1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include "opt_printf.h" 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/bio.h> 39 #include <sys/bus.h> 40 #include <sys/systm.h> 41 #include <sys/types.h> 42 #include <sys/malloc.h> 43 #include <sys/kernel.h> 44 #include <sys/time.h> 45 #include <sys/conf.h> 46 #include <sys/fcntl.h> 47 #include <sys/interrupt.h> 48 #include <sys/proc.h> 49 #include <sys/sbuf.h> 50 #include <sys/smp.h> 51 #include <sys/taskqueue.h> 52 53 #include <sys/lock.h> 54 #include <sys/mutex.h> 55 #include <sys/sysctl.h> 56 #include <sys/kthread.h> 57 58 #include <cam/cam.h> 59 #include <cam/cam_ccb.h> 60 #include <cam/cam_iosched.h> 61 #include <cam/cam_periph.h> 62 #include <cam/cam_queue.h> 63 #include <cam/cam_sim.h> 64 #include <cam/cam_xpt.h> 65 #include <cam/cam_xpt_sim.h> 66 #include <cam/cam_xpt_periph.h> 67 #include <cam/cam_xpt_internal.h> 68 #include <cam/cam_debug.h> 69 #include <cam/cam_compat.h> 70 71 #include <cam/scsi/scsi_all.h> 72 #include <cam/scsi/scsi_message.h> 73 #include <cam/scsi/scsi_pass.h> 74 75 #include <machine/md_var.h> /* geometry translation */ 76 #include <machine/stdarg.h> /* for xpt_print below */ 77 78 #include "opt_cam.h" 79 80 /* Wild guess based on not wanting to grow the stack too much */ 81 #define XPT_PRINT_MAXLEN 512 82 #ifdef PRINTF_BUFR_SIZE 83 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE 84 #else 85 #define XPT_PRINT_LEN 128 86 #endif 87 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); 88 89 /* 90 * This is the maximum number of high powered commands (e.g. start unit) 91 * that can be outstanding at a particular time. 92 */ 93 #ifndef CAM_MAX_HIGHPOWER 94 #define CAM_MAX_HIGHPOWER 4 95 #endif 96 97 /* Datastructures internal to the xpt layer */ 98 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 99 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 100 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 101 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 102 103 /* Object for defering XPT actions to a taskqueue */ 104 struct xpt_task { 105 struct task task; 106 void *data1; 107 uintptr_t data2; 108 }; 109 110 struct xpt_softc { 111 uint32_t xpt_generation; 112 113 /* number of high powered commands that can go through right now */ 114 struct mtx xpt_highpower_lock; 115 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 116 int num_highpower; 117 118 /* queue for handling async rescan requests. */ 119 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 120 int buses_to_config; 121 int buses_config_done; 122 int announce_nosbuf; 123 124 /* 125 * Registered buses 126 * 127 * N.B., "busses" is an archaic spelling of "buses". In new code 128 * "buses" is preferred. 129 */ 130 TAILQ_HEAD(,cam_eb) xpt_busses; 131 u_int bus_generation; 132 133 struct intr_config_hook *xpt_config_hook; 134 135 int boot_delay; 136 struct callout boot_callout; 137 138 struct mtx xpt_topo_lock; 139 struct mtx xpt_lock; 140 struct taskqueue *xpt_taskq; 141 }; 142 143 typedef enum { 144 DM_RET_COPY = 0x01, 145 DM_RET_FLAG_MASK = 0x0f, 146 DM_RET_NONE = 0x00, 147 DM_RET_STOP = 0x10, 148 DM_RET_DESCEND = 0x20, 149 DM_RET_ERROR = 0x30, 150 DM_RET_ACTION_MASK = 0xf0 151 } dev_match_ret; 152 153 typedef enum { 154 XPT_DEPTH_BUS, 155 XPT_DEPTH_TARGET, 156 XPT_DEPTH_DEVICE, 157 XPT_DEPTH_PERIPH 158 } xpt_traverse_depth; 159 160 struct xpt_traverse_config { 161 xpt_traverse_depth depth; 162 void *tr_func; 163 void *tr_arg; 164 }; 165 166 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 167 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 168 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 169 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 170 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 171 172 /* Transport layer configuration information */ 173 static struct xpt_softc xsoftc; 174 175 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 176 177 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 178 &xsoftc.boot_delay, 0, "Bus registration wait time"); 179 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 180 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 181 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN, 182 &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements"); 183 184 struct cam_doneq { 185 struct mtx_padalign cam_doneq_mtx; 186 STAILQ_HEAD(, ccb_hdr) cam_doneq; 187 int cam_doneq_sleep; 188 }; 189 190 static struct cam_doneq cam_doneqs[MAXCPU]; 191 static int cam_num_doneqs; 192 static struct proc *cam_proc; 193 194 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 195 &cam_num_doneqs, 0, "Number of completion queues/threads"); 196 197 struct cam_periph *xpt_periph; 198 199 static periph_init_t xpt_periph_init; 200 201 static struct periph_driver xpt_driver = 202 { 203 xpt_periph_init, "xpt", 204 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 205 CAM_PERIPH_DRV_EARLY 206 }; 207 208 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 209 210 static d_open_t xptopen; 211 static d_close_t xptclose; 212 static d_ioctl_t xptioctl; 213 static d_ioctl_t xptdoioctl; 214 215 static struct cdevsw xpt_cdevsw = { 216 .d_version = D_VERSION, 217 .d_flags = 0, 218 .d_open = xptopen, 219 .d_close = xptclose, 220 .d_ioctl = xptioctl, 221 .d_name = "xpt", 222 }; 223 224 /* Storage for debugging datastructures */ 225 struct cam_path *cam_dpath; 226 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 227 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 228 &cam_dflags, 0, "Enabled debug flags"); 229 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 230 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 231 &cam_debug_delay, 0, "Delay in us after each debug message"); 232 233 /* Our boot-time initialization hook */ 234 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 235 236 static moduledata_t cam_moduledata = { 237 "cam", 238 cam_module_event_handler, 239 NULL 240 }; 241 242 static int xpt_init(void *); 243 244 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 245 MODULE_VERSION(cam, 1); 246 247 248 static void xpt_async_bcast(struct async_list *async_head, 249 u_int32_t async_code, 250 struct cam_path *path, 251 void *async_arg); 252 static path_id_t xptnextfreepathid(void); 253 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 254 static union ccb *xpt_get_ccb(struct cam_periph *periph); 255 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 256 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 257 static void xpt_run_allocq_task(void *context, int pending); 258 static void xpt_run_devq(struct cam_devq *devq); 259 static timeout_t xpt_release_devq_timeout; 260 static void xpt_release_simq_timeout(void *arg) __unused; 261 static void xpt_acquire_bus(struct cam_eb *bus); 262 static void xpt_release_bus(struct cam_eb *bus); 263 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 264 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 265 int run_queue); 266 static struct cam_et* 267 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 268 static void xpt_acquire_target(struct cam_et *target); 269 static void xpt_release_target(struct cam_et *target); 270 static struct cam_eb* 271 xpt_find_bus(path_id_t path_id); 272 static struct cam_et* 273 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 274 static struct cam_ed* 275 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 276 static void xpt_config(void *arg); 277 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 278 u_int32_t new_priority); 279 static xpt_devicefunc_t xptpassannouncefunc; 280 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 281 static void xptpoll(struct cam_sim *sim); 282 static void camisr_runqueue(void); 283 static void xpt_done_process(struct ccb_hdr *ccb_h); 284 static void xpt_done_td(void *); 285 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 286 u_int num_patterns, struct cam_eb *bus); 287 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 288 u_int num_patterns, 289 struct cam_ed *device); 290 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 291 u_int num_patterns, 292 struct cam_periph *periph); 293 static xpt_busfunc_t xptedtbusfunc; 294 static xpt_targetfunc_t xptedttargetfunc; 295 static xpt_devicefunc_t xptedtdevicefunc; 296 static xpt_periphfunc_t xptedtperiphfunc; 297 static xpt_pdrvfunc_t xptplistpdrvfunc; 298 static xpt_periphfunc_t xptplistperiphfunc; 299 static int xptedtmatch(struct ccb_dev_match *cdm); 300 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 301 static int xptbustraverse(struct cam_eb *start_bus, 302 xpt_busfunc_t *tr_func, void *arg); 303 static int xpttargettraverse(struct cam_eb *bus, 304 struct cam_et *start_target, 305 xpt_targetfunc_t *tr_func, void *arg); 306 static int xptdevicetraverse(struct cam_et *target, 307 struct cam_ed *start_device, 308 xpt_devicefunc_t *tr_func, void *arg); 309 static int xptperiphtraverse(struct cam_ed *device, 310 struct cam_periph *start_periph, 311 xpt_periphfunc_t *tr_func, void *arg); 312 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 313 xpt_pdrvfunc_t *tr_func, void *arg); 314 static int xptpdperiphtraverse(struct periph_driver **pdrv, 315 struct cam_periph *start_periph, 316 xpt_periphfunc_t *tr_func, 317 void *arg); 318 static xpt_busfunc_t xptdefbusfunc; 319 static xpt_targetfunc_t xptdeftargetfunc; 320 static xpt_devicefunc_t xptdefdevicefunc; 321 static xpt_periphfunc_t xptdefperiphfunc; 322 static void xpt_finishconfig_task(void *context, int pending); 323 static void xpt_dev_async_default(u_int32_t async_code, 324 struct cam_eb *bus, 325 struct cam_et *target, 326 struct cam_ed *device, 327 void *async_arg); 328 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 329 struct cam_et *target, 330 lun_id_t lun_id); 331 static xpt_devicefunc_t xptsetasyncfunc; 332 static xpt_busfunc_t xptsetasyncbusfunc; 333 static cam_status xptregister(struct cam_periph *periph, 334 void *arg); 335 static __inline int device_is_queued(struct cam_ed *device); 336 337 static __inline int 338 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 339 { 340 int retval; 341 342 mtx_assert(&devq->send_mtx, MA_OWNED); 343 if ((dev->ccbq.queue.entries > 0) && 344 (dev->ccbq.dev_openings > 0) && 345 (dev->ccbq.queue.qfrozen_cnt == 0)) { 346 /* 347 * The priority of a device waiting for controller 348 * resources is that of the highest priority CCB 349 * enqueued. 350 */ 351 retval = 352 xpt_schedule_dev(&devq->send_queue, 353 &dev->devq_entry, 354 CAMQ_GET_PRIO(&dev->ccbq.queue)); 355 } else { 356 retval = 0; 357 } 358 return (retval); 359 } 360 361 static __inline int 362 device_is_queued(struct cam_ed *device) 363 { 364 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 365 } 366 367 static void 368 xpt_periph_init() 369 { 370 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 371 } 372 373 static int 374 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 375 { 376 377 /* 378 * Only allow read-write access. 379 */ 380 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 381 return(EPERM); 382 383 /* 384 * We don't allow nonblocking access. 385 */ 386 if ((flags & O_NONBLOCK) != 0) { 387 printf("%s: can't do nonblocking access\n", devtoname(dev)); 388 return(ENODEV); 389 } 390 391 return(0); 392 } 393 394 static int 395 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 396 { 397 398 return(0); 399 } 400 401 /* 402 * Don't automatically grab the xpt softc lock here even though this is going 403 * through the xpt device. The xpt device is really just a back door for 404 * accessing other devices and SIMs, so the right thing to do is to grab 405 * the appropriate SIM lock once the bus/SIM is located. 406 */ 407 static int 408 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 409 { 410 int error; 411 412 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 413 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 414 } 415 return (error); 416 } 417 418 static int 419 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 420 { 421 int error; 422 423 error = 0; 424 425 switch(cmd) { 426 /* 427 * For the transport layer CAMIOCOMMAND ioctl, we really only want 428 * to accept CCB types that don't quite make sense to send through a 429 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 430 * in the CAM spec. 431 */ 432 case CAMIOCOMMAND: { 433 union ccb *ccb; 434 union ccb *inccb; 435 struct cam_eb *bus; 436 437 inccb = (union ccb *)addr; 438 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 439 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 440 inccb->csio.bio = NULL; 441 #endif 442 443 if (inccb->ccb_h.flags & CAM_UNLOCKED) 444 return (EINVAL); 445 446 bus = xpt_find_bus(inccb->ccb_h.path_id); 447 if (bus == NULL) 448 return (EINVAL); 449 450 switch (inccb->ccb_h.func_code) { 451 case XPT_SCAN_BUS: 452 case XPT_RESET_BUS: 453 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 454 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 455 xpt_release_bus(bus); 456 return (EINVAL); 457 } 458 break; 459 case XPT_SCAN_TGT: 460 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 461 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 462 xpt_release_bus(bus); 463 return (EINVAL); 464 } 465 break; 466 default: 467 break; 468 } 469 470 switch(inccb->ccb_h.func_code) { 471 case XPT_SCAN_BUS: 472 case XPT_RESET_BUS: 473 case XPT_PATH_INQ: 474 case XPT_ENG_INQ: 475 case XPT_SCAN_LUN: 476 case XPT_SCAN_TGT: 477 478 ccb = xpt_alloc_ccb(); 479 480 /* 481 * Create a path using the bus, target, and lun the 482 * user passed in. 483 */ 484 if (xpt_create_path(&ccb->ccb_h.path, NULL, 485 inccb->ccb_h.path_id, 486 inccb->ccb_h.target_id, 487 inccb->ccb_h.target_lun) != 488 CAM_REQ_CMP){ 489 error = EINVAL; 490 xpt_free_ccb(ccb); 491 break; 492 } 493 /* Ensure all of our fields are correct */ 494 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 495 inccb->ccb_h.pinfo.priority); 496 xpt_merge_ccb(ccb, inccb); 497 xpt_path_lock(ccb->ccb_h.path); 498 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 499 xpt_path_unlock(ccb->ccb_h.path); 500 bcopy(ccb, inccb, sizeof(union ccb)); 501 xpt_free_path(ccb->ccb_h.path); 502 xpt_free_ccb(ccb); 503 break; 504 505 case XPT_DEBUG: { 506 union ccb ccb; 507 508 /* 509 * This is an immediate CCB, so it's okay to 510 * allocate it on the stack. 511 */ 512 513 /* 514 * Create a path using the bus, target, and lun the 515 * user passed in. 516 */ 517 if (xpt_create_path(&ccb.ccb_h.path, NULL, 518 inccb->ccb_h.path_id, 519 inccb->ccb_h.target_id, 520 inccb->ccb_h.target_lun) != 521 CAM_REQ_CMP){ 522 error = EINVAL; 523 break; 524 } 525 /* Ensure all of our fields are correct */ 526 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 527 inccb->ccb_h.pinfo.priority); 528 xpt_merge_ccb(&ccb, inccb); 529 xpt_action(&ccb); 530 bcopy(&ccb, inccb, sizeof(union ccb)); 531 xpt_free_path(ccb.ccb_h.path); 532 break; 533 534 } 535 case XPT_DEV_MATCH: { 536 struct cam_periph_map_info mapinfo; 537 struct cam_path *old_path; 538 539 /* 540 * We can't deal with physical addresses for this 541 * type of transaction. 542 */ 543 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 544 CAM_DATA_VADDR) { 545 error = EINVAL; 546 break; 547 } 548 549 /* 550 * Save this in case the caller had it set to 551 * something in particular. 552 */ 553 old_path = inccb->ccb_h.path; 554 555 /* 556 * We really don't need a path for the matching 557 * code. The path is needed because of the 558 * debugging statements in xpt_action(). They 559 * assume that the CCB has a valid path. 560 */ 561 inccb->ccb_h.path = xpt_periph->path; 562 563 bzero(&mapinfo, sizeof(mapinfo)); 564 565 /* 566 * Map the pattern and match buffers into kernel 567 * virtual address space. 568 */ 569 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 570 571 if (error) { 572 inccb->ccb_h.path = old_path; 573 break; 574 } 575 576 /* 577 * This is an immediate CCB, we can send it on directly. 578 */ 579 xpt_action(inccb); 580 581 /* 582 * Map the buffers back into user space. 583 */ 584 cam_periph_unmapmem(inccb, &mapinfo); 585 586 inccb->ccb_h.path = old_path; 587 588 error = 0; 589 break; 590 } 591 default: 592 error = ENOTSUP; 593 break; 594 } 595 xpt_release_bus(bus); 596 break; 597 } 598 /* 599 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 600 * with the periphal driver name and unit name filled in. The other 601 * fields don't really matter as input. The passthrough driver name 602 * ("pass"), and unit number are passed back in the ccb. The current 603 * device generation number, and the index into the device peripheral 604 * driver list, and the status are also passed back. Note that 605 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 606 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 607 * (or rather should be) impossible for the device peripheral driver 608 * list to change since we look at the whole thing in one pass, and 609 * we do it with lock protection. 610 * 611 */ 612 case CAMGETPASSTHRU: { 613 union ccb *ccb; 614 struct cam_periph *periph; 615 struct periph_driver **p_drv; 616 char *name; 617 u_int unit; 618 int base_periph_found; 619 620 ccb = (union ccb *)addr; 621 unit = ccb->cgdl.unit_number; 622 name = ccb->cgdl.periph_name; 623 base_periph_found = 0; 624 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 625 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 626 ccb->csio.bio = NULL; 627 #endif 628 629 /* 630 * Sanity check -- make sure we don't get a null peripheral 631 * driver name. 632 */ 633 if (*ccb->cgdl.periph_name == '\0') { 634 error = EINVAL; 635 break; 636 } 637 638 /* Keep the list from changing while we traverse it */ 639 xpt_lock_buses(); 640 641 /* first find our driver in the list of drivers */ 642 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 643 if (strcmp((*p_drv)->driver_name, name) == 0) 644 break; 645 646 if (*p_drv == NULL) { 647 xpt_unlock_buses(); 648 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 649 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 650 *ccb->cgdl.periph_name = '\0'; 651 ccb->cgdl.unit_number = 0; 652 error = ENOENT; 653 break; 654 } 655 656 /* 657 * Run through every peripheral instance of this driver 658 * and check to see whether it matches the unit passed 659 * in by the user. If it does, get out of the loops and 660 * find the passthrough driver associated with that 661 * peripheral driver. 662 */ 663 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 664 periph = TAILQ_NEXT(periph, unit_links)) { 665 666 if (periph->unit_number == unit) 667 break; 668 } 669 /* 670 * If we found the peripheral driver that the user passed 671 * in, go through all of the peripheral drivers for that 672 * particular device and look for a passthrough driver. 673 */ 674 if (periph != NULL) { 675 struct cam_ed *device; 676 int i; 677 678 base_periph_found = 1; 679 device = periph->path->device; 680 for (i = 0, periph = SLIST_FIRST(&device->periphs); 681 periph != NULL; 682 periph = SLIST_NEXT(periph, periph_links), i++) { 683 /* 684 * Check to see whether we have a 685 * passthrough device or not. 686 */ 687 if (strcmp(periph->periph_name, "pass") == 0) { 688 /* 689 * Fill in the getdevlist fields. 690 */ 691 strlcpy(ccb->cgdl.periph_name, 692 periph->periph_name, 693 sizeof(ccb->cgdl.periph_name)); 694 ccb->cgdl.unit_number = 695 periph->unit_number; 696 if (SLIST_NEXT(periph, periph_links)) 697 ccb->cgdl.status = 698 CAM_GDEVLIST_MORE_DEVS; 699 else 700 ccb->cgdl.status = 701 CAM_GDEVLIST_LAST_DEVICE; 702 ccb->cgdl.generation = 703 device->generation; 704 ccb->cgdl.index = i; 705 /* 706 * Fill in some CCB header fields 707 * that the user may want. 708 */ 709 ccb->ccb_h.path_id = 710 periph->path->bus->path_id; 711 ccb->ccb_h.target_id = 712 periph->path->target->target_id; 713 ccb->ccb_h.target_lun = 714 periph->path->device->lun_id; 715 ccb->ccb_h.status = CAM_REQ_CMP; 716 break; 717 } 718 } 719 } 720 721 /* 722 * If the periph is null here, one of two things has 723 * happened. The first possibility is that we couldn't 724 * find the unit number of the particular peripheral driver 725 * that the user is asking about. e.g. the user asks for 726 * the passthrough driver for "da11". We find the list of 727 * "da" peripherals all right, but there is no unit 11. 728 * The other possibility is that we went through the list 729 * of peripheral drivers attached to the device structure, 730 * but didn't find one with the name "pass". Either way, 731 * we return ENOENT, since we couldn't find something. 732 */ 733 if (periph == NULL) { 734 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 735 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 736 *ccb->cgdl.periph_name = '\0'; 737 ccb->cgdl.unit_number = 0; 738 error = ENOENT; 739 /* 740 * It is unfortunate that this is even necessary, 741 * but there are many, many clueless users out there. 742 * If this is true, the user is looking for the 743 * passthrough driver, but doesn't have one in his 744 * kernel. 745 */ 746 if (base_periph_found == 1) { 747 printf("xptioctl: pass driver is not in the " 748 "kernel\n"); 749 printf("xptioctl: put \"device pass\" in " 750 "your kernel config file\n"); 751 } 752 } 753 xpt_unlock_buses(); 754 break; 755 } 756 default: 757 error = ENOTTY; 758 break; 759 } 760 761 return(error); 762 } 763 764 static int 765 cam_module_event_handler(module_t mod, int what, void *arg) 766 { 767 int error; 768 769 switch (what) { 770 case MOD_LOAD: 771 if ((error = xpt_init(NULL)) != 0) 772 return (error); 773 break; 774 case MOD_UNLOAD: 775 return EBUSY; 776 default: 777 return EOPNOTSUPP; 778 } 779 780 return 0; 781 } 782 783 static struct xpt_proto * 784 xpt_proto_find(cam_proto proto) 785 { 786 struct xpt_proto **pp; 787 788 SET_FOREACH(pp, cam_xpt_proto_set) { 789 if ((*pp)->proto == proto) 790 return *pp; 791 } 792 793 return NULL; 794 } 795 796 static void 797 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 798 { 799 800 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 801 xpt_free_path(done_ccb->ccb_h.path); 802 xpt_free_ccb(done_ccb); 803 } else { 804 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 805 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 806 } 807 xpt_release_boot(); 808 } 809 810 /* thread to handle bus rescans */ 811 static void 812 xpt_scanner_thread(void *dummy) 813 { 814 union ccb *ccb; 815 struct cam_path path; 816 817 xpt_lock_buses(); 818 for (;;) { 819 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 820 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 821 "-", 0); 822 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 823 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 824 xpt_unlock_buses(); 825 826 /* 827 * Since lock can be dropped inside and path freed 828 * by completion callback even before return here, 829 * take our own path copy for reference. 830 */ 831 xpt_copy_path(&path, ccb->ccb_h.path); 832 xpt_path_lock(&path); 833 xpt_action(ccb); 834 xpt_path_unlock(&path); 835 xpt_release_path(&path); 836 837 xpt_lock_buses(); 838 } 839 } 840 } 841 842 void 843 xpt_rescan(union ccb *ccb) 844 { 845 struct ccb_hdr *hdr; 846 847 /* Prepare request */ 848 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 849 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 850 ccb->ccb_h.func_code = XPT_SCAN_BUS; 851 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 852 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 853 ccb->ccb_h.func_code = XPT_SCAN_TGT; 854 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 855 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 856 ccb->ccb_h.func_code = XPT_SCAN_LUN; 857 else { 858 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 859 xpt_free_path(ccb->ccb_h.path); 860 xpt_free_ccb(ccb); 861 return; 862 } 863 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 864 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 865 xpt_action_name(ccb->ccb_h.func_code))); 866 867 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 868 ccb->ccb_h.cbfcnp = xpt_rescan_done; 869 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 870 /* Don't make duplicate entries for the same paths. */ 871 xpt_lock_buses(); 872 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 873 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 874 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 875 wakeup(&xsoftc.ccb_scanq); 876 xpt_unlock_buses(); 877 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 878 xpt_free_path(ccb->ccb_h.path); 879 xpt_free_ccb(ccb); 880 return; 881 } 882 } 883 } 884 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 885 xsoftc.buses_to_config++; 886 wakeup(&xsoftc.ccb_scanq); 887 xpt_unlock_buses(); 888 } 889 890 /* Functions accessed by the peripheral drivers */ 891 static int 892 xpt_init(void *dummy) 893 { 894 struct cam_sim *xpt_sim; 895 struct cam_path *path; 896 struct cam_devq *devq; 897 cam_status status; 898 int error, i; 899 900 TAILQ_INIT(&xsoftc.xpt_busses); 901 TAILQ_INIT(&xsoftc.ccb_scanq); 902 STAILQ_INIT(&xsoftc.highpowerq); 903 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 904 905 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 906 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 907 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 908 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 909 910 #ifdef CAM_BOOT_DELAY 911 /* 912 * Override this value at compile time to assist our users 913 * who don't use loader to boot a kernel. 914 */ 915 xsoftc.boot_delay = CAM_BOOT_DELAY; 916 #endif 917 /* 918 * The xpt layer is, itself, the equivalent of a SIM. 919 * Allow 16 ccbs in the ccb pool for it. This should 920 * give decent parallelism when we probe buses and 921 * perform other XPT functions. 922 */ 923 devq = cam_simq_alloc(16); 924 xpt_sim = cam_sim_alloc(xptaction, 925 xptpoll, 926 "xpt", 927 /*softc*/NULL, 928 /*unit*/0, 929 /*mtx*/&xsoftc.xpt_lock, 930 /*max_dev_transactions*/0, 931 /*max_tagged_dev_transactions*/0, 932 devq); 933 if (xpt_sim == NULL) 934 return (ENOMEM); 935 936 mtx_lock(&xsoftc.xpt_lock); 937 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 938 mtx_unlock(&xsoftc.xpt_lock); 939 printf("xpt_init: xpt_bus_register failed with status %#x," 940 " failing attach\n", status); 941 return (EINVAL); 942 } 943 mtx_unlock(&xsoftc.xpt_lock); 944 945 /* 946 * Looking at the XPT from the SIM layer, the XPT is 947 * the equivalent of a peripheral driver. Allocate 948 * a peripheral driver entry for us. 949 */ 950 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 951 CAM_TARGET_WILDCARD, 952 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 953 printf("xpt_init: xpt_create_path failed with status %#x," 954 " failing attach\n", status); 955 return (EINVAL); 956 } 957 xpt_path_lock(path); 958 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 959 path, NULL, 0, xpt_sim); 960 xpt_path_unlock(path); 961 xpt_free_path(path); 962 963 if (cam_num_doneqs < 1) 964 cam_num_doneqs = 1 + mp_ncpus / 6; 965 else if (cam_num_doneqs > MAXCPU) 966 cam_num_doneqs = MAXCPU; 967 for (i = 0; i < cam_num_doneqs; i++) { 968 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 969 MTX_DEF); 970 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 971 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 972 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 973 if (error != 0) { 974 cam_num_doneqs = i; 975 break; 976 } 977 } 978 if (cam_num_doneqs < 1) { 979 printf("xpt_init: Cannot init completion queues " 980 "- failing attach\n"); 981 return (ENOMEM); 982 } 983 /* 984 * Register a callback for when interrupts are enabled. 985 */ 986 xsoftc.xpt_config_hook = 987 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 988 M_CAMXPT, M_NOWAIT | M_ZERO); 989 if (xsoftc.xpt_config_hook == NULL) { 990 printf("xpt_init: Cannot malloc config hook " 991 "- failing attach\n"); 992 return (ENOMEM); 993 } 994 xsoftc.xpt_config_hook->ich_func = xpt_config; 995 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 996 free (xsoftc.xpt_config_hook, M_CAMXPT); 997 printf("xpt_init: config_intrhook_establish failed " 998 "- failing attach\n"); 999 } 1000 1001 return (0); 1002 } 1003 1004 static cam_status 1005 xptregister(struct cam_periph *periph, void *arg) 1006 { 1007 struct cam_sim *xpt_sim; 1008 1009 if (periph == NULL) { 1010 printf("xptregister: periph was NULL!!\n"); 1011 return(CAM_REQ_CMP_ERR); 1012 } 1013 1014 xpt_sim = (struct cam_sim *)arg; 1015 xpt_sim->softc = periph; 1016 xpt_periph = periph; 1017 periph->softc = NULL; 1018 1019 return(CAM_REQ_CMP); 1020 } 1021 1022 int32_t 1023 xpt_add_periph(struct cam_periph *periph) 1024 { 1025 struct cam_ed *device; 1026 int32_t status; 1027 1028 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 1029 device = periph->path->device; 1030 status = CAM_REQ_CMP; 1031 if (device != NULL) { 1032 mtx_lock(&device->target->bus->eb_mtx); 1033 device->generation++; 1034 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1035 mtx_unlock(&device->target->bus->eb_mtx); 1036 atomic_add_32(&xsoftc.xpt_generation, 1); 1037 } 1038 1039 return (status); 1040 } 1041 1042 void 1043 xpt_remove_periph(struct cam_periph *periph) 1044 { 1045 struct cam_ed *device; 1046 1047 device = periph->path->device; 1048 if (device != NULL) { 1049 mtx_lock(&device->target->bus->eb_mtx); 1050 device->generation++; 1051 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1052 mtx_unlock(&device->target->bus->eb_mtx); 1053 atomic_add_32(&xsoftc.xpt_generation, 1); 1054 } 1055 } 1056 1057 1058 void 1059 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1060 { 1061 struct cam_path *path = periph->path; 1062 struct xpt_proto *proto; 1063 1064 cam_periph_assert(periph, MA_OWNED); 1065 periph->flags |= CAM_PERIPH_ANNOUNCED; 1066 1067 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1068 periph->periph_name, periph->unit_number, 1069 path->bus->sim->sim_name, 1070 path->bus->sim->unit_number, 1071 path->bus->sim->bus_id, 1072 path->bus->path_id, 1073 path->target->target_id, 1074 (uintmax_t)path->device->lun_id); 1075 printf("%s%d: ", periph->periph_name, periph->unit_number); 1076 proto = xpt_proto_find(path->device->protocol); 1077 if (proto) 1078 proto->ops->announce(path->device); 1079 else 1080 printf("%s%d: Unknown protocol device %d\n", 1081 periph->periph_name, periph->unit_number, 1082 path->device->protocol); 1083 if (path->device->serial_num_len > 0) { 1084 /* Don't wrap the screen - print only the first 60 chars */ 1085 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1086 periph->unit_number, path->device->serial_num); 1087 } 1088 /* Announce transport details. */ 1089 path->bus->xport->ops->announce(periph); 1090 /* Announce command queueing. */ 1091 if (path->device->inq_flags & SID_CmdQue 1092 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1093 printf("%s%d: Command Queueing enabled\n", 1094 periph->periph_name, periph->unit_number); 1095 } 1096 /* Announce caller's details if they've passed in. */ 1097 if (announce_string != NULL) 1098 printf("%s%d: %s\n", periph->periph_name, 1099 periph->unit_number, announce_string); 1100 } 1101 1102 void 1103 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb, 1104 char *announce_string) 1105 { 1106 struct cam_path *path = periph->path; 1107 struct xpt_proto *proto; 1108 1109 cam_periph_assert(periph, MA_OWNED); 1110 periph->flags |= CAM_PERIPH_ANNOUNCED; 1111 1112 /* Fall back to the non-sbuf method if necessary */ 1113 if (xsoftc.announce_nosbuf != 0) { 1114 xpt_announce_periph(periph, announce_string); 1115 return; 1116 } 1117 proto = xpt_proto_find(path->device->protocol); 1118 if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) || 1119 (path->bus->xport->ops->announce_sbuf == NULL)) { 1120 xpt_announce_periph(periph, announce_string); 1121 return; 1122 } 1123 1124 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1125 periph->periph_name, periph->unit_number, 1126 path->bus->sim->sim_name, 1127 path->bus->sim->unit_number, 1128 path->bus->sim->bus_id, 1129 path->bus->path_id, 1130 path->target->target_id, 1131 (uintmax_t)path->device->lun_id); 1132 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1133 1134 if (proto) 1135 proto->ops->announce_sbuf(path->device, sb); 1136 else 1137 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1138 periph->periph_name, periph->unit_number, 1139 path->device->protocol); 1140 if (path->device->serial_num_len > 0) { 1141 /* Don't wrap the screen - print only the first 60 chars */ 1142 sbuf_printf(sb, "%s%d: Serial Number %.60s\n", 1143 periph->periph_name, periph->unit_number, 1144 path->device->serial_num); 1145 } 1146 /* Announce transport details. */ 1147 path->bus->xport->ops->announce_sbuf(periph, sb); 1148 /* Announce command queueing. */ 1149 if (path->device->inq_flags & SID_CmdQue 1150 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1151 sbuf_printf(sb, "%s%d: Command Queueing enabled\n", 1152 periph->periph_name, periph->unit_number); 1153 } 1154 /* Announce caller's details if they've passed in. */ 1155 if (announce_string != NULL) 1156 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name, 1157 periph->unit_number, announce_string); 1158 } 1159 1160 void 1161 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1162 { 1163 if (quirks != 0) { 1164 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1165 periph->unit_number, quirks, bit_string); 1166 } 1167 } 1168 1169 void 1170 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb, 1171 int quirks, char *bit_string) 1172 { 1173 if (xsoftc.announce_nosbuf != 0) { 1174 xpt_announce_quirks(periph, quirks, bit_string); 1175 return; 1176 } 1177 1178 if (quirks != 0) { 1179 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name, 1180 periph->unit_number, quirks, bit_string); 1181 } 1182 } 1183 1184 void 1185 xpt_denounce_periph(struct cam_periph *periph) 1186 { 1187 struct cam_path *path = periph->path; 1188 struct xpt_proto *proto; 1189 1190 cam_periph_assert(periph, MA_OWNED); 1191 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1192 periph->periph_name, periph->unit_number, 1193 path->bus->sim->sim_name, 1194 path->bus->sim->unit_number, 1195 path->bus->sim->bus_id, 1196 path->bus->path_id, 1197 path->target->target_id, 1198 (uintmax_t)path->device->lun_id); 1199 printf("%s%d: ", periph->periph_name, periph->unit_number); 1200 proto = xpt_proto_find(path->device->protocol); 1201 if (proto) 1202 proto->ops->denounce(path->device); 1203 else 1204 printf("%s%d: Unknown protocol device %d\n", 1205 periph->periph_name, periph->unit_number, 1206 path->device->protocol); 1207 if (path->device->serial_num_len > 0) 1208 printf(" s/n %.60s", path->device->serial_num); 1209 printf(" detached\n"); 1210 } 1211 1212 void 1213 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb) 1214 { 1215 struct cam_path *path = periph->path; 1216 struct xpt_proto *proto; 1217 1218 cam_periph_assert(periph, MA_OWNED); 1219 1220 /* Fall back to the non-sbuf method if necessary */ 1221 if (xsoftc.announce_nosbuf != 0) { 1222 xpt_denounce_periph(periph); 1223 return; 1224 } 1225 proto = xpt_proto_find(path->device->protocol); 1226 if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) { 1227 xpt_denounce_periph(periph); 1228 return; 1229 } 1230 1231 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1232 periph->periph_name, periph->unit_number, 1233 path->bus->sim->sim_name, 1234 path->bus->sim->unit_number, 1235 path->bus->sim->bus_id, 1236 path->bus->path_id, 1237 path->target->target_id, 1238 (uintmax_t)path->device->lun_id); 1239 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1240 1241 if (proto) 1242 proto->ops->denounce_sbuf(path->device, sb); 1243 else 1244 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1245 periph->periph_name, periph->unit_number, 1246 path->device->protocol); 1247 if (path->device->serial_num_len > 0) 1248 sbuf_printf(sb, " s/n %.60s", path->device->serial_num); 1249 sbuf_printf(sb, " detached\n"); 1250 } 1251 1252 int 1253 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1254 { 1255 int ret = -1, l, o; 1256 struct ccb_dev_advinfo cdai; 1257 struct scsi_vpd_id_descriptor *idd; 1258 1259 xpt_path_assert(path, MA_OWNED); 1260 1261 memset(&cdai, 0, sizeof(cdai)); 1262 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1263 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1264 cdai.flags = CDAI_FLAG_NONE; 1265 cdai.bufsiz = len; 1266 1267 if (!strcmp(attr, "GEOM::ident")) 1268 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1269 else if (!strcmp(attr, "GEOM::physpath")) 1270 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1271 else if (strcmp(attr, "GEOM::lunid") == 0 || 1272 strcmp(attr, "GEOM::lunname") == 0) { 1273 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1274 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1275 } else 1276 goto out; 1277 1278 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1279 if (cdai.buf == NULL) { 1280 ret = ENOMEM; 1281 goto out; 1282 } 1283 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1284 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1285 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1286 if (cdai.provsiz == 0) 1287 goto out; 1288 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1289 if (strcmp(attr, "GEOM::lunid") == 0) { 1290 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1291 cdai.provsiz, scsi_devid_is_lun_naa); 1292 if (idd == NULL) 1293 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1294 cdai.provsiz, scsi_devid_is_lun_eui64); 1295 if (idd == NULL) 1296 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1297 cdai.provsiz, scsi_devid_is_lun_uuid); 1298 if (idd == NULL) 1299 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1300 cdai.provsiz, scsi_devid_is_lun_md5); 1301 } else 1302 idd = NULL; 1303 if (idd == NULL) 1304 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1305 cdai.provsiz, scsi_devid_is_lun_t10); 1306 if (idd == NULL) 1307 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1308 cdai.provsiz, scsi_devid_is_lun_name); 1309 if (idd == NULL) 1310 goto out; 1311 ret = 0; 1312 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1313 if (idd->length < len) { 1314 for (l = 0; l < idd->length; l++) 1315 buf[l] = idd->identifier[l] ? 1316 idd->identifier[l] : ' '; 1317 buf[l] = 0; 1318 } else 1319 ret = EFAULT; 1320 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1321 l = strnlen(idd->identifier, idd->length); 1322 if (l < len) { 1323 bcopy(idd->identifier, buf, l); 1324 buf[l] = 0; 1325 } else 1326 ret = EFAULT; 1327 } else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID 1328 && idd->identifier[0] == 0x10) { 1329 if ((idd->length - 2) * 2 + 4 < len) { 1330 for (l = 2, o = 0; l < idd->length; l++) { 1331 if (l == 6 || l == 8 || l == 10 || l == 12) 1332 o += sprintf(buf + o, "-"); 1333 o += sprintf(buf + o, "%02x", 1334 idd->identifier[l]); 1335 } 1336 } else 1337 ret = EFAULT; 1338 } else { 1339 if (idd->length * 2 < len) { 1340 for (l = 0; l < idd->length; l++) 1341 sprintf(buf + l * 2, "%02x", 1342 idd->identifier[l]); 1343 } else 1344 ret = EFAULT; 1345 } 1346 } else { 1347 ret = 0; 1348 if (strlcpy(buf, cdai.buf, len) >= len) 1349 ret = EFAULT; 1350 } 1351 1352 out: 1353 if (cdai.buf != NULL) 1354 free(cdai.buf, M_CAMXPT); 1355 return ret; 1356 } 1357 1358 static dev_match_ret 1359 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1360 struct cam_eb *bus) 1361 { 1362 dev_match_ret retval; 1363 u_int i; 1364 1365 retval = DM_RET_NONE; 1366 1367 /* 1368 * If we aren't given something to match against, that's an error. 1369 */ 1370 if (bus == NULL) 1371 return(DM_RET_ERROR); 1372 1373 /* 1374 * If there are no match entries, then this bus matches no 1375 * matter what. 1376 */ 1377 if ((patterns == NULL) || (num_patterns == 0)) 1378 return(DM_RET_DESCEND | DM_RET_COPY); 1379 1380 for (i = 0; i < num_patterns; i++) { 1381 struct bus_match_pattern *cur_pattern; 1382 1383 /* 1384 * If the pattern in question isn't for a bus node, we 1385 * aren't interested. However, we do indicate to the 1386 * calling routine that we should continue descending the 1387 * tree, since the user wants to match against lower-level 1388 * EDT elements. 1389 */ 1390 if (patterns[i].type != DEV_MATCH_BUS) { 1391 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1392 retval |= DM_RET_DESCEND; 1393 continue; 1394 } 1395 1396 cur_pattern = &patterns[i].pattern.bus_pattern; 1397 1398 /* 1399 * If they want to match any bus node, we give them any 1400 * device node. 1401 */ 1402 if (cur_pattern->flags == BUS_MATCH_ANY) { 1403 /* set the copy flag */ 1404 retval |= DM_RET_COPY; 1405 1406 /* 1407 * If we've already decided on an action, go ahead 1408 * and return. 1409 */ 1410 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1411 return(retval); 1412 } 1413 1414 /* 1415 * Not sure why someone would do this... 1416 */ 1417 if (cur_pattern->flags == BUS_MATCH_NONE) 1418 continue; 1419 1420 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1421 && (cur_pattern->path_id != bus->path_id)) 1422 continue; 1423 1424 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1425 && (cur_pattern->bus_id != bus->sim->bus_id)) 1426 continue; 1427 1428 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1429 && (cur_pattern->unit_number != bus->sim->unit_number)) 1430 continue; 1431 1432 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1433 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1434 DEV_IDLEN) != 0)) 1435 continue; 1436 1437 /* 1438 * If we get to this point, the user definitely wants 1439 * information on this bus. So tell the caller to copy the 1440 * data out. 1441 */ 1442 retval |= DM_RET_COPY; 1443 1444 /* 1445 * If the return action has been set to descend, then we 1446 * know that we've already seen a non-bus matching 1447 * expression, therefore we need to further descend the tree. 1448 * This won't change by continuing around the loop, so we 1449 * go ahead and return. If we haven't seen a non-bus 1450 * matching expression, we keep going around the loop until 1451 * we exhaust the matching expressions. We'll set the stop 1452 * flag once we fall out of the loop. 1453 */ 1454 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1455 return(retval); 1456 } 1457 1458 /* 1459 * If the return action hasn't been set to descend yet, that means 1460 * we haven't seen anything other than bus matching patterns. So 1461 * tell the caller to stop descending the tree -- the user doesn't 1462 * want to match against lower level tree elements. 1463 */ 1464 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1465 retval |= DM_RET_STOP; 1466 1467 return(retval); 1468 } 1469 1470 static dev_match_ret 1471 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1472 struct cam_ed *device) 1473 { 1474 dev_match_ret retval; 1475 u_int i; 1476 1477 retval = DM_RET_NONE; 1478 1479 /* 1480 * If we aren't given something to match against, that's an error. 1481 */ 1482 if (device == NULL) 1483 return(DM_RET_ERROR); 1484 1485 /* 1486 * If there are no match entries, then this device matches no 1487 * matter what. 1488 */ 1489 if ((patterns == NULL) || (num_patterns == 0)) 1490 return(DM_RET_DESCEND | DM_RET_COPY); 1491 1492 for (i = 0; i < num_patterns; i++) { 1493 struct device_match_pattern *cur_pattern; 1494 struct scsi_vpd_device_id *device_id_page; 1495 1496 /* 1497 * If the pattern in question isn't for a device node, we 1498 * aren't interested. 1499 */ 1500 if (patterns[i].type != DEV_MATCH_DEVICE) { 1501 if ((patterns[i].type == DEV_MATCH_PERIPH) 1502 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1503 retval |= DM_RET_DESCEND; 1504 continue; 1505 } 1506 1507 cur_pattern = &patterns[i].pattern.device_pattern; 1508 1509 /* Error out if mutually exclusive options are specified. */ 1510 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1511 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1512 return(DM_RET_ERROR); 1513 1514 /* 1515 * If they want to match any device node, we give them any 1516 * device node. 1517 */ 1518 if (cur_pattern->flags == DEV_MATCH_ANY) 1519 goto copy_dev_node; 1520 1521 /* 1522 * Not sure why someone would do this... 1523 */ 1524 if (cur_pattern->flags == DEV_MATCH_NONE) 1525 continue; 1526 1527 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1528 && (cur_pattern->path_id != device->target->bus->path_id)) 1529 continue; 1530 1531 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1532 && (cur_pattern->target_id != device->target->target_id)) 1533 continue; 1534 1535 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1536 && (cur_pattern->target_lun != device->lun_id)) 1537 continue; 1538 1539 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1540 && (cam_quirkmatch((caddr_t)&device->inq_data, 1541 (caddr_t)&cur_pattern->data.inq_pat, 1542 1, sizeof(cur_pattern->data.inq_pat), 1543 scsi_static_inquiry_match) == NULL)) 1544 continue; 1545 1546 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1547 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1548 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1549 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1550 device->device_id_len 1551 - SVPD_DEVICE_ID_HDR_LEN, 1552 cur_pattern->data.devid_pat.id, 1553 cur_pattern->data.devid_pat.id_len) != 0)) 1554 continue; 1555 1556 copy_dev_node: 1557 /* 1558 * If we get to this point, the user definitely wants 1559 * information on this device. So tell the caller to copy 1560 * the data out. 1561 */ 1562 retval |= DM_RET_COPY; 1563 1564 /* 1565 * If the return action has been set to descend, then we 1566 * know that we've already seen a peripheral matching 1567 * expression, therefore we need to further descend the tree. 1568 * This won't change by continuing around the loop, so we 1569 * go ahead and return. If we haven't seen a peripheral 1570 * matching expression, we keep going around the loop until 1571 * we exhaust the matching expressions. We'll set the stop 1572 * flag once we fall out of the loop. 1573 */ 1574 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1575 return(retval); 1576 } 1577 1578 /* 1579 * If the return action hasn't been set to descend yet, that means 1580 * we haven't seen any peripheral matching patterns. So tell the 1581 * caller to stop descending the tree -- the user doesn't want to 1582 * match against lower level tree elements. 1583 */ 1584 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1585 retval |= DM_RET_STOP; 1586 1587 return(retval); 1588 } 1589 1590 /* 1591 * Match a single peripheral against any number of match patterns. 1592 */ 1593 static dev_match_ret 1594 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1595 struct cam_periph *periph) 1596 { 1597 dev_match_ret retval; 1598 u_int i; 1599 1600 /* 1601 * If we aren't given something to match against, that's an error. 1602 */ 1603 if (periph == NULL) 1604 return(DM_RET_ERROR); 1605 1606 /* 1607 * If there are no match entries, then this peripheral matches no 1608 * matter what. 1609 */ 1610 if ((patterns == NULL) || (num_patterns == 0)) 1611 return(DM_RET_STOP | DM_RET_COPY); 1612 1613 /* 1614 * There aren't any nodes below a peripheral node, so there's no 1615 * reason to descend the tree any further. 1616 */ 1617 retval = DM_RET_STOP; 1618 1619 for (i = 0; i < num_patterns; i++) { 1620 struct periph_match_pattern *cur_pattern; 1621 1622 /* 1623 * If the pattern in question isn't for a peripheral, we 1624 * aren't interested. 1625 */ 1626 if (patterns[i].type != DEV_MATCH_PERIPH) 1627 continue; 1628 1629 cur_pattern = &patterns[i].pattern.periph_pattern; 1630 1631 /* 1632 * If they want to match on anything, then we will do so. 1633 */ 1634 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1635 /* set the copy flag */ 1636 retval |= DM_RET_COPY; 1637 1638 /* 1639 * We've already set the return action to stop, 1640 * since there are no nodes below peripherals in 1641 * the tree. 1642 */ 1643 return(retval); 1644 } 1645 1646 /* 1647 * Not sure why someone would do this... 1648 */ 1649 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1650 continue; 1651 1652 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1653 && (cur_pattern->path_id != periph->path->bus->path_id)) 1654 continue; 1655 1656 /* 1657 * For the target and lun id's, we have to make sure the 1658 * target and lun pointers aren't NULL. The xpt peripheral 1659 * has a wildcard target and device. 1660 */ 1661 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1662 && ((periph->path->target == NULL) 1663 ||(cur_pattern->target_id != periph->path->target->target_id))) 1664 continue; 1665 1666 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1667 && ((periph->path->device == NULL) 1668 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1669 continue; 1670 1671 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1672 && (cur_pattern->unit_number != periph->unit_number)) 1673 continue; 1674 1675 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1676 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1677 DEV_IDLEN) != 0)) 1678 continue; 1679 1680 /* 1681 * If we get to this point, the user definitely wants 1682 * information on this peripheral. So tell the caller to 1683 * copy the data out. 1684 */ 1685 retval |= DM_RET_COPY; 1686 1687 /* 1688 * The return action has already been set to stop, since 1689 * peripherals don't have any nodes below them in the EDT. 1690 */ 1691 return(retval); 1692 } 1693 1694 /* 1695 * If we get to this point, the peripheral that was passed in 1696 * doesn't match any of the patterns. 1697 */ 1698 return(retval); 1699 } 1700 1701 static int 1702 xptedtbusfunc(struct cam_eb *bus, void *arg) 1703 { 1704 struct ccb_dev_match *cdm; 1705 struct cam_et *target; 1706 dev_match_ret retval; 1707 1708 cdm = (struct ccb_dev_match *)arg; 1709 1710 /* 1711 * If our position is for something deeper in the tree, that means 1712 * that we've already seen this node. So, we keep going down. 1713 */ 1714 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1715 && (cdm->pos.cookie.bus == bus) 1716 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1717 && (cdm->pos.cookie.target != NULL)) 1718 retval = DM_RET_DESCEND; 1719 else 1720 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1721 1722 /* 1723 * If we got an error, bail out of the search. 1724 */ 1725 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1726 cdm->status = CAM_DEV_MATCH_ERROR; 1727 return(0); 1728 } 1729 1730 /* 1731 * If the copy flag is set, copy this bus out. 1732 */ 1733 if (retval & DM_RET_COPY) { 1734 int spaceleft, j; 1735 1736 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1737 sizeof(struct dev_match_result)); 1738 1739 /* 1740 * If we don't have enough space to put in another 1741 * match result, save our position and tell the 1742 * user there are more devices to check. 1743 */ 1744 if (spaceleft < sizeof(struct dev_match_result)) { 1745 bzero(&cdm->pos, sizeof(cdm->pos)); 1746 cdm->pos.position_type = 1747 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1748 1749 cdm->pos.cookie.bus = bus; 1750 cdm->pos.generations[CAM_BUS_GENERATION]= 1751 xsoftc.bus_generation; 1752 cdm->status = CAM_DEV_MATCH_MORE; 1753 return(0); 1754 } 1755 j = cdm->num_matches; 1756 cdm->num_matches++; 1757 cdm->matches[j].type = DEV_MATCH_BUS; 1758 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1759 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1760 cdm->matches[j].result.bus_result.unit_number = 1761 bus->sim->unit_number; 1762 strlcpy(cdm->matches[j].result.bus_result.dev_name, 1763 bus->sim->sim_name, 1764 sizeof(cdm->matches[j].result.bus_result.dev_name)); 1765 } 1766 1767 /* 1768 * If the user is only interested in buses, there's no 1769 * reason to descend to the next level in the tree. 1770 */ 1771 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1772 return(1); 1773 1774 /* 1775 * If there is a target generation recorded, check it to 1776 * make sure the target list hasn't changed. 1777 */ 1778 mtx_lock(&bus->eb_mtx); 1779 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1780 && (cdm->pos.cookie.bus == bus) 1781 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1782 && (cdm->pos.cookie.target != NULL)) { 1783 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1784 bus->generation)) { 1785 mtx_unlock(&bus->eb_mtx); 1786 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1787 return (0); 1788 } 1789 target = (struct cam_et *)cdm->pos.cookie.target; 1790 target->refcount++; 1791 } else 1792 target = NULL; 1793 mtx_unlock(&bus->eb_mtx); 1794 1795 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1796 } 1797 1798 static int 1799 xptedttargetfunc(struct cam_et *target, void *arg) 1800 { 1801 struct ccb_dev_match *cdm; 1802 struct cam_eb *bus; 1803 struct cam_ed *device; 1804 1805 cdm = (struct ccb_dev_match *)arg; 1806 bus = target->bus; 1807 1808 /* 1809 * If there is a device list generation recorded, check it to 1810 * make sure the device list hasn't changed. 1811 */ 1812 mtx_lock(&bus->eb_mtx); 1813 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1814 && (cdm->pos.cookie.bus == bus) 1815 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1816 && (cdm->pos.cookie.target == target) 1817 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1818 && (cdm->pos.cookie.device != NULL)) { 1819 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1820 target->generation) { 1821 mtx_unlock(&bus->eb_mtx); 1822 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1823 return(0); 1824 } 1825 device = (struct cam_ed *)cdm->pos.cookie.device; 1826 device->refcount++; 1827 } else 1828 device = NULL; 1829 mtx_unlock(&bus->eb_mtx); 1830 1831 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1832 } 1833 1834 static int 1835 xptedtdevicefunc(struct cam_ed *device, void *arg) 1836 { 1837 struct cam_eb *bus; 1838 struct cam_periph *periph; 1839 struct ccb_dev_match *cdm; 1840 dev_match_ret retval; 1841 1842 cdm = (struct ccb_dev_match *)arg; 1843 bus = device->target->bus; 1844 1845 /* 1846 * If our position is for something deeper in the tree, that means 1847 * that we've already seen this node. So, we keep going down. 1848 */ 1849 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1850 && (cdm->pos.cookie.device == device) 1851 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1852 && (cdm->pos.cookie.periph != NULL)) 1853 retval = DM_RET_DESCEND; 1854 else 1855 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1856 device); 1857 1858 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1859 cdm->status = CAM_DEV_MATCH_ERROR; 1860 return(0); 1861 } 1862 1863 /* 1864 * If the copy flag is set, copy this device out. 1865 */ 1866 if (retval & DM_RET_COPY) { 1867 int spaceleft, j; 1868 1869 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1870 sizeof(struct dev_match_result)); 1871 1872 /* 1873 * If we don't have enough space to put in another 1874 * match result, save our position and tell the 1875 * user there are more devices to check. 1876 */ 1877 if (spaceleft < sizeof(struct dev_match_result)) { 1878 bzero(&cdm->pos, sizeof(cdm->pos)); 1879 cdm->pos.position_type = 1880 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1881 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1882 1883 cdm->pos.cookie.bus = device->target->bus; 1884 cdm->pos.generations[CAM_BUS_GENERATION]= 1885 xsoftc.bus_generation; 1886 cdm->pos.cookie.target = device->target; 1887 cdm->pos.generations[CAM_TARGET_GENERATION] = 1888 device->target->bus->generation; 1889 cdm->pos.cookie.device = device; 1890 cdm->pos.generations[CAM_DEV_GENERATION] = 1891 device->target->generation; 1892 cdm->status = CAM_DEV_MATCH_MORE; 1893 return(0); 1894 } 1895 j = cdm->num_matches; 1896 cdm->num_matches++; 1897 cdm->matches[j].type = DEV_MATCH_DEVICE; 1898 cdm->matches[j].result.device_result.path_id = 1899 device->target->bus->path_id; 1900 cdm->matches[j].result.device_result.target_id = 1901 device->target->target_id; 1902 cdm->matches[j].result.device_result.target_lun = 1903 device->lun_id; 1904 cdm->matches[j].result.device_result.protocol = 1905 device->protocol; 1906 bcopy(&device->inq_data, 1907 &cdm->matches[j].result.device_result.inq_data, 1908 sizeof(struct scsi_inquiry_data)); 1909 bcopy(&device->ident_data, 1910 &cdm->matches[j].result.device_result.ident_data, 1911 sizeof(struct ata_params)); 1912 1913 /* Let the user know whether this device is unconfigured */ 1914 if (device->flags & CAM_DEV_UNCONFIGURED) 1915 cdm->matches[j].result.device_result.flags = 1916 DEV_RESULT_UNCONFIGURED; 1917 else 1918 cdm->matches[j].result.device_result.flags = 1919 DEV_RESULT_NOFLAG; 1920 } 1921 1922 /* 1923 * If the user isn't interested in peripherals, don't descend 1924 * the tree any further. 1925 */ 1926 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1927 return(1); 1928 1929 /* 1930 * If there is a peripheral list generation recorded, make sure 1931 * it hasn't changed. 1932 */ 1933 xpt_lock_buses(); 1934 mtx_lock(&bus->eb_mtx); 1935 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1936 && (cdm->pos.cookie.bus == bus) 1937 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1938 && (cdm->pos.cookie.target == device->target) 1939 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1940 && (cdm->pos.cookie.device == device) 1941 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1942 && (cdm->pos.cookie.periph != NULL)) { 1943 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1944 device->generation) { 1945 mtx_unlock(&bus->eb_mtx); 1946 xpt_unlock_buses(); 1947 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1948 return(0); 1949 } 1950 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1951 periph->refcount++; 1952 } else 1953 periph = NULL; 1954 mtx_unlock(&bus->eb_mtx); 1955 xpt_unlock_buses(); 1956 1957 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1958 } 1959 1960 static int 1961 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1962 { 1963 struct ccb_dev_match *cdm; 1964 dev_match_ret retval; 1965 1966 cdm = (struct ccb_dev_match *)arg; 1967 1968 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1969 1970 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1971 cdm->status = CAM_DEV_MATCH_ERROR; 1972 return(0); 1973 } 1974 1975 /* 1976 * If the copy flag is set, copy this peripheral out. 1977 */ 1978 if (retval & DM_RET_COPY) { 1979 int spaceleft, j; 1980 size_t l; 1981 1982 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1983 sizeof(struct dev_match_result)); 1984 1985 /* 1986 * If we don't have enough space to put in another 1987 * match result, save our position and tell the 1988 * user there are more devices to check. 1989 */ 1990 if (spaceleft < sizeof(struct dev_match_result)) { 1991 bzero(&cdm->pos, sizeof(cdm->pos)); 1992 cdm->pos.position_type = 1993 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1994 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1995 CAM_DEV_POS_PERIPH; 1996 1997 cdm->pos.cookie.bus = periph->path->bus; 1998 cdm->pos.generations[CAM_BUS_GENERATION]= 1999 xsoftc.bus_generation; 2000 cdm->pos.cookie.target = periph->path->target; 2001 cdm->pos.generations[CAM_TARGET_GENERATION] = 2002 periph->path->bus->generation; 2003 cdm->pos.cookie.device = periph->path->device; 2004 cdm->pos.generations[CAM_DEV_GENERATION] = 2005 periph->path->target->generation; 2006 cdm->pos.cookie.periph = periph; 2007 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2008 periph->path->device->generation; 2009 cdm->status = CAM_DEV_MATCH_MORE; 2010 return(0); 2011 } 2012 2013 j = cdm->num_matches; 2014 cdm->num_matches++; 2015 cdm->matches[j].type = DEV_MATCH_PERIPH; 2016 cdm->matches[j].result.periph_result.path_id = 2017 periph->path->bus->path_id; 2018 cdm->matches[j].result.periph_result.target_id = 2019 periph->path->target->target_id; 2020 cdm->matches[j].result.periph_result.target_lun = 2021 periph->path->device->lun_id; 2022 cdm->matches[j].result.periph_result.unit_number = 2023 periph->unit_number; 2024 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 2025 strlcpy(cdm->matches[j].result.periph_result.periph_name, 2026 periph->periph_name, l); 2027 } 2028 2029 return(1); 2030 } 2031 2032 static int 2033 xptedtmatch(struct ccb_dev_match *cdm) 2034 { 2035 struct cam_eb *bus; 2036 int ret; 2037 2038 cdm->num_matches = 0; 2039 2040 /* 2041 * Check the bus list generation. If it has changed, the user 2042 * needs to reset everything and start over. 2043 */ 2044 xpt_lock_buses(); 2045 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2046 && (cdm->pos.cookie.bus != NULL)) { 2047 if (cdm->pos.generations[CAM_BUS_GENERATION] != 2048 xsoftc.bus_generation) { 2049 xpt_unlock_buses(); 2050 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2051 return(0); 2052 } 2053 bus = (struct cam_eb *)cdm->pos.cookie.bus; 2054 bus->refcount++; 2055 } else 2056 bus = NULL; 2057 xpt_unlock_buses(); 2058 2059 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 2060 2061 /* 2062 * If we get back 0, that means that we had to stop before fully 2063 * traversing the EDT. It also means that one of the subroutines 2064 * has set the status field to the proper value. If we get back 1, 2065 * we've fully traversed the EDT and copied out any matching entries. 2066 */ 2067 if (ret == 1) 2068 cdm->status = CAM_DEV_MATCH_LAST; 2069 2070 return(ret); 2071 } 2072 2073 static int 2074 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2075 { 2076 struct cam_periph *periph; 2077 struct ccb_dev_match *cdm; 2078 2079 cdm = (struct ccb_dev_match *)arg; 2080 2081 xpt_lock_buses(); 2082 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2083 && (cdm->pos.cookie.pdrv == pdrv) 2084 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2085 && (cdm->pos.cookie.periph != NULL)) { 2086 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2087 (*pdrv)->generation) { 2088 xpt_unlock_buses(); 2089 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2090 return(0); 2091 } 2092 periph = (struct cam_periph *)cdm->pos.cookie.periph; 2093 periph->refcount++; 2094 } else 2095 periph = NULL; 2096 xpt_unlock_buses(); 2097 2098 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 2099 } 2100 2101 static int 2102 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2103 { 2104 struct ccb_dev_match *cdm; 2105 dev_match_ret retval; 2106 2107 cdm = (struct ccb_dev_match *)arg; 2108 2109 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2110 2111 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2112 cdm->status = CAM_DEV_MATCH_ERROR; 2113 return(0); 2114 } 2115 2116 /* 2117 * If the copy flag is set, copy this peripheral out. 2118 */ 2119 if (retval & DM_RET_COPY) { 2120 int spaceleft, j; 2121 size_t l; 2122 2123 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2124 sizeof(struct dev_match_result)); 2125 2126 /* 2127 * If we don't have enough space to put in another 2128 * match result, save our position and tell the 2129 * user there are more devices to check. 2130 */ 2131 if (spaceleft < sizeof(struct dev_match_result)) { 2132 struct periph_driver **pdrv; 2133 2134 pdrv = NULL; 2135 bzero(&cdm->pos, sizeof(cdm->pos)); 2136 cdm->pos.position_type = 2137 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2138 CAM_DEV_POS_PERIPH; 2139 2140 /* 2141 * This may look a bit non-sensical, but it is 2142 * actually quite logical. There are very few 2143 * peripheral drivers, and bloating every peripheral 2144 * structure with a pointer back to its parent 2145 * peripheral driver linker set entry would cost 2146 * more in the long run than doing this quick lookup. 2147 */ 2148 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2149 if (strcmp((*pdrv)->driver_name, 2150 periph->periph_name) == 0) 2151 break; 2152 } 2153 2154 if (*pdrv == NULL) { 2155 cdm->status = CAM_DEV_MATCH_ERROR; 2156 return(0); 2157 } 2158 2159 cdm->pos.cookie.pdrv = pdrv; 2160 /* 2161 * The periph generation slot does double duty, as 2162 * does the periph pointer slot. They are used for 2163 * both edt and pdrv lookups and positioning. 2164 */ 2165 cdm->pos.cookie.periph = periph; 2166 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2167 (*pdrv)->generation; 2168 cdm->status = CAM_DEV_MATCH_MORE; 2169 return(0); 2170 } 2171 2172 j = cdm->num_matches; 2173 cdm->num_matches++; 2174 cdm->matches[j].type = DEV_MATCH_PERIPH; 2175 cdm->matches[j].result.periph_result.path_id = 2176 periph->path->bus->path_id; 2177 2178 /* 2179 * The transport layer peripheral doesn't have a target or 2180 * lun. 2181 */ 2182 if (periph->path->target) 2183 cdm->matches[j].result.periph_result.target_id = 2184 periph->path->target->target_id; 2185 else 2186 cdm->matches[j].result.periph_result.target_id = 2187 CAM_TARGET_WILDCARD; 2188 2189 if (periph->path->device) 2190 cdm->matches[j].result.periph_result.target_lun = 2191 periph->path->device->lun_id; 2192 else 2193 cdm->matches[j].result.periph_result.target_lun = 2194 CAM_LUN_WILDCARD; 2195 2196 cdm->matches[j].result.periph_result.unit_number = 2197 periph->unit_number; 2198 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 2199 strlcpy(cdm->matches[j].result.periph_result.periph_name, 2200 periph->periph_name, l); 2201 } 2202 2203 return(1); 2204 } 2205 2206 static int 2207 xptperiphlistmatch(struct ccb_dev_match *cdm) 2208 { 2209 int ret; 2210 2211 cdm->num_matches = 0; 2212 2213 /* 2214 * At this point in the edt traversal function, we check the bus 2215 * list generation to make sure that no buses have been added or 2216 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2217 * For the peripheral driver list traversal function, however, we 2218 * don't have to worry about new peripheral driver types coming or 2219 * going; they're in a linker set, and therefore can't change 2220 * without a recompile. 2221 */ 2222 2223 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2224 && (cdm->pos.cookie.pdrv != NULL)) 2225 ret = xptpdrvtraverse( 2226 (struct periph_driver **)cdm->pos.cookie.pdrv, 2227 xptplistpdrvfunc, cdm); 2228 else 2229 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2230 2231 /* 2232 * If we get back 0, that means that we had to stop before fully 2233 * traversing the peripheral driver tree. It also means that one of 2234 * the subroutines has set the status field to the proper value. If 2235 * we get back 1, we've fully traversed the EDT and copied out any 2236 * matching entries. 2237 */ 2238 if (ret == 1) 2239 cdm->status = CAM_DEV_MATCH_LAST; 2240 2241 return(ret); 2242 } 2243 2244 static int 2245 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2246 { 2247 struct cam_eb *bus, *next_bus; 2248 int retval; 2249 2250 retval = 1; 2251 if (start_bus) 2252 bus = start_bus; 2253 else { 2254 xpt_lock_buses(); 2255 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2256 if (bus == NULL) { 2257 xpt_unlock_buses(); 2258 return (retval); 2259 } 2260 bus->refcount++; 2261 xpt_unlock_buses(); 2262 } 2263 for (; bus != NULL; bus = next_bus) { 2264 retval = tr_func(bus, arg); 2265 if (retval == 0) { 2266 xpt_release_bus(bus); 2267 break; 2268 } 2269 xpt_lock_buses(); 2270 next_bus = TAILQ_NEXT(bus, links); 2271 if (next_bus) 2272 next_bus->refcount++; 2273 xpt_unlock_buses(); 2274 xpt_release_bus(bus); 2275 } 2276 return(retval); 2277 } 2278 2279 static int 2280 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2281 xpt_targetfunc_t *tr_func, void *arg) 2282 { 2283 struct cam_et *target, *next_target; 2284 int retval; 2285 2286 retval = 1; 2287 if (start_target) 2288 target = start_target; 2289 else { 2290 mtx_lock(&bus->eb_mtx); 2291 target = TAILQ_FIRST(&bus->et_entries); 2292 if (target == NULL) { 2293 mtx_unlock(&bus->eb_mtx); 2294 return (retval); 2295 } 2296 target->refcount++; 2297 mtx_unlock(&bus->eb_mtx); 2298 } 2299 for (; target != NULL; target = next_target) { 2300 retval = tr_func(target, arg); 2301 if (retval == 0) { 2302 xpt_release_target(target); 2303 break; 2304 } 2305 mtx_lock(&bus->eb_mtx); 2306 next_target = TAILQ_NEXT(target, links); 2307 if (next_target) 2308 next_target->refcount++; 2309 mtx_unlock(&bus->eb_mtx); 2310 xpt_release_target(target); 2311 } 2312 return(retval); 2313 } 2314 2315 static int 2316 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2317 xpt_devicefunc_t *tr_func, void *arg) 2318 { 2319 struct cam_eb *bus; 2320 struct cam_ed *device, *next_device; 2321 int retval; 2322 2323 retval = 1; 2324 bus = target->bus; 2325 if (start_device) 2326 device = start_device; 2327 else { 2328 mtx_lock(&bus->eb_mtx); 2329 device = TAILQ_FIRST(&target->ed_entries); 2330 if (device == NULL) { 2331 mtx_unlock(&bus->eb_mtx); 2332 return (retval); 2333 } 2334 device->refcount++; 2335 mtx_unlock(&bus->eb_mtx); 2336 } 2337 for (; device != NULL; device = next_device) { 2338 mtx_lock(&device->device_mtx); 2339 retval = tr_func(device, arg); 2340 mtx_unlock(&device->device_mtx); 2341 if (retval == 0) { 2342 xpt_release_device(device); 2343 break; 2344 } 2345 mtx_lock(&bus->eb_mtx); 2346 next_device = TAILQ_NEXT(device, links); 2347 if (next_device) 2348 next_device->refcount++; 2349 mtx_unlock(&bus->eb_mtx); 2350 xpt_release_device(device); 2351 } 2352 return(retval); 2353 } 2354 2355 static int 2356 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2357 xpt_periphfunc_t *tr_func, void *arg) 2358 { 2359 struct cam_eb *bus; 2360 struct cam_periph *periph, *next_periph; 2361 int retval; 2362 2363 retval = 1; 2364 2365 bus = device->target->bus; 2366 if (start_periph) 2367 periph = start_periph; 2368 else { 2369 xpt_lock_buses(); 2370 mtx_lock(&bus->eb_mtx); 2371 periph = SLIST_FIRST(&device->periphs); 2372 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2373 periph = SLIST_NEXT(periph, periph_links); 2374 if (periph == NULL) { 2375 mtx_unlock(&bus->eb_mtx); 2376 xpt_unlock_buses(); 2377 return (retval); 2378 } 2379 periph->refcount++; 2380 mtx_unlock(&bus->eb_mtx); 2381 xpt_unlock_buses(); 2382 } 2383 for (; periph != NULL; periph = next_periph) { 2384 retval = tr_func(periph, arg); 2385 if (retval == 0) { 2386 cam_periph_release_locked(periph); 2387 break; 2388 } 2389 xpt_lock_buses(); 2390 mtx_lock(&bus->eb_mtx); 2391 next_periph = SLIST_NEXT(periph, periph_links); 2392 while (next_periph != NULL && 2393 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2394 next_periph = SLIST_NEXT(next_periph, periph_links); 2395 if (next_periph) 2396 next_periph->refcount++; 2397 mtx_unlock(&bus->eb_mtx); 2398 xpt_unlock_buses(); 2399 cam_periph_release_locked(periph); 2400 } 2401 return(retval); 2402 } 2403 2404 static int 2405 xptpdrvtraverse(struct periph_driver **start_pdrv, 2406 xpt_pdrvfunc_t *tr_func, void *arg) 2407 { 2408 struct periph_driver **pdrv; 2409 int retval; 2410 2411 retval = 1; 2412 2413 /* 2414 * We don't traverse the peripheral driver list like we do the 2415 * other lists, because it is a linker set, and therefore cannot be 2416 * changed during runtime. If the peripheral driver list is ever 2417 * re-done to be something other than a linker set (i.e. it can 2418 * change while the system is running), the list traversal should 2419 * be modified to work like the other traversal functions. 2420 */ 2421 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2422 *pdrv != NULL; pdrv++) { 2423 retval = tr_func(pdrv, arg); 2424 2425 if (retval == 0) 2426 return(retval); 2427 } 2428 2429 return(retval); 2430 } 2431 2432 static int 2433 xptpdperiphtraverse(struct periph_driver **pdrv, 2434 struct cam_periph *start_periph, 2435 xpt_periphfunc_t *tr_func, void *arg) 2436 { 2437 struct cam_periph *periph, *next_periph; 2438 int retval; 2439 2440 retval = 1; 2441 2442 if (start_periph) 2443 periph = start_periph; 2444 else { 2445 xpt_lock_buses(); 2446 periph = TAILQ_FIRST(&(*pdrv)->units); 2447 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2448 periph = TAILQ_NEXT(periph, unit_links); 2449 if (periph == NULL) { 2450 xpt_unlock_buses(); 2451 return (retval); 2452 } 2453 periph->refcount++; 2454 xpt_unlock_buses(); 2455 } 2456 for (; periph != NULL; periph = next_periph) { 2457 cam_periph_lock(periph); 2458 retval = tr_func(periph, arg); 2459 cam_periph_unlock(periph); 2460 if (retval == 0) { 2461 cam_periph_release(periph); 2462 break; 2463 } 2464 xpt_lock_buses(); 2465 next_periph = TAILQ_NEXT(periph, unit_links); 2466 while (next_periph != NULL && 2467 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2468 next_periph = TAILQ_NEXT(next_periph, unit_links); 2469 if (next_periph) 2470 next_periph->refcount++; 2471 xpt_unlock_buses(); 2472 cam_periph_release(periph); 2473 } 2474 return(retval); 2475 } 2476 2477 static int 2478 xptdefbusfunc(struct cam_eb *bus, void *arg) 2479 { 2480 struct xpt_traverse_config *tr_config; 2481 2482 tr_config = (struct xpt_traverse_config *)arg; 2483 2484 if (tr_config->depth == XPT_DEPTH_BUS) { 2485 xpt_busfunc_t *tr_func; 2486 2487 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2488 2489 return(tr_func(bus, tr_config->tr_arg)); 2490 } else 2491 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2492 } 2493 2494 static int 2495 xptdeftargetfunc(struct cam_et *target, void *arg) 2496 { 2497 struct xpt_traverse_config *tr_config; 2498 2499 tr_config = (struct xpt_traverse_config *)arg; 2500 2501 if (tr_config->depth == XPT_DEPTH_TARGET) { 2502 xpt_targetfunc_t *tr_func; 2503 2504 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2505 2506 return(tr_func(target, tr_config->tr_arg)); 2507 } else 2508 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2509 } 2510 2511 static int 2512 xptdefdevicefunc(struct cam_ed *device, void *arg) 2513 { 2514 struct xpt_traverse_config *tr_config; 2515 2516 tr_config = (struct xpt_traverse_config *)arg; 2517 2518 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2519 xpt_devicefunc_t *tr_func; 2520 2521 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2522 2523 return(tr_func(device, tr_config->tr_arg)); 2524 } else 2525 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2526 } 2527 2528 static int 2529 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2530 { 2531 struct xpt_traverse_config *tr_config; 2532 xpt_periphfunc_t *tr_func; 2533 2534 tr_config = (struct xpt_traverse_config *)arg; 2535 2536 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2537 2538 /* 2539 * Unlike the other default functions, we don't check for depth 2540 * here. The peripheral driver level is the last level in the EDT, 2541 * so if we're here, we should execute the function in question. 2542 */ 2543 return(tr_func(periph, tr_config->tr_arg)); 2544 } 2545 2546 /* 2547 * Execute the given function for every bus in the EDT. 2548 */ 2549 static int 2550 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2551 { 2552 struct xpt_traverse_config tr_config; 2553 2554 tr_config.depth = XPT_DEPTH_BUS; 2555 tr_config.tr_func = tr_func; 2556 tr_config.tr_arg = arg; 2557 2558 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2559 } 2560 2561 /* 2562 * Execute the given function for every device in the EDT. 2563 */ 2564 static int 2565 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2566 { 2567 struct xpt_traverse_config tr_config; 2568 2569 tr_config.depth = XPT_DEPTH_DEVICE; 2570 tr_config.tr_func = tr_func; 2571 tr_config.tr_arg = arg; 2572 2573 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2574 } 2575 2576 static int 2577 xptsetasyncfunc(struct cam_ed *device, void *arg) 2578 { 2579 struct cam_path path; 2580 struct ccb_getdev cgd; 2581 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2582 2583 /* 2584 * Don't report unconfigured devices (Wildcard devs, 2585 * devices only for target mode, device instances 2586 * that have been invalidated but are waiting for 2587 * their last reference count to be released). 2588 */ 2589 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2590 return (1); 2591 2592 xpt_compile_path(&path, 2593 NULL, 2594 device->target->bus->path_id, 2595 device->target->target_id, 2596 device->lun_id); 2597 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2598 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2599 xpt_action((union ccb *)&cgd); 2600 csa->callback(csa->callback_arg, 2601 AC_FOUND_DEVICE, 2602 &path, &cgd); 2603 xpt_release_path(&path); 2604 2605 return(1); 2606 } 2607 2608 static int 2609 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2610 { 2611 struct cam_path path; 2612 struct ccb_pathinq cpi; 2613 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2614 2615 xpt_compile_path(&path, /*periph*/NULL, 2616 bus->path_id, 2617 CAM_TARGET_WILDCARD, 2618 CAM_LUN_WILDCARD); 2619 xpt_path_lock(&path); 2620 xpt_path_inq(&cpi, &path); 2621 csa->callback(csa->callback_arg, 2622 AC_PATH_REGISTERED, 2623 &path, &cpi); 2624 xpt_path_unlock(&path); 2625 xpt_release_path(&path); 2626 2627 return(1); 2628 } 2629 2630 void 2631 xpt_action(union ccb *start_ccb) 2632 { 2633 2634 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2635 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2636 xpt_action_name(start_ccb->ccb_h.func_code))); 2637 2638 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2639 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2640 } 2641 2642 void 2643 xpt_action_default(union ccb *start_ccb) 2644 { 2645 struct cam_path *path; 2646 struct cam_sim *sim; 2647 struct mtx *mtx; 2648 2649 path = start_ccb->ccb_h.path; 2650 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2651 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2652 xpt_action_name(start_ccb->ccb_h.func_code))); 2653 2654 switch (start_ccb->ccb_h.func_code) { 2655 case XPT_SCSI_IO: 2656 { 2657 struct cam_ed *device; 2658 2659 /* 2660 * For the sake of compatibility with SCSI-1 2661 * devices that may not understand the identify 2662 * message, we include lun information in the 2663 * second byte of all commands. SCSI-1 specifies 2664 * that luns are a 3 bit value and reserves only 3 2665 * bits for lun information in the CDB. Later 2666 * revisions of the SCSI spec allow for more than 8 2667 * luns, but have deprecated lun information in the 2668 * CDB. So, if the lun won't fit, we must omit. 2669 * 2670 * Also be aware that during initial probing for devices, 2671 * the inquiry information is unknown but initialized to 0. 2672 * This means that this code will be exercised while probing 2673 * devices with an ANSI revision greater than 2. 2674 */ 2675 device = path->device; 2676 if (device->protocol_version <= SCSI_REV_2 2677 && start_ccb->ccb_h.target_lun < 8 2678 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2679 2680 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2681 start_ccb->ccb_h.target_lun << 5; 2682 } 2683 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2684 } 2685 /* FALLTHROUGH */ 2686 case XPT_TARGET_IO: 2687 case XPT_CONT_TARGET_IO: 2688 start_ccb->csio.sense_resid = 0; 2689 start_ccb->csio.resid = 0; 2690 /* FALLTHROUGH */ 2691 case XPT_ATA_IO: 2692 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2693 start_ccb->ataio.resid = 0; 2694 /* FALLTHROUGH */ 2695 case XPT_NVME_IO: 2696 /* FALLTHROUGH */ 2697 case XPT_NVME_ADMIN: 2698 /* FALLTHROUGH */ 2699 case XPT_MMC_IO: 2700 /* XXX just like nmve_io? */ 2701 case XPT_RESET_DEV: 2702 case XPT_ENG_EXEC: 2703 case XPT_SMP_IO: 2704 { 2705 struct cam_devq *devq; 2706 2707 devq = path->bus->sim->devq; 2708 mtx_lock(&devq->send_mtx); 2709 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2710 if (xpt_schedule_devq(devq, path->device) != 0) 2711 xpt_run_devq(devq); 2712 mtx_unlock(&devq->send_mtx); 2713 break; 2714 } 2715 case XPT_CALC_GEOMETRY: 2716 /* Filter out garbage */ 2717 if (start_ccb->ccg.block_size == 0 2718 || start_ccb->ccg.volume_size == 0) { 2719 start_ccb->ccg.cylinders = 0; 2720 start_ccb->ccg.heads = 0; 2721 start_ccb->ccg.secs_per_track = 0; 2722 start_ccb->ccb_h.status = CAM_REQ_CMP; 2723 break; 2724 } 2725 #if defined(__sparc64__) 2726 /* 2727 * For sparc64, we may need adjust the geometry of large 2728 * disks in order to fit the limitations of the 16-bit 2729 * fields of the VTOC8 disk label. 2730 */ 2731 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2732 start_ccb->ccb_h.status = CAM_REQ_CMP; 2733 break; 2734 } 2735 #endif 2736 goto call_sim; 2737 case XPT_ABORT: 2738 { 2739 union ccb* abort_ccb; 2740 2741 abort_ccb = start_ccb->cab.abort_ccb; 2742 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2743 struct cam_ed *device; 2744 struct cam_devq *devq; 2745 2746 device = abort_ccb->ccb_h.path->device; 2747 devq = device->sim->devq; 2748 2749 mtx_lock(&devq->send_mtx); 2750 if (abort_ccb->ccb_h.pinfo.index > 0) { 2751 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2752 abort_ccb->ccb_h.status = 2753 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2754 xpt_freeze_devq_device(device, 1); 2755 mtx_unlock(&devq->send_mtx); 2756 xpt_done(abort_ccb); 2757 start_ccb->ccb_h.status = CAM_REQ_CMP; 2758 break; 2759 } 2760 mtx_unlock(&devq->send_mtx); 2761 2762 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2763 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2764 /* 2765 * We've caught this ccb en route to 2766 * the SIM. Flag it for abort and the 2767 * SIM will do so just before starting 2768 * real work on the CCB. 2769 */ 2770 abort_ccb->ccb_h.status = 2771 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2772 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2773 start_ccb->ccb_h.status = CAM_REQ_CMP; 2774 break; 2775 } 2776 } 2777 if (XPT_FC_IS_QUEUED(abort_ccb) 2778 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2779 /* 2780 * It's already completed but waiting 2781 * for our SWI to get to it. 2782 */ 2783 start_ccb->ccb_h.status = CAM_UA_ABORT; 2784 break; 2785 } 2786 /* 2787 * If we weren't able to take care of the abort request 2788 * in the XPT, pass the request down to the SIM for processing. 2789 */ 2790 } 2791 /* FALLTHROUGH */ 2792 case XPT_ACCEPT_TARGET_IO: 2793 case XPT_EN_LUN: 2794 case XPT_IMMED_NOTIFY: 2795 case XPT_NOTIFY_ACK: 2796 case XPT_RESET_BUS: 2797 case XPT_IMMEDIATE_NOTIFY: 2798 case XPT_NOTIFY_ACKNOWLEDGE: 2799 case XPT_GET_SIM_KNOB_OLD: 2800 case XPT_GET_SIM_KNOB: 2801 case XPT_SET_SIM_KNOB: 2802 case XPT_GET_TRAN_SETTINGS: 2803 case XPT_SET_TRAN_SETTINGS: 2804 case XPT_PATH_INQ: 2805 call_sim: 2806 sim = path->bus->sim; 2807 mtx = sim->mtx; 2808 if (mtx && !mtx_owned(mtx)) 2809 mtx_lock(mtx); 2810 else 2811 mtx = NULL; 2812 2813 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2814 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code)); 2815 (*(sim->sim_action))(sim, start_ccb); 2816 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2817 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status)); 2818 if (mtx) 2819 mtx_unlock(mtx); 2820 break; 2821 case XPT_PATH_STATS: 2822 start_ccb->cpis.last_reset = path->bus->last_reset; 2823 start_ccb->ccb_h.status = CAM_REQ_CMP; 2824 break; 2825 case XPT_GDEV_TYPE: 2826 { 2827 struct cam_ed *dev; 2828 2829 dev = path->device; 2830 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2831 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2832 } else { 2833 struct ccb_getdev *cgd; 2834 2835 cgd = &start_ccb->cgd; 2836 cgd->protocol = dev->protocol; 2837 cgd->inq_data = dev->inq_data; 2838 cgd->ident_data = dev->ident_data; 2839 cgd->inq_flags = dev->inq_flags; 2840 cgd->ccb_h.status = CAM_REQ_CMP; 2841 cgd->serial_num_len = dev->serial_num_len; 2842 if ((dev->serial_num_len > 0) 2843 && (dev->serial_num != NULL)) 2844 bcopy(dev->serial_num, cgd->serial_num, 2845 dev->serial_num_len); 2846 } 2847 break; 2848 } 2849 case XPT_GDEV_STATS: 2850 { 2851 struct ccb_getdevstats *cgds = &start_ccb->cgds; 2852 struct cam_ed *dev = path->device; 2853 struct cam_eb *bus = path->bus; 2854 struct cam_et *tar = path->target; 2855 struct cam_devq *devq = bus->sim->devq; 2856 2857 mtx_lock(&devq->send_mtx); 2858 cgds->dev_openings = dev->ccbq.dev_openings; 2859 cgds->dev_active = dev->ccbq.dev_active; 2860 cgds->allocated = dev->ccbq.allocated; 2861 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2862 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; 2863 cgds->last_reset = tar->last_reset; 2864 cgds->maxtags = dev->maxtags; 2865 cgds->mintags = dev->mintags; 2866 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2867 cgds->last_reset = bus->last_reset; 2868 mtx_unlock(&devq->send_mtx); 2869 cgds->ccb_h.status = CAM_REQ_CMP; 2870 break; 2871 } 2872 case XPT_GDEVLIST: 2873 { 2874 struct cam_periph *nperiph; 2875 struct periph_list *periph_head; 2876 struct ccb_getdevlist *cgdl; 2877 u_int i; 2878 struct cam_ed *device; 2879 int found; 2880 2881 2882 found = 0; 2883 2884 /* 2885 * Don't want anyone mucking with our data. 2886 */ 2887 device = path->device; 2888 periph_head = &device->periphs; 2889 cgdl = &start_ccb->cgdl; 2890 2891 /* 2892 * Check and see if the list has changed since the user 2893 * last requested a list member. If so, tell them that the 2894 * list has changed, and therefore they need to start over 2895 * from the beginning. 2896 */ 2897 if ((cgdl->index != 0) && 2898 (cgdl->generation != device->generation)) { 2899 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2900 break; 2901 } 2902 2903 /* 2904 * Traverse the list of peripherals and attempt to find 2905 * the requested peripheral. 2906 */ 2907 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2908 (nperiph != NULL) && (i <= cgdl->index); 2909 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2910 if (i == cgdl->index) { 2911 strlcpy(cgdl->periph_name, 2912 nperiph->periph_name, 2913 sizeof(cgdl->periph_name)); 2914 cgdl->unit_number = nperiph->unit_number; 2915 found = 1; 2916 } 2917 } 2918 if (found == 0) { 2919 cgdl->status = CAM_GDEVLIST_ERROR; 2920 break; 2921 } 2922 2923 if (nperiph == NULL) 2924 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2925 else 2926 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2927 2928 cgdl->index++; 2929 cgdl->generation = device->generation; 2930 2931 cgdl->ccb_h.status = CAM_REQ_CMP; 2932 break; 2933 } 2934 case XPT_DEV_MATCH: 2935 { 2936 dev_pos_type position_type; 2937 struct ccb_dev_match *cdm; 2938 2939 cdm = &start_ccb->cdm; 2940 2941 /* 2942 * There are two ways of getting at information in the EDT. 2943 * The first way is via the primary EDT tree. It starts 2944 * with a list of buses, then a list of targets on a bus, 2945 * then devices/luns on a target, and then peripherals on a 2946 * device/lun. The "other" way is by the peripheral driver 2947 * lists. The peripheral driver lists are organized by 2948 * peripheral driver. (obviously) So it makes sense to 2949 * use the peripheral driver list if the user is looking 2950 * for something like "da1", or all "da" devices. If the 2951 * user is looking for something on a particular bus/target 2952 * or lun, it's generally better to go through the EDT tree. 2953 */ 2954 2955 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2956 position_type = cdm->pos.position_type; 2957 else { 2958 u_int i; 2959 2960 position_type = CAM_DEV_POS_NONE; 2961 2962 for (i = 0; i < cdm->num_patterns; i++) { 2963 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2964 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2965 position_type = CAM_DEV_POS_EDT; 2966 break; 2967 } 2968 } 2969 2970 if (cdm->num_patterns == 0) 2971 position_type = CAM_DEV_POS_EDT; 2972 else if (position_type == CAM_DEV_POS_NONE) 2973 position_type = CAM_DEV_POS_PDRV; 2974 } 2975 2976 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2977 case CAM_DEV_POS_EDT: 2978 xptedtmatch(cdm); 2979 break; 2980 case CAM_DEV_POS_PDRV: 2981 xptperiphlistmatch(cdm); 2982 break; 2983 default: 2984 cdm->status = CAM_DEV_MATCH_ERROR; 2985 break; 2986 } 2987 2988 if (cdm->status == CAM_DEV_MATCH_ERROR) 2989 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2990 else 2991 start_ccb->ccb_h.status = CAM_REQ_CMP; 2992 2993 break; 2994 } 2995 case XPT_SASYNC_CB: 2996 { 2997 struct ccb_setasync *csa; 2998 struct async_node *cur_entry; 2999 struct async_list *async_head; 3000 u_int32_t added; 3001 3002 csa = &start_ccb->csa; 3003 added = csa->event_enable; 3004 async_head = &path->device->asyncs; 3005 3006 /* 3007 * If there is already an entry for us, simply 3008 * update it. 3009 */ 3010 cur_entry = SLIST_FIRST(async_head); 3011 while (cur_entry != NULL) { 3012 if ((cur_entry->callback_arg == csa->callback_arg) 3013 && (cur_entry->callback == csa->callback)) 3014 break; 3015 cur_entry = SLIST_NEXT(cur_entry, links); 3016 } 3017 3018 if (cur_entry != NULL) { 3019 /* 3020 * If the request has no flags set, 3021 * remove the entry. 3022 */ 3023 added &= ~cur_entry->event_enable; 3024 if (csa->event_enable == 0) { 3025 SLIST_REMOVE(async_head, cur_entry, 3026 async_node, links); 3027 xpt_release_device(path->device); 3028 free(cur_entry, M_CAMXPT); 3029 } else { 3030 cur_entry->event_enable = csa->event_enable; 3031 } 3032 csa->event_enable = added; 3033 } else { 3034 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3035 M_NOWAIT); 3036 if (cur_entry == NULL) { 3037 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3038 break; 3039 } 3040 cur_entry->event_enable = csa->event_enable; 3041 cur_entry->event_lock = (path->bus->sim->mtx && 3042 mtx_owned(path->bus->sim->mtx)) ? 1 : 0; 3043 cur_entry->callback_arg = csa->callback_arg; 3044 cur_entry->callback = csa->callback; 3045 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3046 xpt_acquire_device(path->device); 3047 } 3048 start_ccb->ccb_h.status = CAM_REQ_CMP; 3049 break; 3050 } 3051 case XPT_REL_SIMQ: 3052 { 3053 struct ccb_relsim *crs; 3054 struct cam_ed *dev; 3055 3056 crs = &start_ccb->crs; 3057 dev = path->device; 3058 if (dev == NULL) { 3059 3060 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3061 break; 3062 } 3063 3064 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3065 3066 /* Don't ever go below one opening */ 3067 if (crs->openings > 0) { 3068 xpt_dev_ccbq_resize(path, crs->openings); 3069 if (bootverbose) { 3070 xpt_print(path, 3071 "number of openings is now %d\n", 3072 crs->openings); 3073 } 3074 } 3075 } 3076 3077 mtx_lock(&dev->sim->devq->send_mtx); 3078 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3079 3080 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3081 3082 /* 3083 * Just extend the old timeout and decrement 3084 * the freeze count so that a single timeout 3085 * is sufficient for releasing the queue. 3086 */ 3087 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3088 callout_stop(&dev->callout); 3089 } else { 3090 3091 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3092 } 3093 3094 callout_reset_sbt(&dev->callout, 3095 SBT_1MS * crs->release_timeout, 0, 3096 xpt_release_devq_timeout, dev, 0); 3097 3098 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3099 3100 } 3101 3102 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3103 3104 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3105 /* 3106 * Decrement the freeze count so that a single 3107 * completion is still sufficient to unfreeze 3108 * the queue. 3109 */ 3110 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3111 } else { 3112 3113 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3114 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3115 } 3116 } 3117 3118 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3119 3120 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3121 || (dev->ccbq.dev_active == 0)) { 3122 3123 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3124 } else { 3125 3126 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3127 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3128 } 3129 } 3130 mtx_unlock(&dev->sim->devq->send_mtx); 3131 3132 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 3133 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 3134 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 3135 start_ccb->ccb_h.status = CAM_REQ_CMP; 3136 break; 3137 } 3138 case XPT_DEBUG: { 3139 struct cam_path *oldpath; 3140 3141 /* Check that all request bits are supported. */ 3142 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 3143 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3144 break; 3145 } 3146 3147 cam_dflags = CAM_DEBUG_NONE; 3148 if (cam_dpath != NULL) { 3149 oldpath = cam_dpath; 3150 cam_dpath = NULL; 3151 xpt_free_path(oldpath); 3152 } 3153 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3154 if (xpt_create_path(&cam_dpath, NULL, 3155 start_ccb->ccb_h.path_id, 3156 start_ccb->ccb_h.target_id, 3157 start_ccb->ccb_h.target_lun) != 3158 CAM_REQ_CMP) { 3159 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3160 } else { 3161 cam_dflags = start_ccb->cdbg.flags; 3162 start_ccb->ccb_h.status = CAM_REQ_CMP; 3163 xpt_print(cam_dpath, "debugging flags now %x\n", 3164 cam_dflags); 3165 } 3166 } else 3167 start_ccb->ccb_h.status = CAM_REQ_CMP; 3168 break; 3169 } 3170 case XPT_NOOP: 3171 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3172 xpt_freeze_devq(path, 1); 3173 start_ccb->ccb_h.status = CAM_REQ_CMP; 3174 break; 3175 case XPT_REPROBE_LUN: 3176 xpt_async(AC_INQ_CHANGED, path, NULL); 3177 start_ccb->ccb_h.status = CAM_REQ_CMP; 3178 xpt_done(start_ccb); 3179 break; 3180 default: 3181 case XPT_SDEV_TYPE: 3182 case XPT_TERM_IO: 3183 case XPT_ENG_INQ: 3184 /* XXX Implement */ 3185 xpt_print(start_ccb->ccb_h.path, 3186 "%s: CCB type %#x %s not supported\n", __func__, 3187 start_ccb->ccb_h.func_code, 3188 xpt_action_name(start_ccb->ccb_h.func_code)); 3189 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3190 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3191 xpt_done(start_ccb); 3192 } 3193 break; 3194 } 3195 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3196 ("xpt_action_default: func= %#x %s status %#x\n", 3197 start_ccb->ccb_h.func_code, 3198 xpt_action_name(start_ccb->ccb_h.func_code), 3199 start_ccb->ccb_h.status)); 3200 } 3201 3202 uint32_t 3203 xpt_poll_setup(union ccb *start_ccb) 3204 { 3205 u_int32_t timeout; 3206 struct cam_sim *sim; 3207 struct cam_devq *devq; 3208 struct cam_ed *dev; 3209 struct mtx *mtx; 3210 3211 timeout = start_ccb->ccb_h.timeout * 10; 3212 sim = start_ccb->ccb_h.path->bus->sim; 3213 devq = sim->devq; 3214 mtx = sim->mtx; 3215 dev = start_ccb->ccb_h.path->device; 3216 3217 /* 3218 * Steal an opening so that no other queued requests 3219 * can get it before us while we simulate interrupts. 3220 */ 3221 mtx_lock(&devq->send_mtx); 3222 dev->ccbq.dev_openings--; 3223 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3224 (--timeout > 0)) { 3225 mtx_unlock(&devq->send_mtx); 3226 DELAY(100); 3227 if (mtx) 3228 mtx_lock(mtx); 3229 (*(sim->sim_poll))(sim); 3230 if (mtx) 3231 mtx_unlock(mtx); 3232 camisr_runqueue(); 3233 mtx_lock(&devq->send_mtx); 3234 } 3235 dev->ccbq.dev_openings++; 3236 mtx_unlock(&devq->send_mtx); 3237 3238 return (timeout); 3239 } 3240 3241 void 3242 xpt_pollwait(union ccb *start_ccb, uint32_t timeout) 3243 { 3244 struct cam_sim *sim; 3245 struct mtx *mtx; 3246 3247 sim = start_ccb->ccb_h.path->bus->sim; 3248 mtx = sim->mtx; 3249 3250 while (--timeout > 0) { 3251 if (mtx) 3252 mtx_lock(mtx); 3253 (*(sim->sim_poll))(sim); 3254 if (mtx) 3255 mtx_unlock(mtx); 3256 camisr_runqueue(); 3257 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3258 != CAM_REQ_INPROG) 3259 break; 3260 DELAY(100); 3261 } 3262 3263 if (timeout == 0) { 3264 /* 3265 * XXX Is it worth adding a sim_timeout entry 3266 * point so we can attempt recovery? If 3267 * this is only used for dumps, I don't think 3268 * it is. 3269 */ 3270 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3271 } 3272 } 3273 3274 void 3275 xpt_polled_action(union ccb *start_ccb) 3276 { 3277 uint32_t timeout; 3278 struct cam_ed *dev; 3279 3280 timeout = start_ccb->ccb_h.timeout * 10; 3281 dev = start_ccb->ccb_h.path->device; 3282 3283 mtx_unlock(&dev->device_mtx); 3284 3285 timeout = xpt_poll_setup(start_ccb); 3286 if (timeout > 0) { 3287 xpt_action(start_ccb); 3288 xpt_pollwait(start_ccb, timeout); 3289 } else { 3290 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3291 } 3292 3293 mtx_lock(&dev->device_mtx); 3294 } 3295 3296 /* 3297 * Schedule a peripheral driver to receive a ccb when its 3298 * target device has space for more transactions. 3299 */ 3300 void 3301 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3302 { 3303 3304 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3305 cam_periph_assert(periph, MA_OWNED); 3306 if (new_priority < periph->scheduled_priority) { 3307 periph->scheduled_priority = new_priority; 3308 xpt_run_allocq(periph, 0); 3309 } 3310 } 3311 3312 3313 /* 3314 * Schedule a device to run on a given queue. 3315 * If the device was inserted as a new entry on the queue, 3316 * return 1 meaning the device queue should be run. If we 3317 * were already queued, implying someone else has already 3318 * started the queue, return 0 so the caller doesn't attempt 3319 * to run the queue. 3320 */ 3321 static int 3322 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3323 u_int32_t new_priority) 3324 { 3325 int retval; 3326 u_int32_t old_priority; 3327 3328 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3329 3330 3331 old_priority = pinfo->priority; 3332 3333 /* 3334 * Are we already queued? 3335 */ 3336 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3337 /* Simply reorder based on new priority */ 3338 if (new_priority < old_priority) { 3339 camq_change_priority(queue, pinfo->index, 3340 new_priority); 3341 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3342 ("changed priority to %d\n", 3343 new_priority)); 3344 retval = 1; 3345 } else 3346 retval = 0; 3347 } else { 3348 /* New entry on the queue */ 3349 if (new_priority < old_priority) 3350 pinfo->priority = new_priority; 3351 3352 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3353 ("Inserting onto queue\n")); 3354 pinfo->generation = ++queue->generation; 3355 camq_insert(queue, pinfo); 3356 retval = 1; 3357 } 3358 return (retval); 3359 } 3360 3361 static void 3362 xpt_run_allocq_task(void *context, int pending) 3363 { 3364 struct cam_periph *periph = context; 3365 3366 cam_periph_lock(periph); 3367 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3368 xpt_run_allocq(periph, 1); 3369 cam_periph_unlock(periph); 3370 cam_periph_release(periph); 3371 } 3372 3373 static void 3374 xpt_run_allocq(struct cam_periph *periph, int sleep) 3375 { 3376 struct cam_ed *device; 3377 union ccb *ccb; 3378 uint32_t prio; 3379 3380 cam_periph_assert(periph, MA_OWNED); 3381 if (periph->periph_allocating) 3382 return; 3383 cam_periph_doacquire(periph); 3384 periph->periph_allocating = 1; 3385 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3386 device = periph->path->device; 3387 ccb = NULL; 3388 restart: 3389 while ((prio = min(periph->scheduled_priority, 3390 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3391 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3392 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3393 3394 if (ccb == NULL && 3395 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3396 if (sleep) { 3397 ccb = xpt_get_ccb(periph); 3398 goto restart; 3399 } 3400 if (periph->flags & CAM_PERIPH_RUN_TASK) 3401 break; 3402 cam_periph_doacquire(periph); 3403 periph->flags |= CAM_PERIPH_RUN_TASK; 3404 taskqueue_enqueue(xsoftc.xpt_taskq, 3405 &periph->periph_run_task); 3406 break; 3407 } 3408 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3409 if (prio == periph->immediate_priority) { 3410 periph->immediate_priority = CAM_PRIORITY_NONE; 3411 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3412 ("waking cam_periph_getccb()\n")); 3413 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3414 periph_links.sle); 3415 wakeup(&periph->ccb_list); 3416 } else { 3417 periph->scheduled_priority = CAM_PRIORITY_NONE; 3418 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3419 ("calling periph_start()\n")); 3420 periph->periph_start(periph, ccb); 3421 } 3422 ccb = NULL; 3423 } 3424 if (ccb != NULL) 3425 xpt_release_ccb(ccb); 3426 periph->periph_allocating = 0; 3427 cam_periph_release_locked(periph); 3428 } 3429 3430 static void 3431 xpt_run_devq(struct cam_devq *devq) 3432 { 3433 struct mtx *mtx; 3434 3435 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3436 3437 devq->send_queue.qfrozen_cnt++; 3438 while ((devq->send_queue.entries > 0) 3439 && (devq->send_openings > 0) 3440 && (devq->send_queue.qfrozen_cnt <= 1)) { 3441 struct cam_ed *device; 3442 union ccb *work_ccb; 3443 struct cam_sim *sim; 3444 struct xpt_proto *proto; 3445 3446 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3447 CAMQ_HEAD); 3448 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3449 ("running device %p\n", device)); 3450 3451 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3452 if (work_ccb == NULL) { 3453 printf("device on run queue with no ccbs???\n"); 3454 continue; 3455 } 3456 3457 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3458 3459 mtx_lock(&xsoftc.xpt_highpower_lock); 3460 if (xsoftc.num_highpower <= 0) { 3461 /* 3462 * We got a high power command, but we 3463 * don't have any available slots. Freeze 3464 * the device queue until we have a slot 3465 * available. 3466 */ 3467 xpt_freeze_devq_device(device, 1); 3468 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3469 highpowerq_entry); 3470 3471 mtx_unlock(&xsoftc.xpt_highpower_lock); 3472 continue; 3473 } else { 3474 /* 3475 * Consume a high power slot while 3476 * this ccb runs. 3477 */ 3478 xsoftc.num_highpower--; 3479 } 3480 mtx_unlock(&xsoftc.xpt_highpower_lock); 3481 } 3482 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3483 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3484 devq->send_openings--; 3485 devq->send_active++; 3486 xpt_schedule_devq(devq, device); 3487 mtx_unlock(&devq->send_mtx); 3488 3489 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3490 /* 3491 * The client wants to freeze the queue 3492 * after this CCB is sent. 3493 */ 3494 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3495 } 3496 3497 /* In Target mode, the peripheral driver knows best... */ 3498 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3499 if ((device->inq_flags & SID_CmdQue) != 0 3500 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3501 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3502 else 3503 /* 3504 * Clear this in case of a retried CCB that 3505 * failed due to a rejected tag. 3506 */ 3507 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3508 } 3509 3510 KASSERT(device == work_ccb->ccb_h.path->device, 3511 ("device (%p) / path->device (%p) mismatch", 3512 device, work_ccb->ccb_h.path->device)); 3513 proto = xpt_proto_find(device->protocol); 3514 if (proto && proto->ops->debug_out) 3515 proto->ops->debug_out(work_ccb); 3516 3517 /* 3518 * Device queues can be shared among multiple SIM instances 3519 * that reside on different buses. Use the SIM from the 3520 * queued device, rather than the one from the calling bus. 3521 */ 3522 sim = device->sim; 3523 mtx = sim->mtx; 3524 if (mtx && !mtx_owned(mtx)) 3525 mtx_lock(mtx); 3526 else 3527 mtx = NULL; 3528 work_ccb->ccb_h.qos.periph_data = cam_iosched_now(); 3529 (*(sim->sim_action))(sim, work_ccb); 3530 if (mtx) 3531 mtx_unlock(mtx); 3532 mtx_lock(&devq->send_mtx); 3533 } 3534 devq->send_queue.qfrozen_cnt--; 3535 } 3536 3537 /* 3538 * This function merges stuff from the slave ccb into the master ccb, while 3539 * keeping important fields in the master ccb constant. 3540 */ 3541 void 3542 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3543 { 3544 3545 /* 3546 * Pull fields that are valid for peripheral drivers to set 3547 * into the master CCB along with the CCB "payload". 3548 */ 3549 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3550 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3551 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3552 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3553 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3554 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3555 } 3556 3557 void 3558 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3559 u_int32_t priority, u_int32_t flags) 3560 { 3561 3562 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3563 ccb_h->pinfo.priority = priority; 3564 ccb_h->path = path; 3565 ccb_h->path_id = path->bus->path_id; 3566 if (path->target) 3567 ccb_h->target_id = path->target->target_id; 3568 else 3569 ccb_h->target_id = CAM_TARGET_WILDCARD; 3570 if (path->device) { 3571 ccb_h->target_lun = path->device->lun_id; 3572 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3573 } else { 3574 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3575 } 3576 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3577 ccb_h->flags = flags; 3578 ccb_h->xflags = 0; 3579 } 3580 3581 void 3582 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3583 { 3584 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3585 } 3586 3587 /* Path manipulation functions */ 3588 cam_status 3589 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3590 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3591 { 3592 struct cam_path *path; 3593 cam_status status; 3594 3595 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3596 3597 if (path == NULL) { 3598 status = CAM_RESRC_UNAVAIL; 3599 return(status); 3600 } 3601 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3602 if (status != CAM_REQ_CMP) { 3603 free(path, M_CAMPATH); 3604 path = NULL; 3605 } 3606 *new_path_ptr = path; 3607 return (status); 3608 } 3609 3610 cam_status 3611 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3612 struct cam_periph *periph, path_id_t path_id, 3613 target_id_t target_id, lun_id_t lun_id) 3614 { 3615 3616 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3617 lun_id)); 3618 } 3619 3620 cam_status 3621 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3622 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3623 { 3624 struct cam_eb *bus; 3625 struct cam_et *target; 3626 struct cam_ed *device; 3627 cam_status status; 3628 3629 status = CAM_REQ_CMP; /* Completed without error */ 3630 target = NULL; /* Wildcarded */ 3631 device = NULL; /* Wildcarded */ 3632 3633 /* 3634 * We will potentially modify the EDT, so block interrupts 3635 * that may attempt to create cam paths. 3636 */ 3637 bus = xpt_find_bus(path_id); 3638 if (bus == NULL) { 3639 status = CAM_PATH_INVALID; 3640 } else { 3641 xpt_lock_buses(); 3642 mtx_lock(&bus->eb_mtx); 3643 target = xpt_find_target(bus, target_id); 3644 if (target == NULL) { 3645 /* Create one */ 3646 struct cam_et *new_target; 3647 3648 new_target = xpt_alloc_target(bus, target_id); 3649 if (new_target == NULL) { 3650 status = CAM_RESRC_UNAVAIL; 3651 } else { 3652 target = new_target; 3653 } 3654 } 3655 xpt_unlock_buses(); 3656 if (target != NULL) { 3657 device = xpt_find_device(target, lun_id); 3658 if (device == NULL) { 3659 /* Create one */ 3660 struct cam_ed *new_device; 3661 3662 new_device = 3663 (*(bus->xport->ops->alloc_device))(bus, 3664 target, 3665 lun_id); 3666 if (new_device == NULL) { 3667 status = CAM_RESRC_UNAVAIL; 3668 } else { 3669 device = new_device; 3670 } 3671 } 3672 } 3673 mtx_unlock(&bus->eb_mtx); 3674 } 3675 3676 /* 3677 * Only touch the user's data if we are successful. 3678 */ 3679 if (status == CAM_REQ_CMP) { 3680 new_path->periph = perph; 3681 new_path->bus = bus; 3682 new_path->target = target; 3683 new_path->device = device; 3684 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3685 } else { 3686 if (device != NULL) 3687 xpt_release_device(device); 3688 if (target != NULL) 3689 xpt_release_target(target); 3690 if (bus != NULL) 3691 xpt_release_bus(bus); 3692 } 3693 return (status); 3694 } 3695 3696 cam_status 3697 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3698 { 3699 struct cam_path *new_path; 3700 3701 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3702 if (new_path == NULL) 3703 return(CAM_RESRC_UNAVAIL); 3704 xpt_copy_path(new_path, path); 3705 *new_path_ptr = new_path; 3706 return (CAM_REQ_CMP); 3707 } 3708 3709 void 3710 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3711 { 3712 3713 *new_path = *path; 3714 if (path->bus != NULL) 3715 xpt_acquire_bus(path->bus); 3716 if (path->target != NULL) 3717 xpt_acquire_target(path->target); 3718 if (path->device != NULL) 3719 xpt_acquire_device(path->device); 3720 } 3721 3722 void 3723 xpt_release_path(struct cam_path *path) 3724 { 3725 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3726 if (path->device != NULL) { 3727 xpt_release_device(path->device); 3728 path->device = NULL; 3729 } 3730 if (path->target != NULL) { 3731 xpt_release_target(path->target); 3732 path->target = NULL; 3733 } 3734 if (path->bus != NULL) { 3735 xpt_release_bus(path->bus); 3736 path->bus = NULL; 3737 } 3738 } 3739 3740 void 3741 xpt_free_path(struct cam_path *path) 3742 { 3743 3744 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3745 xpt_release_path(path); 3746 free(path, M_CAMPATH); 3747 } 3748 3749 void 3750 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3751 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3752 { 3753 3754 xpt_lock_buses(); 3755 if (bus_ref) { 3756 if (path->bus) 3757 *bus_ref = path->bus->refcount; 3758 else 3759 *bus_ref = 0; 3760 } 3761 if (periph_ref) { 3762 if (path->periph) 3763 *periph_ref = path->periph->refcount; 3764 else 3765 *periph_ref = 0; 3766 } 3767 xpt_unlock_buses(); 3768 if (target_ref) { 3769 if (path->target) 3770 *target_ref = path->target->refcount; 3771 else 3772 *target_ref = 0; 3773 } 3774 if (device_ref) { 3775 if (path->device) 3776 *device_ref = path->device->refcount; 3777 else 3778 *device_ref = 0; 3779 } 3780 } 3781 3782 /* 3783 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3784 * in path1, 2 for match with wildcards in path2. 3785 */ 3786 int 3787 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3788 { 3789 int retval = 0; 3790 3791 if (path1->bus != path2->bus) { 3792 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3793 retval = 1; 3794 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3795 retval = 2; 3796 else 3797 return (-1); 3798 } 3799 if (path1->target != path2->target) { 3800 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3801 if (retval == 0) 3802 retval = 1; 3803 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3804 retval = 2; 3805 else 3806 return (-1); 3807 } 3808 if (path1->device != path2->device) { 3809 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3810 if (retval == 0) 3811 retval = 1; 3812 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3813 retval = 2; 3814 else 3815 return (-1); 3816 } 3817 return (retval); 3818 } 3819 3820 int 3821 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3822 { 3823 int retval = 0; 3824 3825 if (path->bus != dev->target->bus) { 3826 if (path->bus->path_id == CAM_BUS_WILDCARD) 3827 retval = 1; 3828 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3829 retval = 2; 3830 else 3831 return (-1); 3832 } 3833 if (path->target != dev->target) { 3834 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3835 if (retval == 0) 3836 retval = 1; 3837 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3838 retval = 2; 3839 else 3840 return (-1); 3841 } 3842 if (path->device != dev) { 3843 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3844 if (retval == 0) 3845 retval = 1; 3846 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3847 retval = 2; 3848 else 3849 return (-1); 3850 } 3851 return (retval); 3852 } 3853 3854 void 3855 xpt_print_path(struct cam_path *path) 3856 { 3857 struct sbuf sb; 3858 char buffer[XPT_PRINT_LEN]; 3859 3860 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3861 xpt_path_sbuf(path, &sb); 3862 sbuf_finish(&sb); 3863 printf("%s", sbuf_data(&sb)); 3864 sbuf_delete(&sb); 3865 } 3866 3867 void 3868 xpt_print_device(struct cam_ed *device) 3869 { 3870 3871 if (device == NULL) 3872 printf("(nopath): "); 3873 else { 3874 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3875 device->sim->unit_number, 3876 device->sim->bus_id, 3877 device->target->target_id, 3878 (uintmax_t)device->lun_id); 3879 } 3880 } 3881 3882 void 3883 xpt_print(struct cam_path *path, const char *fmt, ...) 3884 { 3885 va_list ap; 3886 struct sbuf sb; 3887 char buffer[XPT_PRINT_LEN]; 3888 3889 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3890 3891 xpt_path_sbuf(path, &sb); 3892 va_start(ap, fmt); 3893 sbuf_vprintf(&sb, fmt, ap); 3894 va_end(ap); 3895 3896 sbuf_finish(&sb); 3897 printf("%s", sbuf_data(&sb)); 3898 sbuf_delete(&sb); 3899 } 3900 3901 int 3902 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3903 { 3904 struct sbuf sb; 3905 int len; 3906 3907 sbuf_new(&sb, str, str_len, 0); 3908 len = xpt_path_sbuf(path, &sb); 3909 sbuf_finish(&sb); 3910 return (len); 3911 } 3912 3913 int 3914 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) 3915 { 3916 3917 if (path == NULL) 3918 sbuf_printf(sb, "(nopath): "); 3919 else { 3920 if (path->periph != NULL) 3921 sbuf_printf(sb, "(%s%d:", path->periph->periph_name, 3922 path->periph->unit_number); 3923 else 3924 sbuf_printf(sb, "(noperiph:"); 3925 3926 if (path->bus != NULL) 3927 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, 3928 path->bus->sim->unit_number, 3929 path->bus->sim->bus_id); 3930 else 3931 sbuf_printf(sb, "nobus:"); 3932 3933 if (path->target != NULL) 3934 sbuf_printf(sb, "%d:", path->target->target_id); 3935 else 3936 sbuf_printf(sb, "X:"); 3937 3938 if (path->device != NULL) 3939 sbuf_printf(sb, "%jx): ", 3940 (uintmax_t)path->device->lun_id); 3941 else 3942 sbuf_printf(sb, "X): "); 3943 } 3944 3945 return(sbuf_len(sb)); 3946 } 3947 3948 path_id_t 3949 xpt_path_path_id(struct cam_path *path) 3950 { 3951 return(path->bus->path_id); 3952 } 3953 3954 target_id_t 3955 xpt_path_target_id(struct cam_path *path) 3956 { 3957 if (path->target != NULL) 3958 return (path->target->target_id); 3959 else 3960 return (CAM_TARGET_WILDCARD); 3961 } 3962 3963 lun_id_t 3964 xpt_path_lun_id(struct cam_path *path) 3965 { 3966 if (path->device != NULL) 3967 return (path->device->lun_id); 3968 else 3969 return (CAM_LUN_WILDCARD); 3970 } 3971 3972 struct cam_sim * 3973 xpt_path_sim(struct cam_path *path) 3974 { 3975 3976 return (path->bus->sim); 3977 } 3978 3979 struct cam_periph* 3980 xpt_path_periph(struct cam_path *path) 3981 { 3982 3983 return (path->periph); 3984 } 3985 3986 /* 3987 * Release a CAM control block for the caller. Remit the cost of the structure 3988 * to the device referenced by the path. If the this device had no 'credits' 3989 * and peripheral drivers have registered async callbacks for this notification 3990 * call them now. 3991 */ 3992 void 3993 xpt_release_ccb(union ccb *free_ccb) 3994 { 3995 struct cam_ed *device; 3996 struct cam_periph *periph; 3997 3998 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3999 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 4000 device = free_ccb->ccb_h.path->device; 4001 periph = free_ccb->ccb_h.path->periph; 4002 4003 xpt_free_ccb(free_ccb); 4004 periph->periph_allocated--; 4005 cam_ccbq_release_opening(&device->ccbq); 4006 xpt_run_allocq(periph, 0); 4007 } 4008 4009 /* Functions accessed by SIM drivers */ 4010 4011 static struct xpt_xport_ops xport_default_ops = { 4012 .alloc_device = xpt_alloc_device_default, 4013 .action = xpt_action_default, 4014 .async = xpt_dev_async_default, 4015 }; 4016 static struct xpt_xport xport_default = { 4017 .xport = XPORT_UNKNOWN, 4018 .name = "unknown", 4019 .ops = &xport_default_ops, 4020 }; 4021 4022 CAM_XPT_XPORT(xport_default); 4023 4024 /* 4025 * A sim structure, listing the SIM entry points and instance 4026 * identification info is passed to xpt_bus_register to hook the SIM 4027 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4028 * for this new bus and places it in the array of buses and assigns 4029 * it a path_id. The path_id may be influenced by "hard wiring" 4030 * information specified by the user. Once interrupt services are 4031 * available, the bus will be probed. 4032 */ 4033 int32_t 4034 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 4035 { 4036 struct cam_eb *new_bus; 4037 struct cam_eb *old_bus; 4038 struct ccb_pathinq cpi; 4039 struct cam_path *path; 4040 cam_status status; 4041 4042 sim->bus_id = bus; 4043 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4044 M_CAMXPT, M_NOWAIT|M_ZERO); 4045 if (new_bus == NULL) { 4046 /* Couldn't satisfy request */ 4047 return (CAM_RESRC_UNAVAIL); 4048 } 4049 4050 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 4051 TAILQ_INIT(&new_bus->et_entries); 4052 cam_sim_hold(sim); 4053 new_bus->sim = sim; 4054 timevalclear(&new_bus->last_reset); 4055 new_bus->flags = 0; 4056 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4057 new_bus->generation = 0; 4058 4059 xpt_lock_buses(); 4060 sim->path_id = new_bus->path_id = 4061 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4062 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4063 while (old_bus != NULL 4064 && old_bus->path_id < new_bus->path_id) 4065 old_bus = TAILQ_NEXT(old_bus, links); 4066 if (old_bus != NULL) 4067 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4068 else 4069 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4070 xsoftc.bus_generation++; 4071 xpt_unlock_buses(); 4072 4073 /* 4074 * Set a default transport so that a PATH_INQ can be issued to 4075 * the SIM. This will then allow for probing and attaching of 4076 * a more appropriate transport. 4077 */ 4078 new_bus->xport = &xport_default; 4079 4080 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 4081 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4082 if (status != CAM_REQ_CMP) { 4083 xpt_release_bus(new_bus); 4084 return (CAM_RESRC_UNAVAIL); 4085 } 4086 4087 xpt_path_inq(&cpi, path); 4088 4089 if (cpi.ccb_h.status == CAM_REQ_CMP) { 4090 struct xpt_xport **xpt; 4091 4092 SET_FOREACH(xpt, cam_xpt_xport_set) { 4093 if ((*xpt)->xport == cpi.transport) { 4094 new_bus->xport = *xpt; 4095 break; 4096 } 4097 } 4098 if (new_bus->xport == NULL) { 4099 xpt_print(path, 4100 "No transport found for %d\n", cpi.transport); 4101 xpt_release_bus(new_bus); 4102 free(path, M_CAMXPT); 4103 return (CAM_RESRC_UNAVAIL); 4104 } 4105 } 4106 4107 /* Notify interested parties */ 4108 if (sim->path_id != CAM_XPT_PATH_ID) { 4109 4110 xpt_async(AC_PATH_REGISTERED, path, &cpi); 4111 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 4112 union ccb *scan_ccb; 4113 4114 /* Initiate bus rescan. */ 4115 scan_ccb = xpt_alloc_ccb_nowait(); 4116 if (scan_ccb != NULL) { 4117 scan_ccb->ccb_h.path = path; 4118 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 4119 scan_ccb->crcn.flags = 0; 4120 xpt_rescan(scan_ccb); 4121 } else { 4122 xpt_print(path, 4123 "Can't allocate CCB to scan bus\n"); 4124 xpt_free_path(path); 4125 } 4126 } else 4127 xpt_free_path(path); 4128 } else 4129 xpt_free_path(path); 4130 return (CAM_SUCCESS); 4131 } 4132 4133 int32_t 4134 xpt_bus_deregister(path_id_t pathid) 4135 { 4136 struct cam_path bus_path; 4137 cam_status status; 4138 4139 status = xpt_compile_path(&bus_path, NULL, pathid, 4140 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4141 if (status != CAM_REQ_CMP) 4142 return (status); 4143 4144 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4145 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4146 4147 /* Release the reference count held while registered. */ 4148 xpt_release_bus(bus_path.bus); 4149 xpt_release_path(&bus_path); 4150 4151 return (CAM_REQ_CMP); 4152 } 4153 4154 static path_id_t 4155 xptnextfreepathid(void) 4156 { 4157 struct cam_eb *bus; 4158 path_id_t pathid; 4159 const char *strval; 4160 4161 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4162 pathid = 0; 4163 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4164 retry: 4165 /* Find an unoccupied pathid */ 4166 while (bus != NULL && bus->path_id <= pathid) { 4167 if (bus->path_id == pathid) 4168 pathid++; 4169 bus = TAILQ_NEXT(bus, links); 4170 } 4171 4172 /* 4173 * Ensure that this pathid is not reserved for 4174 * a bus that may be registered in the future. 4175 */ 4176 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4177 ++pathid; 4178 /* Start the search over */ 4179 goto retry; 4180 } 4181 return (pathid); 4182 } 4183 4184 static path_id_t 4185 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4186 { 4187 path_id_t pathid; 4188 int i, dunit, val; 4189 char buf[32]; 4190 const char *dname; 4191 4192 pathid = CAM_XPT_PATH_ID; 4193 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4194 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4195 return (pathid); 4196 i = 0; 4197 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4198 if (strcmp(dname, "scbus")) { 4199 /* Avoid a bit of foot shooting. */ 4200 continue; 4201 } 4202 if (dunit < 0) /* unwired?! */ 4203 continue; 4204 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4205 if (sim_bus == val) { 4206 pathid = dunit; 4207 break; 4208 } 4209 } else if (sim_bus == 0) { 4210 /* Unspecified matches bus 0 */ 4211 pathid = dunit; 4212 break; 4213 } else { 4214 printf("Ambiguous scbus configuration for %s%d " 4215 "bus %d, cannot wire down. The kernel " 4216 "config entry for scbus%d should " 4217 "specify a controller bus.\n" 4218 "Scbus will be assigned dynamically.\n", 4219 sim_name, sim_unit, sim_bus, dunit); 4220 break; 4221 } 4222 } 4223 4224 if (pathid == CAM_XPT_PATH_ID) 4225 pathid = xptnextfreepathid(); 4226 return (pathid); 4227 } 4228 4229 static const char * 4230 xpt_async_string(u_int32_t async_code) 4231 { 4232 4233 switch (async_code) { 4234 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4235 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4236 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4237 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4238 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4239 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4240 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4241 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4242 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4243 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4244 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4245 case AC_CONTRACT: return ("AC_CONTRACT"); 4246 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4247 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4248 } 4249 return ("AC_UNKNOWN"); 4250 } 4251 4252 static int 4253 xpt_async_size(u_int32_t async_code) 4254 { 4255 4256 switch (async_code) { 4257 case AC_BUS_RESET: return (0); 4258 case AC_UNSOL_RESEL: return (0); 4259 case AC_SCSI_AEN: return (0); 4260 case AC_SENT_BDR: return (0); 4261 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4262 case AC_PATH_DEREGISTERED: return (0); 4263 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4264 case AC_LOST_DEVICE: return (0); 4265 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4266 case AC_INQ_CHANGED: return (0); 4267 case AC_GETDEV_CHANGED: return (0); 4268 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4269 case AC_ADVINFO_CHANGED: return (-1); 4270 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4271 } 4272 return (0); 4273 } 4274 4275 static int 4276 xpt_async_process_dev(struct cam_ed *device, void *arg) 4277 { 4278 union ccb *ccb = arg; 4279 struct cam_path *path = ccb->ccb_h.path; 4280 void *async_arg = ccb->casync.async_arg_ptr; 4281 u_int32_t async_code = ccb->casync.async_code; 4282 int relock; 4283 4284 if (path->device != device 4285 && path->device->lun_id != CAM_LUN_WILDCARD 4286 && device->lun_id != CAM_LUN_WILDCARD) 4287 return (1); 4288 4289 /* 4290 * The async callback could free the device. 4291 * If it is a broadcast async, it doesn't hold 4292 * device reference, so take our own reference. 4293 */ 4294 xpt_acquire_device(device); 4295 4296 /* 4297 * If async for specific device is to be delivered to 4298 * the wildcard client, take the specific device lock. 4299 * XXX: We may need a way for client to specify it. 4300 */ 4301 if ((device->lun_id == CAM_LUN_WILDCARD && 4302 path->device->lun_id != CAM_LUN_WILDCARD) || 4303 (device->target->target_id == CAM_TARGET_WILDCARD && 4304 path->target->target_id != CAM_TARGET_WILDCARD) || 4305 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4306 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4307 mtx_unlock(&device->device_mtx); 4308 xpt_path_lock(path); 4309 relock = 1; 4310 } else 4311 relock = 0; 4312 4313 (*(device->target->bus->xport->ops->async))(async_code, 4314 device->target->bus, device->target, device, async_arg); 4315 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4316 4317 if (relock) { 4318 xpt_path_unlock(path); 4319 mtx_lock(&device->device_mtx); 4320 } 4321 xpt_release_device(device); 4322 return (1); 4323 } 4324 4325 static int 4326 xpt_async_process_tgt(struct cam_et *target, void *arg) 4327 { 4328 union ccb *ccb = arg; 4329 struct cam_path *path = ccb->ccb_h.path; 4330 4331 if (path->target != target 4332 && path->target->target_id != CAM_TARGET_WILDCARD 4333 && target->target_id != CAM_TARGET_WILDCARD) 4334 return (1); 4335 4336 if (ccb->casync.async_code == AC_SENT_BDR) { 4337 /* Update our notion of when the last reset occurred */ 4338 microtime(&target->last_reset); 4339 } 4340 4341 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4342 } 4343 4344 static void 4345 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4346 { 4347 struct cam_eb *bus; 4348 struct cam_path *path; 4349 void *async_arg; 4350 u_int32_t async_code; 4351 4352 path = ccb->ccb_h.path; 4353 async_code = ccb->casync.async_code; 4354 async_arg = ccb->casync.async_arg_ptr; 4355 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4356 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4357 bus = path->bus; 4358 4359 if (async_code == AC_BUS_RESET) { 4360 /* Update our notion of when the last reset occurred */ 4361 microtime(&bus->last_reset); 4362 } 4363 4364 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4365 4366 /* 4367 * If this wasn't a fully wildcarded async, tell all 4368 * clients that want all async events. 4369 */ 4370 if (bus != xpt_periph->path->bus) { 4371 xpt_path_lock(xpt_periph->path); 4372 xpt_async_process_dev(xpt_periph->path->device, ccb); 4373 xpt_path_unlock(xpt_periph->path); 4374 } 4375 4376 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4377 xpt_release_devq(path, 1, TRUE); 4378 else 4379 xpt_release_simq(path->bus->sim, TRUE); 4380 if (ccb->casync.async_arg_size > 0) 4381 free(async_arg, M_CAMXPT); 4382 xpt_free_path(path); 4383 xpt_free_ccb(ccb); 4384 } 4385 4386 static void 4387 xpt_async_bcast(struct async_list *async_head, 4388 u_int32_t async_code, 4389 struct cam_path *path, void *async_arg) 4390 { 4391 struct async_node *cur_entry; 4392 struct mtx *mtx; 4393 4394 cur_entry = SLIST_FIRST(async_head); 4395 while (cur_entry != NULL) { 4396 struct async_node *next_entry; 4397 /* 4398 * Grab the next list entry before we call the current 4399 * entry's callback. This is because the callback function 4400 * can delete its async callback entry. 4401 */ 4402 next_entry = SLIST_NEXT(cur_entry, links); 4403 if ((cur_entry->event_enable & async_code) != 0) { 4404 mtx = cur_entry->event_lock ? 4405 path->device->sim->mtx : NULL; 4406 if (mtx) 4407 mtx_lock(mtx); 4408 cur_entry->callback(cur_entry->callback_arg, 4409 async_code, path, 4410 async_arg); 4411 if (mtx) 4412 mtx_unlock(mtx); 4413 } 4414 cur_entry = next_entry; 4415 } 4416 } 4417 4418 void 4419 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4420 { 4421 union ccb *ccb; 4422 int size; 4423 4424 ccb = xpt_alloc_ccb_nowait(); 4425 if (ccb == NULL) { 4426 xpt_print(path, "Can't allocate CCB to send %s\n", 4427 xpt_async_string(async_code)); 4428 return; 4429 } 4430 4431 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4432 xpt_print(path, "Can't allocate path to send %s\n", 4433 xpt_async_string(async_code)); 4434 xpt_free_ccb(ccb); 4435 return; 4436 } 4437 ccb->ccb_h.path->periph = NULL; 4438 ccb->ccb_h.func_code = XPT_ASYNC; 4439 ccb->ccb_h.cbfcnp = xpt_async_process; 4440 ccb->ccb_h.flags |= CAM_UNLOCKED; 4441 ccb->casync.async_code = async_code; 4442 ccb->casync.async_arg_size = 0; 4443 size = xpt_async_size(async_code); 4444 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4445 ("xpt_async: func %#x %s aync_code %d %s\n", 4446 ccb->ccb_h.func_code, 4447 xpt_action_name(ccb->ccb_h.func_code), 4448 async_code, 4449 xpt_async_string(async_code))); 4450 if (size > 0 && async_arg != NULL) { 4451 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4452 if (ccb->casync.async_arg_ptr == NULL) { 4453 xpt_print(path, "Can't allocate argument to send %s\n", 4454 xpt_async_string(async_code)); 4455 xpt_free_path(ccb->ccb_h.path); 4456 xpt_free_ccb(ccb); 4457 return; 4458 } 4459 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4460 ccb->casync.async_arg_size = size; 4461 } else if (size < 0) { 4462 ccb->casync.async_arg_ptr = async_arg; 4463 ccb->casync.async_arg_size = size; 4464 } 4465 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4466 xpt_freeze_devq(path, 1); 4467 else 4468 xpt_freeze_simq(path->bus->sim, 1); 4469 xpt_done(ccb); 4470 } 4471 4472 static void 4473 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4474 struct cam_et *target, struct cam_ed *device, 4475 void *async_arg) 4476 { 4477 4478 /* 4479 * We only need to handle events for real devices. 4480 */ 4481 if (target->target_id == CAM_TARGET_WILDCARD 4482 || device->lun_id == CAM_LUN_WILDCARD) 4483 return; 4484 4485 printf("%s called\n", __func__); 4486 } 4487 4488 static uint32_t 4489 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4490 { 4491 struct cam_devq *devq; 4492 uint32_t freeze; 4493 4494 devq = dev->sim->devq; 4495 mtx_assert(&devq->send_mtx, MA_OWNED); 4496 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4497 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4498 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4499 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4500 /* Remove frozen device from sendq. */ 4501 if (device_is_queued(dev)) 4502 camq_remove(&devq->send_queue, dev->devq_entry.index); 4503 return (freeze); 4504 } 4505 4506 u_int32_t 4507 xpt_freeze_devq(struct cam_path *path, u_int count) 4508 { 4509 struct cam_ed *dev = path->device; 4510 struct cam_devq *devq; 4511 uint32_t freeze; 4512 4513 devq = dev->sim->devq; 4514 mtx_lock(&devq->send_mtx); 4515 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4516 freeze = xpt_freeze_devq_device(dev, count); 4517 mtx_unlock(&devq->send_mtx); 4518 return (freeze); 4519 } 4520 4521 u_int32_t 4522 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4523 { 4524 struct cam_devq *devq; 4525 uint32_t freeze; 4526 4527 devq = sim->devq; 4528 mtx_lock(&devq->send_mtx); 4529 freeze = (devq->send_queue.qfrozen_cnt += count); 4530 mtx_unlock(&devq->send_mtx); 4531 return (freeze); 4532 } 4533 4534 static void 4535 xpt_release_devq_timeout(void *arg) 4536 { 4537 struct cam_ed *dev; 4538 struct cam_devq *devq; 4539 4540 dev = (struct cam_ed *)arg; 4541 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4542 devq = dev->sim->devq; 4543 mtx_assert(&devq->send_mtx, MA_OWNED); 4544 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4545 xpt_run_devq(devq); 4546 } 4547 4548 void 4549 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4550 { 4551 struct cam_ed *dev; 4552 struct cam_devq *devq; 4553 4554 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4555 count, run_queue)); 4556 dev = path->device; 4557 devq = dev->sim->devq; 4558 mtx_lock(&devq->send_mtx); 4559 if (xpt_release_devq_device(dev, count, run_queue)) 4560 xpt_run_devq(dev->sim->devq); 4561 mtx_unlock(&devq->send_mtx); 4562 } 4563 4564 static int 4565 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4566 { 4567 4568 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4569 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4570 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4571 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4572 if (count > dev->ccbq.queue.qfrozen_cnt) { 4573 #ifdef INVARIANTS 4574 printf("xpt_release_devq(): requested %u > present %u\n", 4575 count, dev->ccbq.queue.qfrozen_cnt); 4576 #endif 4577 count = dev->ccbq.queue.qfrozen_cnt; 4578 } 4579 dev->ccbq.queue.qfrozen_cnt -= count; 4580 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4581 /* 4582 * No longer need to wait for a successful 4583 * command completion. 4584 */ 4585 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4586 /* 4587 * Remove any timeouts that might be scheduled 4588 * to release this queue. 4589 */ 4590 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4591 callout_stop(&dev->callout); 4592 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4593 } 4594 /* 4595 * Now that we are unfrozen schedule the 4596 * device so any pending transactions are 4597 * run. 4598 */ 4599 xpt_schedule_devq(dev->sim->devq, dev); 4600 } else 4601 run_queue = 0; 4602 return (run_queue); 4603 } 4604 4605 void 4606 xpt_release_simq(struct cam_sim *sim, int run_queue) 4607 { 4608 struct cam_devq *devq; 4609 4610 devq = sim->devq; 4611 mtx_lock(&devq->send_mtx); 4612 if (devq->send_queue.qfrozen_cnt <= 0) { 4613 #ifdef INVARIANTS 4614 printf("xpt_release_simq: requested 1 > present %u\n", 4615 devq->send_queue.qfrozen_cnt); 4616 #endif 4617 } else 4618 devq->send_queue.qfrozen_cnt--; 4619 if (devq->send_queue.qfrozen_cnt == 0) { 4620 /* 4621 * If there is a timeout scheduled to release this 4622 * sim queue, remove it. The queue frozen count is 4623 * already at 0. 4624 */ 4625 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4626 callout_stop(&sim->callout); 4627 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4628 } 4629 if (run_queue) { 4630 /* 4631 * Now that we are unfrozen run the send queue. 4632 */ 4633 xpt_run_devq(sim->devq); 4634 } 4635 } 4636 mtx_unlock(&devq->send_mtx); 4637 } 4638 4639 /* 4640 * XXX Appears to be unused. 4641 */ 4642 static void 4643 xpt_release_simq_timeout(void *arg) 4644 { 4645 struct cam_sim *sim; 4646 4647 sim = (struct cam_sim *)arg; 4648 xpt_release_simq(sim, /* run_queue */ TRUE); 4649 } 4650 4651 void 4652 xpt_done(union ccb *done_ccb) 4653 { 4654 struct cam_doneq *queue; 4655 int run, hash; 4656 4657 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4658 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4659 done_ccb->csio.bio != NULL) 4660 biotrack(done_ccb->csio.bio, __func__); 4661 #endif 4662 4663 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4664 ("xpt_done: func= %#x %s status %#x\n", 4665 done_ccb->ccb_h.func_code, 4666 xpt_action_name(done_ccb->ccb_h.func_code), 4667 done_ccb->ccb_h.status)); 4668 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4669 return; 4670 4671 /* Store the time the ccb was in the sim */ 4672 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4673 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4674 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4675 queue = &cam_doneqs[hash]; 4676 mtx_lock(&queue->cam_doneq_mtx); 4677 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4678 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4679 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4680 mtx_unlock(&queue->cam_doneq_mtx); 4681 if (run) 4682 wakeup(&queue->cam_doneq); 4683 } 4684 4685 void 4686 xpt_done_direct(union ccb *done_ccb) 4687 { 4688 4689 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4690 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4691 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4692 return; 4693 4694 /* Store the time the ccb was in the sim */ 4695 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4696 xpt_done_process(&done_ccb->ccb_h); 4697 } 4698 4699 union ccb * 4700 xpt_alloc_ccb() 4701 { 4702 union ccb *new_ccb; 4703 4704 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4705 return (new_ccb); 4706 } 4707 4708 union ccb * 4709 xpt_alloc_ccb_nowait() 4710 { 4711 union ccb *new_ccb; 4712 4713 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4714 return (new_ccb); 4715 } 4716 4717 void 4718 xpt_free_ccb(union ccb *free_ccb) 4719 { 4720 free(free_ccb, M_CAMCCB); 4721 } 4722 4723 4724 4725 /* Private XPT functions */ 4726 4727 /* 4728 * Get a CAM control block for the caller. Charge the structure to the device 4729 * referenced by the path. If we don't have sufficient resources to allocate 4730 * more ccbs, we return NULL. 4731 */ 4732 static union ccb * 4733 xpt_get_ccb_nowait(struct cam_periph *periph) 4734 { 4735 union ccb *new_ccb; 4736 4737 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4738 if (new_ccb == NULL) 4739 return (NULL); 4740 periph->periph_allocated++; 4741 cam_ccbq_take_opening(&periph->path->device->ccbq); 4742 return (new_ccb); 4743 } 4744 4745 static union ccb * 4746 xpt_get_ccb(struct cam_periph *periph) 4747 { 4748 union ccb *new_ccb; 4749 4750 cam_periph_unlock(periph); 4751 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4752 cam_periph_lock(periph); 4753 periph->periph_allocated++; 4754 cam_ccbq_take_opening(&periph->path->device->ccbq); 4755 return (new_ccb); 4756 } 4757 4758 union ccb * 4759 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4760 { 4761 struct ccb_hdr *ccb_h; 4762 4763 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4764 cam_periph_assert(periph, MA_OWNED); 4765 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4766 ccb_h->pinfo.priority != priority) { 4767 if (priority < periph->immediate_priority) { 4768 periph->immediate_priority = priority; 4769 xpt_run_allocq(periph, 0); 4770 } else 4771 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4772 "cgticb", 0); 4773 } 4774 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4775 return ((union ccb *)ccb_h); 4776 } 4777 4778 static void 4779 xpt_acquire_bus(struct cam_eb *bus) 4780 { 4781 4782 xpt_lock_buses(); 4783 bus->refcount++; 4784 xpt_unlock_buses(); 4785 } 4786 4787 static void 4788 xpt_release_bus(struct cam_eb *bus) 4789 { 4790 4791 xpt_lock_buses(); 4792 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4793 if (--bus->refcount > 0) { 4794 xpt_unlock_buses(); 4795 return; 4796 } 4797 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4798 xsoftc.bus_generation++; 4799 xpt_unlock_buses(); 4800 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4801 ("destroying bus, but target list is not empty")); 4802 cam_sim_release(bus->sim); 4803 mtx_destroy(&bus->eb_mtx); 4804 free(bus, M_CAMXPT); 4805 } 4806 4807 static struct cam_et * 4808 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4809 { 4810 struct cam_et *cur_target, *target; 4811 4812 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4813 mtx_assert(&bus->eb_mtx, MA_OWNED); 4814 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4815 M_NOWAIT|M_ZERO); 4816 if (target == NULL) 4817 return (NULL); 4818 4819 TAILQ_INIT(&target->ed_entries); 4820 target->bus = bus; 4821 target->target_id = target_id; 4822 target->refcount = 1; 4823 target->generation = 0; 4824 target->luns = NULL; 4825 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4826 timevalclear(&target->last_reset); 4827 /* 4828 * Hold a reference to our parent bus so it 4829 * will not go away before we do. 4830 */ 4831 bus->refcount++; 4832 4833 /* Insertion sort into our bus's target list */ 4834 cur_target = TAILQ_FIRST(&bus->et_entries); 4835 while (cur_target != NULL && cur_target->target_id < target_id) 4836 cur_target = TAILQ_NEXT(cur_target, links); 4837 if (cur_target != NULL) { 4838 TAILQ_INSERT_BEFORE(cur_target, target, links); 4839 } else { 4840 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4841 } 4842 bus->generation++; 4843 return (target); 4844 } 4845 4846 static void 4847 xpt_acquire_target(struct cam_et *target) 4848 { 4849 struct cam_eb *bus = target->bus; 4850 4851 mtx_lock(&bus->eb_mtx); 4852 target->refcount++; 4853 mtx_unlock(&bus->eb_mtx); 4854 } 4855 4856 static void 4857 xpt_release_target(struct cam_et *target) 4858 { 4859 struct cam_eb *bus = target->bus; 4860 4861 mtx_lock(&bus->eb_mtx); 4862 if (--target->refcount > 0) { 4863 mtx_unlock(&bus->eb_mtx); 4864 return; 4865 } 4866 TAILQ_REMOVE(&bus->et_entries, target, links); 4867 bus->generation++; 4868 mtx_unlock(&bus->eb_mtx); 4869 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4870 ("destroying target, but device list is not empty")); 4871 xpt_release_bus(bus); 4872 mtx_destroy(&target->luns_mtx); 4873 if (target->luns) 4874 free(target->luns, M_CAMXPT); 4875 free(target, M_CAMXPT); 4876 } 4877 4878 static struct cam_ed * 4879 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4880 lun_id_t lun_id) 4881 { 4882 struct cam_ed *device; 4883 4884 device = xpt_alloc_device(bus, target, lun_id); 4885 if (device == NULL) 4886 return (NULL); 4887 4888 device->mintags = 1; 4889 device->maxtags = 1; 4890 return (device); 4891 } 4892 4893 static void 4894 xpt_destroy_device(void *context, int pending) 4895 { 4896 struct cam_ed *device = context; 4897 4898 mtx_lock(&device->device_mtx); 4899 mtx_destroy(&device->device_mtx); 4900 free(device, M_CAMDEV); 4901 } 4902 4903 struct cam_ed * 4904 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4905 { 4906 struct cam_ed *cur_device, *device; 4907 struct cam_devq *devq; 4908 cam_status status; 4909 4910 mtx_assert(&bus->eb_mtx, MA_OWNED); 4911 /* Make space for us in the device queue on our bus */ 4912 devq = bus->sim->devq; 4913 mtx_lock(&devq->send_mtx); 4914 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4915 mtx_unlock(&devq->send_mtx); 4916 if (status != CAM_REQ_CMP) 4917 return (NULL); 4918 4919 device = (struct cam_ed *)malloc(sizeof(*device), 4920 M_CAMDEV, M_NOWAIT|M_ZERO); 4921 if (device == NULL) 4922 return (NULL); 4923 4924 cam_init_pinfo(&device->devq_entry); 4925 device->target = target; 4926 device->lun_id = lun_id; 4927 device->sim = bus->sim; 4928 if (cam_ccbq_init(&device->ccbq, 4929 bus->sim->max_dev_openings) != 0) { 4930 free(device, M_CAMDEV); 4931 return (NULL); 4932 } 4933 SLIST_INIT(&device->asyncs); 4934 SLIST_INIT(&device->periphs); 4935 device->generation = 0; 4936 device->flags = CAM_DEV_UNCONFIGURED; 4937 device->tag_delay_count = 0; 4938 device->tag_saved_openings = 0; 4939 device->refcount = 1; 4940 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4941 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4942 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4943 /* 4944 * Hold a reference to our parent bus so it 4945 * will not go away before we do. 4946 */ 4947 target->refcount++; 4948 4949 cur_device = TAILQ_FIRST(&target->ed_entries); 4950 while (cur_device != NULL && cur_device->lun_id < lun_id) 4951 cur_device = TAILQ_NEXT(cur_device, links); 4952 if (cur_device != NULL) 4953 TAILQ_INSERT_BEFORE(cur_device, device, links); 4954 else 4955 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4956 target->generation++; 4957 return (device); 4958 } 4959 4960 void 4961 xpt_acquire_device(struct cam_ed *device) 4962 { 4963 struct cam_eb *bus = device->target->bus; 4964 4965 mtx_lock(&bus->eb_mtx); 4966 device->refcount++; 4967 mtx_unlock(&bus->eb_mtx); 4968 } 4969 4970 void 4971 xpt_release_device(struct cam_ed *device) 4972 { 4973 struct cam_eb *bus = device->target->bus; 4974 struct cam_devq *devq; 4975 4976 mtx_lock(&bus->eb_mtx); 4977 if (--device->refcount > 0) { 4978 mtx_unlock(&bus->eb_mtx); 4979 return; 4980 } 4981 4982 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4983 device->target->generation++; 4984 mtx_unlock(&bus->eb_mtx); 4985 4986 /* Release our slot in the devq */ 4987 devq = bus->sim->devq; 4988 mtx_lock(&devq->send_mtx); 4989 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4990 mtx_unlock(&devq->send_mtx); 4991 4992 KASSERT(SLIST_EMPTY(&device->periphs), 4993 ("destroying device, but periphs list is not empty")); 4994 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4995 ("destroying device while still queued for ccbs")); 4996 4997 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4998 callout_stop(&device->callout); 4999 5000 xpt_release_target(device->target); 5001 5002 cam_ccbq_fini(&device->ccbq); 5003 /* 5004 * Free allocated memory. free(9) does nothing if the 5005 * supplied pointer is NULL, so it is safe to call without 5006 * checking. 5007 */ 5008 free(device->supported_vpds, M_CAMXPT); 5009 free(device->device_id, M_CAMXPT); 5010 free(device->ext_inq, M_CAMXPT); 5011 free(device->physpath, M_CAMXPT); 5012 free(device->rcap_buf, M_CAMXPT); 5013 free(device->serial_num, M_CAMXPT); 5014 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 5015 } 5016 5017 u_int32_t 5018 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5019 { 5020 int result; 5021 struct cam_ed *dev; 5022 5023 dev = path->device; 5024 mtx_lock(&dev->sim->devq->send_mtx); 5025 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5026 mtx_unlock(&dev->sim->devq->send_mtx); 5027 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5028 || (dev->inq_flags & SID_CmdQue) != 0) 5029 dev->tag_saved_openings = newopenings; 5030 return (result); 5031 } 5032 5033 static struct cam_eb * 5034 xpt_find_bus(path_id_t path_id) 5035 { 5036 struct cam_eb *bus; 5037 5038 xpt_lock_buses(); 5039 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 5040 bus != NULL; 5041 bus = TAILQ_NEXT(bus, links)) { 5042 if (bus->path_id == path_id) { 5043 bus->refcount++; 5044 break; 5045 } 5046 } 5047 xpt_unlock_buses(); 5048 return (bus); 5049 } 5050 5051 static struct cam_et * 5052 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5053 { 5054 struct cam_et *target; 5055 5056 mtx_assert(&bus->eb_mtx, MA_OWNED); 5057 for (target = TAILQ_FIRST(&bus->et_entries); 5058 target != NULL; 5059 target = TAILQ_NEXT(target, links)) { 5060 if (target->target_id == target_id) { 5061 target->refcount++; 5062 break; 5063 } 5064 } 5065 return (target); 5066 } 5067 5068 static struct cam_ed * 5069 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5070 { 5071 struct cam_ed *device; 5072 5073 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 5074 for (device = TAILQ_FIRST(&target->ed_entries); 5075 device != NULL; 5076 device = TAILQ_NEXT(device, links)) { 5077 if (device->lun_id == lun_id) { 5078 device->refcount++; 5079 break; 5080 } 5081 } 5082 return (device); 5083 } 5084 5085 void 5086 xpt_start_tags(struct cam_path *path) 5087 { 5088 struct ccb_relsim crs; 5089 struct cam_ed *device; 5090 struct cam_sim *sim; 5091 int newopenings; 5092 5093 device = path->device; 5094 sim = path->bus->sim; 5095 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5096 xpt_freeze_devq(path, /*count*/1); 5097 device->inq_flags |= SID_CmdQue; 5098 if (device->tag_saved_openings != 0) 5099 newopenings = device->tag_saved_openings; 5100 else 5101 newopenings = min(device->maxtags, 5102 sim->max_tagged_dev_openings); 5103 xpt_dev_ccbq_resize(path, newopenings); 5104 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5105 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5106 crs.ccb_h.func_code = XPT_REL_SIMQ; 5107 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5108 crs.openings 5109 = crs.release_timeout 5110 = crs.qfrozen_cnt 5111 = 0; 5112 xpt_action((union ccb *)&crs); 5113 } 5114 5115 void 5116 xpt_stop_tags(struct cam_path *path) 5117 { 5118 struct ccb_relsim crs; 5119 struct cam_ed *device; 5120 struct cam_sim *sim; 5121 5122 device = path->device; 5123 sim = path->bus->sim; 5124 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5125 device->tag_delay_count = 0; 5126 xpt_freeze_devq(path, /*count*/1); 5127 device->inq_flags &= ~SID_CmdQue; 5128 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 5129 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5130 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5131 crs.ccb_h.func_code = XPT_REL_SIMQ; 5132 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5133 crs.openings 5134 = crs.release_timeout 5135 = crs.qfrozen_cnt 5136 = 0; 5137 xpt_action((union ccb *)&crs); 5138 } 5139 5140 static void 5141 xpt_boot_delay(void *arg) 5142 { 5143 5144 xpt_release_boot(); 5145 } 5146 5147 static void 5148 xpt_config(void *arg) 5149 { 5150 /* 5151 * Now that interrupts are enabled, go find our devices 5152 */ 5153 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 5154 printf("xpt_config: failed to create taskqueue thread.\n"); 5155 5156 /* Setup debugging path */ 5157 if (cam_dflags != CAM_DEBUG_NONE) { 5158 if (xpt_create_path(&cam_dpath, NULL, 5159 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 5160 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 5161 printf("xpt_config: xpt_create_path() failed for debug" 5162 " target %d:%d:%d, debugging disabled\n", 5163 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 5164 cam_dflags = CAM_DEBUG_NONE; 5165 } 5166 } else 5167 cam_dpath = NULL; 5168 5169 periphdriver_init(1); 5170 xpt_hold_boot(); 5171 callout_init(&xsoftc.boot_callout, 1); 5172 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 5173 xpt_boot_delay, NULL, 0); 5174 /* Fire up rescan thread. */ 5175 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 5176 "cam", "scanner")) { 5177 printf("xpt_config: failed to create rescan thread.\n"); 5178 } 5179 } 5180 5181 void 5182 xpt_hold_boot(void) 5183 { 5184 xpt_lock_buses(); 5185 xsoftc.buses_to_config++; 5186 xpt_unlock_buses(); 5187 } 5188 5189 void 5190 xpt_release_boot(void) 5191 { 5192 xpt_lock_buses(); 5193 xsoftc.buses_to_config--; 5194 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 5195 struct xpt_task *task; 5196 5197 xsoftc.buses_config_done = 1; 5198 xpt_unlock_buses(); 5199 /* Call manually because we don't have any buses */ 5200 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 5201 if (task != NULL) { 5202 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 5203 taskqueue_enqueue(taskqueue_thread, &task->task); 5204 } 5205 } else 5206 xpt_unlock_buses(); 5207 } 5208 5209 /* 5210 * If the given device only has one peripheral attached to it, and if that 5211 * peripheral is the passthrough driver, announce it. This insures that the 5212 * user sees some sort of announcement for every peripheral in their system. 5213 */ 5214 static int 5215 xptpassannouncefunc(struct cam_ed *device, void *arg) 5216 { 5217 struct cam_periph *periph; 5218 int i; 5219 5220 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5221 periph = SLIST_NEXT(periph, periph_links), i++); 5222 5223 periph = SLIST_FIRST(&device->periphs); 5224 if ((i == 1) 5225 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5226 xpt_announce_periph(periph, NULL); 5227 5228 return(1); 5229 } 5230 5231 static void 5232 xpt_finishconfig_task(void *context, int pending) 5233 { 5234 5235 periphdriver_init(2); 5236 /* 5237 * Check for devices with no "standard" peripheral driver 5238 * attached. For any devices like that, announce the 5239 * passthrough driver so the user will see something. 5240 */ 5241 if (!bootverbose) 5242 xpt_for_all_devices(xptpassannouncefunc, NULL); 5243 5244 /* Release our hook so that the boot can continue. */ 5245 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5246 free(xsoftc.xpt_config_hook, M_CAMXPT); 5247 xsoftc.xpt_config_hook = NULL; 5248 5249 free(context, M_CAMXPT); 5250 } 5251 5252 cam_status 5253 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5254 struct cam_path *path) 5255 { 5256 struct ccb_setasync csa; 5257 cam_status status; 5258 int xptpath = 0; 5259 5260 if (path == NULL) { 5261 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5262 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5263 if (status != CAM_REQ_CMP) 5264 return (status); 5265 xpt_path_lock(path); 5266 xptpath = 1; 5267 } 5268 5269 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5270 csa.ccb_h.func_code = XPT_SASYNC_CB; 5271 csa.event_enable = event; 5272 csa.callback = cbfunc; 5273 csa.callback_arg = cbarg; 5274 xpt_action((union ccb *)&csa); 5275 status = csa.ccb_h.status; 5276 5277 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5278 ("xpt_register_async: func %p\n", cbfunc)); 5279 5280 if (xptpath) { 5281 xpt_path_unlock(path); 5282 xpt_free_path(path); 5283 } 5284 5285 if ((status == CAM_REQ_CMP) && 5286 (csa.event_enable & AC_FOUND_DEVICE)) { 5287 /* 5288 * Get this peripheral up to date with all 5289 * the currently existing devices. 5290 */ 5291 xpt_for_all_devices(xptsetasyncfunc, &csa); 5292 } 5293 if ((status == CAM_REQ_CMP) && 5294 (csa.event_enable & AC_PATH_REGISTERED)) { 5295 /* 5296 * Get this peripheral up to date with all 5297 * the currently existing buses. 5298 */ 5299 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5300 } 5301 5302 return (status); 5303 } 5304 5305 static void 5306 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5307 { 5308 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5309 5310 switch (work_ccb->ccb_h.func_code) { 5311 /* Common cases first */ 5312 case XPT_PATH_INQ: /* Path routing inquiry */ 5313 { 5314 struct ccb_pathinq *cpi; 5315 5316 cpi = &work_ccb->cpi; 5317 cpi->version_num = 1; /* XXX??? */ 5318 cpi->hba_inquiry = 0; 5319 cpi->target_sprt = 0; 5320 cpi->hba_misc = 0; 5321 cpi->hba_eng_cnt = 0; 5322 cpi->max_target = 0; 5323 cpi->max_lun = 0; 5324 cpi->initiator_id = 0; 5325 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5326 strlcpy(cpi->hba_vid, "", HBA_IDLEN); 5327 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5328 cpi->unit_number = sim->unit_number; 5329 cpi->bus_id = sim->bus_id; 5330 cpi->base_transfer_speed = 0; 5331 cpi->protocol = PROTO_UNSPECIFIED; 5332 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5333 cpi->transport = XPORT_UNSPECIFIED; 5334 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5335 cpi->ccb_h.status = CAM_REQ_CMP; 5336 xpt_done(work_ccb); 5337 break; 5338 } 5339 default: 5340 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5341 xpt_done(work_ccb); 5342 break; 5343 } 5344 } 5345 5346 /* 5347 * The xpt as a "controller" has no interrupt sources, so polling 5348 * is a no-op. 5349 */ 5350 static void 5351 xptpoll(struct cam_sim *sim) 5352 { 5353 } 5354 5355 void 5356 xpt_lock_buses(void) 5357 { 5358 mtx_lock(&xsoftc.xpt_topo_lock); 5359 } 5360 5361 void 5362 xpt_unlock_buses(void) 5363 { 5364 mtx_unlock(&xsoftc.xpt_topo_lock); 5365 } 5366 5367 struct mtx * 5368 xpt_path_mtx(struct cam_path *path) 5369 { 5370 5371 return (&path->device->device_mtx); 5372 } 5373 5374 static void 5375 xpt_done_process(struct ccb_hdr *ccb_h) 5376 { 5377 struct cam_sim *sim = NULL; 5378 struct cam_devq *devq = NULL; 5379 struct mtx *mtx = NULL; 5380 5381 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5382 struct ccb_scsiio *csio; 5383 5384 if (ccb_h->func_code == XPT_SCSI_IO) { 5385 csio = &((union ccb *)ccb_h)->csio; 5386 if (csio->bio != NULL) 5387 biotrack(csio->bio, __func__); 5388 } 5389 #endif 5390 5391 if (ccb_h->flags & CAM_HIGH_POWER) { 5392 struct highpowerlist *hphead; 5393 struct cam_ed *device; 5394 5395 mtx_lock(&xsoftc.xpt_highpower_lock); 5396 hphead = &xsoftc.highpowerq; 5397 5398 device = STAILQ_FIRST(hphead); 5399 5400 /* 5401 * Increment the count since this command is done. 5402 */ 5403 xsoftc.num_highpower++; 5404 5405 /* 5406 * Any high powered commands queued up? 5407 */ 5408 if (device != NULL) { 5409 5410 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5411 mtx_unlock(&xsoftc.xpt_highpower_lock); 5412 5413 mtx_lock(&device->sim->devq->send_mtx); 5414 xpt_release_devq_device(device, 5415 /*count*/1, /*runqueue*/TRUE); 5416 mtx_unlock(&device->sim->devq->send_mtx); 5417 } else 5418 mtx_unlock(&xsoftc.xpt_highpower_lock); 5419 } 5420 5421 /* 5422 * Insulate against a race where the periph is destroyed 5423 * but CCBs are still not all processed. 5424 */ 5425 if (ccb_h->path->bus) 5426 sim = ccb_h->path->bus->sim; 5427 5428 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5429 KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request")); 5430 xpt_release_simq(sim, /*run_queue*/FALSE); 5431 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5432 } 5433 5434 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5435 && (ccb_h->status & CAM_DEV_QFRZN)) { 5436 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5437 ccb_h->status &= ~CAM_DEV_QFRZN; 5438 } 5439 5440 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5441 struct cam_ed *dev = ccb_h->path->device; 5442 5443 if (sim) 5444 devq = sim->devq; 5445 KASSERT(devq, ("sim missing for XPT_FC_USER_CCB request")); 5446 5447 mtx_lock(&devq->send_mtx); 5448 devq->send_active--; 5449 devq->send_openings++; 5450 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5451 5452 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5453 && (dev->ccbq.dev_active == 0))) { 5454 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5455 xpt_release_devq_device(dev, /*count*/1, 5456 /*run_queue*/FALSE); 5457 } 5458 5459 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5460 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5461 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5462 xpt_release_devq_device(dev, /*count*/1, 5463 /*run_queue*/FALSE); 5464 } 5465 5466 if (!device_is_queued(dev)) 5467 (void)xpt_schedule_devq(devq, dev); 5468 xpt_run_devq(devq); 5469 mtx_unlock(&devq->send_mtx); 5470 5471 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5472 mtx = xpt_path_mtx(ccb_h->path); 5473 mtx_lock(mtx); 5474 5475 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5476 && (--dev->tag_delay_count == 0)) 5477 xpt_start_tags(ccb_h->path); 5478 } 5479 } 5480 5481 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5482 if (mtx == NULL) { 5483 mtx = xpt_path_mtx(ccb_h->path); 5484 mtx_lock(mtx); 5485 } 5486 } else { 5487 if (mtx != NULL) { 5488 mtx_unlock(mtx); 5489 mtx = NULL; 5490 } 5491 } 5492 5493 /* Call the peripheral driver's callback */ 5494 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5495 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5496 if (mtx != NULL) 5497 mtx_unlock(mtx); 5498 } 5499 5500 void 5501 xpt_done_td(void *arg) 5502 { 5503 struct cam_doneq *queue = arg; 5504 struct ccb_hdr *ccb_h; 5505 STAILQ_HEAD(, ccb_hdr) doneq; 5506 5507 STAILQ_INIT(&doneq); 5508 mtx_lock(&queue->cam_doneq_mtx); 5509 while (1) { 5510 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5511 queue->cam_doneq_sleep = 1; 5512 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5513 PRIBIO, "-", 0); 5514 queue->cam_doneq_sleep = 0; 5515 } 5516 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5517 mtx_unlock(&queue->cam_doneq_mtx); 5518 5519 THREAD_NO_SLEEPING(); 5520 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5521 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5522 xpt_done_process(ccb_h); 5523 } 5524 THREAD_SLEEPING_OK(); 5525 5526 mtx_lock(&queue->cam_doneq_mtx); 5527 } 5528 } 5529 5530 static void 5531 camisr_runqueue(void) 5532 { 5533 struct ccb_hdr *ccb_h; 5534 struct cam_doneq *queue; 5535 int i; 5536 5537 /* Process global queues. */ 5538 for (i = 0; i < cam_num_doneqs; i++) { 5539 queue = &cam_doneqs[i]; 5540 mtx_lock(&queue->cam_doneq_mtx); 5541 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5542 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5543 mtx_unlock(&queue->cam_doneq_mtx); 5544 xpt_done_process(ccb_h); 5545 mtx_lock(&queue->cam_doneq_mtx); 5546 } 5547 mtx_unlock(&queue->cam_doneq_mtx); 5548 } 5549 } 5550 5551 struct kv 5552 { 5553 uint32_t v; 5554 const char *name; 5555 }; 5556 5557 static struct kv map[] = { 5558 { XPT_NOOP, "XPT_NOOP" }, 5559 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5560 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5561 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5562 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5563 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5564 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5565 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5566 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5567 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5568 { XPT_DEBUG, "XPT_DEBUG" }, 5569 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5570 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5571 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5572 { XPT_ASYNC, "XPT_ASYNC" }, 5573 { XPT_ABORT, "XPT_ABORT" }, 5574 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5575 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5576 { XPT_TERM_IO, "XPT_TERM_IO" }, 5577 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5578 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5579 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5580 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5581 { XPT_ATA_IO, "XPT_ATA_IO" }, 5582 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5583 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5584 { XPT_NVME_IO, "XPT_NVME_IO" }, 5585 { XPT_MMC_IO, "XPT_MMC_IO" }, 5586 { XPT_SMP_IO, "XPT_SMP_IO" }, 5587 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5588 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" }, 5589 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5590 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5591 { XPT_EN_LUN, "XPT_EN_LUN" }, 5592 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5593 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5594 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5595 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5596 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5597 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5598 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5599 { 0, 0 } 5600 }; 5601 5602 const char * 5603 xpt_action_name(uint32_t action) 5604 { 5605 static char buffer[32]; /* Only for unknown messages -- racy */ 5606 struct kv *walker = map; 5607 5608 while (walker->name != NULL) { 5609 if (walker->v == action) 5610 return (walker->name); 5611 walker++; 5612 } 5613 5614 snprintf(buffer, sizeof(buffer), "%#x", action); 5615 return (buffer); 5616 } 5617