xref: /freebsd/sys/cam/cam_xpt.c (revision eb6d21b4ca6d668cf89afd99eef7baeafa712197)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/md5.h>
43 #include <sys/interrupt.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 
52 #ifdef PC98
53 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
54 #endif
55 
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_sim.h>
61 #include <cam/cam_xpt.h>
62 #include <cam/cam_xpt_sim.h>
63 #include <cam/cam_xpt_periph.h>
64 #include <cam/cam_xpt_internal.h>
65 #include <cam/cam_debug.h>
66 
67 #include <cam/scsi/scsi_all.h>
68 #include <cam/scsi/scsi_message.h>
69 #include <cam/scsi/scsi_pass.h>
70 #include <machine/stdarg.h>	/* for xpt_print below */
71 #include "opt_cam.h"
72 
73 /*
74  * This is the maximum number of high powered commands (e.g. start unit)
75  * that can be outstanding at a particular time.
76  */
77 #ifndef CAM_MAX_HIGHPOWER
78 #define CAM_MAX_HIGHPOWER  4
79 #endif
80 
81 /* Datastructures internal to the xpt layer */
82 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
83 
84 /* Object for defering XPT actions to a taskqueue */
85 struct xpt_task {
86 	struct task	task;
87 	void		*data1;
88 	uintptr_t	data2;
89 };
90 
91 typedef enum {
92 	XPT_FLAG_OPEN		= 0x01
93 } xpt_flags;
94 
95 struct xpt_softc {
96 	xpt_flags		flags;
97 	u_int32_t		xpt_generation;
98 
99 	/* number of high powered commands that can go through right now */
100 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
101 	int			num_highpower;
102 
103 	/* queue for handling async rescan requests. */
104 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
105 
106 	/* Registered busses */
107 	TAILQ_HEAD(,cam_eb)	xpt_busses;
108 	u_int			bus_generation;
109 
110 	struct intr_config_hook	*xpt_config_hook;
111 
112 	struct mtx		xpt_topo_lock;
113 	struct mtx		xpt_lock;
114 };
115 
116 typedef enum {
117 	DM_RET_COPY		= 0x01,
118 	DM_RET_FLAG_MASK	= 0x0f,
119 	DM_RET_NONE		= 0x00,
120 	DM_RET_STOP		= 0x10,
121 	DM_RET_DESCEND		= 0x20,
122 	DM_RET_ERROR		= 0x30,
123 	DM_RET_ACTION_MASK	= 0xf0
124 } dev_match_ret;
125 
126 typedef enum {
127 	XPT_DEPTH_BUS,
128 	XPT_DEPTH_TARGET,
129 	XPT_DEPTH_DEVICE,
130 	XPT_DEPTH_PERIPH
131 } xpt_traverse_depth;
132 
133 struct xpt_traverse_config {
134 	xpt_traverse_depth	depth;
135 	void			*tr_func;
136 	void			*tr_arg;
137 };
138 
139 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
140 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
141 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
142 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
143 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
144 
145 /* Transport layer configuration information */
146 static struct xpt_softc xsoftc;
147 
148 /* Queues for our software interrupt handler */
149 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
150 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
151 static cam_simq_t cam_simq;
152 static struct mtx cam_simq_lock;
153 
154 /* Pointers to software interrupt handlers */
155 static void *cambio_ih;
156 
157 struct cam_periph *xpt_periph;
158 
159 static periph_init_t xpt_periph_init;
160 
161 static struct periph_driver xpt_driver =
162 {
163 	xpt_periph_init, "xpt",
164 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
165 	CAM_PERIPH_DRV_EARLY
166 };
167 
168 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
169 
170 static d_open_t xptopen;
171 static d_close_t xptclose;
172 static d_ioctl_t xptioctl;
173 
174 static struct cdevsw xpt_cdevsw = {
175 	.d_version =	D_VERSION,
176 	.d_flags =	0,
177 	.d_open =	xptopen,
178 	.d_close =	xptclose,
179 	.d_ioctl =	xptioctl,
180 	.d_name =	"xpt",
181 };
182 
183 /* Storage for debugging datastructures */
184 #ifdef	CAMDEBUG
185 struct cam_path *cam_dpath;
186 u_int32_t cam_dflags;
187 u_int32_t cam_debug_delay;
188 #endif
189 
190 /* Our boot-time initialization hook */
191 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
192 
193 static moduledata_t cam_moduledata = {
194 	"cam",
195 	cam_module_event_handler,
196 	NULL
197 };
198 
199 static int	xpt_init(void *);
200 
201 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
202 MODULE_VERSION(cam, 1);
203 
204 
205 static void		xpt_async_bcast(struct async_list *async_head,
206 					u_int32_t async_code,
207 					struct cam_path *path,
208 					void *async_arg);
209 static path_id_t xptnextfreepathid(void);
210 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
211 static union ccb *xpt_get_ccb(struct cam_ed *device);
212 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
213 static timeout_t xpt_release_devq_timeout;
214 static void	 xpt_release_simq_timeout(void *arg) __unused;
215 static void	 xpt_release_bus(struct cam_eb *bus);
216 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
217 					 int run_queue);
218 static struct cam_et*
219 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
220 static void	 xpt_release_target(struct cam_et *target);
221 static struct cam_eb*
222 		 xpt_find_bus(path_id_t path_id);
223 static struct cam_et*
224 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
225 static struct cam_ed*
226 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
227 static xpt_busfunc_t	xptconfigbuscountfunc;
228 static xpt_busfunc_t	xptconfigfunc;
229 static void	 xpt_config(void *arg);
230 static xpt_devicefunc_t xptpassannouncefunc;
231 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
232 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
233 static void	 xptpoll(struct cam_sim *sim);
234 static void	 camisr(void *);
235 static void	 camisr_runqueue(void *);
236 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
237 				    u_int num_patterns, struct cam_eb *bus);
238 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
239 				       u_int num_patterns,
240 				       struct cam_ed *device);
241 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
242 				       u_int num_patterns,
243 				       struct cam_periph *periph);
244 static xpt_busfunc_t	xptedtbusfunc;
245 static xpt_targetfunc_t	xptedttargetfunc;
246 static xpt_devicefunc_t	xptedtdevicefunc;
247 static xpt_periphfunc_t	xptedtperiphfunc;
248 static xpt_pdrvfunc_t	xptplistpdrvfunc;
249 static xpt_periphfunc_t	xptplistperiphfunc;
250 static int		xptedtmatch(struct ccb_dev_match *cdm);
251 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
252 static int		xptbustraverse(struct cam_eb *start_bus,
253 				       xpt_busfunc_t *tr_func, void *arg);
254 static int		xpttargettraverse(struct cam_eb *bus,
255 					  struct cam_et *start_target,
256 					  xpt_targetfunc_t *tr_func, void *arg);
257 static int		xptdevicetraverse(struct cam_et *target,
258 					  struct cam_ed *start_device,
259 					  xpt_devicefunc_t *tr_func, void *arg);
260 static int		xptperiphtraverse(struct cam_ed *device,
261 					  struct cam_periph *start_periph,
262 					  xpt_periphfunc_t *tr_func, void *arg);
263 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
264 					xpt_pdrvfunc_t *tr_func, void *arg);
265 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
266 					    struct cam_periph *start_periph,
267 					    xpt_periphfunc_t *tr_func,
268 					    void *arg);
269 static xpt_busfunc_t	xptdefbusfunc;
270 static xpt_targetfunc_t	xptdeftargetfunc;
271 static xpt_devicefunc_t	xptdefdevicefunc;
272 static xpt_periphfunc_t	xptdefperiphfunc;
273 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
274 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
275 					    void *arg);
276 static void		xpt_dev_async_default(u_int32_t async_code,
277 					      struct cam_eb *bus,
278 					      struct cam_et *target,
279 					      struct cam_ed *device,
280 					      void *async_arg);
281 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
282 						 struct cam_et *target,
283 						 lun_id_t lun_id);
284 static xpt_devicefunc_t	xptsetasyncfunc;
285 static xpt_busfunc_t	xptsetasyncbusfunc;
286 static cam_status	xptregister(struct cam_periph *periph,
287 				    void *arg);
288 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
289 					    struct cam_ed *dev);
290 static __inline int periph_is_queued(struct cam_periph *periph);
291 static __inline int device_is_alloc_queued(struct cam_ed *device);
292 static __inline int device_is_send_queued(struct cam_ed *device);
293 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
294 
295 static __inline int
296 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
297 {
298 	int retval;
299 
300 	if (dev->ccbq.devq_openings > 0) {
301 		/*
302 		 * The priority of a device waiting for CCB resources
303 		 * is that of the the highest priority peripheral driver
304 		 * enqueued.
305 		 */
306 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
307 					  &dev->alloc_ccb_entry.pinfo,
308 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
309 	} else {
310 		retval = 0;
311 	}
312 
313 	return (retval);
314 }
315 
316 static __inline int
317 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
318 {
319 	int	retval;
320 
321 	if (dev->ccbq.dev_openings > 0) {
322 		/*
323 		 * The priority of a device waiting for controller
324 		 * resources is that of the the highest priority CCB
325 		 * enqueued.
326 		 */
327 		retval =
328 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
329 				     &dev->send_ccb_entry.pinfo,
330 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
331 	} else {
332 		retval = 0;
333 	}
334 	return (retval);
335 }
336 
337 static __inline int
338 periph_is_queued(struct cam_periph *periph)
339 {
340 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
341 }
342 
343 static __inline int
344 device_is_alloc_queued(struct cam_ed *device)
345 {
346 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
347 }
348 
349 static __inline int
350 device_is_send_queued(struct cam_ed *device)
351 {
352 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
353 }
354 
355 static __inline int
356 dev_allocq_is_runnable(struct cam_devq *devq)
357 {
358 	/*
359 	 * Have work to do.
360 	 * Have space to do more work.
361 	 * Allowed to do work.
362 	 */
363 	return ((devq->alloc_queue.qfrozen_cnt == 0)
364 	     && (devq->alloc_queue.entries > 0)
365 	     && (devq->alloc_openings > 0));
366 }
367 
368 static void
369 xpt_periph_init()
370 {
371 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
372 }
373 
374 static void
375 xptdone(struct cam_periph *periph, union ccb *done_ccb)
376 {
377 	/* Caller will release the CCB */
378 	wakeup(&done_ccb->ccb_h.cbfcnp);
379 }
380 
381 static int
382 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
383 {
384 
385 	/*
386 	 * Only allow read-write access.
387 	 */
388 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
389 		return(EPERM);
390 
391 	/*
392 	 * We don't allow nonblocking access.
393 	 */
394 	if ((flags & O_NONBLOCK) != 0) {
395 		printf("%s: can't do nonblocking access\n", devtoname(dev));
396 		return(ENODEV);
397 	}
398 
399 	/* Mark ourselves open */
400 	mtx_lock(&xsoftc.xpt_lock);
401 	xsoftc.flags |= XPT_FLAG_OPEN;
402 	mtx_unlock(&xsoftc.xpt_lock);
403 
404 	return(0);
405 }
406 
407 static int
408 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
409 {
410 
411 	/* Mark ourselves closed */
412 	mtx_lock(&xsoftc.xpt_lock);
413 	xsoftc.flags &= ~XPT_FLAG_OPEN;
414 	mtx_unlock(&xsoftc.xpt_lock);
415 
416 	return(0);
417 }
418 
419 /*
420  * Don't automatically grab the xpt softc lock here even though this is going
421  * through the xpt device.  The xpt device is really just a back door for
422  * accessing other devices and SIMs, so the right thing to do is to grab
423  * the appropriate SIM lock once the bus/SIM is located.
424  */
425 static int
426 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
427 {
428 	int error;
429 
430 	error = 0;
431 
432 	switch(cmd) {
433 	/*
434 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
435 	 * to accept CCB types that don't quite make sense to send through a
436 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
437 	 * in the CAM spec.
438 	 */
439 	case CAMIOCOMMAND: {
440 		union ccb *ccb;
441 		union ccb *inccb;
442 		struct cam_eb *bus;
443 
444 		inccb = (union ccb *)addr;
445 
446 		bus = xpt_find_bus(inccb->ccb_h.path_id);
447 		if (bus == NULL) {
448 			error = EINVAL;
449 			break;
450 		}
451 
452 		switch(inccb->ccb_h.func_code) {
453 		case XPT_SCAN_BUS:
454 		case XPT_RESET_BUS:
455 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
456 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
457 				error = EINVAL;
458 				break;
459 			}
460 			/* FALLTHROUGH */
461 		case XPT_PATH_INQ:
462 		case XPT_ENG_INQ:
463 		case XPT_SCAN_LUN:
464 
465 			ccb = xpt_alloc_ccb();
466 
467 			CAM_SIM_LOCK(bus->sim);
468 			/* Ensure passed in target/lun supported on this bus. */
469 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) ||
470 			    (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
471 				if (xpt_create_path(&ccb->ccb_h.path,
472 					    xpt_periph,
473 					    inccb->ccb_h.path_id,
474 					    CAM_TARGET_WILDCARD,
475 					    CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
476 					error = EINVAL;
477 					CAM_SIM_UNLOCK(bus->sim);
478 					xpt_free_ccb(ccb);
479 					break;
480 				}
481 				xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
482 				    inccb->ccb_h.pinfo.priority);
483 				ccb->ccb_h.func_code = XPT_PATH_INQ;
484 				xpt_action(ccb);
485 				xpt_free_path(ccb->ccb_h.path);
486 				if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD &&
487 				    inccb->ccb_h.target_id > ccb->cpi.max_target) ||
488 				    (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD &&
489 				    inccb->ccb_h.target_lun > ccb->cpi.max_lun)) {
490 					error = EINVAL;
491 					CAM_SIM_UNLOCK(bus->sim);
492 					xpt_free_ccb(ccb);
493 					break;
494 				}
495 			}
496 			/*
497 			 * Create a path using the bus, target, and lun the
498 			 * user passed in.
499 			 */
500 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
501 					    inccb->ccb_h.path_id,
502 					    inccb->ccb_h.target_id,
503 					    inccb->ccb_h.target_lun) !=
504 					    CAM_REQ_CMP){
505 				error = EINVAL;
506 				CAM_SIM_UNLOCK(bus->sim);
507 				xpt_free_ccb(ccb);
508 				break;
509 			}
510 			/* Ensure all of our fields are correct */
511 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
512 				      inccb->ccb_h.pinfo.priority);
513 			xpt_merge_ccb(ccb, inccb);
514 			ccb->ccb_h.cbfcnp = xptdone;
515 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
516 			bcopy(ccb, inccb, sizeof(union ccb));
517 			xpt_free_path(ccb->ccb_h.path);
518 			xpt_free_ccb(ccb);
519 			CAM_SIM_UNLOCK(bus->sim);
520 			break;
521 
522 		case XPT_DEBUG: {
523 			union ccb ccb;
524 
525 			/*
526 			 * This is an immediate CCB, so it's okay to
527 			 * allocate it on the stack.
528 			 */
529 
530 			CAM_SIM_LOCK(bus->sim);
531 
532 			/*
533 			 * Create a path using the bus, target, and lun the
534 			 * user passed in.
535 			 */
536 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
537 					    inccb->ccb_h.path_id,
538 					    inccb->ccb_h.target_id,
539 					    inccb->ccb_h.target_lun) !=
540 					    CAM_REQ_CMP){
541 				error = EINVAL;
542 				CAM_SIM_UNLOCK(bus->sim);
543 				break;
544 			}
545 			/* Ensure all of our fields are correct */
546 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
547 				      inccb->ccb_h.pinfo.priority);
548 			xpt_merge_ccb(&ccb, inccb);
549 			ccb.ccb_h.cbfcnp = xptdone;
550 			xpt_action(&ccb);
551 			CAM_SIM_UNLOCK(bus->sim);
552 			bcopy(&ccb, inccb, sizeof(union ccb));
553 			xpt_free_path(ccb.ccb_h.path);
554 			break;
555 
556 		}
557 		case XPT_DEV_MATCH: {
558 			struct cam_periph_map_info mapinfo;
559 			struct cam_path *old_path;
560 
561 			/*
562 			 * We can't deal with physical addresses for this
563 			 * type of transaction.
564 			 */
565 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
566 				error = EINVAL;
567 				break;
568 			}
569 
570 			/*
571 			 * Save this in case the caller had it set to
572 			 * something in particular.
573 			 */
574 			old_path = inccb->ccb_h.path;
575 
576 			/*
577 			 * We really don't need a path for the matching
578 			 * code.  The path is needed because of the
579 			 * debugging statements in xpt_action().  They
580 			 * assume that the CCB has a valid path.
581 			 */
582 			inccb->ccb_h.path = xpt_periph->path;
583 
584 			bzero(&mapinfo, sizeof(mapinfo));
585 
586 			/*
587 			 * Map the pattern and match buffers into kernel
588 			 * virtual address space.
589 			 */
590 			error = cam_periph_mapmem(inccb, &mapinfo);
591 
592 			if (error) {
593 				inccb->ccb_h.path = old_path;
594 				break;
595 			}
596 
597 			/*
598 			 * This is an immediate CCB, we can send it on directly.
599 			 */
600 			xpt_action(inccb);
601 
602 			/*
603 			 * Map the buffers back into user space.
604 			 */
605 			cam_periph_unmapmem(inccb, &mapinfo);
606 
607 			inccb->ccb_h.path = old_path;
608 
609 			error = 0;
610 			break;
611 		}
612 		default:
613 			error = ENOTSUP;
614 			break;
615 		}
616 		xpt_release_bus(bus);
617 		break;
618 	}
619 	/*
620 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
621 	 * with the periphal driver name and unit name filled in.  The other
622 	 * fields don't really matter as input.  The passthrough driver name
623 	 * ("pass"), and unit number are passed back in the ccb.  The current
624 	 * device generation number, and the index into the device peripheral
625 	 * driver list, and the status are also passed back.  Note that
626 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
627 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
628 	 * (or rather should be) impossible for the device peripheral driver
629 	 * list to change since we look at the whole thing in one pass, and
630 	 * we do it with lock protection.
631 	 *
632 	 */
633 	case CAMGETPASSTHRU: {
634 		union ccb *ccb;
635 		struct cam_periph *periph;
636 		struct periph_driver **p_drv;
637 		char   *name;
638 		u_int unit;
639 		u_int cur_generation;
640 		int base_periph_found;
641 		int splbreaknum;
642 
643 		ccb = (union ccb *)addr;
644 		unit = ccb->cgdl.unit_number;
645 		name = ccb->cgdl.periph_name;
646 		/*
647 		 * Every 100 devices, we want to drop our lock protection to
648 		 * give the software interrupt handler a chance to run.
649 		 * Most systems won't run into this check, but this should
650 		 * avoid starvation in the software interrupt handler in
651 		 * large systems.
652 		 */
653 		splbreaknum = 100;
654 
655 		ccb = (union ccb *)addr;
656 
657 		base_periph_found = 0;
658 
659 		/*
660 		 * Sanity check -- make sure we don't get a null peripheral
661 		 * driver name.
662 		 */
663 		if (*ccb->cgdl.periph_name == '\0') {
664 			error = EINVAL;
665 			break;
666 		}
667 
668 		/* Keep the list from changing while we traverse it */
669 		mtx_lock(&xsoftc.xpt_topo_lock);
670 ptstartover:
671 		cur_generation = xsoftc.xpt_generation;
672 
673 		/* first find our driver in the list of drivers */
674 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
675 			if (strcmp((*p_drv)->driver_name, name) == 0)
676 				break;
677 
678 		if (*p_drv == NULL) {
679 			mtx_unlock(&xsoftc.xpt_topo_lock);
680 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
681 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
682 			*ccb->cgdl.periph_name = '\0';
683 			ccb->cgdl.unit_number = 0;
684 			error = ENOENT;
685 			break;
686 		}
687 
688 		/*
689 		 * Run through every peripheral instance of this driver
690 		 * and check to see whether it matches the unit passed
691 		 * in by the user.  If it does, get out of the loops and
692 		 * find the passthrough driver associated with that
693 		 * peripheral driver.
694 		 */
695 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
696 		     periph = TAILQ_NEXT(periph, unit_links)) {
697 
698 			if (periph->unit_number == unit) {
699 				break;
700 			} else if (--splbreaknum == 0) {
701 				mtx_unlock(&xsoftc.xpt_topo_lock);
702 				mtx_lock(&xsoftc.xpt_topo_lock);
703 				splbreaknum = 100;
704 				if (cur_generation != xsoftc.xpt_generation)
705 				       goto ptstartover;
706 			}
707 		}
708 		/*
709 		 * If we found the peripheral driver that the user passed
710 		 * in, go through all of the peripheral drivers for that
711 		 * particular device and look for a passthrough driver.
712 		 */
713 		if (periph != NULL) {
714 			struct cam_ed *device;
715 			int i;
716 
717 			base_periph_found = 1;
718 			device = periph->path->device;
719 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
720 			     periph != NULL;
721 			     periph = SLIST_NEXT(periph, periph_links), i++) {
722 				/*
723 				 * Check to see whether we have a
724 				 * passthrough device or not.
725 				 */
726 				if (strcmp(periph->periph_name, "pass") == 0) {
727 					/*
728 					 * Fill in the getdevlist fields.
729 					 */
730 					strcpy(ccb->cgdl.periph_name,
731 					       periph->periph_name);
732 					ccb->cgdl.unit_number =
733 						periph->unit_number;
734 					if (SLIST_NEXT(periph, periph_links))
735 						ccb->cgdl.status =
736 							CAM_GDEVLIST_MORE_DEVS;
737 					else
738 						ccb->cgdl.status =
739 						       CAM_GDEVLIST_LAST_DEVICE;
740 					ccb->cgdl.generation =
741 						device->generation;
742 					ccb->cgdl.index = i;
743 					/*
744 					 * Fill in some CCB header fields
745 					 * that the user may want.
746 					 */
747 					ccb->ccb_h.path_id =
748 						periph->path->bus->path_id;
749 					ccb->ccb_h.target_id =
750 						periph->path->target->target_id;
751 					ccb->ccb_h.target_lun =
752 						periph->path->device->lun_id;
753 					ccb->ccb_h.status = CAM_REQ_CMP;
754 					break;
755 				}
756 			}
757 		}
758 
759 		/*
760 		 * If the periph is null here, one of two things has
761 		 * happened.  The first possibility is that we couldn't
762 		 * find the unit number of the particular peripheral driver
763 		 * that the user is asking about.  e.g. the user asks for
764 		 * the passthrough driver for "da11".  We find the list of
765 		 * "da" peripherals all right, but there is no unit 11.
766 		 * The other possibility is that we went through the list
767 		 * of peripheral drivers attached to the device structure,
768 		 * but didn't find one with the name "pass".  Either way,
769 		 * we return ENOENT, since we couldn't find something.
770 		 */
771 		if (periph == NULL) {
772 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
773 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
774 			*ccb->cgdl.periph_name = '\0';
775 			ccb->cgdl.unit_number = 0;
776 			error = ENOENT;
777 			/*
778 			 * It is unfortunate that this is even necessary,
779 			 * but there are many, many clueless users out there.
780 			 * If this is true, the user is looking for the
781 			 * passthrough driver, but doesn't have one in his
782 			 * kernel.
783 			 */
784 			if (base_periph_found == 1) {
785 				printf("xptioctl: pass driver is not in the "
786 				       "kernel\n");
787 				printf("xptioctl: put \"device pass\" in "
788 				       "your kernel config file\n");
789 			}
790 		}
791 		mtx_unlock(&xsoftc.xpt_topo_lock);
792 		break;
793 		}
794 	default:
795 		error = ENOTTY;
796 		break;
797 	}
798 
799 	return(error);
800 }
801 
802 static int
803 cam_module_event_handler(module_t mod, int what, void *arg)
804 {
805 	int error;
806 
807 	switch (what) {
808 	case MOD_LOAD:
809 		if ((error = xpt_init(NULL)) != 0)
810 			return (error);
811 		break;
812 	case MOD_UNLOAD:
813 		return EBUSY;
814 	default:
815 		return EOPNOTSUPP;
816 	}
817 
818 	return 0;
819 }
820 
821 /* thread to handle bus rescans */
822 static void
823 xpt_scanner_thread(void *dummy)
824 {
825 	cam_isrq_t	queue;
826 	union ccb	*ccb;
827 	struct cam_sim	*sim;
828 
829 	for (;;) {
830 		/*
831 		 * Wait for a rescan request to come in.  When it does, splice
832 		 * it onto a queue from local storage so that the xpt lock
833 		 * doesn't need to be held while the requests are being
834 		 * processed.
835 		 */
836 		xpt_lock_buses();
837 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
838 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
839 			       "ccb_scanq", 0);
840 		TAILQ_INIT(&queue);
841 		TAILQ_CONCAT(&queue, &xsoftc.ccb_scanq, sim_links.tqe);
842 		xpt_unlock_buses();
843 
844 		while ((ccb = (union ccb *)TAILQ_FIRST(&queue)) != NULL) {
845 			TAILQ_REMOVE(&queue, &ccb->ccb_h, sim_links.tqe);
846 
847 			sim = ccb->ccb_h.path->bus->sim;
848 			CAM_SIM_LOCK(sim);
849 
850 			if( ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD )
851 				ccb->ccb_h.func_code = XPT_SCAN_BUS;
852 			else
853 				ccb->ccb_h.func_code = XPT_SCAN_LUN;
854 			ccb->ccb_h.cbfcnp = xptdone;
855 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_NORMAL);
856 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
857 			xpt_free_path(ccb->ccb_h.path);
858 			xpt_free_ccb(ccb);
859 			CAM_SIM_UNLOCK(sim);
860 		}
861 	}
862 }
863 
864 void
865 xpt_rescan(union ccb *ccb)
866 {
867 	struct ccb_hdr *hdr;
868 
869 	/*
870 	 * Don't make duplicate entries for the same paths.
871 	 */
872 	xpt_lock_buses();
873 	TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
874 		if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
875 			wakeup(&xsoftc.ccb_scanq);
876 			xpt_unlock_buses();
877 			xpt_print(ccb->ccb_h.path, "rescan already queued\n");
878 			xpt_free_path(ccb->ccb_h.path);
879 			xpt_free_ccb(ccb);
880 			return;
881 		}
882 	}
883 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
884 	wakeup(&xsoftc.ccb_scanq);
885 	xpt_unlock_buses();
886 }
887 
888 /* Functions accessed by the peripheral drivers */
889 static int
890 xpt_init(void *dummy)
891 {
892 	struct cam_sim *xpt_sim;
893 	struct cam_path *path;
894 	struct cam_devq *devq;
895 	cam_status status;
896 
897 	TAILQ_INIT(&xsoftc.xpt_busses);
898 	TAILQ_INIT(&cam_simq);
899 	TAILQ_INIT(&xsoftc.ccb_scanq);
900 	STAILQ_INIT(&xsoftc.highpowerq);
901 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
902 
903 	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
904 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
905 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
906 
907 	/*
908 	 * The xpt layer is, itself, the equivelent of a SIM.
909 	 * Allow 16 ccbs in the ccb pool for it.  This should
910 	 * give decent parallelism when we probe busses and
911 	 * perform other XPT functions.
912 	 */
913 	devq = cam_simq_alloc(16);
914 	xpt_sim = cam_sim_alloc(xptaction,
915 				xptpoll,
916 				"xpt",
917 				/*softc*/NULL,
918 				/*unit*/0,
919 				/*mtx*/&xsoftc.xpt_lock,
920 				/*max_dev_transactions*/0,
921 				/*max_tagged_dev_transactions*/0,
922 				devq);
923 	if (xpt_sim == NULL)
924 		return (ENOMEM);
925 
926 	xpt_sim->max_ccbs = 16;
927 
928 	mtx_lock(&xsoftc.xpt_lock);
929 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
930 		printf("xpt_init: xpt_bus_register failed with status %#x,"
931 		       " failing attach\n", status);
932 		return (EINVAL);
933 	}
934 
935 	/*
936 	 * Looking at the XPT from the SIM layer, the XPT is
937 	 * the equivelent of a peripheral driver.  Allocate
938 	 * a peripheral driver entry for us.
939 	 */
940 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
941 				      CAM_TARGET_WILDCARD,
942 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
943 		printf("xpt_init: xpt_create_path failed with status %#x,"
944 		       " failing attach\n", status);
945 		return (EINVAL);
946 	}
947 
948 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
949 			 path, NULL, 0, xpt_sim);
950 	xpt_free_path(path);
951 	mtx_unlock(&xsoftc.xpt_lock);
952 
953 	/*
954 	 * Register a callback for when interrupts are enabled.
955 	 */
956 	xsoftc.xpt_config_hook =
957 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
958 					      M_CAMXPT, M_NOWAIT | M_ZERO);
959 	if (xsoftc.xpt_config_hook == NULL) {
960 		printf("xpt_init: Cannot malloc config hook "
961 		       "- failing attach\n");
962 		return (ENOMEM);
963 	}
964 
965 	xsoftc.xpt_config_hook->ich_func = xpt_config;
966 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
967 		free (xsoftc.xpt_config_hook, M_CAMXPT);
968 		printf("xpt_init: config_intrhook_establish failed "
969 		       "- failing attach\n");
970 	}
971 
972 	/* fire up rescan thread */
973 	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
974 		printf("xpt_init: failed to create rescan thread\n");
975 	}
976 	/* Install our software interrupt handlers */
977 	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
978 
979 	return (0);
980 }
981 
982 static cam_status
983 xptregister(struct cam_periph *periph, void *arg)
984 {
985 	struct cam_sim *xpt_sim;
986 
987 	if (periph == NULL) {
988 		printf("xptregister: periph was NULL!!\n");
989 		return(CAM_REQ_CMP_ERR);
990 	}
991 
992 	xpt_sim = (struct cam_sim *)arg;
993 	xpt_sim->softc = periph;
994 	xpt_periph = periph;
995 	periph->softc = NULL;
996 
997 	return(CAM_REQ_CMP);
998 }
999 
1000 int32_t
1001 xpt_add_periph(struct cam_periph *periph)
1002 {
1003 	struct cam_ed *device;
1004 	int32_t	 status;
1005 	struct periph_list *periph_head;
1006 
1007 	mtx_assert(periph->sim->mtx, MA_OWNED);
1008 
1009 	device = periph->path->device;
1010 
1011 	periph_head = &device->periphs;
1012 
1013 	status = CAM_REQ_CMP;
1014 
1015 	if (device != NULL) {
1016 		/*
1017 		 * Make room for this peripheral
1018 		 * so it will fit in the queue
1019 		 * when it's scheduled to run
1020 		 */
1021 		status = camq_resize(&device->drvq,
1022 				     device->drvq.array_size + 1);
1023 
1024 		device->generation++;
1025 
1026 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1027 	}
1028 
1029 	mtx_lock(&xsoftc.xpt_topo_lock);
1030 	xsoftc.xpt_generation++;
1031 	mtx_unlock(&xsoftc.xpt_topo_lock);
1032 
1033 	return (status);
1034 }
1035 
1036 void
1037 xpt_remove_periph(struct cam_periph *periph)
1038 {
1039 	struct cam_ed *device;
1040 
1041 	mtx_assert(periph->sim->mtx, MA_OWNED);
1042 
1043 	device = periph->path->device;
1044 
1045 	if (device != NULL) {
1046 		struct periph_list *periph_head;
1047 
1048 		periph_head = &device->periphs;
1049 
1050 		/* Release the slot for this peripheral */
1051 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1052 
1053 		device->generation++;
1054 
1055 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1056 	}
1057 
1058 	mtx_lock(&xsoftc.xpt_topo_lock);
1059 	xsoftc.xpt_generation++;
1060 	mtx_unlock(&xsoftc.xpt_topo_lock);
1061 }
1062 
1063 
1064 void
1065 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1066 {
1067 	struct	ccb_pathinq cpi;
1068 	struct	ccb_trans_settings cts;
1069 	struct	cam_path *path;
1070 	u_int	speed;
1071 	u_int	freq;
1072 	u_int	mb;
1073 
1074 	mtx_assert(periph->sim->mtx, MA_OWNED);
1075 
1076 	path = periph->path;
1077 	/*
1078 	 * To ensure that this is printed in one piece,
1079 	 * mask out CAM interrupts.
1080 	 */
1081 	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1082 	       periph->periph_name, periph->unit_number,
1083 	       path->bus->sim->sim_name,
1084 	       path->bus->sim->unit_number,
1085 	       path->bus->sim->bus_id,
1086 	       path->bus->path_id,
1087 	       path->target->target_id,
1088 	       path->device->lun_id);
1089 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1090 	if (path->device->protocol == PROTO_SCSI)
1091 	    scsi_print_inquiry(&path->device->inq_data);
1092 	else if (path->device->protocol == PROTO_ATA ||
1093 	    path->device->protocol == PROTO_SATAPM)
1094 		ata_print_ident(&path->device->ident_data);
1095 	else
1096 	    printf("Unknown protocol device\n");
1097 	if (bootverbose && path->device->serial_num_len > 0) {
1098 		/* Don't wrap the screen  - print only the first 60 chars */
1099 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1100 		       periph->unit_number, path->device->serial_num);
1101 	}
1102 	xpt_setup_ccb(&cts.ccb_h, path, CAM_PRIORITY_NORMAL);
1103 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1104 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1105 	xpt_action((union ccb*)&cts);
1106 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1107 		return;
1108 	}
1109 
1110 	/* Ask the SIM for its base transfer speed */
1111 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
1112 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1113 	xpt_action((union ccb *)&cpi);
1114 
1115 	speed = cpi.base_transfer_speed;
1116 	freq = 0;
1117 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1118 		struct	ccb_trans_settings_spi *spi =
1119 		    &cts.xport_specific.spi;
1120 
1121 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1122 		  && spi->sync_offset != 0) {
1123 			freq = scsi_calc_syncsrate(spi->sync_period);
1124 			speed = freq;
1125 		}
1126 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1127 			speed *= (0x01 << spi->bus_width);
1128 	}
1129 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1130 		struct	ccb_trans_settings_fc *fc =
1131 		    &cts.xport_specific.fc;
1132 
1133 		if (fc->valid & CTS_FC_VALID_SPEED)
1134 			speed = fc->bitrate;
1135 	}
1136 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1137 		struct	ccb_trans_settings_sas *sas =
1138 		    &cts.xport_specific.sas;
1139 
1140 		if (sas->valid & CTS_SAS_VALID_SPEED)
1141 			speed = sas->bitrate;
1142 	}
1143 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_ATA) {
1144 		struct	ccb_trans_settings_ata *ata =
1145 		    &cts.xport_specific.ata;
1146 
1147 		if (ata->valid & CTS_ATA_VALID_MODE)
1148 			speed = ata_mode2speed(ata->mode);
1149 	}
1150 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SATA) {
1151 		struct	ccb_trans_settings_sata *sata =
1152 		    &cts.xport_specific.sata;
1153 
1154 		if (sata->valid & CTS_SATA_VALID_REVISION)
1155 			speed = ata_revision2speed(sata->revision);
1156 	}
1157 
1158 	mb = speed / 1000;
1159 	if (mb > 0)
1160 		printf("%s%d: %d.%03dMB/s transfers",
1161 		       periph->periph_name, periph->unit_number,
1162 		       mb, speed % 1000);
1163 	else
1164 		printf("%s%d: %dKB/s transfers", periph->periph_name,
1165 		       periph->unit_number, speed);
1166 	/* Report additional information about SPI connections */
1167 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1168 		struct	ccb_trans_settings_spi *spi;
1169 
1170 		spi = &cts.xport_specific.spi;
1171 		if (freq != 0) {
1172 			printf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1173 			       freq % 1000,
1174 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1175 			     ? " DT" : "",
1176 			       spi->sync_offset);
1177 		}
1178 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1179 		 && spi->bus_width > 0) {
1180 			if (freq != 0) {
1181 				printf(", ");
1182 			} else {
1183 				printf(" (");
1184 			}
1185 			printf("%dbit)", 8 * (0x01 << spi->bus_width));
1186 		} else if (freq != 0) {
1187 			printf(")");
1188 		}
1189 	}
1190 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1191 		struct	ccb_trans_settings_fc *fc;
1192 
1193 		fc = &cts.xport_specific.fc;
1194 		if (fc->valid & CTS_FC_VALID_WWNN)
1195 			printf(" WWNN 0x%llx", (long long) fc->wwnn);
1196 		if (fc->valid & CTS_FC_VALID_WWPN)
1197 			printf(" WWPN 0x%llx", (long long) fc->wwpn);
1198 		if (fc->valid & CTS_FC_VALID_PORT)
1199 			printf(" PortID 0x%x", fc->port);
1200 	}
1201 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_ATA) {
1202 		struct ccb_trans_settings_ata *ata =
1203 		    &cts.xport_specific.ata;
1204 
1205 		printf(" (");
1206 		if (ata->valid & CTS_ATA_VALID_MODE)
1207 			printf("%s, ", ata_mode2string(ata->mode));
1208 		if (ata->valid & CTS_ATA_VALID_BYTECOUNT)
1209 			printf("PIO size %dbytes", ata->bytecount);
1210 		printf(")");
1211 	}
1212 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SATA) {
1213 		struct ccb_trans_settings_sata *sata =
1214 		    &cts.xport_specific.sata;
1215 
1216 		printf(" (");
1217 		if (sata->valid & CTS_SATA_VALID_REVISION)
1218 			printf("SATA %d.x, ", sata->revision);
1219 		if (sata->valid & CTS_SATA_VALID_MODE)
1220 			printf("%s, ", ata_mode2string(sata->mode));
1221 		if (sata->valid & CTS_SATA_VALID_BYTECOUNT)
1222 			printf("PIO size %dbytes", sata->bytecount);
1223 		printf(")");
1224 	}
1225 	if (path->device->inq_flags & SID_CmdQue
1226 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1227 		printf("\n%s%d: Command Queueing enabled",
1228 		       periph->periph_name, periph->unit_number);
1229 	}
1230 	printf("\n");
1231 
1232 	/*
1233 	 * We only want to print the caller's announce string if they've
1234 	 * passed one in..
1235 	 */
1236 	if (announce_string != NULL)
1237 		printf("%s%d: %s\n", periph->periph_name,
1238 		       periph->unit_number, announce_string);
1239 }
1240 
1241 static dev_match_ret
1242 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1243 	    struct cam_eb *bus)
1244 {
1245 	dev_match_ret retval;
1246 	int i;
1247 
1248 	retval = DM_RET_NONE;
1249 
1250 	/*
1251 	 * If we aren't given something to match against, that's an error.
1252 	 */
1253 	if (bus == NULL)
1254 		return(DM_RET_ERROR);
1255 
1256 	/*
1257 	 * If there are no match entries, then this bus matches no
1258 	 * matter what.
1259 	 */
1260 	if ((patterns == NULL) || (num_patterns == 0))
1261 		return(DM_RET_DESCEND | DM_RET_COPY);
1262 
1263 	for (i = 0; i < num_patterns; i++) {
1264 		struct bus_match_pattern *cur_pattern;
1265 
1266 		/*
1267 		 * If the pattern in question isn't for a bus node, we
1268 		 * aren't interested.  However, we do indicate to the
1269 		 * calling routine that we should continue descending the
1270 		 * tree, since the user wants to match against lower-level
1271 		 * EDT elements.
1272 		 */
1273 		if (patterns[i].type != DEV_MATCH_BUS) {
1274 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1275 				retval |= DM_RET_DESCEND;
1276 			continue;
1277 		}
1278 
1279 		cur_pattern = &patterns[i].pattern.bus_pattern;
1280 
1281 		/*
1282 		 * If they want to match any bus node, we give them any
1283 		 * device node.
1284 		 */
1285 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1286 			/* set the copy flag */
1287 			retval |= DM_RET_COPY;
1288 
1289 			/*
1290 			 * If we've already decided on an action, go ahead
1291 			 * and return.
1292 			 */
1293 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1294 				return(retval);
1295 		}
1296 
1297 		/*
1298 		 * Not sure why someone would do this...
1299 		 */
1300 		if (cur_pattern->flags == BUS_MATCH_NONE)
1301 			continue;
1302 
1303 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1304 		 && (cur_pattern->path_id != bus->path_id))
1305 			continue;
1306 
1307 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1308 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1309 			continue;
1310 
1311 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1312 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1313 			continue;
1314 
1315 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1316 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1317 			     DEV_IDLEN) != 0))
1318 			continue;
1319 
1320 		/*
1321 		 * If we get to this point, the user definitely wants
1322 		 * information on this bus.  So tell the caller to copy the
1323 		 * data out.
1324 		 */
1325 		retval |= DM_RET_COPY;
1326 
1327 		/*
1328 		 * If the return action has been set to descend, then we
1329 		 * know that we've already seen a non-bus matching
1330 		 * expression, therefore we need to further descend the tree.
1331 		 * This won't change by continuing around the loop, so we
1332 		 * go ahead and return.  If we haven't seen a non-bus
1333 		 * matching expression, we keep going around the loop until
1334 		 * we exhaust the matching expressions.  We'll set the stop
1335 		 * flag once we fall out of the loop.
1336 		 */
1337 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1338 			return(retval);
1339 	}
1340 
1341 	/*
1342 	 * If the return action hasn't been set to descend yet, that means
1343 	 * we haven't seen anything other than bus matching patterns.  So
1344 	 * tell the caller to stop descending the tree -- the user doesn't
1345 	 * want to match against lower level tree elements.
1346 	 */
1347 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1348 		retval |= DM_RET_STOP;
1349 
1350 	return(retval);
1351 }
1352 
1353 static dev_match_ret
1354 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1355 	       struct cam_ed *device)
1356 {
1357 	dev_match_ret retval;
1358 	int i;
1359 
1360 	retval = DM_RET_NONE;
1361 
1362 	/*
1363 	 * If we aren't given something to match against, that's an error.
1364 	 */
1365 	if (device == NULL)
1366 		return(DM_RET_ERROR);
1367 
1368 	/*
1369 	 * If there are no match entries, then this device matches no
1370 	 * matter what.
1371 	 */
1372 	if ((patterns == NULL) || (num_patterns == 0))
1373 		return(DM_RET_DESCEND | DM_RET_COPY);
1374 
1375 	for (i = 0; i < num_patterns; i++) {
1376 		struct device_match_pattern *cur_pattern;
1377 
1378 		/*
1379 		 * If the pattern in question isn't for a device node, we
1380 		 * aren't interested.
1381 		 */
1382 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1383 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1384 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1385 				retval |= DM_RET_DESCEND;
1386 			continue;
1387 		}
1388 
1389 		cur_pattern = &patterns[i].pattern.device_pattern;
1390 
1391 		/*
1392 		 * If they want to match any device node, we give them any
1393 		 * device node.
1394 		 */
1395 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1396 			/* set the copy flag */
1397 			retval |= DM_RET_COPY;
1398 
1399 
1400 			/*
1401 			 * If we've already decided on an action, go ahead
1402 			 * and return.
1403 			 */
1404 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1405 				return(retval);
1406 		}
1407 
1408 		/*
1409 		 * Not sure why someone would do this...
1410 		 */
1411 		if (cur_pattern->flags == DEV_MATCH_NONE)
1412 			continue;
1413 
1414 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1415 		 && (cur_pattern->path_id != device->target->bus->path_id))
1416 			continue;
1417 
1418 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1419 		 && (cur_pattern->target_id != device->target->target_id))
1420 			continue;
1421 
1422 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1423 		 && (cur_pattern->target_lun != device->lun_id))
1424 			continue;
1425 
1426 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1427 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1428 				    (caddr_t)&cur_pattern->inq_pat,
1429 				    1, sizeof(cur_pattern->inq_pat),
1430 				    scsi_static_inquiry_match) == NULL))
1431 			continue;
1432 
1433 		/*
1434 		 * If we get to this point, the user definitely wants
1435 		 * information on this device.  So tell the caller to copy
1436 		 * the data out.
1437 		 */
1438 		retval |= DM_RET_COPY;
1439 
1440 		/*
1441 		 * If the return action has been set to descend, then we
1442 		 * know that we've already seen a peripheral matching
1443 		 * expression, therefore we need to further descend the tree.
1444 		 * This won't change by continuing around the loop, so we
1445 		 * go ahead and return.  If we haven't seen a peripheral
1446 		 * matching expression, we keep going around the loop until
1447 		 * we exhaust the matching expressions.  We'll set the stop
1448 		 * flag once we fall out of the loop.
1449 		 */
1450 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1451 			return(retval);
1452 	}
1453 
1454 	/*
1455 	 * If the return action hasn't been set to descend yet, that means
1456 	 * we haven't seen any peripheral matching patterns.  So tell the
1457 	 * caller to stop descending the tree -- the user doesn't want to
1458 	 * match against lower level tree elements.
1459 	 */
1460 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1461 		retval |= DM_RET_STOP;
1462 
1463 	return(retval);
1464 }
1465 
1466 /*
1467  * Match a single peripheral against any number of match patterns.
1468  */
1469 static dev_match_ret
1470 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1471 	       struct cam_periph *periph)
1472 {
1473 	dev_match_ret retval;
1474 	int i;
1475 
1476 	/*
1477 	 * If we aren't given something to match against, that's an error.
1478 	 */
1479 	if (periph == NULL)
1480 		return(DM_RET_ERROR);
1481 
1482 	/*
1483 	 * If there are no match entries, then this peripheral matches no
1484 	 * matter what.
1485 	 */
1486 	if ((patterns == NULL) || (num_patterns == 0))
1487 		return(DM_RET_STOP | DM_RET_COPY);
1488 
1489 	/*
1490 	 * There aren't any nodes below a peripheral node, so there's no
1491 	 * reason to descend the tree any further.
1492 	 */
1493 	retval = DM_RET_STOP;
1494 
1495 	for (i = 0; i < num_patterns; i++) {
1496 		struct periph_match_pattern *cur_pattern;
1497 
1498 		/*
1499 		 * If the pattern in question isn't for a peripheral, we
1500 		 * aren't interested.
1501 		 */
1502 		if (patterns[i].type != DEV_MATCH_PERIPH)
1503 			continue;
1504 
1505 		cur_pattern = &patterns[i].pattern.periph_pattern;
1506 
1507 		/*
1508 		 * If they want to match on anything, then we will do so.
1509 		 */
1510 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1511 			/* set the copy flag */
1512 			retval |= DM_RET_COPY;
1513 
1514 			/*
1515 			 * We've already set the return action to stop,
1516 			 * since there are no nodes below peripherals in
1517 			 * the tree.
1518 			 */
1519 			return(retval);
1520 		}
1521 
1522 		/*
1523 		 * Not sure why someone would do this...
1524 		 */
1525 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1526 			continue;
1527 
1528 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1529 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1530 			continue;
1531 
1532 		/*
1533 		 * For the target and lun id's, we have to make sure the
1534 		 * target and lun pointers aren't NULL.  The xpt peripheral
1535 		 * has a wildcard target and device.
1536 		 */
1537 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1538 		 && ((periph->path->target == NULL)
1539 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1540 			continue;
1541 
1542 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1543 		 && ((periph->path->device == NULL)
1544 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1545 			continue;
1546 
1547 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1548 		 && (cur_pattern->unit_number != periph->unit_number))
1549 			continue;
1550 
1551 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1552 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1553 			     DEV_IDLEN) != 0))
1554 			continue;
1555 
1556 		/*
1557 		 * If we get to this point, the user definitely wants
1558 		 * information on this peripheral.  So tell the caller to
1559 		 * copy the data out.
1560 		 */
1561 		retval |= DM_RET_COPY;
1562 
1563 		/*
1564 		 * The return action has already been set to stop, since
1565 		 * peripherals don't have any nodes below them in the EDT.
1566 		 */
1567 		return(retval);
1568 	}
1569 
1570 	/*
1571 	 * If we get to this point, the peripheral that was passed in
1572 	 * doesn't match any of the patterns.
1573 	 */
1574 	return(retval);
1575 }
1576 
1577 static int
1578 xptedtbusfunc(struct cam_eb *bus, void *arg)
1579 {
1580 	struct ccb_dev_match *cdm;
1581 	dev_match_ret retval;
1582 
1583 	cdm = (struct ccb_dev_match *)arg;
1584 
1585 	/*
1586 	 * If our position is for something deeper in the tree, that means
1587 	 * that we've already seen this node.  So, we keep going down.
1588 	 */
1589 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1590 	 && (cdm->pos.cookie.bus == bus)
1591 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1592 	 && (cdm->pos.cookie.target != NULL))
1593 		retval = DM_RET_DESCEND;
1594 	else
1595 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1596 
1597 	/*
1598 	 * If we got an error, bail out of the search.
1599 	 */
1600 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1601 		cdm->status = CAM_DEV_MATCH_ERROR;
1602 		return(0);
1603 	}
1604 
1605 	/*
1606 	 * If the copy flag is set, copy this bus out.
1607 	 */
1608 	if (retval & DM_RET_COPY) {
1609 		int spaceleft, j;
1610 
1611 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1612 			sizeof(struct dev_match_result));
1613 
1614 		/*
1615 		 * If we don't have enough space to put in another
1616 		 * match result, save our position and tell the
1617 		 * user there are more devices to check.
1618 		 */
1619 		if (spaceleft < sizeof(struct dev_match_result)) {
1620 			bzero(&cdm->pos, sizeof(cdm->pos));
1621 			cdm->pos.position_type =
1622 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1623 
1624 			cdm->pos.cookie.bus = bus;
1625 			cdm->pos.generations[CAM_BUS_GENERATION]=
1626 				xsoftc.bus_generation;
1627 			cdm->status = CAM_DEV_MATCH_MORE;
1628 			return(0);
1629 		}
1630 		j = cdm->num_matches;
1631 		cdm->num_matches++;
1632 		cdm->matches[j].type = DEV_MATCH_BUS;
1633 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1634 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1635 		cdm->matches[j].result.bus_result.unit_number =
1636 			bus->sim->unit_number;
1637 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1638 			bus->sim->sim_name, DEV_IDLEN);
1639 	}
1640 
1641 	/*
1642 	 * If the user is only interested in busses, there's no
1643 	 * reason to descend to the next level in the tree.
1644 	 */
1645 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1646 		return(1);
1647 
1648 	/*
1649 	 * If there is a target generation recorded, check it to
1650 	 * make sure the target list hasn't changed.
1651 	 */
1652 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1653 	 && (bus == cdm->pos.cookie.bus)
1654 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1655 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1656 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1657 	     bus->generation)) {
1658 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1659 		return(0);
1660 	}
1661 
1662 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1663 	 && (cdm->pos.cookie.bus == bus)
1664 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1665 	 && (cdm->pos.cookie.target != NULL))
1666 		return(xpttargettraverse(bus,
1667 					(struct cam_et *)cdm->pos.cookie.target,
1668 					 xptedttargetfunc, arg));
1669 	else
1670 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1671 }
1672 
1673 static int
1674 xptedttargetfunc(struct cam_et *target, void *arg)
1675 {
1676 	struct ccb_dev_match *cdm;
1677 
1678 	cdm = (struct ccb_dev_match *)arg;
1679 
1680 	/*
1681 	 * If there is a device list generation recorded, check it to
1682 	 * make sure the device list hasn't changed.
1683 	 */
1684 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1685 	 && (cdm->pos.cookie.bus == target->bus)
1686 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1687 	 && (cdm->pos.cookie.target == target)
1688 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1689 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1690 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1691 	     target->generation)) {
1692 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1693 		return(0);
1694 	}
1695 
1696 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1697 	 && (cdm->pos.cookie.bus == target->bus)
1698 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1699 	 && (cdm->pos.cookie.target == target)
1700 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1701 	 && (cdm->pos.cookie.device != NULL))
1702 		return(xptdevicetraverse(target,
1703 					(struct cam_ed *)cdm->pos.cookie.device,
1704 					 xptedtdevicefunc, arg));
1705 	else
1706 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1707 }
1708 
1709 static int
1710 xptedtdevicefunc(struct cam_ed *device, void *arg)
1711 {
1712 
1713 	struct ccb_dev_match *cdm;
1714 	dev_match_ret retval;
1715 
1716 	cdm = (struct ccb_dev_match *)arg;
1717 
1718 	/*
1719 	 * If our position is for something deeper in the tree, that means
1720 	 * that we've already seen this node.  So, we keep going down.
1721 	 */
1722 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1723 	 && (cdm->pos.cookie.device == device)
1724 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1725 	 && (cdm->pos.cookie.periph != NULL))
1726 		retval = DM_RET_DESCEND;
1727 	else
1728 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1729 					device);
1730 
1731 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1732 		cdm->status = CAM_DEV_MATCH_ERROR;
1733 		return(0);
1734 	}
1735 
1736 	/*
1737 	 * If the copy flag is set, copy this device out.
1738 	 */
1739 	if (retval & DM_RET_COPY) {
1740 		int spaceleft, j;
1741 
1742 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1743 			sizeof(struct dev_match_result));
1744 
1745 		/*
1746 		 * If we don't have enough space to put in another
1747 		 * match result, save our position and tell the
1748 		 * user there are more devices to check.
1749 		 */
1750 		if (spaceleft < sizeof(struct dev_match_result)) {
1751 			bzero(&cdm->pos, sizeof(cdm->pos));
1752 			cdm->pos.position_type =
1753 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1754 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1755 
1756 			cdm->pos.cookie.bus = device->target->bus;
1757 			cdm->pos.generations[CAM_BUS_GENERATION]=
1758 				xsoftc.bus_generation;
1759 			cdm->pos.cookie.target = device->target;
1760 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1761 				device->target->bus->generation;
1762 			cdm->pos.cookie.device = device;
1763 			cdm->pos.generations[CAM_DEV_GENERATION] =
1764 				device->target->generation;
1765 			cdm->status = CAM_DEV_MATCH_MORE;
1766 			return(0);
1767 		}
1768 		j = cdm->num_matches;
1769 		cdm->num_matches++;
1770 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1771 		cdm->matches[j].result.device_result.path_id =
1772 			device->target->bus->path_id;
1773 		cdm->matches[j].result.device_result.target_id =
1774 			device->target->target_id;
1775 		cdm->matches[j].result.device_result.target_lun =
1776 			device->lun_id;
1777 		cdm->matches[j].result.device_result.protocol =
1778 			device->protocol;
1779 		bcopy(&device->inq_data,
1780 		      &cdm->matches[j].result.device_result.inq_data,
1781 		      sizeof(struct scsi_inquiry_data));
1782 		bcopy(&device->ident_data,
1783 		      &cdm->matches[j].result.device_result.ident_data,
1784 		      sizeof(struct ata_params));
1785 
1786 		/* Let the user know whether this device is unconfigured */
1787 		if (device->flags & CAM_DEV_UNCONFIGURED)
1788 			cdm->matches[j].result.device_result.flags =
1789 				DEV_RESULT_UNCONFIGURED;
1790 		else
1791 			cdm->matches[j].result.device_result.flags =
1792 				DEV_RESULT_NOFLAG;
1793 	}
1794 
1795 	/*
1796 	 * If the user isn't interested in peripherals, don't descend
1797 	 * the tree any further.
1798 	 */
1799 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1800 		return(1);
1801 
1802 	/*
1803 	 * If there is a peripheral list generation recorded, make sure
1804 	 * it hasn't changed.
1805 	 */
1806 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1807 	 && (device->target->bus == cdm->pos.cookie.bus)
1808 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1809 	 && (device->target == cdm->pos.cookie.target)
1810 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1811 	 && (device == cdm->pos.cookie.device)
1812 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1813 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1814 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1815 	     device->generation)){
1816 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1817 		return(0);
1818 	}
1819 
1820 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1821 	 && (cdm->pos.cookie.bus == device->target->bus)
1822 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1823 	 && (cdm->pos.cookie.target == device->target)
1824 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1825 	 && (cdm->pos.cookie.device == device)
1826 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1827 	 && (cdm->pos.cookie.periph != NULL))
1828 		return(xptperiphtraverse(device,
1829 				(struct cam_periph *)cdm->pos.cookie.periph,
1830 				xptedtperiphfunc, arg));
1831 	else
1832 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1833 }
1834 
1835 static int
1836 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1837 {
1838 	struct ccb_dev_match *cdm;
1839 	dev_match_ret retval;
1840 
1841 	cdm = (struct ccb_dev_match *)arg;
1842 
1843 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1844 
1845 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1846 		cdm->status = CAM_DEV_MATCH_ERROR;
1847 		return(0);
1848 	}
1849 
1850 	/*
1851 	 * If the copy flag is set, copy this peripheral out.
1852 	 */
1853 	if (retval & DM_RET_COPY) {
1854 		int spaceleft, j;
1855 
1856 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1857 			sizeof(struct dev_match_result));
1858 
1859 		/*
1860 		 * If we don't have enough space to put in another
1861 		 * match result, save our position and tell the
1862 		 * user there are more devices to check.
1863 		 */
1864 		if (spaceleft < sizeof(struct dev_match_result)) {
1865 			bzero(&cdm->pos, sizeof(cdm->pos));
1866 			cdm->pos.position_type =
1867 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1868 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1869 				CAM_DEV_POS_PERIPH;
1870 
1871 			cdm->pos.cookie.bus = periph->path->bus;
1872 			cdm->pos.generations[CAM_BUS_GENERATION]=
1873 				xsoftc.bus_generation;
1874 			cdm->pos.cookie.target = periph->path->target;
1875 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1876 				periph->path->bus->generation;
1877 			cdm->pos.cookie.device = periph->path->device;
1878 			cdm->pos.generations[CAM_DEV_GENERATION] =
1879 				periph->path->target->generation;
1880 			cdm->pos.cookie.periph = periph;
1881 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1882 				periph->path->device->generation;
1883 			cdm->status = CAM_DEV_MATCH_MORE;
1884 			return(0);
1885 		}
1886 
1887 		j = cdm->num_matches;
1888 		cdm->num_matches++;
1889 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1890 		cdm->matches[j].result.periph_result.path_id =
1891 			periph->path->bus->path_id;
1892 		cdm->matches[j].result.periph_result.target_id =
1893 			periph->path->target->target_id;
1894 		cdm->matches[j].result.periph_result.target_lun =
1895 			periph->path->device->lun_id;
1896 		cdm->matches[j].result.periph_result.unit_number =
1897 			periph->unit_number;
1898 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1899 			periph->periph_name, DEV_IDLEN);
1900 	}
1901 
1902 	return(1);
1903 }
1904 
1905 static int
1906 xptedtmatch(struct ccb_dev_match *cdm)
1907 {
1908 	int ret;
1909 
1910 	cdm->num_matches = 0;
1911 
1912 	/*
1913 	 * Check the bus list generation.  If it has changed, the user
1914 	 * needs to reset everything and start over.
1915 	 */
1916 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1917 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1918 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1919 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1920 		return(0);
1921 	}
1922 
1923 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1924 	 && (cdm->pos.cookie.bus != NULL))
1925 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1926 				     xptedtbusfunc, cdm);
1927 	else
1928 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1929 
1930 	/*
1931 	 * If we get back 0, that means that we had to stop before fully
1932 	 * traversing the EDT.  It also means that one of the subroutines
1933 	 * has set the status field to the proper value.  If we get back 1,
1934 	 * we've fully traversed the EDT and copied out any matching entries.
1935 	 */
1936 	if (ret == 1)
1937 		cdm->status = CAM_DEV_MATCH_LAST;
1938 
1939 	return(ret);
1940 }
1941 
1942 static int
1943 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1944 {
1945 	struct ccb_dev_match *cdm;
1946 
1947 	cdm = (struct ccb_dev_match *)arg;
1948 
1949 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1950 	 && (cdm->pos.cookie.pdrv == pdrv)
1951 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1952 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1953 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1954 	     (*pdrv)->generation)) {
1955 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1956 		return(0);
1957 	}
1958 
1959 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1960 	 && (cdm->pos.cookie.pdrv == pdrv)
1961 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1962 	 && (cdm->pos.cookie.periph != NULL))
1963 		return(xptpdperiphtraverse(pdrv,
1964 				(struct cam_periph *)cdm->pos.cookie.periph,
1965 				xptplistperiphfunc, arg));
1966 	else
1967 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1968 }
1969 
1970 static int
1971 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1972 {
1973 	struct ccb_dev_match *cdm;
1974 	dev_match_ret retval;
1975 
1976 	cdm = (struct ccb_dev_match *)arg;
1977 
1978 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1979 
1980 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1981 		cdm->status = CAM_DEV_MATCH_ERROR;
1982 		return(0);
1983 	}
1984 
1985 	/*
1986 	 * If the copy flag is set, copy this peripheral out.
1987 	 */
1988 	if (retval & DM_RET_COPY) {
1989 		int spaceleft, j;
1990 
1991 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1992 			sizeof(struct dev_match_result));
1993 
1994 		/*
1995 		 * If we don't have enough space to put in another
1996 		 * match result, save our position and tell the
1997 		 * user there are more devices to check.
1998 		 */
1999 		if (spaceleft < sizeof(struct dev_match_result)) {
2000 			struct periph_driver **pdrv;
2001 
2002 			pdrv = NULL;
2003 			bzero(&cdm->pos, sizeof(cdm->pos));
2004 			cdm->pos.position_type =
2005 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2006 				CAM_DEV_POS_PERIPH;
2007 
2008 			/*
2009 			 * This may look a bit non-sensical, but it is
2010 			 * actually quite logical.  There are very few
2011 			 * peripheral drivers, and bloating every peripheral
2012 			 * structure with a pointer back to its parent
2013 			 * peripheral driver linker set entry would cost
2014 			 * more in the long run than doing this quick lookup.
2015 			 */
2016 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2017 				if (strcmp((*pdrv)->driver_name,
2018 				    periph->periph_name) == 0)
2019 					break;
2020 			}
2021 
2022 			if (*pdrv == NULL) {
2023 				cdm->status = CAM_DEV_MATCH_ERROR;
2024 				return(0);
2025 			}
2026 
2027 			cdm->pos.cookie.pdrv = pdrv;
2028 			/*
2029 			 * The periph generation slot does double duty, as
2030 			 * does the periph pointer slot.  They are used for
2031 			 * both edt and pdrv lookups and positioning.
2032 			 */
2033 			cdm->pos.cookie.periph = periph;
2034 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2035 				(*pdrv)->generation;
2036 			cdm->status = CAM_DEV_MATCH_MORE;
2037 			return(0);
2038 		}
2039 
2040 		j = cdm->num_matches;
2041 		cdm->num_matches++;
2042 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2043 		cdm->matches[j].result.periph_result.path_id =
2044 			periph->path->bus->path_id;
2045 
2046 		/*
2047 		 * The transport layer peripheral doesn't have a target or
2048 		 * lun.
2049 		 */
2050 		if (periph->path->target)
2051 			cdm->matches[j].result.periph_result.target_id =
2052 				periph->path->target->target_id;
2053 		else
2054 			cdm->matches[j].result.periph_result.target_id = -1;
2055 
2056 		if (periph->path->device)
2057 			cdm->matches[j].result.periph_result.target_lun =
2058 				periph->path->device->lun_id;
2059 		else
2060 			cdm->matches[j].result.periph_result.target_lun = -1;
2061 
2062 		cdm->matches[j].result.periph_result.unit_number =
2063 			periph->unit_number;
2064 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2065 			periph->periph_name, DEV_IDLEN);
2066 	}
2067 
2068 	return(1);
2069 }
2070 
2071 static int
2072 xptperiphlistmatch(struct ccb_dev_match *cdm)
2073 {
2074 	int ret;
2075 
2076 	cdm->num_matches = 0;
2077 
2078 	/*
2079 	 * At this point in the edt traversal function, we check the bus
2080 	 * list generation to make sure that no busses have been added or
2081 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2082 	 * For the peripheral driver list traversal function, however, we
2083 	 * don't have to worry about new peripheral driver types coming or
2084 	 * going; they're in a linker set, and therefore can't change
2085 	 * without a recompile.
2086 	 */
2087 
2088 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2089 	 && (cdm->pos.cookie.pdrv != NULL))
2090 		ret = xptpdrvtraverse(
2091 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2092 				xptplistpdrvfunc, cdm);
2093 	else
2094 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2095 
2096 	/*
2097 	 * If we get back 0, that means that we had to stop before fully
2098 	 * traversing the peripheral driver tree.  It also means that one of
2099 	 * the subroutines has set the status field to the proper value.  If
2100 	 * we get back 1, we've fully traversed the EDT and copied out any
2101 	 * matching entries.
2102 	 */
2103 	if (ret == 1)
2104 		cdm->status = CAM_DEV_MATCH_LAST;
2105 
2106 	return(ret);
2107 }
2108 
2109 static int
2110 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2111 {
2112 	struct cam_eb *bus, *next_bus;
2113 	int retval;
2114 
2115 	retval = 1;
2116 
2117 	mtx_lock(&xsoftc.xpt_topo_lock);
2118 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2119 	     bus != NULL;
2120 	     bus = next_bus) {
2121 		next_bus = TAILQ_NEXT(bus, links);
2122 
2123 		mtx_unlock(&xsoftc.xpt_topo_lock);
2124 		CAM_SIM_LOCK(bus->sim);
2125 		retval = tr_func(bus, arg);
2126 		CAM_SIM_UNLOCK(bus->sim);
2127 		if (retval == 0)
2128 			return(retval);
2129 		mtx_lock(&xsoftc.xpt_topo_lock);
2130 	}
2131 	mtx_unlock(&xsoftc.xpt_topo_lock);
2132 
2133 	return(retval);
2134 }
2135 
2136 int
2137 xpt_sim_opened(struct cam_sim *sim)
2138 {
2139 	struct cam_eb *bus;
2140 	struct cam_et *target;
2141 	struct cam_ed *device;
2142 	struct cam_periph *periph;
2143 
2144 	KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
2145 	mtx_assert(sim->mtx, MA_OWNED);
2146 
2147 	mtx_lock(&xsoftc.xpt_topo_lock);
2148 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
2149 		if (bus->sim != sim)
2150 			continue;
2151 
2152 		TAILQ_FOREACH(target, &bus->et_entries, links) {
2153 			TAILQ_FOREACH(device, &target->ed_entries, links) {
2154 				SLIST_FOREACH(periph, &device->periphs,
2155 				    periph_links) {
2156 					if (periph->refcount > 0) {
2157 						mtx_unlock(&xsoftc.xpt_topo_lock);
2158 						return (1);
2159 					}
2160 				}
2161 			}
2162 		}
2163 	}
2164 
2165 	mtx_unlock(&xsoftc.xpt_topo_lock);
2166 	return (0);
2167 }
2168 
2169 static int
2170 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2171 		  xpt_targetfunc_t *tr_func, void *arg)
2172 {
2173 	struct cam_et *target, *next_target;
2174 	int retval;
2175 
2176 	retval = 1;
2177 	for (target = (start_target ? start_target :
2178 		       TAILQ_FIRST(&bus->et_entries));
2179 	     target != NULL; target = next_target) {
2180 
2181 		next_target = TAILQ_NEXT(target, links);
2182 
2183 		retval = tr_func(target, arg);
2184 
2185 		if (retval == 0)
2186 			return(retval);
2187 	}
2188 
2189 	return(retval);
2190 }
2191 
2192 static int
2193 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2194 		  xpt_devicefunc_t *tr_func, void *arg)
2195 {
2196 	struct cam_ed *device, *next_device;
2197 	int retval;
2198 
2199 	retval = 1;
2200 	for (device = (start_device ? start_device :
2201 		       TAILQ_FIRST(&target->ed_entries));
2202 	     device != NULL;
2203 	     device = next_device) {
2204 
2205 		next_device = TAILQ_NEXT(device, links);
2206 
2207 		retval = tr_func(device, arg);
2208 
2209 		if (retval == 0)
2210 			return(retval);
2211 	}
2212 
2213 	return(retval);
2214 }
2215 
2216 static int
2217 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2218 		  xpt_periphfunc_t *tr_func, void *arg)
2219 {
2220 	struct cam_periph *periph, *next_periph;
2221 	int retval;
2222 
2223 	retval = 1;
2224 
2225 	for (periph = (start_periph ? start_periph :
2226 		       SLIST_FIRST(&device->periphs));
2227 	     periph != NULL;
2228 	     periph = next_periph) {
2229 
2230 		next_periph = SLIST_NEXT(periph, periph_links);
2231 
2232 		retval = tr_func(periph, arg);
2233 		if (retval == 0)
2234 			return(retval);
2235 	}
2236 
2237 	return(retval);
2238 }
2239 
2240 static int
2241 xptpdrvtraverse(struct periph_driver **start_pdrv,
2242 		xpt_pdrvfunc_t *tr_func, void *arg)
2243 {
2244 	struct periph_driver **pdrv;
2245 	int retval;
2246 
2247 	retval = 1;
2248 
2249 	/*
2250 	 * We don't traverse the peripheral driver list like we do the
2251 	 * other lists, because it is a linker set, and therefore cannot be
2252 	 * changed during runtime.  If the peripheral driver list is ever
2253 	 * re-done to be something other than a linker set (i.e. it can
2254 	 * change while the system is running), the list traversal should
2255 	 * be modified to work like the other traversal functions.
2256 	 */
2257 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2258 	     *pdrv != NULL; pdrv++) {
2259 		retval = tr_func(pdrv, arg);
2260 
2261 		if (retval == 0)
2262 			return(retval);
2263 	}
2264 
2265 	return(retval);
2266 }
2267 
2268 static int
2269 xptpdperiphtraverse(struct periph_driver **pdrv,
2270 		    struct cam_periph *start_periph,
2271 		    xpt_periphfunc_t *tr_func, void *arg)
2272 {
2273 	struct cam_periph *periph, *next_periph;
2274 	int retval;
2275 
2276 	retval = 1;
2277 
2278 	for (periph = (start_periph ? start_periph :
2279 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2280 	     periph = next_periph) {
2281 
2282 		next_periph = TAILQ_NEXT(periph, unit_links);
2283 
2284 		retval = tr_func(periph, arg);
2285 		if (retval == 0)
2286 			return(retval);
2287 	}
2288 	return(retval);
2289 }
2290 
2291 static int
2292 xptdefbusfunc(struct cam_eb *bus, void *arg)
2293 {
2294 	struct xpt_traverse_config *tr_config;
2295 
2296 	tr_config = (struct xpt_traverse_config *)arg;
2297 
2298 	if (tr_config->depth == XPT_DEPTH_BUS) {
2299 		xpt_busfunc_t *tr_func;
2300 
2301 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2302 
2303 		return(tr_func(bus, tr_config->tr_arg));
2304 	} else
2305 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2306 }
2307 
2308 static int
2309 xptdeftargetfunc(struct cam_et *target, void *arg)
2310 {
2311 	struct xpt_traverse_config *tr_config;
2312 
2313 	tr_config = (struct xpt_traverse_config *)arg;
2314 
2315 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2316 		xpt_targetfunc_t *tr_func;
2317 
2318 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2319 
2320 		return(tr_func(target, tr_config->tr_arg));
2321 	} else
2322 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2323 }
2324 
2325 static int
2326 xptdefdevicefunc(struct cam_ed *device, void *arg)
2327 {
2328 	struct xpt_traverse_config *tr_config;
2329 
2330 	tr_config = (struct xpt_traverse_config *)arg;
2331 
2332 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2333 		xpt_devicefunc_t *tr_func;
2334 
2335 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2336 
2337 		return(tr_func(device, tr_config->tr_arg));
2338 	} else
2339 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2340 }
2341 
2342 static int
2343 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2344 {
2345 	struct xpt_traverse_config *tr_config;
2346 	xpt_periphfunc_t *tr_func;
2347 
2348 	tr_config = (struct xpt_traverse_config *)arg;
2349 
2350 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2351 
2352 	/*
2353 	 * Unlike the other default functions, we don't check for depth
2354 	 * here.  The peripheral driver level is the last level in the EDT,
2355 	 * so if we're here, we should execute the function in question.
2356 	 */
2357 	return(tr_func(periph, tr_config->tr_arg));
2358 }
2359 
2360 /*
2361  * Execute the given function for every bus in the EDT.
2362  */
2363 static int
2364 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2365 {
2366 	struct xpt_traverse_config tr_config;
2367 
2368 	tr_config.depth = XPT_DEPTH_BUS;
2369 	tr_config.tr_func = tr_func;
2370 	tr_config.tr_arg = arg;
2371 
2372 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2373 }
2374 
2375 /*
2376  * Execute the given function for every device in the EDT.
2377  */
2378 static int
2379 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2380 {
2381 	struct xpt_traverse_config tr_config;
2382 
2383 	tr_config.depth = XPT_DEPTH_DEVICE;
2384 	tr_config.tr_func = tr_func;
2385 	tr_config.tr_arg = arg;
2386 
2387 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2388 }
2389 
2390 static int
2391 xptsetasyncfunc(struct cam_ed *device, void *arg)
2392 {
2393 	struct cam_path path;
2394 	struct ccb_getdev cgd;
2395 	struct async_node *cur_entry;
2396 
2397 	cur_entry = (struct async_node *)arg;
2398 
2399 	/*
2400 	 * Don't report unconfigured devices (Wildcard devs,
2401 	 * devices only for target mode, device instances
2402 	 * that have been invalidated but are waiting for
2403 	 * their last reference count to be released).
2404 	 */
2405 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2406 		return (1);
2407 
2408 	xpt_compile_path(&path,
2409 			 NULL,
2410 			 device->target->bus->path_id,
2411 			 device->target->target_id,
2412 			 device->lun_id);
2413 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2414 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2415 	xpt_action((union ccb *)&cgd);
2416 	cur_entry->callback(cur_entry->callback_arg,
2417 			    AC_FOUND_DEVICE,
2418 			    &path, &cgd);
2419 	xpt_release_path(&path);
2420 
2421 	return(1);
2422 }
2423 
2424 static int
2425 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2426 {
2427 	struct cam_path path;
2428 	struct ccb_pathinq cpi;
2429 	struct async_node *cur_entry;
2430 
2431 	cur_entry = (struct async_node *)arg;
2432 
2433 	xpt_compile_path(&path, /*periph*/NULL,
2434 			 bus->sim->path_id,
2435 			 CAM_TARGET_WILDCARD,
2436 			 CAM_LUN_WILDCARD);
2437 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2438 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2439 	xpt_action((union ccb *)&cpi);
2440 	cur_entry->callback(cur_entry->callback_arg,
2441 			    AC_PATH_REGISTERED,
2442 			    &path, &cpi);
2443 	xpt_release_path(&path);
2444 
2445 	return(1);
2446 }
2447 
2448 static void
2449 xpt_action_sasync_cb(void *context, int pending)
2450 {
2451 	struct async_node *cur_entry;
2452 	struct xpt_task *task;
2453 	uint32_t added;
2454 
2455 	task = (struct xpt_task *)context;
2456 	cur_entry = (struct async_node *)task->data1;
2457 	added = task->data2;
2458 
2459 	if ((added & AC_FOUND_DEVICE) != 0) {
2460 		/*
2461 		 * Get this peripheral up to date with all
2462 		 * the currently existing devices.
2463 		 */
2464 		xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2465 	}
2466 	if ((added & AC_PATH_REGISTERED) != 0) {
2467 		/*
2468 		 * Get this peripheral up to date with all
2469 		 * the currently existing busses.
2470 		 */
2471 		xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2472 	}
2473 
2474 	free(task, M_CAMXPT);
2475 }
2476 
2477 void
2478 xpt_action(union ccb *start_ccb)
2479 {
2480 
2481 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2482 
2483 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2484 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2485 }
2486 
2487 void
2488 xpt_action_default(union ccb *start_ccb)
2489 {
2490 
2491 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2492 
2493 
2494 	switch (start_ccb->ccb_h.func_code) {
2495 	case XPT_SCSI_IO:
2496 	{
2497 		struct cam_ed *device;
2498 #ifdef CAMDEBUG
2499 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2500 		struct cam_path *path;
2501 
2502 		path = start_ccb->ccb_h.path;
2503 #endif
2504 
2505 		/*
2506 		 * For the sake of compatibility with SCSI-1
2507 		 * devices that may not understand the identify
2508 		 * message, we include lun information in the
2509 		 * second byte of all commands.  SCSI-1 specifies
2510 		 * that luns are a 3 bit value and reserves only 3
2511 		 * bits for lun information in the CDB.  Later
2512 		 * revisions of the SCSI spec allow for more than 8
2513 		 * luns, but have deprecated lun information in the
2514 		 * CDB.  So, if the lun won't fit, we must omit.
2515 		 *
2516 		 * Also be aware that during initial probing for devices,
2517 		 * the inquiry information is unknown but initialized to 0.
2518 		 * This means that this code will be exercised while probing
2519 		 * devices with an ANSI revision greater than 2.
2520 		 */
2521 		device = start_ccb->ccb_h.path->device;
2522 		if (device->protocol_version <= SCSI_REV_2
2523 		 && start_ccb->ccb_h.target_lun < 8
2524 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2525 
2526 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2527 			    start_ccb->ccb_h.target_lun << 5;
2528 		}
2529 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2530 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2531 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2532 			  	       &path->device->inq_data),
2533 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2534 					  cdb_str, sizeof(cdb_str))));
2535 	}
2536 	/* FALLTHROUGH */
2537 	case XPT_TARGET_IO:
2538 	case XPT_CONT_TARGET_IO:
2539 		start_ccb->csio.sense_resid = 0;
2540 		start_ccb->csio.resid = 0;
2541 		/* FALLTHROUGH */
2542 	case XPT_ATA_IO:
2543 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO) {
2544 			start_ccb->ataio.resid = 0;
2545 		}
2546 	case XPT_RESET_DEV:
2547 	case XPT_ENG_EXEC:
2548 	{
2549 		struct cam_path *path;
2550 		int runq;
2551 
2552 		path = start_ccb->ccb_h.path;
2553 
2554 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2555 		if (path->device->ccbq.queue.qfrozen_cnt == 0)
2556 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
2557 		else
2558 			runq = 0;
2559 		if (runq != 0)
2560 			xpt_run_dev_sendq(path->bus);
2561 		break;
2562 	}
2563 	case XPT_CALC_GEOMETRY:
2564 	{
2565 		struct cam_sim *sim;
2566 
2567 		/* Filter out garbage */
2568 		if (start_ccb->ccg.block_size == 0
2569 		 || start_ccb->ccg.volume_size == 0) {
2570 			start_ccb->ccg.cylinders = 0;
2571 			start_ccb->ccg.heads = 0;
2572 			start_ccb->ccg.secs_per_track = 0;
2573 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2574 			break;
2575 		}
2576 #ifdef PC98
2577 		/*
2578 		 * In a PC-98 system, geometry translation depens on
2579 		 * the "real" device geometry obtained from mode page 4.
2580 		 * SCSI geometry translation is performed in the
2581 		 * initialization routine of the SCSI BIOS and the result
2582 		 * stored in host memory.  If the translation is available
2583 		 * in host memory, use it.  If not, rely on the default
2584 		 * translation the device driver performs.
2585 		 */
2586 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2587 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2588 			break;
2589 		}
2590 #endif
2591 		sim = start_ccb->ccb_h.path->bus->sim;
2592 		(*(sim->sim_action))(sim, start_ccb);
2593 		break;
2594 	}
2595 	case XPT_ABORT:
2596 	{
2597 		union ccb* abort_ccb;
2598 
2599 		abort_ccb = start_ccb->cab.abort_ccb;
2600 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2601 
2602 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2603 				struct cam_ccbq *ccbq;
2604 
2605 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
2606 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2607 				abort_ccb->ccb_h.status =
2608 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2609 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2610 				xpt_done(abort_ccb);
2611 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2612 				break;
2613 			}
2614 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2615 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2616 				/*
2617 				 * We've caught this ccb en route to
2618 				 * the SIM.  Flag it for abort and the
2619 				 * SIM will do so just before starting
2620 				 * real work on the CCB.
2621 				 */
2622 				abort_ccb->ccb_h.status =
2623 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2624 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2625 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2626 				break;
2627 			}
2628 		}
2629 		if (XPT_FC_IS_QUEUED(abort_ccb)
2630 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2631 			/*
2632 			 * It's already completed but waiting
2633 			 * for our SWI to get to it.
2634 			 */
2635 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2636 			break;
2637 		}
2638 		/*
2639 		 * If we weren't able to take care of the abort request
2640 		 * in the XPT, pass the request down to the SIM for processing.
2641 		 */
2642 	}
2643 	/* FALLTHROUGH */
2644 	case XPT_ACCEPT_TARGET_IO:
2645 	case XPT_EN_LUN:
2646 	case XPT_IMMED_NOTIFY:
2647 	case XPT_NOTIFY_ACK:
2648 	case XPT_RESET_BUS:
2649 	case XPT_IMMEDIATE_NOTIFY:
2650 	case XPT_NOTIFY_ACKNOWLEDGE:
2651 	case XPT_GET_SIM_KNOB:
2652 	case XPT_SET_SIM_KNOB:
2653 	{
2654 		struct cam_sim *sim;
2655 
2656 		sim = start_ccb->ccb_h.path->bus->sim;
2657 		(*(sim->sim_action))(sim, start_ccb);
2658 		break;
2659 	}
2660 	case XPT_PATH_INQ:
2661 	{
2662 		struct cam_sim *sim;
2663 
2664 		sim = start_ccb->ccb_h.path->bus->sim;
2665 		(*(sim->sim_action))(sim, start_ccb);
2666 		break;
2667 	}
2668 	case XPT_PATH_STATS:
2669 		start_ccb->cpis.last_reset =
2670 			start_ccb->ccb_h.path->bus->last_reset;
2671 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2672 		break;
2673 	case XPT_GDEV_TYPE:
2674 	{
2675 		struct cam_ed *dev;
2676 
2677 		dev = start_ccb->ccb_h.path->device;
2678 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2679 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2680 		} else {
2681 			struct ccb_getdev *cgd;
2682 			struct cam_eb *bus;
2683 			struct cam_et *tar;
2684 
2685 			cgd = &start_ccb->cgd;
2686 			bus = cgd->ccb_h.path->bus;
2687 			tar = cgd->ccb_h.path->target;
2688 			cgd->protocol = dev->protocol;
2689 			cgd->inq_data = dev->inq_data;
2690 			cgd->ident_data = dev->ident_data;
2691 			cgd->inq_flags = dev->inq_flags;
2692 			cgd->ccb_h.status = CAM_REQ_CMP;
2693 			cgd->serial_num_len = dev->serial_num_len;
2694 			if ((dev->serial_num_len > 0)
2695 			 && (dev->serial_num != NULL))
2696 				bcopy(dev->serial_num, cgd->serial_num,
2697 				      dev->serial_num_len);
2698 		}
2699 		break;
2700 	}
2701 	case XPT_GDEV_STATS:
2702 	{
2703 		struct cam_ed *dev;
2704 
2705 		dev = start_ccb->ccb_h.path->device;
2706 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2707 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2708 		} else {
2709 			struct ccb_getdevstats *cgds;
2710 			struct cam_eb *bus;
2711 			struct cam_et *tar;
2712 
2713 			cgds = &start_ccb->cgds;
2714 			bus = cgds->ccb_h.path->bus;
2715 			tar = cgds->ccb_h.path->target;
2716 			cgds->dev_openings = dev->ccbq.dev_openings;
2717 			cgds->dev_active = dev->ccbq.dev_active;
2718 			cgds->devq_openings = dev->ccbq.devq_openings;
2719 			cgds->devq_queued = dev->ccbq.queue.entries;
2720 			cgds->held = dev->ccbq.held;
2721 			cgds->last_reset = tar->last_reset;
2722 			cgds->maxtags = dev->maxtags;
2723 			cgds->mintags = dev->mintags;
2724 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2725 				cgds->last_reset = bus->last_reset;
2726 			cgds->ccb_h.status = CAM_REQ_CMP;
2727 		}
2728 		break;
2729 	}
2730 	case XPT_GDEVLIST:
2731 	{
2732 		struct cam_periph	*nperiph;
2733 		struct periph_list	*periph_head;
2734 		struct ccb_getdevlist	*cgdl;
2735 		u_int			i;
2736 		struct cam_ed		*device;
2737 		int			found;
2738 
2739 
2740 		found = 0;
2741 
2742 		/*
2743 		 * Don't want anyone mucking with our data.
2744 		 */
2745 		device = start_ccb->ccb_h.path->device;
2746 		periph_head = &device->periphs;
2747 		cgdl = &start_ccb->cgdl;
2748 
2749 		/*
2750 		 * Check and see if the list has changed since the user
2751 		 * last requested a list member.  If so, tell them that the
2752 		 * list has changed, and therefore they need to start over
2753 		 * from the beginning.
2754 		 */
2755 		if ((cgdl->index != 0) &&
2756 		    (cgdl->generation != device->generation)) {
2757 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2758 			break;
2759 		}
2760 
2761 		/*
2762 		 * Traverse the list of peripherals and attempt to find
2763 		 * the requested peripheral.
2764 		 */
2765 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2766 		     (nperiph != NULL) && (i <= cgdl->index);
2767 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2768 			if (i == cgdl->index) {
2769 				strncpy(cgdl->periph_name,
2770 					nperiph->periph_name,
2771 					DEV_IDLEN);
2772 				cgdl->unit_number = nperiph->unit_number;
2773 				found = 1;
2774 			}
2775 		}
2776 		if (found == 0) {
2777 			cgdl->status = CAM_GDEVLIST_ERROR;
2778 			break;
2779 		}
2780 
2781 		if (nperiph == NULL)
2782 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2783 		else
2784 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2785 
2786 		cgdl->index++;
2787 		cgdl->generation = device->generation;
2788 
2789 		cgdl->ccb_h.status = CAM_REQ_CMP;
2790 		break;
2791 	}
2792 	case XPT_DEV_MATCH:
2793 	{
2794 		dev_pos_type position_type;
2795 		struct ccb_dev_match *cdm;
2796 
2797 		cdm = &start_ccb->cdm;
2798 
2799 		/*
2800 		 * There are two ways of getting at information in the EDT.
2801 		 * The first way is via the primary EDT tree.  It starts
2802 		 * with a list of busses, then a list of targets on a bus,
2803 		 * then devices/luns on a target, and then peripherals on a
2804 		 * device/lun.  The "other" way is by the peripheral driver
2805 		 * lists.  The peripheral driver lists are organized by
2806 		 * peripheral driver.  (obviously)  So it makes sense to
2807 		 * use the peripheral driver list if the user is looking
2808 		 * for something like "da1", or all "da" devices.  If the
2809 		 * user is looking for something on a particular bus/target
2810 		 * or lun, it's generally better to go through the EDT tree.
2811 		 */
2812 
2813 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2814 			position_type = cdm->pos.position_type;
2815 		else {
2816 			u_int i;
2817 
2818 			position_type = CAM_DEV_POS_NONE;
2819 
2820 			for (i = 0; i < cdm->num_patterns; i++) {
2821 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2822 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2823 					position_type = CAM_DEV_POS_EDT;
2824 					break;
2825 				}
2826 			}
2827 
2828 			if (cdm->num_patterns == 0)
2829 				position_type = CAM_DEV_POS_EDT;
2830 			else if (position_type == CAM_DEV_POS_NONE)
2831 				position_type = CAM_DEV_POS_PDRV;
2832 		}
2833 
2834 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2835 		case CAM_DEV_POS_EDT:
2836 			xptedtmatch(cdm);
2837 			break;
2838 		case CAM_DEV_POS_PDRV:
2839 			xptperiphlistmatch(cdm);
2840 			break;
2841 		default:
2842 			cdm->status = CAM_DEV_MATCH_ERROR;
2843 			break;
2844 		}
2845 
2846 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2847 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2848 		else
2849 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2850 
2851 		break;
2852 	}
2853 	case XPT_SASYNC_CB:
2854 	{
2855 		struct ccb_setasync *csa;
2856 		struct async_node *cur_entry;
2857 		struct async_list *async_head;
2858 		u_int32_t added;
2859 
2860 		csa = &start_ccb->csa;
2861 		added = csa->event_enable;
2862 		async_head = &csa->ccb_h.path->device->asyncs;
2863 
2864 		/*
2865 		 * If there is already an entry for us, simply
2866 		 * update it.
2867 		 */
2868 		cur_entry = SLIST_FIRST(async_head);
2869 		while (cur_entry != NULL) {
2870 			if ((cur_entry->callback_arg == csa->callback_arg)
2871 			 && (cur_entry->callback == csa->callback))
2872 				break;
2873 			cur_entry = SLIST_NEXT(cur_entry, links);
2874 		}
2875 
2876 		if (cur_entry != NULL) {
2877 		 	/*
2878 			 * If the request has no flags set,
2879 			 * remove the entry.
2880 			 */
2881 			added &= ~cur_entry->event_enable;
2882 			if (csa->event_enable == 0) {
2883 				SLIST_REMOVE(async_head, cur_entry,
2884 					     async_node, links);
2885 				csa->ccb_h.path->device->refcount--;
2886 				free(cur_entry, M_CAMXPT);
2887 			} else {
2888 				cur_entry->event_enable = csa->event_enable;
2889 			}
2890 		} else {
2891 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2892 					   M_NOWAIT);
2893 			if (cur_entry == NULL) {
2894 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2895 				break;
2896 			}
2897 			cur_entry->event_enable = csa->event_enable;
2898 			cur_entry->callback_arg = csa->callback_arg;
2899 			cur_entry->callback = csa->callback;
2900 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2901 			csa->ccb_h.path->device->refcount++;
2902 		}
2903 
2904 		/*
2905 		 * Need to decouple this operation via a taqskqueue so that
2906 		 * the locking doesn't become a mess.
2907 		 */
2908 		if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
2909 			struct xpt_task *task;
2910 
2911 			task = malloc(sizeof(struct xpt_task), M_CAMXPT,
2912 				      M_NOWAIT);
2913 			if (task == NULL) {
2914 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2915 				break;
2916 			}
2917 
2918 			TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
2919 			task->data1 = cur_entry;
2920 			task->data2 = added;
2921 			taskqueue_enqueue(taskqueue_thread, &task->task);
2922 		}
2923 
2924 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2925 		break;
2926 	}
2927 	case XPT_REL_SIMQ:
2928 	{
2929 		struct ccb_relsim *crs;
2930 		struct cam_ed *dev;
2931 
2932 		crs = &start_ccb->crs;
2933 		dev = crs->ccb_h.path->device;
2934 		if (dev == NULL) {
2935 
2936 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2937 			break;
2938 		}
2939 
2940 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2941 
2942  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
2943 				/* Don't ever go below one opening */
2944 				if (crs->openings > 0) {
2945 					xpt_dev_ccbq_resize(crs->ccb_h.path,
2946 							    crs->openings);
2947 
2948 					if (bootverbose) {
2949 						xpt_print(crs->ccb_h.path,
2950 						    "tagged openings now %d\n",
2951 						    crs->openings);
2952 					}
2953 				}
2954 			}
2955 		}
2956 
2957 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2958 
2959 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2960 
2961 				/*
2962 				 * Just extend the old timeout and decrement
2963 				 * the freeze count so that a single timeout
2964 				 * is sufficient for releasing the queue.
2965 				 */
2966 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2967 				callout_stop(&dev->callout);
2968 			} else {
2969 
2970 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2971 			}
2972 
2973 			callout_reset(&dev->callout,
2974 			    (crs->release_timeout * hz) / 1000,
2975 			    xpt_release_devq_timeout, dev);
2976 
2977 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2978 
2979 		}
2980 
2981 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2982 
2983 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2984 				/*
2985 				 * Decrement the freeze count so that a single
2986 				 * completion is still sufficient to unfreeze
2987 				 * the queue.
2988 				 */
2989 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2990 			} else {
2991 
2992 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2993 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2994 			}
2995 		}
2996 
2997 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2998 
2999 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3000 			 || (dev->ccbq.dev_active == 0)) {
3001 
3002 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3003 			} else {
3004 
3005 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3006 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3007 			}
3008 		}
3009 
3010 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3011 
3012 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3013 					 /*run_queue*/TRUE);
3014 		}
3015 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3016 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3017 		break;
3018 	}
3019 	case XPT_DEBUG: {
3020 #ifdef CAMDEBUG
3021 #ifdef CAM_DEBUG_DELAY
3022 		cam_debug_delay = CAM_DEBUG_DELAY;
3023 #endif
3024 		cam_dflags = start_ccb->cdbg.flags;
3025 		if (cam_dpath != NULL) {
3026 			xpt_free_path(cam_dpath);
3027 			cam_dpath = NULL;
3028 		}
3029 
3030 		if (cam_dflags != CAM_DEBUG_NONE) {
3031 			if (xpt_create_path(&cam_dpath, xpt_periph,
3032 					    start_ccb->ccb_h.path_id,
3033 					    start_ccb->ccb_h.target_id,
3034 					    start_ccb->ccb_h.target_lun) !=
3035 					    CAM_REQ_CMP) {
3036 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3037 				cam_dflags = CAM_DEBUG_NONE;
3038 			} else {
3039 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3040 				xpt_print(cam_dpath, "debugging flags now %x\n",
3041 				    cam_dflags);
3042 			}
3043 		} else {
3044 			cam_dpath = NULL;
3045 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3046 		}
3047 #else /* !CAMDEBUG */
3048 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3049 #endif /* CAMDEBUG */
3050 		break;
3051 	}
3052 	case XPT_NOOP:
3053 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3054 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3055 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3056 		break;
3057 	default:
3058 	case XPT_SDEV_TYPE:
3059 	case XPT_TERM_IO:
3060 	case XPT_ENG_INQ:
3061 		/* XXX Implement */
3062 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3063 		break;
3064 	}
3065 }
3066 
3067 void
3068 xpt_polled_action(union ccb *start_ccb)
3069 {
3070 	u_int32_t timeout;
3071 	struct	  cam_sim *sim;
3072 	struct	  cam_devq *devq;
3073 	struct	  cam_ed *dev;
3074 
3075 
3076 	timeout = start_ccb->ccb_h.timeout;
3077 	sim = start_ccb->ccb_h.path->bus->sim;
3078 	devq = sim->devq;
3079 	dev = start_ccb->ccb_h.path->device;
3080 
3081 	mtx_assert(sim->mtx, MA_OWNED);
3082 
3083 	/*
3084 	 * Steal an opening so that no other queued requests
3085 	 * can get it before us while we simulate interrupts.
3086 	 */
3087 	dev->ccbq.devq_openings--;
3088 	dev->ccbq.dev_openings--;
3089 
3090 	while(((devq != NULL && devq->send_openings <= 0) ||
3091 	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
3092 		DELAY(1000);
3093 		(*(sim->sim_poll))(sim);
3094 		camisr_runqueue(&sim->sim_doneq);
3095 	}
3096 
3097 	dev->ccbq.devq_openings++;
3098 	dev->ccbq.dev_openings++;
3099 
3100 	if (timeout != 0) {
3101 		xpt_action(start_ccb);
3102 		while(--timeout > 0) {
3103 			(*(sim->sim_poll))(sim);
3104 			camisr_runqueue(&sim->sim_doneq);
3105 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3106 			    != CAM_REQ_INPROG)
3107 				break;
3108 			DELAY(1000);
3109 		}
3110 		if (timeout == 0) {
3111 			/*
3112 			 * XXX Is it worth adding a sim_timeout entry
3113 			 * point so we can attempt recovery?  If
3114 			 * this is only used for dumps, I don't think
3115 			 * it is.
3116 			 */
3117 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3118 		}
3119 	} else {
3120 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3121 	}
3122 }
3123 
3124 /*
3125  * Schedule a peripheral driver to receive a ccb when it's
3126  * target device has space for more transactions.
3127  */
3128 void
3129 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3130 {
3131 	struct cam_ed *device;
3132 	int runq;
3133 
3134 	mtx_assert(perph->sim->mtx, MA_OWNED);
3135 
3136 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3137 	device = perph->path->device;
3138 	if (periph_is_queued(perph)) {
3139 		/* Simply reorder based on new priority */
3140 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3141 			  ("   change priority to %d\n", new_priority));
3142 		if (new_priority < perph->pinfo.priority) {
3143 			camq_change_priority(&device->drvq,
3144 					     perph->pinfo.index,
3145 					     new_priority);
3146 		}
3147 		runq = 0;
3148 	} else {
3149 		/* New entry on the queue */
3150 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3151 			  ("   added periph to queue\n"));
3152 		perph->pinfo.priority = new_priority;
3153 		perph->pinfo.generation = ++device->drvq.generation;
3154 		camq_insert(&device->drvq, &perph->pinfo);
3155 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3156 	}
3157 	if (runq != 0) {
3158 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3159 			  ("   calling xpt_run_devq\n"));
3160 		xpt_run_dev_allocq(perph->path->bus);
3161 	}
3162 }
3163 
3164 
3165 /*
3166  * Schedule a device to run on a given queue.
3167  * If the device was inserted as a new entry on the queue,
3168  * return 1 meaning the device queue should be run. If we
3169  * were already queued, implying someone else has already
3170  * started the queue, return 0 so the caller doesn't attempt
3171  * to run the queue.
3172  */
3173 int
3174 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3175 		 u_int32_t new_priority)
3176 {
3177 	int retval;
3178 	u_int32_t old_priority;
3179 
3180 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3181 
3182 	old_priority = pinfo->priority;
3183 
3184 	/*
3185 	 * Are we already queued?
3186 	 */
3187 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3188 		/* Simply reorder based on new priority */
3189 		if (new_priority < old_priority) {
3190 			camq_change_priority(queue, pinfo->index,
3191 					     new_priority);
3192 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3193 					("changed priority to %d\n",
3194 					 new_priority));
3195 		}
3196 		retval = 0;
3197 	} else {
3198 		/* New entry on the queue */
3199 		if (new_priority < old_priority)
3200 			pinfo->priority = new_priority;
3201 
3202 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3203 				("Inserting onto queue\n"));
3204 		pinfo->generation = ++queue->generation;
3205 		camq_insert(queue, pinfo);
3206 		retval = 1;
3207 	}
3208 	return (retval);
3209 }
3210 
3211 static void
3212 xpt_run_dev_allocq(struct cam_eb *bus)
3213 {
3214 	struct	cam_devq *devq;
3215 
3216 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3217 	devq = bus->sim->devq;
3218 
3219 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3220 			("   qfrozen_cnt == 0x%x, entries == %d, "
3221 			 "openings == %d, active == %d\n",
3222 			 devq->alloc_queue.qfrozen_cnt,
3223 			 devq->alloc_queue.entries,
3224 			 devq->alloc_openings,
3225 			 devq->alloc_active));
3226 
3227 	devq->alloc_queue.qfrozen_cnt++;
3228 	while ((devq->alloc_queue.entries > 0)
3229 	    && (devq->alloc_openings > 0)
3230 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3231 		struct	cam_ed_qinfo *qinfo;
3232 		struct	cam_ed *device;
3233 		union	ccb *work_ccb;
3234 		struct	cam_periph *drv;
3235 		struct	camq *drvq;
3236 
3237 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3238 							   CAMQ_HEAD);
3239 		device = qinfo->device;
3240 
3241 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3242 				("running device %p\n", device));
3243 
3244 		drvq = &device->drvq;
3245 
3246 #ifdef CAMDEBUG
3247 		if (drvq->entries <= 0) {
3248 			panic("xpt_run_dev_allocq: "
3249 			      "Device on queue without any work to do");
3250 		}
3251 #endif
3252 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3253 			devq->alloc_openings--;
3254 			devq->alloc_active++;
3255 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3256 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3257 				      drv->pinfo.priority);
3258 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3259 					("calling periph start\n"));
3260 			drv->periph_start(drv, work_ccb);
3261 		} else {
3262 			/*
3263 			 * Malloc failure in alloc_ccb
3264 			 */
3265 			/*
3266 			 * XXX add us to a list to be run from free_ccb
3267 			 * if we don't have any ccbs active on this
3268 			 * device queue otherwise we may never get run
3269 			 * again.
3270 			 */
3271 			break;
3272 		}
3273 
3274 		if (drvq->entries > 0) {
3275 			/* We have more work.  Attempt to reschedule */
3276 			xpt_schedule_dev_allocq(bus, device);
3277 		}
3278 	}
3279 	devq->alloc_queue.qfrozen_cnt--;
3280 }
3281 
3282 void
3283 xpt_run_dev_sendq(struct cam_eb *bus)
3284 {
3285 	struct	cam_devq *devq;
3286 
3287 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3288 
3289 	devq = bus->sim->devq;
3290 
3291 	devq->send_queue.qfrozen_cnt++;
3292 	while ((devq->send_queue.entries > 0)
3293 	    && (devq->send_openings > 0)
3294 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3295 		struct	cam_ed_qinfo *qinfo;
3296 		struct	cam_ed *device;
3297 		union ccb *work_ccb;
3298 		struct	cam_sim *sim;
3299 
3300 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3301 							   CAMQ_HEAD);
3302 		device = qinfo->device;
3303 
3304 		/*
3305 		 * If the device has been "frozen", don't attempt
3306 		 * to run it.
3307 		 */
3308 		if (device->ccbq.queue.qfrozen_cnt > 0) {
3309 			continue;
3310 		}
3311 
3312 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3313 				("running device %p\n", device));
3314 
3315 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3316 		if (work_ccb == NULL) {
3317 			printf("device on run queue with no ccbs???\n");
3318 			continue;
3319 		}
3320 
3321 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3322 
3323 			mtx_lock(&xsoftc.xpt_lock);
3324 		 	if (xsoftc.num_highpower <= 0) {
3325 				/*
3326 				 * We got a high power command, but we
3327 				 * don't have any available slots.  Freeze
3328 				 * the device queue until we have a slot
3329 				 * available.
3330 				 */
3331 				device->ccbq.queue.qfrozen_cnt++;
3332 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3333 						   &work_ccb->ccb_h,
3334 						   xpt_links.stqe);
3335 
3336 				mtx_unlock(&xsoftc.xpt_lock);
3337 				continue;
3338 			} else {
3339 				/*
3340 				 * Consume a high power slot while
3341 				 * this ccb runs.
3342 				 */
3343 				xsoftc.num_highpower--;
3344 			}
3345 			mtx_unlock(&xsoftc.xpt_lock);
3346 		}
3347 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3348 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3349 
3350 		devq->send_openings--;
3351 		devq->send_active++;
3352 
3353 		if (device->ccbq.queue.entries > 0)
3354 			xpt_schedule_dev_sendq(bus, device);
3355 
3356 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3357 			/*
3358 			 * The client wants to freeze the queue
3359 			 * after this CCB is sent.
3360 			 */
3361 			device->ccbq.queue.qfrozen_cnt++;
3362 		}
3363 
3364 		/* In Target mode, the peripheral driver knows best... */
3365 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3366 			if ((device->inq_flags & SID_CmdQue) != 0
3367 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3368 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3369 			else
3370 				/*
3371 				 * Clear this in case of a retried CCB that
3372 				 * failed due to a rejected tag.
3373 				 */
3374 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3375 		}
3376 
3377 		/*
3378 		 * Device queues can be shared among multiple sim instances
3379 		 * that reside on different busses.  Use the SIM in the queue
3380 		 * CCB's path, rather than the one in the bus that was passed
3381 		 * into this function.
3382 		 */
3383 		sim = work_ccb->ccb_h.path->bus->sim;
3384 		(*(sim->sim_action))(sim, work_ccb);
3385 	}
3386 	devq->send_queue.qfrozen_cnt--;
3387 }
3388 
3389 /*
3390  * This function merges stuff from the slave ccb into the master ccb, while
3391  * keeping important fields in the master ccb constant.
3392  */
3393 void
3394 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3395 {
3396 
3397 	/*
3398 	 * Pull fields that are valid for peripheral drivers to set
3399 	 * into the master CCB along with the CCB "payload".
3400 	 */
3401 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3402 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3403 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3404 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3405 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3406 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3407 }
3408 
3409 void
3410 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3411 {
3412 
3413 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3414 	ccb_h->pinfo.priority = priority;
3415 	ccb_h->path = path;
3416 	ccb_h->path_id = path->bus->path_id;
3417 	if (path->target)
3418 		ccb_h->target_id = path->target->target_id;
3419 	else
3420 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3421 	if (path->device) {
3422 		ccb_h->target_lun = path->device->lun_id;
3423 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3424 	} else {
3425 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3426 	}
3427 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3428 	ccb_h->flags = 0;
3429 }
3430 
3431 /* Path manipulation functions */
3432 cam_status
3433 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3434 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3435 {
3436 	struct	   cam_path *path;
3437 	cam_status status;
3438 
3439 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3440 
3441 	if (path == NULL) {
3442 		status = CAM_RESRC_UNAVAIL;
3443 		return(status);
3444 	}
3445 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3446 	if (status != CAM_REQ_CMP) {
3447 		free(path, M_CAMXPT);
3448 		path = NULL;
3449 	}
3450 	*new_path_ptr = path;
3451 	return (status);
3452 }
3453 
3454 cam_status
3455 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3456 			 struct cam_periph *periph, path_id_t path_id,
3457 			 target_id_t target_id, lun_id_t lun_id)
3458 {
3459 	struct	   cam_path *path;
3460 	struct	   cam_eb *bus = NULL;
3461 	cam_status status;
3462 	int	   need_unlock = 0;
3463 
3464 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3465 
3466 	if (path_id != CAM_BUS_WILDCARD) {
3467 		bus = xpt_find_bus(path_id);
3468 		if (bus != NULL) {
3469 			need_unlock = 1;
3470 			CAM_SIM_LOCK(bus->sim);
3471 		}
3472 	}
3473 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3474 	if (need_unlock)
3475 		CAM_SIM_UNLOCK(bus->sim);
3476 	if (status != CAM_REQ_CMP) {
3477 		free(path, M_CAMXPT);
3478 		path = NULL;
3479 	}
3480 	*new_path_ptr = path;
3481 	return (status);
3482 }
3483 
3484 cam_status
3485 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3486 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3487 {
3488 	struct	     cam_eb *bus;
3489 	struct	     cam_et *target;
3490 	struct	     cam_ed *device;
3491 	cam_status   status;
3492 
3493 	status = CAM_REQ_CMP;	/* Completed without error */
3494 	target = NULL;		/* Wildcarded */
3495 	device = NULL;		/* Wildcarded */
3496 
3497 	/*
3498 	 * We will potentially modify the EDT, so block interrupts
3499 	 * that may attempt to create cam paths.
3500 	 */
3501 	bus = xpt_find_bus(path_id);
3502 	if (bus == NULL) {
3503 		status = CAM_PATH_INVALID;
3504 	} else {
3505 		target = xpt_find_target(bus, target_id);
3506 		if (target == NULL) {
3507 			/* Create one */
3508 			struct cam_et *new_target;
3509 
3510 			new_target = xpt_alloc_target(bus, target_id);
3511 			if (new_target == NULL) {
3512 				status = CAM_RESRC_UNAVAIL;
3513 			} else {
3514 				target = new_target;
3515 			}
3516 		}
3517 		if (target != NULL) {
3518 			device = xpt_find_device(target, lun_id);
3519 			if (device == NULL) {
3520 				/* Create one */
3521 				struct cam_ed *new_device;
3522 
3523 				new_device =
3524 				    (*(bus->xport->alloc_device))(bus,
3525 								      target,
3526 								      lun_id);
3527 				if (new_device == NULL) {
3528 					status = CAM_RESRC_UNAVAIL;
3529 				} else {
3530 					device = new_device;
3531 				}
3532 			}
3533 		}
3534 	}
3535 
3536 	/*
3537 	 * Only touch the user's data if we are successful.
3538 	 */
3539 	if (status == CAM_REQ_CMP) {
3540 		new_path->periph = perph;
3541 		new_path->bus = bus;
3542 		new_path->target = target;
3543 		new_path->device = device;
3544 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3545 	} else {
3546 		if (device != NULL)
3547 			xpt_release_device(device);
3548 		if (target != NULL)
3549 			xpt_release_target(target);
3550 		if (bus != NULL)
3551 			xpt_release_bus(bus);
3552 	}
3553 	return (status);
3554 }
3555 
3556 void
3557 xpt_release_path(struct cam_path *path)
3558 {
3559 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3560 	if (path->device != NULL) {
3561 		xpt_release_device(path->device);
3562 		path->device = NULL;
3563 	}
3564 	if (path->target != NULL) {
3565 		xpt_release_target(path->target);
3566 		path->target = NULL;
3567 	}
3568 	if (path->bus != NULL) {
3569 		xpt_release_bus(path->bus);
3570 		path->bus = NULL;
3571 	}
3572 }
3573 
3574 void
3575 xpt_free_path(struct cam_path *path)
3576 {
3577 
3578 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3579 	xpt_release_path(path);
3580 	free(path, M_CAMXPT);
3581 }
3582 
3583 
3584 /*
3585  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3586  * in path1, 2 for match with wildcards in path2.
3587  */
3588 int
3589 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3590 {
3591 	int retval = 0;
3592 
3593 	if (path1->bus != path2->bus) {
3594 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3595 			retval = 1;
3596 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3597 			retval = 2;
3598 		else
3599 			return (-1);
3600 	}
3601 	if (path1->target != path2->target) {
3602 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3603 			if (retval == 0)
3604 				retval = 1;
3605 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3606 			retval = 2;
3607 		else
3608 			return (-1);
3609 	}
3610 	if (path1->device != path2->device) {
3611 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3612 			if (retval == 0)
3613 				retval = 1;
3614 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3615 			retval = 2;
3616 		else
3617 			return (-1);
3618 	}
3619 	return (retval);
3620 }
3621 
3622 void
3623 xpt_print_path(struct cam_path *path)
3624 {
3625 
3626 	if (path == NULL)
3627 		printf("(nopath): ");
3628 	else {
3629 		if (path->periph != NULL)
3630 			printf("(%s%d:", path->periph->periph_name,
3631 			       path->periph->unit_number);
3632 		else
3633 			printf("(noperiph:");
3634 
3635 		if (path->bus != NULL)
3636 			printf("%s%d:%d:", path->bus->sim->sim_name,
3637 			       path->bus->sim->unit_number,
3638 			       path->bus->sim->bus_id);
3639 		else
3640 			printf("nobus:");
3641 
3642 		if (path->target != NULL)
3643 			printf("%d:", path->target->target_id);
3644 		else
3645 			printf("X:");
3646 
3647 		if (path->device != NULL)
3648 			printf("%d): ", path->device->lun_id);
3649 		else
3650 			printf("X): ");
3651 	}
3652 }
3653 
3654 void
3655 xpt_print(struct cam_path *path, const char *fmt, ...)
3656 {
3657 	va_list ap;
3658 	xpt_print_path(path);
3659 	va_start(ap, fmt);
3660 	vprintf(fmt, ap);
3661 	va_end(ap);
3662 }
3663 
3664 int
3665 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3666 {
3667 	struct sbuf sb;
3668 
3669 #ifdef INVARIANTS
3670 	if (path != NULL && path->bus != NULL)
3671 		mtx_assert(path->bus->sim->mtx, MA_OWNED);
3672 #endif
3673 
3674 	sbuf_new(&sb, str, str_len, 0);
3675 
3676 	if (path == NULL)
3677 		sbuf_printf(&sb, "(nopath): ");
3678 	else {
3679 		if (path->periph != NULL)
3680 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3681 				    path->periph->unit_number);
3682 		else
3683 			sbuf_printf(&sb, "(noperiph:");
3684 
3685 		if (path->bus != NULL)
3686 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3687 				    path->bus->sim->unit_number,
3688 				    path->bus->sim->bus_id);
3689 		else
3690 			sbuf_printf(&sb, "nobus:");
3691 
3692 		if (path->target != NULL)
3693 			sbuf_printf(&sb, "%d:", path->target->target_id);
3694 		else
3695 			sbuf_printf(&sb, "X:");
3696 
3697 		if (path->device != NULL)
3698 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3699 		else
3700 			sbuf_printf(&sb, "X): ");
3701 	}
3702 	sbuf_finish(&sb);
3703 
3704 	return(sbuf_len(&sb));
3705 }
3706 
3707 path_id_t
3708 xpt_path_path_id(struct cam_path *path)
3709 {
3710 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3711 
3712 	return(path->bus->path_id);
3713 }
3714 
3715 target_id_t
3716 xpt_path_target_id(struct cam_path *path)
3717 {
3718 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3719 
3720 	if (path->target != NULL)
3721 		return (path->target->target_id);
3722 	else
3723 		return (CAM_TARGET_WILDCARD);
3724 }
3725 
3726 lun_id_t
3727 xpt_path_lun_id(struct cam_path *path)
3728 {
3729 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3730 
3731 	if (path->device != NULL)
3732 		return (path->device->lun_id);
3733 	else
3734 		return (CAM_LUN_WILDCARD);
3735 }
3736 
3737 struct cam_sim *
3738 xpt_path_sim(struct cam_path *path)
3739 {
3740 
3741 	return (path->bus->sim);
3742 }
3743 
3744 struct cam_periph*
3745 xpt_path_periph(struct cam_path *path)
3746 {
3747 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3748 
3749 	return (path->periph);
3750 }
3751 
3752 /*
3753  * Release a CAM control block for the caller.  Remit the cost of the structure
3754  * to the device referenced by the path.  If the this device had no 'credits'
3755  * and peripheral drivers have registered async callbacks for this notification
3756  * call them now.
3757  */
3758 void
3759 xpt_release_ccb(union ccb *free_ccb)
3760 {
3761 	struct	 cam_path *path;
3762 	struct	 cam_ed *device;
3763 	struct	 cam_eb *bus;
3764 	struct   cam_sim *sim;
3765 
3766 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3767 	path = free_ccb->ccb_h.path;
3768 	device = path->device;
3769 	bus = path->bus;
3770 	sim = bus->sim;
3771 
3772 	mtx_assert(sim->mtx, MA_OWNED);
3773 
3774 	cam_ccbq_release_opening(&device->ccbq);
3775 	if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3776 		device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3777 		cam_ccbq_resize(&device->ccbq,
3778 		    device->ccbq.dev_openings + device->ccbq.dev_active);
3779 	}
3780 	if (sim->ccb_count > sim->max_ccbs) {
3781 		xpt_free_ccb(free_ccb);
3782 		sim->ccb_count--;
3783 	} else {
3784 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3785 		    xpt_links.sle);
3786 	}
3787 	if (sim->devq == NULL) {
3788 		return;
3789 	}
3790 	sim->devq->alloc_openings++;
3791 	sim->devq->alloc_active--;
3792 	/* XXX Turn this into an inline function - xpt_run_device?? */
3793 	if ((device_is_alloc_queued(device) == 0)
3794 	 && (device->drvq.entries > 0)) {
3795 		xpt_schedule_dev_allocq(bus, device);
3796 	}
3797 	if (dev_allocq_is_runnable(sim->devq))
3798 		xpt_run_dev_allocq(bus);
3799 }
3800 
3801 /* Functions accessed by SIM drivers */
3802 
3803 static struct xpt_xport xport_default = {
3804 	.alloc_device = xpt_alloc_device_default,
3805 	.action = xpt_action_default,
3806 	.async = xpt_dev_async_default,
3807 };
3808 
3809 /*
3810  * A sim structure, listing the SIM entry points and instance
3811  * identification info is passed to xpt_bus_register to hook the SIM
3812  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3813  * for this new bus and places it in the array of busses and assigns
3814  * it a path_id.  The path_id may be influenced by "hard wiring"
3815  * information specified by the user.  Once interrupt services are
3816  * available, the bus will be probed.
3817  */
3818 int32_t
3819 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3820 {
3821 	struct cam_eb *new_bus;
3822 	struct cam_eb *old_bus;
3823 	struct ccb_pathinq cpi;
3824 	struct cam_path path;
3825 	cam_status status;
3826 
3827 	mtx_assert(sim->mtx, MA_OWNED);
3828 
3829 	sim->bus_id = bus;
3830 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3831 					  M_CAMXPT, M_NOWAIT);
3832 	if (new_bus == NULL) {
3833 		/* Couldn't satisfy request */
3834 		return (CAM_RESRC_UNAVAIL);
3835 	}
3836 
3837 	if (strcmp(sim->sim_name, "xpt") != 0) {
3838 		sim->path_id =
3839 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3840 	}
3841 
3842 	TAILQ_INIT(&new_bus->et_entries);
3843 	new_bus->path_id = sim->path_id;
3844 	cam_sim_hold(sim);
3845 	new_bus->sim = sim;
3846 	timevalclear(&new_bus->last_reset);
3847 	new_bus->flags = 0;
3848 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3849 	new_bus->generation = 0;
3850 
3851 	mtx_lock(&xsoftc.xpt_topo_lock);
3852 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3853 	while (old_bus != NULL
3854 	    && old_bus->path_id < new_bus->path_id)
3855 		old_bus = TAILQ_NEXT(old_bus, links);
3856 	if (old_bus != NULL)
3857 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3858 	else
3859 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3860 	xsoftc.bus_generation++;
3861 	mtx_unlock(&xsoftc.xpt_topo_lock);
3862 
3863 	/*
3864 	 * Set a default transport so that a PATH_INQ can be issued to
3865 	 * the SIM.  This will then allow for probing and attaching of
3866 	 * a more appropriate transport.
3867 	 */
3868 	new_bus->xport = &xport_default;
3869 
3870 	bzero(&path, sizeof(path));
3871 	status = xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
3872 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3873 	if (status != CAM_REQ_CMP)
3874 		printf("xpt_compile_path returned %d\n", status);
3875 
3876 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
3877 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3878 	xpt_action((union ccb *)&cpi);
3879 
3880 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3881 		switch (cpi.transport) {
3882 		case XPORT_SPI:
3883 		case XPORT_SAS:
3884 		case XPORT_FC:
3885 		case XPORT_USB:
3886 		case XPORT_ISCSI:
3887 		case XPORT_PPB:
3888 			new_bus->xport = scsi_get_xport();
3889 			break;
3890 		case XPORT_ATA:
3891 		case XPORT_SATA:
3892 			new_bus->xport = ata_get_xport();
3893 			break;
3894 		default:
3895 			new_bus->xport = &xport_default;
3896 			break;
3897 		}
3898 	}
3899 
3900 	/* Notify interested parties */
3901 	if (sim->path_id != CAM_XPT_PATH_ID) {
3902 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
3903 	}
3904 	xpt_release_path(&path);
3905 	return (CAM_SUCCESS);
3906 }
3907 
3908 int32_t
3909 xpt_bus_deregister(path_id_t pathid)
3910 {
3911 	struct cam_path bus_path;
3912 	cam_status status;
3913 
3914 	status = xpt_compile_path(&bus_path, NULL, pathid,
3915 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3916 	if (status != CAM_REQ_CMP)
3917 		return (status);
3918 
3919 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3920 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3921 
3922 	/* Release the reference count held while registered. */
3923 	xpt_release_bus(bus_path.bus);
3924 	xpt_release_path(&bus_path);
3925 
3926 	return (CAM_REQ_CMP);
3927 }
3928 
3929 static path_id_t
3930 xptnextfreepathid(void)
3931 {
3932 	struct cam_eb *bus;
3933 	path_id_t pathid;
3934 	const char *strval;
3935 
3936 	pathid = 0;
3937 	mtx_lock(&xsoftc.xpt_topo_lock);
3938 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3939 retry:
3940 	/* Find an unoccupied pathid */
3941 	while (bus != NULL && bus->path_id <= pathid) {
3942 		if (bus->path_id == pathid)
3943 			pathid++;
3944 		bus = TAILQ_NEXT(bus, links);
3945 	}
3946 	mtx_unlock(&xsoftc.xpt_topo_lock);
3947 
3948 	/*
3949 	 * Ensure that this pathid is not reserved for
3950 	 * a bus that may be registered in the future.
3951 	 */
3952 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3953 		++pathid;
3954 		/* Start the search over */
3955 		mtx_lock(&xsoftc.xpt_topo_lock);
3956 		goto retry;
3957 	}
3958 	return (pathid);
3959 }
3960 
3961 static path_id_t
3962 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3963 {
3964 	path_id_t pathid;
3965 	int i, dunit, val;
3966 	char buf[32];
3967 	const char *dname;
3968 
3969 	pathid = CAM_XPT_PATH_ID;
3970 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3971 	i = 0;
3972 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3973 		if (strcmp(dname, "scbus")) {
3974 			/* Avoid a bit of foot shooting. */
3975 			continue;
3976 		}
3977 		if (dunit < 0)		/* unwired?! */
3978 			continue;
3979 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3980 			if (sim_bus == val) {
3981 				pathid = dunit;
3982 				break;
3983 			}
3984 		} else if (sim_bus == 0) {
3985 			/* Unspecified matches bus 0 */
3986 			pathid = dunit;
3987 			break;
3988 		} else {
3989 			printf("Ambiguous scbus configuration for %s%d "
3990 			       "bus %d, cannot wire down.  The kernel "
3991 			       "config entry for scbus%d should "
3992 			       "specify a controller bus.\n"
3993 			       "Scbus will be assigned dynamically.\n",
3994 			       sim_name, sim_unit, sim_bus, dunit);
3995 			break;
3996 		}
3997 	}
3998 
3999 	if (pathid == CAM_XPT_PATH_ID)
4000 		pathid = xptnextfreepathid();
4001 	return (pathid);
4002 }
4003 
4004 void
4005 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4006 {
4007 	struct cam_eb *bus;
4008 	struct cam_et *target, *next_target;
4009 	struct cam_ed *device, *next_device;
4010 
4011 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4012 
4013 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4014 
4015 	/*
4016 	 * Most async events come from a CAM interrupt context.  In
4017 	 * a few cases, the error recovery code at the peripheral layer,
4018 	 * which may run from our SWI or a process context, may signal
4019 	 * deferred events with a call to xpt_async.
4020 	 */
4021 
4022 	bus = path->bus;
4023 
4024 	if (async_code == AC_BUS_RESET) {
4025 		/* Update our notion of when the last reset occurred */
4026 		microtime(&bus->last_reset);
4027 	}
4028 
4029 	for (target = TAILQ_FIRST(&bus->et_entries);
4030 	     target != NULL;
4031 	     target = next_target) {
4032 
4033 		next_target = TAILQ_NEXT(target, links);
4034 
4035 		if (path->target != target
4036 		 && path->target->target_id != CAM_TARGET_WILDCARD
4037 		 && target->target_id != CAM_TARGET_WILDCARD)
4038 			continue;
4039 
4040 		if (async_code == AC_SENT_BDR) {
4041 			/* Update our notion of when the last reset occurred */
4042 			microtime(&path->target->last_reset);
4043 		}
4044 
4045 		for (device = TAILQ_FIRST(&target->ed_entries);
4046 		     device != NULL;
4047 		     device = next_device) {
4048 
4049 			next_device = TAILQ_NEXT(device, links);
4050 
4051 			if (path->device != device
4052 			 && path->device->lun_id != CAM_LUN_WILDCARD
4053 			 && device->lun_id != CAM_LUN_WILDCARD)
4054 				continue;
4055 			/*
4056 			 * The async callback could free the device.
4057 			 * If it is a broadcast async, it doesn't hold
4058 			 * device reference, so take our own reference.
4059 			 */
4060 			xpt_acquire_device(device);
4061 			(*(bus->xport->async))(async_code, bus,
4062 					       target, device,
4063 					       async_arg);
4064 
4065 			xpt_async_bcast(&device->asyncs, async_code,
4066 					path, async_arg);
4067 			xpt_release_device(device);
4068 		}
4069 	}
4070 
4071 	/*
4072 	 * If this wasn't a fully wildcarded async, tell all
4073 	 * clients that want all async events.
4074 	 */
4075 	if (bus != xpt_periph->path->bus)
4076 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4077 				path, async_arg);
4078 }
4079 
4080 static void
4081 xpt_async_bcast(struct async_list *async_head,
4082 		u_int32_t async_code,
4083 		struct cam_path *path, void *async_arg)
4084 {
4085 	struct async_node *cur_entry;
4086 
4087 	cur_entry = SLIST_FIRST(async_head);
4088 	while (cur_entry != NULL) {
4089 		struct async_node *next_entry;
4090 		/*
4091 		 * Grab the next list entry before we call the current
4092 		 * entry's callback.  This is because the callback function
4093 		 * can delete its async callback entry.
4094 		 */
4095 		next_entry = SLIST_NEXT(cur_entry, links);
4096 		if ((cur_entry->event_enable & async_code) != 0)
4097 			cur_entry->callback(cur_entry->callback_arg,
4098 					    async_code, path,
4099 					    async_arg);
4100 		cur_entry = next_entry;
4101 	}
4102 }
4103 
4104 static void
4105 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4106 		      struct cam_et *target, struct cam_ed *device,
4107 		      void *async_arg)
4108 {
4109 	printf("xpt_dev_async called\n");
4110 }
4111 
4112 u_int32_t
4113 xpt_freeze_devq(struct cam_path *path, u_int count)
4114 {
4115 
4116 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4117 	path->device->ccbq.queue.qfrozen_cnt += count;
4118 	return (path->device->ccbq.queue.qfrozen_cnt);
4119 }
4120 
4121 u_int32_t
4122 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4123 {
4124 
4125 	mtx_assert(sim->mtx, MA_OWNED);
4126 	sim->devq->send_queue.qfrozen_cnt += count;
4127 	return (sim->devq->send_queue.qfrozen_cnt);
4128 }
4129 
4130 static void
4131 xpt_release_devq_timeout(void *arg)
4132 {
4133 	struct cam_ed *device;
4134 
4135 	device = (struct cam_ed *)arg;
4136 
4137 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4138 }
4139 
4140 void
4141 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4142 {
4143 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4144 
4145 	xpt_release_devq_device(path->device, count, run_queue);
4146 }
4147 
4148 static void
4149 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4150 {
4151 	int	rundevq;
4152 
4153 	rundevq = 0;
4154 	if (dev->ccbq.queue.qfrozen_cnt > 0) {
4155 
4156 		count = (count > dev->ccbq.queue.qfrozen_cnt) ?
4157 		    dev->ccbq.queue.qfrozen_cnt : count;
4158 		dev->ccbq.queue.qfrozen_cnt -= count;
4159 		if (dev->ccbq.queue.qfrozen_cnt == 0) {
4160 
4161 			/*
4162 			 * No longer need to wait for a successful
4163 			 * command completion.
4164 			 */
4165 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4166 
4167 			/*
4168 			 * Remove any timeouts that might be scheduled
4169 			 * to release this queue.
4170 			 */
4171 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4172 				callout_stop(&dev->callout);
4173 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4174 			}
4175 
4176 			/*
4177 			 * Now that we are unfrozen schedule the
4178 			 * device so any pending transactions are
4179 			 * run.
4180 			 */
4181 			if ((dev->ccbq.queue.entries > 0)
4182 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4183 			 && (run_queue != 0)) {
4184 				rundevq = 1;
4185 			}
4186 		}
4187 	}
4188 	if (rundevq != 0)
4189 		xpt_run_dev_sendq(dev->target->bus);
4190 }
4191 
4192 void
4193 xpt_release_simq(struct cam_sim *sim, int run_queue)
4194 {
4195 	struct	camq *sendq;
4196 
4197 	mtx_assert(sim->mtx, MA_OWNED);
4198 
4199 	sendq = &(sim->devq->send_queue);
4200 	if (sendq->qfrozen_cnt > 0) {
4201 
4202 		sendq->qfrozen_cnt--;
4203 		if (sendq->qfrozen_cnt == 0) {
4204 			/*
4205 			 * If there is a timeout scheduled to release this
4206 			 * sim queue, remove it.  The queue frozen count is
4207 			 * already at 0.
4208 			 */
4209 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4210 				callout_stop(&sim->callout);
4211 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4212 			}
4213 
4214 			if (run_queue) {
4215 				struct cam_eb *bus;
4216 
4217 				/*
4218 				 * Now that we are unfrozen run the send queue.
4219 				 */
4220 				bus = xpt_find_bus(sim->path_id);
4221 				xpt_run_dev_sendq(bus);
4222 				xpt_release_bus(bus);
4223 			}
4224 		}
4225 	}
4226 }
4227 
4228 /*
4229  * XXX Appears to be unused.
4230  */
4231 static void
4232 xpt_release_simq_timeout(void *arg)
4233 {
4234 	struct cam_sim *sim;
4235 
4236 	sim = (struct cam_sim *)arg;
4237 	xpt_release_simq(sim, /* run_queue */ TRUE);
4238 }
4239 
4240 void
4241 xpt_done(union ccb *done_ccb)
4242 {
4243 	struct cam_sim *sim;
4244 	int	first;
4245 
4246 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4247 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4248 		/*
4249 		 * Queue up the request for handling by our SWI handler
4250 		 * any of the "non-immediate" type of ccbs.
4251 		 */
4252 		sim = done_ccb->ccb_h.path->bus->sim;
4253 		TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4254 		    sim_links.tqe);
4255 		done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4256 		if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4257 			mtx_lock(&cam_simq_lock);
4258 			first = TAILQ_EMPTY(&cam_simq);
4259 			TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4260 			mtx_unlock(&cam_simq_lock);
4261 			sim->flags |= CAM_SIM_ON_DONEQ;
4262 			if (first)
4263 				swi_sched(cambio_ih, 0);
4264 		}
4265 	}
4266 }
4267 
4268 union ccb *
4269 xpt_alloc_ccb()
4270 {
4271 	union ccb *new_ccb;
4272 
4273 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
4274 	return (new_ccb);
4275 }
4276 
4277 union ccb *
4278 xpt_alloc_ccb_nowait()
4279 {
4280 	union ccb *new_ccb;
4281 
4282 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
4283 	return (new_ccb);
4284 }
4285 
4286 void
4287 xpt_free_ccb(union ccb *free_ccb)
4288 {
4289 	free(free_ccb, M_CAMXPT);
4290 }
4291 
4292 
4293 
4294 /* Private XPT functions */
4295 
4296 /*
4297  * Get a CAM control block for the caller. Charge the structure to the device
4298  * referenced by the path.  If the this device has no 'credits' then the
4299  * device already has the maximum number of outstanding operations under way
4300  * and we return NULL. If we don't have sufficient resources to allocate more
4301  * ccbs, we also return NULL.
4302  */
4303 static union ccb *
4304 xpt_get_ccb(struct cam_ed *device)
4305 {
4306 	union ccb *new_ccb;
4307 	struct cam_sim *sim;
4308 
4309 	sim = device->sim;
4310 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4311 		new_ccb = xpt_alloc_ccb_nowait();
4312                 if (new_ccb == NULL) {
4313 			return (NULL);
4314 		}
4315 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4316 			callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4317 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4318 				  xpt_links.sle);
4319 		sim->ccb_count++;
4320 	}
4321 	cam_ccbq_take_opening(&device->ccbq);
4322 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4323 	return (new_ccb);
4324 }
4325 
4326 static void
4327 xpt_release_bus(struct cam_eb *bus)
4328 {
4329 
4330 	if ((--bus->refcount == 0)
4331 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4332 		mtx_lock(&xsoftc.xpt_topo_lock);
4333 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4334 		xsoftc.bus_generation++;
4335 		mtx_unlock(&xsoftc.xpt_topo_lock);
4336 		cam_sim_release(bus->sim);
4337 		free(bus, M_CAMXPT);
4338 	}
4339 }
4340 
4341 static struct cam_et *
4342 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4343 {
4344 	struct cam_et *target;
4345 
4346 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT);
4347 	if (target != NULL) {
4348 		struct cam_et *cur_target;
4349 
4350 		TAILQ_INIT(&target->ed_entries);
4351 		target->bus = bus;
4352 		target->target_id = target_id;
4353 		target->refcount = 1;
4354 		target->generation = 0;
4355 		timevalclear(&target->last_reset);
4356 		/*
4357 		 * Hold a reference to our parent bus so it
4358 		 * will not go away before we do.
4359 		 */
4360 		bus->refcount++;
4361 
4362 		/* Insertion sort into our bus's target list */
4363 		cur_target = TAILQ_FIRST(&bus->et_entries);
4364 		while (cur_target != NULL && cur_target->target_id < target_id)
4365 			cur_target = TAILQ_NEXT(cur_target, links);
4366 
4367 		if (cur_target != NULL) {
4368 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4369 		} else {
4370 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4371 		}
4372 		bus->generation++;
4373 	}
4374 	return (target);
4375 }
4376 
4377 static void
4378 xpt_release_target(struct cam_et *target)
4379 {
4380 
4381 	if ((--target->refcount == 0)
4382 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4383 		TAILQ_REMOVE(&target->bus->et_entries, target, links);
4384 		target->bus->generation++;
4385 		xpt_release_bus(target->bus);
4386 		free(target, M_CAMXPT);
4387 	}
4388 }
4389 
4390 static struct cam_ed *
4391 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4392 			 lun_id_t lun_id)
4393 {
4394 	struct cam_ed *device, *cur_device;
4395 
4396 	device = xpt_alloc_device(bus, target, lun_id);
4397 	if (device == NULL)
4398 		return (NULL);
4399 
4400 	device->mintags = 1;
4401 	device->maxtags = 1;
4402 	bus->sim->max_ccbs = device->ccbq.devq_openings;
4403 	cur_device = TAILQ_FIRST(&target->ed_entries);
4404 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4405 		cur_device = TAILQ_NEXT(cur_device, links);
4406 	if (cur_device != NULL) {
4407 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4408 	} else {
4409 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4410 	}
4411 	target->generation++;
4412 
4413 	return (device);
4414 }
4415 
4416 struct cam_ed *
4417 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4418 {
4419 	struct	   cam_ed *device;
4420 	struct	   cam_devq *devq;
4421 	cam_status status;
4422 
4423 	/* Make space for us in the device queue on our bus */
4424 	devq = bus->sim->devq;
4425 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4426 
4427 	if (status != CAM_REQ_CMP) {
4428 		device = NULL;
4429 	} else {
4430 		device = (struct cam_ed *)malloc(sizeof(*device),
4431 						 M_CAMXPT, M_NOWAIT);
4432 	}
4433 
4434 	if (device != NULL) {
4435 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4436 		device->alloc_ccb_entry.device = device;
4437 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4438 		device->send_ccb_entry.device = device;
4439 		device->target = target;
4440 		device->lun_id = lun_id;
4441 		device->sim = bus->sim;
4442 		/* Initialize our queues */
4443 		if (camq_init(&device->drvq, 0) != 0) {
4444 			free(device, M_CAMXPT);
4445 			return (NULL);
4446 		}
4447 		if (cam_ccbq_init(&device->ccbq,
4448 				  bus->sim->max_dev_openings) != 0) {
4449 			camq_fini(&device->drvq);
4450 			free(device, M_CAMXPT);
4451 			return (NULL);
4452 		}
4453 		SLIST_INIT(&device->asyncs);
4454 		SLIST_INIT(&device->periphs);
4455 		device->generation = 0;
4456 		device->owner = NULL;
4457 		device->flags = CAM_DEV_UNCONFIGURED;
4458 		device->tag_delay_count = 0;
4459 		device->tag_saved_openings = 0;
4460 		device->refcount = 1;
4461 		callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4462 
4463 		/*
4464 		 * Hold a reference to our parent target so it
4465 		 * will not go away before we do.
4466 		 */
4467 		target->refcount++;
4468 
4469 	}
4470 	return (device);
4471 }
4472 
4473 void
4474 xpt_acquire_device(struct cam_ed *device)
4475 {
4476 
4477 	device->refcount++;
4478 }
4479 
4480 void
4481 xpt_release_device(struct cam_ed *device)
4482 {
4483 
4484 	if (--device->refcount == 0) {
4485 		struct cam_devq *devq;
4486 
4487 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4488 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4489 			panic("Removing device while still queued for ccbs");
4490 
4491 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4492 				callout_stop(&device->callout);
4493 
4494 		TAILQ_REMOVE(&device->target->ed_entries, device,links);
4495 		device->target->generation++;
4496 		device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4497 		/* Release our slot in the devq */
4498 		devq = device->target->bus->sim->devq;
4499 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4500 		camq_fini(&device->drvq);
4501 		cam_ccbq_fini(&device->ccbq);
4502 		xpt_release_target(device->target);
4503 		free(device, M_CAMXPT);
4504 	}
4505 }
4506 
4507 u_int32_t
4508 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4509 {
4510 	int	diff;
4511 	int	result;
4512 	struct	cam_ed *dev;
4513 
4514 	dev = path->device;
4515 
4516 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4517 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4518 	if (result == CAM_REQ_CMP && (diff < 0)) {
4519 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4520 	}
4521 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4522 	 || (dev->inq_flags & SID_CmdQue) != 0)
4523 		dev->tag_saved_openings = newopenings;
4524 	/* Adjust the global limit */
4525 	dev->sim->max_ccbs += diff;
4526 	return (result);
4527 }
4528 
4529 static struct cam_eb *
4530 xpt_find_bus(path_id_t path_id)
4531 {
4532 	struct cam_eb *bus;
4533 
4534 	mtx_lock(&xsoftc.xpt_topo_lock);
4535 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4536 	     bus != NULL;
4537 	     bus = TAILQ_NEXT(bus, links)) {
4538 		if (bus->path_id == path_id) {
4539 			bus->refcount++;
4540 			break;
4541 		}
4542 	}
4543 	mtx_unlock(&xsoftc.xpt_topo_lock);
4544 	return (bus);
4545 }
4546 
4547 static struct cam_et *
4548 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4549 {
4550 	struct cam_et *target;
4551 
4552 	for (target = TAILQ_FIRST(&bus->et_entries);
4553 	     target != NULL;
4554 	     target = TAILQ_NEXT(target, links)) {
4555 		if (target->target_id == target_id) {
4556 			target->refcount++;
4557 			break;
4558 		}
4559 	}
4560 	return (target);
4561 }
4562 
4563 static struct cam_ed *
4564 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4565 {
4566 	struct cam_ed *device;
4567 
4568 	for (device = TAILQ_FIRST(&target->ed_entries);
4569 	     device != NULL;
4570 	     device = TAILQ_NEXT(device, links)) {
4571 		if (device->lun_id == lun_id) {
4572 			device->refcount++;
4573 			break;
4574 		}
4575 	}
4576 	return (device);
4577 }
4578 
4579 void
4580 xpt_start_tags(struct cam_path *path)
4581 {
4582 	struct ccb_relsim crs;
4583 	struct cam_ed *device;
4584 	struct cam_sim *sim;
4585 	int    newopenings;
4586 
4587 	device = path->device;
4588 	sim = path->bus->sim;
4589 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4590 	xpt_freeze_devq(path, /*count*/1);
4591 	device->inq_flags |= SID_CmdQue;
4592 	if (device->tag_saved_openings != 0)
4593 		newopenings = device->tag_saved_openings;
4594 	else
4595 		newopenings = min(device->maxtags,
4596 				  sim->max_tagged_dev_openings);
4597 	xpt_dev_ccbq_resize(path, newopenings);
4598 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4599 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4600 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4601 	crs.openings
4602 	    = crs.release_timeout
4603 	    = crs.qfrozen_cnt
4604 	    = 0;
4605 	xpt_action((union ccb *)&crs);
4606 }
4607 
4608 void
4609 xpt_stop_tags(struct cam_path *path)
4610 {
4611 	struct ccb_relsim crs;
4612 	struct cam_ed *device;
4613 	struct cam_sim *sim;
4614 
4615 	device = path->device;
4616 	sim = path->bus->sim;
4617 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4618 	device->tag_delay_count = 0;
4619 	xpt_freeze_devq(path, /*count*/1);
4620 	device->inq_flags &= ~SID_CmdQue;
4621 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4622 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4623 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4624 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4625 	crs.openings
4626 	    = crs.release_timeout
4627 	    = crs.qfrozen_cnt
4628 	    = 0;
4629 	xpt_action((union ccb *)&crs);
4630 }
4631 
4632 static int busses_to_config;
4633 static int busses_to_reset;
4634 
4635 static int
4636 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
4637 {
4638 
4639 	mtx_assert(bus->sim->mtx, MA_OWNED);
4640 
4641 	if (bus->path_id != CAM_XPT_PATH_ID) {
4642 		struct cam_path path;
4643 		struct ccb_pathinq cpi;
4644 		int can_negotiate;
4645 
4646 		busses_to_config++;
4647 		xpt_compile_path(&path, NULL, bus->path_id,
4648 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4649 		xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
4650 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4651 		xpt_action((union ccb *)&cpi);
4652 		can_negotiate = cpi.hba_inquiry;
4653 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
4654 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
4655 		 && can_negotiate)
4656 			busses_to_reset++;
4657 		xpt_release_path(&path);
4658 	}
4659 
4660 	return(1);
4661 }
4662 
4663 static int
4664 xptconfigfunc(struct cam_eb *bus, void *arg)
4665 {
4666 	struct	cam_path *path;
4667 	union	ccb *work_ccb;
4668 
4669 	mtx_assert(bus->sim->mtx, MA_OWNED);
4670 
4671 	if (bus->path_id != CAM_XPT_PATH_ID) {
4672 		cam_status status;
4673 		int can_negotiate;
4674 
4675 		work_ccb = xpt_alloc_ccb_nowait();
4676 		if (work_ccb == NULL) {
4677 			busses_to_config--;
4678 			xpt_finishconfig(xpt_periph, NULL);
4679 			return(0);
4680 		}
4681 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
4682 					      CAM_TARGET_WILDCARD,
4683 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
4684 			printf("xptconfigfunc: xpt_create_path failed with "
4685 			       "status %#x for scbus%d\n", status, bus->path_id);
4686 			printf("xptconfigfunc: halting bus configuration\n");
4687 			xpt_free_ccb(work_ccb);
4688 			busses_to_config--;
4689 			xpt_finishconfig(xpt_periph, NULL);
4690 			return(0);
4691 		}
4692 		xpt_setup_ccb(&work_ccb->ccb_h, path, CAM_PRIORITY_NORMAL);
4693 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
4694 		xpt_action(work_ccb);
4695 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
4696 			printf("xptconfigfunc: CPI failed on scbus%d "
4697 			       "with status %d\n", bus->path_id,
4698 			       work_ccb->ccb_h.status);
4699 			xpt_finishconfig(xpt_periph, work_ccb);
4700 			return(1);
4701 		}
4702 
4703 		can_negotiate = work_ccb->cpi.hba_inquiry;
4704 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
4705 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
4706 		 && (can_negotiate != 0)) {
4707 			xpt_setup_ccb(&work_ccb->ccb_h, path, CAM_PRIORITY_NORMAL);
4708 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
4709 			work_ccb->ccb_h.cbfcnp = NULL;
4710 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
4711 				  ("Resetting Bus\n"));
4712 			xpt_action(work_ccb);
4713 			xpt_finishconfig(xpt_periph, work_ccb);
4714 		} else {
4715 			/* Act as though we performed a successful BUS RESET */
4716 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
4717 			xpt_finishconfig(xpt_periph, work_ccb);
4718 		}
4719 	}
4720 
4721 	return(1);
4722 }
4723 
4724 static void
4725 xpt_config(void *arg)
4726 {
4727 	struct	periph_driver **p_drv;
4728 	int	i;
4729 
4730 	/*
4731 	 * Now that interrupts are enabled, go find our devices
4732 	 */
4733 
4734 #ifdef CAMDEBUG
4735 	/* Setup debugging flags and path */
4736 #ifdef CAM_DEBUG_FLAGS
4737 	cam_dflags = CAM_DEBUG_FLAGS;
4738 #else /* !CAM_DEBUG_FLAGS */
4739 	cam_dflags = CAM_DEBUG_NONE;
4740 #endif /* CAM_DEBUG_FLAGS */
4741 #ifdef CAM_DEBUG_BUS
4742 	if (cam_dflags != CAM_DEBUG_NONE) {
4743 		/*
4744 		 * Locking is specifically omitted here.  No SIMs have
4745 		 * registered yet, so xpt_create_path will only be searching
4746 		 * empty lists of targets and devices.
4747 		 */
4748 		if (xpt_create_path(&cam_dpath, xpt_periph,
4749 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4750 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4751 			printf("xpt_config: xpt_create_path() failed for debug"
4752 			       " target %d:%d:%d, debugging disabled\n",
4753 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4754 			cam_dflags = CAM_DEBUG_NONE;
4755 		}
4756 	} else
4757 		cam_dpath = NULL;
4758 #else /* !CAM_DEBUG_BUS */
4759 	cam_dpath = NULL;
4760 #endif /* CAM_DEBUG_BUS */
4761 #endif /* CAMDEBUG */
4762 
4763 	/* Register early peripheral drivers */
4764 	/* XXX This will have to change when we have loadable modules */
4765 	p_drv = periph_drivers;
4766 	for (i = 0; p_drv[i] != NULL; i++) {
4767 		if ((p_drv[i]->flags & CAM_PERIPH_DRV_EARLY) != 0)
4768 			(*p_drv[i]->init)();
4769 	}
4770 	/*
4771 	 * Scan all installed busses.
4772 	 */
4773 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
4774 
4775 	if (busses_to_config == 0) {
4776 		/* Call manually because we don't have any busses */
4777 		xpt_finishconfig(xpt_periph, NULL);
4778 	} else  {
4779 		if (busses_to_reset > 0 && scsi_delay >= 2000) {
4780 			printf("Waiting %d seconds for SCSI "
4781 			       "devices to settle\n", scsi_delay/1000);
4782 		}
4783 		xpt_for_all_busses(xptconfigfunc, NULL);
4784 	}
4785 }
4786 
4787 /*
4788  * If the given device only has one peripheral attached to it, and if that
4789  * peripheral is the passthrough driver, announce it.  This insures that the
4790  * user sees some sort of announcement for every peripheral in their system.
4791  */
4792 static int
4793 xptpassannouncefunc(struct cam_ed *device, void *arg)
4794 {
4795 	struct cam_periph *periph;
4796 	int i;
4797 
4798 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4799 	     periph = SLIST_NEXT(periph, periph_links), i++);
4800 
4801 	periph = SLIST_FIRST(&device->periphs);
4802 	if ((i == 1)
4803 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4804 		xpt_announce_periph(periph, NULL);
4805 
4806 	return(1);
4807 }
4808 
4809 static void
4810 xpt_finishconfig_task(void *context, int pending)
4811 {
4812 	struct	periph_driver **p_drv;
4813 	int	i;
4814 
4815 	if (busses_to_config == 0) {
4816 		/* Register all the peripheral drivers */
4817 		/* XXX This will have to change when we have loadable modules */
4818 		p_drv = periph_drivers;
4819 		for (i = 0; p_drv[i] != NULL; i++) {
4820 			if ((p_drv[i]->flags & CAM_PERIPH_DRV_EARLY) == 0)
4821 				(*p_drv[i]->init)();
4822 		}
4823 
4824 		/*
4825 		 * Check for devices with no "standard" peripheral driver
4826 		 * attached.  For any devices like that, announce the
4827 		 * passthrough driver so the user will see something.
4828 		 */
4829 		xpt_for_all_devices(xptpassannouncefunc, NULL);
4830 
4831 		/* Release our hook so that the boot can continue. */
4832 		config_intrhook_disestablish(xsoftc.xpt_config_hook);
4833 		free(xsoftc.xpt_config_hook, M_CAMXPT);
4834 		xsoftc.xpt_config_hook = NULL;
4835 	}
4836 
4837 	free(context, M_CAMXPT);
4838 }
4839 
4840 static void
4841 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
4842 {
4843 	struct	xpt_task *task;
4844 
4845 	if (done_ccb != NULL) {
4846 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4847 			  ("xpt_finishconfig\n"));
4848 		switch(done_ccb->ccb_h.func_code) {
4849 		case XPT_RESET_BUS:
4850 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
4851 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4852 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
4853 				done_ccb->crcn.flags = 0;
4854 				xpt_action(done_ccb);
4855 				return;
4856 			}
4857 			/* FALLTHROUGH */
4858 		case XPT_SCAN_BUS:
4859 		default:
4860 			xpt_free_path(done_ccb->ccb_h.path);
4861 			busses_to_config--;
4862 			break;
4863 		}
4864 	}
4865 
4866 	if (busses_to_config == 0) {
4867 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4868 		if (task != NULL) {
4869 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4870 			taskqueue_enqueue(taskqueue_thread, &task->task);
4871 		}
4872 	}
4873 
4874 	if (done_ccb != NULL)
4875 		xpt_free_ccb(done_ccb);
4876 }
4877 
4878 cam_status
4879 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4880 		   struct cam_path *path)
4881 {
4882 	struct ccb_setasync csa;
4883 	cam_status status;
4884 	int xptpath = 0;
4885 
4886 	if (path == NULL) {
4887 		mtx_lock(&xsoftc.xpt_lock);
4888 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4889 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4890 		if (status != CAM_REQ_CMP) {
4891 			mtx_unlock(&xsoftc.xpt_lock);
4892 			return (status);
4893 		}
4894 		xptpath = 1;
4895 	}
4896 
4897 	xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
4898 	csa.ccb_h.func_code = XPT_SASYNC_CB;
4899 	csa.event_enable = event;
4900 	csa.callback = cbfunc;
4901 	csa.callback_arg = cbarg;
4902 	xpt_action((union ccb *)&csa);
4903 	status = csa.ccb_h.status;
4904 	if (xptpath) {
4905 		xpt_free_path(path);
4906 		mtx_unlock(&xsoftc.xpt_lock);
4907 	}
4908 	return (status);
4909 }
4910 
4911 static void
4912 xptaction(struct cam_sim *sim, union ccb *work_ccb)
4913 {
4914 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4915 
4916 	switch (work_ccb->ccb_h.func_code) {
4917 	/* Common cases first */
4918 	case XPT_PATH_INQ:		/* Path routing inquiry */
4919 	{
4920 		struct ccb_pathinq *cpi;
4921 
4922 		cpi = &work_ccb->cpi;
4923 		cpi->version_num = 1; /* XXX??? */
4924 		cpi->hba_inquiry = 0;
4925 		cpi->target_sprt = 0;
4926 		cpi->hba_misc = 0;
4927 		cpi->hba_eng_cnt = 0;
4928 		cpi->max_target = 0;
4929 		cpi->max_lun = 0;
4930 		cpi->initiator_id = 0;
4931 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4932 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
4933 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4934 		cpi->unit_number = sim->unit_number;
4935 		cpi->bus_id = sim->bus_id;
4936 		cpi->base_transfer_speed = 0;
4937 		cpi->protocol = PROTO_UNSPECIFIED;
4938 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4939 		cpi->transport = XPORT_UNSPECIFIED;
4940 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4941 		cpi->ccb_h.status = CAM_REQ_CMP;
4942 		xpt_done(work_ccb);
4943 		break;
4944 	}
4945 	default:
4946 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
4947 		xpt_done(work_ccb);
4948 		break;
4949 	}
4950 }
4951 
4952 /*
4953  * The xpt as a "controller" has no interrupt sources, so polling
4954  * is a no-op.
4955  */
4956 static void
4957 xptpoll(struct cam_sim *sim)
4958 {
4959 }
4960 
4961 void
4962 xpt_lock_buses(void)
4963 {
4964 	mtx_lock(&xsoftc.xpt_topo_lock);
4965 }
4966 
4967 void
4968 xpt_unlock_buses(void)
4969 {
4970 	mtx_unlock(&xsoftc.xpt_topo_lock);
4971 }
4972 
4973 static void
4974 camisr(void *dummy)
4975 {
4976 	cam_simq_t queue;
4977 	struct cam_sim *sim;
4978 
4979 	mtx_lock(&cam_simq_lock);
4980 	TAILQ_INIT(&queue);
4981 	while (!TAILQ_EMPTY(&cam_simq)) {
4982 		TAILQ_CONCAT(&queue, &cam_simq, links);
4983 		mtx_unlock(&cam_simq_lock);
4984 
4985 		while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4986 			TAILQ_REMOVE(&queue, sim, links);
4987 			CAM_SIM_LOCK(sim);
4988 			sim->flags &= ~CAM_SIM_ON_DONEQ;
4989 			camisr_runqueue(&sim->sim_doneq);
4990 			CAM_SIM_UNLOCK(sim);
4991 		}
4992 		mtx_lock(&cam_simq_lock);
4993 	}
4994 	mtx_unlock(&cam_simq_lock);
4995 }
4996 
4997 static void
4998 camisr_runqueue(void *V_queue)
4999 {
5000 	cam_isrq_t *queue = V_queue;
5001 	struct	ccb_hdr *ccb_h;
5002 
5003 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
5004 		int	runq;
5005 
5006 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
5007 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5008 
5009 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
5010 			  ("camisr\n"));
5011 
5012 		runq = FALSE;
5013 
5014 		if (ccb_h->flags & CAM_HIGH_POWER) {
5015 			struct highpowerlist	*hphead;
5016 			union ccb		*send_ccb;
5017 
5018 			mtx_lock(&xsoftc.xpt_lock);
5019 			hphead = &xsoftc.highpowerq;
5020 
5021 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
5022 
5023 			/*
5024 			 * Increment the count since this command is done.
5025 			 */
5026 			xsoftc.num_highpower++;
5027 
5028 			/*
5029 			 * Any high powered commands queued up?
5030 			 */
5031 			if (send_ccb != NULL) {
5032 
5033 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
5034 				mtx_unlock(&xsoftc.xpt_lock);
5035 
5036 				xpt_release_devq(send_ccb->ccb_h.path,
5037 						 /*count*/1, /*runqueue*/TRUE);
5038 			} else
5039 				mtx_unlock(&xsoftc.xpt_lock);
5040 		}
5041 
5042 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5043 			struct cam_ed *dev;
5044 
5045 			dev = ccb_h->path->device;
5046 
5047 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5048 			ccb_h->path->bus->sim->devq->send_active--;
5049 			ccb_h->path->bus->sim->devq->send_openings++;
5050 
5051 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5052 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
5053 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5054 			  && (dev->ccbq.dev_active == 0))) {
5055 
5056 				xpt_release_devq(ccb_h->path, /*count*/1,
5057 						 /*run_queue*/TRUE);
5058 			}
5059 
5060 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5061 			 && (--dev->tag_delay_count == 0))
5062 				xpt_start_tags(ccb_h->path);
5063 
5064 			if ((dev->ccbq.queue.entries > 0)
5065 			 && (dev->ccbq.queue.qfrozen_cnt == 0)
5066 			 && (device_is_send_queued(dev) == 0)) {
5067 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
5068 							      dev);
5069 			}
5070 		}
5071 
5072 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
5073 			xpt_release_simq(ccb_h->path->bus->sim,
5074 					 /*run_queue*/TRUE);
5075 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
5076 			runq = FALSE;
5077 		}
5078 
5079 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5080 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
5081 			xpt_release_devq(ccb_h->path, /*count*/1,
5082 					 /*run_queue*/TRUE);
5083 			ccb_h->status &= ~CAM_DEV_QFRZN;
5084 		} else if (runq) {
5085 			xpt_run_dev_sendq(ccb_h->path->bus);
5086 		}
5087 
5088 		/* Call the peripheral driver's callback */
5089 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5090 	}
5091 }
5092 
5093