xref: /freebsd/sys/cam/cam_xpt.c (revision eacee0ff7ec955b32e09515246bd97b6edcd2b0f)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 #include <sys/param.h>
32 #include <sys/bus.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 
45 #ifdef PC98
46 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
47 #endif
48 
49 #include <cam/cam.h>
50 #include <cam/cam_ccb.h>
51 #include <cam/cam_periph.h>
52 #include <cam/cam_sim.h>
53 #include <cam/cam_xpt.h>
54 #include <cam/cam_xpt_sim.h>
55 #include <cam/cam_xpt_periph.h>
56 #include <cam/cam_debug.h>
57 
58 #include <cam/scsi/scsi_all.h>
59 #include <cam/scsi/scsi_message.h>
60 #include <cam/scsi/scsi_pass.h>
61 #include "opt_cam.h"
62 
63 /* Datastructures internal to the xpt layer */
64 
65 /*
66  * Definition of an async handler callback block.  These are used to add
67  * SIMs and peripherals to the async callback lists.
68  */
69 struct async_node {
70 	SLIST_ENTRY(async_node)	links;
71 	u_int32_t	event_enable;	/* Async Event enables */
72 	void		(*callback)(void *arg, u_int32_t code,
73 				    struct cam_path *path, void *args);
74 	void		*callback_arg;
75 };
76 
77 SLIST_HEAD(async_list, async_node);
78 SLIST_HEAD(periph_list, cam_periph);
79 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
80 
81 /*
82  * This is the maximum number of high powered commands (e.g. start unit)
83  * that can be outstanding at a particular time.
84  */
85 #ifndef CAM_MAX_HIGHPOWER
86 #define CAM_MAX_HIGHPOWER  4
87 #endif
88 
89 /* number of high powered commands that can go through right now */
90 static int num_highpower = CAM_MAX_HIGHPOWER;
91 
92 /*
93  * Structure for queueing a device in a run queue.
94  * There is one run queue for allocating new ccbs,
95  * and another for sending ccbs to the controller.
96  */
97 struct cam_ed_qinfo {
98 	cam_pinfo pinfo;
99 	struct	  cam_ed *device;
100 };
101 
102 /*
103  * The CAM EDT (Existing Device Table) contains the device information for
104  * all devices for all busses in the system.  The table contains a
105  * cam_ed structure for each device on the bus.
106  */
107 struct cam_ed {
108 	TAILQ_ENTRY(cam_ed) links;
109 	struct	cam_ed_qinfo alloc_ccb_entry;
110 	struct	cam_ed_qinfo send_ccb_entry;
111 	struct	cam_et	 *target;
112 	lun_id_t	 lun_id;
113 	struct	camq drvq;		/*
114 					 * Queue of type drivers wanting to do
115 					 * work on this device.
116 					 */
117 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
118 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
119 	struct	periph_list periphs;	/* All attached devices */
120 	u_int	generation;		/* Generation number */
121 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
122 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
123 					/* Storage for the inquiry data */
124 #ifdef CAM_NEW_TRAN_CODE
125 	cam_proto	 protocol;
126 	u_int		 protocol_version;
127 	cam_xport	 transport;
128 	u_int		 transport_version;
129 #endif /* CAM_NEW_TRAN_CODE */
130 	struct		 scsi_inquiry_data inq_data;
131 	u_int8_t	 inq_flags;	/*
132 					 * Current settings for inquiry flags.
133 					 * This allows us to override settings
134 					 * like disconnection and tagged
135 					 * queuing for a device.
136 					 */
137 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
138 	u_int8_t	 serial_num_len;
139 	u_int8_t	*serial_num;
140 	u_int32_t	 qfrozen_cnt;
141 	u_int32_t	 flags;
142 #define CAM_DEV_UNCONFIGURED	 	0x01
143 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
144 #define CAM_DEV_REL_ON_COMPLETE		0x04
145 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
146 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
147 #define CAM_DEV_TAG_AFTER_COUNT		0x20
148 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
149 	u_int32_t	 tag_delay_count;
150 #define	CAM_TAG_DELAY_COUNT		5
151 	u_int32_t	 refcount;
152 	struct		 callout_handle c_handle;
153 };
154 
155 /*
156  * Each target is represented by an ET (Existing Target).  These
157  * entries are created when a target is successfully probed with an
158  * identify, and removed when a device fails to respond after a number
159  * of retries, or a bus rescan finds the device missing.
160  */
161 struct cam_et {
162 	TAILQ_HEAD(, cam_ed) ed_entries;
163 	TAILQ_ENTRY(cam_et) links;
164 	struct	cam_eb	*bus;
165 	target_id_t	target_id;
166 	u_int32_t	refcount;
167 	u_int		generation;
168 	struct		timeval last_reset;
169 };
170 
171 /*
172  * Each bus is represented by an EB (Existing Bus).  These entries
173  * are created by calls to xpt_bus_register and deleted by calls to
174  * xpt_bus_deregister.
175  */
176 struct cam_eb {
177 	TAILQ_HEAD(, cam_et) et_entries;
178 	TAILQ_ENTRY(cam_eb)  links;
179 	path_id_t	     path_id;
180 	struct cam_sim	     *sim;
181 	struct timeval	     last_reset;
182 	u_int32_t	     flags;
183 #define	CAM_EB_RUNQ_SCHEDULED	0x01
184 	u_int32_t	     refcount;
185 	u_int		     generation;
186 };
187 
188 struct cam_path {
189 	struct cam_periph *periph;
190 	struct cam_eb	  *bus;
191 	struct cam_et	  *target;
192 	struct cam_ed	  *device;
193 };
194 
195 struct xpt_quirk_entry {
196 	struct scsi_inquiry_pattern inq_pat;
197 	u_int8_t quirks;
198 #define	CAM_QUIRK_NOLUNS	0x01
199 #define	CAM_QUIRK_NOSERIAL	0x02
200 #define	CAM_QUIRK_HILUNS	0x04
201 	u_int mintags;
202 	u_int maxtags;
203 };
204 #define	CAM_SCSI2_MAXLUN	8
205 
206 typedef enum {
207 	XPT_FLAG_OPEN		= 0x01
208 } xpt_flags;
209 
210 struct xpt_softc {
211 	xpt_flags	flags;
212 	u_int32_t	generation;
213 };
214 
215 static const char quantum[] = "QUANTUM";
216 static const char sony[] = "SONY";
217 static const char west_digital[] = "WDIGTL";
218 static const char samsung[] = "SAMSUNG";
219 static const char seagate[] = "SEAGATE";
220 static const char microp[] = "MICROP";
221 
222 static struct xpt_quirk_entry xpt_quirk_table[] =
223 {
224 	{
225 		/* Reports QUEUE FULL for temporary resource shortages */
226 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
227 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
228 	},
229 	{
230 		/* Reports QUEUE FULL for temporary resource shortages */
231 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
232 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
233 	},
234 	{
235 		/* Reports QUEUE FULL for temporary resource shortages */
236 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
237 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
238 	},
239 	{
240 		/* Broken tagged queuing drive */
241 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
242 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
243 	},
244 	{
245 		/* Broken tagged queuing drive */
246 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
247 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
248 	},
249 	{
250 		/* Broken tagged queuing drive */
251 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
252 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
253 	},
254 	{
255 		/*
256 		 * Unfortunately, the Quantum Atlas III has the same
257 		 * problem as the Atlas II drives above.
258 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
259 		 *
260 		 * For future reference, the drive with the problem was:
261 		 * QUANTUM QM39100TD-SW N1B0
262 		 *
263 		 * It's possible that Quantum will fix the problem in later
264 		 * firmware revisions.  If that happens, the quirk entry
265 		 * will need to be made specific to the firmware revisions
266 		 * with the problem.
267 		 *
268 		 */
269 		/* Reports QUEUE FULL for temporary resource shortages */
270 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
271 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
272 	},
273 	{
274 		/*
275 		 * 18 Gig Atlas III, same problem as the 9G version.
276 		 * Reported by: Andre Albsmeier
277 		 *		<andre.albsmeier@mchp.siemens.de>
278 		 *
279 		 * For future reference, the drive with the problem was:
280 		 * QUANTUM QM318000TD-S N491
281 		 */
282 		/* Reports QUEUE FULL for temporary resource shortages */
283 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
284 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
285 	},
286 	{
287 		/*
288 		 * Broken tagged queuing drive
289 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
290 		 *         and: Martin Renters <martin@tdc.on.ca>
291 		 */
292 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
293 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
294 	},
295 		/*
296 		 * The Seagate Medalist Pro drives have very poor write
297 		 * performance with anything more than 2 tags.
298 		 *
299 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
300 		 * Drive:  <SEAGATE ST36530N 1444>
301 		 *
302 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
303 		 * Drive:  <SEAGATE ST34520W 1281>
304 		 *
305 		 * No one has actually reported that the 9G version
306 		 * (ST39140*) of the Medalist Pro has the same problem, but
307 		 * we're assuming that it does because the 4G and 6.5G
308 		 * versions of the drive are broken.
309 		 */
310 	{
311 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
312 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
313 	},
314 	{
315 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
316 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
317 	},
318 	{
319 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
320 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
321 	},
322 	{
323 		/*
324 		 * Slow when tagged queueing is enabled.  Write performance
325 		 * steadily drops off with more and more concurrent
326 		 * transactions.  Best sequential write performance with
327 		 * tagged queueing turned off and write caching turned on.
328 		 *
329 		 * PR:  kern/10398
330 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
331 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
332 		 *
333 		 * The drive with the problem had the "S65A" firmware
334 		 * revision, and has also been reported (by Stephen J.
335 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
336 		 * firmware revision.
337 		 *
338 		 * Although no one has reported problems with the 2 gig
339 		 * version of the DCAS drive, the assumption is that it
340 		 * has the same problems as the 4 gig version.  Therefore
341 		 * this quirk entries disables tagged queueing for all
342 		 * DCAS drives.
343 		 */
344 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
345 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
346 	},
347 	{
348 		/* Broken tagged queuing drive */
349 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
350 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
351 	},
352 	{
353 		/* Broken tagged queuing drive */
354 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
355 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
356 	},
357 	{
358 		/*
359 		 * Broken tagged queuing drive.
360 		 * Submitted by:
361 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
362 		 * in PR kern/9535
363 		 */
364 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
365 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
366 	},
367         {
368 		/*
369 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
370 		 * 8MB/sec.)
371 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
372 		 * Best performance with these drives is achieved with
373 		 * tagged queueing turned off, and write caching turned on.
374 		 */
375 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
376 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
377         },
378         {
379 		/*
380 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
381 		 * 8MB/sec.)
382 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
383 		 * Best performance with these drives is achieved with
384 		 * tagged queueing turned off, and write caching turned on.
385 		 */
386 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
387 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
388         },
389 	{
390 		/*
391 		 * Doesn't handle queue full condition correctly,
392 		 * so we need to limit maxtags to what the device
393 		 * can handle instead of determining this automatically.
394 		 */
395 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
396 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
397 	},
398 	{
399 		/* Really only one LUN */
400 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
401 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
402 	},
403 	{
404 		/* I can't believe we need a quirk for DPT volumes. */
405 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
406 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
407 		/*mintags*/0, /*maxtags*/255
408 	},
409 	{
410 		/*
411 		 * Many Sony CDROM drives don't like multi-LUN probing.
412 		 */
413 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
414 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
415 	},
416 	{
417 		/*
418 		 * This drive doesn't like multiple LUN probing.
419 		 * Submitted by:  Parag Patel <parag@cgt.com>
420 		 */
421 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
422 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
423 	},
424 	{
425 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
426 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
427 	},
428 	{
429 		/*
430 		 * The 8200 doesn't like multi-lun probing, and probably
431 		 * don't like serial number requests either.
432 		 */
433 		{
434 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
435 			"EXB-8200*", "*"
436 		},
437 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
438 	},
439 	{
440 		/*
441 		 * Let's try the same as above, but for a drive that says
442 		 * it's an IPL-6860 but is actually an EXB 8200.
443 		 */
444 		{
445 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
446 			"IPL-6860*", "*"
447 		},
448 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
449 	},
450 	{
451 		/*
452 		 * These Hitachi drives don't like multi-lun probing.
453 		 * The PR submitter has a DK319H, but says that the Linux
454 		 * kernel has a similar work-around for the DK312 and DK314,
455 		 * so all DK31* drives are quirked here.
456 		 * PR:            misc/18793
457 		 * Submitted by:  Paul Haddad <paul@pth.com>
458 		 */
459 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
460 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
461 	},
462 	{
463 		/*
464 		 * The Hitachi CJ series with J8A8 firmware apparantly has
465 		 * problems with tagged commands.
466 		 * PR: 23536
467 		 * Reported by: amagai@nue.org
468 		 */
469 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
470 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
471 	},
472 	{
473 		/*
474 		 * This old revision of the TDC3600 is also SCSI-1, and
475 		 * hangs upon serial number probing.
476 		 */
477 		{
478 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
479 			" TDC 3600", "U07:"
480 		},
481 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
482 	},
483 	{
484 		/*
485 		 * Would repond to all LUNs if asked for.
486 		 */
487 		{
488 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
489 			"CP150", "*"
490 		},
491 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
492 	},
493 	{
494 		/*
495 		 * Would repond to all LUNs if asked for.
496 		 */
497 		{
498 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
499 			"96X2*", "*"
500 		},
501 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
502 	},
503 	{
504 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
505 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
506 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
507 	},
508 	{
509 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
510 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
511 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
512 	},
513 	{
514 		/* TeraSolutions special settings for TRC-22 RAID */
515 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
516 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
517 	},
518 	{
519 		/*
520 		 * Would respond to all LUNs.  Device type and removable
521 		 * flag are jumper-selectable.
522 		 */
523 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
524 		  "Tahiti 1", "*"
525 		},
526 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
527 	},
528 	{
529 		/* Default tagged queuing parameters for all devices */
530 		{
531 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
532 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
533 		},
534 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
535 	},
536 };
537 
538 static const int xpt_quirk_table_size =
539 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
540 
541 typedef enum {
542 	DM_RET_COPY		= 0x01,
543 	DM_RET_FLAG_MASK	= 0x0f,
544 	DM_RET_NONE		= 0x00,
545 	DM_RET_STOP		= 0x10,
546 	DM_RET_DESCEND		= 0x20,
547 	DM_RET_ERROR		= 0x30,
548 	DM_RET_ACTION_MASK	= 0xf0
549 } dev_match_ret;
550 
551 typedef enum {
552 	XPT_DEPTH_BUS,
553 	XPT_DEPTH_TARGET,
554 	XPT_DEPTH_DEVICE,
555 	XPT_DEPTH_PERIPH
556 } xpt_traverse_depth;
557 
558 struct xpt_traverse_config {
559 	xpt_traverse_depth	depth;
560 	void			*tr_func;
561 	void			*tr_arg;
562 };
563 
564 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
565 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
566 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
567 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
568 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
569 
570 /* Transport layer configuration information */
571 static struct xpt_softc xsoftc;
572 
573 /* Queues for our software interrupt handler */
574 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
575 static cam_isrq_t cam_bioq;
576 static cam_isrq_t cam_netq;
577 
578 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
579 static SLIST_HEAD(,ccb_hdr) ccb_freeq;
580 static u_int xpt_max_ccbs;	/*
581 				 * Maximum size of ccb pool.  Modified as
582 				 * devices are added/removed or have their
583 				 * opening counts changed.
584 				 */
585 static u_int xpt_ccb_count;	/* Current count of allocated ccbs */
586 
587 struct cam_periph *xpt_periph;
588 
589 static periph_init_t xpt_periph_init;
590 
591 static periph_init_t probe_periph_init;
592 
593 static struct periph_driver xpt_driver =
594 {
595 	xpt_periph_init, "xpt",
596 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
597 };
598 
599 static struct periph_driver probe_driver =
600 {
601 	probe_periph_init, "probe",
602 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
603 };
604 
605 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
606 PERIPHDRIVER_DECLARE(probe, probe_driver);
607 
608 #define XPT_CDEV_MAJOR 104
609 
610 static d_open_t xptopen;
611 static d_close_t xptclose;
612 static d_ioctl_t xptioctl;
613 
614 static struct cdevsw xpt_cdevsw = {
615 	/* open */	xptopen,
616 	/* close */	xptclose,
617 	/* read */	noread,
618 	/* write */	nowrite,
619 	/* ioctl */	xptioctl,
620 	/* poll */	nopoll,
621 	/* mmap */	nommap,
622 	/* strategy */	nostrategy,
623 	/* name */	"xpt",
624 	/* maj */	XPT_CDEV_MAJOR,
625 	/* dump */	nodump,
626 	/* psize */	nopsize,
627 	/* flags */	0,
628 };
629 
630 static struct intr_config_hook *xpt_config_hook;
631 
632 /* Registered busses */
633 static TAILQ_HEAD(,cam_eb) xpt_busses;
634 static u_int bus_generation;
635 
636 /* Storage for debugging datastructures */
637 #ifdef	CAMDEBUG
638 struct cam_path *cam_dpath;
639 u_int32_t cam_dflags;
640 u_int32_t cam_debug_delay;
641 #endif
642 
643 /* Pointers to software interrupt handlers */
644 static void *camnet_ih;
645 static void *cambio_ih;
646 
647 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
648 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
649 #endif
650 
651 /*
652  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
653  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
654  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
655  */
656 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
657     || defined(CAM_DEBUG_LUN)
658 #ifdef CAMDEBUG
659 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
660     || !defined(CAM_DEBUG_LUN)
661 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
662         and CAM_DEBUG_LUN"
663 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
664 #else /* !CAMDEBUG */
665 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
666 #endif /* CAMDEBUG */
667 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
668 
669 /* Our boot-time initialization hook */
670 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
671 
672 static moduledata_t cam_moduledata = {
673 	"cam",
674 	cam_module_event_handler,
675 	NULL
676 };
677 
678 static void	xpt_init(void *);
679 
680 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
681 MODULE_VERSION(cam, 1);
682 
683 
684 static cam_status	xpt_compile_path(struct cam_path *new_path,
685 					 struct cam_periph *perph,
686 					 path_id_t path_id,
687 					 target_id_t target_id,
688 					 lun_id_t lun_id);
689 
690 static void		xpt_release_path(struct cam_path *path);
691 
692 static void		xpt_async_bcast(struct async_list *async_head,
693 					u_int32_t async_code,
694 					struct cam_path *path,
695 					void *async_arg);
696 static void		xpt_dev_async(u_int32_t async_code,
697 				      struct cam_eb *bus,
698 				      struct cam_et *target,
699 				      struct cam_ed *device,
700 				      void *async_arg);
701 static path_id_t xptnextfreepathid(void);
702 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
703 static union ccb *xpt_get_ccb(struct cam_ed *device);
704 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
705 				  u_int32_t new_priority);
706 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
707 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
708 static timeout_t xpt_release_devq_timeout;
709 static timeout_t xpt_release_simq_timeout;
710 static void	 xpt_release_bus(struct cam_eb *bus);
711 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
712 					 int run_queue);
713 static struct cam_et*
714 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
715 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
716 static struct cam_ed*
717 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
718 				  lun_id_t lun_id);
719 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
720 				    struct cam_ed *device);
721 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
722 static struct cam_eb*
723 		 xpt_find_bus(path_id_t path_id);
724 static struct cam_et*
725 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
726 static struct cam_ed*
727 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
728 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
729 static void	 xpt_scan_lun(struct cam_periph *periph,
730 			      struct cam_path *path, cam_flags flags,
731 			      union ccb *ccb);
732 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
733 static xpt_busfunc_t	xptconfigbuscountfunc;
734 static xpt_busfunc_t	xptconfigfunc;
735 static void	 xpt_config(void *arg);
736 static xpt_devicefunc_t xptpassannouncefunc;
737 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
738 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
739 static void	 xptpoll(struct cam_sim *sim);
740 static void	 camisr(void *);
741 #if 0
742 static void	 xptstart(struct cam_periph *periph, union ccb *work_ccb);
743 static void	 xptasync(struct cam_periph *periph,
744 			  u_int32_t code, cam_path *path);
745 #endif
746 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
747 				    u_int num_patterns, struct cam_eb *bus);
748 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
749 				       u_int num_patterns,
750 				       struct cam_ed *device);
751 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
752 				       u_int num_patterns,
753 				       struct cam_periph *periph);
754 static xpt_busfunc_t	xptedtbusfunc;
755 static xpt_targetfunc_t	xptedttargetfunc;
756 static xpt_devicefunc_t	xptedtdevicefunc;
757 static xpt_periphfunc_t	xptedtperiphfunc;
758 static xpt_pdrvfunc_t	xptplistpdrvfunc;
759 static xpt_periphfunc_t	xptplistperiphfunc;
760 static int		xptedtmatch(struct ccb_dev_match *cdm);
761 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
762 static int		xptbustraverse(struct cam_eb *start_bus,
763 				       xpt_busfunc_t *tr_func, void *arg);
764 static int		xpttargettraverse(struct cam_eb *bus,
765 					  struct cam_et *start_target,
766 					  xpt_targetfunc_t *tr_func, void *arg);
767 static int		xptdevicetraverse(struct cam_et *target,
768 					  struct cam_ed *start_device,
769 					  xpt_devicefunc_t *tr_func, void *arg);
770 static int		xptperiphtraverse(struct cam_ed *device,
771 					  struct cam_periph *start_periph,
772 					  xpt_periphfunc_t *tr_func, void *arg);
773 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
774 					xpt_pdrvfunc_t *tr_func, void *arg);
775 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
776 					    struct cam_periph *start_periph,
777 					    xpt_periphfunc_t *tr_func,
778 					    void *arg);
779 static xpt_busfunc_t	xptdefbusfunc;
780 static xpt_targetfunc_t	xptdeftargetfunc;
781 static xpt_devicefunc_t	xptdefdevicefunc;
782 static xpt_periphfunc_t	xptdefperiphfunc;
783 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
784 #ifdef notusedyet
785 static int		xpt_for_all_targets(xpt_targetfunc_t *tr_func,
786 					    void *arg);
787 #endif
788 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
789 					    void *arg);
790 #ifdef notusedyet
791 static int		xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
792 					    void *arg);
793 #endif
794 static xpt_devicefunc_t	xptsetasyncfunc;
795 static xpt_busfunc_t	xptsetasyncbusfunc;
796 static cam_status	xptregister(struct cam_periph *periph,
797 				    void *arg);
798 static cam_status	proberegister(struct cam_periph *periph,
799 				      void *arg);
800 static void	 probeschedule(struct cam_periph *probe_periph);
801 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
802 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
803 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
804 static void	 probecleanup(struct cam_periph *periph);
805 static void	 xpt_find_quirk(struct cam_ed *device);
806 #ifdef CAM_NEW_TRAN_CODE
807 static void	 xpt_devise_transport(struct cam_path *path);
808 #endif /* CAM_NEW_TRAN_CODE */
809 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
810 					   struct cam_ed *device,
811 					   int async_update);
812 static void	 xpt_toggle_tags(struct cam_path *path);
813 static void	 xpt_start_tags(struct cam_path *path);
814 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
815 					    struct cam_ed *dev);
816 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
817 					   struct cam_ed *dev);
818 static __inline int periph_is_queued(struct cam_periph *periph);
819 static __inline int device_is_alloc_queued(struct cam_ed *device);
820 static __inline int device_is_send_queued(struct cam_ed *device);
821 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
822 
823 static __inline int
824 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
825 {
826 	int retval;
827 
828 	if (dev->ccbq.devq_openings > 0) {
829 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
830 			cam_ccbq_resize(&dev->ccbq,
831 					dev->ccbq.dev_openings
832 					+ dev->ccbq.dev_active);
833 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
834 		}
835 		/*
836 		 * The priority of a device waiting for CCB resources
837 		 * is that of the the highest priority peripheral driver
838 		 * enqueued.
839 		 */
840 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
841 					  &dev->alloc_ccb_entry.pinfo,
842 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
843 	} else {
844 		retval = 0;
845 	}
846 
847 	return (retval);
848 }
849 
850 static __inline int
851 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
852 {
853 	int	retval;
854 
855 	if (dev->ccbq.dev_openings > 0) {
856 		/*
857 		 * The priority of a device waiting for controller
858 		 * resources is that of the the highest priority CCB
859 		 * enqueued.
860 		 */
861 		retval =
862 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
863 				     &dev->send_ccb_entry.pinfo,
864 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
865 	} else {
866 		retval = 0;
867 	}
868 	return (retval);
869 }
870 
871 static __inline int
872 periph_is_queued(struct cam_periph *periph)
873 {
874 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
875 }
876 
877 static __inline int
878 device_is_alloc_queued(struct cam_ed *device)
879 {
880 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
881 }
882 
883 static __inline int
884 device_is_send_queued(struct cam_ed *device)
885 {
886 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
887 }
888 
889 static __inline int
890 dev_allocq_is_runnable(struct cam_devq *devq)
891 {
892 	/*
893 	 * Have work to do.
894 	 * Have space to do more work.
895 	 * Allowed to do work.
896 	 */
897 	return ((devq->alloc_queue.qfrozen_cnt == 0)
898 	     && (devq->alloc_queue.entries > 0)
899 	     && (devq->alloc_openings > 0));
900 }
901 
902 static void
903 xpt_periph_init()
904 {
905 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
906 }
907 
908 static void
909 probe_periph_init()
910 {
911 }
912 
913 
914 static void
915 xptdone(struct cam_periph *periph, union ccb *done_ccb)
916 {
917 	/* Caller will release the CCB */
918 	wakeup(&done_ccb->ccb_h.cbfcnp);
919 }
920 
921 static int
922 xptopen(dev_t dev, int flags, int fmt, struct thread *td)
923 {
924 	int unit;
925 
926 	unit = minor(dev) & 0xff;
927 
928 	/*
929 	 * Only allow read-write access.
930 	 */
931 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
932 		return(EPERM);
933 
934 	/*
935 	 * We don't allow nonblocking access.
936 	 */
937 	if ((flags & O_NONBLOCK) != 0) {
938 		printf("xpt%d: can't do nonblocking accesss\n", unit);
939 		return(ENODEV);
940 	}
941 
942 	/*
943 	 * We only have one transport layer right now.  If someone accesses
944 	 * us via something other than minor number 1, point out their
945 	 * mistake.
946 	 */
947 	if (unit != 0) {
948 		printf("xptopen: got invalid xpt unit %d\n", unit);
949 		return(ENXIO);
950 	}
951 
952 	/* Mark ourselves open */
953 	xsoftc.flags |= XPT_FLAG_OPEN;
954 
955 	return(0);
956 }
957 
958 static int
959 xptclose(dev_t dev, int flag, int fmt, struct thread *td)
960 {
961 	int unit;
962 
963 	unit = minor(dev) & 0xff;
964 
965 	/*
966 	 * We only have one transport layer right now.  If someone accesses
967 	 * us via something other than minor number 1, point out their
968 	 * mistake.
969 	 */
970 	if (unit != 0) {
971 		printf("xptclose: got invalid xpt unit %d\n", unit);
972 		return(ENXIO);
973 	}
974 
975 	/* Mark ourselves closed */
976 	xsoftc.flags &= ~XPT_FLAG_OPEN;
977 
978 	return(0);
979 }
980 
981 static int
982 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
983 {
984 	int unit, error;
985 
986 	error = 0;
987 	unit = minor(dev) & 0xff;
988 
989 	/*
990 	 * We only have one transport layer right now.  If someone accesses
991 	 * us via something other than minor number 1, point out their
992 	 * mistake.
993 	 */
994 	if (unit != 0) {
995 		printf("xptioctl: got invalid xpt unit %d\n", unit);
996 		return(ENXIO);
997 	}
998 
999 	switch(cmd) {
1000 	/*
1001 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1002 	 * to accept CCB types that don't quite make sense to send through a
1003 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
1004 	 * in the CAM spec.
1005 	 */
1006 	case CAMIOCOMMAND: {
1007 		union ccb *ccb;
1008 		union ccb *inccb;
1009 
1010 		inccb = (union ccb *)addr;
1011 
1012 		switch(inccb->ccb_h.func_code) {
1013 		case XPT_SCAN_BUS:
1014 		case XPT_RESET_BUS:
1015 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1016 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1017 				error = EINVAL;
1018 				break;
1019 			}
1020 			/* FALLTHROUGH */
1021 		case XPT_PATH_INQ:
1022 		case XPT_ENG_INQ:
1023 		case XPT_SCAN_LUN:
1024 
1025 			ccb = xpt_alloc_ccb();
1026 
1027 			/*
1028 			 * Create a path using the bus, target, and lun the
1029 			 * user passed in.
1030 			 */
1031 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1032 					    inccb->ccb_h.path_id,
1033 					    inccb->ccb_h.target_id,
1034 					    inccb->ccb_h.target_lun) !=
1035 					    CAM_REQ_CMP){
1036 				error = EINVAL;
1037 				xpt_free_ccb(ccb);
1038 				break;
1039 			}
1040 			/* Ensure all of our fields are correct */
1041 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1042 				      inccb->ccb_h.pinfo.priority);
1043 			xpt_merge_ccb(ccb, inccb);
1044 			ccb->ccb_h.cbfcnp = xptdone;
1045 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1046 			bcopy(ccb, inccb, sizeof(union ccb));
1047 			xpt_free_path(ccb->ccb_h.path);
1048 			xpt_free_ccb(ccb);
1049 			break;
1050 
1051 		case XPT_DEBUG: {
1052 			union ccb ccb;
1053 
1054 			/*
1055 			 * This is an immediate CCB, so it's okay to
1056 			 * allocate it on the stack.
1057 			 */
1058 
1059 			/*
1060 			 * Create a path using the bus, target, and lun the
1061 			 * user passed in.
1062 			 */
1063 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1064 					    inccb->ccb_h.path_id,
1065 					    inccb->ccb_h.target_id,
1066 					    inccb->ccb_h.target_lun) !=
1067 					    CAM_REQ_CMP){
1068 				error = EINVAL;
1069 				break;
1070 			}
1071 			/* Ensure all of our fields are correct */
1072 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1073 				      inccb->ccb_h.pinfo.priority);
1074 			xpt_merge_ccb(&ccb, inccb);
1075 			ccb.ccb_h.cbfcnp = xptdone;
1076 			xpt_action(&ccb);
1077 			bcopy(&ccb, inccb, sizeof(union ccb));
1078 			xpt_free_path(ccb.ccb_h.path);
1079 			break;
1080 
1081 		}
1082 		case XPT_DEV_MATCH: {
1083 			struct cam_periph_map_info mapinfo;
1084 			struct cam_path *old_path;
1085 
1086 			/*
1087 			 * We can't deal with physical addresses for this
1088 			 * type of transaction.
1089 			 */
1090 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1091 				error = EINVAL;
1092 				break;
1093 			}
1094 
1095 			/*
1096 			 * Save this in case the caller had it set to
1097 			 * something in particular.
1098 			 */
1099 			old_path = inccb->ccb_h.path;
1100 
1101 			/*
1102 			 * We really don't need a path for the matching
1103 			 * code.  The path is needed because of the
1104 			 * debugging statements in xpt_action().  They
1105 			 * assume that the CCB has a valid path.
1106 			 */
1107 			inccb->ccb_h.path = xpt_periph->path;
1108 
1109 			bzero(&mapinfo, sizeof(mapinfo));
1110 
1111 			/*
1112 			 * Map the pattern and match buffers into kernel
1113 			 * virtual address space.
1114 			 */
1115 			error = cam_periph_mapmem(inccb, &mapinfo);
1116 
1117 			if (error) {
1118 				inccb->ccb_h.path = old_path;
1119 				break;
1120 			}
1121 
1122 			/*
1123 			 * This is an immediate CCB, we can send it on directly.
1124 			 */
1125 			xpt_action(inccb);
1126 
1127 			/*
1128 			 * Map the buffers back into user space.
1129 			 */
1130 			cam_periph_unmapmem(inccb, &mapinfo);
1131 
1132 			inccb->ccb_h.path = old_path;
1133 
1134 			error = 0;
1135 			break;
1136 		}
1137 		default:
1138 			error = ENOTSUP;
1139 			break;
1140 		}
1141 		break;
1142 	}
1143 	/*
1144 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1145 	 * with the periphal driver name and unit name filled in.  The other
1146 	 * fields don't really matter as input.  The passthrough driver name
1147 	 * ("pass"), and unit number are passed back in the ccb.  The current
1148 	 * device generation number, and the index into the device peripheral
1149 	 * driver list, and the status are also passed back.  Note that
1150 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1151 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1152 	 * (or rather should be) impossible for the device peripheral driver
1153 	 * list to change since we look at the whole thing in one pass, and
1154 	 * we do it with splcam protection.
1155 	 *
1156 	 */
1157 	case CAMGETPASSTHRU: {
1158 		union ccb *ccb;
1159 		struct cam_periph *periph;
1160 		struct periph_driver **p_drv;
1161 		char   *name;
1162 		u_int unit;
1163 		u_int cur_generation;
1164 		int base_periph_found;
1165 		int splbreaknum;
1166 		int s;
1167 
1168 		ccb = (union ccb *)addr;
1169 		unit = ccb->cgdl.unit_number;
1170 		name = ccb->cgdl.periph_name;
1171 		/*
1172 		 * Every 100 devices, we want to drop our spl protection to
1173 		 * give the software interrupt handler a chance to run.
1174 		 * Most systems won't run into this check, but this should
1175 		 * avoid starvation in the software interrupt handler in
1176 		 * large systems.
1177 		 */
1178 		splbreaknum = 100;
1179 
1180 		ccb = (union ccb *)addr;
1181 
1182 		base_periph_found = 0;
1183 
1184 		/*
1185 		 * Sanity check -- make sure we don't get a null peripheral
1186 		 * driver name.
1187 		 */
1188 		if (*ccb->cgdl.periph_name == '\0') {
1189 			error = EINVAL;
1190 			break;
1191 		}
1192 
1193 		/* Keep the list from changing while we traverse it */
1194 		s = splcam();
1195 ptstartover:
1196 		cur_generation = xsoftc.generation;
1197 
1198 		/* first find our driver in the list of drivers */
1199 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
1200 			if (strcmp((*p_drv)->driver_name, name) == 0)
1201 				break;
1202 
1203 		if (*p_drv == NULL) {
1204 			splx(s);
1205 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1206 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1207 			*ccb->cgdl.periph_name = '\0';
1208 			ccb->cgdl.unit_number = 0;
1209 			error = ENOENT;
1210 			break;
1211 		}
1212 
1213 		/*
1214 		 * Run through every peripheral instance of this driver
1215 		 * and check to see whether it matches the unit passed
1216 		 * in by the user.  If it does, get out of the loops and
1217 		 * find the passthrough driver associated with that
1218 		 * peripheral driver.
1219 		 */
1220 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1221 		     periph = TAILQ_NEXT(periph, unit_links)) {
1222 
1223 			if (periph->unit_number == unit) {
1224 				break;
1225 			} else if (--splbreaknum == 0) {
1226 				splx(s);
1227 				s = splcam();
1228 				splbreaknum = 100;
1229 				if (cur_generation != xsoftc.generation)
1230 				       goto ptstartover;
1231 			}
1232 		}
1233 		/*
1234 		 * If we found the peripheral driver that the user passed
1235 		 * in, go through all of the peripheral drivers for that
1236 		 * particular device and look for a passthrough driver.
1237 		 */
1238 		if (periph != NULL) {
1239 			struct cam_ed *device;
1240 			int i;
1241 
1242 			base_periph_found = 1;
1243 			device = periph->path->device;
1244 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1245 			     periph != NULL;
1246 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1247 				/*
1248 				 * Check to see whether we have a
1249 				 * passthrough device or not.
1250 				 */
1251 				if (strcmp(periph->periph_name, "pass") == 0) {
1252 					/*
1253 					 * Fill in the getdevlist fields.
1254 					 */
1255 					strcpy(ccb->cgdl.periph_name,
1256 					       periph->periph_name);
1257 					ccb->cgdl.unit_number =
1258 						periph->unit_number;
1259 					if (SLIST_NEXT(periph, periph_links))
1260 						ccb->cgdl.status =
1261 							CAM_GDEVLIST_MORE_DEVS;
1262 					else
1263 						ccb->cgdl.status =
1264 						       CAM_GDEVLIST_LAST_DEVICE;
1265 					ccb->cgdl.generation =
1266 						device->generation;
1267 					ccb->cgdl.index = i;
1268 					/*
1269 					 * Fill in some CCB header fields
1270 					 * that the user may want.
1271 					 */
1272 					ccb->ccb_h.path_id =
1273 						periph->path->bus->path_id;
1274 					ccb->ccb_h.target_id =
1275 						periph->path->target->target_id;
1276 					ccb->ccb_h.target_lun =
1277 						periph->path->device->lun_id;
1278 					ccb->ccb_h.status = CAM_REQ_CMP;
1279 					break;
1280 				}
1281 			}
1282 		}
1283 
1284 		/*
1285 		 * If the periph is null here, one of two things has
1286 		 * happened.  The first possibility is that we couldn't
1287 		 * find the unit number of the particular peripheral driver
1288 		 * that the user is asking about.  e.g. the user asks for
1289 		 * the passthrough driver for "da11".  We find the list of
1290 		 * "da" peripherals all right, but there is no unit 11.
1291 		 * The other possibility is that we went through the list
1292 		 * of peripheral drivers attached to the device structure,
1293 		 * but didn't find one with the name "pass".  Either way,
1294 		 * we return ENOENT, since we couldn't find something.
1295 		 */
1296 		if (periph == NULL) {
1297 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1298 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1299 			*ccb->cgdl.periph_name = '\0';
1300 			ccb->cgdl.unit_number = 0;
1301 			error = ENOENT;
1302 			/*
1303 			 * It is unfortunate that this is even necessary,
1304 			 * but there are many, many clueless users out there.
1305 			 * If this is true, the user is looking for the
1306 			 * passthrough driver, but doesn't have one in his
1307 			 * kernel.
1308 			 */
1309 			if (base_periph_found == 1) {
1310 				printf("xptioctl: pass driver is not in the "
1311 				       "kernel\n");
1312 				printf("xptioctl: put \"device pass0\" in "
1313 				       "your kernel config file\n");
1314 			}
1315 		}
1316 		splx(s);
1317 		break;
1318 		}
1319 	default:
1320 		error = ENOTTY;
1321 		break;
1322 	}
1323 
1324 	return(error);
1325 }
1326 
1327 static int
1328 cam_module_event_handler(module_t mod, int what, void *arg)
1329 {
1330 	if (what == MOD_LOAD) {
1331 		xpt_init(NULL);
1332 	} else if (what == MOD_UNLOAD) {
1333 		return EBUSY;
1334 	}
1335 
1336 	return 0;
1337 }
1338 
1339 /* Functions accessed by the peripheral drivers */
1340 static void
1341 xpt_init(dummy)
1342 	void *dummy;
1343 {
1344 	struct cam_sim *xpt_sim;
1345 	struct cam_path *path;
1346 	struct cam_devq *devq;
1347 	cam_status status;
1348 
1349 	TAILQ_INIT(&xpt_busses);
1350 	TAILQ_INIT(&cam_bioq);
1351 	TAILQ_INIT(&cam_netq);
1352 	SLIST_INIT(&ccb_freeq);
1353 	STAILQ_INIT(&highpowerq);
1354 
1355 	/*
1356 	 * The xpt layer is, itself, the equivelent of a SIM.
1357 	 * Allow 16 ccbs in the ccb pool for it.  This should
1358 	 * give decent parallelism when we probe busses and
1359 	 * perform other XPT functions.
1360 	 */
1361 	devq = cam_simq_alloc(16);
1362 	xpt_sim = cam_sim_alloc(xptaction,
1363 				xptpoll,
1364 				"xpt",
1365 				/*softc*/NULL,
1366 				/*unit*/0,
1367 				/*max_dev_transactions*/0,
1368 				/*max_tagged_dev_transactions*/0,
1369 				devq);
1370 	xpt_max_ccbs = 16;
1371 
1372 	xpt_bus_register(xpt_sim, /*bus #*/0);
1373 
1374 	/*
1375 	 * Looking at the XPT from the SIM layer, the XPT is
1376 	 * the equivelent of a peripheral driver.  Allocate
1377 	 * a peripheral driver entry for us.
1378 	 */
1379 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1380 				      CAM_TARGET_WILDCARD,
1381 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1382 		printf("xpt_init: xpt_create_path failed with status %#x,"
1383 		       " failing attach\n", status);
1384 		return;
1385 	}
1386 
1387 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1388 			 path, NULL, 0, NULL);
1389 	xpt_free_path(path);
1390 
1391 	xpt_sim->softc = xpt_periph;
1392 
1393 	/*
1394 	 * Register a callback for when interrupts are enabled.
1395 	 */
1396 	xpt_config_hook =
1397 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
1398 					      M_TEMP, M_NOWAIT | M_ZERO);
1399 	if (xpt_config_hook == NULL) {
1400 		printf("xpt_init: Cannot malloc config hook "
1401 		       "- failing attach\n");
1402 		return;
1403 	}
1404 
1405 	xpt_config_hook->ich_func = xpt_config;
1406 	if (config_intrhook_establish(xpt_config_hook) != 0) {
1407 		free (xpt_config_hook, M_TEMP);
1408 		printf("xpt_init: config_intrhook_establish failed "
1409 		       "- failing attach\n");
1410 	}
1411 
1412 	/* Install our software interrupt handlers */
1413 	swi_add(NULL, "camnet", camisr, &cam_netq, SWI_CAMNET, 0, &camnet_ih);
1414 	swi_add(NULL, "cambio", camisr, &cam_bioq, SWI_CAMBIO, 0, &cambio_ih);
1415 }
1416 
1417 static cam_status
1418 xptregister(struct cam_periph *periph, void *arg)
1419 {
1420 	if (periph == NULL) {
1421 		printf("xptregister: periph was NULL!!\n");
1422 		return(CAM_REQ_CMP_ERR);
1423 	}
1424 
1425 	periph->softc = NULL;
1426 
1427 	xpt_periph = periph;
1428 
1429 	return(CAM_REQ_CMP);
1430 }
1431 
1432 int32_t
1433 xpt_add_periph(struct cam_periph *periph)
1434 {
1435 	struct cam_ed *device;
1436 	int32_t	 status;
1437 	struct periph_list *periph_head;
1438 
1439 	device = periph->path->device;
1440 
1441 	periph_head = &device->periphs;
1442 
1443 	status = CAM_REQ_CMP;
1444 
1445 	if (device != NULL) {
1446 		int s;
1447 
1448 		/*
1449 		 * Make room for this peripheral
1450 		 * so it will fit in the queue
1451 		 * when it's scheduled to run
1452 		 */
1453 		s = splsoftcam();
1454 		status = camq_resize(&device->drvq,
1455 				     device->drvq.array_size + 1);
1456 
1457 		device->generation++;
1458 
1459 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1460 
1461 		splx(s);
1462 	}
1463 
1464 	xsoftc.generation++;
1465 
1466 	return (status);
1467 }
1468 
1469 void
1470 xpt_remove_periph(struct cam_periph *periph)
1471 {
1472 	struct cam_ed *device;
1473 
1474 	device = periph->path->device;
1475 
1476 	if (device != NULL) {
1477 		int s;
1478 		struct periph_list *periph_head;
1479 
1480 		periph_head = &device->periphs;
1481 
1482 		/* Release the slot for this peripheral */
1483 		s = splsoftcam();
1484 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1485 
1486 		device->generation++;
1487 
1488 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1489 
1490 		splx(s);
1491 	}
1492 
1493 	xsoftc.generation++;
1494 
1495 }
1496 
1497 #ifdef CAM_NEW_TRAN_CODE
1498 
1499 void
1500 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1501 {
1502 	struct	ccb_pathinq cpi;
1503 	struct	ccb_trans_settings cts;
1504 	struct	cam_path *path;
1505 	u_int	speed;
1506 	u_int	freq;
1507 	u_int	mb;
1508 	int	s;
1509 
1510 	path = periph->path;
1511 	/*
1512 	 * To ensure that this is printed in one piece,
1513 	 * mask out CAM interrupts.
1514 	 */
1515 	s = splsoftcam();
1516 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1517 	       periph->periph_name, periph->unit_number,
1518 	       path->bus->sim->sim_name,
1519 	       path->bus->sim->unit_number,
1520 	       path->bus->sim->bus_id,
1521 	       path->target->target_id,
1522 	       path->device->lun_id);
1523 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1524 	scsi_print_inquiry(&path->device->inq_data);
1525 	if (bootverbose && path->device->serial_num_len > 0) {
1526 		/* Don't wrap the screen  - print only the first 60 chars */
1527 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1528 		       periph->unit_number, path->device->serial_num);
1529 	}
1530 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1531 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1532 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1533 	xpt_action((union ccb*)&cts);
1534 
1535 	/* Ask the SIM for its base transfer speed */
1536 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1537 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1538 	xpt_action((union ccb *)&cpi);
1539 
1540 	speed = cpi.base_transfer_speed;
1541 	freq = 0;
1542 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1543 		struct	ccb_trans_settings_spi *spi;
1544 
1545 		spi = &cts.xport_specific.spi;
1546 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1547 		  && spi->sync_offset != 0) {
1548 			freq = scsi_calc_syncsrate(spi->sync_period);
1549 			speed = freq;
1550 		}
1551 
1552 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1553 			speed *= (0x01 << spi->bus_width);
1554 	}
1555 
1556 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1557 		struct	ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1558 		if (fc->valid & CTS_FC_VALID_SPEED) {
1559 			speed = fc->bitrate;
1560 		}
1561 	}
1562 
1563 	mb = speed / 1000;
1564 	if (mb > 0)
1565 		printf("%s%d: %d.%03dMB/s transfers",
1566 		       periph->periph_name, periph->unit_number,
1567 		       mb, speed % 1000);
1568 	else
1569 		printf("%s%d: %dKB/s transfers", periph->periph_name,
1570 		       periph->unit_number, speed);
1571 	/* Report additional information about SPI connections */
1572 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1573 		struct	ccb_trans_settings_spi *spi;
1574 
1575 		spi = &cts.xport_specific.spi;
1576 		if (freq != 0) {
1577 			printf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1578 			       freq % 1000,
1579 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1580 			     ? " DT" : "",
1581 			       spi->sync_offset);
1582 		}
1583 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1584 		 && spi->bus_width > 0) {
1585 			if (freq != 0) {
1586 				printf(", ");
1587 			} else {
1588 				printf(" (");
1589 			}
1590 			printf("%dbit)", 8 * (0x01 << spi->bus_width));
1591 		} else if (freq != 0) {
1592 			printf(")");
1593 		}
1594 	}
1595 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1596 		struct	ccb_trans_settings_fc *fc;
1597 
1598 		fc = &cts.xport_specific.fc;
1599 		if (fc->valid & CTS_FC_VALID_WWNN)
1600 			printf(" WWNN 0x%llx", (long long) fc->wwnn);
1601 		if (fc->valid & CTS_FC_VALID_WWPN)
1602 			printf(" WWPN 0x%llx", (long long) fc->wwpn);
1603 		if (fc->valid & CTS_FC_VALID_PORT)
1604 			printf(" PortID 0x%x", fc->port);
1605 	}
1606 
1607 	if (path->device->inq_flags & SID_CmdQue
1608 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1609 		printf("\n%s%d: Tagged Queueing Enabled",
1610 		       periph->periph_name, periph->unit_number);
1611 	}
1612 	printf("\n");
1613 
1614 	/*
1615 	 * We only want to print the caller's announce string if they've
1616 	 * passed one in..
1617 	 */
1618 	if (announce_string != NULL)
1619 		printf("%s%d: %s\n", periph->periph_name,
1620 		       periph->unit_number, announce_string);
1621 	splx(s);
1622 }
1623 #else /* CAM_NEW_TRAN_CODE */
1624 void
1625 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1626 {
1627 	int s;
1628 	u_int mb;
1629 	struct cam_path *path;
1630 	struct ccb_trans_settings cts;
1631 
1632 	path = periph->path;
1633 	/*
1634 	 * To ensure that this is printed in one piece,
1635 	 * mask out CAM interrupts.
1636 	 */
1637 	s = splsoftcam();
1638 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1639 	       periph->periph_name, periph->unit_number,
1640 	       path->bus->sim->sim_name,
1641 	       path->bus->sim->unit_number,
1642 	       path->bus->sim->bus_id,
1643 	       path->target->target_id,
1644 	       path->device->lun_id);
1645 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1646 	scsi_print_inquiry(&path->device->inq_data);
1647 	if ((bootverbose)
1648 	 && (path->device->serial_num_len > 0)) {
1649 		/* Don't wrap the screen  - print only the first 60 chars */
1650 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1651 		       periph->unit_number, path->device->serial_num);
1652 	}
1653 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1654 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1655 	cts.flags = CCB_TRANS_CURRENT_SETTINGS;
1656 	xpt_action((union ccb*)&cts);
1657 	if (cts.ccb_h.status == CAM_REQ_CMP) {
1658 		u_int speed;
1659 		u_int freq;
1660 
1661 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1662 		  && cts.sync_offset != 0) {
1663 			freq = scsi_calc_syncsrate(cts.sync_period);
1664 			speed = freq;
1665 		} else {
1666 			struct ccb_pathinq cpi;
1667 
1668 			/* Ask the SIM for its base transfer speed */
1669 			xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1670 			cpi.ccb_h.func_code = XPT_PATH_INQ;
1671 			xpt_action((union ccb *)&cpi);
1672 
1673 			speed = cpi.base_transfer_speed;
1674 			freq = 0;
1675 		}
1676 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
1677 			speed *= (0x01 << cts.bus_width);
1678 		mb = speed / 1000;
1679 		if (mb > 0)
1680 			printf("%s%d: %d.%03dMB/s transfers",
1681 			       periph->periph_name, periph->unit_number,
1682 			       mb, speed % 1000);
1683 		else
1684 			printf("%s%d: %dKB/s transfers", periph->periph_name,
1685 			       periph->unit_number, speed);
1686 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1687 		 && cts.sync_offset != 0) {
1688 			printf(" (%d.%03dMHz, offset %d", freq / 1000,
1689 			       freq % 1000, cts.sync_offset);
1690 		}
1691 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
1692 		 && cts.bus_width > 0) {
1693 			if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1694 			 && cts.sync_offset != 0) {
1695 				printf(", ");
1696 			} else {
1697 				printf(" (");
1698 			}
1699 			printf("%dbit)", 8 * (0x01 << cts.bus_width));
1700 		} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1701 			&& cts.sync_offset != 0) {
1702 			printf(")");
1703 		}
1704 
1705 		if (path->device->inq_flags & SID_CmdQue
1706 		 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1707 			printf(", Tagged Queueing Enabled");
1708 		}
1709 
1710 		printf("\n");
1711 	} else if (path->device->inq_flags & SID_CmdQue
1712    		|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1713 		printf("%s%d: Tagged Queueing Enabled\n",
1714 		       periph->periph_name, periph->unit_number);
1715 	}
1716 
1717 	/*
1718 	 * We only want to print the caller's announce string if they've
1719 	 * passed one in..
1720 	 */
1721 	if (announce_string != NULL)
1722 		printf("%s%d: %s\n", periph->periph_name,
1723 		       periph->unit_number, announce_string);
1724 	splx(s);
1725 }
1726 
1727 #endif /* CAM_NEW_TRAN_CODE */
1728 
1729 static dev_match_ret
1730 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1731 	    struct cam_eb *bus)
1732 {
1733 	dev_match_ret retval;
1734 	int i;
1735 
1736 	retval = DM_RET_NONE;
1737 
1738 	/*
1739 	 * If we aren't given something to match against, that's an error.
1740 	 */
1741 	if (bus == NULL)
1742 		return(DM_RET_ERROR);
1743 
1744 	/*
1745 	 * If there are no match entries, then this bus matches no
1746 	 * matter what.
1747 	 */
1748 	if ((patterns == NULL) || (num_patterns == 0))
1749 		return(DM_RET_DESCEND | DM_RET_COPY);
1750 
1751 	for (i = 0; i < num_patterns; i++) {
1752 		struct bus_match_pattern *cur_pattern;
1753 
1754 		/*
1755 		 * If the pattern in question isn't for a bus node, we
1756 		 * aren't interested.  However, we do indicate to the
1757 		 * calling routine that we should continue descending the
1758 		 * tree, since the user wants to match against lower-level
1759 		 * EDT elements.
1760 		 */
1761 		if (patterns[i].type != DEV_MATCH_BUS) {
1762 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1763 				retval |= DM_RET_DESCEND;
1764 			continue;
1765 		}
1766 
1767 		cur_pattern = &patterns[i].pattern.bus_pattern;
1768 
1769 		/*
1770 		 * If they want to match any bus node, we give them any
1771 		 * device node.
1772 		 */
1773 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1774 			/* set the copy flag */
1775 			retval |= DM_RET_COPY;
1776 
1777 			/*
1778 			 * If we've already decided on an action, go ahead
1779 			 * and return.
1780 			 */
1781 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1782 				return(retval);
1783 		}
1784 
1785 		/*
1786 		 * Not sure why someone would do this...
1787 		 */
1788 		if (cur_pattern->flags == BUS_MATCH_NONE)
1789 			continue;
1790 
1791 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1792 		 && (cur_pattern->path_id != bus->path_id))
1793 			continue;
1794 
1795 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1796 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1797 			continue;
1798 
1799 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1800 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1801 			continue;
1802 
1803 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1804 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1805 			     DEV_IDLEN) != 0))
1806 			continue;
1807 
1808 		/*
1809 		 * If we get to this point, the user definitely wants
1810 		 * information on this bus.  So tell the caller to copy the
1811 		 * data out.
1812 		 */
1813 		retval |= DM_RET_COPY;
1814 
1815 		/*
1816 		 * If the return action has been set to descend, then we
1817 		 * know that we've already seen a non-bus matching
1818 		 * expression, therefore we need to further descend the tree.
1819 		 * This won't change by continuing around the loop, so we
1820 		 * go ahead and return.  If we haven't seen a non-bus
1821 		 * matching expression, we keep going around the loop until
1822 		 * we exhaust the matching expressions.  We'll set the stop
1823 		 * flag once we fall out of the loop.
1824 		 */
1825 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1826 			return(retval);
1827 	}
1828 
1829 	/*
1830 	 * If the return action hasn't been set to descend yet, that means
1831 	 * we haven't seen anything other than bus matching patterns.  So
1832 	 * tell the caller to stop descending the tree -- the user doesn't
1833 	 * want to match against lower level tree elements.
1834 	 */
1835 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1836 		retval |= DM_RET_STOP;
1837 
1838 	return(retval);
1839 }
1840 
1841 static dev_match_ret
1842 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1843 	       struct cam_ed *device)
1844 {
1845 	dev_match_ret retval;
1846 	int i;
1847 
1848 	retval = DM_RET_NONE;
1849 
1850 	/*
1851 	 * If we aren't given something to match against, that's an error.
1852 	 */
1853 	if (device == NULL)
1854 		return(DM_RET_ERROR);
1855 
1856 	/*
1857 	 * If there are no match entries, then this device matches no
1858 	 * matter what.
1859 	 */
1860 	if ((patterns == NULL) || (patterns == 0))
1861 		return(DM_RET_DESCEND | DM_RET_COPY);
1862 
1863 	for (i = 0; i < num_patterns; i++) {
1864 		struct device_match_pattern *cur_pattern;
1865 
1866 		/*
1867 		 * If the pattern in question isn't for a device node, we
1868 		 * aren't interested.
1869 		 */
1870 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1871 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1872 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1873 				retval |= DM_RET_DESCEND;
1874 			continue;
1875 		}
1876 
1877 		cur_pattern = &patterns[i].pattern.device_pattern;
1878 
1879 		/*
1880 		 * If they want to match any device node, we give them any
1881 		 * device node.
1882 		 */
1883 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1884 			/* set the copy flag */
1885 			retval |= DM_RET_COPY;
1886 
1887 
1888 			/*
1889 			 * If we've already decided on an action, go ahead
1890 			 * and return.
1891 			 */
1892 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1893 				return(retval);
1894 		}
1895 
1896 		/*
1897 		 * Not sure why someone would do this...
1898 		 */
1899 		if (cur_pattern->flags == DEV_MATCH_NONE)
1900 			continue;
1901 
1902 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1903 		 && (cur_pattern->path_id != device->target->bus->path_id))
1904 			continue;
1905 
1906 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1907 		 && (cur_pattern->target_id != device->target->target_id))
1908 			continue;
1909 
1910 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1911 		 && (cur_pattern->target_lun != device->lun_id))
1912 			continue;
1913 
1914 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1915 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1916 				    (caddr_t)&cur_pattern->inq_pat,
1917 				    1, sizeof(cur_pattern->inq_pat),
1918 				    scsi_static_inquiry_match) == NULL))
1919 			continue;
1920 
1921 		/*
1922 		 * If we get to this point, the user definitely wants
1923 		 * information on this device.  So tell the caller to copy
1924 		 * the data out.
1925 		 */
1926 		retval |= DM_RET_COPY;
1927 
1928 		/*
1929 		 * If the return action has been set to descend, then we
1930 		 * know that we've already seen a peripheral matching
1931 		 * expression, therefore we need to further descend the tree.
1932 		 * This won't change by continuing around the loop, so we
1933 		 * go ahead and return.  If we haven't seen a peripheral
1934 		 * matching expression, we keep going around the loop until
1935 		 * we exhaust the matching expressions.  We'll set the stop
1936 		 * flag once we fall out of the loop.
1937 		 */
1938 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1939 			return(retval);
1940 	}
1941 
1942 	/*
1943 	 * If the return action hasn't been set to descend yet, that means
1944 	 * we haven't seen any peripheral matching patterns.  So tell the
1945 	 * caller to stop descending the tree -- the user doesn't want to
1946 	 * match against lower level tree elements.
1947 	 */
1948 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1949 		retval |= DM_RET_STOP;
1950 
1951 	return(retval);
1952 }
1953 
1954 /*
1955  * Match a single peripheral against any number of match patterns.
1956  */
1957 static dev_match_ret
1958 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1959 	       struct cam_periph *periph)
1960 {
1961 	dev_match_ret retval;
1962 	int i;
1963 
1964 	/*
1965 	 * If we aren't given something to match against, that's an error.
1966 	 */
1967 	if (periph == NULL)
1968 		return(DM_RET_ERROR);
1969 
1970 	/*
1971 	 * If there are no match entries, then this peripheral matches no
1972 	 * matter what.
1973 	 */
1974 	if ((patterns == NULL) || (num_patterns == 0))
1975 		return(DM_RET_STOP | DM_RET_COPY);
1976 
1977 	/*
1978 	 * There aren't any nodes below a peripheral node, so there's no
1979 	 * reason to descend the tree any further.
1980 	 */
1981 	retval = DM_RET_STOP;
1982 
1983 	for (i = 0; i < num_patterns; i++) {
1984 		struct periph_match_pattern *cur_pattern;
1985 
1986 		/*
1987 		 * If the pattern in question isn't for a peripheral, we
1988 		 * aren't interested.
1989 		 */
1990 		if (patterns[i].type != DEV_MATCH_PERIPH)
1991 			continue;
1992 
1993 		cur_pattern = &patterns[i].pattern.periph_pattern;
1994 
1995 		/*
1996 		 * If they want to match on anything, then we will do so.
1997 		 */
1998 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1999 			/* set the copy flag */
2000 			retval |= DM_RET_COPY;
2001 
2002 			/*
2003 			 * We've already set the return action to stop,
2004 			 * since there are no nodes below peripherals in
2005 			 * the tree.
2006 			 */
2007 			return(retval);
2008 		}
2009 
2010 		/*
2011 		 * Not sure why someone would do this...
2012 		 */
2013 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
2014 			continue;
2015 
2016 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2017 		 && (cur_pattern->path_id != periph->path->bus->path_id))
2018 			continue;
2019 
2020 		/*
2021 		 * For the target and lun id's, we have to make sure the
2022 		 * target and lun pointers aren't NULL.  The xpt peripheral
2023 		 * has a wildcard target and device.
2024 		 */
2025 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2026 		 && ((periph->path->target == NULL)
2027 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
2028 			continue;
2029 
2030 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2031 		 && ((periph->path->device == NULL)
2032 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2033 			continue;
2034 
2035 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2036 		 && (cur_pattern->unit_number != periph->unit_number))
2037 			continue;
2038 
2039 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2040 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2041 			     DEV_IDLEN) != 0))
2042 			continue;
2043 
2044 		/*
2045 		 * If we get to this point, the user definitely wants
2046 		 * information on this peripheral.  So tell the caller to
2047 		 * copy the data out.
2048 		 */
2049 		retval |= DM_RET_COPY;
2050 
2051 		/*
2052 		 * The return action has already been set to stop, since
2053 		 * peripherals don't have any nodes below them in the EDT.
2054 		 */
2055 		return(retval);
2056 	}
2057 
2058 	/*
2059 	 * If we get to this point, the peripheral that was passed in
2060 	 * doesn't match any of the patterns.
2061 	 */
2062 	return(retval);
2063 }
2064 
2065 static int
2066 xptedtbusfunc(struct cam_eb *bus, void *arg)
2067 {
2068 	struct ccb_dev_match *cdm;
2069 	dev_match_ret retval;
2070 
2071 	cdm = (struct ccb_dev_match *)arg;
2072 
2073 	/*
2074 	 * If our position is for something deeper in the tree, that means
2075 	 * that we've already seen this node.  So, we keep going down.
2076 	 */
2077 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2078 	 && (cdm->pos.cookie.bus == bus)
2079 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2080 	 && (cdm->pos.cookie.target != NULL))
2081 		retval = DM_RET_DESCEND;
2082 	else
2083 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2084 
2085 	/*
2086 	 * If we got an error, bail out of the search.
2087 	 */
2088 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2089 		cdm->status = CAM_DEV_MATCH_ERROR;
2090 		return(0);
2091 	}
2092 
2093 	/*
2094 	 * If the copy flag is set, copy this bus out.
2095 	 */
2096 	if (retval & DM_RET_COPY) {
2097 		int spaceleft, j;
2098 
2099 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2100 			sizeof(struct dev_match_result));
2101 
2102 		/*
2103 		 * If we don't have enough space to put in another
2104 		 * match result, save our position and tell the
2105 		 * user there are more devices to check.
2106 		 */
2107 		if (spaceleft < sizeof(struct dev_match_result)) {
2108 			bzero(&cdm->pos, sizeof(cdm->pos));
2109 			cdm->pos.position_type =
2110 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2111 
2112 			cdm->pos.cookie.bus = bus;
2113 			cdm->pos.generations[CAM_BUS_GENERATION]=
2114 				bus_generation;
2115 			cdm->status = CAM_DEV_MATCH_MORE;
2116 			return(0);
2117 		}
2118 		j = cdm->num_matches;
2119 		cdm->num_matches++;
2120 		cdm->matches[j].type = DEV_MATCH_BUS;
2121 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2122 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2123 		cdm->matches[j].result.bus_result.unit_number =
2124 			bus->sim->unit_number;
2125 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2126 			bus->sim->sim_name, DEV_IDLEN);
2127 	}
2128 
2129 	/*
2130 	 * If the user is only interested in busses, there's no
2131 	 * reason to descend to the next level in the tree.
2132 	 */
2133 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2134 		return(1);
2135 
2136 	/*
2137 	 * If there is a target generation recorded, check it to
2138 	 * make sure the target list hasn't changed.
2139 	 */
2140 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2141 	 && (bus == cdm->pos.cookie.bus)
2142 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2143 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2144 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2145 	     bus->generation)) {
2146 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2147 		return(0);
2148 	}
2149 
2150 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2151 	 && (cdm->pos.cookie.bus == bus)
2152 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2153 	 && (cdm->pos.cookie.target != NULL))
2154 		return(xpttargettraverse(bus,
2155 					(struct cam_et *)cdm->pos.cookie.target,
2156 					 xptedttargetfunc, arg));
2157 	else
2158 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2159 }
2160 
2161 static int
2162 xptedttargetfunc(struct cam_et *target, void *arg)
2163 {
2164 	struct ccb_dev_match *cdm;
2165 
2166 	cdm = (struct ccb_dev_match *)arg;
2167 
2168 	/*
2169 	 * If there is a device list generation recorded, check it to
2170 	 * make sure the device list hasn't changed.
2171 	 */
2172 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2173 	 && (cdm->pos.cookie.bus == target->bus)
2174 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2175 	 && (cdm->pos.cookie.target == target)
2176 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2177 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2178 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2179 	     target->generation)) {
2180 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2181 		return(0);
2182 	}
2183 
2184 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2185 	 && (cdm->pos.cookie.bus == target->bus)
2186 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2187 	 && (cdm->pos.cookie.target == target)
2188 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2189 	 && (cdm->pos.cookie.device != NULL))
2190 		return(xptdevicetraverse(target,
2191 					(struct cam_ed *)cdm->pos.cookie.device,
2192 					 xptedtdevicefunc, arg));
2193 	else
2194 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2195 }
2196 
2197 static int
2198 xptedtdevicefunc(struct cam_ed *device, void *arg)
2199 {
2200 
2201 	struct ccb_dev_match *cdm;
2202 	dev_match_ret retval;
2203 
2204 	cdm = (struct ccb_dev_match *)arg;
2205 
2206 	/*
2207 	 * If our position is for something deeper in the tree, that means
2208 	 * that we've already seen this node.  So, we keep going down.
2209 	 */
2210 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2211 	 && (cdm->pos.cookie.device == device)
2212 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2213 	 && (cdm->pos.cookie.periph != NULL))
2214 		retval = DM_RET_DESCEND;
2215 	else
2216 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2217 					device);
2218 
2219 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2220 		cdm->status = CAM_DEV_MATCH_ERROR;
2221 		return(0);
2222 	}
2223 
2224 	/*
2225 	 * If the copy flag is set, copy this device out.
2226 	 */
2227 	if (retval & DM_RET_COPY) {
2228 		int spaceleft, j;
2229 
2230 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2231 			sizeof(struct dev_match_result));
2232 
2233 		/*
2234 		 * If we don't have enough space to put in another
2235 		 * match result, save our position and tell the
2236 		 * user there are more devices to check.
2237 		 */
2238 		if (spaceleft < sizeof(struct dev_match_result)) {
2239 			bzero(&cdm->pos, sizeof(cdm->pos));
2240 			cdm->pos.position_type =
2241 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2242 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2243 
2244 			cdm->pos.cookie.bus = device->target->bus;
2245 			cdm->pos.generations[CAM_BUS_GENERATION]=
2246 				bus_generation;
2247 			cdm->pos.cookie.target = device->target;
2248 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2249 				device->target->bus->generation;
2250 			cdm->pos.cookie.device = device;
2251 			cdm->pos.generations[CAM_DEV_GENERATION] =
2252 				device->target->generation;
2253 			cdm->status = CAM_DEV_MATCH_MORE;
2254 			return(0);
2255 		}
2256 		j = cdm->num_matches;
2257 		cdm->num_matches++;
2258 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2259 		cdm->matches[j].result.device_result.path_id =
2260 			device->target->bus->path_id;
2261 		cdm->matches[j].result.device_result.target_id =
2262 			device->target->target_id;
2263 		cdm->matches[j].result.device_result.target_lun =
2264 			device->lun_id;
2265 		bcopy(&device->inq_data,
2266 		      &cdm->matches[j].result.device_result.inq_data,
2267 		      sizeof(struct scsi_inquiry_data));
2268 
2269 		/* Let the user know whether this device is unconfigured */
2270 		if (device->flags & CAM_DEV_UNCONFIGURED)
2271 			cdm->matches[j].result.device_result.flags =
2272 				DEV_RESULT_UNCONFIGURED;
2273 		else
2274 			cdm->matches[j].result.device_result.flags =
2275 				DEV_RESULT_NOFLAG;
2276 	}
2277 
2278 	/*
2279 	 * If the user isn't interested in peripherals, don't descend
2280 	 * the tree any further.
2281 	 */
2282 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2283 		return(1);
2284 
2285 	/*
2286 	 * If there is a peripheral list generation recorded, make sure
2287 	 * it hasn't changed.
2288 	 */
2289 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2290 	 && (device->target->bus == cdm->pos.cookie.bus)
2291 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2292 	 && (device->target == cdm->pos.cookie.target)
2293 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2294 	 && (device == cdm->pos.cookie.device)
2295 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2296 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2297 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2298 	     device->generation)){
2299 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2300 		return(0);
2301 	}
2302 
2303 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2304 	 && (cdm->pos.cookie.bus == device->target->bus)
2305 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2306 	 && (cdm->pos.cookie.target == device->target)
2307 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2308 	 && (cdm->pos.cookie.device == device)
2309 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2310 	 && (cdm->pos.cookie.periph != NULL))
2311 		return(xptperiphtraverse(device,
2312 				(struct cam_periph *)cdm->pos.cookie.periph,
2313 				xptedtperiphfunc, arg));
2314 	else
2315 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2316 }
2317 
2318 static int
2319 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2320 {
2321 	struct ccb_dev_match *cdm;
2322 	dev_match_ret retval;
2323 
2324 	cdm = (struct ccb_dev_match *)arg;
2325 
2326 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2327 
2328 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2329 		cdm->status = CAM_DEV_MATCH_ERROR;
2330 		return(0);
2331 	}
2332 
2333 	/*
2334 	 * If the copy flag is set, copy this peripheral out.
2335 	 */
2336 	if (retval & DM_RET_COPY) {
2337 		int spaceleft, j;
2338 
2339 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2340 			sizeof(struct dev_match_result));
2341 
2342 		/*
2343 		 * If we don't have enough space to put in another
2344 		 * match result, save our position and tell the
2345 		 * user there are more devices to check.
2346 		 */
2347 		if (spaceleft < sizeof(struct dev_match_result)) {
2348 			bzero(&cdm->pos, sizeof(cdm->pos));
2349 			cdm->pos.position_type =
2350 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2351 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2352 				CAM_DEV_POS_PERIPH;
2353 
2354 			cdm->pos.cookie.bus = periph->path->bus;
2355 			cdm->pos.generations[CAM_BUS_GENERATION]=
2356 				bus_generation;
2357 			cdm->pos.cookie.target = periph->path->target;
2358 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2359 				periph->path->bus->generation;
2360 			cdm->pos.cookie.device = periph->path->device;
2361 			cdm->pos.generations[CAM_DEV_GENERATION] =
2362 				periph->path->target->generation;
2363 			cdm->pos.cookie.periph = periph;
2364 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2365 				periph->path->device->generation;
2366 			cdm->status = CAM_DEV_MATCH_MORE;
2367 			return(0);
2368 		}
2369 
2370 		j = cdm->num_matches;
2371 		cdm->num_matches++;
2372 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2373 		cdm->matches[j].result.periph_result.path_id =
2374 			periph->path->bus->path_id;
2375 		cdm->matches[j].result.periph_result.target_id =
2376 			periph->path->target->target_id;
2377 		cdm->matches[j].result.periph_result.target_lun =
2378 			periph->path->device->lun_id;
2379 		cdm->matches[j].result.periph_result.unit_number =
2380 			periph->unit_number;
2381 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2382 			periph->periph_name, DEV_IDLEN);
2383 	}
2384 
2385 	return(1);
2386 }
2387 
2388 static int
2389 xptedtmatch(struct ccb_dev_match *cdm)
2390 {
2391 	int ret;
2392 
2393 	cdm->num_matches = 0;
2394 
2395 	/*
2396 	 * Check the bus list generation.  If it has changed, the user
2397 	 * needs to reset everything and start over.
2398 	 */
2399 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2400 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2401 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
2402 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2403 		return(0);
2404 	}
2405 
2406 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2407 	 && (cdm->pos.cookie.bus != NULL))
2408 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2409 				     xptedtbusfunc, cdm);
2410 	else
2411 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2412 
2413 	/*
2414 	 * If we get back 0, that means that we had to stop before fully
2415 	 * traversing the EDT.  It also means that one of the subroutines
2416 	 * has set the status field to the proper value.  If we get back 1,
2417 	 * we've fully traversed the EDT and copied out any matching entries.
2418 	 */
2419 	if (ret == 1)
2420 		cdm->status = CAM_DEV_MATCH_LAST;
2421 
2422 	return(ret);
2423 }
2424 
2425 static int
2426 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2427 {
2428 	struct ccb_dev_match *cdm;
2429 
2430 	cdm = (struct ccb_dev_match *)arg;
2431 
2432 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2433 	 && (cdm->pos.cookie.pdrv == pdrv)
2434 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2435 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2436 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2437 	     (*pdrv)->generation)) {
2438 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2439 		return(0);
2440 	}
2441 
2442 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2443 	 && (cdm->pos.cookie.pdrv == pdrv)
2444 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2445 	 && (cdm->pos.cookie.periph != NULL))
2446 		return(xptpdperiphtraverse(pdrv,
2447 				(struct cam_periph *)cdm->pos.cookie.periph,
2448 				xptplistperiphfunc, arg));
2449 	else
2450 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2451 }
2452 
2453 static int
2454 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2455 {
2456 	struct ccb_dev_match *cdm;
2457 	dev_match_ret retval;
2458 
2459 	cdm = (struct ccb_dev_match *)arg;
2460 
2461 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2462 
2463 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2464 		cdm->status = CAM_DEV_MATCH_ERROR;
2465 		return(0);
2466 	}
2467 
2468 	/*
2469 	 * If the copy flag is set, copy this peripheral out.
2470 	 */
2471 	if (retval & DM_RET_COPY) {
2472 		int spaceleft, j;
2473 
2474 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2475 			sizeof(struct dev_match_result));
2476 
2477 		/*
2478 		 * If we don't have enough space to put in another
2479 		 * match result, save our position and tell the
2480 		 * user there are more devices to check.
2481 		 */
2482 		if (spaceleft < sizeof(struct dev_match_result)) {
2483 			struct periph_driver **pdrv;
2484 
2485 			pdrv = NULL;
2486 			bzero(&cdm->pos, sizeof(cdm->pos));
2487 			cdm->pos.position_type =
2488 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2489 				CAM_DEV_POS_PERIPH;
2490 
2491 			/*
2492 			 * This may look a bit non-sensical, but it is
2493 			 * actually quite logical.  There are very few
2494 			 * peripheral drivers, and bloating every peripheral
2495 			 * structure with a pointer back to its parent
2496 			 * peripheral driver linker set entry would cost
2497 			 * more in the long run than doing this quick lookup.
2498 			 */
2499 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2500 				if (strcmp((*pdrv)->driver_name,
2501 				    periph->periph_name) == 0)
2502 					break;
2503 			}
2504 
2505 			if (pdrv == NULL) {
2506 				cdm->status = CAM_DEV_MATCH_ERROR;
2507 				return(0);
2508 			}
2509 
2510 			cdm->pos.cookie.pdrv = pdrv;
2511 			/*
2512 			 * The periph generation slot does double duty, as
2513 			 * does the periph pointer slot.  They are used for
2514 			 * both edt and pdrv lookups and positioning.
2515 			 */
2516 			cdm->pos.cookie.periph = periph;
2517 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2518 				(*pdrv)->generation;
2519 			cdm->status = CAM_DEV_MATCH_MORE;
2520 			return(0);
2521 		}
2522 
2523 		j = cdm->num_matches;
2524 		cdm->num_matches++;
2525 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2526 		cdm->matches[j].result.periph_result.path_id =
2527 			periph->path->bus->path_id;
2528 
2529 		/*
2530 		 * The transport layer peripheral doesn't have a target or
2531 		 * lun.
2532 		 */
2533 		if (periph->path->target)
2534 			cdm->matches[j].result.periph_result.target_id =
2535 				periph->path->target->target_id;
2536 		else
2537 			cdm->matches[j].result.periph_result.target_id = -1;
2538 
2539 		if (periph->path->device)
2540 			cdm->matches[j].result.periph_result.target_lun =
2541 				periph->path->device->lun_id;
2542 		else
2543 			cdm->matches[j].result.periph_result.target_lun = -1;
2544 
2545 		cdm->matches[j].result.periph_result.unit_number =
2546 			periph->unit_number;
2547 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2548 			periph->periph_name, DEV_IDLEN);
2549 	}
2550 
2551 	return(1);
2552 }
2553 
2554 static int
2555 xptperiphlistmatch(struct ccb_dev_match *cdm)
2556 {
2557 	int ret;
2558 
2559 	cdm->num_matches = 0;
2560 
2561 	/*
2562 	 * At this point in the edt traversal function, we check the bus
2563 	 * list generation to make sure that no busses have been added or
2564 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2565 	 * For the peripheral driver list traversal function, however, we
2566 	 * don't have to worry about new peripheral driver types coming or
2567 	 * going; they're in a linker set, and therefore can't change
2568 	 * without a recompile.
2569 	 */
2570 
2571 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2572 	 && (cdm->pos.cookie.pdrv != NULL))
2573 		ret = xptpdrvtraverse(
2574 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2575 				xptplistpdrvfunc, cdm);
2576 	else
2577 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2578 
2579 	/*
2580 	 * If we get back 0, that means that we had to stop before fully
2581 	 * traversing the peripheral driver tree.  It also means that one of
2582 	 * the subroutines has set the status field to the proper value.  If
2583 	 * we get back 1, we've fully traversed the EDT and copied out any
2584 	 * matching entries.
2585 	 */
2586 	if (ret == 1)
2587 		cdm->status = CAM_DEV_MATCH_LAST;
2588 
2589 	return(ret);
2590 }
2591 
2592 static int
2593 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2594 {
2595 	struct cam_eb *bus, *next_bus;
2596 	int retval;
2597 
2598 	retval = 1;
2599 
2600 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
2601 	     bus != NULL;
2602 	     bus = next_bus) {
2603 		next_bus = TAILQ_NEXT(bus, links);
2604 
2605 		retval = tr_func(bus, arg);
2606 		if (retval == 0)
2607 			return(retval);
2608 	}
2609 
2610 	return(retval);
2611 }
2612 
2613 static int
2614 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2615 		  xpt_targetfunc_t *tr_func, void *arg)
2616 {
2617 	struct cam_et *target, *next_target;
2618 	int retval;
2619 
2620 	retval = 1;
2621 	for (target = (start_target ? start_target :
2622 		       TAILQ_FIRST(&bus->et_entries));
2623 	     target != NULL; target = next_target) {
2624 
2625 		next_target = TAILQ_NEXT(target, links);
2626 
2627 		retval = tr_func(target, arg);
2628 
2629 		if (retval == 0)
2630 			return(retval);
2631 	}
2632 
2633 	return(retval);
2634 }
2635 
2636 static int
2637 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2638 		  xpt_devicefunc_t *tr_func, void *arg)
2639 {
2640 	struct cam_ed *device, *next_device;
2641 	int retval;
2642 
2643 	retval = 1;
2644 	for (device = (start_device ? start_device :
2645 		       TAILQ_FIRST(&target->ed_entries));
2646 	     device != NULL;
2647 	     device = next_device) {
2648 
2649 		next_device = TAILQ_NEXT(device, links);
2650 
2651 		retval = tr_func(device, arg);
2652 
2653 		if (retval == 0)
2654 			return(retval);
2655 	}
2656 
2657 	return(retval);
2658 }
2659 
2660 static int
2661 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2662 		  xpt_periphfunc_t *tr_func, void *arg)
2663 {
2664 	struct cam_periph *periph, *next_periph;
2665 	int retval;
2666 
2667 	retval = 1;
2668 
2669 	for (periph = (start_periph ? start_periph :
2670 		       SLIST_FIRST(&device->periphs));
2671 	     periph != NULL;
2672 	     periph = next_periph) {
2673 
2674 		next_periph = SLIST_NEXT(periph, periph_links);
2675 
2676 		retval = tr_func(periph, arg);
2677 		if (retval == 0)
2678 			return(retval);
2679 	}
2680 
2681 	return(retval);
2682 }
2683 
2684 static int
2685 xptpdrvtraverse(struct periph_driver **start_pdrv,
2686 		xpt_pdrvfunc_t *tr_func, void *arg)
2687 {
2688 	struct periph_driver **pdrv;
2689 	int retval;
2690 
2691 	retval = 1;
2692 
2693 	/*
2694 	 * We don't traverse the peripheral driver list like we do the
2695 	 * other lists, because it is a linker set, and therefore cannot be
2696 	 * changed during runtime.  If the peripheral driver list is ever
2697 	 * re-done to be something other than a linker set (i.e. it can
2698 	 * change while the system is running), the list traversal should
2699 	 * be modified to work like the other traversal functions.
2700 	 */
2701 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2702 	     *pdrv != NULL; pdrv++) {
2703 		retval = tr_func(pdrv, arg);
2704 
2705 		if (retval == 0)
2706 			return(retval);
2707 	}
2708 
2709 	return(retval);
2710 }
2711 
2712 static int
2713 xptpdperiphtraverse(struct periph_driver **pdrv,
2714 		    struct cam_periph *start_periph,
2715 		    xpt_periphfunc_t *tr_func, void *arg)
2716 {
2717 	struct cam_periph *periph, *next_periph;
2718 	int retval;
2719 
2720 	retval = 1;
2721 
2722 	for (periph = (start_periph ? start_periph :
2723 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2724 	     periph = next_periph) {
2725 
2726 		next_periph = TAILQ_NEXT(periph, unit_links);
2727 
2728 		retval = tr_func(periph, arg);
2729 		if (retval == 0)
2730 			return(retval);
2731 	}
2732 	return(retval);
2733 }
2734 
2735 static int
2736 xptdefbusfunc(struct cam_eb *bus, void *arg)
2737 {
2738 	struct xpt_traverse_config *tr_config;
2739 
2740 	tr_config = (struct xpt_traverse_config *)arg;
2741 
2742 	if (tr_config->depth == XPT_DEPTH_BUS) {
2743 		xpt_busfunc_t *tr_func;
2744 
2745 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2746 
2747 		return(tr_func(bus, tr_config->tr_arg));
2748 	} else
2749 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2750 }
2751 
2752 static int
2753 xptdeftargetfunc(struct cam_et *target, void *arg)
2754 {
2755 	struct xpt_traverse_config *tr_config;
2756 
2757 	tr_config = (struct xpt_traverse_config *)arg;
2758 
2759 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2760 		xpt_targetfunc_t *tr_func;
2761 
2762 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2763 
2764 		return(tr_func(target, tr_config->tr_arg));
2765 	} else
2766 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2767 }
2768 
2769 static int
2770 xptdefdevicefunc(struct cam_ed *device, void *arg)
2771 {
2772 	struct xpt_traverse_config *tr_config;
2773 
2774 	tr_config = (struct xpt_traverse_config *)arg;
2775 
2776 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2777 		xpt_devicefunc_t *tr_func;
2778 
2779 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2780 
2781 		return(tr_func(device, tr_config->tr_arg));
2782 	} else
2783 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2784 }
2785 
2786 static int
2787 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2788 {
2789 	struct xpt_traverse_config *tr_config;
2790 	xpt_periphfunc_t *tr_func;
2791 
2792 	tr_config = (struct xpt_traverse_config *)arg;
2793 
2794 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2795 
2796 	/*
2797 	 * Unlike the other default functions, we don't check for depth
2798 	 * here.  The peripheral driver level is the last level in the EDT,
2799 	 * so if we're here, we should execute the function in question.
2800 	 */
2801 	return(tr_func(periph, tr_config->tr_arg));
2802 }
2803 
2804 /*
2805  * Execute the given function for every bus in the EDT.
2806  */
2807 static int
2808 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2809 {
2810 	struct xpt_traverse_config tr_config;
2811 
2812 	tr_config.depth = XPT_DEPTH_BUS;
2813 	tr_config.tr_func = tr_func;
2814 	tr_config.tr_arg = arg;
2815 
2816 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2817 }
2818 
2819 #ifdef notusedyet
2820 /*
2821  * Execute the given function for every target in the EDT.
2822  */
2823 static int
2824 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
2825 {
2826 	struct xpt_traverse_config tr_config;
2827 
2828 	tr_config.depth = XPT_DEPTH_TARGET;
2829 	tr_config.tr_func = tr_func;
2830 	tr_config.tr_arg = arg;
2831 
2832 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2833 }
2834 #endif /* notusedyet */
2835 
2836 /*
2837  * Execute the given function for every device in the EDT.
2838  */
2839 static int
2840 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2841 {
2842 	struct xpt_traverse_config tr_config;
2843 
2844 	tr_config.depth = XPT_DEPTH_DEVICE;
2845 	tr_config.tr_func = tr_func;
2846 	tr_config.tr_arg = arg;
2847 
2848 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2849 }
2850 
2851 #ifdef notusedyet
2852 /*
2853  * Execute the given function for every peripheral in the EDT.
2854  */
2855 static int
2856 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
2857 {
2858 	struct xpt_traverse_config tr_config;
2859 
2860 	tr_config.depth = XPT_DEPTH_PERIPH;
2861 	tr_config.tr_func = tr_func;
2862 	tr_config.tr_arg = arg;
2863 
2864 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2865 }
2866 #endif /* notusedyet */
2867 
2868 static int
2869 xptsetasyncfunc(struct cam_ed *device, void *arg)
2870 {
2871 	struct cam_path path;
2872 	struct ccb_getdev cgd;
2873 	struct async_node *cur_entry;
2874 
2875 	cur_entry = (struct async_node *)arg;
2876 
2877 	/*
2878 	 * Don't report unconfigured devices (Wildcard devs,
2879 	 * devices only for target mode, device instances
2880 	 * that have been invalidated but are waiting for
2881 	 * their last reference count to be released).
2882 	 */
2883 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2884 		return (1);
2885 
2886 	xpt_compile_path(&path,
2887 			 NULL,
2888 			 device->target->bus->path_id,
2889 			 device->target->target_id,
2890 			 device->lun_id);
2891 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2892 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2893 	xpt_action((union ccb *)&cgd);
2894 	cur_entry->callback(cur_entry->callback_arg,
2895 			    AC_FOUND_DEVICE,
2896 			    &path, &cgd);
2897 	xpt_release_path(&path);
2898 
2899 	return(1);
2900 }
2901 
2902 static int
2903 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2904 {
2905 	struct cam_path path;
2906 	struct ccb_pathinq cpi;
2907 	struct async_node *cur_entry;
2908 
2909 	cur_entry = (struct async_node *)arg;
2910 
2911 	xpt_compile_path(&path, /*periph*/NULL,
2912 			 bus->sim->path_id,
2913 			 CAM_TARGET_WILDCARD,
2914 			 CAM_LUN_WILDCARD);
2915 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2916 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2917 	xpt_action((union ccb *)&cpi);
2918 	cur_entry->callback(cur_entry->callback_arg,
2919 			    AC_PATH_REGISTERED,
2920 			    &path, &cpi);
2921 	xpt_release_path(&path);
2922 
2923 	return(1);
2924 }
2925 
2926 void
2927 xpt_action(union ccb *start_ccb)
2928 {
2929 	int iopl;
2930 
2931 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2932 
2933 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2934 
2935 	iopl = splsoftcam();
2936 	switch (start_ccb->ccb_h.func_code) {
2937 	case XPT_SCSI_IO:
2938 	{
2939 #ifdef CAM_NEW_TRAN_CODE
2940 		struct cam_ed *device;
2941 #endif /* CAM_NEW_TRAN_CODE */
2942 #ifdef CAMDEBUG
2943 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2944 		struct cam_path *path;
2945 
2946 		path = start_ccb->ccb_h.path;
2947 #endif
2948 
2949 		/*
2950 		 * For the sake of compatibility with SCSI-1
2951 		 * devices that may not understand the identify
2952 		 * message, we include lun information in the
2953 		 * second byte of all commands.  SCSI-1 specifies
2954 		 * that luns are a 3 bit value and reserves only 3
2955 		 * bits for lun information in the CDB.  Later
2956 		 * revisions of the SCSI spec allow for more than 8
2957 		 * luns, but have deprecated lun information in the
2958 		 * CDB.  So, if the lun won't fit, we must omit.
2959 		 *
2960 		 * Also be aware that during initial probing for devices,
2961 		 * the inquiry information is unknown but initialized to 0.
2962 		 * This means that this code will be exercised while probing
2963 		 * devices with an ANSI revision greater than 2.
2964 		 */
2965 #ifdef CAM_NEW_TRAN_CODE
2966 		device = start_ccb->ccb_h.path->device;
2967 		if (device->protocol_version <= SCSI_REV_2
2968 #else /* CAM_NEW_TRAN_CODE */
2969 		if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
2970 #endif /* CAM_NEW_TRAN_CODE */
2971 		 && start_ccb->ccb_h.target_lun < 8
2972 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2973 
2974 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2975 			    start_ccb->ccb_h.target_lun << 5;
2976 		}
2977 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2978 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2979 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2980 			  	       &path->device->inq_data),
2981 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2982 					  cdb_str, sizeof(cdb_str))));
2983 		/* FALLTHROUGH */
2984 	}
2985 	case XPT_TARGET_IO:
2986 	case XPT_CONT_TARGET_IO:
2987 		start_ccb->csio.sense_resid = 0;
2988 		start_ccb->csio.resid = 0;
2989 		/* FALLTHROUGH */
2990 	case XPT_RESET_DEV:
2991 	case XPT_ENG_EXEC:
2992 	{
2993 		struct cam_path *path;
2994 		int s;
2995 		int runq;
2996 
2997 		path = start_ccb->ccb_h.path;
2998 		s = splsoftcam();
2999 
3000 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3001 		if (path->device->qfrozen_cnt == 0)
3002 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
3003 		else
3004 			runq = 0;
3005 		splx(s);
3006 		if (runq != 0)
3007 			xpt_run_dev_sendq(path->bus);
3008 		break;
3009 	}
3010 	case XPT_SET_TRAN_SETTINGS:
3011 	{
3012 		xpt_set_transfer_settings(&start_ccb->cts,
3013 					  start_ccb->ccb_h.path->device,
3014 					  /*async_update*/FALSE);
3015 		break;
3016 	}
3017 	case XPT_CALC_GEOMETRY:
3018 	{
3019 		struct cam_sim *sim;
3020 
3021 		/* Filter out garbage */
3022 		if (start_ccb->ccg.block_size == 0
3023 		 || start_ccb->ccg.volume_size == 0) {
3024 			start_ccb->ccg.cylinders = 0;
3025 			start_ccb->ccg.heads = 0;
3026 			start_ccb->ccg.secs_per_track = 0;
3027 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3028 			break;
3029 		}
3030 #ifdef PC98
3031 		/*
3032 		 * In a PC-98 system, geometry translation depens on
3033 		 * the "real" device geometry obtained from mode page 4.
3034 		 * SCSI geometry translation is performed in the
3035 		 * initialization routine of the SCSI BIOS and the result
3036 		 * stored in host memory.  If the translation is available
3037 		 * in host memory, use it.  If not, rely on the default
3038 		 * translation the device driver performs.
3039 		 */
3040 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
3041 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3042 			break;
3043 		}
3044 #endif
3045 		sim = start_ccb->ccb_h.path->bus->sim;
3046 		(*(sim->sim_action))(sim, start_ccb);
3047 		break;
3048 	}
3049 	case XPT_ABORT:
3050 	{
3051 		union ccb* abort_ccb;
3052 		int s;
3053 
3054 		abort_ccb = start_ccb->cab.abort_ccb;
3055 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3056 
3057 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3058 				struct cam_ccbq *ccbq;
3059 
3060 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3061 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3062 				abort_ccb->ccb_h.status =
3063 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3064 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3065 				s = splcam();
3066 				xpt_done(abort_ccb);
3067 				splx(s);
3068 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3069 				break;
3070 			}
3071 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3072 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3073 				/*
3074 				 * We've caught this ccb en route to
3075 				 * the SIM.  Flag it for abort and the
3076 				 * SIM will do so just before starting
3077 				 * real work on the CCB.
3078 				 */
3079 				abort_ccb->ccb_h.status =
3080 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3081 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3082 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3083 				break;
3084 			}
3085 		}
3086 		if (XPT_FC_IS_QUEUED(abort_ccb)
3087 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3088 			/*
3089 			 * It's already completed but waiting
3090 			 * for our SWI to get to it.
3091 			 */
3092 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3093 			break;
3094 		}
3095 		/*
3096 		 * If we weren't able to take care of the abort request
3097 		 * in the XPT, pass the request down to the SIM for processing.
3098 		 */
3099 		/* FALLTHROUGH */
3100 	}
3101 	case XPT_ACCEPT_TARGET_IO:
3102 	case XPT_EN_LUN:
3103 	case XPT_IMMED_NOTIFY:
3104 	case XPT_NOTIFY_ACK:
3105 	case XPT_GET_TRAN_SETTINGS:
3106 	case XPT_RESET_BUS:
3107 	{
3108 		struct cam_sim *sim;
3109 
3110 		sim = start_ccb->ccb_h.path->bus->sim;
3111 		(*(sim->sim_action))(sim, start_ccb);
3112 		break;
3113 	}
3114 	case XPT_PATH_INQ:
3115 	{
3116 		struct cam_sim *sim;
3117 
3118 		sim = start_ccb->ccb_h.path->bus->sim;
3119 		(*(sim->sim_action))(sim, start_ccb);
3120 		break;
3121 	}
3122 	case XPT_PATH_STATS:
3123 		start_ccb->cpis.last_reset =
3124 			start_ccb->ccb_h.path->bus->last_reset;
3125 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3126 		break;
3127 	case XPT_GDEV_TYPE:
3128 	{
3129 		struct cam_ed *dev;
3130 		int s;
3131 
3132 		dev = start_ccb->ccb_h.path->device;
3133 		s = splcam();
3134 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3135 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3136 		} else {
3137 			struct ccb_getdev *cgd;
3138 			struct cam_eb *bus;
3139 			struct cam_et *tar;
3140 
3141 			cgd = &start_ccb->cgd;
3142 			bus = cgd->ccb_h.path->bus;
3143 			tar = cgd->ccb_h.path->target;
3144 			cgd->inq_data = dev->inq_data;
3145 			cgd->ccb_h.status = CAM_REQ_CMP;
3146 			cgd->serial_num_len = dev->serial_num_len;
3147 			if ((dev->serial_num_len > 0)
3148 			 && (dev->serial_num != NULL))
3149 				bcopy(dev->serial_num, cgd->serial_num,
3150 				      dev->serial_num_len);
3151 		}
3152 		splx(s);
3153 		break;
3154 	}
3155 	case XPT_GDEV_STATS:
3156 	{
3157 		struct cam_ed *dev;
3158 		int s;
3159 
3160 		dev = start_ccb->ccb_h.path->device;
3161 		s = splcam();
3162 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3163 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3164 		} else {
3165 			struct ccb_getdevstats *cgds;
3166 			struct cam_eb *bus;
3167 			struct cam_et *tar;
3168 
3169 			cgds = &start_ccb->cgds;
3170 			bus = cgds->ccb_h.path->bus;
3171 			tar = cgds->ccb_h.path->target;
3172 			cgds->dev_openings = dev->ccbq.dev_openings;
3173 			cgds->dev_active = dev->ccbq.dev_active;
3174 			cgds->devq_openings = dev->ccbq.devq_openings;
3175 			cgds->devq_queued = dev->ccbq.queue.entries;
3176 			cgds->held = dev->ccbq.held;
3177 			cgds->last_reset = tar->last_reset;
3178 			cgds->maxtags = dev->quirk->maxtags;
3179 			cgds->mintags = dev->quirk->mintags;
3180 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3181 				cgds->last_reset = bus->last_reset;
3182 			cgds->ccb_h.status = CAM_REQ_CMP;
3183 		}
3184 		splx(s);
3185 		break;
3186 	}
3187 	case XPT_GDEVLIST:
3188 	{
3189 		struct cam_periph	*nperiph;
3190 		struct periph_list	*periph_head;
3191 		struct ccb_getdevlist	*cgdl;
3192 		u_int			i;
3193 		int			s;
3194 		struct cam_ed		*device;
3195 		int			found;
3196 
3197 
3198 		found = 0;
3199 
3200 		/*
3201 		 * Don't want anyone mucking with our data.
3202 		 */
3203 		s = splcam();
3204 		device = start_ccb->ccb_h.path->device;
3205 		periph_head = &device->periphs;
3206 		cgdl = &start_ccb->cgdl;
3207 
3208 		/*
3209 		 * Check and see if the list has changed since the user
3210 		 * last requested a list member.  If so, tell them that the
3211 		 * list has changed, and therefore they need to start over
3212 		 * from the beginning.
3213 		 */
3214 		if ((cgdl->index != 0) &&
3215 		    (cgdl->generation != device->generation)) {
3216 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3217 			splx(s);
3218 			break;
3219 		}
3220 
3221 		/*
3222 		 * Traverse the list of peripherals and attempt to find
3223 		 * the requested peripheral.
3224 		 */
3225 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3226 		     (nperiph != NULL) && (i <= cgdl->index);
3227 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3228 			if (i == cgdl->index) {
3229 				strncpy(cgdl->periph_name,
3230 					nperiph->periph_name,
3231 					DEV_IDLEN);
3232 				cgdl->unit_number = nperiph->unit_number;
3233 				found = 1;
3234 			}
3235 		}
3236 		if (found == 0) {
3237 			cgdl->status = CAM_GDEVLIST_ERROR;
3238 			splx(s);
3239 			break;
3240 		}
3241 
3242 		if (nperiph == NULL)
3243 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3244 		else
3245 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3246 
3247 		cgdl->index++;
3248 		cgdl->generation = device->generation;
3249 
3250 		splx(s);
3251 		cgdl->ccb_h.status = CAM_REQ_CMP;
3252 		break;
3253 	}
3254 	case XPT_DEV_MATCH:
3255 	{
3256 		int s;
3257 		dev_pos_type position_type;
3258 		struct ccb_dev_match *cdm;
3259 		int ret;
3260 
3261 		cdm = &start_ccb->cdm;
3262 
3263 		/*
3264 		 * Prevent EDT changes while we traverse it.
3265 		 */
3266 		s = splcam();
3267 		/*
3268 		 * There are two ways of getting at information in the EDT.
3269 		 * The first way is via the primary EDT tree.  It starts
3270 		 * with a list of busses, then a list of targets on a bus,
3271 		 * then devices/luns on a target, and then peripherals on a
3272 		 * device/lun.  The "other" way is by the peripheral driver
3273 		 * lists.  The peripheral driver lists are organized by
3274 		 * peripheral driver.  (obviously)  So it makes sense to
3275 		 * use the peripheral driver list if the user is looking
3276 		 * for something like "da1", or all "da" devices.  If the
3277 		 * user is looking for something on a particular bus/target
3278 		 * or lun, it's generally better to go through the EDT tree.
3279 		 */
3280 
3281 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3282 			position_type = cdm->pos.position_type;
3283 		else {
3284 			u_int i;
3285 
3286 			position_type = CAM_DEV_POS_NONE;
3287 
3288 			for (i = 0; i < cdm->num_patterns; i++) {
3289 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3290 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3291 					position_type = CAM_DEV_POS_EDT;
3292 					break;
3293 				}
3294 			}
3295 
3296 			if (cdm->num_patterns == 0)
3297 				position_type = CAM_DEV_POS_EDT;
3298 			else if (position_type == CAM_DEV_POS_NONE)
3299 				position_type = CAM_DEV_POS_PDRV;
3300 		}
3301 
3302 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3303 		case CAM_DEV_POS_EDT:
3304 			ret = xptedtmatch(cdm);
3305 			break;
3306 		case CAM_DEV_POS_PDRV:
3307 			ret = xptperiphlistmatch(cdm);
3308 			break;
3309 		default:
3310 			cdm->status = CAM_DEV_MATCH_ERROR;
3311 			break;
3312 		}
3313 
3314 		splx(s);
3315 
3316 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3317 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3318 		else
3319 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3320 
3321 		break;
3322 	}
3323 	case XPT_SASYNC_CB:
3324 	{
3325 		struct ccb_setasync *csa;
3326 		struct async_node *cur_entry;
3327 		struct async_list *async_head;
3328 		u_int32_t added;
3329 		int s;
3330 
3331 		csa = &start_ccb->csa;
3332 		added = csa->event_enable;
3333 		async_head = &csa->ccb_h.path->device->asyncs;
3334 
3335 		/*
3336 		 * If there is already an entry for us, simply
3337 		 * update it.
3338 		 */
3339 		s = splcam();
3340 		cur_entry = SLIST_FIRST(async_head);
3341 		while (cur_entry != NULL) {
3342 			if ((cur_entry->callback_arg == csa->callback_arg)
3343 			 && (cur_entry->callback == csa->callback))
3344 				break;
3345 			cur_entry = SLIST_NEXT(cur_entry, links);
3346 		}
3347 
3348 		if (cur_entry != NULL) {
3349 		 	/*
3350 			 * If the request has no flags set,
3351 			 * remove the entry.
3352 			 */
3353 			added &= ~cur_entry->event_enable;
3354 			if (csa->event_enable == 0) {
3355 				SLIST_REMOVE(async_head, cur_entry,
3356 					     async_node, links);
3357 				csa->ccb_h.path->device->refcount--;
3358 				free(cur_entry, M_DEVBUF);
3359 			} else {
3360 				cur_entry->event_enable = csa->event_enable;
3361 			}
3362 		} else {
3363 			cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF,
3364 					   M_NOWAIT);
3365 			if (cur_entry == NULL) {
3366 				splx(s);
3367 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3368 				break;
3369 			}
3370 			cur_entry->event_enable = csa->event_enable;
3371 			cur_entry->callback_arg = csa->callback_arg;
3372 			cur_entry->callback = csa->callback;
3373 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3374 			csa->ccb_h.path->device->refcount++;
3375 		}
3376 
3377 		if ((added & AC_FOUND_DEVICE) != 0) {
3378 			/*
3379 			 * Get this peripheral up to date with all
3380 			 * the currently existing devices.
3381 			 */
3382 			xpt_for_all_devices(xptsetasyncfunc, cur_entry);
3383 		}
3384 		if ((added & AC_PATH_REGISTERED) != 0) {
3385 			/*
3386 			 * Get this peripheral up to date with all
3387 			 * the currently existing busses.
3388 			 */
3389 			xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
3390 		}
3391 		splx(s);
3392 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3393 		break;
3394 	}
3395 	case XPT_REL_SIMQ:
3396 	{
3397 		struct ccb_relsim *crs;
3398 		struct cam_ed *dev;
3399 		int s;
3400 
3401 		crs = &start_ccb->crs;
3402 		dev = crs->ccb_h.path->device;
3403 		if (dev == NULL) {
3404 
3405 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3406 			break;
3407 		}
3408 
3409 		s = splcam();
3410 
3411 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3412 
3413  			if ((dev->inq_data.flags & SID_CmdQue) != 0) {
3414 
3415 				/* Don't ever go below one opening */
3416 				if (crs->openings > 0) {
3417 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3418 							    crs->openings);
3419 
3420 					if (bootverbose) {
3421 						xpt_print_path(crs->ccb_h.path);
3422 						printf("tagged openings "
3423 						       "now %d\n",
3424 						       crs->openings);
3425 					}
3426 				}
3427 			}
3428 		}
3429 
3430 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3431 
3432 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3433 
3434 				/*
3435 				 * Just extend the old timeout and decrement
3436 				 * the freeze count so that a single timeout
3437 				 * is sufficient for releasing the queue.
3438 				 */
3439 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3440 				untimeout(xpt_release_devq_timeout,
3441 					  dev, dev->c_handle);
3442 			} else {
3443 
3444 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3445 			}
3446 
3447 			dev->c_handle =
3448 				timeout(xpt_release_devq_timeout,
3449 					dev,
3450 					(crs->release_timeout * hz) / 1000);
3451 
3452 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3453 
3454 		}
3455 
3456 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3457 
3458 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3459 				/*
3460 				 * Decrement the freeze count so that a single
3461 				 * completion is still sufficient to unfreeze
3462 				 * the queue.
3463 				 */
3464 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3465 			} else {
3466 
3467 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3468 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3469 			}
3470 		}
3471 
3472 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3473 
3474 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3475 			 || (dev->ccbq.dev_active == 0)) {
3476 
3477 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3478 			} else {
3479 
3480 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3481 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3482 			}
3483 		}
3484 		splx(s);
3485 
3486 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3487 
3488 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3489 					 /*run_queue*/TRUE);
3490 		}
3491 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3492 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3493 		break;
3494 	}
3495 	case XPT_SCAN_BUS:
3496 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3497 		break;
3498 	case XPT_SCAN_LUN:
3499 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3500 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3501 			     start_ccb);
3502 		break;
3503 	case XPT_DEBUG: {
3504 #ifdef CAMDEBUG
3505 		int s;
3506 
3507 		s = splcam();
3508 #ifdef CAM_DEBUG_DELAY
3509 		cam_debug_delay = CAM_DEBUG_DELAY;
3510 #endif
3511 		cam_dflags = start_ccb->cdbg.flags;
3512 		if (cam_dpath != NULL) {
3513 			xpt_free_path(cam_dpath);
3514 			cam_dpath = NULL;
3515 		}
3516 
3517 		if (cam_dflags != CAM_DEBUG_NONE) {
3518 			if (xpt_create_path(&cam_dpath, xpt_periph,
3519 					    start_ccb->ccb_h.path_id,
3520 					    start_ccb->ccb_h.target_id,
3521 					    start_ccb->ccb_h.target_lun) !=
3522 					    CAM_REQ_CMP) {
3523 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3524 				cam_dflags = CAM_DEBUG_NONE;
3525 			} else {
3526 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3527 				xpt_print_path(cam_dpath);
3528 				printf("debugging flags now %x\n", cam_dflags);
3529 			}
3530 		} else {
3531 			cam_dpath = NULL;
3532 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3533 		}
3534 		splx(s);
3535 #else /* !CAMDEBUG */
3536 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3537 #endif /* CAMDEBUG */
3538 		break;
3539 	}
3540 	case XPT_NOOP:
3541 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3542 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3543 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3544 		break;
3545 	default:
3546 	case XPT_SDEV_TYPE:
3547 	case XPT_TERM_IO:
3548 	case XPT_ENG_INQ:
3549 		/* XXX Implement */
3550 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3551 		break;
3552 	}
3553 	splx(iopl);
3554 }
3555 
3556 void
3557 xpt_polled_action(union ccb *start_ccb)
3558 {
3559 	int	  s;
3560 	u_int32_t timeout;
3561 	struct	  cam_sim *sim;
3562 	struct	  cam_devq *devq;
3563 	struct	  cam_ed *dev;
3564 
3565 	timeout = start_ccb->ccb_h.timeout;
3566 	sim = start_ccb->ccb_h.path->bus->sim;
3567 	devq = sim->devq;
3568 	dev = start_ccb->ccb_h.path->device;
3569 
3570 	s = splcam();
3571 
3572 	/*
3573 	 * Steal an opening so that no other queued requests
3574 	 * can get it before us while we simulate interrupts.
3575 	 */
3576 	dev->ccbq.devq_openings--;
3577 	dev->ccbq.dev_openings--;
3578 
3579 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0)
3580 	   && (--timeout > 0)) {
3581 		DELAY(1000);
3582 		(*(sim->sim_poll))(sim);
3583 		camisr(&cam_netq);
3584 		camisr(&cam_bioq);
3585 	}
3586 
3587 	dev->ccbq.devq_openings++;
3588 	dev->ccbq.dev_openings++;
3589 
3590 	if (timeout != 0) {
3591 		xpt_action(start_ccb);
3592 		while(--timeout > 0) {
3593 			(*(sim->sim_poll))(sim);
3594 			camisr(&cam_netq);
3595 			camisr(&cam_bioq);
3596 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3597 			    != CAM_REQ_INPROG)
3598 				break;
3599 			DELAY(1000);
3600 		}
3601 		if (timeout == 0) {
3602 			/*
3603 			 * XXX Is it worth adding a sim_timeout entry
3604 			 * point so we can attempt recovery?  If
3605 			 * this is only used for dumps, I don't think
3606 			 * it is.
3607 			 */
3608 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3609 		}
3610 	} else {
3611 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3612 	}
3613 	splx(s);
3614 }
3615 
3616 /*
3617  * Schedule a peripheral driver to receive a ccb when it's
3618  * target device has space for more transactions.
3619  */
3620 void
3621 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3622 {
3623 	struct cam_ed *device;
3624 	int s;
3625 	int runq;
3626 
3627 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3628 	device = perph->path->device;
3629 	s = splsoftcam();
3630 	if (periph_is_queued(perph)) {
3631 		/* Simply reorder based on new priority */
3632 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3633 			  ("   change priority to %d\n", new_priority));
3634 		if (new_priority < perph->pinfo.priority) {
3635 			camq_change_priority(&device->drvq,
3636 					     perph->pinfo.index,
3637 					     new_priority);
3638 		}
3639 		runq = 0;
3640 	} else {
3641 		/* New entry on the queue */
3642 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3643 			  ("   added periph to queue\n"));
3644 		perph->pinfo.priority = new_priority;
3645 		perph->pinfo.generation = ++device->drvq.generation;
3646 		camq_insert(&device->drvq, &perph->pinfo);
3647 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3648 	}
3649 	splx(s);
3650 	if (runq != 0) {
3651 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3652 			  ("   calling xpt_run_devq\n"));
3653 		xpt_run_dev_allocq(perph->path->bus);
3654 	}
3655 }
3656 
3657 
3658 /*
3659  * Schedule a device to run on a given queue.
3660  * If the device was inserted as a new entry on the queue,
3661  * return 1 meaning the device queue should be run. If we
3662  * were already queued, implying someone else has already
3663  * started the queue, return 0 so the caller doesn't attempt
3664  * to run the queue.  Must be run at either splsoftcam
3665  * (or splcam since that encompases splsoftcam).
3666  */
3667 static int
3668 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3669 		 u_int32_t new_priority)
3670 {
3671 	int retval;
3672 	u_int32_t old_priority;
3673 
3674 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3675 
3676 	old_priority = pinfo->priority;
3677 
3678 	/*
3679 	 * Are we already queued?
3680 	 */
3681 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3682 		/* Simply reorder based on new priority */
3683 		if (new_priority < old_priority) {
3684 			camq_change_priority(queue, pinfo->index,
3685 					     new_priority);
3686 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3687 					("changed priority to %d\n",
3688 					 new_priority));
3689 		}
3690 		retval = 0;
3691 	} else {
3692 		/* New entry on the queue */
3693 		if (new_priority < old_priority)
3694 			pinfo->priority = new_priority;
3695 
3696 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3697 				("Inserting onto queue\n"));
3698 		pinfo->generation = ++queue->generation;
3699 		camq_insert(queue, pinfo);
3700 		retval = 1;
3701 	}
3702 	return (retval);
3703 }
3704 
3705 static void
3706 xpt_run_dev_allocq(struct cam_eb *bus)
3707 {
3708 	struct	cam_devq *devq;
3709 	int	s;
3710 
3711 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3712 	devq = bus->sim->devq;
3713 
3714 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3715 			("   qfrozen_cnt == 0x%x, entries == %d, "
3716 			 "openings == %d, active == %d\n",
3717 			 devq->alloc_queue.qfrozen_cnt,
3718 			 devq->alloc_queue.entries,
3719 			 devq->alloc_openings,
3720 			 devq->alloc_active));
3721 
3722 	s = splsoftcam();
3723 	devq->alloc_queue.qfrozen_cnt++;
3724 	while ((devq->alloc_queue.entries > 0)
3725 	    && (devq->alloc_openings > 0)
3726 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3727 		struct	cam_ed_qinfo *qinfo;
3728 		struct	cam_ed *device;
3729 		union	ccb *work_ccb;
3730 		struct	cam_periph *drv;
3731 		struct	camq *drvq;
3732 
3733 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3734 							   CAMQ_HEAD);
3735 		device = qinfo->device;
3736 
3737 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3738 				("running device %p\n", device));
3739 
3740 		drvq = &device->drvq;
3741 
3742 #ifdef CAMDEBUG
3743 		if (drvq->entries <= 0) {
3744 			panic("xpt_run_dev_allocq: "
3745 			      "Device on queue without any work to do");
3746 		}
3747 #endif
3748 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3749 			devq->alloc_openings--;
3750 			devq->alloc_active++;
3751 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3752 			splx(s);
3753 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3754 				      drv->pinfo.priority);
3755 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3756 					("calling periph start\n"));
3757 			drv->periph_start(drv, work_ccb);
3758 		} else {
3759 			/*
3760 			 * Malloc failure in alloc_ccb
3761 			 */
3762 			/*
3763 			 * XXX add us to a list to be run from free_ccb
3764 			 * if we don't have any ccbs active on this
3765 			 * device queue otherwise we may never get run
3766 			 * again.
3767 			 */
3768 			break;
3769 		}
3770 
3771 		/* Raise IPL for possible insertion and test at top of loop */
3772 		s = splsoftcam();
3773 
3774 		if (drvq->entries > 0) {
3775 			/* We have more work.  Attempt to reschedule */
3776 			xpt_schedule_dev_allocq(bus, device);
3777 		}
3778 	}
3779 	devq->alloc_queue.qfrozen_cnt--;
3780 	splx(s);
3781 }
3782 
3783 static void
3784 xpt_run_dev_sendq(struct cam_eb *bus)
3785 {
3786 	struct	cam_devq *devq;
3787 	int	s;
3788 
3789 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3790 
3791 	devq = bus->sim->devq;
3792 
3793 	s = splcam();
3794 	devq->send_queue.qfrozen_cnt++;
3795 	splx(s);
3796 	s = splsoftcam();
3797 	while ((devq->send_queue.entries > 0)
3798 	    && (devq->send_openings > 0)) {
3799 		struct	cam_ed_qinfo *qinfo;
3800 		struct	cam_ed *device;
3801 		union ccb *work_ccb;
3802 		struct	cam_sim *sim;
3803 		int	ospl;
3804 
3805 		ospl = splcam();
3806 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3807 			splx(ospl);
3808 			break;
3809 		}
3810 
3811 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3812 							   CAMQ_HEAD);
3813 		device = qinfo->device;
3814 
3815 		/*
3816 		 * If the device has been "frozen", don't attempt
3817 		 * to run it.
3818 		 */
3819 		if (device->qfrozen_cnt > 0) {
3820 			splx(ospl);
3821 			continue;
3822 		}
3823 
3824 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3825 				("running device %p\n", device));
3826 
3827 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3828 		if (work_ccb == NULL) {
3829 			printf("device on run queue with no ccbs???");
3830 			splx(ospl);
3831 			continue;
3832 		}
3833 
3834 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3835 
3836 		 	if (num_highpower <= 0) {
3837 				/*
3838 				 * We got a high power command, but we
3839 				 * don't have any available slots.  Freeze
3840 				 * the device queue until we have a slot
3841 				 * available.
3842 				 */
3843 				device->qfrozen_cnt++;
3844 				STAILQ_INSERT_TAIL(&highpowerq,
3845 						   &work_ccb->ccb_h,
3846 						   xpt_links.stqe);
3847 
3848 				splx(ospl);
3849 				continue;
3850 			} else {
3851 				/*
3852 				 * Consume a high power slot while
3853 				 * this ccb runs.
3854 				 */
3855 				num_highpower--;
3856 			}
3857 		}
3858 		devq->active_dev = device;
3859 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3860 
3861 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3862 		splx(ospl);
3863 
3864 		devq->send_openings--;
3865 		devq->send_active++;
3866 
3867 		if (device->ccbq.queue.entries > 0)
3868 			xpt_schedule_dev_sendq(bus, device);
3869 
3870 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3871 			/*
3872 			 * The client wants to freeze the queue
3873 			 * after this CCB is sent.
3874 			 */
3875 			ospl = splcam();
3876 			device->qfrozen_cnt++;
3877 			splx(ospl);
3878 		}
3879 
3880 		splx(s);
3881 
3882 		/* In Target mode, the peripheral driver knows best... */
3883 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3884 			if ((device->inq_flags & SID_CmdQue) != 0
3885 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3886 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3887 			else
3888 				/*
3889 				 * Clear this in case of a retried CCB that
3890 				 * failed due to a rejected tag.
3891 				 */
3892 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3893 		}
3894 
3895 		/*
3896 		 * Device queues can be shared among multiple sim instances
3897 		 * that reside on different busses.  Use the SIM in the queue
3898 		 * CCB's path, rather than the one in the bus that was passed
3899 		 * into this function.
3900 		 */
3901 		sim = work_ccb->ccb_h.path->bus->sim;
3902 		(*(sim->sim_action))(sim, work_ccb);
3903 
3904 		ospl = splcam();
3905 		devq->active_dev = NULL;
3906 		splx(ospl);
3907 		/* Raise IPL for possible insertion and test at top of loop */
3908 		s = splsoftcam();
3909 	}
3910 	splx(s);
3911 	s = splcam();
3912 	devq->send_queue.qfrozen_cnt--;
3913 	splx(s);
3914 }
3915 
3916 /*
3917  * This function merges stuff from the slave ccb into the master ccb, while
3918  * keeping important fields in the master ccb constant.
3919  */
3920 void
3921 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3922 {
3923 	/*
3924 	 * Pull fields that are valid for peripheral drivers to set
3925 	 * into the master CCB along with the CCB "payload".
3926 	 */
3927 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3928 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3929 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3930 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3931 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3932 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3933 }
3934 
3935 void
3936 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3937 {
3938 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3939 	ccb_h->pinfo.priority = priority;
3940 	ccb_h->path = path;
3941 	ccb_h->path_id = path->bus->path_id;
3942 	if (path->target)
3943 		ccb_h->target_id = path->target->target_id;
3944 	else
3945 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3946 	if (path->device) {
3947 		ccb_h->target_lun = path->device->lun_id;
3948 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3949 	} else {
3950 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3951 	}
3952 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3953 	ccb_h->flags = 0;
3954 }
3955 
3956 /* Path manipulation functions */
3957 cam_status
3958 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3959 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3960 {
3961 	struct	   cam_path *path;
3962 	cam_status status;
3963 
3964 	path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT);
3965 
3966 	if (path == NULL) {
3967 		status = CAM_RESRC_UNAVAIL;
3968 		return(status);
3969 	}
3970 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3971 	if (status != CAM_REQ_CMP) {
3972 		free(path, M_DEVBUF);
3973 		path = NULL;
3974 	}
3975 	*new_path_ptr = path;
3976 	return (status);
3977 }
3978 
3979 static cam_status
3980 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3981 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3982 {
3983 	struct	     cam_eb *bus;
3984 	struct	     cam_et *target;
3985 	struct	     cam_ed *device;
3986 	cam_status   status;
3987 	int	     s;
3988 
3989 	status = CAM_REQ_CMP;	/* Completed without error */
3990 	target = NULL;		/* Wildcarded */
3991 	device = NULL;		/* Wildcarded */
3992 
3993 	/*
3994 	 * We will potentially modify the EDT, so block interrupts
3995 	 * that may attempt to create cam paths.
3996 	 */
3997 	s = splcam();
3998 	bus = xpt_find_bus(path_id);
3999 	if (bus == NULL) {
4000 		status = CAM_PATH_INVALID;
4001 	} else {
4002 		target = xpt_find_target(bus, target_id);
4003 		if (target == NULL) {
4004 			/* Create one */
4005 			struct cam_et *new_target;
4006 
4007 			new_target = xpt_alloc_target(bus, target_id);
4008 			if (new_target == NULL) {
4009 				status = CAM_RESRC_UNAVAIL;
4010 			} else {
4011 				target = new_target;
4012 			}
4013 		}
4014 		if (target != NULL) {
4015 			device = xpt_find_device(target, lun_id);
4016 			if (device == NULL) {
4017 				/* Create one */
4018 				struct cam_ed *new_device;
4019 
4020 				new_device = xpt_alloc_device(bus,
4021 							      target,
4022 							      lun_id);
4023 				if (new_device == NULL) {
4024 					status = CAM_RESRC_UNAVAIL;
4025 				} else {
4026 					device = new_device;
4027 				}
4028 			}
4029 		}
4030 	}
4031 	splx(s);
4032 
4033 	/*
4034 	 * Only touch the user's data if we are successful.
4035 	 */
4036 	if (status == CAM_REQ_CMP) {
4037 		new_path->periph = perph;
4038 		new_path->bus = bus;
4039 		new_path->target = target;
4040 		new_path->device = device;
4041 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4042 	} else {
4043 		if (device != NULL)
4044 			xpt_release_device(bus, target, device);
4045 		if (target != NULL)
4046 			xpt_release_target(bus, target);
4047 		if (bus != NULL)
4048 			xpt_release_bus(bus);
4049 	}
4050 	return (status);
4051 }
4052 
4053 static void
4054 xpt_release_path(struct cam_path *path)
4055 {
4056 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4057 	if (path->device != NULL) {
4058 		xpt_release_device(path->bus, path->target, path->device);
4059 		path->device = NULL;
4060 	}
4061 	if (path->target != NULL) {
4062 		xpt_release_target(path->bus, path->target);
4063 		path->target = NULL;
4064 	}
4065 	if (path->bus != NULL) {
4066 		xpt_release_bus(path->bus);
4067 		path->bus = NULL;
4068 	}
4069 }
4070 
4071 void
4072 xpt_free_path(struct cam_path *path)
4073 {
4074 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4075 	xpt_release_path(path);
4076 	free(path, M_DEVBUF);
4077 }
4078 
4079 
4080 /*
4081  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4082  * in path1, 2 for match with wildcards in path2.
4083  */
4084 int
4085 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4086 {
4087 	int retval = 0;
4088 
4089 	if (path1->bus != path2->bus) {
4090 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
4091 			retval = 1;
4092 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4093 			retval = 2;
4094 		else
4095 			return (-1);
4096 	}
4097 	if (path1->target != path2->target) {
4098 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4099 			if (retval == 0)
4100 				retval = 1;
4101 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4102 			retval = 2;
4103 		else
4104 			return (-1);
4105 	}
4106 	if (path1->device != path2->device) {
4107 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4108 			if (retval == 0)
4109 				retval = 1;
4110 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4111 			retval = 2;
4112 		else
4113 			return (-1);
4114 	}
4115 	return (retval);
4116 }
4117 
4118 void
4119 xpt_print_path(struct cam_path *path)
4120 {
4121 	if (path == NULL)
4122 		printf("(nopath): ");
4123 	else {
4124 		if (path->periph != NULL)
4125 			printf("(%s%d:", path->periph->periph_name,
4126 			       path->periph->unit_number);
4127 		else
4128 			printf("(noperiph:");
4129 
4130 		if (path->bus != NULL)
4131 			printf("%s%d:%d:", path->bus->sim->sim_name,
4132 			       path->bus->sim->unit_number,
4133 			       path->bus->sim->bus_id);
4134 		else
4135 			printf("nobus:");
4136 
4137 		if (path->target != NULL)
4138 			printf("%d:", path->target->target_id);
4139 		else
4140 			printf("X:");
4141 
4142 		if (path->device != NULL)
4143 			printf("%d): ", path->device->lun_id);
4144 		else
4145 			printf("X): ");
4146 	}
4147 }
4148 
4149 int
4150 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4151 {
4152 	struct sbuf sb;
4153 
4154 	sbuf_new(&sb, str, str_len, 0);
4155 
4156 	if (path == NULL)
4157 		sbuf_printf(&sb, "(nopath): ");
4158 	else {
4159 		if (path->periph != NULL)
4160 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4161 				    path->periph->unit_number);
4162 		else
4163 			sbuf_printf(&sb, "(noperiph:");
4164 
4165 		if (path->bus != NULL)
4166 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4167 				    path->bus->sim->unit_number,
4168 				    path->bus->sim->bus_id);
4169 		else
4170 			sbuf_printf(&sb, "nobus:");
4171 
4172 		if (path->target != NULL)
4173 			sbuf_printf(&sb, "%d:", path->target->target_id);
4174 		else
4175 			sbuf_printf(&sb, "X:");
4176 
4177 		if (path->device != NULL)
4178 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4179 		else
4180 			sbuf_printf(&sb, "X): ");
4181 	}
4182 	sbuf_finish(&sb);
4183 
4184 	return(sbuf_len(&sb));
4185 }
4186 
4187 path_id_t
4188 xpt_path_path_id(struct cam_path *path)
4189 {
4190 	return(path->bus->path_id);
4191 }
4192 
4193 target_id_t
4194 xpt_path_target_id(struct cam_path *path)
4195 {
4196 	if (path->target != NULL)
4197 		return (path->target->target_id);
4198 	else
4199 		return (CAM_TARGET_WILDCARD);
4200 }
4201 
4202 lun_id_t
4203 xpt_path_lun_id(struct cam_path *path)
4204 {
4205 	if (path->device != NULL)
4206 		return (path->device->lun_id);
4207 	else
4208 		return (CAM_LUN_WILDCARD);
4209 }
4210 
4211 struct cam_sim *
4212 xpt_path_sim(struct cam_path *path)
4213 {
4214 	return (path->bus->sim);
4215 }
4216 
4217 struct cam_periph*
4218 xpt_path_periph(struct cam_path *path)
4219 {
4220 	return (path->periph);
4221 }
4222 
4223 /*
4224  * Release a CAM control block for the caller.  Remit the cost of the structure
4225  * to the device referenced by the path.  If the this device had no 'credits'
4226  * and peripheral drivers have registered async callbacks for this notification
4227  * call them now.
4228  */
4229 void
4230 xpt_release_ccb(union ccb *free_ccb)
4231 {
4232 	int	 s;
4233 	struct	 cam_path *path;
4234 	struct	 cam_ed *device;
4235 	struct	 cam_eb *bus;
4236 
4237 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4238 	path = free_ccb->ccb_h.path;
4239 	device = path->device;
4240 	bus = path->bus;
4241 	s = splsoftcam();
4242 	cam_ccbq_release_opening(&device->ccbq);
4243 	if (xpt_ccb_count > xpt_max_ccbs) {
4244 		xpt_free_ccb(free_ccb);
4245 		xpt_ccb_count--;
4246 	} else {
4247 		SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
4248 	}
4249 	bus->sim->devq->alloc_openings++;
4250 	bus->sim->devq->alloc_active--;
4251 	/* XXX Turn this into an inline function - xpt_run_device?? */
4252 	if ((device_is_alloc_queued(device) == 0)
4253 	 && (device->drvq.entries > 0)) {
4254 		xpt_schedule_dev_allocq(bus, device);
4255 	}
4256 	splx(s);
4257 	if (dev_allocq_is_runnable(bus->sim->devq))
4258 		xpt_run_dev_allocq(bus);
4259 }
4260 
4261 /* Functions accessed by SIM drivers */
4262 
4263 /*
4264  * A sim structure, listing the SIM entry points and instance
4265  * identification info is passed to xpt_bus_register to hook the SIM
4266  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4267  * for this new bus and places it in the array of busses and assigns
4268  * it a path_id.  The path_id may be influenced by "hard wiring"
4269  * information specified by the user.  Once interrupt services are
4270  * availible, the bus will be probed.
4271  */
4272 int32_t
4273 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4274 {
4275 	struct cam_eb *new_bus;
4276 	struct cam_eb *old_bus;
4277 	struct ccb_pathinq cpi;
4278 	int s;
4279 
4280 	sim->bus_id = bus;
4281 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4282 					  M_DEVBUF, M_NOWAIT);
4283 	if (new_bus == NULL) {
4284 		/* Couldn't satisfy request */
4285 		return (CAM_RESRC_UNAVAIL);
4286 	}
4287 
4288 	if (strcmp(sim->sim_name, "xpt") != 0) {
4289 
4290 		sim->path_id =
4291 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4292 	}
4293 
4294 	TAILQ_INIT(&new_bus->et_entries);
4295 	new_bus->path_id = sim->path_id;
4296 	new_bus->sim = sim;
4297 	timevalclear(&new_bus->last_reset);
4298 	new_bus->flags = 0;
4299 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4300 	new_bus->generation = 0;
4301 	s = splcam();
4302 	old_bus = TAILQ_FIRST(&xpt_busses);
4303 	while (old_bus != NULL
4304 	    && old_bus->path_id < new_bus->path_id)
4305 		old_bus = TAILQ_NEXT(old_bus, links);
4306 	if (old_bus != NULL)
4307 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4308 	else
4309 		TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
4310 	bus_generation++;
4311 	splx(s);
4312 
4313 	/* Notify interested parties */
4314 	if (sim->path_id != CAM_XPT_PATH_ID) {
4315 		struct cam_path path;
4316 
4317 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4318 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4319 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4320 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4321 		xpt_action((union ccb *)&cpi);
4322 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4323 		xpt_release_path(&path);
4324 	}
4325 	return (CAM_SUCCESS);
4326 }
4327 
4328 int32_t
4329 xpt_bus_deregister(path_id_t pathid)
4330 {
4331 	struct cam_path bus_path;
4332 	cam_status status;
4333 
4334 	status = xpt_compile_path(&bus_path, NULL, pathid,
4335 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4336 	if (status != CAM_REQ_CMP)
4337 		return (status);
4338 
4339 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4340 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4341 
4342 	/* Release the reference count held while registered. */
4343 	xpt_release_bus(bus_path.bus);
4344 	xpt_release_path(&bus_path);
4345 
4346 	return (CAM_REQ_CMP);
4347 }
4348 
4349 static path_id_t
4350 xptnextfreepathid(void)
4351 {
4352 	struct cam_eb *bus;
4353 	path_id_t pathid;
4354 	const char *strval;
4355 
4356 	pathid = 0;
4357 	bus = TAILQ_FIRST(&xpt_busses);
4358 retry:
4359 	/* Find an unoccupied pathid */
4360 	while (bus != NULL
4361 	    && bus->path_id <= pathid) {
4362 		if (bus->path_id == pathid)
4363 			pathid++;
4364 		bus = TAILQ_NEXT(bus, links);
4365 	}
4366 
4367 	/*
4368 	 * Ensure that this pathid is not reserved for
4369 	 * a bus that may be registered in the future.
4370 	 */
4371 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4372 		++pathid;
4373 		/* Start the search over */
4374 		goto retry;
4375 	}
4376 	return (pathid);
4377 }
4378 
4379 static path_id_t
4380 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4381 {
4382 	path_id_t pathid;
4383 	int i, dunit, val;
4384 	char buf[32];
4385 	const char *dname;
4386 
4387 	pathid = CAM_XPT_PATH_ID;
4388 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4389 	i = 0;
4390 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4391 		if (strcmp(dname, "scbus")) {
4392 			/* Avoid a bit of foot shooting. */
4393 			continue;
4394 		}
4395 		if (dunit < 0)		/* unwired?! */
4396 			continue;
4397 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4398 			if (sim_bus == val) {
4399 				pathid = dunit;
4400 				break;
4401 			}
4402 		} else if (sim_bus == 0) {
4403 			/* Unspecified matches bus 0 */
4404 			pathid = dunit;
4405 			break;
4406 		} else {
4407 			printf("Ambiguous scbus configuration for %s%d "
4408 			       "bus %d, cannot wire down.  The kernel "
4409 			       "config entry for scbus%d should "
4410 			       "specify a controller bus.\n"
4411 			       "Scbus will be assigned dynamically.\n",
4412 			       sim_name, sim_unit, sim_bus, dunit);
4413 			break;
4414 		}
4415 	}
4416 
4417 	if (pathid == CAM_XPT_PATH_ID)
4418 		pathid = xptnextfreepathid();
4419 	return (pathid);
4420 }
4421 
4422 void
4423 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4424 {
4425 	struct cam_eb *bus;
4426 	struct cam_et *target, *next_target;
4427 	struct cam_ed *device, *next_device;
4428 	int s;
4429 
4430 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4431 
4432 	/*
4433 	 * Most async events come from a CAM interrupt context.  In
4434 	 * a few cases, the error recovery code at the peripheral layer,
4435 	 * which may run from our SWI or a process context, may signal
4436 	 * deferred events with a call to xpt_async. Ensure async
4437 	 * notifications are serialized by blocking cam interrupts.
4438 	 */
4439 	s = splcam();
4440 
4441 	bus = path->bus;
4442 
4443 	if (async_code == AC_BUS_RESET) {
4444 		int s;
4445 
4446 		s = splclock();
4447 		/* Update our notion of when the last reset occurred */
4448 		microtime(&bus->last_reset);
4449 		splx(s);
4450 	}
4451 
4452 	for (target = TAILQ_FIRST(&bus->et_entries);
4453 	     target != NULL;
4454 	     target = next_target) {
4455 
4456 		next_target = TAILQ_NEXT(target, links);
4457 
4458 		if (path->target != target
4459 		 && path->target->target_id != CAM_TARGET_WILDCARD
4460 		 && target->target_id != CAM_TARGET_WILDCARD)
4461 			continue;
4462 
4463 		if (async_code == AC_SENT_BDR) {
4464 			int s;
4465 
4466 			/* Update our notion of when the last reset occurred */
4467 			s = splclock();
4468 			microtime(&path->target->last_reset);
4469 			splx(s);
4470 		}
4471 
4472 		for (device = TAILQ_FIRST(&target->ed_entries);
4473 		     device != NULL;
4474 		     device = next_device) {
4475 
4476 			next_device = TAILQ_NEXT(device, links);
4477 
4478 			if (path->device != device
4479 			 && path->device->lun_id != CAM_LUN_WILDCARD
4480 			 && device->lun_id != CAM_LUN_WILDCARD)
4481 				continue;
4482 
4483 			xpt_dev_async(async_code, bus, target,
4484 				      device, async_arg);
4485 
4486 			xpt_async_bcast(&device->asyncs, async_code,
4487 					path, async_arg);
4488 		}
4489 	}
4490 
4491 	/*
4492 	 * If this wasn't a fully wildcarded async, tell all
4493 	 * clients that want all async events.
4494 	 */
4495 	if (bus != xpt_periph->path->bus)
4496 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4497 				path, async_arg);
4498 	splx(s);
4499 }
4500 
4501 static void
4502 xpt_async_bcast(struct async_list *async_head,
4503 		u_int32_t async_code,
4504 		struct cam_path *path, void *async_arg)
4505 {
4506 	struct async_node *cur_entry;
4507 
4508 	cur_entry = SLIST_FIRST(async_head);
4509 	while (cur_entry != NULL) {
4510 		struct async_node *next_entry;
4511 		/*
4512 		 * Grab the next list entry before we call the current
4513 		 * entry's callback.  This is because the callback function
4514 		 * can delete its async callback entry.
4515 		 */
4516 		next_entry = SLIST_NEXT(cur_entry, links);
4517 		if ((cur_entry->event_enable & async_code) != 0)
4518 			cur_entry->callback(cur_entry->callback_arg,
4519 					    async_code, path,
4520 					    async_arg);
4521 		cur_entry = next_entry;
4522 	}
4523 }
4524 
4525 /*
4526  * Handle any per-device event notifications that require action by the XPT.
4527  */
4528 static void
4529 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4530 	      struct cam_ed *device, void *async_arg)
4531 {
4532 	cam_status status;
4533 	struct cam_path newpath;
4534 
4535 	/*
4536 	 * We only need to handle events for real devices.
4537 	 */
4538 	if (target->target_id == CAM_TARGET_WILDCARD
4539 	 || device->lun_id == CAM_LUN_WILDCARD)
4540 		return;
4541 
4542 	/*
4543 	 * We need our own path with wildcards expanded to
4544 	 * handle certain types of events.
4545 	 */
4546 	if ((async_code == AC_SENT_BDR)
4547 	 || (async_code == AC_BUS_RESET)
4548 	 || (async_code == AC_INQ_CHANGED))
4549 		status = xpt_compile_path(&newpath, NULL,
4550 					  bus->path_id,
4551 					  target->target_id,
4552 					  device->lun_id);
4553 	else
4554 		status = CAM_REQ_CMP_ERR;
4555 
4556 	if (status == CAM_REQ_CMP) {
4557 
4558 		/*
4559 		 * Allow transfer negotiation to occur in a
4560 		 * tag free environment.
4561 		 */
4562 		if (async_code == AC_SENT_BDR
4563 		 || async_code == AC_BUS_RESET)
4564 			xpt_toggle_tags(&newpath);
4565 
4566 		if (async_code == AC_INQ_CHANGED) {
4567 			/*
4568 			 * We've sent a start unit command, or
4569 			 * something similar to a device that
4570 			 * may have caused its inquiry data to
4571 			 * change. So we re-scan the device to
4572 			 * refresh the inquiry data for it.
4573 			 */
4574 			xpt_scan_lun(newpath.periph, &newpath,
4575 				     CAM_EXPECT_INQ_CHANGE, NULL);
4576 		}
4577 		xpt_release_path(&newpath);
4578 	} else if (async_code == AC_LOST_DEVICE) {
4579 		device->flags |= CAM_DEV_UNCONFIGURED;
4580 	} else if (async_code == AC_TRANSFER_NEG) {
4581 		struct ccb_trans_settings *settings;
4582 
4583 		settings = (struct ccb_trans_settings *)async_arg;
4584 		xpt_set_transfer_settings(settings, device,
4585 					  /*async_update*/TRUE);
4586 	}
4587 }
4588 
4589 u_int32_t
4590 xpt_freeze_devq(struct cam_path *path, u_int count)
4591 {
4592 	int s;
4593 	struct ccb_hdr *ccbh;
4594 
4595 	s = splcam();
4596 	path->device->qfrozen_cnt += count;
4597 
4598 	/*
4599 	 * Mark the last CCB in the queue as needing
4600 	 * to be requeued if the driver hasn't
4601 	 * changed it's state yet.  This fixes a race
4602 	 * where a ccb is just about to be queued to
4603 	 * a controller driver when it's interrupt routine
4604 	 * freezes the queue.  To completly close the
4605 	 * hole, controller drives must check to see
4606 	 * if a ccb's status is still CAM_REQ_INPROG
4607 	 * under spl protection just before they queue
4608 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4609 	 * an example.
4610 	 */
4611 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4612 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4613 		ccbh->status = CAM_REQUEUE_REQ;
4614 	splx(s);
4615 	return (path->device->qfrozen_cnt);
4616 }
4617 
4618 u_int32_t
4619 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4620 {
4621 	sim->devq->send_queue.qfrozen_cnt += count;
4622 	if (sim->devq->active_dev != NULL) {
4623 		struct ccb_hdr *ccbh;
4624 
4625 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4626 				  ccb_hdr_tailq);
4627 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4628 			ccbh->status = CAM_REQUEUE_REQ;
4629 	}
4630 	return (sim->devq->send_queue.qfrozen_cnt);
4631 }
4632 
4633 static void
4634 xpt_release_devq_timeout(void *arg)
4635 {
4636 	struct cam_ed *device;
4637 
4638 	device = (struct cam_ed *)arg;
4639 
4640 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4641 }
4642 
4643 void
4644 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4645 {
4646 	xpt_release_devq_device(path->device, count, run_queue);
4647 }
4648 
4649 static void
4650 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4651 {
4652 	int	rundevq;
4653 	int	s0, s1;
4654 
4655 	rundevq = 0;
4656 	s0 = splsoftcam();
4657 	s1 = splcam();
4658 	if (dev->qfrozen_cnt > 0) {
4659 
4660 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4661 		dev->qfrozen_cnt -= count;
4662 		if (dev->qfrozen_cnt == 0) {
4663 
4664 			/*
4665 			 * No longer need to wait for a successful
4666 			 * command completion.
4667 			 */
4668 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4669 
4670 			/*
4671 			 * Remove any timeouts that might be scheduled
4672 			 * to release this queue.
4673 			 */
4674 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4675 				untimeout(xpt_release_devq_timeout, dev,
4676 					  dev->c_handle);
4677 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4678 			}
4679 
4680 			/*
4681 			 * Now that we are unfrozen schedule the
4682 			 * device so any pending transactions are
4683 			 * run.
4684 			 */
4685 			if ((dev->ccbq.queue.entries > 0)
4686 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4687 			 && (run_queue != 0)) {
4688 				rundevq = 1;
4689 			}
4690 		}
4691 	}
4692 	splx(s1);
4693 	if (rundevq != 0)
4694 		xpt_run_dev_sendq(dev->target->bus);
4695 	splx(s0);
4696 }
4697 
4698 void
4699 xpt_release_simq(struct cam_sim *sim, int run_queue)
4700 {
4701 	int	s;
4702 	struct	camq *sendq;
4703 
4704 	sendq = &(sim->devq->send_queue);
4705 	s = splcam();
4706 	if (sendq->qfrozen_cnt > 0) {
4707 
4708 		sendq->qfrozen_cnt--;
4709 		if (sendq->qfrozen_cnt == 0) {
4710 			struct cam_eb *bus;
4711 
4712 			/*
4713 			 * If there is a timeout scheduled to release this
4714 			 * sim queue, remove it.  The queue frozen count is
4715 			 * already at 0.
4716 			 */
4717 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4718 				untimeout(xpt_release_simq_timeout, sim,
4719 					  sim->c_handle);
4720 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4721 			}
4722 			bus = xpt_find_bus(sim->path_id);
4723 			splx(s);
4724 
4725 			if (run_queue) {
4726 				/*
4727 				 * Now that we are unfrozen run the send queue.
4728 				 */
4729 				xpt_run_dev_sendq(bus);
4730 			}
4731 			xpt_release_bus(bus);
4732 		} else
4733 			splx(s);
4734 	} else
4735 		splx(s);
4736 }
4737 
4738 static void
4739 xpt_release_simq_timeout(void *arg)
4740 {
4741 	struct cam_sim *sim;
4742 
4743 	sim = (struct cam_sim *)arg;
4744 	xpt_release_simq(sim, /* run_queue */ TRUE);
4745 }
4746 
4747 void
4748 xpt_done(union ccb *done_ccb)
4749 {
4750 	int s;
4751 
4752 	s = splcam();
4753 
4754 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4755 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4756 		/*
4757 		 * Queue up the request for handling by our SWI handler
4758 		 * any of the "non-immediate" type of ccbs.
4759 		 */
4760 		switch (done_ccb->ccb_h.path->periph->type) {
4761 		case CAM_PERIPH_BIO:
4762 			TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
4763 					  sim_links.tqe);
4764 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4765 			swi_sched(cambio_ih, 0);
4766 			break;
4767 		case CAM_PERIPH_NET:
4768 			TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
4769 					  sim_links.tqe);
4770 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4771 			swi_sched(camnet_ih, 0);
4772 			break;
4773 		}
4774 	}
4775 	splx(s);
4776 }
4777 
4778 union ccb *
4779 xpt_alloc_ccb()
4780 {
4781 	union ccb *new_ccb;
4782 
4783 	new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK);
4784 	return (new_ccb);
4785 }
4786 
4787 void
4788 xpt_free_ccb(union ccb *free_ccb)
4789 {
4790 	free(free_ccb, M_DEVBUF);
4791 }
4792 
4793 
4794 
4795 /* Private XPT functions */
4796 
4797 /*
4798  * Get a CAM control block for the caller. Charge the structure to the device
4799  * referenced by the path.  If the this device has no 'credits' then the
4800  * device already has the maximum number of outstanding operations under way
4801  * and we return NULL. If we don't have sufficient resources to allocate more
4802  * ccbs, we also return NULL.
4803  */
4804 static union ccb *
4805 xpt_get_ccb(struct cam_ed *device)
4806 {
4807 	union ccb *new_ccb;
4808 	int s;
4809 
4810 	s = splsoftcam();
4811 	if ((new_ccb = (union ccb *)SLIST_FIRST(&ccb_freeq)) == NULL) {
4812 		new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT);
4813                 if (new_ccb == NULL) {
4814 			splx(s);
4815 			return (NULL);
4816 		}
4817 		callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4818 		SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
4819 				  xpt_links.sle);
4820 		xpt_ccb_count++;
4821 	}
4822 	cam_ccbq_take_opening(&device->ccbq);
4823 	SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
4824 	splx(s);
4825 	return (new_ccb);
4826 }
4827 
4828 static void
4829 xpt_release_bus(struct cam_eb *bus)
4830 {
4831 	int s;
4832 
4833 	s = splcam();
4834 	if ((--bus->refcount == 0)
4835 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4836 		TAILQ_REMOVE(&xpt_busses, bus, links);
4837 		bus_generation++;
4838 		splx(s);
4839 		free(bus, M_DEVBUF);
4840 	} else
4841 		splx(s);
4842 }
4843 
4844 static struct cam_et *
4845 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4846 {
4847 	struct cam_et *target;
4848 
4849 	target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT);
4850 	if (target != NULL) {
4851 		struct cam_et *cur_target;
4852 
4853 		TAILQ_INIT(&target->ed_entries);
4854 		target->bus = bus;
4855 		target->target_id = target_id;
4856 		target->refcount = 1;
4857 		target->generation = 0;
4858 		timevalclear(&target->last_reset);
4859 		/*
4860 		 * Hold a reference to our parent bus so it
4861 		 * will not go away before we do.
4862 		 */
4863 		bus->refcount++;
4864 
4865 		/* Insertion sort into our bus's target list */
4866 		cur_target = TAILQ_FIRST(&bus->et_entries);
4867 		while (cur_target != NULL && cur_target->target_id < target_id)
4868 			cur_target = TAILQ_NEXT(cur_target, links);
4869 
4870 		if (cur_target != NULL) {
4871 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4872 		} else {
4873 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4874 		}
4875 		bus->generation++;
4876 	}
4877 	return (target);
4878 }
4879 
4880 static void
4881 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4882 {
4883 	int s;
4884 
4885 	s = splcam();
4886 	if ((--target->refcount == 0)
4887 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4888 		TAILQ_REMOVE(&bus->et_entries, target, links);
4889 		bus->generation++;
4890 		splx(s);
4891 		free(target, M_DEVBUF);
4892 		xpt_release_bus(bus);
4893 	} else
4894 		splx(s);
4895 }
4896 
4897 static struct cam_ed *
4898 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4899 {
4900 #ifdef CAM_NEW_TRAN_CODE
4901 	struct	   cam_path path;
4902 #endif /* CAM_NEW_TRAN_CODE */
4903 	struct	   cam_ed *device;
4904 	struct	   cam_devq *devq;
4905 	cam_status status;
4906 
4907 	/* Make space for us in the device queue on our bus */
4908 	devq = bus->sim->devq;
4909 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4910 
4911 	if (status != CAM_REQ_CMP) {
4912 		device = NULL;
4913 	} else {
4914 		device = (struct cam_ed *)malloc(sizeof(*device),
4915 						 M_DEVBUF, M_NOWAIT);
4916 	}
4917 
4918 	if (device != NULL) {
4919 		struct cam_ed *cur_device;
4920 
4921 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4922 		device->alloc_ccb_entry.device = device;
4923 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4924 		device->send_ccb_entry.device = device;
4925 		device->target = target;
4926 		device->lun_id = lun_id;
4927 		/* Initialize our queues */
4928 		if (camq_init(&device->drvq, 0) != 0) {
4929 			free(device, M_DEVBUF);
4930 			return (NULL);
4931 		}
4932 		if (cam_ccbq_init(&device->ccbq,
4933 				  bus->sim->max_dev_openings) != 0) {
4934 			camq_fini(&device->drvq);
4935 			free(device, M_DEVBUF);
4936 			return (NULL);
4937 		}
4938 		SLIST_INIT(&device->asyncs);
4939 		SLIST_INIT(&device->periphs);
4940 		device->generation = 0;
4941 		device->owner = NULL;
4942 		/*
4943 		 * Take the default quirk entry until we have inquiry
4944 		 * data and can determine a better quirk to use.
4945 		 */
4946 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4947 		bzero(&device->inq_data, sizeof(device->inq_data));
4948 		device->inq_flags = 0;
4949 		device->queue_flags = 0;
4950 		device->serial_num = NULL;
4951 		device->serial_num_len = 0;
4952 		device->qfrozen_cnt = 0;
4953 		device->flags = CAM_DEV_UNCONFIGURED;
4954 		device->tag_delay_count = 0;
4955 		device->refcount = 1;
4956 		callout_handle_init(&device->c_handle);
4957 
4958 		/*
4959 		 * Hold a reference to our parent target so it
4960 		 * will not go away before we do.
4961 		 */
4962 		target->refcount++;
4963 
4964 		/*
4965 		 * XXX should be limited by number of CCBs this bus can
4966 		 * do.
4967 		 */
4968 		xpt_max_ccbs += device->ccbq.devq_openings;
4969 		/* Insertion sort into our target's device list */
4970 		cur_device = TAILQ_FIRST(&target->ed_entries);
4971 		while (cur_device != NULL && cur_device->lun_id < lun_id)
4972 			cur_device = TAILQ_NEXT(cur_device, links);
4973 		if (cur_device != NULL) {
4974 			TAILQ_INSERT_BEFORE(cur_device, device, links);
4975 		} else {
4976 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4977 		}
4978 		target->generation++;
4979 #ifdef CAM_NEW_TRAN_CODE
4980 		if (lun_id != CAM_LUN_WILDCARD) {
4981 			xpt_compile_path(&path,
4982 					 NULL,
4983 					 bus->path_id,
4984 					 target->target_id,
4985 					 lun_id);
4986 			xpt_devise_transport(&path);
4987 			xpt_release_path(&path);
4988 		}
4989 #endif /* CAM_NEW_TRAN_CODE */
4990 	}
4991 	return (device);
4992 }
4993 
4994 static void
4995 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
4996 		   struct cam_ed *device)
4997 {
4998 	int s;
4999 
5000 	s = splcam();
5001 	if ((--device->refcount == 0)
5002 	 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
5003 		struct cam_devq *devq;
5004 
5005 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
5006 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
5007 			panic("Removing device while still queued for ccbs");
5008 
5009 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
5010 				untimeout(xpt_release_devq_timeout, device,
5011 					  device->c_handle);
5012 
5013 		TAILQ_REMOVE(&target->ed_entries, device,links);
5014 		target->generation++;
5015 		xpt_max_ccbs -= device->ccbq.devq_openings;
5016 		/* Release our slot in the devq */
5017 		devq = bus->sim->devq;
5018 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5019 		splx(s);
5020 		free(device, M_DEVBUF);
5021 		xpt_release_target(bus, target);
5022 	} else
5023 		splx(s);
5024 }
5025 
5026 static u_int32_t
5027 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5028 {
5029 	int	s;
5030 	int	diff;
5031 	int	result;
5032 	struct	cam_ed *dev;
5033 
5034 	dev = path->device;
5035 	s = splsoftcam();
5036 
5037 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5038 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5039 	if (result == CAM_REQ_CMP && (diff < 0)) {
5040 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5041 	}
5042 	/* Adjust the global limit */
5043 	xpt_max_ccbs += diff;
5044 	splx(s);
5045 	return (result);
5046 }
5047 
5048 static struct cam_eb *
5049 xpt_find_bus(path_id_t path_id)
5050 {
5051 	struct cam_eb *bus;
5052 
5053 	for (bus = TAILQ_FIRST(&xpt_busses);
5054 	     bus != NULL;
5055 	     bus = TAILQ_NEXT(bus, links)) {
5056 		if (bus->path_id == path_id) {
5057 			bus->refcount++;
5058 			break;
5059 		}
5060 	}
5061 	return (bus);
5062 }
5063 
5064 static struct cam_et *
5065 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5066 {
5067 	struct cam_et *target;
5068 
5069 	for (target = TAILQ_FIRST(&bus->et_entries);
5070 	     target != NULL;
5071 	     target = TAILQ_NEXT(target, links)) {
5072 		if (target->target_id == target_id) {
5073 			target->refcount++;
5074 			break;
5075 		}
5076 	}
5077 	return (target);
5078 }
5079 
5080 static struct cam_ed *
5081 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5082 {
5083 	struct cam_ed *device;
5084 
5085 	for (device = TAILQ_FIRST(&target->ed_entries);
5086 	     device != NULL;
5087 	     device = TAILQ_NEXT(device, links)) {
5088 		if (device->lun_id == lun_id) {
5089 			device->refcount++;
5090 			break;
5091 		}
5092 	}
5093 	return (device);
5094 }
5095 
5096 typedef struct {
5097 	union	ccb *request_ccb;
5098 	struct 	ccb_pathinq *cpi;
5099 	int	pending_count;
5100 } xpt_scan_bus_info;
5101 
5102 /*
5103  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5104  * As the scan progresses, xpt_scan_bus is used as the
5105  * callback on completion function.
5106  */
5107 static void
5108 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5109 {
5110 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5111 		  ("xpt_scan_bus\n"));
5112 	switch (request_ccb->ccb_h.func_code) {
5113 	case XPT_SCAN_BUS:
5114 	{
5115 		xpt_scan_bus_info *scan_info;
5116 		union	ccb *work_ccb;
5117 		struct	cam_path *path;
5118 		u_int	i;
5119 		u_int	max_target;
5120 		u_int	initiator_id;
5121 
5122 		/* Find out the characteristics of the bus */
5123 		work_ccb = xpt_alloc_ccb();
5124 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5125 			      request_ccb->ccb_h.pinfo.priority);
5126 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5127 		xpt_action(work_ccb);
5128 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5129 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5130 			xpt_free_ccb(work_ccb);
5131 			xpt_done(request_ccb);
5132 			return;
5133 		}
5134 
5135 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5136 			/*
5137 			 * Can't scan the bus on an adapter that
5138 			 * cannot perform the initiator role.
5139 			 */
5140 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5141 			xpt_free_ccb(work_ccb);
5142 			xpt_done(request_ccb);
5143 			return;
5144 		}
5145 
5146 		/* Save some state for use while we probe for devices */
5147 		scan_info = (xpt_scan_bus_info *)
5148 		    malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK);
5149 		scan_info->request_ccb = request_ccb;
5150 		scan_info->cpi = &work_ccb->cpi;
5151 
5152 		/* Cache on our stack so we can work asynchronously */
5153 		max_target = scan_info->cpi->max_target;
5154 		initiator_id = scan_info->cpi->initiator_id;
5155 
5156 		/*
5157 		 * Don't count the initiator if the
5158 		 * initiator is addressable.
5159 		 */
5160 		scan_info->pending_count = max_target + 1;
5161 		if (initiator_id <= max_target)
5162 			scan_info->pending_count--;
5163 
5164 		for (i = 0; i <= max_target; i++) {
5165 			cam_status status;
5166 		 	if (i == initiator_id)
5167 				continue;
5168 
5169 			status = xpt_create_path(&path, xpt_periph,
5170 						 request_ccb->ccb_h.path_id,
5171 						 i, 0);
5172 			if (status != CAM_REQ_CMP) {
5173 				printf("xpt_scan_bus: xpt_create_path failed"
5174 				       " with status %#x, bus scan halted\n",
5175 				       status);
5176 				break;
5177 			}
5178 			work_ccb = xpt_alloc_ccb();
5179 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5180 				      request_ccb->ccb_h.pinfo.priority);
5181 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5182 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5183 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5184 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5185 			xpt_action(work_ccb);
5186 		}
5187 		break;
5188 	}
5189 	case XPT_SCAN_LUN:
5190 	{
5191 		xpt_scan_bus_info *scan_info;
5192 		path_id_t path_id;
5193 		target_id_t target_id;
5194 		lun_id_t lun_id;
5195 
5196 		/* Reuse the same CCB to query if a device was really found */
5197 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5198 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5199 			      request_ccb->ccb_h.pinfo.priority);
5200 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5201 
5202 		path_id = request_ccb->ccb_h.path_id;
5203 		target_id = request_ccb->ccb_h.target_id;
5204 		lun_id = request_ccb->ccb_h.target_lun;
5205 		xpt_action(request_ccb);
5206 
5207 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5208 			struct cam_ed *device;
5209 			struct cam_et *target;
5210 			int s, phl;
5211 
5212 			/*
5213 			 * If we already probed lun 0 successfully, or
5214 			 * we have additional configured luns on this
5215 			 * target that might have "gone away", go onto
5216 			 * the next lun.
5217 			 */
5218 			target = request_ccb->ccb_h.path->target;
5219 			/*
5220 			 * We may touch devices that we don't
5221 			 * hold references too, so ensure they
5222 			 * don't disappear out from under us.
5223 			 * The target above is referenced by the
5224 			 * path in the request ccb.
5225 			 */
5226 			phl = 0;
5227 			s = splcam();
5228 			device = TAILQ_FIRST(&target->ed_entries);
5229 			if (device != NULL) {
5230 				phl = device->quirk->quirks & CAM_QUIRK_HILUNS;
5231 				if (device->lun_id == 0)
5232 					device = TAILQ_NEXT(device, links);
5233 			}
5234 			splx(s);
5235 			if ((lun_id != 0) || (device != NULL)) {
5236 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5237 					lun_id++;
5238 			}
5239 		} else {
5240 			struct cam_ed *device;
5241 
5242 			device = request_ccb->ccb_h.path->device;
5243 
5244 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5245 				/* Try the next lun */
5246 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
5247 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
5248 					lun_id++;
5249 			}
5250 		}
5251 
5252 		xpt_free_path(request_ccb->ccb_h.path);
5253 
5254 		/* Check Bounds */
5255 		if ((lun_id == request_ccb->ccb_h.target_lun)
5256 		 || lun_id > scan_info->cpi->max_lun) {
5257 			/* We're done */
5258 
5259 			xpt_free_ccb(request_ccb);
5260 			scan_info->pending_count--;
5261 			if (scan_info->pending_count == 0) {
5262 				xpt_free_ccb((union ccb *)scan_info->cpi);
5263 				request_ccb = scan_info->request_ccb;
5264 				free(scan_info, M_TEMP);
5265 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5266 				xpt_done(request_ccb);
5267 			}
5268 		} else {
5269 			/* Try the next device */
5270 			struct cam_path *path;
5271 			cam_status status;
5272 
5273 			path = request_ccb->ccb_h.path;
5274 			status = xpt_create_path(&path, xpt_periph,
5275 						 path_id, target_id, lun_id);
5276 			if (status != CAM_REQ_CMP) {
5277 				printf("xpt_scan_bus: xpt_create_path failed "
5278 				       "with status %#x, halting LUN scan\n",
5279 			 	       status);
5280 				xpt_free_ccb(request_ccb);
5281 				scan_info->pending_count--;
5282 				if (scan_info->pending_count == 0) {
5283 					xpt_free_ccb(
5284 						(union ccb *)scan_info->cpi);
5285 					request_ccb = scan_info->request_ccb;
5286 					free(scan_info, M_TEMP);
5287 					request_ccb->ccb_h.status = CAM_REQ_CMP;
5288 					xpt_done(request_ccb);
5289 					break;
5290 				}
5291 			}
5292 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5293 				      request_ccb->ccb_h.pinfo.priority);
5294 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5295 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5296 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5297 			request_ccb->crcn.flags =
5298 				scan_info->request_ccb->crcn.flags;
5299 			xpt_action(request_ccb);
5300 		}
5301 		break;
5302 	}
5303 	default:
5304 		break;
5305 	}
5306 }
5307 
5308 typedef enum {
5309 	PROBE_TUR,
5310 	PROBE_INQUIRY,
5311 	PROBE_FULL_INQUIRY,
5312 	PROBE_MODE_SENSE,
5313 	PROBE_SERIAL_NUM,
5314 	PROBE_TUR_FOR_NEGOTIATION
5315 } probe_action;
5316 
5317 typedef enum {
5318 	PROBE_INQUIRY_CKSUM	= 0x01,
5319 	PROBE_SERIAL_CKSUM	= 0x02,
5320 	PROBE_NO_ANNOUNCE	= 0x04
5321 } probe_flags;
5322 
5323 typedef struct {
5324 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5325 	probe_action	action;
5326 	union ccb	saved_ccb;
5327 	probe_flags	flags;
5328 	MD5_CTX		context;
5329 	u_int8_t	digest[16];
5330 } probe_softc;
5331 
5332 static void
5333 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5334 	     cam_flags flags, union ccb *request_ccb)
5335 {
5336 	struct ccb_pathinq cpi;
5337 	cam_status status;
5338 	struct cam_path *new_path;
5339 	struct cam_periph *old_periph;
5340 	int s;
5341 
5342 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5343 		  ("xpt_scan_lun\n"));
5344 
5345 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5346 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5347 	xpt_action((union ccb *)&cpi);
5348 
5349 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5350 		if (request_ccb != NULL) {
5351 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5352 			xpt_done(request_ccb);
5353 		}
5354 		return;
5355 	}
5356 
5357 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5358 		/*
5359 		 * Can't scan the bus on an adapter that
5360 		 * cannot perform the initiator role.
5361 		 */
5362 		if (request_ccb != NULL) {
5363 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5364 			xpt_done(request_ccb);
5365 		}
5366 		return;
5367 	}
5368 
5369 	if (request_ccb == NULL) {
5370 		request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT);
5371 		if (request_ccb == NULL) {
5372 			xpt_print_path(path);
5373 			printf("xpt_scan_lun: can't allocate CCB, can't "
5374 			       "continue\n");
5375 			return;
5376 		}
5377 		new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT);
5378 		if (new_path == NULL) {
5379 			xpt_print_path(path);
5380 			printf("xpt_scan_lun: can't allocate path, can't "
5381 			       "continue\n");
5382 			free(request_ccb, M_TEMP);
5383 			return;
5384 		}
5385 		status = xpt_compile_path(new_path, xpt_periph,
5386 					  path->bus->path_id,
5387 					  path->target->target_id,
5388 					  path->device->lun_id);
5389 
5390 		if (status != CAM_REQ_CMP) {
5391 			xpt_print_path(path);
5392 			printf("xpt_scan_lun: can't compile path, can't "
5393 			       "continue\n");
5394 			free(request_ccb, M_TEMP);
5395 			free(new_path, M_TEMP);
5396 			return;
5397 		}
5398 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5399 		request_ccb->ccb_h.cbfcnp = xptscandone;
5400 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5401 		request_ccb->crcn.flags = flags;
5402 	}
5403 
5404 	s = splsoftcam();
5405 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5406 		probe_softc *softc;
5407 
5408 		softc = (probe_softc *)old_periph->softc;
5409 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5410 				  periph_links.tqe);
5411 	} else {
5412 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5413 					  probestart, "probe",
5414 					  CAM_PERIPH_BIO,
5415 					  request_ccb->ccb_h.path, NULL, 0,
5416 					  request_ccb);
5417 
5418 		if (status != CAM_REQ_CMP) {
5419 			xpt_print_path(path);
5420 			printf("xpt_scan_lun: cam_alloc_periph returned an "
5421 			       "error, can't continue probe\n");
5422 			request_ccb->ccb_h.status = status;
5423 			xpt_done(request_ccb);
5424 		}
5425 	}
5426 	splx(s);
5427 }
5428 
5429 static void
5430 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5431 {
5432 	xpt_release_path(done_ccb->ccb_h.path);
5433 	free(done_ccb->ccb_h.path, M_TEMP);
5434 	free(done_ccb, M_TEMP);
5435 }
5436 
5437 static cam_status
5438 proberegister(struct cam_periph *periph, void *arg)
5439 {
5440 	union ccb *request_ccb;	/* CCB representing the probe request */
5441 	probe_softc *softc;
5442 
5443 	request_ccb = (union ccb *)arg;
5444 	if (periph == NULL) {
5445 		printf("proberegister: periph was NULL!!\n");
5446 		return(CAM_REQ_CMP_ERR);
5447 	}
5448 
5449 	if (request_ccb == NULL) {
5450 		printf("proberegister: no probe CCB, "
5451 		       "can't register device\n");
5452 		return(CAM_REQ_CMP_ERR);
5453 	}
5454 
5455 	softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT);
5456 
5457 	if (softc == NULL) {
5458 		printf("proberegister: Unable to probe new device. "
5459 		       "Unable to allocate softc\n");
5460 		return(CAM_REQ_CMP_ERR);
5461 	}
5462 	TAILQ_INIT(&softc->request_ccbs);
5463 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5464 			  periph_links.tqe);
5465 	softc->flags = 0;
5466 	periph->softc = softc;
5467 	cam_periph_acquire(periph);
5468 	/*
5469 	 * Ensure we've waited at least a bus settle
5470 	 * delay before attempting to probe the device.
5471 	 * For HBAs that don't do bus resets, this won't make a difference.
5472 	 */
5473 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5474 				      SCSI_DELAY);
5475 	probeschedule(periph);
5476 	return(CAM_REQ_CMP);
5477 }
5478 
5479 static void
5480 probeschedule(struct cam_periph *periph)
5481 {
5482 	struct ccb_pathinq cpi;
5483 	union ccb *ccb;
5484 	probe_softc *softc;
5485 
5486 	softc = (probe_softc *)periph->softc;
5487 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5488 
5489 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5490 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5491 	xpt_action((union ccb *)&cpi);
5492 
5493 	/*
5494 	 * If a device has gone away and another device, or the same one,
5495 	 * is back in the same place, it should have a unit attention
5496 	 * condition pending.  It will not report the unit attention in
5497 	 * response to an inquiry, which may leave invalid transfer
5498 	 * negotiations in effect.  The TUR will reveal the unit attention
5499 	 * condition.  Only send the TUR for lun 0, since some devices
5500 	 * will get confused by commands other than inquiry to non-existent
5501 	 * luns.  If you think a device has gone away start your scan from
5502 	 * lun 0.  This will insure that any bogus transfer settings are
5503 	 * invalidated.
5504 	 *
5505 	 * If we haven't seen the device before and the controller supports
5506 	 * some kind of transfer negotiation, negotiate with the first
5507 	 * sent command if no bus reset was performed at startup.  This
5508 	 * ensures that the device is not confused by transfer negotiation
5509 	 * settings left over by loader or BIOS action.
5510 	 */
5511 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5512 	 && (ccb->ccb_h.target_lun == 0)) {
5513 		softc->action = PROBE_TUR;
5514 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5515 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5516 		proberequestdefaultnegotiation(periph);
5517 		softc->action = PROBE_INQUIRY;
5518 	} else {
5519 		softc->action = PROBE_INQUIRY;
5520 	}
5521 
5522 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5523 		softc->flags |= PROBE_NO_ANNOUNCE;
5524 	else
5525 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5526 
5527 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5528 }
5529 
5530 static void
5531 probestart(struct cam_periph *periph, union ccb *start_ccb)
5532 {
5533 	/* Probe the device that our peripheral driver points to */
5534 	struct ccb_scsiio *csio;
5535 	probe_softc *softc;
5536 
5537 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5538 
5539 	softc = (probe_softc *)periph->softc;
5540 	csio = &start_ccb->csio;
5541 
5542 	switch (softc->action) {
5543 	case PROBE_TUR:
5544 	case PROBE_TUR_FOR_NEGOTIATION:
5545 	{
5546 		scsi_test_unit_ready(csio,
5547 				     /*retries*/4,
5548 				     probedone,
5549 				     MSG_SIMPLE_Q_TAG,
5550 				     SSD_FULL_SIZE,
5551 				     /*timeout*/60000);
5552 		break;
5553 	}
5554 	case PROBE_INQUIRY:
5555 	case PROBE_FULL_INQUIRY:
5556 	{
5557 		u_int inquiry_len;
5558 		struct scsi_inquiry_data *inq_buf;
5559 
5560 		inq_buf = &periph->path->device->inq_data;
5561 		/*
5562 		 * If the device is currently configured, we calculate an
5563 		 * MD5 checksum of the inquiry data, and if the serial number
5564 		 * length is greater than 0, add the serial number data
5565 		 * into the checksum as well.  Once the inquiry and the
5566 		 * serial number check finish, we attempt to figure out
5567 		 * whether we still have the same device.
5568 		 */
5569 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5570 
5571 			MD5Init(&softc->context);
5572 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5573 				  sizeof(struct scsi_inquiry_data));
5574 			softc->flags |= PROBE_INQUIRY_CKSUM;
5575 			if (periph->path->device->serial_num_len > 0) {
5576 				MD5Update(&softc->context,
5577 					  periph->path->device->serial_num,
5578 					  periph->path->device->serial_num_len);
5579 				softc->flags |= PROBE_SERIAL_CKSUM;
5580 			}
5581 			MD5Final(softc->digest, &softc->context);
5582 		}
5583 
5584 		if (softc->action == PROBE_INQUIRY)
5585 			inquiry_len = SHORT_INQUIRY_LENGTH;
5586 		else
5587 			inquiry_len = inq_buf->additional_length + 4;
5588 
5589 		scsi_inquiry(csio,
5590 			     /*retries*/4,
5591 			     probedone,
5592 			     MSG_SIMPLE_Q_TAG,
5593 			     (u_int8_t *)inq_buf,
5594 			     inquiry_len,
5595 			     /*evpd*/FALSE,
5596 			     /*page_code*/0,
5597 			     SSD_MIN_SIZE,
5598 			     /*timeout*/60 * 1000);
5599 		break;
5600 	}
5601 	case PROBE_MODE_SENSE:
5602 	{
5603 		void  *mode_buf;
5604 		int    mode_buf_len;
5605 
5606 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5607 			     + sizeof(struct scsi_mode_blk_desc)
5608 			     + sizeof(struct scsi_control_page);
5609 		mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT);
5610 		if (mode_buf != NULL) {
5611 	                scsi_mode_sense(csio,
5612 					/*retries*/4,
5613 					probedone,
5614 					MSG_SIMPLE_Q_TAG,
5615 					/*dbd*/FALSE,
5616 					SMS_PAGE_CTRL_CURRENT,
5617 					SMS_CONTROL_MODE_PAGE,
5618 					mode_buf,
5619 					mode_buf_len,
5620 					SSD_FULL_SIZE,
5621 					/*timeout*/60000);
5622 			break;
5623 		}
5624 		xpt_print_path(periph->path);
5625 		printf("Unable to mode sense control page - malloc failure\n");
5626 		softc->action = PROBE_SERIAL_NUM;
5627 		/* FALLTHROUGH */
5628 	}
5629 	case PROBE_SERIAL_NUM:
5630 	{
5631 		struct scsi_vpd_unit_serial_number *serial_buf;
5632 		struct cam_ed* device;
5633 
5634 		serial_buf = NULL;
5635 		device = periph->path->device;
5636 		device->serial_num = NULL;
5637 		device->serial_num_len = 0;
5638 
5639 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0)
5640 			serial_buf = (struct scsi_vpd_unit_serial_number *)
5641 				malloc(sizeof(*serial_buf), M_TEMP,
5642 					M_NOWAIT | M_ZERO);
5643 
5644 		if (serial_buf != NULL) {
5645 			scsi_inquiry(csio,
5646 				     /*retries*/4,
5647 				     probedone,
5648 				     MSG_SIMPLE_Q_TAG,
5649 				     (u_int8_t *)serial_buf,
5650 				     sizeof(*serial_buf),
5651 				     /*evpd*/TRUE,
5652 				     SVPD_UNIT_SERIAL_NUMBER,
5653 				     SSD_MIN_SIZE,
5654 				     /*timeout*/60 * 1000);
5655 			break;
5656 		}
5657 		/*
5658 		 * We'll have to do without, let our probedone
5659 		 * routine finish up for us.
5660 		 */
5661 		start_ccb->csio.data_ptr = NULL;
5662 		probedone(periph, start_ccb);
5663 		return;
5664 	}
5665 	}
5666 	xpt_action(start_ccb);
5667 }
5668 
5669 static void
5670 proberequestdefaultnegotiation(struct cam_periph *periph)
5671 {
5672 	struct ccb_trans_settings cts;
5673 
5674 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5675 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5676 #ifdef CAM_NEW_TRAN_CODE
5677 	cts.type = CTS_TYPE_USER_SETTINGS;
5678 #else /* CAM_NEW_TRAN_CODE */
5679 	cts.flags = CCB_TRANS_USER_SETTINGS;
5680 #endif /* CAM_NEW_TRAN_CODE */
5681 	xpt_action((union ccb *)&cts);
5682 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5683 #ifdef CAM_NEW_TRAN_CODE
5684 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5685 #else /* CAM_NEW_TRAN_CODE */
5686 	cts.flags &= ~CCB_TRANS_USER_SETTINGS;
5687 	cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
5688 #endif /* CAM_NEW_TRAN_CODE */
5689 	xpt_action((union ccb *)&cts);
5690 }
5691 
5692 static void
5693 probedone(struct cam_periph *periph, union ccb *done_ccb)
5694 {
5695 	probe_softc *softc;
5696 	struct cam_path *path;
5697 	u_int32_t  priority;
5698 
5699 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5700 
5701 	softc = (probe_softc *)periph->softc;
5702 	path = done_ccb->ccb_h.path;
5703 	priority = done_ccb->ccb_h.pinfo.priority;
5704 
5705 	switch (softc->action) {
5706 	case PROBE_TUR:
5707 	{
5708 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5709 
5710 			if (cam_periph_error(done_ccb, 0,
5711 					     SF_NO_PRINT, NULL) == ERESTART)
5712 				return;
5713 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5714 				/* Don't wedge the queue */
5715 				xpt_release_devq(done_ccb->ccb_h.path,
5716 						 /*count*/1,
5717 						 /*run_queue*/TRUE);
5718 		}
5719 		softc->action = PROBE_INQUIRY;
5720 		xpt_release_ccb(done_ccb);
5721 		xpt_schedule(periph, priority);
5722 		return;
5723 	}
5724 	case PROBE_INQUIRY:
5725 	case PROBE_FULL_INQUIRY:
5726 	{
5727 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5728 			struct scsi_inquiry_data *inq_buf;
5729 			u_int8_t periph_qual;
5730 
5731 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5732 			inq_buf = &path->device->inq_data;
5733 
5734 			periph_qual = SID_QUAL(inq_buf);
5735 
5736 			switch(periph_qual) {
5737 			case SID_QUAL_LU_CONNECTED:
5738 			{
5739 				u_int8_t alen;
5740 
5741 				/*
5742 				 * We conservatively request only
5743 				 * SHORT_INQUIRY_LEN bytes of inquiry
5744 				 * information during our first try
5745 				 * at sending an INQUIRY. If the device
5746 				 * has more information to give,
5747 				 * perform a second request specifying
5748 				 * the amount of information the device
5749 				 * is willing to give.
5750 				 */
5751 				alen = inq_buf->additional_length;
5752 				if (softc->action == PROBE_INQUIRY
5753 				 && alen > (SHORT_INQUIRY_LENGTH - 4)) {
5754 					softc->action = PROBE_FULL_INQUIRY;
5755 					xpt_release_ccb(done_ccb);
5756 					xpt_schedule(periph, priority);
5757 					return;
5758 				}
5759 
5760 				xpt_find_quirk(path->device);
5761 
5762 #ifdef CAM_NEW_TRAN_CODE
5763 				xpt_devise_transport(path);
5764 #endif /* CAM_NEW_TRAN_CODE */
5765 				if ((inq_buf->flags & SID_CmdQue) != 0)
5766 					softc->action = PROBE_MODE_SENSE;
5767 				else
5768 					softc->action = PROBE_SERIAL_NUM;
5769 
5770 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5771 
5772 				xpt_release_ccb(done_ccb);
5773 				xpt_schedule(periph, priority);
5774 				return;
5775 			}
5776 			default:
5777 				break;
5778 			}
5779 		} else if (cam_periph_error(done_ccb, 0,
5780 					    done_ccb->ccb_h.target_lun > 0
5781 					    ? SF_RETRY_UA|SF_QUIET_IR
5782 					    : SF_RETRY_UA,
5783 					    &softc->saved_ccb) == ERESTART) {
5784 			return;
5785 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5786 			/* Don't wedge the queue */
5787 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5788 					 /*run_queue*/TRUE);
5789 		}
5790 		/*
5791 		 * If we get to this point, we got an error status back
5792 		 * from the inquiry and the error status doesn't require
5793 		 * automatically retrying the command.  Therefore, the
5794 		 * inquiry failed.  If we had inquiry information before
5795 		 * for this device, but this latest inquiry command failed,
5796 		 * the device has probably gone away.  If this device isn't
5797 		 * already marked unconfigured, notify the peripheral
5798 		 * drivers that this device is no more.
5799 		 */
5800 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5801 			/* Send the async notification. */
5802 			xpt_async(AC_LOST_DEVICE, path, NULL);
5803 
5804 		xpt_release_ccb(done_ccb);
5805 		break;
5806 	}
5807 	case PROBE_MODE_SENSE:
5808 	{
5809 		struct ccb_scsiio *csio;
5810 		struct scsi_mode_header_6 *mode_hdr;
5811 
5812 		csio = &done_ccb->csio;
5813 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
5814 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5815 			struct scsi_control_page *page;
5816 			u_int8_t *offset;
5817 
5818 			offset = ((u_int8_t *)&mode_hdr[1])
5819 			    + mode_hdr->blk_desc_len;
5820 			page = (struct scsi_control_page *)offset;
5821 			path->device->queue_flags = page->queue_flags;
5822 		} else if (cam_periph_error(done_ccb, 0,
5823 					    SF_RETRY_UA|SF_NO_PRINT,
5824 					    &softc->saved_ccb) == ERESTART) {
5825 			return;
5826 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5827 			/* Don't wedge the queue */
5828 			xpt_release_devq(done_ccb->ccb_h.path,
5829 					 /*count*/1, /*run_queue*/TRUE);
5830 		}
5831 		xpt_release_ccb(done_ccb);
5832 		free(mode_hdr, M_TEMP);
5833 		softc->action = PROBE_SERIAL_NUM;
5834 		xpt_schedule(periph, priority);
5835 		return;
5836 	}
5837 	case PROBE_SERIAL_NUM:
5838 	{
5839 		struct ccb_scsiio *csio;
5840 		struct scsi_vpd_unit_serial_number *serial_buf;
5841 		u_int32_t  priority;
5842 		int changed;
5843 		int have_serialnum;
5844 
5845 		changed = 1;
5846 		have_serialnum = 0;
5847 		csio = &done_ccb->csio;
5848 		priority = done_ccb->ccb_h.pinfo.priority;
5849 		serial_buf =
5850 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
5851 
5852 		/* Clean up from previous instance of this device */
5853 		if (path->device->serial_num != NULL) {
5854 			free(path->device->serial_num, M_DEVBUF);
5855 			path->device->serial_num = NULL;
5856 			path->device->serial_num_len = 0;
5857 		}
5858 
5859 		if (serial_buf == NULL) {
5860 			/*
5861 			 * Don't process the command as it was never sent
5862 			 */
5863 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
5864 			&& (serial_buf->length > 0)) {
5865 
5866 			have_serialnum = 1;
5867 			path->device->serial_num =
5868 				(u_int8_t *)malloc((serial_buf->length + 1),
5869 						   M_DEVBUF, M_NOWAIT);
5870 			if (path->device->serial_num != NULL) {
5871 				bcopy(serial_buf->serial_num,
5872 				      path->device->serial_num,
5873 				      serial_buf->length);
5874 				path->device->serial_num_len =
5875 				    serial_buf->length;
5876 				path->device->serial_num[serial_buf->length]
5877 				    = '\0';
5878 			}
5879 		} else if (cam_periph_error(done_ccb, 0,
5880 					    SF_RETRY_UA|SF_NO_PRINT,
5881 					    &softc->saved_ccb) == ERESTART) {
5882 			return;
5883 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5884 			/* Don't wedge the queue */
5885 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5886 					 /*run_queue*/TRUE);
5887 		}
5888 
5889 		/*
5890 		 * Let's see if we have seen this device before.
5891 		 */
5892 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
5893 			MD5_CTX context;
5894 			u_int8_t digest[16];
5895 
5896 			MD5Init(&context);
5897 
5898 			MD5Update(&context,
5899 				  (unsigned char *)&path->device->inq_data,
5900 				  sizeof(struct scsi_inquiry_data));
5901 
5902 			if (have_serialnum)
5903 				MD5Update(&context, serial_buf->serial_num,
5904 					  serial_buf->length);
5905 
5906 			MD5Final(digest, &context);
5907 			if (bcmp(softc->digest, digest, 16) == 0)
5908 				changed = 0;
5909 
5910 			/*
5911 			 * XXX Do we need to do a TUR in order to ensure
5912 			 *     that the device really hasn't changed???
5913 			 */
5914 			if ((changed != 0)
5915 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
5916 				xpt_async(AC_LOST_DEVICE, path, NULL);
5917 		}
5918 		if (serial_buf != NULL)
5919 			free(serial_buf, M_TEMP);
5920 
5921 		if (changed != 0) {
5922 			/*
5923 			 * Now that we have all the necessary
5924 			 * information to safely perform transfer
5925 			 * negotiations... Controllers don't perform
5926 			 * any negotiation or tagged queuing until
5927 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
5928 			 * received.  So, on a new device, just retreive
5929 			 * the user settings, and set them as the current
5930 			 * settings to set the device up.
5931 			 */
5932 			proberequestdefaultnegotiation(periph);
5933 			xpt_release_ccb(done_ccb);
5934 
5935 			/*
5936 			 * Perform a TUR to allow the controller to
5937 			 * perform any necessary transfer negotiation.
5938 			 */
5939 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
5940 			xpt_schedule(periph, priority);
5941 			return;
5942 		}
5943 		xpt_release_ccb(done_ccb);
5944 		break;
5945 	}
5946 	case PROBE_TUR_FOR_NEGOTIATION:
5947 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5948 			/* Don't wedge the queue */
5949 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5950 					 /*run_queue*/TRUE);
5951 		}
5952 
5953 		path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5954 
5955 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
5956 			/* Inform the XPT that a new device has been found */
5957 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5958 			xpt_action(done_ccb);
5959 
5960 			xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
5961 		}
5962 		xpt_release_ccb(done_ccb);
5963 		break;
5964 	}
5965 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5966 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
5967 	done_ccb->ccb_h.status = CAM_REQ_CMP;
5968 	xpt_done(done_ccb);
5969 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
5970 		cam_periph_invalidate(periph);
5971 		cam_periph_release(periph);
5972 	} else {
5973 		probeschedule(periph);
5974 	}
5975 }
5976 
5977 static void
5978 probecleanup(struct cam_periph *periph)
5979 {
5980 	free(periph->softc, M_TEMP);
5981 }
5982 
5983 static void
5984 xpt_find_quirk(struct cam_ed *device)
5985 {
5986 	caddr_t	match;
5987 
5988 	match = cam_quirkmatch((caddr_t)&device->inq_data,
5989 			       (caddr_t)xpt_quirk_table,
5990 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
5991 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
5992 
5993 	if (match == NULL)
5994 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
5995 
5996 	device->quirk = (struct xpt_quirk_entry *)match;
5997 }
5998 
5999 #ifdef CAM_NEW_TRAN_CODE
6000 
6001 static void
6002 xpt_devise_transport(struct cam_path *path)
6003 {
6004 	struct ccb_pathinq cpi;
6005 	struct ccb_trans_settings cts;
6006 	struct scsi_inquiry_data *inq_buf;
6007 
6008 	/* Get transport information from the SIM */
6009 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6010 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6011 	xpt_action((union ccb *)&cpi);
6012 
6013 	inq_buf = NULL;
6014 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6015 		inq_buf = &path->device->inq_data;
6016 	path->device->protocol = PROTO_SCSI;
6017 	path->device->protocol_version =
6018 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6019 	path->device->transport = cpi.transport;
6020 	path->device->transport_version = cpi.transport_version;
6021 
6022 	/*
6023 	 * Any device not using SPI3 features should
6024 	 * be considered SPI2 or lower.
6025 	 */
6026 	if (inq_buf != NULL) {
6027 		if (path->device->transport == XPORT_SPI
6028 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6029 		 && path->device->transport_version > 2)
6030 			path->device->transport_version = 2;
6031 	} else {
6032 		struct cam_ed* otherdev;
6033 
6034 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6035 		     otherdev != NULL;
6036 		     otherdev = TAILQ_NEXT(otherdev, links)) {
6037 			if (otherdev != path->device)
6038 				break;
6039 		}
6040 
6041 		if (otherdev != NULL) {
6042 			/*
6043 			 * Initially assume the same versioning as
6044 			 * prior luns for this target.
6045 			 */
6046 			path->device->protocol_version =
6047 			    otherdev->protocol_version;
6048 			path->device->transport_version =
6049 			    otherdev->transport_version;
6050 		} else {
6051 			/* Until we know better, opt for safty */
6052 			path->device->protocol_version = 2;
6053 			if (path->device->transport == XPORT_SPI)
6054 				path->device->transport_version = 2;
6055 			else
6056 				path->device->transport_version = 0;
6057 		}
6058 	}
6059 
6060 	/*
6061 	 * XXX
6062 	 * For a device compliant with SPC-2 we should be able
6063 	 * to determine the transport version supported by
6064 	 * scrutinizing the version descriptors in the
6065 	 * inquiry buffer.
6066 	 */
6067 
6068 	/* Tell the controller what we think */
6069 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6070 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6071 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
6072 	cts.transport = path->device->transport;
6073 	cts.transport_version = path->device->transport_version;
6074 	cts.protocol = path->device->protocol;
6075 	cts.protocol_version = path->device->protocol_version;
6076 	cts.proto_specific.valid = 0;
6077 	cts.xport_specific.valid = 0;
6078 	xpt_action((union ccb *)&cts);
6079 }
6080 
6081 static void
6082 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6083 			  int async_update)
6084 {
6085 	struct	ccb_pathinq cpi;
6086 	struct	ccb_trans_settings cur_cts;
6087 	struct	ccb_trans_settings_scsi *scsi;
6088 	struct	ccb_trans_settings_scsi *cur_scsi;
6089 	struct	cam_sim *sim;
6090 	struct	scsi_inquiry_data *inq_data;
6091 
6092 	if (device == NULL) {
6093 		cts->ccb_h.status = CAM_PATH_INVALID;
6094 		xpt_done((union ccb *)cts);
6095 		return;
6096 	}
6097 
6098 	if (cts->protocol == PROTO_UNKNOWN
6099 	 || cts->protocol == PROTO_UNSPECIFIED) {
6100 		cts->protocol = device->protocol;
6101 		cts->protocol_version = device->protocol_version;
6102 	}
6103 
6104 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6105 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6106 		cts->protocol_version = device->protocol_version;
6107 
6108 	if (cts->protocol != device->protocol) {
6109 		xpt_print_path(cts->ccb_h.path);
6110 		printf("Uninitialized Protocol %x:%x?\n",
6111 		       cts->protocol, device->protocol);
6112 		cts->protocol = device->protocol;
6113 	}
6114 
6115 	if (cts->protocol_version > device->protocol_version) {
6116 		if (bootverbose) {
6117 			xpt_print_path(cts->ccb_h.path);
6118 			printf("Down reving Protocol Version from %d to %d?\n",
6119 			       cts->protocol_version, device->protocol_version);
6120 		}
6121 		cts->protocol_version = device->protocol_version;
6122 	}
6123 
6124 	if (cts->transport == XPORT_UNKNOWN
6125 	 || cts->transport == XPORT_UNSPECIFIED) {
6126 		cts->transport = device->transport;
6127 		cts->transport_version = device->transport_version;
6128 	}
6129 
6130 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6131 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6132 		cts->transport_version = device->transport_version;
6133 
6134 	if (cts->transport != device->transport) {
6135 		xpt_print_path(cts->ccb_h.path);
6136 		printf("Uninitialized Transport %x:%x?\n",
6137 		       cts->transport, device->transport);
6138 		cts->transport = device->transport;
6139 	}
6140 
6141 	if (cts->transport_version > device->transport_version) {
6142 		if (bootverbose) {
6143 			xpt_print_path(cts->ccb_h.path);
6144 			printf("Down reving Transport Version from %d to %d?\n",
6145 			       cts->transport_version,
6146 			       device->transport_version);
6147 		}
6148 		cts->transport_version = device->transport_version;
6149 	}
6150 
6151 	sim = cts->ccb_h.path->bus->sim;
6152 
6153 	/*
6154 	 * Nothing more of interest to do unless
6155 	 * this is a device connected via the
6156 	 * SCSI protocol.
6157 	 */
6158 	if (cts->protocol != PROTO_SCSI) {
6159 		if (async_update == FALSE)
6160 			(*(sim->sim_action))(sim, (union ccb *)cts);
6161 		return;
6162 	}
6163 
6164 	inq_data = &device->inq_data;
6165 	scsi = &cts->proto_specific.scsi;
6166 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6167 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6168 	xpt_action((union ccb *)&cpi);
6169 
6170 	/* SCSI specific sanity checking */
6171 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6172 	 || (inq_data->flags & SID_CmdQue) == 0
6173 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6174 	 || (device->quirk->mintags == 0)) {
6175 		/*
6176 		 * Can't tag on hardware that doesn't support tags,
6177 		 * doesn't have it enabled, or has broken tag support.
6178 		 */
6179 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6180 	}
6181 
6182 	if (async_update == FALSE) {
6183 		/*
6184 		 * Perform sanity checking against what the
6185 		 * controller and device can do.
6186 		 */
6187 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6188 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6189 		cur_cts.type = cts->type;
6190 		xpt_action((union ccb *)&cur_cts);
6191 
6192 		cur_scsi = &cur_cts.proto_specific.scsi;
6193 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6194 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6195 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6196 		}
6197 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6198 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6199 	}
6200 
6201 	/* SPI specific sanity checking */
6202 	if (cts->transport == XPORT_SPI && async_update == FALSE) {
6203 		u_int spi3caps;
6204 		struct ccb_trans_settings_spi *spi;
6205 		struct ccb_trans_settings_spi *cur_spi;
6206 
6207 		spi = &cts->xport_specific.spi;
6208 
6209 		cur_spi = &cur_cts.xport_specific.spi;
6210 
6211 		/* Fill in any gaps in what the user gave us */
6212 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6213 			spi->sync_period = cur_spi->sync_period;
6214 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6215 			spi->sync_period = 0;
6216 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6217 			spi->sync_offset = cur_spi->sync_offset;
6218 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6219 			spi->sync_offset = 0;
6220 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6221 			spi->ppr_options = cur_spi->ppr_options;
6222 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6223 			spi->ppr_options = 0;
6224 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6225 			spi->bus_width = cur_spi->bus_width;
6226 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6227 			spi->bus_width = 0;
6228 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6229 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6230 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6231 		}
6232 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6233 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6234 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6235 		  && (inq_data->flags & SID_Sync) == 0
6236 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6237 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6238 		 || (cur_spi->sync_offset == 0)
6239 		 || (cur_spi->sync_period == 0)) {
6240 			/* Force async */
6241 			spi->sync_period = 0;
6242 			spi->sync_offset = 0;
6243 		}
6244 
6245 		switch (spi->bus_width) {
6246 		case MSG_EXT_WDTR_BUS_32_BIT:
6247 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6248 			  || (inq_data->flags & SID_WBus32) != 0
6249 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6250 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6251 				break;
6252 			/* Fall Through to 16-bit */
6253 		case MSG_EXT_WDTR_BUS_16_BIT:
6254 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6255 			  || (inq_data->flags & SID_WBus16) != 0
6256 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6257 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6258 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6259 				break;
6260 			}
6261 			/* Fall Through to 8-bit */
6262 		default: /* New bus width?? */
6263 		case MSG_EXT_WDTR_BUS_8_BIT:
6264 			/* All targets can do this */
6265 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6266 			break;
6267 		}
6268 
6269 		spi3caps = cpi.xport_specific.spi.ppr_options;
6270 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6271 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6272 			spi3caps &= inq_data->spi3data;
6273 
6274 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6275 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6276 
6277 		if ((spi3caps & SID_SPI_IUS) == 0)
6278 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6279 
6280 		if ((spi3caps & SID_SPI_QAS) == 0)
6281 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6282 
6283 		/* No SPI Transfer settings are allowed unless we are wide */
6284 		if (spi->bus_width == 0)
6285 			spi->ppr_options = 0;
6286 
6287 		if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) {
6288 			/*
6289 			 * Can't tag queue without disconnection.
6290 			 */
6291 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6292 			scsi->valid |= CTS_SCSI_VALID_TQ;
6293 		}
6294 
6295 		/*
6296 		 * If we are currently performing tagged transactions to
6297 		 * this device and want to change its negotiation parameters,
6298 		 * go non-tagged for a bit to give the controller a chance to
6299 		 * negotiate unhampered by tag messages.
6300 		 */
6301 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6302 		 && (device->inq_flags & SID_CmdQue) != 0
6303 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6304 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6305 				   CTS_SPI_VALID_SYNC_OFFSET|
6306 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6307 			xpt_toggle_tags(cts->ccb_h.path);
6308 	}
6309 
6310 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6311 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6312 		int device_tagenb;
6313 
6314 		/*
6315 		 * If we are transitioning from tags to no-tags or
6316 		 * vice-versa, we need to carefully freeze and restart
6317 		 * the queue so that we don't overlap tagged and non-tagged
6318 		 * commands.  We also temporarily stop tags if there is
6319 		 * a change in transfer negotiation settings to allow
6320 		 * "tag-less" negotiation.
6321 		 */
6322 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6323 		 || (device->inq_flags & SID_CmdQue) != 0)
6324 			device_tagenb = TRUE;
6325 		else
6326 			device_tagenb = FALSE;
6327 
6328 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6329 		  && device_tagenb == FALSE)
6330 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6331 		  && device_tagenb == TRUE)) {
6332 
6333 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6334 				/*
6335 				 * Delay change to use tags until after a
6336 				 * few commands have gone to this device so
6337 				 * the controller has time to perform transfer
6338 				 * negotiations without tagged messages getting
6339 				 * in the way.
6340 				 */
6341 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6342 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6343 			} else {
6344 				struct ccb_relsim crs;
6345 
6346 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6347 		  		device->inq_flags &= ~SID_CmdQue;
6348 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6349 						    sim->max_dev_openings);
6350 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6351 				device->tag_delay_count = 0;
6352 
6353 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6354 					      /*priority*/1);
6355 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6356 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6357 				crs.openings
6358 				    = crs.release_timeout
6359 				    = crs.qfrozen_cnt
6360 				    = 0;
6361 				xpt_action((union ccb *)&crs);
6362 			}
6363 		}
6364 	}
6365 	if (async_update == FALSE)
6366 		(*(sim->sim_action))(sim, (union ccb *)cts);
6367 }
6368 
6369 #else /* CAM_NEW_TRAN_CODE */
6370 
6371 static void
6372 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6373 			  int async_update)
6374 {
6375 	struct	cam_sim *sim;
6376 	int	qfrozen;
6377 
6378 	sim = cts->ccb_h.path->bus->sim;
6379 	if (async_update == FALSE) {
6380 		struct	scsi_inquiry_data *inq_data;
6381 		struct	ccb_pathinq cpi;
6382 		struct	ccb_trans_settings cur_cts;
6383 
6384 		if (device == NULL) {
6385 			cts->ccb_h.status = CAM_PATH_INVALID;
6386 			xpt_done((union ccb *)cts);
6387 			return;
6388 		}
6389 
6390 		/*
6391 		 * Perform sanity checking against what the
6392 		 * controller and device can do.
6393 		 */
6394 		xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6395 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6396 		xpt_action((union ccb *)&cpi);
6397 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6398 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6399 		cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
6400 		xpt_action((union ccb *)&cur_cts);
6401 		inq_data = &device->inq_data;
6402 
6403 		/* Fill in any gaps in what the user gave us */
6404 		if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
6405 			cts->sync_period = cur_cts.sync_period;
6406 		if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
6407 			cts->sync_offset = cur_cts.sync_offset;
6408 		if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
6409 			cts->bus_width = cur_cts.bus_width;
6410 		if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
6411 			cts->flags &= ~CCB_TRANS_DISC_ENB;
6412 			cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
6413 		}
6414 		if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
6415 			cts->flags &= ~CCB_TRANS_TAG_ENB;
6416 			cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
6417 		}
6418 
6419 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6420 		  && (inq_data->flags & SID_Sync) == 0)
6421 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6422 		 || (cts->sync_offset == 0)
6423 		 || (cts->sync_period == 0)) {
6424 			/* Force async */
6425 			cts->sync_period = 0;
6426 			cts->sync_offset = 0;
6427 		} else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6428 			&& (inq_data->spi3data & SID_SPI_CLOCK_DT) == 0
6429 			&& cts->sync_period <= 0x9) {
6430 			/*
6431 			 * Don't allow DT transmission rates if the
6432 			 * device does not support it.
6433 			 */
6434 			cts->sync_period = 0xa;
6435 		}
6436 
6437 		switch (cts->bus_width) {
6438 		case MSG_EXT_WDTR_BUS_32_BIT:
6439 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6440 			  || (inq_data->flags & SID_WBus32) != 0)
6441 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6442 				break;
6443 			/* Fall Through to 16-bit */
6444 		case MSG_EXT_WDTR_BUS_16_BIT:
6445 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6446 			  || (inq_data->flags & SID_WBus16) != 0)
6447 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6448 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6449 				break;
6450 			}
6451 			/* Fall Through to 8-bit */
6452 		default: /* New bus width?? */
6453 		case MSG_EXT_WDTR_BUS_8_BIT:
6454 			/* All targets can do this */
6455 			cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6456 			break;
6457 		}
6458 
6459 		if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
6460 			/*
6461 			 * Can't tag queue without disconnection.
6462 			 */
6463 			cts->flags &= ~CCB_TRANS_TAG_ENB;
6464 			cts->valid |= CCB_TRANS_TQ_VALID;
6465 		}
6466 
6467 		if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6468 		 || (inq_data->flags & SID_CmdQue) == 0
6469 		 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6470 		 || (device->quirk->mintags == 0)) {
6471 			/*
6472 			 * Can't tag on hardware that doesn't support,
6473 			 * doesn't have it enabled, or has broken tag support.
6474 			 */
6475 			cts->flags &= ~CCB_TRANS_TAG_ENB;
6476 		}
6477 	}
6478 
6479 	qfrozen = FALSE;
6480 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
6481 		int device_tagenb;
6482 
6483 		/*
6484 		 * If we are transitioning from tags to no-tags or
6485 		 * vice-versa, we need to carefully freeze and restart
6486 		 * the queue so that we don't overlap tagged and non-tagged
6487 		 * commands.  We also temporarily stop tags if there is
6488 		 * a change in transfer negotiation settings to allow
6489 		 * "tag-less" negotiation.
6490 		 */
6491 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6492 		 || (device->inq_flags & SID_CmdQue) != 0)
6493 			device_tagenb = TRUE;
6494 		else
6495 			device_tagenb = FALSE;
6496 
6497 		if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
6498 		  && device_tagenb == FALSE)
6499 		 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0
6500 		  && device_tagenb == TRUE)) {
6501 
6502 			if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
6503 				/*
6504 				 * Delay change to use tags until after a
6505 				 * few commands have gone to this device so
6506 				 * the controller has time to perform transfer
6507 				 * negotiations without tagged messages getting
6508 				 * in the way.
6509 				 */
6510 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6511 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6512 			} else {
6513 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6514 				qfrozen = TRUE;
6515 		  		device->inq_flags &= ~SID_CmdQue;
6516 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6517 						    sim->max_dev_openings);
6518 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6519 				device->tag_delay_count = 0;
6520 			}
6521 		}
6522 	}
6523 
6524 	if (async_update == FALSE) {
6525 		/*
6526 		 * If we are currently performing tagged transactions to
6527 		 * this device and want to change its negotiation parameters,
6528 		 * go non-tagged for a bit to give the controller a chance to
6529 		 * negotiate unhampered by tag messages.
6530 		 */
6531 		if ((device->inq_flags & SID_CmdQue) != 0
6532 		 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
6533 				   CCB_TRANS_SYNC_OFFSET_VALID|
6534 				   CCB_TRANS_BUS_WIDTH_VALID)) != 0)
6535 			xpt_toggle_tags(cts->ccb_h.path);
6536 
6537 		(*(sim->sim_action))(sim, (union ccb *)cts);
6538 	}
6539 
6540 	if (qfrozen) {
6541 		struct ccb_relsim crs;
6542 
6543 		xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6544 			      /*priority*/1);
6545 		crs.ccb_h.func_code = XPT_REL_SIMQ;
6546 		crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6547 		crs.openings
6548 		    = crs.release_timeout
6549 		    = crs.qfrozen_cnt
6550 		    = 0;
6551 		xpt_action((union ccb *)&crs);
6552 	}
6553 }
6554 
6555 
6556 #endif /* CAM_NEW_TRAN_CODE */
6557 
6558 static void
6559 xpt_toggle_tags(struct cam_path *path)
6560 {
6561 	struct cam_ed *dev;
6562 
6563 	/*
6564 	 * Give controllers a chance to renegotiate
6565 	 * before starting tag operations.  We
6566 	 * "toggle" tagged queuing off then on
6567 	 * which causes the tag enable command delay
6568 	 * counter to come into effect.
6569 	 */
6570 	dev = path->device;
6571 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6572 	 || ((dev->inq_flags & SID_CmdQue) != 0
6573  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6574 		struct ccb_trans_settings cts;
6575 
6576 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6577 #ifdef CAM_NEW_TRAN_CODE
6578 		cts.protocol = PROTO_SCSI;
6579 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6580 		cts.transport = XPORT_UNSPECIFIED;
6581 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6582 		cts.proto_specific.scsi.flags = 0;
6583 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6584 #else /* CAM_NEW_TRAN_CODE */
6585 		cts.flags = 0;
6586 		cts.valid = CCB_TRANS_TQ_VALID;
6587 #endif /* CAM_NEW_TRAN_CODE */
6588 		xpt_set_transfer_settings(&cts, path->device,
6589 					  /*async_update*/TRUE);
6590 #ifdef CAM_NEW_TRAN_CODE
6591 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6592 #else /* CAM_NEW_TRAN_CODE */
6593 		cts.flags = CCB_TRANS_TAG_ENB;
6594 #endif /* CAM_NEW_TRAN_CODE */
6595 		xpt_set_transfer_settings(&cts, path->device,
6596 					  /*async_update*/TRUE);
6597 	}
6598 }
6599 
6600 static void
6601 xpt_start_tags(struct cam_path *path)
6602 {
6603 	struct ccb_relsim crs;
6604 	struct cam_ed *device;
6605 	struct cam_sim *sim;
6606 	int    newopenings;
6607 
6608 	device = path->device;
6609 	sim = path->bus->sim;
6610 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6611 	xpt_freeze_devq(path, /*count*/1);
6612 	device->inq_flags |= SID_CmdQue;
6613 	newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
6614 	xpt_dev_ccbq_resize(path, newopenings);
6615 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6616 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6617 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6618 	crs.openings
6619 	    = crs.release_timeout
6620 	    = crs.qfrozen_cnt
6621 	    = 0;
6622 	xpt_action((union ccb *)&crs);
6623 }
6624 
6625 static int busses_to_config;
6626 static int busses_to_reset;
6627 
6628 static int
6629 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6630 {
6631 	if (bus->path_id != CAM_XPT_PATH_ID) {
6632 		struct cam_path path;
6633 		struct ccb_pathinq cpi;
6634 		int can_negotiate;
6635 
6636 		busses_to_config++;
6637 		xpt_compile_path(&path, NULL, bus->path_id,
6638 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6639 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6640 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6641 		xpt_action((union ccb *)&cpi);
6642 		can_negotiate = cpi.hba_inquiry;
6643 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6644 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6645 		 && can_negotiate)
6646 			busses_to_reset++;
6647 		xpt_release_path(&path);
6648 	}
6649 
6650 	return(1);
6651 }
6652 
6653 static int
6654 xptconfigfunc(struct cam_eb *bus, void *arg)
6655 {
6656 	struct	cam_path *path;
6657 	union	ccb *work_ccb;
6658 
6659 	if (bus->path_id != CAM_XPT_PATH_ID) {
6660 		cam_status status;
6661 		int can_negotiate;
6662 
6663 		work_ccb = xpt_alloc_ccb();
6664 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6665 					      CAM_TARGET_WILDCARD,
6666 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6667 			printf("xptconfigfunc: xpt_create_path failed with "
6668 			       "status %#x for bus %d\n", status, bus->path_id);
6669 			printf("xptconfigfunc: halting bus configuration\n");
6670 			xpt_free_ccb(work_ccb);
6671 			busses_to_config--;
6672 			xpt_finishconfig(xpt_periph, NULL);
6673 			return(0);
6674 		}
6675 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6676 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6677 		xpt_action(work_ccb);
6678 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6679 			printf("xptconfigfunc: CPI failed on bus %d "
6680 			       "with status %d\n", bus->path_id,
6681 			       work_ccb->ccb_h.status);
6682 			xpt_finishconfig(xpt_periph, work_ccb);
6683 			return(1);
6684 		}
6685 
6686 		can_negotiate = work_ccb->cpi.hba_inquiry;
6687 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6688 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6689 		 && (can_negotiate != 0)) {
6690 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6691 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6692 			work_ccb->ccb_h.cbfcnp = NULL;
6693 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6694 				  ("Resetting Bus\n"));
6695 			xpt_action(work_ccb);
6696 			xpt_finishconfig(xpt_periph, work_ccb);
6697 		} else {
6698 			/* Act as though we performed a successful BUS RESET */
6699 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6700 			xpt_finishconfig(xpt_periph, work_ccb);
6701 		}
6702 	}
6703 
6704 	return(1);
6705 }
6706 
6707 static void
6708 xpt_config(void *arg)
6709 {
6710 	/*
6711 	 * Now that interrupts are enabled, go find our devices
6712 	 */
6713 
6714 #ifdef CAMDEBUG
6715 	/* Setup debugging flags and path */
6716 #ifdef CAM_DEBUG_FLAGS
6717 	cam_dflags = CAM_DEBUG_FLAGS;
6718 #else /* !CAM_DEBUG_FLAGS */
6719 	cam_dflags = CAM_DEBUG_NONE;
6720 #endif /* CAM_DEBUG_FLAGS */
6721 #ifdef CAM_DEBUG_BUS
6722 	if (cam_dflags != CAM_DEBUG_NONE) {
6723 		if (xpt_create_path(&cam_dpath, xpt_periph,
6724 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6725 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6726 			printf("xpt_config: xpt_create_path() failed for debug"
6727 			       " target %d:%d:%d, debugging disabled\n",
6728 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6729 			cam_dflags = CAM_DEBUG_NONE;
6730 		}
6731 	} else
6732 		cam_dpath = NULL;
6733 #else /* !CAM_DEBUG_BUS */
6734 	cam_dpath = NULL;
6735 #endif /* CAM_DEBUG_BUS */
6736 #endif /* CAMDEBUG */
6737 
6738 	/*
6739 	 * Scan all installed busses.
6740 	 */
6741 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6742 
6743 	if (busses_to_config == 0) {
6744 		/* Call manually because we don't have any busses */
6745 		xpt_finishconfig(xpt_periph, NULL);
6746 	} else  {
6747 		if (busses_to_reset > 0 && SCSI_DELAY >= 2000) {
6748 			printf("Waiting %d seconds for SCSI "
6749 			       "devices to settle\n", SCSI_DELAY/1000);
6750 		}
6751 		xpt_for_all_busses(xptconfigfunc, NULL);
6752 	}
6753 }
6754 
6755 /*
6756  * If the given device only has one peripheral attached to it, and if that
6757  * peripheral is the passthrough driver, announce it.  This insures that the
6758  * user sees some sort of announcement for every peripheral in their system.
6759  */
6760 static int
6761 xptpassannouncefunc(struct cam_ed *device, void *arg)
6762 {
6763 	struct cam_periph *periph;
6764 	int i;
6765 
6766 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6767 	     periph = SLIST_NEXT(periph, periph_links), i++);
6768 
6769 	periph = SLIST_FIRST(&device->periphs);
6770 	if ((i == 1)
6771 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6772 		xpt_announce_periph(periph, NULL);
6773 
6774 	return(1);
6775 }
6776 
6777 static void
6778 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6779 {
6780 	struct	periph_driver **p_drv;
6781 	int	i;
6782 
6783 	if (done_ccb != NULL) {
6784 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6785 			  ("xpt_finishconfig\n"));
6786 		switch(done_ccb->ccb_h.func_code) {
6787 		case XPT_RESET_BUS:
6788 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6789 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6790 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6791 				xpt_action(done_ccb);
6792 				return;
6793 			}
6794 			/* FALLTHROUGH */
6795 		case XPT_SCAN_BUS:
6796 		default:
6797 			xpt_free_path(done_ccb->ccb_h.path);
6798 			busses_to_config--;
6799 			break;
6800 		}
6801 	}
6802 
6803 	if (busses_to_config == 0) {
6804 		/* Register all the peripheral drivers */
6805 		/* XXX This will have to change when we have loadable modules */
6806 		p_drv = periph_drivers;
6807 		for (i = 0; p_drv[i] != NULL; i++) {
6808 			(*p_drv[i]->init)();
6809 		}
6810 
6811 		/*
6812 		 * Check for devices with no "standard" peripheral driver
6813 		 * attached.  For any devices like that, announce the
6814 		 * passthrough driver so the user will see something.
6815 		 */
6816 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6817 
6818 		/* Release our hook so that the boot can continue. */
6819 		config_intrhook_disestablish(xpt_config_hook);
6820 		free(xpt_config_hook, M_TEMP);
6821 		xpt_config_hook = NULL;
6822 	}
6823 	if (done_ccb != NULL)
6824 		xpt_free_ccb(done_ccb);
6825 }
6826 
6827 static void
6828 xptaction(struct cam_sim *sim, union ccb *work_ccb)
6829 {
6830 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
6831 
6832 	switch (work_ccb->ccb_h.func_code) {
6833 	/* Common cases first */
6834 	case XPT_PATH_INQ:		/* Path routing inquiry */
6835 	{
6836 		struct ccb_pathinq *cpi;
6837 
6838 		cpi = &work_ccb->cpi;
6839 		cpi->version_num = 1; /* XXX??? */
6840 		cpi->hba_inquiry = 0;
6841 		cpi->target_sprt = 0;
6842 		cpi->hba_misc = 0;
6843 		cpi->hba_eng_cnt = 0;
6844 		cpi->max_target = 0;
6845 		cpi->max_lun = 0;
6846 		cpi->initiator_id = 0;
6847 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
6848 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
6849 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
6850 		cpi->unit_number = sim->unit_number;
6851 		cpi->bus_id = sim->bus_id;
6852 		cpi->base_transfer_speed = 0;
6853 #ifdef CAM_NEW_TRAN_CODE
6854 		cpi->protocol = PROTO_UNSPECIFIED;
6855 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
6856 		cpi->transport = XPORT_UNSPECIFIED;
6857 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
6858 #endif /* CAM_NEW_TRAN_CODE */
6859 		cpi->ccb_h.status = CAM_REQ_CMP;
6860 		xpt_done(work_ccb);
6861 		break;
6862 	}
6863 	default:
6864 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
6865 		xpt_done(work_ccb);
6866 		break;
6867 	}
6868 }
6869 
6870 /*
6871  * The xpt as a "controller" has no interrupt sources, so polling
6872  * is a no-op.
6873  */
6874 static void
6875 xptpoll(struct cam_sim *sim)
6876 {
6877 }
6878 
6879 static void
6880 camisr(void *V_queue)
6881 {
6882 	cam_isrq_t *queue = V_queue;
6883 	int	s;
6884 	struct	ccb_hdr *ccb_h;
6885 
6886 	s = splcam();
6887 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
6888 		int	runq;
6889 
6890 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
6891 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
6892 		splx(s);
6893 
6894 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
6895 			  ("camisr"));
6896 
6897 		runq = FALSE;
6898 
6899 		if (ccb_h->flags & CAM_HIGH_POWER) {
6900 			struct highpowerlist	*hphead;
6901 			struct cam_ed		*device;
6902 			union ccb		*send_ccb;
6903 
6904 			hphead = &highpowerq;
6905 
6906 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
6907 
6908 			/*
6909 			 * Increment the count since this command is done.
6910 			 */
6911 			num_highpower++;
6912 
6913 			/*
6914 			 * Any high powered commands queued up?
6915 			 */
6916 			if (send_ccb != NULL) {
6917 				device = send_ccb->ccb_h.path->device;
6918 
6919 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
6920 
6921 				xpt_release_devq(send_ccb->ccb_h.path,
6922 						 /*count*/1, /*runqueue*/TRUE);
6923 			}
6924 		}
6925 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
6926 			struct cam_ed *dev;
6927 
6928 			dev = ccb_h->path->device;
6929 
6930 			s = splcam();
6931 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
6932 
6933 			ccb_h->path->bus->sim->devq->send_active--;
6934 			ccb_h->path->bus->sim->devq->send_openings++;
6935 			splx(s);
6936 
6937 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
6938 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
6939 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
6940 			  && (dev->ccbq.dev_active == 0))) {
6941 
6942 				xpt_release_devq(ccb_h->path, /*count*/1,
6943 						 /*run_queue*/TRUE);
6944 			}
6945 
6946 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6947 			 && (--dev->tag_delay_count == 0))
6948 				xpt_start_tags(ccb_h->path);
6949 
6950 			if ((dev->ccbq.queue.entries > 0)
6951 			 && (dev->qfrozen_cnt == 0)
6952 			 && (device_is_send_queued(dev) == 0)) {
6953 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
6954 							      dev);
6955 			}
6956 		}
6957 
6958 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
6959 			xpt_release_simq(ccb_h->path->bus->sim,
6960 					 /*run_queue*/TRUE);
6961 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
6962 			runq = FALSE;
6963 		}
6964 
6965 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
6966 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
6967 			xpt_release_devq(ccb_h->path, /*count*/1,
6968 					 /*run_queue*/TRUE);
6969 			ccb_h->status &= ~CAM_DEV_QFRZN;
6970 		} else if (runq) {
6971 			xpt_run_dev_sendq(ccb_h->path->bus);
6972 		}
6973 
6974 		/* Call the peripheral driver's callback */
6975 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
6976 
6977 		/* Raise IPL for while test */
6978 		s = splcam();
6979 	}
6980 	splx(s);
6981 }
6982