1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/md5.h> 43 #include <sys/interrupt.h> 44 #include <sys/sbuf.h> 45 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 50 #ifdef PC98 51 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 52 #endif 53 54 #include <cam/cam.h> 55 #include <cam/cam_ccb.h> 56 #include <cam/cam_periph.h> 57 #include <cam/cam_sim.h> 58 #include <cam/cam_xpt.h> 59 #include <cam/cam_xpt_sim.h> 60 #include <cam/cam_xpt_periph.h> 61 #include <cam/cam_debug.h> 62 63 #include <cam/scsi/scsi_all.h> 64 #include <cam/scsi/scsi_message.h> 65 #include <cam/scsi/scsi_pass.h> 66 #include <machine/stdarg.h> /* for xpt_print below */ 67 #include "opt_cam.h" 68 69 /* Datastructures internal to the xpt layer */ 70 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 71 72 /* 73 * Definition of an async handler callback block. These are used to add 74 * SIMs and peripherals to the async callback lists. 75 */ 76 struct async_node { 77 SLIST_ENTRY(async_node) links; 78 u_int32_t event_enable; /* Async Event enables */ 79 void (*callback)(void *arg, u_int32_t code, 80 struct cam_path *path, void *args); 81 void *callback_arg; 82 }; 83 84 SLIST_HEAD(async_list, async_node); 85 SLIST_HEAD(periph_list, cam_periph); 86 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 87 88 /* 89 * This is the maximum number of high powered commands (e.g. start unit) 90 * that can be outstanding at a particular time. 91 */ 92 #ifndef CAM_MAX_HIGHPOWER 93 #define CAM_MAX_HIGHPOWER 4 94 #endif 95 96 /* number of high powered commands that can go through right now */ 97 static int num_highpower = CAM_MAX_HIGHPOWER; 98 99 /* 100 * Structure for queueing a device in a run queue. 101 * There is one run queue for allocating new ccbs, 102 * and another for sending ccbs to the controller. 103 */ 104 struct cam_ed_qinfo { 105 cam_pinfo pinfo; 106 struct cam_ed *device; 107 }; 108 109 /* 110 * The CAM EDT (Existing Device Table) contains the device information for 111 * all devices for all busses in the system. The table contains a 112 * cam_ed structure for each device on the bus. 113 */ 114 struct cam_ed { 115 TAILQ_ENTRY(cam_ed) links; 116 struct cam_ed_qinfo alloc_ccb_entry; 117 struct cam_ed_qinfo send_ccb_entry; 118 struct cam_et *target; 119 lun_id_t lun_id; 120 struct camq drvq; /* 121 * Queue of type drivers wanting to do 122 * work on this device. 123 */ 124 struct cam_ccbq ccbq; /* Queue of pending ccbs */ 125 struct async_list asyncs; /* Async callback info for this B/T/L */ 126 struct periph_list periphs; /* All attached devices */ 127 u_int generation; /* Generation number */ 128 struct cam_periph *owner; /* Peripheral driver's ownership tag */ 129 struct xpt_quirk_entry *quirk; /* Oddities about this device */ 130 /* Storage for the inquiry data */ 131 cam_proto protocol; 132 u_int protocol_version; 133 cam_xport transport; 134 u_int transport_version; 135 struct scsi_inquiry_data inq_data; 136 u_int8_t inq_flags; /* 137 * Current settings for inquiry flags. 138 * This allows us to override settings 139 * like disconnection and tagged 140 * queuing for a device. 141 */ 142 u_int8_t queue_flags; /* Queue flags from the control page */ 143 u_int8_t serial_num_len; 144 u_int8_t *serial_num; 145 u_int32_t qfrozen_cnt; 146 u_int32_t flags; 147 #define CAM_DEV_UNCONFIGURED 0x01 148 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02 149 #define CAM_DEV_REL_ON_COMPLETE 0x04 150 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08 151 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10 152 #define CAM_DEV_TAG_AFTER_COUNT 0x20 153 #define CAM_DEV_INQUIRY_DATA_VALID 0x40 154 #define CAM_DEV_IN_DV 0x80 155 #define CAM_DEV_DV_HIT_BOTTOM 0x100 156 u_int32_t tag_delay_count; 157 #define CAM_TAG_DELAY_COUNT 5 158 u_int32_t tag_saved_openings; 159 u_int32_t refcount; 160 struct callout_handle c_handle; 161 }; 162 163 /* 164 * Each target is represented by an ET (Existing Target). These 165 * entries are created when a target is successfully probed with an 166 * identify, and removed when a device fails to respond after a number 167 * of retries, or a bus rescan finds the device missing. 168 */ 169 struct cam_et { 170 TAILQ_HEAD(, cam_ed) ed_entries; 171 TAILQ_ENTRY(cam_et) links; 172 struct cam_eb *bus; 173 target_id_t target_id; 174 u_int32_t refcount; 175 u_int generation; 176 struct timeval last_reset; 177 }; 178 179 /* 180 * Each bus is represented by an EB (Existing Bus). These entries 181 * are created by calls to xpt_bus_register and deleted by calls to 182 * xpt_bus_deregister. 183 */ 184 struct cam_eb { 185 TAILQ_HEAD(, cam_et) et_entries; 186 TAILQ_ENTRY(cam_eb) links; 187 path_id_t path_id; 188 struct cam_sim *sim; 189 struct timeval last_reset; 190 u_int32_t flags; 191 #define CAM_EB_RUNQ_SCHEDULED 0x01 192 u_int32_t refcount; 193 u_int generation; 194 }; 195 196 struct cam_path { 197 struct cam_periph *periph; 198 struct cam_eb *bus; 199 struct cam_et *target; 200 struct cam_ed *device; 201 }; 202 203 struct xpt_quirk_entry { 204 struct scsi_inquiry_pattern inq_pat; 205 u_int8_t quirks; 206 #define CAM_QUIRK_NOLUNS 0x01 207 #define CAM_QUIRK_NOSERIAL 0x02 208 #define CAM_QUIRK_HILUNS 0x04 209 #define CAM_QUIRK_NOHILUNS 0x08 210 u_int mintags; 211 u_int maxtags; 212 }; 213 214 static int cam_srch_hi = 0; 215 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi); 216 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS); 217 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0, 218 sysctl_cam_search_luns, "I", 219 "allow search above LUN 7 for SCSI3 and greater devices"); 220 221 #define CAM_SCSI2_MAXLUN 8 222 /* 223 * If we're not quirked to search <= the first 8 luns 224 * and we are either quirked to search above lun 8, 225 * or we're > SCSI-2 and we've enabled hilun searching, 226 * or we're > SCSI-2 and the last lun was a success, 227 * we can look for luns above lun 8. 228 */ 229 #define CAN_SRCH_HI_SPARSE(dv) \ 230 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 231 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 232 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi))) 233 234 #define CAN_SRCH_HI_DENSE(dv) \ 235 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 236 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 237 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2))) 238 239 typedef enum { 240 XPT_FLAG_OPEN = 0x01 241 } xpt_flags; 242 243 struct xpt_softc { 244 xpt_flags flags; 245 u_int32_t generation; 246 }; 247 248 static const char quantum[] = "QUANTUM"; 249 static const char sony[] = "SONY"; 250 static const char west_digital[] = "WDIGTL"; 251 static const char samsung[] = "SAMSUNG"; 252 static const char seagate[] = "SEAGATE"; 253 static const char microp[] = "MICROP"; 254 255 static struct xpt_quirk_entry xpt_quirk_table[] = 256 { 257 { 258 /* Reports QUEUE FULL for temporary resource shortages */ 259 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, 260 /*quirks*/0, /*mintags*/24, /*maxtags*/32 261 }, 262 { 263 /* Reports QUEUE FULL for temporary resource shortages */ 264 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, 265 /*quirks*/0, /*mintags*/24, /*maxtags*/32 266 }, 267 { 268 /* Reports QUEUE FULL for temporary resource shortages */ 269 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, 270 /*quirks*/0, /*mintags*/24, /*maxtags*/32 271 }, 272 { 273 /* Broken tagged queuing drive */ 274 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, 275 /*quirks*/0, /*mintags*/0, /*maxtags*/0 276 }, 277 { 278 /* Broken tagged queuing drive */ 279 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, 280 /*quirks*/0, /*mintags*/0, /*maxtags*/0 281 }, 282 { 283 /* Broken tagged queuing drive */ 284 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, 285 /*quirks*/0, /*mintags*/0, /*maxtags*/0 286 }, 287 { 288 /* 289 * Unfortunately, the Quantum Atlas III has the same 290 * problem as the Atlas II drives above. 291 * Reported by: "Johan Granlund" <johan@granlund.nu> 292 * 293 * For future reference, the drive with the problem was: 294 * QUANTUM QM39100TD-SW N1B0 295 * 296 * It's possible that Quantum will fix the problem in later 297 * firmware revisions. If that happens, the quirk entry 298 * will need to be made specific to the firmware revisions 299 * with the problem. 300 * 301 */ 302 /* Reports QUEUE FULL for temporary resource shortages */ 303 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, 304 /*quirks*/0, /*mintags*/24, /*maxtags*/32 305 }, 306 { 307 /* 308 * 18 Gig Atlas III, same problem as the 9G version. 309 * Reported by: Andre Albsmeier 310 * <andre.albsmeier@mchp.siemens.de> 311 * 312 * For future reference, the drive with the problem was: 313 * QUANTUM QM318000TD-S N491 314 */ 315 /* Reports QUEUE FULL for temporary resource shortages */ 316 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, 317 /*quirks*/0, /*mintags*/24, /*maxtags*/32 318 }, 319 { 320 /* 321 * Broken tagged queuing drive 322 * Reported by: Bret Ford <bford@uop.cs.uop.edu> 323 * and: Martin Renters <martin@tdc.on.ca> 324 */ 325 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, 326 /*quirks*/0, /*mintags*/0, /*maxtags*/0 327 }, 328 /* 329 * The Seagate Medalist Pro drives have very poor write 330 * performance with anything more than 2 tags. 331 * 332 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> 333 * Drive: <SEAGATE ST36530N 1444> 334 * 335 * Reported by: Jeremy Lea <reg@shale.csir.co.za> 336 * Drive: <SEAGATE ST34520W 1281> 337 * 338 * No one has actually reported that the 9G version 339 * (ST39140*) of the Medalist Pro has the same problem, but 340 * we're assuming that it does because the 4G and 6.5G 341 * versions of the drive are broken. 342 */ 343 { 344 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, 345 /*quirks*/0, /*mintags*/2, /*maxtags*/2 346 }, 347 { 348 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, 349 /*quirks*/0, /*mintags*/2, /*maxtags*/2 350 }, 351 { 352 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, 353 /*quirks*/0, /*mintags*/2, /*maxtags*/2 354 }, 355 { 356 /* 357 * Slow when tagged queueing is enabled. Write performance 358 * steadily drops off with more and more concurrent 359 * transactions. Best sequential write performance with 360 * tagged queueing turned off and write caching turned on. 361 * 362 * PR: kern/10398 363 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> 364 * Drive: DCAS-34330 w/ "S65A" firmware. 365 * 366 * The drive with the problem had the "S65A" firmware 367 * revision, and has also been reported (by Stephen J. 368 * Roznowski <sjr@home.net>) for a drive with the "S61A" 369 * firmware revision. 370 * 371 * Although no one has reported problems with the 2 gig 372 * version of the DCAS drive, the assumption is that it 373 * has the same problems as the 4 gig version. Therefore 374 * this quirk entries disables tagged queueing for all 375 * DCAS drives. 376 */ 377 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, 378 /*quirks*/0, /*mintags*/0, /*maxtags*/0 379 }, 380 { 381 /* Broken tagged queuing drive */ 382 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, 383 /*quirks*/0, /*mintags*/0, /*maxtags*/0 384 }, 385 { 386 /* Broken tagged queuing drive */ 387 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, 388 /*quirks*/0, /*mintags*/0, /*maxtags*/0 389 }, 390 { 391 /* This does not support other than LUN 0 */ 392 { T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" }, 393 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 394 }, 395 { 396 /* 397 * Broken tagged queuing drive. 398 * Submitted by: 399 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> 400 * in PR kern/9535 401 */ 402 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, 403 /*quirks*/0, /*mintags*/0, /*maxtags*/0 404 }, 405 { 406 /* 407 * Slow when tagged queueing is enabled. (1.5MB/sec versus 408 * 8MB/sec.) 409 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 410 * Best performance with these drives is achieved with 411 * tagged queueing turned off, and write caching turned on. 412 */ 413 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, 414 /*quirks*/0, /*mintags*/0, /*maxtags*/0 415 }, 416 { 417 /* 418 * Slow when tagged queueing is enabled. (1.5MB/sec versus 419 * 8MB/sec.) 420 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 421 * Best performance with these drives is achieved with 422 * tagged queueing turned off, and write caching turned on. 423 */ 424 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, 425 /*quirks*/0, /*mintags*/0, /*maxtags*/0 426 }, 427 { 428 /* 429 * Doesn't handle queue full condition correctly, 430 * so we need to limit maxtags to what the device 431 * can handle instead of determining this automatically. 432 */ 433 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, 434 /*quirks*/0, /*mintags*/2, /*maxtags*/32 435 }, 436 { 437 /* Really only one LUN */ 438 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" }, 439 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 440 }, 441 { 442 /* I can't believe we need a quirk for DPT volumes. */ 443 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, 444 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, 445 /*mintags*/0, /*maxtags*/255 446 }, 447 { 448 /* 449 * Many Sony CDROM drives don't like multi-LUN probing. 450 */ 451 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, 452 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 453 }, 454 { 455 /* 456 * This drive doesn't like multiple LUN probing. 457 * Submitted by: Parag Patel <parag@cgt.com> 458 */ 459 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, 460 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 461 }, 462 { 463 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" }, 464 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 465 }, 466 { 467 /* 468 * The 8200 doesn't like multi-lun probing, and probably 469 * don't like serial number requests either. 470 */ 471 { 472 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 473 "EXB-8200*", "*" 474 }, 475 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 476 }, 477 { 478 /* 479 * Let's try the same as above, but for a drive that says 480 * it's an IPL-6860 but is actually an EXB 8200. 481 */ 482 { 483 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 484 "IPL-6860*", "*" 485 }, 486 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 487 }, 488 { 489 /* 490 * These Hitachi drives don't like multi-lun probing. 491 * The PR submitter has a DK319H, but says that the Linux 492 * kernel has a similar work-around for the DK312 and DK314, 493 * so all DK31* drives are quirked here. 494 * PR: misc/18793 495 * Submitted by: Paul Haddad <paul@pth.com> 496 */ 497 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, 498 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 499 }, 500 { 501 /* 502 * The Hitachi CJ series with J8A8 firmware apparantly has 503 * problems with tagged commands. 504 * PR: 23536 505 * Reported by: amagai@nue.org 506 */ 507 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" }, 508 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 509 }, 510 { 511 /* 512 * These are the large storage arrays. 513 * Submitted by: William Carrel <william.carrel@infospace.com> 514 */ 515 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" }, 516 CAM_QUIRK_HILUNS, 2, 1024 517 }, 518 { 519 /* 520 * This old revision of the TDC3600 is also SCSI-1, and 521 * hangs upon serial number probing. 522 */ 523 { 524 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", 525 " TDC 3600", "U07:" 526 }, 527 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 528 }, 529 { 530 /* 531 * Maxtor Personal Storage 3000XT (Firewire) 532 * hangs upon serial number probing. 533 */ 534 { 535 T_DIRECT, SIP_MEDIA_FIXED, "Maxtor", 536 "1394 storage", "*" 537 }, 538 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 539 }, 540 { 541 /* 542 * Would repond to all LUNs if asked for. 543 */ 544 { 545 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", 546 "CP150", "*" 547 }, 548 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 549 }, 550 { 551 /* 552 * Would repond to all LUNs if asked for. 553 */ 554 { 555 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", 556 "96X2*", "*" 557 }, 558 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 559 }, 560 { 561 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 562 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, 563 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 564 }, 565 { 566 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 567 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, 568 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 569 }, 570 { 571 /* TeraSolutions special settings for TRC-22 RAID */ 572 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, 573 /*quirks*/0, /*mintags*/55, /*maxtags*/255 574 }, 575 { 576 /* Veritas Storage Appliance */ 577 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" }, 578 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024 579 }, 580 { 581 /* 582 * Would respond to all LUNs. Device type and removable 583 * flag are jumper-selectable. 584 */ 585 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix", 586 "Tahiti 1", "*" 587 }, 588 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 589 }, 590 { 591 /* EasyRAID E5A aka. areca ARC-6010 */ 592 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" }, 593 CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255 594 }, 595 { 596 { T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" }, 597 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 598 }, 599 { 600 /* Default tagged queuing parameters for all devices */ 601 { 602 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, 603 /*vendor*/"*", /*product*/"*", /*revision*/"*" 604 }, 605 /*quirks*/0, /*mintags*/2, /*maxtags*/255 606 }, 607 }; 608 609 static const int xpt_quirk_table_size = 610 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table); 611 612 typedef enum { 613 DM_RET_COPY = 0x01, 614 DM_RET_FLAG_MASK = 0x0f, 615 DM_RET_NONE = 0x00, 616 DM_RET_STOP = 0x10, 617 DM_RET_DESCEND = 0x20, 618 DM_RET_ERROR = 0x30, 619 DM_RET_ACTION_MASK = 0xf0 620 } dev_match_ret; 621 622 typedef enum { 623 XPT_DEPTH_BUS, 624 XPT_DEPTH_TARGET, 625 XPT_DEPTH_DEVICE, 626 XPT_DEPTH_PERIPH 627 } xpt_traverse_depth; 628 629 struct xpt_traverse_config { 630 xpt_traverse_depth depth; 631 void *tr_func; 632 void *tr_arg; 633 }; 634 635 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 636 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 637 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 638 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 639 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 640 641 /* Transport layer configuration information */ 642 static struct xpt_softc xsoftc; 643 644 /* Queues for our software interrupt handler */ 645 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 646 static cam_isrq_t cam_bioq; 647 static struct mtx cam_bioq_lock; 648 649 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */ 650 static SLIST_HEAD(,ccb_hdr) ccb_freeq; 651 static u_int xpt_max_ccbs; /* 652 * Maximum size of ccb pool. Modified as 653 * devices are added/removed or have their 654 * opening counts changed. 655 */ 656 static u_int xpt_ccb_count; /* Current count of allocated ccbs */ 657 658 struct cam_periph *xpt_periph; 659 660 static periph_init_t xpt_periph_init; 661 662 static periph_init_t probe_periph_init; 663 664 static struct periph_driver xpt_driver = 665 { 666 xpt_periph_init, "xpt", 667 TAILQ_HEAD_INITIALIZER(xpt_driver.units) 668 }; 669 670 static struct periph_driver probe_driver = 671 { 672 probe_periph_init, "probe", 673 TAILQ_HEAD_INITIALIZER(probe_driver.units) 674 }; 675 676 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 677 PERIPHDRIVER_DECLARE(probe, probe_driver); 678 679 680 static d_open_t xptopen; 681 static d_close_t xptclose; 682 static d_ioctl_t xptioctl; 683 684 static struct cdevsw xpt_cdevsw = { 685 .d_version = D_VERSION, 686 .d_flags = D_NEEDGIANT, 687 .d_open = xptopen, 688 .d_close = xptclose, 689 .d_ioctl = xptioctl, 690 .d_name = "xpt", 691 }; 692 693 static struct intr_config_hook *xpt_config_hook; 694 695 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb); 696 static void dead_sim_poll(struct cam_sim *sim); 697 698 /* Dummy SIM that is used when the real one has gone. */ 699 static struct cam_sim cam_dead_sim = { 700 .sim_action = dead_sim_action, 701 .sim_poll = dead_sim_poll, 702 .sim_name = "dead_sim", 703 }; 704 705 #define SIM_DEAD(sim) ((sim) == &cam_dead_sim) 706 707 /* Registered busses */ 708 static TAILQ_HEAD(,cam_eb) xpt_busses; 709 static u_int bus_generation; 710 711 /* Storage for debugging datastructures */ 712 #ifdef CAMDEBUG 713 struct cam_path *cam_dpath; 714 u_int32_t cam_dflags; 715 u_int32_t cam_debug_delay; 716 #endif 717 718 /* Pointers to software interrupt handlers */ 719 static void *cambio_ih; 720 721 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG) 722 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS" 723 #endif 724 725 /* 726 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG 727 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS, 728 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified. 729 */ 730 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \ 731 || defined(CAM_DEBUG_LUN) 732 #ifdef CAMDEBUG 733 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \ 734 || !defined(CAM_DEBUG_LUN) 735 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \ 736 and CAM_DEBUG_LUN" 737 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */ 738 #else /* !CAMDEBUG */ 739 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options" 740 #endif /* CAMDEBUG */ 741 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */ 742 743 /* Our boot-time initialization hook */ 744 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 745 746 static moduledata_t cam_moduledata = { 747 "cam", 748 cam_module_event_handler, 749 NULL 750 }; 751 752 static void xpt_init(void *); 753 754 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 755 MODULE_VERSION(cam, 1); 756 757 758 static cam_status xpt_compile_path(struct cam_path *new_path, 759 struct cam_periph *perph, 760 path_id_t path_id, 761 target_id_t target_id, 762 lun_id_t lun_id); 763 764 static void xpt_release_path(struct cam_path *path); 765 766 static void xpt_async_bcast(struct async_list *async_head, 767 u_int32_t async_code, 768 struct cam_path *path, 769 void *async_arg); 770 static void xpt_dev_async(u_int32_t async_code, 771 struct cam_eb *bus, 772 struct cam_et *target, 773 struct cam_ed *device, 774 void *async_arg); 775 static path_id_t xptnextfreepathid(void); 776 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 777 static union ccb *xpt_get_ccb(struct cam_ed *device); 778 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 779 u_int32_t new_priority); 780 static void xpt_run_dev_allocq(struct cam_eb *bus); 781 static void xpt_run_dev_sendq(struct cam_eb *bus); 782 static timeout_t xpt_release_devq_timeout; 783 static timeout_t xpt_release_simq_timeout; 784 static void xpt_release_bus(struct cam_eb *bus); 785 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 786 int run_queue); 787 static struct cam_et* 788 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 789 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target); 790 static struct cam_ed* 791 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, 792 lun_id_t lun_id); 793 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target, 794 struct cam_ed *device); 795 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings); 796 static struct cam_eb* 797 xpt_find_bus(path_id_t path_id); 798 static struct cam_et* 799 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 800 static struct cam_ed* 801 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 802 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb); 803 static void xpt_scan_lun(struct cam_periph *periph, 804 struct cam_path *path, cam_flags flags, 805 union ccb *ccb); 806 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); 807 static xpt_busfunc_t xptconfigbuscountfunc; 808 static xpt_busfunc_t xptconfigfunc; 809 static void xpt_config(void *arg); 810 static xpt_devicefunc_t xptpassannouncefunc; 811 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb); 812 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 813 static void xptpoll(struct cam_sim *sim); 814 static void camisr(void *); 815 #if 0 816 static void xptstart(struct cam_periph *periph, union ccb *work_ccb); 817 static void xptasync(struct cam_periph *periph, 818 u_int32_t code, cam_path *path); 819 #endif 820 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 821 u_int num_patterns, struct cam_eb *bus); 822 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 823 u_int num_patterns, 824 struct cam_ed *device); 825 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 826 u_int num_patterns, 827 struct cam_periph *periph); 828 static xpt_busfunc_t xptedtbusfunc; 829 static xpt_targetfunc_t xptedttargetfunc; 830 static xpt_devicefunc_t xptedtdevicefunc; 831 static xpt_periphfunc_t xptedtperiphfunc; 832 static xpt_pdrvfunc_t xptplistpdrvfunc; 833 static xpt_periphfunc_t xptplistperiphfunc; 834 static int xptedtmatch(struct ccb_dev_match *cdm); 835 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 836 static int xptbustraverse(struct cam_eb *start_bus, 837 xpt_busfunc_t *tr_func, void *arg); 838 static int xpttargettraverse(struct cam_eb *bus, 839 struct cam_et *start_target, 840 xpt_targetfunc_t *tr_func, void *arg); 841 static int xptdevicetraverse(struct cam_et *target, 842 struct cam_ed *start_device, 843 xpt_devicefunc_t *tr_func, void *arg); 844 static int xptperiphtraverse(struct cam_ed *device, 845 struct cam_periph *start_periph, 846 xpt_periphfunc_t *tr_func, void *arg); 847 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 848 xpt_pdrvfunc_t *tr_func, void *arg); 849 static int xptpdperiphtraverse(struct periph_driver **pdrv, 850 struct cam_periph *start_periph, 851 xpt_periphfunc_t *tr_func, 852 void *arg); 853 static xpt_busfunc_t xptdefbusfunc; 854 static xpt_targetfunc_t xptdeftargetfunc; 855 static xpt_devicefunc_t xptdefdevicefunc; 856 static xpt_periphfunc_t xptdefperiphfunc; 857 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 858 #ifdef notusedyet 859 static int xpt_for_all_targets(xpt_targetfunc_t *tr_func, 860 void *arg); 861 #endif 862 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 863 void *arg); 864 #ifdef notusedyet 865 static int xpt_for_all_periphs(xpt_periphfunc_t *tr_func, 866 void *arg); 867 #endif 868 static xpt_devicefunc_t xptsetasyncfunc; 869 static xpt_busfunc_t xptsetasyncbusfunc; 870 static cam_status xptregister(struct cam_periph *periph, 871 void *arg); 872 static cam_status proberegister(struct cam_periph *periph, 873 void *arg); 874 static void probeschedule(struct cam_periph *probe_periph); 875 static void probestart(struct cam_periph *periph, union ccb *start_ccb); 876 static void proberequestdefaultnegotiation(struct cam_periph *periph); 877 static int proberequestbackoff(struct cam_periph *periph, 878 struct cam_ed *device); 879 static void probedone(struct cam_periph *periph, union ccb *done_ccb); 880 static void probecleanup(struct cam_periph *periph); 881 static void xpt_find_quirk(struct cam_ed *device); 882 static void xpt_devise_transport(struct cam_path *path); 883 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts, 884 struct cam_ed *device, 885 int async_update); 886 static void xpt_toggle_tags(struct cam_path *path); 887 static void xpt_start_tags(struct cam_path *path); 888 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, 889 struct cam_ed *dev); 890 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, 891 struct cam_ed *dev); 892 static __inline int periph_is_queued(struct cam_periph *periph); 893 static __inline int device_is_alloc_queued(struct cam_ed *device); 894 static __inline int device_is_send_queued(struct cam_ed *device); 895 static __inline int dev_allocq_is_runnable(struct cam_devq *devq); 896 897 static __inline int 898 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 899 { 900 int retval; 901 902 if (dev->ccbq.devq_openings > 0) { 903 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) { 904 cam_ccbq_resize(&dev->ccbq, 905 dev->ccbq.dev_openings 906 + dev->ccbq.dev_active); 907 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 908 } 909 /* 910 * The priority of a device waiting for CCB resources 911 * is that of the the highest priority peripheral driver 912 * enqueued. 913 */ 914 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 915 &dev->alloc_ccb_entry.pinfo, 916 CAMQ_GET_HEAD(&dev->drvq)->priority); 917 } else { 918 retval = 0; 919 } 920 921 return (retval); 922 } 923 924 static __inline int 925 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 926 { 927 int retval; 928 929 if (dev->ccbq.dev_openings > 0) { 930 /* 931 * The priority of a device waiting for controller 932 * resources is that of the the highest priority CCB 933 * enqueued. 934 */ 935 retval = 936 xpt_schedule_dev(&bus->sim->devq->send_queue, 937 &dev->send_ccb_entry.pinfo, 938 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority); 939 } else { 940 retval = 0; 941 } 942 return (retval); 943 } 944 945 static __inline int 946 periph_is_queued(struct cam_periph *periph) 947 { 948 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 949 } 950 951 static __inline int 952 device_is_alloc_queued(struct cam_ed *device) 953 { 954 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 955 } 956 957 static __inline int 958 device_is_send_queued(struct cam_ed *device) 959 { 960 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 961 } 962 963 static __inline int 964 dev_allocq_is_runnable(struct cam_devq *devq) 965 { 966 /* 967 * Have work to do. 968 * Have space to do more work. 969 * Allowed to do work. 970 */ 971 return ((devq->alloc_queue.qfrozen_cnt == 0) 972 && (devq->alloc_queue.entries > 0) 973 && (devq->alloc_openings > 0)); 974 } 975 976 static void 977 xpt_periph_init() 978 { 979 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 980 } 981 982 static void 983 probe_periph_init() 984 { 985 } 986 987 988 static void 989 xptdone(struct cam_periph *periph, union ccb *done_ccb) 990 { 991 /* Caller will release the CCB */ 992 wakeup(&done_ccb->ccb_h.cbfcnp); 993 } 994 995 static int 996 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 997 { 998 int unit; 999 1000 unit = minor(dev) & 0xff; 1001 1002 /* 1003 * Only allow read-write access. 1004 */ 1005 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 1006 return(EPERM); 1007 1008 /* 1009 * We don't allow nonblocking access. 1010 */ 1011 if ((flags & O_NONBLOCK) != 0) { 1012 printf("xpt%d: can't do nonblocking access\n", unit); 1013 return(ENODEV); 1014 } 1015 1016 /* 1017 * We only have one transport layer right now. If someone accesses 1018 * us via something other than minor number 1, point out their 1019 * mistake. 1020 */ 1021 if (unit != 0) { 1022 printf("xptopen: got invalid xpt unit %d\n", unit); 1023 return(ENXIO); 1024 } 1025 1026 /* Mark ourselves open */ 1027 xsoftc.flags |= XPT_FLAG_OPEN; 1028 1029 return(0); 1030 } 1031 1032 static int 1033 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 1034 { 1035 int unit; 1036 1037 unit = minor(dev) & 0xff; 1038 1039 /* 1040 * We only have one transport layer right now. If someone accesses 1041 * us via something other than minor number 1, point out their 1042 * mistake. 1043 */ 1044 if (unit != 0) { 1045 printf("xptclose: got invalid xpt unit %d\n", unit); 1046 return(ENXIO); 1047 } 1048 1049 /* Mark ourselves closed */ 1050 xsoftc.flags &= ~XPT_FLAG_OPEN; 1051 1052 return(0); 1053 } 1054 1055 static int 1056 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1057 { 1058 int unit, error; 1059 1060 error = 0; 1061 unit = minor(dev) & 0xff; 1062 1063 /* 1064 * We only have one transport layer right now. If someone accesses 1065 * us via something other than minor number 1, point out their 1066 * mistake. 1067 */ 1068 if (unit != 0) { 1069 printf("xptioctl: got invalid xpt unit %d\n", unit); 1070 return(ENXIO); 1071 } 1072 1073 switch(cmd) { 1074 /* 1075 * For the transport layer CAMIOCOMMAND ioctl, we really only want 1076 * to accept CCB types that don't quite make sense to send through a 1077 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 1078 * in the CAM spec. 1079 */ 1080 case CAMIOCOMMAND: { 1081 union ccb *ccb; 1082 union ccb *inccb; 1083 1084 inccb = (union ccb *)addr; 1085 1086 switch(inccb->ccb_h.func_code) { 1087 case XPT_SCAN_BUS: 1088 case XPT_RESET_BUS: 1089 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 1090 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 1091 error = EINVAL; 1092 break; 1093 } 1094 /* FALLTHROUGH */ 1095 case XPT_PATH_INQ: 1096 case XPT_ENG_INQ: 1097 case XPT_SCAN_LUN: 1098 1099 ccb = xpt_alloc_ccb(); 1100 1101 /* 1102 * Create a path using the bus, target, and lun the 1103 * user passed in. 1104 */ 1105 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 1106 inccb->ccb_h.path_id, 1107 inccb->ccb_h.target_id, 1108 inccb->ccb_h.target_lun) != 1109 CAM_REQ_CMP){ 1110 error = EINVAL; 1111 xpt_free_ccb(ccb); 1112 break; 1113 } 1114 /* Ensure all of our fields are correct */ 1115 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 1116 inccb->ccb_h.pinfo.priority); 1117 xpt_merge_ccb(ccb, inccb); 1118 ccb->ccb_h.cbfcnp = xptdone; 1119 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1120 bcopy(ccb, inccb, sizeof(union ccb)); 1121 xpt_free_path(ccb->ccb_h.path); 1122 xpt_free_ccb(ccb); 1123 break; 1124 1125 case XPT_DEBUG: { 1126 union ccb ccb; 1127 1128 /* 1129 * This is an immediate CCB, so it's okay to 1130 * allocate it on the stack. 1131 */ 1132 1133 /* 1134 * Create a path using the bus, target, and lun the 1135 * user passed in. 1136 */ 1137 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 1138 inccb->ccb_h.path_id, 1139 inccb->ccb_h.target_id, 1140 inccb->ccb_h.target_lun) != 1141 CAM_REQ_CMP){ 1142 error = EINVAL; 1143 break; 1144 } 1145 /* Ensure all of our fields are correct */ 1146 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 1147 inccb->ccb_h.pinfo.priority); 1148 xpt_merge_ccb(&ccb, inccb); 1149 ccb.ccb_h.cbfcnp = xptdone; 1150 xpt_action(&ccb); 1151 bcopy(&ccb, inccb, sizeof(union ccb)); 1152 xpt_free_path(ccb.ccb_h.path); 1153 break; 1154 1155 } 1156 case XPT_DEV_MATCH: { 1157 struct cam_periph_map_info mapinfo; 1158 struct cam_path *old_path; 1159 1160 /* 1161 * We can't deal with physical addresses for this 1162 * type of transaction. 1163 */ 1164 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 1165 error = EINVAL; 1166 break; 1167 } 1168 1169 /* 1170 * Save this in case the caller had it set to 1171 * something in particular. 1172 */ 1173 old_path = inccb->ccb_h.path; 1174 1175 /* 1176 * We really don't need a path for the matching 1177 * code. The path is needed because of the 1178 * debugging statements in xpt_action(). They 1179 * assume that the CCB has a valid path. 1180 */ 1181 inccb->ccb_h.path = xpt_periph->path; 1182 1183 bzero(&mapinfo, sizeof(mapinfo)); 1184 1185 /* 1186 * Map the pattern and match buffers into kernel 1187 * virtual address space. 1188 */ 1189 error = cam_periph_mapmem(inccb, &mapinfo); 1190 1191 if (error) { 1192 inccb->ccb_h.path = old_path; 1193 break; 1194 } 1195 1196 /* 1197 * This is an immediate CCB, we can send it on directly. 1198 */ 1199 xpt_action(inccb); 1200 1201 /* 1202 * Map the buffers back into user space. 1203 */ 1204 cam_periph_unmapmem(inccb, &mapinfo); 1205 1206 inccb->ccb_h.path = old_path; 1207 1208 error = 0; 1209 break; 1210 } 1211 default: 1212 error = ENOTSUP; 1213 break; 1214 } 1215 break; 1216 } 1217 /* 1218 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 1219 * with the periphal driver name and unit name filled in. The other 1220 * fields don't really matter as input. The passthrough driver name 1221 * ("pass"), and unit number are passed back in the ccb. The current 1222 * device generation number, and the index into the device peripheral 1223 * driver list, and the status are also passed back. Note that 1224 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 1225 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 1226 * (or rather should be) impossible for the device peripheral driver 1227 * list to change since we look at the whole thing in one pass, and 1228 * we do it with splcam protection. 1229 * 1230 */ 1231 case CAMGETPASSTHRU: { 1232 union ccb *ccb; 1233 struct cam_periph *periph; 1234 struct periph_driver **p_drv; 1235 char *name; 1236 u_int unit; 1237 u_int cur_generation; 1238 int base_periph_found; 1239 int splbreaknum; 1240 int s; 1241 1242 ccb = (union ccb *)addr; 1243 unit = ccb->cgdl.unit_number; 1244 name = ccb->cgdl.periph_name; 1245 /* 1246 * Every 100 devices, we want to drop our spl protection to 1247 * give the software interrupt handler a chance to run. 1248 * Most systems won't run into this check, but this should 1249 * avoid starvation in the software interrupt handler in 1250 * large systems. 1251 */ 1252 splbreaknum = 100; 1253 1254 ccb = (union ccb *)addr; 1255 1256 base_periph_found = 0; 1257 1258 /* 1259 * Sanity check -- make sure we don't get a null peripheral 1260 * driver name. 1261 */ 1262 if (*ccb->cgdl.periph_name == '\0') { 1263 error = EINVAL; 1264 break; 1265 } 1266 1267 /* Keep the list from changing while we traverse it */ 1268 s = splcam(); 1269 ptstartover: 1270 cur_generation = xsoftc.generation; 1271 1272 /* first find our driver in the list of drivers */ 1273 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 1274 if (strcmp((*p_drv)->driver_name, name) == 0) 1275 break; 1276 1277 if (*p_drv == NULL) { 1278 splx(s); 1279 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1280 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1281 *ccb->cgdl.periph_name = '\0'; 1282 ccb->cgdl.unit_number = 0; 1283 error = ENOENT; 1284 break; 1285 } 1286 1287 /* 1288 * Run through every peripheral instance of this driver 1289 * and check to see whether it matches the unit passed 1290 * in by the user. If it does, get out of the loops and 1291 * find the passthrough driver associated with that 1292 * peripheral driver. 1293 */ 1294 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 1295 periph = TAILQ_NEXT(periph, unit_links)) { 1296 1297 if (periph->unit_number == unit) { 1298 break; 1299 } else if (--splbreaknum == 0) { 1300 splx(s); 1301 s = splcam(); 1302 splbreaknum = 100; 1303 if (cur_generation != xsoftc.generation) 1304 goto ptstartover; 1305 } 1306 } 1307 /* 1308 * If we found the peripheral driver that the user passed 1309 * in, go through all of the peripheral drivers for that 1310 * particular device and look for a passthrough driver. 1311 */ 1312 if (periph != NULL) { 1313 struct cam_ed *device; 1314 int i; 1315 1316 base_periph_found = 1; 1317 device = periph->path->device; 1318 for (i = 0, periph = SLIST_FIRST(&device->periphs); 1319 periph != NULL; 1320 periph = SLIST_NEXT(periph, periph_links), i++) { 1321 /* 1322 * Check to see whether we have a 1323 * passthrough device or not. 1324 */ 1325 if (strcmp(periph->periph_name, "pass") == 0) { 1326 /* 1327 * Fill in the getdevlist fields. 1328 */ 1329 strcpy(ccb->cgdl.periph_name, 1330 periph->periph_name); 1331 ccb->cgdl.unit_number = 1332 periph->unit_number; 1333 if (SLIST_NEXT(periph, periph_links)) 1334 ccb->cgdl.status = 1335 CAM_GDEVLIST_MORE_DEVS; 1336 else 1337 ccb->cgdl.status = 1338 CAM_GDEVLIST_LAST_DEVICE; 1339 ccb->cgdl.generation = 1340 device->generation; 1341 ccb->cgdl.index = i; 1342 /* 1343 * Fill in some CCB header fields 1344 * that the user may want. 1345 */ 1346 ccb->ccb_h.path_id = 1347 periph->path->bus->path_id; 1348 ccb->ccb_h.target_id = 1349 periph->path->target->target_id; 1350 ccb->ccb_h.target_lun = 1351 periph->path->device->lun_id; 1352 ccb->ccb_h.status = CAM_REQ_CMP; 1353 break; 1354 } 1355 } 1356 } 1357 1358 /* 1359 * If the periph is null here, one of two things has 1360 * happened. The first possibility is that we couldn't 1361 * find the unit number of the particular peripheral driver 1362 * that the user is asking about. e.g. the user asks for 1363 * the passthrough driver for "da11". We find the list of 1364 * "da" peripherals all right, but there is no unit 11. 1365 * The other possibility is that we went through the list 1366 * of peripheral drivers attached to the device structure, 1367 * but didn't find one with the name "pass". Either way, 1368 * we return ENOENT, since we couldn't find something. 1369 */ 1370 if (periph == NULL) { 1371 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1372 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1373 *ccb->cgdl.periph_name = '\0'; 1374 ccb->cgdl.unit_number = 0; 1375 error = ENOENT; 1376 /* 1377 * It is unfortunate that this is even necessary, 1378 * but there are many, many clueless users out there. 1379 * If this is true, the user is looking for the 1380 * passthrough driver, but doesn't have one in his 1381 * kernel. 1382 */ 1383 if (base_periph_found == 1) { 1384 printf("xptioctl: pass driver is not in the " 1385 "kernel\n"); 1386 printf("xptioctl: put \"device pass0\" in " 1387 "your kernel config file\n"); 1388 } 1389 } 1390 splx(s); 1391 break; 1392 } 1393 default: 1394 error = ENOTTY; 1395 break; 1396 } 1397 1398 return(error); 1399 } 1400 1401 static int 1402 cam_module_event_handler(module_t mod, int what, void *arg) 1403 { 1404 if (what == MOD_LOAD) { 1405 xpt_init(NULL); 1406 } else if (what == MOD_UNLOAD) { 1407 return EBUSY; 1408 } else { 1409 return EOPNOTSUPP; 1410 } 1411 1412 return 0; 1413 } 1414 1415 /* Functions accessed by the peripheral drivers */ 1416 static void 1417 xpt_init(dummy) 1418 void *dummy; 1419 { 1420 struct cam_sim *xpt_sim; 1421 struct cam_path *path; 1422 struct cam_devq *devq; 1423 cam_status status; 1424 1425 TAILQ_INIT(&xpt_busses); 1426 TAILQ_INIT(&cam_bioq); 1427 SLIST_INIT(&ccb_freeq); 1428 STAILQ_INIT(&highpowerq); 1429 1430 mtx_init(&cam_bioq_lock, "CAM BIOQ lock", NULL, MTX_DEF); 1431 1432 /* 1433 * The xpt layer is, itself, the equivelent of a SIM. 1434 * Allow 16 ccbs in the ccb pool for it. This should 1435 * give decent parallelism when we probe busses and 1436 * perform other XPT functions. 1437 */ 1438 devq = cam_simq_alloc(16); 1439 xpt_sim = cam_sim_alloc(xptaction, 1440 xptpoll, 1441 "xpt", 1442 /*softc*/NULL, 1443 /*unit*/0, 1444 /*max_dev_transactions*/0, 1445 /*max_tagged_dev_transactions*/0, 1446 devq); 1447 xpt_max_ccbs = 16; 1448 1449 if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) { 1450 printf("xpt_init: xpt_bus_register failed with status %#x," 1451 " failing attach\n", status); 1452 return; 1453 } 1454 1455 /* 1456 * Looking at the XPT from the SIM layer, the XPT is 1457 * the equivelent of a peripheral driver. Allocate 1458 * a peripheral driver entry for us. 1459 */ 1460 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 1461 CAM_TARGET_WILDCARD, 1462 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 1463 printf("xpt_init: xpt_create_path failed with status %#x," 1464 " failing attach\n", status); 1465 return; 1466 } 1467 1468 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 1469 path, NULL, 0, NULL); 1470 xpt_free_path(path); 1471 1472 xpt_sim->softc = xpt_periph; 1473 1474 /* 1475 * Register a callback for when interrupts are enabled. 1476 */ 1477 xpt_config_hook = 1478 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 1479 M_TEMP, M_NOWAIT | M_ZERO); 1480 if (xpt_config_hook == NULL) { 1481 printf("xpt_init: Cannot malloc config hook " 1482 "- failing attach\n"); 1483 return; 1484 } 1485 1486 xpt_config_hook->ich_func = xpt_config; 1487 if (config_intrhook_establish(xpt_config_hook) != 0) { 1488 free (xpt_config_hook, M_TEMP); 1489 printf("xpt_init: config_intrhook_establish failed " 1490 "- failing attach\n"); 1491 } 1492 1493 /* Install our software interrupt handlers */ 1494 swi_add(NULL, "cambio", camisr, &cam_bioq, SWI_CAMBIO, 0, &cambio_ih); 1495 } 1496 1497 static cam_status 1498 xptregister(struct cam_periph *periph, void *arg) 1499 { 1500 if (periph == NULL) { 1501 printf("xptregister: periph was NULL!!\n"); 1502 return(CAM_REQ_CMP_ERR); 1503 } 1504 1505 periph->softc = NULL; 1506 1507 xpt_periph = periph; 1508 1509 return(CAM_REQ_CMP); 1510 } 1511 1512 int32_t 1513 xpt_add_periph(struct cam_periph *periph) 1514 { 1515 struct cam_ed *device; 1516 int32_t status; 1517 struct periph_list *periph_head; 1518 1519 GIANT_REQUIRED; 1520 1521 device = periph->path->device; 1522 1523 periph_head = &device->periphs; 1524 1525 status = CAM_REQ_CMP; 1526 1527 if (device != NULL) { 1528 int s; 1529 1530 /* 1531 * Make room for this peripheral 1532 * so it will fit in the queue 1533 * when it's scheduled to run 1534 */ 1535 s = splsoftcam(); 1536 status = camq_resize(&device->drvq, 1537 device->drvq.array_size + 1); 1538 1539 device->generation++; 1540 1541 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1542 1543 splx(s); 1544 } 1545 1546 xsoftc.generation++; 1547 1548 return (status); 1549 } 1550 1551 void 1552 xpt_remove_periph(struct cam_periph *periph) 1553 { 1554 struct cam_ed *device; 1555 1556 GIANT_REQUIRED; 1557 1558 device = periph->path->device; 1559 1560 if (device != NULL) { 1561 int s; 1562 struct periph_list *periph_head; 1563 1564 periph_head = &device->periphs; 1565 1566 /* Release the slot for this peripheral */ 1567 s = splsoftcam(); 1568 camq_resize(&device->drvq, device->drvq.array_size - 1); 1569 1570 device->generation++; 1571 1572 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1573 1574 splx(s); 1575 } 1576 1577 xsoftc.generation++; 1578 1579 } 1580 1581 1582 void 1583 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1584 { 1585 struct ccb_pathinq cpi; 1586 struct ccb_trans_settings cts; 1587 struct cam_path *path; 1588 u_int speed; 1589 u_int freq; 1590 u_int mb; 1591 int s; 1592 1593 GIANT_REQUIRED; 1594 1595 path = periph->path; 1596 /* 1597 * To ensure that this is printed in one piece, 1598 * mask out CAM interrupts. 1599 */ 1600 s = splsoftcam(); 1601 printf("%s%d at %s%d bus %d target %d lun %d\n", 1602 periph->periph_name, periph->unit_number, 1603 path->bus->sim->sim_name, 1604 path->bus->sim->unit_number, 1605 path->bus->sim->bus_id, 1606 path->target->target_id, 1607 path->device->lun_id); 1608 printf("%s%d: ", periph->periph_name, periph->unit_number); 1609 scsi_print_inquiry(&path->device->inq_data); 1610 if (bootverbose && path->device->serial_num_len > 0) { 1611 /* Don't wrap the screen - print only the first 60 chars */ 1612 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1613 periph->unit_number, path->device->serial_num); 1614 } 1615 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1616 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1617 cts.type = CTS_TYPE_CURRENT_SETTINGS; 1618 xpt_action((union ccb*)&cts); 1619 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1620 return; 1621 } 1622 1623 /* Ask the SIM for its base transfer speed */ 1624 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1625 cpi.ccb_h.func_code = XPT_PATH_INQ; 1626 xpt_action((union ccb *)&cpi); 1627 1628 speed = cpi.base_transfer_speed; 1629 freq = 0; 1630 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1631 struct ccb_trans_settings_spi *spi; 1632 1633 spi = &cts.xport_specific.spi; 1634 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0 1635 && spi->sync_offset != 0) { 1636 freq = scsi_calc_syncsrate(spi->sync_period); 1637 speed = freq; 1638 } 1639 1640 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 1641 speed *= (0x01 << spi->bus_width); 1642 } 1643 1644 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1645 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc; 1646 if (fc->valid & CTS_FC_VALID_SPEED) { 1647 speed = fc->bitrate; 1648 } 1649 } 1650 1651 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) { 1652 struct ccb_trans_settings_sas *sas = &cts.xport_specific.sas; 1653 if (sas->valid & CTS_SAS_VALID_SPEED) { 1654 speed = sas->bitrate; 1655 } 1656 } 1657 1658 mb = speed / 1000; 1659 if (mb > 0) 1660 printf("%s%d: %d.%03dMB/s transfers", 1661 periph->periph_name, periph->unit_number, 1662 mb, speed % 1000); 1663 else 1664 printf("%s%d: %dKB/s transfers", periph->periph_name, 1665 periph->unit_number, speed); 1666 /* Report additional information about SPI connections */ 1667 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1668 struct ccb_trans_settings_spi *spi; 1669 1670 spi = &cts.xport_specific.spi; 1671 if (freq != 0) { 1672 printf(" (%d.%03dMHz%s, offset %d", freq / 1000, 1673 freq % 1000, 1674 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0 1675 ? " DT" : "", 1676 spi->sync_offset); 1677 } 1678 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0 1679 && spi->bus_width > 0) { 1680 if (freq != 0) { 1681 printf(", "); 1682 } else { 1683 printf(" ("); 1684 } 1685 printf("%dbit)", 8 * (0x01 << spi->bus_width)); 1686 } else if (freq != 0) { 1687 printf(")"); 1688 } 1689 } 1690 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1691 struct ccb_trans_settings_fc *fc; 1692 1693 fc = &cts.xport_specific.fc; 1694 if (fc->valid & CTS_FC_VALID_WWNN) 1695 printf(" WWNN 0x%llx", (long long) fc->wwnn); 1696 if (fc->valid & CTS_FC_VALID_WWPN) 1697 printf(" WWPN 0x%llx", (long long) fc->wwpn); 1698 if (fc->valid & CTS_FC_VALID_PORT) 1699 printf(" PortID 0x%x", fc->port); 1700 } 1701 1702 if (path->device->inq_flags & SID_CmdQue 1703 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1704 printf("\n%s%d: Command Queueing Enabled", 1705 periph->periph_name, periph->unit_number); 1706 } 1707 printf("\n"); 1708 1709 /* 1710 * We only want to print the caller's announce string if they've 1711 * passed one in.. 1712 */ 1713 if (announce_string != NULL) 1714 printf("%s%d: %s\n", periph->periph_name, 1715 periph->unit_number, announce_string); 1716 splx(s); 1717 } 1718 1719 static dev_match_ret 1720 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1721 struct cam_eb *bus) 1722 { 1723 dev_match_ret retval; 1724 int i; 1725 1726 retval = DM_RET_NONE; 1727 1728 /* 1729 * If we aren't given something to match against, that's an error. 1730 */ 1731 if (bus == NULL) 1732 return(DM_RET_ERROR); 1733 1734 /* 1735 * If there are no match entries, then this bus matches no 1736 * matter what. 1737 */ 1738 if ((patterns == NULL) || (num_patterns == 0)) 1739 return(DM_RET_DESCEND | DM_RET_COPY); 1740 1741 for (i = 0; i < num_patterns; i++) { 1742 struct bus_match_pattern *cur_pattern; 1743 1744 /* 1745 * If the pattern in question isn't for a bus node, we 1746 * aren't interested. However, we do indicate to the 1747 * calling routine that we should continue descending the 1748 * tree, since the user wants to match against lower-level 1749 * EDT elements. 1750 */ 1751 if (patterns[i].type != DEV_MATCH_BUS) { 1752 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1753 retval |= DM_RET_DESCEND; 1754 continue; 1755 } 1756 1757 cur_pattern = &patterns[i].pattern.bus_pattern; 1758 1759 /* 1760 * If they want to match any bus node, we give them any 1761 * device node. 1762 */ 1763 if (cur_pattern->flags == BUS_MATCH_ANY) { 1764 /* set the copy flag */ 1765 retval |= DM_RET_COPY; 1766 1767 /* 1768 * If we've already decided on an action, go ahead 1769 * and return. 1770 */ 1771 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1772 return(retval); 1773 } 1774 1775 /* 1776 * Not sure why someone would do this... 1777 */ 1778 if (cur_pattern->flags == BUS_MATCH_NONE) 1779 continue; 1780 1781 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1782 && (cur_pattern->path_id != bus->path_id)) 1783 continue; 1784 1785 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1786 && (cur_pattern->bus_id != bus->sim->bus_id)) 1787 continue; 1788 1789 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1790 && (cur_pattern->unit_number != bus->sim->unit_number)) 1791 continue; 1792 1793 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1794 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1795 DEV_IDLEN) != 0)) 1796 continue; 1797 1798 /* 1799 * If we get to this point, the user definitely wants 1800 * information on this bus. So tell the caller to copy the 1801 * data out. 1802 */ 1803 retval |= DM_RET_COPY; 1804 1805 /* 1806 * If the return action has been set to descend, then we 1807 * know that we've already seen a non-bus matching 1808 * expression, therefore we need to further descend the tree. 1809 * This won't change by continuing around the loop, so we 1810 * go ahead and return. If we haven't seen a non-bus 1811 * matching expression, we keep going around the loop until 1812 * we exhaust the matching expressions. We'll set the stop 1813 * flag once we fall out of the loop. 1814 */ 1815 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1816 return(retval); 1817 } 1818 1819 /* 1820 * If the return action hasn't been set to descend yet, that means 1821 * we haven't seen anything other than bus matching patterns. So 1822 * tell the caller to stop descending the tree -- the user doesn't 1823 * want to match against lower level tree elements. 1824 */ 1825 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1826 retval |= DM_RET_STOP; 1827 1828 return(retval); 1829 } 1830 1831 static dev_match_ret 1832 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1833 struct cam_ed *device) 1834 { 1835 dev_match_ret retval; 1836 int i; 1837 1838 retval = DM_RET_NONE; 1839 1840 /* 1841 * If we aren't given something to match against, that's an error. 1842 */ 1843 if (device == NULL) 1844 return(DM_RET_ERROR); 1845 1846 /* 1847 * If there are no match entries, then this device matches no 1848 * matter what. 1849 */ 1850 if ((patterns == NULL) || (num_patterns == 0)) 1851 return(DM_RET_DESCEND | DM_RET_COPY); 1852 1853 for (i = 0; i < num_patterns; i++) { 1854 struct device_match_pattern *cur_pattern; 1855 1856 /* 1857 * If the pattern in question isn't for a device node, we 1858 * aren't interested. 1859 */ 1860 if (patterns[i].type != DEV_MATCH_DEVICE) { 1861 if ((patterns[i].type == DEV_MATCH_PERIPH) 1862 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1863 retval |= DM_RET_DESCEND; 1864 continue; 1865 } 1866 1867 cur_pattern = &patterns[i].pattern.device_pattern; 1868 1869 /* 1870 * If they want to match any device node, we give them any 1871 * device node. 1872 */ 1873 if (cur_pattern->flags == DEV_MATCH_ANY) { 1874 /* set the copy flag */ 1875 retval |= DM_RET_COPY; 1876 1877 1878 /* 1879 * If we've already decided on an action, go ahead 1880 * and return. 1881 */ 1882 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1883 return(retval); 1884 } 1885 1886 /* 1887 * Not sure why someone would do this... 1888 */ 1889 if (cur_pattern->flags == DEV_MATCH_NONE) 1890 continue; 1891 1892 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1893 && (cur_pattern->path_id != device->target->bus->path_id)) 1894 continue; 1895 1896 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1897 && (cur_pattern->target_id != device->target->target_id)) 1898 continue; 1899 1900 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1901 && (cur_pattern->target_lun != device->lun_id)) 1902 continue; 1903 1904 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1905 && (cam_quirkmatch((caddr_t)&device->inq_data, 1906 (caddr_t)&cur_pattern->inq_pat, 1907 1, sizeof(cur_pattern->inq_pat), 1908 scsi_static_inquiry_match) == NULL)) 1909 continue; 1910 1911 /* 1912 * If we get to this point, the user definitely wants 1913 * information on this device. So tell the caller to copy 1914 * the data out. 1915 */ 1916 retval |= DM_RET_COPY; 1917 1918 /* 1919 * If the return action has been set to descend, then we 1920 * know that we've already seen a peripheral matching 1921 * expression, therefore we need to further descend the tree. 1922 * This won't change by continuing around the loop, so we 1923 * go ahead and return. If we haven't seen a peripheral 1924 * matching expression, we keep going around the loop until 1925 * we exhaust the matching expressions. We'll set the stop 1926 * flag once we fall out of the loop. 1927 */ 1928 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1929 return(retval); 1930 } 1931 1932 /* 1933 * If the return action hasn't been set to descend yet, that means 1934 * we haven't seen any peripheral matching patterns. So tell the 1935 * caller to stop descending the tree -- the user doesn't want to 1936 * match against lower level tree elements. 1937 */ 1938 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1939 retval |= DM_RET_STOP; 1940 1941 return(retval); 1942 } 1943 1944 /* 1945 * Match a single peripheral against any number of match patterns. 1946 */ 1947 static dev_match_ret 1948 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1949 struct cam_periph *periph) 1950 { 1951 dev_match_ret retval; 1952 int i; 1953 1954 /* 1955 * If we aren't given something to match against, that's an error. 1956 */ 1957 if (periph == NULL) 1958 return(DM_RET_ERROR); 1959 1960 /* 1961 * If there are no match entries, then this peripheral matches no 1962 * matter what. 1963 */ 1964 if ((patterns == NULL) || (num_patterns == 0)) 1965 return(DM_RET_STOP | DM_RET_COPY); 1966 1967 /* 1968 * There aren't any nodes below a peripheral node, so there's no 1969 * reason to descend the tree any further. 1970 */ 1971 retval = DM_RET_STOP; 1972 1973 for (i = 0; i < num_patterns; i++) { 1974 struct periph_match_pattern *cur_pattern; 1975 1976 /* 1977 * If the pattern in question isn't for a peripheral, we 1978 * aren't interested. 1979 */ 1980 if (patterns[i].type != DEV_MATCH_PERIPH) 1981 continue; 1982 1983 cur_pattern = &patterns[i].pattern.periph_pattern; 1984 1985 /* 1986 * If they want to match on anything, then we will do so. 1987 */ 1988 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1989 /* set the copy flag */ 1990 retval |= DM_RET_COPY; 1991 1992 /* 1993 * We've already set the return action to stop, 1994 * since there are no nodes below peripherals in 1995 * the tree. 1996 */ 1997 return(retval); 1998 } 1999 2000 /* 2001 * Not sure why someone would do this... 2002 */ 2003 if (cur_pattern->flags == PERIPH_MATCH_NONE) 2004 continue; 2005 2006 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 2007 && (cur_pattern->path_id != periph->path->bus->path_id)) 2008 continue; 2009 2010 /* 2011 * For the target and lun id's, we have to make sure the 2012 * target and lun pointers aren't NULL. The xpt peripheral 2013 * has a wildcard target and device. 2014 */ 2015 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 2016 && ((periph->path->target == NULL) 2017 ||(cur_pattern->target_id != periph->path->target->target_id))) 2018 continue; 2019 2020 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 2021 && ((periph->path->device == NULL) 2022 || (cur_pattern->target_lun != periph->path->device->lun_id))) 2023 continue; 2024 2025 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 2026 && (cur_pattern->unit_number != periph->unit_number)) 2027 continue; 2028 2029 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 2030 && (strncmp(cur_pattern->periph_name, periph->periph_name, 2031 DEV_IDLEN) != 0)) 2032 continue; 2033 2034 /* 2035 * If we get to this point, the user definitely wants 2036 * information on this peripheral. So tell the caller to 2037 * copy the data out. 2038 */ 2039 retval |= DM_RET_COPY; 2040 2041 /* 2042 * The return action has already been set to stop, since 2043 * peripherals don't have any nodes below them in the EDT. 2044 */ 2045 return(retval); 2046 } 2047 2048 /* 2049 * If we get to this point, the peripheral that was passed in 2050 * doesn't match any of the patterns. 2051 */ 2052 return(retval); 2053 } 2054 2055 static int 2056 xptedtbusfunc(struct cam_eb *bus, void *arg) 2057 { 2058 struct ccb_dev_match *cdm; 2059 dev_match_ret retval; 2060 2061 cdm = (struct ccb_dev_match *)arg; 2062 2063 /* 2064 * If our position is for something deeper in the tree, that means 2065 * that we've already seen this node. So, we keep going down. 2066 */ 2067 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2068 && (cdm->pos.cookie.bus == bus) 2069 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2070 && (cdm->pos.cookie.target != NULL)) 2071 retval = DM_RET_DESCEND; 2072 else 2073 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 2074 2075 /* 2076 * If we got an error, bail out of the search. 2077 */ 2078 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2079 cdm->status = CAM_DEV_MATCH_ERROR; 2080 return(0); 2081 } 2082 2083 /* 2084 * If the copy flag is set, copy this bus out. 2085 */ 2086 if (retval & DM_RET_COPY) { 2087 int spaceleft, j; 2088 2089 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2090 sizeof(struct dev_match_result)); 2091 2092 /* 2093 * If we don't have enough space to put in another 2094 * match result, save our position and tell the 2095 * user there are more devices to check. 2096 */ 2097 if (spaceleft < sizeof(struct dev_match_result)) { 2098 bzero(&cdm->pos, sizeof(cdm->pos)); 2099 cdm->pos.position_type = 2100 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 2101 2102 cdm->pos.cookie.bus = bus; 2103 cdm->pos.generations[CAM_BUS_GENERATION]= 2104 bus_generation; 2105 cdm->status = CAM_DEV_MATCH_MORE; 2106 return(0); 2107 } 2108 j = cdm->num_matches; 2109 cdm->num_matches++; 2110 cdm->matches[j].type = DEV_MATCH_BUS; 2111 cdm->matches[j].result.bus_result.path_id = bus->path_id; 2112 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 2113 cdm->matches[j].result.bus_result.unit_number = 2114 bus->sim->unit_number; 2115 strncpy(cdm->matches[j].result.bus_result.dev_name, 2116 bus->sim->sim_name, DEV_IDLEN); 2117 } 2118 2119 /* 2120 * If the user is only interested in busses, there's no 2121 * reason to descend to the next level in the tree. 2122 */ 2123 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2124 return(1); 2125 2126 /* 2127 * If there is a target generation recorded, check it to 2128 * make sure the target list hasn't changed. 2129 */ 2130 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2131 && (bus == cdm->pos.cookie.bus) 2132 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2133 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 2134 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 2135 bus->generation)) { 2136 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2137 return(0); 2138 } 2139 2140 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2141 && (cdm->pos.cookie.bus == bus) 2142 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2143 && (cdm->pos.cookie.target != NULL)) 2144 return(xpttargettraverse(bus, 2145 (struct cam_et *)cdm->pos.cookie.target, 2146 xptedttargetfunc, arg)); 2147 else 2148 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 2149 } 2150 2151 static int 2152 xptedttargetfunc(struct cam_et *target, void *arg) 2153 { 2154 struct ccb_dev_match *cdm; 2155 2156 cdm = (struct ccb_dev_match *)arg; 2157 2158 /* 2159 * If there is a device list generation recorded, check it to 2160 * make sure the device list hasn't changed. 2161 */ 2162 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2163 && (cdm->pos.cookie.bus == target->bus) 2164 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2165 && (cdm->pos.cookie.target == target) 2166 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2167 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 2168 && (cdm->pos.generations[CAM_DEV_GENERATION] != 2169 target->generation)) { 2170 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2171 return(0); 2172 } 2173 2174 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2175 && (cdm->pos.cookie.bus == target->bus) 2176 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2177 && (cdm->pos.cookie.target == target) 2178 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2179 && (cdm->pos.cookie.device != NULL)) 2180 return(xptdevicetraverse(target, 2181 (struct cam_ed *)cdm->pos.cookie.device, 2182 xptedtdevicefunc, arg)); 2183 else 2184 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 2185 } 2186 2187 static int 2188 xptedtdevicefunc(struct cam_ed *device, void *arg) 2189 { 2190 2191 struct ccb_dev_match *cdm; 2192 dev_match_ret retval; 2193 2194 cdm = (struct ccb_dev_match *)arg; 2195 2196 /* 2197 * If our position is for something deeper in the tree, that means 2198 * that we've already seen this node. So, we keep going down. 2199 */ 2200 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2201 && (cdm->pos.cookie.device == device) 2202 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2203 && (cdm->pos.cookie.periph != NULL)) 2204 retval = DM_RET_DESCEND; 2205 else 2206 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 2207 device); 2208 2209 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2210 cdm->status = CAM_DEV_MATCH_ERROR; 2211 return(0); 2212 } 2213 2214 /* 2215 * If the copy flag is set, copy this device out. 2216 */ 2217 if (retval & DM_RET_COPY) { 2218 int spaceleft, j; 2219 2220 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2221 sizeof(struct dev_match_result)); 2222 2223 /* 2224 * If we don't have enough space to put in another 2225 * match result, save our position and tell the 2226 * user there are more devices to check. 2227 */ 2228 if (spaceleft < sizeof(struct dev_match_result)) { 2229 bzero(&cdm->pos, sizeof(cdm->pos)); 2230 cdm->pos.position_type = 2231 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2232 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 2233 2234 cdm->pos.cookie.bus = device->target->bus; 2235 cdm->pos.generations[CAM_BUS_GENERATION]= 2236 bus_generation; 2237 cdm->pos.cookie.target = device->target; 2238 cdm->pos.generations[CAM_TARGET_GENERATION] = 2239 device->target->bus->generation; 2240 cdm->pos.cookie.device = device; 2241 cdm->pos.generations[CAM_DEV_GENERATION] = 2242 device->target->generation; 2243 cdm->status = CAM_DEV_MATCH_MORE; 2244 return(0); 2245 } 2246 j = cdm->num_matches; 2247 cdm->num_matches++; 2248 cdm->matches[j].type = DEV_MATCH_DEVICE; 2249 cdm->matches[j].result.device_result.path_id = 2250 device->target->bus->path_id; 2251 cdm->matches[j].result.device_result.target_id = 2252 device->target->target_id; 2253 cdm->matches[j].result.device_result.target_lun = 2254 device->lun_id; 2255 bcopy(&device->inq_data, 2256 &cdm->matches[j].result.device_result.inq_data, 2257 sizeof(struct scsi_inquiry_data)); 2258 2259 /* Let the user know whether this device is unconfigured */ 2260 if (device->flags & CAM_DEV_UNCONFIGURED) 2261 cdm->matches[j].result.device_result.flags = 2262 DEV_RESULT_UNCONFIGURED; 2263 else 2264 cdm->matches[j].result.device_result.flags = 2265 DEV_RESULT_NOFLAG; 2266 } 2267 2268 /* 2269 * If the user isn't interested in peripherals, don't descend 2270 * the tree any further. 2271 */ 2272 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2273 return(1); 2274 2275 /* 2276 * If there is a peripheral list generation recorded, make sure 2277 * it hasn't changed. 2278 */ 2279 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2280 && (device->target->bus == cdm->pos.cookie.bus) 2281 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2282 && (device->target == cdm->pos.cookie.target) 2283 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2284 && (device == cdm->pos.cookie.device) 2285 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2286 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2287 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2288 device->generation)){ 2289 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2290 return(0); 2291 } 2292 2293 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2294 && (cdm->pos.cookie.bus == device->target->bus) 2295 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2296 && (cdm->pos.cookie.target == device->target) 2297 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2298 && (cdm->pos.cookie.device == device) 2299 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2300 && (cdm->pos.cookie.periph != NULL)) 2301 return(xptperiphtraverse(device, 2302 (struct cam_periph *)cdm->pos.cookie.periph, 2303 xptedtperiphfunc, arg)); 2304 else 2305 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 2306 } 2307 2308 static int 2309 xptedtperiphfunc(struct cam_periph *periph, void *arg) 2310 { 2311 struct ccb_dev_match *cdm; 2312 dev_match_ret retval; 2313 2314 cdm = (struct ccb_dev_match *)arg; 2315 2316 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2317 2318 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2319 cdm->status = CAM_DEV_MATCH_ERROR; 2320 return(0); 2321 } 2322 2323 /* 2324 * If the copy flag is set, copy this peripheral out. 2325 */ 2326 if (retval & DM_RET_COPY) { 2327 int spaceleft, j; 2328 2329 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2330 sizeof(struct dev_match_result)); 2331 2332 /* 2333 * If we don't have enough space to put in another 2334 * match result, save our position and tell the 2335 * user there are more devices to check. 2336 */ 2337 if (spaceleft < sizeof(struct dev_match_result)) { 2338 bzero(&cdm->pos, sizeof(cdm->pos)); 2339 cdm->pos.position_type = 2340 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2341 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2342 CAM_DEV_POS_PERIPH; 2343 2344 cdm->pos.cookie.bus = periph->path->bus; 2345 cdm->pos.generations[CAM_BUS_GENERATION]= 2346 bus_generation; 2347 cdm->pos.cookie.target = periph->path->target; 2348 cdm->pos.generations[CAM_TARGET_GENERATION] = 2349 periph->path->bus->generation; 2350 cdm->pos.cookie.device = periph->path->device; 2351 cdm->pos.generations[CAM_DEV_GENERATION] = 2352 periph->path->target->generation; 2353 cdm->pos.cookie.periph = periph; 2354 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2355 periph->path->device->generation; 2356 cdm->status = CAM_DEV_MATCH_MORE; 2357 return(0); 2358 } 2359 2360 j = cdm->num_matches; 2361 cdm->num_matches++; 2362 cdm->matches[j].type = DEV_MATCH_PERIPH; 2363 cdm->matches[j].result.periph_result.path_id = 2364 periph->path->bus->path_id; 2365 cdm->matches[j].result.periph_result.target_id = 2366 periph->path->target->target_id; 2367 cdm->matches[j].result.periph_result.target_lun = 2368 periph->path->device->lun_id; 2369 cdm->matches[j].result.periph_result.unit_number = 2370 periph->unit_number; 2371 strncpy(cdm->matches[j].result.periph_result.periph_name, 2372 periph->periph_name, DEV_IDLEN); 2373 } 2374 2375 return(1); 2376 } 2377 2378 static int 2379 xptedtmatch(struct ccb_dev_match *cdm) 2380 { 2381 int ret; 2382 2383 cdm->num_matches = 0; 2384 2385 /* 2386 * Check the bus list generation. If it has changed, the user 2387 * needs to reset everything and start over. 2388 */ 2389 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2390 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 2391 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) { 2392 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2393 return(0); 2394 } 2395 2396 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2397 && (cdm->pos.cookie.bus != NULL)) 2398 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 2399 xptedtbusfunc, cdm); 2400 else 2401 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 2402 2403 /* 2404 * If we get back 0, that means that we had to stop before fully 2405 * traversing the EDT. It also means that one of the subroutines 2406 * has set the status field to the proper value. If we get back 1, 2407 * we've fully traversed the EDT and copied out any matching entries. 2408 */ 2409 if (ret == 1) 2410 cdm->status = CAM_DEV_MATCH_LAST; 2411 2412 return(ret); 2413 } 2414 2415 static int 2416 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2417 { 2418 struct ccb_dev_match *cdm; 2419 2420 cdm = (struct ccb_dev_match *)arg; 2421 2422 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2423 && (cdm->pos.cookie.pdrv == pdrv) 2424 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2425 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2426 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2427 (*pdrv)->generation)) { 2428 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2429 return(0); 2430 } 2431 2432 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2433 && (cdm->pos.cookie.pdrv == pdrv) 2434 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2435 && (cdm->pos.cookie.periph != NULL)) 2436 return(xptpdperiphtraverse(pdrv, 2437 (struct cam_periph *)cdm->pos.cookie.periph, 2438 xptplistperiphfunc, arg)); 2439 else 2440 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 2441 } 2442 2443 static int 2444 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2445 { 2446 struct ccb_dev_match *cdm; 2447 dev_match_ret retval; 2448 2449 cdm = (struct ccb_dev_match *)arg; 2450 2451 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2452 2453 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2454 cdm->status = CAM_DEV_MATCH_ERROR; 2455 return(0); 2456 } 2457 2458 /* 2459 * If the copy flag is set, copy this peripheral out. 2460 */ 2461 if (retval & DM_RET_COPY) { 2462 int spaceleft, j; 2463 2464 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2465 sizeof(struct dev_match_result)); 2466 2467 /* 2468 * If we don't have enough space to put in another 2469 * match result, save our position and tell the 2470 * user there are more devices to check. 2471 */ 2472 if (spaceleft < sizeof(struct dev_match_result)) { 2473 struct periph_driver **pdrv; 2474 2475 pdrv = NULL; 2476 bzero(&cdm->pos, sizeof(cdm->pos)); 2477 cdm->pos.position_type = 2478 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2479 CAM_DEV_POS_PERIPH; 2480 2481 /* 2482 * This may look a bit non-sensical, but it is 2483 * actually quite logical. There are very few 2484 * peripheral drivers, and bloating every peripheral 2485 * structure with a pointer back to its parent 2486 * peripheral driver linker set entry would cost 2487 * more in the long run than doing this quick lookup. 2488 */ 2489 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2490 if (strcmp((*pdrv)->driver_name, 2491 periph->periph_name) == 0) 2492 break; 2493 } 2494 2495 if (*pdrv == NULL) { 2496 cdm->status = CAM_DEV_MATCH_ERROR; 2497 return(0); 2498 } 2499 2500 cdm->pos.cookie.pdrv = pdrv; 2501 /* 2502 * The periph generation slot does double duty, as 2503 * does the periph pointer slot. They are used for 2504 * both edt and pdrv lookups and positioning. 2505 */ 2506 cdm->pos.cookie.periph = periph; 2507 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2508 (*pdrv)->generation; 2509 cdm->status = CAM_DEV_MATCH_MORE; 2510 return(0); 2511 } 2512 2513 j = cdm->num_matches; 2514 cdm->num_matches++; 2515 cdm->matches[j].type = DEV_MATCH_PERIPH; 2516 cdm->matches[j].result.periph_result.path_id = 2517 periph->path->bus->path_id; 2518 2519 /* 2520 * The transport layer peripheral doesn't have a target or 2521 * lun. 2522 */ 2523 if (periph->path->target) 2524 cdm->matches[j].result.periph_result.target_id = 2525 periph->path->target->target_id; 2526 else 2527 cdm->matches[j].result.periph_result.target_id = -1; 2528 2529 if (periph->path->device) 2530 cdm->matches[j].result.periph_result.target_lun = 2531 periph->path->device->lun_id; 2532 else 2533 cdm->matches[j].result.periph_result.target_lun = -1; 2534 2535 cdm->matches[j].result.periph_result.unit_number = 2536 periph->unit_number; 2537 strncpy(cdm->matches[j].result.periph_result.periph_name, 2538 periph->periph_name, DEV_IDLEN); 2539 } 2540 2541 return(1); 2542 } 2543 2544 static int 2545 xptperiphlistmatch(struct ccb_dev_match *cdm) 2546 { 2547 int ret; 2548 2549 cdm->num_matches = 0; 2550 2551 /* 2552 * At this point in the edt traversal function, we check the bus 2553 * list generation to make sure that no busses have been added or 2554 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2555 * For the peripheral driver list traversal function, however, we 2556 * don't have to worry about new peripheral driver types coming or 2557 * going; they're in a linker set, and therefore can't change 2558 * without a recompile. 2559 */ 2560 2561 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2562 && (cdm->pos.cookie.pdrv != NULL)) 2563 ret = xptpdrvtraverse( 2564 (struct periph_driver **)cdm->pos.cookie.pdrv, 2565 xptplistpdrvfunc, cdm); 2566 else 2567 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2568 2569 /* 2570 * If we get back 0, that means that we had to stop before fully 2571 * traversing the peripheral driver tree. It also means that one of 2572 * the subroutines has set the status field to the proper value. If 2573 * we get back 1, we've fully traversed the EDT and copied out any 2574 * matching entries. 2575 */ 2576 if (ret == 1) 2577 cdm->status = CAM_DEV_MATCH_LAST; 2578 2579 return(ret); 2580 } 2581 2582 static int 2583 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2584 { 2585 struct cam_eb *bus, *next_bus; 2586 int retval; 2587 2588 retval = 1; 2589 2590 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses)); 2591 bus != NULL; 2592 bus = next_bus) { 2593 next_bus = TAILQ_NEXT(bus, links); 2594 2595 retval = tr_func(bus, arg); 2596 if (retval == 0) 2597 return(retval); 2598 } 2599 2600 return(retval); 2601 } 2602 2603 static int 2604 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2605 xpt_targetfunc_t *tr_func, void *arg) 2606 { 2607 struct cam_et *target, *next_target; 2608 int retval; 2609 2610 retval = 1; 2611 for (target = (start_target ? start_target : 2612 TAILQ_FIRST(&bus->et_entries)); 2613 target != NULL; target = next_target) { 2614 2615 next_target = TAILQ_NEXT(target, links); 2616 2617 retval = tr_func(target, arg); 2618 2619 if (retval == 0) 2620 return(retval); 2621 } 2622 2623 return(retval); 2624 } 2625 2626 static int 2627 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2628 xpt_devicefunc_t *tr_func, void *arg) 2629 { 2630 struct cam_ed *device, *next_device; 2631 int retval; 2632 2633 retval = 1; 2634 for (device = (start_device ? start_device : 2635 TAILQ_FIRST(&target->ed_entries)); 2636 device != NULL; 2637 device = next_device) { 2638 2639 next_device = TAILQ_NEXT(device, links); 2640 2641 retval = tr_func(device, arg); 2642 2643 if (retval == 0) 2644 return(retval); 2645 } 2646 2647 return(retval); 2648 } 2649 2650 static int 2651 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2652 xpt_periphfunc_t *tr_func, void *arg) 2653 { 2654 struct cam_periph *periph, *next_periph; 2655 int retval; 2656 2657 retval = 1; 2658 2659 for (periph = (start_periph ? start_periph : 2660 SLIST_FIRST(&device->periphs)); 2661 periph != NULL; 2662 periph = next_periph) { 2663 2664 next_periph = SLIST_NEXT(periph, periph_links); 2665 2666 retval = tr_func(periph, arg); 2667 if (retval == 0) 2668 return(retval); 2669 } 2670 2671 return(retval); 2672 } 2673 2674 static int 2675 xptpdrvtraverse(struct periph_driver **start_pdrv, 2676 xpt_pdrvfunc_t *tr_func, void *arg) 2677 { 2678 struct periph_driver **pdrv; 2679 int retval; 2680 2681 retval = 1; 2682 2683 /* 2684 * We don't traverse the peripheral driver list like we do the 2685 * other lists, because it is a linker set, and therefore cannot be 2686 * changed during runtime. If the peripheral driver list is ever 2687 * re-done to be something other than a linker set (i.e. it can 2688 * change while the system is running), the list traversal should 2689 * be modified to work like the other traversal functions. 2690 */ 2691 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2692 *pdrv != NULL; pdrv++) { 2693 retval = tr_func(pdrv, arg); 2694 2695 if (retval == 0) 2696 return(retval); 2697 } 2698 2699 return(retval); 2700 } 2701 2702 static int 2703 xptpdperiphtraverse(struct periph_driver **pdrv, 2704 struct cam_periph *start_periph, 2705 xpt_periphfunc_t *tr_func, void *arg) 2706 { 2707 struct cam_periph *periph, *next_periph; 2708 int retval; 2709 2710 retval = 1; 2711 2712 for (periph = (start_periph ? start_periph : 2713 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2714 periph = next_periph) { 2715 2716 next_periph = TAILQ_NEXT(periph, unit_links); 2717 2718 retval = tr_func(periph, arg); 2719 if (retval == 0) 2720 return(retval); 2721 } 2722 return(retval); 2723 } 2724 2725 static int 2726 xptdefbusfunc(struct cam_eb *bus, void *arg) 2727 { 2728 struct xpt_traverse_config *tr_config; 2729 2730 tr_config = (struct xpt_traverse_config *)arg; 2731 2732 if (tr_config->depth == XPT_DEPTH_BUS) { 2733 xpt_busfunc_t *tr_func; 2734 2735 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2736 2737 return(tr_func(bus, tr_config->tr_arg)); 2738 } else 2739 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2740 } 2741 2742 static int 2743 xptdeftargetfunc(struct cam_et *target, void *arg) 2744 { 2745 struct xpt_traverse_config *tr_config; 2746 2747 tr_config = (struct xpt_traverse_config *)arg; 2748 2749 if (tr_config->depth == XPT_DEPTH_TARGET) { 2750 xpt_targetfunc_t *tr_func; 2751 2752 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2753 2754 return(tr_func(target, tr_config->tr_arg)); 2755 } else 2756 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2757 } 2758 2759 static int 2760 xptdefdevicefunc(struct cam_ed *device, void *arg) 2761 { 2762 struct xpt_traverse_config *tr_config; 2763 2764 tr_config = (struct xpt_traverse_config *)arg; 2765 2766 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2767 xpt_devicefunc_t *tr_func; 2768 2769 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2770 2771 return(tr_func(device, tr_config->tr_arg)); 2772 } else 2773 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2774 } 2775 2776 static int 2777 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2778 { 2779 struct xpt_traverse_config *tr_config; 2780 xpt_periphfunc_t *tr_func; 2781 2782 tr_config = (struct xpt_traverse_config *)arg; 2783 2784 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2785 2786 /* 2787 * Unlike the other default functions, we don't check for depth 2788 * here. The peripheral driver level is the last level in the EDT, 2789 * so if we're here, we should execute the function in question. 2790 */ 2791 return(tr_func(periph, tr_config->tr_arg)); 2792 } 2793 2794 /* 2795 * Execute the given function for every bus in the EDT. 2796 */ 2797 static int 2798 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2799 { 2800 struct xpt_traverse_config tr_config; 2801 2802 tr_config.depth = XPT_DEPTH_BUS; 2803 tr_config.tr_func = tr_func; 2804 tr_config.tr_arg = arg; 2805 2806 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2807 } 2808 2809 #ifdef notusedyet 2810 /* 2811 * Execute the given function for every target in the EDT. 2812 */ 2813 static int 2814 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg) 2815 { 2816 struct xpt_traverse_config tr_config; 2817 2818 tr_config.depth = XPT_DEPTH_TARGET; 2819 tr_config.tr_func = tr_func; 2820 tr_config.tr_arg = arg; 2821 2822 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2823 } 2824 #endif /* notusedyet */ 2825 2826 /* 2827 * Execute the given function for every device in the EDT. 2828 */ 2829 static int 2830 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2831 { 2832 struct xpt_traverse_config tr_config; 2833 2834 tr_config.depth = XPT_DEPTH_DEVICE; 2835 tr_config.tr_func = tr_func; 2836 tr_config.tr_arg = arg; 2837 2838 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2839 } 2840 2841 #ifdef notusedyet 2842 /* 2843 * Execute the given function for every peripheral in the EDT. 2844 */ 2845 static int 2846 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg) 2847 { 2848 struct xpt_traverse_config tr_config; 2849 2850 tr_config.depth = XPT_DEPTH_PERIPH; 2851 tr_config.tr_func = tr_func; 2852 tr_config.tr_arg = arg; 2853 2854 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2855 } 2856 #endif /* notusedyet */ 2857 2858 static int 2859 xptsetasyncfunc(struct cam_ed *device, void *arg) 2860 { 2861 struct cam_path path; 2862 struct ccb_getdev cgd; 2863 struct async_node *cur_entry; 2864 2865 cur_entry = (struct async_node *)arg; 2866 2867 /* 2868 * Don't report unconfigured devices (Wildcard devs, 2869 * devices only for target mode, device instances 2870 * that have been invalidated but are waiting for 2871 * their last reference count to be released). 2872 */ 2873 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2874 return (1); 2875 2876 xpt_compile_path(&path, 2877 NULL, 2878 device->target->bus->path_id, 2879 device->target->target_id, 2880 device->lun_id); 2881 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1); 2882 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2883 xpt_action((union ccb *)&cgd); 2884 cur_entry->callback(cur_entry->callback_arg, 2885 AC_FOUND_DEVICE, 2886 &path, &cgd); 2887 xpt_release_path(&path); 2888 2889 return(1); 2890 } 2891 2892 static int 2893 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2894 { 2895 struct cam_path path; 2896 struct ccb_pathinq cpi; 2897 struct async_node *cur_entry; 2898 2899 cur_entry = (struct async_node *)arg; 2900 2901 xpt_compile_path(&path, /*periph*/NULL, 2902 bus->sim->path_id, 2903 CAM_TARGET_WILDCARD, 2904 CAM_LUN_WILDCARD); 2905 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 2906 cpi.ccb_h.func_code = XPT_PATH_INQ; 2907 xpt_action((union ccb *)&cpi); 2908 cur_entry->callback(cur_entry->callback_arg, 2909 AC_PATH_REGISTERED, 2910 &path, &cpi); 2911 xpt_release_path(&path); 2912 2913 return(1); 2914 } 2915 2916 void 2917 xpt_action(union ccb *start_ccb) 2918 { 2919 int iopl; 2920 2921 GIANT_REQUIRED; 2922 2923 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2924 2925 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2926 2927 iopl = splsoftcam(); 2928 switch (start_ccb->ccb_h.func_code) { 2929 case XPT_SCSI_IO: 2930 { 2931 struct cam_ed *device; 2932 #ifdef CAMDEBUG 2933 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2934 struct cam_path *path; 2935 2936 path = start_ccb->ccb_h.path; 2937 #endif 2938 2939 /* 2940 * For the sake of compatibility with SCSI-1 2941 * devices that may not understand the identify 2942 * message, we include lun information in the 2943 * second byte of all commands. SCSI-1 specifies 2944 * that luns are a 3 bit value and reserves only 3 2945 * bits for lun information in the CDB. Later 2946 * revisions of the SCSI spec allow for more than 8 2947 * luns, but have deprecated lun information in the 2948 * CDB. So, if the lun won't fit, we must omit. 2949 * 2950 * Also be aware that during initial probing for devices, 2951 * the inquiry information is unknown but initialized to 0. 2952 * This means that this code will be exercised while probing 2953 * devices with an ANSI revision greater than 2. 2954 */ 2955 device = start_ccb->ccb_h.path->device; 2956 if (device->protocol_version <= SCSI_REV_2 2957 && start_ccb->ccb_h.target_lun < 8 2958 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2959 2960 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2961 start_ccb->ccb_h.target_lun << 5; 2962 } 2963 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2964 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 2965 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 2966 &path->device->inq_data), 2967 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 2968 cdb_str, sizeof(cdb_str)))); 2969 } 2970 /* FALLTHROUGH */ 2971 case XPT_TARGET_IO: 2972 case XPT_CONT_TARGET_IO: 2973 start_ccb->csio.sense_resid = 0; 2974 start_ccb->csio.resid = 0; 2975 /* FALLTHROUGH */ 2976 case XPT_RESET_DEV: 2977 case XPT_ENG_EXEC: 2978 { 2979 struct cam_path *path; 2980 struct cam_sim *sim; 2981 int s; 2982 int runq; 2983 2984 path = start_ccb->ccb_h.path; 2985 s = splsoftcam(); 2986 2987 sim = path->bus->sim; 2988 if (SIM_DEAD(sim)) { 2989 /* The SIM has gone; just execute the CCB directly. */ 2990 cam_ccbq_send_ccb(&path->device->ccbq, start_ccb); 2991 (*(sim->sim_action))(sim, start_ccb); 2992 splx(s); 2993 break; 2994 } 2995 2996 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2997 if (path->device->qfrozen_cnt == 0) 2998 runq = xpt_schedule_dev_sendq(path->bus, path->device); 2999 else 3000 runq = 0; 3001 splx(s); 3002 if (runq != 0) 3003 xpt_run_dev_sendq(path->bus); 3004 break; 3005 } 3006 case XPT_SET_TRAN_SETTINGS: 3007 { 3008 xpt_set_transfer_settings(&start_ccb->cts, 3009 start_ccb->ccb_h.path->device, 3010 /*async_update*/FALSE); 3011 break; 3012 } 3013 case XPT_CALC_GEOMETRY: 3014 { 3015 struct cam_sim *sim; 3016 3017 /* Filter out garbage */ 3018 if (start_ccb->ccg.block_size == 0 3019 || start_ccb->ccg.volume_size == 0) { 3020 start_ccb->ccg.cylinders = 0; 3021 start_ccb->ccg.heads = 0; 3022 start_ccb->ccg.secs_per_track = 0; 3023 start_ccb->ccb_h.status = CAM_REQ_CMP; 3024 break; 3025 } 3026 #ifdef PC98 3027 /* 3028 * In a PC-98 system, geometry translation depens on 3029 * the "real" device geometry obtained from mode page 4. 3030 * SCSI geometry translation is performed in the 3031 * initialization routine of the SCSI BIOS and the result 3032 * stored in host memory. If the translation is available 3033 * in host memory, use it. If not, rely on the default 3034 * translation the device driver performs. 3035 */ 3036 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 3037 start_ccb->ccb_h.status = CAM_REQ_CMP; 3038 break; 3039 } 3040 #endif 3041 sim = start_ccb->ccb_h.path->bus->sim; 3042 (*(sim->sim_action))(sim, start_ccb); 3043 break; 3044 } 3045 case XPT_ABORT: 3046 { 3047 union ccb* abort_ccb; 3048 int s; 3049 3050 abort_ccb = start_ccb->cab.abort_ccb; 3051 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 3052 3053 if (abort_ccb->ccb_h.pinfo.index >= 0) { 3054 struct cam_ccbq *ccbq; 3055 3056 ccbq = &abort_ccb->ccb_h.path->device->ccbq; 3057 cam_ccbq_remove_ccb(ccbq, abort_ccb); 3058 abort_ccb->ccb_h.status = 3059 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3060 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3061 s = splcam(); 3062 xpt_done(abort_ccb); 3063 splx(s); 3064 start_ccb->ccb_h.status = CAM_REQ_CMP; 3065 break; 3066 } 3067 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 3068 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 3069 /* 3070 * We've caught this ccb en route to 3071 * the SIM. Flag it for abort and the 3072 * SIM will do so just before starting 3073 * real work on the CCB. 3074 */ 3075 abort_ccb->ccb_h.status = 3076 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3077 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3078 start_ccb->ccb_h.status = CAM_REQ_CMP; 3079 break; 3080 } 3081 } 3082 if (XPT_FC_IS_QUEUED(abort_ccb) 3083 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 3084 /* 3085 * It's already completed but waiting 3086 * for our SWI to get to it. 3087 */ 3088 start_ccb->ccb_h.status = CAM_UA_ABORT; 3089 break; 3090 } 3091 /* 3092 * If we weren't able to take care of the abort request 3093 * in the XPT, pass the request down to the SIM for processing. 3094 */ 3095 } 3096 /* FALLTHROUGH */ 3097 case XPT_ACCEPT_TARGET_IO: 3098 case XPT_EN_LUN: 3099 case XPT_IMMED_NOTIFY: 3100 case XPT_NOTIFY_ACK: 3101 case XPT_GET_TRAN_SETTINGS: 3102 case XPT_RESET_BUS: 3103 { 3104 struct cam_sim *sim; 3105 3106 sim = start_ccb->ccb_h.path->bus->sim; 3107 (*(sim->sim_action))(sim, start_ccb); 3108 break; 3109 } 3110 case XPT_PATH_INQ: 3111 { 3112 struct cam_sim *sim; 3113 3114 sim = start_ccb->ccb_h.path->bus->sim; 3115 (*(sim->sim_action))(sim, start_ccb); 3116 break; 3117 } 3118 case XPT_PATH_STATS: 3119 start_ccb->cpis.last_reset = 3120 start_ccb->ccb_h.path->bus->last_reset; 3121 start_ccb->ccb_h.status = CAM_REQ_CMP; 3122 break; 3123 case XPT_GDEV_TYPE: 3124 { 3125 struct cam_ed *dev; 3126 int s; 3127 3128 dev = start_ccb->ccb_h.path->device; 3129 s = splcam(); 3130 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3131 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3132 } else { 3133 struct ccb_getdev *cgd; 3134 struct cam_eb *bus; 3135 struct cam_et *tar; 3136 3137 cgd = &start_ccb->cgd; 3138 bus = cgd->ccb_h.path->bus; 3139 tar = cgd->ccb_h.path->target; 3140 cgd->inq_data = dev->inq_data; 3141 cgd->ccb_h.status = CAM_REQ_CMP; 3142 cgd->serial_num_len = dev->serial_num_len; 3143 if ((dev->serial_num_len > 0) 3144 && (dev->serial_num != NULL)) 3145 bcopy(dev->serial_num, cgd->serial_num, 3146 dev->serial_num_len); 3147 } 3148 splx(s); 3149 break; 3150 } 3151 case XPT_GDEV_STATS: 3152 { 3153 struct cam_ed *dev; 3154 int s; 3155 3156 dev = start_ccb->ccb_h.path->device; 3157 s = splcam(); 3158 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3159 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3160 } else { 3161 struct ccb_getdevstats *cgds; 3162 struct cam_eb *bus; 3163 struct cam_et *tar; 3164 3165 cgds = &start_ccb->cgds; 3166 bus = cgds->ccb_h.path->bus; 3167 tar = cgds->ccb_h.path->target; 3168 cgds->dev_openings = dev->ccbq.dev_openings; 3169 cgds->dev_active = dev->ccbq.dev_active; 3170 cgds->devq_openings = dev->ccbq.devq_openings; 3171 cgds->devq_queued = dev->ccbq.queue.entries; 3172 cgds->held = dev->ccbq.held; 3173 cgds->last_reset = tar->last_reset; 3174 cgds->maxtags = dev->quirk->maxtags; 3175 cgds->mintags = dev->quirk->mintags; 3176 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 3177 cgds->last_reset = bus->last_reset; 3178 cgds->ccb_h.status = CAM_REQ_CMP; 3179 } 3180 splx(s); 3181 break; 3182 } 3183 case XPT_GDEVLIST: 3184 { 3185 struct cam_periph *nperiph; 3186 struct periph_list *periph_head; 3187 struct ccb_getdevlist *cgdl; 3188 u_int i; 3189 int s; 3190 struct cam_ed *device; 3191 int found; 3192 3193 3194 found = 0; 3195 3196 /* 3197 * Don't want anyone mucking with our data. 3198 */ 3199 s = splcam(); 3200 device = start_ccb->ccb_h.path->device; 3201 periph_head = &device->periphs; 3202 cgdl = &start_ccb->cgdl; 3203 3204 /* 3205 * Check and see if the list has changed since the user 3206 * last requested a list member. If so, tell them that the 3207 * list has changed, and therefore they need to start over 3208 * from the beginning. 3209 */ 3210 if ((cgdl->index != 0) && 3211 (cgdl->generation != device->generation)) { 3212 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 3213 splx(s); 3214 break; 3215 } 3216 3217 /* 3218 * Traverse the list of peripherals and attempt to find 3219 * the requested peripheral. 3220 */ 3221 for (nperiph = SLIST_FIRST(periph_head), i = 0; 3222 (nperiph != NULL) && (i <= cgdl->index); 3223 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 3224 if (i == cgdl->index) { 3225 strncpy(cgdl->periph_name, 3226 nperiph->periph_name, 3227 DEV_IDLEN); 3228 cgdl->unit_number = nperiph->unit_number; 3229 found = 1; 3230 } 3231 } 3232 if (found == 0) { 3233 cgdl->status = CAM_GDEVLIST_ERROR; 3234 splx(s); 3235 break; 3236 } 3237 3238 if (nperiph == NULL) 3239 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 3240 else 3241 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 3242 3243 cgdl->index++; 3244 cgdl->generation = device->generation; 3245 3246 splx(s); 3247 cgdl->ccb_h.status = CAM_REQ_CMP; 3248 break; 3249 } 3250 case XPT_DEV_MATCH: 3251 { 3252 int s; 3253 dev_pos_type position_type; 3254 struct ccb_dev_match *cdm; 3255 3256 cdm = &start_ccb->cdm; 3257 3258 /* 3259 * Prevent EDT changes while we traverse it. 3260 */ 3261 s = splcam(); 3262 /* 3263 * There are two ways of getting at information in the EDT. 3264 * The first way is via the primary EDT tree. It starts 3265 * with a list of busses, then a list of targets on a bus, 3266 * then devices/luns on a target, and then peripherals on a 3267 * device/lun. The "other" way is by the peripheral driver 3268 * lists. The peripheral driver lists are organized by 3269 * peripheral driver. (obviously) So it makes sense to 3270 * use the peripheral driver list if the user is looking 3271 * for something like "da1", or all "da" devices. If the 3272 * user is looking for something on a particular bus/target 3273 * or lun, it's generally better to go through the EDT tree. 3274 */ 3275 3276 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 3277 position_type = cdm->pos.position_type; 3278 else { 3279 u_int i; 3280 3281 position_type = CAM_DEV_POS_NONE; 3282 3283 for (i = 0; i < cdm->num_patterns; i++) { 3284 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 3285 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 3286 position_type = CAM_DEV_POS_EDT; 3287 break; 3288 } 3289 } 3290 3291 if (cdm->num_patterns == 0) 3292 position_type = CAM_DEV_POS_EDT; 3293 else if (position_type == CAM_DEV_POS_NONE) 3294 position_type = CAM_DEV_POS_PDRV; 3295 } 3296 3297 switch(position_type & CAM_DEV_POS_TYPEMASK) { 3298 case CAM_DEV_POS_EDT: 3299 xptedtmatch(cdm); 3300 break; 3301 case CAM_DEV_POS_PDRV: 3302 xptperiphlistmatch(cdm); 3303 break; 3304 default: 3305 cdm->status = CAM_DEV_MATCH_ERROR; 3306 break; 3307 } 3308 3309 splx(s); 3310 3311 if (cdm->status == CAM_DEV_MATCH_ERROR) 3312 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 3313 else 3314 start_ccb->ccb_h.status = CAM_REQ_CMP; 3315 3316 break; 3317 } 3318 case XPT_SASYNC_CB: 3319 { 3320 struct ccb_setasync *csa; 3321 struct async_node *cur_entry; 3322 struct async_list *async_head; 3323 u_int32_t added; 3324 int s; 3325 3326 csa = &start_ccb->csa; 3327 added = csa->event_enable; 3328 async_head = &csa->ccb_h.path->device->asyncs; 3329 3330 /* 3331 * If there is already an entry for us, simply 3332 * update it. 3333 */ 3334 s = splcam(); 3335 cur_entry = SLIST_FIRST(async_head); 3336 while (cur_entry != NULL) { 3337 if ((cur_entry->callback_arg == csa->callback_arg) 3338 && (cur_entry->callback == csa->callback)) 3339 break; 3340 cur_entry = SLIST_NEXT(cur_entry, links); 3341 } 3342 3343 if (cur_entry != NULL) { 3344 /* 3345 * If the request has no flags set, 3346 * remove the entry. 3347 */ 3348 added &= ~cur_entry->event_enable; 3349 if (csa->event_enable == 0) { 3350 SLIST_REMOVE(async_head, cur_entry, 3351 async_node, links); 3352 csa->ccb_h.path->device->refcount--; 3353 free(cur_entry, M_CAMXPT); 3354 } else { 3355 cur_entry->event_enable = csa->event_enable; 3356 } 3357 } else { 3358 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3359 M_NOWAIT); 3360 if (cur_entry == NULL) { 3361 splx(s); 3362 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3363 break; 3364 } 3365 cur_entry->event_enable = csa->event_enable; 3366 cur_entry->callback_arg = csa->callback_arg; 3367 cur_entry->callback = csa->callback; 3368 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3369 csa->ccb_h.path->device->refcount++; 3370 } 3371 3372 if ((added & AC_FOUND_DEVICE) != 0) { 3373 /* 3374 * Get this peripheral up to date with all 3375 * the currently existing devices. 3376 */ 3377 xpt_for_all_devices(xptsetasyncfunc, cur_entry); 3378 } 3379 if ((added & AC_PATH_REGISTERED) != 0) { 3380 /* 3381 * Get this peripheral up to date with all 3382 * the currently existing busses. 3383 */ 3384 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry); 3385 } 3386 splx(s); 3387 start_ccb->ccb_h.status = CAM_REQ_CMP; 3388 break; 3389 } 3390 case XPT_REL_SIMQ: 3391 { 3392 struct ccb_relsim *crs; 3393 struct cam_ed *dev; 3394 int s; 3395 3396 crs = &start_ccb->crs; 3397 dev = crs->ccb_h.path->device; 3398 if (dev == NULL) { 3399 3400 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3401 break; 3402 } 3403 3404 s = splcam(); 3405 3406 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3407 3408 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) { 3409 /* Don't ever go below one opening */ 3410 if (crs->openings > 0) { 3411 xpt_dev_ccbq_resize(crs->ccb_h.path, 3412 crs->openings); 3413 3414 if (bootverbose) { 3415 xpt_print(crs->ccb_h.path, 3416 "tagged openings now %d\n", 3417 crs->openings); 3418 } 3419 } 3420 } 3421 } 3422 3423 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3424 3425 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3426 3427 /* 3428 * Just extend the old timeout and decrement 3429 * the freeze count so that a single timeout 3430 * is sufficient for releasing the queue. 3431 */ 3432 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3433 untimeout(xpt_release_devq_timeout, 3434 dev, dev->c_handle); 3435 } else { 3436 3437 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3438 } 3439 3440 dev->c_handle = 3441 timeout(xpt_release_devq_timeout, 3442 dev, 3443 (crs->release_timeout * hz) / 1000); 3444 3445 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3446 3447 } 3448 3449 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3450 3451 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3452 /* 3453 * Decrement the freeze count so that a single 3454 * completion is still sufficient to unfreeze 3455 * the queue. 3456 */ 3457 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3458 } else { 3459 3460 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3461 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3462 } 3463 } 3464 3465 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3466 3467 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3468 || (dev->ccbq.dev_active == 0)) { 3469 3470 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3471 } else { 3472 3473 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3474 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3475 } 3476 } 3477 splx(s); 3478 3479 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 3480 3481 xpt_release_devq(crs->ccb_h.path, /*count*/1, 3482 /*run_queue*/TRUE); 3483 } 3484 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt; 3485 start_ccb->ccb_h.status = CAM_REQ_CMP; 3486 break; 3487 } 3488 case XPT_SCAN_BUS: 3489 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); 3490 break; 3491 case XPT_SCAN_LUN: 3492 xpt_scan_lun(start_ccb->ccb_h.path->periph, 3493 start_ccb->ccb_h.path, start_ccb->crcn.flags, 3494 start_ccb); 3495 break; 3496 case XPT_DEBUG: { 3497 #ifdef CAMDEBUG 3498 int s; 3499 3500 s = splcam(); 3501 #ifdef CAM_DEBUG_DELAY 3502 cam_debug_delay = CAM_DEBUG_DELAY; 3503 #endif 3504 cam_dflags = start_ccb->cdbg.flags; 3505 if (cam_dpath != NULL) { 3506 xpt_free_path(cam_dpath); 3507 cam_dpath = NULL; 3508 } 3509 3510 if (cam_dflags != CAM_DEBUG_NONE) { 3511 if (xpt_create_path(&cam_dpath, xpt_periph, 3512 start_ccb->ccb_h.path_id, 3513 start_ccb->ccb_h.target_id, 3514 start_ccb->ccb_h.target_lun) != 3515 CAM_REQ_CMP) { 3516 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3517 cam_dflags = CAM_DEBUG_NONE; 3518 } else { 3519 start_ccb->ccb_h.status = CAM_REQ_CMP; 3520 xpt_print(cam_dpath, "debugging flags now %x\n", 3521 cam_dflags); 3522 } 3523 } else { 3524 cam_dpath = NULL; 3525 start_ccb->ccb_h.status = CAM_REQ_CMP; 3526 } 3527 splx(s); 3528 #else /* !CAMDEBUG */ 3529 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3530 #endif /* CAMDEBUG */ 3531 break; 3532 } 3533 case XPT_NOOP: 3534 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3535 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3536 start_ccb->ccb_h.status = CAM_REQ_CMP; 3537 break; 3538 default: 3539 case XPT_SDEV_TYPE: 3540 case XPT_TERM_IO: 3541 case XPT_ENG_INQ: 3542 /* XXX Implement */ 3543 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3544 break; 3545 } 3546 splx(iopl); 3547 } 3548 3549 void 3550 xpt_polled_action(union ccb *start_ccb) 3551 { 3552 int s; 3553 u_int32_t timeout; 3554 struct cam_sim *sim; 3555 struct cam_devq *devq; 3556 struct cam_ed *dev; 3557 3558 GIANT_REQUIRED; 3559 3560 timeout = start_ccb->ccb_h.timeout; 3561 sim = start_ccb->ccb_h.path->bus->sim; 3562 devq = sim->devq; 3563 dev = start_ccb->ccb_h.path->device; 3564 3565 s = splcam(); 3566 3567 /* 3568 * Steal an opening so that no other queued requests 3569 * can get it before us while we simulate interrupts. 3570 */ 3571 dev->ccbq.devq_openings--; 3572 dev->ccbq.dev_openings--; 3573 3574 while(((devq != NULL && devq->send_openings <= 0) || 3575 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 3576 DELAY(1000); 3577 (*(sim->sim_poll))(sim); 3578 camisr(&cam_bioq); 3579 } 3580 3581 dev->ccbq.devq_openings++; 3582 dev->ccbq.dev_openings++; 3583 3584 if (timeout != 0) { 3585 xpt_action(start_ccb); 3586 while(--timeout > 0) { 3587 (*(sim->sim_poll))(sim); 3588 camisr(&cam_bioq); 3589 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3590 != CAM_REQ_INPROG) 3591 break; 3592 DELAY(1000); 3593 } 3594 if (timeout == 0) { 3595 /* 3596 * XXX Is it worth adding a sim_timeout entry 3597 * point so we can attempt recovery? If 3598 * this is only used for dumps, I don't think 3599 * it is. 3600 */ 3601 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3602 } 3603 } else { 3604 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3605 } 3606 splx(s); 3607 } 3608 3609 /* 3610 * Schedule a peripheral driver to receive a ccb when it's 3611 * target device has space for more transactions. 3612 */ 3613 void 3614 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3615 { 3616 struct cam_ed *device; 3617 union ccb *work_ccb; 3618 int s; 3619 int runq; 3620 3621 GIANT_REQUIRED; 3622 3623 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3624 device = perph->path->device; 3625 s = splsoftcam(); 3626 if (periph_is_queued(perph)) { 3627 /* Simply reorder based on new priority */ 3628 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3629 (" change priority to %d\n", new_priority)); 3630 if (new_priority < perph->pinfo.priority) { 3631 camq_change_priority(&device->drvq, 3632 perph->pinfo.index, 3633 new_priority); 3634 } 3635 runq = 0; 3636 } else if (SIM_DEAD(perph->path->bus->sim)) { 3637 /* The SIM is gone so just call periph_start directly. */ 3638 work_ccb = xpt_get_ccb(perph->path->device); 3639 splx(s); 3640 if (work_ccb == NULL) 3641 return; /* XXX */ 3642 xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority); 3643 perph->pinfo.priority = new_priority; 3644 perph->periph_start(perph, work_ccb); 3645 return; 3646 } else { 3647 /* New entry on the queue */ 3648 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3649 (" added periph to queue\n")); 3650 perph->pinfo.priority = new_priority; 3651 perph->pinfo.generation = ++device->drvq.generation; 3652 camq_insert(&device->drvq, &perph->pinfo); 3653 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3654 } 3655 splx(s); 3656 if (runq != 0) { 3657 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3658 (" calling xpt_run_devq\n")); 3659 xpt_run_dev_allocq(perph->path->bus); 3660 } 3661 } 3662 3663 3664 /* 3665 * Schedule a device to run on a given queue. 3666 * If the device was inserted as a new entry on the queue, 3667 * return 1 meaning the device queue should be run. If we 3668 * were already queued, implying someone else has already 3669 * started the queue, return 0 so the caller doesn't attempt 3670 * to run the queue. Must be run at either splsoftcam 3671 * (or splcam since that encompases splsoftcam). 3672 */ 3673 static int 3674 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3675 u_int32_t new_priority) 3676 { 3677 int retval; 3678 u_int32_t old_priority; 3679 3680 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3681 3682 old_priority = pinfo->priority; 3683 3684 /* 3685 * Are we already queued? 3686 */ 3687 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3688 /* Simply reorder based on new priority */ 3689 if (new_priority < old_priority) { 3690 camq_change_priority(queue, pinfo->index, 3691 new_priority); 3692 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3693 ("changed priority to %d\n", 3694 new_priority)); 3695 } 3696 retval = 0; 3697 } else { 3698 /* New entry on the queue */ 3699 if (new_priority < old_priority) 3700 pinfo->priority = new_priority; 3701 3702 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3703 ("Inserting onto queue\n")); 3704 pinfo->generation = ++queue->generation; 3705 camq_insert(queue, pinfo); 3706 retval = 1; 3707 } 3708 return (retval); 3709 } 3710 3711 static void 3712 xpt_run_dev_allocq(struct cam_eb *bus) 3713 { 3714 struct cam_devq *devq; 3715 int s; 3716 3717 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3718 devq = bus->sim->devq; 3719 3720 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3721 (" qfrozen_cnt == 0x%x, entries == %d, " 3722 "openings == %d, active == %d\n", 3723 devq->alloc_queue.qfrozen_cnt, 3724 devq->alloc_queue.entries, 3725 devq->alloc_openings, 3726 devq->alloc_active)); 3727 3728 s = splsoftcam(); 3729 devq->alloc_queue.qfrozen_cnt++; 3730 while ((devq->alloc_queue.entries > 0) 3731 && (devq->alloc_openings > 0) 3732 && (devq->alloc_queue.qfrozen_cnt <= 1)) { 3733 struct cam_ed_qinfo *qinfo; 3734 struct cam_ed *device; 3735 union ccb *work_ccb; 3736 struct cam_periph *drv; 3737 struct camq *drvq; 3738 3739 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3740 CAMQ_HEAD); 3741 device = qinfo->device; 3742 3743 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3744 ("running device %p\n", device)); 3745 3746 drvq = &device->drvq; 3747 3748 #ifdef CAMDEBUG 3749 if (drvq->entries <= 0) { 3750 panic("xpt_run_dev_allocq: " 3751 "Device on queue without any work to do"); 3752 } 3753 #endif 3754 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3755 devq->alloc_openings--; 3756 devq->alloc_active++; 3757 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3758 splx(s); 3759 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3760 drv->pinfo.priority); 3761 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3762 ("calling periph start\n")); 3763 drv->periph_start(drv, work_ccb); 3764 } else { 3765 /* 3766 * Malloc failure in alloc_ccb 3767 */ 3768 /* 3769 * XXX add us to a list to be run from free_ccb 3770 * if we don't have any ccbs active on this 3771 * device queue otherwise we may never get run 3772 * again. 3773 */ 3774 break; 3775 } 3776 3777 /* Raise IPL for possible insertion and test at top of loop */ 3778 s = splsoftcam(); 3779 3780 if (drvq->entries > 0) { 3781 /* We have more work. Attempt to reschedule */ 3782 xpt_schedule_dev_allocq(bus, device); 3783 } 3784 } 3785 devq->alloc_queue.qfrozen_cnt--; 3786 splx(s); 3787 } 3788 3789 static void 3790 xpt_run_dev_sendq(struct cam_eb *bus) 3791 { 3792 struct cam_devq *devq; 3793 int s; 3794 3795 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3796 3797 devq = bus->sim->devq; 3798 3799 s = splcam(); 3800 devq->send_queue.qfrozen_cnt++; 3801 splx(s); 3802 s = splsoftcam(); 3803 while ((devq->send_queue.entries > 0) 3804 && (devq->send_openings > 0)) { 3805 struct cam_ed_qinfo *qinfo; 3806 struct cam_ed *device; 3807 union ccb *work_ccb; 3808 struct cam_sim *sim; 3809 int ospl; 3810 3811 ospl = splcam(); 3812 if (devq->send_queue.qfrozen_cnt > 1) { 3813 splx(ospl); 3814 break; 3815 } 3816 3817 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3818 CAMQ_HEAD); 3819 device = qinfo->device; 3820 3821 /* 3822 * If the device has been "frozen", don't attempt 3823 * to run it. 3824 */ 3825 if (device->qfrozen_cnt > 0) { 3826 splx(ospl); 3827 continue; 3828 } 3829 3830 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3831 ("running device %p\n", device)); 3832 3833 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3834 if (work_ccb == NULL) { 3835 printf("device on run queue with no ccbs???\n"); 3836 splx(ospl); 3837 continue; 3838 } 3839 3840 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3841 3842 if (num_highpower <= 0) { 3843 /* 3844 * We got a high power command, but we 3845 * don't have any available slots. Freeze 3846 * the device queue until we have a slot 3847 * available. 3848 */ 3849 device->qfrozen_cnt++; 3850 STAILQ_INSERT_TAIL(&highpowerq, 3851 &work_ccb->ccb_h, 3852 xpt_links.stqe); 3853 3854 splx(ospl); 3855 continue; 3856 } else { 3857 /* 3858 * Consume a high power slot while 3859 * this ccb runs. 3860 */ 3861 num_highpower--; 3862 } 3863 } 3864 devq->active_dev = device; 3865 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3866 3867 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3868 splx(ospl); 3869 3870 devq->send_openings--; 3871 devq->send_active++; 3872 3873 if (device->ccbq.queue.entries > 0) 3874 xpt_schedule_dev_sendq(bus, device); 3875 3876 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3877 /* 3878 * The client wants to freeze the queue 3879 * after this CCB is sent. 3880 */ 3881 ospl = splcam(); 3882 device->qfrozen_cnt++; 3883 splx(ospl); 3884 } 3885 3886 splx(s); 3887 3888 /* In Target mode, the peripheral driver knows best... */ 3889 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3890 if ((device->inq_flags & SID_CmdQue) != 0 3891 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3892 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3893 else 3894 /* 3895 * Clear this in case of a retried CCB that 3896 * failed due to a rejected tag. 3897 */ 3898 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3899 } 3900 3901 /* 3902 * Device queues can be shared among multiple sim instances 3903 * that reside on different busses. Use the SIM in the queue 3904 * CCB's path, rather than the one in the bus that was passed 3905 * into this function. 3906 */ 3907 sim = work_ccb->ccb_h.path->bus->sim; 3908 (*(sim->sim_action))(sim, work_ccb); 3909 3910 ospl = splcam(); 3911 devq->active_dev = NULL; 3912 splx(ospl); 3913 /* Raise IPL for possible insertion and test at top of loop */ 3914 s = splsoftcam(); 3915 } 3916 splx(s); 3917 s = splcam(); 3918 devq->send_queue.qfrozen_cnt--; 3919 splx(s); 3920 } 3921 3922 /* 3923 * This function merges stuff from the slave ccb into the master ccb, while 3924 * keeping important fields in the master ccb constant. 3925 */ 3926 void 3927 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3928 { 3929 GIANT_REQUIRED; 3930 3931 /* 3932 * Pull fields that are valid for peripheral drivers to set 3933 * into the master CCB along with the CCB "payload". 3934 */ 3935 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3936 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3937 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3938 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3939 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3940 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3941 } 3942 3943 void 3944 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3945 { 3946 GIANT_REQUIRED; 3947 3948 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3949 ccb_h->pinfo.priority = priority; 3950 ccb_h->path = path; 3951 ccb_h->path_id = path->bus->path_id; 3952 if (path->target) 3953 ccb_h->target_id = path->target->target_id; 3954 else 3955 ccb_h->target_id = CAM_TARGET_WILDCARD; 3956 if (path->device) { 3957 ccb_h->target_lun = path->device->lun_id; 3958 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3959 } else { 3960 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3961 } 3962 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3963 ccb_h->flags = 0; 3964 } 3965 3966 /* Path manipulation functions */ 3967 cam_status 3968 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3969 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3970 { 3971 struct cam_path *path; 3972 cam_status status; 3973 3974 GIANT_REQUIRED; 3975 3976 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 3977 3978 if (path == NULL) { 3979 status = CAM_RESRC_UNAVAIL; 3980 return(status); 3981 } 3982 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3983 if (status != CAM_REQ_CMP) { 3984 free(path, M_CAMXPT); 3985 path = NULL; 3986 } 3987 *new_path_ptr = path; 3988 return (status); 3989 } 3990 3991 static cam_status 3992 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3993 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3994 { 3995 struct cam_eb *bus; 3996 struct cam_et *target; 3997 struct cam_ed *device; 3998 cam_status status; 3999 int s; 4000 4001 status = CAM_REQ_CMP; /* Completed without error */ 4002 target = NULL; /* Wildcarded */ 4003 device = NULL; /* Wildcarded */ 4004 4005 /* 4006 * We will potentially modify the EDT, so block interrupts 4007 * that may attempt to create cam paths. 4008 */ 4009 s = splcam(); 4010 bus = xpt_find_bus(path_id); 4011 if (bus == NULL) { 4012 status = CAM_PATH_INVALID; 4013 } else { 4014 target = xpt_find_target(bus, target_id); 4015 if (target == NULL) { 4016 /* Create one */ 4017 struct cam_et *new_target; 4018 4019 new_target = xpt_alloc_target(bus, target_id); 4020 if (new_target == NULL) { 4021 status = CAM_RESRC_UNAVAIL; 4022 } else { 4023 target = new_target; 4024 } 4025 } 4026 if (target != NULL) { 4027 device = xpt_find_device(target, lun_id); 4028 if (device == NULL) { 4029 /* Create one */ 4030 struct cam_ed *new_device; 4031 4032 new_device = xpt_alloc_device(bus, 4033 target, 4034 lun_id); 4035 if (new_device == NULL) { 4036 status = CAM_RESRC_UNAVAIL; 4037 } else { 4038 device = new_device; 4039 } 4040 } 4041 } 4042 } 4043 splx(s); 4044 4045 /* 4046 * Only touch the user's data if we are successful. 4047 */ 4048 if (status == CAM_REQ_CMP) { 4049 new_path->periph = perph; 4050 new_path->bus = bus; 4051 new_path->target = target; 4052 new_path->device = device; 4053 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 4054 } else { 4055 if (device != NULL) 4056 xpt_release_device(bus, target, device); 4057 if (target != NULL) 4058 xpt_release_target(bus, target); 4059 if (bus != NULL) 4060 xpt_release_bus(bus); 4061 } 4062 return (status); 4063 } 4064 4065 static void 4066 xpt_release_path(struct cam_path *path) 4067 { 4068 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 4069 if (path->device != NULL) { 4070 xpt_release_device(path->bus, path->target, path->device); 4071 path->device = NULL; 4072 } 4073 if (path->target != NULL) { 4074 xpt_release_target(path->bus, path->target); 4075 path->target = NULL; 4076 } 4077 if (path->bus != NULL) { 4078 xpt_release_bus(path->bus); 4079 path->bus = NULL; 4080 } 4081 } 4082 4083 void 4084 xpt_free_path(struct cam_path *path) 4085 { 4086 GIANT_REQUIRED; 4087 4088 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 4089 xpt_release_path(path); 4090 free(path, M_CAMXPT); 4091 } 4092 4093 4094 /* 4095 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 4096 * in path1, 2 for match with wildcards in path2. 4097 */ 4098 int 4099 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 4100 { 4101 GIANT_REQUIRED; 4102 4103 int retval = 0; 4104 4105 if (path1->bus != path2->bus) { 4106 if (path1->bus->path_id == CAM_BUS_WILDCARD) 4107 retval = 1; 4108 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 4109 retval = 2; 4110 else 4111 return (-1); 4112 } 4113 if (path1->target != path2->target) { 4114 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 4115 if (retval == 0) 4116 retval = 1; 4117 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 4118 retval = 2; 4119 else 4120 return (-1); 4121 } 4122 if (path1->device != path2->device) { 4123 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 4124 if (retval == 0) 4125 retval = 1; 4126 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 4127 retval = 2; 4128 else 4129 return (-1); 4130 } 4131 return (retval); 4132 } 4133 4134 void 4135 xpt_print_path(struct cam_path *path) 4136 { 4137 GIANT_REQUIRED; 4138 4139 if (path == NULL) 4140 printf("(nopath): "); 4141 else { 4142 if (path->periph != NULL) 4143 printf("(%s%d:", path->periph->periph_name, 4144 path->periph->unit_number); 4145 else 4146 printf("(noperiph:"); 4147 4148 if (path->bus != NULL) 4149 printf("%s%d:%d:", path->bus->sim->sim_name, 4150 path->bus->sim->unit_number, 4151 path->bus->sim->bus_id); 4152 else 4153 printf("nobus:"); 4154 4155 if (path->target != NULL) 4156 printf("%d:", path->target->target_id); 4157 else 4158 printf("X:"); 4159 4160 if (path->device != NULL) 4161 printf("%d): ", path->device->lun_id); 4162 else 4163 printf("X): "); 4164 } 4165 } 4166 4167 void 4168 xpt_print(struct cam_path *path, const char *fmt, ...) 4169 { 4170 va_list ap; 4171 xpt_print_path(path); 4172 va_start(ap, fmt); 4173 vprintf(fmt, ap); 4174 va_end(ap); 4175 } 4176 4177 int 4178 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 4179 { 4180 struct sbuf sb; 4181 4182 GIANT_REQUIRED; 4183 4184 sbuf_new(&sb, str, str_len, 0); 4185 4186 if (path == NULL) 4187 sbuf_printf(&sb, "(nopath): "); 4188 else { 4189 if (path->periph != NULL) 4190 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 4191 path->periph->unit_number); 4192 else 4193 sbuf_printf(&sb, "(noperiph:"); 4194 4195 if (path->bus != NULL) 4196 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 4197 path->bus->sim->unit_number, 4198 path->bus->sim->bus_id); 4199 else 4200 sbuf_printf(&sb, "nobus:"); 4201 4202 if (path->target != NULL) 4203 sbuf_printf(&sb, "%d:", path->target->target_id); 4204 else 4205 sbuf_printf(&sb, "X:"); 4206 4207 if (path->device != NULL) 4208 sbuf_printf(&sb, "%d): ", path->device->lun_id); 4209 else 4210 sbuf_printf(&sb, "X): "); 4211 } 4212 sbuf_finish(&sb); 4213 4214 return(sbuf_len(&sb)); 4215 } 4216 4217 path_id_t 4218 xpt_path_path_id(struct cam_path *path) 4219 { 4220 GIANT_REQUIRED; 4221 4222 return(path->bus->path_id); 4223 } 4224 4225 target_id_t 4226 xpt_path_target_id(struct cam_path *path) 4227 { 4228 GIANT_REQUIRED; 4229 4230 if (path->target != NULL) 4231 return (path->target->target_id); 4232 else 4233 return (CAM_TARGET_WILDCARD); 4234 } 4235 4236 lun_id_t 4237 xpt_path_lun_id(struct cam_path *path) 4238 { 4239 GIANT_REQUIRED; 4240 4241 if (path->device != NULL) 4242 return (path->device->lun_id); 4243 else 4244 return (CAM_LUN_WILDCARD); 4245 } 4246 4247 struct cam_sim * 4248 xpt_path_sim(struct cam_path *path) 4249 { 4250 GIANT_REQUIRED; 4251 4252 return (path->bus->sim); 4253 } 4254 4255 struct cam_periph* 4256 xpt_path_periph(struct cam_path *path) 4257 { 4258 GIANT_REQUIRED; 4259 4260 return (path->periph); 4261 } 4262 4263 /* 4264 * Release a CAM control block for the caller. Remit the cost of the structure 4265 * to the device referenced by the path. If the this device had no 'credits' 4266 * and peripheral drivers have registered async callbacks for this notification 4267 * call them now. 4268 */ 4269 void 4270 xpt_release_ccb(union ccb *free_ccb) 4271 { 4272 int s; 4273 struct cam_path *path; 4274 struct cam_ed *device; 4275 struct cam_eb *bus; 4276 4277 GIANT_REQUIRED; 4278 4279 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4280 path = free_ccb->ccb_h.path; 4281 device = path->device; 4282 bus = path->bus; 4283 s = splsoftcam(); 4284 cam_ccbq_release_opening(&device->ccbq); 4285 if (xpt_ccb_count > xpt_max_ccbs) { 4286 xpt_free_ccb(free_ccb); 4287 xpt_ccb_count--; 4288 } else { 4289 SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle); 4290 } 4291 if (bus->sim->devq == NULL) { 4292 splx(s); 4293 return; 4294 } 4295 bus->sim->devq->alloc_openings++; 4296 bus->sim->devq->alloc_active--; 4297 /* XXX Turn this into an inline function - xpt_run_device?? */ 4298 if ((device_is_alloc_queued(device) == 0) 4299 && (device->drvq.entries > 0)) { 4300 xpt_schedule_dev_allocq(bus, device); 4301 } 4302 splx(s); 4303 if (dev_allocq_is_runnable(bus->sim->devq)) 4304 xpt_run_dev_allocq(bus); 4305 } 4306 4307 /* Functions accessed by SIM drivers */ 4308 4309 /* 4310 * A sim structure, listing the SIM entry points and instance 4311 * identification info is passed to xpt_bus_register to hook the SIM 4312 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4313 * for this new bus and places it in the array of busses and assigns 4314 * it a path_id. The path_id may be influenced by "hard wiring" 4315 * information specified by the user. Once interrupt services are 4316 * availible, the bus will be probed. 4317 */ 4318 int32_t 4319 xpt_bus_register(struct cam_sim *sim, u_int32_t bus) 4320 { 4321 struct cam_eb *new_bus; 4322 struct cam_eb *old_bus; 4323 struct ccb_pathinq cpi; 4324 int s; 4325 4326 GIANT_REQUIRED; 4327 4328 sim->bus_id = bus; 4329 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4330 M_CAMXPT, M_NOWAIT); 4331 if (new_bus == NULL) { 4332 /* Couldn't satisfy request */ 4333 return (CAM_RESRC_UNAVAIL); 4334 } 4335 4336 if (strcmp(sim->sim_name, "xpt") != 0) { 4337 4338 sim->path_id = 4339 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4340 } 4341 4342 TAILQ_INIT(&new_bus->et_entries); 4343 new_bus->path_id = sim->path_id; 4344 new_bus->sim = sim; 4345 timevalclear(&new_bus->last_reset); 4346 new_bus->flags = 0; 4347 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4348 new_bus->generation = 0; 4349 s = splcam(); 4350 old_bus = TAILQ_FIRST(&xpt_busses); 4351 while (old_bus != NULL 4352 && old_bus->path_id < new_bus->path_id) 4353 old_bus = TAILQ_NEXT(old_bus, links); 4354 if (old_bus != NULL) 4355 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4356 else 4357 TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links); 4358 bus_generation++; 4359 splx(s); 4360 4361 /* Notify interested parties */ 4362 if (sim->path_id != CAM_XPT_PATH_ID) { 4363 struct cam_path path; 4364 4365 xpt_compile_path(&path, /*periph*/NULL, sim->path_id, 4366 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4367 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 4368 cpi.ccb_h.func_code = XPT_PATH_INQ; 4369 xpt_action((union ccb *)&cpi); 4370 xpt_async(AC_PATH_REGISTERED, &path, &cpi); 4371 xpt_release_path(&path); 4372 } 4373 return (CAM_SUCCESS); 4374 } 4375 4376 int32_t 4377 xpt_bus_deregister(path_id_t pathid) 4378 { 4379 struct cam_path bus_path; 4380 struct cam_ed *device; 4381 struct cam_ed_qinfo *qinfo; 4382 struct cam_devq *devq; 4383 struct cam_periph *periph; 4384 struct cam_sim *ccbsim; 4385 union ccb *work_ccb; 4386 cam_status status; 4387 4388 GIANT_REQUIRED; 4389 4390 status = xpt_compile_path(&bus_path, NULL, pathid, 4391 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4392 if (status != CAM_REQ_CMP) 4393 return (status); 4394 4395 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4396 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4397 4398 /* The SIM may be gone, so use a dummy SIM for any stray operations. */ 4399 devq = bus_path.bus->sim->devq; 4400 bus_path.bus->sim = &cam_dead_sim; 4401 4402 /* Execute any pending operations now. */ 4403 while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 4404 CAMQ_HEAD)) != NULL || 4405 (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 4406 CAMQ_HEAD)) != NULL) { 4407 do { 4408 device = qinfo->device; 4409 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 4410 if (work_ccb != NULL) { 4411 devq->active_dev = device; 4412 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 4413 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 4414 ccbsim = work_ccb->ccb_h.path->bus->sim; 4415 (*(ccbsim->sim_action))(ccbsim, work_ccb); 4416 } 4417 4418 periph = (struct cam_periph *)camq_remove(&device->drvq, 4419 CAMQ_HEAD); 4420 if (periph != NULL) 4421 xpt_schedule(periph, periph->pinfo.priority); 4422 } while (work_ccb != NULL || periph != NULL); 4423 } 4424 4425 /* Make sure all completed CCBs are processed. */ 4426 while (!TAILQ_EMPTY(&cam_bioq)) { 4427 camisr(&cam_bioq); 4428 4429 /* Repeat the async's for the benefit of any new devices. */ 4430 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4431 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4432 } 4433 4434 /* Release the reference count held while registered. */ 4435 xpt_release_bus(bus_path.bus); 4436 xpt_release_path(&bus_path); 4437 4438 /* Recheck for more completed CCBs. */ 4439 while (!TAILQ_EMPTY(&cam_bioq)) 4440 camisr(&cam_bioq); 4441 4442 return (CAM_REQ_CMP); 4443 } 4444 4445 static path_id_t 4446 xptnextfreepathid(void) 4447 { 4448 struct cam_eb *bus; 4449 path_id_t pathid; 4450 const char *strval; 4451 4452 pathid = 0; 4453 bus = TAILQ_FIRST(&xpt_busses); 4454 retry: 4455 /* Find an unoccupied pathid */ 4456 while (bus != NULL 4457 && bus->path_id <= pathid) { 4458 if (bus->path_id == pathid) 4459 pathid++; 4460 bus = TAILQ_NEXT(bus, links); 4461 } 4462 4463 /* 4464 * Ensure that this pathid is not reserved for 4465 * a bus that may be registered in the future. 4466 */ 4467 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4468 ++pathid; 4469 /* Start the search over */ 4470 goto retry; 4471 } 4472 return (pathid); 4473 } 4474 4475 static path_id_t 4476 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4477 { 4478 path_id_t pathid; 4479 int i, dunit, val; 4480 char buf[32]; 4481 const char *dname; 4482 4483 pathid = CAM_XPT_PATH_ID; 4484 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4485 i = 0; 4486 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4487 if (strcmp(dname, "scbus")) { 4488 /* Avoid a bit of foot shooting. */ 4489 continue; 4490 } 4491 if (dunit < 0) /* unwired?! */ 4492 continue; 4493 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4494 if (sim_bus == val) { 4495 pathid = dunit; 4496 break; 4497 } 4498 } else if (sim_bus == 0) { 4499 /* Unspecified matches bus 0 */ 4500 pathid = dunit; 4501 break; 4502 } else { 4503 printf("Ambiguous scbus configuration for %s%d " 4504 "bus %d, cannot wire down. The kernel " 4505 "config entry for scbus%d should " 4506 "specify a controller bus.\n" 4507 "Scbus will be assigned dynamically.\n", 4508 sim_name, sim_unit, sim_bus, dunit); 4509 break; 4510 } 4511 } 4512 4513 if (pathid == CAM_XPT_PATH_ID) 4514 pathid = xptnextfreepathid(); 4515 return (pathid); 4516 } 4517 4518 void 4519 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4520 { 4521 struct cam_eb *bus; 4522 struct cam_et *target, *next_target; 4523 struct cam_ed *device, *next_device; 4524 int s; 4525 4526 GIANT_REQUIRED; 4527 4528 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 4529 4530 /* 4531 * Most async events come from a CAM interrupt context. In 4532 * a few cases, the error recovery code at the peripheral layer, 4533 * which may run from our SWI or a process context, may signal 4534 * deferred events with a call to xpt_async. Ensure async 4535 * notifications are serialized by blocking cam interrupts. 4536 */ 4537 s = splcam(); 4538 4539 bus = path->bus; 4540 4541 if (async_code == AC_BUS_RESET) { 4542 int s; 4543 4544 s = splclock(); 4545 /* Update our notion of when the last reset occurred */ 4546 microtime(&bus->last_reset); 4547 splx(s); 4548 } 4549 4550 for (target = TAILQ_FIRST(&bus->et_entries); 4551 target != NULL; 4552 target = next_target) { 4553 4554 next_target = TAILQ_NEXT(target, links); 4555 4556 if (path->target != target 4557 && path->target->target_id != CAM_TARGET_WILDCARD 4558 && target->target_id != CAM_TARGET_WILDCARD) 4559 continue; 4560 4561 if (async_code == AC_SENT_BDR) { 4562 int s; 4563 4564 /* Update our notion of when the last reset occurred */ 4565 s = splclock(); 4566 microtime(&path->target->last_reset); 4567 splx(s); 4568 } 4569 4570 for (device = TAILQ_FIRST(&target->ed_entries); 4571 device != NULL; 4572 device = next_device) { 4573 4574 next_device = TAILQ_NEXT(device, links); 4575 4576 if (path->device != device 4577 && path->device->lun_id != CAM_LUN_WILDCARD 4578 && device->lun_id != CAM_LUN_WILDCARD) 4579 continue; 4580 4581 xpt_dev_async(async_code, bus, target, 4582 device, async_arg); 4583 4584 xpt_async_bcast(&device->asyncs, async_code, 4585 path, async_arg); 4586 } 4587 } 4588 4589 /* 4590 * If this wasn't a fully wildcarded async, tell all 4591 * clients that want all async events. 4592 */ 4593 if (bus != xpt_periph->path->bus) 4594 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4595 path, async_arg); 4596 splx(s); 4597 } 4598 4599 static void 4600 xpt_async_bcast(struct async_list *async_head, 4601 u_int32_t async_code, 4602 struct cam_path *path, void *async_arg) 4603 { 4604 struct async_node *cur_entry; 4605 4606 cur_entry = SLIST_FIRST(async_head); 4607 while (cur_entry != NULL) { 4608 struct async_node *next_entry; 4609 /* 4610 * Grab the next list entry before we call the current 4611 * entry's callback. This is because the callback function 4612 * can delete its async callback entry. 4613 */ 4614 next_entry = SLIST_NEXT(cur_entry, links); 4615 if ((cur_entry->event_enable & async_code) != 0) 4616 cur_entry->callback(cur_entry->callback_arg, 4617 async_code, path, 4618 async_arg); 4619 cur_entry = next_entry; 4620 } 4621 } 4622 4623 /* 4624 * Handle any per-device event notifications that require action by the XPT. 4625 */ 4626 static void 4627 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, 4628 struct cam_ed *device, void *async_arg) 4629 { 4630 cam_status status; 4631 struct cam_path newpath; 4632 4633 /* 4634 * We only need to handle events for real devices. 4635 */ 4636 if (target->target_id == CAM_TARGET_WILDCARD 4637 || device->lun_id == CAM_LUN_WILDCARD) 4638 return; 4639 4640 /* 4641 * We need our own path with wildcards expanded to 4642 * handle certain types of events. 4643 */ 4644 if ((async_code == AC_SENT_BDR) 4645 || (async_code == AC_BUS_RESET) 4646 || (async_code == AC_INQ_CHANGED)) 4647 status = xpt_compile_path(&newpath, NULL, 4648 bus->path_id, 4649 target->target_id, 4650 device->lun_id); 4651 else 4652 status = CAM_REQ_CMP_ERR; 4653 4654 if (status == CAM_REQ_CMP) { 4655 4656 /* 4657 * Allow transfer negotiation to occur in a 4658 * tag free environment. 4659 */ 4660 if (async_code == AC_SENT_BDR 4661 || async_code == AC_BUS_RESET) 4662 xpt_toggle_tags(&newpath); 4663 4664 if (async_code == AC_INQ_CHANGED) { 4665 /* 4666 * We've sent a start unit command, or 4667 * something similar to a device that 4668 * may have caused its inquiry data to 4669 * change. So we re-scan the device to 4670 * refresh the inquiry data for it. 4671 */ 4672 xpt_scan_lun(newpath.periph, &newpath, 4673 CAM_EXPECT_INQ_CHANGE, NULL); 4674 } 4675 xpt_release_path(&newpath); 4676 } else if (async_code == AC_LOST_DEVICE) { 4677 device->flags |= CAM_DEV_UNCONFIGURED; 4678 } else if (async_code == AC_TRANSFER_NEG) { 4679 struct ccb_trans_settings *settings; 4680 4681 settings = (struct ccb_trans_settings *)async_arg; 4682 xpt_set_transfer_settings(settings, device, 4683 /*async_update*/TRUE); 4684 } 4685 } 4686 4687 u_int32_t 4688 xpt_freeze_devq(struct cam_path *path, u_int count) 4689 { 4690 int s; 4691 struct ccb_hdr *ccbh; 4692 4693 GIANT_REQUIRED; 4694 4695 s = splcam(); 4696 path->device->qfrozen_cnt += count; 4697 4698 /* 4699 * Mark the last CCB in the queue as needing 4700 * to be requeued if the driver hasn't 4701 * changed it's state yet. This fixes a race 4702 * where a ccb is just about to be queued to 4703 * a controller driver when it's interrupt routine 4704 * freezes the queue. To completly close the 4705 * hole, controller drives must check to see 4706 * if a ccb's status is still CAM_REQ_INPROG 4707 * under spl protection just before they queue 4708 * the CCB. See ahc_action/ahc_freeze_devq for 4709 * an example. 4710 */ 4711 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq); 4712 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4713 ccbh->status = CAM_REQUEUE_REQ; 4714 splx(s); 4715 return (path->device->qfrozen_cnt); 4716 } 4717 4718 u_int32_t 4719 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4720 { 4721 GIANT_REQUIRED; 4722 4723 sim->devq->send_queue.qfrozen_cnt += count; 4724 if (sim->devq->active_dev != NULL) { 4725 struct ccb_hdr *ccbh; 4726 4727 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs, 4728 ccb_hdr_tailq); 4729 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4730 ccbh->status = CAM_REQUEUE_REQ; 4731 } 4732 return (sim->devq->send_queue.qfrozen_cnt); 4733 } 4734 4735 static void 4736 xpt_release_devq_timeout(void *arg) 4737 { 4738 struct cam_ed *device; 4739 4740 device = (struct cam_ed *)arg; 4741 4742 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4743 } 4744 4745 void 4746 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4747 { 4748 GIANT_REQUIRED; 4749 4750 xpt_release_devq_device(path->device, count, run_queue); 4751 } 4752 4753 static void 4754 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4755 { 4756 int rundevq; 4757 int s0, s1; 4758 4759 rundevq = 0; 4760 s0 = splsoftcam(); 4761 s1 = splcam(); 4762 if (dev->qfrozen_cnt > 0) { 4763 4764 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count; 4765 dev->qfrozen_cnt -= count; 4766 if (dev->qfrozen_cnt == 0) { 4767 4768 /* 4769 * No longer need to wait for a successful 4770 * command completion. 4771 */ 4772 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4773 4774 /* 4775 * Remove any timeouts that might be scheduled 4776 * to release this queue. 4777 */ 4778 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4779 untimeout(xpt_release_devq_timeout, dev, 4780 dev->c_handle); 4781 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4782 } 4783 4784 /* 4785 * Now that we are unfrozen schedule the 4786 * device so any pending transactions are 4787 * run. 4788 */ 4789 if ((dev->ccbq.queue.entries > 0) 4790 && (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4791 && (run_queue != 0)) { 4792 rundevq = 1; 4793 } 4794 } 4795 } 4796 splx(s1); 4797 if (rundevq != 0) 4798 xpt_run_dev_sendq(dev->target->bus); 4799 splx(s0); 4800 } 4801 4802 void 4803 xpt_release_simq(struct cam_sim *sim, int run_queue) 4804 { 4805 int s; 4806 struct camq *sendq; 4807 4808 GIANT_REQUIRED; 4809 4810 sendq = &(sim->devq->send_queue); 4811 s = splcam(); 4812 if (sendq->qfrozen_cnt > 0) { 4813 4814 sendq->qfrozen_cnt--; 4815 if (sendq->qfrozen_cnt == 0) { 4816 struct cam_eb *bus; 4817 4818 /* 4819 * If there is a timeout scheduled to release this 4820 * sim queue, remove it. The queue frozen count is 4821 * already at 0. 4822 */ 4823 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4824 untimeout(xpt_release_simq_timeout, sim, 4825 sim->c_handle); 4826 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4827 } 4828 bus = xpt_find_bus(sim->path_id); 4829 splx(s); 4830 4831 if (run_queue) { 4832 /* 4833 * Now that we are unfrozen run the send queue. 4834 */ 4835 xpt_run_dev_sendq(bus); 4836 } 4837 xpt_release_bus(bus); 4838 } else 4839 splx(s); 4840 } else 4841 splx(s); 4842 } 4843 4844 static void 4845 xpt_release_simq_timeout(void *arg) 4846 { 4847 struct cam_sim *sim; 4848 4849 sim = (struct cam_sim *)arg; 4850 xpt_release_simq(sim, /* run_queue */ TRUE); 4851 } 4852 4853 void 4854 xpt_done(union ccb *done_ccb) 4855 { 4856 int s; 4857 4858 s = splcam(); 4859 4860 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4861 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4862 /* 4863 * Queue up the request for handling by our SWI handler 4864 * any of the "non-immediate" type of ccbs. 4865 */ 4866 switch (done_ccb->ccb_h.path->periph->type) { 4867 case CAM_PERIPH_BIO: 4868 mtx_lock(&cam_bioq_lock); 4869 TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h, 4870 sim_links.tqe); 4871 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4872 mtx_unlock(&cam_bioq_lock); 4873 swi_sched(cambio_ih, 0); 4874 break; 4875 default: 4876 panic("unknown periph type %d", 4877 done_ccb->ccb_h.path->periph->type); 4878 } 4879 } 4880 splx(s); 4881 } 4882 4883 union ccb * 4884 xpt_alloc_ccb() 4885 { 4886 union ccb *new_ccb; 4887 4888 GIANT_REQUIRED; 4889 4890 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_WAITOK); 4891 return (new_ccb); 4892 } 4893 4894 union ccb * 4895 xpt_alloc_ccb_nowait() 4896 { 4897 union ccb *new_ccb; 4898 4899 GIANT_REQUIRED; 4900 4901 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_NOWAIT); 4902 return (new_ccb); 4903 } 4904 4905 void 4906 xpt_free_ccb(union ccb *free_ccb) 4907 { 4908 free(free_ccb, M_CAMXPT); 4909 } 4910 4911 4912 4913 /* Private XPT functions */ 4914 4915 /* 4916 * Get a CAM control block for the caller. Charge the structure to the device 4917 * referenced by the path. If the this device has no 'credits' then the 4918 * device already has the maximum number of outstanding operations under way 4919 * and we return NULL. If we don't have sufficient resources to allocate more 4920 * ccbs, we also return NULL. 4921 */ 4922 static union ccb * 4923 xpt_get_ccb(struct cam_ed *device) 4924 { 4925 union ccb *new_ccb; 4926 int s; 4927 4928 s = splsoftcam(); 4929 if ((new_ccb = (union ccb *)SLIST_FIRST(&ccb_freeq)) == NULL) { 4930 new_ccb = xpt_alloc_ccb_nowait(); 4931 if (new_ccb == NULL) { 4932 splx(s); 4933 return (NULL); 4934 } 4935 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4936 SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h, 4937 xpt_links.sle); 4938 xpt_ccb_count++; 4939 } 4940 cam_ccbq_take_opening(&device->ccbq); 4941 SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle); 4942 splx(s); 4943 return (new_ccb); 4944 } 4945 4946 static void 4947 xpt_release_bus(struct cam_eb *bus) 4948 { 4949 int s; 4950 4951 s = splcam(); 4952 if ((--bus->refcount == 0) 4953 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4954 TAILQ_REMOVE(&xpt_busses, bus, links); 4955 bus_generation++; 4956 splx(s); 4957 free(bus, M_CAMXPT); 4958 } else 4959 splx(s); 4960 } 4961 4962 static struct cam_et * 4963 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4964 { 4965 struct cam_et *target; 4966 4967 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT); 4968 if (target != NULL) { 4969 struct cam_et *cur_target; 4970 4971 TAILQ_INIT(&target->ed_entries); 4972 target->bus = bus; 4973 target->target_id = target_id; 4974 target->refcount = 1; 4975 target->generation = 0; 4976 timevalclear(&target->last_reset); 4977 /* 4978 * Hold a reference to our parent bus so it 4979 * will not go away before we do. 4980 */ 4981 bus->refcount++; 4982 4983 /* Insertion sort into our bus's target list */ 4984 cur_target = TAILQ_FIRST(&bus->et_entries); 4985 while (cur_target != NULL && cur_target->target_id < target_id) 4986 cur_target = TAILQ_NEXT(cur_target, links); 4987 4988 if (cur_target != NULL) { 4989 TAILQ_INSERT_BEFORE(cur_target, target, links); 4990 } else { 4991 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4992 } 4993 bus->generation++; 4994 } 4995 return (target); 4996 } 4997 4998 static void 4999 xpt_release_target(struct cam_eb *bus, struct cam_et *target) 5000 { 5001 int s; 5002 5003 s = splcam(); 5004 if ((--target->refcount == 0) 5005 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 5006 TAILQ_REMOVE(&bus->et_entries, target, links); 5007 bus->generation++; 5008 splx(s); 5009 free(target, M_CAMXPT); 5010 xpt_release_bus(bus); 5011 } else 5012 splx(s); 5013 } 5014 5015 static struct cam_ed * 5016 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 5017 { 5018 struct cam_path path; 5019 struct cam_ed *device; 5020 struct cam_devq *devq; 5021 cam_status status; 5022 5023 if (SIM_DEAD(bus->sim)) 5024 return (NULL); 5025 5026 /* Make space for us in the device queue on our bus */ 5027 devq = bus->sim->devq; 5028 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 5029 5030 if (status != CAM_REQ_CMP) { 5031 device = NULL; 5032 } else { 5033 device = (struct cam_ed *)malloc(sizeof(*device), 5034 M_CAMXPT, M_NOWAIT); 5035 } 5036 5037 if (device != NULL) { 5038 struct cam_ed *cur_device; 5039 5040 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 5041 device->alloc_ccb_entry.device = device; 5042 cam_init_pinfo(&device->send_ccb_entry.pinfo); 5043 device->send_ccb_entry.device = device; 5044 device->target = target; 5045 device->lun_id = lun_id; 5046 /* Initialize our queues */ 5047 if (camq_init(&device->drvq, 0) != 0) { 5048 free(device, M_CAMXPT); 5049 return (NULL); 5050 } 5051 if (cam_ccbq_init(&device->ccbq, 5052 bus->sim->max_dev_openings) != 0) { 5053 camq_fini(&device->drvq); 5054 free(device, M_CAMXPT); 5055 return (NULL); 5056 } 5057 SLIST_INIT(&device->asyncs); 5058 SLIST_INIT(&device->periphs); 5059 device->generation = 0; 5060 device->owner = NULL; 5061 /* 5062 * Take the default quirk entry until we have inquiry 5063 * data and can determine a better quirk to use. 5064 */ 5065 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1]; 5066 bzero(&device->inq_data, sizeof(device->inq_data)); 5067 device->inq_flags = 0; 5068 device->queue_flags = 0; 5069 device->serial_num = NULL; 5070 device->serial_num_len = 0; 5071 device->qfrozen_cnt = 0; 5072 device->flags = CAM_DEV_UNCONFIGURED; 5073 device->tag_delay_count = 0; 5074 device->tag_saved_openings = 0; 5075 device->refcount = 1; 5076 callout_handle_init(&device->c_handle); 5077 5078 /* 5079 * Hold a reference to our parent target so it 5080 * will not go away before we do. 5081 */ 5082 target->refcount++; 5083 5084 /* 5085 * XXX should be limited by number of CCBs this bus can 5086 * do. 5087 */ 5088 xpt_max_ccbs += device->ccbq.devq_openings; 5089 /* Insertion sort into our target's device list */ 5090 cur_device = TAILQ_FIRST(&target->ed_entries); 5091 while (cur_device != NULL && cur_device->lun_id < lun_id) 5092 cur_device = TAILQ_NEXT(cur_device, links); 5093 if (cur_device != NULL) { 5094 TAILQ_INSERT_BEFORE(cur_device, device, links); 5095 } else { 5096 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 5097 } 5098 target->generation++; 5099 if (lun_id != CAM_LUN_WILDCARD) { 5100 xpt_compile_path(&path, 5101 NULL, 5102 bus->path_id, 5103 target->target_id, 5104 lun_id); 5105 xpt_devise_transport(&path); 5106 xpt_release_path(&path); 5107 } 5108 } 5109 return (device); 5110 } 5111 5112 static void 5113 xpt_release_device(struct cam_eb *bus, struct cam_et *target, 5114 struct cam_ed *device) 5115 { 5116 int s; 5117 5118 s = splcam(); 5119 if ((--device->refcount == 0) 5120 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) { 5121 struct cam_devq *devq; 5122 5123 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 5124 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 5125 panic("Removing device while still queued for ccbs"); 5126 5127 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 5128 untimeout(xpt_release_devq_timeout, device, 5129 device->c_handle); 5130 5131 TAILQ_REMOVE(&target->ed_entries, device,links); 5132 target->generation++; 5133 xpt_max_ccbs -= device->ccbq.devq_openings; 5134 if (!SIM_DEAD(bus->sim)) { 5135 /* Release our slot in the devq */ 5136 devq = bus->sim->devq; 5137 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 5138 } 5139 splx(s); 5140 camq_fini(&device->drvq); 5141 camq_fini(&device->ccbq.queue); 5142 free(device, M_CAMXPT); 5143 xpt_release_target(bus, target); 5144 } else 5145 splx(s); 5146 } 5147 5148 static u_int32_t 5149 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5150 { 5151 int s; 5152 int diff; 5153 int result; 5154 struct cam_ed *dev; 5155 5156 dev = path->device; 5157 s = splsoftcam(); 5158 5159 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 5160 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5161 if (result == CAM_REQ_CMP && (diff < 0)) { 5162 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 5163 } 5164 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5165 || (dev->inq_flags & SID_CmdQue) != 0) 5166 dev->tag_saved_openings = newopenings; 5167 /* Adjust the global limit */ 5168 xpt_max_ccbs += diff; 5169 splx(s); 5170 return (result); 5171 } 5172 5173 static struct cam_eb * 5174 xpt_find_bus(path_id_t path_id) 5175 { 5176 struct cam_eb *bus; 5177 5178 for (bus = TAILQ_FIRST(&xpt_busses); 5179 bus != NULL; 5180 bus = TAILQ_NEXT(bus, links)) { 5181 if (bus->path_id == path_id) { 5182 bus->refcount++; 5183 break; 5184 } 5185 } 5186 return (bus); 5187 } 5188 5189 static struct cam_et * 5190 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5191 { 5192 struct cam_et *target; 5193 5194 for (target = TAILQ_FIRST(&bus->et_entries); 5195 target != NULL; 5196 target = TAILQ_NEXT(target, links)) { 5197 if (target->target_id == target_id) { 5198 target->refcount++; 5199 break; 5200 } 5201 } 5202 return (target); 5203 } 5204 5205 static struct cam_ed * 5206 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5207 { 5208 struct cam_ed *device; 5209 5210 for (device = TAILQ_FIRST(&target->ed_entries); 5211 device != NULL; 5212 device = TAILQ_NEXT(device, links)) { 5213 if (device->lun_id == lun_id) { 5214 device->refcount++; 5215 break; 5216 } 5217 } 5218 return (device); 5219 } 5220 5221 typedef struct { 5222 union ccb *request_ccb; 5223 struct ccb_pathinq *cpi; 5224 int counter; 5225 } xpt_scan_bus_info; 5226 5227 /* 5228 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. 5229 * As the scan progresses, xpt_scan_bus is used as the 5230 * callback on completion function. 5231 */ 5232 static void 5233 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb) 5234 { 5235 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5236 ("xpt_scan_bus\n")); 5237 switch (request_ccb->ccb_h.func_code) { 5238 case XPT_SCAN_BUS: 5239 { 5240 xpt_scan_bus_info *scan_info; 5241 union ccb *work_ccb; 5242 struct cam_path *path; 5243 u_int i; 5244 u_int max_target; 5245 u_int initiator_id; 5246 5247 /* Find out the characteristics of the bus */ 5248 work_ccb = xpt_alloc_ccb(); 5249 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, 5250 request_ccb->ccb_h.pinfo.priority); 5251 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 5252 xpt_action(work_ccb); 5253 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 5254 request_ccb->ccb_h.status = work_ccb->ccb_h.status; 5255 xpt_free_ccb(work_ccb); 5256 xpt_done(request_ccb); 5257 return; 5258 } 5259 5260 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5261 /* 5262 * Can't scan the bus on an adapter that 5263 * cannot perform the initiator role. 5264 */ 5265 request_ccb->ccb_h.status = CAM_REQ_CMP; 5266 xpt_free_ccb(work_ccb); 5267 xpt_done(request_ccb); 5268 return; 5269 } 5270 5271 /* Save some state for use while we probe for devices */ 5272 scan_info = (xpt_scan_bus_info *) 5273 malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK); 5274 scan_info->request_ccb = request_ccb; 5275 scan_info->cpi = &work_ccb->cpi; 5276 5277 /* Cache on our stack so we can work asynchronously */ 5278 max_target = scan_info->cpi->max_target; 5279 initiator_id = scan_info->cpi->initiator_id; 5280 5281 5282 /* 5283 * We can scan all targets in parallel, or do it sequentially. 5284 */ 5285 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) { 5286 max_target = 0; 5287 scan_info->counter = 0; 5288 } else { 5289 scan_info->counter = scan_info->cpi->max_target + 1; 5290 if (scan_info->cpi->initiator_id < scan_info->counter) { 5291 scan_info->counter--; 5292 } 5293 } 5294 5295 for (i = 0; i <= max_target; i++) { 5296 cam_status status; 5297 if (i == initiator_id) 5298 continue; 5299 5300 status = xpt_create_path(&path, xpt_periph, 5301 request_ccb->ccb_h.path_id, 5302 i, 0); 5303 if (status != CAM_REQ_CMP) { 5304 printf("xpt_scan_bus: xpt_create_path failed" 5305 " with status %#x, bus scan halted\n", 5306 status); 5307 free(scan_info, M_TEMP); 5308 request_ccb->ccb_h.status = status; 5309 xpt_free_ccb(work_ccb); 5310 xpt_done(request_ccb); 5311 break; 5312 } 5313 work_ccb = xpt_alloc_ccb(); 5314 xpt_setup_ccb(&work_ccb->ccb_h, path, 5315 request_ccb->ccb_h.pinfo.priority); 5316 work_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5317 work_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5318 work_ccb->ccb_h.ppriv_ptr0 = scan_info; 5319 work_ccb->crcn.flags = request_ccb->crcn.flags; 5320 xpt_action(work_ccb); 5321 } 5322 break; 5323 } 5324 case XPT_SCAN_LUN: 5325 { 5326 cam_status status; 5327 struct cam_path *path; 5328 xpt_scan_bus_info *scan_info; 5329 path_id_t path_id; 5330 target_id_t target_id; 5331 lun_id_t lun_id; 5332 5333 /* Reuse the same CCB to query if a device was really found */ 5334 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; 5335 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, 5336 request_ccb->ccb_h.pinfo.priority); 5337 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5338 5339 path_id = request_ccb->ccb_h.path_id; 5340 target_id = request_ccb->ccb_h.target_id; 5341 lun_id = request_ccb->ccb_h.target_lun; 5342 xpt_action(request_ccb); 5343 5344 if (request_ccb->ccb_h.status != CAM_REQ_CMP) { 5345 struct cam_ed *device; 5346 struct cam_et *target; 5347 int s, phl; 5348 5349 /* 5350 * If we already probed lun 0 successfully, or 5351 * we have additional configured luns on this 5352 * target that might have "gone away", go onto 5353 * the next lun. 5354 */ 5355 target = request_ccb->ccb_h.path->target; 5356 /* 5357 * We may touch devices that we don't 5358 * hold references too, so ensure they 5359 * don't disappear out from under us. 5360 * The target above is referenced by the 5361 * path in the request ccb. 5362 */ 5363 phl = 0; 5364 s = splcam(); 5365 device = TAILQ_FIRST(&target->ed_entries); 5366 if (device != NULL) { 5367 phl = CAN_SRCH_HI_SPARSE(device); 5368 if (device->lun_id == 0) 5369 device = TAILQ_NEXT(device, links); 5370 } 5371 splx(s); 5372 if ((lun_id != 0) || (device != NULL)) { 5373 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) 5374 lun_id++; 5375 } 5376 } else { 5377 struct cam_ed *device; 5378 5379 device = request_ccb->ccb_h.path->device; 5380 5381 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) { 5382 /* Try the next lun */ 5383 if (lun_id < (CAM_SCSI2_MAXLUN-1) 5384 || CAN_SRCH_HI_DENSE(device)) 5385 lun_id++; 5386 } 5387 } 5388 5389 /* 5390 * Free the current request path- we're done with it. 5391 */ 5392 xpt_free_path(request_ccb->ccb_h.path); 5393 5394 /* 5395 * Check to see if we scan any further luns. 5396 */ 5397 if (lun_id == request_ccb->ccb_h.target_lun 5398 || lun_id > scan_info->cpi->max_lun) { 5399 int done; 5400 5401 hop_again: 5402 done = 0; 5403 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) { 5404 scan_info->counter++; 5405 if (scan_info->counter == 5406 scan_info->cpi->initiator_id) { 5407 scan_info->counter++; 5408 } 5409 if (scan_info->counter >= 5410 scan_info->cpi->max_target+1) { 5411 done = 1; 5412 } 5413 } else { 5414 scan_info->counter--; 5415 if (scan_info->counter == 0) { 5416 done = 1; 5417 } 5418 } 5419 if (done) { 5420 xpt_free_ccb(request_ccb); 5421 xpt_free_ccb((union ccb *)scan_info->cpi); 5422 request_ccb = scan_info->request_ccb; 5423 free(scan_info, M_TEMP); 5424 request_ccb->ccb_h.status = CAM_REQ_CMP; 5425 xpt_done(request_ccb); 5426 break; 5427 } 5428 5429 if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) { 5430 break; 5431 } 5432 status = xpt_create_path(&path, xpt_periph, 5433 scan_info->request_ccb->ccb_h.path_id, 5434 scan_info->counter, 0); 5435 if (status != CAM_REQ_CMP) { 5436 printf("xpt_scan_bus: xpt_create_path failed" 5437 " with status %#x, bus scan halted\n", 5438 status); 5439 xpt_free_ccb(request_ccb); 5440 xpt_free_ccb((union ccb *)scan_info->cpi); 5441 request_ccb = scan_info->request_ccb; 5442 free(scan_info, M_TEMP); 5443 request_ccb->ccb_h.status = status; 5444 xpt_done(request_ccb); 5445 break; 5446 } 5447 xpt_setup_ccb(&request_ccb->ccb_h, path, 5448 request_ccb->ccb_h.pinfo.priority); 5449 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5450 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5451 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5452 request_ccb->crcn.flags = 5453 scan_info->request_ccb->crcn.flags; 5454 } else { 5455 status = xpt_create_path(&path, xpt_periph, 5456 path_id, target_id, lun_id); 5457 if (status != CAM_REQ_CMP) { 5458 printf("xpt_scan_bus: xpt_create_path failed " 5459 "with status %#x, halting LUN scan\n", 5460 status); 5461 goto hop_again; 5462 } 5463 xpt_setup_ccb(&request_ccb->ccb_h, path, 5464 request_ccb->ccb_h.pinfo.priority); 5465 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5466 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5467 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5468 request_ccb->crcn.flags = 5469 scan_info->request_ccb->crcn.flags; 5470 } 5471 xpt_action(request_ccb); 5472 break; 5473 } 5474 default: 5475 break; 5476 } 5477 } 5478 5479 typedef enum { 5480 PROBE_TUR, 5481 PROBE_INQUIRY, /* this counts as DV0 for Basic Domain Validation */ 5482 PROBE_FULL_INQUIRY, 5483 PROBE_MODE_SENSE, 5484 PROBE_SERIAL_NUM, 5485 PROBE_TUR_FOR_NEGOTIATION, 5486 PROBE_INQUIRY_BASIC_DV1, 5487 PROBE_INQUIRY_BASIC_DV2, 5488 PROBE_DV_EXIT 5489 } probe_action; 5490 5491 typedef enum { 5492 PROBE_INQUIRY_CKSUM = 0x01, 5493 PROBE_SERIAL_CKSUM = 0x02, 5494 PROBE_NO_ANNOUNCE = 0x04 5495 } probe_flags; 5496 5497 typedef struct { 5498 TAILQ_HEAD(, ccb_hdr) request_ccbs; 5499 probe_action action; 5500 union ccb saved_ccb; 5501 probe_flags flags; 5502 MD5_CTX context; 5503 u_int8_t digest[16]; 5504 } probe_softc; 5505 5506 static void 5507 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path, 5508 cam_flags flags, union ccb *request_ccb) 5509 { 5510 struct ccb_pathinq cpi; 5511 cam_status status; 5512 struct cam_path *new_path; 5513 struct cam_periph *old_periph; 5514 int s; 5515 5516 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5517 ("xpt_scan_lun\n")); 5518 5519 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5520 cpi.ccb_h.func_code = XPT_PATH_INQ; 5521 xpt_action((union ccb *)&cpi); 5522 5523 if (cpi.ccb_h.status != CAM_REQ_CMP) { 5524 if (request_ccb != NULL) { 5525 request_ccb->ccb_h.status = cpi.ccb_h.status; 5526 xpt_done(request_ccb); 5527 } 5528 return; 5529 } 5530 5531 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5532 /* 5533 * Can't scan the bus on an adapter that 5534 * cannot perform the initiator role. 5535 */ 5536 if (request_ccb != NULL) { 5537 request_ccb->ccb_h.status = CAM_REQ_CMP; 5538 xpt_done(request_ccb); 5539 } 5540 return; 5541 } 5542 5543 if (request_ccb == NULL) { 5544 request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT); 5545 if (request_ccb == NULL) { 5546 xpt_print(path, "xpt_scan_lun: can't allocate CCB, " 5547 "can't continue\n"); 5548 return; 5549 } 5550 new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT); 5551 if (new_path == NULL) { 5552 xpt_print(path, "xpt_scan_lun: can't allocate path, " 5553 "can't continue\n"); 5554 free(request_ccb, M_TEMP); 5555 return; 5556 } 5557 status = xpt_compile_path(new_path, xpt_periph, 5558 path->bus->path_id, 5559 path->target->target_id, 5560 path->device->lun_id); 5561 5562 if (status != CAM_REQ_CMP) { 5563 xpt_print(path, "xpt_scan_lun: can't compile path, " 5564 "can't continue\n"); 5565 free(request_ccb, M_TEMP); 5566 free(new_path, M_TEMP); 5567 return; 5568 } 5569 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1); 5570 request_ccb->ccb_h.cbfcnp = xptscandone; 5571 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5572 request_ccb->crcn.flags = flags; 5573 } 5574 5575 s = splsoftcam(); 5576 if ((old_periph = cam_periph_find(path, "probe")) != NULL) { 5577 probe_softc *softc; 5578 5579 softc = (probe_softc *)old_periph->softc; 5580 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5581 periph_links.tqe); 5582 } else { 5583 status = cam_periph_alloc(proberegister, NULL, probecleanup, 5584 probestart, "probe", 5585 CAM_PERIPH_BIO, 5586 request_ccb->ccb_h.path, NULL, 0, 5587 request_ccb); 5588 5589 if (status != CAM_REQ_CMP) { 5590 xpt_print(path, "xpt_scan_lun: cam_alloc_periph " 5591 "returned an error, can't continue probe\n"); 5592 request_ccb->ccb_h.status = status; 5593 xpt_done(request_ccb); 5594 } 5595 } 5596 splx(s); 5597 } 5598 5599 static void 5600 xptscandone(struct cam_periph *periph, union ccb *done_ccb) 5601 { 5602 xpt_release_path(done_ccb->ccb_h.path); 5603 free(done_ccb->ccb_h.path, M_TEMP); 5604 free(done_ccb, M_TEMP); 5605 } 5606 5607 static cam_status 5608 proberegister(struct cam_periph *periph, void *arg) 5609 { 5610 union ccb *request_ccb; /* CCB representing the probe request */ 5611 probe_softc *softc; 5612 5613 request_ccb = (union ccb *)arg; 5614 if (periph == NULL) { 5615 printf("proberegister: periph was NULL!!\n"); 5616 return(CAM_REQ_CMP_ERR); 5617 } 5618 5619 if (request_ccb == NULL) { 5620 printf("proberegister: no probe CCB, " 5621 "can't register device\n"); 5622 return(CAM_REQ_CMP_ERR); 5623 } 5624 5625 softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT); 5626 5627 if (softc == NULL) { 5628 printf("proberegister: Unable to probe new device. " 5629 "Unable to allocate softc\n"); 5630 return(CAM_REQ_CMP_ERR); 5631 } 5632 TAILQ_INIT(&softc->request_ccbs); 5633 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5634 periph_links.tqe); 5635 softc->flags = 0; 5636 periph->softc = softc; 5637 cam_periph_acquire(periph); 5638 /* 5639 * Ensure we've waited at least a bus settle 5640 * delay before attempting to probe the device. 5641 * For HBAs that don't do bus resets, this won't make a difference. 5642 */ 5643 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, 5644 scsi_delay); 5645 probeschedule(periph); 5646 return(CAM_REQ_CMP); 5647 } 5648 5649 static void 5650 probeschedule(struct cam_periph *periph) 5651 { 5652 struct ccb_pathinq cpi; 5653 union ccb *ccb; 5654 probe_softc *softc; 5655 5656 softc = (probe_softc *)periph->softc; 5657 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5658 5659 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1); 5660 cpi.ccb_h.func_code = XPT_PATH_INQ; 5661 xpt_action((union ccb *)&cpi); 5662 5663 /* 5664 * If a device has gone away and another device, or the same one, 5665 * is back in the same place, it should have a unit attention 5666 * condition pending. It will not report the unit attention in 5667 * response to an inquiry, which may leave invalid transfer 5668 * negotiations in effect. The TUR will reveal the unit attention 5669 * condition. Only send the TUR for lun 0, since some devices 5670 * will get confused by commands other than inquiry to non-existent 5671 * luns. If you think a device has gone away start your scan from 5672 * lun 0. This will insure that any bogus transfer settings are 5673 * invalidated. 5674 * 5675 * If we haven't seen the device before and the controller supports 5676 * some kind of transfer negotiation, negotiate with the first 5677 * sent command if no bus reset was performed at startup. This 5678 * ensures that the device is not confused by transfer negotiation 5679 * settings left over by loader or BIOS action. 5680 */ 5681 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5682 && (ccb->ccb_h.target_lun == 0)) { 5683 softc->action = PROBE_TUR; 5684 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 5685 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { 5686 proberequestdefaultnegotiation(periph); 5687 softc->action = PROBE_INQUIRY; 5688 } else { 5689 softc->action = PROBE_INQUIRY; 5690 } 5691 5692 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) 5693 softc->flags |= PROBE_NO_ANNOUNCE; 5694 else 5695 softc->flags &= ~PROBE_NO_ANNOUNCE; 5696 5697 xpt_schedule(periph, ccb->ccb_h.pinfo.priority); 5698 } 5699 5700 static void 5701 probestart(struct cam_periph *periph, union ccb *start_ccb) 5702 { 5703 /* Probe the device that our peripheral driver points to */ 5704 struct ccb_scsiio *csio; 5705 probe_softc *softc; 5706 5707 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); 5708 5709 softc = (probe_softc *)periph->softc; 5710 csio = &start_ccb->csio; 5711 5712 switch (softc->action) { 5713 case PROBE_TUR: 5714 case PROBE_TUR_FOR_NEGOTIATION: 5715 case PROBE_DV_EXIT: 5716 { 5717 scsi_test_unit_ready(csio, 5718 /*retries*/4, 5719 probedone, 5720 MSG_SIMPLE_Q_TAG, 5721 SSD_FULL_SIZE, 5722 /*timeout*/60000); 5723 break; 5724 } 5725 case PROBE_INQUIRY: 5726 case PROBE_FULL_INQUIRY: 5727 case PROBE_INQUIRY_BASIC_DV1: 5728 case PROBE_INQUIRY_BASIC_DV2: 5729 { 5730 u_int inquiry_len; 5731 struct scsi_inquiry_data *inq_buf; 5732 5733 inq_buf = &periph->path->device->inq_data; 5734 5735 /* 5736 * If the device is currently configured, we calculate an 5737 * MD5 checksum of the inquiry data, and if the serial number 5738 * length is greater than 0, add the serial number data 5739 * into the checksum as well. Once the inquiry and the 5740 * serial number check finish, we attempt to figure out 5741 * whether we still have the same device. 5742 */ 5743 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 5744 5745 MD5Init(&softc->context); 5746 MD5Update(&softc->context, (unsigned char *)inq_buf, 5747 sizeof(struct scsi_inquiry_data)); 5748 softc->flags |= PROBE_INQUIRY_CKSUM; 5749 if (periph->path->device->serial_num_len > 0) { 5750 MD5Update(&softc->context, 5751 periph->path->device->serial_num, 5752 periph->path->device->serial_num_len); 5753 softc->flags |= PROBE_SERIAL_CKSUM; 5754 } 5755 MD5Final(softc->digest, &softc->context); 5756 } 5757 5758 if (softc->action == PROBE_INQUIRY) 5759 inquiry_len = SHORT_INQUIRY_LENGTH; 5760 else 5761 inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf); 5762 5763 /* 5764 * Some parallel SCSI devices fail to send an 5765 * ignore wide residue message when dealing with 5766 * odd length inquiry requests. Round up to be 5767 * safe. 5768 */ 5769 inquiry_len = roundup2(inquiry_len, 2); 5770 5771 if (softc->action == PROBE_INQUIRY_BASIC_DV1 5772 || softc->action == PROBE_INQUIRY_BASIC_DV2) { 5773 inq_buf = malloc(inquiry_len, M_TEMP, M_NOWAIT); 5774 } 5775 if (inq_buf == NULL) { 5776 xpt_print(periph->path, "malloc failure- skipping Basic" 5777 "Domain Validation\n"); 5778 softc->action = PROBE_DV_EXIT; 5779 scsi_test_unit_ready(csio, 5780 /*retries*/4, 5781 probedone, 5782 MSG_SIMPLE_Q_TAG, 5783 SSD_FULL_SIZE, 5784 /*timeout*/60000); 5785 break; 5786 } 5787 scsi_inquiry(csio, 5788 /*retries*/4, 5789 probedone, 5790 MSG_SIMPLE_Q_TAG, 5791 (u_int8_t *)inq_buf, 5792 inquiry_len, 5793 /*evpd*/FALSE, 5794 /*page_code*/0, 5795 SSD_MIN_SIZE, 5796 /*timeout*/60 * 1000); 5797 break; 5798 } 5799 case PROBE_MODE_SENSE: 5800 { 5801 void *mode_buf; 5802 int mode_buf_len; 5803 5804 mode_buf_len = sizeof(struct scsi_mode_header_6) 5805 + sizeof(struct scsi_mode_blk_desc) 5806 + sizeof(struct scsi_control_page); 5807 mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT); 5808 if (mode_buf != NULL) { 5809 scsi_mode_sense(csio, 5810 /*retries*/4, 5811 probedone, 5812 MSG_SIMPLE_Q_TAG, 5813 /*dbd*/FALSE, 5814 SMS_PAGE_CTRL_CURRENT, 5815 SMS_CONTROL_MODE_PAGE, 5816 mode_buf, 5817 mode_buf_len, 5818 SSD_FULL_SIZE, 5819 /*timeout*/60000); 5820 break; 5821 } 5822 xpt_print(periph->path, "Unable to mode sense control page - " 5823 "malloc failure\n"); 5824 softc->action = PROBE_SERIAL_NUM; 5825 } 5826 /* FALLTHROUGH */ 5827 case PROBE_SERIAL_NUM: 5828 { 5829 struct scsi_vpd_unit_serial_number *serial_buf; 5830 struct cam_ed* device; 5831 5832 serial_buf = NULL; 5833 device = periph->path->device; 5834 device->serial_num = NULL; 5835 device->serial_num_len = 0; 5836 5837 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) 5838 serial_buf = (struct scsi_vpd_unit_serial_number *) 5839 malloc(sizeof(*serial_buf), M_TEMP, 5840 M_NOWAIT | M_ZERO); 5841 5842 if (serial_buf != NULL) { 5843 scsi_inquiry(csio, 5844 /*retries*/4, 5845 probedone, 5846 MSG_SIMPLE_Q_TAG, 5847 (u_int8_t *)serial_buf, 5848 sizeof(*serial_buf), 5849 /*evpd*/TRUE, 5850 SVPD_UNIT_SERIAL_NUMBER, 5851 SSD_MIN_SIZE, 5852 /*timeout*/60 * 1000); 5853 break; 5854 } 5855 /* 5856 * We'll have to do without, let our probedone 5857 * routine finish up for us. 5858 */ 5859 start_ccb->csio.data_ptr = NULL; 5860 probedone(periph, start_ccb); 5861 return; 5862 } 5863 } 5864 xpt_action(start_ccb); 5865 } 5866 5867 static void 5868 proberequestdefaultnegotiation(struct cam_periph *periph) 5869 { 5870 struct ccb_trans_settings cts; 5871 5872 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5873 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5874 cts.type = CTS_TYPE_USER_SETTINGS; 5875 xpt_action((union ccb *)&cts); 5876 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5877 return; 5878 } 5879 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5880 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5881 xpt_action((union ccb *)&cts); 5882 } 5883 5884 /* 5885 * Backoff Negotiation Code- only pertinent for SPI devices. 5886 */ 5887 static int 5888 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device) 5889 { 5890 struct ccb_trans_settings cts; 5891 struct ccb_trans_settings_spi *spi; 5892 5893 memset(&cts, 0, sizeof (cts)); 5894 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5895 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5896 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5897 xpt_action((union ccb *)&cts); 5898 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5899 if (bootverbose) { 5900 xpt_print(periph->path, 5901 "failed to get current device settings\n"); 5902 } 5903 return (0); 5904 } 5905 if (cts.transport != XPORT_SPI) { 5906 if (bootverbose) { 5907 xpt_print(periph->path, "not SPI transport\n"); 5908 } 5909 return (0); 5910 } 5911 spi = &cts.xport_specific.spi; 5912 5913 /* 5914 * We cannot renegotiate sync rate if we don't have one. 5915 */ 5916 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) { 5917 if (bootverbose) { 5918 xpt_print(periph->path, "no sync rate known\n"); 5919 } 5920 return (0); 5921 } 5922 5923 /* 5924 * We'll assert that we don't have to touch PPR options- the 5925 * SIM will see what we do with period and offset and adjust 5926 * the PPR options as appropriate. 5927 */ 5928 5929 /* 5930 * A sync rate with unknown or zero offset is nonsensical. 5931 * A sync period of zero means Async. 5932 */ 5933 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0 5934 || spi->sync_offset == 0 || spi->sync_period == 0) { 5935 if (bootverbose) { 5936 xpt_print(periph->path, "no sync rate available\n"); 5937 } 5938 return (0); 5939 } 5940 5941 if (device->flags & CAM_DEV_DV_HIT_BOTTOM) { 5942 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5943 ("hit async: giving up on DV\n")); 5944 return (0); 5945 } 5946 5947 5948 /* 5949 * Jump sync_period up by one, but stop at 5MHz and fall back to Async. 5950 * We don't try to remember 'last' settings to see if the SIM actually 5951 * gets into the speed we want to set. We check on the SIM telling 5952 * us that a requested speed is bad, but otherwise don't try and 5953 * check the speed due to the asynchronous and handshake nature 5954 * of speed setting. 5955 */ 5956 spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET; 5957 for (;;) { 5958 spi->sync_period++; 5959 if (spi->sync_period >= 0xf) { 5960 spi->sync_period = 0; 5961 spi->sync_offset = 0; 5962 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5963 ("setting to async for DV\n")); 5964 /* 5965 * Once we hit async, we don't want to try 5966 * any more settings. 5967 */ 5968 device->flags |= CAM_DEV_DV_HIT_BOTTOM; 5969 } else if (bootverbose) { 5970 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5971 ("DV: period 0x%x\n", spi->sync_period)); 5972 printf("setting period to 0x%x\n", spi->sync_period); 5973 } 5974 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5975 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5976 xpt_action((union ccb *)&cts); 5977 if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5978 break; 5979 } 5980 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5981 ("DV: failed to set period 0x%x\n", spi->sync_period)); 5982 if (spi->sync_period == 0) { 5983 return (0); 5984 } 5985 } 5986 return (1); 5987 } 5988 5989 static void 5990 probedone(struct cam_periph *periph, union ccb *done_ccb) 5991 { 5992 probe_softc *softc; 5993 struct cam_path *path; 5994 u_int32_t priority; 5995 5996 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); 5997 5998 softc = (probe_softc *)periph->softc; 5999 path = done_ccb->ccb_h.path; 6000 priority = done_ccb->ccb_h.pinfo.priority; 6001 6002 switch (softc->action) { 6003 case PROBE_TUR: 6004 { 6005 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 6006 6007 if (cam_periph_error(done_ccb, 0, 6008 SF_NO_PRINT, NULL) == ERESTART) 6009 return; 6010 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 6011 /* Don't wedge the queue */ 6012 xpt_release_devq(done_ccb->ccb_h.path, 6013 /*count*/1, 6014 /*run_queue*/TRUE); 6015 } 6016 softc->action = PROBE_INQUIRY; 6017 xpt_release_ccb(done_ccb); 6018 xpt_schedule(periph, priority); 6019 return; 6020 } 6021 case PROBE_INQUIRY: 6022 case PROBE_FULL_INQUIRY: 6023 { 6024 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 6025 struct scsi_inquiry_data *inq_buf; 6026 u_int8_t periph_qual; 6027 6028 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; 6029 inq_buf = &path->device->inq_data; 6030 6031 periph_qual = SID_QUAL(inq_buf); 6032 6033 switch(periph_qual) { 6034 case SID_QUAL_LU_CONNECTED: 6035 { 6036 u_int8_t len; 6037 6038 /* 6039 * We conservatively request only 6040 * SHORT_INQUIRY_LEN bytes of inquiry 6041 * information during our first try 6042 * at sending an INQUIRY. If the device 6043 * has more information to give, 6044 * perform a second request specifying 6045 * the amount of information the device 6046 * is willing to give. 6047 */ 6048 len = inq_buf->additional_length 6049 + offsetof(struct scsi_inquiry_data, 6050 additional_length) + 1; 6051 if (softc->action == PROBE_INQUIRY 6052 && len > SHORT_INQUIRY_LENGTH) { 6053 softc->action = PROBE_FULL_INQUIRY; 6054 xpt_release_ccb(done_ccb); 6055 xpt_schedule(periph, priority); 6056 return; 6057 } 6058 6059 xpt_find_quirk(path->device); 6060 6061 xpt_devise_transport(path); 6062 if (INQ_DATA_TQ_ENABLED(inq_buf)) 6063 softc->action = PROBE_MODE_SENSE; 6064 else 6065 softc->action = PROBE_SERIAL_NUM; 6066 6067 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 6068 6069 xpt_release_ccb(done_ccb); 6070 xpt_schedule(periph, priority); 6071 return; 6072 } 6073 default: 6074 break; 6075 } 6076 } else if (cam_periph_error(done_ccb, 0, 6077 done_ccb->ccb_h.target_lun > 0 6078 ? SF_RETRY_UA|SF_QUIET_IR 6079 : SF_RETRY_UA, 6080 &softc->saved_ccb) == ERESTART) { 6081 return; 6082 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6083 /* Don't wedge the queue */ 6084 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6085 /*run_queue*/TRUE); 6086 } 6087 /* 6088 * If we get to this point, we got an error status back 6089 * from the inquiry and the error status doesn't require 6090 * automatically retrying the command. Therefore, the 6091 * inquiry failed. If we had inquiry information before 6092 * for this device, but this latest inquiry command failed, 6093 * the device has probably gone away. If this device isn't 6094 * already marked unconfigured, notify the peripheral 6095 * drivers that this device is no more. 6096 */ 6097 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 6098 /* Send the async notification. */ 6099 xpt_async(AC_LOST_DEVICE, path, NULL); 6100 6101 xpt_release_ccb(done_ccb); 6102 break; 6103 } 6104 case PROBE_MODE_SENSE: 6105 { 6106 struct ccb_scsiio *csio; 6107 struct scsi_mode_header_6 *mode_hdr; 6108 6109 csio = &done_ccb->csio; 6110 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; 6111 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 6112 struct scsi_control_page *page; 6113 u_int8_t *offset; 6114 6115 offset = ((u_int8_t *)&mode_hdr[1]) 6116 + mode_hdr->blk_desc_len; 6117 page = (struct scsi_control_page *)offset; 6118 path->device->queue_flags = page->queue_flags; 6119 } else if (cam_periph_error(done_ccb, 0, 6120 SF_RETRY_UA|SF_NO_PRINT, 6121 &softc->saved_ccb) == ERESTART) { 6122 return; 6123 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6124 /* Don't wedge the queue */ 6125 xpt_release_devq(done_ccb->ccb_h.path, 6126 /*count*/1, /*run_queue*/TRUE); 6127 } 6128 xpt_release_ccb(done_ccb); 6129 free(mode_hdr, M_TEMP); 6130 softc->action = PROBE_SERIAL_NUM; 6131 xpt_schedule(periph, priority); 6132 return; 6133 } 6134 case PROBE_SERIAL_NUM: 6135 { 6136 struct ccb_scsiio *csio; 6137 struct scsi_vpd_unit_serial_number *serial_buf; 6138 u_int32_t priority; 6139 int changed; 6140 int have_serialnum; 6141 6142 changed = 1; 6143 have_serialnum = 0; 6144 csio = &done_ccb->csio; 6145 priority = done_ccb->ccb_h.pinfo.priority; 6146 serial_buf = 6147 (struct scsi_vpd_unit_serial_number *)csio->data_ptr; 6148 6149 /* Clean up from previous instance of this device */ 6150 if (path->device->serial_num != NULL) { 6151 free(path->device->serial_num, M_CAMXPT); 6152 path->device->serial_num = NULL; 6153 path->device->serial_num_len = 0; 6154 } 6155 6156 if (serial_buf == NULL) { 6157 /* 6158 * Don't process the command as it was never sent 6159 */ 6160 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 6161 && (serial_buf->length > 0)) { 6162 6163 have_serialnum = 1; 6164 path->device->serial_num = 6165 (u_int8_t *)malloc((serial_buf->length + 1), 6166 M_CAMXPT, M_NOWAIT); 6167 if (path->device->serial_num != NULL) { 6168 bcopy(serial_buf->serial_num, 6169 path->device->serial_num, 6170 serial_buf->length); 6171 path->device->serial_num_len = 6172 serial_buf->length; 6173 path->device->serial_num[serial_buf->length] 6174 = '\0'; 6175 } 6176 } else if (cam_periph_error(done_ccb, 0, 6177 SF_RETRY_UA|SF_NO_PRINT, 6178 &softc->saved_ccb) == ERESTART) { 6179 return; 6180 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6181 /* Don't wedge the queue */ 6182 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6183 /*run_queue*/TRUE); 6184 } 6185 6186 /* 6187 * Let's see if we have seen this device before. 6188 */ 6189 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { 6190 MD5_CTX context; 6191 u_int8_t digest[16]; 6192 6193 MD5Init(&context); 6194 6195 MD5Update(&context, 6196 (unsigned char *)&path->device->inq_data, 6197 sizeof(struct scsi_inquiry_data)); 6198 6199 if (have_serialnum) 6200 MD5Update(&context, serial_buf->serial_num, 6201 serial_buf->length); 6202 6203 MD5Final(digest, &context); 6204 if (bcmp(softc->digest, digest, 16) == 0) 6205 changed = 0; 6206 6207 /* 6208 * XXX Do we need to do a TUR in order to ensure 6209 * that the device really hasn't changed??? 6210 */ 6211 if ((changed != 0) 6212 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) 6213 xpt_async(AC_LOST_DEVICE, path, NULL); 6214 } 6215 if (serial_buf != NULL) 6216 free(serial_buf, M_TEMP); 6217 6218 if (changed != 0) { 6219 /* 6220 * Now that we have all the necessary 6221 * information to safely perform transfer 6222 * negotiations... Controllers don't perform 6223 * any negotiation or tagged queuing until 6224 * after the first XPT_SET_TRAN_SETTINGS ccb is 6225 * received. So, on a new device, just retrieve 6226 * the user settings, and set them as the current 6227 * settings to set the device up. 6228 */ 6229 proberequestdefaultnegotiation(periph); 6230 xpt_release_ccb(done_ccb); 6231 6232 /* 6233 * Perform a TUR to allow the controller to 6234 * perform any necessary transfer negotiation. 6235 */ 6236 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6237 xpt_schedule(periph, priority); 6238 return; 6239 } 6240 xpt_release_ccb(done_ccb); 6241 break; 6242 } 6243 case PROBE_TUR_FOR_NEGOTIATION: 6244 case PROBE_DV_EXIT: 6245 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6246 /* Don't wedge the queue */ 6247 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6248 /*run_queue*/TRUE); 6249 } 6250 /* 6251 * Do Domain Validation for lun 0 on devices that claim 6252 * to support Synchronous Transfer modes. 6253 */ 6254 if (softc->action == PROBE_TUR_FOR_NEGOTIATION 6255 && done_ccb->ccb_h.target_lun == 0 6256 && (path->device->inq_data.flags & SID_Sync) != 0 6257 && (path->device->flags & CAM_DEV_IN_DV) == 0) { 6258 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6259 ("Begin Domain Validation\n")); 6260 path->device->flags |= CAM_DEV_IN_DV; 6261 xpt_release_ccb(done_ccb); 6262 softc->action = PROBE_INQUIRY_BASIC_DV1; 6263 xpt_schedule(periph, priority); 6264 return; 6265 } 6266 if (softc->action == PROBE_DV_EXIT) { 6267 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6268 ("Leave Domain Validation\n")); 6269 } 6270 path->device->flags &= 6271 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM); 6272 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6273 /* Inform the XPT that a new device has been found */ 6274 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6275 xpt_action(done_ccb); 6276 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, 6277 done_ccb); 6278 } 6279 xpt_release_ccb(done_ccb); 6280 break; 6281 case PROBE_INQUIRY_BASIC_DV1: 6282 case PROBE_INQUIRY_BASIC_DV2: 6283 { 6284 struct scsi_inquiry_data *nbuf; 6285 struct ccb_scsiio *csio; 6286 6287 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6288 /* Don't wedge the queue */ 6289 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6290 /*run_queue*/TRUE); 6291 } 6292 csio = &done_ccb->csio; 6293 nbuf = (struct scsi_inquiry_data *)csio->data_ptr; 6294 if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) { 6295 xpt_print(path, 6296 "inquiry data fails comparison at DV%d step\n", 6297 softc->action == PROBE_INQUIRY_BASIC_DV1? 1 : 2); 6298 if (proberequestbackoff(periph, path->device)) { 6299 path->device->flags &= ~CAM_DEV_IN_DV; 6300 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6301 } else { 6302 /* give up */ 6303 softc->action = PROBE_DV_EXIT; 6304 } 6305 free(nbuf, M_TEMP); 6306 xpt_release_ccb(done_ccb); 6307 xpt_schedule(periph, priority); 6308 return; 6309 } 6310 free(nbuf, M_TEMP); 6311 if (softc->action == PROBE_INQUIRY_BASIC_DV1) { 6312 softc->action = PROBE_INQUIRY_BASIC_DV2; 6313 xpt_release_ccb(done_ccb); 6314 xpt_schedule(periph, priority); 6315 return; 6316 } 6317 if (softc->action == PROBE_DV_EXIT) { 6318 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6319 ("Leave Domain Validation Successfully\n")); 6320 } 6321 path->device->flags &= 6322 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM); 6323 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6324 /* Inform the XPT that a new device has been found */ 6325 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6326 xpt_action(done_ccb); 6327 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, 6328 done_ccb); 6329 } 6330 xpt_release_ccb(done_ccb); 6331 break; 6332 } 6333 } 6334 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 6335 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); 6336 done_ccb->ccb_h.status = CAM_REQ_CMP; 6337 xpt_done(done_ccb); 6338 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { 6339 cam_periph_invalidate(periph); 6340 cam_periph_release(periph); 6341 } else { 6342 probeschedule(periph); 6343 } 6344 } 6345 6346 static void 6347 probecleanup(struct cam_periph *periph) 6348 { 6349 free(periph->softc, M_TEMP); 6350 } 6351 6352 static void 6353 xpt_find_quirk(struct cam_ed *device) 6354 { 6355 caddr_t match; 6356 6357 match = cam_quirkmatch((caddr_t)&device->inq_data, 6358 (caddr_t)xpt_quirk_table, 6359 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table), 6360 sizeof(*xpt_quirk_table), scsi_inquiry_match); 6361 6362 if (match == NULL) 6363 panic("xpt_find_quirk: device didn't match wildcard entry!!"); 6364 6365 device->quirk = (struct xpt_quirk_entry *)match; 6366 } 6367 6368 static int 6369 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS) 6370 { 6371 int error, bool; 6372 6373 bool = cam_srch_hi; 6374 error = sysctl_handle_int(oidp, &bool, sizeof(bool), req); 6375 if (error != 0 || req->newptr == NULL) 6376 return (error); 6377 if (bool == 0 || bool == 1) { 6378 cam_srch_hi = bool; 6379 return (0); 6380 } else { 6381 return (EINVAL); 6382 } 6383 } 6384 6385 6386 static void 6387 xpt_devise_transport(struct cam_path *path) 6388 { 6389 struct ccb_pathinq cpi; 6390 struct ccb_trans_settings cts; 6391 struct scsi_inquiry_data *inq_buf; 6392 6393 /* Get transport information from the SIM */ 6394 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 6395 cpi.ccb_h.func_code = XPT_PATH_INQ; 6396 xpt_action((union ccb *)&cpi); 6397 6398 inq_buf = NULL; 6399 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) 6400 inq_buf = &path->device->inq_data; 6401 path->device->protocol = PROTO_SCSI; 6402 path->device->protocol_version = 6403 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version; 6404 path->device->transport = cpi.transport; 6405 path->device->transport_version = cpi.transport_version; 6406 6407 /* 6408 * Any device not using SPI3 features should 6409 * be considered SPI2 or lower. 6410 */ 6411 if (inq_buf != NULL) { 6412 if (path->device->transport == XPORT_SPI 6413 && (inq_buf->spi3data & SID_SPI_MASK) == 0 6414 && path->device->transport_version > 2) 6415 path->device->transport_version = 2; 6416 } else { 6417 struct cam_ed* otherdev; 6418 6419 for (otherdev = TAILQ_FIRST(&path->target->ed_entries); 6420 otherdev != NULL; 6421 otherdev = TAILQ_NEXT(otherdev, links)) { 6422 if (otherdev != path->device) 6423 break; 6424 } 6425 6426 if (otherdev != NULL) { 6427 /* 6428 * Initially assume the same versioning as 6429 * prior luns for this target. 6430 */ 6431 path->device->protocol_version = 6432 otherdev->protocol_version; 6433 path->device->transport_version = 6434 otherdev->transport_version; 6435 } else { 6436 /* Until we know better, opt for safty */ 6437 path->device->protocol_version = 2; 6438 if (path->device->transport == XPORT_SPI) 6439 path->device->transport_version = 2; 6440 else 6441 path->device->transport_version = 0; 6442 } 6443 } 6444 6445 /* 6446 * XXX 6447 * For a device compliant with SPC-2 we should be able 6448 * to determine the transport version supported by 6449 * scrutinizing the version descriptors in the 6450 * inquiry buffer. 6451 */ 6452 6453 /* Tell the controller what we think */ 6454 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 6455 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 6456 cts.type = CTS_TYPE_CURRENT_SETTINGS; 6457 cts.transport = path->device->transport; 6458 cts.transport_version = path->device->transport_version; 6459 cts.protocol = path->device->protocol; 6460 cts.protocol_version = path->device->protocol_version; 6461 cts.proto_specific.valid = 0; 6462 cts.xport_specific.valid = 0; 6463 xpt_action((union ccb *)&cts); 6464 } 6465 6466 static void 6467 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6468 int async_update) 6469 { 6470 struct ccb_pathinq cpi; 6471 struct ccb_trans_settings cur_cts; 6472 struct ccb_trans_settings_scsi *scsi; 6473 struct ccb_trans_settings_scsi *cur_scsi; 6474 struct cam_sim *sim; 6475 struct scsi_inquiry_data *inq_data; 6476 6477 if (device == NULL) { 6478 cts->ccb_h.status = CAM_PATH_INVALID; 6479 xpt_done((union ccb *)cts); 6480 return; 6481 } 6482 6483 if (cts->protocol == PROTO_UNKNOWN 6484 || cts->protocol == PROTO_UNSPECIFIED) { 6485 cts->protocol = device->protocol; 6486 cts->protocol_version = device->protocol_version; 6487 } 6488 6489 if (cts->protocol_version == PROTO_VERSION_UNKNOWN 6490 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED) 6491 cts->protocol_version = device->protocol_version; 6492 6493 if (cts->protocol != device->protocol) { 6494 xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n", 6495 cts->protocol, device->protocol); 6496 cts->protocol = device->protocol; 6497 } 6498 6499 if (cts->protocol_version > device->protocol_version) { 6500 if (bootverbose) { 6501 xpt_print(cts->ccb_h.path, "Down reving Protocol " 6502 "Version from %d to %d?\n", cts->protocol_version, 6503 device->protocol_version); 6504 } 6505 cts->protocol_version = device->protocol_version; 6506 } 6507 6508 if (cts->transport == XPORT_UNKNOWN 6509 || cts->transport == XPORT_UNSPECIFIED) { 6510 cts->transport = device->transport; 6511 cts->transport_version = device->transport_version; 6512 } 6513 6514 if (cts->transport_version == XPORT_VERSION_UNKNOWN 6515 || cts->transport_version == XPORT_VERSION_UNSPECIFIED) 6516 cts->transport_version = device->transport_version; 6517 6518 if (cts->transport != device->transport) { 6519 xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n", 6520 cts->transport, device->transport); 6521 cts->transport = device->transport; 6522 } 6523 6524 if (cts->transport_version > device->transport_version) { 6525 if (bootverbose) { 6526 xpt_print(cts->ccb_h.path, "Down reving Transport " 6527 "Version from %d to %d?\n", cts->transport_version, 6528 device->transport_version); 6529 } 6530 cts->transport_version = device->transport_version; 6531 } 6532 6533 sim = cts->ccb_h.path->bus->sim; 6534 6535 /* 6536 * Nothing more of interest to do unless 6537 * this is a device connected via the 6538 * SCSI protocol. 6539 */ 6540 if (cts->protocol != PROTO_SCSI) { 6541 if (async_update == FALSE) 6542 (*(sim->sim_action))(sim, (union ccb *)cts); 6543 return; 6544 } 6545 6546 inq_data = &device->inq_data; 6547 scsi = &cts->proto_specific.scsi; 6548 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6549 cpi.ccb_h.func_code = XPT_PATH_INQ; 6550 xpt_action((union ccb *)&cpi); 6551 6552 /* SCSI specific sanity checking */ 6553 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6554 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0 6555 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6556 || (device->quirk->mintags == 0)) { 6557 /* 6558 * Can't tag on hardware that doesn't support tags, 6559 * doesn't have it enabled, or has broken tag support. 6560 */ 6561 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6562 } 6563 6564 if (async_update == FALSE) { 6565 /* 6566 * Perform sanity checking against what the 6567 * controller and device can do. 6568 */ 6569 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6570 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6571 cur_cts.type = cts->type; 6572 xpt_action((union ccb *)&cur_cts); 6573 if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 6574 return; 6575 } 6576 cur_scsi = &cur_cts.proto_specific.scsi; 6577 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) { 6578 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6579 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB; 6580 } 6581 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0) 6582 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6583 } 6584 6585 /* SPI specific sanity checking */ 6586 if (cts->transport == XPORT_SPI && async_update == FALSE) { 6587 u_int spi3caps; 6588 struct ccb_trans_settings_spi *spi; 6589 struct ccb_trans_settings_spi *cur_spi; 6590 6591 spi = &cts->xport_specific.spi; 6592 6593 cur_spi = &cur_cts.xport_specific.spi; 6594 6595 /* Fill in any gaps in what the user gave us */ 6596 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6597 spi->sync_period = cur_spi->sync_period; 6598 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6599 spi->sync_period = 0; 6600 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6601 spi->sync_offset = cur_spi->sync_offset; 6602 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6603 spi->sync_offset = 0; 6604 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6605 spi->ppr_options = cur_spi->ppr_options; 6606 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6607 spi->ppr_options = 0; 6608 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6609 spi->bus_width = cur_spi->bus_width; 6610 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6611 spi->bus_width = 0; 6612 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) { 6613 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6614 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB; 6615 } 6616 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0) 6617 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6618 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6619 && (inq_data->flags & SID_Sync) == 0 6620 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6621 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6622 || (spi->sync_offset == 0) 6623 || (spi->sync_period == 0)) { 6624 /* Force async */ 6625 spi->sync_period = 0; 6626 spi->sync_offset = 0; 6627 } 6628 6629 switch (spi->bus_width) { 6630 case MSG_EXT_WDTR_BUS_32_BIT: 6631 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6632 || (inq_data->flags & SID_WBus32) != 0 6633 || cts->type == CTS_TYPE_USER_SETTINGS) 6634 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6635 break; 6636 /* Fall Through to 16-bit */ 6637 case MSG_EXT_WDTR_BUS_16_BIT: 6638 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6639 || (inq_data->flags & SID_WBus16) != 0 6640 || cts->type == CTS_TYPE_USER_SETTINGS) 6641 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6642 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6643 break; 6644 } 6645 /* Fall Through to 8-bit */ 6646 default: /* New bus width?? */ 6647 case MSG_EXT_WDTR_BUS_8_BIT: 6648 /* All targets can do this */ 6649 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6650 break; 6651 } 6652 6653 spi3caps = cpi.xport_specific.spi.ppr_options; 6654 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6655 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6656 spi3caps &= inq_data->spi3data; 6657 6658 if ((spi3caps & SID_SPI_CLOCK_DT) == 0) 6659 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; 6660 6661 if ((spi3caps & SID_SPI_IUS) == 0) 6662 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ; 6663 6664 if ((spi3caps & SID_SPI_QAS) == 0) 6665 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ; 6666 6667 /* No SPI Transfer settings are allowed unless we are wide */ 6668 if (spi->bus_width == 0) 6669 spi->ppr_options = 0; 6670 6671 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) { 6672 /* 6673 * Can't tag queue without disconnection. 6674 */ 6675 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6676 scsi->valid |= CTS_SCSI_VALID_TQ; 6677 } 6678 6679 /* 6680 * If we are currently performing tagged transactions to 6681 * this device and want to change its negotiation parameters, 6682 * go non-tagged for a bit to give the controller a chance to 6683 * negotiate unhampered by tag messages. 6684 */ 6685 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6686 && (device->inq_flags & SID_CmdQue) != 0 6687 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6688 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE| 6689 CTS_SPI_VALID_SYNC_OFFSET| 6690 CTS_SPI_VALID_BUS_WIDTH)) != 0) 6691 xpt_toggle_tags(cts->ccb_h.path); 6692 } 6693 6694 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6695 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 6696 int device_tagenb; 6697 6698 /* 6699 * If we are transitioning from tags to no-tags or 6700 * vice-versa, we need to carefully freeze and restart 6701 * the queue so that we don't overlap tagged and non-tagged 6702 * commands. We also temporarily stop tags if there is 6703 * a change in transfer negotiation settings to allow 6704 * "tag-less" negotiation. 6705 */ 6706 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6707 || (device->inq_flags & SID_CmdQue) != 0) 6708 device_tagenb = TRUE; 6709 else 6710 device_tagenb = FALSE; 6711 6712 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6713 && device_tagenb == FALSE) 6714 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0 6715 && device_tagenb == TRUE)) { 6716 6717 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) { 6718 /* 6719 * Delay change to use tags until after a 6720 * few commands have gone to this device so 6721 * the controller has time to perform transfer 6722 * negotiations without tagged messages getting 6723 * in the way. 6724 */ 6725 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6726 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6727 } else { 6728 struct ccb_relsim crs; 6729 6730 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6731 device->inq_flags &= ~SID_CmdQue; 6732 xpt_dev_ccbq_resize(cts->ccb_h.path, 6733 sim->max_dev_openings); 6734 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6735 device->tag_delay_count = 0; 6736 6737 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6738 /*priority*/1); 6739 crs.ccb_h.func_code = XPT_REL_SIMQ; 6740 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6741 crs.openings 6742 = crs.release_timeout 6743 = crs.qfrozen_cnt 6744 = 0; 6745 xpt_action((union ccb *)&crs); 6746 } 6747 } 6748 } 6749 if (async_update == FALSE) 6750 (*(sim->sim_action))(sim, (union ccb *)cts); 6751 } 6752 6753 6754 static void 6755 xpt_toggle_tags(struct cam_path *path) 6756 { 6757 struct cam_ed *dev; 6758 6759 /* 6760 * Give controllers a chance to renegotiate 6761 * before starting tag operations. We 6762 * "toggle" tagged queuing off then on 6763 * which causes the tag enable command delay 6764 * counter to come into effect. 6765 */ 6766 dev = path->device; 6767 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6768 || ((dev->inq_flags & SID_CmdQue) != 0 6769 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { 6770 struct ccb_trans_settings cts; 6771 6772 xpt_setup_ccb(&cts.ccb_h, path, 1); 6773 cts.protocol = PROTO_SCSI; 6774 cts.protocol_version = PROTO_VERSION_UNSPECIFIED; 6775 cts.transport = XPORT_UNSPECIFIED; 6776 cts.transport_version = XPORT_VERSION_UNSPECIFIED; 6777 cts.proto_specific.scsi.flags = 0; 6778 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ; 6779 xpt_set_transfer_settings(&cts, path->device, 6780 /*async_update*/TRUE); 6781 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB; 6782 xpt_set_transfer_settings(&cts, path->device, 6783 /*async_update*/TRUE); 6784 } 6785 } 6786 6787 static void 6788 xpt_start_tags(struct cam_path *path) 6789 { 6790 struct ccb_relsim crs; 6791 struct cam_ed *device; 6792 struct cam_sim *sim; 6793 int newopenings; 6794 6795 device = path->device; 6796 sim = path->bus->sim; 6797 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6798 xpt_freeze_devq(path, /*count*/1); 6799 device->inq_flags |= SID_CmdQue; 6800 if (device->tag_saved_openings != 0) 6801 newopenings = device->tag_saved_openings; 6802 else 6803 newopenings = min(device->quirk->maxtags, 6804 sim->max_tagged_dev_openings); 6805 xpt_dev_ccbq_resize(path, newopenings); 6806 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); 6807 crs.ccb_h.func_code = XPT_REL_SIMQ; 6808 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6809 crs.openings 6810 = crs.release_timeout 6811 = crs.qfrozen_cnt 6812 = 0; 6813 xpt_action((union ccb *)&crs); 6814 } 6815 6816 static int busses_to_config; 6817 static int busses_to_reset; 6818 6819 static int 6820 xptconfigbuscountfunc(struct cam_eb *bus, void *arg) 6821 { 6822 if (bus->path_id != CAM_XPT_PATH_ID) { 6823 struct cam_path path; 6824 struct ccb_pathinq cpi; 6825 int can_negotiate; 6826 6827 busses_to_config++; 6828 xpt_compile_path(&path, NULL, bus->path_id, 6829 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 6830 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 6831 cpi.ccb_h.func_code = XPT_PATH_INQ; 6832 xpt_action((union ccb *)&cpi); 6833 can_negotiate = cpi.hba_inquiry; 6834 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6835 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 6836 && can_negotiate) 6837 busses_to_reset++; 6838 xpt_release_path(&path); 6839 } 6840 6841 return(1); 6842 } 6843 6844 static int 6845 xptconfigfunc(struct cam_eb *bus, void *arg) 6846 { 6847 struct cam_path *path; 6848 union ccb *work_ccb; 6849 6850 if (bus->path_id != CAM_XPT_PATH_ID) { 6851 cam_status status; 6852 int can_negotiate; 6853 6854 work_ccb = xpt_alloc_ccb(); 6855 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id, 6856 CAM_TARGET_WILDCARD, 6857 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){ 6858 printf("xptconfigfunc: xpt_create_path failed with " 6859 "status %#x for bus %d\n", status, bus->path_id); 6860 printf("xptconfigfunc: halting bus configuration\n"); 6861 xpt_free_ccb(work_ccb); 6862 busses_to_config--; 6863 xpt_finishconfig(xpt_periph, NULL); 6864 return(0); 6865 } 6866 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6867 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 6868 xpt_action(work_ccb); 6869 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 6870 printf("xptconfigfunc: CPI failed on bus %d " 6871 "with status %d\n", bus->path_id, 6872 work_ccb->ccb_h.status); 6873 xpt_finishconfig(xpt_periph, work_ccb); 6874 return(1); 6875 } 6876 6877 can_negotiate = work_ccb->cpi.hba_inquiry; 6878 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6879 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0 6880 && (can_negotiate != 0)) { 6881 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6882 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6883 work_ccb->ccb_h.cbfcnp = NULL; 6884 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE, 6885 ("Resetting Bus\n")); 6886 xpt_action(work_ccb); 6887 xpt_finishconfig(xpt_periph, work_ccb); 6888 } else { 6889 /* Act as though we performed a successful BUS RESET */ 6890 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6891 xpt_finishconfig(xpt_periph, work_ccb); 6892 } 6893 } 6894 6895 return(1); 6896 } 6897 6898 static void 6899 xpt_config(void *arg) 6900 { 6901 /* 6902 * Now that interrupts are enabled, go find our devices 6903 */ 6904 6905 #ifdef CAMDEBUG 6906 /* Setup debugging flags and path */ 6907 #ifdef CAM_DEBUG_FLAGS 6908 cam_dflags = CAM_DEBUG_FLAGS; 6909 #else /* !CAM_DEBUG_FLAGS */ 6910 cam_dflags = CAM_DEBUG_NONE; 6911 #endif /* CAM_DEBUG_FLAGS */ 6912 #ifdef CAM_DEBUG_BUS 6913 if (cam_dflags != CAM_DEBUG_NONE) { 6914 if (xpt_create_path(&cam_dpath, xpt_periph, 6915 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 6916 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 6917 printf("xpt_config: xpt_create_path() failed for debug" 6918 " target %d:%d:%d, debugging disabled\n", 6919 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 6920 cam_dflags = CAM_DEBUG_NONE; 6921 } 6922 } else 6923 cam_dpath = NULL; 6924 #else /* !CAM_DEBUG_BUS */ 6925 cam_dpath = NULL; 6926 #endif /* CAM_DEBUG_BUS */ 6927 #endif /* CAMDEBUG */ 6928 6929 /* 6930 * Scan all installed busses. 6931 */ 6932 xpt_for_all_busses(xptconfigbuscountfunc, NULL); 6933 6934 if (busses_to_config == 0) { 6935 /* Call manually because we don't have any busses */ 6936 xpt_finishconfig(xpt_periph, NULL); 6937 } else { 6938 if (busses_to_reset > 0 && scsi_delay >= 2000) { 6939 printf("Waiting %d seconds for SCSI " 6940 "devices to settle\n", scsi_delay/1000); 6941 } 6942 xpt_for_all_busses(xptconfigfunc, NULL); 6943 } 6944 } 6945 6946 /* 6947 * If the given device only has one peripheral attached to it, and if that 6948 * peripheral is the passthrough driver, announce it. This insures that the 6949 * user sees some sort of announcement for every peripheral in their system. 6950 */ 6951 static int 6952 xptpassannouncefunc(struct cam_ed *device, void *arg) 6953 { 6954 struct cam_periph *periph; 6955 int i; 6956 6957 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 6958 periph = SLIST_NEXT(periph, periph_links), i++); 6959 6960 periph = SLIST_FIRST(&device->periphs); 6961 if ((i == 1) 6962 && (strncmp(periph->periph_name, "pass", 4) == 0)) 6963 xpt_announce_periph(periph, NULL); 6964 6965 return(1); 6966 } 6967 6968 static void 6969 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb) 6970 { 6971 struct periph_driver **p_drv; 6972 int i; 6973 6974 if (done_ccb != NULL) { 6975 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 6976 ("xpt_finishconfig\n")); 6977 switch(done_ccb->ccb_h.func_code) { 6978 case XPT_RESET_BUS: 6979 if (done_ccb->ccb_h.status == CAM_REQ_CMP) { 6980 done_ccb->ccb_h.func_code = XPT_SCAN_BUS; 6981 done_ccb->ccb_h.cbfcnp = xpt_finishconfig; 6982 done_ccb->crcn.flags = 0; 6983 xpt_action(done_ccb); 6984 return; 6985 } 6986 /* FALLTHROUGH */ 6987 case XPT_SCAN_BUS: 6988 default: 6989 xpt_free_path(done_ccb->ccb_h.path); 6990 busses_to_config--; 6991 break; 6992 } 6993 } 6994 6995 if (busses_to_config == 0) { 6996 /* Register all the peripheral drivers */ 6997 /* XXX This will have to change when we have loadable modules */ 6998 p_drv = periph_drivers; 6999 for (i = 0; p_drv[i] != NULL; i++) { 7000 (*p_drv[i]->init)(); 7001 } 7002 7003 /* 7004 * Check for devices with no "standard" peripheral driver 7005 * attached. For any devices like that, announce the 7006 * passthrough driver so the user will see something. 7007 */ 7008 xpt_for_all_devices(xptpassannouncefunc, NULL); 7009 7010 /* Release our hook so that the boot can continue. */ 7011 config_intrhook_disestablish(xpt_config_hook); 7012 free(xpt_config_hook, M_TEMP); 7013 xpt_config_hook = NULL; 7014 } 7015 if (done_ccb != NULL) 7016 xpt_free_ccb(done_ccb); 7017 } 7018 7019 static void 7020 xptaction(struct cam_sim *sim, union ccb *work_ccb) 7021 { 7022 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 7023 7024 switch (work_ccb->ccb_h.func_code) { 7025 /* Common cases first */ 7026 case XPT_PATH_INQ: /* Path routing inquiry */ 7027 { 7028 struct ccb_pathinq *cpi; 7029 7030 cpi = &work_ccb->cpi; 7031 cpi->version_num = 1; /* XXX??? */ 7032 cpi->hba_inquiry = 0; 7033 cpi->target_sprt = 0; 7034 cpi->hba_misc = 0; 7035 cpi->hba_eng_cnt = 0; 7036 cpi->max_target = 0; 7037 cpi->max_lun = 0; 7038 cpi->initiator_id = 0; 7039 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 7040 strncpy(cpi->hba_vid, "", HBA_IDLEN); 7041 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 7042 cpi->unit_number = sim->unit_number; 7043 cpi->bus_id = sim->bus_id; 7044 cpi->base_transfer_speed = 0; 7045 cpi->protocol = PROTO_UNSPECIFIED; 7046 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 7047 cpi->transport = XPORT_UNSPECIFIED; 7048 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 7049 cpi->ccb_h.status = CAM_REQ_CMP; 7050 xpt_done(work_ccb); 7051 break; 7052 } 7053 default: 7054 work_ccb->ccb_h.status = CAM_REQ_INVALID; 7055 xpt_done(work_ccb); 7056 break; 7057 } 7058 } 7059 7060 /* 7061 * The xpt as a "controller" has no interrupt sources, so polling 7062 * is a no-op. 7063 */ 7064 static void 7065 xptpoll(struct cam_sim *sim) 7066 { 7067 } 7068 7069 static void 7070 camisr(void *V_queue) 7071 { 7072 cam_isrq_t *oqueue = V_queue; 7073 cam_isrq_t queue; 7074 int s; 7075 struct ccb_hdr *ccb_h; 7076 7077 /* 7078 * Transfer the ccb_bioq list to a temporary list so we can operate 7079 * on it without needing to lock/unlock on every loop. The concat 7080 * function with re-init the real list for us. 7081 */ 7082 s = splcam(); 7083 mtx_lock(&cam_bioq_lock); 7084 TAILQ_INIT(&queue); 7085 TAILQ_CONCAT(&queue, oqueue, sim_links.tqe); 7086 mtx_unlock(&cam_bioq_lock); 7087 7088 while ((ccb_h = TAILQ_FIRST(&queue)) != NULL) { 7089 int runq; 7090 7091 TAILQ_REMOVE(&queue, ccb_h, sim_links.tqe); 7092 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 7093 splx(s); 7094 7095 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 7096 ("camisr\n")); 7097 7098 runq = FALSE; 7099 7100 if (ccb_h->flags & CAM_HIGH_POWER) { 7101 struct highpowerlist *hphead; 7102 union ccb *send_ccb; 7103 7104 hphead = &highpowerq; 7105 7106 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 7107 7108 /* 7109 * Increment the count since this command is done. 7110 */ 7111 num_highpower++; 7112 7113 /* 7114 * Any high powered commands queued up? 7115 */ 7116 if (send_ccb != NULL) { 7117 7118 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 7119 7120 xpt_release_devq(send_ccb->ccb_h.path, 7121 /*count*/1, /*runqueue*/TRUE); 7122 } 7123 } 7124 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 7125 struct cam_ed *dev; 7126 7127 dev = ccb_h->path->device; 7128 7129 s = splcam(); 7130 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 7131 7132 if (!SIM_DEAD(ccb_h->path->bus->sim)) { 7133 ccb_h->path->bus->sim->devq->send_active--; 7134 ccb_h->path->bus->sim->devq->send_openings++; 7135 } 7136 splx(s); 7137 7138 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 7139 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 7140 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 7141 && (dev->ccbq.dev_active == 0))) { 7142 7143 xpt_release_devq(ccb_h->path, /*count*/1, 7144 /*run_queue*/TRUE); 7145 } 7146 7147 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 7148 && (--dev->tag_delay_count == 0)) 7149 xpt_start_tags(ccb_h->path); 7150 7151 if ((dev->ccbq.queue.entries > 0) 7152 && (dev->qfrozen_cnt == 0) 7153 && (device_is_send_queued(dev) == 0)) { 7154 runq = xpt_schedule_dev_sendq(ccb_h->path->bus, 7155 dev); 7156 } 7157 } 7158 7159 if (ccb_h->status & CAM_RELEASE_SIMQ) { 7160 xpt_release_simq(ccb_h->path->bus->sim, 7161 /*run_queue*/TRUE); 7162 ccb_h->status &= ~CAM_RELEASE_SIMQ; 7163 runq = FALSE; 7164 } 7165 7166 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 7167 && (ccb_h->status & CAM_DEV_QFRZN)) { 7168 xpt_release_devq(ccb_h->path, /*count*/1, 7169 /*run_queue*/TRUE); 7170 ccb_h->status &= ~CAM_DEV_QFRZN; 7171 } else if (runq) { 7172 xpt_run_dev_sendq(ccb_h->path->bus); 7173 } 7174 7175 /* Call the peripheral driver's callback */ 7176 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 7177 7178 /* Raise IPL for while test */ 7179 s = splcam(); 7180 } 7181 splx(s); 7182 } 7183 7184 static void 7185 dead_sim_action(struct cam_sim *sim, union ccb *ccb) 7186 { 7187 7188 ccb->ccb_h.status = CAM_DEV_NOT_THERE; 7189 xpt_done(ccb); 7190 } 7191 7192 static void 7193 dead_sim_poll(struct cam_sim *sim) 7194 { 7195 } 7196