xref: /freebsd/sys/cam/cam_xpt.c (revision fba3cde907930eed2adb8a320524bc250338c729)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/interrupt.h>
43 #include <sys/proc.h>
44 #include <sys/sbuf.h>
45 #include <sys/smp.h>
46 #include <sys/taskqueue.h>
47 
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 
53 #include <cam/cam.h>
54 #include <cam/cam_ccb.h>
55 #include <cam/cam_periph.h>
56 #include <cam/cam_queue.h>
57 #include <cam/cam_sim.h>
58 #include <cam/cam_xpt.h>
59 #include <cam/cam_xpt_sim.h>
60 #include <cam/cam_xpt_periph.h>
61 #include <cam/cam_xpt_internal.h>
62 #include <cam/cam_debug.h>
63 #include <cam/cam_compat.h>
64 
65 #include <cam/scsi/scsi_all.h>
66 #include <cam/scsi/scsi_message.h>
67 #include <cam/scsi/scsi_pass.h>
68 
69 #include <machine/md_var.h>	/* geometry translation */
70 #include <machine/stdarg.h>	/* for xpt_print below */
71 
72 #include "opt_cam.h"
73 
74 /*
75  * This is the maximum number of high powered commands (e.g. start unit)
76  * that can be outstanding at a particular time.
77  */
78 #ifndef CAM_MAX_HIGHPOWER
79 #define CAM_MAX_HIGHPOWER  4
80 #endif
81 
82 /* Datastructures internal to the xpt layer */
83 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
84 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
85 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
86 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
87 
88 /* Object for defering XPT actions to a taskqueue */
89 struct xpt_task {
90 	struct task	task;
91 	void		*data1;
92 	uintptr_t	data2;
93 };
94 
95 typedef enum {
96 	XPT_FLAG_OPEN		= 0x01
97 } xpt_flags;
98 
99 struct xpt_softc {
100 	xpt_flags		flags;
101 
102 	/* number of high powered commands that can go through right now */
103 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
104 	int			num_highpower;
105 
106 	/* queue for handling async rescan requests. */
107 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
108 	int buses_to_config;
109 	int buses_config_done;
110 
111 	/* Registered busses */
112 	TAILQ_HEAD(,cam_eb)	xpt_busses;
113 	u_int			bus_generation;
114 
115 	struct intr_config_hook	*xpt_config_hook;
116 
117 	int			boot_delay;
118 	struct callout 		boot_callout;
119 
120 	struct mtx		xpt_topo_lock;
121 	struct mtx		xpt_lock;
122 	struct taskqueue	*xpt_taskq;
123 };
124 
125 typedef enum {
126 	DM_RET_COPY		= 0x01,
127 	DM_RET_FLAG_MASK	= 0x0f,
128 	DM_RET_NONE		= 0x00,
129 	DM_RET_STOP		= 0x10,
130 	DM_RET_DESCEND		= 0x20,
131 	DM_RET_ERROR		= 0x30,
132 	DM_RET_ACTION_MASK	= 0xf0
133 } dev_match_ret;
134 
135 typedef enum {
136 	XPT_DEPTH_BUS,
137 	XPT_DEPTH_TARGET,
138 	XPT_DEPTH_DEVICE,
139 	XPT_DEPTH_PERIPH
140 } xpt_traverse_depth;
141 
142 struct xpt_traverse_config {
143 	xpt_traverse_depth	depth;
144 	void			*tr_func;
145 	void			*tr_arg;
146 };
147 
148 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
149 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
150 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
151 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
152 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
153 
154 /* Transport layer configuration information */
155 static struct xpt_softc xsoftc;
156 
157 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
158 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
159            &xsoftc.boot_delay, 0, "Bus registration wait time");
160 
161 struct cam_doneq {
162 	struct mtx_padalign	cam_doneq_mtx;
163 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
164 	int			cam_doneq_sleep;
165 };
166 
167 static struct cam_doneq cam_doneqs[MAXCPU];
168 static int cam_num_doneqs;
169 static struct proc *cam_proc;
170 
171 TUNABLE_INT("kern.cam.num_doneqs", &cam_num_doneqs);
172 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
173            &cam_num_doneqs, 0, "Number of completion queues/threads");
174 
175 struct cam_periph *xpt_periph;
176 
177 static periph_init_t xpt_periph_init;
178 
179 static struct periph_driver xpt_driver =
180 {
181 	xpt_periph_init, "xpt",
182 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
183 	CAM_PERIPH_DRV_EARLY
184 };
185 
186 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
187 
188 static d_open_t xptopen;
189 static d_close_t xptclose;
190 static d_ioctl_t xptioctl;
191 static d_ioctl_t xptdoioctl;
192 
193 static struct cdevsw xpt_cdevsw = {
194 	.d_version =	D_VERSION,
195 	.d_flags =	0,
196 	.d_open =	xptopen,
197 	.d_close =	xptclose,
198 	.d_ioctl =	xptioctl,
199 	.d_name =	"xpt",
200 };
201 
202 /* Storage for debugging datastructures */
203 struct cam_path *cam_dpath;
204 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
205 TUNABLE_INT("kern.cam.dflags", &cam_dflags);
206 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
207 	&cam_dflags, 0, "Enabled debug flags");
208 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
209 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
210 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
211 	&cam_debug_delay, 0, "Delay in us after each debug message");
212 
213 /* Our boot-time initialization hook */
214 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
215 
216 static moduledata_t cam_moduledata = {
217 	"cam",
218 	cam_module_event_handler,
219 	NULL
220 };
221 
222 static int	xpt_init(void *);
223 
224 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
225 MODULE_VERSION(cam, 1);
226 
227 
228 static void		xpt_async_bcast(struct async_list *async_head,
229 					u_int32_t async_code,
230 					struct cam_path *path,
231 					void *async_arg);
232 static path_id_t xptnextfreepathid(void);
233 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
234 static union ccb *xpt_get_ccb(struct cam_periph *periph);
235 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
236 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
237 static void	 xpt_run_allocq_task(void *context, int pending);
238 static void	 xpt_run_devq(struct cam_devq *devq);
239 static timeout_t xpt_release_devq_timeout;
240 static void	 xpt_release_simq_timeout(void *arg) __unused;
241 static void	 xpt_acquire_bus(struct cam_eb *bus);
242 static void	 xpt_release_bus(struct cam_eb *bus);
243 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
244 		    int run_queue);
245 static struct cam_et*
246 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
247 static void	 xpt_acquire_target(struct cam_et *target);
248 static void	 xpt_release_target(struct cam_et *target);
249 static struct cam_eb*
250 		 xpt_find_bus(path_id_t path_id);
251 static struct cam_et*
252 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
253 static struct cam_ed*
254 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
255 static void	 xpt_config(void *arg);
256 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
257 				 u_int32_t new_priority);
258 static xpt_devicefunc_t xptpassannouncefunc;
259 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
260 static void	 xptpoll(struct cam_sim *sim);
261 static void	 camisr_runqueue(void);
262 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
263 static void	 xpt_done_td(void *);
264 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
265 				    u_int num_patterns, struct cam_eb *bus);
266 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
267 				       u_int num_patterns,
268 				       struct cam_ed *device);
269 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
270 				       u_int num_patterns,
271 				       struct cam_periph *periph);
272 static xpt_busfunc_t	xptedtbusfunc;
273 static xpt_targetfunc_t	xptedttargetfunc;
274 static xpt_devicefunc_t	xptedtdevicefunc;
275 static xpt_periphfunc_t	xptedtperiphfunc;
276 static xpt_pdrvfunc_t	xptplistpdrvfunc;
277 static xpt_periphfunc_t	xptplistperiphfunc;
278 static int		xptedtmatch(struct ccb_dev_match *cdm);
279 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
280 static int		xptbustraverse(struct cam_eb *start_bus,
281 				       xpt_busfunc_t *tr_func, void *arg);
282 static int		xpttargettraverse(struct cam_eb *bus,
283 					  struct cam_et *start_target,
284 					  xpt_targetfunc_t *tr_func, void *arg);
285 static int		xptdevicetraverse(struct cam_et *target,
286 					  struct cam_ed *start_device,
287 					  xpt_devicefunc_t *tr_func, void *arg);
288 static int		xptperiphtraverse(struct cam_ed *device,
289 					  struct cam_periph *start_periph,
290 					  xpt_periphfunc_t *tr_func, void *arg);
291 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
292 					xpt_pdrvfunc_t *tr_func, void *arg);
293 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
294 					    struct cam_periph *start_periph,
295 					    xpt_periphfunc_t *tr_func,
296 					    void *arg);
297 static xpt_busfunc_t	xptdefbusfunc;
298 static xpt_targetfunc_t	xptdeftargetfunc;
299 static xpt_devicefunc_t	xptdefdevicefunc;
300 static xpt_periphfunc_t	xptdefperiphfunc;
301 static void		xpt_finishconfig_task(void *context, int pending);
302 static void		xpt_dev_async_default(u_int32_t async_code,
303 					      struct cam_eb *bus,
304 					      struct cam_et *target,
305 					      struct cam_ed *device,
306 					      void *async_arg);
307 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
308 						 struct cam_et *target,
309 						 lun_id_t lun_id);
310 static xpt_devicefunc_t	xptsetasyncfunc;
311 static xpt_busfunc_t	xptsetasyncbusfunc;
312 static cam_status	xptregister(struct cam_periph *periph,
313 				    void *arg);
314 static __inline int device_is_queued(struct cam_ed *device);
315 
316 static __inline int
317 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
318 {
319 	int	retval;
320 
321 	mtx_assert(&devq->send_mtx, MA_OWNED);
322 	if ((dev->ccbq.queue.entries > 0) &&
323 	    (dev->ccbq.dev_openings > 0) &&
324 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
325 		/*
326 		 * The priority of a device waiting for controller
327 		 * resources is that of the highest priority CCB
328 		 * enqueued.
329 		 */
330 		retval =
331 		    xpt_schedule_dev(&devq->send_queue,
332 				     &dev->devq_entry,
333 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
334 	} else {
335 		retval = 0;
336 	}
337 	return (retval);
338 }
339 
340 static __inline int
341 device_is_queued(struct cam_ed *device)
342 {
343 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
344 }
345 
346 static void
347 xpt_periph_init()
348 {
349 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
350 }
351 
352 static int
353 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
354 {
355 
356 	/*
357 	 * Only allow read-write access.
358 	 */
359 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
360 		return(EPERM);
361 
362 	/*
363 	 * We don't allow nonblocking access.
364 	 */
365 	if ((flags & O_NONBLOCK) != 0) {
366 		printf("%s: can't do nonblocking access\n", devtoname(dev));
367 		return(ENODEV);
368 	}
369 
370 	/* Mark ourselves open */
371 	mtx_lock(&xsoftc.xpt_lock);
372 	xsoftc.flags |= XPT_FLAG_OPEN;
373 	mtx_unlock(&xsoftc.xpt_lock);
374 
375 	return(0);
376 }
377 
378 static int
379 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
380 {
381 
382 	/* Mark ourselves closed */
383 	mtx_lock(&xsoftc.xpt_lock);
384 	xsoftc.flags &= ~XPT_FLAG_OPEN;
385 	mtx_unlock(&xsoftc.xpt_lock);
386 
387 	return(0);
388 }
389 
390 /*
391  * Don't automatically grab the xpt softc lock here even though this is going
392  * through the xpt device.  The xpt device is really just a back door for
393  * accessing other devices and SIMs, so the right thing to do is to grab
394  * the appropriate SIM lock once the bus/SIM is located.
395  */
396 static int
397 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
398 {
399 	int error;
400 
401 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
402 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
403 	}
404 	return (error);
405 }
406 
407 static int
408 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
409 {
410 	int error;
411 
412 	error = 0;
413 
414 	switch(cmd) {
415 	/*
416 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
417 	 * to accept CCB types that don't quite make sense to send through a
418 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
419 	 * in the CAM spec.
420 	 */
421 	case CAMIOCOMMAND: {
422 		union ccb *ccb;
423 		union ccb *inccb;
424 		struct cam_eb *bus;
425 
426 		inccb = (union ccb *)addr;
427 
428 		bus = xpt_find_bus(inccb->ccb_h.path_id);
429 		if (bus == NULL)
430 			return (EINVAL);
431 
432 		switch (inccb->ccb_h.func_code) {
433 		case XPT_SCAN_BUS:
434 		case XPT_RESET_BUS:
435 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
436 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
437 				xpt_release_bus(bus);
438 				return (EINVAL);
439 			}
440 			break;
441 		case XPT_SCAN_TGT:
442 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
443 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
444 				xpt_release_bus(bus);
445 				return (EINVAL);
446 			}
447 			break;
448 		default:
449 			break;
450 		}
451 
452 		switch(inccb->ccb_h.func_code) {
453 		case XPT_SCAN_BUS:
454 		case XPT_RESET_BUS:
455 		case XPT_PATH_INQ:
456 		case XPT_ENG_INQ:
457 		case XPT_SCAN_LUN:
458 		case XPT_SCAN_TGT:
459 
460 			ccb = xpt_alloc_ccb();
461 
462 			/*
463 			 * Create a path using the bus, target, and lun the
464 			 * user passed in.
465 			 */
466 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
467 					    inccb->ccb_h.path_id,
468 					    inccb->ccb_h.target_id,
469 					    inccb->ccb_h.target_lun) !=
470 					    CAM_REQ_CMP){
471 				error = EINVAL;
472 				xpt_free_ccb(ccb);
473 				break;
474 			}
475 			/* Ensure all of our fields are correct */
476 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
477 				      inccb->ccb_h.pinfo.priority);
478 			xpt_merge_ccb(ccb, inccb);
479 			xpt_path_lock(ccb->ccb_h.path);
480 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
481 			xpt_path_unlock(ccb->ccb_h.path);
482 			bcopy(ccb, inccb, sizeof(union ccb));
483 			xpt_free_path(ccb->ccb_h.path);
484 			xpt_free_ccb(ccb);
485 			break;
486 
487 		case XPT_DEBUG: {
488 			union ccb ccb;
489 
490 			/*
491 			 * This is an immediate CCB, so it's okay to
492 			 * allocate it on the stack.
493 			 */
494 
495 			/*
496 			 * Create a path using the bus, target, and lun the
497 			 * user passed in.
498 			 */
499 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
500 					    inccb->ccb_h.path_id,
501 					    inccb->ccb_h.target_id,
502 					    inccb->ccb_h.target_lun) !=
503 					    CAM_REQ_CMP){
504 				error = EINVAL;
505 				break;
506 			}
507 			/* Ensure all of our fields are correct */
508 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
509 				      inccb->ccb_h.pinfo.priority);
510 			xpt_merge_ccb(&ccb, inccb);
511 			xpt_action(&ccb);
512 			bcopy(&ccb, inccb, sizeof(union ccb));
513 			xpt_free_path(ccb.ccb_h.path);
514 			break;
515 
516 		}
517 		case XPT_DEV_MATCH: {
518 			struct cam_periph_map_info mapinfo;
519 			struct cam_path *old_path;
520 
521 			/*
522 			 * We can't deal with physical addresses for this
523 			 * type of transaction.
524 			 */
525 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
526 			    CAM_DATA_VADDR) {
527 				error = EINVAL;
528 				break;
529 			}
530 
531 			/*
532 			 * Save this in case the caller had it set to
533 			 * something in particular.
534 			 */
535 			old_path = inccb->ccb_h.path;
536 
537 			/*
538 			 * We really don't need a path for the matching
539 			 * code.  The path is needed because of the
540 			 * debugging statements in xpt_action().  They
541 			 * assume that the CCB has a valid path.
542 			 */
543 			inccb->ccb_h.path = xpt_periph->path;
544 
545 			bzero(&mapinfo, sizeof(mapinfo));
546 
547 			/*
548 			 * Map the pattern and match buffers into kernel
549 			 * virtual address space.
550 			 */
551 			error = cam_periph_mapmem(inccb, &mapinfo);
552 
553 			if (error) {
554 				inccb->ccb_h.path = old_path;
555 				break;
556 			}
557 
558 			/*
559 			 * This is an immediate CCB, we can send it on directly.
560 			 */
561 			xpt_action(inccb);
562 
563 			/*
564 			 * Map the buffers back into user space.
565 			 */
566 			cam_periph_unmapmem(inccb, &mapinfo);
567 
568 			inccb->ccb_h.path = old_path;
569 
570 			error = 0;
571 			break;
572 		}
573 		default:
574 			error = ENOTSUP;
575 			break;
576 		}
577 		xpt_release_bus(bus);
578 		break;
579 	}
580 	/*
581 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
582 	 * with the periphal driver name and unit name filled in.  The other
583 	 * fields don't really matter as input.  The passthrough driver name
584 	 * ("pass"), and unit number are passed back in the ccb.  The current
585 	 * device generation number, and the index into the device peripheral
586 	 * driver list, and the status are also passed back.  Note that
587 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
588 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
589 	 * (or rather should be) impossible for the device peripheral driver
590 	 * list to change since we look at the whole thing in one pass, and
591 	 * we do it with lock protection.
592 	 *
593 	 */
594 	case CAMGETPASSTHRU: {
595 		union ccb *ccb;
596 		struct cam_periph *periph;
597 		struct periph_driver **p_drv;
598 		char   *name;
599 		u_int unit;
600 		int base_periph_found;
601 
602 		ccb = (union ccb *)addr;
603 		unit = ccb->cgdl.unit_number;
604 		name = ccb->cgdl.periph_name;
605 		base_periph_found = 0;
606 
607 		/*
608 		 * Sanity check -- make sure we don't get a null peripheral
609 		 * driver name.
610 		 */
611 		if (*ccb->cgdl.periph_name == '\0') {
612 			error = EINVAL;
613 			break;
614 		}
615 
616 		/* Keep the list from changing while we traverse it */
617 		xpt_lock_buses();
618 
619 		/* first find our driver in the list of drivers */
620 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
621 			if (strcmp((*p_drv)->driver_name, name) == 0)
622 				break;
623 
624 		if (*p_drv == NULL) {
625 			xpt_unlock_buses();
626 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
627 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
628 			*ccb->cgdl.periph_name = '\0';
629 			ccb->cgdl.unit_number = 0;
630 			error = ENOENT;
631 			break;
632 		}
633 
634 		/*
635 		 * Run through every peripheral instance of this driver
636 		 * and check to see whether it matches the unit passed
637 		 * in by the user.  If it does, get out of the loops and
638 		 * find the passthrough driver associated with that
639 		 * peripheral driver.
640 		 */
641 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
642 		     periph = TAILQ_NEXT(periph, unit_links)) {
643 
644 			if (periph->unit_number == unit)
645 				break;
646 		}
647 		/*
648 		 * If we found the peripheral driver that the user passed
649 		 * in, go through all of the peripheral drivers for that
650 		 * particular device and look for a passthrough driver.
651 		 */
652 		if (periph != NULL) {
653 			struct cam_ed *device;
654 			int i;
655 
656 			base_periph_found = 1;
657 			device = periph->path->device;
658 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
659 			     periph != NULL;
660 			     periph = SLIST_NEXT(periph, periph_links), i++) {
661 				/*
662 				 * Check to see whether we have a
663 				 * passthrough device or not.
664 				 */
665 				if (strcmp(periph->periph_name, "pass") == 0) {
666 					/*
667 					 * Fill in the getdevlist fields.
668 					 */
669 					strcpy(ccb->cgdl.periph_name,
670 					       periph->periph_name);
671 					ccb->cgdl.unit_number =
672 						periph->unit_number;
673 					if (SLIST_NEXT(periph, periph_links))
674 						ccb->cgdl.status =
675 							CAM_GDEVLIST_MORE_DEVS;
676 					else
677 						ccb->cgdl.status =
678 						       CAM_GDEVLIST_LAST_DEVICE;
679 					ccb->cgdl.generation =
680 						device->generation;
681 					ccb->cgdl.index = i;
682 					/*
683 					 * Fill in some CCB header fields
684 					 * that the user may want.
685 					 */
686 					ccb->ccb_h.path_id =
687 						periph->path->bus->path_id;
688 					ccb->ccb_h.target_id =
689 						periph->path->target->target_id;
690 					ccb->ccb_h.target_lun =
691 						periph->path->device->lun_id;
692 					ccb->ccb_h.status = CAM_REQ_CMP;
693 					break;
694 				}
695 			}
696 		}
697 
698 		/*
699 		 * If the periph is null here, one of two things has
700 		 * happened.  The first possibility is that we couldn't
701 		 * find the unit number of the particular peripheral driver
702 		 * that the user is asking about.  e.g. the user asks for
703 		 * the passthrough driver for "da11".  We find the list of
704 		 * "da" peripherals all right, but there is no unit 11.
705 		 * The other possibility is that we went through the list
706 		 * of peripheral drivers attached to the device structure,
707 		 * but didn't find one with the name "pass".  Either way,
708 		 * we return ENOENT, since we couldn't find something.
709 		 */
710 		if (periph == NULL) {
711 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
712 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
713 			*ccb->cgdl.periph_name = '\0';
714 			ccb->cgdl.unit_number = 0;
715 			error = ENOENT;
716 			/*
717 			 * It is unfortunate that this is even necessary,
718 			 * but there are many, many clueless users out there.
719 			 * If this is true, the user is looking for the
720 			 * passthrough driver, but doesn't have one in his
721 			 * kernel.
722 			 */
723 			if (base_periph_found == 1) {
724 				printf("xptioctl: pass driver is not in the "
725 				       "kernel\n");
726 				printf("xptioctl: put \"device pass\" in "
727 				       "your kernel config file\n");
728 			}
729 		}
730 		xpt_unlock_buses();
731 		break;
732 		}
733 	default:
734 		error = ENOTTY;
735 		break;
736 	}
737 
738 	return(error);
739 }
740 
741 static int
742 cam_module_event_handler(module_t mod, int what, void *arg)
743 {
744 	int error;
745 
746 	switch (what) {
747 	case MOD_LOAD:
748 		if ((error = xpt_init(NULL)) != 0)
749 			return (error);
750 		break;
751 	case MOD_UNLOAD:
752 		return EBUSY;
753 	default:
754 		return EOPNOTSUPP;
755 	}
756 
757 	return 0;
758 }
759 
760 static void
761 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
762 {
763 
764 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
765 		xpt_free_path(done_ccb->ccb_h.path);
766 		xpt_free_ccb(done_ccb);
767 	} else {
768 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
769 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
770 	}
771 	xpt_release_boot();
772 }
773 
774 /* thread to handle bus rescans */
775 static void
776 xpt_scanner_thread(void *dummy)
777 {
778 	union ccb	*ccb;
779 	struct cam_path	 path;
780 
781 	xpt_lock_buses();
782 	for (;;) {
783 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
784 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
785 			       "ccb_scanq", 0);
786 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
787 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
788 			xpt_unlock_buses();
789 
790 			/*
791 			 * Since lock can be dropped inside and path freed
792 			 * by completion callback even before return here,
793 			 * take our own path copy for reference.
794 			 */
795 			xpt_copy_path(&path, ccb->ccb_h.path);
796 			xpt_path_lock(&path);
797 			xpt_action(ccb);
798 			xpt_path_unlock(&path);
799 			xpt_release_path(&path);
800 
801 			xpt_lock_buses();
802 		}
803 	}
804 }
805 
806 void
807 xpt_rescan(union ccb *ccb)
808 {
809 	struct ccb_hdr *hdr;
810 
811 	/* Prepare request */
812 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
813 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
814 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
815 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
816 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
817 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
818 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
819 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
820 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
821 	else {
822 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
823 		xpt_free_path(ccb->ccb_h.path);
824 		xpt_free_ccb(ccb);
825 		return;
826 	}
827 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
828 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
829 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
830 	/* Don't make duplicate entries for the same paths. */
831 	xpt_lock_buses();
832 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
833 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
834 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
835 				wakeup(&xsoftc.ccb_scanq);
836 				xpt_unlock_buses();
837 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
838 				xpt_free_path(ccb->ccb_h.path);
839 				xpt_free_ccb(ccb);
840 				return;
841 			}
842 		}
843 	}
844 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
845 	xsoftc.buses_to_config++;
846 	wakeup(&xsoftc.ccb_scanq);
847 	xpt_unlock_buses();
848 }
849 
850 /* Functions accessed by the peripheral drivers */
851 static int
852 xpt_init(void *dummy)
853 {
854 	struct cam_sim *xpt_sim;
855 	struct cam_path *path;
856 	struct cam_devq *devq;
857 	cam_status status;
858 	int error, i;
859 
860 	TAILQ_INIT(&xsoftc.xpt_busses);
861 	TAILQ_INIT(&xsoftc.ccb_scanq);
862 	STAILQ_INIT(&xsoftc.highpowerq);
863 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
864 
865 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
866 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
867 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
868 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
869 
870 #ifdef CAM_BOOT_DELAY
871 	/*
872 	 * Override this value at compile time to assist our users
873 	 * who don't use loader to boot a kernel.
874 	 */
875 	xsoftc.boot_delay = CAM_BOOT_DELAY;
876 #endif
877 	/*
878 	 * The xpt layer is, itself, the equivelent of a SIM.
879 	 * Allow 16 ccbs in the ccb pool for it.  This should
880 	 * give decent parallelism when we probe busses and
881 	 * perform other XPT functions.
882 	 */
883 	devq = cam_simq_alloc(16);
884 	xpt_sim = cam_sim_alloc(xptaction,
885 				xptpoll,
886 				"xpt",
887 				/*softc*/NULL,
888 				/*unit*/0,
889 				/*mtx*/&xsoftc.xpt_lock,
890 				/*max_dev_transactions*/0,
891 				/*max_tagged_dev_transactions*/0,
892 				devq);
893 	if (xpt_sim == NULL)
894 		return (ENOMEM);
895 
896 	mtx_lock(&xsoftc.xpt_lock);
897 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
898 		mtx_unlock(&xsoftc.xpt_lock);
899 		printf("xpt_init: xpt_bus_register failed with status %#x,"
900 		       " failing attach\n", status);
901 		return (EINVAL);
902 	}
903 
904 	/*
905 	 * Looking at the XPT from the SIM layer, the XPT is
906 	 * the equivelent of a peripheral driver.  Allocate
907 	 * a peripheral driver entry for us.
908 	 */
909 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
910 				      CAM_TARGET_WILDCARD,
911 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
912 		mtx_unlock(&xsoftc.xpt_lock);
913 		printf("xpt_init: xpt_create_path failed with status %#x,"
914 		       " failing attach\n", status);
915 		return (EINVAL);
916 	}
917 
918 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
919 			 path, NULL, 0, xpt_sim);
920 	xpt_free_path(path);
921 	mtx_unlock(&xsoftc.xpt_lock);
922 	if (cam_num_doneqs < 1)
923 		cam_num_doneqs = 1 + mp_ncpus / 6;
924 	else if (cam_num_doneqs > MAXCPU)
925 		cam_num_doneqs = MAXCPU;
926 	for (i = 0; i < cam_num_doneqs; i++) {
927 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
928 		    MTX_DEF);
929 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
930 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
931 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
932 		if (error != 0) {
933 			cam_num_doneqs = i;
934 			break;
935 		}
936 	}
937 	if (cam_num_doneqs < 1) {
938 		printf("xpt_init: Cannot init completion queues "
939 		       "- failing attach\n");
940 		return (ENOMEM);
941 	}
942 	/*
943 	 * Register a callback for when interrupts are enabled.
944 	 */
945 	xsoftc.xpt_config_hook =
946 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
947 					      M_CAMXPT, M_NOWAIT | M_ZERO);
948 	if (xsoftc.xpt_config_hook == NULL) {
949 		printf("xpt_init: Cannot malloc config hook "
950 		       "- failing attach\n");
951 		return (ENOMEM);
952 	}
953 	xsoftc.xpt_config_hook->ich_func = xpt_config;
954 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
955 		free (xsoftc.xpt_config_hook, M_CAMXPT);
956 		printf("xpt_init: config_intrhook_establish failed "
957 		       "- failing attach\n");
958 	}
959 
960 	return (0);
961 }
962 
963 static cam_status
964 xptregister(struct cam_periph *periph, void *arg)
965 {
966 	struct cam_sim *xpt_sim;
967 
968 	if (periph == NULL) {
969 		printf("xptregister: periph was NULL!!\n");
970 		return(CAM_REQ_CMP_ERR);
971 	}
972 
973 	xpt_sim = (struct cam_sim *)arg;
974 	xpt_sim->softc = periph;
975 	xpt_periph = periph;
976 	periph->softc = NULL;
977 
978 	return(CAM_REQ_CMP);
979 }
980 
981 int32_t
982 xpt_add_periph(struct cam_periph *periph)
983 {
984 	struct cam_ed *device;
985 	int32_t	 status;
986 
987 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
988 	device = periph->path->device;
989 	status = CAM_REQ_CMP;
990 	if (device != NULL) {
991 		mtx_lock(&device->target->bus->eb_mtx);
992 		device->generation++;
993 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
994 		mtx_unlock(&device->target->bus->eb_mtx);
995 	}
996 
997 	return (status);
998 }
999 
1000 void
1001 xpt_remove_periph(struct cam_periph *periph)
1002 {
1003 	struct cam_ed *device;
1004 
1005 	device = periph->path->device;
1006 	if (device != NULL) {
1007 		mtx_lock(&device->target->bus->eb_mtx);
1008 		device->generation++;
1009 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1010 		mtx_unlock(&device->target->bus->eb_mtx);
1011 	}
1012 }
1013 
1014 
1015 void
1016 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1017 {
1018 	struct	cam_path *path = periph->path;
1019 
1020 	cam_periph_assert(periph, MA_OWNED);
1021 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1022 
1023 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1024 	       periph->periph_name, periph->unit_number,
1025 	       path->bus->sim->sim_name,
1026 	       path->bus->sim->unit_number,
1027 	       path->bus->sim->bus_id,
1028 	       path->bus->path_id,
1029 	       path->target->target_id,
1030 	       (uintmax_t)path->device->lun_id);
1031 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1032 	if (path->device->protocol == PROTO_SCSI)
1033 		scsi_print_inquiry(&path->device->inq_data);
1034 	else if (path->device->protocol == PROTO_ATA ||
1035 	    path->device->protocol == PROTO_SATAPM)
1036 		ata_print_ident(&path->device->ident_data);
1037 	else if (path->device->protocol == PROTO_SEMB)
1038 		semb_print_ident(
1039 		    (struct sep_identify_data *)&path->device->ident_data);
1040 	else
1041 		printf("Unknown protocol device\n");
1042 	if (path->device->serial_num_len > 0) {
1043 		/* Don't wrap the screen  - print only the first 60 chars */
1044 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1045 		       periph->unit_number, path->device->serial_num);
1046 	}
1047 	/* Announce transport details. */
1048 	(*(path->bus->xport->announce))(periph);
1049 	/* Announce command queueing. */
1050 	if (path->device->inq_flags & SID_CmdQue
1051 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1052 		printf("%s%d: Command Queueing enabled\n",
1053 		       periph->periph_name, periph->unit_number);
1054 	}
1055 	/* Announce caller's details if they've passed in. */
1056 	if (announce_string != NULL)
1057 		printf("%s%d: %s\n", periph->periph_name,
1058 		       periph->unit_number, announce_string);
1059 }
1060 
1061 void
1062 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1063 {
1064 	if (quirks != 0) {
1065 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1066 		    periph->unit_number, quirks, bit_string);
1067 	}
1068 }
1069 
1070 void
1071 xpt_denounce_periph(struct cam_periph *periph)
1072 {
1073 	struct	cam_path *path = periph->path;
1074 
1075 	cam_periph_assert(periph, MA_OWNED);
1076 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1077 	       periph->periph_name, periph->unit_number,
1078 	       path->bus->sim->sim_name,
1079 	       path->bus->sim->unit_number,
1080 	       path->bus->sim->bus_id,
1081 	       path->bus->path_id,
1082 	       path->target->target_id,
1083 	       (uintmax_t)path->device->lun_id);
1084 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1085 	if (path->device->protocol == PROTO_SCSI)
1086 		scsi_print_inquiry_short(&path->device->inq_data);
1087 	else if (path->device->protocol == PROTO_ATA ||
1088 	    path->device->protocol == PROTO_SATAPM)
1089 		ata_print_ident_short(&path->device->ident_data);
1090 	else if (path->device->protocol == PROTO_SEMB)
1091 		semb_print_ident_short(
1092 		    (struct sep_identify_data *)&path->device->ident_data);
1093 	else
1094 		printf("Unknown protocol device");
1095 	if (path->device->serial_num_len > 0)
1096 		printf(" s/n %.60s", path->device->serial_num);
1097 	printf(" detached\n");
1098 }
1099 
1100 
1101 int
1102 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1103 {
1104 	int ret = -1, l;
1105 	struct ccb_dev_advinfo cdai;
1106 	struct scsi_vpd_id_descriptor *idd;
1107 
1108 	xpt_path_assert(path, MA_OWNED);
1109 
1110 	memset(&cdai, 0, sizeof(cdai));
1111 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1112 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1113 	cdai.bufsiz = len;
1114 
1115 	if (!strcmp(attr, "GEOM::ident"))
1116 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1117 	else if (!strcmp(attr, "GEOM::physpath"))
1118 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1119 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1120 		 strcmp(attr, "GEOM::lunname") == 0) {
1121 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1122 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1123 	} else
1124 		goto out;
1125 
1126 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1127 	if (cdai.buf == NULL) {
1128 		ret = ENOMEM;
1129 		goto out;
1130 	}
1131 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1132 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1133 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1134 	if (cdai.provsiz == 0)
1135 		goto out;
1136 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1137 		if (strcmp(attr, "GEOM::lunid") == 0) {
1138 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1139 			    cdai.provsiz, scsi_devid_is_lun_naa);
1140 			if (idd == NULL)
1141 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1142 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1143 		} else
1144 			idd = NULL;
1145 		if (idd == NULL)
1146 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1147 			    cdai.provsiz, scsi_devid_is_lun_t10);
1148 		if (idd == NULL)
1149 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1150 			    cdai.provsiz, scsi_devid_is_lun_name);
1151 		if (idd == NULL)
1152 			goto out;
1153 		ret = 0;
1154 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII ||
1155 		    (idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1156 			l = strnlen(idd->identifier, idd->length);
1157 			if (l < len) {
1158 				bcopy(idd->identifier, buf, l);
1159 				buf[l] = 0;
1160 			} else
1161 				ret = EFAULT;
1162 		} else {
1163 			if (idd->length * 2 < len) {
1164 				for (l = 0; l < idd->length; l++)
1165 					sprintf(buf + l * 2, "%02x",
1166 					    idd->identifier[l]);
1167 			} else
1168 				ret = EFAULT;
1169 		}
1170 	} else {
1171 		ret = 0;
1172 		if (strlcpy(buf, cdai.buf, len) >= len)
1173 			ret = EFAULT;
1174 	}
1175 
1176 out:
1177 	if (cdai.buf != NULL)
1178 		free(cdai.buf, M_CAMXPT);
1179 	return ret;
1180 }
1181 
1182 static dev_match_ret
1183 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1184 	    struct cam_eb *bus)
1185 {
1186 	dev_match_ret retval;
1187 	int i;
1188 
1189 	retval = DM_RET_NONE;
1190 
1191 	/*
1192 	 * If we aren't given something to match against, that's an error.
1193 	 */
1194 	if (bus == NULL)
1195 		return(DM_RET_ERROR);
1196 
1197 	/*
1198 	 * If there are no match entries, then this bus matches no
1199 	 * matter what.
1200 	 */
1201 	if ((patterns == NULL) || (num_patterns == 0))
1202 		return(DM_RET_DESCEND | DM_RET_COPY);
1203 
1204 	for (i = 0; i < num_patterns; i++) {
1205 		struct bus_match_pattern *cur_pattern;
1206 
1207 		/*
1208 		 * If the pattern in question isn't for a bus node, we
1209 		 * aren't interested.  However, we do indicate to the
1210 		 * calling routine that we should continue descending the
1211 		 * tree, since the user wants to match against lower-level
1212 		 * EDT elements.
1213 		 */
1214 		if (patterns[i].type != DEV_MATCH_BUS) {
1215 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1216 				retval |= DM_RET_DESCEND;
1217 			continue;
1218 		}
1219 
1220 		cur_pattern = &patterns[i].pattern.bus_pattern;
1221 
1222 		/*
1223 		 * If they want to match any bus node, we give them any
1224 		 * device node.
1225 		 */
1226 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1227 			/* set the copy flag */
1228 			retval |= DM_RET_COPY;
1229 
1230 			/*
1231 			 * If we've already decided on an action, go ahead
1232 			 * and return.
1233 			 */
1234 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1235 				return(retval);
1236 		}
1237 
1238 		/*
1239 		 * Not sure why someone would do this...
1240 		 */
1241 		if (cur_pattern->flags == BUS_MATCH_NONE)
1242 			continue;
1243 
1244 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1245 		 && (cur_pattern->path_id != bus->path_id))
1246 			continue;
1247 
1248 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1249 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1250 			continue;
1251 
1252 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1253 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1254 			continue;
1255 
1256 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1257 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1258 			     DEV_IDLEN) != 0))
1259 			continue;
1260 
1261 		/*
1262 		 * If we get to this point, the user definitely wants
1263 		 * information on this bus.  So tell the caller to copy the
1264 		 * data out.
1265 		 */
1266 		retval |= DM_RET_COPY;
1267 
1268 		/*
1269 		 * If the return action has been set to descend, then we
1270 		 * know that we've already seen a non-bus matching
1271 		 * expression, therefore we need to further descend the tree.
1272 		 * This won't change by continuing around the loop, so we
1273 		 * go ahead and return.  If we haven't seen a non-bus
1274 		 * matching expression, we keep going around the loop until
1275 		 * we exhaust the matching expressions.  We'll set the stop
1276 		 * flag once we fall out of the loop.
1277 		 */
1278 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1279 			return(retval);
1280 	}
1281 
1282 	/*
1283 	 * If the return action hasn't been set to descend yet, that means
1284 	 * we haven't seen anything other than bus matching patterns.  So
1285 	 * tell the caller to stop descending the tree -- the user doesn't
1286 	 * want to match against lower level tree elements.
1287 	 */
1288 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1289 		retval |= DM_RET_STOP;
1290 
1291 	return(retval);
1292 }
1293 
1294 static dev_match_ret
1295 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1296 	       struct cam_ed *device)
1297 {
1298 	dev_match_ret retval;
1299 	int i;
1300 
1301 	retval = DM_RET_NONE;
1302 
1303 	/*
1304 	 * If we aren't given something to match against, that's an error.
1305 	 */
1306 	if (device == NULL)
1307 		return(DM_RET_ERROR);
1308 
1309 	/*
1310 	 * If there are no match entries, then this device matches no
1311 	 * matter what.
1312 	 */
1313 	if ((patterns == NULL) || (num_patterns == 0))
1314 		return(DM_RET_DESCEND | DM_RET_COPY);
1315 
1316 	for (i = 0; i < num_patterns; i++) {
1317 		struct device_match_pattern *cur_pattern;
1318 		struct scsi_vpd_device_id *device_id_page;
1319 
1320 		/*
1321 		 * If the pattern in question isn't for a device node, we
1322 		 * aren't interested.
1323 		 */
1324 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1325 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1326 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1327 				retval |= DM_RET_DESCEND;
1328 			continue;
1329 		}
1330 
1331 		cur_pattern = &patterns[i].pattern.device_pattern;
1332 
1333 		/* Error out if mutually exclusive options are specified. */
1334 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1335 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1336 			return(DM_RET_ERROR);
1337 
1338 		/*
1339 		 * If they want to match any device node, we give them any
1340 		 * device node.
1341 		 */
1342 		if (cur_pattern->flags == DEV_MATCH_ANY)
1343 			goto copy_dev_node;
1344 
1345 		/*
1346 		 * Not sure why someone would do this...
1347 		 */
1348 		if (cur_pattern->flags == DEV_MATCH_NONE)
1349 			continue;
1350 
1351 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1352 		 && (cur_pattern->path_id != device->target->bus->path_id))
1353 			continue;
1354 
1355 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1356 		 && (cur_pattern->target_id != device->target->target_id))
1357 			continue;
1358 
1359 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1360 		 && (cur_pattern->target_lun != device->lun_id))
1361 			continue;
1362 
1363 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1364 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1365 				    (caddr_t)&cur_pattern->data.inq_pat,
1366 				    1, sizeof(cur_pattern->data.inq_pat),
1367 				    scsi_static_inquiry_match) == NULL))
1368 			continue;
1369 
1370 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1371 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1372 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1373 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1374 				      device->device_id_len
1375 				    - SVPD_DEVICE_ID_HDR_LEN,
1376 				      cur_pattern->data.devid_pat.id,
1377 				      cur_pattern->data.devid_pat.id_len) != 0))
1378 			continue;
1379 
1380 copy_dev_node:
1381 		/*
1382 		 * If we get to this point, the user definitely wants
1383 		 * information on this device.  So tell the caller to copy
1384 		 * the data out.
1385 		 */
1386 		retval |= DM_RET_COPY;
1387 
1388 		/*
1389 		 * If the return action has been set to descend, then we
1390 		 * know that we've already seen a peripheral matching
1391 		 * expression, therefore we need to further descend the tree.
1392 		 * This won't change by continuing around the loop, so we
1393 		 * go ahead and return.  If we haven't seen a peripheral
1394 		 * matching expression, we keep going around the loop until
1395 		 * we exhaust the matching expressions.  We'll set the stop
1396 		 * flag once we fall out of the loop.
1397 		 */
1398 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1399 			return(retval);
1400 	}
1401 
1402 	/*
1403 	 * If the return action hasn't been set to descend yet, that means
1404 	 * we haven't seen any peripheral matching patterns.  So tell the
1405 	 * caller to stop descending the tree -- the user doesn't want to
1406 	 * match against lower level tree elements.
1407 	 */
1408 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1409 		retval |= DM_RET_STOP;
1410 
1411 	return(retval);
1412 }
1413 
1414 /*
1415  * Match a single peripheral against any number of match patterns.
1416  */
1417 static dev_match_ret
1418 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1419 	       struct cam_periph *periph)
1420 {
1421 	dev_match_ret retval;
1422 	int i;
1423 
1424 	/*
1425 	 * If we aren't given something to match against, that's an error.
1426 	 */
1427 	if (periph == NULL)
1428 		return(DM_RET_ERROR);
1429 
1430 	/*
1431 	 * If there are no match entries, then this peripheral matches no
1432 	 * matter what.
1433 	 */
1434 	if ((patterns == NULL) || (num_patterns == 0))
1435 		return(DM_RET_STOP | DM_RET_COPY);
1436 
1437 	/*
1438 	 * There aren't any nodes below a peripheral node, so there's no
1439 	 * reason to descend the tree any further.
1440 	 */
1441 	retval = DM_RET_STOP;
1442 
1443 	for (i = 0; i < num_patterns; i++) {
1444 		struct periph_match_pattern *cur_pattern;
1445 
1446 		/*
1447 		 * If the pattern in question isn't for a peripheral, we
1448 		 * aren't interested.
1449 		 */
1450 		if (patterns[i].type != DEV_MATCH_PERIPH)
1451 			continue;
1452 
1453 		cur_pattern = &patterns[i].pattern.periph_pattern;
1454 
1455 		/*
1456 		 * If they want to match on anything, then we will do so.
1457 		 */
1458 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1459 			/* set the copy flag */
1460 			retval |= DM_RET_COPY;
1461 
1462 			/*
1463 			 * We've already set the return action to stop,
1464 			 * since there are no nodes below peripherals in
1465 			 * the tree.
1466 			 */
1467 			return(retval);
1468 		}
1469 
1470 		/*
1471 		 * Not sure why someone would do this...
1472 		 */
1473 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1474 			continue;
1475 
1476 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1477 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1478 			continue;
1479 
1480 		/*
1481 		 * For the target and lun id's, we have to make sure the
1482 		 * target and lun pointers aren't NULL.  The xpt peripheral
1483 		 * has a wildcard target and device.
1484 		 */
1485 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1486 		 && ((periph->path->target == NULL)
1487 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1488 			continue;
1489 
1490 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1491 		 && ((periph->path->device == NULL)
1492 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1493 			continue;
1494 
1495 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1496 		 && (cur_pattern->unit_number != periph->unit_number))
1497 			continue;
1498 
1499 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1500 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1501 			     DEV_IDLEN) != 0))
1502 			continue;
1503 
1504 		/*
1505 		 * If we get to this point, the user definitely wants
1506 		 * information on this peripheral.  So tell the caller to
1507 		 * copy the data out.
1508 		 */
1509 		retval |= DM_RET_COPY;
1510 
1511 		/*
1512 		 * The return action has already been set to stop, since
1513 		 * peripherals don't have any nodes below them in the EDT.
1514 		 */
1515 		return(retval);
1516 	}
1517 
1518 	/*
1519 	 * If we get to this point, the peripheral that was passed in
1520 	 * doesn't match any of the patterns.
1521 	 */
1522 	return(retval);
1523 }
1524 
1525 static int
1526 xptedtbusfunc(struct cam_eb *bus, void *arg)
1527 {
1528 	struct ccb_dev_match *cdm;
1529 	struct cam_et *target;
1530 	dev_match_ret retval;
1531 
1532 	cdm = (struct ccb_dev_match *)arg;
1533 
1534 	/*
1535 	 * If our position is for something deeper in the tree, that means
1536 	 * that we've already seen this node.  So, we keep going down.
1537 	 */
1538 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1539 	 && (cdm->pos.cookie.bus == bus)
1540 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1541 	 && (cdm->pos.cookie.target != NULL))
1542 		retval = DM_RET_DESCEND;
1543 	else
1544 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1545 
1546 	/*
1547 	 * If we got an error, bail out of the search.
1548 	 */
1549 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1550 		cdm->status = CAM_DEV_MATCH_ERROR;
1551 		return(0);
1552 	}
1553 
1554 	/*
1555 	 * If the copy flag is set, copy this bus out.
1556 	 */
1557 	if (retval & DM_RET_COPY) {
1558 		int spaceleft, j;
1559 
1560 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1561 			sizeof(struct dev_match_result));
1562 
1563 		/*
1564 		 * If we don't have enough space to put in another
1565 		 * match result, save our position and tell the
1566 		 * user there are more devices to check.
1567 		 */
1568 		if (spaceleft < sizeof(struct dev_match_result)) {
1569 			bzero(&cdm->pos, sizeof(cdm->pos));
1570 			cdm->pos.position_type =
1571 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1572 
1573 			cdm->pos.cookie.bus = bus;
1574 			cdm->pos.generations[CAM_BUS_GENERATION]=
1575 				xsoftc.bus_generation;
1576 			cdm->status = CAM_DEV_MATCH_MORE;
1577 			return(0);
1578 		}
1579 		j = cdm->num_matches;
1580 		cdm->num_matches++;
1581 		cdm->matches[j].type = DEV_MATCH_BUS;
1582 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1583 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1584 		cdm->matches[j].result.bus_result.unit_number =
1585 			bus->sim->unit_number;
1586 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1587 			bus->sim->sim_name, DEV_IDLEN);
1588 	}
1589 
1590 	/*
1591 	 * If the user is only interested in busses, there's no
1592 	 * reason to descend to the next level in the tree.
1593 	 */
1594 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1595 		return(1);
1596 
1597 	/*
1598 	 * If there is a target generation recorded, check it to
1599 	 * make sure the target list hasn't changed.
1600 	 */
1601 	mtx_lock(&bus->eb_mtx);
1602 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1603 	 && (cdm->pos.cookie.bus == bus)
1604 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1605 	 && (cdm->pos.cookie.target != NULL)) {
1606 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1607 		    bus->generation)) {
1608 			mtx_unlock(&bus->eb_mtx);
1609 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1610 			return (0);
1611 		}
1612 		target = (struct cam_et *)cdm->pos.cookie.target;
1613 		target->refcount++;
1614 	} else
1615 		target = NULL;
1616 	mtx_unlock(&bus->eb_mtx);
1617 
1618 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1619 }
1620 
1621 static int
1622 xptedttargetfunc(struct cam_et *target, void *arg)
1623 {
1624 	struct ccb_dev_match *cdm;
1625 	struct cam_eb *bus;
1626 	struct cam_ed *device;
1627 
1628 	cdm = (struct ccb_dev_match *)arg;
1629 	bus = target->bus;
1630 
1631 	/*
1632 	 * If there is a device list generation recorded, check it to
1633 	 * make sure the device list hasn't changed.
1634 	 */
1635 	mtx_lock(&bus->eb_mtx);
1636 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1637 	 && (cdm->pos.cookie.bus == bus)
1638 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1639 	 && (cdm->pos.cookie.target == target)
1640 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1641 	 && (cdm->pos.cookie.device != NULL)) {
1642 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1643 		    target->generation) {
1644 			mtx_unlock(&bus->eb_mtx);
1645 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1646 			return(0);
1647 		}
1648 		device = (struct cam_ed *)cdm->pos.cookie.device;
1649 		device->refcount++;
1650 	} else
1651 		device = NULL;
1652 	mtx_unlock(&bus->eb_mtx);
1653 
1654 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1655 }
1656 
1657 static int
1658 xptedtdevicefunc(struct cam_ed *device, void *arg)
1659 {
1660 	struct cam_eb *bus;
1661 	struct cam_periph *periph;
1662 	struct ccb_dev_match *cdm;
1663 	dev_match_ret retval;
1664 
1665 	cdm = (struct ccb_dev_match *)arg;
1666 	bus = device->target->bus;
1667 
1668 	/*
1669 	 * If our position is for something deeper in the tree, that means
1670 	 * that we've already seen this node.  So, we keep going down.
1671 	 */
1672 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1673 	 && (cdm->pos.cookie.device == device)
1674 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1675 	 && (cdm->pos.cookie.periph != NULL))
1676 		retval = DM_RET_DESCEND;
1677 	else
1678 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1679 					device);
1680 
1681 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1682 		cdm->status = CAM_DEV_MATCH_ERROR;
1683 		return(0);
1684 	}
1685 
1686 	/*
1687 	 * If the copy flag is set, copy this device out.
1688 	 */
1689 	if (retval & DM_RET_COPY) {
1690 		int spaceleft, j;
1691 
1692 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1693 			sizeof(struct dev_match_result));
1694 
1695 		/*
1696 		 * If we don't have enough space to put in another
1697 		 * match result, save our position and tell the
1698 		 * user there are more devices to check.
1699 		 */
1700 		if (spaceleft < sizeof(struct dev_match_result)) {
1701 			bzero(&cdm->pos, sizeof(cdm->pos));
1702 			cdm->pos.position_type =
1703 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1704 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1705 
1706 			cdm->pos.cookie.bus = device->target->bus;
1707 			cdm->pos.generations[CAM_BUS_GENERATION]=
1708 				xsoftc.bus_generation;
1709 			cdm->pos.cookie.target = device->target;
1710 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1711 				device->target->bus->generation;
1712 			cdm->pos.cookie.device = device;
1713 			cdm->pos.generations[CAM_DEV_GENERATION] =
1714 				device->target->generation;
1715 			cdm->status = CAM_DEV_MATCH_MORE;
1716 			return(0);
1717 		}
1718 		j = cdm->num_matches;
1719 		cdm->num_matches++;
1720 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1721 		cdm->matches[j].result.device_result.path_id =
1722 			device->target->bus->path_id;
1723 		cdm->matches[j].result.device_result.target_id =
1724 			device->target->target_id;
1725 		cdm->matches[j].result.device_result.target_lun =
1726 			device->lun_id;
1727 		cdm->matches[j].result.device_result.protocol =
1728 			device->protocol;
1729 		bcopy(&device->inq_data,
1730 		      &cdm->matches[j].result.device_result.inq_data,
1731 		      sizeof(struct scsi_inquiry_data));
1732 		bcopy(&device->ident_data,
1733 		      &cdm->matches[j].result.device_result.ident_data,
1734 		      sizeof(struct ata_params));
1735 
1736 		/* Let the user know whether this device is unconfigured */
1737 		if (device->flags & CAM_DEV_UNCONFIGURED)
1738 			cdm->matches[j].result.device_result.flags =
1739 				DEV_RESULT_UNCONFIGURED;
1740 		else
1741 			cdm->matches[j].result.device_result.flags =
1742 				DEV_RESULT_NOFLAG;
1743 	}
1744 
1745 	/*
1746 	 * If the user isn't interested in peripherals, don't descend
1747 	 * the tree any further.
1748 	 */
1749 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1750 		return(1);
1751 
1752 	/*
1753 	 * If there is a peripheral list generation recorded, make sure
1754 	 * it hasn't changed.
1755 	 */
1756 	xpt_lock_buses();
1757 	mtx_lock(&bus->eb_mtx);
1758 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1759 	 && (cdm->pos.cookie.bus == bus)
1760 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1761 	 && (cdm->pos.cookie.target == device->target)
1762 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1763 	 && (cdm->pos.cookie.device == device)
1764 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1765 	 && (cdm->pos.cookie.periph != NULL)) {
1766 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1767 		    device->generation) {
1768 			mtx_unlock(&bus->eb_mtx);
1769 			xpt_unlock_buses();
1770 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1771 			return(0);
1772 		}
1773 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1774 		periph->refcount++;
1775 	} else
1776 		periph = NULL;
1777 	mtx_unlock(&bus->eb_mtx);
1778 	xpt_unlock_buses();
1779 
1780 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1781 }
1782 
1783 static int
1784 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1785 {
1786 	struct ccb_dev_match *cdm;
1787 	dev_match_ret retval;
1788 
1789 	cdm = (struct ccb_dev_match *)arg;
1790 
1791 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1792 
1793 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1794 		cdm->status = CAM_DEV_MATCH_ERROR;
1795 		return(0);
1796 	}
1797 
1798 	/*
1799 	 * If the copy flag is set, copy this peripheral out.
1800 	 */
1801 	if (retval & DM_RET_COPY) {
1802 		int spaceleft, j;
1803 
1804 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1805 			sizeof(struct dev_match_result));
1806 
1807 		/*
1808 		 * If we don't have enough space to put in another
1809 		 * match result, save our position and tell the
1810 		 * user there are more devices to check.
1811 		 */
1812 		if (spaceleft < sizeof(struct dev_match_result)) {
1813 			bzero(&cdm->pos, sizeof(cdm->pos));
1814 			cdm->pos.position_type =
1815 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1816 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1817 				CAM_DEV_POS_PERIPH;
1818 
1819 			cdm->pos.cookie.bus = periph->path->bus;
1820 			cdm->pos.generations[CAM_BUS_GENERATION]=
1821 				xsoftc.bus_generation;
1822 			cdm->pos.cookie.target = periph->path->target;
1823 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1824 				periph->path->bus->generation;
1825 			cdm->pos.cookie.device = periph->path->device;
1826 			cdm->pos.generations[CAM_DEV_GENERATION] =
1827 				periph->path->target->generation;
1828 			cdm->pos.cookie.periph = periph;
1829 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1830 				periph->path->device->generation;
1831 			cdm->status = CAM_DEV_MATCH_MORE;
1832 			return(0);
1833 		}
1834 
1835 		j = cdm->num_matches;
1836 		cdm->num_matches++;
1837 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1838 		cdm->matches[j].result.periph_result.path_id =
1839 			periph->path->bus->path_id;
1840 		cdm->matches[j].result.periph_result.target_id =
1841 			periph->path->target->target_id;
1842 		cdm->matches[j].result.periph_result.target_lun =
1843 			periph->path->device->lun_id;
1844 		cdm->matches[j].result.periph_result.unit_number =
1845 			periph->unit_number;
1846 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1847 			periph->periph_name, DEV_IDLEN);
1848 	}
1849 
1850 	return(1);
1851 }
1852 
1853 static int
1854 xptedtmatch(struct ccb_dev_match *cdm)
1855 {
1856 	struct cam_eb *bus;
1857 	int ret;
1858 
1859 	cdm->num_matches = 0;
1860 
1861 	/*
1862 	 * Check the bus list generation.  If it has changed, the user
1863 	 * needs to reset everything and start over.
1864 	 */
1865 	xpt_lock_buses();
1866 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1867 	 && (cdm->pos.cookie.bus != NULL)) {
1868 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1869 		    xsoftc.bus_generation) {
1870 			xpt_unlock_buses();
1871 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1872 			return(0);
1873 		}
1874 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
1875 		bus->refcount++;
1876 	} else
1877 		bus = NULL;
1878 	xpt_unlock_buses();
1879 
1880 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1881 
1882 	/*
1883 	 * If we get back 0, that means that we had to stop before fully
1884 	 * traversing the EDT.  It also means that one of the subroutines
1885 	 * has set the status field to the proper value.  If we get back 1,
1886 	 * we've fully traversed the EDT and copied out any matching entries.
1887 	 */
1888 	if (ret == 1)
1889 		cdm->status = CAM_DEV_MATCH_LAST;
1890 
1891 	return(ret);
1892 }
1893 
1894 static int
1895 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1896 {
1897 	struct cam_periph *periph;
1898 	struct ccb_dev_match *cdm;
1899 
1900 	cdm = (struct ccb_dev_match *)arg;
1901 
1902 	xpt_lock_buses();
1903 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1904 	 && (cdm->pos.cookie.pdrv == pdrv)
1905 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1906 	 && (cdm->pos.cookie.periph != NULL)) {
1907 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1908 		    (*pdrv)->generation) {
1909 			xpt_unlock_buses();
1910 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1911 			return(0);
1912 		}
1913 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1914 		periph->refcount++;
1915 	} else
1916 		periph = NULL;
1917 	xpt_unlock_buses();
1918 
1919 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1920 }
1921 
1922 static int
1923 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1924 {
1925 	struct ccb_dev_match *cdm;
1926 	dev_match_ret retval;
1927 
1928 	cdm = (struct ccb_dev_match *)arg;
1929 
1930 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1931 
1932 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1933 		cdm->status = CAM_DEV_MATCH_ERROR;
1934 		return(0);
1935 	}
1936 
1937 	/*
1938 	 * If the copy flag is set, copy this peripheral out.
1939 	 */
1940 	if (retval & DM_RET_COPY) {
1941 		int spaceleft, j;
1942 
1943 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1944 			sizeof(struct dev_match_result));
1945 
1946 		/*
1947 		 * If we don't have enough space to put in another
1948 		 * match result, save our position and tell the
1949 		 * user there are more devices to check.
1950 		 */
1951 		if (spaceleft < sizeof(struct dev_match_result)) {
1952 			struct periph_driver **pdrv;
1953 
1954 			pdrv = NULL;
1955 			bzero(&cdm->pos, sizeof(cdm->pos));
1956 			cdm->pos.position_type =
1957 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1958 				CAM_DEV_POS_PERIPH;
1959 
1960 			/*
1961 			 * This may look a bit non-sensical, but it is
1962 			 * actually quite logical.  There are very few
1963 			 * peripheral drivers, and bloating every peripheral
1964 			 * structure with a pointer back to its parent
1965 			 * peripheral driver linker set entry would cost
1966 			 * more in the long run than doing this quick lookup.
1967 			 */
1968 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1969 				if (strcmp((*pdrv)->driver_name,
1970 				    periph->periph_name) == 0)
1971 					break;
1972 			}
1973 
1974 			if (*pdrv == NULL) {
1975 				cdm->status = CAM_DEV_MATCH_ERROR;
1976 				return(0);
1977 			}
1978 
1979 			cdm->pos.cookie.pdrv = pdrv;
1980 			/*
1981 			 * The periph generation slot does double duty, as
1982 			 * does the periph pointer slot.  They are used for
1983 			 * both edt and pdrv lookups and positioning.
1984 			 */
1985 			cdm->pos.cookie.periph = periph;
1986 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1987 				(*pdrv)->generation;
1988 			cdm->status = CAM_DEV_MATCH_MORE;
1989 			return(0);
1990 		}
1991 
1992 		j = cdm->num_matches;
1993 		cdm->num_matches++;
1994 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1995 		cdm->matches[j].result.periph_result.path_id =
1996 			periph->path->bus->path_id;
1997 
1998 		/*
1999 		 * The transport layer peripheral doesn't have a target or
2000 		 * lun.
2001 		 */
2002 		if (periph->path->target)
2003 			cdm->matches[j].result.periph_result.target_id =
2004 				periph->path->target->target_id;
2005 		else
2006 			cdm->matches[j].result.periph_result.target_id = -1;
2007 
2008 		if (periph->path->device)
2009 			cdm->matches[j].result.periph_result.target_lun =
2010 				periph->path->device->lun_id;
2011 		else
2012 			cdm->matches[j].result.periph_result.target_lun = -1;
2013 
2014 		cdm->matches[j].result.periph_result.unit_number =
2015 			periph->unit_number;
2016 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2017 			periph->periph_name, DEV_IDLEN);
2018 	}
2019 
2020 	return(1);
2021 }
2022 
2023 static int
2024 xptperiphlistmatch(struct ccb_dev_match *cdm)
2025 {
2026 	int ret;
2027 
2028 	cdm->num_matches = 0;
2029 
2030 	/*
2031 	 * At this point in the edt traversal function, we check the bus
2032 	 * list generation to make sure that no busses have been added or
2033 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2034 	 * For the peripheral driver list traversal function, however, we
2035 	 * don't have to worry about new peripheral driver types coming or
2036 	 * going; they're in a linker set, and therefore can't change
2037 	 * without a recompile.
2038 	 */
2039 
2040 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2041 	 && (cdm->pos.cookie.pdrv != NULL))
2042 		ret = xptpdrvtraverse(
2043 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2044 				xptplistpdrvfunc, cdm);
2045 	else
2046 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2047 
2048 	/*
2049 	 * If we get back 0, that means that we had to stop before fully
2050 	 * traversing the peripheral driver tree.  It also means that one of
2051 	 * the subroutines has set the status field to the proper value.  If
2052 	 * we get back 1, we've fully traversed the EDT and copied out any
2053 	 * matching entries.
2054 	 */
2055 	if (ret == 1)
2056 		cdm->status = CAM_DEV_MATCH_LAST;
2057 
2058 	return(ret);
2059 }
2060 
2061 static int
2062 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2063 {
2064 	struct cam_eb *bus, *next_bus;
2065 	int retval;
2066 
2067 	retval = 1;
2068 	if (start_bus)
2069 		bus = start_bus;
2070 	else {
2071 		xpt_lock_buses();
2072 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2073 		if (bus == NULL) {
2074 			xpt_unlock_buses();
2075 			return (retval);
2076 		}
2077 		bus->refcount++;
2078 		xpt_unlock_buses();
2079 	}
2080 	for (; bus != NULL; bus = next_bus) {
2081 		retval = tr_func(bus, arg);
2082 		if (retval == 0) {
2083 			xpt_release_bus(bus);
2084 			break;
2085 		}
2086 		xpt_lock_buses();
2087 		next_bus = TAILQ_NEXT(bus, links);
2088 		if (next_bus)
2089 			next_bus->refcount++;
2090 		xpt_unlock_buses();
2091 		xpt_release_bus(bus);
2092 	}
2093 	return(retval);
2094 }
2095 
2096 static int
2097 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2098 		  xpt_targetfunc_t *tr_func, void *arg)
2099 {
2100 	struct cam_et *target, *next_target;
2101 	int retval;
2102 
2103 	retval = 1;
2104 	if (start_target)
2105 		target = start_target;
2106 	else {
2107 		mtx_lock(&bus->eb_mtx);
2108 		target = TAILQ_FIRST(&bus->et_entries);
2109 		if (target == NULL) {
2110 			mtx_unlock(&bus->eb_mtx);
2111 			return (retval);
2112 		}
2113 		target->refcount++;
2114 		mtx_unlock(&bus->eb_mtx);
2115 	}
2116 	for (; target != NULL; target = next_target) {
2117 		retval = tr_func(target, arg);
2118 		if (retval == 0) {
2119 			xpt_release_target(target);
2120 			break;
2121 		}
2122 		mtx_lock(&bus->eb_mtx);
2123 		next_target = TAILQ_NEXT(target, links);
2124 		if (next_target)
2125 			next_target->refcount++;
2126 		mtx_unlock(&bus->eb_mtx);
2127 		xpt_release_target(target);
2128 	}
2129 	return(retval);
2130 }
2131 
2132 static int
2133 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2134 		  xpt_devicefunc_t *tr_func, void *arg)
2135 {
2136 	struct cam_eb *bus;
2137 	struct cam_ed *device, *next_device;
2138 	int retval;
2139 
2140 	retval = 1;
2141 	bus = target->bus;
2142 	if (start_device)
2143 		device = start_device;
2144 	else {
2145 		mtx_lock(&bus->eb_mtx);
2146 		device = TAILQ_FIRST(&target->ed_entries);
2147 		if (device == NULL) {
2148 			mtx_unlock(&bus->eb_mtx);
2149 			return (retval);
2150 		}
2151 		device->refcount++;
2152 		mtx_unlock(&bus->eb_mtx);
2153 	}
2154 	for (; device != NULL; device = next_device) {
2155 		mtx_lock(&device->device_mtx);
2156 		retval = tr_func(device, arg);
2157 		mtx_unlock(&device->device_mtx);
2158 		if (retval == 0) {
2159 			xpt_release_device(device);
2160 			break;
2161 		}
2162 		mtx_lock(&bus->eb_mtx);
2163 		next_device = TAILQ_NEXT(device, links);
2164 		if (next_device)
2165 			next_device->refcount++;
2166 		mtx_unlock(&bus->eb_mtx);
2167 		xpt_release_device(device);
2168 	}
2169 	return(retval);
2170 }
2171 
2172 static int
2173 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2174 		  xpt_periphfunc_t *tr_func, void *arg)
2175 {
2176 	struct cam_eb *bus;
2177 	struct cam_periph *periph, *next_periph;
2178 	int retval;
2179 
2180 	retval = 1;
2181 
2182 	bus = device->target->bus;
2183 	if (start_periph)
2184 		periph = start_periph;
2185 	else {
2186 		xpt_lock_buses();
2187 		mtx_lock(&bus->eb_mtx);
2188 		periph = SLIST_FIRST(&device->periphs);
2189 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2190 			periph = SLIST_NEXT(periph, periph_links);
2191 		if (periph == NULL) {
2192 			mtx_unlock(&bus->eb_mtx);
2193 			xpt_unlock_buses();
2194 			return (retval);
2195 		}
2196 		periph->refcount++;
2197 		mtx_unlock(&bus->eb_mtx);
2198 		xpt_unlock_buses();
2199 	}
2200 	for (; periph != NULL; periph = next_periph) {
2201 		retval = tr_func(periph, arg);
2202 		if (retval == 0) {
2203 			cam_periph_release_locked(periph);
2204 			break;
2205 		}
2206 		xpt_lock_buses();
2207 		mtx_lock(&bus->eb_mtx);
2208 		next_periph = SLIST_NEXT(periph, periph_links);
2209 		while (next_periph != NULL &&
2210 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2211 			next_periph = SLIST_NEXT(periph, periph_links);
2212 		if (next_periph)
2213 			next_periph->refcount++;
2214 		mtx_unlock(&bus->eb_mtx);
2215 		xpt_unlock_buses();
2216 		cam_periph_release_locked(periph);
2217 	}
2218 	return(retval);
2219 }
2220 
2221 static int
2222 xptpdrvtraverse(struct periph_driver **start_pdrv,
2223 		xpt_pdrvfunc_t *tr_func, void *arg)
2224 {
2225 	struct periph_driver **pdrv;
2226 	int retval;
2227 
2228 	retval = 1;
2229 
2230 	/*
2231 	 * We don't traverse the peripheral driver list like we do the
2232 	 * other lists, because it is a linker set, and therefore cannot be
2233 	 * changed during runtime.  If the peripheral driver list is ever
2234 	 * re-done to be something other than a linker set (i.e. it can
2235 	 * change while the system is running), the list traversal should
2236 	 * be modified to work like the other traversal functions.
2237 	 */
2238 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2239 	     *pdrv != NULL; pdrv++) {
2240 		retval = tr_func(pdrv, arg);
2241 
2242 		if (retval == 0)
2243 			return(retval);
2244 	}
2245 
2246 	return(retval);
2247 }
2248 
2249 static int
2250 xptpdperiphtraverse(struct periph_driver **pdrv,
2251 		    struct cam_periph *start_periph,
2252 		    xpt_periphfunc_t *tr_func, void *arg)
2253 {
2254 	struct cam_periph *periph, *next_periph;
2255 	int retval;
2256 
2257 	retval = 1;
2258 
2259 	if (start_periph)
2260 		periph = start_periph;
2261 	else {
2262 		xpt_lock_buses();
2263 		periph = TAILQ_FIRST(&(*pdrv)->units);
2264 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2265 			periph = TAILQ_NEXT(periph, unit_links);
2266 		if (periph == NULL) {
2267 			xpt_unlock_buses();
2268 			return (retval);
2269 		}
2270 		periph->refcount++;
2271 		xpt_unlock_buses();
2272 	}
2273 	for (; periph != NULL; periph = next_periph) {
2274 		cam_periph_lock(periph);
2275 		retval = tr_func(periph, arg);
2276 		cam_periph_unlock(periph);
2277 		if (retval == 0) {
2278 			cam_periph_release(periph);
2279 			break;
2280 		}
2281 		xpt_lock_buses();
2282 		next_periph = TAILQ_NEXT(periph, unit_links);
2283 		while (next_periph != NULL &&
2284 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2285 			next_periph = TAILQ_NEXT(periph, unit_links);
2286 		if (next_periph)
2287 			next_periph->refcount++;
2288 		xpt_unlock_buses();
2289 		cam_periph_release(periph);
2290 	}
2291 	return(retval);
2292 }
2293 
2294 static int
2295 xptdefbusfunc(struct cam_eb *bus, void *arg)
2296 {
2297 	struct xpt_traverse_config *tr_config;
2298 
2299 	tr_config = (struct xpt_traverse_config *)arg;
2300 
2301 	if (tr_config->depth == XPT_DEPTH_BUS) {
2302 		xpt_busfunc_t *tr_func;
2303 
2304 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2305 
2306 		return(tr_func(bus, tr_config->tr_arg));
2307 	} else
2308 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2309 }
2310 
2311 static int
2312 xptdeftargetfunc(struct cam_et *target, void *arg)
2313 {
2314 	struct xpt_traverse_config *tr_config;
2315 
2316 	tr_config = (struct xpt_traverse_config *)arg;
2317 
2318 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2319 		xpt_targetfunc_t *tr_func;
2320 
2321 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2322 
2323 		return(tr_func(target, tr_config->tr_arg));
2324 	} else
2325 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2326 }
2327 
2328 static int
2329 xptdefdevicefunc(struct cam_ed *device, void *arg)
2330 {
2331 	struct xpt_traverse_config *tr_config;
2332 
2333 	tr_config = (struct xpt_traverse_config *)arg;
2334 
2335 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2336 		xpt_devicefunc_t *tr_func;
2337 
2338 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2339 
2340 		return(tr_func(device, tr_config->tr_arg));
2341 	} else
2342 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2343 }
2344 
2345 static int
2346 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2347 {
2348 	struct xpt_traverse_config *tr_config;
2349 	xpt_periphfunc_t *tr_func;
2350 
2351 	tr_config = (struct xpt_traverse_config *)arg;
2352 
2353 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2354 
2355 	/*
2356 	 * Unlike the other default functions, we don't check for depth
2357 	 * here.  The peripheral driver level is the last level in the EDT,
2358 	 * so if we're here, we should execute the function in question.
2359 	 */
2360 	return(tr_func(periph, tr_config->tr_arg));
2361 }
2362 
2363 /*
2364  * Execute the given function for every bus in the EDT.
2365  */
2366 static int
2367 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2368 {
2369 	struct xpt_traverse_config tr_config;
2370 
2371 	tr_config.depth = XPT_DEPTH_BUS;
2372 	tr_config.tr_func = tr_func;
2373 	tr_config.tr_arg = arg;
2374 
2375 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2376 }
2377 
2378 /*
2379  * Execute the given function for every device in the EDT.
2380  */
2381 static int
2382 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2383 {
2384 	struct xpt_traverse_config tr_config;
2385 
2386 	tr_config.depth = XPT_DEPTH_DEVICE;
2387 	tr_config.tr_func = tr_func;
2388 	tr_config.tr_arg = arg;
2389 
2390 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2391 }
2392 
2393 static int
2394 xptsetasyncfunc(struct cam_ed *device, void *arg)
2395 {
2396 	struct cam_path path;
2397 	struct ccb_getdev cgd;
2398 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2399 
2400 	/*
2401 	 * Don't report unconfigured devices (Wildcard devs,
2402 	 * devices only for target mode, device instances
2403 	 * that have been invalidated but are waiting for
2404 	 * their last reference count to be released).
2405 	 */
2406 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2407 		return (1);
2408 
2409 	xpt_compile_path(&path,
2410 			 NULL,
2411 			 device->target->bus->path_id,
2412 			 device->target->target_id,
2413 			 device->lun_id);
2414 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2415 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2416 	xpt_action((union ccb *)&cgd);
2417 	csa->callback(csa->callback_arg,
2418 			    AC_FOUND_DEVICE,
2419 			    &path, &cgd);
2420 	xpt_release_path(&path);
2421 
2422 	return(1);
2423 }
2424 
2425 static int
2426 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2427 {
2428 	struct cam_path path;
2429 	struct ccb_pathinq cpi;
2430 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2431 
2432 	xpt_compile_path(&path, /*periph*/NULL,
2433 			 bus->path_id,
2434 			 CAM_TARGET_WILDCARD,
2435 			 CAM_LUN_WILDCARD);
2436 	xpt_path_lock(&path);
2437 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2438 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2439 	xpt_action((union ccb *)&cpi);
2440 	csa->callback(csa->callback_arg,
2441 			    AC_PATH_REGISTERED,
2442 			    &path, &cpi);
2443 	xpt_path_unlock(&path);
2444 	xpt_release_path(&path);
2445 
2446 	return(1);
2447 }
2448 
2449 void
2450 xpt_action(union ccb *start_ccb)
2451 {
2452 
2453 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2454 
2455 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2456 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2457 }
2458 
2459 void
2460 xpt_action_default(union ccb *start_ccb)
2461 {
2462 	struct cam_path *path;
2463 	struct cam_sim *sim;
2464 	int lock;
2465 
2466 	path = start_ccb->ccb_h.path;
2467 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2468 
2469 	switch (start_ccb->ccb_h.func_code) {
2470 	case XPT_SCSI_IO:
2471 	{
2472 		struct cam_ed *device;
2473 
2474 		/*
2475 		 * For the sake of compatibility with SCSI-1
2476 		 * devices that may not understand the identify
2477 		 * message, we include lun information in the
2478 		 * second byte of all commands.  SCSI-1 specifies
2479 		 * that luns are a 3 bit value and reserves only 3
2480 		 * bits for lun information in the CDB.  Later
2481 		 * revisions of the SCSI spec allow for more than 8
2482 		 * luns, but have deprecated lun information in the
2483 		 * CDB.  So, if the lun won't fit, we must omit.
2484 		 *
2485 		 * Also be aware that during initial probing for devices,
2486 		 * the inquiry information is unknown but initialized to 0.
2487 		 * This means that this code will be exercised while probing
2488 		 * devices with an ANSI revision greater than 2.
2489 		 */
2490 		device = path->device;
2491 		if (device->protocol_version <= SCSI_REV_2
2492 		 && start_ccb->ccb_h.target_lun < 8
2493 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2494 
2495 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2496 			    start_ccb->ccb_h.target_lun << 5;
2497 		}
2498 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2499 	}
2500 	/* FALLTHROUGH */
2501 	case XPT_TARGET_IO:
2502 	case XPT_CONT_TARGET_IO:
2503 		start_ccb->csio.sense_resid = 0;
2504 		start_ccb->csio.resid = 0;
2505 		/* FALLTHROUGH */
2506 	case XPT_ATA_IO:
2507 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2508 			start_ccb->ataio.resid = 0;
2509 		/* FALLTHROUGH */
2510 	case XPT_RESET_DEV:
2511 	case XPT_ENG_EXEC:
2512 	case XPT_SMP_IO:
2513 	{
2514 		struct cam_devq *devq;
2515 
2516 		devq = path->bus->sim->devq;
2517 		mtx_lock(&devq->send_mtx);
2518 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2519 		if (xpt_schedule_devq(devq, path->device) != 0)
2520 			xpt_run_devq(devq);
2521 		mtx_unlock(&devq->send_mtx);
2522 		break;
2523 	}
2524 	case XPT_CALC_GEOMETRY:
2525 		/* Filter out garbage */
2526 		if (start_ccb->ccg.block_size == 0
2527 		 || start_ccb->ccg.volume_size == 0) {
2528 			start_ccb->ccg.cylinders = 0;
2529 			start_ccb->ccg.heads = 0;
2530 			start_ccb->ccg.secs_per_track = 0;
2531 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2532 			break;
2533 		}
2534 #if defined(PC98) || defined(__sparc64__)
2535 		/*
2536 		 * In a PC-98 system, geometry translation depens on
2537 		 * the "real" device geometry obtained from mode page 4.
2538 		 * SCSI geometry translation is performed in the
2539 		 * initialization routine of the SCSI BIOS and the result
2540 		 * stored in host memory.  If the translation is available
2541 		 * in host memory, use it.  If not, rely on the default
2542 		 * translation the device driver performs.
2543 		 * For sparc64, we may need adjust the geometry of large
2544 		 * disks in order to fit the limitations of the 16-bit
2545 		 * fields of the VTOC8 disk label.
2546 		 */
2547 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2548 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2549 			break;
2550 		}
2551 #endif
2552 		goto call_sim;
2553 	case XPT_ABORT:
2554 	{
2555 		union ccb* abort_ccb;
2556 
2557 		abort_ccb = start_ccb->cab.abort_ccb;
2558 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2559 
2560 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2561 				struct cam_ccbq *ccbq;
2562 				struct cam_ed *device;
2563 
2564 				device = abort_ccb->ccb_h.path->device;
2565 				ccbq = &device->ccbq;
2566 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2567 				abort_ccb->ccb_h.status =
2568 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2569 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2570 				xpt_done(abort_ccb);
2571 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2572 				break;
2573 			}
2574 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2575 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2576 				/*
2577 				 * We've caught this ccb en route to
2578 				 * the SIM.  Flag it for abort and the
2579 				 * SIM will do so just before starting
2580 				 * real work on the CCB.
2581 				 */
2582 				abort_ccb->ccb_h.status =
2583 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2584 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2585 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2586 				break;
2587 			}
2588 		}
2589 		if (XPT_FC_IS_QUEUED(abort_ccb)
2590 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2591 			/*
2592 			 * It's already completed but waiting
2593 			 * for our SWI to get to it.
2594 			 */
2595 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2596 			break;
2597 		}
2598 		/*
2599 		 * If we weren't able to take care of the abort request
2600 		 * in the XPT, pass the request down to the SIM for processing.
2601 		 */
2602 	}
2603 	/* FALLTHROUGH */
2604 	case XPT_ACCEPT_TARGET_IO:
2605 	case XPT_EN_LUN:
2606 	case XPT_IMMED_NOTIFY:
2607 	case XPT_NOTIFY_ACK:
2608 	case XPT_RESET_BUS:
2609 	case XPT_IMMEDIATE_NOTIFY:
2610 	case XPT_NOTIFY_ACKNOWLEDGE:
2611 	case XPT_GET_SIM_KNOB:
2612 	case XPT_SET_SIM_KNOB:
2613 	case XPT_GET_TRAN_SETTINGS:
2614 	case XPT_SET_TRAN_SETTINGS:
2615 	case XPT_PATH_INQ:
2616 call_sim:
2617 		sim = path->bus->sim;
2618 		lock = (mtx_owned(sim->mtx) == 0);
2619 		if (lock)
2620 			CAM_SIM_LOCK(sim);
2621 		(*(sim->sim_action))(sim, start_ccb);
2622 		if (lock)
2623 			CAM_SIM_UNLOCK(sim);
2624 		break;
2625 	case XPT_PATH_STATS:
2626 		start_ccb->cpis.last_reset = path->bus->last_reset;
2627 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2628 		break;
2629 	case XPT_GDEV_TYPE:
2630 	{
2631 		struct cam_ed *dev;
2632 
2633 		dev = path->device;
2634 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2635 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2636 		} else {
2637 			struct ccb_getdev *cgd;
2638 
2639 			cgd = &start_ccb->cgd;
2640 			cgd->protocol = dev->protocol;
2641 			cgd->inq_data = dev->inq_data;
2642 			cgd->ident_data = dev->ident_data;
2643 			cgd->inq_flags = dev->inq_flags;
2644 			cgd->ccb_h.status = CAM_REQ_CMP;
2645 			cgd->serial_num_len = dev->serial_num_len;
2646 			if ((dev->serial_num_len > 0)
2647 			 && (dev->serial_num != NULL))
2648 				bcopy(dev->serial_num, cgd->serial_num,
2649 				      dev->serial_num_len);
2650 		}
2651 		break;
2652 	}
2653 	case XPT_GDEV_STATS:
2654 	{
2655 		struct cam_ed *dev;
2656 
2657 		dev = path->device;
2658 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2659 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2660 		} else {
2661 			struct ccb_getdevstats *cgds;
2662 			struct cam_eb *bus;
2663 			struct cam_et *tar;
2664 
2665 			cgds = &start_ccb->cgds;
2666 			bus = path->bus;
2667 			tar = path->target;
2668 			cgds->dev_openings = dev->ccbq.dev_openings;
2669 			cgds->dev_active = dev->ccbq.dev_active;
2670 			cgds->devq_openings = dev->ccbq.devq_openings;
2671 			cgds->devq_queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2672 			cgds->held = dev->ccbq.held;
2673 			cgds->last_reset = tar->last_reset;
2674 			cgds->maxtags = dev->maxtags;
2675 			cgds->mintags = dev->mintags;
2676 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2677 				cgds->last_reset = bus->last_reset;
2678 			cgds->ccb_h.status = CAM_REQ_CMP;
2679 		}
2680 		break;
2681 	}
2682 	case XPT_GDEVLIST:
2683 	{
2684 		struct cam_periph	*nperiph;
2685 		struct periph_list	*periph_head;
2686 		struct ccb_getdevlist	*cgdl;
2687 		u_int			i;
2688 		struct cam_ed		*device;
2689 		int			found;
2690 
2691 
2692 		found = 0;
2693 
2694 		/*
2695 		 * Don't want anyone mucking with our data.
2696 		 */
2697 		device = path->device;
2698 		periph_head = &device->periphs;
2699 		cgdl = &start_ccb->cgdl;
2700 
2701 		/*
2702 		 * Check and see if the list has changed since the user
2703 		 * last requested a list member.  If so, tell them that the
2704 		 * list has changed, and therefore they need to start over
2705 		 * from the beginning.
2706 		 */
2707 		if ((cgdl->index != 0) &&
2708 		    (cgdl->generation != device->generation)) {
2709 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2710 			break;
2711 		}
2712 
2713 		/*
2714 		 * Traverse the list of peripherals and attempt to find
2715 		 * the requested peripheral.
2716 		 */
2717 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2718 		     (nperiph != NULL) && (i <= cgdl->index);
2719 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2720 			if (i == cgdl->index) {
2721 				strncpy(cgdl->periph_name,
2722 					nperiph->periph_name,
2723 					DEV_IDLEN);
2724 				cgdl->unit_number = nperiph->unit_number;
2725 				found = 1;
2726 			}
2727 		}
2728 		if (found == 0) {
2729 			cgdl->status = CAM_GDEVLIST_ERROR;
2730 			break;
2731 		}
2732 
2733 		if (nperiph == NULL)
2734 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2735 		else
2736 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2737 
2738 		cgdl->index++;
2739 		cgdl->generation = device->generation;
2740 
2741 		cgdl->ccb_h.status = CAM_REQ_CMP;
2742 		break;
2743 	}
2744 	case XPT_DEV_MATCH:
2745 	{
2746 		dev_pos_type position_type;
2747 		struct ccb_dev_match *cdm;
2748 
2749 		cdm = &start_ccb->cdm;
2750 
2751 		/*
2752 		 * There are two ways of getting at information in the EDT.
2753 		 * The first way is via the primary EDT tree.  It starts
2754 		 * with a list of busses, then a list of targets on a bus,
2755 		 * then devices/luns on a target, and then peripherals on a
2756 		 * device/lun.  The "other" way is by the peripheral driver
2757 		 * lists.  The peripheral driver lists are organized by
2758 		 * peripheral driver.  (obviously)  So it makes sense to
2759 		 * use the peripheral driver list if the user is looking
2760 		 * for something like "da1", or all "da" devices.  If the
2761 		 * user is looking for something on a particular bus/target
2762 		 * or lun, it's generally better to go through the EDT tree.
2763 		 */
2764 
2765 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2766 			position_type = cdm->pos.position_type;
2767 		else {
2768 			u_int i;
2769 
2770 			position_type = CAM_DEV_POS_NONE;
2771 
2772 			for (i = 0; i < cdm->num_patterns; i++) {
2773 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2774 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2775 					position_type = CAM_DEV_POS_EDT;
2776 					break;
2777 				}
2778 			}
2779 
2780 			if (cdm->num_patterns == 0)
2781 				position_type = CAM_DEV_POS_EDT;
2782 			else if (position_type == CAM_DEV_POS_NONE)
2783 				position_type = CAM_DEV_POS_PDRV;
2784 		}
2785 
2786 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2787 		case CAM_DEV_POS_EDT:
2788 			xptedtmatch(cdm);
2789 			break;
2790 		case CAM_DEV_POS_PDRV:
2791 			xptperiphlistmatch(cdm);
2792 			break;
2793 		default:
2794 			cdm->status = CAM_DEV_MATCH_ERROR;
2795 			break;
2796 		}
2797 
2798 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2799 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2800 		else
2801 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2802 
2803 		break;
2804 	}
2805 	case XPT_SASYNC_CB:
2806 	{
2807 		struct ccb_setasync *csa;
2808 		struct async_node *cur_entry;
2809 		struct async_list *async_head;
2810 		u_int32_t added;
2811 
2812 		csa = &start_ccb->csa;
2813 		added = csa->event_enable;
2814 		async_head = &path->device->asyncs;
2815 
2816 		/*
2817 		 * If there is already an entry for us, simply
2818 		 * update it.
2819 		 */
2820 		cur_entry = SLIST_FIRST(async_head);
2821 		while (cur_entry != NULL) {
2822 			if ((cur_entry->callback_arg == csa->callback_arg)
2823 			 && (cur_entry->callback == csa->callback))
2824 				break;
2825 			cur_entry = SLIST_NEXT(cur_entry, links);
2826 		}
2827 
2828 		if (cur_entry != NULL) {
2829 		 	/*
2830 			 * If the request has no flags set,
2831 			 * remove the entry.
2832 			 */
2833 			added &= ~cur_entry->event_enable;
2834 			if (csa->event_enable == 0) {
2835 				SLIST_REMOVE(async_head, cur_entry,
2836 					     async_node, links);
2837 				xpt_release_device(path->device);
2838 				free(cur_entry, M_CAMXPT);
2839 			} else {
2840 				cur_entry->event_enable = csa->event_enable;
2841 			}
2842 			csa->event_enable = added;
2843 		} else {
2844 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2845 					   M_NOWAIT);
2846 			if (cur_entry == NULL) {
2847 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2848 				break;
2849 			}
2850 			cur_entry->event_enable = csa->event_enable;
2851 			cur_entry->event_lock =
2852 			    mtx_owned(path->bus->sim->mtx) ? 1 : 0;
2853 			cur_entry->callback_arg = csa->callback_arg;
2854 			cur_entry->callback = csa->callback;
2855 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2856 			xpt_acquire_device(path->device);
2857 		}
2858 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2859 		break;
2860 	}
2861 	case XPT_REL_SIMQ:
2862 	{
2863 		struct ccb_relsim *crs;
2864 		struct cam_ed *dev;
2865 
2866 		crs = &start_ccb->crs;
2867 		dev = path->device;
2868 		if (dev == NULL) {
2869 
2870 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2871 			break;
2872 		}
2873 
2874 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2875 
2876 			/* Don't ever go below one opening */
2877 			if (crs->openings > 0) {
2878 				xpt_dev_ccbq_resize(path, crs->openings);
2879 				if (bootverbose) {
2880 					xpt_print(path,
2881 					    "number of openings is now %d\n",
2882 					    crs->openings);
2883 				}
2884 			}
2885 		}
2886 
2887 		mtx_lock(&dev->sim->devq->send_mtx);
2888 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2889 
2890 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2891 
2892 				/*
2893 				 * Just extend the old timeout and decrement
2894 				 * the freeze count so that a single timeout
2895 				 * is sufficient for releasing the queue.
2896 				 */
2897 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2898 				callout_stop(&dev->callout);
2899 			} else {
2900 
2901 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2902 			}
2903 
2904 			callout_reset(&dev->callout,
2905 			    (crs->release_timeout * hz) / 1000,
2906 			    xpt_release_devq_timeout, dev);
2907 
2908 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2909 
2910 		}
2911 
2912 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2913 
2914 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2915 				/*
2916 				 * Decrement the freeze count so that a single
2917 				 * completion is still sufficient to unfreeze
2918 				 * the queue.
2919 				 */
2920 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2921 			} else {
2922 
2923 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2924 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2925 			}
2926 		}
2927 
2928 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2929 
2930 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2931 			 || (dev->ccbq.dev_active == 0)) {
2932 
2933 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2934 			} else {
2935 
2936 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2937 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2938 			}
2939 		}
2940 		mtx_unlock(&dev->sim->devq->send_mtx);
2941 
2942 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2943 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2944 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2945 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2946 		break;
2947 	}
2948 	case XPT_DEBUG: {
2949 		struct cam_path *oldpath;
2950 
2951 		/* Check that all request bits are supported. */
2952 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2953 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2954 			break;
2955 		}
2956 
2957 		cam_dflags = CAM_DEBUG_NONE;
2958 		if (cam_dpath != NULL) {
2959 			oldpath = cam_dpath;
2960 			cam_dpath = NULL;
2961 			xpt_free_path(oldpath);
2962 		}
2963 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
2964 			if (xpt_create_path(&cam_dpath, NULL,
2965 					    start_ccb->ccb_h.path_id,
2966 					    start_ccb->ccb_h.target_id,
2967 					    start_ccb->ccb_h.target_lun) !=
2968 					    CAM_REQ_CMP) {
2969 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2970 			} else {
2971 				cam_dflags = start_ccb->cdbg.flags;
2972 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2973 				xpt_print(cam_dpath, "debugging flags now %x\n",
2974 				    cam_dflags);
2975 			}
2976 		} else
2977 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2978 		break;
2979 	}
2980 	case XPT_NOOP:
2981 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2982 			xpt_freeze_devq(path, 1);
2983 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2984 		break;
2985 	default:
2986 	case XPT_SDEV_TYPE:
2987 	case XPT_TERM_IO:
2988 	case XPT_ENG_INQ:
2989 		/* XXX Implement */
2990 		printf("%s: CCB type %#x not supported\n", __func__,
2991 		       start_ccb->ccb_h.func_code);
2992 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2993 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2994 			xpt_done(start_ccb);
2995 		}
2996 		break;
2997 	}
2998 }
2999 
3000 void
3001 xpt_polled_action(union ccb *start_ccb)
3002 {
3003 	u_int32_t timeout;
3004 	struct	  cam_sim *sim;
3005 	struct	  cam_devq *devq;
3006 	struct	  cam_ed *dev;
3007 
3008 	timeout = start_ccb->ccb_h.timeout * 10;
3009 	sim = start_ccb->ccb_h.path->bus->sim;
3010 	devq = sim->devq;
3011 	dev = start_ccb->ccb_h.path->device;
3012 
3013 	mtx_unlock(&dev->device_mtx);
3014 
3015 	/*
3016 	 * Steal an opening so that no other queued requests
3017 	 * can get it before us while we simulate interrupts.
3018 	 */
3019 	mtx_lock(&devq->send_mtx);
3020 	dev->ccbq.devq_openings--;
3021 	dev->ccbq.dev_openings--;
3022 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3023 	    (--timeout > 0)) {
3024 		mtx_unlock(&devq->send_mtx);
3025 		DELAY(100);
3026 		CAM_SIM_LOCK(sim);
3027 		(*(sim->sim_poll))(sim);
3028 		CAM_SIM_UNLOCK(sim);
3029 		camisr_runqueue();
3030 		mtx_lock(&devq->send_mtx);
3031 	}
3032 	dev->ccbq.devq_openings++;
3033 	dev->ccbq.dev_openings++;
3034 	mtx_unlock(&devq->send_mtx);
3035 
3036 	if (timeout != 0) {
3037 		xpt_action(start_ccb);
3038 		while(--timeout > 0) {
3039 			CAM_SIM_LOCK(sim);
3040 			(*(sim->sim_poll))(sim);
3041 			CAM_SIM_UNLOCK(sim);
3042 			camisr_runqueue();
3043 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3044 			    != CAM_REQ_INPROG)
3045 				break;
3046 			DELAY(100);
3047 		}
3048 		if (timeout == 0) {
3049 			/*
3050 			 * XXX Is it worth adding a sim_timeout entry
3051 			 * point so we can attempt recovery?  If
3052 			 * this is only used for dumps, I don't think
3053 			 * it is.
3054 			 */
3055 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3056 		}
3057 	} else {
3058 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3059 	}
3060 
3061 	mtx_lock(&dev->device_mtx);
3062 }
3063 
3064 /*
3065  * Schedule a peripheral driver to receive a ccb when it's
3066  * target device has space for more transactions.
3067  */
3068 void
3069 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3070 {
3071 
3072 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3073 	cam_periph_assert(periph, MA_OWNED);
3074 	if (new_priority < periph->scheduled_priority) {
3075 		periph->scheduled_priority = new_priority;
3076 		xpt_run_allocq(periph, 0);
3077 	}
3078 }
3079 
3080 
3081 /*
3082  * Schedule a device to run on a given queue.
3083  * If the device was inserted as a new entry on the queue,
3084  * return 1 meaning the device queue should be run. If we
3085  * were already queued, implying someone else has already
3086  * started the queue, return 0 so the caller doesn't attempt
3087  * to run the queue.
3088  */
3089 static int
3090 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3091 		 u_int32_t new_priority)
3092 {
3093 	int retval;
3094 	u_int32_t old_priority;
3095 
3096 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3097 
3098 	old_priority = pinfo->priority;
3099 
3100 	/*
3101 	 * Are we already queued?
3102 	 */
3103 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3104 		/* Simply reorder based on new priority */
3105 		if (new_priority < old_priority) {
3106 			camq_change_priority(queue, pinfo->index,
3107 					     new_priority);
3108 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3109 					("changed priority to %d\n",
3110 					 new_priority));
3111 			retval = 1;
3112 		} else
3113 			retval = 0;
3114 	} else {
3115 		/* New entry on the queue */
3116 		if (new_priority < old_priority)
3117 			pinfo->priority = new_priority;
3118 
3119 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3120 				("Inserting onto queue\n"));
3121 		pinfo->generation = ++queue->generation;
3122 		camq_insert(queue, pinfo);
3123 		retval = 1;
3124 	}
3125 	return (retval);
3126 }
3127 
3128 static void
3129 xpt_run_allocq_task(void *context, int pending)
3130 {
3131 	struct cam_periph *periph = context;
3132 
3133 	cam_periph_lock(periph);
3134 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3135 	xpt_run_allocq(periph, 1);
3136 	cam_periph_unlock(periph);
3137 	cam_periph_release(periph);
3138 }
3139 
3140 static void
3141 xpt_run_allocq(struct cam_periph *periph, int sleep)
3142 {
3143 	struct cam_ed	*device;
3144 	union ccb	*ccb;
3145 	uint32_t	 prio;
3146 
3147 	cam_periph_assert(periph, MA_OWNED);
3148 	if (periph->periph_allocating)
3149 		return;
3150 	periph->periph_allocating = 1;
3151 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3152 	device = periph->path->device;
3153 	ccb = NULL;
3154 restart:
3155 	while ((prio = min(periph->scheduled_priority,
3156 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3157 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3158 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3159 
3160 		if (ccb == NULL &&
3161 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3162 			if (sleep) {
3163 				ccb = xpt_get_ccb(periph);
3164 				goto restart;
3165 			}
3166 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3167 				break;
3168 			xpt_lock_buses();
3169 			periph->refcount++;	/* Unconditionally acquire */
3170 			xpt_unlock_buses();
3171 			periph->flags |= CAM_PERIPH_RUN_TASK;
3172 			taskqueue_enqueue(xsoftc.xpt_taskq,
3173 			    &periph->periph_run_task);
3174 			break;
3175 		}
3176 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3177 		if (prio == periph->immediate_priority) {
3178 			periph->immediate_priority = CAM_PRIORITY_NONE;
3179 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3180 					("waking cam_periph_getccb()\n"));
3181 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3182 					  periph_links.sle);
3183 			wakeup(&periph->ccb_list);
3184 		} else {
3185 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3186 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3187 					("calling periph_start()\n"));
3188 			periph->periph_start(periph, ccb);
3189 		}
3190 		ccb = NULL;
3191 	}
3192 	if (ccb != NULL)
3193 		xpt_release_ccb(ccb);
3194 	periph->periph_allocating = 0;
3195 }
3196 
3197 static void
3198 xpt_run_devq(struct cam_devq *devq)
3199 {
3200 	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3201 	int lock;
3202 
3203 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3204 
3205 	devq->send_queue.qfrozen_cnt++;
3206 	while ((devq->send_queue.entries > 0)
3207 	    && (devq->send_openings > 0)
3208 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3209 		struct	cam_ed *device;
3210 		union ccb *work_ccb;
3211 		struct	cam_sim *sim;
3212 
3213 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3214 							   CAMQ_HEAD);
3215 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3216 				("running device %p\n", device));
3217 
3218 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3219 		if (work_ccb == NULL) {
3220 			printf("device on run queue with no ccbs???\n");
3221 			continue;
3222 		}
3223 
3224 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3225 
3226 			mtx_lock(&xsoftc.xpt_lock);
3227 		 	if (xsoftc.num_highpower <= 0) {
3228 				/*
3229 				 * We got a high power command, but we
3230 				 * don't have any available slots.  Freeze
3231 				 * the device queue until we have a slot
3232 				 * available.
3233 				 */
3234 				xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3235 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3236 						   highpowerq_entry);
3237 
3238 				mtx_unlock(&xsoftc.xpt_lock);
3239 				continue;
3240 			} else {
3241 				/*
3242 				 * Consume a high power slot while
3243 				 * this ccb runs.
3244 				 */
3245 				xsoftc.num_highpower--;
3246 			}
3247 			mtx_unlock(&xsoftc.xpt_lock);
3248 		}
3249 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3250 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3251 		devq->send_openings--;
3252 		devq->send_active++;
3253 		xpt_schedule_devq(devq, device);
3254 		mtx_unlock(&devq->send_mtx);
3255 
3256 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3257 			/*
3258 			 * The client wants to freeze the queue
3259 			 * after this CCB is sent.
3260 			 */
3261 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3262 		}
3263 
3264 		/* In Target mode, the peripheral driver knows best... */
3265 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3266 			if ((device->inq_flags & SID_CmdQue) != 0
3267 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3268 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3269 			else
3270 				/*
3271 				 * Clear this in case of a retried CCB that
3272 				 * failed due to a rejected tag.
3273 				 */
3274 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3275 		}
3276 
3277 		switch (work_ccb->ccb_h.func_code) {
3278 		case XPT_SCSI_IO:
3279 			CAM_DEBUG(work_ccb->ccb_h.path,
3280 			    CAM_DEBUG_CDB,("%s. CDB: %s\n",
3281 			     scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0],
3282 					  &device->inq_data),
3283 			     scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes,
3284 					     cdb_str, sizeof(cdb_str))));
3285 			break;
3286 		case XPT_ATA_IO:
3287 			CAM_DEBUG(work_ccb->ccb_h.path,
3288 			    CAM_DEBUG_CDB,("%s. ACB: %s\n",
3289 			     ata_op_string(&work_ccb->ataio.cmd),
3290 			     ata_cmd_string(&work_ccb->ataio.cmd,
3291 					    cdb_str, sizeof(cdb_str))));
3292 			break;
3293 		default:
3294 			break;
3295 		}
3296 
3297 		/*
3298 		 * Device queues can be shared among multiple SIM instances
3299 		 * that reside on different busses.  Use the SIM from the
3300 		 * queued device, rather than the one from the calling bus.
3301 		 */
3302 		sim = device->sim;
3303 		lock = (mtx_owned(sim->mtx) == 0);
3304 		if (lock)
3305 			CAM_SIM_LOCK(sim);
3306 		(*(sim->sim_action))(sim, work_ccb);
3307 		if (lock)
3308 			CAM_SIM_UNLOCK(sim);
3309 		mtx_lock(&devq->send_mtx);
3310 	}
3311 	devq->send_queue.qfrozen_cnt--;
3312 }
3313 
3314 /*
3315  * This function merges stuff from the slave ccb into the master ccb, while
3316  * keeping important fields in the master ccb constant.
3317  */
3318 void
3319 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3320 {
3321 
3322 	/*
3323 	 * Pull fields that are valid for peripheral drivers to set
3324 	 * into the master CCB along with the CCB "payload".
3325 	 */
3326 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3327 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3328 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3329 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3330 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3331 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3332 }
3333 
3334 void
3335 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3336 {
3337 
3338 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3339 	ccb_h->pinfo.priority = priority;
3340 	ccb_h->path = path;
3341 	ccb_h->path_id = path->bus->path_id;
3342 	if (path->target)
3343 		ccb_h->target_id = path->target->target_id;
3344 	else
3345 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3346 	if (path->device) {
3347 		ccb_h->target_lun = path->device->lun_id;
3348 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3349 	} else {
3350 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3351 	}
3352 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3353 	ccb_h->flags = 0;
3354 	ccb_h->xflags = 0;
3355 }
3356 
3357 /* Path manipulation functions */
3358 cam_status
3359 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3360 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3361 {
3362 	struct	   cam_path *path;
3363 	cam_status status;
3364 
3365 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3366 
3367 	if (path == NULL) {
3368 		status = CAM_RESRC_UNAVAIL;
3369 		return(status);
3370 	}
3371 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3372 	if (status != CAM_REQ_CMP) {
3373 		free(path, M_CAMPATH);
3374 		path = NULL;
3375 	}
3376 	*new_path_ptr = path;
3377 	return (status);
3378 }
3379 
3380 cam_status
3381 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3382 			 struct cam_periph *periph, path_id_t path_id,
3383 			 target_id_t target_id, lun_id_t lun_id)
3384 {
3385 
3386 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3387 	    lun_id));
3388 }
3389 
3390 cam_status
3391 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3392 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3393 {
3394 	struct	     cam_eb *bus;
3395 	struct	     cam_et *target;
3396 	struct	     cam_ed *device;
3397 	cam_status   status;
3398 
3399 	status = CAM_REQ_CMP;	/* Completed without error */
3400 	target = NULL;		/* Wildcarded */
3401 	device = NULL;		/* Wildcarded */
3402 
3403 	/*
3404 	 * We will potentially modify the EDT, so block interrupts
3405 	 * that may attempt to create cam paths.
3406 	 */
3407 	bus = xpt_find_bus(path_id);
3408 	if (bus == NULL) {
3409 		status = CAM_PATH_INVALID;
3410 	} else {
3411 		xpt_lock_buses();
3412 		mtx_lock(&bus->eb_mtx);
3413 		target = xpt_find_target(bus, target_id);
3414 		if (target == NULL) {
3415 			/* Create one */
3416 			struct cam_et *new_target;
3417 
3418 			new_target = xpt_alloc_target(bus, target_id);
3419 			if (new_target == NULL) {
3420 				status = CAM_RESRC_UNAVAIL;
3421 			} else {
3422 				target = new_target;
3423 			}
3424 		}
3425 		xpt_unlock_buses();
3426 		if (target != NULL) {
3427 			device = xpt_find_device(target, lun_id);
3428 			if (device == NULL) {
3429 				/* Create one */
3430 				struct cam_ed *new_device;
3431 
3432 				new_device =
3433 				    (*(bus->xport->alloc_device))(bus,
3434 								      target,
3435 								      lun_id);
3436 				if (new_device == NULL) {
3437 					status = CAM_RESRC_UNAVAIL;
3438 				} else {
3439 					device = new_device;
3440 				}
3441 			}
3442 		}
3443 		mtx_unlock(&bus->eb_mtx);
3444 	}
3445 
3446 	/*
3447 	 * Only touch the user's data if we are successful.
3448 	 */
3449 	if (status == CAM_REQ_CMP) {
3450 		new_path->periph = perph;
3451 		new_path->bus = bus;
3452 		new_path->target = target;
3453 		new_path->device = device;
3454 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3455 	} else {
3456 		if (device != NULL)
3457 			xpt_release_device(device);
3458 		if (target != NULL)
3459 			xpt_release_target(target);
3460 		if (bus != NULL)
3461 			xpt_release_bus(bus);
3462 	}
3463 	return (status);
3464 }
3465 
3466 cam_status
3467 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3468 {
3469 	struct	   cam_path *new_path;
3470 
3471 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3472 	if (new_path == NULL)
3473 		return(CAM_RESRC_UNAVAIL);
3474 	xpt_copy_path(new_path, path);
3475 	*new_path_ptr = new_path;
3476 	return (CAM_REQ_CMP);
3477 }
3478 
3479 void
3480 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3481 {
3482 
3483 	*new_path = *path;
3484 	if (path->bus != NULL)
3485 		xpt_acquire_bus(path->bus);
3486 	if (path->target != NULL)
3487 		xpt_acquire_target(path->target);
3488 	if (path->device != NULL)
3489 		xpt_acquire_device(path->device);
3490 }
3491 
3492 void
3493 xpt_release_path(struct cam_path *path)
3494 {
3495 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3496 	if (path->device != NULL) {
3497 		xpt_release_device(path->device);
3498 		path->device = NULL;
3499 	}
3500 	if (path->target != NULL) {
3501 		xpt_release_target(path->target);
3502 		path->target = NULL;
3503 	}
3504 	if (path->bus != NULL) {
3505 		xpt_release_bus(path->bus);
3506 		path->bus = NULL;
3507 	}
3508 }
3509 
3510 void
3511 xpt_free_path(struct cam_path *path)
3512 {
3513 
3514 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3515 	xpt_release_path(path);
3516 	free(path, M_CAMPATH);
3517 }
3518 
3519 void
3520 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3521     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3522 {
3523 
3524 	xpt_lock_buses();
3525 	if (bus_ref) {
3526 		if (path->bus)
3527 			*bus_ref = path->bus->refcount;
3528 		else
3529 			*bus_ref = 0;
3530 	}
3531 	if (periph_ref) {
3532 		if (path->periph)
3533 			*periph_ref = path->periph->refcount;
3534 		else
3535 			*periph_ref = 0;
3536 	}
3537 	xpt_unlock_buses();
3538 	if (target_ref) {
3539 		if (path->target)
3540 			*target_ref = path->target->refcount;
3541 		else
3542 			*target_ref = 0;
3543 	}
3544 	if (device_ref) {
3545 		if (path->device)
3546 			*device_ref = path->device->refcount;
3547 		else
3548 			*device_ref = 0;
3549 	}
3550 }
3551 
3552 /*
3553  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3554  * in path1, 2 for match with wildcards in path2.
3555  */
3556 int
3557 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3558 {
3559 	int retval = 0;
3560 
3561 	if (path1->bus != path2->bus) {
3562 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3563 			retval = 1;
3564 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3565 			retval = 2;
3566 		else
3567 			return (-1);
3568 	}
3569 	if (path1->target != path2->target) {
3570 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3571 			if (retval == 0)
3572 				retval = 1;
3573 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3574 			retval = 2;
3575 		else
3576 			return (-1);
3577 	}
3578 	if (path1->device != path2->device) {
3579 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3580 			if (retval == 0)
3581 				retval = 1;
3582 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3583 			retval = 2;
3584 		else
3585 			return (-1);
3586 	}
3587 	return (retval);
3588 }
3589 
3590 int
3591 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3592 {
3593 	int retval = 0;
3594 
3595 	if (path->bus != dev->target->bus) {
3596 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3597 			retval = 1;
3598 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3599 			retval = 2;
3600 		else
3601 			return (-1);
3602 	}
3603 	if (path->target != dev->target) {
3604 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3605 			if (retval == 0)
3606 				retval = 1;
3607 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3608 			retval = 2;
3609 		else
3610 			return (-1);
3611 	}
3612 	if (path->device != dev) {
3613 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3614 			if (retval == 0)
3615 				retval = 1;
3616 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3617 			retval = 2;
3618 		else
3619 			return (-1);
3620 	}
3621 	return (retval);
3622 }
3623 
3624 void
3625 xpt_print_path(struct cam_path *path)
3626 {
3627 
3628 	if (path == NULL)
3629 		printf("(nopath): ");
3630 	else {
3631 		if (path->periph != NULL)
3632 			printf("(%s%d:", path->periph->periph_name,
3633 			       path->periph->unit_number);
3634 		else
3635 			printf("(noperiph:");
3636 
3637 		if (path->bus != NULL)
3638 			printf("%s%d:%d:", path->bus->sim->sim_name,
3639 			       path->bus->sim->unit_number,
3640 			       path->bus->sim->bus_id);
3641 		else
3642 			printf("nobus:");
3643 
3644 		if (path->target != NULL)
3645 			printf("%d:", path->target->target_id);
3646 		else
3647 			printf("X:");
3648 
3649 		if (path->device != NULL)
3650 			printf("%jx): ", (uintmax_t)path->device->lun_id);
3651 		else
3652 			printf("X): ");
3653 	}
3654 }
3655 
3656 void
3657 xpt_print_device(struct cam_ed *device)
3658 {
3659 
3660 	if (device == NULL)
3661 		printf("(nopath): ");
3662 	else {
3663 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3664 		       device->sim->unit_number,
3665 		       device->sim->bus_id,
3666 		       device->target->target_id,
3667 		       (uintmax_t)device->lun_id);
3668 	}
3669 }
3670 
3671 void
3672 xpt_print(struct cam_path *path, const char *fmt, ...)
3673 {
3674 	va_list ap;
3675 	xpt_print_path(path);
3676 	va_start(ap, fmt);
3677 	vprintf(fmt, ap);
3678 	va_end(ap);
3679 }
3680 
3681 int
3682 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3683 {
3684 	struct sbuf sb;
3685 
3686 	sbuf_new(&sb, str, str_len, 0);
3687 
3688 	if (path == NULL)
3689 		sbuf_printf(&sb, "(nopath): ");
3690 	else {
3691 		if (path->periph != NULL)
3692 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3693 				    path->periph->unit_number);
3694 		else
3695 			sbuf_printf(&sb, "(noperiph:");
3696 
3697 		if (path->bus != NULL)
3698 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3699 				    path->bus->sim->unit_number,
3700 				    path->bus->sim->bus_id);
3701 		else
3702 			sbuf_printf(&sb, "nobus:");
3703 
3704 		if (path->target != NULL)
3705 			sbuf_printf(&sb, "%d:", path->target->target_id);
3706 		else
3707 			sbuf_printf(&sb, "X:");
3708 
3709 		if (path->device != NULL)
3710 			sbuf_printf(&sb, "%jx): ",
3711 			    (uintmax_t)path->device->lun_id);
3712 		else
3713 			sbuf_printf(&sb, "X): ");
3714 	}
3715 	sbuf_finish(&sb);
3716 
3717 	return(sbuf_len(&sb));
3718 }
3719 
3720 path_id_t
3721 xpt_path_path_id(struct cam_path *path)
3722 {
3723 	return(path->bus->path_id);
3724 }
3725 
3726 target_id_t
3727 xpt_path_target_id(struct cam_path *path)
3728 {
3729 	if (path->target != NULL)
3730 		return (path->target->target_id);
3731 	else
3732 		return (CAM_TARGET_WILDCARD);
3733 }
3734 
3735 lun_id_t
3736 xpt_path_lun_id(struct cam_path *path)
3737 {
3738 	if (path->device != NULL)
3739 		return (path->device->lun_id);
3740 	else
3741 		return (CAM_LUN_WILDCARD);
3742 }
3743 
3744 struct cam_sim *
3745 xpt_path_sim(struct cam_path *path)
3746 {
3747 
3748 	return (path->bus->sim);
3749 }
3750 
3751 struct cam_periph*
3752 xpt_path_periph(struct cam_path *path)
3753 {
3754 
3755 	return (path->periph);
3756 }
3757 
3758 int
3759 xpt_path_legacy_ata_id(struct cam_path *path)
3760 {
3761 	struct cam_eb *bus;
3762 	int bus_id;
3763 
3764 	if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3765 	    strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3766 	    strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3767 	    strcmp(path->bus->sim->sim_name, "siisch") != 0)
3768 		return (-1);
3769 
3770 	if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3771 	    path->bus->sim->unit_number < 2) {
3772 		bus_id = path->bus->sim->unit_number;
3773 	} else {
3774 		bus_id = 2;
3775 		xpt_lock_buses();
3776 		TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3777 			if (bus == path->bus)
3778 				break;
3779 			if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3780 			     bus->sim->unit_number >= 2) ||
3781 			    strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3782 			    strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3783 			    strcmp(bus->sim->sim_name, "siisch") == 0)
3784 				bus_id++;
3785 		}
3786 		xpt_unlock_buses();
3787 	}
3788 	if (path->target != NULL) {
3789 		if (path->target->target_id < 2)
3790 			return (bus_id * 2 + path->target->target_id);
3791 		else
3792 			return (-1);
3793 	} else
3794 		return (bus_id * 2);
3795 }
3796 
3797 /*
3798  * Release a CAM control block for the caller.  Remit the cost of the structure
3799  * to the device referenced by the path.  If the this device had no 'credits'
3800  * and peripheral drivers have registered async callbacks for this notification
3801  * call them now.
3802  */
3803 void
3804 xpt_release_ccb(union ccb *free_ccb)
3805 {
3806 	struct	 cam_ed *device;
3807 	struct	 cam_periph *periph;
3808 
3809 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3810 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3811 	device = free_ccb->ccb_h.path->device;
3812 	periph = free_ccb->ccb_h.path->periph;
3813 
3814 	xpt_free_ccb(free_ccb);
3815 	periph->periph_allocated--;
3816 	cam_ccbq_release_opening(&device->ccbq);
3817 	xpt_run_allocq(periph, 0);
3818 }
3819 
3820 /* Functions accessed by SIM drivers */
3821 
3822 static struct xpt_xport xport_default = {
3823 	.alloc_device = xpt_alloc_device_default,
3824 	.action = xpt_action_default,
3825 	.async = xpt_dev_async_default,
3826 };
3827 
3828 /*
3829  * A sim structure, listing the SIM entry points and instance
3830  * identification info is passed to xpt_bus_register to hook the SIM
3831  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3832  * for this new bus and places it in the array of busses and assigns
3833  * it a path_id.  The path_id may be influenced by "hard wiring"
3834  * information specified by the user.  Once interrupt services are
3835  * available, the bus will be probed.
3836  */
3837 int32_t
3838 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3839 {
3840 	struct cam_eb *new_bus;
3841 	struct cam_eb *old_bus;
3842 	struct ccb_pathinq cpi;
3843 	struct cam_path *path;
3844 	cam_status status;
3845 
3846 	mtx_assert(sim->mtx, MA_OWNED);
3847 
3848 	sim->bus_id = bus;
3849 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3850 					  M_CAMXPT, M_NOWAIT|M_ZERO);
3851 	if (new_bus == NULL) {
3852 		/* Couldn't satisfy request */
3853 		return (CAM_RESRC_UNAVAIL);
3854 	}
3855 
3856 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3857 	TAILQ_INIT(&new_bus->et_entries);
3858 	cam_sim_hold(sim);
3859 	new_bus->sim = sim;
3860 	timevalclear(&new_bus->last_reset);
3861 	new_bus->flags = 0;
3862 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3863 	new_bus->generation = 0;
3864 
3865 	xpt_lock_buses();
3866 	sim->path_id = new_bus->path_id =
3867 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3868 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3869 	while (old_bus != NULL
3870 	    && old_bus->path_id < new_bus->path_id)
3871 		old_bus = TAILQ_NEXT(old_bus, links);
3872 	if (old_bus != NULL)
3873 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3874 	else
3875 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3876 	xsoftc.bus_generation++;
3877 	xpt_unlock_buses();
3878 
3879 	/*
3880 	 * Set a default transport so that a PATH_INQ can be issued to
3881 	 * the SIM.  This will then allow for probing and attaching of
3882 	 * a more appropriate transport.
3883 	 */
3884 	new_bus->xport = &xport_default;
3885 
3886 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3887 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3888 	if (status != CAM_REQ_CMP) {
3889 		xpt_release_bus(new_bus);
3890 		free(path, M_CAMXPT);
3891 		return (CAM_RESRC_UNAVAIL);
3892 	}
3893 
3894 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3895 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3896 	xpt_action((union ccb *)&cpi);
3897 
3898 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3899 		switch (cpi.transport) {
3900 		case XPORT_SPI:
3901 		case XPORT_SAS:
3902 		case XPORT_FC:
3903 		case XPORT_USB:
3904 		case XPORT_ISCSI:
3905 		case XPORT_SRP:
3906 		case XPORT_PPB:
3907 			new_bus->xport = scsi_get_xport();
3908 			break;
3909 		case XPORT_ATA:
3910 		case XPORT_SATA:
3911 			new_bus->xport = ata_get_xport();
3912 			break;
3913 		default:
3914 			new_bus->xport = &xport_default;
3915 			break;
3916 		}
3917 	}
3918 
3919 	/* Notify interested parties */
3920 	if (sim->path_id != CAM_XPT_PATH_ID) {
3921 
3922 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3923 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3924 			union	ccb *scan_ccb;
3925 
3926 			/* Initiate bus rescan. */
3927 			scan_ccb = xpt_alloc_ccb_nowait();
3928 			if (scan_ccb != NULL) {
3929 				scan_ccb->ccb_h.path = path;
3930 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3931 				scan_ccb->crcn.flags = 0;
3932 				xpt_rescan(scan_ccb);
3933 			} else
3934 				xpt_print(path,
3935 					  "Can't allocate CCB to scan bus\n");
3936 		} else
3937 			xpt_free_path(path);
3938 	} else
3939 		xpt_free_path(path);
3940 	return (CAM_SUCCESS);
3941 }
3942 
3943 int32_t
3944 xpt_bus_deregister(path_id_t pathid)
3945 {
3946 	struct cam_path bus_path;
3947 	cam_status status;
3948 
3949 	status = xpt_compile_path(&bus_path, NULL, pathid,
3950 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3951 	if (status != CAM_REQ_CMP)
3952 		return (status);
3953 
3954 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3955 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3956 
3957 	/* Release the reference count held while registered. */
3958 	xpt_release_bus(bus_path.bus);
3959 	xpt_release_path(&bus_path);
3960 
3961 	return (CAM_REQ_CMP);
3962 }
3963 
3964 static path_id_t
3965 xptnextfreepathid(void)
3966 {
3967 	struct cam_eb *bus;
3968 	path_id_t pathid;
3969 	const char *strval;
3970 
3971 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
3972 	pathid = 0;
3973 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3974 retry:
3975 	/* Find an unoccupied pathid */
3976 	while (bus != NULL && bus->path_id <= pathid) {
3977 		if (bus->path_id == pathid)
3978 			pathid++;
3979 		bus = TAILQ_NEXT(bus, links);
3980 	}
3981 
3982 	/*
3983 	 * Ensure that this pathid is not reserved for
3984 	 * a bus that may be registered in the future.
3985 	 */
3986 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3987 		++pathid;
3988 		/* Start the search over */
3989 		goto retry;
3990 	}
3991 	return (pathid);
3992 }
3993 
3994 static path_id_t
3995 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3996 {
3997 	path_id_t pathid;
3998 	int i, dunit, val;
3999 	char buf[32];
4000 	const char *dname;
4001 
4002 	pathid = CAM_XPT_PATH_ID;
4003 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4004 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4005 		return (pathid);
4006 	i = 0;
4007 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4008 		if (strcmp(dname, "scbus")) {
4009 			/* Avoid a bit of foot shooting. */
4010 			continue;
4011 		}
4012 		if (dunit < 0)		/* unwired?! */
4013 			continue;
4014 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4015 			if (sim_bus == val) {
4016 				pathid = dunit;
4017 				break;
4018 			}
4019 		} else if (sim_bus == 0) {
4020 			/* Unspecified matches bus 0 */
4021 			pathid = dunit;
4022 			break;
4023 		} else {
4024 			printf("Ambiguous scbus configuration for %s%d "
4025 			       "bus %d, cannot wire down.  The kernel "
4026 			       "config entry for scbus%d should "
4027 			       "specify a controller bus.\n"
4028 			       "Scbus will be assigned dynamically.\n",
4029 			       sim_name, sim_unit, sim_bus, dunit);
4030 			break;
4031 		}
4032 	}
4033 
4034 	if (pathid == CAM_XPT_PATH_ID)
4035 		pathid = xptnextfreepathid();
4036 	return (pathid);
4037 }
4038 
4039 static const char *
4040 xpt_async_string(u_int32_t async_code)
4041 {
4042 
4043 	switch (async_code) {
4044 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4045 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4046 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4047 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4048 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4049 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4050 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4051 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4052 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4053 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4054 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4055 	case AC_CONTRACT: return ("AC_CONTRACT");
4056 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4057 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4058 	}
4059 	return ("AC_UNKNOWN");
4060 }
4061 
4062 static int
4063 xpt_async_size(u_int32_t async_code)
4064 {
4065 
4066 	switch (async_code) {
4067 	case AC_BUS_RESET: return (0);
4068 	case AC_UNSOL_RESEL: return (0);
4069 	case AC_SCSI_AEN: return (0);
4070 	case AC_SENT_BDR: return (0);
4071 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4072 	case AC_PATH_DEREGISTERED: return (0);
4073 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4074 	case AC_LOST_DEVICE: return (0);
4075 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4076 	case AC_INQ_CHANGED: return (0);
4077 	case AC_GETDEV_CHANGED: return (0);
4078 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4079 	case AC_ADVINFO_CHANGED: return (-1);
4080 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4081 	}
4082 	return (0);
4083 }
4084 
4085 static int
4086 xpt_async_process_dev(struct cam_ed *device, void *arg)
4087 {
4088 	union ccb *ccb = arg;
4089 	struct cam_path *path = ccb->ccb_h.path;
4090 	void *async_arg = ccb->casync.async_arg_ptr;
4091 	u_int32_t async_code = ccb->casync.async_code;
4092 	int relock;
4093 
4094 	if (path->device != device
4095 	 && path->device->lun_id != CAM_LUN_WILDCARD
4096 	 && device->lun_id != CAM_LUN_WILDCARD)
4097 		return (1);
4098 
4099 	/*
4100 	 * The async callback could free the device.
4101 	 * If it is a broadcast async, it doesn't hold
4102 	 * device reference, so take our own reference.
4103 	 */
4104 	xpt_acquire_device(device);
4105 
4106 	/*
4107 	 * If async for specific device is to be delivered to
4108 	 * the wildcard client, take the specific device lock.
4109 	 * XXX: We may need a way for client to specify it.
4110 	 */
4111 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4112 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4113 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4114 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4115 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4116 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4117 		mtx_unlock(&device->device_mtx);
4118 		xpt_path_lock(path);
4119 		relock = 1;
4120 	} else
4121 		relock = 0;
4122 
4123 	(*(device->target->bus->xport->async))(async_code,
4124 	    device->target->bus, device->target, device, async_arg);
4125 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4126 
4127 	if (relock) {
4128 		xpt_path_unlock(path);
4129 		mtx_lock(&device->device_mtx);
4130 	}
4131 	xpt_release_device(device);
4132 	return (1);
4133 }
4134 
4135 static int
4136 xpt_async_process_tgt(struct cam_et *target, void *arg)
4137 {
4138 	union ccb *ccb = arg;
4139 	struct cam_path *path = ccb->ccb_h.path;
4140 
4141 	if (path->target != target
4142 	 && path->target->target_id != CAM_TARGET_WILDCARD
4143 	 && target->target_id != CAM_TARGET_WILDCARD)
4144 		return (1);
4145 
4146 	if (ccb->casync.async_code == AC_SENT_BDR) {
4147 		/* Update our notion of when the last reset occurred */
4148 		microtime(&target->last_reset);
4149 	}
4150 
4151 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4152 }
4153 
4154 static void
4155 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4156 {
4157 	struct cam_eb *bus;
4158 	struct cam_path *path;
4159 	void *async_arg;
4160 	u_int32_t async_code;
4161 
4162 	path = ccb->ccb_h.path;
4163 	async_code = ccb->casync.async_code;
4164 	async_arg = ccb->casync.async_arg_ptr;
4165 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4166 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4167 	bus = path->bus;
4168 
4169 	if (async_code == AC_BUS_RESET) {
4170 		/* Update our notion of when the last reset occurred */
4171 		microtime(&bus->last_reset);
4172 	}
4173 
4174 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4175 
4176 	/*
4177 	 * If this wasn't a fully wildcarded async, tell all
4178 	 * clients that want all async events.
4179 	 */
4180 	if (bus != xpt_periph->path->bus) {
4181 		xpt_path_lock(xpt_periph->path);
4182 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4183 		xpt_path_unlock(xpt_periph->path);
4184 	}
4185 
4186 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4187 		xpt_release_devq(path, 1, TRUE);
4188 	else
4189 		xpt_release_simq(path->bus->sim, TRUE);
4190 	if (ccb->casync.async_arg_size > 0)
4191 		free(async_arg, M_CAMXPT);
4192 	xpt_free_path(path);
4193 	xpt_free_ccb(ccb);
4194 }
4195 
4196 static void
4197 xpt_async_bcast(struct async_list *async_head,
4198 		u_int32_t async_code,
4199 		struct cam_path *path, void *async_arg)
4200 {
4201 	struct async_node *cur_entry;
4202 	int lock;
4203 
4204 	cur_entry = SLIST_FIRST(async_head);
4205 	while (cur_entry != NULL) {
4206 		struct async_node *next_entry;
4207 		/*
4208 		 * Grab the next list entry before we call the current
4209 		 * entry's callback.  This is because the callback function
4210 		 * can delete its async callback entry.
4211 		 */
4212 		next_entry = SLIST_NEXT(cur_entry, links);
4213 		if ((cur_entry->event_enable & async_code) != 0) {
4214 			lock = cur_entry->event_lock;
4215 			if (lock)
4216 				CAM_SIM_LOCK(path->device->sim);
4217 			cur_entry->callback(cur_entry->callback_arg,
4218 					    async_code, path,
4219 					    async_arg);
4220 			if (lock)
4221 				CAM_SIM_UNLOCK(path->device->sim);
4222 		}
4223 		cur_entry = next_entry;
4224 	}
4225 }
4226 
4227 void
4228 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4229 {
4230 	union ccb *ccb;
4231 	int size;
4232 
4233 	ccb = xpt_alloc_ccb_nowait();
4234 	if (ccb == NULL) {
4235 		xpt_print(path, "Can't allocate CCB to send %s\n",
4236 		    xpt_async_string(async_code));
4237 		return;
4238 	}
4239 
4240 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4241 		xpt_print(path, "Can't allocate path to send %s\n",
4242 		    xpt_async_string(async_code));
4243 		xpt_free_ccb(ccb);
4244 		return;
4245 	}
4246 	ccb->ccb_h.path->periph = NULL;
4247 	ccb->ccb_h.func_code = XPT_ASYNC;
4248 	ccb->ccb_h.cbfcnp = xpt_async_process;
4249 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4250 	ccb->casync.async_code = async_code;
4251 	ccb->casync.async_arg_size = 0;
4252 	size = xpt_async_size(async_code);
4253 	if (size > 0 && async_arg != NULL) {
4254 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4255 		if (ccb->casync.async_arg_ptr == NULL) {
4256 			xpt_print(path, "Can't allocate argument to send %s\n",
4257 			    xpt_async_string(async_code));
4258 			xpt_free_path(ccb->ccb_h.path);
4259 			xpt_free_ccb(ccb);
4260 			return;
4261 		}
4262 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4263 		ccb->casync.async_arg_size = size;
4264 	} else if (size < 0)
4265 		ccb->casync.async_arg_size = size;
4266 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4267 		xpt_freeze_devq(path, 1);
4268 	else
4269 		xpt_freeze_simq(path->bus->sim, 1);
4270 	xpt_done(ccb);
4271 }
4272 
4273 static void
4274 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4275 		      struct cam_et *target, struct cam_ed *device,
4276 		      void *async_arg)
4277 {
4278 
4279 	/*
4280 	 * We only need to handle events for real devices.
4281 	 */
4282 	if (target->target_id == CAM_TARGET_WILDCARD
4283 	 || device->lun_id == CAM_LUN_WILDCARD)
4284 		return;
4285 
4286 	printf("%s called\n", __func__);
4287 }
4288 
4289 u_int32_t
4290 xpt_freeze_devq(struct cam_path *path, u_int count)
4291 {
4292 	struct cam_ed	*dev = path->device;
4293 	struct cam_devq	*devq;
4294 	uint32_t	 freeze;
4295 
4296 	devq = dev->sim->devq;
4297 	mtx_lock(&devq->send_mtx);
4298 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq() %u->%u\n",
4299 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4300 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4301 	/* Remove frozen device from sendq. */
4302 	if (device_is_queued(dev))
4303 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4304 	mtx_unlock(&devq->send_mtx);
4305 	return (freeze);
4306 }
4307 
4308 u_int32_t
4309 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4310 {
4311 	struct cam_devq	*devq;
4312 	uint32_t	 freeze;
4313 
4314 	devq = sim->devq;
4315 	mtx_lock(&devq->send_mtx);
4316 	freeze = (devq->send_queue.qfrozen_cnt += count);
4317 	mtx_unlock(&devq->send_mtx);
4318 	return (freeze);
4319 }
4320 
4321 static void
4322 xpt_release_devq_timeout(void *arg)
4323 {
4324 	struct cam_ed *dev;
4325 	struct cam_devq *devq;
4326 
4327 	dev = (struct cam_ed *)arg;
4328 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4329 	devq = dev->sim->devq;
4330 	mtx_assert(&devq->send_mtx, MA_OWNED);
4331 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4332 		xpt_run_devq(devq);
4333 }
4334 
4335 void
4336 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4337 {
4338 	struct cam_ed *dev;
4339 	struct cam_devq *devq;
4340 
4341 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4342 	    count, run_queue));
4343 	dev = path->device;
4344 	devq = dev->sim->devq;
4345 	mtx_lock(&devq->send_mtx);
4346 	if (xpt_release_devq_device(dev, count, run_queue))
4347 		xpt_run_devq(dev->sim->devq);
4348 	mtx_unlock(&devq->send_mtx);
4349 }
4350 
4351 static int
4352 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4353 {
4354 
4355 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4356 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4357 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4358 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4359 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4360 #ifdef INVARIANTS
4361 		printf("xpt_release_devq(): requested %u > present %u\n",
4362 		    count, dev->ccbq.queue.qfrozen_cnt);
4363 #endif
4364 		count = dev->ccbq.queue.qfrozen_cnt;
4365 	}
4366 	dev->ccbq.queue.qfrozen_cnt -= count;
4367 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4368 		/*
4369 		 * No longer need to wait for a successful
4370 		 * command completion.
4371 		 */
4372 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4373 		/*
4374 		 * Remove any timeouts that might be scheduled
4375 		 * to release this queue.
4376 		 */
4377 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4378 			callout_stop(&dev->callout);
4379 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4380 		}
4381 		/*
4382 		 * Now that we are unfrozen schedule the
4383 		 * device so any pending transactions are
4384 		 * run.
4385 		 */
4386 		xpt_schedule_devq(dev->sim->devq, dev);
4387 	} else
4388 		run_queue = 0;
4389 	return (run_queue);
4390 }
4391 
4392 void
4393 xpt_release_simq(struct cam_sim *sim, int run_queue)
4394 {
4395 	struct cam_devq	*devq;
4396 
4397 	devq = sim->devq;
4398 	mtx_lock(&devq->send_mtx);
4399 	if (devq->send_queue.qfrozen_cnt <= 0) {
4400 #ifdef INVARIANTS
4401 		printf("xpt_release_simq: requested 1 > present %u\n",
4402 		    devq->send_queue.qfrozen_cnt);
4403 #endif
4404 	} else
4405 		devq->send_queue.qfrozen_cnt--;
4406 	if (devq->send_queue.qfrozen_cnt == 0) {
4407 		/*
4408 		 * If there is a timeout scheduled to release this
4409 		 * sim queue, remove it.  The queue frozen count is
4410 		 * already at 0.
4411 		 */
4412 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4413 			callout_stop(&sim->callout);
4414 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4415 		}
4416 		if (run_queue) {
4417 			/*
4418 			 * Now that we are unfrozen run the send queue.
4419 			 */
4420 			xpt_run_devq(sim->devq);
4421 		}
4422 	}
4423 	mtx_unlock(&devq->send_mtx);
4424 }
4425 
4426 /*
4427  * XXX Appears to be unused.
4428  */
4429 static void
4430 xpt_release_simq_timeout(void *arg)
4431 {
4432 	struct cam_sim *sim;
4433 
4434 	sim = (struct cam_sim *)arg;
4435 	xpt_release_simq(sim, /* run_queue */ TRUE);
4436 }
4437 
4438 void
4439 xpt_done(union ccb *done_ccb)
4440 {
4441 	struct cam_doneq *queue;
4442 	int	run, hash;
4443 
4444 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4445 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4446 		return;
4447 
4448 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4449 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4450 	queue = &cam_doneqs[hash];
4451 	mtx_lock(&queue->cam_doneq_mtx);
4452 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4453 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4454 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4455 	mtx_unlock(&queue->cam_doneq_mtx);
4456 	if (run)
4457 		wakeup(&queue->cam_doneq);
4458 }
4459 
4460 void
4461 xpt_done_direct(union ccb *done_ccb)
4462 {
4463 
4464 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct\n"));
4465 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4466 		return;
4467 
4468 	xpt_done_process(&done_ccb->ccb_h);
4469 }
4470 
4471 union ccb *
4472 xpt_alloc_ccb()
4473 {
4474 	union ccb *new_ccb;
4475 
4476 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4477 	return (new_ccb);
4478 }
4479 
4480 union ccb *
4481 xpt_alloc_ccb_nowait()
4482 {
4483 	union ccb *new_ccb;
4484 
4485 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4486 	return (new_ccb);
4487 }
4488 
4489 void
4490 xpt_free_ccb(union ccb *free_ccb)
4491 {
4492 	free(free_ccb, M_CAMCCB);
4493 }
4494 
4495 
4496 
4497 /* Private XPT functions */
4498 
4499 /*
4500  * Get a CAM control block for the caller. Charge the structure to the device
4501  * referenced by the path.  If we don't have sufficient resources to allocate
4502  * more ccbs, we return NULL.
4503  */
4504 static union ccb *
4505 xpt_get_ccb_nowait(struct cam_periph *periph)
4506 {
4507 	union ccb *new_ccb;
4508 
4509 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_NOWAIT);
4510 	if (new_ccb == NULL)
4511 		return (NULL);
4512 	periph->periph_allocated++;
4513 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4514 	return (new_ccb);
4515 }
4516 
4517 static union ccb *
4518 xpt_get_ccb(struct cam_periph *periph)
4519 {
4520 	union ccb *new_ccb;
4521 
4522 	cam_periph_unlock(periph);
4523 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_WAITOK);
4524 	cam_periph_lock(periph);
4525 	periph->periph_allocated++;
4526 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4527 	return (new_ccb);
4528 }
4529 
4530 union ccb *
4531 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4532 {
4533 	struct ccb_hdr *ccb_h;
4534 
4535 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4536 	cam_periph_assert(periph, MA_OWNED);
4537 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4538 	    ccb_h->pinfo.priority != priority) {
4539 		if (priority < periph->immediate_priority) {
4540 			periph->immediate_priority = priority;
4541 			xpt_run_allocq(periph, 0);
4542 		} else
4543 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4544 			    "cgticb", 0);
4545 	}
4546 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4547 	return ((union ccb *)ccb_h);
4548 }
4549 
4550 static void
4551 xpt_acquire_bus(struct cam_eb *bus)
4552 {
4553 
4554 	xpt_lock_buses();
4555 	bus->refcount++;
4556 	xpt_unlock_buses();
4557 }
4558 
4559 static void
4560 xpt_release_bus(struct cam_eb *bus)
4561 {
4562 
4563 	xpt_lock_buses();
4564 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4565 	if (--bus->refcount > 0) {
4566 		xpt_unlock_buses();
4567 		return;
4568 	}
4569 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4570 	xsoftc.bus_generation++;
4571 	xpt_unlock_buses();
4572 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4573 	    ("destroying bus, but target list is not empty"));
4574 	cam_sim_release(bus->sim);
4575 	mtx_destroy(&bus->eb_mtx);
4576 	free(bus, M_CAMXPT);
4577 }
4578 
4579 static struct cam_et *
4580 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4581 {
4582 	struct cam_et *cur_target, *target;
4583 
4584 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4585 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4586 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4587 					 M_NOWAIT|M_ZERO);
4588 	if (target == NULL)
4589 		return (NULL);
4590 
4591 	TAILQ_INIT(&target->ed_entries);
4592 	target->bus = bus;
4593 	target->target_id = target_id;
4594 	target->refcount = 1;
4595 	target->generation = 0;
4596 	target->luns = NULL;
4597 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4598 	timevalclear(&target->last_reset);
4599 	/*
4600 	 * Hold a reference to our parent bus so it
4601 	 * will not go away before we do.
4602 	 */
4603 	bus->refcount++;
4604 
4605 	/* Insertion sort into our bus's target list */
4606 	cur_target = TAILQ_FIRST(&bus->et_entries);
4607 	while (cur_target != NULL && cur_target->target_id < target_id)
4608 		cur_target = TAILQ_NEXT(cur_target, links);
4609 	if (cur_target != NULL) {
4610 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4611 	} else {
4612 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4613 	}
4614 	bus->generation++;
4615 	return (target);
4616 }
4617 
4618 static void
4619 xpt_acquire_target(struct cam_et *target)
4620 {
4621 	struct cam_eb *bus = target->bus;
4622 
4623 	mtx_lock(&bus->eb_mtx);
4624 	target->refcount++;
4625 	mtx_unlock(&bus->eb_mtx);
4626 }
4627 
4628 static void
4629 xpt_release_target(struct cam_et *target)
4630 {
4631 	struct cam_eb *bus = target->bus;
4632 
4633 	mtx_lock(&bus->eb_mtx);
4634 	if (--target->refcount > 0) {
4635 		mtx_unlock(&bus->eb_mtx);
4636 		return;
4637 	}
4638 	TAILQ_REMOVE(&bus->et_entries, target, links);
4639 	bus->generation++;
4640 	mtx_unlock(&bus->eb_mtx);
4641 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4642 	    ("destroying target, but device list is not empty"));
4643 	xpt_release_bus(bus);
4644 	mtx_destroy(&target->luns_mtx);
4645 	if (target->luns)
4646 		free(target->luns, M_CAMXPT);
4647 	free(target, M_CAMXPT);
4648 }
4649 
4650 static struct cam_ed *
4651 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4652 			 lun_id_t lun_id)
4653 {
4654 	struct cam_ed *device;
4655 
4656 	device = xpt_alloc_device(bus, target, lun_id);
4657 	if (device == NULL)
4658 		return (NULL);
4659 
4660 	device->mintags = 1;
4661 	device->maxtags = 1;
4662 	return (device);
4663 }
4664 
4665 static void
4666 xpt_destroy_device(void *context, int pending)
4667 {
4668 	struct cam_ed	*device = context;
4669 
4670 	mtx_lock(&device->device_mtx);
4671 	mtx_destroy(&device->device_mtx);
4672 	free(device, M_CAMDEV);
4673 }
4674 
4675 struct cam_ed *
4676 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4677 {
4678 	struct cam_ed	*cur_device, *device;
4679 	struct cam_devq	*devq;
4680 	cam_status status;
4681 
4682 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4683 	/* Make space for us in the device queue on our bus */
4684 	devq = bus->sim->devq;
4685 	mtx_lock(&devq->send_mtx);
4686 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4687 	mtx_unlock(&devq->send_mtx);
4688 	if (status != CAM_REQ_CMP)
4689 		return (NULL);
4690 
4691 	device = (struct cam_ed *)malloc(sizeof(*device),
4692 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4693 	if (device == NULL)
4694 		return (NULL);
4695 
4696 	cam_init_pinfo(&device->devq_entry);
4697 	device->target = target;
4698 	device->lun_id = lun_id;
4699 	device->sim = bus->sim;
4700 	if (cam_ccbq_init(&device->ccbq,
4701 			  bus->sim->max_dev_openings) != 0) {
4702 		free(device, M_CAMDEV);
4703 		return (NULL);
4704 	}
4705 	SLIST_INIT(&device->asyncs);
4706 	SLIST_INIT(&device->periphs);
4707 	device->generation = 0;
4708 	device->flags = CAM_DEV_UNCONFIGURED;
4709 	device->tag_delay_count = 0;
4710 	device->tag_saved_openings = 0;
4711 	device->refcount = 1;
4712 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4713 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4714 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4715 	/*
4716 	 * Hold a reference to our parent bus so it
4717 	 * will not go away before we do.
4718 	 */
4719 	target->refcount++;
4720 
4721 	cur_device = TAILQ_FIRST(&target->ed_entries);
4722 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4723 		cur_device = TAILQ_NEXT(cur_device, links);
4724 	if (cur_device != NULL)
4725 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4726 	else
4727 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4728 	target->generation++;
4729 	return (device);
4730 }
4731 
4732 void
4733 xpt_acquire_device(struct cam_ed *device)
4734 {
4735 	struct cam_eb *bus = device->target->bus;
4736 
4737 	mtx_lock(&bus->eb_mtx);
4738 	device->refcount++;
4739 	mtx_unlock(&bus->eb_mtx);
4740 }
4741 
4742 void
4743 xpt_release_device(struct cam_ed *device)
4744 {
4745 	struct cam_eb *bus = device->target->bus;
4746 	struct cam_devq *devq;
4747 
4748 	mtx_lock(&bus->eb_mtx);
4749 	if (--device->refcount > 0) {
4750 		mtx_unlock(&bus->eb_mtx);
4751 		return;
4752 	}
4753 
4754 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4755 	device->target->generation++;
4756 	mtx_unlock(&bus->eb_mtx);
4757 
4758 	/* Release our slot in the devq */
4759 	devq = bus->sim->devq;
4760 	mtx_lock(&devq->send_mtx);
4761 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4762 	mtx_unlock(&devq->send_mtx);
4763 
4764 	KASSERT(SLIST_EMPTY(&device->periphs),
4765 	    ("destroying device, but periphs list is not empty"));
4766 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4767 	    ("destroying device while still queued for ccbs"));
4768 
4769 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4770 		callout_stop(&device->callout);
4771 
4772 	xpt_release_target(device->target);
4773 
4774 	cam_ccbq_fini(&device->ccbq);
4775 	/*
4776 	 * Free allocated memory.  free(9) does nothing if the
4777 	 * supplied pointer is NULL, so it is safe to call without
4778 	 * checking.
4779 	 */
4780 	free(device->supported_vpds, M_CAMXPT);
4781 	free(device->device_id, M_CAMXPT);
4782 	free(device->physpath, M_CAMXPT);
4783 	free(device->rcap_buf, M_CAMXPT);
4784 	free(device->serial_num, M_CAMXPT);
4785 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4786 }
4787 
4788 u_int32_t
4789 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4790 {
4791 	int	result;
4792 	struct	cam_ed *dev;
4793 
4794 	dev = path->device;
4795 	mtx_lock(&dev->sim->devq->send_mtx);
4796 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4797 	mtx_unlock(&dev->sim->devq->send_mtx);
4798 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4799 	 || (dev->inq_flags & SID_CmdQue) != 0)
4800 		dev->tag_saved_openings = newopenings;
4801 	return (result);
4802 }
4803 
4804 static struct cam_eb *
4805 xpt_find_bus(path_id_t path_id)
4806 {
4807 	struct cam_eb *bus;
4808 
4809 	xpt_lock_buses();
4810 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4811 	     bus != NULL;
4812 	     bus = TAILQ_NEXT(bus, links)) {
4813 		if (bus->path_id == path_id) {
4814 			bus->refcount++;
4815 			break;
4816 		}
4817 	}
4818 	xpt_unlock_buses();
4819 	return (bus);
4820 }
4821 
4822 static struct cam_et *
4823 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4824 {
4825 	struct cam_et *target;
4826 
4827 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4828 	for (target = TAILQ_FIRST(&bus->et_entries);
4829 	     target != NULL;
4830 	     target = TAILQ_NEXT(target, links)) {
4831 		if (target->target_id == target_id) {
4832 			target->refcount++;
4833 			break;
4834 		}
4835 	}
4836 	return (target);
4837 }
4838 
4839 static struct cam_ed *
4840 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4841 {
4842 	struct cam_ed *device;
4843 
4844 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4845 	for (device = TAILQ_FIRST(&target->ed_entries);
4846 	     device != NULL;
4847 	     device = TAILQ_NEXT(device, links)) {
4848 		if (device->lun_id == lun_id) {
4849 			device->refcount++;
4850 			break;
4851 		}
4852 	}
4853 	return (device);
4854 }
4855 
4856 void
4857 xpt_start_tags(struct cam_path *path)
4858 {
4859 	struct ccb_relsim crs;
4860 	struct cam_ed *device;
4861 	struct cam_sim *sim;
4862 	int    newopenings;
4863 
4864 	device = path->device;
4865 	sim = path->bus->sim;
4866 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4867 	xpt_freeze_devq(path, /*count*/1);
4868 	device->inq_flags |= SID_CmdQue;
4869 	if (device->tag_saved_openings != 0)
4870 		newopenings = device->tag_saved_openings;
4871 	else
4872 		newopenings = min(device->maxtags,
4873 				  sim->max_tagged_dev_openings);
4874 	xpt_dev_ccbq_resize(path, newopenings);
4875 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4876 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4877 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4878 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4879 	crs.openings
4880 	    = crs.release_timeout
4881 	    = crs.qfrozen_cnt
4882 	    = 0;
4883 	xpt_action((union ccb *)&crs);
4884 }
4885 
4886 void
4887 xpt_stop_tags(struct cam_path *path)
4888 {
4889 	struct ccb_relsim crs;
4890 	struct cam_ed *device;
4891 	struct cam_sim *sim;
4892 
4893 	device = path->device;
4894 	sim = path->bus->sim;
4895 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4896 	device->tag_delay_count = 0;
4897 	xpt_freeze_devq(path, /*count*/1);
4898 	device->inq_flags &= ~SID_CmdQue;
4899 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4900 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4901 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4902 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4903 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4904 	crs.openings
4905 	    = crs.release_timeout
4906 	    = crs.qfrozen_cnt
4907 	    = 0;
4908 	xpt_action((union ccb *)&crs);
4909 }
4910 
4911 static void
4912 xpt_boot_delay(void *arg)
4913 {
4914 
4915 	xpt_release_boot();
4916 }
4917 
4918 static void
4919 xpt_config(void *arg)
4920 {
4921 	/*
4922 	 * Now that interrupts are enabled, go find our devices
4923 	 */
4924 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
4925 		printf("xpt_config: failed to create taskqueue thread.\n");
4926 
4927 	/* Setup debugging path */
4928 	if (cam_dflags != CAM_DEBUG_NONE) {
4929 		if (xpt_create_path(&cam_dpath, NULL,
4930 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4931 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4932 			printf("xpt_config: xpt_create_path() failed for debug"
4933 			       " target %d:%d:%d, debugging disabled\n",
4934 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4935 			cam_dflags = CAM_DEBUG_NONE;
4936 		}
4937 	} else
4938 		cam_dpath = NULL;
4939 
4940 	periphdriver_init(1);
4941 	xpt_hold_boot();
4942 	callout_init(&xsoftc.boot_callout, 1);
4943 	callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4944 	    xpt_boot_delay, NULL);
4945 	/* Fire up rescan thread. */
4946 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
4947 	    "cam", "scanner")) {
4948 		printf("xpt_config: failed to create rescan thread.\n");
4949 	}
4950 }
4951 
4952 void
4953 xpt_hold_boot(void)
4954 {
4955 	xpt_lock_buses();
4956 	xsoftc.buses_to_config++;
4957 	xpt_unlock_buses();
4958 }
4959 
4960 void
4961 xpt_release_boot(void)
4962 {
4963 	xpt_lock_buses();
4964 	xsoftc.buses_to_config--;
4965 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4966 		struct	xpt_task *task;
4967 
4968 		xsoftc.buses_config_done = 1;
4969 		xpt_unlock_buses();
4970 		/* Call manually because we don't have any busses */
4971 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4972 		if (task != NULL) {
4973 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4974 			taskqueue_enqueue(taskqueue_thread, &task->task);
4975 		}
4976 	} else
4977 		xpt_unlock_buses();
4978 }
4979 
4980 /*
4981  * If the given device only has one peripheral attached to it, and if that
4982  * peripheral is the passthrough driver, announce it.  This insures that the
4983  * user sees some sort of announcement for every peripheral in their system.
4984  */
4985 static int
4986 xptpassannouncefunc(struct cam_ed *device, void *arg)
4987 {
4988 	struct cam_periph *periph;
4989 	int i;
4990 
4991 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4992 	     periph = SLIST_NEXT(periph, periph_links), i++);
4993 
4994 	periph = SLIST_FIRST(&device->periphs);
4995 	if ((i == 1)
4996 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4997 		xpt_announce_periph(periph, NULL);
4998 
4999 	return(1);
5000 }
5001 
5002 static void
5003 xpt_finishconfig_task(void *context, int pending)
5004 {
5005 
5006 	periphdriver_init(2);
5007 	/*
5008 	 * Check for devices with no "standard" peripheral driver
5009 	 * attached.  For any devices like that, announce the
5010 	 * passthrough driver so the user will see something.
5011 	 */
5012 	if (!bootverbose)
5013 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5014 
5015 	/* Release our hook so that the boot can continue. */
5016 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
5017 	free(xsoftc.xpt_config_hook, M_CAMXPT);
5018 	xsoftc.xpt_config_hook = NULL;
5019 
5020 	free(context, M_CAMXPT);
5021 }
5022 
5023 cam_status
5024 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5025 		   struct cam_path *path)
5026 {
5027 	struct ccb_setasync csa;
5028 	cam_status status;
5029 	int xptpath = 0;
5030 
5031 	if (path == NULL) {
5032 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5033 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5034 		if (status != CAM_REQ_CMP)
5035 			return (status);
5036 		xpt_path_lock(path);
5037 		xptpath = 1;
5038 	}
5039 
5040 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5041 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5042 	csa.event_enable = event;
5043 	csa.callback = cbfunc;
5044 	csa.callback_arg = cbarg;
5045 	xpt_action((union ccb *)&csa);
5046 	status = csa.ccb_h.status;
5047 
5048 	if (xptpath) {
5049 		xpt_path_unlock(path);
5050 		xpt_free_path(path);
5051 	}
5052 
5053 	if ((status == CAM_REQ_CMP) &&
5054 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5055 		/*
5056 		 * Get this peripheral up to date with all
5057 		 * the currently existing devices.
5058 		 */
5059 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5060 	}
5061 	if ((status == CAM_REQ_CMP) &&
5062 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5063 		/*
5064 		 * Get this peripheral up to date with all
5065 		 * the currently existing busses.
5066 		 */
5067 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5068 	}
5069 
5070 	return (status);
5071 }
5072 
5073 static void
5074 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5075 {
5076 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5077 
5078 	switch (work_ccb->ccb_h.func_code) {
5079 	/* Common cases first */
5080 	case XPT_PATH_INQ:		/* Path routing inquiry */
5081 	{
5082 		struct ccb_pathinq *cpi;
5083 
5084 		cpi = &work_ccb->cpi;
5085 		cpi->version_num = 1; /* XXX??? */
5086 		cpi->hba_inquiry = 0;
5087 		cpi->target_sprt = 0;
5088 		cpi->hba_misc = 0;
5089 		cpi->hba_eng_cnt = 0;
5090 		cpi->max_target = 0;
5091 		cpi->max_lun = 0;
5092 		cpi->initiator_id = 0;
5093 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5094 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
5095 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5096 		cpi->unit_number = sim->unit_number;
5097 		cpi->bus_id = sim->bus_id;
5098 		cpi->base_transfer_speed = 0;
5099 		cpi->protocol = PROTO_UNSPECIFIED;
5100 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5101 		cpi->transport = XPORT_UNSPECIFIED;
5102 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5103 		cpi->ccb_h.status = CAM_REQ_CMP;
5104 		xpt_done(work_ccb);
5105 		break;
5106 	}
5107 	default:
5108 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5109 		xpt_done(work_ccb);
5110 		break;
5111 	}
5112 }
5113 
5114 /*
5115  * The xpt as a "controller" has no interrupt sources, so polling
5116  * is a no-op.
5117  */
5118 static void
5119 xptpoll(struct cam_sim *sim)
5120 {
5121 }
5122 
5123 void
5124 xpt_lock_buses(void)
5125 {
5126 	mtx_lock(&xsoftc.xpt_topo_lock);
5127 }
5128 
5129 void
5130 xpt_unlock_buses(void)
5131 {
5132 	mtx_unlock(&xsoftc.xpt_topo_lock);
5133 }
5134 
5135 struct mtx *
5136 xpt_path_mtx(struct cam_path *path)
5137 {
5138 
5139 	return (&path->device->device_mtx);
5140 }
5141 
5142 static void
5143 xpt_done_process(struct ccb_hdr *ccb_h)
5144 {
5145 	struct cam_sim *sim;
5146 	struct cam_devq *devq;
5147 	struct mtx *mtx = NULL;
5148 
5149 	if (ccb_h->flags & CAM_HIGH_POWER) {
5150 		struct highpowerlist	*hphead;
5151 		struct cam_ed		*device;
5152 
5153 		mtx_lock(&xsoftc.xpt_lock);
5154 		hphead = &xsoftc.highpowerq;
5155 
5156 		device = STAILQ_FIRST(hphead);
5157 
5158 		/*
5159 		 * Increment the count since this command is done.
5160 		 */
5161 		xsoftc.num_highpower++;
5162 
5163 		/*
5164 		 * Any high powered commands queued up?
5165 		 */
5166 		if (device != NULL) {
5167 
5168 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5169 			mtx_unlock(&xsoftc.xpt_lock);
5170 
5171 			mtx_lock(&device->sim->devq->send_mtx);
5172 			xpt_release_devq_device(device,
5173 					 /*count*/1, /*runqueue*/TRUE);
5174 			mtx_unlock(&device->sim->devq->send_mtx);
5175 		} else
5176 			mtx_unlock(&xsoftc.xpt_lock);
5177 	}
5178 
5179 	sim = ccb_h->path->bus->sim;
5180 
5181 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5182 		xpt_release_simq(sim, /*run_queue*/FALSE);
5183 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5184 	}
5185 
5186 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5187 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5188 		xpt_release_devq(ccb_h->path, /*count*/1,
5189 				 /*run_queue*/FALSE);
5190 		ccb_h->status &= ~CAM_DEV_QFRZN;
5191 	}
5192 
5193 	devq = sim->devq;
5194 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5195 		struct cam_ed *dev = ccb_h->path->device;
5196 
5197 		mtx_lock(&devq->send_mtx);
5198 		devq->send_active--;
5199 		devq->send_openings++;
5200 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5201 
5202 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5203 		  && (dev->ccbq.dev_active == 0))) {
5204 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5205 			xpt_release_devq_device(dev, /*count*/1,
5206 					 /*run_queue*/FALSE);
5207 		}
5208 
5209 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5210 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5211 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5212 			xpt_release_devq_device(dev, /*count*/1,
5213 					 /*run_queue*/FALSE);
5214 		}
5215 
5216 		if (!device_is_queued(dev))
5217 			(void)xpt_schedule_devq(devq, dev);
5218 		mtx_unlock(&devq->send_mtx);
5219 
5220 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5221 			mtx = xpt_path_mtx(ccb_h->path);
5222 			mtx_lock(mtx);
5223 
5224 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5225 			 && (--dev->tag_delay_count == 0))
5226 				xpt_start_tags(ccb_h->path);
5227 		}
5228 	}
5229 
5230 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5231 		if (mtx == NULL) {
5232 			mtx = xpt_path_mtx(ccb_h->path);
5233 			mtx_lock(mtx);
5234 		}
5235 	} else {
5236 		if (mtx != NULL) {
5237 			mtx_unlock(mtx);
5238 			mtx = NULL;
5239 		}
5240 	}
5241 
5242 	/* Call the peripheral driver's callback */
5243 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5244 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5245 	if (mtx != NULL)
5246 		mtx_unlock(mtx);
5247 
5248 	mtx_lock(&devq->send_mtx);
5249 	xpt_run_devq(devq);
5250 	mtx_unlock(&devq->send_mtx);
5251 }
5252 
5253 void
5254 xpt_done_td(void *arg)
5255 {
5256 	struct cam_doneq *queue = arg;
5257 	struct ccb_hdr *ccb_h;
5258 	STAILQ_HEAD(, ccb_hdr)	doneq;
5259 
5260 	STAILQ_INIT(&doneq);
5261 	mtx_lock(&queue->cam_doneq_mtx);
5262 	while (1) {
5263 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5264 			queue->cam_doneq_sleep = 1;
5265 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5266 			    PRIBIO, "-", 0);
5267 			queue->cam_doneq_sleep = 0;
5268 		}
5269 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5270 		mtx_unlock(&queue->cam_doneq_mtx);
5271 
5272 		THREAD_NO_SLEEPING();
5273 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5274 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5275 			xpt_done_process(ccb_h);
5276 		}
5277 		THREAD_SLEEPING_OK();
5278 
5279 		mtx_lock(&queue->cam_doneq_mtx);
5280 	}
5281 }
5282 
5283 static void
5284 camisr_runqueue(void)
5285 {
5286 	struct	ccb_hdr *ccb_h;
5287 	struct cam_doneq *queue;
5288 	int i;
5289 
5290 	/* Process global queues. */
5291 	for (i = 0; i < cam_num_doneqs; i++) {
5292 		queue = &cam_doneqs[i];
5293 		mtx_lock(&queue->cam_doneq_mtx);
5294 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5295 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5296 			mtx_unlock(&queue->cam_doneq_mtx);
5297 			xpt_done_process(ccb_h);
5298 			mtx_lock(&queue->cam_doneq_mtx);
5299 		}
5300 		mtx_unlock(&queue->cam_doneq_mtx);
5301 	}
5302 }
5303