xref: /freebsd/sys/cam/cam_xpt.c (revision f391d6bc1d0464f62f1b8264666c897a680156b1)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bio.h>
35 #include <sys/bus.h>
36 #include <sys/systm.h>
37 #include <sys/types.h>
38 #include <sys/malloc.h>
39 #include <sys/kernel.h>
40 #include <sys/time.h>
41 #include <sys/conf.h>
42 #include <sys/fcntl.h>
43 #include <sys/interrupt.h>
44 #include <sys/proc.h>
45 #include <sys/sbuf.h>
46 #include <sys/smp.h>
47 #include <sys/taskqueue.h>
48 
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/sysctl.h>
52 #include <sys/kthread.h>
53 
54 #include <cam/cam.h>
55 #include <cam/cam_ccb.h>
56 #include <cam/cam_periph.h>
57 #include <cam/cam_queue.h>
58 #include <cam/cam_sim.h>
59 #include <cam/cam_xpt.h>
60 #include <cam/cam_xpt_sim.h>
61 #include <cam/cam_xpt_periph.h>
62 #include <cam/cam_xpt_internal.h>
63 #include <cam/cam_debug.h>
64 #include <cam/cam_compat.h>
65 
66 #include <cam/scsi/scsi_all.h>
67 #include <cam/scsi/scsi_message.h>
68 #include <cam/scsi/scsi_pass.h>
69 
70 #include <machine/md_var.h>	/* geometry translation */
71 #include <machine/stdarg.h>	/* for xpt_print below */
72 
73 #include "opt_cam.h"
74 
75 /*
76  * This is the maximum number of high powered commands (e.g. start unit)
77  * that can be outstanding at a particular time.
78  */
79 #ifndef CAM_MAX_HIGHPOWER
80 #define CAM_MAX_HIGHPOWER  4
81 #endif
82 
83 /* Datastructures internal to the xpt layer */
84 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
85 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
86 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
87 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
88 
89 /* Object for defering XPT actions to a taskqueue */
90 struct xpt_task {
91 	struct task	task;
92 	void		*data1;
93 	uintptr_t	data2;
94 };
95 
96 struct xpt_softc {
97 	uint32_t		xpt_generation;
98 
99 	/* number of high powered commands that can go through right now */
100 	struct mtx		xpt_highpower_lock;
101 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
102 	int			num_highpower;
103 
104 	/* queue for handling async rescan requests. */
105 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 	int buses_to_config;
107 	int buses_config_done;
108 
109 	/* Registered busses */
110 	TAILQ_HEAD(,cam_eb)	xpt_busses;
111 	u_int			bus_generation;
112 
113 	struct intr_config_hook	*xpt_config_hook;
114 
115 	int			boot_delay;
116 	struct callout 		boot_callout;
117 
118 	struct mtx		xpt_topo_lock;
119 	struct mtx		xpt_lock;
120 	struct taskqueue	*xpt_taskq;
121 };
122 
123 typedef enum {
124 	DM_RET_COPY		= 0x01,
125 	DM_RET_FLAG_MASK	= 0x0f,
126 	DM_RET_NONE		= 0x00,
127 	DM_RET_STOP		= 0x10,
128 	DM_RET_DESCEND		= 0x20,
129 	DM_RET_ERROR		= 0x30,
130 	DM_RET_ACTION_MASK	= 0xf0
131 } dev_match_ret;
132 
133 typedef enum {
134 	XPT_DEPTH_BUS,
135 	XPT_DEPTH_TARGET,
136 	XPT_DEPTH_DEVICE,
137 	XPT_DEPTH_PERIPH
138 } xpt_traverse_depth;
139 
140 struct xpt_traverse_config {
141 	xpt_traverse_depth	depth;
142 	void			*tr_func;
143 	void			*tr_arg;
144 };
145 
146 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
147 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
148 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
149 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
150 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
151 
152 /* Transport layer configuration information */
153 static struct xpt_softc xsoftc;
154 
155 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
156 
157 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
158            &xsoftc.boot_delay, 0, "Bus registration wait time");
159 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
160 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
161 
162 struct cam_doneq {
163 	struct mtx_padalign	cam_doneq_mtx;
164 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
165 	int			cam_doneq_sleep;
166 };
167 
168 static struct cam_doneq cam_doneqs[MAXCPU];
169 static int cam_num_doneqs;
170 static struct proc *cam_proc;
171 
172 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
173            &cam_num_doneqs, 0, "Number of completion queues/threads");
174 
175 struct cam_periph *xpt_periph;
176 
177 static periph_init_t xpt_periph_init;
178 
179 static struct periph_driver xpt_driver =
180 {
181 	xpt_periph_init, "xpt",
182 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
183 	CAM_PERIPH_DRV_EARLY
184 };
185 
186 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
187 
188 static d_open_t xptopen;
189 static d_close_t xptclose;
190 static d_ioctl_t xptioctl;
191 static d_ioctl_t xptdoioctl;
192 
193 static struct cdevsw xpt_cdevsw = {
194 	.d_version =	D_VERSION,
195 	.d_flags =	0,
196 	.d_open =	xptopen,
197 	.d_close =	xptclose,
198 	.d_ioctl =	xptioctl,
199 	.d_name =	"xpt",
200 };
201 
202 /* Storage for debugging datastructures */
203 struct cam_path *cam_dpath;
204 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
205 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
206 	&cam_dflags, 0, "Enabled debug flags");
207 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
208 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
209 	&cam_debug_delay, 0, "Delay in us after each debug message");
210 
211 /* Our boot-time initialization hook */
212 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
213 
214 static moduledata_t cam_moduledata = {
215 	"cam",
216 	cam_module_event_handler,
217 	NULL
218 };
219 
220 static int	xpt_init(void *);
221 
222 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
223 MODULE_VERSION(cam, 1);
224 
225 
226 static void		xpt_async_bcast(struct async_list *async_head,
227 					u_int32_t async_code,
228 					struct cam_path *path,
229 					void *async_arg);
230 static path_id_t xptnextfreepathid(void);
231 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
232 static union ccb *xpt_get_ccb(struct cam_periph *periph);
233 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
234 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
235 static void	 xpt_run_allocq_task(void *context, int pending);
236 static void	 xpt_run_devq(struct cam_devq *devq);
237 static timeout_t xpt_release_devq_timeout;
238 static void	 xpt_release_simq_timeout(void *arg) __unused;
239 static void	 xpt_acquire_bus(struct cam_eb *bus);
240 static void	 xpt_release_bus(struct cam_eb *bus);
241 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
242 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
243 		    int run_queue);
244 static struct cam_et*
245 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
246 static void	 xpt_acquire_target(struct cam_et *target);
247 static void	 xpt_release_target(struct cam_et *target);
248 static struct cam_eb*
249 		 xpt_find_bus(path_id_t path_id);
250 static struct cam_et*
251 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
252 static struct cam_ed*
253 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
254 static void	 xpt_config(void *arg);
255 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
256 				 u_int32_t new_priority);
257 static xpt_devicefunc_t xptpassannouncefunc;
258 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
259 static void	 xptpoll(struct cam_sim *sim);
260 static void	 camisr_runqueue(void);
261 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
262 static void	 xpt_done_td(void *);
263 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
264 				    u_int num_patterns, struct cam_eb *bus);
265 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
266 				       u_int num_patterns,
267 				       struct cam_ed *device);
268 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
269 				       u_int num_patterns,
270 				       struct cam_periph *periph);
271 static xpt_busfunc_t	xptedtbusfunc;
272 static xpt_targetfunc_t	xptedttargetfunc;
273 static xpt_devicefunc_t	xptedtdevicefunc;
274 static xpt_periphfunc_t	xptedtperiphfunc;
275 static xpt_pdrvfunc_t	xptplistpdrvfunc;
276 static xpt_periphfunc_t	xptplistperiphfunc;
277 static int		xptedtmatch(struct ccb_dev_match *cdm);
278 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
279 static int		xptbustraverse(struct cam_eb *start_bus,
280 				       xpt_busfunc_t *tr_func, void *arg);
281 static int		xpttargettraverse(struct cam_eb *bus,
282 					  struct cam_et *start_target,
283 					  xpt_targetfunc_t *tr_func, void *arg);
284 static int		xptdevicetraverse(struct cam_et *target,
285 					  struct cam_ed *start_device,
286 					  xpt_devicefunc_t *tr_func, void *arg);
287 static int		xptperiphtraverse(struct cam_ed *device,
288 					  struct cam_periph *start_periph,
289 					  xpt_periphfunc_t *tr_func, void *arg);
290 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
291 					xpt_pdrvfunc_t *tr_func, void *arg);
292 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
293 					    struct cam_periph *start_periph,
294 					    xpt_periphfunc_t *tr_func,
295 					    void *arg);
296 static xpt_busfunc_t	xptdefbusfunc;
297 static xpt_targetfunc_t	xptdeftargetfunc;
298 static xpt_devicefunc_t	xptdefdevicefunc;
299 static xpt_periphfunc_t	xptdefperiphfunc;
300 static void		xpt_finishconfig_task(void *context, int pending);
301 static void		xpt_dev_async_default(u_int32_t async_code,
302 					      struct cam_eb *bus,
303 					      struct cam_et *target,
304 					      struct cam_ed *device,
305 					      void *async_arg);
306 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
307 						 struct cam_et *target,
308 						 lun_id_t lun_id);
309 static xpt_devicefunc_t	xptsetasyncfunc;
310 static xpt_busfunc_t	xptsetasyncbusfunc;
311 static cam_status	xptregister(struct cam_periph *periph,
312 				    void *arg);
313 static const char *	xpt_action_name(uint32_t action);
314 static __inline int device_is_queued(struct cam_ed *device);
315 
316 static __inline int
317 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
318 {
319 	int	retval;
320 
321 	mtx_assert(&devq->send_mtx, MA_OWNED);
322 	if ((dev->ccbq.queue.entries > 0) &&
323 	    (dev->ccbq.dev_openings > 0) &&
324 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
325 		/*
326 		 * The priority of a device waiting for controller
327 		 * resources is that of the highest priority CCB
328 		 * enqueued.
329 		 */
330 		retval =
331 		    xpt_schedule_dev(&devq->send_queue,
332 				     &dev->devq_entry,
333 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
334 	} else {
335 		retval = 0;
336 	}
337 	return (retval);
338 }
339 
340 static __inline int
341 device_is_queued(struct cam_ed *device)
342 {
343 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
344 }
345 
346 static void
347 xpt_periph_init()
348 {
349 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
350 }
351 
352 static int
353 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
354 {
355 
356 	/*
357 	 * Only allow read-write access.
358 	 */
359 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
360 		return(EPERM);
361 
362 	/*
363 	 * We don't allow nonblocking access.
364 	 */
365 	if ((flags & O_NONBLOCK) != 0) {
366 		printf("%s: can't do nonblocking access\n", devtoname(dev));
367 		return(ENODEV);
368 	}
369 
370 	return(0);
371 }
372 
373 static int
374 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
375 {
376 
377 	return(0);
378 }
379 
380 /*
381  * Don't automatically grab the xpt softc lock here even though this is going
382  * through the xpt device.  The xpt device is really just a back door for
383  * accessing other devices and SIMs, so the right thing to do is to grab
384  * the appropriate SIM lock once the bus/SIM is located.
385  */
386 static int
387 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
388 {
389 	int error;
390 
391 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
392 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
393 	}
394 	return (error);
395 }
396 
397 static int
398 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
399 {
400 	int error;
401 
402 	error = 0;
403 
404 	switch(cmd) {
405 	/*
406 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
407 	 * to accept CCB types that don't quite make sense to send through a
408 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
409 	 * in the CAM spec.
410 	 */
411 	case CAMIOCOMMAND: {
412 		union ccb *ccb;
413 		union ccb *inccb;
414 		struct cam_eb *bus;
415 
416 		inccb = (union ccb *)addr;
417 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
418 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
419 			inccb->csio.bio = NULL;
420 #endif
421 
422 		bus = xpt_find_bus(inccb->ccb_h.path_id);
423 		if (bus == NULL)
424 			return (EINVAL);
425 
426 		switch (inccb->ccb_h.func_code) {
427 		case XPT_SCAN_BUS:
428 		case XPT_RESET_BUS:
429 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
430 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
431 				xpt_release_bus(bus);
432 				return (EINVAL);
433 			}
434 			break;
435 		case XPT_SCAN_TGT:
436 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
437 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
438 				xpt_release_bus(bus);
439 				return (EINVAL);
440 			}
441 			break;
442 		default:
443 			break;
444 		}
445 
446 		switch(inccb->ccb_h.func_code) {
447 		case XPT_SCAN_BUS:
448 		case XPT_RESET_BUS:
449 		case XPT_PATH_INQ:
450 		case XPT_ENG_INQ:
451 		case XPT_SCAN_LUN:
452 		case XPT_SCAN_TGT:
453 
454 			ccb = xpt_alloc_ccb();
455 
456 			/*
457 			 * Create a path using the bus, target, and lun the
458 			 * user passed in.
459 			 */
460 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
461 					    inccb->ccb_h.path_id,
462 					    inccb->ccb_h.target_id,
463 					    inccb->ccb_h.target_lun) !=
464 					    CAM_REQ_CMP){
465 				error = EINVAL;
466 				xpt_free_ccb(ccb);
467 				break;
468 			}
469 			/* Ensure all of our fields are correct */
470 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
471 				      inccb->ccb_h.pinfo.priority);
472 			xpt_merge_ccb(ccb, inccb);
473 			xpt_path_lock(ccb->ccb_h.path);
474 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
475 			xpt_path_unlock(ccb->ccb_h.path);
476 			bcopy(ccb, inccb, sizeof(union ccb));
477 			xpt_free_path(ccb->ccb_h.path);
478 			xpt_free_ccb(ccb);
479 			break;
480 
481 		case XPT_DEBUG: {
482 			union ccb ccb;
483 
484 			/*
485 			 * This is an immediate CCB, so it's okay to
486 			 * allocate it on the stack.
487 			 */
488 
489 			/*
490 			 * Create a path using the bus, target, and lun the
491 			 * user passed in.
492 			 */
493 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
494 					    inccb->ccb_h.path_id,
495 					    inccb->ccb_h.target_id,
496 					    inccb->ccb_h.target_lun) !=
497 					    CAM_REQ_CMP){
498 				error = EINVAL;
499 				break;
500 			}
501 			/* Ensure all of our fields are correct */
502 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
503 				      inccb->ccb_h.pinfo.priority);
504 			xpt_merge_ccb(&ccb, inccb);
505 			xpt_action(&ccb);
506 			bcopy(&ccb, inccb, sizeof(union ccb));
507 			xpt_free_path(ccb.ccb_h.path);
508 			break;
509 
510 		}
511 		case XPT_DEV_MATCH: {
512 			struct cam_periph_map_info mapinfo;
513 			struct cam_path *old_path;
514 
515 			/*
516 			 * We can't deal with physical addresses for this
517 			 * type of transaction.
518 			 */
519 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
520 			    CAM_DATA_VADDR) {
521 				error = EINVAL;
522 				break;
523 			}
524 
525 			/*
526 			 * Save this in case the caller had it set to
527 			 * something in particular.
528 			 */
529 			old_path = inccb->ccb_h.path;
530 
531 			/*
532 			 * We really don't need a path for the matching
533 			 * code.  The path is needed because of the
534 			 * debugging statements in xpt_action().  They
535 			 * assume that the CCB has a valid path.
536 			 */
537 			inccb->ccb_h.path = xpt_periph->path;
538 
539 			bzero(&mapinfo, sizeof(mapinfo));
540 
541 			/*
542 			 * Map the pattern and match buffers into kernel
543 			 * virtual address space.
544 			 */
545 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
546 
547 			if (error) {
548 				inccb->ccb_h.path = old_path;
549 				break;
550 			}
551 
552 			/*
553 			 * This is an immediate CCB, we can send it on directly.
554 			 */
555 			xpt_action(inccb);
556 
557 			/*
558 			 * Map the buffers back into user space.
559 			 */
560 			cam_periph_unmapmem(inccb, &mapinfo);
561 
562 			inccb->ccb_h.path = old_path;
563 
564 			error = 0;
565 			break;
566 		}
567 		default:
568 			error = ENOTSUP;
569 			break;
570 		}
571 		xpt_release_bus(bus);
572 		break;
573 	}
574 	/*
575 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
576 	 * with the periphal driver name and unit name filled in.  The other
577 	 * fields don't really matter as input.  The passthrough driver name
578 	 * ("pass"), and unit number are passed back in the ccb.  The current
579 	 * device generation number, and the index into the device peripheral
580 	 * driver list, and the status are also passed back.  Note that
581 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
582 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
583 	 * (or rather should be) impossible for the device peripheral driver
584 	 * list to change since we look at the whole thing in one pass, and
585 	 * we do it with lock protection.
586 	 *
587 	 */
588 	case CAMGETPASSTHRU: {
589 		union ccb *ccb;
590 		struct cam_periph *periph;
591 		struct periph_driver **p_drv;
592 		char   *name;
593 		u_int unit;
594 		int base_periph_found;
595 
596 		ccb = (union ccb *)addr;
597 		unit = ccb->cgdl.unit_number;
598 		name = ccb->cgdl.periph_name;
599 		base_periph_found = 0;
600 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
601 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
602 			ccb->csio.bio = NULL;
603 #endif
604 
605 		/*
606 		 * Sanity check -- make sure we don't get a null peripheral
607 		 * driver name.
608 		 */
609 		if (*ccb->cgdl.periph_name == '\0') {
610 			error = EINVAL;
611 			break;
612 		}
613 
614 		/* Keep the list from changing while we traverse it */
615 		xpt_lock_buses();
616 
617 		/* first find our driver in the list of drivers */
618 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
619 			if (strcmp((*p_drv)->driver_name, name) == 0)
620 				break;
621 
622 		if (*p_drv == NULL) {
623 			xpt_unlock_buses();
624 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
625 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
626 			*ccb->cgdl.periph_name = '\0';
627 			ccb->cgdl.unit_number = 0;
628 			error = ENOENT;
629 			break;
630 		}
631 
632 		/*
633 		 * Run through every peripheral instance of this driver
634 		 * and check to see whether it matches the unit passed
635 		 * in by the user.  If it does, get out of the loops and
636 		 * find the passthrough driver associated with that
637 		 * peripheral driver.
638 		 */
639 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
640 		     periph = TAILQ_NEXT(periph, unit_links)) {
641 
642 			if (periph->unit_number == unit)
643 				break;
644 		}
645 		/*
646 		 * If we found the peripheral driver that the user passed
647 		 * in, go through all of the peripheral drivers for that
648 		 * particular device and look for a passthrough driver.
649 		 */
650 		if (periph != NULL) {
651 			struct cam_ed *device;
652 			int i;
653 
654 			base_periph_found = 1;
655 			device = periph->path->device;
656 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
657 			     periph != NULL;
658 			     periph = SLIST_NEXT(periph, periph_links), i++) {
659 				/*
660 				 * Check to see whether we have a
661 				 * passthrough device or not.
662 				 */
663 				if (strcmp(periph->periph_name, "pass") == 0) {
664 					/*
665 					 * Fill in the getdevlist fields.
666 					 */
667 					strcpy(ccb->cgdl.periph_name,
668 					       periph->periph_name);
669 					ccb->cgdl.unit_number =
670 						periph->unit_number;
671 					if (SLIST_NEXT(periph, periph_links))
672 						ccb->cgdl.status =
673 							CAM_GDEVLIST_MORE_DEVS;
674 					else
675 						ccb->cgdl.status =
676 						       CAM_GDEVLIST_LAST_DEVICE;
677 					ccb->cgdl.generation =
678 						device->generation;
679 					ccb->cgdl.index = i;
680 					/*
681 					 * Fill in some CCB header fields
682 					 * that the user may want.
683 					 */
684 					ccb->ccb_h.path_id =
685 						periph->path->bus->path_id;
686 					ccb->ccb_h.target_id =
687 						periph->path->target->target_id;
688 					ccb->ccb_h.target_lun =
689 						periph->path->device->lun_id;
690 					ccb->ccb_h.status = CAM_REQ_CMP;
691 					break;
692 				}
693 			}
694 		}
695 
696 		/*
697 		 * If the periph is null here, one of two things has
698 		 * happened.  The first possibility is that we couldn't
699 		 * find the unit number of the particular peripheral driver
700 		 * that the user is asking about.  e.g. the user asks for
701 		 * the passthrough driver for "da11".  We find the list of
702 		 * "da" peripherals all right, but there is no unit 11.
703 		 * The other possibility is that we went through the list
704 		 * of peripheral drivers attached to the device structure,
705 		 * but didn't find one with the name "pass".  Either way,
706 		 * we return ENOENT, since we couldn't find something.
707 		 */
708 		if (periph == NULL) {
709 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
710 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
711 			*ccb->cgdl.periph_name = '\0';
712 			ccb->cgdl.unit_number = 0;
713 			error = ENOENT;
714 			/*
715 			 * It is unfortunate that this is even necessary,
716 			 * but there are many, many clueless users out there.
717 			 * If this is true, the user is looking for the
718 			 * passthrough driver, but doesn't have one in his
719 			 * kernel.
720 			 */
721 			if (base_periph_found == 1) {
722 				printf("xptioctl: pass driver is not in the "
723 				       "kernel\n");
724 				printf("xptioctl: put \"device pass\" in "
725 				       "your kernel config file\n");
726 			}
727 		}
728 		xpt_unlock_buses();
729 		break;
730 		}
731 	default:
732 		error = ENOTTY;
733 		break;
734 	}
735 
736 	return(error);
737 }
738 
739 static int
740 cam_module_event_handler(module_t mod, int what, void *arg)
741 {
742 	int error;
743 
744 	switch (what) {
745 	case MOD_LOAD:
746 		if ((error = xpt_init(NULL)) != 0)
747 			return (error);
748 		break;
749 	case MOD_UNLOAD:
750 		return EBUSY;
751 	default:
752 		return EOPNOTSUPP;
753 	}
754 
755 	return 0;
756 }
757 
758 static struct xpt_proto *
759 xpt_proto_find(cam_proto proto)
760 {
761 	struct xpt_proto **pp;
762 
763 	SET_FOREACH(pp, cam_xpt_proto_set) {
764 		if ((*pp)->proto == proto)
765 			return *pp;
766 	}
767 
768 	return NULL;
769 }
770 
771 static void
772 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
773 {
774 
775 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
776 		xpt_free_path(done_ccb->ccb_h.path);
777 		xpt_free_ccb(done_ccb);
778 	} else {
779 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
780 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
781 	}
782 	xpt_release_boot();
783 }
784 
785 /* thread to handle bus rescans */
786 static void
787 xpt_scanner_thread(void *dummy)
788 {
789 	union ccb	*ccb;
790 	struct cam_path	 path;
791 
792 	xpt_lock_buses();
793 	for (;;) {
794 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
795 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
796 			       "-", 0);
797 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
798 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
799 			xpt_unlock_buses();
800 
801 			/*
802 			 * Since lock can be dropped inside and path freed
803 			 * by completion callback even before return here,
804 			 * take our own path copy for reference.
805 			 */
806 			xpt_copy_path(&path, ccb->ccb_h.path);
807 			xpt_path_lock(&path);
808 			xpt_action(ccb);
809 			xpt_path_unlock(&path);
810 			xpt_release_path(&path);
811 
812 			xpt_lock_buses();
813 		}
814 	}
815 }
816 
817 void
818 xpt_rescan(union ccb *ccb)
819 {
820 	struct ccb_hdr *hdr;
821 
822 	/* Prepare request */
823 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
824 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
825 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
826 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
827 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
828 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
829 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
830 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
831 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
832 	else {
833 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
834 		xpt_free_path(ccb->ccb_h.path);
835 		xpt_free_ccb(ccb);
836 		return;
837 	}
838 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
839 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
840  		xpt_action_name(ccb->ccb_h.func_code)));
841 
842 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
843 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
844 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
845 	/* Don't make duplicate entries for the same paths. */
846 	xpt_lock_buses();
847 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
848 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
849 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
850 				wakeup(&xsoftc.ccb_scanq);
851 				xpt_unlock_buses();
852 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
853 				xpt_free_path(ccb->ccb_h.path);
854 				xpt_free_ccb(ccb);
855 				return;
856 			}
857 		}
858 	}
859 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
860 	xsoftc.buses_to_config++;
861 	wakeup(&xsoftc.ccb_scanq);
862 	xpt_unlock_buses();
863 }
864 
865 /* Functions accessed by the peripheral drivers */
866 static int
867 xpt_init(void *dummy)
868 {
869 	struct cam_sim *xpt_sim;
870 	struct cam_path *path;
871 	struct cam_devq *devq;
872 	cam_status status;
873 	int error, i;
874 
875 	TAILQ_INIT(&xsoftc.xpt_busses);
876 	TAILQ_INIT(&xsoftc.ccb_scanq);
877 	STAILQ_INIT(&xsoftc.highpowerq);
878 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
879 
880 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
881 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
882 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
883 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
884 
885 #ifdef CAM_BOOT_DELAY
886 	/*
887 	 * Override this value at compile time to assist our users
888 	 * who don't use loader to boot a kernel.
889 	 */
890 	xsoftc.boot_delay = CAM_BOOT_DELAY;
891 #endif
892 	/*
893 	 * The xpt layer is, itself, the equivalent of a SIM.
894 	 * Allow 16 ccbs in the ccb pool for it.  This should
895 	 * give decent parallelism when we probe busses and
896 	 * perform other XPT functions.
897 	 */
898 	devq = cam_simq_alloc(16);
899 	xpt_sim = cam_sim_alloc(xptaction,
900 				xptpoll,
901 				"xpt",
902 				/*softc*/NULL,
903 				/*unit*/0,
904 				/*mtx*/&xsoftc.xpt_lock,
905 				/*max_dev_transactions*/0,
906 				/*max_tagged_dev_transactions*/0,
907 				devq);
908 	if (xpt_sim == NULL)
909 		return (ENOMEM);
910 
911 	mtx_lock(&xsoftc.xpt_lock);
912 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
913 		mtx_unlock(&xsoftc.xpt_lock);
914 		printf("xpt_init: xpt_bus_register failed with status %#x,"
915 		       " failing attach\n", status);
916 		return (EINVAL);
917 	}
918 	mtx_unlock(&xsoftc.xpt_lock);
919 
920 	/*
921 	 * Looking at the XPT from the SIM layer, the XPT is
922 	 * the equivalent of a peripheral driver.  Allocate
923 	 * a peripheral driver entry for us.
924 	 */
925 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
926 				      CAM_TARGET_WILDCARD,
927 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
928 		printf("xpt_init: xpt_create_path failed with status %#x,"
929 		       " failing attach\n", status);
930 		return (EINVAL);
931 	}
932 	xpt_path_lock(path);
933 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
934 			 path, NULL, 0, xpt_sim);
935 	xpt_path_unlock(path);
936 	xpt_free_path(path);
937 
938 	if (cam_num_doneqs < 1)
939 		cam_num_doneqs = 1 + mp_ncpus / 6;
940 	else if (cam_num_doneqs > MAXCPU)
941 		cam_num_doneqs = MAXCPU;
942 	for (i = 0; i < cam_num_doneqs; i++) {
943 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
944 		    MTX_DEF);
945 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
946 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
947 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
948 		if (error != 0) {
949 			cam_num_doneqs = i;
950 			break;
951 		}
952 	}
953 	if (cam_num_doneqs < 1) {
954 		printf("xpt_init: Cannot init completion queues "
955 		       "- failing attach\n");
956 		return (ENOMEM);
957 	}
958 	/*
959 	 * Register a callback for when interrupts are enabled.
960 	 */
961 	xsoftc.xpt_config_hook =
962 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
963 					      M_CAMXPT, M_NOWAIT | M_ZERO);
964 	if (xsoftc.xpt_config_hook == NULL) {
965 		printf("xpt_init: Cannot malloc config hook "
966 		       "- failing attach\n");
967 		return (ENOMEM);
968 	}
969 	xsoftc.xpt_config_hook->ich_func = xpt_config;
970 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
971 		free (xsoftc.xpt_config_hook, M_CAMXPT);
972 		printf("xpt_init: config_intrhook_establish failed "
973 		       "- failing attach\n");
974 	}
975 
976 	return (0);
977 }
978 
979 static cam_status
980 xptregister(struct cam_periph *periph, void *arg)
981 {
982 	struct cam_sim *xpt_sim;
983 
984 	if (periph == NULL) {
985 		printf("xptregister: periph was NULL!!\n");
986 		return(CAM_REQ_CMP_ERR);
987 	}
988 
989 	xpt_sim = (struct cam_sim *)arg;
990 	xpt_sim->softc = periph;
991 	xpt_periph = periph;
992 	periph->softc = NULL;
993 
994 	return(CAM_REQ_CMP);
995 }
996 
997 int32_t
998 xpt_add_periph(struct cam_periph *periph)
999 {
1000 	struct cam_ed *device;
1001 	int32_t	 status;
1002 
1003 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1004 	device = periph->path->device;
1005 	status = CAM_REQ_CMP;
1006 	if (device != NULL) {
1007 		mtx_lock(&device->target->bus->eb_mtx);
1008 		device->generation++;
1009 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1010 		mtx_unlock(&device->target->bus->eb_mtx);
1011 		atomic_add_32(&xsoftc.xpt_generation, 1);
1012 	}
1013 
1014 	return (status);
1015 }
1016 
1017 void
1018 xpt_remove_periph(struct cam_periph *periph)
1019 {
1020 	struct cam_ed *device;
1021 
1022 	device = periph->path->device;
1023 	if (device != NULL) {
1024 		mtx_lock(&device->target->bus->eb_mtx);
1025 		device->generation++;
1026 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1027 		mtx_unlock(&device->target->bus->eb_mtx);
1028 		atomic_add_32(&xsoftc.xpt_generation, 1);
1029 	}
1030 }
1031 
1032 
1033 void
1034 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1035 {
1036 	struct	cam_path *path = periph->path;
1037 	struct  xpt_proto *proto;
1038 
1039 	cam_periph_assert(periph, MA_OWNED);
1040 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1041 
1042 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1043 	       periph->periph_name, periph->unit_number,
1044 	       path->bus->sim->sim_name,
1045 	       path->bus->sim->unit_number,
1046 	       path->bus->sim->bus_id,
1047 	       path->bus->path_id,
1048 	       path->target->target_id,
1049 	       (uintmax_t)path->device->lun_id);
1050 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1051 	proto = xpt_proto_find(path->device->protocol);
1052 	if (proto)
1053 		proto->ops->announce(path->device);
1054 	else
1055 		printf("%s%d: Unknown protocol device %d\n",
1056 		    periph->periph_name, periph->unit_number,
1057 		    path->device->protocol);
1058 	if (path->device->serial_num_len > 0) {
1059 		/* Don't wrap the screen  - print only the first 60 chars */
1060 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1061 		       periph->unit_number, path->device->serial_num);
1062 	}
1063 	/* Announce transport details. */
1064 	path->bus->xport->ops->announce(periph);
1065 	/* Announce command queueing. */
1066 	if (path->device->inq_flags & SID_CmdQue
1067 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1068 		printf("%s%d: Command Queueing enabled\n",
1069 		       periph->periph_name, periph->unit_number);
1070 	}
1071 	/* Announce caller's details if they've passed in. */
1072 	if (announce_string != NULL)
1073 		printf("%s%d: %s\n", periph->periph_name,
1074 		       periph->unit_number, announce_string);
1075 }
1076 
1077 void
1078 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1079 {
1080 	if (quirks != 0) {
1081 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1082 		    periph->unit_number, quirks, bit_string);
1083 	}
1084 }
1085 
1086 void
1087 xpt_denounce_periph(struct cam_periph *periph)
1088 {
1089 	struct	cam_path *path = periph->path;
1090 	struct  xpt_proto *proto;
1091 
1092 	cam_periph_assert(periph, MA_OWNED);
1093 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1094 	       periph->periph_name, periph->unit_number,
1095 	       path->bus->sim->sim_name,
1096 	       path->bus->sim->unit_number,
1097 	       path->bus->sim->bus_id,
1098 	       path->bus->path_id,
1099 	       path->target->target_id,
1100 	       (uintmax_t)path->device->lun_id);
1101 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1102 	proto = xpt_proto_find(path->device->protocol);
1103 	if (proto)
1104 		proto->ops->denounce(path->device);
1105 	else
1106 		printf("%s%d: Unknown protocol device %d\n",
1107 		    periph->periph_name, periph->unit_number,
1108 		    path->device->protocol);
1109 	if (path->device->serial_num_len > 0)
1110 		printf(" s/n %.60s", path->device->serial_num);
1111 	printf(" detached\n");
1112 }
1113 
1114 
1115 int
1116 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1117 {
1118 	int ret = -1, l;
1119 	struct ccb_dev_advinfo cdai;
1120 	struct scsi_vpd_id_descriptor *idd;
1121 
1122 	xpt_path_assert(path, MA_OWNED);
1123 
1124 	memset(&cdai, 0, sizeof(cdai));
1125 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1126 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1127 	cdai.bufsiz = len;
1128 
1129 	if (!strcmp(attr, "GEOM::ident"))
1130 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1131 	else if (!strcmp(attr, "GEOM::physpath"))
1132 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1133 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1134 		 strcmp(attr, "GEOM::lunname") == 0) {
1135 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1136 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1137 	} else
1138 		goto out;
1139 
1140 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1141 	if (cdai.buf == NULL) {
1142 		ret = ENOMEM;
1143 		goto out;
1144 	}
1145 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1146 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1147 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1148 	if (cdai.provsiz == 0)
1149 		goto out;
1150 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1151 		if (strcmp(attr, "GEOM::lunid") == 0) {
1152 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1153 			    cdai.provsiz, scsi_devid_is_lun_naa);
1154 			if (idd == NULL)
1155 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1156 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1157 		} else
1158 			idd = NULL;
1159 		if (idd == NULL)
1160 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1161 			    cdai.provsiz, scsi_devid_is_lun_t10);
1162 		if (idd == NULL)
1163 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1164 			    cdai.provsiz, scsi_devid_is_lun_name);
1165 		if (idd == NULL)
1166 			goto out;
1167 		ret = 0;
1168 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) {
1169 			if (idd->length < len) {
1170 				for (l = 0; l < idd->length; l++)
1171 					buf[l] = idd->identifier[l] ?
1172 					    idd->identifier[l] : ' ';
1173 				buf[l] = 0;
1174 			} else
1175 				ret = EFAULT;
1176 		} else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1177 			l = strnlen(idd->identifier, idd->length);
1178 			if (l < len) {
1179 				bcopy(idd->identifier, buf, l);
1180 				buf[l] = 0;
1181 			} else
1182 				ret = EFAULT;
1183 		} else {
1184 			if (idd->length * 2 < len) {
1185 				for (l = 0; l < idd->length; l++)
1186 					sprintf(buf + l * 2, "%02x",
1187 					    idd->identifier[l]);
1188 			} else
1189 				ret = EFAULT;
1190 		}
1191 	} else {
1192 		ret = 0;
1193 		if (strlcpy(buf, cdai.buf, len) >= len)
1194 			ret = EFAULT;
1195 	}
1196 
1197 out:
1198 	if (cdai.buf != NULL)
1199 		free(cdai.buf, M_CAMXPT);
1200 	return ret;
1201 }
1202 
1203 static dev_match_ret
1204 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1205 	    struct cam_eb *bus)
1206 {
1207 	dev_match_ret retval;
1208 	u_int i;
1209 
1210 	retval = DM_RET_NONE;
1211 
1212 	/*
1213 	 * If we aren't given something to match against, that's an error.
1214 	 */
1215 	if (bus == NULL)
1216 		return(DM_RET_ERROR);
1217 
1218 	/*
1219 	 * If there are no match entries, then this bus matches no
1220 	 * matter what.
1221 	 */
1222 	if ((patterns == NULL) || (num_patterns == 0))
1223 		return(DM_RET_DESCEND | DM_RET_COPY);
1224 
1225 	for (i = 0; i < num_patterns; i++) {
1226 		struct bus_match_pattern *cur_pattern;
1227 
1228 		/*
1229 		 * If the pattern in question isn't for a bus node, we
1230 		 * aren't interested.  However, we do indicate to the
1231 		 * calling routine that we should continue descending the
1232 		 * tree, since the user wants to match against lower-level
1233 		 * EDT elements.
1234 		 */
1235 		if (patterns[i].type != DEV_MATCH_BUS) {
1236 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1237 				retval |= DM_RET_DESCEND;
1238 			continue;
1239 		}
1240 
1241 		cur_pattern = &patterns[i].pattern.bus_pattern;
1242 
1243 		/*
1244 		 * If they want to match any bus node, we give them any
1245 		 * device node.
1246 		 */
1247 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1248 			/* set the copy flag */
1249 			retval |= DM_RET_COPY;
1250 
1251 			/*
1252 			 * If we've already decided on an action, go ahead
1253 			 * and return.
1254 			 */
1255 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1256 				return(retval);
1257 		}
1258 
1259 		/*
1260 		 * Not sure why someone would do this...
1261 		 */
1262 		if (cur_pattern->flags == BUS_MATCH_NONE)
1263 			continue;
1264 
1265 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1266 		 && (cur_pattern->path_id != bus->path_id))
1267 			continue;
1268 
1269 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1270 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1271 			continue;
1272 
1273 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1274 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1275 			continue;
1276 
1277 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1278 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1279 			     DEV_IDLEN) != 0))
1280 			continue;
1281 
1282 		/*
1283 		 * If we get to this point, the user definitely wants
1284 		 * information on this bus.  So tell the caller to copy the
1285 		 * data out.
1286 		 */
1287 		retval |= DM_RET_COPY;
1288 
1289 		/*
1290 		 * If the return action has been set to descend, then we
1291 		 * know that we've already seen a non-bus matching
1292 		 * expression, therefore we need to further descend the tree.
1293 		 * This won't change by continuing around the loop, so we
1294 		 * go ahead and return.  If we haven't seen a non-bus
1295 		 * matching expression, we keep going around the loop until
1296 		 * we exhaust the matching expressions.  We'll set the stop
1297 		 * flag once we fall out of the loop.
1298 		 */
1299 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1300 			return(retval);
1301 	}
1302 
1303 	/*
1304 	 * If the return action hasn't been set to descend yet, that means
1305 	 * we haven't seen anything other than bus matching patterns.  So
1306 	 * tell the caller to stop descending the tree -- the user doesn't
1307 	 * want to match against lower level tree elements.
1308 	 */
1309 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1310 		retval |= DM_RET_STOP;
1311 
1312 	return(retval);
1313 }
1314 
1315 static dev_match_ret
1316 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1317 	       struct cam_ed *device)
1318 {
1319 	dev_match_ret retval;
1320 	u_int i;
1321 
1322 	retval = DM_RET_NONE;
1323 
1324 	/*
1325 	 * If we aren't given something to match against, that's an error.
1326 	 */
1327 	if (device == NULL)
1328 		return(DM_RET_ERROR);
1329 
1330 	/*
1331 	 * If there are no match entries, then this device matches no
1332 	 * matter what.
1333 	 */
1334 	if ((patterns == NULL) || (num_patterns == 0))
1335 		return(DM_RET_DESCEND | DM_RET_COPY);
1336 
1337 	for (i = 0; i < num_patterns; i++) {
1338 		struct device_match_pattern *cur_pattern;
1339 		struct scsi_vpd_device_id *device_id_page;
1340 
1341 		/*
1342 		 * If the pattern in question isn't for a device node, we
1343 		 * aren't interested.
1344 		 */
1345 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1346 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1347 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1348 				retval |= DM_RET_DESCEND;
1349 			continue;
1350 		}
1351 
1352 		cur_pattern = &patterns[i].pattern.device_pattern;
1353 
1354 		/* Error out if mutually exclusive options are specified. */
1355 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1356 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1357 			return(DM_RET_ERROR);
1358 
1359 		/*
1360 		 * If they want to match any device node, we give them any
1361 		 * device node.
1362 		 */
1363 		if (cur_pattern->flags == DEV_MATCH_ANY)
1364 			goto copy_dev_node;
1365 
1366 		/*
1367 		 * Not sure why someone would do this...
1368 		 */
1369 		if (cur_pattern->flags == DEV_MATCH_NONE)
1370 			continue;
1371 
1372 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1373 		 && (cur_pattern->path_id != device->target->bus->path_id))
1374 			continue;
1375 
1376 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1377 		 && (cur_pattern->target_id != device->target->target_id))
1378 			continue;
1379 
1380 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1381 		 && (cur_pattern->target_lun != device->lun_id))
1382 			continue;
1383 
1384 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1385 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1386 				    (caddr_t)&cur_pattern->data.inq_pat,
1387 				    1, sizeof(cur_pattern->data.inq_pat),
1388 				    scsi_static_inquiry_match) == NULL))
1389 			continue;
1390 
1391 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1392 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1393 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1394 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1395 				      device->device_id_len
1396 				    - SVPD_DEVICE_ID_HDR_LEN,
1397 				      cur_pattern->data.devid_pat.id,
1398 				      cur_pattern->data.devid_pat.id_len) != 0))
1399 			continue;
1400 
1401 copy_dev_node:
1402 		/*
1403 		 * If we get to this point, the user definitely wants
1404 		 * information on this device.  So tell the caller to copy
1405 		 * the data out.
1406 		 */
1407 		retval |= DM_RET_COPY;
1408 
1409 		/*
1410 		 * If the return action has been set to descend, then we
1411 		 * know that we've already seen a peripheral matching
1412 		 * expression, therefore we need to further descend the tree.
1413 		 * This won't change by continuing around the loop, so we
1414 		 * go ahead and return.  If we haven't seen a peripheral
1415 		 * matching expression, we keep going around the loop until
1416 		 * we exhaust the matching expressions.  We'll set the stop
1417 		 * flag once we fall out of the loop.
1418 		 */
1419 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1420 			return(retval);
1421 	}
1422 
1423 	/*
1424 	 * If the return action hasn't been set to descend yet, that means
1425 	 * we haven't seen any peripheral matching patterns.  So tell the
1426 	 * caller to stop descending the tree -- the user doesn't want to
1427 	 * match against lower level tree elements.
1428 	 */
1429 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1430 		retval |= DM_RET_STOP;
1431 
1432 	return(retval);
1433 }
1434 
1435 /*
1436  * Match a single peripheral against any number of match patterns.
1437  */
1438 static dev_match_ret
1439 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1440 	       struct cam_periph *periph)
1441 {
1442 	dev_match_ret retval;
1443 	u_int i;
1444 
1445 	/*
1446 	 * If we aren't given something to match against, that's an error.
1447 	 */
1448 	if (periph == NULL)
1449 		return(DM_RET_ERROR);
1450 
1451 	/*
1452 	 * If there are no match entries, then this peripheral matches no
1453 	 * matter what.
1454 	 */
1455 	if ((patterns == NULL) || (num_patterns == 0))
1456 		return(DM_RET_STOP | DM_RET_COPY);
1457 
1458 	/*
1459 	 * There aren't any nodes below a peripheral node, so there's no
1460 	 * reason to descend the tree any further.
1461 	 */
1462 	retval = DM_RET_STOP;
1463 
1464 	for (i = 0; i < num_patterns; i++) {
1465 		struct periph_match_pattern *cur_pattern;
1466 
1467 		/*
1468 		 * If the pattern in question isn't for a peripheral, we
1469 		 * aren't interested.
1470 		 */
1471 		if (patterns[i].type != DEV_MATCH_PERIPH)
1472 			continue;
1473 
1474 		cur_pattern = &patterns[i].pattern.periph_pattern;
1475 
1476 		/*
1477 		 * If they want to match on anything, then we will do so.
1478 		 */
1479 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1480 			/* set the copy flag */
1481 			retval |= DM_RET_COPY;
1482 
1483 			/*
1484 			 * We've already set the return action to stop,
1485 			 * since there are no nodes below peripherals in
1486 			 * the tree.
1487 			 */
1488 			return(retval);
1489 		}
1490 
1491 		/*
1492 		 * Not sure why someone would do this...
1493 		 */
1494 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1495 			continue;
1496 
1497 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1498 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1499 			continue;
1500 
1501 		/*
1502 		 * For the target and lun id's, we have to make sure the
1503 		 * target and lun pointers aren't NULL.  The xpt peripheral
1504 		 * has a wildcard target and device.
1505 		 */
1506 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1507 		 && ((periph->path->target == NULL)
1508 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1509 			continue;
1510 
1511 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1512 		 && ((periph->path->device == NULL)
1513 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1514 			continue;
1515 
1516 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1517 		 && (cur_pattern->unit_number != periph->unit_number))
1518 			continue;
1519 
1520 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1521 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1522 			     DEV_IDLEN) != 0))
1523 			continue;
1524 
1525 		/*
1526 		 * If we get to this point, the user definitely wants
1527 		 * information on this peripheral.  So tell the caller to
1528 		 * copy the data out.
1529 		 */
1530 		retval |= DM_RET_COPY;
1531 
1532 		/*
1533 		 * The return action has already been set to stop, since
1534 		 * peripherals don't have any nodes below them in the EDT.
1535 		 */
1536 		return(retval);
1537 	}
1538 
1539 	/*
1540 	 * If we get to this point, the peripheral that was passed in
1541 	 * doesn't match any of the patterns.
1542 	 */
1543 	return(retval);
1544 }
1545 
1546 static int
1547 xptedtbusfunc(struct cam_eb *bus, void *arg)
1548 {
1549 	struct ccb_dev_match *cdm;
1550 	struct cam_et *target;
1551 	dev_match_ret retval;
1552 
1553 	cdm = (struct ccb_dev_match *)arg;
1554 
1555 	/*
1556 	 * If our position is for something deeper in the tree, that means
1557 	 * that we've already seen this node.  So, we keep going down.
1558 	 */
1559 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1560 	 && (cdm->pos.cookie.bus == bus)
1561 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1562 	 && (cdm->pos.cookie.target != NULL))
1563 		retval = DM_RET_DESCEND;
1564 	else
1565 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1566 
1567 	/*
1568 	 * If we got an error, bail out of the search.
1569 	 */
1570 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1571 		cdm->status = CAM_DEV_MATCH_ERROR;
1572 		return(0);
1573 	}
1574 
1575 	/*
1576 	 * If the copy flag is set, copy this bus out.
1577 	 */
1578 	if (retval & DM_RET_COPY) {
1579 		int spaceleft, j;
1580 
1581 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1582 			sizeof(struct dev_match_result));
1583 
1584 		/*
1585 		 * If we don't have enough space to put in another
1586 		 * match result, save our position and tell the
1587 		 * user there are more devices to check.
1588 		 */
1589 		if (spaceleft < sizeof(struct dev_match_result)) {
1590 			bzero(&cdm->pos, sizeof(cdm->pos));
1591 			cdm->pos.position_type =
1592 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1593 
1594 			cdm->pos.cookie.bus = bus;
1595 			cdm->pos.generations[CAM_BUS_GENERATION]=
1596 				xsoftc.bus_generation;
1597 			cdm->status = CAM_DEV_MATCH_MORE;
1598 			return(0);
1599 		}
1600 		j = cdm->num_matches;
1601 		cdm->num_matches++;
1602 		cdm->matches[j].type = DEV_MATCH_BUS;
1603 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1604 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1605 		cdm->matches[j].result.bus_result.unit_number =
1606 			bus->sim->unit_number;
1607 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1608 			bus->sim->sim_name, DEV_IDLEN);
1609 	}
1610 
1611 	/*
1612 	 * If the user is only interested in busses, there's no
1613 	 * reason to descend to the next level in the tree.
1614 	 */
1615 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1616 		return(1);
1617 
1618 	/*
1619 	 * If there is a target generation recorded, check it to
1620 	 * make sure the target list hasn't changed.
1621 	 */
1622 	mtx_lock(&bus->eb_mtx);
1623 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1624 	 && (cdm->pos.cookie.bus == bus)
1625 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1626 	 && (cdm->pos.cookie.target != NULL)) {
1627 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1628 		    bus->generation)) {
1629 			mtx_unlock(&bus->eb_mtx);
1630 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1631 			return (0);
1632 		}
1633 		target = (struct cam_et *)cdm->pos.cookie.target;
1634 		target->refcount++;
1635 	} else
1636 		target = NULL;
1637 	mtx_unlock(&bus->eb_mtx);
1638 
1639 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1640 }
1641 
1642 static int
1643 xptedttargetfunc(struct cam_et *target, void *arg)
1644 {
1645 	struct ccb_dev_match *cdm;
1646 	struct cam_eb *bus;
1647 	struct cam_ed *device;
1648 
1649 	cdm = (struct ccb_dev_match *)arg;
1650 	bus = target->bus;
1651 
1652 	/*
1653 	 * If there is a device list generation recorded, check it to
1654 	 * make sure the device list hasn't changed.
1655 	 */
1656 	mtx_lock(&bus->eb_mtx);
1657 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1658 	 && (cdm->pos.cookie.bus == bus)
1659 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1660 	 && (cdm->pos.cookie.target == target)
1661 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1662 	 && (cdm->pos.cookie.device != NULL)) {
1663 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1664 		    target->generation) {
1665 			mtx_unlock(&bus->eb_mtx);
1666 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1667 			return(0);
1668 		}
1669 		device = (struct cam_ed *)cdm->pos.cookie.device;
1670 		device->refcount++;
1671 	} else
1672 		device = NULL;
1673 	mtx_unlock(&bus->eb_mtx);
1674 
1675 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1676 }
1677 
1678 static int
1679 xptedtdevicefunc(struct cam_ed *device, void *arg)
1680 {
1681 	struct cam_eb *bus;
1682 	struct cam_periph *periph;
1683 	struct ccb_dev_match *cdm;
1684 	dev_match_ret retval;
1685 
1686 	cdm = (struct ccb_dev_match *)arg;
1687 	bus = device->target->bus;
1688 
1689 	/*
1690 	 * If our position is for something deeper in the tree, that means
1691 	 * that we've already seen this node.  So, we keep going down.
1692 	 */
1693 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1694 	 && (cdm->pos.cookie.device == device)
1695 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1696 	 && (cdm->pos.cookie.periph != NULL))
1697 		retval = DM_RET_DESCEND;
1698 	else
1699 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1700 					device);
1701 
1702 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1703 		cdm->status = CAM_DEV_MATCH_ERROR;
1704 		return(0);
1705 	}
1706 
1707 	/*
1708 	 * If the copy flag is set, copy this device out.
1709 	 */
1710 	if (retval & DM_RET_COPY) {
1711 		int spaceleft, j;
1712 
1713 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1714 			sizeof(struct dev_match_result));
1715 
1716 		/*
1717 		 * If we don't have enough space to put in another
1718 		 * match result, save our position and tell the
1719 		 * user there are more devices to check.
1720 		 */
1721 		if (spaceleft < sizeof(struct dev_match_result)) {
1722 			bzero(&cdm->pos, sizeof(cdm->pos));
1723 			cdm->pos.position_type =
1724 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1725 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1726 
1727 			cdm->pos.cookie.bus = device->target->bus;
1728 			cdm->pos.generations[CAM_BUS_GENERATION]=
1729 				xsoftc.bus_generation;
1730 			cdm->pos.cookie.target = device->target;
1731 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1732 				device->target->bus->generation;
1733 			cdm->pos.cookie.device = device;
1734 			cdm->pos.generations[CAM_DEV_GENERATION] =
1735 				device->target->generation;
1736 			cdm->status = CAM_DEV_MATCH_MORE;
1737 			return(0);
1738 		}
1739 		j = cdm->num_matches;
1740 		cdm->num_matches++;
1741 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1742 		cdm->matches[j].result.device_result.path_id =
1743 			device->target->bus->path_id;
1744 		cdm->matches[j].result.device_result.target_id =
1745 			device->target->target_id;
1746 		cdm->matches[j].result.device_result.target_lun =
1747 			device->lun_id;
1748 		cdm->matches[j].result.device_result.protocol =
1749 			device->protocol;
1750 		bcopy(&device->inq_data,
1751 		      &cdm->matches[j].result.device_result.inq_data,
1752 		      sizeof(struct scsi_inquiry_data));
1753 		bcopy(&device->ident_data,
1754 		      &cdm->matches[j].result.device_result.ident_data,
1755 		      sizeof(struct ata_params));
1756 
1757 		/* Let the user know whether this device is unconfigured */
1758 		if (device->flags & CAM_DEV_UNCONFIGURED)
1759 			cdm->matches[j].result.device_result.flags =
1760 				DEV_RESULT_UNCONFIGURED;
1761 		else
1762 			cdm->matches[j].result.device_result.flags =
1763 				DEV_RESULT_NOFLAG;
1764 	}
1765 
1766 	/*
1767 	 * If the user isn't interested in peripherals, don't descend
1768 	 * the tree any further.
1769 	 */
1770 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1771 		return(1);
1772 
1773 	/*
1774 	 * If there is a peripheral list generation recorded, make sure
1775 	 * it hasn't changed.
1776 	 */
1777 	xpt_lock_buses();
1778 	mtx_lock(&bus->eb_mtx);
1779 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1780 	 && (cdm->pos.cookie.bus == bus)
1781 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1782 	 && (cdm->pos.cookie.target == device->target)
1783 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1784 	 && (cdm->pos.cookie.device == device)
1785 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1786 	 && (cdm->pos.cookie.periph != NULL)) {
1787 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1788 		    device->generation) {
1789 			mtx_unlock(&bus->eb_mtx);
1790 			xpt_unlock_buses();
1791 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1792 			return(0);
1793 		}
1794 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1795 		periph->refcount++;
1796 	} else
1797 		periph = NULL;
1798 	mtx_unlock(&bus->eb_mtx);
1799 	xpt_unlock_buses();
1800 
1801 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1802 }
1803 
1804 static int
1805 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1806 {
1807 	struct ccb_dev_match *cdm;
1808 	dev_match_ret retval;
1809 
1810 	cdm = (struct ccb_dev_match *)arg;
1811 
1812 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1813 
1814 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1815 		cdm->status = CAM_DEV_MATCH_ERROR;
1816 		return(0);
1817 	}
1818 
1819 	/*
1820 	 * If the copy flag is set, copy this peripheral out.
1821 	 */
1822 	if (retval & DM_RET_COPY) {
1823 		int spaceleft, j;
1824 
1825 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1826 			sizeof(struct dev_match_result));
1827 
1828 		/*
1829 		 * If we don't have enough space to put in another
1830 		 * match result, save our position and tell the
1831 		 * user there are more devices to check.
1832 		 */
1833 		if (spaceleft < sizeof(struct dev_match_result)) {
1834 			bzero(&cdm->pos, sizeof(cdm->pos));
1835 			cdm->pos.position_type =
1836 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1837 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1838 				CAM_DEV_POS_PERIPH;
1839 
1840 			cdm->pos.cookie.bus = periph->path->bus;
1841 			cdm->pos.generations[CAM_BUS_GENERATION]=
1842 				xsoftc.bus_generation;
1843 			cdm->pos.cookie.target = periph->path->target;
1844 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1845 				periph->path->bus->generation;
1846 			cdm->pos.cookie.device = periph->path->device;
1847 			cdm->pos.generations[CAM_DEV_GENERATION] =
1848 				periph->path->target->generation;
1849 			cdm->pos.cookie.periph = periph;
1850 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1851 				periph->path->device->generation;
1852 			cdm->status = CAM_DEV_MATCH_MORE;
1853 			return(0);
1854 		}
1855 
1856 		j = cdm->num_matches;
1857 		cdm->num_matches++;
1858 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1859 		cdm->matches[j].result.periph_result.path_id =
1860 			periph->path->bus->path_id;
1861 		cdm->matches[j].result.periph_result.target_id =
1862 			periph->path->target->target_id;
1863 		cdm->matches[j].result.periph_result.target_lun =
1864 			periph->path->device->lun_id;
1865 		cdm->matches[j].result.periph_result.unit_number =
1866 			periph->unit_number;
1867 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1868 			periph->periph_name, DEV_IDLEN);
1869 	}
1870 
1871 	return(1);
1872 }
1873 
1874 static int
1875 xptedtmatch(struct ccb_dev_match *cdm)
1876 {
1877 	struct cam_eb *bus;
1878 	int ret;
1879 
1880 	cdm->num_matches = 0;
1881 
1882 	/*
1883 	 * Check the bus list generation.  If it has changed, the user
1884 	 * needs to reset everything and start over.
1885 	 */
1886 	xpt_lock_buses();
1887 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1888 	 && (cdm->pos.cookie.bus != NULL)) {
1889 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1890 		    xsoftc.bus_generation) {
1891 			xpt_unlock_buses();
1892 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1893 			return(0);
1894 		}
1895 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
1896 		bus->refcount++;
1897 	} else
1898 		bus = NULL;
1899 	xpt_unlock_buses();
1900 
1901 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1902 
1903 	/*
1904 	 * If we get back 0, that means that we had to stop before fully
1905 	 * traversing the EDT.  It also means that one of the subroutines
1906 	 * has set the status field to the proper value.  If we get back 1,
1907 	 * we've fully traversed the EDT and copied out any matching entries.
1908 	 */
1909 	if (ret == 1)
1910 		cdm->status = CAM_DEV_MATCH_LAST;
1911 
1912 	return(ret);
1913 }
1914 
1915 static int
1916 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1917 {
1918 	struct cam_periph *periph;
1919 	struct ccb_dev_match *cdm;
1920 
1921 	cdm = (struct ccb_dev_match *)arg;
1922 
1923 	xpt_lock_buses();
1924 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1925 	 && (cdm->pos.cookie.pdrv == pdrv)
1926 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1927 	 && (cdm->pos.cookie.periph != NULL)) {
1928 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1929 		    (*pdrv)->generation) {
1930 			xpt_unlock_buses();
1931 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1932 			return(0);
1933 		}
1934 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1935 		periph->refcount++;
1936 	} else
1937 		periph = NULL;
1938 	xpt_unlock_buses();
1939 
1940 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1941 }
1942 
1943 static int
1944 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1945 {
1946 	struct ccb_dev_match *cdm;
1947 	dev_match_ret retval;
1948 
1949 	cdm = (struct ccb_dev_match *)arg;
1950 
1951 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1952 
1953 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1954 		cdm->status = CAM_DEV_MATCH_ERROR;
1955 		return(0);
1956 	}
1957 
1958 	/*
1959 	 * If the copy flag is set, copy this peripheral out.
1960 	 */
1961 	if (retval & DM_RET_COPY) {
1962 		int spaceleft, j;
1963 
1964 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1965 			sizeof(struct dev_match_result));
1966 
1967 		/*
1968 		 * If we don't have enough space to put in another
1969 		 * match result, save our position and tell the
1970 		 * user there are more devices to check.
1971 		 */
1972 		if (spaceleft < sizeof(struct dev_match_result)) {
1973 			struct periph_driver **pdrv;
1974 
1975 			pdrv = NULL;
1976 			bzero(&cdm->pos, sizeof(cdm->pos));
1977 			cdm->pos.position_type =
1978 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1979 				CAM_DEV_POS_PERIPH;
1980 
1981 			/*
1982 			 * This may look a bit non-sensical, but it is
1983 			 * actually quite logical.  There are very few
1984 			 * peripheral drivers, and bloating every peripheral
1985 			 * structure with a pointer back to its parent
1986 			 * peripheral driver linker set entry would cost
1987 			 * more in the long run than doing this quick lookup.
1988 			 */
1989 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1990 				if (strcmp((*pdrv)->driver_name,
1991 				    periph->periph_name) == 0)
1992 					break;
1993 			}
1994 
1995 			if (*pdrv == NULL) {
1996 				cdm->status = CAM_DEV_MATCH_ERROR;
1997 				return(0);
1998 			}
1999 
2000 			cdm->pos.cookie.pdrv = pdrv;
2001 			/*
2002 			 * The periph generation slot does double duty, as
2003 			 * does the periph pointer slot.  They are used for
2004 			 * both edt and pdrv lookups and positioning.
2005 			 */
2006 			cdm->pos.cookie.periph = periph;
2007 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2008 				(*pdrv)->generation;
2009 			cdm->status = CAM_DEV_MATCH_MORE;
2010 			return(0);
2011 		}
2012 
2013 		j = cdm->num_matches;
2014 		cdm->num_matches++;
2015 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2016 		cdm->matches[j].result.periph_result.path_id =
2017 			periph->path->bus->path_id;
2018 
2019 		/*
2020 		 * The transport layer peripheral doesn't have a target or
2021 		 * lun.
2022 		 */
2023 		if (periph->path->target)
2024 			cdm->matches[j].result.periph_result.target_id =
2025 				periph->path->target->target_id;
2026 		else
2027 			cdm->matches[j].result.periph_result.target_id =
2028 				CAM_TARGET_WILDCARD;
2029 
2030 		if (periph->path->device)
2031 			cdm->matches[j].result.periph_result.target_lun =
2032 				periph->path->device->lun_id;
2033 		else
2034 			cdm->matches[j].result.periph_result.target_lun =
2035 				CAM_LUN_WILDCARD;
2036 
2037 		cdm->matches[j].result.periph_result.unit_number =
2038 			periph->unit_number;
2039 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2040 			periph->periph_name, DEV_IDLEN);
2041 	}
2042 
2043 	return(1);
2044 }
2045 
2046 static int
2047 xptperiphlistmatch(struct ccb_dev_match *cdm)
2048 {
2049 	int ret;
2050 
2051 	cdm->num_matches = 0;
2052 
2053 	/*
2054 	 * At this point in the edt traversal function, we check the bus
2055 	 * list generation to make sure that no busses have been added or
2056 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2057 	 * For the peripheral driver list traversal function, however, we
2058 	 * don't have to worry about new peripheral driver types coming or
2059 	 * going; they're in a linker set, and therefore can't change
2060 	 * without a recompile.
2061 	 */
2062 
2063 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2064 	 && (cdm->pos.cookie.pdrv != NULL))
2065 		ret = xptpdrvtraverse(
2066 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2067 				xptplistpdrvfunc, cdm);
2068 	else
2069 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2070 
2071 	/*
2072 	 * If we get back 0, that means that we had to stop before fully
2073 	 * traversing the peripheral driver tree.  It also means that one of
2074 	 * the subroutines has set the status field to the proper value.  If
2075 	 * we get back 1, we've fully traversed the EDT and copied out any
2076 	 * matching entries.
2077 	 */
2078 	if (ret == 1)
2079 		cdm->status = CAM_DEV_MATCH_LAST;
2080 
2081 	return(ret);
2082 }
2083 
2084 static int
2085 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2086 {
2087 	struct cam_eb *bus, *next_bus;
2088 	int retval;
2089 
2090 	retval = 1;
2091 	if (start_bus)
2092 		bus = start_bus;
2093 	else {
2094 		xpt_lock_buses();
2095 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2096 		if (bus == NULL) {
2097 			xpt_unlock_buses();
2098 			return (retval);
2099 		}
2100 		bus->refcount++;
2101 		xpt_unlock_buses();
2102 	}
2103 	for (; bus != NULL; bus = next_bus) {
2104 		retval = tr_func(bus, arg);
2105 		if (retval == 0) {
2106 			xpt_release_bus(bus);
2107 			break;
2108 		}
2109 		xpt_lock_buses();
2110 		next_bus = TAILQ_NEXT(bus, links);
2111 		if (next_bus)
2112 			next_bus->refcount++;
2113 		xpt_unlock_buses();
2114 		xpt_release_bus(bus);
2115 	}
2116 	return(retval);
2117 }
2118 
2119 static int
2120 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2121 		  xpt_targetfunc_t *tr_func, void *arg)
2122 {
2123 	struct cam_et *target, *next_target;
2124 	int retval;
2125 
2126 	retval = 1;
2127 	if (start_target)
2128 		target = start_target;
2129 	else {
2130 		mtx_lock(&bus->eb_mtx);
2131 		target = TAILQ_FIRST(&bus->et_entries);
2132 		if (target == NULL) {
2133 			mtx_unlock(&bus->eb_mtx);
2134 			return (retval);
2135 		}
2136 		target->refcount++;
2137 		mtx_unlock(&bus->eb_mtx);
2138 	}
2139 	for (; target != NULL; target = next_target) {
2140 		retval = tr_func(target, arg);
2141 		if (retval == 0) {
2142 			xpt_release_target(target);
2143 			break;
2144 		}
2145 		mtx_lock(&bus->eb_mtx);
2146 		next_target = TAILQ_NEXT(target, links);
2147 		if (next_target)
2148 			next_target->refcount++;
2149 		mtx_unlock(&bus->eb_mtx);
2150 		xpt_release_target(target);
2151 	}
2152 	return(retval);
2153 }
2154 
2155 static int
2156 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2157 		  xpt_devicefunc_t *tr_func, void *arg)
2158 {
2159 	struct cam_eb *bus;
2160 	struct cam_ed *device, *next_device;
2161 	int retval;
2162 
2163 	retval = 1;
2164 	bus = target->bus;
2165 	if (start_device)
2166 		device = start_device;
2167 	else {
2168 		mtx_lock(&bus->eb_mtx);
2169 		device = TAILQ_FIRST(&target->ed_entries);
2170 		if (device == NULL) {
2171 			mtx_unlock(&bus->eb_mtx);
2172 			return (retval);
2173 		}
2174 		device->refcount++;
2175 		mtx_unlock(&bus->eb_mtx);
2176 	}
2177 	for (; device != NULL; device = next_device) {
2178 		mtx_lock(&device->device_mtx);
2179 		retval = tr_func(device, arg);
2180 		mtx_unlock(&device->device_mtx);
2181 		if (retval == 0) {
2182 			xpt_release_device(device);
2183 			break;
2184 		}
2185 		mtx_lock(&bus->eb_mtx);
2186 		next_device = TAILQ_NEXT(device, links);
2187 		if (next_device)
2188 			next_device->refcount++;
2189 		mtx_unlock(&bus->eb_mtx);
2190 		xpt_release_device(device);
2191 	}
2192 	return(retval);
2193 }
2194 
2195 static int
2196 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2197 		  xpt_periphfunc_t *tr_func, void *arg)
2198 {
2199 	struct cam_eb *bus;
2200 	struct cam_periph *periph, *next_periph;
2201 	int retval;
2202 
2203 	retval = 1;
2204 
2205 	bus = device->target->bus;
2206 	if (start_periph)
2207 		periph = start_periph;
2208 	else {
2209 		xpt_lock_buses();
2210 		mtx_lock(&bus->eb_mtx);
2211 		periph = SLIST_FIRST(&device->periphs);
2212 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2213 			periph = SLIST_NEXT(periph, periph_links);
2214 		if (periph == NULL) {
2215 			mtx_unlock(&bus->eb_mtx);
2216 			xpt_unlock_buses();
2217 			return (retval);
2218 		}
2219 		periph->refcount++;
2220 		mtx_unlock(&bus->eb_mtx);
2221 		xpt_unlock_buses();
2222 	}
2223 	for (; periph != NULL; periph = next_periph) {
2224 		retval = tr_func(periph, arg);
2225 		if (retval == 0) {
2226 			cam_periph_release_locked(periph);
2227 			break;
2228 		}
2229 		xpt_lock_buses();
2230 		mtx_lock(&bus->eb_mtx);
2231 		next_periph = SLIST_NEXT(periph, periph_links);
2232 		while (next_periph != NULL &&
2233 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2234 			next_periph = SLIST_NEXT(next_periph, periph_links);
2235 		if (next_periph)
2236 			next_periph->refcount++;
2237 		mtx_unlock(&bus->eb_mtx);
2238 		xpt_unlock_buses();
2239 		cam_periph_release_locked(periph);
2240 	}
2241 	return(retval);
2242 }
2243 
2244 static int
2245 xptpdrvtraverse(struct periph_driver **start_pdrv,
2246 		xpt_pdrvfunc_t *tr_func, void *arg)
2247 {
2248 	struct periph_driver **pdrv;
2249 	int retval;
2250 
2251 	retval = 1;
2252 
2253 	/*
2254 	 * We don't traverse the peripheral driver list like we do the
2255 	 * other lists, because it is a linker set, and therefore cannot be
2256 	 * changed during runtime.  If the peripheral driver list is ever
2257 	 * re-done to be something other than a linker set (i.e. it can
2258 	 * change while the system is running), the list traversal should
2259 	 * be modified to work like the other traversal functions.
2260 	 */
2261 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2262 	     *pdrv != NULL; pdrv++) {
2263 		retval = tr_func(pdrv, arg);
2264 
2265 		if (retval == 0)
2266 			return(retval);
2267 	}
2268 
2269 	return(retval);
2270 }
2271 
2272 static int
2273 xptpdperiphtraverse(struct periph_driver **pdrv,
2274 		    struct cam_periph *start_periph,
2275 		    xpt_periphfunc_t *tr_func, void *arg)
2276 {
2277 	struct cam_periph *periph, *next_periph;
2278 	int retval;
2279 
2280 	retval = 1;
2281 
2282 	if (start_periph)
2283 		periph = start_periph;
2284 	else {
2285 		xpt_lock_buses();
2286 		periph = TAILQ_FIRST(&(*pdrv)->units);
2287 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2288 			periph = TAILQ_NEXT(periph, unit_links);
2289 		if (periph == NULL) {
2290 			xpt_unlock_buses();
2291 			return (retval);
2292 		}
2293 		periph->refcount++;
2294 		xpt_unlock_buses();
2295 	}
2296 	for (; periph != NULL; periph = next_periph) {
2297 		cam_periph_lock(periph);
2298 		retval = tr_func(periph, arg);
2299 		cam_periph_unlock(periph);
2300 		if (retval == 0) {
2301 			cam_periph_release(periph);
2302 			break;
2303 		}
2304 		xpt_lock_buses();
2305 		next_periph = TAILQ_NEXT(periph, unit_links);
2306 		while (next_periph != NULL &&
2307 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2308 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2309 		if (next_periph)
2310 			next_periph->refcount++;
2311 		xpt_unlock_buses();
2312 		cam_periph_release(periph);
2313 	}
2314 	return(retval);
2315 }
2316 
2317 static int
2318 xptdefbusfunc(struct cam_eb *bus, void *arg)
2319 {
2320 	struct xpt_traverse_config *tr_config;
2321 
2322 	tr_config = (struct xpt_traverse_config *)arg;
2323 
2324 	if (tr_config->depth == XPT_DEPTH_BUS) {
2325 		xpt_busfunc_t *tr_func;
2326 
2327 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2328 
2329 		return(tr_func(bus, tr_config->tr_arg));
2330 	} else
2331 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2332 }
2333 
2334 static int
2335 xptdeftargetfunc(struct cam_et *target, void *arg)
2336 {
2337 	struct xpt_traverse_config *tr_config;
2338 
2339 	tr_config = (struct xpt_traverse_config *)arg;
2340 
2341 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2342 		xpt_targetfunc_t *tr_func;
2343 
2344 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2345 
2346 		return(tr_func(target, tr_config->tr_arg));
2347 	} else
2348 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2349 }
2350 
2351 static int
2352 xptdefdevicefunc(struct cam_ed *device, void *arg)
2353 {
2354 	struct xpt_traverse_config *tr_config;
2355 
2356 	tr_config = (struct xpt_traverse_config *)arg;
2357 
2358 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2359 		xpt_devicefunc_t *tr_func;
2360 
2361 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2362 
2363 		return(tr_func(device, tr_config->tr_arg));
2364 	} else
2365 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2366 }
2367 
2368 static int
2369 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2370 {
2371 	struct xpt_traverse_config *tr_config;
2372 	xpt_periphfunc_t *tr_func;
2373 
2374 	tr_config = (struct xpt_traverse_config *)arg;
2375 
2376 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2377 
2378 	/*
2379 	 * Unlike the other default functions, we don't check for depth
2380 	 * here.  The peripheral driver level is the last level in the EDT,
2381 	 * so if we're here, we should execute the function in question.
2382 	 */
2383 	return(tr_func(periph, tr_config->tr_arg));
2384 }
2385 
2386 /*
2387  * Execute the given function for every bus in the EDT.
2388  */
2389 static int
2390 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2391 {
2392 	struct xpt_traverse_config tr_config;
2393 
2394 	tr_config.depth = XPT_DEPTH_BUS;
2395 	tr_config.tr_func = tr_func;
2396 	tr_config.tr_arg = arg;
2397 
2398 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2399 }
2400 
2401 /*
2402  * Execute the given function for every device in the EDT.
2403  */
2404 static int
2405 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2406 {
2407 	struct xpt_traverse_config tr_config;
2408 
2409 	tr_config.depth = XPT_DEPTH_DEVICE;
2410 	tr_config.tr_func = tr_func;
2411 	tr_config.tr_arg = arg;
2412 
2413 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2414 }
2415 
2416 static int
2417 xptsetasyncfunc(struct cam_ed *device, void *arg)
2418 {
2419 	struct cam_path path;
2420 	struct ccb_getdev cgd;
2421 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2422 
2423 	/*
2424 	 * Don't report unconfigured devices (Wildcard devs,
2425 	 * devices only for target mode, device instances
2426 	 * that have been invalidated but are waiting for
2427 	 * their last reference count to be released).
2428 	 */
2429 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2430 		return (1);
2431 
2432 	xpt_compile_path(&path,
2433 			 NULL,
2434 			 device->target->bus->path_id,
2435 			 device->target->target_id,
2436 			 device->lun_id);
2437 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2438 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2439 	xpt_action((union ccb *)&cgd);
2440 	csa->callback(csa->callback_arg,
2441 			    AC_FOUND_DEVICE,
2442 			    &path, &cgd);
2443 	xpt_release_path(&path);
2444 
2445 	return(1);
2446 }
2447 
2448 static int
2449 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2450 {
2451 	struct cam_path path;
2452 	struct ccb_pathinq cpi;
2453 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2454 
2455 	xpt_compile_path(&path, /*periph*/NULL,
2456 			 bus->path_id,
2457 			 CAM_TARGET_WILDCARD,
2458 			 CAM_LUN_WILDCARD);
2459 	xpt_path_lock(&path);
2460 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2461 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2462 	xpt_action((union ccb *)&cpi);
2463 	csa->callback(csa->callback_arg,
2464 			    AC_PATH_REGISTERED,
2465 			    &path, &cpi);
2466 	xpt_path_unlock(&path);
2467 	xpt_release_path(&path);
2468 
2469 	return(1);
2470 }
2471 
2472 void
2473 xpt_action(union ccb *start_ccb)
2474 {
2475 
2476 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2477 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2478 		xpt_action_name(start_ccb->ccb_h.func_code)));
2479 
2480 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2481 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2482 }
2483 
2484 void
2485 xpt_action_default(union ccb *start_ccb)
2486 {
2487 	struct cam_path *path;
2488 	struct cam_sim *sim;
2489 	int lock;
2490 
2491 	path = start_ccb->ccb_h.path;
2492 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2493 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2494 		xpt_action_name(start_ccb->ccb_h.func_code)));
2495 
2496 	switch (start_ccb->ccb_h.func_code) {
2497 	case XPT_SCSI_IO:
2498 	{
2499 		struct cam_ed *device;
2500 
2501 		/*
2502 		 * For the sake of compatibility with SCSI-1
2503 		 * devices that may not understand the identify
2504 		 * message, we include lun information in the
2505 		 * second byte of all commands.  SCSI-1 specifies
2506 		 * that luns are a 3 bit value and reserves only 3
2507 		 * bits for lun information in the CDB.  Later
2508 		 * revisions of the SCSI spec allow for more than 8
2509 		 * luns, but have deprecated lun information in the
2510 		 * CDB.  So, if the lun won't fit, we must omit.
2511 		 *
2512 		 * Also be aware that during initial probing for devices,
2513 		 * the inquiry information is unknown but initialized to 0.
2514 		 * This means that this code will be exercised while probing
2515 		 * devices with an ANSI revision greater than 2.
2516 		 */
2517 		device = path->device;
2518 		if (device->protocol_version <= SCSI_REV_2
2519 		 && start_ccb->ccb_h.target_lun < 8
2520 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2521 
2522 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2523 			    start_ccb->ccb_h.target_lun << 5;
2524 		}
2525 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2526 	}
2527 	/* FALLTHROUGH */
2528 	case XPT_TARGET_IO:
2529 	case XPT_CONT_TARGET_IO:
2530 		start_ccb->csio.sense_resid = 0;
2531 		start_ccb->csio.resid = 0;
2532 		/* FALLTHROUGH */
2533 	case XPT_ATA_IO:
2534 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2535 			start_ccb->ataio.resid = 0;
2536 		/* FALLTHROUGH */
2537 	case XPT_NVME_IO:
2538 		if (start_ccb->ccb_h.func_code == XPT_NVME_IO)
2539 			start_ccb->nvmeio.resid = 0;
2540 		/* FALLTHROUGH */
2541 	case XPT_RESET_DEV:
2542 	case XPT_ENG_EXEC:
2543 	case XPT_SMP_IO:
2544 	{
2545 		struct cam_devq *devq;
2546 
2547 		devq = path->bus->sim->devq;
2548 		mtx_lock(&devq->send_mtx);
2549 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2550 		if (xpt_schedule_devq(devq, path->device) != 0)
2551 			xpt_run_devq(devq);
2552 		mtx_unlock(&devq->send_mtx);
2553 		break;
2554 	}
2555 	case XPT_CALC_GEOMETRY:
2556 		/* Filter out garbage */
2557 		if (start_ccb->ccg.block_size == 0
2558 		 || start_ccb->ccg.volume_size == 0) {
2559 			start_ccb->ccg.cylinders = 0;
2560 			start_ccb->ccg.heads = 0;
2561 			start_ccb->ccg.secs_per_track = 0;
2562 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2563 			break;
2564 		}
2565 #if defined(PC98) || defined(__sparc64__)
2566 		/*
2567 		 * In a PC-98 system, geometry translation depens on
2568 		 * the "real" device geometry obtained from mode page 4.
2569 		 * SCSI geometry translation is performed in the
2570 		 * initialization routine of the SCSI BIOS and the result
2571 		 * stored in host memory.  If the translation is available
2572 		 * in host memory, use it.  If not, rely on the default
2573 		 * translation the device driver performs.
2574 		 * For sparc64, we may need adjust the geometry of large
2575 		 * disks in order to fit the limitations of the 16-bit
2576 		 * fields of the VTOC8 disk label.
2577 		 */
2578 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2579 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2580 			break;
2581 		}
2582 #endif
2583 		goto call_sim;
2584 	case XPT_ABORT:
2585 	{
2586 		union ccb* abort_ccb;
2587 
2588 		abort_ccb = start_ccb->cab.abort_ccb;
2589 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2590 			struct cam_ed *device;
2591 			struct cam_devq *devq;
2592 
2593 			device = abort_ccb->ccb_h.path->device;
2594 			devq = device->sim->devq;
2595 
2596 			mtx_lock(&devq->send_mtx);
2597 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2598 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2599 				abort_ccb->ccb_h.status =
2600 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2601 				xpt_freeze_devq_device(device, 1);
2602 				mtx_unlock(&devq->send_mtx);
2603 				xpt_done(abort_ccb);
2604 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2605 				break;
2606 			}
2607 			mtx_unlock(&devq->send_mtx);
2608 
2609 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2610 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2611 				/*
2612 				 * We've caught this ccb en route to
2613 				 * the SIM.  Flag it for abort and the
2614 				 * SIM will do so just before starting
2615 				 * real work on the CCB.
2616 				 */
2617 				abort_ccb->ccb_h.status =
2618 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2619 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2620 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2621 				break;
2622 			}
2623 		}
2624 		if (XPT_FC_IS_QUEUED(abort_ccb)
2625 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2626 			/*
2627 			 * It's already completed but waiting
2628 			 * for our SWI to get to it.
2629 			 */
2630 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2631 			break;
2632 		}
2633 		/*
2634 		 * If we weren't able to take care of the abort request
2635 		 * in the XPT, pass the request down to the SIM for processing.
2636 		 */
2637 	}
2638 	/* FALLTHROUGH */
2639 	case XPT_ACCEPT_TARGET_IO:
2640 	case XPT_EN_LUN:
2641 	case XPT_IMMED_NOTIFY:
2642 	case XPT_NOTIFY_ACK:
2643 	case XPT_RESET_BUS:
2644 	case XPT_IMMEDIATE_NOTIFY:
2645 	case XPT_NOTIFY_ACKNOWLEDGE:
2646 	case XPT_GET_SIM_KNOB_OLD:
2647 	case XPT_GET_SIM_KNOB:
2648 	case XPT_SET_SIM_KNOB:
2649 	case XPT_GET_TRAN_SETTINGS:
2650 	case XPT_SET_TRAN_SETTINGS:
2651 	case XPT_PATH_INQ:
2652 call_sim:
2653 		sim = path->bus->sim;
2654 		lock = (mtx_owned(sim->mtx) == 0);
2655 		if (lock)
2656 			CAM_SIM_LOCK(sim);
2657 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2658 		    ("sim->sim_action: func=%#x\n", start_ccb->ccb_h.func_code));
2659 		(*(sim->sim_action))(sim, start_ccb);
2660 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2661 		    ("sim->sim_action: status=%#x\n", start_ccb->ccb_h.status));
2662 		if (lock)
2663 			CAM_SIM_UNLOCK(sim);
2664 		break;
2665 	case XPT_PATH_STATS:
2666 		start_ccb->cpis.last_reset = path->bus->last_reset;
2667 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2668 		break;
2669 	case XPT_GDEV_TYPE:
2670 	{
2671 		struct cam_ed *dev;
2672 
2673 		dev = path->device;
2674 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2675 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2676 		} else {
2677 			struct ccb_getdev *cgd;
2678 
2679 			cgd = &start_ccb->cgd;
2680 			cgd->protocol = dev->protocol;
2681 			cgd->inq_data = dev->inq_data;
2682 			cgd->ident_data = dev->ident_data;
2683 			cgd->inq_flags = dev->inq_flags;
2684 			cgd->nvme_data = dev->nvme_data;
2685 			cgd->nvme_cdata = dev->nvme_cdata;
2686 			cgd->ccb_h.status = CAM_REQ_CMP;
2687 			cgd->serial_num_len = dev->serial_num_len;
2688 			if ((dev->serial_num_len > 0)
2689 			 && (dev->serial_num != NULL))
2690 				bcopy(dev->serial_num, cgd->serial_num,
2691 				      dev->serial_num_len);
2692 		}
2693 		break;
2694 	}
2695 	case XPT_GDEV_STATS:
2696 	{
2697 		struct cam_ed *dev;
2698 
2699 		dev = path->device;
2700 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2701 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2702 		} else {
2703 			struct ccb_getdevstats *cgds;
2704 			struct cam_eb *bus;
2705 			struct cam_et *tar;
2706 			struct cam_devq *devq;
2707 
2708 			cgds = &start_ccb->cgds;
2709 			bus = path->bus;
2710 			tar = path->target;
2711 			devq = bus->sim->devq;
2712 			mtx_lock(&devq->send_mtx);
2713 			cgds->dev_openings = dev->ccbq.dev_openings;
2714 			cgds->dev_active = dev->ccbq.dev_active;
2715 			cgds->allocated = dev->ccbq.allocated;
2716 			cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2717 			cgds->held = cgds->allocated - cgds->dev_active -
2718 			    cgds->queued;
2719 			cgds->last_reset = tar->last_reset;
2720 			cgds->maxtags = dev->maxtags;
2721 			cgds->mintags = dev->mintags;
2722 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2723 				cgds->last_reset = bus->last_reset;
2724 			mtx_unlock(&devq->send_mtx);
2725 			cgds->ccb_h.status = CAM_REQ_CMP;
2726 		}
2727 		break;
2728 	}
2729 	case XPT_GDEVLIST:
2730 	{
2731 		struct cam_periph	*nperiph;
2732 		struct periph_list	*periph_head;
2733 		struct ccb_getdevlist	*cgdl;
2734 		u_int			i;
2735 		struct cam_ed		*device;
2736 		int			found;
2737 
2738 
2739 		found = 0;
2740 
2741 		/*
2742 		 * Don't want anyone mucking with our data.
2743 		 */
2744 		device = path->device;
2745 		periph_head = &device->periphs;
2746 		cgdl = &start_ccb->cgdl;
2747 
2748 		/*
2749 		 * Check and see if the list has changed since the user
2750 		 * last requested a list member.  If so, tell them that the
2751 		 * list has changed, and therefore they need to start over
2752 		 * from the beginning.
2753 		 */
2754 		if ((cgdl->index != 0) &&
2755 		    (cgdl->generation != device->generation)) {
2756 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2757 			break;
2758 		}
2759 
2760 		/*
2761 		 * Traverse the list of peripherals and attempt to find
2762 		 * the requested peripheral.
2763 		 */
2764 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2765 		     (nperiph != NULL) && (i <= cgdl->index);
2766 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2767 			if (i == cgdl->index) {
2768 				strncpy(cgdl->periph_name,
2769 					nperiph->periph_name,
2770 					DEV_IDLEN);
2771 				cgdl->unit_number = nperiph->unit_number;
2772 				found = 1;
2773 			}
2774 		}
2775 		if (found == 0) {
2776 			cgdl->status = CAM_GDEVLIST_ERROR;
2777 			break;
2778 		}
2779 
2780 		if (nperiph == NULL)
2781 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2782 		else
2783 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2784 
2785 		cgdl->index++;
2786 		cgdl->generation = device->generation;
2787 
2788 		cgdl->ccb_h.status = CAM_REQ_CMP;
2789 		break;
2790 	}
2791 	case XPT_DEV_MATCH:
2792 	{
2793 		dev_pos_type position_type;
2794 		struct ccb_dev_match *cdm;
2795 
2796 		cdm = &start_ccb->cdm;
2797 
2798 		/*
2799 		 * There are two ways of getting at information in the EDT.
2800 		 * The first way is via the primary EDT tree.  It starts
2801 		 * with a list of busses, then a list of targets on a bus,
2802 		 * then devices/luns on a target, and then peripherals on a
2803 		 * device/lun.  The "other" way is by the peripheral driver
2804 		 * lists.  The peripheral driver lists are organized by
2805 		 * peripheral driver.  (obviously)  So it makes sense to
2806 		 * use the peripheral driver list if the user is looking
2807 		 * for something like "da1", or all "da" devices.  If the
2808 		 * user is looking for something on a particular bus/target
2809 		 * or lun, it's generally better to go through the EDT tree.
2810 		 */
2811 
2812 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2813 			position_type = cdm->pos.position_type;
2814 		else {
2815 			u_int i;
2816 
2817 			position_type = CAM_DEV_POS_NONE;
2818 
2819 			for (i = 0; i < cdm->num_patterns; i++) {
2820 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2821 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2822 					position_type = CAM_DEV_POS_EDT;
2823 					break;
2824 				}
2825 			}
2826 
2827 			if (cdm->num_patterns == 0)
2828 				position_type = CAM_DEV_POS_EDT;
2829 			else if (position_type == CAM_DEV_POS_NONE)
2830 				position_type = CAM_DEV_POS_PDRV;
2831 		}
2832 
2833 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2834 		case CAM_DEV_POS_EDT:
2835 			xptedtmatch(cdm);
2836 			break;
2837 		case CAM_DEV_POS_PDRV:
2838 			xptperiphlistmatch(cdm);
2839 			break;
2840 		default:
2841 			cdm->status = CAM_DEV_MATCH_ERROR;
2842 			break;
2843 		}
2844 
2845 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2846 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2847 		else
2848 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2849 
2850 		break;
2851 	}
2852 	case XPT_SASYNC_CB:
2853 	{
2854 		struct ccb_setasync *csa;
2855 		struct async_node *cur_entry;
2856 		struct async_list *async_head;
2857 		u_int32_t added;
2858 
2859 		csa = &start_ccb->csa;
2860 		added = csa->event_enable;
2861 		async_head = &path->device->asyncs;
2862 
2863 		/*
2864 		 * If there is already an entry for us, simply
2865 		 * update it.
2866 		 */
2867 		cur_entry = SLIST_FIRST(async_head);
2868 		while (cur_entry != NULL) {
2869 			if ((cur_entry->callback_arg == csa->callback_arg)
2870 			 && (cur_entry->callback == csa->callback))
2871 				break;
2872 			cur_entry = SLIST_NEXT(cur_entry, links);
2873 		}
2874 
2875 		if (cur_entry != NULL) {
2876 		 	/*
2877 			 * If the request has no flags set,
2878 			 * remove the entry.
2879 			 */
2880 			added &= ~cur_entry->event_enable;
2881 			if (csa->event_enable == 0) {
2882 				SLIST_REMOVE(async_head, cur_entry,
2883 					     async_node, links);
2884 				xpt_release_device(path->device);
2885 				free(cur_entry, M_CAMXPT);
2886 			} else {
2887 				cur_entry->event_enable = csa->event_enable;
2888 			}
2889 			csa->event_enable = added;
2890 		} else {
2891 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2892 					   M_NOWAIT);
2893 			if (cur_entry == NULL) {
2894 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2895 				break;
2896 			}
2897 			cur_entry->event_enable = csa->event_enable;
2898 			cur_entry->event_lock =
2899 			    mtx_owned(path->bus->sim->mtx) ? 1 : 0;
2900 			cur_entry->callback_arg = csa->callback_arg;
2901 			cur_entry->callback = csa->callback;
2902 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2903 			xpt_acquire_device(path->device);
2904 		}
2905 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2906 		break;
2907 	}
2908 	case XPT_REL_SIMQ:
2909 	{
2910 		struct ccb_relsim *crs;
2911 		struct cam_ed *dev;
2912 
2913 		crs = &start_ccb->crs;
2914 		dev = path->device;
2915 		if (dev == NULL) {
2916 
2917 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2918 			break;
2919 		}
2920 
2921 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2922 
2923 			/* Don't ever go below one opening */
2924 			if (crs->openings > 0) {
2925 				xpt_dev_ccbq_resize(path, crs->openings);
2926 				if (bootverbose) {
2927 					xpt_print(path,
2928 					    "number of openings is now %d\n",
2929 					    crs->openings);
2930 				}
2931 			}
2932 		}
2933 
2934 		mtx_lock(&dev->sim->devq->send_mtx);
2935 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2936 
2937 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2938 
2939 				/*
2940 				 * Just extend the old timeout and decrement
2941 				 * the freeze count so that a single timeout
2942 				 * is sufficient for releasing the queue.
2943 				 */
2944 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2945 				callout_stop(&dev->callout);
2946 			} else {
2947 
2948 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2949 			}
2950 
2951 			callout_reset_sbt(&dev->callout,
2952 			    SBT_1MS * crs->release_timeout, 0,
2953 			    xpt_release_devq_timeout, dev, 0);
2954 
2955 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2956 
2957 		}
2958 
2959 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2960 
2961 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2962 				/*
2963 				 * Decrement the freeze count so that a single
2964 				 * completion is still sufficient to unfreeze
2965 				 * the queue.
2966 				 */
2967 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2968 			} else {
2969 
2970 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2971 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2972 			}
2973 		}
2974 
2975 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2976 
2977 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2978 			 || (dev->ccbq.dev_active == 0)) {
2979 
2980 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2981 			} else {
2982 
2983 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2984 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2985 			}
2986 		}
2987 		mtx_unlock(&dev->sim->devq->send_mtx);
2988 
2989 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2990 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2991 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2992 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2993 		break;
2994 	}
2995 	case XPT_DEBUG: {
2996 		struct cam_path *oldpath;
2997 
2998 		/* Check that all request bits are supported. */
2999 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3000 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3001 			break;
3002 		}
3003 
3004 		cam_dflags = CAM_DEBUG_NONE;
3005 		if (cam_dpath != NULL) {
3006 			oldpath = cam_dpath;
3007 			cam_dpath = NULL;
3008 			xpt_free_path(oldpath);
3009 		}
3010 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3011 			if (xpt_create_path(&cam_dpath, NULL,
3012 					    start_ccb->ccb_h.path_id,
3013 					    start_ccb->ccb_h.target_id,
3014 					    start_ccb->ccb_h.target_lun) !=
3015 					    CAM_REQ_CMP) {
3016 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3017 			} else {
3018 				cam_dflags = start_ccb->cdbg.flags;
3019 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3020 				xpt_print(cam_dpath, "debugging flags now %x\n",
3021 				    cam_dflags);
3022 			}
3023 		} else
3024 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3025 		break;
3026 	}
3027 	case XPT_NOOP:
3028 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3029 			xpt_freeze_devq(path, 1);
3030 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3031 		break;
3032 	case XPT_REPROBE_LUN:
3033 		xpt_async(AC_INQ_CHANGED, path, NULL);
3034 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3035 		xpt_done(start_ccb);
3036 		break;
3037 	default:
3038 	case XPT_SDEV_TYPE:
3039 	case XPT_TERM_IO:
3040 	case XPT_ENG_INQ:
3041 		/* XXX Implement */
3042 		xpt_print_path(start_ccb->ccb_h.path);
3043 		printf("%s: CCB type %#x %s not supported\n", __func__,
3044 		    start_ccb->ccb_h.func_code,
3045 		    xpt_action_name(start_ccb->ccb_h.func_code));
3046 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3047 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3048 			xpt_done(start_ccb);
3049 		}
3050 		break;
3051 	}
3052 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3053 	    ("xpt_action_default: func= %#x %s status %#x\n",
3054 		start_ccb->ccb_h.func_code,
3055  		xpt_action_name(start_ccb->ccb_h.func_code),
3056 		start_ccb->ccb_h.status));
3057 }
3058 
3059 void
3060 xpt_polled_action(union ccb *start_ccb)
3061 {
3062 	u_int32_t timeout;
3063 	struct	  cam_sim *sim;
3064 	struct	  cam_devq *devq;
3065 	struct	  cam_ed *dev;
3066 
3067 	timeout = start_ccb->ccb_h.timeout * 10;
3068 	sim = start_ccb->ccb_h.path->bus->sim;
3069 	devq = sim->devq;
3070 	dev = start_ccb->ccb_h.path->device;
3071 
3072 	mtx_unlock(&dev->device_mtx);
3073 
3074 	/*
3075 	 * Steal an opening so that no other queued requests
3076 	 * can get it before us while we simulate interrupts.
3077 	 */
3078 	mtx_lock(&devq->send_mtx);
3079 	dev->ccbq.dev_openings--;
3080 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3081 	    (--timeout > 0)) {
3082 		mtx_unlock(&devq->send_mtx);
3083 		DELAY(100);
3084 		CAM_SIM_LOCK(sim);
3085 		(*(sim->sim_poll))(sim);
3086 		CAM_SIM_UNLOCK(sim);
3087 		camisr_runqueue();
3088 		mtx_lock(&devq->send_mtx);
3089 	}
3090 	dev->ccbq.dev_openings++;
3091 	mtx_unlock(&devq->send_mtx);
3092 
3093 	if (timeout != 0) {
3094 		xpt_action(start_ccb);
3095 		while(--timeout > 0) {
3096 			CAM_SIM_LOCK(sim);
3097 			(*(sim->sim_poll))(sim);
3098 			CAM_SIM_UNLOCK(sim);
3099 			camisr_runqueue();
3100 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3101 			    != CAM_REQ_INPROG)
3102 				break;
3103 			DELAY(100);
3104 		}
3105 		if (timeout == 0) {
3106 			/*
3107 			 * XXX Is it worth adding a sim_timeout entry
3108 			 * point so we can attempt recovery?  If
3109 			 * this is only used for dumps, I don't think
3110 			 * it is.
3111 			 */
3112 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3113 		}
3114 	} else {
3115 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3116 	}
3117 
3118 	mtx_lock(&dev->device_mtx);
3119 }
3120 
3121 /*
3122  * Schedule a peripheral driver to receive a ccb when its
3123  * target device has space for more transactions.
3124  */
3125 void
3126 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3127 {
3128 
3129 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3130 	cam_periph_assert(periph, MA_OWNED);
3131 	if (new_priority < periph->scheduled_priority) {
3132 		periph->scheduled_priority = new_priority;
3133 		xpt_run_allocq(periph, 0);
3134 	}
3135 }
3136 
3137 
3138 /*
3139  * Schedule a device to run on a given queue.
3140  * If the device was inserted as a new entry on the queue,
3141  * return 1 meaning the device queue should be run. If we
3142  * were already queued, implying someone else has already
3143  * started the queue, return 0 so the caller doesn't attempt
3144  * to run the queue.
3145  */
3146 static int
3147 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3148 		 u_int32_t new_priority)
3149 {
3150 	int retval;
3151 	u_int32_t old_priority;
3152 
3153 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3154 
3155 	old_priority = pinfo->priority;
3156 
3157 	/*
3158 	 * Are we already queued?
3159 	 */
3160 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3161 		/* Simply reorder based on new priority */
3162 		if (new_priority < old_priority) {
3163 			camq_change_priority(queue, pinfo->index,
3164 					     new_priority);
3165 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3166 					("changed priority to %d\n",
3167 					 new_priority));
3168 			retval = 1;
3169 		} else
3170 			retval = 0;
3171 	} else {
3172 		/* New entry on the queue */
3173 		if (new_priority < old_priority)
3174 			pinfo->priority = new_priority;
3175 
3176 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3177 				("Inserting onto queue\n"));
3178 		pinfo->generation = ++queue->generation;
3179 		camq_insert(queue, pinfo);
3180 		retval = 1;
3181 	}
3182 	return (retval);
3183 }
3184 
3185 static void
3186 xpt_run_allocq_task(void *context, int pending)
3187 {
3188 	struct cam_periph *periph = context;
3189 
3190 	cam_periph_lock(periph);
3191 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3192 	xpt_run_allocq(periph, 1);
3193 	cam_periph_unlock(periph);
3194 	cam_periph_release(periph);
3195 }
3196 
3197 static void
3198 xpt_run_allocq(struct cam_periph *periph, int sleep)
3199 {
3200 	struct cam_ed	*device;
3201 	union ccb	*ccb;
3202 	uint32_t	 prio;
3203 
3204 	cam_periph_assert(periph, MA_OWNED);
3205 	if (periph->periph_allocating)
3206 		return;
3207 	periph->periph_allocating = 1;
3208 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3209 	device = periph->path->device;
3210 	ccb = NULL;
3211 restart:
3212 	while ((prio = min(periph->scheduled_priority,
3213 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3214 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3215 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3216 
3217 		if (ccb == NULL &&
3218 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3219 			if (sleep) {
3220 				ccb = xpt_get_ccb(periph);
3221 				goto restart;
3222 			}
3223 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3224 				break;
3225 			cam_periph_doacquire(periph);
3226 			periph->flags |= CAM_PERIPH_RUN_TASK;
3227 			taskqueue_enqueue(xsoftc.xpt_taskq,
3228 			    &periph->periph_run_task);
3229 			break;
3230 		}
3231 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3232 		if (prio == periph->immediate_priority) {
3233 			periph->immediate_priority = CAM_PRIORITY_NONE;
3234 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3235 					("waking cam_periph_getccb()\n"));
3236 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3237 					  periph_links.sle);
3238 			wakeup(&periph->ccb_list);
3239 		} else {
3240 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3241 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3242 					("calling periph_start()\n"));
3243 			periph->periph_start(periph, ccb);
3244 		}
3245 		ccb = NULL;
3246 	}
3247 	if (ccb != NULL)
3248 		xpt_release_ccb(ccb);
3249 	periph->periph_allocating = 0;
3250 }
3251 
3252 static void
3253 xpt_run_devq(struct cam_devq *devq)
3254 {
3255 	int lock;
3256 
3257 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3258 
3259 	devq->send_queue.qfrozen_cnt++;
3260 	while ((devq->send_queue.entries > 0)
3261 	    && (devq->send_openings > 0)
3262 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3263 		struct	cam_ed *device;
3264 		union ccb *work_ccb;
3265 		struct	cam_sim *sim;
3266 		struct xpt_proto *proto;
3267 
3268 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3269 							   CAMQ_HEAD);
3270 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3271 				("running device %p\n", device));
3272 
3273 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3274 		if (work_ccb == NULL) {
3275 			printf("device on run queue with no ccbs???\n");
3276 			continue;
3277 		}
3278 
3279 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3280 
3281 			mtx_lock(&xsoftc.xpt_highpower_lock);
3282 		 	if (xsoftc.num_highpower <= 0) {
3283 				/*
3284 				 * We got a high power command, but we
3285 				 * don't have any available slots.  Freeze
3286 				 * the device queue until we have a slot
3287 				 * available.
3288 				 */
3289 				xpt_freeze_devq_device(device, 1);
3290 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3291 						   highpowerq_entry);
3292 
3293 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3294 				continue;
3295 			} else {
3296 				/*
3297 				 * Consume a high power slot while
3298 				 * this ccb runs.
3299 				 */
3300 				xsoftc.num_highpower--;
3301 			}
3302 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3303 		}
3304 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3305 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3306 		devq->send_openings--;
3307 		devq->send_active++;
3308 		xpt_schedule_devq(devq, device);
3309 		mtx_unlock(&devq->send_mtx);
3310 
3311 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3312 			/*
3313 			 * The client wants to freeze the queue
3314 			 * after this CCB is sent.
3315 			 */
3316 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3317 		}
3318 
3319 		/* In Target mode, the peripheral driver knows best... */
3320 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3321 			if ((device->inq_flags & SID_CmdQue) != 0
3322 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3323 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3324 			else
3325 				/*
3326 				 * Clear this in case of a retried CCB that
3327 				 * failed due to a rejected tag.
3328 				 */
3329 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3330 		}
3331 
3332 		KASSERT(device == work_ccb->ccb_h.path->device,
3333 		    ("device (%p) / path->device (%p) mismatch",
3334 			device, work_ccb->ccb_h.path->device));
3335 		proto = xpt_proto_find(device->protocol);
3336 		if (proto && proto->ops->debug_out)
3337 			proto->ops->debug_out(work_ccb);
3338 
3339 		/*
3340 		 * Device queues can be shared among multiple SIM instances
3341 		 * that reside on different busses.  Use the SIM from the
3342 		 * queued device, rather than the one from the calling bus.
3343 		 */
3344 		sim = device->sim;
3345 		lock = (mtx_owned(sim->mtx) == 0);
3346 		if (lock)
3347 			CAM_SIM_LOCK(sim);
3348 		work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms
3349 		(*(sim->sim_action))(sim, work_ccb);
3350 		if (lock)
3351 			CAM_SIM_UNLOCK(sim);
3352 		mtx_lock(&devq->send_mtx);
3353 	}
3354 	devq->send_queue.qfrozen_cnt--;
3355 }
3356 
3357 /*
3358  * This function merges stuff from the slave ccb into the master ccb, while
3359  * keeping important fields in the master ccb constant.
3360  */
3361 void
3362 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3363 {
3364 
3365 	/*
3366 	 * Pull fields that are valid for peripheral drivers to set
3367 	 * into the master CCB along with the CCB "payload".
3368 	 */
3369 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3370 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3371 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3372 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3373 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3374 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3375 }
3376 
3377 void
3378 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3379 		    u_int32_t priority, u_int32_t flags)
3380 {
3381 
3382 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3383 	ccb_h->pinfo.priority = priority;
3384 	ccb_h->path = path;
3385 	ccb_h->path_id = path->bus->path_id;
3386 	if (path->target)
3387 		ccb_h->target_id = path->target->target_id;
3388 	else
3389 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3390 	if (path->device) {
3391 		ccb_h->target_lun = path->device->lun_id;
3392 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3393 	} else {
3394 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3395 	}
3396 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3397 	ccb_h->flags = flags;
3398 	ccb_h->xflags = 0;
3399 }
3400 
3401 void
3402 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3403 {
3404 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3405 }
3406 
3407 /* Path manipulation functions */
3408 cam_status
3409 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3410 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3411 {
3412 	struct	   cam_path *path;
3413 	cam_status status;
3414 
3415 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3416 
3417 	if (path == NULL) {
3418 		status = CAM_RESRC_UNAVAIL;
3419 		return(status);
3420 	}
3421 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3422 	if (status != CAM_REQ_CMP) {
3423 		free(path, M_CAMPATH);
3424 		path = NULL;
3425 	}
3426 	*new_path_ptr = path;
3427 	return (status);
3428 }
3429 
3430 cam_status
3431 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3432 			 struct cam_periph *periph, path_id_t path_id,
3433 			 target_id_t target_id, lun_id_t lun_id)
3434 {
3435 
3436 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3437 	    lun_id));
3438 }
3439 
3440 cam_status
3441 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3442 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3443 {
3444 	struct	     cam_eb *bus;
3445 	struct	     cam_et *target;
3446 	struct	     cam_ed *device;
3447 	cam_status   status;
3448 
3449 	status = CAM_REQ_CMP;	/* Completed without error */
3450 	target = NULL;		/* Wildcarded */
3451 	device = NULL;		/* Wildcarded */
3452 
3453 	/*
3454 	 * We will potentially modify the EDT, so block interrupts
3455 	 * that may attempt to create cam paths.
3456 	 */
3457 	bus = xpt_find_bus(path_id);
3458 	if (bus == NULL) {
3459 		status = CAM_PATH_INVALID;
3460 	} else {
3461 		xpt_lock_buses();
3462 		mtx_lock(&bus->eb_mtx);
3463 		target = xpt_find_target(bus, target_id);
3464 		if (target == NULL) {
3465 			/* Create one */
3466 			struct cam_et *new_target;
3467 
3468 			new_target = xpt_alloc_target(bus, target_id);
3469 			if (new_target == NULL) {
3470 				status = CAM_RESRC_UNAVAIL;
3471 			} else {
3472 				target = new_target;
3473 			}
3474 		}
3475 		xpt_unlock_buses();
3476 		if (target != NULL) {
3477 			device = xpt_find_device(target, lun_id);
3478 			if (device == NULL) {
3479 				/* Create one */
3480 				struct cam_ed *new_device;
3481 
3482 				new_device =
3483 				    (*(bus->xport->ops->alloc_device))(bus,
3484 								       target,
3485 								       lun_id);
3486 				if (new_device == NULL) {
3487 					status = CAM_RESRC_UNAVAIL;
3488 				} else {
3489 					device = new_device;
3490 				}
3491 			}
3492 		}
3493 		mtx_unlock(&bus->eb_mtx);
3494 	}
3495 
3496 	/*
3497 	 * Only touch the user's data if we are successful.
3498 	 */
3499 	if (status == CAM_REQ_CMP) {
3500 		new_path->periph = perph;
3501 		new_path->bus = bus;
3502 		new_path->target = target;
3503 		new_path->device = device;
3504 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3505 	} else {
3506 		if (device != NULL)
3507 			xpt_release_device(device);
3508 		if (target != NULL)
3509 			xpt_release_target(target);
3510 		if (bus != NULL)
3511 			xpt_release_bus(bus);
3512 	}
3513 	return (status);
3514 }
3515 
3516 cam_status
3517 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3518 {
3519 	struct	   cam_path *new_path;
3520 
3521 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3522 	if (new_path == NULL)
3523 		return(CAM_RESRC_UNAVAIL);
3524 	xpt_copy_path(new_path, path);
3525 	*new_path_ptr = new_path;
3526 	return (CAM_REQ_CMP);
3527 }
3528 
3529 void
3530 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3531 {
3532 
3533 	*new_path = *path;
3534 	if (path->bus != NULL)
3535 		xpt_acquire_bus(path->bus);
3536 	if (path->target != NULL)
3537 		xpt_acquire_target(path->target);
3538 	if (path->device != NULL)
3539 		xpt_acquire_device(path->device);
3540 }
3541 
3542 void
3543 xpt_release_path(struct cam_path *path)
3544 {
3545 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3546 	if (path->device != NULL) {
3547 		xpt_release_device(path->device);
3548 		path->device = NULL;
3549 	}
3550 	if (path->target != NULL) {
3551 		xpt_release_target(path->target);
3552 		path->target = NULL;
3553 	}
3554 	if (path->bus != NULL) {
3555 		xpt_release_bus(path->bus);
3556 		path->bus = NULL;
3557 	}
3558 }
3559 
3560 void
3561 xpt_free_path(struct cam_path *path)
3562 {
3563 
3564 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3565 	xpt_release_path(path);
3566 	free(path, M_CAMPATH);
3567 }
3568 
3569 void
3570 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3571     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3572 {
3573 
3574 	xpt_lock_buses();
3575 	if (bus_ref) {
3576 		if (path->bus)
3577 			*bus_ref = path->bus->refcount;
3578 		else
3579 			*bus_ref = 0;
3580 	}
3581 	if (periph_ref) {
3582 		if (path->periph)
3583 			*periph_ref = path->periph->refcount;
3584 		else
3585 			*periph_ref = 0;
3586 	}
3587 	xpt_unlock_buses();
3588 	if (target_ref) {
3589 		if (path->target)
3590 			*target_ref = path->target->refcount;
3591 		else
3592 			*target_ref = 0;
3593 	}
3594 	if (device_ref) {
3595 		if (path->device)
3596 			*device_ref = path->device->refcount;
3597 		else
3598 			*device_ref = 0;
3599 	}
3600 }
3601 
3602 /*
3603  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3604  * in path1, 2 for match with wildcards in path2.
3605  */
3606 int
3607 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3608 {
3609 	int retval = 0;
3610 
3611 	if (path1->bus != path2->bus) {
3612 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3613 			retval = 1;
3614 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3615 			retval = 2;
3616 		else
3617 			return (-1);
3618 	}
3619 	if (path1->target != path2->target) {
3620 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3621 			if (retval == 0)
3622 				retval = 1;
3623 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3624 			retval = 2;
3625 		else
3626 			return (-1);
3627 	}
3628 	if (path1->device != path2->device) {
3629 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3630 			if (retval == 0)
3631 				retval = 1;
3632 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3633 			retval = 2;
3634 		else
3635 			return (-1);
3636 	}
3637 	return (retval);
3638 }
3639 
3640 int
3641 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3642 {
3643 	int retval = 0;
3644 
3645 	if (path->bus != dev->target->bus) {
3646 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3647 			retval = 1;
3648 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3649 			retval = 2;
3650 		else
3651 			return (-1);
3652 	}
3653 	if (path->target != dev->target) {
3654 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3655 			if (retval == 0)
3656 				retval = 1;
3657 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3658 			retval = 2;
3659 		else
3660 			return (-1);
3661 	}
3662 	if (path->device != dev) {
3663 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3664 			if (retval == 0)
3665 				retval = 1;
3666 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3667 			retval = 2;
3668 		else
3669 			return (-1);
3670 	}
3671 	return (retval);
3672 }
3673 
3674 void
3675 xpt_print_path(struct cam_path *path)
3676 {
3677 
3678 	if (path == NULL)
3679 		printf("(nopath): ");
3680 	else {
3681 		if (path->periph != NULL)
3682 			printf("(%s%d:", path->periph->periph_name,
3683 			       path->periph->unit_number);
3684 		else
3685 			printf("(noperiph:");
3686 
3687 		if (path->bus != NULL)
3688 			printf("%s%d:%d:", path->bus->sim->sim_name,
3689 			       path->bus->sim->unit_number,
3690 			       path->bus->sim->bus_id);
3691 		else
3692 			printf("nobus:");
3693 
3694 		if (path->target != NULL)
3695 			printf("%d:", path->target->target_id);
3696 		else
3697 			printf("X:");
3698 
3699 		if (path->device != NULL)
3700 			printf("%jx): ", (uintmax_t)path->device->lun_id);
3701 		else
3702 			printf("X): ");
3703 	}
3704 }
3705 
3706 void
3707 xpt_print_device(struct cam_ed *device)
3708 {
3709 
3710 	if (device == NULL)
3711 		printf("(nopath): ");
3712 	else {
3713 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3714 		       device->sim->unit_number,
3715 		       device->sim->bus_id,
3716 		       device->target->target_id,
3717 		       (uintmax_t)device->lun_id);
3718 	}
3719 }
3720 
3721 void
3722 xpt_print(struct cam_path *path, const char *fmt, ...)
3723 {
3724 	va_list ap;
3725 	xpt_print_path(path);
3726 	va_start(ap, fmt);
3727 	vprintf(fmt, ap);
3728 	va_end(ap);
3729 }
3730 
3731 int
3732 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3733 {
3734 	struct sbuf sb;
3735 
3736 	sbuf_new(&sb, str, str_len, 0);
3737 
3738 	if (path == NULL)
3739 		sbuf_printf(&sb, "(nopath): ");
3740 	else {
3741 		if (path->periph != NULL)
3742 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3743 				    path->periph->unit_number);
3744 		else
3745 			sbuf_printf(&sb, "(noperiph:");
3746 
3747 		if (path->bus != NULL)
3748 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3749 				    path->bus->sim->unit_number,
3750 				    path->bus->sim->bus_id);
3751 		else
3752 			sbuf_printf(&sb, "nobus:");
3753 
3754 		if (path->target != NULL)
3755 			sbuf_printf(&sb, "%d:", path->target->target_id);
3756 		else
3757 			sbuf_printf(&sb, "X:");
3758 
3759 		if (path->device != NULL)
3760 			sbuf_printf(&sb, "%jx): ",
3761 			    (uintmax_t)path->device->lun_id);
3762 		else
3763 			sbuf_printf(&sb, "X): ");
3764 	}
3765 	sbuf_finish(&sb);
3766 
3767 	return(sbuf_len(&sb));
3768 }
3769 
3770 path_id_t
3771 xpt_path_path_id(struct cam_path *path)
3772 {
3773 	return(path->bus->path_id);
3774 }
3775 
3776 target_id_t
3777 xpt_path_target_id(struct cam_path *path)
3778 {
3779 	if (path->target != NULL)
3780 		return (path->target->target_id);
3781 	else
3782 		return (CAM_TARGET_WILDCARD);
3783 }
3784 
3785 lun_id_t
3786 xpt_path_lun_id(struct cam_path *path)
3787 {
3788 	if (path->device != NULL)
3789 		return (path->device->lun_id);
3790 	else
3791 		return (CAM_LUN_WILDCARD);
3792 }
3793 
3794 struct cam_sim *
3795 xpt_path_sim(struct cam_path *path)
3796 {
3797 
3798 	return (path->bus->sim);
3799 }
3800 
3801 struct cam_periph*
3802 xpt_path_periph(struct cam_path *path)
3803 {
3804 
3805 	return (path->periph);
3806 }
3807 
3808 /*
3809  * Release a CAM control block for the caller.  Remit the cost of the structure
3810  * to the device referenced by the path.  If the this device had no 'credits'
3811  * and peripheral drivers have registered async callbacks for this notification
3812  * call them now.
3813  */
3814 void
3815 xpt_release_ccb(union ccb *free_ccb)
3816 {
3817 	struct	 cam_ed *device;
3818 	struct	 cam_periph *periph;
3819 
3820 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3821 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3822 	device = free_ccb->ccb_h.path->device;
3823 	periph = free_ccb->ccb_h.path->periph;
3824 
3825 	xpt_free_ccb(free_ccb);
3826 	periph->periph_allocated--;
3827 	cam_ccbq_release_opening(&device->ccbq);
3828 	xpt_run_allocq(periph, 0);
3829 }
3830 
3831 /* Functions accessed by SIM drivers */
3832 
3833 static struct xpt_xport_ops xport_default_ops = {
3834 	.alloc_device = xpt_alloc_device_default,
3835 	.action = xpt_action_default,
3836 	.async = xpt_dev_async_default,
3837 };
3838 static struct xpt_xport xport_default = {
3839 	.xport = XPORT_UNKNOWN,
3840 	.name = "unknown",
3841 	.ops = &xport_default_ops,
3842 };
3843 
3844 CAM_XPT_XPORT(xport_default);
3845 
3846 /*
3847  * A sim structure, listing the SIM entry points and instance
3848  * identification info is passed to xpt_bus_register to hook the SIM
3849  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3850  * for this new bus and places it in the array of busses and assigns
3851  * it a path_id.  The path_id may be influenced by "hard wiring"
3852  * information specified by the user.  Once interrupt services are
3853  * available, the bus will be probed.
3854  */
3855 int32_t
3856 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3857 {
3858 	struct cam_eb *new_bus;
3859 	struct cam_eb *old_bus;
3860 	struct ccb_pathinq cpi;
3861 	struct cam_path *path;
3862 	cam_status status;
3863 
3864 	mtx_assert(sim->mtx, MA_OWNED);
3865 
3866 	sim->bus_id = bus;
3867 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3868 					  M_CAMXPT, M_NOWAIT|M_ZERO);
3869 	if (new_bus == NULL) {
3870 		/* Couldn't satisfy request */
3871 		return (CAM_RESRC_UNAVAIL);
3872 	}
3873 
3874 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3875 	TAILQ_INIT(&new_bus->et_entries);
3876 	cam_sim_hold(sim);
3877 	new_bus->sim = sim;
3878 	timevalclear(&new_bus->last_reset);
3879 	new_bus->flags = 0;
3880 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3881 	new_bus->generation = 0;
3882 
3883 	xpt_lock_buses();
3884 	sim->path_id = new_bus->path_id =
3885 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3886 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3887 	while (old_bus != NULL
3888 	    && old_bus->path_id < new_bus->path_id)
3889 		old_bus = TAILQ_NEXT(old_bus, links);
3890 	if (old_bus != NULL)
3891 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3892 	else
3893 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3894 	xsoftc.bus_generation++;
3895 	xpt_unlock_buses();
3896 
3897 	/*
3898 	 * Set a default transport so that a PATH_INQ can be issued to
3899 	 * the SIM.  This will then allow for probing and attaching of
3900 	 * a more appropriate transport.
3901 	 */
3902 	new_bus->xport = &xport_default;
3903 
3904 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3905 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3906 	if (status != CAM_REQ_CMP) {
3907 		xpt_release_bus(new_bus);
3908 		free(path, M_CAMXPT);
3909 		return (CAM_RESRC_UNAVAIL);
3910 	}
3911 
3912 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3913 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3914 	xpt_action((union ccb *)&cpi);
3915 
3916 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3917 		struct xpt_xport **xpt;
3918 
3919 		SET_FOREACH(xpt, cam_xpt_xport_set) {
3920 			if ((*xpt)->xport == cpi.transport) {
3921 				new_bus->xport = *xpt;
3922 				break;
3923 			}
3924 		}
3925 		if (new_bus->xport == NULL) {
3926 			xpt_print_path(path);
3927 			printf("No transport found for %d\n", cpi.transport);
3928 			xpt_release_bus(new_bus);
3929 			free(path, M_CAMXPT);
3930 			return (CAM_RESRC_UNAVAIL);
3931 		}
3932 	}
3933 
3934 	/* Notify interested parties */
3935 	if (sim->path_id != CAM_XPT_PATH_ID) {
3936 
3937 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3938 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3939 			union	ccb *scan_ccb;
3940 
3941 			/* Initiate bus rescan. */
3942 			scan_ccb = xpt_alloc_ccb_nowait();
3943 			if (scan_ccb != NULL) {
3944 				scan_ccb->ccb_h.path = path;
3945 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3946 				scan_ccb->crcn.flags = 0;
3947 				xpt_rescan(scan_ccb);
3948 			} else {
3949 				xpt_print(path,
3950 					  "Can't allocate CCB to scan bus\n");
3951 				xpt_free_path(path);
3952 			}
3953 		} else
3954 			xpt_free_path(path);
3955 	} else
3956 		xpt_free_path(path);
3957 	return (CAM_SUCCESS);
3958 }
3959 
3960 int32_t
3961 xpt_bus_deregister(path_id_t pathid)
3962 {
3963 	struct cam_path bus_path;
3964 	cam_status status;
3965 
3966 	status = xpt_compile_path(&bus_path, NULL, pathid,
3967 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3968 	if (status != CAM_REQ_CMP)
3969 		return (status);
3970 
3971 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3972 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3973 
3974 	/* Release the reference count held while registered. */
3975 	xpt_release_bus(bus_path.bus);
3976 	xpt_release_path(&bus_path);
3977 
3978 	return (CAM_REQ_CMP);
3979 }
3980 
3981 static path_id_t
3982 xptnextfreepathid(void)
3983 {
3984 	struct cam_eb *bus;
3985 	path_id_t pathid;
3986 	const char *strval;
3987 
3988 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
3989 	pathid = 0;
3990 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3991 retry:
3992 	/* Find an unoccupied pathid */
3993 	while (bus != NULL && bus->path_id <= pathid) {
3994 		if (bus->path_id == pathid)
3995 			pathid++;
3996 		bus = TAILQ_NEXT(bus, links);
3997 	}
3998 
3999 	/*
4000 	 * Ensure that this pathid is not reserved for
4001 	 * a bus that may be registered in the future.
4002 	 */
4003 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4004 		++pathid;
4005 		/* Start the search over */
4006 		goto retry;
4007 	}
4008 	return (pathid);
4009 }
4010 
4011 static path_id_t
4012 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4013 {
4014 	path_id_t pathid;
4015 	int i, dunit, val;
4016 	char buf[32];
4017 	const char *dname;
4018 
4019 	pathid = CAM_XPT_PATH_ID;
4020 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4021 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4022 		return (pathid);
4023 	i = 0;
4024 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4025 		if (strcmp(dname, "scbus")) {
4026 			/* Avoid a bit of foot shooting. */
4027 			continue;
4028 		}
4029 		if (dunit < 0)		/* unwired?! */
4030 			continue;
4031 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4032 			if (sim_bus == val) {
4033 				pathid = dunit;
4034 				break;
4035 			}
4036 		} else if (sim_bus == 0) {
4037 			/* Unspecified matches bus 0 */
4038 			pathid = dunit;
4039 			break;
4040 		} else {
4041 			printf("Ambiguous scbus configuration for %s%d "
4042 			       "bus %d, cannot wire down.  The kernel "
4043 			       "config entry for scbus%d should "
4044 			       "specify a controller bus.\n"
4045 			       "Scbus will be assigned dynamically.\n",
4046 			       sim_name, sim_unit, sim_bus, dunit);
4047 			break;
4048 		}
4049 	}
4050 
4051 	if (pathid == CAM_XPT_PATH_ID)
4052 		pathid = xptnextfreepathid();
4053 	return (pathid);
4054 }
4055 
4056 static const char *
4057 xpt_async_string(u_int32_t async_code)
4058 {
4059 
4060 	switch (async_code) {
4061 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4062 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4063 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4064 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4065 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4066 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4067 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4068 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4069 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4070 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4071 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4072 	case AC_CONTRACT: return ("AC_CONTRACT");
4073 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4074 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4075 	}
4076 	return ("AC_UNKNOWN");
4077 }
4078 
4079 static int
4080 xpt_async_size(u_int32_t async_code)
4081 {
4082 
4083 	switch (async_code) {
4084 	case AC_BUS_RESET: return (0);
4085 	case AC_UNSOL_RESEL: return (0);
4086 	case AC_SCSI_AEN: return (0);
4087 	case AC_SENT_BDR: return (0);
4088 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4089 	case AC_PATH_DEREGISTERED: return (0);
4090 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4091 	case AC_LOST_DEVICE: return (0);
4092 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4093 	case AC_INQ_CHANGED: return (0);
4094 	case AC_GETDEV_CHANGED: return (0);
4095 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4096 	case AC_ADVINFO_CHANGED: return (-1);
4097 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4098 	}
4099 	return (0);
4100 }
4101 
4102 static int
4103 xpt_async_process_dev(struct cam_ed *device, void *arg)
4104 {
4105 	union ccb *ccb = arg;
4106 	struct cam_path *path = ccb->ccb_h.path;
4107 	void *async_arg = ccb->casync.async_arg_ptr;
4108 	u_int32_t async_code = ccb->casync.async_code;
4109 	int relock;
4110 
4111 	if (path->device != device
4112 	 && path->device->lun_id != CAM_LUN_WILDCARD
4113 	 && device->lun_id != CAM_LUN_WILDCARD)
4114 		return (1);
4115 
4116 	/*
4117 	 * The async callback could free the device.
4118 	 * If it is a broadcast async, it doesn't hold
4119 	 * device reference, so take our own reference.
4120 	 */
4121 	xpt_acquire_device(device);
4122 
4123 	/*
4124 	 * If async for specific device is to be delivered to
4125 	 * the wildcard client, take the specific device lock.
4126 	 * XXX: We may need a way for client to specify it.
4127 	 */
4128 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4129 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4130 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4131 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4132 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4133 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4134 		mtx_unlock(&device->device_mtx);
4135 		xpt_path_lock(path);
4136 		relock = 1;
4137 	} else
4138 		relock = 0;
4139 
4140 	(*(device->target->bus->xport->ops->async))(async_code,
4141 	    device->target->bus, device->target, device, async_arg);
4142 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4143 
4144 	if (relock) {
4145 		xpt_path_unlock(path);
4146 		mtx_lock(&device->device_mtx);
4147 	}
4148 	xpt_release_device(device);
4149 	return (1);
4150 }
4151 
4152 static int
4153 xpt_async_process_tgt(struct cam_et *target, void *arg)
4154 {
4155 	union ccb *ccb = arg;
4156 	struct cam_path *path = ccb->ccb_h.path;
4157 
4158 	if (path->target != target
4159 	 && path->target->target_id != CAM_TARGET_WILDCARD
4160 	 && target->target_id != CAM_TARGET_WILDCARD)
4161 		return (1);
4162 
4163 	if (ccb->casync.async_code == AC_SENT_BDR) {
4164 		/* Update our notion of when the last reset occurred */
4165 		microtime(&target->last_reset);
4166 	}
4167 
4168 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4169 }
4170 
4171 static void
4172 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4173 {
4174 	struct cam_eb *bus;
4175 	struct cam_path *path;
4176 	void *async_arg;
4177 	u_int32_t async_code;
4178 
4179 	path = ccb->ccb_h.path;
4180 	async_code = ccb->casync.async_code;
4181 	async_arg = ccb->casync.async_arg_ptr;
4182 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4183 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4184 	bus = path->bus;
4185 
4186 	if (async_code == AC_BUS_RESET) {
4187 		/* Update our notion of when the last reset occurred */
4188 		microtime(&bus->last_reset);
4189 	}
4190 
4191 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4192 
4193 	/*
4194 	 * If this wasn't a fully wildcarded async, tell all
4195 	 * clients that want all async events.
4196 	 */
4197 	if (bus != xpt_periph->path->bus) {
4198 		xpt_path_lock(xpt_periph->path);
4199 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4200 		xpt_path_unlock(xpt_periph->path);
4201 	}
4202 
4203 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4204 		xpt_release_devq(path, 1, TRUE);
4205 	else
4206 		xpt_release_simq(path->bus->sim, TRUE);
4207 	if (ccb->casync.async_arg_size > 0)
4208 		free(async_arg, M_CAMXPT);
4209 	xpt_free_path(path);
4210 	xpt_free_ccb(ccb);
4211 }
4212 
4213 static void
4214 xpt_async_bcast(struct async_list *async_head,
4215 		u_int32_t async_code,
4216 		struct cam_path *path, void *async_arg)
4217 {
4218 	struct async_node *cur_entry;
4219 	int lock;
4220 
4221 	cur_entry = SLIST_FIRST(async_head);
4222 	while (cur_entry != NULL) {
4223 		struct async_node *next_entry;
4224 		/*
4225 		 * Grab the next list entry before we call the current
4226 		 * entry's callback.  This is because the callback function
4227 		 * can delete its async callback entry.
4228 		 */
4229 		next_entry = SLIST_NEXT(cur_entry, links);
4230 		if ((cur_entry->event_enable & async_code) != 0) {
4231 			lock = cur_entry->event_lock;
4232 			if (lock)
4233 				CAM_SIM_LOCK(path->device->sim);
4234 			cur_entry->callback(cur_entry->callback_arg,
4235 					    async_code, path,
4236 					    async_arg);
4237 			if (lock)
4238 				CAM_SIM_UNLOCK(path->device->sim);
4239 		}
4240 		cur_entry = next_entry;
4241 	}
4242 }
4243 
4244 void
4245 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4246 {
4247 	union ccb *ccb;
4248 	int size;
4249 
4250 	ccb = xpt_alloc_ccb_nowait();
4251 	if (ccb == NULL) {
4252 		xpt_print(path, "Can't allocate CCB to send %s\n",
4253 		    xpt_async_string(async_code));
4254 		return;
4255 	}
4256 
4257 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4258 		xpt_print(path, "Can't allocate path to send %s\n",
4259 		    xpt_async_string(async_code));
4260 		xpt_free_ccb(ccb);
4261 		return;
4262 	}
4263 	ccb->ccb_h.path->periph = NULL;
4264 	ccb->ccb_h.func_code = XPT_ASYNC;
4265 	ccb->ccb_h.cbfcnp = xpt_async_process;
4266 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4267 	ccb->casync.async_code = async_code;
4268 	ccb->casync.async_arg_size = 0;
4269 	size = xpt_async_size(async_code);
4270 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4271 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4272 		ccb->ccb_h.func_code,
4273 		xpt_action_name(ccb->ccb_h.func_code),
4274 		async_code,
4275 		xpt_async_string(async_code)));
4276 	if (size > 0 && async_arg != NULL) {
4277 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4278 		if (ccb->casync.async_arg_ptr == NULL) {
4279 			xpt_print(path, "Can't allocate argument to send %s\n",
4280 			    xpt_async_string(async_code));
4281 			xpt_free_path(ccb->ccb_h.path);
4282 			xpt_free_ccb(ccb);
4283 			return;
4284 		}
4285 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4286 		ccb->casync.async_arg_size = size;
4287 	} else if (size < 0) {
4288 		ccb->casync.async_arg_ptr = async_arg;
4289 		ccb->casync.async_arg_size = size;
4290 	}
4291 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4292 		xpt_freeze_devq(path, 1);
4293 	else
4294 		xpt_freeze_simq(path->bus->sim, 1);
4295 	xpt_done(ccb);
4296 }
4297 
4298 static void
4299 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4300 		      struct cam_et *target, struct cam_ed *device,
4301 		      void *async_arg)
4302 {
4303 
4304 	/*
4305 	 * We only need to handle events for real devices.
4306 	 */
4307 	if (target->target_id == CAM_TARGET_WILDCARD
4308 	 || device->lun_id == CAM_LUN_WILDCARD)
4309 		return;
4310 
4311 	printf("%s called\n", __func__);
4312 }
4313 
4314 static uint32_t
4315 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4316 {
4317 	struct cam_devq	*devq;
4318 	uint32_t freeze;
4319 
4320 	devq = dev->sim->devq;
4321 	mtx_assert(&devq->send_mtx, MA_OWNED);
4322 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4323 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4324 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4325 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4326 	/* Remove frozen device from sendq. */
4327 	if (device_is_queued(dev))
4328 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4329 	return (freeze);
4330 }
4331 
4332 u_int32_t
4333 xpt_freeze_devq(struct cam_path *path, u_int count)
4334 {
4335 	struct cam_ed	*dev = path->device;
4336 	struct cam_devq	*devq;
4337 	uint32_t	 freeze;
4338 
4339 	devq = dev->sim->devq;
4340 	mtx_lock(&devq->send_mtx);
4341 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4342 	freeze = xpt_freeze_devq_device(dev, count);
4343 	mtx_unlock(&devq->send_mtx);
4344 	return (freeze);
4345 }
4346 
4347 u_int32_t
4348 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4349 {
4350 	struct cam_devq	*devq;
4351 	uint32_t	 freeze;
4352 
4353 	devq = sim->devq;
4354 	mtx_lock(&devq->send_mtx);
4355 	freeze = (devq->send_queue.qfrozen_cnt += count);
4356 	mtx_unlock(&devq->send_mtx);
4357 	return (freeze);
4358 }
4359 
4360 static void
4361 xpt_release_devq_timeout(void *arg)
4362 {
4363 	struct cam_ed *dev;
4364 	struct cam_devq *devq;
4365 
4366 	dev = (struct cam_ed *)arg;
4367 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4368 	devq = dev->sim->devq;
4369 	mtx_assert(&devq->send_mtx, MA_OWNED);
4370 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4371 		xpt_run_devq(devq);
4372 }
4373 
4374 void
4375 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4376 {
4377 	struct cam_ed *dev;
4378 	struct cam_devq *devq;
4379 
4380 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4381 	    count, run_queue));
4382 	dev = path->device;
4383 	devq = dev->sim->devq;
4384 	mtx_lock(&devq->send_mtx);
4385 	if (xpt_release_devq_device(dev, count, run_queue))
4386 		xpt_run_devq(dev->sim->devq);
4387 	mtx_unlock(&devq->send_mtx);
4388 }
4389 
4390 static int
4391 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4392 {
4393 
4394 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4395 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4396 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4397 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4398 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4399 #ifdef INVARIANTS
4400 		printf("xpt_release_devq(): requested %u > present %u\n",
4401 		    count, dev->ccbq.queue.qfrozen_cnt);
4402 #endif
4403 		count = dev->ccbq.queue.qfrozen_cnt;
4404 	}
4405 	dev->ccbq.queue.qfrozen_cnt -= count;
4406 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4407 		/*
4408 		 * No longer need to wait for a successful
4409 		 * command completion.
4410 		 */
4411 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4412 		/*
4413 		 * Remove any timeouts that might be scheduled
4414 		 * to release this queue.
4415 		 */
4416 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4417 			callout_stop(&dev->callout);
4418 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4419 		}
4420 		/*
4421 		 * Now that we are unfrozen schedule the
4422 		 * device so any pending transactions are
4423 		 * run.
4424 		 */
4425 		xpt_schedule_devq(dev->sim->devq, dev);
4426 	} else
4427 		run_queue = 0;
4428 	return (run_queue);
4429 }
4430 
4431 void
4432 xpt_release_simq(struct cam_sim *sim, int run_queue)
4433 {
4434 	struct cam_devq	*devq;
4435 
4436 	devq = sim->devq;
4437 	mtx_lock(&devq->send_mtx);
4438 	if (devq->send_queue.qfrozen_cnt <= 0) {
4439 #ifdef INVARIANTS
4440 		printf("xpt_release_simq: requested 1 > present %u\n",
4441 		    devq->send_queue.qfrozen_cnt);
4442 #endif
4443 	} else
4444 		devq->send_queue.qfrozen_cnt--;
4445 	if (devq->send_queue.qfrozen_cnt == 0) {
4446 		/*
4447 		 * If there is a timeout scheduled to release this
4448 		 * sim queue, remove it.  The queue frozen count is
4449 		 * already at 0.
4450 		 */
4451 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4452 			callout_stop(&sim->callout);
4453 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4454 		}
4455 		if (run_queue) {
4456 			/*
4457 			 * Now that we are unfrozen run the send queue.
4458 			 */
4459 			xpt_run_devq(sim->devq);
4460 		}
4461 	}
4462 	mtx_unlock(&devq->send_mtx);
4463 }
4464 
4465 /*
4466  * XXX Appears to be unused.
4467  */
4468 static void
4469 xpt_release_simq_timeout(void *arg)
4470 {
4471 	struct cam_sim *sim;
4472 
4473 	sim = (struct cam_sim *)arg;
4474 	xpt_release_simq(sim, /* run_queue */ TRUE);
4475 }
4476 
4477 void
4478 xpt_done(union ccb *done_ccb)
4479 {
4480 	struct cam_doneq *queue;
4481 	int	run, hash;
4482 
4483 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4484 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4485 	    done_ccb->csio.bio != NULL)
4486 		biotrack(done_ccb->csio.bio, __func__);
4487 #endif
4488 
4489 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4490 	    ("xpt_done: func= %#x %s status %#x\n",
4491 		done_ccb->ccb_h.func_code,
4492 		xpt_action_name(done_ccb->ccb_h.func_code),
4493 		done_ccb->ccb_h.status));
4494 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4495 		return;
4496 
4497 	/* Store the time the ccb was in the sim */
4498 	done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
4499 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4500 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4501 	queue = &cam_doneqs[hash];
4502 	mtx_lock(&queue->cam_doneq_mtx);
4503 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4504 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4505 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4506 	mtx_unlock(&queue->cam_doneq_mtx);
4507 	if (run)
4508 		wakeup(&queue->cam_doneq);
4509 }
4510 
4511 void
4512 xpt_done_direct(union ccb *done_ccb)
4513 {
4514 
4515 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4516 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4517 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4518 		return;
4519 
4520 	/* Store the time the ccb was in the sim */
4521 	done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
4522 	xpt_done_process(&done_ccb->ccb_h);
4523 }
4524 
4525 union ccb *
4526 xpt_alloc_ccb()
4527 {
4528 	union ccb *new_ccb;
4529 
4530 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4531 	return (new_ccb);
4532 }
4533 
4534 union ccb *
4535 xpt_alloc_ccb_nowait()
4536 {
4537 	union ccb *new_ccb;
4538 
4539 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4540 	return (new_ccb);
4541 }
4542 
4543 void
4544 xpt_free_ccb(union ccb *free_ccb)
4545 {
4546 	free(free_ccb, M_CAMCCB);
4547 }
4548 
4549 
4550 
4551 /* Private XPT functions */
4552 
4553 /*
4554  * Get a CAM control block for the caller. Charge the structure to the device
4555  * referenced by the path.  If we don't have sufficient resources to allocate
4556  * more ccbs, we return NULL.
4557  */
4558 static union ccb *
4559 xpt_get_ccb_nowait(struct cam_periph *periph)
4560 {
4561 	union ccb *new_ccb;
4562 
4563 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4564 	if (new_ccb == NULL)
4565 		return (NULL);
4566 	periph->periph_allocated++;
4567 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4568 	return (new_ccb);
4569 }
4570 
4571 static union ccb *
4572 xpt_get_ccb(struct cam_periph *periph)
4573 {
4574 	union ccb *new_ccb;
4575 
4576 	cam_periph_unlock(periph);
4577 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4578 	cam_periph_lock(periph);
4579 	periph->periph_allocated++;
4580 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4581 	return (new_ccb);
4582 }
4583 
4584 union ccb *
4585 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4586 {
4587 	struct ccb_hdr *ccb_h;
4588 
4589 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4590 	cam_periph_assert(periph, MA_OWNED);
4591 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4592 	    ccb_h->pinfo.priority != priority) {
4593 		if (priority < periph->immediate_priority) {
4594 			periph->immediate_priority = priority;
4595 			xpt_run_allocq(periph, 0);
4596 		} else
4597 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4598 			    "cgticb", 0);
4599 	}
4600 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4601 	return ((union ccb *)ccb_h);
4602 }
4603 
4604 static void
4605 xpt_acquire_bus(struct cam_eb *bus)
4606 {
4607 
4608 	xpt_lock_buses();
4609 	bus->refcount++;
4610 	xpt_unlock_buses();
4611 }
4612 
4613 static void
4614 xpt_release_bus(struct cam_eb *bus)
4615 {
4616 
4617 	xpt_lock_buses();
4618 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4619 	if (--bus->refcount > 0) {
4620 		xpt_unlock_buses();
4621 		return;
4622 	}
4623 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4624 	xsoftc.bus_generation++;
4625 	xpt_unlock_buses();
4626 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4627 	    ("destroying bus, but target list is not empty"));
4628 	cam_sim_release(bus->sim);
4629 	mtx_destroy(&bus->eb_mtx);
4630 	free(bus, M_CAMXPT);
4631 }
4632 
4633 static struct cam_et *
4634 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4635 {
4636 	struct cam_et *cur_target, *target;
4637 
4638 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4639 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4640 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4641 					 M_NOWAIT|M_ZERO);
4642 	if (target == NULL)
4643 		return (NULL);
4644 
4645 	TAILQ_INIT(&target->ed_entries);
4646 	target->bus = bus;
4647 	target->target_id = target_id;
4648 	target->refcount = 1;
4649 	target->generation = 0;
4650 	target->luns = NULL;
4651 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4652 	timevalclear(&target->last_reset);
4653 	/*
4654 	 * Hold a reference to our parent bus so it
4655 	 * will not go away before we do.
4656 	 */
4657 	bus->refcount++;
4658 
4659 	/* Insertion sort into our bus's target list */
4660 	cur_target = TAILQ_FIRST(&bus->et_entries);
4661 	while (cur_target != NULL && cur_target->target_id < target_id)
4662 		cur_target = TAILQ_NEXT(cur_target, links);
4663 	if (cur_target != NULL) {
4664 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4665 	} else {
4666 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4667 	}
4668 	bus->generation++;
4669 	return (target);
4670 }
4671 
4672 static void
4673 xpt_acquire_target(struct cam_et *target)
4674 {
4675 	struct cam_eb *bus = target->bus;
4676 
4677 	mtx_lock(&bus->eb_mtx);
4678 	target->refcount++;
4679 	mtx_unlock(&bus->eb_mtx);
4680 }
4681 
4682 static void
4683 xpt_release_target(struct cam_et *target)
4684 {
4685 	struct cam_eb *bus = target->bus;
4686 
4687 	mtx_lock(&bus->eb_mtx);
4688 	if (--target->refcount > 0) {
4689 		mtx_unlock(&bus->eb_mtx);
4690 		return;
4691 	}
4692 	TAILQ_REMOVE(&bus->et_entries, target, links);
4693 	bus->generation++;
4694 	mtx_unlock(&bus->eb_mtx);
4695 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4696 	    ("destroying target, but device list is not empty"));
4697 	xpt_release_bus(bus);
4698 	mtx_destroy(&target->luns_mtx);
4699 	if (target->luns)
4700 		free(target->luns, M_CAMXPT);
4701 	free(target, M_CAMXPT);
4702 }
4703 
4704 static struct cam_ed *
4705 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4706 			 lun_id_t lun_id)
4707 {
4708 	struct cam_ed *device;
4709 
4710 	device = xpt_alloc_device(bus, target, lun_id);
4711 	if (device == NULL)
4712 		return (NULL);
4713 
4714 	device->mintags = 1;
4715 	device->maxtags = 1;
4716 	return (device);
4717 }
4718 
4719 static void
4720 xpt_destroy_device(void *context, int pending)
4721 {
4722 	struct cam_ed	*device = context;
4723 
4724 	mtx_lock(&device->device_mtx);
4725 	mtx_destroy(&device->device_mtx);
4726 	free(device, M_CAMDEV);
4727 }
4728 
4729 struct cam_ed *
4730 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4731 {
4732 	struct cam_ed	*cur_device, *device;
4733 	struct cam_devq	*devq;
4734 	cam_status status;
4735 
4736 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4737 	/* Make space for us in the device queue on our bus */
4738 	devq = bus->sim->devq;
4739 	mtx_lock(&devq->send_mtx);
4740 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4741 	mtx_unlock(&devq->send_mtx);
4742 	if (status != CAM_REQ_CMP)
4743 		return (NULL);
4744 
4745 	device = (struct cam_ed *)malloc(sizeof(*device),
4746 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4747 	if (device == NULL)
4748 		return (NULL);
4749 
4750 	cam_init_pinfo(&device->devq_entry);
4751 	device->target = target;
4752 	device->lun_id = lun_id;
4753 	device->sim = bus->sim;
4754 	if (cam_ccbq_init(&device->ccbq,
4755 			  bus->sim->max_dev_openings) != 0) {
4756 		free(device, M_CAMDEV);
4757 		return (NULL);
4758 	}
4759 	SLIST_INIT(&device->asyncs);
4760 	SLIST_INIT(&device->periphs);
4761 	device->generation = 0;
4762 	device->flags = CAM_DEV_UNCONFIGURED;
4763 	device->tag_delay_count = 0;
4764 	device->tag_saved_openings = 0;
4765 	device->refcount = 1;
4766 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4767 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4768 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4769 	/*
4770 	 * Hold a reference to our parent bus so it
4771 	 * will not go away before we do.
4772 	 */
4773 	target->refcount++;
4774 
4775 	cur_device = TAILQ_FIRST(&target->ed_entries);
4776 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4777 		cur_device = TAILQ_NEXT(cur_device, links);
4778 	if (cur_device != NULL)
4779 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4780 	else
4781 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4782 	target->generation++;
4783 	return (device);
4784 }
4785 
4786 void
4787 xpt_acquire_device(struct cam_ed *device)
4788 {
4789 	struct cam_eb *bus = device->target->bus;
4790 
4791 	mtx_lock(&bus->eb_mtx);
4792 	device->refcount++;
4793 	mtx_unlock(&bus->eb_mtx);
4794 }
4795 
4796 void
4797 xpt_release_device(struct cam_ed *device)
4798 {
4799 	struct cam_eb *bus = device->target->bus;
4800 	struct cam_devq *devq;
4801 
4802 	mtx_lock(&bus->eb_mtx);
4803 	if (--device->refcount > 0) {
4804 		mtx_unlock(&bus->eb_mtx);
4805 		return;
4806 	}
4807 
4808 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4809 	device->target->generation++;
4810 	mtx_unlock(&bus->eb_mtx);
4811 
4812 	/* Release our slot in the devq */
4813 	devq = bus->sim->devq;
4814 	mtx_lock(&devq->send_mtx);
4815 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4816 	mtx_unlock(&devq->send_mtx);
4817 
4818 	KASSERT(SLIST_EMPTY(&device->periphs),
4819 	    ("destroying device, but periphs list is not empty"));
4820 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4821 	    ("destroying device while still queued for ccbs"));
4822 
4823 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4824 		callout_stop(&device->callout);
4825 
4826 	xpt_release_target(device->target);
4827 
4828 	cam_ccbq_fini(&device->ccbq);
4829 	/*
4830 	 * Free allocated memory.  free(9) does nothing if the
4831 	 * supplied pointer is NULL, so it is safe to call without
4832 	 * checking.
4833 	 */
4834 	free(device->supported_vpds, M_CAMXPT);
4835 	free(device->device_id, M_CAMXPT);
4836 	free(device->ext_inq, M_CAMXPT);
4837 	free(device->physpath, M_CAMXPT);
4838 	free(device->rcap_buf, M_CAMXPT);
4839 	free(device->serial_num, M_CAMXPT);
4840 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4841 }
4842 
4843 u_int32_t
4844 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4845 {
4846 	int	result;
4847 	struct	cam_ed *dev;
4848 
4849 	dev = path->device;
4850 	mtx_lock(&dev->sim->devq->send_mtx);
4851 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4852 	mtx_unlock(&dev->sim->devq->send_mtx);
4853 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4854 	 || (dev->inq_flags & SID_CmdQue) != 0)
4855 		dev->tag_saved_openings = newopenings;
4856 	return (result);
4857 }
4858 
4859 static struct cam_eb *
4860 xpt_find_bus(path_id_t path_id)
4861 {
4862 	struct cam_eb *bus;
4863 
4864 	xpt_lock_buses();
4865 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4866 	     bus != NULL;
4867 	     bus = TAILQ_NEXT(bus, links)) {
4868 		if (bus->path_id == path_id) {
4869 			bus->refcount++;
4870 			break;
4871 		}
4872 	}
4873 	xpt_unlock_buses();
4874 	return (bus);
4875 }
4876 
4877 static struct cam_et *
4878 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4879 {
4880 	struct cam_et *target;
4881 
4882 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4883 	for (target = TAILQ_FIRST(&bus->et_entries);
4884 	     target != NULL;
4885 	     target = TAILQ_NEXT(target, links)) {
4886 		if (target->target_id == target_id) {
4887 			target->refcount++;
4888 			break;
4889 		}
4890 	}
4891 	return (target);
4892 }
4893 
4894 static struct cam_ed *
4895 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4896 {
4897 	struct cam_ed *device;
4898 
4899 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4900 	for (device = TAILQ_FIRST(&target->ed_entries);
4901 	     device != NULL;
4902 	     device = TAILQ_NEXT(device, links)) {
4903 		if (device->lun_id == lun_id) {
4904 			device->refcount++;
4905 			break;
4906 		}
4907 	}
4908 	return (device);
4909 }
4910 
4911 void
4912 xpt_start_tags(struct cam_path *path)
4913 {
4914 	struct ccb_relsim crs;
4915 	struct cam_ed *device;
4916 	struct cam_sim *sim;
4917 	int    newopenings;
4918 
4919 	device = path->device;
4920 	sim = path->bus->sim;
4921 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4922 	xpt_freeze_devq(path, /*count*/1);
4923 	device->inq_flags |= SID_CmdQue;
4924 	if (device->tag_saved_openings != 0)
4925 		newopenings = device->tag_saved_openings;
4926 	else
4927 		newopenings = min(device->maxtags,
4928 				  sim->max_tagged_dev_openings);
4929 	xpt_dev_ccbq_resize(path, newopenings);
4930 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4931 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4932 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4933 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4934 	crs.openings
4935 	    = crs.release_timeout
4936 	    = crs.qfrozen_cnt
4937 	    = 0;
4938 	xpt_action((union ccb *)&crs);
4939 }
4940 
4941 void
4942 xpt_stop_tags(struct cam_path *path)
4943 {
4944 	struct ccb_relsim crs;
4945 	struct cam_ed *device;
4946 	struct cam_sim *sim;
4947 
4948 	device = path->device;
4949 	sim = path->bus->sim;
4950 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4951 	device->tag_delay_count = 0;
4952 	xpt_freeze_devq(path, /*count*/1);
4953 	device->inq_flags &= ~SID_CmdQue;
4954 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4955 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4956 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4957 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4958 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4959 	crs.openings
4960 	    = crs.release_timeout
4961 	    = crs.qfrozen_cnt
4962 	    = 0;
4963 	xpt_action((union ccb *)&crs);
4964 }
4965 
4966 static void
4967 xpt_boot_delay(void *arg)
4968 {
4969 
4970 	xpt_release_boot();
4971 }
4972 
4973 static void
4974 xpt_config(void *arg)
4975 {
4976 	/*
4977 	 * Now that interrupts are enabled, go find our devices
4978 	 */
4979 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
4980 		printf("xpt_config: failed to create taskqueue thread.\n");
4981 
4982 	/* Setup debugging path */
4983 	if (cam_dflags != CAM_DEBUG_NONE) {
4984 		if (xpt_create_path(&cam_dpath, NULL,
4985 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4986 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4987 			printf("xpt_config: xpt_create_path() failed for debug"
4988 			       " target %d:%d:%d, debugging disabled\n",
4989 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4990 			cam_dflags = CAM_DEBUG_NONE;
4991 		}
4992 	} else
4993 		cam_dpath = NULL;
4994 
4995 	periphdriver_init(1);
4996 	xpt_hold_boot();
4997 	callout_init(&xsoftc.boot_callout, 1);
4998 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
4999 	    xpt_boot_delay, NULL, 0);
5000 	/* Fire up rescan thread. */
5001 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5002 	    "cam", "scanner")) {
5003 		printf("xpt_config: failed to create rescan thread.\n");
5004 	}
5005 }
5006 
5007 void
5008 xpt_hold_boot(void)
5009 {
5010 	xpt_lock_buses();
5011 	xsoftc.buses_to_config++;
5012 	xpt_unlock_buses();
5013 }
5014 
5015 void
5016 xpt_release_boot(void)
5017 {
5018 	xpt_lock_buses();
5019 	xsoftc.buses_to_config--;
5020 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
5021 		struct	xpt_task *task;
5022 
5023 		xsoftc.buses_config_done = 1;
5024 		xpt_unlock_buses();
5025 		/* Call manually because we don't have any busses */
5026 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
5027 		if (task != NULL) {
5028 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
5029 			taskqueue_enqueue(taskqueue_thread, &task->task);
5030 		}
5031 	} else
5032 		xpt_unlock_buses();
5033 }
5034 
5035 /*
5036  * If the given device only has one peripheral attached to it, and if that
5037  * peripheral is the passthrough driver, announce it.  This insures that the
5038  * user sees some sort of announcement for every peripheral in their system.
5039  */
5040 static int
5041 xptpassannouncefunc(struct cam_ed *device, void *arg)
5042 {
5043 	struct cam_periph *periph;
5044 	int i;
5045 
5046 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5047 	     periph = SLIST_NEXT(periph, periph_links), i++);
5048 
5049 	periph = SLIST_FIRST(&device->periphs);
5050 	if ((i == 1)
5051 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5052 		xpt_announce_periph(periph, NULL);
5053 
5054 	return(1);
5055 }
5056 
5057 static void
5058 xpt_finishconfig_task(void *context, int pending)
5059 {
5060 
5061 	periphdriver_init(2);
5062 	/*
5063 	 * Check for devices with no "standard" peripheral driver
5064 	 * attached.  For any devices like that, announce the
5065 	 * passthrough driver so the user will see something.
5066 	 */
5067 	if (!bootverbose)
5068 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5069 
5070 	/* Release our hook so that the boot can continue. */
5071 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
5072 	free(xsoftc.xpt_config_hook, M_CAMXPT);
5073 	xsoftc.xpt_config_hook = NULL;
5074 
5075 	free(context, M_CAMXPT);
5076 }
5077 
5078 cam_status
5079 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5080 		   struct cam_path *path)
5081 {
5082 	struct ccb_setasync csa;
5083 	cam_status status;
5084 	int xptpath = 0;
5085 
5086 	if (path == NULL) {
5087 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5088 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5089 		if (status != CAM_REQ_CMP)
5090 			return (status);
5091 		xpt_path_lock(path);
5092 		xptpath = 1;
5093 	}
5094 
5095 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5096 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5097 	csa.event_enable = event;
5098 	csa.callback = cbfunc;
5099 	csa.callback_arg = cbarg;
5100 	xpt_action((union ccb *)&csa);
5101 	status = csa.ccb_h.status;
5102 
5103 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5104 	    ("xpt_register_async: func %p\n", cbfunc));
5105 
5106 	if (xptpath) {
5107 		xpt_path_unlock(path);
5108 		xpt_free_path(path);
5109 	}
5110 
5111 	if ((status == CAM_REQ_CMP) &&
5112 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5113 		/*
5114 		 * Get this peripheral up to date with all
5115 		 * the currently existing devices.
5116 		 */
5117 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5118 	}
5119 	if ((status == CAM_REQ_CMP) &&
5120 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5121 		/*
5122 		 * Get this peripheral up to date with all
5123 		 * the currently existing busses.
5124 		 */
5125 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5126 	}
5127 
5128 	return (status);
5129 }
5130 
5131 static void
5132 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5133 {
5134 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5135 
5136 	switch (work_ccb->ccb_h.func_code) {
5137 	/* Common cases first */
5138 	case XPT_PATH_INQ:		/* Path routing inquiry */
5139 	{
5140 		struct ccb_pathinq *cpi;
5141 
5142 		cpi = &work_ccb->cpi;
5143 		cpi->version_num = 1; /* XXX??? */
5144 		cpi->hba_inquiry = 0;
5145 		cpi->target_sprt = 0;
5146 		cpi->hba_misc = 0;
5147 		cpi->hba_eng_cnt = 0;
5148 		cpi->max_target = 0;
5149 		cpi->max_lun = 0;
5150 		cpi->initiator_id = 0;
5151 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5152 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
5153 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5154 		cpi->unit_number = sim->unit_number;
5155 		cpi->bus_id = sim->bus_id;
5156 		cpi->base_transfer_speed = 0;
5157 		cpi->protocol = PROTO_UNSPECIFIED;
5158 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5159 		cpi->transport = XPORT_UNSPECIFIED;
5160 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5161 		cpi->ccb_h.status = CAM_REQ_CMP;
5162 		xpt_done(work_ccb);
5163 		break;
5164 	}
5165 	default:
5166 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5167 		xpt_done(work_ccb);
5168 		break;
5169 	}
5170 }
5171 
5172 /*
5173  * The xpt as a "controller" has no interrupt sources, so polling
5174  * is a no-op.
5175  */
5176 static void
5177 xptpoll(struct cam_sim *sim)
5178 {
5179 }
5180 
5181 void
5182 xpt_lock_buses(void)
5183 {
5184 	mtx_lock(&xsoftc.xpt_topo_lock);
5185 }
5186 
5187 void
5188 xpt_unlock_buses(void)
5189 {
5190 	mtx_unlock(&xsoftc.xpt_topo_lock);
5191 }
5192 
5193 struct mtx *
5194 xpt_path_mtx(struct cam_path *path)
5195 {
5196 
5197 	return (&path->device->device_mtx);
5198 }
5199 
5200 static void
5201 xpt_done_process(struct ccb_hdr *ccb_h)
5202 {
5203 	struct cam_sim *sim;
5204 	struct cam_devq *devq;
5205 	struct mtx *mtx = NULL;
5206 
5207 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5208 	struct ccb_scsiio *csio;
5209 
5210 	if (ccb_h->func_code == XPT_SCSI_IO) {
5211 		csio = &((union ccb *)ccb_h)->csio;
5212 		if (csio->bio != NULL)
5213 			biotrack(csio->bio, __func__);
5214 	}
5215 #endif
5216 
5217 	if (ccb_h->flags & CAM_HIGH_POWER) {
5218 		struct highpowerlist	*hphead;
5219 		struct cam_ed		*device;
5220 
5221 		mtx_lock(&xsoftc.xpt_highpower_lock);
5222 		hphead = &xsoftc.highpowerq;
5223 
5224 		device = STAILQ_FIRST(hphead);
5225 
5226 		/*
5227 		 * Increment the count since this command is done.
5228 		 */
5229 		xsoftc.num_highpower++;
5230 
5231 		/*
5232 		 * Any high powered commands queued up?
5233 		 */
5234 		if (device != NULL) {
5235 
5236 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5237 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5238 
5239 			mtx_lock(&device->sim->devq->send_mtx);
5240 			xpt_release_devq_device(device,
5241 					 /*count*/1, /*runqueue*/TRUE);
5242 			mtx_unlock(&device->sim->devq->send_mtx);
5243 		} else
5244 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5245 	}
5246 
5247 	sim = ccb_h->path->bus->sim;
5248 
5249 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5250 		xpt_release_simq(sim, /*run_queue*/FALSE);
5251 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5252 	}
5253 
5254 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5255 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5256 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5257 		ccb_h->status &= ~CAM_DEV_QFRZN;
5258 	}
5259 
5260 	devq = sim->devq;
5261 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5262 		struct cam_ed *dev = ccb_h->path->device;
5263 
5264 		mtx_lock(&devq->send_mtx);
5265 		devq->send_active--;
5266 		devq->send_openings++;
5267 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5268 
5269 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5270 		  && (dev->ccbq.dev_active == 0))) {
5271 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5272 			xpt_release_devq_device(dev, /*count*/1,
5273 					 /*run_queue*/FALSE);
5274 		}
5275 
5276 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5277 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5278 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5279 			xpt_release_devq_device(dev, /*count*/1,
5280 					 /*run_queue*/FALSE);
5281 		}
5282 
5283 		if (!device_is_queued(dev))
5284 			(void)xpt_schedule_devq(devq, dev);
5285 		xpt_run_devq(devq);
5286 		mtx_unlock(&devq->send_mtx);
5287 
5288 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5289 			mtx = xpt_path_mtx(ccb_h->path);
5290 			mtx_lock(mtx);
5291 
5292 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5293 			 && (--dev->tag_delay_count == 0))
5294 				xpt_start_tags(ccb_h->path);
5295 		}
5296 	}
5297 
5298 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5299 		if (mtx == NULL) {
5300 			mtx = xpt_path_mtx(ccb_h->path);
5301 			mtx_lock(mtx);
5302 		}
5303 	} else {
5304 		if (mtx != NULL) {
5305 			mtx_unlock(mtx);
5306 			mtx = NULL;
5307 		}
5308 	}
5309 
5310 	/* Call the peripheral driver's callback */
5311 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5312 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5313 	if (mtx != NULL)
5314 		mtx_unlock(mtx);
5315 }
5316 
5317 void
5318 xpt_done_td(void *arg)
5319 {
5320 	struct cam_doneq *queue = arg;
5321 	struct ccb_hdr *ccb_h;
5322 	STAILQ_HEAD(, ccb_hdr)	doneq;
5323 
5324 	STAILQ_INIT(&doneq);
5325 	mtx_lock(&queue->cam_doneq_mtx);
5326 	while (1) {
5327 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5328 			queue->cam_doneq_sleep = 1;
5329 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5330 			    PRIBIO, "-", 0);
5331 			queue->cam_doneq_sleep = 0;
5332 		}
5333 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5334 		mtx_unlock(&queue->cam_doneq_mtx);
5335 
5336 		THREAD_NO_SLEEPING();
5337 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5338 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5339 			xpt_done_process(ccb_h);
5340 		}
5341 		THREAD_SLEEPING_OK();
5342 
5343 		mtx_lock(&queue->cam_doneq_mtx);
5344 	}
5345 }
5346 
5347 static void
5348 camisr_runqueue(void)
5349 {
5350 	struct	ccb_hdr *ccb_h;
5351 	struct cam_doneq *queue;
5352 	int i;
5353 
5354 	/* Process global queues. */
5355 	for (i = 0; i < cam_num_doneqs; i++) {
5356 		queue = &cam_doneqs[i];
5357 		mtx_lock(&queue->cam_doneq_mtx);
5358 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5359 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5360 			mtx_unlock(&queue->cam_doneq_mtx);
5361 			xpt_done_process(ccb_h);
5362 			mtx_lock(&queue->cam_doneq_mtx);
5363 		}
5364 		mtx_unlock(&queue->cam_doneq_mtx);
5365 	}
5366 }
5367 
5368 struct kv
5369 {
5370 	uint32_t v;
5371 	const char *name;
5372 };
5373 
5374 static struct kv map[] = {
5375 	{ XPT_NOOP, "XPT_NOOP" },
5376 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5377 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5378 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5379 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5380 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5381 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5382 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5383 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5384 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5385 	{ XPT_DEBUG, "XPT_DEBUG" },
5386 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5387 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5388 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5389 	{ XPT_ASYNC, "XPT_ASYNC" },
5390 	{ XPT_ABORT, "XPT_ABORT" },
5391 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5392 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5393 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5394 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5395 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5396 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5397 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5398 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5399 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5400 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5401 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5402 	{ XPT_MMCSD_IO, "XPT_MMCSD_IO" },
5403 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5404 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5405 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5406 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5407 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5408 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5409 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5410 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5411 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5412 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5413 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5414 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5415 	{ 0, 0 }
5416 };
5417 
5418 static const char *
5419 xpt_action_name(uint32_t action)
5420 {
5421 	static char buffer[32];	/* Only for unknown messages -- racy */
5422 	struct kv *walker = map;
5423 
5424 	while (walker->name != NULL) {
5425 		if (walker->v == action)
5426 			return (walker->name);
5427 		walker++;
5428 	}
5429 
5430 	snprintf(buffer, sizeof(buffer), "%#x", action);
5431 	return (buffer);
5432 }
5433