1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/proc.h> 44 #include <sys/sbuf.h> 45 #include <sys/smp.h> 46 #include <sys/taskqueue.h> 47 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/sysctl.h> 51 #include <sys/kthread.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_periph.h> 56 #include <cam/cam_queue.h> 57 #include <cam/cam_sim.h> 58 #include <cam/cam_xpt.h> 59 #include <cam/cam_xpt_sim.h> 60 #include <cam/cam_xpt_periph.h> 61 #include <cam/cam_xpt_internal.h> 62 #include <cam/cam_debug.h> 63 #include <cam/cam_compat.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/scsi/scsi_message.h> 67 #include <cam/scsi/scsi_pass.h> 68 69 #include <machine/md_var.h> /* geometry translation */ 70 #include <machine/stdarg.h> /* for xpt_print below */ 71 72 #include "opt_cam.h" 73 74 /* 75 * This is the maximum number of high powered commands (e.g. start unit) 76 * that can be outstanding at a particular time. 77 */ 78 #ifndef CAM_MAX_HIGHPOWER 79 #define CAM_MAX_HIGHPOWER 4 80 #endif 81 82 /* Datastructures internal to the xpt layer */ 83 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 84 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 85 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 86 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 87 88 /* Object for defering XPT actions to a taskqueue */ 89 struct xpt_task { 90 struct task task; 91 void *data1; 92 uintptr_t data2; 93 }; 94 95 struct xpt_softc { 96 uint32_t xpt_generation; 97 98 /* number of high powered commands that can go through right now */ 99 struct mtx xpt_highpower_lock; 100 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 101 int num_highpower; 102 103 /* queue for handling async rescan requests. */ 104 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 105 int buses_to_config; 106 int buses_config_done; 107 108 /* Registered busses */ 109 TAILQ_HEAD(,cam_eb) xpt_busses; 110 u_int bus_generation; 111 112 struct intr_config_hook *xpt_config_hook; 113 114 int boot_delay; 115 struct callout boot_callout; 116 117 struct mtx xpt_topo_lock; 118 struct mtx xpt_lock; 119 struct taskqueue *xpt_taskq; 120 }; 121 122 typedef enum { 123 DM_RET_COPY = 0x01, 124 DM_RET_FLAG_MASK = 0x0f, 125 DM_RET_NONE = 0x00, 126 DM_RET_STOP = 0x10, 127 DM_RET_DESCEND = 0x20, 128 DM_RET_ERROR = 0x30, 129 DM_RET_ACTION_MASK = 0xf0 130 } dev_match_ret; 131 132 typedef enum { 133 XPT_DEPTH_BUS, 134 XPT_DEPTH_TARGET, 135 XPT_DEPTH_DEVICE, 136 XPT_DEPTH_PERIPH 137 } xpt_traverse_depth; 138 139 struct xpt_traverse_config { 140 xpt_traverse_depth depth; 141 void *tr_func; 142 void *tr_arg; 143 }; 144 145 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 146 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 147 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 148 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 149 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 150 151 /* Transport layer configuration information */ 152 static struct xpt_softc xsoftc; 153 154 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 155 156 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 157 &xsoftc.boot_delay, 0, "Bus registration wait time"); 158 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 159 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 160 161 struct cam_doneq { 162 struct mtx_padalign cam_doneq_mtx; 163 STAILQ_HEAD(, ccb_hdr) cam_doneq; 164 int cam_doneq_sleep; 165 }; 166 167 static struct cam_doneq cam_doneqs[MAXCPU]; 168 static int cam_num_doneqs; 169 static struct proc *cam_proc; 170 171 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 172 &cam_num_doneqs, 0, "Number of completion queues/threads"); 173 174 struct cam_periph *xpt_periph; 175 176 static periph_init_t xpt_periph_init; 177 178 static struct periph_driver xpt_driver = 179 { 180 xpt_periph_init, "xpt", 181 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 182 CAM_PERIPH_DRV_EARLY 183 }; 184 185 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 186 187 static d_open_t xptopen; 188 static d_close_t xptclose; 189 static d_ioctl_t xptioctl; 190 static d_ioctl_t xptdoioctl; 191 192 static struct cdevsw xpt_cdevsw = { 193 .d_version = D_VERSION, 194 .d_flags = 0, 195 .d_open = xptopen, 196 .d_close = xptclose, 197 .d_ioctl = xptioctl, 198 .d_name = "xpt", 199 }; 200 201 /* Storage for debugging datastructures */ 202 struct cam_path *cam_dpath; 203 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 204 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 205 &cam_dflags, 0, "Enabled debug flags"); 206 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 207 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 208 &cam_debug_delay, 0, "Delay in us after each debug message"); 209 210 /* Our boot-time initialization hook */ 211 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 212 213 static moduledata_t cam_moduledata = { 214 "cam", 215 cam_module_event_handler, 216 NULL 217 }; 218 219 static int xpt_init(void *); 220 221 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 222 MODULE_VERSION(cam, 1); 223 224 225 static void xpt_async_bcast(struct async_list *async_head, 226 u_int32_t async_code, 227 struct cam_path *path, 228 void *async_arg); 229 static path_id_t xptnextfreepathid(void); 230 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 231 static union ccb *xpt_get_ccb(struct cam_periph *periph); 232 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 233 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 234 static void xpt_run_allocq_task(void *context, int pending); 235 static void xpt_run_devq(struct cam_devq *devq); 236 static timeout_t xpt_release_devq_timeout; 237 static void xpt_release_simq_timeout(void *arg) __unused; 238 static void xpt_acquire_bus(struct cam_eb *bus); 239 static void xpt_release_bus(struct cam_eb *bus); 240 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 241 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 242 int run_queue); 243 static struct cam_et* 244 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 245 static void xpt_acquire_target(struct cam_et *target); 246 static void xpt_release_target(struct cam_et *target); 247 static struct cam_eb* 248 xpt_find_bus(path_id_t path_id); 249 static struct cam_et* 250 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 251 static struct cam_ed* 252 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 253 static void xpt_config(void *arg); 254 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 255 u_int32_t new_priority); 256 static xpt_devicefunc_t xptpassannouncefunc; 257 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 258 static void xptpoll(struct cam_sim *sim); 259 static void camisr_runqueue(void); 260 static void xpt_done_process(struct ccb_hdr *ccb_h); 261 static void xpt_done_td(void *); 262 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 263 u_int num_patterns, struct cam_eb *bus); 264 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 265 u_int num_patterns, 266 struct cam_ed *device); 267 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 268 u_int num_patterns, 269 struct cam_periph *periph); 270 static xpt_busfunc_t xptedtbusfunc; 271 static xpt_targetfunc_t xptedttargetfunc; 272 static xpt_devicefunc_t xptedtdevicefunc; 273 static xpt_periphfunc_t xptedtperiphfunc; 274 static xpt_pdrvfunc_t xptplistpdrvfunc; 275 static xpt_periphfunc_t xptplistperiphfunc; 276 static int xptedtmatch(struct ccb_dev_match *cdm); 277 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 278 static int xptbustraverse(struct cam_eb *start_bus, 279 xpt_busfunc_t *tr_func, void *arg); 280 static int xpttargettraverse(struct cam_eb *bus, 281 struct cam_et *start_target, 282 xpt_targetfunc_t *tr_func, void *arg); 283 static int xptdevicetraverse(struct cam_et *target, 284 struct cam_ed *start_device, 285 xpt_devicefunc_t *tr_func, void *arg); 286 static int xptperiphtraverse(struct cam_ed *device, 287 struct cam_periph *start_periph, 288 xpt_periphfunc_t *tr_func, void *arg); 289 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 290 xpt_pdrvfunc_t *tr_func, void *arg); 291 static int xptpdperiphtraverse(struct periph_driver **pdrv, 292 struct cam_periph *start_periph, 293 xpt_periphfunc_t *tr_func, 294 void *arg); 295 static xpt_busfunc_t xptdefbusfunc; 296 static xpt_targetfunc_t xptdeftargetfunc; 297 static xpt_devicefunc_t xptdefdevicefunc; 298 static xpt_periphfunc_t xptdefperiphfunc; 299 static void xpt_finishconfig_task(void *context, int pending); 300 static void xpt_dev_async_default(u_int32_t async_code, 301 struct cam_eb *bus, 302 struct cam_et *target, 303 struct cam_ed *device, 304 void *async_arg); 305 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 306 struct cam_et *target, 307 lun_id_t lun_id); 308 static xpt_devicefunc_t xptsetasyncfunc; 309 static xpt_busfunc_t xptsetasyncbusfunc; 310 static cam_status xptregister(struct cam_periph *periph, 311 void *arg); 312 static __inline int device_is_queued(struct cam_ed *device); 313 314 static __inline int 315 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 316 { 317 int retval; 318 319 mtx_assert(&devq->send_mtx, MA_OWNED); 320 if ((dev->ccbq.queue.entries > 0) && 321 (dev->ccbq.dev_openings > 0) && 322 (dev->ccbq.queue.qfrozen_cnt == 0)) { 323 /* 324 * The priority of a device waiting for controller 325 * resources is that of the highest priority CCB 326 * enqueued. 327 */ 328 retval = 329 xpt_schedule_dev(&devq->send_queue, 330 &dev->devq_entry, 331 CAMQ_GET_PRIO(&dev->ccbq.queue)); 332 } else { 333 retval = 0; 334 } 335 return (retval); 336 } 337 338 static __inline int 339 device_is_queued(struct cam_ed *device) 340 { 341 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 342 } 343 344 static void 345 xpt_periph_init() 346 { 347 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 348 } 349 350 static int 351 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 352 { 353 354 /* 355 * Only allow read-write access. 356 */ 357 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 358 return(EPERM); 359 360 /* 361 * We don't allow nonblocking access. 362 */ 363 if ((flags & O_NONBLOCK) != 0) { 364 printf("%s: can't do nonblocking access\n", devtoname(dev)); 365 return(ENODEV); 366 } 367 368 return(0); 369 } 370 371 static int 372 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 373 { 374 375 return(0); 376 } 377 378 /* 379 * Don't automatically grab the xpt softc lock here even though this is going 380 * through the xpt device. The xpt device is really just a back door for 381 * accessing other devices and SIMs, so the right thing to do is to grab 382 * the appropriate SIM lock once the bus/SIM is located. 383 */ 384 static int 385 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 386 { 387 int error; 388 389 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 390 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 391 } 392 return (error); 393 } 394 395 static int 396 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 397 { 398 int error; 399 400 error = 0; 401 402 switch(cmd) { 403 /* 404 * For the transport layer CAMIOCOMMAND ioctl, we really only want 405 * to accept CCB types that don't quite make sense to send through a 406 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 407 * in the CAM spec. 408 */ 409 case CAMIOCOMMAND: { 410 union ccb *ccb; 411 union ccb *inccb; 412 struct cam_eb *bus; 413 414 inccb = (union ccb *)addr; 415 416 bus = xpt_find_bus(inccb->ccb_h.path_id); 417 if (bus == NULL) 418 return (EINVAL); 419 420 switch (inccb->ccb_h.func_code) { 421 case XPT_SCAN_BUS: 422 case XPT_RESET_BUS: 423 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 424 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 425 xpt_release_bus(bus); 426 return (EINVAL); 427 } 428 break; 429 case XPT_SCAN_TGT: 430 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 431 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 432 xpt_release_bus(bus); 433 return (EINVAL); 434 } 435 break; 436 default: 437 break; 438 } 439 440 switch(inccb->ccb_h.func_code) { 441 case XPT_SCAN_BUS: 442 case XPT_RESET_BUS: 443 case XPT_PATH_INQ: 444 case XPT_ENG_INQ: 445 case XPT_SCAN_LUN: 446 case XPT_SCAN_TGT: 447 448 ccb = xpt_alloc_ccb(); 449 450 /* 451 * Create a path using the bus, target, and lun the 452 * user passed in. 453 */ 454 if (xpt_create_path(&ccb->ccb_h.path, NULL, 455 inccb->ccb_h.path_id, 456 inccb->ccb_h.target_id, 457 inccb->ccb_h.target_lun) != 458 CAM_REQ_CMP){ 459 error = EINVAL; 460 xpt_free_ccb(ccb); 461 break; 462 } 463 /* Ensure all of our fields are correct */ 464 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 465 inccb->ccb_h.pinfo.priority); 466 xpt_merge_ccb(ccb, inccb); 467 xpt_path_lock(ccb->ccb_h.path); 468 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 469 xpt_path_unlock(ccb->ccb_h.path); 470 bcopy(ccb, inccb, sizeof(union ccb)); 471 xpt_free_path(ccb->ccb_h.path); 472 xpt_free_ccb(ccb); 473 break; 474 475 case XPT_DEBUG: { 476 union ccb ccb; 477 478 /* 479 * This is an immediate CCB, so it's okay to 480 * allocate it on the stack. 481 */ 482 483 /* 484 * Create a path using the bus, target, and lun the 485 * user passed in. 486 */ 487 if (xpt_create_path(&ccb.ccb_h.path, NULL, 488 inccb->ccb_h.path_id, 489 inccb->ccb_h.target_id, 490 inccb->ccb_h.target_lun) != 491 CAM_REQ_CMP){ 492 error = EINVAL; 493 break; 494 } 495 /* Ensure all of our fields are correct */ 496 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 497 inccb->ccb_h.pinfo.priority); 498 xpt_merge_ccb(&ccb, inccb); 499 xpt_action(&ccb); 500 bcopy(&ccb, inccb, sizeof(union ccb)); 501 xpt_free_path(ccb.ccb_h.path); 502 break; 503 504 } 505 case XPT_DEV_MATCH: { 506 struct cam_periph_map_info mapinfo; 507 struct cam_path *old_path; 508 509 /* 510 * We can't deal with physical addresses for this 511 * type of transaction. 512 */ 513 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 514 CAM_DATA_VADDR) { 515 error = EINVAL; 516 break; 517 } 518 519 /* 520 * Save this in case the caller had it set to 521 * something in particular. 522 */ 523 old_path = inccb->ccb_h.path; 524 525 /* 526 * We really don't need a path for the matching 527 * code. The path is needed because of the 528 * debugging statements in xpt_action(). They 529 * assume that the CCB has a valid path. 530 */ 531 inccb->ccb_h.path = xpt_periph->path; 532 533 bzero(&mapinfo, sizeof(mapinfo)); 534 535 /* 536 * Map the pattern and match buffers into kernel 537 * virtual address space. 538 */ 539 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 540 541 if (error) { 542 inccb->ccb_h.path = old_path; 543 break; 544 } 545 546 /* 547 * This is an immediate CCB, we can send it on directly. 548 */ 549 xpt_action(inccb); 550 551 /* 552 * Map the buffers back into user space. 553 */ 554 cam_periph_unmapmem(inccb, &mapinfo); 555 556 inccb->ccb_h.path = old_path; 557 558 error = 0; 559 break; 560 } 561 default: 562 error = ENOTSUP; 563 break; 564 } 565 xpt_release_bus(bus); 566 break; 567 } 568 /* 569 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 570 * with the periphal driver name and unit name filled in. The other 571 * fields don't really matter as input. The passthrough driver name 572 * ("pass"), and unit number are passed back in the ccb. The current 573 * device generation number, and the index into the device peripheral 574 * driver list, and the status are also passed back. Note that 575 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 576 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 577 * (or rather should be) impossible for the device peripheral driver 578 * list to change since we look at the whole thing in one pass, and 579 * we do it with lock protection. 580 * 581 */ 582 case CAMGETPASSTHRU: { 583 union ccb *ccb; 584 struct cam_periph *periph; 585 struct periph_driver **p_drv; 586 char *name; 587 u_int unit; 588 int base_periph_found; 589 590 ccb = (union ccb *)addr; 591 unit = ccb->cgdl.unit_number; 592 name = ccb->cgdl.periph_name; 593 base_periph_found = 0; 594 595 /* 596 * Sanity check -- make sure we don't get a null peripheral 597 * driver name. 598 */ 599 if (*ccb->cgdl.periph_name == '\0') { 600 error = EINVAL; 601 break; 602 } 603 604 /* Keep the list from changing while we traverse it */ 605 xpt_lock_buses(); 606 607 /* first find our driver in the list of drivers */ 608 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 609 if (strcmp((*p_drv)->driver_name, name) == 0) 610 break; 611 612 if (*p_drv == NULL) { 613 xpt_unlock_buses(); 614 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 615 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 616 *ccb->cgdl.periph_name = '\0'; 617 ccb->cgdl.unit_number = 0; 618 error = ENOENT; 619 break; 620 } 621 622 /* 623 * Run through every peripheral instance of this driver 624 * and check to see whether it matches the unit passed 625 * in by the user. If it does, get out of the loops and 626 * find the passthrough driver associated with that 627 * peripheral driver. 628 */ 629 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 630 periph = TAILQ_NEXT(periph, unit_links)) { 631 632 if (periph->unit_number == unit) 633 break; 634 } 635 /* 636 * If we found the peripheral driver that the user passed 637 * in, go through all of the peripheral drivers for that 638 * particular device and look for a passthrough driver. 639 */ 640 if (periph != NULL) { 641 struct cam_ed *device; 642 int i; 643 644 base_periph_found = 1; 645 device = periph->path->device; 646 for (i = 0, periph = SLIST_FIRST(&device->periphs); 647 periph != NULL; 648 periph = SLIST_NEXT(periph, periph_links), i++) { 649 /* 650 * Check to see whether we have a 651 * passthrough device or not. 652 */ 653 if (strcmp(periph->periph_name, "pass") == 0) { 654 /* 655 * Fill in the getdevlist fields. 656 */ 657 strcpy(ccb->cgdl.periph_name, 658 periph->periph_name); 659 ccb->cgdl.unit_number = 660 periph->unit_number; 661 if (SLIST_NEXT(periph, periph_links)) 662 ccb->cgdl.status = 663 CAM_GDEVLIST_MORE_DEVS; 664 else 665 ccb->cgdl.status = 666 CAM_GDEVLIST_LAST_DEVICE; 667 ccb->cgdl.generation = 668 device->generation; 669 ccb->cgdl.index = i; 670 /* 671 * Fill in some CCB header fields 672 * that the user may want. 673 */ 674 ccb->ccb_h.path_id = 675 periph->path->bus->path_id; 676 ccb->ccb_h.target_id = 677 periph->path->target->target_id; 678 ccb->ccb_h.target_lun = 679 periph->path->device->lun_id; 680 ccb->ccb_h.status = CAM_REQ_CMP; 681 break; 682 } 683 } 684 } 685 686 /* 687 * If the periph is null here, one of two things has 688 * happened. The first possibility is that we couldn't 689 * find the unit number of the particular peripheral driver 690 * that the user is asking about. e.g. the user asks for 691 * the passthrough driver for "da11". We find the list of 692 * "da" peripherals all right, but there is no unit 11. 693 * The other possibility is that we went through the list 694 * of peripheral drivers attached to the device structure, 695 * but didn't find one with the name "pass". Either way, 696 * we return ENOENT, since we couldn't find something. 697 */ 698 if (periph == NULL) { 699 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 700 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 701 *ccb->cgdl.periph_name = '\0'; 702 ccb->cgdl.unit_number = 0; 703 error = ENOENT; 704 /* 705 * It is unfortunate that this is even necessary, 706 * but there are many, many clueless users out there. 707 * If this is true, the user is looking for the 708 * passthrough driver, but doesn't have one in his 709 * kernel. 710 */ 711 if (base_periph_found == 1) { 712 printf("xptioctl: pass driver is not in the " 713 "kernel\n"); 714 printf("xptioctl: put \"device pass\" in " 715 "your kernel config file\n"); 716 } 717 } 718 xpt_unlock_buses(); 719 break; 720 } 721 default: 722 error = ENOTTY; 723 break; 724 } 725 726 return(error); 727 } 728 729 static int 730 cam_module_event_handler(module_t mod, int what, void *arg) 731 { 732 int error; 733 734 switch (what) { 735 case MOD_LOAD: 736 if ((error = xpt_init(NULL)) != 0) 737 return (error); 738 break; 739 case MOD_UNLOAD: 740 return EBUSY; 741 default: 742 return EOPNOTSUPP; 743 } 744 745 return 0; 746 } 747 748 static void 749 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 750 { 751 752 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 753 xpt_free_path(done_ccb->ccb_h.path); 754 xpt_free_ccb(done_ccb); 755 } else { 756 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 757 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 758 } 759 xpt_release_boot(); 760 } 761 762 /* thread to handle bus rescans */ 763 static void 764 xpt_scanner_thread(void *dummy) 765 { 766 union ccb *ccb; 767 struct cam_path path; 768 769 xpt_lock_buses(); 770 for (;;) { 771 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 772 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 773 "-", 0); 774 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 775 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 776 xpt_unlock_buses(); 777 778 /* 779 * Since lock can be dropped inside and path freed 780 * by completion callback even before return here, 781 * take our own path copy for reference. 782 */ 783 xpt_copy_path(&path, ccb->ccb_h.path); 784 xpt_path_lock(&path); 785 xpt_action(ccb); 786 xpt_path_unlock(&path); 787 xpt_release_path(&path); 788 789 xpt_lock_buses(); 790 } 791 } 792 } 793 794 void 795 xpt_rescan(union ccb *ccb) 796 { 797 struct ccb_hdr *hdr; 798 799 /* Prepare request */ 800 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 801 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 802 ccb->ccb_h.func_code = XPT_SCAN_BUS; 803 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 804 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 805 ccb->ccb_h.func_code = XPT_SCAN_TGT; 806 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 807 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 808 ccb->ccb_h.func_code = XPT_SCAN_LUN; 809 else { 810 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 811 xpt_free_path(ccb->ccb_h.path); 812 xpt_free_ccb(ccb); 813 return; 814 } 815 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 816 ccb->ccb_h.cbfcnp = xpt_rescan_done; 817 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 818 /* Don't make duplicate entries for the same paths. */ 819 xpt_lock_buses(); 820 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 821 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 822 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 823 wakeup(&xsoftc.ccb_scanq); 824 xpt_unlock_buses(); 825 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 826 xpt_free_path(ccb->ccb_h.path); 827 xpt_free_ccb(ccb); 828 return; 829 } 830 } 831 } 832 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 833 xsoftc.buses_to_config++; 834 wakeup(&xsoftc.ccb_scanq); 835 xpt_unlock_buses(); 836 } 837 838 /* Functions accessed by the peripheral drivers */ 839 static int 840 xpt_init(void *dummy) 841 { 842 struct cam_sim *xpt_sim; 843 struct cam_path *path; 844 struct cam_devq *devq; 845 cam_status status; 846 int error, i; 847 848 TAILQ_INIT(&xsoftc.xpt_busses); 849 TAILQ_INIT(&xsoftc.ccb_scanq); 850 STAILQ_INIT(&xsoftc.highpowerq); 851 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 852 853 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 854 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 855 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 856 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 857 858 #ifdef CAM_BOOT_DELAY 859 /* 860 * Override this value at compile time to assist our users 861 * who don't use loader to boot a kernel. 862 */ 863 xsoftc.boot_delay = CAM_BOOT_DELAY; 864 #endif 865 /* 866 * The xpt layer is, itself, the equivelent of a SIM. 867 * Allow 16 ccbs in the ccb pool for it. This should 868 * give decent parallelism when we probe busses and 869 * perform other XPT functions. 870 */ 871 devq = cam_simq_alloc(16); 872 xpt_sim = cam_sim_alloc(xptaction, 873 xptpoll, 874 "xpt", 875 /*softc*/NULL, 876 /*unit*/0, 877 /*mtx*/&xsoftc.xpt_lock, 878 /*max_dev_transactions*/0, 879 /*max_tagged_dev_transactions*/0, 880 devq); 881 if (xpt_sim == NULL) 882 return (ENOMEM); 883 884 mtx_lock(&xsoftc.xpt_lock); 885 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 886 mtx_unlock(&xsoftc.xpt_lock); 887 printf("xpt_init: xpt_bus_register failed with status %#x," 888 " failing attach\n", status); 889 return (EINVAL); 890 } 891 mtx_unlock(&xsoftc.xpt_lock); 892 893 /* 894 * Looking at the XPT from the SIM layer, the XPT is 895 * the equivelent of a peripheral driver. Allocate 896 * a peripheral driver entry for us. 897 */ 898 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 899 CAM_TARGET_WILDCARD, 900 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 901 printf("xpt_init: xpt_create_path failed with status %#x," 902 " failing attach\n", status); 903 return (EINVAL); 904 } 905 xpt_path_lock(path); 906 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 907 path, NULL, 0, xpt_sim); 908 xpt_path_unlock(path); 909 xpt_free_path(path); 910 911 if (cam_num_doneqs < 1) 912 cam_num_doneqs = 1 + mp_ncpus / 6; 913 else if (cam_num_doneqs > MAXCPU) 914 cam_num_doneqs = MAXCPU; 915 for (i = 0; i < cam_num_doneqs; i++) { 916 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 917 MTX_DEF); 918 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 919 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 920 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 921 if (error != 0) { 922 cam_num_doneqs = i; 923 break; 924 } 925 } 926 if (cam_num_doneqs < 1) { 927 printf("xpt_init: Cannot init completion queues " 928 "- failing attach\n"); 929 return (ENOMEM); 930 } 931 /* 932 * Register a callback for when interrupts are enabled. 933 */ 934 xsoftc.xpt_config_hook = 935 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 936 M_CAMXPT, M_NOWAIT | M_ZERO); 937 if (xsoftc.xpt_config_hook == NULL) { 938 printf("xpt_init: Cannot malloc config hook " 939 "- failing attach\n"); 940 return (ENOMEM); 941 } 942 xsoftc.xpt_config_hook->ich_func = xpt_config; 943 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 944 free (xsoftc.xpt_config_hook, M_CAMXPT); 945 printf("xpt_init: config_intrhook_establish failed " 946 "- failing attach\n"); 947 } 948 949 return (0); 950 } 951 952 static cam_status 953 xptregister(struct cam_periph *periph, void *arg) 954 { 955 struct cam_sim *xpt_sim; 956 957 if (periph == NULL) { 958 printf("xptregister: periph was NULL!!\n"); 959 return(CAM_REQ_CMP_ERR); 960 } 961 962 xpt_sim = (struct cam_sim *)arg; 963 xpt_sim->softc = periph; 964 xpt_periph = periph; 965 periph->softc = NULL; 966 967 return(CAM_REQ_CMP); 968 } 969 970 int32_t 971 xpt_add_periph(struct cam_periph *periph) 972 { 973 struct cam_ed *device; 974 int32_t status; 975 976 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 977 device = periph->path->device; 978 status = CAM_REQ_CMP; 979 if (device != NULL) { 980 mtx_lock(&device->target->bus->eb_mtx); 981 device->generation++; 982 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 983 mtx_unlock(&device->target->bus->eb_mtx); 984 atomic_add_32(&xsoftc.xpt_generation, 1); 985 } 986 987 return (status); 988 } 989 990 void 991 xpt_remove_periph(struct cam_periph *periph) 992 { 993 struct cam_ed *device; 994 995 device = periph->path->device; 996 if (device != NULL) { 997 mtx_lock(&device->target->bus->eb_mtx); 998 device->generation++; 999 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1000 mtx_unlock(&device->target->bus->eb_mtx); 1001 atomic_add_32(&xsoftc.xpt_generation, 1); 1002 } 1003 } 1004 1005 1006 void 1007 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1008 { 1009 struct cam_path *path = periph->path; 1010 1011 cam_periph_assert(periph, MA_OWNED); 1012 periph->flags |= CAM_PERIPH_ANNOUNCED; 1013 1014 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1015 periph->periph_name, periph->unit_number, 1016 path->bus->sim->sim_name, 1017 path->bus->sim->unit_number, 1018 path->bus->sim->bus_id, 1019 path->bus->path_id, 1020 path->target->target_id, 1021 (uintmax_t)path->device->lun_id); 1022 printf("%s%d: ", periph->periph_name, periph->unit_number); 1023 if (path->device->protocol == PROTO_SCSI) 1024 scsi_print_inquiry(&path->device->inq_data); 1025 else if (path->device->protocol == PROTO_ATA || 1026 path->device->protocol == PROTO_SATAPM) 1027 ata_print_ident(&path->device->ident_data); 1028 else if (path->device->protocol == PROTO_SEMB) 1029 semb_print_ident( 1030 (struct sep_identify_data *)&path->device->ident_data); 1031 else 1032 printf("Unknown protocol device\n"); 1033 if (path->device->serial_num_len > 0) { 1034 /* Don't wrap the screen - print only the first 60 chars */ 1035 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1036 periph->unit_number, path->device->serial_num); 1037 } 1038 /* Announce transport details. */ 1039 (*(path->bus->xport->announce))(periph); 1040 /* Announce command queueing. */ 1041 if (path->device->inq_flags & SID_CmdQue 1042 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1043 printf("%s%d: Command Queueing enabled\n", 1044 periph->periph_name, periph->unit_number); 1045 } 1046 /* Announce caller's details if they've passed in. */ 1047 if (announce_string != NULL) 1048 printf("%s%d: %s\n", periph->periph_name, 1049 periph->unit_number, announce_string); 1050 } 1051 1052 void 1053 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1054 { 1055 if (quirks != 0) { 1056 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1057 periph->unit_number, quirks, bit_string); 1058 } 1059 } 1060 1061 void 1062 xpt_denounce_periph(struct cam_periph *periph) 1063 { 1064 struct cam_path *path = periph->path; 1065 1066 cam_periph_assert(periph, MA_OWNED); 1067 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1068 periph->periph_name, periph->unit_number, 1069 path->bus->sim->sim_name, 1070 path->bus->sim->unit_number, 1071 path->bus->sim->bus_id, 1072 path->bus->path_id, 1073 path->target->target_id, 1074 (uintmax_t)path->device->lun_id); 1075 printf("%s%d: ", periph->periph_name, periph->unit_number); 1076 if (path->device->protocol == PROTO_SCSI) 1077 scsi_print_inquiry_short(&path->device->inq_data); 1078 else if (path->device->protocol == PROTO_ATA || 1079 path->device->protocol == PROTO_SATAPM) 1080 ata_print_ident_short(&path->device->ident_data); 1081 else if (path->device->protocol == PROTO_SEMB) 1082 semb_print_ident_short( 1083 (struct sep_identify_data *)&path->device->ident_data); 1084 else 1085 printf("Unknown protocol device"); 1086 if (path->device->serial_num_len > 0) 1087 printf(" s/n %.60s", path->device->serial_num); 1088 printf(" detached\n"); 1089 } 1090 1091 1092 int 1093 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1094 { 1095 int ret = -1, l; 1096 struct ccb_dev_advinfo cdai; 1097 struct scsi_vpd_id_descriptor *idd; 1098 1099 xpt_path_assert(path, MA_OWNED); 1100 1101 memset(&cdai, 0, sizeof(cdai)); 1102 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1103 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1104 cdai.bufsiz = len; 1105 1106 if (!strcmp(attr, "GEOM::ident")) 1107 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1108 else if (!strcmp(attr, "GEOM::physpath")) 1109 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1110 else if (strcmp(attr, "GEOM::lunid") == 0 || 1111 strcmp(attr, "GEOM::lunname") == 0) { 1112 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1113 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1114 } else 1115 goto out; 1116 1117 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1118 if (cdai.buf == NULL) { 1119 ret = ENOMEM; 1120 goto out; 1121 } 1122 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1123 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1124 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1125 if (cdai.provsiz == 0) 1126 goto out; 1127 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1128 if (strcmp(attr, "GEOM::lunid") == 0) { 1129 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1130 cdai.provsiz, scsi_devid_is_lun_naa); 1131 if (idd == NULL) 1132 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1133 cdai.provsiz, scsi_devid_is_lun_eui64); 1134 } else 1135 idd = NULL; 1136 if (idd == NULL) 1137 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1138 cdai.provsiz, scsi_devid_is_lun_t10); 1139 if (idd == NULL) 1140 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1141 cdai.provsiz, scsi_devid_is_lun_name); 1142 if (idd == NULL) 1143 goto out; 1144 ret = 0; 1145 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1146 if (idd->length < len) { 1147 for (l = 0; l < idd->length; l++) 1148 buf[l] = idd->identifier[l] ? 1149 idd->identifier[l] : ' '; 1150 buf[l] = 0; 1151 } else 1152 ret = EFAULT; 1153 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1154 l = strnlen(idd->identifier, idd->length); 1155 if (l < len) { 1156 bcopy(idd->identifier, buf, l); 1157 buf[l] = 0; 1158 } else 1159 ret = EFAULT; 1160 } else { 1161 if (idd->length * 2 < len) { 1162 for (l = 0; l < idd->length; l++) 1163 sprintf(buf + l * 2, "%02x", 1164 idd->identifier[l]); 1165 } else 1166 ret = EFAULT; 1167 } 1168 } else { 1169 ret = 0; 1170 if (strlcpy(buf, cdai.buf, len) >= len) 1171 ret = EFAULT; 1172 } 1173 1174 out: 1175 if (cdai.buf != NULL) 1176 free(cdai.buf, M_CAMXPT); 1177 return ret; 1178 } 1179 1180 static dev_match_ret 1181 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1182 struct cam_eb *bus) 1183 { 1184 dev_match_ret retval; 1185 int i; 1186 1187 retval = DM_RET_NONE; 1188 1189 /* 1190 * If we aren't given something to match against, that's an error. 1191 */ 1192 if (bus == NULL) 1193 return(DM_RET_ERROR); 1194 1195 /* 1196 * If there are no match entries, then this bus matches no 1197 * matter what. 1198 */ 1199 if ((patterns == NULL) || (num_patterns == 0)) 1200 return(DM_RET_DESCEND | DM_RET_COPY); 1201 1202 for (i = 0; i < num_patterns; i++) { 1203 struct bus_match_pattern *cur_pattern; 1204 1205 /* 1206 * If the pattern in question isn't for a bus node, we 1207 * aren't interested. However, we do indicate to the 1208 * calling routine that we should continue descending the 1209 * tree, since the user wants to match against lower-level 1210 * EDT elements. 1211 */ 1212 if (patterns[i].type != DEV_MATCH_BUS) { 1213 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1214 retval |= DM_RET_DESCEND; 1215 continue; 1216 } 1217 1218 cur_pattern = &patterns[i].pattern.bus_pattern; 1219 1220 /* 1221 * If they want to match any bus node, we give them any 1222 * device node. 1223 */ 1224 if (cur_pattern->flags == BUS_MATCH_ANY) { 1225 /* set the copy flag */ 1226 retval |= DM_RET_COPY; 1227 1228 /* 1229 * If we've already decided on an action, go ahead 1230 * and return. 1231 */ 1232 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1233 return(retval); 1234 } 1235 1236 /* 1237 * Not sure why someone would do this... 1238 */ 1239 if (cur_pattern->flags == BUS_MATCH_NONE) 1240 continue; 1241 1242 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1243 && (cur_pattern->path_id != bus->path_id)) 1244 continue; 1245 1246 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1247 && (cur_pattern->bus_id != bus->sim->bus_id)) 1248 continue; 1249 1250 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1251 && (cur_pattern->unit_number != bus->sim->unit_number)) 1252 continue; 1253 1254 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1255 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1256 DEV_IDLEN) != 0)) 1257 continue; 1258 1259 /* 1260 * If we get to this point, the user definitely wants 1261 * information on this bus. So tell the caller to copy the 1262 * data out. 1263 */ 1264 retval |= DM_RET_COPY; 1265 1266 /* 1267 * If the return action has been set to descend, then we 1268 * know that we've already seen a non-bus matching 1269 * expression, therefore we need to further descend the tree. 1270 * This won't change by continuing around the loop, so we 1271 * go ahead and return. If we haven't seen a non-bus 1272 * matching expression, we keep going around the loop until 1273 * we exhaust the matching expressions. We'll set the stop 1274 * flag once we fall out of the loop. 1275 */ 1276 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1277 return(retval); 1278 } 1279 1280 /* 1281 * If the return action hasn't been set to descend yet, that means 1282 * we haven't seen anything other than bus matching patterns. So 1283 * tell the caller to stop descending the tree -- the user doesn't 1284 * want to match against lower level tree elements. 1285 */ 1286 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1287 retval |= DM_RET_STOP; 1288 1289 return(retval); 1290 } 1291 1292 static dev_match_ret 1293 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1294 struct cam_ed *device) 1295 { 1296 dev_match_ret retval; 1297 int i; 1298 1299 retval = DM_RET_NONE; 1300 1301 /* 1302 * If we aren't given something to match against, that's an error. 1303 */ 1304 if (device == NULL) 1305 return(DM_RET_ERROR); 1306 1307 /* 1308 * If there are no match entries, then this device matches no 1309 * matter what. 1310 */ 1311 if ((patterns == NULL) || (num_patterns == 0)) 1312 return(DM_RET_DESCEND | DM_RET_COPY); 1313 1314 for (i = 0; i < num_patterns; i++) { 1315 struct device_match_pattern *cur_pattern; 1316 struct scsi_vpd_device_id *device_id_page; 1317 1318 /* 1319 * If the pattern in question isn't for a device node, we 1320 * aren't interested. 1321 */ 1322 if (patterns[i].type != DEV_MATCH_DEVICE) { 1323 if ((patterns[i].type == DEV_MATCH_PERIPH) 1324 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1325 retval |= DM_RET_DESCEND; 1326 continue; 1327 } 1328 1329 cur_pattern = &patterns[i].pattern.device_pattern; 1330 1331 /* Error out if mutually exclusive options are specified. */ 1332 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1333 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1334 return(DM_RET_ERROR); 1335 1336 /* 1337 * If they want to match any device node, we give them any 1338 * device node. 1339 */ 1340 if (cur_pattern->flags == DEV_MATCH_ANY) 1341 goto copy_dev_node; 1342 1343 /* 1344 * Not sure why someone would do this... 1345 */ 1346 if (cur_pattern->flags == DEV_MATCH_NONE) 1347 continue; 1348 1349 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1350 && (cur_pattern->path_id != device->target->bus->path_id)) 1351 continue; 1352 1353 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1354 && (cur_pattern->target_id != device->target->target_id)) 1355 continue; 1356 1357 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1358 && (cur_pattern->target_lun != device->lun_id)) 1359 continue; 1360 1361 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1362 && (cam_quirkmatch((caddr_t)&device->inq_data, 1363 (caddr_t)&cur_pattern->data.inq_pat, 1364 1, sizeof(cur_pattern->data.inq_pat), 1365 scsi_static_inquiry_match) == NULL)) 1366 continue; 1367 1368 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1369 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1370 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1371 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1372 device->device_id_len 1373 - SVPD_DEVICE_ID_HDR_LEN, 1374 cur_pattern->data.devid_pat.id, 1375 cur_pattern->data.devid_pat.id_len) != 0)) 1376 continue; 1377 1378 copy_dev_node: 1379 /* 1380 * If we get to this point, the user definitely wants 1381 * information on this device. So tell the caller to copy 1382 * the data out. 1383 */ 1384 retval |= DM_RET_COPY; 1385 1386 /* 1387 * If the return action has been set to descend, then we 1388 * know that we've already seen a peripheral matching 1389 * expression, therefore we need to further descend the tree. 1390 * This won't change by continuing around the loop, so we 1391 * go ahead and return. If we haven't seen a peripheral 1392 * matching expression, we keep going around the loop until 1393 * we exhaust the matching expressions. We'll set the stop 1394 * flag once we fall out of the loop. 1395 */ 1396 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1397 return(retval); 1398 } 1399 1400 /* 1401 * If the return action hasn't been set to descend yet, that means 1402 * we haven't seen any peripheral matching patterns. So tell the 1403 * caller to stop descending the tree -- the user doesn't want to 1404 * match against lower level tree elements. 1405 */ 1406 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1407 retval |= DM_RET_STOP; 1408 1409 return(retval); 1410 } 1411 1412 /* 1413 * Match a single peripheral against any number of match patterns. 1414 */ 1415 static dev_match_ret 1416 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1417 struct cam_periph *periph) 1418 { 1419 dev_match_ret retval; 1420 int i; 1421 1422 /* 1423 * If we aren't given something to match against, that's an error. 1424 */ 1425 if (periph == NULL) 1426 return(DM_RET_ERROR); 1427 1428 /* 1429 * If there are no match entries, then this peripheral matches no 1430 * matter what. 1431 */ 1432 if ((patterns == NULL) || (num_patterns == 0)) 1433 return(DM_RET_STOP | DM_RET_COPY); 1434 1435 /* 1436 * There aren't any nodes below a peripheral node, so there's no 1437 * reason to descend the tree any further. 1438 */ 1439 retval = DM_RET_STOP; 1440 1441 for (i = 0; i < num_patterns; i++) { 1442 struct periph_match_pattern *cur_pattern; 1443 1444 /* 1445 * If the pattern in question isn't for a peripheral, we 1446 * aren't interested. 1447 */ 1448 if (patterns[i].type != DEV_MATCH_PERIPH) 1449 continue; 1450 1451 cur_pattern = &patterns[i].pattern.periph_pattern; 1452 1453 /* 1454 * If they want to match on anything, then we will do so. 1455 */ 1456 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1457 /* set the copy flag */ 1458 retval |= DM_RET_COPY; 1459 1460 /* 1461 * We've already set the return action to stop, 1462 * since there are no nodes below peripherals in 1463 * the tree. 1464 */ 1465 return(retval); 1466 } 1467 1468 /* 1469 * Not sure why someone would do this... 1470 */ 1471 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1472 continue; 1473 1474 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1475 && (cur_pattern->path_id != periph->path->bus->path_id)) 1476 continue; 1477 1478 /* 1479 * For the target and lun id's, we have to make sure the 1480 * target and lun pointers aren't NULL. The xpt peripheral 1481 * has a wildcard target and device. 1482 */ 1483 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1484 && ((periph->path->target == NULL) 1485 ||(cur_pattern->target_id != periph->path->target->target_id))) 1486 continue; 1487 1488 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1489 && ((periph->path->device == NULL) 1490 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1491 continue; 1492 1493 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1494 && (cur_pattern->unit_number != periph->unit_number)) 1495 continue; 1496 1497 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1498 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1499 DEV_IDLEN) != 0)) 1500 continue; 1501 1502 /* 1503 * If we get to this point, the user definitely wants 1504 * information on this peripheral. So tell the caller to 1505 * copy the data out. 1506 */ 1507 retval |= DM_RET_COPY; 1508 1509 /* 1510 * The return action has already been set to stop, since 1511 * peripherals don't have any nodes below them in the EDT. 1512 */ 1513 return(retval); 1514 } 1515 1516 /* 1517 * If we get to this point, the peripheral that was passed in 1518 * doesn't match any of the patterns. 1519 */ 1520 return(retval); 1521 } 1522 1523 static int 1524 xptedtbusfunc(struct cam_eb *bus, void *arg) 1525 { 1526 struct ccb_dev_match *cdm; 1527 struct cam_et *target; 1528 dev_match_ret retval; 1529 1530 cdm = (struct ccb_dev_match *)arg; 1531 1532 /* 1533 * If our position is for something deeper in the tree, that means 1534 * that we've already seen this node. So, we keep going down. 1535 */ 1536 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1537 && (cdm->pos.cookie.bus == bus) 1538 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1539 && (cdm->pos.cookie.target != NULL)) 1540 retval = DM_RET_DESCEND; 1541 else 1542 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1543 1544 /* 1545 * If we got an error, bail out of the search. 1546 */ 1547 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1548 cdm->status = CAM_DEV_MATCH_ERROR; 1549 return(0); 1550 } 1551 1552 /* 1553 * If the copy flag is set, copy this bus out. 1554 */ 1555 if (retval & DM_RET_COPY) { 1556 int spaceleft, j; 1557 1558 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1559 sizeof(struct dev_match_result)); 1560 1561 /* 1562 * If we don't have enough space to put in another 1563 * match result, save our position and tell the 1564 * user there are more devices to check. 1565 */ 1566 if (spaceleft < sizeof(struct dev_match_result)) { 1567 bzero(&cdm->pos, sizeof(cdm->pos)); 1568 cdm->pos.position_type = 1569 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1570 1571 cdm->pos.cookie.bus = bus; 1572 cdm->pos.generations[CAM_BUS_GENERATION]= 1573 xsoftc.bus_generation; 1574 cdm->status = CAM_DEV_MATCH_MORE; 1575 return(0); 1576 } 1577 j = cdm->num_matches; 1578 cdm->num_matches++; 1579 cdm->matches[j].type = DEV_MATCH_BUS; 1580 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1581 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1582 cdm->matches[j].result.bus_result.unit_number = 1583 bus->sim->unit_number; 1584 strncpy(cdm->matches[j].result.bus_result.dev_name, 1585 bus->sim->sim_name, DEV_IDLEN); 1586 } 1587 1588 /* 1589 * If the user is only interested in busses, there's no 1590 * reason to descend to the next level in the tree. 1591 */ 1592 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1593 return(1); 1594 1595 /* 1596 * If there is a target generation recorded, check it to 1597 * make sure the target list hasn't changed. 1598 */ 1599 mtx_lock(&bus->eb_mtx); 1600 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1601 && (cdm->pos.cookie.bus == bus) 1602 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1603 && (cdm->pos.cookie.target != NULL)) { 1604 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1605 bus->generation)) { 1606 mtx_unlock(&bus->eb_mtx); 1607 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1608 return (0); 1609 } 1610 target = (struct cam_et *)cdm->pos.cookie.target; 1611 target->refcount++; 1612 } else 1613 target = NULL; 1614 mtx_unlock(&bus->eb_mtx); 1615 1616 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1617 } 1618 1619 static int 1620 xptedttargetfunc(struct cam_et *target, void *arg) 1621 { 1622 struct ccb_dev_match *cdm; 1623 struct cam_eb *bus; 1624 struct cam_ed *device; 1625 1626 cdm = (struct ccb_dev_match *)arg; 1627 bus = target->bus; 1628 1629 /* 1630 * If there is a device list generation recorded, check it to 1631 * make sure the device list hasn't changed. 1632 */ 1633 mtx_lock(&bus->eb_mtx); 1634 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1635 && (cdm->pos.cookie.bus == bus) 1636 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1637 && (cdm->pos.cookie.target == target) 1638 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1639 && (cdm->pos.cookie.device != NULL)) { 1640 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1641 target->generation) { 1642 mtx_unlock(&bus->eb_mtx); 1643 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1644 return(0); 1645 } 1646 device = (struct cam_ed *)cdm->pos.cookie.device; 1647 device->refcount++; 1648 } else 1649 device = NULL; 1650 mtx_unlock(&bus->eb_mtx); 1651 1652 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1653 } 1654 1655 static int 1656 xptedtdevicefunc(struct cam_ed *device, void *arg) 1657 { 1658 struct cam_eb *bus; 1659 struct cam_periph *periph; 1660 struct ccb_dev_match *cdm; 1661 dev_match_ret retval; 1662 1663 cdm = (struct ccb_dev_match *)arg; 1664 bus = device->target->bus; 1665 1666 /* 1667 * If our position is for something deeper in the tree, that means 1668 * that we've already seen this node. So, we keep going down. 1669 */ 1670 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1671 && (cdm->pos.cookie.device == device) 1672 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1673 && (cdm->pos.cookie.periph != NULL)) 1674 retval = DM_RET_DESCEND; 1675 else 1676 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1677 device); 1678 1679 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1680 cdm->status = CAM_DEV_MATCH_ERROR; 1681 return(0); 1682 } 1683 1684 /* 1685 * If the copy flag is set, copy this device out. 1686 */ 1687 if (retval & DM_RET_COPY) { 1688 int spaceleft, j; 1689 1690 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1691 sizeof(struct dev_match_result)); 1692 1693 /* 1694 * If we don't have enough space to put in another 1695 * match result, save our position and tell the 1696 * user there are more devices to check. 1697 */ 1698 if (spaceleft < sizeof(struct dev_match_result)) { 1699 bzero(&cdm->pos, sizeof(cdm->pos)); 1700 cdm->pos.position_type = 1701 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1702 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1703 1704 cdm->pos.cookie.bus = device->target->bus; 1705 cdm->pos.generations[CAM_BUS_GENERATION]= 1706 xsoftc.bus_generation; 1707 cdm->pos.cookie.target = device->target; 1708 cdm->pos.generations[CAM_TARGET_GENERATION] = 1709 device->target->bus->generation; 1710 cdm->pos.cookie.device = device; 1711 cdm->pos.generations[CAM_DEV_GENERATION] = 1712 device->target->generation; 1713 cdm->status = CAM_DEV_MATCH_MORE; 1714 return(0); 1715 } 1716 j = cdm->num_matches; 1717 cdm->num_matches++; 1718 cdm->matches[j].type = DEV_MATCH_DEVICE; 1719 cdm->matches[j].result.device_result.path_id = 1720 device->target->bus->path_id; 1721 cdm->matches[j].result.device_result.target_id = 1722 device->target->target_id; 1723 cdm->matches[j].result.device_result.target_lun = 1724 device->lun_id; 1725 cdm->matches[j].result.device_result.protocol = 1726 device->protocol; 1727 bcopy(&device->inq_data, 1728 &cdm->matches[j].result.device_result.inq_data, 1729 sizeof(struct scsi_inquiry_data)); 1730 bcopy(&device->ident_data, 1731 &cdm->matches[j].result.device_result.ident_data, 1732 sizeof(struct ata_params)); 1733 1734 /* Let the user know whether this device is unconfigured */ 1735 if (device->flags & CAM_DEV_UNCONFIGURED) 1736 cdm->matches[j].result.device_result.flags = 1737 DEV_RESULT_UNCONFIGURED; 1738 else 1739 cdm->matches[j].result.device_result.flags = 1740 DEV_RESULT_NOFLAG; 1741 } 1742 1743 /* 1744 * If the user isn't interested in peripherals, don't descend 1745 * the tree any further. 1746 */ 1747 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1748 return(1); 1749 1750 /* 1751 * If there is a peripheral list generation recorded, make sure 1752 * it hasn't changed. 1753 */ 1754 xpt_lock_buses(); 1755 mtx_lock(&bus->eb_mtx); 1756 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1757 && (cdm->pos.cookie.bus == bus) 1758 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1759 && (cdm->pos.cookie.target == device->target) 1760 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1761 && (cdm->pos.cookie.device == device) 1762 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1763 && (cdm->pos.cookie.periph != NULL)) { 1764 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1765 device->generation) { 1766 mtx_unlock(&bus->eb_mtx); 1767 xpt_unlock_buses(); 1768 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1769 return(0); 1770 } 1771 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1772 periph->refcount++; 1773 } else 1774 periph = NULL; 1775 mtx_unlock(&bus->eb_mtx); 1776 xpt_unlock_buses(); 1777 1778 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1779 } 1780 1781 static int 1782 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1783 { 1784 struct ccb_dev_match *cdm; 1785 dev_match_ret retval; 1786 1787 cdm = (struct ccb_dev_match *)arg; 1788 1789 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1790 1791 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1792 cdm->status = CAM_DEV_MATCH_ERROR; 1793 return(0); 1794 } 1795 1796 /* 1797 * If the copy flag is set, copy this peripheral out. 1798 */ 1799 if (retval & DM_RET_COPY) { 1800 int spaceleft, j; 1801 1802 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1803 sizeof(struct dev_match_result)); 1804 1805 /* 1806 * If we don't have enough space to put in another 1807 * match result, save our position and tell the 1808 * user there are more devices to check. 1809 */ 1810 if (spaceleft < sizeof(struct dev_match_result)) { 1811 bzero(&cdm->pos, sizeof(cdm->pos)); 1812 cdm->pos.position_type = 1813 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1814 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1815 CAM_DEV_POS_PERIPH; 1816 1817 cdm->pos.cookie.bus = periph->path->bus; 1818 cdm->pos.generations[CAM_BUS_GENERATION]= 1819 xsoftc.bus_generation; 1820 cdm->pos.cookie.target = periph->path->target; 1821 cdm->pos.generations[CAM_TARGET_GENERATION] = 1822 periph->path->bus->generation; 1823 cdm->pos.cookie.device = periph->path->device; 1824 cdm->pos.generations[CAM_DEV_GENERATION] = 1825 periph->path->target->generation; 1826 cdm->pos.cookie.periph = periph; 1827 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1828 periph->path->device->generation; 1829 cdm->status = CAM_DEV_MATCH_MORE; 1830 return(0); 1831 } 1832 1833 j = cdm->num_matches; 1834 cdm->num_matches++; 1835 cdm->matches[j].type = DEV_MATCH_PERIPH; 1836 cdm->matches[j].result.periph_result.path_id = 1837 periph->path->bus->path_id; 1838 cdm->matches[j].result.periph_result.target_id = 1839 periph->path->target->target_id; 1840 cdm->matches[j].result.periph_result.target_lun = 1841 periph->path->device->lun_id; 1842 cdm->matches[j].result.periph_result.unit_number = 1843 periph->unit_number; 1844 strncpy(cdm->matches[j].result.periph_result.periph_name, 1845 periph->periph_name, DEV_IDLEN); 1846 } 1847 1848 return(1); 1849 } 1850 1851 static int 1852 xptedtmatch(struct ccb_dev_match *cdm) 1853 { 1854 struct cam_eb *bus; 1855 int ret; 1856 1857 cdm->num_matches = 0; 1858 1859 /* 1860 * Check the bus list generation. If it has changed, the user 1861 * needs to reset everything and start over. 1862 */ 1863 xpt_lock_buses(); 1864 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1865 && (cdm->pos.cookie.bus != NULL)) { 1866 if (cdm->pos.generations[CAM_BUS_GENERATION] != 1867 xsoftc.bus_generation) { 1868 xpt_unlock_buses(); 1869 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1870 return(0); 1871 } 1872 bus = (struct cam_eb *)cdm->pos.cookie.bus; 1873 bus->refcount++; 1874 } else 1875 bus = NULL; 1876 xpt_unlock_buses(); 1877 1878 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 1879 1880 /* 1881 * If we get back 0, that means that we had to stop before fully 1882 * traversing the EDT. It also means that one of the subroutines 1883 * has set the status field to the proper value. If we get back 1, 1884 * we've fully traversed the EDT and copied out any matching entries. 1885 */ 1886 if (ret == 1) 1887 cdm->status = CAM_DEV_MATCH_LAST; 1888 1889 return(ret); 1890 } 1891 1892 static int 1893 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1894 { 1895 struct cam_periph *periph; 1896 struct ccb_dev_match *cdm; 1897 1898 cdm = (struct ccb_dev_match *)arg; 1899 1900 xpt_lock_buses(); 1901 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1902 && (cdm->pos.cookie.pdrv == pdrv) 1903 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1904 && (cdm->pos.cookie.periph != NULL)) { 1905 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1906 (*pdrv)->generation) { 1907 xpt_unlock_buses(); 1908 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1909 return(0); 1910 } 1911 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1912 periph->refcount++; 1913 } else 1914 periph = NULL; 1915 xpt_unlock_buses(); 1916 1917 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 1918 } 1919 1920 static int 1921 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1922 { 1923 struct ccb_dev_match *cdm; 1924 dev_match_ret retval; 1925 1926 cdm = (struct ccb_dev_match *)arg; 1927 1928 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1929 1930 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1931 cdm->status = CAM_DEV_MATCH_ERROR; 1932 return(0); 1933 } 1934 1935 /* 1936 * If the copy flag is set, copy this peripheral out. 1937 */ 1938 if (retval & DM_RET_COPY) { 1939 int spaceleft, j; 1940 1941 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1942 sizeof(struct dev_match_result)); 1943 1944 /* 1945 * If we don't have enough space to put in another 1946 * match result, save our position and tell the 1947 * user there are more devices to check. 1948 */ 1949 if (spaceleft < sizeof(struct dev_match_result)) { 1950 struct periph_driver **pdrv; 1951 1952 pdrv = NULL; 1953 bzero(&cdm->pos, sizeof(cdm->pos)); 1954 cdm->pos.position_type = 1955 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1956 CAM_DEV_POS_PERIPH; 1957 1958 /* 1959 * This may look a bit non-sensical, but it is 1960 * actually quite logical. There are very few 1961 * peripheral drivers, and bloating every peripheral 1962 * structure with a pointer back to its parent 1963 * peripheral driver linker set entry would cost 1964 * more in the long run than doing this quick lookup. 1965 */ 1966 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1967 if (strcmp((*pdrv)->driver_name, 1968 periph->periph_name) == 0) 1969 break; 1970 } 1971 1972 if (*pdrv == NULL) { 1973 cdm->status = CAM_DEV_MATCH_ERROR; 1974 return(0); 1975 } 1976 1977 cdm->pos.cookie.pdrv = pdrv; 1978 /* 1979 * The periph generation slot does double duty, as 1980 * does the periph pointer slot. They are used for 1981 * both edt and pdrv lookups and positioning. 1982 */ 1983 cdm->pos.cookie.periph = periph; 1984 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1985 (*pdrv)->generation; 1986 cdm->status = CAM_DEV_MATCH_MORE; 1987 return(0); 1988 } 1989 1990 j = cdm->num_matches; 1991 cdm->num_matches++; 1992 cdm->matches[j].type = DEV_MATCH_PERIPH; 1993 cdm->matches[j].result.periph_result.path_id = 1994 periph->path->bus->path_id; 1995 1996 /* 1997 * The transport layer peripheral doesn't have a target or 1998 * lun. 1999 */ 2000 if (periph->path->target) 2001 cdm->matches[j].result.periph_result.target_id = 2002 periph->path->target->target_id; 2003 else 2004 cdm->matches[j].result.periph_result.target_id = 2005 CAM_TARGET_WILDCARD; 2006 2007 if (periph->path->device) 2008 cdm->matches[j].result.periph_result.target_lun = 2009 periph->path->device->lun_id; 2010 else 2011 cdm->matches[j].result.periph_result.target_lun = 2012 CAM_LUN_WILDCARD; 2013 2014 cdm->matches[j].result.periph_result.unit_number = 2015 periph->unit_number; 2016 strncpy(cdm->matches[j].result.periph_result.periph_name, 2017 periph->periph_name, DEV_IDLEN); 2018 } 2019 2020 return(1); 2021 } 2022 2023 static int 2024 xptperiphlistmatch(struct ccb_dev_match *cdm) 2025 { 2026 int ret; 2027 2028 cdm->num_matches = 0; 2029 2030 /* 2031 * At this point in the edt traversal function, we check the bus 2032 * list generation to make sure that no busses have been added or 2033 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2034 * For the peripheral driver list traversal function, however, we 2035 * don't have to worry about new peripheral driver types coming or 2036 * going; they're in a linker set, and therefore can't change 2037 * without a recompile. 2038 */ 2039 2040 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2041 && (cdm->pos.cookie.pdrv != NULL)) 2042 ret = xptpdrvtraverse( 2043 (struct periph_driver **)cdm->pos.cookie.pdrv, 2044 xptplistpdrvfunc, cdm); 2045 else 2046 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2047 2048 /* 2049 * If we get back 0, that means that we had to stop before fully 2050 * traversing the peripheral driver tree. It also means that one of 2051 * the subroutines has set the status field to the proper value. If 2052 * we get back 1, we've fully traversed the EDT and copied out any 2053 * matching entries. 2054 */ 2055 if (ret == 1) 2056 cdm->status = CAM_DEV_MATCH_LAST; 2057 2058 return(ret); 2059 } 2060 2061 static int 2062 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2063 { 2064 struct cam_eb *bus, *next_bus; 2065 int retval; 2066 2067 retval = 1; 2068 if (start_bus) 2069 bus = start_bus; 2070 else { 2071 xpt_lock_buses(); 2072 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2073 if (bus == NULL) { 2074 xpt_unlock_buses(); 2075 return (retval); 2076 } 2077 bus->refcount++; 2078 xpt_unlock_buses(); 2079 } 2080 for (; bus != NULL; bus = next_bus) { 2081 retval = tr_func(bus, arg); 2082 if (retval == 0) { 2083 xpt_release_bus(bus); 2084 break; 2085 } 2086 xpt_lock_buses(); 2087 next_bus = TAILQ_NEXT(bus, links); 2088 if (next_bus) 2089 next_bus->refcount++; 2090 xpt_unlock_buses(); 2091 xpt_release_bus(bus); 2092 } 2093 return(retval); 2094 } 2095 2096 static int 2097 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2098 xpt_targetfunc_t *tr_func, void *arg) 2099 { 2100 struct cam_et *target, *next_target; 2101 int retval; 2102 2103 retval = 1; 2104 if (start_target) 2105 target = start_target; 2106 else { 2107 mtx_lock(&bus->eb_mtx); 2108 target = TAILQ_FIRST(&bus->et_entries); 2109 if (target == NULL) { 2110 mtx_unlock(&bus->eb_mtx); 2111 return (retval); 2112 } 2113 target->refcount++; 2114 mtx_unlock(&bus->eb_mtx); 2115 } 2116 for (; target != NULL; target = next_target) { 2117 retval = tr_func(target, arg); 2118 if (retval == 0) { 2119 xpt_release_target(target); 2120 break; 2121 } 2122 mtx_lock(&bus->eb_mtx); 2123 next_target = TAILQ_NEXT(target, links); 2124 if (next_target) 2125 next_target->refcount++; 2126 mtx_unlock(&bus->eb_mtx); 2127 xpt_release_target(target); 2128 } 2129 return(retval); 2130 } 2131 2132 static int 2133 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2134 xpt_devicefunc_t *tr_func, void *arg) 2135 { 2136 struct cam_eb *bus; 2137 struct cam_ed *device, *next_device; 2138 int retval; 2139 2140 retval = 1; 2141 bus = target->bus; 2142 if (start_device) 2143 device = start_device; 2144 else { 2145 mtx_lock(&bus->eb_mtx); 2146 device = TAILQ_FIRST(&target->ed_entries); 2147 if (device == NULL) { 2148 mtx_unlock(&bus->eb_mtx); 2149 return (retval); 2150 } 2151 device->refcount++; 2152 mtx_unlock(&bus->eb_mtx); 2153 } 2154 for (; device != NULL; device = next_device) { 2155 mtx_lock(&device->device_mtx); 2156 retval = tr_func(device, arg); 2157 mtx_unlock(&device->device_mtx); 2158 if (retval == 0) { 2159 xpt_release_device(device); 2160 break; 2161 } 2162 mtx_lock(&bus->eb_mtx); 2163 next_device = TAILQ_NEXT(device, links); 2164 if (next_device) 2165 next_device->refcount++; 2166 mtx_unlock(&bus->eb_mtx); 2167 xpt_release_device(device); 2168 } 2169 return(retval); 2170 } 2171 2172 static int 2173 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2174 xpt_periphfunc_t *tr_func, void *arg) 2175 { 2176 struct cam_eb *bus; 2177 struct cam_periph *periph, *next_periph; 2178 int retval; 2179 2180 retval = 1; 2181 2182 bus = device->target->bus; 2183 if (start_periph) 2184 periph = start_periph; 2185 else { 2186 xpt_lock_buses(); 2187 mtx_lock(&bus->eb_mtx); 2188 periph = SLIST_FIRST(&device->periphs); 2189 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2190 periph = SLIST_NEXT(periph, periph_links); 2191 if (periph == NULL) { 2192 mtx_unlock(&bus->eb_mtx); 2193 xpt_unlock_buses(); 2194 return (retval); 2195 } 2196 periph->refcount++; 2197 mtx_unlock(&bus->eb_mtx); 2198 xpt_unlock_buses(); 2199 } 2200 for (; periph != NULL; periph = next_periph) { 2201 retval = tr_func(periph, arg); 2202 if (retval == 0) { 2203 cam_periph_release_locked(periph); 2204 break; 2205 } 2206 xpt_lock_buses(); 2207 mtx_lock(&bus->eb_mtx); 2208 next_periph = SLIST_NEXT(periph, periph_links); 2209 while (next_periph != NULL && 2210 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2211 next_periph = SLIST_NEXT(next_periph, periph_links); 2212 if (next_periph) 2213 next_periph->refcount++; 2214 mtx_unlock(&bus->eb_mtx); 2215 xpt_unlock_buses(); 2216 cam_periph_release_locked(periph); 2217 } 2218 return(retval); 2219 } 2220 2221 static int 2222 xptpdrvtraverse(struct periph_driver **start_pdrv, 2223 xpt_pdrvfunc_t *tr_func, void *arg) 2224 { 2225 struct periph_driver **pdrv; 2226 int retval; 2227 2228 retval = 1; 2229 2230 /* 2231 * We don't traverse the peripheral driver list like we do the 2232 * other lists, because it is a linker set, and therefore cannot be 2233 * changed during runtime. If the peripheral driver list is ever 2234 * re-done to be something other than a linker set (i.e. it can 2235 * change while the system is running), the list traversal should 2236 * be modified to work like the other traversal functions. 2237 */ 2238 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2239 *pdrv != NULL; pdrv++) { 2240 retval = tr_func(pdrv, arg); 2241 2242 if (retval == 0) 2243 return(retval); 2244 } 2245 2246 return(retval); 2247 } 2248 2249 static int 2250 xptpdperiphtraverse(struct periph_driver **pdrv, 2251 struct cam_periph *start_periph, 2252 xpt_periphfunc_t *tr_func, void *arg) 2253 { 2254 struct cam_periph *periph, *next_periph; 2255 int retval; 2256 2257 retval = 1; 2258 2259 if (start_periph) 2260 periph = start_periph; 2261 else { 2262 xpt_lock_buses(); 2263 periph = TAILQ_FIRST(&(*pdrv)->units); 2264 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2265 periph = TAILQ_NEXT(periph, unit_links); 2266 if (periph == NULL) { 2267 xpt_unlock_buses(); 2268 return (retval); 2269 } 2270 periph->refcount++; 2271 xpt_unlock_buses(); 2272 } 2273 for (; periph != NULL; periph = next_periph) { 2274 cam_periph_lock(periph); 2275 retval = tr_func(periph, arg); 2276 cam_periph_unlock(periph); 2277 if (retval == 0) { 2278 cam_periph_release(periph); 2279 break; 2280 } 2281 xpt_lock_buses(); 2282 next_periph = TAILQ_NEXT(periph, unit_links); 2283 while (next_periph != NULL && 2284 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2285 next_periph = TAILQ_NEXT(next_periph, unit_links); 2286 if (next_periph) 2287 next_periph->refcount++; 2288 xpt_unlock_buses(); 2289 cam_periph_release(periph); 2290 } 2291 return(retval); 2292 } 2293 2294 static int 2295 xptdefbusfunc(struct cam_eb *bus, void *arg) 2296 { 2297 struct xpt_traverse_config *tr_config; 2298 2299 tr_config = (struct xpt_traverse_config *)arg; 2300 2301 if (tr_config->depth == XPT_DEPTH_BUS) { 2302 xpt_busfunc_t *tr_func; 2303 2304 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2305 2306 return(tr_func(bus, tr_config->tr_arg)); 2307 } else 2308 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2309 } 2310 2311 static int 2312 xptdeftargetfunc(struct cam_et *target, void *arg) 2313 { 2314 struct xpt_traverse_config *tr_config; 2315 2316 tr_config = (struct xpt_traverse_config *)arg; 2317 2318 if (tr_config->depth == XPT_DEPTH_TARGET) { 2319 xpt_targetfunc_t *tr_func; 2320 2321 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2322 2323 return(tr_func(target, tr_config->tr_arg)); 2324 } else 2325 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2326 } 2327 2328 static int 2329 xptdefdevicefunc(struct cam_ed *device, void *arg) 2330 { 2331 struct xpt_traverse_config *tr_config; 2332 2333 tr_config = (struct xpt_traverse_config *)arg; 2334 2335 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2336 xpt_devicefunc_t *tr_func; 2337 2338 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2339 2340 return(tr_func(device, tr_config->tr_arg)); 2341 } else 2342 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2343 } 2344 2345 static int 2346 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2347 { 2348 struct xpt_traverse_config *tr_config; 2349 xpt_periphfunc_t *tr_func; 2350 2351 tr_config = (struct xpt_traverse_config *)arg; 2352 2353 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2354 2355 /* 2356 * Unlike the other default functions, we don't check for depth 2357 * here. The peripheral driver level is the last level in the EDT, 2358 * so if we're here, we should execute the function in question. 2359 */ 2360 return(tr_func(periph, tr_config->tr_arg)); 2361 } 2362 2363 /* 2364 * Execute the given function for every bus in the EDT. 2365 */ 2366 static int 2367 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2368 { 2369 struct xpt_traverse_config tr_config; 2370 2371 tr_config.depth = XPT_DEPTH_BUS; 2372 tr_config.tr_func = tr_func; 2373 tr_config.tr_arg = arg; 2374 2375 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2376 } 2377 2378 /* 2379 * Execute the given function for every device in the EDT. 2380 */ 2381 static int 2382 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2383 { 2384 struct xpt_traverse_config tr_config; 2385 2386 tr_config.depth = XPT_DEPTH_DEVICE; 2387 tr_config.tr_func = tr_func; 2388 tr_config.tr_arg = arg; 2389 2390 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2391 } 2392 2393 static int 2394 xptsetasyncfunc(struct cam_ed *device, void *arg) 2395 { 2396 struct cam_path path; 2397 struct ccb_getdev cgd; 2398 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2399 2400 /* 2401 * Don't report unconfigured devices (Wildcard devs, 2402 * devices only for target mode, device instances 2403 * that have been invalidated but are waiting for 2404 * their last reference count to be released). 2405 */ 2406 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2407 return (1); 2408 2409 xpt_compile_path(&path, 2410 NULL, 2411 device->target->bus->path_id, 2412 device->target->target_id, 2413 device->lun_id); 2414 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2415 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2416 xpt_action((union ccb *)&cgd); 2417 csa->callback(csa->callback_arg, 2418 AC_FOUND_DEVICE, 2419 &path, &cgd); 2420 xpt_release_path(&path); 2421 2422 return(1); 2423 } 2424 2425 static int 2426 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2427 { 2428 struct cam_path path; 2429 struct ccb_pathinq cpi; 2430 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2431 2432 xpt_compile_path(&path, /*periph*/NULL, 2433 bus->path_id, 2434 CAM_TARGET_WILDCARD, 2435 CAM_LUN_WILDCARD); 2436 xpt_path_lock(&path); 2437 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2438 cpi.ccb_h.func_code = XPT_PATH_INQ; 2439 xpt_action((union ccb *)&cpi); 2440 csa->callback(csa->callback_arg, 2441 AC_PATH_REGISTERED, 2442 &path, &cpi); 2443 xpt_path_unlock(&path); 2444 xpt_release_path(&path); 2445 2446 return(1); 2447 } 2448 2449 void 2450 xpt_action(union ccb *start_ccb) 2451 { 2452 2453 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2454 2455 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2456 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2457 } 2458 2459 void 2460 xpt_action_default(union ccb *start_ccb) 2461 { 2462 struct cam_path *path; 2463 struct cam_sim *sim; 2464 int lock; 2465 2466 path = start_ccb->ccb_h.path; 2467 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2468 2469 switch (start_ccb->ccb_h.func_code) { 2470 case XPT_SCSI_IO: 2471 { 2472 struct cam_ed *device; 2473 2474 /* 2475 * For the sake of compatibility with SCSI-1 2476 * devices that may not understand the identify 2477 * message, we include lun information in the 2478 * second byte of all commands. SCSI-1 specifies 2479 * that luns are a 3 bit value and reserves only 3 2480 * bits for lun information in the CDB. Later 2481 * revisions of the SCSI spec allow for more than 8 2482 * luns, but have deprecated lun information in the 2483 * CDB. So, if the lun won't fit, we must omit. 2484 * 2485 * Also be aware that during initial probing for devices, 2486 * the inquiry information is unknown but initialized to 0. 2487 * This means that this code will be exercised while probing 2488 * devices with an ANSI revision greater than 2. 2489 */ 2490 device = path->device; 2491 if (device->protocol_version <= SCSI_REV_2 2492 && start_ccb->ccb_h.target_lun < 8 2493 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2494 2495 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2496 start_ccb->ccb_h.target_lun << 5; 2497 } 2498 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2499 } 2500 /* FALLTHROUGH */ 2501 case XPT_TARGET_IO: 2502 case XPT_CONT_TARGET_IO: 2503 start_ccb->csio.sense_resid = 0; 2504 start_ccb->csio.resid = 0; 2505 /* FALLTHROUGH */ 2506 case XPT_ATA_IO: 2507 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2508 start_ccb->ataio.resid = 0; 2509 /* FALLTHROUGH */ 2510 case XPT_RESET_DEV: 2511 case XPT_ENG_EXEC: 2512 case XPT_SMP_IO: 2513 { 2514 struct cam_devq *devq; 2515 2516 devq = path->bus->sim->devq; 2517 mtx_lock(&devq->send_mtx); 2518 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2519 if (xpt_schedule_devq(devq, path->device) != 0) 2520 xpt_run_devq(devq); 2521 mtx_unlock(&devq->send_mtx); 2522 break; 2523 } 2524 case XPT_CALC_GEOMETRY: 2525 /* Filter out garbage */ 2526 if (start_ccb->ccg.block_size == 0 2527 || start_ccb->ccg.volume_size == 0) { 2528 start_ccb->ccg.cylinders = 0; 2529 start_ccb->ccg.heads = 0; 2530 start_ccb->ccg.secs_per_track = 0; 2531 start_ccb->ccb_h.status = CAM_REQ_CMP; 2532 break; 2533 } 2534 #if defined(PC98) || defined(__sparc64__) 2535 /* 2536 * In a PC-98 system, geometry translation depens on 2537 * the "real" device geometry obtained from mode page 4. 2538 * SCSI geometry translation is performed in the 2539 * initialization routine of the SCSI BIOS and the result 2540 * stored in host memory. If the translation is available 2541 * in host memory, use it. If not, rely on the default 2542 * translation the device driver performs. 2543 * For sparc64, we may need adjust the geometry of large 2544 * disks in order to fit the limitations of the 16-bit 2545 * fields of the VTOC8 disk label. 2546 */ 2547 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2548 start_ccb->ccb_h.status = CAM_REQ_CMP; 2549 break; 2550 } 2551 #endif 2552 goto call_sim; 2553 case XPT_ABORT: 2554 { 2555 union ccb* abort_ccb; 2556 2557 abort_ccb = start_ccb->cab.abort_ccb; 2558 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2559 2560 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2561 struct cam_ccbq *ccbq; 2562 struct cam_ed *device; 2563 2564 device = abort_ccb->ccb_h.path->device; 2565 ccbq = &device->ccbq; 2566 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2567 abort_ccb->ccb_h.status = 2568 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2569 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2570 xpt_done(abort_ccb); 2571 start_ccb->ccb_h.status = CAM_REQ_CMP; 2572 break; 2573 } 2574 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2575 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2576 /* 2577 * We've caught this ccb en route to 2578 * the SIM. Flag it for abort and the 2579 * SIM will do so just before starting 2580 * real work on the CCB. 2581 */ 2582 abort_ccb->ccb_h.status = 2583 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2584 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2585 start_ccb->ccb_h.status = CAM_REQ_CMP; 2586 break; 2587 } 2588 } 2589 if (XPT_FC_IS_QUEUED(abort_ccb) 2590 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2591 /* 2592 * It's already completed but waiting 2593 * for our SWI to get to it. 2594 */ 2595 start_ccb->ccb_h.status = CAM_UA_ABORT; 2596 break; 2597 } 2598 /* 2599 * If we weren't able to take care of the abort request 2600 * in the XPT, pass the request down to the SIM for processing. 2601 */ 2602 } 2603 /* FALLTHROUGH */ 2604 case XPT_ACCEPT_TARGET_IO: 2605 case XPT_EN_LUN: 2606 case XPT_IMMED_NOTIFY: 2607 case XPT_NOTIFY_ACK: 2608 case XPT_RESET_BUS: 2609 case XPT_IMMEDIATE_NOTIFY: 2610 case XPT_NOTIFY_ACKNOWLEDGE: 2611 case XPT_GET_SIM_KNOB: 2612 case XPT_SET_SIM_KNOB: 2613 case XPT_GET_TRAN_SETTINGS: 2614 case XPT_SET_TRAN_SETTINGS: 2615 case XPT_PATH_INQ: 2616 call_sim: 2617 sim = path->bus->sim; 2618 lock = (mtx_owned(sim->mtx) == 0); 2619 if (lock) 2620 CAM_SIM_LOCK(sim); 2621 (*(sim->sim_action))(sim, start_ccb); 2622 if (lock) 2623 CAM_SIM_UNLOCK(sim); 2624 break; 2625 case XPT_PATH_STATS: 2626 start_ccb->cpis.last_reset = path->bus->last_reset; 2627 start_ccb->ccb_h.status = CAM_REQ_CMP; 2628 break; 2629 case XPT_GDEV_TYPE: 2630 { 2631 struct cam_ed *dev; 2632 2633 dev = path->device; 2634 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2635 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2636 } else { 2637 struct ccb_getdev *cgd; 2638 2639 cgd = &start_ccb->cgd; 2640 cgd->protocol = dev->protocol; 2641 cgd->inq_data = dev->inq_data; 2642 cgd->ident_data = dev->ident_data; 2643 cgd->inq_flags = dev->inq_flags; 2644 cgd->ccb_h.status = CAM_REQ_CMP; 2645 cgd->serial_num_len = dev->serial_num_len; 2646 if ((dev->serial_num_len > 0) 2647 && (dev->serial_num != NULL)) 2648 bcopy(dev->serial_num, cgd->serial_num, 2649 dev->serial_num_len); 2650 } 2651 break; 2652 } 2653 case XPT_GDEV_STATS: 2654 { 2655 struct cam_ed *dev; 2656 2657 dev = path->device; 2658 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2659 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2660 } else { 2661 struct ccb_getdevstats *cgds; 2662 struct cam_eb *bus; 2663 struct cam_et *tar; 2664 struct cam_devq *devq; 2665 2666 cgds = &start_ccb->cgds; 2667 bus = path->bus; 2668 tar = path->target; 2669 devq = bus->sim->devq; 2670 mtx_lock(&devq->send_mtx); 2671 cgds->dev_openings = dev->ccbq.dev_openings; 2672 cgds->dev_active = dev->ccbq.dev_active; 2673 cgds->allocated = dev->ccbq.allocated; 2674 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2675 cgds->held = cgds->allocated - cgds->dev_active - 2676 cgds->queued; 2677 cgds->last_reset = tar->last_reset; 2678 cgds->maxtags = dev->maxtags; 2679 cgds->mintags = dev->mintags; 2680 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2681 cgds->last_reset = bus->last_reset; 2682 mtx_unlock(&devq->send_mtx); 2683 cgds->ccb_h.status = CAM_REQ_CMP; 2684 } 2685 break; 2686 } 2687 case XPT_GDEVLIST: 2688 { 2689 struct cam_periph *nperiph; 2690 struct periph_list *periph_head; 2691 struct ccb_getdevlist *cgdl; 2692 u_int i; 2693 struct cam_ed *device; 2694 int found; 2695 2696 2697 found = 0; 2698 2699 /* 2700 * Don't want anyone mucking with our data. 2701 */ 2702 device = path->device; 2703 periph_head = &device->periphs; 2704 cgdl = &start_ccb->cgdl; 2705 2706 /* 2707 * Check and see if the list has changed since the user 2708 * last requested a list member. If so, tell them that the 2709 * list has changed, and therefore they need to start over 2710 * from the beginning. 2711 */ 2712 if ((cgdl->index != 0) && 2713 (cgdl->generation != device->generation)) { 2714 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2715 break; 2716 } 2717 2718 /* 2719 * Traverse the list of peripherals and attempt to find 2720 * the requested peripheral. 2721 */ 2722 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2723 (nperiph != NULL) && (i <= cgdl->index); 2724 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2725 if (i == cgdl->index) { 2726 strncpy(cgdl->periph_name, 2727 nperiph->periph_name, 2728 DEV_IDLEN); 2729 cgdl->unit_number = nperiph->unit_number; 2730 found = 1; 2731 } 2732 } 2733 if (found == 0) { 2734 cgdl->status = CAM_GDEVLIST_ERROR; 2735 break; 2736 } 2737 2738 if (nperiph == NULL) 2739 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2740 else 2741 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2742 2743 cgdl->index++; 2744 cgdl->generation = device->generation; 2745 2746 cgdl->ccb_h.status = CAM_REQ_CMP; 2747 break; 2748 } 2749 case XPT_DEV_MATCH: 2750 { 2751 dev_pos_type position_type; 2752 struct ccb_dev_match *cdm; 2753 2754 cdm = &start_ccb->cdm; 2755 2756 /* 2757 * There are two ways of getting at information in the EDT. 2758 * The first way is via the primary EDT tree. It starts 2759 * with a list of busses, then a list of targets on a bus, 2760 * then devices/luns on a target, and then peripherals on a 2761 * device/lun. The "other" way is by the peripheral driver 2762 * lists. The peripheral driver lists are organized by 2763 * peripheral driver. (obviously) So it makes sense to 2764 * use the peripheral driver list if the user is looking 2765 * for something like "da1", or all "da" devices. If the 2766 * user is looking for something on a particular bus/target 2767 * or lun, it's generally better to go through the EDT tree. 2768 */ 2769 2770 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2771 position_type = cdm->pos.position_type; 2772 else { 2773 u_int i; 2774 2775 position_type = CAM_DEV_POS_NONE; 2776 2777 for (i = 0; i < cdm->num_patterns; i++) { 2778 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2779 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2780 position_type = CAM_DEV_POS_EDT; 2781 break; 2782 } 2783 } 2784 2785 if (cdm->num_patterns == 0) 2786 position_type = CAM_DEV_POS_EDT; 2787 else if (position_type == CAM_DEV_POS_NONE) 2788 position_type = CAM_DEV_POS_PDRV; 2789 } 2790 2791 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2792 case CAM_DEV_POS_EDT: 2793 xptedtmatch(cdm); 2794 break; 2795 case CAM_DEV_POS_PDRV: 2796 xptperiphlistmatch(cdm); 2797 break; 2798 default: 2799 cdm->status = CAM_DEV_MATCH_ERROR; 2800 break; 2801 } 2802 2803 if (cdm->status == CAM_DEV_MATCH_ERROR) 2804 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2805 else 2806 start_ccb->ccb_h.status = CAM_REQ_CMP; 2807 2808 break; 2809 } 2810 case XPT_SASYNC_CB: 2811 { 2812 struct ccb_setasync *csa; 2813 struct async_node *cur_entry; 2814 struct async_list *async_head; 2815 u_int32_t added; 2816 2817 csa = &start_ccb->csa; 2818 added = csa->event_enable; 2819 async_head = &path->device->asyncs; 2820 2821 /* 2822 * If there is already an entry for us, simply 2823 * update it. 2824 */ 2825 cur_entry = SLIST_FIRST(async_head); 2826 while (cur_entry != NULL) { 2827 if ((cur_entry->callback_arg == csa->callback_arg) 2828 && (cur_entry->callback == csa->callback)) 2829 break; 2830 cur_entry = SLIST_NEXT(cur_entry, links); 2831 } 2832 2833 if (cur_entry != NULL) { 2834 /* 2835 * If the request has no flags set, 2836 * remove the entry. 2837 */ 2838 added &= ~cur_entry->event_enable; 2839 if (csa->event_enable == 0) { 2840 SLIST_REMOVE(async_head, cur_entry, 2841 async_node, links); 2842 xpt_release_device(path->device); 2843 free(cur_entry, M_CAMXPT); 2844 } else { 2845 cur_entry->event_enable = csa->event_enable; 2846 } 2847 csa->event_enable = added; 2848 } else { 2849 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2850 M_NOWAIT); 2851 if (cur_entry == NULL) { 2852 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2853 break; 2854 } 2855 cur_entry->event_enable = csa->event_enable; 2856 cur_entry->event_lock = 2857 mtx_owned(path->bus->sim->mtx) ? 1 : 0; 2858 cur_entry->callback_arg = csa->callback_arg; 2859 cur_entry->callback = csa->callback; 2860 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2861 xpt_acquire_device(path->device); 2862 } 2863 start_ccb->ccb_h.status = CAM_REQ_CMP; 2864 break; 2865 } 2866 case XPT_REL_SIMQ: 2867 { 2868 struct ccb_relsim *crs; 2869 struct cam_ed *dev; 2870 2871 crs = &start_ccb->crs; 2872 dev = path->device; 2873 if (dev == NULL) { 2874 2875 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2876 break; 2877 } 2878 2879 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2880 2881 /* Don't ever go below one opening */ 2882 if (crs->openings > 0) { 2883 xpt_dev_ccbq_resize(path, crs->openings); 2884 if (bootverbose) { 2885 xpt_print(path, 2886 "number of openings is now %d\n", 2887 crs->openings); 2888 } 2889 } 2890 } 2891 2892 mtx_lock(&dev->sim->devq->send_mtx); 2893 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2894 2895 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2896 2897 /* 2898 * Just extend the old timeout and decrement 2899 * the freeze count so that a single timeout 2900 * is sufficient for releasing the queue. 2901 */ 2902 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2903 callout_stop(&dev->callout); 2904 } else { 2905 2906 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2907 } 2908 2909 callout_reset_sbt(&dev->callout, 2910 SBT_1MS * crs->release_timeout, 0, 2911 xpt_release_devq_timeout, dev, 0); 2912 2913 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2914 2915 } 2916 2917 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2918 2919 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2920 /* 2921 * Decrement the freeze count so that a single 2922 * completion is still sufficient to unfreeze 2923 * the queue. 2924 */ 2925 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2926 } else { 2927 2928 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2929 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2930 } 2931 } 2932 2933 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2934 2935 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2936 || (dev->ccbq.dev_active == 0)) { 2937 2938 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2939 } else { 2940 2941 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2942 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2943 } 2944 } 2945 mtx_unlock(&dev->sim->devq->send_mtx); 2946 2947 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 2948 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 2949 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 2950 start_ccb->ccb_h.status = CAM_REQ_CMP; 2951 break; 2952 } 2953 case XPT_DEBUG: { 2954 struct cam_path *oldpath; 2955 2956 /* Check that all request bits are supported. */ 2957 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2958 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2959 break; 2960 } 2961 2962 cam_dflags = CAM_DEBUG_NONE; 2963 if (cam_dpath != NULL) { 2964 oldpath = cam_dpath; 2965 cam_dpath = NULL; 2966 xpt_free_path(oldpath); 2967 } 2968 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 2969 if (xpt_create_path(&cam_dpath, NULL, 2970 start_ccb->ccb_h.path_id, 2971 start_ccb->ccb_h.target_id, 2972 start_ccb->ccb_h.target_lun) != 2973 CAM_REQ_CMP) { 2974 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2975 } else { 2976 cam_dflags = start_ccb->cdbg.flags; 2977 start_ccb->ccb_h.status = CAM_REQ_CMP; 2978 xpt_print(cam_dpath, "debugging flags now %x\n", 2979 cam_dflags); 2980 } 2981 } else 2982 start_ccb->ccb_h.status = CAM_REQ_CMP; 2983 break; 2984 } 2985 case XPT_NOOP: 2986 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 2987 xpt_freeze_devq(path, 1); 2988 start_ccb->ccb_h.status = CAM_REQ_CMP; 2989 break; 2990 default: 2991 case XPT_SDEV_TYPE: 2992 case XPT_TERM_IO: 2993 case XPT_ENG_INQ: 2994 /* XXX Implement */ 2995 printf("%s: CCB type %#x not supported\n", __func__, 2996 start_ccb->ccb_h.func_code); 2997 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 2998 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 2999 xpt_done(start_ccb); 3000 } 3001 break; 3002 } 3003 } 3004 3005 void 3006 xpt_polled_action(union ccb *start_ccb) 3007 { 3008 u_int32_t timeout; 3009 struct cam_sim *sim; 3010 struct cam_devq *devq; 3011 struct cam_ed *dev; 3012 3013 timeout = start_ccb->ccb_h.timeout * 10; 3014 sim = start_ccb->ccb_h.path->bus->sim; 3015 devq = sim->devq; 3016 dev = start_ccb->ccb_h.path->device; 3017 3018 mtx_unlock(&dev->device_mtx); 3019 3020 /* 3021 * Steal an opening so that no other queued requests 3022 * can get it before us while we simulate interrupts. 3023 */ 3024 mtx_lock(&devq->send_mtx); 3025 dev->ccbq.dev_openings--; 3026 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3027 (--timeout > 0)) { 3028 mtx_unlock(&devq->send_mtx); 3029 DELAY(100); 3030 CAM_SIM_LOCK(sim); 3031 (*(sim->sim_poll))(sim); 3032 CAM_SIM_UNLOCK(sim); 3033 camisr_runqueue(); 3034 mtx_lock(&devq->send_mtx); 3035 } 3036 dev->ccbq.dev_openings++; 3037 mtx_unlock(&devq->send_mtx); 3038 3039 if (timeout != 0) { 3040 xpt_action(start_ccb); 3041 while(--timeout > 0) { 3042 CAM_SIM_LOCK(sim); 3043 (*(sim->sim_poll))(sim); 3044 CAM_SIM_UNLOCK(sim); 3045 camisr_runqueue(); 3046 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3047 != CAM_REQ_INPROG) 3048 break; 3049 DELAY(100); 3050 } 3051 if (timeout == 0) { 3052 /* 3053 * XXX Is it worth adding a sim_timeout entry 3054 * point so we can attempt recovery? If 3055 * this is only used for dumps, I don't think 3056 * it is. 3057 */ 3058 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3059 } 3060 } else { 3061 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3062 } 3063 3064 mtx_lock(&dev->device_mtx); 3065 } 3066 3067 /* 3068 * Schedule a peripheral driver to receive a ccb when its 3069 * target device has space for more transactions. 3070 */ 3071 void 3072 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3073 { 3074 3075 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3076 cam_periph_assert(periph, MA_OWNED); 3077 if (new_priority < periph->scheduled_priority) { 3078 periph->scheduled_priority = new_priority; 3079 xpt_run_allocq(periph, 0); 3080 } 3081 } 3082 3083 3084 /* 3085 * Schedule a device to run on a given queue. 3086 * If the device was inserted as a new entry on the queue, 3087 * return 1 meaning the device queue should be run. If we 3088 * were already queued, implying someone else has already 3089 * started the queue, return 0 so the caller doesn't attempt 3090 * to run the queue. 3091 */ 3092 static int 3093 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3094 u_int32_t new_priority) 3095 { 3096 int retval; 3097 u_int32_t old_priority; 3098 3099 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3100 3101 old_priority = pinfo->priority; 3102 3103 /* 3104 * Are we already queued? 3105 */ 3106 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3107 /* Simply reorder based on new priority */ 3108 if (new_priority < old_priority) { 3109 camq_change_priority(queue, pinfo->index, 3110 new_priority); 3111 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3112 ("changed priority to %d\n", 3113 new_priority)); 3114 retval = 1; 3115 } else 3116 retval = 0; 3117 } else { 3118 /* New entry on the queue */ 3119 if (new_priority < old_priority) 3120 pinfo->priority = new_priority; 3121 3122 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3123 ("Inserting onto queue\n")); 3124 pinfo->generation = ++queue->generation; 3125 camq_insert(queue, pinfo); 3126 retval = 1; 3127 } 3128 return (retval); 3129 } 3130 3131 static void 3132 xpt_run_allocq_task(void *context, int pending) 3133 { 3134 struct cam_periph *periph = context; 3135 3136 cam_periph_lock(periph); 3137 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3138 xpt_run_allocq(periph, 1); 3139 cam_periph_unlock(periph); 3140 cam_periph_release(periph); 3141 } 3142 3143 static void 3144 xpt_run_allocq(struct cam_periph *periph, int sleep) 3145 { 3146 struct cam_ed *device; 3147 union ccb *ccb; 3148 uint32_t prio; 3149 3150 cam_periph_assert(periph, MA_OWNED); 3151 if (periph->periph_allocating) 3152 return; 3153 periph->periph_allocating = 1; 3154 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3155 device = periph->path->device; 3156 ccb = NULL; 3157 restart: 3158 while ((prio = min(periph->scheduled_priority, 3159 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3160 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3161 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3162 3163 if (ccb == NULL && 3164 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3165 if (sleep) { 3166 ccb = xpt_get_ccb(periph); 3167 goto restart; 3168 } 3169 if (periph->flags & CAM_PERIPH_RUN_TASK) 3170 break; 3171 cam_periph_doacquire(periph); 3172 periph->flags |= CAM_PERIPH_RUN_TASK; 3173 taskqueue_enqueue(xsoftc.xpt_taskq, 3174 &periph->periph_run_task); 3175 break; 3176 } 3177 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3178 if (prio == periph->immediate_priority) { 3179 periph->immediate_priority = CAM_PRIORITY_NONE; 3180 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3181 ("waking cam_periph_getccb()\n")); 3182 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3183 periph_links.sle); 3184 wakeup(&periph->ccb_list); 3185 } else { 3186 periph->scheduled_priority = CAM_PRIORITY_NONE; 3187 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3188 ("calling periph_start()\n")); 3189 periph->periph_start(periph, ccb); 3190 } 3191 ccb = NULL; 3192 } 3193 if (ccb != NULL) 3194 xpt_release_ccb(ccb); 3195 periph->periph_allocating = 0; 3196 } 3197 3198 static void 3199 xpt_run_devq(struct cam_devq *devq) 3200 { 3201 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3202 int lock; 3203 3204 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3205 3206 devq->send_queue.qfrozen_cnt++; 3207 while ((devq->send_queue.entries > 0) 3208 && (devq->send_openings > 0) 3209 && (devq->send_queue.qfrozen_cnt <= 1)) { 3210 struct cam_ed *device; 3211 union ccb *work_ccb; 3212 struct cam_sim *sim; 3213 3214 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3215 CAMQ_HEAD); 3216 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3217 ("running device %p\n", device)); 3218 3219 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3220 if (work_ccb == NULL) { 3221 printf("device on run queue with no ccbs???\n"); 3222 continue; 3223 } 3224 3225 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3226 3227 mtx_lock(&xsoftc.xpt_highpower_lock); 3228 if (xsoftc.num_highpower <= 0) { 3229 /* 3230 * We got a high power command, but we 3231 * don't have any available slots. Freeze 3232 * the device queue until we have a slot 3233 * available. 3234 */ 3235 xpt_freeze_devq_device(device, 1); 3236 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3237 highpowerq_entry); 3238 3239 mtx_unlock(&xsoftc.xpt_highpower_lock); 3240 continue; 3241 } else { 3242 /* 3243 * Consume a high power slot while 3244 * this ccb runs. 3245 */ 3246 xsoftc.num_highpower--; 3247 } 3248 mtx_unlock(&xsoftc.xpt_highpower_lock); 3249 } 3250 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3251 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3252 devq->send_openings--; 3253 devq->send_active++; 3254 xpt_schedule_devq(devq, device); 3255 mtx_unlock(&devq->send_mtx); 3256 3257 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3258 /* 3259 * The client wants to freeze the queue 3260 * after this CCB is sent. 3261 */ 3262 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3263 } 3264 3265 /* In Target mode, the peripheral driver knows best... */ 3266 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3267 if ((device->inq_flags & SID_CmdQue) != 0 3268 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3269 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3270 else 3271 /* 3272 * Clear this in case of a retried CCB that 3273 * failed due to a rejected tag. 3274 */ 3275 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3276 } 3277 3278 switch (work_ccb->ccb_h.func_code) { 3279 case XPT_SCSI_IO: 3280 CAM_DEBUG(work_ccb->ccb_h.path, 3281 CAM_DEBUG_CDB,("%s. CDB: %s\n", 3282 scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0], 3283 &device->inq_data), 3284 scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes, 3285 cdb_str, sizeof(cdb_str)))); 3286 break; 3287 case XPT_ATA_IO: 3288 CAM_DEBUG(work_ccb->ccb_h.path, 3289 CAM_DEBUG_CDB,("%s. ACB: %s\n", 3290 ata_op_string(&work_ccb->ataio.cmd), 3291 ata_cmd_string(&work_ccb->ataio.cmd, 3292 cdb_str, sizeof(cdb_str)))); 3293 break; 3294 default: 3295 break; 3296 } 3297 3298 /* 3299 * Device queues can be shared among multiple SIM instances 3300 * that reside on different busses. Use the SIM from the 3301 * queued device, rather than the one from the calling bus. 3302 */ 3303 sim = device->sim; 3304 lock = (mtx_owned(sim->mtx) == 0); 3305 if (lock) 3306 CAM_SIM_LOCK(sim); 3307 (*(sim->sim_action))(sim, work_ccb); 3308 if (lock) 3309 CAM_SIM_UNLOCK(sim); 3310 mtx_lock(&devq->send_mtx); 3311 } 3312 devq->send_queue.qfrozen_cnt--; 3313 } 3314 3315 /* 3316 * This function merges stuff from the slave ccb into the master ccb, while 3317 * keeping important fields in the master ccb constant. 3318 */ 3319 void 3320 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3321 { 3322 3323 /* 3324 * Pull fields that are valid for peripheral drivers to set 3325 * into the master CCB along with the CCB "payload". 3326 */ 3327 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3328 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3329 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3330 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3331 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3332 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3333 } 3334 3335 void 3336 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3337 u_int32_t priority, u_int32_t flags) 3338 { 3339 3340 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3341 ccb_h->pinfo.priority = priority; 3342 ccb_h->path = path; 3343 ccb_h->path_id = path->bus->path_id; 3344 if (path->target) 3345 ccb_h->target_id = path->target->target_id; 3346 else 3347 ccb_h->target_id = CAM_TARGET_WILDCARD; 3348 if (path->device) { 3349 ccb_h->target_lun = path->device->lun_id; 3350 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3351 } else { 3352 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3353 } 3354 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3355 ccb_h->flags = flags; 3356 ccb_h->xflags = 0; 3357 } 3358 3359 void 3360 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3361 { 3362 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3363 } 3364 3365 /* Path manipulation functions */ 3366 cam_status 3367 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3368 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3369 { 3370 struct cam_path *path; 3371 cam_status status; 3372 3373 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3374 3375 if (path == NULL) { 3376 status = CAM_RESRC_UNAVAIL; 3377 return(status); 3378 } 3379 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3380 if (status != CAM_REQ_CMP) { 3381 free(path, M_CAMPATH); 3382 path = NULL; 3383 } 3384 *new_path_ptr = path; 3385 return (status); 3386 } 3387 3388 cam_status 3389 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3390 struct cam_periph *periph, path_id_t path_id, 3391 target_id_t target_id, lun_id_t lun_id) 3392 { 3393 3394 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3395 lun_id)); 3396 } 3397 3398 cam_status 3399 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3400 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3401 { 3402 struct cam_eb *bus; 3403 struct cam_et *target; 3404 struct cam_ed *device; 3405 cam_status status; 3406 3407 status = CAM_REQ_CMP; /* Completed without error */ 3408 target = NULL; /* Wildcarded */ 3409 device = NULL; /* Wildcarded */ 3410 3411 /* 3412 * We will potentially modify the EDT, so block interrupts 3413 * that may attempt to create cam paths. 3414 */ 3415 bus = xpt_find_bus(path_id); 3416 if (bus == NULL) { 3417 status = CAM_PATH_INVALID; 3418 } else { 3419 xpt_lock_buses(); 3420 mtx_lock(&bus->eb_mtx); 3421 target = xpt_find_target(bus, target_id); 3422 if (target == NULL) { 3423 /* Create one */ 3424 struct cam_et *new_target; 3425 3426 new_target = xpt_alloc_target(bus, target_id); 3427 if (new_target == NULL) { 3428 status = CAM_RESRC_UNAVAIL; 3429 } else { 3430 target = new_target; 3431 } 3432 } 3433 xpt_unlock_buses(); 3434 if (target != NULL) { 3435 device = xpt_find_device(target, lun_id); 3436 if (device == NULL) { 3437 /* Create one */ 3438 struct cam_ed *new_device; 3439 3440 new_device = 3441 (*(bus->xport->alloc_device))(bus, 3442 target, 3443 lun_id); 3444 if (new_device == NULL) { 3445 status = CAM_RESRC_UNAVAIL; 3446 } else { 3447 device = new_device; 3448 } 3449 } 3450 } 3451 mtx_unlock(&bus->eb_mtx); 3452 } 3453 3454 /* 3455 * Only touch the user's data if we are successful. 3456 */ 3457 if (status == CAM_REQ_CMP) { 3458 new_path->periph = perph; 3459 new_path->bus = bus; 3460 new_path->target = target; 3461 new_path->device = device; 3462 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3463 } else { 3464 if (device != NULL) 3465 xpt_release_device(device); 3466 if (target != NULL) 3467 xpt_release_target(target); 3468 if (bus != NULL) 3469 xpt_release_bus(bus); 3470 } 3471 return (status); 3472 } 3473 3474 cam_status 3475 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3476 { 3477 struct cam_path *new_path; 3478 3479 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3480 if (new_path == NULL) 3481 return(CAM_RESRC_UNAVAIL); 3482 xpt_copy_path(new_path, path); 3483 *new_path_ptr = new_path; 3484 return (CAM_REQ_CMP); 3485 } 3486 3487 void 3488 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3489 { 3490 3491 *new_path = *path; 3492 if (path->bus != NULL) 3493 xpt_acquire_bus(path->bus); 3494 if (path->target != NULL) 3495 xpt_acquire_target(path->target); 3496 if (path->device != NULL) 3497 xpt_acquire_device(path->device); 3498 } 3499 3500 void 3501 xpt_release_path(struct cam_path *path) 3502 { 3503 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3504 if (path->device != NULL) { 3505 xpt_release_device(path->device); 3506 path->device = NULL; 3507 } 3508 if (path->target != NULL) { 3509 xpt_release_target(path->target); 3510 path->target = NULL; 3511 } 3512 if (path->bus != NULL) { 3513 xpt_release_bus(path->bus); 3514 path->bus = NULL; 3515 } 3516 } 3517 3518 void 3519 xpt_free_path(struct cam_path *path) 3520 { 3521 3522 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3523 xpt_release_path(path); 3524 free(path, M_CAMPATH); 3525 } 3526 3527 void 3528 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3529 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3530 { 3531 3532 xpt_lock_buses(); 3533 if (bus_ref) { 3534 if (path->bus) 3535 *bus_ref = path->bus->refcount; 3536 else 3537 *bus_ref = 0; 3538 } 3539 if (periph_ref) { 3540 if (path->periph) 3541 *periph_ref = path->periph->refcount; 3542 else 3543 *periph_ref = 0; 3544 } 3545 xpt_unlock_buses(); 3546 if (target_ref) { 3547 if (path->target) 3548 *target_ref = path->target->refcount; 3549 else 3550 *target_ref = 0; 3551 } 3552 if (device_ref) { 3553 if (path->device) 3554 *device_ref = path->device->refcount; 3555 else 3556 *device_ref = 0; 3557 } 3558 } 3559 3560 /* 3561 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3562 * in path1, 2 for match with wildcards in path2. 3563 */ 3564 int 3565 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3566 { 3567 int retval = 0; 3568 3569 if (path1->bus != path2->bus) { 3570 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3571 retval = 1; 3572 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3573 retval = 2; 3574 else 3575 return (-1); 3576 } 3577 if (path1->target != path2->target) { 3578 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3579 if (retval == 0) 3580 retval = 1; 3581 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3582 retval = 2; 3583 else 3584 return (-1); 3585 } 3586 if (path1->device != path2->device) { 3587 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3588 if (retval == 0) 3589 retval = 1; 3590 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3591 retval = 2; 3592 else 3593 return (-1); 3594 } 3595 return (retval); 3596 } 3597 3598 int 3599 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3600 { 3601 int retval = 0; 3602 3603 if (path->bus != dev->target->bus) { 3604 if (path->bus->path_id == CAM_BUS_WILDCARD) 3605 retval = 1; 3606 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3607 retval = 2; 3608 else 3609 return (-1); 3610 } 3611 if (path->target != dev->target) { 3612 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3613 if (retval == 0) 3614 retval = 1; 3615 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3616 retval = 2; 3617 else 3618 return (-1); 3619 } 3620 if (path->device != dev) { 3621 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3622 if (retval == 0) 3623 retval = 1; 3624 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3625 retval = 2; 3626 else 3627 return (-1); 3628 } 3629 return (retval); 3630 } 3631 3632 void 3633 xpt_print_path(struct cam_path *path) 3634 { 3635 3636 if (path == NULL) 3637 printf("(nopath): "); 3638 else { 3639 if (path->periph != NULL) 3640 printf("(%s%d:", path->periph->periph_name, 3641 path->periph->unit_number); 3642 else 3643 printf("(noperiph:"); 3644 3645 if (path->bus != NULL) 3646 printf("%s%d:%d:", path->bus->sim->sim_name, 3647 path->bus->sim->unit_number, 3648 path->bus->sim->bus_id); 3649 else 3650 printf("nobus:"); 3651 3652 if (path->target != NULL) 3653 printf("%d:", path->target->target_id); 3654 else 3655 printf("X:"); 3656 3657 if (path->device != NULL) 3658 printf("%jx): ", (uintmax_t)path->device->lun_id); 3659 else 3660 printf("X): "); 3661 } 3662 } 3663 3664 void 3665 xpt_print_device(struct cam_ed *device) 3666 { 3667 3668 if (device == NULL) 3669 printf("(nopath): "); 3670 else { 3671 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3672 device->sim->unit_number, 3673 device->sim->bus_id, 3674 device->target->target_id, 3675 (uintmax_t)device->lun_id); 3676 } 3677 } 3678 3679 void 3680 xpt_print(struct cam_path *path, const char *fmt, ...) 3681 { 3682 va_list ap; 3683 xpt_print_path(path); 3684 va_start(ap, fmt); 3685 vprintf(fmt, ap); 3686 va_end(ap); 3687 } 3688 3689 int 3690 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3691 { 3692 struct sbuf sb; 3693 3694 sbuf_new(&sb, str, str_len, 0); 3695 3696 if (path == NULL) 3697 sbuf_printf(&sb, "(nopath): "); 3698 else { 3699 if (path->periph != NULL) 3700 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3701 path->periph->unit_number); 3702 else 3703 sbuf_printf(&sb, "(noperiph:"); 3704 3705 if (path->bus != NULL) 3706 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3707 path->bus->sim->unit_number, 3708 path->bus->sim->bus_id); 3709 else 3710 sbuf_printf(&sb, "nobus:"); 3711 3712 if (path->target != NULL) 3713 sbuf_printf(&sb, "%d:", path->target->target_id); 3714 else 3715 sbuf_printf(&sb, "X:"); 3716 3717 if (path->device != NULL) 3718 sbuf_printf(&sb, "%jx): ", 3719 (uintmax_t)path->device->lun_id); 3720 else 3721 sbuf_printf(&sb, "X): "); 3722 } 3723 sbuf_finish(&sb); 3724 3725 return(sbuf_len(&sb)); 3726 } 3727 3728 path_id_t 3729 xpt_path_path_id(struct cam_path *path) 3730 { 3731 return(path->bus->path_id); 3732 } 3733 3734 target_id_t 3735 xpt_path_target_id(struct cam_path *path) 3736 { 3737 if (path->target != NULL) 3738 return (path->target->target_id); 3739 else 3740 return (CAM_TARGET_WILDCARD); 3741 } 3742 3743 lun_id_t 3744 xpt_path_lun_id(struct cam_path *path) 3745 { 3746 if (path->device != NULL) 3747 return (path->device->lun_id); 3748 else 3749 return (CAM_LUN_WILDCARD); 3750 } 3751 3752 struct cam_sim * 3753 xpt_path_sim(struct cam_path *path) 3754 { 3755 3756 return (path->bus->sim); 3757 } 3758 3759 struct cam_periph* 3760 xpt_path_periph(struct cam_path *path) 3761 { 3762 3763 return (path->periph); 3764 } 3765 3766 /* 3767 * Release a CAM control block for the caller. Remit the cost of the structure 3768 * to the device referenced by the path. If the this device had no 'credits' 3769 * and peripheral drivers have registered async callbacks for this notification 3770 * call them now. 3771 */ 3772 void 3773 xpt_release_ccb(union ccb *free_ccb) 3774 { 3775 struct cam_ed *device; 3776 struct cam_periph *periph; 3777 3778 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3779 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3780 device = free_ccb->ccb_h.path->device; 3781 periph = free_ccb->ccb_h.path->periph; 3782 3783 xpt_free_ccb(free_ccb); 3784 periph->periph_allocated--; 3785 cam_ccbq_release_opening(&device->ccbq); 3786 xpt_run_allocq(periph, 0); 3787 } 3788 3789 /* Functions accessed by SIM drivers */ 3790 3791 static struct xpt_xport xport_default = { 3792 .alloc_device = xpt_alloc_device_default, 3793 .action = xpt_action_default, 3794 .async = xpt_dev_async_default, 3795 }; 3796 3797 /* 3798 * A sim structure, listing the SIM entry points and instance 3799 * identification info is passed to xpt_bus_register to hook the SIM 3800 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3801 * for this new bus and places it in the array of busses and assigns 3802 * it a path_id. The path_id may be influenced by "hard wiring" 3803 * information specified by the user. Once interrupt services are 3804 * available, the bus will be probed. 3805 */ 3806 int32_t 3807 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3808 { 3809 struct cam_eb *new_bus; 3810 struct cam_eb *old_bus; 3811 struct ccb_pathinq cpi; 3812 struct cam_path *path; 3813 cam_status status; 3814 3815 mtx_assert(sim->mtx, MA_OWNED); 3816 3817 sim->bus_id = bus; 3818 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3819 M_CAMXPT, M_NOWAIT|M_ZERO); 3820 if (new_bus == NULL) { 3821 /* Couldn't satisfy request */ 3822 return (CAM_RESRC_UNAVAIL); 3823 } 3824 3825 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 3826 TAILQ_INIT(&new_bus->et_entries); 3827 cam_sim_hold(sim); 3828 new_bus->sim = sim; 3829 timevalclear(&new_bus->last_reset); 3830 new_bus->flags = 0; 3831 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3832 new_bus->generation = 0; 3833 3834 xpt_lock_buses(); 3835 sim->path_id = new_bus->path_id = 3836 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3837 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3838 while (old_bus != NULL 3839 && old_bus->path_id < new_bus->path_id) 3840 old_bus = TAILQ_NEXT(old_bus, links); 3841 if (old_bus != NULL) 3842 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3843 else 3844 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3845 xsoftc.bus_generation++; 3846 xpt_unlock_buses(); 3847 3848 /* 3849 * Set a default transport so that a PATH_INQ can be issued to 3850 * the SIM. This will then allow for probing and attaching of 3851 * a more appropriate transport. 3852 */ 3853 new_bus->xport = &xport_default; 3854 3855 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3856 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3857 if (status != CAM_REQ_CMP) { 3858 xpt_release_bus(new_bus); 3859 free(path, M_CAMXPT); 3860 return (CAM_RESRC_UNAVAIL); 3861 } 3862 3863 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3864 cpi.ccb_h.func_code = XPT_PATH_INQ; 3865 xpt_action((union ccb *)&cpi); 3866 3867 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3868 switch (cpi.transport) { 3869 case XPORT_SPI: 3870 case XPORT_SAS: 3871 case XPORT_FC: 3872 case XPORT_USB: 3873 case XPORT_ISCSI: 3874 case XPORT_SRP: 3875 case XPORT_PPB: 3876 new_bus->xport = scsi_get_xport(); 3877 break; 3878 case XPORT_ATA: 3879 case XPORT_SATA: 3880 new_bus->xport = ata_get_xport(); 3881 break; 3882 default: 3883 new_bus->xport = &xport_default; 3884 break; 3885 } 3886 } 3887 3888 /* Notify interested parties */ 3889 if (sim->path_id != CAM_XPT_PATH_ID) { 3890 3891 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3892 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 3893 union ccb *scan_ccb; 3894 3895 /* Initiate bus rescan. */ 3896 scan_ccb = xpt_alloc_ccb_nowait(); 3897 if (scan_ccb != NULL) { 3898 scan_ccb->ccb_h.path = path; 3899 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3900 scan_ccb->crcn.flags = 0; 3901 xpt_rescan(scan_ccb); 3902 } else { 3903 xpt_print(path, 3904 "Can't allocate CCB to scan bus\n"); 3905 xpt_free_path(path); 3906 } 3907 } else 3908 xpt_free_path(path); 3909 } else 3910 xpt_free_path(path); 3911 return (CAM_SUCCESS); 3912 } 3913 3914 int32_t 3915 xpt_bus_deregister(path_id_t pathid) 3916 { 3917 struct cam_path bus_path; 3918 cam_status status; 3919 3920 status = xpt_compile_path(&bus_path, NULL, pathid, 3921 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3922 if (status != CAM_REQ_CMP) 3923 return (status); 3924 3925 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3926 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3927 3928 /* Release the reference count held while registered. */ 3929 xpt_release_bus(bus_path.bus); 3930 xpt_release_path(&bus_path); 3931 3932 return (CAM_REQ_CMP); 3933 } 3934 3935 static path_id_t 3936 xptnextfreepathid(void) 3937 { 3938 struct cam_eb *bus; 3939 path_id_t pathid; 3940 const char *strval; 3941 3942 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 3943 pathid = 0; 3944 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3945 retry: 3946 /* Find an unoccupied pathid */ 3947 while (bus != NULL && bus->path_id <= pathid) { 3948 if (bus->path_id == pathid) 3949 pathid++; 3950 bus = TAILQ_NEXT(bus, links); 3951 } 3952 3953 /* 3954 * Ensure that this pathid is not reserved for 3955 * a bus that may be registered in the future. 3956 */ 3957 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3958 ++pathid; 3959 /* Start the search over */ 3960 goto retry; 3961 } 3962 return (pathid); 3963 } 3964 3965 static path_id_t 3966 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3967 { 3968 path_id_t pathid; 3969 int i, dunit, val; 3970 char buf[32]; 3971 const char *dname; 3972 3973 pathid = CAM_XPT_PATH_ID; 3974 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 3975 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 3976 return (pathid); 3977 i = 0; 3978 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 3979 if (strcmp(dname, "scbus")) { 3980 /* Avoid a bit of foot shooting. */ 3981 continue; 3982 } 3983 if (dunit < 0) /* unwired?! */ 3984 continue; 3985 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 3986 if (sim_bus == val) { 3987 pathid = dunit; 3988 break; 3989 } 3990 } else if (sim_bus == 0) { 3991 /* Unspecified matches bus 0 */ 3992 pathid = dunit; 3993 break; 3994 } else { 3995 printf("Ambiguous scbus configuration for %s%d " 3996 "bus %d, cannot wire down. The kernel " 3997 "config entry for scbus%d should " 3998 "specify a controller bus.\n" 3999 "Scbus will be assigned dynamically.\n", 4000 sim_name, sim_unit, sim_bus, dunit); 4001 break; 4002 } 4003 } 4004 4005 if (pathid == CAM_XPT_PATH_ID) 4006 pathid = xptnextfreepathid(); 4007 return (pathid); 4008 } 4009 4010 static const char * 4011 xpt_async_string(u_int32_t async_code) 4012 { 4013 4014 switch (async_code) { 4015 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4016 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4017 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4018 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4019 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4020 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4021 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4022 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4023 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4024 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4025 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4026 case AC_CONTRACT: return ("AC_CONTRACT"); 4027 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4028 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4029 } 4030 return ("AC_UNKNOWN"); 4031 } 4032 4033 static int 4034 xpt_async_size(u_int32_t async_code) 4035 { 4036 4037 switch (async_code) { 4038 case AC_BUS_RESET: return (0); 4039 case AC_UNSOL_RESEL: return (0); 4040 case AC_SCSI_AEN: return (0); 4041 case AC_SENT_BDR: return (0); 4042 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4043 case AC_PATH_DEREGISTERED: return (0); 4044 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4045 case AC_LOST_DEVICE: return (0); 4046 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4047 case AC_INQ_CHANGED: return (0); 4048 case AC_GETDEV_CHANGED: return (0); 4049 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4050 case AC_ADVINFO_CHANGED: return (-1); 4051 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4052 } 4053 return (0); 4054 } 4055 4056 static int 4057 xpt_async_process_dev(struct cam_ed *device, void *arg) 4058 { 4059 union ccb *ccb = arg; 4060 struct cam_path *path = ccb->ccb_h.path; 4061 void *async_arg = ccb->casync.async_arg_ptr; 4062 u_int32_t async_code = ccb->casync.async_code; 4063 int relock; 4064 4065 if (path->device != device 4066 && path->device->lun_id != CAM_LUN_WILDCARD 4067 && device->lun_id != CAM_LUN_WILDCARD) 4068 return (1); 4069 4070 /* 4071 * The async callback could free the device. 4072 * If it is a broadcast async, it doesn't hold 4073 * device reference, so take our own reference. 4074 */ 4075 xpt_acquire_device(device); 4076 4077 /* 4078 * If async for specific device is to be delivered to 4079 * the wildcard client, take the specific device lock. 4080 * XXX: We may need a way for client to specify it. 4081 */ 4082 if ((device->lun_id == CAM_LUN_WILDCARD && 4083 path->device->lun_id != CAM_LUN_WILDCARD) || 4084 (device->target->target_id == CAM_TARGET_WILDCARD && 4085 path->target->target_id != CAM_TARGET_WILDCARD) || 4086 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4087 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4088 mtx_unlock(&device->device_mtx); 4089 xpt_path_lock(path); 4090 relock = 1; 4091 } else 4092 relock = 0; 4093 4094 (*(device->target->bus->xport->async))(async_code, 4095 device->target->bus, device->target, device, async_arg); 4096 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4097 4098 if (relock) { 4099 xpt_path_unlock(path); 4100 mtx_lock(&device->device_mtx); 4101 } 4102 xpt_release_device(device); 4103 return (1); 4104 } 4105 4106 static int 4107 xpt_async_process_tgt(struct cam_et *target, void *arg) 4108 { 4109 union ccb *ccb = arg; 4110 struct cam_path *path = ccb->ccb_h.path; 4111 4112 if (path->target != target 4113 && path->target->target_id != CAM_TARGET_WILDCARD 4114 && target->target_id != CAM_TARGET_WILDCARD) 4115 return (1); 4116 4117 if (ccb->casync.async_code == AC_SENT_BDR) { 4118 /* Update our notion of when the last reset occurred */ 4119 microtime(&target->last_reset); 4120 } 4121 4122 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4123 } 4124 4125 static void 4126 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4127 { 4128 struct cam_eb *bus; 4129 struct cam_path *path; 4130 void *async_arg; 4131 u_int32_t async_code; 4132 4133 path = ccb->ccb_h.path; 4134 async_code = ccb->casync.async_code; 4135 async_arg = ccb->casync.async_arg_ptr; 4136 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4137 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4138 bus = path->bus; 4139 4140 if (async_code == AC_BUS_RESET) { 4141 /* Update our notion of when the last reset occurred */ 4142 microtime(&bus->last_reset); 4143 } 4144 4145 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4146 4147 /* 4148 * If this wasn't a fully wildcarded async, tell all 4149 * clients that want all async events. 4150 */ 4151 if (bus != xpt_periph->path->bus) { 4152 xpt_path_lock(xpt_periph->path); 4153 xpt_async_process_dev(xpt_periph->path->device, ccb); 4154 xpt_path_unlock(xpt_periph->path); 4155 } 4156 4157 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4158 xpt_release_devq(path, 1, TRUE); 4159 else 4160 xpt_release_simq(path->bus->sim, TRUE); 4161 if (ccb->casync.async_arg_size > 0) 4162 free(async_arg, M_CAMXPT); 4163 xpt_free_path(path); 4164 xpt_free_ccb(ccb); 4165 } 4166 4167 static void 4168 xpt_async_bcast(struct async_list *async_head, 4169 u_int32_t async_code, 4170 struct cam_path *path, void *async_arg) 4171 { 4172 struct async_node *cur_entry; 4173 int lock; 4174 4175 cur_entry = SLIST_FIRST(async_head); 4176 while (cur_entry != NULL) { 4177 struct async_node *next_entry; 4178 /* 4179 * Grab the next list entry before we call the current 4180 * entry's callback. This is because the callback function 4181 * can delete its async callback entry. 4182 */ 4183 next_entry = SLIST_NEXT(cur_entry, links); 4184 if ((cur_entry->event_enable & async_code) != 0) { 4185 lock = cur_entry->event_lock; 4186 if (lock) 4187 CAM_SIM_LOCK(path->device->sim); 4188 cur_entry->callback(cur_entry->callback_arg, 4189 async_code, path, 4190 async_arg); 4191 if (lock) 4192 CAM_SIM_UNLOCK(path->device->sim); 4193 } 4194 cur_entry = next_entry; 4195 } 4196 } 4197 4198 void 4199 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4200 { 4201 union ccb *ccb; 4202 int size; 4203 4204 ccb = xpt_alloc_ccb_nowait(); 4205 if (ccb == NULL) { 4206 xpt_print(path, "Can't allocate CCB to send %s\n", 4207 xpt_async_string(async_code)); 4208 return; 4209 } 4210 4211 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4212 xpt_print(path, "Can't allocate path to send %s\n", 4213 xpt_async_string(async_code)); 4214 xpt_free_ccb(ccb); 4215 return; 4216 } 4217 ccb->ccb_h.path->periph = NULL; 4218 ccb->ccb_h.func_code = XPT_ASYNC; 4219 ccb->ccb_h.cbfcnp = xpt_async_process; 4220 ccb->ccb_h.flags |= CAM_UNLOCKED; 4221 ccb->casync.async_code = async_code; 4222 ccb->casync.async_arg_size = 0; 4223 size = xpt_async_size(async_code); 4224 if (size > 0 && async_arg != NULL) { 4225 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4226 if (ccb->casync.async_arg_ptr == NULL) { 4227 xpt_print(path, "Can't allocate argument to send %s\n", 4228 xpt_async_string(async_code)); 4229 xpt_free_path(ccb->ccb_h.path); 4230 xpt_free_ccb(ccb); 4231 return; 4232 } 4233 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4234 ccb->casync.async_arg_size = size; 4235 } else if (size < 0) { 4236 ccb->casync.async_arg_ptr = async_arg; 4237 ccb->casync.async_arg_size = size; 4238 } 4239 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4240 xpt_freeze_devq(path, 1); 4241 else 4242 xpt_freeze_simq(path->bus->sim, 1); 4243 xpt_done(ccb); 4244 } 4245 4246 static void 4247 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4248 struct cam_et *target, struct cam_ed *device, 4249 void *async_arg) 4250 { 4251 4252 /* 4253 * We only need to handle events for real devices. 4254 */ 4255 if (target->target_id == CAM_TARGET_WILDCARD 4256 || device->lun_id == CAM_LUN_WILDCARD) 4257 return; 4258 4259 printf("%s called\n", __func__); 4260 } 4261 4262 static uint32_t 4263 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4264 { 4265 struct cam_devq *devq; 4266 uint32_t freeze; 4267 4268 devq = dev->sim->devq; 4269 mtx_assert(&devq->send_mtx, MA_OWNED); 4270 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4271 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4272 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4273 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4274 /* Remove frozen device from sendq. */ 4275 if (device_is_queued(dev)) 4276 camq_remove(&devq->send_queue, dev->devq_entry.index); 4277 return (freeze); 4278 } 4279 4280 u_int32_t 4281 xpt_freeze_devq(struct cam_path *path, u_int count) 4282 { 4283 struct cam_ed *dev = path->device; 4284 struct cam_devq *devq; 4285 uint32_t freeze; 4286 4287 devq = dev->sim->devq; 4288 mtx_lock(&devq->send_mtx); 4289 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4290 freeze = xpt_freeze_devq_device(dev, count); 4291 mtx_unlock(&devq->send_mtx); 4292 return (freeze); 4293 } 4294 4295 u_int32_t 4296 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4297 { 4298 struct cam_devq *devq; 4299 uint32_t freeze; 4300 4301 devq = sim->devq; 4302 mtx_lock(&devq->send_mtx); 4303 freeze = (devq->send_queue.qfrozen_cnt += count); 4304 mtx_unlock(&devq->send_mtx); 4305 return (freeze); 4306 } 4307 4308 static void 4309 xpt_release_devq_timeout(void *arg) 4310 { 4311 struct cam_ed *dev; 4312 struct cam_devq *devq; 4313 4314 dev = (struct cam_ed *)arg; 4315 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4316 devq = dev->sim->devq; 4317 mtx_assert(&devq->send_mtx, MA_OWNED); 4318 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4319 xpt_run_devq(devq); 4320 } 4321 4322 void 4323 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4324 { 4325 struct cam_ed *dev; 4326 struct cam_devq *devq; 4327 4328 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4329 count, run_queue)); 4330 dev = path->device; 4331 devq = dev->sim->devq; 4332 mtx_lock(&devq->send_mtx); 4333 if (xpt_release_devq_device(dev, count, run_queue)) 4334 xpt_run_devq(dev->sim->devq); 4335 mtx_unlock(&devq->send_mtx); 4336 } 4337 4338 static int 4339 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4340 { 4341 4342 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4343 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4344 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4345 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4346 if (count > dev->ccbq.queue.qfrozen_cnt) { 4347 #ifdef INVARIANTS 4348 printf("xpt_release_devq(): requested %u > present %u\n", 4349 count, dev->ccbq.queue.qfrozen_cnt); 4350 #endif 4351 count = dev->ccbq.queue.qfrozen_cnt; 4352 } 4353 dev->ccbq.queue.qfrozen_cnt -= count; 4354 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4355 /* 4356 * No longer need to wait for a successful 4357 * command completion. 4358 */ 4359 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4360 /* 4361 * Remove any timeouts that might be scheduled 4362 * to release this queue. 4363 */ 4364 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4365 callout_stop(&dev->callout); 4366 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4367 } 4368 /* 4369 * Now that we are unfrozen schedule the 4370 * device so any pending transactions are 4371 * run. 4372 */ 4373 xpt_schedule_devq(dev->sim->devq, dev); 4374 } else 4375 run_queue = 0; 4376 return (run_queue); 4377 } 4378 4379 void 4380 xpt_release_simq(struct cam_sim *sim, int run_queue) 4381 { 4382 struct cam_devq *devq; 4383 4384 devq = sim->devq; 4385 mtx_lock(&devq->send_mtx); 4386 if (devq->send_queue.qfrozen_cnt <= 0) { 4387 #ifdef INVARIANTS 4388 printf("xpt_release_simq: requested 1 > present %u\n", 4389 devq->send_queue.qfrozen_cnt); 4390 #endif 4391 } else 4392 devq->send_queue.qfrozen_cnt--; 4393 if (devq->send_queue.qfrozen_cnt == 0) { 4394 /* 4395 * If there is a timeout scheduled to release this 4396 * sim queue, remove it. The queue frozen count is 4397 * already at 0. 4398 */ 4399 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4400 callout_stop(&sim->callout); 4401 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4402 } 4403 if (run_queue) { 4404 /* 4405 * Now that we are unfrozen run the send queue. 4406 */ 4407 xpt_run_devq(sim->devq); 4408 } 4409 } 4410 mtx_unlock(&devq->send_mtx); 4411 } 4412 4413 /* 4414 * XXX Appears to be unused. 4415 */ 4416 static void 4417 xpt_release_simq_timeout(void *arg) 4418 { 4419 struct cam_sim *sim; 4420 4421 sim = (struct cam_sim *)arg; 4422 xpt_release_simq(sim, /* run_queue */ TRUE); 4423 } 4424 4425 void 4426 xpt_done(union ccb *done_ccb) 4427 { 4428 struct cam_doneq *queue; 4429 int run, hash; 4430 4431 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4432 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4433 return; 4434 4435 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4436 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4437 queue = &cam_doneqs[hash]; 4438 mtx_lock(&queue->cam_doneq_mtx); 4439 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4440 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4441 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4442 mtx_unlock(&queue->cam_doneq_mtx); 4443 if (run) 4444 wakeup(&queue->cam_doneq); 4445 } 4446 4447 void 4448 xpt_done_direct(union ccb *done_ccb) 4449 { 4450 4451 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct\n")); 4452 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4453 return; 4454 4455 xpt_done_process(&done_ccb->ccb_h); 4456 } 4457 4458 union ccb * 4459 xpt_alloc_ccb() 4460 { 4461 union ccb *new_ccb; 4462 4463 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4464 return (new_ccb); 4465 } 4466 4467 union ccb * 4468 xpt_alloc_ccb_nowait() 4469 { 4470 union ccb *new_ccb; 4471 4472 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4473 return (new_ccb); 4474 } 4475 4476 void 4477 xpt_free_ccb(union ccb *free_ccb) 4478 { 4479 free(free_ccb, M_CAMCCB); 4480 } 4481 4482 4483 4484 /* Private XPT functions */ 4485 4486 /* 4487 * Get a CAM control block for the caller. Charge the structure to the device 4488 * referenced by the path. If we don't have sufficient resources to allocate 4489 * more ccbs, we return NULL. 4490 */ 4491 static union ccb * 4492 xpt_get_ccb_nowait(struct cam_periph *periph) 4493 { 4494 union ccb *new_ccb; 4495 4496 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4497 if (new_ccb == NULL) 4498 return (NULL); 4499 periph->periph_allocated++; 4500 cam_ccbq_take_opening(&periph->path->device->ccbq); 4501 return (new_ccb); 4502 } 4503 4504 static union ccb * 4505 xpt_get_ccb(struct cam_periph *periph) 4506 { 4507 union ccb *new_ccb; 4508 4509 cam_periph_unlock(periph); 4510 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4511 cam_periph_lock(periph); 4512 periph->periph_allocated++; 4513 cam_ccbq_take_opening(&periph->path->device->ccbq); 4514 return (new_ccb); 4515 } 4516 4517 union ccb * 4518 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4519 { 4520 struct ccb_hdr *ccb_h; 4521 4522 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4523 cam_periph_assert(periph, MA_OWNED); 4524 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4525 ccb_h->pinfo.priority != priority) { 4526 if (priority < periph->immediate_priority) { 4527 periph->immediate_priority = priority; 4528 xpt_run_allocq(periph, 0); 4529 } else 4530 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4531 "cgticb", 0); 4532 } 4533 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4534 return ((union ccb *)ccb_h); 4535 } 4536 4537 static void 4538 xpt_acquire_bus(struct cam_eb *bus) 4539 { 4540 4541 xpt_lock_buses(); 4542 bus->refcount++; 4543 xpt_unlock_buses(); 4544 } 4545 4546 static void 4547 xpt_release_bus(struct cam_eb *bus) 4548 { 4549 4550 xpt_lock_buses(); 4551 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4552 if (--bus->refcount > 0) { 4553 xpt_unlock_buses(); 4554 return; 4555 } 4556 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4557 xsoftc.bus_generation++; 4558 xpt_unlock_buses(); 4559 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4560 ("destroying bus, but target list is not empty")); 4561 cam_sim_release(bus->sim); 4562 mtx_destroy(&bus->eb_mtx); 4563 free(bus, M_CAMXPT); 4564 } 4565 4566 static struct cam_et * 4567 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4568 { 4569 struct cam_et *cur_target, *target; 4570 4571 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4572 mtx_assert(&bus->eb_mtx, MA_OWNED); 4573 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4574 M_NOWAIT|M_ZERO); 4575 if (target == NULL) 4576 return (NULL); 4577 4578 TAILQ_INIT(&target->ed_entries); 4579 target->bus = bus; 4580 target->target_id = target_id; 4581 target->refcount = 1; 4582 target->generation = 0; 4583 target->luns = NULL; 4584 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4585 timevalclear(&target->last_reset); 4586 /* 4587 * Hold a reference to our parent bus so it 4588 * will not go away before we do. 4589 */ 4590 bus->refcount++; 4591 4592 /* Insertion sort into our bus's target list */ 4593 cur_target = TAILQ_FIRST(&bus->et_entries); 4594 while (cur_target != NULL && cur_target->target_id < target_id) 4595 cur_target = TAILQ_NEXT(cur_target, links); 4596 if (cur_target != NULL) { 4597 TAILQ_INSERT_BEFORE(cur_target, target, links); 4598 } else { 4599 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4600 } 4601 bus->generation++; 4602 return (target); 4603 } 4604 4605 static void 4606 xpt_acquire_target(struct cam_et *target) 4607 { 4608 struct cam_eb *bus = target->bus; 4609 4610 mtx_lock(&bus->eb_mtx); 4611 target->refcount++; 4612 mtx_unlock(&bus->eb_mtx); 4613 } 4614 4615 static void 4616 xpt_release_target(struct cam_et *target) 4617 { 4618 struct cam_eb *bus = target->bus; 4619 4620 mtx_lock(&bus->eb_mtx); 4621 if (--target->refcount > 0) { 4622 mtx_unlock(&bus->eb_mtx); 4623 return; 4624 } 4625 TAILQ_REMOVE(&bus->et_entries, target, links); 4626 bus->generation++; 4627 mtx_unlock(&bus->eb_mtx); 4628 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4629 ("destroying target, but device list is not empty")); 4630 xpt_release_bus(bus); 4631 mtx_destroy(&target->luns_mtx); 4632 if (target->luns) 4633 free(target->luns, M_CAMXPT); 4634 free(target, M_CAMXPT); 4635 } 4636 4637 static struct cam_ed * 4638 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4639 lun_id_t lun_id) 4640 { 4641 struct cam_ed *device; 4642 4643 device = xpt_alloc_device(bus, target, lun_id); 4644 if (device == NULL) 4645 return (NULL); 4646 4647 device->mintags = 1; 4648 device->maxtags = 1; 4649 return (device); 4650 } 4651 4652 static void 4653 xpt_destroy_device(void *context, int pending) 4654 { 4655 struct cam_ed *device = context; 4656 4657 mtx_lock(&device->device_mtx); 4658 mtx_destroy(&device->device_mtx); 4659 free(device, M_CAMDEV); 4660 } 4661 4662 struct cam_ed * 4663 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4664 { 4665 struct cam_ed *cur_device, *device; 4666 struct cam_devq *devq; 4667 cam_status status; 4668 4669 mtx_assert(&bus->eb_mtx, MA_OWNED); 4670 /* Make space for us in the device queue on our bus */ 4671 devq = bus->sim->devq; 4672 mtx_lock(&devq->send_mtx); 4673 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4674 mtx_unlock(&devq->send_mtx); 4675 if (status != CAM_REQ_CMP) 4676 return (NULL); 4677 4678 device = (struct cam_ed *)malloc(sizeof(*device), 4679 M_CAMDEV, M_NOWAIT|M_ZERO); 4680 if (device == NULL) 4681 return (NULL); 4682 4683 cam_init_pinfo(&device->devq_entry); 4684 device->target = target; 4685 device->lun_id = lun_id; 4686 device->sim = bus->sim; 4687 if (cam_ccbq_init(&device->ccbq, 4688 bus->sim->max_dev_openings) != 0) { 4689 free(device, M_CAMDEV); 4690 return (NULL); 4691 } 4692 SLIST_INIT(&device->asyncs); 4693 SLIST_INIT(&device->periphs); 4694 device->generation = 0; 4695 device->flags = CAM_DEV_UNCONFIGURED; 4696 device->tag_delay_count = 0; 4697 device->tag_saved_openings = 0; 4698 device->refcount = 1; 4699 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4700 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4701 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4702 /* 4703 * Hold a reference to our parent bus so it 4704 * will not go away before we do. 4705 */ 4706 target->refcount++; 4707 4708 cur_device = TAILQ_FIRST(&target->ed_entries); 4709 while (cur_device != NULL && cur_device->lun_id < lun_id) 4710 cur_device = TAILQ_NEXT(cur_device, links); 4711 if (cur_device != NULL) 4712 TAILQ_INSERT_BEFORE(cur_device, device, links); 4713 else 4714 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4715 target->generation++; 4716 return (device); 4717 } 4718 4719 void 4720 xpt_acquire_device(struct cam_ed *device) 4721 { 4722 struct cam_eb *bus = device->target->bus; 4723 4724 mtx_lock(&bus->eb_mtx); 4725 device->refcount++; 4726 mtx_unlock(&bus->eb_mtx); 4727 } 4728 4729 void 4730 xpt_release_device(struct cam_ed *device) 4731 { 4732 struct cam_eb *bus = device->target->bus; 4733 struct cam_devq *devq; 4734 4735 mtx_lock(&bus->eb_mtx); 4736 if (--device->refcount > 0) { 4737 mtx_unlock(&bus->eb_mtx); 4738 return; 4739 } 4740 4741 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4742 device->target->generation++; 4743 mtx_unlock(&bus->eb_mtx); 4744 4745 /* Release our slot in the devq */ 4746 devq = bus->sim->devq; 4747 mtx_lock(&devq->send_mtx); 4748 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4749 mtx_unlock(&devq->send_mtx); 4750 4751 KASSERT(SLIST_EMPTY(&device->periphs), 4752 ("destroying device, but periphs list is not empty")); 4753 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4754 ("destroying device while still queued for ccbs")); 4755 4756 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4757 callout_stop(&device->callout); 4758 4759 xpt_release_target(device->target); 4760 4761 cam_ccbq_fini(&device->ccbq); 4762 /* 4763 * Free allocated memory. free(9) does nothing if the 4764 * supplied pointer is NULL, so it is safe to call without 4765 * checking. 4766 */ 4767 free(device->supported_vpds, M_CAMXPT); 4768 free(device->device_id, M_CAMXPT); 4769 free(device->ext_inq, M_CAMXPT); 4770 free(device->physpath, M_CAMXPT); 4771 free(device->rcap_buf, M_CAMXPT); 4772 free(device->serial_num, M_CAMXPT); 4773 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4774 } 4775 4776 u_int32_t 4777 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4778 { 4779 int result; 4780 struct cam_ed *dev; 4781 4782 dev = path->device; 4783 mtx_lock(&dev->sim->devq->send_mtx); 4784 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4785 mtx_unlock(&dev->sim->devq->send_mtx); 4786 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4787 || (dev->inq_flags & SID_CmdQue) != 0) 4788 dev->tag_saved_openings = newopenings; 4789 return (result); 4790 } 4791 4792 static struct cam_eb * 4793 xpt_find_bus(path_id_t path_id) 4794 { 4795 struct cam_eb *bus; 4796 4797 xpt_lock_buses(); 4798 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4799 bus != NULL; 4800 bus = TAILQ_NEXT(bus, links)) { 4801 if (bus->path_id == path_id) { 4802 bus->refcount++; 4803 break; 4804 } 4805 } 4806 xpt_unlock_buses(); 4807 return (bus); 4808 } 4809 4810 static struct cam_et * 4811 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4812 { 4813 struct cam_et *target; 4814 4815 mtx_assert(&bus->eb_mtx, MA_OWNED); 4816 for (target = TAILQ_FIRST(&bus->et_entries); 4817 target != NULL; 4818 target = TAILQ_NEXT(target, links)) { 4819 if (target->target_id == target_id) { 4820 target->refcount++; 4821 break; 4822 } 4823 } 4824 return (target); 4825 } 4826 4827 static struct cam_ed * 4828 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4829 { 4830 struct cam_ed *device; 4831 4832 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 4833 for (device = TAILQ_FIRST(&target->ed_entries); 4834 device != NULL; 4835 device = TAILQ_NEXT(device, links)) { 4836 if (device->lun_id == lun_id) { 4837 device->refcount++; 4838 break; 4839 } 4840 } 4841 return (device); 4842 } 4843 4844 void 4845 xpt_start_tags(struct cam_path *path) 4846 { 4847 struct ccb_relsim crs; 4848 struct cam_ed *device; 4849 struct cam_sim *sim; 4850 int newopenings; 4851 4852 device = path->device; 4853 sim = path->bus->sim; 4854 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4855 xpt_freeze_devq(path, /*count*/1); 4856 device->inq_flags |= SID_CmdQue; 4857 if (device->tag_saved_openings != 0) 4858 newopenings = device->tag_saved_openings; 4859 else 4860 newopenings = min(device->maxtags, 4861 sim->max_tagged_dev_openings); 4862 xpt_dev_ccbq_resize(path, newopenings); 4863 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4864 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4865 crs.ccb_h.func_code = XPT_REL_SIMQ; 4866 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4867 crs.openings 4868 = crs.release_timeout 4869 = crs.qfrozen_cnt 4870 = 0; 4871 xpt_action((union ccb *)&crs); 4872 } 4873 4874 void 4875 xpt_stop_tags(struct cam_path *path) 4876 { 4877 struct ccb_relsim crs; 4878 struct cam_ed *device; 4879 struct cam_sim *sim; 4880 4881 device = path->device; 4882 sim = path->bus->sim; 4883 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4884 device->tag_delay_count = 0; 4885 xpt_freeze_devq(path, /*count*/1); 4886 device->inq_flags &= ~SID_CmdQue; 4887 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4888 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4889 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4890 crs.ccb_h.func_code = XPT_REL_SIMQ; 4891 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4892 crs.openings 4893 = crs.release_timeout 4894 = crs.qfrozen_cnt 4895 = 0; 4896 xpt_action((union ccb *)&crs); 4897 } 4898 4899 static void 4900 xpt_boot_delay(void *arg) 4901 { 4902 4903 xpt_release_boot(); 4904 } 4905 4906 static void 4907 xpt_config(void *arg) 4908 { 4909 /* 4910 * Now that interrupts are enabled, go find our devices 4911 */ 4912 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 4913 printf("xpt_config: failed to create taskqueue thread.\n"); 4914 4915 /* Setup debugging path */ 4916 if (cam_dflags != CAM_DEBUG_NONE) { 4917 if (xpt_create_path(&cam_dpath, NULL, 4918 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4919 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4920 printf("xpt_config: xpt_create_path() failed for debug" 4921 " target %d:%d:%d, debugging disabled\n", 4922 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4923 cam_dflags = CAM_DEBUG_NONE; 4924 } 4925 } else 4926 cam_dpath = NULL; 4927 4928 periphdriver_init(1); 4929 xpt_hold_boot(); 4930 callout_init(&xsoftc.boot_callout, 1); 4931 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 4932 xpt_boot_delay, NULL, 0); 4933 /* Fire up rescan thread. */ 4934 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 4935 "cam", "scanner")) { 4936 printf("xpt_config: failed to create rescan thread.\n"); 4937 } 4938 } 4939 4940 void 4941 xpt_hold_boot(void) 4942 { 4943 xpt_lock_buses(); 4944 xsoftc.buses_to_config++; 4945 xpt_unlock_buses(); 4946 } 4947 4948 void 4949 xpt_release_boot(void) 4950 { 4951 xpt_lock_buses(); 4952 xsoftc.buses_to_config--; 4953 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4954 struct xpt_task *task; 4955 4956 xsoftc.buses_config_done = 1; 4957 xpt_unlock_buses(); 4958 /* Call manually because we don't have any busses */ 4959 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4960 if (task != NULL) { 4961 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4962 taskqueue_enqueue(taskqueue_thread, &task->task); 4963 } 4964 } else 4965 xpt_unlock_buses(); 4966 } 4967 4968 /* 4969 * If the given device only has one peripheral attached to it, and if that 4970 * peripheral is the passthrough driver, announce it. This insures that the 4971 * user sees some sort of announcement for every peripheral in their system. 4972 */ 4973 static int 4974 xptpassannouncefunc(struct cam_ed *device, void *arg) 4975 { 4976 struct cam_periph *periph; 4977 int i; 4978 4979 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4980 periph = SLIST_NEXT(periph, periph_links), i++); 4981 4982 periph = SLIST_FIRST(&device->periphs); 4983 if ((i == 1) 4984 && (strncmp(periph->periph_name, "pass", 4) == 0)) 4985 xpt_announce_periph(periph, NULL); 4986 4987 return(1); 4988 } 4989 4990 static void 4991 xpt_finishconfig_task(void *context, int pending) 4992 { 4993 4994 periphdriver_init(2); 4995 /* 4996 * Check for devices with no "standard" peripheral driver 4997 * attached. For any devices like that, announce the 4998 * passthrough driver so the user will see something. 4999 */ 5000 if (!bootverbose) 5001 xpt_for_all_devices(xptpassannouncefunc, NULL); 5002 5003 /* Release our hook so that the boot can continue. */ 5004 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5005 free(xsoftc.xpt_config_hook, M_CAMXPT); 5006 xsoftc.xpt_config_hook = NULL; 5007 5008 free(context, M_CAMXPT); 5009 } 5010 5011 cam_status 5012 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5013 struct cam_path *path) 5014 { 5015 struct ccb_setasync csa; 5016 cam_status status; 5017 int xptpath = 0; 5018 5019 if (path == NULL) { 5020 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5021 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5022 if (status != CAM_REQ_CMP) 5023 return (status); 5024 xpt_path_lock(path); 5025 xptpath = 1; 5026 } 5027 5028 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5029 csa.ccb_h.func_code = XPT_SASYNC_CB; 5030 csa.event_enable = event; 5031 csa.callback = cbfunc; 5032 csa.callback_arg = cbarg; 5033 xpt_action((union ccb *)&csa); 5034 status = csa.ccb_h.status; 5035 5036 if (xptpath) { 5037 xpt_path_unlock(path); 5038 xpt_free_path(path); 5039 } 5040 5041 if ((status == CAM_REQ_CMP) && 5042 (csa.event_enable & AC_FOUND_DEVICE)) { 5043 /* 5044 * Get this peripheral up to date with all 5045 * the currently existing devices. 5046 */ 5047 xpt_for_all_devices(xptsetasyncfunc, &csa); 5048 } 5049 if ((status == CAM_REQ_CMP) && 5050 (csa.event_enable & AC_PATH_REGISTERED)) { 5051 /* 5052 * Get this peripheral up to date with all 5053 * the currently existing busses. 5054 */ 5055 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5056 } 5057 5058 return (status); 5059 } 5060 5061 static void 5062 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5063 { 5064 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5065 5066 switch (work_ccb->ccb_h.func_code) { 5067 /* Common cases first */ 5068 case XPT_PATH_INQ: /* Path routing inquiry */ 5069 { 5070 struct ccb_pathinq *cpi; 5071 5072 cpi = &work_ccb->cpi; 5073 cpi->version_num = 1; /* XXX??? */ 5074 cpi->hba_inquiry = 0; 5075 cpi->target_sprt = 0; 5076 cpi->hba_misc = 0; 5077 cpi->hba_eng_cnt = 0; 5078 cpi->max_target = 0; 5079 cpi->max_lun = 0; 5080 cpi->initiator_id = 0; 5081 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5082 strncpy(cpi->hba_vid, "", HBA_IDLEN); 5083 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5084 cpi->unit_number = sim->unit_number; 5085 cpi->bus_id = sim->bus_id; 5086 cpi->base_transfer_speed = 0; 5087 cpi->protocol = PROTO_UNSPECIFIED; 5088 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5089 cpi->transport = XPORT_UNSPECIFIED; 5090 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5091 cpi->ccb_h.status = CAM_REQ_CMP; 5092 xpt_done(work_ccb); 5093 break; 5094 } 5095 default: 5096 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5097 xpt_done(work_ccb); 5098 break; 5099 } 5100 } 5101 5102 /* 5103 * The xpt as a "controller" has no interrupt sources, so polling 5104 * is a no-op. 5105 */ 5106 static void 5107 xptpoll(struct cam_sim *sim) 5108 { 5109 } 5110 5111 void 5112 xpt_lock_buses(void) 5113 { 5114 mtx_lock(&xsoftc.xpt_topo_lock); 5115 } 5116 5117 void 5118 xpt_unlock_buses(void) 5119 { 5120 mtx_unlock(&xsoftc.xpt_topo_lock); 5121 } 5122 5123 struct mtx * 5124 xpt_path_mtx(struct cam_path *path) 5125 { 5126 5127 return (&path->device->device_mtx); 5128 } 5129 5130 static void 5131 xpt_done_process(struct ccb_hdr *ccb_h) 5132 { 5133 struct cam_sim *sim; 5134 struct cam_devq *devq; 5135 struct mtx *mtx = NULL; 5136 5137 if (ccb_h->flags & CAM_HIGH_POWER) { 5138 struct highpowerlist *hphead; 5139 struct cam_ed *device; 5140 5141 mtx_lock(&xsoftc.xpt_highpower_lock); 5142 hphead = &xsoftc.highpowerq; 5143 5144 device = STAILQ_FIRST(hphead); 5145 5146 /* 5147 * Increment the count since this command is done. 5148 */ 5149 xsoftc.num_highpower++; 5150 5151 /* 5152 * Any high powered commands queued up? 5153 */ 5154 if (device != NULL) { 5155 5156 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5157 mtx_unlock(&xsoftc.xpt_highpower_lock); 5158 5159 mtx_lock(&device->sim->devq->send_mtx); 5160 xpt_release_devq_device(device, 5161 /*count*/1, /*runqueue*/TRUE); 5162 mtx_unlock(&device->sim->devq->send_mtx); 5163 } else 5164 mtx_unlock(&xsoftc.xpt_highpower_lock); 5165 } 5166 5167 sim = ccb_h->path->bus->sim; 5168 5169 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5170 xpt_release_simq(sim, /*run_queue*/FALSE); 5171 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5172 } 5173 5174 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5175 && (ccb_h->status & CAM_DEV_QFRZN)) { 5176 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5177 ccb_h->status &= ~CAM_DEV_QFRZN; 5178 } 5179 5180 devq = sim->devq; 5181 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5182 struct cam_ed *dev = ccb_h->path->device; 5183 5184 mtx_lock(&devq->send_mtx); 5185 devq->send_active--; 5186 devq->send_openings++; 5187 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5188 5189 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5190 && (dev->ccbq.dev_active == 0))) { 5191 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5192 xpt_release_devq_device(dev, /*count*/1, 5193 /*run_queue*/FALSE); 5194 } 5195 5196 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5197 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5198 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5199 xpt_release_devq_device(dev, /*count*/1, 5200 /*run_queue*/FALSE); 5201 } 5202 5203 if (!device_is_queued(dev)) 5204 (void)xpt_schedule_devq(devq, dev); 5205 xpt_run_devq(devq); 5206 mtx_unlock(&devq->send_mtx); 5207 5208 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5209 mtx = xpt_path_mtx(ccb_h->path); 5210 mtx_lock(mtx); 5211 5212 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5213 && (--dev->tag_delay_count == 0)) 5214 xpt_start_tags(ccb_h->path); 5215 } 5216 } 5217 5218 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5219 if (mtx == NULL) { 5220 mtx = xpt_path_mtx(ccb_h->path); 5221 mtx_lock(mtx); 5222 } 5223 } else { 5224 if (mtx != NULL) { 5225 mtx_unlock(mtx); 5226 mtx = NULL; 5227 } 5228 } 5229 5230 /* Call the peripheral driver's callback */ 5231 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5232 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5233 if (mtx != NULL) 5234 mtx_unlock(mtx); 5235 } 5236 5237 void 5238 xpt_done_td(void *arg) 5239 { 5240 struct cam_doneq *queue = arg; 5241 struct ccb_hdr *ccb_h; 5242 STAILQ_HEAD(, ccb_hdr) doneq; 5243 5244 STAILQ_INIT(&doneq); 5245 mtx_lock(&queue->cam_doneq_mtx); 5246 while (1) { 5247 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5248 queue->cam_doneq_sleep = 1; 5249 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5250 PRIBIO, "-", 0); 5251 queue->cam_doneq_sleep = 0; 5252 } 5253 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5254 mtx_unlock(&queue->cam_doneq_mtx); 5255 5256 THREAD_NO_SLEEPING(); 5257 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5258 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5259 xpt_done_process(ccb_h); 5260 } 5261 THREAD_SLEEPING_OK(); 5262 5263 mtx_lock(&queue->cam_doneq_mtx); 5264 } 5265 } 5266 5267 static void 5268 camisr_runqueue(void) 5269 { 5270 struct ccb_hdr *ccb_h; 5271 struct cam_doneq *queue; 5272 int i; 5273 5274 /* Process global queues. */ 5275 for (i = 0; i < cam_num_doneqs; i++) { 5276 queue = &cam_doneqs[i]; 5277 mtx_lock(&queue->cam_doneq_mtx); 5278 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5279 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5280 mtx_unlock(&queue->cam_doneq_mtx); 5281 xpt_done_process(ccb_h); 5282 mtx_lock(&queue->cam_doneq_mtx); 5283 } 5284 mtx_unlock(&queue->cam_doneq_mtx); 5285 } 5286 } 5287