch(inq->revision, entry->revision,
8691 			  sizeof(inq->revision)) == 0)) {
8692 		return (0);
8693 	}
8694         return (-1);
8695 }
8696 
8697 /**
8698  * Compare two buffers of vpd device descriptors for a match.
8699  *
8700  * \param lhs      Pointer to first buffer of descriptors to compare.
8701  * \param lhs_len  The length of the first buffer.
8702  * \param rhs	   Pointer to second buffer of descriptors to compare.
8703  * \param rhs_len  The length of the second buffer.
8704  *
8705  * \return  0 on a match, -1 otherwise.
8706  *
8707  * Treat rhs and lhs as arrays of vpd device id descriptors.  Walk lhs matching
8708  * against each element in rhs until all data are exhausted or we have found
8709  * a match.
8710  */
8711 int
8712 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len)
8713 {
8714 	struct scsi_vpd_id_descriptor *lhs_id;
8715 	struct scsi_vpd_id_descriptor *lhs_last;
8716 	struct scsi_vpd_id_descriptor *rhs_last;
8717 	uint8_t *lhs_end;
8718 	uint8_t *rhs_end;
8719 
8720 	lhs_end = lhs + lhs_len;
8721 	rhs_end = rhs + rhs_len;
8722 
8723 	/*
8724 	 * rhs_last and lhs_last are the last posible position of a valid
8725 	 * descriptor assuming it had a zero length identifier.  We use
8726 	 * these variables to insure we can safely dereference the length
8727 	 * field in our loop termination tests.
8728 	 */
8729 	lhs_last = (struct scsi_vpd_id_descriptor *)
8730 	    (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
8731 	rhs_last = (struct scsi_vpd_id_descriptor *)
8732 	    (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
8733 
8734 	lhs_id = (struct scsi_vpd_id_descriptor *)lhs;
8735 	while (lhs_id <= lhs_last
8736 	    && (lhs_id->identifier + lhs_id->length) <= lhs_end) {
8737 		struct scsi_vpd_id_descriptor *rhs_id;
8738 
8739 		rhs_id = (struct scsi_vpd_id_descriptor *)rhs;
8740 		while (rhs_id <= rhs_last
8741 		    && (rhs_id->identifier + rhs_id->length) <= rhs_end) {
8742 
8743 			if ((rhs_id->id_type &
8744 			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) ==
8745 			    (lhs_id->id_type &
8746 			     (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK))
8747 			 && rhs_id->length == lhs_id->length
8748 			 && memcmp(rhs_id->identifier, lhs_id->identifier,
8749 				   rhs_id->length) == 0)
8750 				return (0);
8751 
8752 			rhs_id = (struct scsi_vpd_id_descriptor *)
8753 			   (rhs_id->identifier + rhs_id->length);
8754 		}
8755 		lhs_id = (struct scsi_vpd_id_descriptor *)
8756 		   (lhs_id->identifier + lhs_id->length);
8757 	}
8758 	return (-1);
8759 }
8760 
8761 #ifdef _KERNEL
8762 int
8763 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id)
8764 {
8765 	struct cam_ed *device;
8766 	struct scsi_vpd_supported_pages *vpds;
8767 	int i, num_pages;
8768 
8769 	device = periph->path->device;
8770 	vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
8771 
8772 	if (vpds != NULL) {
8773 		num_pages = device->supported_vpds_len -
8774 		    SVPD_SUPPORTED_PAGES_HDR_LEN;
8775 		for (i = 0; i < num_pages; i++) {
8776 			if (vpds->page_list[i] == page_id)
8777 				return (1);
8778 		}
8779 	}
8780 
8781 	return (0);
8782 }
8783 
8784 static void
8785 init_scsi_delay(void)
8786 {
8787 	int delay;
8788 
8789 	delay = SCSI_DELAY;
8790 	TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay);
8791 
8792 	if (set_scsi_delay(delay) != 0) {
8793 		printf("cam: invalid value for tunable kern.cam.scsi_delay\n");
8794 		set_scsi_delay(SCSI_DELAY);
8795 	}
8796 }
8797 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL);
8798 
8799 static int
8800 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)
8801 {
8802 	int error, delay;
8803 
8804 	delay = scsi_delay;
8805 	error = sysctl_handle_int(oidp, &delay, 0, req);
8806 	if (error != 0 || req->newptr == NULL)
8807 		return (error);
8808 	return (set_scsi_delay(delay));
8809 }
8810 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay, CTLTYPE_INT|CTLFLAG_RW,
8811     0, 0, sysctl_scsi_delay, "I",
8812     "Delay to allow devices to settle after a SCSI bus reset (ms)");
8813 
8814 static int
8815 set_scsi_delay(int delay)
8816 {
8817 	/*
8818          * If someone sets this to 0, we assume that they want the
8819          * minimum allowable bus settle delay.
8820 	 */
8821 	if (delay == 0) {
8822 		printf("cam: using minimum scsi_delay (%dms)\n",
8823 		    SCSI_MIN_DELAY);
8824 		delay = SCSI_MIN_DELAY;
8825 	}
8826 	if (delay < SCSI_MIN_DELAY)
8827 		return (EINVAL);
8828 	scsi_delay = delay;
8829 	return (0);
8830 }
8831 #endif /* _KERNEL */
8832