1 /*-
2 * Implementation of Utility functions for all SCSI device types.
3 *
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7 * Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions, and the following disclaimer,
15 * without modification, immediately at the beginning of the file.
16 * 2. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/stdint.h>
35
36 #ifdef _KERNEL
37 #include "opt_scsi.h"
38
39 #include <sys/systm.h>
40 #include <sys/libkern.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mutex.h>
45 #include <sys/sysctl.h>
46 #include <sys/ctype.h>
47 #else
48 #include <errno.h>
49 #include <stdio.h>
50 #include <stdlib.h>
51 #include <string.h>
52 #include <ctype.h>
53 #endif
54
55 #include <cam/cam.h>
56 #include <cam/cam_ccb.h>
57 #include <cam/cam_queue.h>
58 #include <cam/cam_xpt.h>
59 #include <cam/scsi/scsi_all.h>
60 #include <sys/ata.h>
61 #include <sys/sbuf.h>
62
63 #ifdef _KERNEL
64 #include <cam/cam_periph.h>
65 #include <cam/cam_xpt_sim.h>
66 #include <cam/cam_xpt_periph.h>
67 #include <cam/cam_xpt_internal.h>
68 #else
69 #include <camlib.h>
70 #include <stddef.h>
71
72 #ifndef FALSE
73 #define FALSE 0
74 #endif /* FALSE */
75 #ifndef TRUE
76 #define TRUE 1
77 #endif /* TRUE */
78 #define ERESTART -1 /* restart syscall */
79 #define EJUSTRETURN -2 /* don't modify regs, just return */
80 #endif /* !_KERNEL */
81
82 /*
83 * This is the default number of milliseconds we wait for devices to settle
84 * after a SCSI bus reset.
85 */
86 #ifndef SCSI_DELAY
87 #define SCSI_DELAY 2000
88 #endif
89 /*
90 * All devices need _some_ sort of bus settle delay, so we'll set it to
91 * a minimum value of 100ms. Note that this is pertinent only for SPI-
92 * not transport like Fibre Channel or iSCSI where 'delay' is completely
93 * meaningless.
94 */
95 #ifndef SCSI_MIN_DELAY
96 #define SCSI_MIN_DELAY 100
97 #endif
98 /*
99 * Make sure the user isn't using seconds instead of milliseconds.
100 */
101 #if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0)
102 #error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value"
103 #endif
104
105 int scsi_delay;
106
107 static int ascentrycomp(const void *key, const void *member);
108 static int senseentrycomp(const void *key, const void *member);
109 static void fetchtableentries(int sense_key, int asc, int ascq,
110 struct scsi_inquiry_data *,
111 const struct sense_key_table_entry **,
112 const struct asc_table_entry **);
113
114 #ifdef _KERNEL
115 static void init_scsi_delay(void);
116 static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS);
117 static int set_scsi_delay(int delay);
118 #endif
119
120 #if !defined(SCSI_NO_OP_STRINGS)
121
122 #define D (1 << T_DIRECT)
123 #define T (1 << T_SEQUENTIAL)
124 #define L (1 << T_PRINTER)
125 #define P (1 << T_PROCESSOR)
126 #define W (1 << T_WORM)
127 #define R (1 << T_CDROM)
128 #define O (1 << T_OPTICAL)
129 #define M (1 << T_CHANGER)
130 #define A (1 << T_STORARRAY)
131 #define E (1 << T_ENCLOSURE)
132 #define B (1 << T_RBC)
133 #define K (1 << T_OCRW)
134 #define V (1 << T_ADC)
135 #define F (1 << T_OSD)
136 #define S (1 << T_SCANNER)
137 #define C (1 << T_COMM)
138
139 #define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C)
140
141 static struct op_table_entry plextor_cd_ops[] = {
142 { 0xD8, R, "CD-DA READ" }
143 };
144
145 static struct scsi_op_quirk_entry scsi_op_quirk_table[] = {
146 {
147 /*
148 * I believe that 0xD8 is the Plextor proprietary command
149 * to read CD-DA data. I'm not sure which Plextor CDROM
150 * models support the command, though. I know for sure
151 * that the 4X, 8X, and 12X models do, and presumably the
152 * 12-20X does. I don't know about any earlier models,
153 * though. If anyone has any more complete information,
154 * feel free to change this quirk entry.
155 */
156 {T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"},
157 nitems(plextor_cd_ops),
158 plextor_cd_ops
159 }
160 };
161
162 static struct op_table_entry scsi_op_codes[] = {
163 /*
164 * From: http://www.t10.org/lists/op-num.txt
165 * Modifications by Kenneth Merry (ken@FreeBSD.ORG)
166 * and Jung-uk Kim (jkim@FreeBSD.org)
167 *
168 * Note: order is important in this table, scsi_op_desc() currently
169 * depends on the opcodes in the table being in order to save
170 * search time.
171 * Note: scanner and comm. devices are carried over from the previous
172 * version because they were removed in the latest spec.
173 */
174 /* File: OP-NUM.TXT
175 *
176 * SCSI Operation Codes
177 * Numeric Sorted Listing
178 * as of 5/26/15
179 *
180 * D - DIRECT ACCESS DEVICE (SBC-2) device column key
181 * .T - SEQUENTIAL ACCESS DEVICE (SSC-2) -----------------
182 * . L - PRINTER DEVICE (SSC) M = Mandatory
183 * . P - PROCESSOR DEVICE (SPC) O = Optional
184 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec.
185 * . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete
186 * . . O - OPTICAL MEMORY DEVICE (SBC-2)
187 * . . .M - MEDIA CHANGER DEVICE (SMC-2)
188 * . . . A - STORAGE ARRAY DEVICE (SCC-2)
189 * . . . .E - ENCLOSURE SERVICES DEVICE (SES)
190 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
191 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
192 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC)
193 * . . . . .F - OBJECT-BASED STORAGE (OSD)
194 * OP DTLPWROMAEBKVF Description
195 * -- -------------- ---------------------------------------------- */
196 /* 00 MMMMMMMMMMMMMM TEST UNIT READY */
197 { 0x00, ALL, "TEST UNIT READY" },
198 /* 01 M REWIND */
199 { 0x01, T, "REWIND" },
200 /* 01 Z V ZZZZ REZERO UNIT */
201 { 0x01, D | W | R | O | M, "REZERO UNIT" },
202 /* 02 VVVVVV V */
203 /* 03 MMMMMMMMMMOMMM REQUEST SENSE */
204 { 0x03, ALL, "REQUEST SENSE" },
205 /* 04 M OO FORMAT UNIT */
206 { 0x04, D | R | O, "FORMAT UNIT" },
207 /* 04 O FORMAT MEDIUM */
208 { 0x04, T, "FORMAT MEDIUM" },
209 /* 04 O FORMAT */
210 { 0x04, L, "FORMAT" },
211 /* 05 VMVVVV V READ BLOCK LIMITS */
212 { 0x05, T, "READ BLOCK LIMITS" },
213 /* 06 VVVVVV V */
214 /* 07 OVV O OV REASSIGN BLOCKS */
215 { 0x07, D | W | O, "REASSIGN BLOCKS" },
216 /* 07 O INITIALIZE ELEMENT STATUS */
217 { 0x07, M, "INITIALIZE ELEMENT STATUS" },
218 /* 08 MOV O OV READ(6) */
219 { 0x08, D | T | W | O, "READ(6)" },
220 /* 08 O RECEIVE */
221 { 0x08, P, "RECEIVE" },
222 /* 08 GET MESSAGE(6) */
223 { 0x08, C, "GET MESSAGE(6)" },
224 /* 09 VVVVVV V */
225 /* 0A OO O OV WRITE(6) */
226 { 0x0A, D | T | W | O, "WRITE(6)" },
227 /* 0A M SEND(6) */
228 { 0x0A, P, "SEND(6)" },
229 /* 0A SEND MESSAGE(6) */
230 { 0x0A, C, "SEND MESSAGE(6)" },
231 /* 0A M PRINT */
232 { 0x0A, L, "PRINT" },
233 /* 0B Z ZOZV SEEK(6) */
234 { 0x0B, D | W | R | O, "SEEK(6)" },
235 /* 0B O SET CAPACITY */
236 { 0x0B, T, "SET CAPACITY" },
237 /* 0B O SLEW AND PRINT */
238 { 0x0B, L, "SLEW AND PRINT" },
239 /* 0C VVVVVV V */
240 /* 0D VVVVVV V */
241 /* 0E VVVVVV V */
242 /* 0F VOVVVV V READ REVERSE(6) */
243 { 0x0F, T, "READ REVERSE(6)" },
244 /* 10 VM VVV WRITE FILEMARKS(6) */
245 { 0x10, T, "WRITE FILEMARKS(6)" },
246 /* 10 O SYNCHRONIZE BUFFER */
247 { 0x10, L, "SYNCHRONIZE BUFFER" },
248 /* 11 VMVVVV SPACE(6) */
249 { 0x11, T, "SPACE(6)" },
250 /* 12 MMMMMMMMMMMMMM INQUIRY */
251 { 0x12, ALL, "INQUIRY" },
252 /* 13 V VVVV */
253 /* 13 O VERIFY(6) */
254 { 0x13, T, "VERIFY(6)" },
255 /* 14 VOOVVV RECOVER BUFFERED DATA */
256 { 0x14, T | L, "RECOVER BUFFERED DATA" },
257 /* 15 OMO O OOOO OO MODE SELECT(6) */
258 { 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" },
259 /* 16 ZZMZO OOOZ O RESERVE(6) */
260 { 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" },
261 /* 16 Z RESERVE ELEMENT(6) */
262 { 0x16, M, "RESERVE ELEMENT(6)" },
263 /* 17 ZZMZO OOOZ O RELEASE(6) */
264 { 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" },
265 /* 17 Z RELEASE ELEMENT(6) */
266 { 0x17, M, "RELEASE ELEMENT(6)" },
267 /* 18 ZZZZOZO Z COPY */
268 { 0x18, D | T | L | P | W | R | O | K | S, "COPY" },
269 /* 19 VMVVVV ERASE(6) */
270 { 0x19, T, "ERASE(6)" },
271 /* 1A OMO O OOOO OO MODE SENSE(6) */
272 { 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" },
273 /* 1B O OOO O MO O START STOP UNIT */
274 { 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" },
275 /* 1B O M LOAD UNLOAD */
276 { 0x1B, T | V, "LOAD UNLOAD" },
277 /* 1B SCAN */
278 { 0x1B, S, "SCAN" },
279 /* 1B O STOP PRINT */
280 { 0x1B, L, "STOP PRINT" },
281 /* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */
282 { 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" },
283 /* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */
284 { 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" },
285 /* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */
286 { 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" },
287 /* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */
288 { 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" },
289 /* 1F */
290 /* 20 V VVV V */
291 /* 21 V VVV V */
292 /* 22 V VVV V */
293 /* 23 V V V V */
294 /* 23 O READ FORMAT CAPACITIES */
295 { 0x23, R, "READ FORMAT CAPACITIES" },
296 /* 24 V VV SET WINDOW */
297 { 0x24, S, "SET WINDOW" },
298 /* 25 M M M M READ CAPACITY(10) */
299 { 0x25, D | W | O | B, "READ CAPACITY(10)" },
300 /* 25 O READ CAPACITY */
301 { 0x25, R, "READ CAPACITY" },
302 /* 25 M READ CARD CAPACITY */
303 { 0x25, K, "READ CARD CAPACITY" },
304 /* 25 GET WINDOW */
305 { 0x25, S, "GET WINDOW" },
306 /* 26 V VV */
307 /* 27 V VV */
308 /* 28 M MOM MM READ(10) */
309 { 0x28, D | W | R | O | B | K | S, "READ(10)" },
310 /* 28 GET MESSAGE(10) */
311 { 0x28, C, "GET MESSAGE(10)" },
312 /* 29 V VVO READ GENERATION */
313 { 0x29, O, "READ GENERATION" },
314 /* 2A O MOM MO WRITE(10) */
315 { 0x2A, D | W | R | O | B | K, "WRITE(10)" },
316 /* 2A SEND(10) */
317 { 0x2A, S, "SEND(10)" },
318 /* 2A SEND MESSAGE(10) */
319 { 0x2A, C, "SEND MESSAGE(10)" },
320 /* 2B Z OOO O SEEK(10) */
321 { 0x2B, D | W | R | O | K, "SEEK(10)" },
322 /* 2B O LOCATE(10) */
323 { 0x2B, T, "LOCATE(10)" },
324 /* 2B O POSITION TO ELEMENT */
325 { 0x2B, M, "POSITION TO ELEMENT" },
326 /* 2C V OO ERASE(10) */
327 { 0x2C, R | O, "ERASE(10)" },
328 /* 2D O READ UPDATED BLOCK */
329 { 0x2D, O, "READ UPDATED BLOCK" },
330 /* 2D V */
331 /* 2E O OOO MO WRITE AND VERIFY(10) */
332 { 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" },
333 /* 2F O OOO VERIFY(10) */
334 { 0x2F, D | W | R | O, "VERIFY(10)" },
335 /* 30 Z ZZZ SEARCH DATA HIGH(10) */
336 { 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" },
337 /* 31 Z ZZZ SEARCH DATA EQUAL(10) */
338 { 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" },
339 /* 31 OBJECT POSITION */
340 { 0x31, S, "OBJECT POSITION" },
341 /* 32 Z ZZZ SEARCH DATA LOW(10) */
342 { 0x32, D | W | R | O, "SEARCH DATA LOW(10)" },
343 /* 33 Z OZO SET LIMITS(10) */
344 { 0x33, D | W | R | O, "SET LIMITS(10)" },
345 /* 34 O O O O PRE-FETCH(10) */
346 { 0x34, D | W | O | K, "PRE-FETCH(10)" },
347 /* 34 M READ POSITION */
348 { 0x34, T, "READ POSITION" },
349 /* 34 GET DATA BUFFER STATUS */
350 { 0x34, S, "GET DATA BUFFER STATUS" },
351 /* 35 O OOO MO SYNCHRONIZE CACHE(10) */
352 { 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" },
353 /* 36 Z O O O LOCK UNLOCK CACHE(10) */
354 { 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" },
355 /* 37 O O READ DEFECT DATA(10) */
356 { 0x37, D | O, "READ DEFECT DATA(10)" },
357 /* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */
358 { 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" },
359 /* 38 O O O MEDIUM SCAN */
360 { 0x38, W | O | K, "MEDIUM SCAN" },
361 /* 39 ZZZZOZO Z COMPARE */
362 { 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" },
363 /* 3A ZZZZOZO Z COPY AND VERIFY */
364 { 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" },
365 /* 3B OOOOOOOOOOMOOO WRITE BUFFER */
366 { 0x3B, ALL, "WRITE BUFFER" },
367 /* 3C OOOOOOOOOO OOO READ BUFFER */
368 { 0x3C, ALL & ~(B), "READ BUFFER" },
369 /* 3D O UPDATE BLOCK */
370 { 0x3D, O, "UPDATE BLOCK" },
371 /* 3E O O O READ LONG(10) */
372 { 0x3E, D | W | O, "READ LONG(10)" },
373 /* 3F O O O WRITE LONG(10) */
374 { 0x3F, D | W | O, "WRITE LONG(10)" },
375 /* 40 ZZZZOZOZ CHANGE DEFINITION */
376 { 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" },
377 /* 41 O WRITE SAME(10) */
378 { 0x41, D, "WRITE SAME(10)" },
379 /* 42 O UNMAP */
380 { 0x42, D, "UNMAP" },
381 /* 42 O READ SUB-CHANNEL */
382 { 0x42, R, "READ SUB-CHANNEL" },
383 /* 43 O READ TOC/PMA/ATIP */
384 { 0x43, R, "READ TOC/PMA/ATIP" },
385 /* 44 M M REPORT DENSITY SUPPORT */
386 { 0x44, T | V, "REPORT DENSITY SUPPORT" },
387 /* 44 READ HEADER */
388 /* 45 O PLAY AUDIO(10) */
389 { 0x45, R, "PLAY AUDIO(10)" },
390 /* 46 M GET CONFIGURATION */
391 { 0x46, R, "GET CONFIGURATION" },
392 /* 47 O PLAY AUDIO MSF */
393 { 0x47, R, "PLAY AUDIO MSF" },
394 /* 48 O SANITIZE */
395 { 0x48, D, "SANITIZE" },
396 /* 49 */
397 /* 4A M GET EVENT STATUS NOTIFICATION */
398 { 0x4A, R, "GET EVENT STATUS NOTIFICATION" },
399 /* 4B O PAUSE/RESUME */
400 { 0x4B, R, "PAUSE/RESUME" },
401 /* 4C OOOOO OOOO OOO LOG SELECT */
402 { 0x4C, ALL & ~(R | B), "LOG SELECT" },
403 /* 4D OOOOO OOOO OMO LOG SENSE */
404 { 0x4D, ALL & ~(R | B), "LOG SENSE" },
405 /* 4E O STOP PLAY/SCAN */
406 { 0x4E, R, "STOP PLAY/SCAN" },
407 /* 4F */
408 /* 50 O XDWRITE(10) */
409 { 0x50, D, "XDWRITE(10)" },
410 /* 51 O XPWRITE(10) */
411 { 0x51, D, "XPWRITE(10)" },
412 /* 51 O READ DISC INFORMATION */
413 { 0x51, R, "READ DISC INFORMATION" },
414 /* 52 O XDREAD(10) */
415 { 0x52, D, "XDREAD(10)" },
416 /* 52 O READ TRACK INFORMATION */
417 { 0x52, R, "READ TRACK INFORMATION" },
418 /* 53 O XDWRITEREAD(10) */
419 { 0x53, D, "XDWRITEREAD(10)" },
420 /* 53 O RESERVE TRACK */
421 { 0x53, R, "RESERVE TRACK" },
422 /* 54 O SEND OPC INFORMATION */
423 { 0x54, R, "SEND OPC INFORMATION" },
424 /* 55 OOO OMOOOOMOMO MODE SELECT(10) */
425 { 0x55, ALL & ~(P), "MODE SELECT(10)" },
426 /* 56 ZZMZO OOOZ RESERVE(10) */
427 { 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" },
428 /* 56 Z RESERVE ELEMENT(10) */
429 { 0x56, M, "RESERVE ELEMENT(10)" },
430 /* 57 ZZMZO OOOZ RELEASE(10) */
431 { 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" },
432 /* 57 Z RELEASE ELEMENT(10) */
433 { 0x57, M, "RELEASE ELEMENT(10)" },
434 /* 58 O REPAIR TRACK */
435 { 0x58, R, "REPAIR TRACK" },
436 /* 59 */
437 /* 5A OOO OMOOOOMOMO MODE SENSE(10) */
438 { 0x5A, ALL & ~(P), "MODE SENSE(10)" },
439 /* 5B O CLOSE TRACK/SESSION */
440 { 0x5B, R, "CLOSE TRACK/SESSION" },
441 /* 5C O READ BUFFER CAPACITY */
442 { 0x5C, R, "READ BUFFER CAPACITY" },
443 /* 5D O SEND CUE SHEET */
444 { 0x5D, R, "SEND CUE SHEET" },
445 /* 5E OOOOO OOOO M PERSISTENT RESERVE IN */
446 { 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" },
447 /* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */
448 { 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" },
449 /* 7E OO O OOOO O extended CDB */
450 { 0x7E, D | T | R | M | A | E | B | V, "extended CDB" },
451 /* 7F O M variable length CDB (more than 16 bytes) */
452 { 0x7F, D | F, "variable length CDB (more than 16 bytes)" },
453 /* 80 Z XDWRITE EXTENDED(16) */
454 { 0x80, D, "XDWRITE EXTENDED(16)" },
455 /* 80 M WRITE FILEMARKS(16) */
456 { 0x80, T, "WRITE FILEMARKS(16)" },
457 /* 81 Z REBUILD(16) */
458 { 0x81, D, "REBUILD(16)" },
459 /* 81 O READ REVERSE(16) */
460 { 0x81, T, "READ REVERSE(16)" },
461 /* 82 Z REGENERATE(16) */
462 { 0x82, D, "REGENERATE(16)" },
463 /* 82 O ALLOW OVERWRITE */
464 { 0x82, T, "ALLOW OVERWRITE" },
465 /* 83 OOOOO O OO EXTENDED COPY */
466 { 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" },
467 /* 84 OOOOO O OO RECEIVE COPY RESULTS */
468 { 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" },
469 /* 85 O O O ATA COMMAND PASS THROUGH(16) */
470 { 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" },
471 /* 86 OO OO OOOOOOO ACCESS CONTROL IN */
472 { 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" },
473 /* 87 OO OO OOOOOOO ACCESS CONTROL OUT */
474 { 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" },
475 /* 88 MM O O O READ(16) */
476 { 0x88, D | T | W | O | B, "READ(16)" },
477 /* 89 O COMPARE AND WRITE*/
478 { 0x89, D, "COMPARE AND WRITE" },
479 /* 8A OM O O O WRITE(16) */
480 { 0x8A, D | T | W | O | B, "WRITE(16)" },
481 /* 8B O ORWRITE */
482 { 0x8B, D, "ORWRITE" },
483 /* 8C OO O OO O M READ ATTRIBUTE */
484 { 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" },
485 /* 8D OO O OO O O WRITE ATTRIBUTE */
486 { 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" },
487 /* 8E O O O O WRITE AND VERIFY(16) */
488 { 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" },
489 /* 8F OO O O O VERIFY(16) */
490 { 0x8F, D | T | W | O | B, "VERIFY(16)" },
491 /* 90 O O O O PRE-FETCH(16) */
492 { 0x90, D | W | O | B, "PRE-FETCH(16)" },
493 /* 91 O O O O SYNCHRONIZE CACHE(16) */
494 { 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" },
495 /* 91 O SPACE(16) */
496 { 0x91, T, "SPACE(16)" },
497 /* 92 Z O O LOCK UNLOCK CACHE(16) */
498 { 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" },
499 /* 92 O LOCATE(16) */
500 { 0x92, T, "LOCATE(16)" },
501 /* 93 O WRITE SAME(16) */
502 { 0x93, D, "WRITE SAME(16)" },
503 /* 93 M ERASE(16) */
504 { 0x93, T, "ERASE(16)" },
505 /* 94 O ZBC OUT */
506 { 0x94, ALL, "ZBC OUT" },
507 /* 95 O ZBC IN */
508 { 0x95, ALL, "ZBC IN" },
509 /* 96 */
510 /* 97 */
511 /* 98 */
512 /* 99 */
513 /* 9A O WRITE STREAM(16) */
514 { 0x9A, D, "WRITE STREAM(16)" },
515 /* 9B OOOOOOOOOO OOO READ BUFFER(16) */
516 { 0x9B, ALL & ~(B) , "READ BUFFER(16)" },
517 /* 9C O WRITE ATOMIC(16) */
518 { 0x9C, D, "WRITE ATOMIC(16)" },
519 /* 9D SERVICE ACTION BIDIRECTIONAL */
520 { 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" },
521 /* XXX KDM ALL for this? op-num.txt defines it for none.. */
522 /* 9E SERVICE ACTION IN(16) */
523 { 0x9E, ALL, "SERVICE ACTION IN(16)" },
524 /* 9F M SERVICE ACTION OUT(16) */
525 { 0x9F, ALL, "SERVICE ACTION OUT(16)" },
526 /* A0 MMOOO OMMM OMO REPORT LUNS */
527 { 0xA0, ALL & ~(R | B), "REPORT LUNS" },
528 /* A1 O BLANK */
529 { 0xA1, R, "BLANK" },
530 /* A1 O O ATA COMMAND PASS THROUGH(12) */
531 { 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" },
532 /* A2 OO O O SECURITY PROTOCOL IN */
533 { 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" },
534 /* A3 OOO O OOMOOOM MAINTENANCE (IN) */
535 { 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" },
536 /* A3 O SEND KEY */
537 { 0xA3, R, "SEND KEY" },
538 /* A4 OOO O OOOOOOO MAINTENANCE (OUT) */
539 { 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" },
540 /* A4 O REPORT KEY */
541 { 0xA4, R, "REPORT KEY" },
542 /* A5 O O OM MOVE MEDIUM */
543 { 0xA5, T | W | O | M, "MOVE MEDIUM" },
544 /* A5 O PLAY AUDIO(12) */
545 { 0xA5, R, "PLAY AUDIO(12)" },
546 /* A6 O EXCHANGE MEDIUM */
547 { 0xA6, M, "EXCHANGE MEDIUM" },
548 /* A6 O LOAD/UNLOAD C/DVD */
549 { 0xA6, R, "LOAD/UNLOAD C/DVD" },
550 /* A7 ZZ O O MOVE MEDIUM ATTACHED */
551 { 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" },
552 /* A7 O SET READ AHEAD */
553 { 0xA7, R, "SET READ AHEAD" },
554 /* A8 O OOO READ(12) */
555 { 0xA8, D | W | R | O, "READ(12)" },
556 /* A8 GET MESSAGE(12) */
557 { 0xA8, C, "GET MESSAGE(12)" },
558 /* A9 O SERVICE ACTION OUT(12) */
559 { 0xA9, V, "SERVICE ACTION OUT(12)" },
560 /* AA O OOO WRITE(12) */
561 { 0xAA, D | W | R | O, "WRITE(12)" },
562 /* AA SEND MESSAGE(12) */
563 { 0xAA, C, "SEND MESSAGE(12)" },
564 /* AB O O SERVICE ACTION IN(12) */
565 { 0xAB, R | V, "SERVICE ACTION IN(12)" },
566 /* AC O ERASE(12) */
567 { 0xAC, O, "ERASE(12)" },
568 /* AC O GET PERFORMANCE */
569 { 0xAC, R, "GET PERFORMANCE" },
570 /* AD O READ DVD STRUCTURE */
571 { 0xAD, R, "READ DVD STRUCTURE" },
572 /* AE O O O WRITE AND VERIFY(12) */
573 { 0xAE, D | W | O, "WRITE AND VERIFY(12)" },
574 /* AF O OZO VERIFY(12) */
575 { 0xAF, D | W | R | O, "VERIFY(12)" },
576 /* B0 ZZZ SEARCH DATA HIGH(12) */
577 { 0xB0, W | R | O, "SEARCH DATA HIGH(12)" },
578 /* B1 ZZZ SEARCH DATA EQUAL(12) */
579 { 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" },
580 /* B2 ZZZ SEARCH DATA LOW(12) */
581 { 0xB2, W | R | O, "SEARCH DATA LOW(12)" },
582 /* B3 Z OZO SET LIMITS(12) */
583 { 0xB3, D | W | R | O, "SET LIMITS(12)" },
584 /* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */
585 { 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" },
586 /* B5 OO O O SECURITY PROTOCOL OUT */
587 { 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" },
588 /* B5 O REQUEST VOLUME ELEMENT ADDRESS */
589 { 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" },
590 /* B6 O SEND VOLUME TAG */
591 { 0xB6, M, "SEND VOLUME TAG" },
592 /* B6 O SET STREAMING */
593 { 0xB6, R, "SET STREAMING" },
594 /* B7 O O READ DEFECT DATA(12) */
595 { 0xB7, D | O, "READ DEFECT DATA(12)" },
596 /* B8 O OZOM READ ELEMENT STATUS */
597 { 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" },
598 /* B9 O READ CD MSF */
599 { 0xB9, R, "READ CD MSF" },
600 /* BA O O OOMO REDUNDANCY GROUP (IN) */
601 { 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" },
602 /* BA O SCAN */
603 { 0xBA, R, "SCAN" },
604 /* BB O O OOOO REDUNDANCY GROUP (OUT) */
605 { 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" },
606 /* BB O SET CD SPEED */
607 { 0xBB, R, "SET CD SPEED" },
608 /* BC O O OOMO SPARE (IN) */
609 { 0xBC, D | W | O | M | A | E, "SPARE (IN)" },
610 /* BD O O OOOO SPARE (OUT) */
611 { 0xBD, D | W | O | M | A | E, "SPARE (OUT)" },
612 /* BD O MECHANISM STATUS */
613 { 0xBD, R, "MECHANISM STATUS" },
614 /* BE O O OOMO VOLUME SET (IN) */
615 { 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" },
616 /* BE O READ CD */
617 { 0xBE, R, "READ CD" },
618 /* BF O O OOOO VOLUME SET (OUT) */
619 { 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" },
620 /* BF O SEND DVD STRUCTURE */
621 { 0xBF, R, "SEND DVD STRUCTURE" }
622 };
623
624 const char *
scsi_op_desc(uint16_t opcode,struct scsi_inquiry_data * inq_data)625 scsi_op_desc(uint16_t opcode, struct scsi_inquiry_data *inq_data)
626 {
627 caddr_t match;
628 int i, j;
629 uint32_t opmask;
630 uint16_t pd_type;
631 int num_ops[2];
632 struct op_table_entry *table[2];
633 int num_tables;
634
635 /*
636 * If we've got inquiry data, use it to determine what type of
637 * device we're dealing with here. Otherwise, assume direct
638 * access.
639 */
640 if (inq_data == NULL) {
641 pd_type = T_DIRECT;
642 match = NULL;
643 } else {
644 pd_type = SID_TYPE(inq_data);
645
646 match = cam_quirkmatch((caddr_t)inq_data,
647 (caddr_t)scsi_op_quirk_table,
648 nitems(scsi_op_quirk_table),
649 sizeof(*scsi_op_quirk_table),
650 scsi_inquiry_match);
651 }
652
653 if (match != NULL) {
654 table[0] = ((struct scsi_op_quirk_entry *)match)->op_table;
655 num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops;
656 table[1] = scsi_op_codes;
657 num_ops[1] = nitems(scsi_op_codes);
658 num_tables = 2;
659 } else {
660 /*
661 * If this is true, we have a vendor specific opcode that
662 * wasn't covered in the quirk table.
663 */
664 if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80)))
665 return("Vendor Specific Command");
666
667 table[0] = scsi_op_codes;
668 num_ops[0] = nitems(scsi_op_codes);
669 num_tables = 1;
670 }
671
672 /* RBC is 'Simplified' Direct Access Device */
673 if (pd_type == T_RBC)
674 pd_type = T_DIRECT;
675
676 /*
677 * Host managed drives are direct access for the most part.
678 */
679 if (pd_type == T_ZBC_HM)
680 pd_type = T_DIRECT;
681
682 /* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */
683 if (pd_type == T_NODEVICE)
684 pd_type = T_DIRECT;
685
686 opmask = 1 << pd_type;
687
688 for (j = 0; j < num_tables; j++) {
689 for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){
690 if ((table[j][i].opcode == opcode)
691 && ((table[j][i].opmask & opmask) != 0))
692 return(table[j][i].desc);
693 }
694 }
695
696 /*
697 * If we can't find a match for the command in the table, we just
698 * assume it's a vendor specifc command.
699 */
700 return("Vendor Specific Command");
701
702 }
703
704 #else /* SCSI_NO_OP_STRINGS */
705
706 const char *
scsi_op_desc(uint16_t opcode,struct scsi_inquiry_data * inq_data)707 scsi_op_desc(uint16_t opcode, struct scsi_inquiry_data *inq_data)
708 {
709 return("");
710 }
711
712 #endif
713
714 #if !defined(SCSI_NO_SENSE_STRINGS)
715 #define SST(asc, ascq, action, desc) \
716 asc, ascq, action, desc
717 #else
718 const char empty_string[] = "";
719
720 #define SST(asc, ascq, action, desc) \
721 asc, ascq, action, empty_string
722 #endif
723
724 const struct sense_key_table_entry sense_key_table[] =
725 {
726 { SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" },
727 { SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" },
728 { SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" },
729 { SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" },
730 { SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" },
731 { SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" },
732 { SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" },
733 { SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" },
734 { SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" },
735 { SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" },
736 { SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" },
737 { SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" },
738 { SSD_KEY_EQUAL, SS_NOP, "EQUAL" },
739 { SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" },
740 { SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" },
741 { SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" }
742 };
743
744 static struct asc_table_entry quantum_fireball_entries[] = {
745 { SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
746 "Logical unit not ready, initializing cmd. required") }
747 };
748
749 static struct asc_table_entry sony_mo_entries[] = {
750 { SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
751 "Logical unit not ready, cause not reportable") }
752 };
753
754 static struct asc_table_entry hgst_entries[] = {
755 { SST(0x04, 0xF0, SS_RDEF,
756 "Vendor Unique - Logical Unit Not Ready") },
757 { SST(0x0A, 0x01, SS_RDEF,
758 "Unrecovered Super Certification Log Write Error") },
759 { SST(0x0A, 0x02, SS_RDEF,
760 "Unrecovered Super Certification Log Read Error") },
761 { SST(0x15, 0x03, SS_RDEF,
762 "Unrecovered Sector Error") },
763 { SST(0x3E, 0x04, SS_RDEF,
764 "Unrecovered Self-Test Hard-Cache Test Fail") },
765 { SST(0x3E, 0x05, SS_RDEF,
766 "Unrecovered Self-Test OTF-Cache Fail") },
767 { SST(0x40, 0x00, SS_RDEF,
768 "Unrecovered SAT No Buffer Overflow Error") },
769 { SST(0x40, 0x01, SS_RDEF,
770 "Unrecovered SAT Buffer Overflow Error") },
771 { SST(0x40, 0x02, SS_RDEF,
772 "Unrecovered SAT No Buffer Overflow With ECS Fault") },
773 { SST(0x40, 0x03, SS_RDEF,
774 "Unrecovered SAT Buffer Overflow With ECS Fault") },
775 { SST(0x40, 0x81, SS_RDEF,
776 "DRAM Failure") },
777 { SST(0x44, 0x0B, SS_RDEF,
778 "Vendor Unique - Internal Target Failure") },
779 { SST(0x44, 0xF2, SS_RDEF,
780 "Vendor Unique - Internal Target Failure") },
781 { SST(0x44, 0xF6, SS_RDEF,
782 "Vendor Unique - Internal Target Failure") },
783 { SST(0x44, 0xF9, SS_RDEF,
784 "Vendor Unique - Internal Target Failure") },
785 { SST(0x44, 0xFA, SS_RDEF,
786 "Vendor Unique - Internal Target Failure") },
787 { SST(0x5D, 0x22, SS_RDEF,
788 "Extreme Over-Temperature Warning") },
789 { SST(0x5D, 0x50, SS_RDEF,
790 "Load/Unload cycle Count Warning") },
791 { SST(0x81, 0x00, SS_RDEF,
792 "Vendor Unique - Internal Logic Error") },
793 { SST(0x85, 0x00, SS_RDEF,
794 "Vendor Unique - Internal Key Seed Error") },
795 };
796
797 static struct asc_table_entry seagate_entries[] = {
798 { SST(0x04, 0xF0, SS_RDEF,
799 "Logical Unit Not Ready, super certify in Progress") },
800 { SST(0x08, 0x86, SS_RDEF,
801 "Write Fault Data Corruption") },
802 { SST(0x09, 0x0D, SS_RDEF,
803 "Tracking Failure") },
804 { SST(0x09, 0x0E, SS_RDEF,
805 "ETF Failure") },
806 { SST(0x0B, 0x5D, SS_RDEF,
807 "Pre-SMART Warning") },
808 { SST(0x0B, 0x85, SS_RDEF,
809 "5V Voltage Warning") },
810 { SST(0x0B, 0x8C, SS_RDEF,
811 "12V Voltage Warning") },
812 { SST(0x0C, 0xFF, SS_RDEF,
813 "Write Error - Too many error recovery revs") },
814 { SST(0x11, 0xFF, SS_RDEF,
815 "Unrecovered Read Error - Too many error recovery revs") },
816 { SST(0x19, 0x0E, SS_RDEF,
817 "Fewer than 1/2 defect list copies") },
818 { SST(0x20, 0xF3, SS_RDEF,
819 "Illegal CDB linked to skip mask cmd") },
820 { SST(0x24, 0xF0, SS_RDEF,
821 "Illegal byte in CDB, LBA not matching") },
822 { SST(0x24, 0xF1, SS_RDEF,
823 "Illegal byte in CDB, LEN not matching") },
824 { SST(0x24, 0xF2, SS_RDEF,
825 "Mask not matching transfer length") },
826 { SST(0x24, 0xF3, SS_RDEF,
827 "Drive formatted without plist") },
828 { SST(0x26, 0x95, SS_RDEF,
829 "Invalid Field Parameter - CAP File") },
830 { SST(0x26, 0x96, SS_RDEF,
831 "Invalid Field Parameter - RAP File") },
832 { SST(0x26, 0x97, SS_RDEF,
833 "Invalid Field Parameter - TMS Firmware Tag") },
834 { SST(0x26, 0x98, SS_RDEF,
835 "Invalid Field Parameter - Check Sum") },
836 { SST(0x26, 0x99, SS_RDEF,
837 "Invalid Field Parameter - Firmware Tag") },
838 { SST(0x29, 0x08, SS_RDEF,
839 "Write Log Dump data") },
840 { SST(0x29, 0x09, SS_RDEF,
841 "Write Log Dump data") },
842 { SST(0x29, 0x0A, SS_RDEF,
843 "Reserved disk space") },
844 { SST(0x29, 0x0B, SS_RDEF,
845 "SDBP") },
846 { SST(0x29, 0x0C, SS_RDEF,
847 "SDBP") },
848 { SST(0x31, 0x91, SS_RDEF,
849 "Format Corrupted World Wide Name (WWN) is Invalid") },
850 { SST(0x32, 0x03, SS_RDEF,
851 "Defect List - Length exceeds Command Allocated Length") },
852 { SST(0x33, 0x00, SS_RDEF,
853 "Flash not ready for access") },
854 { SST(0x3F, 0x70, SS_RDEF,
855 "Invalid RAP block") },
856 { SST(0x3F, 0x71, SS_RDEF,
857 "RAP/ETF mismatch") },
858 { SST(0x3F, 0x90, SS_RDEF,
859 "Invalid CAP block") },
860 { SST(0x3F, 0x91, SS_RDEF,
861 "World Wide Name (WWN) Mismatch") },
862 { SST(0x40, 0x01, SS_RDEF,
863 "DRAM Parity Error") },
864 { SST(0x40, 0x02, SS_RDEF,
865 "DRAM Parity Error") },
866 { SST(0x42, 0x0A, SS_RDEF,
867 "Loopback Test") },
868 { SST(0x42, 0x0B, SS_RDEF,
869 "Loopback Test") },
870 { SST(0x44, 0xF2, SS_RDEF,
871 "Compare error during data integrity check") },
872 { SST(0x44, 0xF6, SS_RDEF,
873 "Unrecoverable error during data integrity check") },
874 { SST(0x47, 0x80, SS_RDEF,
875 "Fibre Channel Sequence Error") },
876 { SST(0x4E, 0x01, SS_RDEF,
877 "Information Unit Too Short") },
878 { SST(0x80, 0x00, SS_RDEF,
879 "General Firmware Error / Command Timeout") },
880 { SST(0x80, 0x01, SS_RDEF,
881 "Command Timeout") },
882 { SST(0x80, 0x02, SS_RDEF,
883 "Command Timeout") },
884 { SST(0x80, 0x80, SS_RDEF,
885 "FC FIFO Error During Read Transfer") },
886 { SST(0x80, 0x81, SS_RDEF,
887 "FC FIFO Error During Write Transfer") },
888 { SST(0x80, 0x82, SS_RDEF,
889 "DISC FIFO Error During Read Transfer") },
890 { SST(0x80, 0x83, SS_RDEF,
891 "DISC FIFO Error During Write Transfer") },
892 { SST(0x80, 0x84, SS_RDEF,
893 "LBA Seeded LRC Error on Read") },
894 { SST(0x80, 0x85, SS_RDEF,
895 "LBA Seeded LRC Error on Write") },
896 { SST(0x80, 0x86, SS_RDEF,
897 "IOEDC Error on Read") },
898 { SST(0x80, 0x87, SS_RDEF,
899 "IOEDC Error on Write") },
900 { SST(0x80, 0x88, SS_RDEF,
901 "Host Parity Check Failed") },
902 { SST(0x80, 0x89, SS_RDEF,
903 "IOEDC error on read detected by formatter") },
904 { SST(0x80, 0x8A, SS_RDEF,
905 "Host Parity Errors / Host FIFO Initialization Failed") },
906 { SST(0x80, 0x8B, SS_RDEF,
907 "Host Parity Errors") },
908 { SST(0x80, 0x8C, SS_RDEF,
909 "Host Parity Errors") },
910 { SST(0x80, 0x8D, SS_RDEF,
911 "Host Parity Errors") },
912 { SST(0x81, 0x00, SS_RDEF,
913 "LA Check Failed") },
914 { SST(0x82, 0x00, SS_RDEF,
915 "Internal client detected insufficient buffer") },
916 { SST(0x84, 0x00, SS_RDEF,
917 "Scheduled Diagnostic And Repair") },
918 };
919
920 static struct scsi_sense_quirk_entry sense_quirk_table[] = {
921 {
922 /*
923 * XXX The Quantum Fireball ST and SE like to return 0x04 0x0b
924 * when they really should return 0x04 0x02.
925 */
926 {T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"},
927 /*num_sense_keys*/0,
928 nitems(quantum_fireball_entries),
929 /*sense key entries*/NULL,
930 quantum_fireball_entries
931 },
932 {
933 /*
934 * This Sony MO drive likes to return 0x04, 0x00 when it
935 * isn't spun up.
936 */
937 {T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"},
938 /*num_sense_keys*/0,
939 nitems(sony_mo_entries),
940 /*sense key entries*/NULL,
941 sony_mo_entries
942 },
943 {
944 /*
945 * HGST vendor-specific error codes
946 */
947 {T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"},
948 /*num_sense_keys*/0,
949 nitems(hgst_entries),
950 /*sense key entries*/NULL,
951 hgst_entries
952 },
953 {
954 /*
955 * SEAGATE vendor-specific error codes
956 */
957 {T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"},
958 /*num_sense_keys*/0,
959 nitems(seagate_entries),
960 /*sense key entries*/NULL,
961 seagate_entries
962 }
963 };
964
965 const u_int sense_quirk_table_size = nitems(sense_quirk_table);
966
967 static struct asc_table_entry asc_table[] = {
968 /*
969 * From: http://www.t10.org/lists/asc-num.txt
970 * Modifications by Jung-uk Kim (jkim@FreeBSD.org)
971 */
972 /*
973 * File: ASC-NUM.TXT
974 *
975 * SCSI ASC/ASCQ Assignments
976 * Numeric Sorted Listing
977 * as of Sat Mar 25 2023 at 04:30 (using old columns)
978 *
979 * D - DIRECT ACCESS DEVICE (SBC-2) device column key
980 * .T - SEQUENTIAL ACCESS DEVICE (SSC) -------------------
981 * . L - PRINTER DEVICE (SSC) blank = reserved
982 * . P - PROCESSOR DEVICE (SPC) not blank = allowed
983 * . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2)
984 * . . R - CD DEVICE (MMC)
985 * . . O - OPTICAL MEMORY DEVICE (SBC-2)
986 * . . .M - MEDIA CHANGER DEVICE (SMC)
987 * . . . A - STORAGE ARRAY DEVICE (SCC)
988 * . . . E - ENCLOSURE SERVICES DEVICE (SES)
989 * . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
990 * . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
991 * . . . . V - AUTOMATION/DRIVE INTERFACE (ADC)
992 * . . . . .F - OBJECT-BASED STORAGE (OSD)
993 * DTLPWROMAEBKVF
994 * ASC ASCQ Action
995 * Description
996 */
997 /* DTLPWROMAEBKVF */
998 { SST(0x00, 0x00, SS_NOP,
999 "No additional sense information") },
1000 /* T */
1001 { SST(0x00, 0x01, SS_RDEF,
1002 "Filemark detected") },
1003 /* T */
1004 { SST(0x00, 0x02, SS_RDEF,
1005 "End-of-partition/medium detected") },
1006 /* T */
1007 { SST(0x00, 0x03, SS_RDEF,
1008 "Setmark detected") },
1009 /* T */
1010 { SST(0x00, 0x04, SS_RDEF,
1011 "Beginning-of-partition/medium detected") },
1012 /* TL */
1013 { SST(0x00, 0x05, SS_RDEF,
1014 "End-of-data detected") },
1015 /* DTLPWROMAEBKVF */
1016 { SST(0x00, 0x06, SS_RDEF,
1017 "I/O process terminated") },
1018 /* T */
1019 { SST(0x00, 0x07, SS_RDEF, /* XXX TBD */
1020 "Programmable early warning detected") },
1021 /* R */
1022 { SST(0x00, 0x11, SS_FATAL | EBUSY,
1023 "Audio play operation in progress") },
1024 /* R */
1025 { SST(0x00, 0x12, SS_NOP,
1026 "Audio play operation paused") },
1027 /* R */
1028 { SST(0x00, 0x13, SS_NOP,
1029 "Audio play operation successfully completed") },
1030 /* R */
1031 { SST(0x00, 0x14, SS_RDEF,
1032 "Audio play operation stopped due to error") },
1033 /* R */
1034 { SST(0x00, 0x15, SS_NOP,
1035 "No current audio status to return") },
1036 /* DTLPWROMAEBKVF */
1037 { SST(0x00, 0x16, SS_FATAL | EBUSY,
1038 "Operation in progress") },
1039 /* DTL WROMAEBKVF */
1040 { SST(0x00, 0x17, SS_RDEF,
1041 "Cleaning requested") },
1042 /* T */
1043 { SST(0x00, 0x18, SS_RDEF, /* XXX TBD */
1044 "Erase operation in progress") },
1045 /* T */
1046 { SST(0x00, 0x19, SS_RDEF, /* XXX TBD */
1047 "Locate operation in progress") },
1048 /* T */
1049 { SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */
1050 "Rewind operation in progress") },
1051 /* T */
1052 { SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */
1053 "Set capacity operation in progress") },
1054 /* T */
1055 { SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */
1056 "Verify operation in progress") },
1057 /* DT B */
1058 { SST(0x00, 0x1D, SS_NOP,
1059 "ATA pass through information available") },
1060 /* DT R MAEBKV */
1061 { SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */
1062 "Conflicting SA creation request") },
1063 /* DT B */
1064 { SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */
1065 "Logical unit transitioning to another power condition") },
1066 /* DT P B */
1067 { SST(0x00, 0x20, SS_NOP,
1068 "Extended copy information available") },
1069 /* D */
1070 { SST(0x00, 0x21, SS_RDEF, /* XXX TBD */
1071 "Atomic command aborted due to ACA") },
1072 /* D */
1073 { SST(0x00, 0x22, SS_RDEF, /* XXX TBD */
1074 "Deferred microcode is pending") },
1075 /* D */
1076 { SST(0x00, 0x23, SS_RDEF, /* XXX TBD */
1077 "Overlapping atomic command in progress") },
1078 /* D W O BK */
1079 { SST(0x01, 0x00, SS_RDEF,
1080 "No index/sector signal") },
1081 /* D WRO BK */
1082 { SST(0x02, 0x00, SS_FATAL | EIO,
1083 "No seek complete") },
1084 /* DTL W O BK */
1085 { SST(0x03, 0x00, SS_RDEF,
1086 "Peripheral device write fault") },
1087 /* T */
1088 { SST(0x03, 0x01, SS_RDEF,
1089 "No write current") },
1090 /* T */
1091 { SST(0x03, 0x02, SS_RDEF,
1092 "Excessive write errors") },
1093 /* DTLPWROMAEBKVF */
1094 { SST(0x04, 0x00, SS_RDEF,
1095 "Logical unit not ready, cause not reportable") },
1096 /* DTLPWROMAEBKVF */
1097 { SST(0x04, 0x01, SS_WAIT | EBUSY,
1098 "Logical unit is in process of becoming ready") },
1099 /* DTLPWROMAEBKVF */
1100 { SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1101 "Logical unit not ready, initializing command required") },
1102 /* DTLPWROMAEBKVF */
1103 { SST(0x04, 0x03, SS_FATAL | ENXIO,
1104 "Logical unit not ready, manual intervention required") },
1105 /* DTL RO B */
1106 { SST(0x04, 0x04, SS_FATAL | EBUSY,
1107 "Logical unit not ready, format in progress") },
1108 /* DT W O A BK F */
1109 { SST(0x04, 0x05, SS_FATAL | EBUSY,
1110 "Logical unit not ready, rebuild in progress") },
1111 /* DT W O A BK */
1112 { SST(0x04, 0x06, SS_FATAL | EBUSY,
1113 "Logical unit not ready, recalculation in progress") },
1114 /* DTLPWROMAEBKVF */
1115 { SST(0x04, 0x07, SS_FATAL | EBUSY,
1116 "Logical unit not ready, operation in progress") },
1117 /* R */
1118 { SST(0x04, 0x08, SS_FATAL | EBUSY,
1119 "Logical unit not ready, long write in progress") },
1120 /* DTLPWROMAEBKVF */
1121 { SST(0x04, 0x09, SS_FATAL | EBUSY,
1122 "Logical unit not ready, self-test in progress") },
1123 /* DTLPWROMAEBKVF */
1124 { SST(0x04, 0x0A, SS_WAIT | ENXIO,
1125 "Logical unit not accessible, asymmetric access state transition")},
1126 /* DTLPWROMAEBKVF */
1127 { SST(0x04, 0x0B, SS_FATAL | ENXIO,
1128 "Logical unit not accessible, target port in standby state") },
1129 /* DTLPWROMAEBKVF */
1130 { SST(0x04, 0x0C, SS_FATAL | ENXIO,
1131 "Logical unit not accessible, target port in unavailable state") },
1132 /* F */
1133 { SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */
1134 "Logical unit not ready, structure check required") },
1135 /* DTL WR MAEBKVF */
1136 { SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */
1137 "Logical unit not ready, security session in progress") },
1138 /* DT WROM B */
1139 { SST(0x04, 0x10, SS_FATAL | ENODEV,
1140 "Logical unit not ready, auxiliary memory not accessible") },
1141 /* DT WRO AEB VF */
1142 { SST(0x04, 0x11, SS_WAIT | ENXIO,
1143 "Logical unit not ready, notify (enable spinup) required") },
1144 /* M V */
1145 { SST(0x04, 0x12, SS_FATAL | ENXIO,
1146 "Logical unit not ready, offline") },
1147 /* DT R MAEBKV */
1148 { SST(0x04, 0x13, SS_WAIT | EBUSY,
1149 "Logical unit not ready, SA creation in progress") },
1150 /* D B */
1151 { SST(0x04, 0x14, SS_WAIT | ENOSPC,
1152 "Logical unit not ready, space allocation in progress") },
1153 /* M */
1154 { SST(0x04, 0x15, SS_FATAL | ENXIO,
1155 "Logical unit not ready, robotics disabled") },
1156 /* M */
1157 { SST(0x04, 0x16, SS_FATAL | ENXIO,
1158 "Logical unit not ready, configuration required") },
1159 /* M */
1160 { SST(0x04, 0x17, SS_FATAL | ENXIO,
1161 "Logical unit not ready, calibration required") },
1162 /* M */
1163 { SST(0x04, 0x18, SS_FATAL | ENXIO,
1164 "Logical unit not ready, a door is open") },
1165 /* M */
1166 { SST(0x04, 0x19, SS_FATAL | ENODEV,
1167 "Logical unit not ready, operating in sequential mode") },
1168 /* DT B */
1169 { SST(0x04, 0x1A, SS_WAIT | EBUSY,
1170 "Logical unit not ready, START/STOP UNIT command in progress") },
1171 /* D B */
1172 { SST(0x04, 0x1B, SS_WAIT | EBUSY,
1173 "Logical unit not ready, sanitize in progress") },
1174 /* DT MAEB */
1175 { SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
1176 "Logical unit not ready, additional power use not yet granted") },
1177 /* D */
1178 { SST(0x04, 0x1D, SS_WAIT | EBUSY,
1179 "Logical unit not ready, configuration in progress") },
1180 /* D */
1181 { SST(0x04, 0x1E, SS_FATAL | ENXIO,
1182 "Logical unit not ready, microcode activation required") },
1183 /* DTLPWROMAEBKVF */
1184 { SST(0x04, 0x1F, SS_FATAL | ENXIO,
1185 "Logical unit not ready, microcode download required") },
1186 /* DTLPWROMAEBKVF */
1187 { SST(0x04, 0x20, SS_FATAL | ENXIO,
1188 "Logical unit not ready, logical unit reset required") },
1189 /* DTLPWROMAEBKVF */
1190 { SST(0x04, 0x21, SS_FATAL | ENXIO,
1191 "Logical unit not ready, hard reset required") },
1192 /* DTLPWROMAEBKVF */
1193 { SST(0x04, 0x22, SS_FATAL | ENXIO,
1194 "Logical unit not ready, power cycle required") },
1195 /* D */
1196 { SST(0x04, 0x23, SS_FATAL | ENXIO,
1197 "Logical unit not ready, affiliation required") },
1198 /* D */
1199 { SST(0x04, 0x24, SS_FATAL | EBUSY,
1200 "Depopulation in progress") },
1201 /* D */
1202 { SST(0x04, 0x25, SS_FATAL | EBUSY,
1203 "Depopulation restoration in progress") },
1204 /* DTL WROMAEBKVF */
1205 { SST(0x05, 0x00, SS_RDEF,
1206 "Logical unit does not respond to selection") },
1207 /* D WROM BK */
1208 { SST(0x06, 0x00, SS_RDEF,
1209 "No reference position found") },
1210 /* DTL WROM BK */
1211 { SST(0x07, 0x00, SS_RDEF,
1212 "Multiple peripheral devices selected") },
1213 /* DTL WROMAEBKVF */
1214 { SST(0x08, 0x00, SS_RDEF,
1215 "Logical unit communication failure") },
1216 /* DTL WROMAEBKVF */
1217 { SST(0x08, 0x01, SS_RDEF,
1218 "Logical unit communication time-out") },
1219 /* DTL WROMAEBKVF */
1220 { SST(0x08, 0x02, SS_RDEF,
1221 "Logical unit communication parity error") },
1222 /* DT ROM BK */
1223 { SST(0x08, 0x03, SS_RDEF,
1224 "Logical unit communication CRC error (Ultra-DMA/32)") },
1225 /* DTLPWRO K */
1226 { SST(0x08, 0x04, SS_RDEF, /* XXX TBD */
1227 "Unreachable copy target") },
1228 /* DT WRO B */
1229 { SST(0x09, 0x00, SS_RDEF,
1230 "Track following error") },
1231 /* WRO K */
1232 { SST(0x09, 0x01, SS_RDEF,
1233 "Tracking servo failure") },
1234 /* WRO K */
1235 { SST(0x09, 0x02, SS_RDEF,
1236 "Focus servo failure") },
1237 /* WRO */
1238 { SST(0x09, 0x03, SS_RDEF,
1239 "Spindle servo failure") },
1240 /* DT WRO B */
1241 { SST(0x09, 0x04, SS_RDEF,
1242 "Head select fault") },
1243 /* DT RO B */
1244 { SST(0x09, 0x05, SS_RDEF,
1245 "Vibration induced tracking error") },
1246 /* DTLPWROMAEBKVF */
1247 { SST(0x0A, 0x00, SS_FATAL | ENOSPC,
1248 "Error log overflow") },
1249 /* DTLPWROMAEBKVF */
1250 { SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1251 "Warning") },
1252 /* DTLPWROMAEBKVF */
1253 { SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1254 "Warning - specified temperature exceeded") },
1255 /* DTLPWROMAEBKVF */
1256 { SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1257 "Warning - enclosure degraded") },
1258 /* DTLPWROMAEBKVF */
1259 { SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1260 "Warning - background self-test failed") },
1261 /* DTLPWRO AEBKVF */
1262 { SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1263 "Warning - background pre-scan detected medium error") },
1264 /* DTLPWRO AEBKVF */
1265 { SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1266 "Warning - background medium scan detected medium error") },
1267 /* DTLPWROMAEBKVF */
1268 { SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1269 "Warning - non-volatile cache now volatile") },
1270 /* DTLPWROMAEBKVF */
1271 { SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1272 "Warning - degraded power to non-volatile cache") },
1273 /* DTLPWROMAEBKVF */
1274 { SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1275 "Warning - power loss expected") },
1276 /* D */
1277 { SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1278 "Warning - device statistics notification available") },
1279 /* DTLPWROMAEBKV */
1280 { SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE,
1281 "Warning - High critical temperature limit exceeded") },
1282 /* DTLPWROMAEBKV */
1283 { SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE,
1284 "Warning - Low critical temperature limit exceeded") },
1285 /* DTLPWROMAEBKV */
1286 { SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE,
1287 "Warning - High operating temperature limit exceeded") },
1288 /* DTLPWROMAEBKV */
1289 { SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE,
1290 "Warning - Low operating temperature limit exceeded") },
1291 /* DTLPWROMAEBKV */
1292 { SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE,
1293 "Warning - High citical humidity limit exceeded") },
1294 /* DTLPWROMAEBKV */
1295 { SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE,
1296 "Warning - Low citical humidity limit exceeded") },
1297 /* DTLPWROMAEBKV */
1298 { SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE,
1299 "Warning - High operating humidity limit exceeded") },
1300 /* DTLPWROMAEBKV */
1301 { SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE,
1302 "Warning - Low operating humidity limit exceeded") },
1303 /* DTLPWROMAEBKVF */
1304 { SST(0x0B, 0x12, SS_NOP | SSQ_PRINT_SENSE,
1305 "Warning - Microcode security at risk") },
1306 /* DTLPWROMAEBKVF */
1307 { SST(0x0B, 0x13, SS_NOP | SSQ_PRINT_SENSE,
1308 "Warning - Microcode digital signature validation failure") },
1309 /* D */
1310 { SST(0x0B, 0x14, SS_NOP | SSQ_PRINT_SENSE,
1311 "Warning - Physical element status change") },
1312 /* T R */
1313 { SST(0x0C, 0x00, SS_RDEF,
1314 "Write error") },
1315 /* K */
1316 { SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1317 "Write error - recovered with auto reallocation") },
1318 /* D W O BK */
1319 { SST(0x0C, 0x02, SS_RDEF,
1320 "Write error - auto reallocation failed") },
1321 /* D W O BK */
1322 { SST(0x0C, 0x03, SS_RDEF,
1323 "Write error - recommend reassignment") },
1324 /* DT W O B */
1325 { SST(0x0C, 0x04, SS_RDEF,
1326 "Compression check miscompare error") },
1327 /* DT W O B */
1328 { SST(0x0C, 0x05, SS_RDEF,
1329 "Data expansion occurred during compression") },
1330 /* DT W O B */
1331 { SST(0x0C, 0x06, SS_RDEF,
1332 "Block not compressible") },
1333 /* R */
1334 { SST(0x0C, 0x07, SS_RDEF,
1335 "Write error - recovery needed") },
1336 /* R */
1337 { SST(0x0C, 0x08, SS_RDEF,
1338 "Write error - recovery failed") },
1339 /* R */
1340 { SST(0x0C, 0x09, SS_RDEF,
1341 "Write error - loss of streaming") },
1342 /* R */
1343 { SST(0x0C, 0x0A, SS_RDEF,
1344 "Write error - padding blocks added") },
1345 /* DT WROM B */
1346 { SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */
1347 "Auxiliary memory write error") },
1348 /* DTLPWRO AEBKVF */
1349 { SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */
1350 "Write error - unexpected unsolicited data") },
1351 /* DTLPWRO AEBKVF */
1352 { SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */
1353 "Write error - not enough unsolicited data") },
1354 /* DT W O BK */
1355 { SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */
1356 "Multiple write errors") },
1357 /* R */
1358 { SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */
1359 "Defects in error window") },
1360 /* D */
1361 { SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */
1362 "Incomplete multiple atomic write operations") },
1363 /* D */
1364 { SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */
1365 "Write error - recovery scan needed") },
1366 /* D */
1367 { SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */
1368 "Write error - insufficient zone resources") },
1369 /* DTLPWRO A K */
1370 { SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */
1371 "Error detected by third party temporary initiator") },
1372 /* DTLPWRO A K */
1373 { SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */
1374 "Third party device failure") },
1375 /* DTLPWRO A K */
1376 { SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */
1377 "Copy target device not reachable") },
1378 /* DTLPWRO A K */
1379 { SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */
1380 "Incorrect copy target device type") },
1381 /* DTLPWRO A K */
1382 { SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */
1383 "Copy target device data underrun") },
1384 /* DTLPWRO A K */
1385 { SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */
1386 "Copy target device data overrun") },
1387 /* DT PWROMAEBK F */
1388 { SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */
1389 "Invalid information unit") },
1390 /* DT PWROMAEBK F */
1391 { SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */
1392 "Information unit too short") },
1393 /* DT PWROMAEBK F */
1394 { SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */
1395 "Information unit too long") },
1396 /* DT P R MAEBK F */
1397 { SST(0x0E, 0x03, SS_FATAL | EINVAL,
1398 "Invalid field in command information unit") },
1399 /* D W O BK */
1400 { SST(0x10, 0x00, SS_RDEF,
1401 "ID CRC or ECC error") },
1402 /* DT W O */
1403 { SST(0x10, 0x01, SS_RDEF, /* XXX TBD */
1404 "Logical block guard check failed") },
1405 /* DT W O */
1406 { SST(0x10, 0x02, SS_RDEF, /* XXX TBD */
1407 "Logical block application tag check failed") },
1408 /* DT W O */
1409 { SST(0x10, 0x03, SS_RDEF, /* XXX TBD */
1410 "Logical block reference tag check failed") },
1411 /* T */
1412 { SST(0x10, 0x04, SS_RDEF, /* XXX TBD */
1413 "Logical block protection error on recovered buffer data") },
1414 /* T */
1415 { SST(0x10, 0x05, SS_RDEF, /* XXX TBD */
1416 "Logical block protection method error") },
1417 /* DT WRO BK */
1418 { SST(0x11, 0x00, SS_FATAL|EIO,
1419 "Unrecovered read error") },
1420 /* DT WRO BK */
1421 { SST(0x11, 0x01, SS_FATAL|EIO,
1422 "Read retries exhausted") },
1423 /* DT WRO BK */
1424 { SST(0x11, 0x02, SS_FATAL|EIO,
1425 "Error too long to correct") },
1426 /* DT W O BK */
1427 { SST(0x11, 0x03, SS_FATAL|EIO,
1428 "Multiple read errors") },
1429 /* D W O BK */
1430 { SST(0x11, 0x04, SS_FATAL|EIO,
1431 "Unrecovered read error - auto reallocate failed") },
1432 /* WRO B */
1433 { SST(0x11, 0x05, SS_FATAL|EIO,
1434 "L-EC uncorrectable error") },
1435 /* WRO B */
1436 { SST(0x11, 0x06, SS_FATAL|EIO,
1437 "CIRC unrecovered error") },
1438 /* W O B */
1439 { SST(0x11, 0x07, SS_RDEF,
1440 "Data re-synchronization error") },
1441 /* T */
1442 { SST(0x11, 0x08, SS_RDEF,
1443 "Incomplete block read") },
1444 /* T */
1445 { SST(0x11, 0x09, SS_RDEF,
1446 "No gap found") },
1447 /* DT O BK */
1448 { SST(0x11, 0x0A, SS_RDEF,
1449 "Miscorrected error") },
1450 /* D W O BK */
1451 { SST(0x11, 0x0B, SS_FATAL|EIO,
1452 "Unrecovered read error - recommend reassignment") },
1453 /* D W O BK */
1454 { SST(0x11, 0x0C, SS_FATAL|EIO,
1455 "Unrecovered read error - recommend rewrite the data") },
1456 /* DT WRO B */
1457 { SST(0x11, 0x0D, SS_RDEF,
1458 "De-compression CRC error") },
1459 /* DT WRO B */
1460 { SST(0x11, 0x0E, SS_RDEF,
1461 "Cannot decompress using declared algorithm") },
1462 /* R */
1463 { SST(0x11, 0x0F, SS_RDEF,
1464 "Error reading UPC/EAN number") },
1465 /* R */
1466 { SST(0x11, 0x10, SS_RDEF,
1467 "Error reading ISRC number") },
1468 /* R */
1469 { SST(0x11, 0x11, SS_RDEF,
1470 "Read error - loss of streaming") },
1471 /* DT WROM B */
1472 { SST(0x11, 0x12, SS_RDEF, /* XXX TBD */
1473 "Auxiliary memory read error") },
1474 /* DTLPWRO AEBKVF */
1475 { SST(0x11, 0x13, SS_RDEF, /* XXX TBD */
1476 "Read error - failed retransmission request") },
1477 /* D */
1478 { SST(0x11, 0x14, SS_RDEF, /* XXX TBD */
1479 "Read error - LBA marked bad by application client") },
1480 /* D */
1481 { SST(0x11, 0x15, SS_FATAL | EIO,
1482 "Write after sanitize required") },
1483 /* D W O BK */
1484 { SST(0x12, 0x00, SS_RDEF,
1485 "Address mark not found for ID field") },
1486 /* D W O BK */
1487 { SST(0x13, 0x00, SS_RDEF,
1488 "Address mark not found for data field") },
1489 /* DTL WRO BK */
1490 { SST(0x14, 0x00, SS_RDEF,
1491 "Recorded entity not found") },
1492 /* DT WRO BK */
1493 { SST(0x14, 0x01, SS_RDEF,
1494 "Record not found") },
1495 /* T */
1496 { SST(0x14, 0x02, SS_RDEF,
1497 "Filemark or setmark not found") },
1498 /* T */
1499 { SST(0x14, 0x03, SS_RDEF,
1500 "End-of-data not found") },
1501 /* T */
1502 { SST(0x14, 0x04, SS_RDEF,
1503 "Block sequence error") },
1504 /* DT W O BK */
1505 { SST(0x14, 0x05, SS_RDEF,
1506 "Record not found - recommend reassignment") },
1507 /* DT W O BK */
1508 { SST(0x14, 0x06, SS_RDEF,
1509 "Record not found - data auto-reallocated") },
1510 /* T */
1511 { SST(0x14, 0x07, SS_RDEF, /* XXX TBD */
1512 "Locate operation failure") },
1513 /* DTL WROM BK */
1514 { SST(0x15, 0x00, SS_RDEF,
1515 "Random positioning error") },
1516 /* DTL WROM BK */
1517 { SST(0x15, 0x01, SS_RDEF,
1518 "Mechanical positioning error") },
1519 /* DT WRO BK */
1520 { SST(0x15, 0x02, SS_RDEF,
1521 "Positioning error detected by read of medium") },
1522 /* D W O BK */
1523 { SST(0x16, 0x00, SS_RDEF,
1524 "Data synchronization mark error") },
1525 /* D W O BK */
1526 { SST(0x16, 0x01, SS_RDEF,
1527 "Data sync error - data rewritten") },
1528 /* D W O BK */
1529 { SST(0x16, 0x02, SS_RDEF,
1530 "Data sync error - recommend rewrite") },
1531 /* D W O BK */
1532 { SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1533 "Data sync error - data auto-reallocated") },
1534 /* D W O BK */
1535 { SST(0x16, 0x04, SS_RDEF,
1536 "Data sync error - recommend reassignment") },
1537 /* DT WRO BK */
1538 { SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1539 "Recovered data with no error correction applied") },
1540 /* DT WRO BK */
1541 { SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1542 "Recovered data with retries") },
1543 /* DT WRO BK */
1544 { SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1545 "Recovered data with positive head offset") },
1546 /* DT WRO BK */
1547 { SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1548 "Recovered data with negative head offset") },
1549 /* WRO B */
1550 { SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1551 "Recovered data with retries and/or CIRC applied") },
1552 /* D WRO BK */
1553 { SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1554 "Recovered data using previous sector ID") },
1555 /* D W O BK */
1556 { SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1557 "Recovered data without ECC - data auto-reallocated") },
1558 /* D WRO BK */
1559 { SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1560 "Recovered data without ECC - recommend reassignment") },
1561 /* D WRO BK */
1562 { SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1563 "Recovered data without ECC - recommend rewrite") },
1564 /* D WRO BK */
1565 { SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE,
1566 "Recovered data without ECC - data rewritten") },
1567 /* DT WRO BK */
1568 { SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1569 "Recovered data with error correction applied") },
1570 /* D WRO BK */
1571 { SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE,
1572 "Recovered data with error corr. & retries applied") },
1573 /* D WRO BK */
1574 { SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE,
1575 "Recovered data - data auto-reallocated") },
1576 /* R */
1577 { SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE,
1578 "Recovered data with CIRC") },
1579 /* R */
1580 { SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE,
1581 "Recovered data with L-EC") },
1582 /* D WRO BK */
1583 { SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE,
1584 "Recovered data - recommend reassignment") },
1585 /* D WRO BK */
1586 { SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE,
1587 "Recovered data - recommend rewrite") },
1588 /* D W O BK */
1589 { SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE,
1590 "Recovered data with ECC - data rewritten") },
1591 /* R */
1592 { SST(0x18, 0x08, SS_NOP | SSQ_PRINT_SENSE,
1593 "Recovered data with linking") },
1594 /* D O K */
1595 { SST(0x19, 0x00, SS_RDEF,
1596 "Defect list error") },
1597 /* D O K */
1598 { SST(0x19, 0x01, SS_RDEF,
1599 "Defect list not available") },
1600 /* D O K */
1601 { SST(0x19, 0x02, SS_RDEF,
1602 "Defect list error in primary list") },
1603 /* D O K */
1604 { SST(0x19, 0x03, SS_RDEF,
1605 "Defect list error in grown list") },
1606 /* DTLPWROMAEBKVF */
1607 { SST(0x1A, 0x00, SS_RDEF,
1608 "Parameter list length error") },
1609 /* DTLPWROMAEBKVF */
1610 { SST(0x1B, 0x00, SS_RDEF,
1611 "Synchronous data transfer error") },
1612 /* D O BK */
1613 { SST(0x1C, 0x00, SS_RDEF,
1614 "Defect list not found") },
1615 /* D O BK */
1616 { SST(0x1C, 0x01, SS_RDEF,
1617 "Primary defect list not found") },
1618 /* D O BK */
1619 { SST(0x1C, 0x02, SS_RDEF,
1620 "Grown defect list not found") },
1621 /* DT WRO BK */
1622 { SST(0x1D, 0x00, SS_FATAL,
1623 "Miscompare during verify operation") },
1624 /* D B */
1625 { SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */
1626 "Miscomparable verify of unmapped LBA") },
1627 /* D W O BK */
1628 { SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE,
1629 "Recovered ID with ECC correction") },
1630 /* D O K */
1631 { SST(0x1F, 0x00, SS_RDEF,
1632 "Partial defect list transfer") },
1633 /* DTLPWROMAEBKVF */
1634 { SST(0x20, 0x00, SS_FATAL | EINVAL,
1635 "Invalid command operation code") },
1636 /* DT PWROMAEBK */
1637 { SST(0x20, 0x01, SS_RDEF, /* XXX TBD */
1638 "Access denied - initiator pending-enrolled") },
1639 /* DT PWROMAEBK */
1640 { SST(0x20, 0x02, SS_FATAL | EPERM,
1641 "Access denied - no access rights") },
1642 /* DT PWROMAEBK */
1643 { SST(0x20, 0x03, SS_RDEF, /* XXX TBD */
1644 "Access denied - invalid mgmt ID key") },
1645 /* T */
1646 { SST(0x20, 0x04, SS_RDEF, /* XXX TBD */
1647 "Illegal command while in write capable state") },
1648 /* T */
1649 { SST(0x20, 0x05, SS_RDEF, /* XXX TBD */
1650 "Obsolete") },
1651 /* T */
1652 { SST(0x20, 0x06, SS_RDEF, /* XXX TBD */
1653 "Illegal command while in explicit address mode") },
1654 /* T */
1655 { SST(0x20, 0x07, SS_RDEF, /* XXX TBD */
1656 "Illegal command while in implicit address mode") },
1657 /* DT PWROMAEBK */
1658 { SST(0x20, 0x08, SS_RDEF, /* XXX TBD */
1659 "Access denied - enrollment conflict") },
1660 /* DT PWROMAEBK */
1661 { SST(0x20, 0x09, SS_RDEF, /* XXX TBD */
1662 "Access denied - invalid LU identifier") },
1663 /* DT PWROMAEBK */
1664 { SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */
1665 "Access denied - invalid proxy token") },
1666 /* DT PWROMAEBK */
1667 { SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */
1668 "Access denied - ACL LUN conflict") },
1669 /* T */
1670 { SST(0x20, 0x0C, SS_FATAL | EINVAL,
1671 "Illegal command when not in append-only mode") },
1672 /* D */
1673 { SST(0x20, 0x0D, SS_FATAL | EINVAL,
1674 "Not an administrative logical unit") },
1675 /* D */
1676 { SST(0x20, 0x0E, SS_FATAL | EINVAL,
1677 "Not a subsidiary logical unit") },
1678 /* D */
1679 { SST(0x20, 0x0F, SS_FATAL | EINVAL,
1680 "Not a conglomerate logical unit") },
1681 /* DT WRO BK */
1682 { SST(0x21, 0x00, SS_FATAL | EINVAL,
1683 "Logical block address out of range") },
1684 /* DT WROM BK */
1685 { SST(0x21, 0x01, SS_FATAL | EINVAL,
1686 "Invalid element address") },
1687 /* R */
1688 { SST(0x21, 0x02, SS_RDEF, /* XXX TBD */
1689 "Invalid address for write") },
1690 /* R */
1691 { SST(0x21, 0x03, SS_RDEF, /* XXX TBD */
1692 "Invalid write crossing layer jump") },
1693 /* D */
1694 { SST(0x21, 0x04, SS_RDEF, /* XXX TBD */
1695 "Unaligned write command") },
1696 /* D */
1697 { SST(0x21, 0x05, SS_RDEF, /* XXX TBD */
1698 "Write boundary violation") },
1699 /* D */
1700 { SST(0x21, 0x06, SS_RDEF, /* XXX TBD */
1701 "Attempt to read invalid data") },
1702 /* D */
1703 { SST(0x21, 0x07, SS_RDEF, /* XXX TBD */
1704 "Read boundary violation") },
1705 /* D */
1706 { SST(0x21, 0x08, SS_FATAL | EINVAL,
1707 "Misaligned write command") },
1708 /* D */
1709 { SST(0x21, 0x09, SS_FATAL | EINVAL,
1710 "Attempt to access gap zone") },
1711 /* D */
1712 { SST(0x22, 0x00, SS_FATAL | EINVAL,
1713 "Illegal function (use 20 00, 24 00, or 26 00)") },
1714 /* DT P B */
1715 { SST(0x23, 0x00, SS_FATAL | EINVAL,
1716 "Invalid token operation, cause not reportable") },
1717 /* DT P B */
1718 { SST(0x23, 0x01, SS_FATAL | EINVAL,
1719 "Invalid token operation, unsupported token type") },
1720 /* DT P B */
1721 { SST(0x23, 0x02, SS_FATAL | EINVAL,
1722 "Invalid token operation, remote token usage not supported") },
1723 /* DT P B */
1724 { SST(0x23, 0x03, SS_FATAL | EINVAL,
1725 "Invalid token operation, remote ROD token creation not supported") },
1726 /* DT P B */
1727 { SST(0x23, 0x04, SS_FATAL | EINVAL,
1728 "Invalid token operation, token unknown") },
1729 /* DT P B */
1730 { SST(0x23, 0x05, SS_FATAL | EINVAL,
1731 "Invalid token operation, token corrupt") },
1732 /* DT P B */
1733 { SST(0x23, 0x06, SS_FATAL | EINVAL,
1734 "Invalid token operation, token revoked") },
1735 /* DT P B */
1736 { SST(0x23, 0x07, SS_FATAL | EINVAL,
1737 "Invalid token operation, token expired") },
1738 /* DT P B */
1739 { SST(0x23, 0x08, SS_FATAL | EINVAL,
1740 "Invalid token operation, token cancelled") },
1741 /* DT P B */
1742 { SST(0x23, 0x09, SS_FATAL | EINVAL,
1743 "Invalid token operation, token deleted") },
1744 /* DT P B */
1745 { SST(0x23, 0x0A, SS_FATAL | EINVAL,
1746 "Invalid token operation, invalid token length") },
1747 /* DTLPWROMAEBKVF */
1748 { SST(0x24, 0x00, SS_FATAL | EINVAL,
1749 "Invalid field in CDB") },
1750 /* DTLPWRO AEBKVF */
1751 { SST(0x24, 0x01, SS_RDEF, /* XXX TBD */
1752 "CDB decryption error") },
1753 /* T */
1754 { SST(0x24, 0x02, SS_RDEF, /* XXX TBD */
1755 "Obsolete") },
1756 /* T */
1757 { SST(0x24, 0x03, SS_RDEF, /* XXX TBD */
1758 "Obsolete") },
1759 /* F */
1760 { SST(0x24, 0x04, SS_RDEF, /* XXX TBD */
1761 "Security audit value frozen") },
1762 /* F */
1763 { SST(0x24, 0x05, SS_RDEF, /* XXX TBD */
1764 "Security working key frozen") },
1765 /* F */
1766 { SST(0x24, 0x06, SS_RDEF, /* XXX TBD */
1767 "NONCE not unique") },
1768 /* F */
1769 { SST(0x24, 0x07, SS_RDEF, /* XXX TBD */
1770 "NONCE timestamp out of range") },
1771 /* DT R MAEBKV */
1772 { SST(0x24, 0x08, SS_RDEF, /* XXX TBD */
1773 "Invalid XCDB") },
1774 /* D */
1775 { SST(0x24, 0x09, SS_FATAL | EINVAL,
1776 "Invalid fast format") },
1777 /* DTLPWROMAEBKVF */
1778 { SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST,
1779 "Logical unit not supported") },
1780 /* DTLPWROMAEBKVF */
1781 { SST(0x26, 0x00, SS_FATAL | EINVAL,
1782 "Invalid field in parameter list") },
1783 /* DTLPWROMAEBKVF */
1784 { SST(0x26, 0x01, SS_FATAL | EINVAL,
1785 "Parameter not supported") },
1786 /* DTLPWROMAEBKVF */
1787 { SST(0x26, 0x02, SS_FATAL | EINVAL,
1788 "Parameter value invalid") },
1789 /* DTLPWROMAE K */
1790 { SST(0x26, 0x03, SS_FATAL | EINVAL,
1791 "Threshold parameters not supported") },
1792 /* DTLPWROMAEBKVF */
1793 { SST(0x26, 0x04, SS_FATAL | EINVAL,
1794 "Invalid release of persistent reservation") },
1795 /* DTLPWRO A BK */
1796 { SST(0x26, 0x05, SS_RDEF, /* XXX TBD */
1797 "Data decryption error") },
1798 /* DTLPWRO K */
1799 { SST(0x26, 0x06, SS_FATAL | EINVAL,
1800 "Too many target descriptors") },
1801 /* DTLPWRO K */
1802 { SST(0x26, 0x07, SS_FATAL | EINVAL,
1803 "Unsupported target descriptor type code") },
1804 /* DTLPWRO K */
1805 { SST(0x26, 0x08, SS_FATAL | EINVAL,
1806 "Too many segment descriptors") },
1807 /* DTLPWRO K */
1808 { SST(0x26, 0x09, SS_FATAL | EINVAL,
1809 "Unsupported segment descriptor type code") },
1810 /* DTLPWRO K */
1811 { SST(0x26, 0x0A, SS_FATAL | EINVAL,
1812 "Unexpected inexact segment") },
1813 /* DTLPWRO K */
1814 { SST(0x26, 0x0B, SS_FATAL | EINVAL,
1815 "Inline data length exceeded") },
1816 /* DTLPWRO K */
1817 { SST(0x26, 0x0C, SS_FATAL | EINVAL,
1818 "Invalid operation for copy source or destination") },
1819 /* DTLPWRO K */
1820 { SST(0x26, 0x0D, SS_FATAL | EINVAL,
1821 "Copy segment granularity violation") },
1822 /* DT PWROMAEBK */
1823 { SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */
1824 "Invalid parameter while port is enabled") },
1825 /* F */
1826 { SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */
1827 "Invalid data-out buffer integrity check value") },
1828 /* T */
1829 { SST(0x26, 0x10, SS_RDEF, /* XXX TBD */
1830 "Data decryption key fail limit reached") },
1831 /* T */
1832 { SST(0x26, 0x11, SS_RDEF, /* XXX TBD */
1833 "Incomplete key-associated data set") },
1834 /* T */
1835 { SST(0x26, 0x12, SS_RDEF, /* XXX TBD */
1836 "Vendor specific key reference not found") },
1837 /* D */
1838 { SST(0x26, 0x13, SS_RDEF, /* XXX TBD */
1839 "Application tag mode page is invalid") },
1840 /* T */
1841 { SST(0x26, 0x14, SS_RDEF, /* XXX TBD */
1842 "Tape stream mirroring prevented") },
1843 /* T */
1844 { SST(0x26, 0x15, SS_FATAL | EINVAL,
1845 "Copy source or copy destination not authorized") },
1846 /* D */
1847 { SST(0x26, 0x16, SS_FATAL | EINVAL,
1848 "Fast copy not possible") },
1849 /* DT WRO BK */
1850 { SST(0x27, 0x00, SS_FATAL | EACCES,
1851 "Write protected") },
1852 /* DT WRO BK */
1853 { SST(0x27, 0x01, SS_FATAL | EACCES,
1854 "Hardware write protected") },
1855 /* DT WRO BK */
1856 { SST(0x27, 0x02, SS_FATAL | EACCES,
1857 "Logical unit software write protected") },
1858 /* T R */
1859 { SST(0x27, 0x03, SS_FATAL | EACCES,
1860 "Associated write protect") },
1861 /* T R */
1862 { SST(0x27, 0x04, SS_FATAL | EACCES,
1863 "Persistent write protect") },
1864 /* T R */
1865 { SST(0x27, 0x05, SS_FATAL | EACCES,
1866 "Permanent write protect") },
1867 /* R F */
1868 { SST(0x27, 0x06, SS_RDEF, /* XXX TBD */
1869 "Conditional write protect") },
1870 /* D B */
1871 { SST(0x27, 0x07, SS_FATAL | ENOSPC,
1872 "Space allocation failed write protect") },
1873 /* D */
1874 { SST(0x27, 0x08, SS_FATAL | EACCES,
1875 "Zone is read only") },
1876 /* DTLPWROMAEBKVF */
1877 { SST(0x28, 0x00, SS_FATAL | ENXIO,
1878 "Not ready to ready change, medium may have changed") },
1879 /* DT WROM B */
1880 { SST(0x28, 0x01, SS_FATAL | ENXIO,
1881 "Import or export element accessed") },
1882 /* R */
1883 { SST(0x28, 0x02, SS_RDEF, /* XXX TBD */
1884 "Format-layer may have changed") },
1885 /* M */
1886 { SST(0x28, 0x03, SS_RDEF, /* XXX TBD */
1887 "Import/export element accessed, medium changed") },
1888 /*
1889 * XXX JGibbs - All of these should use the same errno, but I don't
1890 * think ENXIO is the correct choice. Should we borrow from
1891 * the networking errnos? ECONNRESET anyone?
1892 */
1893 /* DTLPWROMAEBKVF */
1894 { SST(0x29, 0x00, SS_FATAL | ENXIO,
1895 "Power on, reset, or bus device reset occurred") },
1896 /* DTLPWROMAEBKVF */
1897 { SST(0x29, 0x01, SS_RDEF,
1898 "Power on occurred") },
1899 /* DTLPWROMAEBKVF */
1900 { SST(0x29, 0x02, SS_RDEF,
1901 "SCSI bus reset occurred") },
1902 /* DTLPWROMAEBKVF */
1903 { SST(0x29, 0x03, SS_RDEF,
1904 "Bus device reset function occurred") },
1905 /* DTLPWROMAEBKVF */
1906 { SST(0x29, 0x04, SS_RDEF,
1907 "Device internal reset") },
1908 /* DTLPWROMAEBKVF */
1909 { SST(0x29, 0x05, SS_RDEF,
1910 "Transceiver mode changed to single-ended") },
1911 /* DTLPWROMAEBKVF */
1912 { SST(0x29, 0x06, SS_RDEF,
1913 "Transceiver mode changed to LVD") },
1914 /* DTLPWROMAEBKVF */
1915 { SST(0x29, 0x07, SS_RDEF, /* XXX TBD */
1916 "I_T nexus loss occurred") },
1917 /* DTL WROMAEBKVF */
1918 { SST(0x2A, 0x00, SS_RDEF,
1919 "Parameters changed") },
1920 /* DTL WROMAEBKVF */
1921 { SST(0x2A, 0x01, SS_RDEF,
1922 "Mode parameters changed") },
1923 /* DTL WROMAE K */
1924 { SST(0x2A, 0x02, SS_RDEF,
1925 "Log parameters changed") },
1926 /* DTLPWROMAE K */
1927 { SST(0x2A, 0x03, SS_RDEF,
1928 "Reservations preempted") },
1929 /* DTLPWROMAE */
1930 { SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */
1931 "Reservations released") },
1932 /* DTLPWROMAE */
1933 { SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */
1934 "Registrations preempted") },
1935 /* DTLPWROMAEBKVF */
1936 { SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */
1937 "Asymmetric access state changed") },
1938 /* DTLPWROMAEBKVF */
1939 { SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */
1940 "Implicit asymmetric access state transition failed") },
1941 /* DT WROMAEBKVF */
1942 { SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */
1943 "Priority changed") },
1944 /* D */
1945 { SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */
1946 "Capacity data has changed") },
1947 /* DT */
1948 { SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */
1949 "Error history I_T nexus cleared") },
1950 /* DT */
1951 { SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */
1952 "Error history snapshot released") },
1953 /* F */
1954 { SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */
1955 "Error recovery attributes have changed") },
1956 /* T */
1957 { SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */
1958 "Data encryption capabilities changed") },
1959 /* DT M E V */
1960 { SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */
1961 "Timestamp changed") },
1962 /* T */
1963 { SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */
1964 "Data encryption parameters changed by another I_T nexus") },
1965 /* T */
1966 { SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */
1967 "Data encryption parameters changed by vendor specific event") },
1968 /* T */
1969 { SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */
1970 "Data encryption key instance counter has changed") },
1971 /* DT R MAEBKV */
1972 { SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */
1973 "SA creation capabilities data has changed") },
1974 /* T M V */
1975 { SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */
1976 "Medium removal prevention preempted") },
1977 /* D */
1978 { SST(0x2A, 0x16, SS_RDEF, /* XXX TBD */
1979 "Zone reset write pointer recommended") },
1980 /* DTLPWRO K */
1981 { SST(0x2B, 0x00, SS_RDEF,
1982 "Copy cannot execute since host cannot disconnect") },
1983 /* DTLPWROMAEBKVF */
1984 { SST(0x2C, 0x00, SS_RDEF,
1985 "Command sequence error") },
1986 /* */
1987 { SST(0x2C, 0x01, SS_RDEF,
1988 "Too many windows specified") },
1989 /* */
1990 { SST(0x2C, 0x02, SS_RDEF,
1991 "Invalid combination of windows specified") },
1992 /* R */
1993 { SST(0x2C, 0x03, SS_RDEF,
1994 "Current program area is not empty") },
1995 /* R */
1996 { SST(0x2C, 0x04, SS_RDEF,
1997 "Current program area is empty") },
1998 /* B */
1999 { SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */
2000 "Illegal power condition request") },
2001 /* R */
2002 { SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */
2003 "Persistent prevent conflict") },
2004 /* DTLPWROMAEBKVF */
2005 { SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */
2006 "Previous busy status") },
2007 /* DTLPWROMAEBKVF */
2008 { SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */
2009 "Previous task set full status") },
2010 /* DTLPWROM EBKVF */
2011 { SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */
2012 "Previous reservation conflict status") },
2013 /* F */
2014 { SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */
2015 "Partition or collection contains user objects") },
2016 /* T */
2017 { SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */
2018 "Not reserved") },
2019 /* D */
2020 { SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */
2021 "ORWRITE generation does not match") },
2022 /* D */
2023 { SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */
2024 "Reset write pointer not allowed") },
2025 /* D */
2026 { SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */
2027 "Zone is offline") },
2028 /* D */
2029 { SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */
2030 "Stream not open") },
2031 /* D */
2032 { SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */
2033 "Unwritten data in zone") },
2034 /* D */
2035 { SST(0x2C, 0x11, SS_FATAL | EINVAL,
2036 "Descriptor format sense data required") },
2037 /* D */
2038 { SST(0x2C, 0x12, SS_FATAL | EINVAL,
2039 "Zone is inactive") },
2040 /* DTPEROMAEBKVF */
2041 { SST(0x2C, 0x13, SS_FATAL | EINVAL,
2042 "Well known logical unit access required") },
2043 /* T */
2044 { SST(0x2D, 0x00, SS_RDEF,
2045 "Overwrite error on update in place") },
2046 /* R */
2047 { SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */
2048 "Insufficient time for operation") },
2049 /* D */
2050 { SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */
2051 "Command timeout before processing") },
2052 /* D */
2053 { SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */
2054 "Command timeout during processing") },
2055 /* D */
2056 { SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */
2057 "Command timeout during processing due to error recovery") },
2058 /* DTLPWROMAEBKVF */
2059 { SST(0x2F, 0x00, SS_RDEF,
2060 "Commands cleared by another initiator") },
2061 /* D */
2062 { SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */
2063 "Commands cleared by power loss notification") },
2064 /* DTLPWROMAEBKVF */
2065 { SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */
2066 "Commands cleared by device server") },
2067 /* DTLPWROMAEBKVF */
2068 { SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */
2069 "Some commands cleared by queuing layer event") },
2070 /* DT WROM BK */
2071 { SST(0x30, 0x00, SS_RDEF,
2072 "Incompatible medium installed") },
2073 /* DT WRO BK */
2074 { SST(0x30, 0x01, SS_RDEF,
2075 "Cannot read medium - unknown format") },
2076 /* DT WRO BK */
2077 { SST(0x30, 0x02, SS_RDEF,
2078 "Cannot read medium - incompatible format") },
2079 /* DT R K */
2080 { SST(0x30, 0x03, SS_RDEF,
2081 "Cleaning cartridge installed") },
2082 /* DT WRO BK */
2083 { SST(0x30, 0x04, SS_RDEF,
2084 "Cannot write medium - unknown format") },
2085 /* DT WRO BK */
2086 { SST(0x30, 0x05, SS_RDEF,
2087 "Cannot write medium - incompatible format") },
2088 /* DT WRO B */
2089 { SST(0x30, 0x06, SS_RDEF,
2090 "Cannot format medium - incompatible medium") },
2091 /* DTL WROMAEBKVF */
2092 { SST(0x30, 0x07, SS_RDEF,
2093 "Cleaning failure") },
2094 /* R */
2095 { SST(0x30, 0x08, SS_RDEF,
2096 "Cannot write - application code mismatch") },
2097 /* R */
2098 { SST(0x30, 0x09, SS_RDEF,
2099 "Current session not fixated for append") },
2100 /* DT WRO AEBK */
2101 { SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */
2102 "Cleaning request rejected") },
2103 /* T */
2104 { SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */
2105 "WORM medium - overwrite attempted") },
2106 /* T */
2107 { SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */
2108 "WORM medium - integrity check") },
2109 /* R */
2110 { SST(0x30, 0x10, SS_RDEF, /* XXX TBD */
2111 "Medium not formatted") },
2112 /* M */
2113 { SST(0x30, 0x11, SS_RDEF, /* XXX TBD */
2114 "Incompatible volume type") },
2115 /* M */
2116 { SST(0x30, 0x12, SS_RDEF, /* XXX TBD */
2117 "Incompatible volume qualifier") },
2118 /* M */
2119 { SST(0x30, 0x13, SS_RDEF, /* XXX TBD */
2120 "Cleaning volume expired") },
2121 /* DT WRO BK */
2122 { SST(0x31, 0x00, SS_FATAL | ENXIO,
2123 "Medium format corrupted") },
2124 /* D L RO B */
2125 { SST(0x31, 0x01, SS_RDEF,
2126 "Format command failed") },
2127 /* R */
2128 { SST(0x31, 0x02, SS_RDEF, /* XXX TBD */
2129 "Zoned formatting failed due to spare linking") },
2130 /* D B */
2131 { SST(0x31, 0x03, SS_FATAL | EIO,
2132 "SANITIZE command failed") },
2133 /* D */
2134 { SST(0x31, 0x04, SS_FATAL | EIO,
2135 "Depopulation failed") },
2136 /* D */
2137 { SST(0x31, 0x05, SS_FATAL | EIO,
2138 "Depopulation restoration failed") },
2139 /* D W O BK */
2140 { SST(0x32, 0x00, SS_RDEF,
2141 "No defect spare location available") },
2142 /* D W O BK */
2143 { SST(0x32, 0x01, SS_RDEF,
2144 "Defect list update failure") },
2145 /* T */
2146 { SST(0x33, 0x00, SS_RDEF,
2147 "Tape length error") },
2148 /* DTLPWROMAEBKVF */
2149 { SST(0x34, 0x00, SS_RDEF,
2150 "Enclosure failure") },
2151 /* DTLPWROMAEBKVF */
2152 { SST(0x35, 0x00, SS_RDEF,
2153 "Enclosure services failure") },
2154 /* DTLPWROMAEBKVF */
2155 { SST(0x35, 0x01, SS_RDEF,
2156 "Unsupported enclosure function") },
2157 /* DTLPWROMAEBKVF */
2158 { SST(0x35, 0x02, SS_RDEF,
2159 "Enclosure services unavailable") },
2160 /* DTLPWROMAEBKVF */
2161 { SST(0x35, 0x03, SS_RDEF,
2162 "Enclosure services transfer failure") },
2163 /* DTLPWROMAEBKVF */
2164 { SST(0x35, 0x04, SS_RDEF,
2165 "Enclosure services transfer refused") },
2166 /* DTL WROMAEBKVF */
2167 { SST(0x35, 0x05, SS_RDEF, /* XXX TBD */
2168 "Enclosure services checksum error") },
2169 /* L */
2170 { SST(0x36, 0x00, SS_RDEF,
2171 "Ribbon, ink, or toner failure") },
2172 /* DTL WROMAEBKVF */
2173 { SST(0x37, 0x00, SS_RDEF,
2174 "Rounded parameter") },
2175 /* B */
2176 { SST(0x38, 0x00, SS_RDEF, /* XXX TBD */
2177 "Event status notification") },
2178 /* B */
2179 { SST(0x38, 0x02, SS_RDEF, /* XXX TBD */
2180 "ESN - power management class event") },
2181 /* B */
2182 { SST(0x38, 0x04, SS_RDEF, /* XXX TBD */
2183 "ESN - media class event") },
2184 /* B */
2185 { SST(0x38, 0x06, SS_RDEF, /* XXX TBD */
2186 "ESN - device busy class event") },
2187 /* D */
2188 { SST(0x38, 0x07, SS_RDEF, /* XXX TBD */
2189 "Thin provisioning soft threshold reached") },
2190 /* D */
2191 { SST(0x38, 0x08, SS_NOP | SSQ_PRINT_SENSE,
2192 "Depopulation interrupted") },
2193 /* DTL WROMAE K */
2194 { SST(0x39, 0x00, SS_RDEF,
2195 "Saving parameters not supported") },
2196 /* DTL WROM BK */
2197 { SST(0x3A, 0x00, SS_FATAL | ENXIO,
2198 "Medium not present") },
2199 /* DT WROM BK */
2200 { SST(0x3A, 0x01, SS_FATAL | ENXIO,
2201 "Medium not present - tray closed") },
2202 /* DT WROM BK */
2203 { SST(0x3A, 0x02, SS_FATAL | ENXIO,
2204 "Medium not present - tray open") },
2205 /* DT WROM B */
2206 { SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */
2207 "Medium not present - loadable") },
2208 /* DT WRO B */
2209 { SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */
2210 "Medium not present - medium auxiliary memory accessible") },
2211 /* TL */
2212 { SST(0x3B, 0x00, SS_RDEF,
2213 "Sequential positioning error") },
2214 /* T */
2215 { SST(0x3B, 0x01, SS_RDEF,
2216 "Tape position error at beginning-of-medium") },
2217 /* T */
2218 { SST(0x3B, 0x02, SS_RDEF,
2219 "Tape position error at end-of-medium") },
2220 /* L */
2221 { SST(0x3B, 0x03, SS_RDEF,
2222 "Tape or electronic vertical forms unit not ready") },
2223 /* L */
2224 { SST(0x3B, 0x04, SS_RDEF,
2225 "Slew failure") },
2226 /* L */
2227 { SST(0x3B, 0x05, SS_RDEF,
2228 "Paper jam") },
2229 /* L */
2230 { SST(0x3B, 0x06, SS_RDEF,
2231 "Failed to sense top-of-form") },
2232 /* L */
2233 { SST(0x3B, 0x07, SS_RDEF,
2234 "Failed to sense bottom-of-form") },
2235 /* T */
2236 { SST(0x3B, 0x08, SS_RDEF,
2237 "Reposition error") },
2238 /* */
2239 { SST(0x3B, 0x09, SS_RDEF,
2240 "Read past end of medium") },
2241 /* */
2242 { SST(0x3B, 0x0A, SS_RDEF,
2243 "Read past beginning of medium") },
2244 /* */
2245 { SST(0x3B, 0x0B, SS_RDEF,
2246 "Position past end of medium") },
2247 /* T */
2248 { SST(0x3B, 0x0C, SS_RDEF,
2249 "Position past beginning of medium") },
2250 /* DT WROM BK */
2251 { SST(0x3B, 0x0D, SS_FATAL | ENOSPC,
2252 "Medium destination element full") },
2253 /* DT WROM BK */
2254 { SST(0x3B, 0x0E, SS_RDEF,
2255 "Medium source element empty") },
2256 /* R */
2257 { SST(0x3B, 0x0F, SS_RDEF,
2258 "End of medium reached") },
2259 /* DT WROM BK */
2260 { SST(0x3B, 0x11, SS_RDEF,
2261 "Medium magazine not accessible") },
2262 /* DT WROM BK */
2263 { SST(0x3B, 0x12, SS_RDEF,
2264 "Medium magazine removed") },
2265 /* DT WROM BK */
2266 { SST(0x3B, 0x13, SS_RDEF,
2267 "Medium magazine inserted") },
2268 /* DT WROM BK */
2269 { SST(0x3B, 0x14, SS_RDEF,
2270 "Medium magazine locked") },
2271 /* DT WROM BK */
2272 { SST(0x3B, 0x15, SS_RDEF,
2273 "Medium magazine unlocked") },
2274 /* R */
2275 { SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */
2276 "Mechanical positioning or changer error") },
2277 /* F */
2278 { SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */
2279 "Read past end of user object") },
2280 /* M */
2281 { SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */
2282 "Element disabled") },
2283 /* M */
2284 { SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */
2285 "Element enabled") },
2286 /* M */
2287 { SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */
2288 "Data transfer device removed") },
2289 /* M */
2290 { SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */
2291 "Data transfer device inserted") },
2292 /* T */
2293 { SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */
2294 "Too many logical objects on partition to support operation") },
2295 /* M */
2296 { SST(0x3B, 0x20, SS_RDEF, /* XXX TBD */
2297 "Element static information changed") },
2298 /* DTLPWROMAE K */
2299 { SST(0x3D, 0x00, SS_RDEF,
2300 "Invalid bits in IDENTIFY message") },
2301 /* DTLPWROMAEBKVF */
2302 { SST(0x3E, 0x00, SS_RDEF,
2303 "Logical unit has not self-configured yet") },
2304 /* DTLPWROMAEBKVF */
2305 { SST(0x3E, 0x01, SS_RDEF,
2306 "Logical unit failure") },
2307 /* DTLPWROMAEBKVF */
2308 { SST(0x3E, 0x02, SS_RDEF,
2309 "Timeout on logical unit") },
2310 /* DTLPWROMAEBKVF */
2311 { SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */
2312 "Logical unit failed self-test") },
2313 /* DTLPWROMAEBKVF */
2314 { SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */
2315 "Logical unit unable to update self-test log") },
2316 /* DTLPWROMAEBKVF */
2317 { SST(0x3F, 0x00, SS_RDEF,
2318 "Target operating conditions have changed") },
2319 /* DTLPWROMAEBKVF */
2320 { SST(0x3F, 0x01, SS_RDEF,
2321 "Microcode has been changed") },
2322 /* DTLPWROM BK */
2323 { SST(0x3F, 0x02, SS_RDEF,
2324 "Changed operating definition") },
2325 /* DTLPWROMAEBKVF */
2326 { SST(0x3F, 0x03, SS_RDEF,
2327 "INQUIRY data has changed") },
2328 /* DT WROMAEBK */
2329 { SST(0x3F, 0x04, SS_RDEF,
2330 "Component device attached") },
2331 /* DT WROMAEBK */
2332 { SST(0x3F, 0x05, SS_RDEF,
2333 "Device identifier changed") },
2334 /* DT WROMAEB */
2335 { SST(0x3F, 0x06, SS_RDEF,
2336 "Redundancy group created or modified") },
2337 /* DT WROMAEB */
2338 { SST(0x3F, 0x07, SS_RDEF,
2339 "Redundancy group deleted") },
2340 /* DT WROMAEB */
2341 { SST(0x3F, 0x08, SS_RDEF,
2342 "Spare created or modified") },
2343 /* DT WROMAEB */
2344 { SST(0x3F, 0x09, SS_RDEF,
2345 "Spare deleted") },
2346 /* DT WROMAEBK */
2347 { SST(0x3F, 0x0A, SS_RDEF,
2348 "Volume set created or modified") },
2349 /* DT WROMAEBK */
2350 { SST(0x3F, 0x0B, SS_RDEF,
2351 "Volume set deleted") },
2352 /* DT WROMAEBK */
2353 { SST(0x3F, 0x0C, SS_RDEF,
2354 "Volume set deassigned") },
2355 /* DT WROMAEBK */
2356 { SST(0x3F, 0x0D, SS_RDEF,
2357 "Volume set reassigned") },
2358 /* DTLPWROMAE */
2359 { SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN ,
2360 "Reported LUNs data has changed") },
2361 /* DTLPWROMAEBKVF */
2362 { SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */
2363 "Echo buffer overwritten") },
2364 /* DT WROM B */
2365 { SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */
2366 "Medium loadable") },
2367 /* DT WROM B */
2368 { SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */
2369 "Medium auxiliary memory accessible") },
2370 /* DTLPWR MAEBK F */
2371 { SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */
2372 "iSCSI IP address added") },
2373 /* DTLPWR MAEBK F */
2374 { SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */
2375 "iSCSI IP address removed") },
2376 /* DTLPWR MAEBK F */
2377 { SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */
2378 "iSCSI IP address changed") },
2379 /* DTLPWR MAEBK */
2380 { SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */
2381 "Inspect referrals sense descriptors") },
2382 /* DTLPWROMAEBKVF */
2383 { SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */
2384 "Microcode has been changed without reset") },
2385 /* D */
2386 { SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */
2387 "Zone transition to full") },
2388 /* D */
2389 { SST(0x3F, 0x18, SS_RDEF, /* XXX TBD */
2390 "Bind completed") },
2391 /* D */
2392 { SST(0x3F, 0x19, SS_RDEF, /* XXX TBD */
2393 "Bind redirected") },
2394 /* D */
2395 { SST(0x3F, 0x1A, SS_RDEF, /* XXX TBD */
2396 "Subsidiary binding changed") },
2397 { SST(0x40, 0x00, SS_RDEF,
2398 "RAM failure") }, /* deprecated - use 40 NN instead */
2399 /* DTLPWROMAEBKVF */
2400 { SST(0x40, 0x80, SS_RDEF,
2401 "Diagnostic failure: ASCQ = Component ID") },
2402 /* DTLPWROMAEBKVF */
2403 { SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE,
2404 NULL) }, /* Range 0x80->0xFF */
2405 /* D */
2406 { SST(0x41, 0x00, SS_RDEF,
2407 "Data path failure") }, /* deprecated - use 40 NN instead */
2408 /* D */
2409 { SST(0x42, 0x00, SS_RDEF,
2410 "Power-on or self-test failure") },
2411 /* deprecated - use 40 NN instead */
2412 /* DTLPWROMAEBKVF */
2413 { SST(0x43, 0x00, SS_RDEF,
2414 "Message error") },
2415 /* DTLPWROMAEBKVF */
2416 { SST(0x44, 0x00, SS_FATAL | ENXIO,
2417 "Internal target failure") },
2418 /* DT P MAEBKVF */
2419 { SST(0x44, 0x01, SS_RDEF, /* XXX TBD */
2420 "Persistent reservation information lost") },
2421 /* DT B */
2422 { SST(0x44, 0x71, SS_RDEF, /* XXX TBD */
2423 "ATA device failed set features") },
2424 /* DTLPWROMAEBKVF */
2425 { SST(0x45, 0x00, SS_RDEF,
2426 "Select or reselect failure") },
2427 /* DTLPWROM BK */
2428 { SST(0x46, 0x00, SS_RDEF,
2429 "Unsuccessful soft reset") },
2430 /* DTLPWROMAEBKVF */
2431 { SST(0x47, 0x00, SS_RDEF,
2432 "SCSI parity error") },
2433 /* DTLPWROMAEBKVF */
2434 { SST(0x47, 0x01, SS_RDEF, /* XXX TBD */
2435 "Data phase CRC error detected") },
2436 /* DTLPWROMAEBKVF */
2437 { SST(0x47, 0x02, SS_RDEF, /* XXX TBD */
2438 "SCSI parity error detected during ST data phase") },
2439 /* DTLPWROMAEBKVF */
2440 { SST(0x47, 0x03, SS_RDEF, /* XXX TBD */
2441 "Information unit iuCRC error detected") },
2442 /* DTLPWROMAEBKVF */
2443 { SST(0x47, 0x04, SS_RDEF, /* XXX TBD */
2444 "Asynchronous information protection error detected") },
2445 /* DTLPWROMAEBKVF */
2446 { SST(0x47, 0x05, SS_RDEF, /* XXX TBD */
2447 "Protocol service CRC error") },
2448 /* DT MAEBKVF */
2449 { SST(0x47, 0x06, SS_RDEF, /* XXX TBD */
2450 "PHY test function in progress") },
2451 /* DT PWROMAEBK */
2452 { SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */
2453 "Some commands cleared by iSCSI protocol event") },
2454 /* DTLPWROMAEBKVF */
2455 { SST(0x48, 0x00, SS_RDEF,
2456 "Initiator detected error message received") },
2457 /* DTLPWROMAEBKVF */
2458 { SST(0x49, 0x00, SS_RDEF,
2459 "Invalid message error") },
2460 /* DTLPWROMAEBKVF */
2461 { SST(0x4A, 0x00, SS_RDEF,
2462 "Command phase error") },
2463 /* DTLPWROMAEBKVF */
2464 { SST(0x4B, 0x00, SS_RDEF,
2465 "Data phase error") },
2466 /* DT PWROMAEBK */
2467 { SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */
2468 "Invalid target port transfer tag received") },
2469 /* DT PWROMAEBK */
2470 { SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */
2471 "Too much write data") },
2472 /* DT PWROMAEBK */
2473 { SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */
2474 "ACK/NAK timeout") },
2475 /* DT PWROMAEBK */
2476 { SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */
2477 "NAK received") },
2478 /* DT PWROMAEBK */
2479 { SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */
2480 "Data offset error") },
2481 /* DT PWROMAEBK */
2482 { SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */
2483 "Initiator response timeout") },
2484 /* DT PWROMAEBK F */
2485 { SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */
2486 "Connection lost") },
2487 /* DT PWROMAEBK F */
2488 { SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */
2489 "Data-in buffer overflow - data buffer size") },
2490 /* DT PWROMAEBK F */
2491 { SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */
2492 "Data-in buffer overflow - data buffer descriptor area") },
2493 /* DT PWROMAEBK F */
2494 { SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */
2495 "Data-in buffer error") },
2496 /* DT PWROMAEBK F */
2497 { SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */
2498 "Data-out buffer overflow - data buffer size") },
2499 /* DT PWROMAEBK F */
2500 { SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */
2501 "Data-out buffer overflow - data buffer descriptor area") },
2502 /* DT PWROMAEBK F */
2503 { SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */
2504 "Data-out buffer error") },
2505 /* DT PWROMAEBK F */
2506 { SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */
2507 "PCIe fabric error") },
2508 /* DT PWROMAEBK F */
2509 { SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */
2510 "PCIe completion timeout") },
2511 /* DT PWROMAEBK F */
2512 { SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */
2513 "PCIe completer abort") },
2514 /* DT PWROMAEBK F */
2515 { SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */
2516 "PCIe poisoned TLP received") },
2517 /* DT PWROMAEBK F */
2518 { SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */
2519 "PCIe ECRC check failed") },
2520 /* DT PWROMAEBK F */
2521 { SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */
2522 "PCIe unsupported request") },
2523 /* DT PWROMAEBK F */
2524 { SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */
2525 "PCIe ACS violation") },
2526 /* DT PWROMAEBK F */
2527 { SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */
2528 "PCIe TLP prefix blocket") },
2529 /* DTLPWROMAEBKVF */
2530 { SST(0x4C, 0x00, SS_RDEF,
2531 "Logical unit failed self-configuration") },
2532 /* DTLPWROMAEBKVF */
2533 { SST(0x4D, 0x00, SS_RDEF,
2534 "Tagged overlapped commands: ASCQ = Queue tag ID") },
2535 /* DTLPWROMAEBKVF */
2536 { SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE,
2537 NULL) }, /* Range 0x00->0xFF */
2538 /* DTLPWROMAEBKVF */
2539 { SST(0x4E, 0x00, SS_RDEF,
2540 "Overlapped commands attempted") },
2541 /* T */
2542 { SST(0x50, 0x00, SS_RDEF,
2543 "Write append error") },
2544 /* T */
2545 { SST(0x50, 0x01, SS_RDEF,
2546 "Write append position error") },
2547 /* T */
2548 { SST(0x50, 0x02, SS_RDEF,
2549 "Position error related to timing") },
2550 /* T RO */
2551 { SST(0x51, 0x00, SS_RDEF,
2552 "Erase failure") },
2553 /* R */
2554 { SST(0x51, 0x01, SS_RDEF, /* XXX TBD */
2555 "Erase failure - incomplete erase operation detected") },
2556 /* T */
2557 { SST(0x52, 0x00, SS_RDEF,
2558 "Cartridge fault") },
2559 /* DTL WROM BK */
2560 { SST(0x53, 0x00, SS_RDEF,
2561 "Media load or eject failed") },
2562 /* T */
2563 { SST(0x53, 0x01, SS_RDEF,
2564 "Unload tape failure") },
2565 /* DT WROM BK */
2566 { SST(0x53, 0x02, SS_RDEF,
2567 "Medium removal prevented") },
2568 /* M */
2569 { SST(0x53, 0x03, SS_RDEF, /* XXX TBD */
2570 "Medium removal prevented by data transfer element") },
2571 /* T */
2572 { SST(0x53, 0x04, SS_RDEF, /* XXX TBD */
2573 "Medium thread or unthread failure") },
2574 /* M */
2575 { SST(0x53, 0x05, SS_RDEF, /* XXX TBD */
2576 "Volume identifier invalid") },
2577 /* T */
2578 { SST(0x53, 0x06, SS_RDEF, /* XXX TBD */
2579 "Volume identifier missing") },
2580 /* M */
2581 { SST(0x53, 0x07, SS_RDEF, /* XXX TBD */
2582 "Duplicate volume identifier") },
2583 /* M */
2584 { SST(0x53, 0x08, SS_RDEF, /* XXX TBD */
2585 "Element status unknown") },
2586 /* M */
2587 { SST(0x53, 0x09, SS_RDEF, /* XXX TBD */
2588 "Data transfer device error - load failed") },
2589 /* M */
2590 { SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */
2591 "Data transfer device error - unload failed") },
2592 /* M */
2593 { SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */
2594 "Data transfer device error - unload missing") },
2595 /* M */
2596 { SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */
2597 "Data transfer device error - eject failed") },
2598 /* M */
2599 { SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */
2600 "Data transfer device error - library communication failed") },
2601 /* P */
2602 { SST(0x54, 0x00, SS_RDEF,
2603 "SCSI to host system interface failure") },
2604 /* P */
2605 { SST(0x55, 0x00, SS_RDEF,
2606 "System resource failure") },
2607 /* D O BK */
2608 { SST(0x55, 0x01, SS_FATAL | ENOSPC,
2609 "System buffer full") },
2610 /* DTLPWROMAE K */
2611 { SST(0x55, 0x02, SS_RDEF, /* XXX TBD */
2612 "Insufficient reservation resources") },
2613 /* DTLPWROMAE K */
2614 { SST(0x55, 0x03, SS_RDEF, /* XXX TBD */
2615 "Insufficient resources") },
2616 /* DTLPWROMAE K */
2617 { SST(0x55, 0x04, SS_RDEF, /* XXX TBD */
2618 "Insufficient registration resources") },
2619 /* DT PWROMAEBK */
2620 { SST(0x55, 0x05, SS_RDEF, /* XXX TBD */
2621 "Insufficient access control resources") },
2622 /* DT WROM B */
2623 { SST(0x55, 0x06, SS_RDEF, /* XXX TBD */
2624 "Auxiliary memory out of space") },
2625 /* F */
2626 { SST(0x55, 0x07, SS_RDEF, /* XXX TBD */
2627 "Quota error") },
2628 /* T */
2629 { SST(0x55, 0x08, SS_RDEF, /* XXX TBD */
2630 "Maximum number of supplemental decryption keys exceeded") },
2631 /* M */
2632 { SST(0x55, 0x09, SS_RDEF, /* XXX TBD */
2633 "Medium auxiliary memory not accessible") },
2634 /* M */
2635 { SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */
2636 "Data currently unavailable") },
2637 /* DTLPWROMAEBKVF */
2638 { SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */
2639 "Insufficient power for operation") },
2640 /* DT P B */
2641 { SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */
2642 "Insufficient resources to create ROD") },
2643 /* DT P B */
2644 { SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */
2645 "Insufficient resources to create ROD token") },
2646 /* D */
2647 { SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */
2648 "Insufficient zone resources") },
2649 /* D */
2650 { SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */
2651 "Insufficient zone resources to complete write") },
2652 /* D */
2653 { SST(0x55, 0x10, SS_RDEF, /* XXX TBD */
2654 "Maximum number of streams open") },
2655 /* D */
2656 { SST(0x55, 0x11, SS_RDEF, /* XXX TBD */
2657 "Insufficient resources to bind") },
2658 /* R */
2659 { SST(0x57, 0x00, SS_RDEF,
2660 "Unable to recover table-of-contents") },
2661 /* O */
2662 { SST(0x58, 0x00, SS_RDEF,
2663 "Generation does not exist") },
2664 /* O */
2665 { SST(0x59, 0x00, SS_RDEF,
2666 "Updated block read") },
2667 /* DTLPWRO BK */
2668 { SST(0x5A, 0x00, SS_RDEF,
2669 "Operator request or state change input") },
2670 /* DT WROM BK */
2671 { SST(0x5A, 0x01, SS_RDEF,
2672 "Operator medium removal request") },
2673 /* DT WRO A BK */
2674 { SST(0x5A, 0x02, SS_RDEF,
2675 "Operator selected write protect") },
2676 /* DT WRO A BK */
2677 { SST(0x5A, 0x03, SS_RDEF,
2678 "Operator selected write permit") },
2679 /* DTLPWROM K */
2680 { SST(0x5B, 0x00, SS_RDEF,
2681 "Log exception") },
2682 /* DTLPWROM K */
2683 { SST(0x5B, 0x01, SS_RDEF,
2684 "Threshold condition met") },
2685 /* DTLPWROM K */
2686 { SST(0x5B, 0x02, SS_RDEF,
2687 "Log counter at maximum") },
2688 /* DTLPWROM K */
2689 { SST(0x5B, 0x03, SS_RDEF,
2690 "Log list codes exhausted") },
2691 /* D O */
2692 { SST(0x5C, 0x00, SS_RDEF,
2693 "RPL status change") },
2694 /* D O */
2695 { SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2696 "Spindles synchronized") },
2697 /* D O */
2698 { SST(0x5C, 0x02, SS_RDEF,
2699 "Spindles not synchronized") },
2700 /* DTLPWROMAEBKVF */
2701 { SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE,
2702 "Failure prediction threshold exceeded") },
2703 /* R B */
2704 { SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE,
2705 "Media failure prediction threshold exceeded") },
2706 /* R */
2707 { SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE,
2708 "Logical unit failure prediction threshold exceeded") },
2709 /* R */
2710 { SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE,
2711 "Spare area exhaustion prediction threshold exceeded") },
2712 /* D B */
2713 { SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE,
2714 "Hardware impending failure general hard drive failure") },
2715 /* D B */
2716 { SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE,
2717 "Hardware impending failure drive error rate too high") },
2718 /* D B */
2719 { SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE,
2720 "Hardware impending failure data error rate too high") },
2721 /* D B */
2722 { SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE,
2723 "Hardware impending failure seek error rate too high") },
2724 /* D B */
2725 { SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE,
2726 "Hardware impending failure too many block reassigns") },
2727 /* D B */
2728 { SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE,
2729 "Hardware impending failure access times too high") },
2730 /* D B */
2731 { SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE,
2732 "Hardware impending failure start unit times too high") },
2733 /* D B */
2734 { SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE,
2735 "Hardware impending failure channel parametrics") },
2736 /* D B */
2737 { SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE,
2738 "Hardware impending failure controller detected") },
2739 /* D B */
2740 { SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE,
2741 "Hardware impending failure throughput performance") },
2742 /* D B */
2743 { SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE,
2744 "Hardware impending failure seek time performance") },
2745 /* D B */
2746 { SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE,
2747 "Hardware impending failure spin-up retry count") },
2748 /* D B */
2749 { SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE,
2750 "Hardware impending failure drive calibration retry count") },
2751 /* D B */
2752 { SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE,
2753 "Hardware impending failure power loss protection circuit") },
2754 /* D B */
2755 { SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE,
2756 "Controller impending failure general hard drive failure") },
2757 /* D B */
2758 { SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE,
2759 "Controller impending failure drive error rate too high") },
2760 /* D B */
2761 { SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE,
2762 "Controller impending failure data error rate too high") },
2763 /* D B */
2764 { SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE,
2765 "Controller impending failure seek error rate too high") },
2766 /* D B */
2767 { SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE,
2768 "Controller impending failure too many block reassigns") },
2769 /* D B */
2770 { SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE,
2771 "Controller impending failure access times too high") },
2772 /* D B */
2773 { SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE,
2774 "Controller impending failure start unit times too high") },
2775 /* D B */
2776 { SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE,
2777 "Controller impending failure channel parametrics") },
2778 /* D B */
2779 { SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE,
2780 "Controller impending failure controller detected") },
2781 /* D B */
2782 { SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE,
2783 "Controller impending failure throughput performance") },
2784 /* D B */
2785 { SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE,
2786 "Controller impending failure seek time performance") },
2787 /* D B */
2788 { SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE,
2789 "Controller impending failure spin-up retry count") },
2790 /* D B */
2791 { SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE,
2792 "Controller impending failure drive calibration retry count") },
2793 /* D B */
2794 { SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE,
2795 "Data channel impending failure general hard drive failure") },
2796 /* D B */
2797 { SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE,
2798 "Data channel impending failure drive error rate too high") },
2799 /* D B */
2800 { SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE,
2801 "Data channel impending failure data error rate too high") },
2802 /* D B */
2803 { SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE,
2804 "Data channel impending failure seek error rate too high") },
2805 /* D B */
2806 { SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE,
2807 "Data channel impending failure too many block reassigns") },
2808 /* D B */
2809 { SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE,
2810 "Data channel impending failure access times too high") },
2811 /* D B */
2812 { SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE,
2813 "Data channel impending failure start unit times too high") },
2814 /* D B */
2815 { SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE,
2816 "Data channel impending failure channel parametrics") },
2817 /* D B */
2818 { SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE,
2819 "Data channel impending failure controller detected") },
2820 /* D B */
2821 { SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE,
2822 "Data channel impending failure throughput performance") },
2823 /* D B */
2824 { SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE,
2825 "Data channel impending failure seek time performance") },
2826 /* D B */
2827 { SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE,
2828 "Data channel impending failure spin-up retry count") },
2829 /* D B */
2830 { SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE,
2831 "Data channel impending failure drive calibration retry count") },
2832 /* D B */
2833 { SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE,
2834 "Servo impending failure general hard drive failure") },
2835 /* D B */
2836 { SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE,
2837 "Servo impending failure drive error rate too high") },
2838 /* D B */
2839 { SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE,
2840 "Servo impending failure data error rate too high") },
2841 /* D B */
2842 { SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE,
2843 "Servo impending failure seek error rate too high") },
2844 /* D B */
2845 { SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE,
2846 "Servo impending failure too many block reassigns") },
2847 /* D B */
2848 { SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE,
2849 "Servo impending failure access times too high") },
2850 /* D B */
2851 { SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE,
2852 "Servo impending failure start unit times too high") },
2853 /* D B */
2854 { SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE,
2855 "Servo impending failure channel parametrics") },
2856 /* D B */
2857 { SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE,
2858 "Servo impending failure controller detected") },
2859 /* D B */
2860 { SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE,
2861 "Servo impending failure throughput performance") },
2862 /* D B */
2863 { SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE,
2864 "Servo impending failure seek time performance") },
2865 /* D B */
2866 { SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE,
2867 "Servo impending failure spin-up retry count") },
2868 /* D B */
2869 { SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE,
2870 "Servo impending failure drive calibration retry count") },
2871 /* D B */
2872 { SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE,
2873 "Spindle impending failure general hard drive failure") },
2874 /* D B */
2875 { SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE,
2876 "Spindle impending failure drive error rate too high") },
2877 /* D B */
2878 { SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE,
2879 "Spindle impending failure data error rate too high") },
2880 /* D B */
2881 { SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE,
2882 "Spindle impending failure seek error rate too high") },
2883 /* D B */
2884 { SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE,
2885 "Spindle impending failure too many block reassigns") },
2886 /* D B */
2887 { SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE,
2888 "Spindle impending failure access times too high") },
2889 /* D B */
2890 { SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE,
2891 "Spindle impending failure start unit times too high") },
2892 /* D B */
2893 { SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE,
2894 "Spindle impending failure channel parametrics") },
2895 /* D B */
2896 { SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE,
2897 "Spindle impending failure controller detected") },
2898 /* D B */
2899 { SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE,
2900 "Spindle impending failure throughput performance") },
2901 /* D B */
2902 { SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE,
2903 "Spindle impending failure seek time performance") },
2904 /* D B */
2905 { SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE,
2906 "Spindle impending failure spin-up retry count") },
2907 /* D B */
2908 { SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE,
2909 "Spindle impending failure drive calibration retry count") },
2910 /* D B */
2911 { SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE,
2912 "Firmware impending failure general hard drive failure") },
2913 /* D B */
2914 { SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE,
2915 "Firmware impending failure drive error rate too high") },
2916 /* D B */
2917 { SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE,
2918 "Firmware impending failure data error rate too high") },
2919 /* D B */
2920 { SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE,
2921 "Firmware impending failure seek error rate too high") },
2922 /* D B */
2923 { SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE,
2924 "Firmware impending failure too many block reassigns") },
2925 /* D B */
2926 { SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE,
2927 "Firmware impending failure access times too high") },
2928 /* D B */
2929 { SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE,
2930 "Firmware impending failure start unit times too high") },
2931 /* D B */
2932 { SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE,
2933 "Firmware impending failure channel parametrics") },
2934 /* D B */
2935 { SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE,
2936 "Firmware impending failure controller detected") },
2937 /* D B */
2938 { SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE,
2939 "Firmware impending failure throughput performance") },
2940 /* D B */
2941 { SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE,
2942 "Firmware impending failure seek time performance") },
2943 /* D B */
2944 { SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE,
2945 "Firmware impending failure spin-up retry count") },
2946 /* D B */
2947 { SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE,
2948 "Firmware impending failure drive calibration retry count") },
2949 /* D B */
2950 { SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE,
2951 "Media impending failure endurance limit met") },
2952 /* DTLPWROMAEBKVF */
2953 { SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE,
2954 "Failure prediction threshold exceeded (false)") },
2955 /* DTLPWRO A K */
2956 { SST(0x5E, 0x00, SS_RDEF,
2957 "Low power condition on") },
2958 /* DTLPWRO A K */
2959 { SST(0x5E, 0x01, SS_RDEF,
2960 "Idle condition activated by timer") },
2961 /* DTLPWRO A K */
2962 { SST(0x5E, 0x02, SS_RDEF,
2963 "Standby condition activated by timer") },
2964 /* DTLPWRO A K */
2965 { SST(0x5E, 0x03, SS_RDEF,
2966 "Idle condition activated by command") },
2967 /* DTLPWRO A K */
2968 { SST(0x5E, 0x04, SS_RDEF,
2969 "Standby condition activated by command") },
2970 /* DTLPWRO A K */
2971 { SST(0x5E, 0x05, SS_RDEF,
2972 "Idle-B condition activated by timer") },
2973 /* DTLPWRO A K */
2974 { SST(0x5E, 0x06, SS_RDEF,
2975 "Idle-B condition activated by command") },
2976 /* DTLPWRO A K */
2977 { SST(0x5E, 0x07, SS_RDEF,
2978 "Idle-C condition activated by timer") },
2979 /* DTLPWRO A K */
2980 { SST(0x5E, 0x08, SS_RDEF,
2981 "Idle-C condition activated by command") },
2982 /* DTLPWRO A K */
2983 { SST(0x5E, 0x09, SS_RDEF,
2984 "Standby-Y condition activated by timer") },
2985 /* DTLPWRO A K */
2986 { SST(0x5E, 0x0A, SS_RDEF,
2987 "Standby-Y condition activated by command") },
2988 /* B */
2989 { SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */
2990 "Power state change to active") },
2991 /* B */
2992 { SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */
2993 "Power state change to idle") },
2994 /* B */
2995 { SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */
2996 "Power state change to standby") },
2997 /* B */
2998 { SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */
2999 "Power state change to sleep") },
3000 /* BK */
3001 { SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */
3002 "Power state change to device control") },
3003 /* */
3004 { SST(0x60, 0x00, SS_RDEF,
3005 "Lamp failure") },
3006 /* */
3007 { SST(0x61, 0x00, SS_RDEF,
3008 "Video acquisition error") },
3009 /* */
3010 { SST(0x61, 0x01, SS_RDEF,
3011 "Unable to acquire video") },
3012 /* */
3013 { SST(0x61, 0x02, SS_RDEF,
3014 "Out of focus") },
3015 /* */
3016 { SST(0x62, 0x00, SS_RDEF,
3017 "Scan head positioning error") },
3018 /* R */
3019 { SST(0x63, 0x00, SS_RDEF,
3020 "End of user area encountered on this track") },
3021 /* R */
3022 { SST(0x63, 0x01, SS_FATAL | ENOSPC,
3023 "Packet does not fit in available space") },
3024 /* R */
3025 { SST(0x64, 0x00, SS_FATAL | ENXIO,
3026 "Illegal mode for this track") },
3027 /* R */
3028 { SST(0x64, 0x01, SS_RDEF,
3029 "Invalid packet size") },
3030 /* DTLPWROMAEBKVF */
3031 { SST(0x65, 0x00, SS_RDEF,
3032 "Voltage fault") },
3033 /* */
3034 { SST(0x66, 0x00, SS_RDEF,
3035 "Automatic document feeder cover up") },
3036 /* */
3037 { SST(0x66, 0x01, SS_RDEF,
3038 "Automatic document feeder lift up") },
3039 /* */
3040 { SST(0x66, 0x02, SS_RDEF,
3041 "Document jam in automatic document feeder") },
3042 /* */
3043 { SST(0x66, 0x03, SS_RDEF,
3044 "Document miss feed automatic in document feeder") },
3045 /* A */
3046 { SST(0x67, 0x00, SS_RDEF,
3047 "Configuration failure") },
3048 /* A */
3049 { SST(0x67, 0x01, SS_RDEF,
3050 "Configuration of incapable logical units failed") },
3051 /* A */
3052 { SST(0x67, 0x02, SS_RDEF,
3053 "Add logical unit failed") },
3054 /* A */
3055 { SST(0x67, 0x03, SS_RDEF,
3056 "Modification of logical unit failed") },
3057 /* A */
3058 { SST(0x67, 0x04, SS_RDEF,
3059 "Exchange of logical unit failed") },
3060 /* A */
3061 { SST(0x67, 0x05, SS_RDEF,
3062 "Remove of logical unit failed") },
3063 /* A */
3064 { SST(0x67, 0x06, SS_RDEF,
3065 "Attachment of logical unit failed") },
3066 /* A */
3067 { SST(0x67, 0x07, SS_RDEF,
3068 "Creation of logical unit failed") },
3069 /* A */
3070 { SST(0x67, 0x08, SS_RDEF, /* XXX TBD */
3071 "Assign failure occurred") },
3072 /* A */
3073 { SST(0x67, 0x09, SS_RDEF, /* XXX TBD */
3074 "Multiply assigned logical unit") },
3075 /* DTLPWROMAEBKVF */
3076 { SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */
3077 "Set target port groups command failed") },
3078 /* DT B */
3079 { SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */
3080 "ATA device feature not enabled") },
3081 /* D */
3082 { SST(0x67, 0x0C, SS_FATAL | EIO,
3083 "Command rejected") },
3084 /* D */
3085 { SST(0x67, 0x0D, SS_FATAL | EINVAL,
3086 "Explicit bind not allowed") },
3087 /* A */
3088 { SST(0x68, 0x00, SS_RDEF,
3089 "Logical unit not configured") },
3090 /* D */
3091 { SST(0x68, 0x01, SS_RDEF,
3092 "Subsidiary logical unit not configured") },
3093 /* A */
3094 { SST(0x69, 0x00, SS_RDEF,
3095 "Data loss on logical unit") },
3096 /* A */
3097 { SST(0x69, 0x01, SS_RDEF,
3098 "Multiple logical unit failures") },
3099 /* A */
3100 { SST(0x69, 0x02, SS_RDEF,
3101 "Parity/data mismatch") },
3102 /* A */
3103 { SST(0x6A, 0x00, SS_RDEF,
3104 "Informational, refer to log") },
3105 /* A */
3106 { SST(0x6B, 0x00, SS_RDEF,
3107 "State change has occurred") },
3108 /* A */
3109 { SST(0x6B, 0x01, SS_RDEF,
3110 "Redundancy level got better") },
3111 /* A */
3112 { SST(0x6B, 0x02, SS_RDEF,
3113 "Redundancy level got worse") },
3114 /* A */
3115 { SST(0x6C, 0x00, SS_RDEF,
3116 "Rebuild failure occurred") },
3117 /* A */
3118 { SST(0x6D, 0x00, SS_RDEF,
3119 "Recalculate failure occurred") },
3120 /* A */
3121 { SST(0x6E, 0x00, SS_RDEF,
3122 "Command to logical unit failed") },
3123 /* R */
3124 { SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */
3125 "Copy protection key exchange failure - authentication failure") },
3126 /* R */
3127 { SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */
3128 "Copy protection key exchange failure - key not present") },
3129 /* R */
3130 { SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */
3131 "Copy protection key exchange failure - key not established") },
3132 /* R */
3133 { SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */
3134 "Read of scrambled sector without authentication") },
3135 /* R */
3136 { SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */
3137 "Media region code is mismatched to logical unit region") },
3138 /* R */
3139 { SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */
3140 "Drive region must be permanent/region reset count error") },
3141 /* R */
3142 { SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */
3143 "Insufficient block count for binding NONCE recording") },
3144 /* R */
3145 { SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */
3146 "Conflict in binding NONCE recording") },
3147 /* R */
3148 { SST(0x6F, 0x08, SS_FATAL | EPERM,
3149 "Insufficient permission") },
3150 /* R */
3151 { SST(0x6F, 0x09, SS_FATAL | EINVAL,
3152 "Invalid drive-host pairing server") },
3153 /* R */
3154 { SST(0x6F, 0x0A, SS_RDEF, /* XXX TBD */
3155 "Drive-host pairing suspended") },
3156 /* T */
3157 { SST(0x70, 0x00, SS_RDEF,
3158 "Decompression exception short: ASCQ = Algorithm ID") },
3159 /* T */
3160 { SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE,
3161 NULL) }, /* Range 0x00 -> 0xFF */
3162 /* T */
3163 { SST(0x71, 0x00, SS_RDEF,
3164 "Decompression exception long: ASCQ = Algorithm ID") },
3165 /* T */
3166 { SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE,
3167 NULL) }, /* Range 0x00 -> 0xFF */
3168 /* R */
3169 { SST(0x72, 0x00, SS_RDEF,
3170 "Session fixation error") },
3171 /* R */
3172 { SST(0x72, 0x01, SS_RDEF,
3173 "Session fixation error writing lead-in") },
3174 /* R */
3175 { SST(0x72, 0x02, SS_RDEF,
3176 "Session fixation error writing lead-out") },
3177 /* R */
3178 { SST(0x72, 0x03, SS_RDEF,
3179 "Session fixation error - incomplete track in session") },
3180 /* R */
3181 { SST(0x72, 0x04, SS_RDEF,
3182 "Empty or partially written reserved track") },
3183 /* R */
3184 { SST(0x72, 0x05, SS_RDEF, /* XXX TBD */
3185 "No more track reservations allowed") },
3186 /* R */
3187 { SST(0x72, 0x06, SS_RDEF, /* XXX TBD */
3188 "RMZ extension is not allowed") },
3189 /* R */
3190 { SST(0x72, 0x07, SS_RDEF, /* XXX TBD */
3191 "No more test zone extensions are allowed") },
3192 /* R */
3193 { SST(0x73, 0x00, SS_RDEF,
3194 "CD control error") },
3195 /* R */
3196 { SST(0x73, 0x01, SS_RDEF,
3197 "Power calibration area almost full") },
3198 /* R */
3199 { SST(0x73, 0x02, SS_FATAL | ENOSPC,
3200 "Power calibration area is full") },
3201 /* R */
3202 { SST(0x73, 0x03, SS_RDEF,
3203 "Power calibration area error") },
3204 /* R */
3205 { SST(0x73, 0x04, SS_RDEF,
3206 "Program memory area update failure") },
3207 /* R */
3208 { SST(0x73, 0x05, SS_RDEF,
3209 "Program memory area is full") },
3210 /* R */
3211 { SST(0x73, 0x06, SS_RDEF, /* XXX TBD */
3212 "RMA/PMA is almost full") },
3213 /* R */
3214 { SST(0x73, 0x10, SS_RDEF, /* XXX TBD */
3215 "Current power calibration area almost full") },
3216 /* R */
3217 { SST(0x73, 0x11, SS_RDEF, /* XXX TBD */
3218 "Current power calibration area is full") },
3219 /* R */
3220 { SST(0x73, 0x17, SS_RDEF, /* XXX TBD */
3221 "RDZ is full") },
3222 /* T */
3223 { SST(0x74, 0x00, SS_RDEF, /* XXX TBD */
3224 "Security error") },
3225 /* T */
3226 { SST(0x74, 0x01, SS_RDEF, /* XXX TBD */
3227 "Unable to decrypt data") },
3228 /* T */
3229 { SST(0x74, 0x02, SS_RDEF, /* XXX TBD */
3230 "Unencrypted data encountered while decrypting") },
3231 /* T */
3232 { SST(0x74, 0x03, SS_RDEF, /* XXX TBD */
3233 "Incorrect data encryption key") },
3234 /* T */
3235 { SST(0x74, 0x04, SS_RDEF, /* XXX TBD */
3236 "Cryptographic integrity validation failed") },
3237 /* T */
3238 { SST(0x74, 0x05, SS_RDEF, /* XXX TBD */
3239 "Error decrypting data") },
3240 /* T */
3241 { SST(0x74, 0x06, SS_RDEF, /* XXX TBD */
3242 "Unknown signature verification key") },
3243 /* T */
3244 { SST(0x74, 0x07, SS_RDEF, /* XXX TBD */
3245 "Encryption parameters not useable") },
3246 /* DT R M E VF */
3247 { SST(0x74, 0x08, SS_RDEF, /* XXX TBD */
3248 "Digital signature validation failure") },
3249 /* T */
3250 { SST(0x74, 0x09, SS_RDEF, /* XXX TBD */
3251 "Encryption mode mismatch on read") },
3252 /* T */
3253 { SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */
3254 "Encrypted block not raw read enabled") },
3255 /* T */
3256 { SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */
3257 "Incorrect encryption parameters") },
3258 /* DT R MAEBKV */
3259 { SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */
3260 "Unable to decrypt parameter list") },
3261 /* T */
3262 { SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */
3263 "Encryption algorithm disabled") },
3264 /* DT R MAEBKV */
3265 { SST(0x74, 0x10, SS_RDEF, /* XXX TBD */
3266 "SA creation parameter value invalid") },
3267 /* DT R MAEBKV */
3268 { SST(0x74, 0x11, SS_RDEF, /* XXX TBD */
3269 "SA creation parameter value rejected") },
3270 /* DT R MAEBKV */
3271 { SST(0x74, 0x12, SS_RDEF, /* XXX TBD */
3272 "Invalid SA usage") },
3273 /* T */
3274 { SST(0x74, 0x21, SS_RDEF, /* XXX TBD */
3275 "Data encryption configuration prevented") },
3276 /* DT R MAEBKV */
3277 { SST(0x74, 0x30, SS_RDEF, /* XXX TBD */
3278 "SA creation parameter not supported") },
3279 /* DT R MAEBKV */
3280 { SST(0x74, 0x40, SS_RDEF, /* XXX TBD */
3281 "Authentication failed") },
3282 /* V */
3283 { SST(0x74, 0x61, SS_RDEF, /* XXX TBD */
3284 "External data encryption key manager access error") },
3285 /* V */
3286 { SST(0x74, 0x62, SS_RDEF, /* XXX TBD */
3287 "External data encryption key manager error") },
3288 /* V */
3289 { SST(0x74, 0x63, SS_RDEF, /* XXX TBD */
3290 "External data encryption key not found") },
3291 /* V */
3292 { SST(0x74, 0x64, SS_RDEF, /* XXX TBD */
3293 "External data encryption request not authorized") },
3294 /* T */
3295 { SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */
3296 "External data encryption control timeout") },
3297 /* T */
3298 { SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */
3299 "External data encryption control error") },
3300 /* DT R M E V */
3301 { SST(0x74, 0x71, SS_FATAL | EACCES,
3302 "Logical unit access not authorized") },
3303 /* D */
3304 { SST(0x74, 0x79, SS_FATAL | EACCES,
3305 "Security conflict in translated device") }
3306 };
3307
3308 const u_int asc_table_size = nitems(asc_table);
3309
3310 struct asc_key
3311 {
3312 int asc;
3313 int ascq;
3314 };
3315
3316 static int
ascentrycomp(const void * key,const void * member)3317 ascentrycomp(const void *key, const void *member)
3318 {
3319 int asc;
3320 int ascq;
3321 const struct asc_table_entry *table_entry;
3322
3323 asc = ((const struct asc_key *)key)->asc;
3324 ascq = ((const struct asc_key *)key)->ascq;
3325 table_entry = (const struct asc_table_entry *)member;
3326
3327 if (asc >= table_entry->asc) {
3328 if (asc > table_entry->asc)
3329 return (1);
3330
3331 if (ascq <= table_entry->ascq) {
3332 /* Check for ranges */
3333 if (ascq == table_entry->ascq
3334 || ((table_entry->action & SSQ_RANGE) != 0
3335 && ascq >= (table_entry - 1)->ascq))
3336 return (0);
3337 return (-1);
3338 }
3339 return (1);
3340 }
3341 return (-1);
3342 }
3343
3344 static int
senseentrycomp(const void * key,const void * member)3345 senseentrycomp(const void *key, const void *member)
3346 {
3347 int sense_key;
3348 const struct sense_key_table_entry *table_entry;
3349
3350 sense_key = *((const int *)key);
3351 table_entry = (const struct sense_key_table_entry *)member;
3352
3353 if (sense_key >= table_entry->sense_key) {
3354 if (sense_key == table_entry->sense_key)
3355 return (0);
3356 return (1);
3357 }
3358 return (-1);
3359 }
3360
3361 static void
fetchtableentries(int sense_key,int asc,int ascq,struct scsi_inquiry_data * inq_data,const struct sense_key_table_entry ** sense_entry,const struct asc_table_entry ** asc_entry)3362 fetchtableentries(int sense_key, int asc, int ascq,
3363 struct scsi_inquiry_data *inq_data,
3364 const struct sense_key_table_entry **sense_entry,
3365 const struct asc_table_entry **asc_entry)
3366 {
3367 caddr_t match;
3368 const struct asc_table_entry *asc_tables[2];
3369 const struct sense_key_table_entry *sense_tables[2];
3370 struct asc_key asc_ascq;
3371 size_t asc_tables_size[2];
3372 size_t sense_tables_size[2];
3373 int num_asc_tables;
3374 int num_sense_tables;
3375 int i;
3376
3377 /* Default to failure */
3378 *sense_entry = NULL;
3379 *asc_entry = NULL;
3380 match = NULL;
3381 if (inq_data != NULL)
3382 match = cam_quirkmatch((caddr_t)inq_data,
3383 (caddr_t)sense_quirk_table,
3384 sense_quirk_table_size,
3385 sizeof(*sense_quirk_table),
3386 scsi_inquiry_match);
3387
3388 if (match != NULL) {
3389 struct scsi_sense_quirk_entry *quirk;
3390
3391 quirk = (struct scsi_sense_quirk_entry *)match;
3392 asc_tables[0] = quirk->asc_info;
3393 asc_tables_size[0] = quirk->num_ascs;
3394 asc_tables[1] = asc_table;
3395 asc_tables_size[1] = asc_table_size;
3396 num_asc_tables = 2;
3397 sense_tables[0] = quirk->sense_key_info;
3398 sense_tables_size[0] = quirk->num_sense_keys;
3399 sense_tables[1] = sense_key_table;
3400 sense_tables_size[1] = nitems(sense_key_table);
3401 num_sense_tables = 2;
3402 } else {
3403 asc_tables[0] = asc_table;
3404 asc_tables_size[0] = asc_table_size;
3405 num_asc_tables = 1;
3406 sense_tables[0] = sense_key_table;
3407 sense_tables_size[0] = nitems(sense_key_table);
3408 num_sense_tables = 1;
3409 }
3410
3411 asc_ascq.asc = asc;
3412 asc_ascq.ascq = ascq;
3413 for (i = 0; i < num_asc_tables; i++) {
3414 void *found_entry;
3415
3416 found_entry = bsearch(&asc_ascq, asc_tables[i],
3417 asc_tables_size[i],
3418 sizeof(**asc_tables),
3419 ascentrycomp);
3420
3421 if (found_entry) {
3422 *asc_entry = (struct asc_table_entry *)found_entry;
3423 break;
3424 }
3425 }
3426
3427 for (i = 0; i < num_sense_tables; i++) {
3428 void *found_entry;
3429
3430 found_entry = bsearch(&sense_key, sense_tables[i],
3431 sense_tables_size[i],
3432 sizeof(**sense_tables),
3433 senseentrycomp);
3434
3435 if (found_entry) {
3436 *sense_entry =
3437 (struct sense_key_table_entry *)found_entry;
3438 break;
3439 }
3440 }
3441 }
3442
3443 void
scsi_sense_desc(int sense_key,int asc,int ascq,struct scsi_inquiry_data * inq_data,const char ** sense_key_desc,const char ** asc_desc)3444 scsi_sense_desc(int sense_key, int asc, int ascq,
3445 struct scsi_inquiry_data *inq_data,
3446 const char **sense_key_desc, const char **asc_desc)
3447 {
3448 const struct asc_table_entry *asc_entry;
3449 const struct sense_key_table_entry *sense_entry;
3450
3451 fetchtableentries(sense_key, asc, ascq,
3452 inq_data,
3453 &sense_entry,
3454 &asc_entry);
3455
3456 if (sense_entry != NULL)
3457 *sense_key_desc = sense_entry->desc;
3458 else
3459 *sense_key_desc = "Invalid Sense Key";
3460
3461 if (asc_entry != NULL)
3462 *asc_desc = asc_entry->desc;
3463 else if (asc >= 0x80 && asc <= 0xff)
3464 *asc_desc = "Vendor Specific ASC";
3465 else if (ascq >= 0x80 && ascq <= 0xff)
3466 *asc_desc = "Vendor Specific ASCQ";
3467 else
3468 *asc_desc = "Reserved ASC/ASCQ pair";
3469 }
3470
3471 /*
3472 * Given sense and device type information, return the appropriate action.
3473 * If we do not understand the specific error as identified by the ASC/ASCQ
3474 * pair, fall back on the more generic actions derived from the sense key.
3475 */
3476 scsi_sense_action
scsi_error_action(struct ccb_scsiio * csio,struct scsi_inquiry_data * inq_data,uint32_t sense_flags)3477 scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data,
3478 uint32_t sense_flags)
3479 {
3480 const struct asc_table_entry *asc_entry;
3481 const struct sense_key_table_entry *sense_entry;
3482 int error_code, sense_key, asc, ascq;
3483 scsi_sense_action action;
3484
3485 if (!scsi_extract_sense_ccb((union ccb *)csio,
3486 &error_code, &sense_key, &asc, &ascq)) {
3487 action = SS_RDEF;
3488 } else if ((error_code == SSD_DEFERRED_ERROR)
3489 || (error_code == SSD_DESC_DEFERRED_ERROR)) {
3490 /*
3491 * XXX dufault@FreeBSD.org
3492 * This error doesn't relate to the command associated
3493 * with this request sense. A deferred error is an error
3494 * for a command that has already returned GOOD status
3495 * (see SCSI2 8.2.14.2).
3496 *
3497 * By my reading of that section, it looks like the current
3498 * command has been cancelled, we should now clean things up
3499 * (hopefully recovering any lost data) and then retry the
3500 * current command. There are two easy choices, both wrong:
3501 *
3502 * 1. Drop through (like we had been doing), thus treating
3503 * this as if the error were for the current command and
3504 * return and stop the current command.
3505 *
3506 * 2. Issue a retry (like I made it do) thus hopefully
3507 * recovering the current transfer, and ignoring the
3508 * fact that we've dropped a command.
3509 *
3510 * These should probably be handled in a device specific
3511 * sense handler or punted back up to a user mode daemon
3512 */
3513 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3514 } else {
3515 fetchtableentries(sense_key, asc, ascq,
3516 inq_data,
3517 &sense_entry,
3518 &asc_entry);
3519
3520 /*
3521 * Override the 'No additional Sense' entry (0,0)
3522 * with the error action of the sense key.
3523 */
3524 if (asc_entry != NULL
3525 && (asc != 0 || ascq != 0))
3526 action = asc_entry->action;
3527 else if (sense_entry != NULL)
3528 action = sense_entry->action;
3529 else
3530 action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
3531
3532 if (sense_key == SSD_KEY_RECOVERED_ERROR) {
3533 /*
3534 * The action succeeded but the device wants
3535 * the user to know that some recovery action
3536 * was required.
3537 */
3538 action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK);
3539 action |= SS_NOP|SSQ_PRINT_SENSE;
3540 } else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) {
3541 if ((sense_flags & SF_QUIET_IR) != 0)
3542 action &= ~SSQ_PRINT_SENSE;
3543 } else if (sense_key == SSD_KEY_UNIT_ATTENTION) {
3544 if ((sense_flags & SF_RETRY_UA) != 0
3545 && (action & SS_MASK) == SS_FAIL) {
3546 action &= ~(SS_MASK|SSQ_MASK);
3547 action |= SS_RETRY|SSQ_DECREMENT_COUNT|
3548 SSQ_PRINT_SENSE;
3549 }
3550 action |= SSQ_UA;
3551 }
3552 }
3553 if ((action & SS_MASK) >= SS_START &&
3554 (sense_flags & SF_NO_RECOVERY)) {
3555 action &= ~SS_MASK;
3556 action |= SS_FAIL;
3557 } else if ((action & SS_MASK) == SS_RETRY &&
3558 (sense_flags & SF_NO_RETRY)) {
3559 action &= ~SS_MASK;
3560 action |= SS_FAIL;
3561 }
3562 if ((sense_flags & SF_PRINT_ALWAYS) != 0)
3563 action |= SSQ_PRINT_SENSE;
3564 else if ((sense_flags & SF_NO_PRINT) != 0)
3565 action &= ~SSQ_PRINT_SENSE;
3566
3567 return (action);
3568 }
3569
3570 char *
scsi_cdb_string(uint8_t * cdb_ptr,char * cdb_string,size_t len)3571 scsi_cdb_string(uint8_t *cdb_ptr, char *cdb_string, size_t len)
3572 {
3573 struct sbuf sb;
3574 int error;
3575
3576 if (len == 0)
3577 return ("");
3578
3579 sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN);
3580
3581 scsi_cdb_sbuf(cdb_ptr, &sb);
3582
3583 /* ENOMEM just means that the fixed buffer is full, OK to ignore */
3584 error = sbuf_finish(&sb);
3585 if (error != 0 &&
3586 #ifdef _KERNEL
3587 error != ENOMEM)
3588 #else
3589 errno != ENOMEM)
3590 #endif
3591 return ("");
3592
3593 return(sbuf_data(&sb));
3594 }
3595
3596 void
scsi_cdb_sbuf(uint8_t * cdb_ptr,struct sbuf * sb)3597 scsi_cdb_sbuf(uint8_t *cdb_ptr, struct sbuf *sb)
3598 {
3599 uint8_t cdb_len;
3600 int i;
3601
3602 if (cdb_ptr == NULL)
3603 return;
3604
3605 /*
3606 * This is taken from the SCSI-3 draft spec.
3607 * (T10/1157D revision 0.3)
3608 * The top 3 bits of an opcode are the group code. The next 5 bits
3609 * are the command code.
3610 * Group 0: six byte commands
3611 * Group 1: ten byte commands
3612 * Group 2: ten byte commands
3613 * Group 3: reserved
3614 * Group 4: sixteen byte commands
3615 * Group 5: twelve byte commands
3616 * Group 6: vendor specific
3617 * Group 7: vendor specific
3618 */
3619 switch((*cdb_ptr >> 5) & 0x7) {
3620 case 0:
3621 cdb_len = 6;
3622 break;
3623 case 1:
3624 case 2:
3625 cdb_len = 10;
3626 break;
3627 case 3:
3628 case 6:
3629 case 7:
3630 /* in this case, just print out the opcode */
3631 cdb_len = 1;
3632 break;
3633 case 4:
3634 cdb_len = 16;
3635 break;
3636 case 5:
3637 cdb_len = 12;
3638 break;
3639 }
3640
3641 for (i = 0; i < cdb_len; i++)
3642 sbuf_printf(sb, "%02hhx ", cdb_ptr[i]);
3643
3644 return;
3645 }
3646
3647 const char *
scsi_status_string(struct ccb_scsiio * csio)3648 scsi_status_string(struct ccb_scsiio *csio)
3649 {
3650 switch(csio->scsi_status) {
3651 case SCSI_STATUS_OK:
3652 return("OK");
3653 case SCSI_STATUS_CHECK_COND:
3654 return("Check Condition");
3655 case SCSI_STATUS_BUSY:
3656 return("Busy");
3657 case SCSI_STATUS_INTERMED:
3658 return("Intermediate");
3659 case SCSI_STATUS_INTERMED_COND_MET:
3660 return("Intermediate-Condition Met");
3661 case SCSI_STATUS_RESERV_CONFLICT:
3662 return("Reservation Conflict");
3663 case SCSI_STATUS_CMD_TERMINATED:
3664 return("Command Terminated");
3665 case SCSI_STATUS_QUEUE_FULL:
3666 return("Queue Full");
3667 case SCSI_STATUS_ACA_ACTIVE:
3668 return("ACA Active");
3669 case SCSI_STATUS_TASK_ABORTED:
3670 return("Task Aborted");
3671 default: {
3672 static char unkstr[64];
3673 snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
3674 csio->scsi_status);
3675 return(unkstr);
3676 }
3677 }
3678 }
3679
3680 /*
3681 * scsi_command_string() returns 0 for success and -1 for failure.
3682 */
3683 #ifdef _KERNEL
3684 int
scsi_command_string(struct ccb_scsiio * csio,struct sbuf * sb)3685 scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb)
3686 #else /* !_KERNEL */
3687 int
3688 scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio,
3689 struct sbuf *sb)
3690 #endif /* _KERNEL/!_KERNEL */
3691 {
3692 struct scsi_inquiry_data *inq_data;
3693 #ifdef _KERNEL
3694 struct ccb_getdev *cgd;
3695 #endif /* _KERNEL */
3696
3697 #ifdef _KERNEL
3698 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
3699 return(-1);
3700 /*
3701 * Get the device information.
3702 */
3703 xpt_setup_ccb(&cgd->ccb_h,
3704 csio->ccb_h.path,
3705 CAM_PRIORITY_NORMAL);
3706 cgd->ccb_h.func_code = XPT_GDEV_TYPE;
3707 xpt_action((union ccb *)cgd);
3708
3709 /*
3710 * If the device is unconfigured, just pretend that it is a hard
3711 * drive. scsi_op_desc() needs this.
3712 */
3713 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
3714 cgd->inq_data.device = T_DIRECT;
3715
3716 inq_data = &cgd->inq_data;
3717
3718 #else /* !_KERNEL */
3719
3720 inq_data = &device->inq_data;
3721
3722 #endif /* _KERNEL/!_KERNEL */
3723
3724 sbuf_printf(sb, "%s. CDB: ",
3725 scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data));
3726 scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb);
3727
3728 #ifdef _KERNEL
3729 xpt_free_ccb((union ccb *)cgd);
3730 #endif
3731
3732 return(0);
3733 }
3734
3735 /*
3736 * Iterate over sense descriptors. Each descriptor is passed into iter_func().
3737 * If iter_func() returns 0, list traversal continues. If iter_func()
3738 * returns non-zero, list traversal is stopped.
3739 */
3740 void
scsi_desc_iterate(struct scsi_sense_data_desc * sense,u_int sense_len,int (* iter_func)(struct scsi_sense_data_desc * sense,u_int,struct scsi_sense_desc_header *,void *),void * arg)3741 scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
3742 int (*iter_func)(struct scsi_sense_data_desc *sense,
3743 u_int, struct scsi_sense_desc_header *,
3744 void *), void *arg)
3745 {
3746 int cur_pos;
3747 int desc_len;
3748
3749 /*
3750 * First make sure the extra length field is present.
3751 */
3752 if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0)
3753 return;
3754
3755 /*
3756 * The length of data actually returned may be different than the
3757 * extra_len recorded in the structure.
3758 */
3759 desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc);
3760
3761 /*
3762 * Limit this further by the extra length reported, and the maximum
3763 * allowed extra length.
3764 */
3765 desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX));
3766
3767 /*
3768 * Subtract the size of the header from the descriptor length.
3769 * This is to ensure that we have at least the header left, so we
3770 * don't have to check that inside the loop. This can wind up
3771 * being a negative value.
3772 */
3773 desc_len -= sizeof(struct scsi_sense_desc_header);
3774
3775 for (cur_pos = 0; cur_pos < desc_len;) {
3776 struct scsi_sense_desc_header *header;
3777
3778 header = (struct scsi_sense_desc_header *)
3779 &sense->sense_desc[cur_pos];
3780
3781 /*
3782 * Check to make sure we have the entire descriptor. We
3783 * don't call iter_func() unless we do.
3784 *
3785 * Note that although cur_pos is at the beginning of the
3786 * descriptor, desc_len already has the header length
3787 * subtracted. So the comparison of the length in the
3788 * header (which does not include the header itself) to
3789 * desc_len - cur_pos is correct.
3790 */
3791 if (header->length > (desc_len - cur_pos))
3792 break;
3793
3794 if (iter_func(sense, sense_len, header, arg) != 0)
3795 break;
3796
3797 cur_pos += sizeof(*header) + header->length;
3798 }
3799 }
3800
3801 struct scsi_find_desc_info {
3802 uint8_t desc_type;
3803 struct scsi_sense_desc_header *header;
3804 };
3805
3806 static int
scsi_find_desc_func(struct scsi_sense_data_desc * sense,u_int sense_len,struct scsi_sense_desc_header * header,void * arg)3807 scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
3808 struct scsi_sense_desc_header *header, void *arg)
3809 {
3810 struct scsi_find_desc_info *desc_info;
3811
3812 desc_info = (struct scsi_find_desc_info *)arg;
3813
3814 if (header->desc_type == desc_info->desc_type) {
3815 desc_info->header = header;
3816
3817 /* We found the descriptor, tell the iterator to stop. */
3818 return (1);
3819 } else
3820 return (0);
3821 }
3822
3823 /*
3824 * Given a descriptor type, return a pointer to it if it is in the sense
3825 * data and not truncated. Avoiding truncating sense data will simplify
3826 * things significantly for the caller.
3827 */
3828 uint8_t *
scsi_find_desc(struct scsi_sense_data_desc * sense,u_int sense_len,uint8_t desc_type)3829 scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
3830 uint8_t desc_type)
3831 {
3832 struct scsi_find_desc_info desc_info;
3833
3834 desc_info.desc_type = desc_type;
3835 desc_info.header = NULL;
3836
3837 scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info);
3838
3839 return ((uint8_t *)desc_info.header);
3840 }
3841
3842 /*
3843 * Fill in SCSI descriptor sense data with the specified parameters.
3844 */
3845 static void
scsi_set_sense_data_desc_va(struct scsi_sense_data * sense_data,u_int * sense_len,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,va_list ap)3846 scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data,
3847 u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
3848 int sense_key, int asc, int ascq, va_list ap)
3849 {
3850 struct scsi_sense_data_desc *sense;
3851 scsi_sense_elem_type elem_type;
3852 int space, len;
3853 uint8_t *desc, *data;
3854
3855 memset(sense_data, 0, sizeof(*sense_data));
3856 sense = (struct scsi_sense_data_desc *)sense_data;
3857 if (current_error != 0)
3858 sense->error_code = SSD_DESC_CURRENT_ERROR;
3859 else
3860 sense->error_code = SSD_DESC_DEFERRED_ERROR;
3861 sense->sense_key = sense_key;
3862 sense->add_sense_code = asc;
3863 sense->add_sense_code_qual = ascq;
3864 sense->flags = 0;
3865
3866 desc = &sense->sense_desc[0];
3867 space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc);
3868 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
3869 SSD_ELEM_NONE) {
3870 if (elem_type >= SSD_ELEM_MAX) {
3871 printf("%s: invalid sense type %d\n", __func__,
3872 elem_type);
3873 break;
3874 }
3875 len = va_arg(ap, int);
3876 data = va_arg(ap, uint8_t *);
3877
3878 switch (elem_type) {
3879 case SSD_ELEM_SKIP:
3880 break;
3881 case SSD_ELEM_DESC:
3882 if (space < len) {
3883 sense->flags |= SSDD_SDAT_OVFL;
3884 break;
3885 }
3886 bcopy(data, desc, len);
3887 desc += len;
3888 space -= len;
3889 break;
3890 case SSD_ELEM_SKS: {
3891 struct scsi_sense_sks *sks = (void *)desc;
3892
3893 if (len > sizeof(sks->sense_key_spec))
3894 break;
3895 if (space < sizeof(*sks)) {
3896 sense->flags |= SSDD_SDAT_OVFL;
3897 break;
3898 }
3899 sks->desc_type = SSD_DESC_SKS;
3900 sks->length = sizeof(*sks) -
3901 (offsetof(struct scsi_sense_sks, length) + 1);
3902 bcopy(data, &sks->sense_key_spec, len);
3903 desc += sizeof(*sks);
3904 space -= sizeof(*sks);
3905 break;
3906 }
3907 case SSD_ELEM_COMMAND: {
3908 struct scsi_sense_command *cmd = (void *)desc;
3909
3910 if (len > sizeof(cmd->command_info))
3911 break;
3912 if (space < sizeof(*cmd)) {
3913 sense->flags |= SSDD_SDAT_OVFL;
3914 break;
3915 }
3916 cmd->desc_type = SSD_DESC_COMMAND;
3917 cmd->length = sizeof(*cmd) -
3918 (offsetof(struct scsi_sense_command, length) + 1);
3919 bcopy(data, &cmd->command_info[
3920 sizeof(cmd->command_info) - len], len);
3921 desc += sizeof(*cmd);
3922 space -= sizeof(*cmd);
3923 break;
3924 }
3925 case SSD_ELEM_INFO: {
3926 struct scsi_sense_info *info = (void *)desc;
3927
3928 if (len > sizeof(info->info))
3929 break;
3930 if (space < sizeof(*info)) {
3931 sense->flags |= SSDD_SDAT_OVFL;
3932 break;
3933 }
3934 info->desc_type = SSD_DESC_INFO;
3935 info->length = sizeof(*info) -
3936 (offsetof(struct scsi_sense_info, length) + 1);
3937 info->byte2 = SSD_INFO_VALID;
3938 bcopy(data, &info->info[sizeof(info->info) - len], len);
3939 desc += sizeof(*info);
3940 space -= sizeof(*info);
3941 break;
3942 }
3943 case SSD_ELEM_FRU: {
3944 struct scsi_sense_fru *fru = (void *)desc;
3945
3946 if (len > sizeof(fru->fru))
3947 break;
3948 if (space < sizeof(*fru)) {
3949 sense->flags |= SSDD_SDAT_OVFL;
3950 break;
3951 }
3952 fru->desc_type = SSD_DESC_FRU;
3953 fru->length = sizeof(*fru) -
3954 (offsetof(struct scsi_sense_fru, length) + 1);
3955 fru->fru = *data;
3956 desc += sizeof(*fru);
3957 space -= sizeof(*fru);
3958 break;
3959 }
3960 case SSD_ELEM_STREAM: {
3961 struct scsi_sense_stream *stream = (void *)desc;
3962
3963 if (len > sizeof(stream->byte3))
3964 break;
3965 if (space < sizeof(*stream)) {
3966 sense->flags |= SSDD_SDAT_OVFL;
3967 break;
3968 }
3969 stream->desc_type = SSD_DESC_STREAM;
3970 stream->length = sizeof(*stream) -
3971 (offsetof(struct scsi_sense_stream, length) + 1);
3972 stream->byte3 = *data;
3973 desc += sizeof(*stream);
3974 space -= sizeof(*stream);
3975 break;
3976 }
3977 default:
3978 /*
3979 * We shouldn't get here, but if we do, do nothing.
3980 * We've already consumed the arguments above.
3981 */
3982 break;
3983 }
3984 }
3985 sense->extra_len = desc - &sense->sense_desc[0];
3986 *sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 +
3987 sense->extra_len;
3988 }
3989
3990 /*
3991 * Fill in SCSI fixed sense data with the specified parameters.
3992 */
3993 static void
scsi_set_sense_data_fixed_va(struct scsi_sense_data * sense_data,u_int * sense_len,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,va_list ap)3994 scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data,
3995 u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
3996 int sense_key, int asc, int ascq, va_list ap)
3997 {
3998 struct scsi_sense_data_fixed *sense;
3999 scsi_sense_elem_type elem_type;
4000 uint8_t *data;
4001 int len;
4002
4003 memset(sense_data, 0, sizeof(*sense_data));
4004 sense = (struct scsi_sense_data_fixed *)sense_data;
4005 if (current_error != 0)
4006 sense->error_code = SSD_CURRENT_ERROR;
4007 else
4008 sense->error_code = SSD_DEFERRED_ERROR;
4009 sense->flags = sense_key & SSD_KEY;
4010 sense->extra_len = 0;
4011 if (*sense_len >= 13) {
4012 sense->add_sense_code = asc;
4013 sense->extra_len = MAX(sense->extra_len, 5);
4014 } else
4015 sense->flags |= SSD_SDAT_OVFL;
4016 if (*sense_len >= 14) {
4017 sense->add_sense_code_qual = ascq;
4018 sense->extra_len = MAX(sense->extra_len, 6);
4019 } else
4020 sense->flags |= SSD_SDAT_OVFL;
4021
4022 while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
4023 SSD_ELEM_NONE) {
4024 if (elem_type >= SSD_ELEM_MAX) {
4025 printf("%s: invalid sense type %d\n", __func__,
4026 elem_type);
4027 break;
4028 }
4029 len = va_arg(ap, int);
4030 data = va_arg(ap, uint8_t *);
4031
4032 switch (elem_type) {
4033 case SSD_ELEM_SKIP:
4034 break;
4035 case SSD_ELEM_SKS:
4036 if (len > sizeof(sense->sense_key_spec))
4037 break;
4038 if (*sense_len < 18) {
4039 sense->flags |= SSD_SDAT_OVFL;
4040 break;
4041 }
4042 bcopy(data, &sense->sense_key_spec[0], len);
4043 sense->extra_len = MAX(sense->extra_len, 10);
4044 break;
4045 case SSD_ELEM_COMMAND:
4046 if (*sense_len < 12) {
4047 sense->flags |= SSD_SDAT_OVFL;
4048 break;
4049 }
4050 if (len > sizeof(sense->cmd_spec_info)) {
4051 data += len - sizeof(sense->cmd_spec_info);
4052 len = sizeof(sense->cmd_spec_info);
4053 }
4054 bcopy(data, &sense->cmd_spec_info[
4055 sizeof(sense->cmd_spec_info) - len], len);
4056 sense->extra_len = MAX(sense->extra_len, 4);
4057 break;
4058 case SSD_ELEM_INFO:
4059 /* Set VALID bit only if no overflow. */
4060 sense->error_code |= SSD_ERRCODE_VALID;
4061 while (len > sizeof(sense->info)) {
4062 if (data[0] != 0)
4063 sense->error_code &= ~SSD_ERRCODE_VALID;
4064 data ++;
4065 len --;
4066 }
4067 bcopy(data, &sense->info[sizeof(sense->info) - len], len);
4068 break;
4069 case SSD_ELEM_FRU:
4070 if (*sense_len < 15) {
4071 sense->flags |= SSD_SDAT_OVFL;
4072 break;
4073 }
4074 sense->fru = *data;
4075 sense->extra_len = MAX(sense->extra_len, 7);
4076 break;
4077 case SSD_ELEM_STREAM:
4078 sense->flags |= *data &
4079 (SSD_ILI | SSD_EOM | SSD_FILEMARK);
4080 break;
4081 default:
4082
4083 /*
4084 * We can't handle that in fixed format. Skip it.
4085 */
4086 break;
4087 }
4088 }
4089 *sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 +
4090 sense->extra_len;
4091 }
4092
4093 /*
4094 * Fill in SCSI sense data with the specified parameters. This routine can
4095 * fill in either fixed or descriptor type sense data.
4096 */
4097 void
scsi_set_sense_data_va(struct scsi_sense_data * sense_data,u_int * sense_len,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,va_list ap)4098 scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len,
4099 scsi_sense_data_type sense_format, int current_error,
4100 int sense_key, int asc, int ascq, va_list ap)
4101 {
4102
4103 if (*sense_len > SSD_FULL_SIZE)
4104 *sense_len = SSD_FULL_SIZE;
4105 if (sense_format == SSD_TYPE_DESC)
4106 scsi_set_sense_data_desc_va(sense_data, sense_len,
4107 sense_format, current_error, sense_key, asc, ascq, ap);
4108 else
4109 scsi_set_sense_data_fixed_va(sense_data, sense_len,
4110 sense_format, current_error, sense_key, asc, ascq, ap);
4111 }
4112
4113 void
scsi_set_sense_data(struct scsi_sense_data * sense_data,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,...)4114 scsi_set_sense_data(struct scsi_sense_data *sense_data,
4115 scsi_sense_data_type sense_format, int current_error,
4116 int sense_key, int asc, int ascq, ...)
4117 {
4118 va_list ap;
4119 u_int sense_len = SSD_FULL_SIZE;
4120
4121 va_start(ap, ascq);
4122 scsi_set_sense_data_va(sense_data, &sense_len, sense_format,
4123 current_error, sense_key, asc, ascq, ap);
4124 va_end(ap);
4125 }
4126
4127 void
scsi_set_sense_data_len(struct scsi_sense_data * sense_data,u_int * sense_len,scsi_sense_data_type sense_format,int current_error,int sense_key,int asc,int ascq,...)4128 scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len,
4129 scsi_sense_data_type sense_format, int current_error,
4130 int sense_key, int asc, int ascq, ...)
4131 {
4132 va_list ap;
4133
4134 va_start(ap, ascq);
4135 scsi_set_sense_data_va(sense_data, sense_len, sense_format,
4136 current_error, sense_key, asc, ascq, ap);
4137 va_end(ap);
4138 }
4139
4140 /*
4141 * Get sense information for three similar sense data types.
4142 */
4143 int
scsi_get_sense_info(struct scsi_sense_data * sense_data,u_int sense_len,uint8_t info_type,uint64_t * info,int64_t * signed_info)4144 scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
4145 uint8_t info_type, uint64_t *info, int64_t *signed_info)
4146 {
4147 scsi_sense_data_type sense_type;
4148
4149 if (sense_len == 0)
4150 goto bailout;
4151
4152 sense_type = scsi_sense_type(sense_data);
4153
4154 switch (sense_type) {
4155 case SSD_TYPE_DESC: {
4156 struct scsi_sense_data_desc *sense;
4157 uint8_t *desc;
4158
4159 sense = (struct scsi_sense_data_desc *)sense_data;
4160
4161 desc = scsi_find_desc(sense, sense_len, info_type);
4162 if (desc == NULL)
4163 goto bailout;
4164
4165 switch (info_type) {
4166 case SSD_DESC_INFO: {
4167 struct scsi_sense_info *info_desc;
4168
4169 info_desc = (struct scsi_sense_info *)desc;
4170
4171 if ((info_desc->byte2 & SSD_INFO_VALID) == 0)
4172 goto bailout;
4173
4174 *info = scsi_8btou64(info_desc->info);
4175 if (signed_info != NULL)
4176 *signed_info = *info;
4177 break;
4178 }
4179 case SSD_DESC_COMMAND: {
4180 struct scsi_sense_command *cmd_desc;
4181
4182 cmd_desc = (struct scsi_sense_command *)desc;
4183
4184 *info = scsi_8btou64(cmd_desc->command_info);
4185 if (signed_info != NULL)
4186 *signed_info = *info;
4187 break;
4188 }
4189 case SSD_DESC_FRU: {
4190 struct scsi_sense_fru *fru_desc;
4191
4192 fru_desc = (struct scsi_sense_fru *)desc;
4193
4194 if (fru_desc->fru == 0)
4195 goto bailout;
4196
4197 *info = fru_desc->fru;
4198 if (signed_info != NULL)
4199 *signed_info = (int8_t)fru_desc->fru;
4200 break;
4201 }
4202 default:
4203 goto bailout;
4204 break;
4205 }
4206 break;
4207 }
4208 case SSD_TYPE_FIXED: {
4209 struct scsi_sense_data_fixed *sense;
4210
4211 sense = (struct scsi_sense_data_fixed *)sense_data;
4212
4213 switch (info_type) {
4214 case SSD_DESC_INFO: {
4215 uint32_t info_val;
4216
4217 if ((sense->error_code & SSD_ERRCODE_VALID) == 0)
4218 goto bailout;
4219
4220 if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0)
4221 goto bailout;
4222
4223 info_val = scsi_4btoul(sense->info);
4224
4225 *info = info_val;
4226 if (signed_info != NULL)
4227 *signed_info = (int32_t)info_val;
4228 break;
4229 }
4230 case SSD_DESC_COMMAND: {
4231 uint32_t cmd_val;
4232
4233 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,
4234 cmd_spec_info) == 0)
4235 || (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0))
4236 goto bailout;
4237
4238 cmd_val = scsi_4btoul(sense->cmd_spec_info);
4239 if (cmd_val == 0)
4240 goto bailout;
4241
4242 *info = cmd_val;
4243 if (signed_info != NULL)
4244 *signed_info = (int32_t)cmd_val;
4245 break;
4246 }
4247 case SSD_DESC_FRU:
4248 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0)
4249 || (SSD_FIXED_IS_FILLED(sense, fru) == 0))
4250 goto bailout;
4251
4252 if (sense->fru == 0)
4253 goto bailout;
4254
4255 *info = sense->fru;
4256 if (signed_info != NULL)
4257 *signed_info = (int8_t)sense->fru;
4258 break;
4259 default:
4260 goto bailout;
4261 break;
4262 }
4263 break;
4264 }
4265 default:
4266 goto bailout;
4267 break;
4268 }
4269
4270 return (0);
4271 bailout:
4272 return (1);
4273 }
4274
4275 int
scsi_get_sks(struct scsi_sense_data * sense_data,u_int sense_len,uint8_t * sks)4276 scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks)
4277 {
4278 scsi_sense_data_type sense_type;
4279
4280 if (sense_len == 0)
4281 goto bailout;
4282
4283 sense_type = scsi_sense_type(sense_data);
4284
4285 switch (sense_type) {
4286 case SSD_TYPE_DESC: {
4287 struct scsi_sense_data_desc *sense;
4288 struct scsi_sense_sks *desc;
4289
4290 sense = (struct scsi_sense_data_desc *)sense_data;
4291
4292 desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len,
4293 SSD_DESC_SKS);
4294 if (desc == NULL)
4295 goto bailout;
4296
4297 if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0)
4298 goto bailout;
4299
4300 bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec));
4301 break;
4302 }
4303 case SSD_TYPE_FIXED: {
4304 struct scsi_sense_data_fixed *sense;
4305
4306 sense = (struct scsi_sense_data_fixed *)sense_data;
4307
4308 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0)
4309 || (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0))
4310 goto bailout;
4311
4312 if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0)
4313 goto bailout;
4314
4315 bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec));
4316 break;
4317 }
4318 default:
4319 goto bailout;
4320 break;
4321 }
4322 return (0);
4323 bailout:
4324 return (1);
4325 }
4326
4327 /*
4328 * Provide a common interface for fixed and descriptor sense to detect
4329 * whether we have block-specific sense information. It is clear by the
4330 * presence of the block descriptor in descriptor mode, but we have to
4331 * infer from the inquiry data and ILI bit in fixed mode.
4332 */
4333 int
scsi_get_block_info(struct scsi_sense_data * sense_data,u_int sense_len,struct scsi_inquiry_data * inq_data,uint8_t * block_bits)4334 scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
4335 struct scsi_inquiry_data *inq_data, uint8_t *block_bits)
4336 {
4337 scsi_sense_data_type sense_type;
4338
4339 if (inq_data != NULL) {
4340 switch (SID_TYPE(inq_data)) {
4341 case T_DIRECT:
4342 case T_RBC:
4343 case T_ZBC_HM:
4344 break;
4345 default:
4346 goto bailout;
4347 break;
4348 }
4349 }
4350
4351 sense_type = scsi_sense_type(sense_data);
4352
4353 switch (sense_type) {
4354 case SSD_TYPE_DESC: {
4355 struct scsi_sense_data_desc *sense;
4356 struct scsi_sense_block *block;
4357
4358 sense = (struct scsi_sense_data_desc *)sense_data;
4359
4360 block = (struct scsi_sense_block *)scsi_find_desc(sense,
4361 sense_len, SSD_DESC_BLOCK);
4362 if (block == NULL)
4363 goto bailout;
4364
4365 *block_bits = block->byte3;
4366 break;
4367 }
4368 case SSD_TYPE_FIXED: {
4369 struct scsi_sense_data_fixed *sense;
4370
4371 sense = (struct scsi_sense_data_fixed *)sense_data;
4372
4373 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4374 goto bailout;
4375
4376 *block_bits = sense->flags & SSD_ILI;
4377 break;
4378 }
4379 default:
4380 goto bailout;
4381 break;
4382 }
4383 return (0);
4384 bailout:
4385 return (1);
4386 }
4387
4388 int
scsi_get_stream_info(struct scsi_sense_data * sense_data,u_int sense_len,struct scsi_inquiry_data * inq_data,uint8_t * stream_bits)4389 scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
4390 struct scsi_inquiry_data *inq_data, uint8_t *stream_bits)
4391 {
4392 scsi_sense_data_type sense_type;
4393
4394 if (inq_data != NULL) {
4395 switch (SID_TYPE(inq_data)) {
4396 case T_SEQUENTIAL:
4397 break;
4398 default:
4399 goto bailout;
4400 break;
4401 }
4402 }
4403
4404 sense_type = scsi_sense_type(sense_data);
4405
4406 switch (sense_type) {
4407 case SSD_TYPE_DESC: {
4408 struct scsi_sense_data_desc *sense;
4409 struct scsi_sense_stream *stream;
4410
4411 sense = (struct scsi_sense_data_desc *)sense_data;
4412
4413 stream = (struct scsi_sense_stream *)scsi_find_desc(sense,
4414 sense_len, SSD_DESC_STREAM);
4415 if (stream == NULL)
4416 goto bailout;
4417
4418 *stream_bits = stream->byte3;
4419 break;
4420 }
4421 case SSD_TYPE_FIXED: {
4422 struct scsi_sense_data_fixed *sense;
4423
4424 sense = (struct scsi_sense_data_fixed *)sense_data;
4425
4426 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
4427 goto bailout;
4428
4429 *stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK);
4430 break;
4431 }
4432 default:
4433 goto bailout;
4434 break;
4435 }
4436 return (0);
4437 bailout:
4438 return (1);
4439 }
4440
4441 void
scsi_info_sbuf(struct sbuf * sb,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,uint64_t info)4442 scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4443 struct scsi_inquiry_data *inq_data, uint64_t info)
4444 {
4445 sbuf_printf(sb, "Info: %#jx", info);
4446 }
4447
4448 void
scsi_command_sbuf(struct sbuf * sb,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,uint64_t csi)4449 scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
4450 struct scsi_inquiry_data *inq_data, uint64_t csi)
4451 {
4452 sbuf_printf(sb, "Command Specific Info: %#jx", csi);
4453 }
4454
4455 void
scsi_progress_sbuf(struct sbuf * sb,uint16_t progress)4456 scsi_progress_sbuf(struct sbuf *sb, uint16_t progress)
4457 {
4458 sbuf_printf(sb, "Progress: %d%% (%d/%d) complete",
4459 (progress * 100) / SSD_SKS_PROGRESS_DENOM,
4460 progress, SSD_SKS_PROGRESS_DENOM);
4461 }
4462
4463 /*
4464 * Returns 1 for failure (i.e. SKS isn't valid) and 0 for success.
4465 */
4466 int
scsi_sks_sbuf(struct sbuf * sb,int sense_key,uint8_t * sks)4467 scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks)
4468 {
4469
4470 switch (sense_key) {
4471 case SSD_KEY_ILLEGAL_REQUEST: {
4472 struct scsi_sense_sks_field *field;
4473 int bad_command;
4474 char tmpstr[40];
4475
4476 /*Field Pointer*/
4477 field = (struct scsi_sense_sks_field *)sks;
4478
4479 if (field->byte0 & SSD_SKS_FIELD_CMD)
4480 bad_command = 1;
4481 else
4482 bad_command = 0;
4483
4484 tmpstr[0] = '\0';
4485
4486 /* Bit pointer is valid */
4487 if (field->byte0 & SSD_SKS_BPV)
4488 snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4489 field->byte0 & SSD_SKS_BIT_VALUE);
4490
4491 sbuf_printf(sb, "%s byte %d %sis invalid",
4492 bad_command ? "Command" : "Data",
4493 scsi_2btoul(field->field), tmpstr);
4494 break;
4495 }
4496 case SSD_KEY_UNIT_ATTENTION: {
4497 struct scsi_sense_sks_overflow *overflow;
4498
4499 overflow = (struct scsi_sense_sks_overflow *)sks;
4500
4501 /*UA Condition Queue Overflow*/
4502 sbuf_printf(sb, "Unit Attention Condition Queue %s",
4503 (overflow->byte0 & SSD_SKS_OVERFLOW_SET) ?
4504 "Overflowed" : "Did Not Overflow??");
4505 break;
4506 }
4507 case SSD_KEY_RECOVERED_ERROR:
4508 case SSD_KEY_HARDWARE_ERROR:
4509 case SSD_KEY_MEDIUM_ERROR: {
4510 struct scsi_sense_sks_retry *retry;
4511
4512 /*Actual Retry Count*/
4513 retry = (struct scsi_sense_sks_retry *)sks;
4514
4515 sbuf_printf(sb, "Actual Retry Count: %d",
4516 scsi_2btoul(retry->actual_retry_count));
4517 break;
4518 }
4519 case SSD_KEY_NO_SENSE:
4520 case SSD_KEY_NOT_READY: {
4521 struct scsi_sense_sks_progress *progress;
4522 int progress_val;
4523
4524 /*Progress Indication*/
4525 progress = (struct scsi_sense_sks_progress *)sks;
4526 progress_val = scsi_2btoul(progress->progress);
4527
4528 scsi_progress_sbuf(sb, progress_val);
4529 break;
4530 }
4531 case SSD_KEY_COPY_ABORTED: {
4532 struct scsi_sense_sks_segment *segment;
4533 char tmpstr[40];
4534
4535 /*Segment Pointer*/
4536 segment = (struct scsi_sense_sks_segment *)sks;
4537
4538 tmpstr[0] = '\0';
4539
4540 if (segment->byte0 & SSD_SKS_SEGMENT_BPV)
4541 snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
4542 segment->byte0 & SSD_SKS_SEGMENT_BITPTR);
4543
4544 sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 &
4545 SSD_SKS_SEGMENT_SD) ? "Segment" : "Data",
4546 scsi_2btoul(segment->field), tmpstr);
4547 break;
4548 }
4549 default:
4550 sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0],
4551 scsi_2btoul(&sks[1]));
4552 break;
4553 }
4554
4555 return (0);
4556 }
4557
4558 void
scsi_fru_sbuf(struct sbuf * sb,uint64_t fru)4559 scsi_fru_sbuf(struct sbuf *sb, uint64_t fru)
4560 {
4561 sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru);
4562 }
4563
4564 void
scsi_stream_sbuf(struct sbuf * sb,uint8_t stream_bits)4565 scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits)
4566 {
4567 int need_comma;
4568
4569 need_comma = 0;
4570 /*
4571 * XXX KDM this needs more descriptive decoding.
4572 */
4573 sbuf_cat(sb, "Stream Command Sense Data: ");
4574 if (stream_bits & SSD_DESC_STREAM_FM) {
4575 sbuf_cat(sb, "Filemark");
4576 need_comma = 1;
4577 }
4578
4579 if (stream_bits & SSD_DESC_STREAM_EOM) {
4580 sbuf_printf(sb, "%sEOM", (need_comma) ? "," : "");
4581 need_comma = 1;
4582 }
4583
4584 if (stream_bits & SSD_DESC_STREAM_ILI)
4585 sbuf_printf(sb, "%sILI", (need_comma) ? "," : "");
4586 }
4587
4588 void
scsi_block_sbuf(struct sbuf * sb,uint8_t block_bits)4589 scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits)
4590 {
4591
4592 sbuf_cat(sb, "Block Command Sense Data: ");
4593 if (block_bits & SSD_DESC_BLOCK_ILI)
4594 sbuf_cat(sb, "ILI");
4595 }
4596
4597 void
scsi_sense_info_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4598 scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4599 u_int sense_len, uint8_t *cdb, int cdb_len,
4600 struct scsi_inquiry_data *inq_data,
4601 struct scsi_sense_desc_header *header)
4602 {
4603 struct scsi_sense_info *info;
4604
4605 info = (struct scsi_sense_info *)header;
4606
4607 if ((info->byte2 & SSD_INFO_VALID) == 0)
4608 return;
4609
4610 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info));
4611 }
4612
4613 void
scsi_sense_command_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4614 scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4615 u_int sense_len, uint8_t *cdb, int cdb_len,
4616 struct scsi_inquiry_data *inq_data,
4617 struct scsi_sense_desc_header *header)
4618 {
4619 struct scsi_sense_command *command;
4620
4621 command = (struct scsi_sense_command *)header;
4622
4623 scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
4624 scsi_8btou64(command->command_info));
4625 }
4626
4627 void
scsi_sense_sks_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4628 scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4629 u_int sense_len, uint8_t *cdb, int cdb_len,
4630 struct scsi_inquiry_data *inq_data,
4631 struct scsi_sense_desc_header *header)
4632 {
4633 struct scsi_sense_sks *sks;
4634 int error_code, sense_key, asc, ascq;
4635
4636 sks = (struct scsi_sense_sks *)header;
4637
4638 if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0)
4639 return;
4640
4641 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4642 &asc, &ascq, /*show_errors*/ 1);
4643
4644 scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec);
4645 }
4646
4647 void
scsi_sense_fru_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4648 scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4649 u_int sense_len, uint8_t *cdb, int cdb_len,
4650 struct scsi_inquiry_data *inq_data,
4651 struct scsi_sense_desc_header *header)
4652 {
4653 struct scsi_sense_fru *fru;
4654
4655 fru = (struct scsi_sense_fru *)header;
4656
4657 if (fru->fru == 0)
4658 return;
4659
4660 scsi_fru_sbuf(sb, (uint64_t)fru->fru);
4661 }
4662
4663 void
scsi_sense_stream_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4664 scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4665 u_int sense_len, uint8_t *cdb, int cdb_len,
4666 struct scsi_inquiry_data *inq_data,
4667 struct scsi_sense_desc_header *header)
4668 {
4669 struct scsi_sense_stream *stream;
4670
4671 stream = (struct scsi_sense_stream *)header;
4672 scsi_stream_sbuf(sb, stream->byte3);
4673 }
4674
4675 void
scsi_sense_block_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4676 scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4677 u_int sense_len, uint8_t *cdb, int cdb_len,
4678 struct scsi_inquiry_data *inq_data,
4679 struct scsi_sense_desc_header *header)
4680 {
4681 struct scsi_sense_block *block;
4682
4683 block = (struct scsi_sense_block *)header;
4684 scsi_block_sbuf(sb, block->byte3);
4685 }
4686
4687 void
scsi_sense_progress_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4688 scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4689 u_int sense_len, uint8_t *cdb, int cdb_len,
4690 struct scsi_inquiry_data *inq_data,
4691 struct scsi_sense_desc_header *header)
4692 {
4693 struct scsi_sense_progress *progress;
4694 const char *sense_key_desc;
4695 const char *asc_desc;
4696 int progress_val;
4697
4698 progress = (struct scsi_sense_progress *)header;
4699
4700 /*
4701 * Get descriptions for the sense key, ASC, and ASCQ in the
4702 * progress descriptor. These could be different than the values
4703 * in the overall sense data.
4704 */
4705 scsi_sense_desc(progress->sense_key, progress->add_sense_code,
4706 progress->add_sense_code_qual, inq_data,
4707 &sense_key_desc, &asc_desc);
4708
4709 progress_val = scsi_2btoul(progress->progress);
4710
4711 /*
4712 * The progress indicator is for the operation described by the
4713 * sense key, ASC, and ASCQ in the descriptor.
4714 */
4715 sbuf_cat(sb, sense_key_desc);
4716 sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code,
4717 progress->add_sense_code_qual, asc_desc);
4718 scsi_progress_sbuf(sb, progress_val);
4719 }
4720
4721 void
scsi_sense_ata_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4722 scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4723 u_int sense_len, uint8_t *cdb, int cdb_len,
4724 struct scsi_inquiry_data *inq_data,
4725 struct scsi_sense_desc_header *header)
4726 {
4727 struct scsi_sense_ata_ret_desc *res;
4728
4729 res = (struct scsi_sense_ata_ret_desc *)header;
4730
4731 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ",
4732 res->status,
4733 (res->status & 0x80) ? "BSY " : "",
4734 (res->status & 0x40) ? "DRDY " : "",
4735 (res->status & 0x20) ? "DF " : "",
4736 (res->status & 0x10) ? "SERV " : "",
4737 (res->status & 0x08) ? "DRQ " : "",
4738 (res->status & 0x04) ? "CORR " : "",
4739 (res->status & 0x02) ? "IDX " : "",
4740 (res->status & 0x01) ? "ERR" : "");
4741 if (res->status & 1) {
4742 sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ",
4743 res->error,
4744 (res->error & 0x80) ? "ICRC " : "",
4745 (res->error & 0x40) ? "UNC " : "",
4746 (res->error & 0x20) ? "MC " : "",
4747 (res->error & 0x10) ? "IDNF " : "",
4748 (res->error & 0x08) ? "MCR " : "",
4749 (res->error & 0x04) ? "ABRT " : "",
4750 (res->error & 0x02) ? "NM " : "",
4751 (res->error & 0x01) ? "ILI" : "");
4752 }
4753
4754 if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) {
4755 sbuf_printf(sb, "count: %02x%02x, ",
4756 res->count_15_8, res->count_7_0);
4757 sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ",
4758 res->lba_47_40, res->lba_39_32, res->lba_31_24,
4759 res->lba_23_16, res->lba_15_8, res->lba_7_0);
4760 } else {
4761 sbuf_printf(sb, "count: %02x, ", res->count_7_0);
4762 sbuf_printf(sb, "LBA: %02x%02x%02x, ",
4763 res->lba_23_16, res->lba_15_8, res->lba_7_0);
4764 }
4765 sbuf_printf(sb, "device: %02x, ", res->device);
4766 }
4767
4768 void
scsi_sense_forwarded_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4769 scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4770 u_int sense_len, uint8_t *cdb, int cdb_len,
4771 struct scsi_inquiry_data *inq_data,
4772 struct scsi_sense_desc_header *header)
4773 {
4774 struct scsi_sense_forwarded *forwarded;
4775 const char *sense_key_desc;
4776 const char *asc_desc;
4777 int error_code, sense_key, asc, ascq;
4778
4779 forwarded = (struct scsi_sense_forwarded *)header;
4780 scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data,
4781 forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1);
4782 scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc);
4783
4784 sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ",
4785 sense_key_desc, asc, ascq, asc_desc);
4786 }
4787
4788 /*
4789 * Generic sense descriptor printing routine. This is used when we have
4790 * not yet implemented a specific printing routine for this descriptor.
4791 */
4792 void
scsi_sense_generic_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4793 scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4794 u_int sense_len, uint8_t *cdb, int cdb_len,
4795 struct scsi_inquiry_data *inq_data,
4796 struct scsi_sense_desc_header *header)
4797 {
4798 int i;
4799 uint8_t *buf_ptr;
4800
4801 sbuf_printf(sb, "Descriptor %#x:", header->desc_type);
4802
4803 buf_ptr = (uint8_t *)&header[1];
4804
4805 for (i = 0; i < header->length; i++, buf_ptr++)
4806 sbuf_printf(sb, " %02x", *buf_ptr);
4807 }
4808
4809 /*
4810 * Keep this list in numeric order. This speeds the array traversal.
4811 */
4812 struct scsi_sense_desc_printer {
4813 uint8_t desc_type;
4814 /*
4815 * The function arguments here are the superset of what is needed
4816 * to print out various different descriptors. Command and
4817 * information descriptors need inquiry data and command type.
4818 * Sense key specific descriptors need the sense key.
4819 *
4820 * The sense, cdb, and inquiry data arguments may be NULL, but the
4821 * information printed may not be fully decoded as a result.
4822 */
4823 void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense,
4824 u_int sense_len, uint8_t *cdb, int cdb_len,
4825 struct scsi_inquiry_data *inq_data,
4826 struct scsi_sense_desc_header *header);
4827 } scsi_sense_printers[] = {
4828 {SSD_DESC_INFO, scsi_sense_info_sbuf},
4829 {SSD_DESC_COMMAND, scsi_sense_command_sbuf},
4830 {SSD_DESC_SKS, scsi_sense_sks_sbuf},
4831 {SSD_DESC_FRU, scsi_sense_fru_sbuf},
4832 {SSD_DESC_STREAM, scsi_sense_stream_sbuf},
4833 {SSD_DESC_BLOCK, scsi_sense_block_sbuf},
4834 {SSD_DESC_ATA, scsi_sense_ata_sbuf},
4835 {SSD_DESC_PROGRESS, scsi_sense_progress_sbuf},
4836 {SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf}
4837 };
4838
4839 void
scsi_sense_desc_sbuf(struct sbuf * sb,struct scsi_sense_data * sense,u_int sense_len,uint8_t * cdb,int cdb_len,struct scsi_inquiry_data * inq_data,struct scsi_sense_desc_header * header)4840 scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
4841 u_int sense_len, uint8_t *cdb, int cdb_len,
4842 struct scsi_inquiry_data *inq_data,
4843 struct scsi_sense_desc_header *header)
4844 {
4845 u_int i;
4846
4847 for (i = 0; i < nitems(scsi_sense_printers); i++) {
4848 struct scsi_sense_desc_printer *printer;
4849
4850 printer = &scsi_sense_printers[i];
4851
4852 /*
4853 * The list is sorted, so quit if we've passed our
4854 * descriptor number.
4855 */
4856 if (printer->desc_type > header->desc_type)
4857 break;
4858
4859 if (printer->desc_type != header->desc_type)
4860 continue;
4861
4862 printer->print_func(sb, sense, sense_len, cdb, cdb_len,
4863 inq_data, header);
4864
4865 return;
4866 }
4867
4868 /*
4869 * No specific printing routine, so use the generic routine.
4870 */
4871 scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len,
4872 inq_data, header);
4873 }
4874
4875 scsi_sense_data_type
scsi_sense_type(struct scsi_sense_data * sense_data)4876 scsi_sense_type(struct scsi_sense_data *sense_data)
4877 {
4878 switch (sense_data->error_code & SSD_ERRCODE) {
4879 case SSD_DESC_CURRENT_ERROR:
4880 case SSD_DESC_DEFERRED_ERROR:
4881 return (SSD_TYPE_DESC);
4882 break;
4883 case SSD_CURRENT_ERROR:
4884 case SSD_DEFERRED_ERROR:
4885 return (SSD_TYPE_FIXED);
4886 break;
4887 default:
4888 break;
4889 }
4890
4891 return (SSD_TYPE_NONE);
4892 }
4893
4894 struct scsi_print_sense_info {
4895 struct sbuf *sb;
4896 char *path_str;
4897 uint8_t *cdb;
4898 int cdb_len;
4899 struct scsi_inquiry_data *inq_data;
4900 };
4901
4902 static int
scsi_print_desc_func(struct scsi_sense_data_desc * sense,u_int sense_len,struct scsi_sense_desc_header * header,void * arg)4903 scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
4904 struct scsi_sense_desc_header *header, void *arg)
4905 {
4906 struct scsi_print_sense_info *print_info;
4907
4908 print_info = (struct scsi_print_sense_info *)arg;
4909
4910 switch (header->desc_type) {
4911 case SSD_DESC_INFO:
4912 case SSD_DESC_FRU:
4913 case SSD_DESC_COMMAND:
4914 case SSD_DESC_SKS:
4915 case SSD_DESC_BLOCK:
4916 case SSD_DESC_STREAM:
4917 /*
4918 * We have already printed these descriptors, if they are
4919 * present.
4920 */
4921 break;
4922 default: {
4923 sbuf_printf(print_info->sb, "%s", print_info->path_str);
4924 scsi_sense_desc_sbuf(print_info->sb,
4925 (struct scsi_sense_data *)sense, sense_len,
4926 print_info->cdb, print_info->cdb_len,
4927 print_info->inq_data, header);
4928 sbuf_putc(print_info->sb, '\n');
4929 break;
4930 }
4931 }
4932
4933 /*
4934 * Tell the iterator that we want to see more descriptors if they
4935 * are present.
4936 */
4937 return (0);
4938 }
4939
4940 void
scsi_sense_only_sbuf(struct scsi_sense_data * sense,u_int sense_len,struct sbuf * sb,char * path_str,struct scsi_inquiry_data * inq_data,uint8_t * cdb,int cdb_len)4941 scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
4942 struct sbuf *sb, char *path_str,
4943 struct scsi_inquiry_data *inq_data, uint8_t *cdb,
4944 int cdb_len)
4945 {
4946 int error_code, sense_key, asc, ascq;
4947
4948 sbuf_cat(sb, path_str);
4949
4950 scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
4951 &asc, &ascq, /*show_errors*/ 1);
4952
4953 sbuf_cat(sb, "SCSI sense: ");
4954 switch (error_code) {
4955 case SSD_DEFERRED_ERROR:
4956 case SSD_DESC_DEFERRED_ERROR:
4957 sbuf_cat(sb, "Deferred error: ");
4958
4959 /* FALLTHROUGH */
4960 case SSD_CURRENT_ERROR:
4961 case SSD_DESC_CURRENT_ERROR:
4962 {
4963 struct scsi_sense_data_desc *desc_sense;
4964 struct scsi_print_sense_info print_info;
4965 const char *sense_key_desc;
4966 const char *asc_desc;
4967 uint8_t sks[3];
4968 uint64_t val;
4969 uint8_t bits;
4970
4971 /*
4972 * Get descriptions for the sense key, ASC, and ASCQ. If
4973 * these aren't present in the sense data (i.e. the sense
4974 * data isn't long enough), the -1 values that
4975 * scsi_extract_sense_len() returns will yield default
4976 * or error descriptions.
4977 */
4978 scsi_sense_desc(sense_key, asc, ascq, inq_data,
4979 &sense_key_desc, &asc_desc);
4980
4981 /*
4982 * We first print the sense key and ASC/ASCQ.
4983 */
4984 sbuf_cat(sb, sense_key_desc);
4985 sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc);
4986
4987 /*
4988 * Print any block or stream device-specific information.
4989 */
4990 if (scsi_get_block_info(sense, sense_len, inq_data,
4991 &bits) == 0 && bits != 0) {
4992 sbuf_cat(sb, path_str);
4993 scsi_block_sbuf(sb, bits);
4994 sbuf_putc(sb, '\n');
4995 } else if (scsi_get_stream_info(sense, sense_len, inq_data,
4996 &bits) == 0 && bits != 0) {
4997 sbuf_cat(sb, path_str);
4998 scsi_stream_sbuf(sb, bits);
4999 sbuf_putc(sb, '\n');
5000 }
5001
5002 /*
5003 * Print the info field.
5004 */
5005 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO,
5006 &val, NULL) == 0) {
5007 sbuf_cat(sb, path_str);
5008 scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val);
5009 sbuf_putc(sb, '\n');
5010 }
5011
5012 /*
5013 * Print the FRU.
5014 */
5015 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU,
5016 &val, NULL) == 0) {
5017 sbuf_cat(sb, path_str);
5018 scsi_fru_sbuf(sb, val);
5019 sbuf_putc(sb, '\n');
5020 }
5021
5022 /*
5023 * Print any command-specific information.
5024 */
5025 if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND,
5026 &val, NULL) == 0) {
5027 sbuf_cat(sb, path_str);
5028 scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val);
5029 sbuf_putc(sb, '\n');
5030 }
5031
5032 /*
5033 * Print out any sense-key-specific information.
5034 */
5035 if (scsi_get_sks(sense, sense_len, sks) == 0) {
5036 sbuf_cat(sb, path_str);
5037 scsi_sks_sbuf(sb, sense_key, sks);
5038 sbuf_putc(sb, '\n');
5039 }
5040
5041 /*
5042 * If this is fixed sense, we're done. If we have
5043 * descriptor sense, we might have more information
5044 * available.
5045 */
5046 if (scsi_sense_type(sense) != SSD_TYPE_DESC)
5047 break;
5048
5049 desc_sense = (struct scsi_sense_data_desc *)sense;
5050
5051 print_info.sb = sb;
5052 print_info.path_str = path_str;
5053 print_info.cdb = cdb;
5054 print_info.cdb_len = cdb_len;
5055 print_info.inq_data = inq_data;
5056
5057 /*
5058 * Print any sense descriptors that we have not already printed.
5059 */
5060 scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func,
5061 &print_info);
5062 break;
5063 }
5064 case -1:
5065 /*
5066 * scsi_extract_sense_len() sets values to -1 if the
5067 * show_errors flag is set and they aren't present in the
5068 * sense data. This means that sense_len is 0.
5069 */
5070 sbuf_cat(sb, "No sense data present\n");
5071 break;
5072 default: {
5073 sbuf_printf(sb, "Error code 0x%x", error_code);
5074 if (sense->error_code & SSD_ERRCODE_VALID) {
5075 struct scsi_sense_data_fixed *fixed_sense;
5076
5077 fixed_sense = (struct scsi_sense_data_fixed *)sense;
5078
5079 if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){
5080 uint32_t info;
5081
5082 info = scsi_4btoul(fixed_sense->info);
5083
5084 sbuf_printf(sb, " at block no. %d (decimal)",
5085 info);
5086 }
5087 }
5088 sbuf_putc(sb, '\n');
5089 break;
5090 }
5091 }
5092 }
5093
5094 /*
5095 * scsi_sense_sbuf() returns 0 for success and -1 for failure.
5096 */
5097 #ifdef _KERNEL
5098 int
scsi_sense_sbuf(struct ccb_scsiio * csio,struct sbuf * sb,scsi_sense_string_flags flags)5099 scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
5100 scsi_sense_string_flags flags)
5101 #else /* !_KERNEL */
5102 int
5103 scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio,
5104 struct sbuf *sb, scsi_sense_string_flags flags)
5105 #endif /* _KERNEL/!_KERNEL */
5106 {
5107 struct scsi_sense_data *sense;
5108 struct scsi_inquiry_data *inq_data;
5109 #ifdef _KERNEL
5110 struct ccb_getdev *cgd;
5111 #endif /* _KERNEL */
5112 char path_str[64];
5113
5114 #ifndef _KERNEL
5115 if (device == NULL)
5116 return(-1);
5117 #endif /* !_KERNEL */
5118 if ((csio == NULL) || (sb == NULL))
5119 return(-1);
5120
5121 /*
5122 * If the CDB is a physical address, we can't deal with it..
5123 */
5124 if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0)
5125 flags &= ~SSS_FLAG_PRINT_COMMAND;
5126
5127 #ifdef _KERNEL
5128 xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str));
5129 #else /* !_KERNEL */
5130 cam_path_string(device, path_str, sizeof(path_str));
5131 #endif /* _KERNEL/!_KERNEL */
5132
5133 #ifdef _KERNEL
5134 if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
5135 return(-1);
5136 /*
5137 * Get the device information.
5138 */
5139 xpt_setup_ccb(&cgd->ccb_h,
5140 csio->ccb_h.path,
5141 CAM_PRIORITY_NORMAL);
5142 cgd->ccb_h.func_code = XPT_GDEV_TYPE;
5143 xpt_action((union ccb *)cgd);
5144
5145 /*
5146 * If the device is unconfigured, just pretend that it is a hard
5147 * drive. scsi_op_desc() needs this.
5148 */
5149 if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
5150 cgd->inq_data.device = T_DIRECT;
5151
5152 inq_data = &cgd->inq_data;
5153
5154 #else /* !_KERNEL */
5155
5156 inq_data = &device->inq_data;
5157
5158 #endif /* _KERNEL/!_KERNEL */
5159
5160 sense = NULL;
5161
5162 if (flags & SSS_FLAG_PRINT_COMMAND) {
5163 sbuf_cat(sb, path_str);
5164
5165 #ifdef _KERNEL
5166 scsi_command_string(csio, sb);
5167 #else /* !_KERNEL */
5168 scsi_command_string(device, csio, sb);
5169 #endif /* _KERNEL/!_KERNEL */
5170 sbuf_putc(sb, '\n');
5171 }
5172
5173 /*
5174 * If the sense data is a physical pointer, forget it.
5175 */
5176 if (csio->ccb_h.flags & CAM_SENSE_PTR) {
5177 if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5178 #ifdef _KERNEL
5179 xpt_free_ccb((union ccb*)cgd);
5180 #endif /* _KERNEL/!_KERNEL */
5181 return(-1);
5182 } else {
5183 /*
5184 * bcopy the pointer to avoid unaligned access
5185 * errors on finicky architectures. We don't
5186 * ensure that the sense data is pointer aligned.
5187 */
5188 bcopy((struct scsi_sense_data **)&csio->sense_data,
5189 &sense, sizeof(struct scsi_sense_data *));
5190 }
5191 } else {
5192 /*
5193 * If the physical sense flag is set, but the sense pointer
5194 * is not also set, we assume that the user is an idiot and
5195 * return. (Well, okay, it could be that somehow, the
5196 * entire csio is physical, but we would have probably core
5197 * dumped on one of the bogus pointer deferences above
5198 * already.)
5199 */
5200 if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
5201 #ifdef _KERNEL
5202 xpt_free_ccb((union ccb*)cgd);
5203 #endif /* _KERNEL/!_KERNEL */
5204 return(-1);
5205 } else
5206 sense = &csio->sense_data;
5207 }
5208
5209 scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb,
5210 path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len);
5211
5212 #ifdef _KERNEL
5213 xpt_free_ccb((union ccb*)cgd);
5214 #endif /* _KERNEL/!_KERNEL */
5215 return(0);
5216 }
5217
5218 #ifdef _KERNEL
5219 char *
scsi_sense_string(struct ccb_scsiio * csio,char * str,int str_len)5220 scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len)
5221 #else /* !_KERNEL */
5222 char *
5223 scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio,
5224 char *str, int str_len)
5225 #endif /* _KERNEL/!_KERNEL */
5226 {
5227 struct sbuf sb;
5228
5229 sbuf_new(&sb, str, str_len, 0);
5230
5231 #ifdef _KERNEL
5232 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5233 #else /* !_KERNEL */
5234 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5235 #endif /* _KERNEL/!_KERNEL */
5236
5237 sbuf_finish(&sb);
5238
5239 return(sbuf_data(&sb));
5240 }
5241
5242 #ifdef _KERNEL
5243 void
scsi_sense_print(struct ccb_scsiio * csio)5244 scsi_sense_print(struct ccb_scsiio *csio)
5245 {
5246 struct sbuf sb;
5247 char str[512];
5248
5249 sbuf_new(&sb, str, sizeof(str), 0);
5250
5251 scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
5252
5253 sbuf_finish(&sb);
5254
5255 sbuf_putbuf(&sb);
5256 }
5257
5258 #else /* !_KERNEL */
5259 void
scsi_sense_print(struct cam_device * device,struct ccb_scsiio * csio,FILE * ofile)5260 scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio,
5261 FILE *ofile)
5262 {
5263 struct sbuf sb;
5264 char str[512];
5265
5266 if ((device == NULL) || (csio == NULL) || (ofile == NULL))
5267 return;
5268
5269 sbuf_new(&sb, str, sizeof(str), 0);
5270
5271 scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
5272
5273 sbuf_finish(&sb);
5274
5275 fprintf(ofile, "%s", sbuf_data(&sb));
5276 }
5277
5278 #endif /* _KERNEL/!_KERNEL */
5279
5280 /*
5281 * Extract basic sense information. This is backward-compatible with the
5282 * previous implementation. For new implementations,
5283 * scsi_extract_sense_len() is recommended.
5284 */
5285 void
scsi_extract_sense(struct scsi_sense_data * sense_data,int * error_code,int * sense_key,int * asc,int * ascq)5286 scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code,
5287 int *sense_key, int *asc, int *ascq)
5288 {
5289 scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code,
5290 sense_key, asc, ascq, /*show_errors*/ 0);
5291 }
5292
5293 /*
5294 * Extract basic sense information from SCSI I/O CCB structure.
5295 */
5296 int
scsi_extract_sense_ccb(union ccb * ccb,int * error_code,int * sense_key,int * asc,int * ascq)5297 scsi_extract_sense_ccb(union ccb *ccb,
5298 int *error_code, int *sense_key, int *asc, int *ascq)
5299 {
5300 struct scsi_sense_data *sense_data;
5301
5302 /* Make sure there are some sense data we can access. */
5303 if (ccb->ccb_h.func_code != XPT_SCSI_IO ||
5304 (ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR ||
5305 (ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) ||
5306 (ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 ||
5307 (ccb->ccb_h.flags & CAM_SENSE_PHYS))
5308 return (0);
5309
5310 if (ccb->ccb_h.flags & CAM_SENSE_PTR)
5311 bcopy((struct scsi_sense_data **)&ccb->csio.sense_data,
5312 &sense_data, sizeof(struct scsi_sense_data *));
5313 else
5314 sense_data = &ccb->csio.sense_data;
5315 scsi_extract_sense_len(sense_data,
5316 ccb->csio.sense_len - ccb->csio.sense_resid,
5317 error_code, sense_key, asc, ascq, 1);
5318 if (*error_code == -1)
5319 return (0);
5320 return (1);
5321 }
5322
5323 /*
5324 * Extract basic sense information. If show_errors is set, sense values
5325 * will be set to -1 if they are not present.
5326 */
5327 void
scsi_extract_sense_len(struct scsi_sense_data * sense_data,u_int sense_len,int * error_code,int * sense_key,int * asc,int * ascq,int show_errors)5328 scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len,
5329 int *error_code, int *sense_key, int *asc, int *ascq,
5330 int show_errors)
5331 {
5332 /*
5333 * If we have no length, we have no sense.
5334 */
5335 if (sense_len == 0) {
5336 if (show_errors == 0) {
5337 *error_code = 0;
5338 *sense_key = 0;
5339 *asc = 0;
5340 *ascq = 0;
5341 } else {
5342 *error_code = -1;
5343 *sense_key = -1;
5344 *asc = -1;
5345 *ascq = -1;
5346 }
5347 return;
5348 }
5349
5350 *error_code = sense_data->error_code & SSD_ERRCODE;
5351
5352 switch (*error_code) {
5353 case SSD_DESC_CURRENT_ERROR:
5354 case SSD_DESC_DEFERRED_ERROR: {
5355 struct scsi_sense_data_desc *sense;
5356
5357 sense = (struct scsi_sense_data_desc *)sense_data;
5358
5359 if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key))
5360 *sense_key = sense->sense_key & SSD_KEY;
5361 else
5362 *sense_key = (show_errors) ? -1 : 0;
5363
5364 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code))
5365 *asc = sense->add_sense_code;
5366 else
5367 *asc = (show_errors) ? -1 : 0;
5368
5369 if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual))
5370 *ascq = sense->add_sense_code_qual;
5371 else
5372 *ascq = (show_errors) ? -1 : 0;
5373 break;
5374 }
5375 case SSD_CURRENT_ERROR:
5376 case SSD_DEFERRED_ERROR:
5377 default: {
5378 struct scsi_sense_data_fixed *sense;
5379
5380 sense = (struct scsi_sense_data_fixed *)sense_data;
5381
5382 if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags))
5383 *sense_key = sense->flags & SSD_KEY;
5384 else
5385 *sense_key = (show_errors) ? -1 : 0;
5386
5387 if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code))
5388 && (SSD_FIXED_IS_FILLED(sense, add_sense_code)))
5389 *asc = sense->add_sense_code;
5390 else
5391 *asc = (show_errors) ? -1 : 0;
5392
5393 if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual))
5394 && (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual)))
5395 *ascq = sense->add_sense_code_qual;
5396 else
5397 *ascq = (show_errors) ? -1 : 0;
5398 break;
5399 }
5400 }
5401 }
5402
5403 int
scsi_get_sense_key(struct scsi_sense_data * sense_data,u_int sense_len,int show_errors)5404 scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len,
5405 int show_errors)
5406 {
5407 int error_code, sense_key, asc, ascq;
5408
5409 scsi_extract_sense_len(sense_data, sense_len, &error_code,
5410 &sense_key, &asc, &ascq, show_errors);
5411
5412 return (sense_key);
5413 }
5414
5415 int
scsi_get_asc(struct scsi_sense_data * sense_data,u_int sense_len,int show_errors)5416 scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len,
5417 int show_errors)
5418 {
5419 int error_code, sense_key, asc, ascq;
5420
5421 scsi_extract_sense_len(sense_data, sense_len, &error_code,
5422 &sense_key, &asc, &ascq, show_errors);
5423
5424 return (asc);
5425 }
5426
5427 int
scsi_get_ascq(struct scsi_sense_data * sense_data,u_int sense_len,int show_errors)5428 scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len,
5429 int show_errors)
5430 {
5431 int error_code, sense_key, asc, ascq;
5432
5433 scsi_extract_sense_len(sense_data, sense_len, &error_code,
5434 &sense_key, &asc, &ascq, show_errors);
5435
5436 return (ascq);
5437 }
5438
5439 /*
5440 * This function currently requires at least 36 bytes, or
5441 * SHORT_INQUIRY_LENGTH, worth of data to function properly. If this
5442 * function needs more or less data in the future, another length should be
5443 * defined in scsi_all.h to indicate the minimum amount of data necessary
5444 * for this routine to function properly.
5445 */
5446 void
scsi_print_inquiry_sbuf(struct sbuf * sb,struct scsi_inquiry_data * inq_data)5447 scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
5448 {
5449 uint8_t type;
5450 char *dtype, *qtype;
5451
5452 type = SID_TYPE(inq_data);
5453
5454 /*
5455 * Figure out basic device type and qualifier.
5456 */
5457 if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) {
5458 qtype = " (vendor-unique qualifier)";
5459 } else {
5460 switch (SID_QUAL(inq_data)) {
5461 case SID_QUAL_LU_CONNECTED:
5462 qtype = "";
5463 break;
5464
5465 case SID_QUAL_LU_OFFLINE:
5466 qtype = " (offline)";
5467 break;
5468
5469 case SID_QUAL_RSVD:
5470 qtype = " (reserved qualifier)";
5471 break;
5472 default:
5473 case SID_QUAL_BAD_LU:
5474 qtype = " (LUN not supported)";
5475 break;
5476 }
5477 }
5478
5479 switch (type) {
5480 case T_DIRECT:
5481 dtype = "Direct Access";
5482 break;
5483 case T_SEQUENTIAL:
5484 dtype = "Sequential Access";
5485 break;
5486 case T_PRINTER:
5487 dtype = "Printer";
5488 break;
5489 case T_PROCESSOR:
5490 dtype = "Processor";
5491 break;
5492 case T_WORM:
5493 dtype = "WORM";
5494 break;
5495 case T_CDROM:
5496 dtype = "CD-ROM";
5497 break;
5498 case T_SCANNER:
5499 dtype = "Scanner";
5500 break;
5501 case T_OPTICAL:
5502 dtype = "Optical";
5503 break;
5504 case T_CHANGER:
5505 dtype = "Changer";
5506 break;
5507 case T_COMM:
5508 dtype = "Communication";
5509 break;
5510 case T_STORARRAY:
5511 dtype = "Storage Array";
5512 break;
5513 case T_ENCLOSURE:
5514 dtype = "Enclosure Services";
5515 break;
5516 case T_RBC:
5517 dtype = "Simplified Direct Access";
5518 break;
5519 case T_OCRW:
5520 dtype = "Optical Card Read/Write";
5521 break;
5522 case T_OSD:
5523 dtype = "Object-Based Storage";
5524 break;
5525 case T_ADC:
5526 dtype = "Automation/Drive Interface";
5527 break;
5528 case T_ZBC_HM:
5529 dtype = "Host Managed Zoned Block";
5530 break;
5531 case T_NODEVICE:
5532 dtype = "Uninstalled";
5533 break;
5534 default:
5535 dtype = "unknown";
5536 break;
5537 }
5538
5539 scsi_print_inquiry_short_sbuf(sb, inq_data);
5540
5541 sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype);
5542
5543 if (SID_ANSI_REV(inq_data) == SCSI_REV_0)
5544 sbuf_cat(sb, "SCSI ");
5545 else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) {
5546 sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data));
5547 } else {
5548 sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2);
5549 }
5550 sbuf_printf(sb, "device%s\n", qtype);
5551 }
5552
5553 void
scsi_print_inquiry(struct scsi_inquiry_data * inq_data)5554 scsi_print_inquiry(struct scsi_inquiry_data *inq_data)
5555 {
5556 struct sbuf sb;
5557 char buffer[120];
5558
5559 sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN);
5560 scsi_print_inquiry_sbuf(&sb, inq_data);
5561 sbuf_finish(&sb);
5562 sbuf_putbuf(&sb);
5563 }
5564
5565 void
scsi_print_inquiry_short_sbuf(struct sbuf * sb,struct scsi_inquiry_data * inq_data)5566 scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
5567 {
5568
5569 sbuf_putc(sb, '<');
5570 cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0);
5571 sbuf_putc(sb, ' ');
5572 cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0);
5573 sbuf_putc(sb, ' ');
5574 cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0);
5575 sbuf_cat(sb, "> ");
5576 }
5577
5578 void
scsi_print_inquiry_short(struct scsi_inquiry_data * inq_data)5579 scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data)
5580 {
5581 struct sbuf sb;
5582 char buffer[84];
5583
5584 sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN);
5585 scsi_print_inquiry_short_sbuf(&sb, inq_data);
5586 sbuf_finish(&sb);
5587 sbuf_putbuf(&sb);
5588 }
5589
5590 /*
5591 * Table of syncrates that don't follow the "divisible by 4"
5592 * rule. This table will be expanded in future SCSI specs.
5593 */
5594 static struct {
5595 u_int period_factor;
5596 u_int period; /* in 100ths of ns */
5597 } scsi_syncrates[] = {
5598 { 0x08, 625 }, /* FAST-160 */
5599 { 0x09, 1250 }, /* FAST-80 */
5600 { 0x0a, 2500 }, /* FAST-40 40MHz */
5601 { 0x0b, 3030 }, /* FAST-40 33MHz */
5602 { 0x0c, 5000 } /* FAST-20 */
5603 };
5604
5605 /*
5606 * Return the frequency in kHz corresponding to the given
5607 * sync period factor.
5608 */
5609 u_int
scsi_calc_syncsrate(u_int period_factor)5610 scsi_calc_syncsrate(u_int period_factor)
5611 {
5612 u_int i;
5613 u_int num_syncrates;
5614
5615 /*
5616 * It's a bug if period is zero, but if it is anyway, don't
5617 * die with a divide fault- instead return something which
5618 * 'approximates' async
5619 */
5620 if (period_factor == 0) {
5621 return (3300);
5622 }
5623
5624 num_syncrates = nitems(scsi_syncrates);
5625 /* See if the period is in the "exception" table */
5626 for (i = 0; i < num_syncrates; i++) {
5627 if (period_factor == scsi_syncrates[i].period_factor) {
5628 /* Period in kHz */
5629 return (100000000 / scsi_syncrates[i].period);
5630 }
5631 }
5632
5633 /*
5634 * Wasn't in the table, so use the standard
5635 * 4 times conversion.
5636 */
5637 return (10000000 / (period_factor * 4 * 10));
5638 }
5639
5640 /*
5641 * Return the SCSI sync parameter that corresponds to
5642 * the passed in period in 10ths of ns.
5643 */
5644 u_int
scsi_calc_syncparam(u_int period)5645 scsi_calc_syncparam(u_int period)
5646 {
5647 u_int i;
5648 u_int num_syncrates;
5649
5650 if (period == 0)
5651 return (~0); /* Async */
5652
5653 /* Adjust for exception table being in 100ths. */
5654 period *= 10;
5655 num_syncrates = nitems(scsi_syncrates);
5656 /* See if the period is in the "exception" table */
5657 for (i = 0; i < num_syncrates; i++) {
5658 if (period <= scsi_syncrates[i].period) {
5659 /* Period in 100ths of ns */
5660 return (scsi_syncrates[i].period_factor);
5661 }
5662 }
5663
5664 /*
5665 * Wasn't in the table, so use the standard
5666 * 1/4 period in ns conversion.
5667 */
5668 return (period/400);
5669 }
5670
5671 int
scsi_devid_is_naa_ieee_reg(uint8_t * bufp)5672 scsi_devid_is_naa_ieee_reg(uint8_t *bufp)
5673 {
5674 struct scsi_vpd_id_descriptor *descr;
5675 struct scsi_vpd_id_naa_basic *naa;
5676 int n;
5677
5678 descr = (struct scsi_vpd_id_descriptor *)bufp;
5679 naa = (struct scsi_vpd_id_naa_basic *)descr->identifier;
5680 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5681 return 0;
5682 if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg))
5683 return 0;
5684 n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT;
5685 if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG)
5686 return 0;
5687 return 1;
5688 }
5689
5690 int
scsi_devid_is_sas_target(uint8_t * bufp)5691 scsi_devid_is_sas_target(uint8_t *bufp)
5692 {
5693 struct scsi_vpd_id_descriptor *descr;
5694
5695 descr = (struct scsi_vpd_id_descriptor *)bufp;
5696 if (!scsi_devid_is_naa_ieee_reg(bufp))
5697 return 0;
5698 if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */
5699 return 0;
5700 if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS)
5701 return 0;
5702 return 1;
5703 }
5704
5705 int
scsi_devid_is_lun_eui64(uint8_t * bufp)5706 scsi_devid_is_lun_eui64(uint8_t *bufp)
5707 {
5708 struct scsi_vpd_id_descriptor *descr;
5709
5710 descr = (struct scsi_vpd_id_descriptor *)bufp;
5711 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5712 return 0;
5713 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64)
5714 return 0;
5715 return 1;
5716 }
5717
5718 int
scsi_devid_is_lun_naa(uint8_t * bufp)5719 scsi_devid_is_lun_naa(uint8_t *bufp)
5720 {
5721 struct scsi_vpd_id_descriptor *descr;
5722
5723 descr = (struct scsi_vpd_id_descriptor *)bufp;
5724 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5725 return 0;
5726 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5727 return 0;
5728 return 1;
5729 }
5730
5731 int
scsi_devid_is_lun_t10(uint8_t * bufp)5732 scsi_devid_is_lun_t10(uint8_t *bufp)
5733 {
5734 struct scsi_vpd_id_descriptor *descr;
5735
5736 descr = (struct scsi_vpd_id_descriptor *)bufp;
5737 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5738 return 0;
5739 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10)
5740 return 0;
5741 return 1;
5742 }
5743
5744 int
scsi_devid_is_lun_name(uint8_t * bufp)5745 scsi_devid_is_lun_name(uint8_t *bufp)
5746 {
5747 struct scsi_vpd_id_descriptor *descr;
5748
5749 descr = (struct scsi_vpd_id_descriptor *)bufp;
5750 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5751 return 0;
5752 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME)
5753 return 0;
5754 return 1;
5755 }
5756
5757 int
scsi_devid_is_lun_md5(uint8_t * bufp)5758 scsi_devid_is_lun_md5(uint8_t *bufp)
5759 {
5760 struct scsi_vpd_id_descriptor *descr;
5761
5762 descr = (struct scsi_vpd_id_descriptor *)bufp;
5763 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5764 return 0;
5765 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID)
5766 return 0;
5767 return 1;
5768 }
5769
5770 int
scsi_devid_is_lun_uuid(uint8_t * bufp)5771 scsi_devid_is_lun_uuid(uint8_t *bufp)
5772 {
5773 struct scsi_vpd_id_descriptor *descr;
5774
5775 descr = (struct scsi_vpd_id_descriptor *)bufp;
5776 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
5777 return 0;
5778 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID)
5779 return 0;
5780 return 1;
5781 }
5782
5783 int
scsi_devid_is_port_naa(uint8_t * bufp)5784 scsi_devid_is_port_naa(uint8_t *bufp)
5785 {
5786 struct scsi_vpd_id_descriptor *descr;
5787
5788 descr = (struct scsi_vpd_id_descriptor *)bufp;
5789 if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT)
5790 return 0;
5791 if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
5792 return 0;
5793 return 1;
5794 }
5795
5796 struct scsi_vpd_id_descriptor *
scsi_get_devid_desc(struct scsi_vpd_id_descriptor * desc,uint32_t len,scsi_devid_checkfn_t ck_fn)5797 scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
5798 scsi_devid_checkfn_t ck_fn)
5799 {
5800 uint8_t *desc_buf_end;
5801
5802 desc_buf_end = (uint8_t *)desc + len;
5803
5804 for (; desc->identifier <= desc_buf_end &&
5805 desc->identifier + desc->length <= desc_buf_end;
5806 desc = (struct scsi_vpd_id_descriptor *)(desc->identifier
5807 + desc->length)) {
5808 if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0)
5809 return (desc);
5810 }
5811 return (NULL);
5812 }
5813
5814 struct scsi_vpd_id_descriptor *
scsi_get_devid(struct scsi_vpd_device_id * id,uint32_t page_len,scsi_devid_checkfn_t ck_fn)5815 scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len,
5816 scsi_devid_checkfn_t ck_fn)
5817 {
5818 uint32_t len;
5819
5820 if (page_len < sizeof(*id))
5821 return (NULL);
5822 len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id));
5823 return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *)
5824 id->desc_list, len, ck_fn));
5825 }
5826
5827 int
scsi_transportid_sbuf(struct sbuf * sb,struct scsi_transportid_header * hdr,uint32_t valid_len)5828 scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr,
5829 uint32_t valid_len)
5830 {
5831 switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) {
5832 case SCSI_PROTO_FC: {
5833 struct scsi_transportid_fcp *fcp;
5834 uint64_t n_port_name;
5835
5836 fcp = (struct scsi_transportid_fcp *)hdr;
5837
5838 n_port_name = scsi_8btou64(fcp->n_port_name);
5839
5840 sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name);
5841 break;
5842 }
5843 case SCSI_PROTO_SPI: {
5844 struct scsi_transportid_spi *spi;
5845
5846 spi = (struct scsi_transportid_spi *)hdr;
5847
5848 sbuf_printf(sb, "SPI address: %u,%u",
5849 scsi_2btoul(spi->scsi_addr),
5850 scsi_2btoul(spi->rel_trgt_port_id));
5851 break;
5852 }
5853 case SCSI_PROTO_SSA:
5854 /*
5855 * XXX KDM there is no transport ID defined in SPC-4 for
5856 * SSA.
5857 */
5858 break;
5859 case SCSI_PROTO_1394: {
5860 struct scsi_transportid_1394 *sbp;
5861 uint64_t eui64;
5862
5863 sbp = (struct scsi_transportid_1394 *)hdr;
5864
5865 eui64 = scsi_8btou64(sbp->eui64);
5866 sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64);
5867 break;
5868 }
5869 case SCSI_PROTO_RDMA: {
5870 struct scsi_transportid_rdma *rdma;
5871 unsigned int i;
5872
5873 rdma = (struct scsi_transportid_rdma *)hdr;
5874
5875 sbuf_cat(sb, "RDMA address: 0x");
5876 for (i = 0; i < sizeof(rdma->initiator_port_id); i++)
5877 sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]);
5878 break;
5879 }
5880 case SCSI_PROTO_ISCSI: {
5881 uint32_t add_len, i;
5882 uint8_t *iscsi_name = NULL;
5883 int nul_found = 0;
5884
5885 sbuf_cat(sb, "iSCSI address: ");
5886 if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5887 SCSI_TRN_ISCSI_FORMAT_DEVICE) {
5888 struct scsi_transportid_iscsi_device *dev;
5889
5890 dev = (struct scsi_transportid_iscsi_device *)hdr;
5891
5892 /*
5893 * Verify how much additional data we really have.
5894 */
5895 add_len = scsi_2btoul(dev->additional_length);
5896 add_len = MIN(add_len, valid_len -
5897 __offsetof(struct scsi_transportid_iscsi_device,
5898 iscsi_name));
5899 iscsi_name = &dev->iscsi_name[0];
5900
5901 } else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
5902 SCSI_TRN_ISCSI_FORMAT_PORT) {
5903 struct scsi_transportid_iscsi_port *port;
5904
5905 port = (struct scsi_transportid_iscsi_port *)hdr;
5906
5907 add_len = scsi_2btoul(port->additional_length);
5908 add_len = MIN(add_len, valid_len -
5909 __offsetof(struct scsi_transportid_iscsi_port,
5910 iscsi_name));
5911 iscsi_name = &port->iscsi_name[0];
5912 } else {
5913 sbuf_printf(sb, "unknown format %x",
5914 (hdr->format_protocol &
5915 SCSI_TRN_FORMAT_MASK) >>
5916 SCSI_TRN_FORMAT_SHIFT);
5917 break;
5918 }
5919 if (add_len == 0) {
5920 sbuf_cat(sb, "not enough data");
5921 break;
5922 }
5923 /*
5924 * This is supposed to be a NUL-terminated ASCII
5925 * string, but you never know. So we're going to
5926 * check. We need to do this because there is no
5927 * sbuf equivalent of strncat().
5928 */
5929 for (i = 0; i < add_len; i++) {
5930 if (iscsi_name[i] == '\0') {
5931 nul_found = 1;
5932 break;
5933 }
5934 }
5935 /*
5936 * If there is a NUL in the name, we can just use
5937 * sbuf_cat(). Otherwise we need to use sbuf_bcat().
5938 */
5939 if (nul_found != 0)
5940 sbuf_cat(sb, iscsi_name);
5941 else
5942 sbuf_bcat(sb, iscsi_name, add_len);
5943 break;
5944 }
5945 case SCSI_PROTO_SAS: {
5946 struct scsi_transportid_sas *sas;
5947 uint64_t sas_addr;
5948
5949 sas = (struct scsi_transportid_sas *)hdr;
5950
5951 sas_addr = scsi_8btou64(sas->sas_address);
5952 sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr);
5953 break;
5954 }
5955 case SCSI_PROTO_ADITP:
5956 case SCSI_PROTO_ATA:
5957 case SCSI_PROTO_UAS:
5958 /*
5959 * No Transport ID format for ADI, ATA or USB is defined in
5960 * SPC-4.
5961 */
5962 sbuf_printf(sb, "No known Transport ID format for protocol "
5963 "%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5964 break;
5965 case SCSI_PROTO_SOP: {
5966 struct scsi_transportid_sop *sop;
5967 struct scsi_sop_routing_id_norm *rid;
5968
5969 sop = (struct scsi_transportid_sop *)hdr;
5970 rid = (struct scsi_sop_routing_id_norm *)sop->routing_id;
5971
5972 /*
5973 * Note that there is no alternate format specified in SPC-4
5974 * for the PCIe routing ID, so we don't really have a way
5975 * to know whether the second byte of the routing ID is
5976 * a device and function or just a function. So we just
5977 * assume bus,device,function.
5978 */
5979 sbuf_printf(sb, "SOP Routing ID: %u,%u,%u",
5980 rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT,
5981 rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX);
5982 break;
5983 }
5984 case SCSI_PROTO_NONE:
5985 default:
5986 sbuf_printf(sb, "Unknown protocol %#x",
5987 hdr->format_protocol & SCSI_TRN_PROTO_MASK);
5988 break;
5989 }
5990
5991 return (0);
5992 }
5993
5994 struct scsi_nv scsi_proto_map[] = {
5995 { "fcp", SCSI_PROTO_FC },
5996 { "spi", SCSI_PROTO_SPI },
5997 { "ssa", SCSI_PROTO_SSA },
5998 { "sbp", SCSI_PROTO_1394 },
5999 { "1394", SCSI_PROTO_1394 },
6000 { "srp", SCSI_PROTO_RDMA },
6001 { "rdma", SCSI_PROTO_RDMA },
6002 { "iscsi", SCSI_PROTO_ISCSI },
6003 { "iqn", SCSI_PROTO_ISCSI },
6004 { "sas", SCSI_PROTO_SAS },
6005 { "aditp", SCSI_PROTO_ADITP },
6006 { "ata", SCSI_PROTO_ATA },
6007 { "uas", SCSI_PROTO_UAS },
6008 { "usb", SCSI_PROTO_UAS },
6009 { "sop", SCSI_PROTO_SOP }
6010 };
6011
6012 const char *
scsi_nv_to_str(struct scsi_nv * table,int num_table_entries,uint64_t value)6013 scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value)
6014 {
6015 int i;
6016
6017 for (i = 0; i < num_table_entries; i++) {
6018 if (table[i].value == value)
6019 return (table[i].name);
6020 }
6021
6022 return (NULL);
6023 }
6024
6025 /*
6026 * Given a name/value table, find a value matching the given name.
6027 * Return values:
6028 * SCSI_NV_FOUND - match found
6029 * SCSI_NV_AMBIGUOUS - more than one match, none of them exact
6030 * SCSI_NV_NOT_FOUND - no match found
6031 */
6032 scsi_nv_status
scsi_get_nv(struct scsi_nv * table,int num_table_entries,char * name,int * table_entry,scsi_nv_flags flags)6033 scsi_get_nv(struct scsi_nv *table, int num_table_entries,
6034 char *name, int *table_entry, scsi_nv_flags flags)
6035 {
6036 int i, num_matches = 0;
6037
6038 for (i = 0; i < num_table_entries; i++) {
6039 size_t table_len, name_len;
6040
6041 table_len = strlen(table[i].name);
6042 name_len = strlen(name);
6043
6044 if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0)
6045 && (strncasecmp(table[i].name, name, name_len) == 0))
6046 || (((flags & SCSI_NV_FLAG_IG_CASE) == 0)
6047 && (strncmp(table[i].name, name, name_len) == 0))) {
6048 *table_entry = i;
6049
6050 /*
6051 * Check for an exact match. If we have the same
6052 * number of characters in the table as the argument,
6053 * and we already know they're the same, we have
6054 * an exact match.
6055 */
6056 if (table_len == name_len)
6057 return (SCSI_NV_FOUND);
6058
6059 /*
6060 * Otherwise, bump up the number of matches. We'll
6061 * see later how many we have.
6062 */
6063 num_matches++;
6064 }
6065 }
6066
6067 if (num_matches > 1)
6068 return (SCSI_NV_AMBIGUOUS);
6069 else if (num_matches == 1)
6070 return (SCSI_NV_FOUND);
6071 else
6072 return (SCSI_NV_NOT_FOUND);
6073 }
6074
6075 /*
6076 * Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are
6077 * all 64-bit numbers, the code is similar.
6078 */
6079 int
scsi_parse_transportid_64bit(int proto_id,char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6080 scsi_parse_transportid_64bit(int proto_id, char *id_str,
6081 struct scsi_transportid_header **hdr,
6082 unsigned int *alloc_len,
6083 #ifdef _KERNEL
6084 struct malloc_type *type, int flags,
6085 #endif
6086 char *error_str, int error_str_len)
6087 {
6088 uint64_t value;
6089 char *endptr;
6090 int retval;
6091 size_t alloc_size;
6092
6093 retval = 0;
6094
6095 value = strtouq(id_str, &endptr, 0);
6096 if (*endptr != '\0') {
6097 if (error_str != NULL) {
6098 snprintf(error_str, error_str_len, "%s: error "
6099 "parsing ID %s, 64-bit number required",
6100 __func__, id_str);
6101 }
6102 retval = 1;
6103 goto bailout;
6104 }
6105
6106 switch (proto_id) {
6107 case SCSI_PROTO_FC:
6108 alloc_size = sizeof(struct scsi_transportid_fcp);
6109 break;
6110 case SCSI_PROTO_1394:
6111 alloc_size = sizeof(struct scsi_transportid_1394);
6112 break;
6113 case SCSI_PROTO_SAS:
6114 alloc_size = sizeof(struct scsi_transportid_sas);
6115 break;
6116 default:
6117 if (error_str != NULL) {
6118 snprintf(error_str, error_str_len, "%s: unsupported "
6119 "protocol %d", __func__, proto_id);
6120 }
6121 retval = 1;
6122 goto bailout;
6123 break; /* NOTREACHED */
6124 }
6125 #ifdef _KERNEL
6126 *hdr = malloc(alloc_size, type, flags);
6127 #else /* _KERNEL */
6128 *hdr = malloc(alloc_size);
6129 #endif /*_KERNEL */
6130 if (*hdr == NULL) {
6131 if (error_str != NULL) {
6132 snprintf(error_str, error_str_len, "%s: unable to "
6133 "allocate %zu bytes", __func__, alloc_size);
6134 }
6135 retval = 1;
6136 goto bailout;
6137 }
6138
6139 *alloc_len = alloc_size;
6140
6141 bzero(*hdr, alloc_size);
6142
6143 switch (proto_id) {
6144 case SCSI_PROTO_FC: {
6145 struct scsi_transportid_fcp *fcp;
6146
6147 fcp = (struct scsi_transportid_fcp *)(*hdr);
6148 fcp->format_protocol = SCSI_PROTO_FC |
6149 SCSI_TRN_FCP_FORMAT_DEFAULT;
6150 scsi_u64to8b(value, fcp->n_port_name);
6151 break;
6152 }
6153 case SCSI_PROTO_1394: {
6154 struct scsi_transportid_1394 *sbp;
6155
6156 sbp = (struct scsi_transportid_1394 *)(*hdr);
6157 sbp->format_protocol = SCSI_PROTO_1394 |
6158 SCSI_TRN_1394_FORMAT_DEFAULT;
6159 scsi_u64to8b(value, sbp->eui64);
6160 break;
6161 }
6162 case SCSI_PROTO_SAS: {
6163 struct scsi_transportid_sas *sas;
6164
6165 sas = (struct scsi_transportid_sas *)(*hdr);
6166 sas->format_protocol = SCSI_PROTO_SAS |
6167 SCSI_TRN_SAS_FORMAT_DEFAULT;
6168 scsi_u64to8b(value, sas->sas_address);
6169 break;
6170 }
6171 default:
6172 break;
6173 }
6174 bailout:
6175 return (retval);
6176 }
6177
6178 /*
6179 * Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port
6180 */
6181 int
scsi_parse_transportid_spi(char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6182 scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr,
6183 unsigned int *alloc_len,
6184 #ifdef _KERNEL
6185 struct malloc_type *type, int flags,
6186 #endif
6187 char *error_str, int error_str_len)
6188 {
6189 unsigned long scsi_addr, target_port;
6190 struct scsi_transportid_spi *spi;
6191 char *tmpstr, *endptr;
6192 int retval;
6193
6194 retval = 0;
6195
6196 tmpstr = strsep(&id_str, ",");
6197 if (tmpstr == NULL) {
6198 if (error_str != NULL) {
6199 snprintf(error_str, error_str_len,
6200 "%s: no ID found", __func__);
6201 }
6202 retval = 1;
6203 goto bailout;
6204 }
6205 scsi_addr = strtoul(tmpstr, &endptr, 0);
6206 if (*endptr != '\0') {
6207 if (error_str != NULL) {
6208 snprintf(error_str, error_str_len, "%s: error "
6209 "parsing SCSI ID %s, number required",
6210 __func__, tmpstr);
6211 }
6212 retval = 1;
6213 goto bailout;
6214 }
6215
6216 if (id_str == NULL) {
6217 if (error_str != NULL) {
6218 snprintf(error_str, error_str_len, "%s: no relative "
6219 "target port found", __func__);
6220 }
6221 retval = 1;
6222 goto bailout;
6223 }
6224
6225 target_port = strtoul(id_str, &endptr, 0);
6226 if (*endptr != '\0') {
6227 if (error_str != NULL) {
6228 snprintf(error_str, error_str_len, "%s: error "
6229 "parsing relative target port %s, number "
6230 "required", __func__, id_str);
6231 }
6232 retval = 1;
6233 goto bailout;
6234 }
6235 #ifdef _KERNEL
6236 spi = malloc(sizeof(*spi), type, flags);
6237 #else
6238 spi = malloc(sizeof(*spi));
6239 #endif
6240 if (spi == NULL) {
6241 if (error_str != NULL) {
6242 snprintf(error_str, error_str_len, "%s: unable to "
6243 "allocate %zu bytes", __func__,
6244 sizeof(*spi));
6245 }
6246 retval = 1;
6247 goto bailout;
6248 }
6249 *alloc_len = sizeof(*spi);
6250 bzero(spi, sizeof(*spi));
6251
6252 spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT;
6253 scsi_ulto2b(scsi_addr, spi->scsi_addr);
6254 scsi_ulto2b(target_port, spi->rel_trgt_port_id);
6255
6256 *hdr = (struct scsi_transportid_header *)spi;
6257 bailout:
6258 return (retval);
6259 }
6260
6261 /*
6262 * Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits,
6263 * optionally prefixed by "0x" or "0X".
6264 */
6265 int
scsi_parse_transportid_rdma(char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6266 scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr,
6267 unsigned int *alloc_len,
6268 #ifdef _KERNEL
6269 struct malloc_type *type, int flags,
6270 #endif
6271 char *error_str, int error_str_len)
6272 {
6273 struct scsi_transportid_rdma *rdma;
6274 int retval;
6275 size_t id_len, rdma_id_size;
6276 uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN];
6277 char *tmpstr;
6278 unsigned int i, j;
6279
6280 retval = 0;
6281 id_len = strlen(id_str);
6282 rdma_id_size = SCSI_TRN_RDMA_PORT_LEN;
6283
6284 /*
6285 * Check the size. It needs to be either 32 or 34 characters long.
6286 */
6287 if ((id_len != (rdma_id_size * 2))
6288 && (id_len != ((rdma_id_size * 2) + 2))) {
6289 if (error_str != NULL) {
6290 snprintf(error_str, error_str_len, "%s: RDMA ID "
6291 "must be 32 hex digits (0x prefix "
6292 "optional), only %zu seen", __func__, id_len);
6293 }
6294 retval = 1;
6295 goto bailout;
6296 }
6297
6298 tmpstr = id_str;
6299 /*
6300 * If the user gave us 34 characters, the string needs to start
6301 * with '0x'.
6302 */
6303 if (id_len == ((rdma_id_size * 2) + 2)) {
6304 if ((tmpstr[0] == '0')
6305 && ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) {
6306 tmpstr += 2;
6307 } else {
6308 if (error_str != NULL) {
6309 snprintf(error_str, error_str_len, "%s: RDMA "
6310 "ID prefix, if used, must be \"0x\", "
6311 "got %s", __func__, tmpstr);
6312 }
6313 retval = 1;
6314 goto bailout;
6315 }
6316 }
6317 bzero(rdma_id, sizeof(rdma_id));
6318
6319 /*
6320 * Convert ASCII hex into binary bytes. There is no standard
6321 * 128-bit integer type, and so no strtou128t() routine to convert
6322 * from hex into a large integer. In the end, we're not going to
6323 * an integer, but rather to a byte array, so that and the fact
6324 * that we require the user to give us 32 hex digits simplifies the
6325 * logic.
6326 */
6327 for (i = 0; i < (rdma_id_size * 2); i++) {
6328 int cur_shift;
6329 unsigned char c;
6330
6331 /* Increment the byte array one for every 2 hex digits */
6332 j = i >> 1;
6333
6334 /*
6335 * The first digit in every pair is the most significant
6336 * 4 bits. The second is the least significant 4 bits.
6337 */
6338 if ((i % 2) == 0)
6339 cur_shift = 4;
6340 else
6341 cur_shift = 0;
6342
6343 c = tmpstr[i];
6344 /* Convert the ASCII hex character into a number */
6345 if (isdigit(c))
6346 c -= '0';
6347 else if (isalpha(c))
6348 c -= isupper(c) ? 'A' - 10 : 'a' - 10;
6349 else {
6350 if (error_str != NULL) {
6351 snprintf(error_str, error_str_len, "%s: "
6352 "RDMA ID must be hex digits, got "
6353 "invalid character %c", __func__,
6354 tmpstr[i]);
6355 }
6356 retval = 1;
6357 goto bailout;
6358 }
6359 /*
6360 * The converted number can't be less than 0; the type is
6361 * unsigned, and the subtraction logic will not give us
6362 * a negative number. So we only need to make sure that
6363 * the value is not greater than 0xf. (i.e. make sure the
6364 * user didn't give us a value like "0x12jklmno").
6365 */
6366 if (c > 0xf) {
6367 if (error_str != NULL) {
6368 snprintf(error_str, error_str_len, "%s: "
6369 "RDMA ID must be hex digits, got "
6370 "invalid character %c", __func__,
6371 tmpstr[i]);
6372 }
6373 retval = 1;
6374 goto bailout;
6375 }
6376
6377 rdma_id[j] |= c << cur_shift;
6378 }
6379
6380 #ifdef _KERNEL
6381 rdma = malloc(sizeof(*rdma), type, flags);
6382 #else
6383 rdma = malloc(sizeof(*rdma));
6384 #endif
6385 if (rdma == NULL) {
6386 if (error_str != NULL) {
6387 snprintf(error_str, error_str_len, "%s: unable to "
6388 "allocate %zu bytes", __func__,
6389 sizeof(*rdma));
6390 }
6391 retval = 1;
6392 goto bailout;
6393 }
6394 *alloc_len = sizeof(*rdma);
6395 bzero(rdma, *alloc_len);
6396
6397 rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT;
6398 bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN);
6399
6400 *hdr = (struct scsi_transportid_header *)rdma;
6401
6402 bailout:
6403 return (retval);
6404 }
6405
6406 /*
6407 * Parse an iSCSI name. The format is either just the name:
6408 *
6409 * iqn.2012-06.com.example:target0
6410 * or the name, separator and initiator session ID:
6411 *
6412 * iqn.2012-06.com.example:target0,i,0x123
6413 *
6414 * The separator format is exact.
6415 */
6416 int
scsi_parse_transportid_iscsi(char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6417 scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr,
6418 unsigned int *alloc_len,
6419 #ifdef _KERNEL
6420 struct malloc_type *type, int flags,
6421 #endif
6422 char *error_str, int error_str_len)
6423 {
6424 size_t id_len, sep_len, id_size, name_len;
6425 int retval;
6426 unsigned int i, sep_pos, sep_found;
6427 const char *sep_template = ",i,0x";
6428 const char *iqn_prefix = "iqn.";
6429 struct scsi_transportid_iscsi_device *iscsi;
6430
6431 retval = 0;
6432 sep_found = 0;
6433
6434 id_len = strlen(id_str);
6435 sep_len = strlen(sep_template);
6436
6437 /*
6438 * The separator is defined as exactly ',i,0x'. Any other commas,
6439 * or any other form, is an error. So look for a comma, and once
6440 * we find that, the next few characters must match the separator
6441 * exactly. Once we get through the separator, there should be at
6442 * least one character.
6443 */
6444 for (i = 0, sep_pos = 0; i < id_len; i++) {
6445 if (sep_pos == 0) {
6446 if (id_str[i] == sep_template[sep_pos])
6447 sep_pos++;
6448
6449 continue;
6450 }
6451 if (sep_pos < sep_len) {
6452 if (id_str[i] == sep_template[sep_pos]) {
6453 sep_pos++;
6454 continue;
6455 }
6456 if (error_str != NULL) {
6457 snprintf(error_str, error_str_len, "%s: "
6458 "invalid separator in iSCSI name "
6459 "\"%s\"",
6460 __func__, id_str);
6461 }
6462 retval = 1;
6463 goto bailout;
6464 } else {
6465 sep_found = 1;
6466 break;
6467 }
6468 }
6469
6470 /*
6471 * Check to see whether we have a separator but no digits after it.
6472 */
6473 if ((sep_pos != 0)
6474 && (sep_found == 0)) {
6475 if (error_str != NULL) {
6476 snprintf(error_str, error_str_len, "%s: no digits "
6477 "found after separator in iSCSI name \"%s\"",
6478 __func__, id_str);
6479 }
6480 retval = 1;
6481 goto bailout;
6482 }
6483
6484 /*
6485 * The incoming ID string has the "iqn." prefix stripped off. We
6486 * need enough space for the base structure (the structures are the
6487 * same for the two iSCSI forms), the prefix, the ID string and a
6488 * terminating NUL.
6489 */
6490 id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1;
6491
6492 #ifdef _KERNEL
6493 iscsi = malloc(id_size, type, flags);
6494 #else
6495 iscsi = malloc(id_size);
6496 #endif
6497 if (iscsi == NULL) {
6498 if (error_str != NULL) {
6499 snprintf(error_str, error_str_len, "%s: unable to "
6500 "allocate %zu bytes", __func__, id_size);
6501 }
6502 retval = 1;
6503 goto bailout;
6504 }
6505 *alloc_len = id_size;
6506 bzero(iscsi, id_size);
6507
6508 iscsi->format_protocol = SCSI_PROTO_ISCSI;
6509 if (sep_found == 0)
6510 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE;
6511 else
6512 iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT;
6513 name_len = id_size - sizeof(*iscsi);
6514 scsi_ulto2b(name_len, iscsi->additional_length);
6515 snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str);
6516
6517 *hdr = (struct scsi_transportid_header *)iscsi;
6518
6519 bailout:
6520 return (retval);
6521 }
6522
6523 /*
6524 * Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be
6525 * of the form 'bus,device,function' or 'bus,function'.
6526 */
6527 int
scsi_parse_transportid_sop(char * id_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6528 scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr,
6529 unsigned int *alloc_len,
6530 #ifdef _KERNEL
6531 struct malloc_type *type, int flags,
6532 #endif
6533 char *error_str, int error_str_len)
6534 {
6535 struct scsi_transportid_sop *sop;
6536 unsigned long bus, device, function;
6537 char *tmpstr, *endptr;
6538 int retval, device_spec;
6539
6540 retval = 0;
6541 device_spec = 0;
6542 device = 0;
6543
6544 tmpstr = strsep(&id_str, ",");
6545 if ((tmpstr == NULL)
6546 || (*tmpstr == '\0')) {
6547 if (error_str != NULL) {
6548 snprintf(error_str, error_str_len, "%s: no ID found",
6549 __func__);
6550 }
6551 retval = 1;
6552 goto bailout;
6553 }
6554 bus = strtoul(tmpstr, &endptr, 0);
6555 if (*endptr != '\0') {
6556 if (error_str != NULL) {
6557 snprintf(error_str, error_str_len, "%s: error "
6558 "parsing PCIe bus %s, number required",
6559 __func__, tmpstr);
6560 }
6561 retval = 1;
6562 goto bailout;
6563 }
6564 if ((id_str == NULL)
6565 || (*id_str == '\0')) {
6566 if (error_str != NULL) {
6567 snprintf(error_str, error_str_len, "%s: no PCIe "
6568 "device or function found", __func__);
6569 }
6570 retval = 1;
6571 goto bailout;
6572 }
6573 tmpstr = strsep(&id_str, ",");
6574 function = strtoul(tmpstr, &endptr, 0);
6575 if (*endptr != '\0') {
6576 if (error_str != NULL) {
6577 snprintf(error_str, error_str_len, "%s: error "
6578 "parsing PCIe device/function %s, number "
6579 "required", __func__, tmpstr);
6580 }
6581 retval = 1;
6582 goto bailout;
6583 }
6584 /*
6585 * Check to see whether the user specified a third value. If so,
6586 * the second is the device.
6587 */
6588 if (id_str != NULL) {
6589 if (*id_str == '\0') {
6590 if (error_str != NULL) {
6591 snprintf(error_str, error_str_len, "%s: "
6592 "no PCIe function found", __func__);
6593 }
6594 retval = 1;
6595 goto bailout;
6596 }
6597 device = function;
6598 device_spec = 1;
6599 function = strtoul(id_str, &endptr, 0);
6600 if (*endptr != '\0') {
6601 if (error_str != NULL) {
6602 snprintf(error_str, error_str_len, "%s: "
6603 "error parsing PCIe function %s, "
6604 "number required", __func__, id_str);
6605 }
6606 retval = 1;
6607 goto bailout;
6608 }
6609 }
6610 if (bus > SCSI_TRN_SOP_BUS_MAX) {
6611 if (error_str != NULL) {
6612 snprintf(error_str, error_str_len, "%s: bus value "
6613 "%lu greater than maximum %u", __func__,
6614 bus, SCSI_TRN_SOP_BUS_MAX);
6615 }
6616 retval = 1;
6617 goto bailout;
6618 }
6619
6620 if ((device_spec != 0)
6621 && (device > SCSI_TRN_SOP_DEV_MASK)) {
6622 if (error_str != NULL) {
6623 snprintf(error_str, error_str_len, "%s: device value "
6624 "%lu greater than maximum %u", __func__,
6625 device, SCSI_TRN_SOP_DEV_MAX);
6626 }
6627 retval = 1;
6628 goto bailout;
6629 }
6630
6631 if (((device_spec != 0)
6632 && (function > SCSI_TRN_SOP_FUNC_NORM_MAX))
6633 || ((device_spec == 0)
6634 && (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) {
6635 if (error_str != NULL) {
6636 snprintf(error_str, error_str_len, "%s: function value "
6637 "%lu greater than maximum %u", __func__,
6638 function, (device_spec == 0) ?
6639 SCSI_TRN_SOP_FUNC_ALT_MAX :
6640 SCSI_TRN_SOP_FUNC_NORM_MAX);
6641 }
6642 retval = 1;
6643 goto bailout;
6644 }
6645
6646 #ifdef _KERNEL
6647 sop = malloc(sizeof(*sop), type, flags);
6648 #else
6649 sop = malloc(sizeof(*sop));
6650 #endif
6651 if (sop == NULL) {
6652 if (error_str != NULL) {
6653 snprintf(error_str, error_str_len, "%s: unable to "
6654 "allocate %zu bytes", __func__, sizeof(*sop));
6655 }
6656 retval = 1;
6657 goto bailout;
6658 }
6659 *alloc_len = sizeof(*sop);
6660 bzero(sop, sizeof(*sop));
6661 sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT;
6662 if (device_spec != 0) {
6663 struct scsi_sop_routing_id_norm rid;
6664
6665 rid.bus = bus;
6666 rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function;
6667 bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6668 sizeof(sop->routing_id)));
6669 } else {
6670 struct scsi_sop_routing_id_alt rid;
6671
6672 rid.bus = bus;
6673 rid.function = function;
6674 bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
6675 sizeof(sop->routing_id)));
6676 }
6677
6678 *hdr = (struct scsi_transportid_header *)sop;
6679 bailout:
6680 return (retval);
6681 }
6682
6683 /*
6684 * transportid_str: NUL-terminated string with format: protcol,id
6685 * The ID is protocol specific.
6686 * hdr: Storage will be allocated for the transport ID.
6687 * alloc_len: The amount of memory allocated is returned here.
6688 * type: Malloc bucket (kernel only).
6689 * flags: Malloc flags (kernel only).
6690 * error_str: If non-NULL, it will contain error information (without
6691 * a terminating newline) if an error is returned.
6692 * error_str_len: Allocated length of the error string.
6693 *
6694 * Returns 0 for success, non-zero for failure.
6695 */
6696 int
scsi_parse_transportid(char * transportid_str,struct scsi_transportid_header ** hdr,unsigned int * alloc_len,struct malloc_type * type,int flags,char * error_str,int error_str_len)6697 scsi_parse_transportid(char *transportid_str,
6698 struct scsi_transportid_header **hdr,
6699 unsigned int *alloc_len,
6700 #ifdef _KERNEL
6701 struct malloc_type *type, int flags,
6702 #endif
6703 char *error_str, int error_str_len)
6704 {
6705 char *tmpstr;
6706 scsi_nv_status status;
6707 u_int num_proto_entries;
6708 int retval, table_entry;
6709
6710 retval = 0;
6711 table_entry = 0;
6712
6713 /*
6714 * We do allow a period as well as a comma to separate the protocol
6715 * from the ID string. This is to accommodate iSCSI names, which
6716 * start with "iqn.".
6717 */
6718 tmpstr = strsep(&transportid_str, ",.");
6719 if (tmpstr == NULL) {
6720 if (error_str != NULL) {
6721 snprintf(error_str, error_str_len,
6722 "%s: transportid_str is NULL", __func__);
6723 }
6724 retval = 1;
6725 goto bailout;
6726 }
6727
6728 num_proto_entries = nitems(scsi_proto_map);
6729 status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr,
6730 &table_entry, SCSI_NV_FLAG_IG_CASE);
6731 if (status != SCSI_NV_FOUND) {
6732 if (error_str != NULL) {
6733 snprintf(error_str, error_str_len, "%s: %s protocol "
6734 "name %s", __func__,
6735 (status == SCSI_NV_AMBIGUOUS) ? "ambiguous" :
6736 "invalid", tmpstr);
6737 }
6738 retval = 1;
6739 goto bailout;
6740 }
6741 switch (scsi_proto_map[table_entry].value) {
6742 case SCSI_PROTO_FC:
6743 case SCSI_PROTO_1394:
6744 case SCSI_PROTO_SAS:
6745 retval = scsi_parse_transportid_64bit(
6746 scsi_proto_map[table_entry].value, transportid_str, hdr,
6747 alloc_len,
6748 #ifdef _KERNEL
6749 type, flags,
6750 #endif
6751 error_str, error_str_len);
6752 break;
6753 case SCSI_PROTO_SPI:
6754 retval = scsi_parse_transportid_spi(transportid_str, hdr,
6755 alloc_len,
6756 #ifdef _KERNEL
6757 type, flags,
6758 #endif
6759 error_str, error_str_len);
6760 break;
6761 case SCSI_PROTO_RDMA:
6762 retval = scsi_parse_transportid_rdma(transportid_str, hdr,
6763 alloc_len,
6764 #ifdef _KERNEL
6765 type, flags,
6766 #endif
6767 error_str, error_str_len);
6768 break;
6769 case SCSI_PROTO_ISCSI:
6770 retval = scsi_parse_transportid_iscsi(transportid_str, hdr,
6771 alloc_len,
6772 #ifdef _KERNEL
6773 type, flags,
6774 #endif
6775 error_str, error_str_len);
6776 break;
6777 case SCSI_PROTO_SOP:
6778 retval = scsi_parse_transportid_sop(transportid_str, hdr,
6779 alloc_len,
6780 #ifdef _KERNEL
6781 type, flags,
6782 #endif
6783 error_str, error_str_len);
6784 break;
6785 case SCSI_PROTO_SSA:
6786 case SCSI_PROTO_ADITP:
6787 case SCSI_PROTO_ATA:
6788 case SCSI_PROTO_UAS:
6789 case SCSI_PROTO_NONE:
6790 default:
6791 /*
6792 * There is no format defined for a Transport ID for these
6793 * protocols. So even if the user gives us something, we
6794 * have no way to turn it into a standard SCSI Transport ID.
6795 */
6796 retval = 1;
6797 if (error_str != NULL) {
6798 snprintf(error_str, error_str_len, "%s: no Transport "
6799 "ID format exists for protocol %s",
6800 __func__, tmpstr);
6801 }
6802 goto bailout;
6803 break; /* NOTREACHED */
6804 }
6805 bailout:
6806 return (retval);
6807 }
6808
6809 struct scsi_attrib_table_entry scsi_mam_attr_table[] = {
6810 { SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6811 "Remaining Capacity in Partition",
6812 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL },
6813 { SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
6814 "Maximum Capacity in Partition",
6815 /*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6816 { SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX,
6817 "TapeAlert Flags",
6818 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6819 { SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE,
6820 "Load Count",
6821 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6822 { SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE,
6823 "MAM Space Remaining",
6824 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6825 /*parse_str*/ NULL },
6826 { SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6827 "Assigning Organization",
6828 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6829 /*parse_str*/ NULL },
6830 { SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6831 "Format Density Code",
6832 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6833 { SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE,
6834 "Initialization Count",
6835 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
6836 { SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE,
6837 "Volume Identifier",
6838 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6839 /*parse_str*/ NULL },
6840 { SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX,
6841 "Volume Change Reference",
6842 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6843 /*parse_str*/ NULL },
6844 { SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE,
6845 "Device Vendor/Serial at Last Load",
6846 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6847 /*parse_str*/ NULL },
6848 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE,
6849 "Device Vendor/Serial at Last Load - 1",
6850 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6851 /*parse_str*/ NULL },
6852 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE,
6853 "Device Vendor/Serial at Last Load - 2",
6854 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6855 /*parse_str*/ NULL },
6856 { SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE,
6857 "Device Vendor/Serial at Last Load - 3",
6858 /*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
6859 /*parse_str*/ NULL },
6860 { SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE,
6861 "Total MB Written in Medium Life",
6862 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6863 /*parse_str*/ NULL },
6864 { SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE,
6865 "Total MB Read in Medium Life",
6866 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6867 /*parse_str*/ NULL },
6868 { SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE,
6869 "Total MB Written in Current/Last Load",
6870 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6871 /*parse_str*/ NULL },
6872 { SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE,
6873 "Total MB Read in Current/Last Load",
6874 /*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
6875 /*parse_str*/ NULL },
6876 { SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6877 "Logical Position of First Encrypted Block",
6878 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6879 /*parse_str*/ NULL },
6880 { SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE,
6881 "Logical Position of First Unencrypted Block after First "
6882 "Encrypted Block",
6883 /*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
6884 /*parse_str*/ NULL },
6885 { SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6886 "Medium Usage History",
6887 /*suffix*/ NULL, /*to_str*/ NULL,
6888 /*parse_str*/ NULL },
6889 { SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
6890 "Partition Usage History",
6891 /*suffix*/ NULL, /*to_str*/ NULL,
6892 /*parse_str*/ NULL },
6893 { SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE,
6894 "Medium Manufacturer",
6895 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6896 /*parse_str*/ NULL },
6897 { SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE,
6898 "Medium Serial Number",
6899 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6900 /*parse_str*/ NULL },
6901 { SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE,
6902 "Medium Length",
6903 /*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf,
6904 /*parse_str*/ NULL },
6905 { SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 |
6906 SCSI_ATTR_FLAG_FP_1DIGIT,
6907 "Medium Width",
6908 /*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf,
6909 /*parse_str*/ NULL },
6910 { SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
6911 "Assigning Organization",
6912 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6913 /*parse_str*/ NULL },
6914 { SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
6915 "Medium Density Code",
6916 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6917 /*parse_str*/ NULL },
6918 { SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE,
6919 "Medium Manufacture Date",
6920 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6921 /*parse_str*/ NULL },
6922 { SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE,
6923 "MAM Capacity",
6924 /*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
6925 /*parse_str*/ NULL },
6926 { SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX,
6927 "Medium Type",
6928 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6929 /*parse_str*/ NULL },
6930 { SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX,
6931 "Medium Type Information",
6932 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6933 /*parse_str*/ NULL },
6934 { SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE,
6935 "Medium Serial Number",
6936 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6937 /*parse_str*/ NULL },
6938 { SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE,
6939 "Application Vendor",
6940 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6941 /*parse_str*/ NULL },
6942 { SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE,
6943 "Application Name",
6944 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6945 /*parse_str*/ NULL },
6946 { SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE,
6947 "Application Version",
6948 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6949 /*parse_str*/ NULL },
6950 { SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE,
6951 "User Medium Text Label",
6952 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6953 /*parse_str*/ NULL },
6954 { SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE,
6955 "Date and Time Last Written",
6956 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6957 /*parse_str*/ NULL },
6958 { SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX,
6959 "Text Localization Identifier",
6960 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6961 /*parse_str*/ NULL },
6962 { SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE,
6963 "Barcode",
6964 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6965 /*parse_str*/ NULL },
6966 { SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE,
6967 "Owning Host Textual Name",
6968 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6969 /*parse_str*/ NULL },
6970 { SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE,
6971 "Media Pool",
6972 /*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
6973 /*parse_str*/ NULL },
6974 { SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE,
6975 "Partition User Text Label",
6976 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6977 /*parse_str*/ NULL },
6978 { SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE,
6979 "Load/Unload at Partition",
6980 /*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
6981 /*parse_str*/ NULL },
6982 { SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE,
6983 "Application Format Version",
6984 /*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
6985 /*parse_str*/ NULL },
6986 { SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE,
6987 "Volume Coherency Information",
6988 /*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf,
6989 /*parse_str*/ NULL },
6990 { 0x0ff1, SCSI_ATTR_FLAG_NONE,
6991 "Spectra MLM Creation",
6992 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6993 /*parse_str*/ NULL },
6994 { 0x0ff2, SCSI_ATTR_FLAG_NONE,
6995 "Spectra MLM C3",
6996 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
6997 /*parse_str*/ NULL },
6998 { 0x0ff3, SCSI_ATTR_FLAG_NONE,
6999 "Spectra MLM RW",
7000 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7001 /*parse_str*/ NULL },
7002 { 0x0ff4, SCSI_ATTR_FLAG_NONE,
7003 "Spectra MLM SDC List",
7004 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7005 /*parse_str*/ NULL },
7006 { 0x0ff7, SCSI_ATTR_FLAG_NONE,
7007 "Spectra MLM Post Scan",
7008 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7009 /*parse_str*/ NULL },
7010 { 0x0ffe, SCSI_ATTR_FLAG_NONE,
7011 "Spectra MLM Checksum",
7012 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7013 /*parse_str*/ NULL },
7014 { 0x17f1, SCSI_ATTR_FLAG_NONE,
7015 "Spectra MLM Creation",
7016 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7017 /*parse_str*/ NULL },
7018 { 0x17f2, SCSI_ATTR_FLAG_NONE,
7019 "Spectra MLM C3",
7020 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7021 /*parse_str*/ NULL },
7022 { 0x17f3, SCSI_ATTR_FLAG_NONE,
7023 "Spectra MLM RW",
7024 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7025 /*parse_str*/ NULL },
7026 { 0x17f4, SCSI_ATTR_FLAG_NONE,
7027 "Spectra MLM SDC List",
7028 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7029 /*parse_str*/ NULL },
7030 { 0x17f7, SCSI_ATTR_FLAG_NONE,
7031 "Spectra MLM Post Scan",
7032 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7033 /*parse_str*/ NULL },
7034 { 0x17ff, SCSI_ATTR_FLAG_NONE,
7035 "Spectra MLM Checksum",
7036 /*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
7037 /*parse_str*/ NULL },
7038 };
7039
7040 /*
7041 * Print out Volume Coherency Information (Attribute 0x080c).
7042 * This field has two variable length members, including one at the
7043 * beginning, so it isn't practical to have a fixed structure definition.
7044 * This is current as of SSC4r03 (see section 4.2.21.3), dated March 25,
7045 * 2013.
7046 */
7047 int
scsi_attrib_volcoh_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7048 scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7049 uint32_t valid_len, uint32_t flags,
7050 uint32_t output_flags, char *error_str,
7051 int error_str_len)
7052 {
7053 size_t avail_len;
7054 uint32_t field_size;
7055 uint64_t tmp_val;
7056 uint8_t *cur_ptr;
7057 int retval;
7058 int vcr_len, as_len;
7059
7060 retval = 0;
7061 tmp_val = 0;
7062
7063 field_size = scsi_2btoul(hdr->length);
7064 avail_len = valid_len - sizeof(*hdr);
7065 if (field_size > avail_len) {
7066 if (error_str != NULL) {
7067 snprintf(error_str, error_str_len, "Available "
7068 "length of attribute ID 0x%.4x %zu < field "
7069 "length %u", scsi_2btoul(hdr->id), avail_len,
7070 field_size);
7071 }
7072 retval = 1;
7073 goto bailout;
7074 } else if (field_size == 0) {
7075 /*
7076 * It isn't clear from the spec whether a field length of
7077 * 0 is invalid here. It probably is, but be lenient here
7078 * to avoid inconveniencing the user.
7079 */
7080 goto bailout;
7081 }
7082 cur_ptr = hdr->attribute;
7083 vcr_len = *cur_ptr;
7084 cur_ptr++;
7085
7086 sbuf_cat(sb, "\n\tVolume Change Reference Value:");
7087
7088 switch (vcr_len) {
7089 case 0:
7090 if (error_str != NULL) {
7091 snprintf(error_str, error_str_len, "Volume Change "
7092 "Reference value has length of 0");
7093 }
7094 retval = 1;
7095 goto bailout;
7096 break; /*NOTREACHED*/
7097 case 1:
7098 tmp_val = *cur_ptr;
7099 break;
7100 case 2:
7101 tmp_val = scsi_2btoul(cur_ptr);
7102 break;
7103 case 3:
7104 tmp_val = scsi_3btoul(cur_ptr);
7105 break;
7106 case 4:
7107 tmp_val = scsi_4btoul(cur_ptr);
7108 break;
7109 case 8:
7110 tmp_val = scsi_8btou64(cur_ptr);
7111 break;
7112 default:
7113 sbuf_putc(sb, '\n');
7114 sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0);
7115 break;
7116 }
7117 if (vcr_len <= 8)
7118 sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val);
7119
7120 cur_ptr += vcr_len;
7121 tmp_val = scsi_8btou64(cur_ptr);
7122 sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val);
7123
7124 cur_ptr += sizeof(tmp_val);
7125 tmp_val = scsi_8btou64(cur_ptr);
7126 sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n",
7127 (uintmax_t)tmp_val);
7128
7129 /*
7130 * Figure out how long the Application Client Specific Information
7131 * is and produce a hexdump.
7132 */
7133 cur_ptr += sizeof(tmp_val);
7134 as_len = scsi_2btoul(cur_ptr);
7135 cur_ptr += sizeof(uint16_t);
7136 sbuf_cat(sb, "\tApplication Client Specific Information: ");
7137 if (((as_len == SCSI_LTFS_VER0_LEN)
7138 || (as_len == SCSI_LTFS_VER1_LEN))
7139 && (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) {
7140 sbuf_cat(sb, "LTFS\n");
7141 cur_ptr += SCSI_LTFS_STR_LEN + 1;
7142 if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0')
7143 cur_ptr[SCSI_LTFS_UUID_LEN] = '\0';
7144 sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr);
7145 cur_ptr += SCSI_LTFS_UUID_LEN + 1;
7146 /* XXX KDM check the length */
7147 sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr);
7148 } else {
7149 sbuf_cat(sb, "Unknown\n");
7150 sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0);
7151 }
7152
7153 bailout:
7154 return (retval);
7155 }
7156
7157 int
scsi_attrib_vendser_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7158 scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7159 uint32_t valid_len, uint32_t flags,
7160 uint32_t output_flags, char *error_str,
7161 int error_str_len)
7162 {
7163 size_t avail_len;
7164 uint32_t field_size;
7165 struct scsi_attrib_vendser *vendser;
7166 cam_strvis_flags strvis_flags;
7167 int retval = 0;
7168
7169 field_size = scsi_2btoul(hdr->length);
7170 avail_len = valid_len - sizeof(*hdr);
7171 if (field_size > avail_len) {
7172 if (error_str != NULL) {
7173 snprintf(error_str, error_str_len, "Available "
7174 "length of attribute ID 0x%.4x %zu < field "
7175 "length %u", scsi_2btoul(hdr->id), avail_len,
7176 field_size);
7177 }
7178 retval = 1;
7179 goto bailout;
7180 } else if (field_size == 0) {
7181 /*
7182 * A field size of 0 doesn't make sense here. The device
7183 * can at least give you the vendor ID, even if it can't
7184 * give you the serial number.
7185 */
7186 if (error_str != NULL) {
7187 snprintf(error_str, error_str_len, "The length of "
7188 "attribute ID 0x%.4x is 0",
7189 scsi_2btoul(hdr->id));
7190 }
7191 retval = 1;
7192 goto bailout;
7193 }
7194 vendser = (struct scsi_attrib_vendser *)hdr->attribute;
7195
7196 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7197 case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7198 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7199 break;
7200 case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7201 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7202 break;
7203 case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7204 default:
7205 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7206 break;
7207 }
7208 cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor),
7209 strvis_flags);
7210 sbuf_putc(sb, ' ');
7211 cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num),
7212 strvis_flags);
7213 bailout:
7214 return (retval);
7215 }
7216
7217 int
scsi_attrib_hexdump_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7218 scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7219 uint32_t valid_len, uint32_t flags,
7220 uint32_t output_flags, char *error_str,
7221 int error_str_len)
7222 {
7223 uint32_t field_size;
7224 ssize_t avail_len;
7225 uint32_t print_len;
7226 uint8_t *num_ptr;
7227 int retval = 0;
7228
7229 field_size = scsi_2btoul(hdr->length);
7230 avail_len = valid_len - sizeof(*hdr);
7231 print_len = MIN(avail_len, field_size);
7232 num_ptr = hdr->attribute;
7233
7234 if (print_len > 0) {
7235 sbuf_putc(sb, '\n');
7236 sbuf_hexdump(sb, num_ptr, print_len, NULL, 0);
7237 }
7238
7239 return (retval);
7240 }
7241
7242 int
scsi_attrib_int_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7243 scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7244 uint32_t valid_len, uint32_t flags,
7245 uint32_t output_flags, char *error_str,
7246 int error_str_len)
7247 {
7248 uint64_t print_number;
7249 size_t avail_len;
7250 uint32_t number_size;
7251 int retval = 0;
7252
7253 number_size = scsi_2btoul(hdr->length);
7254
7255 avail_len = valid_len - sizeof(*hdr);
7256 if (avail_len < number_size) {
7257 if (error_str != NULL) {
7258 snprintf(error_str, error_str_len, "Available "
7259 "length of attribute ID 0x%.4x %zu < field "
7260 "length %u", scsi_2btoul(hdr->id), avail_len,
7261 number_size);
7262 }
7263 retval = 1;
7264 goto bailout;
7265 }
7266
7267 switch (number_size) {
7268 case 0:
7269 /*
7270 * We don't treat this as an error, since there may be
7271 * scenarios where a device reports a field but then gives
7272 * a length of 0. See the note in scsi_attrib_ascii_sbuf().
7273 */
7274 goto bailout;
7275 break; /*NOTREACHED*/
7276 case 1:
7277 print_number = hdr->attribute[0];
7278 break;
7279 case 2:
7280 print_number = scsi_2btoul(hdr->attribute);
7281 break;
7282 case 3:
7283 print_number = scsi_3btoul(hdr->attribute);
7284 break;
7285 case 4:
7286 print_number = scsi_4btoul(hdr->attribute);
7287 break;
7288 case 8:
7289 print_number = scsi_8btou64(hdr->attribute);
7290 break;
7291 default:
7292 /*
7293 * If we wind up here, the number is too big to print
7294 * normally, so just do a hexdump.
7295 */
7296 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7297 flags, output_flags,
7298 error_str, error_str_len);
7299 goto bailout;
7300 break;
7301 }
7302
7303 if (flags & SCSI_ATTR_FLAG_FP) {
7304 #ifndef _KERNEL
7305 long double num_float;
7306
7307 num_float = (long double)print_number;
7308
7309 if (flags & SCSI_ATTR_FLAG_DIV_10)
7310 num_float /= 10;
7311
7312 sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ?
7313 1 : 0, num_float);
7314 #else /* _KERNEL */
7315 sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ?
7316 (print_number / 10) : print_number);
7317 #endif /* _KERNEL */
7318 } else if (flags & SCSI_ATTR_FLAG_HEX) {
7319 sbuf_printf(sb, "0x%jx", (uintmax_t)print_number);
7320 } else
7321 sbuf_printf(sb, "%ju", (uintmax_t)print_number);
7322
7323 bailout:
7324 return (retval);
7325 }
7326
7327 int
scsi_attrib_ascii_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7328 scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7329 uint32_t valid_len, uint32_t flags,
7330 uint32_t output_flags, char *error_str,
7331 int error_str_len)
7332 {
7333 size_t avail_len;
7334 uint32_t field_size, print_size;
7335 int retval = 0;
7336
7337 avail_len = valid_len - sizeof(*hdr);
7338 field_size = scsi_2btoul(hdr->length);
7339 print_size = MIN(avail_len, field_size);
7340
7341 if (print_size > 0) {
7342 cam_strvis_flags strvis_flags;
7343
7344 switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
7345 case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
7346 strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
7347 break;
7348 case SCSI_ATTR_OUTPUT_NONASCII_RAW:
7349 strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
7350 break;
7351 case SCSI_ATTR_OUTPUT_NONASCII_ESC:
7352 default:
7353 strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
7354 break;
7355 }
7356 cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags);
7357 } else if (avail_len < field_size) {
7358 /*
7359 * We only report an error if the user didn't allocate
7360 * enough space to hold the full value of this field. If
7361 * the field length is 0, that is allowed by the spec.
7362 * e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER
7363 * "This attribute indicates the current volume identifier
7364 * (see SMC-3) of the medium. If the device server supports
7365 * this attribute but does not have access to the volume
7366 * identifier, the device server shall report this attribute
7367 * with an attribute length value of zero."
7368 */
7369 if (error_str != NULL) {
7370 snprintf(error_str, error_str_len, "Available "
7371 "length of attribute ID 0x%.4x %zu < field "
7372 "length %u", scsi_2btoul(hdr->id), avail_len,
7373 field_size);
7374 }
7375 retval = 1;
7376 }
7377
7378 return (retval);
7379 }
7380
7381 int
scsi_attrib_text_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,uint32_t flags,uint32_t output_flags,char * error_str,int error_str_len)7382 scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7383 uint32_t valid_len, uint32_t flags,
7384 uint32_t output_flags, char *error_str,
7385 int error_str_len)
7386 {
7387 size_t avail_len;
7388 uint32_t field_size, print_size;
7389 int retval = 0;
7390 int esc_text = 1;
7391
7392 avail_len = valid_len - sizeof(*hdr);
7393 field_size = scsi_2btoul(hdr->length);
7394 print_size = MIN(avail_len, field_size);
7395
7396 if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) ==
7397 SCSI_ATTR_OUTPUT_TEXT_RAW)
7398 esc_text = 0;
7399
7400 if (print_size > 0) {
7401 uint32_t i;
7402
7403 for (i = 0; i < print_size; i++) {
7404 if (hdr->attribute[i] == '\0')
7405 continue;
7406 else if (((unsigned char)hdr->attribute[i] < 0x80)
7407 || (esc_text == 0))
7408 sbuf_putc(sb, hdr->attribute[i]);
7409 else
7410 sbuf_printf(sb, "%%%02x",
7411 (unsigned char)hdr->attribute[i]);
7412 }
7413 } else if (avail_len < field_size) {
7414 /*
7415 * We only report an error if the user didn't allocate
7416 * enough space to hold the full value of this field.
7417 */
7418 if (error_str != NULL) {
7419 snprintf(error_str, error_str_len, "Available "
7420 "length of attribute ID 0x%.4x %zu < field "
7421 "length %u", scsi_2btoul(hdr->id), avail_len,
7422 field_size);
7423 }
7424 retval = 1;
7425 }
7426
7427 return (retval);
7428 }
7429
7430 struct scsi_attrib_table_entry *
scsi_find_attrib_entry(struct scsi_attrib_table_entry * table,size_t num_table_entries,uint32_t id)7431 scsi_find_attrib_entry(struct scsi_attrib_table_entry *table,
7432 size_t num_table_entries, uint32_t id)
7433 {
7434 uint32_t i;
7435
7436 for (i = 0; i < num_table_entries; i++) {
7437 if (table[i].id == id)
7438 return (&table[i]);
7439 }
7440
7441 return (NULL);
7442 }
7443
7444 struct scsi_attrib_table_entry *
scsi_get_attrib_entry(uint32_t id)7445 scsi_get_attrib_entry(uint32_t id)
7446 {
7447 return (scsi_find_attrib_entry(scsi_mam_attr_table,
7448 nitems(scsi_mam_attr_table), id));
7449 }
7450
7451 int
scsi_attrib_value_sbuf(struct sbuf * sb,uint32_t valid_len,struct scsi_mam_attribute_header * hdr,uint32_t output_flags,char * error_str,size_t error_str_len)7452 scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len,
7453 struct scsi_mam_attribute_header *hdr, uint32_t output_flags,
7454 char *error_str, size_t error_str_len)
7455 {
7456 int retval;
7457
7458 switch (hdr->byte2 & SMA_FORMAT_MASK) {
7459 case SMA_FORMAT_ASCII:
7460 retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len,
7461 SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len);
7462 break;
7463 case SMA_FORMAT_BINARY:
7464 if (scsi_2btoul(hdr->length) <= 8)
7465 retval = scsi_attrib_int_sbuf(sb, hdr, valid_len,
7466 SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7467 error_str_len);
7468 else
7469 retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
7470 SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7471 error_str_len);
7472 break;
7473 case SMA_FORMAT_TEXT:
7474 retval = scsi_attrib_text_sbuf(sb, hdr, valid_len,
7475 SCSI_ATTR_FLAG_NONE, output_flags, error_str,
7476 error_str_len);
7477 break;
7478 default:
7479 if (error_str != NULL) {
7480 snprintf(error_str, error_str_len, "Unknown attribute "
7481 "format 0x%x", hdr->byte2 & SMA_FORMAT_MASK);
7482 }
7483 retval = 1;
7484 goto bailout;
7485 break; /*NOTREACHED*/
7486 }
7487
7488 sbuf_trim(sb);
7489
7490 bailout:
7491
7492 return (retval);
7493 }
7494
7495 void
scsi_attrib_prefix_sbuf(struct sbuf * sb,uint32_t output_flags,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,const char * desc)7496 scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags,
7497 struct scsi_mam_attribute_header *hdr,
7498 uint32_t valid_len, const char *desc)
7499 {
7500 int need_space = 0;
7501 uint32_t len;
7502 uint32_t id;
7503
7504 /*
7505 * We can't do anything if we don't have enough valid data for the
7506 * header.
7507 */
7508 if (valid_len < sizeof(*hdr))
7509 return;
7510
7511 id = scsi_2btoul(hdr->id);
7512 /*
7513 * Note that we print out the value of the attribute listed in the
7514 * header, regardless of whether we actually got that many bytes
7515 * back from the device through the controller. A truncated result
7516 * could be the result of a failure to ask for enough data; the
7517 * header indicates how many bytes are allocated for this attribute
7518 * in the MAM.
7519 */
7520 len = scsi_2btoul(hdr->length);
7521
7522 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) ==
7523 SCSI_ATTR_OUTPUT_FIELD_NONE)
7524 return;
7525
7526 if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC)
7527 && (desc != NULL)) {
7528 sbuf_cat(sb, desc);
7529 need_space = 1;
7530 }
7531
7532 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) {
7533 sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id);
7534 need_space = 0;
7535 }
7536
7537 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) {
7538 sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len);
7539 need_space = 0;
7540 }
7541 if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) {
7542 sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "",
7543 (hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW");
7544 }
7545 sbuf_cat(sb, ": ");
7546 }
7547
7548 int
scsi_attrib_sbuf(struct sbuf * sb,struct scsi_mam_attribute_header * hdr,uint32_t valid_len,struct scsi_attrib_table_entry * user_table,size_t num_user_entries,int prefer_user_table,uint32_t output_flags,char * error_str,int error_str_len)7549 scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
7550 uint32_t valid_len, struct scsi_attrib_table_entry *user_table,
7551 size_t num_user_entries, int prefer_user_table,
7552 uint32_t output_flags, char *error_str, int error_str_len)
7553 {
7554 int retval;
7555 struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL;
7556 struct scsi_attrib_table_entry *entry = NULL;
7557 size_t table1_size = 0, table2_size = 0;
7558 uint32_t id;
7559
7560 retval = 0;
7561
7562 if (valid_len < sizeof(*hdr)) {
7563 retval = 1;
7564 goto bailout;
7565 }
7566
7567 id = scsi_2btoul(hdr->id);
7568
7569 if (user_table != NULL) {
7570 if (prefer_user_table != 0) {
7571 table1 = user_table;
7572 table1_size = num_user_entries;
7573 table2 = scsi_mam_attr_table;
7574 table2_size = nitems(scsi_mam_attr_table);
7575 } else {
7576 table1 = scsi_mam_attr_table;
7577 table1_size = nitems(scsi_mam_attr_table);
7578 table2 = user_table;
7579 table2_size = num_user_entries;
7580 }
7581 } else {
7582 table1 = scsi_mam_attr_table;
7583 table1_size = nitems(scsi_mam_attr_table);
7584 }
7585
7586 entry = scsi_find_attrib_entry(table1, table1_size, id);
7587 if (entry != NULL) {
7588 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len,
7589 entry->desc);
7590 if (entry->to_str == NULL)
7591 goto print_default;
7592 retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7593 output_flags, error_str, error_str_len);
7594 goto bailout;
7595 }
7596 if (table2 != NULL) {
7597 entry = scsi_find_attrib_entry(table2, table2_size, id);
7598 if (entry != NULL) {
7599 if (entry->to_str == NULL)
7600 goto print_default;
7601
7602 scsi_attrib_prefix_sbuf(sb, output_flags, hdr,
7603 valid_len, entry->desc);
7604 retval = entry->to_str(sb, hdr, valid_len, entry->flags,
7605 output_flags, error_str,
7606 error_str_len);
7607 goto bailout;
7608 }
7609 }
7610
7611 scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL);
7612
7613 print_default:
7614 retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags,
7615 error_str, error_str_len);
7616 bailout:
7617 if (retval == 0) {
7618 if ((entry != NULL)
7619 && (entry->suffix != NULL))
7620 sbuf_printf(sb, " %s", entry->suffix);
7621
7622 sbuf_trim(sb);
7623 sbuf_putc(sb, '\n');
7624 }
7625
7626 return (retval);
7627 }
7628
7629 void
scsi_test_unit_ready(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t sense_len,uint32_t timeout)7630 scsi_test_unit_ready(struct ccb_scsiio *csio, uint32_t retries,
7631 void (*cbfcnp)(struct cam_periph *, union ccb *),
7632 uint8_t tag_action, uint8_t sense_len, uint32_t timeout)
7633 {
7634 struct scsi_test_unit_ready *scsi_cmd;
7635
7636 cam_fill_csio(csio,
7637 retries,
7638 cbfcnp,
7639 CAM_DIR_NONE,
7640 tag_action,
7641 /*data_ptr*/NULL,
7642 /*dxfer_len*/0,
7643 sense_len,
7644 sizeof(*scsi_cmd),
7645 timeout);
7646
7647 scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes;
7648 bzero(scsi_cmd, sizeof(*scsi_cmd));
7649 scsi_cmd->opcode = TEST_UNIT_READY;
7650 }
7651
7652 void
scsi_request_sense(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),void * data_ptr,uint8_t dxfer_len,uint8_t tag_action,uint8_t sense_len,uint32_t timeout)7653 scsi_request_sense(struct ccb_scsiio *csio, uint32_t retries,
7654 void (*cbfcnp)(struct cam_periph *, union ccb *),
7655 void *data_ptr, uint8_t dxfer_len, uint8_t tag_action,
7656 uint8_t sense_len, uint32_t timeout)
7657 {
7658 struct scsi_request_sense *scsi_cmd;
7659
7660 cam_fill_csio(csio,
7661 retries,
7662 cbfcnp,
7663 CAM_DIR_IN,
7664 tag_action,
7665 data_ptr,
7666 dxfer_len,
7667 sense_len,
7668 sizeof(*scsi_cmd),
7669 timeout);
7670
7671 scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes;
7672 bzero(scsi_cmd, sizeof(*scsi_cmd));
7673 scsi_cmd->opcode = REQUEST_SENSE;
7674 scsi_cmd->length = dxfer_len;
7675 }
7676
7677 void
scsi_inquiry(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t * inq_buf,uint32_t inq_len,int evpd,uint8_t page_code,uint8_t sense_len,uint32_t timeout)7678 scsi_inquiry(struct ccb_scsiio *csio, uint32_t retries,
7679 void (*cbfcnp)(struct cam_periph *, union ccb *),
7680 uint8_t tag_action, uint8_t *inq_buf, uint32_t inq_len,
7681 int evpd, uint8_t page_code, uint8_t sense_len,
7682 uint32_t timeout)
7683 {
7684 struct scsi_inquiry *scsi_cmd;
7685
7686 cam_fill_csio(csio,
7687 retries,
7688 cbfcnp,
7689 /*flags*/CAM_DIR_IN,
7690 tag_action,
7691 /*data_ptr*/inq_buf,
7692 /*dxfer_len*/inq_len,
7693 sense_len,
7694 sizeof(*scsi_cmd),
7695 timeout);
7696
7697 scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes;
7698 bzero(scsi_cmd, sizeof(*scsi_cmd));
7699 scsi_cmd->opcode = INQUIRY;
7700 if (evpd) {
7701 scsi_cmd->byte2 |= SI_EVPD;
7702 scsi_cmd->page_code = page_code;
7703 }
7704 scsi_ulto2b(inq_len, scsi_cmd->length);
7705 }
7706
7707 void
scsi_mode_sense(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int dbd,uint8_t pc,uint8_t page,uint8_t * param_buf,uint32_t param_len,uint8_t sense_len,uint32_t timeout)7708 scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries,
7709 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7710 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7711 uint8_t sense_len, uint32_t timeout)
7712 {
7713
7714 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7715 pc, page, 0, param_buf, param_len, 0, sense_len, timeout);
7716 }
7717
7718 void
scsi_mode_sense_len(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int dbd,uint8_t pc,uint8_t page,uint8_t * param_buf,uint32_t param_len,int minimum_cmd_size,uint8_t sense_len,uint32_t timeout)7719 scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries,
7720 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7721 int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
7722 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout)
7723 {
7724
7725 scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
7726 pc, page, 0, param_buf, param_len, minimum_cmd_size,
7727 sense_len, timeout);
7728 }
7729
7730 void
scsi_mode_sense_subpage(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int dbd,uint8_t pc,uint8_t page,uint8_t subpage,uint8_t * param_buf,uint32_t param_len,int minimum_cmd_size,uint8_t sense_len,uint32_t timeout)7731 scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries,
7732 void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
7733 int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf,
7734 uint32_t param_len, int minimum_cmd_size, uint8_t sense_len,
7735 uint32_t timeout)
7736 {
7737 uint8_t cdb_len;
7738
7739 /*
7740 * Use the smallest possible command to perform the operation.
7741 */
7742 if ((param_len < 256)
7743 && (minimum_cmd_size < 10)) {
7744 /*
7745 * We can fit in a 6 byte cdb.
7746 */
7747 struct scsi_mode_sense_6 *scsi_cmd;
7748
7749 scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes;
7750 bzero(scsi_cmd, sizeof(*scsi_cmd));
7751 scsi_cmd->opcode = MODE_SENSE_6;
7752 if (dbd != 0)
7753 scsi_cmd->byte2 |= SMS_DBD;
7754 scsi_cmd->page = pc | page;
7755 scsi_cmd->subpage = subpage;
7756 scsi_cmd->length = param_len;
7757 cdb_len = sizeof(*scsi_cmd);
7758 } else {
7759 /*
7760 * Need a 10 byte cdb.
7761 */
7762 struct scsi_mode_sense_10 *scsi_cmd;
7763
7764 scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes;
7765 bzero(scsi_cmd, sizeof(*scsi_cmd));
7766 scsi_cmd->opcode = MODE_SENSE_10;
7767 if (dbd != 0)
7768 scsi_cmd->byte2 |= SMS_DBD;
7769 scsi_cmd->page = pc | page;
7770 scsi_cmd->subpage = subpage;
7771 scsi_ulto2b(param_len, scsi_cmd->length);
7772 cdb_len = sizeof(*scsi_cmd);
7773 }
7774 cam_fill_csio(csio,
7775 retries,
7776 cbfcnp,
7777 CAM_DIR_IN,
7778 tag_action,
7779 param_buf,
7780 param_len,
7781 sense_len,
7782 cdb_len,
7783 timeout);
7784 }
7785
7786 void
scsi_mode_select(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int scsi_page_fmt,int save_pages,uint8_t * param_buf,uint32_t param_len,uint8_t sense_len,uint32_t timeout)7787 scsi_mode_select(struct ccb_scsiio *csio, uint32_t retries,
7788 void (*cbfcnp)(struct cam_periph *, union ccb *),
7789 uint8_t tag_action, int scsi_page_fmt, int save_pages,
7790 uint8_t *param_buf, uint32_t param_len, uint8_t sense_len,
7791 uint32_t timeout)
7792 {
7793 scsi_mode_select_len(csio, retries, cbfcnp, tag_action,
7794 scsi_page_fmt, save_pages, param_buf,
7795 param_len, 0, sense_len, timeout);
7796 }
7797
7798 void
scsi_mode_select_len(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int scsi_page_fmt,int save_pages,uint8_t * param_buf,uint32_t param_len,int minimum_cmd_size,uint8_t sense_len,uint32_t timeout)7799 scsi_mode_select_len(struct ccb_scsiio *csio, uint32_t retries,
7800 void (*cbfcnp)(struct cam_periph *, union ccb *),
7801 uint8_t tag_action, int scsi_page_fmt, int save_pages,
7802 uint8_t *param_buf, uint32_t param_len,
7803 int minimum_cmd_size, uint8_t sense_len,
7804 uint32_t timeout)
7805 {
7806 uint8_t cdb_len;
7807
7808 /*
7809 * Use the smallest possible command to perform the operation.
7810 */
7811 if ((param_len < 256)
7812 && (minimum_cmd_size < 10)) {
7813 /*
7814 * We can fit in a 6 byte cdb.
7815 */
7816 struct scsi_mode_select_6 *scsi_cmd;
7817
7818 scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes;
7819 bzero(scsi_cmd, sizeof(*scsi_cmd));
7820 scsi_cmd->opcode = MODE_SELECT_6;
7821 if (scsi_page_fmt != 0)
7822 scsi_cmd->byte2 |= SMS_PF;
7823 if (save_pages != 0)
7824 scsi_cmd->byte2 |= SMS_SP;
7825 scsi_cmd->length = param_len;
7826 cdb_len = sizeof(*scsi_cmd);
7827 } else {
7828 /*
7829 * Need a 10 byte cdb.
7830 */
7831 struct scsi_mode_select_10 *scsi_cmd;
7832
7833 scsi_cmd =
7834 (struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes;
7835 bzero(scsi_cmd, sizeof(*scsi_cmd));
7836 scsi_cmd->opcode = MODE_SELECT_10;
7837 if (scsi_page_fmt != 0)
7838 scsi_cmd->byte2 |= SMS_PF;
7839 if (save_pages != 0)
7840 scsi_cmd->byte2 |= SMS_SP;
7841 scsi_ulto2b(param_len, scsi_cmd->length);
7842 cdb_len = sizeof(*scsi_cmd);
7843 }
7844 cam_fill_csio(csio,
7845 retries,
7846 cbfcnp,
7847 CAM_DIR_OUT,
7848 tag_action,
7849 param_buf,
7850 param_len,
7851 sense_len,
7852 cdb_len,
7853 timeout);
7854 }
7855
7856 void
scsi_log_sense(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t page_code,uint8_t page,int save_pages,int ppc,uint32_t paramptr,uint8_t * param_buf,uint32_t param_len,uint8_t sense_len,uint32_t timeout)7857 scsi_log_sense(struct ccb_scsiio *csio, uint32_t retries,
7858 void (*cbfcnp)(struct cam_periph *, union ccb *),
7859 uint8_t tag_action, uint8_t page_code, uint8_t page,
7860 int save_pages, int ppc, uint32_t paramptr,
7861 uint8_t *param_buf, uint32_t param_len, uint8_t sense_len,
7862 uint32_t timeout)
7863 {
7864 struct scsi_log_sense *scsi_cmd;
7865 uint8_t cdb_len;
7866
7867 scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes;
7868 bzero(scsi_cmd, sizeof(*scsi_cmd));
7869 scsi_cmd->opcode = LOG_SENSE;
7870 scsi_cmd->page = page_code | page;
7871 if (save_pages != 0)
7872 scsi_cmd->byte2 |= SLS_SP;
7873 if (ppc != 0)
7874 scsi_cmd->byte2 |= SLS_PPC;
7875 scsi_ulto2b(paramptr, scsi_cmd->paramptr);
7876 scsi_ulto2b(param_len, scsi_cmd->length);
7877 cdb_len = sizeof(*scsi_cmd);
7878
7879 cam_fill_csio(csio,
7880 retries,
7881 cbfcnp,
7882 /*flags*/CAM_DIR_IN,
7883 tag_action,
7884 /*data_ptr*/param_buf,
7885 /*dxfer_len*/param_len,
7886 sense_len,
7887 cdb_len,
7888 timeout);
7889 }
7890
7891 void
scsi_log_select(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t page_code,int save_pages,int pc_reset,uint8_t * param_buf,uint32_t param_len,uint8_t sense_len,uint32_t timeout)7892 scsi_log_select(struct ccb_scsiio *csio, uint32_t retries,
7893 void (*cbfcnp)(struct cam_periph *, union ccb *),
7894 uint8_t tag_action, uint8_t page_code, int save_pages,
7895 int pc_reset, uint8_t *param_buf, uint32_t param_len,
7896 uint8_t sense_len, uint32_t timeout)
7897 {
7898 struct scsi_log_select *scsi_cmd;
7899 uint8_t cdb_len;
7900
7901 scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes;
7902 bzero(scsi_cmd, sizeof(*scsi_cmd));
7903 scsi_cmd->opcode = LOG_SELECT;
7904 scsi_cmd->page = page_code & SLS_PAGE_CODE;
7905 if (save_pages != 0)
7906 scsi_cmd->byte2 |= SLS_SP;
7907 if (pc_reset != 0)
7908 scsi_cmd->byte2 |= SLS_PCR;
7909 scsi_ulto2b(param_len, scsi_cmd->length);
7910 cdb_len = sizeof(*scsi_cmd);
7911
7912 cam_fill_csio(csio,
7913 retries,
7914 cbfcnp,
7915 /*flags*/CAM_DIR_OUT,
7916 tag_action,
7917 /*data_ptr*/param_buf,
7918 /*dxfer_len*/param_len,
7919 sense_len,
7920 cdb_len,
7921 timeout);
7922 }
7923
7924 /*
7925 * Prevent or allow the user to remove the media
7926 */
7927 void
scsi_prevent(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t action,uint8_t sense_len,uint32_t timeout)7928 scsi_prevent(struct ccb_scsiio *csio, uint32_t retries,
7929 void (*cbfcnp)(struct cam_periph *, union ccb *),
7930 uint8_t tag_action, uint8_t action,
7931 uint8_t sense_len, uint32_t timeout)
7932 {
7933 struct scsi_prevent *scsi_cmd;
7934
7935 cam_fill_csio(csio,
7936 retries,
7937 cbfcnp,
7938 /*flags*/CAM_DIR_NONE,
7939 tag_action,
7940 /*data_ptr*/NULL,
7941 /*dxfer_len*/0,
7942 sense_len,
7943 sizeof(*scsi_cmd),
7944 timeout);
7945
7946 scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes;
7947 bzero(scsi_cmd, sizeof(*scsi_cmd));
7948 scsi_cmd->opcode = PREVENT_ALLOW;
7949 scsi_cmd->how = action;
7950 }
7951
7952 /* XXX allow specification of address and PMI bit and LBA */
7953 void
scsi_read_capacity(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,struct scsi_read_capacity_data * rcap_buf,uint8_t sense_len,uint32_t timeout)7954 scsi_read_capacity(struct ccb_scsiio *csio, uint32_t retries,
7955 void (*cbfcnp)(struct cam_periph *, union ccb *),
7956 uint8_t tag_action,
7957 struct scsi_read_capacity_data *rcap_buf,
7958 uint8_t sense_len, uint32_t timeout)
7959 {
7960 struct scsi_read_capacity *scsi_cmd;
7961
7962 cam_fill_csio(csio,
7963 retries,
7964 cbfcnp,
7965 /*flags*/CAM_DIR_IN,
7966 tag_action,
7967 /*data_ptr*/(uint8_t *)rcap_buf,
7968 /*dxfer_len*/sizeof(*rcap_buf),
7969 sense_len,
7970 sizeof(*scsi_cmd),
7971 timeout);
7972
7973 scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes;
7974 bzero(scsi_cmd, sizeof(*scsi_cmd));
7975 scsi_cmd->opcode = READ_CAPACITY;
7976 }
7977
7978 void
scsi_read_capacity_16(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint64_t lba,int reladr,int pmi,uint8_t * rcap_buf,int rcap_buf_len,uint8_t sense_len,uint32_t timeout)7979 scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
7980 void (*cbfcnp)(struct cam_periph *, union ccb *),
7981 uint8_t tag_action, uint64_t lba, int reladr, int pmi,
7982 uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len,
7983 uint32_t timeout)
7984 {
7985 struct scsi_read_capacity_16 *scsi_cmd;
7986
7987 cam_fill_csio(csio,
7988 retries,
7989 cbfcnp,
7990 /*flags*/CAM_DIR_IN,
7991 tag_action,
7992 /*data_ptr*/(uint8_t *)rcap_buf,
7993 /*dxfer_len*/rcap_buf_len,
7994 sense_len,
7995 sizeof(*scsi_cmd),
7996 timeout);
7997 scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
7998 bzero(scsi_cmd, sizeof(*scsi_cmd));
7999 scsi_cmd->opcode = SERVICE_ACTION_IN;
8000 scsi_cmd->service_action = SRC16_SERVICE_ACTION;
8001 scsi_u64to8b(lba, scsi_cmd->addr);
8002 scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len);
8003 if (pmi)
8004 reladr |= SRC16_PMI;
8005 if (reladr)
8006 reladr |= SRC16_RELADR;
8007 }
8008
8009 void
scsi_report_luns(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t select_report,struct scsi_report_luns_data * rpl_buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8010 scsi_report_luns(struct ccb_scsiio *csio, uint32_t retries,
8011 void (*cbfcnp)(struct cam_periph *, union ccb *),
8012 uint8_t tag_action, uint8_t select_report,
8013 struct scsi_report_luns_data *rpl_buf, uint32_t alloc_len,
8014 uint8_t sense_len, uint32_t timeout)
8015 {
8016 struct scsi_report_luns *scsi_cmd;
8017
8018 cam_fill_csio(csio,
8019 retries,
8020 cbfcnp,
8021 /*flags*/CAM_DIR_IN,
8022 tag_action,
8023 /*data_ptr*/(uint8_t *)rpl_buf,
8024 /*dxfer_len*/alloc_len,
8025 sense_len,
8026 sizeof(*scsi_cmd),
8027 timeout);
8028 scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes;
8029 bzero(scsi_cmd, sizeof(*scsi_cmd));
8030 scsi_cmd->opcode = REPORT_LUNS;
8031 scsi_cmd->select_report = select_report;
8032 scsi_ulto4b(alloc_len, scsi_cmd->length);
8033 }
8034
8035 void
scsi_report_target_group(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t pdf,void * buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8036 scsi_report_target_group(struct ccb_scsiio *csio, uint32_t retries,
8037 void (*cbfcnp)(struct cam_periph *, union ccb *),
8038 uint8_t tag_action, uint8_t pdf,
8039 void *buf, uint32_t alloc_len,
8040 uint8_t sense_len, uint32_t timeout)
8041 {
8042 struct scsi_target_group *scsi_cmd;
8043
8044 cam_fill_csio(csio,
8045 retries,
8046 cbfcnp,
8047 /*flags*/CAM_DIR_IN,
8048 tag_action,
8049 /*data_ptr*/(uint8_t *)buf,
8050 /*dxfer_len*/alloc_len,
8051 sense_len,
8052 sizeof(*scsi_cmd),
8053 timeout);
8054 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
8055 bzero(scsi_cmd, sizeof(*scsi_cmd));
8056 scsi_cmd->opcode = MAINTENANCE_IN;
8057 scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf;
8058 scsi_ulto4b(alloc_len, scsi_cmd->length);
8059 }
8060
8061 void
scsi_report_timestamp(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t pdf,void * buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8062 scsi_report_timestamp(struct ccb_scsiio *csio, uint32_t retries,
8063 void (*cbfcnp)(struct cam_periph *, union ccb *),
8064 uint8_t tag_action, uint8_t pdf,
8065 void *buf, uint32_t alloc_len,
8066 uint8_t sense_len, uint32_t timeout)
8067 {
8068 struct scsi_timestamp *scsi_cmd;
8069
8070 cam_fill_csio(csio,
8071 retries,
8072 cbfcnp,
8073 /*flags*/CAM_DIR_IN,
8074 tag_action,
8075 /*data_ptr*/(uint8_t *)buf,
8076 /*dxfer_len*/alloc_len,
8077 sense_len,
8078 sizeof(*scsi_cmd),
8079 timeout);
8080 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
8081 bzero(scsi_cmd, sizeof(*scsi_cmd));
8082 scsi_cmd->opcode = MAINTENANCE_IN;
8083 scsi_cmd->service_action = REPORT_TIMESTAMP | pdf;
8084 scsi_ulto4b(alloc_len, scsi_cmd->length);
8085 }
8086
8087 void
scsi_set_target_group(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,void * buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8088 scsi_set_target_group(struct ccb_scsiio *csio, uint32_t retries,
8089 void (*cbfcnp)(struct cam_periph *, union ccb *),
8090 uint8_t tag_action, void *buf, uint32_t alloc_len,
8091 uint8_t sense_len, uint32_t timeout)
8092 {
8093 struct scsi_target_group *scsi_cmd;
8094
8095 cam_fill_csio(csio,
8096 retries,
8097 cbfcnp,
8098 /*flags*/CAM_DIR_OUT,
8099 tag_action,
8100 /*data_ptr*/(uint8_t *)buf,
8101 /*dxfer_len*/alloc_len,
8102 sense_len,
8103 sizeof(*scsi_cmd),
8104 timeout);
8105 scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
8106 bzero(scsi_cmd, sizeof(*scsi_cmd));
8107 scsi_cmd->opcode = MAINTENANCE_OUT;
8108 scsi_cmd->service_action = SET_TARGET_PORT_GROUPS;
8109 scsi_ulto4b(alloc_len, scsi_cmd->length);
8110 }
8111
8112 void
scsi_create_timestamp(uint8_t * timestamp_6b_buf,uint64_t timestamp)8113 scsi_create_timestamp(uint8_t *timestamp_6b_buf,
8114 uint64_t timestamp)
8115 {
8116 uint8_t buf[8];
8117 scsi_u64to8b(timestamp, buf);
8118 /*
8119 * Using memcopy starting at buf[2] because the set timestamp parameters
8120 * only has six bytes for the timestamp to fit into, and we don't have a
8121 * scsi_u64to6b function.
8122 */
8123 memcpy(timestamp_6b_buf, &buf[2], 6);
8124 }
8125
8126 void
scsi_set_timestamp(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,void * buf,uint32_t alloc_len,uint8_t sense_len,uint32_t timeout)8127 scsi_set_timestamp(struct ccb_scsiio *csio, uint32_t retries,
8128 void (*cbfcnp)(struct cam_periph *, union ccb *),
8129 uint8_t tag_action, void *buf, uint32_t alloc_len,
8130 uint8_t sense_len, uint32_t timeout)
8131 {
8132 struct scsi_timestamp *scsi_cmd;
8133
8134 cam_fill_csio(csio,
8135 retries,
8136 cbfcnp,
8137 /*flags*/CAM_DIR_OUT,
8138 tag_action,
8139 /*data_ptr*/(uint8_t *) buf,
8140 /*dxfer_len*/alloc_len,
8141 sense_len,
8142 sizeof(*scsi_cmd),
8143 timeout);
8144 scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
8145 bzero(scsi_cmd, sizeof(*scsi_cmd));
8146 scsi_cmd->opcode = MAINTENANCE_OUT;
8147 scsi_cmd->service_action = SET_TIMESTAMP;
8148 scsi_ulto4b(alloc_len, scsi_cmd->length);
8149 }
8150
8151 /*
8152 * Syncronize the media to the contents of the cache for
8153 * the given lba/count pair. Specifying 0/0 means sync
8154 * the whole cache.
8155 */
8156 void
scsi_synchronize_cache(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t begin_lba,uint16_t lb_count,uint8_t sense_len,uint32_t timeout)8157 scsi_synchronize_cache(struct ccb_scsiio *csio, uint32_t retries,
8158 void (*cbfcnp)(struct cam_periph *, union ccb *),
8159 uint8_t tag_action, uint32_t begin_lba,
8160 uint16_t lb_count, uint8_t sense_len,
8161 uint32_t timeout)
8162 {
8163 struct scsi_sync_cache *scsi_cmd;
8164
8165 cam_fill_csio(csio,
8166 retries,
8167 cbfcnp,
8168 /*flags*/CAM_DIR_NONE,
8169 tag_action,
8170 /*data_ptr*/NULL,
8171 /*dxfer_len*/0,
8172 sense_len,
8173 sizeof(*scsi_cmd),
8174 timeout);
8175
8176 scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes;
8177 bzero(scsi_cmd, sizeof(*scsi_cmd));
8178 scsi_cmd->opcode = SYNCHRONIZE_CACHE;
8179 scsi_ulto4b(begin_lba, scsi_cmd->begin_lba);
8180 scsi_ulto2b(lb_count, scsi_cmd->lb_count);
8181 }
8182
8183 void
scsi_read_write(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int readop,uint8_t byte2,int minimum_cmd_size,uint64_t lba,uint32_t block_count,uint8_t * data_ptr,uint32_t dxfer_len,uint8_t sense_len,uint32_t timeout)8184 scsi_read_write(struct ccb_scsiio *csio, uint32_t retries,
8185 void (*cbfcnp)(struct cam_periph *, union ccb *),
8186 uint8_t tag_action, int readop, uint8_t byte2,
8187 int minimum_cmd_size, uint64_t lba, uint32_t block_count,
8188 uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len,
8189 uint32_t timeout)
8190 {
8191 int read;
8192 uint8_t cdb_len;
8193
8194 read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ;
8195
8196 /*
8197 * Use the smallest possible command to perform the operation
8198 * as some legacy hardware does not support the 10 byte commands.
8199 * If any of the bits in byte2 is set, we have to go with a larger
8200 * command.
8201 */
8202 if ((minimum_cmd_size < 10)
8203 && ((lba & 0x1fffff) == lba)
8204 && ((block_count & 0xff) == block_count)
8205 && (byte2 == 0)) {
8206 /*
8207 * We can fit in a 6 byte cdb.
8208 */
8209 struct scsi_rw_6 *scsi_cmd;
8210
8211 scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes;
8212 scsi_cmd->opcode = read ? READ_6 : WRITE_6;
8213 scsi_ulto3b(lba, scsi_cmd->addr);
8214 scsi_cmd->length = block_count & 0xff;
8215 scsi_cmd->control = 0;
8216 cdb_len = sizeof(*scsi_cmd);
8217
8218 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8219 ("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0],
8220 scsi_cmd->addr[1], scsi_cmd->addr[2],
8221 scsi_cmd->length, dxfer_len));
8222 } else if ((minimum_cmd_size < 12)
8223 && ((block_count & 0xffff) == block_count)
8224 && ((lba & 0xffffffff) == lba)) {
8225 /*
8226 * Need a 10 byte cdb.
8227 */
8228 struct scsi_rw_10 *scsi_cmd;
8229
8230 scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes;
8231 scsi_cmd->opcode = read ? READ_10 : WRITE_10;
8232 scsi_cmd->byte2 = byte2;
8233 scsi_ulto4b(lba, scsi_cmd->addr);
8234 scsi_cmd->reserved = 0;
8235 scsi_ulto2b(block_count, scsi_cmd->length);
8236 scsi_cmd->control = 0;
8237 cdb_len = sizeof(*scsi_cmd);
8238
8239 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8240 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8241 scsi_cmd->addr[1], scsi_cmd->addr[2],
8242 scsi_cmd->addr[3], scsi_cmd->length[0],
8243 scsi_cmd->length[1], dxfer_len));
8244 } else if ((minimum_cmd_size < 16)
8245 && ((block_count & 0xffffffff) == block_count)
8246 && ((lba & 0xffffffff) == lba)) {
8247 /*
8248 * The block count is too big for a 10 byte CDB, use a 12
8249 * byte CDB.
8250 */
8251 struct scsi_rw_12 *scsi_cmd;
8252
8253 scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes;
8254 scsi_cmd->opcode = read ? READ_12 : WRITE_12;
8255 scsi_cmd->byte2 = byte2;
8256 scsi_ulto4b(lba, scsi_cmd->addr);
8257 scsi_cmd->reserved = 0;
8258 scsi_ulto4b(block_count, scsi_cmd->length);
8259 scsi_cmd->control = 0;
8260 cdb_len = sizeof(*scsi_cmd);
8261
8262 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8263 ("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0],
8264 scsi_cmd->addr[1], scsi_cmd->addr[2],
8265 scsi_cmd->addr[3], scsi_cmd->length[0],
8266 scsi_cmd->length[1], scsi_cmd->length[2],
8267 scsi_cmd->length[3], dxfer_len));
8268 } else {
8269 /*
8270 * 16 byte CDB. We'll only get here if the LBA is larger
8271 * than 2^32, or if the user asks for a 16 byte command.
8272 */
8273 struct scsi_rw_16 *scsi_cmd;
8274
8275 scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes;
8276 scsi_cmd->opcode = read ? READ_16 : WRITE_16;
8277 scsi_cmd->byte2 = byte2;
8278 scsi_u64to8b(lba, scsi_cmd->addr);
8279 scsi_cmd->reserved = 0;
8280 scsi_ulto4b(block_count, scsi_cmd->length);
8281 scsi_cmd->control = 0;
8282 cdb_len = sizeof(*scsi_cmd);
8283 }
8284 cam_fill_csio(csio,
8285 retries,
8286 cbfcnp,
8287 (read ? CAM_DIR_IN : CAM_DIR_OUT) |
8288 ((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0),
8289 tag_action,
8290 data_ptr,
8291 dxfer_len,
8292 sense_len,
8293 cdb_len,
8294 timeout);
8295 }
8296
8297 void
scsi_write_same(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t byte2,int minimum_cmd_size,uint64_t lba,uint32_t block_count,uint8_t * data_ptr,uint32_t dxfer_len,uint8_t sense_len,uint32_t timeout)8298 scsi_write_same(struct ccb_scsiio *csio, uint32_t retries,
8299 void (*cbfcnp)(struct cam_periph *, union ccb *),
8300 uint8_t tag_action, uint8_t byte2,
8301 int minimum_cmd_size, uint64_t lba, uint32_t block_count,
8302 uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len,
8303 uint32_t timeout)
8304 {
8305 uint8_t cdb_len;
8306 if ((minimum_cmd_size < 16) &&
8307 ((block_count & 0xffff) == block_count) &&
8308 ((lba & 0xffffffff) == lba)) {
8309 /*
8310 * Need a 10 byte cdb.
8311 */
8312 struct scsi_write_same_10 *scsi_cmd;
8313
8314 scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes;
8315 scsi_cmd->opcode = WRITE_SAME_10;
8316 scsi_cmd->byte2 = byte2;
8317 scsi_ulto4b(lba, scsi_cmd->addr);
8318 scsi_cmd->group = 0;
8319 scsi_ulto2b(block_count, scsi_cmd->length);
8320 scsi_cmd->control = 0;
8321 cdb_len = sizeof(*scsi_cmd);
8322
8323 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8324 ("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
8325 scsi_cmd->addr[1], scsi_cmd->addr[2],
8326 scsi_cmd->addr[3], scsi_cmd->length[0],
8327 scsi_cmd->length[1], dxfer_len));
8328 } else {
8329 /*
8330 * 16 byte CDB. We'll only get here if the LBA is larger
8331 * than 2^32, or if the user asks for a 16 byte command.
8332 */
8333 struct scsi_write_same_16 *scsi_cmd;
8334
8335 scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes;
8336 scsi_cmd->opcode = WRITE_SAME_16;
8337 scsi_cmd->byte2 = byte2;
8338 scsi_u64to8b(lba, scsi_cmd->addr);
8339 scsi_ulto4b(block_count, scsi_cmd->length);
8340 scsi_cmd->group = 0;
8341 scsi_cmd->control = 0;
8342 cdb_len = sizeof(*scsi_cmd);
8343
8344 CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
8345 ("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n",
8346 scsi_cmd->addr[0], scsi_cmd->addr[1],
8347 scsi_cmd->addr[2], scsi_cmd->addr[3],
8348 scsi_cmd->addr[4], scsi_cmd->addr[5],
8349 scsi_cmd->addr[6], scsi_cmd->addr[7],
8350 scsi_cmd->length[0], scsi_cmd->length[1],
8351 scsi_cmd->length[2], scsi_cmd->length[3],
8352 dxfer_len));
8353 }
8354 cam_fill_csio(csio,
8355 retries,
8356 cbfcnp,
8357 /*flags*/CAM_DIR_OUT,
8358 tag_action,
8359 data_ptr,
8360 dxfer_len,
8361 sense_len,
8362 cdb_len,
8363 timeout);
8364 }
8365
8366 void
scsi_ata_identify(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t * data_ptr,uint16_t dxfer_len,uint8_t sense_len,uint32_t timeout)8367 scsi_ata_identify(struct ccb_scsiio *csio, uint32_t retries,
8368 void (*cbfcnp)(struct cam_periph *, union ccb *),
8369 uint8_t tag_action, uint8_t *data_ptr,
8370 uint16_t dxfer_len, uint8_t sense_len,
8371 uint32_t timeout)
8372 {
8373 scsi_ata_pass(csio,
8374 retries,
8375 cbfcnp,
8376 /*flags*/CAM_DIR_IN,
8377 tag_action,
8378 /*protocol*/AP_PROTO_PIO_IN,
8379 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8380 AP_FLAG_BYT_BLOK_BLOCKS |
8381 AP_FLAG_TLEN_SECT_CNT,
8382 /*features*/0,
8383 /*sector_count*/dxfer_len / 512,
8384 /*lba*/0,
8385 /*command*/ATA_ATA_IDENTIFY,
8386 /*device*/ 0,
8387 /*icc*/ 0,
8388 /*auxiliary*/ 0,
8389 /*control*/0,
8390 data_ptr,
8391 dxfer_len,
8392 /*cdb_storage*/ NULL,
8393 /*cdb_storage_len*/ 0,
8394 /*minimum_cmd_size*/ 0,
8395 sense_len,
8396 timeout);
8397 }
8398
8399 void
scsi_ata_trim(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint16_t block_count,uint8_t * data_ptr,uint16_t dxfer_len,uint8_t sense_len,uint32_t timeout)8400 scsi_ata_trim(struct ccb_scsiio *csio, uint32_t retries,
8401 void (*cbfcnp)(struct cam_periph *, union ccb *),
8402 uint8_t tag_action, uint16_t block_count,
8403 uint8_t *data_ptr, uint16_t dxfer_len, uint8_t sense_len,
8404 uint32_t timeout)
8405 {
8406 scsi_ata_pass_16(csio,
8407 retries,
8408 cbfcnp,
8409 /*flags*/CAM_DIR_OUT,
8410 tag_action,
8411 /*protocol*/AP_EXTEND|AP_PROTO_DMA,
8412 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS,
8413 /*features*/ATA_DSM_TRIM,
8414 /*sector_count*/block_count,
8415 /*lba*/0,
8416 /*command*/ATA_DATA_SET_MANAGEMENT,
8417 /*control*/0,
8418 data_ptr,
8419 dxfer_len,
8420 sense_len,
8421 timeout);
8422 }
8423
8424 int
scsi_ata_read_log(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t log_address,uint32_t page_number,uint16_t block_count,uint8_t protocol,uint8_t * data_ptr,uint32_t dxfer_len,uint8_t sense_len,uint32_t timeout)8425 scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries,
8426 void (*cbfcnp)(struct cam_periph *, union ccb *),
8427 uint8_t tag_action, uint32_t log_address,
8428 uint32_t page_number, uint16_t block_count,
8429 uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len,
8430 uint8_t sense_len, uint32_t timeout)
8431 {
8432 uint8_t command, protocol_out;
8433 uint16_t count_out;
8434 uint64_t lba;
8435 int retval;
8436
8437 retval = 0;
8438
8439 switch (protocol) {
8440 case AP_PROTO_DMA:
8441 count_out = block_count;
8442 command = ATA_READ_LOG_DMA_EXT;
8443 protocol_out = AP_PROTO_DMA;
8444 break;
8445 case AP_PROTO_PIO_IN:
8446 default:
8447 count_out = block_count;
8448 command = ATA_READ_LOG_EXT;
8449 protocol_out = AP_PROTO_PIO_IN;
8450 break;
8451 }
8452
8453 lba = (((uint64_t)page_number & 0xff00) << 32) |
8454 ((page_number & 0x00ff) << 8) |
8455 (log_address & 0xff);
8456
8457 protocol_out |= AP_EXTEND;
8458
8459 retval = scsi_ata_pass(csio,
8460 retries,
8461 cbfcnp,
8462 /*flags*/CAM_DIR_IN,
8463 tag_action,
8464 /*protocol*/ protocol_out,
8465 /*ata_flags*/AP_FLAG_TLEN_SECT_CNT |
8466 AP_FLAG_BYT_BLOK_BLOCKS |
8467 AP_FLAG_TDIR_FROM_DEV,
8468 /*feature*/ 0,
8469 /*sector_count*/ count_out,
8470 /*lba*/ lba,
8471 /*command*/ command,
8472 /*device*/ 0,
8473 /*icc*/ 0,
8474 /*auxiliary*/ 0,
8475 /*control*/0,
8476 data_ptr,
8477 dxfer_len,
8478 /*cdb_storage*/ NULL,
8479 /*cdb_storage_len*/ 0,
8480 /*minimum_cmd_size*/ 0,
8481 sense_len,
8482 timeout);
8483
8484 return (retval);
8485 }
8486
scsi_ata_setfeatures(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t feature,uint64_t lba,uint32_t count,uint8_t sense_len,uint32_t timeout)8487 int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries,
8488 void (*cbfcnp)(struct cam_periph *, union ccb *),
8489 uint8_t tag_action, uint8_t feature,
8490 uint64_t lba, uint32_t count,
8491 uint8_t sense_len, uint32_t timeout)
8492 {
8493 return (scsi_ata_pass(csio,
8494 retries,
8495 cbfcnp,
8496 /*flags*/CAM_DIR_NONE,
8497 tag_action,
8498 /*protocol*/AP_PROTO_PIO_IN,
8499 /*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
8500 AP_FLAG_BYT_BLOK_BYTES |
8501 AP_FLAG_TLEN_SECT_CNT,
8502 /*features*/feature,
8503 /*sector_count*/count,
8504 /*lba*/lba,
8505 /*command*/ATA_SETFEATURES,
8506 /*device*/ 0,
8507 /*icc*/ 0,
8508 /*auxiliary*/0,
8509 /*control*/0,
8510 /*data_ptr*/NULL,
8511 /*dxfer_len*/0,
8512 /*cdb_storage*/NULL,
8513 /*cdb_storage_len*/0,
8514 /*minimum_cmd_size*/0,
8515 sense_len,
8516 timeout));
8517 }
8518
8519 /*
8520 * Note! This is an unusual CDB building function because it can return
8521 * an error in the event that the command in question requires a variable
8522 * length CDB, but the caller has not given storage space for one or has not
8523 * given enough storage space. If there is enough space available in the
8524 * standard SCSI CCB CDB bytes, we'll prefer that over passed in storage.
8525 */
8526 int
scsi_ata_pass(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint32_t flags,uint8_t tag_action,uint8_t protocol,uint8_t ata_flags,uint16_t features,uint16_t sector_count,uint64_t lba,uint8_t command,uint8_t device,uint8_t icc,uint32_t auxiliary,uint8_t control,uint8_t * data_ptr,uint32_t dxfer_len,uint8_t * cdb_storage,size_t cdb_storage_len,int minimum_cmd_size,uint8_t sense_len,uint32_t timeout)8527 scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries,
8528 void (*cbfcnp)(struct cam_periph *, union ccb *),
8529 uint32_t flags, uint8_t tag_action,
8530 uint8_t protocol, uint8_t ata_flags, uint16_t features,
8531 uint16_t sector_count, uint64_t lba, uint8_t command,
8532 uint8_t device, uint8_t icc, uint32_t auxiliary,
8533 uint8_t control, uint8_t *data_ptr, uint32_t dxfer_len,
8534 uint8_t *cdb_storage, size_t cdb_storage_len,
8535 int minimum_cmd_size, uint8_t sense_len, uint32_t timeout)
8536 {
8537 uint32_t cam_flags;
8538 uint8_t *cdb_ptr;
8539 int cmd_size;
8540 int retval;
8541 uint8_t cdb_len;
8542
8543 retval = 0;
8544 cam_flags = flags;
8545
8546 /*
8547 * Round the user's request to the nearest command size that is at
8548 * least as big as what he requested.
8549 */
8550 if (minimum_cmd_size <= 12)
8551 cmd_size = 12;
8552 else if (minimum_cmd_size > 16)
8553 cmd_size = 32;
8554 else
8555 cmd_size = 16;
8556
8557 /*
8558 * If we have parameters that require a 48-bit ATA command, we have to
8559 * use the 16 byte ATA PASS-THROUGH command at least.
8560 */
8561 if (((lba > ATA_MAX_28BIT_LBA)
8562 || (sector_count > 255)
8563 || (features > 255)
8564 || (protocol & AP_EXTEND))
8565 && ((cmd_size < 16)
8566 || ((protocol & AP_EXTEND) == 0))) {
8567 if (cmd_size < 16)
8568 cmd_size = 16;
8569 protocol |= AP_EXTEND;
8570 }
8571
8572 /*
8573 * The icc and auxiliary ATA registers are only supported in the
8574 * 32-byte version of the ATA PASS-THROUGH command.
8575 */
8576 if ((icc != 0)
8577 || (auxiliary != 0)) {
8578 cmd_size = 32;
8579 protocol |= AP_EXTEND;
8580 }
8581
8582 if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes))
8583 && ((cdb_storage == NULL)
8584 || (cdb_storage_len < cmd_size))) {
8585 retval = 1;
8586 goto bailout;
8587 }
8588
8589 /*
8590 * At this point we know we have enough space to store the command
8591 * in one place or another. We prefer the built-in array, but used
8592 * the passed in storage if necessary.
8593 */
8594 if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes))
8595 cdb_ptr = csio->cdb_io.cdb_bytes;
8596 else {
8597 cdb_ptr = cdb_storage;
8598 cam_flags |= CAM_CDB_POINTER;
8599 }
8600
8601 if (cmd_size <= 12) {
8602 struct ata_pass_12 *cdb;
8603
8604 cdb = (struct ata_pass_12 *)cdb_ptr;
8605 cdb_len = sizeof(*cdb);
8606 bzero(cdb, cdb_len);
8607
8608 cdb->opcode = ATA_PASS_12;
8609 cdb->protocol = protocol;
8610 cdb->flags = ata_flags;
8611 cdb->features = features;
8612 cdb->sector_count = sector_count;
8613 cdb->lba_low = lba & 0xff;
8614 cdb->lba_mid = (lba >> 8) & 0xff;
8615 cdb->lba_high = (lba >> 16) & 0xff;
8616 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8617 cdb->command = command;
8618 cdb->control = control;
8619 } else if (cmd_size <= 16) {
8620 struct ata_pass_16 *cdb;
8621
8622 cdb = (struct ata_pass_16 *)cdb_ptr;
8623 cdb_len = sizeof(*cdb);
8624 bzero(cdb, cdb_len);
8625
8626 cdb->opcode = ATA_PASS_16;
8627 cdb->protocol = protocol;
8628 cdb->flags = ata_flags;
8629 cdb->features = features & 0xff;
8630 cdb->sector_count = sector_count & 0xff;
8631 cdb->lba_low = lba & 0xff;
8632 cdb->lba_mid = (lba >> 8) & 0xff;
8633 cdb->lba_high = (lba >> 16) & 0xff;
8634 /*
8635 * If AP_EXTEND is set, we're sending a 48-bit command.
8636 * Otherwise it's a 28-bit command.
8637 */
8638 if (protocol & AP_EXTEND) {
8639 cdb->lba_low_ext = (lba >> 24) & 0xff;
8640 cdb->lba_mid_ext = (lba >> 32) & 0xff;
8641 cdb->lba_high_ext = (lba >> 40) & 0xff;
8642 cdb->features_ext = (features >> 8) & 0xff;
8643 cdb->sector_count_ext = (sector_count >> 8) & 0xff;
8644 cdb->device = device | ATA_DEV_LBA;
8645 } else {
8646 cdb->lba_low_ext = (lba >> 24) & 0xf;
8647 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8648 }
8649 cdb->command = command;
8650 cdb->control = control;
8651 } else {
8652 struct ata_pass_32 *cdb;
8653 uint8_t tmp_lba[8];
8654
8655 cdb = (struct ata_pass_32 *)cdb_ptr;
8656 cdb_len = sizeof(*cdb);
8657 bzero(cdb, cdb_len);
8658 cdb->opcode = VARIABLE_LEN_CDB;
8659 cdb->control = control;
8660 cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32,
8661 service_action);
8662 scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action);
8663 cdb->protocol = protocol;
8664 cdb->flags = ata_flags;
8665
8666 if ((protocol & AP_EXTEND) == 0) {
8667 lba &= 0x0fffffff;
8668 cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
8669 features &= 0xff;
8670 sector_count &= 0xff;
8671 } else {
8672 cdb->device = device | ATA_DEV_LBA;
8673 }
8674 scsi_u64to8b(lba, tmp_lba);
8675 bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba));
8676 scsi_ulto2b(features, cdb->features);
8677 scsi_ulto2b(sector_count, cdb->count);
8678 cdb->command = command;
8679 cdb->icc = icc;
8680 scsi_ulto4b(auxiliary, cdb->auxiliary);
8681 }
8682
8683 cam_fill_csio(csio,
8684 retries,
8685 cbfcnp,
8686 cam_flags,
8687 tag_action,
8688 data_ptr,
8689 dxfer_len,
8690 sense_len,
8691 cmd_size,
8692 timeout);
8693 bailout:
8694 return (retval);
8695 }
8696
8697 void
scsi_ata_pass_16(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint32_t flags,uint8_t tag_action,uint8_t protocol,uint8_t ata_flags,uint16_t features,uint16_t sector_count,uint64_t lba,uint8_t command,uint8_t control,uint8_t * data_ptr,uint16_t dxfer_len,uint8_t sense_len,uint32_t timeout)8698 scsi_ata_pass_16(struct ccb_scsiio *csio, uint32_t retries,
8699 void (*cbfcnp)(struct cam_periph *, union ccb *),
8700 uint32_t flags, uint8_t tag_action,
8701 uint8_t protocol, uint8_t ata_flags, uint16_t features,
8702 uint16_t sector_count, uint64_t lba, uint8_t command,
8703 uint8_t control, uint8_t *data_ptr, uint16_t dxfer_len,
8704 uint8_t sense_len, uint32_t timeout)
8705 {
8706 struct ata_pass_16 *ata_cmd;
8707
8708 ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes;
8709 ata_cmd->opcode = ATA_PASS_16;
8710 ata_cmd->protocol = protocol;
8711 ata_cmd->flags = ata_flags;
8712 ata_cmd->features_ext = features >> 8;
8713 ata_cmd->features = features;
8714 ata_cmd->sector_count_ext = sector_count >> 8;
8715 ata_cmd->sector_count = sector_count;
8716 ata_cmd->lba_low = lba;
8717 ata_cmd->lba_mid = lba >> 8;
8718 ata_cmd->lba_high = lba >> 16;
8719 ata_cmd->device = ATA_DEV_LBA;
8720 if (protocol & AP_EXTEND) {
8721 ata_cmd->lba_low_ext = lba >> 24;
8722 ata_cmd->lba_mid_ext = lba >> 32;
8723 ata_cmd->lba_high_ext = lba >> 40;
8724 } else
8725 ata_cmd->device |= (lba >> 24) & 0x0f;
8726 ata_cmd->command = command;
8727 ata_cmd->control = control;
8728
8729 cam_fill_csio(csio,
8730 retries,
8731 cbfcnp,
8732 flags,
8733 tag_action,
8734 data_ptr,
8735 dxfer_len,
8736 sense_len,
8737 sizeof(*ata_cmd),
8738 timeout);
8739 }
8740
8741 void
scsi_unmap(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t byte2,uint8_t * data_ptr,uint16_t dxfer_len,uint8_t sense_len,uint32_t timeout)8742 scsi_unmap(struct ccb_scsiio *csio, uint32_t retries,
8743 void (*cbfcnp)(struct cam_periph *, union ccb *),
8744 uint8_t tag_action, uint8_t byte2,
8745 uint8_t *data_ptr, uint16_t dxfer_len, uint8_t sense_len,
8746 uint32_t timeout)
8747 {
8748 struct scsi_unmap *scsi_cmd;
8749
8750 scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes;
8751 scsi_cmd->opcode = UNMAP;
8752 scsi_cmd->byte2 = byte2;
8753 scsi_ulto4b(0, scsi_cmd->reserved);
8754 scsi_cmd->group = 0;
8755 scsi_ulto2b(dxfer_len, scsi_cmd->length);
8756 scsi_cmd->control = 0;
8757
8758 cam_fill_csio(csio,
8759 retries,
8760 cbfcnp,
8761 /*flags*/CAM_DIR_OUT,
8762 tag_action,
8763 data_ptr,
8764 dxfer_len,
8765 sense_len,
8766 sizeof(*scsi_cmd),
8767 timeout);
8768 }
8769
8770 void
scsi_receive_diagnostic_results(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int pcv,uint8_t page_code,uint8_t * data_ptr,uint16_t allocation_length,uint8_t sense_len,uint32_t timeout)8771 scsi_receive_diagnostic_results(struct ccb_scsiio *csio, uint32_t retries,
8772 void (*cbfcnp)(struct cam_periph *, union ccb*),
8773 uint8_t tag_action, int pcv, uint8_t page_code,
8774 uint8_t *data_ptr, uint16_t allocation_length,
8775 uint8_t sense_len, uint32_t timeout)
8776 {
8777 struct scsi_receive_diag *scsi_cmd;
8778
8779 scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes;
8780 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8781 scsi_cmd->opcode = RECEIVE_DIAGNOSTIC;
8782 if (pcv) {
8783 scsi_cmd->byte2 |= SRD_PCV;
8784 scsi_cmd->page_code = page_code;
8785 }
8786 scsi_ulto2b(allocation_length, scsi_cmd->length);
8787
8788 cam_fill_csio(csio,
8789 retries,
8790 cbfcnp,
8791 /*flags*/CAM_DIR_IN,
8792 tag_action,
8793 data_ptr,
8794 allocation_length,
8795 sense_len,
8796 sizeof(*scsi_cmd),
8797 timeout);
8798 }
8799
8800 void
scsi_send_diagnostic(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int unit_offline,int device_offline,int self_test,int page_format,int self_test_code,uint8_t * data_ptr,uint16_t param_list_length,uint8_t sense_len,uint32_t timeout)8801 scsi_send_diagnostic(struct ccb_scsiio *csio, uint32_t retries,
8802 void (*cbfcnp)(struct cam_periph *, union ccb *),
8803 uint8_t tag_action, int unit_offline, int device_offline,
8804 int self_test, int page_format, int self_test_code,
8805 uint8_t *data_ptr, uint16_t param_list_length,
8806 uint8_t sense_len, uint32_t timeout)
8807 {
8808 struct scsi_send_diag *scsi_cmd;
8809
8810 scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes;
8811 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8812 scsi_cmd->opcode = SEND_DIAGNOSTIC;
8813
8814 /*
8815 * The default self-test mode control and specific test
8816 * control are mutually exclusive.
8817 */
8818 if (self_test)
8819 self_test_code = SSD_SELF_TEST_CODE_NONE;
8820
8821 scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT)
8822 & SSD_SELF_TEST_CODE_MASK)
8823 | (unit_offline ? SSD_UNITOFFL : 0)
8824 | (device_offline ? SSD_DEVOFFL : 0)
8825 | (self_test ? SSD_SELFTEST : 0)
8826 | (page_format ? SSD_PF : 0);
8827 scsi_ulto2b(param_list_length, scsi_cmd->length);
8828
8829 cam_fill_csio(csio,
8830 retries,
8831 cbfcnp,
8832 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8833 tag_action,
8834 data_ptr,
8835 param_list_length,
8836 sense_len,
8837 sizeof(*scsi_cmd),
8838 timeout);
8839 }
8840
8841 void
scsi_get_physical_element_status(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t * data_ptr,uint16_t allocation_length,uint8_t report_type,uint32_t starting_element,uint8_t sense_len,uint32_t timeout)8842 scsi_get_physical_element_status(struct ccb_scsiio *csio, uint32_t retries,
8843 void (*cbfcnp)(struct cam_periph *, union ccb *),
8844 uint8_t tag_action, uint8_t *data_ptr,
8845 uint16_t allocation_length, uint8_t report_type,
8846 uint32_t starting_element,
8847 uint8_t sense_len, uint32_t timeout)
8848 {
8849 struct scsi_get_physical_element_status *scsi_cmd;
8850
8851 scsi_cmd = (struct scsi_get_physical_element_status *)&csio->cdb_io.cdb_bytes;
8852 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8853 scsi_cmd->opcode = SERVICE_ACTION_IN;
8854 scsi_cmd->service_action = GET_PHYSICAL_ELEMENT_STATUS;
8855 scsi_ulto4b(starting_element, scsi_cmd->starting_element);
8856 scsi_ulto4b(allocation_length, scsi_cmd->allocation_length);
8857
8858 cam_fill_csio(csio,
8859 retries,
8860 cbfcnp,
8861 /*flags*/ CAM_DIR_IN,
8862 tag_action,
8863 data_ptr,
8864 allocation_length,
8865 sense_len,
8866 sizeof(*scsi_cmd),
8867 timeout);
8868 }
8869
8870 void
scsi_remove_element_and_truncate(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint64_t requested_capacity,uint32_t element_id,uint8_t sense_len,uint32_t timeout)8871 scsi_remove_element_and_truncate(struct ccb_scsiio *csio, uint32_t retries,
8872 void (*cbfcnp)(struct cam_periph *, union ccb *),
8873 uint8_t tag_action,
8874 uint64_t requested_capacity, uint32_t element_id,
8875 uint8_t sense_len, uint32_t timeout)
8876 {
8877 struct scsi_remove_element_and_truncate *scsi_cmd;
8878
8879 scsi_cmd = (struct scsi_remove_element_and_truncate *)&csio->cdb_io.cdb_bytes;
8880 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8881 scsi_cmd->opcode = SERVICE_ACTION_IN;
8882 scsi_cmd->service_action = REMOVE_ELEMENT_AND_TRUNCATE;
8883 scsi_u64to8b(requested_capacity, scsi_cmd->requested_capacity);
8884 scsi_ulto4b(element_id, scsi_cmd->element_identifier);
8885
8886 cam_fill_csio(csio,
8887 retries,
8888 cbfcnp,
8889 /*flags*/ CAM_DIR_OUT,
8890 tag_action,
8891 NULL,
8892 0,
8893 sense_len,
8894 sizeof(*scsi_cmd),
8895 timeout);
8896 }
8897
8898 void
scsi_restore_elements_and_rebuild(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t sense_len,uint32_t timeout)8899 scsi_restore_elements_and_rebuild(struct ccb_scsiio *csio, uint32_t retries,
8900 void (*cbfcnp)(struct cam_periph *, union ccb *),
8901 uint8_t tag_action,
8902 uint8_t sense_len, uint32_t timeout)
8903 {
8904 struct scsi_service_action_in *scsi_cmd;
8905
8906 scsi_cmd = (struct scsi_service_action_in *)&csio->cdb_io.cdb_bytes;
8907 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8908 scsi_cmd->opcode = SERVICE_ACTION_IN;
8909 scsi_cmd->service_action = RESTORE_ELEMENTS_AND_REBUILD;
8910
8911 cam_fill_csio(csio,
8912 retries,
8913 cbfcnp,
8914 /*flags*/ CAM_DIR_OUT,
8915 tag_action,
8916 NULL,
8917 0,
8918 sense_len,
8919 sizeof(*scsi_cmd),
8920 timeout);
8921 }
8922
8923 void
scsi_read_buffer(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int mode,uint8_t buffer_id,uint32_t offset,uint8_t * data_ptr,uint32_t allocation_length,uint8_t sense_len,uint32_t timeout)8924 scsi_read_buffer(struct ccb_scsiio *csio, uint32_t retries,
8925 void (*cbfcnp)(struct cam_periph *, union ccb*),
8926 uint8_t tag_action, int mode,
8927 uint8_t buffer_id, uint32_t offset,
8928 uint8_t *data_ptr, uint32_t allocation_length,
8929 uint8_t sense_len, uint32_t timeout)
8930 {
8931 struct scsi_read_buffer *scsi_cmd;
8932
8933 scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes;
8934 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8935 scsi_cmd->opcode = READ_BUFFER;
8936 scsi_cmd->byte2 = mode;
8937 scsi_cmd->buffer_id = buffer_id;
8938 scsi_ulto3b(offset, scsi_cmd->offset);
8939 scsi_ulto3b(allocation_length, scsi_cmd->length);
8940
8941 cam_fill_csio(csio,
8942 retries,
8943 cbfcnp,
8944 /*flags*/CAM_DIR_IN,
8945 tag_action,
8946 data_ptr,
8947 allocation_length,
8948 sense_len,
8949 sizeof(*scsi_cmd),
8950 timeout);
8951 }
8952
8953 void
scsi_write_buffer(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int mode,uint8_t buffer_id,uint32_t offset,uint8_t * data_ptr,uint32_t param_list_length,uint8_t sense_len,uint32_t timeout)8954 scsi_write_buffer(struct ccb_scsiio *csio, uint32_t retries,
8955 void (*cbfcnp)(struct cam_periph *, union ccb *),
8956 uint8_t tag_action, int mode,
8957 uint8_t buffer_id, uint32_t offset,
8958 uint8_t *data_ptr, uint32_t param_list_length,
8959 uint8_t sense_len, uint32_t timeout)
8960 {
8961 struct scsi_write_buffer *scsi_cmd;
8962
8963 scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes;
8964 memset(scsi_cmd, 0, sizeof(*scsi_cmd));
8965 scsi_cmd->opcode = WRITE_BUFFER;
8966 scsi_cmd->byte2 = mode;
8967 scsi_cmd->buffer_id = buffer_id;
8968 scsi_ulto3b(offset, scsi_cmd->offset);
8969 scsi_ulto3b(param_list_length, scsi_cmd->length);
8970
8971 cam_fill_csio(csio,
8972 retries,
8973 cbfcnp,
8974 /*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
8975 tag_action,
8976 data_ptr,
8977 param_list_length,
8978 sense_len,
8979 sizeof(*scsi_cmd),
8980 timeout);
8981 }
8982
8983 void
scsi_start_stop(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int start,int load_eject,int immediate,uint8_t sense_len,uint32_t timeout)8984 scsi_start_stop(struct ccb_scsiio *csio, uint32_t retries,
8985 void (*cbfcnp)(struct cam_periph *, union ccb *),
8986 uint8_t tag_action, int start, int load_eject,
8987 int immediate, uint8_t sense_len, uint32_t timeout)
8988 {
8989 struct scsi_start_stop_unit *scsi_cmd;
8990 int extra_flags = 0;
8991
8992 scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
8993 bzero(scsi_cmd, sizeof(*scsi_cmd));
8994 scsi_cmd->opcode = START_STOP_UNIT;
8995 if (start != 0) {
8996 scsi_cmd->how |= SSS_START;
8997 /* it takes a lot of power to start a drive */
8998 extra_flags |= CAM_HIGH_POWER;
8999 }
9000 if (load_eject != 0)
9001 scsi_cmd->how |= SSS_LOEJ;
9002 if (immediate != 0)
9003 scsi_cmd->byte2 |= SSS_IMMED;
9004
9005 cam_fill_csio(csio,
9006 retries,
9007 cbfcnp,
9008 /*flags*/CAM_DIR_NONE | extra_flags,
9009 tag_action,
9010 /*data_ptr*/NULL,
9011 /*dxfer_len*/0,
9012 sense_len,
9013 sizeof(*scsi_cmd),
9014 timeout);
9015 }
9016
9017 void
scsi_read_attribute(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t service_action,uint32_t element,uint8_t elem_type,int logical_volume,int partition,uint32_t first_attribute,int cache,uint8_t * data_ptr,uint32_t length,int sense_len,uint32_t timeout)9018 scsi_read_attribute(struct ccb_scsiio *csio, uint32_t retries,
9019 void (*cbfcnp)(struct cam_periph *, union ccb *),
9020 uint8_t tag_action, uint8_t service_action,
9021 uint32_t element, uint8_t elem_type, int logical_volume,
9022 int partition, uint32_t first_attribute, int cache,
9023 uint8_t *data_ptr, uint32_t length, int sense_len,
9024 uint32_t timeout)
9025 {
9026 struct scsi_read_attribute *scsi_cmd;
9027
9028 scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes;
9029 bzero(scsi_cmd, sizeof(*scsi_cmd));
9030
9031 scsi_cmd->opcode = READ_ATTRIBUTE;
9032 scsi_cmd->service_action = service_action;
9033 scsi_ulto2b(element, scsi_cmd->element);
9034 scsi_cmd->elem_type = elem_type;
9035 scsi_cmd->logical_volume = logical_volume;
9036 scsi_cmd->partition = partition;
9037 scsi_ulto2b(first_attribute, scsi_cmd->first_attribute);
9038 scsi_ulto4b(length, scsi_cmd->length);
9039 if (cache != 0)
9040 scsi_cmd->cache |= SRA_CACHE;
9041
9042 cam_fill_csio(csio,
9043 retries,
9044 cbfcnp,
9045 /*flags*/CAM_DIR_IN,
9046 tag_action,
9047 /*data_ptr*/data_ptr,
9048 /*dxfer_len*/length,
9049 sense_len,
9050 sizeof(*scsi_cmd),
9051 timeout);
9052 }
9053
9054 void
scsi_write_attribute(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t element,int logical_volume,int partition,int wtc,uint8_t * data_ptr,uint32_t length,int sense_len,uint32_t timeout)9055 scsi_write_attribute(struct ccb_scsiio *csio, uint32_t retries,
9056 void (*cbfcnp)(struct cam_periph *, union ccb *),
9057 uint8_t tag_action, uint32_t element, int logical_volume,
9058 int partition, int wtc, uint8_t *data_ptr,
9059 uint32_t length, int sense_len, uint32_t timeout)
9060 {
9061 struct scsi_write_attribute *scsi_cmd;
9062
9063 scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes;
9064 bzero(scsi_cmd, sizeof(*scsi_cmd));
9065
9066 scsi_cmd->opcode = WRITE_ATTRIBUTE;
9067 if (wtc != 0)
9068 scsi_cmd->byte2 = SWA_WTC;
9069 scsi_ulto3b(element, scsi_cmd->element);
9070 scsi_cmd->logical_volume = logical_volume;
9071 scsi_cmd->partition = partition;
9072 scsi_ulto4b(length, scsi_cmd->length);
9073
9074 cam_fill_csio(csio,
9075 retries,
9076 cbfcnp,
9077 /*flags*/CAM_DIR_OUT,
9078 tag_action,
9079 /*data_ptr*/data_ptr,
9080 /*dxfer_len*/length,
9081 sense_len,
9082 sizeof(*scsi_cmd),
9083 timeout);
9084 }
9085
9086 void
scsi_persistent_reserve_in(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int service_action,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9087 scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
9088 void (*cbfcnp)(struct cam_periph *, union ccb *),
9089 uint8_t tag_action, int service_action,
9090 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9091 int timeout)
9092 {
9093 struct scsi_per_res_in *scsi_cmd;
9094
9095 scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes;
9096 bzero(scsi_cmd, sizeof(*scsi_cmd));
9097
9098 scsi_cmd->opcode = PERSISTENT_RES_IN;
9099 scsi_cmd->action = service_action;
9100 scsi_ulto2b(dxfer_len, scsi_cmd->length);
9101
9102 cam_fill_csio(csio,
9103 retries,
9104 cbfcnp,
9105 /*flags*/CAM_DIR_IN,
9106 tag_action,
9107 data_ptr,
9108 dxfer_len,
9109 sense_len,
9110 sizeof(*scsi_cmd),
9111 timeout);
9112 }
9113
9114 void
scsi_persistent_reserve_out(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int service_action,int scope,int res_type,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9115 scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
9116 void (*cbfcnp)(struct cam_periph *, union ccb *),
9117 uint8_t tag_action, int service_action,
9118 int scope, int res_type, uint8_t *data_ptr,
9119 uint32_t dxfer_len, int sense_len, int timeout)
9120 {
9121 struct scsi_per_res_out *scsi_cmd;
9122
9123 scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes;
9124 bzero(scsi_cmd, sizeof(*scsi_cmd));
9125
9126 scsi_cmd->opcode = PERSISTENT_RES_OUT;
9127 scsi_cmd->action = service_action;
9128 scsi_cmd->scope_type = scope | res_type;
9129 scsi_ulto4b(dxfer_len, scsi_cmd->length);
9130
9131 cam_fill_csio(csio,
9132 retries,
9133 cbfcnp,
9134 /*flags*/CAM_DIR_OUT,
9135 tag_action,
9136 /*data_ptr*/data_ptr,
9137 /*dxfer_len*/dxfer_len,
9138 sense_len,
9139 sizeof(*scsi_cmd),
9140 timeout);
9141 }
9142
9143 void
scsi_security_protocol_in(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t security_protocol,uint32_t security_protocol_specific,int byte4,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9144 scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries,
9145 void (*cbfcnp)(struct cam_periph *, union ccb *),
9146 uint8_t tag_action, uint32_t security_protocol,
9147 uint32_t security_protocol_specific, int byte4,
9148 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9149 int timeout)
9150 {
9151 struct scsi_security_protocol_in *scsi_cmd;
9152
9153 scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes;
9154 bzero(scsi_cmd, sizeof(*scsi_cmd));
9155
9156 scsi_cmd->opcode = SECURITY_PROTOCOL_IN;
9157
9158 scsi_cmd->security_protocol = security_protocol;
9159 scsi_ulto2b(security_protocol_specific,
9160 scsi_cmd->security_protocol_specific);
9161 scsi_cmd->byte4 = byte4;
9162 scsi_ulto4b(dxfer_len, scsi_cmd->length);
9163
9164 cam_fill_csio(csio,
9165 retries,
9166 cbfcnp,
9167 /*flags*/CAM_DIR_IN,
9168 tag_action,
9169 data_ptr,
9170 dxfer_len,
9171 sense_len,
9172 sizeof(*scsi_cmd),
9173 timeout);
9174 }
9175
9176 void
scsi_security_protocol_out(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint32_t security_protocol,uint32_t security_protocol_specific,int byte4,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9177 scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries,
9178 void (*cbfcnp)(struct cam_periph *, union ccb *),
9179 uint8_t tag_action, uint32_t security_protocol,
9180 uint32_t security_protocol_specific, int byte4,
9181 uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
9182 int timeout)
9183 {
9184 struct scsi_security_protocol_out *scsi_cmd;
9185
9186 scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes;
9187 bzero(scsi_cmd, sizeof(*scsi_cmd));
9188
9189 scsi_cmd->opcode = SECURITY_PROTOCOL_OUT;
9190
9191 scsi_cmd->security_protocol = security_protocol;
9192 scsi_ulto2b(security_protocol_specific,
9193 scsi_cmd->security_protocol_specific);
9194 scsi_cmd->byte4 = byte4;
9195 scsi_ulto4b(dxfer_len, scsi_cmd->length);
9196
9197 cam_fill_csio(csio,
9198 retries,
9199 cbfcnp,
9200 /*flags*/CAM_DIR_OUT,
9201 tag_action,
9202 data_ptr,
9203 dxfer_len,
9204 sense_len,
9205 sizeof(*scsi_cmd),
9206 timeout);
9207 }
9208
9209 void
scsi_report_supported_opcodes(struct ccb_scsiio * csio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int options,int req_opcode,int req_service_action,uint8_t * data_ptr,uint32_t dxfer_len,int sense_len,int timeout)9210 scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries,
9211 void (*cbfcnp)(struct cam_periph *, union ccb *),
9212 uint8_t tag_action, int options, int req_opcode,
9213 int req_service_action, uint8_t *data_ptr,
9214 uint32_t dxfer_len, int sense_len, int timeout)
9215 {
9216 struct scsi_report_supported_opcodes *scsi_cmd;
9217
9218 scsi_cmd = (struct scsi_report_supported_opcodes *)
9219 &csio->cdb_io.cdb_bytes;
9220 bzero(scsi_cmd, sizeof(*scsi_cmd));
9221
9222 scsi_cmd->opcode = MAINTENANCE_IN;
9223 scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES;
9224 scsi_cmd->options = options;
9225 scsi_cmd->requested_opcode = req_opcode;
9226 scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action);
9227 scsi_ulto4b(dxfer_len, scsi_cmd->length);
9228
9229 cam_fill_csio(csio,
9230 retries,
9231 cbfcnp,
9232 /*flags*/CAM_DIR_IN,
9233 tag_action,
9234 data_ptr,
9235 dxfer_len,
9236 sense_len,
9237 sizeof(*scsi_cmd),
9238 timeout);
9239 }
9240
9241 /*
9242 * Try make as good a match as possible with
9243 * available sub drivers
9244 */
9245 int
scsi_inquiry_match(caddr_t inqbuffer,caddr_t table_entry)9246 scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9247 {
9248 struct scsi_inquiry_pattern *entry;
9249 struct scsi_inquiry_data *inq;
9250
9251 entry = (struct scsi_inquiry_pattern *)table_entry;
9252 inq = (struct scsi_inquiry_data *)inqbuffer;
9253
9254 if (((SID_TYPE(inq) == entry->type)
9255 || (entry->type == T_ANY))
9256 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9257 : entry->media_type & SIP_MEDIA_FIXED)
9258 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9259 && (cam_strmatch(inq->product, entry->product,
9260 sizeof(inq->product)) == 0)
9261 && (cam_strmatch(inq->revision, entry->revision,
9262 sizeof(inq->revision)) == 0)) {
9263 return (0);
9264 }
9265 return (-1);
9266 }
9267
9268 /*
9269 * Try make as good a match as possible with
9270 * available sub drivers
9271 */
9272 int
scsi_static_inquiry_match(caddr_t inqbuffer,caddr_t table_entry)9273 scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
9274 {
9275 struct scsi_static_inquiry_pattern *entry;
9276 struct scsi_inquiry_data *inq;
9277
9278 entry = (struct scsi_static_inquiry_pattern *)table_entry;
9279 inq = (struct scsi_inquiry_data *)inqbuffer;
9280
9281 if (((SID_TYPE(inq) == entry->type)
9282 || (entry->type == T_ANY))
9283 && (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
9284 : entry->media_type & SIP_MEDIA_FIXED)
9285 && (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
9286 && (cam_strmatch(inq->product, entry->product,
9287 sizeof(inq->product)) == 0)
9288 && (cam_strmatch(inq->revision, entry->revision,
9289 sizeof(inq->revision)) == 0)) {
9290 return (0);
9291 }
9292 return (-1);
9293 }
9294
9295 /**
9296 * Compare two buffers of vpd device descriptors for a match.
9297 *
9298 * \param lhs Pointer to first buffer of descriptors to compare.
9299 * \param lhs_len The length of the first buffer.
9300 * \param rhs Pointer to second buffer of descriptors to compare.
9301 * \param rhs_len The length of the second buffer.
9302 *
9303 * \return 0 on a match, -1 otherwise.
9304 *
9305 * Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching
9306 * against each element in rhs until all data are exhausted or we have found
9307 * a match.
9308 */
9309 int
scsi_devid_match(uint8_t * lhs,size_t lhs_len,uint8_t * rhs,size_t rhs_len)9310 scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len)
9311 {
9312 struct scsi_vpd_id_descriptor *lhs_id;
9313 struct scsi_vpd_id_descriptor *lhs_last;
9314 struct scsi_vpd_id_descriptor *rhs_last;
9315 uint8_t *lhs_end;
9316 uint8_t *rhs_end;
9317
9318 lhs_end = lhs + lhs_len;
9319 rhs_end = rhs + rhs_len;
9320
9321 /*
9322 * rhs_last and lhs_last are the last possible position of a valid
9323 * descriptor assuming it had a zero length identifier. We use
9324 * these variables to insure we can safely dereference the length
9325 * field in our loop termination tests.
9326 */
9327 lhs_last = (struct scsi_vpd_id_descriptor *)
9328 (lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9329 rhs_last = (struct scsi_vpd_id_descriptor *)
9330 (rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
9331
9332 lhs_id = (struct scsi_vpd_id_descriptor *)lhs;
9333 while (lhs_id <= lhs_last
9334 && (lhs_id->identifier + lhs_id->length) <= lhs_end) {
9335 struct scsi_vpd_id_descriptor *rhs_id;
9336
9337 rhs_id = (struct scsi_vpd_id_descriptor *)rhs;
9338 while (rhs_id <= rhs_last
9339 && (rhs_id->identifier + rhs_id->length) <= rhs_end) {
9340 if ((rhs_id->id_type &
9341 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) ==
9342 (lhs_id->id_type &
9343 (SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK))
9344 && rhs_id->length == lhs_id->length
9345 && memcmp(rhs_id->identifier, lhs_id->identifier,
9346 rhs_id->length) == 0)
9347 return (0);
9348
9349 rhs_id = (struct scsi_vpd_id_descriptor *)
9350 (rhs_id->identifier + rhs_id->length);
9351 }
9352 lhs_id = (struct scsi_vpd_id_descriptor *)
9353 (lhs_id->identifier + lhs_id->length);
9354 }
9355 return (-1);
9356 }
9357
9358 #ifdef _KERNEL
9359 int
scsi_vpd_supported_page(struct cam_periph * periph,uint8_t page_id)9360 scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id)
9361 {
9362 struct cam_ed *device;
9363 struct scsi_vpd_supported_pages *vpds;
9364 int i, num_pages;
9365
9366 device = periph->path->device;
9367 vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
9368
9369 if (vpds != NULL) {
9370 num_pages = device->supported_vpds_len -
9371 SVPD_SUPPORTED_PAGES_HDR_LEN;
9372 for (i = 0; i < num_pages; i++) {
9373 if (vpds->page_list[i] == page_id)
9374 return (1);
9375 }
9376 }
9377
9378 return (0);
9379 }
9380
9381 static void
init_scsi_delay(void)9382 init_scsi_delay(void)
9383 {
9384 int delay;
9385
9386 delay = SCSI_DELAY;
9387 TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay);
9388
9389 if (set_scsi_delay(delay) != 0) {
9390 printf("cam: invalid value for tunable kern.cam.scsi_delay\n");
9391 set_scsi_delay(SCSI_DELAY);
9392 }
9393 }
9394 SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL);
9395
9396 static int
sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)9397 sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)
9398 {
9399 int error, delay;
9400
9401 delay = scsi_delay;
9402 error = sysctl_handle_int(oidp, &delay, 0, req);
9403 if (error != 0 || req->newptr == NULL)
9404 return (error);
9405 return (set_scsi_delay(delay));
9406 }
9407 SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay,
9408 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
9409 0, 0, sysctl_scsi_delay, "I",
9410 "Delay to allow devices to settle after a SCSI bus reset (ms)");
9411
9412 static int
set_scsi_delay(int delay)9413 set_scsi_delay(int delay)
9414 {
9415 /*
9416 * If someone sets this to 0, we assume that they want the
9417 * minimum allowable bus settle delay.
9418 */
9419 if (delay == 0) {
9420 printf("cam: using minimum scsi_delay (%dms)\n",
9421 SCSI_MIN_DELAY);
9422 delay = SCSI_MIN_DELAY;
9423 }
9424 if (delay < SCSI_MIN_DELAY)
9425 return (EINVAL);
9426 scsi_delay = delay;
9427 return (0);
9428 }
9429 #endif /* _KERNEL */
9430