xref: /freebsd/sys/cam/cam_xpt.c (revision f061a2215f9bf0bea98ac601a34750f89428db67)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/interrupt.h>
43 #include <sys/proc.h>
44 #include <sys/sbuf.h>
45 #include <sys/smp.h>
46 #include <sys/taskqueue.h>
47 
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 
53 #include <cam/cam.h>
54 #include <cam/cam_ccb.h>
55 #include <cam/cam_periph.h>
56 #include <cam/cam_queue.h>
57 #include <cam/cam_sim.h>
58 #include <cam/cam_xpt.h>
59 #include <cam/cam_xpt_sim.h>
60 #include <cam/cam_xpt_periph.h>
61 #include <cam/cam_xpt_internal.h>
62 #include <cam/cam_debug.h>
63 #include <cam/cam_compat.h>
64 
65 #include <cam/scsi/scsi_all.h>
66 #include <cam/scsi/scsi_message.h>
67 #include <cam/scsi/scsi_pass.h>
68 
69 #include <machine/md_var.h>	/* geometry translation */
70 #include <machine/stdarg.h>	/* for xpt_print below */
71 
72 #include "opt_cam.h"
73 
74 /*
75  * This is the maximum number of high powered commands (e.g. start unit)
76  * that can be outstanding at a particular time.
77  */
78 #ifndef CAM_MAX_HIGHPOWER
79 #define CAM_MAX_HIGHPOWER  4
80 #endif
81 
82 /* Datastructures internal to the xpt layer */
83 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
84 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
85 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
86 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
87 
88 /* Object for defering XPT actions to a taskqueue */
89 struct xpt_task {
90 	struct task	task;
91 	void		*data1;
92 	uintptr_t	data2;
93 };
94 
95 struct xpt_softc {
96 	uint32_t		xpt_generation;
97 
98 	/* number of high powered commands that can go through right now */
99 	struct mtx		xpt_highpower_lock;
100 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
101 	int			num_highpower;
102 
103 	/* queue for handling async rescan requests. */
104 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
105 	int buses_to_config;
106 	int buses_config_done;
107 
108 	/* Registered busses */
109 	TAILQ_HEAD(,cam_eb)	xpt_busses;
110 	u_int			bus_generation;
111 
112 	struct intr_config_hook	*xpt_config_hook;
113 
114 	int			boot_delay;
115 	struct callout 		boot_callout;
116 
117 	struct mtx		xpt_topo_lock;
118 	struct mtx		xpt_lock;
119 	struct taskqueue	*xpt_taskq;
120 };
121 
122 typedef enum {
123 	DM_RET_COPY		= 0x01,
124 	DM_RET_FLAG_MASK	= 0x0f,
125 	DM_RET_NONE		= 0x00,
126 	DM_RET_STOP		= 0x10,
127 	DM_RET_DESCEND		= 0x20,
128 	DM_RET_ERROR		= 0x30,
129 	DM_RET_ACTION_MASK	= 0xf0
130 } dev_match_ret;
131 
132 typedef enum {
133 	XPT_DEPTH_BUS,
134 	XPT_DEPTH_TARGET,
135 	XPT_DEPTH_DEVICE,
136 	XPT_DEPTH_PERIPH
137 } xpt_traverse_depth;
138 
139 struct xpt_traverse_config {
140 	xpt_traverse_depth	depth;
141 	void			*tr_func;
142 	void			*tr_arg;
143 };
144 
145 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
146 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
147 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
148 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
149 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
150 
151 /* Transport layer configuration information */
152 static struct xpt_softc xsoftc;
153 
154 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
155 
156 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
157            &xsoftc.boot_delay, 0, "Bus registration wait time");
158 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
159 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
160 
161 struct cam_doneq {
162 	struct mtx_padalign	cam_doneq_mtx;
163 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
164 	int			cam_doneq_sleep;
165 };
166 
167 static struct cam_doneq cam_doneqs[MAXCPU];
168 static int cam_num_doneqs;
169 static struct proc *cam_proc;
170 
171 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
172            &cam_num_doneqs, 0, "Number of completion queues/threads");
173 
174 struct cam_periph *xpt_periph;
175 
176 static periph_init_t xpt_periph_init;
177 
178 static struct periph_driver xpt_driver =
179 {
180 	xpt_periph_init, "xpt",
181 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
182 	CAM_PERIPH_DRV_EARLY
183 };
184 
185 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
186 
187 static d_open_t xptopen;
188 static d_close_t xptclose;
189 static d_ioctl_t xptioctl;
190 static d_ioctl_t xptdoioctl;
191 
192 static struct cdevsw xpt_cdevsw = {
193 	.d_version =	D_VERSION,
194 	.d_flags =	0,
195 	.d_open =	xptopen,
196 	.d_close =	xptclose,
197 	.d_ioctl =	xptioctl,
198 	.d_name =	"xpt",
199 };
200 
201 /* Storage for debugging datastructures */
202 struct cam_path *cam_dpath;
203 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
204 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
205 	&cam_dflags, 0, "Enabled debug flags");
206 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
207 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
208 	&cam_debug_delay, 0, "Delay in us after each debug message");
209 
210 /* Our boot-time initialization hook */
211 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
212 
213 static moduledata_t cam_moduledata = {
214 	"cam",
215 	cam_module_event_handler,
216 	NULL
217 };
218 
219 static int	xpt_init(void *);
220 
221 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
222 MODULE_VERSION(cam, 1);
223 
224 
225 static void		xpt_async_bcast(struct async_list *async_head,
226 					u_int32_t async_code,
227 					struct cam_path *path,
228 					void *async_arg);
229 static path_id_t xptnextfreepathid(void);
230 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
231 static union ccb *xpt_get_ccb(struct cam_periph *periph);
232 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
233 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
234 static void	 xpt_run_allocq_task(void *context, int pending);
235 static void	 xpt_run_devq(struct cam_devq *devq);
236 static timeout_t xpt_release_devq_timeout;
237 static void	 xpt_release_simq_timeout(void *arg) __unused;
238 static void	 xpt_acquire_bus(struct cam_eb *bus);
239 static void	 xpt_release_bus(struct cam_eb *bus);
240 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
241 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
242 		    int run_queue);
243 static struct cam_et*
244 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
245 static void	 xpt_acquire_target(struct cam_et *target);
246 static void	 xpt_release_target(struct cam_et *target);
247 static struct cam_eb*
248 		 xpt_find_bus(path_id_t path_id);
249 static struct cam_et*
250 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
251 static struct cam_ed*
252 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
253 static void	 xpt_config(void *arg);
254 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
255 				 u_int32_t new_priority);
256 static xpt_devicefunc_t xptpassannouncefunc;
257 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
258 static void	 xptpoll(struct cam_sim *sim);
259 static void	 camisr_runqueue(void);
260 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
261 static void	 xpt_done_td(void *);
262 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
263 				    u_int num_patterns, struct cam_eb *bus);
264 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
265 				       u_int num_patterns,
266 				       struct cam_ed *device);
267 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
268 				       u_int num_patterns,
269 				       struct cam_periph *periph);
270 static xpt_busfunc_t	xptedtbusfunc;
271 static xpt_targetfunc_t	xptedttargetfunc;
272 static xpt_devicefunc_t	xptedtdevicefunc;
273 static xpt_periphfunc_t	xptedtperiphfunc;
274 static xpt_pdrvfunc_t	xptplistpdrvfunc;
275 static xpt_periphfunc_t	xptplistperiphfunc;
276 static int		xptedtmatch(struct ccb_dev_match *cdm);
277 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
278 static int		xptbustraverse(struct cam_eb *start_bus,
279 				       xpt_busfunc_t *tr_func, void *arg);
280 static int		xpttargettraverse(struct cam_eb *bus,
281 					  struct cam_et *start_target,
282 					  xpt_targetfunc_t *tr_func, void *arg);
283 static int		xptdevicetraverse(struct cam_et *target,
284 					  struct cam_ed *start_device,
285 					  xpt_devicefunc_t *tr_func, void *arg);
286 static int		xptperiphtraverse(struct cam_ed *device,
287 					  struct cam_periph *start_periph,
288 					  xpt_periphfunc_t *tr_func, void *arg);
289 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
290 					xpt_pdrvfunc_t *tr_func, void *arg);
291 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
292 					    struct cam_periph *start_periph,
293 					    xpt_periphfunc_t *tr_func,
294 					    void *arg);
295 static xpt_busfunc_t	xptdefbusfunc;
296 static xpt_targetfunc_t	xptdeftargetfunc;
297 static xpt_devicefunc_t	xptdefdevicefunc;
298 static xpt_periphfunc_t	xptdefperiphfunc;
299 static void		xpt_finishconfig_task(void *context, int pending);
300 static void		xpt_dev_async_default(u_int32_t async_code,
301 					      struct cam_eb *bus,
302 					      struct cam_et *target,
303 					      struct cam_ed *device,
304 					      void *async_arg);
305 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
306 						 struct cam_et *target,
307 						 lun_id_t lun_id);
308 static xpt_devicefunc_t	xptsetasyncfunc;
309 static xpt_busfunc_t	xptsetasyncbusfunc;
310 static cam_status	xptregister(struct cam_periph *periph,
311 				    void *arg);
312 static const char *	xpt_action_name(uint32_t action);
313 static __inline int device_is_queued(struct cam_ed *device);
314 
315 static __inline int
316 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
317 {
318 	int	retval;
319 
320 	mtx_assert(&devq->send_mtx, MA_OWNED);
321 	if ((dev->ccbq.queue.entries > 0) &&
322 	    (dev->ccbq.dev_openings > 0) &&
323 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
324 		/*
325 		 * The priority of a device waiting for controller
326 		 * resources is that of the highest priority CCB
327 		 * enqueued.
328 		 */
329 		retval =
330 		    xpt_schedule_dev(&devq->send_queue,
331 				     &dev->devq_entry,
332 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
333 	} else {
334 		retval = 0;
335 	}
336 	return (retval);
337 }
338 
339 static __inline int
340 device_is_queued(struct cam_ed *device)
341 {
342 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
343 }
344 
345 static void
346 xpt_periph_init()
347 {
348 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
349 }
350 
351 static int
352 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
353 {
354 
355 	/*
356 	 * Only allow read-write access.
357 	 */
358 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
359 		return(EPERM);
360 
361 	/*
362 	 * We don't allow nonblocking access.
363 	 */
364 	if ((flags & O_NONBLOCK) != 0) {
365 		printf("%s: can't do nonblocking access\n", devtoname(dev));
366 		return(ENODEV);
367 	}
368 
369 	return(0);
370 }
371 
372 static int
373 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
374 {
375 
376 	return(0);
377 }
378 
379 /*
380  * Don't automatically grab the xpt softc lock here even though this is going
381  * through the xpt device.  The xpt device is really just a back door for
382  * accessing other devices and SIMs, so the right thing to do is to grab
383  * the appropriate SIM lock once the bus/SIM is located.
384  */
385 static int
386 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
387 {
388 	int error;
389 
390 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
391 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
392 	}
393 	return (error);
394 }
395 
396 static int
397 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
398 {
399 	int error;
400 
401 	error = 0;
402 
403 	switch(cmd) {
404 	/*
405 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
406 	 * to accept CCB types that don't quite make sense to send through a
407 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
408 	 * in the CAM spec.
409 	 */
410 	case CAMIOCOMMAND: {
411 		union ccb *ccb;
412 		union ccb *inccb;
413 		struct cam_eb *bus;
414 
415 		inccb = (union ccb *)addr;
416 
417 		bus = xpt_find_bus(inccb->ccb_h.path_id);
418 		if (bus == NULL)
419 			return (EINVAL);
420 
421 		switch (inccb->ccb_h.func_code) {
422 		case XPT_SCAN_BUS:
423 		case XPT_RESET_BUS:
424 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
425 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
426 				xpt_release_bus(bus);
427 				return (EINVAL);
428 			}
429 			break;
430 		case XPT_SCAN_TGT:
431 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
432 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
433 				xpt_release_bus(bus);
434 				return (EINVAL);
435 			}
436 			break;
437 		default:
438 			break;
439 		}
440 
441 		switch(inccb->ccb_h.func_code) {
442 		case XPT_SCAN_BUS:
443 		case XPT_RESET_BUS:
444 		case XPT_PATH_INQ:
445 		case XPT_ENG_INQ:
446 		case XPT_SCAN_LUN:
447 		case XPT_SCAN_TGT:
448 
449 			ccb = xpt_alloc_ccb();
450 
451 			/*
452 			 * Create a path using the bus, target, and lun the
453 			 * user passed in.
454 			 */
455 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
456 					    inccb->ccb_h.path_id,
457 					    inccb->ccb_h.target_id,
458 					    inccb->ccb_h.target_lun) !=
459 					    CAM_REQ_CMP){
460 				error = EINVAL;
461 				xpt_free_ccb(ccb);
462 				break;
463 			}
464 			/* Ensure all of our fields are correct */
465 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
466 				      inccb->ccb_h.pinfo.priority);
467 			xpt_merge_ccb(ccb, inccb);
468 			xpt_path_lock(ccb->ccb_h.path);
469 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
470 			xpt_path_unlock(ccb->ccb_h.path);
471 			bcopy(ccb, inccb, sizeof(union ccb));
472 			xpt_free_path(ccb->ccb_h.path);
473 			xpt_free_ccb(ccb);
474 			break;
475 
476 		case XPT_DEBUG: {
477 			union ccb ccb;
478 
479 			/*
480 			 * This is an immediate CCB, so it's okay to
481 			 * allocate it on the stack.
482 			 */
483 
484 			/*
485 			 * Create a path using the bus, target, and lun the
486 			 * user passed in.
487 			 */
488 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
489 					    inccb->ccb_h.path_id,
490 					    inccb->ccb_h.target_id,
491 					    inccb->ccb_h.target_lun) !=
492 					    CAM_REQ_CMP){
493 				error = EINVAL;
494 				break;
495 			}
496 			/* Ensure all of our fields are correct */
497 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
498 				      inccb->ccb_h.pinfo.priority);
499 			xpt_merge_ccb(&ccb, inccb);
500 			xpt_action(&ccb);
501 			bcopy(&ccb, inccb, sizeof(union ccb));
502 			xpt_free_path(ccb.ccb_h.path);
503 			break;
504 
505 		}
506 		case XPT_DEV_MATCH: {
507 			struct cam_periph_map_info mapinfo;
508 			struct cam_path *old_path;
509 
510 			/*
511 			 * We can't deal with physical addresses for this
512 			 * type of transaction.
513 			 */
514 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
515 			    CAM_DATA_VADDR) {
516 				error = EINVAL;
517 				break;
518 			}
519 
520 			/*
521 			 * Save this in case the caller had it set to
522 			 * something in particular.
523 			 */
524 			old_path = inccb->ccb_h.path;
525 
526 			/*
527 			 * We really don't need a path for the matching
528 			 * code.  The path is needed because of the
529 			 * debugging statements in xpt_action().  They
530 			 * assume that the CCB has a valid path.
531 			 */
532 			inccb->ccb_h.path = xpt_periph->path;
533 
534 			bzero(&mapinfo, sizeof(mapinfo));
535 
536 			/*
537 			 * Map the pattern and match buffers into kernel
538 			 * virtual address space.
539 			 */
540 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
541 
542 			if (error) {
543 				inccb->ccb_h.path = old_path;
544 				break;
545 			}
546 
547 			/*
548 			 * This is an immediate CCB, we can send it on directly.
549 			 */
550 			xpt_action(inccb);
551 
552 			/*
553 			 * Map the buffers back into user space.
554 			 */
555 			cam_periph_unmapmem(inccb, &mapinfo);
556 
557 			inccb->ccb_h.path = old_path;
558 
559 			error = 0;
560 			break;
561 		}
562 		default:
563 			error = ENOTSUP;
564 			break;
565 		}
566 		xpt_release_bus(bus);
567 		break;
568 	}
569 	/*
570 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
571 	 * with the periphal driver name and unit name filled in.  The other
572 	 * fields don't really matter as input.  The passthrough driver name
573 	 * ("pass"), and unit number are passed back in the ccb.  The current
574 	 * device generation number, and the index into the device peripheral
575 	 * driver list, and the status are also passed back.  Note that
576 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
577 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
578 	 * (or rather should be) impossible for the device peripheral driver
579 	 * list to change since we look at the whole thing in one pass, and
580 	 * we do it with lock protection.
581 	 *
582 	 */
583 	case CAMGETPASSTHRU: {
584 		union ccb *ccb;
585 		struct cam_periph *periph;
586 		struct periph_driver **p_drv;
587 		char   *name;
588 		u_int unit;
589 		int base_periph_found;
590 
591 		ccb = (union ccb *)addr;
592 		unit = ccb->cgdl.unit_number;
593 		name = ccb->cgdl.periph_name;
594 		base_periph_found = 0;
595 
596 		/*
597 		 * Sanity check -- make sure we don't get a null peripheral
598 		 * driver name.
599 		 */
600 		if (*ccb->cgdl.periph_name == '\0') {
601 			error = EINVAL;
602 			break;
603 		}
604 
605 		/* Keep the list from changing while we traverse it */
606 		xpt_lock_buses();
607 
608 		/* first find our driver in the list of drivers */
609 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
610 			if (strcmp((*p_drv)->driver_name, name) == 0)
611 				break;
612 
613 		if (*p_drv == NULL) {
614 			xpt_unlock_buses();
615 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
616 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
617 			*ccb->cgdl.periph_name = '\0';
618 			ccb->cgdl.unit_number = 0;
619 			error = ENOENT;
620 			break;
621 		}
622 
623 		/*
624 		 * Run through every peripheral instance of this driver
625 		 * and check to see whether it matches the unit passed
626 		 * in by the user.  If it does, get out of the loops and
627 		 * find the passthrough driver associated with that
628 		 * peripheral driver.
629 		 */
630 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
631 		     periph = TAILQ_NEXT(periph, unit_links)) {
632 
633 			if (periph->unit_number == unit)
634 				break;
635 		}
636 		/*
637 		 * If we found the peripheral driver that the user passed
638 		 * in, go through all of the peripheral drivers for that
639 		 * particular device and look for a passthrough driver.
640 		 */
641 		if (periph != NULL) {
642 			struct cam_ed *device;
643 			int i;
644 
645 			base_periph_found = 1;
646 			device = periph->path->device;
647 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
648 			     periph != NULL;
649 			     periph = SLIST_NEXT(periph, periph_links), i++) {
650 				/*
651 				 * Check to see whether we have a
652 				 * passthrough device or not.
653 				 */
654 				if (strcmp(periph->periph_name, "pass") == 0) {
655 					/*
656 					 * Fill in the getdevlist fields.
657 					 */
658 					strcpy(ccb->cgdl.periph_name,
659 					       periph->periph_name);
660 					ccb->cgdl.unit_number =
661 						periph->unit_number;
662 					if (SLIST_NEXT(periph, periph_links))
663 						ccb->cgdl.status =
664 							CAM_GDEVLIST_MORE_DEVS;
665 					else
666 						ccb->cgdl.status =
667 						       CAM_GDEVLIST_LAST_DEVICE;
668 					ccb->cgdl.generation =
669 						device->generation;
670 					ccb->cgdl.index = i;
671 					/*
672 					 * Fill in some CCB header fields
673 					 * that the user may want.
674 					 */
675 					ccb->ccb_h.path_id =
676 						periph->path->bus->path_id;
677 					ccb->ccb_h.target_id =
678 						periph->path->target->target_id;
679 					ccb->ccb_h.target_lun =
680 						periph->path->device->lun_id;
681 					ccb->ccb_h.status = CAM_REQ_CMP;
682 					break;
683 				}
684 			}
685 		}
686 
687 		/*
688 		 * If the periph is null here, one of two things has
689 		 * happened.  The first possibility is that we couldn't
690 		 * find the unit number of the particular peripheral driver
691 		 * that the user is asking about.  e.g. the user asks for
692 		 * the passthrough driver for "da11".  We find the list of
693 		 * "da" peripherals all right, but there is no unit 11.
694 		 * The other possibility is that we went through the list
695 		 * of peripheral drivers attached to the device structure,
696 		 * but didn't find one with the name "pass".  Either way,
697 		 * we return ENOENT, since we couldn't find something.
698 		 */
699 		if (periph == NULL) {
700 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
701 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
702 			*ccb->cgdl.periph_name = '\0';
703 			ccb->cgdl.unit_number = 0;
704 			error = ENOENT;
705 			/*
706 			 * It is unfortunate that this is even necessary,
707 			 * but there are many, many clueless users out there.
708 			 * If this is true, the user is looking for the
709 			 * passthrough driver, but doesn't have one in his
710 			 * kernel.
711 			 */
712 			if (base_periph_found == 1) {
713 				printf("xptioctl: pass driver is not in the "
714 				       "kernel\n");
715 				printf("xptioctl: put \"device pass\" in "
716 				       "your kernel config file\n");
717 			}
718 		}
719 		xpt_unlock_buses();
720 		break;
721 		}
722 	default:
723 		error = ENOTTY;
724 		break;
725 	}
726 
727 	return(error);
728 }
729 
730 static int
731 cam_module_event_handler(module_t mod, int what, void *arg)
732 {
733 	int error;
734 
735 	switch (what) {
736 	case MOD_LOAD:
737 		if ((error = xpt_init(NULL)) != 0)
738 			return (error);
739 		break;
740 	case MOD_UNLOAD:
741 		return EBUSY;
742 	default:
743 		return EOPNOTSUPP;
744 	}
745 
746 	return 0;
747 }
748 
749 static void
750 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
751 {
752 
753 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
754 		xpt_free_path(done_ccb->ccb_h.path);
755 		xpt_free_ccb(done_ccb);
756 	} else {
757 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
758 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
759 	}
760 	xpt_release_boot();
761 }
762 
763 /* thread to handle bus rescans */
764 static void
765 xpt_scanner_thread(void *dummy)
766 {
767 	union ccb	*ccb;
768 	struct cam_path	 path;
769 
770 	xpt_lock_buses();
771 	for (;;) {
772 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
773 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
774 			       "-", 0);
775 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
776 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
777 			xpt_unlock_buses();
778 
779 			/*
780 			 * Since lock can be dropped inside and path freed
781 			 * by completion callback even before return here,
782 			 * take our own path copy for reference.
783 			 */
784 			xpt_copy_path(&path, ccb->ccb_h.path);
785 			xpt_path_lock(&path);
786 			xpt_action(ccb);
787 			xpt_path_unlock(&path);
788 			xpt_release_path(&path);
789 
790 			xpt_lock_buses();
791 		}
792 	}
793 }
794 
795 void
796 xpt_rescan(union ccb *ccb)
797 {
798 	struct ccb_hdr *hdr;
799 
800 	/* Prepare request */
801 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
802 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
803 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
804 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
805 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
806 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
807 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
808 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
809 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
810 	else {
811 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
812 		xpt_free_path(ccb->ccb_h.path);
813 		xpt_free_ccb(ccb);
814 		return;
815 	}
816 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
817 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
818  		xpt_action_name(ccb->ccb_h.func_code)));
819 
820 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
821 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
822 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
823 	/* Don't make duplicate entries for the same paths. */
824 	xpt_lock_buses();
825 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
826 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
827 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
828 				wakeup(&xsoftc.ccb_scanq);
829 				xpt_unlock_buses();
830 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
831 				xpt_free_path(ccb->ccb_h.path);
832 				xpt_free_ccb(ccb);
833 				return;
834 			}
835 		}
836 	}
837 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
838 	xsoftc.buses_to_config++;
839 	wakeup(&xsoftc.ccb_scanq);
840 	xpt_unlock_buses();
841 }
842 
843 /* Functions accessed by the peripheral drivers */
844 static int
845 xpt_init(void *dummy)
846 {
847 	struct cam_sim *xpt_sim;
848 	struct cam_path *path;
849 	struct cam_devq *devq;
850 	cam_status status;
851 	int error, i;
852 
853 	TAILQ_INIT(&xsoftc.xpt_busses);
854 	TAILQ_INIT(&xsoftc.ccb_scanq);
855 	STAILQ_INIT(&xsoftc.highpowerq);
856 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
857 
858 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
859 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
860 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
861 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
862 
863 #ifdef CAM_BOOT_DELAY
864 	/*
865 	 * Override this value at compile time to assist our users
866 	 * who don't use loader to boot a kernel.
867 	 */
868 	xsoftc.boot_delay = CAM_BOOT_DELAY;
869 #endif
870 	/*
871 	 * The xpt layer is, itself, the equivalent of a SIM.
872 	 * Allow 16 ccbs in the ccb pool for it.  This should
873 	 * give decent parallelism when we probe busses and
874 	 * perform other XPT functions.
875 	 */
876 	devq = cam_simq_alloc(16);
877 	xpt_sim = cam_sim_alloc(xptaction,
878 				xptpoll,
879 				"xpt",
880 				/*softc*/NULL,
881 				/*unit*/0,
882 				/*mtx*/&xsoftc.xpt_lock,
883 				/*max_dev_transactions*/0,
884 				/*max_tagged_dev_transactions*/0,
885 				devq);
886 	if (xpt_sim == NULL)
887 		return (ENOMEM);
888 
889 	mtx_lock(&xsoftc.xpt_lock);
890 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
891 		mtx_unlock(&xsoftc.xpt_lock);
892 		printf("xpt_init: xpt_bus_register failed with status %#x,"
893 		       " failing attach\n", status);
894 		return (EINVAL);
895 	}
896 	mtx_unlock(&xsoftc.xpt_lock);
897 
898 	/*
899 	 * Looking at the XPT from the SIM layer, the XPT is
900 	 * the equivalent of a peripheral driver.  Allocate
901 	 * a peripheral driver entry for us.
902 	 */
903 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
904 				      CAM_TARGET_WILDCARD,
905 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
906 		printf("xpt_init: xpt_create_path failed with status %#x,"
907 		       " failing attach\n", status);
908 		return (EINVAL);
909 	}
910 	xpt_path_lock(path);
911 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
912 			 path, NULL, 0, xpt_sim);
913 	xpt_path_unlock(path);
914 	xpt_free_path(path);
915 
916 	if (cam_num_doneqs < 1)
917 		cam_num_doneqs = 1 + mp_ncpus / 6;
918 	else if (cam_num_doneqs > MAXCPU)
919 		cam_num_doneqs = MAXCPU;
920 	for (i = 0; i < cam_num_doneqs; i++) {
921 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
922 		    MTX_DEF);
923 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
924 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
925 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
926 		if (error != 0) {
927 			cam_num_doneqs = i;
928 			break;
929 		}
930 	}
931 	if (cam_num_doneqs < 1) {
932 		printf("xpt_init: Cannot init completion queues "
933 		       "- failing attach\n");
934 		return (ENOMEM);
935 	}
936 	/*
937 	 * Register a callback for when interrupts are enabled.
938 	 */
939 	xsoftc.xpt_config_hook =
940 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
941 					      M_CAMXPT, M_NOWAIT | M_ZERO);
942 	if (xsoftc.xpt_config_hook == NULL) {
943 		printf("xpt_init: Cannot malloc config hook "
944 		       "- failing attach\n");
945 		return (ENOMEM);
946 	}
947 	xsoftc.xpt_config_hook->ich_func = xpt_config;
948 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
949 		free (xsoftc.xpt_config_hook, M_CAMXPT);
950 		printf("xpt_init: config_intrhook_establish failed "
951 		       "- failing attach\n");
952 	}
953 
954 	return (0);
955 }
956 
957 static cam_status
958 xptregister(struct cam_periph *periph, void *arg)
959 {
960 	struct cam_sim *xpt_sim;
961 
962 	if (periph == NULL) {
963 		printf("xptregister: periph was NULL!!\n");
964 		return(CAM_REQ_CMP_ERR);
965 	}
966 
967 	xpt_sim = (struct cam_sim *)arg;
968 	xpt_sim->softc = periph;
969 	xpt_periph = periph;
970 	periph->softc = NULL;
971 
972 	return(CAM_REQ_CMP);
973 }
974 
975 int32_t
976 xpt_add_periph(struct cam_periph *periph)
977 {
978 	struct cam_ed *device;
979 	int32_t	 status;
980 
981 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
982 	device = periph->path->device;
983 	status = CAM_REQ_CMP;
984 	if (device != NULL) {
985 		mtx_lock(&device->target->bus->eb_mtx);
986 		device->generation++;
987 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
988 		mtx_unlock(&device->target->bus->eb_mtx);
989 		atomic_add_32(&xsoftc.xpt_generation, 1);
990 	}
991 
992 	return (status);
993 }
994 
995 void
996 xpt_remove_periph(struct cam_periph *periph)
997 {
998 	struct cam_ed *device;
999 
1000 	device = periph->path->device;
1001 	if (device != NULL) {
1002 		mtx_lock(&device->target->bus->eb_mtx);
1003 		device->generation++;
1004 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1005 		mtx_unlock(&device->target->bus->eb_mtx);
1006 		atomic_add_32(&xsoftc.xpt_generation, 1);
1007 	}
1008 }
1009 
1010 
1011 void
1012 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1013 {
1014 	struct	cam_path *path = periph->path;
1015 
1016 	cam_periph_assert(periph, MA_OWNED);
1017 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1018 
1019 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1020 	       periph->periph_name, periph->unit_number,
1021 	       path->bus->sim->sim_name,
1022 	       path->bus->sim->unit_number,
1023 	       path->bus->sim->bus_id,
1024 	       path->bus->path_id,
1025 	       path->target->target_id,
1026 	       (uintmax_t)path->device->lun_id);
1027 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1028 	if (path->device->protocol == PROTO_SCSI)
1029 		scsi_print_inquiry(&path->device->inq_data);
1030 	else if (path->device->protocol == PROTO_ATA ||
1031 	    path->device->protocol == PROTO_SATAPM)
1032 		ata_print_ident(&path->device->ident_data);
1033 	else if (path->device->protocol == PROTO_SEMB)
1034 		semb_print_ident(
1035 		    (struct sep_identify_data *)&path->device->ident_data);
1036 	else
1037 		printf("Unknown protocol device\n");
1038 	if (path->device->serial_num_len > 0) {
1039 		/* Don't wrap the screen  - print only the first 60 chars */
1040 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1041 		       periph->unit_number, path->device->serial_num);
1042 	}
1043 	/* Announce transport details. */
1044 	(*(path->bus->xport->announce))(periph);
1045 	/* Announce command queueing. */
1046 	if (path->device->inq_flags & SID_CmdQue
1047 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1048 		printf("%s%d: Command Queueing enabled\n",
1049 		       periph->periph_name, periph->unit_number);
1050 	}
1051 	/* Announce caller's details if they've passed in. */
1052 	if (announce_string != NULL)
1053 		printf("%s%d: %s\n", periph->periph_name,
1054 		       periph->unit_number, announce_string);
1055 }
1056 
1057 void
1058 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1059 {
1060 	if (quirks != 0) {
1061 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1062 		    periph->unit_number, quirks, bit_string);
1063 	}
1064 }
1065 
1066 void
1067 xpt_denounce_periph(struct cam_periph *periph)
1068 {
1069 	struct	cam_path *path = periph->path;
1070 
1071 	cam_periph_assert(periph, MA_OWNED);
1072 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1073 	       periph->periph_name, periph->unit_number,
1074 	       path->bus->sim->sim_name,
1075 	       path->bus->sim->unit_number,
1076 	       path->bus->sim->bus_id,
1077 	       path->bus->path_id,
1078 	       path->target->target_id,
1079 	       (uintmax_t)path->device->lun_id);
1080 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1081 	if (path->device->protocol == PROTO_SCSI)
1082 		scsi_print_inquiry_short(&path->device->inq_data);
1083 	else if (path->device->protocol == PROTO_ATA ||
1084 	    path->device->protocol == PROTO_SATAPM)
1085 		ata_print_ident_short(&path->device->ident_data);
1086 	else if (path->device->protocol == PROTO_SEMB)
1087 		semb_print_ident_short(
1088 		    (struct sep_identify_data *)&path->device->ident_data);
1089 	else
1090 		printf("Unknown protocol device");
1091 	if (path->device->serial_num_len > 0)
1092 		printf(" s/n %.60s", path->device->serial_num);
1093 	printf(" detached\n");
1094 }
1095 
1096 
1097 int
1098 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1099 {
1100 	int ret = -1, l;
1101 	struct ccb_dev_advinfo cdai;
1102 	struct scsi_vpd_id_descriptor *idd;
1103 
1104 	xpt_path_assert(path, MA_OWNED);
1105 
1106 	memset(&cdai, 0, sizeof(cdai));
1107 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1108 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1109 	cdai.bufsiz = len;
1110 
1111 	if (!strcmp(attr, "GEOM::ident"))
1112 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1113 	else if (!strcmp(attr, "GEOM::physpath"))
1114 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1115 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1116 		 strcmp(attr, "GEOM::lunname") == 0) {
1117 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1118 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1119 	} else
1120 		goto out;
1121 
1122 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1123 	if (cdai.buf == NULL) {
1124 		ret = ENOMEM;
1125 		goto out;
1126 	}
1127 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1128 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1129 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1130 	if (cdai.provsiz == 0)
1131 		goto out;
1132 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1133 		if (strcmp(attr, "GEOM::lunid") == 0) {
1134 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1135 			    cdai.provsiz, scsi_devid_is_lun_naa);
1136 			if (idd == NULL)
1137 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1138 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1139 		} else
1140 			idd = NULL;
1141 		if (idd == NULL)
1142 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1143 			    cdai.provsiz, scsi_devid_is_lun_t10);
1144 		if (idd == NULL)
1145 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1146 			    cdai.provsiz, scsi_devid_is_lun_name);
1147 		if (idd == NULL)
1148 			goto out;
1149 		ret = 0;
1150 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) {
1151 			if (idd->length < len) {
1152 				for (l = 0; l < idd->length; l++)
1153 					buf[l] = idd->identifier[l] ?
1154 					    idd->identifier[l] : ' ';
1155 				buf[l] = 0;
1156 			} else
1157 				ret = EFAULT;
1158 		} else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1159 			l = strnlen(idd->identifier, idd->length);
1160 			if (l < len) {
1161 				bcopy(idd->identifier, buf, l);
1162 				buf[l] = 0;
1163 			} else
1164 				ret = EFAULT;
1165 		} else {
1166 			if (idd->length * 2 < len) {
1167 				for (l = 0; l < idd->length; l++)
1168 					sprintf(buf + l * 2, "%02x",
1169 					    idd->identifier[l]);
1170 			} else
1171 				ret = EFAULT;
1172 		}
1173 	} else {
1174 		ret = 0;
1175 		if (strlcpy(buf, cdai.buf, len) >= len)
1176 			ret = EFAULT;
1177 	}
1178 
1179 out:
1180 	if (cdai.buf != NULL)
1181 		free(cdai.buf, M_CAMXPT);
1182 	return ret;
1183 }
1184 
1185 static dev_match_ret
1186 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1187 	    struct cam_eb *bus)
1188 {
1189 	dev_match_ret retval;
1190 	u_int i;
1191 
1192 	retval = DM_RET_NONE;
1193 
1194 	/*
1195 	 * If we aren't given something to match against, that's an error.
1196 	 */
1197 	if (bus == NULL)
1198 		return(DM_RET_ERROR);
1199 
1200 	/*
1201 	 * If there are no match entries, then this bus matches no
1202 	 * matter what.
1203 	 */
1204 	if ((patterns == NULL) || (num_patterns == 0))
1205 		return(DM_RET_DESCEND | DM_RET_COPY);
1206 
1207 	for (i = 0; i < num_patterns; i++) {
1208 		struct bus_match_pattern *cur_pattern;
1209 
1210 		/*
1211 		 * If the pattern in question isn't for a bus node, we
1212 		 * aren't interested.  However, we do indicate to the
1213 		 * calling routine that we should continue descending the
1214 		 * tree, since the user wants to match against lower-level
1215 		 * EDT elements.
1216 		 */
1217 		if (patterns[i].type != DEV_MATCH_BUS) {
1218 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1219 				retval |= DM_RET_DESCEND;
1220 			continue;
1221 		}
1222 
1223 		cur_pattern = &patterns[i].pattern.bus_pattern;
1224 
1225 		/*
1226 		 * If they want to match any bus node, we give them any
1227 		 * device node.
1228 		 */
1229 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1230 			/* set the copy flag */
1231 			retval |= DM_RET_COPY;
1232 
1233 			/*
1234 			 * If we've already decided on an action, go ahead
1235 			 * and return.
1236 			 */
1237 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1238 				return(retval);
1239 		}
1240 
1241 		/*
1242 		 * Not sure why someone would do this...
1243 		 */
1244 		if (cur_pattern->flags == BUS_MATCH_NONE)
1245 			continue;
1246 
1247 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1248 		 && (cur_pattern->path_id != bus->path_id))
1249 			continue;
1250 
1251 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1252 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1253 			continue;
1254 
1255 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1256 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1257 			continue;
1258 
1259 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1260 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1261 			     DEV_IDLEN) != 0))
1262 			continue;
1263 
1264 		/*
1265 		 * If we get to this point, the user definitely wants
1266 		 * information on this bus.  So tell the caller to copy the
1267 		 * data out.
1268 		 */
1269 		retval |= DM_RET_COPY;
1270 
1271 		/*
1272 		 * If the return action has been set to descend, then we
1273 		 * know that we've already seen a non-bus matching
1274 		 * expression, therefore we need to further descend the tree.
1275 		 * This won't change by continuing around the loop, so we
1276 		 * go ahead and return.  If we haven't seen a non-bus
1277 		 * matching expression, we keep going around the loop until
1278 		 * we exhaust the matching expressions.  We'll set the stop
1279 		 * flag once we fall out of the loop.
1280 		 */
1281 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1282 			return(retval);
1283 	}
1284 
1285 	/*
1286 	 * If the return action hasn't been set to descend yet, that means
1287 	 * we haven't seen anything other than bus matching patterns.  So
1288 	 * tell the caller to stop descending the tree -- the user doesn't
1289 	 * want to match against lower level tree elements.
1290 	 */
1291 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1292 		retval |= DM_RET_STOP;
1293 
1294 	return(retval);
1295 }
1296 
1297 static dev_match_ret
1298 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1299 	       struct cam_ed *device)
1300 {
1301 	dev_match_ret retval;
1302 	u_int i;
1303 
1304 	retval = DM_RET_NONE;
1305 
1306 	/*
1307 	 * If we aren't given something to match against, that's an error.
1308 	 */
1309 	if (device == NULL)
1310 		return(DM_RET_ERROR);
1311 
1312 	/*
1313 	 * If there are no match entries, then this device matches no
1314 	 * matter what.
1315 	 */
1316 	if ((patterns == NULL) || (num_patterns == 0))
1317 		return(DM_RET_DESCEND | DM_RET_COPY);
1318 
1319 	for (i = 0; i < num_patterns; i++) {
1320 		struct device_match_pattern *cur_pattern;
1321 		struct scsi_vpd_device_id *device_id_page;
1322 
1323 		/*
1324 		 * If the pattern in question isn't for a device node, we
1325 		 * aren't interested.
1326 		 */
1327 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1328 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1329 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1330 				retval |= DM_RET_DESCEND;
1331 			continue;
1332 		}
1333 
1334 		cur_pattern = &patterns[i].pattern.device_pattern;
1335 
1336 		/* Error out if mutually exclusive options are specified. */
1337 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1338 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1339 			return(DM_RET_ERROR);
1340 
1341 		/*
1342 		 * If they want to match any device node, we give them any
1343 		 * device node.
1344 		 */
1345 		if (cur_pattern->flags == DEV_MATCH_ANY)
1346 			goto copy_dev_node;
1347 
1348 		/*
1349 		 * Not sure why someone would do this...
1350 		 */
1351 		if (cur_pattern->flags == DEV_MATCH_NONE)
1352 			continue;
1353 
1354 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1355 		 && (cur_pattern->path_id != device->target->bus->path_id))
1356 			continue;
1357 
1358 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1359 		 && (cur_pattern->target_id != device->target->target_id))
1360 			continue;
1361 
1362 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1363 		 && (cur_pattern->target_lun != device->lun_id))
1364 			continue;
1365 
1366 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1367 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1368 				    (caddr_t)&cur_pattern->data.inq_pat,
1369 				    1, sizeof(cur_pattern->data.inq_pat),
1370 				    scsi_static_inquiry_match) == NULL))
1371 			continue;
1372 
1373 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1374 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1375 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1376 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1377 				      device->device_id_len
1378 				    - SVPD_DEVICE_ID_HDR_LEN,
1379 				      cur_pattern->data.devid_pat.id,
1380 				      cur_pattern->data.devid_pat.id_len) != 0))
1381 			continue;
1382 
1383 copy_dev_node:
1384 		/*
1385 		 * If we get to this point, the user definitely wants
1386 		 * information on this device.  So tell the caller to copy
1387 		 * the data out.
1388 		 */
1389 		retval |= DM_RET_COPY;
1390 
1391 		/*
1392 		 * If the return action has been set to descend, then we
1393 		 * know that we've already seen a peripheral matching
1394 		 * expression, therefore we need to further descend the tree.
1395 		 * This won't change by continuing around the loop, so we
1396 		 * go ahead and return.  If we haven't seen a peripheral
1397 		 * matching expression, we keep going around the loop until
1398 		 * we exhaust the matching expressions.  We'll set the stop
1399 		 * flag once we fall out of the loop.
1400 		 */
1401 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1402 			return(retval);
1403 	}
1404 
1405 	/*
1406 	 * If the return action hasn't been set to descend yet, that means
1407 	 * we haven't seen any peripheral matching patterns.  So tell the
1408 	 * caller to stop descending the tree -- the user doesn't want to
1409 	 * match against lower level tree elements.
1410 	 */
1411 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1412 		retval |= DM_RET_STOP;
1413 
1414 	return(retval);
1415 }
1416 
1417 /*
1418  * Match a single peripheral against any number of match patterns.
1419  */
1420 static dev_match_ret
1421 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1422 	       struct cam_periph *periph)
1423 {
1424 	dev_match_ret retval;
1425 	u_int i;
1426 
1427 	/*
1428 	 * If we aren't given something to match against, that's an error.
1429 	 */
1430 	if (periph == NULL)
1431 		return(DM_RET_ERROR);
1432 
1433 	/*
1434 	 * If there are no match entries, then this peripheral matches no
1435 	 * matter what.
1436 	 */
1437 	if ((patterns == NULL) || (num_patterns == 0))
1438 		return(DM_RET_STOP | DM_RET_COPY);
1439 
1440 	/*
1441 	 * There aren't any nodes below a peripheral node, so there's no
1442 	 * reason to descend the tree any further.
1443 	 */
1444 	retval = DM_RET_STOP;
1445 
1446 	for (i = 0; i < num_patterns; i++) {
1447 		struct periph_match_pattern *cur_pattern;
1448 
1449 		/*
1450 		 * If the pattern in question isn't for a peripheral, we
1451 		 * aren't interested.
1452 		 */
1453 		if (patterns[i].type != DEV_MATCH_PERIPH)
1454 			continue;
1455 
1456 		cur_pattern = &patterns[i].pattern.periph_pattern;
1457 
1458 		/*
1459 		 * If they want to match on anything, then we will do so.
1460 		 */
1461 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1462 			/* set the copy flag */
1463 			retval |= DM_RET_COPY;
1464 
1465 			/*
1466 			 * We've already set the return action to stop,
1467 			 * since there are no nodes below peripherals in
1468 			 * the tree.
1469 			 */
1470 			return(retval);
1471 		}
1472 
1473 		/*
1474 		 * Not sure why someone would do this...
1475 		 */
1476 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1477 			continue;
1478 
1479 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1480 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1481 			continue;
1482 
1483 		/*
1484 		 * For the target and lun id's, we have to make sure the
1485 		 * target and lun pointers aren't NULL.  The xpt peripheral
1486 		 * has a wildcard target and device.
1487 		 */
1488 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1489 		 && ((periph->path->target == NULL)
1490 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1491 			continue;
1492 
1493 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1494 		 && ((periph->path->device == NULL)
1495 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1496 			continue;
1497 
1498 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1499 		 && (cur_pattern->unit_number != periph->unit_number))
1500 			continue;
1501 
1502 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1503 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1504 			     DEV_IDLEN) != 0))
1505 			continue;
1506 
1507 		/*
1508 		 * If we get to this point, the user definitely wants
1509 		 * information on this peripheral.  So tell the caller to
1510 		 * copy the data out.
1511 		 */
1512 		retval |= DM_RET_COPY;
1513 
1514 		/*
1515 		 * The return action has already been set to stop, since
1516 		 * peripherals don't have any nodes below them in the EDT.
1517 		 */
1518 		return(retval);
1519 	}
1520 
1521 	/*
1522 	 * If we get to this point, the peripheral that was passed in
1523 	 * doesn't match any of the patterns.
1524 	 */
1525 	return(retval);
1526 }
1527 
1528 static int
1529 xptedtbusfunc(struct cam_eb *bus, void *arg)
1530 {
1531 	struct ccb_dev_match *cdm;
1532 	struct cam_et *target;
1533 	dev_match_ret retval;
1534 
1535 	cdm = (struct ccb_dev_match *)arg;
1536 
1537 	/*
1538 	 * If our position is for something deeper in the tree, that means
1539 	 * that we've already seen this node.  So, we keep going down.
1540 	 */
1541 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1542 	 && (cdm->pos.cookie.bus == bus)
1543 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1544 	 && (cdm->pos.cookie.target != NULL))
1545 		retval = DM_RET_DESCEND;
1546 	else
1547 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1548 
1549 	/*
1550 	 * If we got an error, bail out of the search.
1551 	 */
1552 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1553 		cdm->status = CAM_DEV_MATCH_ERROR;
1554 		return(0);
1555 	}
1556 
1557 	/*
1558 	 * If the copy flag is set, copy this bus out.
1559 	 */
1560 	if (retval & DM_RET_COPY) {
1561 		int spaceleft, j;
1562 
1563 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1564 			sizeof(struct dev_match_result));
1565 
1566 		/*
1567 		 * If we don't have enough space to put in another
1568 		 * match result, save our position and tell the
1569 		 * user there are more devices to check.
1570 		 */
1571 		if (spaceleft < sizeof(struct dev_match_result)) {
1572 			bzero(&cdm->pos, sizeof(cdm->pos));
1573 			cdm->pos.position_type =
1574 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1575 
1576 			cdm->pos.cookie.bus = bus;
1577 			cdm->pos.generations[CAM_BUS_GENERATION]=
1578 				xsoftc.bus_generation;
1579 			cdm->status = CAM_DEV_MATCH_MORE;
1580 			return(0);
1581 		}
1582 		j = cdm->num_matches;
1583 		cdm->num_matches++;
1584 		cdm->matches[j].type = DEV_MATCH_BUS;
1585 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1586 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1587 		cdm->matches[j].result.bus_result.unit_number =
1588 			bus->sim->unit_number;
1589 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1590 			bus->sim->sim_name, DEV_IDLEN);
1591 	}
1592 
1593 	/*
1594 	 * If the user is only interested in busses, there's no
1595 	 * reason to descend to the next level in the tree.
1596 	 */
1597 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1598 		return(1);
1599 
1600 	/*
1601 	 * If there is a target generation recorded, check it to
1602 	 * make sure the target list hasn't changed.
1603 	 */
1604 	mtx_lock(&bus->eb_mtx);
1605 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1606 	 && (cdm->pos.cookie.bus == bus)
1607 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1608 	 && (cdm->pos.cookie.target != NULL)) {
1609 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1610 		    bus->generation)) {
1611 			mtx_unlock(&bus->eb_mtx);
1612 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1613 			return (0);
1614 		}
1615 		target = (struct cam_et *)cdm->pos.cookie.target;
1616 		target->refcount++;
1617 	} else
1618 		target = NULL;
1619 	mtx_unlock(&bus->eb_mtx);
1620 
1621 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1622 }
1623 
1624 static int
1625 xptedttargetfunc(struct cam_et *target, void *arg)
1626 {
1627 	struct ccb_dev_match *cdm;
1628 	struct cam_eb *bus;
1629 	struct cam_ed *device;
1630 
1631 	cdm = (struct ccb_dev_match *)arg;
1632 	bus = target->bus;
1633 
1634 	/*
1635 	 * If there is a device list generation recorded, check it to
1636 	 * make sure the device list hasn't changed.
1637 	 */
1638 	mtx_lock(&bus->eb_mtx);
1639 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1640 	 && (cdm->pos.cookie.bus == bus)
1641 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1642 	 && (cdm->pos.cookie.target == target)
1643 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1644 	 && (cdm->pos.cookie.device != NULL)) {
1645 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1646 		    target->generation) {
1647 			mtx_unlock(&bus->eb_mtx);
1648 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1649 			return(0);
1650 		}
1651 		device = (struct cam_ed *)cdm->pos.cookie.device;
1652 		device->refcount++;
1653 	} else
1654 		device = NULL;
1655 	mtx_unlock(&bus->eb_mtx);
1656 
1657 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1658 }
1659 
1660 static int
1661 xptedtdevicefunc(struct cam_ed *device, void *arg)
1662 {
1663 	struct cam_eb *bus;
1664 	struct cam_periph *periph;
1665 	struct ccb_dev_match *cdm;
1666 	dev_match_ret retval;
1667 
1668 	cdm = (struct ccb_dev_match *)arg;
1669 	bus = device->target->bus;
1670 
1671 	/*
1672 	 * If our position is for something deeper in the tree, that means
1673 	 * that we've already seen this node.  So, we keep going down.
1674 	 */
1675 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1676 	 && (cdm->pos.cookie.device == device)
1677 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1678 	 && (cdm->pos.cookie.periph != NULL))
1679 		retval = DM_RET_DESCEND;
1680 	else
1681 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1682 					device);
1683 
1684 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1685 		cdm->status = CAM_DEV_MATCH_ERROR;
1686 		return(0);
1687 	}
1688 
1689 	/*
1690 	 * If the copy flag is set, copy this device out.
1691 	 */
1692 	if (retval & DM_RET_COPY) {
1693 		int spaceleft, j;
1694 
1695 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1696 			sizeof(struct dev_match_result));
1697 
1698 		/*
1699 		 * If we don't have enough space to put in another
1700 		 * match result, save our position and tell the
1701 		 * user there are more devices to check.
1702 		 */
1703 		if (spaceleft < sizeof(struct dev_match_result)) {
1704 			bzero(&cdm->pos, sizeof(cdm->pos));
1705 			cdm->pos.position_type =
1706 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1707 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1708 
1709 			cdm->pos.cookie.bus = device->target->bus;
1710 			cdm->pos.generations[CAM_BUS_GENERATION]=
1711 				xsoftc.bus_generation;
1712 			cdm->pos.cookie.target = device->target;
1713 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1714 				device->target->bus->generation;
1715 			cdm->pos.cookie.device = device;
1716 			cdm->pos.generations[CAM_DEV_GENERATION] =
1717 				device->target->generation;
1718 			cdm->status = CAM_DEV_MATCH_MORE;
1719 			return(0);
1720 		}
1721 		j = cdm->num_matches;
1722 		cdm->num_matches++;
1723 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1724 		cdm->matches[j].result.device_result.path_id =
1725 			device->target->bus->path_id;
1726 		cdm->matches[j].result.device_result.target_id =
1727 			device->target->target_id;
1728 		cdm->matches[j].result.device_result.target_lun =
1729 			device->lun_id;
1730 		cdm->matches[j].result.device_result.protocol =
1731 			device->protocol;
1732 		bcopy(&device->inq_data,
1733 		      &cdm->matches[j].result.device_result.inq_data,
1734 		      sizeof(struct scsi_inquiry_data));
1735 		bcopy(&device->ident_data,
1736 		      &cdm->matches[j].result.device_result.ident_data,
1737 		      sizeof(struct ata_params));
1738 
1739 		/* Let the user know whether this device is unconfigured */
1740 		if (device->flags & CAM_DEV_UNCONFIGURED)
1741 			cdm->matches[j].result.device_result.flags =
1742 				DEV_RESULT_UNCONFIGURED;
1743 		else
1744 			cdm->matches[j].result.device_result.flags =
1745 				DEV_RESULT_NOFLAG;
1746 	}
1747 
1748 	/*
1749 	 * If the user isn't interested in peripherals, don't descend
1750 	 * the tree any further.
1751 	 */
1752 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1753 		return(1);
1754 
1755 	/*
1756 	 * If there is a peripheral list generation recorded, make sure
1757 	 * it hasn't changed.
1758 	 */
1759 	xpt_lock_buses();
1760 	mtx_lock(&bus->eb_mtx);
1761 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1762 	 && (cdm->pos.cookie.bus == bus)
1763 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1764 	 && (cdm->pos.cookie.target == device->target)
1765 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1766 	 && (cdm->pos.cookie.device == device)
1767 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1768 	 && (cdm->pos.cookie.periph != NULL)) {
1769 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1770 		    device->generation) {
1771 			mtx_unlock(&bus->eb_mtx);
1772 			xpt_unlock_buses();
1773 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1774 			return(0);
1775 		}
1776 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1777 		periph->refcount++;
1778 	} else
1779 		periph = NULL;
1780 	mtx_unlock(&bus->eb_mtx);
1781 	xpt_unlock_buses();
1782 
1783 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1784 }
1785 
1786 static int
1787 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1788 {
1789 	struct ccb_dev_match *cdm;
1790 	dev_match_ret retval;
1791 
1792 	cdm = (struct ccb_dev_match *)arg;
1793 
1794 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1795 
1796 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1797 		cdm->status = CAM_DEV_MATCH_ERROR;
1798 		return(0);
1799 	}
1800 
1801 	/*
1802 	 * If the copy flag is set, copy this peripheral out.
1803 	 */
1804 	if (retval & DM_RET_COPY) {
1805 		int spaceleft, j;
1806 
1807 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1808 			sizeof(struct dev_match_result));
1809 
1810 		/*
1811 		 * If we don't have enough space to put in another
1812 		 * match result, save our position and tell the
1813 		 * user there are more devices to check.
1814 		 */
1815 		if (spaceleft < sizeof(struct dev_match_result)) {
1816 			bzero(&cdm->pos, sizeof(cdm->pos));
1817 			cdm->pos.position_type =
1818 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1819 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1820 				CAM_DEV_POS_PERIPH;
1821 
1822 			cdm->pos.cookie.bus = periph->path->bus;
1823 			cdm->pos.generations[CAM_BUS_GENERATION]=
1824 				xsoftc.bus_generation;
1825 			cdm->pos.cookie.target = periph->path->target;
1826 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1827 				periph->path->bus->generation;
1828 			cdm->pos.cookie.device = periph->path->device;
1829 			cdm->pos.generations[CAM_DEV_GENERATION] =
1830 				periph->path->target->generation;
1831 			cdm->pos.cookie.periph = periph;
1832 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1833 				periph->path->device->generation;
1834 			cdm->status = CAM_DEV_MATCH_MORE;
1835 			return(0);
1836 		}
1837 
1838 		j = cdm->num_matches;
1839 		cdm->num_matches++;
1840 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1841 		cdm->matches[j].result.periph_result.path_id =
1842 			periph->path->bus->path_id;
1843 		cdm->matches[j].result.periph_result.target_id =
1844 			periph->path->target->target_id;
1845 		cdm->matches[j].result.periph_result.target_lun =
1846 			periph->path->device->lun_id;
1847 		cdm->matches[j].result.periph_result.unit_number =
1848 			periph->unit_number;
1849 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1850 			periph->periph_name, DEV_IDLEN);
1851 	}
1852 
1853 	return(1);
1854 }
1855 
1856 static int
1857 xptedtmatch(struct ccb_dev_match *cdm)
1858 {
1859 	struct cam_eb *bus;
1860 	int ret;
1861 
1862 	cdm->num_matches = 0;
1863 
1864 	/*
1865 	 * Check the bus list generation.  If it has changed, the user
1866 	 * needs to reset everything and start over.
1867 	 */
1868 	xpt_lock_buses();
1869 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1870 	 && (cdm->pos.cookie.bus != NULL)) {
1871 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1872 		    xsoftc.bus_generation) {
1873 			xpt_unlock_buses();
1874 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1875 			return(0);
1876 		}
1877 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
1878 		bus->refcount++;
1879 	} else
1880 		bus = NULL;
1881 	xpt_unlock_buses();
1882 
1883 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1884 
1885 	/*
1886 	 * If we get back 0, that means that we had to stop before fully
1887 	 * traversing the EDT.  It also means that one of the subroutines
1888 	 * has set the status field to the proper value.  If we get back 1,
1889 	 * we've fully traversed the EDT and copied out any matching entries.
1890 	 */
1891 	if (ret == 1)
1892 		cdm->status = CAM_DEV_MATCH_LAST;
1893 
1894 	return(ret);
1895 }
1896 
1897 static int
1898 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1899 {
1900 	struct cam_periph *periph;
1901 	struct ccb_dev_match *cdm;
1902 
1903 	cdm = (struct ccb_dev_match *)arg;
1904 
1905 	xpt_lock_buses();
1906 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1907 	 && (cdm->pos.cookie.pdrv == pdrv)
1908 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1909 	 && (cdm->pos.cookie.periph != NULL)) {
1910 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1911 		    (*pdrv)->generation) {
1912 			xpt_unlock_buses();
1913 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1914 			return(0);
1915 		}
1916 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1917 		periph->refcount++;
1918 	} else
1919 		periph = NULL;
1920 	xpt_unlock_buses();
1921 
1922 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1923 }
1924 
1925 static int
1926 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1927 {
1928 	struct ccb_dev_match *cdm;
1929 	dev_match_ret retval;
1930 
1931 	cdm = (struct ccb_dev_match *)arg;
1932 
1933 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1934 
1935 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1936 		cdm->status = CAM_DEV_MATCH_ERROR;
1937 		return(0);
1938 	}
1939 
1940 	/*
1941 	 * If the copy flag is set, copy this peripheral out.
1942 	 */
1943 	if (retval & DM_RET_COPY) {
1944 		int spaceleft, j;
1945 
1946 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1947 			sizeof(struct dev_match_result));
1948 
1949 		/*
1950 		 * If we don't have enough space to put in another
1951 		 * match result, save our position and tell the
1952 		 * user there are more devices to check.
1953 		 */
1954 		if (spaceleft < sizeof(struct dev_match_result)) {
1955 			struct periph_driver **pdrv;
1956 
1957 			pdrv = NULL;
1958 			bzero(&cdm->pos, sizeof(cdm->pos));
1959 			cdm->pos.position_type =
1960 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1961 				CAM_DEV_POS_PERIPH;
1962 
1963 			/*
1964 			 * This may look a bit non-sensical, but it is
1965 			 * actually quite logical.  There are very few
1966 			 * peripheral drivers, and bloating every peripheral
1967 			 * structure with a pointer back to its parent
1968 			 * peripheral driver linker set entry would cost
1969 			 * more in the long run than doing this quick lookup.
1970 			 */
1971 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1972 				if (strcmp((*pdrv)->driver_name,
1973 				    periph->periph_name) == 0)
1974 					break;
1975 			}
1976 
1977 			if (*pdrv == NULL) {
1978 				cdm->status = CAM_DEV_MATCH_ERROR;
1979 				return(0);
1980 			}
1981 
1982 			cdm->pos.cookie.pdrv = pdrv;
1983 			/*
1984 			 * The periph generation slot does double duty, as
1985 			 * does the periph pointer slot.  They are used for
1986 			 * both edt and pdrv lookups and positioning.
1987 			 */
1988 			cdm->pos.cookie.periph = periph;
1989 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1990 				(*pdrv)->generation;
1991 			cdm->status = CAM_DEV_MATCH_MORE;
1992 			return(0);
1993 		}
1994 
1995 		j = cdm->num_matches;
1996 		cdm->num_matches++;
1997 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1998 		cdm->matches[j].result.periph_result.path_id =
1999 			periph->path->bus->path_id;
2000 
2001 		/*
2002 		 * The transport layer peripheral doesn't have a target or
2003 		 * lun.
2004 		 */
2005 		if (periph->path->target)
2006 			cdm->matches[j].result.periph_result.target_id =
2007 				periph->path->target->target_id;
2008 		else
2009 			cdm->matches[j].result.periph_result.target_id =
2010 				CAM_TARGET_WILDCARD;
2011 
2012 		if (periph->path->device)
2013 			cdm->matches[j].result.periph_result.target_lun =
2014 				periph->path->device->lun_id;
2015 		else
2016 			cdm->matches[j].result.periph_result.target_lun =
2017 				CAM_LUN_WILDCARD;
2018 
2019 		cdm->matches[j].result.periph_result.unit_number =
2020 			periph->unit_number;
2021 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2022 			periph->periph_name, DEV_IDLEN);
2023 	}
2024 
2025 	return(1);
2026 }
2027 
2028 static int
2029 xptperiphlistmatch(struct ccb_dev_match *cdm)
2030 {
2031 	int ret;
2032 
2033 	cdm->num_matches = 0;
2034 
2035 	/*
2036 	 * At this point in the edt traversal function, we check the bus
2037 	 * list generation to make sure that no busses have been added or
2038 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2039 	 * For the peripheral driver list traversal function, however, we
2040 	 * don't have to worry about new peripheral driver types coming or
2041 	 * going; they're in a linker set, and therefore can't change
2042 	 * without a recompile.
2043 	 */
2044 
2045 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2046 	 && (cdm->pos.cookie.pdrv != NULL))
2047 		ret = xptpdrvtraverse(
2048 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2049 				xptplistpdrvfunc, cdm);
2050 	else
2051 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2052 
2053 	/*
2054 	 * If we get back 0, that means that we had to stop before fully
2055 	 * traversing the peripheral driver tree.  It also means that one of
2056 	 * the subroutines has set the status field to the proper value.  If
2057 	 * we get back 1, we've fully traversed the EDT and copied out any
2058 	 * matching entries.
2059 	 */
2060 	if (ret == 1)
2061 		cdm->status = CAM_DEV_MATCH_LAST;
2062 
2063 	return(ret);
2064 }
2065 
2066 static int
2067 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2068 {
2069 	struct cam_eb *bus, *next_bus;
2070 	int retval;
2071 
2072 	retval = 1;
2073 	if (start_bus)
2074 		bus = start_bus;
2075 	else {
2076 		xpt_lock_buses();
2077 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2078 		if (bus == NULL) {
2079 			xpt_unlock_buses();
2080 			return (retval);
2081 		}
2082 		bus->refcount++;
2083 		xpt_unlock_buses();
2084 	}
2085 	for (; bus != NULL; bus = next_bus) {
2086 		retval = tr_func(bus, arg);
2087 		if (retval == 0) {
2088 			xpt_release_bus(bus);
2089 			break;
2090 		}
2091 		xpt_lock_buses();
2092 		next_bus = TAILQ_NEXT(bus, links);
2093 		if (next_bus)
2094 			next_bus->refcount++;
2095 		xpt_unlock_buses();
2096 		xpt_release_bus(bus);
2097 	}
2098 	return(retval);
2099 }
2100 
2101 static int
2102 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2103 		  xpt_targetfunc_t *tr_func, void *arg)
2104 {
2105 	struct cam_et *target, *next_target;
2106 	int retval;
2107 
2108 	retval = 1;
2109 	if (start_target)
2110 		target = start_target;
2111 	else {
2112 		mtx_lock(&bus->eb_mtx);
2113 		target = TAILQ_FIRST(&bus->et_entries);
2114 		if (target == NULL) {
2115 			mtx_unlock(&bus->eb_mtx);
2116 			return (retval);
2117 		}
2118 		target->refcount++;
2119 		mtx_unlock(&bus->eb_mtx);
2120 	}
2121 	for (; target != NULL; target = next_target) {
2122 		retval = tr_func(target, arg);
2123 		if (retval == 0) {
2124 			xpt_release_target(target);
2125 			break;
2126 		}
2127 		mtx_lock(&bus->eb_mtx);
2128 		next_target = TAILQ_NEXT(target, links);
2129 		if (next_target)
2130 			next_target->refcount++;
2131 		mtx_unlock(&bus->eb_mtx);
2132 		xpt_release_target(target);
2133 	}
2134 	return(retval);
2135 }
2136 
2137 static int
2138 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2139 		  xpt_devicefunc_t *tr_func, void *arg)
2140 {
2141 	struct cam_eb *bus;
2142 	struct cam_ed *device, *next_device;
2143 	int retval;
2144 
2145 	retval = 1;
2146 	bus = target->bus;
2147 	if (start_device)
2148 		device = start_device;
2149 	else {
2150 		mtx_lock(&bus->eb_mtx);
2151 		device = TAILQ_FIRST(&target->ed_entries);
2152 		if (device == NULL) {
2153 			mtx_unlock(&bus->eb_mtx);
2154 			return (retval);
2155 		}
2156 		device->refcount++;
2157 		mtx_unlock(&bus->eb_mtx);
2158 	}
2159 	for (; device != NULL; device = next_device) {
2160 		mtx_lock(&device->device_mtx);
2161 		retval = tr_func(device, arg);
2162 		mtx_unlock(&device->device_mtx);
2163 		if (retval == 0) {
2164 			xpt_release_device(device);
2165 			break;
2166 		}
2167 		mtx_lock(&bus->eb_mtx);
2168 		next_device = TAILQ_NEXT(device, links);
2169 		if (next_device)
2170 			next_device->refcount++;
2171 		mtx_unlock(&bus->eb_mtx);
2172 		xpt_release_device(device);
2173 	}
2174 	return(retval);
2175 }
2176 
2177 static int
2178 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2179 		  xpt_periphfunc_t *tr_func, void *arg)
2180 {
2181 	struct cam_eb *bus;
2182 	struct cam_periph *periph, *next_periph;
2183 	int retval;
2184 
2185 	retval = 1;
2186 
2187 	bus = device->target->bus;
2188 	if (start_periph)
2189 		periph = start_periph;
2190 	else {
2191 		xpt_lock_buses();
2192 		mtx_lock(&bus->eb_mtx);
2193 		periph = SLIST_FIRST(&device->periphs);
2194 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2195 			periph = SLIST_NEXT(periph, periph_links);
2196 		if (periph == NULL) {
2197 			mtx_unlock(&bus->eb_mtx);
2198 			xpt_unlock_buses();
2199 			return (retval);
2200 		}
2201 		periph->refcount++;
2202 		mtx_unlock(&bus->eb_mtx);
2203 		xpt_unlock_buses();
2204 	}
2205 	for (; periph != NULL; periph = next_periph) {
2206 		retval = tr_func(periph, arg);
2207 		if (retval == 0) {
2208 			cam_periph_release_locked(periph);
2209 			break;
2210 		}
2211 		xpt_lock_buses();
2212 		mtx_lock(&bus->eb_mtx);
2213 		next_periph = SLIST_NEXT(periph, periph_links);
2214 		while (next_periph != NULL &&
2215 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2216 			next_periph = SLIST_NEXT(next_periph, periph_links);
2217 		if (next_periph)
2218 			next_periph->refcount++;
2219 		mtx_unlock(&bus->eb_mtx);
2220 		xpt_unlock_buses();
2221 		cam_periph_release_locked(periph);
2222 	}
2223 	return(retval);
2224 }
2225 
2226 static int
2227 xptpdrvtraverse(struct periph_driver **start_pdrv,
2228 		xpt_pdrvfunc_t *tr_func, void *arg)
2229 {
2230 	struct periph_driver **pdrv;
2231 	int retval;
2232 
2233 	retval = 1;
2234 
2235 	/*
2236 	 * We don't traverse the peripheral driver list like we do the
2237 	 * other lists, because it is a linker set, and therefore cannot be
2238 	 * changed during runtime.  If the peripheral driver list is ever
2239 	 * re-done to be something other than a linker set (i.e. it can
2240 	 * change while the system is running), the list traversal should
2241 	 * be modified to work like the other traversal functions.
2242 	 */
2243 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2244 	     *pdrv != NULL; pdrv++) {
2245 		retval = tr_func(pdrv, arg);
2246 
2247 		if (retval == 0)
2248 			return(retval);
2249 	}
2250 
2251 	return(retval);
2252 }
2253 
2254 static int
2255 xptpdperiphtraverse(struct periph_driver **pdrv,
2256 		    struct cam_periph *start_periph,
2257 		    xpt_periphfunc_t *tr_func, void *arg)
2258 {
2259 	struct cam_periph *periph, *next_periph;
2260 	int retval;
2261 
2262 	retval = 1;
2263 
2264 	if (start_periph)
2265 		periph = start_periph;
2266 	else {
2267 		xpt_lock_buses();
2268 		periph = TAILQ_FIRST(&(*pdrv)->units);
2269 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2270 			periph = TAILQ_NEXT(periph, unit_links);
2271 		if (periph == NULL) {
2272 			xpt_unlock_buses();
2273 			return (retval);
2274 		}
2275 		periph->refcount++;
2276 		xpt_unlock_buses();
2277 	}
2278 	for (; periph != NULL; periph = next_periph) {
2279 		cam_periph_lock(periph);
2280 		retval = tr_func(periph, arg);
2281 		cam_periph_unlock(periph);
2282 		if (retval == 0) {
2283 			cam_periph_release(periph);
2284 			break;
2285 		}
2286 		xpt_lock_buses();
2287 		next_periph = TAILQ_NEXT(periph, unit_links);
2288 		while (next_periph != NULL &&
2289 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2290 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2291 		if (next_periph)
2292 			next_periph->refcount++;
2293 		xpt_unlock_buses();
2294 		cam_periph_release(periph);
2295 	}
2296 	return(retval);
2297 }
2298 
2299 static int
2300 xptdefbusfunc(struct cam_eb *bus, void *arg)
2301 {
2302 	struct xpt_traverse_config *tr_config;
2303 
2304 	tr_config = (struct xpt_traverse_config *)arg;
2305 
2306 	if (tr_config->depth == XPT_DEPTH_BUS) {
2307 		xpt_busfunc_t *tr_func;
2308 
2309 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2310 
2311 		return(tr_func(bus, tr_config->tr_arg));
2312 	} else
2313 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2314 }
2315 
2316 static int
2317 xptdeftargetfunc(struct cam_et *target, void *arg)
2318 {
2319 	struct xpt_traverse_config *tr_config;
2320 
2321 	tr_config = (struct xpt_traverse_config *)arg;
2322 
2323 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2324 		xpt_targetfunc_t *tr_func;
2325 
2326 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2327 
2328 		return(tr_func(target, tr_config->tr_arg));
2329 	} else
2330 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2331 }
2332 
2333 static int
2334 xptdefdevicefunc(struct cam_ed *device, void *arg)
2335 {
2336 	struct xpt_traverse_config *tr_config;
2337 
2338 	tr_config = (struct xpt_traverse_config *)arg;
2339 
2340 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2341 		xpt_devicefunc_t *tr_func;
2342 
2343 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2344 
2345 		return(tr_func(device, tr_config->tr_arg));
2346 	} else
2347 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2348 }
2349 
2350 static int
2351 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2352 {
2353 	struct xpt_traverse_config *tr_config;
2354 	xpt_periphfunc_t *tr_func;
2355 
2356 	tr_config = (struct xpt_traverse_config *)arg;
2357 
2358 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2359 
2360 	/*
2361 	 * Unlike the other default functions, we don't check for depth
2362 	 * here.  The peripheral driver level is the last level in the EDT,
2363 	 * so if we're here, we should execute the function in question.
2364 	 */
2365 	return(tr_func(periph, tr_config->tr_arg));
2366 }
2367 
2368 /*
2369  * Execute the given function for every bus in the EDT.
2370  */
2371 static int
2372 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2373 {
2374 	struct xpt_traverse_config tr_config;
2375 
2376 	tr_config.depth = XPT_DEPTH_BUS;
2377 	tr_config.tr_func = tr_func;
2378 	tr_config.tr_arg = arg;
2379 
2380 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2381 }
2382 
2383 /*
2384  * Execute the given function for every device in the EDT.
2385  */
2386 static int
2387 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2388 {
2389 	struct xpt_traverse_config tr_config;
2390 
2391 	tr_config.depth = XPT_DEPTH_DEVICE;
2392 	tr_config.tr_func = tr_func;
2393 	tr_config.tr_arg = arg;
2394 
2395 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2396 }
2397 
2398 static int
2399 xptsetasyncfunc(struct cam_ed *device, void *arg)
2400 {
2401 	struct cam_path path;
2402 	struct ccb_getdev cgd;
2403 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2404 
2405 	/*
2406 	 * Don't report unconfigured devices (Wildcard devs,
2407 	 * devices only for target mode, device instances
2408 	 * that have been invalidated but are waiting for
2409 	 * their last reference count to be released).
2410 	 */
2411 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2412 		return (1);
2413 
2414 	xpt_compile_path(&path,
2415 			 NULL,
2416 			 device->target->bus->path_id,
2417 			 device->target->target_id,
2418 			 device->lun_id);
2419 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2420 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2421 	xpt_action((union ccb *)&cgd);
2422 	csa->callback(csa->callback_arg,
2423 			    AC_FOUND_DEVICE,
2424 			    &path, &cgd);
2425 	xpt_release_path(&path);
2426 
2427 	return(1);
2428 }
2429 
2430 static int
2431 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2432 {
2433 	struct cam_path path;
2434 	struct ccb_pathinq cpi;
2435 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2436 
2437 	xpt_compile_path(&path, /*periph*/NULL,
2438 			 bus->path_id,
2439 			 CAM_TARGET_WILDCARD,
2440 			 CAM_LUN_WILDCARD);
2441 	xpt_path_lock(&path);
2442 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2443 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2444 	xpt_action((union ccb *)&cpi);
2445 	csa->callback(csa->callback_arg,
2446 			    AC_PATH_REGISTERED,
2447 			    &path, &cpi);
2448 	xpt_path_unlock(&path);
2449 	xpt_release_path(&path);
2450 
2451 	return(1);
2452 }
2453 
2454 void
2455 xpt_action(union ccb *start_ccb)
2456 {
2457 
2458 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2459 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2460 		xpt_action_name(start_ccb->ccb_h.func_code)));
2461 
2462 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2463 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2464 }
2465 
2466 void
2467 xpt_action_default(union ccb *start_ccb)
2468 {
2469 	struct cam_path *path;
2470 	struct cam_sim *sim;
2471 	int lock;
2472 
2473 	path = start_ccb->ccb_h.path;
2474 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2475 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2476 		xpt_action_name(start_ccb->ccb_h.func_code)));
2477 
2478 	switch (start_ccb->ccb_h.func_code) {
2479 	case XPT_SCSI_IO:
2480 	{
2481 		struct cam_ed *device;
2482 
2483 		/*
2484 		 * For the sake of compatibility with SCSI-1
2485 		 * devices that may not understand the identify
2486 		 * message, we include lun information in the
2487 		 * second byte of all commands.  SCSI-1 specifies
2488 		 * that luns are a 3 bit value and reserves only 3
2489 		 * bits for lun information in the CDB.  Later
2490 		 * revisions of the SCSI spec allow for more than 8
2491 		 * luns, but have deprecated lun information in the
2492 		 * CDB.  So, if the lun won't fit, we must omit.
2493 		 *
2494 		 * Also be aware that during initial probing for devices,
2495 		 * the inquiry information is unknown but initialized to 0.
2496 		 * This means that this code will be exercised while probing
2497 		 * devices with an ANSI revision greater than 2.
2498 		 */
2499 		device = path->device;
2500 		if (device->protocol_version <= SCSI_REV_2
2501 		 && start_ccb->ccb_h.target_lun < 8
2502 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2503 
2504 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2505 			    start_ccb->ccb_h.target_lun << 5;
2506 		}
2507 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2508 	}
2509 	/* FALLTHROUGH */
2510 	case XPT_TARGET_IO:
2511 	case XPT_CONT_TARGET_IO:
2512 		start_ccb->csio.sense_resid = 0;
2513 		start_ccb->csio.resid = 0;
2514 		/* FALLTHROUGH */
2515 	case XPT_ATA_IO:
2516 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2517 			start_ccb->ataio.resid = 0;
2518 		/* FALLTHROUGH */
2519 	case XPT_RESET_DEV:
2520 	case XPT_ENG_EXEC:
2521 	case XPT_SMP_IO:
2522 	{
2523 		struct cam_devq *devq;
2524 
2525 		devq = path->bus->sim->devq;
2526 		mtx_lock(&devq->send_mtx);
2527 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2528 		if (xpt_schedule_devq(devq, path->device) != 0)
2529 			xpt_run_devq(devq);
2530 		mtx_unlock(&devq->send_mtx);
2531 		break;
2532 	}
2533 	case XPT_CALC_GEOMETRY:
2534 		/* Filter out garbage */
2535 		if (start_ccb->ccg.block_size == 0
2536 		 || start_ccb->ccg.volume_size == 0) {
2537 			start_ccb->ccg.cylinders = 0;
2538 			start_ccb->ccg.heads = 0;
2539 			start_ccb->ccg.secs_per_track = 0;
2540 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2541 			break;
2542 		}
2543 #if defined(PC98) || defined(__sparc64__)
2544 		/*
2545 		 * In a PC-98 system, geometry translation depens on
2546 		 * the "real" device geometry obtained from mode page 4.
2547 		 * SCSI geometry translation is performed in the
2548 		 * initialization routine of the SCSI BIOS and the result
2549 		 * stored in host memory.  If the translation is available
2550 		 * in host memory, use it.  If not, rely on the default
2551 		 * translation the device driver performs.
2552 		 * For sparc64, we may need adjust the geometry of large
2553 		 * disks in order to fit the limitations of the 16-bit
2554 		 * fields of the VTOC8 disk label.
2555 		 */
2556 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2557 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2558 			break;
2559 		}
2560 #endif
2561 		goto call_sim;
2562 	case XPT_ABORT:
2563 	{
2564 		union ccb* abort_ccb;
2565 
2566 		abort_ccb = start_ccb->cab.abort_ccb;
2567 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2568 
2569 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2570 				struct cam_ccbq *ccbq;
2571 				struct cam_ed *device;
2572 
2573 				device = abort_ccb->ccb_h.path->device;
2574 				ccbq = &device->ccbq;
2575 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2576 				abort_ccb->ccb_h.status =
2577 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2578 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2579 				xpt_done(abort_ccb);
2580 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2581 				break;
2582 			}
2583 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2584 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2585 				/*
2586 				 * We've caught this ccb en route to
2587 				 * the SIM.  Flag it for abort and the
2588 				 * SIM will do so just before starting
2589 				 * real work on the CCB.
2590 				 */
2591 				abort_ccb->ccb_h.status =
2592 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2593 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2594 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2595 				break;
2596 			}
2597 		}
2598 		if (XPT_FC_IS_QUEUED(abort_ccb)
2599 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2600 			/*
2601 			 * It's already completed but waiting
2602 			 * for our SWI to get to it.
2603 			 */
2604 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2605 			break;
2606 		}
2607 		/*
2608 		 * If we weren't able to take care of the abort request
2609 		 * in the XPT, pass the request down to the SIM for processing.
2610 		 */
2611 	}
2612 	/* FALLTHROUGH */
2613 	case XPT_ACCEPT_TARGET_IO:
2614 	case XPT_EN_LUN:
2615 	case XPT_IMMED_NOTIFY:
2616 	case XPT_NOTIFY_ACK:
2617 	case XPT_RESET_BUS:
2618 	case XPT_IMMEDIATE_NOTIFY:
2619 	case XPT_NOTIFY_ACKNOWLEDGE:
2620 	case XPT_GET_SIM_KNOB_OLD:
2621 	case XPT_GET_SIM_KNOB:
2622 	case XPT_SET_SIM_KNOB:
2623 	case XPT_GET_TRAN_SETTINGS:
2624 	case XPT_SET_TRAN_SETTINGS:
2625 	case XPT_PATH_INQ:
2626 call_sim:
2627 		sim = path->bus->sim;
2628 		lock = (mtx_owned(sim->mtx) == 0);
2629 		if (lock)
2630 			CAM_SIM_LOCK(sim);
2631 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2632 		    ("sim->sim_action: func=%#x\n", start_ccb->ccb_h.func_code));
2633 		(*(sim->sim_action))(sim, start_ccb);
2634 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2635 		    ("sim->sim_action: status=%#x\n", start_ccb->ccb_h.status));
2636 		if (lock)
2637 			CAM_SIM_UNLOCK(sim);
2638 		break;
2639 	case XPT_PATH_STATS:
2640 		start_ccb->cpis.last_reset = path->bus->last_reset;
2641 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2642 		break;
2643 	case XPT_GDEV_TYPE:
2644 	{
2645 		struct cam_ed *dev;
2646 
2647 		dev = path->device;
2648 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2649 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2650 		} else {
2651 			struct ccb_getdev *cgd;
2652 
2653 			cgd = &start_ccb->cgd;
2654 			cgd->protocol = dev->protocol;
2655 			cgd->inq_data = dev->inq_data;
2656 			cgd->ident_data = dev->ident_data;
2657 			cgd->inq_flags = dev->inq_flags;
2658 			cgd->ccb_h.status = CAM_REQ_CMP;
2659 			cgd->serial_num_len = dev->serial_num_len;
2660 			if ((dev->serial_num_len > 0)
2661 			 && (dev->serial_num != NULL))
2662 				bcopy(dev->serial_num, cgd->serial_num,
2663 				      dev->serial_num_len);
2664 		}
2665 		break;
2666 	}
2667 	case XPT_GDEV_STATS:
2668 	{
2669 		struct cam_ed *dev;
2670 
2671 		dev = path->device;
2672 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2673 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2674 		} else {
2675 			struct ccb_getdevstats *cgds;
2676 			struct cam_eb *bus;
2677 			struct cam_et *tar;
2678 			struct cam_devq *devq;
2679 
2680 			cgds = &start_ccb->cgds;
2681 			bus = path->bus;
2682 			tar = path->target;
2683 			devq = bus->sim->devq;
2684 			mtx_lock(&devq->send_mtx);
2685 			cgds->dev_openings = dev->ccbq.dev_openings;
2686 			cgds->dev_active = dev->ccbq.dev_active;
2687 			cgds->allocated = dev->ccbq.allocated;
2688 			cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2689 			cgds->held = cgds->allocated - cgds->dev_active -
2690 			    cgds->queued;
2691 			cgds->last_reset = tar->last_reset;
2692 			cgds->maxtags = dev->maxtags;
2693 			cgds->mintags = dev->mintags;
2694 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2695 				cgds->last_reset = bus->last_reset;
2696 			mtx_unlock(&devq->send_mtx);
2697 			cgds->ccb_h.status = CAM_REQ_CMP;
2698 		}
2699 		break;
2700 	}
2701 	case XPT_GDEVLIST:
2702 	{
2703 		struct cam_periph	*nperiph;
2704 		struct periph_list	*periph_head;
2705 		struct ccb_getdevlist	*cgdl;
2706 		u_int			i;
2707 		struct cam_ed		*device;
2708 		int			found;
2709 
2710 
2711 		found = 0;
2712 
2713 		/*
2714 		 * Don't want anyone mucking with our data.
2715 		 */
2716 		device = path->device;
2717 		periph_head = &device->periphs;
2718 		cgdl = &start_ccb->cgdl;
2719 
2720 		/*
2721 		 * Check and see if the list has changed since the user
2722 		 * last requested a list member.  If so, tell them that the
2723 		 * list has changed, and therefore they need to start over
2724 		 * from the beginning.
2725 		 */
2726 		if ((cgdl->index != 0) &&
2727 		    (cgdl->generation != device->generation)) {
2728 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2729 			break;
2730 		}
2731 
2732 		/*
2733 		 * Traverse the list of peripherals and attempt to find
2734 		 * the requested peripheral.
2735 		 */
2736 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2737 		     (nperiph != NULL) && (i <= cgdl->index);
2738 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2739 			if (i == cgdl->index) {
2740 				strncpy(cgdl->periph_name,
2741 					nperiph->periph_name,
2742 					DEV_IDLEN);
2743 				cgdl->unit_number = nperiph->unit_number;
2744 				found = 1;
2745 			}
2746 		}
2747 		if (found == 0) {
2748 			cgdl->status = CAM_GDEVLIST_ERROR;
2749 			break;
2750 		}
2751 
2752 		if (nperiph == NULL)
2753 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2754 		else
2755 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2756 
2757 		cgdl->index++;
2758 		cgdl->generation = device->generation;
2759 
2760 		cgdl->ccb_h.status = CAM_REQ_CMP;
2761 		break;
2762 	}
2763 	case XPT_DEV_MATCH:
2764 	{
2765 		dev_pos_type position_type;
2766 		struct ccb_dev_match *cdm;
2767 
2768 		cdm = &start_ccb->cdm;
2769 
2770 		/*
2771 		 * There are two ways of getting at information in the EDT.
2772 		 * The first way is via the primary EDT tree.  It starts
2773 		 * with a list of busses, then a list of targets on a bus,
2774 		 * then devices/luns on a target, and then peripherals on a
2775 		 * device/lun.  The "other" way is by the peripheral driver
2776 		 * lists.  The peripheral driver lists are organized by
2777 		 * peripheral driver.  (obviously)  So it makes sense to
2778 		 * use the peripheral driver list if the user is looking
2779 		 * for something like "da1", or all "da" devices.  If the
2780 		 * user is looking for something on a particular bus/target
2781 		 * or lun, it's generally better to go through the EDT tree.
2782 		 */
2783 
2784 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2785 			position_type = cdm->pos.position_type;
2786 		else {
2787 			u_int i;
2788 
2789 			position_type = CAM_DEV_POS_NONE;
2790 
2791 			for (i = 0; i < cdm->num_patterns; i++) {
2792 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2793 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2794 					position_type = CAM_DEV_POS_EDT;
2795 					break;
2796 				}
2797 			}
2798 
2799 			if (cdm->num_patterns == 0)
2800 				position_type = CAM_DEV_POS_EDT;
2801 			else if (position_type == CAM_DEV_POS_NONE)
2802 				position_type = CAM_DEV_POS_PDRV;
2803 		}
2804 
2805 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2806 		case CAM_DEV_POS_EDT:
2807 			xptedtmatch(cdm);
2808 			break;
2809 		case CAM_DEV_POS_PDRV:
2810 			xptperiphlistmatch(cdm);
2811 			break;
2812 		default:
2813 			cdm->status = CAM_DEV_MATCH_ERROR;
2814 			break;
2815 		}
2816 
2817 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2818 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2819 		else
2820 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2821 
2822 		break;
2823 	}
2824 	case XPT_SASYNC_CB:
2825 	{
2826 		struct ccb_setasync *csa;
2827 		struct async_node *cur_entry;
2828 		struct async_list *async_head;
2829 		u_int32_t added;
2830 
2831 		csa = &start_ccb->csa;
2832 		added = csa->event_enable;
2833 		async_head = &path->device->asyncs;
2834 
2835 		/*
2836 		 * If there is already an entry for us, simply
2837 		 * update it.
2838 		 */
2839 		cur_entry = SLIST_FIRST(async_head);
2840 		while (cur_entry != NULL) {
2841 			if ((cur_entry->callback_arg == csa->callback_arg)
2842 			 && (cur_entry->callback == csa->callback))
2843 				break;
2844 			cur_entry = SLIST_NEXT(cur_entry, links);
2845 		}
2846 
2847 		if (cur_entry != NULL) {
2848 		 	/*
2849 			 * If the request has no flags set,
2850 			 * remove the entry.
2851 			 */
2852 			added &= ~cur_entry->event_enable;
2853 			if (csa->event_enable == 0) {
2854 				SLIST_REMOVE(async_head, cur_entry,
2855 					     async_node, links);
2856 				xpt_release_device(path->device);
2857 				free(cur_entry, M_CAMXPT);
2858 			} else {
2859 				cur_entry->event_enable = csa->event_enable;
2860 			}
2861 			csa->event_enable = added;
2862 		} else {
2863 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2864 					   M_NOWAIT);
2865 			if (cur_entry == NULL) {
2866 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2867 				break;
2868 			}
2869 			cur_entry->event_enable = csa->event_enable;
2870 			cur_entry->event_lock =
2871 			    mtx_owned(path->bus->sim->mtx) ? 1 : 0;
2872 			cur_entry->callback_arg = csa->callback_arg;
2873 			cur_entry->callback = csa->callback;
2874 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2875 			xpt_acquire_device(path->device);
2876 		}
2877 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2878 		break;
2879 	}
2880 	case XPT_REL_SIMQ:
2881 	{
2882 		struct ccb_relsim *crs;
2883 		struct cam_ed *dev;
2884 
2885 		crs = &start_ccb->crs;
2886 		dev = path->device;
2887 		if (dev == NULL) {
2888 
2889 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2890 			break;
2891 		}
2892 
2893 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2894 
2895 			/* Don't ever go below one opening */
2896 			if (crs->openings > 0) {
2897 				xpt_dev_ccbq_resize(path, crs->openings);
2898 				if (bootverbose) {
2899 					xpt_print(path,
2900 					    "number of openings is now %d\n",
2901 					    crs->openings);
2902 				}
2903 			}
2904 		}
2905 
2906 		mtx_lock(&dev->sim->devq->send_mtx);
2907 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2908 
2909 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2910 
2911 				/*
2912 				 * Just extend the old timeout and decrement
2913 				 * the freeze count so that a single timeout
2914 				 * is sufficient for releasing the queue.
2915 				 */
2916 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2917 				callout_stop(&dev->callout);
2918 			} else {
2919 
2920 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2921 			}
2922 
2923 			callout_reset_sbt(&dev->callout,
2924 			    SBT_1MS * crs->release_timeout, 0,
2925 			    xpt_release_devq_timeout, dev, 0);
2926 
2927 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2928 
2929 		}
2930 
2931 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2932 
2933 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2934 				/*
2935 				 * Decrement the freeze count so that a single
2936 				 * completion is still sufficient to unfreeze
2937 				 * the queue.
2938 				 */
2939 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2940 			} else {
2941 
2942 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2943 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2944 			}
2945 		}
2946 
2947 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2948 
2949 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2950 			 || (dev->ccbq.dev_active == 0)) {
2951 
2952 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2953 			} else {
2954 
2955 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2956 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2957 			}
2958 		}
2959 		mtx_unlock(&dev->sim->devq->send_mtx);
2960 
2961 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2962 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2963 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2964 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2965 		break;
2966 	}
2967 	case XPT_DEBUG: {
2968 		struct cam_path *oldpath;
2969 
2970 		/* Check that all request bits are supported. */
2971 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2972 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2973 			break;
2974 		}
2975 
2976 		cam_dflags = CAM_DEBUG_NONE;
2977 		if (cam_dpath != NULL) {
2978 			oldpath = cam_dpath;
2979 			cam_dpath = NULL;
2980 			xpt_free_path(oldpath);
2981 		}
2982 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
2983 			if (xpt_create_path(&cam_dpath, NULL,
2984 					    start_ccb->ccb_h.path_id,
2985 					    start_ccb->ccb_h.target_id,
2986 					    start_ccb->ccb_h.target_lun) !=
2987 					    CAM_REQ_CMP) {
2988 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2989 			} else {
2990 				cam_dflags = start_ccb->cdbg.flags;
2991 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2992 				xpt_print(cam_dpath, "debugging flags now %x\n",
2993 				    cam_dflags);
2994 			}
2995 		} else
2996 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2997 		break;
2998 	}
2999 	case XPT_NOOP:
3000 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3001 			xpt_freeze_devq(path, 1);
3002 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3003 		break;
3004 	case XPT_REPROBE_LUN:
3005 		xpt_async(AC_INQ_CHANGED, path, NULL);
3006 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3007 		xpt_done(start_ccb);
3008 		break;
3009 	default:
3010 	case XPT_SDEV_TYPE:
3011 	case XPT_TERM_IO:
3012 	case XPT_ENG_INQ:
3013 		/* XXX Implement */
3014 		printf("%s: CCB type %#x not supported\n", __func__,
3015 		       start_ccb->ccb_h.func_code);
3016 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3017 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3018 			xpt_done(start_ccb);
3019 		}
3020 		break;
3021 	}
3022 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3023 	    ("xpt_action_default: func= %#x %s status %#x\n",
3024 		start_ccb->ccb_h.func_code,
3025  		xpt_action_name(start_ccb->ccb_h.func_code),
3026 		start_ccb->ccb_h.status));
3027 }
3028 
3029 void
3030 xpt_polled_action(union ccb *start_ccb)
3031 {
3032 	u_int32_t timeout;
3033 	struct	  cam_sim *sim;
3034 	struct	  cam_devq *devq;
3035 	struct	  cam_ed *dev;
3036 
3037 	timeout = start_ccb->ccb_h.timeout * 10;
3038 	sim = start_ccb->ccb_h.path->bus->sim;
3039 	devq = sim->devq;
3040 	dev = start_ccb->ccb_h.path->device;
3041 
3042 	mtx_unlock(&dev->device_mtx);
3043 
3044 	/*
3045 	 * Steal an opening so that no other queued requests
3046 	 * can get it before us while we simulate interrupts.
3047 	 */
3048 	mtx_lock(&devq->send_mtx);
3049 	dev->ccbq.dev_openings--;
3050 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3051 	    (--timeout > 0)) {
3052 		mtx_unlock(&devq->send_mtx);
3053 		DELAY(100);
3054 		CAM_SIM_LOCK(sim);
3055 		(*(sim->sim_poll))(sim);
3056 		CAM_SIM_UNLOCK(sim);
3057 		camisr_runqueue();
3058 		mtx_lock(&devq->send_mtx);
3059 	}
3060 	dev->ccbq.dev_openings++;
3061 	mtx_unlock(&devq->send_mtx);
3062 
3063 	if (timeout != 0) {
3064 		xpt_action(start_ccb);
3065 		while(--timeout > 0) {
3066 			CAM_SIM_LOCK(sim);
3067 			(*(sim->sim_poll))(sim);
3068 			CAM_SIM_UNLOCK(sim);
3069 			camisr_runqueue();
3070 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3071 			    != CAM_REQ_INPROG)
3072 				break;
3073 			DELAY(100);
3074 		}
3075 		if (timeout == 0) {
3076 			/*
3077 			 * XXX Is it worth adding a sim_timeout entry
3078 			 * point so we can attempt recovery?  If
3079 			 * this is only used for dumps, I don't think
3080 			 * it is.
3081 			 */
3082 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3083 		}
3084 	} else {
3085 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3086 	}
3087 
3088 	mtx_lock(&dev->device_mtx);
3089 }
3090 
3091 /*
3092  * Schedule a peripheral driver to receive a ccb when its
3093  * target device has space for more transactions.
3094  */
3095 void
3096 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3097 {
3098 
3099 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3100 	cam_periph_assert(periph, MA_OWNED);
3101 	if (new_priority < periph->scheduled_priority) {
3102 		periph->scheduled_priority = new_priority;
3103 		xpt_run_allocq(periph, 0);
3104 	}
3105 }
3106 
3107 
3108 /*
3109  * Schedule a device to run on a given queue.
3110  * If the device was inserted as a new entry on the queue,
3111  * return 1 meaning the device queue should be run. If we
3112  * were already queued, implying someone else has already
3113  * started the queue, return 0 so the caller doesn't attempt
3114  * to run the queue.
3115  */
3116 static int
3117 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3118 		 u_int32_t new_priority)
3119 {
3120 	int retval;
3121 	u_int32_t old_priority;
3122 
3123 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3124 
3125 	old_priority = pinfo->priority;
3126 
3127 	/*
3128 	 * Are we already queued?
3129 	 */
3130 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3131 		/* Simply reorder based on new priority */
3132 		if (new_priority < old_priority) {
3133 			camq_change_priority(queue, pinfo->index,
3134 					     new_priority);
3135 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3136 					("changed priority to %d\n",
3137 					 new_priority));
3138 			retval = 1;
3139 		} else
3140 			retval = 0;
3141 	} else {
3142 		/* New entry on the queue */
3143 		if (new_priority < old_priority)
3144 			pinfo->priority = new_priority;
3145 
3146 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3147 				("Inserting onto queue\n"));
3148 		pinfo->generation = ++queue->generation;
3149 		camq_insert(queue, pinfo);
3150 		retval = 1;
3151 	}
3152 	return (retval);
3153 }
3154 
3155 static void
3156 xpt_run_allocq_task(void *context, int pending)
3157 {
3158 	struct cam_periph *periph = context;
3159 
3160 	cam_periph_lock(periph);
3161 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3162 	xpt_run_allocq(periph, 1);
3163 	cam_periph_unlock(periph);
3164 	cam_periph_release(periph);
3165 }
3166 
3167 static void
3168 xpt_run_allocq(struct cam_periph *periph, int sleep)
3169 {
3170 	struct cam_ed	*device;
3171 	union ccb	*ccb;
3172 	uint32_t	 prio;
3173 
3174 	cam_periph_assert(periph, MA_OWNED);
3175 	if (periph->periph_allocating)
3176 		return;
3177 	periph->periph_allocating = 1;
3178 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3179 	device = periph->path->device;
3180 	ccb = NULL;
3181 restart:
3182 	while ((prio = min(periph->scheduled_priority,
3183 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3184 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3185 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3186 
3187 		if (ccb == NULL &&
3188 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3189 			if (sleep) {
3190 				ccb = xpt_get_ccb(periph);
3191 				goto restart;
3192 			}
3193 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3194 				break;
3195 			cam_periph_doacquire(periph);
3196 			periph->flags |= CAM_PERIPH_RUN_TASK;
3197 			taskqueue_enqueue(xsoftc.xpt_taskq,
3198 			    &periph->periph_run_task);
3199 			break;
3200 		}
3201 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3202 		if (prio == periph->immediate_priority) {
3203 			periph->immediate_priority = CAM_PRIORITY_NONE;
3204 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3205 					("waking cam_periph_getccb()\n"));
3206 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3207 					  periph_links.sle);
3208 			wakeup(&periph->ccb_list);
3209 		} else {
3210 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3211 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3212 					("calling periph_start()\n"));
3213 			periph->periph_start(periph, ccb);
3214 		}
3215 		ccb = NULL;
3216 	}
3217 	if (ccb != NULL)
3218 		xpt_release_ccb(ccb);
3219 	periph->periph_allocating = 0;
3220 }
3221 
3222 static void
3223 xpt_run_devq(struct cam_devq *devq)
3224 {
3225 	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3226 	int lock;
3227 
3228 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3229 
3230 	devq->send_queue.qfrozen_cnt++;
3231 	while ((devq->send_queue.entries > 0)
3232 	    && (devq->send_openings > 0)
3233 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3234 		struct	cam_ed *device;
3235 		union ccb *work_ccb;
3236 		struct	cam_sim *sim;
3237 
3238 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3239 							   CAMQ_HEAD);
3240 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3241 				("running device %p\n", device));
3242 
3243 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3244 		if (work_ccb == NULL) {
3245 			printf("device on run queue with no ccbs???\n");
3246 			continue;
3247 		}
3248 
3249 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3250 
3251 			mtx_lock(&xsoftc.xpt_highpower_lock);
3252 		 	if (xsoftc.num_highpower <= 0) {
3253 				/*
3254 				 * We got a high power command, but we
3255 				 * don't have any available slots.  Freeze
3256 				 * the device queue until we have a slot
3257 				 * available.
3258 				 */
3259 				xpt_freeze_devq_device(device, 1);
3260 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3261 						   highpowerq_entry);
3262 
3263 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3264 				continue;
3265 			} else {
3266 				/*
3267 				 * Consume a high power slot while
3268 				 * this ccb runs.
3269 				 */
3270 				xsoftc.num_highpower--;
3271 			}
3272 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3273 		}
3274 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3275 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3276 		devq->send_openings--;
3277 		devq->send_active++;
3278 		xpt_schedule_devq(devq, device);
3279 		mtx_unlock(&devq->send_mtx);
3280 
3281 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3282 			/*
3283 			 * The client wants to freeze the queue
3284 			 * after this CCB is sent.
3285 			 */
3286 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3287 		}
3288 
3289 		/* In Target mode, the peripheral driver knows best... */
3290 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3291 			if ((device->inq_flags & SID_CmdQue) != 0
3292 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3293 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3294 			else
3295 				/*
3296 				 * Clear this in case of a retried CCB that
3297 				 * failed due to a rejected tag.
3298 				 */
3299 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3300 		}
3301 
3302 		switch (work_ccb->ccb_h.func_code) {
3303 		case XPT_SCSI_IO:
3304 			CAM_DEBUG(work_ccb->ccb_h.path,
3305 			    CAM_DEBUG_CDB,("%s. CDB: %s\n",
3306 			     scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0],
3307 					  &device->inq_data),
3308 			     scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes,
3309 					     cdb_str, sizeof(cdb_str))));
3310 			break;
3311 		case XPT_ATA_IO:
3312 			CAM_DEBUG(work_ccb->ccb_h.path,
3313 			    CAM_DEBUG_CDB,("%s. ACB: %s\n",
3314 			     ata_op_string(&work_ccb->ataio.cmd),
3315 			     ata_cmd_string(&work_ccb->ataio.cmd,
3316 					    cdb_str, sizeof(cdb_str))));
3317 			break;
3318 		default:
3319 			break;
3320 		}
3321 
3322 		/*
3323 		 * Device queues can be shared among multiple SIM instances
3324 		 * that reside on different busses.  Use the SIM from the
3325 		 * queued device, rather than the one from the calling bus.
3326 		 */
3327 		sim = device->sim;
3328 		lock = (mtx_owned(sim->mtx) == 0);
3329 		if (lock)
3330 			CAM_SIM_LOCK(sim);
3331 		work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms
3332 		(*(sim->sim_action))(sim, work_ccb);
3333 		if (lock)
3334 			CAM_SIM_UNLOCK(sim);
3335 		mtx_lock(&devq->send_mtx);
3336 	}
3337 	devq->send_queue.qfrozen_cnt--;
3338 }
3339 
3340 /*
3341  * This function merges stuff from the slave ccb into the master ccb, while
3342  * keeping important fields in the master ccb constant.
3343  */
3344 void
3345 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3346 {
3347 
3348 	/*
3349 	 * Pull fields that are valid for peripheral drivers to set
3350 	 * into the master CCB along with the CCB "payload".
3351 	 */
3352 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3353 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3354 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3355 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3356 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3357 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3358 }
3359 
3360 void
3361 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3362 		    u_int32_t priority, u_int32_t flags)
3363 {
3364 
3365 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3366 	ccb_h->pinfo.priority = priority;
3367 	ccb_h->path = path;
3368 	ccb_h->path_id = path->bus->path_id;
3369 	if (path->target)
3370 		ccb_h->target_id = path->target->target_id;
3371 	else
3372 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3373 	if (path->device) {
3374 		ccb_h->target_lun = path->device->lun_id;
3375 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3376 	} else {
3377 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3378 	}
3379 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3380 	ccb_h->flags = flags;
3381 	ccb_h->xflags = 0;
3382 }
3383 
3384 void
3385 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3386 {
3387 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3388 }
3389 
3390 /* Path manipulation functions */
3391 cam_status
3392 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3393 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3394 {
3395 	struct	   cam_path *path;
3396 	cam_status status;
3397 
3398 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3399 
3400 	if (path == NULL) {
3401 		status = CAM_RESRC_UNAVAIL;
3402 		return(status);
3403 	}
3404 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3405 	if (status != CAM_REQ_CMP) {
3406 		free(path, M_CAMPATH);
3407 		path = NULL;
3408 	}
3409 	*new_path_ptr = path;
3410 	return (status);
3411 }
3412 
3413 cam_status
3414 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3415 			 struct cam_periph *periph, path_id_t path_id,
3416 			 target_id_t target_id, lun_id_t lun_id)
3417 {
3418 
3419 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3420 	    lun_id));
3421 }
3422 
3423 cam_status
3424 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3425 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3426 {
3427 	struct	     cam_eb *bus;
3428 	struct	     cam_et *target;
3429 	struct	     cam_ed *device;
3430 	cam_status   status;
3431 
3432 	status = CAM_REQ_CMP;	/* Completed without error */
3433 	target = NULL;		/* Wildcarded */
3434 	device = NULL;		/* Wildcarded */
3435 
3436 	/*
3437 	 * We will potentially modify the EDT, so block interrupts
3438 	 * that may attempt to create cam paths.
3439 	 */
3440 	bus = xpt_find_bus(path_id);
3441 	if (bus == NULL) {
3442 		status = CAM_PATH_INVALID;
3443 	} else {
3444 		xpt_lock_buses();
3445 		mtx_lock(&bus->eb_mtx);
3446 		target = xpt_find_target(bus, target_id);
3447 		if (target == NULL) {
3448 			/* Create one */
3449 			struct cam_et *new_target;
3450 
3451 			new_target = xpt_alloc_target(bus, target_id);
3452 			if (new_target == NULL) {
3453 				status = CAM_RESRC_UNAVAIL;
3454 			} else {
3455 				target = new_target;
3456 			}
3457 		}
3458 		xpt_unlock_buses();
3459 		if (target != NULL) {
3460 			device = xpt_find_device(target, lun_id);
3461 			if (device == NULL) {
3462 				/* Create one */
3463 				struct cam_ed *new_device;
3464 
3465 				new_device =
3466 				    (*(bus->xport->alloc_device))(bus,
3467 								      target,
3468 								      lun_id);
3469 				if (new_device == NULL) {
3470 					status = CAM_RESRC_UNAVAIL;
3471 				} else {
3472 					device = new_device;
3473 				}
3474 			}
3475 		}
3476 		mtx_unlock(&bus->eb_mtx);
3477 	}
3478 
3479 	/*
3480 	 * Only touch the user's data if we are successful.
3481 	 */
3482 	if (status == CAM_REQ_CMP) {
3483 		new_path->periph = perph;
3484 		new_path->bus = bus;
3485 		new_path->target = target;
3486 		new_path->device = device;
3487 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3488 	} else {
3489 		if (device != NULL)
3490 			xpt_release_device(device);
3491 		if (target != NULL)
3492 			xpt_release_target(target);
3493 		if (bus != NULL)
3494 			xpt_release_bus(bus);
3495 	}
3496 	return (status);
3497 }
3498 
3499 cam_status
3500 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3501 {
3502 	struct	   cam_path *new_path;
3503 
3504 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3505 	if (new_path == NULL)
3506 		return(CAM_RESRC_UNAVAIL);
3507 	xpt_copy_path(new_path, path);
3508 	*new_path_ptr = new_path;
3509 	return (CAM_REQ_CMP);
3510 }
3511 
3512 void
3513 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3514 {
3515 
3516 	*new_path = *path;
3517 	if (path->bus != NULL)
3518 		xpt_acquire_bus(path->bus);
3519 	if (path->target != NULL)
3520 		xpt_acquire_target(path->target);
3521 	if (path->device != NULL)
3522 		xpt_acquire_device(path->device);
3523 }
3524 
3525 void
3526 xpt_release_path(struct cam_path *path)
3527 {
3528 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3529 	if (path->device != NULL) {
3530 		xpt_release_device(path->device);
3531 		path->device = NULL;
3532 	}
3533 	if (path->target != NULL) {
3534 		xpt_release_target(path->target);
3535 		path->target = NULL;
3536 	}
3537 	if (path->bus != NULL) {
3538 		xpt_release_bus(path->bus);
3539 		path->bus = NULL;
3540 	}
3541 }
3542 
3543 void
3544 xpt_free_path(struct cam_path *path)
3545 {
3546 
3547 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3548 	xpt_release_path(path);
3549 	free(path, M_CAMPATH);
3550 }
3551 
3552 void
3553 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3554     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3555 {
3556 
3557 	xpt_lock_buses();
3558 	if (bus_ref) {
3559 		if (path->bus)
3560 			*bus_ref = path->bus->refcount;
3561 		else
3562 			*bus_ref = 0;
3563 	}
3564 	if (periph_ref) {
3565 		if (path->periph)
3566 			*periph_ref = path->periph->refcount;
3567 		else
3568 			*periph_ref = 0;
3569 	}
3570 	xpt_unlock_buses();
3571 	if (target_ref) {
3572 		if (path->target)
3573 			*target_ref = path->target->refcount;
3574 		else
3575 			*target_ref = 0;
3576 	}
3577 	if (device_ref) {
3578 		if (path->device)
3579 			*device_ref = path->device->refcount;
3580 		else
3581 			*device_ref = 0;
3582 	}
3583 }
3584 
3585 /*
3586  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3587  * in path1, 2 for match with wildcards in path2.
3588  */
3589 int
3590 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3591 {
3592 	int retval = 0;
3593 
3594 	if (path1->bus != path2->bus) {
3595 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3596 			retval = 1;
3597 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3598 			retval = 2;
3599 		else
3600 			return (-1);
3601 	}
3602 	if (path1->target != path2->target) {
3603 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3604 			if (retval == 0)
3605 				retval = 1;
3606 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3607 			retval = 2;
3608 		else
3609 			return (-1);
3610 	}
3611 	if (path1->device != path2->device) {
3612 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3613 			if (retval == 0)
3614 				retval = 1;
3615 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3616 			retval = 2;
3617 		else
3618 			return (-1);
3619 	}
3620 	return (retval);
3621 }
3622 
3623 int
3624 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3625 {
3626 	int retval = 0;
3627 
3628 	if (path->bus != dev->target->bus) {
3629 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3630 			retval = 1;
3631 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3632 			retval = 2;
3633 		else
3634 			return (-1);
3635 	}
3636 	if (path->target != dev->target) {
3637 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3638 			if (retval == 0)
3639 				retval = 1;
3640 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3641 			retval = 2;
3642 		else
3643 			return (-1);
3644 	}
3645 	if (path->device != dev) {
3646 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3647 			if (retval == 0)
3648 				retval = 1;
3649 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3650 			retval = 2;
3651 		else
3652 			return (-1);
3653 	}
3654 	return (retval);
3655 }
3656 
3657 void
3658 xpt_print_path(struct cam_path *path)
3659 {
3660 
3661 	if (path == NULL)
3662 		printf("(nopath): ");
3663 	else {
3664 		if (path->periph != NULL)
3665 			printf("(%s%d:", path->periph->periph_name,
3666 			       path->periph->unit_number);
3667 		else
3668 			printf("(noperiph:");
3669 
3670 		if (path->bus != NULL)
3671 			printf("%s%d:%d:", path->bus->sim->sim_name,
3672 			       path->bus->sim->unit_number,
3673 			       path->bus->sim->bus_id);
3674 		else
3675 			printf("nobus:");
3676 
3677 		if (path->target != NULL)
3678 			printf("%d:", path->target->target_id);
3679 		else
3680 			printf("X:");
3681 
3682 		if (path->device != NULL)
3683 			printf("%jx): ", (uintmax_t)path->device->lun_id);
3684 		else
3685 			printf("X): ");
3686 	}
3687 }
3688 
3689 void
3690 xpt_print_device(struct cam_ed *device)
3691 {
3692 
3693 	if (device == NULL)
3694 		printf("(nopath): ");
3695 	else {
3696 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3697 		       device->sim->unit_number,
3698 		       device->sim->bus_id,
3699 		       device->target->target_id,
3700 		       (uintmax_t)device->lun_id);
3701 	}
3702 }
3703 
3704 void
3705 xpt_print(struct cam_path *path, const char *fmt, ...)
3706 {
3707 	va_list ap;
3708 	xpt_print_path(path);
3709 	va_start(ap, fmt);
3710 	vprintf(fmt, ap);
3711 	va_end(ap);
3712 }
3713 
3714 int
3715 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3716 {
3717 	struct sbuf sb;
3718 
3719 	sbuf_new(&sb, str, str_len, 0);
3720 
3721 	if (path == NULL)
3722 		sbuf_printf(&sb, "(nopath): ");
3723 	else {
3724 		if (path->periph != NULL)
3725 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3726 				    path->periph->unit_number);
3727 		else
3728 			sbuf_printf(&sb, "(noperiph:");
3729 
3730 		if (path->bus != NULL)
3731 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3732 				    path->bus->sim->unit_number,
3733 				    path->bus->sim->bus_id);
3734 		else
3735 			sbuf_printf(&sb, "nobus:");
3736 
3737 		if (path->target != NULL)
3738 			sbuf_printf(&sb, "%d:", path->target->target_id);
3739 		else
3740 			sbuf_printf(&sb, "X:");
3741 
3742 		if (path->device != NULL)
3743 			sbuf_printf(&sb, "%jx): ",
3744 			    (uintmax_t)path->device->lun_id);
3745 		else
3746 			sbuf_printf(&sb, "X): ");
3747 	}
3748 	sbuf_finish(&sb);
3749 
3750 	return(sbuf_len(&sb));
3751 }
3752 
3753 path_id_t
3754 xpt_path_path_id(struct cam_path *path)
3755 {
3756 	return(path->bus->path_id);
3757 }
3758 
3759 target_id_t
3760 xpt_path_target_id(struct cam_path *path)
3761 {
3762 	if (path->target != NULL)
3763 		return (path->target->target_id);
3764 	else
3765 		return (CAM_TARGET_WILDCARD);
3766 }
3767 
3768 lun_id_t
3769 xpt_path_lun_id(struct cam_path *path)
3770 {
3771 	if (path->device != NULL)
3772 		return (path->device->lun_id);
3773 	else
3774 		return (CAM_LUN_WILDCARD);
3775 }
3776 
3777 struct cam_sim *
3778 xpt_path_sim(struct cam_path *path)
3779 {
3780 
3781 	return (path->bus->sim);
3782 }
3783 
3784 struct cam_periph*
3785 xpt_path_periph(struct cam_path *path)
3786 {
3787 
3788 	return (path->periph);
3789 }
3790 
3791 /*
3792  * Release a CAM control block for the caller.  Remit the cost of the structure
3793  * to the device referenced by the path.  If the this device had no 'credits'
3794  * and peripheral drivers have registered async callbacks for this notification
3795  * call them now.
3796  */
3797 void
3798 xpt_release_ccb(union ccb *free_ccb)
3799 {
3800 	struct	 cam_ed *device;
3801 	struct	 cam_periph *periph;
3802 
3803 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3804 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3805 	device = free_ccb->ccb_h.path->device;
3806 	periph = free_ccb->ccb_h.path->periph;
3807 
3808 	xpt_free_ccb(free_ccb);
3809 	periph->periph_allocated--;
3810 	cam_ccbq_release_opening(&device->ccbq);
3811 	xpt_run_allocq(periph, 0);
3812 }
3813 
3814 /* Functions accessed by SIM drivers */
3815 
3816 static struct xpt_xport xport_default = {
3817 	.alloc_device = xpt_alloc_device_default,
3818 	.action = xpt_action_default,
3819 	.async = xpt_dev_async_default,
3820 };
3821 
3822 /*
3823  * A sim structure, listing the SIM entry points and instance
3824  * identification info is passed to xpt_bus_register to hook the SIM
3825  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3826  * for this new bus and places it in the array of busses and assigns
3827  * it a path_id.  The path_id may be influenced by "hard wiring"
3828  * information specified by the user.  Once interrupt services are
3829  * available, the bus will be probed.
3830  */
3831 int32_t
3832 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3833 {
3834 	struct cam_eb *new_bus;
3835 	struct cam_eb *old_bus;
3836 	struct ccb_pathinq cpi;
3837 	struct cam_path *path;
3838 	cam_status status;
3839 
3840 	mtx_assert(sim->mtx, MA_OWNED);
3841 
3842 	sim->bus_id = bus;
3843 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3844 					  M_CAMXPT, M_NOWAIT|M_ZERO);
3845 	if (new_bus == NULL) {
3846 		/* Couldn't satisfy request */
3847 		return (CAM_RESRC_UNAVAIL);
3848 	}
3849 
3850 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3851 	TAILQ_INIT(&new_bus->et_entries);
3852 	cam_sim_hold(sim);
3853 	new_bus->sim = sim;
3854 	timevalclear(&new_bus->last_reset);
3855 	new_bus->flags = 0;
3856 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3857 	new_bus->generation = 0;
3858 
3859 	xpt_lock_buses();
3860 	sim->path_id = new_bus->path_id =
3861 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3862 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3863 	while (old_bus != NULL
3864 	    && old_bus->path_id < new_bus->path_id)
3865 		old_bus = TAILQ_NEXT(old_bus, links);
3866 	if (old_bus != NULL)
3867 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3868 	else
3869 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3870 	xsoftc.bus_generation++;
3871 	xpt_unlock_buses();
3872 
3873 	/*
3874 	 * Set a default transport so that a PATH_INQ can be issued to
3875 	 * the SIM.  This will then allow for probing and attaching of
3876 	 * a more appropriate transport.
3877 	 */
3878 	new_bus->xport = &xport_default;
3879 
3880 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3881 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3882 	if (status != CAM_REQ_CMP) {
3883 		xpt_release_bus(new_bus);
3884 		free(path, M_CAMXPT);
3885 		return (CAM_RESRC_UNAVAIL);
3886 	}
3887 
3888 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3889 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3890 	xpt_action((union ccb *)&cpi);
3891 
3892 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3893 		switch (cpi.transport) {
3894 		case XPORT_SPI:
3895 		case XPORT_SAS:
3896 		case XPORT_FC:
3897 		case XPORT_USB:
3898 		case XPORT_ISCSI:
3899 		case XPORT_SRP:
3900 		case XPORT_PPB:
3901 			new_bus->xport = scsi_get_xport();
3902 			break;
3903 		case XPORT_ATA:
3904 		case XPORT_SATA:
3905 			new_bus->xport = ata_get_xport();
3906 			break;
3907 		default:
3908 			new_bus->xport = &xport_default;
3909 			break;
3910 		}
3911 	}
3912 
3913 	/* Notify interested parties */
3914 	if (sim->path_id != CAM_XPT_PATH_ID) {
3915 
3916 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3917 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3918 			union	ccb *scan_ccb;
3919 
3920 			/* Initiate bus rescan. */
3921 			scan_ccb = xpt_alloc_ccb_nowait();
3922 			if (scan_ccb != NULL) {
3923 				scan_ccb->ccb_h.path = path;
3924 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3925 				scan_ccb->crcn.flags = 0;
3926 				xpt_rescan(scan_ccb);
3927 			} else {
3928 				xpt_print(path,
3929 					  "Can't allocate CCB to scan bus\n");
3930 				xpt_free_path(path);
3931 			}
3932 		} else
3933 			xpt_free_path(path);
3934 	} else
3935 		xpt_free_path(path);
3936 	return (CAM_SUCCESS);
3937 }
3938 
3939 int32_t
3940 xpt_bus_deregister(path_id_t pathid)
3941 {
3942 	struct cam_path bus_path;
3943 	cam_status status;
3944 
3945 	status = xpt_compile_path(&bus_path, NULL, pathid,
3946 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3947 	if (status != CAM_REQ_CMP)
3948 		return (status);
3949 
3950 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3951 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3952 
3953 	/* Release the reference count held while registered. */
3954 	xpt_release_bus(bus_path.bus);
3955 	xpt_release_path(&bus_path);
3956 
3957 	return (CAM_REQ_CMP);
3958 }
3959 
3960 static path_id_t
3961 xptnextfreepathid(void)
3962 {
3963 	struct cam_eb *bus;
3964 	path_id_t pathid;
3965 	const char *strval;
3966 
3967 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
3968 	pathid = 0;
3969 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3970 retry:
3971 	/* Find an unoccupied pathid */
3972 	while (bus != NULL && bus->path_id <= pathid) {
3973 		if (bus->path_id == pathid)
3974 			pathid++;
3975 		bus = TAILQ_NEXT(bus, links);
3976 	}
3977 
3978 	/*
3979 	 * Ensure that this pathid is not reserved for
3980 	 * a bus that may be registered in the future.
3981 	 */
3982 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3983 		++pathid;
3984 		/* Start the search over */
3985 		goto retry;
3986 	}
3987 	return (pathid);
3988 }
3989 
3990 static path_id_t
3991 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3992 {
3993 	path_id_t pathid;
3994 	int i, dunit, val;
3995 	char buf[32];
3996 	const char *dname;
3997 
3998 	pathid = CAM_XPT_PATH_ID;
3999 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4000 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4001 		return (pathid);
4002 	i = 0;
4003 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4004 		if (strcmp(dname, "scbus")) {
4005 			/* Avoid a bit of foot shooting. */
4006 			continue;
4007 		}
4008 		if (dunit < 0)		/* unwired?! */
4009 			continue;
4010 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4011 			if (sim_bus == val) {
4012 				pathid = dunit;
4013 				break;
4014 			}
4015 		} else if (sim_bus == 0) {
4016 			/* Unspecified matches bus 0 */
4017 			pathid = dunit;
4018 			break;
4019 		} else {
4020 			printf("Ambiguous scbus configuration for %s%d "
4021 			       "bus %d, cannot wire down.  The kernel "
4022 			       "config entry for scbus%d should "
4023 			       "specify a controller bus.\n"
4024 			       "Scbus will be assigned dynamically.\n",
4025 			       sim_name, sim_unit, sim_bus, dunit);
4026 			break;
4027 		}
4028 	}
4029 
4030 	if (pathid == CAM_XPT_PATH_ID)
4031 		pathid = xptnextfreepathid();
4032 	return (pathid);
4033 }
4034 
4035 static const char *
4036 xpt_async_string(u_int32_t async_code)
4037 {
4038 
4039 	switch (async_code) {
4040 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4041 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4042 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4043 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4044 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4045 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4046 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4047 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4048 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4049 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4050 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4051 	case AC_CONTRACT: return ("AC_CONTRACT");
4052 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4053 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4054 	}
4055 	return ("AC_UNKNOWN");
4056 }
4057 
4058 static int
4059 xpt_async_size(u_int32_t async_code)
4060 {
4061 
4062 	switch (async_code) {
4063 	case AC_BUS_RESET: return (0);
4064 	case AC_UNSOL_RESEL: return (0);
4065 	case AC_SCSI_AEN: return (0);
4066 	case AC_SENT_BDR: return (0);
4067 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4068 	case AC_PATH_DEREGISTERED: return (0);
4069 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4070 	case AC_LOST_DEVICE: return (0);
4071 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4072 	case AC_INQ_CHANGED: return (0);
4073 	case AC_GETDEV_CHANGED: return (0);
4074 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4075 	case AC_ADVINFO_CHANGED: return (-1);
4076 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4077 	}
4078 	return (0);
4079 }
4080 
4081 static int
4082 xpt_async_process_dev(struct cam_ed *device, void *arg)
4083 {
4084 	union ccb *ccb = arg;
4085 	struct cam_path *path = ccb->ccb_h.path;
4086 	void *async_arg = ccb->casync.async_arg_ptr;
4087 	u_int32_t async_code = ccb->casync.async_code;
4088 	int relock;
4089 
4090 	if (path->device != device
4091 	 && path->device->lun_id != CAM_LUN_WILDCARD
4092 	 && device->lun_id != CAM_LUN_WILDCARD)
4093 		return (1);
4094 
4095 	/*
4096 	 * The async callback could free the device.
4097 	 * If it is a broadcast async, it doesn't hold
4098 	 * device reference, so take our own reference.
4099 	 */
4100 	xpt_acquire_device(device);
4101 
4102 	/*
4103 	 * If async for specific device is to be delivered to
4104 	 * the wildcard client, take the specific device lock.
4105 	 * XXX: We may need a way for client to specify it.
4106 	 */
4107 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4108 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4109 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4110 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4111 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4112 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4113 		mtx_unlock(&device->device_mtx);
4114 		xpt_path_lock(path);
4115 		relock = 1;
4116 	} else
4117 		relock = 0;
4118 
4119 	(*(device->target->bus->xport->async))(async_code,
4120 	    device->target->bus, device->target, device, async_arg);
4121 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4122 
4123 	if (relock) {
4124 		xpt_path_unlock(path);
4125 		mtx_lock(&device->device_mtx);
4126 	}
4127 	xpt_release_device(device);
4128 	return (1);
4129 }
4130 
4131 static int
4132 xpt_async_process_tgt(struct cam_et *target, void *arg)
4133 {
4134 	union ccb *ccb = arg;
4135 	struct cam_path *path = ccb->ccb_h.path;
4136 
4137 	if (path->target != target
4138 	 && path->target->target_id != CAM_TARGET_WILDCARD
4139 	 && target->target_id != CAM_TARGET_WILDCARD)
4140 		return (1);
4141 
4142 	if (ccb->casync.async_code == AC_SENT_BDR) {
4143 		/* Update our notion of when the last reset occurred */
4144 		microtime(&target->last_reset);
4145 	}
4146 
4147 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4148 }
4149 
4150 static void
4151 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4152 {
4153 	struct cam_eb *bus;
4154 	struct cam_path *path;
4155 	void *async_arg;
4156 	u_int32_t async_code;
4157 
4158 	path = ccb->ccb_h.path;
4159 	async_code = ccb->casync.async_code;
4160 	async_arg = ccb->casync.async_arg_ptr;
4161 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4162 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4163 	bus = path->bus;
4164 
4165 	if (async_code == AC_BUS_RESET) {
4166 		/* Update our notion of when the last reset occurred */
4167 		microtime(&bus->last_reset);
4168 	}
4169 
4170 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4171 
4172 	/*
4173 	 * If this wasn't a fully wildcarded async, tell all
4174 	 * clients that want all async events.
4175 	 */
4176 	if (bus != xpt_periph->path->bus) {
4177 		xpt_path_lock(xpt_periph->path);
4178 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4179 		xpt_path_unlock(xpt_periph->path);
4180 	}
4181 
4182 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4183 		xpt_release_devq(path, 1, TRUE);
4184 	else
4185 		xpt_release_simq(path->bus->sim, TRUE);
4186 	if (ccb->casync.async_arg_size > 0)
4187 		free(async_arg, M_CAMXPT);
4188 	xpt_free_path(path);
4189 	xpt_free_ccb(ccb);
4190 }
4191 
4192 static void
4193 xpt_async_bcast(struct async_list *async_head,
4194 		u_int32_t async_code,
4195 		struct cam_path *path, void *async_arg)
4196 {
4197 	struct async_node *cur_entry;
4198 	int lock;
4199 
4200 	cur_entry = SLIST_FIRST(async_head);
4201 	while (cur_entry != NULL) {
4202 		struct async_node *next_entry;
4203 		/*
4204 		 * Grab the next list entry before we call the current
4205 		 * entry's callback.  This is because the callback function
4206 		 * can delete its async callback entry.
4207 		 */
4208 		next_entry = SLIST_NEXT(cur_entry, links);
4209 		if ((cur_entry->event_enable & async_code) != 0) {
4210 			lock = cur_entry->event_lock;
4211 			if (lock)
4212 				CAM_SIM_LOCK(path->device->sim);
4213 			cur_entry->callback(cur_entry->callback_arg,
4214 					    async_code, path,
4215 					    async_arg);
4216 			if (lock)
4217 				CAM_SIM_UNLOCK(path->device->sim);
4218 		}
4219 		cur_entry = next_entry;
4220 	}
4221 }
4222 
4223 void
4224 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4225 {
4226 	union ccb *ccb;
4227 	int size;
4228 
4229 	ccb = xpt_alloc_ccb_nowait();
4230 	if (ccb == NULL) {
4231 		xpt_print(path, "Can't allocate CCB to send %s\n",
4232 		    xpt_async_string(async_code));
4233 		return;
4234 	}
4235 
4236 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4237 		xpt_print(path, "Can't allocate path to send %s\n",
4238 		    xpt_async_string(async_code));
4239 		xpt_free_ccb(ccb);
4240 		return;
4241 	}
4242 	ccb->ccb_h.path->periph = NULL;
4243 	ccb->ccb_h.func_code = XPT_ASYNC;
4244 	ccb->ccb_h.cbfcnp = xpt_async_process;
4245 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4246 	ccb->casync.async_code = async_code;
4247 	ccb->casync.async_arg_size = 0;
4248 	size = xpt_async_size(async_code);
4249 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4250 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4251 		ccb->ccb_h.func_code,
4252 		xpt_action_name(ccb->ccb_h.func_code),
4253 		async_code,
4254 		xpt_async_string(async_code)));
4255 	if (size > 0 && async_arg != NULL) {
4256 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4257 		if (ccb->casync.async_arg_ptr == NULL) {
4258 			xpt_print(path, "Can't allocate argument to send %s\n",
4259 			    xpt_async_string(async_code));
4260 			xpt_free_path(ccb->ccb_h.path);
4261 			xpt_free_ccb(ccb);
4262 			return;
4263 		}
4264 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4265 		ccb->casync.async_arg_size = size;
4266 	} else if (size < 0) {
4267 		ccb->casync.async_arg_ptr = async_arg;
4268 		ccb->casync.async_arg_size = size;
4269 	}
4270 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4271 		xpt_freeze_devq(path, 1);
4272 	else
4273 		xpt_freeze_simq(path->bus->sim, 1);
4274 	xpt_done(ccb);
4275 }
4276 
4277 static void
4278 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4279 		      struct cam_et *target, struct cam_ed *device,
4280 		      void *async_arg)
4281 {
4282 
4283 	/*
4284 	 * We only need to handle events for real devices.
4285 	 */
4286 	if (target->target_id == CAM_TARGET_WILDCARD
4287 	 || device->lun_id == CAM_LUN_WILDCARD)
4288 		return;
4289 
4290 	printf("%s called\n", __func__);
4291 }
4292 
4293 static uint32_t
4294 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4295 {
4296 	struct cam_devq	*devq;
4297 	uint32_t freeze;
4298 
4299 	devq = dev->sim->devq;
4300 	mtx_assert(&devq->send_mtx, MA_OWNED);
4301 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4302 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4303 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4304 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4305 	/* Remove frozen device from sendq. */
4306 	if (device_is_queued(dev))
4307 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4308 	return (freeze);
4309 }
4310 
4311 u_int32_t
4312 xpt_freeze_devq(struct cam_path *path, u_int count)
4313 {
4314 	struct cam_ed	*dev = path->device;
4315 	struct cam_devq	*devq;
4316 	uint32_t	 freeze;
4317 
4318 	devq = dev->sim->devq;
4319 	mtx_lock(&devq->send_mtx);
4320 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4321 	freeze = xpt_freeze_devq_device(dev, count);
4322 	mtx_unlock(&devq->send_mtx);
4323 	return (freeze);
4324 }
4325 
4326 u_int32_t
4327 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4328 {
4329 	struct cam_devq	*devq;
4330 	uint32_t	 freeze;
4331 
4332 	devq = sim->devq;
4333 	mtx_lock(&devq->send_mtx);
4334 	freeze = (devq->send_queue.qfrozen_cnt += count);
4335 	mtx_unlock(&devq->send_mtx);
4336 	return (freeze);
4337 }
4338 
4339 static void
4340 xpt_release_devq_timeout(void *arg)
4341 {
4342 	struct cam_ed *dev;
4343 	struct cam_devq *devq;
4344 
4345 	dev = (struct cam_ed *)arg;
4346 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4347 	devq = dev->sim->devq;
4348 	mtx_assert(&devq->send_mtx, MA_OWNED);
4349 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4350 		xpt_run_devq(devq);
4351 }
4352 
4353 void
4354 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4355 {
4356 	struct cam_ed *dev;
4357 	struct cam_devq *devq;
4358 
4359 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4360 	    count, run_queue));
4361 	dev = path->device;
4362 	devq = dev->sim->devq;
4363 	mtx_lock(&devq->send_mtx);
4364 	if (xpt_release_devq_device(dev, count, run_queue))
4365 		xpt_run_devq(dev->sim->devq);
4366 	mtx_unlock(&devq->send_mtx);
4367 }
4368 
4369 static int
4370 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4371 {
4372 
4373 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4374 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4375 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4376 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4377 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4378 #ifdef INVARIANTS
4379 		printf("xpt_release_devq(): requested %u > present %u\n",
4380 		    count, dev->ccbq.queue.qfrozen_cnt);
4381 #endif
4382 		count = dev->ccbq.queue.qfrozen_cnt;
4383 	}
4384 	dev->ccbq.queue.qfrozen_cnt -= count;
4385 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4386 		/*
4387 		 * No longer need to wait for a successful
4388 		 * command completion.
4389 		 */
4390 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4391 		/*
4392 		 * Remove any timeouts that might be scheduled
4393 		 * to release this queue.
4394 		 */
4395 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4396 			callout_stop(&dev->callout);
4397 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4398 		}
4399 		/*
4400 		 * Now that we are unfrozen schedule the
4401 		 * device so any pending transactions are
4402 		 * run.
4403 		 */
4404 		xpt_schedule_devq(dev->sim->devq, dev);
4405 	} else
4406 		run_queue = 0;
4407 	return (run_queue);
4408 }
4409 
4410 void
4411 xpt_release_simq(struct cam_sim *sim, int run_queue)
4412 {
4413 	struct cam_devq	*devq;
4414 
4415 	devq = sim->devq;
4416 	mtx_lock(&devq->send_mtx);
4417 	if (devq->send_queue.qfrozen_cnt <= 0) {
4418 #ifdef INVARIANTS
4419 		printf("xpt_release_simq: requested 1 > present %u\n",
4420 		    devq->send_queue.qfrozen_cnt);
4421 #endif
4422 	} else
4423 		devq->send_queue.qfrozen_cnt--;
4424 	if (devq->send_queue.qfrozen_cnt == 0) {
4425 		/*
4426 		 * If there is a timeout scheduled to release this
4427 		 * sim queue, remove it.  The queue frozen count is
4428 		 * already at 0.
4429 		 */
4430 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4431 			callout_stop(&sim->callout);
4432 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4433 		}
4434 		if (run_queue) {
4435 			/*
4436 			 * Now that we are unfrozen run the send queue.
4437 			 */
4438 			xpt_run_devq(sim->devq);
4439 		}
4440 	}
4441 	mtx_unlock(&devq->send_mtx);
4442 }
4443 
4444 /*
4445  * XXX Appears to be unused.
4446  */
4447 static void
4448 xpt_release_simq_timeout(void *arg)
4449 {
4450 	struct cam_sim *sim;
4451 
4452 	sim = (struct cam_sim *)arg;
4453 	xpt_release_simq(sim, /* run_queue */ TRUE);
4454 }
4455 
4456 void
4457 xpt_done(union ccb *done_ccb)
4458 {
4459 	struct cam_doneq *queue;
4460 	int	run, hash;
4461 
4462 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4463 	    ("xpt_done: func= %#x %s status %#x\n",
4464 		done_ccb->ccb_h.func_code,
4465 		xpt_action_name(done_ccb->ccb_h.func_code),
4466 		done_ccb->ccb_h.status));
4467 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4468 		return;
4469 
4470 	/* Store the time the ccb was in the sim */
4471 	done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
4472 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4473 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4474 	queue = &cam_doneqs[hash];
4475 	mtx_lock(&queue->cam_doneq_mtx);
4476 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4477 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4478 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4479 	mtx_unlock(&queue->cam_doneq_mtx);
4480 	if (run)
4481 		wakeup(&queue->cam_doneq);
4482 }
4483 
4484 void
4485 xpt_done_direct(union ccb *done_ccb)
4486 {
4487 
4488 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4489 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4490 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4491 		return;
4492 
4493 	/* Store the time the ccb was in the sim */
4494 	done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data;
4495 	xpt_done_process(&done_ccb->ccb_h);
4496 }
4497 
4498 union ccb *
4499 xpt_alloc_ccb()
4500 {
4501 	union ccb *new_ccb;
4502 
4503 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4504 	return (new_ccb);
4505 }
4506 
4507 union ccb *
4508 xpt_alloc_ccb_nowait()
4509 {
4510 	union ccb *new_ccb;
4511 
4512 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4513 	return (new_ccb);
4514 }
4515 
4516 void
4517 xpt_free_ccb(union ccb *free_ccb)
4518 {
4519 	free(free_ccb, M_CAMCCB);
4520 }
4521 
4522 
4523 
4524 /* Private XPT functions */
4525 
4526 /*
4527  * Get a CAM control block for the caller. Charge the structure to the device
4528  * referenced by the path.  If we don't have sufficient resources to allocate
4529  * more ccbs, we return NULL.
4530  */
4531 static union ccb *
4532 xpt_get_ccb_nowait(struct cam_periph *periph)
4533 {
4534 	union ccb *new_ccb;
4535 
4536 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4537 	if (new_ccb == NULL)
4538 		return (NULL);
4539 	periph->periph_allocated++;
4540 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4541 	return (new_ccb);
4542 }
4543 
4544 static union ccb *
4545 xpt_get_ccb(struct cam_periph *periph)
4546 {
4547 	union ccb *new_ccb;
4548 
4549 	cam_periph_unlock(periph);
4550 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4551 	cam_periph_lock(periph);
4552 	periph->periph_allocated++;
4553 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4554 	return (new_ccb);
4555 }
4556 
4557 union ccb *
4558 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4559 {
4560 	struct ccb_hdr *ccb_h;
4561 
4562 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4563 	cam_periph_assert(periph, MA_OWNED);
4564 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4565 	    ccb_h->pinfo.priority != priority) {
4566 		if (priority < periph->immediate_priority) {
4567 			periph->immediate_priority = priority;
4568 			xpt_run_allocq(periph, 0);
4569 		} else
4570 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4571 			    "cgticb", 0);
4572 	}
4573 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4574 	return ((union ccb *)ccb_h);
4575 }
4576 
4577 static void
4578 xpt_acquire_bus(struct cam_eb *bus)
4579 {
4580 
4581 	xpt_lock_buses();
4582 	bus->refcount++;
4583 	xpt_unlock_buses();
4584 }
4585 
4586 static void
4587 xpt_release_bus(struct cam_eb *bus)
4588 {
4589 
4590 	xpt_lock_buses();
4591 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4592 	if (--bus->refcount > 0) {
4593 		xpt_unlock_buses();
4594 		return;
4595 	}
4596 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4597 	xsoftc.bus_generation++;
4598 	xpt_unlock_buses();
4599 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4600 	    ("destroying bus, but target list is not empty"));
4601 	cam_sim_release(bus->sim);
4602 	mtx_destroy(&bus->eb_mtx);
4603 	free(bus, M_CAMXPT);
4604 }
4605 
4606 static struct cam_et *
4607 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4608 {
4609 	struct cam_et *cur_target, *target;
4610 
4611 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4612 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4613 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4614 					 M_NOWAIT|M_ZERO);
4615 	if (target == NULL)
4616 		return (NULL);
4617 
4618 	TAILQ_INIT(&target->ed_entries);
4619 	target->bus = bus;
4620 	target->target_id = target_id;
4621 	target->refcount = 1;
4622 	target->generation = 0;
4623 	target->luns = NULL;
4624 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4625 	timevalclear(&target->last_reset);
4626 	/*
4627 	 * Hold a reference to our parent bus so it
4628 	 * will not go away before we do.
4629 	 */
4630 	bus->refcount++;
4631 
4632 	/* Insertion sort into our bus's target list */
4633 	cur_target = TAILQ_FIRST(&bus->et_entries);
4634 	while (cur_target != NULL && cur_target->target_id < target_id)
4635 		cur_target = TAILQ_NEXT(cur_target, links);
4636 	if (cur_target != NULL) {
4637 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4638 	} else {
4639 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4640 	}
4641 	bus->generation++;
4642 	return (target);
4643 }
4644 
4645 static void
4646 xpt_acquire_target(struct cam_et *target)
4647 {
4648 	struct cam_eb *bus = target->bus;
4649 
4650 	mtx_lock(&bus->eb_mtx);
4651 	target->refcount++;
4652 	mtx_unlock(&bus->eb_mtx);
4653 }
4654 
4655 static void
4656 xpt_release_target(struct cam_et *target)
4657 {
4658 	struct cam_eb *bus = target->bus;
4659 
4660 	mtx_lock(&bus->eb_mtx);
4661 	if (--target->refcount > 0) {
4662 		mtx_unlock(&bus->eb_mtx);
4663 		return;
4664 	}
4665 	TAILQ_REMOVE(&bus->et_entries, target, links);
4666 	bus->generation++;
4667 	mtx_unlock(&bus->eb_mtx);
4668 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4669 	    ("destroying target, but device list is not empty"));
4670 	xpt_release_bus(bus);
4671 	mtx_destroy(&target->luns_mtx);
4672 	if (target->luns)
4673 		free(target->luns, M_CAMXPT);
4674 	free(target, M_CAMXPT);
4675 }
4676 
4677 static struct cam_ed *
4678 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4679 			 lun_id_t lun_id)
4680 {
4681 	struct cam_ed *device;
4682 
4683 	device = xpt_alloc_device(bus, target, lun_id);
4684 	if (device == NULL)
4685 		return (NULL);
4686 
4687 	device->mintags = 1;
4688 	device->maxtags = 1;
4689 	return (device);
4690 }
4691 
4692 static void
4693 xpt_destroy_device(void *context, int pending)
4694 {
4695 	struct cam_ed	*device = context;
4696 
4697 	mtx_lock(&device->device_mtx);
4698 	mtx_destroy(&device->device_mtx);
4699 	free(device, M_CAMDEV);
4700 }
4701 
4702 struct cam_ed *
4703 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4704 {
4705 	struct cam_ed	*cur_device, *device;
4706 	struct cam_devq	*devq;
4707 	cam_status status;
4708 
4709 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4710 	/* Make space for us in the device queue on our bus */
4711 	devq = bus->sim->devq;
4712 	mtx_lock(&devq->send_mtx);
4713 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4714 	mtx_unlock(&devq->send_mtx);
4715 	if (status != CAM_REQ_CMP)
4716 		return (NULL);
4717 
4718 	device = (struct cam_ed *)malloc(sizeof(*device),
4719 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4720 	if (device == NULL)
4721 		return (NULL);
4722 
4723 	cam_init_pinfo(&device->devq_entry);
4724 	device->target = target;
4725 	device->lun_id = lun_id;
4726 	device->sim = bus->sim;
4727 	if (cam_ccbq_init(&device->ccbq,
4728 			  bus->sim->max_dev_openings) != 0) {
4729 		free(device, M_CAMDEV);
4730 		return (NULL);
4731 	}
4732 	SLIST_INIT(&device->asyncs);
4733 	SLIST_INIT(&device->periphs);
4734 	device->generation = 0;
4735 	device->flags = CAM_DEV_UNCONFIGURED;
4736 	device->tag_delay_count = 0;
4737 	device->tag_saved_openings = 0;
4738 	device->refcount = 1;
4739 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4740 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4741 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4742 	/*
4743 	 * Hold a reference to our parent bus so it
4744 	 * will not go away before we do.
4745 	 */
4746 	target->refcount++;
4747 
4748 	cur_device = TAILQ_FIRST(&target->ed_entries);
4749 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4750 		cur_device = TAILQ_NEXT(cur_device, links);
4751 	if (cur_device != NULL)
4752 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4753 	else
4754 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4755 	target->generation++;
4756 	return (device);
4757 }
4758 
4759 void
4760 xpt_acquire_device(struct cam_ed *device)
4761 {
4762 	struct cam_eb *bus = device->target->bus;
4763 
4764 	mtx_lock(&bus->eb_mtx);
4765 	device->refcount++;
4766 	mtx_unlock(&bus->eb_mtx);
4767 }
4768 
4769 void
4770 xpt_release_device(struct cam_ed *device)
4771 {
4772 	struct cam_eb *bus = device->target->bus;
4773 	struct cam_devq *devq;
4774 
4775 	mtx_lock(&bus->eb_mtx);
4776 	if (--device->refcount > 0) {
4777 		mtx_unlock(&bus->eb_mtx);
4778 		return;
4779 	}
4780 
4781 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4782 	device->target->generation++;
4783 	mtx_unlock(&bus->eb_mtx);
4784 
4785 	/* Release our slot in the devq */
4786 	devq = bus->sim->devq;
4787 	mtx_lock(&devq->send_mtx);
4788 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4789 	mtx_unlock(&devq->send_mtx);
4790 
4791 	KASSERT(SLIST_EMPTY(&device->periphs),
4792 	    ("destroying device, but periphs list is not empty"));
4793 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4794 	    ("destroying device while still queued for ccbs"));
4795 
4796 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4797 		callout_stop(&device->callout);
4798 
4799 	xpt_release_target(device->target);
4800 
4801 	cam_ccbq_fini(&device->ccbq);
4802 	/*
4803 	 * Free allocated memory.  free(9) does nothing if the
4804 	 * supplied pointer is NULL, so it is safe to call without
4805 	 * checking.
4806 	 */
4807 	free(device->supported_vpds, M_CAMXPT);
4808 	free(device->device_id, M_CAMXPT);
4809 	free(device->ext_inq, M_CAMXPT);
4810 	free(device->physpath, M_CAMXPT);
4811 	free(device->rcap_buf, M_CAMXPT);
4812 	free(device->serial_num, M_CAMXPT);
4813 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4814 }
4815 
4816 u_int32_t
4817 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4818 {
4819 	int	result;
4820 	struct	cam_ed *dev;
4821 
4822 	dev = path->device;
4823 	mtx_lock(&dev->sim->devq->send_mtx);
4824 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4825 	mtx_unlock(&dev->sim->devq->send_mtx);
4826 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4827 	 || (dev->inq_flags & SID_CmdQue) != 0)
4828 		dev->tag_saved_openings = newopenings;
4829 	return (result);
4830 }
4831 
4832 static struct cam_eb *
4833 xpt_find_bus(path_id_t path_id)
4834 {
4835 	struct cam_eb *bus;
4836 
4837 	xpt_lock_buses();
4838 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4839 	     bus != NULL;
4840 	     bus = TAILQ_NEXT(bus, links)) {
4841 		if (bus->path_id == path_id) {
4842 			bus->refcount++;
4843 			break;
4844 		}
4845 	}
4846 	xpt_unlock_buses();
4847 	return (bus);
4848 }
4849 
4850 static struct cam_et *
4851 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4852 {
4853 	struct cam_et *target;
4854 
4855 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4856 	for (target = TAILQ_FIRST(&bus->et_entries);
4857 	     target != NULL;
4858 	     target = TAILQ_NEXT(target, links)) {
4859 		if (target->target_id == target_id) {
4860 			target->refcount++;
4861 			break;
4862 		}
4863 	}
4864 	return (target);
4865 }
4866 
4867 static struct cam_ed *
4868 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4869 {
4870 	struct cam_ed *device;
4871 
4872 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4873 	for (device = TAILQ_FIRST(&target->ed_entries);
4874 	     device != NULL;
4875 	     device = TAILQ_NEXT(device, links)) {
4876 		if (device->lun_id == lun_id) {
4877 			device->refcount++;
4878 			break;
4879 		}
4880 	}
4881 	return (device);
4882 }
4883 
4884 void
4885 xpt_start_tags(struct cam_path *path)
4886 {
4887 	struct ccb_relsim crs;
4888 	struct cam_ed *device;
4889 	struct cam_sim *sim;
4890 	int    newopenings;
4891 
4892 	device = path->device;
4893 	sim = path->bus->sim;
4894 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4895 	xpt_freeze_devq(path, /*count*/1);
4896 	device->inq_flags |= SID_CmdQue;
4897 	if (device->tag_saved_openings != 0)
4898 		newopenings = device->tag_saved_openings;
4899 	else
4900 		newopenings = min(device->maxtags,
4901 				  sim->max_tagged_dev_openings);
4902 	xpt_dev_ccbq_resize(path, newopenings);
4903 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4904 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4905 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4906 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4907 	crs.openings
4908 	    = crs.release_timeout
4909 	    = crs.qfrozen_cnt
4910 	    = 0;
4911 	xpt_action((union ccb *)&crs);
4912 }
4913 
4914 void
4915 xpt_stop_tags(struct cam_path *path)
4916 {
4917 	struct ccb_relsim crs;
4918 	struct cam_ed *device;
4919 	struct cam_sim *sim;
4920 
4921 	device = path->device;
4922 	sim = path->bus->sim;
4923 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4924 	device->tag_delay_count = 0;
4925 	xpt_freeze_devq(path, /*count*/1);
4926 	device->inq_flags &= ~SID_CmdQue;
4927 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4928 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4929 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4930 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4931 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4932 	crs.openings
4933 	    = crs.release_timeout
4934 	    = crs.qfrozen_cnt
4935 	    = 0;
4936 	xpt_action((union ccb *)&crs);
4937 }
4938 
4939 static void
4940 xpt_boot_delay(void *arg)
4941 {
4942 
4943 	xpt_release_boot();
4944 }
4945 
4946 static void
4947 xpt_config(void *arg)
4948 {
4949 	/*
4950 	 * Now that interrupts are enabled, go find our devices
4951 	 */
4952 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
4953 		printf("xpt_config: failed to create taskqueue thread.\n");
4954 
4955 	/* Setup debugging path */
4956 	if (cam_dflags != CAM_DEBUG_NONE) {
4957 		if (xpt_create_path(&cam_dpath, NULL,
4958 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4959 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4960 			printf("xpt_config: xpt_create_path() failed for debug"
4961 			       " target %d:%d:%d, debugging disabled\n",
4962 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4963 			cam_dflags = CAM_DEBUG_NONE;
4964 		}
4965 	} else
4966 		cam_dpath = NULL;
4967 
4968 	periphdriver_init(1);
4969 	xpt_hold_boot();
4970 	callout_init(&xsoftc.boot_callout, 1);
4971 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
4972 	    xpt_boot_delay, NULL, 0);
4973 	/* Fire up rescan thread. */
4974 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
4975 	    "cam", "scanner")) {
4976 		printf("xpt_config: failed to create rescan thread.\n");
4977 	}
4978 }
4979 
4980 void
4981 xpt_hold_boot(void)
4982 {
4983 	xpt_lock_buses();
4984 	xsoftc.buses_to_config++;
4985 	xpt_unlock_buses();
4986 }
4987 
4988 void
4989 xpt_release_boot(void)
4990 {
4991 	xpt_lock_buses();
4992 	xsoftc.buses_to_config--;
4993 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4994 		struct	xpt_task *task;
4995 
4996 		xsoftc.buses_config_done = 1;
4997 		xpt_unlock_buses();
4998 		/* Call manually because we don't have any busses */
4999 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
5000 		if (task != NULL) {
5001 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
5002 			taskqueue_enqueue(taskqueue_thread, &task->task);
5003 		}
5004 	} else
5005 		xpt_unlock_buses();
5006 }
5007 
5008 /*
5009  * If the given device only has one peripheral attached to it, and if that
5010  * peripheral is the passthrough driver, announce it.  This insures that the
5011  * user sees some sort of announcement for every peripheral in their system.
5012  */
5013 static int
5014 xptpassannouncefunc(struct cam_ed *device, void *arg)
5015 {
5016 	struct cam_periph *periph;
5017 	int i;
5018 
5019 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5020 	     periph = SLIST_NEXT(periph, periph_links), i++);
5021 
5022 	periph = SLIST_FIRST(&device->periphs);
5023 	if ((i == 1)
5024 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5025 		xpt_announce_periph(periph, NULL);
5026 
5027 	return(1);
5028 }
5029 
5030 static void
5031 xpt_finishconfig_task(void *context, int pending)
5032 {
5033 
5034 	periphdriver_init(2);
5035 	/*
5036 	 * Check for devices with no "standard" peripheral driver
5037 	 * attached.  For any devices like that, announce the
5038 	 * passthrough driver so the user will see something.
5039 	 */
5040 	if (!bootverbose)
5041 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5042 
5043 	/* Release our hook so that the boot can continue. */
5044 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
5045 	free(xsoftc.xpt_config_hook, M_CAMXPT);
5046 	xsoftc.xpt_config_hook = NULL;
5047 
5048 	free(context, M_CAMXPT);
5049 }
5050 
5051 cam_status
5052 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5053 		   struct cam_path *path)
5054 {
5055 	struct ccb_setasync csa;
5056 	cam_status status;
5057 	int xptpath = 0;
5058 
5059 	if (path == NULL) {
5060 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5061 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5062 		if (status != CAM_REQ_CMP)
5063 			return (status);
5064 		xpt_path_lock(path);
5065 		xptpath = 1;
5066 	}
5067 
5068 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5069 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5070 	csa.event_enable = event;
5071 	csa.callback = cbfunc;
5072 	csa.callback_arg = cbarg;
5073 	xpt_action((union ccb *)&csa);
5074 	status = csa.ccb_h.status;
5075 
5076 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5077 	    ("xpt_register_async: func %p\n", cbfunc));
5078 
5079 	if (xptpath) {
5080 		xpt_path_unlock(path);
5081 		xpt_free_path(path);
5082 	}
5083 
5084 	if ((status == CAM_REQ_CMP) &&
5085 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5086 		/*
5087 		 * Get this peripheral up to date with all
5088 		 * the currently existing devices.
5089 		 */
5090 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5091 	}
5092 	if ((status == CAM_REQ_CMP) &&
5093 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5094 		/*
5095 		 * Get this peripheral up to date with all
5096 		 * the currently existing busses.
5097 		 */
5098 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5099 	}
5100 
5101 	return (status);
5102 }
5103 
5104 static void
5105 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5106 {
5107 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5108 
5109 	switch (work_ccb->ccb_h.func_code) {
5110 	/* Common cases first */
5111 	case XPT_PATH_INQ:		/* Path routing inquiry */
5112 	{
5113 		struct ccb_pathinq *cpi;
5114 
5115 		cpi = &work_ccb->cpi;
5116 		cpi->version_num = 1; /* XXX??? */
5117 		cpi->hba_inquiry = 0;
5118 		cpi->target_sprt = 0;
5119 		cpi->hba_misc = 0;
5120 		cpi->hba_eng_cnt = 0;
5121 		cpi->max_target = 0;
5122 		cpi->max_lun = 0;
5123 		cpi->initiator_id = 0;
5124 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5125 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
5126 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5127 		cpi->unit_number = sim->unit_number;
5128 		cpi->bus_id = sim->bus_id;
5129 		cpi->base_transfer_speed = 0;
5130 		cpi->protocol = PROTO_UNSPECIFIED;
5131 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5132 		cpi->transport = XPORT_UNSPECIFIED;
5133 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5134 		cpi->ccb_h.status = CAM_REQ_CMP;
5135 		xpt_done(work_ccb);
5136 		break;
5137 	}
5138 	default:
5139 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5140 		xpt_done(work_ccb);
5141 		break;
5142 	}
5143 }
5144 
5145 /*
5146  * The xpt as a "controller" has no interrupt sources, so polling
5147  * is a no-op.
5148  */
5149 static void
5150 xptpoll(struct cam_sim *sim)
5151 {
5152 }
5153 
5154 void
5155 xpt_lock_buses(void)
5156 {
5157 	mtx_lock(&xsoftc.xpt_topo_lock);
5158 }
5159 
5160 void
5161 xpt_unlock_buses(void)
5162 {
5163 	mtx_unlock(&xsoftc.xpt_topo_lock);
5164 }
5165 
5166 struct mtx *
5167 xpt_path_mtx(struct cam_path *path)
5168 {
5169 
5170 	return (&path->device->device_mtx);
5171 }
5172 
5173 static void
5174 xpt_done_process(struct ccb_hdr *ccb_h)
5175 {
5176 	struct cam_sim *sim;
5177 	struct cam_devq *devq;
5178 	struct mtx *mtx = NULL;
5179 
5180 	if (ccb_h->flags & CAM_HIGH_POWER) {
5181 		struct highpowerlist	*hphead;
5182 		struct cam_ed		*device;
5183 
5184 		mtx_lock(&xsoftc.xpt_highpower_lock);
5185 		hphead = &xsoftc.highpowerq;
5186 
5187 		device = STAILQ_FIRST(hphead);
5188 
5189 		/*
5190 		 * Increment the count since this command is done.
5191 		 */
5192 		xsoftc.num_highpower++;
5193 
5194 		/*
5195 		 * Any high powered commands queued up?
5196 		 */
5197 		if (device != NULL) {
5198 
5199 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5200 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5201 
5202 			mtx_lock(&device->sim->devq->send_mtx);
5203 			xpt_release_devq_device(device,
5204 					 /*count*/1, /*runqueue*/TRUE);
5205 			mtx_unlock(&device->sim->devq->send_mtx);
5206 		} else
5207 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5208 	}
5209 
5210 	sim = ccb_h->path->bus->sim;
5211 
5212 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5213 		xpt_release_simq(sim, /*run_queue*/FALSE);
5214 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5215 	}
5216 
5217 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5218 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5219 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5220 		ccb_h->status &= ~CAM_DEV_QFRZN;
5221 	}
5222 
5223 	devq = sim->devq;
5224 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5225 		struct cam_ed *dev = ccb_h->path->device;
5226 
5227 		mtx_lock(&devq->send_mtx);
5228 		devq->send_active--;
5229 		devq->send_openings++;
5230 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5231 
5232 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5233 		  && (dev->ccbq.dev_active == 0))) {
5234 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5235 			xpt_release_devq_device(dev, /*count*/1,
5236 					 /*run_queue*/FALSE);
5237 		}
5238 
5239 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5240 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5241 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5242 			xpt_release_devq_device(dev, /*count*/1,
5243 					 /*run_queue*/FALSE);
5244 		}
5245 
5246 		if (!device_is_queued(dev))
5247 			(void)xpt_schedule_devq(devq, dev);
5248 		xpt_run_devq(devq);
5249 		mtx_unlock(&devq->send_mtx);
5250 
5251 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5252 			mtx = xpt_path_mtx(ccb_h->path);
5253 			mtx_lock(mtx);
5254 
5255 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5256 			 && (--dev->tag_delay_count == 0))
5257 				xpt_start_tags(ccb_h->path);
5258 		}
5259 	}
5260 
5261 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5262 		if (mtx == NULL) {
5263 			mtx = xpt_path_mtx(ccb_h->path);
5264 			mtx_lock(mtx);
5265 		}
5266 	} else {
5267 		if (mtx != NULL) {
5268 			mtx_unlock(mtx);
5269 			mtx = NULL;
5270 		}
5271 	}
5272 
5273 	/* Call the peripheral driver's callback */
5274 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5275 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5276 	if (mtx != NULL)
5277 		mtx_unlock(mtx);
5278 }
5279 
5280 void
5281 xpt_done_td(void *arg)
5282 {
5283 	struct cam_doneq *queue = arg;
5284 	struct ccb_hdr *ccb_h;
5285 	STAILQ_HEAD(, ccb_hdr)	doneq;
5286 
5287 	STAILQ_INIT(&doneq);
5288 	mtx_lock(&queue->cam_doneq_mtx);
5289 	while (1) {
5290 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5291 			queue->cam_doneq_sleep = 1;
5292 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5293 			    PRIBIO, "-", 0);
5294 			queue->cam_doneq_sleep = 0;
5295 		}
5296 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5297 		mtx_unlock(&queue->cam_doneq_mtx);
5298 
5299 		THREAD_NO_SLEEPING();
5300 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5301 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5302 			xpt_done_process(ccb_h);
5303 		}
5304 		THREAD_SLEEPING_OK();
5305 
5306 		mtx_lock(&queue->cam_doneq_mtx);
5307 	}
5308 }
5309 
5310 static void
5311 camisr_runqueue(void)
5312 {
5313 	struct	ccb_hdr *ccb_h;
5314 	struct cam_doneq *queue;
5315 	int i;
5316 
5317 	/* Process global queues. */
5318 	for (i = 0; i < cam_num_doneqs; i++) {
5319 		queue = &cam_doneqs[i];
5320 		mtx_lock(&queue->cam_doneq_mtx);
5321 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5322 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5323 			mtx_unlock(&queue->cam_doneq_mtx);
5324 			xpt_done_process(ccb_h);
5325 			mtx_lock(&queue->cam_doneq_mtx);
5326 		}
5327 		mtx_unlock(&queue->cam_doneq_mtx);
5328 	}
5329 }
5330 
5331 struct kv
5332 {
5333 	uint32_t v;
5334 	const char *name;
5335 };
5336 
5337 static struct kv map[] = {
5338 	{ XPT_NOOP, "XPT_NOOP" },
5339 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5340 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5341 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5342 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5343 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5344 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5345 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5346 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5347 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5348 	{ XPT_DEBUG, "XPT_DEBUG" },
5349 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5350 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5351 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5352 	{ XPT_ASYNC, "XPT_ASYNC" },
5353 	{ XPT_ABORT, "XPT_ABORT" },
5354 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5355 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5356 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5357 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5358 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5359 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5360 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5361 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5362 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5363 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5364 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5365 	{ XPT_MMCSD_IO, "XPT_MMCSD_IO" },
5366 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5367 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5368 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5369 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5370 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5371 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5372 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5373 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5374 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5375 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5376 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5377 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5378 	{ 0, 0 }
5379 };
5380 
5381 static const char *
5382 xpt_action_name(uint32_t action)
5383 {
5384 	static char buffer[32];	/* Only for unknown messages -- racy */
5385 	struct kv *walker = map;
5386 
5387 	while (walker->name != NULL) {
5388 		if (walker->v == action)
5389 			return (walker->name);
5390 		walker++;
5391 	}
5392 
5393 	snprintf(buffer, sizeof(buffer), "%#x", action);
5394 	return (buffer);
5395 }
5396